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Abstract: The purpose of this study is to propose new similarity
measures namely rough variational coefficient similarity measure 
under the rough neutrosophic environment. The weighted rough 
variational coefficient similarity measure has been also defined. 
The weighted rough variational coefficient similarity measures 
between the rough ideal alternative and each alternative are 
xxxxx

calculated to find the best alternative. The ranking order of all the
alternatives can be determined by using the numerical values of 
similarity measures. Finally, an illustrative example has been 
provided to show the effectiveness and validity of the proposed 
approach. Comparisons of decision results of existing rough 
similarity measures have been provided.  

Keywords: Neutrosophic set, Rough neutrosophic set; Rough variation coefficient similarity measure; Decision making. 

1 Introduction 

In 1965, L. A. Zadeh grounded the concept of degree 
of membership and defined fuzzy set [1] to repre-
sent/manipulate data with non-statistical uncertainty. In 
1986, K. T. Atanassov [2] introduced the degree of non-
membership as independent component and proposed intu-
itionistic fuzzy set (IFS). F. Smarandache introduced the 
degree of indeterminacy as independent component and 
defined the neutrosophic set [3, 4, 5]. For purpose of solv-
ing practical problems, Wang et al. [6] restricted the con-
cept of neutrosophic set to single valued neutrosophic set 
(SVNS), since single value is an instance of set value. 
SVNS is a subclass of the neutrosophic set.  SVNS consists 
of the three independent components namely, truth-
membership, indeterminacy-membership and falsity-
membership functions.  

The concept of rough set theory proposed by Z. Pawlak 
[7] is an extension of the crisp set theory for the study of 
intelligent systems characterized by inexact, uncertain or 
insufficient information. The hybridization of rough set 
theory and neutrosophic set theory produces the rough neu-
trosophic set theory [8, 9], which was proposed by Broumi, 
Dhar and Smarandache [8, 9]. Rough neutrosophic set the-
ory is also a powerful mathematical tool to deal with in-
completeness. 

Literature review reflects that similarity measures play 
an important role in the analysis and research of clustering 
analysis, decision making, medical diagnosis, pattern 
recognition, etc. Various similarity measures [10, 11, 12, 
13, 14, 15, 16, 17, 18] of SVNSs and hybrid SVNSs are 

available in the literature. The concept of similarity 
measures in rough neutrosophic environment [19, 20, 21] 
has been    recently proposed. 

Pramanik and Mondal [19] proposed cotangent 
similarity measure of rough neutrosophic sets. In the same 
study [19],Pramanik and Mondal established its basic 
properties and provided its application to medical 
diagnosis. Pramanik and Mondal [20] also proposed cosine 
similarity measure of rough neutrosophic sets and its 
application in medical diagnosis. The same authors [21] 
also  studied Jaccard similarity measure and Dice 
similarity measures in rough neutrosophic environment 
and provided their applications to multi attribute decision 
making. Mondal and Pramanik [22] presented tri-complex 
rough neutrosophic similarity measure and its application 
in multi-attribute decision making. Together with F. 
Smarandache and S. Pramnik, K. Mondal [23] presented 
hypercomplex rough neutrosophic similarity measure and 
its application in multi-attribute decision making.  Mondal,
Pramanik, and Smarandache [24] presented several trigo-
nometric Hamming similarity measures of rough neutro-
sophic sets and their applications in multi attribute decision 
making problems.  

Different methods for multiattribute decision making 
(MADM) and multicriteria decision making (MCDM) 
problems  are available in the literature in different 
environment such as crisp environment [25, 26, 27, 28, 29], 
fuzzy environment [30, 31], intuitionistic fuzzy 
environment [32, 33, 34, 35, 36, 37, 38, 39, 40], 
neutrosophic environment [41, 42, 43, 44, 45, 46, 47, 48, 

3

mailto:sura_pati@yahoo.co.in


Neutrosophic Sets and Systems, Vol. 13, 2016

Kalyan Mondal, Surapati Pramanik and Florentin Smarandache, Multi-attribute Decision Making based on Rough Neutrosophic 
Variation Coefficient Similarity Measure  

49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], 
interval neutrosophic environment [63, 65, 66, 67, 68], 
neutrosophic soft expert environment [69], neutrosophic 
bipolar environment [70, 71], neutrosophic soft 
environment [72, 73, 74, 75, 76], neutrosophic hesitant 
fuzzy environment [77, 78, 79], rough neutrolsophic
environment [80, 81], etc. In neutrosophic environment 
Biswas, Pramanik and Giri [82] studied hybrid vector 
similarity measure and its application in multi-attribute 
decision making. Getting motivation from the work of 
Biswas, Pramanik and Giri [82], for hybrid vector 
similarity measure in neutrosophic envionment, we extend 
the concept in rough neutrosophic environment.  

In this paper, a new similarity measurement is 
proposed, namely rough variational coefficient similarity
measure under rough neutrosophic environment. A 
numerical example is also provided. 

Rest of the paper is structured as follows. Section 2 
presents neutrosophic and rough neutrosophic preli-
minaries. Section 3 discusses  various similarity measures 
and varional coefficient similarity measure in crisp envi-
ronment. Section 4 presents various similarity measures 
and variational similarity measure for single valued 
neutrosophic sets. Section 5 presents variational coefficient 
similarity measure and weighted variational coefficient 
similarity measure for rough neutrosophic sets and 
establishes their  basic properties.  Section 6   is devoted to 
present multi attribute decision making based on rough 
neutrosophic variational coefficient similarity measure. 
Section 7 demonstrates the application of rough variational 
coefficient similarity measures to investment problem 
Finally, section 8 concludes the paper with stating the 
future scope of research. 

2 Neutrosophic preliminaries 
Definition 2.1 [3, 4, 5] Neutrosophic set 

Let X be a space of points (objects) with generic 
element in X denoted by x. Then a neutrosophic set A in X 
is denoted by   XxxFxIxTxA AAA  :)(),(),(  where, 

)(xTA is the truth membership function, )(xI A is the 
indeterminacy membership function and )(xFA is the 
falsity membership function. The 
functions )(xTA , )(xI A and )(xFA  are real standard or non-

standard subsets of ]  1,0 [ . There is no restriction on the 
sum of )(xTA , )(xI A  and )(xFA  

i.e.   3)()()(0 xFxIxT AAA . 
Definition 2.2 [6] (Single-valued neutrosophic set). 

Let X be a universal space of points (objects), with a 
generic element xX. A single-valued neutrosophic set 
(SVNS)  N X is denoted by 

XxxxFxIxTN
x

NNN ∈∀,/∫ )(),(),( , when X is continuous; 

XxxxFxIxTN m
i NNN   ,/)(),(),(1 ,      when X is discrete. 

SVNS is characterized by a true membership 
function )(xT N , a falsity membership function )(xFN  and 
an indeterminacy function )(xI N  ith )(xT N , )(xFN , )(xI N    
[0, 1] for all xX.  For each Xx , of a SVNS N

3≤)()()(≤0 xFxIxT NNN  .        

2.1 Some operational rules and properties of SVNSs 

Let FITN AAAA ,,  and FITN BBBB ,,  be two SVNSs 
in X. Then the following operations are defined as follows: 
I.  Complement: TI-FN AAAcA ,1, Xx . 
II. Addition: FFIITTTTNN BABABABABA ,,

III. Multiplication:
FFFFIIIITTNN BABABABABABA -,-, 

IV. Scalar Multiplication:
FITN AAAA


 ,,)1(1 .0for 

V. 
 )1(1,)1(1,)( FITN AAAA .0for           

Definition 2.3 [6] 
      Complement of a SVNS N is denoted by Nc

 and is 
defined by  

)()( xFxT NcN  ; )(1)( xIxI NcN  ; )()( xTxF NcN 

Definition 2.4 [6]
      A SVNS NA is contained in the other SVNS NB, 
denoted as NN BA , if and only if 

)()( xTxT BNAN  ; )()( xIxI BNAN  ; )()( xFxF BNAN  Xx

Definition 2.5 [6] 
      Two SVNSs NA and NB are equal, i.e. NA= NB, if and 
only if NN BA  and NN BA  
Definition 2.6 [6] 
 Union of two SVNSs NA and NB is a SVNS NC, written 
as NNN BAC  . Its truth membership, indeterminacy-
membership and falsity membership functions are related 
to those of NA and NB by 

 )(),(max)( xTxTxT BNANCN  ;  )(),(min)( xIxIxI BNANCN  ; 
 )(),(min)( xFxFxF BNANCN  for all x in X. 

Definition 2.7 [6] Intersection of two SVNSs NA and NB is 
a SVNS ND, written as NNN BAD  , whose truth 
membership, indeterminacy-membership and falsity 
membership functions are related to those of NA and NB by 

 )(),(min)( xTxTxT BNANCN  ;  )(),(max)( xIxIxI BNANCN  ;
 )(),(max)( xFxFxF BNANCN  for all x in X. 

Definition 2.8 Rough Neutrosophic Sets [8, 9] 

Let Z be a non-null set and R be an equivalence 
relation on Z. Let P be neutrosophic set in Z with the 
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membership function TP indeterminacy function IP and 
non-membership function FP. The lower and the upper 
approximations of P in the approximation (Z, R) denoted 
by )(PN and )(PN   are respectively defined as follows:

,,][/)(),(),(,)( )()()( ZxxzxFxIxTxPN RPNPNPN 

,,][/)(),(),(,)( )()()( ZxxzxFxIxTxPN RPNPNPN 

   Here, ),(][)()( zTxxT PRzPN  ),(][)()( zIxxI PRzPN   
),(][)()( zFxxF PRzPN  ),(][)()( zTxxT PRzPN   

),(][)()( zxx II PRzPN  )(][)()( zFxxF PRzPN 

So, 0 )(sup )( xT PN )(sup )( xI PN )(sup )( xF PN 3

0 )(sup )( xT PN )(sup )( xI PN )(sup )( xF PN 3
Here  and  denote “max” and “min’’ operators 

respectively. TP(z), IP(z) and FP(z) denote  respectively the 
membership, indeterminacy and non-membership function 
of z with respect to P. It is easy to see 
that )(PN and )(PN are two neutrosophic sets in Z. 

Thus NS mappings ,N N : N(Z)   N(Z) are, 
respectively, referred to as the lower  and  the upper  rough 
NS  approximation  operators,  and the pair ))(),(( PNPN  is 
called the rough neutrosophic set [8, 9] in (Z, R). 

From the above definition, it is seen 
that )(PN and )(PN  have constant membership on the 
equivalence classes of R. if )(PN = )(PN  i.e.

)()( xT PN ,)()( xT PN )()( xI PN )()( xI PN and 
)()( xF PN .),()( ZxxF PN 

P is said to be a definable neutrosophic set in the 
approximation (Z, R). It can be easily proved that zero 
neutrosophic set (0N = (0, 1, 1)) and unit neutrosophic sets 
(1N = (1, 0, 0)) are definable neutrosophic sets. 

Definition 2.9 [8, 9] 
 If ))(),(()( PNPNPN  is a rough neutrosophic set in 

(Z, R) , the rough complement [8, 9] of N(P) is the rough 
neutrosophic set denoted by ))(,)(()(~ cc PNPNPN   
where ,)( cPN cPN )( are  the  complements of neutrosophic 
sets of ),(PN )(PN respectively. 

ZxxTxIxFxPN PNPNPN
c  /)(),(1),(,)( )()()( and 

ZxxTxIxFxPN PNPNPN
c  /)(),(1),(,)( )()()(

Definition 2.10 [8, 9] 
 If N(P1) and N(P2)  are  the two  rough neutrosophic  

sets  of  the  neutrosophic  set P respectively in Z, then the 
following definitions [8, 9] hold: 

)()()()()()( 212121 PNPNPNPNPNPN   
)()()()()()( 212121 PNPNPNPNPNPN 

 )()(),()()()( 212121 PNPNPNPNPNPN 

 )()(),()()()( 212121 PNPNPNPNPNPN 

 )()(),()()()( 212121 PNPNPNPNPNPN

 )().(),().()(.)( 212121 PNPNPNPNPNPN
If N, M, L are the rough neutrosophic sets in (Z, R), 

then the following proposition are stated from definitions 
[8, 9]. 
Proposition 1 [8, 9] 

NN )(~~.1
NMMNNMMN   ,.2

)()(
,)()(.3

NMLNML
NMLNML









)()()(
,)()()(.4

NLMLNML
NLMLNML









Proposition 2 [8, 9] 
De Morgan‘s Laws are satisfied for rough neutrosophic 

sets . 
))((~))(((~))()((~.1 2121 PNPNPNPN  

))((~)(((~))()((~.2 2121 PNPNPNPN    
Proposition 3 [8, 9]

If P1 and P2 are two neutrosophic sets in U such that 
thenPP 21 )()( 21 PNPN   

)()()(.1 2121 PNPNPPN  

)()()(.2 2121 PNPNPPN  

Proposition 4 [8, 9] 
)(~~)(.1 PNPN 

)(~~)(.2 PNPN 

)()(.3 PNPN 

3 Similarity measures and variational coefficient simi-

larity measure in crisp environment 

      The vector similarity measure is one of the important 
tools for the degree of similarity between objects. However, 
the Jaccard, Dice, and cosine similarity measures are often 
used for this purpose. Jaccard [83] , Dice [84] , and cosine 
[85] similarity measures between two vectors are stated 
below.  
Let X = (x1, x2, …, xn) and Y = (y1, y2, …, yn)  be two n-
dimensional vectors with positive co-ordinates. 

Definition 3.1 [83] 
  Jeccard index of two vectors (measuring the 

“similarity” of these vectors) can be defined as follows:   

J(X, Y) = 
YXYX

YX
.-

.
22

=
  



  



n
i

n
i

n
i iiii

n
i ii

yxyx
yx

1 1 1
22

1

-
  (1) 

where 2X =  
n
i ix1

2  and 2Y =  
n
i iy1

2 are the Euclidean

norm of X and Y, X.Y = 
n
i ii yx1 is the inner product of the 

vector X and Y.  
Proposition 5 [83] 

  Jaccard index satisfies the following properties: 
1. 0 ≤  J(X, Y) ≤ 1

5
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2. J(X, Y) = J(Y, X)
3. J(X, Y) = 1, for X = Y i.e, xi = yi (i = 1, 2, …, n) for every
xi ∈  X and yi ∈  Y 
Definition 3.2 [84] 

The Dice similarity measure can be defined as follows: 

E(X, Y) = 22 +
.2
YX
YX

=
 



 



n
i

n
i ii

n
i ii

yx

yx

1 1
22

12 (2)         
 

Proposition 6 [84] 

      The Dice similarity measure satisfies the following 
properties: 
1. 0 ≤  E(X, Y) ≤ 1
2. E(X, Y) = E(Y, X)
3. J(X, Y) = 1, for X = Y i.e, xi = yi (i = 1, 2, …, n) for every
xi ∈  X and yi ∈  Y . 
Definition 3.3 [85] 

The cosine similarity measure between two vectors 
X and Y  is the inner product of these two vectors divided 

by the product of their lengths and can be defined as 
follows: 

C(X, Y) = 
YX

YX
.
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Proposition 7 [85] 

The cosine similarity measure satisfies the following 
properties 

1. 0 ≤  C(X, Y) ≤ 1
2. C(X, Y) = C(Y, X)
3. C(X, Y) = 1, for X = Y i.e, xi = yi (i = 1, 2, …, n) for

every xi ∈  X and yi ∈  Y . 
These three formulas are similar in the sense that they 

take values in the interval [0, 1]. Jaccard and Dice 
similarity measures are undefined when xi = 0, and yi = 0 
for i = 1, 2, …, n  and cosine similarity measure is 
undefined when xi = 0 or yi = 0 for i = 1, 2, …, n. 
Definition 3.4 [86]  
      Variational co-efficient similarity measure can be 
defined as follows:  

V(X, Y) = 22 +
.2

λ
YX
YX +  

YX
YX
.
.)-1(                                              

 
 




 



n
i

n
i ii

n
i ii

yx

yx

1 1
22

12 +









n
i i

n
i i

n
i ii

yx

yx

1
2

1
2

1)1(      (4)                                                               

Proposition 8 [86] 

Variational co-efficient similarity measure satisfies 
the following properties: 
1. 0 ≤  V(X, Y) ≤ 1
2. V(X, Y) = V(Y, X)
3. V(X, Y) = 1, for X = Y i.e, xi = yi (i = 1, 2, …, n) for
every xi ∈  X and yi ∈  Y . 

4. Various similarity measures for single valued
neutrosophic sets. 

Assume FITN AAAA ,,  and FITN BBBB ,, be two 
SVNSs in a universe of discourse X = (x1, x2,…, xn). 

]1,0[,, FIT AAA  for any Xxi  in NA or ]1,0[,, FIT BBB  for 
any Xxi in NB can be considered as a vector 
representation with three elements. Let ]1,0[iw  be the 
weight of each element xi for i = 1, 2, …, n such 
that 11  

n
i iw  , then Jaccard, Dice and cosine similarity 

measures can be presented as follows:   
Definition 4.1[10] Jaccard similarity measure between 

FITN AAAA ,,  and FITN BBBB ,, can be defined as 
follows: 
Jac(NA, NB) = 

      
      
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   (5)         

   Proposition 9 [10] 

Jaccard similarity measure satiefies the following 
properites: 

;1),(0.1  NNJac BA

;),(),(.2 NNJacNNJac ABBA 

;1),(.3 NNJac BA  if NA=NB i.e., ),()( xTxT iBiA 

),()( xIxI iBiA  and ),()( xFxF iBiA  for every xi (i = 1, 2, …, 
n) in X.

Definition 4.1.1 [10]  Weighted Jaccard similarity measure 
between FITN AAAA ,,  and FITN BBBB ,, can be 
defined as follows: 

Jacw(NA, NB)= 

  
      
      

 
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 (6)

   Proposition 10 [10] 

Weighted Jaccard similarity measure satisfies the 
following properties: 

;1),(0.1  NN BAwJac

;),(),(.2 NNJacNNJac ABwBAw 

;1),(.3 NNJac BAw  if NA = NB i.e., ),()( xTxT iBiA 

),()( xIxI iBiA  and ),()( xFxF iBiA  for every xi (i = 1, 2, …, 
n) in X.

6
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Definition 4.2 [11] 
Dice similarity measure between FITN AAAA ,,

and FITN BBBB ,, is defined as: 
Dic(NA, NB) = 

      
      
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   Proposition 11 [11] 

Dice similarity measure satisfies the following 
properties: 

;1),(0.1  NNDic BA  
),(.2 NNDic BA ;),( NNDic AB

;1),(.3 NNDic BA  if NA=NB i.e., ),()( xTxT iBiA 

),()( xIxI iBiA  and ),()( xFxF iBiA  for every xi (i = 1, 2, …, 
n) in X.

Definition 4.2.1  [11] 
  Weighted Dice similarity measure between 

FITN AAAA ,, and FITN BBBB ,, can be defined as 
follows: 
Dicw(NA, NB) = 

      
      
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 (8)           

Proposition 12 [11] 

  Weighted Dice similarity measure 

;1),(0.1  NNDic BAw

;),(),(.2 NNDicNNDic ABwBAw 

;1),(.3 NNDic BAw  if NA = NB i.e., ),()( xTxT iBiA   
),()( xIxI iBiA  and ),()( xFxF iBiA  for every xi (i = 1, 2, …, 

n) in X.

Definition 4.3 [12] 
  Cosine similarity measure between FITN AAAA ,,

and FITN BBBB ,, can be defined as follows: 

Cos(NA, NB) = 
     

     
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Proposition 13 [12] 

  Cosine similarity measure satisfies the following 
properties:

 ;1≤ ),(≤ 0.1 NNCos BAw

),(),(.2 NNCosNNCos ABwBAw 

;1),(.3 NNCos BAw  if NA = NB i.e., ),()( xTxT iBiA          
),()( xIxI iBiA  and ),()( xFxF iBiA  for every xi (i = 1, 2, …, 

n) in X.
Definition 4.3.1 [12] 

Weighted cosine similarity measure between 
FITN AAAA ,,  and FITN BBBB ,, can be defined as 

follows: 
Cosw(NA, NB)= 

     

     


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  (10)

Proposition 14 [12] 

 Weighted cosine similarity measure satisfies the 
following properties:

;1≤ ),(≤ 0.1 NNCos BAw

),(),(.2 NNCosNNCos ABwBAw 

;1),(.3 NNCos BAw  if NA = NB i.e.,  ),()( xTxT iBiA   
),()( xIxI iBiA  and ),()( xFxF iBiA  for every xi (i = 1, 2, …, 

n) in X.
Jaccard and Dice similarity measures between two 

neutrosophic sets FITN AAAA ,, and FITN BBBB ,,

are undefined when 0)()()(  xFxIxT iAiAiA  and 
0)()()(  xFxIxT iBiBiB for all i = 1, 2, …, n. Similarly 

the cosine formula for two neutrosophic sets 
FITN AAAA ,,  and FITN BBBB ,, is undefined when 

0)()()(  xFxIxT iAiAiA or 0)()()(  xFxIxT iBiBiB for 
all i = 1, 2, …, n.  

5 Variational similarity measures for rough    neu-
trosophic sets 

The notion of rough neutrosophic set (RNS) is used as 
vector representations in 3D-vector space. Assume that X = 
(x1, x2,…, xn) and Y = (y1, y2, …, yn)  be two n-dimensional 
vectors with positive co-ordinates. Jaccard, Dice, cosine 
and cotangent similarity measures between two vectors are 
stated as follows. 
Definition 5.1 [21] Jaccard similarity measure under rough 
neutrosophic environment 

Assume that 
   )(),(),(,)(),(),( iAiAiAiAiAiA xFxIxTxFxIxTA  and 

   )(),(),(,)(),(),( iBiBiBiBiBiB xFxIxTxFxIxTB   in X = (x1, 

x2,…, xn) be any two rough neutrosophic sets.  Jacard simi-
larity measure [21] between rough neutrosophic sets A and 
B can be defined as follows: 

JacRNS(A, B) = 

7
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Proposition 15 [21] 

Jaccard similarity measure [21] between A and B 
satisfies the following properties: 

;1),(0.1  BAJacRNS  
;),(),(.2 ABJacBAJac RNSRNS   

;1),(.3 BAJacRNS  iff A = B 
4. If C is a RNS in Y and CBA  then,
JacRNS (A, C)  JacRNS(A, B), and JacRNS (A, C)  JacRNS(B, C) 
Definition 5.1.1 [21] 
      If we consider the weights of each element xi, weighted 
rough Jaccard similarity measure [21] between rough 
neutrosophic sets A and B can be defined as follows: 
JacWRNS(A, B) =   

      
      
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(12)            
                                                        

]1,0[wi , i = 1, 2,…, n and 11  
n
i iw . If we take

nwi
1

 , 

i = 1, 2,…, n, then JacWRNS(A, B) = JacRNS(A,B) 
Proposition 16 [21] 

The weighted rough Jaccard similarity [21] measure 
between two rough neutrosophic sets A and B also satisfies 
the following properties: 

;1),(0.1  BAJacWRNS  
;),(),(.2 ABJacBAJac WRNSWRNS   

;1),(.3 BAJacWRNS  iff A = B 
4. If C is a WRNS in Y and CBA  then, JacWRNS(A, C)
 JacWRNS(A, B) , and JacWRNS(A, C)  JacWRNS(B, C) 
Definition 5.2 [21] Dice similarity measure under rough 

neutrosophic environment 

 In this section, Dice similarity measure and the 
weighted Dice similarity measure for rough neutrosophic 
sets have been stated due to Pramanik and Mondal [21]. 

Suppose that 
   )(),(),(,)(),(),( iAiAiAiAiAiA xFxIxTxFxIxTA  and 

   )(),(),(,)(),(),( iBiBiBiBiBiB xFxIxTxFxIxTB   be any 

two rough neutrosophic sets in X = (x1, x2,…, xn). Dice 
similarity measure between rough neutrosophic sets A and 
B can be defined as follows: 

DICRNS(A, B)= 
      

      
      


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   (13)

Proposition 17 [21] 

Dice similarity measure [21]  satisfies the following 
properties. 

;1),(0.1  BADICRNS  
;),(),(.2 ABDICBADIC RNSRNS   

;1),(.3 BADICRNS  iff A = B 
4. If C is a RNS in Y and CBA  then,

DICRNS(A, C)   DICRNS(A, B) , and DICRNS(A, C) DICRNS(B, C), 
For proofs of the above mentioned four properties, see 

[21]. 
Definition 5.2.1 

If we consider the weights of each element xi, a 
weighted rough Dice similarity measure between rough 
neutrosophic sets A and B can be defined as follows: 
DICWRNS(A, B) = 

      
      


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     (14)

]1,0[wi , i = 1, 2,…, n and 11  
n
i iw . If we take

nwi
1

 , 

i = 1, 2,…, n, then DICWRNS(A, B) = DICRNS(A,B) 

Proposition 18 [21] 

The weighted rough Dice similarity [21] measure 
between two rough neutrosophic sets A and B also satisfies 
the following properties: 

;1),(0.1  BADICWRNS  
;),(),(.2 ABDICBADIC WRNSWRNS 

;1),(.3 BADICWRNS  iff A = B 
4. If C is a RNS in Y and CBA  then,
DICWRNS(A, C)   DICWRNS(A, B), and 
DICWRNS(A, C)   DICWRNS(B, C). 

For proofs of the above mentioned four properties, see 
[21]. 

Definition 5.3 [20] 
      Cosine similarity measure can be defined as the inner 
product of two vectors divided by the product of their 
lengths. It is the cosine of the angle between the vector 
representations of two rough neutrosophic sets. The cosine 
similarity measure is a fundamental measure used in 
information technology. Pramanik and Mondal [20] 
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defined cosine similarity measure between rough 
neutrosophic sets in 3-D vector space. 

  Assume that 
   )(),(),(,)(),(),( iAiAiAiAiAiA xFxIxTxFxIxTA  and 

   )(),(),(,)(),(),( iBiBiBiBiBiB xFxIxTxFxIxTB   in X = (x1, 

x2,…, xn) be any rough neutrosophic sets.  Pramanik and 
Mondal [20] defined cosine similarity measure between 
rough neutrosophic sets A and B as follows: 
CRNS(A, B) =  

      
      
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Proposition 19 [20]         
Let A and B be rough neutrosophic sets. Cosine similarity 
measure [20] between A and B satisfies the following 
properties. 

;1),(0.1  BAC RNS  
;),(),(.2 ABCBAC RNSRNS   

;1),(.3 BAC RNS  iff A = B 
4. If C is a RNS in Y and CBA  then, CRNS(A, C) 
CRNS(A, B) , and CRNS(A, C)   CRNS(B, C).
Definition 5.3.1 [20]  

If we consider the weights of each element xi, a 
weighted rough cosine similarity measure between rough 
neutrosophic sets A and B can be defined as follows: 

CWRNS(A,B) =
      
      
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 (16)    

]1,0[wi , i = 1, 2,…, n and 11  
n
i iw . If we 

take
nwi
1

 , i = 1, 2,…, n, then CWRNS(A, B) = CRNS(A, B) 

Proposition 20 [20] 

The weighted rough cosine similarity measure [20] 
between two rough neutrosophic sets A and B also satisfies 
the following properties: 

;1),(0.1  BACWRNS  
;),(),(.2 ABCBAC WRNSWRNS   

;1),(.3 BACWRNS  iff A = B 
4. If C is a WRNS in Y and CBA  then, CWRNS(A, C) 
CWRNS(A, B) , and CWRNS(A, C)   CWRNS(B, C). 

For proofs of the above mentioned four properties, see 
[20]. 
Definition 5.4 [19] Cotangent similarity measures of 

rough neutrosophic sets 

Assume that 
   )(),(),(,)(),(),( iAiAiAiAiAiA xFxIxTxFxIxTA  and 

   )(),(),(,)(),(),( iBiBiBiBiBiB xFxIxTxFxIxTB  in X = (x1, 

x2,…, xn) be any two rough neutrosophic sets. Pramanik 
and Mondal [19] defined cotangent similarity measure 
between rough neutrosophic sets A and B as follows: 
COTRNS(A, B) = 
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Proposition 21 [19] 
 Cotangent similarity measure satisfies the following 

properties: 
;1),(0.1  BACOT RNS  

;),(),(.2 ABCOTBACOT RNSRNS   
;1),(.3 BACOT RNS  iff A = B 

4. If C is a RNS in Y and CBA  then, COTRNS(A, C) 
COTRNS(A, B) , and COTRNS(A, C)   COTRNS(B, C). 
Definition 5.4.1  

If we consider the weights of each element xi, a 
weighted rough cotangent similarity measure [19] between 
rough neutrosophic sets A and B can be defined as follows:
COTWRNS(A, B) = 
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]1,0[wi , i = 1, 2,…, n and 11  
n
i iw . If we take

nwi
1

 , i 

= 1, 2,…, n, then COTWRNS(A, B) = COTRNS(A, B) 
Proposition 22 [19] 

The weighted rough cosine similarity measure between 
two rough neutrosophic sets A and B also satisfies the 
following properties: 

;1),(0.1  BACOT WRNS

;),(),(.2 ABCOTBACOT WRNSWRNS   
;1),(.3 BACOT WRNS  iff A = B 

4. If C is a WRNS in Y and CBA  then, COTWRNS(A, C)
  COTWRNS(A, B) , and COTWRNS(A, C)   COTWRNS(B, C) 
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Definition 5.5 (Variational co-efficient similarity 

measure between rough neutrosophic sets) 
Let    )(),(),(,)(),(),( iAiAiAiAiAiA xFxIxTxFxIxTA 

and    )(),(),(,)(),(),( iBiBiBiBiBiB xFxIxTxFxIxTB  be 

two rough neutrosophic sets. Variational co-efficient 
similarity measure between rough neutrosophic sets can be 
presented as follows: 
VarRNS(A, B) = 
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Here, ,
2

)()()( iAiA
iA

xTxTxT 
 ,

2
)()()( iBiB

iB
xTxTxT 



,
2

)()()( iAiA
iA

xIxIxI 
 ,

2
)()()( iBiB

iB
xIxIxI 



,
2

)()()( iAiA
iA

xFxFxF 


2
)()()( iBiB

iB
xFxFxF 



Proposition 23 

 The variational co-efficient similarity measure VarRNS(A, 
B) between two rough neutrosophic sets A and B,
satisfies the following properties: 

;1),(0.1  BAVarRNS

;),(),(.2 ABVarBAVar RNSRNS   
;1),(.3 BAVarRNS  if A = B i.e.,

),()( xTxT iBiA  ),()( xIxI iBiA  and 
),()( xFxF iBiA  for every xi (i = 1, 2, …, n) in X.                                                                     

Proof.  
(1.) It is obvious that .0≥),( BAVar RNS Thus it is 

required to prove that 1),( BAVar RNS . 
From rough neutrosophic dice similarity measure it can 

be witten that  
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and from rough neutrosophic cosine similarity measure it 
can be written that  
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Combining Eq.(20) and Eq.(21) , we obtain 
VarRNS(A, B) =  
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1)1(   
Thus, ;1),(0  BAVarRNS

(2.) VarRNS(A, B) = 
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(3.) If A = B i.e.,
),()( xTxT iBiA  ),()( xIxI iBiA  and 

),()( xFxF iBiA  for every xi (i = 1, 2, …, n) in X , 
VarRNS(A, A) = 
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n
These results show the completion of the proofs of 

the three properties. 
Definition 5.6 (Weighted variational co-efficient 

similarity measure between rough neutrosophic sets) 

Let    )(),(),(,)(),(),( iAiAiAiAiAiA xFxIxTxFxIxTA  and 

   )(),(),(,)(),(),( iBiBiBiBiBiB xFxIxTxFxIxTB  be any 

two rough neutrosophic sets. Rough variational co-efficient 
similarity measure between rough neutrosophic setsA and 
B in 3-D vector space can be presented as follows:  
VarWRNS(A, B) =
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(23)

If 









nnn
w

T1...,,1,1 , then Eq.(23) is reduced to Eq.(19). 

Proposition 24 

The weighted variational co-efficient similarity measure 
also satisfies the following properties: 

;1),(0.1  BAVarWRNS  
;),(),(.2 ABVarBAVar WRNSWRNS   

3. VarWRNS(A, B) = 1; if A = B i.e.,
),()( xTxT iBiA  ),()( xIxI iBiA  and ),()( xFxF iBiA 

for every xi (i = 1, 2, …, n) in X. 
Proof:     

 (1.) It is obvious that .0),( BAVarW RNS  Thus it is 
required to prove that 1),( BAVarWRNS . 

From rough neutrosophic weighted dice similarity 
measure, it can be written that  
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and from rough neutrosophic weighted cosine 
similarity measure it can be written that   

 
      
      

1

)()()(

)()()(

)()(
)()()()(

10 1

222

222










 
n
i

iBiBiB

iAiAiA

iBiA

iBiAiBiA

i

xFxIxT

xFxIxT

xFxF
xIxIxTxT

wn
 (25) 

Combining Eq.(24) and Eq.(25), we obtain 
VarWRNS(A, B) =  
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(3.) If A = B i.e.,

11



Neutrosophic Sets and Systems, Vol. 13, 2016

Kalyan Mondal, Surapati Pramanik and Florentin Smarandache, Multi-attribute Decision Making based on Rough Neutrosophic 
Variation Coefficient Similarity Measure  

),()( xTxT iBiA  ),()( xIxI iBiA  and 
),()( xFxF iBiA  for every xi (i = 1, 2, …, n) in X,                                                                            

VarWRNS(A, A) = 

      
      

      
      


















































































n
i

iAiAiA

iAiAiA

iAiA

iAiAiAiA

i

n
i

iAiAiA

iAiAiA

iAiA

iAiAiAiA

i

xFxIxT

xFxIxT

xFxF
xIxIxTxT

w

xFxIxT

xFxIxT

xFxF
xIxIxTxT

w

1

222

222

1

222

222

)()()(

.)()()(

)()(
)()()()(

)1(

)()()(

)()()(

)()(
)()()()(

2





















=   1)1( 11  
n
i i

n
i i ww 

These results show the completion of the proofs of the 
three proiperties. 

6. Multi attribute decision making based on rough
neutrosophic variational coefficient similarity 
measure  

In this section, a rough variational co-efficient 
similarity measure is employed to multi-attribute decision 
making in rough neutrosophic environment. Assume that 
A = {A1, A2,..., Am} be the set of alternatives and C = {C1, 
C2,..., Cn} be the set of attributes in a multi-attribute 
decision making problem. Assune that wj be the weight of 
the attribute Cj provided by the decision maker such that 
each ]1,0[wi  and 11  

n
j jw  However, in real situation 

decision maker may often face difficulty to evaluate 
alternatives over the attributes due to vague or incomplete 
information about alternatives in a decision making 
situation. Rough neutrosophic set can be used in MADM 
to deal with incomplete information of the alternatives. In 
this paper, the assessment values of all the alternatives 
with respect to attributes are considered as the rough 
neutrosophic values (see  Table 1).  

Table1: Rough neutrosophic decision matrix
nmijijRNS ddD  , = 

mnmnmmmmm

nn

nn

n

ddddddA

ddddddA

ddddddA
CCC

,...,,
.............
.............
,...,,

,...,,
.

2211

22222221212

11121211111

21

         (27)              

Here ijij dd , is the rough neutrosophic number for the 

i-th alternative and the j-th attribute. 

Definition 6.1: Transforming operator for SVNSs [80] 
The rough neutrosophic decision matrix (27) can be 

transformed to single valued neutrosophic decision matrix 
whose ij-th element ij  can be presented as follows: 

nm
ijij

ij 2
dd




 , for i = 1, 2, 3,..., m; 

j = 1, 2, 3, ..., n.                                         .                     (28) 
Step1. Determine the neutrosophic relative positive 

ideal solution 

In multi-criteria decision-making environment, the 
concept of ideal point has been used to help identify the 
best alternative in the decision set.  
Definition 6.2 [51]. 

Let H be the collection of two types of attributes, 
namely, benefit type attribute (P) and cost type attribute 
(L) in the MADM problems. The relative positive ideal 
neutrosophic solution (RPINS) ]...,,,[ q Sq Sq SSQ 

  is the
solution of the decision matrix nmijijijS FITD  ,, where, 

every component of QS
  has the following form:

for benefit type attribute, every component of QS
 has the 

following form: 

PjforFIT ij
i
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   (29) 

and for cost type attribute, every component of  QS
 has 

the following form 
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FITq
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Step 2. Determine the weighted variational co-efficient 

similarity measure between ideal alternative and each 

alternative. 
The variational co-efficient similarity measure between 

ideal alternative QS
 and each alternative Ai for i = 1, 2, …, 

m can be determined by the following equation as follows: 
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  (31) 

Step3. Rank the alternatives. 

According to the values obtained from Eq.(31), the 
ranking order of all the alternatives can be easily 

12

determined. Highest value indicates the best alternative.
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Step 4. End. 

7 Numerical example 
In this section, rough neutrosophic MADM regarding 

investment problem is considered to demonstrate the 
applicability and the effectiveness of the proposed 
approach. However, investment problem is not easy to 
solve. It not only requires oodles of patience and discipline, 
but also a great deal of research and a sound understanding 
of the market, mathematical tools, among others. Suppose 
an investment company wants to invest a sum of money in 
the best option. Assume that there are four possible 
alternatives to invest the money: (1) A1 is a computer 
company; (2) A2 is a garment company; (3) A3 is a 
telecommunication company; and (4) A4 is a food company. 
The investment company must take a decision based on the 
following three criteria: (1) C1 is the growth factor; (2) C2 
is the environmental impact; and (3) C3 is the risk factor. 
The four possible alternatives are to be evaluated under the 
attribute by the rough neutrosophic assessments provided 
by the decision maker. These assessment values are given 
in the rough neutrosophic decision matrix (see the table 2).  

Table2. Rough neutrosophic decision matrix 
 34)(),( PNPND ijij

)1.0,1.0,4.0(
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)1.0,2.0,7.0(
),3.0,2.0,5.0(

)1.0,2.0,5.0(
),3.0,2.0,3.0(
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),3.0,4.0,1.0(
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),3.0,4.0,2.0(
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)2.0,2.0,3.0(
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321

A

A
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    (32) 

The known weight information is given as follows: 
W = [w1, w2, w3]T = [0.3, 0.3, 0.4] and 13

1  i iw . 

Step1. Determine the types of criteria. 

First two types i.e. 1C  and 2C  of the given criteria are 
benefit type criteria and the last one criterion i.e. 3C  is the 
cost type criteria. 
Step2. Determine the relative neutrosophic positive 

ideal solution 

Using Eq. (29), Eq.(30), the relative positive ideal 
neutrosophic solution for the given matrix defined in 
Eq.(32) can be obtained as: 

)]3.0,3.0,1.0(),2.0,2.0,7.0(),2.0,2.0,4.0[(
QS  

Step3. Determine the weighted variational similarity 

measure 

The weighted variational co-efficient similarity 
measure is determined by using Eq.(28), Eq.(31) and 
Eq.(32). The results obtained for different values of 
have been  shown in the Table-3. 

Table-3. Results of rough variational similarity measure for different values of , 10 

Similarity measure method Values of s Measure values Ranking order 

),( SSWRNS DQVar   
0.10 0.8769; 0.9741; 0.9917; 0.8107 A3 > A2 > A1 > A4
0.25 0.8740, 0.9739 0.9905 0.8078 A3 > A2 > A1 > A4

0.50 0.8692; 0.9735; 0.9887; 0.8028 A3 > A2 > A1 > A4

0.75 0.8643; 0.9730; 0.9868; 0.7979 A3 > A2 > A1 > A4

0.90 0.8614; 0.9728; 0.9857; 0.7949 A3 > A2 > A1 > A4

Step 4. Rank the alternatives. 

According to the different values of , the results 
obtained in Table-3 reflects that A3 is the best alternative. 

8. Comparisons of different rough similarity
measure with rough variation similarity measure 

In this section, four existing rough similarity measures
- namely: rough cosine similarity measure, rough dice
similarity measure, rough cotangent similarity measure and 
rough Jaccard similarity measure - have been  compared
with proposed rough variational co-efficient similarity 
measure for different values of  . The comparison results 
are  listed in the Table 3 and Table 4. 

13
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Table-4. Results of existing rough neutrosophic similarity measure methods. 

Rough similarity 
measure methods 

Values of s Measure values Ranking order 

),( SSWRNS DQJAC   [21] ... 0.7870, 0.9471; 0.9739; 0.6832 A3 > A2 > A1 > A4

),( SSWRNS DQDIC   [21] ... 0.8595; 0.9726; 0.9873; 0.7929 A3 > A2 > A1 > A4

),( SSWRNS DQC  [20] ... 0.8788; 0.9738; 0.9920; 0.9132 A3 > A2 > A4> A1

),( SSWRNS DQCOT   [19] ... 0.8472; 0.9358; 0.9643; 0.8103 A3 > A2 > A1 > A4

Conclusion 

      In this paper, we have proposed rough variational coef-
ficient similarity measures. We also proved some of their 
basic properties. We have presented an application of 
rough neutrosophic variational coefficient similarity meas-
ure for a decision making problem on investment. The 
concept presented in the paper can be applied to deal with 
other multi attribute decision making problems in rough 
neutrosophic environment.  
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Abstract. In this paper, we define the regular and totally 
regular single valued neutrosophic hypergraphs, and dis-
cuss the order and size along with properties of regular  
xx

and totally regular single valued neutrosophic hyper-
graphs. We also extend work on completeness of single 
valued neutrosophic hypergraphs.  

Keywords: Single valued neutrosophic hypergraphs, regular single valued neutrosophic hypergraphs and totally regular single 
valued neutrosophic hypergraphs.

1 Introduction 
The notion of neutrosophic sets (NSs) was proposed by 
Smarandache [8] as a generalization of the fuzzy sets [14], 
intuitionistic fuzzy sets [12], interval valued fuzzy set [11] 
and interval-valued intuitionistic fuzzy sets [13] theories. 
The neutrosophic set is a powerful mathematical tool for 
dealing with incomplete, indeterminate and inconsistent in-
formation in real world. The neutrosophic sets are charac-
terized by a truth-membership function (t), an indetermina-
cy-membership function (i) and a falsity membership func-
tion (f) independently, which are within the real standard 
or nonstandard unit interval ]-0 , 1+[. In order to conven-
iently use NS in real life applications, Wang et al. [9] in-
troduced the concept of the single-valued neutrosophic set 
(SVNS), a subclass of the neutrosophic sets. The same au-
thors [10] introduced the concept of the interval valued 
neutrosophic set (IVNS), which is more precise and flexi-
ble than the single valued neutrosophic set. The IVNS is a 
generalization of the single valued neutrosophic set, in 
which the three membership functions are independent and 
their value belong to the unit interval [0, 1]. More works 
on single valued neutrosophic sets, interval valued neutro-
sophic sets and their applications can be found on 
http://fs.gallup.unm.edu/NSS/. 
Hypergraph is a graph in which an edge can connect more 
than two vertices, hypergraphs can be applied to analyse 

architecture structures and to represent system partitions, 
Mordesen J.N and P.S Nasir gave the definitions for fuzzy 
hypergraphs. Parvathy. R and M. G. Karunambigai’s paper 
introduced the concepts of Intuitionistic fuzzy hypergraphs 
and analyse its components, Nagoor Gani. A and Sajith 
Begum. S defined degree, order and size in intuitionistic 
fuzzy graphs and extend the properties. Nagoor Gani. A 
and Latha. R introduced irregular fuzzy graphs and dis-
cussed some of its properties.  

Regular intuitionistic fuzzy hypergraphs and totally regular 
intuitionistic fuzzy hypergraphs are introduced by Pra-
deepa. I and Vimala. S in [0]. In this paper we extend regu-
larity and totally regularity on single valued neutrosophic 
hypergraphs. 

2 Preliminaries 
Definition 2.1 Let X be a space of points (objects) with ge-
neric elements in X denoted by x. A single valued neutro-
sophic set A (SVNS A) is characterized by truth member-
ship function 𝑇𝐴(x), indeterminacy membership function 
𝐼𝐴(x) and a falsity membership function 𝐹𝐴(x). For each 
point x ∈ X; 𝑇𝐴(x), 𝐼𝐴(x), 𝐹𝐴(x)   ∈  [0, 1]. 

Definition 2.2 Let A be a SVNS on X then support of A is 
denoted and defined by, Supp(A) = { x : x ∈ X , 𝑇𝐴(x) > 0 , 
𝐼𝐴 (x) > 0 , 𝐹𝐴 (x) > 0 }. 
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Definition 2.3 A hypergraph is an ordered pair H = (X, 
E), where 

(1) X = {𝑥1, 𝑥2, … , 𝑥𝑛} be a finite set of vertices. 

(2) E = {𝐸1, 𝐸2, …, 𝐸𝑚} be a family of subsets of X. 

(3) 𝐸𝑗 for j = 1,2,3,...,m and ⋃ (𝐸𝑗)𝑗  =  X. 

The set X is called set of vertices and E is the set of 
edges(or hyper edges). 

Definition 2.4 The single valued neutrosophic hypergraph 
is an ordered pair H = (X, E), where 

(1) X = {𝑥1, 𝑥2, … , 𝑥𝑛} be a finite set of vertices. 

(2) E = {𝐸1, 𝐸2, …, 𝐸𝑚}  be a family of SVNSs of X. 

(3) 𝐸𝑗 ≠ O = (0, 0, 0) for j = 1, 2, 3, ..., m and ⋃ 𝑆𝑢𝑝𝑝(𝐸𝑗)𝑗 = 
X.  

The set X is called set of vertices and E is the set of 
SVN-edges(or SVN-hyperedges). 

Proposition 2.5 The single valued neutrosophic hyper-
graph is the generalization of fuzzy hypergraphs and intui-
tionistic fuzzy hypergraphs. 

3 Regular and totally regular SVNHGs 

Definition 3.1 The open neighbourrhood of a vertex x in 
single valued neutrosophic hypergraphs (SVNHGs) is the 
set of adjacent vertices of x, excluding that vertex and is 
denoted by N(x). 

Definition 3.2 The closed neighbourhood of a vertex x in 
single valued neutrosophic hypergraphs (SVNHGs) is the 
set of adjacent vertices of x, including that vertex and is 
denoted by N[x]. 

Example 3.3 Consider a single valued neutrosophic hyper 
graphs H = (X, E), where X = {a, b, c, d, e} and E = {P, Q, 
R, S}, which are defined by  

 P = {(a, .1, .2, .3), (b, .4, .5, .6)} 

 Q = {(c, .1, .2, .3), (d, .4, .5, .6), (e, .7, .8, .9)} 

 R = {(b, .1, .2, .3), (c, .4, .5, .6)} 

 S = {(a, .1, .2, .3), (d, .4, .5, .6)} 

Then the open neighbourhood of a vertex a contain b and 
d. The closed neighbourhood of a vertex b contain b, a
and c. 

Definition 3.4 Let H = (X, E) be a SVNHG, the open 
neighbourhood degree of a vertex x, which is denoted and 
defined by deg(x) = (𝑑𝑒𝑔𝑇(x), 𝑑𝑒𝑔𝐼(x), 𝑑𝑒𝑔𝐹(x)), where 

𝑑𝑒𝑔𝑇(x) = ∑ 𝑇𝐸(𝑥)𝑥∈𝑋

𝑑𝑒𝑔𝐼(x) = ∑ 𝐼𝐸(𝑥)𝑥∈𝑋

𝑑𝑒𝑔𝐹(x) = ∑ 𝐹𝐸(𝑥)𝑥∈𝑋

Example 3.5 Consider a single valued neutrosophic hy-
pergraphs H = (X, E) where, X = {a, b, c, d, e} and E = {P, 
Q, R, S}, which are defined by  

  P = {(a, .1, .2, .3), (b, .4, .5, .6)} 

 Q = {(c, .1, .2, .3), (d, .4, .5, .6), (e, .7, .8, .9)} 

 R = {(b, .1, .2, .3), (c, .4, .5, .6)} 

  S = {(a, .1, .2, .3), (d, .4, .5, .6)} 

Then the open neighbourhood of a vertex a is b and d, and 
therefore the open neighbourhood degree degree of a 
vertex a is (.8, 1, 1.2). 

Definition 3.6 Let H = (X, E) be a SVNHG, the closed 
neighbourhood degree of a vertex x, which is denoted and 
defined by  

  deg[x] = (𝑑𝑒𝑔𝑇[x], 𝑑𝑒𝑔𝐼[x], 𝑑𝑒𝑔𝐹[x]) 

where 

𝑑𝑒𝑔𝑇[x] =  𝑑𝑒𝑔𝑇(x) + 𝑇𝐸(x) 

𝑑𝑒𝑔𝐼[x] = 𝑑𝑒𝑔𝐼(x) + 𝐼𝐸(x) 

𝑑𝑒𝑔𝐹[x] =  𝑑𝑒𝑔𝐹(x) + 𝐹𝐸(x) 

Example 3.7 Consider a single valued neutrosophic hyper-
graphs H = (X, E), where X = {a, b, c, d, e} and E = {P, Q, 
R, S}, which is defined by  

  P = {(a, .1, .2, .3), (b, .4, .5, .6)} 

 Q = {(c, .1, .2, .3), (d, .4, .5, .6), (e, .7, .8, .9)} 
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 R = {(b, .1, .2, .3), (c, .4, .5, .6)} 

 S = {(a, .1, .2, .3), (d, .4, .5, .6)} 

The closed neighbourhood of a vertex b contain b, a and c, 
hence the closed neighbourhood degree of a vertex a is 
(.9, .1.2, 1.5). 

Definition 3.8 Let H = (X, E) be a SVNHG, then H is said 
to be an n-regular SVNHG if all the vertices have the same 
open neighbourhood degree n = (n1, n2, n3). 

Definition 3.9 Let H = (X, E) be a SVNHG, then H is said 
to be an m-totally regular SVNHG if all the vertices have 
the same closed neighbourhood degree m = (m1, m2, m3). 

Proposition 3.10 A regular SVNHG is the generalization 
of regular fuzzy hypergraphs and regular intuitionistic 
fuzzy hypergraphs. 

Proposition 3.11 A totally regular SVNHG is the generali-
zation of totally regular fuzzy hypergraphs and totally reg-
ular intuitionistic fuzzy hypergraphs. 

Example 3.12 Consider a single valued neutrosophic hy-
pergraphs H = (X, E), where X = {a, b, c, d} and E = {P, 
Q, R, S}, which are defined by  

P = {(a, .8, .2, .3), (b, .8, .2, .3)} 

Q = {(b, .8, .2, .3), (c, .8, .2, .3)} 

R = {(c, .8, .2, .3), (d, .8, .2, .3)} 

S = {(d, .8, .2, .3), (a, .8, .2, .3)} 

Here the open neighbourhood degree of every vertex is 
(1.6, .4, .6), hence H is regular SVNHG and closed neigh-
bourhood degree of every vertex is (2.4, .6, .9). Hence H is 
both regular and totally regular SVNHG. 

Theorem 3.13 Let H = (X, E) be a SVNHG which is 
both regular and totally regular SVNHG then E is constant. 

Proof:  Suppose H is an n-regular and an m-totally regular 

SVNHG. Then 

deg(x) = n = (n1, n2 , n3) 

deg[x] = m = (m1, m2 , m3) 

for all 𝑥 ∈ 𝐸𝑖. Consider the deg[x] = m, hence by 
definition deg(x) + 𝐸𝑖(x) = m this implies that 𝐸𝑖(x) = m – 
n for all x in 𝐸𝑖. Therefore E is constant. 

Remark 3.14   The converse of above theorem need not to 
be true in general. 

Example 3.15 Consider a SVNHG H = (X, E), where X = {a, 

b, c, d} and E = {P, Q, R, S}, which is defined by 

P = {(a, .8, .2, .3), (b, .8, .2, .3)} 

Q = {(b, .8, .2, .3), (d, .8, .2, .3)} 

R = {(c, .8, .2, .3), (d, .8, .2, .3)} 

S = {(d, .8, .2, .3), (a, .8, .2, .3)} 

Here E is constant but deg(a) = ( 1.6, .4, .6 ) and deg(d) = 
(2.4, .6, .9).  Therefore deg(a) and deg(d) are not equal, 
hence H is not regular SVNHG. Also deg[a] = (2.4, .6, .9) 
and deg[d] = (3.2, .8, 1.2), thus deg[a] and deg[d] are not 
equal, hence H is not totally regular SVNHG, we conclude 
that H is neither regular and nor totally regular SVNHG. 

Theorem 3.16 Let H = (X, E) be a SVNHG, then E is 
costant on X if and only if following are equivalent 

(1)  H is regular SVNHG. 

(2)  H is totally regular SVNHG. 

Proof: Suppose H = (X, E) be a SVNHG and E is constant 
in H, then 𝐸𝑖(x) = c = (c1, c2, c3) for all x ∈ 𝐸𝑖. Suppose H 
is an n-regular SVNHG, then deg(x) = n = (n1, n2, n3) for 
all x ∈ 𝐸𝑖. Consider deg[x] = deg(x) +  𝐸𝑖(x) = n + c for 
all x ∈ 𝐸𝑖. Hence H is totally regular SVNHG. Next 
suppose that H is an m-totally regular SVNHG, then 
deg[x] = m = (m1, m2, m3) for all x ∈ 𝐸𝑖, that is deg(x) + 
𝐸𝑖 (x) = m for all x ∈ 𝐸𝑖. This implies that deg(x) = m – c 
for all x ∈ 𝐸𝑖. Thus H is regular SVNHG.  

Conversely: Suppose contrary E is not constant, that is 
𝐸𝑖(x) and 𝐸𝑖(y) not equal for some x and y in X. Let H = 
(X, E) be an n-regular SVNHG, then deg(x) = n = (n1, n2, 
n3) for all x ∈ 𝐸𝑖. Consider 

deg[x] = deg(x) + 𝐸𝑖(x) = n + 𝐸𝑖(x) 

deg[y] = deg(y) + 𝐸𝑖( (y) = n + 𝐸𝑖(y) 

since 𝐸𝑖(x) and 𝐸𝑖(y) are not equal for some x and y in X, 
hence deg[x] and deg[y] are not equal, thus H is not total-
ly regular SVNHG, which contradict to our assumption. 
Next let H be totally regular SVNHG, then deg[x] = 
deg[y], that is  

deg(x) + 𝐸𝑖 (x) = deg(y) + 𝐸𝑖 (y) 

deg(x) – deg(y) = 𝐸𝑖(y) – 𝐸𝑖(x) 

since RHS of above equation is nonzero, hence LHS of 
above equation is also nonzero, thus deg(x) and deg(y) are 
not equals, so H is not regular SVNHG, which is again 
contradict to our assumption, thus our supposition was 
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wrong, hence E must be constant, this completes the 
proof. 

Definition 3.17 Let H = (X, E) be a regular SVNHG, then the 

order of SVNHG H, which is denoted and defined by O(H) 

= (p, q, r), where 

𝑝 = ∑ 𝑇𝐸𝑖
(𝑥)

𝑥 ∈𝑋

𝑞 = ∑ 𝐼𝐸𝑖
(𝑥)

𝑥 ∈𝑋

𝑟 = ∑ 𝐹𝐸𝑖
(𝑥)

𝑥 ∈𝑋

for every x ∈ X and the size of regular SVNHG, which  is 
denoted and defined by  S(H) = ∑ (𝑆𝐸𝑖

)𝑛
𝑖=1 , where S(Ei) =

(a, b, c),  which is defined by  

a = ∑ 𝑇𝐸𝑖𝑥 ∈𝐸𝑖
(𝑥)

b = ∑ 𝐼𝐸𝑖
(𝑥)𝑥 ∈𝐸𝑖

c = ∑ 𝐹𝐸𝑖𝑥 ∈𝐸𝑖
(𝑥). 

Example 3.18 Consider the SVNHG H = (X, E), where 
X = {a, b, c, d} and E = {P, Q, R, S}, which is defined by 

P = {(a, .8, .2, .3), (b, .8, .2, .3)} 

Q = {(b, .8, .2, .3), (c, .8, .2, .3)} 

R = {(c, .8, .2, .3), (d, .8, .2, .3)} 

S = {(d, .8, .2, .3), (a, .8, .2, .3)} 

Here the order and the size of H are given (3.2, .8, 1.2) and 
(6.4, 1.6, 2.4), respectively. 

Proposition 3.19 The size of an n-regular SVNHG H = 
(X, E) is nk/2, where |X|= k. 

Proposition 3.20 Let H = (X, E) be an m-totally 
regular SVNHG, then 2S(H) + O(H) = mk, where |X|= k. 

Corollary 3.21 Let H = (X, E) be an n-regular and an 
m-totally regular SVNHG, then O(H) = k(m - n), where |X|

= k. 

Proposition 3.22 The dual of an n-regular and an m-totally 
regular SVNHG H= (X, E) is again an n-regular and an m-
totally regular SVNHG. 

Definition 3.23 The SVNHG is said to be complete 
SVNHG if for every x in X, N(x) = {x: x in X-{x}}, that is 
N(x) contains all remaining vertices of X except x. 

Example 3.24 Consider a single valued neutrosophic hy-
pergraphs H = (X, E), where X = {a, b, c, d} and E = {P, 
Q, R}, which is defined by  

  P = {(a, .4, .6, .3), (c, .8, .2, .3)} 

 Q = {(a, .8, .8, .3), (b, .8, .2, .1), (d, .8, .2, .1)} 

 R = {(c, .4, .9, .9), (d, .7, .2, .1), (b, .4, .2, .1)} 

Here N(a) = {b, c, d} , N(b) = {a, c, d}, N(c) = {a, b, d}, 
N(d) = {a, b, c}. Hence H is complete SVNHG. 

Remark 3.25 In a complete SVNHG H = (X, E) the 
cardinali-ty of N(x) is same for every vertex. 

Theorem 3.26   Every complete SVNHG H = (X, E) is 
both regular and totally regular if is constant in H. 

Proof: Let H = (X, E) be a complete SVNHG, suppose E is 

constant in H, so ∀𝑥 ∈ 𝐸𝑖, 𝐸𝑖(x) = c = (c1, c2, c3), since

SVNHG is complete, then by definition for every vertex x 

in X, N(x) = { x : x in X-{x}}, the open neighbourhood de-

gree of every vertex is same. Hence deg(x) = n = (n1,n2, n3) 

for all x ∈ 𝐸𝑖. Hence complete SVNHG is regular SVNHG. 

Also deg[x] = deg(x) + 𝐸𝑖(x) = n + c  for all x ∈ 𝐸𝑖. Thus H is 

totally regular SVNHG. 

Remark 3.27 Every complete SVNHG is totally 
regular even if E is not constant. 

Definition 3.28   The SVNHG is said to be k-uniform if 
all the hyperedges have same cardinality. 

Example 3.29 Consider a SVNHG H = (X, E), where X 
= {a, b, c, d} and E = {P, Q, R}, which is defined by  

P = {(a, .8, .2, .3), (b, .7, .5, .3)} 

Q = {(b, .8, .1, .8), (c, .8, .4, .2)} 

R = {(c, .8, .1, .4), (d, .8, .9, .5)} 
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4 Conclusion 

Theoretical concepts of graphs and hypergraphs are highly 
utilized by computer science applications. The SVNHG are 
more flexible than fuzzy hypergraphs and intuitionistic 
fuzzy hypergraphs. The concepts of SVNHGs can be 
applied in various areas of engineering and computer 
science. In this paper, we defined the concept of regular 
and totally regular SVNHGs. We plan to extend our 
research work to regular and totally regular on Bipolar 
SVNHGs, regular and totally regular on interval valued 
neutrosophic hypergraphs, irregular and totally irregular on 
SVNHGs, irregular and totally irregular on bipolar 
SVNHGs. 
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Abstract. In this study, we introduce the concept of denser 
property in fuzzy membership function used in neutrosophic sets. 
We present several new definitions and study their properties.
Defuzzification methods over  neutrosophic triangular dense 
xxxx

fuzzy sets and neutrosophic triangular intuitionistic dense
fuzzy sets are then given.  Finally  practical applicability of the 
methods have been discussed with graphical implications in 
recent times.  

