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Abstract. Gathering the attitudes of the examined re-

spondents would be very significant in some evaluation 

models. Therefore, a multiple criteria approach based on 

the use of the neutrosophic set is considered in this paper. 

An example of the evaluation of restaurants is considered 

at the end of this paper with the aim to present in detail 

the proposed approach. 

Keywords: neutrosophic set, single valued neutrosophic set, multiple criteria evaluation.

1. Introduction

In order to deal with indeterminate and incon-
sistent information, Smarandache [1] proposed a 
neutrosophic set (NS), thus simultaneously providing 

a general framework generalizing the concepts of the clas-
sical, fuzzy [2], interval-valued [3, 4], intuitionistic [5] 
and interval-valued intuitionistic [6] fuzzy sets. 

The NS has been applied in different fields, such as: 
the database [7], image processing [8, 9, 10], the medical 
diagnosis [11, 12], decision making [13, 14], with a partic-

ular emphasis on multiple criteria decision making [15, 16, 
17, 18, 19, 20]. 

In addition to the membership function, or the so-
called truth-membership TA(x), proposed in fuzzy sets, At-
anassov [5] introduced the non-membership function, or 
the so-called falsity-membership FA(x), which expresses 

non-membership to a set, thus creating the basis for the 
solving of a much larger number of decision-making prob-
lems. 

In intuitionistic fuzzy sets, the indeterminacy )(xI A is 
)()(1 xFxT AA   by default. 

In the NS, Smarandache [21] introduced independent 

indeterminacy-membership )(xI A , thus making the NS
more flexible and the most suitable for solving some com-
plex decision-making problems, especially decision-
making problems related to the use of incomplete and im-
precise information, uncertainties and predictions and so 
on.  

Smarandache [1] and Wang et al. [22] further pro-
posed the single valued neutrosophic set (SVNS) suitable 
for solving many real-world decision-making problems.  

In multiple criteria evaluation models, where evalua-

tion is based on the ratings generated from respondents, the 
NS and the SVNS can provide some advantages in relation 
to the usage of crisp and other forms of fuzzy numbers. 

Therefore, the rest of this paper is organized as fol-

lows: in Section 2, some basic definitions related to the 
SVNS are given. In Section 3, an approach to the deter-
mining of criteria weights is presented, while Section 4 
proposes a multiple criteria evaluation model based on the 
use of the SVNS. In Section 5, an example is considered 
with the aim to explain in detail the proposed methodology. 

The conclusions are presented at the end of the manuscript. 

2. The Single Valued Neutrosophic Set

Definition 1. [21] Let X be the universe of discourse, 
with a generic element in X denoted by x. Then, the Neu-
trosophic Set (NS) A in X is as follows:  

}|)(),(),({ XxxFxIxTxA AAA  , (1) 

where TA(x), IA(x) and FA(x) are the truth-membership 

function, the indeterminacy-membership function and the 
falsity-membership function, respectively, 

[1,0]:,, XFIT AAA and 0 TA(x)+IA(x)+UA(x) 
 3

Definition 2. [1, 22] Let X be the universe of dis-
course. The Single Valued Neutrosophic Set (SVNS) A 

over X is an object having the form: 

}|)(),(),({ XxxFxIxTxA AAA  , (2) 

where TA(x), IA(x) and FA(x) are the truth-membership 
function, the intermediacy-membership function and the 

Neutrosophic Sets and Systems, Vol. 14, 2016

University of New Mexico

3

mailto:dragisa.stanujkic@fmz.edu.rs
mailto:fsmarandache@gmail.com
mailto:edmundas.zavadskas@vgtu.lt
mailto:darjankarabasevic@gmail.com


Dragisa Stanujkic, Florentin Smarandache, Edmundas Kazimieras Zavadskas and Darjan Karabasevic, Multiple Criteria 
Evaluation Model Based on the Single Valued Neutrosophic Set

falsity-membership function, respectively, 
]1,0[:,, XFIT AAA and 0 ≤ TA(x)+IA(x)+UA(x) ≤ 3. 

Definition 3. [21] For an SVNS A in X, the tri-
ple  AAA fit ,, is called the single valued neutrosophic 
number (SVNN). 

Definition 4. SVNNs. Let  1111 , , fitx and 
 2222 , , fitx  be two SVNNs and 0 ; then, the basic 

operations are defined as follows: 

 2121212121 ,, ffiittttxx . (3) 

 2121,21212121 , ffffiiiittxx . (4) 

  1111 ,,)1(1 fitx . (5) 

  )1(1,, 1111 fitx . (6) 

Definition 5. [23] Let  xx fitx , , x be a SVNN; 
then the cosine similarity measure S(x) between SVNN x 
and the ideal alternative (point) <1,0,0> can be defined as 
follows: 

 
222 fit

t
S x


 . (7) 

Definition 6. [23] Let  jjj fitA , , j  be a collection 
of SVNSs and T

nwwwW ),...,,( 21  be an associated 

weighting vector. Then the Single Valued Neutrosophic 
Weighted Average (SVNWA) operator of Aj is as follows: 











  



 



n

j

n

j

w

j

w

j

n

j

w

j

n

j
jjn

jjj fit

AwAAASVNWA

1 11

1
21

)(,)(,)1(1

),...,,(

, (8) 

where: wj is the element j of the weighting vector, 
]1 ,0[jw  and 11  

n
j jw . 

3. The SWARA Method

The Step-wise Weight Assessment Ratio Analysis 

(SWARA) technique was proposed by Kersuliene et al. 
[25]. The computational procedure of the adapted SWARA 
method can be shown through the following steps: 

Step 1. Determine the set of the relevant evaluation 
criteria and sort them in descending order, based on their 
expected significances. 

Step 2. Starting from the second criterion, determine 
the relative importance sj of the criterion j in relation to the 
previous (j-1) criterion, and do so for each particular crite-
rion as follows: 























1

1

1

  1

  1

 1

jj

jj

jj

j

CCce ofsignificanwhen

CCse ofsignificanwhen

CCficance ofwhen signi

s





. (9) 

By using Eq. (9), respondents are capable of express-
ing their opinions more realistically compared to the ordi-
nary SWARA method, proposed by Kersuliene et al. [25]. 

Step 3. The third step in the adapted SWARA method 
should be performed as follows: 










12

11

js

j
k

j
j . (10) 

where kj is a coefficient. 

Step 4. Determine the recalculated weight qj as fol-
lows: 










 1

11

1 jkq

j
q

jj
j . (11) 

Step 5. Determine the relative weights of the evalua-
tion criteria as follows: 

 
n
k kjj qqw 1 , (12) 

where wj denotes the relative weight of the criterion j. 

4. A Multiple Criteria Evaluation Model Based on
the Use of the SVNS 

For a multiple criteria evaluation problem involving 
the m alternatives that should be evaluated by the K re-
spondents based on the n criteria, whereby the performanc-

es of alternatives are expressed by using the SVNS, the 
calculation procedure can be expressed as follows: 

The determination of the criteria weights. The deter-
mination of the criteria weights can be done by applying 
various methods, for example by using the AHP method. 
However, in this approach, it is recommended that the 

SWARA method should be used due to its simplicity and a 
smaller number of pairwise comparisons compared with 
the well-known AHP method. 

The determination of the criteria weight is done by us-
ing an interactive questionnaire made in a spreadsheet file. 
By using such an approach, the interviewee can see the 

calculated weights of the criteria, which enables him/her 
modify his or her answers if he or she is not satisfied with 
the calculated weights. 

Gathering the ratings of the alternatives in relation to 

the selected set of the evaluation criteria. Gathering the 
ratings of the alternatives in relation to the chosen set of 

criteria is also done by using an interactive questionnaire. 
In this questionnaire, a declarative sentence is formed for 
each one of the criteria, thus giving an opportunity to the 
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respondents to fill in their attitudes about the degree of 
truth, indeterminacy and falsehood of the statement. 

The formation of the separated ranking order based 

on the weights and ratings obtained from each respond-

ent. At this steep, the ranking order is formed for each one 
of the respondents, based on the respondent’s respective 

weights and ratings, in the following manner: 

 the determination of the overall ratings expressed 

in the form of the SVNN by using Eq. (8), for 

each respondent; 

 the determination of the cosine similarity measure, 

for each respondent; and 

 the determination of the ranking order, for each 

respondent. 

The determination of the most appropriate alternative. 
Contrary to the commonly used approach in group decision 
making, no group weights and ratings are used in this ap-

proach. As a result of that, there are the K ranking orders 
of the alternatives and the most appropriate alternative is 
the one determined on the basis of the theory of dominance 
[26]. 

5. A Numerical Illustration

In this numerical illustration, some results adopted 

from a case study are used. In the said study, four tradi-
tional restaurants were evaluated based on the following 
criteria: 

 the interior of the building and the friendly at-

mosphere, 

 the helpfulness and friendliness of the staff, 

 the variety of traditional food and drinks, 

 the quality and the taste of the food and drinks, 

including the manner of serving them, and 

 the appropriate price for the quality of the services 

provided. 

The survey was conducted via e-mail, using an interac-
tive questionnaire, created in a spreadsheet file. By using 
such an approach, the interviewee could see the calculated 

weights of the criteria and was also able to modify his/her 
answers if he or she was not satisfied with the calculated 
weights. 

In order to explain the proposed approach, three com-
pleted surveys have been selected. The attitudes related to 

the weights of the criteria obtained in the first survey are 
shown in Table 1. Table 1 also accounts for the weights of 
the criteria. 

Criteria sj kj qj wj 

C1 1 1 0.15 

C2 1.00 1.00 1.00 0.15 

C3 1.15 0.85 1.18 0.18 

C4 1.30 0.70 1.68 0.26 

C5 1.00 1.00 1.68 0.26 

Table 1. The attitudes and the weights of the criteria obtained on the basis 

of the first of the three surveys 

The attitudes obtained from the three surveys, as well 
as the appropriate weights, are accounted for in Table 2. 

E1 E1 E1 
sj wj sj wj sj wj 

C1 0.15 0.16 0.19 

C2 1.00 0.15 1.00 0.16 1.00 0.19 

C3 1.15 0.18 1.20 0.20 1.05 0.20 

C4 1.30 0.26 1.10 0.22 1.10 0.22 

C5 1.00 0.26 1.10 0.25 0.95 0.21 

Table 2. The attitudes and the weights obtained from the three surveys 

The ratings of the alternatives expressed in terms of the 
SVNS obtained on the basis of the three surveys are given 

in Tables 3 to 5. 

C1 C2 C3 C4 C5 

wj 0.15 0.15 0.18 0.26 0.26 

A1 <0.8,0.1,0.3> <0.7,0.2,0.2> <0.8,0.1,0.1> <1,0.01,0.01> <0.8,0.1,0.1> 

A2 <0.7,0.1,0.2> <1.0,0.1,0.1> <1.0,0.2,0.1> <1,0.01,0.01> <0.8,0.1,0.1> 

A3 <0.7,0.1,0.1> <1.0,0.1,0.1> <0.7,0.1,0.1> <0.9,0.2,0.01> <0.9,0.1,0.1> 

A4 <0.7,0.3,0.3> <0.7,0.1,0.1> <0.8,0.1,0.2> <0.9,0.1,0.1> <0.9,0.1,0.1> 

Table 3. The ratings obtained based on the first survey 

C1 C2 C3 C4 C5 

wj 0.16 0.16 0.20 0.22 0.25 

A1 <0.8,0.1,0.4> <0.9,0.15,0.3> <0.9,0.2,0.2> <0.85,0.1,0.25> <1.0,0.1,0.2> 

A2 <0.9,0.15,0.3> <0.9,0.15,0.2> <1.0,0.3,0.2> <0.7,0.2,0.1> <0.8,0.2,0.3> 

A3 <0.6,0.15,0.3> <0.55,0.2,0.3> <0.55,0.3,0.3> <0.6,0.3,0.2> <0.7,0.2,0.3> 

A4 <0.6,0.4,0.5> <0.6,0.3,0.1> <0.6,0.1,0.2> <0.7,0.1,0.3> <0.5,0.2,0.4> 

Table 4. The ratings obtained based on the second survey 

C1 C2 C3 C4 C5 

wj 0.19 0.19 0.20 0.22 0.21 

A1 <1.0,0.1,0.1> <0.9,0.15,0.2> <1.0,0.2,0.1> <0.8,0.1,0.1> <0.9,0.1,0.2> 

A2 <0.8,0.15,0.3> <0.9,0.15,0.2> <1,0.2,0.2> <0.7,0.2,0.1> <0.8,0.2,0.3> 

A3 <0.6,0.15,0.3> <0.55,0.2,0.3> <0.55,0.3,0.3> <0.6,0.3,0.2> <0.7,0.2,0.3> 

A4 <0.8,0.4,0.5> <0.6,0.3,0.1> <0.6,0.4,0.1> <0.7,0.1,0.3> <0.5,0.2,0.4> 

Table 5. The ratings obtained from the third of the third survey 

The calculated overall ratings obtained on the basis of 

the first of the three surveys expressed in the form of 
SVNSs are presented in Table 6. The cosine similarity 
measures, calculated by using Eq. (7), as well as the rank-
ing order of the alternatives, are accounted for in Table 6.  

Overall ratings Si Rank 

A1 <1.0,0.06,0.07> 0.995 2 

A2 <1.0,0.06,0.06> 0.996 1 

A3 <1.0,0.12,0.06> 0.991 3 

A4 <1.0,0.12,0.13> 0.978 4 

Table 6. The ranking orders obtained on the basis of the ratings of the 

first survey 
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The ranking orders obtained based on all the three sur-

veys are accounted for in Table 7.  

E1 E2 E3 E1 E2 E3 

Si Si Si Rank Rank Rank 

A1 0.995 0.963 0.985 2 1 1 

A2 0.996 0.962 0.966 1 2 2 

A3 0.991 0.864 0.867 3 4 4 

A4 0.978 0.882 0.894 4 3 3 

Table 7. The ranking orders obtained from the three examinees 

According to Table 7, the most appropriate alternative 
based on the theory of dominance is the alternative denoted 
as A1. 

6. Conclusion

A new multiple criteria evaluation model based on us-
ing the single valued neutrosophic set is proposed in this 

paper. For the purpose of determining criteria weights, the 
SWARA method is applied due to its simplicity, whereas 
for the determination of the overall ratings for each re-
spondent, the SVNN is applied. In order to intentionally 
avoid the group determination of weights and ratings, the 
final selection of the most appropriate alternative is deter-

mined by applying the theory of dominance. In order to 
form a simple questionnaire and obtain the respondents’ 
real attitudes, a smaller number of the criteria were initially 
selected. The proposed model has proven to be far more 
flexible than the other MCDM-based models and is based 

on the conducted numerical example suitable for the solv-
ing of problems related to the selection of restaurants. The 
usability and efficiency of the proposed model have been 
demonstrated on the conducted numerical example.  
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Abstract. The Neutrosophic Precalculus and the 

Neutrosophic Calculus can be developed in many 

ways, depending on the types of indeterminacy one 

has and on the method used to deal with such 

indeterminacy. This article is innovative since the 

form of neutrosophic binomial factorial theorem was 

constructed in addition to its refrains.  

Two other important theorems were proven with their 

corollaries, and numerical examples as well. As a 

conjecture, we use ten (indeterminate) forms in 

neutrosophic calculus taking an important role in 

limits. To serve article's aim, some important 

questions had been answered.  
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1 Introduction (Important questions) 

Q 1 What are the types of indeterminacy? 

There exist two types of indeterminacy 

a. Literal indeterminacy (I).

As example:   

2 + 3𝐼  (1) 

b. Numerical indeterminacy.

As example: 

𝑥(0.6,0.3,0.4) ∈ 𝐴, (2) 

meaning that the indeterminacy membership = 0.3.         

Other examples for the indeterminacy com-

ponent can be seen in functions: 𝑓(0) = 7 𝑜𝑟 9  or  

𝑓(0  𝑜𝑟  1) = 5  or 𝑓(𝑥) = [0.2, 0.3] 𝑥2 … etc. 

Q 2 What is the values of 𝐼 to the rational power? 

1. Let

√𝐼 = 𝑥 + 𝑦 𝐼

0 + 𝐼 = 𝑥2 + (2𝑥𝑦 + 𝑦2)𝐼 

 𝑥 = 0, 𝑦 = ±1. (3) 

In general, 

√𝐼
2𝑘

= ±𝐼 (4) 

where 𝑘 ∈ 𝑧+ = {1,2,3, … }. 

2. Let

√𝐼
3

= 𝑥 + 𝑦 𝐼 

0 + 𝐼 = 𝑥3 + 3𝑥2𝑦 𝐼 + 3𝑥𝑦2 𝐼2 + 𝑦3𝐼3 

0 + 𝐼 = 𝑥3 + (3𝑥2𝑦 + 3𝑥𝑦2  + 𝑦3)𝐼 

 𝑥 = 0, 𝑦 = 1 →  √𝐼
3

= 𝐼. (5) 

In general, 

√𝐼
2𝑘+1

= 𝐼, (6) 

where 𝑘 ∈ 𝑧+ = {1,2,3, … }. 

Basic Notes  

1. A component I to the zero power is

undefined value, (i.e. 𝐼0 is undefined),

since 𝐼0 = 𝐼1+(−1) = 𝐼1 ∗ 𝐼−1 =
𝐼

𝐼
 which is

impossible case (avoid to divide by 𝐼). 

2. The value of 𝐼 to the negative power is

undefined value (i.e. 𝐼−𝑛  , 𝑛 > 0 is

undefined).

Q 3 What are the indeterminacy forms in neutros-

ophic calculus? 

In classical calculus, the indeterminate forms 

are [4]: 

0

0
,

∞

∞
, 0 ∙ ∞ , ∞0, 00, 1∞, ∞ − ∞. (7) 
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The form 0 to the power 𝐼  (i.e. 0𝐼 ) is an 

indeterminate form in Neutrosophic calculus; it is 

tempting to argue that an indeterminate form of 

type 0𝐼 has zero value since "zero to any power is 

zero". However, this is fallacious, since 0𝐼 is not a 

power of number, but rather a statement about 

limits. 

Q 4 What about the form 1𝐼? 

The base "one" pushes the form 1𝐼 to one 

while the power 𝐼 pushes the form 1𝐼 to I, so 1𝐼 is 

an indeterminate form in neutrosophic calculus. 

Indeed, the form 𝑎𝐼, 𝑎 ∈ 𝑅 is always an 

indeterminate form. 

Q 5 What is the value of 𝑎𝐼  , 𝑤ℎ𝑒𝑟𝑒 𝑎 ∈ 𝑅? 

Let 𝑦1 = 2𝑥 , 𝑥 ∈ 𝑅 , 𝑦2 = 2𝐼; it is obvious that

lim
𝑥→∞

2𝑥 = ∞  , lim
𝑥→−∞

2𝑥 = 0  , lim
𝑥→0

2𝑥 = 1; while 

we cannot determine if 2𝐼 → ∞ 𝑜𝑟 0 𝑜𝑟 1, 

therefore we can say that  𝑦2 = 2𝐼 indeterminate

form in Neutrosophic calculus. The same for 𝑎𝐼 ,

where 𝑎 ∈ 𝑅 [2]. 

2 Indeterminate forms in Neutrosophic 
Logic 

It is obvious that there are seven types 

of indeterminate forms in classical calculus [4], 

0

0
,

∞

∞
, 0. ∞, 00, ∞0, 1∞, ∞ − ∞.  

As a conjecture, we can say that there are ten 

forms of the indeterminate forms in Neutrosophic 

calculus  

𝐼0 , 0𝐼 ,
𝐼

0
, 𝐼 ∙ ∞,

∞

𝐼
 , ∞𝐼 , 𝐼∞, 𝐼𝐼 , 

𝑎𝐼(𝑎 ∈ 𝑅), ∞ ± 𝑎 ∙ 𝐼  . 

Note that:   

𝐼

0
= 𝐼 ∙

1

0
= 𝐼 ∙ ∞ = ∞ ∙ 𝐼. 

3 Various Examples 

Numerical examples on neutrosophic limits 

would be necessary to demonstrate the aims of this 

work. 

Example (3.1) [1], [3]
The neutrosophic (numerical indeterminate) values 

can be seen in the following function: 

Find lim
𝑥→0

𝑓(𝑥), where 𝑓(𝑥) = 𝑥[2.1,2.5].

Solution: 

Let 𝑦 = 𝑥[2.1,2.5]   → ln 𝑦 = [2.1, 2.5] ln 𝑥

∴ lim
𝑥→0

ln 𝑦 = lim
𝑥→0

[2.1, 2.5]

1
ln 𝑥

= 
[2.1, 2.5]

1
ln 0

=
[2.1, 2.5]

1
−∞

=
[2.1, 2.5]

−0

= [
2.1

−0
,
2.5

−0
] = (−∞, −∞)

= −∞ 

Hence 𝑦 = 𝑒−∞ = 0 

OR it can be solved briefly by 

𝑦 = 𝑥[2.1,2.5] = [02.1, 02.5] = [0,0] = 0.

 Example (3.2) 

lim
𝑥→[9,11]

[3.5,5.9]𝑥[1,2] =  [3.5,5.9] [9,11][1,2] =

[3.5,5.9] [91, 112] =  [(3.5)(9), (5.9)(121)] =

 [31.5,713.9]. 

Example (3.3) 

lim
𝑥→∞

[3.5,5.9] 𝑥[1,2] = [3.5,5.9]  ∞[1,2]

= [3.5,5.9] [∞1, ∞2]

=  [3.5 ∙ (∞) ,5.9 ∙ (∞)]

= (∞, ∞) = ∞. 

Example (3.4) 

Find the following limit using more than one 

technique lim
𝑥→0

√[4,5]∙𝑥+1−1

𝑥
 . 

Solution:  

The above limit will be solved firstly by using the 

L'Hôpital's rule and secondly by using the 

rationalizing  technique. 

Using L'Hôpital's rule 

lim
𝑥→0

1

2
([4, 5] ∙ 𝑥 + 1)

−1
2⁄  [4,5]

= lim
𝑥→0

 [4,5]

2√([4, 5] ∙ 𝑥 + 1)

=
 [4,5]

2
=  [

4

2
,
5

2
] =  [2,2.5] 

Rationalizing technique [3] 

lim
𝑥→0

√[4,5] ∙ 𝑥 + 1 − 1

𝑥
=

√[4,5] ∙ 0 + 1 − 1

0

=
√[4 ∙ 0, 5 ∙ 0] + 1 − 1

0
=

√[0, 0] + 1 − 1

0

=
√0 + 1 − 1

0
=

0

0
= undefined. 

Multiply with the conjugate of the numerator: 
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lim
𝑥→0

√[4, 5]𝑥 + 1 − 1

𝑥
∙

√[4, 5]𝑥 + 1 + 1

√[4, 5]𝑥 + 1 + 1

= lim
𝑥→0

(√[4, 5]𝑥 + 1)
2

− (1)2

𝑥 (√[4, 5]𝑥 + 1 + 1)

= lim
𝑥→0

[4, 5] ∙ 𝑥 + 1 − 1

𝑥 ∙ (√[4, 5]𝑥 + 1 + 1)

= lim
𝑥→0

[4, 5] ∙ 𝑥

𝑥 ∙ (√[4, 5]𝑥 + 1 + 1)

= lim
𝑥→0

[4, 5]

(√[4, 5]𝑥 + 1 + 1)

=
[4, 5]

(√[4, 5] ∙ 0 + 1 + 1)
=

[4, 5]

√1 + 1

=
[4, 5]

2
= [

4

2
,
5

2
] = [2, 2.5]. 

Identical results. 

Example (3.5) 

Find the value of  the following neutrosophic limit    

lim
𝑥→−3

𝑥2+3𝑥−[1,2]𝑥−[3,6]

𝑥+3
using more than one

technique . 

Analytical technique [1], [3] 

lim
𝑥→−3

𝑥2+3𝑥−[1,2]𝑥−[3,6]

𝑥+3

By  substituting  𝑥= -3 , 

lim
𝑥→−3

(−3)2 + 3 ∙ (−3) − [1, 2] ∙ (−3) − [3, 6]

−3 + 3

=
9 − 9 − [1 ∙ (−3), 2 ∙ (−3)] − [3, 6]

0

=
0 − [−6, −3] − [3, 6]

0
=

[3, 6] − [3,6]

0

=
[3 − 6, 6 − 3]

0
=

[−3, 3]

0
, 

which has  undefined operation
0

0
, since 0 ∈

[−3, 3]. Then we factor out the numerator, and 

simplify: 

lim
𝑥→−3

𝑥2 + 3𝑥 − [1, 2]𝑥 − [3, 6]

𝑥 + 3
= 

lim
𝑥→−3

(𝑥 − [1, 2]) ∙ (𝑥 + 3)

(𝑥 + 3)
= lim

𝑥→−3
(𝑥 − [1,2]) 

= −3 − [1,2] = [−3, −3] − [1,2] 

=  −([3,3] + [1,2]) = [−5, −4]. 

Again, Solving by using L'Hôpital's rule 

lim
𝑥→−3

𝑥2 + 3𝑥 − [1, 2]𝑥 − [3, 6]

𝑥 + 3

= lim
𝑥→−3

2 𝑥 + 3 − [1, 2]

1

= lim
𝑥→−3

2 (−3) + 3 − [1, 2]

1
= −6 + 3 − [1, 2]

= −3 − [1, 2]

= [−3 − 1, −3 − 2]

= [−5, −4] 

The above two methods are identical in results. 

4 New Theorems in Neutrosophic Limits 

Theorem (4.1) (Binomial  Factorial ) 

lim
𝑥→∞

(𝐼 +
1

𝑥
)𝑥 = 𝐼𝑒  ;  I is the literal indeterminacy, 

e = 2.7182828 

Proof 

(𝐼 +
1

𝑥
)

𝑥

= (
𝑥
0

) 𝐼𝑋 (
1

𝑥
)

0

+ (
𝑥
1

) 𝐼𝑋−1 (
1

𝑥
)

1

+ (
𝑥
2

) 𝐼𝑋−2 (
1

𝑥
)

2

+ (
𝑥
3

) 𝐼𝑋−3 (
1

𝑥
)

3

+ (
𝑥
4

) 𝐼𝑋−4 (
1

𝑥
)

4

+ ⋯ 

= 𝐼 + 𝑥. 𝐼.
1

𝑥
+

𝐼

2!
(1 −

1

𝑥
) 

+
𝐼

3!
(1 −

1

𝑥
) (1 −

2

𝑥
) +

𝐼

4!
(1 −

1

𝑥
) (1 −

2

𝑥
) 

(1 −
3

𝑥
) + ⋯ 

It is clear that   
1

𝑥
→ 0  𝑎𝑠  𝑥  → ∞ 

∴ lim
𝑥→∞

(𝐼 −
1

𝑥
)𝑥 = 𝐼 + 𝐼 +

𝐼

2!
+

𝐼

3!
+

𝐼

4!
+ ⋯ = 𝐼 +

∑
𝐼𝑛

𝑛!
∞
𝑛=1

∴ lim
𝑥→∞

(𝐼 +
1

𝑥
)𝑥 = 𝐼𝑒, where e = 1 + ∑ 1

𝑛!
∞
𝑛=1  , I is the

literal indeterminacy. 

Corollary (4.1.1) 

lim
𝑥→0

(𝐼 + 𝑥)
1
𝑥 = 𝐼𝑒 

Proof:- 

Put 𝑦 =
1

𝑥

It is obvious that   𝑦 → ∞ , as 𝑥 → 0 

∴ lim
𝑥→0

(𝐼 + 𝑥)
1

𝑥 = lim
𝑦→∞

(𝐼 +
1

𝑦
)𝑦 = 𝐼𝑒 

 ( using Th. 4.1 ) 

Corollary (4.1.2) 

lim
𝑥→∞

(𝐼 +
𝑘

𝑥
)𝑥 = 𝐼𝑒𝑘  , where k > 0 & 𝑘 ≠ 0 , I is the 

literal indeterminacy. 
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Proof 

lim
𝑥→∞

(𝐼 +
𝑘

𝑥
)𝑥 = lim

𝑥→∞
[(𝐼 +

𝑘

𝑥
)

𝑥
𝑘]

𝑘

Put 𝑦 =
𝑘

𝑥
→ 𝑥𝑦 = 𝑘 → 𝑥 =

𝑘

𝑦

Note that     𝑦 → 0 𝑎𝑠 𝑥 → ∞ 

 ∴  lim
𝑥→∞

(𝐼 +
𝑘

𝑥
)

𝑥

= lim
𝑦→0

[(𝐼 + 𝑦)
1

𝑦]
𝑘

(using corollary 4.1.1 ). 

= [lim
𝑦→0

(𝐼 + 𝑦)
1

𝑦]
𝑘

= (𝐼𝑒)𝑘 = 𝐼𝑘𝑒𝑘 = 𝐼𝑒𝑘 

Corollary (4.1.3) 

lim(𝐼 +
𝑥
)

1

𝑥 = (𝐼𝑒)
1

𝑘 = √𝐼𝑒
𝑘

  , 
𝑥→0 𝑘
where 𝑘 ≠ 1 & 𝑘 > 0. 

Proof 

The immediate substitution of the value of 𝑥 in the 

above limit gives indeterminate form 𝐼∞, 

i.e. lim
𝑥→0

(𝐼 +
𝑥

𝑘
)

1

𝑥 = lim
𝑥→0

(𝐼 +
0

𝑘
)

1

0 = 𝐼∞

So we need to treat this value as follow:- 

lim
𝑥→0

(𝐼 +
𝑥

𝑘
)

1
𝑥 = lim

𝑥→0
[(𝐼 +

𝑥

𝑘
)

𝑘
𝑥]

1
𝑘

= [lim
𝑥→0

(𝐼 +
𝑥

𝑘
)

𝑘
𝑥]

1
𝑘

put 𝑦 =
𝑥

𝑘
→ 𝑥 = 𝑘𝑦 →

1

𝑥
=

1

𝑘𝑦

As 𝑥 → 0  , 𝑦 → 0 

lim
𝑥→0

(𝐼 +
𝑥

𝑘
)

1
𝑥

= lim
𝑦→0

[(𝐼 + 𝑦)
1
𝑦]

1
𝑘

= [lim
𝑦→0

(𝐼 + 𝑦)
1
𝑦]

1
𝑘

Using corollary (4.1.1) 

= (𝐼𝑒)
𝐼
𝑘 = √𝐼𝑒

𝑘
 

Theorem (4.2)

 lim
𝑥→0

(𝑙𝑛𝑎)[𝐼𝑎𝑥−𝐼]

𝑥𝑙𝑛𝑎+𝑙𝑛𝐼
=

𝑙𝑛𝑎

1+𝑙𝑛𝐼

Where     𝑎 > 0, 𝑎 ≠ 1 

Note that         lim
𝑥→0

(𝑙𝑛𝑎)[𝐼𝑎𝑥−𝐼]

𝑥𝑙𝑛𝑎+𝑙𝑛𝐼
= lim

𝑥→0

𝐼𝑎𝑥−𝐼

𝑥+
𝑙𝑛𝐼

𝑙𝑛𝑎

Proof

Let 𝑦 = 𝐼𝑎𝑥 − 𝐼 → 𝑦 + 𝐼 = 𝐼𝑎𝑥 → ln(𝑦 + 𝐼) = 
ln 𝐼 + ln 𝑎𝑥 

→ ln(𝑦 + 𝐼) = ln 𝐼 + 𝑥𝑙𝑛𝑎 → 

𝑥 =  
ln(𝑦 + 𝐼) − 𝑙𝑛𝐼

𝑙𝑛𝑎
(ln 𝑎)(𝐼𝑎𝑥 − 𝐼)

𝑥𝑙𝑛𝑎 + 𝑙𝑛𝐼
=

(𝐼𝑎𝑥 − 𝐼)

𝑥 +
𝑙𝑛𝐼
𝑙𝑛𝑎

=
𝑦

ln(𝑦 + 𝐼) − 𝑙𝑛𝐼
𝑙𝑛𝑎

+
𝑙𝑛𝐼
𝑙𝑛𝑎

= 𝑙𝑛𝑎.
𝑦

ln(𝑦 + 𝐼)
= 𝑙𝑛𝑎.

1

1
𝑦

ln(𝑦 + 𝐼)

= 𝑙𝑛𝑎.
1

ln(𝑦 + 𝐼)
1
𝑦

∴ lim
𝑥→0

 
(ln 𝑎)(𝐼𝑎𝑥 − 𝐼)

𝑥𝑙𝑛𝑎 + 𝑙𝑛𝐼
= 𝑙𝑛𝑎 

1

lim
𝑦→0

𝑙𝑛(𝑦 + 𝐼)
1
𝑦

= 𝑙𝑛𝑎 .
1

𝑙𝑛 lim
𝑦→0

(𝑦 + 𝐼)
1
𝑦

= 𝑙𝑛𝑎 
1

𝑙𝑛(𝐼𝑒)
 using corollary (4.1.1) 

=  
𝑙𝑛𝑎

𝑙𝑛 𝐼 +  𝑙𝑛𝑒
=

𝑙𝑛𝑎

𝑙𝑛𝐼 + 1

Corollary (4.2.1) 

lim
𝑥→0

𝐼𝑎𝑘𝑥 − 𝐼

𝑥 +
𝑙𝑛𝐼

𝑙𝑛𝑎𝑘

=
𝑘 𝑙𝑛𝑎

1 + 𝑙𝑛𝐼

Proof  

Put 𝑦 = 𝑘𝑥 → 𝑥 = 𝑦

𝑘

𝑦 → 0  𝑎𝑠 𝑥 → 0 

lim
𝑥→0

𝐼𝑎𝑘𝑥−𝐼

𝑥+
𝑙𝑛𝐼

𝑙𝑛𝑎𝑘

= lim
𝑦→0

𝐼𝑎𝑦−𝐼
𝑦

𝑘
+

𝑙𝑛𝐼

𝑘 𝑙𝑛𝑎

= 𝑘. lim
𝑦→0

𝐼𝑎𝑦−𝐼

𝑦+
𝑙𝑛𝐼

 𝑙𝑛𝑎

using Th. (4.2) 

= 𝑘. (
𝑙𝑛𝑎

1 + 𝑙𝑛𝐼
) 

Corollary (4.2.2) 

lim
𝑥→0

𝐼𝑒𝑥 − 𝐼

𝑥 + 𝑙𝑛𝐼
=

1

1 + 𝑙𝑛𝐼
Proof 

Let 𝑦 =  𝐼𝑒𝑥 − 𝐼   , 𝑦 → 0  𝑎𝑠 𝑥 → 0 

𝑦 + 𝐼 =  𝐼𝑒𝑥 → ln(𝑦 + 𝐼) = 𝑙𝑛𝐼 + 𝑥 𝑙𝑛𝑒 

𝑥 = ln(𝑦 + 𝐼) − 𝑙𝑛𝐼 

∴  
𝐼𝑒𝑥 − 𝐼 

𝑥 +  𝑙𝑛𝐼
=

𝑦

ln(𝑦 + 𝐼) − 𝑙𝑛𝐼 + 𝑙𝑛𝐼

=
1

1
𝑦

ln(𝑦 + 𝐼)

=
1

ln(𝑦 + 𝐼)
1
𝑦

∴ lim
𝑥→0

𝐼𝑒𝑥 − 𝐼

𝑥 + 𝑙𝑛𝐼
= lim

𝑦→0

1

ln(𝑦 + 𝐼)
1
𝑦

=
1

ln lim
𝑦→0

(𝑦 + 𝐼)
1
𝑦

using corollary (4.1.1) 

1

ln (𝐼𝑒)
=

1

𝑙𝑛𝐼 + 𝑙𝑛𝑒
=

1

𝑙𝑛𝐼 + 1
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Corollary (4.2.3) 

lim
𝑥→0

𝐼𝑒𝑘𝑥 − 𝐼

𝑥 +
𝑙𝑛𝐼
𝑘

=
𝑘 

1 + 𝑙𝑛𝐼

Proof  

let 𝑦 = 𝑘𝑥 → 𝑥 =
𝑦

𝑘

𝑦 → 0  𝑎𝑠 𝑥 → 0 

lim
𝑥→0

𝐼𝑒𝑘𝑥−𝐼

𝑥+
𝑙𝑛𝐼

𝑘

= lim
𝑦→0

𝐼𝑒𝑦−𝐼
𝑦

𝑘
+

𝑙𝑛𝐼

𝑘 

= 𝑘. lim
𝑦→0

𝐼𝑒𝑦−𝐼

𝑦+𝑙𝑛𝐼
   using 

Corollary (4.2.2) to  get 

= 𝑘. (
1

1 + 𝑙𝑛𝐼
) =

𝑘

1 + 𝑙𝑛𝐼

Theorem (4.3) 

lim
𝑥→0

ln (𝐼 + 𝑘𝑥)

𝑥
= 𝑘(1 + 𝑙𝑛𝐼) 

Proof 

lim
𝑥→0

ln (𝐼 + 𝑘𝑥)

𝑥
= lim

𝑥→0

ln(𝐼 + 𝑘𝑥) − 𝑙𝑛𝐼 + 𝑙𝑛𝐼

𝑥
Let 𝑦 = ln(𝐼 + 𝑘𝑥) − 𝑙𝑛𝐼 → 𝑦 + 𝑙𝑛𝐼 = ln(𝐼 +

𝑘𝑥) 

𝑒𝑦+𝑙𝑛𝐼 = 𝐼 + 𝑘𝑥 → 𝑥 =
𝑒𝑦𝑒𝑙𝑛𝐼 − 𝐼

𝑘
=

𝐼 𝑒𝑦 − 𝐼

𝑘
𝑦 → 0  𝑎𝑠 𝑥 → 0 

lim
𝑥→0

ln(𝐼 + 𝑘𝑥) − 𝑙𝑛𝐼 + 𝑙𝑛𝐼

𝑥

= lim
𝑦→0

𝑦 + 𝑙𝑛𝐼

𝐼 𝑒𝑦 − 𝐼
𝑘

 

lim
𝑦→0

𝑘

𝑦+𝑙𝑛𝐼
𝐼 𝑒𝑦−𝐼

=
𝑘

lim
𝑦→0( )

using corollary (4.2.2)  to get the result   

=
𝑘

1
1 + 𝑙𝑛𝐼

= 𝑘(1 + 𝑙𝑛𝐼) 

Theorem  (4.4) 

Prove that, for any two real numbers 𝑎, 𝑏 

lim
𝑥→0

𝐼a𝑥−𝐼

𝐼b𝑥−𝐼
= 1 , where 𝑎, 𝑏 > 0 & 𝑎, 𝑏 ≠ 1 

Proof 

The direct substitution of the value 𝑥 in the above 

limit conclude that  
0

0
 ,so we need to treat it as 

follow: 

lim
𝑥→0

𝐼a𝑥 − 𝐼

𝐼b𝑥 − 𝐼
= lim

𝑥→0

𝑙𝑛a[𝐼a𝑥 − 𝐼]
𝑥𝑙𝑛a + 𝑙𝑛𝐼

∗
𝑥𝑙𝑛a + 𝑙𝑛𝐼

𝑙𝑛a
𝑙𝑛b[𝐼b𝑥 − 𝐼]
𝑥𝑙𝑛b + 𝑙𝑛𝐼

∗
𝑥𝑙𝑛b + 𝑙𝑛𝐼

𝑙𝑛b

=
lim
𝑥→𝑥

𝑙𝑛a[𝐼a𝑥 − 𝐼]
𝑥𝑙𝑛a + 𝑙𝑛𝐼

lim
𝑥→𝑥

𝑙𝑛b[𝐼b𝑥 − 𝐼]
𝑥𝑙𝑛b + 𝑙𝑛𝐼

∗
lim
𝑥→0

( 𝑥𝑙𝑛a + 𝑙𝑛𝐼)

lim (
𝑥→0

𝑥𝑙𝑛b + 𝑙𝑛𝐼)
∗

𝑙𝑛b

𝑙𝑛a

(using Th.(4.2) twice (first in numerator second in 

denominator )) 

=
𝑙𝑛a

1+𝑙𝑛𝐼
𝑙𝑛b

1+𝑙𝑛𝐼

∗
𝑙𝑛𝐼

𝑙𝑛𝐼
∗

𝑙𝑛b

𝑙𝑛a
 = 1. 

5 Numerical Examples 

Example (5.1) 

Evaluate the limit lim
𝑥→0

𝐼54𝑥−𝐼

𝑥+
𝑙𝑛𝐼

𝑙𝑛54

Solution 

lim
𝑥→0

𝐼54𝑥−𝐼

𝑥+
𝑙𝑛𝐼

𝑙𝑛54

=
4𝑙𝑛5

1+𝑙𝑛𝐼
  (using corollary 4. 2.1) 

Example (5.2) 

Evaluate the limit lim
𝑥→0

𝐼𝑒4𝑥−𝐼

𝐼32𝑥−𝐼

Solution 

lim
𝑥→0

𝐼𝑒4𝑥 − 𝐼

𝐼32𝑥 − 𝐼
= lim

𝑥→0

𝑙𝑛3[𝐼𝑒4𝑥 − 𝐼]

(𝑥 +
𝑙𝑛𝐼
4

)
∗ (𝑥 +

𝑙𝑛𝐼
4

)

𝑙𝑛3[𝐼32𝑥 − 𝐼]

(𝑥 +
𝑙𝑛𝐼

𝑙𝑛32)
∗ (𝑥 +

𝑙𝑛𝐼
𝑙𝑛32)

=

lim
𝑥→0

𝑙𝑛3[𝐼𝑒4𝑥 − 𝐼]

(𝑥 +
𝑙𝑛𝐼
4

)

lim
𝑥→0

𝑙𝑛3[𝐼32𝑥 − 𝐼]

(𝑥 +
𝑙𝑛𝐼

𝑙𝑛32)

∗
lim
𝑥→0

(𝑥 +
𝑙𝑛𝐼
4

)

lim
𝑥→0

(𝑥 +
𝑙𝑛𝐼

𝑙𝑛32)

(using corollary (4.2.3) on numerator & corollary 

(4.2.1) on denominator ) 

=

4
1 + 𝑙𝑛𝐼

2𝑙𝑛3
1 + 𝑙𝑛𝐼

∗

𝑙𝑛𝐼
4

𝑙𝑛𝐼
𝑙𝑛32

= 1. 

5 Conclusion 

In this article, we introduced for the first time 

a new version of binomial factorial theorem 

containing the literal indeterminacy (I). This 

theorem enhances three corollaries. As a 
conjecture for indeterminate forms in classical 
calculus, ten of new indeterminate forms in 
Neutrosophic calculus had been constructed. 
Finally, various examples had been solved. 
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The category of neutrosophic sets
Kul Hur 1, Pyung Ki Lim 2, Jeong Gon Lee 3, Junhui Kim 4,∗

Abstract: We introduce the category NSet(H) consisting of neu-
trosophic H-sets and morphisms between them. And we study
NSet(H) in the sense of a topological universe and prove that it
is Cartesian closed over Set, where Set denotes the category con-

sisting of ordinary sets and ordinary mappings between them. Fur-
thermore, we investigate some relationships between two categories
ISet(H) and NSet(H).

Keywords: Neutrosophic crisp set, Cartesian closed category, Topological universe.

1 Introduction
In 1965, Zadeh [20] had introduced a concept of a fuzzy set as

the generalization of a crisp set. In 1986, Atanassov [1] proposed
the notion of intuitionistic fuzzy set as the generalization of fuzzy
sets considering the degree of membership and non-membership.
Moreover, in 1998, Smarandache [19] introduced the concept of
a neutrosophic set considering the degree of membership, the de-
gree of indeterminacy and the degree of non-membership.

After that time, many researchers [3, 4, 5, 6, 8, 9, 13, 15, 16,
17] have investigated fuzzy sets in the sense of category theory,
for instance, Set(H), Setf (H), Setg(H), Fuz(H). Among
them, the category Set(H) is the most useful one as the “stan-
dard” category, because Set(H) is very suitable for describ-
ing fuzzy sets and mappings between them. In particular, Car-
rega [3], Dubuc [4], Eytan [5], Goguen [6], Pittes [15], Ponasse
[16, 17] had studied Set(H) in topos view-point. However Hur
et al. investigated Set(H) in topological view-point. Moreover,
Hur et al. [9] introduced the category ISet(H) consisting of intu-
itionistic H-fuzzy sets and morphisms between them, and studied
ISet(H) in the sense of topological universe. In particular, Lim
et al. [13] introduced the new category VSet(H) and investi-
gated it in the sense of topological universe. Recently, Lee et al.
[10] define the category composed of neutrosophic crisp sets and
morphisms between neutrosophic crisp sets and study its some
properties.

The concept of a topological universe was introduced by Nel
[14], which implies a Cartesian closed category and a concrete
quasitopos. Furthermore the concept has already been up to ef-

fective use for several areas of mathematics.
In this paper, we introduce the category NSet(H) consisting

of neutrosophic H-sets and morphisms between them. And we
study NSet(H) in the sense of a topological universe and prove
that it is Cartesian closed over Set, where Set denotes the cate-
gory consisting of ordinary sets and ordinary mappings between
them. Furthermore, we investigate some relationships between
two categories ISet(H) and NSet(H).

2 Preliminaries
In this section, we list some basic definitions and well-known

results from [7, 12, 14] which are needed in the next sections.

Definition 2.1 [12] Let A be a concrete category and ((Yj , ξj))J
a family of objects in A indexed by a class J. For any set X , let
(fj : X → Yj)J be a source of mappings indexed by J . Then
an A-structure ξ on X is said to be initial with respect to (in
short, w.r.t.) (X, (fj), ((Yj , ξj)))J , if it satisfies the following
conditions:

(i) for each j ∈ J , fj : (X, ξ)→ (Yj , ξj) is an A-morphism,
(ii) if (Z, ρ) is an A-object and g : Z → X is a mapping such

that for each j ∈ J , the mapping fj ◦ g : (Z, ρ)→ (Yj , ξj) is an
A-morphism, then g : (Z, ρ)→ (X, ξ) is an A-morphism.

In this case, (fj : (X, ξ) → (Yj , ξj))J is called an initial
source in A.

Dual notion: cotopological category.

K. Hur, P. K. Lim, J. G. Lee, J. Kim, The category of neutrosophic sets

Neutrosophic Sets and Systems, Vol. 14, 2016

University of New Mexico

12

1Division of Mathematics and Informational Statistics, Institute of Basic Natural Science, Wonkwang University 460, Iksan-daero, Iksan-Si, 
Jeonbuk 54538, Korea. E-mail: kulhur@wku.ac.kr

2Division of Mathematics and Informational Statistics, Institute of Basic Natural Science, Wonkwang University 460, Iksan-daero, Iksan-Si, 
Jeonbuk 54538, Korea. E-mail: pklim@wku.ac.kr

3Division of Mathematics and Informational Statistics, Institute of Basic Natural Science, Wonkwang University 460, Iksan-daero, Iksan-Si, 
Jeonbuk 54538, Korea. E-mail: jukolee@wku.ac.kr

4Department of Mathematics Education, Wonkwang University 460, Iksan-daero, Iksan-Si, Jeonbuk 54538, Korea. E-mail: junhikim@wku.ac.kr
* Corresponding author



Result 2.2 ([12], Theorem 1.5) A concrete category A is topo-
logical if and only if it is cotopological.

Result 2.3 ([12], Theorem 1.6) Let A be a topological category
over Set, then it is complete and cocomplete.

Definition 2.4 [12] Let A be a concrete category.

(i) The A-fibre of a set X is the class of all A-structures on X .

(ii) A is said to be properly fibred over Set if it satisfies the
followings:

(a) (Fibre-smallness) for each set X , the A-fibre of X is
a set,

(b) (Terminal separator property) for each singleton setX ,
the A-fibre of X has precisely one element,

(c) if ξ and η are A-structures on a set X such that id :
(X, ξ) → (X, η) and id : (X, η) → (X, ξ) are A-
morphisms, then ξ = η.

Definition 2.5 [7] A category A is said to be Cartesian closed if
it satisfies the following conditions:

(i) for each A-object A and B, there exists a product A×B in
A,

(ii) exponential objects exist in A, i.e., for each A-object A, the
functor A×− : A→ A has a right adjoint, i.e., for any A-
object B, there exist an A-object BA and an A-morphism
eA,B : A × BA → B (called the evaluation) such that for
any A-object C and any A-morphism f : A × C → B,
there exists a unique A-morphism f̄ : C → BA such that
eA,B ◦ (idA × f̄) = f , i.e., the diagram commutes:

eA,BA×BA B-

∃1A × f f

A× C

J
J
J
J
J
J
J]














�

Definition 2.6 [7] A category A is called a topological universe
over Set if it satisfies the following conditions:

(i) A is well-structured, i.e., (a) A is a concrete category; (b)
A satisfies the fibre-smallness condition; (c) A has the ter-
minal separator property,

(ii) A is cotopological over Set,

(iii) final episinks in A are preserved by pullbacks, i.e., for any
episink (gj : Xj → Y )J and any A-morphism f : W → Y ,
the family (ej : Uj →W )J , obtained by taking the pullback
f and gj , for each j ∈ J , is again a final episink.

Definition 2.7 [2, 11] A lattice H is called a complete Heyting
algebra if it satisfies the following conditions:

(i) it is a complete lattice,

(ii) for any a, b ∈ H , the set {x ∈ H : x ∧ a ≤ b} has
the greatest element denoted by a → b (called the relative
pseudo-complement of a and b), i.e., x ∧ a ≤ b if and only
if x ≤ (a→ b).

In particular, if H is a complete Heyting algebra with the
least element 0 then for each a ∈ H , N(a) = a → 0 is
called negation or the paudo-complement of a.

Result 2.8 ([2], Ex. 6 in p. 46) Let H be a complete Heyting
algebra and a, b ∈ H .

(1) If a ≤ b, then N(b) ≤ N(a), where N : H → H is an
involutive order reversing operation in (H,≤).

(2) a ≤ NN(a).

(3) N(a) = NNN(a).

(4) N(a ∨ b) = N(a) ∧N(b) and N(a ∧ b) = N(a) ∨N(b).

Throughout this paper, we will use H as a complete Heyting
algebra with the least element 0 and the greatest element 1.

Definition 2.9 [9] Let X be a set. Then A is called an intuition-
isticH-fuzzy set (in short, IHFS) inX if it satisfies the following
conditions:

(i) A is of the form A = (µ, ν), where µ, ν : X → H are
mappings,

(ii) µ ≤ N(ν), i.e., µ(x) ≤ N(ν)(x) for each x ∈ X .

In this case, the pair (X,A) is called an intuitionistic H-fuzzy
space (in short, IHFSp). We will denote the set of all IHFSs as
IHFS(X).

Definition 2.10 [9] The concrete category ISet(H) is defined as
follows:

(i) each object is an IHFSp (X,AX), where AX =
(µAX , νAX ) ∈ IHFS(X),

(ii) each morphism is a mapping f : (X,AX)→ (Y,AY ) such
that µAX ≤ µAY ◦ f and νAX ≥ νAY ◦ f , i.e., µAX (x) ≤
µAY ◦ f(x) and νAX (x) ≥ νAY ◦ f(x), for each x ∈ X . In
this case, the morphism f : (X,AX) → (Y,AY ) is called
an ISet(H)-mapping.
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3 Neutrosophic sets

In [18], Salama and Smarandache introduced the concept of a
neutrosophic crisp set in a set X and defined the inclusion be-
tween two neutrosophic crisp sets, the intersection [union] of
two neutrosophic crisp sets, the complement of a neutrosophic
crisp set, neutrosophic empty [resp., whole] set as more than two
types. And they studied some properties related to neutrosophic
set operations. However, by selecting only one type, we define
the inclusion, the intersection [union] and the neutrosophic empty
[resp., whole] set again and obtain some properties.

Definition 3.1 Let X be a non-empty set. Then A is called a
neutrosophic set (in short, NS) in X , if A has the form A =
(TA, IA, FA), where
TA : X →]−0, 1+[, IA : X →]−0, 1+[, FA : X →]−0, 1+[.

Since there is no restriction on the sum of TA(x), IA(x) and
FA(x), for each x ∈ X ,

−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

Moreover, for each x ∈ X , TA(x) [resp., IA(x) and FA(x)] rep-
resent the degree of membership [resp., indeterminacy and non-
membership] of x to A.

The neutrosophic empty [resp., whole] set, denoted by 0N
[resp., 1N ] is an NS in X defined by 0N = (0, 0, 1) [resp.,
1N = (1, 1, 0)], where 0, 1 : X →]−0, 1+[ are defined by
0(x) = 0 and 1(x) = 1 respectively. We will denote the set
of all NSs in X as NS(X).

From Example 2.1.1 in [18], we can see that every IFS (intu-
tionistic fuzzy set) A in a non-empty set X is an NS in X having 
the form

A = (TA, 1− (TA + FA), FA),

where (1− (TA + FA))(x) = 1− (TA(x) + FA(x)).

Definition 3.2 Let A = (TA, IA, FA), B = (TB , IB , FB) ∈
NS(X). Then

(i) A is said to be contained in B, denoted by A ⊂ B, if

TA(x) ≤ TB(x), IA(x) ≤ IB(x) and FA(x) ≥ FB(x)
for each x ∈ X ,

(ii) A is said to equal to B, denoted by A = B, if

A ⊂ B and B ⊂ A,

(iii) the complement of A, denoted by Ac, is an NCS in X de-
fined as:

Ac = (FA, 1− IA, TA),

(iv) the intersection of A and B, denoted by A ∩ B, is an NCS
in X defined as:

A ∩B = (TA ∧ TB , IA ∧ IB , FA ∨ FB),

where (TA ∧ TB)(x) = TA(x) ∧ TB(x), (FA ∨ FB) =
FA(x) ∨ FB(x) for each x ∈ X ,

(v) the union of A and B, denoted by A ∪ B, is an NCS in X
defined as:

A ∪B = (TA ∨ TB , IA ∨ IB , FA ∧ FB).

Let (Aj)j∈J ⊂ NS(X), where Aj = (TAj , IAj , FAj ). Then

(vi) the intersection of (Aj)j∈J , denoted by
⋂
j∈J Aj (simply,⋂

Aj), is an NS in X defined as:⋂
Aj = (

∧
TAj ,

∧
IAj ,

∨
FAj ),

(vii) the union of (Aj)j∈J , denoted by
⋃
j∈J Aj (simply,

⋃
Aj),

is an NCS in X defined as:⋃
Aj = (

∨
TAj ,

∨
IAj ,

∧
FAj ).

The followings are the immediate results of Definition 3.2.

Proposition 3.3 Let A,B,C ∈ NS(X). Then
(1) 0N ⊂ A ⊂ 1N ,
(2) if A ⊂ B and B ⊂ C, then A ⊂ C,
(3) A ∩B ⊂ A and A ∩B ⊂ B,
(4) A ⊂ A ∪B and B ⊂ A ∪B,
(5) A ⊂ B if and only if A ∩B = A,
(6) A ⊂ B if and only if A ∪B = B.

Also the followings are the immediate results of Definition 3.2.

Proposition 3.4 Let A,B,C ∈ NS(X). Then
(1) (Idempotent laws): A ∪A = A, A ∩A = A,
(2) (Commutative laws): A ∪B = B ∪A, A ∩B = B ∩A,
(3) (Associative laws): A ∪ (B ∪ C) = (A ∪B) ∪ C,

A ∩ (B ∩ C) = (A ∩B) ∩ C,
(4) (Distributive laws): A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C),

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),
(5) (Absorption laws): A ∪ (A ∩B) = A, A ∩ (A ∪B) = A,
(6) (De Morgan’s laws): (A ∪B)c = Ac ∩Bc,

(A ∩B)c = Ac ∪Bc,
(7) (Ac)c = A,
(8) (8a) A ∪ 0N = A, A ∩ 0N = 0N ,

(8b) A ∪ 1N = 1N , A ∩ 1N = A,
(8c) 1cN = 0N , 0cN = 1N ,
(8d) in general, A ∪Ac 6= 1N , A ∩Ac 6= 0N .

Proposition 3.5 Let A ∈ NS(X) and let (Aj)j∈J ⊂ NS(X).
Then

(1) (
⋂
Aj)

c =
⋃
Acj , (

⋃
Aj)

c =
⋂
Acj ,

(2) A ∩ (
⋃
Aj) =

⋃
(A ∩Aj), A ∪ (

⋂
Aj) =

⋂
(A ∪Aj).

Proof. (1) Let Aj = (TAj , IAj , FAj ).
Then

⋂
Aj = (

∧
TAj ,

∧
IAj ,

∨
FAj ).
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Thus

(
⋂
Aj)

c = (
∨
FAj , 1−

∧
IAj ,

∧
TAj )

= (
∨
FAj ,

∨
(1− IAj ),

∧
TAj )

=
⋃
Acj

Similarly, the second part is proved.
(2) Let A = (TA, IA, FA) and Aj = (TAj , IAj , FAj ).
Then

A ∪ (
⋂
Aj) = (TA ∨ (

∧
TAj , IA ∨ (

∧
IAj ), FA ∧ (

∨
FAj ))

= (
∧

(TA ∨ TAj ),
∧

(IA ∨ IAj ),
∨

(FA ∧ FAj )

=
⋂

(A ∪Aj).

Similarly, the first part is proved. �

Definition 3.6 Let f : X → Y be a mapping and let A ⊂ X ,
B ⊂ Y . Then

(i) the image of A under f , denoted by f(A), is an NS in Y
defined as:

f(A) = (f(TA), f(IA), f(FA)),

where for each y ∈ Y ,

[f(TA)](y) =

{ ∨
x∈f−1(y) TA(x) if f−1(y) 6= φ

0 if f−1(y) = φ,

(ii) the preimage of B, denoted by f−1(B), is an NCS in X
defined as:

f−1(B) = (f−1(TB), f−1(IB), f−1(FB)),

where f−1(TB)(x) = TB(f(x)) for each x ∈ X ,

in fact, f−1(B) = (TB ◦ f, IB ◦ f, FB ◦ f).

Proposition 3.7 Let f : X → Y be a mapping and let
A,B,C ∈ NCS(X), (Aj)j∈J ⊂ NCS(X) and D,E, F ∈
NCS(Y ), (Dk)k∈K ⊂ NCS(Y ). Then the followings hold:

(1) if B ⊂ C, then f(B) ⊂ f(C) and
if E ⊂ F , then f−1(E) ⊂ f−1(F ).

(2) A ⊂ f−1f(A)) and
if f is injective, then A = f−1f(A)),

(3) f(f−1(D)) ⊂ D and
if f is surjective, then f(f−1(D)) = D,

(4) f−1(
⋃
Dk) =

⋃
f−1(Dk), f−1(

⋂
Dk) =

⋂
f−1(Dk),

(5) f(
⋃
Dk) =

⋃
f(Dk), f(

⋂
Dk) ⊂

⋂
f(Dk),

(6) f(A) = 0N if and only ifA = 0N and hence f(0N ) = 0N ,
in particular if f is surjective, then f(1X,N ) = 1Y,N ,

(7) f−1(1Y,N ) = 1X,N , f−1(0Y,N ) = 0X,N .

4 Properties of NSet(H)

Definition 4.1 A is called a neutrosophic H-set (in short, NHS)
in a non-empty set X if it satisfies the following conditions:

(i) A has the form A = (TA, IA, FA), where TA, IA, FA) :
X → H are mappings,

(ii) TA ≤ N(FA) and IA ≥ N(FA).

In this case, the pair (X,A) is called a neutrosophic H-space
(in short, NHSp). We will denote the set of all the NHSs as
NHS(X).

Definition 4.2 Let (X,AX), (Y,AY ) be two NHSps and let f :
X → Y be a mapping. Then f : (X,AX)→ (Y,AY ) is called a
morphism if AX ⊂ f−1(AY ), i.e.,

TAX ≤ TAY ◦ f , IAX ≤ IAY ◦ f and FAX ≥ FAY ◦ f .
In particular, f : (X,AX) → (Y,AY ) is called an epimor-

phism [resp., a monomorphism and an isomorphism], if it is sur-
jective [resp., injective and bijective].

The following is the immediate result of Definition 4.2.

Proposition 4.3 For each NHSp (X,AX), the identity mapping
id : (X,AX)→ (X,AX) is a morphism.

Proposition 4.4 Let (X,AX), (Y,AY ), (Z,AZ) be NHSps and
let f : X → Y , g : Y → Z be mappings. If f : (X,AX) →
(Y,AY ) and f : (Y,AY )→ (Z,AZ) are morphisms, then g ◦f :
(X,AX)→ (Z,AZ) is a morphism.

Proof. Let AX = (TAX , IAX , FAX ), AY = (TAY , IAY , FAY ) 
and AZ = (TAZ , IAZ , FAZ ). Then by the hypotheses and Defi-
nition 4.2, AX ⊂ f−1(AY ) and AY ⊂ g−1(AZ ), i.e.,

TAX ≤ TAY ◦ f , IAX ≤ IAY ◦ f , FAX ≥ FAY ◦ f
and

TAY ≤ TAZ ◦ g, IAY ≤ IAZ ◦ g, FAZ ≥ FAZ ◦ g.
Thus TAX ≤ (TAZ ◦ g) ◦ f , IAX ≤ (IAZ ◦ g) ◦ f ,

FAX ≥ (FAZ ◦ g) ◦ f .
So TAX ≤ TAZ ◦ (g ◦ f), IAX ≤ IAZ ◦ (g ◦ f),

FAX ≥ FAZ ◦ (g ◦ f).
Hence g ◦ f is a morphism. �

From Propositions 4.3 and 4.4, we can form the concrete cat-
egory NSet(H) consisting of NHSs and morphisms between 
them. Every NSet(H)-morphism will be called an NSet(H)-
mapping.

Lemma 4.5 The category NSet is topological over Set.

