
Vol. 15, 2017



Copyright © Neutrosophic Sets and Systems 

Neutrosophic Sets and Systems 
A Quarterly International Journal in Information Science and Engineering

Editor-in-Chief: Associate Editors: 

Prof. FLORENTIN SMARANDACHE 

Address: 

“Neutrosophic Sets and Systems” 

(An International Journal in Information    
Science and Engineering) 
Department of Mathematics and Science 
University of New Mexico 
705 Gurley Avenue 

Gallup, NM 87301, USA 
E-mail: smarand@unm.edu 
Home page: http://fs.gallup.unm.edu/NSS  

Associate Editor-in-Chief:  
Mumtaz Ali  

Department of Mathematics, Southern Queensland 

University, Australia.

W. B. Vasantha Kandasamy, Indian Institute of Technology, Chennai, Tamil Nadu, 

India. Said Broumi, Univ. of Hassan II Mohammedia, Casablanca, Morocco. 

A. A. Salama, Faculty of Science, Port Said University, Egypt. 

Yanhui Guo, School of Science, St. Thomas University, Miami, USA. 

Francisco Gallego Lupiaňez, Universidad Complutense, Madrid, Spain. 

  Peide Liu, Shandong University of Finance and Economics, China. 

Pabitra Kumar Maji, Math Department, K. N. University, WB, India. 

S. A. Albolwi, King Abdulaziz Univ., Jeddah, Saudi Arabia. 

Jun Ye, Shaoxing University, China. 

Ştefan Vlăduţescu, University of Craiova, Romania. 

Valeri Kroumov, Okayama University of Science, Japan. 

Dmitri Rabounski and Larissa Borissova, independent researchers. 

Surapati Pramanik, Nandalal Ghosh B.T. College, Panpur, West Bengal, India. 

Irfan Deli, Kilis 7 Aralık University, 79000 Kilis, Turkey. 

Rıdvan Şahin, Faculty of Science, Ataturk University, Erzurum, Turkey.  

Luige Vladareanu, Romanian Academy, Bucharest, Romania. 

Mohamed Abdel-Baset,Faculty of computers and informatics,Zagazig university, 

Egypt. A. A. A. Agboola, Federal University of Agriculture, Abeokuta, Nigeria. 

Le Hoang Son, VNU Univ. of Science, Vietnam National Univ. Hanoi, Vietnam. 

Huda E. Khalid, University of Telafer, College of Basic Education, Telafer - Mosul, 

Iraq. Maikel Leyva-Vázquez, Universidad de Guayaquil, Guayaquil, Ecuador. 

Muhammad Akram, University of the Punjab, New Campus, Lahore, Pakistan. 

Paul Wang, Pratt School of Engineering, Duke University, Durham, USA. 

Darjan Karabasevic, University Business Academy, Novi Sad, Serbia. 

Dragisa Stanujkic, John Naisbitt University, Belgrade, Serbia. 

Edmundas K. Zavadskas, Vilnius Gediminas Technical University, Vilnius, Lithuania. 

 ISSN 2331-6055 (print)   ISSN 2331-608X (online) 

Volume 15 

Contents 
2017 

Mai Mohamed, Mohamed Abdel-Basset, Abdel Nasser 
H Zaied, Florentin Smarandache. Neutrosophic Integer
Programming Problem ….…………………….….........

3 

Mridula Sarkar, Samir Dey, Tapan Kumar Roy. Multi-

Objective Structural Design Optimization using Neu-

trosophic Goal Programming Technique ….….............. 

8 

A.A. Salama, Hewayda ElGhawalby, Shimaa Fathi Ali. 

Topological Manifold Space via Neutrosophic Crisp 

Set Theory ...……………….......................................…. 

18 

T.Chalapathi, R. V M S S Kiran Kumar. Neutrosophic 

Graphs of Finite Groups ….…..................................…. 22 

Mehmet Şahin, Necati Olgun, Vakkas Uluçay, Abdul-

lah Kargın, F. Smarandache. A New Similarity Meas-

ure Based on Falsity Value between Single Valued 

Neutrosophic Sets Based on the Centroid Points of 

Transformed Single Valued Neutrosophic Values with 

Applications to Pattern Recognition ………………...... 

31 

Tanushree Mitra Basu, Shyamal Kumar Mondal. Multi-

Criteria Assignment Techniques in Multi-Dimensional 

Neutrosophic Soft Set Theory ...…................................. 
49 

Durga Banerjee, Bibhas C. Giri, Surapati Pramanik, F. 

Smarandache. GRA for Multi Attribute Decision Mak-

ing in Neutrosophic Cubic Set Environment ………. 

60 

Surapati Pramanik, Partha Pratim Dey, Bibhas C. Giri, 

Florentin Smarandache. Bipolar Neutrosophic Projec-

tion Based Models for Solving Multi-Attribute Deci-

sion-Making Problems ……………….....……..........…. 

70 

Mona Gamal, I. El-Henawy. Integrated Framework of 

Optimization Technique and Information Theory Meas-

ures for Modeling Neutrosophic Variables ….......…….. 

80 

F. Smarandache. Neutrosophic Modal Logic …………. 90

mailto:smarand@unm.edu
http://fs.gallup.unm.edu/NSS


   Neutrosophic Sets and Systems, Vol. 15, 2017

Copyright © Neutrosophic Sets and Systems

Neutrosophic Sets and Systems 
An International Journal in Information Science and Engineering 

Copyright Notice 

Copyright @ Neutrosophics Sets and Systems 

All rights reserved. The authors of the articles do hereby 
grant Neutrosophic Sets and Systems non-exclusive, 
worldwide, royalty-free license to publish and distribute 
the articles in accordance with the Budapest Open Initia-

tive: this means that electronic copying, distribution, and 
printing of both full-size version of the journal and the in-
dividual papers published therein for non-commercial, ac-

ademic or individual use can be made by any user without 
permission or charge. The authors of the articles published 
in Neutrosophic Sets and Systems retain their rights to use 
this journal as a whole or any part of it in any other publi-
cations and in any way they see fit. Any part of Neutro-

sophic Sets and Systems howsoever used in other publica-
tions must include an appropriate citation of this journal. 

Information for Authors and Subscribers 

“Neutrosophic Sets and Systems” has been created for pub-

lications on advanced studies in   neutrosophy, neutrosophic set, 

neutrosophic logic, neutrosophic probability, neutrosophic statis-

tics that started in 1995 and their applications in any field, such 

as the neutrosophic structures developed in algebra, geometry, 

topology, etc.  

The submitted papers should be professional, in good Eng-

lish, containing a brief review of a problem and obtained results.  

Neutrosophy is a new branch of philosophy that studies the 

origin, nature, and scope of neutralities, as well as their interac-

tions with different ideational spectra.  

This theory considers every notion or idea <A> together with 

its opposite or negation <antiA> and with their spectrum of neu-

tralities <neutA> in between them (i.e. notions or ideas support-

ing neither <A> nor <antiA>). The <neutA> and <antiA> ideas 

together are referred to as <nonA>. 

Neutrosophy is a generalization of Hegel's dialectics (the last 

one is based on <A> and <antiA> only).  

According to this theory every idea <A> tends to be neutral-

ized and balanced by <antiA> and <nonA> ideas - as a state of 

equilibrium.  

In a classical way <A>, <neutA>, <antiA> are disjoint two 

by two. But, since in many cases the borders between notions are 

vague, imprecise, Sorites, it is possible that <A>, <neutA>, <an-

tiA> (and <nonA> of course) have common parts two by two, or 

even all three of them as well.  

Neutrosophic Set and Neutrosophic Logic are generalizations 

of the fuzzy set and respectively fuzzy logic (especially of intui-

tionistic fuzzy set and respectively intuitionistic fuzzy logic). In 

neutrosophic logic a proposition has a degree of truth (T), a de-

gree of indeterminacy (I), and a degree of falsity (F), where T, I, 

F are standard or non-standard subsets of ]-0, 1+[. 

Neutrosophic Probability is a generalization of the classical 

probability and imprecise probability.  

Neutrosophic Statistics is a generalization of the classical 

statistics.  

What distinguishes the neutrosophics from other fields is the 

<neutA>, which means neither <A> nor <antiA>.  

<neutA>, which of course depends on <A>, can be indeter-

minacy, neutrality, tie game, unknown, contradiction, ignorance, 

imprecision, etc.  

All submissions should be designed in MS Word format using 

our template file: 

http://fs.gallup.unm.edu/NSS/NSS-paper-template.doc. 

A variety of scientific books in many languages can be down-

loaded freely from the Digital Library of Science: 

http://fs.gallup.unm.edu/eBooks-otherformats.htm. 

To submit a paper, mail the file to the Editor-in-Chief. To order 

printed issues, contact the Editor-in-Chief. This journal is non-

commercial, academic edition. It is printed from private dona-

tions. 

Information about the neutrosophics you get from the UNM 

website:  

http://fs.gallup.unm.edu/neutrosophy.htm. 

The home page of the journal is accessed on 

http://fs.gallup.unm.edu/NSS. 

http://fs.gallup.unm.edu/neutrosophy.htm
http://fs.gallup.unm.edu/NSS


Neutrosophic Sets and Systems, Vol. 15, 2017  3 

University of New Mexico 

Neutrosophic Integer Programming Problem 

Mai Mohamed1, Mohamed Abdel-Basset1, Abdel Nasser H Zaied2 and Florentin Smarandache3 

1Department of Operations Research, Faculty of Computers and Informatics, Zagazig University, Sharqiyah, Egypt. 

E-mail: analyst_mohamed@yahoo.com 
2Department of information system, Faculty of Computers and Informatics, Zagazig University, Egypt. E-mail:nasserhr@gmail.com 

3Math & Science Department, University of New Mexico, Gallup, NM 87301, USA. E-mail: smarand@unm.edu 

Abstract. In this paper, we introduce the integer 

programming in neutrosophic environment, by consi-

dering coffecients of problem as a triangulare neutros-

ophic numbers. The degrees of acceptance, indeterminacy 

and rejection of objectives are simultaneously considered. 

The Neutrosophic Integer Programming Problem (NIP) is 

transformed into a crisp programming model, using truth 

membership (T), indeterminacy membership (I), and fal-

sity membership (F) functions as well as single valued 

triangular neutrosophic numbers. To measure the effic-

iency of the model, we solved several numerical examples.

Keywords: Neutrosophic; integer programming; single valued triangular neutrosophic number. 

1 Introduction 

   In linear programming models, decision variables are al-

lowed to be fractional. For example, it is reasonable to ac-

cept a solution giving an hourly production of automobiles 

at 64
1

2
 , if the model were based upon average hourly pro-

duction. However, fractional solutions are not realistic in 

many situations and to deal with this matter, integer pro-

gramming problems are introduced. We can define integer 

programming problem as a linear programming problem 

with integer restrictions on decision variables. When some, 

but not all decision variables are restricted to be integer, this 

problem called a mixed integer problem and when all deci-

sion variables are integers, it’s a pure integer program. Inte-

ger programming plays an important role in supporting 

managerial decisions. In integer programming problems the 

decision maker may not be able to specify the objective 

function and/or constraints functions precisely. In 1995, 

Smarandache [1-3] introduce neutrosophy which is the 

study of neutralities as an extension of dialectics. Neutro-

sophic is the derivative of neutrosophy and it includes neu-

trosophic set, neutrosophic probability, neutrosophic statis-

tics and neutrosophic logic. Neutrosophic theory means 

neutrosophy applied in many fields of sciences, in order to 

solve problems related to indeterminacy. Although intui-

tionistic fuzzy sets can only handle incomplete information 

not indeterminate, the neutrosophic set can handle both  in-

complete and indeterminate information.[4] Neutrosophic 

sets characterized by three independent degrees as in Fig.1., 

namely truth-membership degree (T), indeterminacy-mem-

bership degree(I),  and falsity-membership degree (F), 

where T,I,F are standard or non-standard subsets of ]-0, 1+[. 

The decision makers in neutrosophic set want to increase the 

degree of truth-membership and decrease the degree of in-

determinacy and falsity membership.  

The structure of the paper is as follows: the next section is a 

preliminary discussion; the third section describes the 

formulation of integer programing problem using the 

proposed model; the fourth section presents some 

illustrative examples to put on view how the approach can 

be applied; the last section summarizes the conclusions and 

gives an outlook for future research. 

2 Some Preliminaries 

2.1 Neutrosophic Set [4] 

Let 𝑋 be a space of points (objects) and 𝑥∈𝑋. A neutro-
sophic set 𝐴 in 𝑋 is defined by a truth-membership function 
(𝑥), an indeterminacy-membership function (𝑥) and a fal-
sity-membership function 𝐹𝐴(𝑥).  (𝑥), 𝐼(𝑥) and 𝐹(𝑥) are real 

standard or real nonstandard subsets of ]0−,1+[. That is 
𝑇𝐴(𝑥):𝑋→]0−,1+[, I𝐴(𝑥):𝑋→]0−,1+[ and F𝐴(𝑥):𝑋→]0−,1+[.  
There is no restriction on the sum of (𝑥), (𝑥) and 𝐹𝐴(𝑥), so 

 0−≤sup(𝑥)≤sup𝐼𝐴(𝑥)≤𝐹𝐴(𝑥)≤3+. 

2.2 Single Valued Neutrosophic Sets (SVNS) [3-4] 

Let 𝑋 be a universe of discourse. A single valued neu-
trosophic set 𝐴 over 𝑋 is an object having the form  
𝐴= {〈𝑥, T(𝑥), I𝐴(𝑥),F𝐴(𝑥)〉:𝑥∈𝑋},          
where T𝐴(𝑥):𝑋→[0,1], I𝐴(𝑥):𝑋→[0,1] and F𝐴(𝑥):𝑋→[0,1] 
with 0≤T𝐴(𝑥)+ I𝐴(𝑥)+F𝐴(𝑥)≤3 for all 𝑥∈𝑋. The intervals T(𝑥), 
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I(𝑥) and F𝐴(𝑥) denote the truth-membership degree, the in-
determinacy-membership degree and the falsity member-
ship degree of 𝑥 to 𝐴, respectively.  

In the following, we write SVN numbers instead of sin-
gle valued neutrosophic numbers. For convenience, a SVN 
number is denoted by 𝐴= (𝑎,b,𝑐), where 𝑎,𝑏,𝑐∈[0,1] and 

𝑎+𝑏+𝑐≤3. 

Figure 1: Neutrosophication process  

2.3 Complement [5] 

The complement of a single valued neutrosophic set 𝐴 

is denoted by C (𝐴) and is defined by 

𝑇𝑐(𝐴)(𝑥) = 𝐹(𝐴)(𝑥) , 

𝐼𝑐(𝐴)(𝑥)  = 1 − 𝐼(𝐴)(𝑥) , 

  𝐹𝑐(𝐴)(𝑥) = 𝑇(𝐴)(𝑥)              for all 𝑥 in 𝑋 

2.4 Union [5] 

      The union of two single valued neutrosophic sets A and 

B is a single valued neutrosophic set C, written as C = AUB, 
whose truth-membership, indeterminacy membership and 
falsity-membership functions are given by 
    𝑇(𝐶)(𝑥) = 𝑚𝑎𝑥 ( 𝑇(𝐴)(𝑥) ,𝑇(𝐵)(𝑥) ) ,     

  𝐼(𝐶)(𝑥) = 𝑚𝑎𝑥 ( 𝐼(𝐴)(𝑥) ,𝐼(𝐵)(𝑥) ) , 

 𝐹(𝐶)(𝑥) =  𝑚𝑖𝑛((𝐴)(𝑥) ,𝐹(𝐵)(𝑥) )  for all 𝑥 in 𝑋   

2.5 Intersection [5] 

      The intersection of two single valued neutrosophic sets 
A and B is a single valued neutrosophic set C, written as  
C = A∩B, whose truth-membership, indeterminacy mem-
bership and falsity-membership functions are given by 
   𝑇(𝐶)(𝑥) = 𝑚𝑖𝑛 ( 𝑇(𝐴)(𝑥) ,𝑇(𝐵)(𝑥) ) ,        

  𝐼(𝐶)(𝑥) = 𝑚𝑖𝑛 ( 𝐼(𝐴)(𝑥) ,𝐼(𝐵)(𝑥) ) , 

 𝐹(𝐶)(𝑥) =  𝑚𝑎𝑥((𝐴)(𝑥) ,𝐹(𝐵)(𝑥) )  for all 𝑥 in 𝑋 

 3 Neutrosophic Integer Programming Problems 
 Integer programming problem with neutrosophic coef-

ficients (NIPP) is defined as the following: 

Maximize Z= ∑ 𝑐𝑗̃𝑥𝑗
𝑛
𝑗=1

Subject to 

 ∑ aij
~n𝑥𝑗

n
j=1 ≤ 𝑏i     𝑖 = 1,… ,𝑚 ,     (1) 

 𝑥𝑗 ≥ 0,        𝑗 = 1,…𝑛 , 

𝑥𝑗       integer for   𝑗 ∈ {0,1, …𝑛}.

Where 𝑐𝑗̃ , aij
~n  are  neutrosophic numbres. 

The single valued neutrosophic number (aij
~n) is donated by

A=(a,b,c) where a,b,c ∈ [0,1] And a,b,c ≤ 3 

The truth- membership function of  neutrosophic number 

aij
~n is defined as: 

T aij
~n(x)={

𝑥−𝑎1 

𝑎2−𝑎1
 𝑎1 ≤ 𝑥 ≤ 𝑎2

𝑎2−𝑥

𝑎3−𝑎2
 𝑎2 ≤ 𝑥 ≤ 𝑎3

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (2) 

The indeterminacy- membership function of  neutrosophic 

number 𝑎𝑖𝑗
𝑛 is defined as: 

I aij
~n(x)=

{
 

 
𝑥−𝑏1 

𝑏2−𝑏1
 𝑏1 ≤ 𝑥 ≤ 𝑏2

𝑏2−𝑥

𝑏3−𝑏2
 𝑏2 ≤ 𝑥 ≤ 𝑏3

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (3) 

And its falsity- membership function of  neutrosophic 

number 𝑎𝑖𝑗
~𝑛 is defined as: 

F aij
~n(x)=

{
 

 
𝑥−𝐶1 

𝐶2−𝐶1
 𝐶1 ≤ 𝑥 ≤ 𝐶2 

𝑏2−𝑥

𝑏3−𝑏2
 𝐶2 ≤ 𝑥 ≤ 𝐶3 

1  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (4) 

Then we find the maximum and minimum values of the 

objective function for truth-membership, indeterminacand 

falsity membership as follows: 

𝑓𝑚𝑎𝑥 = max{𝑓(𝑥𝑖
∗  )} and 𝑓𝑚𝑖𝑛 =min{𝑓(𝑥𝑖

∗  )} where 1≤
𝑖 ≤ 𝑘 

𝑓𝑚𝑖𝑛=
𝐹 𝑓𝑚𝑖𝑛

𝑇  and  𝑓𝑚𝑎𝑥=
𝐹 𝑓𝑚𝑎𝑥

𝑇 − 𝑅(𝑓𝑚𝑎𝑥
𝑇 − 𝑓𝑚𝑖𝑛

𝑇 )

Neutrosophic Sets and Systems, Vol. 15, 2017  4 
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𝑓𝑚𝑎𝑥=
𝐼 𝑓𝑚𝑎𝑥

𝐼  𝑎𝑛𝑑 𝑓𝑚𝑖𝑛=
𝐼 𝑓𝑚𝑖𝑛

𝐼 − 𝑆(𝑓𝑚𝑎𝑥
𝑇 − 𝑓𝑚𝑖𝑛

𝑇 )
Where R ,S are predetermined real number in (0,1) 

The truth membership, indeterminacy membership, falsity 

membership of objective function as follows: 

𝑇𝑓(𝑥) = 

{

1  𝑖𝑓  𝑓 ≤ 𝑓𝑚𝑖𝑛 
𝑓𝑚𝑎𝑥−𝑓(𝑥)

𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛
      𝑖𝑓   𝑓𝑚𝑖𝑛 < 𝑓(𝑥) ≤ 𝑓𝑚𝑎𝑥 

0  𝑖𝑓 𝑓(𝑥)  > 𝑓𝑚𝑎𝑥       

  (5) 

𝐼𝑓(𝑥) = 

{
 
 

 
 0   𝑖𝑓  𝑓 ≤ 𝑓𝑚𝑖𝑛       

𝑓(𝑥) − 𝑓𝑚𝑎𝑥

𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛
 𝑖𝑓   𝑓𝑚𝑖𝑛 < 𝑓(𝑥) ≤ 𝑓𝑚𝑎𝑥  (6) 

0   𝑖𝑓 𝑓(𝑥)  > 𝑓𝑚𝑎𝑥       

𝐹𝑓(𝑥) =

 {

0  𝑖𝑓  𝑓 ≤ 𝑓𝑚𝑖𝑛 
𝑓(𝑥)−𝑓𝑚𝑖𝑛

𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛
 𝑖𝑓   𝑓𝑚𝑖𝑛 < 𝑓(𝑥) ≤ 𝑓𝑚𝑎𝑥 

 1  𝑖𝑓 𝑓(𝑥)  > 𝑓𝑚𝑎𝑥 

 (7) 

The neutrosophic set of the 𝑗𝑡ℎ  decision variable 𝑥𝑗 is

defined as: 

𝑇𝑥𝑗
(𝑥) =

 { 

 1         𝑖𝑓     𝑥𝑗 ≤ 0                      
𝑑𝑗−𝑥𝑗

𝑑𝑗
 𝑖𝑓   0 < 𝑥𝑗 ≤ 𝑑𝑗    (8)                        

0  𝑖𝑓   𝑥𝑗  > 𝑑𝑗        

           

𝐹𝑥𝑗
(𝑥)

=

{
 

 
0         𝑖𝑓     𝑥𝑗 ≤ 0 
𝑥𝑗

𝑑𝑗 + 𝑏𝑗
 𝑖𝑓   0 < 𝑥𝑗 ≤ 𝑑𝑗      (9)  

1  𝑖𝑓   𝑥𝑗  > 𝑑𝑗  

 

𝐼𝑗 
(𝑥)

=

{
 
 

 
 
0  𝑖𝑓    𝑥𝑗 ≤ 0  (10) 

𝑥𝑗 − 𝑑𝑗

𝑑𝑗 + 𝑏𝑗
 𝑖𝑓   0 < 𝑥𝑗 ≤ 𝑑𝑗

  0              𝑖𝑓   𝑥𝑗  > 𝑑𝑗  

Where 𝑑𝑗 , 𝑏𝑗 are integer numbers.

4 Neutrosophic Optimization Model of integer pro-
gramming problem 

In our neutrosophic model we want to maximize the de-
gree of acceptance and minimize the degree of rejection and 
indeterminacy of the neutrosophic objective function and 
constraints. Neutrosophic optimization model can be de-
fined as: 

 𝑚𝑎𝑥𝑇(𝑥)

 𝑚𝑖𝑛𝐹(𝑥)

 𝑚𝑖𝑛𝐼(𝑥)

  Subject to 

 𝑇(𝑋) ≥ 𝐹(𝑥)

  𝑇(𝑋) ≥ 𝐼(𝑥)

 0 ≤ 𝑇(𝑋) + 𝐼(𝑥) + 𝐹(𝑥) ≤ 3          (11) 

  𝑇(𝑋),     𝐼(𝑋) ,    𝐹(𝑋) ≥ 0        

 𝑥 ≥ 0  , integer. 

Where 𝑇(𝑥). 𝐹(𝑥), 𝐼(𝑥)denotes the degree of acceptance,

 rejection and indeterminacy of 𝑥 respectively. 

The above problem is equivalent to the following: 

𝑚𝑎𝑥 𝛼,  𝑚𝑖𝑛 𝛽 , 𝑚𝑖𝑛 𝜃 
Subject to      

𝛼 ≤ 𝑇(𝑥)
𝛽 ≤ 𝐹(𝑥)
𝜃 ≤ 𝐼(𝑥)
 𝛼 ≥ 𝛽 

 𝛼 ≥ 𝜃 

0≤  𝛼 +  𝛽 +  𝜃 ≤ 3                                                 (12) 

       𝑥 ≥ 0  , integer. 

Where  𝛼 denotes the minimal acceptable degree, 𝛽 denote 
the maximal degree of rejection and 𝜃 denote maximal de-
gree of indeterminacy. 

The neutrosophic optimization model can be changed 

into the following optimization model: 
𝑚𝑎𝑥(𝛼 −  𝛽 −  𝜃)        
Subject to 

𝛼 ≤ 𝑇(𝑥)                                                                    (13)

𝛽 ≥ 𝐹(𝑥)
𝜃 ≥ 𝐼(𝑥)
 𝛼 ≥ 𝛽 

  𝛼 ≥ 𝜃 

0≤  𝛼 +  𝛽 +  𝜃 ≤ 3 

𝛼, 𝛽, 𝜃 ≥ 0       
  𝑥 ≥ 0  , integer. 

The previous model can be written as: 

𝑚𝑖𝑛 (1-  𝛼) 𝛽 𝜃 
Subject to 

𝛼 ≤ 𝑇(𝑥)
𝛽 ≥ 𝐹(𝑥)
𝜃 ≥ 𝐼(𝑥)
 𝛼 ≥ 𝛽 

  𝛼 ≥ 𝜃 

0≤  𝛼 +  𝛽 +  𝜃 ≤ 3                                               (14) 

 𝑥 ≥ 0 , integer. 



 5 The Algorithms for Solving Neutrosophic inte-
ger Programming Problem (NIPP) 

5.1 Neutrosophic Cutting Plane Algorithm 

Step 1: Convert neutrosophic integer programming problem 

to its crisp model by using the following method: 
By defining a method to compare any two single valued triangular 

neutrosophic numbers which is based on the score function and the 

accuracy function. Let 𝑎̃ = 〈(𝑎1, 𝑏1, 𝑐1 ), 𝑤𝑎̃ , 𝑢𝑎̃, 𝑦𝑎̃ 〉 be a single

valued triangular neutrosophic number, then 

𝑆(𝑎̃) =
1

16
[𝑎 + 𝑏 + 𝑐]×(2 + 𝜇𝑎̃ − 𝑣𝑎̃ − 𝜆𝑎̃)  (15) 

and 

𝐴(𝑎̃) =
1

16
[𝑎 + 𝑏 + 𝑐]×(2 + 𝜇𝑎̃ − 𝑣𝑎̃ + 𝜆𝑎̃)  (16) 

is called the score and accuracy degrees of 𝑎̃, respectively. The 

neutrosophic integer programming NIP can be represented by crisp 

programming model using truth membership, indeterminacy 

membership, and falsity membership functions and the score and 

accuracy degrees of ã, at equations (15) or (16). 

Step 2: Create the decision set which include the highest 

degree of truth-membership and the least degree of falsity 
and indeterminacy memberships. 

Step 3:  Solve the problem as a linear programming problem 
and ignore integrality. 

Step 4:  If the optimal solution is integer, then it’s right. 
Otherwise, go to the next step. 

Step 5: Generate a constraint which is satisfied by all inte-
ger solutions and add this constraint to the problem. 

Step 6: Go to step 1. 

5.2 Neutrosophic Branch and Bound Algorithm 

Step 1: Convert neutrosophic integer programming problem 
to its crisp model by using the following method: 
By defining a method to compare any two single valued triangular 

neutrosophic numbers which is based on the score function and the 

accuracy function. Let 𝑎̃ = 〈(𝑎1, 𝑏1, 𝑐1 ), 𝑤𝑎̃ , 𝑢𝑎̃, 𝑦𝑎̃ 〉 be a single

valued triangular neutrosophic number, then 

𝑆(𝑎̃) =
1

16
[𝑎 + 𝑏 + 𝑐]×(2 + 𝜇𝑎̃ − 𝑣𝑎̃ − 𝜆𝑎̃)  (15) 

and 

𝐴(𝑎̃) =
1

16
[𝑎 + 𝑏 + 𝑐]×(2 + 𝜇𝑎̃ − 𝑣𝑎̃ + 𝜆𝑎̃)  (16) 

is called the score and accuracy degrees of 𝑎̃, respectively. The 

neutrosophic integer programming NIP can be represented by crisp 

programming model using truth membership, indeterminacy 

membership, and falsity membership functions and the score and 

accuracy degrees of ã, at equations (15) or (16). 

Step 2: Create the decision set which include the highest 
degree of truth-membership and the least degree of falsity 
and indeterminacy memberships. 

Step 3:  At the first node let the solution of linear program-
ming model with integer restriction as an upper bound and 
the rounded-down integer solution as a lower bound. 

Step 4: For branching process, we select the variable with 

the largest fractional part.  Two constrains are obtained after 
the branching process, one for≤ and the other is ≥ con-
straint. 

Step 5: Create two nodes for the two new constraints. 

Step 6: Solve the model again, after adding new constraints 
at each node. 

Step 7: The optimal integer solution has been reached, if the 
feasible integer solution has the largest upper bound value 
of any ending node. Otherwise return to step 4. 

The previous algorithm is for a maximization model.  For a 
minimization model, the solution of linear programming 
problem with integer restrictions are rounded up and upper 
and lower bounds are reversed. 

6 Numerical Examples 

To measure the efficiency of our proposed model we 
solved many numerical examples. 

6.1 Illustrative Example #1 

𝑚𝑎𝑥 5̃𝑥1 + 3̃𝑥2

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

4̃𝑥1 + 3̃𝑥2 ≤ 12̃

1̃𝑥1 + 3̃𝑥2 ≤ 6̃
𝑥1, 𝑥2 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

where 

5̃ =  〈(4,5,6 ), 0.8, 0.6, 0.4 〉 
3̃ =  〈(2.5,3,3.5 ), 0.75, 0.5, 0.3 〉 
4̃ =  〈(3.5,4,4.1 ), 1, 0.5, 0.0 〉 
3̃ =  〈(2.5,3,3.5 ), 0.75, 0.5, 0.25 〉 
1̃ =  〈(0,1,2 ), 1, 0.5, 0 〉 
3̃ =  〈(2.8,3,3.2 ), 0.75, 0.5, 0.25 〉 
12̃ =  〈(11,12,13 ), 1, 0.5, 0 〉

6̃ =  〈(5.5,6,7.5 ), 0.8, 0.6, 0.4 〉 

Then the neutrosophic model converted to the crisp model 

by using Eq.15 , Eq.16.as follows : 
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max    5.6875𝑥1 + 3.5968𝑥2

subject to     

4.3125𝑥1 + 3.625𝑥2 ≤ 14.375
0.2815𝑥1 + 3.925𝑥2 ≤ 7.6375

𝑥1, 𝑥2 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

The optimal solution of the problem is 𝑥∗ = (3,0)   with 

optimal objective value 17.06250. 

6.2 Illustrative Example #2 

𝑚𝑎𝑥    25̃𝑥1 + 48̃𝑥2

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     

15𝑥1 + 30𝑥2 ≤ 45000
24𝑥1 + 6𝑥2 ≤ 24000
21𝑥1 + 14𝑥2 ≤ 28000
𝑥1, 𝑥2 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

where 

25̃ =  〈(19,25,33 ), 0.8,0.5,0 〉; 
48̃ =  〈(44,48,54 ), 0.9,0.5,0 〉

Then the neutrosophic model converted to the crisp model 

as : 

max    27.8875𝑥1 + 55.3𝑥2

subject to     

15𝑥1 + 30𝑥2 ≤ 45000
24𝑥1 + 6𝑥2 ≤ 24000
21𝑥1 + 14𝑥2 ≤ 28000
𝑥1, 𝑥2 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

The optimal solution of the problem is 𝑥∗ = (500,1250)  
with optimal objective value 83068.75. 

7 Conclusions and Future Work 

     In this paper, we proposed an integer programming 

model based on  neutrosophic environment, simultaneously 

considering the degrees of acceptance, indeterminacy and 

rejection of objectives, by proposed model for solving 

neutrosophic integer programming problems (NIPP). In the 

model, we maximize the degrees of acceptance and 

minimize indeterminacy and rejection of objectives. NIPP 

was transformed into a crisp programming model using 

truth membership, indeterminacy membership, falsity 

membership and score functions.  We also give numerical 

examples to show the efficiency of the proposed method. 

Future research directs to studying the duality theory of 

integer programming problems based on Neutrosophic. 
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Abstract: This paper develops a multi-objective Neutro-

sophic Goal Optimization (NSGO) technique for opti-

mizing the design of three bar truss structure with multi-

ple objectives subject to a specified set of constraints. In 

this optimum design formulation, the objective functions 

are weight and deflection; the design variables are the 

cross-sections of the bar; the constraints are the stress in 

member.  

The classical three bar truss structure is presented here in 

to demonstrate the efficiency of the neutrosophic goal 

programming approach. The model is numerically illus-

trated by generalized NSGO technique with different ag-

gregation method. The result shows that the Neutrosoph-

ic Goal Optimization technique is very efficient in find-

ing the best optimal solutions. 

Keywords: Neutrosophic Set, Single Valued Neutrosophic Set, Generalized Neutrosophic Goal Programming, Arithmetic Ag-

gregation, Geometric Aggregation, Structural Optimization.

1 Introduction 

The research area of optimal structural design has been 

receiving increasing attention from both academia and 

industry over the past four decades in order to improve 

structural performance and to reduce design costs. In the 

real world, uncertainty or vagueness is prevalent in the 

Engineering Computations. In the context of structural 

design the uncertainty is connected with lack of accurate 

data of design factors. This tendency has been changing 

due to the increase in the use of fuzzy mathematical 

algorithm for dealing with such kind of  problems. 

Fuzzy set (FS) theory has long been introduced to deal 

with  inexact and imprecise data by Zadeh [1], Later on the 

fuzzy set theory was used by Bellman and Zadeh [2] to the 

decision making problem. A few work has been done  as 

an application of fuzzy set theory on structural design. 

Several researchers like Wang et al. [3] first applied α-cut 

method to structural designs where various design levels α 

were used to solve the non-linear problems. In this 

regard ,a generalized fuzzy number has been used Dey et al. 

[4] in context of a  non-linear structural design optimiza-

tion. Dey et al. [5] used basic t-norm based fuzzy optimiza-

tion technique for optimization of structure and Dey et al. 

[6] developed parameterized t-norm based fuzzy optimiza-

tion method for optimum structural design.  

In such extension, Intuitionistic fuzzy set which is one 

of the generalizations of fuzzy set theory and was charac-

terized by a membership, a non- membership and a hesi-

tancy function was first introduced by Atanassov [21] 

(IFS). In fuzzy set theory the degree of acceptance is only 

considered but in case of IFS it is characterized by degree 

of membership and non-membership in such a way  that 

their sum  is less or equal to one. Dey et al. [7] solved two 

bar truss non-linear problem by using intuitionistic fuzzy 

optimization problem.Again Dey et al. [8] used intuition-

istic fuzzy optimization technique to solve  multi objective 

structural design. R-x Liang et al. [9] applied interdepend-

ent inputs of single valued trapezoidal neutrosophic infor-

mation on Multi-criteria group decision making problem. P 

Ji et al. [10], S Yu et al. [11] did so many research study on 

application based neutosophic sets and intuitionistic lin-

guistic number. Z-p Tian et al. [12] Simplified neutrosoph-

ic linguistic multi-criteria group decision-making approach 

to green product development. Again J-j Peng et al. [13] 

introduced multi-valued neutrosophic qualitative flexible 

approach based on likelihood for multi-criteria decision-

making problems. Also, H Zhang et. al. [22] investigates a 

case study on a novel decision support model for satisfac-

tory restaurants utilizing social information. P Ji et al. [14] 

developed a projection-based TODIM method under multi-
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valued neutrosophic environments and its application in 

personnel selection.Intuitionistic fuzzy sets consider both 

truth and falsity membership and can only handle incom-

plete information but not the information which is con-

nected with indeterminacy or  inconsistency. 

In neutrosophic sets indeterminacy or inconsistency is 

quantified explicitly by indeterminacy membership func-

tion. Neutrosophic Set (NS), introduced by Smarandache 

[15] was characterized by truth, falsity and indeterminacy 

membership so that in case of single valued NS set their 

sum is less or equal to three. In early [17] Charnes and 

Cooper first introduced Goal programming problem for a 

linear model. Usually conflicting goal are presented in a 

multi-objective goal programming problem. Dey et al. [16] 

used intuitionistic goal programming on nonlinear struc-

tural model. This is the first time NSGO technique is in 

application to multi-objective structural design. Usually 

objective goals of existing structural model are considered 

to be deterministic and a fixed quantity. In a situation, the 

decision maker can be doubtful with regard to accom-

plishment of the goal. The DM may include the idea of 

truth, indeterminacy and falsity bound on objectives 

goal.The goal may have a target value with degree of 

truth,indeterminacy as well as degree of falsity.Precisely 

,we can say a human being that express degree of truth 

membership of a given element in a fuzzy set,truth and fal-

sity membership in a intuitionistic fuzzy set,very often 

does not express the corresponding degree of falsity mem-

bership as complement to 3. This fact seems to take the ob-

jective goal as a neutrosophic set. The present study inves-

tigates computational algorithm for solving multi-objective 

structural problem by single valued generalized NSGO 

technique. The results are compared numerically for dif-

ferent aggregation method of NSGO technique. From our 

numerical result, it has been seen the best result obtained 

for geometric aggregation method for NSGO technique in 

the perspective of structural optimization technique.  

2 Multi-objective structural model 

      In the design problem of the structure i.e. lightest 

weight of the structure and minimum deflection of the 

loaded joint that satisfies all stress constraints in members 

of the structure. In truss structure system, the basic 

parameters (including allowable stress,etc.) are  known and 

the optimization’s target is that identify the optimal bar 

truss cross-section area so that the structure is of the 

smallest total weight with minimum nodes displacement in 

a given load conditions . 

The multi-objective structural model can be expressed as  

 Minimize WT A

(1) 

 minimize A

   subject to A   

min maxA A A 

where  1 2, ,...,
T

nA A A A are the design variables for the 

cross section, n is the group number of design variables for 

the cross section bar ,  
1

n

i i i

i

WT A A L


 is the total 

weight of the structure ,  A is the deflection of the load-

ed joint ,where ,i iL A and i are the bar length, cross sec-

tion area and density of the 
thi group bars respective-

ly.  A is the stress constraint and   is allowable stress

of the group bars under various conditions,
minA and 

maxA

are the lower and upper bounds of cross section area A re-

spectively.

3 Mathematical preliminaries 

3.1 Fuzzy set 

Let X be a fixed set. A fuzzy set A  set of X  is an ob-

ject having the form    , :AA x T x x X  where the 

function  : 0,1AT X   defined the truth membership of 

the element x X to the set A . 

3.2 Intuitionistic fuzzy set 

Let a set X be fixed. An intuitionistic fuzzy set or IFS 
iA in X  is an object of the form 

    , ,i

A AA X T x F x x X     where 

 : 0,1AT X  and  : 0,1AF X 

define the truth membership and falsity membership re-
spectively, for every element of x X 0 1A AT F   . 

3.3 Neutrosophic set 

Let a set X be a space of points (objects) and x X .A 

neutrosophic set nA in X is defined by a truth membership 

function  AT x , an indeterminacy-membership function 

 AI x and a falsity membership function  AF x ,and de-

noted by       , , ,n

A A AA x T x I x F x x X    . 

 AT x
 

 AI x and  AF x are real standard or non-standard 
subsets of ]0 ,1 [ 

.That is 

  : ]0 ,1 [ ,AT x X     : ]0 ,1 [ ,AI x X    and 

  : ]0 ,1 [ ,AF x X   . There is no restriction on the sum 

of  ,AT x  AI x and 

 AF x so      0 sup sup 3A A AT x I x F x     . 

3.4 Single valued neutrosophic set 

Let a set X be the universe of discourse. A single val-

ued neutrosophic set nA   over X is an object having the 
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form       , , ,n

A A AA x T x I x F x x X    where 

 : 0,1 ,AT X   : 0,1 ,AI X  and  : 0,1AF X  with 

     0 3A A AT x I x F x     for all x X .

3.5 Complement of neutrosophic Set 

Complement of a single valued neutrosophic set A is 

denoted by  c A and  is defined by 
     ,Ac A

T x F x

     1 ,Ac A
I x F x 

     Ac A
F x T x

3.6 Union of neutrosophic sets 

The union of two single valued neutrosophic sets 
A and B is a single valued neutrosophic set C , written as 
C A B  ,whose truth membership, indeterminacy-
membership and falsity-membership functions are given 

by 

        max , ,A Bc A
T x T x T x

        max , ,A Bc A
I x I x I x

        min ,A Bc A
F x F x F x for all x X . 

3.7 Intersection of neutrosophic sets 

The intersection of two single valued neutrosophic sets 

A and B is a single valued neutrosophic set C  , written as 

C A B  ,whose truth membership, indeterminacy-

membership and falsity-membership functions are given 

by  

        min , ,A Bc A
T x T x T x

        min , ,A Bc A
I x I x I x

        max ,A Bc A
F x F x F x for all x X . 

4 Mathematical analysis 

4.1 Neutrosophic Goal Programming 

Neutrosophic Goal Programming problem is an exten-

sion of intuitionistic fuzzy as well as fuzzy goal program-

ming problem in which the degree of indeterminacy of ob-

jective(s) and constraints are considered with degree of 

truth and falsity membership degree. 

Goal programming can be written as 

Find  

 1 2, ,...,
T

nx x x x (1) 

to achieve: 

i iz t 1,2,...,i k

Subject to x X  where it are scalars and represent the 

target achievement levels of the objective functions that 

the decision maker wishes to attain provided, X is feasible 

set of constraints. 

The nonlinear goal programming problem can be writ-

ten as  

Find 

 1 2, ,...,
T

nx x x x  (2) 

So as to 

iMinimize z  with target value it ,acceptance tolerance 

ia ,indeterminacy tolerance id  rejection tolerance ic

x X

 j jg x b , 1,2,.....,j m

0,ix  1,2,.....,i n

This neutrosophic goal programming can be trans-

formed into crisp programming and can be transformed in-

to crisp programming problem model by maximizing the 

degree of truth and indeterminacy and minimizing the de-

gree of falsity of neutrosophic objectives and constraints. 

In the above problem (2), multiple objectives are consid-

ered as neutrosophic with some relaxed target. This repre-

sentation demonstrates that decision maker (DM) is not 

sure about minimum value of , 1,2,..,iz i k  . DM has 

some illusive ideas of some optimum values of 

, 1,2,..,iz i k . Hence it is quite natural to have desirable 

values violating the set target. Then question arises that 

how much bigger the optimum values may be .DM has al-

so specified it with the use of tolerances. The tolerances 

are set in such a manner that the sum of truth, indetermina-

cy and falsity membership of objectives , 1,2,..,iz i k  will 

lie between 0  and 3  . Let us consider the following theo-

rem on membership function: 

Theorem 1. 

