
9 8



Neutrosophic Sets and Systems

Neutrosophic Sets and Systems, 19/2018

Copyright © Neutrosophic Sets and Systems 



s

Prof. Florentin Smarandache, PhD, Postdoc, 
Math Department, University of New Mexico, 
Gallup, NM 87301, USA.

Dr. Surapati Pramanik, Assistant Professor, 
Department of Mathematics, Nandalal 
Ghosh B.T. College, Panpur, Narayanpur, 
Dist-North 24 Parganas, West Bengal, 
India-743126

Said Broumi, University of Hassan II,  
Casablanca, Morocco.

Mohamed Abdel-Baset, Faculty of Computers 
and Informatics, Zagazig University, Egypt. 

Huda E. Khalid, University of Telafer, College 
of Basic Education, Telafer - Mosul, Iraq. 

Prof. Le Hoang Son, VNU Univ. of Science, 
Vietnam National Univ. Hanoi, Vietnam.

Dr. Mumtaz Ali, University of Southern 
Queensland, Australia.

W. B. Vasantha Kandasamy, Indian Institute of Technology, Chennai, Tamil Nadu, India.
A. A. Salama, Faculty of Science, Port Said University, Egypt.
Yanhui Guo, University of Illinois at Springfield, One Univ. Plaza, Springfield, IL 62703, USA.
Young Bae Jun, Gyeongsang National University, South Korea.
Francisco Gallego Lupianez, Universidad Complutense, Madrid, Spain.
Peide Liu, Shandong University of Finance and Economics, China.
Pabitra Kumar Maji, Math Department, K. N. University, India.
S. A. Albolwi, King Abdulaziz Univ., Jeddah, Saudi Arabia.
Jun Ye, Shaoxing University, China. 
Madad Khan, Comsats Institute of Information Technology, Abbottabad, Pakistan.
Stefan Vladutescu, University of Craiova, Romania.
Valeri Kroumov, Okayama University of Science, Japan.
Dmitri Rabounski and Larissa Borissova, independent researchers.
Selcuk Topal, Mathematics Department, Bitlis Eren University, Turkey. 
Luige Vladareanu, Romanian Academy, Bucharest, Romania.
Ibrahim El-henawy, Faculty of Computers and Informatics, Zagazig University, Egypt.
A. A. A. Agboola, Federal University of Agriculture, Abeokuta, Nigeria.
Luu Quoc Dat, Univ. of Economics and Business, Vietnam National Univ., Hanoi, Vietnam. 
Maikel Leyva-Vazquez, Universidad de Guayaquil, Ecuador.
Muhammad Akram, University of the Punjab, New Campus, Lahore, Pakistan.
Irfan Deli, Muallim Rifat Faculty of Education, Kilis 7 Aralik University, Turkey. 
Ridvan Sahin, Faculty of Science, Ataturk University, Erzurum 25240, Turkey.
Ibrahim M. Hezam, Faculty of Education, Ibb University, Ibb City, Yemen.
Pingping Chi, International College, Dhurakij Pundit University, Bangkok 10210, Thailand.
Karina Perez-Teruel, Universidad de las Ciencias Informaticas, La Habana, Cuba. 
B. Davvaz, Department of Mathematics, Yazd University, Iran. 
Victor Christianto, Malang Institute of Agriculture (IPM), Malang, Indonesia. 
Ganeshsree Selvachandran, UCSI University, Jalan Menara Gading, Kuala Lumpur, Malaysia. 
Saeid Jafari, College of Vestsjaelland South, Slagelse, Denmark. 
Paul Wang, Pratt School of Engineering, Duke University, USA. 
Arun Kumar Sangaiah, VIT University, Vellore, India.
Kul Hur, Wonkwang University, Iksan, Jeollabukdo, South Korea. 
Darjan Karabasevic, University Business Academy, Novi Sad, Serbia. 
Dragisa Stanujkic, John Naisbitt University, Belgrade, Serbia.
E. K. Zavadskas, Vilnius Gediminas Technical University, Vilnius, Lithuania. 
M. Ganster, Graz University of Technology, Graz, Austria. 
Willem K. M. Brauers, Faculty of Applied Economics, University of Antwerp, Antwerp, Belgium.

9 8

Copyright © Neutrosophic Sets and Systems 

Neutrosophic Sets and Systems, 19/2018

Neutrosophic Sets and Systems

Tuhin Bera, Nirmal Kumar Mahapatra. On Neutrosophic 
Soft Topological Space ………………..……………….. 3 
Salah Bouzina, Djamel Hamoud. The creation of three 
logical connectors to reapprove how comprehensive and 
effective the Neutrosophic logic is compared to the fuzzy 
logic and the classical logic ………….……...………….. 16 

Selçuk Topal, Ferhat Taş. Bézier Surface Modeling for 
Neutrosophic Data Problems …………………................ 19 
M. Mullai, R. Surya. Neutrosophic EOQ Model with 
Price Break ………………….......................................... 24 
Pranab Biswas, Surapati Pramanik, Bibhas C. Giri. 
TOPSIS Strategy for Multi-Attribute Decision Making 
with Trapezoidal Neutrosophic Numbers ……………… 
Pranab Biswas, Surapati Pramanik, Bibhas Chandra Giri. 
Distance Measure Based MADM Strategy with Interval 
Trapezoidal Neutrosophic Numbers ……………………. 

29 

40 
Kalyan Mondal, Surapati Pramanik, Bibhas. C. Giri. In-
terval Neutrosophic Tangent Similarity Measure Based 
MADM Strategy and Its Application to MADM Prob-
lems ……………………….…………………….............. 47 

Surapati Pramanik, Shyamal Dalapati, Shariful Alam, 
Tapan Kumar Roy. VIKOR Based MAGDM strategy 
under Bipolar Neutrosophic Set Environment ………… 57 

Surapati Pramanik, Partha Pratim Dey and Florentin 
Smarandache. Correlation coefficient measures of inter-
val bipolar neutrosophic sets for solving multi-attribute 
decision making problems ....………………………….... 70 
Sahidul Islam, Tanmay Kundu. Neutrosophic Goal Ge-
ometric Programming Problem based on Geometric 
Mean Method and its Application ……………………… 
M. Lellis Thivagar, S. Jafari, V. Antonysamy, V. Sutha 
Devi. The Ingenuity of Neutrosophic Topology via N-
Topology ………………………………………………. 
Surapati Pramanik, Rumi Roy, Tapan Kumar Roy, Flor-
entin Smarandache. Multi-attribute Decision Making 
Strategy on Projection and Bidirectional Projection 
Measures of Interval Rough Neutrosophic Sets ………...  

80 

91 

S. Pramanik, Rumi Roy, T. K. Roy, F. Smarandache. 
Multi-attribute Decision Making Based on Several Trig-
onometric Hamming Similarity Measures under Interval 
Rough Neutrosophic Environment .........……………… 110 
Kalyan Sinha, P. Majumdar. Entropy based Single Val-
ued Neutrosophic Digraph and its applications ................ 119 
Songsong Dai. (α, β, γ)-Equalities of single valued neu-
trosophic sets ……............……………………………… 127 
Samah Ibrahim Abdel Aal, Mahmoud M. A. Abd Ellatif, 
Mohamed Monir Hassan. Two Ranking Methods of Sin-
gle Valued Triangular Neutrosophic Numbers to Rank 
and Evaluate Information Systems Quality ……......…… 132

101 



Neutrosophic Sets and Systems, Vol. 19, 2018 3

University of New Mexico 

On Neutrosophic Soft Topological Space

Tuhin Bera1, Nirmal Kumar Mahapatra 2

1 Department of Mathematics, Boror S. S. High School, Bagnan, Howrah-711312,WB, India. E-mail: tuhin78bera@gmail.com
2Department of Mathematics, Panskura Banamali College, Panskura RS-721152,WB, India. E-mail: nirmal hridoy@yahoo.co.in

Abstract: In this paper, the concept of connectedness and compact-
ness on neutrosophic soft topological space have been introduced
along with the investigation of their several characteristics. Some
related theorems have been established also. Then, the notion of

neutrosophic soft continuous mapping on a neutrosophic soft topo-
logical space and it’s properties are developed here.

Keywords : Connectedness and compactness on neutrosophic soft topological space, Neutrosophic soft continuous mapping.

1 Introduction

Zadeh’s [1] classical concept of fuzzy sets is a strong mathemati-
cal tool to deal with the complexity generally arising from uncer-
tainty in the form of ambiguity in real life scenario. Researchers
in economics, sociology, medical science and many other several
fields deal daily with the vague, imprecise and occasionally in-
sufficient information of modeling uncertain data. For different
specialized purposes, there are suggestions for nonclassical and
higher order fuzzy sets since from the initiation of fuzzy set the-
ory. Among several higher order fuzzy sets, intuitionistic fuzzy
sets introduced by Atanassov [2] have been found to be very use-
ful and applicable. But each of these theories has it’s different
difficulties as pointed out by Molodtsov [3]. The basic reason
for these difficulties is inadequacy of parametrization tool of the
theories.

Molodtsov [3] presented soft set theory as a completely
generic mathematical tool which is free from the parametriza-
tion inadequacy syndrome of different theory dealing with un-
certainty. This makes the theory very convenient, efficient and
easily applicable in practice. Molodtsov [3] successfully applied
several directions for the applications of soft set theory, such as
smoothness of functions, game theory, operation reaserch, Rie-
mann integration, Perron integration and probability etc. Now,
soft set theory and it’s applications are progressing rapidly in dif-
ferent fields. Shabir and Naz [4] presented soft topological spaces
and defined some concepts of soft sets on this spaces and separa-
tion axioms. Moreover, topological structure on fuzzy, fuzzy soft,
intuitionistic fuzzy and intuitionistic fuzzy soft set was defined by
Coker [5], Li and Cui [6], Chang [7], Tanay and Kandemir [8],
Osmanoglu and Tokat [9], Neog et al. [10], Varol and Aygun
[11], Bayramov and Gunduz [12,13]. Turanh and Es [14] defined
compactness in intuitionistic fuzzy soft topological spaces.

The concept of Neutrosophic Set (NS) was first introduced
by Smarandache [15,16] which is a generalisation of classical
sets, fuzzy set, intuitionistic fuzzy set etc. Later, Maji [17] has
introduced a combined concept Neutrosophic soft set (NSS).

Using this concept, several mathematicians have produced their
research works in different mathematical structures for instance
Arockiarani et al.[18,19], Bera and Mahapatra [20], Deli [21,22],
Deli and Broumi [23], Maji [24], Broumi and Smarandache [25],
Salama and Alblowi [26], Saroja and Kalaichelvi [27], Broumi
[28], Sahin et al.[29]. Later, this concept has been modified by
Deli and Broumi [30]. Accordingly, Bera and Mahapatra [31-36]
have developed some algebraic structures over the neutrosophic
soft set.

The present study introduces the notion of connectedness,
compactness and neutrosophic soft continuous mapping on a
neutrosophic soft topological space. Section 2 gives some pre-
liminary necessary definitions which will be used in rest of this
paper. The notion of connectedness and compactness on neutro-
sophic soft topological spaces along with investigation of related
properties have been introduced in Section 3 and Section 4, re-
spectively. The concept of neutrosophic soft continuous mapping
has been developed in Section 5. Finally, the conclusion of the
present work has been stated in Section 6.

2 Preliminaries

In this section, we recall some necessary definitions and theo-
rems related to fuzzy set, soft set, neutrosophic set, neutrosophic
soft set, neutrosophic soft topological space for the sake of com-
pleteness.
Unless otherwise stated,E is treated as the parametric set through
out this paper and e ∈ E, an arbitrary parameter.

2.1 Definition [31]

1. A binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] is continuous t -
norm if ∗ satisfies the following conditions :
(i) ∗ is commutative and associative.
(ii) ∗ is continuous.

Tuhin Bera and Nirmal Kumar Mahapatra: On Neutrosophic Soft Topological Space
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(iii) a ∗ 1 = 1 ∗ a = a, ∀a ∈ [0, 1].
(iv) a ∗ b ≤ c ∗ d if a ≤ c, b ≤ d with a, b, c, d ∈ [0, 1].

A few examples of continuous t-norm are a ∗ b = ab, a ∗ b =
min{a, b}, a ∗ b = max{a+ b− 1, 0}.

2. A binary operation � : [0, 1]× [0, 1]→ [0, 1] is continuous t -
conorm (s - norm) if � satisfies the following conditions :
(i) � is commutative and associative.
(ii) � is continuous.
(iii) a � 0 = 0 � a = a, ∀a ∈ [0, 1].
(iv) a � b ≤ c � d if a ≤ c, b ≤ d with a, b, c, d ∈ [0, 1].

A few examples of continuous s-norm are a � b = a + b −
ab, a � b = max{a, b}, a � b = min{a+ b, 1}.

2.2 Definition [15]

Let X be a space of points (objects), with a generic element
in X denoted by x. A neutrosophic set A in X is charac-
terized by a truth-membership function TA, an indeterminacy-
membership function IA and a falsity-membership function FA.
TA(x), IA(x) and FA(x) are real standard or non-standard sub-
sets of ]−0, 1+[. That is TA, IA, FA : X →]−0, 1+[. There
is no restriction on the sum of TA(x), IA(x), FA(x) and so,
−0 ≤ supTA(x) + sup IA(x) + supFA(x) ≤ 3+.

2.3 Definition [3]

Let U be an initial universe set and E be a set of parameters. Let
P (U) denote the power set of U . Then for A ⊆ E, a pair (F,A)
is called a soft set over U , where F : A→ P (U) is a mapping.

2.4 Definition [17]

Let U be an initial universe set and E be a set of parameters. Let
NS(U) denote the set of all NSs of U . Then for A ⊆ E, a pair
(F,A) is called an NSS over U , where F : A → NS(U) is a
mapping.

This concept has been modified by Deli and Broumi [30] as
given below.

2.5 Definition [30]

Let U be an initial universe set and E be a set of parameters. Let
NS(U) denote the set of all NSs of U . Then, a neutrosophic soft
set N over U is a set defined by a set valued function fN repre-
senting a mapping fN : E → NS(U) where fN is called approx-
imate function of the neutrosophic soft setN . In other words, the
neutrosophic soft set is a parameterized family of some elements
of the set NS(U) and therefore it can be written as a set of or-
dered pairs,

N = {(e, {< x, TfN (e)(x), IfN (e)(x), FfN (e)(x) >: x ∈ U}) :
e ∈ E}

where TfN (e)(x), IfN (e)(x), FfN (e)(x) ∈ [0, 1], respec-
tively called the truth-membership, indeterminacy-membership,
falsity-membership function of fN (e). Since supremum of each
T, I, F is 1 so the inequality 0 ≤ TfN (e)(x) + IfN (e)(x) +
FfN (e)(x) ≤ 3 is obvious.

2.5.1 Example

Let U = {h1, h2, h3} be a set of houses and E =
{e1(beautiful), e2(wooden), e3(costly)} be a set of parameters
with respect to which the nature of houses are described. Let,

fN (e1) = {< h1, (0.5, 0.6, 0.3) >,< h2, (0.4, 0.7, 0.6) >,<
h3, (0.6, 0.2, 0.3) >};

fN (e2) = {< h1, (0.6, 0.3, 0.5) >,< h2, (0.7, 0.4, 0.3) >,<
h3, (0.8, 0.1, 0.2) >};

fN (e3) = {< h1, (0.7, 0.4, 0.3) >,< h2, (0.6, 0.7, 0.2) >,<
h3, (0.7, 0.2, 0.5) >};

Then N = {[e1, fN (e1)], [e2, fN (e2)], [e3, fN (e3)]} is an NSS
over (U,E). The tabular representation of the NSS N is as :

Table 1 : Tabular form of NSS N .
fN (e1) fN (e2) fN (e3)

h1 (0.5,0.6,0.3) (0.6,0.3,0.5) (0.7,0.4,0.3)
h2 (0.4,0.7,0.6) (0.7,0.4,0.3) (0.6,0.7,0.2)
h3 (0.6,0.2,0.3) (0.8,0.1,0.2) (0.7,0.2,0.5)

2.6 Definition [30]
1. The complement of a neutrosophic soft set N is denoted by
N c and is defined by

N c = {(e, {< x,FfN (e)(x), 1− IfN (e)(x), TfN (e)(x) >: x ∈
U}) : e ∈ E}

2. LetN1 andN2 be two NSSs over the common universe (U,E).
Then N1 is said to be the neutrosophic soft subset of N2 if ∀e ∈
E and ∀x ∈ U ,

TfN1
(e)(x) ≤ TfN2

(e)(x), IfN1
(e)(x) ≥ IfN2

(e)(x),
FfN1

(e)(x) ≥ FfN2
(e)(x).

We write N1 ⊆ N2 and then N2 is the neutrosophic soft su-
perset of N1.

2.7 Definition [30]
1. LetN1 andN2 be two NSSs over the common universe (U,E).
Then their union is denoted by N1 ∪N2 = N3 and is defined as :

N3 = {(e, {< x, TfN3
(e)(x), IfN3

(e)(x), FfN3
(e)(x) >: x ∈

U}) : e ∈ E}

where TfN3
(e)(x) = TfN1

(e)(x) � TfN2
(e)(x), IfN3

(e)(x) =
IfN1

(e)(x) ∗ IfN2
(e)(x), FfN3

(e)(x) = FfN1
(e)(x) ∗ FfN2

(e)(x).

2. Their intersection is denoted by N1 ∩N2 = N4 and is defined
as :

Tuhin Bera and Nirmal Kumar Mahapatra: On Neutrosophic Soft Topological Space
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N4 = {(e, {< x, TfN4
(e)(x), IfN4

(e)(x), FfN4
(e)(x) >: x ∈

U}) : e ∈ E}

where TfN4
(e)(x) = TfN1

(e)(x) ∗ TfN2
(e)(x), IfN4

(e)(x) =
IfN1

(e)(x) � IfN2
(e)(x), FfN4

(e)(x) = FfN1
(e)(x) � FfN2

(e)(x).

2.8 Definition [33]

1. Let M,N be two NSSs over (U,E). Then M − N may be
defined as, ∀x ∈ U, e ∈ E,

M −N = {< x, TfM (e)(x) ∗ FfN (e)(x), IfM (e)(x) � (1−
IfN (e)(x)), FfM (e)(x) � TfN (e)(x) >}

2. A neutrosophic soft set N over (U,E) is said to be null neu-
trosophic soft set if TfN (e)(x) = 0, IfN (e)(x) = 1, FfN (e)(x) =
1, ∀e ∈ E,∀x ∈ U . It is denoted by φu.

A neutrosophic soft set N over (U,E) is said to be ab-
solute neutrosophic soft set if TfN (e)(x) = 1, IfN (e)(x) =
0, FfN (e)(x) = 0, ∀e ∈ E,∀x ∈ U . It is denoted by 1u.

Clearly, φcu = 1u and 1cu = φu.

2.9 Definition [33]

Let NSS(U,E) be the family of all neutrosophic soft sets over U
via parameters in E and τu ⊂ NSS(U,E). Then τu is called
neutrosophic soft topology on (U,E) if the following conditions
are satisfied.
(i) φu, 1u ∈ τu
(ii) the intersection of any finite number of members of τu also
belongs to τu.
(iii) the union of any collection of members of τu belongs to τu.
Then the triplet (U,E, τu) is called a neutrosophic soft topolog-
ical space. Every member of τu is called τu-open neutrosophic
soft set. An NSS is called τu-closed iff it’s complement is τu-
open. There may be a number of topologies on (U,E). If τu1 and
τu2 are two topologies on (U,E) such that τu1 ⊂ τu2 , then τu1 is
called neutrosophic soft strictly weaker ( coarser) than τu2 and in
that case τu2 is neutrosophic soft strict finer than τu1 . Moreover
NSS(U,E) is a neutrosophic soft topology on (U,E).

2.9.1 Example

1. Let U = {h1, h2}, E = {e1, e2} and τu =
{φu, 1u, N1, N2, N3, N4}whereN1, N2, N3, N4 being NSSs are
defined as following :

fN1
(e1) = {< h1, (1, 0, 1) >,< h2, (0, 0, 1) >},

fN1
(e2) = {< h1, (0, 1, 0) >,< h2, (1, 0, 0) >};

fN2(e1) = {< h1, (0, 1, 0) >,< h2, (1, 1, 0) >},
fN2(e2) = {< h1, (1, 0, 1) >,< h2, (0, 1, 1) >};

fN3
(e1) = {< h1, (1, 1, 1) >,< h2, (0, 1, 1) >},

fN3
(e2) = {< h1, (0, 1, 0) >,< h2, (0, 1, 1) >};

fN4(e1) = {< h1, (1, 1, 0) >,< h2, (1, 1, 0) >},
fN4(e2) = {< h1, (1, 0, 0) >,< h2, (0, 1, 1) >};

HereN1∩N1 = N1, N1∩N2 = φu, N1∩N3 = N3, N1∩N4 =
N3, N2 ∩ N2 = N2, N2 ∩ N3 = φu, N2 ∩ N4 = N2, N3 ∩
N3 = N3, N3 ∩ N4 = N3, N4 ∩ N4 = N4 and N1 ∪ N1 =
N1, N1 ∪N2 = 1u, N1 ∪N3 = N1, N1 ∪N4 = 1u, N2 ∪N2 =
N2, N2 ∪N3 = N4, N2 ∪N4 = N4, N3 ∪N3 = N3, N3 ∪N4 =
N4, N4 ∪N4 = N4;

Corresponding t-norm and s-norm are defined as a ∗ b =
max{a + b − 1, 0} and a � b = min{a + b, 1}. Then τu is a
neutrosophic soft topology on (U,E) and so (U,E, τu) is a neu-
trosophic soft topological space over (U,E).

2. Let U = {x1, x2, x3}, E = {e1, e2} and τu =
{φu, 1u, N1, N2, N3}whereN1, N2, N3 being NSSs over (U,E)
are defined as follow :

fN1
(e1) = {< x1, (1.0, 0.5, 0.4) >,< x2, (0.6, 0.6, 0.6) >,<

x3, (0.5, 0.6, 0.4) >},
fN1

(e2) = {< x1, (0.8, 0.4, 0.5) >,< x2, (0.7, 0.7, 0.3) >,<
x3, (0.7, 0.5, 0.6) >};

fN2
(e1) = {< x1, (0.8, 0.5, 0.6) >,< x2, (0.5, 0.7, 0.6) >,<

x3, (0.4, 0.7, 0.5) >},
fN2(e2) = {< x1, (0.7, 0.6, 0.5) >,< x2, (0.6, 0.8, 0.4) >,<

x3, (0.5, 0.8, 0.6) >};
fN3(e1) = {< x1, (0.6, 0.6, 0.7) >,< x2, (0.4, 0.8, 0.8) >,<

x3, (0.3, 0.8, 0.6) >},
fN3

(e2) = {< x1, (0.5, 0.8, 0.6) >,< x2, (0.5, 0.9, 0.5) >,<
x3, (0.2, 0.9, 0.7) >};

The t-norm and s-norm are defined as a ∗ b = min{a, b} and
a � b = max{a, b}. Here N1 ∩N1 = N1, N1 ∩N2 = N2, N1 ∩
N3 = N3, N2 ∩N2 = N2, N2 ∩N3 = N3, N3 ∩N3 = N3 and
N1 ∪ N1 = N1, N1 ∪ N2 = N1, N1 ∪ N3 = N1, N2 ∪ N2 =
N2, N2 ∪ N3 = N2, N3 ∪ N3 = N3. Then τu is a neutrosophic
soft topology on (U,E) and so (U,E, τu) is a neutrosophic soft
topological space over (U,E).

3. Let NSS(U,E) be the family of all neutrosophic soft sets over
(U,E). Then {φu, 1u} and NSS(U,E) are two examples of the
neutrosophic soft topology over (U,E). They are called, respec-
tively, indiscrete (trivial) and discrete neutrosophic soft topology.
Clearly, they are the smallest and largest neutrosophic soft topol-
ogy on (U,E), respectively.

2.10 Definition [33]
Let (U,E, τu) be a neutrosophic soft topological space over
(U,E) and M ∈ NSS(U,E) be arbitrary. Then the interior of
M is denoted by Mo and is defined as :

Mo = ∪{N1 : N1 is neutrosophic soft open and N1 ⊂M}

i.e., it is the union of all open neutrosophic soft subsets of M .

Tuhin Bera and Nirmal Kumar Mahapatra: On Neutrosophic Soft Topological Space
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2.10.1 Theorem [33]

Let (U,E, τu) be a neutrosophic soft topological space over
(U,E) and M,P ∈ NSS(U,E). Then,
(i) Mo ⊂M and Mo is the largest open set.
(ii)M ⊂ P ⇒Mo ⊂ P o.
(iii) Mo is an open neutrosophic soft set i.e., Mo ∈ τu.
(iv) M is neutrosophic soft open set iff Mo = M .
(v) (Mo)o = Mo.
(vi)(φu)o = φu and 1ou = 1u.
(vii) (M ∩ P )o = Mo ∩ P o.
(viii) Mo ∪ P o ⊂ (M ∪ P )o.

2.11 Definition [33]

Let (U,E, τu) be a neutrosophic soft topological space over
(U,E) and M ∈ NSS(U,E) be arbitrary. Then the closure of
M is denoted by M and is defined as :

M = ∩{N1 : N1 is neutrosophic soft closed and N1 ⊃M}

i.e., it is the intersection of all closed neutrosophic soft super-
sets of M .

2.11.1 Theorem [33]

Let (U,E, τu) be a neutrosophic soft topological space over
(U,E) and M,P ∈ NSS(U,E). Then,
(i) M ⊂M and M is the smallest closed set.
(ii) M ⊂ P ⇒M ⊂ P .
(iii) M is closed neutrosophic soft set i.e., M ∈ τ cu.
(iv) M is neutrosophic soft closed set iff M = M .
(v) M = M .
(vi) φu = φu and 1u = 1u.
(vii) M ∪ P = M ∪ P .
(viii) M ∩ P ⊂M ∩ P .

2.11.2 Theorem [33]

Let (U,E, τu) be a neutrosophic soft topological space over
(U,E) and M ∈ NSS(U,E). Then, (i) (M)c = (M c)o

(ii)(Mo)c = (M c)

2.12 Definition [33]

1. A neutrosophic soft point in an NSSN is defined as an element
(e, fN (e)) of N , for e ∈ E and is denoted by eN , if fN (e) /∈ φu
and fN (e′) ∈ φu,∀e′ ∈ E − {e}.
2. The complement of a neutrosophic soft point eN is another
neutrosophic soft point ecN such that f cN (e) = (fN (e))c.
3. A neutrosophic soft point eN ∈M,M being an NSS if for the
element e ∈ E, fN (e) ≤ fM (e).