Proof. Let X be any set and let ((Xj , Aj))j∈J be any family
of NHSps indexed by a class J , where Aj = (TAj , IAj , FAj ).
Suppose (fj : X → (Xj , Aj)J is a source of ordinary mappings.
We define mappings TAX , IAX , FAX : X → H as follows: for
each x ∈ X ,
TAX (x) =

∧
(TAj ◦ fj)(x), IAX (x) =

∧
(IAj ◦ fj)(x),

FAX (x) =
∨

(FAj ◦ fj)(x).
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Let j ∈ J and x ∈ X .
Since Aj = (TAj , IAj , FAj ) ∈ NHS(X),
TAj ≤ N(FAX ) and IAj ≥ N(FAX ). Then

N(FAX (x)) = N(
∨

(FAj ◦ fj)(x))

=
∧
N(FAj (fj(x)))

≥
∧
TAj (fj(x))

=
∧
TAj ◦ fj(x)

= TAX (x)
and

N(FAX (x)) =
∧
N(FAj (fj(x)))

≤
∧
IAj (fj(x))

=
∧
IAj ◦ fj(x)

= IAX (x)
Thus TAX ≤ N(FAX ) and IAX ≥ N(FAX ).
So AX =

⋂
f−1
j (Aj) ∈ NHS(X) and thus (X,AX) is an

NHSp. Moreover, by the definition of AX ,
TAX ≤ TAj ◦ fj , IAX ≤ IAj ◦ fj , FAX ≥ FAj ◦ fj .

Hence AX ⊂ f−1
j (Aj).

Therefore each fj : (X,AX) → (Xj , Aj) is an NSet(H)-
mapping.

Now let (Y,AY ) be any NHSp and suppose g : Y → X is an
ordinary mapping for which fj ◦ g : (Y,AY ) → (Xj , Aj) is an
NSet(H)-mapping for each j ∈ J . Then
AY ⊂ (fj ◦ g)−1(Aj) = g−1(f−1

j (Aj)) for each j ∈ J .
Thus

AY ⊂ g−1(
⋂
f−1
j (Aj)) = g−1(AX).

So g : (Y,AY ) → (X,AX) is an NSet(H)-mapping. Hence
(fj : (X,AX) → (Xj , Aj))J is an initial source in NSet(H).
This completes the proof. �

Example 4.6 (1) Let X be a set, let (Y,AY ) be an NHSp and
let f : X → Y be an ordinary mapping. Then clearly, there
exists a unique NHS AX ∈ NHS(X) for which f : (X,AX)→
(Y,AY ) is an NSet(H)-mapping. In fact, AX = f−1(AY ).

In this case,AX is called the inverse image under f of the NHS
structure AY .

(2) Let ((Xj , Aj))j∈J be any family of NHSps and let X =
Πj∈JXj . For each j ∈ J , let prj : X → Xj be the ordinary
projection. Then there exists a unique NHS AX ∈ NHS(X) for
which prj : (X,AX) → (Xj , Aj) is an NSet(H)-mapping for
each j ∈ J .

In this case, AX is called the product of (Aj)J , denoted by

AX = Πj∈JAj = (Πj∈JTAj ,Πj∈JIAj ,Πj∈JFAj )

and (X,AX) is called the product NHSp of ((Xj , Aj))J .
In fact, AX =

⋂
j∈J pr

−1(Aj)

and
Πj∈JTAj =

∧
TAj ◦ prj , Πj∈JIAj =

∧
IAj ◦ prj ,

Πj∈JFAj =
∨
FAj ◦ prj .

In particular, if J = {1, 2}, then

Πj∈JTAj = TA1
× TA2

= (TA1
◦ pr1) ∧ (TA2

◦ pr2),

Πj∈JIAj = IA1 × IA2 = (IA1 ◦ pr1) ∧ (IA2 ◦ pr2),

Πj∈JFAj = FA1
× FA2

= (FA1
◦ pr1) ∨ (FA2

◦ pr2).

The following is the immediate result of Lemma 4.5 and Result
2.3.

Corollary 4.7 The category NSet(H) is complete and cocom-
plete.

The following is obvious from Result 2.2. But we show 
directly it.

Corollary 4.8 The category NCSet is cotopological over Set.

Proof. Let X be any set and let ((Xj , Aj))J be any family of
NHSps indexed by a class J . Suppose (fj : Xj → X)J is a sink
of ordinary mappings. We define mappings TAX , IAX , FAX :
X → H as follows: for each x ∈ X ,

TAX (x) =

{ ∨
J

∨
xj∈f−1

j (x) TAj (xj) if f−1
j (x) 6= φ for all j

0 if f−1
j (x) = φ for some j,

IAX (x) =

{ ∨
J

∨
xj∈f−1

j (x) IAj (xj) if f−1
j (x) 6= φ for all j

0 if f−1
j = φ for some j,

FAX (x) =

{ ∧
J

∧
xj∈f−1

j (x) FAj (xj) if f−1
j 6= φ for all j

1 if f−1
j = φ for some j.

Since ((Xj , Aj))J is a family of NHSps, TAj ≤ N(FAj ) and
IAj ≥ N(FAj ) for each j ∈ J . We may assume that f−1

j 6= φ
without loss of generality. Let x ∈ X . Then

N(FAX (x)) = N(
∧
J

∧
xj∈f−1

j (x) FAj (xj))

=
∨
J

∨
xj∈f−1

j (x)N(FAj (xj))

≥
∨
J

∨
xj∈f−1

j (x) TAj (xj).
= TAX (x).

and
N(FAX (x)) =

∨
J

∨
xj∈f−1

j (x)N(FAj (xj))

≤
∨
J

∨
xj∈f−1

j (x) IAj (xj).
= IAX (x).

Thus TAX ≤ N(FAX ) and IAX ≥ N(FAX ).
So (X,AX) is an NHSp. Moreover, for each j ∈ J ,

f−1
j (AX) = f−1

j (
⋃
fj(Aj)) =

⋃
f−1
j (fj(Aj)) ⊃ Aj .

Hence each fj : (Xj , Aj)→ (X,AX) is an NSet(H)-mapping.
Now for each NHSp (Y,AY ), let g : X → Y be an ordinary

mapping for which each g ◦ fj : (Xj , Aj) → (Y,AY ) is an
NSet(H)-mapping. Then clearly for each j ∈ J ,

Aj ⊂ (g ◦ fj)−1(AY ), i.e., Aj ⊂ f−1
j (g−1(AY )).

Thus
⋃
Aj ⊂

⋃
f−1
j (g−1(AY )).

So fj(
⋃
Aj) ⊂ fj(

⋃
f−1
j (g−1(AY ))). By Proposition 3.7 and

the definition of AX ,

fj(
⋃
Aj) =

⋃
fj(Aj) = AX
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and

fj(
⋃
f−1
j (g−1(AY ))) =

⋃
(fj ◦ f−1

j )(g−1(AY )) = g−1(AY ).

Hence AX ⊂ g−1(AY ). Therefore g : (X,AX) → (Y,AY ) is
an NSet(H)-mapping. This completes the proof. �

Example 4.9 (1) Let (X,AX) ∈ NSet(H), let R be an ordi-
nary equivalence relation on X and let ϕ : X → X/R be the
canonical mapping. Then there exists the final NHS structure
AX/R in X/R for which ϕ : (X,AX) → (X/R,AX/R) is an
NSet(H)-mapping, where AX/R = (TAX/R , IAX/R , FAX/R) =
(ϕ(TAX ), ϕ(IAX ), ϕ(FAX )).

In this case, AX/R is called the neutrosophic H-quotient set
structure of X by R.

(2) Let ((Xα, Aα))α∈Γ be a family of NHSs, let X be the sum
of (Xα)α∈Γ, i.e., X =

⋃
(Xα × {α}) and let jα : Xα → X the

canonical (injective) mapping for each α ∈ Γ. Then there exists
the final NHSAX inX . In fact, AX = (TAX , IAX , FAX ), where
for each (x, α) ∈ X ,

TAX (x, α) =
∨

Γ TAα(x), IAX (x, α) =
∨

Γ IAα(x),

FAX (x, α) =
∧

Γ FAα(x).

In this case, AX is called the sum of ((Xα, Aα))α∈Γ.

Lemma 4.10 Final episinks in NSet(H) are prserved by pull-
backs.

Proof. Let (gj : (Xj , Aj) → (Y,AY ))J be any final episink in
NSet(H) and let f : (W,AW ) → (Y,AY ) be any NSet(H)-
mapping. For each j ∈ J , let

Uj = {(w, xj) ∈W ×Xj : f(w) = gj(xj)}.

For each j ∈ J , we define mappings TAUj , IAUj , FAUj : Uj →
H as follows: for each (w, xj) ∈ Uj ,

TAUj (w, xj) = TAW (w) ∧ TAj (xj),

IAUj (w, xj) = IAW (w) ∧ IAj (xj),

FAUj (w, xj) = FAW (w) ∨ FAj (xj).

Then clearly, AUj = (TAUj , IAUj , FAUj ) = (AW × Aj)∗ ∈
NHS(Uj). Thus (Uj , AUj ) is an NHSp, where (AW × Aj)∗
denotes the restriction of AW ×Aj under Uj .

Let ej and pj be ordinary projections of Uj . Let j ∈ J . Then
clearly,

AUj ⊂ e−1
j (AY ) and AUj ⊂ p−1

j (Aj).
Thus ej : (Uj , AUj ) → (W,AW ) and pj : (Uj , AUj ) →
(Xj , Aj) are NSet(H)-mappings. Moreover, gh ◦ ph = f ◦ ej
for each j ∈ J , i.e., the diagram is a pullback square in NCSet:

pj(Uj , AUj ) (Xj , Aj)-

ej gj

(W,AW )

? ?

f

- (Y,AY ).

Now in order to prove that (ej)J is an episink in NSet(H),
i.e., each ej is surjective, let w ∈ W . Since (gj)J is an episink,
there exists j ∈ J such that gj(xj) = f(w) for some xj ∈ Xj .
Thus (w, xj) ∈ Uj and w = ej(w, xj). So (ej)J is an episink in
NSet(H).

Finally, let us show that (ej)J is final in NSet(H). Let A∗W
be the final structure in W w.r.t. (ej)J and let w ∈W . Then

TAW (w) = TAW (w) ∧ TAW (w)
≤ TAW (w) ∧ f−1(TAY (w))

[since f : (W,AW )→ (Y,AY ))J) is an
NSet(H)-mapping]

= TAW (w) ∧ TAY (f(w))
= TAW (w) ∧ (

∨
J

∨
xj∈g−1

j (f(w)) TAj (xj))

[since (gj)J is final in NSet(H)]
=
∨
J

∨
xj∈g−1

j (f(w))(TAW (w) ∧ TAj (xj))
=
∨
J

∨
(w,xj)∈e−1

j (w)(TUj (w, xj))

= TA∗
W

(w).
Thus TAW ≤ TA∗

W
. Similarly, we can see that IAW ≤ IA∗

W
and

FAW ≥ FA∗
W

. So AW ⊂ A∗W . On the other hand, since ej :
(Uj , AUj ) → (W,A∗W ) is final, idW : (W,A∗W ) → (W,AW )
is an NSet(H)-mapping. So A∗W ⊂ AW . Hence AW = A∗W .
This completes the proof. �

For any singleton set {a}, since the NHS structure A{a} on 
{a} is not unique, the category NSet(H) is not properly fibred 
over Set. Then by Lemmas 4.5,4.9 and Definition 2.6, we obtain 
the following result.

Theorem 4.11 The category NSet(H) satisfies all the condi-
tions of a topological universe over Set except the terminal sep-
arator property.

Theorem 4.12 The category NSet(H) is Cartesian closed over
Set.

Proof. From Lemma 4.5, it is clear that NSet(H) has products. 
So it is sufficient to prove that NSet(H) has exponential objects.

For any NHSs X = (X,AX) and Y = (Y,AY ), let Y X be the
set of all ordinary mappings from X to Y . We define mappings
TAYX , IAYX , FAYX : Y X → H as follows: for each f ∈ Y X ,

TAYX (f) =
∨
{h ∈ H : TAX (x) ∧ h ≤ TAY (f(x)),

for each x ∈ X},

IAYX (f) =
∨
{h ∈ H : IAX (x) ∧ h ≤ IAY (f(x)),
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for each x ∈ X},

FAYX (f) =
∧
{h ∈ H : FAX (x) ∨ h ≥ FAY (f(x)),

for each x ∈ X}.
Then clearly, AY X = (TAYX , IAYX , FAYX ) ∈ NHS(Y X) and
thus (Y X , AY X ) is an NHSp. Let YX = (Y X , AY X ) and let
f ∈ Y X , x ∈ X . Then by the definition of AY X ,

TAX (x) ∧ TAYX (f) ≤ TAY (f(x)),

IAX (x) ∧ IAYX (f) ≤ IAY (f(x)),

FAX (x) ∨ FAYX (f) ≥ FAY (f(x)).

We define a mapping eX,Y : X × Y X → Y as follows: for
each (x, f) ∈ X × Y X ,

eX,Y (x, f) = f(x).

Then clearly, AX × AY X ∈ NHS(X × Y X), where AX =
(TAX , IAX , FAX )
and for each (x, f) ∈ X × Y X ,

TAX×AYX (x, f) = TAX (x) ∧ TAYX (f),
IAX×AYX (x, f) = IAX (x) ∧ IAYX (f),
FAX×AYX (x, f) = FAX (x) ∨ FAYX (f).

Let us show that AX × AY X ⊂ e−1
X,Y (AY ). Let (x, f) ∈

X × Y X . Then

e−1
X,Y (AY )(x, f) = AY (eX,Y (x, f)) = AY (f(x)).

Thus

Te−1
X,Y (AY )(x, f) = TAY (f(x))

≥ TAX (x) ∧ TAYX (f)

= TAX×AYX (x, f),

Ie−1
X,Y (AY )(x, f) = IAY (f(x))

≥ IAX (x) ∧ IAYX (f)

= IAX×AYX (x, f),

Fe−1
X,Y (AY )(x, f) = FAY (f(x))

≤ FAX (x) ∨ FAYX (f)

= FAX×AYX (x, f).

So AX × AY X ⊂ e−1
X,Y (AY ). Hence eX,Y : X×YX → Y

is an NSet(H)-mapping, where
X×YX = (X × Y X , AX ×AY X ) and Y = (Y,AY ).
For any Z = (Z,AZ) ∈ NSet(H), let h : X× Z→ Y be an

NSet(H)-mapping where X× Z = (X × Z,AX × AZ). We

define a mapping h̄ : Z → Y X as follows:

(h̄(z))(x) = h(x, z),

for each z ∈ Z and each x ∈ X . Let (x, z) ∈ X × Z. Then

TAX×AZ (x, z) = TAX (x) ∧ TAZ (z)

≤ TAY (h(x, z)) [since h : X× Z→ Y

is an NSet(H)-mapping]
= TAY (h̄(z))(x).

Thus by the definition of AY X ,

TAZ (z) ≤ TAYX (h̄(z)) = h̄−1(TAYX )(z).

So TAZ ≤ h̄−1(TAYX ). Similarly, we can see that IAZ ≤
h̄−1(IAYX ) and FAZ ≥ h̄−1(FAYX ). Hence h̄ : Z → YX

is an NSet(H)-mapping, where YX = (Y X , AY X ). Further-
more, we can prove that h̄ is a unique NSet(H)-mapping such
that eX,Y ◦ (idX × h̄) = h. �

5 The relation between NSet(H) and
ISet(H)

Lemma 5.1 Define G1, G2 : NSet(H)→ ISet(H) by:

G1(X, (T, I, F )) = (X, (T, F )),

G2(X, (T, I, F )) = (X, (T,N(T )))

and

G1(f) = G2(f) = f.

Then G1 and G2 are functors.

Proof. It is clear that G1(X, (T, I, F )) = (X, (T, F )) ∈
ISet(H) for each (X, (T, I, F ) ∈ NSet(H).

Let (X, (TX , IX , FX)), (Y, (TY , IY , FY )) ∈ NSet(H) and
let f : (X, (TX , IX , FX)) → (Y, (TY , IY , FY )) be an
NSet(H)-mapping. Then

TX ≤ TY ◦ f and FX ≥ FY ◦ f.
ThusG1(f) = f is an ISet(H)-mapping. SoG1 : NSet(H)→
ISet(H) is a functor.

Now let (X, (T, I, F )) ∈ NSet(H) and consider
(X, (T, N(T ))). Then by Result 2.8, T ≤ NN(T ). Thus G2(X, 
(T, I, F )) = (X, (T, N(T ))) ∈ NSet(H).

Let (X, (TX , IX , FX)), (Y, (TY , IY , FY )) ∈ NSet(H) and
let f : (X, (TX , IX , FX)) → (Y, (TY , IY , FY )) be an
NSet(H)-mapping. Then TX ≤ TY ◦ f . Thus N(TX) ≥
N(TY ) ◦ f .
So G2(f) = f : (X, (TX , N(TX)) → (Y, (TY , N(TY )) is an
ISet(H)-mapping. Hence G2 : NSet(H) → ISet(H) is a
functor. �
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Lemma 5.2 Define F1 : ISet(H)→ NSet(H) by:
F1(X, (µ, ν)) = (X, (µ,N(ν), ν)) and F1(f) = f .

Then F1 is a functor.

Proof. Let (X, (µ, ν)) ∈ ISet(H). Then
µ ≤ N(ν) and N(ν) ≤ N(ν).

Thus F1(X, (µ, ν)) = (X, (µ,N(ν), ν)) ∈ NSet(H).
Let (X, (µX , νX)), (Y, (µY , νY )) ∈ ISet(H) and let
f : (X, (µX , νX))→ (Y, (µY , νY )) be an ISet(H)-mapping.

Consider the mapping

F1(f) = f : F1(X, (µX , νX))→ F1(Y, (µY , νY )),

where

F1(X, (µX , νX)) = (X, (µX , N(νX), νX))

and
F1(Y, (µY , νY )) = (Y, (µY , N(νY ), νY )).

Since f : (X, (µX , νX)) → (Y, (µY , νY )) is an ISet(H)-
mapping, µX ≤ µY ◦ f and νX ≥ νY ◦ f . Thus N(νX) ≤
N(νY ) ◦ f . So F1(f) = f : (X, (µX , N(νX), νX)) →
(Y, (µY , N(νY ), νY )) is an NSet(H)-mapping. Hence F1 is a
functor. �

Lemma 5.3 Define F2 : ISet(H)→ NSet(H) by:

F2(X, (µ, ν)) = (X, (µ,N(ν), N(µ)) and F2(f) = f.

Then F2 is a functor.

Proof. Let (X, (µ, ν)) ∈ ISet(H). Then µ ≤ N(ν) and µ ≤ 
NN(µ), by Result 2.8. Also by Result 2.8, NN(µ) ≤ NNN(ν) = 
N(ν). Thus µ ≤ NN(µ) ≤ N(ν). So F2(X, (µ, ν)) = (X, (µ, 
N(ν), N(µ))) ∈ NSet(H).

Let (X, (µX , νX)), (Y, (µY , νY )) ∈ ISet(H) and f :
(X, (µX , νX))→ (Y, (µY , νY )) be an ISet(H)-mapping. Then

µX ≤ µY ◦ f2 and νX ≥ νY ◦ f2.
Thus N(νX) ≤ N(νY ) ◦ f2. So L(f) = f :
(X, (µX , N(νX), N(µX))) → (Y, (µY , N(νY ), N(µY ))) is an
NSet(H)-mapping. Hence F2 is a functor. �

Theorem 5.4 The functor F1 : ISet(H) → NSet(H) is a left
adjoint of the functor G1 : NSet(H)→ ISet(H).

Proof. For each (X, (µ, ν)) ∈ ISet(H), 1X : (X, (µ, ν)) →
G1F1(X, (µ, ν)) = (X, (µ, ν)) is an ISet(H)-mapping. Let
(Y, (TY , IY , FY )) ∈ NSet(H) and let f : (X, (µ, ν)) →
G1(Y, (TY , IY , FY )) = (Y, (TY , FY )) be an ISet(H)-mapping.

We will show that f : F1(X, (µ, ν)) = (X, (µ,N(ν), ν)) →
(Y, (TY , IY , FY )) is an NSet(H)-mapping. Since f :
(X, (µ, ν))→ (Y, (TY , FY )) is an ISet(H)-mapping,

µ ≤ TY ◦ f and ν ≥ FY ◦ f .
Then N(ν) ≤ N(FY ) ◦ f . Since (Y, (TY , IY , FY )) ∈
NSet(H), IY ≥ N(FY )). Thus N(ν) ≤ IY ◦ f . So f :
F1(X, (µ, ν)) = (X, (µ,N(ν), ν)) → (Y, (TY , IY , FY )) is an

NSet(H)-mapping. Hence 1X is a G1-universal mapping for
(X, (µ, ν)) ∈ ISet(H). This completes the proof. �

For each (X, (µ, ν)) ∈ ISet(H), F1(X, (µ, ν)) =
(X, (µ,N(ν), ν)) is called a neutrosophic H-space induced by
(X, (µ, ν)). Let us denote the category of all induced neutro-
sophic H-spaces and NSet(H)-mappings as NSet∗(H). Then
NSet∗(H) is a full subcategory of NSet(H).

Theorem 5.5 Two categories ISet(H) and NSet∗(H) are iso-
morphic.

Proof. From Lemma 5.2, it is clear that F1 : ISet(H) → 
NSet∗(H) is a functor. Consider the restriction G1 : NSet∗(H) 
→ ISet(H) of the functor G1 in Lemma 5.1. Let (X, (µ, ν)) ∈ 
ISet(H). Then by Lemma 5.2, F1(X, (µ, ν)) = (X, (µ, N(ν), 
ν)). Thus G1F1(X, (µ, ν)) = G1(X, (µ, N(ν), ν)) = (X, (µ, 
ν)). So G1 ◦ F1 = 1ISet(H).

Now let (X, (TX , IX , FX)) ∈ NSet∗(H). Then by definition
of NSet∗(H), there exists (X, (µ,N(ν), ν)) such that

F1(X, (µ, ν)) = (X, (µ,N(ν), ν)) = (X, (TX , IX , FX)).

Thus by Lemma 5.1,

G1(X, (TX , IX , FX)) = G1(X, (µ,N(ν), ν))

= (X, (µ, ν)).

So

F1G1(X, (TX , IX , FX)) = F1(X, (µ, ν))

= (X, (TX , IX , FX)).

Hence F1 ◦ G1 = 1NSet∗(H). Therefore F1 : ISet(H) →
NSet∗(H) is an isomorphism. This completes the proof. �

6 Conclusions
In the future, we will form a category NCRel composed of

neutrosophic crisp relations and morphisms between them [resp.,
NRel(H) composed of neutrosophic relations and morphisms
between them, NCTop composed of neutrosophic crisp topo-
logical spaces and morphisms between them and NTop com-
posed of neutrosophic topological spaces and morphisms be-
tween them] and investigate each category in view points of topo-
logical universe. Moreover, we will form some subcategories of
each category and study their properties.

References
[1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Sys-

tems 20 (1986) 87–96.
[2] G. Birkhoff, Lattice Theory, A. M. S. Colloquim Publica-

tion, Vol. 25 1975.

K. Hur, P. K. Lim, J. G. Lee, J. Kim, The category of neutrosophic sets

Neutrosophic Sets and Systems, Vol. 14, 2016  19 



[3] J. C. Carrega, The category Set(H) and Fzz(H), Fuzzy
sets and systems 9 (1983) 327–332.

[4] E. J. Dubuc, Concrete quasitopoi Applications of Sheaves,
Proc. Dunham 1977, Lect. Notes in Math. 753 (1979) 239–
254.

[5] M. Eytan, Fuzzy sets:a topological point of view, Fuzzy
sets and systems 5 (1981) 47–67.

[6] J. A. Goguen, Categories of V-sets, Bull. Amer. Math. Soc.
75 (1969) 622–624.

[7] H. Herrlich, Catesian closed topological categories, Math.
Coll. Univ. Cape Town 9 (1974) 1–16.

[8] K. Hur, A Note on the category Set(H), Honam Math. J.
10 (1988) 89–94.

[9] K. Hur, H. W. Kang and J. H. Ryou, Intutionistic H-fuzzy
sets, J. Korea Soc. Math. Edu. Ser. B:Pure Appl. Math. 12
(1) (2005) 33–45.

[10] K. Hur, P. K. Lim, J. G. Lee, J. Kim, The category of neu-
trosophic crisp sets, To be submitted.

[11] P. T. Jhonstone, Stone Spaces, Cambridge University Press
1982.

[12] C. Y. Kim, S. S. Hong, Y. H. Hong and P. H. Park, Al-
gebras in Cartesian closed topological categories, Lecture
Note Series Vol. 1 1985.

[13] P. K. Lim, S. R. Kim and K. Hur, The category V Set(H),
International Journal of Fuzzy Logic and Intelligent Sys-
tems 10 (1) (2010) 73–81.

[14] L. D. Nel, Topological universes and smooth Gelfand
Naimark duality, mathematical applications of category the-
ory, Prc. A. M. S. Spec. Sessopn Denver,1983, Contempo-
rary Mathematics 30 (1984) 224–276.

[15] A. M. Pittes, Fuzzy sets do not form a topos, Fuzzy sets
and Systems 8 (1982) 338–358.

[16] D. Ponasse, Some remarks on the category Fuz(H) of M.
Eytan, Fuzzy sets and Systems 9 (1983) 199–204.

[17] D. Ponasse, Categorical studies of fuzzy sets, Fuzzy sets
and Systems 28 (1988) 235–244.

[18] A. A. Salama and Florentin Smarandache, Neutrosophic
Crisp Set Theory, The Educational Publisher Columbus,
Ohio 2015.

[19] F. Smarandache, Neutrosophy, Neutrisophic Probability,
Set, and Logic, Amer Res Press, Rehoboth, USA 1998.

[20] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965)
338–353.

K. Hur, P. K. Lim, J. G. Lee, J. Kim, The category of neutrosophic sets

20 Neutrosophic Sets and Systems, Vol. 14, 2016

Received: November 10, 2016.   Accepted: November 17, 2016



On Single-Valued Neutrosophic Entropy of order α
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Abstract: Entropy is one of the measures which is used for mea-
suring the fuzziness of the set. In this article, we have presented 
an entropy measure of order α under the single-valued neutro-
sophic set environment by considering the pair of their mem-
bership functions as well as the hesitation degree between them. 
Based on this measure, some of its desirable properties have been

proposed and validated by taking an example of structure lin-
guistic variable. Furthermore, an approach based on the pro-
posed measure has been presented to deal with the multi criteria 
decision-making problems. Finally, a practical example is pro-
vided to illustrate the decision-making process.

Keywords: Entropy measure, neutrosophic set, multi criteria decision-making, linguistic variable.

1 Introduction

In a real world, due to complexity of decision making or various 
constraints in today’s life, it is difficult for the decision makers 
to give their opinions in a precise form. To handle these situa-
tions, fuzzy set (FS) theory [1], intuitionistic fuzzy set (IFS) the-
ory [2] are successful theories for dealing the uncertainties in 
the data. After their pioneer works, various researchers have 
worked on these theories under the different domains such as on 
entropy measures, on correlation coefficients, on aggregation op-
erators, and many others [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. However, 
both FS and IFS theories are not able to deal with the indeter-
minate and inconsistent information. For example, if an expert 
take an opinion from a certain person about the certain object, 
then a person may say that 0.5 is the possibility that statement 
is true, 0.7 say that the statement is false and 0.2 says that he 
or she is not sure of it. To resolve this, Smarandache [13] intro-
duced a new component called as “indeterminacy-membership 
function” and added into the “truth membership function” and 
“falsity membership function”, all are independent components 
lies in ]0+, 1+[, and hence the corresponding set is known as 
Neutrosophic sets (NSs), which is the generalization of IFS and 
FS. However, without specification, NSs are difficult to apply in 
real-life problems. Thus, an extension of the NS, called a single-
valued NSs (SVNSs) has been proposed by Wang et al. [14]. 
After their pioneer work, researchers are engaged in their exten-
sions and their applications in the different disciplines. However, 
the most important task for the decision maker is to rank the ob-
jects so as to get the desired one(s). For it, researchers have in-
corporating the idea of SVNS theory into the measure theory and 
applied in many practically uncertain situations such as decision 
making, pattern recognition, medical diagnosis by using similar-
ity measures [15, 16], distance measures [17, 18], cosine simi-
larity measure [19, 20, 21, 22]. Thus, it has been concluded that 
the information measures such as entropy, divergence, distance, 
similarity etc., are of key importance in a number of theoretical 
and applied statistical inference and data processing problems.

But it has been observed from the above studies that all their
measures do not incorporate the idea of the decision-maker pref-
erences into the measure. Furthermore, the existing measure is

in linear order, and hence it does not give the exact nature of the
alternative. Therefore, keeping the criteria of flexibility and effi-
ciency of neutrosophic sets, this paper presents a new parametric
entropy measure of order α for measuring the fuzziness degree of
a set. For this, a entropy measure of order α has been presented
which makes the decision makers more reliable and flexible for
the different values of these parameters. Based on it, some desir-
able properties of these measures have been studied.

The rest of the manuscript is summarized as follows. Sec-
tion 2 presents some basic definition about the NS. In Section 3, 
a new entropy of order α is proposed and its axiomatic just-
ification is established. Further, various desirable properties of 
it in terms of joint, and conditional entropies have been studied. 
An illustrative example to show their superiority has been 
described for structural linguistic variable. Section 4 presents 
the MCDM method based on the proposed generalized entropy 
measure along with an illustrative example for selecting the best 
alternative. Finally a conclusion has been drawn in Section 5.

2 Preliminaries
In this section, some needed basic concepts and definitions re-
lated to neutrosophic sets (NS) are introduced.

Definition 2.1. [13] A NS ‘A’ in X is defined by its “truth mem-
bership function” (TA(x)), a “indeterminacy-membership func-
tion” (IA(x)) and a “falsity membership function” (FA(x)) where
all are the subset of ]0−, 1+[ such that 0− ≤ supTA(x)+sup IA(x)+
supFA(x) ≤ 3+ for all x ∈ X .

Definition 2.2. [14] A NS ‘A’ is defined by

A = {〈x, TA(x), IA(x), FA(x)〉 | x ∈ X}

and is called as SVNS where TA(x), IA(x), FA(x) ∈ [0, 1]. For
each point x inX , TA(x), IA(x), FA(x) ∈ [0, 1] and 0 ≤ TA(x)+
IA(x)+FA(x) ≤ 3. The pairs of these is called as single-valued
neutrosophic numbers (SVNNs) denoted by

α = 〈µA(x), ρA(x), νA(x) | x ∈ X〉

and class of SVNSs is denoted by Φ(X).
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Definition 2.3. Let                          and 
    be two SVNSs. Then the 
following expressions are defined by [14]

(i) A ⊆ B if and only if µA(x) ≤ µB(x), ρA(x) ≥ ρB(x) and
νA(x) ≥ νB(x) for all x in X;

(ii) A = B if and only if A ⊆ B and B ⊆ A.

(iii) Ac = {〈νA(x), ρA(x), µA(x) | x ∈ X〉}

(iv) A ∩B = 〈min(µA(x), µB(x)),max(ρA(x), ρB(x)),
max(νA(x), νB(x))〉

(v) A ∪B = 〈max(µA(x), µB(x)),min(ρA(x), ρB(x)),
min(νA(x), νB(x))〉

Majumdar and Samant [16] define the concept of entropy for
neutrosophic sets which has been defined as below.

Definition 2.4. An entropy on SV NS(X) is defined as real val-
ued function E : SV NS(X) → [0, 1] which satisfies following
axioms [16]:

(P1) E(A) = 0 if A is crisp set.

(P2) E(A) = 1 if µA(x) = ρA(x) = νA(x)

(P3) E(A) = E(A
c) for all A ∈ SV NS(X)

(P4) E(A) ≤ E(B) ifA ⊆ B that is , µA(x) ≤ µB(x), νA(x) ≥
νB(x) and ρA(x) ≥ ρB(x) for µB(x) ≤ νB(x) and µB(x) ≤
ρB(x).

3 Entropy of order-α
In this section we proposed parametric entropy for SV NS

Definition 3.1. The entropy of order- α for SV NS A is defined
as:

Eα(A) =
1

n(1− α)

n∑
i=1

log3

[(
µαA(xi) + ραA(xi) + ναA(xi)

)
×

(
µA(xi) + ρA(xi) + νA(xi)

)1−α
+ 31−α

(
1− µA(xi)− ρA(xi)− νA(xi)

)]
, (1)

where α > 0, α 6= 1.

Theorem 1. Eα(A) as defined in Definition 3.1 is entropy for
SV NS.

Proof. In order to proof Eα(A) is a valid measure, we have to
proof that it satisfies the axioms as given in Definition 2.4.

(P1) Let A be a crisp set i.e. A = (1, 0, 0) or A = (0, 0, 1).
Then from Definition 3.1 we get Eα(A) = 0.

(P2) Let µA(xi) = ρA(xi) = νA(xi) for all xi ∈ X which
implies that Eα(A) becomes

Eα(A)

=
1

n(1− α)

n∑
i=1

log3

[(
µαA(xi) + µαA(xi) + µαA(xi)

)
×

+
(
µA(xi) + µA(xi) + µA(xi)

)(1−α)
+31−α

(
1− µA(xi)− µA(xi)− µA(xi)

)]
=

1

n(1− α)

n∑
i=1

log3

[(
3µαA(xi)

)(
3µA(xi)

)1−α
+31−α

(
1− 3µA(xi)

)]
=

1

n(1− α)

n∑
i=1

log3

[
32−αµA(xi)

+31−α − 32−αµA(xi)
]

= 1

Now, let Eα(A) = 1, that is,
n∑
i=1

log3

[(
µαA(xi) + ραA(xi) + ναA(xi)

)(
µA(xi) + ρA(xi)

+νA(xi)
)1−α

+ 31−α
(
1− µA(xi)− ρA(xi)− νA(xi)

)]
= n(1− α)

⇒ log3

[(
µαA(xi) + ραA(xi) + ναA(xi)

)(
µA(xi) + ρA(xi) +

νA(xi)
)1−α

+ 31−α
(
1− µA(xi)− ρA(xi)− νA(xi)

)]
= (1− α)

⇒
(
µαA(xi) + ραA(xi) + ναA(xi)

)(
µA(xi) + ρA(xi) +

νA(xi)

)1−α
+ 31−α

(
1− µA(xi)− ρA(xi)− νA(xi)

)
= 31−α

⇒
(
µA(xi) + ρA(xi) + νA(xi)

)[
µαA(xi) + ρα(xi) + ναA(xi)

3

−
(
µA(xi) + ρA(xi) + νA(xi)

3

)α]
= 0 (2)

From Eq. (2) we get, either µA(xi)+ρA(xi)+νA(xi) = 0
implies that

µA(xi) = ρA(xi) = νA(xi) = 0 for all xi ∈ X (3)

or

µαA(xi) + ρα(xi) + ναA(xi)

3
−

(
µA(xi) + ρA(xi) + νA(xi)

3

)α
= 0 (4)

Now, consider the following function

g(ζ) = ζα where ζ ∈ [0, 1]
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Differentiate it with respect to ζ, we get

g′(ζ) = αζα−1

g′′(ζ) = α(α− 1)ζα−2

because g′′(ζ) > 0 for α > 1 and g′′(ζ) < 0 for α < 1
therefore g(ζ) is convex or concave according to α > 1 or
α < 1. So, for any points ζ1, ζ2 and ζ3 in [0, 1], we have

g(ζ1) + g(ζ2) + g(ζ3)

3
− g
(ζ1 + ζ2 + ζ3

3

)
≥ 0 for α > 1 (5)

g(ζ1) + g(ζ2) + g(ζ3)

3
− g
(ζ1 + ζ2 + ζ3

3

)
≤ 0 for α < 1 (6)

In above, equality holds only if ζ1 = ζ2 = ζ3. Hence from
Eqs. (3),(4), (5) and (6) we conclude Eqs. (2) and (4) holds
only when µA(xi) = ρA(xi) = νA(xi) for all xi ∈ X.

(P3) Since Ac = {〈x, νA(x), ρA(x), µA(x) | x ∈ X〉} which
implies that Eα(Ac) = Eα(A).

(P4) Rewrite the entropy function as

f(x, y, z) =

1

1− α

n∑
i=1

log3

[(
xα + yα + zα

)(
x+ y + z

)1−α
+31−α(1− x− y − z)

]
(7)

where x, y, z ∈ [0, 1]. In order to proof the proposed en-
tropy satisfies (P4), it is sufficient to prove that the function
f defined in Eq. (7) is an increasing function with respect
to x and decreasing with respect to y and z. For it, take a
partial derivative of the function with respect to x, y and z
and hence we get.

∂f

∂x
=

(1− α)(xα + yα + zα)(x+ y + z)−α

+ α(x+ y + z)1−αxα−1 − 31−α

(xα + yα + zα)(x+ y + z)1−α

+ 31−α(1− x− y − z)]

(8)

∂f

∂y
=

(1− α)(xα + yα + zα)(x+ y + z)−α

+ α(x+ y + z)1−αyα−1 − 31−α

(1− α)[(xα + yα + zα)(x+ y + z)1−α

+ 31−α(1− x− y − z)]

(9)

∂f

∂z
=

(1− α)(xα + yα + zα)(x+ y + z)−α

+ α(x+ y + z)1−αzα−1 − 31−α

(1− α)[(xα + yα + zα)(x+ y + z)1−α

+ 31−α(1− x− y − z)]

(10)

After setting ∂f
∂x = 0, ∂f∂y = 0 and ∂f

∂z = 0, we get x = y =
z. Also,

∂f

∂x
≥ 0, whenever x ≤ y, x ≤ z, α > 0, α 6= 0 (11)

∂f

∂x
≤ 0, whenever x ≥ y, x ≥ z, α > 0, α 6= 0. (12)

Thus, f(x, y, z) is increasing function with respect to x for
x ≤ y, x ≤ z and decreasing when x ≥ y, x ≥ z. Simi-
larly, we have

∂f

∂y
≤ 0 and

∂f

∂z
≤ 0,whenever x ≤ y, x ≤ z. (13)

∂f

∂y
≥ 0 and

∂f

∂z
≥ 0,whenever x ≥ y, x ≥ z. (14)

Thus, f(x, y, z) is decreasing function with respect to y and
z for x ≤ y, x ≤ z and increasing when x ≥ y, x ≥ z.

Therefore from monotonicity of function f , and by tak-
ing two SV NSs A ⊆ B, i.e., µA(x) ≤ µB(x), νA(x) ≥
νB(x) and ρA(x) ≥ ρB(x) for µB(x) ≤ νB(x) and µB(x) ≤
ρB(x), we get Eα(A) ≤ Eα(B).

Example 3.1. Let A be SV NS in universe of discourse X =
{x1, x2, x3, x4} defined asA = {〈x1, 0.4, 0.3, 0.9〉, 〈x2, 0.7, 0.5,
0.3〉, 〈x3, 0.2, 0.9, 0.8〉, 〈x4, 0.5, 0.4, 0.6〉}. Then entropies val-
ues for different values of α is E0.2(A) = 0.9710;E0.5(A) =
0.9303;E2(A) = 0.7978;E5(A) = 0.7246;E10(A) = 0.7039.
It is clearly seen from this result that with the increase of α, the
values of Eα(A) is decreases.

The above proposed entropy measure of order α satisfies the
following additional properties.

Consider two SV NSsA andB defined overX = {x1, x2, . . . , xn}.
Take partition of X as X1 = {xi ∈ X : A ⊆ B}, X2 = {xi ∈
X : A ⊇ B}. Then we define the joint and conditional entropies
between them as follows

(i) Joint entropy
Eα(A ∪B)

=
1

n(1− α)

n∑
i=1

log3

[(
µαA∪B(xi) + ραA∪B(xi) + ναA∪B(xi)

)
×

(
µA∪B(xi) + ρA∪B(xi) + νA∪B(xi)

)1−α
+31−α

(
1− µA∪B(xi)− ρA∪B(xi)− νA∪B(xi)

)]
=

1

n(1− α)

{ ∑
xi∈X1

log3

[(
µαB(xi) + ραB(xi) + ναB(xi)

)
×

(
µB(xi) + ρB(xi) + νB(xi)

)1−α
+ 31−α

(
1− µB(xi)

−ρB(xi)− νB(xi)

)]
+
∑

xi∈X2

log3

[(
µαA(xi) + ραA(xi)

+ναA(xi)

)(
µA(xi) + ρA(xi) + νA(xi)

)1−α

+31−α
(
1− µA(xi)− ρA(xi)− νA(xi)

)]}
(15)
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(ii) Conditional entropy
Eα(A|B)

=
1

n(1− α)
∑

xi∈X2

{
log3

[(
µαA(xi) + ραA(xi) + ναA(xi)

)
×

(
µA(xi) + ρA(xi) + νA(xi)

)1−α
+ 31−α

(
1− µA(xi)

−ρA(xi)− νA(xi)
)]
− log3

[(
µαB(xi) + ραB(xi) + ναB(xi)

)
×(

µB(xi) + ρB(xi) + νB(xi)

)1−α
+ 31−α

(
1− µB(xi)

−ρB(xi)− νB(xi)

)]}

and

Eα(B|A)

=
1

n(1− α)
∑

xi∈X1

{
log3

[(
µαB(xi) + ραB(xi) + ναB(xi)

)
×

(
µB(xi) + ρB(xi) + νB(xi)

)1−α
+ 31−α

(
1− µB(xi)

−ρB(xi)− νB(xi)

)]
− log3

[(
µαA(xi) + ραA(xi) + ναA(xi)

)
×(

µA(xi) + ρA(xi) + νA(xi)

)1−α
+ 31−α

(
1− µA(xi)

−ρA(xi)− νA(xi)
)]}

Here Eα(A|B) is “entropy of A given B”.

Theorem 2. For SV NSs A and B following statements hold

(i) Eα(A ∪B) = Eα(A) + Eα(B|A)

(ii) Eα(A ∪B) = Eα(B) + Eα(A|B)

(iii) Eα(A ∪B) = Eα(A) + Eα(B|A) = Eα(B) + Eα(A|B)

(iv) Eα(A ∪B) + Eα(A ∩B) = Eα(A) + Eα(B).

Proof. (i) Here, we have to proof (i) only, (ii) and (iii) can be
follows from it.

Eα(A) + Eα(B|A)− Eα(A ∪B)

=
1

n(1− α)

n∑
i=1

log3

[(
µαA(xi) + ραA(xi) + ναA(xi)

)
×

(
µA(xi) + ρA(xi) + νA(xi)

)1−α
+ 31−α

(
1− µA(xi)

−ρA(xi)− νA(xi)
)]

+
1

n(1− α)
∑

xi∈X1

{
log3

[(
µαB(xi) + ραB(xi) + ναB(xi)

)
×

(
µB(xi) + ρA(xi) + νB(xi)

)1−α
+ 31−α

(
1− µB(xi)

−ρ(Bxi)− νB(xi)

)]
−log3

[(
µαA(xi) + ραA(xi) + ναA(xi)

)
×(

µA(xi) + ρA(xi) + νA(xi)

)1−α
+ 31−α

(
1− µA(xi)

−ρA(xi)− νA(xi)
)]}

−
1

n(1− α)

{ ∑
xi∈X1

log3

[(
µαB(xi) + ραB(xi) + ναB(xi)

)
×

(
µB(xi) + ρB(xi) + νB(xi)

)1−α
+ 31−α

(
1− µB(xi)

−ρB(xi)− νB(xi)

)]
−
∑

xi∈X2

log3

[(
µαA(xi) + ραA(xi)ν

α
A(xi)

)
(
µA(xi) + ρA(xi) + νA(xi)

)1−α
+ 31−α

(
1− µA(xi)

−ρA(xi)− νA(xi)
)]}

=
1

n(1− α)

{ ∑
xi∈X1

log3

[(
µαA(xi) + ραA(xi) + ναA(xi)

)
×

(
µA(xi) + ρA(xi) + νA(xi)

)1−α
+ 31−α

(
1− µA(xi)

−νA(xi)
)]

+
∑

xi∈X2

log3

[(
µαA(xi) + ραA(xi) + ναA(xi)

)
×

(
µA(xi) + ρA(xi) + νA(xi)

)1−α
+ 31−α

(
1− µA(xi)

−ρA(xi)− νA(xi)
)]}

+
1

n(1− α)
∑

xi∈X1

{
log3

[(
µαB(xi) + ραB(xi) + ναB(xi)

)
×

(
µB(xi) + ρA(xi) + νB(xi)

)1−α
+ 31−α

(
1− µB(xi)

−ρB(xi)− νB(xi)

)]
− log3

[(
µαA(xi) + ραA(xi) + ναA(xi)

)
×(

µA(xi) + ρA(xi) + νA(xi)

)1−α
+ 31−α

(
1− µA(xi)

−ρA(xi)− νA(xi)
)]}

−
1

n(1− α)

{ ∑
x∈X1

log3

[(
µαB(xi) + ραB(xi) + ναB(xi)

)
×

(
µB(xi) + ρB(xi) + νB(xi)

)1−α
+ 31−α

(
1− µB(xi)

−ρB(xi)− νB(xi)

)]
−

∑
xi∈X2

log3

[(
µαA(xi) + ναA(xi)

)
×

(
µA(xi) + ρA(xi) + νA(xi)

)1−α
+ 31−α

(
1− µA(xi)

−ρA(xi)− νA(xi)
)]}

= 0
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(iv) For an SV NSs A and B, we have

Eα(A ∩B)

=
1

n(1− α)

n∑
i=1

log3

[(
µαA∩B(xi) + ραA∩B(xi) + ναA∩B(xi)

)
×

(
µA∩B(xi) + ρA∩B(xi) + νA∩B(xi)

)1−α
+

31−α
(
1− µA∩B(xi)− νA∩B(xi)

)]
=

1

n(1− α)

{ ∑
x∈X1

log3

[(
µαA(xi) + ραA(xi) + ναA(xi)

)
×

(
µA(xi) + ρA(xi) + νA(xi)

)(1−α)
+ 31−α

(
1− µA(xi)

−ρA(xi)− νA(xi)
)]

+
∑
x∈X2

log3

[(
µαB(xi) + ραB(xi) + ναB(xi)

)
(
µB(xi) + ρB(xi) + νB(xi)

)1−α
+ 31−α

(
1− µB(xi)

−ρB(xi)− νB(xi)

)]}

Hence, by the definition of joint entropy Eα(A∪B) given
in Eq. (15), we get

Eα(A ∪B) + Eα(A ∩B) = Eα(A) + Eα(B)

Theorem 3. For SV NSs A and B following statements holds

(i) Eα(A)− Eα(A ∩B) = Eα(A|B)

(ii) Eα(B)− Eα(A ∩B) = Eα(A|B)

Proof. We prove (i) part only, other can be proven similarly.
Consider

Eα(A)− Eα(A ∩B)

=
1

n(1− α)

{
n∑
i=1

log3

[(
µαA(xi) + ραA(xi) + ναA(xi)

)
×

(
µA(xi) + ρA(xi) + νA(xi)

)1−α
+ 31−α

(
1− µA(xi)

−ρA(xi)− νA(xi)
)]
−

n∑
i=1

log3

[(
µαA∩B(xi) + ραA∩B(xi)

+ναA∩B(xi)
)(
µA∩B(xi) + ρA∩B(xi) + νA∩B(xi)

)1−α

+31−α
(
1− µA∩B(xi)− ρA∩B(xi)− νA∩B(xi)

)]}

=
1

n(1− α)

{ ∑
x∈X1

log3

[(
µαA(xi) + ραA(xi) + ναA(xi)

)
×

(
µA(xi) + ρA(xi) + νA(xi)

)1−α
+ 31−α

(
1− µA(xi)

−νA(xi)
)]

+
∑
x∈X2

log3

[(
µαA(xi) + ραA(xi) + ναA(xi)

)
×

(
µA(xi) + ρA(xi) + νA(xi))

1−α + 31−α
(
1− µA(xi)

ρA(xi)− νA(xi)
)]
−
∑
x∈X1

log3

[(
µαA(xi) + ραA(xi) + ναA(xi)

)
×

(
µA(xi) + ρA(xi) + νA(xi)

)1−α
+ 31−α

(
1− µA(xi)

−ρA(xi)− νA(xi)
)]
−
∑
x∈X2

log3

[(
µαB(xi) + ραB(xi) + ναB(xi)

)
×

(
µB(xi) + ρB(xi) + νB(xi)

)1−α
+ 31−α

(
1− µB(xi)

−ρB(xi)− νB(xi)

)]}

+
1

n(1− α)
∑
x∈X2

{
log3

[(
µαA(xi) + ραA(xi) + ναA(xi)

)
×

(
µA(xi) + ρA(xi) + νA(xi)

)(1−α)
+ 31−α

(
1− µA(xi)

−ρA(xi)− νA(xi)
)]
− log3

[(
µαB(xi) + ραB(xi) + ναB(xi)

)
×(

µB(xi) + ρB(xi) + νB(xi)

)1−α
+ 31−α

(
1− µB(xi)

−ρB(xi)− νB(xi)

)]}
= Eα(A|B)

This completes the proof.

Let A = 〈x, µA(x), ρA(x), νA(x)|x ∈ X〉 be SV NS in X .
For n be any positive real number, Zhang et al. [23] defined An

as follows

An = 〈x, µA(x)
n
, 1− (1− ρA(x))n, 1− (1− νA(x))n〉 (16)

Definition 4. Contraction of SV NS A in universe of discourse
X is defined by

CON(A) = 〈x, µCON(A)(x), ρCON(A)(x), νCON(A)(x)〉

where µCON(A)(x) = [µA(x)]2; ρCON(A)(x) = 1 − [1 −
ρA(x)]2; νCON(A)(x) = 1− [1− νA(x)]2 i.e. CON(A) =
A2

Definition 5. Dilation of SV NS A in universe of discourse X
is defined by

DIL(A) = 〈x, µDIL(A)(x), ρDIL(A)(x), νDIL(A)(x)〉

where µDIL(A)(x) = [µA(x)]1/2; ρDIL(A)(x) = 1 − [1 −
ρA(x)]1/2; νDIL(A)(x) = 1−[1−νA(x)]1/2 i.e. DIL(A) =
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A1/2

An illustrative example has been tested on the concentration
and dilation for comparing the performance of proposed entropy
with the some existing entropies as given below.

(i) Entropy defined by [5];

ESK(A) = 1
n

∑n
i=1

[
min(µA(xi), νA(xi)) + πA(xi)

max(µA(xi), νA(xi)) + πA(xi)

]
(ii) Entropy defined by [3];

EBB(A) =
1

n

n∑
i=1

πA(xi)

(iii) Entropy defined by [8];

EZJ(A) =
1

n

n∑
i=1

(
µA(xi)

∧
νA(xi)

µA(xi)
∨
νA(xi)

)

(iv) Entropy defined by [4];

EZL(A) = 1− 1

n

n∑
i=1

|µA(xi)− νA(xi)|

Example 3.2.

Let X = {x1, x2, ..., x5} be universe of discourse and a
SV NS A “LARGE” onX may be defined asA = {〈x1, 0.1, 0.7,
0.8〉, 〈x2, 0.3, 0.6, 0.5〉, 〈x3, 0.5, 0.3, 0.4〉, 〈x4, 0.9, 0.2, 0.0〉, 〈x5,
1.0, 0.1, 0.0〉}. Using the operations defined in Eq. (16) on
SV NS, we can generate following SV NSs

A,A1/2, A2, A3

which can be defined as
A1/2 may treated as “More or Less LARGE”,
A2 may treated as “Very LARGE”,
A3 may treated as “Quite Very LARGE”
and these corresponding sets are computed as

A1/2 = {〈x1, 0.3162, 0.4523, 0.5528〉, 〈x2, 0.5477, 0.3675,
0.2929〉, 〈x3, 0.7071, 0.1633, 0.2254〉, 〈x4, 0.9487, 0.1056, 0〉,
〈x5, 1.0000, 0.0513, 0〉} ;
A1 = {〈x1, 0.1, 0.7, 0.8〉, 〈x2, 0.3, 0.6, 0.5〉, 〈x3, 0.5, 0.3, 0.4〉,
〈x4, 0.9, 0.2, 0.0〉, 〈x5, 1.0, 0.1, 0〉} ;
A2 = {〈x1, 0.01, 0.91, 0.96〉, 〈x2, 0.09, 0.84, 0.75〉,
〈x3, 0.25, 0.51, 0.64〉, 〈x4, 0.81, 0.36, 0〉, 〈x5, 1.00, 0.19, 0〉};
A3 = {〈x1, 0.0010, 0.9730, 0.9920〉, 〈x2, 0.0270, 0.9360, 0.8750〉,
〈x3, 0.1250, 0.6570, 0.7840〉, 〈x4, 0.7290, 0.4880, 0〉,
〈x5, 1.000, 0.2710, 0〉}

The entropy measures values corresponding to existing mea-
sures as well as the proposed measures for different values of α
are summarized in Table 1 for these different linguistic variable
SV NSs. From this table, it has been concluded that with the in-
crease of the parameter α, the entropy measure for the linguistic

variable “More or Less LARGE”, “LARGE’, “VERY LARGE” 
are decreases. Also it has been observed that whenever the values 
of α are increases from 0 to 15 then the pattern for the variable 
“LARGE” is Eα(A) > Eα(A1/2) > Eα(A2) > Eα(A3) and the 
results coincides with the existing measures results. On the other 
hand, whenever the value of α are increases beyond the 15 then 
the order the patterns are slightly different. Hence the proposed 
entropy measure is used as an alternative measure for computing 
the order value of the linguistic variable as compared to existing. 
Moreover, the proposed measure is more generalized as the dif-
ferent different values of α will give the different choices of the 
decision-maker for assessing the results, and hence more reliable 
from linguistic variable point-of-view.

Table 1: Values of different entropy measure for IFS
Entropy measure A1/2 A A2 A3 Ranking
EBB [3] 0.0818 0.100 0.0980 0.0934 (2341)
EZL[4] 0.4156 0.4200 0.2380 0.1546 (2134)
ESK [5] 0.3446 0.3740 0.1970 0.1309 (2134)
Ehc

2[7] 0.3416 0.3440 0.2610 0.1993 (2134)
Er

1/2[7] 0.6672 0.6777 0.5813 0.4805 (2134)
EZJ [8] 0.2851 0.3050 0.1042 0.0383 (2134)
Eα(A) (Proposed measure)
α = 0.3 0.7548 0.7566 0.6704 0.5774 (2134)
α = 0.5 0.7070 0.7139 0.6101 0.5137 (2134)
α = 0.8 0.6517 0.6637 0.5579 0.4731 (2134)
α→ 1 0.6238 0.6385 0.5372 0.4611 (2134)
α = 2 0.5442 0.5727 0.4956 0.4513 (2134)
α = 5 0.4725 0.5317 0.4858 0.4793 (2341)
α = 10 0.4418 0.5173 0.4916 0.4999 (2431)
α = 15 0.4312 0.5112 0.4937 0.5064 (2431)
α = 50 0.4166 0.4994 0.4937 0.5064 (4231)
α = 100 0.4137 0.4965 0.4612 0.5112 (4231)

4 MCDM problem on proposed entropy
measure

In this section, we discuss the method for solving the MCDM
problem based on the proposed entropy measure.

4.1 MCDM method based on proposed Entropy
measure

Consider the set of different alternatives A = {A1, A2, ..., Am}
having the different criteria C = {C1, C2, ..., Cn} in neutro-
sophic environment and the steps for computing the best alter-
native is summarized as follows

Step 1: Construction of decision making matrix :
Arrange the each alternativesAi under the criteriaCj ac-
cording to preferences of the decision maker in the form
of neutrosophic matrix Dm×n = 〈µij , νij , ρij〉 where
µij represents the degree that alternative Ai satisfies the
criteria Cj , ρij represents the degree that alternative Ai
indeterminant about the criteriaCj and νij represents the
degree that alternativeAi doesn’t satisfies the criteriaCj ,
where 0 ≤ µij , ρij , νij ≤ 1 and µij + ρij + νij ≤ 3;
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i = 1, 2, ...,m ; j = 1, 2, ....n. The decision matrix
given below

Dm×n(xij) =


〈µ11, ρ11, ν11〉 〈µ12, ρ12, ν12〉 . . . 〈µ1n, ρ1n, ν1n〉
〈µ21, ρ21, ν21〉 〈µ22, ρ22, ν22〉 . . . 〈µ2n, ρ2n, ν2n〉

...
...

. . .
...

〈µm1, ρm1, νm1〉 〈µm2, ρm2, νm2〉 . . . 〈µmn, ρmn, νmn〉


Step 2: Normalized the decision making : Criterion of alterna-

tives may be of same type or of different types . If the
all criterion are of same kind then there is no need of
normalization. On the other hand , we should convert
the benefit type criterion values to the cost types in C by
using the following method-

rij =

{
βcij ; j ∈ B
βij ; j ∈ C (17)

where βcij = 〈νij , ρij , µij〉 is complement of βij = 〈µij ,
ρij , νij〉. Hence, we obtain the normalized NS decision
making R = [rij ]m×n.

Step 3: Compute the aggregated value of the alternatives: By
using the proposed entropy measure aggregated the rat-
ing values corresponding to each alternatives Ai(i =
1, 2, ...,m) and get the overall value ri.

Step 4: Rank the Alternatives: Rank all the alternatives Ai(i =
1, 2, ...,m) according to the values of proposed entropy
obtained from Step 3 and get the most desirable alterna-
tive.

4.2 Illustrative Example

Let us consider multi-criteria decision making problem. There
is investment company,which wants to invest a sum of money in
best option. There is a panel with four possible alternatives to
invest the money, namely

(i) A1 is food company;

(ii) A2 is transport company;

(iii) A3 is an electronic company;

(iv) A4 is an tyre company.

Decision maker take decision according to three criteria given
below:

a) C1 is growth analysis;

b) C2 is risk analysis;

c) C3 is enviroment impact analysis.

Then the following procedure has been followed for comput-
ing the best alternative as an investment.

Step 1: The value of an alternativeAi(i = 1, 2, 3, 4) with respect
to criteriaCj(j = 1, 2, 3) obtained from questionnaire of
domain expert. Thus, when the four possible alternatives
with respect to the above three criteria are evaluated by
the expert, we obtain the following single valued neutro-
sophic decision matrix:

D =


〈0.5, 0.2, 0.3〉 〈0.5, 0.1, 0.4〉 〈0.7, 0.1, 0.2〉
〈0.4, 0.2, 0.3〉 〈0.3, 0.2, 0.4〉 〈0.8, 0.3, 0.2〉
〈0.4, 0.3, 0.1〉 〈0.5, 0.1, 0.3〉 〈0.5, 0.1, 0.4〉
〈0.6, 0.1, 0.2〉 〈0.2, 0.2, 0.5〉 〈0.4, 0.3, 0.2〉


Step 2: Since the criteria C1 is the benefit criteria and C2,C3 are

cost criteria, so we above decision matrix transformed
into following normalized matrix R = 〈Tij , Iij , Fij〉 as
follows

R =


〈0.3, 0.2, 0.5〉 〈0.5, 0.1, 0.4〉 〈0.7, 0.1, 0.2〉
〈0.3, 0.2, 0.4〉 〈0.3, 0.2, 0.4〉 〈0.8, 0.3, 0.2〉
〈0.1, 0.3, 0.4〉 〈0.5, 0.1, 0.3〉 〈0.5, 0.1, 0.4〉
〈0.2, 0.1, 0.6〉 〈0.2, 0.2, 0.5〉 〈0.4, 0.3, 0.2〉


Step 3: Utilizing the proposed entropy measure corresponding

to α = 2 to get the aggregated values rij of all the al-
ternatives, which are as following Eα(A1) = 0.7437;
Eα(A2) = 0.8425;Eα(A3) = 0.8092;Eα(A4) = 0.8089

Step 4: Based on above values, we conclude that ranking of given
alternatives is

Eα(A2) > Eα(A3) > Eα(A4) > Eα(A1)

Hence,A2 is best alternative i.e., Investment company should
invest in transport company.

5 Conclusion

In this article, we have introduced the entropy measure of order
α for single valued neutrosophic numbers for measuring the de-
gree of the fuzziness of the set in which the uncertainties present
in the data are characterized into the truth, the indeterminacy and
the falsity membership degrees. Some desirable properties cor-
responding to these entropy have also been illustrated. A struc-
ture linguistic variable has been taken as an illustration. Finally,
a decision-making method has been proposed based on entropy
measures. To demonstrate the efficiency of the proposed coef-
ficients, numerical example from the investment field has been
taken. A comparative study as well as the effect of the parame-
ters on the ranking of the alternative will support the theory and
hence demonstrate that the proposed measures place an alterna-
tive way for solving the decision-making problems.
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Abstract.The goal of this research is first to show how

different, thorough, widespread and effective are the op-

erations logic of the neutrosophic logic compared to the 

fuzzy logic’s operations logical. The second aim is to ob-

serve how a fully new logic, the neutrosophic logic, is

established starting by changing the previous logical 

perspective fuzzy logic, and by changing that, we mean 

changing 

changing the truth values from the truth and falsity

degrees membership in fuzzy logic, to the truth, falsity

and indeterminacy degrees membership in neutrosophic 

logic; and thirdly, to observe that there is no limit to the

logical discoveries - we only change the principle, then

the system changes completely. 

Keywords: Fuzzy Logic, Neutrosophic Logic, Logical Connectives, Operations Logic, New Logic.