For a generalized neutrosophic goal programming 

problem (2) 

The sum of truth, indeterminacy and falsity member-

ship function will lie between 0  and 1 2 3w w w    

Proof: 

Let the truth, indeterminacy and falsity membership func-

tions be defined as membership functions 

  1

1

1

0

i i

w i i i

i i i i i i

i

i i i

w if z t

t a z
T z w if t z t a

a

if z t a




  
    

 
  

 2

2

2

0

0

i i

i i

i i i i

iw

i i

i i i

i i i i i

i i

i i i

if z t

z t
w if t z t a

d
I z

t a z
w if t d z t a

a d

if z t a




     
 

 
  

      
  
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 3

3

3

0 i i

w i i

i i i i i i

i

i i i

if z t

z t
F z w if t z t c

c

w if z t c




 
    

 
  

Fig. 1. Truth membership, Indeterminacy membership and Falsity 

membership function of iz

From Fig. (1) and definition of generalized single valued 

neutrosophic set,  it is clear that: 

  10
iz iT z w  ,   20

iz iI z w   and   10
iz iF z w 

when  i iz t

  1iz iT z w and   0
iz iI z  and   0

iz iF z   

Therefore       1 1 2 3i i iz i z i z iT z I z F z w w w w     

and 1 0w  implies that       0
i i iz i z i z iT z I z F z  

when   ,i i i iz t t a  from fig (A) we see that   
iz iT z and 

 
iz iF z intersects each other and   the point whose coordi-

nate  is  ,i i i it d d c , 

where 1

1 2

i

i i

w
d

w w

a c





. 

Now in the interval  ,i i i iz t t d   we see that

      2 2 1 2 3i i i

i i

z i z i z i

i

z t
T z I z F z w w w w w

d

 
       

 

Again, in the interval  ,i i i i iz t d t a    we see that

      2 2 1 2 3i i i

i i i

z i z i z i

i i

t a z
T z I z F z w w w w w

a d

  
       

 
. 

Also, for i i i it z t a  

when i iz t ,       2 0
i i iz i z i z iT z I z F z w     and

      1 0
i i iz i z i z iT z I z F z w    and when

i i iz t a  ,       1 1 1 2i i i

i

z i z i z i

i

a
T z I z F z w w w w

c
     

(as 1i

i

a

c
  ). 

In the interval ( , ]i i i i iz t a t c  

when i i iz t a  ,       2 2 0
i i i

i

z i z i z i

i

a
T z I z F z w w

c
      

(as 1i

i

a

c
 ) 

and when 

i i iz t c  ,       1 1 2 3i i iz i z i z iT z I z F z w w w w     

for i i iz t c  , 

      3 1 2 3i i iz i z i z iT z I z F z w w w w     

and as 2 0w  ,       0
i i iz i z i z iT z I z F z   .

Therefore, combining all the cases we get 

      1 2 30
i i iz i z i z iT z I z F z w w w     

Hence the proof. 

4.2. Solution Procedure of Neutrosophic Goal 
Programming Technique 

In fuzzy goal programming, Zimmermann [18] has 

given a concept of considering all membership functions 

greater than a single value   which is to be maximized. 

Previously many researcher like Bharti and Singh [20], 

Parvathi and Malathi [19] have followed him in intution-

istic fuzzy optimization. Along with the variable  and 

,   is optimized in neutrosophic goal programming 

problem. 

With the help of generalized truth, indeterminacy, fal-

sity membership function the generalized neutrosophic 

goal programming problem (2) can be formulated as: 

  , 1,2,....,
iz iMaximize T z i k     (3) 

  , 1,2,....,
iz iMaximize I z i k

  , 1,2,....,
iz iMinimize F z i k

Subject to 

      1 2 30 , 1,2,....,
i i iz i z i z iT z I z F z w w w i k      

     0, 0, 1,2,...,
i i iz i z i z iT z I z F z I k  

    , 1,2,....,
i iz i z iT z I z I k 

    , 1,2,...,
i iz i z iT z F z i k 

1 2 30 3w w w     

 1 2 3, , 0,1w w w 

 j jg x b , 1,2,.....,j m

0,ix  1,2,.....,i n
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Now the decision set nD , a conjunction of Neutrosophic 

objectives and constraints is defined: 

       
1 1

, , ,n n n

qk
n n n

i j D D D
i j

D z g x T x I x F x
 

  
     
   

 
       

       
1 2 3

1 2 3

, , ,........... ;
min

, , ,...........

n n n n
p

n

n n n n
q

z z z z

D

g g g g

T x T x T x T x
Here T x

for all x ∈
X

T x T x T x T x


 
 

   
  

 
       

       
1 2 3

1 2 3

, , ,........... ;
min

, , ,...........

n n n n
p

n

n n n n
q

z z z z

D

g g g g

I x I x I x I x
I x

I x I x I x I x


 
 

   
  

 
       

       
1 2 3

1 2 3

, , ,........... ;
min

, , ,...........

n n n n
p

n

n n n n
q

z z z z

D

g g g g

F x F x F x F x
F x

for all x X
F x F x F x F x



 
 

 



 
  

where      , ,n n nD D D
T x I x F x are truth-membership func-

tion, indeterminacy membership function,falsity member-

ship function of neutrosophic decision set respectively 

.Now using the neutrosophic optimization, problem (2) is 

transformed to the non-linear programming problem as 

, ,Maximize Maximize Minimize      (4) 

1

1 , 1,2,...,i i iz t a i k
w

 
    

 

2

, 1,2,...,i

i i

d
z t i k

w
  

 
2

, 1,2,...,i i i i iz t a a d i k
w


    

3

, 1,2,...,i

i i

c
z t i k

w
  

, 1,2,.....,i iz t i k 

1 2 30 ;w w w       

     1 2 30, , 0, , 0, ;w w w      

     1 2 30,1 , 0,1 , 0,1 ;w w w  

1 2 30 3.w w w   

Now, based on arithmetic aggregation operator above 

problem can be formulated as  

   1 1

3
Minimize

       
 
  

           (5) 

Subjected to the same constraint as (4). 

With the help of generalized truth, indeterminacy, falsity 

membership function the generalized neutrosophic goal 

programming, based on geometric aggregation operator 

can be formulated as: 

   3 1 1Minimize     (6) 

Subjected to the same constraint as (4). 

Now this non-linear programming problem (4 or 5 or 6) 

can be easily solved by an appropriate mathematical pro-

gramming to give solution of multi-objective non-linear 

programming problem (1) by generalized neutrosophic 

goal optimization approach. 

5. Solution of Multi-Objective Structural
Optimization Problem (MOSOP) by  Generalized

Neutrosophic Goal Programming Technique
The multi-objective neutrosophic fuzzy structural model 

can be expressed as : 

 Minimize WT A  with target value 0WT  ,truth tolerance 

WTa  ,indeterminacy tolerance WTd and rejection tolerance 

WTc (7)      

 minimize A  with target value 0  ,truth tolerance 

0
a  ,indeterminacy tolerance 

0
d

and rejection tolerance 

0
c

   subject to A   

min maxA A A 

where  1 2, ,....,
T

nA A A A are the design variables for the 

cross section, n is the group number of design variables for 

the cross section bar. 

To solve this problem we first calculate truth, indeter-

minacy and falsity membership function of objective as 

follows: 

  

 

 
 

 

1

1 0

0

1 0 0

00

WTw

WT WT

WT

WT

w if WT A WT

WT a WT A
T WT A w if WT WT A WT a

a

if WT A WT a

 


  
      
  
  

    

 

 
 

 
 

 

2

0

0

2 0 0

0

2 0 0

0

0

0

WT

WTw

WT A

WT

WT WT

WT WT

WT

if WT A WT

WT A WT
w if WT WT A WT a

d
I WT A

WT a WT A
w if WT d WT A WT a

a d

if WT A WT a

 



     

 
 

  
       

  

where 1

1 2

WT

WT WT

w
d

w w

a c





for all x X
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    

 

 
 

 

3

0

0

3 0 0

3 0

0

w

WTWT A

WT

WT

if WT A WT

WT A WT
F WT A w if WT WT A WT c

c

w if WT A WT c

 


 
      
  
  

and 

    

 

 
 

 

01

0

0

0

1 0

0

1 0 0

00

w

A

w if A

a A
T A w if A a

a

if A a









 

 
   

 

 


  
      
  


 

    

 

 
 

 
 

 

2

0

0

2 0 0

0

2 0 0

0

0

0

w

A

if A

A
w if A a

d
I A

a WT A
w if d A a

a d

if A a









 

 



 

 
  




  

 

 


 
     

 
 

  
       

  

1

1 2

w
d

w w

a c



 





 

    

 

 
 

 

3

0

0

3 0 0

3 0

0

w

A

if A

A
F A w if A c

c

w if A c







 

 
   

 

 


 
      
  
  

According to generalized neutrosophic goal optimization 

technique using truth, indeterminacy and falsity member-

ship function, MOSOP (7) can be formulated as: 

Model I

, ,Maximize Maximize Minimize   (8) 

  0

1

1 ,WTWT A WT a
w

 
   

 

  0

2

,WTd
WT A WT

w
 

   0

2

,WT WT WTWT A WT a a d
w


   

  0

3

,WTc
WT A WT

w
 

  0 ,WT A WT

  0

1

1 ,A a
w




 

 
   

 

  0

2

,
d

A
w

   

   0

2

,A a a d
w

  


    

  0

3

,
c

A
w

      0 ,A   

1 2 30 ;w w w       

     1 2 30, , 0, , 0, ;w w w      

     1 2 30,1 , 0,1 , 0,1 ;w w w  

1 2 30 3;w w w     

  , 1,2,.....,j jg x b j m   

0, 1, 2,....,jx j n   

With the help of generalized truth, indeterminacy, falsity 

membership function the generalized neutrosophic goal 

programming based on arithmetic aggregation operator can 

be formulated as: 

Model II

   1 1

3
Minimize

       
 
     

     (9)

Subjected to the same constraint as (8) 

With the help of generalized truth, indeterminacy, falsity 

membership function the generalized neutrosophic goal 

programming based on geometric aggregation operator can 

be formulated as: 

Model -III

   3 1 1Minimize        (10)

Subjected to the same constraint as (8) 

Now these non-linear programming Model-I, II, III can be 

easily solved through  an appropriate mathematical pro-

gramming to give solution of multi-objective non-linear 

programming problem (7) by generalized neutrosophic 

goal optimization approach. 

6 Numerical illustration 

A well-known three bar planer truss is considered in Fig.2 

to minimize weight of the structure  1 2,WT A A and

minimize the deflection  1 2,A A  at a loading point of a

statistically loaded three bar planer truss subject to stress 

constraints on each of the truss members. 

Fig. 2 Design of three bar planar truss 
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The multi-objective optimization problem can be stated as 

follows: 

   1 2 1 2, 2 2Minimize WT A A L A A   (11) 

 
 

1 2

1 2

,
2

PL
Minimize A A

E A A
 



Subject to 

 
 

 
1 2

1 1 2 1
2

1 1 2

2
, ;

2 2

T
P A A

A A
A A A

 


    


 

 
 

2 1 2 2

1 2

, ;
2

TP
A A

A A
     


 

 
 

2

3 1 2 3
2

1 1 2

, ;
2 2

CPA
A A

A A A
     


 

min max 1,2i i iA A A i  

 where P   applied load ;   material density ; 

L  length ; E  Young’s modulus ; 
1A  Cross section of 

bar-1 and bar-3; 
2A  Cross section of bar-2;   is 

deflection of loaded joint. 
1

T 
  and

2

T 
  are maximum

allowable tensile stress for bar 1 and bar 2 respectively, 

3

C is maximum allowable compressive stress for bar 

3.The input data is given in table1.

This multi objective structural model can be expressed as 

neutrosophic fuzzy model as 

   1 2 1 2, 2 2Minimize WT A A L A A   with target 

value 24 10 KN  truth tolerance 
22 10 KN  indeterminacy tolerance 

21

1 2

10
0.5 0.22

w
KN

w w



and rejection tolerance 

24.5 10 KN                               (12) 

 
 

1 2

1 2

,
2

PL
Minimize A A

E A A
 


 with target value 

72.5 10 m  ,truth tolerance
72.5 10 m ,indeterminacy 

tolerance 71

1 2

10
0.4 0.22

w
m

w w




and rejection tolerance 

74.5 10 m  

Subject to 

 
 

 
1 2

1 1 2 1
2

1 1 2

2
, ;

2 2

T
P A A

A A
A A A

 


    


 

 
 

2 1 2 2

1 2

, ;
2

TP
A A

A A
     


 

 
 

2

3 1 2 3
2

1 1 2

, ;
2 2

CPA
A A

A A A
     


 

min max 1,2i i iA A A i  

According to generalized neutrosophic goal optimization

technique using  truth, indeterminacy and falsity member-

ship function ,MOSOP (12) can be formulated as: 

Model I

, ,Maximize Maximize Minimize   (13) 

 1 2

1

2 2 4 2 1 ,A A
w

 
    

 

 
 

1

1 2

2 1 2

2 2 4 ,
0.5 0.22

w
A A

w w w
  



 
 

1

1 2

2 1 2

2 2 4 2 2 ,
0.5 0.22

w
A A

w w w

  
     

  

 1 2

3

4.5
2 2 4 ,A A

w
  

 1 22 2 4,A A 

  11 2

20
2.5 2.5 1 ,

2 wA A

 
   

  

   
1

2 1 21 2

20
2.5 ,

0.4 0.222

w

w w wA A
 



   
1

2 1 21 2

20
2.5 2.5 2.5 ,

0.4 0.222

w

w w wA A

  
    

   

  31 2

20 4.5
2.5 ,

2 wA A
 



 1 2

20
2.5,

2A A



 

1 2 30 ;w w w       

     1 2 30, , 0, , 0, ;w w w      

     1 2 30,1 , 0,1 , 0,1 ;w w w  

1 2 30 3;w w w     

 
 

1 2

2

1 1 2

20 2
20;

2 2

A A

A A A





 

 1 2

20
20;

2A A



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 
2

2

1 1 2

20
15;

2 2

A

A A A



 

0.1 5 1,2iA i    

With the help of generalized truth, indeterminacy, falsity 

membership function the generalized neutrosophic goal 

programming problem (12) based on arithmetic aggrega-

tion operator can be formulated as: 

Model II

   1 1

3
Minimize

       
 
  

       (14)

Subjected to the same constraint as (13) 

With the help of generalized truth, indeterminacy, falsity 

membership function the generalized neutrosophic goal 

programming problem (12) based on geometric aggrega-

tion operator can be formulated as: 

Model III

   3 1 1Minimize              (15)

Subjected to the same constraint as (13) 

The above problem can be formulated using Model I, 

II, III and can be easily solved by an appropriate mathe-

matical programming to give solution of multi-objective 

non-linear programming problem (12) by generalized neu-

trosophic goal optimization approach and the results are 

shown in the table 2. 

Again, value of membership function in GNGP tech-

nique for MOSOP (11) based on different Aggregation is 

given in Table 3. 

Table 1: Input data for crisp model (11) 

Applied 

load P

 KN

Volume 

density 

 3/KN m

Length L

 m

Maximum al-

lowable   ten-

sile 

stress
T 

 

 2/KN m

Maximum al-

lowable com-

pressive 

stress
C 

   

 2/KN m

Young’s 

modulus E
 

 2/KN m

min
iA

and 
max
iA

of cross section of bars 

 4 210 m

20 100 1  20 15 72 10

min

1 0.1A 

max

1 5A 

min

2 0.1A  max

2 5A   

Table 2: Comparison of GNGP solution of MOSOP (11) based on different Aggregation

Methods 
1

4 210

A

m
2

4 210

A

m

 1 2

2

,

10

WT A A

KN

 1 2

7

,

10

A A

m





Generalized Fuzzy Goal 

programming(GFGP) 1 0.15w   
0.5392616 4.474738 6 2.912270

Generalized Intuitionistic Fuzzy Goal 

programming(GIFGP) 

1 0.15w  3 0.8w   
0.5392619  4.474737 6 2.912270  

Generalized Neutrosophic Goal pro-

gramming (GNGP) 

1 2 30.4, 0.3, 0.7w w w    

5  0.4321463  4.904282  3.564332  

Generalized Intuitionistic Fuzzy optimiza-

tion (GIFGP) based on Arithmetic Aggre-

gation  

1 30.15, 0.8w w   

0.5392619  4.474737 6 2.912270  
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Generalized Neutosophic optimization 

(GNGP) based on Arithmetic Aggrega-

tion  

1 2 30.4, 0.3, 0.7w w w  

5  0.4321468  4.904282  3.564333  

Generalized Intuitionistic Fuzzy optimiza-

tion (GIFGP) based on  Geometric Ag-

gregation  

1 30.15, 0.8w w   

0.5727008  2.380158  4 5.077751 

Generalized Neutosophic  

optimization (GNGP) based on  Geomet-

ric Aggregation  

1 2 30.4, 0.3, 0.7w w w    

5  1.109954  4.462428  3.044273  

Here we get best solutions for the different value of 

1 2 3, ,w w w  in geometric aggregation method for objective 

functions. From Table 2 it is clear that Neutrosophic 

Optimization technique is more fruitful in optimization of 

weight compare to fuzzy and intuitionistic fuzzy optim-

ization technique.  

Moreover it has been seen that more desired value is obtain 

in geometric aggregation method compare to arithmetic 

aggregation method in intuitionistic as well as 

neutrosophic environment in perspective of structural 

engineering. 

Table 3: Value of membership function in GNGP technique for MOSOP (11) based on different Aggregation 

Methods 
* * *, ,   Sum of Truth, Indeterminacy and Falsity Membership Function

Neutrosophic Goal 

programming 

(GNGP) 

1 2 30.4, 0.3, 0.7w w w  

* .1814422 
* .2191435 

* .6013477 

        1 2 1 2 1 2, , ,

.2191435 .1804043 .1406661 .5402139

WT WT WTT WT A A I WT A A F WT A A 

   

        1 2 1 2 1 2, , ,

.2297068 .1804043 .1655628 .5756739

T A A I A A F A A     

   

Generalized Neu-

tosophic optimiza-

tion (GNGP) based 

on  Arithmetic 

Aggregation  

1 2 30.4, 0.3, 0.7w w w  

* .2191435   
* .2191435 

* .6013480 

 

        1 2 1 2 1 2, , ,

.2191435 .1804044 .1406662 .5402141

WT WT WTT WT A A I WT A A F WT A A 

   

        1 2 1 2 1 2, , ,

.2297068 .1804044 .1655629 .5756741

T A A I A A F A A     

   

Generalized Neu-

tosophic optimiza-

tion (GNGP) based 

on  Geometric Ag-

gregation  

1 2 20.4, 0.3, 0.7w w w  

* .3075145   
* .3075145 

* .3075145 

        1 2 1 2 1 2, , ,

.3075145 .0922543 .07193320 .471702

WT WT WTT WT A A I WT A A F WT A A 

   

        1 2 1 2 1 2, , ,

.3129163 .09225434 .08466475 .48983539

T A A I A A F A A     

     

From the above table it is clear that all the objective 

functions attained their goals as well as restriction of truth, 
indeterminacy and falsity membership function in neutros-
ophic goal programming problem based on different 

aggregation operator. 

The sum of truth,indeterminacy and falsity membership 

function for each objective is less than sum of 

gradiation  1 2 3w w w  . Hence the criteria of generalized

neutrosophic set is satisfied. 
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7. Conclusions

The research study investigates that neutrosophic goal 

programming can be utilized to optimize a nonlinear 

structural problem. . The results obtained for different 

aggregation method of the undertaken problem show that 

the best result is achieved using geometric aggregation 

method. The concept of neutrosophic optimization 

technique allows one to define a degree of truth 

membership, which is not a complement of degree of 

falsity; rather, they are independent with degree of 

indeterminacy. As we have considered a non-linear three 

bar truss design problem and find out minimum weight of 

the structure as well as minimum deflection of loaded joint, 

the results of this study may lead to the development of 

effective neutrosophic technique for solving other model of 

nonlinear programming problem in different field. 
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Abstract.  In this paper, we introduce and study a neutro-

sophic crisp manifold as a new topological structure of 

manifold via neutrosophic crisp set. Therefore, we study 

some new topological concepts and some metric distances 

on a neutrosophic crisp manifold. 

Keywords: neutrosophic crisp manifold, neutrosophic crisp coordinate chart, neutrosophic crisp Haussdorff, neutrosophic crisp 

countable, neutrosophic crisp basis, neutrosophic crisp Homeomorphism, neutrosophic locally compact. 

1 Introduction
Neutrosophics found their places into contemporary 

research; we have introduced the notions of neutrosophic 

crisp sets, neutrosophic crisp point and neutrosophic 

topology on crisp sets.  

We presented some new topological concepts and 

properties on neutrosophic crisp topology. A manifold is 

a topological space that is locally Euclidean and around 

every point there is a neighborhood that is topologically the 

same as the open unit in 𝑅𝑛.  

The aim of this paper is to build a new manifold 

topological structure called neutrosophic crisp manifold as 

a generalization of manifold topological space by 

neutrosophic crisp point and neutrosophic crisp topology 

and present some new topological concepts on a neutro-

sophic crisp manifold space. 

Also, we study some metric distances on a neutrosophic 

crisp manifold. 

The paper is structured as follows: in Section 2, we 

introduce preliminary definitions of the neutrosophic crisp 

point and neutrosophic crisp topology; in Section 3, some 

new topological concepts on neutrosophic crisp topology 

are presented and defined; in Section 4, we propose some 

topological concepts on neutrosophic crisp manifold space; 

Section 5 introduces some metric distances on a 

neutrosophic crisp manifold. Finally, our future work is 

presented in conclusion. 

2 Terminologies [1, 2, 4]
We recollect some relevant basic preliminaries. 

Definition 2.1:

Let  𝐴 =< 𝐴1, 𝐴2, 𝐴3 > be a neutrosophic crisp set on a set

X, then  

p =< {𝑝1}, {𝑝2}, {𝑝3} > ,  𝑝1 ≠ 𝑝2 ≠ 𝑝3 ∈ 𝑋  is called a

neutrosophic crisp point. 

A NCP  p =< {𝑝1}, {𝑝2}, {𝑝3} > belongs to a neutrosophic

crisp set 

𝐴 =< 𝐴1, 𝐴2, 𝐴3 >  of X denoted by 𝑝 ∈ 𝐴 if it defined by:

{𝑝1} ⊆ 𝐴1, {𝑝2} ⊆ 𝐴2and{𝑝3} ⊆ 𝐴3.

Definition 2.2:

A neutrosophic crisp topology (NCT) on a non empty set X 

is a family of Γ of neutrosophic crisp subsets in X satisfying 

the following axioms: 

i. ϕ𝑁 , X𝑁 ∈  Γ

ii. 𝐴1 ∩ 𝐴2 ∈  Γ 𝑓𝑜𝑟 𝑎𝑛𝑦 𝐴1, 𝐴2 ∈  Γ

iii. ∪ 𝐴𝑗 ∈  Γ ∀ {𝐴𝑗  𝑗 ∈ 𝐽} ⊆  Γ

Then (𝑋, Γ )  is called a neutrosophic crisp topological 

space (NCTS) in X and the elements in Γ  are called 

neutrosophic crisp open sets (NCOSs). 
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3 Neutrosophic Crisp Topological Manifold 

Spaces [2, 5, 4, 7]

We present and study the following new topological 

concepts about the new neutrosophic crisp topological 

manifold Space. 

Definition 3.1:
A neutrosophic crisp topological space (𝑋, Γ )   is a 

neutrosophic crisp Haussdorff (NCH ) if for each two 

neutrosophic crisp points p =< {𝑝1}, {𝑝2}, {𝑝3} > and

q =< {𝑞1}, {𝑞2}, {𝑞3} >  in X such that 𝑝 ≠ 𝑞  there exist

neutrosophic crisp open sets  U =< 𝑢1, 𝑢2, 𝑢3 > and  V =<
𝑣1, 𝑣2, 𝑣3 > such that p in U, q in V and 𝑈 ∩ 𝑉 = ϕ𝑁.

Definition 3.2:

𝝱 is collection of neutrosophic crisp open sets in (𝑋, Γ ) 

is said to be neutrosophic crisp base of neutrosophic crisp 

topology (NCT) if  Γ𝑁𝐶 =∪ β.

Definition 3.3:

Neutrosophic crisp topology (𝑋, Γ ) is countable if it 

has neutrosophic crisp countable basis for neutrosophic 

crisp topology, i.e. there exist a countable collection of 

neutrosophic crisp open set {𝑈𝛼}𝛼∊𝑁 =< 𝑢11, 𝑢12, 𝑢13 >, <
𝑢21, 𝑢22, 𝑢23 >, … . . , < 𝑢𝑛1, 𝑢𝑛2, 𝑢𝑛3 >  such that for any

neutrosophic crisp open set U containing a crisp 

neutrosophic point p in U, there exist a β ∈ 𝑁 such that 𝑝 ∈
 𝑈β ⊆ 𝑈.

Definition 3.4:

Neutrosophic crisp homeomorphism is a bijective 

mapping 𝑓 of NCTs (𝑋, Γ1  ) onto NCTs (𝑌, Γ2 ) is called a

neutrosophic crisp homeomorphism if it is neutrosophic 

crisp continuous and neutrosophic crisp open. 

Definition 3.5:

Neutrosophic crisp topology is neutrosophic crisp 

Locally Euclidean of dimension 𝑛 if for each neutrosophic 

crisp point p =< {𝑝1}, {𝑝2}, {𝑝3} >  in X, there exist a

neutrosophic crisp open set U =< 𝑢1, 𝑢2, 𝑢3 > and a map

𝜙: 𝑈 → 𝑅𝑛  such that 𝜙: 𝑈 → 𝜙(𝑈) 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝜙(𝑈) =<
𝜙(𝑢1), 𝜙(𝑢2), 𝜙(𝑢3) > is a homeomorphism; in particular

𝜙(𝑈) is neutrosophic crisp open set of 𝑅𝑛 . 

We define a neutrosophic crisp topological manifold 

(NCM) as follows: 

Definition 3.6:

(NCM) is a neutrosophic crisp topological manifold 

space if the following conditions together satisfied 

1. (NCM) is satisfying neutrosophic crisp topology

axioms.

2. (NCM) is neutrosophic crisp Haussdorff.

3. (NCM) is countable neutrosophic crisp topology.

4. (NCM) is neutrosophic crisp Locally Euclidean of

dimension n.

We give the terminology (𝑀𝑁𝐶)𝑛  to mean that it is a

neutrosophic crisp manifold of dimension 𝑛. 

The following graph represents the neutrosophic 
crisp topological manifold space as a 

generalization of topological manifold space: 

𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑀𝑎𝑛𝑖𝑓𝑜𝑙𝑑 

↙   ↓   ↘ 

Haussdorff    Second Countable    Locally Euclidean 

↓               ↓                  ↓ 

  Neutrosophic crisp Haussdorff    Neutrosophic crisp Countable 

  Neutrosophic crisp  Locally Euclidean 

↘   ↓   ↙ 

𝑁𝑒𝑢𝑡𝑟𝑜𝑠𝑜𝑝ℎ𝑖𝑐 𝐶𝑟𝑖𝑠𝑝 𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑀𝑎𝑛𝑖𝑓𝑜𝑙𝑑 

Figure 3.1 A graph of  generalization of topological manifold space 

4 Some New Topological Concepts on NCM 

Space [2, 3, 4, 6, 8] 

The neutrosophic crisp set U and map  𝜙(𝑈)  in the 

Definition 3.5 of neutrosophic crisp Locally Euclidean is 

called a neutrosophic crisp coordinate chart. 

Definition 4.1: 

A neutrosophic crisp coordinate chart on  (𝑀𝑁𝐶)𝑛 is a pair

(𝑈, 𝜙(𝑈))where U in  (𝑀𝑁𝐶)𝑛 is open and 𝜙: 𝑈 → 𝜙(𝑈) ⊆

𝑅𝑛  is a neutrosophic crisp homeomorphism, and then the 

neutrosophic crisp set U is called a neutrosophic  crisp 

coordinate domain or a neutrosophic crisp coordinate 

neighborhood.  

A neutrosophic crisp coordinate chart (𝑈, 𝜙(𝑈)) is centered 

at 𝑝 if 

𝜙(𝑝) = 0 𝑤ℎ𝑒𝑟𝑒 

 𝑎  𝑛𝑒𝑢𝑡𝑟𝑜𝑠𝑜𝑝ℎ𝑖𝑐 crisp 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑏𝑎𝑙𝑙 𝜙(𝑈) 

is a ball in 𝑅𝑛. 

Definition 4.1.1: 

A Ball in neutrosophic crisp topology is an open ball 

(𝑟, є, 𝑝) , r is radius 

0 ≤ 𝑟 ≤ 1 , 0 < є < 𝑟 𝑎𝑛𝑑 𝑝 𝑖𝑠 𝑁𝐶𝑃. 

Theorem 4.1:

Every NCM has a countable basis of 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑏𝑎𝑙𝑙. 

Theorem 4.2: 

In  (𝑀𝑁𝐶)𝑛  every neutrosophic crisp point  𝑝 = (<
{𝑝1}, {𝑝2}, {𝑝3} >)  ∈ (𝑀𝑁𝐶)𝑛 is contained in neutrosophic

coordinate ball centered at 𝑝 if: 
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 (𝜙−1(𝜙(𝑝)), 𝜙(𝜙−1(𝜙(𝑝))))  

and then if we compose 𝜙 with a translating we must get 

𝑝 = 𝜙(𝑝) = 0. 

Proof: Since (𝑀𝑁𝐶)𝑛 neutrosophic crisp Locally Euclidean,

p must be contained in a coordinate chart(𝑈, 𝜙(𝑈)). Since 

𝜙(𝑈) is a neutrosophic crisp open set containing𝜙(𝑝), by 

the NCT of  𝑅𝑛  there must be an open ball B containing 

𝜙(𝑝)  and contained in𝜙(𝑈) . The appropriate coordinate 

ball is (𝜙−1(𝜙(𝑝)), 𝜙(𝜙−1(𝜙(𝑝)))) . Compose 𝜙 with a 

translation taking 𝜙(𝑝) to 0 , then 𝑝 = 𝜙(𝑝) = 0, we have 

completed the proof. 

Theorem 4. 3: 

The neutrosophic crisp graph 𝐺(𝑓)  of a continuous 

function𝑓: 𝑈 → 𝑅𝑘,  

where  𝑈 𝑖𝑠 𝑛𝑒𝑢𝑡𝑟𝑜𝑠𝑜𝑝ℎ𝑖𝑐 𝑐𝑟𝑖𝑠𝑝 𝑠𝑒𝑡 𝑖𝑛 𝑅𝑛 , is NCM. 

𝐺(𝑓) = {(𝑝, 𝑓(𝑝)) 𝑖𝑛 𝑅𝑛×𝑅𝑘: 𝑝  𝑁𝐶𝑃𝑖𝑛 𝑈 } 

Proof: Obvious. 

Example: Spheres are NCM. An n-sphere is defined as: 

𝑆𝑛 = {𝑝 𝑁𝐶𝑃 𝑖𝑛 𝑅𝑛+1: |𝑝|2 = √𝑝1
2 + 𝑝2

2 + 𝑝3
22

= 1} . 

Definition 4.2: 

Every neutrosophic crisp point p has a neutrosophic crisp 

neighborhood point 𝑝NCbd contained in an open ball B.

Definition 4.3: 

Here come the basic definitions first. 

Let (𝑋, Γ ) be a NCTS. 

a) If a family{< 𝐺𝑖1, 𝐺𝑖2, 𝐺𝑖3 >: 𝑖 ∈ 𝐽} of NCOSs in

X satisfies the condition ∪ {< 𝐺𝑖1, 𝐺𝑖2, 𝐺𝑖3 >: 𝑖 ∈
𝐽} = 𝑋𝑁 then it is called a neutrosophic open cover

of X.

b) A finite subfamily of an open cover {<
𝐺𝑖1, 𝐺𝑖2, 𝐺𝑖3 >: 𝑖 ∈ 𝐽} on X, which is also a neutro-

sophic open cover of X is called a neutrosophic finite

subcover { < 𝐺𝑖1, 𝐺𝑖2, 𝐺𝑖3 >: 𝑖 ∈ 𝐽}.

c) A family {< 𝐾𝑖1, 𝐾𝑖2, 𝐾𝑖3 >: 𝑖 ∈ 𝐽} of NCOSs in X

satisfies the finite intersection property [FIP] iff

every finite subfamily {< 𝐾𝑖1, 𝐾𝑖2, 𝐾𝑖3 >: 𝑖 =
1, 2, … … , 𝑛}  of the family satisfies the condition:

∩ {< 𝐾𝑖1, 𝐾𝑖2, 𝐾𝑖3 >: 𝑖 ∈ 𝐽} ≠ ϕ𝑁.

d) A NCTS (𝑋, Γ ) is called a neutrosophic crisp com-

pact iff each crisp neutrosophic open cover of X has

a finite subcover.

Corollary: 

A NCTS (𝑋, Γ ) is a neutrosophic crisp compact iff every 

family { < 𝐺𝑖1, 𝐺𝑖2, 𝐺𝑖3 >: 𝑖 ∈ 𝐽} of NCCS in X having the

FIP has non-empty intersection. 

Definition 4.4: 

Every neutrosophic point has a neutrosophic neigh-

borhood contained in a neutrosophic compact set is called 

neutrosophic locally compact set. 

Corollary: 

Every NCM is neutrosophic locally compact set. 

5 Some Metric Distances on a Neutrosophic Crisp 
Manifold [10, 9]

5.1. Haussdorff Distance between Two Neutrosophic Crisp 

Sets on NCM: 

Let  𝐴 =< 𝐴1, 𝐴2, 𝐴3 >  and 𝐵 =< 𝐵1, 𝐵2, 𝐵3 >   two

neutrosophic crisp sets on NCM then the Haussdorff 

distance between A and B is 

𝑑𝐻(𝐴, 𝐵) = 𝑠𝑢𝑝(𝑑(𝐴𝑖 , 𝐵𝑗), 𝑑(𝐵𝑗, 𝐴𝑖))

𝑑(𝐴𝑖 , 𝐵𝑗) =

𝑖𝑛𝑓|𝐴𝑖 − 𝐵𝑗|   , ∀ 𝑖, 𝑗 ∈ 𝐽

5.2. Modified Haussdorff Distance between Two 

Neutrosophic Crisp Sets on NCM: 

Let  𝐴 =< 𝐴1, 𝐴2, 𝐴3 > and 𝐵 =< 𝐵1, 𝐵2, 𝐵3 >  two neu-

trosophic crisp sets on NCM then the Haussdorff distance 

between A and B is 

𝑑𝐻(𝐴, 𝐵) = 

1

𝑛
[𝑠𝑢𝑝(𝑑(𝐴𝑖 , 𝐵𝑗), 𝑑(𝐵𝑗 , 𝐴𝑖))], 𝑛 𝑖𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝐶𝑃𝑠

𝑑(𝐴𝑖 , 𝐵𝑗) = 𝑖𝑛𝑓|𝐴𝑖 − 𝐵𝑗|   , ∀ 𝑖, 𝑗 ∈ 𝐽.

Conclusion and Future Work 

In this paper, we introduced and studied the neutrosophic 

crisp manifold as a new topological structure of manifold 

via neutrosophic crisp set, and some new topological con-

cepts on a neutrosophic crisp manifold space via neutro-

sophic crisp set, and also some metric distances on a neutro-

sophic crisp manifold. Future work will approach neutro-

sophic fuzzy manifold, a new topological structure of man-

ifold via neutrosophic fuzzy set, and some new topological 

concepts on a neutrosophic fuzzy manifold space via neu-

trosophic fuzzy set. 
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Abstract: Let G be a finite multiplicative group with

identity e and ( )N G be the Neutrosophic group with

indeterminate I . We denote by  ,Ne G I , the

Neutrosophic graph of G , ( )N G and I . In this paper,

we study the graph  ,Ne G I and its properties.

Among the results, it is shown that for  any finite 

multiplicative group G ,  ,Ne G I is a connected

graph of diameter less than or equal to 2. Moreover, for 

finite group G , we obtain a formula for enumerating

basic Neutrosophic triangles in  ,Ne G I .

Furthermore, for every finite groups G and G , we

show that G G if and only if ( )N G ( )N G ,

and if ( )N G ( )N G , then  ,Ne G I  ,Ne G I  .

Keywords: Indeterminacy; Finite Multiplicative group; Neutrosophic Group; Basic Neutrosophic triangle; Neutrosophic group 

and graph isomorphism. 

1 Introduction 

Most of the real world problems in the fields of 

philosophy, physics, statistics, finance, robotics, design 

theory, coding theory, knot theory, engineering, and 

information science contain subtle uncertainty and 

inconsistent, which causes complexity and difficulty in 

solving these problems.  Conventional methods failed 

to handle and estimate uncertainty in the real world 

problems with near tendency of the exact value. The 

determinacy of uncertainty in the real world problems 

have been great challenge for the scientific community, 

technological people, and quality control of products in 

the industry for several years. However, different 

models or methods were presented systematically to 

estimate the uncertainty of the problems by various   

incorporated computational systems and algebraic 

systems. To estimate the uncertainty in any system of 

the real world problems, first attempt was made by the 

Lotfi A Zadesh [1] with help of Fuzzy set theory in 

1965. Fuzzy set theory is very powerful technique to 

deal and describe the behavior of the systems but it is 

very difficult to define exactly. Fuzzy set theory helps 

us to reduce the errors of failures in modeling and 

different fields of life.  In order to define system 

exactly, by using Fuzzy set theory many authors were 

modified, developed and generalized the basic theories 

of classical algebra and modern algebra. Along with 

Fuzzy set theory there are other different theories have 

been study the properties of uncertainties in the real 

world problems, such as probability theory, 

intuitionistic Fuzzy set theory, rough set theory, 

paradoxist set theory [2-5]. Finally, all above theories 

contributed to explained uncertainty and inconsistency 

up to certain extent in real world problems. None of the 

above theories were not studied the properties of 

indeterminacy of the real world problems in our daily 

life. To analyze and determine the existence of 

indeterminacy in various real world problems, the 

author Smarandache [6] introduced philosophical 

theory such as Neutrosophic theory in 1990. 

Neutrosophic theory is a specific branch of 

philosophy, which investigates percentage of 

Truthfulness, falsehood and neutrality of the real world 

problem. It is a generalization of Fuzzy set theory and 

intuitionistic Fuzzy set theory. This theory is 

considered as complete representation of a 

mathematical model of a real world problem. 

Consequently, if uncertainty is involved in a problem 

we use Fuzzy set theory, and if indertminancy is 

involved in a problem we essential Neutrosophic 

theory. 

Kandasamy and Smarandache [7] introduced the 

philosophical algebraic structures, in particular, 

Neutrosophic algebraic structures with illustrations and 

examples in 2006 and initiated the new way for the 

emergence of a new class of structures, namely, 

Neutrosophic groupoids, Neutrosophic groups, 

Neutrosophic rings etc. According to these authors, the 

Neutrosophic algebraic structures N(I) was a nice 

composition of indeterminate I and the elements of a 
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given algebraic structure ( , )N  . In particular, the new 

algebraic structure ( ( ), )N I   is called Neutrosophic 

algebraic structure which is generated by N and I .

In [8], Agboola and others have studied some 

properties of Neutrosophic group and subgroup. 

Neutrosophic group denoted by  ( ),N G  and defined

by ( )N G G I  , where G is a group with respect 

to multiplication. These authors also shown that all 

Neutrosophic groups generated by the Neutrosophic 

element I  and any group isomorphic to Klein 4-group 

are Lagrange Neutrosophic groups. 

Recent research in Neutrosophic algebra has 

concerned developing a graphical representation of the 

elements of a given finite Neutrosophic set, and then 

graph theoretically developing and analyzing the 

depiction to research Neutrosophic algebraic 

conclusions about the finite Neutrosophic set. The most 

well-known of these models is the Neutrosophic graph 

of Neutrosophic set, first it was introduced by 

Kandasamy and Smarandache [9].  

Recently, the authors Kandasamy and 

Smarandache in [9-10] have introduced Neutrosophic 

graphs, Neutrosophic edge graphs and Neutrosophic 

vertex graphs, respectively. If the edge values are from 

the set G I they will termed as Neutrosophic 

graphs, and a Neutrosophic graph is a graph in which at 

least one edge is indeterminacy. Let ( )V G be the set 

of all vertices ofG . If the edge set ( )E G , where at

least one of the edges of G is an indeterminate one. 

Then we call such graphs as a Neutrosophic edge 

graphs. Further, a Neutrosophic vertex graph NG is a 

graph G with finite non empty set ( )N NV V G of 

p  points where at least one of the point in ( )NV G  is 

indeterminate vertex. Here ( )NV G ( )V G N  , 

where ( )V G are vertices of the graph G and N the

non empty set of vertices which are indeterminate. 

In the present paper, indeterminacy of the real 

world problems are expressed as mathematical model 

in the form of new algebraic structure  ,GI  , and its

properties are studied in second section, where G is 

finite group with respect to multiplication and I 

indeterminacy of the real world problems.  

  In the third section, to find the relation between G, 

I and N (G) we introduced Neutrosophic 

graph  ,Ne G I of the Neutrosophic group  ( ),N G  ,

by studying its important concrete properties of these 

graphs.  

In the fourth section, we introduced basic 

Neutrosophic triangles in the graph  ,Ne G I and

obtained a formula for enumerating basic Neutrosophic 

triangles in  ,Ne G I  to understand the internal

mutual relations between the elements in G, I and N 

(G). 

In the last section, all finite isomorphic groups 

G and G such that ( ) ( )N G N G and

   , ,Ne G I Ne G I  are characterized with examples.

Throughout this paper, all groups are assumed to 

be finite multiplicative groups with identity e . Let 

( )N G be a Neutrosophic group generated by G and

I . For classical theorems and notations in algebra and 

Neutrosophic algebra, the interest reader is refereed to 

[11] and [8]. 

Let X be a graph with vertex set ( )V X and edge 

set ( )E X . The cardinality of ( )V X and ( )E X are 

denoted by ( )V X and ( )E X , which are order and 

size of X , respectively. If X is connected, then there 

exist a path between any two vertices in X . We denote 

by nK the complete graph of order n . Let ( )u V X . 

Then degree of u , deg( )u in X is the number of 

edges incident at u . If deg( ) 1u  then the vertex u is 

called pendent. The girth of X is the length of smallest 

cycle in X . The girth of X is infinite if X has no 

cycle. Let d( , )x y be the length of the shortest path 

from two vertices x and y in X , and the diameter of 

X denoted by 

( )Diam X max{ ( , )d x y : , ( )}x y V X . 

For further details about graph theory the reader should 

see [12]. 

2 Basic Properties of Neutrosophic set and 

GI

This section will present a few basic concepts of 

Neutrosophic set and Neutrosophic group that will then 

be used repeatedly in further sections, and it will 

introduce a convenient notations. A few illustrations 

and examples will appear in later sections.   

Neutrosophic set is a mathematical tool for 

handling real world problems involving imprecise, 

inconsistent data and indeterminacy; also it generalizes 

the concept of the classic set, fuzzy set, rough set etc. 

According to authors Vasantha Kandasamy and 

Smarandache, the Neutrosophic set is a nice 

composition of an algebraic set and indeterminate 

element of the real world problem. 
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Let N be a non-empty set and I be an

indeterminate. Then the set ( )N I N I  is called 

a Neutrosophic set generated by N and I .If  ‘  ’ is

usual multiplication in N , then I  has the following

axioms.  

1. 0 0I 

2. 1 1I I I   

3.
2I I

4. a I I a   , for every a N .

5.
1I 

does not exist.

For the definition, notation and basic properties of 

Neutrosophic group, we refer the reader to Agbool [8]. 

As treated in [8], we shall denote the finite 

Neutrosophic group by ( )N G for a groupG .

Definition 2.1 Let G be any finite group with respect 

to multiplication. Then the set GI defined as 

 :GI gI g G   :Ig g G  .

Definition 2.2 If a map f from a finite nonempty 

set S into a finite nonempty set S  is both one-one and

onto then there exist a map g from S  into S that is

also one-one and onto. In this case we say that the two 

sets are equivalent, and, abstractly speaking, these sets 

can be regarded as   the same cardinality. We write  

S  ~ S  whenever there is a one-one map of a set

S onto S  .