2.12.1 Example

Let U = {x1, x2, x3} and E = {e1, e2}. Then,
e1N = {< x1, (0.6, 0.4, 0.8) >,< x2, (0.8, 0.3, 0.5) >,<
x3, (0.3, 0.7, 0.6) >}
is a neutrosophic soft point whose complement is
ec1N = {< x1, (0.8, 0.6, 0.6) >,< x2, (0.5, 0.7, 0.8) >,<
x3, (0.6, 0.3, 0.3) >}.
For another NSS M defined on same (U,E), let,
fM (e1) = {< x1, (0.7, 0.4, 0.7) >,< x2, (0.8, 0.2, 0.4) >,<
x3, (0.5, 0.6, 0.5) >}.
Then, fN (e1) ≤ fM (e1) i.e., e1N ∈M .

2.13 Definition [33]
Hausdorff space : Let (U,E, τu) be a neutrosophic soft topo-
logical space over (U,E). For two distinct neutrosophic soft
points eK , eS , if there exists disjoint neutrosophic soft open sets
M,P such that eK ∈M and eS ∈ P then (U,E, τu) is called T2
space or Hausdorff space.

2.13.1 Example

Let U = {h1, h2}, E = {e} and τu = {φu, 1u,M, P} where
M,P being neutrosophic soft subsets of N are defined as fol-
lowing :

fM (e) = {< h1, (1, 0, 1) >,< h2, (0, 0, 1) >};
fP (e) = {< h1, (0, 1, 0) >,< h2, (1, 1, 0) >};

Then τu is a neutrosophic soft topology on (U,E) with respect
to the t-norm and s-norm defined as a ∗ b = max{a + b− 1, 0}
and a � b = min{a + b, 1}. Here eM ∈ M and eP ∈ P with
eM 6= eP and M ∩ P = φu.

2.14 Definition [33]
Let (U,E, τu) be a neutrosophic soft topological space over
(U,E) where τu is a topology on (U,E) and M ∈ NSS(U,E)
an arbitrary NSS. Suppose τM = {M ∩ Ni : Ni ∈ τu}. Then
τM forms also a topology on (U,E). Thus (U,E, τM ) is a neu-
trosophic soft topological subspace of (U,E, τu).

2.14.1 Example

Let us consider the example (2) in [2.9.1]. We define M ∈
NSS(U,E) as following :

fM (e1) = {< x1, (0.4, 0.6, 0.8) >,< x2, (0.7, 0.3, 0.2) >,<
x3, (0.5, 0.5, 0.7) >};

fM (e2) = {< x1, (0.6, 0.3, 0.5) >,< x2, (0.4, 0.7, 0.6) >,<
x3, (0.8, 0.3, 0.5) >};

We denote M ∩ φu = φM ,M ∩ 1u = 1M ,M ∩ N1 =
M1,M ∩ N2 = M2,M ∩ N3 = M3; Then M1,M2,M3 are
given as following :
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fM1
(e1) = {< x1, (0.4, 0.6, 0.8) >,< x2, (0.6, 0.6, 0.6) >,<

x3, (0.5, 0.6, 0.7) >};
fM1(e2) = {< x1, (0.6, 0.4, 0.5) >,< x2, (0.4, 0.7, 0.6) >,<

x3, (0.7, 0.5, 0.6) >};
fM2(e1) = {< x1, (0.4, 0.6, 0.8) >,< x2, (0.5, 0.7, 0.6) >,<

x3, (0.4, 0.7, 0.7) >};
fM2

(e2) = {< x1, (0.6, 0.6, 0.5) >,< x2, (0.4, 0.8, 0.6) >,<
x3, (0.5, 0.8, 0.6) >};

fM3
(e1) = {< x1, (0.4, 0.6, 0.8) >,< x2, (0.4, 0.8, 0.8) >,<

x3, (0.3, 0.8, 0.7) >};
fM3

(e2) = {< x1, (0.5, 0.8, 0.6) >,< x2, (0.4, 0.9, 0.6) >,<
x3, (0.2, 0.9, 0.7) >};

Here M1 ∩M2 = M2,M1 ∩M3 = M3,M2 ∩M3 = M3 and
M1 ∪M2 = M2,M1 ∪M3 = M3,M2 ∪M3 = M3. Then τM =
{φM , 1M ,M1,M2,M3} is neutrosophic soft subspace topology
on (U,E).

2.15 Theorem [33]
Let (U,E, τu) be a neutrosophic soft topological space over
(U,E) and M,N ∈ NSS(U,E). Then,
(i) If ßu is a base of τu then ßM = {B ∩M : B ∈ ßu} is a base
for the topology τM .
(ii) If Q is closed NSS in M and M is closed NSS in N , then Q
is closed in N .
(iii) Let Q ⊂ M . If Q is the closure of Q then Q ∩M is the
closure of Q in M .
(iv) An NSS M ∈ NSS(U,E) is an open NSS iff M is a neigh-
bourhood of each NSS N contained in M .

2.16 Proposition (De-Morgan’s law)[33]
Let N1, N2 be two neutrosophic soft sets over (U,E). Then,
(i) (N1∪N2)c = N1

c∩N2
c (ii) (N1∩N2)c = N1

c∪N2
c.

3 Connectedness
In this section, the concept of connectedness on neutrosophic
soft topological space has been introduced with suitable exam-
ple. Some related theorems have been developed in continuation.

3.1 Definition
Two neutrosophic soft sets N1, N2 of a neutrosophic soft topo-
logical space (U,E, τu) over (U,E) are said to be separated if
(i) N1 ∩N2 = φu and (ii) N1 ∩N2 = φu or N1 ∩N2 = φu.

3.2 Definition
Let (U,E, τu) be a neutrosophic soft topological space over
(U,E). Then a pair of nonempty neutrosophic soft open sets
N1, N2 is called a neutrosophic soft separation of (U,E, τu) if
1u = N1 ∪N2 and N1 ∩N2 = φu.

In the Example (1) of [2.9.1], the pairN1, N2 is a neutrosophic
soft separation of (U,E, τu) as 1u = N1∪N2 andN1∩N2 = φu.

3.3 Definition
A neutrosophic soft topological space (U,E, τu) is said to be
neutrosophic soft connected if there does not exist a neutrosophic
soft separation of (U,E, τu). Otherwise, (U,E, τu) is called neu-
trosophic soft disconnected.

The topological space in the Example (2) of [2.9.1] is con-
nected but (1) of [2.9.1] is disconnected.

3.4 Theorem
A neutrosophic soft topological space (U,E, τu) is said to be
neutrosophic soft disconnected iff there exists a nonempty proper
neutrosophic soft subset of 1u which is both neutrosophic soft
open and neutrosophic soft closed.

Proof. Let M ⊂ 1u,M 6= φu and M is both neutrosophic soft
open and closed. Then M c ⊂ 1u,M

c 6= φu and M c is both
neutrosophic soft open and closed, also. Let P = M c. Then
M = M and P = P . Thus 1u can be expressed as the union
of two separated neutrosophic soft sets M,P and so, is neutro-
sophic soft disconnected.

Conversely, let 1u be neutrosophic soft disconnected. Then
there exists nonempty neutrosophic soft open sets N1, N2 such
that 1u = N1 ∪N2 and N1 ∩N2 = φu. Then N1 = N c

2 i.e., N1

is closed, also. Similarly, N2 = N c
1 and so, N2 is closed.

3.5 Theorem
A neutrosophic soft topological space (U,E, τu) is said to be
neutrosophic soft connected iff there exists neutrosophic soft sets
in NSS(U,E) which are both neutrosophic soft open and neutro-
sophic soft closed, are φu and 1u.

Proof. Let (U,E, τu) be a connected neutrosophic soft topologi-
cal space. For contrary, we suppose that M is both neutrosophic
soft open and closed different from φu, 1u. Then M c is also both
neutrosophic soft open and closed different from φu, 1u. Also
M ∩M c = φu and M ∪M c = 1u. Therefore M,M c is a neu-
trosophic soft separation of 1u. This is a contradiction. So, the
only neutrosophic soft closed and open sets in NSS(U,E) are φu
and 1u.

Conversely, let M,P be a neutrosophic soft separation of
(U,E, τu). Then M 6= N i.e., M = P c, otherwise M = 1u
implies P = φu, a contradiction. This shows that M is both neu-
trosophic soft open and neutrosophic soft closed different from
φu, 1u. This is a contradiction. Hence, (U,E, τu) is connected.

3.6 Theorem
If the neutrosophic soft setsN1, N2 form a neutrosophic soft sep-
aration of (U,E, τu) and if (U,E, τM ) is a neutrosophic soft con-
nected subspace of (U,E, τu), then M ⊂ N1 or M ⊂ N2.
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Proof. Here N1, N2 ∈ τu such that N1 ∩ N2 = φu and
N1 ∪ N2 = 1u. Then N1 ∩M,N2 ∩M ∈ τM as (U,E, τM )
is a neutrosophic soft topological subspace of (U,E, τu). Now
(N1 ∩M)∩ (N2 ∩M) = (N1 ∩N2)∩M = φu ∩M = φu and
(N1 ∩M) ∪ (N2 ∩M) = (N1 ∪ N2) ∩M = 1u ∩M = M .
Thus the pair N1 ∩M,N2 ∩M would constitute a neutrosophic
soft separation of (U,E, τM ), a contradiction.

Hence, one of N1 ∩ M and N2 ∩ M is empty and so M is
entirely contained in one of them.

3.7 Theorem
Let (U,E, τM ) be a neutrosophic soft topological subspace of
(U,E, τu). A separation of (U,E, τM ) is a pair of disjoint
nonempty neutrosophic soft setsM1,M2 whose union isM such
that M1 ∩M2 = φu and M2 ∩M1 = φu.

Proof. Suppose M1,M2 forms a separation of (U,E, τM ). Then
M1 is both neutrosophic soft open and closed subset of M by
Theorem [3.4]. The neutrosophic soft closure of M1 in M is
M1 ∩ M by Theorem [2.19]. Since M1 is neutrosophic soft
closed in M then M1 = M1 ∩ M . It implies M1 ∩ M2 =
(M1 ∩M) ∩M2 = M1 ∩M2 = φu. Similarly, M2 ∩M1 = φu.

Conversely, let M = M1 ∪M2 with M1 ∩M2 = φu such that
M1 ∩M2 = φu and M2 ∩M1 = φu. Then M ∩M1 = φu and
M ∩M2 = φu ⇒ M1,M2 are neutrosophic soft closed in M .
Also M1 = M c

2 implies both are neutrosophic soft open in M .

3.8 Theorem
Let (U,E, τM ) be a connected neutrosophic soft subspace of
(U,E, τu). If (U,E, τP ) be any neutrosophic soft subspace of
(U,E, τu) such that M ⊂ P ⊂ M , then (U,E, τP ) is also neu-
trosophic soft connected.

Proof. Let the neutrosophic soft set P satisfy the hypothesis.
If possible, let P1, P2 form a neutrosophic soft separation of
(U,E, τP ). Then M ⊂ P1 or M ⊂ P2. Let M ∩ P1 = φu.
So M ⊂ P c1 and P c1 is closed NSS. It implies M ⊂ P ⊂ M ⊂
P c1 ⇒ P ⊂ P c1 ⇒ P ∩ P1 = φu. This is a contradiction to the
fact that P1 ∪ P2 = P . Hence, (U,E, τP ) is neutrosophic soft
connected.

3.9 Theorem
Arbitrary union of connected neutrosophic soft subspaces of
(U,E, τu) having nonempty intersection is also neutrosophic soft
connected.

Proof. Let {(U,E, τNi) : i ∈ Γ} be a class of connected neutro-
sophic soft subspaces of (U,E, τu) with nonempty intersection.
Let τM = ∪i(τNi

). If possible, we take a neutrosophic soft sep-
aration P,Q of (U,E, τM ). For each i, P ∩ Ni and Q ∩ Ni are
disjoint neutrosophic soft open sets in the subspace such that their
union is Ni. Since each (U,E, τNi) is connected, any of P ∩Ni
andQ∩Ni must be empty. Let P ∩Ni = φu ⇒ Q∩Ni = Ni ⇒

Ni ⊂ Q, ∀i ∈ Γ⇒ ∪iNi ⊂ Q⇒M ⊂ Q⇒ P ∪Q ⊂ Q⇒ P
is empty, a contradiction. So, (U,E, τM ) is neutrosophic soft
connected.

3.10 Theorem
Arbitrary union of a family of connected neutrosophic soft sub-
spaces of (U,E, τu) such that one of the members of the family
has nonempty intersection with every member of the family, is
neutrosophic soft connected.

Proof. Let {(U,E, τNi) : i ∈ Γ} be a class of connected neu-
trosophic soft subspaces of (U,E, τu) and Nk be a fixed member
such that Nk ∩ Ni 6= φu for each i ∈ Γ. Let Mi = Nk ∪ Ni.
Then by Theorem [3.9], (U,E, τMi

) is a neutrosophic soft con-
nected for each i ∈ Γ. Now, ∪iMi = ∪i(Nk ∪ Ni) =
(Nk ∪N1)∪ (Nk ∪N2)∪ · · · = Nk ∪ (N1 ∪N2 ∪ · · · ) = ∪iNi
and ∩iMi = ∩i(Nk ∪ Ni) = (Nk ∪ N1) ∩ (Nk ∪ N2) ∩ · · · =
Nk ∪ (N1 ∩N2 ∩ · · · ) 6= φu.

This completes the theorem.

4 Compactness
Here, the notion of compactness on neutrosophic soft topological
space is developed with some basic theorems.

4.1 Definition
Let (U,E, τu) be a neutrosophic soft topological space and M ∈
τu. A family Ω = {Qi : i ∈ Γ} of neutrosophic soft sets is said
to be a cover of M if M ⊂ ∪Qi.
If every member of that family which covers M is neutrosophic
soft open then it is called open cover of M . A subfamily of Ω
which also covers M is called a subcover of M .

4.1.1 Definition

Let (U,E, τu) be a neutrosophic soft topological space and M ∈
τu. Suppose Ω be an open cover of M . If Ω has a finite subcover
which also coversM thenM is called neutrosophic soft compact.

4.1.2 Example

In the Example (1) of [2.9.1], 1u = ∪4i=1Ni. So
{N1, N2, N3, N4} is an open cover of (U,E, τu). Also, 1u =
N1 ∪ N2 or 1u = N1 ∪ N4. So (U,E, τu) is neutrosophic soft
compact topological space.

4.2 Theorem
Let (U,E, τu) be a neutrosophic soft compact topological space
and M be a neutrosophic soft closed set of that space. Then M
is also compact.

Proof. Let Ω = {Qi : i ∈ Γ} be an open cover of M .
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Then {Qi} ∪ M c is an open cover of (U,E, τu), obviously.
Since (U,E, τu) is compact so there exists a finite subcover of
{Qi} ∪M c such that

1u = Q1 ∪Q2 ∪ · · · ∪Qn ∪M c

⇒ M ⊂ 1u = Q1 ∪Q2 ∪ · · · ∪Qn ∪M c

⇒ M ⊂ Q1 ∪Q2 ∪ · · · ∪Qn as M ∩M c = φu.

Hence, M has a finite subcover and so is compact.

4.3 Theorem

Let (U,E, τu) be a neutrosophic soft Hausdorff topological space
and M be a neutrosophic soft compact set belonging to that
space. Then M is a closed NSS.

Proof. Let eK ∈ M c be a neutrosophic soft point. Then for
each eS ∈ M , we have eK 6= eS . So by definition of Hausdorff
space, there are disjoint neutrosophic soft open sets NK , NS so
that eK ∈ NK and eS ∈ NS . Let {NS : eS ∈ M} be a neu-
trosophic soft open cover of M . Since M is neutrosophic soft
compact so it has a finite subcover, say, {NS1

, NS2
, · · ·NSn

} i.e.,
M ⊂ NS1

∪NS2
∪ · · · ∪NSn

= P , say. Then P is neutrosophic
soft open.

Let Q = NK1
∩ NK2

∩ · · · ∩ NKn
where each NKi

is open
NSS corresponding to eKi

∈ M c. Now, NSi
∩ NKi

= φu ⇒
NSi
∩ Q = φu for each i. Then P ∩ Q = (NS1

∪ NS2
∪ · · · ∪

NSn) ∩Q = (NS1 ∩Q) ∪ (NS2 ∩Q) ∪ · · · ∪ (NSn ∩Q) = φu.
SinceM ⊂ P and P ∩Q = φu, soM∩Q = φu ⇒ Q ⊂M c and
Q is open NSS. This implies M c is open NSS i.e., M is closed.

4.4 Theorem

A neutrosophic soft topological space is compact iff each family
of neutrosophic soft closed sets with the finite intersection prop-
erty has a nonempty intersection.

Proof. Let (U,E, τu) be a compact neutrosophic soft topological
space. Consider Ω = {Qi : i ∈ Γ} be a family of closed NSSs
such that ∩iQi = φu. We show Ω can not have finite intersec-
tion property. Let ∆ = {Qci : Qi ∈ Ω, i ∈ Γ}. Then ∆ is an
open cover of (U,E, τu) such that there exists a finite subcover
{Qc1, Qc2, · · · , Qcn}. Now ∩ni=1Qi = 1u−(Qc1∪Qc2∪· · ·∪Qcn) =
1u − 1u = φu by Definition [2.8]. Hence, the ‘if part’ holds.

Next assume that (U,E, τu) is not compact. Then, a neutro-
sophic soft open cover {Qi : i ∈ Γ}, say, of (U,E, τu) has no
finite subcover i.e., Q1 ∪ Q2 ∪ · · · ∪ Qn 6= 1u. This implies
Qc1 ∩ Qc2 ∩ · · · ∩ Qcn 6= φu by Definition [2.8] and Proposition
[2.16]. Thus {Qci : i ∈ Γ} has finite intersection property. Then
by hypothesis, ∩iQci 6= φu and ∪iQi 6= 1u which is a contradic-
tion. Hence, (U,E, τu) is compact.

5 Neutrosophic soft continuous map-
pings

In this section, first we define neutrosophic soft mapping, then
define image and pre-image of an NSS under a neutrosophic soft
mapping. In continuation, we introduce the notion of neutro-
sophic soft continuous mapping in a neutrosophic soft topologi-
cal space along with some of it’s properties.
In rest of the paper, if M be an NSS over U via parameter set E,
we write (M,E), an NSS over U i.e., (M,E) = {< e, fM (e) >:
e ∈ E}.

5.1 Definition
Let, ϕ : U → V and ψ : E → E be two functions where E is
the parameter set for each of the crisp sets U and V . Then the
pair (ϕ,ψ) is called an NSS function from (U,E) to (V,E). We
write, (ϕ,ψ) : (U,E)→ (V,E).

5.1.1 Definition

Let (M,E) and (N,E) be two NSSs defined over U and V ,
respectively and (ϕ,ψ) be an NSS function from (U,E) to
(V,E). Then,
(1) The image of (M,E) under (ϕ,ψ), denoted by
(ϕ,ψ)(M,E), is an NSS over V and is defined as :
(ϕ,ψ)(M,E) = (ϕ(M), ψ(E)) = {< ψ(a), fϕ(M)(ψ(a)) >:
a ∈ E} where ∀b ∈ ψ(E),∀y ∈ V .

Tfϕ(M)(b)(y) =

{
maxϕ(x)=y maxψ(a)=b [TfM (a)(x)], if x ∈ ϕ−1(y)
0 , otherwise.

Ifϕ(M)(b)(y) =

{
minϕ(x)=y minψ(a)=b [IfM (a)(x)], if x ∈ ϕ−1(y)
1 , otherwise.

Ffϕ(M)(b)(y) =

{
minϕ(x)=y minψ(a)=b [FfM (a)(x)], if x ∈ ϕ−1(y)
1 , otherwise.

(2) The pre-image of (N,E) under (ϕ,ψ), denoted by
(ϕ,ψ)−1(N,E), is an NSS over U and is defined by :

(ϕ,ψ)−1(N,E) = (ϕ−1(N), ψ−1(E)) where ∀a ∈
ψ−1(E),∀x ∈ U .

Tfϕ−1(N)(a)
(x) = TfN (ψ(a))(ϕ(x))

Ifϕ−1(N)(a)
(x) = IfN (ψ(a))(ϕ(x))

Ffϕ−1(N)(a)
(x) = FfN (ψ(a))(ϕ(x))

If ψ and ϕ are injective (surjective), then (ϕ,ψ) is injective (sur-
jective).

5.1.2 Proposition

Let, (ϕ,ψ) : (U,E) → (V,E) be a neutrosophic soft mapping
and (M1, E) and (M2, E) be two NSSs defined over U . Then
the followings hold.
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(1) (M1, E) ⊆ (ϕ,ψ)−1[(ϕ,ψ)(M1, E)]
(2) [(ϕ,ψ)(M1, E)]c ⊆ (ϕ,ψ)(M1, E)c, if ϕ is surjective.
(3) (ϕ,ψ)[(M1, E) ∪ (M2, E)] = (ϕ,ψ)(M1, E) ∪
(ϕ,ψ)(M2, E)
(4) (ϕ,ψ)[(M1, E) ∩ (M2, E)] = (ϕ,ψ)(M1, E) ∩
(ϕ,ψ)(M2, E)

Proof.
(1) (ϕ,ψ)−1[(ϕ,ψ)(M1, E)] = (ϕ,ψ)−1[ϕ(M1), ψ(E)] =
[ϕ−1(ϕ(M1)), ψ−1(ψ(E))]. Then for a ∈ ψ−1(ψ(E)) and
x ∈ U , we have, Tfϕ−1(ϕ(M1))(a)

(x) = Tfϕ(M1)(ψ(a))(ϕ(x)) =

maxϕ(x) maxψ(a)[TfM (a)(x)]. Now, TfM (a)(x) ≤
maxϕ(x) maxψ(a)[TfM (a)(x)] = Tfϕ−1(ϕ(M1))(a)

(x).
Similarly, IfM (a)(x) ≥ Ifϕ−1(ϕ(M1))(a)

(x) and FfM (a)(x) ≥
Ffϕ−1(ϕ(M1))(a)

(x).
Hence, (M1, E) ⊆ (ϕ,ψ)−1[(ϕ,ψ)(M1, E)].

(2) Suppose, ϕ is surjective mapping. Here, [(ϕ,ψ)(M1, E)]c =
[(ϕ(M1))c, ψ(E)] and (ϕ,ψ)(M1, E)c = [ϕ(M c

1 ), ψ(E)].
For b ∈ ψ(E) and y ∈ V , we have, Tf(ϕ(M1))c (b)(y) =

Ff(ϕ(M1))(b)(y) = minϕ(x)=y minψ(a)=b[FfM1
(a)(x)]. But,

Tfϕ(Mc
1)(b)(y) = maxϕ(x)=y maxψ(a)=b[TfMc

1
(a)(x)] =

maxϕ(x)=y maxψ(a)=b[FfM1
(a)(x)]. Thus, Tf(ϕ(M1))c (b)(y) ≤

Tfϕ(Mc
1)(b)(y) · · · · · · · · · (i)

Similarly, Ff(ϕ(M1))c (b)(y) ≥ Ffϕ(Mc
1)(b)(y) · · · · · · · · · (ii)

Finally, If(ϕ(M1))c (b)(y) = 1 − If(ϕ(M1))(b)(y) =

1 − minϕ(x)=y minψ(a)=b[IfM1
(a)(x)] and Ifϕ(Mc

1)(b)(y) =

minϕ(x)=y minψ(a)=b[IfMc
1
(a)(x)] = minϕ(x)=y minψ(a)=b[1−

IfM1
(a)(x)].

This shows, If(ϕ(M1))c (b)(y) ≥ Ifϕ(Mc
1)(b)(y) · · · · · · · · · (iii)

This completes the 2nd part.

(3) Let, (M1, E) ∪ (M2, E) = (M,E).
Then, (ϕ,ψ)[(M1, E) ∪ (M2, E)] = (ϕ,ψ)(M,E) =
[ϕ(M), ψ(E)]. So, for b ∈ ψ(E) and y ∈ V , we have,

Tfϕ(M)(b)(y) = max
ϕ(x)=y

max
ψ(a)=b

[TfM (a)(x)]

= max
ϕ(x)=y

max
ψ(a)=b

[TfM1
(a)(x) � TfM2

(a)(x)]

Next, (ϕ,ψ)(M1, E) ∪ (ϕ,ψ)(M2, E) = [ϕ(M1) ∪
ϕ(M2), ψ(E)] = [P,ψ(E)], say. Then,

TfP (b)(y)

= Tfϕ(M1)(b)(y) � Tfϕ(M2)(b)(y)

= max
ϕ(x)=y

max
ψ(a)=b

[TfM1
(a)(x)] � max

ϕ(x)=y
max
ψ(a)=b

[TfM2
(a)(x)]

= max
ϕ(x)=y

max
ψ(a)=b

[TfM1
(a)(x) � TfM2

(a)(x)]

Thus, Tfϕ(M)(b)(y) = TfP (b)(y). Similar results also hold for
I, F .

This completes the proof of part (3).

(4) Let, (M1, E) ∩ (M2, E) = (M,E).
Then, (ϕ,ψ)[(M1, E) ∩ (M2, E)] = (ϕ,ψ)(M,E) =
[ϕ(M), ψ(E)]. So, for b ∈ ψ(E) and y ∈ V , we have,

Tfϕ(M)(b)(y) = max
ϕ(x)=y

max
ψ(a)=b

[TfM (a)(x)]

= max
ϕ(x)=y

max
ψ(a)=b

[TfM1
(a)(x) ∗ TfM2

(a)(x)]

Next, (ϕ,ψ)(M1, E) ∩ (ϕ,ψ)(M2, E) = [ϕ(M1) ∩
ϕ(M2), ψ(E)] = [Q,ψ(E)], say. Then,

TfQ(b)(y)

= Tfϕ(M1)(b)(y) ∗ Tfϕ(M2)(b)(y)

= max
ϕ(x)=y

max
ψ(a)=b

[TfM1
(a)(x)] ∗ max

ϕ(x)=y
max
ψ(a)=b

[TfM2
(a)(x)]

= max
ϕ(x)=y

max
ψ(a)=b

[TfM1
(a)(x) ∗ TfM2

(a)(x)]

Thus, Tfϕ(M)(b)(y) = TfQ(b)(y). Similar results also hold for
I, F .

This ends the last part.

5.1.3 Proposition

Let, (ϕ,ψ) : (U,E) → (V,E) be a neutrosophic soft mapping
and (N1, E) and (N2, E) be two NSSs defined over V . Then the
followings hold.
(1) (ϕ,ψ)[(ϕ,ψ)−1(N1, E)] = (N1, E), if (ϕ,ψ) is surjective.
(2) [(ϕ,ψ)−1(N1, E)]c = (ϕ,ψ)−1(N1, E)c

(3) (ϕ,ψ)−1[(N1, E) ∪ (N2, E)] = (ϕ,ψ)−1(N1, E) ∪
(ϕ,ψ)−1(N2, E)
(4) (ϕ,ψ)−1[(N1, E) ∩ (N2, E)] = (ϕ,ψ)−1(N1, E) ∩
(ϕ,ψ)−1(N2, E)

Proof. We shall prove (2) and (3), only. The others can be proved
similarly.
(2) Here, [(ϕ,ψ)−1(N1, E)]c = [(ϕ−1(N))c, ψ−1(E)]. Then,
for a ∈ ψ−1(E), x ∈ U ,

Tf(ϕ−1(N))c (a)
(x) = Ffϕ−1(N)(a)

(x) = FfN (ψ(a))(ϕ(x)),
If(ϕ−1(N))c (a)

(x) = 1− Ifϕ−1(N)(a)
(x) = 1− IfN (ψ(a))(ϕ(x)),

Ff(ϕ−1(N))c (a)
(x) = Tfϕ−1(N)(a)

(x) = TfN (ψ(a))(ϕ(x)).