1 Introduction:
There is no doubt in the fact that the mathematical logic

as an intellectual practice has not been far from contem-
plation and the philosophical discourse, and disconnecting 
it from philosophy seems to be more of a systematic dis-
connection than a real one, because throughout the history 
of philosophy, the philosophers and what they have built 
as intellectual landmark, closed or opened, is standing on a 
logical foundation even if it did not come out as a
symbolic mathematical logic. 
   Since the day Aristotle established the first logic theory  
which combines the first rules of the innate conclusion 
mechanism of the human being, it was a far-reaching step-
forward to all those who came after him up till today, and
that led to the epiphany that : the universe with all its phy-
sical and metaphysical notions is in fact a logical structure 
that needs an incredible accuracy in abstraction to show it 
for the beauty of the different notions in it, and the emotio-
nal impressions it makes in the common sense keeps the 
brain from the real perception of its logical structure. 
Many scientists and philosophers paid attention to the
matter which is reflected in the variety and the difference 
of the systems, the logical references and mathematics in 
the different scientific fields. Among these scientists and 
philosophers who have strived to find this logical structure 
are: Professor Lotfi A. Zadeh, founder of the fuzzy logic
(FL) idea, which he established in 1965 [7], and Professor
Florentin Smarandache, founder of the neutrosophic logic
(NL) idea, which he established in 1995 [1]. In this
research and using the logical operations only of the two 
theories that we have sampled from the two systems, we 
will manage to observe which one is wider and more 
comprehensive to express more precisely the hidden 
logical structure of the universe. 

2 Definition of Fuzzy and Neutrosophic Logical 
Connectives (Operations Logic): 
   The connectives (rules of inference, or operators), in any 
non-bivalent logic, can be defined in various ways, giving 

rise to lots of distinct logics. A single change in one of any 
connective’s truth table is enough to form a (completely) 

different logic [2]. For example, Fuzzy Logic and Neutro-
sophic Logic. 

2.1 One notes the fuzzy logical values of the propositions
(𝐴) and (𝐵)by:

𝐹𝐿 𝐴 =  𝑇𝐴 , 𝐹𝐴  , and 𝐹𝐿 𝐵 =  𝑇𝐵 , 𝐹𝐵 

   A fuzzy propositions (𝐴) and (𝐵) are real standard sub-

sets in universal set(𝑈), which is characterized by a truth-
membership function 𝑇𝐴  , 𝑇𝐵  , and a falsity-membership

function 𝐹𝐴 , 𝐹𝐵 , of [0,1] . That is

𝑇𝐴 ∶ 𝑈 →  [0,1]
𝐹𝐴 ∶ 𝑈 →   0,1 

And 
𝑇𝐵 ∶ 𝑈 →  [0,1] 
𝐹𝐵 ∶ 𝑈 →  [0,1] 

There is no restriction on the sum of  𝑇𝐴 , 𝐹𝐴  or  𝑇𝐵 , 𝐹𝐵 , so 
0 ≤ 𝑠𝑢𝑝𝑇𝐴 + 𝑠𝑢𝑝𝐹𝐴 ≤ 1 , and 0 ≤ 𝑠𝑢𝑝𝑇𝐵 + 𝑠𝑢𝑝𝐹𝐵 ≤ 1.

2.2  Two notes the neutrosophic logical values of the

propositions (𝐴) and (𝐵) by[2]:

𝑁𝐿 𝐴 =  𝑇𝐴 , 𝐼𝐴 , 𝐹𝐴  , and 𝑁𝐿 𝐵 =  𝑇𝐵 , 𝐼𝐵 , 𝐹𝐵 
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   A neutrosophic propositions (𝐴) and (𝐵) are real stan-
dard or non-standard subsets in universal set(𝑈), which is 

characterized by a truth-membership function 𝑇𝐴  , 𝑇𝐵  , a
indeterminacy-membership function 𝐼𝐴  , 𝐼𝐵  and a falsity-

membership function 𝐹𝐴 , 𝐹𝐵 , of ] 0, 1+− [ . That is

𝑇𝐴 ∶ 𝑈 → ] 0, 1+− [
𝐼𝐴 ∶ 𝑈 → ] 0, 1+− [ 
𝐹𝐴 ∶ 𝑈 → ] 0, 1+− [ 

And 
𝑇𝐵 ∶ 𝑈 → ] 0, 1+− [
𝐼𝐵 ∶ 𝑈 → ] 0, 1+− [ 
𝐹𝐵 ∶ 𝑈 → ] 0, 1+− [

There is no restriction on the sum of 𝑇𝐴 , 𝐼𝐴 , 𝐹𝐴  or  
𝑇𝐵 , 𝐼𝐵 , 𝐹𝐵 , so 0− ≤ 𝑠𝑢𝑝𝑇𝐴 + 𝑠𝑢𝑝𝐼𝐴 +  𝑠𝑢𝑝𝐹𝐴 ≤ 3+  , and

0− ≤ 𝑠𝑢𝑝𝑇𝐵 + 𝑠𝑢𝑝𝐼𝐵 +  𝑠𝑢𝑝𝐹𝐵 ≤ 3+.[3]

2.3 Negation: 

2.3.1 In Fuzzy Logic: 
Negation the fuzzy propositions (𝐴) and (𝐵) is the follo-

wing : 
𝐹𝐿 ¬𝐴 =   1 − 𝑇𝐴 ,  1 − 𝐹𝐴 

And  
𝐹𝐿 ¬𝐵 =   1 − 𝑇𝐵 ,  1 − 𝐹𝐵 

The negation link of the two fuzzy propositions (𝐴) and 

(𝐵) in the following truth table [6]: 

¬𝐵¬𝐴𝐵𝐴
(0,1) (0,1) (1,0) (1,0) 

(1,0) (0,1) (0,1) (1,0) 

(0,1) (1,0) (1,0) (0,1) 

(1,0) (1,0) (0,1) (0,1) 

2.3.2 In Neutrosophic Logic:
Negation the neutrosophic propositions (𝐴) and (𝐵) is the 
following [4]: 

𝑁𝐿 ¬𝐴 =   1 ⊖ 𝑇𝐴 ,  1 ⊖ 𝐼𝐴 ,  1 ⊖ 𝐹𝐴 
And 

𝑁𝐿 ¬𝐵 =   1 ⊖ 𝑇𝐵 ,  1 ⊖ 𝐼𝐵 ,  1 ⊖𝐹𝐵 

 The negation link of the two neutrosophic propositions 
(𝐴) and (𝐵) in the following truth table : 

𝐴 𝐵 ¬𝐴 ¬𝐵 

(1,0,0) (1,0,0) (0,1,1) (0,1,1) 

(1,0,0) (0,0,1) (0,1,1) (1,1,0) 

(0,0,1) (0,1,0) (1,1,0) (1,0,1) 

(0,0,1) (1,0,0) (1,1,0) (0,1,1) 

(0,1,0) (0,0,1) (1,0,1) (1,1,0) 

(0,1,0) (0,1,0) (1,0,1) (1,0,1) 

2.4 Conjunction :

2.4.1 In Fuzzy Logic: 
Conjunction the fuzzy propositions (𝐴) and (𝐵) is the fol-
lowing : 

𝐹𝐿 𝐴 ∧ 𝐵 =  𝑇𝐴 ⋅ 𝑇𝐵 , 𝐹𝐴 ⋅ 𝐹𝐵 
( And, in similar way, generalized for 𝑛 propositions ) 

The conjunction link of the two fuzzy propositions (𝐴) and 
(𝐵) in the following truth table [6] : 

𝐴 𝐵 𝐴 ∧ 𝐵 

(1,0) (1,0) (1,0) 

(1,0) (0,1) (0,0) 

(0,1) (1,0) (0,0) 

(0,1) (0,1) (0,1) 

2.4.2 In Neutrosophic Logic: 
Conjunction the neutrosophic propositions (𝐴) and (𝐵) is 

the following [5]: 
𝑁𝐿 𝐴 ∧ 𝐵 =  𝑇𝐴⊙𝑇𝐵 , 𝐼𝐴⊙ 𝐼𝐵 , 𝐹𝐴⊙𝐹𝐵 

( And, in similar way, generalized for 𝑛 propositions ) 
The conjunction link of the two neutrosophic propositions 

(𝐴) and (𝐵) in the following truth table : 

𝐴 𝐵 𝐴 ∧ 𝐵 

(1,0,0) (1,0,0) (1,0,0) 

(1,0,0) (0,0,1) (0,0,0) 

(0,0,1) (0,1,0) (0,0,0) 

(0,0,1) (1,0,0) (0,0,0) 

(0,1,0) (0,0,1) (0,0,0) 

(0,1,0) (0,1,0) (0,1,0) 

2.5 Weak or inclusive disjunction: 

2.5.1 In Fuzzy Logic: 
Inclusive disjunction the fuzzy propositions (𝐴) and (𝐵) is 
the following : 

𝐹𝐿 𝐴 ∨ 𝐵 =   𝑇𝐴 + 𝑇𝐵) − (𝑇𝐴 ⋅ 𝑇𝐵), (𝐹𝐴 + 𝐹𝐵 ) − (𝐹𝐴 ⋅ 𝐹𝐵  
 ( And, in similar way, generalized for 𝑛 propositions ) 

The inclusive disjunction link of the two fuzzy propositi-

ons (𝐴) and (𝐵) in the following truth table [6]: 

𝐴 𝐵 𝐴 ∨ 𝐵 

(1,0) (1,0) (1,0) 

(1,0) (0,1) (1,1) 

(0,1) (1,0) (1,1) 

(0,1) (0,1) (0,1) 

2.5.2 In Neutrosophic Logic: 
Inclusive disjunction the neutrosophic propositions (𝐴) 

and (𝐵) is the following [4]: 
𝑁𝐿 𝐴 ∨ 𝐵 =  𝑇𝐴 ⊕ 𝑇𝐵 ⊖𝑇𝐴 ⊙ 𝑇𝐵 , 𝐼𝐴 ⊕ 𝐼𝐵 ⊖ 𝐼𝐴 ⊙ 𝐼𝐵 , 𝐹𝐴⊕ 𝐹𝐵⊖ 𝐹𝐴⊙ 𝐹𝐵 

( And, in similar way, generalized for 𝑛 propositions ) 
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The inclusive disjunction link of the two neutrosophic pro-
positions (𝐴) and (𝐵) in the following truth table : 

𝐴 𝐵 𝐴 ∨ 𝐵 

(1,0,0) (1,0,0) (1,0,0) 

(1,0,0) (0,0,1) (1,0,1) 

(0,0,1) (0,1,0) (0,1,1) 

(0,0,1) (1,0,0) (1,0,1) 

(0,1,0) (0,0,1) (0,1,1) 

(0,1,0) (0,1,0) (0,1,0) 

2.6Strong or exclusive disjunction: 

2.6.1 In Fuzzy Logic: 
Exclusive disjunction the fuzzy propositions (𝐴) and (𝐵) 
is the following : 

𝑭𝑳(𝑨⋁⋁𝑩) =  
 𝑻𝑨 ⋅   𝟏 − 𝑻𝑩 + 𝑻𝑩 ⋅   𝟏 − 𝑻𝑨 − 𝑻𝑨 ⋅ 𝑻𝑩 ⋅   𝟏 − 𝑻𝑨 ⋅ ({𝟏} − 𝑻𝑩 ,
 𝑭𝑨 ⋅   𝟏 − 𝑭𝑩 + 𝑭𝑩 ⋅   𝟏 − 𝑭𝑨 − 𝑭𝑨 ⋅ 𝑭𝑩 ⋅   𝟏 − 𝑭𝑨 ⋅ ({𝟏}− 𝑭𝑩 

  

( And, in similar way, generalized for 𝑛 propositions ) 

The exclusive disjunction link of the two fuzzy propositi-
ons (𝐴) and (𝐵) in the following truth table [6]: 

𝐴 𝐵 𝐴 ∨∨ 𝐵 

(1,0) (1,0) (0,0) 

(1,0) (0,1) (1,1) 

(0,1) (1,0) (1,1) 

(0,1) (0,1) (0,0) 

2.6.2 In Neutrosophic Logic: 
Exclusive disjunction the neutrosophic propositions (𝐴) 
and (𝐵) is the following [5]: 

𝑵𝑳(𝑨⋁⋁𝑩) =  

 𝑻𝑨 ⊙  𝟏 ⊖ 𝑻𝑩 ⊕ 𝑻𝑩 ⊙  𝟏 ⊖ 𝑻𝑨 ⊖ 𝑻𝑨⊙ 𝑻𝑩 ⊙  𝟏 ⊖ 𝑻𝑨 ⊙ ({𝟏}⊖ 𝑻𝑩 ,

 𝑰𝑨⊙   𝟏 ⊖ 𝑰𝑩 ⊕ 𝑰𝑩⊙  𝟏 ⊖ 𝑰𝑨 ⊖ 𝑰𝑨⊙𝑰𝑩⊙  𝟏 ⊖ 𝑰𝑨 ⊙ ({𝟏} ⊖ 𝑰𝑩 ,
 𝑭𝑨 ⊙  𝟏 ⊖ 𝑭𝑩 ⊕ 𝑭𝑩⊙   𝟏 ⊖ 𝑭𝑨 ⊖ 𝑭𝑨⊙ 𝑭𝑩⊙  𝟏 ⊖ 𝑭𝑨 ⊙ ({𝟏}⊖ 𝑭𝑩 

  

( And, in similar way, generalized for 𝑛 propositions ) 

The exclusive disjunction link of the two neutrosophic 
propositions (𝐴) and (𝐵) in the following truth table  : 

𝐴 𝐵 𝐴 ∨∨ 𝐵 

(1,0,0) (1,0,0) (0,0,0) 

(1,0,0) (0,0,1) (1,0,1) 

(0,0,1) (0,1,0) (0,1,1) 

(0,0,1) (1,0,0) (1,0,1) 

(0,1,0) (0,0,1) (0,1,1) 

(0,1,0) (0,1,0) (0,0,0) 

2.7 Material conditional ( implication ) : 

2.7.1 In Fuzzy Logic: 
Implication the fuzzy propositions (𝐴) and (𝐵) is the fol-
lowing : 

𝐹𝐿 𝐴 → 𝐵 =   1 − 𝑇𝐴 + 𝑇𝐴 ⋅ 𝑇𝐵 ,  1 − 𝐹𝐴 + 𝐹𝐴 ⋅ 𝐹𝐵  
The implication link of the two fuzzy propositions (𝐴) and 

(𝐵) in the following truth table [6]: 

𝐴 𝐵 𝐴 → 𝐵 

(1,0) (1,0) (1,0) 

(1,0) (0,1) (0,1) 

(0,1) (1,0) (1,0) 

(0,1) (0,1) (0,1) 

2.7.2 In Neutrosophic Logic: 
Implication the neutrosophic propositions (𝐴) and (𝐵)  is 

the following [4]: 
𝑵𝑳 𝑨 → 𝑩 =   𝟏 ⊖ 𝑻𝑨 ⊕𝑻𝑨⊙𝑻𝑩,  𝟏 ⊖ 𝑰𝑨⊕ 𝑰𝑨⊙ 𝑰𝑩,  𝟏 ⊖ 𝑭𝑨⊕𝑭𝑨⊙𝑭𝑩  

The implication link of the two neutrosophic propositions 
(𝐴) and (𝐵) in the following truth table  : 

𝐴 𝐵 𝐴 → 𝐵 

(1,0,0) (1,0,0) (1,1,1) 

(1,0,0) (0,0,1) (0,1,1) 

(0,0,1) (0,1,0) (1,1,0) 

(0,0,1) (1,0,0) (1,1,0) 

(0,1,0) (0,0,1) (1,0,1) 

(0,1,0) (0,1,0) (1,1,1) 

2.8 Material biconditional ( equivalence ) : 

2.8.1 In Fuzzy Logic: 
Equivalencethe fuzzy propositions (𝐴) and (𝐵) is the fol-
lowing : 

𝐹𝐿(𝐴 ↔ 𝐵) =  
   1 − 𝑇𝐴 + 𝑇𝐴 ⋅ 𝑇𝐵 ⋅   1 − 𝑇𝐵 + 𝑇𝐴 ⋅ 𝑇𝐵  ,

   1 − 𝐹𝐴 + 𝐹𝐴 ⋅ 𝐹𝐵  ⋅   1 − 𝐹𝐵 + 𝐹𝐴 ⋅ 𝐹𝐵   
  

The equivalence link of the two fuzzy propositions (𝐴) and 

(𝐵) in the following truth table : 

𝐴 𝐵 𝐴 ↔ 𝐵 

(1,0) (1,0) (1,1) 

(1,0) (0,1) (0,0) 

(0,1) (1,0) (0,0) 

(0,1) (0,1) (1,1) 

2.8.2 In Neutrosophic Logic: 
Equivalencethe neutrosophic propositions (𝐴)  and (𝐵)  is 
the following [5]: 

𝑁𝐿(𝐴 ↔ 𝐵) =  

   1 ⊖ 𝑇𝐴⨁ 𝑇𝐴 ⊙𝑇𝐵  ⊙   1 ⊖ 𝑇𝐵 ⊕𝑇𝐴 ⊙𝑇𝐵   ,

   1 ⊖ 𝐼𝐴 ⊕ 𝐼𝐴 ⊙ 𝐼𝐵 ⊙   1 ⊖ 𝐼𝐵⊕ 𝐼𝐴 ⊙ 𝐼𝐵  ,

   1 ⊖ 𝐹𝐴⨁ 𝐹𝐴 ⊙𝐹𝐵  ⊙   1 ⊖ 𝐹𝐵 ⊕𝐹𝐴 ⊙𝐹𝐵   

 

The equivalence link of the two neutrosophic propositions 

(𝐴) and (𝐵) in the following truth table : 

𝐴 𝐵 𝐴 ↔ 𝐵 

(1,0,0) (1,0,0) (1,1,1) 

(1,0,0) (0,0,1) (0,1,0) 

(0,0,1) (0,1,0) (1,0,0) 

(0,0,1) (1,0,0) (0,1,0) 

(0,1,0) (0,0,1) (1,0,0) 

(0,1,0) (0,1,0) (1,1,1) 
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2.9 Sheffer’s connector: 

2.9.1 In Fuzzy Logic: 
The result of the sheffer’s connector between the two fuzzy 
propositions (𝐴) and (𝐵) : 

𝐹𝐿 𝐴| 𝐵 = 𝐹𝐿 ¬𝐴 ∨ ¬𝐵 =   1 − 𝑇𝐴 ⋅ 𝑇𝐵 ,  1 − 𝐹𝐴 ⋅ 𝐹𝐵  
The result of the sheffer’s connector between the two fuzzy 

propositions (𝐴) and (𝐵) in the following truth table :  

𝐴 𝐵 ¬𝐴 ¬𝐵 ¬𝐴∨ ¬𝐵 𝐴|𝐵 

(1,0) (1,0) (0,1) (0,1) (0,1) (0,1) 

(1,0) (0,1) (0,1) (1,0) (1,1) (1,1) 

(0,1) (1,0) (1,0) (0,1) (1,1) (1,1) 

(0,1) (0,1) (1,0) (1,0) (1,0) (1,0) 

2.9.2 In Neutrosophic Logic: 
The result of the sheffer’s connector between the two neut-

rosophic propositions (𝐴) and (𝐵)[4]: 

𝑵𝑳 𝑨| 𝑩 = 𝑵𝑳 ¬𝑨 ∨ ¬𝑩 =   𝟏 ⊖ 𝑻𝑨⊙ 𝑻𝑩,  𝟏 ⊖ 𝑰𝑨 ⊙ 𝑰𝑩 ,  𝟏 ⊖ 𝑭𝑨⊙ 𝑭𝑩  

The result of the sheffer’s connector between the two neut-

rosophic propositions (𝐴) and (𝐵)  in the following truth 
table :  

𝐴 𝐵 ¬𝐴 ¬𝐵 ¬𝐴∨ ¬𝐵 𝐴|𝐵 

(1,0,0) (1,0,0) (0,1,1) (0,1,1) (0,1,1) (0,1,1) 

(1,0,0) (0,0,1) (0,1,1) (1,1,0) (1,1,1) (1,1,1) 

(0,0,1) (0,1,0) (1,1,0) (1,0,1) (1,1,1) (1,1,1) 

(0,0,1) (1,0,0) (1,1,0) (0,1,1) (1,1,1) (1,1,1) 

(0,1,0) (0,0,1) (1,0,1) (1,1,0) (1,1,1) (1,1,1) 

(0,1,0) (0,1,0) (1,0,1) (1,0,1) (1,0,1) (1,0,1) 

2.10 Peirce’s connector: 

2.10.1 In Fuzzy Logic: 

The result of the Peirce’s connectorbetween the two fuzzy 
propositions (𝐴)and (𝐵) :

𝑭𝑳 𝑨 ↓  𝑩 = 𝑭𝑳 ¬𝑨⋀¬𝑩 =    𝟏 − 𝑻𝑨 ⋅   𝟏 − 𝑻𝑩 ,   𝟏 − 𝑭𝑨 ⋅   𝟏 − 𝑭𝑩   

The result of the peirce’s connectorbetween the two fuzzy 
propositions (𝐴) and (𝐵) in the following truth table :  

𝐴 𝐵 ¬𝐴 ¬𝐵 ¬𝐴⋀¬𝐵 𝐴 ↓ 𝐵 

(1,0) (1,0) (0,1) (0,1) (0,1) (0,1) 

(1,0) (0,1) (0,1) (1,0) (0,0) (0,0) 

(0,1) (1,0) (1,0) (0,1) (0,0) (0,0) 

(0,1) (0,1) (1,0) (1,0) (1,0) (1,0) 

2.10.2 In Neutrosophic Logic: 

The result of the Peirce’s connectorbetween the two neu-
trosophic propositions (𝐴) and (𝐵)[5]:

𝑵𝑳 𝑨 ↓  𝑩 = 𝑵𝑳 ¬𝑨⋀¬𝑩 =    𝟏 ⊖ 𝑻𝑨 ⊙  𝟏 ⊖ 𝑻𝑩 ,   𝟏 ⊖ 𝑰𝑨 ⊙   𝟏 ⊖ 𝑰𝑩 ,   𝟏 ⊖ 𝑭𝑨 ⊙   𝟏 ⊖ 𝑭𝑩   

The result of the peirce’s connectorbetween the two neut-
rosophic propositions (𝐴) and (𝐵)  in the following truth 

table :  

𝐴 𝐵 ¬𝐴 ¬𝐵 ¬𝐴⋀¬𝐵 𝐴 ↓ 𝐵 

(1,0,0) (1,0,0) (0,1,1) (0,1,1) (0,1,1) (0,1,1) 

(1,0,0) (0,0,1) (0,1,1) (1,1,0) (0,1,0) (0,1,0) 

(0,0,1) (0,1,0) (1,1,0) (1,0,1) (1,0,1) (1,0,1) 

(0,0,1) (1,0,0) (1,1,0) (0,1,1) (0,1,0) (0,1,0) 

(0,1,0) (0,0,1) (1,0,1) (1,1,0) (1,0,0) (1,0,0) 

(0,1,0) (0,1,0) (1,0,1) (1,0,1) (1,0,1) (1,0,1) 

3 Conclusion :
From what has been discussed previously, we can ultimate-
ly reach three points : 
3.1 We see that the logical operations of the neutrosophic 
logic (NL) are different from the logical operations of the 
fuzzy logic (FL) in terms of  width, comprehensiveness 
and effectiveness. The reason behind that is the addition 
of professor Florentin Smarandache of anew field to the 
real values, the truth and falsity interval in (FL) and that is 
what he called « the indeterminacy interval » which is ex-
pressed in the function 𝐼𝐴 or 𝐼𝐵 in the logical operations of
(NL) as we have seen, and that is what makes (NL) the 
closest and most precise image of the hidden logical 
structure of the universe. 

3.2 We see that (NL) is a fully new logic, that has been es-
tablished starting by changing a principle (FL), we mean 

by this principle changing the real values of the truth and 
falsity membership degrees only in (FL) to the truth and 

indeterminacy then falsity membership degrees in (NL). 
3.3 We see that there is no limit to the logical discoveries,

we only have to change the principle and that leads to 
completely change the system. So what if we also change 

the truth values from the truth and indeterminacy and falsi-
ty membership degrees in (NL), and that is by doubling it, 

as follows : 
The neutrosophic propositions (𝐴) is real standard or non-

standard subsets in universal set(𝑈), which is characterized 
by a truth-membership function 𝑇𝐴  , a indeterminacy-

membership function 𝐼𝐴 , and a falsity-membership functi-

on 𝐹𝐴 , of ] 0, 1+− [ . That is

𝑇𝐴 ∶ 𝑈 → ] 0, 1+− [
𝐼𝐴 ∶ 𝑈 → ] 0, 1+− [ 
𝐹𝐴 ∶ 𝑈 → ] 0, 1+− [

Let 𝑇𝐴 , is real standard or non-standard subset in universal

set(𝑈), which is characterized by a truth-truth membership 
function 𝑇𝑇𝐴  , a indeterminacy-truth membership function

𝐼𝑇𝐴  , and a falsity-truth membership function 𝐹𝑇𝐴  , of
] 0, 1+− [ . That is

𝑇𝑇𝐴 ∶ 𝑈 → ] 0, 1+− [ 
𝐼𝑇𝐴 ∶ 𝑈 → ] 0, 1+− [
𝐹𝑇𝐴 ∶ 𝑈 → ] 0, 1+− [ 
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There is no restriction on the sum of  𝑇𝑇𝐴 , 𝐼𝑇𝐴 , 𝐹𝑇𝐴 , so
0− ≤ 𝑠𝑢𝑝𝑇𝑇𝐴 + 𝑠𝑢𝑝𝐼𝑇𝐴 +  𝑠𝑢𝑝𝐹𝑇𝐴 ≤ 3+.

Let 𝐼𝐴 , is real standard or non-standard subset in universal
set(𝑈) , which is characterized by a truth-indeterminacy 

membership function 𝑇𝐼𝐴  , a indeterminacy-indeterminacy
membership function 𝐼𝐼𝐴  , and a falsity-indeterminacy

membership function 𝐹𝐼𝐴  , of ] 0, 1+− [ . That is

𝑇𝐼𝐴 ∶ 𝑈 → ] 0, 1+− [ 
𝐼𝐼𝐴 ∶ 𝑈 → ] 0, 1+− [ 
𝐹𝐼𝐴 ∶ 𝑈 → ] 0, 1+− [

There is no restriction on the sum of  𝑇𝐼𝐴 , 𝐼𝐼𝐴 , 𝐹𝐼𝐴 , so
0− ≤ 𝑠𝑢𝑝𝑇𝐼𝐴 + 𝑠𝑢𝑝𝐼𝐼𝐴 +  𝑠𝑢𝑝𝐹𝐼𝐴 ≤ 3+.

Let 𝐹𝐴 , is real standard or non-standard subset in universal
set(𝑈), which is characterized by a truth-falsity members-

hip function 𝑇𝐹𝐴  , a indeterminacy-falsity membership
function 𝐼𝐹𝐴  , and a falsity-falsity membership function

𝐹𝐹𝐴  , of ] 0, 1+− [ . That is

𝑇𝐹𝐴 ∶ 𝑈 → ] 0, 1+− [
𝐼𝐹𝐴 ∶ 𝑈 → ] 0, 1+− [ 
𝐹𝐹𝐴 ∶ 𝑈 → ] 0, 1+− [

There is no restriction on the sum of  𝑇𝐹𝐴 , 𝐼𝐹𝐴 , 𝐹𝐹𝐴 ,so
0− ≤ 𝑠𝑢𝑝𝑇𝐹𝐴 + 𝑠𝑢𝑝𝐼𝐹𝐴 +  𝑠𝑢𝑝𝐹𝐹𝐴 ≤ 3+.

Therefore : 

𝑇𝑇𝐴 + 𝐼𝑇𝐴 +  𝐹𝑇𝐴 : 𝑈 → ] 0, 3+− [

𝑇𝐼𝐴 + 𝐼𝐼𝐴 +  𝐹𝐼𝐴 : 𝑈 → ] 0, 3+− [

𝑇𝐹𝐴 + 𝐼𝐹𝐴 +  𝐹𝐹𝐴 : 𝑈 → ] 0, 3+− [

There is no restriction on the sum of 𝑇𝑇𝐴 , 𝐼𝑇𝐴 , 𝐹𝑇𝐴 , and
of𝑇𝐼𝐴 , 𝐼𝐼𝐴 , 𝐹𝐼𝐴 , and of𝑇𝐹𝐴 , 𝐼𝐹𝐴 , 𝐹𝐹𝐴 , so 0− ≤ 𝑠𝑢𝑝𝑇𝑇𝐴 +
𝑠𝑢𝑝𝐼𝑇𝐴 +  𝑠𝑢𝑝𝐹𝑇𝐴 +  𝑠𝑢𝑝𝑇𝐼𝐴 + 𝑠𝑢𝑝𝐼𝐼𝐴 + 𝑠𝑢𝑝𝐹𝐼𝐴 +
𝑠𝑢𝑝𝑇𝐹𝐴 + 𝑠𝑢𝑝𝐼𝐹𝐴 +  𝑠𝑢𝑝𝐹𝐹𝐴 ≤ 9+ .
Therefore : 

(𝑇𝑇𝐴 , 𝐼𝑇𝐴 ,  𝐹𝑇𝐴 ), (𝑇𝐼𝐴 , 𝐼𝐼𝐴 ,  𝐹𝐼𝐴 ), (𝑇𝐹𝐴 , 𝐼𝐹𝐴 ,  𝐹𝐹𝐴 ) : 𝑈 → ] 0, 1+− [^9 

This example: we suggest to be named: Double Neutroso-
phic Logic (DNL). 

This is a particular case of Neutrosophic Logic and Set of 

Type-2 (and Type-n), introduced by Smarandache [8] in 2017, as 

follows: 

“Definition of Type-2 (and Type-n) Neutrosophic Set 

(and Logic). 

Type-2 Neutrosophic Set is actually a neutrosophic set 

of a neutrosophic set.  
See an example for a type-2 single-valued neutrosophic 

set below:  

Let x(0.4 <0.3, 0.2, 0.4>, 0.1 <0.0, 0.3, 0.8>, 0.7 <0.5, 

0.2, 0.2>) be an element in the neutrosophic set A, 

which means the following: x(0.4, 0.1, 0.7) belongs to 

the neutrosophic set A in the following way, the truth 

value of x is 0.4, the indeterminacy value of x is 0.1, 

and the falsity value of x is 0.7 [this is type-1 neutroso-

phic set]; but the neutrosophic probability that the truth 

value of x is 0.4 with respect to the neutrosophic set A 

is <0.3, 0.2, 0.4>, the neutrosophic probability that the 

indeterminacy value of x is 0.1 with respect to the neut-

rosophic set A is <0.0, 0.3, 0.8>, and the neutrosophic 

probability that the falsity value of x is 0.7 with respect 

to the neutrosophic set A is <0.5, 0.2, 0.2> [now this is 

type-2 neutrosophic set].  

So, in a type-2 neutrosophic set, when an element x(t, i, 

f) belongs to a neutrosophic set A, we are not sure

about the values of t, i, f, we only get each of them with 

a given neutrosophic probability.  

Neutrosophic Probability (NP) of an event E is defined 

as: NP(E) = (chance that E occurs, indeterminate chan-

ce about E occurrence, chance that E does not occur).  

Similarly, a type-2 fuzzy set is a fuzzy set of a fuzzy set. 
And a type-2 intuitionistic fuzzy set is an intuitionistic 

fuzzy set of an intuitionistic fuzzy set.  

Surely, one can define a type-3 neutrosophic set (which 

is a neutrosophic set of a neutrosophic set of a neutro-
sophic set), and so on (type-n neutrosophic set, for n ≥ 

2), but they become useless and confusing.  

Neither in fuzzy set nor in intuitionistic fuzzy set the re-

searchers went further that type-2.“ 

Hence :  𝐹𝐿 →  𝑁𝐿 →  𝑫𝑵𝑳 → 𝑁𝐿𝑛. 

   Especially in quantum theory, there is an uncertainty 

about the energy and the momentum of particles. And, be-
cause the particles in the subatomic world don’t have exact 

positions, we better calculate their double neutrosophic 
probabilities (i.e. computation a truth-truth percent, inde-

terminacy-truth percent, falsity-truth percent, and  truth-
indeterminacy percent, indeterminacy-indeterminacy per-

cent, falsity-indeterminacy percent, and truth-falsity per-
cent, indeterminacy-falsity percent, falsity-falsity percent) 

of being at some particular points than their neutrosophic 
probabilities. 

3.4 Definition of Double Neutrosophic Logical Connec-

tives (Operations Logic ) : 

   One notes the double neutrosophic logical values of the 
propositions (𝐴) and (𝐵) by: 

𝐷𝑁𝐿 𝐴 =  (𝑇𝑇𝐴 , 𝐼𝑇𝐴 , 𝐹𝑇𝐴 ), (𝑇𝐼𝐴 , 𝐼𝐼𝐴 , 𝐹𝐼𝐴 ), (𝑇𝐹𝐴 , 𝐼𝐹𝐴 , 𝐹𝐹𝐴 ) 

And 
𝐷𝑁𝐿 𝐵 =  (𝑇𝑇𝐵 , 𝐼𝑇𝐵 ,  𝐹𝑇𝐵 ), (𝑇𝐼𝐵 , 𝐼𝐼𝐵 ,  𝐹𝐼𝐵 ), (𝑇𝐹𝐵 , 𝐼𝐹𝐵 ,  𝐹𝐹𝐵 ) 

3.4.1 Negation:
𝑫𝑵𝑳 ¬𝑨 = 

   𝟏 ⊖ 𝑻𝑻𝑨 ,  𝟏 ⊖ 𝑰𝑻𝑨  𝟏 ⊖𝑭𝑻𝑨 ,   𝟏 ⊖ 𝑻𝑰𝑨,  𝟏 ⊖ 𝑰𝑰𝑨  𝟏 ⊖ 𝑭𝑰𝑨 ,   𝟏 ⊖ 𝑻𝑭𝑨 ,  𝟏 ⊖ 𝑰𝑭𝑨  𝟏 ⊖ 𝑭𝑭𝑨   

And 

𝑫𝑵𝑳 ¬𝑩 = 

   𝟏 ⊖ 𝑻𝑻𝑩 ,  𝟏 ⊖ 𝑰𝑻𝑩  𝟏 ⊖ 𝑭𝑻𝑩  ,  𝟏 ⊖ 𝑻𝑰𝑩 ,  𝟏 ⊖ 𝑰𝑰𝑩  𝟏 ⊖ 𝑭𝑰𝑩  ,   𝟏 ⊖ 𝑻𝑭𝑩 ,  𝟏 ⊖ 𝑰𝑭𝑩  𝟏 ⊖𝑭𝑭𝑩   
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3.4.2 Conjunction : 
𝑫𝑵𝑳 𝑨 ∧𝑩 = 

(𝑻𝑻𝑨⊙𝑻𝑻𝑩 , 𝑰𝑻𝑨⊙ 𝑰𝑻𝑩 , 𝑭𝑻𝑨⊙𝑭𝑻𝑩), (𝑻𝑰𝑨⊙𝑻𝑰𝑩 , 𝑰𝑰𝑨 ⊙ 𝑰𝑰𝑩 ,𝑭𝑰𝑨 ⊙𝑭𝑰𝑩), (𝑻𝑭𝑨⊙𝑻𝑭𝑩 , 𝑰𝑭𝑨 ⊙ 𝑰𝑭𝑩 ,𝑭𝑭𝑨 ⊙𝑭𝑭𝑩)

( And, in similar way, generalized for 𝑛 propositions ) 

3.4.3 Weak or inclusive disjunction : 
𝑫𝑵𝑳 𝑨∨ 𝑩 =

( 𝑻𝑻𝑨⊕𝑻𝑻𝑩⊖𝑻𝑻𝑨⊙𝑻𝑻𝑩,𝑰𝑻𝑨⊕𝑰𝑻𝑩 ⊖𝑰𝑻𝑨⊙𝑰𝑻𝑩 , 𝑭𝑻𝑨⊕𝑭𝑻𝑩⊖𝑭𝑻𝑨⊙𝑭𝑻𝑩),

( 𝑻𝑰𝑨⊕𝑻𝑰𝑩⊖𝑻𝑰𝑨⊙𝑻𝑰𝑩,𝑰𝑰𝑨⊕𝑰𝑰𝑩 ⊖𝑰𝑰𝑨⊙𝑰𝑰𝑩 , 𝑭𝑰𝑨⊕𝑭𝑰𝑩⊖𝑭𝑰𝑨⊙𝑭𝑰𝑩),

( 𝑻𝑭𝑨⊕𝑻𝑭𝑩⊖𝑻𝑭𝑨⊙𝑻𝑭𝑩, 𝑰𝑭𝑨⊕ 𝑰𝑭𝑩 ⊖𝑰𝑭𝑨 ⊙𝑰𝑭𝑩 , 𝑭𝑭𝑨⊕𝑭𝑭𝑩 ⊖𝑭𝑭𝑨⊙𝑭𝑭𝑩)
 

( And, in similar way, generalized for 𝑛 propositions ) 

3.4.4 Strong or exclusive disjunction : 
𝑫𝑵𝑳 𝑨 ∨∨ 𝑩 =

 

 
 
 
 
 
 
 
 
  

 𝑻𝑻𝑨⊙ ({𝟏} ⊖ 𝑻𝑻𝑩) ⊕ 𝑻𝑻𝑩 ⊙ ({𝟏} ⊖ 𝑻𝑻𝑨)⊖ 𝑻𝑻𝑨 ⊙ 𝑻𝑻𝑩 ⊙({𝟏}⊖ 𝑻𝑻𝑨)⊙ ({𝟏} ⊖ 𝑻𝑻𝑩
 ,

 𝑰𝑻𝑨⊙ ({𝟏}⊖ 𝑰𝑻𝑩)⊕ 𝑰𝑻𝑩 ⊙ ({𝟏}⊖ 𝑰𝑻𝑨)⊖ 𝑰𝑻𝑨⊙ 𝑰𝑻𝑩 ⊙({𝟏}⊖ 𝑰𝑻𝑨) ⊙ ({𝟏}⊖ 𝑰𝑻𝑩
 ,

𝑭𝑻𝑨⊙ ({𝟏} ⊖ 𝑭𝑻𝑩) ⊕ 𝑭𝑻𝑩 ⊙({𝟏}⊖𝑭𝑻𝑨)⊖ 𝑭𝑻𝑨 ⊙𝑭𝑻𝑩 ⊙({𝟏}⊖ 𝑭𝑻𝑨) ⊙ ({𝟏}⊖𝑭𝑻𝑩

 ,

 

𝑻𝑰𝑨 ⊙({𝟏}⊖ 𝑻𝑰𝑩) ⊕ 𝑻𝑰𝑩 ⊙ ({𝟏} ⊖ 𝑻𝑰𝑨)⊖ 𝑻𝑰𝑨 ⊙𝑻𝑰𝑩 ⊙ ({𝟏} ⊖ 𝑻𝑰𝑨)⊙ ({𝟏}⊖ 𝑻𝑰𝑩  ,

𝑰𝑰𝑨⊙ ({𝟏} ⊖ 𝑰𝑰𝑩) ⊕ 𝑰𝑰𝑩 ⊙ ({𝟏}⊖ 𝑰𝑰𝑨)⊖ 𝑰𝑰𝑨⊙ 𝑰𝑰𝑩 ⊙({𝟏}⊖ 𝑰𝑰𝑨)⊙ ({𝟏} ⊖ 𝑰𝑰𝑩 ,

𝑭𝑰𝑨 ⊙({𝟏}⊖ 𝑭𝑰𝑩 )⊕ 𝑭𝑰𝑩 ⊙({𝟏}⊖ 𝑭𝑰𝑨)⊖ 𝑭𝑰𝑨 ⊙𝑭𝑰𝑩 ⊙ ({𝟏} ⊖ 𝑭𝑰𝑨)⊙ ({𝟏} ⊖𝑭𝑰𝑩

 ,

 

 𝑻𝑭𝑨 ⊙({𝟏}⊖ 𝑻𝑭𝑩 )⊕ 𝑻𝑭𝑩 ⊙({𝟏}⊖ 𝑻𝑭𝑨) ⊖ 𝑻𝑭𝑨 ⊙ 𝑻𝑭𝑩 ⊙({𝟏}⊖ 𝑻𝑭𝑨) ⊙ ({𝟏}⊖ 𝑻𝑭𝑩
 ,

 𝑰𝑭𝑨⊙ ({𝟏} ⊖ 𝑰𝑭𝑩 )⊕ 𝑰𝑭𝑩 ⊙({𝟏}⊖ 𝑰𝑭𝑨) ⊖ 𝑰𝑭𝑨 ⊙ 𝑰𝑭𝑩 ⊙ ({𝟏}⊖ 𝑰𝑭𝑨)⊙ ({𝟏}⊖ 𝑰𝑭𝑩
 ,

 𝑭𝑭𝑨 ⊙({𝟏}⊖ 𝑭𝑭𝑩)⊕ 𝑭𝑭𝑩 ⊙ ({𝟏} ⊖𝑭𝑭𝑨)⊖ 𝑭𝑭𝑨 ⊙𝑭𝑭𝑩 ⊙({𝟏}⊖ 𝑭𝑭𝑨) ⊙ ({𝟏}⊖ 𝑭𝑭𝑩

 

 

 
 
 
 
 
 
 
 
 

( And, in similar way, generalized for 𝑛 propositions ) 

3.4.5 Material conditional ( implication ) : 
𝑫𝑵𝑳 𝑨 → 𝑩 =

 

 𝟏 ⊖ 𝑻𝑻𝑨⊕ 𝑻𝑻𝑨 ⊙𝑻𝑻𝑩 ,  𝟏 ⊖ 𝑰𝑻𝑨 ⊕ 𝑰𝑻𝑨 ⊙ 𝑰𝑻𝑩 ,  𝟏 ⊖ 𝑭𝑻𝑨 ⊕ 𝑭𝑻𝑨 ⊙𝑭𝑻𝑩 ,

 𝟏 ⊖ 𝑻𝑰𝑨 ⊕ 𝑻𝑰𝑨 ⊙ 𝑻𝑰𝑩 ,  𝟏 ⊖ 𝑰𝑰𝑨 ⊕ 𝑰𝑰𝑨 ⊙ 𝑰𝑰𝑩 ,  𝟏 ⊖ 𝑭𝑰𝑨 ⊕ 𝑭𝑰𝑨 ⊙𝑭𝑰𝑩 ,

 𝟏 ⊖ 𝑻𝑭𝑨 ⊕𝑻𝑭𝑨 ⊙ 𝑻𝑭𝑩 ,  𝟏 ⊖ 𝑰𝑭𝑨 ⊕ 𝑰𝑭𝑨 ⊙ 𝑰𝑭𝑩 ,  𝟏 ⊖ 𝑭𝑭𝑨 ⊕ 𝑭𝑭𝑨 ⊙ 𝑭𝑭𝑩

  

3.4.6 Material biconditional ( equivalence ) : 
𝑫𝑵𝑳 𝑨 ↔ 𝑩 =

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
   𝟏 ⊖ 𝑻𝑻𝑨 ⊕ 𝑻𝑻𝑨 ⊙𝑻𝑻𝑩 ⊙   𝟏 ⊖ 𝑻𝑻𝑩⊕ 𝑻𝑻𝑨 ⊙𝑻𝑻𝑩  ,

   𝟏 ⊖ 𝑰𝑻𝑨⊕ 𝑰𝑻𝑨⊙ 𝑰𝑻𝑩 ⊙   𝟏 ⊖ 𝑰𝑻𝑩⊕ 𝑰𝑻𝑨⊙ 𝑰𝑻𝑩  ,

   𝟏 ⊖ 𝑭𝑻𝑨 ⊕ 𝑭𝑻𝑨 ⊙ 𝑭𝑻𝑩 ⊙   𝟏 ⊖ 𝑭𝑻𝑩⊕ 𝑭𝑻𝑨 ⊙ 𝑭𝑻𝑩  
 

 
 

,

 

 
 
   𝟏 ⊖ 𝑻𝑰𝑨 ⊕ 𝑻𝑰𝑨 ⊙ 𝑻𝑰𝑩 ⊙   𝟏 ⊖ 𝑻𝑰𝑩 ⊕𝑻𝑰𝑨 ⊙ 𝑻𝑰𝑩  ,

   𝟏 ⊖ 𝑰𝑰𝑨 ⊕ 𝑰𝑰𝑨 ⊙ 𝑰𝑰𝑩 ⊙   𝟏 ⊖ 𝑰𝑰𝑩 ⊕ 𝑰𝑰𝑨 ⊙ 𝑰𝑰𝑩  ,

   𝟏 ⊖ 𝑭𝑰𝑨 ⊕ 𝑭𝑰𝑨 ⊙𝑭𝑰𝑩 ⊙   𝟏 ⊖ 𝑭𝑰𝑩⊕ 𝑭𝑰𝑨 ⊙𝑭𝑰𝑩  
 

 
 

,

 

 
 
   𝟏 ⊖ 𝑻𝑭𝑨 ⊕ 𝑻𝑭𝑨 ⊙ 𝑻𝑭𝑩 ⊙   𝟏 ⊖ 𝑻𝑭𝑩 ⊕ 𝑻𝑭𝑨 ⊙𝑻𝑭𝑩  ,

   𝟏 ⊖ 𝑰𝑭𝑨 ⊕ 𝑰𝑭𝑨 ⊙ 𝑰𝑭𝑩 ⊙   𝟏 ⊖ 𝑰𝑭𝑩⊕ 𝑰𝑭𝑨 ⊙ 𝑰𝑭𝑩  ,

   𝟏 ⊖ 𝑭𝑭𝑨 ⊕ 𝑭𝑭𝑨 ⊙ 𝑭𝑭𝑩 ⊙   𝟏 ⊖ 𝑭𝑭𝑩 ⊕ 𝑭𝑭𝑨 ⊙ 𝑭𝑭𝑩  
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

3.4.7 Sheffer’s connector : 
𝑫𝑵𝑳 𝑨| 𝑩 = 𝑫𝑵𝑳 ¬𝑨 ∨ ¬𝑩 =

 

 𝟏 ⊖ 𝑻𝑻𝑨 ⊙ 𝑻𝑻𝑩 ,  𝟏 ⊖ 𝑰𝑻𝑨 ⊙ 𝑰𝑻𝑩 ,  𝟏 ⊖ 𝑭𝑻𝑨 ⊙ 𝑭𝑻𝑩 ,

 𝟏 ⊖ 𝑻𝑰𝑨 ⊙ 𝑻𝑰𝑩 ,  𝟏 ⊖ 𝑰𝑰𝑨 ⊙ 𝑰𝑰𝑩 ,  𝟏 ⊖ 𝑭𝑰𝑨 ⊙ 𝑭𝑰𝑩 ,

 𝟏 ⊖ 𝑻𝑭𝑨 ⊙ 𝑻𝑭𝑩 ,  𝟏 ⊖ 𝑰𝑭𝑨 ⊙ 𝑰𝑭𝑩 ,  𝟏 ⊖ 𝑭𝑭𝑨⊙ 𝑭𝑭𝑩

 

3.4.8 Peirce’s connector : 

𝑫𝑵𝑳 𝑨 ↓  𝑩 = 𝑫𝑵𝑳 ¬𝑨⋀¬𝑩 =

 

 𝟏 ⊖ 𝑻𝑻𝑨 ⊙  𝟏 ⊖ 𝑻𝑻𝑩 ,  𝟏 ⊖ 𝑰𝑻𝑨⊙  𝟏 ⊖ 𝑰𝑻𝑩 ,  𝟏 ⊖ 𝑭𝑻𝑨⊙  𝟏 ⊖ 𝑭𝑻𝑩 ,

 𝟏 ⊖ 𝑻𝑰𝑨 ⊙  𝟏 ⊖ 𝑻𝑰𝑩 ,  𝟏 ⊖ 𝑰𝑰𝑨 ⊙  𝟏 ⊖ 𝑰𝑰𝑩 ,  𝟏 ⊖ 𝑭𝑰𝑨 ⊙  𝟏 ⊖ 𝑭𝑰𝑩 ,

 𝟏 ⊖ 𝑻𝑭𝑨 ⊙  𝟏 ⊖ 𝑻𝑭𝑩 ,  𝟏 ⊖ 𝑰𝑭𝑨⊙  𝟏 ⊖ 𝑰𝑭𝑩 ,  𝟏 ⊖ 𝑭𝑭𝑨 ⊙  𝟏 ⊖ 𝑭𝑭𝑩
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Abstract: The theory of quadripartitioned single valued neutro-
sophic sets was proposed very recently as an extension to the ex-
isting theory of single valued neutrosophic sets. In this paper the 
notion of possibility fuzzy soft sets has been generalized into a new 
concept viz. interval-valued possibility quadripartitioned single val-

ued neutrosophic soft sets. Some basic set-theoretic operations have
been defined on them. Some distance, similarity, entropy and inclu-
sion measures for possibility quadripartitioned single valued neutro-
sophic sets have been proposed. An application in a decision making
problem has been shown.

Keywords: Neutrosophic set, entropy measure, inclusion measure, distance measure, similarity measure.

1 Introduction

The theory of soft sets (introduced by D. Molodstov, in 1999)
([10],[15]) provided a unique approach of dealing with uncer-
tainty with the implementation of an adequate parameterization
technique. In a very basic sense, given a crisp universe, a soft
set is a parameterized representation or parameter-wise classifi-
cation of the subsets of that universe of discourse with respect to
a given set of parameters. It was further shown that fuzzy sets
could be represented as a particular class of soft sets when the set
of parameters was considered to be [0, 1]. Since soft sets could
be implemented without the rigorous process of defining a suit-
able membership function, the theory of soft sets, which seemed
much easier to deal with, underwent rapid developments in fields
pertaining to analysis as well as applications (as can be seen from
the works of [1],[6],[7],[12],[14],[16],[17] etc.)

On the otherhand, hybridized structures, often designed and
obtained as a result of combining two or more existing struc-
tures, have most of the inherent properties of the combined struc-
tures and thus provide for a stronger tool in handling applica-
tion oriented problems. Likewise, the potential of the theory of
soft sets was enhanced to a greater extent with the introduction
of hybridized structures like those of the fuzzy soft sets [8], in-
tuitionistic fuzzy soft sets [9], generalized fuzzy soft sets [13],
neutrosophic soft sets [11], possibility fuzzy soft sets [2], possi-
bility intuitionistic fuzzy soft sets [3] etc. to name a few.

While in case of generalized fuzzy soft sets, corresponding to
each parameter a degree of possibility is assigned to the corre-
sponding fuzzy subset of the universe; possibility fuzzy sets, a
further modification of the generalized fuzzy soft sets, character-
ize each element of the universe with a possible degree of be-
longingness along with a degree of membership. Based on Bel-
nap’s four-valued logic [4] and Smarandache’s n-valued refined

neutrosophic set [18], the theory of quadripartitioned single val-
ued neutrosophic sets [5] was proposed as a generalization of
the existing theory of single valued neutrosophic sets [19]. In
this paper the concept of interval valued possibility quadriparti-
tioned single valued neutrosophic soft sets (IPQSVNSS, in short)
has been proposed. In the existing literature studies pertaining to
a possibility degree has been dealt with so far. Interval valued
possibility assigns a closed sub-interval of [0, 1] as the degree of
chance or possibility instead of a number in [0, 1] and thus it is
a generalization of the existing concept of a possibility degree.
The proposed structure can be viewed as a generalization of the
existing theories of possibility fuzzy soft sets and possibility in-
tuitionistic fuzzy soft sets.

The organization of the rest of the paper is as follows: a cou-
ple of preliminary results have been stated in Section 2, some 
basic set-theoretic operations on IPQSVNSS have been defined 
in Section 3, some uncertainty based measures viz. entropy, in-
clusion measure, distance measure and similarity measure, have 
been defined in Section 4  and their properties, applications and 
inter-relations have been studied. Section 5 concludes the paper.

2 Preliminaries
In this section some preliminary results have been outlined which
would be useful for the smooth reading of the work that follows.

2.1 An outline on soft sets and possibility intu-
itionistic fuzzy soft sets

Definition 1 [15]. Let X be an initial universe and E be a set of
parameters. Let P(X) denotes the power set of X and A ⊂ E.
A pair (F,A) is called a soft set iff F is a mapping of A into
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P(X).
The following results are due to [3].

Definition 2 [3]. Let U = {x1, x2, ..., xn} be the univer-
sal sets of elements and let E = {e1, e1, ..., em} be the universal
set of parameters. The pair (U,E) will be called a soft universe.
Let F : E → (I × I)

U × IU where (I × I)
U is the collection of

all intuitionistic fuzzy subsets of U and IU is the collection of
all fuzzy subsets of U . Let p be a mapping such that p : E → IU

and let Fp : E → (I × I)
U × IU be a function defined as

follows:
Fp(e) = (F (e)(x), p(e)(x)), where F (e)(x) =

(µe (x) , νe (x)) ∀xεU .
Then Fp is called a possibility intuitionistic fuzzy soft set (PIFSS
in short) over the soft universe (U,E). For each parameter ei,
Fp(ei) can be represented as:

Fp(ei) =
{(

x1

F (ei)(x1) , p(ei) (x1)
)
, ...,

(
xn

F (ei)(xn) , p(ei) (xn)
)}

Definition 3 [3]. Let Fp andGq be two PIFSS over (U,E). Then
the following operations were defined over PIFSS as follows:
Containment: Fp is said to be a possibility intuitionistic fuzzy
soft subset (PIFS subset) of Gq and one writes Fp ⊆ Gq if
(i) p(e) is a fuzzy subset of q(e), for all eεE,
(ii)F (e) is an intuitionistic fuzzy subset of G(e), for all eεE.
Equality: Fp andGq are said to be equal and one writes Fp = Gq
if Fp is a PIFS subset of Gq and Gq is a PIFS subset of Fp
Union: Fp∪̃Gq = Hr, Hr : E → (I × I)

U × IU is de-
fined by Hr (e) = (H (e) (x) , r (e) (x)), ∀eεE such that
H (e) = ∪Atan (F (e) , G (e)) and r (e) = s (p (e) , q (e)),
where ∪Atan is Atanassov union and s is a triangular conorm.
Intersection: Fp∩̃Gq = Hr, Hr : E → (I × I)

U × IU is
defined by Hr (e) = (H (e) (x) , r (e) (x)), ∀eεE such that
H (e) = ∩Atan (F (e) , G (e)) and r (e) = t (p (e) , q (e)),
where ∩Atan is Atanassov intersection and t is a triangular norm.

Definition 4 [3]. A PIFSS is said to be a possibility abso-
lute intuitionistic fuzzy soft set, denoted by A1, if A1 : E →
(I × I)

U × IU is such that A1 (e) = (F (e) (x) , P (e) (x)),
∀eεE where F (e) = (1, 0) and P (e) = 1, ∀eεE.

Definition 5 [3]. A PIFSS is said to be a possibility null intuition-
istic fuzzy soft set, denoted by φ0, if φ0 : E → (I × I)

U × IU
is such that φ0 = (F (e) (x) , p (e) (x)), ∀eεE where
F (e) = (0, 1) and p (e) = 0, ∀eεE.

2.2 An outline on quadripartitioned single valued
neutrosophic sets

Definition 6 [5]. Let X be a non-empty set. A quadripartitioned
neutrosophic set (QSVNS)A, overX characterizes each element
x in X by a truth-membership function TA, a contradiction-
membership function CA, an ignorance-membership function
UA and a falsity membership function FA such that for each
x εX , TA, CA, UA, FA ε [0, 1]

When X is discrete, A is represented as,
A =

∑n
i=1 〈TA(xi), CA(xi), UA(xi), FA(xi)〉 /xi, xiεX .

However, when the universe of discourse is continuous, A is
represented as,
A = 〈TA(x), CA(x), UA(x), FA(x)〉 /x, xεX

Definition 7 [5]. A QSVNS is said to be an absolute QSVNS,
denoted by A, iff its membership values are respectively defined
as TA(x) = 1, CA(x) = 1, UA(x) = 0 and FA(x) = 0,∀xεX .

Definition 8 [5]. A QSVNS is said to be a null QSVNS,
denoted by Θ, iff its membership values are respectively defined
as TΘ(x) = 0, CΘ(x) = 0, UΘ(x) = 1 and FΘ(x) = 1,∀xεX

Definition 9 [5]. Let A and B be two QSVNS over X .
Then the following operations can be defined:
Containment: A ⊆ B iff TA(x) ≤ TB(x), CA(x) ≤ CA(x),
UA(x) ≥ UA(x) and FA(x) ≥ FA(x), ∀xεX.
Complement:Ac =

∑n
i=1 〈FA(xi), UA(xi), CA(xi), TA(xi)〉 /xi,xi εX

i.e. TAc(xi) = FA(xi), CAc(xi) = UA(xi) , UAc(xi) = CA(xi)
and FAc(xi) = TA(xi), xi εX
Union: A ∪ B =

∑n
i=1 <

(TA(xi) ∨ TB(xi)) , (CA(xi) ∨ CB(xi)) , (UA(xi) ∧ UB(xi)) ,
(FA(x) ∧ FB(x)) > /xi,xi εX
Intersection: A ∩ B =

∑n
i=1 <

(TA(xi) ∧ TB(xi)) , (CA(xi) ∧ CB(xi)) , (UA(xi) ∨ UB(xi)) ,
(FA(xi) ∨ FB(xi)) > /xi,xi εX

Proposition 1[5]. Quadripartitioned single valued neutrosophic
sets satisfy the following properties under the aforementioned
set-theoretic operations:

1.(i) A ∪B = B ∪A
(ii) A ∩B = B ∩A
2.(i) A ∪ (B ∪ C) = (A ∪B) ∪ C
(ii) A ∩ (B ∩ C) = (A ∩B) ∩ C
3.(i) A ∪ (A ∩B) = A
(ii) A ∩ (A ∪B) = A
4.(i) (Ac)

c
= A

(ii) Ac = Θ
(iii) Θc = A
(iv) De-Morgan’s laws hold viz. (A ∪B)

c
= Ac ∩ Bc;

(A ∩B)
c

= Ac ∪B
5.(i) A ∪ A = A
(ii) A ∩ A = A
(iii) A ∪Θ = A
(iv) A ∩Θ = Θ
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3 Interval-valued possibility quadripar-
titioned single valued neutrosophic soft
sets and some of their properties

Definition 10. LetX be an initial crisp universe andE be a set of
parameters. Let I = [0, 1] , QSV NS(X) represents the collec-
tion of all quadripartitioned single valued neutrosophic sets over
X , Int([0, 1]) denotes the set of all closed subintervals of [0, 1]
and (Int([0, 1]))X denotes the collection of interval valued fuzzy
subsets over X . An interval-valued possibility quadripartitioned
single valued neutrosophic soft set (IPQSVNSS, in short) is a
mapping of the form Fρ : E → QSV NS(X) × (Int([0, 1]))X

and is defined as Fρ(e) = (Fe, ρe) , eεE, where, for each xεX ,
Fe (x) is the quadruple which represents the truth membership,
the contradiction-membership, the ignorance-membership and
the falsity membership of each element x of the universe of dis-
course X viz. Fe (x) = 〈teF (x) , ceF (x) , ueF (x) , feF (x)〉
,∀xεX and ρe (x) = [ρ−e (x) , ρ+

e (x)]εInt([0, 1]). If
X = {x1, x2, ..., xn} and E = {e1, e2, ..., em}, an interval-
valued possibility quadripartitioned single valued neutrosophic
soft set over the soft universe (X,E) is represented as,
Fρ(ei) = {

(
x1

Fei (x1) , ρei (x1)
)
,
(

x2

Fei (x2) , ρei (x2)
)
, ...,(

xn
Fei (xn) , ρei (xn)

)
} viz.

Fρ(ei) = {
(

x1

〈teiF (x1),c
ei
F (x1),u

ei
F (x1),f

ei
F (x1)〉 , [ρ

−
ei (x1) , ρ+

ei (x1)]

)
,

...,

(
xn

〈teiF (xn),c
ei
F (xn),u

ei
F (xn),f

ei
F (xn)〉 , [ρ

−
ei (xn) , ρ+

ei (xn)]

)
}, eiεE,

i = 1, 2, ...,m.

Example 1. Let X = {x1, x2, x3} and E = {e1, e2}.
Define an IPQSVNSS over the soft universe (X,E),
Fρ : E → QSV NS(X)× (Int([0, 1]))X as,

Fρ(e1) = {
(

x1

〈0.3,0.1,0.4,0.5〉 , [0.5, 0.6]
)
,(

x2

〈0.6,0.2,0.1,0.01〉 , [0.25, 0.3]
)
,
(

x3

〈0.7,0.3,0.4,0.6〉 , [0.6, 0.7]
)
}

Fρ(e2) = {
(

x1

〈0.7,0.3,0.5,0.2〉 , [0.1, 0.2]
)
,(

x2

〈0.1,0.2,0.6,0.7〉 , [0.45, 0.6]
)
,
(

x3

〈0.5,0.5,0.3,0.2〉 , [0.3, 0.4]
)
}

Another IPQSVNSS Gµ can be defined over (X,E) as

Gµ(e1) = {
(

x1

〈0.8,0.6,0.3,0.4〉 , [0.8, 0.85]
)
,(

x2

〈0.2,0.1,0.1,0.6〉 , [0.4, 0.5]
)
,
(

x3

〈0.5,0.5,0.3,0.4〉 , [0.4, 0.6]
)
}

Gµ(e2) = {
(

x1

〈0.2,0.6,0.3,0.7〉 , [0.6, 0.75]
)
,(

x2

〈0.4,0.2,0.2,0.7〉 , [0.8, 0.9]
)
,
(

x3

〈0.9,0.7,0.1,0.6〉 , [0.35, 0.5]
)
}

Definition 11. The absolute IPQSVNSS over (X,E) is denoted
by Ã1̄ such that for each eεE and ∀xεX , Ãe(x) = 〈1, 1, 0, 0〉
and 1̄e(x) = [1, 1]

Definition 12. The null IPQSVNSS over (X,E) is denoted by
θ̃0̄ such that for each eεE and ∀xεX , θ̃e(x) = 〈0, 0, 1, 1〉 and
0̄e(x) = [0, 0]

3.1 Operations over IPQSVNSS

Definition 13. Let Fρ and Gµ be two IPQSVNSS over the
common soft universe (X,E). Some elementary set-theoretic
operations on IPQSVNSS are defined as,
(i) Union: Fρ∪̃Gµ = Hη such that for each eεE and ∀xεX ,
He(x) = 〈teF (x) ∨ teG (x) , ceF (x) ∨ ceG (x) , ueF (x) ∧
ueG (x) , feF (x) ∧ feG (x)〉 and
ηe(x) = [sup (ρ−e (x) , µ−e (x)) , sup (ρ+

e (x) , µ+
e (x))].