Two finite rings R and R are equivalent if 

there is a one-one correspondence between R and R . 
We write R  ~ R .
Definition 2.3 Let G be any finite group with respect 

to multiplication and let ( )N G G I  .Then 

 ( ),N G  is called a Neutrosophic group generated

by G and I under the binary operation ‘  ’on G . The

Neutrosophic group ( )N G has the following 

properties.  

1. ( )N G is not a group.

2. ( )G N G .

3. ( )GI N G .

4. ( )N G is a specific composition of G and I .

Lemma 2.4 Let G be any finite group with respect to 

multiplication and 
2I I . Then G GI . In 

particular, G GI . 

Proof. For any finite group G , we have G GI and

GI G . Now define a map :f G GI by the

relation ( )f a aI for every a I . Let ,a b G .

Then 

a b  0a b   ( ) 0a b I I  

aI bI  ( ) ( )f a f b .This shows that f is a

well defined one-one function. Further, we have 

Range( )f  ( ) :f a GI a G  

 :aI GI a G   GI .

This show that for every aI GI at least one

a G such that ( )f a aI .

Therefore, :f G GI is one-one correspondence 

and consequently a bijective function. HenceG GI . 

Lemma 2.5  Let G be any finite group with respect to 

multiplication and let ( )N G G I  . Then the

order of ( )N G is 2 G . 

Proof: We have  :GI gI g G  .

Obviously, GI  G and G  GI  but ( )GI N G .

It is clear that ( )N G is the disjoint union of 

G andGI .That is,  

( )N G G GI  and G GI   . 

Therefore, ( )N G G GI  2 G , 

since G GI . 

Lemma 2.6 The setGI is not Neutrosophic group with 

respect to multiplication of groupG . 

Proof: It is obvious, sinceGI G I  .

Lemma 2.7 The elements inGI satisfies the following 

properties, 

1. e gI gI 

2.  
2 2gI g I

3.

terms

... n

n

gI gI gI g I   for all positive integers

n . 

4.  
1

gI


does not exist, since 
1I 

does not ex-

ist.

5. gI g I g g  .

Proof: Directly follows from the results of the 

group  ( ),N G  .
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Theorem 2.8 The structure  ,GI  is a monoid under

the operation ( )( )aI bI abI for all ,a b in the group 

 ,G  and
2I I . 

Proof: We know that  :GI gI g G  .

Let aI , bI and cI be any three elements in GI . Then 

the binary operation 

( )( )aI bI abI in  ,GI  satisfies the following

axioms. 

1. abI GI ( )( )aI bI GI  .

2.    ( )( ) ( ) ( ) ( )aI bI cI ab I cI

     ( ) ) ( )) ( )( )ab c I a bc I aI bI cI  

3. Let e be the identity element in  ,G  .Then

eI I Ie   and
2( )I aI aI ( )aI aI I  .

Remark 2.9 The structure  ,GI  is never a group

because 
1I 

does not exist.

Here we obtain lower bounds and upper bounds of the 

order of the Neutrosophic group ( )N G . Moreover, 

these bounds are sharp. 

Theorem 2.10 Let G be a finite group with respect to

multiplication. Then, 

1 G n  2 ( ) 2N G n   . 

Proof. We have, 

1G   { }G e  ( )N G  { , }G GI e I 

 ( ) 2N G  . This is one extreme of the required 

inequality. For other extreme, by the Lemma [2.4], 

1G   1GI 

 2G GI  and G GI is not odd 

 G GI is even. 

 ( ) 2N G G GI n   . 

Hence,  the theorem. 

3 Basic Properties of Neutrosophic Graph 

In this section, our aim is to introduce the notion 

and definition of Neutrosophic graph of finite 

Neutrosophic group with respect to multiplication and 

study on its basic and specific properties such as 

connectedness, completeness, bipartite, order, size, 

number of pendent vertices, girth and diameter. 

Definition 3.1 A graph  ,Ne G I  associated with

Neutrosophic group  ( ),N G  is undirected simple

graph whose vertex set is ( )N G and two vertices 

x and y in ( )N G if and only if xy is either x or y . 

Theorem 3.2 For any group  ,G  , the Neutrosophic

graph  ,Ne G I is connected.

Proof: Let e be the identity element in G .Then

( )e N G , since ( )G N G . Further, xe x , for 

every x e in ( )N G . It is clear that the vertex e is

adjacent to all other vertices of the graph  ,Ne G I .

Hence  ,Ne G I is connected.

Theorem 3.3 Let 1G  .Then the graph has at least

one cycle of length 3. 

Proof: Since 1G  implies that ( ) 4N G  . So

there is at least one vertex gI of ( )N G such that 

gI is adjacent to the vertices e and I in 

 ,Ne G I ,since eI I ,
2( )I gI gI gI  and 

( )gI e  geI gI . Hence we have the cycle 

e I gI e   of length 3, where g e .

Example 3.4 Since 

 10( ) 2, 4, 6, 8, 2 , 4 , 6 , 8N G I I I I

is the Neutrosophic group of the group 

 10 2, 4, 6, 8G  with respect to multiplication

modulo 10, where 6e  .The Neutrosophic graph 

 10 ,Ne G I contains three cycles of length 3, which

are listed below. 

1 : 6 2 6C I I   , 

2 : 6 4 6C I I   , 

3 6 8 8C I I    . 

Theorem 3.5 The Neutrosophic graph  ,Ne G I is

complete if and only if 1G  .

Proof: Necessity. Suppose that  ,Ne G I is

complete. If possible assume that 1G  , then

( ) 4N G  . So without loss of generality we may

assume that ( ) 4N G  and clearly the vertices
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, , ,e g I gI   ( , )V Ne G I .Therefore the vertex

g is not adjacent to the vertex I in  ,Ne G I , since

gI g or I for each g e in G , this contradicts our

assumption that  ,Ne G I is complete. It follows that

( )N G cannot be four. Further, if ( ) 4N G  , then

obviously we arrive a contradiction. So our assumption 

is wrong , and hence 1G  .

Sufficient. Suppose that 1G  . Then, trivially

( ) 2N G  .Therefore,  ,Ne G I
2K , since 

eI I . Hence,  ,Ne G I is  a complete graph.

Recall that  ( , )V Ne G I is the order and

 ( , )E Ne G I is the size of the Neutrosophic graph 

 ,Ne G I . But,

 ( , )V Ne G I ( ) 2N G G 

and the following theorem shows that the size of 

 ,Ne G I .

Theorem 3.6 The size of Neutrosophic graph 

 ,Ne G I is 3 2G  .

Proof: By the definition of Neutrosophic graph, 

 ,Ne G I contains  
2

2 1G  non adjacent pairs. 

But the number of combinations of any two distinct 

pairs from ( )N G is
( )

2

N G 
 
 

. Hence the total 

number of adjacent pairs in  ,Ne G I is

 ( , )E Ne G I 
( )

2

N G 
 
 

 
2

2 1G 

3 2G  .

Theorem 3.7 [11] The size of a simple complete graph 

of order n  is 
1

( 1)
2

n n  . 

Corollary 3.8 The Neutrosophic graph  ,Ne G I ,

1G  is never complete.

Proof: Suppose on contrary that 

 ,Ne G I , 1G  is  complete. Then, by the

Theorem [3.7], the total number of edges in 

 ,Ne G I is   
1

2 2 1
2

G G   2 1G G  ,

but in view of Theorem [3.6], we arrived a 

contradiction to the completeness of  ,Ne G I .

Theorem 3.9 The graph  ,Ne G I has exactly

1G  pendent vertices.

Proof: Since ( )N G G GI  and G GI   . 

Let ( )x N G . Then either x G or x GI . Now

consider the following cases on GI and G , 

respectively. 

Case 1. If x GI , then x gI for g G . But

( )xI gI I  2gI gI x  and ex egI

gI x  . This implies that the vertex x is adjacent to 

both the vertices e and I  in ( )N G .Hence 

deg( ) 1x  for every x GI .

Case 2. If x G , then  ex x ,for every x e and

egI gI , for every gI GI . Therefore 

deg( ) ( ) 1 1e N G   . Now show that 

deg( ) 1x  , for every x e in G . Suppose,

deg( ) 1x  , for every x e in G . Then there exist

another vertex y e in G such that either 

xy x or y , this is not possible in G , because G is

a finite multiplication group. Thus deg( ) 1x  , for 

x e inG .

From case (1) and (2), we found the degree of 

each non identity vertex inG is 1. This shows that each 

and every non identity element in G  is a pendent 

vertex in  ,Ne G I . Hence, the total number of

pendent vertices in  ,Ne G I is 1G  .

The following result shows that  ,Ne G I is

never a traversal graph. 

Corollary 3.10 Let 1G  . Then  ,Ne G I is never

Eulerian and never Hamiltonian. 

Proof. It is obvious from the Theorem [3.9].  

Theorem 3.11 [11] A simple graph is bipartite if and 

only it does not have any odd cycle. 

Theorem 3.12 The Neutrosophic graph  ,Ne G I ,

1G  is never bipartite.
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Proof. Assume that 1G  . Suppose,   ,Ne G I is

a bipartite graph. Then there exist a bipartition 

 ,G GI , since ( )N G G GI  and G GI   .

But e G and I GI , where e I . So there exist 

at least one vertex gI in  ,Ne G I such that

e I gI e   is an odd cycle of length 3 because 

,eI I ( )I gI gI and ( )gI e gI .  

This violates the condition of the Theorem [3.11].  

Hence   ,Ne G I is not a bipartite graph.

Theorem 3.13 The girth of a Neutrosophic graph is 3. 

Proof. In view of Theorem [3.3], for 1G  , we

always have a cycle e I gI e   of length 3, for each 

g e in G , which is smallest in  ,Ne G I .

This completes the proof. 

Remark 3.14 Let G be a finite group with respect to 

multiplication. Then ( ( , ))gir Ne G I   if 1G  ,

since  ,Ne G I is acyclic graph if and only if 1G  . 

Theorem 3.15 Diam( ( , )) 2Ne G I  . 

Proof. Let G be a finite group with respect to 

multiplication. Then we consider the following two 

cases.  

Case 1 Suppose 1G  . The graph  ,Ne G I
2K .

It follows that  ,Ne G I is complete, so

diam( ( , )) 1Ne G I  . 

Case 2 Suppose 1G  . Then the vertex e  is adjacent

to every vertex of  ,Ne G I . However the vertex

aI is not adjacent to bI for all a b in G , so 

( , ) 1d aI bI  . But in  ,Ne G I , there always exist

a path aI I bI  , since ( )aI I aI and

( )I bI bI , which gives ( , ) 2d aI bI  , for every 

aI , ( )bI N G .

Hence, both the cases conclude that: 

Diam( ( , )) 2Ne G I  . 

4 Enumeration of basic Neutrosophic trian-

gles in  ,Ne G I  

Since  ,Ne G I is triangle free graph for 1G  , we 

will consider 1G  in this section.  

Let us denote  a traingle by ( , , )x y z in  ,Ne G I with

vertices ,x y and z . Without loss of generality we

may assume that our triangles ( , , )e I gI have vertices 

e , I and gI , where g e in G . These triangles are

called basic Neutrosophic triangles in  ,Ne G I , which

are defined as follows. 

Definition 4.1 A triangle in the graph  ,Ne G I is

said to be basic Neutrosophic if it has the common 

vertices e and I .The set of all basic Neutrosophic 

triangles in  ,Ne G I denoted by

 ( , , ) : ineIT e I gI g e G  .

A triangle ( , , )x y z in  ,Ne G I is called non-basic

Neutrosophic if ( , , ) eIx y z T . 

The following short table illustrates some 

finite Neutrosophic graphs and their total number of 

basic Neutrosophic triangles. 

 ,Ne G I  * ,pNe Z I  ,nNe C I   2 ,pNe G I  4,Ne V I

eIT 2p   1n  2p   3 

where  * 0p pZ Z  is  a group with respect to 

multiplication modulo p , a prime, 

 2 11, , ,..., : 1n n

nC g g g g 

is a cyclic group generated by g with respect to 

multiplication, 

 2 0, 2, 4,...,2( 1)pG p 

is a group with respect to multiplication modulo 2p and 

 2 2 2

4 , , , :V e a b c a b c e   

is a Klein 4-group. 

Before we continue, it is important to note that 

the multiplicative identity e may differ from group to 

group. However, for simplicity sake we will continue 

to notate that 1e  , and we leave it to reader to 

understand from context of the group for e . 

The following results give information about 

enumeration of basic and non-basic Neutrosophic 

triangles in the graph  ,Ne G I .

First we begin a lemma, which gives a 

formula for enumerating the number of Neutrosophic 

triangles in  ,Ne G I corresponding to fixed elements

e and I in the Neutrosophic set ( )N G . 
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This is useful for finding the total number of 

non-basic Neutrosophic triangles in  ,Ne G I .

Theorem 4.2 Let 1G  . Then the total number of basic 

Neutrosophic triangles in  ,Ne G I is 1eIT G  .

Proof. Since ( )N G G GI  and G GI   . It 

is clear that e I . For any aI GI , the traid 

( , , ) eIe I aI T ( , ), ( , ),e I e aI and ( , )I aI are                   

edges in  ,Ne G I

, ( ) , ( )eI I e aI aI I aI aI   

,I aI GI  , where a e in G .

That is, for fixed vertices e , I and for each aI GI ,

the traid ( , , )e I aI exists in  ,Ne G I . Further, for

any vertex a G ,the vertices e , I and a does not

form a triangle in  ,Ne G I because ( , )I a is not an

edge in  ,Ne G I , since aI a or I for all a e .

So that the total number of triangles having common 

verities e and I in  ,Ne G I is

 ( ) 1eIT N G G  

 2 1G G   1G  .

Theorem 4.3 The total number of non-basic 

Neutrosophic triangles in  ,Ne G I is zero.

Proof. Suppose that two vertices either ,x y or ,y z or

,z x are not equal to e and I .  

Then the traid ( , , )x y z is a non-basic triangle in 

 ,Ne G I  ( , , ) eIx y z T

,xy x yz y   and zx z

 either xyzx x or yzxy y

or zxyz z . 

This is not possible in the Neutrosophic group ( )N G . 

Thus there is no any non-basic triangle in the 

graph  ,Ne G I , and hence the total number of non-

basic Neutrosophic triangles in  ,Ne G I is zero.

In view of Theorems [3.9] and [4.2], the 

following theorem is obvious. 

Theorem 4.4 The total number of pendent vertices and 

basic Neutrosophic triangles in  ,Ne G I is same,

which is equal to 1G  . 

5 Isomorphic properties of Neutrosophic 
groups and graphs 

In this section we consider important concepts 

known as isomorphism of groups and Neutrosophic 

groups. But the notion of isomorphism is common to 

all aspects of modern algebra [14] and Neutrosophic 

algebra. An isomorphism of groups and Neutrosophic 

groups are maps which preserves operations and 

structures. More precisely we have the following 

definitions which we make for finite groups and 

Neutrosophic finite groups.  

Definition.5.1 Two finite groups G and G  are said

to be isomorphic if there is a one-one correspondence 

:f G G such that ( ) ( ) ( )f ab f a f b for all

,a b G  and we write G G .

Now we proceed on to define isomorphism of 

finite Neutrosophic groups with distinct indeterminate, 

which can be defined over distinct groups with same 

binary operation. We can establish two main results.  

1. Two groups are isomorphic and their Neutro-

sophic groups are also isomorphic.

2. If two Neutrosophic groups are isomorphic,

then their Neutrosophic graphs are also iso-

morphic.

Definition 5.2 Let  ,G  and  ,G  be two finite

groups and let I I  be two indeterminates of two

distinct real world problems. The Neutrosophic groups 

( )N G  ,G I   and ( )N G  ,G I   

are isomorphic if there exist a group isomorphism 

 from G onto G such that ( )I I  and we

write ( ) ( )N G N G .

Definition 5.3 [13] If there is a one-one 

mapping a a of the elements of a group G onto

those a group G and if a a and b b implies

ab a b  , then we say that G and G are

isomorphic and write G G . If we put

( )a f a  and ( )b f b  for ,a b G , then 

:f G G is a bijection satisfying 

( ) ( ) ( )f ab a b f a f b   . 

Lemma 5.4  G G ( ) ( )N G N G  .

Proof. Necessity. Suppose G G . Then there exist a

group isomorphism   from G onto G  such

that ( )a a  for every a G and a G  . By the

definition [12], the relation says that 
 
sends ab  onto

a b  , where ( )a a  and ( )b b  are the elements of
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G one-one corresponding to the elements a , b in G .

We will prove that ( ) ( )N G N G . For this we

define a map : ( ) ( )f N G N G by the relation

( )f G G , ( )f I I  and ( )f GI G I  .

Suppose , ( )x y N G .  

Then either ,x y G or ,x y GI . Now consider 

the following two cases. 

Case 1 Suppose ,x y G .  

Then x x and y y .

Trivially, ( ) ( )f x x x  , for every x G and

x G  , since G G . Thus, ( ) ( )N G N G .

Case 2 Suppose ,x y GI .  

Then x aI and y bI for ,a b G . Obviously, f is

one-one correspondence between  ( )N G and ( )N G ,

since G G and ( )f I I  . Further,

 ( ) ( )( )f xy f aI bI

( )f abI a b I   ,

since ( )f GI G I 

( )( )a I b I   

( ) ( )f aI f bI  ( ) ( )f x f y .  

Thus f is a Neutrosophic group isomorphism from 

( )N G onto ( )N G , and hence ( ) ( )N G N G .

Sufficiency. It is similar to necessity,  

because G I G I    implies that G G and 

GI G I  under the mapping a a
and aI a I  , respectively.

Theorem 5.5 If G G , then

 ,Ne G I   ,Ne G I  , where I I  .

But converse is not true. 

Proof. Suppose ( )N G G I  and 

( )N G G I   be two different Neutrosophic 

groups generated by G , I and G , I  , respectively.

Let  be an isomorphism from G onto G .

Then  is one-one correspondence between the 

graphs  ,Ne G I and  ,Ne G I  under the relation

( )x x  for every ( )x N G and ( )x N G  .

Further to show that  preserves the adjacency. For 

this let x and y be any two vertices of the graph 

 ,Ne G I , then x , ( )y N G . This implies that

 ( , ) ( , )x y E Ne G I xy x 

( ) ( ) ( )x y x     x y x   

 ( , ) ( , )x y E Ne G I     .

Hence, G and G are adjacent in  ,Ne G I  .

similarly,  maps non-adjacent vertices to non-

adjacent vertices. Thus,  is a Neutrosophic graph 

isomorphism from  ,Ne G I onto  ,Ne G I  , that

is,  ,Ne G I   ,Ne G I  .

The converse of the Theorem [5.5] is not true, 

in general. Let 4G V and let
*

5G Z  . Clearly,

 ,Ne G I   ,Ne G I  , but 4V is not isomorphic 

to 
*

5Z . 

This is illustrated in the following figure.
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Abstract. In this paper, we propose some transfor-
mations based on the centroid points between single 

valued  neutrosophic numbers. We introduce these trans-
formations according to truth, indeterminacy and falsity 

value of single valued neutrosophic numbers. We 

propose a new similarity measure based on falsity value 

between single valued neutrosophic sets. Then we prove 

some properties on new similarity measure based on 

falsity value between 

falsity value between single valued neutrosophic sets.

Furthermore, we propose similarity measure based on 

falsity value between single valued neutrosophic sets 

based on the centroid points of transformed single valued 

neutrosophic numbers. We also apply the proposed 

similarity measure between single valued neutrosophic 

sets to deal with pattern recognition problems. 

Keywords: Neutrosophic sets, Single Valued Neutrosophic Numbers, Centroid Points.

1 Introduction 

In [1] Atanassov introduced a concept of intuitionistic 
sets based on the concepts of fuzzy sets [2]. In [3] 

Smarandache introduced a concept of neutrosophic sets 

which is characterized by truth function, indeterminacy 
function and falsity function, where the functions are com-

pletely independent. Neutrosophic set has been a mathe-
matical tool for handling problems involving imprecise, 

indeterminant and inconsistent data; such as cluster analy-

sis, pattern recognition, medical diagnosis and decision 
making.In [4] Smarandache et.al introduced a concept of 

single valued neutrosophic sets. Recently few researchers 
have been dealing with single valued neutrosophic sets [5-

10]. 
The concept of similarity is fundamentally important in 

almost every scientific field. Many methods have been 

proposed for measuring the degree of similarity between 
intuitionistic fuzzy sets [11-15].  Furthermore, in [13-15] 

methods have been proposed for measuring the degree of 

similarity between intuitionistic fuzzy sets based on trans-

formed techniques for pattern recognition. But those meth-
ods are unsuitable for dealing with the similarity measures 

of neutrosophic sets since intuitionistic sets are character-

ized by only a membership function and a non-
membership function. Few researchers dealt with similarity 

measures for neutrosophic sets [16-22]. Recently, Jun [18] 
discussed similarity measures on internalneutrosophic sets, 

Majumdar et al.[17] discussed similarity and entropy of 

neutrosophic sets, Broumi et.al.[16]discussed several simi-
larity measures of neutrosophic sets, Ye [9] discussed sin-

gle-valued neutrosophic similarity measures based on co-
tangent function and their application in the fault diagnosis 

of steam turbine, Deli et.al.[10] discussed multiple criteria 
decision making method on single valued bipolar neutro-

sophic set based on correlation coefficient similarity meas-

ure, Ulucay et.al. [21] discussed Jaccard vector similarity 
measure of bipolar neutrosophic set based on multi-criteria 

decision making and Ulucay et.al.[22] discussed similarity 
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measure of bipolar neutrosophic sets and their application 

to multiple criteria decision making. 
       In this paper, we propose methods to transform be-

tween single valued neutrosophic numbers based on cen-

troid points. Here, as single valued neutrosophic sets are 
made up of three functions, to make the transformation 

functions be applicable to all single valued neutrosophic 
numbers, we divide them into four according to their truth, 

indeterminacy and falsity values. While grouping accord-

ing to the truth values, we take into account whether the 
truth values are greater or smaller than the indeterminancy 

and falsity values. Similarly, while grouping according to 
the indeterminancy/falsity values, we examine the inde-

terminancy/falsity values and their greatness or smallness 
with respect to their remaining two values. We also pro-

pose a new method to measure the degree of similarity 

based on falsity values between single valued neutrosophic 
sets. Then we prove some properties of new similarity 

measure based on falsity value between single valued neu-
trosophic sets. When we take this measure with respect to 

truth or indeterminancy we show that it does not satisfy 

one of the conditions of similarity measure. We also apply 
the proposed new similarity measures based on falsity val-

ue between single valued neutrosophic sets to deal with 
pattern recognition problems. Later, we define the method 

based on falsity value to measure the degree of similarity 
between single valued neutrosophic set based on centroid 

points of transformed single valued neutrosophic numbers 

and the similarity measure based on falsity value between 
single valued neutrosophic sets. 

In section 2, we briefly review some concepts of single 
valued neutrosophic sets [4] and property of similarity 

measure between single valued neutrosophic sets. In sec-

tion 3, we define transformations between the single val-
ued neutrosophic numbers based on centroid points. In sec-

tion 4, we define the new similarity measures based on fal-
sity value between single valued neutrosophic sets and we 

prove some properties of new similarity measure between 
single valued neutroshopic sets. We also apply the pro-

posed method to deal with pattern recognition problems. In 

section 5, we define the method to measure the degree of 
similarity based on falsity value between single valued 

neutrosophicset based on the centroid point of transformed 
single valued neutrosophic number and we apply the 

measure to deal with pattern recognition problems. Also 

we compare the traditional and new methods in pattern 
recognition problems. 

2 Preliminaries 

Definition 2.1[3] Let 𝑈  be a universe of discourse. The 

neutrosophic set 𝐴 is an object having the farm 𝐴 =

{〈𝑥: 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉 , 𝑥 ∈ 𝑈}  where the functions

𝑇, 𝐼, 𝐹: 𝑈 →]−0, 1+[  respectively the degree of member-

ship, the degree of indeterminacy and degree of non-

membership of the element 𝑥 ∈ 𝑈  to the set 𝐴  with the 

condition: 

0− ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3+

Definition 2.2 [4] Let 𝑈  be a universe of discourse.The 

single valued neutrosophic set 𝐴 is an object having the 

farm 𝐴 = {〈𝑥: 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉 , 𝑥 ∈ 𝑈}  where the func-

tions 𝑇, 𝐼, 𝐹: 𝑈 → [0,1]respectively the degree of member-

ship, the degree of indeterminacy and degree of non-

membership of the element  𝑥 ∈ 𝑈 to the set A with the 

condition: 

0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3

For convenience we can simply use x = (T,I,F) to represent 

an element x in SVNS, and element x can be called a sin-

gle valued neutrosophic number. 

Definition 2.3 [4] A single valued neutrosophic set 𝐴 is 

equal to another single valued neutrosophic set B, 𝐴 = 𝐵 

if∀𝑥 ∈ 𝑈, 

𝑇𝐴(𝑥) = 𝑇𝐵(𝑥),   𝐼𝐴(𝑥) = 𝐼𝐵(𝑥),    𝐹𝐴(𝑥) = 𝐹𝐵(𝑥).

Definition 2.4[4] A single valued neutrosophic set A is 

contained in another  single valued neutrosophic set B , 

𝐴 ⊆  𝐵 if ∀𝑥 ∈ 𝑈, 

𝑇𝐴(𝑥) ≤ 𝑇𝐵(𝑥),  𝐼𝐴(𝑥) ≤ 𝐼𝐵(𝑥),  𝐹𝐴(𝑥) ≥ 𝐹𝐵(𝑥).

Definition 2.5[16] (Axiom of similarity measure) 

A mapping𝑆(𝐴, 𝐵): 𝑁𝑆(𝑥) × 𝑁𝑆(𝑥) →  [0,1]  , where 𝑁𝑆(𝑥)

denotes the set of all NS in𝑥 = {𝑥1, … , 𝑥𝑛},is said to be the

degree of similarity between 𝐴 and 𝐵 if it satisfies the fol-

lowing conditions: 

s𝑃1) 0 ≤ 𝑆(𝐴, 𝐵)  ≤  1 

s𝑝2) 𝑆(𝐴, 𝐵) = 1 if and only if 𝐴 = 𝐵 , ∀ 𝐴, 𝐵 ∈  𝑁𝑆

s𝑃3) 𝑆(𝐴, 𝐵) = 𝑆(𝐵, 𝐴) 

s𝑝4) If 𝐴 ⊆   𝐵 ⊆  𝐶 for all 𝐴, 𝐵, 𝐶 ∈  𝑁𝑆 , then 𝑆(𝐴, 𝐵) ≥

 𝑆(𝐴, 𝐶)and  𝑆(𝐵, 𝐶)  ≥  𝑆(𝐴, 𝐶). 
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     In this section, we propose transformation techniques 

between a single valued neutrosophic  number 

〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉  and a single valued neutrosophic 
number 𝐶(𝑥𝑖). Here 〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉 denote the single 
valued neutrosophic numbers to represent an element 𝑥𝑖 in 
the single valued neutrosophic set A, and 𝐶𝐴(𝑥𝑖)

 is the cen-
ter of a triangle (SLK) which was obtained by the trans-

formation on the three-dimensional 𝑍 − 𝑌 − 𝑀 plane. 

First we transform single valued neutrosophic numbers ac-

cording to their distinct 𝑇𝐴 , 𝐼𝐴 , 𝐹𝐴values in three parts.

3.1 Transformation According to the Truth Value 

In this section, we group the single valued neutrosophic 
numbers after the examination of their truth values  𝑇𝐴 ’s

greatness or smallness against 𝐼𝐴  and 𝐹𝐴 values. We will
shift the 𝑇𝐴(𝑥𝑖)and 𝐹𝐴(𝑥𝑖)values on the Z – axis and𝑇𝐴(𝑥𝑖)

and 𝐼𝐴(𝑥𝑖)values on the Y – axis onto each other. We take

the 𝐹𝐴(𝑥𝑖)value on the M – axis. The shifting on the Z and
Y planes are made such that we shift the smaller value to 

the difference of the greater value and 2, as shown in the 
below figures. 

1. First Group

For the single valued neutrosophic numbers 
〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉, if

𝑇𝐴(𝑥𝑖) ≤ 𝐹𝐴(𝑥𝑖)

and 

𝑇𝐴(𝑥𝑖) ≤ 𝐼𝐴(𝑥𝑖),

as shown in the figure below, we transformed 
〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉 into the single valued neutrosophic

number 𝐶𝐴(𝑥𝑖), the center of the SKL triangle, where

𝑆(𝐴𝑥𝑖) = (𝑇𝐴(𝑥𝑖), 𝑇𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖))

𝐾(𝐴𝑥𝑖) = (2 − 𝐹𝐴(𝑥𝑖),   𝑇𝐴(𝑥𝑖),   𝐹𝐴(𝑥𝑖))

𝐿(𝐴𝑥𝑖) = (𝑇𝐴(𝑥𝑖), 2 − 𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)) .

Here, as 

𝑇𝐶𝐴(𝑥𝑖) = 𝑇𝐴(𝑥𝑖) +
( 2 − 𝐹𝐴(𝑥𝑖) − 𝑇𝐴(𝑥𝑖))

3

=
2 − 𝐹𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3

𝐼𝐶𝐴(𝑥𝑖) = 𝑇𝐴(𝑥𝑖) +
(2 − 𝐼𝐴(𝑥𝑖) − 𝑇𝐴(𝑥𝑖))

3

=
2 −  𝐼𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3

and 

𝐹𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖) ,

we have 

𝐶𝐴(𝑥𝑖) = (
2− 𝐹𝐴(𝑥𝑖)+ 2 𝑇𝐴(𝑥𝑖)

3
,

2− 𝐼𝐴(𝑥𝑖)+ 2 𝑇𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)).

2. Second Group

For the single valued neutrosophic numbers 

〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉, if

𝑇𝐴(𝑥𝑖) ≥ 𝐹𝐴(𝑥𝑖)

and 

𝑇𝐴(𝑥𝑖) ≥ 𝐼𝐴(𝑥𝑖),

as shown in the figure below, we transformed 

〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉  into the single valued neutrosophic

number 𝐶𝐴(𝑥𝑖), the center of the SKL triangle, where
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𝑆𝐴(𝑥𝑖) = (𝐹𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖))

LA(𝑥𝑖) = (𝐹𝐴(𝑥𝑖) , 2 − 𝑇𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖))

KA(𝑥𝑖) = (2 − 𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝑎(𝑥𝑖)) .

Here, as 

𝑇𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖) +
(2 − 𝑇𝐴(𝑥𝑖) − 𝐹𝐴(𝑥𝑖))

3

=
2 − 𝑇𝐴(𝑥𝑖) +  2 𝐹𝐴(𝑥𝑖)

3

𝐼𝐶𝐴(𝑥𝑖) = 𝐼𝐴(𝑥𝑖) +
(2 − 𝑇𝐴(𝑥𝑖) − 𝐼𝐴(𝑥𝑖))

3

=
2 −  𝑇𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3

and 

𝐹𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖),

we have 

CA(𝑥𝑖)

= (
2 − TA(𝑥𝑖) + 2 FA(𝑥𝑖)

3
,
2 −  TA(𝑥𝑖) +  2IA(𝑥𝑖)

3
, FA(𝑥𝑖)) .

3. Third Group

For the single valued neutrosophic numbers 

〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉, ifIA(𝑥𝑖) ≤ TA(𝑥𝑖) ≤ FA(𝑥𝑖) ,as shown

in the figure below, we transformed 〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉

into the single valued neutrosophic number 𝐶𝐴(𝑥𝑖), the cen-

ter of the SKL triangle, where   

SA(𝑥𝑖) = (TA(𝑥𝑖),   IA(𝑥𝑖),  FA(𝑥𝑖))

LA(𝑥𝑖) = (TA(𝑥𝑖),   2 − TA(𝑥𝑖),  FA(𝑥𝑖))

KA(𝑥𝑖) = (2 − FA(𝑥𝑖),   IA(𝑥𝑖),  FA(𝑥𝑖)) .

Here, as 

𝑇𝐶𝐴(𝑥𝑖) = 𝑇𝐴(𝑥𝑖) +
(2 − 𝐹𝐴(𝑥𝑖) − 𝑇𝐴(𝑥𝑖))

3

=
2 − 𝐹𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3

𝐼𝐶𝐴(𝑥𝑖) = 𝐼𝐴(𝑥𝑖) +
(2 − 𝑇𝐴(𝑥𝑖) − 𝐼𝐴(𝑥𝑖))

3

=
2 −  𝑇𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3

and 

𝐹𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖),

we have 

CA(𝑥𝑖)

= (
2 − FA(𝑥𝑖) + 2 TA(𝑥𝑖)

3
,
2 −  TA(𝑥𝑖) +  2IA(𝑥𝑖)

3
, FA(𝑥𝑖)) .

4. Fourth Group

For the single valued neutrosophic numbers 

〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉, ifFA(𝑥𝑖) ≤ TA(𝑥𝑖) ≤ IA(𝑥𝑖),as shown in
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the figure below, we transformed 〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉  in-

to the single valued neutrosophic number 𝐶𝐴(𝑥𝑖), the center

of the SKL triangle, where   

SA(𝑥𝑖) = (FA(𝑥𝑖),   TA(𝑥𝑖),  FA(𝑥𝑖))

LA(𝑥𝑖) = (FA(𝑥𝑖),   2 − TA(𝑥𝑖),  FA(𝑥𝑖))

KA(𝑥𝑖) = (2 − 𝑇A(𝑥𝑖),   TA(𝑥𝑖),  FA(𝑥𝑖)) .

 

Example3.1.1Transform the following single valued neu-

trosophic numbers according to their truth values. 

〈0.2, 0.5, 0.7〉 ,   〈0.9, 0.4, 0.5〉 ,   〈0.3, 0.2, 0.5〉 ,   〈0.3,

0.2, 0.4〉 . 

𝑖.    〈0.2, 0.5, 0.7〉 single valued neutrosophic number be-

longs to the first group. 

The center is calculated by the formula,𝐶𝐴(𝑥𝑖) =

(
2− 𝐹𝐴(𝑥𝑖)+ 2 𝑇𝐴(𝑥𝑖)

3
,

2− 𝐼𝐴(𝑥𝑖)+ 2 𝑇𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖))

and we haveCA(𝑥) = 〈0.566, 0.633, 0.7〉 .

𝑖𝑖.  〈0.9, 0.4, 0.5〉single valued neutrosophic number is in 

the second group. 

The center for the values of the second group is, CA(𝑥𝑖) =

(
2− TA(𝑥𝑖)+2 FA(𝑥𝑖)

3
,

2− TA(𝑥𝑖)+ 2IA(𝑥𝑖)

3
, FA(𝑥𝑖))

and for  〈0.9, 0.4, 0.5〉,CA(x) = 〈0.7, 0.633, 0.5〉.

𝑖𝑖𝑖.  〈0.3, 0.2, 0.5〉single valued neutrosophic number be-

longs to the third group. 

The formula for the center of  〈0.3, 0.2, 0.5〉  is CA(𝑥𝑖) =

(
2− FA(𝑥𝑖)+2 TA(𝑥𝑖)

3
,

2− TA(𝑥𝑖)+ 2IA(𝑥𝑖)

3
, FA(𝑥𝑖))and therefore we

have CA(x) = 〈0.7, 0.7, 0.5〉.

𝑖𝑣.  〈0.3, 0.2, 0.4〉single valued neutrosophic number is in 

the third group and the center is calculated to be CA(x) =
〈0.733, 0.7, 0.4〉. 

Corollary 3.1.2The corners of the triangles obtained using 

the above method need not be single valued neutrosophic 

number but by definition, trivially their centers are. 

Note 3.1.3As for the single valued neutrosophic number〈1,

ber〈1, 1, 1〉 there does not exist any transformable trian-

gle in the above four groups, we take its transformation 

equal to itself.  

Corollary 3.1.4If  FA(𝑥𝑖) = TA(𝑥𝑖) = IA(𝑥𝑖) the transfor-

mation gives the same  center in all four groups. Also, 

if TA(𝑥𝑖) = IA(𝑥𝑖) ≤ FA(𝑥𝑖) , then the center in the first group

is equal to the one in the third group and if  FA(𝑥𝑖) ≤

TA(𝑥𝑖) = IA(𝑥𝑖) , the center in the second group is equal to

the center in the fourth group. Similarly, if TA(𝑥𝑖) =

FA(𝑥𝑖) ≤ IA(𝑥𝑖) , then the center in the first group is equal to

the center in the fourth group and if IA(𝑥𝑖) ≤ TA(𝑥𝑖) = FA(𝑥𝑖)

, the center in the second group is equal to the one in the 

third group. 

3.2Transformation According to the Indeterminancy 

Value 

In this section, we group the single valued neutrosophic 

numbers after the examination of their indeterminancy val-

ues 𝐼𝐴’s greatness or smallness against 𝑇A and𝐹𝐴values. We

will shift the 𝐼𝐴(𝑥𝑖) and 𝐹𝐴(𝑥𝑖) values on the Z – axis

and 𝑇𝐴(𝑥𝑖) and 𝐼𝐴(𝑥𝑖)values on the Y – axis onto each other.

We take the 𝐹𝐴(𝑥𝑖)value on the M – axis. The shifting on

the Z and Y planes are made such that we shift the smaller 

value to the difference of the greater value and 2, as shown 

in the below figures. 

1. First Group

For the single valued neutrosophic numbers 

〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉, if

Neutrosophic Sets and Systems, Vol. 15, 2017 35 

Memet Sahin et al., A New Similarity Measure Based on Falsity Value between Single Valued Neutrosophic Sets Based 
on the Centroid Points of Transformed Single Valued Neutrosophic Numbers with Applications to Pattern Recognition



𝐼𝐴(𝑥𝑖) ≤ 𝐹𝐴(𝑥𝑖)

and 

𝐼𝐴(𝑥𝑖) ≤ 𝐹𝐴(𝑥𝑖) ,

as shown in the figure below, we transformed 

〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉  into the single valued neutrosophic

number 𝐶𝐴(𝑥𝑖), the center of the SKL triangle, where

𝑆(𝐴𝑥𝑖) = (𝐼𝐴(𝑥𝑖), 𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖))

𝐾(𝐴𝑥𝑖) = (2 − 𝐹𝐴(𝑥𝑖),   𝐼𝐴(𝑥𝑖),   𝐹𝐴(𝑥𝑖))

𝐿(𝐴𝑥𝑖) = (𝐼𝐴(𝑥𝑖), 2 − 𝑇𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)) .

We transformed the single valued neutrosophic number  

〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉into the center of the SKL triangle,

namely 𝐶𝐴(𝑥𝑖). Here, as

𝑇𝐶𝐴(𝑥𝑖) = 𝐼𝐴(𝑥𝑖) +
( 2 − 𝐹𝐴(𝑥𝑖) − 𝐼𝐴(𝑥𝑖))

3

=
2 − 𝐹𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3

𝐼𝐶𝐴(𝑥𝑖) = 𝑇𝐴(𝑥𝑖) +
(2 − 𝑇𝐴(𝑥𝑖) − 𝐼𝐴(𝑥𝑖))

3

=
2 −  𝑇𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3

and 

𝐹𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖) ,

we have 

𝐶𝐴(𝑥𝑖) = (
2− 𝐹𝐴(𝑥𝑖)+ 2 𝐼𝐴(𝑥𝑖)

3
,

2− 𝑇𝐴(𝑥𝑖)+ 2 𝐼𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)) .

2. Second Group

For the single valued neutrosophic numbers 

〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉, if

𝐼𝐴(𝑥𝑖) ≥ 𝐹𝐴(𝑥𝑖)

 and 

𝐼𝐴(𝑥𝑖) ≥ 𝐹𝐴(𝑥𝑖) ,

as shown in the figure below, we transformed 

〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉  into the single valued neutro-

sophic number 𝐶𝐴(𝑥𝑖), the center of the SKL triangle,

where  

𝑆(𝐴𝑥𝑖) = (𝐹𝐴(𝑥𝑖), 𝑇𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖))

𝐾(𝐴𝑥𝑖) = (  𝐹𝐴(𝑥𝑖), 2 − 𝐼𝐴(𝑥𝑖),   𝐹𝐴(𝑥𝑖))

𝐿(𝐴𝑥𝑖) = (2 − 𝐼𝐴(𝑥𝑖), 𝑇𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)) .

Here, as 

𝑇𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖) +
( 2 − 𝐼𝐴(𝑥𝑖) − 𝐹𝐴(𝑥𝑖))

3

=
2 − 𝐼𝐴(𝑥𝑖) +  2 𝐹𝐴(𝑥𝑖)

3
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𝐼𝐶𝐴(𝑥𝑖) = 𝑇𝐴(𝑥𝑖) +
(2 − 𝐼𝐴(𝑥𝑖) − 𝑇𝐴(𝑥𝑖))

3

=
2 −  𝐼𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3

and 

𝐹𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖),

we have 

𝐶𝐴(𝑥𝑖)

= (
2 − 𝐼𝐴(𝑥𝑖) +  2 𝐹𝐴(𝑥𝑖)

3
,
2 −  𝐼𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)).

3. Third Group

For the single valued neutrosophic number 

〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉, if  TA(𝑥𝑖) ≤ IA(𝑥𝑖) ≤ FA(𝑥𝑖) ,

as shown in the figure below, we transformed 

〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉  into the single valued neutro-

sophic number 𝐶𝐴(𝑥𝑖), the center of the SKL triangle,

where  

𝑆(𝐴𝑥𝑖) = (𝐼𝐴(𝑥𝑖), 𝑇𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖))

𝐾(𝐴𝑥𝑖) = (  𝐼𝐴(𝑥𝑖), 2 − 𝐼𝐴(𝑥𝑖),   𝐹𝐴(𝑥𝑖))

𝐿(𝐴𝑥𝑖) = (2 − 𝐹𝐴(𝑥𝑖), 𝑇𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)) .

Here as 

𝑇𝐶𝐴(𝑥𝑖) = 𝐼𝐴(𝑥𝑖) +
( 2 − 𝐹𝐴(𝑥𝑖) − 𝐼𝐴(𝑥𝑖))

3

=
2 − 𝐹𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3

𝐼𝐶𝐴(𝑥𝑖) = 𝑇𝐴(𝑥𝑖) +
(2 − 𝐼𝐴(𝑥𝑖) − 𝑇𝐴(𝑥𝑖))

3

=
2 −  𝐼𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3

and 

𝐹𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖),

we have 

𝐶𝐴(𝑥𝑖)

= (
2 − 𝐹𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3
,
2 −  𝐼𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)).

4. Fourth Group

For the single valued neutrosophic numbers 

〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉 , if FA(𝑥𝑖) ≤ IA(𝑥𝑖) ≤ TA(𝑥𝑖) ,

as shown in the figure below, we transformed 

〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉  into the single valued neutrosophic

numbers 𝐶𝐴(𝑥𝑖), the center of the SKL triangle, where

𝑆(𝐴𝑥𝑖) = (𝐹𝐴(𝑥𝑖), 𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖))

𝐾(𝐴𝑥𝑖) = (  𝐹𝐴(𝑥𝑖), 2 − 𝑇𝐴(𝑥𝑖),   𝐹𝐴(𝑥𝑖))

𝐿(𝐴𝑥𝑖) = (2 − 𝐼𝐴(𝑥𝑖), 𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)) .
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𝑇𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖) +
( 2 − 𝐼𝐴(𝑥𝑖) − 𝐹𝐴(𝑥𝑖))

3

=
2 − 𝐼𝐴(𝑥𝑖) +  2 𝐹𝐴(𝑥𝑖)

3

𝐼𝐶𝐴(𝑥𝑖) = 𝐼𝐴(𝑥𝑖) +
(2 − 𝑇𝐴(𝑥𝑖) − 𝐼𝐴(𝑥𝑖))

3

=
2 −  𝑇𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3

and 

𝐹𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖),

we have 

𝐶𝐴(𝑥𝑖)

= (
2 − 𝐼𝐴(𝑥𝑖) +  2 𝐹𝐴(𝑥𝑖)

3
,
2 −  𝑇𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)).