Next, (ϕ,ψ)−1(N1, E)c = [ϕ−1(N c
1 ), ψ)−1(E)]. Then,

Tfϕ−1(Nc)(a)
(x) = TfNc (a)(x) = FfN (ψ(a))(ϕ(x)),

Ifϕ−1(Nc)(a)
(x) = IfNc (a)(x) = 1− IfN (ψ(a))(ϕ(x)),

Ffϕ−1(Nc)(a)
(x) = FfNc (a)(x) = TfN (ψ(a))(ϕ(x)).

Hence, the result is proved.

(3) Let, (N1, E) ∪ (N2, E) = (N,E).
Then, (ϕ,ψ)−1[(N1, E) ∪ (N2, E)] = (ϕ,ψ)−1(N,E) =
[ϕ−1(N), ψ−1(E)]. So, for a ∈ ψ−1(E) and x ∈ U , we have,

Tfϕ−1(N)(a)
(x) = TfN (ψ(a))(ϕ(x))

= TfN1
(ψ(a))(ϕ(x)) � TfN2

(ψ(a))(ϕ(x))
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Next, (ϕ,ψ)−1(N1, E) ∪ (ϕ,ψ)−1(N2, E) = [ϕ−1(N1) ∪
ϕ−1(N2), ψ−1(E)] = [R,ψ−1(E)], say. Then,

TfR(a)(x) = Tfϕ−1(N1)(a)
(x) � Tfϕ−1(N2)(a)

(x)

= TfN1
(ψ(a))(ϕ(x)) � TfN2

(ψ(a))(ϕ(x))

Thus, Tfϕ−1(N)(a)
(x) = TfR(a)(x). Similar results also hold for

I, F .
This completes the proof of part (3).

5.2 Definition

Let (ϕ,ψ) : (U,E, τu) → (V,E, τv) be a mapping where
(U,E, τu) and (V,E, τv) be two neutrosophic soft topological
spaces.
(1) For each neutrosophic soft open set (M,E) ∈ (U,E, τu), if
the image (ϕ,ψ)(M,E) is open in (V,E, τv) then (ϕ,ψ) is said
to be neutrosophic soft open mapping.
(2) For each neutrosophic soft closed set (Q,E) ∈ (U,E, τu), if
the image (ϕ,ψ)(Q,E) is closed in (V,E, τv) then (ϕ,ψ) is said
to be neutrosophic soft closed mapping.

5.3 Theorem

Let, (U,E, τu) and (V,E, τv) be two neutrosophic soft topolog-
ical spaces and (ϕ,ψ) : (U,E, τu) → (V,E, τv) be a mapping.
Then,
(1) (ϕ,ψ) is a neutrosophic soft open mapping iff for each
neutrosophic soft set (M,E) ∈ (U,E, τu), there be hold
(ϕ,ψ)(M,E)o ⊂ [(ϕ,ψ)(M,E)]o.
(2) (ϕ,ψ) is a neutrosophic soft closed mapping iff for each
neutrosophic soft set (Q,E) ∈ (U,E, τu), there be hold
[(ϕ,ψ)(Q,E)] ⊂ (ϕ,ψ)(Q,E).

Proof. (1) Let (ϕ,ψ) is a neutrosophic soft open mapping and
(M,E) ∈ (U,E, τu). Then (M,E)o is a neutrosophic soft
open set and (M,E)o ⊂ (M,E). Since (ϕ,ψ) is a neutro-
sophic soft open mapping, (ϕ,ψ)(M,E)o is neutrosophic soft
open in (V,E, τv). Then (ϕ,ψ)(M,E)o ⊂ (ϕ,ψ)(M,E).
But [(ϕ,ψ)(M,E)]o is the largest open NSS contained in
(ϕ,ψ)(M,E). Hence, (ϕ,ψ)(M,E)o ⊂ [(ϕ,ψ)(M,E)]o is ob-
tained.

Conversely, suppose (M,E) be an open NSS in (U,E, τu)
such that the given condition holds. Then (M,E) = (M,E)o

and so (ϕ,ψ)(M,E) = (ϕ,ψ)(M,E)o ⊂ [(ϕ,ψ)(M,E)]o ⊂
(ϕ,ψ)(M,E). Hence, [(ϕ,ψ)(M,E)]o = (ϕ,ψ)(M,E). This
ends the proof.

(2) Let (ϕ,ψ) is a neutrosophic soft closed mapping and
(Q,E) ∈ (U,E, τu). Then (Q,E) is a neutrosophic soft
closed set and (Q,E) ⊂ (Q,E). Since (ϕ,ψ) is a neutro-
sophic soft closed mapping, (ϕ,ψ)(Q,E) is neutrosophic soft
closed in (V,E, τv). Then (ϕ,ψ)(Q,E) ⊂ (ϕ,ψ)(Q,E).
But [(ϕ,ψ)(Q,E)] is the smallest closed NSS containing

(ϕ,ψ)(Q,E). Hence, [(ϕ,ψ)(Q,E)] ⊂ (ϕ,ψ)(Q,E) is ob-
tained.

Conversely, suppose (Q,E) be a closed NSS in (U,E, τu)
such that the given condition holds. Then (Q,E) = (Q,E)
and so (ϕ,ψ)(Q,E) ⊂ [(ϕ,ψ)(Q,E)] ⊂ (ϕ,ψ)(Q,E) =
(ϕ,ψ)(Q,E). Hence, [(ϕ,ψ)(Q,E)] = (ϕ,ψ)(Q,E). This
completes the proof.

5.4 Definition
Let, (U,E, τu) and (V,E, τv) be two neutrosophic soft topolog-
ical spaces. Then (ϕ,ψ) : (U,E, τu) → (V,E, τv) is said to be
a neutrosophic soft continuous mapping if for each (N,E) ∈ τv ,
the inverse image (ϕ,ψ)−1(N,E) ∈ τu i.e., the inverse image of
each open NSS in (V,E, τv) is also open in (U,E, τu).

5.4.1 Example

For two neutrosophic soft topological spaces (U,E, τu) and
(V,E, τv), let (ϕ,ψ) : (U,E, τu)→ (V,E, τv) be a mapping.
(1) If τv is the neutrosophic soft indiscrete topology on V , then
(ϕ,ψ) is a neutrosophic soft continuous mapping.
(2) If τu is the neutrosophic soft discrete topology on U , then
(ϕ,ψ) is a neutrosophic soft continuous mapping.
(3) Let, U = {u1, u2, u3}, V = {v1, v2, v3}, E =
{e1, e2}, τv = {φv, 1v, (N1, E), (N2, E)}, τu =
{φu, 1u, (M1, E), (M2, E), (M3, E)}, where (N1, E), (N2, E)
are as follows :

fN1
(e1) = {< v1, (0.8, 0.5, 0.6) >,< v2, (0.5, 0.7, 0.6) >,<

v3, (0.4, 0.7, 0.5) >};
fN1

(e2) = {< v1, (0.7, 0.6, 0.5) >,< v2, (0.6, 0.8, 0.4) >,<
v3, (0.5, 0.8, 0.6) >};

fN2
(e1) = {< v1, (0.6, 0.6, 0.7) >,< v2, (0.4, 0.8, 0.8) >,<

v3, (0.3, 0.8, 0.6) >};
fN2(e2) = {< v1, (0.5, 0.8, 0.6) >,< v2, (0.5, 0.9, 0.5) >,<

v3, (0.2, 0.9, 0.7) >};

and (M1, E), (M2, E), (M3, E) are given as followings :

fM1(e1) = {< u1, (0.8, 0.4, 0.5) >,< u2, (0.7, 0.5, 0.6) >,<
u3, (0.7, 0.7, 0.3) >};

fM1
(e2) = {< u1, (1.0, 0.5, 0.4) >,< u2, (0.5, 0.6, 0.4) >,<

u3, (0.6, 0.6, 0.6) >};
fM2

(e1) = {< u1, (0.5, 0.8, 0.6) >,< u2, (0.2, 0.9, 0.7) >,<
u3, (0.5, 0.9, 0.5) >};

fM2
(e2) = {< u1, (0.6, 0.6, 0.7) >,< u2, (0.3, 0.8, 0.6) >,<

u3, (0.4, 0.8, 0.8) >};
fM3

(e1) = {< u1, (0.7, 0.6, 0.5) >,< u2, (0.5, 0.8, 0.6) >,<
u3, (0.6, 0.8, 0.4) >};

fM3(e2) = {< u1, (0.8, 0.5, 0.6) >,< u2, (0.4, 0.7, 0.5) >,<
u3, (0.5, 0.7, 0.6) >};

The t-norm and s-norm in both τu, τv are defined as a ∗ b =
min{a, b} and a � b = max{a, b}. Consider the mapping (ϕ,ψ)
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as : ϕ(u1) = v1, ϕ(u2) = v3, ϕ(u3) = v2 and ψ(e1) =
e2, ψ(e2) = e1. Then (ϕ,ψ)−1(N1, E), (ϕ,ψ)−1(N2, E) ∈ τu.

For convenience, the calculation of (ϕ,ψ)−1(N1, E) is pro-
vided for one parameter. The others are in similar way.

Tfϕ−1(N1)(e1)
(u1) = TfN1

(ψ(e1))(ϕ(u1)) = TfN1
(e2)(v1) = 0.7

Ifϕ−1(N1)(e1)
(u1) = IfN1

(ψ(e1))(ϕ(u1)) = IfN1
(e2)(v1) = 0.6

Ffϕ−1(N1)(e1)
(u1) = FfN1

(ψ(e1))(ϕ(u1)) = FfN1
(e2)(v1) = 0.5

Tfϕ−1(N1)(e1)
(u2) = TfN1

(ψ(e1))(ϕ(u2)) = TfN1
(e2)(v3) = 0.5

Ifϕ−1(N1)(e1)
(u2) = IfN1

(ψ(e1))(ϕ(u2)) = IfN1
(e2)(v3) = 0.8

Ffϕ−1(N1)(e1)
(u2) = FfN1

(ψ(e1))(ϕ(u2)) = FfN1
(e2)(v3) = 0.6

Tfϕ−1(N1)(e1)
(u3) = TfN1

(ψ(e1))(ϕ(u3)) = TfN1
(e2)(v2) = 0.6

Ifϕ−1(N1)(e1)
(u3) = IfN1

(ψ(e1))(ϕ(u3)) = IfN1
(e2)(v2) = 0.8

Ffϕ−1(N1)(e1)
(u3) = FfN1

(ψ(e1))(ϕ(u3)) = FfN1
(e2)(v2) = 0.4

5.4.2 Proposition

Let (ϕ,ψ) : (U,E, τu) → (V,E, τv) be a neutro-
sophic soft continuous mapping. Then for each e ∈ E,
(ϕ,ψ) : (U, τeu) → (V, τev ) is a neutrosophic continuous
mapping.

Proof. Let, (N,E) ∈ τv . Since (ϕ,ψ) be a neutrosophic
soft continuous mapping, so (ϕ,ψ)−1(N,E) ∈ τu. It
implies (ϕ,ψ)−1({< e, fN (e) >: e ∈ E}) ∈ τu i.e.,
(ϕ,ψ)−1(< e, fN (e) >) ∈ τeu for < e, fN (e) >∈ τev . This
follows the theorem.

But the converse does not hold. The following example shows
the fact.
Let, U = {u1, u2, u3}, V = {v1, v2, v3}, E =
{e1, e2}, τv = {φv, 1v, (N1, E), (N2, E)}, τu =
{φu, 1u, (M1, E), (M2, E), (M3, E)}, where (N1, E), (N2, E)
are as follows :

fN1
(e1) = {< v1, (0.8, 0.5, 0.6) >,< v2, (0.5, 0.7, 0.6) >,<

v3, (0.4, 0.7, 0.5) >};
fN1(e2) = {< v1, (0.7, 0.6, 0.5) >,< v2, (0.6, 0.8, 0.4) >,<

v3, (0.5, 0.8, 0.6) >};
fN2(e1) = {< v1, (1.0, 0.5, 0.4) >,< v2, (0.6, 0.6, 0.6) >,<

v3, (0.5, 0.6, 0.4) >};
fN2

(e2) = {< v1, (0.8, 0.4, 0.5) >,< v2, (0.7, 0.7, 0.3) >,<
v3, (0.7, 0.5, 0.6) >};

and (M1, E), (M2, E), (M3, E) are given as follows :

fM1(e1) = {< u1, (0.6, 0.6, 0.6) >,< u2, (0.5, 0.6, 0.4) >,<
u3, (1.0, 0.5, 0.4) >};

fM1
(e2) = {< u1, (0.7, 0.7, 0.3) >,< u2, (0.7, 0.5, 0.6) >,<

u3, (0.8, 0.4, 0.5) >};
fM2

(e1) = {< u1, (0.5, 0.7, 0.6) >,< u2, (0.4, 0.7, 0.5) >,<
u3, (0.8, 0.5, 0.6) >};

fM2
(e2) = {< u1, (0.5, 0.9, 0.5) >,< u2, (0.2, 0.9, 0.7) >,<

u3, (0.5, 0.8, 0.6) >};
fM3

(e1) = {< u1, (0.5, 0.6, 0.6) >,< u2, (0.4, 0.7, 0.4) >,<
u3, (0.9, 0.5, 0.5) >};

fM3
(e2) = {< u1, (0.6, 0.8, 0.4) >,< u2, (0.5, 0.8, 0.6) >,<

u3, (0.7, 0.6, 0.5) >};

The t-norm and s-norm in both τu, τv are defined as a ∗ b =
min{a, b} and a � b = max{a, b}. Define a neutrosophic soft
mapping (ϕ,ψ) as : ϕ(u1) = v2, ϕ(u2) = v3, ϕ(u3) = v1 and
ψ(e1) = e1, ψ(e2) = e2. We now calculate (ϕ,ψ)−1(N1, E).

Tfϕ−1(N1)(e1)
(u1) = TfN1

(ψ(e1))(ϕ(u1)) = TfN1
(e1)(v2) = 0.5

Ifϕ−1(N1)(e1)
(u1) = IfN1

(ψ(e1))(ϕ(u1)) = IfN1
(e1)(v2) = 0.7

Ffϕ−1(N1)(e1)
(u1) = FfN1

(ψ(e1))(ϕ(u1)) = FfN1
(e1)(v2) = 0.6

Tfϕ−1(N1)(e1)
(u2) = TfN1

(ψ(e1))(ϕ(u2)) = TfN1
(e1)(v3) = 0.4

Ifϕ−1(N1)(e1)
(u2) = IfN1

(ψ(e1))(ϕ(u2)) = IfN1
(e1)(v3) = 0.7

Ffϕ−1(N1)(e1)
(u2) = FfN1

(ψ(e1))(ϕ(u2)) = FfN1
(e1)(v3) = 0.5

Tfϕ−1(N1)(e1)
(u3) = TfN1

(ψ(e1))(ϕ(u3)) = TfN1
(e1)(v1) = 0.8

Ifϕ−1(N1)(e1)
(u3) = IfN1

(ψ(e1))(ϕ(u3)) = IfN1
(e1)(v1) = 0.5

Ffϕ−1(N1)(e1)
(u3) = FfN1

(ψ(e1))(ϕ(u3)) = FfN1
(e1)(v1) = 0.6

Tfϕ−1(N1)(e2)
(u1) = TfN1

(ψ(e2))(ϕ(u1)) = TfN1
(e2)(v2) = 0.6

Ifϕ−1(N1)(e2)
(u1) = IfN1

(ψ(e2))(ϕ(u1)) = IfN1
(e2)(v2) = 0.8

Ffϕ−1(N1)(e2)
(u1) = FfN1

(ψ(e2))(ϕ(u1)) = FfN1
(e2)(v2) = 0.4

Tfϕ−1(N1)(e2)
(u2) = TfN1

(ψ(e2))(ϕ(u2)) = TfN1
(e2)(v3) = 0.5

Ifϕ−1(N1)(e2)
(u2) = IfN1

(ψ(e2))(ϕ(u2)) = IfN1
(e2)(v3) = 0.8

Ffϕ−1(N1)(e2)
(u2) = FfN1

(ψ(e2))(ϕ(u2)) = FfN1
(e2)(v3) = 0.6

Tfϕ−1(N1)(e2)
(u3) = TfN1

(ψ(e2))(ϕ(u3)) = TfN1
(e2)(v1) = 0.7

Ifϕ−1(N1)(e2)
(u3) = IfN1

(ψ(e2))(ϕ(u3)) = IfN1
(e2)(v1) = 0.6

Ffϕ−1(N1)(e2)
(u3) = FfN1

(ψ(e2))(ϕ(u3)) = FfN1
(e2)(v1) = 0.5

Thus (ϕ,ψ)−1(N1, E) /∈ τu though (ϕ,ψ)−1(N2, E) =
(M1, E). So (ϕ,ψ)−1 is not neutrosophic soft continuous. Now,

τe1u = {(0, 1, 1), (1, 0, 0), fM1
(e1), fM2

(e1), fM3
(e1)},

τe2u = {(0, 1, 1), (1, 0, 0), fM1
(e2), fM2

(e2), fM3
(e2)};

τe1v = {(0, 1, 1), (1, 0, 0), fN1(e1), fN2(e1)},
τe2v = {(0, 1, 1), (1, 0, 0), fN1(e2), fN2(e2)};

Then, (ϕ,ψ) : (U, τe1u ) → (V, τe1v ) is neutrosophic con-
tinuous mapping because (ϕ,ψ)−1[fN1(e1)] = fM2(e1) and
(ϕ,ψ)−1[fN2(e1)] = fM1(e1).
Similarly, (ϕ,ψ) : (U, τe2u ) → (V, τe2v ) is neutrosophic con-
tinuous mapping as : (ϕ,ψ)−1[fN1

(e2)] = fM3
(e2) and

(ϕ,ψ)−1[fN2
(e2)] = fM1

(e2).
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5.5 Theorem

For two neutrosophic soft topological spaces (U,E, τu) and
(V,E, τv), let (ϕ,ψ) : (U,E, τu) → (V,E, τv) be a neu-
trosophic soft mapping. Then the following conditions are
equivalent.
(1) (ϕ,ψ) is neutrosophic soft continuous mapping.
(2) The inverse image of a closed NSS in (V,E, τv) is closed in
(U,E, τu).
(3) For each (M,E) ∈ NSS(U,E), (ϕ,ψ)(M,E) ⊂
(ϕ,ψ)(M,E).
(4) For each (N,E) ∈ NSS(V,E), (ϕ,ψ)−1(N,E) ⊂
(ϕ,ψ)−1(N,E).
(5) For each (N,E) ∈ NSS(V,E), (ϕ,ψ)−1(N,E)o ⊂
[(ϕ,ψ)−1(N,E)]o.

Proof. (1)⇒ (2)
Let, (Q,E) be a closed NSS in (V,E, τv). Then
(Q,E)c ∈ τv and so by (1), (ϕ,ψ)−1(Q,E)c ∈ τu. But
(ϕ,ψ)−1(Q,E)c = ((ϕ,ψ)−1(Q,E))c. So (ϕ,ψ)−1(Q,E) is a
closed NSS in (U,E, τu).

(2)⇒ (3)
Let, (M,E) ∈ NSS(U,E). Since (M,E) ⊂
(ϕ,ψ)−1((ϕ,ψ)(M,E)) and (ϕ,ψ)(M,E) ⊂ (ϕ,ψ)(M,E),
we have (M,E) ⊂ (ϕ,ψ)−1((ϕ,ψ)(M,E)) ⊂
(ϕ,ψ)−1((ϕ,ψ)(M,E)). Obviously, (ϕ,ψ)(M,E) is
closed in (V,E, τv). Then by (2), (ϕ,ψ)−1((ϕ,ψ)(M,E))
is closed in (U,E, τu). But, since (M,E) ⊂ (M,E)
and (M,E) is the smallest closed NSS, so (M,E) ⊂
(M,E) ⊂ (ϕ,ψ)−1((ϕ,ψ)(M,E)). This implies
(ϕ,ψ)(M,E) ⊂ (ϕ,ψ)[(ϕ,ψ)−1((ϕ,ψ)(M,E))] i.e.,
(ϕ,ψ)(M,E) ⊂ (ϕ,ψ)(M,E) is obtained.

(3)⇒ (4)
Let, (N,E) ∈ NSS(V,E) and (ϕ,ψ)−1(N,E) =
(M,E). Then (ϕ,ψ)−1(N,E) = (M,E). But by
(3), we have (M,E) ⊂ (ϕ,ψ)−1((ϕ,ψ)(M,E)) i.e.,
(ϕ,ψ)−1(N,E) ⊂ (ϕ,ψ)−1((ϕ,ψ)(M,E)). This shows
(ϕ,ψ)−1(N,E) ⊂ (ϕ,ψ)−1[(ϕ,ψ)((ϕ,ψ)−1(N,E))] i.e.,
(ϕ,ψ)−1(N,E) ⊂ (ϕ,ψ)−1(N,E).

(4)⇒ (5)
Let, (N,E) ∈ NSS(V,E). Replacing (N,E) by (N,E)c and
applying (4), we have (ϕ,ψ)−1(N,E)c ⊂ (ϕ,ψ)−1((N,E)c)
i.e., [(ϕ,ψ)−1((N,E)c)]c ⊂ [(ϕ,ψ)−1(N,E)c]c. By
Theorem (ii) of [2.15.2], since (N,E)o = [(N,E)c]c,
so (ϕ,ψ)−1(N,E)o = (ϕ,ψ)−1((N,E)c)c =
[(ϕ,ψ)−1((N,E)c)]c ⊂ [(ϕ,ψ)−1(N,E)c]c =
[(ϕ,ψ)−1(N,E)]o.

(5)⇒ (1)
Let, (N,E) be an open NSS in (V,E, τv). Then
(N,E)o = (N,E). Since [(ϕ,ψ)−1(N,E)]o ⊂
(ϕ,ψ)−1(N,E) = (ϕ,ψ)−1(N,E)o ⊂ [(ϕ,ψ)−1(N,E)]o,
so [(ϕ,ψ)−1(N,E)]o = (ϕ,ψ)−1(N,E) is obtained. Thus,
(ϕ,ψ)−1(N,E) is an open NSS in (U,E, τu) and so (ϕ,ψ) is
neutrosophic soft continuous mapping.

5.6 Theorem

Let, (U,E, τu) and (V,E, τv) be two neutrosophic soft topo-
logical spaces. Also let, (ϕ,ψ) : (U,E, τu) → (V,E, τv) be
a continuous neutrosophic soft mapping. If (M,E) is neutro-
sophic soft compact in (U,E, τu), then (ϕ,ψ)(M,E) is so in
(V,E, τv).

Proof. Let {(Ni, E) : i ∈ Γ} be a neutrosophic soft open cov-
ering of (ϕ,ψ)(M,E) i.e., (ϕ,ψ)(M,E) ⊂ ∪i(Ni, E). Since,
(ϕ,ψ) is neutrosophic soft continuous, {(ϕ,ψ)−1(Ni, E) :
i ∈ Γ} is a neutrosophic soft open cover of (M,E). But,
(M,E) is neutrosophic soft compact. So, there exists a fi-
nite subcover {(ϕ,ψ)−1(Ni, E) : 1 ≤ i ≤ k} such that
(M,E) ⊂ ∪ki=1(ϕ,ψ)−1(Ni, E) hold. Hence, (ϕ,ψ)(M,E) ⊂
(ϕ,ψ)[∪ki=1(ϕ,ψ)−1(Ni, E)] =
∪ki=1(ϕ,ψ)[(ϕ,ψ)−1(Ni, E)] = ∪ki=1(Ni, E).

This shows that (ϕ,ψ)(M,E) is covered by a finite number
of member of {(Ni, E) : i ∈ Γ}. Hence, (ϕ,ψ)(M,E) is
neutrosophic soft compact also.

5.7 Theorem

Let, (U,E, τu) be a neutrosophic soft topological space and
(V,E, τv) be a neutrosophic soft Hausdorff space. Then, a neu-
trosophic soft function (ϕ,ψ) : (U,E, τu)→ (V,E, τv) is closed
if it is continuous.

Proof. Let (Q,E) be any neutrosophic soft closed set in
(U,E, τu). Then by Theorem [4.2], (Q,E) is compact NSS.
Since (ϕ,ψ) is continuous neutrosophic soft function then
(ϕ,ψ)(Q,E) is compact NSS in (V,E, τv). As (V,E, τv) is
neutrosophic soft Hausdorff space, so (ϕ,ψ)(Q,E) is closed by
Theorem [4.3].

6 Conclusion
Topology is a major sector in mathematics and it can give
many relationships between other scientific area and mathemati-
cal models. The motivation of the present paper is to extend the
concept of topological structure on neutrosophic soft set intro-
duced in the paper [33]. Here, we have defined connectedness
and compactness on neutrosophic soft topological space, neutro-
sophic soft continuous mappings. These are illustrated by suit-
able examples. Their several related properties and structural
characteristics have been investigated. We expect, this paper will
promote the future study on neutrosophic soft topological groups
and many other general frameworks.
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Abstract. The main objective of this research is a simple 
attempt to suggest three new logical connectors and es-
tablish an equation a chart of truth for each of them. Sec-
ondly, and using the logical operations of these three 
connectors, we seek to show how comprehensive and 

widespread and effective is the Neutrosophic logic (NL) 
compared to any other logic, taking into account the 
Fuzzy Logic (FL) as well as the classical logic (CL) as a 
comparative model. 
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1 Introduction:

   To begin, it is known that the eight known logical 
connectors are nothing but conjunctive characters and tools 
in the natural language which are used to link between two 
sentences or more in order to form a meaningful speech. 
Also, it is obvious that by searching through the logic’s 
history and as the specialists strived to build an artificial 
language that would be alternative for expressing reality 
more precisely, the thing that pushed them to make these 
characters and tools take the form of mathematical 
symbols used to link between two cases or more to build a 
compound case that can be judged to be truthful or false. 
But, since the day the American Philosopher C. S. Peirce 
(1839,1914) established the double negation logic that was 
named after him: Peirce’s connector, we have not 
encountered any attempt to establish any other connector, 
and it has become common in the logic and mathematic 
media the use of these eight logic connectors only, which 
means that the natural language has only eight conjunctive 
characters and tools, but the truth is that it has more than 
that; there are also other conjunctive tools and characters 
which need to be mathematically written and symbolized. 
From this logic and the following neutrosophic mottos: 
“All is possible, the impossible too!; Nothing is perfect, 
not even the perfect!”[1], we have questioned why don’t 
we try to write some of the other conjunctive characters 
and tools in the natural language mathematically in 
addition to the other eight known characters and tools. 
From that, we have attempted to create three logical 
connectors that we named as follows: probability 

connector, duplex probability connector, and the 
falsification connector. We have then chosen the dual-
value classical logic and the fuzzy logic as comparative 
models. Our second aim is to attempt a research for other 
conjunctive characters and tools in the natural language 
and establishing it as symbolic logical connectors. 

