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Abstract. Neutrosophic set is very useful to express un-
certainty, impreciseness, incompleteness and incon-
sistency in a more general way. It is prevalent in real life 
application problems to express both indeterminate and 
inconsistent information. This paper focuses on introduc-
ing a new similarity measure in the neutrosophic envi-
ronment. Similarity measure approach can be used in 
ranking the alternatives and determining the best among 
them. It is useful to find the optimum alternative for mul-
ti criteria decision making (MCDM) problems from simi-
lar alternatives in neutrosophic form. We define a func-

tion based on hypercomplex number system in this paper 
to determine the degree of similarity between single val-
ued neutrosophic sets and thus a new approach to rank 
the alternatives in MCDM problems has been introduced. 
The approach of using hypercomplex number system in 
formulating the similarity measure in neutrosophic set is 
new and is not available in literature so far. Finally, a 
numerical example demonstrates how this function de-
termines the degree of similarity between single valued 
neutrosohic sets and thereby solves the MCDM problem.

Keywords: Hypercomplex similarity measure, Neutrosophic fuzzy set, Decision Making.

1 Introduction

Zadeh introduced the degree of membership/truth (t) in 
1965 and defined the fuzzy set which is an extension of or-
dinary or crisp set as the elements in the fuzzy set are char-
acterised by the grade of membership to the set. Atanassov 
introduced the degree of nonmembership/falsehood (f) in 
1986 and defined the intuitionistic fuzzy set. An intution-
istic fuzzy set is characterized by a membership and non-
membership function and thus can be thought of as the ex-
tension of fuzzy set. Smarandache introduced the degree of 
indeterminacy/neutrality (i) as independent component in 
1995 (published in 1998) and defined the neutrosophic set 
[1]. He has coined the words “neutrosophy” and 
“neutrosophic”. In 2013 he refined the neutrosophic set to 
n components: 𝑡1, 𝑡2, …𝑡𝑗; 𝑖1, 𝑖2, …,𝑖𝑘;  𝑓1, 𝑓2, …, 𝑓𝑙, with
j+k+l = n > 3. A neutrosophic set generalizes the concepts 
of classical set, fuzzy set and intutionistic fuzzy set by con-
sidering truth-membership function, indeterminacy mem-
bership function and falsity-membership function. Real life 
problems generally deal with indeterminacy, inconsistency 
and incomplete information which can be best represented 
by a neutrosophic set.

Properties of neutrosophic sets, their operations, simi-
larity measure between them and solution of MCDM prob-
lems in neutrosophic environment are available in the liter-
ature. In [2] Wang et al. presented single valued neutro-
sophic set (SVNS) and defined the notion of inclusion, 

complement, union, intersection and discussed various 
properties of set-theoretic operators. They also provided in 
[3] the set-theoretic operators and various properties of in-
terval valued neutrosophic sets (IVNSs). Said Broumi and 
Florentin Smarandache introduced the concept of several 
similarity measures of neutrosophic sets [4]. In this paper 
they presented the extended Hausdorff distance for neutro-
sophic sets and defined a series of similarity measures to 
calculate the similarity between neutrosophic sets. In [5] 
Ye introduced the concept of a simplified neutrosophic set 
(SNS), which is a subclass of a neutrosophic set and in-
cludes the concepts of IVNS and SVNS; he defined some 
operational laws of SNSs and proposed simplified neutro-
sophic weighted averaging (SNWA) operator and simpli-
fied neutrosophic weighted geometric (SNWG) operator 
and applied them to multi criteria decision-making prob-
lems under the simplified neutrosophic environment. Ye 
[6] further generalized the Jaccard, Dice and cosine simi-
larity measures between two vectors in SNSs. Then he ap-
plied the three similarity measures to a multi criteria deci-
sion-making problem in the simplified neutrosophic setting. 
Broumi and Smarandache [7] defined weighted interval 
valued neutrosophic sets and found a cosine similarity 
measure between two IVNSs. Then they applied it to prob-
lems related to pattern recognition. 
      Various comparison methods are used for ranking the 
alternatives. Till date no similarity measure using hyper-
complex number system in neutrosophic environment is 
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available in literature. We introduce hypercomplex number 
in similarity measure. In this paper SVNS is represented as 
a hypercomplex number. The distance measured between 
so transformed hypercomplex numbers can give the simi-
larity value. We have used hypercomplex numbers as dis-
cussed by Silviu Olariu in [8]. Multiplication of such hy-
percomplex numbers is associative and commutative. Ex-
ponential and trigonometric form exist, also the concept of 
analytic function, contour integration and residue is de-
fined. Many of the properties of two dimensional complex 
functions can be extended to hypercomplex numbers in n 
dimensions and can be used in similarity measure problems. 
Here in lies the robustness of this method being another 
application of complex analysis.  

The rest of paper is structured as follows. Section 2 in-
troduces some concepts of neutrosophic sets and SNSs. 
Section 3 describes Jaccard, Dice and cosine similarity 
measures. In section 4 three dimensional hypercomplex 
number system and its properties have been discussed. We 
define a new function based on three dimensional hyper-
complex number system for similarity measure to compare 
neutrosophic sets in section 5. Section 6 demonstrates ap-
plication of hypercomplex similarity measures in Decision-
Making problem. In section 7, a numerical example 
demonstrates the application and effectiveness of the pro-
posed similarity measure in decision-making problems in 
neutrosophic environment. We conclude the paper in sec-
tion 8. 