Example3.2.1:Transform the single neutrosophic numbers 

of Example 3.1.3 , 

〈0.2, 0.5, 0.7〉 , 〈0.9, 0.4, 0.5〉 , 〈0.3, 0.2, 0.5〉 ,

〈0.3, 0.2, 0.4〉according to their indeterminancy values. 

𝑖.    〈0.2, 0.5, 0.7〉 single valued neutrosophic number is in 

the third group. The center is given by the formula 

𝐶𝐴(𝑥𝑖)

= (
2 − 𝐹𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3
,
2 −  𝐼𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)),

and so CA(𝑥) = 〈0.766, 0.633, 0.7〉.

𝑖𝑖.  〈0.9, 0.4, 0.5〉 single valued neutrosophic number is in 

the first group. 

By 

𝐶𝐴(𝑥𝑖)

= (
2 − 𝐹𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3
,
2 −  𝑇𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)),

we have CA(x) = 〈0.733, 0.633, 0.5〉. 

𝑖𝑖𝑖.  〈0.3, 0.2, 0.5〉single valued neutrosophic number be-

longs to the first group and the center is 

𝐶𝐴(𝑥𝑖)

= (
2 − 𝐹𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3
,
2 −  𝑇𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)),

so,CA(x) = 〈0.633, 0.9, 0.5〉.

𝑖𝑣.  〈0.3, 0.2, 0.4〉single valued neutrosophic number is in 

the first group. 

Using 

𝐶𝐴(𝑥𝑖)

= (
2 − 𝐹𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3
,
2 −  𝑇𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)),

we have   CA(x) = 〈0.666, 0.7, 0.4〉.

Corollary 3.2.2 The corners of the triangles obtained using 

the above method need not be single valued neutrosophic 

numbers but by definition, trivially their centers are. 

Note 3.2.3As for the single valued neutrosophic number 

〈1, 1, 1〉 there does not exist any transformable triangle in 

the above four groups, we take its transformation equal to 

itself.  

Corollary 3.2.4 If  FA(𝑥𝑖) = TA(𝑥𝑖) = IA(𝑥𝑖) ,the transfor-

mation gives the same center in all four groups. Also if 

TA(𝑥𝑖) = IA(𝑥𝑖) ≤ FA(𝑥𝑖), then the center in the first group is

equal to the center in the third group, and if FA(𝑥𝑖) ≤

TA(𝑥𝑖) = IA(𝑥𝑖), then the center in the second group is the

same as the one in the fıurth group. Similarly, ifFA(𝑥𝑖) =

IA(𝑥𝑖) ≤ TA(𝑥𝑖), then the center in the first group is equal to

the one in the fourth and in the case that TA(𝑥𝑖) ≤ FA(𝑥𝑖) =

IA(𝑥𝑖),the center in the second group is equal to the center

in the third. 

3.3 Transformation According to the Falsity Value 

In this section, we group the single valued neutrosophic 

numbers after the examination of their indeterminancy val-

ues 𝐹𝐴 ’s greatness or smallness against 𝐼𝐴  and 𝐹𝐴 values.

We will shift the 𝐼𝐴(𝑥𝑖)and 𝐹𝐴(𝑥𝑖)values on the Z – axis and

𝑇𝐴(𝑥𝑖) and 𝐹𝐴(𝑥𝑖)values on the Y – axis onto each other. We

take the 𝐹𝐴(𝑥𝑖)value on the M – axis. The shifting on the Z

and Y planes are made such that we shift the smaller value 

to the difference of the greater value and 2, as shown in the 

below figures. 
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Here, as 



For the single valued neutrosophic numbers 

〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉, if

𝐹𝐴(𝑥𝑖) ≤ 𝑇𝐴(𝑥𝑖)

 and 

𝐹𝐴(𝑥𝑖) ≤ 𝐼𝐴(𝑥𝑖) ,

 then 

as shown in the figure below, we transformed 

〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉  into the single valued neutrosophic

number 𝐶𝐴(𝑥𝑖), the center of the SKL triangle, where

𝑆(𝐴𝑥𝑖) = (𝐹𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖))

𝐾(𝐴𝑥𝑖) = ( 2 −  𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖),   𝐹𝐴(𝑥𝑖))

𝐿(𝐴𝑥𝑖) = (𝐹𝐴(𝑥𝑖), 2 − 𝑇𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)) .

Here, as 

𝑇𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖) +
( 2 − 𝐼𝐴(𝑥𝑖) − 𝐹𝐴(𝑥𝑖))

3

=
2 − 𝐼𝐴(𝑥𝑖) +  2 𝐹𝐴(𝑥𝑖)

3

𝐼𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖) +
(2 − 𝑇𝐴(𝑥𝑖) − 𝐹𝐴(𝑥𝑖))

3

=
2 − 𝑇𝐴(𝑥𝑖) +  2 𝐹𝐴(𝑥𝑖)

3

and 

𝐹𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖),

we get 

𝐶𝐴(𝑥𝑖)

= (
2 −  𝐼𝐴(𝑥𝑖) +  2 𝐹𝐴(𝑥𝑖)

3
,
2 − 𝑇𝐴(𝑥𝑖) +  2 𝐹𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)).

2. Second Group

For the single valued neutrosophic numbers 

〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉, if

𝐹𝐴(𝑥𝑖) ≥ 𝑇𝐴(𝑥𝑖)

and 

𝐹𝐴(𝑥𝑖) ≥ 𝐼𝐴(𝑥𝑖) ,

 then 

as shown in the figure below, we transformed 

〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉  into the single valued neutrosophic

numbers 𝐶𝐴(𝑥𝑖), the center of the SKL triangle, where

𝑆(𝐴𝑥𝑖) = (𝐼𝐴(𝑥𝑖), 𝑇𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖))

𝐾(𝐴𝑥𝑖) = (𝐼𝐴(𝑥𝑖), 2 − 𝐹𝐴(𝑥𝑖),   𝐹𝐴(𝑥𝑖))

𝐿(𝐴𝑥𝑖) = (2 − 𝐹𝐴(𝑥𝑖), 𝑇𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)) .

Here, as 

𝑇𝐶𝐴(𝑥𝑖) = 𝐼𝐴(𝑥𝑖) +
( 2 − 𝐹𝐴(𝑥𝑖) − 𝐼𝐴(𝑥𝑖))

3

=
2 − 𝐹𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3
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𝐼𝐶𝐴(𝑥𝑖) = 𝑇𝐴(𝑥𝑖) +
(2 − 𝐹𝐴(𝑥𝑖) − 𝑇𝐴(𝑥𝑖))

3

=
2 − 𝐹𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3

and 

𝐹𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖),

we have 

𝐶𝐴(𝑥𝑖)

= (
2 −  𝐹𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3
,
2 − 𝐹𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)).

3. Third Group

For the single valued neutrosophic numbers 

〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉 , if  IA(𝑥𝑖) ≤ FA(𝑥𝑖) ≤ TA(𝑥𝑖)  then as

shown in the figure below, we transformed 

〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉  into the single valued neutrosophic

numbers 𝐶𝐴(𝑥𝑖), the center of the SKL triangle, where

𝑆(𝐴𝑥𝑖) = (𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖))

𝐾(𝐴𝑥𝑖) = (𝐼𝐴(𝑥𝑖), 2 − 𝑇𝐴(𝑥𝑖),   𝐹𝐴(𝑥𝑖))

𝐿(𝐴𝑥𝑖) = (2 − 𝐹𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)) .

Here, as 

𝑇𝐶𝐴(𝑥𝑖) = 𝐼𝐴(𝑥𝑖) +
( 2 − 𝐹𝐴(𝑥𝑖) − 𝐼𝐴(𝑥𝑖))

3

=
2 − 𝐹𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3

𝐼𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖) +
(2 − 𝑇𝐴(𝑥𝑖) − 𝐹𝐴(𝑥𝑖))

3

=
2 − 𝑇𝐴(𝑥𝑖) +  2 𝐹𝐴(𝑥𝑖)

3

and 

𝐹𝐶𝐴(𝑥𝑖) = 𝐹𝐴(𝑥𝑖),

we have 

𝐶𝐴(𝑥𝑖)

= (
2 −  𝐹𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3
,
2 − 𝑇𝐴(𝑥𝑖) +  2 𝐹𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)).

4. Fourth Group

For the single valued neutrosophic numbers 

〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉, if  TA(𝑥𝑖) ≤ FA(𝑥𝑖) ≤ IA(𝑥𝑖)  , then as

shown in the figure below, we transformed 

〈𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖)〉  into the single valued neutrosophic

numbers 𝐶𝐴(𝑥𝑖), the center of the SKL triangle, where

𝑆(𝐴𝑥𝑖) = (𝐹𝐴(𝑥𝑖), 𝑇𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖))

𝐾(𝐴𝑥𝑖) = (𝐹𝐴(𝑥𝑖), 2 − 𝐹𝐴(𝑥𝑖),   𝐹𝐴(𝑥𝑖))

𝐿(𝐴𝑥𝑖) = (2 − 𝐼𝐴(𝑥𝑖), 𝑇𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)).

Example 3.3.1: Transform the single neutrosophic 

numbers of Example 3.1.3.
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〈0.2, 0.5, 0.7〉 , 〈0.9, 0.4, 0.5〉 , 〈0.3, 0.2, 0.5〉 ,

〈0.3, 0.2, 0.4〉according to their falsity values. 

𝑖.    〈0.2, 0.5, 0.7〉 single valued neutrosophic number be-

longs to the second group. So, the center is 

𝐶𝐴(𝑥𝑖) = (
2 − 𝐹𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3
,
2 − 𝐹𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)), 

and we get CA(𝑥) = 〈0.766, 0.7, 0.7〉.

𝑖𝑖.  〈0.9, 0.4, 0.5〉 single valued neutrosophic number is in 

the third group. Using the formula 

 𝐶𝐴(𝑥𝑖) = (
2 − 𝐹𝐴(𝑥𝑖) +  2 𝐼𝐴(𝑥𝑖)

3
,
2 − 𝑇𝐴(𝑥𝑖) +  2 𝐹𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)) 

we see thatCA(x) = 〈0.766, 0.7, 0.5〉.

𝑖𝑖𝑖.  〈0.3, 0.2, 0.5〉single valued neutrosophic number is in 

the second group. As 

𝐶𝐴(𝑥𝑖) = (
2 − 𝐹𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3
,
2 − 𝐹𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)), 

the center of the triangle is CA(x) = 〈0.633, 0.7, 0.5〉.

𝑖𝑣.  〈0.3, 0.2, 0.4〉single valued neutrosophic number be-

longs to the second group.  

𝐶𝐴(𝑥𝑖) = (
2 − 𝐹𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3
,
2 − 𝐹𝐴(𝑥𝑖) +  2 𝑇𝐴(𝑥𝑖)

3
, 𝐹𝐴(𝑥𝑖)), 

and so we have CA(x) = 〈0.666, 0.733, 0.4〉.

Corollary 3.3.2The corners of the triangles obtained using 

the above method need not be single valued neutrosophic 

numbers but by definition, trivially their centers are single 

valued neutrosophic values. 

Note 3.3.3 As for the single valued neutrosophic 

ber〈1, 1, 1〉 there does not exist any transformable trian-

gle in the above four groups, we take its transformation 

equal to itself. 

Corollary 3.3.4 If FA(𝑥𝑖) = TA(𝑥𝑖) = IA(𝑥𝑖) , the transfor-

mation gives the same center in all four groups. Also, 

if TA(𝑥𝑖) = FA(𝑥𝑖) ≤ IA(𝑥𝑖) , then the center in the first group

is equal to the one in the fourth group, and if IA(𝑥𝑖) ≤

TA(𝑥𝑖) = FA(𝑥𝑖), then the center in the second group is the

same as the center in the third. Similarly, if IA(𝑥𝑖) =

FA(𝑥𝑖) ≤ TA(𝑥𝑖)  , then the centers in the first and third

groups are same and lastly, if TA(𝑥𝑖) ≤ IA(𝑥𝑖) = FA(𝑥𝑖) , then

the center in the second group is equal to the one in the 

fourth group. 

4. A New Similarity Measure Based on Falsity

Value Between Single Valued Neutrosophic Sets 

      In this section, we propose a new similarity measure 

based on falsity value between single valued neutrosophic 

sets. 

Definition 4.1   Let A and B two single valued neutrosoph-

ic sets in 𝑥 = {𝑥1 , 𝑥2, … , 𝑥𝑛}.

Let 𝐴 = {〈𝑥, 𝑇𝐴(𝑥𝑖), 𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)〉}

and 

𝐵 = {〈𝑥, 𝑇𝐵(𝑥𝑖), 𝐼𝐵(𝑥𝑖), 𝐹𝐵(𝑥𝑖)〉}.

The similarity measure based on falsity value between the 

neutrosophic numbers 𝐴(𝑥𝑖) and 𝐵(𝑥𝑖) is given by

𝑆(A(𝑥𝑖), B(𝑥𝑖)) = 1 − (
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (TA(𝑥𝑖) − TB(𝑥𝑖))|

9

  +
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (IA(𝑥𝑖) − IB(𝑥𝑖))|

9

+
3|(FA(𝑥𝑖) − FB(𝑥𝑖))|

9
). 

Here, we use the values 

2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (TA(𝑥𝑖) − TB(𝑥𝑖)),

2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (IA(𝑥𝑖) − IB(𝑥𝑖)),

2(FA(𝑥𝑖) − FB(𝑥𝑖)) + (FA(𝑥𝑖) − FB(𝑥𝑖))

= 3(FA(𝑥𝑖) − FB(𝑥𝑖)) .

Since we use the falsity values FA(𝑥𝑖) in all these three val-

ues, we name this formula as “similarity measure based on 

falsity value between single valued neutrosophic num-

bers”.  

Property4.2 :0 ≤  𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) ≤  1 .
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Proof: By the definition of Single valued neut-
rosophic numbers, as 

0 ≤ 𝑇𝐴(𝑥𝑖), 𝑇𝐵(𝑥𝑖), 𝐼𝐴(𝑥𝑖), 𝐼𝐵(𝑥𝑖), 𝐹𝐴(𝑥𝑖), 𝐹𝐵(𝑥𝑖) ≤  1,

we have 

0 ≤ 2(𝐹𝐴(𝑥𝑖) −  𝐹𝐵(𝑥𝑖)) − (𝑇𝐴(𝑥𝑖) , 𝑇𝐵(𝑥𝑖)) ≤ 3

0 ≤ 2(𝐹𝐴(𝑥𝑖) − 𝐹𝐵(𝑥𝑖)) −  (𝐼𝐴(𝑥𝑖) , 𝐼𝐵(𝑥𝑖)) ≤ 3

and 

0 ≤ 3(𝐹𝐴(𝑥𝑖) , 𝐹𝐵(𝑥𝑖)) ≤ 3 .

So, 

0 ≤  1 − (
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (TA(𝑥𝑖) − TB(𝑥𝑖))|

9

+
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (IA(𝑥𝑖) − IB(𝑥𝑖))|

9

+
3|(FA(𝑥𝑖) − FB(𝑥𝑖))|

9
) ≤  1 . 

Therefore,0 ≤ 𝑆(𝐴(𝑥𝑖) , 𝐵(𝑥𝑖)) ≤  1.

Property 4.3:𝑆(𝐴(𝑥𝑖) , 𝐵(𝑥𝑖)) =  1 ⇔ 𝐴(𝑥𝑖) = 𝐵(𝑥𝑖)

Proof.i) First we show 𝐴(𝑥𝑖)  = 𝐵(𝑥𝑖) when 

𝑆(𝐴(𝑥𝑖) , 𝐵(𝑥𝑖)) = 1 .

Let (𝐴(𝑥𝑖) , 𝐵(𝑥𝑖)) = 1 .

𝑆(𝐴(𝑥𝑖) , 𝐵(𝑥𝑖)) =  1 − (
|2(F

A(𝑥𝑖)
− FB(𝑥𝑖)) − (T

A(𝑥𝑖)
− TB(𝑥𝑖))|

9

  +
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (IA(𝑥𝑖) − IB(𝑥𝑖))|

9

+
3|(FA(𝑥𝑖) − FB(𝑥𝑖))|

9
) 

     = 1 

and  thus, 

(
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (TA(𝑥𝑖) − TB(𝑥𝑖))|

9

 +
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (IA(𝑥𝑖) − IB(𝑥𝑖))|

9

+
3|(FA(𝑥𝑖) − FB(𝑥𝑖))|

9
) = 0 

So, 

|(𝐹𝐴(𝑥𝑖) − 𝐹𝐵(𝑥𝑖))| = 0,

|2(𝐹𝐴(𝑥𝑖) − 𝐹𝐵(𝑥𝑖)) − (𝑇𝐴(𝑥𝑖) − 𝑇𝐵(𝑥𝑖))| = 0,

and 

|2(𝐹𝐴(𝑥𝑖) − 𝐹𝐵(𝑥𝑖)) − (𝐼𝐴(𝑥𝑖) − 𝐼𝐵(𝑥𝑖))| = 0 .

As |(FA(𝑥𝑖) − FB(𝑥𝑖))|=0 , then  FA(𝑥𝑖) = FB(𝑥𝑖).

If  FA(𝑥𝑖) = FB(𝑥𝑖) ,

|2(FA(𝑥𝑖)− FB(𝑥𝑖)) − (TA(𝑥𝑖)− TB(𝑥𝑖))| = 0

and 

TA(𝑥𝑖)= TB(𝑥𝑖).

When FA(𝑥𝑖) = FB(𝑥𝑖),

|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (IA(𝑥𝑖) − IB(𝑥𝑖))| = 0

and 

IA(𝑥𝑖)= IB(𝑥𝑖)

Therefore, if (𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) = 1  , then by Definition 2.3,

A(𝑥𝑖) = B(𝑥𝑖).

ii)Now we show if  A(𝑥𝑖) = B(𝑥𝑖), then𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) = 1.

Let  A(𝑥𝑖) = B(𝑥𝑖). By Definition 2.3 ,

TA(𝑥𝑖)= TB(𝑥𝑖),   IA(𝑥𝑖)=IB(𝑥𝑖),   FA(𝑥𝑖)= FB(𝑥𝑖)

and we have 

TA(𝑥𝑖) − TB(𝑥𝑖) = 0,   IA(𝑥𝑖) − IB(𝑥𝑖) = 0,   FA(𝑥𝑖)− FB(𝑥𝑖) = 0

. 

So, 

Neutrosophic Sets and Systems, Vol. 15, 2017  42

Memet Sahin et al., A New Similarity Measure Based on Falsity Value between Single Valued Neutrosophic Sets Based 
on the Centroid Points of Transformed Single Valued Neutrosophic Numbers with Applications to Pattern Recognition



𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) = 1 − (
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (TA(𝑥𝑖) − TB(𝑥𝑖))|

9

 +
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (IA(𝑥𝑖) − IB(𝑥𝑖))|

9

+
3|(FA(𝑥𝑖) − FB(𝑥𝑖))|

9
) 

= 1 −
0

9
 =  1 . 

Property4.4 :𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) = 𝑆(𝐵(𝑥𝑖), 𝐴(𝑥𝑖)) .

Proof: 

𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) = 1 − (
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (TA(𝑥𝑖) − TB(𝑥𝑖))|

9

 +
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (IA(𝑥𝑖) − IB(𝑥𝑖))|

9

+
3|(FA(𝑥𝑖) − FB(𝑥𝑖))|

9
) 

= 1 − (
|2(−(FA(𝑥𝑖) − FB(𝑥𝑖))) − (−(TA(𝑥𝑖) − TB(𝑥𝑖)))|

9

+
|2((−FA(𝑥𝑖) − FB(𝑥𝑖))) − (−(IA(𝑥𝑖) − IB(𝑥𝑖)))|

9

 +
3|−(FA(𝑥𝑖) − FB(𝑥𝑖))|

9
) 

= 1 − (
|2(FB(𝑥𝑖) − FA(𝑥𝑖)) − (TB(𝑥𝑖) − TA(𝑥𝑖))|

9

+
|2(FB(𝑥𝑖) − FA(𝑥𝑖)) − (IB(𝑥𝑖) − IA(𝑥𝑖))|

9

 +
3|(FB(𝑥𝑖) − FA(𝑥𝑖))|

9

= 𝑆(𝐵(𝑥𝑖), 𝐴(𝑥𝑖)).

Property 4.5 : If  𝐴 ⊆ 𝐵 ⊆ 𝐶,   

i) 𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) ≥ 𝑆(𝐴(𝑥𝑖), 𝐶(𝑥𝑖))

ii) 𝑆(𝐵(𝑥𝑖), 𝐶(𝑥𝑖)) ≥ 𝑆(𝐴(𝑥𝑖), 𝐶(𝑥𝑖))

Proof: 
i) 

By the single valued neutrosophic set proper-

ty, if 𝐴 ⊆ 𝐵 ⊆ 𝐶 , then 

TA(𝑥𝑖) ≤  TB(𝑥𝑖) ≤ TC(𝑥𝑖),

IA(𝑥𝑖) ≤ IB(𝑥𝑖) ≤ IC(𝑥𝑖),

FA(𝑥𝑖) ≥ FB(𝑥𝑖) ≥ FC(𝑥𝑖) .
So, 

TA(𝑥𝑖)− TB(𝑥𝑖) ≤ 0,

IA(𝑥𝑖)− IB(𝑥𝑖) ≤ 0,

FA(𝑥𝑖) − FB(𝑥𝑖) ≥ 0   (1) 

TA(𝑥𝑖)− TC(𝑥𝑖) ≤ 0,

IA(𝑥𝑖)− IC(𝑥𝑖) ≤ 0,

FA(𝑥𝑖) − FC(𝑥𝑖) ≥ 0   (2) 

TA(𝑥𝑖)− TB(𝑥𝑖) ≥ TA(𝑥𝑖)− TC(𝑥𝑖),

IA(𝑥𝑖)− IB(𝑥𝑖) ≥  IA(𝑥𝑖)− IC(𝑥𝑖),

FA(𝑥𝑖) − FB(𝑥𝑖) ≤ FA(𝑥𝑖) − FC(𝑥𝑖)       (3) 

Using (1), we have 

2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (TA(𝑥𝑖)− TB(𝑥𝑖)) ≥ 0

2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (IA(𝑥𝑖)− IB(𝑥𝑖)) ≥ 0

and 

3(TA(𝑥𝑖)− TB(𝑥𝑖)) ≥ 0 .

Thus, we get 

𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) = 1 − (
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (TA(𝑥𝑖) − TB(𝑥𝑖))|

9

 +
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (IA(𝑥𝑖) − IB(𝑥𝑖))|

9

+
3|(FA(𝑥𝑖) − FB(𝑥𝑖))|

9
) 

= 1 −
7(FA(𝑥𝑖)−FB(𝑥𝑖))−(TA(𝑥𝑖)−TB(𝑥𝑖))−(IA(𝑥𝑖)−IB(𝑥𝑖))

9
.(4) 
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Similarly, by (2),  we have 

𝑆(𝐴(𝑥𝑖), 𝐶(𝑥𝑖)) = 1 − (
|2(FA(𝑥𝑖) − F𝐶(𝑥𝑖)) − (TA(𝑥𝑖) − TC(𝑥𝑖))|

9

 +
|2(FA(𝑥𝑖) − FC(𝑥𝑖)) − (IA(𝑥𝑖) − IC(𝑥𝑖))|

9

+
3|(FA(𝑥𝑖) − FC(𝑥𝑖))|

9
) 

= 1 −
7(FA(𝑥𝑖)−FC(𝑥𝑖))−(TA(𝑥𝑖)−TC(𝑥𝑖))−(IA(𝑥𝑖)−IC(𝑥𝑖))

9
  . (5) 

Using (4) and (5) together, we get 

𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) − 𝑆(𝐴(𝑥𝑖), 𝐶(𝑥𝑖))

= 1 −
7(FA(𝑥𝑖) − FB(𝑥𝑖)) − (TA(𝑥𝑖) − TB(𝑥𝑖)) − (IA(𝑥𝑖) − IB(𝑥𝑖))

9

−1 +
7(FA(𝑥𝑖) − FB(𝑥𝑖)) − (TA(𝑥𝑖) − TB(𝑥𝑖)) − (IA(𝑥𝑖) − IB(𝑥𝑖))

9

=
7(FA(𝑥𝑖) − FB(𝑥𝑖))

9
−

(TA(𝑥𝑖) − TB(𝑥𝑖))

9
−

(IA(𝑥𝑖) − IB(𝑥𝑖))

9

+
7(FA(𝑥𝑖) − FC(𝑥𝑖))

9
−

(TA(𝑥𝑖) − TC(𝑥𝑖))

9
−

(IA(𝑥𝑖) − IC(𝑥𝑖))

9

=
7(FA(𝑥𝑖) − FB(𝑥𝑖))

9
+

7(FA(𝑥𝑖) − FC(𝑥𝑖))

9
−

(TA(𝑥𝑖) − TB(𝑥𝑖))

9

−
(TA(𝑥𝑖) − TC(𝑥𝑖))

9
−

(IA(𝑥𝑖) − IB(𝑥𝑖))

9
−

(IA(𝑥𝑖) − IC(𝑥𝑖))

9

by (1) and (3), 

7(FA(𝑥𝑖) − FB(𝑥𝑖))

9
+

7(FA(𝑥𝑖) − FC(𝑥𝑖))

9
≥ 0, 

−
(TA(𝑥𝑖) − TB(𝑥𝑖))

9
−

(TA(𝑥𝑖) − TC(𝑥𝑖))

9
≥ 0, 

−
(IA(𝑥𝑖) − IB(𝑥𝑖))

9
−

(IA(𝑥𝑖) − IC(𝑥𝑖))

9
 ≥ 0 

and therefore 

𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) − 𝑆(𝐴(𝑥𝑖), 𝐶(𝑥𝑖)) ≥ 0

and 

𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) ≥ 𝑆(𝐴(𝑥𝑖), 𝐶(𝑥𝑖)) .

ii. The proof of the latter part can be similarly done as the

first part. 

Corollary 4.6 : Suppose we make similar definitions to 

Definition 4.1, but this time based on truth values or inde-

terminancy values. If we define a truth based similarity 

measure, or namely, 

𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) = 1 − (
|2(TA(𝑥𝑖) − TB(𝑥𝑖)) − (FA(𝑥𝑖) − FB(𝑥𝑖))|

9

 +
|2(TA(𝑥𝑖) − TB(𝑥𝑖)) − (IA(𝑥𝑖) − IB(𝑥𝑖))|

9

+
3|(TA(𝑥𝑖) − 𝑇B(𝑥𝑖))|

9
), 

or if we define a measure based on indeterminancy values 

like 

𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) = 1 − (
|2(IA(𝑥𝑖) − IB(𝑥𝑖)) − (TA(𝑥𝑖) − TB(𝑥𝑖))|

9

 +
|2(IA(𝑥𝑖) − IB(𝑥𝑖)) − (FA(𝑥𝑖) − FB(𝑥𝑖))|

9

+
3|(IA(𝑥𝑖) − IB(𝑥𝑖))|

9
) 

these two definitions don’t provide the conditions of Prop-

erty 4.5 . For instance, for the truth value  

𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) = 1 − (
|2(TA(𝑥𝑖) − TB(𝑥𝑖)) − (FA(𝑥𝑖) − FB(𝑥𝑖))|

9

 +
|2(TA(𝑥𝑖) − TB(𝑥𝑖)) − (IA(𝑥𝑖) − IB(𝑥𝑖))|

9

+
3|(TA(𝑥𝑖) − 𝑇B(𝑥𝑖))|

9
), 

when we take the single valued neutrosophic numbers 

A(𝑥) = 〈0, 0.1, 0〉,   B(𝑥) = 〈1, 0.2, 0〉 andC(𝑥) = 〈1, 0.3, 0〉,  

we see 𝑆(𝐴(𝑥), 𝐵(𝑥)) = 0.233  and  𝑆(𝐴(𝑥), 𝐶(𝑥)) = 0.244 .

This contradicts with the results of Property 4.5. 

Similarly, for the indeterminancy values, 

Neutrosophic Sets and Systems, Vol. 15, 2017  44

Memet Sahin et al., A New Similarity Measure Based on Falsity Value between Single Valued Neutrosophic Sets Based 
on the Centroid Points of Transformed Single Valued Neutrosophic Numbers with Applications to Pattern Recognition



𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) = 1 − (
|2(IA(𝑥𝑖) − IB(𝑥𝑖)) − (TA(𝑥𝑖) − TB(𝑥𝑖))|

9

 +
|2(IA(𝑥𝑖) − IB(𝑥𝑖)) − (FA(𝑥𝑖) − FB(𝑥𝑖))|

9

+
3|(IA(𝑥𝑖) − IB(𝑥𝑖))|

9
) 

if we take the single valued neurosophic numbers A(𝑥) =

〈0.1, 0, 1〉,   B(𝑥) = 〈0.2, 1, 1〉and C(𝑥) = 〈0.3, 1, 1〉, we have

𝑆(𝐴(𝑥), 𝐵(𝑥)) = 0.233  and  𝑆(𝐴(𝑥), 𝐶(𝑥)) = 0.244.

These results show that the definition 4.1 is only valid for 

the measure based on falsity values. 

Defintion 4.7 As 

𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) = 1 − (
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (TA(𝑥𝑖) − TB(𝑥𝑖))|

9

 +
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (IA(𝑥𝑖) − IB(𝑥𝑖))|

9

+
3|(FA(𝑥𝑖) − FB(𝑥𝑖))|

9
), 

The similarity measure based on the falsity value between 

two single valued neutrosophic sets A and B is; 

SNS(𝐴, 𝐵) = ∑ (𝑤𝑖 × S (A(𝑥𝑖), B(𝑥𝑖)))𝑛
𝑖=1  . 

Here,SNS(𝐴, 𝐵) ∈ [0,1]and 𝑤𝑖’s are the weights of the 𝑥𝑖’s

with the property ∑ 𝑤𝑖
𝑛
𝑖=1 = 1 . Also,

𝐴 = {〈𝑥: 𝑇𝐴(𝑥𝑖), 𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)〉},

𝐵 = {〈𝑥: 𝑇𝐵(𝑥𝑖), 𝐼𝐵(𝑥𝑖), 𝐹𝐵(𝑥𝑖)〉}.

Example4.8 Let us consider three patternsP1, P2, P3  repre-

serted by single valued neutrosophic sets P1̃ and P2̃in 𝑋 =

{𝑥1, 𝑥2}  respectively, where 

P1̃ = {〈x1, 0.2, 0.5, 0.7〉, 〈x2, 0.9, 0.4, 0.5〉}   and P2̃ =

{〈x1, 0.3, 0.2, 0.5〉, 〈x2, 0.3, 0.2, 0.4〉}. We want to classify

an unknown pattern represented by a single valued neutro-

sophic set 𝑄̃  in 𝑋 = {𝑥1, 𝑥2}   into one of the patterns

P1̃, P2̃;where 𝑄̃ = {〈x1, 0.4, 0.4, 0.1〉, 〈x2, 0.6, 0.2, 0.3〉}.

Let 𝑤𝑖  be the weight of element 𝑤𝑖  , where 𝑤𝑖 =
1

2
 1 ≤

𝑖 ≤ 2 , 

SNS(𝑃1̃, 𝑄̃) = 0.711

and 

SNS(𝑃1̃, 𝑄̃) = 0.772 .

We can see that  SNS(𝑃2̃, 𝑄̃)is the largest value amongthe

values of SNS(𝑃1̃, 𝑄̃) and SNS(𝑃2̃, 𝑄̃) .

Therefore, the unknown pattern represented by single val-

ued neutrosophic set𝑄̃  should be classified  into the pat-

tern P2.

5. A New Similarity Measure Based on Falsity

Measure Between Neutrosophic Sets Based on the

Centroid Points of Transformed Single Valued

Neutrosophic Numbers

      In this section, we propose a new similarity measure 

based on falsity value between single valued neutrosophic 

sets based on the centroid points of transformed single val-

ued neutrosophic numbers. 

Definition5.1: 

𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖)) = 1 − (
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (TA(𝑥𝑖) − TB(𝑥𝑖))|

9

 +
|2(FA(𝑥𝑖) − FB(𝑥𝑖)) − (IA(𝑥𝑖) − IB(𝑥𝑖))|

9

+
3|(FA(𝑥𝑖) − FB(𝑥𝑖))|

9
), 

Taking the similarity measure as defined in the fourth sec-

tion, and letting  CA(𝑥𝑖) andCB(𝑥𝑖)be the centers of the trian-

gles obtained by the transformation of A(𝑥𝑖)and B(𝑥𝑖)in the

third section respectively,the similarity measure based on 

falsity value between single valued neutrosophic sets A 

and B based on the centroid points of transformed single 

valued  neutrosophic numbers is    

SNSC(𝐴, 𝐵 ) = ∑ (𝑤𝑖xS(CA(xi) , CB(xi)))

𝑛

𝑖=1

, 

where 
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𝐴 = {𝑥: 〈𝑇𝐴(𝑥𝑖), 𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)〉},

𝐵 = {𝑥: 〈𝑇𝐵(𝑥𝑖), 𝐼𝐵(𝑥𝑖), 𝐹𝐵(𝑥𝑖)〉} .

Here again, 𝑤𝑖’s are the weights of the 𝑥𝑖’s with the prop-

erty ∑ 𝑤𝑖
𝑛
𝑖=1 = 1 .

Example5.2: Let us consider two patterns P1 and P2 repre-

sented by single valued neutrosophic sets P1̃, P2̃  in

𝑋 = {𝑥1, 𝑥2}respectively in Example 4.8,where

P1̃ = {〈x1, 0.2, 0.5, 0.7〉, 〈x2, 0.9, 0.4, 0.5〉}

 and 

P2̃ = {〈x1, 0.3, 0.2, 0.5〉, 〈x2, 0.3, 0.2, 0.4〉}.

We want to classify an unknown pattern represented by 

single valued neutrosophic set 𝑄̃  in 𝑋 = {𝑥1, 𝑥2} into one

of the patterns P1̃, P2̃, where

𝑄̃ = {〈x1, 0.4, 0.4, 0.1〉, 〈x2, 0.6, 0.2, 0.3〉}.

We make the classification using the measure in Definition 

5.1, namely 

SNSC(𝐴, 𝐵 ) = ∑ (𝑤𝑖 × S(CA(xi) , CB(xi)))𝑛
𝑖=1  . 

Also we find the CA(xi) , CB(xi)  centers according to the

truth values. 

Let 𝑤𝑖  be the weight of element𝑥𝑖 ,  𝑤𝑖 =
1

2
;  1 ≤ 𝑖 ≤ 2 . 

P1̃x1 = 〈0.2, 0.5, 0.7〉transformed based on falsity value

in Example 3.1.1 

CP1̃x1
= (0.566, 0.633, 0.7)

P1̃x2 = 〈0.9, 0.4, 0.5〉 transformed based on falsity value

in Example 3.1.1 

CP1̃x2
= (0.7,0.633,0.5)

P2̃x1 = 〈0.3, 0.2, 0.5〉 transformed based on falsity value

in Example 3.1.1 

CP2̃x1
= (0.7, 0.7,0.5)

P2̃x2 = 〈0.3, 0.2, 0.4〉 transformed based on falsity value

in Example 3.1.1 

CP2̃x2
= (0.733, 0.7, 0.4)

𝑄̃x1
= 〈x1, 0.4, 0.4, 0.1〉 transformed based on falsity value

in Section 3.1 

C𝑄̃x1
= 〈0.6, 0.8, 0.1〉(second group)

𝑄̃x2
= 〈x2, 0.6, 0.2, 0.3〉transformed based on truth falsity

in Section 3.1 

C𝑄̃x2
= 〈0.666, 0.6, 0.3〉(second group)

SNSC(P1̃, 𝑄̃) = 0.67592

SNSC(P2̃, 𝑄̃) = 0.80927

Therefore, the unknown patternQ,represented by a single 

valued neutrosophic set based on truth value is classified 

into pattern P2.

Example5.3 : Let us consider two patterns P1 and P2   of

example 4.8, represented by single valued neutrosophic 

sets P1̃, P2̃, in 𝑋 = {𝑥1, 𝑥2} respectively, where

P1̃ = {〈x1, 0.2, 0.5, 0.7〉, 〈x2, 0.9, 0.4, 0.5〉}

and 

P2̃ = {〈x1, 0.3, 0.2, 0.5〉, 〈x2, 0.3, 0.2, 0.4〉}.

We want to classify an unknown pattern represented by the 

single valued neutrosophic set 𝑄̃  in 𝑋 = {𝑥1, 𝑥2} into one

of the patterns P1̃, P2̃,where

𝑄̃ = {〈x1, 0.4, 0.4, 0.1〉, 〈x2, 0.6, 0.2, 0.3〉}.

We make the classification using the measure in Definition 

5.1, namely 

SNSC(𝐴, 𝐵 ) = ∑ (𝑤𝑖xS(CA(xi) , CB(xi)))𝑛
𝑖=1 . 

Also we find the CA(xi) , CB(xi) centers according to the in-

determinacy values. 

Let 𝑤𝑖  be the weight of element𝑥𝑖 , 𝑤𝑖 =
1

2
;  1 ≤ 𝑖 ≤ 2 . 

P1̃x1 = 〈0.2, 0.5, 0.7〉 transformed based on falsity value

in Example 3.2.1 

CP1̃x1
= (0.766,0.633, 0.7)
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P1̃x2 = 〈0.9, 0.4, 0.5〉 transformed based on falsity value

in Example 3.2.1 

CP1̃x2
= (0.766, 0.633, 0.5)

P2̃x1 = 〈0.3, 0.2, 0.5〉 transformed based on falsity value

in Example 3.2.1 

CP2̃x1
= (0.633, 0.9, 0.5)

P2̃x2 = 〈0.3, 0.2, 0.4〉 transformed based on falsity value

in Example 3.2.1 

CP2̃x2
= (0.666, 0.7, 0.4)

𝑄̃x1
= 〈x1, 0.4, 0.4, 0.1〉 transformed based on falsity value

in Section 3.2 

C𝑄̃x1
= 〈0.6, 0.8, 0.1〉(second group)

𝑄̃x2
= 〈x2, 0.6, 0.2, 0.3〉transformed based on truth falsity

in Section 3.2 

C𝑄̃x2
= 〈0.7, 0.666, 0.3〉 (first group)

SNSC(P1̃, 𝑄̃) = 0.67592

SNSC(P2̃, 𝑄̃) = 0.80927

Therefore, the unknown patternQ, represented by a single 

valued neutrosophic set based on indeterminacy value is 

classified into pattern P2.

Example5.4: Let us consider in example 4.8, two patterns 

P1  and P2  represented by single valued neutrosophic sets

P1̃, P2̃ in  𝑋 = {𝑥1, 𝑥2} respectively ,where

P1̃ = {〈x1, 0.2, 0.5, 0.7〉, 〈x2, 0.9, 0.4, 0.5〉}

 and 

P2̃ = {〈x1, 0.3, 0.2, 0.5〉, 〈x2, 0.3, 0.2, 0.4〉}.

We want to classify an unknown pattern represented by 

single valued neutrosophic set 𝑄̃ in𝑥 = {𝑥1 , 𝑥2} into one of

the patterns P1̃, P2̃, where

𝑄̃ = {〈x1, 0.4, 0.4, 0.1〉, 〈x2, 0.6, 0.2, 0.3〉}.

We make the classification using the measure in Definition 

5.1, namely 

SNSC(𝐴, 𝐵 ) = ∑ (𝑤𝑖xS(CA(xi) , CB(xi)))𝑛
𝑖=1 . 

Also we find the CA(xi) , CB(xi) centers according to the fal-

sity values. 

Let 𝑤𝑖  be the weight of element𝑥𝑖 , 𝑤𝑖 =
1

2
;  1 ≤ 𝑖 ≤ 2 . 

P1̃x1 = 〈0.2, 0.5, 0.7〉transformed based on falsity value

in Example 3.3.1 

CP1̃x1
= (0.766,0.7,0.7)

P1̃x2 = 〈0.9, 0.4, 0.5〉 transformed based on falsity value

in Example 3.3.1 

CP1̃x2
= (0.766, 0.7,0.5)

P2̃x1 = 〈0.3, 0.2, 0.5〉 transformed based on falsity value

in Example 3.3.1 

CP2̃x1
= (0.633,0.7,0.5)

P2̃x2 = 〈0.3, 0.2, 0.4〉 transformed based on falsity value

in Example 3.3.1 

CP2̃x2
= (0.666, 0.733, 0.4)

𝑄̃x1
= 〈x1, 0.4, 0.4, 0.1〉 transformed based on falsity value

in Section 3.3 

C𝑄̃x1
= 〈0.6, 0.6, 0.1〉(first group)

𝑄̃x2
= 〈x2, 0.6, 0.2, 0.3〉transformed based on truthfalsity

in Section 3.3 

C𝑄̃x2
= 〈0.7, 0.666, 0.3〉 (third group)

SNSC(P1̃, 𝑄̃) = 0.7091

SNSC(P2̃, 𝑄̃) = 0.8148

Therefore, the unknown pattern Q, represented by a single 

valued neutrosophic set based on falsity value is classified 

into pattern P2.

In Example 5.2, Example 5.3 and Example 5.4, all 

measures according to truth, indeterminancy and falsity 

values give the same exact result. 
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Conclusion 

In this study, we propose methods to transform between 
single valued neutrosophic numbers based on centroid 

points. We also propose a new method to measure the de-

gree of similarity based on falsity values between single 
valued neutrosophic sets. Then we prove some properties 

of new similarity measure based on falsity value between 
single valued neutrosophic sets. When we take this meas-

ure with respect to truth or indeterminancy we show that it 

does not satisfy one of the conditions of similarity measure. 
We also apply the proposed new similarity measures based 

on falsity value between single valued neutrosophic sets to 
deal with pattern recognition problems. 
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various operations, properties and theorems on them. Then 

we have proposed an algorithm named DNS2  based

on our proposed two-dimensional neutrosophic soft set for 

solving neutrosophic multi-criteria assignment problems 

with multiple decision makers. At last, we have applied the 

DNS2  Algorithm for solving neutrosophic multi-

criteria assignment problem in medical science to evaluate 

the effectiveness of different modalities of treatment of a 

disease. 
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1  Introduction 

Most of the recent mathematical methods meant for 

formal modeling,reasoning and computing are crisp, 

accurate and deterministic in nature. But in ground 

reality, crisp data is not always the part and parcel of 

the problems encountered in different fields like 

economics, engineering, social science, medical 

science, environment etc. As a consequence various 

theories viz. theory of probability, theory of fuzzy sets 

introduced by Zadeh [1], theory of intuitionistic fuzzy 

sets by Atanassov[2], theory of vague sets by Gau[3], 

theory of interval mathematics by Gorzalczany[4], 

theory of rough sets by Pawlak[5] have been evolved 

in process. But difficulties present in all these theories 

have been shown by Molodtsov [6]. The cause of these 

problems is possibly related to the inadequacy of the 

parametrization tool of the theories. As a result 

Molodtsov proposed the concept of soft theory as a 

new mathematical tool for solving the uncertainties 

which is free from the above difficulties. Maji et al. [7, 

8] have further done various research works on soft set

theory. For presence of vagueness Maji et al.[9, 10] 

have introduced the concept of Fuzzy Soft Set. Then 

Mitra Basu et al. [14] proposed the mean potentiality 

approach to get a balanced solution of a fuzzy soft set 

based decision making problem. 