Keywords: Dense fuzzy set; Triangular dense fuzzy neutrosophic set; defuzzification method.

1. Introduction

For any kind of multi-attribute decision making
(MADM) it is essential to have adequate crisp data, but in 
modern situations crisp data are inadequate. The data for 
which they used to rely more are basically imprecise, 
vague, inappropriate and piecewise untruth as a whole. 
Belnap [3] made an attempt to study with the four valued 
logic namely Truth (T), false (F), Unknown (U) and 
Contradiction (C). He used a bi-lattice where the four 
components were inter-related. Smarandache [13] founded 
and developed the neutrosophic set, neutrosophic logic, 
neutrosophic probability and neutrosophic statistics. 
Several researchers Ye [19], Biswas et al. [4,5],  Mandal 
and Pramanik [10] etc. have discussed several ranking 
method based on current problems using neutrosophic sets 
(NS). Also, recently the multivalued power operator in NS 
has been veveloped by Peng at al.[12].Fuzzy set theory 
was first studied by Zadeh [21] but after  few decades later 
the concept on hesitant fuzzy set has been grown by 
Torra[15]. Moreover,  in intuitionistic fuzzy environment,
numerous research articles have been studied by eminent 
practitioner. The concept on intuitionistic fuzzy sets (IFS) 
has been developed independently by Atanassov[1,2] and 
Dubois et al. [9]. Through its process,Wang et al. [17,18], 
Pei and Zheng [11] discussed new concepts on evidence 
based  IFS and a novel approach for decision making 
respectively.   However, the decision maker’s (DM) are 
usually applying their appropriate membership grade 
values of the different attributes which are prior and 
experienced data. But in reality,  the data predicted a day 
ago may not be useful for tomorrow and in many cases 
those grade values demanding changing values with the 
change of the dealing frequency among several monopoly 
enterprises or between the time gap also. Thus, it is
troublesome to find the actual data (because most of the 
original data is in hidden and secret under some national or

international law and orders). For instance, to find the 
information over flood victims in a particular place several 
opinions may come out. But the data accepted by the 
authorities usually vary the reality because of the limi-
tations on governmental financial supports to be offered to
the victims.  However, the situation began to clear as the 
day passing on. To model the above situation, in this 
article, we first give some basic concepts on neutrosophic 
set (NS), and then we develop the NS under dense fuzzy 
environment. The fuzzy components under several com-
positions are discussed from the existing literature. Next,
some extensions are made with proper justification.  

The paper is organized as follows: Section 2 describes 
some basic concepts of NS for subsequent use. In section 
3, we develop the NS under dense fuzzy environment. 
Section 4 deals with defuzzified values of NS. Section 
5 improves NS assessment under dense fuzzy envi-
ronment. Section 6 gives further implications of dense 
fuzzy in NS. Section 7 presents applications to show 
the practicality and feasibility of our method. Section 8
ends the paper with some concluding remarks.. 

2. Preliminaries
Here, we shall discuss some basic concepts and
operations on neutrosophic set. 
Definition 1.[4]  Let X be a space of points (objects) with 
generic element x. Then a neutrosophic set (NS) A in X  is 
characterize by a truth membership function 𝑇𝐴 , an 
indeterminacy membership function 𝐼𝐴 and a falsity 
membership function 𝐹𝐴 . It is denoted by 𝑁𝑠 =< 
𝑇𝐴, 𝐼𝐴 , 𝐹𝐴 > where the functions 𝑇𝐴, 𝐼𝐴and𝐹𝐴 are real 
standard or non-standard subsets of ]0−, 1+[ . That is 
𝑇𝐴 ∶ 𝑋 → ]0−, 1+[ ,  𝐼𝐴 ∶ 𝑋 → ]0−, 1+[  and is 𝐹𝐴 ∶ 𝑋 → 
]0−, 1+[ satisfying the relation is 0− ≤ 𝑠𝑢𝑝𝑇𝐴(𝑥) + 
𝑠𝑢𝑝 𝐼𝐴(𝑥) + 𝑠𝑢𝑝𝐹𝐴(𝑥) ≤ 3+ ,
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Definition 2. [13]The complement𝐴𝑐 of a NS A is defined 
as follows: 

𝑖) 𝑇𝐴𝑐(𝑥) = { 1
+} − 𝑇𝐴(𝑥) ,

ii) 𝐼𝐴𝑐(𝑥) = { 1+} − 𝐼𝐴(𝑥) ;
iii) 𝐹𝐴𝑐(𝑥) = { 1+} − 𝐹𝐴(𝑥)

Definition 3. [13]A neutrosophic set A is contained in 
other neutrosophic set B i.e, 𝐴 ⊆ 𝐵  if and only if the 
following results hold good for 

∀𝑥 ∈ 𝑋 
i) 𝑖𝑛𝑓𝑇𝐴(𝑥) ≤ 𝑖𝑛𝑓𝑇𝐵(𝑥),

𝑠𝑢𝑝𝑇𝐴(𝑥) ≤ 𝑠𝑢𝑝𝑇𝐵(𝑥)
ii) 𝑖𝑛𝑓𝐼𝐴(𝑥) ≥ 𝑖𝑛𝑓𝐼𝐵(𝑥),

𝑠𝑢𝑝𝐼𝐴(𝑥) ≥ 𝑠𝑢𝑝𝐼𝐵(𝑥)
iii) 𝑖𝑛𝑓𝐹𝐴(𝑥) ≥ 𝑖𝑛𝑓𝐹𝐵(𝑥),

𝑠𝑢𝑝𝐹𝐴(𝑥) ≥ 𝑠𝑢𝑝𝐹𝐵(𝑥)

Definition 4. [16]The complement 𝑁𝑠𝑐  of a single valued
NS is given by  

i) 𝑇𝑁𝑠𝑐(𝑥) = 𝐹𝑁𝑠𝑐(𝑥) ,
ii) ii)  𝐼𝑁𝑠𝑐(𝑥) = 1 −

𝐼𝑁𝑠(𝑥) ;𝐹𝑁𝑠𝑐(𝑥) =
𝑇𝑁𝑠(𝑥).

Definition 5. [16]The union of two single valued 
neutrosophic sets 𝐴  and 𝐵  , denoted by 𝐶 = 𝐴 ∪ 𝐵.  Its 
truth membership , indeterminancy membership,  and 
falsity membership functions are related to those of 𝐴 and 
𝐵 as follows:  

i) 𝑇𝐶(𝑥) = max (𝑇𝐴(𝑥), 𝑇𝐵(𝑥))
ii) 𝐼𝐶(𝑥) = max (𝐼𝐴(𝑥), 𝐼𝐵(𝑥))
𝑖𝑖𝑖)𝐹𝐶(𝑥) = min (𝐹𝐴(𝑥), 𝐹𝐵(𝑥))  ,

∀𝑥 ∈ 𝑋 
Definition 6. The intersection of  two single valued 
neutrosophic sets 𝐴  and 𝐵  , denoted by 𝐶 = 𝐴 ∩ 𝐵.  Its 
truth membership , indeterminancy membership,  and 
falsity membership functions are related to those of 𝐴 and 
𝐵 as follows:  

𝑖) 𝑇𝐶(𝑥) = min (𝑇𝐴(𝑥), 𝑇𝐵(𝑥))
ii) 𝐼𝐶(𝑥) = min (𝐼𝐴(𝑥), 𝐼𝐵(𝑥))
𝑖𝑖𝑖)𝐹𝐶(𝑥) = max (𝐹𝐴(𝑥), 𝐹𝐵(𝑥))  ,
∀𝑥 ∈ 𝑋.

Definition 7. The additionof two single valued 
neutrosophic sets 𝐴 and 𝐵 , denoted by 𝐶 = 𝐴⨁𝐵. Its truth 
membership , indeterminancy membership,  and falsity 
membership functions are related to those of 𝐴 and 𝐵 as 
follows:  

𝑖) 𝑇𝐶(𝑥) = 𝑇𝐴(𝑥) + 𝑇𝐵(𝑥) − 𝑇𝐴(𝑥)𝑇𝐵(𝑥)
ii) 𝐼𝐶(𝑥) = 𝐼𝐴(𝑥)𝐼𝐵(𝑥)
iii) 𝐹𝐶(𝑥) = 𝐹𝐴(𝑥)𝐹𝐵(𝑥)  ,

∀𝑥 ∈ 𝑋 
Definition 8. The multiplication of  two single valued 
neutrosophic sets 𝐴 and 𝐵 , denoted by 𝐶 = 𝐴⨂𝐵. Its truth 
membership , indeterminancy membership,  and falsity 
membership functions are related to those of 𝐴 and 𝐵 as 
follows:  
i)𝑇𝐶(𝑥) = 𝑇𝐴(𝑥)𝑇𝐵(𝑥)

ii) 𝐼𝐶(𝑥) = 𝐼𝐴(𝑥) + 𝐼𝐵(𝑥) − 𝐼𝐴(𝑥)𝐼𝐵(𝑥)
𝑖𝑖𝑖)𝐹𝐶(𝑥) = 𝐹𝐴(𝑥) + 𝐹𝐵(𝑥)−𝐹𝐴(𝑥)𝐹𝐵(𝑥)  ,

∀𝑥 ∈ 𝑋 

Remark 1.Neutrosophic Cube describing IFS &NS.  Jean 
Dezert [8] introduced the  neutrosophic cube 𝐴′𝐵′𝐶′𝐷′𝐸′𝐹′𝐺
′𝐻′ to make a distinction between IFS and NS. For technical 
use, we take the classical interval [0,1] for the NS para-
meters 𝑇𝐴, 𝐼𝐴 𝑎𝑛𝑑 𝐹𝐴 . Then the cube ABCDEFGH  is 
called technical / relative neutrosophic cube and its exten-
sion 𝐴′𝐵′𝐶′𝐷′𝐸′𝐹′𝐺′𝐻′  is called the absolute neutrosophic 
cube. Now, we divide the technical neutrosophic cube into 
three disjoint regions. The observations from the following 
cube are 

i) The equilateral triangle BDE, whose
sides are equal to √2, it represents the
geometrical locus of the points whose 
sum of the coordinates is 1. This triangle 
is known as Atanassov-Intuitionistic 
fuzzy set (A-IFS). Here, if q is a point on 
∆𝐵𝐷𝐸 or inside of it then as in A-IFS,
𝑡𝑞 + 𝑖𝑞 + 𝑓𝑞 = 1 .

ii) The pyramid EABD[situated in the right
side of the  ∆𝐸𝐵𝐷 , including its faces
∆𝐴𝐵𝐷  (base), ∆𝐸𝐵𝐴  and ∆𝐸𝐷𝐴  (lat-
eral faces), but excluding its face 
∆𝐵𝐷𝐸] is the locus of the points whose
sum of coordinates is less than 1. If p is 
point on EABD then 𝑡𝑞 + 𝑖𝑞 + 𝑓𝑞 < 1 as
in IFS with incomplete information. 

iii) In the left side of    ∆𝐵𝐷𝐸  in the cube
there is the solid EFGCDEBD(excluding
∆𝐵𝐷𝐸  ) which is the locus of  points
whose sum of their coordinates is greater
than 1 as in the paraconsistent set . If a
point r lies on EFGCDEBD, then
𝑡𝑞 + 𝑖𝑞 + 𝑓𝑞 > 1 .

Thus, we have a source which is capable to find only 
the degree of membership of an element; but it is unable to 
find the degree of non-membership. Another source is ca-
pable to find only the degree of non-membership of an el-
ement. Or, a source which only computes the indetermina-
cy. Putting these results we always have𝑡𝑞 + 𝑖𝑞 + 𝑓𝑞 ≠ 1. 
Moreover, in information fusion, when dealing with inde-
terminate models (that is elements of the fusion space which 
are indeterminate/unknown, such as intersections we don’t 
know if they are empty or not since we don’t have enough 
information, similarly for complements of indeterminate 
elements etc) ; if we compute the believe in that element 
(truth), the disbelieve in that element(falsehood) and the 
indeterminacy part of that element, then the sum of these 
three components is strictly less than 1 ( the difference to 1 
is the missing information). This is shown in Fig. 1. 
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3 Triangular dense fuzzy environment 
Here, we  discuss the dense fuzzy environment in the all 
possible cases of NS. 
Definition 9. [7]Let 𝐴̃  be the fuzzy number whose 
components are the elements of  ℛ × 𝑁,  being the set of 
real numbers and 𝑁 being the set of natural numbers with 
the membership grade satisfying the functional relation𝜇 ∶
ℛ × 𝑁 → [0,1]. Now as 𝑛 → ∞ if  𝜇(𝑥, 𝑛) → 1 for some 
𝑥 ∈ ℛthen we call the set 𝐴̃ as   dense fuzzy set.  If  𝐴̃ is 
triangular then it is called TDFS. Now, if for some n, 
𝜇(𝑥, 𝑛) attains the highest membership degree 1 then the 
set itself is called “Normalized Triangular Dense Fuzzy 
Set” or NTDFS. The graphical interpretation is shown in 
Fig. 2. 

Example 1. As per definitions (9) let us assume the 
TDFS as follows 𝐴̃ =< 𝑎2 (1 −

𝜌1

1+𝑛
) , 𝑎2 , 𝑎2 (1 +

𝜎1

1+𝑛
) > , 𝑓𝑜𝑟 0 < 𝜌1, 𝜎1 < 1(1)

  The memberships function for  0 ≤ 𝑛  is defined as 
follows:𝛾𝑇(𝑥, 𝑛) =
lows:𝛾𝑇(𝑥, 𝑛) =

{
  
 

  
 0      𝑖𝑓    𝑥 < 𝑎2 (1 −

𝜌1

1+𝑛
)   𝑎𝑛𝑑 𝑥 > 𝑎2 (1 +

𝜎1

1+𝑛
)

{
𝑥−𝑎2(1−

𝜌1
1+𝑛

)
𝜌1𝑎2 
1+𝑛

}  𝑖𝑓   𝑎2 (1 −
𝜌1

1+𝑛
) ≤  𝑥 ≤ 𝑎2

{
𝑎2(1+

𝜎1
1+𝑛

)−𝑥

𝜎1𝑎2 
1+𝑛

}   𝑖𝑓    𝑎2 ≤  𝑥 ≤  𝑎2 (1 +
𝜎1

1+𝑛
)

(

2) 

Similarly, here also we note that, the ordinary mem-
bership functions of falsehood and indeterminacy is 
given by 

𝛾𝐹(𝑥, 𝑛) =

{
  
 

  
 0      𝑖𝑓    𝑥 < 𝑏2 (1 −

𝜌2

1+𝑛
)   𝑎𝑛𝑑 𝑥 > 𝑏2 (1 +

𝜎2

1+𝑛
)

{
𝑏2−𝑥
𝜌2𝑏2 
1+𝑛

}  𝑖𝑓   𝑏2 (1 −
𝜌2

1+𝑛
) ≤  𝑥 ≤ 𝑏2

{
𝑥−𝑏2
𝜎2𝑏2 
1+𝑛

}   𝑖𝑓    𝑏2 ≤  𝑥 ≤  𝑏2 (1 +
𝜎2

1+𝑛
)

(3

) 

𝛾𝐼(𝑥, 𝑛) =

{
 
 

 
 0      𝑖𝑓    𝑥 < 𝑐2 (1 −

𝜌3

1+𝑛
)   𝑎𝑛𝑑 𝑥 > 𝑐2 (1 +

𝜎3

1+𝑛
)

{
𝑐2−𝑥
𝜌3𝑐2 
1+𝑛

}  𝑖𝑓   𝑐2 (1 −
𝜌3

1+𝑛
) ≤  𝑥 ≤ 𝑐2

{
𝑥−𝑐2
𝜎3𝑐2 }   𝑖𝑓    𝑐2 ≤  𝑥 ≤  𝑐2 (1 +

𝜎3

1+𝑛
)

(4)

1+𝑛

Definition 10:   TDFS based on non-membership & 

indeterminate function 

Let 𝐴̃  be the fuzzy number whose components are the 
elements of  ℛ × 𝑁  whose non-membership grade 
satisfying the functional relation 𝜗 ∶ ℛ × 𝑁 → [0,1] . 
Now as 𝑛 → ∞ if  𝜗(𝑥, 𝑛) → 0 for some 𝑥 ∈ ℛthen we 
call the set 𝐴̃ as   dense fuzzy set.  If we consider the 
fuzzy number 𝐴̃  of the form 𝐴̃ = 〈𝑎1, 𝑎2 , 𝑎3〉 then we
call it “Triangular Dense Fuzzy Set”. Now, if for n= 0 
in T, 𝜗(𝑥, 𝑛) attains the highest membership degree 1 
then we can express this fuzzy number as “Normalized 
Triangular Dense Fuzzy Set” or NTDFS. 

Example-2: Let the falsity set is given by 

𝐵 ̃ =< 𝑏2(1 − 𝜌2)𝑒
−𝑛, 𝑏2𝑒

−𝑛, 𝑏2(1 + 𝜎2)𝑒
−𝑛 >

 𝑓𝑜𝑟 0 < 𝜌2, 𝜎2 < 1   (5)

And its  non-membership function for  0 ≤ 𝑛  is de-
fined as   𝜗(𝑥, 𝑛) = 

𝑁 

 𝜇(𝑥, 𝑛) 

Fig.2: Membership function of  NTDFS  based on definition 9 

1 

𝑋 

( 𝑎1 , 𝑛 )  

( 𝑎2 , 𝑛 )  

( 𝑎3 , 𝑛 )  

1

( 𝑎2 , 𝑚 )  

𝐵′(1+, 0, 0) 

𝐸′(0−, 0−, 1+) 

𝐹 

𝐸(0, 0, 1) 

𝐵(1, 0, 0)

𝐷(0, 1, 0)

𝐴(0, 0, 0) 

𝐴′(0−, 0−, 0−) 

𝐷′(0−, 1+, 0−) 

𝐹′ 

Fig-1: Geometric representation of  NeutrosophicCube 

𝐺 
H 

𝐶 

𝐺′ 

𝐶′ 

𝐻′
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{
 
 

 
 
0  𝑖𝑓    𝑥 < 𝑏2(1 − 𝜌2)𝑒

−𝑛 𝑎𝑛𝑑 𝑥 > 𝑏2(1 + 𝜎2)𝑒
−𝑛

{
𝑏2𝑒

−𝑛 − 𝑥

𝜌2𝑏2𝑒
−𝑛

}      𝑖𝑓   𝑏2(1 − 𝜌2)𝑒
−𝑛 ≤  𝑥 ≤ 𝑏2 𝑒

−𝑛

{
𝑥 − 𝑏2𝑒

−𝑛

𝜎2𝑏2𝑒
−𝑛

}   𝑖𝑓   𝑏2 𝑒
−𝑛 ≤  𝑥 ≤  𝑏2(1 + 𝜎2)𝑒

−𝑛

      (6) 

The graphical representation of non-membership 

function is given in Fig. 3. 

Example-3:  Let, the indeterminacy dense fuzzy set be of 

the form 𝐶 ̃ =< 𝑐2(1 − 𝜌3)𝑒−𝑛, 𝑐2𝑒−𝑛, 𝑐2(1 + 𝜎3)𝑒−𝑛 >

 𝑓𝑜𝑟 0 < 𝜌3, 𝜎3 < 1 (7)

With the membership function 

𝜋(𝑥, 𝑛) = 

{
 
 

 
 
0      𝑖𝑓    𝑥 < 𝑐2(1 − 𝜌3)𝑒

−𝑛  𝑎𝑛𝑑 𝑥 > 𝑐2(1 + 𝜎3)𝑒
−𝑛

{
𝑐2𝑒

−𝑛 − 𝑥

𝜌3𝑐2𝑒
−𝑛

}  𝑖𝑓   𝑐2(1 − 𝜌3)𝑒
−𝑛 ≤  𝑥 ≤ 𝑐2 𝑒

−𝑛

{
𝑥 − 𝑐2𝑒

−𝑛

𝜎3𝑐2𝑒
−𝑛

}   𝑖𝑓    𝑐2 𝑒
−𝑛 ≤  𝑥 ≤  𝑐2(1 + 𝜎3)𝑒

−𝑛

(8) 

   Definition-11: Let 𝑋 × 𝑁 be a space of points ( objects) 
with generic element (x, n). Then a neutrosophic set A in 
𝑋 × 𝑁 is characterize by a truth membership function 𝑇𝐴,
an indeterminacy membership function 𝐼𝐴  and a falsity
membership function 𝐹𝐴 . The functions 𝑇𝐴, 𝐼𝐴𝑎𝑛𝑑𝐹𝐴  are
real standard or non-standard subsets of ]0−, 1+[.That is 
𝑇𝐴 ∶ 𝑋 × 𝑁 → ]0−, 1+[  , 𝐼𝐴 ∶ 𝑋 × 𝑁 → ]0−, 1+[   and is
𝐹𝐴 ∶ 𝑋 × 𝑁 → ]0−, 1+[ having the property that, as 𝑛 → ∞
if  𝑇𝐴(𝑥, 𝑛) → 1  , 𝐼𝐴(𝑥, 𝑛) → 0 ← 𝐹𝐴(𝑥, 𝑛) And satisfying
the relation is 0− ≤ 𝑠𝑢𝑝𝑇𝐴(𝑥, 𝑛) + 𝑠𝑢𝑝𝐼𝐴(𝑥, 𝑛) +

𝑠𝑢𝑝𝐹𝐴(𝑥, 𝑛) ≤ 3
+ ,

Definition-12: A Neutrosophic set A in 𝑋 × 𝑁 is said to 
be Neutrosophic Intuitionistic Dense fuzzy Set if the el-
ements of NS, that is the functional components 
𝑇𝐴, 𝐼𝐴𝑎𝑛𝑑𝐹𝐴are taken from the real standard subsets of
[0, 1]. That is 𝑇𝐴 ∶ 𝑋 × 𝑁 → [0, 1],  𝐼𝐴 ∶ 𝑋 × 𝑁 → [0, 1]

and is 𝐹𝐴 ∶ 𝑋 × 𝑁 → [0, 1] having the property that, as
𝑛 → ∞ if  𝑇𝐴(𝑥, 𝑛) → 1  , 𝐼𝐴(𝑥, 𝑛) → 0 ← 𝐹𝐴(𝑥, 𝑛) satis-
fying the relation is   0 ≤ 𝑠𝑢𝑝𝑇𝐴(𝑥, 𝑛) + 𝑠𝑢𝑝 𝐼𝐴(𝑥, 𝑛) +
𝑠𝑢𝑝𝐹𝐴(𝑥, 𝑛) ≤ 3 ,

Remark 2.The NS for dependency components(Ye [20]) 

Here we draw the simple Venn diagram for the NS with 
dependency components. We use this diagram to realize 
the overall assessment of the fuzzy components. Accord-
ing to probability theory, the overall score obtained from 
the fig.-4 is stated in (14). Note that, if  𝑎2 = 𝑏2 = 𝑐2
holds in the fuzzy sets stated in (1), (5) and (7) then the 
common region of that set will be crisp one. This is 
shown in Fig-4 

4 Some basics over expected values of NS 

Here we shall discuss over the ultimate score or ex-
pected defuzzified values for the     proposed neutro-
sophic set𝑁𝑠 =< 𝑇𝐴, 𝐼𝐴 , 𝐹𝐴 >
i) When  the components   𝑇𝐴, 𝐼𝐴𝑎𝑛𝑑𝐹𝐴 are independ-
ent Then as per [Biswas et. al.[4]] the total  average 
expected score will be 
𝑆(𝑥) =

1

3
{𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥)}(9)

  And the truth favorite relative expected value (score) 
is given by  

Crisp 

𝑇𝐴

𝐼𝐴

𝐹𝐴

Fig.-4:  Venn diagram of General Neutrosophic Set 

𝑁 

 𝜗(𝑥, 𝑛) 

( 𝑎3 , 𝑛 )    

Fig. 3: Non  membership function of  NTDFS  

1 

𝑋 

( 𝑎1 , 𝑛 )  

( 𝑎2 , 𝑛 )  

0 

( 𝑎2 , 𝑚 )  
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𝑆(𝑥) =
3 𝑇𝐴(𝑥)  (10) 

𝑇𝐴(𝑥)+ 𝐼𝐴(𝑥)+ 𝐹𝐴(𝑥)

For information lacking in NS, this part can be 
divided into several sub cases. 
a) The components  𝑇𝐴, 𝐼𝐴𝑎𝑛𝑑𝐹𝐴 all together constitute
a positive skewed distribution. 
 In this case (truth leads in the major part), the total 
score will be  
𝑆(𝑥) = 𝑤1𝑇𝐴(𝑥) + 𝑤2𝐼𝐴(𝑥) + 𝑤3𝐹𝐴(𝑥) , for
𝑤1 > 𝑤2 > 𝑤3   and 𝑤1 + 𝑤2 + 𝑤3 = 1    (11)
b) The components  𝑇𝐴, 𝐼𝐴𝑎𝑛𝑑𝐹𝐴 all together constitute
a negative skewed distribution. 
In this case (falsehood leads major part), the total 
score will be  
𝑆(𝑥) = 𝑤1𝑇𝐴(𝑥) + 𝑤2𝐼𝐴(𝑥) + 𝑤3𝐹𝐴(𝑥), for 𝑤1 <
𝑤2 < 𝑤3   and 𝑤1 + 𝑤2 +𝑤3 = 1    (12)
c) The components 𝑇𝐴, 𝐼𝐴𝑎𝑛𝑑𝐹𝐴 all together constitute
a normal distribution. 
In this case (truth and falsehood are symmetric) , the 
total score will be  
𝑆(𝑥) = 𝑤1𝑇𝐴(𝑥) + 𝑤2𝐼𝐴(𝑥) + 𝑤3𝐹𝐴(𝑥), for 𝑤1 <
𝑤2 > 𝑤3   and 𝑤1 + 𝑤2 +𝑤3 = 1    (13)
ii) When the components 𝑻𝑨, 𝑰𝑨𝒂𝒏𝒅𝑭𝑨are depend-

ent 

a) If the components keep the positive sign then the
ultimate score is given by  
𝑆(𝑥) = 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) − 𝑇𝐴(𝑥)𝐼𝐴(𝑥) −

𝐼𝐴(𝑥)𝐹𝐴(𝑥) − 𝑇𝐴(𝑥)𝐹𝐴(𝑥)+𝑇𝐴(𝑥)𝐼𝐴(𝑥)𝐹𝐴(𝑥)   (14) 
b) For the case of IFS, the effect of 𝐼𝐴(𝑥) → {0} or

unknown and the sign of 𝐹𝐴(𝑥) be negative and
hence the ultimate score be  

𝑆(𝑥) = 𝑇𝐴(𝑥) − 𝐹𝐴(𝑥) + 𝑇𝐴(𝑥)𝐹𝐴(𝑥)         (15)
c) [Chen and Tan [6]] Since the expected values of
𝑇𝐴(𝑥) < 1 𝑎𝑛𝑑𝐹𝐴(𝑥) < 1 so their product values
𝑇𝐴(𝑥)𝐹𝐴(𝑥) ≪ 1 and hence their effect can be ignored.
In this case the score function be  
𝑆(𝑥) = 𝑇𝐴(𝑥) − 𝐹𝐴(𝑥)                (16)

5 Improved NS assessments under dense fuzzy 
environment 

Case-I : When all the membership functions  keep 
their values of similar types for same number of ob-
servations/interactions or time durations. First of all, 
we shall discuss the fuzzy assessments under dense 
fuzzy developed by De and Beg [7]. The basic aim of 
the dense fuzzy model is that each and every fuzzy 
component reaches to singleton crisp value whenever 
we would like to experiencing with fuzzy data for a 
long period of time or interactions in practice. Here al-
so we assume the learning experiences are conducted 

within the same elapsed time or interactions for all the 
fuzzy components of NS.  Thus unlike Biswas et al. 
[4]; utilizing dense concept and 𝛼 − 𝑐𝑢𝑡𝑠  developed 
by De and Beg[7], the defuzzified value reduces  from 
the formula 𝐼(𝐴 )̃ =

1

2𝑇
∬ {𝐿(𝛼, 𝑡) +
𝛼=1,𝑡=𝑇

𝛼=0,𝑡=0

𝑅(𝛼, 𝑡)} 𝑑𝛼𝑑𝑡 = 𝑎2 {1 +
(𝜎−𝜌)

4𝑇
𝐿𝑜𝑔(1 + 𝑇)}  for time 

(T) dependent fuzzy membership function and that for 
frequency dependent membership function : 
𝐼(𝐴 )̃ =

1

2𝑁
∑ 𝑎2 {2 +

𝜎−𝜌

2(1+𝑛)
} =𝑁

𝑛=0
𝑎2

2𝑁
[2𝑁 +

𝜎−𝜌

2
{
1

1+0
+

1

1+1
+

1

1+2
+⋯… .+

1

1+𝑁
}]and obtained as 

5.1 For time dependent, (11) reduces to 𝐼(𝑆(𝑥, 𝑡)) =
1

3
{𝐼[𝑇𝐴(𝑥, 𝑡) + 𝐼[ 𝐼𝐴(𝑥, 𝑡)] +  𝐼[𝐹𝐴(𝑥, 𝑡)]}

⇒ 𝐼(𝑆) =
1

3
[𝑎2 {1 +

(𝜎1−𝜌1)

4𝑇
𝐿𝑜𝑔(1 + 𝑇)} +

𝑏2 {1 +
(𝜎2−𝜌2)

4𝑇
𝐿𝑜𝑔(1 + 𝑇)} +

𝑐2 {1 +
(𝜎3−𝜌3)

4𝑇
𝐿𝑜𝑔(1 + 𝑇)}]      (17) 

And that for frequency dependent, 3𝐼(𝑆(𝑥, 𝑛)) =
𝐼[𝑇𝐴(𝑥, 𝑛) + 𝐼[ 𝐼𝐴(𝑥, 𝑛)] +  𝐼[𝐹𝐴(𝑥, 𝑛)]

⇒ 𝐼(𝑆) =
1

6𝑁
∑ 𝑎2 {2 +

(𝜎1−𝜌1)

2(1+𝑛)
} +

1

6𝑁
∑ 𝑏2 {2 +
𝑁
𝑛=0

𝑁
𝑛=0

(𝜎2−𝜌2)

2(1+𝑛)
} +

1

6𝑁
∑ 𝑐2 {2 +

(𝜎3−𝜌3)

2(1+𝑛)
}𝑁

𝑛=0         (18)

5.2 For time dependent fuzzy components, (10) reduc-
es to 

𝐼(𝑆) = 3𝑎2 {1 +
(𝜎1−𝜌1)

4𝑇
𝐿𝑜𝑔(1 + 𝑇)}/ 

[𝑎2 {1 +
(𝜎1−𝜌1)

4𝑇
𝐿𝑜𝑔(1 + 𝑇)} +

𝑏2 {1 +
(𝜎2−𝜌2)

4𝑇
𝐿𝑜𝑔(1 + 𝑇)} +

𝑐2 {1 +
(𝜎3−𝜌3)

4𝑇
𝐿𝑜𝑔(1 + 𝑇)}](19) 

And that for frequency dependent 

 𝐼(𝑆) =
3

2𝑁
∑𝑎2 {2 +

(𝜎1 − 𝜌1)

2(1 + 𝑛)
}

𝑁

𝑛=0

/ 

[
1

2𝑁
∑ 𝑎2 {2 +

(𝜎1−𝜌1)

2(1+𝑛)
} +

1

2𝑁
∑ 𝑏2 {2 +
𝑁
𝑛=0

𝑁
𝑛=0

(𝜎2−𝜌2)

2(1+𝑛)
} +

1

2𝑁
∑ 𝑐2 {2 +

(𝜎3−𝜌3)

2(1+𝑛)
}𝑁

𝑛=0 ]     (20) 

Similarly for (11-13) we get 
5.3 For time dependent, (11-13) reduces to 
𝐼(𝑆(𝑥, 𝑡)) = 𝑤1𝐼[𝑇𝐴(𝑥, 𝑡) + 𝑤2𝐼[ 𝐼𝐴(𝑥, 𝑡)] +

𝑤3𝐼[𝐹𝐴(𝑥, 𝑡)]

⇒ 𝐼(𝑆) = 𝑤1𝑎2 {1 +
(𝜎1−𝜌1)

4𝑇
𝐿𝑜𝑔(1 + 𝑇)} +

𝑤2𝑏2 {1 +
(𝜎2−𝜌2)

4𝑇
𝐿𝑜𝑔(1 + 𝑇)} + 𝑤3𝑐2 {1 +

(𝜎3−𝜌3)

4𝑇
𝐿𝑜𝑔(1 + 𝑇)}with𝑤1 +𝑤2 + 𝑤3 = 1

(21) 
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And that for frequency dependent,
⇒ 𝐼(𝑆) = 𝑤1

1

2𝑁
∑ 𝑎2 {2 +

(𝜎1−𝜌1)

2(1+𝑛)
} +𝑁

𝑛=0

𝑤2
1

2𝑁
∑ 𝑏2 {2 +

(𝜎2−𝜌2)

2(1+𝑛)
} +𝑁

𝑛=0

𝑤3
1

2𝑁
∑ 𝑐2 {2 +

(𝜎3−𝜌3)

2(1+𝑛)
}𝑁

𝑛=0 with 𝑤1 +𝑤2 +

𝑤3 = 1      (22)
5.4 For frequency dependent fuzzy 
components(14) reduces to 
𝐼(𝑆) = 𝐼(𝑇𝐴) +  𝐼(𝐼𝐴) + 𝐼( 𝐹𝐴) − 𝐼(𝑇𝐴𝐼𝐴) − 𝐼(𝐼𝐴𝐹𝐴)

− 𝐼(𝑇𝐴𝐹𝐴)     +𝐼(𝑇𝐴𝐼𝐴𝐹𝐴)

⇒ 𝐼(𝑆)

=
1

2𝑁
∑𝑎2 {2 +

(𝜎1 − 𝜌1)

2(1 + 𝑛)
}

𝑁

𝑛=0

+
1

2𝑁
∑𝑏2 {2 +

(𝜎2 − 𝜌2)

2(1 + 𝑛)
}

𝑁

𝑛=0

+
1

2𝑁
∑𝑐2 {2 +

(𝜎3 − 𝜌3)

2(1 + 𝑛)
}

𝑁

𝑛=0

−
1

2𝑁
∑𝑎2𝑏2 [2 +

𝜎1+𝜎2 − 𝜌1−𝜌2
2(1 + 𝑛)

𝑁

𝑛=0

+
𝜌1𝜌2 + 𝜎1𝜎2
6 (1 + 𝑛)2

]

−
1

2𝑁
∑𝑏2𝑐2 [2 +

𝜎2+𝜎3 − 𝜌2−𝜌3
2(1 + 𝑛)

𝑁

𝑛=0

+
𝜌2𝜌3 + 𝜎2𝜎3
3 (1 + 𝑛)2

]

−
1

2𝑁
∑𝑎2𝑐2 [2 +

𝜎1+𝜎3 − 𝜌1−𝜌3
2(1 + 𝑛)

𝑁

𝑛=0

+
𝜌1𝜌3 + 𝜎1𝜎3
6 (1 + 𝑛)2

] +

𝑎2𝑏2𝑐2
2𝑁

∑ [2 +
𝜎1 − 𝜌1
1 + 𝑛

+
𝜌1 + 𝜎2+𝜎3 − 𝜎1 − 𝜌2−𝜌3

2(1 + 𝑛)
]

𝑁

𝑛=0

+
𝑎2𝑏2𝑐2
2𝑁

∑

[
 
 
 
𝜌1(𝜌2+𝜌3) + 𝜎1(𝜎2+𝜎3)

2(1 + 𝑛)2

+
𝜎1𝜎2𝜎3−𝜌1𝜌2𝜌3

(1 + 𝑛)3 ]
 
 
 𝑁

𝑛=0

−
𝑎2𝑏2𝑐2

2𝑁
∑ [

𝜌1𝜌2+𝜌1𝜌3−𝜌2𝜌3+𝜎1𝜎2+𝜎1𝜎3−𝜎2𝜎3

3 (1+𝑛)2

+
𝜎1𝜎2𝜎3+𝜌1𝜌2𝜌3

4(1+𝑛)3

]𝑁
𝑛=0 (23)

(for detail, see appendix equation (A.1 - A.5)
Also, the results for time continuous fuzzy 

membership we have by simply integrating the above sum 
with respect to time and applying the dense rule and get 

𝐼(𝑆) = 𝑎2 {1 +
(𝜎1 − 𝜌1)

4𝑇
𝐿𝑜𝑔(1 + 𝑇)}

+ 𝑏2 {1 +
(𝜎2 − 𝜌2)

4𝑇
𝐿𝑜𝑔(1 + 𝑇)}

+ 𝑐2 {1 +
(𝜎3 − 𝜌3)

4𝑇
𝐿𝑜𝑔(1 + 𝑇)} 

−𝑎2𝑏2 [1 +
𝜎1+𝜎2 − 𝜌1−𝜌2

4𝑇
𝐿𝑜𝑔(1 + 𝑇) −

𝜌1𝜌2 + 𝜎1𝜎2
12 𝑇(1 + 𝑇)

]

− 𝑏2𝑐2 [1

+
𝜎2+𝜎3 − 𝜌2−𝜌3

4𝑇
𝐿𝑜𝑔(1 + 𝑇)

−
𝜌2𝜌3 + 𝜎2𝜎3
6 𝑇(1 + 𝑇)

]

− 𝑎2𝑐2 [1 +
𝜎1+𝜎3 − 𝜌1−𝜌3

4𝑇
𝐿𝑜𝑔(1

+ 𝑇) +
𝜌1𝜌3 + 𝜎1𝜎3
12𝑇 (1 + 𝑇)

] 

+𝑎2𝑏2𝑐2 [1 +
𝜎1 − 𝜌1
2𝑇

𝐿𝑜𝑔(1 + 𝑇)

+
𝜌1 + 𝜎2+𝜎3 − 𝜎1 − 𝜌2−𝜌3

4𝑇
𝐿𝑜𝑔(1

+ 𝑇) −
𝜌1(𝜌2+𝜌3) + 𝜎1(𝜎2+𝜎3)

4𝑇(1 + 𝑇)
] 

+𝑎2𝑏2𝑐2 [
𝜌1𝜌2+𝜌1𝜌3−𝜌2𝜌3+𝜎1𝜎2+𝜎1𝜎3−𝜎2𝜎3

6𝑇 (1+𝑇)
−

𝜎1𝜎2𝜎3−𝜌1𝜌2𝜌3

4𝑇(1+𝑇)2
+

𝜎1𝜎2𝜎3+𝜌1𝜌2𝜌3

16𝑇(1+𝑇)2
]        (24)

5.5 For time dependent fuzzy components, (15) reduc-
es to 
𝐼(𝑆) = 𝐼(𝑇𝐴 ) +  𝐼(𝐹𝐴 ) − 𝐼(𝑇𝐴 𝐹𝐴 )     ⇒ 𝐼(𝑆)

= 𝑎2 {1 +
(𝜎1 − 𝜌1)

4𝑇
𝐿𝑜𝑔(1 + 𝑇)}

+ 𝑏2 {1 +
(𝜎2 − 𝜌2)

4𝑇
𝐿𝑜𝑔(1 + 𝑇)} 

−𝑎2𝑏2 [1 +
𝜎1+𝜎2−𝜌1−𝜌2

4𝑇
𝐿𝑜𝑔(1 + 𝑇) −

𝜌1𝜌2+𝜎1𝜎2

12 𝑇(1+𝑇)
]

(25)
And that for frequency dependent fuzzy components, 

⇒ 𝐼(𝑆) =
1

2𝑁
∑𝑎2 {2 +

(𝜎1 − 𝜌1)

2(1 + 𝑛)
}

𝑁

𝑛=0

+
1

2𝑁
∑𝑏2 {2 +

(𝜎2 − 𝜌2)

2(1 + 𝑛)
}

𝑁

𝑛=0

−
1

2𝑁
∑ 𝑎2𝑏2 [2 +

𝜎1+𝜎2−𝜌1−𝜌2

2(1+𝑛)
+

𝜌1𝜌2+𝜎1𝜎2

6 (1+𝑛)2
]𝑁

𝑛=0

(26) 
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Case-II : When all the membership functions  keep 
their values of different types for same number of ob-
servations/interactions or time durations. Here we 
shall take the membership functions of 𝑇𝐴 , 𝐼𝐴  𝑎𝑛𝑑 𝐹𝐴 
as stated in (2), (6) and (8) . 

Now the score function of (16) under time sensi-
tive fuzzy numbers is given by, 𝑆(𝑥, 𝑡) =

{
 
 

 
 𝑥−𝑎2(1−

𝜌1
1+𝑡

)
𝜌1𝑎2 
1+𝑡

−
𝑏2𝑒

−𝑡−𝑥

𝑏2𝜌2𝑒
−𝑡 𝑖𝑓   𝑢 ≤ 𝑥 ≤ 𝑣  , 𝑠𝑎𝑦

𝑎2(1+
𝜎1
1+𝑡

)−𝑥

𝜎1𝑎2 
1+𝑡

−
𝑥−𝑏2𝑒

−𝑡

𝑏2𝜎1𝑒
−𝑡 𝑖𝑓𝑣 ≤ 𝑥 ≤ 𝑤  𝑠𝑎𝑦

⇒ 𝑆(𝑥, 𝑡)

=

{
 
 

 
 𝑥 [

1 + 𝑡

𝜌1𝑎2 
+

𝑒𝑡

𝜌2𝑏2
] − (

1 + 𝑡

𝜌1
+
1

𝜌2
− 1) 𝑖𝑓   𝑢 ≤ 𝑥 ≤ 𝑣  , 𝑠𝑎𝑦

(
1 + 𝑡

𝜎1
+
1

𝜎2
+ 1)−𝑥 [

1 + 𝑡

𝜎1𝑎2 
+

𝑒𝑡

𝜎2𝑏2 
] 𝑖𝑓𝑣 ≤ 𝑥 ≤ 𝑤  𝑠𝑎𝑦

Using  𝛼 −cuts  and employing the index formula devel-
oped by De and Beg [7] we get,  
𝑰 (𝑺) =

𝟏

𝟐𝑻
∬ {𝐿(𝛼, 𝑡) + 𝑅(𝛼, 𝑡)}
𝛼=1,𝑡=𝑇

𝛼=0,𝑡=0
𝑑𝛼𝑑𝑡

=
1

2𝑇
∫ [

1+𝑡

𝜌1
+
1

𝜌2
−1

1+𝑡

𝜌1𝑎2 
+

𝑒𝑡

𝜌2𝑏2 

+ 

1+𝑡

𝜎1
+
1

𝜎2
+1

1+𝑡

𝜎1𝑎2 
+

𝑒𝑡

𝜎2𝑏2 

𝑇

0
+
1

2
(

1

1+𝑡

𝜌1𝑎2 
+

𝑒𝑡

𝜌2𝑏2 

−

1

1+𝑡

𝜎1𝑎2 
+

𝑒𝑡

𝜎2𝑏2 

)]𝑑𝑡 =
𝑎2𝑏2

2𝑇
∫ [

((1+𝑡)𝜌2+𝜌1−
𝜌1𝜌2
2

)

(1+𝑡)𝜌2𝑏2+𝑒
𝑡𝜌1𝑎2

+
𝑇

0

((1+𝑡)𝜎2+𝜎1+
𝜎1𝜎2
2

)

(1+𝑡)𝜎2𝑏2+𝑒
𝑡𝜎1𝑎2

] 𝑑𝑡      (27) 

And that for discrete case, replacing t by n we 
write the expected score of the NS as  

𝑰 (𝑺  ) =
𝑎2𝑏2

2𝑁
∑ [

((1+𝑛)𝜌2+𝜌1−
𝜌1𝜌2
2

)

(1+𝑛)𝜌2𝑏2+𝑒
𝑛𝜌1𝑎2

+𝑁
𝑛=0

((1+𝑛)𝜎2+𝜎1+
𝜎1𝜎2
2

)

(1+𝑛)𝜎2𝑏2+𝑒
𝑛𝜎1𝑎2

]   (28) 

Case-III:  If we assume that the learning effects are 
not performed in same time duration / interactions for 
all fuzzy components then the above defuzzification 
formula (17) & (18) reduces to  
⇒ 3 𝐼(𝑆) = 𝑎2 {1 +

(𝜎1−𝜌1)

4𝑇1
𝐿𝑜𝑔(1 + 𝑇1)} +

𝑏2 {1 +
(𝜎2−𝜌2)

4𝑇2
𝐿𝑜𝑔(1 + 𝑇2)} + 𝑐2 {1 +

(𝜎3−𝜌3)

4𝑇3
𝐿𝑜𝑔(1 +

𝑇3)}(29)

And that for frequency dependent, 3𝐼(𝑆(𝑥,𝑚, 𝑛, 𝑝)) =
𝐼[𝑇𝐴(𝑥,𝑚) + 𝐼[ 𝐼𝐴(𝑥, 𝑛)] +  𝐼[𝐹𝐴(𝑥, 𝑝)]

⇒ 𝐼(𝑆) =
1

6𝑀
∑ 𝑎2 {2 +

(𝜎1−𝜌1)

2(1+𝑚)
} +

1

6𝑁
∑ 𝑏2 {2 +
𝑁
𝑛=0

𝑀
𝑚=0

(𝜎2−𝜌2)

2(1+𝑛)
} +

1

6𝑃
∑ 𝑐2 {2 +

(𝜎3−𝜌3)

2(1+𝑝)
}𝑃

𝑝=0            (30)

The detailed discussion is made in Appendix B. 

6  Implication of Dense fuzzy in NS 
In NS, the traditional concept of  membership val-
ues of truth, falsehood and indeterminacy are either 
fixed or cannot be changed once it is assigned. But the 
present study reveals that such points are continuously 
changing because of  learning experiences or flexibility 
of the human behavior and intentions. For instance, 
when we ask a question to a person about the life loss 
due to a certain train accident, then (s) he might be 
answered that 75% of the whole people died, 40% not 
died, and 30% is unknown. But, after few days later if 
the same question has been thrown to the same person, 
then obviously his/her answer might differ from the 
earlier statement. This may be 90%, 50% and 10% or 
10%, 80%, 5%. Such kind of observation occurs due 
to information gathering from the society or learning 
experiences as soon as the time is passed/ increased 
frequency of human interactions within the locality/
society/ mass media etc. By this way before going to 
take governmental supports (Decision maker’s ac-
countability), on the basis of that prior information 
several enquiries committee will be formed and finally 
come to a concrete decision for establishing law and 
order in people’s benefit. The earlier concepts on NS 
analyze the data based on first answer obtained from 
that person, but in our present study it analyzes the 
data subsequently obtained. 

6.1 Procedure for the computation of defuzzified 

values of a Neutrosophic Sets(NSs) 

  Step-1: Find the NS involved in the different field 
of activities 

  Step-2: Find the appropriate membership compo-
nents of that NSs 

  Step-3: Find the interior relationship among the 
different NSs 

  Step-4: Select the strategies involved in those NSs 
a) If we are intending to find the joint per-

formances then take their union using the
definition 5.

30



Neutrosophic Sets and Systems, Vol. 13, 2016

S. K. De and I. Beg, Triangular dense fuzzy Neutrosophic Sets

b) If we are intending to find the common
performances then take their intersection
using the definition 6.

c) If the selection of one’s NS might able to
change the other’s NS then to find the
complexities involved take their multipli-
cation using the definition 8.

d) If the selection of one’s NS do not able to
change the other’s NS  at all then to find
the complexities involved  take their addi-
tion  using the definition 7.

Step-5: After getting the appropriate NS 
obtained from Step-4, use defuz-
zification rules which one you are 
going to assess. 

7 Applications of dense fuzzy in NS (DFNS) 
Several applications can be drawn from our day to day 

life problems (from science and engineering, sociology, 
philosophy, crime research, educational psychology etc.) 
The following are some major areas where the DFNS can 
be applied. 

7.1 In any kind of decision making process 

Example: Suppose, in a supply chain (SC) model 
the set of information 𝑁𝑠𝑠 =< 𝑇𝐴𝑠, 𝐼𝐴𝑠 , 𝐹𝐴𝑠 > and
𝑁𝑠𝑟 =< 𝑇𝐴𝑟 , 𝐼𝐴𝑟  , 𝐹𝐴𝑟 > for both the supplier and
retailer are available under dense fuzzy environ-
ment. First of all we have to obtain the bounds of 
each fuzzy components utilizing dense property; 
then check whether these sets are subsets of each 
other or not.  Now applying congruency rule or 
similarity measures the score functions for the 
chain can be obtained and can be solved by the 
proposed defuzzification methods. Note that if 
these two sets are disjoint then the chain immedi-
ately gets breaking down and the decision maker 
will have to choose another model as well. 

7.2 Psychological testing/ military selection 

Example: Suppose in a psychological test there 
are five different attributes to be measured. The 
attributes are {Moral value, behavior, leadership, 
criminal offence, responsibility}. Among these at-
tributes some of them have positively correlation, 
some of them are negatively correlation and rest 
of them has no relation. However we have to per-
form the membership functions of each attributes 
under dense fuzzy environment and exercising 
these every after some stipulated interval of time/ 

days. Take for instance, to gain best leadership 
quality, one might have to compromise with 
criminal activities and bad responsibility in many 
cases in practice. On the other hand, a person 
having good moral standards, (s)he might carry a 
good behavior and good leadership. Under these 
circumstances, whenever we wish to compute the 
total score, few of the score components of the 
NS became negative. Thus, to get the overall per-
formance, the proposed defuzzification method 
can be applied and ranked accordingly.  

7.3  Leadership assessment under social agenda 

Example: Suppose an open problem on flood 
prone zone in a locality has been thrown before 
two political leaders having different ideologies. 
The problem itself contains three different para-
metric attributes, like {highly flood prone, un-
known, no flood at all}. In this case, first set is an 
appropriate NS for the given attributes under 
dense fuzzy environment. Then, we ask to answer 
the question to the political leaders at different 
places and different interval of times. We usually 
notice that the scores obtained by them at dif-
ferent time are not the same. Thus, to have the 
actual score obtained by each of them, we might 
have to rely their views that were delivered at the 
final stage of assessment.   

7.4 Assessing the age of a digital image 

Let in a digital image be three parametric 
attributes to be measured. These attributes are 
{brightness, white, darkness}. First of all, with 
proper definitions, construct the membership 
functions of each of these attributes under dense 
fuzzy environment. Now changing time (with 
proper record), compute score values of the NS 
and compare with the values obtained from the 
specimen digital image each time. Continue this 
process until the expected value gets merged with 
the values of the specimen image. Finally, get the 
age, the time you have recorded last time.   

7.5 Vulnerability/ risk assessment in disaster 

prone zone 

Let the attributes under study for measuring the 
vulnerability or risk in a disaster management is 
{whether zone is disaster prone, insurance of life 

31



Neutrosophic Sets and Systems, Vol. 13, 2016

S. K. De and I. Beg, Triangular dense fuzzy Neutrosophic Sets

covered, valuation of the property}. Many times 
several attitudes may come whether a particular 
zone is disaster prone or not. The life involved in 
that area is known and hence the insurance cov-
ered is assessed but valuation of the property is 
quite unclear in practice. However if we think of 
birds/ animals like pet and firm animals’ life in-
surance or beyond then this part also carry some 
information lack. Under these circumstances 
computing score values of the proposed NS at 
several years the actual risk can be measured. The 
existing research may be viewed in Takacs [14]. 

7.6 Economic, Cultural, Political, Climatic, Dis-

ease Mapping 

With the help of NS we can map within Coun-
try/State even in the world also with respect to 
different socio economic parameters.  For exam-
ple, studying with {rich, mediocre, poor} in dif-
ferent countries of the world the economically 
sound/unsound such as developed, under devel-
oped, less developed countries can be identified 
globally and can map them accordingly.  Similar-
ly for peoples’ cultural entity { true telling, no tel-
ling, lie telling} or { live to eat, no comments, eat 
to live} or { like dance, like song, both, none } can 
be measured at different time at different countries 
and then map accordingly. For political alliance 
taking 10 years data from different coun-try 
peoples’ attitudes on {democracy, autocracy, 
idealism, materialism, and socialism} may be 
considered for better mapping of friendship. For 
mapping on different climatic zone the parameters 
like { hot, neither hot nor cold, cold} or { highly 
polluted, unknown,  no pollution}  and that for 
mapping of severe disease prone zone, taking 15- 
20 years data of public opinion on { Typhoid, Di-
arrhea,  cholera, free of disease } etc. can be ap-
plied in developing NS.     

7.7 Game theory 

In this competitive world, behind any kind of ac-
tivities there must have a hidden game. For each 
strategic player we may think of a NS having 
three or more fuzzy components. These compo-
nents are changing for several reasons. For in-
stance, sudden fall of share market, instant price 
hike of commodities, ammendment of Govt. poli-
cies etc. may cause the flexibility of fuzzy (non) 
membership grade. However, the players might 

have to change their plan within one day duration. 
Utilizing NS fuzzy cross product and algebraic 
properties the problem can be solved. To know 
the ultimate gain of each player our proposed de-
fuzzification method can be applied.   

7.8 Personality Test/ ability identification 

For the identification of psychological ability or 
cognitive development, several possible attributes
are taken for an individual. Then constructing dif-
ferent membership expected neutrosophic sets are 
drawn. Defuzzifying the given NS, we may easily
measure the different abilities, which may guide to
form a personality development.  

Conclusion 

In this study, we have explained the existing neutrosophic 
set under dense fuzzy environment. Traditionally, most of 
the researchers were experiencing with the (non) member-
ship grade value directly from the study area, and took de-
cisions through some aggregation rules or ranking scores. 
They do not feel the urge to defuzzify the NS earlier. Also, 
in some of the cases, fuzzy graph theory or fuzzy matrices 
have been developed to capture the decision theory. The 
concepts of human learning, the changing characteristics of 
the fuzzy membership with respect to time and the number 
of observations have been ignored by the founder thinkers 
of NS. We need to defuzzify the NS under dense fuzzy 
environment for the following reason:  

a) The fuzzy elements in NS are obtained directly
from field data only

b) The fuzzy flexibility may change with time
elapsed and interactions covered

c) To know the individual value rather than mem-
bership degree, because a different value may 
carry the same degree, but the reverse is not true 
due to convexity property.

d) To realize the actual world rather than a hypo-
thetical world.