2 Neutrosophic sets 

2.1 Definition 

Let U be an universe of discourse, then the neutrosoph-
ic set A is defined as 
A = {< 𝑥: TA(x), IA(x), FA(x) >} , where the functions
T, I, F: U → ] −0, 1+[  define respectively the degree of 
membership (or Truth), the degree of indeterminacy and 
the degree of non-membership (or falsehood) of the ele-
ment x ∈ U to the set A with the condition  −0 ≤ TA(x) +
IA(x) + FA(x) ≤ 3+.

To apply neutrosophic set to science and technology, 
we consider the neutrosohic set which takes the value from 
the subset of [0, 1]  instead of ] −0, 1+[  i.e., we consider 
SNS as defined by Ye in [5]. 

. 

2.2 Simplified Neutrosophic Set 

Let X is a space of points (objects) with generic ele-
ments in X denoted by x. A neutrosophic set A in X is 
characterized by a truth-membership functionTA(x), an in-
determinacy membership function IA(x) , and a falsity
membership function FA(x) if the functions
TA(x), IA(x), FA(x) are singletons subintervals/subsets in

the real standard [0, 1] , i.e. TA(x): X → [0, 1], IA(x): X →
[0, 1],  FA(x): X → [0, 1]. Then a simplification of the neu-
trosophic set A is denoted by 
A = {< 𝑥: TA(x), IA(x), FA(x) >, 𝑥 ∈ 𝑋}.

2.3 Single Valued Neutrosophic Sets (SVNS) 

Let X is a space of points (objects) with generic ele-
ments in X denoted by x. An SVNS A in X is characterized 
by a truth-membership function 𝑇𝐴(𝑥), an indeterminacy
membership function 𝐼𝐴(𝑥) and a falsity-membership func-
tion 𝐹𝐴(𝑥) , for each point 𝑥 ∈ 𝑋,  𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈
[0, 1]. Therefore, a SVNS A can be written as 𝐴𝑆𝑉𝑁𝑆 =
{< 𝑥:  𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) >, 𝑥 ∈ 𝑋}.

For two SVNS, 𝐴𝑆𝑉𝑁𝑆 = {< 𝑥: 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) >
, 𝑥 ∈ 𝑋}  and 𝐵𝑆𝑉𝑁𝑆 = {< 𝑥: 𝑇𝐵(𝑥), 𝐼𝐵(𝑥), 𝐹𝐵(𝑥) >, 𝑥 ∈ 𝑋} ,
the following expressions are defined in [2] as follows: 
𝐴𝑁𝑆 ⊆ 𝐵𝑁𝑆 if and only if 𝑇𝐴(𝑥) ≤ 𝑇𝐵(𝑥), 𝐼𝐴(𝑥) ≥
𝐼𝐵(𝑥), 𝐹𝐴(𝑥) ≥ 𝐹𝐵(𝑥) . 𝐴𝑁𝑆 = 𝐵𝑁𝑠  if and only if 𝑇𝐴(𝑥) =
𝑇𝐵(𝑥), 𝐼𝐴(𝑥) = 𝐼𝐵(𝑥), 𝐹𝐴(𝑥) = 𝐹𝐵(𝑥). 𝐴𝑐 =< 𝑥, 𝐹𝐴(𝑥), 1 −
𝐼𝐴(𝑥), 𝑇𝐴(𝑥) >

For convenience, a SVNS A is denoted by 𝐴 =<
𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) > for any x∈ 𝑋; for two SVNSs A and
B; the operational relations are defined by [2], 
(1)𝐴 ∪ 𝐵 =
< max(𝑇𝐴(𝑥), 𝑇𝐵(𝑥)) ,𝑚𝑖𝑛(𝐼𝐴(𝑥), 𝐼𝐵(𝑥)),𝑚𝑖𝑛(𝑇𝐴(𝑥), 𝑇𝐵(𝑥))
>
(2)𝐴 ∩ 𝐵 =<
𝑚𝑖𝑛(𝑇𝐴(𝑥), 𝑇𝐵(𝑥)),𝑚𝑎𝑥(𝐼𝐴(𝑥), 𝐼𝐵(𝑥)),𝑚𝑎𝑥(𝑇𝐴(𝑥), 𝑇𝐵(𝑥)) >

3 Jaccard, Dice and cosine similarity

The vector similarity measure is one of the most im-
portant techniques to measure the similarity between ob-
jects. In the following, the Jaccard, Dice and cosine simi-
larity measures between two vectors are introduced 

Let 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛)  and 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑛) be the
two vectors of length n where all the coordinates are posi-
tive. The Jaccard index of these two vectors is defined as 

𝐽(𝑋, 𝑌) =
𝑋.𝑌

‖𝑋‖2
2
+‖𝑌‖2

2
+𝑋.𝑌

=
∑ 𝑥𝑖.𝑦𝑖

𝑛
𝑖=1

∑ 𝑥𝑖
2+∑ 𝑦𝑖

2−∑ 𝑥𝑖.𝑦𝑖
𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1

, 

where 𝑋. 𝑌 = ∑ 𝑥𝑖 . 𝑦𝑖
𝑛
𝑖=1  is the inner product of the 

vectors 𝑋 𝑎𝑛𝑑 𝑌. 