But the intuitionistic fuzzy sets can only handle the 

incomplete information considering both the truth-

membership ( or simply membership ) and falsity-

membership ( or non-membership ) values. It does not 

handle the indeterminate and inconsistent information 

which exists in belief system. Smarandache [13] 

introduced the concept of neutrosophic set(NS) 

which is a mathematical tool for handling problems 

involving imprecise, indeterminacy and inconsistent 

data. He showed that NS is a generalization of the 

classical sets, conventional fuzzy sets, Intuitionistic 

Fuzzy Sets (IFS) and Interval Valued Fuzzy Sets 

(IVFS). Then considering the fact that the parameters 

or criteria ( which are words or sentences ) are mostly 

neutrosophic set, Maji [11, 12] has combined the 

concept of soft set and neutrosophic set to make the 

mathematical model neutrosophic soft set and also 

given an algorithm to solve a decision making 

problem. But till now there does not exist any method 

for solving neutrosophic soft set based assignment 

problem. 

In several real life situations we are encountered with 

a type of problem which includes in assigning men to 

offices, jobs to machines, classes in a school to rooms, 

drivers to trucks, delivery trucks to different routs or 

problems to different research teams etc in which the 

assignees depend on some criteria which posses 

varying degree of efficiency, called cost or 

effectiveness. The basic assumption of this type of 

problem is that one person can perform one job at a 

time. An assignment plan is optimal if it is able to 
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optimize all criteria. Now if such problem contains 

only one criterion then it can be solved by well known 

Hungarian method introduced by Kuhn[15]. In case of 

such problems containing more than one criterion, i.e., 

for multi-criteria assignment problems De et al [16] 

have proposed a solution methodology. Kar et al[17] 

have proposed two different methods for solving a 

neutrosophic multi-criteria assignment problem. 

Till date these all research work have concentrated on 

multiple criteria assignment problems containing only 

one decision maker, i.e., all the criteria matrices are 

determined or observed by only one decision maker. 

But there may be such type of multiple criteria 

assignment problems in which the criteria be 

neutrosophic in nature and the degree of efficiency of 

the criteria are determined by more than one decision 

makers according to their own opinions. There does 

not exist any procedure to solve neutrosophic multi-

criteria assignment problem with multiple decision 

makers or in other words there is a demand to come a 

methodology to solve multi-criteria assignment 

problems in the parlance of neutrosophic soft set 

theory. 

In this paper we have first introduced the concept of 

neutrosophic multi-criteria assignment 

problem(NMCAP) with multiple decision makers. 

Then we have proposed the new concept of multi-

dimensional neutrosophic soft sets along with few 

operations, properties and theorems on them. 

Moreover an algorithm named DNS2  has been 

developed based on two-dimensional neutrosophic 

soft set for solving NMCAP with more than one 

decision maker. At last we have applied the 

DNS2  Algorithm for solving neutrosophic multi-

criteria assignment problem in medical science to 

evaluate the effectiveness of different modalities of 

treatment of a disease. 

2  Preliminaries 

2.1   Definition: Soft Set [6]  

Let U  be an initial universe set and E  be a set of

parameters. Let )(UP  denotes the set of all subsets 

of U . Let EA . Then a pair ),( AF  is called a

soft set over U , where F  is a mapping given by, 

)(: UPAF  . 

In other words, a soft set over U  is a parameterized 

family of subsets of the universe U .

2.2 Definition: NOT Set of a Set of 
Parameters [9] 

Let },....,,,{= 321 neeeeE  be a set of parameters. 

The NOT set of E denoted by E  is defined by 

.,=},,....,,,{= 321 inoteewhereeeeeE iin   

The operator  not of an object, say k, is denoted by 

k  and is defined as the negation of the object; e.g., 

let we have the object k = beautiful, then k  i.e., not 

k means k is not beautiful.  

2.3  Definition: Neutrosophic Set [13] 

A neutrosophic set A  on the universe of discourse 

X  is defined as 

[0,1]:,,

},>:)(),(),(,{<=





XFITwhere

XxxFxIxTxA AAA

and 
  3)()()(0 xFxIxT AAA ; FIT ,,

are called neutrosophic components. 

"Neutrosophic" etymologically comes from "neutro-

sophy" (French neutre <  Latin neuter, neutral and 

Greek sophia, skill/wisdom) which means knowledge 

of neutral thought. 

From philosophical point of view, the neutrosophic set 

takes the value from real standard or non-standard 

subsets of [0,1] 
. The non-standard finite numbers 

 1=1 , where  1  is the standard part and   is 

the non-standard part and 0=0 , where 0  is its

standard part and   is non-standard part. But in real 

life application in scientific and engineering problems 

it is difficult to use neutrosophic set with value from 

real standard or non-standard subset of [0,1] 
. 

Hence we consider the neutrosophic set which takes 

the value from the subset of [0,1] . 

Any element neutrosophically belongs to any set, due 

to the percentages of truth/indeterminacy/falsity 

involved, which varies between 0  and 1  or even 

less than 0  or greater than 1 .

Thus .3)(0.5,0.2,0x  belongs to A  (which 

means, with a probability of 50  percent x  is in

A , with a probability of 30  percent x  is not in

A  and the rest is undecidable); or (0,0,1)y  

belongs to A  (which normally means y  is not for 

sure in A ); or (0,1,0)z  belongs to A  (which 

means one does know absolutely nothing about z ’s 

affiliation with A ); here 1=0.30.20.5  ; thus 

A  is a NS and an IFS too. 

The subsets representing the appurtenance, 

indeterminacy and falsity may overlap, say the 

element ,0.28)(0.30,0.51z  and in this case 

1>0.280.510.30  ; then B is a NS but is not
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an IFS; we can call it paraconsistent set (from 

paraconsistent logic, which deals with paraconsistent 

information). 

Or, another example, say the element 

.4)(0.1,0.3,0z  belongs to the set C , and here

1<0.40.30.1  ; then B  is a NS but is not an

IFS; we can call it intuitionistic set (from 

intuitionistic logic, which deals with incomplete 

information). 

Remarkably, in a NS one can have elements which 

have paraconsistent information (sum of 

components 1> ), or incomplete information (sum 

of components 1< ), or consistent information (in 

the case when the sum of components 1= ). 

2.4  Definition: Complement of a 
Neutrosophic Set [18] 

The complement of a neutrosophic set S  is denoted 

by )(Sc and is defined by 

XxxTxFxIxIxFxT SScSScSSc  )(=)(),(1=)(),(=)( )()()(

2.5  Definition: Neutrosophic Soft Set [12] 

Let U  be an initial universe set and E  be a set of

parameters. Consider EA . Let )(UP  denotes 

the set of all neutrosophic sets of U . The collection

),( AF  is termed to be the neutrosophic soft set 

over U , where F  is a mapping given by

)(: UPAF  . 

2.6   Traditional Assignment Problems [15] 
Sometimes we are faced with a type of problem which 

consists in assigning men to offices, jobs to machines, 

classes in a school to rooms, drivers to trucks, delivery 

trucks to different routs or problems to different 

research teams etc in which the assignees posses 

varying degree of efficiency, called cost or 

effectiveness. The basic assumption of this type of 

problem is that one person can perform one job at a 

time with respect to one criterion. An assignment plan 

is optimal if it optimizes the total effectiveness of 

performing all the jobs. 

Example 2.1 
Let us consider the assignment problem represented by 

the following cost matrix (Table- 1 ) in which the 

elements represent the cost in lacs required by a 

machine to perform the corresponding job. The 

problem is to allocate the jobs to the machines so as to 

minimize the total cost. 

Table-1: Cost Matrix 

MACHINES 

1M 2M 3M
4M

A  7 25 16 10 

B 12 27 3 25 

C 37 18 17 14 

D 18 25 23 9 

3  Neutrosophic Multi-Criteria Assignment 
Problems With Multiple Decision Makers 

Normally in traditional assignment problems one 

person is assigned for one job with respect to a single 

criterion but in real life there are different problems in 

which one person can be assigned for one job with 

respect to more than one criteria. Such type of 

problems is known as Multi-Criteria Assignment 

Problem(MCAP). Moreover in such MCAP if atleast 

one criterion be neutrosophic in nature then the 

problems will be called Neutrosophic Multi-Criteria 

Assignment Problem(NMCAP). Now there may be 

such type of NMCAP in which the criteria matrices are 

determined by more than one decision makers 

according to their own opinions. In such type of 

problems there may be more than one matrices 

associated with a single criterion as the criteria are 

determined by multiple decision makers. Now we will 

discuss these new type of NMCAP with more than one 

decision makers and develop an algorithm to solve 

such type of problems.  

3.1  General Formulation of a Neutrosophic 
Multi-Criteria Assignment Problem With 
Multiple Decision Makers 

Let m  jobs have to be performed by m  number of 

machines depending on p  number of criteria (each 

criterion is neutrosophic in nature) according to q

number of decision makers. Now suppose that to 

perform j -th job by i -th machine it will take the 

degree of efficiency 
k

q  for the k -th criterion

according to the q -th decision maker. Then the k -

th ( pk 1,2,....,= ) criteria matrix according to q -th 

decision maker will be as given in Table- 2 . 

JO
B

S
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Table-2: criteria matrix of k -th criterion

for q -th decision maker 

MACHINES 

1M 2M 3M 
mM

1J k

q11 k

q12 k

q13  k

mq1

3J k

q31 k

q32 k

q33  k

mq3

     

mJ k

qm1 k

qm2 k

qm3  k

qmm

If the number of jobs and machines be equal in a 

criteria matrix then it is called a balanced criteria 

matrix otherwise it is known as unbalanced criteria 

matrix. Now the problem is to assign each machine 

with a unique job in such a way that the total degree of 

efficiency for an allocation will be optimized for all 

criteria which is illustrated in the following example. 

Example 3.1  

Let us consider a NMCAP represented by the 

following cost matrices and time matrix in which the 

criteria are neutrosophic in nature and the elements of 

the matrices are representing the degree of cost and 

time required by a machine to perform the 

corresponding job according to two decision makers 

Mr. X and Mr.Y. 

Table-3:Cost Matrix by Mr.X 

MACHINES 

1M 2M 3M

(0.8,0.2,0.6) (0.2,0.5,0.9) (0.6,0.4,0.4) 

(0.2,0.6,0.8) (0.7,0.2,0.5) (0.6,0.3,0.5) 

(0.6,0.3,0.5) (0.6,0.2,0.7) (0.6,0.1,0.5) 

The problem is to allocate the jobs 321 ,, JJJ  to the 

machines 321 ,, MMM  so as to minimize the total 

cost and time collectively and simultaneously. 

4  The Concept of Multi-Dimensional 

Neutrosophic Soft Set 

4.1  Definition: Multi-Dimensional Neutrosophic 

Soft Set 

Let nUUU .,,........., 21 be n  non-null finite sets 

of n  different type of objects such that, 

};,....,,{=.,..........

},.,....,,{=},,.....,,{=

)1()1(

2

)1(

1

'

2

'

2

'

121211

 n

mn

nn

n

mm

OOOU

OOOUOOOU

where mnmm 2,....,1, respectively be the 

cardinalities of nUUU ,........,, 21 and let 

nUUUU  ............= 21 . Now let E  be the 

set of parameters clarifying all types of objects 

;,....,, )1('

21

n

inii OOO

mninmimi 1,2,...,=...;2;........1,2,...,=21;1,2,...,=1

and each parameter is a neutrosophic word or 

neutrosophic sentence involving neutrosophic words 

and EA . Suppose that 
UN denotes all 

neutrosophic sets of U . Now a mapping F  is

defined from the parameter set A  to 
UN , i.e., 

,N: UAF   then the algebraic structure ),( AF  

is said to be a n -Dimensional neutrosophic soft set 

over U .

Now n  may be finite or, infinite. If 1=n  then

),( AF  will be the conventional neutrosophic soft 

set, if 2=n  then ),( AF  is said to be a two-

dimensional neutrosophic soft set, if 3=n  then

JO
B

S
JO

B
S
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Table-4:Cost Matrix by Mr.Y 

MACHINES 

1M 2M 3M

1J (0.7,0.4,0.3)  (0.2,0.5,0.9) (0.5,0.4,0.6) 

2J (0.3,0.6,0.8) (0.7,0.2,0.4) (0.6,0.4,0.3) 

JO
B

S
 

3J (0.5,0.3,0.6) (0.6,0.3,0.5) (0.5,0.2,0.7) 

Table-5:Time Matrix by Mr.X and Mr.Y 

  MACHINES 

1M 2M 3M

(0.3,0.5,0.8)  (0.7,0.2,0.4) (0.5,0.2,0.6) 

2J
(0.8,0.3,0.3) 

(0.2,0.5,0.9) (0.5,0.3,0.7) 

3J (0.5,0.3,0.6) (0.5,0.4,0.5) (0.4,0.3,0.7) 

JO
B

S
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),( AF  is said to be a three-dimensional 

neutrosophic soft set and so on. 

4.2  The Features of Multi-Dimensional 

Neutrosophic Soft Set Compared to Neutrosophic 

Soft Set 

Neutrosophic soft set is just a special type of multi-

dimensional neutrosophic soft set where the 

dimension i.e., the number of the set of objects is one. 

A neutrosophic soft set indicates that how a single set 

of objects is involved with a single set of parameters 

(or, criteria) where as a n -dimensional neutrosophic 

soft set( n  may be any positive integer) reveals the 

involvement of n  number of sets of different types 

of objects with a single set of parameters(or, criteria). 

So from the perspective of application, multi-

dimensional neutrosophic soft set has more vast 

scope than the conventional neutrosophic soft set. 

Now we will discuss the example, operations and 

properties of two-dimensional neutrosophic soft set 

and for the higher dimensional neutrosophic soft set 

they can also be established in the identical manner. 

Example 4.1: Let 1U  be the set of three jobs, say, 

},,{= 3211 JJJU  and let 2U  be the set of four 

machines, say, },,,{= 43212 MMMMU . Now let 

,,{= trequirementimetrequiremencostE

 (say).},,{=

}

321 eee

tiontransportatodueetroublesom
. 

Let },{= 21 eeA  

Now let 21= UUU   and ,N: UAF   s.t.,

9),)/(.2,.3,.,(3),)/(.7,.2,.,(

6),)/(.5,.4,.,(8),)/(.3,.2,.,(

0.4),)/(.8,0.3,,{(=

)(

1241

3121

11

MJMJ

MJMJ

MJ

trequiremencostF

6),)/(.6,.4,.,(8),)/(.3,.2,.,(

6),)/(.5,.5,.,4)()/(.7,.3,.,(

1342

3222

MJMJ

MJMJ

5)})/(.7,.2,.,(

8),)/(.3,.4,.,(6),)/(.4,.2,.,(

43

3323

MJ

MJMJ
and 

5),)/(.7,.2,.,(8),)/(.4,.5,.,(

7),)/(.5,.3,.,(5),)/(.6,.3,.,(

9),)/(.2,.3,.,{(=)(

1241

3121

11

MJMJ

MJMJ

MJtrequirementimeF

7),)/(.4,.3,.,(7),)/(.6,.2,.,(

5),)/(.6,.3,.,(9),)/(.2,.3,.,(

1342

3222

MJMJ

MJMJ

8)})/(.3,.4,.,(

5),)/(.6,.3,.,(7),)/(.5,.6,.,(

43

3323

MJ

MJMJ

Now the two-dimensional neutrosophic soft set 

),( AF  describing the  requirements for the objects 

is given by,  

3),)/(.7,.2,.,(6),)/(.5,.4,.,(

8),)/(.3,.2,.,(0.4),)/(.8,0.3,,{(=

{=),(

4131

2111

MJMJ

MJMJ

trequiremencostAF

8),)/(.3,.2,.,(6),)/(.5,.5,.,(

4))/(.7,.3,.,(9),)/(.2,.3,.,(

4232

2212

MJMJ

MJMJ

,5)})/(.7,.2,.,(8),)/(.3,.4,.,(

6),)/(.4,.2,.,(6),)/(.6,.4,.,(

4333

2313

MJMJ

MJMJ

5),)/(.7,.2,.,(8),)/(.4,.5,.,(7),)/(.5,.3,.,(

5),)/(.6,.3,.,(9),)/(.2,.3,.,{(=

124131

2111

MJMJMJ

MJMJtrequirementime

7),)/(.6,.2,.,(5),)/(.6,.3,.,(9),)/(.2,.3,.,( 423222 MJMJMJ

8)})/(.3,.4,.,(

5),)/(.6,.3,.,(7),)/(.5,.6,.,(7),)/(.4,.3,.,(

43

332313

MJ

MJMJMJ

The Tabular Representation of the two-dimensional 

neutrosophic soft set ),( AF  is as follows: 

  Table-6 

Tabular Representation of ),( AF  

1e 2e

),( 11 MJ  (.8,0.3,0.4)  (.2,.3,.9) 

),( 21 MJ  (.3,.2,.8) (.6,.3,.5) 

),( 31 MJ (.5,.4,.6) (.5,.3,.7) 

),( 41 MJ  (.7,.2,.3) (.4,.5,.8) 

),( 12 MJ  (.2,.3,.9) (.7,.2,.5) 

),( 22 MJ (.7,.3,.4) (.2,.3,.9) 

),( 32 MJ  (.5,.5,.6) (.6,.3,.5) 

),( 42 MJ (.3,.2,.8) (.6,.2,.7) 

),( 13 MJ (.6,.4,.6) (.4,.3,.7) 

),( 23 MJ  (.4,.2,.6) (.5,.6,.7) 

),( 33 MJ (.3,.4,.8) (.6,.3,.5) 

),( 43 MJ  (.7,.2,.5) (.3,.4,.8) 

4.3   Definition: Choice Value:  

According to a decision making problem the 

parameters of a decision maker’s choice or 

requirement which forms a subset of the whole 
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parameter set of that problem are known as choice 

parameters. 

Choice value of an object is the sum of the true-

membership values of that object corresponding to all 

the choice parameters associated with a decision 

making problem. 

4.4   Definition: Rejection Value:  

Rejection value of an object is the sum of the falsity-

membership values of that object corresponding to all 

the choice parameters associated with a decision 

making problem. 

4.5   Definition: Confusion Value:  

Confusion value of an object is the sum of the 

indeterminacy-membership values of that object 

corresponding to all the choice parameters associated 

with a decision making problem. 

4.6 Definition: Null Two-dimensional 

Neutrosophic Soft Set: 

Let 21 UU   be the initial universe set, E  be the 

universe set of parameters and EA . Then a two-

dimensional neutrosophic soft set ),( AF  is said to 

be a null two-dimensional neutrosophic soft set ( A

) with respect to the parameter set A  if for each 

Ae

}),()/0.0},{(=)( 21

'' UUOOOOeF jiji   

4.7 Definition: Universal Two-dimensional 

Neutrosophic Soft Set: 

Let 21 UU   be the initial universe set, E  be the 

universe set of parameters and EA . Then a two-

dimensional neutrosophic soft set ),( AF  is said to 

be a universal two-dimensional neutrosophic soft 

set ( AU ) with respect to the parameter set A  if for 

each Ae

}),()/1.0},{(=)( 21

'' UUOOOOeF jiji   

4.8  Definition: Complement of a Two-

dimensional Neutrosophic Soft Set 

The complement of a two-dimensional neutrosophic 

soft set ),( AF  over the universe U  where 

NjiOOOU

OOOUUUU

j

i





,};,....,,{=

},,.....,,{=;=

''

2

'

12

21121

over the parameter set E  (where each parameter is a 

neutrosophic word or neutrosophic sentence involving 

neutrosophic words)is denoted by 
CAF ),(  and is 

defined by ),(=),( AFAF CC  where 

UC AF N:   where A  is the NOT set of the 

parameter set A .  

4.9   Definition: Union  

The union of two two-dimensional neutrosophic soft 

sets ),( AF  and ),( BG  over the same universe 

U

NjiOOOU

OOOUUUU

j

i





,};,....,,{=

},,.....,,{=;= where

''

2

'

12

21121
) 

and over the parameter set E  (where EBA ,

and each parameter is a neutrosophic word or 

neutrosophic sentence involving neutrosophic 

words)is denoted by ),(~),( BGAF  and is 

defined by ),(=),(~),( CHBGAF 

where 













BAeifUU
j

O
i

O
j

O
i

O
eGj

O
i

O
eF

max
j

O
i

O

ABeifeG

BAeifeF

eH

},
21

)',()}',(
)(

),',(
)(

{)/',{(

)(),(

)(),(

=)(



where ),( '

)( jieF OO and ),( '

)( jieG OO denote 

the membership values of ),( '

ji OO w.r.t the 

functions F  and G  respectively associated with

the parameter e . 

4.10   Definition: Intersection  

The intersection of two two-dimensional 

neutrosophic soft sets ),( AF  and ),( BG  over 

the same universe U where 

NjiOOOU

OOOUUUU

j

i





,};,....,,{=

},,.....,,{=;=

''

2

'

12

21121

and over the parameter set E  (where EBA ,

and each parameter is a neutrosophic word or 

neutrosophic sentence involving neutrosophic 

words)is denoted by ),(~),( BGAF  and is 

defined by ),(=),(~),( CHBGAF 

where 













BAeifUU
j

O
i

O
j

O
i

O
eGj

O
i

O
eF

min
j

O
i

O

ABeifeG

BAeifeF

eH

},
21

)',()}',(
)(

),',(
)(

{)/',{(

)(),(

)(),(

=)(



where ),( '

)( jieF OO and ),( '

)( jieG OO denote 

the membership values of ),( '

ji OO w.r.t the 

functions F  and G  respectively associated with

the parameter e . 
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4.11   Properties: 

Let ),(),,( BGAF  and ),( CH  be three two-

dimensional neutrosophic soft sets over the same 

universe U  and parameter set E . Then we have,

(i)(F, A) ~∪((G, B) ~∪(H,C)) = ((F, A) ~∪(G, B)) ~∪(H,C)

),(~),(=),(~),)(( AFBGBGAFii 

),(=)),)((( AFAFiii CC
 

),(=),(~),)(( AFAFAFiv 

),(=),(~),)(( AFAFAFv 

),(=~),)(( AFAFvi A , where A  is the null 

two-dimensional neutrosophic soft set with respect to 

the parameter set A . 

AAAFvii  =~),)(( 

AA UUAFviii =~),)((  , where AU is the 

universal two-dimensional neutrosophic soft set with 

respect to the parameter set A . 

),(=~),)(( AFUAFix A

4.12   De Morgan’s laws in two-dimensional 

neutrosophic soft set theory:  

The well known De Morgan’s type of results hold in 

two-dimensional neutrosophic soft set theory for the 

newly defined operations: complement, union and 

intersection. 

Theorem 4.1  

Let ),( AF  and ),( BG  be two two-dimensional 

neutrosophic soft sets over a common universe U
and parameter set E . Then 

CCC BGAFBGAFi ),(~),(=)),(~),)(( 
CCC BGAFBGAFii ),(~),(=)),(~),)(( 

5   The Methodology Based On Two-

Dimensional Neutrosophic Soft Set For Solving 

Neutrosophic Multi-Criteria Assignment 

Problems With Multiple Decision Makers  

In many real life problems we have to assign each 

object of a set of objects to another object in a different 

set of objects such as assigning men to offices, jobs to 

machines, classes in a school to rooms, drivers to 

trucks, delivery trucks to different routs or problems to 

different research teams etc. in which the assignees 

posses varying degree of efficiency, depending on 

neutrosophic multiple criteria such as cost, time etc. 

The basic assumption of this type of problem is that 

one person can perform one job at a time. To solve 

such type of problems our aim is to make such 

assignment that optimize the criteria i.e., minimize the 

degree of cost and time or maximizes the degree of 

profit. Since in such type of problems the degrees of 

each criterion (or, parameter) of a set of criteria 

(or, parameter set) are evaluated with respect to 

two different types of objects, to solve such 

problems we can apply two-dimensional 

neutrosophic soft set and their various operations. 

The stepwise procedure to solve such type of 

problems is given below. 

DNS2  Algorithm: 

Step 1: Convert each unbalanced criteria matrix to 

balanced by adding a fictitious job or machine with 

zero cost of efficiency. 

Step 2: From these balanced criteria matrices 

construct a two-dimensional neutrosophic soft set 

),( ii EF according to each decision maker 

;1,2,...,=; qidi q  be the number of decision 

makers. 

Step 3: Combining the opinions of all the decision 

makers about the criteria, take the union of all these 

two-dimensional neutrosophic soft sets 

qiEF ii 1,2,...,=);,( as follows 

),(~=),( 1= ii

q

i EFEF 

  Step 4: Then compute the complement 
CEF ),(

of the two-dimensional neutrosophic soft set ),( EF

if our aim be to minimize the criteria (such as cost, 

time etc.). 

Step 5: Construct the tabular representation of 

),( EF  or, 
CEF ),(  according to maximization or 

minimization problem with row wise sum of 

parametric values which is known as choice value 

( ),(
j

M
i

JC ). 

Step 6: Now for i -th job, consider the choice values 

jC
j

M
i

J ,),( and point out the maximum choice 

value 
max

j
M

i
JC ),( with a  . 

Step 7: If 
max

j
M

i
JC ),( holds for all distinct j ’s then 

assign 
jM  machine for iJ  job and put a tick 

mark( ) beside the choice values corresponding to 

jM  to indicate that already 
jM  machine has been 

assigned. 

Step 8: If for more than one i , 
max

j
M

i
JC ),( hold for 

the same j , ie., if there is a tie for the assignment of 

jM  machine in more than one job then we have to 

consider the difference value (
),(

j
M

i
J

dV ) between the 
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maximum and the next to maximum choice 

values(corresponding to those machines which are not 

yet assigned). If 
),

2
(),

1
(

<
j

M
i

J
d

j
M

i
J

d VV then 
jM

machine will be assigned for the job 
2

iJ . Now if the 

difference values also be same, i.e.,

),
2

(),
1

(
=

j
M

i
J

d
j

M
i

J
d VV then go to the next step. 

Step 9: Now for i -th job, consider the rejection 

values jR
j

M
i

J ,),( and point out the minimum 

rejection value 
min

j
M

i
JR ),( with a  . 

Step 10: If for more than one i , 
min

j
M

i
JR ),( hold for 

the same j , consider the difference value (

),(
j

M
i

J
dRV ) between the minimum and the next to 

minimum rejection values(corresponding to those 

machines which are not yet assigned). If 

),
2

(),
1

(
<

j
M

i
J

dR
j

M
i

J
dR VV then 

jM  machine will 

be assigned for the job 
2

iJ . Now if the difference 

values also be same then go to the final step. 

Step 11: Now for i -th job, consider the confusion 

values j
j

M
i

J ,),( and point out the minimum 

confusion value 
min

j
M

i
J ),( with a  . 

Step 12: If for more than one i , 
min

j
M

i
J ),( hold for 

the same j , consider the difference value (

),(
j

M
i

J
dV  ) between the minimum and the next to 

minimum confusion values(corresponding to those 

machines which are not yet assigned). If 

),
2

(),
1

(
<

j
M

i
J

d
j

M
i

J
d VV  then 

jM  machine will 

be assigned for the job 
2

iJ . Now if the difference 

values also be same i.e.,
),

2
(),

1
(

=
j

M
i

J
d

j
M

i
J

d VV 

then 
jM  machine may be assigned to any one of the 

jobs 
1
iJ  or .

2
iJ  

6  Application of DNS2  Algorithm For

Solving Neutrosophic Multi-Criteria Assignment 

Problems in Medical Science 

In medical science there also exist neutrosophic multi-

criteria assignment problems and we may apply the 

DNS2  Algorithm for solving those problems.

Now we will discuss a such type of problem with its 

solution. 

Problem 1: In medical science[19] there are different 

types of diseases and various modalities of treatments 

in respect to them. On the basis of different aspects of 

the treatment procedure (such as degree of pain relief, 

cost and time requirements for treatment etc.) we may 

measure the degree of effectiveness of the treatment 

for the disease. Here we consider three common 

diseases of oral cavity such as dental caries, gum 

disease and oral ulcer. Now medicinal treatment, 

extraction and scaling that are commonly executed, 

have more or less impacts on the treatment of these 

three diseases. According to the statistics,  

( true-membership value, indeterminacy-membership 

value, falsity-membership value ) of pain relief in case 

of medicinal treatment on the basis of pain score for 

dental caries, gum disease, oral ulcer are 

.5)(0.6,0.8,0.5),(0.7,0.7,0  and .2)(0.9,0.5,0

respectively; by extraction the degrees of pain relief 

for dental caries, gum disease and oral ulcer are 

.3)(0.8,0.5,0 , .4)(0.8,0.7,0  and .6)(0.5,0.7,0

respectively and by scaling the degrees of pain relief 

for dental caries, gum disease and oral ulcer are 

,.8)(0.3,0.8,0 .2)(0.9,0.4,0  and .5)(0.6,0.7,0

respectively. Now the degree of cost to avail the 

medicinal treatment, extraction and scaling for both 

the diseases dental caries, gum disease are 

.7)(0.3,0.2,0.8),(0.4,0.3,0  and .6)(0.5,0.4,0  

respectively and that for oral ulcer are 

.9)(0.2,0.3,0.8),(0.3,0.2,0  and .7)(0.4,0.4,0  

respectively. Moreover the degree of time taken to the 

medicinal treatment, extraction and scaling for gum 

disease are 

.6)(0.5,0.5,0.8),(0.4,0.2,0.5),(0.6,0.3,0  and 

for oral ulcer are 

.5)(0.5,0.5,0.8),(0.4,0.3,0.7),(0.6,0.4,0  

respectively and that of for dental caries are 

.7)(0.5,0.4,0.3),(0.6,0.2,0  and .9)(0.3,0.2,0  

respectively. Now the problem is to assign a 

treatment for each disease so that to maximize the 

pain relief and minimize the cost and time 

simultaneously as much as possible. 

Solution By DNS2  Algorithm 

The set of universe 21= UUU   where 

},,{=

},,{=

},,,{=

},,{=

321

2

321

1

ttt

scalingextractiontreatmentmedicinalU

ddd

ulceroraldiseasegumcariesdentalU
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and the set of parameters 

(say)},,{=

{=

321 eee

pain score, cost requirement, time requirementE

Now from the given data we have the following 

criteria matrices: 

To solve this problem by DNS2  algorithm at 

first we have to form the two-dimensional 

neutrosophic soft set ),( EF  describing  the 

impact of the treatments for the diseases from the 

given criteria matrices as:  

,0.8),)/(0.4,0.3,(,,0.6))/(0.5,0.2,(

,0.3),)/(0.8,0.2,(,0.7),)/(0.3,0.2,(

,0.7),)/(0.5,0.3,{(=

2212

3121

11

tdtd

tdtd

tddegree of pain score

,0.8),)/(0.3,0.2,(,0.9),)/(0.2,0.6,( 1332 tdtd

,0.8),)/(0.4,0.3,{(=

,0.6)},)/(0.5,0.3,(,0.5),)/(0.6,0.3,(

11

3323

tddegree of cost requirement

tdtd

,0.8),)/(0.3,0.3,(,0.7),)/(0.4,0.2,(

,0.6),)/(0.5,0.4,(,0.7),)/(0.3,0.2,(

2212

3121

tdtd

tdtd

,0.7)},)/(0.4,0.4,(,0.9),)/(0.2,0.3,(

,0.8),)/(0.3,0.2,(,0.6),)/(0.5,0.4,(

3323

1332

tdtd

tdtd

,0.9),)/(0.3,0.2,(,0.7),)/(0.5,0.4,(

,0.3),)/(0.6,0.2,{(=

3121

11

tdtd

tddegree of time requirement

,0.7),)/(0.6,0.4,(,0.6),)/(0.5,0.5,(

,0.8),)/(0.4,0.2,(,0.5),)/(0.6,0.3,(

1332

2212

tdtd

tdtd

,0.5)}})/(0.5,0.5,(,0.8),)/(0.4,0.3,( 3323 tdtd  

Here, 

},,,{=}

,,{=

321 eeetimeoftrequiremennot

costoftrequiremennotreliefpainE

then 

,0.8),)/(0.3,0.8,(,0.3),)/(0.7,0.8,(

,0.5),)/(0.7,0.7,{(={=),(

3121

11

tdtd

tddegree of pain reliefEF c

,0.3),)/(0.8,0.8,(,0.2),)/(0.9,0.4,(

,0.4),)/(0.8,0.2,(,0.5),)/(0.6,0.8,(

1332

2212

tdtd

tdtd

,0.4),)/(0.8,0.7,{(=

,0.5)},)/(0.6,0.7,(,0.6),)/(0.5,0.7,(

11

3323

tddegree of not requirement of cost

tdtd

,,0.3))/(0.8,0.7,(,0.4),)/(0.7,0.8,(

,0.5),)/(0.6,0.6,(,0.3),)/(0.7,0.8,(

2212

3121

tdtd

tdtd

,,0.3))/(0.8,0.8,(,,0.5))/(0.6,0.6,( 1332 tdtd  

,0.6),)/(0.3,0.8,{(=

,0.4)},)/(0.7,0.6,(,0.2),)/(0.9,0.7,(

11

3323

tddegree of not requirement of time

tdtd

,0.4),)/(0.8,0.8,(,0.6),)/(0.5,0.7,(

,0.3),)/(0.9,0.8,(,0.5),)/(0.7,0.6,(

2212

3121

tdtd

tdtd

,0.5)}})/(0.5,0.5,(,0.4),)/(0.8,0.7,(

,0.6),)/(0.7,0.6,(,0.5),)/(0.6,0.5,(

3323

1332

tdtd

tdtd

Therefore the tabular representation of 
cEF ),(  is 

as follows: 
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  = {F , E

Table-7(Pain Score Matrix) 

  TREATMENTS 

1t 2t 3t

1d (0.5,0.2,0.6) (0.4,0.3,0.8)  (0.2,0.6,0.9) 

2d (0.2,0.5,0.9) (0.6,0.3,0.5)  (0.5,0.3,0.6) 

3d (0.2,0.5,0.9) (0.6,0.3,0.5)  (0.5,0.3,0.6) 

   Table-8(Cost Matrix) 

TREATMENTS 

1t 2t 3t

1d (0.4,0.3,0.8) (0.3,0.2,0.7) (0.5,0.4,0.6) 

2d (0.4,0.2,0.7) (0.3,0.3,0.8)  (0.5,0.4,0.6) 

3d (0.3,0.2,0.8) (0.2,0.3,0.9)  (0.4,0.4,0.7) 

Table-9(Time Matrix) 

  TREATMENTS 

1t 2t 3t

1d (0.6,0.2,0.3)  (0.5,0.4,0.7) (0.3,0.2,0.9) 

2d (0.6,0.3,0.5) (0.4,0.2,0.8) (0.5,0.5,0.6) 

3d (0.6,0.4,0.7) (0.4,0.3,0.8) (0.5,0.5,0.5) 

D
IS

E
A

S
E

S
 

D
IS

E
A

S
E

S
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Table-10 

Tabular Representation of 
cEF ),(  with choice

rejection and confusion values

),,(
),(),(),(

jtidjtid
RC

j
t

i
d   

1e 2e 3e
),(

j
t

i
dC ),(

j
t

i
dR ),(

j
t

i
d

),( 11 td  (0.7,0.7,0.5), (0.8,0.7,0.4) (0.3,0.8,0.6) 

 1.8  1.5  2.2 

),( 21 td  (0.7,0.8,0.3)  (0.7,0.8,0.3) (0.7,0.6,0.5) 

*2.1  1.1  2.2 

),( 31 td  (0.3,0.8,0.8)  (0.6,0.6,0.5) (0.9,0.8,0.3) 

1.8  1.6 

 2.2

),( 12 td  (0.6,0.8,0.5)  (0.7,0.8,0.4) (0.5,0.7,0.6) 

1.8  1.5  2.3 

),( 22 td  (0.8,0.2,0.4)  (0.8,0.7,0.3) (0.8,0.8,0.4) 

*2.4  1.1 

 1.7

),( 32 td  (0.9,0.4,0.2)  (0.6,0.6,0.5) (0.6,0.5,0.5) 

 2.1 1.2  1.5 

),( 13 td  (0.8,0.8,0.3)  (0.8,0.8,0.3) (0.7,0.6,0.6) 
*2.3

1.2 2.2 

),( 23 td  (0.5,0.7,0.6)  (0.9,0.7,0.2) (0.8,0.7,0.4) 

2.2 1.2 2.1 

),( 33 td  (0.6,0.7,0.5)  (0.7,0.6,0.4) (0.5,0.5,0.5) 

1.8 1.4 1.8 

Now among the choice values 1,2,3=;),
3

( jC
j

td , 

)
1

,
3

( tdC is maximum( 2.3 ), which implies that 1t

treatment has to be assigned for the disease 3d . 

But for both the diseases 1d and 2d , 

1,2,3=;),( jC
j

t
i

d take the maximum value at 

2=j , i.e., for the assignment of 2t  treatment there 

is a tie between the diseases 1d  and 2d . We have to 

consider the difference value 2,3=1,2;=;
),(

jiV
j

t
i

d
d

 

between the maximum and the next to maximum 

choice values(corresponding to those treatments 

which are not yet assigned). 

Now since 
),

2
(),

1
(

=0.3=
j

td
d

j
td

d VV  for 2,3=j ; 

we have to consider the rejection values. But for both 

the diseases 1d  and 2d , 1,2,3=;),( jR
j

t
i

d  take 

the minimum value at 2=j , therefore we have to 

consider their confusion values. Now since 

2,3=;),
2

( j
j

td  take the minimum value (1.7 ) at 

2=j , 2t  treatment has to be assigned for the 

disease 2d  and the rest treatment 3t  is assigned 

for the disease 1d . 

Figure  1: Block Diagram of DNS2 -Algorithm to 

Assign a Treatment for a Disease  

7   Conclusion:  

In this paper, we have introduced a new concept of 

multi-dimensional neutrosophic soft set. Using this 

new idea, an algorithm named DNS2  has been

proposed to solve neutrosophic multi-criteria 

assignment problems with multiple decision makers. 

Finally, our newly proposed DNS2  algorithm

has been applied to solve an assignment problem in 

medical science. 
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Abstract. In this paper, multi attribute decision making 

problem based on grey relational analysis in neutrosophic 

cubic set environment is investigated. In the decision 

making situation, the attribute weights are considered as 

single valued neutrosophic sets. The neutrosophic weights 

are converted into crisp weights. Both positve and neg-

ative GRA coefficients, and weighted GRA coefficients 

are determined.   

Hamming distances for weighted GRA coefficients and 

standard (ideal) GRA coefficients are determined. The 

relative closeness coefficients are derived in order to rank 

the alternatives. The relative closeness coefficients are 

designed in ascending order. Finally, a numerical example 

is solved to demonstrate the applicability of the proposed 

approach. 

Keywords: Grey relational coefficient, interval valued neutrosophic set, multi attribute decision making, neutrosophic set,  

neutrosophic cubic set, relative closeness coefficient 

1 Introduction 

In management section, banking sector, factory, plant 
multi attribute decision making (MADM) problems are to 
be extensively encountered. In a MADM situation, the most 

appropriate alternative is selecting from the set of alter-
natives based on highest degree of acceptance. In a decision 
making situation, decision maker (DM) considers the ef-
ficiency of each alternative with respect to each attribute. In 
crisp MADM, there are several approaches [1, 2, 3, 4, 5] in 
the literature. The weight of each attribute and the elements 

of decision matrix are presented by crisp numbers. But in 
real situation, DMs may prefer to use linguistic variables 
like ‘good’, ‘bad’, ‘hot’, ‘cold’, ‘tall’, etc.  So, there is an 
uncertainty in decision making situation which can be 
mathematically explained by fuzzy set [6]. Zadeh [6] 
explained uncertainty mathematically by defining fuzzy set 

(FS). Bellman and Zadeh [7] studied decision making in 
fuzzy environment. Atanassov [8, 9] narrated uncertainty by 
introducing non-membership as independent component 
and defined intuitionistic fuzzy set (IFS). Degree of indeter-
minacy (hesitency) is not independent .  

Later on DMs have recognized that indeterminacy plays 

an important role in decision making. Smarandache [10] 
incorporated indeterminacy as independent component and 
developed neutrosophic set (NS) and together with  Wang 
et a. [11] defined single valued neutrosophic set (SVNS) 
which is an instance of neutrosophic set. Ye [12] proposed 

a weighted correlation coefficients for ranking the altern-
atives for multicriteria decision making (MCDM). Ye [13] 
established single valued neutrosophic cross entropy for 
MCDM problem. Sodenkamp [14] studied multiple-criteria 

decision analysis in neutrosophic environment. Mondal and 
Pramanik [15] defined neutrosophic tangent similarity 
measure and presented its application to MADM. Biswas et 
al. [16] studied cosine similarity measure based MADM 
with trapezoidal fuzzy neutrosophic numbers. Mondal and 
Pramanik [17] presented multi-criteria group decision 

making (MCGDM) approach for teacher recruitment in 
higher education. Mondal and Pramanik [18] studied 
neutrosophic decision making model of school choice.  Liu 
and Wang [19] presented MADM method based on single-
valued neutrosophic normalized weighted Bonferroni mean. 
Biswas et al. [20] presented TOPSIS method for MADM 

under single-valued neutrosophic environment. Chi and Liu 
[21] presented extended TOPSIS method for MADM on 
interval neutrosophic set. Broumi et al. [22] presented 
extended TOPSIS method for MADM based on interval 
neutrosophic uncertain linguistic variables. Nabdaban and 
Dzitac [23] presented a very short review of TOPSIS in 

neutrosophic environment. Pramanik et al. [24] studied 
hybrid vector similarity measures and their applications to 
MADM under neutrosophic environment. Biswas et al. [25] 
presented triangular fuzzy neutrosophic set information and 
its application to MADM. Sahin and Liu [26] studied 
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maximizing deviation method for neutrosophic MADM 
with incomplete weight information. Ye [27] studied 
bidirectional projection method for MADM with neutr-
osophic numbers of the form a + bI, where I is characterized 
by indeterminacy. Biswas et al. [28] presented value and 
ambiguity index based ranking method of single-valued 

trapezoidal neutrosophic numbers and its application to 
MADM. Dey et al. [29] studied extended projection-based 
models for solving MADM problems with interval-valued 
neutrosophic information. 