(ii) Intersection: Fρ∩̃Gµ = Hη such that for each eεE and
∀xεX , He(x) = 〈teF (x) ∧ teG (x) , ceF (x) ∧ ceG (x) , ueF (x) ∨
ueG (x) , feF (x) ∨ feG (x)〉 and
ηe(x) = [inf (ρ−e (x) , µ−e (x)) , inf (ρ+

e (x) , µ+
e (x))].

(iii) Complement: (Fρ)
c

= F cρ such that for each eεE
and ∀xεX , F ce (x) = 〈feF (x), ueF (x), ceF (x), teF (x)〉 and
ρce (x) = [1− ρ+

e (x) , 1− ρ−e (x)]
(iv) Containment: Fρ⊆̃Gµ if for each eεE and ∀xεX , teF (x) ≤
teG (x) , ceF (x) ≤ ceG (x) , ueF (x) ≥ ueG (x) , feF (x) ≥ feG (x)
and ρ−e (x) ≤ µ−e (x) , ρ+

e (x) ≤ µ+
e (x).

Example 2. Consider the IPQSNSS Fρ and Gµ over the
same soft universe (X,E) defined in example 1. Then, F cρ is
obtained as,
F cρ (e1) = {

(
x1

〈0.5,0.4,0.1,0.3〉 , [0.4, 0.5]
)
,(

x2

〈0.01,0.1,0.2,0.6〉 , [0.7, 0.75]
)
,
(

x3

〈0.6,0.4,0.3,0.7〉 , [0.3, 0.4]
)
}

F cρ (e2) = {
(

x1

〈0.2,0.5,0.3,0.7〉 , [0.8, 0.9]
)
,(

x2

〈0.7,0.6,0.2,0.1〉 , [0.4, 0.55]
)
,
(

x3

〈0.2,0.3,0.5,0.5〉 , [0.6, 0.7]
)
}

Hη = Fρ∪̃Gµ is obtained as,

Hη(e1) = {
(

x1

〈0.8,0.6,0.3,0.4〉 , [0.8, 0.85]
)
,(

x2

〈0.6,0.2,0.1,0.01〉 , [0.4, 0.5]
)
,
(

x3

〈0.7,0.5,0.3,0.4〉 , [0.6, 0.7]
)
}

Hη(e2) = {
(

x1

〈0.7,0.6,0.3,0.2〉 , [0.6, 0.75]
)
,(

x2

〈0.4,0.2,0.2,0.7〉 , [0.8, 0.9]
)
,
(

x3

〈0.9,0.7,0.1,0.2〉 , [0.35, 0.5]
)
}

Also, the intersection Kδ = Fρ∩̃Gµ is defined as,

Kδ(e1) = {
(

x1

〈0.3,0.1,0.4,0.5〉 , [0.5, 0.6]
)
,(

x2

〈0.2,0.1,0.1,0.6〉 , [0.25, 0.3]
)
,
(

x3

〈0.5,0.3,0.4,0.6〉 , [0.4, 0.6]
)
}

Kδ(e2) = {
(

x1

〈0.2,0.3,0.5,0.7〉 , [0.1, 0.2]
)
,(

x2

〈0.1,0.2,0.6,0.7〉 , [0.45, 0.6]
)
,
(

x3

〈0.5,0.5,0.3,0.6〉 , [0.3, 0.4]
)
}

Proposition 2. For any Fρ, Gµ, HηεIPQSV NSS(X,E),
the following results hold:
1. (i) Fρ∪̃Gµ = Gµ∪̃Fρ
(ii) Fρ∩̃Gµ = Gµ∩̃Fρ
2. (i) Fρ∪̃ (Gµ∪̃Hη) = (Fρ∪̃Gµ) ∪̃Hη

(ii) Fρ∩̃ (Gµ∩̃Hη) = (Fρ∩̃Gµ) ∩̃Hη
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3. (i) Fρ∪̃θ̃0̄ = Fρ
(ii) Fρ∩̃θ̃0̄ = θ̃0̄

(iii) Fρ∪̃Ã1̄ = Ã1̄

(iv) Fρ∩̃Ã1̄ = Fρ
4. (i)

(
F cρ
)c

= Fρ

(ii) Ãc1̄ = θ̃0̄

(iii)
(
θ̃0̄

)c
= Ã1̄

5. (i) (Fρ∪̃Gµ)
c

= (Fρ)
c ∩̃ (Gµ)

c

(ii) (Fρ∩̃Gµ)
c

= (Fρ)
c ∪̃ (Gµ)

c

Proofs are straight-forward.

4 Some uncertainty-based measures on
IPQSVNSS

4.1 Entropy measure
Definition 14. Let IPQSV NSS(X,E) denotes the set of
all IPQSVNSS over the soft universe (X,E). A mapping
ε : IPQSV NSS(X,E) → [0, 1] is said to be a measure of
entropy if it satisfies the following properties:
(e1) ε

(
F cρ
)

= ε (Fρ)

(e2)ε (Fρ) ≤ ε (Gµ) whenever Fρ⊆̃Gµwith feF (x) ≥ feG(x) ≥
teG(x) ≥ teF (x), ueF (x) ≥ ueG(x) ≥ ceG(x) ≥ ceF (x) and
ρ−e (x) + ρ+

e (x) ≤ 1.
(e3) ε (Fρ) = 1 iff teF (x) = feF (x), ceF (x) = ueF (x) and
ρ−e (x) + ρ+

e (x) = 1, ∀xεX and ∀eεE.

Theorem 1. The mapping e : IPQSV NSS(X,E) → [0, 1]
defined as, ε (Fρ) = 1 − 1

||X||.||E||
∑
eεE

∑
xεX |teF (x) −

feF (x)|.|ceF (x) − ueF (x)|.|1 − {ρ+
e (x) + ρ−e (x)}| is an entropy

measure for IPQSVNSS.

Proof:

(i) ε
(
F cρ
)

= 1 − 1
||X||.||E||

∑
eεE

∑
xεX |feF (x) −

teF (x)|.|ueF (x)− ceF (x)|.|1− {(1− ρ−e (x)) + (1− ρ+
e (x))}|

= 1 − 1
||X||.||E||

∑
eεE

∑
xεX |teF (x) − feF (x)|.|ceF (x) −

ueF (x)|.|1− {ρ+
e (x) + ρ−e (x)}| = ε (Fρ).

(ii) Suppose that Fρ⊆̃Gµ and feG(x) ≥ teG(x),
ueG(x) ≥ ceG(x) , ρ−e (x) + ρ+

e (x) ≤ 1. Automatically,
µ−e (x) + µ+

e (x) ≤ 1. Thus, feF (x) ≥ feG(x), teG(x) ≥ teF (x),
ueF (x) ≥ ueG(x), ceG(x) ≥ ceF (x), µ−e (x) ≥ ρ−e (x) ,
µ+
e (x) ≥ ρ+

e (x), and feG(x) ≥ teG(x), ueG(x) ≥ ceG(x) ,
ρ−e (x) + ρ+

e (x) ≤ 1.
⇒ feF (x) ≥ feG(x) ≥ teG(x) ≥ teF (x), ueF (x) ≥ ueG(x) ≥
ceG(x) ≥ ceF (x) , µ−e (x) ≥ ρ−e (x) , µ+

e (x) ≥ ρ+
e (x) and

ρ−e (x) + ρ+
e (x) ≤ 1, µ−e (x) + µ+

e (x) ≤ 1.
From the above relations it follows that teG(x) − feG(x) ≥
teF (x)− feF (x) but teG(x)− feG(x) ≤ 0, teF (x)− feF (x) ≤ 0
⇒ |teG(x) − feG(x)| ≤ |teF (x) − feF (x)|. Similarly,

|ceG(x)−ueG(x)| ≤ |ceF (x)−ueF (x)| and |1−{µ+
e (x)+µ−e (x)}| ≤

|1− {ρ+
e (x) + ρ−e (x)}|, ∀xεX , ∀eεE. Then,

|teG(x)− feG(x)|.|ceG(x)− ueG(x)|.|1− {µ+
e (x) + µ−e (x)}|

≤ |teF (x)− feF (x)|.|ceF (x)− ueF (x)|.|1− {ρ+
e (x) + ρ−e (x)}|

⇒ 1 − 1
||X||.||E||

∑
eεE

∑
xεX |teF (x) − feF (x)|.|ceF (x) −

ueF (x)|.|1− {ρ+
e (x) + ρ−e (x)}|

≤ 1 − 1
||X||.||E||

∑
eεE

∑
xεX |teG(x) − feG(x)|.|ceG(x) −

ueG(x)|.|1− {µ+
e (x) + µ−e (x)}|

⇒ ε (Fρ) ≤ ε (Gµ)

(iii) ε (Fρ) = 1
⇔ 1 − 1

||X||.||E||
∑
eεE

∑
xεX |teF (x) − feF (x)|.|ceF (x) −

ueF (x)|.|1− {ρ+
e (x) + ρ−e (x)}| = 1

⇔ 1
||X||.||E||

∑
eεE

∑
xεX |teF (x)−feF (x)|.|ceF (x)−ueF (x)|.|1−

{ρ+
e (x) + ρ−e (x)}| = 0

⇔ |teF (x) − feF (x)| = 0, |ceF (x) − ueF (x)| = 0,
|1− {ρ+

e (x) + ρ−e (x)}| = 0, for each xεX and each eεE.
⇔ teF (x) = feF (x), ceG(x) = ueG(x), ρ+

e (x) + ρ−e (x) = 1, for
each xεX and each eεE.

Remark 1. In particular, from Theorem 1, it follows that,
ε
(
Ã1̄

)
= 0 and ε

(
θ̃0̄

)
= 0.

Proof is straight-forward.

4.1.1 An application of entropy measure in decision making
problem

The entropy measure not only provides an all over information
about the amount of uncertainty ingrained in a particular struc-
ture, it can also be implemented as an efficient tool in decision
making processes. Often while dealing with a selection process
subject to a predefined set of requisitions, the procedure involves
allocation of weights in order to signify the order of preference
of the criteria under consideration. In what follows next, the
entropy measure corresponding to an IPQSVNSS has been uti-
lized in defining weights corresponding to each of the elements
of the parameter set over which the IPQSVNSS has been defined.

The algorithm is defined as follows:

Step 1: Represent the data in hand in the form of an IPQSVNSS,
say Fρ.
Step 2: Calculate the entropy measure ε (Fρ), as defined in
Theorem 1.
Step 3: For each αεE, assign weights ωF (α), given by the
formula,
ωF (α) =

ε(Fρ)
κF (α) , where κF (α) = 1− 1

||X||.||E||
∑
xεX |tαF (x)−

fαF (x)|.|cαF (x)− uαF (x)|.|1− {ρ+
α (x) + ρ−α (x)}|.

Step 4: Corresponding to each option xεX , calculate the net
score, defined as,
score(xi) =

∑
e ωF (α).[tαF (xi) + cαF (xi) + {1 − uαF (xi)} +

{1− fαF (xi)}].{ρ
+
α (xi)+ρ

−
α (xi)

2 }.
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Step 5: Arrange score(xi) in the decreasing order of values.
Step 6: Select maxi{score(xi)}. If maxi{score(xi)} =
score(xm), xmεX , then xm is the selected option.

Theorem 2. Corresponding to each parameter αεE,
ωF (α) =

ε(Fρ)
κF (α) is such that 0 ≤ ωF (α) ≤ 1.

Proof:

From the definition of κF (α) and ε (Fρ), it is clear that
ωF (α) ≥ 0.
Consider |tαF (x) − fαF (x)|.|cαF (x) − uαF (x)|.|1 − {ρ+

α (x) +
ρ−α (x)}|. It follows that,∑
αεE

∑
xεX |tαF (x) − fαF (x)|.|cαF (x) − uαF (x)|.|1 − {ρ+

α (x) +
ρ−α (x)}| ≥

∑
xεX |tαF (x) − fαF (x)|.|cαF (x) − uαF (x)|.|1 −

{ρ+
α (x) + ρ−α (x)}|, whenever ||X|| ≥ 1.

⇒ 1 − 1
||X||.||E||

∑
αεE

∑
xεX |tαF (x) − fαF (x)|.|cαF (x) −

uαF (x)|.|1−{ρ+
α (x) + ρ−α (x)}| ≤ 1− 1

||X||.||E||
∑
xεX |tαF (x)−

fαF (x)|.|cαF (x)− uαF (x)|.|1− {ρ+
α (x) + ρ−α (x)}|

⇒ ε (Fρ) ≤ κF (α)

⇒ ωF (α) =
ε(Fρ)
κF (α) ≤ 1, for each αεE.

Example 3. Suppose a person wishes to buy a phone and
the judging parameters he has set are a: appearance, c: cost, b:
battery performance, s: storage and l: longevity. Further suppose
that he has to choose between 3 available models, say x1, x2, x3

of the desired product. After a survey has been conducted by
the buyer both by word of mouth from the current users and
the salespersons, the resultant information is represented in the
form of an IPQSVNSS, say Fρ as follows, where it is assumed
that corresponding to an available option, a higher degree of
belongingness signifies a higher degree of agreement with the
concerned parameter:

Fρ(a) = {
(

x1

〈0.4,0.3,0.1,0.5〉 , [0.5, 0.6]
)
,(

x2

〈0.8,0.1,0.0,0.01〉 , [0.6, 0.7]
)
,
(

x3

〈0.6,0.3,0.2,0.5〉 , [0.45, 0.5]
)
}

Fρ(c) = {
(

x1

〈0.8,0.1,0.1,0.2〉 , [0.7, 0.75]
)
,(

x2

〈0.5,0.01,0.1,0.6〉 , [0.4, 0.55]
)
,
(

x3

〈0.7,0.2,0.1,0.1〉 , [0.6, 0.65]
)
}

Fρ(b) = {
(

x1

〈0.65,0.3,0.1,0.2〉 , [0.6, 0.65]
)
,(

x2

〈0.8,0.2,0.1,0.0〉 , [0.75, 0.8]
)
,
(

x3

〈0.4,0.5,0.3,0.6〉 , [0.7, 0.8]
)
}

Fρ(s) = {
(

x1

〈0.5,0.4,0.3,0.6〉 , [0.7, 0.8]
)
,(

x2

〈0.85,0.1,0.0,0.01〉 , [0.8, 0.85]
)
,
(

x3

〈0.8,0.2,0.1,0.02〉 , [0.85, 0.9]
)
}

Fρ(l) = {
(

x1

〈0.6,0.3,0.2,0.5〉 , [0.45, 0.55]
)
,(

x2

〈0.75,0.3,0.3,0.2〉 , [0.67, 0.75]
)
,
(

x3

〈0.75,0.3,0.2,0.2〉 , [0.7, 0.75]
)
}

Following steps 2-6, we have the following results:

(2) ε (Fρ) = 0.982
(3) ωF (a) = 0.984, ωF (c) = 0.983, ωF (b) = 0.988, ωF (s) =

0.99, ωF (l) = 0.984
(4) score(x1) = 7.193, score(x2) = 9.097, score(x3) = 8.554
(5) score(x2) > score(x3) > score(x1)
(6) x2 is the chosen model.

4.2 Inclusion measure
Definition 15. A mapping I : IPQSV NSS(X,E) ×
IPQSV NSS(X,E)→ [0, 1] is said to be an inclusion measure
for IPQSVNSS over the soft universe (X,E) if it satisfies the
following properties:
(I1) I

(
Ã1̄, θ̃0

)
= 0

(I2) I (Fρ, Gµ) = 1⇔ Fρ⊆̃Gµ
(I3) if Fρ⊆̃Gµ⊆̃Hη then I (Hη, Fρ) ≤ I (Gµ, Fρ) and
I (Hη, Fρ) ≤ I (Hη, Gµ)

Theorem 3. The mapping I : IPQSV NSS(X,E) → [0, 1]
defined as,
I (Fρ, Gµ) = 1 − 1

6||X||.||E||
∑
eεE

∑
xεX [|teF (x) −

min{teF (x), teG(x)}| + |ceF (x) − min{ceF (x), ceG(x)}| +
|max{ueF (x), ueG(x)} − ueF (x)| + |max{feF (x), feG(x)} −
feF (x)| + |ρ−e (x) − min{ρ−e (x), µ−e (x)}| + |ρ+

e (x) −
min{ρ+

e (x), µ+
e (x)}|], is an inclusion measure for IPQSVNSS.

Proof:

(i) Clearly, according to the definition of the proposed
measure, I

(
Ã1̄, θ̃0

)
= 0

(ii) From the definition of the proposed measure, it fol-
lows that,
I (Fρ, Gµ) = 1,
⇔

∑
eεE

∑
xεX [|teF (x) − min{teF (x), teG(x)}| +

|ceF (x) − min{ceF (x), ceG(x)}| + |max{ueF (x), ueG(x)} −
ueF (x)| + |max{feF (x), feG(x)} − feF (x)| + |ρ−e (x) −
min{ρ−e (x), µ−e (x)}| + |ρ+

e (x) − min{ρ+
e (x), µ+

e (x)}|] =
0,∀xεX,∀eεE.
⇔ |teF (x) − min{teF (x), teG(x)}| = 0, |ceF (x) −
min{ceF (x), ceG(x)}| = 0, |max{ueF (x), ueG(x)} − ueF (x)| = 0,
|max{feF (x), feG(x)} − feF (x)| = 0, |ρ−e (x) −
min{ρ−e (x), µ−e (x)}| = 0 and |ρ+

e (x)−min{ρ+
e (x), µ+

e (x)}| =
0,∀xεX,∀eεE.
Now, |teF (x)−min{teF (x), teG(x)}| = 0⇔ teF (x) ≤ teG(x).
Similarly, it can be shown that, ceF (x) ≤ ceG(x), ueF (x) ≥
ueG(x), feF (x) ≥ feG(x), ρ−e (x) ≤ µ−e (x) and ρ+

e (x) ≤
µ+
e (x),∀xεX,∀eεE which proves Fρ⊆̃Gµ.

(iii) Suppose, Fρ⊆̃Gµ⊆̃Hη . Thus we have, teF (x) ≤ teG(x) ≤
teH(x), ceF (x) ≤ ceG(x) ≤ ceH(x), ueF (x) ≥ ueG(x) ≥ ueH(x),
feF (x) ≥ feG(x) ≥ feH(x), ρ−e (x) ≤ µ−e (x) ≤ η−e (x) and
ρ+
e (x) ≤ µ+

e (x) ≤ η+
e (x) for all xεX and eεE.

⇒ I (Hη, Fρ) ≤ I (Gµ, Fρ).
In an exactly analogous manner, it can be shown that,
I (Hη, Fρ) ≤ I (Hη, Gµ). This completes the proof.
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Example 4. Consider IPQSVNSS Fρ, Gµ in Example 1,
then I (Fρ, Gµ) = 0.493.

4.3 Distance measure

Definition 16. A mapping d : IPQSV NSS(X,E) ×
IPQSV NSS(X,E)→ R+ is said to be a distance measure be-
tween IPQSVNSS if for any Fρ, Gµ, HηεIPQSV NSS(X,E)
it satisfies the following properties:
(d1) d (Fρ, Gµ) = d (Gµ, Fρ)
(d2) d (Fρ, Gµ) ≥ 0 and d (Fρ, Gµ) = 0⇔ Fρ = Gµ
(d3) d (Fρ, Hη) ≤ d (Fρ, Gµ) + d (Gµ, Hη)
In addition to the above conditions, if the mapping d satisfies the
condition
(d4) d (Fρ, Gµ) ≤ 1, ∀Fρ, GµεIPQSV NSS(X,E)
it is called a Normalized distance measure for IPQSVNSS.

Theorem 4. The mapping dh : IPQSV NSS(X,E) ×
IPQSV NSS(X,E)→ R+defined as,
dh (Fρ, Gµ) =

∑
eεE

∑
xεX(|teF (x) − teG(x)| + |ceF (x) −

ceG(x)| + |ueF (x) − ueG(x)| + |feF (x) − feG(x)| + |ρ−e (x) −
µ−e (x)|+|ρ+

e (x)−µ+
e (x)|) is a distance measure for IPQSVNSS.

It is known as the Hamming Distance.

Proofs are straight-forward.

Definition 17. The corresponding Normalized Hamming
distance for IPQSVNSS is defined as dNh (Fρ, Gµ) =

1
6||X||.||E||dh (Fρ, Gµ), where ||.|| denotes the cardinality
of a set.

Theorem 5. The mapping dE : IPQSV NSS(X,E) ×
IPQSV NSS(X,E)→ R+defined as,
dE (Fρ, Gµ) =

∑
eεE

∑
xεX{(teF (x) − teG(x))2 + (ceF (x) −

ceG(x))2 + (ueF (x)− ueG(x))2 + (feF (x)− feG(x))2 + (ρ−e (x)−
µ−e (x))2 + (ρ+

e (x) − µ+
e (x))2} 1

2 is a distance measure for
IPQSVNSS. It is known as the Euclidean Distance.

Proofs are straight-forward.

Definition 18. The corresponding Normalized Hamming
distance for IPQSVNSS is defined as dNE (Fρ, Gµ) =

1
6||X||.||E||dE (Fρ, Gµ).

Proposition 3. Fρ⊆̃Gµ⊆̃Hη iff
(i) dh (Fρ, Hη) = dh (Fρ, Gµ) + dh (Gµ, Hη)
(ii) dNh (Fρ, Hη) = dNh (Fρ, Gµ) + dNh (Gµ, Hη)

Proofs are straight-forward.

Example 5. Consider the IPQSVNSS given in Example 1.
The various distance measures between the sets are obtained
as, dh (Fρ, Gµ) = 5.29, dNh (Fρ, Gµ) = 0.882,dE (Fρ, Gµ) =

4.387, dEN (Fρ, Gµ) = 0.731

4.4 Similarity measure
Definition 19. A mapping s : IPQSV NSS(X,E) ×
IPQSV NSS(X,E) → R+ is said to be a quasi-
similarity measure between IPQSVNSS if for any
Fρ, Gµ, HηεIPQSV NSS(X,E) it satisfies the following
properties:
(s1) s (Fρ, Gµ) = s (Gµ, Fρ)
(s2) 0 ≤ s (Fρ, Gµ) ≤ 1 and s (Fρ, Gµ) = 1⇔ Fρ = Gµ
In addition, if it satisfies
(s3) if Fρ⊆̃Gµ⊆̃Hηthen s (Fρ, Hη) ≤ s (Fρ, Gµ) ∧ s (Gµ, Hη)
then it is known as a similarity measure between IPQSVNSS.

Various similarity measures for quadripartitioned single
valued neutrosophic sets were proposed in [5]. Undertaking a
similar line of approach, as in our previous work [5] we propose
a similarity measure for IPQSVNSS as follows:

Definition 20. Consider Fρ, GµεIPQSV NSS(X,E). Define
functions τF,Gi,e : X → [0, 1], i = 1, 2, .., 5 such that for each
xεX , eεE
τF,G1,e (x) = |teG(x)− teF (x)|
τF,G2,e (x) = |feF (x)− feG(x)|
τF,G3,e (x) = |ceG(x)− ceF (x)|
τF,G4,e (x) = |ueF (x)− ueG(x)|
τF,G5,e (x) = |ρ−e (x)− µ−e (x)|
τF,G6,e (x) = |ρ+

e (x)− µ+
e (x)|

Finally, define a mapping s : IPQSV NSS(X,E) ×
IPQSV NSS(X,E) → R+ as, s (Fρ, Gµ) = 1 −

1
6||X||.||E||

∑
eεE

∑
xεX

∑6
i=1 τ

F,G
i,e (x)

Theorem 6. The mapping s (Fρ, Gµ) defined above is a 
similarity measure.

Proof:

(i) It is easy to prove that s(Fρ, Gµ) = s(Gµ, Fρ).

(ii) We have, teF (x), ceF (x), ueF (x), feF (x)ε[0, 1] and
ρe(x), µe(x)εInt([0, 1]) for each xεX, eεE. Thus, τF,G1,e (x)
attains its maximum value if either one of teF (x) or teG(x) is equal
to 1 while the other is 0 and in that case the maximum value is 1.
Similarly, it attains a minimum value 0 if teF (x) = teG(x). So, it
follows that 0 ≤ τF,G1,e (x) ≤ 1, for each xεX . Similarly it can be
shown that τF,Gi,e (x), i = 2, ..., 6 lies within [0, 1] for each xεX .
So,
0 ≤

∑6
i=1 τ

F,G
i,e (x) ≤ 6

⇒ 0 ≤
∑
eεE

∑
xεX

∑n
i=1 τ

F,G
i,e (x) ≤ 6||X||.||E||

which implies 0 ≤ s(Fρ, Gµ) ≤ 1.
Now s(Fρ, Gµ) = 1 iff

∑n
i=1 τi,e(x) = 0 for each xεX, eεE

⇔ teF (x) = teG(x), ceF (x) = ceG(x), ueF (x) = ueG(x),
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feF (x) = feG(x) and ρ−e (x) = µ−e (x), ρ+
e (x) = µ+

e (x) , for all
xεX, eεE i.e.. iff Fρ, Gµ.

(iii) Suppose Fρ⊆̃Gµ⊆̃Hη . then, we have, teF (x) ≤ teG(x) ≤
teH(x), ceF (x) ≤ ceG(x) ≤ ceH(x), ueF (x) ≥ ueG(x) ≥ ueH(x),
feF (x) ≥ feG(x) ≥ feH(x), ρ−e (x) ≤ µ−e (x) ≤ η−e (x) and
ρ+
e (x) ≤ µ+

e (x) ≤ η+
e (x) for all xεX and eεE. Con-

sider τF,G1,e (x) and τF,G2,e (x). Since teF (x) ≤ teG(x) holds,
it follows that, |teG(x)− teF (x)| ≤ |teH(x)− teF (x)|⇒
τF,G1,e (x) ≤ τF,H1,e (x). Similarly it can be shown that
τF,Gi,e (x) ≤ τF,Hi,e (x), for i = 3, 5, 6 and all xεX . Next,
consider τF,G2,e (x).
Since, feF (x) ≥ feG(x) ≥ feH(x), it follows that
feF (x) − feG(x) ≤ feF (x) − feH(x) where feF (x) − feG(x) ≥ 0,
feF (x)−feH(x) ≥ 0. Thus, |feF (x)−feG(x)| ≤ |feF (x)−feH(x)|⇒
τF,G3,e (x) ≤ τF,H3,e (x).
Also, it can be shown that τF,G4,e (x) ≤ τF,H4,e (x) respectively for
each xεX .
Thus, we have,

∑
eεE

∑
xεX

∑n
i=1 τ

F,G
i,e (x) ≤∑

eεE

∑
xεX

∑n
i=1 τ

F,H
i,e (x)

⇒ 1 − 1
6||X||.||E||

∑
eεE

∑
xεX

∑n
i=1 τ

F,H
i,e (x) ≤

1− 1
6||X||.||E||

∑
eεE

∑
xεX

∑n
i=1 τ

F,G
i,e (x)

⇒ s (Fρ, Hη) ≤ s (Fρ, Gµ)
In an analogous manner, it can be shown that
s (Fρ, Hη) ≤ s (Gµ, Hη). Thus, we have, s (Fρ, Hη) ≤
s (Fρ, Gµ) ∧ s (Gµ, Hη)

Remark 2. s(Ã1̄, θ̃0̄) = 0.

Proof :

For each xεX and eεE,
τ
Ã1̄,θ̃0̄
1 (x) = |te

θ̃0̄
(x) − te

Ã1̄
(x)| = 1, τ

Ã1̄,θ̃0̄
2 (x) =

|fe
Ã1̄

(x)− fe
θ̃0̄

(x)| = 1

τ
Ã1̄,θ̃0̄
3 (x) = |ce

θ̃0̄
(x) − ce

Ã1̄
(x)| = 1, τ

Ã1̄,θ̃0̄
4 (x) =

|ue
Ã1̄

(x)− ue
θ̃0̄

(x)| = 1

τ
Ã1̄,θ̃0̄
5 (x) = |ρ−e (x) − µ−e (x)| = 1, τ

Ã1̄,θ̃0̄
6 (x) =

|ρ+
e (x)− µ+

e (x)| = 1

which yields
∑
eεE

∑
xεX

∑6
i=1 τ

Ã1̄,θ̃0̄
i (x) = 6||X||.||E||

⇒ s(Ã1̄, θ̃0̄) = 1 − 1
6||X||.||E||

∑
eεE

∑
xεX

∑6
i=1 τ

Ã1̄,θ̃0̄
i (x) =

0.

Definition 21. Suppose Fρ, GµεIPQSV NSS(X,E).
Consider functions τF,Gi,e : X → [0, 1], i =
1, 2, .., 5 as in Definition 1. Define a mapping sω :
IPQSV NSS(X,E) × IPQSV NSS(X,E) → R+ as,

sω (Fρ, Gµ) = 1 −
∑
eεE

∑
xεX

∑6
i=1 ω(e)τF,Gi,e (x)

6||X||.||E||
∑
eεE ω(e) , where ω(e) is

the weight allocated to the parameter eεE and ω(e)ε[0, 1], for
each eεE.

Theorem 7. sω (Fρ, Gµ) is a similarity measure.

Proof is similar to that of Theorem 6.

Remark 3. sω (Fρ, Gµ) is the weighted similarity measure
between any two IPQSVNSS Fρ and Gµ.

4.4.1 Allocation of entropy-based weights in calculating
weighted similarity

It was shown in Section 4.1.1 how entropy measure could be
implemented to allocate specific weights to the elements of the
parameter set. In this section, it is shown how the entropy-based
weights can be implemented in calculating weighted similarity.
Consider an IPQSVNSS Fρ defined over the soft universe
(X,E). Let ωF (e)ε[0, 1] be the weight allocated to an element
eεE, w.r.t. the IPQSVNSS Fρ.
Define ωF (α) as before, viz.
ωF (α) =

ε(Fρ)
κF (α) , where κF (α) = 1− 1

||X||.||E||
∑
xεX |tαF (x)−

fαF (x)|.|cαF (x)− uαF (x)|.|1− {ρ+
α (x) + ρ−α (x)}|

Consider any two IPQSVNSS Fρ, GµεIPQSV NSS(X). Fol-
lowing Definition C, the weighted similarity measure between
these two sets can be defined as
sω (Fρ, Gµ) = 1 −

∑
eεE ω(α){

∑
xεX

∑6
i=1 τ

F,G
i (x)}

6||X||.||E||
∑
eεE ω(α) , where

ω(α) = ωF (α)+ωG(α)
2 , and ωG(α) =

ε(Gµ)
κG(α) is the weight

allocated to the parameter αεE w.r.t. the IPQSVNSS Gµ.
From previous results clearly, ωF (α), ωG(α)ε[0, 1] ⇒
ω(α)ε[0, 1].

Example 6. Consider Fρ, GµεIPQSV NSS(X) as de-
fined in Example 1. Then s (Fρ, Gµ) = 0.738. Also, ωF (e1) =
0.983, ωG(e1) = 0.987, ωF (e2) = 0.993, ωG(e2) = 0.988,
which gives, ω(e1) = 0.985, ω(e2) = 0.991 which finally yields
sω (Fρ, Gµ) = 0.869.

5 Relation between the various uncer-
tainty based measures

Theorem 8. s1
d (Fρ, Gµ) = 1 − dNh (Fρ, Gµ) is a similarity

measure.

Proof:

(i) dNh (Fρ, Gµ) = dNh (Gµ, Fρ)⇒ s1
d (Fρ, Gµ) = s1

d (Gµ, Fρ)
(ii) 0 ≤ dNh (Fρ, Gµ) ≤ 1⇒ 0 ≤ s1

d (Fρ, Gµ) ≤ 1
Also, s1

d (Fρ, Gµ) = 1⇔ dNh (Fρ, Gµ) = 0⇔ Fρ = Gµ.
(iii) Whenever Fρ⊆̃Gµ⊆̃Hη , dNh (Fρ, Hη) = dNh (Fρ, Gµ) +
dNh (Gµ, Hη). Thus,
s1
d (Fρ, Gµ) − s1

d (Fρ, Hη) = 1 − dNh (Fρ, Gµ) − 1 +
dNh (Fρ, Hη) = dNh (Fρ, Hη) − dNh (Fρ, Gµ) = dNh (Gµ, Hη) ≥
0, from property of distance measure.
⇒ s1

d (Fρ, Hη) ≤ s1
d (Fρ, Gµ).

Similarly, it can be shown that, s1
d (Fρ, Hη) ≤ s1

d (Gµ, Hη).
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Hence, s1
d (Fρ, Hη) ≤ s1

d (Fρ, Gµ) ∧ s1
d (Gµ, Hη).

Remark 4. For any similarity measures (Fρ, Gµ) , 1−s (Fρ, Gµ)
may not be a distance measure.

Theorem 9.s2
d (Fρ, Gµ) = 1

1+dh(Fρ,Gµ) is a similarity measure.

Proof:

(i) dh (Fρ, Gµ) = dh (Gµ, Fρ)⇒ s2
d (Fρ, Gµ) = s2

d (Gµ, Fρ)
(ii) dh (Fρ, Gµ) ≥ 0 ⇒ 0 ≤ s2

d (Fρ, Gµ) ≤ 1. Also,
s2
d (Fρ, Gµ) = 1⇔ dh (Fρ, Gµ) = 0⇔ Fρ = Gµ.

(iii) dh (Fρ, Hη) = dh (Fρ, Gµ) + dh (Gµ, Hη) whenever
Fρ⊆̃Gµ⊆̃Hη .
⇒ dh (Fρ, Hη) ≥ dh (Fρ, Gµ) and dh (Fρ, Hη) ≥ dh (Gµ, Hη).
⇒ 1

1+dh(Fρ,Hη) ≤
1

1+dh(Fρ,Gµ) ⇒ s2
d (Gµ, Fρ) ≤ s2

d (Fρ, Gµ).
Similarly, it can be shown that, s2

d (Gµ, Fρ) ≤ s2
d (Gµ, Hη).

Corollary 1. s3
d (Fρ, Gµ) = 1

1+dNh (Fρ,Gµ)
is a similarity

measure.

Proofs follow in the exactly same way as the previous the-
orem.

Remark 5. For any similarity measure s (Fρ, Gµ) , 1
s(Fρ,Gµ) − 1

may not be a distance measure.

Theorem 10 Consider the similarity measure s (Fρ, Gµ).
s (Fρ, Fρ∩̃Gµ)is an inclusion measure.

Proof:

(i) Choose Fρ = Ã1̄ and Gµ = θ̃0̄. Then, s (Fρ, Fρ∩̃Gµ) =

s(Ã1̄, θ̃0̄) = 0, from previous result.
(ii) s (Fρ, Fρ∩̃Gµ) = 1⇔ Fρ = Fρ∩̃Gµ ⇔ Fρ⊆̃Gµ.
(iii) Let Fρ⊆̃Gµ⊆̃Hη . Then, s (Fρ, Hη) ≤ s (Fρ, Gµ) and
s (Fρ, Hη) ≤ s (Gµ, Hη) hold. Consider s (Fρ, Hη) ≤
s (Fρ, Gµ). From commutative property of similarity measure,
it follows that, s (Hη, Fρ) ≤ s (Gµ, Fρ) ⇒ s (Hη, Hη∩̃Fρ) ≤
s (Gµ, Gµ∩̃Fρ). Similarly, s (Hη, Hη∩̃Fρ) ≤ s (Fρ, Fρ∩̃Gµ).

Theorem 11.1− dh (Fρ, Fρ∩̃Gµ) is an inclusion measure.

Proof follows from the results of Theorem 8 and Theorem
10.

Theorem 12. 1
1+dh(Fρ,Fρ∩̃Gµ)

and 1
1+dNh (Fρ,Fρ∩̃Gµ)

are in-
clusion measures.

Proofs follow from Theorem 9,Corollary 1 and Theorem
10.

Theorem 13. Let e : IPQSV NSS(X,E) → [0, 1] be a
measure of entropy such that ε(Fρ) ≤ ε(Gµ) ⇒ Fρ⊆̃Gµ. Then

|ε(Fρ)− ε(Gµ)| is a distance measure.

Proof:

(i) |ε(Fρ)− ε(Gµ)| = |ε(Gµ)− ε(Fρ)|
(ii) |ε(Fρ) − ε(Gµ)| ≥ 0 and in particular, |ε(Fρ) − ε(Gµ)| =
0 ⇔ ε(Fρ) = ε(Gµ) ⇔ ε(Fρ) ≤ ε(Gµ) and
ε(Fρ) ≥ ε(Gµ)⇔ Fρ = Gµ
(iii) Triangle inequality follows from the fact that,
|ε(Fρ) − ε(Hη)| ≤ |ε(Fρ) − ε(Gµ)| + |ε(Gµ) − ε(Hη)|
for any Fρ, Gµ, HηεIPQSV NSS(X,E).

6 Conclusions and Discussions

In this paper, the concept of interval possibility quadripartitioned 
single valued neutrosophic sets has been proposed. In the present 
set-theoretic structure an interval valued gradation of possibil-
ity viz. the chance of occurrence of an element with respect to 
a certain criteria is assigned and depending on that possibility of 
occurrence the degree of belongingness, non-belongingness, con-
tradiction and ignorance are assigned thereafter. Thus, this struc-
ture comes as a generalization of the existing structures involv-
ing the theory of possibility namely, possibility fuzzy soft sets 
and possibility intuitionistic fuzzy soft sets. In the present work, 
the relationship between the various uncertainty based measures 
have been established. Applications have been shown where the 
entropy measure has been utilized to assign weights to the ele-
ments of the parameter set which were later implemented in a 
decision making problem and also in calculating a weighted sim-
ilarity measure. The proposed theory is expected to have wide 
applications in processes where parameter-based selection is in-
volved.

7 Acknowledgements

The research of the first author is supported by University JRF
(Junior Research Fellowship).
The research of the third author is partially supported by the Spe-
cial Assistance Programme (SAP) of UGC, New Delhi, India
[Grant no. F 510/3/DRS-III/(SAP-I)].

References
[1] H. Aktas and N. Cagman Soft sets and soft groups, Information Sciences,

177 (2007), 2726–2735.
[2] S. Alkhazaleh, A. R. Salleh and Nasruddin Hassan Possibility Fuzzy Soft

Set, Advances in Decision Sciences, 2011 (2011), 1-18.
[3] M. Bashir, A. R. Salleh and S. Alkhazaleh Possibility Intuitionistic Fuzzy

Soft Set, Advances in Decision Sciences, 2012 (2012), 1-24.
[4] N. D. Belnap Jr. A useful four valued logic, Modern Uses of Multiple-

Valued Logic, 1904 (1977), 9-37.

R. Chatterjee, P. Majumdar and S. K. Samanta, Interval-valued Possibility Quadripartitioned Single Valued Neutrosophic Soft Sets 
and some uncertainty based measures on them

42 Neutrosophic Sets and Systems, Vol. 14, 2016

[5] R. Chatterjee, P. Majumdar and S. K. Samanta On some similarity mea-
sures and entropy on quadripartitioned single valued neutrosophic sets,
Journal of Intelligent and Fuzzy Systems, 30(4) (2016), 2475-2485.



[6] D. Chen, E. C. C. Tsang, D. S. Yeung and X. Wang The parametrized
reduction of soft sets and its applications, Computers and Mathematics
with Applications, 49 (2009), 757-763.

[7] S. Das and S. K. Samanta Soft real sets, soft real numbers and their prop-
erties, Journal of Fuzzy Mathematics, 20(3) (2012), 551-576.

[8] P. K. Maji, R. Biswas and A. R. Roy Fuzzy soft sets, Journal of fuzzy
mathematics, 9(3) (2001), 589-602.

[9] P. K. Maji, R. Biswas and A. R. Roy Intuitionistic fuzzy soft sets, Journal
of fuzzy mathematics, 9(3) (2001), 677-692.

[10] P. K. Maji, R. Biswas and A. R. Roy Soft set theory, Computers and
Mathematics with Applications,45 (2003), 555-562.

[11] P. K. Maji Neutrosophic soft set, Annals of Fuzzy Mathematics and Infor-
matics, 5(1) (2013), 157-168.

[12] P. Majumdar and S. K. Samanta Similarity measureof soft sets, New
Mathematics and Natural Computation, 4(1) (2008), 1-12.

[13] P. Majumdar and S. K. Samanta Generalized fuzzy soft sets, Computers
and Mathematics with Applications, 59 (2010), 1425-1432.

[14] P. Majumdar and S. K. Samanta Softness of a soft set: soft set entropy,
Annals of Fuzzy Mathematics with Informatics, 6(1) (2013), 50-68.

[15] D. Molodstov Soft set theory-First results, Computers and Mathematics
with Applications, 37 (1999), 19-31.

[16] M. M. Mushrif, S. Sengupta and A. K. Roy Texture classification using a
novel soft-set theory based classification algorithm, Springer-Verlag Berlin
Heidelberg (2006), 246-254.

[17] D. Pei and D. Miao From soft sets to information systems, Proceedings of
Granular Computing 2 IEEE (2005), 617-621.

[18] F. Smarandache n-valued Refined Neutrosophic Logic and Its Applications
to Physics, arXiv preprint arXiv:1407.1041 (2014).

[19] H. Wang, F. Smarandache, Y. Zhang and R Sunderraman Single Valued
Neutrosophic Sets, Multispace and Multistructure, 4 (2010), 410-413.

R. Chatterjee, P. Majumdar and S. K. Samanta, Interval-valued Possibility Quadripartitioned Single Valued Neutrosophic Soft Sets 
and some uncertainty based measures on them

Neutrosophic Sets and Systems, Vol. 14, 2016  43

Received: November 15, 2016.   Accepted: November 22, 2016



W.B. Vasantha Kandasamy, K. Ilanthenral, and Florentin Smarandache3Modified Collatz conjecture or (3a + 1) + (3b + 1)I 
Conjecture for Neutrosophic Numbers Z  I 

Modified Collatz conjecture or (3a + 1) + (3b + 1)I Conjecture 
for Neutrosophic Numbers 〈Z ∪ I〉  

W.B. Vasantha Kandasamy1, K. Ilanthenral2, and Florentin Smarandache3 

1 Department of Mathematics, Indian Institute of Technology (Madras), Chennai, 600 036, India. E-mail: vasantha@iitm.ac.in 
2 School of Computer Science and Engg.,VIT University, Vellore, 632 014, India. E-mail: ilanthenral@gmail.com 

3 Department of Mathematics, University of New Mexico, USA. E-mail: smarand@unm.edu 

Abstract: In this paper, a modified form of Collatz con-

jecture for neutrosophic numbers Z  I is defined. We 

see for any n  Z  I the related sequence using the for-

mula (3a + 1) + (3b + 1)I converges to any one of the 55 

elements mentioned in this paper. Using the akin formula 

of Collatz conjecture viz. (3a 1) + (3b 1)I the neutro-

sophic numbers converges to any one of the 55 elements 

mentioned with appropriate modifications. Thus, it is con-

jectured that every n  Z  I has a finite sequence which 

converges to any one of the 55 elements. 

Keywords: Collatz Conjecture, Modified Collatz Conjecture, Neutrosophic Numbers.

1 Introduction 

The Collatz conjecture was proposed by Lothar Collatz 

in 1937. Till date this conjecture remains open. The 3n – 1 

conjecture was proposed by authors [9]. Later in [9] the 3n 

 p conjecture; a generalization of Collatz Conjecture was 

proposed in 2016 [9]. 

However, to the best of authors knowledge, no one has 

studied the Collatz Conjecture in the context of 

neutrosophic numbers Z  I = {a + bI / a, b  Z; I2 = I} 

where I is the neutrosophic element or indeterminancy 

introduced by [7]. Several properties about neutrosophic 

numbers have been studied. In this paper, authors for the 

first time study Collatz Conjecture for neutrosophic 

numbers. This paper is organized into three sections. 

Section one is introductory. Section two defines / 

describes Collatz conjecture for neutrosophic numbers. 

Final section gives conclusions based on this study. 

Extensive study of Collatz conjecture by researchers can be 

found in [1-6]. Collatz conjecture or 3n + 1 conjecture can 

be described as for any positive integer n perform the 

following operations.  

If n is even divide by 2 and get 
n

2
 if 

n

2
 is even divide 

by 2 and proceed till 
t

n

2
is odd. 

If n is odd multiply n by 3 and add 1 to it and find 

3n + 1. Repeat the process (which has been called Half of 

Triple Plus One or HTPO) indefinitely. The conjecture puts 

forth the following hypothesis; whatever positive number 

one starts with one will always eventually reach 1 after a 

finite number of steps. 

Let n = 3, the related sequence is 3n + 1, 10, 5, 16, 8, 4, 

2, 1. 

Let n = 11, the related sequence is 34, 17, 52, 26, 13, 

40, 20, 10, 5, 16, 8, 4, 2, 1. 

Let n = 15, the related sequence is 15, 46, 23, 70, 35, 

106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1. 

In simple notation of mod 2 this conjecture can be 

viewed as  

n if n 0 (mod 2)
2f (n)

3n 1 if n 1 (mod 2)

 
 

 

. 

The total stopping time for very large numbers have 

been calculated. The 3n – 1 conjecture is a kin to Collatz 

conjecture. 

Take any positive integer n. If n is even divide by 2 and 

get 
n

2
 if 

n

2
 is odd multiply it by 3 and subtract 1 to i.e. 3n 

– 1, repeat this process indefinitely, [9] calls this method as

Half Or Triple Minus One (HOTMO). 

The conjecture state for all positive n, the number will 

converge to 1 or 5 or 17. 

In other words, the 3n – 1 conjecture can be described 

as follows. 

n
if n 0 (mod 2)

f (n) 2
if n 1 (mod 2)

3n 1




 
 

Let n = 3, 3n – 1 = 8, 4, 2, 1. 

Let n = 28, 14, 7, 20, 10, 5. 

n = 17, 50, 25, 74, 37, 110, 55, 164, 82, 41, 122, 61, 182, 91, 

272, 136, 68, 34, 17. 

Several interesting features about the 3n – 1 conjecture 

is derived and described explicitly in [9]. 
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It is pertinent to keep on record in the Coltaz conjecture 

3n + 1 if n is taken as a negative number than using 3n + 1 

for negative values sequence terminate only at – 1 or – 5 or 

– 17. Further the 3n – 1 conjecture for any negative n, the 

sequence ends only in – 1. 

Thus, for using 3n + 1 any integer positive or negative 

the sequence terminates at any one of the values {–17, –5, –

1, 0, 1} and using 3n – 1 the sequence for any integer n 

positive or negative terminates at any one of the values {–1, 

0, 1, 5, 17}. 

2 Collatz Conjecture for the neutrosophic numbers 

Z  I

In this section, we introduce the modified form of 

Collatz conjecture in case of neutrosophic numbers Z  I 

= {a + bI / a, b  Z and I2 = I} where I is the neutrosophic 

element or the indeterminancy introduced by [7]. For more 

info, please refer to [7]. 

Now, we will see how elements of Z  I behave when 

we try to apply the modified form of Collatz conjecture. 

The modified formula for Collatz conjecture for 

neutrosophic numbers n = a + bI is (3a + 1) + (3b + 1)I; if a 

= 0 then 3bI + I = (3b + 1)I is taken if b = 0 then 3a + 1 term 

is taken, however iteration is taken the same number of 

times for a and bI in n = a + bI. 

If n  Z  I is of the form n = a, a  Z then Collatz 

conjecture is the same, when n = aI, a  I, I2 = I then also 

the Collatz conjecture takes the value I; for we say aI is even 

if a is even and aI is odd is a is odd. 

For 3I, 9I, 27I, 15I, 45I, 19I, 35I, 47I, 105I, 101I, 125I 

are all odd neutrosophic numbers. 

Now 12I, 16I, 248I, 256I etc. are even neutrosophic 

numbers. 

The working is instead of adding 1 after multiplying 

with 3 we add I after multiplying with 3. 

For instance consider n = 12I, the sequence for n = 12I 

is as follows: 

12I, 6I, 3I, 3  3I + I = 10I, 5I, 16I, 8I, 4I, 2I, I. 

So the element n = 12I has a sequence which terminates 

at I. 

Consider n = 256I, the sequence is 256I, 128I, 64I, 32I, 

16I, 8I, 4I, 2I, I so converges to I. 

Take n = 31I, 31I is odd so the sequence for n = 31I is 

31I, 94I, 47I, 142I, 71I, 214I, 107I, 322I, 161I, 484I, 

242I, 121I, 364I, 182I, 91I, 274I, 137I, 412I, 206I, 103I, 

310I, 155I, 466I, 233I, 700I, 350I, 175I, 526I, 263I, 790I, 

385I, 1156I, 578I, 289I, 868I, 434I, 217I, 652I, 326I, 163I, 

490I, 245I, 736I, 368I, 184I, 92I, 46I, 23I, 70I, 35I, 106I, 

53I, 160I, 80I, 40I, 20I, 10I, 5I, 16I, 8I, 4I, 2I, I. 

Let n = 45I the sequence is 45I, 136I, 68I, 34I, 17I, 52I, 

26I, 13I, 40I, 20I, 10I, 5I, 16I, 8I, 4I, 2I, I. 

So if n  Z then as usual by the Collatz conjecture the 

sequence converges to 1. If n  ZI then by applying the 

Collatz conjecture it converges to I. Now if x  Z  I that 

is x = a + bI how does x converge.  

We will illustrate this by an example. 

Now if x = a + bI, a, b  Z \ {0}; is it even or odd? We 

cannot define or put the element x to be odd or to be even. 

Thus to apply Collatz conjecture one is forced to define in a 

very different way. We apply the Collatz conjecture 

separately for a and for bI, but maintain the number of 

iterations to be the same as for that of a + bI. We will 

illustrate this situation by some examples. 

Consider n = 3I + 14  Z  I. n is neither odd nor 

even. We use (3a + 1) + (3b + 1)I formula in the following 

way 

3I + 14, 10I + 7, 5I + 22, 16I + 11, 8I + 34, 4I + 17, 

2I + 52, I + 26, 4I + 13, 2I + 40, I + 20, 4I + 10, 2I + 5, 

I + 16, 4I + 8, 2I + 4, I + 2, 4I + 1, 2I + 4, I + 2, 4I +1, 

I + 4, I + 2.  

So the sequence terminates at I + 2. 

Consider n = 3I – 14  Z  I, n is neither even nor 

odd. 

The sequence for this n is as follows. 

3I – 14, 10I – 7, 5I – 20, 16I – 10, 8I – 5, 4I – 14, 

2I – 7, I – 20, 4I – 10, 2I – 5, I – 14, 4I – 7, 

2I – 20, I – 10, 4I – 5, 2I – 14, I – 7, 4I – 20, 2I – 10, I – 5, 

4I – 14, 2I – 7, I – 20, 4I – 10, 2I – 5, ... , I  5. 

So for n = 3I – 14 the sequence converges to 2I – 5. 

Consider n = – 5I – 34; – 5I – 34, –14I –17, –7I – 50, –

20I –25, –10I –74, –5I –37, –14I, –110, –7I –55, 

–20I – 164, –10I – 82, –5I –41, –14I –122, –7I –61,

–20I –182, –10I –91, –5I – 272, –14I –136, –7I – 68,

–20I – 34, –10I –17, –5I – 50, –14I –25, –7I – 74, –20I –37,

–10I –110, –5I –55, –14I –164, –7I –82, –20I –41,

–10I –122, –5I –61, –14I –182, –7I –91, –20I –272,

–10I –136, –5I –68, –14I –34, –7I –17, –20I –50, –10I –25,

–5I –74, –14I –37, –7I –110, –20I –55, –10I –164, –5I –82,

–14I –41, –7I –122, –20I –61, –10I –182, –5I –91,

–14I –272, –7I –136, –20I –68, –10I –34, –5I – 17.  (1) 

n = – 5I – 34, converges to –5I – 17. 

Let n = –10I –17, –5I – 50, –14I –25, –7I –74, 

–20I – 37, –10I –110, –5I – 55, –14I – 164, –7I –82,

–20I – 41, –10I – 122, –5I –61, –14I –182, –7I –91,

–20I –272, –10I – 136, –5I – 68, –14I – 34, –7I –17,

– 20I – 50, –10I –25, –5I –74, –14I –37, –7I – 110,

–20I – 55, –10I – 164, –5I – 82, –14I – 41, 7I – 122,

–20I – 61, –10I – 182, –5I – 91, –14I – 272, –7I –136,

–20I –68, –10I – 34, –5I – 17.

Thus, by using the modified form of Collatz conjecture 

for neutrosophic numbers Z  I we get the following 

collection A of numbers as the limits of finite sequences 

after performing the above discussed operations using the 

modified formula 3(a + bI) + 1 + I or (3a + 1) + (3b + 1)I; a, 
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b  Z \ {0} if a = 0 then (3b + 1)I formula and if b = 0 then 

3a + 1 formula is used. 

A = {1, –1, 0, I, –I, 1 + I, –I + 1, –1 + I, –1 – I, –17, –5, 

–17I, –5I, 1 + 2I, 1 – 2I, –1 – 2I, –1 + 2I, 2 – I, 2 + I, –2 – I,

–2 + I, –5 + I, –5 + 2I, –5 – 17I, –5 – I, –5 – 2I, –51 + 1,

–5I + 2, –5I – 2, –5I – 1, –5I – 17, –17 – I, –17 + I,

–17I + 1, –17I – 1, –17 – 2I, –17 + 2I, –17I + 2, –17I – 2,

1 + 4I, 4I + 1, 4  I, 4I  1, 34 5I, 17I 10,  17 – 10I, 

34I  5, 17  20I, 17I – 20,  68I – 5,  68 – 5I, 

 5I + 4,  5 + 4I, 17 + 4I, 17I +4}. 

Thus, the modified 3n + 1 Collatz conjecture for 

neutrosophic numbers Z  I is (3a + 1) + (3b + 1) I for n 

= a + bI  Z  I, a, b  Z \ {0}. 

If a = 0 then we use the formula (3b + 1)I and if b = 0 

then use the classical Collatz conjecture formula 3a + 1. It 

is conjectured that using (3a + 1) + (3b + 1)I where a, b  Z 

\ {0} or 3a + 1 if b = 0 or (3b + 1)I if a = 0, formula every n 

 Z  I ends after a finite number of iterations to one and 

only one of the 55 elements from the set A given above. 

Prove or disprove. 

Now the 3n – 1 conjecture for neutrosophic numbers Z 

 I reads as (3a – 1) + (3bI – I) where n = a + bI; a, b  Z 

\ {0}; if a = 0 then (3b – 1)I = 3bI – I is used instead of 3n – 

1 or (3a – 1) + (3b – 1) I. 

If b = 0 then 3a – 1 that is formula 3n – 1 is used. 

Now every n  Z  I the sequence converges to using 

the modified 3n – 1 Collatz conjecture (3a – 1) + 

(3b – 1)I to one of the elements in the set B; where  

B = {1, 0, –1, I, 5I, 5, 17, 17I, –I, 1 + 2I, 1 – 2I, –1 + 2I, 

–1 –2I, 1 + I, I – 2, I + 2, –I –2, –I + 2, I – 1, –I – 1, 5 + I,

5 – I, 5 – 2I, 5 + 2I, –I + 1, 5 + 17I, 17 – I, 17 + I, 17 – 2I, 

17 + 2I, 17 + 5I, 5I – 1, 5I – 2, 5I + 1, 5I + 2, 17I – 1, 

17I – 2, 17I + 1, 17I + 2, 17 + 10I, 17I + 10, 34 + 5I, 

34I + 5, 17 + 20I, 20 + 17I, 68 + 5I, 68I + 5, 5I – 4, 5 – 4I, 

17 – 4I, 17I – 4, –4I + 1, –4I – 1, –4 + I, –4 – I }. 

We will just illustrate how the (3a – 1) + (3b – 1)I 

formula functions on Z  I. 

Consider 12 + 17I  Z  the sequence attached to it 

is 12 + 17I, 6 + 50I, 3 + 25I, 8 + 74I, 4 + 37I, 2 + 110I, 1 + 

55I, 2 + 164I, 1 + 82I, 2 + 41I, 1 + 122I, 2 + 61I, 1 + 182I, 

2 + 91I, 1 + 272I, 2 + 136I, 1 + 68I, 2 + 34I, 1 + 17I, 2 + 

50I, 1 + 25I, 2 + 74I, 1 + 37I, 2 + 110I, 1 + 55I, 2 + 164I, 1 

+ 82I, 2 + 41I, 1 + 122I, 2 + 61I, 1 + 182I, 2 + 91I, 1 + 272I, 

2 + 136I, 1 + 68I, 2 + 34I, 1 + 17I. 

The sequence associated with 12 + 17I terminates at 1 

+ 17I. 

Thus, it is conjectured that every n  Z  I using the 

modified Collatz conjecture (3a – 1) + (3b – 1)I; a, b  Z 

\ {0} or 3a – 1 if b = 0 or (3b + 1)I if a = 0, has a finite 

sequence which terminates at only one of the elements from 

the set B. 

3 Conclusions

In this paper, the modified form of 3n ± 1 Collatz 

conjecture for neutrosophic numbers Z  is defined and 

described. It is defined analogously as (3a ± 1) + (3b ± 1) I 

where a + bI  Z  with a  0 and b  0. 

If a = 0 the formula reduces to (3b ± 1)I and if b = 0 the 

formula reduces to (3a ± 1). 

It is conjectured every n  Z  using the modified 

form of Collatz conjecture has a finite sequence which 

terminates at one and only element from the set A or B 

according as (3a + 1) + (3b + 1)I formula is used or (3a – 1) 

+ (3b – 1)I formula is used respectively. Thus, when a 

neutrosophic number is used from Z  the number of 

values to which the sequence terminates after a finite 

number of steps is increased from 5 in case of 3n 1 Collatz 

conjecture to 55 when using (3a  1) + (3b  1)I the modified 

Collatz conjecture. 
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Abstract: The objective of this paper is to introduced the concept
of neutrosophic cubic set to subalgebras, ideals and closed ideals of
B-algebra. Links among neutrosophic cubic subalgebra with neu-
trosophic cubic ideals and neutrosophic closed ideals of B-algebras
as well as some related properties will be investigated. This study

will cover homomorphic images and inverse homomorphic images
of neutrosophic cubic subalgebras, ideals and some related proper-
ties. The Cartesian product of neutrosophic cubic subalgebras will
also be investigated.
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1 Introduction

The concept of fuzzy sets were first introduced by Zadeh (see
[31]) in 1965. After that several researchers conducted researches
on generalization of fuzzy sets notion. Zadeh (see [32]) general-
ized the concept of fuzzy set by an interval-valued fuzzy set in
1975, as a generalization of the notion. The concept of cubic sets
had been introduced by Jun et al. (see [6]) in 2012, as generaliza-
tion of fuzzy set and interval-valued fuzzy set. Jun et al. (see [7])
applied the notion of cubic sets to a group, and introduced the
notion of cubic subgroups in 2011. Senapati et. al. (see [25]) ex-
tended the concept of cubic set to subalgebras, ideals and closed
ideals of B-algebra with lots of properties investigated. After the
introduction of two classes BCK-algebra and BCI-algebra by
Imai and Iseki (see [4, 5]). The concept of cubic sets to subal-
gebras, ideals and q-ideals in BCK/BCI-algebras was applied by
Jun et al. (see [9, 10]). B-algebra was introduced by Neggers and
Kim (see [12]) in 2002, which are related to extensive classes of
algebras such as BCI/BCK-algebras. The relations between
B-algebra and other topics were further discussed by Cho and
Kim in (see [3]) 2001. Every quadratic B-algebra on field X
with a BCI-algebra was obtained by Park and Kim (see [14]) in
2001. The notion of fuzzy topological B-algebra was introduced
by Borumand Saeid (see [15]) in 2006. Also Saeid introduced
the concept of interval-valued fuzzy subalgebra ofB-algebra (see
[16]) in 2006. Also some of their properties were studied by him.
Walendziak (see [30]) gave some systems of axioms defining a
B-algebra with the proof of the independent of axioms in 2006.
Fuzzy dot subalgebras, fuzzy dot ideals, interval-valued fuzzy
closed ideals of B-algebra and fuzzy subalgebras of B-algebras
with respect to t-norm were introduced by Senapati et. al. (see
[20, 21, 22, 23]). Also L-fuzzy G-subalgebras of G-algebras
were introduced by Senapati et. al. (see [24]) in 2014 which

is related to B-algebra. As a generalizations of B-algebras, lots
of researches on BG-algebras (see [11]) have been done by the
authors (see [26, 27, 28, 29]).

Smarandache (see [19, 18]) introduced the concept of neu-
trosophic cubic set is a more general research area which 
extends the concepts of the classic set and fuzzy set, in-
tuitionistic fuzzy set and interval valued intuitionistic fuzzy 
set. Jun et. al. (see [8]) extended the concept of cubic set to 
neutrosophic cubic set and introduced. The notion of truth-
internal (indeterminacy-internal, falsity-internal) and truth-
external (indeterminacy-external, falsity-external) are introduced 
and related properties are investigated.

In this paper, we will introduce the concept of neutrosophic 
cubic set to subalgebras, ideals and closed ideals of B-algebras 
and introduce the notion of neutrosophic cubic set and subalge-
bras. Relation among neutrosophic cubic algebra with neutro-
sophic cubic ideals and neutrosophic closed ideals of B-algebras 
are studied and some related properties will be investigated. This 
study will cover homomorphic images and inverse homomorphic 
images of neutrosophic cubic subalgebras, ideals, some related 
properties. The Cartesian product of neutrosophic cubic subalge-
bras will also be investigated.

2 Preliminaries

In this section, some basic facets are included that are necessary
for this paper. A B-algebra is an important class of logical alge-
bras introduced by Neggers and Kim [12] and extendedly inves-
tigated by several researchers. This algebra is defined as follows.