The Dice similarity measure is defined as 

𝐽(𝑋, 𝑌) =
2𝑋. 𝑌

‖𝑋‖2
2
+ ‖𝑌‖2

2 =
2∑ 𝑥𝑖 . 𝑦𝑖

𝑛
𝑖=1

∑ 𝑥𝑖
2 + ∑ 𝑦𝑖

2𝑛
𝑖=1

𝑛
𝑖=1

Cosine formula is defined as the inner product of these 
two vectors divided by the product of their lengths. This is 
the cosine of the angle between the vectors. The cosine 
similarity measure is defined as 
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𝐶(𝑋, 𝑌) =
𝑋. 𝑌

‖𝑋‖2
2
. ‖𝑌‖2

2 =
∑ 𝑥𝑖 . 𝑦𝑖

𝑛
𝑖=1

∑ 𝑥𝑖
2. ∑ 𝑦𝑖

2𝑛
𝑖=1

𝑛
𝑖=1

It is obvious that the Jaccard, Dice and cosine similari-
ty measures satisfy the following properties

(P1) 0 ≤ J(X, Y), D(X, Y), C(X, Y) ≤ 1

(P2) J(X, Y) = J(Y, X), D(X, Y) = D(Y, X) and C(X, Y)
= C(Y, X)

(P3) J(X, Y) = 1, D(X, Y) = 1 and C(X, Y) = 1 if X = Y

i.e., 𝑥𝑖 = 𝑦𝑖(𝑖 = 1, 2, … , 𝑛)for every 𝑥𝑖 ∈ 𝑋 and 𝑦𝑖 ∈ 𝑌.
Also Jaccard, Dice, cosine weighted similarity measures 
between two SNSs A and B as discussed in [6] are 

𝑊𝐽(𝐴, 𝐵)

= ∑𝑤𝑖

𝑇𝐴(𝑥𝑖)𝑇𝐵(𝑥𝑖)

+𝐼𝐴(𝑥𝑖)𝐼𝐵(𝑥𝑖)

+𝐹𝐴(𝑥𝑖)𝐹𝐵(𝑥𝑖)

(𝑇𝐴(𝑥𝑖))
2
+ (𝐼𝐴(𝑥𝑖))

2
+ (𝐹𝐴(𝑥𝑖))

2

+(𝑇𝐵(𝑥𝑖))
2
+ (𝑇𝐴(𝑥𝑖))

2
+ (𝑇𝐴(𝑥𝑖))

2
+ (𝑇𝐴(𝑥𝑖))

2

−𝑇𝐴(𝑥𝑖)𝑇𝐵(𝑥𝑖) − 𝑇𝐵(𝑥𝑖)𝑇𝐶(𝑥𝑖) − 𝑇𝐶(𝑥𝑖)𝑇𝐴(𝑥𝑖)

𝑛

𝑖=1

𝑊𝐷(𝐴, 𝐵)

= ∑𝑤𝑖

2(

𝑇𝐴(𝑥𝑖)𝑇𝐵(𝑥𝑖)

+𝐼𝐴(𝑥𝑖)𝐼𝐵(𝑥𝑖)

+𝐹𝐴(𝑥𝑖)𝐹𝐵(𝑥𝑖)
)

(𝑇𝐴(𝑥𝑖))
2
+ (𝐼𝐴(𝑥𝑖))

2
+ (𝐹𝐴(𝑥𝑖))

2

+(𝑇𝐵(𝑥𝑖))
2
+ (𝑇𝐴(𝑥𝑖))

2
+ (𝑇𝐴(𝑥𝑖))

2
+ (𝑇𝐴(𝑥𝑖))

2

𝑛

𝑖=1

𝑊𝐶(𝐴, 𝐵)

= ∑𝑤𝑖

(

𝑇𝐴(𝑥𝑖)𝑇𝐵(𝑥𝑖)

+𝐼𝐴(𝑥𝑖)𝐼𝐵(𝑥𝑖)

+𝐹𝐴(𝑥𝑖)𝐹𝐵(𝑥𝑖)
)

√(𝑇𝐴(𝑥𝑖))
2
+ (𝐼𝐴(𝑥𝑖))

2
+ (𝐹𝐴(𝑥𝑖))

2

√(𝑇𝐵(𝑥𝑖))
2
+ (𝑇𝐴(𝑥𝑖))

2
+ (𝑇𝐴(𝑥𝑖))

2
+ (𝑇𝐴(𝑥𝑖))

2

𝑛

𝑖=1

4 Geometric representation of hypercomplex 
number in three dimensions  

A system of hypercomplex numbers in three dimen-
sions is described here, for which the multiplication is as-
sociative and commutative, which have exponential and 
trigonometric forms and for which the concepts of analytic 
tricomplex function, contour integration and residue is de-
fined. The tricomplex numbers introduced here have the 
form  𝑢 = 𝑥 + ℎ𝑦 + 𝑘𝑧, the variables x, y and z being real 
numbers. The multiplication rules for the complex units 
ℎ, 𝑘 are ℎ2 = 𝑘, 𝑘2 = ℎ, 1. ℎ = ℎ, 1. 𝑘 = 𝑘, ℎ𝑘 = 1 as dis-

cussed in [8]. In a geometric representation, the tricomplex 
number 𝑢  is represented by the point P of 
nates (𝑥, 𝑦, 𝑧). If O is the origin of the 𝑥, 𝑦, 𝑧 axes, (t) the 
trisector line 𝑥 = 𝑦 = 𝑧  of the positive octant and Π  the 
plane 𝑥 + 𝑦 + 𝑧 = 0  passing through the origin (O) and 
perpendicular to (t), then the tricomplex number u can be 
described by the projection S of the segment OP along the 
line (t), by the distance D from P to the line (t), and by the 
azimuthal angle 𝜙 in the Π  plane. It is the angle between 
the projection of P on the plane Π and the straight line 
which is the intersection of the plane Π and the plane de-
termined by line t and x axis, 0 ≤ 𝜙 ≤ 2𝜋. The amplitude 
𝜌  of a tricomplex number is defined as 𝜌 = (𝑥3 + 𝑦3 +