Deng [30, 31] studied grey relational analysis (GRA). 
Pramanik and Mukhopadhyaya [32]  developed GRA based 

intuitionistic fuzzy multi criteria decision making (MCDM) 
approach for teacher selection in higher education. Dey et al. 
[33] established MCDM in intuitionistic fuzzy environment 
based on GRA for weaver selection in Khadi institution. 
Rao, and Singh [34] established modified GRA method for 
decision making in manufacturing situation. Wei [35] 

presented GRA method for intuitionistic fuzzy MCDM. 
Biswas et al. [36] studied GRA method for MADM under 
single valued neutrosophic assessment based on entropy. 
Dey et al. [37] presented extended GRA based neutrosophic 
MADM in interval uncertain linguistic setting. Pramanik 
and K. Mondal [38] employed GRA for interval neutros-

ophic MADM and presented numerical examples. 
Several neutrosophic hybrid sets have been recently  

proposed in the literature, such as neutrosophic soft set 
proposed by Maji [39], single valued soft expert set pro-
posed by Broumi and Smarandache  [40], rough neutros-
ophic set proposed by  Broumi, et al. [41], neutrosophic bi-

polar set proposed by Deli et al. [42], rough bipolar neutro-
sophic set proposed by Pramanik and Mondal [43], neutro-
sophic cubic set proposed by Jun et al. [44] and Ali et al. 
[45]. Jun et al. [44]  presented the concept of neut-rosophic 
cubic set by extending the concept of cubic set proposed by 
Jun et al. [46] and introduced the notions of truth-internal 

(indeterminacy-internal, falsity-internal) neut-rosophic 
cubic sets and truth-external (indeterminacy-external, 
falsity-external) and investigated related properties. Ali et al. 
[45] presented concept of neutrosophic cubic set by 
extending the concept of cubic set [46] and defined internal 
neutrosophic cubic set (INCS) and external neutrosophic 

cubic set (ENCS).  In their study,  Ali et al.[45]  also 
introduced an adjustable approach to neutrosophic cubic set 
based decision making.  

GRA based MADM/ MCDM problems have been pro-
posed for various neutrosophic hybrid environments [47, 48, 
49, 50]. MADM with neutrosophic cubic set is yet to appear 

in the literature. It is an open area of research in 
neutrosophic cubic set environment. 

The present paper is devoted to develop GRA method 
for MADM in neutrosophic cubic set environment. The 
attribute weights are described by single valued neutros-
ophic sets. Positive and negative grey relational coefficients 

are determined. We define ideal grey relational coefficients 
and relative closeness coefficients in neutrosophic cubic set 

environment. The ranking of alternatives is made in 
descending order.   

The rest of the paper is designed as follows: In Section 
2, some relevant definitions and properties are recalled.  
Section 3 presents MADM in neutrosophic cubic set 
environment based on GRA. In Section 4, a numerical 

example is solved to illustrate the proposed approach. 
Section 5 presents conclusions and future scope of research. 

2 Preliminaries 

In this section, we recall some established definitions 
and properties which are connected in the present article. 

2.1 Definition (Fuzzy set) [6] 

 Let W be a universal set. Then a fuzzy set F over W can 
be  defined by F={<w,  )w(F : w ∈W} where :)w(F W 

 [0, 1]is called membership function of F and )w(F is 
the degree of  membership to which w F. 

2.2 Definition (Interval valued fuzzy set) [52] 

Let W be a universal set. Then, an interval valued fuzzy 

set F over W is defined by F = {[  w:w/)]w(F),w(F  W}, 
where )w(F

 and )w(F
  are referred to as the lower and 

upper degrees of membership w ∈W where 

0 ≤ )w(F
+ )w(F

≤ 1, respectively. 

 2.3 Definition (Cubic set) [46] 

Let W be a non-empty set. A cubic set C in W is of the 

form c = {  w/))w(),w(F,w  W} where F is an interval 
valued fuzzy set in W and  is a fuzzy set in W.  

2.4 Definition (Neutrosophic set (NS)) [10] 

Let W be a space of points (objects) with generic 
element w in W. A neutrosophic set N in W is denoted by 
N= {< w: TN(w), IN(w), FN(w)>: w W} where TN, IN, FN 

represent membership, indeterminacy and non-membership 
function respectively. TN, IN, FN can be defined as follows: 

NT : W →]


0, 1+ [

NI : W →]


0, 1+ [

AF : W →]


0, 1+ [

Here, TN(w), IN(w), FN(w) are the real standard and non-
standard subset of ]


0, 1+ [ and


0 ≤ TN(w)+IN(w)+FN(w) ≤ 3+. 

2.5 Definition (Complement of neutrosophic set) 
[10] 

The complement of a neutrosophic set N is denoted by 
Nand defined as 
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N= {<w: TN(w), IN(w), FN(w)>, Ww }

TN(w) = {1+}- TN(w) 

IN(w) = {1+} -IN(w) 

FN(w) = {1+} - FN(w) 

2.6 Definition (Containment) [10, 20] 

A neutrosophic set P is contained in the other 
neutrosophic set Q, P ⊆ Q, if and only if 

inf (TP ) ≤ inf (TQ),sup (TP ) ) ≤ sup ((TQ), 

inf (IP )   inf (IQ),sup (IP ) )   sup ((IQ). 

inf (FP )   inf (FQ),sup (FP ) )   sup ((FQ). 

2.7 Definition (Union)  [10]  

The union of two neutrosophic sets P and Q is a 

neutrosophic set R, written as R = P ∪ Q, whose truth-

membership, indeterminacy-membership and falsity 

membership functions are related to those of P and Q by 

    TR(w) = TP(w) + TQ(w) – TP(w) ×TQ(w), 

 IR(w) = IP(w) + IQ(w) – IP(w) × IQ(w), 

FR(w) = FP(w) + FQ(w) – FP(w) × FQ(w), for all wW. 

2.8 Definition (Intersection)  [10]

The intersection of two neutrosophic sets P and Q is a 
neutrosophic set C, written as R =P∪Q, whose truth-
membership, indeterminacy-membership and falsity- 
membership functions are related to those of P and Q by  

TR(w) = TP(w) ×TQ(w), 

 IR(w) = IP(w) × IQ(w), 

FR(w) = FP(w) × FQ(w), for all wW. 

2.9 Definition (Hamming distance) [20, 53]           

Let  n...,,2,1i,)w(F),w(I),w(T:wP iPiPiPi   and

 n...,,2,1i,)w(F),w(I),w(T:wQ iQiQiPi  be  any two 

neutrosophgic sets. Then the Hamming distance between P 

and Q can be defined as follows:  

)Q,P(d =

))w(F)w(F)w(I)w(I)w(T)w(T(
n

1i
iQiPiQiPiQiP 



                                                                                       

2.10 Definition (Normalized Hamming distance) 

The normalized Hamming distance between two 
SVNSs, A and B can be defined as follows: 

)Q,P(dN =   

 


n

1i
iQiPiQiPiQiP ))w(F)w(F)w(I)w(I)w(T)w(T(

n3

1
   

2. 11 Definition (Interval neutrosophic set) [51]

Let W be a non-empty set. An interval neutrosophic set 
(INS) P in W is characterized by the truth-membership 
function PT, the indeterminacy-membership function PI and 
the falsity-membership function PF. For each point w ∈ W, 
PT(w), PI(w),PF(w))⊆[0,1]. Here P can be presented as 

follows:  

P ={< w, )]w(P),w(P[ U
T

L
T , )]w(P),w(P[ U

I
L
I , 

)]w(P),w(P[ U
F

L
F  > :w ∈W}. 

2.12 Definition (Neutrosophic cubic set) [44, 45] 

Let W be a set. A neutrosophic cubic set (NCS) in W is 

a pair ),P(  where P = { /)w(P),w(P),w(P,w FIT wW}  is 

an interval neutrosophic set in W and  

 Ww/)w(),w(),w(,w FIT  is a neutrosophic set 

in W. 

3 GRA for MADM in neutrosophic cubic set 
environment  

We consider a MADM problem with r alternatives {A1, 
A2, …, Ar} and s attributes {C1, C2, …, Cs}. Every attribute 
is not equally important to decision maker. Decision maker 
provides the neutrosophic weights for each attribute. Let 

 T
s21 w...,,w,w W  be the neutrosophic weights of the attrib-

utes.  

Step 1 Construction of decision matrix 

Step1.The decision matrix (see Table 1) is constructed 
as follows: 

Table 1: Decision matrix 

srrsrs2r2r1r1rr

s2s2222221212

s1s1121211111

s21

s

),A(...),A(),A(A

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

),A(...),A(),A(A

),A(...),A(),A(A

C...CC





































  rij )(aA

Here ),A(
ijij


i j
a ,  ]F,F[],I,I[],T,T[A U

ij

L

ij

U

ij

L

ij

U

ij

L

ijij
 , 

)F,I,T(
ijijijij

 , 
i j
a means the rating of alternative Ai with 

respect to the attribute Cj. Each weight component 
j
w of 

attribute 
j

C has been taken as neutrosophic set and 

)F,I,T(
jjj


j
w ,  ]F,F[],I,I[],T,T[A U

ij

L

ij

U

ij

L

ij

U

ij

L

ijij


are interval neutrosophic set and )F,I,T(
ijijijij

 is a 

neutrosophic set. 

(1) 

(2) 
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Step 2 Crispification of neutrosophic weight set 

Let  jjjj F,I,Tw   be the j – th neutrosophic weight 
for the attribute

j
C . The equivalent crisp weight of  jC is 

defined as follows:

 






n

1j

2

j

2

j

2

j

2

j

2

j

2

jc

j

FIT

FIT
w and 1w

s

1j

c

j 


.   

Step 3 Conversion of interval neutrosophic set into neu-

trosophic set decision matrix  

In the decision matrix (1), each 
 ]F,F[],I,I[],T,T[A U

ij
L
ij

U
ij

L
ij

U
ij

L
ijij  is an INS. Taking

mid value of each interval the decision matrix reduces to 
single valued neutrosophic decision matrix (See Table 2). 

Table 2: Neutrosophic decision matrix 

srrsrs2r2r1r1rr

s2s2222221212

s1s1121211111

s21

s

),M(...),M(),M(A

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

),M(...),M(),M(A

),M(...),M(),M(A

C...CC





































 rij )(mM

where each  
ijij

,M 
i j
m and 













 


2

FF
,

2

II
,

2

TT U
ij

L
ij

U
ij

L
ij

U
ij

L
ij

ijM  .F,I,T m

ij

m

ij

m

ij


Step 4 Some definitions of GRA method for MADM with 

NCS  

The GRA method for MADM with NCS can be pre-
sented in the following steps: 

Step 4.1 Definition: 

The ideal neutrosophic estimates reliability solution 

(INERS) can be denoted as 

       ],...,,,,,[,
q21

 
q21
MMMM

and defined as    jjjj F,I,TM , where
m
ij

i
j TmaxT 

, 

m

ij
i

m

j
IminI 

, 
m

ij
i

m

j
FminF 

and )F,I,T(
jjjj

   

where ij
i

j
TmaxT 

, ij
i

j
IminI 

, ij
i

j
FminF 

in the neutro-

sophic cubic decision matrix 
qpij
)(mM


 , i = 1,2,...,r and j 

= 1, 2, ..., s. 

Step 4.2 Definition: 

The ideal neutrosophic estimates unreliability solution 

(INEURS) can be denoted as 
          s21 ,...,,,,,, s21 MMMM

and defined as    m

j

m

j

m

jj
F,I,TM  where

m

ij
i

m

j
TminT 

, 

m

ij
i

m

j
ImaxI 

, 
m

ij
i

m

j
FmaxF 

and )F,I,T(
jjjj

  where 

ij
i

j
TminT 

, ij
i

j
ImaxI 

, ij
i

j
FmaxF 

 in the neutrosophic 

cubic decision matrix 
s rij )(mM , i = 1,2,...,r and j = 1, 2, 

...,s. 

Step 4.3 Definition: 

The grey relational coefficients of each alternative 

from INERS can be defined as: 

 







































ij
ji

ij

ij
ji

ij
ji

ij
ji

ij

ij
ji

ij
ji

ijij

maxmax

maxmaxminmin
,

maxmax

maxmaxminmin

,

Here, 

)M,M(d
ijjij

 

  



r

1i

m
ij

m
j

m
ij

m
j

m
ij

m
j FFIITT

and  
ijjij

,d     



r

1i
ijjijjijj FFIITT  , 

i = 1, 2 ,..., r and j = 1, 2, ..., s, ]1,0[ . 

We call   
ijij

, as positive grey relational coeffi-

cient. 

Step 4.4 Definition: 

The grey relational coefficient of each alternative from 

INEURS can be defined as: 

 ,ij ij     































ij
ji

ij

ij
ji

ij
ji

ij
ji

ij

ij
ji

ij
ji

maxmax

maxmaxminmin

maxmax

maxmaxminmin
,

 

Here,

)M,M(d
ijjij

    



r

1i

m
ij

m
j

m
ij

m
j

m
ij

m
j FFIITT

and: 

 
ijjij

,d     



r

1i
ijjijjijj FFIITT  , i = 1, 

2,..., r and j = 1, 2, ..., s, ]1,0[ . 

We call   
ijij

, as negative grey relational coefficient. 

 is called distinguishable coefficient or identification coef-

ficient and it is used to reflect the range of comparison en-

vironment that controls the level of differences of the grey 

relational coefficient. 0  indicates comparison environ-

ment disappears and 1  indicates comparison environ-

ment is unaltered. Generally, 5.0 is assumed for decision 

making. 
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Step 4.5 Calculation of weighted grey relational coeffi-

cients for MADM with NCS 

We can construct two sr order matrices namely 



GR
M  

srijij ,


   and 

GR
M  

srijij
,



  . The crisp weight is

to be multiplied with the corresponding elements of 

GR
M

and 

GR
M     to obtain weighted matrices 



GRW
M  and 



GRW
M

 and defined as: 



GRW
M  

srij
c
jij

c
j w,w



    srijij

~
,~


 

and 

GRW
M  

srij
c
jij

c
j w,w



    srijij

~
,~


 

Step 4.6 

From the definition of grey relational coefficient, it is 

clear that grey relational coefficients of both types must be 

less than equal to one. This claim is going to be proved in 

the following theorems.  

Theorem 1 

The positive grey relational coefficient is less than unity 

i.e. ,1ij  and 1ij  . 

Proof: 

From the definition 












ij

ji
ij

ij
ji

ij
ji

ij

maxmax

maxmaxminmin

Now, 
 
ijij

ji
minmin

 
ij

ji
ijij

ji
ij

ji
maxmaxmaxmaxminmin

1
maxmax

maxmaxminmin

ij
ji

ij

ij
ji

ij
ji











 

1
ij
   

 Again, from the definition, we can write: 












ij

ji
ij

ij
ji

ij
ji

ij

maxmax

maxmaxminmin

Now, 
 
ijij

ji
minmin

 
ij

ji
ijij

ji
ij

ji
maxmaxmaxmaxminmin












ij

ji
ij

ij
ji

ij
ji

ij

maxmax

maxmaxminmin

1
ij
  .

Theorem 2 

The negative grey relational coefficient is less than unity 

i.e. 1,1
ijij
  . 

Proof: 

  From the definition, we can write 












ij

ji
ij

ij
ji

ij
ji

ij

maxmax

maxmaxminmin

Now, 
 
ijij

ji
minmin

 
ij

ji
ijij

ji
ij

ji
maxmaxmaxmaxminmin












ij

ji
ij

ij
ji

ij
ji

ij

maxmax

maxmaxminmin

1
ij
   

 Again, from the definition 












ij

ji
ij

ij
ji

ij
ji

ij

maxmax

maxmaxminmin

 Now, 
 
ijij

ji
minmin

 
ij

ji
ijij

ji
ij

ji
maxmaxmaxmaxminmin  












ij

ji
ij

ij
ji

ij
ji

ij

maxmax

maxmaxminmin

1
ij
  .

Note 1: 

i. Since 1
ij
 1w, c

j
 1wthen c

jij


1
~

ij  

ii. Since 1
ij
 1w, c

j
 1wthen c

jij


1
~

ij  

iii. Since 1
ij
 1w, c

j
 1wthen c

jij
 1

~
ij    

iv. Since 1
ij
 1w, c

j
 1wthen c

jij
 1

~
ij    

Step 4.7 

We define the ideal or standard grey relational coeffi-

cient as (1, 1). Then we construct ideal grey relational coef-

ficient matrix of order sr  (see Table 3). 

Table 3: Ideal grey relational coefficient matrix 

of order sr  

     
     

     
sr

1,1...1,11,1

...................

1,1...1,11,1

1,1...1,11,1

I

























Step 5 Determination of Hamming distances 

We find the distance 
id  between the corresponding el-

ements of i-th row of I and 
GRW M  by employing Hamming 
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distance. Similarly, 
id  can be determined between I   and 



GRW
M by employing Hamming distance as follows: 

 ]~
1~1[

s2

1
d

s

1j
ijiji  



 , i = 1, 2, …, r.

 ]~
1~1[

s2

1
d

s

1j
ijiji  



 , i = 1, 2, …, r. 

Step 6 Determination of relative closeness coefficient 

The relative closeness coefficient can be calculated as: 








ii

i

i
dd

d

 i = 1, 2, ..., r. 

Step 7 Ranking the alternatives 

According to the relative closeness coefficient, the rank-

ing order of all alternatives is determined. The ranking order 

is made according to descending order of relative closeness 

coefficients. 

4 Numerical example 

Consider a hypothetical MADM problem. The prob-

lem consists of single decision maker, three alternatives 

with three alternatives {A1, A2, A3} and four attributes {C1, 

C2, C3, C4}.  The solution of the problem is presented using 

the following steps: 

Step 1. Construction of neutrosophic cubic decision ma-

trix 

The decison maker forms the decision matrix which is 

displayed in the  Table 4, at the end of article. 

Step 2. Crispification of neutrosophic weight set 

The neutrosophic weights of the attributes are taken as: 

 T
)4.0,3.0,6.0(),1.0,2.0,9.0(),1.0,1.0,6.0(),1.0,2.0,5.0(W

The equivalent crisp weights are

  Tc )2719.0(),3228.0(),2146.0(),1907.0(W 

Step 3 Conversion of interval neutrosophic set into neu-

trosophic set in decision matrix  

Taking the mid value of INS in the Table 4, the new decision 

matrix is presented in the following Table 5, at the end of 

article.  

Step 4 Some Definitions of GRA method for MADM 

with NCS 

The ideal neutrosophic estimates reliability solution (IN-

ERS)   ,M and the ideal neutrosophic estimates unrelia-

bility solution (INEURS)   ,M are presented in the Ta-

ble 6, at the end of article. 

j,i))M,M(d()(
ijjij

  is presented as below: 



















45.025.015.005.0

25.07.0065.0

15.005.095.085.0

 

The   j,i),d()(
ijjij
  is presented as below: 

















 

5.02.03.025.0

2.02.05.005.0

15.04.02.145.0

j,i))M,M(d()(
ijjij

  is presented as below: 

















 

25.06.065.005.1

45.002.145.0

55.07.03.025.0

The   j,i),d()(
ijjij
  is presented as: 

The positive grey relational coefficient 

GR
M

 
43ijij

,


  is presented in the Table 7, at the end of article. 

The negative grey relational coefficient 

GR
M  

43ijij
,



  is 

presented in the Table 8, at the end of article. 

Now, we multiply the crisp weight with the corresponding 

elements of 

GR
M and 

GR
M to get weighted matrices


GRW M

and 


GRW
M and which are described in the Table 9 and 10 

respectively, at the end of article. 

Step 5 Determination of Hamming distances 

Hamming distances are calculated as follows: 

,84496.0d
1
 ,83845625.0d

1


,82444375.0d
2
 ,85328875.0d

2


,82368675.0d
3
 .85277.0d

3


Step 6 Determination of relative closeness coefficient

The relative closeness coefficients are calculated as:

501932.0
dd

d

11

1

1









491403576.0
dd

d

22

2

2









49132.0
dd

d

33

3

3









 

Step 7 Ranking the alternatives 

The ranking of alternatives is made according to de-

scending order of relative closeness coefficients. The rank-

ing order is shown in the Table 11 below. 

Neutrosophic Sets and Systems, Vol. 15, 2017 65 



Durga Banerjee, Bibhas C. Giri, Surapati Pramanik, Florentin Smarandache, GRA for Multi Attribute Decision Making 
in Neutrosophic Cubic Set Environment

Conclusion 
This paper develops GRA based MADM in neutr-

osophic cubic set environment. This is the first approach of 

GRA in MADM in neutrosophic cubic set environment. 
The proposed approach can be applied to other decision 
making problems such as pattern recognition, personnel se-
lection, etc.   

The proposed approach can be applied for decision mak-
ing problem described by internal NCSs and external NCSs. 

We hope that the proposed approach will open up a new av-
enue of research in newly developed neutrosophic cubic set 
environment.   

References 
[1] C. L. Hwang, and K. Yoon. Multiple attribute decision mak-

ing: methods and applications: a state-of-the-art survey, 

Springer, London, (1981). 

[2] J.P. Brans, P. Vinvke, and B. Mareschal. How to select and 

how to rank projects: The PROMETHEE method. European 

Journal of Operation Research, 24(1986), 228–238. 

[3] S. Opricovic. Multicriteria optimization of civil engineering 

systems. Faculty of Civil Engineering, Belgrade (1998). 

[4] S. Opricovic, and G. H. Tzeng. Compromise solution by 

MCDM methods: a comparative analysis of VIKOR and 

TOPSIS. European Journal of Operation Research, 156 

(2004), 445–455. 

[5] B. Roy. The outranking approach and the foundations of 

ELECTRE methods. Theory Decision, 31(1991), 49–73. 

[6] L. A. Zadeh. Fuzzy Sets. Information and Control, 8 (3) 

(1965), 338-353. 

[7] R. Bellman, and L. A. Zadeh. Decision making in a fuzzy 

environment, Management Science, 17B (4) (1970), 141-

164. 

[8] K. T. Atanassov. Intuitionistic fuzzy sets. Fuzzy Sets and 

Systems, 20 (1986), 87–96. 

[9] K. T. Atanassov. On Intuitionistic fuzzy set theory, studies in 

fuzziness and soft computing, Springer- Verlag, Berlin 

(2012). 

[10] F. Smarandache. A unifying field in logics. neutrosophy: 

Neutrosophic probability, set and logic. Rehoboth: American 

Research Press (1998). 

[11] H. Wang, F. Smarandache, Y. Q. Zhang, and R. Sunder-

raman. Single valued neutrosophic sets, Multispace and Mul-

tistructure, 4(2010), 410–413. 

[12]  J. Ye. Multicriteria decision-making method using the cor-

relation coefficient under single-valued neutrosophic envi-

ronment. International Journal of General Systems, 42(4) 

(2013), 386-394. 

[13] J. Ye. Single valued neutrosophic cross entropy for        mul-

ticriteria decision-making problems. Applied Mathematical 

Modeling, (2013), doi:10.1016/j.apm.2013.07.020. 

[14] M. Sodenkamp, Models, methods and applications of group 

multiple-criteria decision analysis in complex and uncertain 

systems. Dissertation, University of Paderborn, Germany, 

2013. 

[15] K. Mondal, and S. Pramanik. Neutrosophic tangent similarity 

measure and its application to multiple attribute decision-

making. Neutrosophic Sets and Systems, 9 (2015), 85-92.  

[16] P. Biswas, S. Pramanik, and B. C. Giri. Cosine similarity 

measure based multi-attribute decision-making with trape-

zoidal fuzzy neutrosophic numbers. Neutrosophic Sets and 

Systems, 8 (2015), 47-57. 

[17] K. Mondal, and S. Pramanik. Multi-criteria group decision-

making approach for teacher recruitment in higher education 

under simplified Neutrosophic environment. Neutrosophic 

Sets and Systems, 6 (2014), 28-34. 

[18] K. Mondal, and S. Pramanik. Neutrosophic decision-making 

model of school choice. Neutrosophic Sets and Systems, 7 

(2015), 62-68. 

[19] P. Liu, and Y. Wang. Multiple attribute decision-making 

method based on single-valued neutrosophic normalized 

weighted Bonferroni mean. Neural Computing and Applica-

tions, 25(7) (2014), 2001–2010.  

[20] P. Biswas, S. Pramanik, and B. C. Giri. TOPSIS method for 

multi-attribute group decision-making under single-valued 

neutrosophic environment. Neural Computing and Applica-

tions. doi: 10.1007/s00521-015-1891-2, 2015. 

[21] P. Chi, and P. Liu. An extended TOPSIS method for the 

multi-attribute decision making problems on interval neutro-

sophic set. Neutrosophic Sets and Systems, 1 (2013), 63–70. 

[22] S. Nabdaban, and S. Dzitac. Neutrosophic TOPSIS: a general 

view. 6th International Conference on Computers Communi-

cations and Control, 2016, 250-253. 

[23] S. Broumi, J. Ye, and F. Smnarandache. An extended TOP-

SIS method for multiple attribute decision making based on 

interval neutrosophic uncertain linguistic variables. Neutro-

sophic Sets and Systems, 8 (2015), 22-31. 

[24] S. Pramanik, P. Biswas, and B. C. Giri. Hybrid vector simi-

larity measures and their applications to multi-attribute deci-

sion making under neutrosophic environment. Neural Com-

puting and Applications, (2015), doi: 10.1007/s00521-015-

2125-3. 

[25] P. Biswas, S. Pramanik, and B. C. Giri. Aggregation of trian-

gular fuzzy neutrosophic set information and its application 

to multi-attribute decision making, NSS, 12 (2016), 20-40. 

[26] R. Sahin,and P. Liu. Maximizing deviation method for neu-

trosophic multiple attribute decision making with incomplete 

weight information. Neural Computing and Applications, 

(2015), doi: 10.1007/s00521-015-1995-8. 

[27] J. Ye. Bidirectional projection method for multiple attribute 

group decision making with neutrosophic numbers. Neural 

Computing and Applications, (2015), doi: 10.1007/s00521-

015-2123-5. 

[28] P. Biswas, S. Pramanik, and B. C. Giri. Value and ambiguity 

index based ranking method of single-valued trapezoidal 

neutrosophic numbers and its application to multi-attribute 

decision making. Neutrosophic Sets and Systems, 12 (2016), 

127-138. 

Alterna-

tives 

Ranking 

order 

A3 
1 

A2 
2 

A1 
3 

Neutrosophic Sets and Systems, Vol. 15, 2017  66



Durga Banerjee, Bibhas C. Giri, Surapati Pramanik, Florentin Smarandache, GRA for Multi Attribute Decision Making 
in Neutrosophic Cubic Set Environment

[29] P. P. Dey, S. Pramanik, and B.C. Giri. Extended projection-

based models for solving multiple attribute decision making 

problems with interval –valued neutrosophic information. In: 

New Trends in Neutrosophic Theory and Applications, eds. 

F. Smarandache and S. Pramanik, Pons Editions, Brussels, 

2016, 127- 140.  

[30] J. L. Deng. Introduction to grey system theory. The Journal 

of Grey System, 1(1) (1989), 1–24. 

[31] J. L. Deng. The primary methods of grey system theory, 

Huazhong University of Science and Technology Press, Wu-

han, (2005). 

[32] S. Pramanik, and D. Mukhopadhyaya. Grey relational analy-

sis based intuitionistic fuzzy multi criteria group decision 

making approach for teacher selection in higher education. 

International Journal of Computer Applications, 34 (10) 

(2011), 21 – 29. 

[33] P.P. Dey, S. Pramanik, and B.C. Giri, Multi-criteria group 

decision making in intuitionistic fuzzy environment based on 

grey relational analysis for weaver selection in Khadi institu-

tion. Journal of Applied and Quantitative Methods, 10(4) 

(2015), 1-14. 

[34] R. V. Rao, and D. Singh. An improved grey relational analy-

sis as a decision making method for manufacturing situations. 

International Journal of Decision Science, Risk and Manage-

ment, 2(2010), 1–23. 

[35] G. W. Wei. Grey relational analysis method for intuitionistic 

fuzzy multiple attribute decision making. Expert Systems 

with Applications, 38(2011), 11671-11677. 

[36] P. Biswas, S. Pramanik, and B.C. Giri. Entropy based grey 

relational analysis method for multi-attribute decision – mak-

ing under single valued neutrosophic assessments. Neutro-

sophic Sets and Systems, 2 (2014), 102 – 110. 

[37] P.P. Dey, S. Pramanik, and B.C. Giri. An extended grey rela-

tional analysis based multiple attribute decision making in in-

terval neutrosophic uncertain linguistic setting. Neutrosophic 

Sets and Systems, 11 (2016), 21-30. 

[38] S. Pramanik, and K. Mondal. Interval neutrosophic multi-at-

tribute decision-making based on grey relational analysis. 

Neutrosophic Sets and Systems, 9(2015), 13-22. 

[39] P. K. Maji. Neutrosophic soft set. Annals of fuzzy Mathemat-

ics and Informatics, 5 (1) (2013), 157 – 168. 

[40] S. Broumi, and F. Smarandache. Single valued neutrosophic 

soft expert sets and their application in decision making. 

Journal of New Theory, 3 (2015), 67 – 88. 

[41] S. Broumi, F. Smarandache, and M. Dhar. Rough neutro-

sophic sets. Neutrosophic Sets and Systems, 3 (2014), 62-67. 

[42] I. Deli, M. Ali, and F. Smarandache. Bipolar neutrosophic 

sets and their application based on multi-criteria decision 

making problems. Proceedings of the 2015 International 

Conference on Advanced Mechatronic Systems, Beijing, 

China, August (2015), 22-24. 

[43] S. Pramanik, and K. Mondal. Rough bipolar neutrosophic set. 

Global Journal of Engineering Science and Research Man-

agement, 3 (6) (2015), 71- 81. 

[44] Y. B. Jun, F. Smarandache, and C. S. Kim. Neutrosophic cu-

bic sets. New mathematics and natural computation, 9 

(2015), 1 – 15. 

[45] M. Ali, I. Deli, and F. Smarandache, The theory of neutro-

sophic cubic sets and their applications in pattern recognition, 

Journal of intelligent and fuzzy systems, 30 (2016), 1957-

1963. 

[46] Y. B. Jun, C. S. Kim, K. O. Yang. Cubic sets. Annals Fuzzy 

Mathematics Information, 4 (1) (2012), 83 – 98. 

[47] S. Pramanik, and S. Dalapati. GRA based multi criteria deci-

sion making in generalized neutrosophic soft set environ-

ment. Global Journal of Engineering Science and Research 

Management, 3 (5) (2016), 153 - 169. 

[48] P.P. Dey, S. Pramanik, and B.C. Giri. Neutrosophic soft multi 

attribute group decision making based on grey relational 

analysis method. Journal of New Results in Science, 10 

(2016), 25 – 37. 

[49] K. Mondal, and S. Pramanik. Rough neutrosophic multi-At-

tribute decision-making based on grey relational analysis. 

Neutrosophic Sets and Systems, 7 (2014), 8-17. 

[50] S. Pramanik, and K. Mondal. Interval neutrosophic multi-At-

tribute decision-making based on grey relational analysis. 

Neutrosophic Sets and Systems, 9 (2015), 13-22. 

[51] H. Wang, F.  Smarandache, Y.-Q. Zhang, and R. Sunder-

raman, Interval Neutrosophic Sets and Logic: Theory and 

Applications in Computing, Hexis, Phoenix, AZ, (2005). 

[52] I.B. Turksen. Interval-valued fuzzy sets based on normal 

forms. Fuzzy Sets and Systems, 20 (1986), 191–210. 

[53] R. W. Hamming. Error detecting and error correcting codes. 

Bell System Technical Journal, 29 (2) (1950), 147–160. 

Neutrosophic Sets and Systems, Vol. 15, 2017 67 

Received: February 1, 2017.   Accepted: February 20, 2017.

http://content.iospress.com/search?q=author%3A%28%22Ali,%20Mumtaz%22%29
http://content.iospress.com/search?q=author%3A%28%22Ali,%20Mumtaz%22%29
http://content.iospress.com/search?q=author%3A%28%22Smarandache,%20Florentin%22%29
https://en.wikipedia.org/wiki/Richard_W._Hamming
http://wayback.archive.org/web/20060525060427/http:/www.caip.rutgers.edu/~bushnell/dsdwebsite/hamming.pdf
https://en.wikipedia.org/wiki/Bell_System_Technical_Journal


Durga Banerjee, Bibhas C. Giri, Surapati Pramanik, Florentin Smarandache, GRA for Multi Attribute Decision Making 
in Neutrosophic Cubic Set Environment

Table 4: Construction of neutrosophic cubic decision matrix 
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Table 5: Construction of neutrosophic decision matrix 
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Table 6: The ideal neutrosophic estimates reliability solution (INERS)   ,M
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Table 7: The positive grey relational coefficient 
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Table 8: The negative grey relational coefficient 
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Table 10: Weighted matrix


GRW
M

 



GRW
M

















)20392.0,19193.0()2421.0,1614.0()07153.0,10301.0()13461.0,06934.0(

)14829.0,15536.0()17606.0,3228.0()08173.0,07153.0()10896.0,10896.0(

)16314.0,14185.0()2421.0,14897.0()2146.0,14307.0()10401.0,13461.0(

Neutrosophic Sets and Systems, Vol. 15, 2017 69 



 Surapati Pramanik, Partha Pratim Dey, Bibhas C. Giri, Florentin Smarandache, Bipolar Neutrosophic Projection Based 
Models for Solving Multi-attribute Decision Making Problems  

Bipolar Neutrosophic Projection Based Models for 

Solving Multi-attribute Decision Making Problems 

Surapati Pramanik1, Partha Pratim Dey2, Bibhas C. Giri3, and Florentin Smarandache4 

1 Department of Mathematics, Nandalal Ghosh B.T. College, Panpur, P.O.-Narayanpur, District - North 24 Parganas, Pin Code-743126, West Bengal, 

India. E-mail: sura_pati@yahoo.co.in 
2 Department of Mathematics, Jadavpur University, Kolkata-700032, West Bengal, India. E-mail: parsur.fuzz@gmail.com 

3 Department of Mathematics, Jadavpur University, Kolkata-700032, West Bengal, India. E-mail: bcgiri.ju.math@gmail.com 
4University of New Mexico.  Mathematics & Science Department, 705 Gurley Ave., Gallup, NM 87301, USA. Email: fsmarandache@gmail.com 

Abstract. Bipolar neutrosophic sets are the extension of 

neutrosophic sets and are based on the idea of positive and 

negative preferences of information. Projection measure is 

a useful apparatus for modelling real life decision making 

problems. In the paper, we define projection, bidirectional 

projection and hybrid projection measures between bipo-

lar neutrosophic sets. Three new methods based on the 

proposed projection measures are developed for solving 

multi-attribute decision making problems. In the solution 

process, the ratings of performance values of the alterna-

tives with respect to the attributes are expressed in terms 

of bipolar neutrosophic values. We calculate projection, 

bidirectional projection, and hybrid projection measures 

between each alternative and ideal alternative with bipolar 

neutrosophic information. All the alternatives are ranked 

to identify the best alternative. Finally, a numerical exam-

ple is provided to demonstrate the applicability and effec-

tiveness of the developed methods. Comparison analysis 

with the existing methods in the literature in bipolar neu-

trosophic environment is also performed. 

Keywords: Bipolar neutrosophic sets; projection measure; bidirectional projection measure; hybrid projection measure; multi-

attribute decision making.

1 Introduction 

For describing and managing indeterminate and inconsistent 
information, Smarandache [1] introduced neutrosophic set 
which has three independent components namely truth 
membership degree (T), indeterminacy membership degree 

(I) and falsity membership degree (F) where T, I, and F lie 
in]-0, 1+[.  Later, Wang et al. [2] proposed single valued 
neutrosophic set (SVNS) to deal real decision making 
problems where T, I, and F lie in [0, 1].  

Zhang [3] grounded the notion of bipolar fuzzy sets by 

extending the concept of fuzzy sets [4]. The value of 
membership degree of an element of bipolar fuzzy set 
belongs to [-1, 1]. With reference to a bipolar fuzzy set, the 
membership degree zero of an element reflects that the 
element is irrelevant to the corresponding property, the 
membership degree belongs to (0, 1] of an element reflects 

that the element somewhat satisfies the property, and the 
membership degree belongs to [−1,0) of an element reflects 
that the element somewhat satisfies the implicit counter-
property. 

Deli et al. [5] extended the concept of bipolar fuzzy set 

to bipolar neutrosophic set (BNS). With reference to a 

bipolar neutrosophic set Q, the positive membership degrees 

)(xTQ


, )(xIQ


, and )(xFQ


represent respectively the truth 

membership, indeterminate membership and falsity 

membership of an element x X  corresponding to the 

bipolar neutrosophic set Q and the negative membership 

degrees )(xTQ


, )(xIQ


, and )(xFQ


denote respectively the 

truth membership, indeterminate membership and false 

membership degree of an element x X to some implicit 

counter-property corresponding to the bipolar neutrosophic 

set Q. 

Projection measure is a useful decision making device 
as it takes into account the distance as well as the included 

angle for measuring the closeness degree between two 
objects [6, 7].  Yue [6] and Zhang et al. [7] studied 
projection based multi-attribute decision making (MADM) 
in crisp environment i.e. projections are defined by ordinary 
numbers or crisp numbers. Yue [8] further investigated a 
new multi-attribute group decision making (MAGDM) 

method based on determining the weights of the decision 
makers by employing projection technique with interval 
data. Yue and Jia [9] established a methodology for 
MAGDM based on a new normalized projection measure, 
in which the attribute values are provided by decision 
makers in hybrid form with crisp values and interval data.  

Xu and Da [10] and Xu [11] studied projection method 
for decision making in uncertain environment with 
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preference information. Wei [12] discussed a MADM 
method based on the projection technique, in which the 

attribute values are presented in terms of intuitionistic fuzzy 
numbers. Zhang et al. [13] proposed a grey relational 
projection method for MADM based on intuitionistic 
trapezoidal fuzzy number. Zeng et al. [14] investigated 
projections on interval valued intuitionistic fuzzy numbers 
and developed algorithm to the MAGDM problems with 

interval-valued intuitionistic fuzzy information.   Xu and Hu 
[15] developed two projection based models for MADM in 
intuitionistic fuzzy environment and interval valued 
intuitionistic fuzzy environment. Sun [16] presented a group 
decision making method based on projection method and 
score function under interval valued intuitionistic fuzzy 

environment. Tsao and Chen [17] developed a novel 
projection based compromising method for multi-criteria 
decision making (MCDM) method in interval valued 
intuitionistic fuzzy environment.  

In neutrosophic environment, Chen and Ye [18] 

developed projection based model of neutrosophic numbers 
and presented MADM method to select clay-bricks in 
construction field. Bidirectional projection measure [19, 20] 
considers the distance and included angle between two 
vectors x, y. Ye [19] defined bidirectional projection 
measure as an improvement of the general projection 

measure of SVNSs to overcome the drawback of the general 
projection measure. In the same study, Ye [19] developed 
MADM method for selecting problems of mechanical 
design schemes under a single-valued neutrosophic 
environment. Ye [20] also presented bidirectional projection 
method for MAGDM with neutrosophic numbers.  

Ye [21] defined credibility – induced interval 
neutrosophic weighted arithmetic averaging operator and 
credibility – induced interval neutrosophic weighted 
geometric averaging operator and developed the projection 
measure based ranking method for MADM problems with 
interval neutrosophic information and credibility 

information. Dey et al. [22] proposed a new approach to 
neutrosophic soft MADM using grey relational projection 
method. Dey et al. [23] defined weighted projection 
measure with interval neutrosophic assessments and applied 
the proposed concept to solve MADM problems with inter-
val valued neutrosophic information. Pramanik et al. [24] 

defined projection and bidirectional projection measures 
between rough neutrosophic sets and proposed two new 
multi-criteria decision making (MCDM) methods based on 
projection and bidirectional projection measures in rough 
neutrosophic set environment. 

In the field of bipolar neutrosophic environment, Deli 

et al. [5] defined score, accuracy, and certainty functions in 
order to compare BNSs and developed bipolar neutrosophic 
weighted average (BNWA) and bipolar neutrosophic 
weighted geometric (BNWG) operators to obtain collective 
bipolar neutrosophic information.  In the same study, Deli 

et al. [5] also proposed a MCDM approach on the basis of 
score, accuracy, and certainty functions and BNWA, 

BNWG operators. Deli and Subas [25] presented a single 
valued bipolar neutrosophic MCDM through correlation 
coefficient similarity measure. Şahin et al. [26] provided a 
MCDM method based on Jaccard similarity measure of 
BNS. Uluçay et al. [27] defined Dice similarity, weighted 
Dice similarity, hybrid vector similarity, weighted hybrid 

vector similarity measures under BNSs and developed 
MCDM methods based on the proposed similarity measures. 
Dey et al. [28] defined Hamming and Euclidean distance 
measures to compute the distance between BNSs and 
investigated a TOPSIS approach to derive the most 
desirable alternative.  

In this study, we define projection, bidirectional      pro-
jection and hybrid projection measures under bipolar neu-
trosophic information. Then, we develop three methods for 
solving MADM problems with bipolar neutrosophic assess-
ments. We organize the rest of the paper in the following 

way. In Section 2, we recall several useful definitions con-
cerning SVNSs and BNSs. Section 3 defines projection, bi-
directional projection and hybrid projection measures be-
tween BNSs. Section 4 is devoted to present three models 
for solving MADM under bipolar neutrosophic environment. 
In Section 5, we solve a decision making problem with bi-

polar neutrosophic information on the basis of the proposed 
measures. Comparison analysis is provided to demonstrate 
the feasibility and flexibility of the proposed methods in 
Section 6. Finally, Section 7 provides          conclusions and 
future scope of research. 

2 Basic Concepts Regarding SVNSs and BNSs 

In this Section, we provide some basic definitions regarding 
SVNSs, BNSs which are useful for the construction of the 
paper. 

2.1 Single valued neutrosophic sets [2] 

Let X be a universal space of points with a generic element 

of X denoted by x, then a SVNS P is characterized by a truth 

membership function )(xTP , an indeterminate membership 

function )(xI P and a falsity membership function )(xFP . A 

SVNS P is expressed in the following way. 

P = {x, )(),(),( xFxIxT PPP   xX} 

where, )(xTP , )(xI P , )(xFP : X  [0, 1] and 0  )(xTP +
)(xI P + )(xFP  3 for each point x X. 

2.2 Bipolar neutrosophic set [5] 

Consider X be a universal space of objects, then a BNS Q in 
X is presented as follows: 

Q = {x, )( ),( ),(),(),(),( xFxIxTxFxIxT QQQQQQ

   x 

X}, 
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where )(xTQ


, )(xIQ


, )(xFQ


: X  [0, 1] and )(xTQ


, )(xIQ


,

)(xFQ


: X  [-1, 0].The positive membership degrees

)(xTQ


, )(xIQ


, )(xFQ


denote the truth membership, 

indeterminate membership, and falsity membership 

functions of an element x X corresponding to a BNS Q and 

the negative membership degrees )(xTQ


, )(xIQ


, )(xFQ



denote the truth membership, indeterminate membership, 

and falsity membership of an element x X to several 

implicit counter property associated with a BNS Q. For 

convenience, a bipolar neutrosophic value (BNV) is 

presented as q~ = <


QT ,


QI , 


QF ,


QT , ,

QI 

QF >. 

Definition 1 [5] 

Let, Q1 = 

{x, )( ),( ),(),(),(),(
111111

xFxIxTxFxIxT QQQQQQ

   x X} 

and Q2 = {x,

)( ),( ),(),(),(),(
222222

xFxIxTxFxIxT QQQQQQ

   x X} be 

any two BNSs. Then Q1    Q2 if and only if 

)(
1

xTQ


 )(

2
xTQ


, )(

1
xI Q


 )(

2
xI Q


, )(

1
xFQ


 )(

2
xFQ


;

)(
1

xTQ


 )(

2
xTQ


, )(

1
xI Q


 )(

2
xI Q


, )(

1
xFQ


 )(

2
xFQ


for all 

x X. 