A non-empty set X with constant 0 and a binary operation ∗ is
called to be B-algebra [12] if it satisfies the following axioms:

B1. x ∗ x = 0
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B2. x ∗ 0 = x
B3. (x ∗ y) ∗ z = x ∗ (z ∗ (0 ∗ y))

A non-empty subset S of B-algebra X is called a subalgebra [1]
ofX if x∗y ∈ S ∀ x, y ∈ S. Mapping f | X → Y ofB-algebras
is called homomorphism [13] if f(x ∗ y) = f(x) ∗ f(y) ∀ x, y
∈ X . Note that if f | X → Y is a B−homomorphism, then
f(0) = 0. A non-empty subset I of a B−algebra X is called an
ideal [22] if for any x, y ∈ X , (i) 0 ∈ I , and (ii) x ∗ y ∈ I and
y ∈ I ⇒ x ∈ I . An ideal I of a B−algebra X is called closed if
0 ∗ y ∈ I ∀ x ∈ I .

We know review some fuzzy logic concepts as follows:
Let X be the collection of objects denoted generally by x.

Then a fuzzy set [31] A in X is defined as A = {< x, µA(x) > |
x ∈ X}, where µA(x) is called the membership value of x in A
and µA(x) ∈ [0, 1].

For a family Ai = {< x, µAi
(x) > | x ∈ X} of fuzzy sets in

X , where i ∈ k and k is index set, we define the join (∨) meet
(∧) operations as follows:∨

i∈k

Ai =

(∨
i∈k

µAi

)
(x) = sup{µAi

| i ∈ k},

and ∧
i∈k

Ai =

(∧
i∈k

µAi

)
(x) = inf{µAi

| i ∈ k}

respectively, ∀ x ∈ X .
An Interval-valued fuzzy set [32]A overX is an object having

the form A = {< x, µ̃A(x) > | x ∈ X}, where µ̃A | X →
D[0, 1], here D[0, 1] is the set of all subintervals of [0,1]. The
intervals µ̃Ax = [µ−A(x), µ+

A(x)] ∀ x ∈ X denote the degree
of membership of the element x to the set A. Also µ̃cA = [1 −
µ−A(x), 1− µ+

A(x)] represents the complement of µ̃A.
For a family {Ai | i ∈ k} of interval-valued fuzzy sets in

X where k is an index set, the union G =
⋃
i∈k
µ̃Ai

(x) and the

intersection F =
⋂
i∈k
µ̃Ai(x) are defined below:

G(x) =
(⋃
i∈k

µ̃Ai

)
(x) = rsup{µ̃Ai

(x) | i ∈ k}

and

F (x) =
(⋂
i∈k

µ̃Ai

)
(x) = rinf{µ̃Ai

(x) | i ∈ k},

respectively, ∀ x ∈ X .
The determination of supremum and infimum between two real

numbers is very simple but it is not simple for two intervals.
Biswas [2] describe a method to find max/sup and min/inf be-
tween two intervals or a set of intervals.

Definition 2.1 [2] Consider two elements D1, D2 ∈ D[0, 1]. If
D1 = [a−1 , a

+
1 ] and D2 = [a−2 , a

+
2 ], then rmax(D1, D2) =

[max(a−1 , a
−
2 ),max(a+1 , a

+
2 )] which is denoted by D1 ∨r D2

and rmin(D1, D2) = [min(a−1 , a
−
2 ),min(a+a , a

+
2 )] which is

denoted by D1 ∧r D2. Thus, if Di = [a−i , a
+
2 ] ∈ D[0, 1] for i =

1, 2, 3, . . . , then we define rsupi(Di) = [supi(a
−
i ), supi(a

+
i )],

i.e., ∨riDi = [∨ia−i ,∨ia
+
i ]. Similarly we define rinfi(Di) =

[infi(a
−
i ), infi(a

+
i )], i.e., ∧riDi = [∧ia−i ,∧ia

+
i ]. Now we call

D1 ≥ D2 ⇐⇒ a−1 ≥ a−2 and a+1 ≥ a+2 . Similarly the relations
D1 ≤ D2 and D1 = D2 are defined.

Combine the definition of subalgebra, ideal over crisp set and
the idea of fuzzy set Ahn et al. [1] and senapati et al. [21] defined
fuzzy subalgebra and ideal respectively, which is define bellow.

Definition 2.2 [21, 1] A fuzzy set A = {< x, µA(x) >|
x ∈ X} is called a fuzzy subalgebra of X if µA(x ∗ y) ≥
minµA(x), µA(y) ∀ x, y ∈ X ,

A fuzzy setA = {< x, µA(x) >| x ∈ X} inX is called a fuzzy
ideal of X if it satisfies (i) µA(0) ≥ µA(x) and (ii) µA(x) ≥
min{µA(x ∗ y), µA(y)} ∀ x, y ∈ X.

Jun et al. [8] extend the concept of cubic sets to neutrosophic
sets [17], and consider the notion of neutrosophic cubic sets as
an extension of cubic sets, and investigated several properties.

Definition 2.3 [8] Let X be a non-empty set. A neutro-
sophic cubic set in X is pair C = (A,Λ) where A =:
{〈x;AT (x), AI(x), AF (x)〉 | x ∈ X} is an interval neutro-
sophic set in X and Λ =: {〈x;λT (x), λI(x), λF (x)〉 | x ∈ X}
is a neutrosophic set in X .

Definition 2.4 [8] For any Ci = (Ai,Λi) where
Ai =: {〈x;AiT (x), AiI(x), AiF (x)〉 | x ∈ X},
Λi =: {〈x;λiT (x), λiI(x), λiF (x)〉 | x ∈ X} for i ∈ k, P-union,
P-inersection, R-union and R-intersection is defined respectively by
P-union:

⋃
P

i∈k
Ci =

( ⋃
i∈k

Ai,
∨
i∈k

Λi
)
,

P-intersection:
⋂
P

i∈k
Ci =

( ⋂
i∈k

Ai,
∧
i∈k

Λi
)

R-union:
⋃
R

i∈k
Ci =

( ⋃
i∈k

Ai,
∧
i∈k

Λi
)
,

R-intersection:
⋂
R

i∈k
Ci =

( ⋂
i∈k

Ai,
∨
i∈k

Λi
)

where⋃
i∈k

Ai =

{〈
x;

(⋃
i∈k

AiT

)
(x),

(⋃
i∈k

AiI

)
(x),

(⋃
i∈k

AiF

)
(x)

〉
| x ∈ X

}
,

∨
i∈k

Λi =

{〈
x;

(∨
i∈k

λiT

)
(x),

(∨
i∈k

λiI

)
(x),

(∨
i∈k

λiF

)
(x)

〉
| x ∈ X

}
,

⋂
i∈k

Ai =

{〈
x;

(⋂
i∈k

AiT

)
(x),

(⋂
i∈k

AiI

)
(x),

(⋂
i∈k

AiF

)
(x)

〉
| x ∈ X

}
,

∧
i∈k

Λi =

{〈
x;

(∧
i∈k

λiT

)
(x),

(∧
i∈k

λiI

)
(x),

(∧
i∈k

λiF

)
(x)

〉
| x ∈ X

}
,

Senapati et. al. [25] defined the cubic subalgebras of B-
algebra by combining the definitions of subalgebra over crisp set
and the cubic sets.

Definition 2.5 [25] Let C = {< x,A(x), λ(x) >} be a cubic
set, where A(x) is an interval-valued fuzzy set in X, λ(x) is a
fuzzy set in X and X is subalgebra. Then A is cubic subalgebra
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under binary operation * if following condition holds:
C1: A(x ∗ y) ≥ rmin{A(x), A(y)},
C2: λ(x ∗ y) ≤ max{λ(x), λ(y)} ∀ x, y ∈ X.

3 Neutrosophic Cubic Subalgebras Of
B-algebra

Let X denote a B-algebra then the concept of cubic subalgebra
can be extended to neutrosophic cubic subalgebra.

Definition 3.1 Let C = (A,Λ) be a cubic set, where X is sub-
algebra. Then C is neutrosophic cubic subalgebra under binary
operation ∗ if it holds the following conditions: N1:
AT (x ∗ y) ≥ rmin{AT (x), AT (y)}
AI(x ∗ y) ≥ rmin{AI(x), AI(y)}
AF (x ∗ y) ≥ rmin{AF (x), AF (y)},
N2:
ΛT (x ∗ y) ≤ max{ΛT (x),ΛT (y)}
ΛI(x ∗ y) ≤ max{ΛI(x),ΛI(y)}
ΛI(x ∗ y) ≤ max{ΛI(x),ΛI(y)}

For our convenience, we will denote neutrosophic cubic set as
C = (AT,I,F , λT,I,F ) = {〈x,AT,I,F (x), λT,I,F (x)〉}
and conditions N1, N2 as

N1: AT,I,F (x ∗ y) ≥ rmin{AT,I,F (x), AT,I,F (y)},
N2: λT,I,F (x ∗ y) ≤ max{λT,I,F (x), λT,I,F (y)}.

Example 3.1 Let X = {0, a1, a2, a3, a4, a5} be a B-algebra
with the following Cayley table.

> 0 a1 a2 a3 a4 a5
0 0 a5 a4 a3 a2 a1
a1 a1 0 a5 a4 a3 a2
a2 a2 a1 0 a5 a4 a3
a3 a3 a2 a1 0 a5 a4
a4 a4 a3 a2 a1 0 a5
a5 a5 a4 a3 a2 a1 0

A neutrosophic cubic set C = (AT,I,F , λT,I,F ) of X is defined
by

0 a1 a2 a3 a4 a5
AT [0.7,0.9] [0.6,0.8] [0.7,0.9] [0.6,0.8] [0.7,0.9] [0.6,0.8]
AI [0.3,0.2] [0.2,0.1] [0.3,0.2] [0.2,0.1] [0.3,0.2] [0.2,0.1]
AF [0.2,0.4] [0.1,0.4] [0.2,0.4] [0.1,0.4] [0.2,0.4] [0.1,0.4]

0 a1 a2 a3 a4 a5
λT 0.1 0.3 0.1 0.3 0.1 0.3
λI 0.3 0.5 0.3 0.5 0.3 0.5
λF 0.5 0.6 0.5 0.6 0.5 0.6

.

Both the conditions of Definition 3.1 are satisfied by the set C.
Thus C = (AT,I,F , λT,I,F ) is a neutrosophic cubic subalgebra
of X .

Proposition 3.1 Let C = {< x,AT,I,F (x), λT,I,F (x) >} is a
neutrosophic cubic subalgebra ofX , then ∀ x ∈ X ,AT,I,F (x) ≥
AT,I,F (0) and λT,I,F (0) ≤ λT,I,F (x). Thus, AT,I,F (0) and
λT,I,F (0) are the upper bounds and lower bounds of AT,I,F (x)
and λT,I,F (x) respectively.

Proof: ∀ x ∈ X , we have AT,I,F (0) = AT,I,F (x ∗x) ≥ rmin{
AT,I,F (x), AT,I,F (x)} = AT,I,F (x)⇒AT,I,F (0) ≥ AT,I,F (x)
and λT,I,F (0) = λT,I,F (x ∗ x) ≤ max{λT,I,F (x), λT,I,F (x)}
= λT,I,F (x)⇒ λT,I,F (0) ≤ λT,I,F (x).

Theorem 3.1 Let C = {〈x,AT,I,F (x), λT,I,F (x)〉} be a neutro-
sophic cubic subalgebras ofX . If there exists a sequence {xn} of
X such that lim

n→∞
AT,I,F (xn) = [1, 1] and lim

n→∞
λT,I,F (xn) =

0. then AT,I,F (0) = [1, 1] and λT,I,F (0) = 0.

Proof: Using Proposition 3.1,AT,I,F (0) ≥ AT,I,F (x) ∀ x ∈ X,
∴ AT,I,F (0) ≥ AT,I,F (xn) for n ∈ Z+. Consider, [1, 1] ≥
AT,I,F (0) ≥ lim

n→∞
AT,I,F (xn) = [1, 1]. Hence, AT,I,F (0) =

[1, 1].
Again, using Proposition 3.1, λT,I,F (0) ≤ λT,I,F (x) ∀ x ∈

X, ∴ λT,I,F (0) ≤ λT,I,F (xn) for n ∈ Z+. Consider, 0 ≥
λT,I,F (0) ≤ lim

n→∞
λT,I,F (xn) = 0. Hence, λT,I,F (0) = 0.

Theorem 3.2 The R-intersection of any set of neutrosophic cu-
bic subalgebras of X is also a neutrosophic cubic subalgebras of
X.

Proof: Let Ai = {〈x,AiT,I,F , λiT,I,F 〉 | x ∈ X} where i ∈ k,
be a sets of neutrosophic cubic subalgebras of X and x, y ∈ X .
Then

(∩AiT,I,F )(x ∗ y) = rinfAiT,I,F (x ∗ y)

≥ rinf{rmin{AiT,I,F (x), AiT,I,F (y)}}
= rmin{rinfAiT,I,F (x), rinfAiT,I,F (y)}
= rmin{(∩AiT,I,F )(x), (∩AiT,I,F )(y)}

⇒ (∩AiT,I,F )(x ∗ y) ≥ rmin{(∩AiT,I,F )(x), (∩AiT,I,F )(y)}

and

(∨λiT,I,F )(x ∗ y) = supλiT,I,F (x ∗ y)

≤ sup{max{λiT,I,F (x), λiT,I,F (y)}}
= max{supλiT,I,F (x), supλiT,I,F (y)}
= max{(∨λiT,I,F )(x), (∨λiT,I,F )(y)}

⇒ (∨λiT,I,F )(x ∗ y) ≤ max{(∨λiT,I,F )(x), (∨λiT,I,F )(y)},

which shows that R-intersection of Ai is a neutrosophic cubic
subalgebra of X .

Remark 3.1 The R-union, P -intersection and P -union of
neutrosophic cubic subalgebra need not be a neutrosophic cubic
subalgebra.
Example, let X = {0, a1, a2, a3, a4, a5} be a B-algebra with
the following Caley table. Let A1 = (A1T,I,F , λ1T,I,F ) and
A2 = (A2T,I,F , λ2T,I,F ) be neutrosophic cubic set of X defined
by

Then A1 and A2 are neutrosophic subalgebras of X but
R-union, P -union and P -intersection of A1 and A2 are not
subalgebras of X because
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> 0 a1 a2 a3 a4 a5
0 0 a2 a1 a3 a4 a5
a1 a1 0 a2 a5 a3 a4
a2 a2 a1 0 a4 a5 a3
a3 a3 a4 a5 0 a1 a2
a4 a4 a5 a3 a2 0 a1
a5 a5 a3 a4 a1 a2 0

0 a1 a2 a3 a4 a5
A1T [0.8,0.7] [0.1,0.2] [0.1,0.2] [0.8,0.7] [0.1,0.2] [0.1,0.2]
A1I [0.7,0.8] [0.2,0.3] [0.2,0.3] [07.,0.8] [0.2,0.3] [0.2,0.3]
A1F [0.8,0.9] [0.3,0.4] [0.3,0.4] [0.8,0.9] [0.3,0.4] [0.3,0.4]
A2T [0.8,0.9] [0.2,0.3] [0.2,0.3] [0.2,0.3] [0.8,0.9] [0.2,0.3]
A2I [0.7,0.6] [0.1,0.2] [0.1,0.2] [0.1,0.2] [0.7,0.6] [0.1,0.2]
A2F [0.6,0.5] [0.1,0.3] [0.1,0.3] [0.1,0.3] [0.6,0.5] [0.1,0.3]

0 a1 a2 a3 a4 a5
λ1T 0.1 0.8 0.8 0.1 0.8 0.8
λ1I 0.2 0.7 0.7 0.2 0.7 0.7
λ1F 0.4 0.6 0.6 0.4 0.6 0.6
λ2T 0.2 0.5 0.5 0.5 0.2 0.5
λ2I 0.3 0.7 0.7 0.7 0.3 0.7
λ2F 0.4 0.9 0.9 0.9 0.4 0.9

.

(∪AiT,I,F )(a3 ∗ a4) = ([0.2, 0.3], [0.2, 0.3], [0.3, 0.4])T,I,F �
([0.8, 0.9], [0.7, 0.6], [0.6, 0.5])T,I,F = rmin{(∪AiT,I,F )(a3),
(∪AiT,I,F )(a4)}
and
(∧λiT,I,F )(a3 ∗a4) = (0.8, 0.7, 0.9)T,I,F � (0.2, 0.3, 0, 4)T,I,F
= max{(∧λiT,I,F )(a3), (∧λiT,I,F )(a4)}

We provide the condition that R-union, P -union and P -
intersection of neutrosophic cubic subalgebras is also a neutro-
sophic cubic subalgebra. which are at Theorem 3.3, 3.4 and 3.5.

Theorem 3.3 Let Ai = {〈x,AiT,I,F , λiT,I,F 〉 | x ∈ X}
where i ∈ k, be a sets of neutrosophic cubic subalgebras
of X, where i ∈ k. If inf{max{λiT,I,F (x), λiT,I,F (x)}}
= max{infλiT,I,F (x), infλiT,I,F (x)} ∀ x ∈ X, then the P -
intersection of Ai is also a neutrosophic cubic subalgebras of X.

Proof: Suppose that Ai = {〈x,AiT,I,F , λiT,I,F 〉 | x ∈
X} where i ∈ k, be sets of neutrosophic cubic subal-
gebras of X such that inf{max{λiT,I,F (x), λiT,I,F (x)}} =
max{infλiT,I,F (x), infλiT,I,F (x)} ∀ x ∈ X. Then for x, y ∈
X. Then

(∩AiT,I,F )(x ∗ y) = rinfAiT,I,F (x ∗ y)

≥ rinf{rmin{AiT,I,F (x), AiT,I,F (y)}}
= rmin{rinfAiT,I,F (x), rinfAiT,I,F (y)}
= rmin{(∩AiT,I,F )(x), (∩AiT,I,F )(y)}

⇒ (∩AiT,I,F )(x ∗ y) ≥ rmin{(∩AiT,I,F )(x), (∩AiT,I,F )(y)}

and

(∧λiT,I,F )(x ∗ y) = infλiT,I,F (x ∗ y)

≤ inf{max{λiT,I,F (x), λiT,I,F (y)}}
= max{infλiT,I,F (x), infλiT,I,F (y)}
= max{(∧λiT,I,F )(x), (∧λiT,I,F )(y)}

⇒ (∧λiT,I,F )(x ∗ y) ≤ max{(∧λiT,I,F )(x), (∧λiT,I,F )(y)},

which shows that P -intersection of Ai is a neutrosophic cubic
subalgebra of X .

Theorem 3.4 Let Ai = {〈x,AiT,I,F , λiT,I,F 〉 | x ∈
X} where i ∈ k, be a sets of neutrosophic cubic sub-
algebras of X . If sup{rmin{AiT,I,F (x), AiT,I,F (x)}} =
rmin{supAiT,I,F (x), supAiT,I,F (x)} ∀x ∈ X, then the P -
union of Ai is also a neutrosophic cubic subalgebra of X.

Proof: Let Ai = {〈x,AiT,I,F , λiT,I,F 〉 | x ∈ X}
where i ∈ k, be a sets of neutrosophic cubic subalge-
bras of X such that sup{rmin{AiT,I,F (x), AiT,I,F (x)}} =
rmin{supAiT,I,F (x), supAiT,I,F (x)} ∀ x ∈ X. Then for
x, y ∈ X,

(∪AiT,I,F )(x ∗ y) = rsupAiT,I,F (x ∗ y)

≥ rsup{rmin{AiT,I,F (x), AiT,I,F (y)}}
= rmin{rsupAiT,I,F (x), rsupAiT,I,F (y)}
= rmin{(∪AiT,I,F )(x), (∪AiT,I,F )(y)}

(∪AiT,I,F )(x ∗ y) ≥ rmin{(∪AiT,I,F )(x), (∪AiT,I,F )(y)}

and

(∨λiT,I,F )(x ∗ y) = supλiT,I,F (x ∗ y)

≤ sup{max{λiT,I,F (x), λiT,I,F (y)}}
= max{supλiT,I,F (x), supλiT,I,F (y)}
= max{(∨λiT,I,F )(x), (∨λiT,I,F )(y)}

(∨λiT,I,F )(x ∗ y) ≤ max{(∨λiT,I,F )(x), (∨λiT,I,F )(y)}.

Which shows that P -union of Ai is a neutrosophic cubic subal-
gebra of X .

Theorem 3.5 Let Ai = {〈x,AiT,I,F , λiT,I,F 〉 | x ∈ X} where
i ∈ k, be a sets of neutrosophic cubic subalgebras of X . If
inf{max{λiT,I,F (x), λiT,I,F (x)}} = max{infλiT,I,F (x),
infλiT,I,F (x)} and sup{rmin{λiT,I,F (x), λiT,I,F (x)}} =
rmin{supλiT,I,F (x), supλiT,I,F (x)} ∀ x ∈ X, then the R-
union of Ai is also a neutrosophic cubic subalgebra of X.

Proof: Let Ai = {〈x,AiT,I,F , λiT,I,F 〉 | x ∈ X}
where i ∈ k, be a sets of neutrosophic cubic subalge-
bras of X such that inf{max{λiT,I,F (x), λiT,I,F (x)}} =
max{infλiT,I,F (x), infλiT,I,F (x)} and sup{rmin{λiT,I,F (
x), λiT,I,F (x)}}= rmin{supλiT,I,F (x), supλiT,I,F (x)} ∀ x ∈
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X. Then for x, y ∈ X,

(∪AiT,I,F )(x ∗ y) = rsupAiT,I,F (x ∗ y)

≥ rsup{rmin{AiT,I,F (x), AiT,I,F (y)}}
= rmin{rsupAiT,I,F (x), rsupAiT,I,F (y)}
= rmin{(∪AiT,I,F )(x), (∪AiT,I,F )(y)}

(∪AiT,I,F )(x ∗ y) ≥ rmin{(∪AiT,I,F )(x), (∪AiT,I,F )(y)}

and

(∧λiT,I,F )(x ∗ y) = infλiT,I,F (x ∗ y)

≤ inf{max{λiT,I,F (x), λiT,I,F (y)}}
= max{infλiT,I,F (x), infλiT,I,F (y)}
= max{(∧λiT,I,F )(x), (∧λiT,I,F )(y)}

(∧λiT,I,F )(x ∗ y) ≤ max{(∧λiT,I,F )(x), (∧λiT,I,F )(y)}.

Which shows that R-union of Ai is a neutrosophic cubic subal-
gebra of X .

Proposition 3.2 If a neutrosophic cubic set A =
(AT,I,F , λT,I,F ) of X is a subalgebra, then ∀ x ∈ X ,
AT,I,F (0 ∗ x) ≥ AT,I,F (x) and λT,I,F (0 ∗ x) ≤ λT,I,F (x).

Proof: ∀ x ∈ X ,AT,I,F (0∗x)≥ rmin{AT,I,F (0), AT,I,F (x)}
= rmin{AT,I,F (x ∗ x), AT,I,F (x)} ≥ rmin{rmin{AT,I,F (x)
, AT,I,F (x)}, AT,I,F (x)} = AT,I,F (x) and similarly λT,I,F (0 ∗
x) ≤ max{λT,I,F (0), λT,I,F (x)} = λT,I,F (x).

Lemma 3.1 If a netrosophic cubic set A = (AT,I,F , λT,I,F ) of
X is a subalgebra, thenA(x∗y) = A(x∗(0(0∗y))) ∀ x, y ∈ X .

Proof: Let X be a B-algebra and x, y ∈ X . Then we know
that y = 0 ∗ (0 ∗ y) by ([3],lemma 3.1). Hence, AT,I,F (x ∗ y) =
AT,I,F (x∗(0∗(0∗y))) and λT,I,F (x∗y) = λT,I,F (x∗(0∗(0∗y))).
Therefore, AT,I,F (x ∗ y) = AT,I,F (x ∗ (0 ∗ (0 ∗ y))).

Proposition 3.3 If a nuetrosophic cubic set A =
(AT,I,F , λT,I,F ) of X is a neutrosophic cubic subalgebra, then
∀ x, y ∈ X , AT,I,F (x∗ (0∗y)) ≥ rmin{AT,I,F (x), AT,I,F (y)}
and λT,I,F (x ∗ (0 ∗ y)) ≤ max{λT,I,F (x), λT,I,F (y)}.

Proof: Let x, y ∈ X. Then we have AT,I,F (x ∗ (0 ∗ y)) ≥
rmin{AT,I,F (x), AT,I,F (0∗y)} ≥ rmin{AT,I,F (x), AT,I,F (y
)} and λT,I,F (x ∗ (0 ∗ y)) ≤ max{λT,I,F (x), λT,I,F (0 ∗ y)} ≤
max{λT,I,F (x), λT,I,F (y)} by Definition 3.1 and Proposition
3.2. Hence, the proof is completed.

Theorem 3.6 If a neutrosophic cubic set A = (AT,I,F , λT,I,F )
of X satisfies the following conditions

1. AT,I,F (0∗x) ≥ AT,I,F (x) and λT,I,F (0∗x) ≤ λT,I,F (x),

2. AT,I,F (x ∗ (0 ∗ y)) ≥ rmin{AT,I,F (x), AT,I,F (y)} and
λT,I,F (x ∗ (0 ∗ y)) ≤ max{λT,I,F (x), λT,I,F (y)}
∀ x, y ∈ X.

then A refers to a neutrosophic cubic subalgebra of X .

Proof: Assume that the neutrosophic cubic set A =
(AT,I,F , λT,I,F ) of X satisfies the above conditions (1 and 2).
Then by Lemma 3.1, we have AT,I,F (x ∗ y) = AT,I,F (x ∗ (0 ∗
(0 ∗ y))) ≥ rmin{AT,I,F (x), AT,I,F (0 ∗ y)} ≥ rmin{AT,I,F (
x), AT,I,F (y)} and λT,I,F (x ∗ y) = λT,I,F (x ∗ (0 ∗ (0 ∗ y)))
≤ max{λT,I,F (x), λT,I,F (0∗y)≤ max{λT,I,F (x), λT,I,F (y)}
∀ x, y ∈ X. Hence, A is neutrosophic cubic subalgebra of X .

Theorem 3.7 Nuetrosophic cubic set A = (AT,I,F , λT,I,F ) of
X is a neutrosophic cubic subalgebra ofX ⇐⇒ A−T,I,F , A

+
T,I,F

and λT,I,F are fuzzy subalgebras of X .

Proof: let A−T,I,F , A
+
T,I,F and λT,I,F are fuzzy subalgebra of X

and x, y ∈ X . Then A−T,I,F (x ∗ y) ≥ min{A−T,I,F (x), A−T,I,F (y

)},A+
T,I,F (x∗y) ≥min{A+

T,I,F (x), A+
T,I,F (y)} and λT,I,F (x∗

y)≤ max{λT,I,F (x), λT,I,F (y)}. Now,AT,I,F (x∗y) = [A−T,I,F
(x∗y), A+

T,I,F (x∗y]≥ [min{A−T,I,F (x), A−T,I,F (y)},min{A+
T,I,F

(x), A+
T,I,F (y)}] ≥ rmin{[A−T,I,F (x), A+

T,I,F (x)], [A−T,I,F (y),

A+
T,I,F (y)]} = rmin{AT,I,F (x), AT,I,F (y)}. Therefore, A is

neutrosophic cubic subalgebra of X .
Conversely, assume that A is a neutrosophic cubic subalge-

bra of X . For any x, y ∈ X , [A−T,I,F (x ∗ y), A+
T,I,F (x ∗ y)] =

AT,I,F (x∗y) ≥ rmin{AT,I,F (x), AT,I,F (y)} = rmin{[A−T,I,F
(x), A+

T,I,F (x)], [A−T,I,F (y), A+
T,I,F (y)]}= = [min{A−T,I,F (x),

A−T,I,F (y)},min{A+
T,I,F (x), A+

T,I,F (y)}]. Thus, A−T,I,F (x ∗ y)

≥min{A−T,I,F (x), A−T,I,F (y)}, A+
T,I,F (x ∗ y) ≥min{A+

T,I,F (

x), A+
T,I,F (y)} and λT,I,F (x ∗ y) ≤ max{λT,I,F (x), λT,I,F (y)

}. Hence A−T,I,F , A
+
T,I,F and λT,I,F are fuzzy subalgebra of X .

Theorem 3.8 LetA = (AT,I,F , λT,I,F ) be a neutrosophic cubic
subalgebra ofX and let n ∈ Z+(the set of positive integer). Then

1. AT,I,F (

n∏
x ∗ x) ≥ AT,I,F (x) for n ∈ O(the set of odd

number),

2. λT,I,F (
n∏
x ∗ x) ≤ AT,I,F (x) for n ∈ O(the set of odd

number),

3. AT,I,F (
n∏
x ∗ x) = AT,I,F (x) for n ∈ E(the set of even

number),

4. λT,I,F (
n∏
x ∗ x) = AT,I,F (x) for n ∈ E(the set of even

number).

Proof: Let x ∈ X and assume that n is odd. Then n = 2p − 1
for some positive integer p. We prove the theorem by induction.
Now AT,I,F (x ∗ x) = AT,I,F (0) ≥ AT,I,F (x) and λT,I,F (x ∗

x) = λT,I,F (0) ≤ λT,I,F (x). Suppose that AT,I,F (

2p−1∏
x ∗

x) ≥ AT,I,F (x) and λT,I,F (

2p−1∏
x ∗ x) ≤ λT,I,F (x). Then
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by assumption, AT,I,F (

2(p+1)−1∏
x ∗ x) = AT,I,F (

2p+1∏
x ∗ x) =

AT,I,F (

2p−1∏
x∗ (x∗ (x∗x))) = AT,I,F (

2p−1∏
x∗x) ≥ AT,I,F (x)

and λT,I,F (

2(p+1)−1∏
x∗x) = λT,I,F (

2p+1∏
x∗x) = λT,I,F (

2p−1∏
x∗

(x ∗ (x ∗ x))) = λT,I,F (

2p−1∏
x ∗ x) ≤ λT,I,F (x), which proves

(1) and (2). Similarly, the proves are same to the cases (3) and
(4).

The sets denoted by IAT,I,F
and IλT,I,F

are also subalgebra of
X . Which were defined as:
IAT,I,F

={x ∈ X | AT,I,F (x) = AT,I,F (0)} and IλT,I,F
={x ∈

X | λT,I,F (x) = λT,I,F (0)}.

Theorem 3.9 LetA = (AT,I,F , λT,I,F ) be a neutrosophic cubic
subalgebra of X . Then the sets IAT,I,F

and IλT,I,F
are subalge-

bras of X .

Proof: Let x, y ∈ IAT,I,F
. Then AT,I,F (x) = AT,I,F (0) =

AT,I,F (y) and so,AT,I,F (x∗y)≥ rmin{AT,I,F (x), AT,I,F (y)}
= AT,I,F (0). By using Proposition 3.1, We know thatAT,I,F (x∗
y) = AT,I,F (0) or equivalently x ∗ y ∈ IAT,I,F

.
Again let x, y ∈ IAT,I,F

. Then λT,I,F (x) = λT,I,F (0) =
λT,I,F (y) and so, λT,I,F (x ∗ y) ≤ max{λT,I,F (x), λT,I,F (y)}
=λT,I,F (0). Again by using Proposition 3.1, We know that
λT,I,F (x∗y) = λT,I,F (0) or equivalently x∗y ∈ IAT,I,F

. Hence
the sets IAT,I,F

and λAT,I,F
are subalgebras of X .

Theorem 3.10 Let B be a nonempty subset of X and A =
(AT,I,F , λT,I,F ) be neutrosophic cubic set of X defined by

AT,I,F (x) =

{
[αT,I,F1 , αT,I,F2 ], if x ∈ B
[βT,I,F1 , βT,I,F2 ], otherwise,

λT (x) =

{
γT,I,F , if x ∈ B
δT,I,F , otherwise

∀ [αT,I,F1 , αT,I,F2 ],[βT,I,F1 , βT,I,F2 ] ∈ D[0, 1] and γT,I,F , δT,I,F ∈
[0, 1] with [αT,I,F1 , αT,I,F2 ]≥ [βT,I,F1 , βT,I,F2 ] and γT,I,F ≤ δT,I,F .
Then A is a nuetrosophic cubic subalgebra of X ⇐⇒ B is a subalge-
bra of X . Moreover, IAT,I,F = B= IλT,I,F .

Proof: Let A be a neutrosophic cubic subalgebra of X . Let x, y
∈ X such that x, y ∈ B. Then AT,I,F (x ∗ y) ≥ rmin{AT,I,F (x
), AT,I,F (y)} = rmin{[αT,I,F1

, αT,I,F2
], [αT,I,F1

, αT,I,F2
]} =

[αT,I,F1
, αT,I,F2

] and λT,I,F (x ∗ y) ≤max{λT,I,F (x), λT,I,F (
y)} = max{γT,I,F , γT,I,F } = γT,I,F . Therefore x ∗ y ∈ B.
Hence, B is a subalgebra of X .

Conversely, suppose that B is a subalgebra of X . Let x, y ∈
X . We consider two cases,
Case 1: If x, y ∈ B, then x ∗ y ∈ B, thus AT,I,F (x ∗
y) = [αT,I,F1

, αT,I,F2
] = rmin{AT,I,F (x), AT,I,F (y)} and

λT,I,F (x ∗ y) = γT,I,F = max{λT,I,F (x), λT,I,F (y)}.
Case 2: If x /∈B or y /∈B, thenAT,I,F (x∗y) ≥ [βT,I,F1

, βT,I,F2
]

= rmin{AT,I,F (x), AT,I,F (y)} and λT,I,F (x ∗ y) ≤ δT,I,F
= max{λT,I,F (x), λT,I,F (y)}.

Hence A is a neutrosophic cubic subalgebra of X .
Now, IAT,I,F

={x ∈ X,AT,I,F (x) = AT,I,F (0)}= {x ∈
X,AT,I,F (x) = [αT,I,F1 , αT,I,F2 ]} = B and IλT,I,F

={x ∈
X,λT,I,F (x) = λT,I,F (0)}={x ∈ X,λT,I,F (x) = γT,I,F }=B.

Definition 3.2 Let A = (AT,I,F , λT,I,F ) be a neutrosophic cu-
bic set of X . For [sT1 , sT2 ], [sI1 , sI2 ], [sF1 , sF2 ] ∈ D[0, 1]
and tT1 , tI1 , tF1 ∈ [0, 1], the set U(AT,I,F | ([sT1 , sT2 ], [sI1 , sI2 ]
, [sF1

, sF2
])) ={x ∈ X | AT (x) ≥ [sT1

, sT2
], AI(x) ≥ [sI1 , sI2 ]

, AF (x) ≥ [sF1
, sF2

]} is called upper ([sT1
, sT2

], [sI1 , sI2 ], [sF1
,

sF2
])-level of A and L(λT,I,F | (tT1

, tI1 , tF1
)) ={x ∈ X |

λT (x) ≤ tT1 , λI(x) ≤ tI1 , λF (x) ≤ tF1} is called lower
(tT1 , tI1 , tF1)-level of A.

For our convenience we are introducing the new notation as:
U(AT,I,F | [sT,I,F1 , sT,I,F2 ]={x ∈ X | AT,I,F (x) ≥ [sT,I,F1 ,
sT,I,F2 ]} is called upper ([sT,I,F1 , sT,I,F2 ])-level of A and
L(λT,I,F | tT,I,F1

)={x ∈ X | λT,I,F (x) ≤ tT,I,F1
} is called

lower tT,I,F1
-level of A.

Theorem 3.11 If A = (AT,I,F , λT,I,F ) is neutrosophic cu-
bic subalgebra of X , then the upper [sT,I,F1

, sT,I,F2
]-level and

lower tT,I,F1
-level of A are ones of X .

Proof: Let x, y ∈U(AT,I,F | [sT,I,F1 , sT,I,F2 ]), thenAT,I,F (x)
≥ [sT,I,F1

, sT,I,F2
] and AT,I,F (y) ≥ [sT,I,F1

, sT,I,F2
]. It fol-

lows that AT,I,F (x ∗ y) ≥ rmin{AT,I,F (x), AT,I,F (y)} ≥
[sT,I,F1

, sT,I,F2
] ⇒ x ∗ y ∈ U(AT,I,F | [sT,I,F1

, sT,I,F2
]).

Hence, U(AT,I,F | [sT,I,F1
, sT,I,F2

] is a subalgebra of X .
Let x, y ∈ L(λT,I,F | tT,I,F1

). Then λT,I,F (x) ≤ tT,I,F1

and λT,I,F (y) ≤ tT,I,F1
. It follows that λT,I,F (x ∗ y) ≤

max{λT,I,F (x), λT,I,F (y)} ≤ tT,I,F1
⇒ x ∗ y ∈ L(λT,I,F |

tT,I,F1). Hence L(λT,I,F | tT,I,F1) is a subalgebra of X .

Corollary 3.1 Let A = (AT,I,F , λT,I,F ) is neutrosophic cubic
subalgebra of X . Then A([sT,I,F1

, sT,I,F2
]; tT,I,F1

)= U(AT,I,F
| [sT,I,F1 , sT,I,F2 ])

⋂
L(λT,I,F | tT,I,F1)={x ∈ X | AT,I,F (x)

≥ [sT,I,F1 , sT,I,F2 ], λT,I,F (x) ≤ tT,I,F1} is a subalgebra of X .

Proof: Straightforward

The following example shows that the converse of Corollary
3.1 is not valid.

Example 3.2 Let X = {0, a1, a2, a3, a4, a5} be a B-algebra in
Remark 3.1 and A = (AT,I,F , λT,I,F ) is a neutrosophic cubic
set defined by

0 a1 a2 a3 a4 a5
AT [0.6,0.8] [0.5,0.6] [0.5,0.6] [0.5,0.6] [0.3,0.4] [0.3,0.4]
AI [0.5,0.7] [0.4,0.5] [0.4,0.5] [0.4,0.6] [0.3,0.3] [0.3,0.3]
AF [0.4,0.6] [0.2,0.5] [0.2,0.5] [0.2,0.5] [0.1,0.2] [0.1,0.2]
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0 a1 a2 a3 a4 a5
λT 0.1 0.3 0.3 0.5 0.3 0.5
λI 0.2 0.4 0.4 0.6 0.4 0.6
λF 0.3 0.5 0.5 0.7 0.5 0.7

.

Suppose that [sT,I,F1
, sT,I,F2

]=([0.42, 0.49], [0.31, 0.37], [0.14,
0.18])T,I,F and tT,I,F1

= (0.4, 0.5, 0.6)T,I,F , then A([sT,I,F1
,

sT,I,F2
]; tT,I,F1

)=U(AT,I,F | [sT,I,F1
, sT,I,F2

])
⋂
L(λT,I,F |

tT,I,F1)={x ∈ X | AT,I,F (x) ≥ [sT,I,F1 , sT,I,F2 ], λT,I,F (x) ≤
tT,I,F1} = {0, a1, a2, a3}

⋂
{0, a1, a2, a4} = {0, a1, a2}

is a subalgebra of X, but A = (AT,I,F , λT,I,F ) is not
a neutrosophic cubic subalgebra since AT (a1 ∗ a3) =
[0.3, 0.4] � [0.5, 0.6] = rmin{AT (a1), AT (a3)} and
λT (a2 ∗ a4) = 0.5 � 0.4 = max{λT (a2), λT (a4)}.

Theorem 3.12 Let A = (AT,I,F , λT,I,F ) be a neutrosophic cu-
bic set of X , such that the sets U(AT,I,F | [sT,I,F1

, sT,I,F2
])

and L(λT,I,F | tT,I,F1
) are subalgebras of X for every

[sT,I,F1
, sT,I,F2

] ∈ D[0, 1] and tT,I,F1
∈ [0, 1]. Then A =

(AT,I,F , λT,I,F ) is neutrosophic cubic subalgebra of X.

Proof: Let U(AT,I,F | [sT,I,F1 , sT,I,F2 ]) and L(λT,I,F | tT,I,F1

) are subalgebras of X for every [sT,I,F1 , sT,I,F2 ] ∈ D[0, 1] and
tT,I,F1

∈ [0, 1]. On the contrary, let x0, y0 ∈ X be such that
AT,I,F (x0 ∗ y0) < rmin{AT,I,F (x0), AT,I,F (y0)}. Let AT,I,F
(x0) = [θ1, θ2], AT,I,F (y0) = [θ3, θ4] and AT,I,F (x0 ∗ y0) = [
sT,I,F1 , sT,I,F2 ]. Then [sT,I,F1 , sT,I,F2 ] < rmin{[θ1, θ2], [θ3, θ4
i]} = [min{θ1, θ3},min{θ2, θ4}]. So, sT,I,F1

< rmin{θ1, θ3}
and sT,I,F2 < min{θ2, θ4}. Let us consider, [ρ1, ρ2] =
1
2 [AT,I,F (x0 ∗ y0) + rmin{AT,I,F (x0), AT,I,F (y0)}] i = i 12 [i[
sT,I,F1

, sT,I,F2
] + [min{θ1, θ3},min{θ2, θ4}]] = [12 (sT,I,F1

+
min{θ1, θ3}), 12 (sT,I,F2

+min{θ2, θ3})]. Therefore, min{θ1,
θ3} > ρ1 = 1

2 (sT,I,F1
+min{θ1, θ3})> sT,I,F1

andmin{θ2, θ4
} > ρ2 = 1

2 (sT,I,F2
+min{θ2, θ4}) > sT,I,F2

. Hence, [min{θ1
, θ3},min{θ2, θ4}] > [ρ1, ρ2] > [sT,I,F1 , sT,I,F2 ], so that x0 ∗
y0 /∈ U(AT,I,F | [sT,I,F1 , sT,I,F2 ]) which is a contradiction
since AT,I,F (x0) = [θ1, θ2] ≥ [min{θ1, θ3},min{θ2, θ4}] >
[ρ1, ρ2] and AT,I,F (y0) = [θ3, θ4] ≥ [min{θ1, θ3},min{θ2, θ4}
i]> [ρ1, ρ2]. This implies x0∗y0 ∈ U(AT,I,F | [sT,I,F1

, sT,I,F2
])

. Thus AT,I,F (x ∗ y) ≥ rmin{AT,I,F (x), AT,I,F (y)} ∀ x, y ∈
X.

Again, let x0, y0 ∈ X be such that λT,I,F (x0 ∗ y0) >
max{λT,I,F (x0), λT,I,F (0)}. Let λT,I,F (x0) = ηT,I,F1 , λT,I,F
(y0) = ηT,I,F2

i and i λT,I,F (x0∗y0)i = tT,I,F1
. Then tT,I,F1

>
max{ηT,I,F1

.ηT,I,F2
}. Let us consider tT,I,F2

= 1
2 [λT,I,F (x0 ∗

y0) +max{λT,I,F (x0), λT,I,F (0)}]. We get that itT,I,F2
= 1

2 i(
tT,I,F1

+ max{ηT,I,F1
, ηT,I,F2

}). Therefore, ηT,I,F1
<

tT,I,F2 = 1
2 (tT,I,F1 + max{ηT,I,F1 , ηT,I,F2}) < tT,I,F1 and

ηT,I,F2 < tT,I,F2 = 1
2 (tT,I,F1 + max{ηT,I,F1 , ηT,I,F2}) <

tT,I,F1
. Hence, max{ηT,I,F1

, ηT,I,F2
} < tT,I,F2

< tT,I,F1
=

λT,I,F (x0, y0), so that x0 ∗ y0 /∈ L(λT,I,F | tT,I,F1
) which is a

contradictioni since i λT,I,F i(x0) = ηT,I,F1
i ≤ imaxi{ηT,I,F1

,
ηT,I,F2} < tT,I,F2 iandi λT,I,F (y0) = ηT,I,F2 ≤ max{ηT,I,F1 ,
ηT,I,F2} < tT,I,F2 . This implies x0, y0 ∈ L(λT,I,F | tT,I,F1).
Thus λT,I,F (x ∗ y) ≤ max{λT,I,F (x), λT,I,F (y)} ∀ x, y ∈ X .

Therefore, U(AT,I,F | [sT,I,F1 , sT,I,F2 ]) and L(λT,I,F | tT,I,F1)
are subalgebras of X . Hence, A = (AT,I,F , λT,I,F ) is neutro-
sophic cubic subalgebra of X.

Theorem 3.13 Any subalgebra of X can be realized as both
the upper [sT,I,F1

, sT,I,F2
]-level and lower tT,I,F1

-level of some
neutrosophic cubic subalgebra of X.

Proof: Let B be a neutrosophic cubic subalgebra ofX, andA be
a neutrosophic cubic set on X defined by

AT,I,F =

{
[αT,I,F1

, αT,I,F2
], if x ∈ B

[0, 0] otherwise.
,

λT,I,F =

{
βT,I,F1 , if x ∈ B
0, otherwise.

∀ [αT,I,F1
, αT,I,F2

] ∈ D[0, 1] and βT,I,F1
∈ [0, 1]. We consider

the following cases.

Case 1: If ∀ x, y ∈ B then AT,I,F (x) = [αT,I,F1
, αT,I,F2

],
λT,I,F (x) = βT,I,F1

and AT,I,F (y) = [αT,I,F1
, αT,I,F2

], λT,I,F
(y) = βT,I,F1

. Thus AT,I,F (x ∗ y) = [αT,I,F1
, αT,I,F2

] = rmin
{[αT,I,F1 , αT,I,F2 ], i[αT,I,F1 , αT,I,F2 ]i} i = irmin{AT,I,F (x),
AT,I,F (y)} and λT,I,F (x ∗ y) = βT,I,F1=max{βT,I,F1 , βT,I,F1

} = max{λT,I,F (x), λT,I,F (y)}.
Case 2: If x ∈ B and y /∈ B, then AT,I,F (x) =

[αT,I,F1
, αT,I,F2

], λT,I,F (x) = βT,I,F1
and AT,I,F (y) = i[0, 0],

λT,I,F (y) = 1. Thus AT,I,F (x ∗ y) ≥ [0, 0] = rmin{i[αT,I,F1 ,
αT,I,F2 ], [0, 0]} = rmin{AT,I,F (x), AT,I,F (y)} and λT,I,F (x ∗
y) ≤ 1 = max{βT,I,F1

, 1} = max{λT,I,F (x), λT,I,F (y)}.
Case 3: If x /∈ B and y ∈ B, then AT,I,F (x) = [0, 0],λT,I,F (

x) = 1 andAT,I,F (y) = [αT,I,F1
, αT,I,F2

], λT,I,F (y) = βT,I,F1

. Thus AT,I,F (x ∗ y) ≥ [0, 0] = rmin{[0, 0], [αT,I,F1
, αT,I,F2

]}
= rmin{AT,I,F (x), AT,I,F (y)} and λT,I,F (x ∗ y) ≤ 1 =
max{1, βT,I,F1} = max{λT,I,F (x), λT,I,F (y)}.

Case 4: If x /∈ B and y /∈ B, then AT,I,F (x) = [0, 0], λT,I,F (
x) = 1 and AT,I,F (y) = [0, 0], λT,I,F (y) = 1. Thus AT,I,F (x ∗
y) ≥ [0, 0] = rmin{[0, 0], [0, 0]} = rmin{AT,I,F (x), AT,I,F (y
)}i and i λT,I,F (x∗y)i ≤ i1i = imax{1, 1} = max{λT,I,F (x),
λT,I,F (y)}.

Therefore, A is a neutrosophic cubic subalgebra of X .

Theorem 3.14 Let B be a subset of X and A be a neutrosophic
cubic set on X which is given in the proof of Theorem 3.13. If
A is realized as lower level subalgebra and upper level subal-
gebra of some neutrosophic cubic subalgebra of X, then P is a
neutrosophic cubic one of X .

Proof: Let A be a neutrosophic cubic subalgebra of X, and
x, y ∈ B. Then AT,I,F (x) = AT,I,F (y) = [αT,I,F1 , αT,I,F2 ]
and λT,I,F (x) = λT,I,F (y) = iβT,I,F1

. Thus AT,I,F (x ∗ y)i ≥
rmin{AT,I,F (x), AT,I,F (y)}=rmin{[αT,I,F1

, αT,I,F2
], [αT,I,F1

, αT,I,F2
]} = [αT,I,F1

, αT,I,F2
] and λT,I,F (x∗y) ≤ max{λT,I,F

(x), λT,I,F (y)}=max{βT,I,F1 , βT,I,F1}=βT,I,F1 ,⇒ x ∗ y ∈ B
. Hence, the proof is completed.

Rakib Iqbal, Sohail Zafar and Muhammad Shoaib Sardar, Neutrosophic Cubic Subalgebras and Neutrosophic Cubic Closed 
Ideals of B-algebras

Neutrosophic Sets and Systems, Vol. 14, 2016  53



4 Images and Pre-images of Neutro-
sophic Cubic Subalgebras

In this section, homomorphism of neutrosophic cubic subalge-
bras are defined and some results are studied.

Let f be a mapping from a setX into a set Y andA = (AT,I,F
, λT,I,F ) be a neutrosophic cubic set in Y . So, the inverse-image
of A is defined as f−1(A)={〈x, f−1(AT,I,F ), f−1(λT,I,F )〉 |
x ∈ X} and f−1(AT,I,F )(x) = AT,I,F (f(x)) and f−1(λT,I,F )
(x) = λT,I,F (f(x)). It can be shown that f−1(A) is a neutro-
sophic cubic set.

Theorem 4.1 Suppose that f | X → Y be a homo-
morphism of B-algebras. If A = (AT,I,F , λT,I,F ) is
a neutrosophic cubic subalgebra of Y , then the pre-image
f−1(A)={〈x, f−1(AT,I,F ), f−1(λT,I,F )〉 | x ∈ X} of A un-
der f is a neutrosophic cubic subalgebra of X .

Proof: Assume that A = (AT,I,F , λT,I,F ) is a neutro-
sophic cubic subalgebra of Y and let x, y ∈ X . then
f−1(AT,I,F )(x∗y) = AT,I,F (f(x∗y)) = AT,I,F (f(x)∗f(y))≥
rmin{AT,I,F (f(x)), AT,I,F (f(y))} = rmin{f−1(AT,I,F )(x)
, f−1(AT,I,F )(y)} and f−1(λT,I,F )(x ∗ y) = λT,I,F (f(x ∗
y)) = λT,I,F (f(x)∗f(y))≤ max{λT,I,F (f(x)), λT,I,F (f(y))}
= max{f−1(λT,I,F )(x), f−1(λT,I,F )(y)}. ∴ f−1(A) =
{〈x, f−1(AT,I,F ), f−1(λT,I,F )〉 | x ∈ X} is neutrosophic cu-
bic subalgebra of X .

Theorem 4.2 Consider f | X → Y be a homomorphism of
B-algebras and Aj = (AjT,I,F , λjT,I,F ) be neutrosophic cubic
subalgebras of Y where j ∈ k. If inf{max{λjT,I,F (y), λjT,I,F
(y)}} = max{infλjT,I,F (y), infλjT,I,F (y)} ∀ y ∈ Y , then
f−1(

⋂
R

j∈k
Aj) is also a neutrosophic cubic subalgebra of X .

Proof: Let Aj = (AjT,I,F , λjT,I,F ) be neutrosophic
cubic subalgebras of Y where j ∈ k satisfying
inf{max{λjT,I,F (y), λjT,I,F (y)}}=max{infλjT,I,F (y), inf
λjT,I,F (y)} ∀ y ∈ Y . Then by Theorem 3.3,

⋂
R

j∈k
Aj is a

neutrosophic cubic subalgebra of Y . Hence f−1(
⋂
R

j∈k
Aj) is also

a neutrosophic cubic subalgebra of X .

Theorem 4.3 Let f | X → Y be a homomorphism of B-
algebras. Assume that Aj = (AjT,I,F , λjT,I,F ) be neutrosophic
cubic subalgebras of Y where j ∈ k. If rsup{rmin{AjT,I,F (y1
), AjT,I,F (y1)}}=rmin{rsupAjT,I,F (y1), rsupAjT,I,F (y1)} ∀
y1, y2 ∈ Y , then f−1(

⋃
R

j∈k
Aj) is also a neutrosophic cubic sub-

algebra of X .

Proof: Let Aj = (AjT,I,F , λjT,I,F ) be neutrosophic cubic sub-
algebras of Y, where j ∈ k satisfying rsup{rmin{AjT,I,F (y1),
AjT,I,F (y2)}}=rmin{rsupAjT,I,F (y1), rsupAjT,I,F (y2)} ∀
y1, y2 ∈ Y . Then by Theorem 3.4,

⋃
R

j∈k
Aj is a neutrosophic cu-

bic subalgebra of Y . Hence, f−1(
⋃
R

j∈k
Aj) is also a neutrosophic

cubic subalgebra of X .

Definition 4.1 A neutrosophic cubic set A=(AT,I,F , λT,I,F ) in
the B-algebra X is said to have rsup-property and inf-property
if for any subset S ofX , there exist s0 ∈ T such thatAT,I,F (s0)=
rsups0∈SAT,I,F (t0) and λT,I,F (t0)= inf

t0∈T
λT,I,F (t0) respec-

tively.

Definition 4.2 Let f be mapping from the set X to the set Y .
If A = (AT,I,F , λT,I,F ) is neutrosphic cubic set of X , then
the image of A under f denoted by f(A) and is defined as
f(A)={〈x, frsup(AT,I,F ), finf (AT,I,F )〉 | x ∈ X}, where

frsup(AT,I,F )(y) =

{
rsupx∈f−1(y)(AT,I,F )(X), if f−1(y) 6= φ

[0, 0], otherwise,

and

finf (λT,I,F )(y) =

 λT,I,F
x∈f−1(y)

(x), if f−1(y) 6= φ

1, otherwise.

Theorem 4.4 suppose f | X → Y be a homomorphism from
a B-algebra X onto a B-algebra Y . If A = (AT,I,F , λT,I,F )
is a neutrosophic cubic subalgebra of X , then the image
f(A)={〈x, frsup(AT,I,F ), finf (AT,I,F )〉 | x ∈ X} of A under
f is a neutrosophic cubic subalgebra of Y .

Proof: Let A = (AT,I,F , λT,I,F ) be a neutrosophic cubic sub-
algebra ofX and let y1, y2 ∈ Y . We know that {x1 ∗x2 | x1 ∈
f−1(y1) and x2 ∈ f−1(y2)} ⊆ {x ∈ X | x ∈ f−1(y1 ∗
y2)}. Now frsup(AT,I,F )(y1 ∗ y2)=rsup{AT,I,F (x) | x ∈
f−1(y1 ∗ y2)} ≥ rsup{AT,I,F (x1 ∗ x2) | x1 ∈ f−1(y1) and
x2 ∈ f−1(y2)} ≥ rsup{rmin{AT,I,F (x1), AT,I,F (x2)} | x1 ∈
f−1(y1) and x2 ∈ f−1(y2)} = rmin{rsup{AT,I,F (x1) |
x1 ∈ f−1(y1)}, rsup{AT,I,F (x2) | x2 ∈ f−1(y2)}} = rmin
{frsup(AT,I,F )(y1), frsup(AT,I,F )(y2)} and finf (λT,I,F )(y1 ∗
y2) = inf{λT,I,F (x) | x ∈ f−1(y1 ∗y2)} ≤ inf{λT,I,F (x1 ∗
x2) | x1 ∈ f−1(y1) and x2 ∈ f−1(y2)} ≤ inf{max{λT,I,F (
x1), λT,I,F (x2)} | x1 ∈ f−1(y1) and x2 ∈ f−1(y2)} =
max{inf{λT,I,F (x1) | x1 ∈ f−1(y1)}, inf{λT,I,F (x2) |
x2 ∈ f−1(y2)}} = max{finf (λT,I,F )(y1), finf (λT,I,F )(y2)}.
Hence f(A)={〈x, frsup(AT,I,F ), finf (AT,I,F )〉 | x ∈ X} is a
neutrosophic cubic subalgebra of Y .

Theorem 4.5 Assume that f | X → Y is a homomorphism of
B-algebra and Ai = (AiT,I,F , λiT,I,F ) is a neutrosophic cubic
subalgebra of X , where i ∈ k. If inf{max{λiT,I,F (x), λiT,I,F (
x)}} = max{infλiT,I,F (x), infλiT,I,F (x)} ∀ x ∈ X ,
thenf(

⋂
P

i∈k
Ai) is a neutrosophic cubic subalgebra of Y .

Proof: LetAi = (AiT,I,F , λiT,I,F ) be neutrosophic cubic subal-
gebra ofX where i ∈ k satisfying inf{max{λiT,I,F (x), λiT,I,F
(x)}}=max{infλiT,I,F (x), infλiT,I,F (x)} ∀x ∈ X . Then by
Theorem 3.3,

⋂
P

i∈k
Ai is a neutrosophic cubic algebra ofX . Hence

f(
⋂
P

i∈k
Aj) is also a neutrosophic cubic subalgebra of Y .
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Theorem 4.6 Suppose f | X → Y be a homomorphism of B-
algebra. Let Ai=(AiT,I,F , λiT,I,F ) be neutrosophic cubic sub-
algebras of X where i ∈ k. If rsup{rmin{AiT,I,F (x1), AiT,I,F
(x2)}}=rmin{rsupAiT,I,F (x1), rsupAiT,I,F (x2)} ∀ x1, x2 ∈
Y , then f(

⋃
P

i∈k
Ai) is also a neutrosophic cubic subalgebra of Y .

Proof: Let Ai = (AiT,I,F , λiT,I,F ) be neutrosophic cubic sub-
algebras of X where i ∈ k satisfying rsup{rmin{AiT,I,F (x1),
AiT,I,F (x2)}}=rmin{rsupAiT,I,F (x1), rsupAiT,I,F (x2)} ∀
x1, x2 ∈ X . Then by Theorem 3.4,

⋃
P

i∈k
Ai is a neutrosophic

cubic subalgebra of X . Hence f(
⋃
P

i∈k
Ai) is also a neutrosophic

cubic subalgebra of Y .

Corollary 4.1 For a homomorphism f | X → Y of B-algebras,
the following results hold:

1. If ∀ i ∈ k, Ai are neutrosophic cubic subalgebra of X ,
then f(

⋂
R

i∈k
Ai) is neutrosophic cubic subalgebra of Y

2. If ∀ i ∈ k, Bi are neutrosophic cubic subalgebra of Y , then
f−1(

⋂
R

i∈k
Bi) is neutrosophic cubic subalgebra of X .

Proof: Straightforward.

Theorem 4.7 Let f be an isomorphism from aB-algebraX onto
a B-algebra Y . If A is a neutrosophic cubic subalgebra of X ,
then f−1(f(A)) = A

Proof: For any x ∈ X , let f(x) = y. Since f is an isomorphism,
f−1(y) = {x}. Thus f(A)(f(x)) = f(A)(y) =

⋃
x∈f−1(y)

A(x)

= A(x).
For any y ∈ Y , since f is an isomorphism, f−1(y) = {x} so

that f(x) = y. Thus f−1(A)(x) = A(f(x)) = A(y).
Hence, f−1(f(A)) = f−1(A) = A.

Corollary 4.2 Consider f is an Isomorphism from a B-algebra
X onto a B-algebra Y . If C is a neutrosophic cubic subalgebra
of Y , then f(f−1(C)) = C.

Proof: Straightforward.

Corollary 4.3 Let f | X → X be an automorphism. If A refers
to a neutrosophic cubic subalgebra of X , then f(A) = A ⇐⇒
f−1(A) = A

5 Neutrosophic Cubic Closed Ideals of
B-algebras

In this section, neutrosophic cubic ideals and Neutrosophic cu-
bic closed ideals of B-algebra are defined and related results are
proved.

Definition 5.1 A neutrosophic cubic set A = (AT,I,F , λT,I,F )
of X is called a neutrosophic cubic ideal of X if it satisfies fol-
lowing axioms:

N3. AT,I,F (0) ≥ AT,I,F (x) and λT,I,F (0) ≤ λT,I,F (x),
N4. AT,I,F (x) ≥ rmin{AT,I,F (x ∗ y), AT,I,F (y)},
N5. λT,I,F (x) ≤ max{λT,I,F (x ∗ y), λT,I,F (y)}∀ x, y ∈ X

Example 5.1 Consider aB-algebraX = {0, a1, a2, a3} and bi-
nary operation * is defined on X as

> 0 a1 a2 a3
0 0 a1 a2 a3
a1 a1 0 a3 a2
a2 a2 a3 0 a1
a3 a3 a2 a1 0

LetA = {AT,I,F , λT,I,F } be a neutrosophic cubic setX defined
as,

0 a1 a2 a3
AT [1,1] [0.9,0.8] [1,1] [0.5,0.7]
AI [0.9,0.9] [0.6,0.8] [0.9,0.9] [0.7,0.5]
AF [0.8,0.9] [0.5,0.6] [0.8,0.9] [0.9,0.5]

,

0 a1 a2 a3
λT 0 0.9 0 0.8
λI 0.1 0.6 0.1 0.7
λF 0.3 0.4 0.3 0.5

Then it can be easy verify thatA satisfying the conditions N3, N4
and N5. Hence A is a neutrosophic cubic ideal of X .

Definition 5.2 Let A = {AT,I,F , λT,I,F } be a neutrosophic cu-
bic set X then it is called neutrosophic cubic closed ideal of X if
it satisfies N4, N5 and

N6. AT,I,F (0 ∗ x) ≥ AT,I,F (x) and λT,I,F (0 ∗ x) ≤
λT,I,F (x), ∀ x ∈ X .