𝑧3 − 3𝑥𝑦𝑧)
1

3⁄  , the polar angle 𝜃  of OP with respect to
the trisector line (t) is given by 𝑡𝑎𝑛 𝜃 =

𝐷

𝑆
, 0 ≤ 𝜃 ≤ 𝜋 and 

the distance from P to the origin is 𝑑2 = 𝑥2 + 𝑦2 + 𝑧2. the 
tricomplex number 𝑥 + ℎ𝑦 + 𝑘𝑧  can be represented by the 
point P of coordinates (x, y, z). The projection S = OQ of 
the line OP on the trisector line 𝑥 = 𝑦 = 𝑧, which has the 

unit tangent( 1

√3
,

1

√3
,

1

√3
) , 𝑖𝑠 𝑆 =

1

√3
(𝑥 + 𝑦 + 𝑧).  The dis-

tance D = PQ from P to the trisector line 𝑥 = 𝑦 = 𝑧, calcu-
lated as the distance from the point P(x, y ,z) to the point Q 
of coordinates [

𝑥+𝑦+𝑧

3
,
𝑥+𝑦+𝑧

3
,
𝑥+𝑦+𝑧

3
] , is 𝐷2 =

2

3
(𝑥2 + 𝑦2 + 𝑧2 − 𝑥𝑦 − 𝑦𝑧 − 𝑧𝑥). The quantities S and D 

are shown in Fig. 1, where the plane through the point P 
and perpendicular to the trisector line (t) intersects the x 
axis at point A of coordinates (𝑥 + 𝑦 + 𝑧, 0, 0),  the y axis 
at point B of coordinates (0. 𝑥 + 𝑦 + 𝑧, 0), and the z axis at 
point C of coordinates (0, 0, 𝑥 + 𝑦 + 𝑧) . The expression of 
𝜙 in terms of x, y, z can be obtained in a system of coordi-
nates defined by the unit vectors 𝜉1 =

1

√6
(2, −1,−1),

𝜉2 =
1

√2
(0, −1,−1), 𝜉3 =

1

√3
(1, 1, 1)and having the point 

O as origin. The relation between the coordinates of P in 
the systems 𝜉1, 𝜉2, 𝜉3 and x, y, z can be written in the form:

[

𝜉1

𝜉2

𝜉3

] =

[

 
2

√6
−

1

√6
−

1

√6

0 −
1

√2
−

1

√2
1

√3

1

√3

1

√3 ]
 
 
 
 
 
 

[
𝑥
𝑦
𝑧
]

(𝜉1, 𝜉2, 𝜉3) = (
1

√6
(2𝑥 − 𝑦 − 𝑧),

1

√2
(𝑦 − 𝑧),

1

√3
(𝑥 + 𝑦 +

𝑧)). Also cos𝜙 =
2𝑥−𝑦−𝑧

2√(𝑥2+𝑦2+𝑧2−𝑥𝑦−𝑦𝑧−𝑧𝑥)

8
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sin𝜙 =
√3(𝑦 − 𝑧)

2√(𝑥2 + 𝑦2 + 𝑧2 − 𝑥𝑦 − 𝑦𝑧 − 𝑧𝑥)

The angle 𝜃 between the line OP and the trisector line 
(t) is given by tan 𝜃 =

𝐷

𝑆

Figure 1: Tricomplex variables s, d, 𝜃 , 𝜙  for the tri-
comlex number 𝑥 + ℎ𝑦 + 𝑘𝑧, represented by the point P(x, 
y, z). The azimuthal angle 𝜙 is shown in the plane parallel 
to Π, passing through P, which intersects the trisector line 
(t) at Q and the axis of coordinates x, y, z  at the points A, 
B, C. The orthogonal axis: 𝜉1

||,𝜉2
||, 𝜉3

|| have the origin at Q.
The axis Q𝜉1

|| is parallel to the axis O𝜉1
||, the axis Q𝜉2

|| is
parallel to the axis O𝜉2

||, and the axis Q𝜉3
|| is parallel to the

axis O𝜉3
||, so that, in the plane ABC, the angle 𝜙 is meas-

ured from the line QA. 

5 Hypercomplex similarity measure for SVNS 

We here define a function for similarity measure be-
tween SVNSs. It requires satisfying some properties of 
complex number in three dimensions to satisfy the prereq-
uisites of a similarity measure method. In this sense, we 
can call the function to be defined in three dimensional 
complex number system or hypercomplex similarity meas-
urement function. 

Definition I: Let 𝐴 = {𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)}  and
𝐵 = {𝑥, 𝑇𝐵(𝑥), 𝐼𝐵(𝑥), 𝐹𝐵(𝑥)} are two neutrosophic sets in
𝑋 = {𝑥}; then the similarity function between two neutro-
sophic sets A and B is defined as  

𝑆(𝐴, 𝐵) =

1

2
[

(1+𝐷𝜃1
𝐷𝜃2

)
2

1+𝐷𝜃1
2+𝐷𝜃2

2+𝐷𝜃1
2𝐷𝜃2

2 +
(1+𝐷𝜙1

𝐷𝜙2)
2

1+𝐷𝜙1
2+𝐷𝜙2

2+𝐷𝜙1
2𝐷𝜙2

2] , where 

𝐷𝜃1
=

√(𝑇𝐴(𝑥)−𝐼𝐴(𝑥))
2
+(𝐼𝐴(𝑥)−𝐹𝐴(𝑥))