Appendix A 

To find the values of the following equation 
(15) 𝐼(𝑆) = 𝐼(𝑇𝐴) +  𝐼(𝐼𝐴) + 𝐼( 𝐹𝐴) − 𝐼(𝑇𝐴𝐼𝐴) −

𝐼(𝐼𝐴𝐹𝐴) − 𝐼(𝑇𝐴𝐹𝐴)     +𝐼(𝑇𝐴𝐼𝐴𝐹𝐴)  for the cases of gen-
eral membership functions
We take the help of𝛼 − 𝑐𝑢𝑡𝑠  of the fuzzy compo-
nents.. Now as per De and Beg[7], the left and right 
𝛼 − 𝑐𝑢𝑡𝑠 of the fuzzy set 𝐴̃ = 〈𝑎1, 𝑎2 , 𝑎3〉 or 𝐴̃ =<
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𝑎2 (1 −
𝜌1

1+𝑛
) , 𝑎2 , 𝑎2 (1 +

𝜎1

1+𝑛
) > , 𝑓𝑜𝑟 0 < 𝜌1, 𝜎1 <

1 is given by 

𝐿−1(𝛼, 𝑛) = 𝑎2 (1 −
𝜌1

1+𝑛
+

𝜌1𝛼

1+𝑛
) and 𝑅−1(𝛼, 𝑛) =

𝑎2 (1 +
𝜎1

1+𝑛
−

𝜎1𝛼

1+𝑛
)

Now from the properties of𝛼 − 𝑐𝑢𝑡𝑠 we have 
(𝑇𝐴𝐹𝐴)𝛼 = (𝑇𝐴)𝛼(𝐹𝐴)𝛼

= {𝑎2 (1 −
𝜌1

1 + 𝑛
+
𝜌1𝛼

1 + 𝑛
) , 𝑎2 (1 +

𝜎1
1 + 𝑛

−
𝜎1𝛼

1 + 𝑛
)} {𝑏2 (1 −

𝜌2𝛼

1 + 𝑛
) , 𝑏2 (1

+
𝜎2𝛼

1 + 𝑛
)}

= 𝑎2𝑏2 {(1 −
𝜌1

1 + 𝑛
+
𝜌1𝛼

1 + 𝑛
) (1 −

𝜌2𝛼

1 + 𝑛
) , (1

+
𝜎1

1 + 𝑛
−
𝜎1𝛼

1 + 𝑛
) (1 +

𝜎2𝛼

1 + 𝑛
)}

= 𝑎2𝑏2 [1 −
𝜌1

1 + 𝑛
+ 𝛼 {

𝜌1𝜌2
(1 + 𝑛)2

+
𝜌1−𝜌2
(1 + 𝑛)

}

−
𝜌1𝜌2𝛼

2

(1 + 𝑛)2
,

1 +
𝜎1

1 + 𝑛
+ 𝛼 {

𝜎1𝜎2
(1 + 𝑛)2

+
𝜎2−𝜎1
(1 + 𝑛)

}

−
𝜎1𝜎2𝛼

2

(1 + 𝑛)2
]

Note that, in above we assume the left and right 
𝛼 − 𝑐𝑢𝑡𝑠 are increasing and decreasing functions of𝛼 
respectively.  If it is impossible to determine whether 
the above conditions hold or not, then the gross value 
of the 𝛼 − 𝑐𝑢𝑡𝑠 are given by  

The left 𝛼 − 𝑐𝑢𝑡 of (𝑇𝐴𝐹𝐴)𝛼 =

= 𝑀𝑖𝑛 {𝑎2 (1 −
𝜌1

1 + 𝑛
+
𝜌1𝛼

1 + 𝑛
) , 𝑎2 (1 +

𝜎1
1 + 𝑛

−
𝜎1𝛼

1 + 𝑛
)} {𝑏2 (1 −

𝜌2𝛼

1 + 𝑛
) , 𝑏2 (1

+
𝜎2𝛼

1 + 𝑛
)}

= 𝑀𝑖𝑛𝑎2𝑏2 {(1 −
𝜌1

1 + 𝑛
+
𝜌1𝛼

1 + 𝑛
) (1 −

𝜌2𝛼

1 + 𝑛
) , (1

−
𝜌1

1 + 𝑛
+
𝜌1𝛼

1 + 𝑛
) (1 +

𝜎2𝛼

1 + 𝑛
) , (1

+
𝜎1

1 + 𝑛
−
𝜎1𝛼

1 + 𝑛
) (1 −

𝜌2𝛼

1 + 𝑛
) , (1

+
𝜎1

1 + 𝑛
−
𝜎1𝛼

1 + 𝑛
) (1 +

𝜎2𝛼

1 + 𝑛
)}

And the right 𝛼 − 𝑐𝑢𝑡 of (𝑇𝐴𝐹𝐴)𝛼 =

= 𝑀𝑎𝑥𝑎2𝑏2 {(1 −
𝜌1

1 + 𝑛
+
𝜌1𝛼

1 + 𝑛
) (1 −

𝜌2𝛼

1 + 𝑛
) , (1

−
𝜌1

1 + 𝑛
+
𝜌1𝛼

1 + 𝑛
) (1 +

𝜎2𝛼

1 + 𝑛
) , (1

+
𝜎1

1 + 𝑛
−
𝜎1𝛼

1 + 𝑛
) (1 −

𝜌2𝛼

1 + 𝑛
) , (1

+
𝜎1

1 + 𝑛
−
𝜎1𝛼

1 + 𝑛
) (1 +

𝜎2𝛼

1 + 𝑛
)}

The same rule could be applied in other cases also. 
 Therefore, the index value is given by 

𝐼(𝑇𝐴𝐹𝐴) =
1

2𝑁
∑𝑎2𝑏2 [1 −

𝜌1
1 + 𝑛

𝑁

𝑛=0

+
1

2
{
𝜌1𝜌2

(1 + 𝑛)2
+
𝜌1−𝜌2
(1 + 𝑛)

}

−
𝜌1𝜌2

3 (1 + 𝑛)2
+   1 +

𝜎1
1 + 𝑛

+
1

2
{
𝜎1𝜎2

(1 + 𝑛)2
+
𝜎2−𝜎1
(1 + 𝑛)

}

−
𝜎1𝜎2

3 (1 + 𝑛)2
]

=
1

2𝑁
∑ 𝑎2𝑏2 [2 +

𝜎1+𝜎2−𝜌1−𝜌2

2(1+𝑛)
+

𝜌1𝜌2+𝜎1𝜎2

6 (1+𝑛)2
]𝑁

𝑛=0

(A.1)
Similarly, 
𝐼(𝑇𝐴𝐼𝐴) =

1

2𝑁
∑ 𝑎2𝑐2 [2 +

𝜎1+𝜎3−𝜌1−𝜌3

2(1+𝑛)
+

𝜌1𝜌3+𝜎1𝜎3

6 (1+𝑛)2
]𝑁

𝑛=0

(A.2)

Also to find, 𝐼(𝐹𝐴𝐼𝐴)  we write,
(𝐼𝐴𝐹𝐴)𝛼 = (𝐼𝐴)𝛼(𝐹𝐴)𝛼

= {𝑏2 (1 −
𝜌2𝛼

1 + 𝑛
) , 𝑏2 (1 +

𝜎2𝛼

1 + 𝑛
)} {𝑐2 (1

−
𝜌3𝛼

1 + 𝑛
) , 𝑐2 (1 +

𝜎3𝛼

1 + 𝑛
)}

= 𝑏2𝑐2 [(1 −
𝜌2𝛼

1 + 𝑛
) (1 −

𝜌3𝛼

1 + 𝑛
) , (1 +

𝜎2𝛼

1 + 𝑛
) (1

+
𝜎3𝛼

1 + 𝑛
)]

= 𝑏2𝑐2 [1 − 𝛼 (
𝜌2+𝜌3

1+𝑛
) +

𝜌2𝜌3𝛼
2

(1+𝑛)2
, 1 + 𝛼 (

𝜎2+𝜎3

1+𝑛
) +

𝜎2𝜎3𝛼
2

(1+𝑛)2
]

Therefore 
𝐼(𝐹𝐴𝐼𝐴) =

1

2𝑁
∑ 𝑏2𝑐2 [2 +

𝜎2+𝜎3−𝜌2−𝜌3

2(1+𝑛)
+

𝜌2𝜌3+𝜎2𝜎3

3 (1+𝑛)2
]𝑁

𝑛=0

(A.3)
Moreover to find the index value of (𝑇𝐴𝐼𝐴𝐹𝐴)
we write, the 
(𝑇𝐴𝐼𝐴𝐹𝐴)𝛼 = (𝑇𝐴)𝛼(𝐼𝐴)𝛼(𝐹𝐴)𝛼
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= 𝑎2𝑏2𝑐2 [(1 −
𝜌1

1 + 𝑛
+
𝜌1𝛼

1 + 𝑛
) , (1 +

𝜎1
1 + 𝑛

−
𝜎1𝛼

1 + 𝑛
)] [1 − 𝛼 (

𝜌2 + 𝜌3
1 + 𝑛

)

+
𝜌2𝜌3𝛼

2

(1 + 𝑛)2
, 1 + 𝛼 (

𝜎2 + 𝜎3
1 + 𝑛

)

+
𝜎2𝜎3𝛼

2

(1 + 𝑛)2
]

= 𝑎2𝑏2𝑐2 [1 −
𝜌1

1+𝑛
+ 𝛼 {

𝜌1−𝜌2−𝜌3

(1+𝑛)
+

𝜌1(𝜌2+𝜌3)

(1+𝑛)2
} −

𝛼2 {
𝜌1𝜌2𝜌3

(1+𝑛)3
+

𝜌1𝜌2+𝜌1𝜌3−𝜌2𝜌3

(1+𝑛)2
} +

𝜌1𝜌2𝜌3𝛼
3

(1+𝑛)3
 , 

1 +
𝜎1

1 + 𝑛
+ 𝛼 {

𝜎2+𝜎3−𝜎1
(1 + 𝑛)

+
𝜎1(𝜎2+𝜎3)

(1 + 𝑛)2
}+𝛼2 {

𝜎1𝜎2𝜎3
(1 + 𝑛)3

+
𝜎2𝜎3 − 𝜎1𝜎2 − 𝜎1𝜎3

(1 + 𝑛)2
}

−
𝜎1𝜎2𝜎3𝛼

3

(1 + 𝑛)3
] 

Thus,𝐼(𝑇𝐴 𝐼𝐴 𝐹𝐴 )

=
1

2𝑁
∑ 𝑎2𝑏2𝑐2 [2 +

𝜎1−𝜌1

1+𝑛
+

𝜌1+𝜎2+𝜎3−𝜎1−𝜌2−𝜌3

2(1+𝑛)
+𝑁

𝑛=0

𝜌1(𝜌2+𝜌3)+𝜎1(𝜎2+𝜎3)

2(1+𝑛)2
−

𝜌1𝜌2+𝜌1𝜌3−𝜌2𝜌3+𝜎1𝜎2+𝜎1𝜎3−𝜎2𝜎3

3 (1+𝑛)2
+
𝜎1𝜎2𝜎3−𝜌1𝜌2𝜌3

(1+𝑛)3
−

𝜎1𝜎2𝜎3+𝜌1𝜌2𝜌3

4(1+𝑛)3
]  (A.4)

Appendix  B 

Here we shall study the  𝛼 − 𝑐𝑢𝑡𝑠 of   (𝑇𝐴 ,

𝐼𝐴  𝑎𝑛𝑑   𝐹𝐴 ) when all the components occur proper 

dense property of fuzzy sets[ stated in (2), (6) and 

(8)].  In this case the 𝛼 − 𝑐𝑢𝑡 of𝑇𝐴  that is (𝑇𝐴 )𝛼 will 

remains the same. 

But  the𝛼 − 𝑐𝑢𝑡𝑠 of (𝐹𝐴 )𝛼 are given by  

{
𝑏2𝑒

−𝑛−𝑥

𝜌2𝑏2𝑒
−𝑛} ≥ 𝛼 → 𝑥 ≤

𝑏2𝑒
−𝑛(1 − 𝛼𝜌2) and {

𝑥−𝑏2𝑒
−𝑛

𝜎2𝑏2𝑒
−𝑛} ≥ 𝛼 → 𝑥 ≥

𝑏2𝑒
−𝑛(1 + 𝛼𝜎2) 

Thus (𝐹𝐴 )𝛼 = [𝑏2𝑒
−𝑛(1 − 𝛼𝜌2), 𝑏2𝑒

−𝑛(1 + 𝛼𝜎2)] =

𝑏2𝑒
−𝑛[(1 − 𝛼𝜌2), (1 + 𝛼𝜎2)]   (B.1)

Similarly, (𝐼𝐴 )𝛼 = 𝑐2𝑒
−𝑛[(1 − 𝛼𝜌3), (1 + 𝛼𝜎3)]                   

(B.2) 

Therefore,𝐼(𝑇𝐴 ) =
1

2𝑁
∑ 𝑎2 {2 +

(𝜎1−𝜌1)

2(1+𝑛)
}𝑁

𝑛=0   

(B.3) 

𝐼(𝐼𝐴 ) =
𝑐2

2𝑁
{2 +

1

2
(𝜎3 − 𝜌3)}∑ 𝑒−𝑛𝑁

𝑛=0

(B.4) 

𝐼(𝐹𝐴 ) =
𝑏2

2𝑁
{2 +

1

2
(𝜎2 − 𝜌2)}∑ 𝑒−𝑛𝑁

𝑛=0

(B.5) 

Again ,(𝑇𝐴 𝐹𝐴 )𝛼 = (𝑇𝐴 )𝛼(𝐹𝐴 )𝛼 = 𝑎2 [(1 −
𝜌1

1+𝑛
+

𝜌1𝛼

1+𝑛
) , (1 +

𝜎1

1+𝑛
−

𝜎1𝛼

1+𝑛
)] {𝑏2𝑒

−𝑛[(1 − 𝛼𝜌2), (1 +

𝛼𝜎2)]} 

= 𝑎2𝑏2𝑒
−𝑛 [(1 −

𝜌1
1 + 𝑛

+
𝜌1𝛼

1 + 𝑛
) (1 − 𝛼𝜌2), (1

+
𝜎1

1 + 𝑛
−
𝜎1𝛼

1 + 𝑛
) (1 + 𝛼𝜎2)] 

= 𝑎2𝑏2𝑒
−𝑛

[
 
 
 1 −

𝜌1
1 + 𝑛

+
𝜌1𝛼

1 + 𝑛
− 𝛼𝜌2 +

𝛼𝜌1𝜌2
1 + 𝑛

−
𝛼2𝜌1𝜌2
1 + 𝑛

,

1 +
𝜎1

1 + 𝑛
−
𝜎1𝛼

1 + 𝑛
+ 𝛼𝜎2 +

𝛼𝜎1𝜎2
1 + 𝑛

−
𝛼2𝜎1𝜎2
1 + 𝑛 ]

 
 
 

= 𝑎2𝑏2𝑒
−𝑛 [

1 −
𝜌1

1+𝑛
+ 𝛼 (

𝜌1+𝜌1𝜌2

1+𝑛
− 𝜌2) −

𝛼2𝜌1𝜌2

1+𝑛
,

1 +
𝜎1

1+𝑛
+ 𝛼 (

𝜎1𝜎2−𝜎1

1+𝑛
+ 𝜎2) −

𝛼2𝜎1𝜎2

1+𝑛

]

(B.6) 

Thus,𝐼(𝑇𝐴 𝐹𝐴 ) =
𝑎2𝑏2

2𝑁
∑ 𝑒−𝑛 [2 +

𝜎1−𝜌1

1+𝑛
+𝑁

𝑛=0

1

2
(
𝜌1−𝜎1+𝜎1𝜎2+𝜌1𝜌2

1+𝑛
+ 𝜎2 − 𝜌2)−

𝜌1𝜌2+𝜎1𝜎2

3(1+𝑛)
](B.7) 

Similarly, 𝐼(𝑇𝐴 𝐼𝐴 ) = 

𝑎2𝑐2

2𝑁
∑ 𝑒−𝑛 [2 +

𝜎1−𝜌1

1+𝑛
+

1

2
(
𝜌1−𝜎1+𝜎1𝜎3+𝜌1𝜌3

1+𝑛
+ 𝜎3 −

𝑁
𝑛=0

𝜌3)−
𝜌1𝜌3+𝜎1𝜎3

3(1+𝑛)
](B.8) 

For, 𝐼(𝐹𝐴 𝐼𝐴 ) 

We write, (𝐼𝐴 𝐹𝐴 )𝛼 = (𝐼𝐴 )𝛼(𝐹𝐴 )𝛼 

= 𝑏2𝑐2𝑒
−2𝑛[(1 − 𝛼𝜌2), (1 + 𝛼𝜎2)][(1 − 𝛼𝜌3), (1

+ 𝛼𝜎3)] 

= 𝑏2𝑐2𝑒
−2𝑛[1 − 𝛼𝜌2 − 𝛼𝜌3 + 𝛼

2𝜌2𝜌3,

1 + 𝛼𝜎2 + 𝛼𝜎3 + 𝛼
2𝜎2𝜎3]

Therefore, 

𝐼(𝐹𝐴 𝐼𝐴 ) =
𝑏2𝑐2

2𝑁
∑ 𝑒−2𝑛 [2 +

1

2
(𝜎2 + 𝜎3 − 𝜌2 − 𝜌3) +

𝜌2𝜌3+𝜎2𝜎3

3
]𝑁

𝑛=0  

=
𝑏2𝑐2
2𝑁

[2 +
1

2
(𝜎2 + 𝜎3 − 𝜌2 − 𝜌3) +

𝜌2𝜌3+𝜎2𝜎3
3

]∑ 𝑒−2𝑛
𝑁

𝑛=0

 

      (B.9) 

For,𝐼(𝑇𝐴 𝐼𝐴 𝐹𝐴 ) we take,  
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(𝑇𝐴 𝐼𝐴 𝐹𝐴 )𝛼 = (𝑇𝐴 )𝛼(𝐼𝐴 )𝛼(𝐹𝐴 )𝛼 

= 𝑎2𝑏2𝑐2𝑒
−2𝑛[1 − 𝛼𝜌2 − 𝛼𝜌3 + 𝛼

2𝜌2𝜌3, 1 + 𝛼𝜎2
+ 𝛼𝜎3

+ 𝛼2𝜎2𝜎3] [(1 −
𝜌1

1 + 𝑛

+
𝜌1𝛼

1 + 𝑛
) , (1 +

𝜎1
1 + 𝑛

−
𝜎1𝛼

1 + 𝑛
)] 

= 𝑎2𝑏2𝑐2𝑒
−2𝑛 [(1 −

𝜌1
1 + 𝑛

) (1 − 𝛼𝜌2 − 𝛼𝜌3

+ 𝛼2𝜌2𝜌3)

+
𝜌1

1 + 𝑛
(𝛼 − 𝛼2𝜌2 − 𝛼

2𝜌3

+ 𝛼3𝜌2𝜌3), (1 +
𝜎1

1 + 𝑛
) (1 + 𝛼𝜎2

+ 𝛼𝜎3 + 𝛼
2𝜎2𝜎3)

−
𝜎1

1 + 𝑛
(𝛼 + 𝛼2𝜎2 + 𝛼

2𝜎3

+ 𝛼3𝜎2𝜎3)] 

Therefore, 

𝐼(𝑇𝐴 𝐼𝐴 𝐹𝐴 ) =
𝑎2𝑏2𝑐2

2𝑁
∑ 𝑒−2𝑛 [(1 −

𝜌1

1+𝑛
) (1 −𝑁

𝑛=0

1

2
𝜌2 −

1

2
𝜌3 +

1

3
𝜌2𝜌3) +

𝜌1

1+𝑛
(
1

2
−

1

3
𝜌2 −

1

3
𝜌3 +

1

4
𝜌2𝜌3) + (1 +

𝜎1

1+𝑛
) (1 +

1

2
𝜎2 +

1

2
𝜎3 +

1

3
𝜎2𝜎3) −

𝜎1

1+𝑛
(
1

2
+

1

3
𝜎2 +

1

3
𝜎3 +

1

4
𝜎2𝜎3)]                     

(B.10) 

Hence, using (B.3)-(B.10) the expected values of 

the given NS can be obtained as 

𝐼(𝑆) = 𝐼(𝑇𝐴 ) +  𝐼(𝐼𝐴 ) + 𝐼( 𝐹𝐴 ) − 𝐼(𝑇𝐴 𝐼𝐴 ) −

𝐼(𝐼𝐴 𝐹𝐴 ) − 𝐼(𝑇𝐴 𝐹𝐴 )     +𝐼(𝑇𝐴 𝐼𝐴 𝐹𝐴 )where 

𝐼(𝑆) =
1

2𝑁
∑𝑎2 {2 +

(𝜎1 − 𝜌1)

2(1 + 𝑛)
}

𝑁

𝑛=0

+
𝑏2
2𝑁

{2 +
1

2
(𝜎2 − 𝜌2)}∑𝑒−𝑛

𝑁

𝑛=0

+
𝑐2
2𝑁

{2 +
1

2
(𝜎3 − 𝜌3)}∑𝑒−𝑛

𝑁

𝑛=0

 

−
𝑎2𝑏2
2𝑁

∑𝑒−𝑛 [2 +
𝜎1−𝜌1
1 + 𝑛

𝑁

𝑛=0

+
1

2
(
𝜌1−𝜎1 + 𝜎1𝜎2 + 𝜌1𝜌2

1 + 𝑛
+ 𝜎2

− 𝜌2)−
𝜌1𝜌2+𝜎1𝜎2
3(1 + 𝑛)

]

−
𝑏2𝑐2
2𝑁

∑𝑒−2𝑛 [2

𝑁

𝑛=0

+
1

2
(𝜎2 + 𝜎3 − 𝜌2 − 𝜌3)

+
𝜌2𝜌3+𝜎2𝜎3

3
] 

−
𝑎2𝑐2
2𝑁

∑𝑒−𝑛 [2 +
𝜎1−𝜌1
1 + 𝑛

𝑁

𝑛=0

+
1

2
(
𝜌1−𝜎1 + 𝜎1𝜎3 + 𝜌1𝜌3

1 + 𝑛
+ 𝜎3

− 𝜌3)−
𝜌1𝜌3+𝜎1𝜎3
3(1 + 𝑛)

] 

+
𝑎2𝑏2𝑐2

2𝑁
∑ 𝑒−2𝑛 [(1 −

𝜌1

1+𝑛
) (1 −

1

2
𝜌2 −

1

2
𝜌3 +

𝑁
𝑛=0

1

3
𝜌2𝜌3) +

𝜌1

1+𝑛
(
1

2
−

1

3
𝜌2 −

1

3
𝜌3 +

1

4
𝜌2𝜌3) +

(1 +
𝜎1

1+𝑛
) (1 +

1

2
𝜎2 +

1

2
𝜎3 +

1

3
𝜎2𝜎3) −

𝜎1

1+𝑛
(
1

2
+

1

3
𝜎2 +

1

3
𝜎3 +

1

4
𝜎2𝜎3)]      (B.11) 

Note that, if the fuzzy components are experienced 

with different interactions then we shall calculate 

the expected score values as follows:  

𝐼(𝑆) =
1

2𝑀
∑ 𝑎2 {2 +

(𝜎1 − 𝜌1)

2(1 + 𝑚)
}

𝑀

𝑚=0

+
𝑏2
2𝑁

{2 +
1

2
(𝜎2 − 𝜌2)}∑𝑒−𝑛

𝑁

𝑛=0

+
𝑐2
2𝑃
{2 +

1

2
(𝜎3 − 𝜌3)}∑𝑒−𝑝

𝑃

𝑝=0
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−
𝑎2𝑏2
2𝑁1

∑𝑒−𝑛 [2 +
𝜎1−𝜌1
1 + 𝑛

𝑁1

𝑛=0

+
1

2
(
𝜌1−𝜎1 + 𝜎1𝜎2 + 𝜌1𝜌2

1 + 𝑛
+ 𝜎2

− 𝜌2)−
𝜌1𝜌2+𝜎1𝜎2
3(1 + 𝑛)

]

−
𝑏2𝑐2
2𝑁2

∑𝑒−2𝑛 [2

𝑁2

𝑛=0

+
1

2
(𝜎2 + 𝜎3 − 𝜌2 − 𝜌3)

+
𝜌2𝜌3+𝜎2𝜎3

3
]

−
𝑎2𝑐2
2𝑁3

∑𝑒−𝑛 [2 +
𝜎1−𝜌1
1 + 𝑛

𝑁3

𝑛=0

+
1

2
(
𝜌1−𝜎1 + 𝜎1𝜎3 + 𝜌1𝜌3

1 + 𝑛
+ 𝜎3

− 𝜌3)−
𝜌1𝜌3+𝜎1𝜎3
3(1 + 𝑛)

] 

+
𝑎2𝑏2𝑐2

2𝑁4
∑ 𝑒−2𝑛 [(1 −

𝜌1

1+𝑛
) (1 −

1

2
𝜌2 −

1

2
𝜌3 +

𝑁4
𝑛=0

1

3
𝜌2𝜌3) +

𝜌1

1+𝑛
(
1

2
−

1

3
𝜌2 −

1

3
𝜌3 +

1

4
𝜌2𝜌3) +

(1 +
𝜎1

1+𝑛
) (1 +

1

2
𝜎2 +

1

2
𝜎3 +

1

3
𝜎2𝜎3) −

𝜎1

1+𝑛
(
1

2
+

1

3
𝜎2 +

1

3
𝜎3 +

1

4
𝜎2𝜎3)]( B.12)

Where 𝑁1 = 𝑚𝑖𝑛(𝑀,𝑁) , 𝑁2 = 𝑚𝑖𝑛(𝑁, 𝑃) , 

𝑁3 = 𝑚𝑖𝑛(𝑀, 𝑃) and 𝑁4 = 𝑚𝑖𝑛(𝑀,𝑁, 𝑃) 
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Abstract. In daily life, decision makers around the world 
are seeking for the appropriate decisions while facing 
many challenges due to conflicting criteria and the pres-
ence of many alternatives. In the way of pursuit a power-
ful decision making process, many researches act in
multi-criteria decision making (MCDM) field and many 
xx

methods were developed. This paper sheds some lights 
on the applicability of fuzzy set theory and neutrosophic 
logic in solving multi-criteria decision making problems.
Also, it presents the possible applications of each method
in MCDM different fields. 

Keywords: Fuzzy Set Theory, Neutrosophic logic, Multi-criteria Decision Making.

1 Introduction 

The multi-criteria decision making (MCDM) can be 
defined as the process of ranking a set of alternatives and 
selecting the most suitable one based on decision criteria 
[1]. During the second half of the 20th century, MCDM re-
search area has undergone remarkable and fast develop-
ment, and many MCDM methods have been developed to 
introduce better solution for multi-criteria decision making 
problems [1]. MCDM process components are a set of de-
cision criteria (at least two), decision makers, and a set of 
alternatives which sorted and ranked based on the decision 
criteria [2]. With a goal of helping decision makers to rank 
different alternatives and choose the best one that satisfies 
organization’s needs, MCDM has been used to support a 
wide range of decisions in many areas such as: portfolio 
optimization, benefit-risk assessment, technology assess-
ment, and software selection [3–4]. 

This paper analyses two multi-criteria decision making 
methods and determines their applicability to different sit-
uations by evaluating their relative advantages and disad-
vantages. A comprehensive literature review is conducted 
to allow a summary of the two methods. A review of the 
use of these methods and an examination of the evolution 
of their use is then performed.  

This paper is organized as follows: Section 2 intro-
duces a brief background of fuzzy set theory. Fuzzy 
applications in different MCDM fields are discussed in 
Section 3. Section 4 introduces a brief background of neu-
trosophic logic. Section 5 presents the role of neutrosophic 

logic in solving multi-criteria decision making problems.
Finally, conclusions and potential future scope of research 
are described in Conclusion section. 

2 Fuzzy Set Theory 
Fuzzy set theory was first introduced in 1965 by 

Zadeh [5]. It is an extension of classical set theory that
helps solving problems with uncertain data and handling 
information expressed in vague and imprecise terms [6].
Its great strength appears in handling imprecise input and 
problems with great complexity; however, fuzzy systems
are considered difficult and complex to develop, and, in
many cases, they may require numerous simulations before 
being used in the real world [7]. Fuzzy set theory is 
established and has been used in many applications such as 
engineering, economics, environmental and social
sciences, medicine, and management [7]. 

Zadeh [5] introduced many definitions of fuzzy 
sets such as:  
Let X be a space of points with a generic element of X de-
noted by x. Thus X = {x}. 
A fuzzy set A in X is characterized by a membership func-
tion fA(x) which associates with each point in X a real 
number in the interval [0,1], with the values of fA(x) at x 
representing the "grade of membership" of x in A. Thus, 
the nearer the value of fA(x) to unity, the higher the grade 
of membership of x in A. 

A fuzzy number 𝑛̃ is a fuzzy subset in the uni-
verse of discourse X whose membership function is both 
Convex and normal [8]. A fuzzy set is defined by a mem-
bership function used to map an item onto an interval [0, 1] 
that can be associated with linguistic terms [9]. A triangu-
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lar fuzzy number (TFN) is a special case of a trapezoidal 
fuzzy number and it is a very popular and common tool in 
fuzzy applications [10]. 
Figure 1: shows a fuzzy number [5]

3 Applications of Fuzzy set in MCDM 
3.1 Software Selection Field 

Sen et al. [11] proposed a multi criteria decision mak-
ing approach for Enterprise Resource Planning (ERP) 
software selection using a heuristic algorithm, a fuzzy mul-
ti-criteria, and a multi objective programming model. The 
proposed approach aimed to evaluate the functional and 
non-functional ERP software characteristics. To validate 
the approach, the researchers applied it on an electronic 
company in Turkey and the results were satisfying for the 
company’s decision makers. The researchers recommend-
ed combining their method with expert system for future 
work. 

Lin et al. [12] first developed some aggregation opera-
tors for aggregating hesitant fuzzy linguistic information: 
hesitant fuzzy linguistic weighted average (HFLWA) oper-
ator, hesitant fuzzy linguistic ordered weighted average 
(HFLOWA) operator, and hesitant fuzzy linguistic hybrid 
average (HFLHA) operator, then the researchers used these 
operators in fuzzy approaches for solving ERP software se-
lection problem. The proposed method was applied on a 
real world case study and it ensured its capability in select-
ing the best ERP software that suited the organization 
needs. 

Ozturkoglu and Esendemir [13] combined the power of 
grey relational analysis (GRA) with an intuitionistic fuzzy 
set (IFS) multi-criteria method for developing a hybrid 
ERP software selection model. After making a survey of 
all criteria affecting the ERP software selection process 
and the software packages alternatives, the researchers 
used the IFS method for obtaining the weight of each crite-
ria, then the GRA method was used for ranking the alterna-
tives and selecting the best one. A service provider firm 
which offered transportation, warehousing, and packaging 
services was used as a case study, and the model helped 
the firm to select the most suitable ERP package. 

Vahidi et al. [14] used the fuzzy logic for developing a 
model for ERP software selection. A triangular fuzzy 
membership function was used for processing each criteri-
on to measure the efficiency level of each ERP system al-
ternative. For future work, the researchers suggested using 
a method based on Adaptive-Network-based Fuzzy Infer-
ence Systems (ANFIS) as ANFIS method used a learning 
algorithm that simulate a given training data set. 

Lien and Chan [15] developed a Fuzzy-Analytic Hier-
archy Process (F-AHP) ERP software selection model. The 
proposed model was used in two case studies: a company 
and a college for selecting the best ERP software that mate 
their needs. 

Cebeci [16] presented an approach for selecting the 
best ERP system in textile industry by using the balanced 
scorecard and Fuzzy-AHP method. The aims of this re-
search were using balanced scorecard for defining the 
business objectives and matching them with ERP packages 
capabilities, and using Fuzzy-AHP model for ranking and 
selecting the most suitable ERP software package.  

Onut and Efendigil [17] introduced a Fuzzy-AHP 
model for helping organizations in selecting ERP software 
in the presence of vagueness and with consideration to cost 
and quality criteria. The researchers combined Fuzzy 
method to the AHP model to solve the problems of ambi-
guities and vagueness accompanied by software selection 
problem. At the end of the research, a real world case study 
was solved using the proposed model and a comparison be-
tween AHP and Fuzzy-AHP solutions was conducted, and 
the results included that Fuzzy-AHP method showed more 
accurate results and flexibility in adding new ERP software 
selection criteria. 

Demirtas et al. [18] presented a two stage decision 
making model for ERP software selection process and ap-
plied the model on an urban transportation company. At 
the first stage, by using Fuzzy-AHP model, the model 
helped the company to first take the decision whether it 
would develop a new software package or it would use a 
vendor software package. If the decision was using a ven-
dor software package, then moving to the second stage, by 
using Fuzzy-Technique for Order Preference by Similarity 
to Ideal Solution (TOPSIS) model, the model helped the 
company to select the most suitable software package fit-
ting its needs and expectation.  

Kara and Cheikhrouhou [19] proposed a four steps de-
cision making methodology for selecting business man-
agement system to Small and Medium sized Enterprises. 
First the selection criteria were collected and determined 
by experts, then criteria weights were calculated using 
Fuzzy-AHP combined to TOPSIS, finally the best alterna-
tive was selected. For ensuring the methodology effective-
ness, a sensitivity analysis was conducted and the results 
demonstrated that uncertainty was reduced. 

Kilic et al. [20] used the strength of Fuzzy-AHP and 
TOPSIS multi-criteria decision making methods for devel-
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oping a three stage hybrid model for ERP system selection 
and applied the model for the Airline industry. The first 
model stage was the determination of all ERP selection 
process factors and criteria and identifying ERP software 
packages as alternatives, the second stage was using the 
Fuzzy-AHP method for obtaining weights for each deci-
sion criteria, the final model stage was using the TOPSIS 
method for ranking the alternatives and selecting the best 
one. The researchers used the proposed model for helping 
the Turkish Airlines in selecting ERP software package for 
its maintenance center and the model proved its effective-
ness and efficiency.  

Volaric et al. [21] proposed a Fuzzy AHP-TOPSIS 
model for selecting the best multimedia software for learn-
ing and teaching purposes. The Fuzzy AHP method was 
used for assigning the weight of each criterion and demon-
strating the benefit of each criterion to another, finally the 
TOPSIS method was used for ranking the multimedia 
software systems and selecting the best one.  

Efe [22] developed a hybrid model by integrating 
Fuzzy-AHP and Fuzzy-TOPSIS for ERP software selec-
tion. First the selection criteria were determined, then the 
weight of each criterion was determined using Fuzzy-AHP, 
after that Fuzzy-TOPSIS was used for choosing the most 
appropriate ERP software alternative. For ensuring the 
model effectiveness, it was applied on an electronic firm 
and the results demonstrated that the model decreased the 
uncertainty and the information loss in group decision 
making. For future work, the researcher recommended us-
ing type 2 fuzzy MCDM methods in the ERP selection 
process.  

Karsak and Ozogul [23] developed a multi-criteria de-
cision framework using on quality function deployment 
(QFD), fuzzy linear regression, and zero–one goal pro-
gramming for ERP software selection. The QFD method 
was used for determining and establishing the relationships 
between user demands and software characteristics, while 
the fuzzy linear regression method was used for assigning 
values to the ERP software characteristics, and finally the 
zero–one goal programming was used for determining the 
ERP software alternative that achieve the maximum values 
of company needs. The proposed model was applied on a 
Turkish automotive parts manufacturer to ensure its effec-
tiveness. 

3.2 Risk Assessment and Success Factors Evalu-
ation 

Je et al. [24] introduced an integrated fuzzy entropy-
weight MCDM method and applied it to evaluate and as-
sess risk of hydropower stations in the Xiangxi River. 

Shafiee [25] used Fuzzy Analytic Network Process (F-
ANP) approach, based on Chang’s extent analysis for se-
lecting the most appropriate risk mitigation strategy for 
offshore wind farms. 

Kong and Liu [26] combined Fuzzy sets with AHP for 
developing a MCDA model to evaluate success factors in 
E-commerce projects in order to help the decision makers 

to determine new opportunities for their organizations. 
3.3 Site Selection Field 

Rezaeiniya et al. [27] used Fuzzy-ANP for selecting 
the appropriate location of greenhouses in Mazandaran 
province, Iran. The application of the model ensured its ef-
ficiency in the selection process and ranking of alternatives. 

Vahidnia et al. [28] used Fuzzy-AHP in hospital site 
selection and determining the optimum site for a new hos-
pital in the Tehran urban area. 

Chou et al [29] developed a MCDM model by combin-
ing Fuzzy set theory and simple additive weighting (SAW) 
to evaluate facility locations alternatives and selecting the 
best one. 

3.4 Supplier Selection Field 
Kahraman et al. [30] proposed a Fuzzy-AHP model for 

supplier selection, the researchers determined the selection 
criteria, and then the model was used to select the most 
suitable supplier that mate the company needs.  

Ayhan [31] presented a Fuzzy-AHP model for helping 
the firms to select the best supplier according to the firm 
selection criteria, and for ensuring the model effectiveness, 
it was applies on a gear motor company for assessing its 
suppliers and selecting the best one. 

Junior et al. [32] proposed a comparative analysis of 
Fuzzy-AHP and Fuzzy-TOPSIS in solving the problem of 
supplier selection. Both methods were applied on a trans-
mission cables for motorcycles manufacturer which needed 
to select the suitable supplier among five alternatives and 
based on five selection criteria, and the results showed that 
both methods were helpful, however the Fuzzy-TOPSIS 
method was more effective in the supplier selection prob-
lem. 

Dargia et al. [33] developed a multi-criteria decision 
making framework for helping the Iranian automotive in-
dustry in supplier selection process. First, the researchers 
made a huge survey for determining the most critical factor 
in the supplier selection process by using the Nominated 
Group Technique (NGT) and the result was seven critical 
factors, a Fuzzy Analytical Network Process (F-ANP) was 
then used for determining weights of each selection factor 
and selecting the most appropriate supplier, the model was 
applied on an automotive company and it ensured its effec-
tiveness. 

Gupta et al. [34] developed an integrated Fuzzy AHP - 
Fuzzy Preference Ranking Organization Method for En-
richment Evaluations (PROMETHEE) model for service 
provider selection under conflicting criteria and uncertain-
ty environment. First, the selection criteria were deter-
mined, then Fuzzy AHP method was used for calculating 
the weight of each criterion, after that Fuzzy PROME-
THEE method was used for selecting the best alternative 
that suited the organization needs, Geometrical Analysis 
for Interactive Aid (GAIA) software was then used for 
demonstrating the model results and providing better un-
derstanding, a sensitivity analysis was conducted to ensure 
the model validity and model results ensured high sensitiv-
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ity to change in criteria weights, finally the proposed mod-
el was applied on a real world case study, a cermet compa-
ny, to select the most appropriate service provider and the 
model ensured its effectiveness.  

Haleh and Hamidi [35] used fuzzy sets to assess and 
rank the suppliers and selecting the best one. 

3.5 Outsourcing Selection Field 
Kahraman et al. [36] tried to solve the selection prob-

lem of the right ERP outsourcing alternatives under uncer-
tainty conditions using Fuzzy-AHP multi-criteria decision 
making method, the researchers applied the proposed mod-
el on an automotive firm to help it select the best ERP out-
sourcing alternative and the model proved its effectiveness. 

Chen et al [37] integrated the triangular fuzzy method 
with PROMETHEE method for selecting the most appro-
priate outsourcing partner for organizations based on seven 
selection criteria and the proposed model was applied on a 
real world case study and helped the organization to select 
the most suitable outsourcing partner among four alterna-
tives. 

3.6 Other MCDM Fields 
Yilmaz and Dagdeviren [38] integrated Fuzzy-

PROMETHEE method with zero-one goal programming to 
develop a MCDA approach for equipment selection among 
conflicting criteria. 

For handling the uncertainty problem within the quality 
management consultant selection process, Kabir and Sumi 
[39] used fuzzy set theory as it is a powerful tool for han-
dling uncertainty, therefore Fuzzy method was integrated 
with the AHP method for determining the selection criteria 
weights, then the PROMETHEE method was used for as-
sociating a preference function to each criterion and rank-
ing the alternatives. 

For extending the power of Data envelopment analysis 
(DEA) MCDM method, Wen and Li [40] introduced a 
Fuzzy-DEA method for ranking all the decision-making 
units (DMUs), for solving the fuzzy model, a hybrid algo-
rithm combined with fuzzy simulation and genetic algo-
rithm was used, finally a numerical example was used for 
illustrating how the model worked.  

Yuen and Ting [41] integrated the triangular fuzzy 
number and ranking method with PROMETHEE II method 
for developing a hybrid model used in text book selection 
and the model was applied on a case study to ensure its va-
lidity and effectiveness.  

4 Neutrosophic Logic 
In realistic decision making situations, information 

cannot always be described by unique crisp numbers, they 
may imply indeterminacy, and therefore Neutrosophy was 
originally introduced by Smarandache [42]. Neutrosophy is 

a branch of philosophy which studies the origin, nature and 
scope of neutralities and their interactions with different 
ideational spectra [42]. Neutrosophy studies the ideas and 
notions that are neutral, indeterminate, vague, unclear, am-
biguous, and incomplete [43]. Neutrosophic sets are capa-
ble of dealing with uncertainty, indeterminate and incon-
sistent information, therefore Smarandache seek to publish 
the concept of neutrosophic set in all sciences branches, 
social sciences, and humanities [43]. Smarandache refined 
the neutrosophic set to n components: 𝑡1, 𝑡2, … ; 𝑖1, 𝑖2, 
…,𝑖𝑘 ; 𝑓1, 𝑓2, …, 𝑓𝑙 , with j+k+l = n > 3 [43]. The basic 
concept of neutrosophic set is a generalization of classical 
set or crisp set [44, 45], fuzzy set [5], intuitionistic fuzzy 
set [46].  

After Smarandache’s introducing the concept of neu-
trosophic set, different sets were quickly proposed in the 
literature. Wang et al. [47] extended the concept of
neutrosophic set to single valued neutrosophic sets 
(SVNSs) and they also studied the set theoretic operators 
and various properties of SVNSs; many other sets were in-
troduced, such as neutrosophic soft set [48], weighted neu-
trosophic soft sets [49], generalized neutrosophic soft set 
[50], neutrosophic parametrized soft set [51], neutrosophic
soft expert sets [52, 53], neutrosophic soft multi-set [54],
neutrosophic bipolar set [55], neutrosophic cubic set [56, 
57], rough neutrosophic set [58, 59], interval rough neutro-
sophic set [60], interval-valued neutrosophic soft rough sets
[61, 62], etc. 

5 Applications of Neutrosophic Logic in MCDM 
Yang and Li [63] proposed new aggregation operators 

under single-valued neutrosophic environment, The re-
searchers used single-valued neutrosophic set (SVNS) 
which is an extension of traditional fuzzy set, as SVNS can 
handle incomplete and inconsistent information, then, a 
MCDM method was introduced according to the proposed 
operators and cosine similarity measures, finally the pro-
posed method was applied on an illustrative example of 
helping an investment company to select the best invest-
ment option and the results demonstrated that the proposed 
method was practical and effective. For future work, the 
researchers recommended studying new aggregation opera-
tors under neutrosophic environment. 

Jency and Arockiarani [64] proposed a model based on 
adjustable and mean potentiality approach by means of 
single valued neutrosophic level soft sets, also the notion 
of weighted single valued neutrosophic soft set was intro-
duced with an investigation to its applicability in decision 
making in an imprecise environment. 

Biswas et al. [65] proposed a method with the aim of 
dealing with impreciseness and incompleteness infor-
mation of decision maker’s assessments to achieve better 
solution to multi-criteria decision making problems. The 
researcher introduced triangular fuzzy number neutrosoph-
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ic sets by integrating triangular fuzzy numbers with single 
valued neutrosophic set. For ensuring the proposed method 
effectiveness, it was used to help a medical firm in select-
ing a medical representative. 

Chi and Liu [66] introduced a MCDM model by inte-
grating TOPSIS method with interval neutrosophic set for 
solving multi-criteria decision making problems in uncer-
tainty environment.  The proposed method was used in 
helping an investment company to select the best invest-
ment option and the results demonstrated its simplicity and 
ease of use. 

Biswas et al. [67] presented a model for solving 
MCDM problems with missing or unknown information 
about criteria weights. They used Grey Relational Analysis 
(GRA) with single-value neautrosophic for developing the 
model, finally an illustrative example was used to ensure 
model practicality and effectiveness. 

Dey et al. [68] extended the grey relational analysis 
(GRA) problems with interval neutrosophic for solving 
MCDM problems with incomplete or unknown weights of 
criteria. The researchers first developed two optimization 
models for recognizing criteria weights, then extended 
GRA was used for ranking the alternatives, finally a nu-
merical example was used to ensure the applicability of the 
method. 

Broumi et al. [69] proposed an extended TOPSIS mod-
el for solving MCDM problems, TOPSIS was integrated 
with interval neutrosophic for its great ability in handling 
inconsistent information. The extended TOPSIS model 
used interval neutrosophic for representing the values of 
the criteria, then alternatives were ranked using TOPSIS 
method. Finally an example was solved to illustrate the 
model effectiveness. 

For solving uncertain, imprecise, incomplete, and in-
consistent information in MCDM problems, Zhang and 
Wu [70] developed a two-stage method for single-valued 
neutrosophic or interval neutrosophic multi-criteria deci-
sion making. First a maximizing deviation method was in-
troduced for assigning criteria weights under interval neu-
trosophic environments, then TOPSIS was used for rank-
ing the alternatives and selecting the optimum choice. Fi-
nally the method was applied in a real world case study 
and proved its effectiveness. 

Chen and Ye [71] introduced a projection model of 
neutrosophic numbers and its application for solving the 
MCDM problem of clay-bricks selection, an actual case 
was used for applying the model and the results 
demonstrated model’s applicability and ease of use. 

Ye [72] developed a single valued neutrosophic cross-
entropy measure and its MCDM method was proposed 
based on the proposed cross entropy under single valued 
neutrosophic environment. Finally, an illustrative example 
was solved to illustrate the application of the proposed 
method. 

Pramanik and Mondal [73] introduced a MCDM 
method based on interval neutrosophic sets where the 
rating of altenatives was expressed with interval 

neutrosophic values characterized by interval truth-
membership degree, interval indeterminacy-membership 
degree, and interval falsity-membership degree. The single 
valued neutrosophic grey relational analysis method was 
extended to interval neutrosophic environment and applied 
MCDM problems. Finally, an illustrative example was 
solved to illustrate the application of the proposed method. 

Mandal and Basu [74] developed a new similarity 
measures in neutrosophic environment based on 
hypercompex number system for ranking alternatives and 
selecting the best one while solving MCDM problems. 
Finally a numerical example was introduced to ensure the 
method effectiveness. 

Mondal and Pramanik [75] introduced a MCDM 
method based on Dice and Jaccard similarity measures of 
interval rough neutrosophic set and interval neutrosophic 
mean operator and finally they applied the method on a 
laptop selection case. 

Biswas et al. [76] introduced cosine similarity measure 
between two trapezoidal fuzzy neutrosophic numbers for 
solving MCDM problems under neutrosophic environment 
and a numerical example was solved to illustrate the 
method work. 

Ma et al. [77] introduced a time series analysis 
approach integrated with interval neutrosophic sets for 
selecting trustworthy cloud service. Three numerical 
examples were used to illustrate the approach applicability 
and efficiency in selecting risk-sensitive service. 

Mondal and Pramanik [78] developed a neutrosophic 
MCDM model based on hybrid score-accuracy functions 
of single valued neutrosophic numbers for teacher 
selection in recruitment process in higher education, an 
illustrative example was introduced for demonstrating the 
model work. 

Mondal and Pramanik [79] also proposed a single 
valued neutrosophic MCDM model for selecting the best 
school for children. A numerical example was used to 
prove the model efficiency. 

Ye and Smarandache [80] introduced a refined single-
valued neutrosophic set (RSVNS) and a similarity measure 
of RSVNSs, then a MCDM method using RSVNS 
information was presented based on the similarity measure 
of RSVNSs. Finally a real case study was used for 
applying the metod to help a construction firm selecting 
the best project and the results demonstrated the method 
effectiveness. 

Mondal and Pramanik [81] introduced a rough 
neutrosophic multi-attribute decision making method based 
on grey relational analysis by extending the neutrosophic 
grey relational analysis method to rough neutrosophic grey 
relational analysis method and applying it to multi-attribute 
decision making problem. In this method, the rating of all 
alternatives was expressed with upper and lower 
approximation operator and the pair of neutrosophic sets 
which were characterized by truth-membership degree, 
indeterminacy-membership degree, and falsity-
membership degree. Finally a numerical example was used 
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to demonstrate the method applicability. 
Mondal and Pramanik [82] also proposed a rough 

neutrosophic multi-attribute decision making method based 
on rough accuracy score function. The rating of all 
alternatives was expressed with upper and lower 
approximation operator and the pair of neutrosophic sets 
which were characterized by truth-membership degree, 
indeterminacy-membership degree, and falsity-
membership degree. Finally a numerical example was used 
to ensure the method effectiveness. 

Peng et al. [83] introduced a new outranking approach 
for solving MCDM problems under neutrosophic 
environment by integrating simplified neutrosophic sets 
with ELECTRE method. Two practical examples were 
provided to ensure the practicality and effectiveness of the 
proposed approach. 

Ye [84] introduced a new MCDM method using the 
weighted correlation coefficient or the weighted cosine 
similarity measure of single-valued neutrosophic sets 
where the alternatives evaluation was made by truth-
membership degree, indeterminacy-membership degree, 
and falsity-membership degree under single-valued 
neutrosophic environment. Finally, an example was solved 
for proving the applicability of the proposed method. 

Biswas et al. [85] proposed a ranking method for 
solving MCDM problems using single-valued trapezoidal 
neutrosophic numbers (SVTrNNs), which was a special 
case of single-valued neutrosophic numbers. Finally, an
example was used for demonstrating the model efficiency. 

Conclusion 

This study demonstrated the role of fuzzy set theory and 
neutrosophic logic in the field of multi-criteria decision 
making; applications and researches of the two methods 
were presented to illustrate the improvements and 
developments made in MCDM field using those two 
methods. It is concluded that there is a weakness point in 
neutrosophic sets applications in MCDM real world case 
studies. Although there are many researchers that use 
numerical examples for applying the neutrosophic model, 
there is a shortage in real case studies usage. Also, 
neutrosophic logic should be applied more in MCDM fields 
like supplier selection, software selection, risk assessment 
and other fields, where fuzzy set theory made a noticeable 
development, to investigate its strength and weakness points. 
Therefore, there are many future works that can be done, 
such as: 
1. Apply Neutrosophic logic on different decision support
problems. 
2. Apply Neutrosophic logic on software engineering.
3. Propose new adaptive mechanism to update Neutrosoph-
ic logic. 

4. Solve time series forecasting.
5. Analyze the effect of hybridizing Neutrosophic logic
with meta-heuristics algorithms. 
6. Apply Neutrosophic logic with neural networks.
7. Design Neutrosophic logic Controller by Particle Swarm
Optimization. 
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Abstract. The concepts of neighbourly irregular neutrosophic 
graphs, neighbourly totally irregular neutrosophic graphs, highly 
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neutrosophic graphs are introduced.  A criteria for neighbourly 
irregular and highly irregular neutrosophic graphs to be 
equivalent is discussed.
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1 Introduction 

Azriel Rosenfeld [16] introduced the notion of fuzzy 
graphs in 1975 which have many applications in modeling, 
Environmental sciences, social sciences, Geography and 
Linguistics. Some remarks on fuzzy graphs are given by P. 
Bhattacharya [4]. J. N. Mordeson and C. S. Peng defined 
different operations on fuzzy graphs in his paper [10]. The 
concept of bipolar fuzzy sets was initiated by Zhang [24]. 
A bipolar fuzzy set  is an extension of the fuzzy set which 
has a pair of positive and negative membership values 
ranging in  ]1,1[  . In usual fuzzy sets, the membership 
degrees of elements range over the interval ]1,0[  . The 
membership degree expresses the degree of belongingness 
of elements to a fuzzy set. The membership degree 1 
indicates that an element completely belongs to its 
corresponding fuzzy set, and the membership degree 0 
indicates that an element does not belong to the fuzzy set. 
The membership degrees on the interval )1,0(   indicate 
the partial membership to the fuzzy set. Sometimes, the 
membership degree means the satisfaction degree of 
elements to some property or constraint corresponding to a 
fuzzy set. In Bipolar fuzzy sets membership degree range 
is enlarged from the interval  ]1,0[  to ]1,1[  . In a 
bipolar valued fuzzy set, the membership degree 0 indicate 
that elements are irrelevant to the corresponding property, 
the membership degrees on  ]1,0(  shows that elements 
some what satisfy the property, and the membership 
degrees on )0,1[ shows that elements somewhat satisfy 
the implicit counter-property. In many domains, it is 
important to be able to deal with bipolar information. It is 
noted that positive information represents what is granted 
to be possible, while negative information represents what 
is considered to be impossible. The first definition of 
bipolar fuzzy graphs was introduced by Akram [1]which 
are the extensions of fuzzy graphs. He defined different 
operations of union, intersection, complement, 

isomorphisms in his paper. Smarandache [21] introduced 
notion of neutrosophic set which is useful for dealing real 
life problems having imprecise, indeterminacy and 
inconsistent data. The theory is generalization of classical 
sets and fuzzy sets and is applied in decision making 
problems, control theory, medicines, topology and in many 
more real life problems. N. Shah and A. Hussain 
introduced the notion of soft neutrosophic graphs [17]. N. 
Shah introduced the notion of neutrosophic graphs and 
different operations like union, intersection, complement in 
his work [18]. Furthermore he defined different morphisms 
on neutrosophic graphs and proved related theorems. In the 
present paper the concepts of neighbourly irregular 
neutrosophic graphs, neighbourly totally irregular 
neutrosophic graphs, highly irregular neutrosophic graphs, 
highly totally irregular neutrosophic graphs and 
neutrosophic digraphs are introduced. Some results on 
irregularity of neutrosophic graphs are also proven. 
In section 2, some basic concepts about graphs and 
neutrosophic sets are given. Section 3 is about neutrosophic 
graphs, their different operations and irregularity of 
neutrosophic graphs. Examples along with figures are also 
given to make the ideas clear.  
2 PRILIMINARIES 
In this section, we have given some definitions about 
graphs and neutrosophic sets. These will be helpful in later 
sections. 
2.1  Definition  [22] A graph  G   consists of set of finite 
objects  V  v1,v2,v3. . . . . . . ,vn  called vertices (also called
points or nodes) and other set  E  e1,e2,e3. . . . . . .en
whose element are called edges (also called lines or arcs). 
Usually a graph is denoted as  G  V,E  . Let  G   be a
graph and  u,v  an edge of  G  . Since  u,v   is 2-
element set, we may write v,u  instead of  u,v . It is
often more convenient to represent this edge by uv  or vu  .
 2.2 Definition [15] The cardinality of  ,V   i.e., the no. 
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of vertices, is called the order of graph  G and denoted 

by .V  The cardinality of  E  , i.e.,  the number of edges,

is called the size of the graph and denoted by  E  . Let  

},....,{)( 21 nvvvGV    and },....,{)( 21 neeeGE    

be the set of vertices and edges of a graph .G   Each edge  
)(  GEek   is identified with an unordered pair  

),( ji vv   of vertices. The vertices  iv   and  jv   are called

the end vertices of  ke  . 
2.3 Definition [15] Two vertices joined with an edge are 
called adjacent vertices. 
2.4 Definition [15] [20 An edge  e   of a graph  G   is

said to be incident with a vertex  v   and vice versa if  v   is
the end vertex of  e  . Any two non-parallel edges say  e i

and  e j   are said to be adjacent if  e i   and  e j   are
incident with a vertex  v .
 2.5 Definition [15] The degree of any vertex  v   of  G
is the number of edges incident with vertex  v  . Each self-
loop is counted twice. Degree of a vertex is always a 
positive number and is denoted as  degv  . The minimum
degree and maximum degree of vertices in  )( GV   are 

denoted by  G   and  G,   respectively H
  .

2.6 Definition [15] A vertex which is not incident with 
any edge is called an isolated vertex. In other words a 
vertex with degree zero is called an isolated vertex.
2.7 Definition [15] A graph without self-loops and 
parallel edges is called a simple graph. 
2.8  Definition [15]A simple graph is said to be regular 
if all vertices of graph G are of equal degree. In other 
words if in a graph  G,    rGG   )()( i.e.,

each vertex having degree  r   then  G   is said to be 

regular of degree  r  , or simply  r  regular  .
2.9 Definition [15] A graph  ),( 111 EVG    is called a 

subgraph of  ),( EVG    if  )()( 11
  GVGV   and  

)()( 11
  GEGE   and each edge of  

1G   has the same 

end vertices in  

1G   as in  .G  

2.10 Definition [15] In a graph  ,G   a finite 
alternating sequence of vertices and edges,  
v1 ,e1 ,v2 ,e2 , . . . . . .em ,v k   starting and ending with
vertices such that each edge in the sequence is incident 

with the vertices following and preceding it, is called a 
walk. In a walk no edge appears more than once however 
a vertex may appear more than once. 
 2.11 Definition [22] In a multigraph no loop are 
allowed but more than one edge can join two vertices, 
these edges are called multiple edges or parallel edges and 
a graph is called multigraph 

.

 2.12 Definition [22] Let  ),( 111 EVG    and  

),( 222 EVG    be two graphs. A function  

21: VVf    is called Isomorphism if i)   f   is one to 
one and onto. 
ii) for all  11 },{,, EbaVba    if and only if  

2)}(),({ Ebfaf    when such a function exists, 

1G
and  

2G   are called isomorphic graphs and is written as 

.21
  GG   In other words, two graph  

1G  and  

2G   are 
said to be isomorphic to each other if there is a one to one 
correspondence between their vertices and between edges 
such that incidence relationship is preserved. 
2.13 Definition [21] A neutrosophic set     on the

universe of discourse  X   is defined as
,)(),(),(,{   xFxIxTx x  X,   where

T, I,F  : X [1,0]  0  

  )()()( xFxIxT   .3   Hence we
consider the neutrosophic set which takes the values from 
the subset of  0,1.
 2.14 Definition Let  

,)(),(),(,{   xFxIxTx }Xx   and  

,)(),(),(,{   xFxIxTx  }Xx   be two 

neutrosophic sets on universe of discourse  X  . Then  
is called neutrosophic relation on     if  

Tx,y  minTx,Ty
Ix,y  minIx, Iy

Fx,y  maxFx,Fy

for all  x,y  X.   A neutrosophic relation     on X   is
called symmetric if  ),,(),( xyTyxT      

),,(),( xyIyxI   ),(),( xyFyxF     for all  

x,y  X.
3 NEUTROSOPHIC GRAPHS AND IRREGULARI-
TY
In this section we will study some basic definitions about 
neutrosophic graphs and different types of degrees of ver-
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tices will be discussed. Irregularity of neutrosophic graphs 
and related results are also proven in this section
3.1 Definition [18] Let  ),( EVG    be a simple 

graph and  E VV   . Let  ,T  ,I :F  V
]1,0[   denote the truth-membership, indeterminacy-

membership and falsity- membership of an element  
x  V   and  FIT ,,  :   E ]1,0[   denote the
truth-membership, indeterminacy-membership and falsity- 
membership of an element  x,y  E.   By a
neutrosophic graph, we mean a 3  -
tuple ,,(  GG )   such that 

)}(),({max),(
)}(),({min),(
)}(),({min),(

yFxFyxF
yIxIyxI
yTxTyxT













for all  x,y  E.
3.2   Definition [18] Let  

1G  ),( 11 EV   and  

2G
 V2 ,E2   be two simple graphs. The union of two
neutrosophic graphs  ,,( 111  GG )1   and

,,( 222  GG )2   is denoted by  (G  ,,G
,), 21

  GGG    

  1  2 ,  1 2 ,   where the truth-
membership, indeterminacy-membership and falsity- 
membership of union are as follows 

,
  if   )}(),(max{

 if   )(
 if   )(

)(

21

12

21

21

2

1

























VVxxTxT
VVxxT
VVxxT

xT  

























  if   )}(),(max{
 if   )(
 if   )(

)(

21

12

21

21

2

1

VVxxIxI
VVxxI
VVxxI

xI

,
  if   } )(),(min{

 if   )(
 if   )(

)(

21

12

21

21

2

1

























VVxxFxF
VVxxF
VVxxF

xF

Also  

























),( if   )},(),,(max{
),( if   ),(
),( if   ),(

),(

2

12

21

21

2

1

EyxyxTyxT
EEyxyxT

EEyxyxT
yxT

























21

12

21

),( if   )},(),,(max{
),( if   ),(
),( if   ),(

),(

21

2

1

EEyxyxIyxI
EEyxyxI
EEyxyxI

yxI

























21

12

21

),( if   ))},(),,(min{
),( if   ),(
),( if   ),(

),(

11

1

1

EEyxyxFyxF
EEyxyxF
EEyxyxF

yxF

3.3 Definition [18] The intersection of two neutrosophic 
graphs  ,,( 111  GG )1   and ,,( 222  GG

)2   is denoted by  ,,(  GG )   where  

,21
  GGG

212121 ,, VVV    and the 
truth-membership, indeterminacy-membership and falsity- 
membership of intersection are as follows 

  ,    )}(),(min{)(
21

xTxTxT  

 ,)}(),(min{{)(
21

xIxIxI  

 )}(),(max{{)(
21

xFxFxF  

also 
 )},(),,(min{),(

21
yxTyxTyxT  


 )},(),,(max{),(

,)},(),,(min{),(

21

21

yxFyxFyxF

yxIyxIyxI









3.4 Definition Let  ,,(  GG    be a neutrosophic

graph. The nbhd of a vertex    in    is defined as
Nx  NTx,NIx,NFx   where  NTx
 y  V : Tx,y  minTx,Ty,
NIx
 y  V : Ix,y  minIx, Iy,NFx
 y  V : Fx,y  maxFx,Fy.

3.5 Definition Let  G  G,,       be a
neutrosophic graph. The nbhd degree of a vertex x in 
G defined by
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deg
T
x  

yNTgx

Ty,

).()(deg),()(deg
)()(

yFxyIx
xNyxNy gF

F

Ig

I 







 

3.6 Definition Let  G  G,,       be a
neutrosophic graph. The closed nbhd degree of a vertex 
in    is defined as
degx  degTx,degIx,degFx, where

 , 

).()(][deg

),()(][deg

),()(][deg

)(

)(

)(

xFyFx

xIyIx

xTyTx

xNy
F

xNy

xNy

F

I

I

T

T

























3.7 Definition Let  G  G,,     be a
neutrosophic graph. The order of neutrosophic graph 
denoted by  OG   is defined as

).()(),()(

),()(

 Where, ))(),(),(()(

xFGOxIGO

xTGO

GOGOGOGO

VxVx

Vx

FI

T

FIT























The size of a neutrosophic graph  G  G,,    is
denoted by  )(GS   and is defined as 

The size of a neutrosophic graph  G  G,,    is
denoted by  SG   and is defined as

),()(

),,()(

),,()( 

 where)),(),(),(()(

).(

).(

).(

yxFGS

yxIGS

yxTGS

GSGSGSGS

Eyx

Eyx

Eyx

F

I

T

FIT



























 3.8  Definition A neutrosophic graph ,,(  GG 
is called regular if all the vertices have the same open 
nbhd degree. 

3.9 Definition Let  ,,(  GG )   be a neutrosophic 
graph. If there is a vertex which is adjacent to vertices with 
distinct neighborhood degrees then   is called a
irregular neutrosophic graph. 

3.10 Example Let  ),( EVG    be a simple graph with 

V  x1 ,x2 ,x3   and
E  x1 ,x2 x2,,x3 ,x1 ,x3 .   A neutrosophic

graph G is given in table  1   below and
Tx i,x j  0,    Ix i,x j  0   and

Fx i,x j  1   for all
x i,x j  E  x1 ,x2,x2 ,x3,x1 ,x3  .

     

8.07.08.0
3.03.02.0
1.01.01.0
,,,

6.03.04.0
4.03.03.0
2.01.01.0

1  

313,221

321

















F
I
T

xxxxxx
F
I
T

xxx
Table

(0.1,0.3,0.4) (0.1,0.3,0.3)

(0.2,0.4,0.6)

x1 x2

x3

(0.1,0.2,0.8)

(0.1,0.3,0.8)
(0.1,0.3,.7)

Figure 1

Here  ).9.0,7.0,3.0()deg( 1 x   Similarly,  
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).7.0,6.0,2.0()deg(),1.0,7.0,3.0()deg( 32  xx

Clearly , G   is an irregular neutrosophic graph.

3.11 Definition Let  ,,(  GG )   be a 
neutrosophic graph. If there is a vertex which is adjacent 
to vertices with distinct closed neighborhood degrees, then  

  is called a totally irregular neutrosophic graph.
3.12 Example Consider a neutrosophic graph    below
with  V  x1 ,x2 ,x3 ,x4 ,x5,

       

     },,,,,
,,,,,,,,{

145431

244,33,221

xxxxxx
xxxxxxxxE 

(0.1,0.3,0.9)

x5 x1 x2

x4 x3

(0.1,0.5,0.4) (0.2,0.4,0.5)

(0.3,0.5,0.4) (0.2,0.4,0.3)

(0.1,0.2,0.7)

(0.1,0.3,0.9)

((0.1,0.4,0.7)

(0.2,0.3,0.8)

(0.2,0.3,0.5)

(0.1,0.3,0.6)

(0.2,0.2,0.6)

Figure 2

degx1  0.8,1.8,1.6.