Example 5.2 Let X = {0, a1, a2, a3, a4, a5} be a B-algebra in
Example 3.2 and A = {AT,I,F , λT,I,F } be a neutrosophic cubic
set X defined as

0 a1 a2 a3 a4 a5
AT [0.3,0.6] [0.2,0.5] [0.2,0.5] [0.1,0.3] [0.1,0.3] [0.1,0.3]
AI [0.4,0.7] [0.3,0.6] [0.3,0.6] [0.2,0.5] [0.2,0.5] [0.2,0.5]
AF [0.5,0.8] [0.4,0.7] [0.4,0.7] [0.2,0.3] [0.2,0.3] [0.2,0.3]

0 a1 a2 a3 a4 a5
λT 0.2 0.5 0.5 0.7 0.7 0.7
λI 0.3 0.4 0.4 0.6 0.6 0.6
λF 0.4 0.5 0.5 0.8 0.8 0.8

.

By calculations verify thatA is a neutrosophic cubic closed ideal
of X .

Proposition 5.1 Every neutrosophic cubic closed ideal is a neu-
trosophic cubic ideal.

Rakib Iqbal, Sohail Zafar and Muhammad Shoaib Sardar, Neutrosophic Cubic Subalgebras and Neutrosophic Cubic Closed 
Ideals of B-algebras

Neutrosophic Sets and Systems, Vol. 14, 2016 55



The converse of Proposition 5.1 is not true in general as shown
in the following example.

Example 5.3 Let X = {0, a1, a2, a3, a4, a5} be a B-algebra in
Example 3.1 and A = {AT,I,F , λT,I,F } be a neutrosophic cubic
set in X defined as,

0 a1 a2 a3 a4 a5
AT [0.4,0.6] [0.3,0.5] [0.3,0.5] [0.2,0.3] [0.2,0.3] [0.2,0.3]
AI [0.5,0.7] [0.4,0.6] [0.4,0.6] [0.3,0.5] [0.3,0.5] [0.3,0.5]
AF [0.6,0.8] [0.5,0.7] [0.5,0.7] [0.4,0.3] [0.4,0.3] [0.4,0.3]

0 a1 a2 a3 a4 a5
λT 0.1 0.4 0.4 0.5 0.5 0.5
λI 0.2 0.3 0.3 0.6 0.6 0.6
λF 0.3 0.5 0.5 0.8 0.8 0.8

.

By calculations verify that A is a neutrosophic cubic ideal of
X . But it is not a neutrosophic cubic closed ideal of X since
AT,I,F (0 ∗ x) ≥ AT,I,F (x) and λT,I,F (0 ∗ x) ≤ λT,I,F (x),
∀ x ∈ X .

Corollary 5.1 Every neutrosophic cubic subalgebra satisfies N4
and N5 refer to a neutrosophic cubic closed ideal.

Theorem 5.1 Every neutrosophic cubic closed ideal of a B-
algebra X works as a neutrosophic cubic subalgebra of X .

Proof: Suppose A = {AT,I,F , λT,I,F } be a neutrosophic cubic
closed ideal of X , then for any x ∈ X we have AT,I,F (0 ∗ x) ≥
AT,I,F (x) and λT,I,F (0∗x) ≤ λT,I,F (x). Now by N4, N6, ([3],
Proposition 3.2), we know thatAT,I,F (x∗y) ≥ rmin{AT,I,F ((x
y)∗(0∗y)), AT,I,F (0∗y)}= rmin{AT,I,F (x), AT,I,F (0∗y)} ≥
rmin{AT,I,F (x), AT,I,F (y)} and λT,I,F (x ∗ y) ≤ max{λT,I,F
((x ∗ y) ∗ (0 ∗ y)), λT,I,F (0 ∗ y)} = max{λT,I,F (x), λT,I,F (0 ∗
y)} ≤ max{λT,I,F (x), λT,I,F (y)}. Hence, A is a neutrosophic
cubic subalgeba of X .

Theorem 5.2 The R-intersection of any set of neutrosophic cubic
ideals of X is also a neutrosophic cubic ideal of X .

Proof: Let Ai = {AiT,I,F , λiT,I,F }, where i ∈ k, be a neutro-
sophic cubic ideals of X and x, y ∈ X . Then

(∩AiT,I,F )(0) = rinfAiT,I,F (0)

≥ rinfAiT,I,F (x)

= (∩AiT,I,F )(x),

(∨λiT,I,F )(0) = supλiT,I,F (0)

≤ λiT,I,F (x)

= (∨λiT,I,F )(x),

(∩AiT,I,F )(x) = rinfAiT,I,F (x)

≥ rinf{rmin{AiT,I,F (x ∗ y), AiT,I,F (y)}}
= rmin{rinfAiT,I,F (x ∗ y), rinfAiT,I,F (y)}
= rmin {(∩AiT,I,F )(x ∗ y), (∩AiT,I,F )(y)}

and

(∨λiT,I,F )(x) = supλiT,I,F (x)

≤ sup{max{λiT,I,F (x ∗ y), λiT,I,F (y)}}
= max{supλiT,I,F (x ∗ y), supλiT,I,F (y)}
= max {(∨λiT,I,F )(x ∗ y), (∨λiT,I,F )(y)}

which shows that R-intersection is a neutrosophic cubic ideal of
X .

Theorem 5.3 The R-intersection of any set of neutrosophic cubic
closed ideals ofX is also a neutrosophic cubic closed ideal ofX .

Proof: It is similar to the proof of Theorem 5.2.

Theorem 5.4 Neutrosophic cubic set A = {AT,I,F , λT,I,F } of
X is a neutrosophic cubic ideal of X ⇐⇒ A−T,I,F , A

+
T,I,F and

λT,I,F are fuzzy ideals of X .

Proof: Assume that x, y ∈ X . Since A−T,I,F (0) ≥ A−T,I,F (x)

and A+
T,I,F (0) ≥ A+

T,I,F (x), therefore, AT,I,F (0) ≥ AT,I,F (x).
Also, λT,I,F (0) ≤ λT,I,F (x). LetA−T,I,F ,A+

T,I,F and λT,I,F are
fuzzy ideals of X . Then AT,I,F (x) = [A−T,I,F (x), A+

T,I,F (x)] ≥
[min{A−T,I,F (x ∗ y), A−T,I,F (y)},min{A+

T,I,F (x ∗ y), A+
T,I,F (

y)} = rmin{[A−T,I,F (x ∗ y), A+
T,I,F (x ∗ y)], [A−T,I,F (y), A+

T,I,F

(y)]} = rmin{AT,I,F (x ∗ y), AT,I,F (y)} and λT,I,F (x) ≤
max{λT,I,F (x ∗ y), λT,I,F (y)}. Therefore A is a neutrosophic
cubic ideal of X .

Conversely, let A be a neutrosophic cubic ideal of X . For
any x, y ∈ X , we have [A−T,I,F (x), A+

T,I,F (x)] = AT,I,F (x) ≥
rmin{AT,I,F (x∗y), AT,I,F (y)} = rmin{[A−T,I,F (x∗y), A+

T,I,F

(x ∗ y)], [A−T,I,F (y), A+
T,I,F (y)]} = [min{A−T,I,F (x ∗ y), A−T,I,F

(y)},min{A+
T,I,F (x ∗ y), A+

T,I,F (y)}. Thus, A−T,I,F (x) ≥
min{A−T,I,F (x ∗ y), A−T,I,F (y)}, A+

T,I,F (x) ≥min{A+
T,I,F (x ∗

y), A+
T,I,F (y)} and λT,I,F (x) ≤max{λT,I,F (x∗y), λT,I,F (y)}.

Hence, A−T,I,F , A
+
T,I,F and λT,I,F are fuzzy ideals of X .

Theorem 5.5 For a neutrosophic cubic ideal A =
{AT,I,F , λT,I,F } of X , the following are valid:

1. if x ∗ y ≤ z, then AT,I,F (x) ≥ rmin{AT,I,F (y), AT,I,F (
z)} and λT,I,F (x) ≤ max{λT,I,F (y), λT,I,F (z)},

2. if x ≤ y, then AT,I,F (x) ≥ AT,I,F (y) and λT,I,F (x) ≤
λT,I,F (y) ∀ x, y, z ∈ X .

Proof: (1) Assume that x, y, z ∈ X such that x ∗ y ≤ z. Then
(x∗y)∗z = 0 and thusAT,I,F (x)≥ rmin{AT,I,F (x∗y), AT,I,F
(y)} ≥ rmin{rmin{AT,I,F ((x∗y)∗z), AT,I,F (z)}, AT,I,F (y)}
=rmin{rmin{AT,I,F (0), AT,I,F (z)}, AT,I,F (y)}=rmin{AT,I,F
(y), AT,I,F (z)} and λT,I,F (x)≤max{λT,I,F (x∗y), λT,I,F (y)}
≤max{max{λT,I,F ((x ∗ y) ∗ z), λT,I,F (z)}, λT,I,F (y)}=max
{max{λT,I,F (0), λT,I,F (z)}, λT,I,F (y)} = max{λT,I,F (y),
λT,I,F (z)}.
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(2) Again, take x, y ∈ X such that x ≤ y. Then x ∗
y = 0 and thus AT,I,F (x) ≥ rmin{AT,I,F (x ∗ y), AT,I,F (y)}
= rmin{AT,I,F (0), AT,I,F (y)} = AT,I,F (y) and λT,I,F (x) ≤
rmin{λT,I,F (x ∗ y), λT,I,F (y)} = rmin{λT,I,F (0), λT,I,F (y)}
= λT,I,F (y).

Theorem 5.6 LetA = {AT,I,F , λT,I,F } is a neutrosophic cubic
ideal of X . If x ∗ y ≤ x ∀ x, y ∈ X , then A is a neutrosophic
cubic subalgebra of X .

Proof: Assume thatA = {AT,I,F , λT,I,F } is a neutrosophic cu-
bic ideal of X . Suppose that x ∗ y ≤ x ∀ x, y ∈ X . Then

AT,I,F (x ∗ y) ≥ AT,I,F (x)

(∵ By Theorem 5.5)

≥ rmin{AT,I,F (x ∗ y), AT,I,F (y)}
(∵ By N4)

≥ rmin{AT,I,F (x), AT,I,F (y)}
(∵ By Theorem 5.5)

⇒ AT,I,F (x ∗ y) ≥ rmin{AT,I,F (x), AT,I,F (y)}

and

λT,I,F (x ∗ y) ≤ λT,I,F (x)

(∵ By Theorem 5.5)

≤ max{λT,I,F (x ∗ y), λT,I,F (y)}
(∵ By N5)

≤ max{λT,I,F (x), λT,I,F (y)}
(∵ By Theorem 5.5)

⇒ λT,I,F (x ∗ y) ≤ max{λT,I,F (x), λT,I,F (y)}.

Hence,A = {AT,I,F , λT,I,F } is a neutrosophic cubic subalgebra
of X .

Theorem 5.7 If A = {AT,I,F , λT,I,F } is a neutrosophic cubic
ideal of X , then (...((x ∗ a1) ∗ a2) ∗ ...) ∗ an = 0 for any x, a1,
a2, ..., an ∈ X ,⇒ AT,I,F (x) ≥ rmin{AT,I,F (a1), AT,I,F (a2)
, ..., AT,I,F (an)} and λT,I,F (x) ≤ max{λT,I,F (a1), λT,I,F (a2
), ..., λT,I,F (an)}.

Proof: We can prove this theorem by using induction on n and
Theorem 5.5).

Theorem 5.8 A neutrosophic cubic set A = (AT,I,F , λT,I,F )
is a neutrosophic cubic closed ideal of X ⇐⇒ U(AT,I,F |
[sT,I,F1

, sT,I,F2
]) and L(λT,I,F | tT,I,F1

) are closed ideals of X
for every [sT,I,F1

, sT,I,F2
] ∈ D[0, 1] and tT,I,F1

∈ [0, 1].

Proof: Assume that A = (AT,I,F , λT,I,F ) is a neutrosophic cu-
bic closed ideal of X. For [sT,I,F1

, sT,I,F2
] ∈ D[0, 1], clearly,

0 ∗ x ∈ U(AT,I,F | [sT,I,F1 , sT,I,F2 ]), where x ∈ X. Let
x, y ∈ X be such that x ∗ y ∈ U(AT,I,F | [sT,I,F1 , sT,I,F2 ])
and y ∈ U(AT,I,F | [sT,I,F1

, sT,I,F2
]). Then AT,I,F (x) ≥

rmin{AT,I,F (x ∗ y), AT,I,F (y)} ≥ [sT,I,F1
, sT,I,F2

], ⇒

x ∈ U(AT,I,F | [sT,I,F1 , sT,I,F2 ]). Hence, U(AT,I,F |
[sT,I,F1

, sT,I,F2
]) is a closed ideal of X .

For tT,I,F1
∈ [0, 1]. Clearly, 0 ∗ x ∈ L(λT,I,F | tT,I,F1

).
Let x, y ∈ X be such that x ∗ y ∈ L(λT,I,F | tT,I,F1

) and
y ∈ L(λT,I,F | tT,I,F1). Then λT,I,F (x) ≤ max{λT,I,F (x ∗
y), λT,I,F (y)} ≤ tT,I,F1 , ⇒ x ∈ L(λT,I,F | tT,I,F1). Hence,
L(λT,I,F | tT,I,F1

). is a neutrosophic cubic closed ideal of X.
Conversely, suppose that each non-empty level subset

U(AT,I,F | [sT,I,F1
, sT,I,F2

]) and L(λT,I,F | tT,I,F1
) are

closed ideals of X. For any x ∈ X, let AT,I,F (x) =
[sT,I,F1 , sT,I,F2 ] and λT,I,F (x) = tT,I,F1 . Then x ∈ U(AT,I,F |
[sT,I,F1

, sT,I,F2
]) and x ∈ L(λT,I,F | tT,I,F1

). Since 0 ∗ x ∈
U(AT,I,F | [sT,I,F1

, sT,I,F2
])
⋂
L(λT,I,F | tT,I,F1

), it fol-
lows that AT,I,F (0 ∗ x) ≥ [sT,I,F1

, sT,I,F2
] = AT,I,F (x) and

λT,I,F (0 ∗ x) ≤ tT,I,F1 = λT,I,F (x) ∀ x ∈ X.
If there exist αT,I,F1 , βT,I,F1 ∈ X such that AT,I,F (αT,I,F1)

< rmin{AT,I,F (αT,I,F1
∗ βT,I,F1

), βT,I,F1
}, then by taking [

s
′

T,I,F1
, s
′

T,I,F2
] = 1

2 [AT,I,F (αT,I,F1
∗ βT,I,F1

) + rmin{AT,I,F
(αT,I,F1

), AT,I,F (βT,I,F1
)}], it follows that αT,I,F1

∗ βT,I,F1
∈

U(AT,I,F | [s
′

T,I,F1
, s
′

T,I,F2
]) and βT,I,F1

∈ U(AT,I,F |
[s
′

T,I,F1
, s
′

T,I,F2
]), but αT,I,F1

/∈ U(AT,I,F | [s
′

T,I,F1
, s
′

T,I,F2
]),

which is contradiction. Hence, U(AT,I,F | [s
′

T,I,F1
, s
′

T,I,F2
]) is

not closed ideal of X.
Again, if there exist γT,I,F1

, δT,I,F1
∈ X such that λT,I,F (

γT,I,F1
) > max{λT,I,F (γT,I,F1

∗ δT,I,F1
), λT,I,F (δT,I,F1

)},
then by taking t

′

T,I,F1
= 1

2 [λT,I,F (γT,I,F1
∗ δT,I,F1

) +
max{λT,I,F (γT,I,F1

), λT,I,F (δT,I,F1
)}], it follows that γT,I,F1

∗
δT,I,F1

∈ L(λT,I,F | t
′

T,I,F1
) and δT,I,F1

∈ L(λT,I,F | t
′

T,I,F1
),

but γT,I,F1 /∈ L(λT,I,F | t′T,I,F1
), which is contradiction.

Hence, L(λT,I,F | t
′

T,I,F1
) is not closed ideal of X. Hence,

A = (AT,I,F , λT,I,F ) is a neutrosophic cubic closed ideal of
X because it satisfies N3 and N4.

6 Investigation of Neutrosophic Cubic
Ideals under Homomorphism

In this section, neutrosophic cubic ideals are investigated under
homomorphism and some results are studied.

Theorem 6.1 Suppose that f | X → Y is a homomorphism of
B-algebra. If A=(AT,I,F , λT,I,F ) is a neutrosophic cubic ideal

of Y , then pre-image f−1(A)=
(
f−1(AT,I,F ), f−1(λT,I,F )

)
of

A under f of X is a neutrosophic cubic ideal of X .

Proof: ∀ x ∈ X , f−1(AT,I,F )(x) = AT,I,F (f(x)) ≤ AT,I,F (0
)=AT,I,F (f(0))=f−1(AT,I,F )(0) and f−1(λT,I,F )(x) = λT,I,F
(f(x)) ≥ λT,I,F (0) = λT,I,F (f(0)) = f−1(λT,I,F )(0).

Let x, y ∈ X then f−1(AT,I,F )(x) = AT,I,F (f(x)) ≥ rmin{
AT,I,F (f(x) ∗ f(y)), AT,I,F (f(y))} = rmin{AT,I,F (f(x ∗ y))
, AT,I,F (f(y))}= rmin{f−1(AT,I,F )(x∗y), f−1(AT,I,F )(y)}
and f−1(λT,I,F )(x) = λT,I,F (f(x)) ≤ max{λT,I,F (f(x) ∗
f(y)), λT,I,F (f(y))} = max{λT,I,F (f(x ∗ y)), λT,I,F (f(y))}
= max{f−1(λT,I,F )(x ∗ y), f−1(λT,I,F )(y)}.
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Hence, f−1(A) =
(
f−1(AT,I,F ), f−1(λT,I,F )

)
is a neutro-

sophic cubic ideal of X .

Corollary 6.1 A homomorphic pre-image of a neutrosophic cu-
bic closed ideal is a neutrosophic cubic ideal.

Proof: Using Proposition 5.1 and Theorem 6.1, straightforward.

Corollary 6.2 A homomorphic pre-image of a neutrosophic cu-
bic closed ideal is also a neutrosophic cubic subalgebra.

Proof: Straightforward, using Theorem 5.1 and Theorem 6.1.

Corollary 6.3 Let f | X → Y be homomorphism of B-
algebra. If Ai = (AiT,I,F , λiT,I,F ) is a neutrosophic cubic ide-

als of Y where i ∈ k then the pre-image f−1
(⋂
i∈kR

AiT,I,F

)
=

(
f−1(

⋂
i∈kR

AiT,I,F ), f−1(
⋂
i∈kR

λiT,I,F )

)
is a neutrosophic

cubic ideal of X .

Proof: Straightforward, using Theorem 5.2 and Theorem 6.1.

Corollary 6.4 Let f | X → Y be homomorphism of B-algebra.
If Ai = (AiT,I,F , λiT,I,F ) is a neutrosophic cubic closed ide-

als of Y where i ∈ k then the pre-image f−1
(⋂
i∈kR

AiT,I,F

)
=

(
f−1(

⋂
i∈kR

AiT,I,F ), f−1(
⋂
i∈kR

λiT,I,F )

)
is a neutrosophic

cubic closed ideal of X .

Proof: Straightforward, using theorem 5.3 and Theorem 6.1.

Theorem 6.2 Suppose that f | X → Y is an epimorphism of
B-algebra. Then A = (AT,I,F , λT,I,F ) is a neutrosophic cu-

bic ideal of Y, if f−1(A) =

(
f−1(AT,I,F ), f−1(λT,I,F )

)
of A

under f of X is a neutrosophic cubic ideal of X .

Proof: For any y ∈ Y , ∃ x ∈ X such that y = f(x). So, AT,I,F
(y) = AT,I,F (f(x)) = f−1(AT,I,F )(x) ≤ f−1(AT,I,F )(0) =
AT,I,F (f(0)) = AT,I,F (0) and λT,I,F (y) = λT,I,F (f(x))
= f−1(λT,I,F )(x) ≥ f−1(λT,I,F )(0) = λT,I,F (f(0)) =
λT,I,F (0).

Suppose y1, y2 ∈ y. Then f(x1) = y1 and f(x2) = y2 for
some x1, x2 ∈ X . Thus, AT,I,F (y1) = AT,I,F (f(x1)) = f−1(
AT,I,F )(x1)≥ rmin{f−1(AT,I,F )(x1∗x2), f−1(AT,I,F )(x2)}
= rmin{AT,I,F (f(x1 ∗ x2)), AT,I,F (f(x2))} = rmin{AT,I,F
(f(x1)∗f(x2)), AT,I,F (f(x2))}=rmin{AT,I,F (y1∗y2), AT,I,F
(y2)} and λT,I,F (y1)=λT,I,F (f(x1))=f−1(λT,I,F )(x1) ≤ max
{f−1(λT,I,F )(x1 ∗x2), f−1(λT,I,F )(x2)}= max{λT,I,F (f(x1
x2)), λT,I,F (f(x2))} = max{λT,I,F (f(x1) ∗ f(x2)), λT,I,F (f
(x2))} = max{λT,I,F (y1 ∗ y2), λT,I,F (y2)}. Hence, A =
(AT,I,F , λT,I,F ) is a neutrosophic cubic ideal of Y.

6.1 Product of Neutrosophic Cubic B-algebra
In this section, product of neutrosophic cubic B-algebras are de-
fined and some corresponding results are investigated.

Definition 6.1 Let A = (AT,I,F , λT,I,F ) and B =
(BT,I,F , υT,I,F ) be two neutrosophic cubic sets of X and Y re-
spectively. The Cartesian product A × B = (X × Y,AT,I,F ×
BT,I,F , λT,I,F × υT,I,F ) is defined by (AT,I,F × BT,I,F )(x, y)
= rmin{AT,I,F (x), BT,I,F (y)} and (λT,I,F × υT,I,F )(x, y) =
max{λT,I,F (x), υT,I,F (y)}, whereAT,I,F ×BT,I,F | X×Y →
D[0, 1] and λT,I,F ×υT,I,F | X×Y → [0, 1] ∀ (x, y) ∈ X×Y.

Remark 6.1 LetX and Y beB-algebras. we define ∗ onX×Y
by (x1, y1) ∗ (x2, y2) = (x1 ∗ x2, y1 ∗ y2) for every (x1, y1) and
(x2, y2) ∈ X × Y. Then clearly, X × Y is a B-algebra.

Definition 6.2 A neutrosophic cubic subset A × B = (X ×
Y,AT,I,F × BT,I,F , λT,I,F × υT,I,F ) is called a neutrosophic
cubic subalgebra if
N7: (AT,I,F ×BT,I,F )((x1, y1) ∗ (x2, y2)) ≥ rmin{(AT,I,F ×
BT,I,F )(x1, y1), (AT,I,F ×BT,I,F )(x2, y2)}
N8: (λT,I,F × υT,I,F )((x1, y1) ∗ (x2, y2)) ≤ max{(λT,I,F ×
υT,I,F )(x1, y1), (λT,I,F × υT,I,F )(x2, y2)}
∀ (x1, y1), (x2, y2) ∈ X × Y

Theorem 6.3 Let A = (AT,I,F , λT,I,F ) and B =
(BT,I,F , υT,I,F ) be neutrosophic cubic subalgebra of X
and Y respectively. Then A × B is a neutrosophic cubic
subalgebra of X × Y.

Proof: Let (x1, y1) and (x2, y2) ∈ X × Y. Then (AT,I,F ×
BT,I,F )((x1, y1)∗(x2, y2)) = (AT,I,F×BT,I,F )(x1∗x2, y1∗y2)
= rmin{AT,I,F (x1 ∗ x2), BT,I,F (y1 ∗ y2)} ≥ rmin{rmin{
AT,I,F (x1), AT,I,F (x2)}, rmin{BT,I,F (y1), BT,I,F (y2)}} =
rmin {rmin { AT,I,F (x1), BT,I,F (y1)}, rmin { AT,I,F (x2),
BT,I,F (y2)}} = rmin{(AT,I,F × BT,I,F )(x1, y1), (AT,I,F ×
BT,I,F )(x2, y2)} and (λT,I,F × υT,I,F )((x1, y1) ∗ (x2, y2)) = (
λT,I,F × υT,I,F )(x1 ∗ x2, y1 ∗ y2) = max{λT,I,F (x1 ∗
x2), υT,I,F (y1 ∗ y2)} ≤ max{max{λT,I,F (x1), λT,I,F (x2)},
max{υT,I,F (y1), υT,I,F (y2)}}=max{max{λT,I,F (x1), υT,I,F
(y1)},max{λT,I,F (x2), υT,I,F (y2)}} = max{(λT,I,F ×
υT,I,F )(x1, y1), (λT,I,F × υT,I,F )(x2, y2)}. Hence A × B is a
neutrosophic cubic subalgebra of X × Y.

Definition 6.3 A neutrosophic cubic subset A × B
= (X × Y,AT,I,F × BT,I,F , λT,I,F × υT,I,F ) is called a
neutrosophic cubic ideal if
N9: (AT,I,F × BT,I,F )(0, 0) ≥ (AT,I,F × BT,I,F )(x, y)
and (λT,I,F × υT,I,F )(0, 0) ≤ (λT,I,F × υT,I,F )(x, y)
∀(x, y) ∈ X × Y,
N10: (AT,I,F × BT,I,F )(x1, y1) ≥ rmin{(AT,I,F ×
BT,I,F )((x1, y1) ∗ (x2, y2)), (AT,I,F ×BT,I,F )(x2, y2)
and
N11: (λT,I,F × υT,I,F )(x1, y1) ≤ max{(λT,I,F ×
υT,I,F )((x1, y1) ∗ (x2, y2)), (λT,I,F × υT,I,F )(x2, y2)}
and A× B is closed ideal if it satisfies N9, N10, N11, and
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N12: (AT,I,F × BT,I,F )((0, 0) ∗ (x, y)) ≥ (AT,I,F ×
BT,I,F )(x, y) ∀ (x1, y1), (x2, y2) ∈ X × Y .

Theorem 6.4 Let A = (AT,I,F , λT,I,F ) and B =
(BT,I,F , υT,I,F ) be neutrosophic cubic ideals of X and Y
respectively. ThenA×B is a neutrosophic cubic ideal of X×Y.

Proof: For any (x, y) ∈ X×Y,we have (AT,I,F×BT,I,F )(0, 0)
= rmin{AT,I,F (0), BT,I,F (0)} ≥ rmin{AT,I,F (x), BT,I,F (y
)} = (AT,I,F × BT,I,F )(x, y) and (λT,I,F × υT,I,F )(0, 0) =
max{λT,I,F (0), υT,I,F (0)} ≤ max{λT,I,F (x), υT,I,F (y)} =
(λT,I,F × υT,I,F )(x, y).

Let (x1, y1) and (x2, y2) ∈ X × Y. Then (AT,I,F ×
BT,I,F )(x1, y1) = rmin{AT,I,F (x1), BT,I,F (y1)} ≥ rmin{
rmin{AT,I,F (x1 ∗ x2), AT,I,F (x2)}, rmin{BT,I,F (y1 ∗ y2),
BT,I,F (y2)}}= rmin{rmin{AT,I,F (x1∗x2), BT,I,F (y1∗y2)}
, rmin{AT,I,F (x2), BT,I,F (y2)}} = rmin{(AT,I,F ×BT,I,F )
(x1∗x2, y1∗y2), (AT,I,F×BT,I,F )(x2, y2)}= rmin{(AT,I,F×
BT,I,F )((x1, y1) ∗ (x2, y2)), (AT,I,F × BT,I,F )(x2, y2)} and
(λT,I,F × υT,I,F )(x1, y1) = max{λT,I,F (x1), υT,I,F (y1)} ≤
max{max{λT,I,F (x1 ∗ x2), λT,I,F (x2)},max{υT,I,F (y1 ∗ y2)
, υT,I,F (y2)}} = max{max{λT,I,F (x1 ∗ x2), υT,I,F (y1 ∗ y2)}
,max{λT,I,F (x2), υT,I,F (y2)}} = max{λT,I,F × υT,I,F )(x1 ∗
x2, y1 ∗ y2), (λT,I,F × υT,I,F )(x2, y2)} = max{(λT,I,F ×
υT,I,F )((x1, y1)∗ (x2 ∗y2)), (λT,I,F ×υT,I,F )(x2, y2)}. Hence,
A× B is a neutrosophic cubic ideal of X × Y.

Theorem 6.5 Let A =(AT,I,F , λT,I,F ) and B =(BT,I,F , υT,I,F
) be neutrosophic cubic closed ideals of X and Y respectively.
Then A× B is a neutrosophic cubic closed ideal of X × Y.

Proof: By Proposition 5.1 and Theorem 6.4, A × B is neutro-
sophic cubic ideal. Now, (AT,I,F × BT,I,F )((0, 0) ∗ (x, y)) =
(AT,I,F ×BT,I,F )(0 ∗ x, 0 ∗ y) = rmin{AT,I,F (0 ∗ x), BT,I,F
(0 ∗ y)} ≥ rmin{AT,I,F (x), BT,I,F (y)} = (AT,I,F ×BT,I,F
)(x, y) and (λT,I,F × υT,I,F )((0, 0) ∗ (x, y)) = (λT,I,F ×
υT,I,F )(0 ∗ x, 0 ∗ y) = max{λT,I,F (0 ∗ x), υT,I,F (0 ∗ y)} ≤
max{λT,I,F (x), υT,I,F (y)} = (λT,I,F × υT,I,F )(x, y). Hence,
A × B is a neutrosophic cubic closed ideal of X × Y. Hence,
A× B is a neutrosophic cubic closed ideal of X × Y.

Definition 6.4 Let A = (AT,I,F , λT,I,F ) and B =
(BT,I,F , υT,I,F ) be neutrosophic cubic subalgebra of X and Y
respectively. For [sT,I,F1 , sT,I,F2 ] ∈ D[0, 1] and tT,I,F1 ∈ [0, 1],
the set U(AT,I,F ×BT,I,F | [sT,I,F1

, sT,I,F2
]) = {(x, y) ∈ X ×

Y | (AT,I,F×BT,I,F )(x, y) ≥ [sT,I,F1
, sT,I,F2

]} is called upper
[sT,I,F1

, sT,I,F2
]-level ofA×B and L(λT,I,F ×υT,I,F | tT,I,F1

)
= {(x, y) ∈ X ×Y | (λT,I,F ×υT,I,F )(x, y) ≤ tT,I,F1 is called
lower tT,I,F1 -level of A× B.

Theorem 6.6 For any two neutrosophic cubic sets A = (AT,I,F
, λT,I,F ) and B = (BT,I,F , υT,I,F ), A × B is a neutrosophic
cubic closed ideals ofX×Y ⇐⇒ the non-empty upper [sT,I,F1 ,
sT,I,F2 ]-level cut U(AT,I,F ×BT,I,F | [sT,I,F1 , sT,I,F2 ]) and the
non-empty lower tT,I,F1

-level L(λT,I,F × υT,I,F | tT,I,F1
) are

closed ideals of X × Y for any [sT,I,F1
, sT,I,F2

] ∈ D[0, 1] and
tT,I,F1

∈ [0, 1].

Proof: SupposeA = (AT,I,F , λT,I,F ) and B = (BT,I,F , υT,I,F
) be neutrosophic cubic closed ideals of X. Therefore, for
any (x, y) ∈ X × Y, (AT,I,F × BT,I,F )((0, 0) ∗ (x, y)) ≥
(AT,I,F × BT,I,F )(x, y) and (λT,I,F × υT,I,F )((0, 0) ∗ (x, y))
≤ (λT,I,F × υT,I,F )(x, y). For [sT,I,F1 , sT,I,F2 ] ∈ D[0, 1], if
(AT,I,F × BT,I,F )(x, y) ≥ [sT,I,F1

, sT,I,F2
], then (AT,I,F ×

BT,I,F )((0, 0) ∗ (x, y)) ≥ [sT,I,F1
, sT,I,F2

].⇒ (0, 0) ∗ (x, y) ∈
U(AT,I,F × BT,I,F | [sT,I,F1

, sT,I,F2
]). Let (x, y), (x

′
, y
′
) ∈

X × Y be such that (x, y) ∗ (x
′
, y
′
) ∈ U(AT,I,F × BT,I,F |

[sT,I,F1
, sT,I,F2

]) and (x
′
, y
′
) ∈ U(AT,I,F ×BT,I,F | [sT,I,F1

,
sT,I,F2

]). Now, (AT,I,F × BT,I,F )(x, y) ≥ rmin{(AT,I,F ×
BT,I,F )((x, y)∗ (x

′
, y
′
)), (AT,I,F ×BT,I,F )(x

′
, y
′
)} ≥ rmin{[

sT,I,F1
, sT,I,F2

], [sT,I,F1
, sT,I,F2

]} = [sT,I,F1
, sT,I,F2

]. ⇒
(x, y) ∈ U(AT,I,F×BT,I,F | [sT,I,F1

, sT,I,F2
]). ThusU(AT,I,F

×BT,I,F | [sT,I,F1 , sT,I,F2 ]) is closed ideal of X×Y. Similarly,
L(λT,I,F × υT,I,F | tT,I,F1) is closed ideal of X × Y.

Conversely, let (x, y) ∈ X × Y be such that (AT,I,F ×
BT,I,F )(x, y) = [sT,I,F1 , sT,I,F2 ] and (λT,I,F ×υT,I,F )(x, y) =
tT,I,F1

. This implies, (x, y) ∈ U(AT,I,F × BT,I,F |
[sT,I,F1

, sT,I,F2
]) and (x, y) ∈ L(λT,I,F × υT,I,F | tT,I,F1

).
Since (0, 0) ∗ (x, y) ∈ U(AT,I,F × BT,I,F | [sT,I,F1

, sT,I,F2
])

and (0, 0) ∗ (x, y) ∈ L(λT,I,F × υT,I,F | tT,I,F1) (by N6),
therefore, (AT,I,F ×BT,I,F )((0, 0) ∗ (x, y)) ≥ [sT,I,F1 , sT,I,F2 ]
and (λT,I,F × υT,I,F )((0, 0) ∗ (x, y)) ≤ tT,I,F1

. ⇒ (AT,I,F ×
BT,I,F )((0, 0)∗(x, y))≥ (AT,I,F×BT,I,F )(x, y) and (λT,I,F×
υT,I,F )((0, 0)∗(x, y))≤ (λT,I,F ×υT,I,F )(x, y)). HenceA×B
is a neutrosophic cubic closed ideals of X × Y.

7 Conclusion

In this paper, the concept of neutrosophic cubic subalgebra, neu-
trosophic cubic ideals, neutrosophic cubic closed ideals and the
product of neutrosophic cubic subalgebra of B-algebra were pre-
sented and their several useful results were canvassed. The rela-
tions among neutrosophic cubic subalgebra, neutrosophic cubic
ideals and neutrosophic cubic closed ideals of B-algebra were
investigated. For future work this study will be further discussed
to some another algebraic system.
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Abstract. 

Static analysis is developed in neutrosophic cognitive 

maps to define the importance of each node based on cen-

trality measures. In this paper a framework static analysis 

of neutrosophic cognitive maps is presented. The analysis 

results are given in the form of neutrosophic numbers. 

Variables are classified and a de-neutrosophication pro-

cess gives an interval number for centrality. Finally the 

nodes are ordered. An illustrative example based on criti-

cal success factor of customer relationship management 

(CRM) systems implementation is provided to show the 

applicability of the proposal. The paper ends with conclu-

sion and future research directions.

Keywords: mental model, neutrosophic Logic, neutrosophic cognitive maps, static analysis 

1 Introduction 

Neutrosophic Cognitive Maps (NCM) [1] was introduced as 

a generalization of Fuzzy Cognitive Maps (FCM) [2]. A 

special feature of NCMs is their ability to handle 

indeterminacy in relations between two concepts, which is 

denoted by 'I'. NCM are  capable of giving results with 

greater sensitivity than the FCM . It also allows a larger 

liberty for expert to express not just the positive, negative 

and absence of relations  but also the indeterminacy of 

causal relations. 

Static analysis is develop to define the importance of each 

node based on centrality measures [3].In this paper, we pro-

pose the use of an innovative technique for static analysis in 

neutrosophic cognitive maps. 

The outline of this paper is as follows: Section 2 is dedicated 

to neutrosophic cognitve maps and static anlysis. The 

proposed framework is presented in Section 3. An 

illustrative example is discussed in Section 4. The paper 

closes with concluding remarks, and discussion of future 

work in Section 5.  

2 Neutrosophic cognitive maps 

Neutrosophic logic is a generalization of fuzzy logic 
based on neutrosophy [4]. A neutrosophic matrix is a matrix 
where the elements a =  (aij)  have been replaced by ele-
ments in 〈R ∪ I〉, where 〈R ∪ I〉  is the neutrosophic integer 
ring  [5]. A neutrosophic graph is a graph in which at least 
one edge or one vertex is neutrosophic [6]. If indeterminacy 

is introduced in cognitive mapping it is called Neutrosophic 
Cognitive Map (NCM) [7].  

NCM are based on neutrosophic logic to represent uncer-

tainty and  indeterminacy in cognitive maps [4].  A NCM is 

a directed graph in which at least one edge is an indetermi-

nacy denoted by dotted lines [8]. 

In  [9] a static analysis of mental model in the form of NCM  

is presented. The result of the static analysis  result is in the 
form of neutrosophic numbers (a+bI, where I = indetermi-
nacy) [10]. Finally, a de-neutrosophication process as pro-
posed by Salmeron and Smarandache [11] is applied to give 
the final ranking value In this paper this model is extended 
and detailed to deal with nodes classification. 

3 Proposed Framework 

The following steps will be used to establish a framework 
static analysis in NCM (Fig. 1). 

Figura 1Proposed framework 

Calculate centrality  
Measures

De-
neutrosophication 

Variable 
classification

Ranking variables
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• Calculate centrality  Measures

The following measures are calculated 
[12]  with absolute values of the  NCM 
adjacency matrix [13]: 

1. Outdegree 𝑜𝑑(𝑣𝑖)   is the row sum of
absolute values of a variable in the

neutrosophic adjacency matrix. It
shows the cumulative strengths of
connections (𝑎𝑖𝑗) exiting the variable.

2. Indegree 𝑖𝑑(𝑣𝑖)  is the column sum of
absolute values of a variable. It shows
the cumulative strength of variables

entering the variable.

3. The centrality (total degree 𝑡𝑑(𝑣𝑖)),
of a variable is the summation of its
indegree (in-arrows) and outdegree
(out-arrows)

𝑡𝑑(𝑣𝑖)= 𝑜𝑑(𝑣𝑖)+ 𝑖𝑑(𝑣𝑖) (1) 

• Variable classification

Variables are classified according to the 
following rules: 

a) Transmitter variables have a positive
or indeterminacy outdegree,  𝑜𝑑(𝑣𝑖)
and zero indegree,  𝑖𝑑(𝑣𝑖).

b) Receiver variables have a positive
indegree or indeterminacy,  𝑖𝑑(𝑣𝑖) ,
and zero outdegree, 𝑜𝑑(𝑣𝑖).

c) Ordinary variables have both a non-
zero indegree and outdegree. Ordi-

nary variables can be more or less re-
ceiver or transmitter variables, based
on the ratio of their indegrees and out-
degrees.

• Ranking variables

A de-neutrosophication process gives an 

interval number for centrality. Finally the 
nodes are ordered.  

The contribution of a variable in a cogni-
tive map can be understood by calculating 
its degree centrality, which shows how 

connected the variable is to other variables 
and what the cumulative strength of these 
connections are. The median of the ex-
treme values [14] is used : 

𝜆([𝑎1, 𝑎2]) =
𝑎1+ 𝑎2

2
(2) 

Then 

𝐴 > 𝐵 ⇔
𝑎1+ 𝑎2

2
>

𝑏1+ 𝑏2

2
      (3) 

 Finally a ranking of variables is given. 

4 Illustrative example 

In this section, we present an illustrative example in order 
to show the applicability of the proposed framework. We 
selected a critical sucess factor(CSF) of custumer 

relationship managemente (CRM)sytems  implementation 
[15] for modeling interdependencies in the form of NCM 
[16]. Building a NCM allows dealing with indeterminacy, 
making easy the elicitation of interdependencies CSF [17]. 

Node Description 

A Market orientation 

B Flexibility 

C Managers support 

D Organizational changes in-
clusion  

F Users’ commitment and 
presence. 

G Time 

TABLE I. NCM NODES 

The NCM is developed integrating knowledge. The 
NCM with weighs is represented in tale II.  

0 0 0.4 0 0 0 

I 0 0 0 0 -
0.7 

0 0 0 0 I -
0.5 

0 I 0 0 0 0 

0 0 0 0 0 -
0.7 

0 0 0.6 0 0 0 

TABLE II. ADJACENCY MATRIX 

The centralities measures are presented. 
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A 0.4 

B 0.7+I 

C 0.5+I 

D I 

E 0.7 

F 0.6 
 TABLE III. OUTDEGREE 

A I 

B I 

C 1 

D 0 

E I 

F 1.4 
TABLE III. INDEGREE 

A 0.4+I 

B 0.7+2I 

C 1.5+I 

D I 

E 0.7+I 

F 2.0 
TABLE III. TOTAL DEGREE 

Later nodes are clasified. In this case node D: ”Organiza-

tional changes inclusion” is Transmitter, the rest of the 

nodes are Ordinary. 

The next step is the de-neutrosophication process as 

proposes by Salmeron and Smarandache [11].  I ∈[0,1] is 

repalaced by both maximum and minimum values. 

A [0.4, 1.4] 

B [0.7, 2.7] 

C [1.5, 2.5] 

D [0, 1] 

E [0.7, 1.7] 

F 2.0 
TABLE III. DE-NEUTRIFICATION 

Finally we work with the median of the extreme values [14] 
(3) . 

A 0,9 

B 1,7 

C 2.0 

D 0.5 

E 1.2 

F 2.0 
 TABLE III. MEDIAN OF THE EXTREME VALUES 

The ranking is as follows: 

C~F ≻ B ≻ E ≻ A ≻ D 

“Managers support” and “Users commitment and presence 
“are the more important factors in his model.  

5 Conclusions 

In this paper, we propose a new framework for processing 

uncertainty and indeterminacy in static analysis of NCM. A 

case study was presented showing the applicability of the 

proposal. The analysis results are given in the form of 

neutrosophic numbers. Variables are classified and a de-

neutrosophication process gives an interval number for 

centrality allowing the ranking of the variables. 

 Future research will focus on conducting further real life 

experiments and the development of a tool to automate the 

process. The calculation of other metrics  is another area of 

future research.  
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Abstract. In this paper, we defined  (𝓘, 𝓣) −  standard 

neutrosophic rough sets based on an implicator 𝓘 and a t-

norm 𝓣 on 𝑫∗; lower and upper approximations of stand-

ard neutrosophic sets in a standard neutrosophic approxi-

mation are defined.  

Some properties of (𝓘, 𝓣) − standard neutrosophic rough 

sets are investigated. We consider the case when the neu-

trosophic components (truth, indeterminacy, and false-

hood) are totally dependent, single-valued, and hence their 

sum is ≤ 1. 

Keywords: standard neutrosophic, (𝓘, 𝓣) − standard neutrosophic rough sets 

1. Introduction

Rough set theory was introduced by Z. Pawlak in 1980s 

[1]. It becomes a useful mathematical tool for data mining, 

especially for redundant and uncertain data. At first, the 

establishment of the rough set theory is based on 

equivalence relation. The set of equivalence classes of the 

universal set, obtained by an equivalence relation, is the 

basis for the construction of upper and lower approximation 

of the subset of the universal set.  

Fuzzy set theory was introduced by L.Zadeh since 1965 

[2]. Immediately, it became a useful method to study the 

problems of imprecision and uncertainty. Since, a lot of new 

theories treating imprecision and uncertainty have been 

introduced. For instance, Intuitionistic fuzzy sets were 

introduced in1986, by K. Atanassov [3], which is a 

generalization of the notion of a fuzzy set. When fuzzy set 

give the degree of membership of an element in a given set, 

Intuitionistic fuzzy set give a degree of membership and a 

degree of non-membership of an element in a given set. In 

1998 [22], F. Smarandache gave the concept of 

neutrosophic set which generalized fuzzy set and 

intuitionistic fuzzy set. This new concept is difficult to apply 

in the real appliction. It is a set in which each proposition is 

estimated to have a degree of truth (T), adegree of 

indeterminacy (I) and a degree of falsity (F). Over time, the 

subclass of neutrosophic sets was proposed. They are also 

more advantageous in the practical application. Wang et al. 

[11] proposed interval neutrosophic sets and some operators 

of them. Smarandache [22] and Wang et al. [12] proposed a 

single valued neutrosophic set as an instance of the 

neutrosophic set accompanied with various set theoretic 

operators and properties. Ye [13] defined the concept of 

simplified neutrosophic sets, it is a set where each element 

of the universe has a degree of truth, indeterminacy, and 

falsity respectively and which lie between [0, 1] and some 

operational laws for simplified neutrosophic sets and to 

propose two aggregation operators, including a simplified 

neutrosophic weighted arithmetic average operator and a 

simplified neutrosophic weighted geometric average 

operator. In 2013, B.C. Cuong and V. Kreinovich 

introduced the concept of picture fuzzy set [4,5], and picture 

fuzzy set is regarded  the standard neutrosophic set [6]. 

More recently, rough set have been developed into the 

fuzzy environment and obtained many interesting results. 

The approximation of rough (or fuzzy) sets in fuzzy 

approximation space gives us the fuzzy rough set [7,8,9]; 

and the approximation of fuzzy sets in crisp approximation 

space gives us the rough fuzzy set [8, 9]. In 2014, X.T. 

Nguyen introduces the rough picture fuzzy set as the result 

of approximation of a picture fuzzy set with respect to a 

crisp approximation space [18]. Radzikowska and Kerre 

defined (𝓘, 𝓣) − fuzzy rough sets [19], which determined by 

an implicator 𝓘 and a t-norm 𝓣 on [0,1]. In 2008, L. Zhou et 

al. [20] constructed (𝓘, 𝓣) − intuitionistic fuzzy rough sets 

determined by an implicator 𝓘 and a t-norm 𝓣 on 𝐿∗.  

In this paper, we considered the case when the 

neutrosophic components are single valued numbers in [0, 

1] and they are totally dependent [17], which means that

their sum is ≤ 1. We defined  (𝓘, 𝓣) − standard neutrosophic 

rough sets based on an implicator 𝓘 and a t-norm 𝓣 on 𝐷∗; 

in which,  implicator 𝓘 and a t-norm 𝓣 on 𝐷∗ is investigated 

in [21].  

2. Standard neutrosophic logic

We consider the set 𝐷∗ defined by the following definition. 

Definition 1. We denote: 

𝐷∗ = {𝑥 = (𝑥1, 𝑥2, 𝑥3)|𝑥1 + 𝑥2 + 𝑥3 ≤ 1, 𝑥𝑖 ∈ [0,1], 𝑖
= 1,2,3} 

For  𝑥 = (𝑥1, 𝑥2, 𝑥3), 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ 𝐷∗, we define:
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𝑥 ≤𝐷∗ 𝑦  iff ((𝑥1 < 𝑦1) ∧ (𝑥3 ≥ 𝑦3)) ∨ ((𝑥1 =
𝑦1) ∧ (𝑥3 > 𝑦3)) ∨ ((𝑥1 = 𝑦1) ∧ (𝑥3 = 𝑦3) ∧ (𝑥2 ≤ 𝑦2)) ,
and  𝑥 = 𝑦 ⟺ (𝑥 ≤𝐷∗ 𝑦) ∧ ( 𝑦 ≤𝐷∗ 𝑥).

Then (𝐷∗, ≤𝐷∗) is a lattice, in which 0𝐷∗ = (0,0,1) ≤ 𝑥 ≤
1𝐷∗ = (1,0,0), ∀𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ 𝐷∗ . The meet operator

∧  and the join operator ∨  on ( 𝐷∗, ≤𝐷∗)  are defined as

follows: 

For  𝑥 = (𝑥1, 𝑥2, 𝑥3), 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ 𝐷∗,

𝑥 ∧ 𝑦 = (min(𝑥1, 𝑦1) , min(𝑥2, 𝑦2) , max(𝑥3, 𝑦3)),

𝑥 ∨ 𝑦 = (max(𝑥1, 𝑦1) , min(𝑥2, 𝑦2) , min(𝑥3, 𝑦3)).

On 𝐷∗, we consider logic operators as negation, t-norm, 

t-conorm, implication. 

2.1.  Standard neutrosophic negation 

Definition 2. A standard neutrosophic negation is any 

nonincreasing 𝐷∗ → 𝐷∗  mapping 𝑛  satisfying 𝑛(0𝐷∗) =
1𝐷∗ và 𝑛(1𝐷∗) = 0𝐷∗.

Example 1. For all 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ 𝐷∗ , we have some

standard neutrosophic negations on 𝐷∗ as follows: 

+ 𝑛0(𝑥) = (𝑥3, 0, 𝑥1)
+ 𝑛1(𝑥) = (𝑥3, 𝑥4, 𝑥2) where 𝑥4 = 1 − 𝑥1 − 𝑥2 − 𝑥3.

2.2.  Standard neutrosophic t-norm 

For 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ 𝐷∗, we denote

Γ(𝑥) = {𝑦 ∈ 𝐷∗: 𝑦 = (𝑥1, 𝑦2, 𝑥3), 0 ≤ 𝑦2 ≤ 𝑥2}
Obviously, we have Γ(0𝐷∗) = 0𝐷∗, Γ(1𝐷∗) = 1𝐷∗.

Definition 3. A standard neutrosophic t-norm is an (𝐷∗)2 →
𝐷∗ mapping 𝓣 satisfying the following conditions 

(T1) 𝓣(𝑥, 𝑦) = 𝓣(𝑦, 𝑥), ∀𝑥, 𝑦 ∈ 𝐷∗  

(T2) 𝓣(𝑥, 𝓣(𝑦, 𝑧)) = 𝓣(𝓣(𝑥, 𝑦), 𝑧)), ∀𝑥, 𝑦, 𝑧 ∈ 𝐷∗ 

(T3) 𝓣(𝑥, 𝑦) ≤ 𝓣(𝑥, 𝑧), ∀𝑥, 𝑦, 𝑧 ∈ 𝐷∗ and 𝑦 ≤𝐷∗ 𝑧
(T4) 𝓣(1𝐷∗ , 𝑥) ∈ Γ(𝑥).

Example 2. Some standard neutrosophic t-norm, for all 

𝑥 = (𝑥1, 𝑥2, 𝑥3), 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ 𝐷∗

+  t-norm min: 𝓣𝑀(𝑥, 𝑦) = (𝑥1 ∧ 𝑦1, 𝑥2 ∧ 𝑦2, 𝑥3 ∨ 𝑦3)
+ t-norm product: 𝓣P(𝑥, 𝑦) = (𝑥1𝑦1, 𝑥2𝑦2, 𝑥3 + 𝑦3 − 𝑥3𝑦3)
+ t-norm Lukasiewicz: 𝓣𝐿(𝑥, 𝑦) = (max (0, 𝑥1+𝑦1 −
1), max (0, 𝑥2+𝑦2 − 1), min (1, 𝑥3 + 𝑦3)).

Remark 1. 

+  𝓣(0𝐷∗ , 𝑥) = 0𝐷∗ for all 𝑥 ∈ 𝐷∗. Indeed, for all 𝑥 ∈ 𝐷∗ we

have 𝓣(0𝐷∗ , 𝑥) ≤ 𝓣(0𝐷∗,1𝐷∗) = 0𝐷∗

+𝓣(1𝐷∗ , 1𝐷∗) = 1𝐷∗ (obvious)

2.3.  Standard neutrosophic t-conorm 

Definition 4. A standard neutrosophic t-conorm is an 

(𝐷∗)2 → 𝐷∗ mapping 𝑆 satisfying the following conditions 

(S1) 𝑆(𝑥, 𝑦) = 𝑆(𝑦, 𝑥), ∀𝑥, 𝑦 ∈ 𝐷∗  

(S2) 𝑆(𝑥, 𝑆(𝑦, 𝑧)) = 𝑆(𝑆(𝑥, 𝑦), 𝑧)), ∀𝑥, 𝑦, 𝑧 ∈ 𝐷∗ 

(S3) 𝑆(𝑥, 𝑦) ≤ 𝑆(𝑥, 𝑧), ∀𝑥, 𝑦, 𝑧 ∈ 𝐷∗ and 𝑦 ≤𝐷∗ 𝑧
(S4) 𝑆(0𝐷∗ , 𝑥) ∈ Γ(𝑥)

Example 3. Some standard neutrosophic t-norm, for all 

𝑥 = (𝑥1, 𝑥2, 𝑥3), 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ 𝐷∗

+ t-conorm max: 𝑆𝑀(𝑥, 𝑦) = (𝑥1 ∨ 𝑦1, 𝑥2 ∧ 𝑦2, 𝑥3 ∧ 𝑦3)
+ t-conorm product: 𝑆𝑃(𝑥, 𝑦) = (𝑥1+𝑦1 −
𝑥1 𝑦1, 𝑥2𝑦2, 𝑥3𝑦3)
+ t-conorm Luksiewicz: 𝑆𝐿(𝑥, 𝑦) =
(min (1, 𝑥1+𝑦1), max (0, 𝑥2+𝑦2 − 1), max (0, 𝑥3 + 𝑦3 −
1)). 

Remark 2. 

+  𝑆(1𝐷∗ , 𝑥) = 1𝐷∗ for all 𝑥 ∈ 𝐷∗. Indeed, for all 𝑥 ∈ 𝐷∗ we

have 𝑆(0𝐷∗ , 1𝐷∗) ∈ Γ(1𝐷∗) = 1𝐷∗  so that ≤ 𝑆(0𝐷∗ , 1𝐷∗) ≤

𝑆(0𝐷∗,𝑥) ≤ 1𝐷∗.

+ 𝑆(0𝐷∗ , 0𝐷∗) = 0𝐷∗ (obvious).

A standard neutrosophic t-norm 𝓣  and a standard 

neutrosophic  t-conorm 𝑆  on 𝐷∗  are said to be dual with 

respect to (w.r.t) a standard neutrosophic negation 𝑛 if 

𝓣(𝑛(𝑥), 𝑛(𝑦)) = 𝑛𝑆(𝑥, 𝑦)      ∀𝑥, 𝑦 ∈ 𝐷∗, 

𝑆(𝑛(𝑥), 𝑛(𝑦)) = 𝑛𝓣(𝑥, 𝑦)      ∀𝑥, 𝑦 ∈ 𝐷∗. 

Example 4. With negation 𝑛0(𝑥) = (𝑥3, 0, 𝑥1)  we have

some t-norm and t-conorm dual as follows: 

a. 𝓣𝑀 and 𝑆𝑀

b. 𝓣𝑃 and 𝑆𝑃

c. 𝓣𝐿 and 𝑆𝐿

Many properties of t-norms, t-conorms, negations should be 

given in [21]. 

2.4 Standard neutrosophic implication operators 

In this section, we recall two classes of standard 

neutrosophic implication in [21]. 

A standard neutrosophic implication off class 1. 

Definition 5. A mapping 𝓘: (𝐷∗)2 → 𝐷∗ is referred to as a 

standard neutrosophic implicator off class 1 on 𝐷∗  if it 

satisfying following conditions: 

𝓘(0𝐷∗ , 0𝐷∗) = 1𝐷∗; 𝓘(0𝐷∗ , 1𝐷∗) = 1𝐷∗; 𝓘(1𝐷∗ , 1𝐷∗) = 1𝐷∗;
𝐼(1𝐷∗ , 0𝐷∗) = 0𝐷∗

Proposition 1. Let 𝓣, 𝑆 and 𝑛 be standard neutrosophic t-

norm 𝓣, a standard neutrosophic  t-conorm 𝑆 and a standard 

neutrosophic negation  on 𝐷∗, respectively. Then, we have 

a standard neutrosophic implication on 𝐷∗, which defined as 

following: 

𝓘𝑆,𝓣,𝑛(𝑥, 𝑦) = 𝑆(𝓣(𝑥, 𝑦), 𝑛(𝑥)), ∀𝑥, 𝑦 ∈ 𝐷∗.

Proof. 

We consider border conditions in definition  5. 

𝓘(0𝐷∗ , 0𝐷∗) =  𝑆(𝓣(0𝐷∗ , 0𝐷∗), 𝑛(0𝐷∗)) =
𝑆(0𝐷∗ , 1𝐷∗) = 1𝐷∗,

𝓘(0𝐷∗ , 1𝐷∗) =  𝑆(𝓣(0𝐷∗ , 1𝐷∗), 𝑛(0𝐷∗)) =
𝑆(0𝐷∗ , 1𝐷∗) = 1𝐷∗,

𝓘(1𝐷∗ , 1𝐷∗) =  𝑆(𝓣(1𝐷∗ , 1𝐷∗), 𝑛(1𝐷∗)) =
𝑆(1𝐷∗ , 0𝐷∗) = 1𝐷∗,

 66
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and 

𝓘(1𝐷∗ , 0𝐷∗) =  𝑆(𝓣(1𝐷∗ , 0𝐷∗), 𝑛(1𝐷∗)) =
𝑆(0𝐷∗ , 0𝐷∗) = 0𝐷∗.

We have the proof.⧠ 

Example 5. For all 𝑥 = (𝑥1, 𝑥2, 𝑥3), 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ 𝐷 ,

we have some standard neutrosophic implication of class 1 

on 𝐷∗ based on proposition 1 as follows 

a. If 𝓣 = 𝓣𝑀, 𝑆 = 𝑆𝑀  and 𝑛0(𝑥) = (𝑥3, 0, 𝑥1)  then

𝓘𝑆𝑀,𝓣𝑀,𝑛0
(𝑥, 𝑦) =

(max(min(𝑥1, 𝑦1) , 𝑥3) , 0, min (max(𝑥3, 𝑦3) , 𝑥1).

b. If 𝓣 = 𝓣𝑃 , 𝑆 = 𝑆𝑃 and 𝑛1(𝑥) = (𝑥3, 𝑥4, 𝑥1) then

𝓘𝑆𝑃,𝓣𝑃,𝑛1
(𝑥, 𝑦) = (𝑥1𝑦1+𝑥3 −

𝑥1𝑦1𝑥3, 𝑥2𝑦2𝑥4, 𝑥1(𝑥3 + 𝑦3 − 𝑥3𝑦3)).

A standard neutrosophic implication off cals 2. 

Definition 6. A mapping 𝓘: (𝐷∗)2 → 𝐷∗ is referred to as a 

standard neutrosophic implicator off class 2 on 𝐷∗ if it is 

decreasing in its first component, increasing in its second 

component and satisfying following conditions: 

𝓘(0𝐷∗ , 0𝐷∗) = 1𝐷∗;  𝓘(1𝐷∗ , 1𝐷∗) = 1𝐷∗;
𝓘(1𝐷∗ , 0𝐷∗) = 0𝐷∗

Definition 7. A standard neutrosophic implicator 𝓘 off class 

2 is called boder standard neutrosophic implication if  

𝓘(1D∗ , 𝑥) = 𝑥 for all 𝑥 ∈ 𝐷∗.

Proposition 2. Let 𝓣, 𝑆 and 𝑛 be standard neutrosophic t-

norm 𝓣, a standard neutrosophic  t-conorm 𝑆 and a standard 

neutrosophic negation  on 𝐷∗, respectively. Then, we have 

a standard neutrosophic implication on 𝐷∗, which defined as 

following: 

𝓘𝑆,𝑛(𝑥, 𝑦) = 𝑆(𝑛(𝑥), 𝑦), ∀𝑥, 𝑦 ∈ 𝐷∗.

Example 6. For all 𝑥 = (𝑥1, 𝑥2, 𝑥3), 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ 𝐷 ,

we have some standard neutrosophic implication of class 1 

on 𝐷∗ based on proposition ? as follows 

a. If 𝑆 = 𝑆𝑀 and 𝑛0(𝑥) = (𝑥3, 0, 𝑥1)  then

𝓘𝑆𝑀,𝑛0
(𝑥, 𝑦) = (max (x3, y1),0, min (𝑥1, 𝑦3))

b. If 𝑆 = 𝑆𝑃 and 𝑛1(𝑥) = (𝑥3, 𝑥4, 𝑥1) then

𝓘𝑆𝑃,𝑛1
(𝑥, 𝑦) = (𝑥3+𝑦1 − 𝑥3𝑦1, 𝑥4𝑦2, 𝑥1𝑦3)

Note that, we can define the negation operators from 

implication operators, such as, the mapping 𝑛𝓘(𝑥) =
𝓘(𝑥, 0𝐷∗), ∀𝑥 ∈ 𝐷∗, is a standard negation on 𝐷∗.  For

example, if 

𝓘𝑆𝑃,𝑛1
(𝑥, 𝑦) = (𝑥3+𝑦1 − 𝑥3𝑦1, 𝑥4𝑦2, 𝑥1𝑦3)  then we

obtain 𝑛𝐼𝑆𝑃,𝑛1
(𝑥) = 𝓘𝑆𝑃,𝑛1

(𝑥, 0𝐷∗) = (𝑥3, 0, 𝑥1) =

𝑛0(𝑥).

2.5 Standard neutrosophic set 

Definition 8.  Let 𝑈  be a universal set. A standard 

neutrosophic (PF) set A on the universe U is an object of the 

form          A  A AA { x,μ x ,η x ,  γ x | x U} 

where μA(x)(∈ [0,1])  is called the “degree of positive

membership of x  in A ”, ηA(x)(∈ [0,1])  is called the

“degree of neutral membership of  x  in A ” and 

    Aγ x 0,1 γA(x)(∈ [0,1]) is called the “degree of

negative membership of x  in A ”, and where A Aμ ,  η

μA, γAand Aγ ηAsatisfy the following condition:

       A  A Aμ x η x  γ x 1,    x X     μA(x) + γA(x) +

ηA(x)) ≤ 1, (∀x ∈ X).

The family of all standard neutrosophic set in U is denoted 

by PFS(U). 

3. Standard neutrosophic rough set

Definition 9. 