2 The three new logical connectors : 

2.1 Probability connector (𝑷) : 

   We can define the probability connector in one word: 
probability or maybe and that can be deduced from our 
saying: the professor came 𝒙 and the professor’s probabil-
ity 𝒚, or maybe the teacher 𝒚 , which means that the prob-
ability of the professor coming 𝒚 ends as soon as the pro-
fessor comes 𝒙 so if the professor comes 𝒙 and the teacher 
came 𝒚 is truthful, and if the professor came 𝒙 and the pro-
fessor did not come 𝒚 is also truthful. What matters is that 
the professor 𝒙 came and it can be false only if the profes-
sor 𝒙 does not come. Whether the professor 𝒚 came or did 
not come, because 𝒙 is what is important in this case. 𝒙 , 
however, is secondary and we can see the truth chart of 
this logical connector in the classical logic, the fuzzy logic 
and the neutrosophic logic as follows: 

2.1.1 Classical Logic : 

   The result of the probability connector between the two 
classical propositions (𝐴) and (𝐵) : 

𝐶𝐿(𝐴𝑃𝐵) = 𝐶𝐿(𝐴) = (𝐴 − (({1} − 𝐵) − ({1} − 𝐵))) 

mailto:sisalah_bouzina@hotmail.fr
mailto:hamouddjamel@yahoo.fr
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   The result of the probability connector between the two 
classical propositions (𝐴)  and (𝐵)  in the following truth 
table : 

𝐴 𝐵 𝐴𝑃𝐵

1 1 1 
1 0 1 
0 1 0 
0 0 0 

2.1.2 Fuzzy Logic : 

   The result of the probability connector between the two 
fuzzy propositions (𝐴) and (𝐵) : 

𝐹𝐿(𝐴𝑃𝐵) = 𝐹𝐿(𝐴) = (
(𝑇𝐴 − (({1} − 𝑇𝐵) − ({1} − 𝑇𝐵))) ,

(𝐹𝐴 − (({1} − 𝐹𝐵) − ({1} − 𝐹𝐵)))
) 

   The result of the probability connector between the two 
fuzzy propositions (𝐴) and (𝐵) in the following truth ta-
ble : 

𝐴 𝐵 𝐴𝑃𝐵

(1,0) (1,0) (1,0) 
(1,0) (0,1) (1,0) 
(0,1) (1,0) (0,1) 
(0,1) (0,1) (0,1) 

2.1.3 Neutrosophic Logic : 

   The result of the probability connector between the two 
neutrosophic propositions (𝐴) and (𝐵) : 

𝑁𝐿(𝐴𝑃𝐵) = 𝑁𝐿(𝐴) =

(

 
 
(𝑇𝐴⊖ (({1} ⊖ 𝑇𝐵) ⊖ ({1}⊖ 𝑇𝐵))) ,

(𝐼𝐴⊖ (({1} ⊖ 𝐼𝐵) ⊖ ({1} ⊖ 𝐼𝐵))) ,

(𝐹𝐴⊖ (({1}⊖ 𝐹𝐵) ⊖ ({1} ⊖ 𝐹𝐵))))

 
 

   The result of the probability connector between the two 
neutrosophic propositions (𝐴)  and (𝐵)  in the following 
truth table : 

𝐴 𝐵 𝐴𝑃𝐵

(1,0,0) (1,0,0) (1,0,0) 
(1,0,0) (0,0,1) (1,0,0) 
(0,0,1) (0,1,0) (0,0,1) 
(0,0,1) (1,0,0) (0,0,1) 
(0,1,0) (0,0,1) (0,1,0) 
(0,1,0) (0,1,0) (0,1,0) 

2.2 Duplex probability connector (𝑷𝑷) :

We can also refer to the duplex probability connector 
simply in word: probability or maybe, but this time at the 
beginning of the sentence, like saying: the probability that 
the professor 𝒙  and the professor 𝒚  come, or maybe the 

professor 𝒙 and professor 𝒚 come. Which means that both 
professor 𝒙 and professor 𝒚 coming is probable. So if they 
both come together, it is truthful and if they both don’t 
come, it is truthful as well. But if one comes and the other 
does not, it is still truthful. What matters is that all 
expected cases of them coming together or not coming at 
all, or even having only one of them come are expected 
cases and are always truthful. We can see the truth chart of 
this logical connector in the classical logic, the fuzzy logic 
and the neutrosophic logic as follows: 

2.2.1 Classical Logic : 

   The result of the duplex probability connector between 
the two classical propositions (𝐴) and (𝐵) : 

𝐶𝐿(𝐴𝑃𝑃𝐵) = ((𝐴 + ({1} − 𝐴)) × ( 𝐵 + ({1} − 𝐵))) 

   The result of the duplex probability connector between 
the two classical propositions (𝐴) and (𝐵) in the following 
truth table : 

𝐴 𝐵 𝐴𝑃𝑃𝐵

1 1 1 
1 0 1 
0 1 1 
0 0 1 

2.2.2 Fuzzy Logic : 

   The result of the duplex probability connector between 
the two fuzzy propositions (𝐴) and (𝐵) : 

𝐹𝐿(𝐴𝑃𝑃𝐵) = (
((𝑇𝐴 + ({1} − 𝑇𝐴)) × ( 𝑇𝐵 + ({1} − 𝑇𝐵))) ,

((𝐹𝐴 + ({1} − 𝐹𝐴)) × ( 𝐹𝐵 + ({1} − 𝐹𝐵)))
) 

   The result of the duplex probability connector between 
the two fuzzy propositions (𝐴) and (𝐵) in the following 
truth table : 

𝐴 𝐵 𝐴𝑃𝑃𝐵

(1,0) (1,0) (1,1) 
(1,0) (0,1) (1,1) 
(0,1) (1,0) (1,1) 
(0,1) (0,1) (1,1) 

2.2.3 Neutrosophic Logic : 

   The result of the duplex probability connector between 
the two neutrosophic propositions (𝐴) and (𝐵) : 

𝑁𝐿(𝐴𝑃𝑃𝐵) =

(

 
 
((𝑇𝐴⊕ ({1}⊖ 𝑇𝐴))⊙ (𝑇𝐵⊕ ({1} ⊖ 𝑇𝐵))) ,

((𝐼𝐴⊕ ({1} ⊖ 𝐼𝐴)) ⊙ ( 𝐼𝐵⊕ ({1} ⊖ 𝐼𝐵))) ,

((𝐹𝐴⊕ ({1} ⊖ 𝐹𝐴)) ⊙ ( 𝐹𝐵⊕ ({1} ⊖ 𝐹𝐵))))

 
 

   The result of the duplex probability connector between 
the two neutrosophic propositions (𝐴) and (𝐵) in the fol-
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lowing truth table : 

𝐴 𝐵 𝐴𝑃𝑃𝐵

(1,0,0) (1,0,0) (1,1,1) 
(1,0,0) (0,0,1) (1,1,1) 
(0,0,1) (0,1,0) (1,1,1) 
(0,0,1) (1,0,0) (1,1,1) 
(0,1,0) (0,0,1) (1,1,1) 
(0,1,0) (0,1,0) (1,1,1) 

2.3 Falsification connector (𝟎) :

   In fact, the falsification connector is simply like us 
saying: I do not believe in Quantum physics or relative 
physics, or saying: I totally disapprove of science’s results 
or the philosophical ones, and more precisely, this 
connector is what is approved of like the right to veto in 
the United States, i.e. the right to disapprove or falsify any 
case no matter how truthful or false it is and we can see 
that in the truth chart of this in the classical logic, the fuzzy 
logic and the neutrosophic logic as follows:  

2.3.1 Classical Logic : 

   The result of the falsification connector between the two 
classical propositions (𝐴) and (𝐵) : 

𝐶𝐿(𝐴0𝐵) = (|𝐴 − ({1} − 𝐴)| − |𝐵 − ({1} − 𝐵)|) 

   The result of the falsification connector between the two 
classical propositions (𝐴)  and (𝐵)  in the following truth 
table : 

𝐴 𝐵 𝐴0𝐵

1 1 0 
1 0 0 
0 1 0 
0 0 0 

2.3.2 Fuzzy Logic : 

   The result of the falsification connector between the two 
fuzzy propositions (𝐴) and (𝐵) : 

𝐹𝐿(𝐴0𝐵) = (
|𝑇𝐴 − ({1} − 𝑇𝐴)| − |𝑇𝐵 − ({1} − 𝑇𝐵)|,
|𝐹𝐴 − ({1} − 𝐹𝐴)| − |𝐹𝐵 − ({1} − 𝐹𝐵)|

) 

   The result of the falsification connector between the two 
fuzzy propositions (𝐴) and (𝐵) in the following truth ta-
ble : 

𝐴 𝐵 𝐴0𝐵

(1,0) (1,0) (0,0) 
(1,0) (0,1) (0,0) 
(0,1) (1,0) (0,0) 
(0,1) (0,1) (0,0) 

2.3.3 Neutrosophic Logic : 

   The result of the falsification connector between the two 
neutrosophic propositions (𝐴) and (𝐵) : 

𝑁𝐿(𝐴0𝐵) = (

|𝑇𝐴⊖ ({1}⊖ 𝑇𝐴)| ⊖ |𝑇𝐵⊖ ({1}⊖ 𝑇𝐵)|,
|𝐼𝐴⊖ ({1} ⊖ 𝐼𝐴)| ⊖ |𝐼𝐵⊖ ({1} ⊖ 𝐼𝐵)|,
|𝐹𝐴⊖ ({1}⊖ 𝐹𝐴)| ⊖ |𝐹𝐵⊖ ({1} ⊖ 𝐹𝐵)|

) 

   The result of the falsification connector between the two 
neutrosophic propositions (𝐴)  and (𝐵)  in the following 
truth table : 

𝐴 𝐵 𝐴0𝐵

(1,0,0) (1,0,0) (0,0,0) 
(1,0,0) (0,0,1) (0,0,0) 
(0,0,1) (0,1,0) (0,0,0) 
(0,0,1) (1,0,0) (0,0,0) 
(0,1,0) (0,0,1) (0,0,0) 
(0,1,0) (0,1,0) (0,0,0) 

3 Conclusion :
   From what has been discussed previously, we can 
ultimately reach two points: 
3.1 We see that the logical operations of the neutrosophic 
logic (NL) are different from the logical operations of the 
fuzzy logic (FL) in terms of width, comprehensiveness and 
effectiveness. The reason behind that is the addition of 
professor Florentine Samarkendah of a new field to the real 
values; the truth and falsity interval in (FL) and that is 
what he called “the indeterminacy interval” which is 
expressed in the function IA or IB in the logical operations 
of: (NL) as we have seen, and that is what makes (NL) 
gives the closest and most precise image of the hidden 
logical structure of the universe like it was mentioned 
previously. 
3.2 We see from our attempt to create three new logical 
connectors starting from the idea that the natural language 
has more than eight connecting characters and tools that 
need to be written in the form of symbols, that the 
difference in natural languages means a difference and an 
availability of connecting characters and tools. 
Consequently, we should not quote connecting characters 
or tools from a single language like French or English, but 
we should take all the languages into consideration. For 
example: the Chinese language has 47035 characters and 
that number keeps increasing. So, the best decision is to 
collect different connecting characters and tools from the 
different international natural languages and give these 
connectors a form of symbols. Only then will the artificial 
language evolve progressively compared to how it is today. 
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Abstract. The main goal of this paper is to construct Bé-
zier surface modeling for neutrosophic data problems. 
We show how to build the surface model over a data 
sample from agriculture science after the theoretical 

structure of the modeling is introduced. As a sampler ap-
plication for agriculture systems, we give a visualization 
of Bézier surface model of an estimation of a given yield 
of bean seeds grown in a field over a period. 
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1 Introduction

The contribution of mathematical researches is fundamen-
tal and leading the science as today’s technologies are rap-
idly developing. The geometrical improvements both mod-
el the mathematics of the objects and become geometrical-
ly most abstract concepts. In the future of science will be 
around the artificial intelligence. For the development of 
this technology, many branches of science work together 
and especially the topics such as logic, data mining, quan-
tum physics, machine learning come to the forefront. Of 
course, the common place where these areas can cooperate 
is the computer environment. Data can be transferred in 
several ways. One of them is to transfer the data as a geo-
metric model. The first method that comes to mind in 
terms of a geometric model is the Bézier technique. This 
method is generally used for curve and surface designs. In 
addition to this, it is used in many disciplines ranging from 
the solution of differential equations to robot motion plan-
ning.  

The concretization state of obtaining meaning and mathe-
matical results from uncertainty states (fuzzy) was intro-
duced by Zadeh [1]. Fuzzy sets proposed by Zadeh provid-
ed a new dimension to the concept of classical sets. At-
anassov introduced intuitionistic fuzzy sets dealing with 
membership and non-membership degrees [2]. 
Smarandache proposed neutrosophy as a mathematical ap-
plication of the concept neutrality [3]. Neutrosophic set 
concept is defined with membership, non-membership and 
indeterminacy degrees. Neutrosophic set concept is sepa-
rated from intuitionistic fuzzy set by the difference as fol-
low: intuitionistic fuzzy sets are defined by degree of  

membership and non-membership degree and, uncertainty 
degrees by the 1- (membership degree plus non-
membership degree), while degree of uncertainty is con-
sidered independently of the degree of membership and 
non-membership in neutrosophic sets. Here, membership, 
non-membership, and uncertainty (indeterminacy) degrees 
can be evaluated according to the interpretation in the 
spaces to be used, such as truth and falsity degrees. It de-
pends entirely on subject or topic space (discourse uni-
verse). In this sense, the concept of neutrosophic set is the 
solution and representation of the problems with various 
fields.  

The paths of logic and geometry sometimes intersect and 
sometimes separate but both deal with information. Logic 
is related to information about the truth of statements, and 
geometry deals with information about location and visual-
ization. Classical truth considers false and true, 0 and 1. 
It’s geometrical interpretation with boolean connectives 
was represented as a boolean lattice by Miller [4-5]. 
Futhermore, a more geometrical representation was given 
by the 16 elements of the affine 4-space A over the two-
element Galois field GF(2) [6] as can be seen in Figure 1. 
The affine space is created by 0,1 and 16 operators.
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Figure 1. 16 elements of the affine 4-space A over the 

two-element Galois field GF(2). 

Neutrosophic data has become an important in-

stance of the expression "think outside the box" that 

goes beyond classical knowledge, accuracy and truth. 

Geometric approach to neutrosophic data which in-

volve truth, falsity and indeterminacy values be-

tween the interval [0,1] provide rich mathematical 

structures. This paper presents an initial geometrical 

interpretation of neutrosophy theory. 

Recently, geometric interpretations of data that 

have uncertain truth have presented by Wahab and 

friends [7-10]. They studied geometric models of 

fuzzy and intuitionistic fuzzy data and gave fuzzy in-

terpolation and Bézier curve modeling. The authors 

of this paper presented Bézier curve modeling of neu-

trosophic data [11]. In this paper, we consider Bézier 

surface modeling of neutrosophic data problems and 

applications in real life. 

2. Preliminaries

In this section, we first give some fundamental 

definitions dealing with Bézier curve and neutro-

sophic sets (elements). We then introduce new defini-

tions needed to form a neutrosophic Bézier surface. 

Definition 1. Let  are the set of points in 

3-dimensional Euclidean space. Then the Bézier curve 

with degree n is defined by  

where  and the points  are the control 

points of this Bézier curve. 

Definition 2. Let  are the set 

of points in 3-dimensional Euclidean space. Then the 

Bézier surface with degree  is defined by 

where the points  are the control points of this Bé-

zier surface. The First-degree interpolation of these 

points forms a mesh and called the control polyhe-

dron. These types of surfaces are called tensor prod-

uct surfaces too. Therefore, one can show the matrix 

representation of a Bézier surface as  

Definition 3. Let E be a universe and A  E. 

 is a neutrosophic el-

ement where  (membership function), 

 (indeterminacy function) and 

 (non-membership function). 
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Definition 4. Let 

and 

be neutrosophic elements. 

is a neutrosophic relation on  and . 

2.1. Neutrosophic Bézier Model 

Definition 5. Neutrosophic set of P* in space N is 

NCP (neutrosophic control point) and 

where  is a set of NCPs where 

there exists  as membership function, 

 as indeterminacy function and 

 as non-membership function with 

 ,    

Definition 6. A neutrosophic Bezier curve with de-

gree n was defined by Taş and Topal [11]. 

One can see there are three Bezier curves (Fig 1). The 

ith (i=0…n) control points of these curves are on the 

same straight line. Line geometry shows us that if we 

interpolate these straight lines then we get a develop-

able (cylindrical) ruled surface. Therefore, these 

curves belong to a developable ruled surface that is a 

surface that can be transformed to a plane without 

tearing or stretching (Figure 2). As a result, we can 

say that a neutrosophic Bezier curve corresponds to a 

cylindrical ruled surface.  

Figure 2. Neutrosophic Bézier curve: membership 

(green curve), non- membership (orange curve), and 

indeterminacy (blue curve). 

Definition 7. Neutrosophic Bézier surfaces are gen-

erated by the control points from one of 

, 

 sets. Thus, there 

will be three different Bézier surface models for a 

neutrosophic relation and variables x and y. A neu-

trosophic control point relation can be defined as a 

set of (n+1)(m+1) points that shows a position and co-

ordinate of a location and is used to describe three 

surface which are denoted by 

and can be written as quadruples 
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in order to control the shape of a curve from a neu-

trosophic data. 

Definition 7. A neutrosophic Bézier surface with de-

gree n x m is defined by 

Every set of ,  and  determines a Bézier sur-

face. Thus, we obtain three Bézier surfaces. A neutro-

sophic Bézier surface is defined by these three surfac-

es. So it is a set of surfaces as in its definition. 

As an illustrative example, we can consider a 

neutrosophic data in Table 1. One can see there are 

three Bézier surfaces. 

Example 1. Suppose that a field is a subset of two-
dimensional space. By choosing a starting point 
(origin point) we seed certain point bean seeds. 
Depending on the reasons such as irrigation, rocky 
soil and so on, this is an estimate of the length of time 
that these seeds will arrive after a certain period of 
time. For example, we estimate each of the bean poles 
to reach 100 cm in length (Table 1). So we are trying 
to predict which parts of the land are more 
productive without planting yet. A yield map of the 
field with the data presented is obtained from the 
surface map of the plant.   

Figure 3. Neutrosophic Bézier curve and cylindrical 

ruled surface. 

Table 1. Neutrosophic data 

Bean seeds 
in 

coordinate 
system 

Truth Indeterminacy Falsity 

P00=(1,1) 0.53 0.45 0.56 

P01=(1,2) 0.53 0.5 0.6 

P02=(1,3) 0.45 0.65 0.72 

P03=(1,4) 0.3 0.24 0.9 

P10=(1,5) 0.72 0.5 0.6 

P11=(1,6) 0.5 0.4 0.5 

P12=(1,7) 0.25 0.6 0.19 

P13=(1,8) 0.42 0.6 0.7 

P20=(2,1) 0.91 0.33 0.4 

P21=(2,2) 0.7 0.59 0.6 

P22=(2,3) 0.53 0.45 0.5 

P23=(2,4) 0.28 0.55 0.67 

P30=(2,5) 0.43 0.65 0.7 

P31=(2,6) 0.32 0.25 0.9 

P32=(2,7) 0.7 0.54 0.6 

P33=(2,8) 0.35 0.66 0.12 

Neutrosophic Bézier surface of data in Table 1 can be 

illustrated in Figure 4. The surface can be turned to 

neutrosophic data because these surfaces are con-

nected to the control points. 

Figure 4. Neutrosophic Bézier surface according to 
data in Table 1. 
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3. Conclusions

Visualization or geometric modeling of data 

plays a significant role in data mining, databases, 

stock market, economy, stochastic processes and en-

gineering. In this article, we have used a strong tool, 

the Bézier surface technique for visualizing neutro-

sophic data which belongs to agriculture systems. 

This surface model also is appropriate for statisti-

cians, data scientists, economists and engineers. Fur-

thermore, the differential geometric properties of this 

model can be investigated for classification of neutro-

sophic data. On the other hand, transforming the im-

ages of objects into neutrosophic data is an important 

problem [12]. In our model, the surface and the data 

can be transformed into each other by the blossoming 

method, which can be used in neutrosophic image 

processing. This and similar applications should be 

studied in the future. 
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Abstract—Inventory control of an ideal resource is the most important one which fulfils various activities (functions) of
an organisation. The supplier gives the discount for an item in the cost of units inorder to motivate the buyers (or)
customers to purchase the large quantity of that item. These discounts take the form of price breaks where purchase
cost is assumed to be constant. In this paper an EOQ model with price break in inventory model is developed to obtain
its optimum solution by assuming neutrosophic demand and neutrosophic purchasing cost as triangular neutrosophic
numbers. A numerical example is provided to illustrate the proposed model.

Keywords: Price break, neutrosophic demand, neutrosophic purchase cost, neutrosophic sets, triangular neutrosophic number.

1 INTRODUCTION

Bai and Li[1] have discussed triangular and
trapezoidal fuzzy numbers in inventory model
for determining the optimal order quantity and
the optimal cost. The quantity discount prob-
lem has been analyzed from a buyers perspec-
tive. Hadley and Whintin[2], Peterson and Sil-
ver[3], and Starr and Miller[6] considered vari-
ous discount polices and demand assumptions.

Yang and Wee[7] developed an economic
ordering policy in the view of both the sup-
plier and the buyer. Prabjot Kaur and Mahuya
Deb[5] developed an intuitionistic approach for
price breaks in EOQ from buyer’s perspec-
tive. Smarandache[5] introduced neutrosophic
set and neutrosophic logic by considering the
non-standard analysis. Also, neutrosophic in-
ventory model without shortages is introduced

by M. Mullai and S. Broumi[3].
In this paper, we introduce the neutro-

sophic inventory models with neutrosophic
price break to find the optimal solution of the
model for the optimal order quantity. Also the
neutrosophic inventory model under neutro-
sophic demand and neutrosophic purchasing
cost at which the quantity discount are offered
to be triangular neutrosophic number. Also the
optimal order quantity for the neutrosophic to-
tal cost is determined by defining the accuracy
function of triangular neutrosophic numbers.

2 NOTATIONS:
QN = Number of pieces per order

CN
0 = Neutrosophic Ordering cost for each

order
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CN
h = Neutrosophic Holding cost per unit

per year

DN = Neutrosophic Annual demand in
units

3 NEUTROSOPHIC EOQ MODEL WITH
PRICE BREAK:
The Neutrosophic inventory model with
neutrosophic price break is introduced to
find the optimal solutions for the optimal
neutrosophic order quantity. Here we
assume that there is no stock outs, no
backlogs, replenishment is instantaneous,
the neutrosophic ordering cost involved to
receive an order are known and constant and
purchasing values at which discounts are
offered as triangular neutrosophic numbers.
Consider the following variables:
DN : Neutrosophic yearly demand,

PN : Neutrosophic purchasing cost

Let DN = (DN
1 , DN

2 , DN
3 ) (D′N1 , DN

2 , D′N3 ) (D′′N1 , DN
2 , D′′N3 )

PN = (PN
1 , PN

2 , PN
3 ) (P ′N1 , PN

2 , P ′N3 ) (P ′′N1 , PN
2 , P ′′N3 )

PN
1 = (PN

11 , P
N
12 , P

N
13) (P

′N
11 , P

N
12 , P

′N
13 ) (P

′′N
11 , PN

12 , P
′′N
13 )

PN
2 = (PN

21 , P
N
22 , P

N
23) (P

′N
21 , P

N
22 , P

′N
23 ) (P

′′N
21 , PN

22 , P
′′N
23 )

are non negative triangular neutrosophic
numbers.

Now, we introduce the neutrosophic
inventory model under neutrosophic demand
and neutrosophic purchasing cost at which
the quantity discounts are offered. Total
neutrosophic inventory cost is given by

(TC)N = DN ⊗ PN ⊕ DNCN
0

QN ⊕ QNPN⊗IN
2

Then the total neutrosophic inventory cost is

(TC)N = (DN
1 P

N
1 +

DN
1 CN

0

QN +
QNPN

1 IN

2
, DN

2 P
N
2 +

DN
2 CN

0

QN +
QNPN

2 IN

2
, DN

3 P
N
3 +

DN
3 CN

0

QN +

QNPN
3 IN

2
)(D′N1 P ′N1 +

D′N
1 CN

0

QN +
QNP ′N

1 IN

2
, DN

2 P
N
2 +

DN
2 CN

0

QN +
QNPN

2 IN

2
, D′N3 P ′N3 +

D′N
3 CN

0

QN +
QNP ′N

3 IN

2
)(D′′N1 P ′′N1 +

D′′N
1 CN

0

QN +
QNP ′′N

1 IN

2
, DN

2 P
N
2 +

DN
2 CN

0

QN +
QNPN

2 IN

2
, D′′N3 P ′′N3 +

D′′N
3 CN

0

QN +
QNP ′′N

3 IN

2
)

The defuzzified total neutrosophic cost
using accuracy function is given by

D(TC)N = 1
8
[(DN

1 P
N
1 +

DN
1 CN

0

QN +
QNPN

1 IN

2
) +

2(DN
2 P

N
2 +

DN
2 CN

0

QN +
QNPN

2 IN

2
)+ (DN

3 P
N
3 +

DN
3 CN

0

QN +
QNPN

3 IN

2
) + (D′′N1 P ′′N1 +

D′′N
1 CN

0

QN +
QNP ′′N

1 IN

2
) +

2(DN
2 P

N
2 +

DN
2 CN

0

QN +
QNPN

2 IN

2
) + (D′′N3 P ′′N3 +

D′′N
3 CN

0

QN +
QNP ′′N

3 IN

2
)]

To find the minimum of D(TC)N by taking
the derivative D(TC)N and equating it to zero,

(i.e) 1

8Q2N
[(DN

1 C
N
0 + 2DN

2 C
N
0 + DN

3 C
N
0 ) +

(D′′N1 CN
0 + 2DN

2 C
N
0 + D′′N3 CN

0 )] + 1
16
[(PN

1 IN +
2PN

2 IN+PN
3 IN)+(P ′′N1 IN+2PN

2 IN+P ′′N3 IN)] =
0, we get

QN =

√
2[(DN

1 CN
0 +2DN

2 CN
0 +DN

3 CN
0 )+(D′′N

1 CN
0 +2DN

2 CN
0 +D′′N

3 CN
0 )]

[(PN
1 IN+2PN

2 IN+PN
3 IN )+(P ′′N

1 IN+2PN
2 IN+P ′′N

3 IN )]

Neutrosophic Price Break:

S.No. Quantity Price Per Unit (Rs)
1 0≤ QN

1 ≤ b PN
1

2 b ≤ QN
2 PN

2 (< PN
1 )

4 ALGORITHM FOR FINDING NEUTRO-
SOPHIC OPTIMAL QUANTITY AND NEU-
TROSOPHIC OPTIMAL COST:
Step I:
Consider the lowest price PN

2 and determine
QN

2 by using the economic order quantity
(EOQ) formula:
QN =

√
2[(DN

1 CN
0 +2DN

2 CN
0 +DN

3 CN
0 )+(D′′N

1 CN
0 +2DN

2 CN
0 +D′′N

3 CN
0 )]

[(PN
1 IN+2PN

2 IN+PN
3 IN )+(P ′′N

1 IN+2PN
2 IN+P ′′N

3 IN )]

If QN
2 lies in the range specified, b ≥ QN

2 then
QN

2 is the EOQ .The defuzzified optimal total
cost (TC)N associated with QN is calculated as
follows:

(TC)N = DN ∗ PN
2 +

DNCN
0

b
+

bPN
2 ∗IN
2

,
by using the accuracy function
AN =

(a1+2a2+a3)+(a′′1+2a2+a′′3 )

8
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Step 2:

(i) If QN
2 < b, we cannot place an order at

the lowest price PN
2 .