).3.1,8.0,4.0(]deg[),5.2,1.2,9.0(]deg[
),6.1,8.1,8.0(]deg[),6.1,8.1,8.0(]deg[

54

32





xx
xx

Clearly  G   is totally irregular neutrosophic graph. 

3.13 Definition Let  ,,(  GG )   be a connected 

neutrosophic graph. If every two adjacent vertices of  
have distinct open neighborhood degrees, then    is
called neighbourly irregular neutrosophic graph         
3.14 Example Consider a neutrosophic graph  G   below 

       }.,,,,,,,{
},,,,{

144,33,221

4321

xxxxxxxxE
xxxxwithV





(0.1,0.3,0.4

x1 x2

x4 x3

(0.4,0.6,0.5) (0.3,0.5,0.6)

(0.1,0.3,0.6)

(0.2,0.4,0.3)

(0.1,0.4,0.8)

(0.1,0.2,0.8)

(0.1,0.3,0.6)

Figure 3

Here  ).8.0,01,6.0()deg( 1 x   Similarly,  

).8.0,01,6.0()deg(),01,8.0,4.0()deg( 32  xx  
),,01,8.0,4.0()deg( 4 x Clearly , G   is neighbourly

irregular neutrosophic graph.. 

3.15 Definition A connected neutrosophic graph 
,,(  GG )   is called neighbourly totally irregular 

neutrosophic graph if every two adjacent vertices of G
have distinct closed neighborhood degrees. 

3.16 Example An example of neighbourly totally irregular 
neutrosophic graph  G  is given below with   

       }.,,,,,,,{
},,,,{

144,33,221

4321

xxxxxxxxE
xxxxV





x1 x2

x4 x3

(0.2,0.4,0.4) (0.3,0.5,0.5)

(0.4,0.6,0.6) (0.6,0.8,0.8)

(0.1,0.3,0.9)
(0.1,0.4,0.8)

(0.1,0.3,0.8)

(0.1,0.5,0.8)

Figure 4

degx1   0.9,1.5,1.5, 

degx2   1.1,1.7,1.7,
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)8.1,8.1,2.1(]deg[
),9.1,9.1,3.1(]deg[

4

3





x
x

3.17 Definition A connected neutrosophic graph 
,,(  GG )  is called highly irregular neutrosophic 

graph if every vertex of  G   is adjacent to vertices with 
distinct neighborhood degrees. 
Note (i) A highly irregular neutrosophic graph may not be 
neighbourly irregular neutrosophic graph. 
3.18 Example From figure 5 below ,it can be seen that a 
highly irregular neutrosophic graph may not be 
neighbourly irregular neutrosophic graph. 

(0.4,0.6,0.5)

x4 x3 x2

x5 x1

(0.6,0.8,0.7) (0.3,0.5,0.9)

(0.2,0.4,0.6) (0.1,0.3,0.4)

(0.1,0.4,0.8)

(0.2,0.3,0.8)

(0.2,0.3,0.9)

(0.1,0.2,0.7)

(0.1,0.2,0.9)

x6

(0.1,0.2,0.9)

(0.2,0.4,0.9)

(0.2,0.3,0.8)

Figure 5

Here ,2 Vx    which is adjacent to the vertices 631 ,, xxx
with distinct nbhd degrees. But  ).deg()deg( 32 xx    

So G  is highly irregular neutrosophic graph but it is not a 
neighbourly irregular. 

ii) A neighbourly irregular neutrosophic graph may not be
highly irregular neutrosophic graph. 
3.19 Example Consider the graph below 

(0.2,0.3,0.6) (0.1,0.2,0.5)

X1 x2

(0.1,0.2,0.8)

(0.3,0.4,0.7)

(0.1,0.1,0.9)

(0.4,0.5,0.5)

(0.1,0.2,0.8)

(0.1,0.3,0.8)

x3
X4

Figure 6

Here     ,2.1,6.0,4.0deg 1 x
   ,1.1,8.0,6.0deg 2 x    2.1,6.0,4.0deg 3 x  ,  

   1.1,8.0,6.0deg 4 x
Clearly every two adjacent vertices have distinct nbhd 
degree, but  x 2   is adjacent to  x 1   and  x 3   having same
degree. Hence  G   is neighbourly irregular neutrosophic 
graph but not highly irregular neutrosophic graph. 
iii   A neighbourly irregular neutrosophic graph may not

be a neighbourly totally irregular neutrosophic graph. 
3.20  Example Consider a neutrosophic graph such that  

},,,,{ 4321 xxxxV   

)}.,(),,(),,(),,{( 14433221 xxxxxxxxE   

(0.1,0.5,0.4

x1 x2

x4 x3

(0.3,0.5,0.5) (0.3,0.5,0.5)

(0.2,0.3,0.9)

(0.2,0.4,0.6)

(0.1,0.2,0.7)

(0.2,0.3,0.8)

(0.2,0.2,0.7)

Figure 7

)9.0,1,6.0()deg(),1.1,9.0,5.0()deg(
),9.0,1,6.0()deg(),1.1,9.0,5.0()deg(

43

21





xx
xx

And 

).4.1,5.1,7.0(]deg[),6.1,4.1,8.0(]deg[
),5.1,4.1,6.0(]deg[),5.1,4.1,6.0(]deg[

43

21





xx
xx

 We see that  ]deg[]deg[ 21 xx   . Hence G  is 
neighbourly irregular neutrosophic graph but not a 
neighbourly totally irregular neutrosophic graph. 

(iv) A neighbourly totally irregular neutrosophic graph 
may not be a neighbourly irregular neutrosophic graph. 
3.21  Example Consider a neutrosophic graph  G   such 
that  

},,,{
,},,,{

14433221

4321

xxxxxxxxE
xxxxV




 . 
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(0.2,0.4,0.4

x1 x2

x4 x3

(0.4,0.6,0.6) (0.5,0.7,0.7)

(0.1,0.3,0.8)

(0.3,0.5,0.5)

(0.1,0.2,0.8)

(0.1,0.3,0.9)

(0.1,0.2,0.8)

Figure 8

).7.1,7.1,1.1(]deg[),8.1,8.1,2.1(]deg[
),6.1,6.1,0.1(]deg[),5.1,5.1,9.0(]deg[

43

21





xx
xx

But  

).1.1,1.1,7.0()deg(),1.1,1.1,7.0()deg(
),1.1,1.1,7.0()deg(),1.1,1.1,7.0()deg(

43

21





xx
xx

 Hence  )deg()deg()deg()deg( 4321 xxxx   . So 

G  is neighbourly totally irregular neutrosophic graph but 
not a neighbourly irregular neutrosophic graph. 

3.22   Proposition 
Let    be a Neutrosophic graph. Then  G   is highly
irregular neutrosophic graph and neighbourly irregular 
Neutrosophic graph iff the neighborhood degrees of all the 
vertices of  G   are distinct. 
Proof  Let  G   be a neutrosophic graph with n-vertices  

nxxxx ,...,,, 321  . Suppose  G   is both highly irregular 
and neighbourly irregular neutrosophic graph. We want to 
show the neighborhood degrees of all vertices of    are
distinct. Let  ),,()deg( iiii rqpx   ,  i  1,2, . . . ,n.

Let the adjacent vertices of  x 1   are  x2 ,x3 , . . . ,xn   with
nbhd degrees  p2 ,q2 ,r2  ,

),,(),...,,,( 333 nnn rqprqp   respectively. Since G is 

highly irregular so  p2  p, . . . , pn  ,

nqqq  ,...,32  ,  nrrr  ,...,32  . Also  

npppp  ,...,21  , nqqqq  ,...,321  ,  

1r    nrrr  ,...,32   because  G   is neighbourly 
irregular. So 

).,,(,...,),,(),,(),,( 333222111 nnn rqprqprqprqp 

Hence the neighborhood degrees of all the vertices of  
are distinct. 
Conversely, suppose that the neighborhood degrees of all 
the vertices are distinct. Now we want to show that    is
highly irregular and neighbourly irregular neutrosophic 
graph. Let  degx i  pi,qi,ri  ,  i  1,2, . . . ,n
given that npppp  ,...,21  , 

q1  q2  q3 , . . . , qn  , and 1r

nrrr  ,...,32       Every two adjacent vertices have 
distinct neighborhood degrees and to every vertex, the 
adjacent vertices have distinct neighborhood degrees, 
which completes the proof. 
3.23 Proposition 

 Let  G   be a neutrosophic graph. If  G   is neighbourly 
irregular neutrosophic graph and  ),,(  FIT   is a 
constant function, then  G   is a neighbourly totally 
irregular neutrosophic graph. 

Proof Let  G   be neighbourly irregular neutrosophic 

graph. Let  Vxx ji ,   , where ix   and x j   are adjacent

vertices with distinct neighborhood degrees  ),,( 111 rqp

and  p2 ,q2 ,r2   respectively.  Let us assume that

),,())(),(
),(())(),(),((

321 kkkxFxI
xTxFxIxT

jj

jiii








  , where  

321 ,, kkk   are constants and  ].1,0[,, 321 kkk   There-

fore,  ,)()(deg][deg 11 kpxTxx iiTiT      

degIx i  degIx i  Ix i  q1  k2 ,
degFx i  degFx i  Fx i  r1  k3 ,
degTx j  degTx j  Tx j  p2  k1 ,
degIx j  degIx j  Ix j  q2  k2 ,
degFx j  degFx j  Fx j  r2  k3 .   We
want to show  
degTxi  degTxj,degIxi  degIxj,degFxi  degFxj .
  Suppose that on contrary,  

211121

1211

0
][deg][deg

ppkkpp
kpkpxx jTiT




  Which 

is a contradiction because  p1  p2 .  Similarly
degIx i  degIx j  q1  q2  k2  k2  0  q1  q2 .

Which is a contradiction since  .21 qq    Consider 

degFxi  degFxj  r1  k3  r2  k3

 0  r1  r2
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  Which is a contradiction since  .21 rr    Therefore  G
is neighbourly totally irregular neutrosophic graph.
 3.24 Proposition 
A neutrosophic graph  G   of  G  , where  G   is a cycle 
with 3 vertices is neighbourly irregular and highly
irregular iff the truth- membership, indeterminacy-
membership and falsity- membership values of vertices 
between every pair of vertices are all distinct. 
 Proof Suppose that truth membership, indeterminacy and 
falsity membership between every pair of vertices are all 
distinct. Let  Vxxx kji ,,  and

),()()( kji xTxTxT      

),()()( kji xIxIxI      

).()()( kji xFxFxF     
Which implies that  

).()()(

),()()(

),()()(

)()()(

)()()(

)()( )(

k
xNx

j
xNx

i
xNx

k
xNx

j
xNx

i
xNx

kj
xNx

i
xNx

xTxTxT

xIxIxI

xFxFxF

kji

kji

kxNxji
































That is,  degTx i  degTx j  degTx k  .
Similarly we can show  
degIx i  degIx j  degIx k,
degFx i  degFx j  degFx k   showing that
degx i  degx j  degx k.   Hence    is
neighbourly irregular and highly irregular neutrosophic 
graph. 
Conversely, suppose that    is neighbourly irregular and
highly irregular. Let  degx i  pi,qi,ri,
i  1,2,3, . ,n  . Suppose that, truthfulness, falsity
and indeterminacy of two vertices are same. . Let  
x1 ,x2  V   with  Tx1  Tx2,
Ix1  Ix2,Fx1  Fx2  . Then
degTx1  degTx2  , degIx1  degIx2,
degFx1  degFx2.  Which implies
degx1  degx2.   Since G   is a cycle, so we have
a contradiction to the fact that G  is neighbourly irregular 
and highly irregular neutrosophic graph. Hence the truth- 
membership, indeterminacy-membership and falsity- 
membership values of vertices between every pair of 
vertices are all distinct. 

3.25 Proposition 

 Let  G   be a neutrosophic graph. If  G   is neighbourly 

totally irregular neutrosophic graph and  ),,(  FIT
is a constant function, then  G   is a neighbourly irregular 
neutrosophic graph. 
 Proof We suppose  G   is neighbourly totally irregular 
neutrosophic graph. Then by definition, the closed 
neighborhood degree of every two adjacent are distinct. 

Let  Vxx ji ,  , where  ix   and  x j   are adjacent

vertices with distinct degrees  ),,( 111 rqp   and  

),,( 222 rqp   respectively. Let us assume that  

),,())(),(
),(())(),(),((

321 kkkxFxI
xTxFxIxT

jj

jiii








 , 

where  321 ,, kkk   are constants and  ]1,0[,, 321 kkk   

and  ]deg[ ix    ]deg[ jx  . We want to show  

).deg()deg( ji xx    Since  ]deg[ ix degx j,   so

],[deg][deg jTiT xx     ],[deg][deg jIiI xx     

][deg][deg jFiF xx   . Now  

211121

1211

0
][deg][deg

ppkkpp
kpkpxx jTiT





Similarly  

.
0][deg][deg

1

2221

qq
kkqqxx jIiI





213321

3231

0
][deg][deg

rrkkrr
krkrxx jFiF




 . 

Hence the degrees of  Vxx ji ,   are distinct. This is 

true for every pair of adjacent vertices in G  . Therefore 
G   is neighbourly irregular neutrosophic graph. 

Conclusion 
Neutrosophic sets are the generalization of the classical 
sets and of the fuzzy sets, and have many applications in 
real world problems when the data is imprecise, 
indeterminant or inconsistent. In this paper, we initiated the 
idea of the irregular neutrosophic graphs, and discussed 
different properties of such graphs. We have seen how 
neighbourly irregular and highly irregular neutrosophic 
graphs are equivalent. In future, we will extend our work to 
other graph theory areas by using neutrosophic graphs. 
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Abstract The goal of an Image Retrieval System is to 
retrieve images that are relevant to the user's request from a 
large image collection. In this paper, we present texture
features for images embedded in the neutrosophic domain. 
The aim is to extract a set of features to represent the 
content of each image in the training database to be used for 
the purpose of retrieving images from the database similar 
to the image under consideration. 

Keywords: Content-Based Image Retrieval (CBIR), Text-
based Image Retrieval (TBIR), Neutrosophic Domain, 
Neutrosophic Entropy, Neutrosophic Contrast, 
Neutrosophic Energy, Neutrosophic Homogeneity. 

1 Introduction 

     An Image Retrieval System is a computer system for 
searching and retrieving images from a large database of 
digital images. The traditional way to image retrieval is the 
text-based image retrieval (TBIR) which proposed late 
1970s [17, 43]. Such techniques commence by annotating 
the images by text and then use text-based database 
management systems to retrieve images [8]. 
Although there are several progresses have been made to 
TBIR techniques. Such as data modeling. 
Multidimensional indexing, and query evaluation, there 
are some limitations when using such techniques. For 
instance, the problem of annotating images in large 
volumes of databases and that only one language is valid 
for image retrieval. Furthermore, the problems due to the 
subjectivity of human perception arising from the 
responsibility of the end-user; as well as the queries that 
cannot be described at all, but tap into the visual features 
of the image [2, 3, 4, 5]. 
Later on during the 1990's, another way was invented to 
retrieve images, which is Content-based Image Retrieval 
(CBIR) technique. The new techniques came up to deal 

with the rapid increase of using digital images databases 
on the internet. Used for retrieving, managing and 
navigating large digital images databases, the CBIR 
techniques index the images by their own visual content, 
such as color and texture, instead of annotated the image 
manually by text-based key words [11, 16, 22, 23, 36]. 
The Neutrosophic logic which proposed by Samarandache 
in [40] is a generalization of fuzzy sets which introduced 
by Zada at 1965 [45], The fundamental concepts of 
neutrosophic set, introduced by Samarandache in [41, 42] 
and Salama etl in [1, 14, 26, 27, 28, 29, 30, 31, 32, 33, 34, 
35].  

2 Image Retrieval Technique

2.1 Content-Based Image Retrieval (CBIR) 

     The Content-Based Image Retrieval was used to 
depict the experiments of automatic retrieval images from 
a database, that depended on colors and shapes. After that 
it used to retrieve images from a large collection of 
database based on syntactical image features. CBIR used 
some techniques, tools and algorithms which taken from 
some fields such as statistics, pattern recognition, signal 
processing and computer vision. In CBIR, the images 
indexed by the description of the visual content of the 
images. Most of the CBIR systems are concerned with the 
approximate queries, because it is aim to find the images 
visually similar to the target image. The target of CBIR 
system is to duplicate the human perception of image 
similarity as possible as it can. 
Feature Extraction is the basic of CBIR. Features may 
contain both text-based features (key, words, annotations) 
and visual features (color, texture, shape, faces). The goal 
of feature extraction is to create high-level data (pixel 
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values). The visual features ordered in three levels: low 
level features (primitive), middle level features (logical) 
and high level features (abstract). All recently system were 
depended on low level features (color, shape). But now 
both mid-level and high-level image representations are in 
demand. The efficiency of a CBIR system depends on 
extracted features [6]. 
The stages of the CBIR process are: 

1- Image acquisition: to acquire a digital image [9]. 
Image database: it consists of the collection of n 
number of images which depends on the user 
range and choice [9]. 

2- Image processing: it used to improve the image by 
increased the chances for success of the other pro-
cesses. At first, the image processed to extract the 
features that depict its contents. This process con-
tains filtering, normalization, segmentation, and 
object identification. For example, the process of 
image segmentation is used to divide an image in-
to multiple parts and its output is a set of signifi-
cant regions and objects [9]. 

3- Feature extraction: the features such as shape, tex-
ture, color are used to depict the content of the im-
age. The features can be characterized as low-level 
and high-level features. The visual information in 
this step extracted from the image and saved as 
feature vector in a features database. The image 
description for each pixel is found in the form of 
feature vector by using the feature extraction. 
These feature vectors are used to make a compare 
between query with other images and retrieval [9]. 

4- Similarity matching: for each image, its infor-
mation stored in its feature vectors for computa-
tion process and these feature vectors are matched 
with the feature vectors of query image to helps in 
similarity measure. This step contains the match-
ing of the above stated features to have that is vis-
ually similar with the use of similarity measure 
method called as Distance method. There are an-
other distance methods such as Euclidean distance, 
City block distance, Canberra distance [9].  

5- Resultant retrieval images: this process searched 
for the prior maintained information to find the 
matched images from database. Its output will be 
the similar images with the same or very closest 
features as that of the query image [18]. 

6- User interface and feedback which controls the 
display of the outcomes, their ranking and the type 
of user interaction with possibility of refining the 
search by some automatic or manual preferences 
scheme [24]. 

2.1.1 Color Features for Image Retrieval 

      Color is widely used low-level visual features and it 
is invariant to image size and orientation [9]. 

 Color Histogram: In CBIR, one of the most popu-
lar features is the color histogram in HSV color
space, which used in MPEG-7 descriptor. At first,
the images converted to the HSV color space, and
uniformly quantizing H, S, and V components in-
to 16, 2, and 2 regions respectively generates the
64-bit color histogram [44].

 Color moments: To form a 9-dimensional feature
vector, the mean µ, standard deviation σ, and
skew g are extracted from the R, G, B color spac-
es. The best known space color and commonly
used for visualization is the RGB space color. It
can be depict as a cube where the horizontal x-
axis as red values increasing to the left, y-axis as
blue increasing to the lower right and the vertical
z-axis as green increasing towards the top [21].

2.1.2 Texture Feature for Image Retrieval 

      In the texture feature extraction, using the gray level 
co-occurrence matrix for the query image and the first 
image in the database to extract the texture feature vector 
[19]. The co-occurrence matrix representation is a 
technique used to give the intensity values and the 
distribution of the intensities. The features which selected 
for retrieving texture properties are Energy, Entropy, 
Inverse difference, Moment of inertia, Mean, Variance, 
Skewness, Distribution uniformity, Local stationary and 
Homogeneity [15].

2.1.3 Shape Features for Image Retrieval 

      The shape defined as the characteristic surface 
configuration of an object: an outline or contour. The 
object can be distinguished from its surroundings by its 
outline [9].  
We can divide the shape representations into two 
categories: 

1- Boundary-based shape representation: it uses only 
the outer boundary of the shape. It works by de-
scribing the considered region by using its ex-
ternal characteristics. For example, the pixels 
along the object boundary [39]. 

2- Region-based shape representation: it uses the en-
tire shape region. It works by describing the 
considered region using its internal characteris-
tics. For example, the pixels which the region 
contained [39]. 

3 Images in the Neutrosophic Domain with 
Hesitancy degree 

      The image in the neutrosophic domain is 
considered as an array of neutrosophic singletons [25]. 
Let U be a universe of discourse and W is a set in U 
which composed of bright pixels. A neutrosophic images 
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 is characterized by three sub sets T, I, and F. which 
can be defined as T is the degree of membership, I is the 
degree of indeterminacy, and F is the degree of non-
membership. In the image, a pixel P is described as 
P(T,I,F) which belongs to W by it is t% is true in the 
bright pixel, i% is the indeterminate and f% is false 
where t varies in T, i varies in I, and f varies in F. In the 
image domain, the pixel p(i,j) is transformed to 

. Where 
belongs to white set,  belongs to indeterminate set 
and  belongs to non-white set. 
Which can be defined as [7]: 
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Where ),( jig  can be defined as the local mean value of 
the pixels of window size, and  can be defined as 
the homogeneity value of T at (i,j), which described by the 
absolute value of difference between intensity ),( jig
and its local mean value . 
The second transformation for 

Where  in [25]. 

4 Texture features in neutrosophic domain 

4.1 Neutrosophic Entropy 

     Shannons Entropy provides an absolute limit on the 
best possible average length of lossless encoding or 
compression of an information source. 
Generally, you need  bits to represent a variable 
that can take one of n values if n is a power of 2. If these 
values are equally probable, the entropy is equal to the 
number of bits equality between number of bits and 
shannons holds only while all outcomes are equally 
probable. If one of the events is more probable than others, 
observations of that event is less informative.  
Conversely, rare events provide more information when 
observed. Since observation of less probable events occurs 
more rarely, the net effect is that the entropy received from 
non-uniformly distributed data is than . Entropy is 
zero when one outcome is certain. Shannon entropy 
quantifies all these considerations exactly quantifies all 
these considerations exactly when a probability 

distribution of the source is known. Entropy only takes 
into account the probability of observing a specific event, 
so  the information which encapsulates is information 
about the underlying probability distribution, not the 
meaning of the events themselves [37].     
Entropy is defined as [12]:

  i j jijiPEntropy ),log(),(

Although the Neutrosophic Set Entropy was defined in 
one dimension, presented in [10], we will define it in 
two dimension to be as follows:
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where P contains the histogram counts. 
Because, we used the interval between 0 and 
1, may have negative values. 
So, we use the absolute of 

4.2 Neutrosophic Contrast 

   Contrast is the difference in luminance or color 
that makes an object distinguishable. In visual 
perception of the real world, contrast is determined by 
the difference in the color and brightness of the object 
and other objects within the same field of view. The 
human visual system is more sensitive to contrast than 
absolute luminance. The maximum contrast of an 
image is the contrast ratio or dynamic range. 
It is the measure of the intensity contrast between a 
pixel and its neighbor over the whole image, it can be 
defined as [38]:
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We will define the Neutrosophic set Contrast to be as fol-
lows: 
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4.3 Neutrosophic Energy 

    It is the sum of squared elements. Which defined as 
[13]: 
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We will define the Neutrosophic set Energy to be as fol-
lows: 
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4.4 Neutrosophic Homogeneity 

     Homogeneity describe the properties of a data set, or 
several datasets. Homogeneity can be studied to several 
degrees of complexity. For example, considerations of 
homoscedasticity examine how much the variability of 
data-values changes throughout a dataset. However, 
questions of homogeneity apply to all aspects of  the 
statistical distributions, including the location parameter. 
Homogeneity relates to the validity of the often convenient 
assumption that the statistical properties of any one part of 
an overall dataset are the same as any other part. In meta-
analysis, which combines the data from several studies, 
homogeneity measures the difference or similarities 
between the several studies. 
That is a value which measures the closeness of the 
distribution of elements. Which defined as [20]: 





i j ji

jip
yHomogeneit

1

),(

We will define the Neutrosophic set Homogeneity to be as 
follows: 
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Recently, the Euclidean distance is calculated between the 
query image and the first image in the database and stored 
in an array. This process is repeated for the remaining 
images in the database followed by storing their values 
respectively. The array is stored now in ascending order 
and displayed the first 8 closest matches. 

5. Conclusion and Future Work

    In this paper, we introduced a survey of the Text-
Based Image Retrieval (TBIR) and the Content-Based 
Image Retrieval (CBIR). We also introduced the image in 
neutrosophic domain and the texture feature in 
neutrosophic domain. In the future, we plan to introduce 
some similarity measurement which may be used to 
determine the distance between the image under 
consideration and each image in the database, using the 
features we introduced in this paper. Hence, the images 
similar to the image under consideration can be retrieved. 
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Abstract: In this paper, we develop a neutrosophic optimi-

zation (NSO) approach for optimizing the design of plane 

truss structure with single objective subject to a specified set 

of constraints. In this optimum design formulation, the ob-

jective functions are the weight of the truss and the deflec-

tion of loaded joint; the design variables are the cross-

sections of the truss members; the constraints are the stress-

es in members. A classical truss optimization example is 

presented to demonstrate the efficiency of the neutrosophic

optimization approach. The test problem includes a two-bar 

planar truss subjected to a single load condition. This single-

objective structural optimization model is solved by fuzzy 

and intuitionistic fuzzy optimization approach as well as 

neutrosophic optimization approach. A numerical example 

is given to illustrate our NSO approach. The result shows 

that the NSO approach is very efficient in finding the best  

optimal solutions. 

Keywords: Neutrosophic Set, Single Valued Neutrosophic Set, Neutrosophic Optimization, Non-linear Membership Function, 

Structural Optimization.

1 Introduction 

In the field of civil engineering nonlinear structural 
design optimizations are of great importance. So the 
description of structural geometry and mechanical 
properties like stiffness are required for a structural system. 
However the system description and system inputs may not 
be exact due to human errors or some unexpected si-
tuations. At this juncture fuzzy set theory provides a 
method which deals with ambiguous situations like vague 
parameters, non-exact objective and constraint. In 
structural engineering design problems, the input data and 
parameters are often fuzzy/imprecise with nonlinear 
characteristics that necessitate the development of fuzzy 
optimum structural design method. Fuzzy set (FS) theory 
has long been introduced to handle inexact and imprecise 
data by Zadeh [2], Later on Bellman and Zadeh [4] used 
the fuzzy set theory to the decision making problem. The 
fuzzy set theory also found application in structural design. 
Several researchers like Wang et al. [8] first applied α-cut 
method to structural designs where the non-linear problems 
were solved with various design levels α, and then a 
sequence of solutions were obtained by setting different 
level-cut value of α. Rao [3] applied the same α-cut 
method to design a four–bar mechanism for function 
generating problem. Structural optimization with fuzzy 

parameters was developed by Yeh et al. [9]. Xu [10] used 
two-phase method for fuzzy optimization of structures. 
Shih et al. [5] used level-cut approach of the first and 

second kind for structural design optimization problems 
with fuzzy resources. Shih et al. [6] developed an 
alternative α-level-cuts methods for optimum structural 
design with fuzzy resources. Dey et al. [11] used 
generalized fuzzy number in context of a structural design. 
Dey et al used basic t-norm based fuzzy optimization tech-

nique for optimization of structure. Dey et al. [13] 
developed parameterized t-norm based fuzzy optimization 
method for optimum structural design. Also, Dey et.al [14] 
Optimized shape design of structural model with imprecise 
coefficient by parametric geometric programming.   

In such extension, Atanassov [1] introduced Intuition-

istic fuzzy set (IFS) which is one of the generalizations of 
fuzzy set theory and is characterized by a membership 
function, a non- membership function and a hesitancy 
function. In fuzzy sets the degree of acceptance is only 
considered but IFS is characterized by a membership func-
tion and a non-membership function so that the sum of 

both values is less than one.  A transportation model was 
solved by Jana et al.[15]using multi-objective intuitionistic 
fuzzy linear programming. Dey et al. [12] solved two bar 
truss non-linear problem by using intuitionistic fuzzy op-
timization problem. Dey et al. [16] used intuitionistic fuzzy 
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optimization technique for multi objective optimum struc-
tural design. Intuitionistic fuzzy sets consider both truth 
membership and falsity membership. Intuitionistic fuzzy 
sets can only handle incomplete information not the inde-
terminate information and inconsistent information. 

In neutrosophic sets indeterminacy is quantified 

explicitly and truth membership, indeterminacy 
membership and falsity membership are independent. 
Neutrosophic theory was introduced by Smarandache [7]. 
The motivation of the present study is to give 
computational algorithm for solving multi-objective 
structural problem by single valued neutrosophic 

optimization approach. Neutrosophic optimization 
technique is very rare in application to structural 
optimization. We also aim to study the impact of truth 
membership, indeterminacy membership and falsity 
membership function in such optimization process. The 
results are compared numerically both in fuzzy 

optimization technique, intuitionistic fuzzy optimization 
technique and neutrosophic optimization technique. From 
our numerical result, it is clear that neutrosophic 
optimization technique provides better results than fuzzy 
optimization and intuitionistic fuzzy optimization.  

. 

2 Single-objective structural model 

In sizing optimization problems,the aim is to minimize 
single objective function,usually the weight of the structure 
under certain behavioural constraints on constraint and 
displacement. The design variables are most frequently 
chosen to be dimensions of the cross sectional areas of the 

members of the structures. Due to fabrications limitations 
the design variables are not continuous but discrete for 
belongingness of cross-sections to a certain set. A discrete 
structural optimization problem can be formulated in the 
following form 

 Minimize WT A

  0, 1,2,.........,isubject to A i m    

, 1,2,...........,d
jA R j n 

where  WT A represents objective function,  i A is the 

behavioural constraints, m and n are the number of 

constraints and design variables respectively. A given set 

of discrete value is expressed by 
dR and in this paper 

objective function is taken as  
1

m

i i ii
WT A l A


 and 

constraint are chosen to be stress of structures as follows 

 i iA   with allowable tolerance

0

i for 1,2,.........,i m where i and il are weight of unit 

volume and length of 
thi element respectively, m  is the 

number of structural element, i  and 
0

i  are the 

thi stress ,allowable stress respectively. 

3 Mathematical preliminaries 

3.1 Fuzzy set 

Let X be a fixed set. A fuzzy set A  set of X  is an ob-

ject having the form    , :AA x T x x X  where the 

function  : 0,1AT X   defined the truth membership of 

the element x X to the set A . 

3.2 Intuitionistic fuzzy set 

Let a set X be fixed. An intuitionistic fuzzy set or IFS 
iA in X  is an object of the form 

    , ,i

A AA X T x F x x X     where 

 : 0,1AT X  and  : 0,1AF X 

define the truth membership and falsity membership re-
spectively, for every element of x X 0 1A AT F   . 

3.3 Neutrosophic set 

Let a set X be a space of points (objects) and x X .A 

neutrosophic set nA in X is defined by a truth membership 

function  AT x , an indeterminacy-membership function 

 AI x and a falsity membership function  AF x ,and de-

noted by       , , ,n

A A AA x T x I x F x x X    . 

 AT x
 

 AI x and  AF x are real standard or non-standard 
subsets of ]0 ,1 [ 

.That is 

  : ]0 ,1 [ ,AT x X     : ]0 ,1 [ ,AI x X    and 

  : ]0 ,1 [ ,AF x X   .There is no restriction on the sum of 

 ,AT x  AI x and

 AF x so      0 sup sup sup 3A A AT x I x F x     . 

3.4 Single valued neutrosophic set 

Let a set X be the universe of discourse. A single val-

ued neutrosophic set nA   over X is an object having the 

form       , , ,n

A A AA x T x I x F x x X    where 

 : 0,1 ,AT X   : 0,1 ,AI X  and  : 0,1AF X  with 

     0 3A A AT x I x F x     for all x X .

3.5  Complement of neutrosophic Set 

Complement of a single valued neutrosophic set A is 

denoted by  c A and  is defined by 
     ,Ac A

T x F x

     1 ,Ac A
I x F x 

     Ac A
F x T x .
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3.6  Union of neutrosophic sets 

The union of two single valued neutrosophic sets 
A and B is a single valued neutrosophic set C , written as 
C A B  ,whose truth membership, indeterminacy-
membership and falsity-membership functions are given 
by 

        max , ,A Bc A
T x T x T x

        max , ,A Bc A
I x I x I x

        min ,A Bc A
F x F x F x for all x X . 

3.7 Intersection of neutrosophic sets 

The intersection of two single valued neutrosophic sets 

A and B is a single valued neutrosophic set C  , written as 

C A B  ,whose truth membership, indeterminacy-

membership and falsity-membership functions are given 

by  

        min , ,A Bc A
T x T x T x

        min , ,A Bc A
I x I x I x

        max ,A Bc A
F x F x F x for all x X . 

4 Mathematical analyses 

4.1 Neutrosophic optimization technique to solve 
minimization type Single-Objective  

  Let a nonlinear single-objective optimization problem 
be 

 Minimize f x     (2) 

Such that 

  1,2,.............,j jg x b j m    

0x   

Usually constraints goals are considered as fixed quanti-

ty .But in real life problem ,the constraint goal cannot be 

always exact. So we can consider the constraint goal for 

less than type constraints at least jb  and it may possible to 

extend to 0
j jb b .This fact seems to take the constraint 

goal as a neutrosophic fuzzy set and which will be more 

realistic descriptions than others. Then the NLP becomes 

NSO problem with neutrosophic resources, which can be 

described as follows 

 Minimize f x        (3) 

Such that 

  1,2,.............,n

j jg x b j m 

0x   

To solve the NSO (3), we are presenting a solution proce-
dure for single-objective NSO problem (3) as follows 

Step-1: Following warner’s approach solve the single ob-

jective non-linear programming problem without tolerance 

in constraints   . j ji e g x b , with tolerance of ac-

ceptance in constraints (i.e   0

j j jg x b b  ) by appropriate 

non-linear programming technique 

Here they are  
Sub-problem-1 

 Minimize f x    (4) 

Such that 

  1,2,.............,j jg x b j m   

0x   

Sub-problem-2 

 Minimize f x    (5) 

Such that 

  0 , 1,2,.............,j j jg x b b j m  

0x   

We may get optimal solution    * 1 * 1,x x f x f x  and 

   * 1 * 1,x x f x f x 

Step-2: From the result of step 1 we now find the lower 

bound and upper bound of objective functions. 

If
     

, ,T I F

f x f x f x
U U U  be the upper bounds of truth, indeter-

minacy , falsity function for the objective respectively 

and
     

, ,T I F

f x f x f x
L L L be the lower bound of truth, indetermi-

nacy, falsity membership functions of objective respective-

ly. then 

                , 0F T F T T T

f x f x f x f x f x f x f x f x
U U L L where U L      

                , 0F T F T T T

f x f x f x f x f x f x f x f x
U U L L where U L      

                , 0I T I T T T

f x f x f x f x f x f x f x f x
L L U L where U L      

Step-3:  In this step we calculate membership for truth, in-

determinacy and falsity  membership function of objective 

as follows 

    

   

   

   
     

   

1

1 exp

0

f x

T

f x

T

f x T T

f x f xT T

f x f x

T

f x

T f x

if f x L

U f x
if L f x U

U L

if f x U





 

     

      
     



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    

   

   

   
     

   

1

exp

0

f x

I

f x

I

f x I I

f x f xI I

f x f x

I

f x

I f x

if f x L

U f x
if L f x U

U L

if f x U



 

    

   
   




    

   

 
   

       

   

0

1 1
tanh

2 2 2

1

f x

F

f x

F F

f x f x F F

f x f x f x

F

f x

F f x

if f x L

U L
f x if L f x U

if f x U





 

     

      
     




where ,  are non-zero parameters prescribed by the deci-

sion maker. 

Step-4:  In this step using exponential and hyperbolic 
membership function we calculate truth , indeterminacy 
and falsity membership function for constraints as follows 

    

 

   

   

 

 

0

0

1

1 exp

0

j

j

j j

jg x

j j

T

jg x

j j j jT T

g x g x

j j j

T g x

if g x b

U g x
if b g x b b

U L

if g x b b





 


            
     


 

    

 

    

 

   

   

1

exp

0

j

j

j

j

j

jg x

j j

j jg x

j j j g x

g x

j j g x

I g x

if g x b

b g x
if b g x b

if g x b










 

   
  

    
  

 
  


    

   

 
 

     

 

0

0

0

0

21 1
tanh

2 2 2

1

j

j

j

j j

jg x

j j g x

j j g x

j j j j jg x g x

j j j

F g x

if g x b

b b
g x if b g x b b

if g x b b




 



  

              

     


 


where ,  are non-zero parameters prescribed by the deci-

sion maker and for 
   

01,2,....., 0 ,
j j

jg x g x
j m b    .  

Step-5:  Now using NSO for single objective optimization 

technique the optimization problem (2) can be formulated 
as 

 Maximize     (6) 

Such that 

    ;
f x

T x     ;
jgT x   

 
  ;

f x
I x     ;

jgI x 

 
  ;

f x
F x     ;

jgF x 

3;      ; ;      

    , , 0,1     

where 

            min ,n
j

jf x g xD
T x T f x T g x  

for 1,2,...,j m

            min ,n
j

jf x g xD
I x I f x I g x  

for 1,2,...,j m    and 

            min ,n
j

jf x g xD
F x F f x F g x    for 

1,2,...,j m

are the truth ,indeterminacy and falsity membership func-

tion of decision set    
1

m
n n n

j

j

D f x g x


 . Now if non-

linear membership be considered the above problem (6) 

can be reduced to following crisp linear programming 

problem 

 Maximize       (7) 

Such that 

 
    

 
;

T T

f x f x T

f x

U L
f x U




 

     
;T

f x f x
f x U  b

 
 

     
;

2

T T

f x f x f x

f x

U L
f x





 
   

 
0

0 ;
j

j j j

b
g x b b


    

     
0 ;

j j
j jg x g x

g x b     

 
 

 
02

;
2

j
j j g x

j

g x

b b
g x





 
 

3;    

; ;    
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     , , 0,1    

where  ln 1 ;    4;   

    
6

;
f x F F

f x f x
U L

 


   0

6
, 1,2,........,

jg x

j j

for j m
b




 


ln ; 

 1tanh 2 1 .     

This crisp nonlinear programming problem can be solved 

by appropriate mathematical algorithm. 

5. Solution of Single-objective Structural
Optimization Problem (SOSOP) by Neutrosophic 
Optimization Technique 

To solve the SOSOP (1), step 1 of 4 is used and we will 

get optimum solutions of two sub problem as 
1A  and 

2A .After that according to step 2 we find upper and lower 

bound of  membership function of objective function as 

     , ,T I F
WT A WT A WT A

U U U and 
     

, ,T I F

WT A WT A WT A
U U U  where 

             1 2 1 2max , , min , ,T T

WT A WT A
U WT A WT A L WT A WT A 

 
                , 0F T F T T T

WT A WT A WT A WT A WT A WT A WT A WT A
U U L L where U L      

                , 0I T I T T T

WT A WT A WT A WT A WT A WT A WT A WT A
L L U L where U L      

Let the  non-linear membership function for objective 

function  WT A  be  

    
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where ,  are non-zero parameters prescribed by the deci-

sion maker and for 
   

01,2,....., 0 ,
i i

iA A
j m

 
    

then  neutrosophic optimization problem can be formulated 

as  

 Max      (8) 

 such that 

     ;
WT A

T WT A        ;
i
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 3; , ;            

 , , 0,1   

The above problem can be reduced to following crisp line-
ar programming problem, for non-linear membership as 

 Maximize      (9) 

such that
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where 
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 
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6

;
A F F
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and
U L



 

 


 

This crisp nonlinear programming problem can be solved 

by appropriate mathematical algorithm. 

6 Numerical illustration 

A well-known two-bar [17] planar truss structure is 

considered. The design objective is to minimize weight of 
the structural  1 2, , BWT A A y of a statistically loaded two-
bar planar truss subjected to stress  1 2, ,i BA A y con-
straints on each of the truss members 1,2i  . 

Figure 1. Design of the two-bar planar truss 

The multi-objective optimization problem can be stated as 
follows  

    22 2 2

1 2 1 2, , B B B B BMinimize WT A A y A x l y A x y     (10) 

Such that 

 
 

22

AB 1 2

1

, , ;
B B T
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P x l y
A A y

lA
 

 
      

 
2 2

BC 1 2

2

, , ;
B B C

B BC

P x y
A A y

lA
 


      

       0.5 1.5By   

1 20, 0;A A 

where P   nodal load ;   volume density ; l  length 

of AC ;
Bx   perpendicular distance from AC to point B .

1A  Cross section of bar- AB ; 2A Cross section of bar-

BC .  T   maximum allowable tensile stress , 

 C  maximum allowable compressive stress 

and By y -co-ordinate of node B . 

Input data for crisp model (10) is in table 1. 
Solution : According to step 2 of 4,we find upper and 
lower bound of  membership function of objective function 
as  

     
, ,T I F

WT A WT A WT A
U U U

and 
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Now using the bounds we calculate the membership 

functions for objective as follows 
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 Similarly the membership functions for tensile stress are  
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and the membership functions for compressive stress con-
straint are 
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where     . 

Now , using above mentioned  truth, indeterminacy and 

falsity membership function NLP (7) can be solved by 

NSO technique for different values of , ,
T CWT     and 

, ,
T CWT     . The optimum solution of SOSOP(10) is 

given in table (2) and the solution is compared with fuzzy 

and intuitionistic fuzzy optimization technique.

Table 1: Input data for crisp model (10) 

Applied 
load

 P KN

Volume density

 3/KN m

Length 

 l m

Maximum allowable 

tensile stress 

T    Mpa

Maximum allowable 

compressive stress 

C    Mpa

Distance of 

Bx from AC   m

100 7.7 2 130 with tolerance 20 90 with tolerance 10 1 

Table 2: Comparison of Optimal solution of SOSOP (10) based on different methods 

Methods  2

1A m  2

2A m   1 2,WT A A KN  By m

Fuzzy single-objective non-linear programming (FSONLP) 

with non-linear membership functions 
.5883491 .7183381 14.23932 1.013955 

Intuitionistic fuzzy single-objective nonlinear programming (IFSONLP) 

with non-linear membership functions 1 2 30.8, 16, 8     .6064095 .6053373 13.59182 .5211994 

Neutosophic optimization(NSO) with non-linear membership functions 

1 2 30.8, 16, 8     1 2 30.66506, 8, 4     .5451860 .677883 13.24173 .7900455 
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Here we get best solutions for the different tolerance 1 2, 
 

and 3  for indeterminacy exponential membership 

function of objective functions for this structural 

optimization problem. From the table 2, it shows that NSO 

technique gives better Pareto optimal result in the 

perspective of Structural Optimization. 

7 Conclusions 

The main objective of this work is to illustrate how 
neutrosophic optimization technique using non-linear 
membership function can be utilized to solve a nonlinear 
structural problem. The concept of neutrosophic 
optimization technique allows one to define a degree of 
truth membership, which is not a complement of degree of 
falsity; but rather they are independent with degree of 
indeterminacy. The numerical illustration shows the 
superiority of neutrosophic optimization over fuzzy 
optimization as well as intuitionistic fuzzy optimization. 
The results of this study may lead to the development of 
effective neutrosophic technique for solving other model of 
nonlinear programming problem in other engineering field.  
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Abstract:
In Ecuador, specifically in the Yaguachi Canton, there is an 
enormous potential in the rice production, which unfortunately is 
not being well used and driven by marketing strategies. In this 
work, marketing strategies were developed that help to sustain 
the commercial activity of rice in Yaguachi Canton and its 
surroundings. 

The proposed strategies were analyzed and prioritized using
SVN and Euclidean distance for the treatment of neutralities. 
The paper ends with conclusion and future work proposal for 
the application of neutrosophy to new areas of  marketing. 

Keywords: rice, marketing,  neutrosophy, SVN numbers.

1. INTRODUCCION
1.1 Antecedentes:  

Cuando escuchamos la palabra Marketing, nuestro 
posicionamiento cognoscitivo nos enrumba a detallar 
imágenes que en el mundo actual están presentes en toda 
gestión de oferta y demanda, nos dejamos llevar por la 
fantasía de la publicidad y nos dejamos envolver por los 
curiosos y entretenidos videos que recrean nuestra decisión 
de compra, nuestra mente se ocupa casi en su totalidad en 
productos  de áreas específicas de la suntuosidad, diversión, 
mercado del entretenimiento entre otros; pero muy poco 
relacionamos productos de primera necesidad (tales como 
arroz, azúcar, harina etc.) con estrategias de Marketing. En 
Ecuador, específicamente en el Cantón Yaguachi existe un 

enorme potencial en la Industria de la Produccion-
Comercializacion del arroz, que desafortunadamente no 
está siendo bien aprovechada y enrumbada por estrategias 
de la Mezcla del Marketing  que le den sitial necesario, 
para que esta Industria siga creciendo y contribuyendo a 
las economías sostenibles y al impacto que ejercen en lo 
laboral ofreciendo empleo en todas las áreas que engloban 
las actividades del agro-comercio en el país. 

Es por esto que en este presente estudio se 
desarrollaran estrategias de marketing que ayuden a 
sostener la actividad comercial del arroz proveniente de la 
zona geográfica de Yaguachi y sus alrededores, 
planteándonos objetivos alcanzables y justificando el 
accionar de los modelos conceptuales que sostengan las 
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estrategias a desarrollarse, concluyendo con una propuesta 
enriquecedora en torno a la nueva forma de manejar la 
competitividad, diferenciándonos en las habilidades sin 
descuidar las debilidades que nos ayudara a enriquecer la 
estrategia de crecimiento y competitividad en el mercado 
de consumo, recomendando situaciones encontradas no 
alcanzables ni medibles en el presente estudio. 

1.2 Definición del Problema:  
El arroz es el cultivo que más extensión abarca en 

el Ecuador ocupando  399.535 Has. según la  Encuesta de 
Superficie y Producción Agropecuaria Continua (ESPAC) 
2015 [1].  
La mayor área sembrada de arroz en el país se encuentra en 
la región Costa, pero también se siembra en las 
estribaciones andinas y en la Amazonía pero en cantidades 
poco significantes (Tabla 1).  

REGIÓN Superficie 

(Has.) 

Produccion 

(Tm.) 

Ventas 

(Tm.) 

Sembrio Cosecha 

Total 
Nacional 399.535 375.117 1.652.793 1.534.4 

Region 
Sierra 1.701 1.564 11.472 9.100 

Region 
Costa 397.231 372.953 1.639.978 1.524.2 

Region 
Oriente 528 526 1.245 1.005 

Zona No 
Delimitad 75 75 98 97 

Tabla 1. Superficie, produccion y ventas segun region. 
Fuente: INEC 2015 

Dos provincias, Guayas y Los Ríos, representan el 
94% de la superficie sembrada de la gramínea en el 
Ecuador. En cuanto a la producción, de forma 
correspondiente, Guayas y Los Ríos tienen el 71,83% y % 
y 23.81% respectivamente (Tabla 2). 

PROVIN

CIA 

SUPERFICIE 

(Has.) 

Producc 

(Tm.) 

Venta 

(Tm.) 

Sembrio Cosecha 

Cañar 
128 118 829 829 

Loja 
1.541 1.414 10.575 8.252 

Santo 
Domingo 32 32 69 18 
El Oro 

3.999 3.896 12.390 10.362 
Esmeralda 

100 100 179 
 . 

Guayas 
274.992 258.620 1.187.15 1.120 

Los Rios 
100.961 94.278 383.106 345.96 

Manabi 
17.180 16.060 57.169 47.88 

Morona 
3 3 3 3 

Orellana 
350 349 914 743 

Sucumbio 
174 174 328 259 

Tabla # 2     Segun Provincias           Fuente: INEC 2015 
La Industria del arroz tiene su concentración 

máxima entre tres provincias casi exclusivamente, Guayas, 
Los Ríos y Manabí que son quienes marcan las pautas de la 
siembra, cosecha, pilada, y comercialización. [2]. En la 
Industria alimentaria, la gramínea del arroz constituye una 
de las fuentes principales de la canasta familiar. 

Por su parte el cantón Yaguachi (fig. 1) cuya 
cabecera cantonal se encuentra a  29 km. de Guayaquil 
presenta una población de 47,600 habitantes en un área 
de  512 km². Está asentada a 15 m.s.n.m. y su temperatura 
promedio es de 25°C, su precipitación promedio anual está 
entre 500 y 1000 mm [3].  Su área  cultivada de arroz 
corresponde a 15,521 has [4].   

En otras instancias el problema se concentra 
mucho mas en la comercializacion, porque las culturas y 
costumbres que los obligan a usar metodos caducos y 
pocos enrumbados hacia las tecnologias no ayudan a 
mejorar las ofertas en un mercado en donde hay tradicion 
de padres a hijos. 

Las piladoras que es el intermediario que se 
desenvuelve en el negocio del pilado, algunos aun siguen 
haciendolo de manera muy artesanal regar el arroz en un 
tendedero de secado al sol, son muy poco los mas 
proactivos que ya han empezado a tecnificar sus procesos 
en una cadena de instalaciones industrializados desde el 
tamizado hasta el secado en hornos. 

Los arrozeros se quejan de que el gobierno no 
apoya a las asociaciones inyectando dinero en las 
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infraestructuras, no tienen agua, no tienen semillas de 
buena calidad, el kit de insecticidas que ofertan estan 
siendo mal distribuidos pues solo se aprovechan los 
agricultores cercanos. El programa de alto rendimiento 
estaba constituido por un kit que traia 20 insumos:  sacos 
de urea, semillas, insecticidas entre otros. 

Figura 1. Cantón Yaguachi 

1.3 Justificación del Problema:  
Debido a este fenómeno, el Cantón Yaguachi 

enfrenta condiciones desfavorables inclusive en la 
provincia del Guayas, para mantenerse activa 
comercialmente siguiendo patrones ancestrales de procesos 
en la producción y específicamente por el desconocimiento 
de estrategias de marketing que motiven al consumo de la 
gramínea, pues con el crecimiento desmedido que presenta 
la Industria del Fitness en las sociedades modernas en 
donde el patrón de la belleza conllevan dejar de consumir 
productos de altos porcentajes de carbohidratos, el arroz es 
el primer producto que se evita consumir en las dietas 
alimenticias y considerando aún más que el arroz peruano 
está siendo concebido, como una gramínea con mejor 
calidad y menor precio en el mercado de consumo, 
ahondando más la situación de los productores del sector 
de Yaguachi y sus alrededores. El problema de este estudio 
se concentra entonces en la falta de estrategias de 
mercadotecnia que ayudarían a crecer a las empresas que 
conforman la Industria de producción y comercialización 
del arroz en el cantón Yaguachi 

1.4 Objetivos:  
Objetivo General 

El objetivo fundamental de este proyecto es Pro-
poner estrategias de comercialización sustentadas en el mix 
del marketing, que promuevan y ayuden al crecimiento 
sostenible de las empresas de la Industria del arroz en el 
cantón Yaguachi. 

Objetivos Específicos 

 Describir las estrategias de Marketing, haciendo
un análisis macro y micro ambiental

 Plantear estrategias de recolección de Datos de ti-
po experimental y documental (caso empresarial)
para obtener resultados proyectados.

 Proponer las estrategias de marketing para el cre-
cimiento sostenible de la Industria del arroz en el
cantón Yaguachi.

 Priorizar las distintas estrategias utilizando lógica
Neutrosofica

1.5 Justificación de la Investigación:  
Si consideramos que el problema esta circunscrito 

en un producto de consumo masivo, y que la graminea es 
un sustento social en las localidades mas olvidadas en el 
avance tecnologico y de crecimiento estructural, el canton 
Yaguachi viene a contribuir al sostenimiento alimenticio 
del Ecuador el mismo que debe ser enrumbado en una 
politica social de inclusion en los programas 
gubernamentales. 

Es por esto que este estudio concentro la 
metodologia del analisis de la voz directa del agricultor – 
pilador; para este proposito elegimos una familia muy 
representativa en la siembra y pilado del arroz, quienes 
ademas han iniciado con procesos artesanales llegando a 
los actuales momentos a poseer procesos industriales bien 
estructurados y con planes de crecimiento sostenible.  Es el 
caso de la empresa Timecorpoc S.A. la misma que fue 
fundada el año 2009, despues de haberse separado del 
nucleo familiar inicial, con quienes tambien llego a semi 
indutrializar el proceso no concluyendolo.  En la actualidad 
esta empresa se dedica a la siembra, pilada, compra ‚ venta 
y comercializacion del arroz, esta ubicada en el km 2,5 de 
la via Yaguachi-Jujan.  La misma que nos dara los 
parametros indispensables para el analisis estrategico.  

1.6 Marco Teórico de la Industria del arroz en 
el Ecuador 

El eje de las estadísticas referenciales nos han 
permitido crear el contexto del problema, y si nos 
enfocamos hacia al aspecto nutricional el arroz es el 
alimento más consumido en el mundo y una quinta parte 
de la población del planeta depende de su cultivo, recientes 
estudios asocian un  mayor consumo del arroz con el 
aumento de la obesidad y de factores de riesgo de padecer 
enfermedades cardiovasculares y diabetes tipo 2 [5, 6]. Sin 
embargo existen prácticas de cultivos, variedades y formas  
de consumirlos que mitigan o eliminan tanto los impactos 
medioambientales como los nutricionales.  Esta visión  nos 
hace considerar una amenaza la falta de estrategias de 
marketing en las acciones comerciales de la gramínea. 
Por otro lado existen varios factores que están afectando el 
cultivo y producción de arroz a nivel mundial.  En cuanto 
al aspecto medioambiental, su producción esta asociada  de 
entre el 7-17% de todas las emisiones de metano de origen 
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humano y, siendo el metano  un potente gas de efecto 
invernadero representa un aporte significativo al 
calentamiento global [7].  

Otro aspecto negativo es el empleo de grandes 
volumen de agua para anegar los terrenos[5]. Con estos 
datos, solo referenciamos algunas de las acciones del 
marco teórico, que nos harán recorrer los conceptos de 
grandes investigadores y pensadores estratégicos.[8].  
Comprometidos con el medio ambiente y la economia 
sostenible, el marketing bien enrubado y sustentado en la 
herramienta mas eficaz de analisis de datos FODA nos 
ayuda a visualizar y delinear  mejor las estrategias para la 
comercializacion de la  graminea de los agricultores de 
Yaguachi. 
En el siguiente cuadro resumimos lo expresado: 

Fortalezas      Oportunidades   Debilidades      Amenazas 
Producto 
consumo 
masivo 

Inclusion 
social en la 

Matriz 
Productiva 

cultivos sin 
control del 

medio 
ambiente 

Desconocimient
o de estrategias

de mercadeo

las realidades del entorno nos ayuda a enfocar nuestro 
analisis basandonos en las estrategias de PENETRACION 
en el mercado, sabiendo que la competitividad dependera 
de la fuerza competitiva  del sector y que la determinara la 
rentabilidad del mismo. 

2. METODOLOGIA DE LA INVESTIGACION
Se realiza bajo un enfoque cualitativo, que utiliza 

recolección de datos e investigación preliminar [9, 10]. La 
misma se realizo en fuentes primarias con entrevistas a las 
empresas de los hermanos Menendez. 

2.1 Diseño de la Investigación 
La construcción del contexto cualitativo son armadas 

desde la logica del analisis de caso y modelo y niveles 
epistemológicos en la génesis e historia de la investigación 
social.[9]. 

2.2 Tipo de Estudio 
Tiene un alcance descriptivo y no experimental porque 

se consideran las características de la empresa con  éxito 
en el mercado del arroz y que tiene posicionada la marca 
de ARROZ MARAVILLA muy reconocida entre los 
compradores por su calidad.  El horizonte espacial esta 
definido por la actividad del cultivo que actualmente están 
en esta industria en el cantón Yaguachi y que son 
especificamente agricultores que terminan su ciclo con el 
pilado del arroz, accion que ya no depende de ellos sino de 

una operacion aislada, siendo muy pocos los agricultores 
que terminan su proceso. 

Despues de las reuniones establecidas en el sitio se 
escogio una empresa tipo para hacer el estudio,  de la 
misma se resume lo siguiente:  

La empresa que nos sirve de analisis de caso es 
ecuatoriana denominada Timecorpoc S.A. esta ubicada en 
el km 2,5 de la via Yaguachi-Jujan. fue fundada el año 
2009 por Jose Avilio Menendez Mendoza en un acto de 
inmaculación, los fondos utilizados para la creación de 
Timecorpoc S.A. fueron recaudados mediante 
apalancamiento bancario y ahorros producidos del trabajo 
eficaz y exhaustivo de Avilio Menéndez cuando era la 
cabeza principal de la piladora Hermanos Menéndez, la 
cual está ubicada a 6 cuadras del centro del cantón 
Yaguachi. Cuando siendo su administrador logro dejarla 
semi indutrializada, la misma que no ha tenido ninguna 
evolucion ni crecimiento en los ultimos 7 años 
corooborando asi que sin administracion ordenada y 
sistematica no se consiguen resultados optimos. 

Timecorpoc pertenece al sector Agropecuario y su 
principal actividad es la producción y comercialización del 
arroz.  En la produccion esta empresa se dedica a la 
siembra y pilada, cuenta con una hacienda con un área de 
168 Hectareas. Con una producción de 70 sacas de 200 lbs 
por hectárea, tiene 2 ciclos de siembra la de invierno en el 
mes de enero y se cosecha en el mes de abril, (4 meses de 
cultivo) y la de verano se siembra en julio y se cosecha en 
noviembre. 

 El costo de producción por hectárea es de $1.400, el 
costo de un saco de las 200 lbs de arroz es de $42. En los 
meses de mayo y junio se prepara la tierra para su 
respectiva siembra al igual que el mes de diciembre. La 
variedad de arroz que se siembra es el 09, f 25. Que son 
arroces grano largo de 4 meses, cabe recalcar que hay 
arroces de ciclo corto y a su vez se lo conoce como iniap 
14 o grano corto, con ese tipo de arroz no trabajan por 
cuanto solo tienen mercado para arroces grano largo. 

E[ arroz una vez cosechado  se lo lleva a la piladora 
para su debido pílado, el costo de cosecha y traslado a la 
planta es de $3.30. 

En la planta se lo pesa por báscula manejada por 
sistemas, y se lo deposita en los silos de almacenamiento 
(existen 3 silos de 3000 quintales cada uno), para que 
después vayan a las dos secadoras de flujo continuo para 
su respectivo secado en càscara, la secadora puede secar 
1600 quintales cada 12 horas.  Luego de este proceso de 
secado se lo almacena por 7 días para pasar a su respectivo 
pílado.  La píladora es de marca SATAKE (Japonesa), 
tiene una capacidad de pilado de 120qq por hora y una  

73

Pablo José Menéndez Vera, Cristhian Fabián Menéndez Delgado, Miriam Peña Gónzalez, Maikel Leyva Vázquez, Marketing 
skills as determinants that underpin the competitiveness of the rice industry in Yaguachi canton. Application of SVN numbers 

to the prioritization of strategies 



Neutrosophic Sets and Systems, Vol. 13, 2016

capacidad diaria por 10 horas arrojando una produccion de 
28800 quintales mensuales. 

En la Comercializacion se dedica a la Compra-venta, 
compra arroz natural a los campesinos del medio y lo 
almacena para el envejecido natural lo que conlleva a 
mejorar el precio cuando hay sobreproduccion;  o les da 
servicio de pilado y secado. 

Entre los productos que maneja son:  pilado natural, 
envejecido natural segun el tiempo y tiene derivados tales 
como: ½ arrocillo, ¾ arrocillo, tiza, yelen y polvillo. 
Dentro del arroz pilado natural la empresa comercializa 
diferentes variedades como 09, f-11, f-25 y corriente.    
Posee dos marcas comerciales siendo estas: 

GRAN ARROZ MARAVILLA y 
ARROZ CONEJO. 

La presentación de sus sacos predominan los colores: 
naranja, café claro y negro, en el saco Maravilla se envasa 
el arroz envejecido naturalmente, mientras que en el saco 
conejo se envasa el arroz pilado natural, los demás 
derivados del arroz son envasados en sacos blancos sin 
diseños.  