2
+(𝐹𝐴(𝑥)−𝑇𝐴(𝑥))

2

(𝑇𝐴(𝑋)+𝐼𝐴(𝑥)+𝐹𝐴(𝑥))

𝐷𝜃2
=

√(𝑇𝐵(𝑥) − 𝐼𝐵(𝑥))
2
+ (𝐼𝐵(𝑥) − 𝐹𝐵(𝑥))

2
+ (𝐹𝐵(𝑥) − 𝑇𝐵(𝑥))

2

(𝑇𝐵(𝑋) + 𝐼𝐵(𝑥) + 𝐹𝐵(𝑥))

𝐷𝜙1
=

√3(𝐼𝐴(𝑥) − 𝐹𝐴(𝑥))

2𝑇𝐴(𝑥) − 𝐼𝐴(𝑥) − 𝐹𝐴(𝑥)

𝐷𝜙2
=

√3(𝐼𝐵(𝑥) − 𝐹𝐵(𝑥))

2𝑇𝐵(𝑥) − 𝐼𝐵(𝑥) − 𝐹𝐵(𝑥)

Also (TA(x), IA(x), FA(x) ≠ (0, 0, 0) and (TB(x), IB(x), 
FB(x) ) ≠ (0, 0, 0) . 

Lemma I: Function S (A, B) satisfies the properties of 
similarity measure.  

Proof: Let us consider 𝑆1(𝐴, 𝐵) =
1

2
[

1

1+tan2(𝜃1−𝜃2)
+

1

1+tan2(𝜑1−𝜑2)
] =

1

2
[

(1+tan𝜃1 tan𝜃2)2

1+tan2 𝜃1+tan2 𝜃2+tan2 𝜃1 tan2 𝜃2
+

(1+tan𝜑1 tan𝜑2)2

1+tan2 𝜑1+tan2 𝜑2+tan2 𝜑1 tan2 𝜑2
]. From (1), (2) and (3), 

we get the value of tan𝜃1 , tan 𝜃2 , tan𝜑1 , tan𝜑2 . If
we take tan 𝜃1 = 𝐷𝜃1

, tan 𝜃2 = 𝐷𝜃2
, tan𝜑1 = 𝐷𝜑1

,
tan𝜑2 = 𝐷𝜑2

, then 𝑆1(𝐴, 𝐵) = 𝑆(𝐴, 𝐵)

Clearly the function 𝑆1(𝐴, 𝐵) satisfies the properties

(p1) 0 ≤ S1(A, B) ≤ 1

(𝑃2) 𝑆1(𝐴, 𝐵) = 𝑆1(𝐵, 𝐴)

(𝑃3) 𝑊ℎ𝑒𝑛 𝐴 = 𝐵,  𝜃1 = 𝜃2  𝑎𝑛𝑑 𝜙1 =
𝜙2, 𝑖. 𝑒. , 𝑆1(𝐴, 𝐵) = 1, 𝑖𝑓𝐴 = 𝐵. 

6 Application of Hypercomplex similarity 
Measures in Decision-Making 

In this section, we apply hypercomplex similarity 
measures between SVNSs to the multicriteria decision-
making problem. Let 𝐴 = 𝐴1, 𝐴2, … , 𝐴𝑚be a set of 
alternatives and 𝐶 = 𝐶1, 𝐶2, … , 𝐶𝑛  𝑏𝑒 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎. 
Assume that the weight of the criterion 𝐶𝑗(𝑗 = 1,2, … , 𝑛) 
entered by the decision-maker is 𝑤𝑗, 𝑤𝑗 ∈ [0,1]

and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 . The m options according to the n criteri-

on are given below: 
𝐶1 𝐶2 𝐶3 … 𝐶𝑛

𝐴1 𝐶1
(𝐴1) 𝐶2

(𝐴1) 𝐶1
(𝐴1) … 𝐶𝑛

(𝐴1)

𝐴2 𝐶1
(𝐴2) 𝐶2

(𝐴2) 𝐶3
(𝐴2) … 𝐶𝑛

(𝐴3)

𝐴3 𝐶1
(𝐴3) 𝐶2

(𝐴3) 𝐶3
(𝐴3) … 𝐶𝑛

(𝐴3)

: : : : : :

𝐴𝑚 𝐶1
(𝐴𝑛) 𝐶2

(𝐴3) 𝐶3
(𝐴3) … 𝐶𝑛

(𝐴𝑚)

9
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Generally, the evaluation criteria can be categorized in-
to two types: benefit criteria and cost criteria. Let K be a 
set of benefit criteria and M be a set of cost criteria. In the 
proposed decision-making method, an ideal alternative can 
be identified by using a maximum operator for the benefit 
criteria and a minimum operator for the cost criteria to de-
termine the best value of each criterion among all alterna-
tives. Therefore, we define an ideal alternative 

𝐴∗ = {𝐶1
∗, 𝐶2

∗, 𝐶3
∗, … , 𝐶𝑛

∗}
Where for a benefit criterion 
𝐶𝑗

∗ = {𝑚𝑎𝑥𝑖𝑇𝐶𝑗

(𝐴𝑖), 𝑚𝑖𝑛𝑖𝐼𝐶𝑗

(𝐴𝑖), 𝑚𝑖𝑛𝑖𝐹𝐶𝑗

(𝐴𝑖)} while for
a cost criterion, 

𝐶𝑗
∗ = {𝑚𝑖𝑛𝑖𝑇𝐶𝑗

(𝐴𝑖), 𝑚𝑎𝑥𝑖𝐼𝐶𝑗

(𝐴𝑖), 𝑚𝑎𝑥𝑖𝐹𝐶𝑗

(𝐴𝑖)}

Definition II: We define hypercomplex weighted similari-
ty measure as 

𝑊𝑆𝐾(𝐴𝑖 , 𝐴
∗) = ∑ 𝑊𝑗𝑆(𝐶𝑗

(𝐴𝑖), 𝐶𝑗
∗), (𝑖 =𝑛

𝑗=1

1, 2, 3, … ,𝑚)  Lemma II: 𝑊𝑆𝐾(𝐴𝑖 , 𝐴
∗), (𝑖 = 1, 2, 3, … ,𝑚)

satisfies properties 𝑃1, 𝑃2, 𝑃3.