Definition 2 [5] 

Let, Q1 = {x, )( ),( ),(),(),(),(
111111

xFxIxTxFxIxT QQQQQQ



 x X} and Q2 = 

{x, )( ),(),(),(),(),(
222222

xFx IxTxFxIxT QQQQQQ

   x X} 

be any two BNSs. Then Q1 = Q2 if and only if 

)(
1

xTQ


= )(

2
xTQ


, )(

1
xI Q


= )(

2
xI Q


, )(

1
xFQ


= )(

2
xFQ


; )(

1
xTQ



= )(
2

xTQ


, )(

1
xI Q


= )(

2
xI Q


, )(

1
xFQ


= )(

2
xFQ


for all x X. 

Definition 3 [5] 

Let, Q = {x, )( ),( ),(),(),(),( xFxIxTxFxIxT QQQQQQ

  

x X} be a BNS. The complement of Q is represented by Qc 

and is defined as follows: 

)(c xT
Q

 = {1+} - )(xTQ


, )(c xI

Q

 = {1+} - )(xIQ


, )(c xF

Q

 = 

{1+} - )(xFQ


; 

)(c xT
Q

 = {1-} - )(xTQ


, )(c xI

Q

 = {1-} - )(xIQ


, )(c xF

Q

 = 

{1-} - )(xFQ


. 

Definition 4 

Let, Q1 = 

{x, )( ),( ),(),(),(),(
111111

xFxIxTxFxIxT QQQQQQ

   x X} 

and Q2 = {x,

)( ),( ),(),(),(),(
222222

xFxIxTxFxIxT QQQQQQ

   x X} be 

any two BNSs. Their union Q1Q2 is defined as follows: 

Q1Q2 = {Max ( )(
1

xTQ


, )(

2
xTQ


), Min ( )(

1
xIQ


, )(

2
xIQ


), 

Min ( )(
1

xFQ


, )(

2
xFQ


), Min ( )(

1
xTQ


, )(

2
xT

Q


), Max ( )(

1
xIQ


,

)(
2

xIQ


), Max ( )(

1
xFQ


, )(

2
xFQ


)},  xX. 

Their intersection Q1Q2 is defined as follows: 

Q1Q2 = {Min ( )(
1

xTQ


, )(

2
xTQ


), Max ( )(

1
xIQ


, )(

2
xIQ


), 

Max ( )(
1

xFQ


, )(

2
xFQ


), Max ( )(

1
xTQ


, )(

2
xTQ


), Min ( )(

1
xIQ


,

)(
2

xIQ


), Min ( )(

1
xFQ


, )(

2
xFQ


)},  x X. 

Definition 5 [5] 

Let 1
~q = <



1QT ,


1QI ,


1QF ,


1QT ,


1QI ,


1QF > and 2
~q = <



2QT ,


2QI ,



2QF ,


2QT ,


2QI ,


2QF > be any two BNVs, then 

i.  . 1
~q = < 1 – (1 -



1QT )


, (


1QI )  , (


1Q
F )


, - (-



1Q
T )


, -

(-


1Q
I )


, - (1 - (1 - (-



1Q
F ))


) >;

ii. ( 1
~q )


= < (



1Q
T )


, 1 - (1 -



1Q
I )


, 1 -  (1 -



1Q
F )


, - (1

– (1 - (-


1Q
T ))


), - (-



1Q
I )


, (-



1Q
F )


 ) >;

iii. 1
~q + 2

~q = < 


1QT +


2QT -


1QT .


2QT , 


1QI .


2QI ,


1QF .


2QF , -  

  


1QT .


2QT , - (-


1QI -


2QI -


1QI .


2QI ), - 

  (-


1Q
F -



2Q
F -



1Q
F .



2Q
F ) >; 

iv. 1
~q . 2

~q = < 


1QT .


2QT , 


1QI +


2QI -


1QI .


2QI ,


1QF +


2QF - 



1QF .


2QF , - (-


1QT -


2QT -


1QT .


2QT ), - 



1QI .


2QI , -


1QF .


2QF > where  > 0. 

3 Projection, bidirectional projection and hybrid 
projection measures of BNSs 

This Section proposes a general projection, a bidirectional 
projection and a hybrid projection measures for BNSs. 

Definition 6 

Assume that X = (x1, x2, …, xm) be a finite universe of 

discourse and Q be a BNS in X, then modulus of Q is defined 
as follows: 

|| Q || = 


m
α

1j

2

j  = 




 
m

QQQQQQ FITFIT
1j

222222 ])()()()()()[(
jjjjjj

(1) 

where jα = )( ),( ),(),(),(),( xFxIxTxFxIxT
jjjjjj QQQQQQ

  , 

j = 1, 2, ..., m. 
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Definition 7 [10, 29]  

Assume that u = (u1, u2, …, um) and v = (v1, v2, …, vm) be 

two vectors, then the projection of vector u onto vector v can 
be defined as follows: 

Proj (u)v = || u || Cos (u, v) = 


m
u

1j

2

j 










mm

m

vu

vu

1j

2

j
1j

2

j

1j
jj )(

=







m

m

v

vu

1j

2

j

1j
jj )(

   (2) 

where, Proj (u)v represents that the closeness of u and v in 
magnitude. 

Definition 8 

Assume that X = (x1, x2, …, xm) be a finite universe of 
discourse and R, S be any two BNSs in X, then 

Proj SR)( = || R|| Cos (R, S) =
||||

1

S
 (R.S)     (3) 

is called the projection of R on S, where 

 ||R|| =




 
m

iRiRiRiRiRiR xFxIxTxFxIxT
1i

222222 )]()()()()()()()()()()()[( , 

 ||S||= 

,)]()()()()()()()()()()()[(
1i

222222



 
m

iSiSiSiSiSiS xFxIxTxFxIxT

and R.S = 

.
)].()(

)()()()()()()()()()([

1i

 





m

iSiR

iSiRiSiRiSiRiSiRSiR

xFxF

xIxIxTxTxFxFxIxIxTxT

Example 1. Suppose that R = < 0.5, 0.3, 0.2, -0.2, -0.1, -

0.05 >, S = < 0.7, 0.3, 0.1, -0.4, -0.2, -0.3 > be the two BNSs 

in X, then the projection of R on S is obtained as follows: 

Proj SR)( =
||||

1

S
 (R.S) =

222222 )3.0()2.0()4.0()1.0()3.0()7.0(

)3.0)(05.0()2.0)(1.0()4.0)(2.0()1.0)(2.0()3.0)(3.0()7.0)(5.0(





= 0.612952 

The bigger value of Proj SR)(  reflects that R and S are 

closer to each other. 

    However, in single valued neutrosophic environment, Ye 

[20] observed that the general projection measure cannot 

describe accurately the degree of  close to .  We also 

notice that the general projection incorporated by Xu [11] is 

not reasonable in several cases under bipolar neutrosophic 

setting, for example let, =  = < a, a, a, -a, -a, -a > and 

= < 2a, 2a, 2a, -2a, -2a, -2a >, then Proj  )( = 2.44949 ||a|| 

and Proj  )( = 4.898979 ||a||. This shows that  is much 

closer to  than which is not true because =  . Ye [20] 

opined that  is equal to  whenever Proj  )( and Proj

 )( should be equal to 1. Therefore, Ye [20] proposed an 

alternative method called bidirectional projection measure 

to overcome the limitation of general projection measure as 

given below. 

Definition 9 [20] 
Consider x and y be any two vectors, then the bidirectional 

projection between x and y is defined as follows: 

B-proj (x, y) = 

|
||y||

y.x

||x||

y.x
|1

1



= 

yxyxyx

yx

.||||||||||||||||||

||||||||


   (4) 

where ||x||, ||y|| denote the moduli of x and y respectively, 

and x. y is the inner product between x and y.  

Here, B-Proj (x, y) = 1 if and only if x = y and 0  B-Proj (x, 
y)  1, i.e. bidirectional projection is a normalized measure.

Definition 10 

 Consider R = 

)( ),(),(),(),(),( iRiRiRiRiRiR xFxIxTxFxIxT   and S = 

)( ),( ),(),(),(),( iSiSiSiSiSiS xFxIxTxFxIxT   be any 

two BNSs in X = (x1, x2, …, xm), then  the bidirectional 

projection measure between R and S is defined as follows: 

B-Proj (R, S) = 

|
||S||

S.R

||R||

S.R
|1

1



= 
S.R|||S||||R|||||S||||R||

||S||||R||



  (5) 

where 

 ||R|| = 




 
m

iRiRiRiRiRiR xFxIxTxFxIxT
1i

222222 )]()()()()()()()()()()()[(

, 

 ||S|| = 




 
m

iSiSiSiSiSiS xFxIxTxFxIxT
1i

222222 )]()()()()()()()()()()()[(  

and R.S = 


 





m

iSiR

iSiRiSiRiSiRiSiRSiR

xFxF

xIxIxTxTxFxFxIxIxTxT

1i )].()(

)()()()()()()()()()([

Proposition 1. Let B-Proj SR)(  be a bidirectional 

projection measure between any two BNSs R and S, then 

1. 0 B-Proj (R, S) 1;

2. B-Proj (R, S) = B-Proj (S, R);

3. B-Proj (R, S) = 1 for R = S.

Proof. 

1. For any two non-zero vectors R and S,

|
||||

.

||||

.
|1

1

S

SR

R

SR


,0  0,0
1

1



xwhen

x
  
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B-Proj (R, S)

 

,0  for any two non-zero vectors R and S. 

B-Proj (R, S) = 0 if and only if  either || R || = 0 or || S || = 0 

i.e. when either R = (0, 0, 0, 0, 0, 0)  or S = (0, 0, 0, 0, 0, 0) 

which is trivial case. 

 B-Proj (R, S)

 

0 . 

For two non-zero vectors R and S,  

|| R || || S || + | || R || - || S || | R.S  || R || || S ||  

|| R || || S || || R || || S || + | || R || - || S || | R.S 

 
SRSRSR

SR

.||||||||||||||||||

||||||||


 1 

B-Proj (R, S)  1. 

0 B-Proj (R, S) 1; 

2. From definition, R.S = S.R, therefore,

B-Proj (R, S) =
SRSRSR

SR

.||||||||||||||||||

||||||||


= 

RSRSRS

RS

.||||||||||||||||||

||||||||


= B-Proj (S, R). 

Obviously, B-Proj (R, S) = 1, only when || R || = || S ||    i. 

e. when )( iR xT  = )( iS xT  , )( iR xI  = )( iS xI  , 
)( iR xF  = )( iS xF  , )( iR xT  = )( iS xT  , )( iR xI  = 
)( iS xI  , )( iR xF  = ).( iS xF 

This completes the proof. 

 Example 2. Assume that R = < 0.5, 0.3, 0.2, -0.2, -0.1, -

0.05 >, S = < 0.7, 0.3, 0.1, -0.4, -0.2, -0.3 > be the BNSs in 
X, then the bidirectional projection measure between R on S 

is computed as given below. 

B-Proj (R, S) = 

)575.0(|065764739380832.0|)9380832.0).(6576473.0(

)9380832.0).(6576473.0(



= 0.7927845 

Definition 11 

 Let R = 

)( ),(),(),(),(),( iRiRiRiRiRiR xFxIxTxFxIxT  and S = 

)( ),( ),(),(),(),( iSiSiSiSiSiS xFxIxTxFxIxT 
 be any 

two BNSs in X = (x1, x2, …, xm), then  hybrid projection 

measure is defined as the combination of projection 

measure and bidirectional projection measure. The hybrid 

projection measure between R and S is represented as 

follows: 

Hyb-Proj (R, S) =  Proj S
R)( + (1 -  ) B-Proj (R, S) 

 = 
||||

.

S

SR
+ (1 -  )

SRSRSR

SR

.||||||||||||||||||

||||||||


(6) 

where 

||R|| =

,)]()()()()()()()()()()()[(
1i

222222



 
m

iRiRiRiRiRiR xFxIxTxFxIxT  

||S|| = 

,)]()()()()()()()()()()()[(
1i

222222



 
m

iSiSiSiSiSiS xFxIxTxFxIxT

and 

R.S = 


 

 m

iSiR

iSiRiSiRiSiRiSiRSiR

xFxF

xIxIxTxTxFxFxIxIxTxT

1i )]()(

)()()()()()()()()()([

where 0   1. 

Proposition 2 

Let Hyb-Proj (R, S) be a hybrid projection measure between 

any two BNSs R and S, then  

1. 0  Hyb-Proj (R, S)  1;

2. Hyb-Proj (R, S) = B-Proj (S, R);

3. Hyb-Proj (R, S)  = 1 for R = S.

Proof. The proofs of the properties under Proposition 2 are 

similar as Proposition 1.  

Example 3. Assume that R = < 0.5, 0.3, 0.2, -0.2, -0.1, -0.05 

>, S = < 0.7, 0.3, 0.1, -0.4, -0.2, -0.3 > be the two BNSs, then 
the hybrid projection measure between R on S with  = 0.7 
is calculated as given below. 

Hyb-Proj (R, S) = (0.7). (0.612952) + (1 - 0.7). 
(0.7927845) = 0.6669018. 

4 Projection, bidirectional projection and hybrid 
projection based decision making methods for 
MADM problems with bipolar neutrosophic infor-
mation 

In this section, we develop projection based decision 

making models to MADM problems with bipolar 

neutrosophic assessments. Consider E = {E1, E2, …, Em}, 

(m  2) be a discrete set of m feasible alternatives,  F = {F1, 

F2, …, Fn}, (n  2) be a set of attributes under consideration 

and w = (w1, w2, …, wn)T be the weight vector of the 

attributes such that 0  wj  1 and 


n
w

1j
j = 1. Now, we present 

three algorithms for MADM problems involving bipolar 

neutrosophic information. 

4.1. Method 1 

Step 1. The rating of evaluation value of alternative Ei (i = 
1, 2, …, m) for the predefined attribute Fj (j = 1, 2, …, n) is 
presented by the decision maker in terms of bipolar 
neutrosophic values and the bipolar neutrosophic decision 

matrix is constructed as given below. 

nm
ij


q = 























mnmm

n

n

qqq

qqq

qqq

...

......

......

...

...

21

22221

11211
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where qij = < (


ijT ,


ijI ,


ijF ,


ijT ,


ijI ,


ijF ) > with 


ijT ,


ijI ,


ijF , 

-


ijT , -


ijI , -


ijF [0, 1] and 0 


ijT +


ijI +


ijF -


ijT -


ijI -


ijF

 6 for i = 1, 2, …, m; j = 1, 2, …, n.

Step 2. We formulate the bipolar weighted decision matrix 
by multiplying weights wj of the attributes as follows: 

wj
nm

ij


q  =
nm

ij


z = 























mnm2m1

2n2221

1n1211

...

......

......

...

...

zzz

zzz

zzz

where zij = wj. ijq = < 1 – (1 - 


ijT ) jw
, (



ijI ) jw
, (



ijF ) jw
, - (-



ijT ) jw
, - (-



ijI ) jw
, - (1 – (1 – (-



ijF )) jw
) > = <



ij ,


ij ,


ij ,



ij ,


ij ,


ij > with 


ij ,


ij ,


ij , -


ij , -


ij , -


ij [0, 1] and 

0 

ij +


ij +


ij -


ij -


ij -


ij  6 for i = 1, 2, …, m; j = 1, 

2, …, n. 

Step 3.  We identify the bipolar neutrosophic positive ideal 
solution (BNPIS) [27, 28] as follows: 

PISz


jjjjjj ,,,,, gfegfe = < [{ )(Max ij
i

 |j  }; 

{ )(Min ij
i

 |j  }], [{ )(Min ij
i

 | j  }; { )(Max ij
i

 |j

 }], [{ )(Min ij
i

 |j  }; 

{ )(Max ij
i

 |j  }], [{ )(Min ij
i

 |j }; { )(Max ij
i

 |j

 }], [{ )(Max ij
i

 |j  }; { )(Min ij
i

 |j   }],

[{ )(Max ij
i

 |j }; { )(Min ij
i

 |j  }] >, j = 1, 2, …, n, 

where  and  are benefit and cost type  attributes 

respectively. 

Step 4.  Determine the projection measure between PISz and 
Zi =

nm
z


ij  for all i = 1, 2, …, m; j = 1, 2, …, n by using the 

following Eq. 

Proj 
PISz

iZ )(

=















n

j
jjjjjj

n

jijjijjijjijjijjij

gfegfe

gfegfe

1

222222

1j

])()()()()()[(

][ 
(7) 

Step 5. Rank the alternatives in a descending order based on 

the projection measure Proj PISz

iZ )( for i = 1, 2, …, m and 

bigger value of Proj PISz

iZ )( determines the best alternative. 

4.2. Method 2 

Step 1. Give the bipolar neutrosophic decision matrix

nm
ij


q  , i = 1, 2, …, m; j = 1, 2, …, n. 

Step 2. Construct weighted bipolar neutrosophic decision 

matrix
nm

z
ij  , i = 1, 2, …, m; j = 1, 2, …, n. 

Step 3. Determine PISz


jjjjjj ,,,,, gfegfe ; j 
= 1, 2, …, n. 

Step 4.  Compute the bidirectional projection measure 

between 
PISz and Zi =

nmij 
z  for all i = 1, 2, …, m; j = 1, 

2, …, n  using the Eq. as given below. 

B-Proj (Zi, PISz ) =
PISiPISiPISi

PISi

zZzZzZ

zZ

.||||||||||||||||||

||||||||


(8) 

where |||| iZ = 


 
n

j
ijijijijijij

1

222222 ])()()()()()[(  , i 

= 1, 2, ..., m. 

|||| PISz =




 
n

j
jjjjjj gfegfe

1

222222 ])()()()()()[(  and 

PISi zZ . = 


 
n

1j
][ jijjijjijjijjijjij gfegfe  , i = 

1, 2, ..., m. 

Step 5. According to the bidirectional projection measure B-
Proj (Zi, PISz ) for i = 1, 2, …, m the alternatives are ranked 

and highest value of B-Proj (Zi, PISz ) reflects the best 
option. 

4.3. Method 3 

Step 1. Construct the bipolar neutrosophic decision matrix

nm
q

ij  , i = 1, 2, …, m; j = 1, 2, …, n. 

Step 2. Formulate the weighted bipolar neutrosophic 

decision matrix
nm

z
ij  , i = 1, 2, …, m; j = 1, 2, …, n. 

Step 3. Identify PISz


jjjjjj ,,,,, gfegfe ,  j = 1, 2, …, 

n. 

Step 4.  By combining projection measure Proj PISz

iZ )(  and 

bidirectional projection measure B-Proj (Zi, PISz ), we 

calculate the hybrid projection measure between PISz and Zi 

=
nm

ijz


 for all i = 1, 2, …, m; j = 1, 2, …, n as follows. 
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Hyb-Proj (Zi, 
PISz ) =   Proj PISz

iZ )( + (1 -  ) B-Proj (Zi, 

PISz ) = 


|||||

.
PIS

PISi

z

zZ + (1 -  )
PISiPISiPISi

PISi

z.Z|||z||||Z|||||z||||Z||

||z||||Z||



 (9)  

where |||| iZ =




 
n

j
ijijijijijij

1

222222 ])()()()()()[(  , i = 1, 2, …, 

m, 

|||| PISz =




 
n

j
jjjjjj gfegfe

1

222222 ])()()()()()[( , 

PISi zZ . =




 
n

jijjijjijjijjijjij gfegfe
1j

][  , i = 1, 2, 

…, m, with 0   1. 

Step 5. We rank all the alternatives in accordance with the 
hybrid projection measure Hyb-Proj (Zi, PISz ) and greater 
value of Hyb-Proj (Zi, PISz ) indicates the better alternative. 

5 A numerical example 

We solve the MADM studied in [5, 28] where a customer 
desires to purchase a car. Suppose four types of car 

(alternatives) Ei, (i = 1, 2, 3, 4) are taken into consideration 
in the decision making situation. Four attributes namely 
Fuel economy (F1), Aerod (F2), Comfort (F3) and Safety 
(F4) are considered to evaluate the alternatives. Assume the 
weight vector [5] of the attribute is given by w = (w1, w2, w3, 
w4) = (0.5, 0.25, 0.125, 0.125). 

Method 1: The proposed projection measure based decision 
making with bipolar neutrosophic information for car 
selection is presented in the following steps: 

Step 1: Construct the bipolar neutrosophic decision matrix 

The bipolar neutrosophic decision matrix 
nm

ij


q presented 

by the decision maker as given below (see Table 1) 

Table 1. The bipolar neutrosophic decision matrix 

F1 F2 F3 F4 

E1 <0.5, 0.7, 0.2, -

0.7, -0.3,  -0.6> 

<0.4, 0.5, 0.4, -

0.7, -0.8,    -0.4> 

<0.7, 0.7, 0.5, -0.8, 

-0.7,    -0.6> 

<0.1, 0.5, 0.7, -

0.5, -0.2, -0.8> 

E2 <0.9, 0.7, 0.5, -

0.7, -0.7,  -0.1> 

<0.7, 0.6, 0.8, -

0.7, -0.5,    -0.1> 

<0.9, 0.4, 0.6, -0.1, 

-0.7,    -0.5> 

<0.5, 0.2, 0.7, -

0.5, -0.1, -0.9> 

E3 <0.3, 0.4, 0.2, -

0.6, -0.3,  -0.7> 

<0.2, 0.2, 0.2, -

0.4, -0.7,    -0.4> 

<0.9, 0.5, 0.5, -0.6, 

-0.5,    -0.2> 

<0.7, 0.5, 0.3, -

0.4, -0.2, -0.2> 

E4 <0.9, 0.7, 0.2, -

0.8, -0.6,  -0.1> 

<0.3, 0.5, 0.2, -

0.5, -0.5,    -0.2> 

<0.5, 0.4, 0.5, -0.1, 

-0.7,    -0.2> 

<0.2, 0.4, 0.8, -

0.5, -0.5, -0.6> 

Step 2. Construction of weighted bipolar neutrosophic 

decision matrix 

The weighted decision matrix
nm

ij


z is obtained by 

multiplying weights of the attributes to the bipolar 

neutrosophic decision matrix as follows (see Table 2). 

Table 2. The weighted bipolar neutrosophic decision matrix 

F1 F2 F3 F4 

E1 <0.293, 0.837, 

0.447,-0.837,  -

0.818, -0.182 >  

<0.120, 0.795, 

0.841,     0.915,   

-0.946, -0.120> 

<0.140, 0.956, 

0.917,     0.972,   

-0.956, -0.108> 

<0.013, 0.917, 

0.956,      -0.917, 

-0.818, -0.182> 

E2 <0.684, 0.837, 

0.707, -0.837, -

0.837, -0.051> 

<0.260, 0.880, 

0.946,  -0.915, -

0.841, -0.026> 

<0.250, 0.892, 

0.938,     -

0.750,      -0.956, -

0.083> 

<.083, 0.818, 

0.956,     0.917,        

-0.750, -0.250> 

E3 <0.163, 0.632, 

0.447, -0.774,  -

0.548, -0.452> 

<0.054, 0.669, 

0.669,   - 0.795, -

0.915, -0.120> 

<0.250, 0.917, 

0.917,     -

0.938,      -0.917, -

0.028> 

<.140, 0.917, 

0.860,     -

0.892, -0.818, -

0.028> 

E4 <0.648, 0.837, 

0.447, ,     -0.894,-

-0.774, -0.051> 

<0.085, 0.841, 

0.669,    -0.841,   

-0.841, -0.054> 

<0.083, 0.892, 

0.917,     -

0.750,      -0.956, -

0.028> 

<0.062, 0.818, 

0.972,     -0.917, 

-0.917, -0.108> 

Step 3. Selection of BNPIS 

The BNRPIS ( PISz ) = 

jjjjjj ,,,,, gfegfe , (j = 1, 2, 3, 

4) is computed from the weighted decision matrix as

follows: 


111111 ,,,,, gfegfe = < 0.684, 0.632, 0.447, -0.894, -

0.548, -0.051 >; 


222222 ,,,,, gfegfe = < 0.26, 0.669, 0.669, -0.915, -

0.841, -0.026 >;


333333 ,,,,, gfegfe = < 0.25, 0.892, 0.917, -0.972, -

0.917, -0.028 >;


444444 ,,,,, gfegfe = < 0.14, 0.818, 0.86, -0.917, -0.75, 

-0.028 >.
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Step 4. Determination of weighted projection measure 

The projection measure between positive ideal bipolar 

neutrosophic solution PISz  and each weighted decision 

matrix
nm

ijz  can be obtained as follows: 

Proj PISz
Z )( 1

 = 3.4214, Proj PISz
Z )( 2

 = 3.4972, Proj 

PISz
Z )( 3

 = 3.1821, Proj PISz
Z )( 4

 = 3.3904. 

Step 5. Rank the alternatives 

We observe that Proj PISz
Z )( 2

> Proj PISz
Z )( 1

> Proj 

PISz
Z )( 4

> Proj PISz
Z )( 3

. Therefore, the ranking order of the 

cars is E2   E1  E4  E3. Hence, E2 is the best alternative

for the customer. 

Method 2: The proposed bidirectional projection measure 

based decision making for car selection is presented as 
follows: 
Step 1. Same as Method 1 
Step 2. Same as Method 1 
Step 3. Same as Method 1 
Step 4. Calculation of bidirectional projection measure 

The bidirectional projection measure between positive ideal 

bipolar neutrosophic solution P ISz  and each weighted 

decision matrix
nmij

z


 can be determined as given below. 

B-Proj (Z1, PISz ) = 0.8556, B-Proj (Z2, PISz ) = 0.8101, B-
Proj (Z3, PISz ) = 0.9503, B-Proj (Z4, PISz ) = 0.8969. 
Step 5. Ranking the alternatives 

Here, we notice that B-Proj (Z3, PISz ) > B-Proj (Z4, PISz ) > 
B-Proj (Z1, PISz ) > B-Proj (Z2, PISz ) and therefore, the 
ranking order of the alternatives is obtained as E3   E4 
E1  E2. Hence, E3 is the best choice among the alternatives.

Method 3: The proposed hybrid projection measure based 

MADM with bipolar neutrosophic information is provided 
as follows: 
Step 1. Same as Method 1 
Step 2. Same as Method 1 
Step 3. Same as Method 1 
Step 4. Computation of hybrid projection measure 

The hybrid projection measures for different values of  

[0, 1] and the ranking order are shown in the Table 3.

Table 3. Results of hybrid projection measure for differ-

ent valus of   

Similarity 

measure 
 Measure values 

Ranking order 

Hyb-Proj 

(Zi,
PISz )

0.25 
Hyb-Proj (Z1,

PISz ) = 1.4573 

Hyb-Proj (Z2,
PISz ) = 1.4551 

Hyb-Proj (Z3,
PISz ) = 1.5297 

Hyb-Proj (Z4,
PISz ) = 1.5622 

E4 > E3 > E1 > E2 

Hyb-Proj 

(Zi,
PISz )

0.50 
Hyb-Proj (Z1,

PISz ) = 2.1034 

Hyb-Proj (Z2,
PISz ) = 2.0991 

Hyb-Proj (Z3,
PISz ) = 2.0740 

Hyb-Proj (Z4,
PISz ) = 2.1270 

E4 > E1 > E2 > E3 

Hyb-Proj 

(Zi,
PISz )

0.75 
Hyb-Proj (Z1,

PISz ) = 2.4940 

Hyb-Proj (Z2,
PISz ) = 2.7432 

Hyb-Proj (Z3,
PISz ) = 2.6182 

Hyb-Proj (Z4,
PISz ) = 2.6919 

E2 > E4 > E3 > E1 

Hyb-Proj 

(Zi,
PISz )

0.90 
Hyb-Proj (Z1,

PISz ) = 3.1370 

Hyb-Proj (Z2,
PISz ) = 3.1296 

Hyb-Proj (Z3,
PISz ) = 2.9448 

Hyb-Proj (Z4,
PISz ) = 3.0308 

E1 > E2 > E4 > E3 

6 Comparative analysis 

In the Section, we compare the results obtained from the 

proposed methods with the results derived from other exist-

ing methods under bipolar neutrosophic environment to 

show the effectiveness of the developed methods. 

Dey et al. [28] assume that the weights of the 
attributes are not identical and weights are fully unknown to 
the decision maker. Dey et al. [28] formulated maximizing 

deviation model under bipolar neutrosophic assessment to 
compute unknown weights of the attributes as w = (0.2585, 
0.2552, 0.2278, 0.2585). By considering w = (0.2585, 
0.2552, 0.2278, 0.2585), the proposed projection measures 
are shown as follows:  

Proj PISz
Z )( 1

 = 3.3954, Proj PISz
Z )( 2

 = 3.3872, Proj 

PISz
Z )( 3

 = 3.1625, Proj PISz
Z )( 4

 = 3.2567. 

Since, Proj PISz
Z )( 1

> Proj PISz
Z )( 2

> Proj 

PISz
Z )( 4

> Proj PISz
Z )( 3

, therefore the ranking order of the 
four alternatives is given by E1   E2  E4  E3. Thus, E1 is
the best choice for the customer. 

Now, by taking w = (0.2585, 0.2552, 0.2278, 
0.2585), the bidirectional projection measures are calculated 
as given below. 
B-Proj (Z1, PISz ) = 0.8113, B-Proj (Z2, PISz ) = 0.8111, B-
Proj (Z3, PISz ) = 0.9854, B-Proj (Z4, PISz ) = 0.9974. 

Since, B-Proj (Z4, PISz ) > B-Proj (Z3, PISz ) > B-

Proj (Z1, PISz ) > B-Proj (Z2, PISz ), consequently the ranking 
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order of the four alternatives is given by E4   E3  E1 
E2. Hence, E4 is the best option for the customer. 
Also, by taking w = (0.2585, 0.2552, 0.2278, 0.2585), the 
proposed hybrid projection measures for different values of 
 [0, 1] and the ranking order are revealed in the Table 4. 

Deli et al. [5] assume the weight vector of the 

attributes as w = (0.5, 0.25, 0.125, 0.125) and the ranking 
order based on score values is presented as follows:

E3   E4  E2  E1

Thus, E3 was the most desirable alternative. 
Dey et al. [28] employed maximizing deviation 

method to find unknown attribute weights as w = (0.2585, 

0.2552, 0.2278, 0.2585). The ranking order of the 
alternatives is presented based on the relative closeness 
coefficient as given below. 

E3   E2  E4  E1.

Obviously, E3 is the most suitable option for the customer. 
Dey et al. [28] also consider the weight vector of 

the attributes as w = (0.5, 0.25, 0.125, 0.125), then using 
TOPSIS method, the ranking order of the cars is represented 
as follows: 

E4   E2  E3  E1.

So, E4 is the most preferable alternative for the buyer. We 

observe that different projection measure provides different 

ranking order and the projection measure is weight sensi-

tive. Therefore, decision maker should choose the projection 

measure and weights of the attributes in the decision making 

context according to his/her needs, desires and practical sit-

uation. 

Conclusion 

In this paper, we have defined projection, bidirectional pro-

jection measures between bipolar neutrosophic sets. Fur-

ther, we have defined a hybrid projection measure by com-

bining projection and bidirectional projection measures. 

Through these projection measures we have developed three 

methods for multi-attribute decision making models under 

bipolar neutrosophic environment. Finally, a car selection 

problem has been solved to show the flexibility and applica-

bility of the proposed methods. Furthermore, comparison 

analysis of the proposed methods with the other existing 

methods has also been demonstrated.  

The proposed methods can be extended to interval bipolar 

neutrosophic set environment. In future, we shall apply pro-

jection, bidirectional projection, and hybrid projection 

measures of interval bipolar neutrosophic sets for group de-

cision making, medical diagnosis, weaver selection, pattern 

recognition problems, etc. 

Table 4. Results of hybrid projection measure for differ-
ent values of 

Similarity 

measure 
 Measure values 

Ranking order 

Hyb-Proj 

(Zi,
PISz )

0.25 
Hyb-Proj (Z1,

PISz ) = 1.4970 

Hyb-Proj (Z2,
PISz ) = 1.4819 

Hyb-Proj (Z3,
PISz ) = 1.5082 

Hyb-Proj (Z4,
PISz ) = 1.5203 

E4 > E3 > E1 > E2 

Hyb-Proj 

(Zi,
PISz )

0.50 
Hyb-Proj (Z1,

PISz ) = 2.1385 

Hyb-Proj (Z2,
PISz ) = 2.1536 

Hyb-Proj (Z3,
PISz ) = 2.0662 

Hyb-Proj (Z4,
PISz ) = 2.1436 

E4 > E1 > E2 > E3 

Hyb-Proj 

(Zi,
PISz )

0.75 
Hyb-Proj (Z1,

PISz ) = 2.7800 

Hyb-Proj (Z2,
PISz ) = 2.8254 

Hyb-Proj (Z3,
PISz ) = 2.6241 

Hyb-Proj (Z4,
PISz ) = 2.7670 

E2 > E4 > E3 > E1 

Hyb-Proj 

(Zi,
PISz )

0.90 
Hyb-Proj (Z1,

PISz ) = 3.1648 

Hyb-Proj (Z2,
PISz ) = 3.2285 

Hyb-Proj (Z3,
PISz ) = 2.9589 

Hyb-Proj (Z4,
PISz ) = 3.1410 

E2 > E1 > E4 > E3 
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Abstract 

Uncertainty and indeterminacy are two major problems in 
data analysis these days. Neutrosophy is a generalization of 
the fuzzy theory. Neutrosophic system is based on 
indeterminism and falsity of concepts in addition to truth 
degrees. Any neutrosophy variable or concept is defined by 
membership, indeterminacy and non-membership 
functions. Finding efficient and accurate definition for 
neutrosophic variables is a challenging process. This paper 
presents a framework of Ant Colony Optimization and 
entropy theory to define a neutrosophic variable from 
concrete data.

Keywords 

Neutrosophic set, Ant Colony Optimization, Information Theory Measures, Entropy function. 

1. Introduction

These days, Indeterminacy is the key idea of 

the information in reality issues. This term 

alludes to the obscure some portion of the 

information representation. The fuzzy 

logic  [1] [2] [3]] serves the piece of information 

participation degree. Thus, the indeterminacy 

and non-participation ideas of the information 

ought to be fittingly characterized and served. 

The neutrosophic  [4] [16] theory characterizes 

the informational index in mix with their 

membership, indeterminacy and non-

membership degrees. Thus, the decisions could 

be practically figured out from these well 

defined information. 

Smarandache in  [5] [13] [14], and Salama et al. 

in [4],  [9], [10] [11] [12] [12] [16] present the 

mathematical base of neutrosophic system and 

principles of neutrosophic data. Neutrosophy 

creates the main basics for a new mathematics 

field through adding indeterminacy concept to 

traditional and fuzzy theories [1] [2] [3] [15].  

Handling neutrosophic system is a new, 

moving and appealing field for scientists. In 

literature, neutrosophic toolbox 

implementation using object oriented 

programming operations and formulation is 

introduced in [18]. Moreover, a data warehouse 

utilizing neutrosophic methodologies and sets 

is applied in  [17]. Also, the problem of 

optimizing membership functions using 

Particle Swarm Optimization was introduced 

in  [24]. This same mechanism could be 

generalized to model neutrosophic variable. 

Ant Colony Optimization is an efficient search algorithm 
presented to define parameters of membership, 
indeterminacy and non-membership functions. The 
integrated framework of information theory measures and 
Ant Colony Optimization is proposed. Experimental 
results contain graphical representation of the 
membership, indeterminacy and non-membership 
functions for the temperature variable of the forest fires 
data set. The graphs demonstrate the effectiveness of the 
proposed framework. 

Mona Gamal Gafar, Ibrahim El-Henawy, Integrated Framework of Optimization Technique and Information Theory 
Measures for Modeling Neutrosophic Variables 

Neutrosophic Sets and Systems, Vol. 15, 2017  80 

University of New Mexico 



The neutrosophic framework depends actually 

on the factors or variables as basics. The 

neutrosophic variable definition is without a 

doubt the base in building a precise and 

productive framework. The neutroshophic 

variable is made out of a tuple of value, 

membership, indeterminacy and non-

membership. Pronouncing the elements of 

participation, indeterminacy and non-

enrollment and map those to the variable 

values would be an attainable arrangement or 

solution for neutroshophic variable 

formulation. 

Finding the subsets boundary points of 

membership and non-membership functions 

within a variable data would be an interesting 

optimization problem. Ant Colony 

Optimization (ACO) [19] [20] is a meta-

heuristic optimization and search 

procedure [22] inspired by ants lifestyle in 

searching for food. ACO initializes a 

population of ants in the search space 

traversing for their food according to some 

probabilistic transition rule. Ants follow each 

other basing on rode pheromone level and ant 

desirability to go through a specific path. The 

main issue is finding suitable heuristic 

desirability which should be based on the 

information conveyed from the variable itself. 

Information theory measures  [6] [20] [21],  [23] 

collect information from concrete data. The 

entropy definition is the measure of 

information conveyed in a variable. Whereas, 

the mutual information is the measure of data 

inside a crossing point between two nearby 

subsets of a variable. These definitions may 

help in finding limits of a membership function 

of neutrosophic variable subsets depending on 

the probability distribution of the data as the 

heuristic desirability of ants. 

In a similar philosophy, the non- membership 

of a neutrosophic variable might be 

characterized utilizing the entropy and mutual 

information basing on the data probability 

distribution complement. Taking the upsides of 

the neutrosophic set definition; the 

indeterminacy capacity could be characterized 

from the membership and non-membership 

capacities. 

This paper exhibits an incorporated hybrid 

search model amongst ACO and information 

theory measures to demonstrate a neutrosophic 

variable. The rest of this paper is organized as 

follows. Section 2 shows the hypotheses and 

algorithms. Section 3 announces the proposed 

integrated framework. Section 4 talks about the 

exploratory outcomes of applying the 

framework on a general variable and 

demonstrating the membership, indeterminacy 

and non-membership capacities. Conclusion 

and future work is displayed in section 5. 

2. Theory overview

2.1  Parameters of a neutrosophic variable 

In the neutrosophy theory [5] [13] [14], every 

concept is determined by rates of truth   ��(�) 

, indeterminacy  ��(�), and negation ��(�)  in 

various partitions. Neutrosophy is a 

generalization of the fuzzy 

hypothesis [1] [2] [3]] and an extension of the 

regular set. Neutrosophic is connected to 

concepts identified with indeterminacy. 

Neutrosophic data is defined by three main 

concepts to manage uncertainty. These 

concepts are joined together in the triple: 

� = 〈��(�), ��(�), ��(�)〉   (1) 

Where 

 ��(�)  is the membership degree, 

��(�) is the indeterminacy degree, 

 ��(�) is the falsity degree. 

These three terms form the fundamental 

concepts and they are independent and 

explicitly quantified. In neutrosophic set  [7], 

each value  � ∈ � in set A defined by Eq. 1 is 

constrained by the following conditions: 

0� ≤  ��(�), ��(�), ��(�) ≤  1�  
(2) 
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0� ≤  ��(�) + ��(�)+ ��(�) ≤  3�  

(3) 

 Whereas, Neutrosophic intuitionistic set of 

type 1  [8] is subjected to the following: 

0� ≤  ��(�), ��(�), ��(�) ≤  1�      (4) 

��(�)  ∧  ��(�) ∧  ��(�) ≤  0.5        (5) 

0� ≤  ��(�) + ��(�)+ ��(�) ≤  3�   (6) 

Neutrosophic intuitionistic set of type 2  [5]  is 

obliged by to the following conditions: 

0.5 ≤  ��(�), ��(�), ��(�)  (7) 

��(�)  ∧  ��(�) ≤  0.5 ,   ��(�)  ∧  ��(�) ≤

 0.5, ��(�) ∧  ��(�) ≤  0.5    (8) 

0� ≤  ��(�) + ��(�)+ ��(�) ≤  2�    (9) 

2.2  Ant Colony Optimization (ACO) 

The ACO  [19] [20]is an efficient search 

algorithm used to find feasible solutions for 

complex and high dimension problems. The 

intelligence of the ACO is based on a 

population of ants traversing the search 

workspace for their food. Each ant follows a 

specific path depending on information left 

previously from other ants. This information is 

characterized by the probabilistic transition 

rule Eq. 10.   

��
�(�) =

����×����(�)�

∑ [��]×����(�)��∈��

  
(10) 

Where  

��   is the heuristic desirability of choosing 

node j and  

��� is the amount of virtual pheromone on edge 

( i, j) 

The pheromone level guides the ant through its 

journey. This guide is a hint of the significance 

level of a node (exhibited by the ants went to 

the nodes some time recently). The pheromone 

 level is updated by the algorithm using the 

fitness function. 

���(� + 1) = (1− �). ��� (�) + ∆���(t)  (11) 

Where 0< ρ  <1 is a decay constant used to 

estimate the evaporation of the pheromone 

from the edges. ∆τ��(t)  is the amount of 

pheromone deposited by the ant.  

The heuristic desirability η
�

 describes the 

association between a node j and the problem 

solution or the fitness function of the search. If 

a node has a heuristic value for a certain path 

then the ACO will use this node in the solution 

of the problem. The algorithm of ACO is 

illustrated in figure 1. 

�� = ��������� ��������        (12) 

ACO  Algorithm 
Input :pd, N 
%%%% pd number of decision variables in 
ant, N iterations, Present position (ant) in the 
search universe  ��� , � evaporation rate,  
%%%%%%% 
Output: Best_Solution 
1: Initianlize_Node_Graph(); 
2: Initialize_Phermoni_Node(); 
3: While (num_of_Iterations>0) do 
4:  foreach Ant 
5: �� objective function of the search space 

6: TRANSITION_RULE[j]= ��
�(�) =

����×����(�)�

∑ [��]×����(�)��∈��

7:  Select node with the highest ��
�(�) 

8: Update Pheromone level ���(� + 1) =

(1− �). ���(�) + ∆���(�) 

9:  num_of_Iterations--; 
10: end While 
11:Best_sol solution with best �� 

12: output(Best_sol) 

Figure 1:  Pseudo code of ant colony 
optimization Algorithm 
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Information theory measures  [6] [20] [23] 

collect information from raw data. The entropy 

of a random variable is a function which 

characterizes the unexpected events of a 

random variable. Consider a random variable 

X expressing the number on a roulette wheel 

or the number on a fair 6-sided die. 

H(X) = ∑ −P(x) log P(x)�∈�     (13) 

Joint entropy is the entropy of a joint 

probability distribution, or a multi-valued 

random variable. For example, consider the 

joint entropy of a distribution of mankind (X) 

defined by a characteristic (Y) like age or race 

or health status of a disease. 

I(X;  Y ) = ∑ p(x, y)log
�(�,�)

�(�)�(�)�,�

(14) 

3. The proposed frame work

An Integrated hybrid model of ACO and 

information theory measures (entropy and 

mutual information) as the objective function 

is presented. The ACO [19] [20] is a heuristic 

searching algorithm used to locate the ideal 

segments of the membership and non-

membership functions of a neutrosophic 

variable. The indeterminacy function is 

calculated by the membership and non-

membership functions basing on the 

definitions of neutrosophic set illustrated in 

section 2. The objective function is the amount 

of information conveyed from various 

partitions in the workspace. Therefore, the 

total entropy  [21] is  used as the objective 

function on the variables workspace. Total 

entropy calculates amount of information of 

various partitions and intersections between 

these partitions.  Best points in declaring the 

membership function are the boundaries of the 

partitions. The ants are designed to form the 

membership and non-membership partitions as 

illustrated in figure 2. A typical triangle 

membership function would take the shape of 

figure 2. 