Uno de los principales problemas para nuestro arroz 
nacional es el ingreso del arroz peruano por contrabando, 
ya que este tipo de arroz tiene mejores características que 
el arroz Ecuatoriano, esto se le atribuye al tipo de clima 
que tiene Perú, un clima de mayor luminosidad óptimo 
para el proceso de fotosíntesis para la planta, en 
comparación a nuestro clima. 

Por las características del arroz Peruano, un arroz mas 
brilloso de menos almidón, de menor costo y de mejor 
presencia los clientes prefieren irse por ese tipo de arroz lo 
cual a mermado las ventas. 

2.3 Instrumento de la Investigación 
Usamos el Método Delphi que nos permitió elabo-

rar escenarios futuros, haciendo converger la opinión de un 
grupo de expertos que nos ayudaron hacer estudios de 
tendencias y verificaciones con la correlación de los 
consumidores frente a diversidad de temas que tienen que 
ver con la industria del consumo de la gramínea.  

2.4 Análisis e interpretación de resultados 
Una vez realizados el análisis del caso empresarial se 

interpretan los resultados desde el punto de vista de las 
valoraciones según los éxitos y fracasos. 

3. MARCO TEORICO
Existen diferentes tipos de estrategias, en este trabajo  
presentaremos una variedad agrupada de la siguiente 
manera: 
Estrategias Intensivas (Crecimiento sostenible). 

Estrategias de Diversificacion (abrir hacia nuevos 
productos). 
Estrategias Defensivas (ventaja competitiva en el sector) 

Fig 1 : Tipos de Estrategias[11]. 

3.1 Estrategias de Marketing adoptadas en el 

Crecimiento Sostenible. 
Las teorías que se analizan en el presente proyecto 

están sustentadas en “ la lógica de la mercadotecnia“ con la 
cual la unidad de negocios espera alcanzar sus objetivos, y 
consiste en definir estrategias específicas para mercados 
meta, considerando hacer un rediseño profundo del 
negocio para determinar los planes estrategicos [12]. 
 “El marketing puede producirse en cualquier momento en 
que una persona o una organización se afane por 
intercambiar algo de valor con otra persona u organización, 
en este contexto el marketing consta de actividades ideadas 
para generar y facilitar intercambios con la intención de 
facilitar necesidades o deseos de las personas o las 
organizaciones”[13]. 

Segun el modelo del analisis de las 5 fuerzas de Michel 
Porter, las fuerzas competitivas que formulan la estructura 
basica de un sector y define su rentabilidad son: 

Competidores actuales y su intensa rivalidad 
Entrada de nuevos competidores  
Presion de productos sustitutivos 
Experiencia negociadora de los clientes 
Experiencia negociadora de los proveedores 

 Al no constituirse en un sector de fuerte
crecimiento no se deben desarrollar estrategias
muy agresivas ya  que no se ganara cuota de
mercado pero si se permitira corregir errores. Los
errores a corregirse saldran del analisis de sus
practicas de procedimientos en la oferta y
demanda.

 Debe implementarse cambio tecnologico para
rejuvenecer el sector y aprovechar el apoyo
gubernamental en politicas instauradas en la
Matriz Productiva del plan Nacional, con un
acercamiento de propuestas regularizadas por
planes de negocios formales que sustenten el ROI.

 La experiencia conquistada por el conocimiento
del manejo del producto debe ser rescatada en un
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plan de mercadeo exaustivo del manejo de la 
promocion y publicidad, tomando en 
consideracion los diversos segmentos asi se 
tendra en cuenta al consumidor minorista tanto 
como al consumidor mayorista.   

 Debe priorizarse el trabajo de los proveedores, ya
que de esto depende en gran medida el
crecimiento sostenible pues sin las cantidades
adecuadas de la produccion de lagraminea se
muere la linea del crecimiento y mucho mas el
sostenimiento de la industria en la region.

3.2 Estrategias de Marketing adoptada en la 

Diversificacion. 
El ciclo de vida del producto determina la madurez del 
sector, y en nuestro caso especifico del arroz afecta 
profundamente a la Gestion.   

Tomando el analisis del ciclo de vida del producto en todas 
sus etapas tenemos: 

     Fig 2 ciclo de vida del sector [14]. 

Fases ciclo competencia Ventas Estrategia 

Producto 

Introduccion Entran pocos Poco 
Beneficios 
negativos 

Unico 

crecimiento Entran 
muchos 

Aumentan 
Beneficios 
positivos 

Mejorarlo 
Ampliar la 
marca 
Crear marca 

madurez Gran 
competencia 

Ventas 
maximas 
Beneficios 
altos 

Diferenciarlo 
Nuevos usos 
Segmentos 
nuevos 

declive Disminuyen Vents y 
beneficios 
disminuyen 

Modificarlo 
Eliminarlo 
sustituirlo 

Fig 3 Fases de analisis del ciclo de vida 

Desde la aparición del marketing, muchas 
corrientes ideológicas han surgido dando lugar a “Modelos” 
que pueden ser usados o adaptados a diferentes entornos o 
circunstancias, dependiendo del producto o servicio que se 
va a proponer[15]. 

Hay tres tipos de estrategias de Diversificacion: 

 Concentrica: adicionar productos nuevos
pero relacionados para nuevos clientes.

 Horizontal: adicionar productos nuevos
sin relacionarse y para clientes actuales.

 Conglomerada: es la suma de productos
nuevos no relacionados aqui juega papel
importante la innovacion.

Nuestra decision es la Diversificacion Concentrica, 
ya que nos determina aprovechar los subproductos 
tales como la cascarilla que se usa como 
combustible y bio combustible y el desperdicio 
tales como arrozillo grueso y fino los mismos que 
se convierten en polvillo convirtiendolos en 
productos de nuevos clientes que se concentran en 
elaborar balanceados. 

Deben ser fabricados bajo una nueva marca que 
permita expandir el mercado y afianzar la 
estrategia competitiva. 

3.3 Estrategias de Marketing adoptada en la 

Ventaja Competitiva. 

Un mercado de competencia perfecta es aquel que 
carece de barreras de entrada y salida y cuyos productos 
están estandarizados, es decir cualquiera puede entrar y 
competir en el negocio y los compradores adquieren los 
productos exclusivamente en función del precio[16]. 

En un mercado con esas caracteristicas no seria 
posible obtener beneficios a mediano y a largo plazo,sin 
embargo debido a sus caracteristicas estructurales los 
mercados presentan algunas imperfecciones  (marcas, 
patentes,regulaciones gubernamentales)   

1. Debera trabajarse un plan de Marca, el mismo que
debe relacionarse con los colores y el nombre que
ya esta posicionado como es el de ARROZ
MARAVILLA.
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2. Enfocar los desarrollos de nuevos productos a
patentarlos para determinar la rentabilidad del
crecimiento de marca.

3. Crear un plan exhaustivo de publicidad y
promocion el mismo que debe incluir redes
sociales y parametros tecnologicos de ultima
generacion.

Los parámetros de análisis serán concentradas en el costo – 
beneficio – factibilidad. 

3.4 Priorizacion de las estrategias de Marketing 

mediante SVN. 
La neutrosofía fue propuesta por y Smarandache [17]  para 
el tratamiento de la neutralidades. Esta ha sido la base para 
una serie de teorías matemáticas que generalizan las teorías 
clásicas y difusas.  
La definición original de valor de verdad en la lógica 
neutrosófica se muestra a continuación:  
sean 𝑁 =  {(𝑇, 𝐼, 𝐹) ∶  𝑇, 𝐼, 𝐹 ⊆  [0, 1]} , una valuación 
neutrosófica es un mapeo de un grupo de fórmulas 
proposicionales a  𝑁  , esto es que por cada sentencia p 
tenemos  𝑣 (𝑝)  =  (𝑇, 𝐼, 𝐹) [18].  
Para facilitar la aplicación práctica a problema de la toma 
de decisiones y de la ingeniería los conjuntos   
neutrosóficos de valor  único fueron propuestos[19] 
(SVNS por sus siglas en inglés).  
Sea 𝑋 un universo de discurso.   
Un SVNS  𝐴 sobre 𝑋 es un objeto de la forma.  
𝐴 =  {〈𝑥, 𝑢𝐴(𝑥),  𝑟𝐴(𝑥), 𝑣𝐴(𝑥)〉: 𝑥 ∈  𝑋}  (1)
donde  𝑢𝐴(𝑥): 𝑋 →  [0,1] ,  𝑟𝐴(𝑥), ∶ 𝑋 →  [0,1]  y
𝑣𝐴(𝑥): 𝑋 →  [0,1]  con 0 ≤ 𝑢𝐴(𝑥) +  𝑟𝐴(𝑥) + 𝑣𝐴(𝑥): ≤ 3
para todo 𝑥 ∈ 𝑋. El intervalo 𝑢𝐴(𝑥),  𝑟𝐴(𝑥) y 𝑣𝐴(𝑥) denotan
las mebrecia a verdadero, indeterminado y falso de x en A, 
respectivamente.  Por cuestiones de conveniencia un 
número SVN será expresado como 𝐴 = (𝑎, 𝑏, 𝑐), donde 𝑎, 
𝑏, 𝑐 ∈ [0,1], y   + 𝑏 + 𝑐 ≤ 3. 
Para evaluar la alternativas proponemos  construir la 
opción ideal[20] y ordenar las  alternativas empleando las 
distancia euclidiana entre números  neutrosficos de valor 
unico (SVN por sus siglas en ingles)[20, 21]. 
Sea   𝐴 ∗  =  ( 𝐴1

∗  , 𝐴2
∗   , . . , 𝐴𝑛

∗  ) sea un vector de  números
SVN tal que  𝐴𝑗  ∗ = (𝑎𝑗

∗, 𝑏𝑗
∗, 𝑐𝑗

∗) j=(1,2, … , 𝑛) y 𝐵𝑖 = (𝐵𝑖1,
𝐵𝑖2, … , 𝐵𝑖𝑚) (𝑖 = 1,2, … , 𝑚) sea  𝑚 vectores  de 𝑛 SVN
números tal que  y 𝐵𝑖𝑗 = ( 𝑎𝑖𝑗, 𝑏𝑖𝑗, 𝑐𝑖𝑗)  (𝑖 = 1,2, … , 𝑚), (𝑗
= 1,2, … , 𝑛) entonces la distancia euclidiana es definida 
como. Las 𝐵𝑖 y 𝐴 ∗ resulta[20]:

si= (
1

3
∑ {(|aij-aj

*|)
2
+(|bij-bj

*|)
2
+(|cij-cj

*|)
2
}n

j=1 )

1

2

(2) 
(𝑖 = 1,2, … , 𝑚) 

En la medida en que la alternativa de   𝐴𝑖se encuentra más
próximo al punto ideal ( 𝑠𝑖  menor) mejor será esta,
permitiendo establecer un orden entre alternativas [22].  
Se emplean los siguientes términos lingüísticos.  

Término lingüístico Números SVN 
Extremadamente 
buena(EB) 

(1,0,0) 

Muy muy buena (MMB) (0.9, 0.1, 0.1) 
Muy buena (MB) (0.8,0,15,0.20) 
Buena(B) (0.70,0.25,0.30) 
Medianamente buena 
(MDB) 

(0.60,0.35,0.40) 

Media(M) (0.50,0.50,0.50) 
Medianamente mala 
(MDM) 

(0.40,0.65,0.60) 

Mala (MA) (0.30,0.75,0.70) 
Muy mala (MM) (0.20,0.85,0.80) 
Muy muy mala (MMM) (0.10,0.90,0.90) 
Extremadamente mala 
(EM) 

(0,1,1) 

 Tabla # 2     Términos lingüísticos empleados.      Fuente: 
[20] 
A continuación demuestras los resultados para 3 estrategias 
𝐸1: Crecimiento sostenible.
𝐸2: Diversificación.
𝐸3: Ventaja competitiva en el sector.
Los criterios empleados fueron  
𝐶1: Beneficios
𝐶2: Factibilidad
𝐶2: Costo
Posteriormente se realiza la valoración para cada estrategia 
con respecto a los criterios seleccionados (Tabla 4). 

Tabla # 4     Valoración de las estrategias.    

La alternativa ideal resulta : 
𝐸+ =(EB, MB, MB) 
Los resultados del calculo de las distancia nos pemiten 
ordenar las estrategias . En este caso el orden de prioridad 
es el siguiente 𝐸2 ≻  𝐸1 ≻  𝐸3  , siendo la estrategia de
diversificación la mas priorizada. 

Estrategia si

E1 0.21 

Estrategia Beneficios Factibilidad Costo 

E1 MB B MB 
E2 EB MB MDB 
E3 MDM M B 
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E2 0.2 
E3 0.7 

    Tabla 5. Cálculo de la distancia 

Entre las ventajas planteadas por los especialistas se 
encuentran la relativa facilidad de la técnica. Los 
resultados muestran además la aplicabilidad que presentan 
los modelos de ayuda a la toma de decisión basados en 
SVN al marketing. 

4. Conclusiones
En presente trabajo  se desarrollaron  estrategias de 
marketing que ayuden a sostener la actividad comercial del 
arroz proveniente de la zona geográfica de Yaguachi y sus 
alrededores, planteándonos objetivos alcanzables y 
justificando el accionar de los modelos conceptuales que 
sostengan las estrategias a desarrollarse, concluyendo con 
una propuesta enriquecedora en torno a la nueva forma de 
manejar la competitividad, diferenciándonos en las 
habilidades sin descuidar las debilidades que nos ayudara a 
enriquecer la estrategia de crecimiento y competitividad en 
el mercado de consumo, recomendando situaciones 
encontradas no alcanzables ni medibles en el presente 
estudio.  
Las estrategias  propuestas  fueron analizadas   y 
priorizadas mediante los números SVN y la distancia 
euclidiana  para el tratamiento de la neutralidades. Como 
trabajos futuros se plantea la incorporacion al metodo de 
preorización de operadores de agregacion que pemritan 
expresar importancia y compensación al método.  Otras 
areas de trabajo futuro están en el empleo de  la neutrosofía 
a nuevas áres del  marketing.  
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Abstract. In this paper, we make distinctions between 
Classical Logic (where the propositions are 100% true, or 
100 false) and the Neutrosophic Logic (where one deals 
with partially true, partially indeterminate and partially 
false propositions) in order to respond to K. Georgiev’s 

criticism [1]. We recall that if an axiom is true in a clas-
sical logic system, it is not necessarily that the axiom be 
valid in a modern (fuzzy, intuitionistic fuzzy, neutrosoph-
ic etc.) logic system. 
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1 Single Valued Neutrosophic Set 

We read with interest the paper [1] by K. Georgiev. 
The author asserts that he proposes “a general simplifica-
tion of the Neutrosophic Sets a subclass of theirs, compris-
ing of elements of R3”, but this was actually done before, 
since the first world publication on neutrosophics [2]. The 
simplification that Georgiev considers is called single val-
ued neutrosophc set. 

The single valued neutrosophic set was introduced for 
the first time by us [Smarandache, [2], 1998]. 

Let  
n = t + i + f      (1) 
In Section 3.7, “Generalizations and Comments”, [pp. 

129, last edition online], from this book [2], we wrote: 
“Hence, the neutrosophic set generalizes: 
- the intuitionistic set, which supports incomplete set 

theories (for 0 < n < 1; 0 ≤ t, i, f ≤ 1) and incomplete 
known elements belonging to a set; 

- the fuzzy set (for n = 1 and i = 0, and 0 ≤ t, i, f ≤ 1); 
- the classical set (for n = 1 and i = 0, with t, f either 0 

or 1); 
- the paraconsistent set (for n > 1, with all t, i, f < 1); 
- the faillibilist set (i > 0); 
- the dialetheist set, a set M whose at least one of its 

elements also belongs to its complement C(M); thus, the 
intersection of some disjoint sets is not empty; 

- the paradoxist set (t = f = 1); 
- the pseudoparadoxist set (0 < i < 1; t =1 and f > 0 or 

t > 0 and f = 1); 
- the tautological set (i, f < 0).” 
It is clear that we have worked with single-valued neu-

trosophic sets, we mean that t, i, f were explicitly real 
numbers from [0, 1]. 

See also (Smarandache, [3], 2002, p. 426). 
More generally, we have considered that: t varies in the 

set T, i varies in the set I, and f varies in the set F, but in 
the same way taking crisp numbers n = t + i + f, where all t, 
i, f are single (crisp) real numbers in the interval [0, 1]. See 
[2] pp. 123-124, and [4] pp. 418-419. 

Similarly, in The Free Online Dictionary of Computing 
[FOLDOC], 1998, updated in 1999, ed. by Denis Howe [3]. 

Unfortunately, Dr. Georgiev in 2005 took into consid-
eration only the neutrosophic publication [6] from year 
2003, and he was not aware of previous publications [2, 3, 
4] on the neutrosophics from the years 1998 - 2002.

The misunderstanding was propagated to other authors 
on neutrosophic set and logic, which have considered that 
Haibin Wang, Florentin Smarandache, Yanqing Zhang, 
Rajshekhar Sunderraman (2010, [5]) have defined the sin-
gle valued neutrosophic set. 

2 Standard and Non-Standard Real Subsets 

Section 3 of paper [1] by Georgiev is called “Reducing 
Neutrosophic Sets to Subsets of R3”. But this was done al-
ready since 1998. In our Section 0.2, [2], p. 12, we wrote: 

 “Let T, I, F be standard or non-standard real sub-
sets…”. 

“Standard real subsets”, which we talked about above, 
mean just the classical real subsets. 

We have taken into consideration the non-standard 
analysis in our attempt to be able to describe the absolute 
truth as well [i.e. truth in all possible worlds, according to 
Leibniz’s denomination, whose neutrosophic value is equal 
to 1+], and relative truth [i.e. truth in at least one world, 
whose truth value is equal to 1]. Similarly, for absolute in-
determinacy and absolute falsehood. 

We tried to get a definition as general as possible for 
the neutrosophic logic (and neutrosophic set respectively), 
including the propositions from a philosophical point of 
[absolute or relative] view. 
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Of course, in technical and scientific applications we 
do not consider non-standard things, we take the classical 
unit interval [0, 1] only, while T, I, F are classical real sub-
sets of it. 

In Section 0.2, Definition of Neutrosophic Components 
[2], 1998, p. 12, we wrote: 

“The sets T, I, F are not necessarily intervals, but may 
be any real sub-unitary subsets: discrete or continuous; 
single-element, finite, or (countable or uncountable) infi-
nite; union or intersection of various subsets; etc. 

They may also overlap. The real subsets could repre-
sent the relative errors in determining t, i, f (in the case 
when the subsets T, I, F are reduced to points).” 

So, we have mentioned many possible real values for T, 
I, F. Such as: each of T, I, F can be “single-element” {as 
Georgiev proposes in paper [1]}, “interval” {developed 
later in [7], 2005, and called interval-neutrosophic set and 
interval-neutrosophic logic respectively}, “discrete” 
[called hesitant neutrosophic set and hesitant neutrosophic 
logic respectively] etc. 

3 Degrees of Membership > 1 or < 0 of the Ele-
ments 

In Section 4 of paper [1], Georgiev says that: “Smaran-
dache has adopted Leibniz’s ‘worlds’ in his work, but it 
seems to be more like a game of words.” 

As we have explained above, “Leibniz’s worlds” are 
not simply a game of words, but they help making a dis-
tinction in philosophy between absolute and relative truth / 
indeterminacy / falsehood respectively. {In technics and 
science yes they are not needed.} 

Besides absolute and relative, the non-standard values 
or hyper monads (-0 and 1+) have permitted us to intro-
duce, study and show applications of the neutrosophic 
overset (when there are elements into a set whose real 
(standard) degree of membership is > 1), neutrosophic un-
derset (when there are elements into a set whose real de-
gree of membership is < 0), and neutrosophic offset (when 
there are both elements whose real degree of membership 
is > 1 and other elements whose real degree of membership 
is < 0). Check the references [8-11]. 

4 Neutrosophic Logic Negations 
In Section 4 of the same paper [1], Georgiev asserts 

that “according to the neutrosophic operations we have 
A A         (2)                                                                                        

and since  
A A             (3)                                                                                         

is just the assumption that has brought intuitionism to life, 
the neutrosophic logic could not be a generalization of any 
Intuitionistic logic.” 

First of all, Georgiev’s above assertation is partially 
true, partially false, and partially indeterminate (as in the 
neutrosophic logic). 

In neutrosophic logic, there is a class of neutrosophic 
negation operators, not only one. For some neutrosophic 
negations the equality (2) holds, for others it is invalid, or 
indeterminate. 

Let A(t, i, f) be a neutrosophic proposition A whose 
neutrosophic truth value is (t, i, f), where t, i, f are single 
real numbers of [0, 1]. We consider the easiest case. 

a) For examples, if the neutrosophic truth value of
A , the negation of A, is defined as:

(1-t, 1-i, 1-f) or (f, i, t) or (f, 1-i, t) (4)     
then the equality (2) is valid. 

b) Other examples, if the neutrosophic truth value of
A , the negation of A, is defined as:

(f, (t+i+f)/3, t) or (1-t, (t+i+f)/3, 1-f)  (5)     
then the equality (2) is invalid, as in intuitionistic fuzzy 
logic, and as a consequence the inequality (3) holds. 

c) For the future new to be designed/invented neu-
trosophic negations (needed/adjusted for new ap-
plications) we do not know {so (2) has also a per-
centage of indeterminacy.

5 Degree of Dependence and Independence be-
tween (Sub)Components 

In Section 4 of [1], Georgiev also asserts that “The 
neutrosophic logic is not capable of maintaining modal 
operators, since there is no normalization rule for the 
components T, I, F”. This is also partially true, and 
partially false. 

In our paper [12] about the dependence / independence 
between components, we wrote that: 

“For single valued neutrosophic logic, the 
sum of the components t+i+f is: 

0 ≤ t+i+f ≤ 3 when all three components are 
100% independent; 

0 ≤ t+i+f ≤ 2 when two components are 100% 
dependent, while the third one is 100% independ-
ent from them; 

0 ≤ t+i+f ≤ 1 when all three components are 
100% dependent. 

When three or two of the components t, i, f 
are 100% independent, one leaves room for in-
complete information (therefore the sum t+i +f < 
1), paraconsistent and contradictory information 
(t+i+f > 1), or complete information (t+i+f = 1).  

If all three components t, i, f are 100% de-
pendent, then similarly one leaves room for in-
complete information (t+i+f < 1), or complete in-
formation (t+i+f = 1).”  

Therefore, for complete information the normalization 
to 1, 2, 3 or so respectively {see our paper [12] for the case 
when one has degrees of dependence between components 
or between subcomponents (for refined neutrosophic set 
respectively) which are different from 100% or 0%} is 
done. 
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But, for incomplete information and paraconsistent 
information, in general, the normalization is not done. 

Neutrosophic logic is capable of maintaining modal 
operators. The connection between Neutrosophic Logic 
and Modal Logic will be shown in a separate paper, since 
it is much longer, called Neutrosophic Modal Logic (under 
press). 

6 Definition of Neutrosophic Logic 

In Section 5, paper [1], it is said: “Apparently there 
isn’t a clear definition of truth value of the neutrosophic 
formulas.” The author is right that “apparently”, but in 
reality the definition of neutrosophic logic is very simple 
and common sense: 

In neutrosophic logic a proposition P has a degree of 
truth (T); a degree of indeterminacy (I) that means neither 
true nor false, or both true and false, or unknown, 
indeterminate; and a degree of falsehood (F); where T, I, F 
are subsets (either real numbers, or intervals, or any 
subsets) of the interval [0, 1]. 

What is unclear herein? 
In a soccer game, as an easy example, between two 

teams, Bulgaria and Romania, there is a degree of truth 
about Bulgaria winning, degree of indeterminacy (or 
neutrality) of tie game, and degree of falsehood about 
Bulgaria being defeated. 

7 Neutrosophic Logical Systems 

a) Next sentence of Georgiev is
“in every meaningful logical system if A and B are sets 
(formulas) such that A ⊆ B then B ‘ A, i.e. when B is 
true then A is true.”                              (6)                                   
In other words, when B  A (B implies A), and B is 

true, then A is true. 
This is true for the Boolean logic where one deals with 

100% truths, but in modern logics we work with partial 
truths.  

If an axiom is true in the classical logic, it does not 
mean that that axiom has to be true in the modern logical 
system. Such counter-example has been provided by 
Georgiev himself, who pointed out that the law of double 
negation {equation (2)}, which is valid in the classical 
logic, is not valid any longer in intuitionistic fuzzy logic. 

A similar response we have with respect to his above 
statement on the logical system axiom (6): it is partially 
true, partially false, and partially indeterminate. All depend 
on the types of chosen neutrosophic implication operators. 

In neutrosophic logic, let’s consider the neutrosophic 
propositions A(tA, iA, fA) and B(tB, iB, fB), 

and the neutrosophic implication: 
B(tB, iB, fB)  A(tA, iA, fA),    (7) 
that has the neutrosophic truth value  
(BA)(tBA, iBA, fBA).    (8) 

Again, we have a class of many neutrosophic 
implication operators, not only one; see our publication 
[13], 2015, pp. 79-81. 

Let’s consider one such neutrosophic implication for 
single valued neutrosophic logic:  

(BA)(tBA, iBA, fBA) is equivalent to B(tB, iB, fB)  
A(tA, iA, fA)  

which is equivalent to  B(fB, 1-iB, tB)A(tA, iA, fA)
which is equivalent to (  BA)(max{fB, tA}, min{1-iB,

iA}, min{tB, fA}).                         (9) 
Or: 
(tBA, iBA, fBA) = (max{fB, tA}, min{1-iB, iA}, min{tB, 

fA}).                                                        (10) 
Now, a question arises: what does “(B ) A is true” 

mean in fuzzy logic, intuitionistic fuzzy logic, and 
respectively in neutrosophic logic? 

Similarly for the “B is true”, what does it mean in these 
modern logics? Since in these logics we have infinitely 
many truth values t(B) ∈ (0, 1); {we made abstraction of 
the truth values 0 and 1, which represent the classical 
logic}. 

b) Theorem 1, by Georgiev, “Either A H k(A) [i.e.
A is true if and only if k(A) is true] or the neutrosophic 
logic is contradictory.” 

We prove that his theorem is a nonsense. 
First at all, the author forgets that when he talks about 

neutrosophic logic he is referring to a modern logic, not to 
the classical (Boolean) logic. The logical propositions in 
neutrosophic logic are partially true, in the form of (t, i, f), 
not totally 100% true or (1, 0, 0). Similarly for the 
implications and equivalences, they are not classical (i.e. 
100% true), but partially true {i.e. their neutrosophic truth 
values are in the form of (t, i, f) too}. 

- The author starts using the previous classical logi-
cal system axiom (6), i.e. 

“since k(A) ⊆ A we have A ‘ k(A) ” meaning that  
A k(A) and when A is true, then k(A) is true. 
- Next Georgiev’s sentence: “Let assume k(A) be 

true and assume that A is not true”. 
The same comments as above: 
What does it mean in fuzzy logic, intuitionistic fuzzy 

logic, and neutrosophic logic that a proposition is true? 
Since in these modern logics we have infinitely many 
values for the truth value of a given proposition. Does, for 
example, t(k(A)) = 0.8 {i.e. the truth value of k(A) is equal 
to 0.8}, mean that k(A) is true? 

If one takes t(k(A)) = 1, then one falls in the classical 
logic. 

Similarly, what does it mean that proposition A is not 
true? Does it mean that its truth value  

t(A) = 0.1 or in general t(A) < 1 ? Since, if one takes 
t(A) = 0, then again we fall into the classical logic. 

The author confuses the classical logic with modern 
logics. 
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- In his “proof” he states that “since the Neutro-
sophic logic is not an intuitionistic one,  A should be true 
leading to the conclusion that k( A)   =  k(A) is true”. 

For the author an “intuitionistic logic” means a logic 
that invalidates the double negation law {equation (3)}. 
But we have proved before in Section 4, of this paper, that 
depending on the type of neutrosophic negation operator 
used, one has cases when neutrosophic logic invalidates 
the double negation law [hence it is “intuitionistic” in his 
words], cases when the neutrosophic logic does not 
invalidate the double negation law {formula (2)}, and 
indeterminate cases {depending on the new possible 
neutrosophic negation operators to be design in the future}. 

- The author continues with “We found that 
k(A)  k(A) is true which means that the simplified neu-
trosophic logic is contradictory.” 

Georgiev messes up the classical logic with modern 
logic. In classical logic, indeed  

k(A)  k(A) is false, being a contradiction.
But we are surprised that Georgiev does not know that 

in modern logic we may have 
k(A)  k(A) that is not contradictory, but partially

true and partially false. 
For example, in fuzzy logic, let’s say that the truth 

value (t) of k(A) is  
t(k(A)) = 0.4, then the truth value of its negation, 

 k(A), is t( k(A)) = 1 – 0.4 = 0.6.
Now, we apply the t-norm “min” in order to do the 

fuzzy conjunction, and we obtain: 
t(k(A)  k(A)) = min{0.4, 0.6} = 0.4 ≠ 0.
Hence, k(A)  k(A) is not a contradiction, since its

truth value is 0.4, not 0. Similarly in intuitionistic fuzzy 
logic. The same in neutrosophic logic, for example: 

Let the neutrosophic truth value of k(A) be (0.5, 0.4, 
0.2), that we denote as: 

k(A)(0.5, 0.4, 0.2), then its negation  k(A) will have 
the neutrosophic truth value: 

 k(A)(0.2, 1-0.4, 0.5) =  k(A)(0.2, 0.6, 0.5).
Let’s do now the neutrosophic conjunction: 
k(A)(0.5, 0.4, 0.2)   k(A)(0.2, 0.6, 0.5) =

(k(A)  k(A))(min{0.5, 0.2}, max{0.4, 0.6}, max{0.2,
0.5}) = (k(A)  k(A))(0.2, 0.6, 0.5).

In the same way, k(A)  k(A) is not a contradiction
in neutrosophic logic, since its neutrosophic truth value is 
(0.2, 0.6, 0.5), which is different from (0, 0, 1) or from (0, 
1, 1). Therefore, Georgiev’s “proof” that the simplified 
neutrosophic logic [ = single valued neutrosophic logic] is 
a contradiction has been disproved! 

His following sentence, “But since the simplified 
neutrosophic logic is only a subclass of the neutrosophic 
logic, then the neutrosophic logic is a contradiction” is 
false. Simplified neutrosophic logic is indeed a subclass of 
the neutrosophic logic, but he did not prove that the so-
called simplified neutrosophic logic is contradictory (we 
have showed above that his “proof” was wrong). 

Conclusion 

We have shown in this paper that Georgiev’s critics on 
the neutrosophic logic are not founded. We made dis-
tinctions between the Boolean logic systems and the neu-
trosophic logic systems.  

Neutrosophic logic is developing as a separate entity 
with its specific neutrosophic logical systems, neutrosophic 
proof theory and their applications. 
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1 Introduction 
The notion of neutrosophic sets (NSs) was proposed by 
Smarandache [8] as a generalization of the fuzzy sets [14], 
intuitionistic fuzzy sets [12], interval valued fuzzy set [11] 
and interval-valued intuitionistic fuzzy sets [13] theories. 
The neutrosophic set is a powerful mathematical tool for 
dealing with incomplete, indeterminate and inconsistent in-
formation in real world. The neutrosophic sets are charac-
terized by a truth-membership function (t), an indetermina-
cy-membership function (i) and a falsity membership func-
tion (f) independently, which are within the real standard 
or nonstandard unit interval ]-0 , 1+[. In order to conven-
iently use NS in real life applications, Wang et al. [9] in-
troduced the concept of the single-valued neutrosophic set 
(SVNS), a subclass of the neutrosophic sets. The same au-
thors [10] introduced the concept of the interval valued 
neutrosophic set (IVNS), which is more precise and flexi-
ble than the single valued neutrosophic set. The IVNS is a 
generalization of the single valued neutrosophic set, in 
which the three membership functions are independent and 
their value belong to the unit interval [0, 1]. More works 
on single valued neutrosophic sets, interval valued neutro-
sophic sets and their applications can be found on 
http://fs.gallup.unm.edu/NSS/.  
Hypergraph is a graph in which an edge can connect more 
than two vertices, hypergraphs can be applied to analyse 
architecture structures and to represent system partitions, 
Mordesen J.N and P.S Nasir gave the definitions for fuzzy 
hypergraphs. Parvathy. R and M. G. Karunambigai’s paper 
introduced the concepts of Intuitionistic fuzzy hypergraphs 
and analyse its components, Nagoor Gani. A and Sajith 

Begum. S defined degree, order and size in intuitionistic 
fuzzy graphs and extend the properties. Nagoor Gani. A 
and Latha. R introduced irregular fuzzy graphs and dis-
cussed some of its properties.  

Regular intuitionistic fuzzy hypergraphs and totally regular 
intuitionistic fuzzy hypergraphs are introduced by Pra-
deepa. I and Vimala. S in [0]. In this paper we extend regu-
larity and totally regularity on bipolar single valued neu-
trosophic hypergraphs. 

2 Preliminaries 
In this section we discuss the basic concept on neutro-
sophic set and neutrosophic hyper graphs. 

Definition 2.1 Let X be the space of points (objects) with 
generic elements in X denoted by x. A single valued neu-
trosophic set A (SVNS A) is characterized by truth mem-
bership function 𝑇𝐴(x), indeterminacy membership func-
tion 𝐼𝐴(x) and a falsity membership function 𝐹𝐴(x). For 
each point x ∈X; 𝑇𝐴(x), 𝐼𝐴(x), 𝐹𝐴(x) ∈ [0, 1]. 

Definition 2.2 Let X be a space of points (objects) with 
generic elements in X denoted by x. A bipolar single 
valued neutrosophic set  A (BSVNS A) is characterized by 
positive truth membership function 𝑃𝑇𝐴(x), positive 
indeterminacy membership function 𝑃𝐼𝐴(x)  and a positive 
falsity membership function 𝑃𝐹𝐴(x) and negative truth 
membership function 𝑁𝑇𝐴(x), negative indeterminacy 
membership function 𝑁𝐼𝐴(x) and a negative falsity 
membership function 𝑁𝐹𝐴(x). 
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 For each point x ∈ X; 𝑃𝑇𝐴(x),  𝑃𝐼𝐴(x), 𝑃𝐹𝐴(x) ∈ [0, 1] and 
𝑁𝑇𝐴(x), 𝑁𝐼𝐴(x), 𝑁𝐹𝐴(x) ∈ [-1, 0]. 

Definition 2.3 Let A be a BSVNS on X then support of 
A is denoted and defined by 

Supp(A) = {x : x ∈X, 𝑃𝑇𝐴(x) > 0, 𝑃𝐼𝐴(x) > 0, 𝑃𝐹𝐴(x) > 0, 
𝑁𝑇𝐴(x) < 0, 𝑁𝐼𝐴(x) < 0, 𝑁𝐹𝐴(x) < 0}. 

Definition 2.4 A hyper graph is an ordered pair H = (X, 
E), where 

(1) X = {𝑥1, 𝑥2, … . , 𝑥𝑛} be a finite set of vertices. 

(2) E = {𝐸1, 𝐸2 , …., 𝐸𝑚} be a family of subsets of 

X. (3) 𝐸𝑗 for j= 1,2,3,...,m and ⋃𝑗(𝐸𝑗)=  X. 

The set X is called set of vertices and E is the set of edges 
(or hyper edges). 

Definition 2.5 A bipolar single valued neutrosophic 
hypergraph is an ordered pair H = (X, E), where 

(1) 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑚} be a finite set of vertices. 

(2) 𝐸 = {𝐸1, 𝐸2, … , 𝐸𝑚} be a family of BSVNSs of X. 

(3) 𝐸𝑗 ≠ O = (0, 0, 0) for j= 1,2,3,...,m and ⋃𝑗 𝑆𝑢𝑝𝑝(𝐸𝑗)= X. 

The set X is called set of vertices and E is the set of 
BSVN-edges (or BSVN-hyper edges). 

Proposition 2.6 The bipolar single valued neutrosophic 
hyper graph is the generalization of fuzzy hyper graphs, 
intuitionistic fuzzy hyper graphs, bipolar fuzzy hyper 
graphs and single valued neutrosophic hypergraphs. 

3 Regular and totally regular BSVNHGs 
Definition 3.1 The open neighbourhood of a vertex x in 
bipolar single valued neutrosophic hypergraphs 
(BSVNHGs) is the set of adjacent vertices of x, excluding 
that vertex and is denoted by N(x). 

Definition 3.2 The closed neighbourhood of a vertex x in 
bipolar single valued neutrosophic hypergraphs 
(BSVNHGs) is the set of adjacent vertices of x, including 
that vertex and is denoted by N[x]. 

Example 3.3 Consider a bipolar single valued neutrosophic 
hypergraphs H = (X, E) where, X = {a, b, c, d, e} and E = 

{P, Q, R, S}, which is defined by 

P = {(a, 0.1, 0.2, 0.3, -0.4, -0.6 -0.8), (b, 0.4, 0.5, 0.6, -0.4, -0.6 -0.8)} 

Q = {(c, 0.1, 0.2, 0.3, -0.4, -0.4 -0.9), (d, 0.4, .5, 0.6, -0.3, -0.5 -0.6), (e, 0.7, 

0.8, 0.9, -0.7, -0.9, -0.2)} 

R = {(b, 0.1, 0.2, 0.3, -0.2, -0.5, -0.8), (c, 0.4, 0.5, 0.6, -0.9, -0.7 -0.4)} 

S = {(a, 0.1, 0.2, 0.3, -0.7, -0.6, -0.9), (d, 0.9, 0.7, 0.6, -0.4, -0.7, -0.9)} 

Then the open neighbourhood of a vertex a is the b and d, 
and closed neighbourhood of a vertex b is b, a and c. 

Definition 3.4 Let H = (X, E) be a BSVNHG, the open 
neighbourhood degree of a vertex x, which is denoted and 
defined by 

deg(x) = (𝑑𝑒𝑔𝑃𝑇(x), 𝑑𝑒𝑔𝑃𝐼(x), 𝑑𝑒𝑔𝑃𝐹(x), 𝑑𝑒𝑔𝑁𝑇(x), 𝑑𝑒𝑔𝑁𝐼(x) , 𝑑𝑒𝑔𝑁𝐹(x)) 

where

𝑑𝑒𝑔𝑃𝑇(x) = ∑ 𝑃𝑇𝐸(𝑥)𝑥∈𝑁(𝑥)

𝑑𝑒𝑔𝑃𝐼(x) = ∑ 𝑃𝐼𝐸(𝑥)𝑥∈𝑁(𝑥)

𝑑𝑒𝑔𝑃𝐹(x) = ∑ 𝑃𝐹𝐸(𝑥)𝑥∈𝑁(𝑥)  

𝑑𝑒𝑔𝑁𝑇(x) = ∑ 𝑁𝑇𝐸(𝑥)𝑥∈𝑁(𝑥)

𝑑𝑒𝑔𝑁𝐼(x) = ∑ 𝑁𝐼𝐸(𝑥)𝑥∈𝑁(𝑥)

𝑑𝑒𝑔𝑁𝐹(x) = ∑ 𝑁𝐹𝐸(𝑥)𝑥∈𝑁(𝑥)

Example 3.5 Consider a bipolar single valued neutrosoph-
ic hypergraphs H = (X, E) where, X = {a, b, c, d, e} and E 
= {P, Q, R, S}, which are defined by 

P = {(a, .1, .2, .3, -0.1, -0.2, -0.3), (b, .4, .5, .6, -0.1, -0.2, -0.3)} 

Q = {(c, .1, .2, .3, -0.1, -0.2, -0.3), (d, .4, .5, .6, -0.1, -0.2, -0.3), (e, .7, .8, .9, 

-0.1, -0.2, -0.3)} 

R = {(b, .1, .2, .3, -0.1, -0.2, -0.3), (c, .4, .5, .6, -0.1, -0.2, -0.3)} 

S = {(a, .1, .2, .3, -0.1, -0.2, -0.3), (d, .4, .5, .6, -0.1, -0.2, -0.3)} 

Then the open neighbourhood of a vertex a contain b and d 
and therefore open neighbourhood degree of a vertex a is 
(.8, 1, 1.2, -0.2, -0.4, -0.6). 

Definition 3.6 Let H = (X, E) be a BSVNHG, the 
closed neighbourhood degree of a vertex x is denoted 
and defined by
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deg[x] = (𝑑𝑒𝑔𝑃𝑇[x], 𝑑𝑒𝑔𝑃𝐼[x], 𝑑𝑒𝑔𝑃𝐹[x], 𝑑𝑒𝑔𝑁𝑇[x], 𝑑𝑒𝑔𝑁𝐼[x] , 𝑑𝑒𝑔𝑁𝐹[x]) 

which are defined by 

𝑑𝑒𝑔𝑃𝑇[x] = 𝑑𝑒𝑔𝑃𝑇(x) + 𝑃𝑇𝐸(x) 

𝑑𝑒𝑔𝑃𝐼[x] = 𝑑𝑒𝑔𝑃𝐼(x) + 𝑃𝐼𝐸(x) 

𝑑𝑒𝑔𝑃𝐹[x] = 𝑑𝑒𝑔𝑃𝐹(x) + 𝑃𝐹𝐸(x) 

𝑑𝑒𝑔𝑁𝑇[x] = 𝑑𝑒𝑔𝑁𝑇(x) + 𝑁𝑇𝐸(x) 

𝑑𝑒𝑔𝑁𝐼[x] = 𝑑𝑒𝑔𝑁𝐼(x) + 𝑁𝐼𝐸(x) 

𝑑𝑒𝑔𝑁𝐹[x] = 𝑑𝑒𝑔𝑁𝐹(x) + 𝑁𝐹𝐸(x) 

Example 3.7 Consider a bipolar single valued neutrosophic 
hypergraphs H = (X, E) where, X = {a, b, c, d, e} and E = 
{P, Q, R, S}, which is defined by 

P = {(a, 0.1, 0.2, 0.3, -0.1, -0.2, -0.3), (b, 0.4, 0.5, 0.6, -0.1, -0.2, -0.3)} 

Q = {(c, 0.1, 0.2, 0.3, -0.1, -0.2, -0.3), (d, 0.4, 0.5, 0.6, -0.1, -0.2, -0.3), (e, 

0.7, 0.8, 0.9, -0.1, -0.2, -0.3)} 

R = {(b, 0.1, 0.2, 0.3, -0.1, -0.2, -0.3), (c, 0.4, 0.5, 0.6, -0.1, -0.2, -0.3)} 

S = {(a, 0.1, 0.2, 0.3, -0.1, -0.2, -0.3), (d, 0.4, 0.5, 0.6, -0.1, -0.2, -0.3)} 

The closed neighbourhood of a vertex a contain a, b and d, 
hence the closed neighbourhood degree of a vertex a is 
(0.9, .1.2, 1.5, -0.3, -0.6, -0.9). 

Definition 3.8 Let H = (X, E) be a BSVNHG, then H is 
said to be an n-regular BSVNHG if all the vertices have the 
same open neighbourhood degree n = (n1, n2, n3, n4, n5, n6) 

Definition 3.9 Let H = (X, E) be a BSVNHG, then H is said 
to be m-totally regular BSVNHG if all the vertices have the 
same closed neighbourhood degree m = (m1, m2, m3, m4, 
m5, m6). 

Proposition 3.10 A regular BSVNHG is the generalization 
of regular fuzzy hypergraphs, regular intuitionistic fuzzy 
hypergraphs, regular bipolar fuzzy hypergraphs and regu-
lar single valued neutrosophic hypergraphs. 

Proposition 3.11 A totally regular BSVNHG is the 
generali-zation of totally regular fuzzy hypergraphs, totally 
regular intuitionistic fuzzy hypergraphs, totally regular 
bipolar fuzzy hypergraphs and totally regular single valued 
neu-trosophic hypergraphs. 

Example 3.12 Consider a bipolar single valued neutro-
sophic hypergraphs H = (X, E) where, X = {a, b, c, d} and  

E = {P, Q, R, S} which is defined by 

 P = {(a, 0.8, 0.2, 0.3, -0.1, -0.2, -0.3), (b, 0.8, 0.2, 0.3, -0.1, -0.2, -0.3)} 

 Q = {(b, 0.8, 0.2, 0.3, -0.1, -0.2, -0.3), (c, 0.8, 0.2, 0.3, -0.1, -0.2, -0.3)} 

R = {(c, 0.8, 0.2, 0.3, -0.1, -0.2, -0.3), (d, 0.8, 0.2, 0.3, -0.1, -0.2, -0.3)} 

S = {(d, 0.8, 0.2, 0.3, -0.1, -0.2, -0.3), (a, 0.8, 0.2, 0.3, -0.1, -0.2, -0.3)} 

Here the open neighbourhood degree of every vertex is 
(1.6, 0.4, 0.6, -0.2, -0.4, -0.6) hence H is regular BSVNHG 
and closed neighbourhood degree of every vertex is (2.4, 
0.6, 0.9, -0.3, -0.6, -0.9), Hence H is both regular and total-
ly regular BSVNHG. 

Theorem 3.13 Let H = (X, E) be a BSVNHG which is 
both regular and totally regular BSVNHG then E is constant. 

Proof: Suppose H is an n-regular and m-totally regular 

BSVNHG. Then deg(x) = n = (n1, n2, n3, n4, n5, n6) and deg[x] 

= m = (m1, m2, m3, m4, m5, m6) ∀𝑥 ∈ 𝐸𝑖. Consider deg[x] = 

m. Hence by definition, deg(x) + 𝐸𝑖(x) = m this implies

𝐸𝑖(x) = m – n for all 𝑥 ∈ 𝐸𝑖. Hence E is constant. 

Remark 3.14 The converse of above theorem need not to 
be true in general. 

Example 3.15 Consider a bipolar single valued neutro-
sophic hypergraphs H = (X, E) where, X = {a, b, c, d} and  
E = {P, Q, R, S}, which is defined by 

P = {(a, 0.8, 0.2, 0.3, -0.1, -0.2, -0.3), (b, 0.8, 0.2, 0.3, -0.1, -0.2, -0.3)} 

Q = {(b, 0.8, 0.2, 0.3, -0.1, -0.2, -0.3), (d, 0.8, 0.2, 0.3, -0.1, -0.2, -0.3)} 

R = {(c, 0.8, 0.2, 0.3, -0.1, -0.2, -0.3), (d, 0.8, 0.2, 0.3, -0.1, -0.2, -0.3)} 

S = {(d, 0.8, 0.2, 0.3, -0.1, -0.2, -0.3), (a, 0.8, 0.2, 0.3, -0.1, -0.2, -0.3)} 

Here E is constant but deg(a) = (1.6, 0.4, 0.6, -0.2, -0.4, - 
0.6) and deg(d) = (2.4, 0.6, 0.9, -0.3, -0.6, -0.9) i.e deg(a) 
and deg(d) are not equals hence H is not regular BSVNHG. 
Next deg[a] = (2.4, 0.6, 0.9, -0.3, -0.6, -0.9) and deg[d]= 
(3.2, 0.8, 1.2, -.4, -0.8, -1.2), hence deg[a] and deg[d] are 
not equals hence H is not totally regular BSVNHG, Thus 
that H is neither regular and nor totally regular BSVNHG. 

Theorem 3.16 Let H = (X, E) be a BSVNHG then E is con-

stant on X if and only if following are equivalent, 

(1)  H is regular BSVNHG. 

(2)  H is totally regular BSVNHG. 

1 2 3 4  5 6 𝑖

Proof: Suppose H = (X, E) be a BSVNHG and E is constant 
in H, that is 𝐸𝑖(x) = c = (c , c , c , c , c , c ) ∀𝑥 ∈ 𝐸 . 
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Suppose H is n-regular BSVNHG, then deg(x) = n = (n1, n2, 
n3, n4, n5, n6) ∀𝑥 ∈ 𝐸𝑖, consider deg[x] = deg(x) +𝐸𝑖(x) = n 
+ c ∀𝑥 ∈ 𝐸𝑖, hence H is totally regular BSVNHG. 

Next suppose that H is m-totally regular BSVNHG, then 

deg[x] = m = (m1, m2, m3, m4, m5, m6) for all 𝑥 ∈ 𝐸𝑖, that is 

deg(x) + 𝐸𝑖(x) = m ∀𝑥 ∈ 𝐸𝑖, this implies that  deg(x) = m – c 

∀𝑥 ∈ 𝐸𝑖. Thus H is regular BSVNHG, thus (1) and (2) are 

equivalent. 

Conversely: Assume that (1) and (2) are equivalent. That is 
H is regular BSVNHG if and only if H is totally regular 
BSVNHG. Suppose contrary E is not constant, that is 𝐸𝑖(x) 
and 𝐸𝑖(y) not equals for some x and y in X. Let H = (X, E) 
be n-regular BSVNHG, then deg(x) = n = (n1, n2, n3, n4, n5, 
n6) for all x ∈ 𝐸𝑖. Consider 

deg[x] = deg(x) + 𝐸𝑖(x) = n + 𝐸𝑖(x) 

 deg[y] = deg(y) + 𝐸𝑖( (y) = n + 𝐸𝑖(y) 

Since 𝐸𝑖(x) and 𝐸𝑖(y) are not equals for some x and y in X. 

Hence deg[x] and deg[y] are not equals, thus H is not to-

tally regular BSVNHG, which contradict to our assumption. 

Next let H be totally regular BSVNHG, then deg[x] = 
deg[y], that is deg(x) + 𝐸𝑖(x) = deg(y) + 𝐸𝑖(y) and deg(x) – 
deg(y) = 𝐸𝑖(y) – 𝐸𝑖(x), since RHS of last equation is non-
zero, hence LHS of above equation is also nonzero, thus 
deg(x) and deg(y) are not equals, so H is not regular 
BSVNHG, which is again contradict to our assumption, 
thus our supposition was wrong, hence E must be con-
stant, this completes the proof. 

Definition 3.17 Let H = (X, E) be a regular BSVNHG, 
then the order of BSVNHG H is denoted and defined by  

O(H) = (p, q, r, s, t, u), where 𝑝 = ∑ 𝑃𝑇𝐸𝑖
(𝑥)𝑥 ∈𝑋 , 𝑞 =

∑ 𝑃𝐼𝐸𝑖
(𝑥)𝑥 ∈𝑋 , 𝑟 = ∑ 𝑃𝐹𝐸𝑖

(𝑥),𝑥 ∈𝑋 𝑠 = ∑ 𝑁𝑇𝐸𝑖
(𝑥)𝑥 ∈𝑋 , 𝑡 = ∑ 𝑁𝐼𝐸𝑖

(𝑥)𝑥 ∈𝑋 , 

𝑢 = ∑ 𝑁𝐹𝐸𝑖
(𝑥)𝑥 ∈𝑋 . For every x  ∈ X and size of regular

BSVNHG is denoted and defined by S(H) = ∑ (𝑆𝐸𝑖
)𝑛

𝑖=1 , 

where S(Ei) = (a, b, c, d, e, f) which is defined by 

a = ∑ 𝑃𝑇𝐸𝑖𝑥 ∈𝐸𝑖
(𝑥)

b = ∑ 𝑃𝐼𝐸𝑖𝑥 ∈𝐸𝑖
(𝑥)

c = ∑ 𝑃𝐹𝐸𝑖
(𝑥)𝑥 ∈𝐸𝑖

d = ∑ 𝑁𝑇𝐸𝑖
(𝑥)𝑥 ∈𝐸𝑖

e = ∑ 𝑁𝐼𝐸𝑖𝑥 ∈𝐸𝑖
(𝑥)

f = ∑ 𝑁𝐹𝐸𝑖𝑥 ∈𝐸𝑖
(𝑥)

Example 3.18 Consider a bipolar single valued neutro-

sophic hypergraphs H = (X, E) where, X = {a, b, c, d} and 

E = {P, Q, R, S}, which is defined by 

P = {(a, .8, .2, .3, -.1, -.2, -.3), (b, .8, .2, .3, -.1, -.2, -.3)} 

Q = {(b, .8, .2, .3, -.1, -.2, -.3), (c, .8, .2, .3, -.1, -.2, -.3)} 

R = {(c, .8, .2, .3, -.1, -.2, -.3), (d, .8, .2, .3, -.1, -.2, -.3)} 

S = {(d, .8, .2, .3, -.1, -.2, -.3), (a, .8, .2, .3, -.1, -.2, -.3)} 

Here order and size of H are given (3.2, .8, 1.2, -.4, -.8, - 
1.2) and (6.4, 1.6, 2.4, -.8, -1.6, -2.4) respectively. 

Proposition 3.19 The size of an n-regular BSVNHG H = (H, 

E) is nk/2, where |X|= k.

Proposition 3.20 If H = (X, E) be m-totally regular BSVNHG 

then 2S(H) + O(H) = mk, where |X|= k. 

Corollary 3.21 Let H = (X, E) be a n-regular and m-totally 
regular BSVNHG then O(H) = k(m - n), where |X|=k. 

Proposition 3.22 The dual of n-regular and m-totally regu-
lar BSVNHG H = (X, E) is again an n-regular and m-
totally regular BSVNHG. 

Definition 3.23 A bipolar single valued neutrosophic hy-
pergraph (BSVNHG) is said to be complete BSVNHG if 
for every x in X, N(x) = {x: x in X-{x}}, that is N(x) 
contains all remaining vertices of X except x. 

Example 3.24 Consider a bipolar single valued neutro-
sophic hypergraphs H = (X, E), where X = {a, b, c, d} and 
E = {P, Q, R}, which is defined by 

P = {(a, 0.4, 0.6, 0.3, -0.5, -0.2, -0.3), (c, 0.8, 0.2, 0.3, -0.1, -0.8, -0.3)} 

Q = {(a, 0.8, 0.8, 0.3, -0.1, -0.6, -0.3), (b, 0.8, 0.2, 0.1, -0.1, -0.2, -0.3), (d, 

0.8, 0.2, 0.1, -0.1, -0.9, -0.3)} 

R = {(c, 0.4, 0.9, 0.9, -0.1, -0.2, -0.3), (d, 0.7, 0.2, 0.1, -0.5, -0.9, -0.3), (b, 
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0.4, 0.2, 0.1, -0.8, -0.4, -0.2)}. Here N(a) = {b, c, d} , N(b) = {a, 
c, d}, N(c) = {a, b, d}, N(d) = {a, b, c} hence H is complete 
BSVNHG.

Remark 3.25 In a complete BSVNHG H = (X, E), the 
cardi-nality of N(x) is same for every vertex. 

Theorem 3.26 Every complete BSVNHG H = (X, E) is 
both regular and totally regular if E is constant in H. 

Proof: Let H = (X, E) be complete BSVNHG, suppose E is 

constant in H, so that 𝐸𝑖(x) = c = (c1, c2, c3, c4, c5, c6)
∀𝑥 ∈ 𝐸𝑖, since BSVNHG is complete, then by definition for 

every vertex x in X, N(x) = {x: x in X-{x}}, the open neigh-

bourhood degree of every vertex is same. That is deg(x) = 

n = (n1, n2, n3, n4, n5, n6) ∀𝑥 ∈ 𝐸𝑖. Hence complete 

BSVNHG is regular BSVNHG. Also, deg[x] = deg(x) + 𝐸𝑖(x) = 

n + c ∀𝑥 ∈ 𝐸𝑖. Hence H is totally regular BSVNHG. 

Remark 3.27 Every complete BSVNHG is totally 
regular even if E is not constant. 

Definition 3.28 A BSVNHG is said to be k-uniform if all 
the hyper edges have same cardinality.

Example 3.29 Consider a bipolar single valued neutro-
sophic hypergraphs H = (X, E), where X = {a, b, c, d} and  

E = {P, Q, R}, which is defined by 

P = {(a, 0.8, 0.4, 0.2,-0.4, -0.6, -0.2), (b, 0.7, 0.5, 0.3, -0.7, -0.1, -0.2)} 

Q = {(b, 0.9, 0.4, 0.8, -0.3, -0.2, -0.9), (c, 0.8, 0.4, 0.2, -0.4, -0.3, -0.7)} 

R = {(c, 0.8, 0.6, 0.4, -0.3, -0.7, -0.2), (d, 0.8, 0.9, 0.5, -0.4, -0.8, -0.9)} 

4 Conclusion 

Theoretical concepts of graphs and hypergraphs are uti-
lized by computer science applications. Single valued neu-
trosophic hypergraphs are more flexible than fuzzy hyper-
graphs and intuitionistic fuzzy hypergraphs. The concepts 
of single valued neutrosophic hypergraphs can be applied 
in various areas of engineering and computer science. In 
this paper, we defined the regular and totally regular bipo-
lar single valued neutrosophic hyper graphs. We plan to 
extend our research work to irregular and totally irregular 
on bipolar single valued neutrosophic hyper graphs. 
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1 Introduction

The concept of neutrosophic sets was first introduced by Smaran-
dache [13, 14] as a generalization of intuitionistic fuzzy sets [1] 
where we have the degree of membership, the degree of 
indeterminacy and the degree of non-membership of each 
element in X. After the introduction of the neutrosophic sets, 
neutrosophic set operations have been investigated. Many 
researchers have studied topology on neutrosophic sets, such as 
Smarandache [14] Lupianez [7–10] and Salama [12]. Various 
topologies have been defined on the neutrosophic sets. For some 
of them the De Morgan’s Laws were not valid.

Thus, in this study, we redefine the neutrosophic set oper-
ations and investigate some properties related to these 
definitions. Also, we introduce for the first time the 
neutrosophic interior, neutrosophic closure, neutrosophic 
exterior, neutrosophic boundary and neutrosophic subspace. In 
this paper, we propose to define basic topological structures on 
neutrosophic sets, such that interior, closure, exterior, boundary 
and subspace.

2 Preliminaries

In this section, we will recall the notions of neutrosophic sets
[13]. Moreover, we will give a new approach to neutrosophic set
operations.

Definition 1 [13] A neutrosophic set A on the universe of dis-
course X is defined as

A =
{
〈x, µA(x), σA(x), γA(x)〉 : x ∈ X

}
where µA, σA, γA : X →]−0, 1 + [ and −0 ≤ µA(x) + σA(x) +
γA(x) ≤ 3+ From philosophical point of view, the neutrosophic
set takes the value from real standard or non-standard subsets of
]−0, 1+[. But in real life application in scientific and engineer-
ing problems it is difficult to use neutrosophic set with value from

real standard or non-standard subset of ]−0, 1+[. Hence we con-
sider the neutrosophic set which takes the value from the subset
of [0, 1]. Set of all neutrosophic set over X is denoted by N (X).

Definition 2 Let A,B ∈ N (X). Then,

i. (Inclusion) If µA(x) ≤ µB(x), σA(x) ≥ σB(x) and
νA(x) ≥ νB(x) for all x ∈ X , then A is neutrosophic sub-
set of B and denoted by A v B. (Or we can say that B is a
neutrosophic super set of A.)

ii. (Equality) If A v B and B v A, then A = B.

iii. (Intersection) Neutrosophic intersection ofA andB, denoted
by A uB, and defined by

A uB =
{
〈x, µA(x) ∧ µB(x), σA(x) ∨ σB(x),

νA(x) ∨ νB(x)〉 : x ∈ X
}
.

iv. (Union) Neutrosophic union of A and B, denoted by A tB,
and defined by

A tB =
{
〈x, µA(x) ∨ µB(x), σA(x) ∧ σB(x),
νA(x) ∧ νB(x)〉 : x ∈ X

}
.

v. (Complement) Neutrosophic complement of A is denoted by
Ac and defined by

Ac =
{
〈x, νA(x), 1− σA(x), µA(x)〉 : x ∈ X

}
.

vi. (Universal Set) If µA(x) = 1, σA(x) = 0 and νA(x) = 0
for all x ∈ X , A is said to be neutrosophic universal set,
denoted by X̃ .

vii. (Empty Set) If µA(x) = 0, σA(x) = 1 and νA(x) = 1 for all
x ∈ X , A is said to be neutrosophic empty set, denoted by ∅̃.
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Remark 3 According to Definition 2, X̃ should contain com-
plete knowledge. Hence, its indeterminacy degree and non-
membership degree are 0 and its membership degree is 1. Sim-
ilarly, ∅̃ should contain complete uncertainty. So, its indetermi-
nacy degree and non-membership degree are 1 and its member-
ship degree is 0.