Proof: Clearly  ∑ 𝑤𝑗𝑆(𝐶𝑗
(𝐴𝑖), 𝐶𝑗

∗) ≥ 0𝑛
𝑗=1  and since

from the property of hypercomplex similarity measure 
𝑆(𝐶𝑗

(𝐴𝑖), 𝐶𝑗
∗) ≤ 1,  ∑ 𝑤𝑗𝑆(𝐶𝑗

(𝐴𝑖), 𝐶𝑗
∗) ≤ ∑ 𝑤𝑗 = 1,𝑛

𝑗=1
𝑛
𝑗=1  so 

0 ≤ 𝑊𝑆𝐾(𝐴𝑖, 𝐴
∗) ≤ 1. Thus 𝑃1 is satisfied.

Since 𝑆(𝐶𝑗
(𝐴𝑖), 𝐶𝑗

∗) =  𝑆(𝐶𝑗
∗, 𝐶𝑗

(𝐴𝑖)),𝑊𝑆𝐾(𝐴𝑖 , 𝐴
∗) =

𝑊𝑆𝐾(𝐴∗, 𝐴𝑖). Thus 𝑃2 is satisfied.

When 𝐶𝑗
(𝐴𝑖) = 𝐶𝐽

∗,  Using the property of hyper-
complex similarity measure 

𝑆(𝐶𝑗
(𝐴𝑖), 𝐶𝑗

∗) = 1,  So ∑ 𝑤𝑗𝑆(𝐶𝑗
(𝐴𝑖), 𝐶𝑗

∗) =𝑛
𝑗=1

∑ 𝑤𝑗
𝑛
𝑗=1 = 1 if 𝐶𝑗

(𝐴𝑖) = 𝐶𝑗
∗.

So 𝑃3 is also satisfied.

Through the similarity measure between each alterna-
tive and the ideal alternative, the ranking order of all alter-
natives can be determined and the best alternative can be 
easily selected. 

7 Numerical Example 

In a certain network, there are four options to go from 
one node to the other. Which path to be followed will be 
impacted by two benefit criteria 𝐶1, 𝐶2 and one cost criteria
𝐶3 and the weight vectors are 0.35, 0.25 and 0.40 respec-
tively. A decision maker evaluates the four options accord-
ing to the three criteria mentioned above. We use the new-
ly introduced approach to obtain the most desirable alterna-
tive from the decision matrix given in table 1. 

𝐶1, 𝐶2 are benefit criteria, 𝐶3 is cost criteria. From table
1 we can obtain the following ideal alternative: 

𝐴∗ = {(0.7, 0, 0.1), (0.6, 0.1, 0.2), (0.5, 0.3, 0.8)} 

𝐴1 𝐴2 𝐴3 𝐴4

𝐶1 (0.4, 0.2, 0.3) (0.6, 0.1, 0.2) (0.3, 0.2, 0.3) (0.7, 0, 0.1)

𝐶2 (0.4, 0.2, 0.3) (0.6, 0.1, 0.2) (0.5, 0.2, 0.3) (0.6, 0.1, 0.2)

𝐶3 (0.8, 0.2, 0.5) (0.5, 0.2, 0.8) (0.5, 0.3, 0.8) (0.6, 0.3, 0.8)

Table 1: Decision matrix (information given by 
DM) 

𝑴𝒆𝒂𝒔𝒖𝒓𝒆 𝒎𝒆𝒕𝒉𝒐𝒅 𝒎𝒆𝒂𝒔𝒖𝒓𝒆 𝒗𝒂𝒍𝒖𝒆 𝑹𝒂𝒏𝒌𝒊𝒏𝒈 𝒐𝒓𝒅𝒆𝒓

𝑾𝑱(𝑨𝟏, 𝑨
∗) = 𝟎. 𝟕𝟔𝟒𝟐

𝑾𝒆𝒊𝒈𝒉𝒕𝒆𝒅 𝑱𝒂𝒄𝒄𝒂𝒓𝒂𝒅 𝑾𝑱(𝑨𝟐, 𝑨
∗) = 𝟎. 𝟗𝟕𝟑𝟓

𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 𝒎𝒆𝒂𝒔𝒖𝒓𝒆 𝑾𝑱(𝑨𝟑, 𝑨
∗) = 𝟎. 𝟖𝟎𝟔𝟕 𝑨𝟒 > 𝐴𝟐 > 𝑨𝟑 > 𝑨𝟏