(ii) We calculate QN
1 with price PN

1 and the
corresponding total cost TC at QN .
(iii) If (TC)Nb > (TC)NQN

1 , then EOQ is
Q∗N = QN

1 , Otherwise Q∗N = b is the required
EOQ.

The EOQ in crisp, fuzzy and intuitionistic
fuzzy sets are discussed detail in [5]. They are
(i) Crisp:
Q∗2 =

√
2DC0

P2I

(ii) Fuzzy:
Q̃∗2 =

√
2(D1C0+2D2C0+D3C0)

P1I+2P2I+P3I

(iii) Intuitionistic fuzzy:
Q
∗
2 =

√
2(D1C0+4D2C0+D3C0+D′

1C0+D′
3C0)

P1I+4P2I+P3I+P ′
1I+P ′

3I

Using these formula, the numerical example
for neutrosophic set is illustrated as follows.

5 NUMERICAL EXAMPLE:
A manufacturing company issues the supply of
a special component which has the following
price schedule:

0 to 99 items: Rs.800 per unit

100 items and above: Rs.600 per unit

The inventory holding costs are estimated
to be Rs.30/- of the value of the inventory. The
procurement ordering costs are estimated to be
Rs.1500 per order. If the annual requirement of
the special component is 350, then compute the
economic order quantity for the procurement
of these items.

Solution:

(i) Crisp Case:

Given D = 350, P1 = Rs.800, P2 = Rs.600,
C0 = Rs.1500, I = 0.3

Q∗2 = 76

TC(P1 = 800) = Rs.296039

TC(b=100) = Rs.224250, which is lower
than the total cost corresponding to Q2

(ii) Fuzzy Case:

Given D̃ = (300, 350, 400), P̃1 = (750, 800,
850)

P̃2 = (550, 600, 650),C0 = Rs.1500,I = 0.3

Q̃∗2 = 88.192

T̃C(P1 = 800) = Rs.297785.95

T̃C(b=100) = Rs.225500, which is lower
than the total cost corresponding to Q2.

(iii) Intuitionistic Fuzzy Case:

Given D = (300, 350, 400) (250, 350, 450)

P 1 = (750, 800, 850) (700, 800, 900)

P 2 = (550, 600, 650) (500, 600, 700),
C0 = Rs.1500, I = 0.3

Q
∗
2 = 88.19

TC(P1 = 800) = Rs.299660.85

TC(b = 100) = Rs.227375, which is lower
than the total cost corresponding to Q2.

(iv) Neutrosophic Case:

Given DN = (300, 350, 400) (250, 350, 450)
(150, 350, 550)

PN
1 = (750, 800, 850) (700, 800, 900)(600,

800, 1000)

PN
2 = (550, 600, 650) (500, 600, 700)(400,

600, 800)

CN
0 = Rs.1500, IN = 0.3

We calculate Q∗
N

2 corresponding to the lowest
price 600,

Q∗
N

2 =

√
2[(DN

1 CN
0 +2DN

2 CN
0 +DN

3 CN
0 )+(D′′N

1 CN
0 +2DN

2 CN
0 +D′′N

3 CN
0 )]

[(PN
1 IN+2PN

2 IN+PN
3 IN )+(P ′′N

1 IN+2PN
2 IN+P ′′N

3 IN )]

= 76.376, which is less than the price break point.
Therefore, we have to determine the optimal

total cost for the first price and the total cost
at the price- break corresponding to the second
price and compare the two.
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The defuzzified optimal total cost (TC)N asso-
ciated with PN

1 is calculated as follows:

(TC)N (PN
1 = 800) = DN ∗ PN

1 +
DNCN

0

QN
2

+
QN

2 PN
1 ∗ IN

2

= Rs.306664.13

(TC)N (b = 100) = DN ∗ PN
2 +

DNCN
0

b
+

bPN
2 ∗ IN

2
= Rs.173812.5

which is lower than the total cost
corresponding to QN

2 .

6 SENSITIVITY ANALYSIS

In this section, the analysis between intuitionis-
tic set and neutrosophic set is tabulated and the
results are compared graphically.

S.No. Intuitionistic Demand Neutrosophic Demand
1 (270,320,370) (220,320,420) (270,320,370) (220,320,420) (120,320,520)
2 (280,330,380) (230,330,430) (280,330,380) (230,330,430) (130,330,530)
3 (300,350,400) (250,350,450) (300,350,400) (250,350,450) (150,350,550)
4 (320,370,420) (270,370,470) (320,370,420) (270,370,470) (170,370,570)
5 (330,380,430) (280,380,480) (330,380,430) (280,380,480) (180,380,580)

Intuitionistic (Q) Neutrosophic 
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88.19
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79.58

Figure 1. Analysis of economic order quantity (EOQ) between
intuitionistic fuzzy set and neutrosophic set
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S.No. 1
S.No. 2
S.No. 3
S.No. 4
S.No. 5

(TC)(p
1
) (TC)N(p

1
)

274936.56

283181.28

299660.85

316127.02

324354.86

281961.24

290198.96

306664.13

323115.96

331337.2

Figure 2. Analysis of first price between intuitionistic fuzzy set
and neutrosophic set

Intuitionistic (TC)(b) Neutrosophic
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S.No. 1
S.No. 2
S.No. 3
S.No. 4
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(TC)N(b)

208925

215075

227375

239675

245825

159975

164587.5

173812.5

187650

183037.5

Figure 3. Analysis of price break corresponding to second price
between intuitionistic fuzzy set and neutrosophic set

Conclusion
In this paper, EOQ model with price break

in neutrosophic environment is introduced. An
inventory model is developed for price breaks
and its optimum solution is obtained by using
triangular neutrosophic number. An algorithm
for solving neutrosophic optimal quantity and
neutrosophic optimal cost is also developed.
This will be an advantage for the buyer who can
easily decrease the bad cases and increase the
better ones. Hence, the neutrosophic set gives
the better solutions to the real world problems
than fuzzy and intuitionistic fuzzy sets. In fu-
ture, the various neutrosophic inventory mod-
els will be developed with various limitations
such as lead time, backlogging, back order and
deteriorating items, etc.
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Abstract. Technique for Order Preference by Similarity to 
Ideal Solution (TOPSIS) is a popular strategy for Multi-
Attribute Decision Making (MADM).  In this paper, we 
extend the TOPSIS strategy of MADM problems in trape-
zoidal neutrosophic number environment. The attribute 
values are expressed in terms of single-valued trapezoidal 
neutrosophic numbers. The weight information of attrib-
ute is incompletely known or completely unknown. Using 

the maximum deviation strategy, we develop an optimiza-
tion model to obtain the weight of the attributes. Then we 
develop an extended TOPSIS strategy to deal with 
MADM with single-valued trapezoidal neutrosophic num-
bers. To illustrate and validate the proposed TOPSIS strat-
egy, we provide a numerical example of MADM problem. 

Keywords: Single-valued trapezoidal neutrosophic number, multi-attribute decision making, TOPSIS. 

1 Introduction 

Multi-attribute decision making (MADM) plays an im-
portant role in decision making sciences. MADM is a pro-
cess of finding the best alternative that has the highest de-
gree of satisfaction over the predefined conflicting attributes. 
The preference values of alternatives are generally assessed 
quantitatively and qualitatively according to the nature of 
attributes. When the preference values are imprecise, inde-
terminate or incomplete, the decision maker feels comfort to 
evaluate the alternatives in MADM in terms of fuzzy sets 
[1], intuitionistic fuzzy sets [2], hesitant fuzzy sets [3], neu-
trosophic sets [4], etc., rather than crisp sets. A large number 
of strategies has been developed for MADM problems such 
as technique for order preference by similarity to ideal solu-
tion (TOPSIS) [5], PROMETHEE [6], VIKOR [7], ELEC-
TRE [7, 8], AHP [9], etc. MADM problem has been studied 
extensively in fuzzy environment [10-14], intuitionistic 
fuzzy environment [15-22]. 

TOPSIS [5] is one of the sophisticated strategy for solving 
MADM. The main idea of TOPSIS is that the best alterna-
tive should have the shortest distance from the positive ideal 
solution (PIS) and the farthest distance from the negative 
ideal solution (NIS), simultaneously. Since its proposition, 
researchers have extended the TOPSIS strategy to deal with 
different environment. Chen [23] extended the TOPSIS 
strategy for solving multi-criteria decision making 
(MCDM) problems in fuzzy environment. Boran et al. [24] 

extended the TOPSIS strategy for MCDM problem in intu-
itionistic fuzzy environment. Zhao [25] also studied TOP-
SIS strategy for MADM under interval intuitionistic fuzzy 
environment and utilized the strategy in teaching quality 
evaluation. Xu [19] proposed TOPSIS strategy for hesitant 
fuzzy multi-attribute decision making with incomplete 
weight information.  

However fuzzy sets, intuitionistic fuzzy sets, hesitant fuzzy 
sets have some limitations to express indeterminate and in-
complete information in decision making process. Recently, 
single valued neutrosophic set (SVNS) [26] has been suc-
cessfully applied in MADM or multi-attribute group deci-
sion [27-37]. SVNS [26] and interval neutrosophic set (INS) 
[38], and other hybrid neutrosophic sets have caught atten-
tion of the researchers for developing TOPSIS strategy. 
Biswas et al. [39] developed TOPSIS strategy for multi-at-
tribute group decision making (MAGDM) for single valued 
neutrosophic environment. Sahin et al. [40] proposed an-
other TOPSIS strategy for supplier selection in neutrosophic 
environment.  Chi and Liu developed TOPSIS strategy to 
deal with interval neutrosophic sets in MADM problems. 
Zhang and Wu [41] proposed TOPSIS strategies for MCDM 
in single valued neutrosophic environment and interval neu-
trosophic set environment where the information about cri-
terion weights are incompletely known or completely un-
known. Ye [42] put forward TOPSIS strategy for MAGDM 
with single-valued neutrosophic linguistic numbers. Peng et 
al. [43] presented multi-attributive border approximation 
area comparison (MBAC), TOPSIS, and similarity measure 



approaches for neutrosophic MADM. Pramanik et al. [44] 
extended TOPSIS strategy for MADM in neutrosophic soft 
expert set environment. Different TOPSIS strategies [45-49] 
have been studied in different hybrid neutrosophic set envi-
ronment. 
 Single valued trapezoidal neutrosophic number (SVTrNN ) 
[50, 51] is another extension of single-valued neutrosophic 
sets. SVTrNN presents the situation, in which each element 
is characterized by trapezoidal number that has truth mem-
bership degree, indeterminate membership degree, and fal-
sity membership degree. Recently, Deli and Şubaş [52] pro-
posed a ranking strategy of single valued neutrosophic num-
ber and utilized this strategy in MADM problems. Biswas et 
al. [53] also proposed value and ambiguity based ranking 
strategy of single valued trapezoidal neutrosophic number 
and applied it to MADM.  
However, TOPSIS strategy of MADM has not been studied 
earlier with trapezoidal neutrosophic numbers, although 
these numbers effectively deal with uncertain information in 
MADM model. In this study, our objective is to develop an 
MADM model, where the attribute values assume the form 
of SVTrNNs and the weight information of attribute is in-
completely known or completely unknown. The existing       
TOPSIS strategy of MADM cannot handle with such situa-
tions. Therefore, we need to extend the TOPSIS strategy in 
SVTrNN environment.  
To develop the model, we consider the following sections: 
Section 2 presents a preliminaries of fuzzy sets, neutro-
sophic sets, single-valued neutrosophic sets, and single-val-
ued trapezoidal neutrosophic number IFS, SVNS. Section 3 
contains the extended TOPSIS strategy for MADM with 
SVTrNNs. Section 4 presents an illustrative example. Fi-
nally, Section 5 presents conclusion and future direction re-
search.  

2 Preliminaries 

In this section, we review some basic definitions of fuzzy 
sets, neutrosophic sets, single-valued neutrosophic sets, and 
single-valued trapezoidal neutrosophic number. 

Definition 1. [1] Let X  be a universe of discourse, then a 
fuzzy set 𝐴 is defined by 

{ , ( ) | }AA x x x X         (1) 
which is characterized by a membership function 

: [0,1]A X  , where ( )A x  is the degree of membership of 
the element x to the set A . 

Definition 2. [54,55] A generalized trapezoidal fuzzy 
number 𝐴 denoted by 𝐴 = (𝑎, 𝑏, 𝑐, 𝑑; 𝑤) is described as a 
fuzzy subset of the real number ℝ  with membership 
function 𝜇𝐴 which is defined by

) ,

,
( )

( ) ,

0

A

x a w
a x b

b a

w b x c
x

d x w
c x d

d c

otherwise




  


 

 
  

 



where 𝑎, 𝑏, 𝑐, 𝑑  are real number satisfying 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 𝑑 
and 𝑤 is the membership degree. 

Definition 3.[4] Let 𝑋  be a universe of discourse. An 
neutrosophic sets 𝐴 over 𝑋 is defined by 

{ , ( ), ( ), ( ) | }
A A A

A x T x I x F x x X (2) 

where ( )
A
T x , ( )

A
I x and ( )

A
F x  are real standard or non-

standard subsets of ] 0,1 [  that is (x) : X ] 0,1 [AT    , 

(x) : X ] 0,1 [AI    and (x) : X ] 0,1 [.AF    The 
membership functions satisfy the following properties: 

0 (x) (x) (x) 3 .A A AT I F      

Definition 4. [26] Let 𝑋  be a universe of discourse. A 
single-valued neutrosophic set 𝐴̃ in 𝑋 is given by 

{ , ( ), ( ), ( ) | }
A A A

A x T x I x F x x X  (3) 

where ( ) : [0,1]AT x X  , ( ) : [0,1]AI x X  and 
( ) : [0,1]AF x X   with the condition 

 0 ( ) ( ) ( ) 3A A AT x I x F x     for all x X . 
The functions  AT x ,  AI x and  AF x represent, 
respectively, the truth membership function, the 
indeterminacy membership function and the falsity 
membership function of the element x to the set .A   

Definition 5. [50, 51] Let a  is a single valued trapezoidal 
neutrosophic trapezoidal number (SVNTrN). Then its truth 
membership function is 

)
,

,
( )

( )
,

0

a

a

a

a

x a t
a x b

b a

t b x c
T x

d x t
c x d

d c

otherwise


  


 

 
  

 



Its indeterminacy membership function is 
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(
,

,
( )

( )
,

0
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b x x a i
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i b x c
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x c d x i
c x d

d c

otherwise
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and its falsity membership function is 
( )

,

,
( )

( )
,

0

a

a

a

a

b x x a f
a x b

b a

f b x c
x

x c d x f
c x d

d c
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where  0 ≤ 𝑇𝑎̃(𝑥) ≤ 1, 0 ≤ 𝐼𝑎̃(𝑥) ≤ 1, 0 ≤ 𝐹𝑎̃(𝑥) ≤ 1 and
0 ≤ 𝑇𝑎̃(𝑥) + 𝐼𝑎̃(𝑥) + 𝐹𝑎̃(𝑥) ≤ 3; 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅. Then  𝑎̃ =
([𝑎, 𝑏, 𝑐, 𝑑]; 𝑡𝑎̃ ,𝑖𝑎̃ ,𝑓𝑎̃ ,) is called a neutrosophic trapezoidal
number. 

Definition 5. [50,51] Let 𝑎̃1 = ([𝑎1, 𝑏1, 𝑐1, 𝑑1]; 𝑡𝑎̃1 ,𝑖𝑎̃1,𝑓𝑎̃1,)
and 𝑎̃2 = ([𝑎2, 𝑏2, 𝑐2, 𝑑2]; 𝑡𝑎̃2 ,𝑖𝑎̃2,𝑓𝑎̃2,) be two neutrosophic
trapezoidal fuzzy numbers and 𝜆 ≥ 0, then 
1. 𝑎̃1⊕ 𝑎̃2 = ([𝑎1 + 𝑎2, 𝑏1 + 𝑏2, 𝑐1 + 𝑐2, 𝑑1 + 𝑑2]; 𝑡𝑎̃1 +

𝑡𝑎̃2 − 𝑡𝑎̃1𝑡𝑎̃2 , 𝑖𝑎̃1 𝑖𝑎̃2 , 𝑓𝑎̃1𝑓𝑎̃2);
2. 𝑎̃1⊗ 𝑎̃2 = ([𝑎1𝑎2, 𝑏1𝑏2, 𝑐1𝑐2, 𝑑1𝑑2]; 𝑡𝑎̃1𝑡𝑎̃2 , 𝑖𝑎̃1 +

𝑖𝑎̃2 − 𝑖𝑎̃1 𝑖𝑎̃2 , 𝑓𝑎̃1 + 𝑓𝑎̃2 − 𝑓𝑎̃1 𝑓𝑎̃2);
3. 𝜆 𝑎̃1 = ([𝜆 𝑎1 , 𝜆 𝑏1, 𝜆 𝑐1, 𝜆 𝑑1]; 1 − (1 −

𝑡𝑎̃1)
𝜆
, (𝑖𝑎̃1)

𝜆
, (𝑓𝑎̃1)

𝜆
;

4. (𝑎̃)𝜆 = ([𝑎1
𝜆, 𝑏1

𝜆, 𝑐1
𝜆 , 𝑑1

𝜆]; (𝑡𝑎̃1)
𝜆
, 1 − (1 − 𝑖𝑎̃1)

𝜆
, 1 −

(1 − 𝑓𝑎̃1)
𝜆
)

Definition 6. Let 𝑎̃1  = ([𝑎1, 𝑏1, 𝑐1, 𝑑1]; 𝑡𝑎̃1 ,𝑖𝑎̃1,𝑓𝑎̃1,)  and
𝑎̃2 = ([𝑎2, 𝑏2, 𝑐2, 𝑑2]; 𝑡𝑎̃2 ,𝑖𝑎̃2,𝑓𝑎̃2,)  be two neutrosophic
trapezoidal fuzzy numbers, then the normalized Hamming 
distance between 𝑎̃1 and 𝑎̃2 is defined as follows:

𝑑(𝑎̃1, 𝑎̃2) =

1

12

(

 
 

|𝑎1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑎2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)|

 +|𝑏1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑏2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)|

+|𝑐1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑐2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)|

+|𝑑1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑑2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)|)

 
 

 (4) 

Property 1 The normalized Hamming distance measure 
𝑑(. )  of  𝑎̃1 and 𝑎̃2 satisfies the following properties:
i. 𝑑(𝑎̃1, 𝑎̃2) ≥ 0,

ii. 𝑑(𝑎̃1, 𝑎̃2) = 𝑑(𝑎̃2, 𝑎̃1),

iii. 𝑑(𝑎̃1, 𝑎̃3) ≤ 𝑑(𝑎̃1, 𝑎̃2) + 𝑑(𝑎̃2, 𝑎̃3), where
𝑎̃3 = ([𝑎3, 𝑏3, 𝑐3, 𝑑3]; 𝑡𝑎̃3 ,𝑖𝑎̃3,𝑓𝑎̃3,) is a SVTrNN.

Proof: 
i. The distance measure 𝑑(𝑎̃1, 𝑎̃2) is obviously non-neg-

ative. If  𝑎̃1 ≈  𝑎̃2 that is for  𝑎1 = 𝑎2, 𝑏1 = 𝑏2, 𝑐1 =
𝑐2, 𝑑1 = 𝑑2, 𝑡𝑎̃1 = 𝑡𝑎̃2, 𝑖𝑎̃1 = 𝑖𝑎̃2 , and 𝑓𝑎̃1 = 𝑓𝑎̃2 we
have 𝑑(𝑎̃1, 𝑎̃1) = 0. Therefore 𝑑(𝑎̃1, 𝑎̃2) ≥ 0.

ii. The proof of straightforward.
iii. The normalized Hamming distance between 𝑎̃1 and 𝑎̃3

is defined as follows:

𝑑(𝑎̃1, 𝑎̃3)

=
1

12

(

 
 

|𝑎1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑎3(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)|

 +|𝑏1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑏3(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)|

+|𝑐1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑐3(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)|

+|𝑑1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑑2(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)|)

 
 

=
1

12

(

 
 
 
 
 
 
 
 
|
𝑎1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑎2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)

+𝑎2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2) − 𝑎3(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)
|

 + |
𝑏1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑏2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)

+𝑏2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2) − 𝑏3(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)
|

+ |
𝑐1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑐2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)

+𝑐2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2) − 𝑐3(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)
|

+ |
𝑑1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑑2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)

+𝑑2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2) − 𝑑3(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)
|
)

 
 
 
 
 
 
 
 

=
1

12

(

 
 
 
 
 
 
 
 

|𝑎1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑎2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)|

+|𝑎2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2) − 𝑎3(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)|

|𝑏1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑏2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)|

+|𝑏2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2) − 𝑏3(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)|

|𝑐1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑐2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)|

+|+𝑐2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2) − 𝑐3(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)|

|𝑑1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑑2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)|

+|𝑑2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2) − 𝑑3(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)| )

 
 
 
 
 
 
 
 

≤
1

12

(

 
 

|𝑎1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑎2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)|

 +|𝑏1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑏2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)|

+|𝑐1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑐2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)|

+|𝑑1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑑2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)|)

 
 

+
1

12

(

 
 

|𝑎2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2) − 𝑎3(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)|

 +|𝑏2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2) − 𝑏3(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)|

+|𝑐2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2) − 𝑐3(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)|

+|𝑑2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2) − 𝑑3(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)|)

 
 

≤ 𝑑(𝑎̃1, 𝑎̃2) + 𝑑(𝑎̃2, 𝑎̃3) . □ 

2.1 TOPSIS Strategy for MADM 

The idea behind the TOPSIS strategy [5] is to find out 
the optimal alternative that has the shortest distance from 
the positive ideal solution and the farthest distance from the 
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negative ideal solution, simultaneously. The schematic 
structure of classical TOPSIS strategy is presented in the 
following figure (see Fig. 1) 

Figure 1. A schematic structure of TOPSIS strategy 

3 TOPSIS strategy for multi-attribute decision mak-
ing with neutrosophic trapezoidal number 

In this section, we put forward a framework for determining 
the attribute weights and the ranking orders for all the 
alternatives with incomplete weight information under 
neutrosophic environment. 

Consider a MADM problem, where 𝐴 = {𝐴1, 𝐴2, … , 𝐴𝑚} is
a set of 𝑚 alternatives and 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑛} is a set of 𝑛
attributes. The attribute value of alternative 𝐴𝑖(𝑖 =
1,2, … ,𝑚) over the attribute 𝐶𝑗(𝑗 = 1,2, … , 𝑛) assumes the
form of neutrosophic trapezoidal number  𝑎̃𝑖𝑗  =
([𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝑐𝑖𝑗 , 𝑑𝑖𝑗]; 𝑡𝑎̃𝑖𝑗 ,𝑖𝑎̃𝑖𝑗,𝑓𝑎̃𝑖𝑗,) , where 0 ≤ 𝑡𝑎̃𝑖𝑗  ≤ 1,  0 ≤

𝑖𝑎̃𝑖𝑗 ≤ 1 , 0 ≤ 𝑓𝑎̃𝑖𝑗 ≤ 1  and 0 ≤ 𝑡𝑎̃𝑖𝑗 + 𝑖𝑎̃𝑖𝑗 + 𝑓𝑎̃𝑖𝑗 ≤ 3;
𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅. 
Here, 𝑡𝑎̃𝑖𝑗 denotes the truth membership degree, 𝑖𝑎̃𝑖𝑗 denotes
the indeterminate membership degree, and  𝑓𝑎̃𝑖𝑗  denotes the
falsity membership degree to consider the trapezoidal 
number [𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝑐𝑖𝑗 , 𝑑𝑖𝑗] as the rating values of 𝐴𝑖 over the
attribute 𝐶𝑗.  An MADM problem can be expressed by a
decision matrix in which the entries represent the evaluation 
information of all alternatives with respect to the attributes. 
Then we construct the following neutrosophic decision 
matrix, whose elements are SVNTrNs: 

𝐷 = (𝑎̃𝑖𝑗)𝑚×𝑛 = (

𝑎̃11 𝑎̃12 … 𝑎̃1𝑛
𝑎̃21 𝑎̃22 … 𝑎̃2𝑛
⋮ ⋮ ⋱ ⋮
𝑎̃𝑚1 𝑎̃𝑚2 … 𝑎̃𝑚𝑛

)     (5)

Due to different attribute weights, we assume that the 
weight vector of all attributes is given by 𝑤 = (𝑤1,
𝑤2, … , 𝑤𝑛)

𝑇 , where 0 ≤ 𝑤𝑗 ≤ 1, 𝑗 = 1,2, … , 𝑛  , and 𝑤𝑗  is
the weight of each attribute. The information about attribute 
weights is usually incomplete in decision making problems 
under uncertain environment. For convenience, we assume 
  be a set of the known weight information [56-59], where 
  can be constructed by the following forms, for 𝑖 ≠ 𝑗: 
Form 1. A weak ranking: {𝑤𝑖 ≥ 𝑤𝑗};
Form 2. A strict ranking: {𝑤𝑖 −𝑤𝑗 ≥ 𝛼𝑗}(𝛼𝑗 > 0);
Form 3. A ranking of difference: {𝑤𝑖 − 𝑤𝑗 ≥ 𝑤𝑘 −𝑤𝑙}, for
𝑗 ≠ 𝑘 ≠ 𝑙; 
Form 4. A ranking with multiples: {𝑤𝑖 ≥ 𝛼𝑗𝑤𝑗} (0 ≤ 𝛼𝑗 ≤
1); 
Form 5. An interval form: {𝛼𝑖 ≤  𝑤𝑖 ≤ 𝛼𝑖 + 𝜖𝑖}(0 ≤ 𝛼𝑗 ≤
𝛼𝑖 + 𝜖𝑖 ≤ 1).
Now we develop a strategy for solving the MADM 
problems, in which the information about attribute weights 
is completely unknown or partially known and the attribute 
values are expressed by SVTrNNs. 
 The following steps are considered to develop the model. 