Example 4 Let X = {x, y} and A,B,C ∈ N (X) such that

A =
{
〈x, 0.1, 0.4, 0.3〉, 〈y, 0.5, 0.7, 0.6〉

}
B =

{
〈x, 0.9, 0.2, 0.3〉, 〈y, 0.6, 0.4, 0.5〉

}
C =

{
〈x, 0.5, 0.1, 0.4〉, 〈y, 0.4, 0.3, 0.8〉

}
.

Then,

i. We have that A v B.

ii. Neurosophic union of B and C is

B t C =
{〈
x, (0.9 ∨ 0.5), (0.2 ∧ 0.1), (0.3 ∧ 0.4)

〉
,〈

y, (0.6 ∨ 0.4), (0.4 ∧ 0.3), (0.5 ∧ 0.8)
〉}

=
{
〈x, 0.9, 0.1, 0.3〉, 〈y, 0.6, 0.3, 0.5〉

}
.

iii. Neurosophic intersection of A and C is

A u C =
{〈
x, (0.1 ∧ 0.5), (0.4 ∨ 0.1), (0.3 ∨ 0.4)

〉
,〈

y, (0.5 ∧ 0.4), (0.7 ∨ 0.3), (0.6 ∨ 0.8)
〉}

=
{
〈x, 0.1, 0.4, 0.3, 〉, 〈y, 0.5, 0.7, 0.6〉

}
.

iv. Neutrosophic complement of C is

Cc =
{
〈x, 0.5, 0.1, 0.4〉, 〈y, 0.4, 0.3, 0.8〉

}c
=

{
〈x, 0.4, 1− 0.1, 0.5〉, 〈y, 0.8, 1− 0.3, 0.4〉

}
=

{
〈x, 0.4, 0.9, 0.5〉, 〈y, 0.8, 0.7, 0.4〉

}
.

Theorem 5 Let A,B ∈ N (X). Then, followings hold.

i. A uA = A and A tA = A

ii. A uB = B uA and A tB = B tA

iii. A u ∅̃ = ∅̃ and A u X̃ = A

iv. A t ∅̃ = A and A t X̃ = X̃

v. Au(BuC) = (AuB)uC andAt(BtC) = (AtB)tC

vi. (Ac)c = A

Proof. It is clear.

Theorem 6 Let A,B ∈ N (X). Then, De Morgan’s law is valid.

i.
(⊔

i∈I Ai

)c
=

d
i∈I A

c
i

ii.
(d

i∈I Ai

)c
=
⊔
i∈I A

c
i

Proof.

i. From Definition 2 v.(⊔
i∈I

Ai

)c
=

{〈
x,
∨
i∈I

µAi
(x),

∧
i∈I

σAi
(x),

∧
i∈I

νAi
(x)
〉
: x ∈ X

}c
=

{〈
x,
∧
i∈I

νAi
(x), 1−

∧
i∈I

σAi
(x),

∨
i∈I

µAi(x)
〉
: x ∈ X

}
=

l

i∈I
Aci

ii. It can proved by similar way to i.

Theorem 7 Let B ∈ N (X) and {Ai : i ∈ I} ⊆ N (X). Then,

i. B u
(⊔

i∈I Ai

)
=
⊔
i∈I(B uAi)

ii. B t
(d

i∈iAi

)
=

d
i∈I(B tAi).

Proof. It can be proved easily from Definition 2.

3 Neutrosophic topological spaces
In this section, we will introduce neutrosophic topological space 
and give their properties.

Definition 8 Let τ ⊆ N (X), then τ is called a neutrosophic
topology on X if

i. X̃ and ∅̃ belong to τ ,

ii. The union of any number of neutrosophic sets in τ belongs
to τ ,

iii. The intersection of any two neutrosophic sets in τ belongs to
τ .

The pair (X, τ) is called a neutrosophic topological space over
X . Moreover, the members of τ are said to be neutrosophic open
sets in X . If Ac ∈ τ , then A ∈ N (X) is said to be neutrosophic
closed set in X

Theorem 9 Let (X, τ) be a neutrosophic topological space over
X . Then

i. ∅̃ and X̃ are neutrosophic closed sets over X .
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ii. The intersection of any number of neutrosophic closed sets
is a neutrosophic closed set over X .

iii. The union of any two neutrosophic closed sets is a neutro-
sophic closed set over X .

Proof. Proof is clear.

Example 10 Let τ =
{
∅̃, X̃

}
and σ = N (X). Then, (X, τ) and

(X,σ) are two neutrosophic topological spaces over X . More-
over, they are called neutrosophic discrete topological space and
neutrosophic indiscrete topological space over X , respectively.

Example 11 Let X = {a, b} and A ∈ N (X) such that

A =
{
〈a, 0.2, 0.4, 0.6〉, 〈b, 0.1, 0.3, 0.5〉

}
.

Then, τ = {∅̃, X̃, A} is a neutrosophic topology on X .

Theorem 12 Let (X, τ1) and (X, τ2) be two neutrosophic topo-
logical spaces over X , then (X, τ1 ∩ τ2) is a neutrosophic topo-
logical space over X .

Proof. Let (X, τ1) and (X, τ2) be two neutrosophic topological
spaces over X . It can be seen clearly that ∅̃, X̃ ∈ τ1 ∩ τ2. If
A,B ∈ τ1 ∩ τ2 then, A,B ∈ τ1 and A,B ∈ τ2. It is given that
A u B ∈ τ1 and A u B ∈ τ2. Thus, A u B ∈ τ1 ∩ τ2. Let
{Ai : i ∈ I} ⊆ τ1 ∩ τ2. Then, Ai ∈ τ1 ∩ τ2 for all i ∈ I . Thus,
Ai ∈ τ1 andAi ∈ τ2 for all i ∈ I . So, we have

⊔
i∈I Ai ∈ τ1∩τ2.

Corollary 13 Let
{
(X, τi) : i ∈ I

}
be a family of neutrosophic

topological spaces over X . Then, (X,
⋂
i∈I τi) is a neutrosophic

topological space over X .

Proof. It can proved similar way Theorem 12.

Remark 14 If we get the union operation instead of the intersec-
tion operation in Theorem 12, the claim may not be correct. This
situation can be seen following example.

Example 15 Let X = {a, b} and A,B ∈ N (X) such that

A =
{
〈a, 0.2, 0.4, 0.6〉, 〈b, 0.1, 0.3, 0.5〉

}
B =

{
〈a, 0.4, 0.6, 0.8〉, 〈b, 0.3, 0.5, 0.7〉

}
.

Then, τ1 = {∅̃, X̃, A} and τ2 = {∅̃, X̃, B} are two neutrosophic
topology on X . But, τ1 ∪ τ2 = {∅̃, X̃, A,B} is not neutrosophic
topology on X . Because, A u B /∈ τ1 ∪ τ2. So, τ1 ∪ τ2 is not
neutrosophic topological space over X .

Definition 16 Let (X, τ) be a neutrosophic topological space
over X and A ∈ N (X). Then, the neutrosophic interior of A,
denoted by int(A) is the union of all neutrosophic open subsets
of A. Clearly int(A) is the biggest neutrosophic open set over X
which containing A.

Theorem 17 Let (X, τ) be a neutrosophic topological space
over X and A,B ∈ N (X). Then

i. int(∅̃) = ∅̃ and int(X̃) = X̃ .

ii. int(A) v A.

iii. A is a neutrosophic open set if and only if A = int(A).

iv. int(int(A)) = int(A).

v. A v B implies int(A) v int(B).

vi. int(A) t int(B) v int(A tB).

vii. int(A uB) = int(A) u int(B).

Proof. i. and ii. are obvious.

iii. If A is a neutrosophic open set over X , then A is itself a
neutrosophic open set overX which containsA. So,A is the
largest neutrosophic open set contained in A and int(A) =
A. Conversely, suppose that int(A) = A. Then, A ∈ τ .

iv. Let int(A) = B. Then, int(B) = B from iii. and then,
int(int(A)) = int(A).

v. Suppose that A v B. As int(A) v A v B. int(A) is a
neutrosophic open subset of B, so from Definition 16, we
have that int(A) v int(B).

vi. It is clear that A v AtB and B v AtB. Thus, int(A) v
int(A t B) and int(B) v int(A t B). So, we have that
int(A) t int(B) v int(A tB) by v.

vii. It is known that int(A u B) v int(A) and int(A u B) v
int(B) by v. so that int(A u B) v int(A) u int(B).
Also, from int(A) v A and int(B) v B, we have
int(A) u int(B) v A uB. These imply that int(A uB) =
int(A) u int(B).

Example 18 Let X = {a, b} and A,B,C ∈ N (X) such that

A =
{
〈a, 0.5, 0.5, 0.5〉, 〈b, 0.3, 0.3, 0.3〉

}
B =

{
〈a, 0.4, 0.4, 0.4〉, 〈b, 0.6, 0.6, 0.6〉

}
C =

{
〈a, 0.7, 0.7, 0.7〉, 〈b, 0.2, 0.2, 0.2〉

}
.

Then, τ =
{
∅̃, X̃, A

}
is a neutrosophic soft topological space

overX . Therefore, int(B) = ∅̃, int(C) = ∅̃ and int(BtC) = A.
So, int(B) t int(C) 6= int(B t C).

Definition 19 Let (X, τ) be a neutrosophic topological space
over X and A ∈ N (X). Then, the neutrosophic closure of A,
denoted by cl(A) is the intersection of all neutrosophic closed su-
per sets of A. Clearly cl(A) is the smallest neutrosophic closed
set over X which contains A.

Example 20 In the Example 10, according to the neutrosophic
topological space (X,σ), neutrosophic interior and neutrosophic
closure of each element of N (X) is equal to itself.
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Theorem 21 Let (X, τ) be a neutrosophic topological space
over X and A,B ∈ N (X). Then

i. cl(∅̃) = ∅̃ and cl(X̃) = X̃ .

ii. A v cl(A).

iii. A is a neutrosophic closed set if and only if A = cl(A).

iv. cl(cl(A)) = cl(A).

v. A v B implies cl(A) v cl(B).

vi. cl(A tB) = cl(A) t cl(B).

vii. cl(A uB) v cl(A) u cl(B).

Proof. i. and ii. are clear. Moreover, proofs of vi. and vii. are
similar to Theorem 17 vi. and vii..

iii. If A is a neutrosophic closed set over X then A is itself a
neutrosophic closed set over X which contains A. There-
fore, A is the smallest neutrosophic closed set containing A
and A = cl(A). Conversely, suppose that A = cl(A). As A
is a neutrosophic closed set, so A is a neutrosophic closed
set over X .

iv. A is a neutrosophic closed set so by iii., then we have A =
cl(A).

v. Suppose that A v B. Then every neutrosophic closed su-
per set of B will also contain A. This means that every
neutrosophic closed super set of B is also a neutrosophic
closed super set of A. Hence the neutrosophic intersection
of neutrosophic closed super sets of A is contained in the
neutrosophic intersection of neutrosophic closed super sets
of B. Thus cl(A) v cl(B).

Example 22 Let X = {a, b} and A,B ∈ N (X) such that

A =
{
〈a, 0.5, 0.5, 0.5〉, 〈b, 0.4, 0.4, 0.4〉

}
B =

{
〈a, 0.6, 0.6, 0.6〉, 〈b, 0.3, 0.3, 0.3〉

}
.

Then,
τ =

{
∅̃, X̃, A,B,A uB,A tB

}
is a neutrosophic topology on X . Moreover, set of neutrosophic
closed sets over X is{

X̃, ∅̃, Ac, Bc, (A uB)c, (A tB)c
}
.

Therefore

Ac =
{
〈a, 0.5, 0.5, 0.5〉, 〈b, 0.4, 0.6, 0.4〉

}
Bc =

{
〈a, 0.6, 0.4, 0.6〉, 〈b, 0.3, 0.7, 0.3〉

}
(A uB)c =

{
〈a, 0.6, 0.4, 0.5〉, 〈b, 0.4, 0.6, 0.4〉

}
(A tB)c =

{
〈a, 0.5, 0.5, 0.6〉, 〈b, 0.3, 0.7, 0.4〉

}
.

Thus, we have that

A uB =
{
〈a, 0.5, 0.5, 0.6〉, 〈b, 0.3, 0.7, 0.4〉

}
cl(A) = X̃

cl(B) = X̃

cl(A uB) = (A tB)c

cl(A uB) v cl(A) u cl(B).

Remark 23 Example 18 and Example 22 show that there is not
equality in Theorem 17 vi. and Theorem 21 vii.

Theorem 24 Let (X, τ) be a neutrosophic topological space
over X and A,B ∈ N (X). Then

i. int(Ac) = (cl(A))c,

ii. cl(Ac) = (int(A))c.

Proof. Let A,B ∈ N (X). Then,

i. It is known that
cl(A) =

l

Bc∈τ
AvB

B.

Therefore, we have that

(cl(A))c =
⊔
Bc∈τ
BcvAc

Bc.

Right hand of above equality is int(Ac), thus int(Ac) =
(cl(A))c.

ii. If it is taken Ac instead of A in i., then it can be seen clearly
that (cl(Ac))c = int((Ac)c) = int(A). So, cl(Ac) =
(int(A))c.

Definition 25 Let (X, τ) be a neutrosophic topological space
over X then the neutrosophic exterior of a neutrosophic set A
overX is denoted by ext(A) and is defined as ext(A) = int(Ac).

Theorem 26 Let (X, τ) be a neutrosophic topological space
over X and A,B ∈ N (X). Then

i. ext(A tB) = ext(A) u ext(B)

ii. ext(A) t ext(B) v ext(A uB)

Proof. Let A,B ∈ N (X). Then,

i. By Definition 25, Theorem 6 and Theorem 17 vii.

ext(A tB) = int((A tB)c)

= int(Ac uBc)
= int(Ac) u int(Bc)

= ext(A) u ext(B)

ii. It is similar to i.
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Definition 27 Let (X, τ) be a neutrosophic topological space
over X and A ∈ N (X). Then, the neutrosophic boundary of
a neutrosophic set A over X is denoted by fr(A) and is defined
as fr(A) = cl(A)ucl(Ac). It must be noted that fr(A) = fr(Ac).

Example 28 Let consider the neutrosophic sets A and B in the
Example 22. According to the neutrosophic topology in Example
11 we have fr(A) = ∅̃ and fr(C) = (A uB)c.

Theorem 29 Let (X, τ) be a neutrosophic topological space
over X and A,B ∈ N (X). Then

i. (fr(A))c = ext(A) t int(A).

ii. cl(A) = int(A) t fr(A).

Proof. Let A,B ∈ N (X). Then,

i. By Theorem 24 i., we have

(fr(A))c = (cl(A) u fr(Ac))c

= (cl(A))c t (fr(Ac))c

= (cl(A))c t ((int(A))c)c

= ext(A) t int(A).

ii. By Theorem 24 i., we have

int(A) t fr(A) = int(A) t (cl(A) u fr(Ac))

= (int(A) t cl(A)) u (int(A) t fr(Ac))

= cl(A) u (int(A) t (int(A))c)

= cl(A) u X̃
= cl(A).

Theorem 30 Let (X, τ) be a neutrosophic topological space
over X and A ∈ N (X). Then

i. A is a neutrosophic open set over X if and only if A u
fr(A) = ∅̃.

ii. A is a neutrosophic closed set over X if and only if fr(A) v
A.

Proof. Let A ∈ N (X). Then

i. Assume that A is a neutrosophic open set over X . Thus
int(A) = A. By Theorem 24, fr(A) = cl(A) u fr(Ac) =
cl(A) u (int(A))c. So,

fr(A) u int(A) = cl(A) u (int(A))c u int(A)

= cl(A) uAc uA
= ∅̃.

Conversely, letAu fr(A) = ∅̃. Then,Aucl(A)u fr(Ac) = ∅̃
or A u fr(Ac) = ∅̃ or cl(A) v Ac which implies Ac is a
neutrosophic set and so A is a neutrosophic open set.

ii. Let A be a neutrosophic closed set. Then, cl(A) = A.
By Definition 27, fr(A) = cl(A) u fr(Ac) v cl(A) = A.
Therefore, fr(A) v A. Conversely, fr(A) v A. Then
fr(A)uAc = ∅̃. From fr(A) = fr(Ac), fr(Ac)uAc = ∅̃. By
i., Ac is a neutrosophic open set and so A is a neutrosophic
closed set.

Theorem 31 Let (X, τ) be a neutrosophic topological space
over X and A ∈ N (X). Then

i. fr(A) u int(A) = ∅̃

ii. fr(int(A)) v fr(A)

Proof. Let A ∈ N (X). Then,

i. From Theorem 30 i., it is clear.

ii. By Theorem 24 ii.,

fr(int(A)) = cl(int(A)) u cl(int(A))

= cl(int(A)) u fr(Ac)

v cl(A) u fr(Ac)

= fr(A).

Definition 32 Let (X, τ) be a neutrosophic topological space
and Y be a non-empty subset of X . Then, a neutrosophic rel-
ative topology on Y is defined by

τY =
{
A u Ỹ : A ∈ τ

}
where

Ỹ (x) =

{
〈1, 0, 0〉, x ∈ Y
〈0, 1, 1〉, otherwise.

Thus, (Y, τY ) is called a neutrosophic subspace of (X, τ).

Example 33 Let X = {a, b, c}, Y = {a, b} ⊆ X and A,B ∈
N (X) such that

A =
{
〈a, 0.4, 0.2, 0.2〉, 〈b, 0.5, 0.4, 0.6〉, 〈c, 0.2, 0.5, 0.7〉

}
B =

{
〈a, 0.4, 0.5, 0.3〉, 〈b, 0.5, 0.6, 0.5〉, 〈c, 0.3, 0.7, 0.8〉

}
.

Then,
τ = {∅̃, X̃, A,B,A uB,A tB}

is a neutrosophic topology on X . Therefore

τY = {∅̃, Ỹ , C,M,L,K}

is a neutrosophic relative topology on Y such that C = Ỹ u A,
M = Ỹ uB, L = Ỹ u (A uB) and K = Ỹ u (A tB).
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In this work, we have redefined the neutrosophic set operations 
in accordance with neutrosophic topological structures. Then, 
we have presented some properties of these operations. We have 
also investigated neutrosophic topological structures of 
neutrosophic sets. Hence, we hope that the findings in this paper 
will help researchers enhance and promote the further study on 
neutrosophic topology.
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1 Introduction

Neutrosophy has laid the foundation for a whole family of new 
mathematical theories generalizing both their crisp and fuzzy 
counterparts, such as a neutrosophic set theory in [9, 11, 10]. It 
followed the introduction of the neutrosophic set concepts in [13, 
12, 14, 15, 5, 7, 8, 16, 17] and the fundamental definitions of 
neutrosophic set operations. Smarandache [9, 11] and Salama et 
al. in [13, 18] provide a natural foundation for treating mathem-
atically the neutrosophic phenomena which exist pervasively in 
our real world and for building new branches of neutrosophic 
mathematics. 
In this paper, we introduce the concept of neutrosophic crisp sets. 
We investigate the properties of continuous, open and closed 
maps in the neutrosophic crisp topological spaces, also give 
relations between neutrosophic crisp pre-continuous mapping 
and neutrosophic crisp semi-precontinuous mapping and some 
other continuous mapping, and show that the category of 
intuitionistic fuzzy topological spaces is a bireflective full 
subcategory of neutrosophic crisp topological spaces.

2 Terminology

We recollect some relevant basic preliminaries, and in partic-
ular, the work of Smarandache in [9, 11, 10], and Salama et
al. [13, 12, 14, 15, 5, 7, 8, 16, 17, 6]. Smarandache intro-
duced the neutrosophic components T , I , F which represent the
membership, indeterminacy, and non-membership values respec-
tively, where c−0, 1+b is a non-standard unit interval. Hanafy
and Salama et al.[8, 16] considered some possible definitions for
basic concepts of the neutrosophic crisp set and its operations.

Definition 1 [20] Let X be a non-empty fixed set. A neutro-

sophic crisp set (NCS) A is an object having the form A =
{A1, A2, A3}, where A1, A2, and A3 are subsets of X satisfying
A1 ∩A2 = φ, A1 ∩A3 = φ, and A2 ∩A1 = φ.

Remark 2 [20] Neutrosophic crisp set A = {A1, A2, A3} can
be identified as an ordered triple {A1, A2, A3} where A1, A2,
and A3 are subsets on X , and one can define several relations
and operations between NCSs.

Types of NCSs φN and XN [20] in X as follows:
1- φN may be defined in many ways as a NCS, as follows

1. φN = 〈φ, φ,X〉 or

2. φN = 〈φ,X,X〉 or

3. φN = 〈φ,X, φ〉 or

4. φN = 〈φ, φ, φ〉

2- XN may be defined in many ways as a NCS, as follows

1. XN = 〈X,φ, φ〉 or

2. XN = 〈X,X, φ〉 or

3. XN = 〈X,X,X〉 or

Definition 3 [20] Let X is a non-empty set, and the NCSs A
and B in the form A = {A1, A2, A3}, B = {B1, B2, B3}. then
we may consider two possible definition for subsets A ⊆ B, may
defined in two ways:

1. A ⊆ B ⇔ A1 ⊆ B1, A2 ⊆ B2, and A3 ⊇ B3 or

2. A ⊆ B ⇔ A1 ⊆ B1, A2 ⊇ B2, and A3 ⊇ B3

Definition 4 [20] Let X is a non-empty set, and the NCSs A
and B in the form A = {A1, A2, A3}, B = {B1, B2, B3}. Then
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1. A ∩B may defined in two way:

i) A ∩B = 〈A1 ∩B1, A2 ∩B2, A3 ∪B3〉
ii) A ∩B = 〈A1 ∩B1, A2 ∪B2, A3 ∪B3〉

2. A ∪B may defined in two way:

i) A ∪B = 〈A1 ∪B1, A2 ∩B2, A3 ∩B3〉
ii) A ∪B = 〈A1 ∪B1, A2 ∪B2, A3 ∩B3〉

3. [ ]A = 〈A1, A2, A
c
1〉

4. <> A = 〈Ac3, A2, A3〉

Definition 5 [20] A neutrosophic crisp topology (NCT ) on a
non-empty set X is a family Γ of neutrosophic crisp subsets in X
satisfying the following axioms.

1. φN , XN ∈ Γ.

2. A1 ∩A2 ∈ Γ, for any A1 and A2 ∈ Γ.

3. ∪Aj ∈ Γ, ∀{Aj : j ∈ J} ⊆ Γ.

In this case the pair (X,Γ) is said to be a neutrosophic crisp
topological space (NCTS) in X . The elements in Γ are said to
be neutrosophic crisp open sets (NCOSs) in Y . A neutrosophic
crisp set F is closed (NCCS) if and only if its complement F c

is an open neutrosophic crisp set.

Remark 6 [20] Neutrosophic crisp topological spaces are very
natural generalizations of topological spaces and intuitionistic
topological spaces, and they allow more general functions to be
members of topology:

TS ⇒ ITS ⇒ NCTS

Definition 7 [20] Let (X,Γ) be NCTS and A = {A1, A2, A3}
be a NCS in X . Then the neutrosophic crisp closure
of A (NCcl(A) for short) and neutrosophic crisp interior
(NCint(A) for short) of A are defined by
NCcl(A) = ∩{K : is aNCCS inX andA ⊆ K}
NCint(A) = ∪{G : Gis aNCOS inX andG ⊆ A},
where NCS is a neutrosophic crisp closed set, and NCOS is a
neutrosophic crisp open set. Note that for any NCS in (X,Γ),
we have
(1) NCcl(Ac) = (NCcl(A))c, and
(2) NCint(Ac) = (NCint(A))c

It can be also shown that NCcl(A) is NCCS (neutrosophic
crisp closed set) and NCint(A) is a CNOS in X .

1. A is in X if and only if NCcl(A) ⊇ A.

2. A is a NCOS in X if and only if NCint(A) = A.

Definition 8 [20] Let (X,Γ) be a NCTS and A, B be a NCS
in X , then the following properties hold:

1. NCint(A) ⊆ A,

2. A ⊆ NCcl(A).

3. A ⊆ B =⇒ NCint(A) ⊆ NCint(B),

4. A ⊆ B =⇒ NCcl(A) ⊆ NCcl(B),

5. NCint(A ∩B) = NCint(A) ∩NCint(B),

6. NCint(A ∪B) = NCint(A) ∪NCint(B),

7. NCint(XN ) = XN , NCcl(φN) = φN

Definition 9 [21] Let (X,Γ) be a NCTS and A =
{A1, A2, A3} be a NCS in X , then A is said to be

1. Neutrosophic crisp α-open set (NCαOS) iff A ⊆
NCint(NCcl(NCint(A))),

2. Neutrosophic crisp semi-open set (NCSOS) iff A ⊆
NCcl(NCint(A)).

3. Neutrosophic crisp pre-open set (NCPOS) iff A ⊆
NCint(NCcl(A)).

The class of all neutrosophic crisp α-open sets NCΓα which is
finer than NCΓ, the class of all neutrosophic crisp semi-open
sets NCΓs, and the class of all neutrosophic crisp pre-open sets
NCΓp.

Definition 10 [20] Let (X,Γ) be NCTS and A =
{A1, A2, A3} be a NCS in X . Then the α-neutrosophic
crisp closure of A (αNCCl(A) for short) and α-neutrosophic
crisp interior (αNCInt(A) for short) of A are defined by

1. αNCcl(A) = ∩{K : is anNCαCS inX andA ⊆ K},

2. αNCint(A) = ∪{G : Gis anNCαOS inX andG ⊆
A},

Proposition 11 [20] Let (X,Γ) be NCTS and A, B be two
neutrosophic crisp sets in . Then the following properties hold:

1. NCint(A) ⊆ A,

2. A ⊆ NCcl(A),

3. A ⊆ B ⇒ NCint(A) ⊆ NCint(B),

4. A ⊆ B ⇒ NCcl(A) ⊆ NCcl(B),

5. NCint(A ∩B) = NCint(A) ∩NCint(B),

6. NCcl(A ∪B) = NCcl(A) ∪NCcl(B)

7. NCint(XN ) = XN ,

8. NCcl(φN ) = φN

Example 12 Let X = {a, b, c, d}, φN , XN be any types of
theuniversal and empty subsets, and A, B two neutrosophic
crisp subsets on X defined by A = 〈{a}, {b, d}, {c}〉, B =
〈{a}, {b}, {c, d}〉 then the family Γ = {φN , XN , A,B} is a neu-
trosophic crisp topology on X .
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3 Neutrosophic Crisp Open Set

In this section, we will present an equivalent definition to Neu-
trosophic crisp α-open set and prove many special properties of 
it. Moreover, we will explain the relationship between different 
classes of neutrosophic crisp open sets by diagram.

Definition 13 Let (X,Γ) be a NCTS and A = {A1, A2, A3}
be a NCS in X , then A is said to be

1. Neutrosophic crisp feebly-open (NCFOS)if there is a Neu-
trosophic crisp open set U such that U ⊆ A ⊆ sNCcl(U),
where sNCcl(U) is denote neutrosophic closure with re-
spect to NCΓs, is defined by the intersection of all Neutro-
sophic crisp semi closed sets containing A.

2. Neutrosophic crisp β-open set (NCβOS) iff A ⊆
NCcl(NCint(NCcl(A))),

3. Neutrosophic crisp semipre-open set (NCSPOs) iff there
exists a neutrosophic crisp preopen set U such that U ⊆
A ⊆ NCcl(U).

4. Neutrosophic crisp regular-open set (NCROS) iff A =
NCint(NCcl(A)).

5. Neutrosophic crisp semiα-open (NCSαOS) iff there exists
a Neutrosophic crisp α-open set U such that U ⊆ A ⊆
NCcl(U)

The class of all neutrosophic crisp feebly-open sets NCΓfeebly,
the calls all neutrosophic crisp β-open sets NCΓβ , the class of
all neutrosophic crisp semipre-open sets NCΓsp, the class of all
neutrosophic crisp regular-open sets NCΓr, and the class of all
neutrosophic crisp semiα-open sets NCΓsα.

A neutrosophic crisp A is said to be a neutrosophic
crisp semi-closed set, neutrosophic crisp α-closed set, neu-
trosophic crisp preclosed set, and neutrosophic crisp regu-
lar closed set, Neutrosophic crisp feebly-open, Neutrosophic
crisp β-open set, Neutrosophic crisp semipre-open set, Neutro-
sophic crisp semiα-open respectively ((NCSCS), (NCαCS),
(NCPCS),(NCRCS),(NCFCS),(NCβCS),(NCSPCs),
(NCSαCS), see the following table.

Table of Abbreviations
Abbreviations Neutrosophic crisp

open sets
NCFOS Neutrosophic crisp

feebly-open
NCβOS Neutrosophic crisp

β-open
NCSPOs Neutrosophic crisp

semipre-open
NCROS Neutrosophic crisp

regular-open
NCSαOS Neutrosophic crisp

semiα-open
NCαOS Neutrosophic crisp

α-open set
NCSOS Neutrosophic crisp

semi-open
NCPOS Neutrosophic crisp

pre-open

Remark 14 From above the following implication and none of
these implications is reversible as shown by examples given be-
low

(NCROS) (NCPOS)

NCopen (NCαOS)

(NCFOS) (NCSPOs)

(NCSOS) (NCβOS)

Example 15 Let X = {a, b, c, d}, φN , XN be any types of the
universal and empty subset, and A1 = 〈{a}, {b}, {c}〉 A2 =
〈{a}, {b, d}, {c}〉, then the family Γ = {φN , XN , A1, A2} is a
neutrosophic crisp topology on X . The NCS A1 & and A2 are
neutrosophic crisp open (NCOS), then its neutrosophic crisp α-
open sets i.e (A ⊆ NCint(NCcl(NCint(A)))) neutrosophic
crisp pre-open sets i.e (A ⊆ NCint(NCcl(A))), neutrosophic
crisp semi-open sets i.e (A ⊆ NCcl(NCint(A))). Also A2

is neutrosophic crisp β-open sets, hence its Neutrosophic crisp
semipre-open set.
If A3 = 〈{a}, {d}, {c}〉, then its clear A3 neutrosophic crisp α-
open set but not neutrosophic crisp open set.
If A4 = 〈{a, b}, {c}, {d}〉, then A4 neutrosophic crisp pre-open
set but not neutrosophic crisp regular-open set, and we can see
also that A4 is neutrosophic crisp β-open but not neutrosophic
crisp semi-open set.

Theorem 16 An neutrosophic crisp A in a NCTS (X,Γ) is a
NCαOS if and only if it is both a (NCSOS) and a (NCPOS).
Proof. Necessity follows from the diagram given above. Sup-
pose that A is both a (NCSOS) and a (NCPOS). Then
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A ⊆ cl(int(A)), and so

cl(A) ⊆ cl(cl(int(A))) = cl(int(A)).

It follows that A ⊆ int(cl(A)) ⊆ int(cl(int(A))), so that A is a
(NCαOS). We give condition(s) for aNCS to be a (NCαOS).

Theorem 17 Let A be a NCS in a NCTS (X,Γ). If B is
a (NCSOS) such that B ⊆ A ⊆ int(cl(B)), then A is a
(NCαOS).
Proof. Since B is a (NCSOS), we have B ⊆ cl(int(B)). Thus,
A ⊂ int(cl(B)) ⊆ int(cl(cl(int(B)))) ⊆ int(cl(int(B))) ,and
so A is a (NCαOS).

Lemma 18 Any union of (NCαOS) (resp., (NCPOS)) is a
(NCαOS) (resp., (NCPOS)).
Proof. The proof is straightforward.

Definition 19 Let 〈ai1, ai2, ai3〉 ⊆ X . A neutrosophic crisp
point (NCP for short) p(a1, a2, a3) of X is a NCS of X defined
by ai1∩ai2 = φ, ai1∩ai3 = φ, ai2∩ai3 = φ. Let p(ai1, ai2, ai3)
be a NCP of a NCTS (X,Γ). An NCS A of X is said to be
a neutrosophic crisp neighborhood (NCN) of p(ai1, ai2, ai3) if
there exists aNCOS B inX such that p(ai1, ai2, ai3) ∈ B ⊆ A.

Theorem 20 Let (X,Γ) be aNCTS. Then a neutrosophic crisp
A of X is a neutrosophic crisp α-open (resp., neutrosophic crisp
pre-open) if and only if for every (NCP )P(ai1,ai2,ai3) ∈ A,
there exists a (NCαOS) (resp., (NCPOS)Bp(α,β)) such that
P(ai1,ai2,ai3) ∈ Bp(ai1,ai2,ai3) ⊆ A.
Proof. If A is a (NCαOS) (resp., (NCPOS)), then we may
take Bp(α,β = A for every P(ai1,ai2,ai3) ∈ A. Conversely
assume that for every (NCPOS)P(ai1,ai2,ai3) ∈ A, there ex-
ists a (NCαOS) (resp., (NCPOS)) Bp(ai1,ai2,ai3 such that
P(ai1,ai2,ai3) ∈ Bp(ai1,ai2,ai3 ⊆ A. Then,

A =
⋃
{P(ai1,ai2,ai3)|P(ai1,ai2,ai3) ∈ A} ⊆⋃

{Bp(ai1,ai2,ai3)|P(ai1,ai2,ai3) ∈ A} ⊆ A

Theorem 21 Let (X,Γ) be a NCTS,

1. If V ∈ NCSOS(X) and A ∈ NCαOS(X), then V ∩A ∈
NCSOS(X).

2. If V ∈ NCPOS(X) and A ∈ NCαOS(X), then V ∩A ∈
NCPOS(X).

Proof. (1) Let V ∈ NCSOS(X) and A ∈ NCαOS(X). Then
we obtain,

V ∩A ⊂NCcl(NCint(V )) ∩NCnt(NCcl(NCint(A)))

⊂ NCcl[NCint(V ) ∩NCint(NCcl(NCint(A)))]

⊂ NCcl[NCint(V ) ∩NCcl(NCint(A))]

⊂ NCcl[NCcl[NCint(V ) ∩NCint(A)]]

⊂ NCcl[NCint(V ∩A)].

This shows that V ∩A ∈ NCSOS(X)
(2) Let V ∈ NCPOS(X) and A ∈ NCαOS(X). Then we
obtain,

V ∩A ⊂NCint(NCcl(V )) ∩NCint(NCcl(NCint(A)))

= NCint[NCint(V ) ∩NCcl(NCint(A))]

⊂ NCint[NCcl(NCint(V ) ∩NCint(A))]

⊂ NCint[NCcl[NCCL(V ) ∩NCint(A)]]

⊂ NCint[NCcl[NCCL[V ∩NCint(A)]]]

⊂ NCint[NCcl[V ∩A]].

This shows that V ∩A ∈ NCPOS(X).

Theorem 22 Let A be a subset of a neutrosophic crisp topolog-
ical space (X,Γ). Then the following properties hold:

1. A subset A of X is NCαOS if and only if it is NCPOS
and NCSOS,

2. If A is NCSOS, then A is NCβOS.

3. If A is NCPOS, then A is NCβOS.

Proof. (1) Necessity: This is obvious.
Sufficiency: Let A be NCSOS and NCPOS. Then we have

A ⊆ NCint(NCcl(A))

⊆ NCint(NCcl(NCcl(NCint(A))))

⊆ NCint(NCcl(NCint(A))).

This shows that A is NCαOS.
(2) Since A is NCSOS, we have

A ⊆ NCcl(NCint(A))

⊆ NCcl(NCint(A))

⊆ NCcl(NCint(c(A)))

This shows that A is NCβOS.
(3) The proof is obvious.

Definition 23 Let (X,Γ) be NCTS and A = {A1, A2, A3}
be a NCS in X . Then the ∗-neutrosophic crisp closure of
A (∗ − NCCl(A) for short) and ∗-neutrosophic crisp interior
(∗ −NCInt(A) for short) of A are defined by

1. pNCcl(A) = ∩{K : is aNCPCS inX andA ⊆ K},

2. pNCint(A) = ∪{G : Gis aNCPOS inX andG ⊆ A},

3. sNCcl(A) = ∩{K : is aNCSCS inX andA ⊆ K},

4. sNCint(A) = ∪{G : Gis aNCSOS inX andG ⊆ A},

5. βNCcl(A) = ∩{K : is aNCβCS inX andA ⊆ K},

6. βNCint(A) = ∪{G : Gis aNCβOS inX andG ⊆ A},
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7. rNCcl(A) = ∩{K : is aNCRCS inX andA ⊆ K},

8. rNCint(A) = ∪{G : Gis aNCROS inX andG ⊆ A},

Theorem 24 For any neutrosophic crisp subset A of NCT S X. 
A is said to be neutrosophic crisp α-open set if and only if there 
exists a neutrosophic crisp open set G such that G ⊆ A ⊆ 
NCint(NCcl(G)).
Proof. Necessity : If A be a neutrosophic crisp α-open set =⇒ 
A ⊆ NCint(NCcl(A)). Hence G ⊆ A ⊆ NCint(NCcl(G)), 
where G = NCint(A)
Sufficiency :  obvious.
This completes the proof of the theorem.

Theorem 25 For any neutrosophic crisp subset of NCΓ X , the
following properties are equivalent:

1. A ∈ NCαOS(X).

2. There exists a neutrosophic crisp open set say G such that
G ⊆ A ⊆ NCcl(NCint(NCcl(G))).

3. A ⊆ NCcl(NCint(NCcl(A)))

4. NCcl(A) = NCcl(NCint(NCcl(A)))

Proof. (1) ⇒ (2). Let A ∈ NCαOS(X), there exists a
neutrosophic crisp α-open set U in X such that U ⊆ A ⊆
NCcl(U). Hence there existsG neutrosophic crisp open set such
that G ⊆ U ⊆ NCint(NCcl(G)) ( by Theorem 24). Therefore
NCcl(G) ⊆ NCcl(U) ⊆ NCcl(NCint(NCcl(G))). Then
G ⊆ U ⊆ A ⊆ NCcl(U) ⊆ NCcl(NCint(NCcl(G))).
Therefore G ⊆ A ⊆ NCcl(NCint(NCcl(G))) for some G
neutrosophic crisp open sets.

(2) ⇒ (3). Let there exists a neutrosophic crisp open
set say G such that G ⊆ A ⊆ NCcl(NCint(NCcl(G))).
Hence NCcl(G) ⊆ NCcl(NCint(A)), then
NCint(NCcl(G)) ⊆ NCint(NCcl(NCint(A))).
Therefore, NCcl(NCint(NCcl(G))) ⊆
NCcl(NCint(NCcl(NCint(A)))). Then (by hypothesis)
A ⊆ NCcl(NCint(NCcl(NCint(A)))).

(3)⇒ (4). Obvious.
(4) ⇒ (1). Let NCcl(A) =

NCcl(NCint(NCcl(NCint(A)))). Then
A ⊆ NCcl(NCint(NCcl(NCint(A)))). To
prove A ∈ NCαOS(X). Since NCint
NCcl(NCint(A)) ⊆ NCint(NCcl(A)), therefore
NCcl(NCint(NCcl(NCint(A)))) ⊆ NCcl(NCint(A)) ⇒
A ⊆ NCcl(NCint(A)). let U = NCint(A) Hence there exists
a neutrosophic crisp open set U such that U ⊆ A ⊆ NCcl(U).
On othere hand, U is neutrosophic crisp α-open set. Hence
A ∈ NCαOS(X).

Proposition 26 Let (X,Γ) be a NCTS, then arbitrary union
of neutrosophic crisp α-open set is a neutrosophic crisp α-open
set and arbitrary intersection neutrosophic crisp α-closed set is
neutrosophic crisp α-closed set.

Proof. Let A = {Ai, Ai, Ai | i ∈ Λ} be a collection
of neutrosophic crisp α-open sets. Then, for each i ∈ Λ,
Ai ⊆ NCint(NCcl(NCint(Ai))). It follows that

⋃
Ai ⊆

⋃
NCint(NCcl(NCint(Ai)))

⊆ NCint(
⋃
NCcl(NCint(Ai)))

= NCint(NCcl(
⋃
NCint(Ai)))

⊆ NCint(NCcl(NCint(
⋃
Ai)))

Hence ∪Ai is a neutrosophic crisp α-open set. The second part
follows immediately from the first part by taking complements.

Having shown that arbitrary union of neutrosophic crisp α-
open sets is a neutrosophic crisp α-open set, it is natural to con-
sider whether or not the intersection of neutrosophic crisp α-open
sets is a neutrosophic crisp α-open set, and the following exam-
ple shows that the intersection of neutrosophic crisp α-open sets
is not a neutrosophic crisp α-open set.

Example 27 Let X = {a, b, c, d}, φN , XN be any types of
the universal and empty subset, and A1 = 〈{a}, {b}, {c}〉
A2 = 〈{a}, {b, d}, {c}〉, then the family Γ = {φN , XN , A1, A2}
is a neutrosophic crisp topology on X . Let A3 =
〈{b}, {c}, {d}〉 The NCS A1 & and A3 are neutrosophic
crisp open (NCOS), then its sets neutrosophic crisp α-open
sets i.e (A ⊆ NCint(NCcl(NCint(A)))). In fact, A1 ∩
A3 is a NCS on X given by A1 ∩ A3 = 〈φ, φ, {d, c}〉
or A2 ∩ A3 = 〈φ, {d, b, c}, {d, c}〉 and so A2 ∩ A3 *
NCint(NCcl(NCint(A2 ∩ A3))) and hence the intersection
is not neutrosophic crisp α-open set.

Proposition 28 In a NCTS (X,Γ), a NCS A is neutrosophic
crisp α-closed if and only if A = αNCcI(A).
Proof. Assume that A is a neutrosophic crisp α-closed set.
Obviously,
A ∈ {Bi|Bi is a neutrosophic crispα-closed set andA ⊆ Bi}.
Also,A ∈

⋂
{Bi|Bi is a neutrosophic crispα-closed set andA ⊆

Bi} = NCcl(A).
Conversely, suppose that A = αNCcI(A), which shows that.
A ∈ {Bi|Bi is a neutrosophic crispα-closed set andA ⊆ Bi}
Hence A is a neutrosophic crisp α-closed set.

4 Neutrosophic Crisp Continuity

Definition 29 Let (X,Γ1) and (Y,Γ2) be two NCTS and let
f : X → Y be a function then f is said to be
(1) Continuous [20] iff the preimage of each NCS in Γ2 is
a NCS in Γ1. i.e f−1(B) is neutrosophic crisp open set in
X for each neutrosophic crisp open set B in Y where B =
{B1, B2, B3}, then the preimage of B under f , denoted by
f−1(B), is neutrosophic crisp open in X defined by f−1(B) =
〈f−1(B1),−1(B2), f−1(B3)〉.
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(2) Open [20], iff the image of each NCS in Γ1 is a NCS in
Γ2. i.e, if A = {A1, A2, A3} is a NCS in X , then the im-
age of A under f denoted by f(A) is NCS in Y defined by
f(A) = {f(A1), f(A2), f(A3)c}.

Corollary 30 [20] Let A = {Ai, i ∈ J}, be neutrosophic crisp
sets in X , and B = {Bj , j ∈ K} neutrosophic crisp sets in Y ,
and : X → Y be a function. Then

1. A1 ⊆ A2 ⇔ f(A1) ⊆ f(A2), andB1 ⊆ B2 ⇔ f−1(B1) ⊆
f−1(B2),

2. f−1(
⋃
Bi) =

⋃
f−1(Bi), f−1(

⋂
Bi) =

⋂
f−1(Bi),

3. f−1(YN ) = XN , f−1(φN ) = φN ,

4. A ⊆ B ⇒ NCcl(A) ⊆ NCcl(B),

5. A ⊆ f−1(f(A)), and if f is surjective, then A =
f−1(f(A)).

Definition 31 Let f : X → Y be a function from a NCTS
(X,Γ1) into a NCTS (Y,Γ2) is said to be

1. neutrosophic crisp α-continuous if f−1(B) is α-
neutrosophic crisp open set in X for each neutrosophic
crisp open set B in Y .

2. neutrosophic crisp pre-continuous if f−1(B) is neutro-
sophic crisp pre-open set in X for each neutrosophic crisp
open set B in Y .

3. neutrosophic crisp semi-continuous if f−1(B) is neutro-
sophic crisp semi-open set inX for each neutrosophic crisp
open set B in Y .

4. neutrosophic crisp semipre-continuous if f−1(B) is neu-
trosophic crisp semi-open set in X for each neutrosophic
crisp open set B in Y .

5. neutrosophic crisp β-continuous if f−1(B) isneutrosophic
crisp semi-open set in X for each neutrosophic crisp open
set B in Y .

Theorem 32 For a mapping f from a NCTS (X,Γ1) to a
NCTS (X,Γ2), the following are equivalent.

1. f is neutrosophic crisp pre-continuouss.

2. f−1(B) is a NCPCS in X for every NCCS B in Y .

3. NCcl(NCint(f−1(A))) ⊆ f−1(NCcl(A)) for every
NCS A in Y .

Proof. (1)⇒ (1). The proof is straightforward.
(2) ⇒ (3). Let A be a NCS in Y . Then cl(A) is neutrosophic
crisp closed. It follows from 2 that f−1(NCcl(A)) is aNCPCS
in X so that

NCcl(NCint(f−1(A))) ⊆
NCcl(NCint(f−1(NCcl(A)))) ⊆ f−1(NCcl(A))

(3) ⇒ (1). Let A be a NCOS in Y . Then A is a NCCS in
Y , and so

NCcl(NCint(f−1(A))) ⊆ f−1(NCcl(A)) = f−1(A).

This implies

NCint(NCcl(f−1(A)))

= NCcl(NCcl(f−1(A)))

= NCcl(NCint(f−1(A)))

= NCcl(NCint(f−1(A)))

⊆ f−1(A) = f−1(A) = f−1(A),

and thus f−1(A) ⊆ NCint(NCcl(f−1(A))). Hence f−1(A) is
a NCPOS in X , and f is neutrosophic crisp pre-continuous.

Theorem 33 Let f be a mapping from a NCTS (X,Γ1) to a
NCTS (Y,Γ2). Then the following assertions are equivalent.

1. f is neutrosophic crisp pre-continuous.

2. For each NCP p(ai1, ai2, ai3) ∈ X and every (NCN) A
of f(p(ai1, ai2, ai3)), there exists a NCPOS B in X such
that p(ai1, ai2, ai3) ∈ B ⊆ f−1(A).

3. For each NCP p(ai1, ai2, ai3) ∈ X and every (NCN) A
of f(p(ai1, ai2, ai3)), there exists a NCPOS B in X such
that p(ai1, ai2, ai3) ∈ B ⊆ A.

Proof. (1)⇒ (2). Let p(ai1, ai2, ai3) be a NCP in X and let A
be a NCN of f(p(ai1, ai2, ai3)). Then there exists a NCOS B
in Y such that f(p(ai1, ai2, ai3)) ∈ B ⊆ A. Since f is neutro-
sophic crisp pre-continuous,
we know that f−1(B) is a NCPOS in X and

p(ai1, ai2, ai3) ∈ f−1(f(p(ai1, ai2, ai3))) ⊆ f−1(B) ⊆
f−1(A).

Thus (2) is valid.
(2) ⇒ (3). Let p(ai1, ai2, ai3) be a NCP in X and let
A be a NCN of f(p(ai1, ai2, ai3)). The condition (2)
implies that there exists a NCPOS B in X such that
p(ai1, ai2, ai3) ∈ B ⊆ f−1(A) so that p(ai1, ai2, ai3) ∈ B and
f(B) ⊆ f(f−1(A)) ⊆ A. Hence (3) is true.

(3) ⇒ (1) Let B be a NCOS in Y and let
p(ai1, ai2, ai3) ∈ f−1(B). Then f(p(ai1, ai2, ai3)) ∈ B,
and so B is a NCN of f(p(ai1, ai2, ai3)) since B is a NCOS.
It follows from (3) that there exists a NCPOS A in X such that
p(ai1, ai2, ai3) ∈ A and f(A) ⊆ B so that.

p(ai1, ai2, ai3) ∈ A ⊆ f−1(f(A)) ⊆ f−1(B).

Applying Theorem 20 induces that f−1(B) is a NCPOS in X .
Therefore, f is neutrosophic crisp pre-continuous.
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Theorem 34 Let f be a mapping from NCTS (X,Γ1) to
NCTS (Y,Γ2) that satisfies

NCcl(NCint(f−1(NCcl(B)))) ⊆ f−1(NCcl(B))

for every NCS B in Y . Then f is neutrosophic crisp α-
continuous.
Proof. LetB be aNCOS in Y . ThenB is aNCCS in Y , which
implies from hypothesis that

NCcl(NCint(f−1(NCcl(B)))) ⊆ f−1(NCcl(B)) =
f−1(B).

Its follows

NCint(NCcl(NCint(f−1(B))))

= NCcl(NCcl(NCint(f−1(B))))

= NCcl(NCint(NCint(f−1(B))))

= NCcl(NCint(NCcl(f−1(B))))

= NCcl(NCint(NCcl(f−1(B))))

⊆ f−1(B)

= f−1(B)

so that f−1(B) ⊆ NCint(NCcl(NCint(f−1(B)))). This
shows that f−1(B) is aNCαOS inX . Hence, f is neutrosophic
crisp α-continuous.

Theorem 35 Let f be a mapping from a NCTS (X,Γ1) to a
NCTS (Y,Γ2). Then the following assertions are equivalent.

1. f is neutrosophic crisp α-continuous.

2. For each NCP p(ai1, ai2, ai3) ∈ X and every (NCN) A
of f(p(ai1, ai2, ai3)), there exists a NCαOS B in X such
that p(ai1, ai2, ai3) ∈ B ⊆ f−1(A).

3. For each NCP p(ai1, ai2, ai3) ∈ X and every (NCN) A
of f(p(ai1, ai2, ai3)), there exists a NCαOS B in X such
that p(ai1, ai2, ai3) ∈ B and f(B) ⊆ A.

Proof. (1)⇒ (2). Let p(ai1, ai2, ai3) be a NCP in X and let A
be a NCN of f(p(ai1, ai2, ai3)). Then there exists a NCOS B
in Y such that f(p(ai1, ai2, ai3)) ∈ C ⊆ A. Since f is neutro-
sophic crisp α-continuous,
we know that f−1(B) is a NCαOS in X and

p(ai1, ai2, ai3) ∈ −1(f(p(ai1, ai2, ai3))) ⊆ f−1(C) = B ⊆
f−1(A).

Thus (2) is valid.
(2) ⇒ (3). Let p(ai1, ai2, ai3) be a NCP in X and let
A be a NCN of f(p(ai1, ai2, ai3)). The condition (2)
implies that there exists a NCαOS B in X such that
p(ai1, ai2, ai3) ∈ B ⊆ f−1(A), by (2). Thus, we have
p(ai1, ai2, ai3) ∈ B and f(B) ⊆ f(f−1(A)) ⊆ A. Hence (3) is
true.

(3) ⇒ (1) Let B be a NCOS in Y and let p(ai1, ai2, ai3) ∈
f−1(B). Then f(p(ai1, ai2, ai3)) inf(f−1(B)) ⊆ B and so
B is a NCN of f(p(ai1, ai2, ai3)) since B is a NCOS. It
follows from (3) that there exists a NCαOS A in X such that
p(ai1, ai2, ai3) ∈ A and f(A) ⊆ B so that.

p(ai1, ai2, ai3) ∈ A ⊆ f−1(f(A)) ⊆ f−1(B).

Using Theorem 20 induces that f−1(B) is a NCαOS in X . and
hence f is neutrosophic crisp α-continuous.

Combining Theorems 35, 34, we have the following characteri-
zation of a neutrosophic crisp α-continuous mapping.

Theorem 36 Let f be a mapping from NCTS (X,Γ1) to
NCTS (Y,Γ2). Then the following assertions are equivalent.

1. f is neutrosophic crisp α-continuous.

2. If C is a NCCS in Y , then f−1(C) is a NCαCS in X .

3. NCcl(NCint(f−1(NCcl(B)))) ⊆ f−1(NCcl(B)) for
every NCS B in Y .

4. For each NCP p(ai1, ai2, ai3) ∈ X and every (NCN) A
of f(p(ai1, ai2, ai3)), there exists a NCαOS B in X such
that p(ai1, ai2, ai3) ∈ B ⊆ f−1(A).

5. For each NCP p(ai1, ai2, ai3) ∈ X and every (NCN) A
of f(p(ai1, ai2, ai3)), there exists a NCαOS B in X such
that p(ai1, ai2, ai3) ∈ B and f(B) ⊆ A.

Some aspects of neutrosophic crisp continuity, neutrosophic crisp
α-continuity, neutrosophic crisp pre-continuity, neutrosophic
crisp semi-continuity, and neutrosophic crisp β-continuity are
studied in this paper and as well as in several papers, see [20].
The relation among these types of neutrosophic crisp continuity
is given as follows, where NC means neutrosophic crisp.

Figure 1: Diagram 2

Remark 37 The reverse implications are not true in the above
diagram in general.

Example 38 Let (X,Γ0) and (Y,Ψ0) be two NCTS. If : X →
Y is continuous in the usual sense, then in this case, f is contin-
uous in the sense of f(A) = {f(A1), f(A2), f(A3)c}. Here we
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consider the NCTS on X and Y , respectively, as follows: Γ1 =
{〈G,φ,Gc : G ∈ Γ0〉} and Γ2 = {〈H,φ,Hc : H ∈ Ψ0〉}, in
this case we have 〈H,φ,Hc〉 ∈ Γ2, H ∈ Ψ0, f−1〈H,φ,Hc〉 =
〈f−1(H), f−1(φ), f−1(Hc)〉 = 〈f−1(H), f(φ), (f(H))c〉 ∈
Γ1.

Example 39 Let f be a mapping from a NCTS (X,Γ1) to
a NCTS (Y,Γ2), and let X .

= Y
.
= {a, b, c, d}, φN , XN

be any types of the universal and empty subset, and A1
.
=

〈{a}, {b}, {c}〉 A2
.
= 〈{a}, {b, d}, {c}〉, then the family Γ1

.
=

Γ2
.
= {φN , XN , A1, A2} is a neutrosophic crisp topology on

X and Y . Then f is neutrosophic crisp continuous function,
since f−1(A1)

.
= A1 & and f−1(A2)

.
= A2 are neutrosophic

crisp open in X (NCOS), and hence its neutrosophic crisp
α-continuous, since f−1(A1), f−1(A2) is α-neutrosophic crisp
open set in X .

Example 40 Let X = {a, b, c, d}, Y = {u, v, w} and A1 =
〈{a}, {b}, {c}〉, A2 = 〈{a}, {b, d}, {c}〉, A3 = 〈{u}, {v}, {w}〉.
Then Γ1 = {φN , XN , A1, A2}, Γ2 = {φN , XN , A3} are neutro-
sophic crisp topology on X and Y respectively. Defined a map-
ping f : (X,Γ1) −→ (Y,Γ2) by f({a}) = {u}, f({d}) = {v}
and f({c}) = {w}. Then f is neutrosophic crisp α-continuous
function but not neutrosophic crisp continuous function.

Example 41 Let X = {a, b, c, d}, Y = {u, v, w} and A1 =
〈{a}, {b}, {c}〉, A2 = 〈{a}, {b, d}, {c}〉, A3 = 〈{u}, {v}, {w}〉.
Then Γ1 = {φN , XN , A1, A2}, Γ2 = {φN , XN , A3} are neutro-
sophic crisp topology on X and Y respectively. Defined a map-
ping f : (X,Γ1) −→ (Y,Γ2) by f({a}) = f({b}) = {u},
f({c}) = {v} and f({d}) = {w}. Then f is neutrosophic
crisp pre-continuous function but not neutrosophic crisp regular-
continuous function. Also f is neutrosophic crisp β-continuous
function but not neutrosophic crisp semi-continuous function,
since f−1(A3) = 〈{a, b}, {c}, {d}〉 is neutrosophic crisp pre-
open set but not neutrosophic crisp regular-open set, also A4 is
neutrosophic crisp β-open but not neutrosophic crisp semi-open
set.

Theorem 42 Let f be a mapping from NCTS (X,Γ1) to
NCTS (Y,Γ2). If f is both neutrosophic crisp pre-continuous
and neutrosophic crisp semi-continuous, then it is neutrosophic
crisp α-continuous.
Proof. Let B be a NCOS in Y . Since f is both neutrosophic
crisp pre-continuous and neutrosophic crisp semi-continuous,
f−1(B) is both a NCPOS and a NCSOS in X . It follows
from Theorem 17 that f−1(B) is a NCαOS in X so that f is
ineutrosophic crisp α-continuous.

5 Conclusions and Discussions
In this paper, we have introduced neutrosophic crisp β-open, 
Neutrosophic crisp semipre-open, Neutrosophic crisp regular-
open, Neutrosophic crisp semiα-open sets and studied some of 
their basic properties. Also we study the relationship between 
xxx

the newly introduced sets and some of the Neutrosophic crisp 
open sets that already existed. In this paper, we also introduced 
Neutrosophic crisp closed sets and studied some of their basic 
properties. Finally, we introduced the definition of neutro-
sophic crisp continuous function, and studied some of its basic 
properties.
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Abstract: This paper is devoted to present Technique for Order 

Preference by Similarity to Ideal Solution (TOPSIS) method for 

multi-attribute group decision making under rough neutrosophic 

environment. The concept of rough neutrosophic set is a 

powerful mathematical tool to deal with uncertainty, 

indeterminacy and inconsistency. In this paper, a new approach 

for multi-attribute group decision making problems is proposed 

by extending the TOPSIS method under rough neutrosophic 

environment. Rough neutrosophic set is characterized by the 

upper and lower approximation operators and the pair of 

neutrosophic sets that are characterized by truth-membership 

degree, indeterminacy membership degree, and falsity 

membership degree.  In the decision situation, ratings of 

alternatives with respect to each attribute are characterized by 

rough neutrosophic sets that reflect the decision makers’ opinion. 

Rough neutrosophic weighted averaging operator has been used 

to aggregate the individual decision maker’s opinion into group 

opinion for rating the importance of attributes and alternatives. 

Finally, a numerical example has been provided to demonstrate 

the applicability and effectiveness of the proposed approach.  

Keywords: Multi-attribute group decision making; Neutrosophic set; Rough set; Rough neutrosophic set; TOPSIS 

1 Introduction 

Hwang and Yoon [1] put forward the concept of Technique 

for Order Preference by Similarity to Ideal Solution 

(TOPSIS) in 1981 to help select the best alternative with a 
finite number of criteria.  Among numerous multi criteria 

decision making (MCDM) methods developed to solve 
real-world decision problems, (TOPSIS) continues to work 

satisfactorily in diverse application areas such as supply 

chain management and logistics [2, 3, 4, 5], design, 
engineering and manufacturing systems [6, 7], business 

and marketing management [8, 9], health, safety and 
environment management[10, 11],  human resources 

management [12, 13, 14], energy management [15], 
chemical engineering [16], water resources management 

[17, 18], bi-level programming problem [19, 20], multi-

level programming problem [21], medical diagnosis [22], 
military [23], education [24], others topics  [25, 26, 27, 28, 

29, 30],  etc. Behzadian et al. [31] provided a state-of the-
art literature survey on TOPSIS applications and 

methodologies.  According to C. T. Chen [32], crisp data 

are inadequate to model real-life situations because human 
judgments including preferences are often vague. 