𝑾𝑱(𝑨𝟏, 𝑨
∗) = 𝟎. 𝟗𝟗𝟔𝟐

𝑾𝑫(𝑨𝟏, 𝑨
∗) = 𝟎. 𝟖𝟔𝟑𝟓

𝑾𝒆𝒊𝒈𝒉𝒕𝒆𝒅 𝑱𝒂𝒄𝒄𝒂𝒓𝒂𝒅 𝑾𝑫(𝑨𝟐, 𝑨
∗) = 𝟎. 𝟗𝟖𝟔𝟒

𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 𝒎𝒆𝒂𝒔𝒖𝒓𝒆 𝑾𝑫(𝑨𝟑, 𝑨
∗) = 𝟎. 𝟖𝟕𝟑𝟖 𝑨𝟒 > 𝐴𝟐 > 𝑨𝟑 > 𝑨𝟏

𝑾𝑫(𝑨𝟒, 𝑨
∗) = 𝟎. 𝟗𝟗𝟖𝟏

𝑾𝑫(𝑨𝟏, 𝑨
∗) = 𝟎. 𝟖𝟕𝟕𝟑

𝑾𝒆𝒊𝒈𝒉𝒕𝒆𝒅 𝒄𝒐𝒔𝒊𝒏𝒆 𝑾𝑫(𝑨𝟐, 𝑨
∗) = 𝟎. 𝟗𝟖𝟖𝟐

𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 𝒎𝒆𝒂𝒔𝒖𝒓𝒆 𝑾𝑫(𝑨𝟑, 𝑨
∗) = 𝟎. 𝟖𝟗𝟑𝟗 𝑨𝟒 > 𝐴𝟐 > 𝑨𝟑 > 𝑨𝟏

𝑾𝑫(𝑨𝟒, 𝑨
∗) = 𝟎. 𝟗𝟗𝟖𝟔

𝑾𝒌𝑺(𝑨𝟏, 𝑨
∗) = 𝟎. 𝟕𝟐𝟏𝟏

𝑾𝒆𝒊𝒈𝒉𝒕𝒆𝒅 𝒉𝒚𝒑𝒆𝒓𝒄𝒐𝒎𝒑𝒍𝒆𝒙 𝑾𝒌𝑺(𝑨𝟐, 𝑨
∗) = 𝟎. 𝟗𝟖𝟓𝟕

𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 𝒎𝒆𝒂𝒔𝒖𝒓𝒆 𝑾𝒌𝑺(𝑨𝟑, 𝑨
∗) = 𝟎. 𝟖𝟎𝟗𝟎 𝑨𝟒 > 𝐴𝟐 > 𝑨𝟑 > 𝑨𝟏

𝑾𝒌𝑺(𝑨𝟒, 𝑨
∗) = 𝟎. 𝟗𝟖𝟗𝟓

7.1 Generalization of hypercomplex similarity 
measure 

In this section 7, we formulate a general function for simi-
larity measure using hypercomplex number system. This 
can give similarity measure for any dimension. Before 
formulating it, we should have a fare knowledge of hyper-
complex number in n-dimensions [8] for which the multi-
plication is associative and commutative, and also the con-
cepts of analytic n-complex function, contour integration 
and residue is defined. The n-complex number 𝑥0 +
ℎ1𝑥1 + ℎ2𝑥2 + ⋯+ ℎ𝑛−1𝑥𝑛−1 can be represented by the
point A of coordinates (𝑥0, 𝑥1, … , 𝑥𝑛−1)
whereℎ1, ℎ2, … , ℎ𝑛−1 are the hypercomplex bases for
which the multiplication rules areℎ𝑗ℎ𝑘 = ℎ𝑗+𝑘 if 0 ≤ 𝑗 +

𝑘 ≤ 𝑛 − 1, 𝑎𝑛𝑑 ℎ𝑗ℎ𝑘 = ℎ𝑗+𝑘−𝑛 if 𝑛 ≤ 𝑗 + 𝑘 ≤ 2𝑛 −

2, where ℎ0 = 1. If O is the origin of the n dimensional
space, the distance from the origin O to the point A of co-
ordinates (𝑥0, 𝑥1, … , 𝑥𝑛−1) has the expression 𝑑2 = 𝑥0

2 +
𝑥1

2 + 𝑥2
2 + ⋯+ 𝑥𝑛−1

2. The quantity d will be called
modulus of the n-complex number 𝑢 = 𝑥0 + ℎ1𝑥1 +
ℎ2𝑥2 + ⋯+ ℎ𝑛−1𝑥𝑛−1. The modulus of an n-complex
number u will be designated by 𝑑 = |𝑢|. For even number 
of dimensions (𝑛 ≥ 4) hypercomplex number is charac-
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terized by two polar axis, one polar axis is the normal 
through the origin O to the hyperplane 𝑣+ = 0 where𝑣+ =
𝑥0 + 𝑥1 + ⋯+ 𝑥𝑛−1 and the second polar axis is the
normal through the origin O to the hyperplane 𝑣− =
0 where 𝑣− = 𝑥0 − 𝑥1 + ⋯+ 𝑥𝑛−2 − 𝑥𝑛−1.  Whereas for
an odd number of dimensions, n-complex number is of one 
polar axis, normal through the origin O to the hyperplane  
𝑣+ = 0. 