3.1 Standardize the decision matrix 

Let  ij m n
D a


  be a neutrosophic decision matrix, where 

the SVTrNNs  1 2 3 4, , , ; , ,
ij ij ijij ij ij ij ij a a aa a a a a t i f     is the rating 

values of alternative iA  with respect to attribute jC . Now to 
eliminate the effect from different physical dimensions into 
decision making process, we should standardize the 
decision matrix  ij m n

a


based on two common types of 
attributes such as benefit type attribute and cost type 
attribute. We consider the following technique to obtain the 

Construct a decision matrix 

Normalize the decision matrix 

Calculate the weighted normalized 
decision matrix 

Determine the positive and negative 
ideal solutions 

Calculate the distance measure of each 
alternative from ideal solution 

Calculate  relative closeness co-efficients 
of the alternatives 

Rank the alternatives 
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standardized decision matrix  ij m n
R r


 , in which the 

component k

ijr  of the entry  1 2 3 4, , , ; , ,
ij ij ijij ij ij ij ij r r rr r r r r t i f     in 

the matrix R are considered as: 
1. For benefit type attribute:

1 2 3 4

, , , ; , ,
ij ij ij

ij ij ij ij

ij r r r

j j j j

a a a a
r t i f

u u u u   

  
        

      (6) 

2. For cost type attribute:

4 3 2 1, , , ; , ,
ij ij ij

j j j j

ij r r r

ij ij ij ij

u u u u
r t i f

a a a a

     
        

,     (7) 

where 4max{ | 1,2,... }j iju a i m   and 
1min{ | 1,2,... }j iju a i m   for 1,2,... .j n  

Then we obtain the following standardized decision matrix: 

 

11 12 1

21 22 2

1 2

n

n

ij m n

m m mn

r r r

r r r
R r

r r r



 
 
  
 
  
 

     (8) 

3.2 Determine the attribute weight 

To determine the attribute weights, we use maximum 
deviation strategy, which was proposed by Wang [60]. 
According to Wang [60], 
i. The attribute that has the larger deviation value among

alternatives should be assigned larger weight. 
ii.  The attribute having deviation value among alternatives

should be assigned smaller weight. 
iii. The attribute having no deviation among alternatives

should be assigned zero weight. 

Following the idea of maximum deviation method, we 
construct an optimization model to determine the optimal 
weights of attributes with SVTrNNs. The deviation of the 
alternative 𝐴𝑖  to all the other alternatives for the attribute

jC   can be defined as follows: 
𝑑𝑖𝑗(𝑤) =  ∑ 𝑑( 𝑎̃𝑖𝑗

𝑚
𝑘=1 , 𝑎̃𝑘𝑗)𝑤𝑗  , 𝑖 = 1,2, … ,𝑚; 𝑗 =

1,2, … , 𝑛 
where 
 𝑑(𝑎̃𝑖𝑗 , 𝑎̃𝑘𝑗) = 

1

12

(

 
 
 
 

|𝑎𝑖𝑗1 (2 + 𝑡𝑎̃𝑖𝑗 − 𝑖𝑎̃𝑖𝑗 − 𝑓𝑎̃𝑖𝑗) − 𝑎𝑘𝑗1 (2 + 𝑡𝑎̃𝑘𝑗 − 𝑖𝑎̃𝑘𝑗 − 𝑓𝑎̃𝑘𝑗)|

+ |𝑎𝑖𝑗2 (2 + 𝑡𝑎̃𝑖𝑗 − 𝑖𝑎̃𝑖𝑗 − 𝑓𝑎̃𝑖𝑗) − 𝑎𝑘𝑗2 (2 + 𝑡𝑎̃𝑘𝑗 − 𝑖𝑎̃𝑘𝑗 − 𝑓𝑎̃𝑘𝑗)|

+ |𝑎𝑖𝑗3 (2 + 𝑡𝑎̃𝑖𝑗 − 𝑖𝑎̃𝑖𝑗 − 𝑓𝑎̃𝑖𝑗) − 𝑎𝑘𝑗3 (2 + 𝑡𝑎̃𝑘𝑗 − 𝑖𝑎̃𝑘𝑗 − 𝑓𝑎̃𝑘𝑗)|

+ |𝑎𝑖𝑗4 (2 + 𝑡𝑎̃𝑖𝑗 − 𝑖𝑎̃𝑖𝑗 − 𝑓𝑎̃𝑖𝑗) − 𝑎𝑘𝑗4 (2 + 𝑡𝑎̃𝑘𝑗 − 𝑖𝑎̃𝑘𝑗 − 𝑓𝑎̃𝑘𝑗)|)

 
 
 
 

(9) 

 = 1
12
∑ |

𝑎𝑖𝑗𝑝 (2 + 𝑡𝑎̃𝑖𝑗 − 𝑖𝑎̃𝑖𝑗 − 𝑓𝑎̃𝑖𝑗)

−𝑎𝑘𝑗𝑝 (2 + 𝑡𝑎̃𝑘𝑗 − 𝑖𝑎̃𝑘𝑗 − 𝑓𝑎̃𝑘𝑗)
|4

𝑝=1  

denotes the neutrosophic Hamming distance between two 
SVTrNNs 𝑎̃𝑖𝑗  and 𝑎̃𝑘𝑗 .
The deviation value of all the alternatives to other 
alternatives for the attribute 𝐶𝑗 can be obtained as follows:

𝐷𝑗(𝑤) =∑𝑑𝑖𝑗(𝑤)

𝑚

𝑖=1

=∑∑𝑑(𝑎̃𝑖𝑗 , 𝑎̃𝑘𝑗)

𝑚

𝑘=1

𝑤𝑗

𝑚

𝑖=1

= ∑ ∑ (
1

12
∑ |𝑎𝑖𝑗

𝑝
(2 + 𝑡𝑎̃𝑖𝑗 − 𝑖𝑎̃𝑖𝑗 −

4
𝑝=1

𝑚
𝑘=1

𝑚
𝑖=1

𝑓𝑎̃𝑖𝑗) − 𝑎𝑘𝑗
𝑝
(2 + 𝑡𝑎̃𝑘𝑗 − 𝑖𝑎̃𝑘𝑗 − 𝑓𝑎̃𝑘𝑗)|)𝑤𝑗. (10) 

Similarly, the deviation value of all the alternatives to other 
alternatives for all the criteria can be taken as: 

𝐷(𝑤) =∑𝐷𝑗(𝑤)

𝑛

𝑗=1

=∑∑𝑑𝑖𝑗(𝑤)

𝑚

𝑖=1

𝑛

𝑗=1

= ∑ ∑ ∑ ∑ 𝑑(𝑎̃𝑖𝑗 , 𝑎̃𝑘𝑗)
𝑚
𝑘=1 𝑤𝑗

𝑚
𝑖=1

𝑚
𝑖=1

𝑛
𝑗=1

=∑ ∑ ∑ (
1

12
∑ |

𝑎𝑖𝑗
𝑝
(2 + 𝑡𝑎̃𝑖𝑗 − 𝑖𝑎̃𝑖𝑗 − 𝑓𝑎̃𝑖𝑗)

−𝑎𝑘𝑗
𝑝
(2 + 𝑡𝑎̃𝑘𝑗 − 𝑖𝑎̃𝑘𝑗 − 𝑓𝑎̃𝑘𝑗)

|4
𝑝=1 )𝑚

𝑘=1 𝑤𝑗
𝑚
𝑖=1

𝑛
𝑗=1  

If the information about the attribute weights is partially 
known or completely unknown, then we propose two 
models to obtain the attribute weights.  

3.2.1 Information about the weights of attributes is 
partially known.

In order to obtain the weight vector, we construct a non-lin-
ear programming model that maximizes all deviation values 
of attributes. The model can be presented as follows:  

 
4

1 1 1 1

1

(2 )1max
12 (2 )( 2)

subject to , 1, 0, for 1,2,.., .

ij ij ij

kj kj kj

p
n m m

ij a a a

jp
j i k p kj a a a

n

j j

j

a t i f
D w w

a t i f
M

w w w j n

   



    
  
     

  


   






(11) 
By solving the model (M-1), we obtain the optimal solution 
to be used as the weight vector. 

3.2.2 Information about the weights of attributes is un-
known. 

If the information about attribute weight is completely 
unknown, then we can establish the following programming 
model: 

 
4

1 1 1 1

2

1

(2 )1max
12 (2 )( 2)

subject to , 1, 0, for 1,2,.., .

ij ij ij

kj kj kj

p
n m m

ij a a a

jp
j i k p kj a a a

n

j j

j

a t i f
D w w

a t i f
M

w w w j n

   



    
  
     

  


   






(12) 
To solve the model (M-2), we develop the Lagrange 
function: 
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 
4

1 1 1 1

2

1

(2 )1,
12 (2 )

1
24

ij ij ij

kj kj kj

p
n m m

ij a a a

jp
j i k p kj a a a

n

j

j

a t i f
L w w

a t i f

w





   



   
 
    
 

 
  

 





(13) 

where   is a real number and denoting the Lagrange 
multiplier variable. Then the partial derivative of L  with 
respect to ( 1,2,..., )jw j n  and   are obtained as: 

4

1 1 1

(2 )
0

(2 )
ij ij ij

kj kj kj

p
m m

ij a a a

j jp
i k pj kj a a a

a t i fL
w w

w a t i f


  

       
     
 

 (14) 

2

1
1 0

n

j

j

L
w

 


  


  (15) 

It follows from Eq. (14) that 
4

1 1 1

(2 )

(2 )
ij ij ij

kj kj kj

p
m m

ij a a a

p
i k p kj a a a

j

a t i f

a t i f
w



  

   
 
    
 


 for 1,2,..., .j n  

(16) 
Putting the values of jw  in Eq.(15), we obtain 

2
4

2

1 1 1 1

(2 )

(2 )
ij ij ij

kj kj kj

p
n m m

ij a a a

p
j i k p kj a a a

a t i f

a t i f


   

    
  
     

  

  (17) 

2
4

1 1 1 1

(2 )

(2 )
ij ij ij

kj kj kj

p
n m m

ij a a a

p
j i k p kj a a a

a t i f

a t i f


   

    
    
     

  

   for 0.   

(18) 
Then combining Eq.(16) and Eq.(18), we obtain the 
following formula for determining the weight of attribute

( 1,2,..., )jC j n  : 

4

1 1 1

2
4

1 1 1 1

(2 )

(2 )

(2 )

(2 )

ij ij ij

kj kj kj

ij ij ij

kj kj kj

p
m m

ij a a a

p
i k p kj a a a

j

p
n m m

ij a a a

p
j i k p kj a a a

a t i f

a t i f
w

a t i f

a t i f

  

   

   
 
    
 

    
  
     

  



 

 .    (19) 

We make their sum into a unit by normalizing 
( 1,2,..., )jw j n and get the optimal weight of attribute
( 1,2,..., )jC j n : 

4

1 1 1

4
1

1 1 1 1

(2 )

(2 )

(2 )

(2 )

ij ij ij

kj kj kj

ij ij ij

kj kj kj

p
m m

ij a a a

p
i k p kj a a a

j

j n p
n m m

ij a a ajj

p
j i k p kj a a a

a t i f

a t i fw
w

a t i fw

a t i f

  



   

   
 
    
  
   
 
    
 






(20) 

Then we get the normalized weight vector of attributes: 

 1 2, ,..., .nw w w w  

3.3 Determine the ideal solutions 

In the normalized decision matrix  ij m n
R r


 , the 

neutrosophic trapezoidal local positive ideal solution 
(NTrPIS) and the neutrosophic trapezoidal local negative 
ideal solution (NTrNIS) are defined as follows 

 1 2, ,..., nr r r r     and  1 2, ,..., nr r r r    (21) 
where, 

 1 2 3 4, , , , , ,j j j j j j j jr r r r r t i f          

       

     

1 2 3 4max ,max ,max ,max ;

max ,min ,min

ij ij ij ij
i i i i

ij ij ij
i ii

r r r r

t i f

  
    
 
 

 (22) 

 1 2 3 4, , , , , ,j j j j j j j jr r r r r t i f          

     
       

     

1 2 3 4min ,min ,min ,min ;

min ,max ,max

ij ij ij ij
i i i i

ij ij ij
i i i

r r r r

t i f

  
  
 
 
 

 (23) 

Moreover, the trapezoidal neutrosophic global positive ideal 
solution and the trapezoidal neutrosophic global trapezoidal 
global negative ideal solution can be directly considered as 

  1,1,1,1 ,1,0,0jr    and   0,0,0,0 ,0,1,1jr   (24) 

3.4 Determine the separation measures from ideal 
solutions to each alternative 

The separation measures id   and id   of each alternative 
from the ideal solutions can be determined by Eq.(9), 
Eq.(20) and Eq.(21), respectively, as follows: 

 
1

,
n

i j ij j

j

d w d r r 





    
4

1 1

(2 )1
12 (2 )

ij ij ij

j j j

p
n ij r r r

j p
j p j r r r

r t i f
w

r t i f  


 

   
 
    
 

   for 1,2,...,i m  (25) 

 
1

,
n

i j ij j

j

d w d r r 





  
4

1 1

(2 )1
12 (2 )

ij ij ij

j j j

p
n ij r r r

j p
j p j r r r

r t i f
w

r t i f  


 

   
 
    
 

  for 1,2,...,i m   (26) 

3.5 Determine the relative closeness co-efficient 

The relative closeness co-efficient of an alternative iA  with 
respect to ideal alternative A   is defined as the following 
formula: 
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( ) i
i

i i

d
RC A

d d



 



(27) 

where 0 ( ) 1iRC A   for 1,2,... .i m  According to the 
closeness co-efficient ( )iRC A , the ranking orders of all 
alternatives and the best alternative can be selected. The 
schematic diagram of the proposed TOPSIS is presented in 
Figure-2. 

Figure 2. The schematic diagram of the proposed startegy 

4 An illustrative example 

In this section, we consider an illustrative example of med-

ical representative selection problem to demonstrate and ap-

plicability of the proposed. 

Consider a MADM problem, where a pharmacy com-

pany wants to recruit a medical representative. After initial 

scrutiny four candidates ( 1,2, 3, 4)
i
A i  have been consid-

ered for further evaluation with respect to the four attributes

(j 1,2,3,4)
j
C namely, 

1. Oral communication skill
1

( )C ;

2. Past experience
2

( )C ,

3. General aptitude
3

( )C  and

4. Self- confidence
4

( )C .

  The decision maker evaluates the ratings of alternatives 
( 1,2,..., )iA i m with respect to the attributes ( 1,2,..., )iC i n

with the decision matrix 4 4( )ijD a  (see Table 1). 
Table 1. Rating values of alternatives 

1C 2C

A1

[7,8,9,10];
0.90,0.10,0.05
 
 
 

 
 5,6,7,8 ;

0.65,0.35,0.30
 
  
 

A2 
 5,6,7,8 ;

0.65,0.35,0.30
 
  
 

 6,7,8,9 ;
0.80,0.20,0.15
 
  
 

 

A3 
 4,5,6,7 ;

0.50,0.50,0.45
 
  
 

 
 5,6,7,8 ;

0.65,0.35,0.30
 
  
 

A4 
 4,5,6,7 ;

0.50,0.50,0.45
 
  
 

 
 5,6,7,8 ;

0.65,0.35,0.30
 
  
 

3C 4C

A1 
 6,7,8,9 ;

0.80,0.20,0.15
 
  
 

 
 7,8,9,10 ;

0.90,0.10,0.05
 
  
 

 

A2 
 7,8,9,10 ;

0.90,0.10,0.05
 
  
 

 
 6,7,8,9 ;

0.80,0.20,0.15
 
  
 

 

A3 
 4,5,6,7 ;

0.50,0.50,0.45
 
  
 

 
 4,5,6,7 ;

0.50,0.50,0.45
 
  
 

 

A4 
 4,5,6,7 ;

0.50,0.50,0.45
 
  
 

 
 6,7,8,9 ;

0.80,0.20,0.15
 
  
 

 

The information of the attributes is incompletely known and 
the weight information is given as follows: 

1 2
4

3 4
1

0.20 0.30,0.05 0.20,

0.20 0.35,0.15 0.35; 1j

j

w w

w w w


    
 

   
     

 


(28) 

To determine the best alternative, we use the proposed 
strategy involving the following steps: 

Step 1. Standardize the decision matrix 

Since the selective attributes are benefit type attributes, then 
using Eq. (6), we have the following standardized decision 
matrix: 4 4( )ijR r  (see Table 2.) 

Table 2. Standardized rating values of alternatives 
1C 2C

A1

[0.7,0.8,0.9,1.0];
0.90,0.10,0.05

 
 
 

 0.5,0.6,0.7,0.8 ;
0.65,0.35,0.30

 
  
 

A2 
 0.5,0.6,0.7,0.8 ;

0.65,0.35,0.30
 
  
 

 0.6,0.7,0.8,0.9 ;
0.80,0.20,0.15

 
  
 

Construct a decision 

matix 

Standardize the 

decision matrix 

Determine the attribute 

weights 

Determine the ideal 

solutions 

Determine the separation 

measures 

Calculate the relative 

closeness 
co-efficients 

Select the best 

alternative 

Problem 

formulation 

The 

maximum 

deviation 

strategy 

TOPSIS 

strategy 

with SVTrNNs 
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A3 
 0.4,0.5,0.6,0.7 ;

0.50,0.50,0.45
 
  
 

 0.5,0.6,0.7,0.8 ;
0.65,0.35,0.30

 
  
 

A4 
 0.4,0.5,0.6,0.7 ;

0.50,0.50,0.45
 
  
 

 0.5,0.6,0.7,0.8 ;
0.65,0.35,0.30

 
  
 

3C 4C

A1 
 0.6,0.7,0.8,0.9 ;

0.80,0.20,0.15
 
  
 

 0.7,0.8,0.9,1.0 ;
0.90,0.10,0.05

 
  
 

A2 
 0.7,0.8,0.9,1.0 ;

0.90,0.10,0.05
 
  
 

 0.6,0.7,0.8,0.9 ;
0.80,0.20,0.15

 
  
 

A3 
 0.4,0.5,0.6,0.7 ;

0.50,0.50,0.45
 
  
 

 0.4,0.5,0.6,0.7 ;
0.50,0.50,0.45

 
  
 

A4 
 0.4,0.5,0.6,0.7 ;

0.50,0.50,0.45
 
  
 

 0.6,0.7,0.8,0.9 ;
0.80,0.20,0.15

 
  
 

Step 2. Determine the attribute weight 

Case 1. Weight information is incompletely known. 

 Using the model (M-1), we construct the following single-
objective programming problem: 

  1 2 3 4

4

1

max 3.2133 1.1401 3.4250 2.9700

subject to , 1, 0, for 1,2,..,4.j j

j

D w w w w w

w w w j


    



   



(29) 

Solving this model with optimization software LINGO 13, 
we get the optimal weight vector as 

 0.30,0.05,0.35,0.30 .w 

Case 2. Weight information is completely unknown. 

Following Eq.(20), we obtain the following optimal weight 
vector: 

 0.2990,0.1061,0.3186,0.2763 .w   

Step 3. Determine the ideal solutions 

Since the chosen attributes are benefit type attribute, then 
following Eq.(22) we determine the neutrosophic 
trapezoidal positive ideal solution as 

 

 

 

 

[0.7,0.8,0.9,1.0];0.90,0.10,0.05 ,

[0.6,0.7,0.8,0.9];0.80,0.20,0.15 ,

[0.7,0.8,0.9,1.0];0.90,0.10,0.05 ,

[0.7,0.8,0.9,1.0];0.90,0.10,0.05

A

 
 
 

  
 
 
 

(30) 

Similarly, using Eq.(23), we determine the neutrosophic 
trapezoidal negative ideal solution 

  

  

  

  

0.4,0.5,0.6,0.7 ;0.50,0.50,0.45 ,

0.5,0.6,0.7,0.8 ;0.65,0.35,0.30 ,

0.4,0.5,0.6,0.7 ;0.50,0.50,0.45 ,

0.4,0.5,0.6,0.7 ;0.50,0.50,0.45

A

 
 
 
 
 
 
 
 

(31) 

Step 4. Determine the separation measures from ideal 
solutions to each alternative. 

Case 1. Employing Eq.(25), we obtain the separation 
measures 

id   of each alternative ( 1,2,3,4)iA i   from A :

 1, 0.0673d A A  ,  2 , 0.1538d A A  ,  3, 0.4792d A A  , 

 4 , 0.3807.d A A   
Similarly, using Eq.(26), we obtain the separation measures 

id   of each alternative ( 1,2,3,4)iA i   from A : 

 1, 0.4119d A A  ,  2 , 0.3254d A A  ,  3, 0d A A  , 

 4 , 0.0985.d A A   

Case 2. The separation measures id   of each alternative 
( 1,2,3,4)iA i   from A : 

 1, 0.0721d A A  ,  2 , 0.1494d A A  ,  3, 0.4615d A A  , 

 4 , 0.3708.d A A   

Similarly, the separation measures id   of each alternative 
( 1,2,3,4)iA i   from A : 

 1, 0.3894d A A  ,  2 , 0.3120d A A  ,  3, 0d A A  , 

 4 , 0.0907.d A A   

Step 5. Calculate the relative closeness coefficient. 

Using Eq.(27), we calculate the relative closeness 
coefficient ( )iRC A  of  alternative ( 1,2,3,4)iA i   for Case 1 
and Case 2, respectively. We put the result in Table 3. 

Table 3. Rating values of alternatives 
RC(Ai) Case 1 Case 2 

RC(A1) 0.8596 0.8438 

RC(A2) 0.6790 0.6824 

RC(A3) 0 0 

RC(A4) 0.2056 0.1965 

Following Table 3, we rank the alternatives ( 1,2,3,4)iA i 

according to the values of relative closeness coefficient 
( )iRC A for both cases: 1 2 4 3.A A A A  Therefore 1A  is the 

best alternative. 

5 Conclusions 

TOPSIS strategy is a useful strategy for solving MADM 
problem under different environment. In this paper, we have 
investigated MADM problems with SVTrNNs. The weight 
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information of attributes have been considered to be incom-
pletely known or completely unknown. First, we have used 
Hamming distance measure to determine the distance meas-
ure of SVTrNNs. Second, we developed an optimization 
model to determine the attribute weights based on the idea 
of maximum deviation strategy. Third, we have extended 
the TOPSIS strategy for solving the MADM model with 
SVTrNNs. Finally, we have provided an illustrative exam-
ples to verify the feasibility and effectiveness of the pro-
posed model. The proposed TOPSIS strategy can be ex-
tended to multi-attribute group decision making with 
SVTrNNs and multi-attribute decision making problem 
with interval trapezoidal neutrosophic numbers. The pro-
posed TOPSIS strategy can be used in solving logistics 
center location selection [61, 62], weaver selection [63, 64], 
data mining [65], school choice [66], teacher selection [67], 
brick field selection [68-69), etc. under SVTrNN environ-
ment.  
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Abstract. In this paper, we introduce interval trapezoidal 
neutrosophic number and define some arithmetic opera-
tions of the proposed interval trapezoidal neutrosophic 
numbers. Then we consider a multiple attribute decision 
making (MADM) problem with interval trapezoidal neu-
trosophic numbers. The weight information of each at-
tribute in the multi attribute decision making problem is 
expressed in terms of interval trapezoidal neutrosophic 
numbers. To develop distance measure based MADM 
strategy with interval trapezoidal neutrosophic numbers, 
we define normalised Hamming distance measure of the 

proposed numbers and develop an algorithm to determine 
the weight of the attributes. Using these weights, we ag-
gregate the distance measures of preference values of 
each alternative with respect to ideal alternative. Then we 
determine the ranking order of all alternatives according 
to the aggregated weighted distance measures of all 
available alternatives. Finally, we provide an illustrative 
example to show the feasibility, applicability of the pro-
posed MADM strategy with interval trapezoidal neutro-
sophic numbers. 

Keywords: Interval trapezoidal neutrosophic number, Hamming distance measure, entropy, multi-attribute decision making. 

1 Introduction 

Neutrosophic set theory, pioneered by Smarandache [1], is 
an important tool for dealing with imprecise, incomplete, 
indeterminate, and inconsistent information occurred in 
decision making process. Neutrosophic set has three inde-
pendent components: truth membership degree, indetermi-
nate membership degree, and falsity membership degree 
lying in a non-standard unit interval] 0,1+.

− [. Wang et al.
[2] introduced single valued neutrosophic set which has 
three membership degrees and the value of each member-
ship degree lies in [0,1]. Wang et al. [3] proposed interval 
neutrosophic set (INS) in which the values of its truth 
membership degree, indeterminacy membership degree, 
and falsity membership degree are intervals rather than 
crisp numbers. Therefore, INSs allow us flexibility in pre-
senting neutrosophic information existing in modern deci-
sion making problem. Recently, many researchers have 
shown interest on possible application of INSs in the field 
of multi-attribute decision making (MADM) and multi-
attribute group decision making (MAGDM). 
Chi and Liu [4] extended technique for order preference by 
similarity to ideal solution (TOPSIS) strategy for MADM 
with INSs. Pramanik and Mondal [5] combined grey rela-
tional analysis (GRA) with MADM strategy for interval 
neutrosophic information and presented a novel MADM 
strategy in interval neutrosophic environment. Dey et al. 

[6] defined weighted projection measure and developed an 
MADM strategy for interval neutrosophic information. In 
the same study, Dey et al. [6] also developed an alternative 
strategy to solve MADM problems based on the combina-
tion of angle cosine and projection measure. Ye [7] defined 
some similarity measures of INSs and employed these 
measures in multi-criteria decision making (MCDM) prob-
lem. Pramanik et al. [8] proposed hybrid vector similarity 
measures of single valued neutrosophic sets as well as in-
terval neutrosophic sets and developed two MADM strate-
gies to solve MADM problems. Peng et al. [9] developed 
some aggregation operators of simplified neutrosophic sets 
to solve multi-criteria group decision making problem. 
Dey et al. [10] extended grey relational analysis strategy 
for solving weaver selection problem in interval neutro-
sophic environment. Zhang et al. [11] proposed an out-
ranking strategy for MCDM problem with neutrosophic 
sets. Dalapati et al. [12] proposed cross entropy measure of 
INSs and employed the measure in solving MADGM prob-
lem. 