Preference information of alternatives provided by the 
decision makers may be poorly defined, partially known 

and incomplete.  The concept of fuzzy set theory grounded 

by L. A. Zadeh [33] is capable of dealing with 
impreciseness in a mathematical form. Interval valued 

fuzzy set [34, 35, 36, 37] was proposed by several authors 

independently in 1975 as a generalization of fuzzy set.  In 
1986, K. T.  Atanassov [38] introduced the concept of 

intuitionistic fuzzy set (IFS) by incorporating non-
membership degree as independent entity to deal non-

statistical impreciseness. In 2003, mathematical 

equivalence of intuitionistic fuzzy set (IFS) with interval-
valued fuzzy sets was proved by Deschrijver and Kerre 

[39]. C. T. Chen [32] studied the TOPSIS method in fuzzy 
environment for solving multi-attribute decision making 

problems.  Boran et al. [12]  studied TOPSIS method in 
intuitionistic fuzzy environment and provided an 

illustrative example of personnel selection in a 

manufacturing company for a sales manager position. 
However, fuzzy sets and interval fuzzy sets are not capable 

of all types of uncertainties in different real physical 
problems involving indeterminate information.  

In order to deal with indeterminate and inconsistent 

information, the concept of neutrosophic set [40, 41, 42, 

43] is useful. In neutrosophic set each element of the uni-

verse is characterized by the truth membership degree, in-

determinacy membership degree and falsity membership 

degree lying in the non-standard unit interval]-0, 1+[. 

However, it is difficult to apply directly the neutrosophic 
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set in real engineering and scientific applications. Wang et 

al. [44] introduced single-valued neutrosophic set (SVNS) 

to face real scientific and engineering fields involving 

imprecise, incomplete, and inconsistent information. 

However, the idea was envisioned some years earlier by 

Smarandache [43]    SVNS, a subclass of NS, can also rep-

resent each element of universe with the truth membership 

values, indeterminacy membership values and falsity 

membership values lying in the real unit interval [0, 1]. 

SVNS has caught much attention to the researchers on var-

ious topics such as, medical diagnosis [45], similarity 

measure [46, 47, 48, 49, 50], decision making [51, 52, 53, 

54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 

70], educational problems [71, 72], conflict resolution [73], 

social problem [74, 75], optimization [76, 77, 78, 79, 80, 

81], etc. 

Pawlak [82] proposed the notion of rough set theory for the 

study of intelligent systems characterized by inexact, 

uncertain or insufficient information. It is a useful 

mathematical tool for dealing with uncertainty or 

incomplete information.  Broumi et al. [83, 84] proposed 

new hybrid intelligent structure called rough neutrosophic 

set by combining the concepts of single valued 

neutrosophic set and rough set. The theory of rough 

neutrosophic set [83, 84] is also a powerful mathematical 

tool to deal with incompleteness.  Rough neutrosophic set 

can be applied in addressing problems with uncertain, 

imprecise, incomplete and inconsistent information 

existing in real scientific and engineering applications. In 

rough neutrosophic environment, Mondal and Pramanik 

[85] proposed rough neutrosophic multi-attribute decision-

making based on grey relational analysis.  Mondal and 

Pramanik [86] also proposed rough neutrosophic multi-

attribute decision-making based on rough accuracy score 

function. Pramanik and Mondal [87] proposed cotangent 

similarity measure of rough neutrosophic sets and its 

application to medical diagnosis.  Pramanik and Mondal 

[88] also proposed cosine similarity measure of rough 

neutrosophic sets and its application in medical diagnosis. 

Pramanik and Mondal [88] also proposed some similarity 

measures namely, Dice and Jaccard similarity measures in 

rough neutrosophic environment and applied them for 

multi attribute decision making problem. Pramanik and 

Mondal [90] studied decision making in rough interval 

neutrosophic environment in 2015.  Mondal and Pramanik 

[91] studied cosine, Dice and Jaccard similarity measures 

for interval rough neutrosophic sets and presented their 

applications in decision making problem.  So decision 

making in rough neutrosophic environment appears to be a 

developing area of study. Mondal et al. [92] proposed 

rough trigonommetric Hamming similarity measures such 

as cosine, sine and cotangent rough similarity meaures and 

proved their basic properties. In the same study Mondal et 

al. [92] also provided a numerical example of selection of a 

smart phone for rough use based on the proposed methods. 

The objective of the study is to extend the concept of 

TOPSIS method for multi-attribute group decision making 

(MAGDM) problems under single valued neutrosophic 

rough neutrosophic environment. All information provided 

by different domain experts in MAGDM problems about 

alternative and attribute values take the form of rough 

neutrosophic set. In a group decision making process, 

rough neutrosophic weighted averaging operator is used to 

aggregate all the decision makers’ opinions into a single 

opinion to select best alternative.  

The remaining part of the paper is organized as follows: 

section 2 presents some preliminaries relating to 

neutrosophic set, section 3 presents the concept of rough 

neutrosophic set. In section 4, basics of TOPSIS method 

are discussed. Section 5 is devoted to present TOPSIS 

method for MAGDM under rough neutrosophic 

environment. In section 6, a numerical example is provided 

to show the effectiveness of the proposed approach. Finally, 

section 7 presents the concluding remarks and scope of 

future research.  

2 Neutrosophic sets and single valued neutrosophic set 

[43, 44] 

2.1 Definition of Neutrosophic sets [40, 41, 42, 43] 

Definition 2.1.1. [43]:  

Assume that V be a space of points and v be a generic 

element in V. Then a neutrosophic set G in V is 

characterized by a truth membership function TG, an 

indeterminacy membership function IG and a falsity 

membership function FG. The functions TG, IG and FG are 

real standard or non-standard subsets of ]  1,0 [ i.e. 

TG: V  ]  1,0 [, IG: V ]  1,0 [, FG: V ]  1,0 [, 

and 3)v(F)v(I)v(T0 GGG
  . 

2.1.2.[43]: 

The complement of a neutrosophic set G is denoted by G
c

and is defined by  

)v(TGc   )v(T1 G ; )v(IGc   )v(I1 G ;

  )v(I1)v(F GGc  

Definition 2.1.3. [43]: 

A neutrosophic set G is contained in another neutrosophic 

set H, HG  iff the following conditions holds. 

)v(Tinf)v(Tinf HG  )v(Tsup)v(Tsup HG   

)v(Iinf)v(Iinf HG  ,  )v(Isup)v(Isup HG 

)v(Finf)v(Finf HG  , )v(Fsup)v(Fsup HG 
  

for all v in V. 

Definition 2.1.4. [44]:  

Assume that V be a universal space of points, and v be a 

generic element of V.  A single-valued neutrosophic set P 

is characterized by a truth membership function TP(v), a 
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falsity membership function IP(v), and an indeterminacy 

membership function FP(v).  Here, TP(v), IP(v), FP(v)  [0, 

1]. When V is  continuous,  a SVNS P can be written as 

P = .Vv,v/)v(I),v(F),v(T
V

PPP  

When V is discrete, a SVNS P can be written as 

,v)v(I),v(F),v(TP PPP Vv

It is obvious that for a SVNS P, 

,3)v(Isup)v(Fsup)v(Tsup≤0 PPP  Vv

Definition 2.1.5. [44]: 

The complement of a SVNS set P is denoted by PC
 and is 

defined as follows: 

)v(F)v(T P
C

P  ; )v(I1)v(I P
C

P  ; )v(T)v(F P
C

P 

Definition 2.1.6. [44]: 

A SVNS PG is contained in another SVNS PH, denoted as 

PG PH if the following conditions hold. 

)v(T)v(T HPGP  ; )v(I)v(I HPGP  ; )v(F)v(F HPGP  , 

Vv . 

Definition 2.1.7. [44]: 

Two SVNSs PG and PH are equal, i.e., PG = PH, iff 

HG P⊆P and HG P⊇P

Definition 2.1.8. [44]:  

The union of two SVNSs PG and PH is a SVNS PQ, written 

as HGQ P∪PP  . 

Its truth, indeterminacy and falsity membership functions 

are as follows: 

))v(T,)v(Tmax()v(T HPGPQP  ;

))v(I,)v(Imin()v(I HPGPQP  ; 

))v(F,)v(Fmin()v(F HPGPQP  , Vv . 

Definition 2.1.9. [44]: 

 The intersection of two SVNSs PG and PH is a SVNS PC 

written as HGC PPP  . Its truth, indeterminacy and 

falsity membership functions are as follows:  

;))v(T,)v(Tmin()v(T HPGPCP 

;))v(I,)v(Imax()v(I
HPGPCP 

,))v(F,)v(Fmax()v(F HPGPCP  Vv . 

Definition 2.1.10. [44]: 

Wang et al. [44] defined the following operation for two 

SVNS PG and PH as follows: 

PG  PH = 
)().()()(

),().()()(),().(

vFvFvFvF

vIvIvIvIvTvT

HPGPHPGP

HPGPHPGPHPGP




, 

Vv . 

Definition 2.1.11. [93] 

Assume that 
  
   
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be two SVNSs in v = {v1, v2, v3,…,vn} 

Then the Hamming distance [93] between two SVNSs PG 

and PH is defined as follows:  

  







n

i
HPGP

HPGPHPGP

HGP
vFvF

vIvIvTvT
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1 )()(
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, )1(

and normalized Hamming distance [93] between two 

SVNSs PG and PH is defined as 

follow

  







n

i
HPGP

HPGPHPGP

HG
N
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vFvF
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with the following two properties

  3≤P,Pd≤0.i HGP

  1P,Pd0.ii HG
N

P


Distance between two SVNSs: 

Majumder and Samanta [93] studied similarity and entropy 

measure by incorporating Euclidean distances of SVNSs. 

Definition 2.1.12. [93]: (Euclidean distance) 

Let
 
  





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





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
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,,)v(F),v(I),v(T|v
P
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
 be two 

SVNSs for vi ∈ V, where i = 1, 2, . . . , n. Then the 

Euclidean distance between two SVNSs PG and PH can be 

defined as follows: 

)P,P(D HGeuclid
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and the normalized Euclidean distance [93] between two 

SVNSs PG and PH can be defined as follows: 
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Definition 2.1.13. (Deneutrosophication of SVNS) [53]: 

Deneutrosophication of SVNS PG can be defined as a 

process of mapping PG into a single crisp output V*

i.e. 
*

GP:f  for v ∈ V. If PG is discrete set then the 

vector  Vv |)v(F),v(I),v(T|vP
GPGPGPG  is 

reduced to a single scalar quantity V* by

deneutrosophication. The obtained scalar quantity 

V* best represents the aggregate distribution of three

membership degrees of neutrosophic 

element )v(F),v(I),v(T
GPGPGP

3 Rough neutrosophic set [83, 84] 
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Rough set theory [82] has been developed based on two 

basic components. The components are crisp set and 

equivalence relation. The rough set logic is based on the 

approximation of sets by a couple of sets. These two are 

known as the lower approximation and the upper 

approximation of a  set. Here, the lower and upper 

approximation operators are based on equivalence relation. 

Rough neutrosophic sets [83, 84] are the generalization of 

rough fuzzy sets [94, 95, 96] and rough intuitionistic fuzzy 

sets [97]. 

Definition 3.1. Rough neutrosophic set [83,84] 

Assume that S be a non-null set and   be an equivalence 

relation on S. Assume that E be neutrosophic set in S with 

the membership function TE, indeterminacy function IE and 

non-membership function FE. The lower and the upper 

approximations of E in the approximation ),( S  denoted 

by  EL  and  EU   are respectively defined as follows: 

  )5(,][/)(),(),(, )()()( SvvsvFvIvTvEL ELELEL  

  )6(,][/)(),(),(,
)()()(

SvvsvFvIvTvEU
EUEUEU

 

 

Here, ),(][)()( sTvvT EsEL  ),(][)()( sIvvI EsEL 

),(][)()( sFvvF EsEL  ),(][)(
)(

sTvvT EsEU 

),(][)(
)(

sTvvI EsEU  )(][)(
)(

sIvvF EsEU  . 

So, 3)()()(0 )()()(  vFvIvT ELELEL  

3)()()(0
)()()(

 vFvIvT
EUEUEU

The symbols  and   indicate “max” and “min’’ 

operators respectively. )(sT E , )(sI E  and )(sF E represent 

the membership , indeterminacy and non-membership of S 

with respect to E.  EL and  EU are two neutrosophic sets 

in S. 

Thus the mapping ,L U : N(S)   N(S) are, respectively, 

referred to as the lower  and  upper  rough  neutrosophic 

approximation  operators,  and the pair ))(),(( EUEL is called 

the rough neutrosophic set in .),( S  

)(EL and )(EU  have constant membership on the 

equivalence classes of  if )()( EUEL  ; i.e. 

)()(
)()( vTvT

EUEL  , )()(
)()( vIvI

EUEL 
’ 

)()(
)()( vFvF

EUEL   for 

any v belongs to S.

E is said to be definable neutrosophic set in the 

approximation ).,( S  It is obvious that zero neutrosophic 

set (0N) and unit neutrosophic sets (1N) are definable 

neutrosophic sets.  

Definition 3.2 [83, 84].   

If N(E) = ( )(),( EUEL ) be a rough neutrosophic set in 

),,S(   the complement of N(E) is the rough neutrosophic 

set and is denoted as ))(,)(()(~ CC EUELEN  ,where 

CC EUEL )(,)( are  the  complements of neutrosophic sets of 

)(),( EUEL respectively. 

  SvvFvIvTvEL ELELEL
c  /)(),(1),(, )()()( and 

  SvvFvIvTvEU
EUEUEU

c  /)(),(1),(,
)()()(

Definition 3. 3 [83, 84] 

If )E(Nand)E(N 21 be two rough neutrosophic sets in S, 

then the following definitions hold: 

)()()()()()( 212121 EUEUELELENEN   

)()()()()()( 212121 EUEUELELENEN 

 )()(,)()()()( 212121 EUEUELELENEN 
 

 )()(,)()()()( 212121 EUEUELELENEN 
 

 )()(,)()()()( 212121 EUEUELELENEN

 )(.)(,)(.)()(.)( 212121 EUEUELELENEN
 

If  ,, be rough neutrosophic sets in ),,S(  then the 

following properties are satisfied. 

Properties I: 

)(~~.1

 ,.2

)()(

,)()(.3





)()()(

,)()()(.4





Proof. For proofs of the properies, see [83,84]. 

Properties II: 

De Morgan’s Laws are satisfied for rough neutrosophic 

sets  
))((~))(~())()((~.1 2121 ENENENEN 

))((~))((~))()((~.2 2121 ENENENEN 

Proof. For proofs of the properies, see [83,84]. 

Properties III: 

If E1 and E2 are two neutrosophic sets of universal 

collection (U) such that thenEE ,21 )()(.1 21 ENEN 
 

)()(⊆)(.2 2221 ENENEEN 

)()(⊇)(.3 2221 ENENEEN 

Proof. For proofs of the properies, see [83,84]. 

Properties IV: 

)(~~ )(.1 EUEL 

)(~~ )(.2 ELEU 

)( )(.3 EUEL 

Proof. For proofs of the properies, see [83,84]. 

4 TOPSIS 

The TOPSIS is used to determine the best alternative from 

the compromise solutions. The best compromise solution 

should have the shortest Euclidean distance from the 

positive ideal solution (PIS) and the farthest Euclidean 
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distance from the negative ideal solution (NIS). The 

TOPSIS method can be described as follows. Assume that 

K = {K1, K2, …,Km} be the set of alternatives, L = {L1, L2, 

…, Ln} be the set of criteria and      

n , . . . 2, 1, = j ; m , . . . 2, 1, = i,pij
  is the rating of  the 

alternative Ki with respect to the criterion Lj , wj is the 

weight of the j- th criterion Lj. 

The procedure of TOPSIS method is presented using the 

following steps: 

Step 1. Normalization the decision matrix 

Calculation of the normalized value N
ij][  is as follows: 

 For benefit criterion, )/()(  
jjjijij , 

where
i

j max )v( ij and 
i

j min )v( ij  

or setting  j  is the desired level and  j  is the worst level. 

For cost criterion, )/()(   jjijjij

Step 2. Weighted normalized decision matrix 

In the weighted normalized decision matrix, the upgraded 

ratings are calculated as follows: 

ijjij w  for i = 1, 2, . . . , m and j = 1, 2, . . . , n. Here wj 

is the weight of the j-th criterion such that 0w j  for j = 1, 

2, . . . , n and 11  
n
j jw

Step 3. The positive and the negative ideal solutions 

The positive ideal solution (PIS) and the negative ideal 

solution (NIS) are calculated as follows: 
  nMPIS ,, 21 = 

njCjCj ij
j

ij
j

,,2,1:∈/min, /max 21 
















 and 

  nMNIS ,, 21 = 

njCjCj ij
j

ij
j

,,2,1:∈/max,∈/min 21 


















where C1and C2 are the benefit and cost type criteria 

respectively. 

Step 4. Calculation of the separation measures for each 

alternative from the PIS and the NIS 

The separation values for the PIS and the separation values 

for the NIS can be determined by using the n-dimensional 

Euclidean distance as follows: 

  5.0

1

2

  
 n

j jiji for i = 1, 2, . . . , m. 

  5.02

1  
 n

j jiji for i = 1, 2, . . . , m. 

Step 5. Calculation of the relative closeness coefficient 

to the PIS 

The relative closeness coefficient for the alternative Ki 

with respect to M+ is 

)( ii

i

i 






 for i = 1, 2, . . . m. 

Obviously, 10 i . According to relative closeness 

coefficient to the ideal alternative, larger value of 

i indicates the better alternative Ki. 

Step 6. Ranking the alternatives 

Rank the alternatives according to the descending order of 

the relative-closeness coefficients to the PIS. 

5 Topsis method for multi-attribute decision making 

under rough neutrosophic environment 

Assume that a multi-attribute decision-making problem be 

characterized by m alternatives and n attributes. Assume 

that K = (K1, K2,..., Km) be the set of alternatives, and L = 

(L1, L2, ..., Ln) be the set of attributes. The rating measured 

by the decision maker describes the performance of the 

alternative Ki against the attribute Lj. Assume that W = {w1, 

w2 . . . , wn} be the weight vector assigned for the attributes 

L1, L2, ..., Ln by the decision makers. The values associated 

with the alternatives for multi-attribute decision-making 

problem (MADM) with respect to the attributes can be 

presented  in  rough neutrosophic decision matrix (see 

Table 1).

Table1: Rough neutrosophic decision matrix 

 nmijij ddD ,

)7(
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.............
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,...,,
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21
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nn

n

ddddddK

ddddddK

ddddddK

LLL 

Here ijij dd , is the rough neutrosophic number according 

to the i-th alternative and the j-th attribute. 

In decision-making situation, there exist many attributes of 

alternatives. Some of them are important and others may 

be less important. So it is important to select proper 

weights of attributes for decision-making situation. 

Definition 5.1. Accumulated geometric operator (AGO) 

[85]     

Assume a rough neutrosophic number in the 

form: ),,(,),,( ijijijijijijijij FITUFITL . We transform the rough 

neutrosophic number into SVNNs using the accumulated 

geometric operator (AGO). The operator is expressed as 

follows. 

ijijijij FITN ,, 5.0. ijij UL

5.05.05.0 )(,)(,)( ijijijijijijij FFIITTN (8) 

Using AGO operator [85], the rating of each alternative 

with respect to each attribute is transformed into SVNN for 

MADM problem. The rough neutrosophic values 

(transformed as SVNN) associated with the alternatives for 



Neutrosophic Sets and Systems, Vol. 13, 2017 109 

Kalyan Mondal, Surapati Pramanik and Florentin Smarandache, Rough neutrosophic TOPSIS for multi-attribute group 

decision making     

MADM problems can be represented in decision matrix  

( see Table 2).   

Table 2. Tranformed rough neutrosiphic decision matrix 

  nmijijijnm F,I,TdD  

)9(
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.............

,,...,,,,

,,...,,,,
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2222222222121212

1111212121111111

21

mnmnmnmmmmmmm

nnn

nnn

n

FITFITFITK

FITFITFITK

FITFITFITK

LLL

                                                        

             

 In the matrix nmijijijnm FITd   ,, , Tij, Iij and Fij (i = 1, 2,..., 

n and j = 1, 2,..., m) denote the degree of truth membership 

value, indeterminacy membership value and falsity 

membership value of alternative Ki with respect to attribute 

Lj. 

The ratings of each alternative with respect to the attributes 

can be explained by the neutrosophic cube [98] proposed 

by Dezert. The vertices of neutrosophic cube are (0, 0, 0), 

(1, 0, 0), (1, 0, 1), (0, 0, 1), (0, 1, 0), (1, 1, 0), (1, 1, 1) and 

(0, 1, 1). The acceptance ratings [53, 99] in neutrosophic 

cube are classified in three types namely,  

I. Highly acceptable neutrosophic ratings, 

II. Manageable neutrosophic rating

III. Unacceptable neutrosophic ratings.

Definition 5.2. (Highly acceptable neutrosophic ratings) 

[99] 

In decision making process, the sub cube (  ) of a 

neutrosophic cube (  ) (i.e.  ) reflects the field of 

highly acceptable neutrosophic ratings (  ). Vertices of Λ 

are defined with the eight points (0.5, 0, 0),(1, 0, 0),(1, 0, 

0.5), (0.5, 0, 0.5), (0.5, 0, 0.5), (1, 0, 0.5), (1, 0.5, 0.5) and 

(0.5, 0.5, 0.5). U includes all the ratings of alternative 

considered with the above average truth membership 

degree, below average indeterminacy degree and below 

average falsity membership degree for multi-attribute 

decision making. So,   has a great role in decision 

making process and can be defined as follows: 

  = 5.05.05.0 )(,)(,)( ijijijijijij FFIITT  where 0.5 < 

5.0)( ijijTT < 1, 0 < 5.0)( ijij II < 0.5 and 0 < 5.0)( ijij FF  < 0.5, 

for i = 1, 2, . . . , m and j = 1, 2, . . . , n. 

Definition 5.3. (Unacceptable neutrosophic ratings) [99] 

 The field  of unacceptable neutrosophic ratings  is 

defined by the ratings which are characterized by 0% 

membership degree, 100% indeterminacy degree and 

100% falsity membership degree. Hence, the set of 

unacceptable ratings  can be considered as the set of all 

ratings whose truth membership value is zero. 

  = 5.05.05.0 )(,)(,)( ijijijijijij FFIITT  where 5.0)( ijijTT = 0, 0 

< 5.0)( ijij II  ≤ 1 and 0 < 5.0)( ijij FF ≤ 1, for i = 1, 2, . . . , m 

and j = 1, 2, . . . , n. 

In decision making situation, consideration of   should be 

avoided. 

Definition 5.4. (Manageable neutrosophic ratings) [99] 

Excluding the field of high acceptable ratings and 

unacceptable ratings from a neutrosophic cube, tolerable 

neutrosophic rating field   (=   ) is determined. 

The tolerable neutrosophic rating (  ) considered 

membership degree is taken in decision making process. 

  can be defined by the expression as follows: 

  = 5.05.05.0 )(,)(,)( ijijijijijij FFIITT  where 0 < 5.0)( ijijTT < 

0.5, 0.5 < 5.0)( ijij II  < 1 and 0.5 < 5.0)( ijij FF < 1. 

for i = 1, 2, . . . , m and j = 1, 2, . . . , n.   

Definition 5.5 [53]. 

Fuzzification of transformed rough neutrosophic set 

)v(F),v(I),v(TN NNN for any v ∈ V can be defined as

a process of mapping N into fuzzy set F 

=  Vv/)v(/v F  i.e. f: N  F for v ∈ V. The 

representative fuzzy membership degree ]1,0[)v(F  of 

the vector }Vv,)v(F),v(I),v(T/v{ NNN  is defined 

from the concept of neutrosophic cube. It can be obtained 

by determining the root mean square of 1-TN(v), IN(v), and 

FN(v) for all v ∈ V. Therefore the equivalent fuzzy 

membership degree is defined as follows: 

      
)10(

0

3)()()(11
)(

5.0222





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


v

vvvv
v

FIT NNN
F



Now the steps of decision making using TOPSIS method 

under rough neutrosophic environment are stated as 

follows.

Step 1. Determination of the weights of decision makers  

Assume that a group of k decision makers having their 

own decision weights involved in the decision making. The 

importance of the decision makers in a group may not be 

equal. Assume that the importance of each decision maker 

is considered with linguistic variables and expressed it by 

rough neutrosophic numbers.  

Assume that ),,(,),,( kkkkkkkk FITNFITN  be a rough 

neutrosophic number for the rating of k−th decision maker. 

Using AGO operator, we obtain Ek = kkk FIT ,,  as a single 

valued neutrosophic number for the rating of k−th decision 

maker. Then, according to equation (10) the weight of the 

k−th decision maker can be written as: 

      
        





r
k kkk

kkk

k
vFvIvT

vFvIvT

1
5.0222

5.0222

3)()()(11

3)()()(11
  (11) 
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and 1∑ 1 
r
k k

Step 2. Construction of the aggregated rough 

neutrosophic decision matrix based on the assessments 

of decision makers 

Assume that nm
k
ij

k
ij

k ddD 
)()(

, be the rough neutrosophic 

decision matrix of the k−th decision maker. According to 

equation (11),   nm
k
ij

k dD 
)( be the single-valued 

neutrosophic decision matrix corresponding to the rough 

neutrosophic decision matrix and T
k)...,,,( 21  be the 

weight vector of decision maker such that each k ∈ [0, 1]. 

In the group decision making process, all the individual 

assessments need to be accumulated into a group opinion 

to make an aggregated single valued neutrosophic decision 

matrix. This aggregated matrix can be obtained by using 

rough neutrosophic aggregation operator as follows:  

nmijdD  )( where, 
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Now the aggregated rough neutrosophic decision matrix is 

defined as follows: 

nmijd )( nmijijijijijij FFIITT 
5.05.05.0 ).(,).(,).(
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Here,  FITd ijijijij ,,

5.05.05.0 ).(,).(,).( ijijijijijij FFIITT is the 

aggregated element of rough neutrosophic decision matrix 

D for i = 1, 2, . . . m and j = 1, 2, . .. n. 

Step 3. Determination of the attribute weights 

In the decision-making process, all attributes may not have 

equal importance. So, every decision maker may have their 

own opinion regarding attribute weights. To obtain the 

group opinion of the chosen attributes, all the decision 

makers’ opinions need to be aggregated.  Assume that 
j

k
j

k ww )()( ,  be rough neutrosophic number (RNN) assigned 

to the attribute Lj by the k−th decision maker. According to 

equation (8) j
kw be the neutrosophic number assigned to the 

attribute Lj by the k−th decision maker. Then the combined 

weight W = (w1, w2 . . . , wn) of the attribute can be 

determined by using rough neutrosophic weighted 

aggregation (RNWA) operator 

),,,(
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r
j FFIITT  for  j = 1, 2, . . . n.

W = (w1, w2 . . . , wn)  (15)

 Step 4. Aggregation of the weighted rough neutrosophic 

decision matrix 

In this section, the obtained weights of attribute and 

aggregated rough neutrosophic decision matrix need to be 

further fused to make the aggregated weighted rough 

neutrosophic decision matrix. Then, the aggregated 

weighted rough neutrosophic decision matrix can be 

defined by using the multiplication properties between two 

neutrosophic sets as follows: 
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  (16) 

Here, jw

ij
jw

ij
jw

ij
jw

ij FITd ,, is an element of the aggregated 

weighted rough neutrosophic decision matrix DW for i = 1, 

2, . . . , m and j = 1, 2, . . . , n. 

Step 5. Determination of the rough relative positive 

ideal solution (RRPIS) and the rough relative negative 

ideal solution (RRNIS) 

After transferring RNS decision matrix, 

assume ND  nm
W
ijd nmijijij FIT ,, be a SVNS based 

decision matrix, where, Tij, Iij and Fij are the membership 

degree, indeterminacy degree and non-membership degree 

of evaluation for the attribute Lj with respect to the 

alternative Ki. In practical siuation, two types of attributes 

namely, benefit type attribute and cost type attribute are 

considered in multi-attribute decision making problems. 

Definition 5.6. 

Assume that C1and C2 be the benefit type attribute and cost 

type attribute respectively. Suppose that 
NG is the relative 

rough neutrosophic positive ideal solution (RRNPIS) and 

NG is the relative rough neutrosophic negative ideal 

solution (RRNNIS). 

Then 
NG can be defined as follows: 

dddG w
n

ww
N

  ,,, 21    (17)
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Then 
NG can be defined as follows: 
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Step 6. Determination of the distance measure of each 

alternative from the RRNPIS and the RRNNIS  

 The normalized Euclidean distance measure of all 

alternative FIT jw
ij

jw
ij

jw
ij ,, from the RRNPIS 

ddd
w
n

ww  ...,,, 21 for i = 1, 2, …, m and j = 1, 2, …, n can be 

written as follows: 
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The normalized Euclidean distance measure of all 

alternative FIT jw
ij

jw
ij

jw
ij ,, from the RRNPIS 

ddd
w
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ww  ...,,, 21 for i = 1, 2, …, m and j = 1, 2, …, n can be 

written as follows: 
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Step 7. Determination of the relative closeness co-

efficient to the rough neutrosophic ideal solution for 

rough neutrosophic sets 

The relative closeness coefficient of each alternative Ki 

with respect to the neutrosophic positive ideal solution 

G N
  is defined as follows: 
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Here 10 *  i . According to the relative closeness 

coefficient values larger the values of *
i reflects the better 

alternative Ki for i = 1, 2, …, n. 

Step 8. Ranking the alternatives 

Rank the alternatives according to the descending order of 

the relative-closeness coefficients to the RRNPIS. 

6 Numerical example 

In order to demonstrate the proposed method, logistic 

center location selection problem is described here. 

Suppose that a new modern logistic center is required in a 

town. There are three locations K1, K2, K3. A committee of 

three decision makers or experts D1, D2, D3 has been 

formed to select the most appropriate location on the basis 

of six parameters obtained from expert opinions, namely, 

cost (L1), distance to suppliers (L2), distance to customers 

(L3), conformance to government and law (L4), quality of 

service (L5), and environmental impact (L6).  

Based on the proposed approach the considered problem is 

solved using the following steps: 

Step 1. Determination of the weights of decision makers 

The importance of three decision makers in a selection 

committee may be different based on their own status. 

Their decision values are considered as linguistic terms 

(seeTable-3). The importance of each decision maker 

expressed by linguistic term with its corresponding rough 

neutrosophic values shown in Table-4. The weights of 

decision makers are determined with the help of equation 

(11) as:  

1= 0.398, 2 = 0.359, 3 = 0.243.

We transform rough neutrosophic number (RNN) to 

neutrosophic number (NN) with the help of AGO operator 

[85] in Table 3, Table 4 and Table 5. 

Step 2. Construction of the aggregated rough 

neutrosophic decision matrix based on the assessments 

of decision makers 

The linguistic terms along with RNNs are defined in 

Table-5 to rate each alternative with respect to each 

attribute. The assessment values of each alternative Ki (i = 

1, 2, 3) with respect to each attribute Lj (j = 1, 2, 3, 4, 5, 6) 

provided by three decision makers are listed in Table-6. 

Then the aggregated neutrosophic decision matrix can be 

obtained by fusing all the decision maker opinions with the 

help of aggregation operator (equation 12) (see Table 7). 

Step 3. Determination of the weights of attributes 

The linguistic terms shown in Table-3 are used to evaluate 

each attribute. The importance of each attribute for every 

decision maker is rated with linguistic terms shown in 

Table-6. Three decision makers’ opinions need to be 

aggregated to final opinion. 

The fused attribute weight vector is determined by using 

equation (14) as follows: 
W















172.0,184.0,804.0,172.0,203.0,774.0,169.0,223.0,761.0

,196.0,241.0,737.0,159.0,181.0,800.0,195.0,205.0,761.0

(23) 

Step 4. Construction of the aggregated weighted rough 

neutrosophic decision matrix 

Using equation (16) and clculating the combined weights 

of the attributes and the ratings of the alternatives, the 

aggregated weighted rough neutrosophic decision matrix is 

obtained (see Table-8). 



Neutrosophic Sets and Systems, Vol. 13, 2017 112 

 Kalyan Mondal, Surapati Pramanik and Florentin Smarandache, Rough neutrosophic TOPSIS for multi-attribute group 

decision making     

Step 5. Determination of the rough neutrosophic 

relative positive ideal solution and the rough 

neutrosophic relative negative ideal solution 

The RNRPIS can be calculated from the aggregated 

weighted decision matrix on the basis of attribute types i.e. 

benefit type or cost type by using equation (17) as 

















253.0,270.0,708.0,303.0,331.0,642.0,286.0,374.0,607.0

,309.0,388.0,588.0,252.0,284.0,694.0,274.0,289.0,670.0

GN

(25) 

Here FITd
wwww   1111 ,,  is calculated as: 


T

w
1 max [0.670, 0.485, 0.454]  = 0.670, I

w
1

min [0.289, 

0.449, 0.471] = 0.289, 

F
w
1

min [0.274, 0.377, 0.463]= 0.274. 

Similarly, other RNRPISs are calculated. 

Using equation (18), the RNRNIS are calculated from 

aggregated weighted decision matrix based on attribute 

types i.e. benefit type or cost type. 














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414.0,435.0,512.0,372.0,429.0,524.0,358.0,441.0,522.0

,309.0,480.0,469.0,353.0,377.0,588.0,463.0,471.0,454.0

GN

(26) 

Here, FITd
wwww   1111 ,,  is calculated as 

T
w
1

 min [0.670, 0.485, 0.454] =  0.454, I
w
1

max [0.289, 

0.449, 0.471] = 0.471, 

F
w
1

 max [0.274, 0.377, 0.463] = 0.463. 

Other RNRNISs are calculated in similar way. 

Step 6. Determination of the distance measure of each 

alternative from the RRNPIS and the RRNNIS and 

relative closeness co-efficient 

Normalized Euclidean distance measures defined in 

equation (19) and equation (20) are used to determine the 

distances of each alternative from the RRNPIS and the 

RNNIS.  

Step 7. Determination of the relative closeness co-

efficient to the rough neutrosophic ideal solution for 

rough neutrosophic sets 

Using equation (21) and distances, relative closeness 

coefficient of each alternative K1 , K2 , K3 with respect to 

the rough neutrosophic positive ideal solution G N
  is 

calculated (see Table 9). 

Table 9. Distance measure and relative closeness co-

efficient  

3425.00534.01025.0

3639.00682.01192.0

9411.01248.00078.0

3

2

1

*

K

K

K

)(K esAlternativ i
i
euclid

i
euclidi 



(27)
 

Step 9. Ranking the alternatives 

According to the values of relative closeness coefficient of 

each alternative (see Table 9), the ranking order of three 

alternatives is obtained as follows: 

K1 ≻ K2 ≻ K3. 

Thus K1 is the best the logistic center. 

7 Conclusion 

In general, realistic MAGDM problems adhere to uncertain, 

imprecise, incomplete, and inconsistent data and rough 

neutrosophic set theory is adequate to deal with it. In this 

paper, we have proposed rough neutrosophic TOPSIS 

method for MAGDM. We have also proposed rough neu-

trosophic aggregate operator and rough neutrosophic 

weighted aggregate operator. In the decision-making situa-

tion, the ratings of each alternative with respect to each at-

tribute are presented as linguistic variables characterized 

by rough neutrosophic numbers. Rough neutrosophic ag-

gregation operator has been used to aggregate all the opin-

ions of decision makers. Rough neutrosophic positive ideal 

and rough neutrosophic negative ideal solution have been 

defined to form aggregated weighted decision matrix. Eu-

clidean distance measure has been used to calculate the 

distances of each alternative from positive as well as nega-

tive ideal solutions for relative closeness co-efficient of 

each alternative. The proposed rough neutrosophic TOP-

SIS approach can be applied in pattern recognition, artifi-

cial intelligence, and medical diagnosis in rough neutro-

sophic environment.
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Table 3. Linguistic terms  for rating attributes  

 Linguistic Terms Rough neutrosophic numbers Neutrosophic numbers 

Very good / Very important (VG/VI) 0.15) 0.15, (0.95, 0.05), 0.05, (0.85, 0.087 0.087, 0.899,

Good / Important(G /I) 0.20) 0.25, (0.85, 0.10), 0.15, (0.75, 0.141 0.194, 0.798,

Fair / Medium(F/M) 0.55) 0.45, (0.55, 0.35), 0.35, (0.45, 0.439 0.397, 0.497,

Bad / Unimportant (B / UI) 0.75) 0.65, (0.45, 0.65), 0.55, (0.25, 0.698 0.598, 0.335,

Very bad/Very Unimportant (VB/VUI) 0.95) 0.85, (0.15, 0.85), 0.75, (0.05, 0.899 0.798, 0.087,

Table 4. Importance of decision makers expressed in terms of rough neutrosophic numbers 

DM D1 D2 D3 

LT VI I M 

RNN 

0.15) 0.15, (0.95,

 0.05), 0.05, (0.85,

0.20) 0.25, (0.85, 

0.10), 0.15, (0.75,

0.55) 0.45, (0.55,

 0.35), 0.35, (0.45,

NN 0.087 0.087, 0.899, 0.141 0.194, 0.798, 0.439 0.397, 0.497,

Table 5. Linguistic terms for rating the candidates innterms of rough neutrosophic numbers and neutrosophic numbers 

Table 6. Assessments of alternatives and attribute in terms of linguisterm terms given by three decision makers 

Alternatives (Ki) Decision Makers L1 L2 L3 L4 L5 L6

K1

D1 VG G G G G VG

D2 VG VG  G  G G VG

D3 G VG G G  VG  G

K2

D1 M G M G  G  M

D2 G MG G G MG G

D3 M G M MG M M

K3

D1 M VG G MG VG M

D2 M M G G M G

D3  G M M MG G VG

Linguistic terms RNNs         NNs 

Extremely Good/High (EG/EH) )00.0,00.0,00.1(),00.0,00.0,00.1( 000.0,000.0,000.1

Very Good/High (VG/VH) )15.0,15.0,95.0(),05.0,05.0,85.0( 0.087 0.087, 0.899,

Good/High (G/H) )20.0,25.0,85.0(),10.0,15.0,75.0( 0.141 0.194, 0.798,

Medium Good/High (MG/MH) )35.0,40.0,65.0(),25.0,30.0,55.0( 296.0,346.0,598.0

Medium/Fair (M/F) )55.0,55.0,55.0(),35.0,45.0,45.0( 439.0,497.0,497.0

MediumBad/MediumLaw(MB/ML) )65.0,70.0,40.0(),55.0,60.0,30.0( 598.0,648.0,346.0

Bad/Law (G/L) )85.0,80.0,25.0(),75.0,70.0,15.0( 798.0,748.0,194.0

Very Bad/Low (VB/VL) )95.0,90.0,15.0(),85.0,80.0,05.0( 899.0,849.0,087.0

VeryVeryBad/low(VVB/VVL) )95.0,85.0,05.0(),95.0,95.0,05.0( 950.0,899.0,050.0
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decision making     

Table 7. Aggregated transformed rough neutrosophic decision matrix 

197.0

,212.0,755.0

175.0

,182.0,787.0

227.0

,281.0,686.0

186.0

,231.0,748.0

231.0

,217.0,735.0

333.0

,334.0,597.0
K

292.0

,307.0,637.0

242.0

,284.0,677.0

169.0

,223.0,761.0

292.0

,315.0,637.0

184.0

,239.0,741.0

292.0

,307.0,637.0
K

098.0

,106.0,880.0

125.0

,160.0,830.0

141.0

,194.0,798.0

141.0

,194.0,798.0

111.0

,126.0,867.0

098.0

,106.0,881.0
K

LLLLLL

3

2

1

654321

Table 8. Aggregated weighted rough neutrosophic decision matrix

                  

335.0

,357.0,607.0

317.0

,348.0,609.0

358.0

,441.0,522.0

346.0

,416.0,551.0

353.0

,359.0,588.0

463.0

,471.0,454.0
K

414.0

,435.0,512.0

372.0

,429.0,524.0

309.0

,396.0,579.0

431.0

,480.0,469.0

344.0

,377.0,593.0

377.0

,449.0,485.0
K

253.0

,270.0,708.0

303.0

,331.0,642.0

286.0

,374.0,607.0

309.0

,388.0,588.0

252.0

,284.0,694.0

274.0

,289.0,670.0
K

LLLLLL

3

2

1

654321
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Abstract. The notion of neutrosophic soft group is intro-
duced, together with several related properties. Its struc-
tural characteristics are investigated with suitable exam-
ples.  

The Cartesian product on neutrosophic soft groups and on 
neutrosophic soft subgroup is defined and illustrated by 
examples.  
Related theorems are established. 
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1 Introduction

The concept of Neutrosophic Set (NS), firstly intro-
duced by Smarandache [1], is a generalisation of classical 
sets, fuzzy set [2], intuitionistic fuzzy set [3] etc. Research-
ers in economics, sociology, medical science and many 
other several fields deal daily with the complexities of mod-
elling uncertain data. Classical methods are not always suc-
cessful because the uncertainty appearing in these domains 
may be of various types. While probability theory, theory of 
fuzzy set, intuitionistic fuzzy set and other mathematical 
tools are well known and often useful approaches to de-
scribe uncertainty, each of these theories has its different 
difficulties, as pointed out by Molodtsov [4]. 

In 1999, Molodtsov [4] introduced a new concept of soft 
set theory, which is free from the parameterization inade-
quacy syndrome of different theories dealing with uncer-
tainty. This makes the theory very convenient and easy to 
apply in practice. The classical group theory was extended 
over fuzzy set, intuitionistic fuzzy set and soft set by Rosen-
feld [5], Sharma [6], Aktas et.al. [7], and many others. Con-
sequently, several authors applied the theory of fuzzy soft 
sets, intuitionistic fuzzy soft sets to different algebraic struc-
tures, e.g. Maji et. al. [8, 9, 10], Dinda and Samanta [11], 
Ghosh et. al. [12], Mondal  [13], Chetia and Das [14], Basu 
et. al. [15], Augunoglu and Aygun [16], Yaqoob et. al [17], 
Varol et. al. [18], Zhang [19]. 

Later, Maji [20] has introduced a combined concept, the 
Neutrosophic Soft Set (NSS). Using this concept, several 
mathematicians have produced their research works in dif-
ferent mathematical structures, e.g. Sahin et. al [21], Broumi 
[22], Bera and Mahapatra [23], Maji [24], Broumi and 
Smarandache [25]. Later, the concept has been redefined by 
Deli and Broumi [26]. 

This paper presents the notion of neutrosophic soft 
groups along with an investigation of some related proper-
ties and theorems. Section 2 gives some useful definitions. 
In Section 3, neutrosophic soft group is defined, along with 
some properties. Section 4 deals with the Cartesian product 

of neutrosophic soft groups. Finally, the concept of neutro-
sophic soft subgroup is studied, with suitable examples, in 
Section 5. 

2 Preliminaries

We recall basic definitions related to fuzzy set, soft set, 
and neutrosophic soft. 

2.1 Definition: [27]

A binary operation  ∗  : [0, 1] × [0, 1]  → [0, 1]  is 
continuous t - norm if it satisfies the following conditions: 

(i) ∗ is commutative and associative. 
(ii) ∗ is continuous, 
(iii) 𝑎 ∗  1 =  1 ∗  𝑎 =  𝑎, ∀𝑎 ∈  [0, 1], 
(iv) 𝑎 ∗  𝑏 ≤  𝑐 ∗  𝑑  if 𝑎 ≤  𝑐, 𝑏 ≤  𝑑 ,   

with   𝑎, 𝑏, 𝑐, 𝑑 ∈  [0, 1]. 
A few examples of continuous t-norm are  𝑎 ∗  𝑏 =

 𝑎𝑏, 𝑎 ∗  𝑏 =  𝑚𝑖𝑛 (𝑎, 𝑏), 𝑎 ∗  𝑏 =  𝑚𝑎𝑥 (𝑎 +  𝑏 –  1, 0).

2.2 Definition: [27]

A binary operation  ⋄ ∶  [0, 1]× [0, 1] →  [0, 1]  is 
continuous t - conorm (s - norm) if it satisfies the following 
conditions: 

(i) ⋄ is commutative and associative, 
(ii) ⋄ is continuous, 
(iii) 𝑎 ⋄  0 =  0 ⋄  𝑎 =  𝑎, ∀𝑎 ∈ [0, 1], 
(iv) 𝑎 ⋄  𝑏 ≤  𝑐 ⋄  𝑑  if  𝑎 ≤  𝑐, 𝑏 ≤  𝑑,      

with  𝑎, 𝑏, 𝑐, 𝑑 ∈  [0, 1].
A few examples of continuous s-norm are  𝑎 ⋄  𝑏 =

 𝑎 +  𝑏 –  𝑎𝑏,  𝑎 ⋄  𝑏 = max(𝑎, 𝑏) ,   𝑎 ⋄  𝑏 = min(𝑎 +
𝑏, 1). ∀ 𝑎 ∈  [0, 1],  if 𝑎 ∗  𝑎 =  𝑎  and  𝑎 ⋄  𝑎 =  𝑎, then 

∗  is called an idempotent t-norm and ⋄  is called an 
idempotent s-norm.   

2.3 Definition: [1]

A neutrosophic set (NS) on the universe of discourse 𝑈 
is defined  as :  𝐴 =  {𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)  > : 𝑥 ∈  𝑈} ,
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where   𝑇, 𝐼, 𝐹 ∶  𝑈 ⟶  ] –0,1+ [   and 
–0 ≤  𝑇𝐴(𝑥)  +  𝐼𝐴(𝑥)  + 𝐹𝐴(𝑥)  ≤ 3+.

From a philosophical point of view, the  neutrosophic 
set (NS) takes its values from real standard or nonstandard 
subsets of ] –0,1+ [ . But in real life application, in scientific 
and engineering problems, it is difficult to use NS with 
values from real standard or nonstandard subset of  ] –0,1+ [. 
Hence, we consider the NS which takes the values from the 
subset of [0,1]. 

2.4 Definition: [4]

Let 𝑈  be an initial universe set and 𝐸  be a set of 
parameters. Let 𝑃(𝑈)  denote the power set of 𝑈. Then for 
𝐴 ⊆  𝐸,  a pair (𝐹, 𝐴)  is called a soft set over 𝑈 , where 
𝐹: 𝐴  →  𝑃(𝑈) is a mapping. 

2.5 Definition: [20]

Let 𝑈  be an initial universe set and 𝐸  be a set of 
parameters. Let 𝑃(𝑈) denote the set of all NSs of 𝑈. Then 
for 𝐴 ⊆  𝐸, a pair (𝐹, 𝐴) is called an NSS over 𝑈, where 
𝐹: 𝐴 →  𝑃(𝑈) is   a mapping. 

This concept has been modified by Deli and Broumi 
[26] as given below. 

2.6 Definition: [26]

Let 𝑈  be an initial universe set and 𝐸  be a set of 
parameters. Let 𝑃(𝑈) denote the set of all NSs of 𝑈. Then, 
a neutrosophic soft set  𝑁 over 𝑈 is a set defined by a set 
valued function 𝑓𝑁 representing a mapping  𝑓𝑁 : 𝐸 → 𝑃(𝑈)
where  𝑓𝑁   is called approximate function of the neutro-
sophic soft set 𝑁. In other words, the neutrosophic soft set 
is a parameterized family of some elements of the set 𝑃(𝑈) 
and therefore it can be written as a set of ordered pairs,  𝑁 
=  {(𝑒, {< 𝑥 , 𝑇𝑓𝑁(𝑒)(𝑥) ,  𝐼𝑓𝑁(𝑒)(𝑥) ,  𝐹𝑓𝑁(𝑒)(𝑥)  > ∶ 𝑥 ∈

𝑈 }) ∶  𝑒 ∈  𝐸}   where 𝑇𝑓𝑁(𝑒)(𝑥) , 𝐼𝑓𝑁(𝑒)(𝑥),  𝐹𝑓𝑁(𝑒)(𝑥)  ∈

[0,1] , respectively, called the truth-membership, indeter-
minacy-membership, falsity-membership function of 
𝑓𝑁(𝑒) .   Since supremum of each 𝑇, 𝐼, 𝐹 is 1  so the
inequality   0 ≤ 𝑇𝑓𝑁(𝑒)(𝑥) + 𝐼𝑓𝑁(𝑒)(𝑥) + 𝐹𝑓𝑁(𝑒)(𝑥) ≤  3  is
obvious. 

2.6.1 Example 

Let,   𝑈 =  {ℎ1, ℎ2, ℎ3} be a set of houses and   𝐸 =
{𝑒1(𝑏𝑒𝑎𝑢𝑡𝑖𝑓𝑢𝑙), 𝑒2(𝑤𝑜𝑜𝑑𝑒𝑛),   𝑒3(𝑐𝑜𝑠𝑡𝑙𝑦) }   be a set of
parameters with respect to which the nature of houses is 
described.  Let 

𝑓𝑁(𝑒1) = {<ℎ1, (0.5, 0.6, 0.3)>, <ℎ2, (0.4, 0.7, 0.6)>,
<ℎ3, (0.6, 0.2, 0.3)>};

𝑓𝑁(𝑒2)= {<ℎ1, (0.6, 0.3, 0.5) >, < ℎ2, (0.7, 0.4, 0.3) >,<
ℎ3, (0.8, 0.1, 0.2) >};

𝑓𝑁(𝑒3) = {<ℎ1, (0.7, 0.4, 0.3) >, < ℎ2, (0.6, 0.7, 0.2)
>,< ℎ3, (0.7, 0.2, 0.5) >};

Then, 𝑁 = {[𝑒1, 𝑓𝑁(𝑒1)], [𝑒2, 𝑓𝑁(𝑒2)], [𝑒3, 𝑓𝑁(𝑒3)]}  is
an NSS over (𝑈, 𝐸).         

The tabular representation of the NSS 𝑁 is as: 

  𝑓𝑁(𝑒1)   𝑓𝑁(𝑒2) 𝑓𝑁(𝑒3)

ℎ1  

ℎ2 

ℎ3  

(0.5,0.6,0.3)    (0.6,0.3,0.5)     (0.7,0.4,0.3) 

(0.4,0.7,0.6)    (0.7,0.4,0.3)     (0.6,0.7,0.2) 

(0.6,0.2,0.3)    (0.8,0.1,0.2)     (0.7,0.2,0.5) 

Table 1: Tabular form of NSS  N. 

2.6.2 Definition: [26]

The complement of a neutrosophic soft set 𝑁 is denoted 
by 𝑁𝑐 and  is defined as:

𝑁𝑐 =  {(𝑒, {< 𝑥,  𝐹𝑓𝑁(𝑒)(𝑥), 1 − 𝐼𝑓𝑁(𝑒)(𝑥),
𝑇𝑓𝑁(𝑒)(𝑥) >∶  𝑥 ∈ 𝑈}) ∶  𝑒 ∈ 𝐸}

2.6.3 Definition: [26]

Let 𝑁1 and 𝑁2  be two NSSs over the common universe
(𝑈, 𝐸). Then 𝑁1 is said to be the neutrosophic soft subset of
𝑁2  if

𝑇𝑓𝑁1(𝑒)(𝑥) ≤ 𝑇𝑓𝑁2(𝑒)(𝑥),  𝐼𝑓𝑁1(𝑒)(𝑥) ≥ 𝐼𝑓𝑁2(𝑒)(𝑥),
𝐹𝑓𝑁1(𝑒)(𝑥) ≥ 𝐹𝑓𝑁2(𝑒)(𝑥);  ∀𝑒 ∈  𝐸  and  𝑥 ∈  𝑈.

We write 𝑁1 ⊆ 𝑁2 and then 𝑁2 is the neutrosophic soft
superset of 𝑁1.

2.6.4 Definition: [26]

1. Let 𝑁1  and 𝑁2  be two NSSs over the common
universe (𝑈, 𝐸). Then their union is denoted by 𝑁1 ∪ 𝑁2 =
𝑁3 and is defined as :

𝑁3 =  {(𝑒, {<  𝑥, 𝑇𝑓𝑁3
(𝑒)(𝑥), 𝐼𝑓𝑁3

(𝑒)(𝑥), 𝐹𝑓𝑁3
(𝑒)(𝑥) >∶

 𝑥 ∈  𝑈 }) ∶  𝑒 ∈  𝐸 },
where   

𝑇𝑓𝑁3
(𝑒)(𝑥) = 𝑇𝑓𝑁1

(𝑒)(𝑥) ⋄  𝑇𝑓𝑁2
(𝑒)(𝑥),

𝐼𝑓𝑁3(𝑒)(𝑥) = 𝐼𝑓𝑁1(𝑒)(𝑥) ∗  𝐼𝑓𝑁2(𝑒)(𝑥),

𝐹𝑓𝑁3(𝑒)(𝑥) = 𝐹𝑓𝑁1(𝑒)(𝑥) ∗  𝐹𝑓𝑁2(𝑒)(𝑥);

2. Let 𝑁1  and 𝑁2  be two NSSs over the common
universe (𝑈, 𝐸). Then their intersection is denoted by 𝑁1 ∩
𝑁2 = 𝑁4 and it  is defined as:

𝑁4 =  {(𝑒, {<  𝑥, 𝑇𝑓𝑁4
(𝑒)(𝑥), 𝐼𝑓𝑁4

(𝑒)(𝑥),
𝐹𝑓𝑁4

(𝑒)(𝑥) >∶  𝑥 ∈  𝑈 }) ∶  𝑒 ∈  𝐸 }

where 
𝑇𝑓𝑁4(𝑒)(𝑥) = 𝑇𝑓𝑁1(𝑒)(𝑥) ∗  𝑇𝑓𝑁2

(𝑒)(𝑥),

𝐼𝑓𝑁4(𝑒)(𝑥) = 𝐼𝑓𝑁1(𝑒)(𝑥) ⋄  𝐼𝑓𝑁2(𝑒)(𝑥),

𝐹𝑓𝑁4(𝑒)(𝑥) =  𝐹𝑓𝑁1(𝑒)(𝑥) ⋄  𝐹𝑓𝑁2(𝑒)(𝑥);

2.7 Definition: [8]

Let (𝐹, 𝐴) be a soft set over the group 𝐺. Then (𝐹, 𝐴) is 
called a soft group over 𝐺  if  𝐹(𝑎)  is a subgroup of  𝐺,  
∀𝑎 ∈  𝐴.

119
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3 Neutrosophic soft groups

In this section, we define the neutrosophic soft group 
and some basic properties related to it. Unless otherwise 
stated, 𝐸  is treated as the parametric set throughout this 
paper and  𝑒 ∈ 𝐸, an arbitrary parameter. 

3.1 Definition: 

A neutrosophic set  𝐴 =  {<  𝑥, 𝑇𝐴(𝑥),   𝐼𝐴(𝑥),
𝐹𝐴(𝑥)  >∶  𝑥 ∈  𝐺}  over a group (𝐺,∘)  is called a

neutrosophic subgroup of (𝐺,∘) if 
(𝑖)   𝑇𝐴(𝑥 ∘ 𝑦)   ≥  𝑇𝐴(𝑥)  ∗  𝑇𝐴(𝑦),

𝐼𝐴(𝑥 ∘ 𝑦)   ≤   𝐼𝐴(𝑥)   ⋄   𝐼𝐴(𝑦),
 𝐹𝐴(𝑥 ∘ 𝑦)  ≤   𝐹𝐴(𝑥)  ⋄  𝐹𝐴(𝑦);

   for  𝑥, 𝑦 ∈  𝐺. 
(𝑖𝑖) 𝑇𝐴(𝑥−1)  ≥  𝑇𝐴(𝑥),    𝐼𝐴(𝑥−1)  ≤  𝐼𝐴(𝑥),
𝐹𝐴(𝑥−1)  ≤  𝐹𝐴(𝑥),        for    𝑥 ∈  𝐺.
An NSS  𝑁 over a group (𝐺,∘) is called a neutrosophic 

soft group if  𝑓𝑁(𝑒) is a neutrosophic subgroup of (𝐺,∘) for
each 𝑒 ∈  𝐸. 

3.1.1 Example: 

1. Let us consider the Klein's -4 group 𝑉 =  {𝑒, 𝑎, 𝑏, 𝑐}
and 𝐸 =  {𝛼, 𝛽, 𝛾, 𝛿} be the set of parameters. We define  
𝑓𝑁(𝛼), 𝑓𝑁(𝛽),  𝑓𝑁(𝛾),  𝑓𝑁(𝛿)  as given by the following ta-
ble: 

Table 2: Tabular form of neutrosophic soft group N. 

Corresponding  t-norm (∗) and s-norm (⋄) are defined as  
𝑎 ∗  𝑏 =  𝑚𝑎𝑥 ( 𝑎 + 𝑏 − 1,   0) ,  𝑎 ⋄  𝑏 =  𝑚𝑖𝑛 (𝑎 +
𝑏, 1).  Then, 𝑁 forms a neutrosophic soft group over (𝑉, 𝐸). 

2. Let 𝐸 =  ℕ  ( the set of natural no.), be the parametric
set and 𝐺 =  (ℤ, +) be the group of all integers. Define a 
mapping 𝑓𝑀 : ℕ →  𝑁𝑆(ℤ) where, for any 𝑛 ∈ ℕ and 𝑥 ∈ ℤ,

𝑇𝑓𝑀(𝑛)(𝑥) = {
0   if 𝑥 is odd
1

𝑛
 if 𝑥 is even

𝐼𝑓𝑀(𝑛)(𝑥) = {
1

2𝑛
 if 𝑥 is odd

0  if 𝑥 is even

𝐹𝑓𝑀(𝑛)(𝑥) = {
1 −

1

𝑛
   if 𝑥 is odd

0      if 𝑥 is even
Corresponding t-norm (∗) and s-norm (⋄) are defined as   

𝑎 ∗  𝑏 =  𝑚𝑖𝑛 (𝑎, 𝑏), 𝑎 ⋄   𝑏 =  𝑚𝑎𝑥 (𝑎, 𝑏). 
Then, 𝑀  forms a neutrosophic soft set as well as 

neutrosophic  soft group over [(ℤ, +), ℕ]. 

3.2 Proposition: 

An NSS 𝑁 over the group (𝐺,∘) is called a neutrosophic 
soft group iff followings hold on the assumption that truth 
membership (𝑇),  indeterministic membership (𝐼)  and 
falsity membership (𝐹)  functions of an NSS obey the 
idempotent  t-norm and idempotent  s-norm disciplines. 