Suppose that 𝑅 is a standard neutrosophic relation on the set 

of universe 𝑈. 𝓣 is a 𝑡 −norm on 𝐷∗, 𝓘 an implication on 

𝐷∗ , for all 𝐹 ∈ 𝑃𝐹𝑆(𝑈) , we denote 𝐹(𝑣) =
(𝜇𝐹(𝑣), 𝜂𝐹(𝑣), 𝛾𝐹(𝑣)) . Then (𝑈, 𝑅)  is a standard neutro-

sophic approximation space. We define the upper and lower 

approximation set of 𝐹 on (𝑈, 𝑅) as following 

𝑅̅𝓣(𝐹)(𝑢) = ⋁
𝑣∈𝑈

𝓣(𝑅(𝑢, 𝑣), 𝐹(𝑣)), ∀𝑢 ∈ 𝑈 

and 

𝑅𝓘(𝐹)(𝑢) = ∧
𝑣∈𝑈 

𝓘(𝑅(𝑢, 𝑣), 𝐹(𝑣)), 𝑢 ∈ 𝑈.

Example 7. Let 𝑈 = {𝑎, 𝑏, 𝑐}  be an universe and 𝑅 is a 

standard neutrosophic relation on 𝑈 

𝑅 = (

(0.7,0.2,0.1) (0.6,0.2,0.1) (0.5,0.3,0.2)
(0.5,0.4,0.1) (0.6,0.1,0.2) (0.5,0.1,0.2)
(0.3,0.5,0.1) (0.4,0.2,0.3) (0.7,0.1,0.1)

) 

A standard neutrosophic on 𝑈  is  𝐹 =
{〈𝑎, 0,6,0.2,0.2〉, 〈𝑏, 0.5,0.3,0.1〉, 〈𝑐, (0.7,0.2,0.1)〉} . Let 

𝓣𝑀(𝑥, 𝑦) = (𝑥1 ∧ 𝑦1, 𝑥2 ∧ 𝑦2, 𝑥3 ∨ 𝑦3) be a t-norm on 𝐷∗ ,

and 𝓘(𝑥, 𝑦) = (𝑥3 ∨ 𝑦1, 𝑥2 ∧ 𝑦2, 𝑥1 ∧ 𝑦3) be an implication

on 𝐷∗, forall  𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ 𝐷∗ and 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈
𝐷∗, We compute 

𝓣(𝑅(𝑎, 𝑎), 𝐹(𝑎)) = 𝓣((0.7,0.2, 0.1), (0.6,0.2,0.2))

= (0.6,0.2,0.2) 

𝓣(𝑅(𝑎, 𝑏), 𝐹(𝑏)) = 𝓣((0.6,0.2,0.1), (0.5,0.3,0.1))

= (0.5,0.2,0.1) 

𝓣(𝑅(𝑎, 𝑐), 𝐹(𝑐)) = 𝓣((0.5,0.3,0.2), (0.7,0.2,0.1))

= (0.5,0.2,0.2) 

Hence  𝑅̅𝑇(𝐹)(𝑎) = ⋁
𝑣∈𝑈

𝓣(𝑅(𝑎, 𝑣), 𝐹(𝑣)) = (0.6,0.2,0.1). 

And 

𝓣(𝑅(𝑏, 𝑎), 𝐹(𝑎)) = 𝓣((0.5,0.4, 0.1), (0.6,0.2,0.2))

= (0.5,0.2,0.2) 

𝓣(𝑅(𝑏, 𝑏), 𝐹(𝑏)) = 𝓣((0.6,0.1,0.2), (0.5,0.3,0.1))

= (0.5,0.1,0.3) 

𝓣(𝑅(𝑏, 𝑐), 𝐹(𝑐)) = 𝓣((0.5,0.1,0.2), (0.7,0.2,0.1))

= (0.5,0.1,0.2) 

Hence  𝑅̅𝓣(𝐹)(𝑏) = ⋁
𝑣∈𝑈

𝓣(𝑅(𝑏, 𝑣), 𝐹(𝑣)) = (0.5,0.1,0.2) 
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𝓣(𝑅(𝑐, 𝑎), 𝐹(𝑎)) = 𝓣((0.3,0.5, 0.1), (0.6,0.2,0.2))

= (0.3,0.2,0.2) 

𝓣(𝑅(𝑐, 𝑏), 𝐹(𝑏)) = 𝓣((0.4,0.2,0.3), (0.5,0.3,0.1))

= (0.4,0.2,0.3) 

𝓣(𝑅(𝑐, 𝑐), 𝐹(𝑐)) = 𝓣((0.7,0.1,0.1), (0.7,0.2,0.1))

= (0.7,0.1,0.1) 

So that  𝑅̅𝓣(𝐹)(𝑐) = ⋁
𝑣∈𝑈

𝓣(𝑅(𝑐, 𝑣), 𝐹(𝑣)) = (0.7,0.1,0.1). 

We obtain the upper approximation  𝑅̅𝑇(𝐹) =
(0.6,0.2,0.1)

𝑎
+

(0.5,0.1,0.2)

𝑏
+

(0.7,0.1,0.1)

𝑐
. 

Similarly, computing with the lower approximation  set, we 

have 𝓘((0.7,0.2, 0.1), (0.6,0.2,0.2)) = (0.1,0.2, 0.7) ∨
(0.6,0.2,0.2) = (0.6,0.2,0.2) 

𝓘(𝑅(𝑎, 𝑏), 𝐹(𝑏)) = 𝓘((0.6,0.2,0.1), (0.5,0.3,0.1))

= (0.1,0.2,0.6) ∨ (0.5,0.3,0.1)
= (0.5,0.2,0.1) 

𝓘(𝑅(𝑎, 𝑐), 𝐹(𝑐)) = 𝓘((0.5,0.3,0.2), (0.7,0.2,0.1))

= (0.2,0.3,0.5) ∨ (0.7,0.2,0.1)
= (0.7,0.2,0.1) 

𝑅𝓘(𝐹)(𝑎) = ∧
𝑣∈𝑈 

𝓘(𝑅(𝑎, 𝑣), 𝐹(𝑣)) = (0.5,0.2,0.2). 

And 

𝓘(𝑅(𝑏, 𝑎), 𝐹(𝑎)) = 𝓘((0.5,0.4, 0.1), (0.6,0.2,0.2))

= (0.6,0.2,0.1) 

𝓘(𝑅(𝑏, 𝑏), 𝐹(𝑏)) = 𝓘((0.6,0.1,0.2), (0.5,0.3,0.1))

= (0.5,0.1,0.1) 

𝓘(𝑅(𝑏, 𝑐), 𝐹(𝑐)) = 𝓘((0.5,0.1,0.2), (0.7,0.2,0.1))

= (0.7,0.1,0.1) 

𝑅𝓘(𝐹)(𝑏) = ∧
𝑣∈𝑈 

𝓘(𝑇(𝑏, 𝑣), 𝐹(𝑣)) = (0.5,0.1,0.1). 

𝓘(𝑅(𝑐, 𝑎), 𝐹(𝑎)) = 𝓘((0.3,0.5, 0.1), (0.6,0.2,0.2))

= (0.6,0.2,0.1) 

𝓘(𝑅(𝑐, 𝑏), 𝐹(𝑏)) = 𝓘((0.4,0.2,0.3), (0.5,0.3,0.1))

= (0.5,0.2,0.1) 

𝓘(𝑅(𝑐, 𝑐), 𝐹(𝑐)) = 𝓘((0.7,0.1,0.1), (0.7,0.2,0.1))

= (0.7,0.1,0.1) 

Hence  𝑅𝓘(𝐹)(𝑐) = ∧
𝑣∈𝑈 

𝓘(𝑅(𝑐, 𝑣), 𝐹(𝑣)) = (0.5,0.1,0.1). 

So that  

𝑅𝓘(𝐹) =
(0.5,0.2,0.2)

𝑎
+

(0.5,0.1,0.1)

𝑏
+

(0.5,0.1,0.1)

𝑐
.

Now, we have the upper and lower approximations of 𝐹 =
(0,6,0.2,0.2)

𝑎
+

(0.5,0.3,0.1)

𝑏
+

(0.7,0.2,0.1)

𝑐
  are 

𝑅̅𝓣(𝐹) =
(0,6,0.2,0.1)

𝑎
+

(0.5,0.1,0.2)

𝑏
+

(0.7,0.1,0.1)

𝑐
and 

𝑅𝓘(𝐹) =
(0.5,0.2,0.2)

𝑎
+

(0.5,0.1,0.1)

𝑏
+

(0.5,0.1,0.1)

𝑐
Example 8. Let 𝑈 = {𝑎, 𝑏, 𝑐} be an universe set.  And 𝑅 is 

a standard neutrosophic relation on 𝑈 with 

𝑅 = (

(1,0,0) (0.6,0.3,0) (0.6,0.3,0)
(0.6,0.3,0) (1,0,0) (0.6,0.3,0)
(0.6,0.3,0) (0.6,0.3,0) (1,0,0)

) 

Let 𝐹 =
(0.4,0.3,0.3)

𝑎
+

(0.5,0.2,0.3)

𝑏
+

(0.4,0.4,0.1)

𝑐
be standard 

neutrosophic set on 𝑈 . A 𝑡 −  norm 𝓣(𝑥, 𝑦) = (𝑥1 ∧
𝑦1, 𝑥2 ∧ 𝑦2, 𝑥3 ∨ 𝑦3), and an implication operator 𝓘(𝑥, 𝑦) =
(𝑥3 ∨ 𝑦1, 𝑥2 ∧ 𝑦2, 𝑥1 ∧ 𝑦3)  for all  𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ 𝐷∗ ,

𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ 𝐷∗, we put

𝓣(𝑅(𝑎, 𝑎), 𝐹(𝑎)) = 𝓣((1,0, 0), (0.7,0.2,0.1))

= (0.7,0,0.1) 

𝓣(𝑅(𝑎, 𝑏), 𝐹(𝑏)) = 𝓣((0.6,0.3,0), (0.5,0.2,0.3))

= (0.5,0.2,0.3) 

𝓣(𝑅(𝑎, 𝑐), 𝐹(𝑐)) = 𝓣((0.6,0.3,0), (0.4,0.4,0.1))

= (0.4,0.3,0.1) 

Then 𝑅̅𝓣(𝐹)(𝑎) = ⋁
𝑣∈𝑈

𝓣(𝑅(𝑎, 𝑣), 𝐹(𝑣)) = (0.7,0,0.1). 

𝓣(𝑅(𝑏, 𝑎), 𝐹(𝑎)) = 𝓣((0.6,0.3, 0), (0.7,0.2,0.1))

= (0.6,0.2,0.1) 

𝓣(𝑅(𝑏, 𝑏), 𝐹(𝑏)) = 𝓣((1,0,0), (0.5,0.2,0.3))

= (0.5,0,0.3) 

𝓣(𝑅(𝑏, 𝑐), 𝐹(𝑐)) = 𝓣((0.6,0.3,0), (0.4,0.4,0.1))

= (0.4,0.3,0.1) 

Hence 𝑅̅𝓣(𝐹)(𝑏) = ⋁
𝑣∈𝑈

𝓣(𝑅(𝑏, 𝑣), 𝐹(𝑣)) = (0.6,0,0.1). 

𝓣(𝑅(𝑐, 𝑎), 𝐹(𝑎)) = 𝓣((0.6,0.3, 0), (0.7,0.2,0.1))

= (0.6,0.2,0.1) 

𝓣(𝑅(𝑐, 𝑏), 𝐹(𝑏)) = 𝓣((0.6,0.3,0), (0.5,0.2,0.3))

= (0.5,0.2,0.3) 

𝓣(𝑅(𝑐, 𝑐), 𝐹(𝑐)) = 𝓣((1,0,0), (0.4,0.4,0.1))

= (0.4,0,0.1) 

𝑅̅𝓣(𝐹)(𝑎) = ⋁
𝑣∈𝑈

𝓣(𝑅(𝑎, 𝑣), 𝐹(𝑣)) =

(0.6,0,0.1). 

We obtain the upper approximation set 𝑅̅𝓣(𝐹) =
(0.7,0,0.1)

𝑎
+

(0.6,0,0.1)

𝑏
+

(0.6,0,0.1)

𝑐
. 

Similarly, computing with the lower approximation, we 

have 

𝓘(𝑅(𝑎, 𝑎), 𝐹(𝑎)) = 𝓘((1,0, 0), (0.7,0.2,0.1))

= (0,0, 1) ∨ (0.7,0.2,0.1) = (0.7,0,0.1) 

𝓘(𝑅(𝑎, 𝑏), 𝐹(𝑏)) = 𝓘((0.6,0.3,0), (0.5,0.2,0.3))

= (0,0.3,0.6) ∨ (0.5,0.2,0.3)
= (0.5,0.2,0.3) 

𝓘(𝑅(𝑎, 𝑐), 𝐹(𝑐)) = 𝓘((0.6,0.3,0), (0.4,0.4,0.1))

= (0,0.3,0.6) ∨ (0.4,0.4,0.1)
= (0.4,0.3,0.1) 

𝑅𝓘(𝐹)(𝑎) = ∧
𝑣∈𝑈 

𝓘(𝑇(𝑎, 𝑣), 𝐹(𝑣)) = (0.4,0,0.3). 

Compute 

𝓘(𝑅(𝑏, 𝑎), 𝐹(𝑎)) = 𝓘((0.6,0.3, 0), (0.7,0.2,0.1))

= (0,0.3, 0.6) ∨ (0.7,0.2,0.1)
= (0.7,0.2,0.1) 

𝓘(𝑅(𝑏, 𝑏), 𝐹(𝑏)) = 𝓘((1,0,0), (0.5,0.2,0.3))

= (0,0,1) ∨ (0.5,0.2,0.3) = (0.5,0,0.3) 

 68



Neutrosophic Sets and Systems, Vol. 14, 2016 69

Nguyen Xuan Thao, Florentin Smarandache, (I,T)-Standard neutrosophic rough set and its topologies properties

𝓘(𝑅(𝑏, 𝑐), 𝐹(𝑐)) = 𝓘((0.6,0.3,0), (0.4,0.4,0.1))

= (0,0.3,0.6) ∨ (0.4,0.4,0.1)
= (0.4,0.3,0.1) 

𝑅𝓘(𝐹)(𝑏) = ∧
𝑣∈𝑈 

𝓘(𝑇(𝑏, 𝑣), 𝐹(𝑣)) = (0.4,0,0.3). 

and 

𝓘(𝑅(𝑐, 𝑎), 𝐹(𝑎)) = 𝓘((0.6,0.3, 0), (0.7,0.2,0.1))

= (0,0.3, 0.6) ∨ (0.7,0.2,0.1)
= (0.7,0.2,0.1) 

𝓘(𝑅(𝑐, 𝑏), 𝐹(𝑏)) = 𝓘((0.6,0.3, 0), (0.5,0.2,0.3))

= (0,0.3, 0.6) ∨ (0.5,0.2,0.3)
= (0.5,0.2,0.3) 

𝓘(𝑅(𝑐, 𝑐), 𝐹(𝑐)) = 𝓘((1,0,0), (0.4,0.4,0.1))

= (0,0,1) ∨ (0.4,0.4,0.1) = (0.4,0,0.1) 

𝑅𝓘(𝐹)(𝑐) = ∧
𝑣∈𝑈 

𝓘(𝑇(𝑐, 𝑣), 𝐹(𝑣)) = (0.4,0,0.3). 

Hence 

𝑅𝓘(𝐹) =
(0.4,0,0.1)

𝑎
+

(0.4,0,0.3)

𝑏
+

(0.4,0,0.3)

𝑐
Now, we have the upper and lower approximation sets of 

𝐹 =
(0.4,0.3,0.3)

𝑎
+

(0.5,0.2,0.3)

𝑏
+

(0.4,0.4,0.1)

𝑐
 as following 

𝑅̅𝓣(𝐹) =
(0.7,0,0.1)

𝑎
+

(0.6,0,0.1)

𝑏
+

(0.6,0,0.1)

𝑐
and 

𝑅𝓘(𝐹) =
(0.4,0,0.3)

𝑎
+

(0.4,0,0.3)

𝑏
+

(0.4,0,0.3)

𝑐
 . 

Remark 3. If R is reflexive, symmetric transitive then 

𝑅𝓘(𝐹) ⊂ 𝐹 ⊂ 𝑅̅𝓣(𝐹).

4. Some properties of standard neutrosophic

rough set

Theorem 1. Let (𝑈, 𝑅) be the standard neutrosophic ap-

proximation space.  Let 𝓣, 𝑆 be the t-norm , and t –conorm 

𝐷∗, 𝑛 is a negative on 𝐷∗. If  𝑆 and T are dual w.r.t 𝑛 then 

(i) ∼𝑛 𝑅𝓘(𝐴) = 𝑅̅𝓣(~𝑛𝐴)

(ii) ∼𝑛 𝑅̅𝓣(𝐴) = 𝑅𝓘(~𝐴)

where 𝓘(𝑥, 𝑦) = 𝑆(𝑛(𝑥), 𝑦), ∀𝑥, 𝑦 ∈ 𝐷∗. 

Proof. 

(i) ∼𝑛 𝑅̅𝓣(~𝑛𝐴) = 𝑅𝓘(𝐴) .

Indeed, for all 𝑥 ∈ 𝑈, we have 

𝑅̅𝓣(~𝑛𝐴)(𝑥) = ∨
𝑦∈𝑈 

𝓣[𝑅(𝑥, 𝑦), ∼𝑛 𝐴(𝑦)] 

= ∨
𝑦∈𝑈 

𝑛𝑆[𝑛𝑅(𝑥, 𝑦), 𝑛(∼𝑛 𝐴(𝑦))] 

= ∨
𝑦∈𝑈 

𝑛𝑆[𝑛𝑅(𝑥, 𝑦), 𝐴(𝑦)] . 

Moreover, 

𝑅𝓘(𝐴)(𝑥) = ∧
𝑦∈𝑈 

𝓘(𝑅(𝑥, 𝑦), 𝐴(𝑦))

= ∧
𝑦∈𝑈 

𝑆[𝑛𝑅(𝑥, 𝑦), 𝐴(𝑦)] 

Hence 

∼𝑛 𝑅𝓘(𝐴)(𝑥)(𝑥) = 𝑛( ∧
𝑦∈𝑈 

𝑆[𝑛𝑅(𝑥, 𝑦), 𝐴(𝑦)])

=  = ∨
𝑦∈𝑈 

𝑛𝑆[𝑛𝑅(𝑥, 𝑦), 𝐴(𝑦)] 

and           𝑅̅𝑇(~𝑛𝐴)(𝑥) =∼𝑛 𝑅𝓘(𝐴)(𝑥), ∀𝑥 ∈ 𝑈.

(ii) 𝑅𝓘(~𝑛𝐴) =∼𝑛 𝑅̅𝓣(𝐴)

Indeed, for all  𝑥 ∈ 𝑈 we have 

𝑅𝓘(~𝑛𝐴)(𝑥) = ∧
𝑦∈𝑈 

𝓘(𝑅(𝑥, 𝑦), ∼𝑛 𝐴(𝑦)), 𝑥 ∈

𝑈 = ∧
𝑦∈𝑈 

𝑆[𝑛𝑅(𝑥, 𝑦), ∼𝑛 𝐴(𝑦)] 

And ~𝑛

𝑅̅𝑇(𝐴)(𝑥) = 𝑛( ∨
𝑦∈𝑈 

𝓣[𝑅(𝑥, 𝑦), 𝐴(𝑦))]) = ∨
𝑦∈𝑈 

𝑛𝓣[𝑅(𝑥, 𝑦), 𝐴(𝑦)] 

= ∧
𝑦∈𝑈 

𝑆[𝑛𝑅(𝑥, 𝑦), ∼𝑛 𝐴(𝑦)] 

It means that 𝑅𝓘(~𝑛𝐴)(𝑥) =∼𝑛 𝑅̅𝓣(𝐴)(𝑥), ∀𝑥 ∈ 𝑈. ⧠

Theorem 2. a) 𝑅̅𝓣((𝛼, 𝛽, 𝜃)̂ ) ⊂ (𝛼, 𝛽, 𝜃)̂ , where

(𝛼, 𝛽, 𝜃)̂ 𝑥 = (𝛼, 𝛽, 𝜃) , ∀𝑥 ∈ 𝑈

b) 𝑅𝓘((𝛼, 𝛽, 𝜃))̂ ⊃ (𝛼, 𝛽, 𝜃)̂ , where 𝐼 is a

border implication in class 2. 

Proof. 

a) We have

𝑅̅𝓣((𝛼, 𝛽, 𝜃)̂ )(𝑢) =

∨
𝑣∈𝑈

𝓣 (𝑅(𝑢, 𝑣), (𝛼, 𝛽, 𝜃)̂ (𝑣)) =

𝓣 ( ∨
𝑣∈𝑈

𝑅(𝑢, 𝑣), (𝛼, 𝛽, 𝜃)) ≤𝐷∗ 𝓣(1𝐷∗ , (𝛼, 𝛽, 𝜃))

= (𝛼, 𝛽, 𝜃) = (𝛼, 𝛽, 𝜃)̂ (𝑢),  ∀𝑢 ∈ 𝑈

b) We have

𝑅𝓘((𝛼, 𝛽, 𝜃)̂ )(𝑢) =

∧
𝑣∈𝑈 

𝓘 (
𝑅(𝑢, 𝑣),

(𝛼, 𝛽, 𝜃)̂ (𝑣)
) = ∧

𝑣∈𝑈 
𝓘 (

𝑅(𝑢, 𝑣),
(𝛼, 𝛽, 𝜃)

) ≥𝐷∗  ∧
𝑣∈𝑈 

𝓘(1𝐷∗ , (𝛼, 𝛽, 𝜃)) =

(𝛼, 𝛽, 𝜃) = (𝛼, 𝛽, 𝜃)̂ (𝑢),  ∀𝑢 ∈ 𝑈⧠

5. Conclusion

In this paper, we introduce the ( 𝓘, 𝓣) −  standard 

neutrosophic rough sets based on an implicator 𝓘 and a t-

norm 𝓣 on 𝐷∗, lower and upper approximations of standard 

neutrosophic sets in a standard neutrosophic approximation 

are first introduced. We also have some notes on logic 

operations. Some properties of ( 𝓘, 𝓣) −  standard 

neutrosophic rough sets are investigated. In the feature, we 

will investigate more properties on ( 𝓘, 𝓣) −  standard 

neutrosophic rough sets. 
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Abstract: In real life scientific and engineering problems deci-

sion making is common practice. Decision making include sin-

gle decision maker or group of decision makers. Decision mak-

er’s expressions consists imprecise, inconsistent and indetermi-

nate information. Also, the decision maker cannot select the 

best solution in unidirectional (single goal) way. Therefore, 

proposed model adopts decision makers’ opinions in Neutro-

sophic Values (SVNS/INV) which effectively deals imprecise, 

inconsistent and indeterminate information, Multi goal (criteria) 

decision making and creditability (due to partial knowledge of 

decision maker) associated decision makers’ expressions. Then 

partially known or unknown priorities (weights) of Multi Crite-

ria Group Decision Making (MCGDM) problem is determined 

by establishing Correlation Coefficient (CC) established from 

improved cross entropy linear programming technique. The 

Multi Goal Linear equation was solved using a Novel Self 

Adaptive Harmonic Search Algorithm. The (NSAH) alternate 

solutions were ranked by weighted correlation coefficients of 

each alternative (lower the CC higher will be the rank). The val-

idation of proposed method was demonstrated with an illustra-

tive examples and compare with recent advancements. Hence, 

the proposed method was effective, flexible and accurate.  

Keywords: MCGDM, Creditability, Improved Cross Entropy, Correlational Coefficient, and NSAH.

1 Introduction 

In process of decision making real life scientific and engi-

neering problems includes conflicting, non-commen-
surable, multi criteria and innumerable alternatives. The 

input information of decision making problem may involve 

decision maker’s qualitative information and actual 

quantitative information. Hence, Multi Criteria Decision 

Making (MCDM) is a strategy of evaluating practical 

complex problems based on various qualitative or quan-
titative criteria in certain or uncertain environments to 

recommend best choice among various alternatives. Sever-

al comparative studies [1] have been taken to demonstrate 

its vast applicability [2, 3, 4]. Briefing MCDM methods [5] 

will give clear understanding over techniques available [6] 

and benefits [1]. More than one decision maker comprise 

in decision making process stated as Multi Criteria Group 

Decision Making (MCGDM). 

In evaluation process MCDM had undergone quantifica-

tion of decision makers’ subjective information. Funda-

mental stages MCDM uses crisp information to represent 

decision makers’ opinions. Crisp values can induce impre-

cision and confusion to the decision makers resulting inac-

curate results. Real world decision making conflicting, in-

consistent, indeterminate information cannot be expressed 

in terms of crisp values. To reduce fuzziness and vague-

ness of subjective information Zadeh [7] proposed Fuzzy 

Set (FS) theory and the decision making methods have de-

veloped by Bellman and Zadeh [8] using fuzzy theory. 

Subsequent research had been conducted to reduce uncer-

tainty in decision maker’s opinion under fuzzy environ-

ment. 

F. Smarandache [8] represents truth function which

describes decision maker acceptance value to alternative 

categorized by an attribute. But the constraint lies, it 

doesn’t represent false (rejection value) function. There-
fore, Atanassov introduce Intuitionistic Fuzzy Sets (IFS) 

[9, 10] which can represent truth membership function T(x) 

as well as falsity membership function F(x), they satisfy 

the condition T(x), F(x) ∈ [0,1] and 0 ≤ T(x) + F(x) ≤ 1. In 

IFS the indeterminate function is rest of truth and false 

functions 1-T(x) - F(x), here indeterminate and incon-
sistence functions are not clearly defined.  

Smarandache [11] generalized FS, IFS, and Interval 

Valued Intuitionistic Fuzzy Set (IVIFS) [10] so on as Neu-

trosophic Set (NS) by adding indeterminate information. In 

NS the truth membership, indeterminacy membership, 
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false membership functions are completely independent. 

Recently, NS became interesting area for researcher in de-

cision making which can express supporting, nondetermin-

istic, rejection values in terms of NS Values. Wang [13] 

propose Single Valued Neutrosophic Sets (SVNS) and Ye 

[14] gives correlation coefficient and weighted correlation 

coefficient in SVNS similar to IVIFS. Wang [15] proposed 

Interval Neutrosophic Sets (INS) in which the truth mem-

berships, indeterminacy membership, false membership 

functions were extended to interval values. Ye [16] given 

similarity measures between INSs based on hamming and 

Euclidean distances and demonstrate with a MCDM prob-

lem. 

Ye [18] developed a simplified neutrosophic weighted 

arithmetic averaging (SNWAA) operator, a simplified neu-

trosophic weighted geometric averaging (SNWGA) opera-

tor and applied to multiple attribute decision making under 

simplified neutrosophic environment. Tian et al (2015) 

[19] proposed a simplified neutrosophic linguistic normal-

ized weighted Bonferroni mean operator (SNNWB) and 

constructed a multi criteria decision-making model based 

on SNNWB. But, the current aggregation operators for 

SVNNs and INNs ignore the knowledge background of the 

decision maker and his corresponding credibility on every 

evaluation value of SVNNs/INNs for each attributes.  

Inspired by this idea Jun Ye (2015) [20] put forward a 

concept of  Credibility-Induced Interval Neutrosophic 

Weighted Arithmetic Averaging (CIINWAA) operator and 

a Credibility-Induced Interval Neutrosophic Weighted Ge-

ometric Averaging (CIINWGA) operator by taking the im-

portance of attribute weights and the credibility of the 

evaluation values of attributes into account. He also ap-

plied CIINWAA and CIINWGA to MCGDM problem; 

ranking of alternatives are based on INNs projection 

measures under creditability information. 

Ye [22] reviewed evolution of cross entropy and its ap-

plicability in scientific and engineering applications. He 

proposed Improved cross entropy measures for SVNS and 

INS by overcome drawbacks (fail to fulfill the symmetric 

property) of cross entropy measures proposed by Ye [21]. 

Also he developed MCDM model based on improved cross 

entropy measures for SVNS and INS by taking advantage 

of ability of producing accurate results and minimizing in-

formation loss.  

Jun Ye [23] presents correlational coefficients and 

weighted correlational coefficients of SVNS. He also in-

troduced cosine similarity measure for SVNS. Surapati et 

al [24] proposed TOPSIS for single valued neutrosophic 

sets to solve multi criteria decision making problem which 

has unknown attribute weights and group of decision mak-

ers. The unknown weights of attributes derived from max-

imizing deviation method and rating of alternatives based 

on TOPSIS with imprecise and indeterminate information. 

Said Broumi et al [25] proposed extended TOPSIS using 

interval neutrosophic linguistic information for multi at-

tribute decision making problems in which attribute 

weights are unknown.  

Pranab Biswas et al (2016) [26] defined Triangular Fuzzy 

Number Neutrosophic Sets (TFNNS) by combining Trian-

gular Fuzzy Numbers (TFN) and Single Valued Neutro-

sophic Sets (SVNS). He also proposed its operational rules 

based on TFN, SVNS and aggregation operators for 

TFNNS by extending Single Valued Neutrosophic 

Weighted Arithmetic (SVNWA) and Single Valued Neu-

trosophic Weighted Geometric (SVNWG) operators. Then, 

he developed MADM model based on TFNNS aggregation 

operators, score and accuracy functions.  He also [27] 

introduced Single Valued Trapezoidal Neutrosophic Num-

bers (SVTrNN) and their operational rules, cut sets. The 

neutrosophic trapezoidal numbers express the truth func-

tion (T), indeterminate function (I) and false function (F) 

independently. He presents cosine similarity measures 

based multi criteria decision making method using trape-

zoidal fuzzy nutrosophic sets (TFNS). The ranking method 

is proposed after defining value and ambiguity indices of 

truth, false, indeterminate membership functions. The va-

lidity and applicability is shown by illustrative tablet selec-

tion problem. He also [28] proposed cosine similarity 

measures between two trapezoidal neutrosophic sets and its 

properties.  

Jun Ye [29] introduced simplified neutrosophic harmonic 

averaging projection measures for multi criteria decision 

making problems. Projection measures are very suitable 

tool for dealing MCDM problems because it considers not 

only distance between alternatives but also its direction. 

The projection measures have extended flexibility of han-

dling various types of information for instance [30, 31] un-

certain and fuzzy based projection measures applied in 

multi attribute decision making. Ye observed drawbacks of 

general projection measures and proposed bidirectional 

projection measures [32] by overcoming shortcomings of 
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general projection measures. He extends the applications 

of bidirectional projection measures in complex group de-

cision making under neutrosophic environment. 

Surapati and Kalyan [33] defined Accumulated Arithme-

tic Operator (AAO) to transform interval neutrosophic set 

to single valued neutrosophic sets. He also extended single 

valued Gray Relation Analysis (GRA) to interval valued 

numbers in multi criteria decision making. Then he pro-

posed entropy based GRA for unknown attributes in 

MCDM problems under INN environment. Rıdvan Şahin 

[34] proposed two transformation methods for interval 

neutrosophic values to fuzzy sets and single valued neutro-

sophic sets. He developed two methodologies based on ex-

tended cross entropy to MCDM problems using interval 

valued numbers. But the transformation of INN to SVNS 

may results inaccurate outcomes. 

Kalyan and Surapati [35] present quality bricks selection 

based on multi criteria decision making with single valued 

neutrosophic grey relational analysis. The weights of at-

tributes are determined using experts opinions. Ranking is 

based on gray relation coefficient that derived from ham-

ming distance between alternative to ideal neutrosophic es-

timate reliable solution and ideal neutrosophic estimates 

unreliable solution then neutrosophic relational degree 

used to select the quality brick. Jun Ye [36] proposed ex-

ponential similarity measures between two neutrosophic 

numbers. The advantages of exponential measures are that 

indicates stronger discrimination and higher sensitivity 

with respect than cosine similarity measure of neutrosophic 

numbers. He applied exponential similarity measures to the 

vibration fault diagnosis of steam turbine under indetermi-

nate information. The proposed method not only analysis 

fault type but also predicts fault trends based on relation 

indices. 

Tian et al (2016) [37] extends uncertain linguistic variable 

and simplified neutrosophic sets to simplified neutrosophic 

uncertain linguistic sets which integrates qualitative as well 

as quantitative evaluation. It reflects decision maker’s ex-

pressions having inconsistence, incompleteness, indeter-

minate information. After reviewing relevant literature he 

developed Generalized Simplified Neutrosophic Uncertain 

Linguistic Prioritized Weighted Aggregation (GSNULP-

WA) operators and applied to solving MCDM problems.  

Bipolarity refers to the propensity of the human mind to 

reason and make decisions on the basis of positive and 

negative effects. Irfan Deli et al [38] introduced bipolar 

sets which is the extension of fuzzy sets, bipolar fuzzy sets, 

intuitionistic fuzzy sets, neutrosophic sets. He also devel-

oped the Bipolar Neutrosophic Weighted Average 

(BNWA) Operators and Bipolar Neutrosophic Weighted 

Geometric (BNWG) operators to aggregate the bipolar 

neutrosophic information. Then he proposed multi criteria 

decision making model using bipolar neutrosophic sets and 

its operators of certainty, score and accuracy functions. 

Roy and Dos [39] developed neutrosophic based linear 

goal programming and lexicographic goal programming 

for multi objective linear programming (MOLP) problem. 

He describes evolution of neutrosophic theory and its op-

erations in linear programming models. He also proposed 

two models for MOLP, applied to bank there investment 

problem by varying the weights. Feng Li (2011) [40] re-

duced process complexity and computation time after de-

veloping the closeness coefficient based non-linear pro-

gramming model for MCDM problem. The nonlinear 

equation based on closeness coefficient applied to search-

ing algorithm to obtain attribute weights and the ranking of 

alternatives estimated based on optimal membership de-

grees. The proposed methodology validated with real ex-

ample and demonstrates its applicability.  

Tian et al (2015) [41] put forward the concept of multi cri-

teria decision making based on cross entropy under inter-

val neutrosophic sets. The INS values are transformed to 

SVNS for ease of calculations and formulated a linear 

equation for deriving weights of attributes. These two line-

ar equations are constructed from decision maker’s inde-

terminate and inconsistent information. 

Then the linear programming techniques are used to de-

termine weights of attributes here constraints established 

by partially known indeterminate weights. After obtaining 

attribute weights possibility degree method ranked the al-

ternatives. 

After rigorous investigation on literature and research gap 

analysis the proposed model considered performance fac-

tors such as it should adopt practical/ real world problems, 

flexible to operate, accurate in results and effective. Real 

life decision making includes group of decision makers, 

their limited knowledge about specific attributes (credita-

bility) and unknown priorities of multi objectives (attrib-

utes) to choose best out of existing alternatives.  

Therefore considering shortcomings of recent methods we 

proposed new Multi criteria Group Decision Making Mod-
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el for unknown attribute weights in continuous space and 

finite set of alternatives in discrete space in Neutrosophic 

environment.  

The rest of the paper is organized as follows. Section 2 

briefly describes some basic concepts of neutrosophic 

numbers and its operational functions. Section 3 proposes 

new approaches to solve real world decision making prob-

lems under neutrosophic environment. In Section 5, illus-

trative examples are presented to demonstrate the applica-

tion of the proposed method, and then the effectiveness 

and advantages of the proposed methods are demonstrated 

by the comparative analysis with existing relative methods 

in sections 6. Finally, Section 7 contains conclusions and 

applications of present work. 

2 Preliminaries 

2.1 Single Valued Neutrosophic Sets (SVNS) 

Let 𝑋 be a universe of discourse. A single valued 
neutrosophic set 𝐴 over 𝑋 is an object having the form 

𝐴={〈𝑥, 𝑢𝐴(𝑥), 𝑤𝐴(𝑥), 𝑣𝐴(𝑥)〉:𝑥∈𝑋}where 𝑢𝐴(𝑥): 𝑋→[0,1], 
𝑤𝐴(𝑥) :𝑋→[0,1] and 𝑣𝐴(𝑥):𝑋→[0,1] with  0 ≤ 𝑢𝐴(𝑥) + 

𝑤𝐴(𝑥) + 𝑣𝐴(𝑥) ≤3  for all 𝑥∈𝑋. The intervals (𝑥), 𝑤𝐴 (𝑥) 
and (𝑥) denote the truth membership degree, the 

indeterminacy membership degree and the falsity 

membership degree of 𝑥 to 𝐴, respectively. 

2.2 Geometric Weighted Average Operator (GWA) 
for SVNC 

Let 𝐴𝑘 (𝑘=1, 2,…, n) ∈ SVNS (𝑋). The single valued neu-

trosophic weighted geometric average operator is defined 

by 𝐺𝜔 = (𝐴1, 𝐴2,…, An) = 

= 

      (2) 
Where 𝜔𝑘 is the weight of 𝐴𝑘 (𝑘=1, 2,…,n), 𝜔𝑘∈[0,1] and 

. Principally, assume 𝜔𝑘=1/𝑛 (𝑘=1, 2,…, n), 

then 𝐺𝜔 is called a geometric average for SVNSs. 

2.3 Compliment of SVNS 

The complement of an SVNS 𝐴 is denoted by 𝐴𝑐 and is de-

fined as 𝑢𝐴𝑐 (𝑥) = 𝑣 (𝑥), 𝑤𝐴𝑐 (𝑥) = 1−(𝑥), and 𝑣𝐴𝑐(𝑥) = 

𝑢A (𝑥) for all 𝑥 ∈ 𝑋. That is, 𝐴𝑐 = {〈𝑥, 𝑣𝐴 (𝑥), 1−𝑤𝐴 (𝑥), 

𝑢𝐴 (𝑥) 〉: 𝑥∈𝑋}. 

2.4 Improved Cross Entropy Measures of SVNS 

For any two SVNSs A and B in a universe of discourse X = 

{x1, x2,…, xn}. Let weight of each element is wi, 𝜔i ∈ [0,1] 

and  then the weighted cross entropy between 

SVNSs A from B is defined as follows: 

2.5 Interval Valued Neutrosophic Sets (INS) 

The real scientific and engineering applications can be 

expressed as INS values. 
Let 𝑋 be a space of points (objects) and int [0,1] be the set 

of all closed subsets of [0,1]. For convenience, if let 𝑢𝐴  (𝑥) 

= [𝑢𝐴 −(𝑥), 𝑢𝐴 +(𝑥)], 𝑤𝐴  (𝑥) = [𝑤𝐴  −(𝑥), 𝑤𝐴  +(𝑥)] and 𝑣𝐴  
(𝑥) = [𝑣𝐴 −(𝑥), 𝑣𝐴  +(𝑥)], then 𝐴  ={〈𝑥, [𝑢𝐴 −(𝑥),𝑢𝐴  +(𝑥)], 

[𝑤𝐴  −(𝑥),𝑤𝐴  +(𝑥)], [𝑣𝐴 −(𝑥),𝑣𝐴  +(𝑥)]〉: 𝑥∈𝑋} with the 
condition, 0≤ sup𝑢𝐴  (𝑥)+sup𝑤𝐴  (𝑥)+sup𝑣𝐴   (𝑥)≤3 for all 
𝑥∈𝑋. Here, we only consider the sub-unitary interval of [0, 

1]. Therefore, an INS is clearly neutrosophic set. 

2.6 Compliment of INS 

The complement of an INS 𝐴   is denoted by 𝐴  𝑐 and is 
defined as 𝑢𝐴  𝑐(𝑥) = 𝑣(𝑥), (𝑤𝐴  −)𝑐(𝑥) = 1−𝑤𝐴  +(𝑥), 

(𝑤𝐴  +)𝑐(𝑥) = 1−𝑤𝐴  −(𝑥) and 𝑣𝐴  𝑐(𝑥) = 𝑢(𝑥) for all 𝑥 ∈ 𝑋. 
That is, 𝐴 𝑐={〈𝑥, [𝑣𝐴  −(𝑥),𝑣𝐴  +(𝑥)], [1−𝑤𝐴  +(𝑥),1−𝑤𝐴  −(𝑥)], 

[𝑢𝐴 −(𝑥),𝑢𝐴  +(𝑥)]〉: 𝑥∈𝑋}. 

2.7 Geometric Aggregation Operator for INS 

Let 𝐴  𝑘 (𝑘=1,2,…,𝑛) ∈ INS(𝑋). The interval neutrosophic 

weighted geometric average operator is defined by 

𝐺𝜔=(𝐴  1,𝐴  2,…,𝐴  𝑛) = 

     (4) 

Where 𝜔𝑘 is the weight of 𝐴 𝑘 (𝑘=1,2,…,𝑛), 𝜔𝑘 ∈ [0,1] 

and . Principally, assume 𝜔𝑘=1/𝑛 

(𝑘=1,2,…,𝑛), then 𝐺𝜔 is called a geometric average for 

INSs. 
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For any two SVNSs A and B in a universe of discourse X 

= {x1, x2,…, xn}. Let weight of each element is wi, 𝜔i ∈ 

[0,1] and ∑_(i=1)^n w_i =1 then the weighted cross en-

tropy between SVNSs A from B is defined as follows: 

3 Proposed Methodology 

In real life problems decision makers’ expressions are in-

consistence, indeterminate, incomplete. The Neutrosophic 
sets are most popular in dealing with such a vague and im-

precise decision makers’ opinions. The decision maker is 
not always aware of all the attributes in complex decision 

making problems. So, the results tend to unreasonable or 

incredible if the evaluations of the decision maker for all 
the attributes imply the same credibility. 

Therefore, the credibility of the attribute evaluations given 
by the decision maker in the aggregation process of the at-

tribute values should consider to avoiding the unreasonable 

or incredible judgments in decision making. In reality, de-
cision making is multi-dimensional (Multi Goal) and prior-

itized goals are considered for evaluations.   

The unknown priorities (weights) of goals (attributes) are 

determined by constructing Multi Goal Linear Program-
ming (MGLP). While construction MGLP [46, 47] adopts 

maximizing deviation method and weighted distance 

methods. Some limitations observed as complexity in cal-
culations, improper results due to distance measures which 

are not effective for discriminating any two NS and MGLP 
is solved using trade off/ heuristic techniques these focused 

on local optima implies inaccurate results. Then ranking of 

alternatives using score and accuracy or distance measures 
from PIS may loss valid information or produces indefinite 

outcomes. 

Therefore the proposed method is developed by overcom-

ing shortcomings of recent models and designed for real 

world problems focused on performance factors such as 

accuracy, flexibility and effectiveness. The proposed 

MCGDM problem solving procedure described as follows. 

In a multiple attribute group decision-making problem with 

neutrosophic numbers, let S = {S1, S2… Sm} be a set of 

alternatives, Ai = {A1, A2… Am} be a set of attributes, 
and Dk = {D1, D2… Ds} be a set of decision makers or 

experts. The weight vector of attributes is Wj = (w1, w2,…, 
wn) with 𝑤𝑗∈ [0, 1]  and ∑_(j=1)^n〖w_j=1〗 the cred-

itability weight vector of Decision makers is 𝜆 = {𝜆1, 

𝜆2, . . . , 𝜆𝑠}.with with 𝜆 k∈ [0, 1] and ∑_(k=1)^s〖λ_k=1
〗. 

Step: 1 Obtain decision matrices D_s from each decision 
maker. Decision makers’ expressions of each alternative to 

corresponding attributes represented in SVNS/INS. 

Step: 2 Establish grouped decision matrix D_ij by aggre-

gating individual decision matrices using Equation 2 in 

case of SVNS or Equation 7 in case of INS values.  

Step: 3 Normalize group decision matrix ( r_ij) if required 

(contains cost & benefit attributes) using Equation 3 for 
SVNS or Equation 6 for INS values. 

Step: 4 Construct Multi Goal Linear Programming using 

min ∑_(i=1)^m∑_(j=1)^n〖 (d^+ (r_ij,r^+ ))/(d^+ (r_ij, 
r^+ )+d^- (r_ij,r^- ) ) w_j 〗     where d^+ (r_ij, r^+ )  ,d^- 

(r_ij, r^- )  are symmetric discrimination measures of r_ij 
to r^+ and  r^-  respectively. Here r^+ is PIS assumed as 

(1,0,0)  and r^-  is NIS assumed as (0,1,1)  

Step: 5 Determine priorities of goal by solving MGLP ap-

plying Novel Self Adaptive Harmonic Search algorithm 

[46]. 

Step: 6 Rank the alternatives based on weighted correla-

tional coefficient derived from improved cross entropy i.e.  

lower the Ai value higher will be the rank. 

4 Illustrative Examples 

Example: 1 here, we choose the decision making problem 
adapted from [47]. An automotive company is desired to 

select the most appropriate supplier for one of the key ele-
ments in its manufacturing process. After preevaluation, 

four suppliers have remained as alternatives for further 

evaluation. In order to evaluate alternative suppliers, a 
committee composed of four decision makers has been 

formed. The committee selects four attributes to evaluate 
the alternatives: (1) 𝐶1: product quality, (2) 𝐶2: relation-

2.8 Improved Cross Entropy Measures of INS 
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ship closeness, (3) 𝐶3: delivery performance and (4) 𝐶4: 

price. Suppose that there are four decision makers, denoted 
by D1, D2, D3, D4, whose corresponding weight vector is 

𝜆 = (0.25, 0.25, 0.25, 0.25). 

Step: 1 Decision matrices of each decision maker 

Step: 2 Group Decision Matrix after aggregation 
with decision maker’s creditability 

Step: 3 Normalized group decision matrix (criteria 
4 is cost type attribute) apply Equation: 3 to step 
2 to normalize so that all attributes are in benefit 
type. 

Step: 4 Multi Goal Linear Equation formed as 

Subjected to  
Case: 1 completely unknown weights  and 

𝑤𝑗 ∈ [0, 1] here j=1, 2, 3, 4 

Step: 5 Priorities of attributes obtain after solving 
MGLP with unknown weights using NSAH are 

Step: 6 Ranking based on weighted correlation 
coefficients of each alternatives 

A1=0.9029 

A2=0.8950 

A3=0.9337 

A4=0.1080 

Therefore the ranking of alternative A4 > A2 > A1 > A3 (lower 

the Ai value higher the rank) 

Case: 2 partially known weights from decision 
makers’ 

Step: 5 Priorities of attributes obtain after solving 
MGLP with unknown weights using NSAH are 

Step: 6 Ranking based on weighted correlation 
coefficients of each alternatives 

A1=0.9047 
A2=0.8948 
A3=0.9333 
A4=0.1034 

Therefore the ranking of alternative A4 > A2 > A1 > A3 

(lower the Ai value higher the rank) 

Example: 2 The decision making problem is adapted from 
[47]. Suppose that an organization plans to implement ERP 

system. The first step is to format project team that consists 
of CIO and two senior representatives from user 

departments. By collecting all information about ERP 

vendors and systems, project team chooses four potential 
ERP systems 𝐴𝑖 (𝑖 = 1, 2, 3, 4) as candidates. The company 

employs some external professional organizations (experts) 
to aid this decision making. The project team selects four 

attributes to evaluate the alternatives: (1) 𝐶1: function and 

technology, (2) 𝐶2: strategic fitness, (3) 𝐶3: vendors’ 
ability, and (4) 𝐶4: vendor’s reputation. Suppose that there 
are three decision makers, denoted by 𝐷1, 𝐷2, 𝐷3, whose 
corresponding weight vector is 𝜆 = (1/3, 1/3, 1/3). The four 

possible alternatives are to be evaluated under these four 
attributes and are in the form of IVNNs for each decision 

maker, as shown in the following: 

Interval valued neutrosophic decision matrix: 

Neutrosophic Sets and Systems, Vol. 14, 201676
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Step: 2 Group Decision Matrix after aggregation 
with decision maker’s creditability  

Step: 3 Normalized group decision matrix (criteria 
4 is cost type attribute) apply Equation: 3 to step 
2 to normalize so that all attributes are in benefit 
type. 

Step: 4 Multi Goal Linear Equation formed as 

Subjected to 

Case: 1 completely unknown weights  and 
𝑤𝑗 ∈ [0, 1] here j=1, 2, 3, 4 

Step: 5 Priorities of attributes obtain after solving 
MGLP with unknown weights using NSAH are 

Step: 6 Ranking based on weighted 

correlation coefficients of each alternatives 

A1=0.3831 

A2=0.3830 
A3=0.4238 

A4=0.3623 
Therefore the ranking of alternative A4 > A2 > A1 > A3 

(lower the Ai value higher the rank) 

Case: 2 partially known weights from decision 
makers’ 

Step: 5 Priorities of attributes obtain after 

solving MGLP with unknown weights using 

NSAH are 

Step: 6 Ranking based on weighted correlation 
coefficients of each alternatives 

A1=0.3803 
A2=0.3811 

A3=0.4177 

A4=0.3641 

Therefore the ranking of alternative A4 > A1 > A2 > A3 

(lower the Ai value higher the rank) 

6. Comparative Analysis and Discussion

The results obtain from two examples with partially known 

and completely unknown weights are compared to Sahin 

and Liu [44] and Liu and Luo [45] methods. 

1. Sahin and Liu [44] developed score and accuracy

discrimination functions for MCGDM problem after 

proposing two aggregation operators. The unknown 

weights of attributes are determined by constructing linear 

equation based on maximizing deviation method. The 

attribute weights are obtained by solving linear equation 

using Lagrange technique. Then individual decision 

matrixes are grouped with aid of geometric weighted 

aggregation operator. For each alternative weighted 

aggregated neutrosophic values are calculated using 

obtained attribute weights to aggregated group decision 

matrix. Therefore the ranking of each alternative is based 

on score and accuracy functions applied to alternative 

weighted aggregated neutrosophic values. 

2. Liu and Luo [45] proposed weighted distance from

positive ideal solution to each alternative based linear 

equation for determining unknown weights of attributes 

after observing some drawback in [27] for MAGDM under 

SVNS. The linear function aims to minimize overall 

weighted distance from PIS where attribute weights are 

unknown. The partially known or unknown conditions are 

subjected to proposed linear equation and solved using any 

linear programming technique results weights of attributes. 

Then ranking of alternatives given based on weighted 

hamming distance from PIS. The proposed model also 

extended to IVNS. 

3. Proposed method aimed to enhance results accuracy,

flexible to operate and effectiveness. In table 2 two 

examples are evaluated with two cases. Then the proposed 

method given similar results to [44] and [45] except for 

example 2 case 2. Liu method and proposed method 

ranked first as A4 but sachin method ranks A2 as first. The 

successive ranks for Liu are A2, A1 and A3 but in case of 

present method A1, A2, and A3 respectively because 

present method considers weighted positive and negative 

symmetric deviation from PIS and NIS. Therefore the 

proposed method is accurate, flexible and effective. 
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Table: 2 Comparisons of Methods 

Type of 

Problem 

Sachin and Liu [44] Liu and Luo [45] Proposed Method 

Example 1 Example 2 Example 1 Example 2 Example 1 Example 2 
Completely 

Unknown 

weights 

(case 1) 

𝐴2 ≻ 𝐴4 ≻𝐴1 
≻ 𝐴3 

𝐴2 ≻ 𝐴4 ≻ 𝐴1 
≻ 𝐴3 

𝐴2 ≻ 𝐴4 ≻ 
𝐴1 ≻ 𝐴3 

𝐴2 ≻ 𝐴4 ≻ 
𝐴1 ≻ 𝐴3 

𝐴4 ≻ 𝐴2 ≻ 
𝐴1 ≻ 𝐴3 

𝐴4 ≻ 𝐴2 ≻ 
𝐴1 ≻ 𝐴3 

Partially 

Unknown 

Weights 

(case 2) 

𝐴2 ≻ 𝐴4 ≻𝐴1 
≻ 𝐴3 

𝐴2 ≻ 𝐴4 ≻ 𝐴1 
≻ 𝐴3 

𝐴2 ≻ 𝐴4 ≻ 
𝐴1 ≻ 𝐴3 

𝐴4 ≻ 𝐴2 ≻ 
𝐴1 ≻ 𝐴3 

𝐴4 ≻ 𝐴2 ≻ 
𝐴1 ≻ 𝐴3 

𝐴4 ≻ 𝐴1 ≻ 
𝐴2 ≻ 𝐴3 

7. Conclusion

Real world problems involved inconsistent, indeterminate 

and imprecise information therefore present method 

represents decision makers’ expression in Neutrosophic 
Sets (SVNS/INS). Group Decision makers’ creditability 

weights are considered to aggregate their expressions to 
overcome partial or incomplete knowledge of decision 

makers in the respective attributes to alternatives. Partially 
known or completely unknown priorities of MCGDM 

problem is solved by establishing MGLP based on 

symmetric discrimination measure from each alternative to 
PIS and NIS then solved using NSAH algorithm. Ranks of 

alternatives are given based on weighted correlation 
coefficients of each alternative lower the value higher the 

rank. Illustrative examples are demonstrated its 

effectiveness, accuracy and flexibility by compared with 
two recent methods. The proposed technique can be 

applied to scientific and engineering problems such as 
project evaluation, supplier selection, manufacturing 

system, data mining, and medical diagnosis and 
management decisions. 
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Abstract:  A rough fuzzy set is the result of the 

approximation of a fuzzy set with respect to a crisp 

approximation space. It is a mathematical tool for the 

knowledge discovery in the fuzzy information systems. In 

this paper, we introduce the concepts of rough standard 

neutrosophic sets and standard neutrosophic information 

system, and give some results of the knowledge discovery 

on standard neutrosophic information system based on 

rough standard neutrosophic sets.  

Keywords: rough set, standard neutrosophic set, rough standard neutrosophic set, standard neutrosophic information systems 

1 Introduction 

Rough set theory was introduced by Z. Pawlak in 1980s 

[1]. It became a useful mathematical tool for data mining, 

especially for redundant and uncertain data. At first, the 

establishment of the rough set theory is based on the 

equivalence relation. The set of equivalence classes of the 

universal set, obtained by an equivalence relation, is the 

basis for the construction of upper and lower approximation 

of the subset of universal set.  

Fuzzy set theory was introduced by L. Zadeh since 

1965 [2]. Immediately, it became a useful method to study 

in the problems of imprecision and uncertainty. Ever since, 

a lot of new theories treating imprecision and uncertainty 

have been introduced. For instance, intuitionistic fuzzy sets 

were introduced in1986, by K. Atanassov [3], which is a 

generalization of the notion of a fuzzy set. While the fuzzy 

set gives the degree of membership of an element in a given 

set, intuitionistic fuzzy set gives a degree of membership 

and a degree of non-membership of an element in a given 

set. In 1999 [17], F. Smarandache introduced the concept of 

neutrosophic set which generalized fuzzy set and 

intuitionistic fuzzy set. It is a set in which each proposition 

is estimated to have a degree of truth (T), a degree of 

indeterminacy (I) and a degree of falsity (F). After a while, 

the subclass of neutrosophic sets was proposed. They are 

more advantageous in the practical application. Wang et al. 

[18] proposed the interval neutrosophic sets, and some of 

their operators. Smarandache [17] and Wang et al. [19] 

introduced a single valued neutrosophic set as an instance of 

the neutrosophic set accompanied with various set theoretic 

operators and properties. Ye [20] defined the concept of 

simplified neutrosophic set. It is a set where each element of 

the universe has a degree of truth, indeterminacy and falsity 

respectively, stretching between [0, 1]. Ye also suggested 

some operational laws for simplified neutrosophic sets, and 

two aggregation operators, including a simplified neutros-

ophic weighted arithmetic average operator and a simplified 

neutrosophic weighted geometric average operator.  

In 2013, B.C. Cuong and V. Kreinovich introduced the 

concept of picture fuzzy set [4, 5], in which a given set has 

three memberships: a degree of positive membership, a 

degree of negative membership, and a degree of neutral 

membership of an element in this set. After that,  L. H. Son 

gave the application of the picture fuzzy set in the clustering 

problems [7, 8]. We regard picture fuzzy sets as particular 

cases of the standard neutrosophic sets [6]. 

In addition, combining rough set and fuzzy set 

enhanced many interesting results. The approximation of 

rough (or fuzzy) sets in fuzzy approximation space give us 

the fuzzy rough set [9,10,11]; and the approximation of 

fuzzy sets in crisp approximation space give us the rough 

fuzzy set [9,10]. W. Z. Wu et al. [11] presented a general 

framework for the study of the fuzzy rough sets in both 

constructive and axiomatic approaches. Moreover, W. Z. 

Wu and Y. H. Xu investigated the fuzzy topological 

structures on the rough fuzzy sets [12], in which both 

constructive and axiomatic approaches are used. In 2012, Y. 

H. Xu and W. Z. Wu investigated the rough intuitionistic 
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fuzzy set and the intuitionistic fuzzy topologies in crisp 

approximation spaces [13]. In 2013, B. Davvaz and M. 

Jafarzadeh studied the rough intuitionistic fuzzy infor-

mation system [14]. In 2014, X. T. Nguyen introduced the 

rough picture fuzzy sets. It is the result of approximation of 

a picture fuzzy set with respect to a crisp approximation 

space [15].  

In this paper, we introduce the concept of standard 

neutrosophic information system, and study some problems 

of the knowledge discovery of standard neutrosophic infor-

mation system based on rough standard neutrosophic sets. 

The remaining part of this paper is organized as follows: we 

recall the basic notions of rough set, standard neutrosophic 

set and rough standard neutrosophic set on the crisp 

approximation space, respectively, in Sections 2 and 3. In 

Section 4, we introduce the basic concepts of standard 

neutrosophic information system. Finally, we investigate 

some problems of the knowledge discovery of standard 

neutrosophic information system: the knowledge reduction 

and extension of the standard neutrosophic information 

system, in Section 5 and Section 6, respectively.  

2 Basic notions of standard neutrosophic set and rough 

set  

In this paper, we denote by U a nonempty set called the 

universe of discourse. The class of all subsets of U will be 

denoted by P(U) and the class of all fuzzy subsets of U will 

be denoted by F(U).  

Definition 1. [6]. A standard neutrosophic (PF) set A on the 

universe U is an object of the form  

      A  A AA { x,μ x ,η x ,  γ x | x U} 

where μA(x)(∈ [0,1])  is called the “degree of positive

membership of x  in A ”, ηA(x)(∈ [0,1])  is called the

“degree of neutral membership of  x  in A ” and 

    Aγ x 0,1 γA(x)(∈ [0,1]) is called the “degree of

negative mem-bership of x in A”, where μA, ηA μA, γAand

Aγ  ηAsatisfy the following condition:

       A  A Aμ x η x  γ x 1,    x X     μA(x) + γA(x) +

ηA(x)) ≤ 1, (∀x ∈ X).

The family of all standard neutrosophic set in U is denoted 

by PFS(U). The complement of a picture fuzzy set A is  

      A  A A~ A { x,  γ x ,  η x ,  μ x | x U}   .

Obviously, any intuitionistic fuzzy set: 

A = {(x, μA(x), γA(x))}

may be identified with the standard neutrosophic set in the 

form 

    A AA { x,μ x ,0,  γ x X | x U} 

A = {(x, μA(x), γA(x), 0)|x ∈ U}.

The operators on PFS(U):  A B  , A B  , A B  were 

introduced in [4]. 

Now we define some special PF sets: a constant PF set is the 

PF set (α, β, θ)̂ = {(x, α, β, θ)|x ∈ U}; the PF universe set is

U = 1U = (1,0,0)̂ = {(x, 1,0,0)|x ∈ U}  and the PF empty

set is  ∅ = 0U = (0,0,1)̂ = {(x, 0,0,1)|x ∈ U}∅ = 0U =

(0,1,0)̂ = {(x, 0,1,0)|x ∈ U}.

For any x U , standard neutrosophic set  1x  and 
}U-{1 x

are, respectively, defined by: for all Uy
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Definition 2. (Lattice (D*, ≤D*)). Let

D* = {(x1, x2, x3) ∈ [0,1]3: x1 + x2 + x3 ≤ 1}.

We define a relation ≤D* on D∗ as follows:

∀(x1, x2, x3), (y1, y2, y3) ∈ D*

then   

   *1 2 3 1 2 3D
x , x , x y , y , y (x1, x2, x3) ≤D* (y1, y2, y3)

if only if  

(or 1 1 3 3(x y ,  x y )  (x1 < y1, x3 ≥ y3)  or (x1 =

y1, x3 > y3)(x = x', y > y')

or  (x1 = y1, x3 = y3, x2 ≤ y2)(x = x', y = y', z ≤ z'))

and (x1, x2, x3) =D* (y1, y2, y3) ⟺ (x1 = y1, x2 =

y2, x3 = y3).

We have  *

*

D
D , is a lattice. Denote  0D* = (0,0,1) ,

1D* = (1,0,0) Now, we define some operators on D∗
.

Definition 3. 

(i) Negative of  𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ 𝐷∗  is 𝑥 =

(𝑥3, 𝑥2, 𝑥1)

(ii) For all x = (x1, x2, x3) ∈ D* we have

 1 1 2 2 3 3, ,x y x y x y x y    

 1 1 2 2 3 3, ,x y x y x y x y     . 
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We have some properties of  those operators. 

Lemma 1.  

(a) For all x = (x1, x2, x3) ∈ D* we have

(b1) x y x y   x ∧ y = x ∨ y 

(b2) x y x y   x ∨ y = x ∧ y 

(b) For all x, y, u, v ∈ D*  and x ≤D* u, y ≤D* v

we have 

(c1) x ∧ y ≤D* u ∧ v

(c2) x ∨ y ≤D* u ∨ v

Proof. 