However, the domain of single valued and interval neutro-
sophic set considered is a discrete set. Ye [13], and Şubaş 
[14] introduced single valued trapezoidal neutrosophic 
number (SVTrNN), where each element is expressed by 
trapezoidal numbers that has a truth membership degree, 
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an indeterminate membership degree, and a falsity 
membership degree. Biswas et al. [15] also introduced 
SVTrNN in which each membership degree is charactrized 
by normalized trapezoidal fuzzy number. In the same study, 
Biswas et al. [15] proposed value and ambiguity based 
ranking strategyand applied this strategy to MADM 
problem. Deli and Şubaş [16] also proposed a ranking 
strategy of single valued neutrosophic number and utilized 
this strategy in MADM problems. Deli and Şubaş [17] 
developed some weighted geometric operators of 
triangular neutrosophic numbers to solve MADM problem. 
Ye [13] proposed two weighted aggregation operators of 
trapezoidal neutrosophic numbers and applied them to 
MADM problem. Liu and Zhang [18] presented  some 
Maclaurin symmetric mean operators for single-valued 
trapezoidal neutrosophic numbers and discussed their 
applications to group decision making. Liang et al. [19] 
utilized preference relationon to solve MCDM strategy 
with SVTrNN. Basset et al. [20] intregated the analytical 
heirarchy process into Delphi framework based group 
decision making model with trapezoidal neutrosophic 
numbers. 

However due to complexity of decision making problem, 
decision makers may face difficulties to express their opin-
ion with the single valued truth membership degree, inde-
terminacy membership degree, and the falsity membership 
in neutrosophic environment. Then, it is easy to express 
their opinion in terms of three membership degrees with an 
interval number rather than exact real number. Therefore, 
we have an opportunity to investigate a trapezoidal neutro-
sophic number that has a three membership degrees repre-
sented in interval form. We call this new number as inter-
val trapezoidal neutrosophic number (ITrNN). The pro-
posed number permits us to deal with more neutrosophic 
information than SVTrNN. Hence, we need to develop 
some decision making strategies with the ITrNNs. At pre-
sent no studies have been reported in the literature for 
MADM with ITrNNs.  

The main objectives of the study are: 
 To introduce ITrNN and present some of its opera-

tional rules.
 To define normalized Hamming distance measure of

ITrNNs.
 To develop a novel strategy for solving MADM prob-

lem with ITrNNs.

The remainder of the paper is outlined as follows:  Section 
2reviews some basics on single valued neutrosophic sets, 
interval neutrosophic sets. Section 3 introduces ITrNNs 
and defines some arithmetical operations. Section 4 pre-

sents a novel strategyfor solving MADM with interval 
trapezoidal neutrosophic numbers. Section 5 provides an 
illustrative example to illustrate the proposed strategy. Fi-
nally, Section 6 draws some concluding remarks with fu-
ture research directions. 

2 Preliminaries 

Definition 1. [2] Assume that𝑋 be a universe of discourse. 
A single-valued neutrosophic set 𝐴 in 𝑋 is given by 

{ , ( ), ( ), ( ) | }
A A A

A x T x I x F x x X     (1) 

where𝑇𝐴(𝑥): 𝑋 → [0,1] , 𝐼𝐴(𝑥): 𝑋 → [0,1]  and 𝐹𝐴(𝑥): 𝑋 →
[0,1], with the condition  
0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3 for all 𝑥 ∈ 𝑋.
The functions 𝑇𝐴(𝑥),  𝐼𝐴(𝑥)  and  𝐹𝐴(𝑥)  represent, respec-
tively, the truth membership function, the indeterminacy 
function and the falsity membership function of the ele-
ment 𝑥 to the set 𝐴. 

Definition 2. [3] Let  𝑋  be a universe of discourse and 
𝐷[0,1] be the set of all closed sub-intervals. An interval 
neutrosophic set 𝐴̃ in 𝑋 is given by 

{ , ( ), ( ), ( ) | }
A A A

A x T x I x F x x X     (2) 

where 𝑇̃𝐴(𝑥): 𝑋 → 𝐷[0,1], 𝐼𝐴(𝑥): 𝑋 → 𝐷[0,1]  and 
𝐹̃𝐴(𝑥): 𝑋 → 𝐷[0,1], with the condition
0 ≤ 𝑠𝑢𝑝𝑇̃𝐴(𝑥) + 𝑠𝑢𝑝𝐼𝐴(𝑥) + 𝑠𝑢𝑝𝐹̃𝐴(𝑥) ≤ 3 for all 𝑥 ∈ 𝑋.
The intervals 𝑇̃𝐴(𝑥),  𝐼𝐴(𝑥) and  𝐹̃𝐴(𝑥) represent the truth
membership degree, the indeterminacy membership degree 
and the falsity membership degree of the element 𝑥 to the 
set 𝐴̃, respectively. 

3. Interval trapezoidal neutrosophic numbers
(ITrNNs)

In this section, we present the concept of interval trapezoi-
dal neutrosophic number and define its basic operations. 

Definition 3. Let 𝑎̃ is a trapezoidal neutrosophic number in 
the set of real numbers, its truth membership function is 

𝑇𝑎̃ (𝑥) =

{

(𝑥 − 𝑎)𝑡𝑎̃
𝑏 − 𝑎

 𝑎 ≤ 𝑥 < 𝑏;  

𝑡𝑎̃  𝑏 ≤ 𝑥 ≤ 𝑐;
(𝑑 − 𝑥)𝑡𝑎̃
𝑑 − 𝑐

 𝑐 < 𝑥 ≤ 𝑑;

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

Its indeterminacy membership function is 
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𝐼𝑎̃ (𝑥) =

{
 

 

𝑏 − 𝑥 + (𝑥 − 𝑎)𝑖𝑎̃
𝑏 − 𝑎

 𝑎 ≤ 𝑥 < 𝑏;  

𝑖𝑎̃  𝑏 ≤ 𝑥 ≤ 𝑐;

𝑥 − 𝑐 + (𝑑 − 𝑥)𝑖𝑎̃
𝑑 − 𝑐

 𝑐 < 𝑥 ≤ 𝑑;

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

and its falsity membership function is 

𝐹𝑎̃ (𝑥) =

{
 

 

𝑏 − 𝑥 + (𝑥 − 𝑎)𝑓𝑎̃
𝑏 − 𝑎

 𝑎 ≤ 𝑥 < 𝑏;  

𝑓𝑎̃  𝑏 ≤ 𝑥 ≤ 𝑐;

𝑥 − 𝑐 + (𝑑 − 𝑥)𝑓𝑎̃
𝑑 − 𝑐

 𝑐 < 𝑥 ≤ 𝑑;

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

where 𝑡𝑎̃ ⊂ [0,1], 𝑖𝑎̃ ⊂ [0,1], and 𝑓𝑎̃ ⊂ [0,1] are interval
numbers  and 0 ≤ sup(𝑡𝑎̃) + sup(𝑖𝑎̃) + sup(𝑓𝑎̃) ≤ 3.

Then 𝑎̃ is called an interval trapezoidal neutrosophic num-
ber and it is denoted by 𝑎̃ = ([𝑎,  𝑏,  𝑐,  𝑑]; 𝑡𝑎̃ ,𝑖𝑎̃ ,𝑓𝑎̃ ). For
convenience we can take 𝑡𝑎̃ = [𝑡,  𝑡], 𝑖𝑎̃ = [𝑖,  𝑖], and 𝑓𝑎̃ =
[𝑓,  𝑓] . Then the number 𝑎̃  can be denoted by  𝑎̃ =

([𝑎,  𝑏,  𝑐,  𝑑]; [𝑡,  𝑡],  [𝑖,  𝑖], [𝑓,  𝑓]). 

Definition 4. Let 𝑎̃ = ([𝑎,  𝑏,  𝑐,  𝑑]; [𝑡,  𝑡],  [𝑖,  𝑖], [𝑓,  𝑓]]) 
be an ITrNN. If 𝑎 ≥ 0 and one of the four values 
𝑜𝑓 𝑎,  𝑏,  𝑐  and 𝑑  is not equal to zero, then the ITrNN 𝑎̃ is 
called positive ITrNN. 

3.1. Some arithmetic operations on ITrNNs 

Definition 5. Let 𝑎̃1 =
([𝑎1,  𝑏1,  𝑐1,  𝑑1]; [𝑡1,  𝑡1] ,  [𝑖1,  𝑖1] , [𝑓1,  𝑓1]) and

𝑎̃2 = ([𝑎2,  𝑏2,  𝑐2,  𝑑2]; [𝑡2,  𝑡2] ,  [𝑖2,  𝑖2] , [𝑓2,  𝑓2]) be two
INTrNs and 𝜆 ≥ 0. Then the following operations are valid. 

1. 𝑎̃1⊕ 𝑎̃2 =

(

 

[𝑎1 + 𝑎2,  𝑏1 + 𝑏2,  𝑐1 + 𝑐2,  𝑑1 + 𝑑2];

[𝑡1 + 𝑡2 − 𝑡1 𝑡2 ,   𝑡1 +  𝑡2 − 𝑡1 𝑡2] ,

[𝑖1 𝑖2 ,   𝑖1 𝑖2] ,  [𝑓1 𝑓2 ,   𝑓1 𝑓2] )

 

2. 𝑎̃1⊗ 𝑎̃2 =

(

 
 

[𝑎1 + 𝑎2,  𝑏1 + 𝑏2,  𝑐1 + 𝑐2,  𝑑1 + 𝑑2]; [𝑡1 𝑡2 ,   𝑡1 𝑡2] ,

 [𝑖1 + 𝑖2 − 𝑖1 𝑖2 ,   𝑖1 +  𝑖2 − 𝑖 𝑖2] ,

 [𝑓1 + 𝑓2 − 𝑓1 𝑓2 ,   𝑓1 +  𝑓2 − 𝑓1 𝑓2] )

 
 

; 

3. 𝜆 𝑎̃1 =

(

 
 

[𝜆 𝑎1 , 𝜆 𝑏1, 𝜆 𝑐1, 𝜆 𝑑1];  

 [1 − (1 − 𝑡1)
𝜆

, 1 − (1 −  𝑡1)
𝜆] ,

[(𝑖1)
𝜆

,  ( 𝑖1)
𝜆
] ,  [(𝑓1)

𝜆

,  (𝑓1)
𝜆
]
)

 
 

,𝜆 > 0 

4. (𝑎̃1)
𝜆 =

(

 
 
 
[𝑎1

𝜆 , 𝑏1
𝜆, 𝑐1

𝜆 , 𝑑1
𝜆]; [(𝑡1)

𝜆

,  (𝑡1)
𝜆
] ,

 [1 − (1 − 𝑖1)
𝜆

, 1 − (1 − 𝑖1)
𝜆
] ,  

[1 − (1 − 𝑓1)
𝜆

, 1 − (1 − 𝑓1)
𝜆
] )

 
 
 
, 𝜆 > 0. 

Definition 6. The ideal choice of interval neutrosophic 
trapezoidal number is  

𝐼+ = ([1,  1,  1,  1]; [1,  1],  [0,0], [0,0]). (3) 

3.2. Hamming distance between two ITrNNs. 

Let 𝑎̃1 = ([𝑎1,  𝑏1,  𝑐1,  𝑑1]; [𝑡1,  𝑡1] ,  [𝑖1,  𝑖1] , [𝑓1,  𝑓1])  and

𝑎̃2 = ([𝑎2,  𝑏2,  𝑐2,  𝑑2]; [𝑡2,  𝑡2] ,  [𝑖2,  𝑖2] , [𝑓2,  𝑓2])  be any
two INTrNs, then the normalized Hamming distance be-
tween 𝑎̃1 and 𝑎̃2 is defined as follows:

𝑑(𝑎̃1,  𝑎̃2) =

1

24

(

 
 
 
 
 
 
 
 
 
 
 |

𝑎1 (2 + 𝑡1 − 𝑖1 − 𝑓1) + 𝑎1(2 + 𝑡1̅ − 𝑖1̅ − 𝑓1̅)

−𝑎2 (2 + 𝑡2 − 𝑖2 − 𝑓2) − 𝑎2(2 + 𝑡2̅ − 𝑖2̅ − 𝑓2̅)
|

 + |
𝑏1 (2 + 𝑡1 − 𝑖1 − 𝑓1) + 𝑏1(2 + 𝑡1̅ − 𝑖1̅ − 𝑓1̅)

−𝑏2 (2 + 𝑡2 − 𝑖2 − 𝑓2) − 𝑏2(2 + 𝑡2̅ − 𝑖2̅ − 𝑓2̅)
|

+ |
𝑐1 (2 + 𝑡1 − 𝑖1 − 𝑓1) + 𝑐1(2 + 𝑡1̅ − 𝑖1̅ − 𝑓1̅)

−𝑐2 (2 + 𝑡2 − 𝑖2 − 𝑓2) − 𝑐2(2 + 𝑡2̅ − 𝑖2̅ − 𝑓2̅)
|

+ |
𝑑1 (2 + 𝑡1 − 𝑖1 − 𝑓1) + 𝑑1(2 + 𝑡1̅ − 𝑖1̅ − 𝑓1̅)

−𝑑2 (2 + 𝑡2 − 𝑖2 − 𝑓2) − 𝑑2(2 + 𝑡2̅ − 𝑖2̅ − 𝑓2̅)
|

)

 
 
 
 
 
 
 
 
 
 
 

(4) 

Theorem 1. The normalized Hamming distance measure 
𝑑(. ) between  𝑎̃1 and 𝑎̃2 obeys the following properties:
i. 𝑑(𝑎̃1, 𝑎̃2) ≥ 0,

ii. 𝑑(𝑎̃1, 𝑎̃2) = 𝑑(𝑎̃2, 𝑎̃1),

iii. 𝑑(𝑎̃1, 𝑎̃3) ≤ 𝑑(𝑎̃1, 𝑎̃2) + 𝑑(𝑎̃2, 𝑎̃3), where
𝑎̃3 = ([𝑎3,  𝑏3,  𝑐3,  𝑑3]; [𝑡3,  𝑡3] ,  [𝑖3,  𝑖3] , [𝑓3,  𝑓3])is an
ITrNN.

Proof. 

i. The distance measure 𝑑(𝑎̃1, 𝑎̃2) > 0holds for any two
𝑎̃1  and 𝑎̃2 . If  𝑎̃1 ≈  𝑎̃2  that is for  𝑎1 = 𝑎2, 𝑏1 =
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𝑏2, 𝑐1 = 𝑐2, 𝑑1 = 𝑑2, 𝑡1 = 𝑡2 , 𝑡1̅ = 𝑡2̅ , 𝑖1 = 𝑖2 , 𝑖1̅ =
𝑖2̅,𝑓1 = 𝑓2,𝑓1̅ = 𝑓2̅, then we have 𝑑(𝑎̃1, 𝑎̃1) = 0 and conse-
quently,𝑑(𝑎̃1, 𝑎̃2) ≥ 0.

ii. The proof is obvious.

iii. The normalized Hamming distance between 𝑎̃1 and 𝑎̃3
is taken as follows:

𝑑(𝑎̃1,  𝑎̃3) =
1

24

(

 
 
 
 
 
 
 
 
 
 
 |

𝑎1 (2 + 𝑡1 − 𝑖1 − 𝑓1) + 𝑎1(2 + 𝑡1̅ − 𝑖1̅ − 𝑓1̅)

−𝑎3 (2 + 𝑡3 − 𝑖3 − 𝑓3) − 𝑎3(2 + 𝑡3̅ − 𝑖3̅ − 𝑓3̅)
|

 + |
𝑏1 (2 + 𝑡1 − 𝑖1 − 𝑓1) + 𝑏1(2 + 𝑡1̅ − 𝑖1̅ − 𝑓1̅)

−𝑏3 (2 + 𝑡3 − 𝑖3 − 𝑓3) − 𝑏3(2 + 𝑡3̅ − 𝑖3̅ − 𝑓3̅)
|

+ |
𝑐1 (2 + 𝑡1 − 𝑖1 − 𝑓1) + 𝑐1(2 + 𝑡1̅ − 𝑖1̅ − 𝑓1̅)

−𝑐3 (2 + 𝑡3 − 𝑖3 − 𝑓3) − 𝑐3(2 + 𝑡3̅ − 𝑖3̅ − 𝑓3̅)
|

+ |
𝑑1 (2 + 𝑡1 − 𝑖1 − 𝑓1) + 𝑑1(2 + 𝑡1̅ − 𝑖1̅ − 𝑓1̅)

−𝑑3 (2 + 𝑡3 − 𝑖3 − 𝑓3) − 𝑑3(2 + 𝑡3̅ − 𝑖3̅ − 𝑓3̅)
|

)

 
 
 
 
 
 
 
 
 
 
 

=
1

24

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

|

|

𝑎1 (2 + 𝑡1 − 𝑖1 − 𝑓1) + 𝑎1(2 + 𝑡1̅ − 𝑖1̅ − 𝑓1̅)

+𝑎2 (2 + 𝑡2 − 𝑖2 − 𝑓2) + 𝑎2(2 + 𝑡2̅ − 𝑖2̅ − 𝑓2̅)

−𝑎2 (2 + 𝑡2 − 𝑖2 − 𝑓2) − 𝑎2(2 + 𝑡2̅ − 𝑖2̅ − 𝑓2̅)

−𝑎3 (2 + 𝑡3 − 𝑖3 − 𝑓3) − 𝑎2(2 + 𝑡3̅ − 𝑖3̅ − 𝑓3̅)

|

|

 +

|

|

𝑏1 (2 + 𝑡1 − 𝑖1 − 𝑓1) + 𝑏1(2 + 𝑡1̅ − 𝑖1̅ − 𝑓1̅)

+𝑏2 (2 + 𝑡2 − 𝑖2 − 𝑓2) + 𝑏2(2 + 𝑡2̅ − 𝑖2̅ − 𝑓2̅)

−𝑏2 (2 + 𝑡2 − 𝑖2 − 𝑓2) − 𝑏2(2 + 𝑡2̅ − 𝑖2̅ − 𝑓2̅)

−𝑏3 (2 + 𝑡3 − 𝑖3 − 𝑓3) − 𝑏2(2 + 𝑡3̅ − 𝑖3̅ − 𝑓3̅)

|

|

+

|

|

𝑐1 (2 + 𝑡1 − 𝑖1 − 𝑓1) + 𝑐1(2 + 𝑡1̅ − 𝑖1̅ − 𝑓1̅)

+𝑐2 (2 + 𝑡2 − 𝑖2 − 𝑓2) + 𝑐2(2 + 𝑡2̅ − 𝑖2̅ − 𝑓2̅)

−𝑐2 (2 + 𝑡2 − 𝑖2 − 𝑓2) − 𝑐2(2 + 𝑡2̅ − 𝑖2̅ − 𝑓2̅)

−𝑐3 (2 + 𝑡3 − 𝑖3 − 𝑓3) − 𝑐3(2 + 𝑡3̅ − 𝑖3̅ − 𝑓3̅)

|

|

+

|

|

𝑑1 (2 + 𝑡1 − 𝑖1 − 𝑓1) + 𝑑1(2 + 𝑡1̅ − 𝑖1̅ − 𝑓1̅)

+𝑑2 (2 + 𝑡2 − 𝑖2 − 𝑓2) + 𝑑2(2 + 𝑡2̅ − 𝑖2̅ − 𝑓2̅)

−𝑑2 (2 + 𝑡2 − 𝑖2 − 𝑓2) − 𝑑2(2 + 𝑡2̅ − 𝑖2̅ − 𝑓2̅)

−𝑑3 (2 + 𝑡3 − 𝑖3 − 𝑓3) − 𝑑3(2 + 𝑡3̅ − 𝑖3̅ − 𝑓3̅)

|

|

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

≤
1

24

(

 
 
 
 
 
 
 
 
 
 
 |

𝑎1 (2 + 𝑡1 − 𝑖1 − 𝑓1) + 𝑎1(2 + 𝑡1̅ − 𝑖1̅ − 𝑓1̅)

−𝑎2 (2 + 𝑡2 − 𝑖2 − 𝑓2) − 𝑎2(2 + 𝑡2̅ − 𝑖2̅ − 𝑓2̅)
|

 + |
𝑏1 (2 + 𝑡1 − 𝑖1 − 𝑓1) + 𝑏1(2 + 𝑡1̅ − 𝑖1̅ − 𝑓1̅)

−𝑏2 (2 + 𝑡2 − 𝑖2 − 𝑓2) − 𝑏2(2 + 𝑡2̅ − 𝑖2̅ − 𝑓2̅)
|

+ |
𝑐1 (2 + 𝑡1 − 𝑖1 − 𝑓1) + 𝑐1(2 + 𝑡1̅ − 𝑖1̅ − 𝑓1̅)

−𝑐2 (2 + 𝑡2 − 𝑖2 − 𝑓2) − 𝑐2(2 + 𝑡2̅ − 𝑖2̅ − 𝑓2̅)
|

+ |
𝑑1 (2 + 𝑡1 − 𝑖1 − 𝑓1) + 𝑑1(2 + 𝑡1̅ − 𝑖1̅ − 𝑓1̅)

−𝑑2 (2 + 𝑡2 − 𝑖2 − 𝑓2) − 𝑑2(2 + 𝑡2̅ − 𝑖2̅ − 𝑓2̅)
|

)

 
 
 
 
 
 
 
 
 
 
 

  + 
1

24

(

 
 
 
 
 
 
 
 
 
 
 |

𝑎2 (2 + 𝑡2 − 𝑖2 − 𝑓2) + 𝑎2(2 + 𝑡2̅ − 𝑖2̅ − 𝑓2̅)

−𝑎3 (2 + 𝑡3 − 𝑖3 − 𝑓3) − 𝑎2(2 + 𝑡3̅ − 𝑖3̅ − 𝑓3̅)
|

 + |
𝑏2 (2 + 𝑡2 − 𝑖2 − 𝑓2) + 𝑏2(2 + 𝑡2̅ − 𝑖2̅ − 𝑓2̅)

−𝑏3 (2 + 𝑡3 − 𝑖3 − 𝑓3) − 𝑏2(2 + 𝑡3̅ − 𝑖3̅ − 𝑓3̅)
|

+ |
𝑐2 (2 + 𝑡2 − 𝑖2 − 𝑓2) + 𝑐2(2 + 𝑡2̅ − 𝑖2̅ − 𝑓2̅)

−𝑐3 (2 + 𝑡3 − 𝑖3 − 𝑓3) − 𝑐3(2 + 𝑡3̅ − 𝑖3̅ − 𝑓3̅)
|

+ |
𝑑2 (2 + 𝑡2 − 𝑖2 − 𝑓2) + 𝑑2(2 + 𝑡2̅ − 𝑖2̅ − 𝑓2̅)

−𝑑3 (2 + 𝑡3 − 𝑖3 − 𝑓3) − 𝑑3(2 + 𝑡3̅ − 𝑖3̅ − 𝑓3̅)
|

)

 
 
 
 
 
 
 
 
 
 
 

≤ 𝑑(𝑎̃1,  𝑎̃2)+ 𝑑(𝑎̃2,  𝑎̃3). □

4 MADM strategy with interval trapezoidal neu-
trosophic numbers 

In this section we put forward a framework for determining 
the attribute weights and the ranking orders for all the al-
ternatives with incomplete weight information under inter-
val trapezoidal neutrosophic number environment. 

Consider a MADM problem, where 𝐴 = {𝐴1, 𝐴2, … , 𝐴𝑚} is
a set of 𝑚 alternatives and 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑛} is a set of 𝑛
attributes.The attribute value of alternative 𝐴𝑖(𝑖 =
1,2, … ,𝑚)over the attribute 𝐶𝑗(𝑗 = 1,2, … , 𝑛)is expressed
in terms of ITrNNs 𝑎̃𝑖𝑗  = ([𝑎𝑖𝑗 ,  𝑏𝑖𝑗 ,  𝑐𝑖𝑗 ,  𝑑𝑖𝑗]; 𝑡̃𝑖𝑗 ,𝑖̃𝑖𝑗 ,𝑓𝑖𝑗 ,) ,
where, 0 ≤ 𝑡̃𝑖𝑗 ≤ 1,0 ≤ 𝑖̃𝑖𝑗 ≤ 1 , 0 ≤ 𝑓𝑖𝑗 ≤ 1 , and 0 ≤
𝑡̃𝑖𝑗 + 𝑖̃𝑖𝑗 , + 𝑓𝑖𝑗 ≤ 3   for 𝑖 = 1,2, … ,𝑚  and 𝑗 =

1,2, … , 𝑛. Here, 𝑡̃𝑖𝑗  denotes the interval truth membership
degree, 𝑖̃𝑖𝑗  denotes the interval indeterminate membership
degree, and  𝑓𝑖𝑗   denotes the interval falsity membership
degree to consider the trapezoidal number 
[𝑎𝑖𝑗 ,  𝑏𝑖𝑗 ,  𝑐𝑖𝑗 ,  𝑑𝑖𝑗] as the rating values of 𝐴𝑖 with respect to
the attribute 𝐶𝑗 .
We consider an MADM problem in the decision matrix 
form where each entry represents the rating of alternatives 
with respect to the corresponding attribute. Thus we obtain 
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the following neutrosophic decision matrix (see Equation 
5): 

𝐷 = (𝑎̃𝑖𝑗)𝑚×𝑛 = (

𝑎̃11 𝑎̃12 … 𝑎̃1𝑛
𝑎̃21 𝑎̃22 … 𝑎̃2𝑛
⋮ ⋮ ⋱ ⋮
𝑎̃𝑚1 𝑎̃𝑚2 … 𝑎̃𝑚𝑛

). (5)

We assume that the attributes have different weights. The 
weight vector of the attributes is prescribed as 𝑊 =
(𝑤̃1, 𝑤̃2, . . , 𝑤̃𝑛)  , where 𝑤̃𝑗 is the weight of the attribute
𝐶𝑗(𝑗 = 1,2, … , 𝑛) and expressed in the form of ITrNNs.

Using the following steps, we present MADM strategy un-
der ITrNN environment. 

Step-1. Determine the weight of attributes

Weight measure plays an important role in MADM prob-
lems and has a direct relationship with the distance meas-
ure between two rating values. To deal with decision in-
formation with ITrNNs, we use normalized Hamming dis-
tance between two ITrNNs.  
We assume that the attribute weight 𝑤̃𝑗  is expressed by-
ITrNNs as: 
𝑤̃𝑗  = ([𝑤𝑗

1,  𝑤𝑗
2,  𝑤𝑗

3,  𝑤𝑗
4]; [𝑡𝑗 ,  𝑡𝑗] ,  [𝑖𝑗 ,  𝑖𝑗] , [𝑓𝑗 ,  𝑓𝑗])  for 

𝑗 = 1,2, . . , 𝑛.
If Δ(𝑤̃𝑗,   𝐼+) is a distance between weight 𝑤̃𝑗 and 𝐼+, then
the distance vector is given by 
Λ(W) = (Δ(𝑤̃1,  𝐼

+),  Δ(𝑤̃2,  𝐼
+), … , Δ(𝑤̃𝑛,  𝐼

+)), (6) 
where  
Δ(𝑤̃𝑗 ,  𝐼

+) =

1

24

(

 

 

|𝑤𝑗
1 (2 + 𝑡1 − 𝑖1 − 𝑓1) + 𝑤𝑗

1(2 + 𝑡1 − 𝑖1 − 𝑓1) − 6|

+ |𝑤𝑗
2 (2 + 𝑡1 − 𝑖1 − 𝑓1) + 𝑤𝑗

2(2 + 𝑡1 − 𝑖1 − 𝑓1) − 6|

+ |𝑤𝑗
3 (2 + 𝑡1 − 𝑖1 − 𝑓1) + 𝑤𝑗

3(2 + 𝑡1 − 𝑖1 − 𝑓1) − 6|

+ |𝑤𝑗
4 (2 + 𝑡1 − 𝑖1 − 𝑓1) + 𝑤𝑗

4(2 + 𝑡1 − 𝑖1 − 𝑓1) − 6| )

 
 
 
 

(7) 
The corresponding normalized distance vector is given by 

Λ̅ = (Δ̅(𝑤̃1,  𝐼
+),  Δ̅(𝑤̃2,  𝐼

+), … , Δ̅(𝑤̃𝑛,  𝐼
+))

(8) 

where,  𝛥̅(𝑤̃𝑗,  𝐼+) = [
𝛥(𝑤̃𝑗, 𝐼

+)

𝑚𝑎𝑥
𝑗

𝛥(𝑤̃𝑗, 𝐼
+)
] for 𝑗 = 1,2, . . , 𝑛. 