The triangle function of a variable partition is 

represented by parameters (L, (L+U)/2, U). 

Finding best values of L and U for all 

partitions would optimize the membership 

(non-membership) function definition. Figure 

3 give a view of the ant with n partitions for 

each fuzzy variable. 

Figure 2 : corresponding to triangle fuzzy 
membership and its boundary parameters  

Individual L1 U1 L2 U2 …… Ln Un 

Figure 3: Individual in ACO for Triangle 
function 

One of the main difficulties in designing 

optimization problem using ACO is finding the 

heuristic desirability which formulates the 

transition rule. The amount of information 

deposited by neutrosophic variable inspires the 

ACO to calculate the transition rule and find 

parameters of membership, indeterminism and 

non-membership declarations. The 

membership function subsets are declared by 

ant parameters in figure 2. The histogram of a 

variable shows the data distribution of the 

different values. Therefore, the set of 

parameters are mapped to the histogram of a 

given variable data (Fig. 4). 

Figure 4:  Fuzzy discretizing  of the histogram 
into n  joint subsets and m-1 intersections 

The objective function is set as the total 

entropy of partitions [23]. By enhancing 

partition's parameters to optimize the total 

entropy of the histogram subsets, the optimal 

membership design of the variable is found.  

2.3 Entropy and Mutual Information 
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Start 

Initialize ACO parameters 

Initialize two ACO populations for membership and non-membership generation 

Read attribute data file 

Evaluate the Initial ants and pheromone level for edges 

Get Ant positions for non-membership 

Select Ant with the best objective 

function 

Calculate transition rule  

End of 

Iterations? 

Get optimal parameters for 

fuzzy partitions of non-

membership function  

Use membership and non-membership functions 

to evaluate indeterminacy function 

Draw the membership, non-membership and 

indeterminacy functions 

End

Next Itera�on t=t+1 

Get Ant positions for membership 

Calculate transition rule 

Update pheromone level 

Select Ant with the best objective 

function 

Get optimal parameters for 

fuzzy partitions of membership 

function  

Yes 

No 

Normalize indeterminacy function  

Update pheromone level 

Figure 4: Flow chart for the modelling neuotrosophic variable using ACO 
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Input :pd, N, variable_datafile 
%%%% pd number of decision variables in particle, N ieteration, Present position in the search 
universe  ��� , �  is the decay rate of phermone. %%%%%%% 
Output: membership, non-membership and indeterminacy function, conversion rate. 
1: XInitianlize_Ants(); % Each ant is composed of  pd decision variables for fuzzy partitions 

2:AttRead_data(variable_datafile)  
3:Objective_mem_  Evaluate _ Objective_of_Particles (X, P(Att)); % According to entropy and 
Mutual information 
4: Objective_non_mem  Evaluate _ Objective_of_Particles (X, 1-P(Att)); % According to 
entropy and Mutual information 

5: While (num_of_Iterations<Max_iter) 
% membership generation 
6: foreach Ant  

7: �� � =  ∑ �(�)�
��� − ∑ �(�, � + 1)���

���  

8: ��
�(�)  

����×����(�)�

∑ [��]×����(�)��∈��

            9: ���(� + 1) = (1− �). ���(�) + ∆���(�) 

10:end foreach 
 11: Best_sol_mem max(��) % Best found value until iteration t 

% non-membership generation 
12: foreach Ant  

13 �� � =  ∑ �(�)�
��� −  ∑ �(�, � + 1)���

���  

14: ��
�(�)  

����×����(�)�

∑ [��]×����(�)��∈��

15: ���(� + 1) = (1− �). ���(�) + ∆���(�) 

16:end foreach 
17: Best_sol_non-mem max(��) % Best found value until iteration t 

18: End While 
18: Best _mem  Best_sol_mem  
19: Best _non-mem  Best_sol_non-mem  
20: indeterminacy calculate-ind(Best _mem, Best _non-mem); 
21: Draw(Best _mem, Best _non-mem, indetrminancy) 
22: Draw_conversions_rate() 
23: Output membership, non-membership and indeterminacy function, conversion rate. 

--------------------------------------------------------------------------------------------------------------------- 

Function calculate-ind(��(�),  ��(�)) 
1: Input:( ��(�),  ��(�))  
2: Output: indeterminacy 
3: 0� − [��(�) +  ��(�)] ≤   ��(�)    ≤  3� − [��(�) +  ��(�)] 
4: indeterminacy Normalize(��(�)); 
5: Return indeterminacy 
5: End Fun 

Figure 5: Algorithm for the modelling neuotrosophic variable using ACO 
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To model (n) membership functions, variable 

histogram is partitioned into n overlapped 

subsets that produce n-1 intersections. Every 

joint partition corresponds to joint entropy and 

each overlap is modelled by mutual 

information. Eq.15 shows the total entropy 

which is assigned to the heuristic desirability 

of ants. 

�� = � =  ∑ �(�)�
��� − ∑ �(�, � + 1)���

���             

(15) 

Where n is the number of partitions or subsets 

in the fuzzy variable, 

H is the total entropy, 

H(i) is the entropy of subset i, 

I is the mutual information between to 

intersecting partitions(i,j). 

In membership function modelling, the total 

entropy function Eq. 13, 14 and 15 are 

calculated by the probability distribution P(x)  

of the variable data frequency in various 

partitions and the intersecting between them. 

The complement of probability distribution 

1− P(x) is utilized to measure the non-

membership of variable data in different 

partitions. Therefore, the non-membership 

objective function will compute Eq. 13, 14 and 

15 with the variable data frequency 

complement in different partitions and 

overlapping.  

According to Eq.3 & 6, the summation of the 

membership, non membership and 

indeterminacy values for the same instance is 

in the interval [ 0�, 3� ]. Hence the 

indeterminacy function is declared by Eq. 16. 

0� − [��(�) +  ��(�)] ≤   ��(�)    ≤  3� −

[��(�) +  ��(�)]                       (16) 

Where Eq. 9 states that the summation of the 

membership, non membership and 

indeterminacy values for the same instance is 

in the interval [ 0�, 2� ]. Hence, the 

indeterminacy function is defined as Eq. 17.  

0� − [��(�) +  ��(�)] ≤     ��(�)     ≤  2� −

[��(�) +  ��(�)]                        (17) 

By finding the membership and non-

membership definition of  �  , the 

indeterminacy function ��(�) could be driven 

easily from Eq. 15 or 16. The value of the 

indeterminacy function should be in the 

interval [0� 1�] , hence the ��(�)  function is 

normalized according to Eq. 18.  

����������_��(��) =
��(��)����(��(�))

���(��(�))����(��(�))

(18) 

Where σ�(x�) is the indeterminacy function for 
the value  x� . The flow chart and algorithm of 
the integrated framework is illustrated in figure 
5 and 6 respectively. 

4. Experimental Results

The present reality issues are brimming with 

vulnerability and indeterminism. The 

neutrosophic field is worried by picking up 

information with degrees of enrollment, 

indeterminacy and non-participation. 

Neutrosophic framework depends on various 

neurtosophic factors or variables. 

Unfortunately, the vast majority of the 

informational indexes accessible are normal 

numeric qualities or unmitigated 

characteristics. Henceforth, creating 

approaches for characterizing a neutrosophic 

set from the current informational indexes is 

required. 

The membership capacity function of a 

neutrosophy variable, similar to the fuzzy 

variable, can take a few sorts. Triangle 

membership is very popular due to its 

simplicity and accuracy. Triangle function is 

characterized by various overlapping 

partitions. These subsets are characterized by 

support, limit and core parameters. The most 

applicable parameter to a specific subset is the 

support which is the space of characterizing 
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the membership degree. Finding the start and 

closure of a support over the universe of a 

variable could be an intriguing search issue 

suitable for optimization. Meta-heuristic search 

methodologies  [22] give a intelligent 

procedure for finding ideal arrangement of 

solutions is any universe. ACO is a well 

defined search procedure that mimics ants in 

discovering their sustenance. Figure 3 presents 

the ant as an individual in a population for 

upgrading a triangle membership function 

through the ACO procedure. The ACO utilizes 

the initial ant population and emphasizes to 

achieve ideal arrangement. 

Table 1:Parameters of ACO 

Maximum Number of Iterations 50 

Population Size (number of 
ants) 

10 

Decaying rate 0.1 

The total entropy given by Eq. 15 characterizes 

the heuristic desirability which affects the 

probabilistic transition rule of ants in the ACO 

algorithm.  The probability distribution �(�) 

presented in Eq. 13, 14 and 15  is used to 

calculate the total entropy function. The ACO 

parameters like Maximum Number of 

Iterations, Population Size, and pheromone 

decaying rate are presented in table 1.  

The non-membership function means the 

falsity degree in the variables values. Hence, 

the complement of a data probability 

distribution 1− �(�) is utilized to create the 

heuristic desirability of the ants in designing 

the non-membership function Eq. 13, 14 and 

15.  

The indeterminacy capacity of variable data is 

created by both membership and non-

membership capacities of the same data using 

neutrosophic set declaration in section 2 and 

Eq. 16 or 17. Afterwards, Eq. 18 is used to 

normalize the indeterminacy capacity of the 

data.  Through simulation, the ACO is applied 

by MATLAB , PC with Intel(R) Core (TM) 

CPU and 4 GB RAM. The simulation are 

implemented on the temperature variable from 

the Forest Fires data set created by: Paulo 

Cortez and Anbal Morais (Univ. Minho)  [25]. 

The histogram of a random collection of the 

temperature data is shown in figure 7. 

Figure 6: Temparature Variable Histogram 

Figures 8: a, b and c presents the resulting 

membership, non-membership and 

indeterminacy capacities produced by applying 

the ACO on a random collection of the 

temperature data.  

Figure 7: a. Membership Function b. Non-membership Function c. Inderminacy
Function 

M
em

b
er

sh
ip

   
 

 N
o

n
-m

em
b

er
sh

ip
   

 

In
de

te
rm

in
ac

y

Temperature Temperature Temperature 

Neutrosophic Sets and Systems, Vol. 15, 2017 87 

Mona Gamal Gafar, Ibrahim El-Henawy, Integrated Framework of Optimization Technique and Information Theory 
Measures for Modeling Neutrosophic Variables  



5. Conclusion

A proposed framework utilizing the ant colony 

optimization and the total entropy measure for 

mechanizing the design of neutrosophic 

variable is exhibited. The membership, non-

membership and indeterminacy capacities are 

utilized to represent the neutrosophy idea. The 

enrollment or truth of subset could be conjured 

from total entropy measure. The fundamental 

system aggregates the total entropy to the 

participation or truth subsets of a neutrosophic 

concept. The ant colony optimization is a 

meta-heuristic procedure which seeks the 

universe related to variable X to discover ideal 

segments or partitions parameters. The 

heuristic desirability of ants, for membership 

generation, is the total entropy based on the 

probability density function of random variable 

X.  Thusly, the probability density complement 

is utilized to design non-membership capacity. 

The indeterminacy capacity is identified, as 

indicated by neutrosophic definition, by the 

membership and non-membership capacities. 

The results in light of ACO proposed system 

are satisfying. Therefore, the technique can be 

utilized as a part of data preprocessing stage 

within knowledge discovery system. Having 

sufficient data gathering,  general neutrosophic 

variable outline for general data can be 

formulated. 
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1 Introduction.

The paper extends the fuzzy modal logic [1, 2, and 
4], fuzzy environment [3] and neutrosophic sets, 
numbers and operators [5 – 12], together with the last 
developments of the neutrosophic environment 
{including (t, i, f)-neutrosophic algebraic structures, 
neutrosophic triplet structures, and neutrosophic 
overset / underset / offset} [13 - 15] passing through 
the symbolic neutrosophic logic [16], ultimately to 
neutrosophic modal logic. 

All definitions, sections, and notions introduced in 
this paper were never done before, neither in my 
previous work nor in other researchers’. 

Therefore, we introduce now the Neutrosophic 
Modal Logic and the Refined Neutrosophic Modal 
Logic.  

Then we can extend them to Symbolic 
Neutrosophic Modal Logic and Refined Symbolic 
Neutrosophic Modal Logic, using labels instead of 
numerical values. 

There is a large variety of neutrosophic modal 
logics, as actually happens in classical modal logic too. 
Similarly, the neutrosophic accessibility relation and 
possible neutrosophic worlds have many 
interpretations, depending on each particular 
application. Several neutrosophic modal applications 
are also listed. 

Due to numerous applications of neutrosophic 
modal logic (see the examples throughout the paper), 
the introduction of the neutrosophic modal logic was 
needed. 

Neutrosophic Modal Logic is a logic where some 
neutrosophic modalities have been included. 

Let 𝒫 be a neutrosophic proposition. We have the 
following types of neutrosophic modalities: 

A) Neutrosophic Alethic Modalities (related to
truth) has three neutrosophic operators: 

i. Neutrosophic Possibility: It is neutrosophic-
ally possible that 𝒫. 

ii. Neutrosophic Necessity: It is neutrosophic-
ally necessary that 𝒫. 

iii. Neutrosophic Impossibility: It is neutrosoph-
ically impossible that 𝒫. 

B) Neutrosophic Temporal Modalities (related
to time) 

It was the neutrosophic case that 𝒫. 
It will neutrosophically be that 𝒫. 
And similarly: 
It has always neutrosophically been that 𝒫. 
It will always neutrosophically be that 𝒫. 
C) Neutrosophic Epistemic Modalities (related

to knowledge): 
It is neutrosophically known that 𝒫. 
D) Neutrosophic Doxastic Modalities (related

to belief): 
It is neutrosophically believed that 𝒫. 
E) Neutrosophic Deontic Modalities:
It is neutrosophically obligatory that 𝒫. 
It is neutrosophically permissible that 𝒫. 

2 Neutrosophic Alethic Modal Operators 
The modalities used in classical (alethic) modal 

logic can be neutrosophicated by inserting the indeter-
minacy. We insert the degrees of possibility and 
degrees of necessity, as refinement of classical modal 
operators. 

3 Neutrosophic Possibility Operator 
The classical Possibility Modal Operator « ◊ 𝑃 » 

meaning «It is possible that P» is extended to 
Neutrosophic Possibility Operator: ◊𝑁 𝒫  meaning
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«It is (t, i, f)-possible that 𝒫  », using Neutrosophic 
Probability, where «(t, i, f)-possible» means t % 
possible (chance that 𝒫  occurs), i % indeterminate 
(indeterminate-chance that 𝒫  occurs), and f % 
impossible (chance that 𝒫 does not occur). 

If 𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝) is a neutrosophic proposition, with 
𝑡𝑝, 𝑖𝑝, 𝑓𝑝 subsets of [0, 1], then the neutrosophic truth-
value of the neutrosophic possibility operator is: 

◊𝑁 𝒫 = (sup(𝑡𝑝), inf(𝑖𝑝), inf(𝑓𝑝)),

which means that if a proposition P is 𝑡𝑝  true, 𝑖𝑝 
indeterminate, and 𝑓𝑝  false, then the value of the 
neutrosophic possibility operator ◊𝑁 𝒫  is: sup(𝑡𝑝) 
possibility, inf(𝑖𝑝)  indeterminate-possibility, and 
inf(𝑓𝑝) impossibility. 

For example. 

Let P = «It will be snowing tomorrow». 

According to the meteorological center, the 
neutrosophic truth-value of 𝒫 is: 

𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5}), 

i.e. [0.5, 0.6]  true, (0.2, 0.4)  indeterminate, and 
{0.3, 0.5} false. 

Then the neutrosophic possibility operator is: 

◊𝑁 𝒫 =
(sup[0.5, 0.6], inf(0.2, 0.4), inf{0.3, 0.5}) =
(0.6, 0.2, 0.3), 

i.e. 0.6 possible, 0.2 indeterminate-possibility, and 0.3 
impossible. 

4 Neutrosophic Necessity Operator 
The classical Necessity Modal Operator « □𝑃 » 

meaning «It is necessary that P» is extended to 
Neutrosophic Necessity Operator: □𝑁𝒫 meaning «It 
is (t, i, f)-necessary that 𝒫  », using again the 
Neutrosophic Probability, where similarly «(t, i, f)-
necessity» means t % necessary (surety that 𝒫 occurs), 
i % indeterminate (indeterminate-surety that 𝒫 occurs), 
and f % unnecessary (unsurely that 𝒫 occurs). 

If 𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝) is a neutrosophic proposition, with 
𝑡𝑝, 𝑖𝑝, 𝑓𝑝 subsets of [0, 1], then the neutrosophic truth 
value of the neutrosophic necessity operator is: 

□𝑁𝒫 = (inf(𝑡𝑝), sup(𝑖𝑝), sup(𝑓𝑝)),

which means that if a proposition 𝒫  is 𝑡𝑝  true, 𝑖𝑝 
indeterminate, and 𝑓𝑝  false, then the value of the 
neutrosophic necessity operator □𝑁𝒫  is: inf(𝑡𝑝) 
necessary, sup(𝑖𝑝)  indeterminate-necessity, and 
sup(𝑓𝑝) unnecessary. 

Taking the previous example: 

𝒫  = «It will be snowing tomorrow»,  with 
𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5}) , then the 
neutrosophic necessity operator is: 

□𝑁𝒫 =
(inf[0.5, 0.6], sup(0.2, 0.4), sup{0.3, 0.5}) =
(0.5, 0.4, 0.5), 

i.e. 0.5 necessary, 0.4 indeterminate-necessity, and 
0.5 unnecessary. 

5 Connection between Neutrosophic
Possibility Operator and Neutrosophic
Necessity Operator. 

In classical modal logic, a modal operator is 
equivalent to the negation of the other: 

◊ 𝑃 ↔ ¬□¬𝑃,

□𝑃 ↔ ¬ ◊ ¬𝑃.

In neutrosophic logic one has a class of 
neutrosophic negation operators. The most used one is: 

¬
𝑁𝑃(𝑡, 𝑖, 𝑓) = 𝑃̅(𝑓, 1 − 𝑖, 𝑡),

where t, i, f are real subsets of the interval [0, 1]. 

Let’s check what’s happening in the neutrosophic 
modal logic, using the previous example. 

One had: 

𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5}), 

then 
¬
𝑁𝒫 = 𝒫̅({0.3, 0.5}, 1 − (0.2, 0.4), [0.5, 0.6]) =

𝒫̅({0.3, 0.5}, 1 − (0.2, 0.4), [0.5, 0.6]) =
𝒫̅({0.3, 0.5}, (0.6, 0.8), [0.5, 0.6]). 

Therefore, denoting by ↔
𝑁

 the neutrosophic equiv-
alence, one has: 
¬
𝑁

□
𝑁

¬
𝑁𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5})

↔
𝑁

↔
𝑁

 It is not neutrosophically necessary that «It will 
not be snowing tomorrow» 

↔
𝑁

 It is not neutrosophically necessary that 
𝒫̅({0.3, 0.5}, (0.6, 0.8), [0.5, 0.6])

↔
𝑁

 It is neutrosophically possible that 
¬
𝑁𝒫̅({0.3, 0.5}, (0.6, 0.8), [0.5, 0.6])

↔
𝑁

 It is neutrosophically possible that 
𝒫([0.5, 0.6], 1 − (0.6, 0.8), {0.3, 0.5})

↔
𝑁

 It is neutrosophically possible that 
𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5})

↔
𝑁

◊
𝑁

𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5}) =

(0.6, 0.2, 0.3). 
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Let’s check the second neutrosophic equivalence. 
¬
𝑁

◊
𝑁

¬
𝑁𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5})

↔
𝑁

↔
𝑁

 It is not neutrosophically possible that «It will 
not be snowing tomorrow» 

↔
𝑁

 It is not neutrosophically possible that 
𝒫̅({0.3, 0.5}, (0.6, 0.8), [0.5, 0.6])

↔
𝑁

 It is neutrosophically necessary that 
¬
𝑁𝒫̅({0.3, 0.5}, (0.6, 0.8), [0.5, 0.6])

↔
𝑁

 It is neutrosophically necessary that 
𝒫([0.5, 0.6], 1 − (0.6, 0.8), {0.3, 0.5})

↔
𝑁

 It is neutrosophically necessary that 
𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5})

↔
𝑁

□
𝑁

𝒫([0.5, 0.6], (0.2, 0.4), {0.3, 0.5}) =

(0.6, 0.2, 0.3). 

6 Neutrosophic Modal Equivalences
Neutrosophic Modal Equivalences hold within a 

certain accuracy, depending on the definitions of 
neutrosophic possibility operator and neutrosophic 
necessity operator, as well as on the definition of the 
neutrosophic negation – employed by the experts 
depending on each application. Under these conditions, 
one may have the following neutrosophic modal 
equivalences: 

◊𝑁 𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝)
↔
𝑁

¬
𝑁

□
𝑁

¬
𝑁𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝) 

□𝑁𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝)
↔
𝑁

¬
𝑁

◊
𝑁

¬
𝑁𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝) 

For example, other definitions for the neutrosophic 
modal operators may be: 

◊𝑁 𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝) = (sup(𝑡𝑝), sup(𝑖𝑝), inf(𝑓𝑝)), or

◊𝑁 𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝) = (sup(𝑡𝑝),
𝑖𝑝

2
, inf(𝑓𝑝))  etc., 

while 

□𝑁𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝) = (inf(𝑡𝑝), inf(𝑖𝑝), sup(𝑓𝑝)), or

□𝑁𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝) = (inf(𝑡𝑝), 2𝑖𝑝 ∩ [0,1], sup(𝑓𝑝))

etc. 

7 Neutrosophic Truth Threshold 
In neutrosophic logic, first we have to introduce a 

neutrosophic truth threshold, 𝑇𝐻 = 〈𝑇𝑡ℎ, 𝐼𝑡ℎ, 𝐹𝑡ℎ〉 , 
where 𝑇𝑡ℎ, 𝐼𝑡ℎ, 𝐹𝑡ℎ are subsets of [0, 1]. We use upper-
case letters (T, I, F) in order to distinguish the 
neutrosophic components of the threshold from those 
of a proposition in general. 

We can say that the proposition 𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝)  is 
neutrosophically true if: 

inf(𝑡𝑝) ≥ inf(𝑇𝑡ℎ) and sup(𝑡𝑝) ≥ sup(𝑇𝑡ℎ); 

inf(𝑖𝑝) ≤ inf(𝐼𝑡ℎ) and sup(𝑡𝑝) ≤ sup(𝐼𝑡ℎ); 

inf(𝑓𝑝) ≤ inf(𝐹𝑡ℎ) and sup(𝑓𝑝) ≤ sup(𝐹𝑡ℎ). 

For the particular case when all 𝑇𝑡ℎ, 𝐼𝑡ℎ, 𝐹𝑡ℎ  and 
𝑡𝑝, 𝑖𝑝, 𝑓𝑝 are single-valued numbers from the interval 
[0, 1], then one has: 

The proposition 𝒫(𝑡𝑝, 𝑖𝑝, 𝑓𝑝)  is neutrosophically 
true if: 

𝑡𝑝 ≥ 𝑇𝑡ℎ; 

𝑖𝑝 ≤ 𝐼𝑡ℎ; 

𝑓𝑝 ≤ 𝐹𝑡ℎ. 

The neutrosophic truth threshold is established by 
experts in accordance to each applications. 

8 Neutrosophic Semantics 
Neutrosophic Semantics of the Neutrosophic 

Modal Logic is formed by a neutrosophic frame 𝐺𝑁, 
which is a non-empty neutrosophic set, whose 
elements are called possible neutrosophic worlds, 
and a neutrosophic binary relation ℛ𝑁 , called 
neutrosophic accesibility relation, between the 
possible neutrosophic worlds. By notation, one has: 

〈𝐺𝑁, ℛ𝑁〉. 

A neutrosophic world 𝑤′𝑁 that is neutrosophically 
accessible from the neutrosophic world 𝑤𝑁  is 
symbolized as: 

𝑤𝑁ℛ𝑁𝑤′𝑁. 

In a neutrosophic model each neutrosophic 
proposition 𝒫  has a neutrosophic truth-value 
(𝑡𝑤𝑁

, 𝑖𝑤𝑁
, 𝑓𝑤𝑁

)  respectively to each neutrosophic 
world 𝑤𝑁 ∈ 𝐺𝑁, where 𝑡𝑤𝑁

, 𝑖𝑤𝑁
, 𝑓𝑤𝑁

 are subsets of [0, 
1]. 

A neutrosophic actual world can be similarly 
noted as in classical modal logic as 𝑤𝑁 ∗ . 

Formalization. 

Let 𝑆𝑁  be a set of neutrosophic propositional 
variables. 

9 Neutrosophic Formulas
1) Every neutrosophic propositional variable

𝒫 ∈ 𝑆𝑁 is a neutrosophic formula. 

2) If A, B are neutrosophic formulas, then 
¬
𝑁𝐴,

𝐴
∧
𝑁

𝐵 , 𝐴
∨
𝑁

𝐵 , 𝐴
→
𝑁

𝐵 , 𝐴
↔
𝑁

𝐵 , and ◊
𝑁

𝐴 , □
𝑁

𝐴 , are also 

neutrosophic formulas, where 
¬
𝑁, ∧

𝑁
, ∨

𝑁
, →

𝑁
, ↔

𝑁
, and ◊

𝑁
, 
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□
𝑁

represent the neutrosophic negation, neutrosophic 
intersection, neutrosophic union, neutrosophic 
implication, neutrosophic equivalence, and 
neutrosophic possibility operator, neutrosophic 
necessity operator respectively. 

10 Accesibility Relation in a Neutrosophic 
Theory 

Let 𝐺𝑁 be a set of neutrosophic worlds 𝑤𝑁 such that 
each 𝑤𝑁 chracterizes the propositions (formulas) of a 
given neutrosophic theory 𝜏. 

We say that the neutrosophic world 𝑤′𝑁 is accesible 
from the neutrosophic world 𝑤𝑁 , and we write: 
𝑤𝑁ℛ𝑁𝑤′𝑁  or ℛ𝑁(𝑤𝑁, 𝑤′𝑁) , if for any proposition 
(formula) 𝒫 ∈ 𝑤𝑁 , meaning the neutrosophic truth-
value of 𝒫 with respect to 𝑤𝑁 is 

𝒫(𝑡𝑝
𝑤𝑁 , 𝑖𝑝

𝑤𝑁 , 𝑓𝑝
𝑤𝑁), 

one has the neutrophic truth-value of 𝒫 with respect to 
𝑤′𝑁 

𝒫(𝑡𝑝
𝑤′𝑁 , 𝑖𝑝

𝑤′𝑁 , 𝑓𝑝
𝑤′𝑁), 

where 

inf(𝑡𝑝
𝑤′𝑁) ≥ inf(𝑡𝑝

𝑤𝑁)  and sup(𝑡𝑝
𝑤′𝑁) ≥

sup(𝑡𝑝
𝑤𝑁); 

inf(𝑖𝑝
𝑤′𝑁) ≤ inf(𝑖𝑝

𝑤𝑁) and sup(𝑖𝑝
𝑤′𝑁) ≤ sup(𝑖𝑝

𝑤𝑁); 

inf(𝑓𝑝
𝑤′𝑁) ≤ inf(𝑓𝑝

𝑤𝑁)  and sup(𝑓𝑝
𝑤′𝑁) ≤

sup(𝑓𝑝
𝑤𝑁) 

(in the general case when 𝑡𝑝
𝑤𝑁 , 𝑖𝑝

𝑤𝑁 , 𝑓𝑝
𝑤𝑁  and 

𝑡𝑝
𝑤′𝑁 , 𝑖𝑝

𝑤′𝑁 , 𝑓𝑝
𝑤′𝑁 are subsets of the interval [0, 1]). 

But in the instant of 𝑡𝑝
𝑤𝑁 , 𝑖𝑝

𝑤𝑁 , 𝑓𝑝
𝑤𝑁  and 

𝑡𝑝
𝑤′𝑁 , 𝑖𝑝

𝑤′𝑁 , 𝑓𝑝
𝑤′𝑁  as single-values in [0, 1], the above 

inequalities become: 

𝑡𝑝
𝑤′𝑁 ≥ 𝑡𝑝

𝑤𝑁, 

𝑖𝑝
𝑤′𝑁 ≤ 𝑖𝑝

𝑤𝑁, 

𝑓𝑝
𝑤′𝑁 ≤ 𝑓𝑝

𝑤𝑁. 

11 Applications
If the neutrosophic theory 𝜏  is the Neutrosophic 

Mereology, or Neutrosophic Gnosisology, or 
Neutrosophic Epistemology etc., the neutrosophic 
accesibility relation is defined as above. 

12 Neutrosophic n-ary Accesibility Relation
We can also extend the classical binary accesibility 

relation ℛ  to a neutrosophic n-ary accesibility 
relation 

ℛ𝑁
(𝑛), for n integer ≥ 2. 

Instead of the classical 𝑅(𝑤, 𝑤′), which means that 
the world 𝑤′  is accesible from the world 𝑤 , we 
generalize it to: 

ℛ𝑁
(𝑛)

(𝑤1𝑁
, 𝑤2𝑁

, … , 𝑤𝑛𝑁
; 𝑤𝑁

′ ), 

which means that the neutrosophic world 𝑤𝑁
′  is 

accesible from the neutrosophic worlds 
𝑤1𝑁

, 𝑤2𝑁
, … , 𝑤𝑛𝑁

 all together. 

13 Neutrosophic Kripke Frame
𝑘𝑁 = 〈𝐺𝑁, 𝑅𝑁〉  is a neutrosophic Kripke frame, 

since: 
𝑖. 𝐺𝑁 is an arbitrary non-empty neutrosophic set of 

neutrosophic worlds, or neutrosophic states, or 
neutrosophic situations. 

𝑖𝑖. 𝑅𝑁 ⊆ 𝐺𝑁×𝐺𝑁  is a neutrosophic  accesibility 
relation of the neutrosophic Kripke frame. Actually, 
one has a degree of accesibility, degree of 
indeterminacy, and a degree of non-accesibility. 

14 Neutrosophic (t, i, f)-Assignement
The Neutrosophic (t, i, f)-Assignement is a 

neutrosophic mapping 

𝑣𝑁: 𝑆𝑁×𝐺𝑁 → [0,1] ⨯ [0,1] ⨯ [0,1] 

where, for any neutrosophic proposition 𝒫 ∈ 𝑆𝑁  and 
for any neutrosophic world 𝑤𝑁 , one defines:  

𝑣𝑁(𝑃,  𝑤𝑁) = (𝑡𝑝
𝑤𝑁 , 𝑖𝑝

𝑤𝑁 , 𝑓𝑝
𝑤𝑁) ∈ [0,1] ⨯ [0,1] ⨯ [0,1] 

which is the neutrosophical logical truth value of the 
neutrosophic proposition 𝒫 in the neutrosophic world 
𝑤𝑁. 

15 Neutrosophic Deducibility
We say that the neutrosophic formula 𝒫  is 

neutrosophically deducible from the neutrosophic 
Kripke frame 𝑘𝑁, the neutrosophic (t, i, f) – assignment 
𝑣𝑁, and the neutrosophic world 𝑤𝑁, and we write as: 

𝑘𝑁, 𝑣𝑁, 𝑤𝑁 
⊨
𝑁

𝒫. 

Let’s make the notation: 

𝛼𝑁(𝒫; 𝑘𝑁, 𝑣𝑁, 𝑤𝑁) 

that denotes the neutrosophic logical value that the 
formula 𝒫  takes with respect to the neutrosophic 
Kripke frame 𝑘𝑁, the neutrosophic (t, i, f)-assignement 
𝑣𝑁, and the neutrosphic world 𝑤𝑁. 

We define 𝛼𝑁 by neutrosophic induction: 

1. 𝛼𝑁(𝒫; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁) 
𝑑𝑒𝑓

=
𝑣𝑁(𝒫, 𝑤𝑁) if 𝒫 ∈ 𝑆𝑁  and 

𝑤𝑁 ∈ 𝐺𝑁. 

2. 𝛼𝑁 (
¬
𝑁𝒫; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁)

𝑑𝑒𝑓
=

 
¬
𝑁

[𝛼𝑁(𝒫; 𝑘𝑁 , 𝑣𝑁, 𝑤𝑁)]. 

3. 𝛼𝑁 (𝒫
∧
𝑁

𝑄; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁) 
𝑑𝑒𝑓

=

 [𝛼𝑁(𝒫; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁)]
∧
𝑁

[𝛼𝑁(𝑄; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁)] 
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4. 𝛼𝑁 (𝒫
∨
𝑁

𝑄; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁) 
𝑑𝑒𝑓

=

[𝛼𝑁(𝒫; 𝑘𝑁 , 𝑣𝑁, 𝑤𝑁)]
∨
𝑁

[𝛼𝑁(𝑄; 𝑘𝑁 , 𝑣𝑁, 𝑤𝑁)] 

5. 𝛼𝑁 (𝒫
→
𝑁

𝑄; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁) 
𝑑𝑒𝑓

=

 [𝛼𝑁(𝒫; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁)]
→
𝑁

[𝛼𝑁(𝑄; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁)] 

6. 𝛼𝑁 (
◊
𝑁

𝒫; 𝑘𝑁 , 𝑣𝑁 , 𝑤𝑁) 
𝑑𝑒𝑓

=
〈sup, inf, inf〉{𝛼𝑁(𝒫; 𝑘𝑁 , 𝑣𝑁 , 𝑤′

𝑁), 𝑤′ ∈ 𝐺𝑁 and 𝑤𝑁𝑅𝑁𝑤′𝑁}. 

7. 𝛼𝑁 (
𝑁

𝒫; 𝑘𝑁 , 𝑣𝑁, 𝑤𝑁)
𝑑𝑒𝑓

=
〈inf, sup, sup〉{𝛼𝑁(𝒫; 𝑘𝑁 , 𝑣𝑁 , 𝑤′

𝑁), 𝑤𝑁
′ ∈ 𝐺𝑁 and 𝑤𝑁𝑅𝑁𝑤′𝑁}. 

8. ⊨
𝑁

𝒫 if and only if 𝑤𝑁 ∗⊨ 𝒫 (a formula 𝒫 is 
neutrosophically deducible if and only if 𝒫  is 
neutrosophically deducible in the actual neutrosophic 
world). 

We should remark that 𝛼𝑁  has a degree of truth 
(𝑡𝛼𝑁

), a degree of indeterminacy (𝑖𝛼𝑁
), and a degree 

of falsehood (𝑓𝛼𝑁
) , which are in the general case 

subsets of the interval [0, 1]. 
Applying 〈sup, inf, inf〉  to 𝛼𝑁  is equivalent to 

calculating: 

〈sup(𝑡𝛼𝑁
), inf(𝑖𝛼𝑁

), inf(𝑓𝛼𝑁
)〉, 

and similarly 

〈inf, sup, sup〉𝛼𝑁 =
〈inf(𝑡𝛼𝑁

), sup(𝑖𝛼𝑁
), sup(𝑓𝛼𝑁

)〉. 

16 Refined Neutrosophic Modal Single-
Valued Logic 

Using neutrosophic (t, i, f) - thresholds, we refine 
for the first time the neutrosophic modal logic as: 

a) Refined Neutrosophic Possibility Operator.

◊1

𝑁
𝒫(𝑡,𝑖,𝑓) =  «It is very little possible (degree of 

possibility 𝑡1) that 𝒫», corresponding to the threshold 
(𝑡1, 𝑖1, 𝑓1), i.e. 0 ≤ 𝑡 ≤ 𝑡1, 𝑖 ≥ 𝑖1, 𝑓 ≥ 𝑓1, for 𝑡1 a very 
little number in [0, 1]; 

◊2

𝑁
𝒫(𝑡,𝑖,𝑓) =  «It is little possible (degree of 

possibility 𝑡2) that 𝒫», corresponding to the threshold 
(𝑡2, 𝑖2, 𝑓2), i.e. 𝑡1 < 𝑡 ≤ 𝑡2, 𝑖 ≥ 𝑖2 > 𝑖1, 𝑓 ≥ 𝑓2 > 𝑓1; 

… … … 

and so on; 
◊𝑚

𝑁
𝒫(𝑡,𝑖,𝑓) =  «It is possible (with a degree of 

possibility 𝑡𝑚) that 𝒫», corresponding to the threshold 
(𝑡𝑚, 𝑖𝑚, 𝑓𝑚), i.e. 𝑡𝑚−1 < 𝑡 ≤ 𝑡𝑚 , 𝑖 ≥ 𝑖𝑚 > 𝑖𝑚−1, 𝑓 ≥
𝑓𝑚 > 𝑓𝑚−1. 

b) Refined Neutrosophic Necessity Operator.

□1

𝑁
𝒫(𝑡,𝑖,𝑓) =  «It is a small necessity (degree of 

necessity 𝑡𝑚+1)  that  𝒫 », i.e. 𝑡𝑚 < 𝑡 ≤ 𝑡𝑚+1 , 𝑖 ≥
𝑖𝑚+1 ≥ 𝑖𝑚, 𝑓 ≥ 𝑓𝑚+1 > 𝑓𝑚; 

□2

𝑁
𝒫(𝑡,𝑖,𝑓) = «It is a little bigger necessity (degree of 

necessity 𝑡𝑚+2)  that  𝒫 », i.e. 𝑡𝑚+1 < 𝑡 ≤ 𝑡𝑚+2 , 𝑖 ≥
𝑖𝑚+2 > 𝑖𝑚+1, 𝑓 ≥ 𝑓𝑚+2 > 𝑓𝑚+1; 

… … … 

and so on; 
□𝑘

𝑁
𝒫(𝑡,𝑖,𝑓) = «It is a very high necessity (degree of 

necessity 𝑡𝑚+𝑘) that 𝒫», i.e. 𝑡𝑚+𝑘−1 < 𝑡 ≤ 𝑡𝑚+𝑘 = 1, 
𝑖 ≥ 𝑖𝑚+𝑘 > 𝑖𝑚+𝑘−1, 𝑓 ≥ 𝑓𝑚+𝑘 > 𝑓𝑚+𝑘−1. 

17 Application of the Neutrosophic 
Threshold 

We have introduced the term of (t, i, f)-physical law, 
meaning that a physical law has a degree of truth (t), a 
degree of indeterminacy (i), and a degree of falsehood 
(f). A physical law is 100% true, 0% indeterminate, 
and 0% false in perfect (ideal) conditions only, maybe 
in laboratory. 

But our actual world (𝑤𝑁 ∗) is not perfect and not 
steady, but continously changing, varying, fluctuating. 

For example, there are physicists that have proved a 
universal constant (c) is not quite universal (i.e. there 
are special conditions where it does not apply, or its 
value varies between (𝑐 − 𝜀, 𝑐 + 𝜀), for 𝜀 > 0 that can 
be a tiny or even a bigger number). 

Thus, we can say that a proposition 𝒫  is 
neutrosophically nomological necessary, if 𝒫  is 
neutrosophically true at all possible neutrosophic 
worlds that obey the (t, i, f)-physical laws of the actual 
neutrosophic world 𝑤𝑁 ∗. 

In other words, at each possible neutrosophic world 
𝑤𝑁, neutrosophically accesible from 𝑤𝑁 ∗, one has: 

𝒫(𝑡𝑝
𝑤𝑁 , 𝑖𝑝

𝑤𝑁 , 𝑓𝑝
𝑤𝑁) ≥ 𝑇𝐻(𝑇𝑡ℎ, 𝐼𝑡ℎ, 𝐹𝑡ℎ), 

i.e. 𝑡𝑝
𝑤𝑁 ≥ 𝑇𝑡ℎ, 𝑖𝑝

𝑤𝑁 ≤ 𝐼𝑡ℎ, and 𝑓𝑝
𝑤𝑁 ≥ 𝐹𝑡ℎ. 

18 Neutrosophic Mereology
Neutrosophic Mereology means the theory of the 

neutrosophic relations among the parts of a whole, and 
the neutrosophic relations between the parts and the 
whole. 

A neutrosophic relation between two parts, and 
similarly a neutrosophic relation between a part and 
the whole, has a degree of connectibility (t), a degree 
of indeterminacy (i), and a degree of disconnectibility 
(f). 

19 Neutrosophic Mereological Threshold
Neutrosophic Mereological Threshold is defined 

as: 

(min( ),max( ),max( ))M M M MTH t i f  

where 𝑡𝑀 is the set of all degrees of connectibility 
between the parts, and between the parts and the 
whole; 
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𝑖𝑀 is the set of all degrees of indeterminacy between 
the parts, and between the parts and the whole; 

𝑓𝑀  is the set of all degrees of disconnectibility 
between the parts, and between the parts and the whole. 

We have considered all degrees as single-valued 
numbers. 

20 Neutrosophic Gnosisology 
Neutrosophic Gnosisology  is the theory of (t, i, f)-

knowledge, because in many cases we are not able to 
completely (100%) find whole knowledge, but only a 
part of it (t %), another part remaining unknown (f %), 
and a third part indeterminate (unclear, vague, 
contradictory) (i %), where t, i, f are subsets of the 
interval [0, 1]. 

21 Neutrosophic Gnosisological Threshold
Neutrosophic Gnosisological Threshold is 

defined, similarly, as: 

(min( ),max( ),max( ))G G G GTH t i f , 

where 𝑡𝐺 is the set of all degrees of knowledge of all 
theories, ideas, propositions etc., 
𝑖𝐺 is the set of all degrees of indeterminate-knowledge 
of all theories, ideas, propositions etc., 
𝑓𝐺  is the set of all degrees of non-knowledge of all 
theories, ideas, propositions etc. 

We have considered all degrees as single-valued 
numbers. 

22 Neutrosophic Epistemology 
And Neutrosophic Epistemology, as part of the 

Neutrosophic Gnosisology, is the theory of (t, i, f)-
scientific knowledge. 

Science is infinite. We know only a small part of it 
(t %), another big part is yet to be discovered (f %), and 
a third part indeterminate (unclear, vague, 
contradictort) (i %). 

Of course, t, i, f are subsets of [0, 1]. 

23 Neutrosophic Epistemological Threshold
It is defined as: 

(min( ),max( ),max( ))E E E ETH t i f  

where 𝑡𝐸  is the set of all degrees of scientific 
knowledge of all scientific theories, ideas, propositions 
etc., 
𝑖𝐸 is the set of all degrees of indeterminate scientific 
knowledge of all scientific theories, ideas, propositions 
etc., 
𝑓𝐸 is the set of all degrees of non-scientific knowledge 
of all scientific theories, ideas, propositions etc. 

We have considered all degrees as single-valued 
numbers. 

24 Conclusions 
We have introduced for the first time the 

Neutrosophic Modal Logic and the Refined 
Neutrosophic Modal Logic.  

Symbolic Neutrosophic Logic can be connected to 
the neutrosophic modal logic too, where instead of 
numbers we may use labels, or instead of quantitative 
neutrosophic logic we may have a quantitative 
neutrosophic logic. As an extension, we may introduce 
Symbolic Neutrosophic Modal Logic and Refined 
Symbolic Neutrosophic Modal Logic, where the 
symbolic neutrosophic modal operators (and the 
symbolic neutrosophic accessibility relation) have 
qualitative values (labels) instead on numerical values 
(subsets of the interval [0, 1]). 

Applications of neutrosophic modal logic are to 
neutrosophic modal metaphysics. Similarly to classical 
modal logic, there is a plethora of neutrosophic modal 
logics. Neutrosophic modal logics is governed by a set 
of neutrosophic axioms and neutrosophic rules. The 
neutrosophic accessibility relation has various 
interpretations, depending on the applications. 
Similarly, the notion of possible neutrosophic worlds 
has many interpretations, as part of possible 
neutrosophic semantics. 
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