Thus, in addition to the distance d, the position of the 
point A can be specified, in an even number of dimensions, 
by two polar angles 𝜃+, 𝜃−, by n/2-2 planar angles 𝜓𝑘, and
by 𝑛

2
− 1 azimuthal angles 𝜙𝑘. In an odd number of dimen-

sions, the position of the point A is specified by d, by one 
polar angle 𝜃+, by   planar angles 𝜓𝑘, and by 𝑛−1

2
 azimuthal 

angles 𝜙𝑘. The exponential and trigonometric forms of the
n-complex number u can be obtained conveniently in a ro-
tated system of axes defined by a transformation 

Which, for even n, 

[
 
 
 
 
 
𝜉+

𝜉−

:
𝜉𝑘

𝜂𝑘

: ]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 

1

√𝑛

1

√𝑛
…

1

√𝑛

1

√𝑛
1

√𝑛
−

1

√𝑛
…

1

√𝑛
−

1

√𝑛
: : : :

√
2

𝑛
√

2

𝑛
cos

2𝜋𝜅

𝑛
… √

2

𝑛
cos

2𝜋(𝑛 − 2)𝑘

𝑛
√

2

𝑛
cos

2𝜋(𝑛 − 1)𝑘

𝑛

0 √
2

𝑛
sin

2𝜋𝑘

𝑛
… √

2

𝑛
sin

2𝜋(𝑛 − 2)𝑘

𝑛
√

2

𝑛
sin

2𝜋(𝑛 − 1)𝑘

𝑛

: : : : : ]
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 

𝑥0

𝑥1:
:
:
:

𝑥𝑛−1]
 
 
 
 
 

Here 𝑘 = 1,2, … ,
𝑛

2
− 1.

And for odd n, 

[
 
 
 
 
 
𝜉+

𝜉−

:
𝜉𝑘

𝜂𝑘

: ]

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1

√𝑛

1

√𝑛
…

1

√𝑛

2

√𝑛
√

2

𝑛
cos

2𝜋

𝑛
… √

2

𝑛
cos

2𝜋(𝑛 − 1)

𝑛

0 √
2

𝑛
sin

2𝜋

𝑛
… √

2

𝑛
sin

2𝜋(𝑛 − 1)

𝑛

: : : :

2

√𝑛
√

2

𝑛
cos

2𝜋𝑘

𝑛
… √

2

𝑛
cos

2𝜋(𝑛 − 1)𝑘

𝑛

0 √
2

𝑛
sin

2𝜋𝑘

𝑛
… √

2

𝑛
sin

2𝜋(𝑛 − 1)𝑘

𝑛

: : : : ]

[
 
 
 
 
 

𝑥0

𝑥1:
:
:
:

𝑥𝑛−1]

Here 𝑘 = 1,2, … ,
𝑛−1

2

Definition III: Let 𝐴 = (𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛−1)  and 𝐵 = (𝑦0, 
𝑦1, 𝑦2, … , 𝑦𝑛−1) be two n dimensional complex numbers. 
Then similarity measure between A and B is defined as, 
when n is odd 

𝑆(𝐴, 𝐵) =
1

𝑛 − 1
[
 
 
 

1

1 + tan2(𝜃+
(𝐴) − 𝜃+

(𝐵))

+ ∑
1

1 + tan2(𝜙𝑘
(𝐴) − 𝜙𝑘

(𝐵))

𝑛−1
2

𝑘=1

+ ∑
1

1 + tan2(𝜓𝑘−1
(𝐴) − 𝜓𝑘−1

(𝐵))

𝑛−1
2

𝑘=2
]

And when n is even, 

𝑆(𝐴, 𝐵) =
1

𝑛 − 1
[

1

1 + tan2(𝜃+
(𝐴) − 𝜃+

(𝐵))

+
1

1 + tan2(𝜃−
(𝐴) − 𝜃−

(𝐵))

+ ∑
1

1 + tan2(𝜙𝑘
(𝐴) − 𝜙𝑘

(𝐵))

𝑛
2
−1

𝑘=1

+ ∑
1

1 + tan2(𝜓𝑘−1
(𝐴) − 𝜓𝑘−1

(𝐵))

𝑛
2
−1

𝑘=2

]
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Making Problem

Here tan𝜃+ =
√2𝜌1

𝑣+
, tan 𝜃− =

√2𝜌1

𝑣−
, cos𝜙𝑘 =

𝑣𝑘

𝜌𝑘
, sin 𝜙𝑘 =

𝑣̌𝑘

𝜌𝑘
, 𝜌𝑘

2 = 𝑣𝑘
2 + 𝑣̌𝑘 

2,  𝑣+ = √𝑛𝜉+,  𝑣− = √𝑛𝜉−, 𝑣𝑘 =

√
𝑛

2
𝜉𝑘, 𝑣̌𝑘 = √

𝑛

2
𝜂𝑘,  tan𝜓𝑘−1 =

𝜌1

𝜌𝑘
, and also   0 ≤ 𝜃+ ≤

𝜋, 0 ≤ 𝜃− ≤ 𝜋, 0 ≤ 𝜑𝑘 ≤ 2𝜋 and 0 ≤ 𝜉𝑘 ≤
𝜋

2
.

It is very clear that 𝑆(Α, Β) satisfies the three properties 
of similarity measure. 

8 Conclusion 

In this paper we first introduced a new method of simi-
larity measure between single valued neutrosohpic sets us-
ing hypercomplex number. We set up an example of deci-
sion making problem which requires finalizing an optimal 
path based on some certain criteria. We compared the re-
sult of our introduced similarity measure with those of oth-
er methods. We can conclude that we can efficiently apply 
the introduced similarity measure approach in decision 
making problems and any other similarity measure prob-
lems. Later, we proposed a general function for similarity 
measure. 

The proposed similarity measure is based on the con-
cept of hypercomplex number. We can relate the similarity 
measure with hypercomplex number system. Thus, it 
opens a new domain of research in finding the solutions of 
decision making problems related to the network problems 
by the use of similarity measures based on hypercomplex 
number system. 
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