𝑇𝑓𝑁(𝑒)(𝑥 ∘ 𝑦−1)  ≥  𝑇𝑓𝑁(𝑒)(𝑥) ∗  𝑇𝑓𝑁(𝑒)(𝑦),

𝐼𝑓𝑁(𝑒)(𝑥 ∘ 𝑦−1)  ≤  𝐼𝑓𝑁(𝑒)(𝑥) ⋄  𝐼𝑓𝑁(𝑒)(𝑦),

𝐹𝑓𝑁(𝑒)(𝑥 ∘ 𝑦−1)  ≤  𝐹𝑓𝑁(𝑒)(𝑥) ⋄  𝐹𝑓𝑁(𝑒)(𝑦);

∀ 𝑥, 𝑦 ∈ 𝐺;    ∀𝑒 ∈  𝐸;

Proof: 

Firstly, suppose 𝑁 is an NSS group over (𝐺,∘).
Then, 
𝑇𝑓𝑁(𝑒)(𝑥 ∘ 𝑦−1)  ≥  𝑇𝑓𝑁(𝑒)(𝑥)  ∗ 𝑇𝑓𝑁(𝑒)(𝑦−1)

≥   𝑇𝑓𝑁(𝑒)(𝑥) ∗  𝑇𝑓𝑁(𝑒)(𝑦),

𝐼𝑓𝑁(𝑒)(𝑥 ∘ 𝑦−1)  ≤  𝐼𝑓𝑁(𝑒)(𝑥) ⋄  𝐼𝑓𝑁(𝑒)(𝑦−1)

≤  𝐼𝑓𝑁(𝑒)(𝑥) ⋄  𝐼𝑓𝑁(𝑒)(𝑦),

𝐹𝑓𝑁(𝑒)(𝑥 ∘ 𝑦−1)  ≤  𝐹𝑓𝑁(𝑒)(𝑥) ⋄  𝐹𝑓𝑁(𝑒)(𝑦−1)

≤  𝐹𝑓𝑁(𝑒)(𝑥) ⋄  𝐹𝑓𝑁(𝑒)(𝑦);

Conversely, for the identity element 𝑒𝐺 in 𝐺;

𝑇𝑓𝑁(𝑒)(𝑒𝐺) =   𝑇𝑓𝑁(𝑒)(𝑥 ∘ 𝑥−1)

≥  𝑇𝑓𝑁(𝑒)(𝑥)  ∗  𝑇𝑓𝑁(𝑒)(𝑥)

=   𝑇𝑓𝑁(𝑒)(𝑥),

𝐼𝑓𝑁(𝑒)(𝑒𝐺) =   𝐼𝑓𝑁(𝑒)(𝑥 ∘ 𝑥−1)

≤  𝐼𝑓𝑁(𝑒)(𝑥)  ⋄  𝐼𝑓𝑁(𝑒)(𝑥)

=   𝐼𝑓𝑁(𝑒)(𝑥),

𝐹𝑓𝑁(𝑒)(𝑒𝐺) =   𝐹𝑓𝑁(𝑒)(𝑥 ∘ 𝑥−1)

≤  𝐹𝑓𝑁(𝑒)(𝑥)  ⋄  𝐹𝑓𝑁(𝑒)(𝑥)

= 𝐹𝑓𝑁(𝑒)(𝑥);

Now, 
𝑇𝑓𝑁(𝑒)(𝑥−1)  =  𝑇𝑓𝑁(𝑒)(𝑒𝐺 ∘ 𝑥−1)

≥  𝑇𝑓𝑁(𝑒)(𝑒𝐺)  ∗  𝑇𝑓𝑁(𝑒)(𝑥−1)

≥ 𝑇𝑓𝑁(𝑒)(𝑥)  ∗  𝑇𝑓𝑁(𝑒)(𝑥)

= 𝑇𝑓𝑁(𝑒)(𝑥),

𝐼𝑓𝑁(𝑒)(𝑥−1)  =  𝐼𝑓𝑁(𝑒)(𝑒𝐺 ∘ 𝑥−1)

≤  𝐼𝑓𝑁(𝑒)(𝑒𝐺)  ⋄  𝐼𝑓𝑁(𝑒)(𝑥−1)

≤   𝐼𝑓𝑁(𝑒)(𝑥)  ⋄  𝐼𝑓𝑁(𝑒)(𝑥)

= 𝐼𝑓𝑁(𝑒)(𝑥),

 𝑓𝑁(𝛼) 𝑓𝑁(𝛽)
 𝑓𝑁(𝛾) 𝑓𝑁(𝛿)

𝑒 

𝑎 

𝑏 

𝑐

(0.65, 0.34, 0.14)   (0.88, 0.12,0.72)  
(0.72, 0.21, 0.16)           (0.69, 0.31, 0.32) 

(0.71, 0.22, 0.78)           (0.71, 0.19, 0.44)  
(0.84, 0.16, 0.25)           (0.62, 0.32, 0.42) 

(0.75, 0.25, 0.52)           (0.83, 0.11, 0.28) 
(0.69, 0.31, 0.39)           (0.58, 0.41, 0.66) 

(0.67, 0.32, 0.29)          (0.75, 0.21, 0.19) 
 (0.79, 0.19, 0.41)          (0.71, 0.27, 0.53) 
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𝐹𝑓𝑁(𝑒)(𝑥−1)  =  𝐹𝑓𝑁(𝑒)(𝑒𝐺 ∘ 𝑥−1)

≤  𝐹𝑓𝑁(𝑒)(𝑒𝐺)  ⋄  𝐼𝑓𝑁(𝑒)(𝑥−1)

≤ 𝐹𝑓𝑁(𝑒)(𝑥)  ⋄  𝐹𝑓𝑁(𝑒)(𝑥)

= 𝐹𝑓𝑁(𝑒)(𝑥);

Next, 
𝑇𝑓𝑁(𝑒)(𝑥 ∘ 𝑦)   =  𝑇𝑓𝑁(𝑒)(𝑥 ∘ (𝑦−1)−1)

≥  𝑇𝑓𝑁(𝑒)(𝑥)  ∗  𝑇𝑓𝑁(𝑒)(𝑦−1)

≥ 𝑇𝑓𝑁(𝑒)(𝑥)  ∗  𝑇𝑓𝑁(𝑒)(𝑦),

𝐼𝑓𝑁(𝑒)(𝑥 ∘ 𝑦)   =  𝐼𝑓𝑁(𝑒)(𝑥 ∘ (𝑦−1)−1)

≤  𝐼𝑓𝑁(𝑒)(𝑥)  ⋄  𝐼𝑓𝑁(𝑒)(𝑦−1)

≤ 𝐼𝑓𝑁(𝑒)(𝑥)  ⋄  𝐼𝑓𝑁(𝑒)(𝑦),

𝐹𝑓𝑁(𝑒)(𝑥 ∘ 𝑦)   =  𝐹𝑓𝑁(𝑒)(𝑥 ∘ (𝑦−1)−1)

≤  𝐹𝑓𝑁(𝑒)(𝑥)  ⋄  𝐹𝑓𝑁(𝑒)(𝑦−1)

≤ 𝐹𝑓𝑁(𝑒)(𝑥)  ⋄  𝐹𝑓𝑁(𝑒)(𝑦).

This completes the proof. 

3.2.1 Proposition: 

Let  𝑁  be a neutrosophic soft group  over the group 
(𝐺,∘). Then for 𝑥 ∈ 𝐺, followings hold. 

(𝑖)   𝑇𝑓𝑁(𝑒)(𝑥−1)  =  𝑇𝑓𝑁(𝑒)(𝑥) ,  𝐼𝑓𝑁(𝑒)(𝑥−1)  =

𝐼𝑓𝑁(𝑒)(𝑥),    𝐹𝑓𝑁(𝑒)(𝑥−1) = 𝐹𝑓𝑁(𝑒)(𝑥) ;

(𝑖𝑖)   𝑇𝑓𝑁(𝑒)(𝑒𝐺)  ≥  𝑇𝑓𝑁(𝑒)(𝑥)  ,  𝐼𝑓𝑁(𝑒)(𝑒𝐺)  ≤

𝐼𝑓𝑁(𝑒)(𝑥) ,  𝐹𝑓𝑁(𝑒)(𝑒𝐺) ≤ 𝐹𝑓𝑁(𝑒)(𝑥) ;
if 𝑇  follows the idempotent t-norm and 𝐼, 𝐹  follow  the 
idempotent  s-norm disciplines,  respectively. (𝑒𝐺 being the
identity element of 𝐺.) 

Proof: 

(𝑖)  𝑇𝑓𝑁(𝑒)(𝑥) = 𝑇𝑓𝑁(𝑒)(𝑥−1)−1 ≥  𝑇𝑓𝑁(𝑒)(𝑥−1)

𝐼𝑓𝑁(𝑒)(𝑥)  =  𝐼𝑓𝑁(𝑒)(𝑥−1)−1  ≤  𝐼𝑓𝑁(𝑒)(𝑥−1)

𝐹𝑓𝑁(𝑒)(𝑥) = 𝐹𝑓𝑁(𝑒)(𝑥−1)−1 ≤  𝐹𝑓𝑁(𝑒)(𝑥−1)

Now, from definition of neutrosophic soft group, the 
result follows. 

(𝑖𝑖)   For the identity element 𝑒𝐺 in  𝐺,
𝑇𝑓𝑁(𝑒)(𝑒𝐺) = 𝑇𝑓𝑁(𝑒)(𝑥 ∘  𝑥−1)

≥  𝑇𝑓𝑁(𝑒)(𝑥) ∗  𝑇𝑓𝑁(𝑒)(𝑥)

=  𝑇𝑓𝑁(𝑒)(𝑥) ,

𝐼𝑓𝑁(𝑒)(𝑒𝐺) = 𝐼𝑓𝑁(𝑒)(𝑥 ∘  𝑥−1)

≤  𝐼𝑓𝑁(𝑒)(𝑥) ⋄  𝐼𝑓𝑁(𝑒)(𝑥)

=  𝐼𝑓𝑁(𝑒)(𝑥) ,

𝐹𝑓𝑁(𝑒)(𝑒𝐺) = 𝐹𝑓𝑁(𝑒)(𝑥 ∘  𝑥−1)

≤  𝐹𝑓𝑁(𝑒)(𝑥) ⋄  𝐹𝑓𝑁(𝑒)(𝑥)

=  𝐹𝑓𝑁(𝑒)(𝑥) ;

Hence,  the proposition is proved. 

3.3 Theorem: 

Let 𝑁1 and 𝑁2 be two neutrosophic soft groups over the
group (𝐺,∘).  Then, 𝑁1 ∩ 𝑁2    is also a neutrosophic soft
group over (𝐺,∘). 

Proof: 

Let 𝑁1 ⋂ 𝑁2 =  𝑁3;   Now for 𝑥, 𝑦 ∈  𝐺;

𝑇 𝑓𝑁3
(𝑒)(𝑥 ∘ 𝑦)

= 𝑇 𝑓𝑁1
(𝑒)(𝑥 ∘ 𝑦) ∗ 𝑇 𝑓𝑁2

(𝑒)(𝑥 ∘ 𝑦)

≥ [𝑇 𝑓𝑁1
(𝑒)(𝑥) ∗  𝑇 𝑓𝑁1

(𝑒)(𝑦)] ∗

[𝑇 𝑓𝑁2
(𝑒)(𝑥) ∗  𝑇 𝑓𝑁2

(𝑒)(𝑦)]

= [𝑇 𝑓𝑁1
(𝑒)(𝑥) ∗  𝑇 𝑓𝑁1

(𝑒)(𝑦)] ∗

[𝑇 𝑓𝑁2
(𝑒)(𝑦) ∗  𝑇 𝑓𝑁2

(𝑒)(𝑥)]

    (as ∗  is commutative) 
= 𝑇 𝑓𝑁1

(𝑒)(𝑥) ∗  [𝑇 𝑓𝑁1
(𝑒)(𝑦) ∗ 𝑇 𝑓𝑁2

(𝑒)(𝑦)]

∗ 𝑇 𝑓𝑁2
(𝑒)(𝑥)   (as ∗  is associative)

= 𝑇 𝑓𝑁1
(𝑒)(𝑥) ∗ 𝑇 𝑓𝑁3

(𝑒)(𝑦) ∗ 𝑇 𝑓𝑁2
(𝑒)(𝑥)

= 𝑇 𝑓𝑁1
(𝑒)(𝑥) ∗ 𝑇 𝑓𝑁2

(𝑒)(𝑥) ∗ 𝑇 𝑓𝑁3
(𝑒)(𝑦)

(as ∗  is commutative) 
= 𝑇 𝑓𝑁3

(𝑒)(𝑥) ∗ 𝑇 𝑓𝑁3
(𝑒)(𝑦)

Also,  
𝑇𝑓𝑁3

(𝑒)(𝑥−1) =  𝑇𝑓𝑁1
(𝑒)(𝑥−1) ∗ 𝑇𝑓𝑁2

(𝑒)(𝑥−1)

≥  𝑇 𝑓𝑁1
(𝑒)(𝑥) ∗ 𝑇 𝑓𝑁2

(𝑒)(𝑥)

= 𝑇 𝑓𝑁3
(𝑒)(𝑥);

Next, 
𝐼 𝑓𝑁3

(𝑒)(𝑥 ∘ 𝑦)

= 𝐼 𝑓𝑁1
(𝑒)(𝑥 ∘ 𝑦) ⋄ 𝐼 𝑓𝑁2

(𝑒)(𝑥 ∘ 𝑦)

≤ [𝐼 𝑓𝑁1
(𝑒)(𝑥) ⋄  𝐼 𝑓𝑁1

(𝑒)(𝑦)] ⋄

[𝐼 𝑓𝑁2
(𝑒)(𝑥) ⋄  𝐼 𝑓𝑁2

(𝑒)(𝑦)]

= [𝐼 𝑓𝑁1
(𝑒)(𝑥) ⋄  𝐼 𝑓𝑁1

(𝑒)(𝑦)] ⋄

[𝐼 𝑓𝑁2
(𝑒)(𝑦) ⋄  𝐼 𝑓𝑁2

(𝑒)(𝑥)]

         (as ⋄  is commutative) 
= 𝐼 𝑓𝑁1

(𝑒)(𝑥) ⋄  [𝐼 𝑓𝑁1
(𝑒)(𝑦) ⋄ 𝐼 𝑓𝑁2

(𝑒)(𝑦)]

⋄ 𝐼 𝑓𝑁2
(𝑒)(𝑥) (as ⋄  is associative)

= 𝐼 𝑓𝑁1
(𝑒)(𝑥) ⋄ 𝐼 𝑓𝑁3

(𝑒)(𝑦) ⋄ 𝐼 𝑓𝑁2
(𝑒)(𝑥)

= 𝐼 𝑓𝑁1
(𝑒)(𝑥) ⋄ 𝐼 𝑓𝑁2

(𝑒)(𝑥) ⋄ 𝐼 𝑓𝑁3
(𝑒)(𝑦)

(as ⋄  is commutative) 
= 𝐼 𝑓𝑁3

(𝑒)(𝑥) ⋄ 𝐼 𝑓𝑁3
(𝑒)(𝑦)

Also,    
𝐼 𝑓𝑁3

(𝑒)(𝑥−1) =  𝐼 𝑓𝑁1
(𝑒)(𝑥−1) ⋄ 𝐼 𝑓𝑁2

(𝑒)(𝑥−1)

≤  𝐼 𝑓𝑁1
(𝑒)(𝑥) ⋄ 𝐼 𝑓𝑁2

(𝑒)(𝑥)

= 𝐼 𝑓𝑁3
(𝑒)(𝑥);

Similarly, 
𝐹 𝑓𝑁3

(𝑒)(𝑥 ∘ 𝑦) ≤  𝐹 𝑓𝑁3
(𝑒)(𝑥) ⋄ 𝐹 𝑓𝑁3

(𝑒)(𝑦),

𝐹 𝑓𝑁3
(𝑒)(𝑥−1)   ≤ 𝐹 𝑓𝑁3

(𝑒)(𝑥);

This ends the theorem. The theorem is also true for a 
family of neutrosophic soft  groups over a group. 
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3.3.1 Remark: 

For two neutrosophic soft groups 𝑁1  and 𝑁2  over the
group 𝐺,  𝑁1⋃𝑁2 is not generally a neutrosophic soft group
over 𝐺. It is possible if anyone is contained in other.  

For example, let,    𝐺 =  (ℤ, +), 𝐸 =  2ℤ.   Consider 
two neutrosophic soft groups 𝑁1      and 𝑁2  over 𝐺  as
following. For  𝑥, 𝑛 ∈  ℤ, 

𝑇𝑓𝑁1
(2𝑛)(𝑥) = {

1

2
 if 𝑥 =  4kn, ∃k ∈  ℤ

0  others

𝐼𝑓𝑁1
(2𝑛)(𝑥) = {

0   if 𝑥 =  4kn, ∃k ∈  ℤ
1

4
 others

𝐹𝑓𝑁1
(2𝑛)(𝑥) = {

0   if 𝑥 =  4kn, ∃k ∈  ℤ
1

10
 others

  and 

𝑇𝑓2(2𝑛)(𝑥) = {
2

3
 if 𝑥 =  6kn, ∃k ∈  ℤ

0  others

𝐼𝑓𝑁2
(2𝑛)(𝑥) = {

0   if 𝑥 =  6kn, ∃k ∈  ℤ
1

5
 others

𝐹𝑓𝑁2
(2𝑛)(𝑥) = {

1

6
 if 𝑥 =  6kn, ∃k ∈  ℤ

1  others
Corresponding t-norm (∗) and s-norm (⋄) are defined as 

𝑎 ∗  𝑏 =  𝑚𝑖𝑛 (𝑎, 𝑏),  𝑎 ⋄  𝑏 =  𝑚𝑎𝑥 (𝑎, 𝑏).   Let  𝑁1  ⋃
𝑁2 =  𝑁3; Then for  𝑛 = 3, 𝑥 = 12, 𝑦 = 18   we have,

𝑇𝑓𝑁3
(6)(12 − 18) = 𝑇𝑓𝑁1

(6)( −6) ⋄ 𝑇𝑓𝑁2
(6)( −6)

        = max  (0, 0)  =  0     and 
𝑇𝑓𝑁3

(6)(12)  ∗  𝑇𝑓𝑁3
(6)(18)

=  { 𝑇𝑓𝑁1
(6)(12) ⋄  𝑇𝑓𝑁2

(6)(12)} ∗

{𝑇𝑓𝑁1
(6)(18)  ⋄  𝑇𝑓𝑁2

(6)(18) }

=   𝑚𝑖𝑛  {𝑚𝑎𝑥 (
1

2
, 0) , 𝑚𝑎𝑥 (0,

2

3
)} 

=    𝑚𝑖𝑛   (1

2
,

2

3
)   = 1

2

Hence, 
𝑇𝑓𝑁3

(6)(12 − 18) <  𝑇𝑓𝑁3
(6)(12) ∗  𝑇𝑓𝑁3

(6)(18);

i,e  𝑁1 ⋃ 𝑁2  is not a neutrosophic soft group, here.

Now, if we define 𝑁2  over 𝐺 as following:

𝑇𝑓𝑁2
(2𝑛)(𝑥) = {

1

 8
 if 𝑥 =  8kn, ∃k ∈  ℤ

0  others

𝐼𝑓𝑁2
(2𝑛)(𝑥) = {

 0     if 𝑥 =  8kn, ∃k ∈  ℤ
2

5
 others

𝐹𝑓𝑁2
(2𝑛)(𝑥) = {

1

6
 if 𝑥 =  8kn, ∃k ∈  ℤ

1

2
 others

Then, it can be easily verified that 𝑁2 ⊆ 𝑁1 and 𝑁1⋃𝑁2

is a neutrosophic soft  group over 𝐺. 

3.4 Definition: 

1. Let 𝑁1  and 𝑁2  be two NSSs over the common
universe (𝑈, 𝐸). Then their ‘𝐴𝑁𝐷′ operation is denoted by 
𝑁1⋀ 𝑁2 = 𝑁3 and is defined as:

𝑁3 = {[(𝑎, 𝑏), {< 𝑥, 𝑇𝑓𝑁3
(𝑎,𝑏)(𝑥), 𝐼𝑓𝑁3

(𝑎,𝑏)(𝑥),

𝐹𝑓𝑁3
(𝑎,𝑏)(𝑥) >∶ 𝑥 ∈  𝑈} ]: (𝑎, 𝑏) ∈ 𝐸×𝐸} where

𝑇𝑓𝑁3
(𝑎,𝑏)(𝑥) = 𝑇𝑓𝑁1

(𝑎)(𝑥) ∗  𝑇𝑓𝑁2
(𝑏)(𝑥),

𝐼𝑓𝑁3
(𝑎,𝑏)(𝑥) = 𝐼𝑓𝑁1

(𝑎)(𝑥) ⋄  𝐼𝑓𝑁2
(𝑏)(𝑥),

𝐹𝑓𝑁3
(𝑎,𝑏)(𝑥) = 𝐹𝑓𝑁1

(𝑎)(𝑥) ⋄  𝐹𝑓𝑁2
(𝑏)(𝑥);

2. Let 𝑁1  and 𝑁2  be two NSSs over the common
universe (𝑈, 𝐸).  Then their ‘𝑂𝑅′  operation is denoted by 
𝑁1⋁ 𝑁2 = 𝑁4 and is defined as:

𝑁4 = {[(𝑎, 𝑏), {< 𝑥, 𝑇𝑓𝑁4
(𝑎,𝑏)(𝑥), 𝐼𝑓𝑁4

(𝑎,𝑏)(𝑥),

𝐹𝑓𝑁4
(𝑎,𝑏)(𝑥) >∶ 𝑥 ∈  𝑈} ]: (𝑎, 𝑏) ∈ 𝐸×𝐸}

where 

𝑇𝑓𝑁4
(𝑎,𝑏)(𝑥) =   𝑇𝑓𝑁1

(𝑎)(𝑥) ⋄  𝑇𝑓𝑁2
(𝑏)(𝑥),

𝐼𝑓𝑁4
(𝑎,𝑏)(𝑥) =   𝐼𝑓𝑁1

(𝑎)(𝑥) ∗  𝐼𝑓𝑁2
(𝑏)(𝑥),

𝐹𝑓𝑁4
(𝑎,𝑏)(𝑥) =   𝐹𝑓𝑁1

(𝑎)(𝑥) ∗  𝐹𝑓𝑁2
(𝑏)(𝑥);

3.5 Theorem: 

Let  𝑁1 and 𝑁2 be two neutrosophic soft groups over the
group (𝐺,∘).  Then, 𝑁1⋀ 𝑁2   is also a neutrosophic soft
group over (𝐺,∘). 

Proof: 

Let 𝑁1⋀ 𝑁2 = 𝑁3. Then for 𝑥, 𝑦 ∈  𝐺 and  (𝑎, 𝑏)  ∈  𝐸×
𝐸,

𝑇𝑓𝑁3
(𝑎,𝑏)(𝑥 ∘ 𝑦)

= 𝑇𝑓𝑁1
(𝑎)(𝑥 ∘ 𝑦) ∗ 𝑇𝑓𝑁2

(𝑏)(𝑥 ∘ 𝑦)

≥ [ 𝑇𝑓𝑁1
(𝑎)(𝑥) ∗  𝑇𝑓𝑁1

(𝑎)(𝑦)] ∗

[ 𝑇𝑓𝑁2
(𝑏)(𝑥) ∗  𝑇𝑓𝑁2

(𝑏)(𝑦)]

= [ 𝑇𝑓𝑁1
(𝑎)(𝑥) ∗  𝑇𝑓𝑁1

(𝑎)(𝑦)] ∗

[ 𝑇𝑓𝑁2
(𝑏)(𝑦) ∗  𝑇𝑓𝑁2

(𝑏)(𝑥)]

        (as ∗  is commutative)         
= 𝑇𝑓𝑁1

(𝑎)(𝑥) ∗ [ 𝑇𝑓𝑁1
(𝑎)(𝑦) ∗  𝑇𝑓𝑁2

(𝑏)(𝑦)]

∗  𝑇𝑓𝑁2
(𝑏)(𝑥)   (as ∗ is associative)

= 𝑇𝑓𝑁1
(𝑎)(𝑥) ∗  𝑇𝑓𝑁3

(𝑎,𝑏)(𝑦) ∗  𝑇𝑓𝑁2
(𝑏)(𝑥)

= 𝑇𝑓𝑁1
(𝑎)(𝑥) ∗  𝑇𝑓𝑁2

(𝑏)(𝑥) ∗ 𝑇𝑓𝑁3
(𝑎,𝑏)(𝑦)

         (as ∗ is commutative) 
= 𝑇𝑓𝑁3

(𝑎,𝑏)(𝑥) ∗ 𝑇𝑓𝑁3
(𝑎,𝑏)(𝑦)

𝑇𝑓𝑁3
(𝑎,𝑏)(𝑥−1) = 𝑇𝑓𝑁1

(𝑎)(𝑥−1) ∗ 𝑇𝑓𝑁2
(𝑏)(𝑥−1)

≥  𝑇𝑓𝑁1
(𝑎)(𝑥) ∗  𝑇𝑓𝑁2

(𝑏)(𝑥)

=  𝑇𝑓𝑁3
(𝑎,𝑏)(𝑥)
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Similarly, 
𝐼𝑓𝑁3

(𝑎,𝑏)(𝑥 ∘ 𝑦) ≤ 𝐼𝑓𝑁3
(𝑎,𝑏)(𝑥) ⋄ 𝐼𝑓𝑁3

(𝑎,𝑏)(𝑦),

𝐼𝑓𝑁3
(𝑎,𝑏)(𝑥−1) ≤  𝐼𝑓𝑁3

(𝑎,𝑏)(𝑥) ;

𝐹𝑓𝑁3
(𝑎,𝑏)(𝑥 ∘ 𝑦) ≤ 𝐹𝑓𝑁3

(𝑎,𝑏)(𝑥) ⋄ 𝐹𝑓𝑁3
(𝑎,𝑏)(𝑦),

𝐹𝑓𝑁3
(𝑎,𝑏)(𝑥−1) ≤  𝐹𝑓𝑁3

(𝑎,𝑏)(𝑥) ;
This completes the proof. 
The theorem is true for a family of neutrosophic soft 

groups over a group. 

3.6 Definition: 

Let 𝑔 be a mapping from a set 𝑋 to a set 𝑌. If 𝑀 and 𝑁 
are two neutrosophic soft sets over 𝑋 and 𝑌, respectively, 
then the image of 𝑀 under 𝑔 is defined as a neutrosophic 
soft set   𝑔(𝑀) =  {[𝑒, 𝑓𝑔(𝑀) (𝑒)]: 𝑒 ∈ 𝐸}  over 𝑌,  where
𝑇𝑓𝑔(𝑀) (𝑒)(𝑦) = 𝑇𝑓𝑀(𝑒)[𝑔−1(𝑦)], 𝐼𝑓𝑔(𝑀)(𝑒)(𝑦) =

𝐼𝑓𝑀(𝑒)[𝑔−1(𝑦)],  𝐹𝑓𝑔(𝑀) (𝑒)(𝑦) = 𝐹𝑓𝑀(𝑒)[𝑔−1(𝑦)], ∀𝑦 ∈

 𝑌. 
The pre-image of 𝑁  under 𝑔  is defined as a 

neutrosophic soft set given by: 
𝑔−1(𝑁)  = {[𝑒, 𝑓𝑔−1(𝑁) (𝑒)]: 𝑒 ∈ 𝐸}  over 𝑋, where
𝑇𝑓

𝑔−1(𝑁)
(𝑒)(𝑥) = 𝑇𝑓𝑁(𝑒)[𝑔(𝑥)], 𝐼𝑓

𝑔−1(𝑁)
(𝑒)(𝑥) =

𝐼𝑓𝑁(𝑒)[𝑔(𝑥)], 𝐹𝑓
𝑔−1(𝑁)

(𝑒)(𝑥) = 𝐹𝑓𝑁(𝑒)[𝑔(𝑥)],

∀𝑥 ∈ 𝑋. 

3.7 Theorem: 

Let   𝑔 ∶  𝑋 →  𝑌 be an isomorphism in classical sense. 
If 𝑀  is a neutrosophic soft group over 𝑋  then 𝑔(𝑀) is a 
neutrosophic soft group over 𝑌. 

Proof: 

Let   𝑥1, 𝑥2 ∈ 𝑋;    𝑦1, 𝑦2 ∈ 𝑌;   such that  𝑦1  =  𝑔(𝑥1),
𝑦2 =  𝑔(𝑥2).    Now,

𝑇𝑓𝑔(𝑀) (𝑒)(𝑦1 ∘ 𝑦2)

= 𝑇𝑓𝑀(𝑒)[𝑔−1(𝑦1 ∘ 𝑦2)]

= 𝑇𝑓𝑀(𝑒)[𝑔−1(𝑦1) ∘ 𝑔−1(𝑦2)]

   (as 𝑔−1 is homomorphism) 
= 𝑇𝑓𝑀(𝑒)(𝑥1 ∘ 𝑥2)

≥ 𝑇𝑓𝑀(𝑒)(𝑥1) ∗ 𝑇𝑓𝑀(𝑒)(𝑥2)

= 𝑇𝑓𝑀(𝑒)[𝑔−1(𝑦1)] ∗  𝑇𝑓𝑀(𝑒)[𝑔−1(𝑦2)]

= 𝑇𝑓𝑔(𝑀) (𝑒)(𝑦1) ∗ 𝑇𝑓𝑔(𝑀) (𝑒)(𝑦2)

Next,    𝐼𝑓𝑔(𝑀) (𝑒)(𝑦1 ∘ 𝑦2)

=  𝐼𝑓𝑀(𝑒)[𝑔−1(𝑦1 ∘ 𝑦2)]

=   𝐼𝑓𝑀(𝑒)[𝑔−1(𝑦1) ∘ 𝑔−1(𝑦2)]

  (as 𝑔−1 is homomorphism) 
= 𝐼𝑓𝑀(𝑒) (𝑥1 ∘ 𝑥2)

≤ 𝐼𝑓𝑀(𝑒)(𝑥1) ⋄ 𝐼𝑓𝑀(𝑒)(𝑥2)

=   𝐼𝑓𝑀(𝑒)[𝑔−1(𝑦1)] ⋄  𝐼𝑓𝑀(𝑒)[𝑔−1(𝑦2)]

=   𝐼𝑓𝑔(𝑀) (𝑒)(𝑦1) ⋄ 𝐼𝑓𝑔(𝑀) (𝑒)(𝑦2)

Similarly,   𝐹𝑓𝑔(𝑀) (𝑒)(𝑦1 ∘ 𝑦2)

≤  𝐹𝑓𝑔(𝑀) (𝑒)(𝑦1) ⋄ 𝐹𝑓𝑔(𝑀) (𝑒)(𝑦2)

Next,     𝑇𝑓𝑔(𝑀) (𝑒)(𝑦1
−1) = 𝑇𝑓𝑀(𝑒)[𝑔−1(𝑦1

−1)]

=  𝑇𝑓𝑀(𝑒)[(𝑔−1(𝑦1))−1]  = 𝑇𝑓𝑀(𝑒)(𝑥1
−1)

≥  𝑇𝑓𝑀(𝑒)(𝑥1) = 𝑇𝑓𝑀(𝑒) [𝑔−1(𝑦1)]

=  𝑇𝑓𝑔(𝑀) (𝑒)(𝑦1)   i,e
𝑇𝑓𝑔(𝑀) (𝑒)(𝑦1

−1) ≥ 𝑇𝑓𝑔(𝑀) (𝑒)(𝑦1);

𝐼𝑓𝑔(𝑀) (𝑒)(𝑦1
−1)  = 𝐼𝑓𝑀(𝑒)[𝑔−1(𝑦1

−1)]

=  𝐼𝑓𝑀(𝑒)[(𝑔−1(𝑦1))−1]  = 𝐼𝑓𝑀(𝑒)(𝑥1
−1)

≤  𝐼𝑓𝑀(𝑒)(𝑥1) = 𝐼𝑓𝑀(𝑒) [𝑔−1(𝑦1)]

=  𝐼𝑓𝑔(𝑀) (𝑒)(𝑦1)   i,e
𝐼𝑓𝑔(𝑀) (𝑒)(𝑦1

−1) ≤ 𝐼𝑓𝑔(𝑀) (𝑒)(𝑦1);

Similarly,    𝐹𝑓𝑔(𝑀) (𝑒)(𝑦1
−1) ≤ 𝐹𝑓𝑔(𝑀) (𝑒)(𝑦1);

This proves the theorem. 

3.8 Theorem: 

Let 𝑔 ∶  𝑋 →  𝑌 be an homomorphism in classical sense. 
If 𝑁 is a neutrosophic soft group over 𝑌, then 𝑔−1(𝑁) is a 
neutrosophic soft group over 𝑋. [Note that 𝑔−1(𝑁) is the 
inverse image of 𝑁 under the mapping  𝑔. Here 𝑔−1  may 
not be a mapping.] 

Proof: 

Let   𝑥1, 𝑥2 ∈ 𝑋;    𝑦1, 𝑦2 ∈ 𝑌;   such that  𝑦1  =  𝑔(𝑥1),
𝑦2 =  𝑔(𝑥2).    Now,

𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1 ∘ 𝑥2)

=  𝑇𝑓𝑁(𝑒)[𝑔(𝑥1 ∘ 𝑥2)]

=  𝑇𝑓𝑁(𝑒)[𝑔(𝑥1) ∘ 𝑔(𝑥2)]

 (as 𝑔 is homomorphism) 
=   𝑇𝑓𝑁(𝑒) (𝑦1 ∘ 𝑦2)

≥ 𝑇𝑓𝑁(𝑒)(𝑦1) ∗ 𝑇𝑓𝑁(𝑒)(𝑦2)

=  𝑇𝑓𝑁(𝑒)[𝑔(𝑥1)] ∗  𝑇𝑓𝑁(𝑒)[𝑔(𝑥2)]

=  𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1) ∗ 𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝑥2)

Next,   𝐼𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1 ∘ 𝑥2)

=  𝐼𝑓𝑁(𝑒)[𝑔(𝑥1 ∘ 𝑥2)]

=  𝐼𝑓𝑁(𝑒)[𝑔(𝑥1) ∘ 𝑔(𝑥2)]

 (as 𝑔 is homomorphism) 
=   𝐼𝑓𝑁(𝑒) (𝑦1 ∘ 𝑦2)

≤   𝐼𝑓𝑁(𝑒)(𝑦1) ⋄ 𝐼𝑓𝑁(𝑒)(𝑦2)

=  𝐼𝑓𝑁(𝑒)[𝑔(𝑥1)] ⋄  𝐼𝑓𝑁(𝑒)[𝑔(𝑥2)]

=  𝐼𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1) ⋄ 𝐼𝑓
𝑔−1(𝑁)

(𝑒)(𝑥2)

Similarly,  𝐹𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1 ∘ 𝑥2)

≤  𝐹𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1) ⋄ 𝐹𝑓
𝑔−1(𝑁)

(𝑒)(𝑥2)

Next, 𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1
−1) = 𝑇𝑓𝑁(𝑒)[𝑔(𝑥1

−1)]
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=  𝑇𝑓𝑁 (𝑒) [(𝑔(𝑥1))
−1

] = 𝑇𝑓𝑁 (𝑒)(𝑦1
−1)   ≥ 𝑇𝑓𝑁 (𝑒)(𝑦1) =

𝑇𝑓𝑁 (𝑒)[𝑔(𝑥1)]

=   𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1)   i,e
𝑇𝑓

𝑔−1(𝑁)
(𝑒)(𝑥1

−1) ≥ 𝑇𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1);

Similarly,    𝐼𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1
−1) ≤ 𝐼𝑓

𝑔−1(𝑁)
(𝑒)(𝑥1),

 𝐹𝑓
𝑔−1(𝑁)

(𝑒)(𝑥1
−1) ≤ 𝐹𝑓

𝑔−1(𝑁)
(𝑒)(𝑥1);

Hence, the theorem is proved. 

3.9 Definition: 

Let 𝑁 be a neutrosophic soft group over the group 𝐺  
and  𝜆, 𝜇, 𝜂 ∈ (0,1] with  𝜆 + 𝜇 + 𝜂 ≤  3. Then,                           

1. 𝑁 is called (𝜆, 𝜇, 𝜂) -identity neutrosophic soft group
over 𝐺 if  ∀𝑒 ∈ 𝐸,         

𝑇𝑓𝑁(𝑒)(𝑥) = 𝜆,  𝐼𝑓𝑁(𝑒)(𝑥) = 𝜇, 𝐹𝑓𝑁(𝑒)(𝑥) = 𝜂 ;

for 𝑥 = 𝑒𝐺 , the identity element of G.
𝑇𝑓𝑁(𝑒)(𝑥) = 0,   𝐼𝑓𝑁(𝑒)(𝑥) = 𝐹𝑓𝑁(𝑒)(𝑥) = 1;                    

otherwise. 
2. 𝑁 is called (𝜆, 𝜇, 𝜂) -absolute neutrosophic soft group

over 𝐺 if  ∀𝑥 ∈ 𝐺, 𝑒 ∈ 𝐸,     𝑇𝑓𝑁(𝑒)(𝑥) = 𝜆,  𝐼𝑓𝑁(𝑒)(𝑥) = 𝜇,

𝐹𝑓𝑁(𝑒)(𝑥) = 𝜂.

3.10 Theorem: 

Let   𝜙 ∶  𝑋 →  𝑌   be an isomorphism in classical sense.   
1. If 𝑁 is a neutrosophic soft group over 𝑋, then 𝜙(𝑁)

is a (𝜆, 𝜇, 𝜂 ) -identity neutrosophic soft group over 𝑌  if  
𝑇𝑓𝑁(𝑒)(𝑥) = 𝜆,  𝐼𝑓𝑁(𝑒)(𝑥) = 𝜇,  𝐹𝑓𝑁(𝑒)(𝑥) = 𝜂;   when   𝑥 ∈

𝐾𝑒𝑟𝜙.   
𝑇𝑓𝑁(𝑒)(𝑥) = 0,  𝐼𝑓𝑁(𝑒)(𝑥) =  𝐹𝑓𝑁(𝑒)(𝑥) = 1;

otherwise,   ∀𝑥 ∈ 𝑋, 𝑒 ∈ 𝐸. 
2. If 𝑁 is a (𝜆, 𝜇, 𝜂) -absolute neutrosophic soft group

over 𝑋, then 𝜙(𝑁) is also so over 𝑌. 

Proof: 

1. Clearly, 𝜙(𝑁) is a neutrosophic soft group over 𝑌 by
theorem (3.7). Now, if 𝑥 ∈  𝑘𝑒𝑟𝜙   then 𝜙(𝑥) = 𝑒𝑌,  the
identity element of 𝑌. Then,   

𝑇𝑓𝜙(𝑁)(𝑒)(𝑒𝑌) =  𝑇𝑓𝑁(𝑒)[𝜙−1(𝑒𝑌)] = 𝑇𝑓𝑁(𝑒)(𝑥)

=    𝜆
𝐼𝑓𝜙(𝑁)(𝑒)(𝑒𝑌) =  𝐼𝑓𝑁(𝑒)[𝜙−1(𝑒𝑌)] =  𝐼𝑓𝑁(𝑒)(𝑥)

=  𝜇
𝐹𝑓𝜙(𝑁)(𝑒)(𝑒𝑌) =  𝐹𝑓𝑁(𝑒)[𝜙−1(𝑒𝑌)] =  𝐹𝑓𝑁(𝑒)(𝑥)

=   𝜂
Similarly, 𝑇𝑓𝑁(𝑒)(𝑥) = 0,  𝐼𝑓𝑁(𝑒)(𝑥) = 1,

𝐹𝑓𝑁(𝑒)(𝑥) = 1;     if 𝑥 otherwise.
 This ends the 1st part. 

2. Let, 𝑦 =  𝜙(𝑥) for 𝑥 ∈  𝑋, 𝑦 ∈  𝑌.  Then ∀𝑒 ∈  𝐸,

𝑇𝑓𝜙(𝑁)(𝑒)(𝑦) = 𝑇𝑓𝑁(𝑒)[𝜙−1(𝑦)] = 𝑇𝑓𝑁(𝑒)(𝑥) = 𝜆,

𝐼𝑓𝜙(𝑁)(𝑒)(𝑦) = 𝐼𝑓𝑁(𝑒)[𝜙−1(𝑦)] = 𝐼𝑓𝑁(𝑒)(𝑥) = 𝜇,

𝐹𝑓𝜙(𝑁)(𝑒)(𝑦) =  𝐹𝑓𝑁(𝑒)[𝜙−1(𝑦)] = 𝐹𝑓𝑁(𝑒)(𝑥) = 𝜂;

   This completes the 2nd part. 

4 Cartesian product of neutrosophic soft groups 

4.1 Definition: 

Let 𝑁1 and 𝑁2 be two neutrosophic soft groups over the
groups 𝑋 and 𝑌, respectively. Then their cartesian product 
is   𝑁1×  𝑁2 = 𝑁3   where 𝑓𝑁3

(𝑎, 𝑏) = 𝑓𝑁1
(𝑎)×𝑓𝑁2

(𝑏)  for
(𝑎, 𝑏)  ∈  𝐸 × 𝐸.  Analytically,    𝑓𝑁3

(𝑎, 𝑏) =

{< (𝑥, 𝑦), 𝑇𝑓𝑁3
(𝑎,𝑏)(𝑥, 𝑦)  𝐼𝑓𝑁3

(𝑎,𝑏)(𝑥, 𝑦),

𝐹𝑓𝑁3
(𝑎,𝑏)(𝑥, 𝑦) >∶ (𝑥, 𝑦)  ∈  𝑋×𝑌}

where 
𝑇𝑓𝑁3

(𝑎,𝑏)(𝑥, 𝑦) =  𝑇𝑓𝑁1
(𝑎)(𝑥) ∗ 𝑇𝑓𝑁2

(𝑏)(𝑦),

𝐼𝑓𝑁3
(𝑎,𝑏)(𝑥, 𝑦) =  𝐼𝑓𝑁1

(𝑎)(𝑥) ⋄ 𝐼𝑓𝑁2
(𝑏)(𝑦),

𝐹𝑓𝑁3
(𝑎,𝑏)(𝑥, 𝑦) =  𝐹𝑓𝑁1

(𝑎)(𝑥) ⋄ 𝐹𝑓𝑁2
(𝑏)(𝑦);

This definition can be extended for more than two 
neutrosophic soft groups. 

4.2 Theorem: 

Let  𝑁1 and 𝑁2  be two neutrosophic soft groups over
the groups 𝑋  and 𝑌 , respectively. Then their cartesian 
product  𝑁1×   𝑁2  is also a neutrosophic soft group over
𝑋 × 𝑌.

Proof: 

Let  𝑁1×  𝑁2 = 𝑁3  where  𝑓𝑁3
(𝑎, 𝑏) = 𝑓𝑁1

(𝑎)×𝑓𝑁2
(𝑏)

for (𝑎, 𝑏) ∈ 𝐸× 𝐸. Then for (𝑥1, 𝑦1),   (𝑥2, 𝑦2)  ∈  𝑋 × 𝑌 ,

𝑇𝑓𝑁3
(𝑎,𝑏)[(𝑥1, 𝑦1) ∘ (𝑥2, 𝑦2)]

= 𝑇𝑓𝑁3
(𝑎,𝑏)(𝑥1 ∘ 𝑥2,   𝑦1 ∘ 𝑦2)

= 𝑇𝑓𝑁1
(𝑎)(𝑥1 ∘ 𝑥2) ∗ 𝑇𝑓𝑁2

(𝑏)( 𝑦1 ∘ 𝑦2)

≥  [𝑇𝑓𝑁1
(𝑎)(𝑥1) ∗ 𝑇𝑓𝑁1

(𝑎)(𝑥2)] ∗

[𝑇𝑓𝑁2
(𝑏)( 𝑦1) ∗ 𝑇𝑓𝑁2

(𝑏)(𝑦2)]

=  [𝑇𝑓𝑁1
(𝑎)(𝑥1) ∗ 𝑇𝑓𝑁2

(𝑏)(𝑦1)] ∗

[𝑇𝑓𝑁1
(𝑎)( 𝑥2) ∗ 𝑇𝑓𝑁2

(𝑏)(𝑦2)]

=   𝑇𝑓𝑁3
(𝑎,𝑏)(𝑥1, 𝑦1) ∗ 𝑇𝑓𝑁3

(𝑎,𝑏)(𝑥2, 𝑦2)

Next, 
𝐼𝑓𝑁3

(𝑎,𝑏)[(𝑥1, 𝑦1) ∘ (𝑥2, 𝑦2)]

= 𝐼𝑓𝑁3
(𝑎,𝑏)(𝑥1 ∘ 𝑥2,   𝑦1 ∘ 𝑦2)

= 𝐼𝑓𝑁1
(𝑎)(𝑥1 ∘ 𝑥2) ⋄ 𝐼𝑓𝑁2

(𝑏)( 𝑦1 ∘ 𝑦2)

≤  [𝐼𝑓𝑁1
(𝑎)(𝑥1)𝐼𝑓𝑁1

(𝑎)(𝑥2)] ⋄

[𝐼𝑓𝑁2
(𝑏)( 𝑦1) ⋄ 𝐼𝑓𝑁2

(𝑏)(𝑦2)]

=  [𝐼𝑓𝑁1
(𝑎)(𝑥1) ⋄ 𝐼𝑓𝑁2

(𝑏)(𝑦1)] ⋄

[𝐼𝑓𝑁1
(𝑎)( 𝑥2) ⋄ 𝐼𝑓𝑁2

(𝑏)(𝑦2)]

=   𝐼𝑓𝑁3
(𝑎,𝑏)(𝑥1, 𝑦1) ⋄ 𝐼𝑓𝑁3

(𝑎,𝑏)(𝑥2, 𝑦2)

Similarly, 𝐹𝑓𝑁3
(𝑎,𝑏)[(𝑥1, 𝑦1) ∘ (𝑥2, 𝑦2)]

≤ 𝐹𝑓𝑁3
(𝑎,𝑏)(𝑥1, 𝑦1) ⋄ 𝐹𝑓𝑁3

(𝑎,𝑏)(𝑥2, 𝑦2).

Next, 
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𝑇𝑓𝑁3
(𝑎,𝑏)[(𝑥1, 𝑦1)−1] = 𝑇𝑓𝑁3

(𝑎,𝑏)(𝑥1
−1, 𝑦1

−1)

=  𝑇𝑓𝑁1
(𝑎)(𝑥1

−1) ∗ 𝑇𝑓𝑁2
(𝑏)(𝑦1

−1)

≥ 𝑇𝑓𝑁1
(𝑎)(𝑥1) ∗ 𝑇𝑓𝑁2

(𝑏)(𝑦1)

= 𝑇𝑓𝑁3
(𝑎,𝑏)(𝑥1, 𝑦1)

Similarly, 
𝐼𝑓𝑁3

(𝑎,𝑏)[(𝑥1, 𝑦1)−1] ≤ 𝐼𝑓𝑁3
(𝑎,𝑏)(𝑥1, 𝑦1),

𝐹𝑓𝑁3
(𝑎,𝑏)[(𝑥1, 𝑦1)−1] ≤ 𝐹𝑓𝑁3

(𝑎,𝑏)(𝑥1, 𝑦1).

Hence, the theorem is proved. 

5 Neutrosophic soft subgroup 

5.1 Definition: 

Let 𝑁1  and 𝑁2  be two neutrosophic groups over the
group 𝐺. Then 𝑁1 is neutrosophic soft subgroup of 𝑁2 if

𝑇𝑓𝑁1
(𝑒)(𝑥) ≤ 𝑇𝑓𝑁2

(𝑒)(𝑥),  𝐼𝑓𝑁1
(𝑒)(𝑥) ≥ 𝐼𝑓𝑁2

(𝑒)(𝑥),

𝐹𝑓𝑁1
(𝑒)(𝑥) ≥ 𝐹𝑓𝑁2

(𝑒)(𝑥);  ∀𝑥 ∈  𝐺, 𝑒 ∈  𝐸.

5.1.1 Example: 

We consider the Klein's -4 group 𝑉 = { 𝑒, 𝑎, 𝑏, 𝑐 } and 
𝐸 = { 𝛼, 𝛽, 𝛾, 𝛿 }  be a set of parameters. The two 
neutrosophic soft groups 𝑀, 𝑁  defined over (𝑉, 𝐸)  are 
given by the following tables when corresponding t-norm 
and s-norm are defined as   

𝑎 ∗  𝑏 = 𝑚𝑎𝑥 (𝑎 +  𝑏 − 1, 0) and 𝑎 ⋄  𝑏 =
 𝑚𝑖𝑛 (𝑎 + 𝑏, 1).

𝑓𝑀 (𝛼) 𝑓𝑀 (𝛽)
𝑓𝑀 (𝛾) 𝑓𝑀 (𝛿)

e 

a 

b 

c 

(0.65, 0.42, 0.54)     (0.68, 0.21, 0.76)  
(0.70, 0.31, 0.32)      (0.59, 0.38, 0.62) 

(0.61, 0.44, 0.78)     (0.62, 0.31, 0.79)  
(0.67, 0.41, 0.39)     (0.41, 0.49, 0.64) 

(0.55, 0.55, 0.59)     (0.59, 0.42, 0.80)  
(0.60, 0.36, 0.48)     (0.56, 0.43, 0.68) 

(0.47, 0.49, 0.69)     (0.67, 0.43, 0.84)  
(0.48, 0.52, 0.54)      (0.49, 0.50, 0.70) 

Table 3: Tabular form of neutrosophic soft group M. 

𝑓𝑁 (𝛼) 𝑓𝑁 (𝛽)
𝑓𝑁 (𝛾) 𝑓𝑁 (𝛿)

e 

a 

(0.65, 0.34, 0.14)      (0.88, 0.12, 0.72)  
(0.72, 0.21, 0.16)      (0.69, 0.31, 0.32) 

(0.71, 0.22, 0.78)      (0.71, 0.19, 0.44)  
(0.84, 0.16, 0.25)      (0.62, 0.32, 0.42) 

b 

c 

(0.75, 0.25, 0.52)      (0.83, 0.11, 0.28)  
(0.69, 0.31, 0.39)      (0.58, 0.41, 0.66) 

(0.67, 0.32, 0.29)      (0.75, 0.21, 0.19)  
(0.79, 0.19, 0.41)      (0.71, 0.27, 0.53) 

Table 4: Tabular form of neutrosophic soft group N. 

Obviously, 𝑀  is the neutrosophic soft subgroup of 𝑁 
over (𝑉, 𝐸). 

5.2 Theorem: 

Let 𝑁 be a neutrosophic soft group over the group 𝐺 and 
𝑁1, 𝑁2 be two neutrosophic soft subgroups of 𝑁. If 𝑇, 𝐼, 𝐹 of
neutrosophic soft group 𝑁  obey the disciplines of 
idempotent t-norm and idempotent s-norm, then, 

(i) 𝑁1⋂ 𝑁2 is a neutrosophic soft subgroup of     𝑁.
(ii) 𝑁1 ⋀ 𝑁2 is a neutrosophic soft subgroup of

 𝑁 ⋀ 𝑁.

Proof: 

The intersection(⋂), AND (⋀) of two neutrosophic soft 
groups is also so by theorems  (3.3) and (3.5).  Now to 
complete this theorem, we only verify the criteria of 
neutrosophic soft subgroup in each case. 

(i) Let  𝑁3 = 𝑁1⋂ 𝑁2.  For 𝑥 ∈  𝐺,

𝑇𝑓𝑁3
(𝑒)(𝑥) = 𝑇𝑓𝑁1

(𝑒)(𝑥) ∗ 𝑇𝑓𝑁2
(𝑒)(𝑥)

≤   𝑇𝑓𝑁(𝑒)(𝑥) ∗ 𝑇𝑓𝑁(𝑒)(𝑥) =  𝑇𝑓𝑁(𝑒)(𝑥) ,

𝐼𝑓𝑁3
(𝑒)(𝑥) = 𝐼𝑓𝑁1

(𝑒)(𝑥) ⋄ 𝐼𝑓𝑁2
(𝑒)(𝑥)

≥   𝐼𝑓𝑁(𝑒)(𝑥) ⋄ 𝐼𝑓𝑁(𝑒)(𝑥) =  𝐼𝑓𝑁(𝑒)(𝑥) ,

𝐹𝑓𝑁3
(𝑒)(𝑥) = 𝐹𝑓𝑁1

(𝑒)(𝑥) ⋄ 𝐹𝑓𝑁2
(𝑒)(𝑥)

≥   𝐹𝑓𝑁(𝑒)(𝑥) ⋄ 𝐹𝑓𝑁(𝑒)(𝑥) =  𝐹𝑓𝑁(𝑒)(𝑥) ;

(ii) Let  𝑁3 = 𝑁1⋀  𝑁2   and 𝑥 ∈  𝐺;   Then, 
𝑇𝑓𝑁3

(𝑎,𝑏)(𝑥) = 𝑇𝑓𝑁1
(𝑎)(𝑥) ∗ 𝑇𝑓𝑁2

(𝑏)(𝑥)

≤   𝑇𝑓𝑁(𝑎)(𝑥) ∗ 𝑇𝑓𝑁(𝑏)(𝑥) =  𝑇𝑓𝑁(𝑎,𝑏)(𝑥) ,

𝐼𝑓𝑁3
(𝑎,𝑏)(𝑥) = 𝐼𝑓𝑁1

(𝑎)(𝑥) ⋄ 𝐼𝑓𝑁2
(𝑏)(𝑥)

≥   𝐼𝑓𝑁(𝑎)(𝑥) ⋄ 𝐼𝑓𝑁(𝑏)(𝑥) =  𝐼𝑓𝑁(𝑎,𝑏)(𝑥) ,

𝐹𝑓𝑁3
(𝑎,𝑏)(𝑥) = 𝐹𝑓𝑁1

(𝑎)(𝑥) ⋄ 𝐹𝑓𝑁2
(𝑏)(𝑥)

≥   𝐹𝑓𝑁(𝑎)(𝑥) ⋄ 𝐹𝑓𝑁(𝑏)(𝑥) =  𝐹𝑓𝑁(𝑎,𝑏)(𝑥) ;

The theorems are also true for a family of neutrosophic 
soft subgroups of 𝑁. 

5.3 Example: 

We consider the group (S,.), cube root of unity where 
S= {1, 𝜔, 𝜔2}  and let  E= { 𝛼, 𝛽, 𝛾 } be a set of parameters. 
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The t-norm and s-norm are defined as:  𝑎 ∗  𝑏 = 𝑎𝑏  and 
𝑎 ⋄  𝑏 = 𝑎 + 𝑏  – 𝑎𝑏.  The neutrosophic soft group  𝑁  and 
it’s two subgroups 𝑁1, 𝑁2 defined over (S,.) are given by the
following tables. 

 𝑓𝑁(𝛼)  𝑓𝑁(𝛽) 𝑓𝑁(𝛾)
1 

𝜔

𝜔2   

(0.7,0.3,0.2) (0.6,0.3,0.5)     
(0.6,0.5,0.6) 

(0.7,0.2,0.4) (0.7,0.3,0.5)     
(0.5,0.5,0.7) 

(0.6,0.3,0.3) (0.5,0.4,0.6)     
(0.4,0.4,0.6) 

Table 5: Tabular form of neutrosophic soft group N. 

𝑓𝑁1
(𝛼) 𝑓𝑁1

(𝛽) 𝑓𝑁1
(𝛾)

1 

𝜔

𝜔2   

(0.4,0.4,0.9) (0.6,0.6,0.6)    
(0.5,0.6,0.6) 

(0.6,0.4,0.7) (0.5,0.8,0.5)    
(0.4,0.5,0.7) 

(0.3,0.5,0.8) (0.5,0.6,0.7)    
(0.4,0.8,0.7) 

Table 6: Tabular form of neutrosophic soft subgroup N1. 

𝑓𝑁2
(𝛼) 𝑓𝑁2

(𝛽) 𝑓𝑁2
(𝛾)

1 

𝜔

𝜔2   

(0.6,0.5,0.2) (0.6,0.4,0.6) 
(0.5,0.5,0.7) 

(0.7,0.3,0.4) (0.6,0.4,0.5) 
(0.4,0.5,0.8) 

(0.6,0.4,0.3) (0.5,0.5,0.7) 
(0.3,0.6,0.7) 

Table 7: Tabular form of neutrosophic soft subgroup N2. 

 𝑓𝑀(𝛼)  𝑓𝑀(𝛽) 𝑓𝑀(𝛾)
1 

𝜔

𝜔2   

(0.24,0.70,0.92) (0.36,0.76,0.84) 
(0.25,0.80,0.88) 

(0.42,0.58,0.82) (0.30,0.88,0.75) 
(0.16,0.75,0.94) 

(0.18,0.70,0.86) (0.25,0.80,0.91) 
(0.12,0.92,0.91) 

 Table 8: Tabular form of neutrosophic soft subgroup 𝑀 = 𝑁1⋂𝑁2. 

 𝑓𝑃(𝛼, 𝛼)  𝑓𝑃(𝛽, 𝛼) 𝑓𝑃(𝛾, 𝛼)
𝑓𝑃(𝛼, 𝛽) 𝑓𝑃(𝛽, 𝛽) 𝑓𝑃(𝛾, 𝛽)
𝑓𝑃(𝛼, 𝛾) 𝑓𝑃(𝛽, 𝛾) 𝑓𝑃(𝛾, 𝛾)

1 

𝜔

𝜔2   

(0.24,0.70,0.92) (0.36,0.80,0.68)     
(0.30,0.80,0.68) 
(0.24,0.64,0.96) (0.36,0.76,0.84)     
(0.30,0.76,0.84) 
(0.20,0.70,0.97) (0.30,0.80,0.88)     
(0.25,0.80,0.88) 

(0.42,0.58,0.82) (0.35,0.86,0.70)     
(0.28,0.65,0.82) 
(0.36,0.64,0.85) (0.30,0.88,0.75)     
(0.24,0.70,0.85) 
(0.24,0.70,0.94) (0.20,0.90,0.90)     
(0.16,0.75,0.94) 

(0.18,0.70,0.86) (0.30,0.76,0.79)     
(0.24,0.88,0.79) 
(0.15,0.75,0.94) (0.25,0.80,0.91)     
(0.20,0.90,0.91) 
(0.09,0,80,0.94) (0.15,0.84,0.91)   
(0.12,0.92,0.91) 

Table 9: Tabular form of neutrosophic soft subgroup 𝑃 = 𝑁1⋀𝑁2. 

 𝑓𝑃(𝛼, 𝛼)  𝑓𝑃(𝛽, 𝛼) 𝑓𝑃(𝛾, 𝛼)
𝑓𝑃(𝛼, 𝛽) 𝑓𝑃(𝛽, 𝛽) 𝑓𝑃(𝛾, 𝛽)
𝑓𝑃(𝛼, 𝛾) 𝑓𝑃(𝛽, 𝛾) 𝑓𝑃(𝛾, 𝛾)

1 

𝜔

𝜔2   

(0.49,0.51,0.36) (0.42,0.51,0.60)     
(0.42,0.65,0.68) 
(0.42,0.51,0.60) (0.36,0.51,0.75)     
(0.36,0.65,0.80) 
(0.42,0.65,0.68) (0.36,0.65,0.80)     
(0.36,0.75,0.84) 

(0.49,0.36,0.64) (0.49,0.44,0.70)     
(0.35,0.60,0.82) 
(0.49,0.44,0.70) (0.49,0.51,0.75)     
(0.35,0.65,0.85) 
(0.35,0.60,0.82) (0.35,0.65,0.85)     
(0.25,0.75,0.91) 

(0.36,0.51,0.51) (0.30,0.58,0.72)     
(0.24,0.58,0.72) 
(0.30,0.58,0.72) (0.25,0.64,0.84)     
(0.20,0.64,0.84) 
(0.24,0.58,0.72) (0.20,0.64,0.84)     
(0.16,0.64,0.84) 

Table 10: Tabular form of neutrosophic soft subgroup  𝑃 = 𝑁⋀𝑁 . 
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Tables 5 & 8 show the 1st result and Tables 9 & 10 show 
the 2nd result in theorem (5.2).    

5.4 Theorem: 

Let 𝑁1 and 𝑁2 be two neutrosophic soft groups over the
group 𝑋 such that 𝑁1 is the neutrosophic soft subgroup of
𝑁2 .  Let 𝑔 ∶  𝑋 →  𝑌 be an isomorphism in classical sense.
Then 𝑔(𝑁1)  and 𝑔(𝑁2)  are two neutrosophic soft groups
over 𝑌. Moreover 𝑔(𝑁1) is the neutrosophic soft subgroup
of 𝑔(𝑁2).

Proof: 

The 1st part is already proved in theorem (3.7). 
Let 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 so that 𝑦 =  𝑔(𝑥). Then, 

𝑇𝑓𝑁1
(𝑒)(𝑥) ≤ 𝑇𝑓𝑁2

(𝑒)(𝑥)

⟹  𝑇𝑓𝑁1
(𝑒)[𝑔−1(𝑦)] ≤ 𝑇𝑓𝑁2

(𝑒)[𝑔−1(𝑦)]

⟹  𝑇𝑓𝑔(𝑁1)(𝑒)(𝑦) ≤ 𝑇𝑓𝑔(𝑁2)(𝑒)(𝑦)

Similarly, 𝐼𝑓𝑔(𝑁1)(𝑒)(𝑦) ≥ 𝐼𝑓𝑔(𝑁2)(𝑒)(𝑦) ,

𝐹𝑓𝑔(𝑁1)(𝑒)(𝑦) ≥ 𝐹𝑓𝑔(𝑁2)(𝑒)(𝑦);

Hence, the theorem is proved. 

Conclusion

In the present paper, the theoretical point of view of neu-
trosophic soft group has been discussed with suitable exam-
ples. Here, we also have defined the Cartesian product on 
neutrosophic soft groups and neutrosophic soft subgroup. 
Some theorems have been established. We extended the 
concept of group in NSS theory context. This concept will 
bring a new opportunity in research and development of 
NSS theory. 
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