(a) We have x ∧ y = (x3 ∨ y3, x2 ∧ y2, x1 ∧ y1)  =

(x3, x2, x1) ∨ (y3, y2, y1) = x ∨ y

Similary x ∨ y = (x3 ∧ y3, x2 ∧ y2, x1 ∨ y1)  =

(x3, x2, x1) ∨ (y3, y2, y1) = x ∨ y

(b) For a, b, c, d ∈ [0,1] , if a ≤ b, c ≤ d  then a ∧

c ≤ b ∧ d and. From definitions 2 and 3, we have the result 

to prove. □ 

Now, we mention the level sets of the standard neutrosophic 

sets, where   *α,  β,  θ D ; we define:

• (α, β, θ)- level cut set of the standard neutrosophic set

      A  A AA { x,μ x ,η x ,  γ x | x U} 

  A = {(x, μA(x), γA(x), ηA(x))|x ∈ U}as follows:

        α,β

θ A  A AA {x U| μ x ,η x ,  γ x α,  β,  θ }   = {x ∈

U|(μA(x), ηA(x), γA(x)) ≥ (α, β, θ)} 

• strong (α, β, θ)-  level cut set of the standard

neutrosophic set A  as follows:

        α ,β

A  A Aθ
 A {x U| μ x ,η x ,  γ x α,  β,  θ }

 

     

• (α+, β, θ)--  level cut set of the standard neutrosophic

set A as

   α ,β

θ A AA {x U|μ x , γ x θ}


     

• (α, β, θ+) − level cut set of the standard neutrosophic

set A as

   α,β

A Aθ
A {x U|μ x α,   γ x θ}      

By β 0  we denoted 

Aθ
α = Aθ

α,0

• (α+, θ+)-  level cut set of the standard neutro-

sophic set A as 

   α

A Aθ
A {x U|μ x , γ x θ}



      

• α- level cut set of the degree of positive membership of

x in A as

 α

AA {x U|μ x α}  

the strong α- level cut set of the degree of positive member-

ship of x in A as 

 α

AA {x U|μ x α}


    

• θ-  level low cut set of the degree of negative

membership of x in A as

 θ AA {x U|γ x θ}  

the strong θ- level low cut set of the degree of negative 

membership of x in A as 

 Aθ
A {x U|γ x θ}     

Example 1.  Given the universe U = {u1, u2, u3}. Then

      1 2 3,0.8,0.05,0.1 , ,0.7,0.1,0.2 , ,0.5,0.01,0.4A u u u

is a standard neutrosophic set on U . Then A0.1
0.7,0.2 =

{u1, u2}  but A0.1
0.7,0.1 = {u1}   and  A

0.1+
0.7,0.2 = {u1} ,

 0.7

0.1 1A u ,  A0.1+
0.7 = ∅, A0.5 = {u1, u2, u3} , A0.5+

=

{u1, u2}, A0.2+ = {u1}, A0.2 = {u1, u2}.

Definition 3. Let U be a nonempty universe of discourse 

which may be infinite. A subset R ∈ P(U×U) is referred to 

as a (crisp) binary relation on U. The relation R is referred 

to as: 

• Reflexive: if for all  x U,   x, x R  .

• Symmetric: if for all  x,y U,   x, Ry  x, y ∈

U, (x, y) ∈ R then (y, x) ∈ R.

• Transitive: if  for all 

   x,y,z U,   x, R, , Ry y z   x, y, z ∈ U, (x, y) ∈

R, (y, z) ∈ R then (x, z) ∈ R

• Similarity: if R is reflexive and symmetric

• Preorder: if R is reflexive and transitive

• Equivalence: if R is reflexive and symmetric, tran-

sitive. 
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A crisp approximation space is a pair (U, R). For an 

arbitrary crisp relation R on U, we can define a set-valued 

mapping  sR : U P U  by:

    sR x y U| x, y R ,  x U.     

Then, Rs(x) is called the successor neighborhood of x

x with respect to (w.r.t) R . 

Definition 4.[9].  Let (U, R) be a crisp approximation 

space. For each crisp set  A ⊆ U , we define the upper and 

lower approximations of A (w.r.t) (U, R) denoted by R̅(A) 

and  R(A), respectively, are defined as follows: 

R̅(A) = {x ∈ U: Rs(x) ∩ A ≠ ∅},

    sR A x U :  R x A   R(A) = {x ∈

U: Rs(x) ⊆ A}.

Remark 2.1. Let (U, R) be a Pawlak approximation space, 

i.e. R  is an equivalence relation. Then Rs(x) = [x]R holds.

For each crisp set  A ⊆ U  , the upper and lower 

approximations of A  (w.r.t) (U, R)  denoted by R̅(A)  and  

R(A), respectively, are defined as follows: 

R̅(A) = {x ∈ U: [x]R ∩ A ≠ ∅}R(A) = {x ∈ U: [x]R ⊆

A} 

Definition 5. [16]  Let (U, R)  be a crisp approximation 

space. For each fuzzy set  A ⊆ U, we define the upper and 

lower approximations of A (w.r.t) (U, R) denoted by  R A

and  R(A), respectively, are defined as follows: 

R̅(A) = {x ∈ U: Rs(x) ∩ A ≠ ∅},

    sR A x U :  R x A  

where 

μR̅(A)(x) = max{μA(y)|y ∈ Rs(x)},

     μ x { | }RA A smin y y R x 

Remark 2.2.  Let (U, R) be a Pawlak approximation space, 

i.e. 𝑅 is an equivalence relation. Then Rs(x) = [x]R holds.

For each fuzzy set  A ⊆ U , the upper and lower 

approximations of A  (w.r.t) (U, R)  denoted by R̅(A)  and  

R(A), respectively, are defined as follows:   

R̅(A) = {x ∈ U: [x]R ∩ A ≠ ∅},

R(A) = {x ∈ U: [x]R ⊆ A}

This is the rough fuzzy set in [6]. 

3. Rough standard neutrosophic set

A rough standard neutrosophic set is the approximation 

of a standard neutrosophic set w. r. t a crisp approximation 

space. Here, we consider the upper and lower 

approximations of a standard neutrosophic set in the crisp 

approximation spaces together with their membership 

functions, respectively. 

Definition 5: Let (U, R) be a crisp approximation space. For 

A ∈ PFS(U) , the upper and lower approximations of A 

(w.r.t) (U, R)  denoted by  ARP RP̅̅̅̅ (A)  and RP(A) ,

respectively, are defined as follows: 

RP̅̅̅̅ (A) = {(x, μRP̅̅ ̅̅ (A)(x), ηRP̅̅ ̅̅ (A)(x), γRP̅̅ ̅̅ (A)(x))|x ∈ U}

              RP A RP A RP A
RP A { x,  μ x ,η x , γ x | x U}

where 

   
 

 
s

ARP A y R x
μ x μ y


  ,    

 
 

s

ARP A y R x
η x η y


  , 

RP(A) = {(x, μRP(A)(x), γRP(A)(x), ηRP(A)(x))|x ∈ U};

and  

RP(A) = {(x, μRP(A)(x), γRP(A)(x), ηRP(A)(x))|x ∈ U} ,

   
 

 
s

ARP A
y R x

η x η y


  , 
   

 
 

s

ARP A
y R x

γ x γ y


  . 

RP(A) = {(x, μRP(A)(x), γRP(A)(x), ηRP(A)(x))|x ∈ U}

We have RP̅̅̅̅ (A)  and  ARP , two standard

neutrosophic sets in U. Indeed, for each x ∈ U,  for all ϵ >

0 , it exists 
0y U y0 ∈ U  such that μRP̅̅ ̅̅ (A)(x)-ϵ ≤

μA(y0) ≤ μRP̅̅ ̅̅ (A)(x) , ηRP̅̅ ̅̅ (A)(x) ≤ ηA(y0) , γRP̅̅ ̅̅ (A)(x) ≤

γA(y0)

 so that 
 

 
 

 
 

 
RP A RP A RP A

μ x η x γ x  

       A 0 A 0 0μ y η y   1A y   

μRP̅̅ ̅̅ (A)(x)-ϵ + ηRP̅̅ ̅̅ (A)(x)+γRP̅̅ ̅̅ (A)(x) ≤.

Hence μRP̅̅ ̅̅ (A)(x) + ηRP̅̅ ̅̅ (A)(x)+γRP̅̅ ̅̅ (A)(x) ≤ 1 + ϵ , for all

ϵ > 0. It means that RP̅̅̅̅ (A) is a standard neutrosophic set.

By the same way, we obtain RP(A) a standard neutrosophic 

set. Moreover, RP(A) ⊂ RP̅̅̅̅ (A).

Thus, the standard neutrosophic mappings RP̅̅̅̅ ,

RP: PFS(U) → PFS(U)are referred to as the upper and lower 

PF approximation operators, respectively, and the pair 

 ( ) ( ( ), A )PR A PR A RP  is called the rough standard
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neutrosophic set of A w.r.t the approximation space. The 

picture fuzzy set denoted by ~RP(A)  and is defined by 

 ( ) ( ( ), A )PR A PR A RP ~RP(A) =

(~RP(A), ~RP̅̅̅̅ (A))  where ~RP(A)  and ~RP̅̅̅̅ (A)  are the

complements of the PF sets RP̅̅̅̅ (A) and RP(A) respectively.

Example 2. We consider the universe set U =

{u1, u2, u3, u4, u5} and a binary relation R on U in Table 1.

Here, if uiRuj then cell (i, j) takes a value of 1, cell (i, j)

takes a value of 0 (i, j = 1, 2, 3, 4, 5). A standard 

neutrosophic 

     

   

1 2 3

2 3

{ ,0.7,0.1,0.2 ,  ,0.6,0.2,0.1 ,  ,0.6,0.2,0.05 ,

,0.6,0.2,0.1 ,  ,0.6,0.2,0.05 }

A u u u

u u



Table 1: Binary relation 𝑅 on 𝑈 

R 
1u 2u 3u 4u 5u

1u 1 0 1 0 0 

2u 0 1 0 1 1 

3u 1 0 1 0 1 

4u 0 1 0 1 0 

5u 0 0 1 1 1 

We have Rs(u1) = {u1, u3}, Rs(u2) = {u2, u4, u5},

Rs(u3) = {u1, u3, u5}, Rs(u4) = {u2, u4},

   s 5 3 4 5R u , ,u u u Rs(u5) = {u3, u4, u5}.

Therefore, we obtain the results 

μRP̅̅ ̅̅ (A)(u1) = ⋁ μA(y)y∈Rs(u1)

 
     

s 1
1 Ay R uRP A

μ u μ y


 = max {μA(u1), μA(u3)}

 = max{0.7,0.6} = 0.7, 

       
s 1

1 ARP A y R u
η u η y


     1 3 min ,A Au u 

=max{0.7,0.6} = 0.7, 

            
s 1

1 A 1 3RP A y R u
u y  min ,A Au u   


 

γRP(A)(u1) = ⋀ γA(y)y∈Rs(u1) = min {γA(u1), γA(u3)} =

max{0.7,0.6} = 0.7 min{0.2,0.05} = 0.05 

Similar calculations for other elements of U, we have upper 

approximations of A 

  1 2RP A {( ,0.7,0.1,0.05), ( ,0.6,0.2, 1),0.u u

     3 4 5,0.7,0.1, 0.05 ,  ,0.6, 0.2, 0.1 , ,0.6,0.2,0.05 }u u u

and lower approximations of A is 

  1 2A {( ,0.6,0.1,0.2), ( ,0.4,0.2,0. ),2RP u u

     3 4 5,0.4,0.1, 0.2 ,  ,0.5, 0.2, 0.15 , ,0.4,0.2,0.2 }u u u .

Some basic properties of rough standard neutros-

ophic set operators are presented in the following theorem: 

Theorem 1. Let (U, R) be a crisp approximation space, 

then the upper and lower rough standard neutrosophic 

approximation operators satisfy the following properties: 

∀A, B, Aj ∈ PFS(U), j ∈ J, J is an index set,

(PL1) ( )PR A =  ARP

(PL2)       RP A α,β,θ  RP A α,β,θ  

RP(A ∪ (α, β, θ)̂ ) = RP(A) ∪ (α, β, θ)̂

(PL3)  RP U U RP(U) = U

ηRP(A)(x) = ⋀ ηA(y)y∈Rs(x)

(PL5)      RP A B RP A  RP B  

(PL6) A ⊆ B ⇒ RP(A) ⊆ RP(B) 

(PU1) RP̅̅̅̅ (~A) = ~RP(A)  ARP

( )PR A  

(PU2) PR(A ∩ (α, β, θ)̂ ) = PR(A) ∩ (α, β, θ)̂

(PU3) PR(∅) = ∅ 

(PU4) RP(⋃ Aj) = ⋃ RP(Aj)j∈Jj∈J

(PU5) RP(A ∩ B) ⊆ RP(A) ∩ RP(B) 

(PU6) A ⊆ B ⇒ RP(A) ⊆ RP(B) 
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Proof. 

(PL1). 

              RP ~A RP ~A RP ~A
RP ~ A { x,  μ x ,η x ,  γ x | x U}   

in which, 

       ~RP ~A
μ x

s
Ay R x

y


  =    
s

Ay R x
y


 = 

 
 

A
x

RP
 ; 

           ~RP ~A
x  

s s
A Ay R x y R x

y y  
 

   = 

 
 

A
x

RP


       ~RP ~A
γ x  

s
Ay R x

y


  =    
s

Ay R x
y


 = 

 
 

A
x

RP


From that and lemma 1, we have ( )PR A =  ARP .

(PL2) Because (α, β, θ)̂ = {(x, α, β, θ)|x ∈ U}, we have

  
 

RP A α,β,θ
x


=     

 
RP A α,β,θsy R x

y
 

⋁ μRP(A∪(α,β,θ)̂ )(y)y∈Rs(x) = 
      RP A

max ,
sy R x

y 
  

= 
       RP A

max{ , }
y R x y R x

s s
y 

    

= max{⋁ μRP(A)(y), ⋁ αy∈Rs(x)y∈Rs(x) }

    α ,β ,θ
,{ (( ) })

RP A
ax xm x   =    RP A α,β,θ

( )x
 . 

 By the same way, we have 

 
  

 
 RP α,β,θRP A α,β,θ

( )
A

x x 


  

and 

  
 

 RP α,β,θRP A α,β,θ
( )

A
x x 


 .  

It means RP(A ∪ (α, β, θ)̂ ) = RP(A) ∪ (α, β, θ)̂ .

(PL3) Since U = 1U = (1,0,0)̂ = {(x, 1,0,0)|x ∈ U} , then

we can obtain (PL3) RP(U) = U by using definition 5.  

The results (PL4), (PL5), (PL6) were proved by using the 

definition of lower and upper approximation spaces 

(definition 5) and lemma 1. μμ
RP((α,β,θ)̂ )

(x)

Similarly, we have (PU1), (PU2), (PU3), (PU4), (PU5), 

PU(6). □ 

Theorem 2. Let (U, R)  be a crisp approximation space. 

Then  

a) RP(U) = U = RP(U) and

   RP  RP    RP(∅) = ∅ = RP(∅).

b) RP(A) ⊆ RP(A) forall A ∈ PFS(U).□

Proof. 

(a) Using (PL3), (PL6), (PU3), (PU6), we easy prove 

RP(U) = U = RP(U) and RP(∅) = ∅ = RP(∅). 

(b) Based on definition 5, we have 

       
s

ARP A y R x
μ x μ y




     
       

s
ARP A y R x

 μ x μ y


  , 

           
s

ARP A y R x RP A
x μ y η x


  , 

and 

       
s

ARP A y R x
γ x γ y


   

   
 

 
s

Ay R x RP A
y x 




So RP(A) ⊆ RP(A) for all A ∈ PFS(U).□ 

In the case of connections between special types of 

crisp relation on U , and properties of rough standard 

neutrosophic approximation operators, we have the 

following: 

Lemma 2. If R is a symmetric crisp binary relation on U, 

then for all A, B ∈ PFS(U), 

( ) ( )RP A B A RP B    

Proof. 

Let R  be a symmetric crisp binary relation on U, i.e. y ∈

Rs(x) ⟺ x ∈ Rs(y), ∀x, y ∈ U . We assume contradiction

that  ( )RP A B but ( )A RP B .  

For each 𝑥 ∈ 𝑈, we consider all the cases: 
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+ if 
       

s
BRP B y R x

( ) μ x μ yA x


  then it exists y0 ∈

Rs(x) such that 0( ) ( )A Bx y   
) 0(RP A

y 

 
0

sz R
( ) ( )A Ay
z x 


  (because y0 ∈ Rs(x) then

 s 0Rx y . This is not true. 

+ the cases 
( )

( ) ( )
A RP B

x x   or 
( )

( ) ( )A RP B
x x   are 

also not true. □ 

Theorem 3.  Let (U, R) be a crisp approximation space, and 

RP̅̅̅̅ , the upper and lower PF approximation operators.

Then: 

(a) R  is reflexive if and only if at least one of the 

following conditions are satisfied 

(a1) (PLR)RP(A) ⊆ A∀A ∈ PFS(U) 

(a2) (PUR)A ⊆ RP(A)∀A ∈ PFS(U) 

(b) R is symmetric if and only if at least one of the 

following conditions are satisfied 

(b1) (PLR)RP(RP(A)) ⊆ A∀A ∈ PFS(U) 

(b2) (PUR)A ⊆ RP (RP(A)) ∀A ∈ PFS(U) 

(c) R  is transitive if and only if at least one of the 

following conditions are satisfied 

(c1) (PLT)RP(A) ⊆ RP(RP(A))∀A ∈ PFS(U) 

(c2) (PUT)RP(A) ⊆ RP (RP(A)) ∀A ∈ PFS(U) 

Proof. 

(a). We assume that R is reflexive, i.e., ( )Sx R x , so that 

 A PFS U   we have  

         
s

A ARP A y R x
μ x μ y μ x


  , 

         
s

ARP A y R x Ax μ y η x


  , 

and 
       

s
ARP A y R x

γ x γ y


    A x . It means

that    RP A A ,   A PFS U   , i.e. (a1) was verified.

Similarly, we consider upper approximation of: 

 
       

s
A Ay R xRP A

μ x μ y μ x


  , 
 

 
RP A
η x = 

     
s

A Ay R x
μ y η x


 ,  and

 
 

RP A
x = 

     
s

Ay R x
y xA 


 .  

It means    A  RP A ,  A PFS U   , i.e. (a2) is

satisfied. 

Now, assume that (a1)    RP A A ,   A PFS U   ; we

show that R is reflexive. Indeed, we assume contradiction 

that R is not reflexive, i.e.  x R x
s

 .

We consider  

{ }A = 1U x

, i.e.  
{ }1

if

i
μ

f

0

1U x

y x
y

y x










, 

 
{ }1

if

f

0

i0U x

y x
y

y x









 


,  
{ }1

if

f

1

i0U x

y x
y

y x









 


. 

Then 
       

s
ARP A y R x

γ γ 0x y


    A 1x  .

This is not true. It implies R is reflexive. 

Similarly, we assume that (a2)    A  RP A ,  A PFS U   ;

we show that R is reflexive. Indeed, we assume 

contradiction that R is not reflexive, i.e.,  x R x
s

 .

We consider xA = 1 , i.e.,  1

1

0 if
μ

if

x

y x
y

y x






 


, 

 1

if

i

0

0 fx

y x
y

y x







 


,  1

if

i

0

1 fx

y x
y

y x







 


. 

Then 
 

       
s

A Ay R xRP A
μ x μ y 0 μ x 1


    . 

This is not true. It implies R is reflexive. 

(b). 

We verify case (b1). 

We assume that R is symmetric, i.e., if 

( )Sx R y

 then 

( )Sy R x . For all  A PFS U , because

( )Sx R y

then    
s

AR
μ

z y
z


  Aμ x ,    

s
AR

μ
z y

z




 Aμ x , 
   

s
ARz y

z


  A x for all ( )Sy R x , 

we have 

 
 

(RP A )
μ

x
RP



     
s s

Ay R x R
( μ ) 

z y
z

 
   Aμ x ,

 
         

s s
A Ay R x R(RP A )

x ( ) 
zRP y

z x  
 

    ; and 

 
         

s s
A Ay R x R(RP A )

x ( ) 
zRP y

z x  
 

    . 
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It means that     RP  RP A A    A PFS U   .

We assume contradiction that     RP  RP A A    A PFS U  

but R is not symmetric, i.e., if ( )Sx R y  then ( )Sy R x

and if ( )Sy R x  then ( )Sx R y . 

We consider 
{ }A = 1U x

. Then,
 

 
(RP A )

μ x
RP



     
s s

Ay R x R
( μ ) =1

z y
z

 
   A> μ 0x  . It 

is not true, because 
 

 
(RP A )

μ x ( ),ARP
x for all 

x U . So that R is symmetric. 

By the same way, it yields (b2). 

(c). R  is transitive, i.e., if for all , ,x y z U : 

( ), ( )S Sz R y y R x  then ( )Sz R x . It means that 

( ) ( )S SR y R x , so that for all  ( )A PFS U we have

       
s s

A AR R
μ μ

x yz z
z z

 
   . 

Hence 

           
s s s s

A AR R R R
( μ ) ( μ )

x z y z yy x x
z z

   
     . 

Because 
     

s s
( ) AR R

( ) ( μ )RP A y zx x
zx

 
    

and      
s s

( ( )) AR R
( ) ( μ )RP RP A y x yz
x z

 
   .

So 
( ) ( ( ))( ) ( )RP A RP RP Ax x  , for all , ( )x U A PFS U  . 

It mean that (c1) was varified. Now, we assume 

contradiction that (c1):       RP A RP RP A A PFS U   ,

but R  is not transitive, i.e., , ,x y z U : 

( ), ( )S Sz R y y R x  then ( )Sz R x . We consider 

{ }A = 1U x
, then    

s
( ) AR

( ) μ 1RP A z x
x z


   , but 

     
s s

( ( )) AR R
( ) ( μ ) 0

x yRP RP A y z
zx

 
    .

It is false. By same way, we show that (c2) is true. Hence, 

(c) was verified.⧠ 

 Now, according to Theorem 1, Lemma 1 and Theorem 3, 

we obtain the following results:  

Theorem 4. Let R be a similarity crisp binary relation 

on U  and RP̅̅̅̅ ,  RP: PFS(U) → PFS(U)  the upper and

lower PF approximation operators. Then, for all A ∈

PFS(U) 

   A RP A RP A A –

   ~ A RP ~ A RP ~ A ~ A  – .

4. The standard neutrosophic information systems

In this section, we introduce a new concept: standard 

neutrosophic information system.  

Let (U, A, F) be a classical information system. Here U 

is the (nonempty) set of objects, i.e. U = {u1, u2, … , un},

A = {a1, a2, … , am} is the attribute set, and F  is the rela-

tion set of U and A, i.e. F = {fj: U → Vj, j = 1,2, … , m},

where Vj is the domain of the attribute , 1, 2,. ,  ..ja j m

. 

We call (U, A, F, D, G) an information system or deci-

sion table, where U, A, F) is the classical information sys-

tem, A is the condition attribute set and D is the decision at-

tribute set, i.e. D = {d1, d2, … , dp} and G is the relation

set of U an D, i.e. G = {gj: U → Vj
', j = 1,2, … , p} where

Vj
' is the domain of the attribute , 1,2,...,jd j p . 

Let (U, A, F, D, G) be the information system. For B ⊆

A ∪ D, we define a relation, denoted RB = IND(B), as fol-

lows, ∀x, y ∈ U:  

xIND(B)y ⟺ fj(x) = fj(y) for all j ∈ {j: aj ∈ B}.

The equivalence class of x ∈ U based on RB is [x]B =

{y ∈ U: yRBx}.

Here, we consider  RA = IND(A), RD = IND(D). If

DAR R RA ⊆ RD , i.e., for any [x]A, x ∈ U there exists

[x]D such that [x]A ⊆ [x]D, then the information system is

called a consistent information system, other called an in-

consistent information system. 

 Let (U, A, F, D, G) be the information system, where 

(U, A, F) is a classical information system.  

If D = {Dk|k = 1,2, … , q}, where Dk is a fuzzy sub-

set of U, then (U, A, F, D, G) is the fuzzy information sys-

tem.  

If D = {Dk|k = 1,2, … , q}where Dk  is an intution-

istic fuzzy subset of U, then (U, A, F, D, G) is an intuition-

istic fuzzy information system. 
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Definition 6. Let (U, A, F, D, G) be the information system 

or decision table, where (U, A, F) is a classical information 

system. If D = {Dk|k = 1,2, … , q}, where Dk is a standard

neutrosophic subset of U, and G  is the relation set of U
and D, then (U, A, F, D, G) is called a standard neutrosophic 

information system. 

Example 2. The following Table 2 gives a standard 

neutrosophic information system, where the objects set  U =

{u1, u2, … , u10}, ,  the condition attribute set is A =

{a1, a2, a3} , and the decision attribute set is D =

{D1, D2, D3} , where Dk(k = 1,2,3)  is the standard

neutrosophic subsets of 𝑈. 

Table 2: A standard neutrosophic information system 

U
1a 2a 3a 1D 2D 3D

1u 3 2 1 (0.2,0,3,0.5) (0.15,0.6,0.2) (0.4,0.05,0.5) 

2u 1 3 2 (0.3,0.1,0.5) (0.3,0.3,0.3) (0.35,0.1,0.4) 

3u 3 2 1 (0.6,0,0.4) (0.3,0.05,0.6) (0.1,0.45,0.4) 

4u 3 3 1 (0.15,0.1,0.7) (0.1,0.05,0.8) (0.2,0.4,0.3) 

5u 2 2 4 (0.05,0,2,0.7) (0.2,0.4,0.3) (0.05,0.4,0.5) 

6u 2 3 4 (0.1,0.3,0.5) (0.2,0.3,0.4) (1,0,0) 

7u 1 3 2 (0.25,0.3,0.4) (1,0,0) (0.3,0.3,0.4) 

8u 2 2 4 (0.1,0.6,0.2) (0.25,0.3,0.4) (0.4,0,0.6) 

9u 3 2 1 (0.45,0,1,0.45) (0.25,0.4,0.3) (0.2,0.5,0.3) 

10u 1 3 2 (0.05,0.05,0.9) (0.4,0.2,0.3) (0.05,0.7,0.2) 

5. The knowledge discovery in the standard neutro-

sophic information systems   

In this section, we will give some results about the 

knowledge discovery for a standard neutrosophic 

information systems by using the basic theory of rough 

standard neutrosophic set in Section 3. Throughout this 

paper, let (U, A, F, D, G)  be the standard neutrosophic 

information system and by B ⊆ A, we denote RPB(Dj) the

lower rough standard neutrosophic approximation of Dj ∈

PFS(U) on   approximation space (U, RB).

Theorem 5. Let (U, A, F, D, G)  be the standard 

neutrosophic information system and B ⊆ A. If for any 𝑥 ∈

𝑈: 

             , ,  , , 
i i iD D Dx x x x x x     

= RPB(Di)(x) > RPB(Dj)(x)(i ≠ j),

then [x]B ∩ (∼ Dj)α(x)
β(x),0

≠ ∅ [x]B ∩ (∼ Dj)α(x)
β(x),0

≠ ∅  

   
 

 ,0x

jB x
x D




     [x]B ∩ (∼ Dj)α(x)

θ(x),0
≠ ∅ and 

   
 

   ,x x

iB x
x D

 


 [x]B ∩ (∼ Dj)α(x)

β(x),0
≠ ∅[x]B ⊆

(Di)β(x)
α(x),θ(x)

[x]B ∩ (∼ Dj)α(x)
β(x),0

≠ ∅  

where (α(x), β(x), θ(x)) ∈ D*.

Proof.  

We have 

 
 

   
      

,
{ :  , , 

i i i

x x

i D D Dx
D y U y y y

 


   

≥ (α(x), β(x), θ(x))}. 

Since (α(x), β(x), θ(x)) = RPB(Di)(x),

we have      
iB

Dy x
x y 


  ,      

iB
Dy x

x y 


  , 

and      .
iB

Dy x
x y 


   So that, for any x ∈ U, y ∈ [x]B

then μDi
(y) ≥ α(x) ,     

iD y x  γDi
(y) ≤ θ(x)  and

ηDi
(y) ≥ θ(x) . It means that  

 

   ,x x

i x
y D

 


 , i.e.,

 
 

   ,
[ ]

x x

B i x
x D

 


 [x]B ⊆ (Di)θ(x)

α(x),β(x)

Now, since 

             , ,  B Bi jx x x RP D x RP D x i j     

then there exists  y ∈ [x]B such that

             , ,  , , 
i i iD D Dy y y x x x     

(μDi
(y), ηDi

(y), γDi
(y)) < (α(x), β(x), θ(x)) ,i.e., or 

(μDi
(y) < α(x) , γDi

(y) ≥ θ(x))  or (μDi
(y) = α(x) ,

γDi
(y) > θ(x))  or (μDi

(y) = α(x) , γDi
(y) > θ(x))  and

ηDi
(y) < β(x)). It means that here exists  y ∈ [x]B such that

           , ,  ,0,
i i iD D Dy y y x x     , i.e.  y ∈ (∼

Dj)α(x)
θ(x),0

. So that [x]B ∩ (∼ Dj)α(x)
θ(x),0

≠ ∅.□ 

Let (U, A, F, D, G)  be the standard neutrosophic 

information system, RA the equivalence classes which are

induced by the condition attribute set 𝐴, and the universe is 

divided by RA as following: U RA = {X1, X2 … , Xk}⁄ . Then

the approximation of the standard neutrosophic decision 

denoted as, for all i = 1,2, … , k 
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            1 2,  , ,A A A Ai i i q iRP D X RP D X RP D X RP D X 

Example 3. We consider the standard neutrosophic 

information system in Table 2. The equivalent classes  

   1 1 3 9 2 2 7 10/ { , , ,  , , , AU R X u u u X u u u  

𝑋3 = {𝑢4}, 𝑋4 = {𝑢5, 𝑢8}, 𝑋5 = {𝑢6}}

The approximation of the standard neutrosophic decision is 

as follows:  

Table 3:    The approximation of the picture fuzzy decision 

/ AU R   1A iRP D X   2A iRP D X   3A iRP D X

1X (0.2,0,0.5) (0.15,0.05,0.6) (0.1,0.05,0.5) 

2X (0.05,0.05,0.9) (0.3,0.1,0.3) (0.05,0.1,0.4) 

3X (0.15, 0.1,0.7) (0.1,0.05,0.8) (0.2,0.4,0.3) 

4X (0.05,0.2,0.7) (0.2,0.3,0.4) (0.05,0,0.6) 

5X (0.1,0.3,0.5) (0.2,0.3,0.4) (1,0,0) 

Indeed, for X1 = {u1, u3, u9}.

We have ∀x ∈ X1,

       
1 11

min 0.2,0.6,0.45 0.2
A

y X DRP D
x y     , 

       
1 11

min 0.3,0,0.1 0
A

y X DRP D
x y    

 

       
1 11

max 0.5,0.4,0.45 0.5
A

y X DRP D
x y     , 

y ∈ (∼ Dj)α(x)
β(x),0

, so that RPA(D1)(x) = (0.2,0.5,0). And

 
       

1 22
min 0.15,0.3,0.25 0.15

A
y X DRP D

x y     , 

ηRPA(D2)(x) =∧y∈X1
ηD2

(y) = min{0.6,0.05,0.4} = 0.05 ,

       
1 22

max 0.2,0.6,0.3 0.6
A

y X DRP D
x y    

so RPA(D2)(x) = (0.15,0.6,0.05) and

μRPA(D3)(x) =∧y∈X1
μD3

(y) = min{0.4,0.1,0.2} = 0.1,

       
1 33

min 0.05,0.45,0.5 0.05
A

y X DRP D
x y     , 

       
1 33

max 0.5,0.2,03 0.5
A

y X DRP D
x y      

so that RPA(D3)(x) = (0.1,0.5,0.05).

Hence, for X1 = {u1, u3, u9} , ∀x ∈ X2 ,

    1,2,3 A ii
max RP D x




    1 0.2,0.5,0ARP D x  ,maxi={1,2,3}RPA(Di)(x) =

and X1 = {u1, u3, u9} ⊆ (D1)0.5
0.2,0 = {u1, u2, u3, u7, u9};

For X2 = {u2, u7, u10}. We have ∀x ∈ X2,

maxi={1,2,3}RPA(Di)(x) = RPA(D2)(x) = (0.3,0.3,0.1),

and X2 = {u2, u7, u10} ⊆ (D2)0.3
0.3,0.1 = {u2, u7, u10}.

For X3 = {u4}, we have ∀x ∈ X2,

maxi={1,2,3}RPA(Di)(x) = RPA(D3)(x) = (0.2,0.3,0.4),

and      
0.3,0.1

3 4 2 4 6 90.3
  , ,X u D u u u   X3 = {u4} ⊆

(D2)0.3
0.3,0.1 = {u4, u6, u9}.

For X3 = {u4}, we have ∀x ∈ X2

maxi={1,2,3}RPA(Di)(x) = RPA(D3)(x) = (0.2,0.3,0.4)

and      
0.2,0.3

4 5 8 2 2 5 8 9 100.4
,   , , , ,X u u D u u u u u  

X4 = {u5, u8} ⊆ (D2)0.4
0.2,0.3 = {u2, u5, u8, u9, u10}.

For X3 = {u4}, we have ∀x ∈ X2,

maxi={1,2,3}RPA(Di)(x) = RPA(D3)(x) = (0.2,0.3,0.4), and

     
1,0

5 6 2 60
 X u D u   .

6 The knowledge reduction and extension of stand-

ard neutrosophic information systems  

Definition 7. 

(i) Let  , ,U A F  (U, A, F)  be the classical infor-

mation system and B ⊆ A. B is called the standard neutro-

sophic reduction of the classical information system 

(U, A, F), if 𝐵 is the minimum set which satisfies the fol-

lowing relations: for any X ∈ PFS(U), x ∈ U.

       ,   A BA BRP X RP X RP X RP X 

(ii) B is called the standard neutrosophic lower approx-

imation reduction of the classical information system 

(U, A, F), if B is the minimum set which satisfies the fol-

lowing relations: for any X ∈ PFS(U), x ∈ U

RPA(X) = RPB(X),

(iii) B is called the standard neutrosophic upper approx-

imation reduction of the classical information system 

(U, A, F), if B  is the minimum set which satisfies the fol-

lowing relations: for any X ∈ PFS(U), x ∈ U

   A BRP X RP X

where        , ,   ,A BA BRP X RP X RP X RP X

RPA(X), RPB(X),  RPA(X), RPB(X) are standard neutro-
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sophic lower and standard neutrosophic upper approxima-

tion sets of standard neutrosophic set  X ∈ PFS(U) based

on , A BR R RA, RB, respectively.

Now, we express the knowledge of the reduction of 

standard neutrosophic information system by introducing 

the discernibility matrix.  

Definition 8. Let (U, A, F, D, G)  be the standard 

neutrosophic information system. Then [ ]ij k kM D 

where 

        

   

:  ;  

;

i j

i j

l l i l j X X

ij

t t

t X tX

a A f X f X g D g D
D

A g D g D

   
 



is called the discernibility matrix of (U, A, F, D, G) (where 

gXi
(Dk) is the maximum of RPA(D(Xi)) obtained at

tD Dk,

i.e.,     
i AX t t ig D RP D X

=    max ,  1,2, , )A izRP D X z q  gXi
(Dk) =

RPA(Dk(Xi)) = max{RPA(Dt(Xi)), t = 1,2, … , q}).

Definition 9. Let (U, A, F, D, G) be the standard 

neutrosophic information system, for any B ⊆ A, if the fol-

lowing relations holds, for any x ∈ U:  

             B B Ai j i jA
RP D x RP D x RP D x RP D x i j  –

then B is called the consistent set of  A. 

Theorem 6. Let (U, A, F, D, G) be the standard 

neutrosophic information system. If there exists a subset B

⊆ A such that B ∩ Dij ≠ ∅, then B is the consistent set of

A . 
Definition 10. Let (U, A, F, D, G) be the standard 

neutrosophic information system 

        

   

:  ;  

  ;

i j

i j

l l i l j X XC

i

t

j

tX X

t

t

a A f X f X g D g D
D

g D g D

   
 

 

is called the discernibility matrix of (U, A, F, D, G) (where 

gXi
(Dk) is the maximum of RPA(D(Xi)) obtained at Dk,

i.e. 

        max ,  1,2, , ).
i t t zA AX i ig D RP D X RP D X z q   

gXi
(Dk) = RPA(Dk(Xi)) = max{RPA(Dt(Xi)), t =

1,2, … , q}). 

Theorem 7. Let (U, A, F, D, G) be the standard 

neutrosophic information system. If there exists a subset 

B ⊆ A such that B ∩ Dij
C = ∅, then B is the consistent set

of  A. 

Proof. If B ∩ Dij
C = ∅, then B ⊆ Dij. According to Theorem

6, B is the consistent set of  A.□ 

The extension of a standard neutrosophic information 

system suggested the following definition:   

Definition 11. 

(i) Let (U, A, F) be the classical information system and A

⊆ B. B is called the standard neutrosophic extension of the 

classical information system (U, A, F), if B satisfies the 

following relations:

for any X ∈ PFS(U), x ∈ U
       , A BA BRP X RP X RP X RP X 

(ii) B is called the standard neutrosophic lower approx-

imation extension of the classical information system 

(U, A, F), if B B satisfies the following relations:  

for any X ∈ PFS(U), x ∈ U

   A BRP X RP X

(iii) B is called the standard neutrosophic upper approx-

imation extension of the classical information system 

(U, A, F), if B satisfies the following relations:  

for any X ∈ PFS(U), x ∈ U

   A BRP X RP X

where RPA(X), RPB(X),  RPA(X), RPB(X) are picture

fuzzy lower and upper approximation sets of standard neu-

trosophic set  X ∈ PFS(U) based on RA, RB, respectively.

We can easily obtain the following results: 

Definition 12. Let (U, A, F)  be the classical information 

system, for any hyper set B, such that 𝐴 ⊆ 𝐵, if 𝐴 is the 

standard neutrosophic reduction of the classical information 

system (U, B, F) , then (U, B, F)  is the standard neutro-

sophic extension of (U, A, F), but not conversely necessary. 

Example 4. In the approximation of the standard neutro-

sophic decision in Table 2, Table 3. Let B = {a1, a2}, then

we obtain the family of all equivalent classes of  𝑈 based on 

the equivalent relation RB = IND(B) as follows:

          1 1 3 9 2 2 7 10 3 4 4 5 8 5 6/ , , ,  , , ,  ,  , , BU R X u u u X u u u X u X u u X u     

We can get the approximation value given in Table 4. 

Neutrosophic Sets and Systems, Vol. 14, 201690
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Table 4:    The approximation of the standard neutrosophic 

decision 

/ BU R   1 iBRP D X   2 iBRP D X   3 iBRP D X

1X (0.2,0,0.5) (0.15,0.05,0.6) (0.1,0.05,0.5) 

2X (0.05,0.05,0.9) (0.3,0.1,0.3) (0.05,0.1,0.4) 

3X (0.15, 0.1,0.7) (0.1,0.05,0.8) (0.2,0.4,0.3) 

4X (0.05,0.2,0.7) (0.2,0.3,0.4) (0.05,0,0.6) 

5X (0.1,0.3,0.5) (0.2,0.3,0.4) (1,0,0) 

It is easy to see that 𝐵 satisfies Definition 7 (ii), i.e., 𝐵 

is the standard neutrosophic lower reduction of the classical 

information system (𝑈, 𝐴, 𝐹).  

The discernibility matrix of the standard neutrosophic 

information system (𝑈, 𝐴, 𝐹, 𝐷, 𝐺)  will be presented in 

Table 5.  

Table 5:  The discernibility matrix of the standard neutrosophic 

information system 

𝑈 𝑅𝐵⁄
1X 2X 3X 4X 5X

1X 𝐴 

2X 𝐴 𝐴 

3X {𝑎2} {𝑎1, 𝑎3} 𝐴 

4X {𝑎1, 𝑎3} 𝐴 𝐴 𝐴 

5X {𝑎1, 𝑎3} 𝐴 𝐴 {𝑎2} 𝐴 

7 Conclusion 

In this paper, we introduced the concept of standard 

neutrosophic information system, and studied the know-

ledge discovery of standard neutrosophic information 

system based on rough standard neutrosophic sets. We 

investigated some problems of the knowledge discovery of 

standard neutrosophic information system: the knowledge 

reduction and extension of the standard neutrosophic 

information systems.  

Acknowledgment 

This research is funded by the Vietnam National Foundation 
for Science and Technology Development (NAFOSTED) 
under grant number 102.01-2017.02 . 

References 

[1] Z. Pawlak, Rough sets, International Journal of Computer and 

Information Sciences, vol. 11, no.5 , pp 341 – 356, 1982.  

[2] L. A. Zadeh, Fuzzy Sets, Information and Control, Vol. 8, No. 

3 (1965), p 338-353 

[3] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy set and systems, 

vol.20, pp.87-96, 1986. 

[4] B.C. Cuong, V. Kreinovick, Picture fuzzy sets – a new concept 

for computational intelligence problems,  in the Proceedings of the 

3rd World congress on information and communication 

technologies WICT’2013, Hanoi, Vietnam, December 15-18, pp 1-

6, 2013.  

[5] B.C. Cuong,  Picture Fuzzy Sets, Journal of Computer Science 

and Cybernetics,  Vol.30, n.4, 2014, 409-420. 

[6] B.C. Cuong, P.H.Phong and F. Smarandache, Standard Neu-

trosophic Soft Theory: Some First Results, Neutrosophic Sets and 

Systems, vol.12,  2016, pp.80-91.  

[7] L.H. Son, DPFCM: A novel distributed picture fuzzy clustering 

method on picture fuzzy sets, Expert systems with applications 42, 

pp 51-66, 2015.  

[8] P.H. Thong and L.H.Son, Picture Fuzzy Clustering : A New 

Computational Intelligence Method, Soft Computing, v.20 (9) 

3544-3562, 2016. 

[9] D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, 

International journal of general systems, Vol. 17, p 191-209, 1990. 

[10] Y.Y. Yao, Combination of rough and fuzzy sets based on α-

level sets, Rough sets and Data mining: analysis for imprecise data, 

Kluwer Academic Publisher, Boston, p 301 – 321, 1997.  

[11] W. Z. Wu, J. S. Mi, W. X. Zhang, Generalized fuzzy rough 

sets, Information Sciences 151, p. 263-282, 2003. 

[12] W. Z. Wu, Y. H. Xu, On fuzzy topological structures of rough 

fuzzy sets, Transactions on rough sets XVI, LNCS 7736, Springer 

– Verlag Berlin Heidelberg, p 125-143, 2013.

[13] Y.H. Xu, W.Z. Wu, Intuitionistic fuzzy topologies in crisp 

approximation spaces, RSKT 2012, LNAI 7414, © Springer – 

Verlag Berlin Heidelberg, pp 496-503, 2012. 

[14] B. Davvaz, M. Jafarzadeh, Rough intuitionistic fuzzy 

information systems, Fuzzy Inform., vol.4, pp 445-458, 2013.

[15] N.X. Thao, N.V. Dinh, Rough picture fuzzy set and picture 

fuzzy topologies, Science computer and Cybernetics, Vol 31, No 

3 (2015), pp 245-254.  

[16] B. Sun, Z. Gong, Rough fuzzy set in generalized 

approximation space, Fifth Int. Conf. on Fuzzy Systems and 

Knowledge Discovery, IEEE computer society 2008, pp 416-420.

[17] F. Smarandache, A unifying field in logics. Neutrosophy: 

Neutrosophic probability, set and logic, ARP, Rehoboth 1999.

[18] H. Wang, F. Smarandache, Y.Q. Zhang et al., Interval neutro-

sophic sets and logic: Theory and applications in computing, 

Hexis, Phoenix, AZ 2005. 

[19] H. Wang, F. Smarandache, Y.Q. Zhang, et al., Single valued 

neutrosophic sets, Multispace & Multistructure 4 (2010), 410-413. 



Nguyen Xuan Thao, Bui Cong Cuong, Florentin Smarandache, Rough Standard Neutrosophic Sets: An Application 
on Standard Neutrosophic Information Systems 

[21] P. Majumdar, Neutrosophic sets and its applications to deci-

sion making, Computation intelligentce for big data analysis 

(2015), V.19, pp 97-115. 

[22] J. Peng, J. Q. Wang, J. Wang, H. Zhang, X. Chen, Simplified 
neutrosophic sets and their applications in multi-criteria group 
decision-making problems, International journal of 

systems science (2016), V.47, issue 10, pp 2342-2358.  

[20] J. Ye, A multicriteria decision-making method using aggrega-

tion operators for simplified neutrosophic sets, Journal of Intelli-

gent & Fuzzy Systems 26 (2014) 2459-2466. 

Neutrosophic Sets and Systems, Vol. 14, 201692

Received: December 7, 2016.   Accepted: December 21, 2016



Wenzhong Jiang, Jun Ye, Optimal Design of Truss Structures Using a Neutrosophic Number Optimization Model under an 
Indeterminate Environment 

Optimal Design of Truss Structures Using a Neutrosophic 

Number Optimization Model under an Indeterminate 

Environment 

Wenzhong Jiang & Jun Ye 

Department of Electrical and Information Engineering and Department of Civil Engineering, Shaoxing University, 508 Huancheng West Road, 

Shaoxing, Zhejiang Province 312000, P.R. China.  

Corresponding author: Jun Ye, E-mail: yehjun@aliyun.com  

Abstract. This paper defines basic operations of neutro-

sophic numbers and neutrosophic number functions for 

objective functions and constraints in optimization mod-

els. Then, we propose a general neutrosophic number op-

timization model for the optimal design of truss struc-

tures. The application and effectiveness of the neutro-

sophic number optimization method are demonstrated

through the design example of a two-bar truss structure 

under indeterminate environment to achieve the mini-

mum weight objective under stress and stability con-

straints. The comparison of the neutrosophic number op-

timal design method with traditional optimal design 

methods proves the usability and suitability of the pre-

sented neutrosophic number optimization design method 

under an indeterminate/neutrosophic number environ-

ment. 

Keywords: Neutrosophic number, neutrosophic number function, neutrosophic number optimization model, neutrosophic 

number optimal solution, truss structure design. 

1 Introduction 

In the real-world, there is incomplete, unknown, and
indeterminate information. How to express incomplete, 
unknown, and indeterminate information is an important 
problem. Hence, Smarandache [1-3] firstly introduced a 
concept of indeterminacy, which is denoted by the symbol 
“I” as the imaginary value, and defined a neutrosophic 
number as N = a + bI for a, b ∈ R (all real numbers),
which consists of both the determinate part a and the 
indeter-minate part bI. So it can express determinate and/or 
inde-terminate information in incomplete, uncertain, and 
inde-terminate problems. After that, Ye [4, 5] applied 
neutro-sophic numbers to decision making problems. 
Then, Kong et al. [6] and Ye [7] applied neutrosophic 
numbers to fault diagnosis problems under indeterminate 
environments. Further, Smarandache [8] introduced an 
interval function (so-called neutrosophic function/thick 
function g(x) = [g1(x), g2(x)] for x ∈ R) to describe
indeterminate problems by the interval functions. And 
also, Ye et al. [9] introduced neutrosophic/interval 
functions of the joint roughness coef-ficient and the shear 
strength in rock mechanics under in-determinate 
environments.  It is obvious that neutrosophic numbers are very suita-
ble for the expression of determinate and/or indeterminate 
information. Unfortunately, existing optimization design 
methods [10-13] cannot express and deal with indetermi-
nate optimization design problems of engineering struc-
tures under neutrosophic number environments. Further-

more, the Smarandache’s neutrosophic function [8] cannot 

also express such an indeterminate function involving neu-
trosophic numbers. Till now, there are no concepts of neu-
trosophic number functions and neutrosophic number op-
timization designs in all existing literature. Therefore, one 

has to define new functions containing NNs to handle inde-
terminate optimization problems of engineering designs 
under a neutrosophic number environment. To handle this 
issue, this paper firstly defines a new concept of neutro-
sophic number functions for the neutrosophic number ob-
jective functions and constraints in engineering optimiza-

tion design problems with determinate and indeterminate 
information, and then proposes a general neutrosophic 
number optimization model and a solution method to real-
ize neutrosophic number optimization problems of truss 
structure design, where the obtained neutrosophic number 
optimal solution can satisfy the design requirements in in-

determinate situations.  
The remainder of this paper is structured as follows. 

Section 2 defines some new concepts of neutrosophic 
number functions to establish the neutrosophic number ob-
jective functions and constraints in indeterminate optimiza-
tion design problems, and proposes a general neutrosophic 

number optimization model for truss structure designs. In 
Section 3, the neutrosophic number optimal design of a 
two-bar truss structure is presented under a neutrosophic 
number environment to illustrate the application and effec-
tiveness of the proposed neutrosophic number optimization 
design method. Section 4 contains some conclusions and 

future research directions. 
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2 Neutrosophic numbers and optimization models 

2.1 Some basic operations of neutrosophic num-
bers 

It is well known that there are some indeterminate de-
sign parameters and applied forces in engineering design 
problems. For example, the allowable compressive stress 
of some metal material is given in design handbooks by a 

possible range between 420 MPa and 460 MPa, denoted by 
p = [420, 460], which reveals the value of p is an inde-
terminate range within the interval [420, 460]. Then a neu-
trosophic number N = a + bI for a, b  R (all real numbers) 
can effectively express the determinate and/or indetermi-
nate information as N = 420 + 40I for I  [0, 1], where its 

determinate part is a = 420, its indeterminate part bI = 40I, 
and the symbol “I” denotes indeterminacy and belongs to 
the indeterminate interval [inf I, sup I] = [0, 1]. For another 
example, if some external force is within [2000, 2500] kN, 
then it can be expressed as the neutrosophic number N = 
2000 + 50I kN for I [0, 10] or N = 2000 + 5I kN for I  

[0, 100] corresponding to some actual requirement. 
It is noteworthy that there are N = a for bI = 0 and N = 

bI for a = 0 in two special cases. Clearly, the neutrosophic 
number can easily express its determinate and/or indeter-
minate information, where I is usually specified as a possi-

ble interval range [inf I, sup I] in actual applications. 
Therefore, neutrosophic numbers can easily and effectively 
express determinate and/or indeterminate information un-
der indeterminate environments.  

For convenience, let Z be all neutrosophic numbers (Z 
domain), then a neutrosophic number is denoted by N = a 

+ bI = [a + b(inf I), a + b(sup I)] for I  [inf I, sup I] and N 
 Z. For any two neutrosophic numbers N1, N2  Z, we can 
define the following operations: 

(1) 

1 2 1 2 1 2

1 2 1 2

1 2 1 2

( )

[ (inf ) (inf ),

(sup ) (sup )]

N N a a b b I

a a b I b I

a a b I b I

    

   

  

; 

(2) 

1 2 1 2 1 2

1 2 1 2

1 2 1 2

( )

[ (inf ) (inf ),

(sup ) (sup )]

N N a a b b I

a a b I b I

a a b I b I

    

   

  

; 

(3) 

2

1 2 1 2 1 2 2 1 1 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2

( )

( (inf ))( (inf )),

( (inf ))( (sup )),
min ,

( (sup ))( (inf )),

( (sup ))( (sup ))

( (inf ))( (inf )),

( (inf ))(
max

N N a a a b a b I b b I

a b I a b I

a b I a b I

a b I a b I

a b I a b I

a b I a b I

a b I a

    

  
 

  
  
 

  


 

 2

1 1 2 2

1 1 2 2

(sup )),

( (sup ))( (inf )),

( (sup ))( (sup ))

b I
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 . 

2.2 Neutrosophic number functions and neutro-
sophic number optimization model 

In engineering optimal design problems, a general op-
timization model consists of the objective function and 
constrained functions. In indeterminate optimization prob-
lems of engineering designs, then, objective functions and 
constrained functions may contain indeterminate infor-

mation. To establish an indeterminate optimization model 
in a neutrosophic number environment, we need to define 
neutrosophic number functions in Z domain. 

Definition 1. A neutrosophic number function with n de-
sign variables in Z domain is defined as 

F(X, I): Zn  Z.             (1) 

where X = [x1, x2, …, xn]T for X  Zn is a n-dimensional 
vector and F(X, I) is either a neutrosophic number linear 
function or a neutrosophic number nonlinear function.  

For example, 
1 1 2( , ) (1 2 ) (2 3)F I I x x I    X

for X = [x1, x2]T  Z2 is a neutrosophic number linear func-

tion, then 2 2

2 1 2( , ) (3 )F I Ix I x  X  for X = [x1, x2]T Z2 

is a neutrosophic number nonlinear function. 
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2.3 General neutrosophic number optimization 
model 

Generally speaking, neutrosophic number optimization 
design problems with n design variables in Z domain can 
be defined as the general form of a neutrosophic number 
optimization model: 

min F(X, I)  

s.t. Gk(X, I)  0, k = 1, 2, …, m           (2) 

 Hj(X, I)=0, j = 1, 2, …, s 

XZn, I  [inf I, sup I], 

where F(X, I) is a neutrosophic number objective function 
and G1(x), G2(x), …, Gm(x) and H1(x), H2(x), …, Hs(x): Zn 

 Z are neutrosophic number inequality constraints and 
neutrosophic number equality constraints, respectively, for 
X  Zn and I  [inf I, sup I]. 

However, if the neutrosophic number optimal solution 
of design variables satisfies all these constrained condi-
tions in a neutrosophic number optimization model, the op-

timal solution is feasible and otherwise is unfeasible. Gen-
erally speaking, the optimal solution of design variables 
and the value of the neutrosophic number objective func-
tion usually are neutrosophic numbers/interval ranges (but 
not always). 

To solve the neutrosophic number optimization model 

(2), we use the Lagrangian multipliers for the neutrosophic 
number optimization model. Then the Lagrangian function 
that one minimizes is structured as the following form: 

1 1

( , , ) ( , )

( , ) ( , )
m s

k k j j

k j

L F I

G I H I 
 

 

 

X μ λ X

X X

,          (3) 

        Zm, Zs, XZn, I[inf I, sup I]. 

The common Karush-Kuhn-Tucker (KKT) necessary 
conditions are introduced as follows: 

1 1

( , ) { ( , )} { ( , )} 0
m s

k k j j

k j

F I G I H I 
 

      X X X     (4) 

combined with the original constraints, complementary 
slackness for the inequality constraints and k ≥ 0 for k = 1, 
2, …, m. 

However, it may be difficult to solve neutrosophic non-
linear optimization models in indeterminate nonlinear op-
timization design problems, such as multiple-bar truss 
structure designs under neutrosophic number environments, 
by the Karush-Kuhn-Tucker (KKT) necessary conditions. 
Hence, this paper will research on the neutrosophic number 

optimization design problem of a simple two-bar truss 
structure in the following section to realize the primal in-
vestigation of the truss structure optimal design in a neu-
trosophic number environment. 

3 Optimal design of a two-bar truss structure un-
der a neutrosophic number environment 

To demonstrate the neutrosophic number optimal de-
sign of a truss structure in an indeterminate environment, a 
simply two-bar truss structure is considered as an illustra-
tive design example and showed in Fig.1. In this example, 

the two bars use two steel tubes with the length L, in which 
the wall thick is T=25mm. The optimal design is per-
formed in a vertically external loading case. The vertical 
applied force is 2F = (3+0.4I)105N, the material Young’s 
modulus and density E=2.1105 MPa and ρ = 7800 kg/m3, 
respectively, and the allowable compressive stress is p = 

420 + 40I. 
The optimal design objective of the truss structure is to 

minimize the weight of the truss structure in satisfying the 
constraints of stress and stability. In this class of optimiza-
tion problems, the average diameter D of the tube and the 
truss height H are taken into account as two design varia-

bles, denoted by the design vector X = [x1, x2]T = [D, H].  
Due to the geometric structure symmetry of the two-

bar truss, we only consider the optimal model of one bar of 
both. 

First, the total weight of the tube is expressed by the 
following formula: 

2 2 1/2

1 22 2 (B )M AL Tx x    , 

where A is the cross-sectional area A = Tx1 and 2B is the 
distance between two supporting points. 

Then, the compressive force of the steel tube is 
2 2 1/2

2
1

2 2

( )F B xFL
F

x x


   , 

where L is the length of the tube and F1 is the compressive 
force of the tube. Thus, the compressive stress of the tube 
is represented as the following form: 

2 2 1/2

1 2

1 2

( )F F B x

A Tx x





  . 

Hence, the constrained condition of the strength for the 
tube is written as 

2 2 1/2

2

1 2

( )
p

F B x

Tx x





 . 

Fig. 1 Two-bar truss structure 
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For the stability of the compressive bar, the critical 
force of the tube is given as follows: 

2 2 2 2

1

2 2 2

2

( )

8( )

I
c

EW EA T x
F

L B x

  
 


 , 

where WI is the inertia moment of the cross-section of the 

tube. 
The critical stress of the tube is given as 

2 2 2

1

2 2

2

( )

8( )

c
c

F E T x

A B x





 


. 

Thus, the constrained condition of the stability for the 

tube is written as 

2 2 1/2 2 2 2

2 1

2 2

1 2 2

( ) ( )

8( )

F B x E T x

Tx x B x





 



. 

Finally, the neutrosophic optimization model of the 
truss structure can be formulated as: 

2 2 1/2

1 2min ( , ) 2 ( )M I Tx B x X  

2 2 1/2

2
1

1 2

2 2 1/2 2 2 2

2 1
2 2 2

1 2 2

( )
. . ( , ) 0

( ) ( )
( , ) 0

8( )

p

F B x
s t G I

Tx x

F B x E T x
G I

Tx x B x









  

 
  



X

X

. 

By solving the neutrosophic optimization model, the 
neutrosophic number optimal solution of the two design 
variables is given as follows: 

*

* 1

*

2

5

2

(420 40 )

1.414(1.5 0.2 ) 10

7.85(420 40 )

760

F
x

X T I
x

B

I

I



 
   

     
    

  
 

 
 
  

 , 

In this case, the neutrosophic number optimal value of 
the objective function is obtained as follows: 

* 4 2371.2(1.5 0.2 )
( , )

(420 40 )p

FB I
M X I

I






 


. 

Since there exists the indeterminacy I in these neutro-
sophic number optimal values, it is necessary that we dis-

cuss them when the indeterminacy I is specified as possible 
ranges according to actual indeterminate requirements in 
the actual application. 

Obviously, the neutrosophic number optimization 
problem reveals indeterminate optimal results (usually 
neutrosophic number optimal solutions, but not always). If 

the indeterminacy I is specified as different possible ranges 
of I =0, I  [0, 1], I  [1, 3], I  [3, 5], I  [5, 7], and I  
[7, 10] for convenient analyses, then all the results are 
shown in Table 1. 

Table 1. Optimal results of two-bar truss structure design in different specified ranges of I  [inf I, sup I] 

I  [inf I, sup I] D =x1
* (mm) H =x2

* (mm) M(X*, I) (kg) 

I = 0 64.3312 760 8.4686 
I  [0, 1] [58.7372, 72.9087] 760 [7.7322, 9.5977] 
I  [1, 3] [56.7068, 82.2321] 760 [7.4649, 10.8250] 

I  [3, 5] [61.0109, 83.3923] 760 [8.0315, 10.9778] 
I  [5, 7] [64.3312, 84.2531] 760 [8.4686, 11.0911] 
I  [7, 10] [63.7036, 90.0637] 760 [8.3860, 11.8560] 

In Table 1, if I = 0, it is clear that the neutrosophic 
number optimization problem is degenerated to the crisp 
optimization problem (i.e., traditional determinate optimi-
zation problem). Then under a neutrosophic number envi-

ronment, neutrosophic number optimal results are changed 
as the indeterminate ranges are changed. Therefore, one 
will take some interval range of the indeterminacy I in ac-
tual applications to satisfy actual indeterminate require-
ments of the truss structure design. For example, if we take 
the indeterminate range of I  [0, 1], then the neutrosophic 

number optimal solution is D =x1
* = [58.7372, 72.9087] 

mm and H = x2
* = 760mm. In actual design, we need the 

de-neutrosophication in the neutrosophic optimal solution 
to determinate the suitable optimal design values of the de-
sign variables to satisfy some indeterminate requirement. 

For example, if we take the maximum values of the opti-
mal solution for I  [0, 1], we can obtain D = 73mm and H 
= 760mm for the two-bar truss structure design to satisfy 
this indeterminate requirement. 

However, traditional optimization design methods [10-
13] cannot express and handle the optimization design

problems with neutrosophic number information and are 
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special cases of the neutrosophic number optimization de-
sign method in some cases. The comparison of the pro-
posed neutrosophic number optimization design method 
with traditional optimization design methods demonstrates 
the usability and suitability of this neutrosophic number 
optimization design method under a neutrosophic number 

environment. 

4 Conclusion 

Based on the concepts of neutrosophic numbers, this 
paper defined the operations of neutrosophic numbers and 
neutrosophic number functions to establish the neutrosoph-
ic number objective function and constraints in neutro-

sophic number optimization design problems. Then, we 
proposed a general neutrosophic number optimization 
model with constrained optimizations for truss structure 
design problems. Next, a two-bar truss structure design ex-
ample was provided to illustrate the application and effec-
tiveness of the proposed neutrosophic number optimization 

design method.  
However, the indeterminate (neutrosophic number) op-

timization problems may contain indeterminate (neutro-
sophic number) optimal solutions (usually neutrosophic 
numbers, but not always), which can indicate possible op-
timal ranges of the design variables and objective function 

when indeterminacy I is specified as a possible interval 
ranges in actual applications.  

In general, indeterminate designs usually imply inde-
terminate optimal solutions from an indeterminate view-
point. Then in the de-neutrosophication satisfying actual 
engineering design requirements we can determinate the 
suitable optimal design values of design variables in the 
obtained optimal interval solution corresponding to de-

signers’ attitudes and/or some risk situations to be suitable 
for actual indeterminate requirements. 

It is obvious that the neutrosophic number optimization 
design method in a neutrosophic number environment is 
more useful and more suitable than existing optimization 
design methods of truss structures since the traditional de-

terminate/indeterminate optimization design methods can-
not express and handle the neutrosophic number optimiza-
tion design problems under an indeterminate environment. 
Therefore, the neutrosophic number optimization design 
method provides a new effective way for the optimal de-
sign of truss structures under indeterminate/neutrosophic 

number environments. 
Nonetheless, due to existing indeterminacy “I” in the 

neutrosophic number optimization model, it may be diffi-
cult to solve complex neutrosophic number optimization 
models. In the future, therefore, we shall further study 
solving algorithms/methods for neutrosophic number op-
timization design problems and apply them to mechanical 
and civil engineering designs under indeterminate / neutro-
sophic number environments. 
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