The concept of entropy [21] has been extended in this pa-
per and, the entropy measure of the 𝑗th attribute (𝐶𝑗) for 𝑚
available alternative can be obtained from 

𝑒𝑗 = −
1

𝐼𝑛(𝑚)
[

𝛥̅(𝑤̃𝑗, 𝐼
+)

∑ 𝛥̅(𝑤̃𝑗, 𝐼
+)𝑛

𝑗=1

𝐼𝑛 (
𝛥̅(𝑤̃𝑗, 𝐼

+)

∑ 𝛥̅(𝑤̃𝑗, 𝐼
+)𝑛

𝑗=1

)].  (9) 

Using Equation (9), we finally obtain the  normalized 
weight of the 𝑗th attribute 
𝑤𝑗 =

1−𝑒𝑗

∑ (1−𝑒𝑗)
𝑛
𝑗=1

 .     (10)

Consequently, we get the weight vector  𝑤 =
(𝑤1,   𝑤2, … ,  𝑤𝑛), where 0 ≤ 𝑤𝑗 ≤ 1 for  𝑗 = 1,2, … , 𝑛.

Step 2. Determine the aggregated weighted distances be-

tween ideal alternative and each alternative 

The Hamming distance measure between the attribute 
 value 

(𝑎̃𝑖𝑗) = ([𝑎𝑖𝑗 ,  𝑏𝑖𝑗 ,  𝑐𝑖𝑗 ,  𝑑𝑖𝑗]; [𝑡𝑖𝑗 ,  𝑡𝑖𝑗] ,  [𝑖𝑖𝑗 ,  𝑖𝑖𝑗] , [𝑓𝑖𝑗 ,  𝑓𝑖𝑗])

and the ideal value 𝐼+ = ([1,  1,  1,  1]; [1,  1],  [0,0], [0,0])
is obtained as follows: 
Δ(𝑎̃𝑖𝑗 ,  𝐼

+) =

1

24

(

 

 

|𝑎𝑖𝑗 (2 + 𝑡𝑖𝑗 − 𝑖𝑖𝑗 − 𝑓𝑖𝑗) + 𝑎𝑖𝑗(2 + 𝑡𝑖𝑗 − 𝑖𝑖𝑗 − 𝑓𝑖𝑗) − 6|

 + |𝑏𝑖𝑗 (2 + 𝑡𝑖𝑗 − 𝑖𝑖𝑗 − 𝑓𝑖𝑗) + 𝑏𝑖𝑗(2 + 𝑡𝑖𝑗 − 𝑖𝑖𝑗 − 𝑓𝑖𝑗) − 6|

+|𝑐𝑖𝑗(2 + 𝑡𝑖𝑗 − 𝑖𝑖𝑗 − 𝑓𝑖𝑗) + 𝑐𝑖𝑗(2 + 𝑡𝑖𝑗 − 𝑖𝑖𝑗 − 𝑓𝑖𝑗) − 6|

+|𝑑𝑖𝑗(2 + 𝑡𝑖𝑗 − 𝑖𝑖𝑗 − 𝑓𝑖𝑗) + 𝑑𝑖𝑗(2 + 𝑡𝑖𝑗 − 𝑖𝑖𝑗 − 𝑓𝑖𝑗) − 6| )

 
 
 

.

(11) 
Therefore the distance vector for the alternative 𝐴𝑖(𝑖 =
1,2, … ,𝑚) with respect to ideal value 𝐼+can be set as

Λ(A𝑖) = (Δ(𝑎̃𝑖1,  𝐼
+),  Δ(𝑎̃𝑖2,  𝐼

+), … , Δ(𝑎̃𝑖𝑛 ,  𝐼
+)) (12) 

Using Equation (10), and Equation(11), we calculate the 
aggregated weighted distance Δw(𝐴𝑖 ,  𝐼+) between the ide-
al point and the alternative 𝐴𝑖 for 𝑖 = 1,2, … ,𝑚  as

𝛥𝑤(𝐴𝑖 ,  𝐼
+) =  ∑ 𝑤𝑗

𝑛
𝑗=1 𝛥(𝑎̃𝑖𝑗 ,  𝐼

+)  for 𝑖 = 1,2, … ,𝑚; 𝑗 =
1,2, … , 𝑛. (13) 

Step 3. Determine the rank of alternatives 

Finally, the ranking of alternatives is performed using the 
values of the distances 𝛥𝑤(𝐴𝑖,  𝐼+)  for 𝑖 = 1,2, … ,𝑚.The
basic idea of ranking the alternative is – smaller the value 
of 𝛥𝑤(𝐴𝑖 ,  𝐼+) better the performance/closeness of an alter-
native to ideal solution. 

The schematic diagram of the proposed strategy is present-
ed in the Figure 1. 

Figure 1. The schematic diagram of the proposed strategy 

Construct a decision matrix

Determine the weight of attributes 

using entropy strategy

Aggregate the elements of distance 

vector for each alternative

Rank the alternatives according 

to the aggregated  values
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In this section, we consider an MADM problem which 

deals with the supplier selection in supply chain manage-

ment. 

Assume that the MADM problem consists of three 

suppliers 𝐴1 , 𝐴2,, 𝐴3, and four attributes 𝐶1, 𝐶2, 𝐶3, 𝐶4.

The four attributes are 

1. Product quality(𝐶1),
2. Service(𝐶2),
3. Delivery (𝐶3) and

4. Affordable price(𝐶4).
We also assume that the alternatives 𝐴1 , 𝐴2,, 𝐴3, are to

be assessed in terms of the interval neutrosophic trapezoi-

dal numbers with respect to the four attrib-

utes 𝐶1, 𝐶2, 𝐶3, 𝐶4. The following decision matrix represents

the assessment values of alternatives over the attributes: 

Table 1. Rating values of alternatives 
𝑪𝟏 𝑪𝟐 

𝑨𝟏 ([. 3, .4, .5, .6];  [. 6, .7], [. 3, .4][. 1, .3]) ([. 4, .5, .6, .7];  [. 5, .6], [. 4, .5][. 2, .3]) 

𝑨𝟐 ([. 7, .8, .9, .1.0];  [. 5, .7], [. 2, .3][. 1, .2]) ([. 6, .7, .8, .9];  [. 4, .6], [. 2, .4][. 2, .3]) 

𝑨𝟑 ([. 2, .3, .5, .6];  [. 5, .6], [. 3, .4][. 2, .3]) ([. 3, .4, .6, .7];  [. 7, .8], [. 1, .2][. 1, .2]) 

𝑪𝟑 𝑪𝟒 

𝑨𝟏 ([. 3, .4, .5, .6];  [. 5, .6], [. 3, .4][. 2, .3]) ([. 6, .7, .8, .9];  [. 7, .8], [. 1, .2][. 1, .2]) 

𝑨𝟐 ([. 5, .6, .8, .9];  [. 5, .7], [. 1, .2][. 1, .2]) ([. 6, .7, .8, .9];  [. 6, .8], [. 2, .3][. 1, .2]) 

𝑨𝟑 ([. 6, .7, .8, .9];  [. 5, .6], [. 3, .4][. 2, .3]) ([. 4, .6, .7, .8];  [. 4, .5], [. 2, .3][. 1, .2]) 

The importance of attributes 𝐶𝑗(𝑗 = 1,2,3,4) are given

by 

𝑊 = {

([. 2, .3, .4, .5];  [. 5, .6], [. 3, .4][. 2, .3]),

 ([. 1, .2, .3, .4];  [. 4, .5], [. 1, .2][. 1, .2])

([. 3, .4, .5, .6];  [. 5, .6], [. 3, .4][. 2, .3]),

 ([. 4, .5, .6, .7];  [. 3, .5], [. 2, .4][. 1, .3])

} 

= {𝑤̃1, 𝑤̃2, 𝑤̃3, 𝑤̃4}    (12)

In order to solve the problem, we consider the follow-

ing steps: 

Step-1. Determine the weights of attributes 

Using Equation (7) and Equation (8), we obtain the 

distance vector with respect to ideal interval neutrosophic 

trapezoidal number as: 

 Λ = (0.7725,  0.8208,  0.7075,  0.6517)). 
Utilizing Equation (9) and Equation (10), we ob-

tain the weight vector of the attributes: 

 𝑤 = {0.2485,  0.2468,  0.2509,  0.2538}. 

Step 2. Determine the aggregated weighted distances 

for each alternative 

Using Equation (13) and the weight vector𝑤, we obtain 

the aggregated weighted distances of alternatives: 

𝛥(𝐴1,  𝐼
+) = 0.6092, 𝛥(𝐴2,  𝐼

+) = 0.4512,  and 

𝛥(𝐴3,  𝐼
+) = 0.6039.

Step 3. Rank the alternatives 

Smaller value of distance indicates the better alterna-

tive. So the ranking of the alternatives appears as:  

𝐴2 ≻ 𝐴3 ≻ 𝐴1.

The ranking order reflects that 𝐴2 is the best supplier

for the considered problem. 

6 Conclusions 

In this paper, we have introduced new neutrosophic 
number called interval neutrosophic trapezoidal number 
(INTrN) characterized by interval valued truth, indetermi-
nacy, and falsity membership degrees. We have defined 
some arithmetic operations on INTrNs, and normalized 
Hamming distance between INTrNs. We have developed a 
new multi-attribute decision making strategy, where the 
rating values of alternatives over the attributes and the im-
portance of weight of attributes assume the form of IN-
TrNs. We have used entropy strategy to determine attribute 
weight and then used it to calculate aggregated weighted 
distance measure. We have determined ranking order of al-
ternatives with the help of aggregated weighted distance 
measures. Finally, we have provided an illustrative exam-
ple to show the feasibility, applicability and effectiveness 
of the proposed strategy. We hope that the proposed inter-
val neutrosophic trapezoidal number as well as the pro-
posed MADM strategy will be widely applicable in deci-
sion making science, especially, in brick selection [22, 23], 
logistics centre location selection [24, 25], school choice 
[26], teacher selection [27, 28], weaver selection [29], etc. 
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Abstract: In this paper, tangent similarity measure of interval 
valued neutrosophic sets is proposed and its properties are 
examined. The concept of interval valued neutrosophic set is a 
powerful mathematical tool to deal with incomplete, 
indeterminate and inconsistent information. The concept of this 
tangent similarity measure is based on interval valued 
neutrosophic information. We present a multi-attribute decision 

making strategy based on the proposed similarity measure. Using 
this tangent similarity measure, an application, namely, selection 
of suitable sector for money investment of a government 
employee for a financial year is presented. Finally, a comparison 
of the proposed strategy with the existing strategies has been 
provided in order to exhibit the effectiveness and practicality of 
the proposed strategy. 

Keywords: Neutrosophic set, interval valued neutrosophic set, tangent function, similarity measure, multi attribute decision making

1 Introduction

Decision making in every real field is a very challenging 
task for an individual. Decision making is done based on 
some attributes. In real life situations, attribute information 
involves indeterminacy, incompleteness and inconsistency. 
Indeterminacy plays an important role in real world deci-
sion-making problems. Neutrosophic set [1] is an 
important tool to deal with imprecise, indeterminate, and 
inconsistent data. 
     The concept of neutrosophic set generalizes the fuzzy 
set [2], intuitionistic fuzzy set [3]. Wang et al. [4] proposed 
interval valued neutrosophic sets in which the truth-
membership, indeterminacy-membership, and false-
membership were extended to interval valued numbers. 
Realizing the difficulty in applying the neutrosophic sets in 
realistic problems, Wang et al. [5] introduced the concept 
of single valued neutrosophic set, a subclass of neutrosoph-
ic set. Single valued neutrosophic set can be applied in real 
scientific and engineering fields. It offers us extra possibil-
ity to represent uncertainty, imprecise, incomplete, and 
inconsistent information.  

During the last seven years neutrosophic sets and 
single valued have been studied and applied in different 
fields such as medical diagnosis [6, 7], decision making 
problems [8-12], social problems [13, 14], educational 
problem [15, 16], image processing [17, 18],  conflict 
resolution [19] , etc.  

     The concept of similarity is very important for decision 
making problems.  Some strategies [20, 21] have been pro-
posed for measuring the degree of similarity between fuzzy 
sets. However, these strategies are not capable of dealing 
with the similarity measures involving indeterminacy, and 
inconsistency. In the literature, few studies have addressed 
similarity measures for neutrosophic sets, single-valued 
neutrosophic sets and interval valued neutrosophic sets 
[22-28]. 

Salama and Blowi [29] defined the correlation coeffi-
cient on the domain of neutrosophic sets, which is another 
kind of similarity measure. Broumi and Smarandache [30] 
extended the Hausdorff distance to neutrosophic sets. After 
that, a new series of similarity measures has been proposed 
for neutrosophic set using different approaches. Broumi 
and  Smarandache [31] also  proposed  the correlation 
coefficient  between  interval valued neutrosphic  sets. 
Majumdar  and  Smanta [32] studied  several  similarity 
measures of single valued neutrosophic sets (SVNS) based 
on  distances, a matching  function, memebership grades, 
and entropy  measure  for  a  SVNS.   

Ye [33] proposed the distance-based similarity 
measure of SVNSs and applied it to the group decision 
making problems with single-valued neutrosophic 
information. Ye [34] also proposed  three vector  similarity 
measures  for  SNSs, an  instance  of  SVNS and interval 
valued neutrosophic set, including the Jaccard, Dice, and 
cosine similarity and applied them to multi-attribute 
decision-making problems with simplified neutrosophic 

mailto:kalyanmathematic@gmail.com
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information. Recently, Ye [35] presented similarity 
measures on interval valued neutrosophic set based on 
Hamming distance and Euclidean distance and offered a 
numerical example of its use in decision making problems. 
Broumi and Smarandache [36] proposed a cosine similarity 
measure of interval valued neutrosophic sets. 

Ye [37] further studied and found that there exsit some 
disadvantages of existing cosine similarity measures de-
fined in vector space in some situations. Ye [37] men-
tioned that the defined function may produce absurd result 
in some real cases. In order to overcome theses 
disadvantages, Ye [37] proposed improved cosine similari-
ty measures based on cosine function, including single-
valued neutrosophic cosine similarity measures and inter-
val valued neutrosophic cosine similarity measures. In his 
study, Ye [37] proposed medical diagnosis strategy based 
on the improved cosine similarity measures. Ye and Fu 
[38] further studied  medical diagnosis problem namely, 
multi-period medical diagnosis using a single-valued 
neutrosophic similarity measure based on tangent function. 
Recently, Biswas et al. [39] studied cosine similarity 
measure based multi-attribute decision-making with 
trapezoidal fuzzy neutrosophic numbers. In hybrid 
environment, Pramanik and Mondal [40] proposed cosine 
similarity measure of rough neutrosophic sets and provided 
its application in medical diagnosis.  Pramanik and Mondal 
[41] also proposed cotangent similarity measure of rough 
neutrosophic sets and its application to medical diagnosis. 

Pramanik and Mondal [42] proposed weighted fuzzy 
similarity measure based on tangent function and its 
application to medical diagnosis. Pramanik and Mondal 
[43] also proposed tangent similarity measures between 
intuitionistic fuzzy sets and studied some of its properties 
and applied it for medical diagnosis. Mondal and Pramanik 
[44] also proposed tangent similarity measures between 
single-valued neutrosophic sets and studied some of its 
properties and applied in decision making. 

Research gap: MADM strategy using similarity measure 
based on tangent function under interval neutrosophic 
environment is yet to appear. 

Research questions: 

 Is it possible to define a new similarity measure
between interval neutrosophic sets using tangent
function?

 Is it possible to develop a new MADM strategy
based on the proposed similarity measure in
interval neutrosophic environment?

Having motivated from the above researches on 
neutrosophic similarity measures, we have extended the 
concept of neutrosophic tangent similarity measure [44] to 
interval valued neutrosophic environment. We have 

defined a new similarity measure called “interval valued 
tangent similarity measure’’ for interval valued 
neutrosophic sets. The properties of similarity are 
established. We establish a multi-attribute decision making 
strategy based on the interval valued tangent similarity 
measure. The proposed tangent similarity measure based 
MADM strategy is applied to money investment decision 
making problem.  

The objectives of the paper: 

 To define tangent similarity measures for interval
valued neutrosophic set environment and prove its
basic properties.

 To develop a multi-attribute decision making
strategy based on proposed similarity measures.

 To present a numerical example for the effectiveness
of the proposed strategy.

      Rest of the paper is structured as follows.  Section 2 
presents neutrosophic preliminaries. In Section 3 we pre-
sent tangent similarity measure for interval valued neutro-
sophic sets and prove some of its properties. Section 4 is 
devoted to presents multi attribute decision-making based 
on interval valued neutrosophic tangent similarity measure. 
Section 5 presents the application of the proposed multi at-
tribute decision-making strategy to a problem, namely, 
money investment of an Indian government employee after 
a financial year. Section 6 conducts a comparative analysis 
of the approach to other existing strategies. Section 7 pre-
sents the contributions of the paper. Finally, Section 8 pre-
sents concluding remarks and scope for future research.  

2 Neutrosophic preliminaries 

2.1 Neutrosophic sets 

Assume that X be an universe of discourse. Then the neu-
trosophic set [1] P can be presented of the form: P = {< x: 
TP(x), IP(x), FP(x)>, x X},  where  the functions T, I, F: 
X→ ]−0,1+[ define  respectively the degree of  membership, 
the degree  of indeterminacy, and the degree of  non-
membership of the element xX to the set P satisfying the 
following the condition 

−0 ≤ supTP(x) + supIP( x) + supFP(x) ≤ 3+ . 

For two netrosophic sets (NSs), PNS = {<x: TP(x), IP(x), 
FP(x) > | x X} and QNS ={< x, TQ(x), IQ(x), FQ(x) > | x X 
} the two relations are defined as follows:  

(1) PNS  QNS if and only if TP(x )  TQ(x), IP(x)  IQ(x), 
FP(x)  FQ(x) 

(2)  PNS = QNS if and only if TP(x) = TQ(x), IP(x) = IQ(x), 
FP(x) = FQ(x)  
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2.2 Single valued neutrosophic sets (SVNS) 

Assume that X be a space of points with generic element in 
X denoted by x. A SVNS [5] P in X is characterized by a 
truth-membership function TP(x), an indeterminacy-
membership function IP(x), and a falsity membership 
function FP(x), for each point x in X, TP(x),  IP(x), 
FP(x) [0, 1]. When X is continuous, a SVNS P can be 
written as follows:  

Xx
x

xFxIxT
P

x

PPP 


 :)(),(),(

When X is discrete, a SVNS P can be written as follows: 

Xx
x

xFxIxT
P i

n
i

i

iPiPiP



  :)(),(),(

1

For two SVNSs , P = {<x: TP(x), IP(x), FP(x)> | x X} and 
Q = {<x, TQ(x), IQ(x), FQ(x)> | xX } the two relations are 
defined as follows: 

(1) P Q if and only if TP(x)  TQ(x), IP(x)  IQ(x), FP(x 
)  FQ( x) 

(2) P = Q if and only if TP(x) = TQ(x), IP(x) = IQ(x), 
FP(x) = FQ(x) for any xX  

2.3 Interval valued neutrosophic sets (IVNS) 

Assume that X be a space of points with generic element 
xX. An interval valued neutrosophic set [4] A in X is 
characterized by truth-membership function TA(x), inde-
terminacy-membership function IA(x), and falsity-
membership function FA(x). TA(x), IA(x), FA(x) are consid-
ered as interval form. 

We have, TA(x), IA(x), FA(x)[0, 1] for all xX. 
Assume that  
A = {<x,  )](),([)],(),([)],(),([ xFxFxIxIxTxT

U
A

L
A

U
A

L
A

U
A

L
A > 

| x X} and 
B = {<x,  )](),([)],(),([)],(),([ xFxFxIxIxTxT

U
B

L
B

U
B

L
B

U
B

L
B > 

| xX} be two IVNS. Then the following  relations are 
defined as follows:  
 A   B if and only if TT
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for all xX

3 Tangent similarity measures for interval valued 
neutrosophic sets 

Definition 1: Assume that 
A=      )x(F),x(F,)x(I),x(I,)x(T),x(T i

U
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L
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L
B be any 

two interval valued neutrosophic sets. Now, similarity 
measure based on tangent function between two interval 
valued neutrosophic sets is defined as follows: 

TIVNS(A,B)=
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Theorem 1: 

The defined tangent similarity measure TIVNS(A, B) between 
IVNS A and B satisfies the  following properties: 
     1.1.   0   TIVNS (A, B)  1 
     1.2.  TIVNS(A, B) = 1 if and only if A = B 
     1.3.  TIVNS(A, B) = TIVNS(B, A) 
     1.4.  If C is a IVNS in X and ABC then 
       TIVNS(A, C)   TIVNS(A, B) and TIVNS(A, C)  TIVNS(B, 
C). 

Proofs: 

1.1. Tangent function is monotonic incresing in the 
interval ]4,0[  . It also lies in the interval [0, 1]. 
Therefore, 0  TIVNS(A, B)  1.      
1.2.  For any two IVNS A and B and 10  , 
A = B 

 )( iA xT
 = )( iB xT

 , )( iA xI
 = )( iB xF

 , )( iA xF
 = )( iB xF



 0)()(  iBiA xTxT
 , 0)()(  iBiA xIxI

 , 

0)()(  iBiA xFxF
  

Therefore, TIVNS(A, B) = 1. 

Conversely, 

TIVNS(A, B) = 1 
 0)()(  iBiA xTxT

 , 0)()(  iBiA xIxI
 , 

0)()(  iBiA xFxF


 )( iA xT
 = )( iB xT

 , )( iA xI
 = )( iB xF

 , )( iA xF
 = )( iB xF



Therefore A = B.
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1.3.TIVNS(A,B)=
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      = TIVNS(B, A) 
1.4. If ABC 
then )( iA xT
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for xX. Now, we have the inequalities:
)()()()( iCiAiBiA xTxTxTxT

  , 

)()()()( iCiAiCiB xTxTxTxT
  ; 

)()()()( iCiAiBiA xIxIxIxI
  , 

)()()()( iCiAiCiB xIxIxIxI
  ; 

)()()()( iCiAiBiA xFxFxFxF
  , 

)()()()( iCiAiCiB xFxFxFxF
  . 

From eqn (1), we can say that TIVNS(A, C)   TIVNS(A, B)
and TIVNS(A, C)   TIVNS(B, C).

Definition 2:  Assume that 
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| x X}be any two interval valued neutrosophic sets.  
Now, weighted similarity measure based on tangent 
function between two interval valued neutrosophic sets is 
defined as follows: 
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Theorem 2: 

The weighted tangent similarity measure TW-IVNS(A,B) 
between IVNS A and B satisfies the following properties: 

2.1.  0  TW-IVNS(A, B)  1
2.2.  TW-IVNS(A, B) = 1 if and only if A = B 
2.3.  TW-IVNS(A, B) = TW-IVNS(B, A) 
2.4.  If C is a IVNS in X and ABC then 
TW-IVNS(A, C)   TW-IVNS(A, B) and

TW-IVNS(A, C)   TW-IVNS(B, C).

Proofs: 

2.1.  Tangent function is monotonic incresing in the 
interval ]4,0[  . It also lies in the interval [0, 1] and
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2.4. If ABC 
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)()()()( iCiAiCiB xFxFxFxF
  . From eqn (2), we 

can say that TW-IVNS(A, C)  TW-IVNS(A, B) and
TW-IVNS(A, C)   TW-IVNS(B, C).

50 Neutrosophic Sets and Systems, Vol. 19, 2018



Neutrosophic Sets and Systems, Vol. 19, 2018 51

Kalyan Mondal, Surapati Pramanik and Bibhas. C. Giri, Interval Neutrosophic Tangent Similarity Measure Based MADM 
Strategy and Its Application to MADM Problems  

The following notations are adopted in the paper. 

P = {P1, P2, ..., Pm}(m  2) is the set of alternatives 
C = {C1, C2, ..., Cn} (n  2) is the set of attributes. 
The decision maker provides the ranking of alternatives 
with respect to each attribute. The ranking presents the per-
formances of alternatives Pi (i = 1, 2,..., m) based on the at-
tributes Cj (j = 1, 2, ..., n). The values associated with the al-
ternatives for multi- attributes decision making problem can 
be presented in the following decision matrix (see Table 
1). The relation between alternatives and attributes in terms 
of IVNSs are given in the following decision matrix (see 
Table 1):  

Table 1: The decision matrix 
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n) are interval valued neutrosophic sets. Multi attributes de-
cision making procedure based on tangent similarity meas-
ure in interval valued neutrosophic environment is present-
ed using the following steps. 

Step 1: Determine the decision matrix in terms of SVNSs                 

Decision matrix in terms of SVNSs is constructed with 
the transformation

ij = 
U
ij

L
ij )1(  , 

 where FIT ,, ; i = 1, 2, ..., m; j = 1, 2, ..., n and 
10  . 

Table 2: Decision matrix in terms of SVNSs
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where FIT ,, ; i = 1, 2, ..., m; j = 1, 2, ..., n and 
10  .

Step 2: Determine the benefit type attributes and cost type 

attributes 

Generally, the attributes can be categorized into two types: 
benefit attributes and cost attributes. In the proposed 
decision making strategy, an ideal alternative can be 
identified by using a maximum operator for the benefit 
attributes and a minimum operator for the cost attributes to 
determine the best value of each attribute among all 
alternatives. Therefore, we define an ideal alternative as 
follows: 
 P* = {C1*, C2*, … , Cm*},  
Here the benefit attributes is 







)()()(* min,min,max Pi

jC
i

Pi

jC
i

Pi

jC
i

j FITC
  (3) 

and the cost attributes is 

 )Pi(
jC

i

)Pi(
jC

i

)Pi(
jC

i
*
j Fmax,Imax,TminC  (4)

Step 3: Calculate of the measure values between ideal al-
ternatives and decision elements 

Calculate tangent similarity measures (choosing various 
values of  ) between ideal alternatives and the decision 
elements of Table 2 using eqn.(1). 

Step 4: Determine the weights of the attributes 

The importance of all the attributes may or may not be 
same in decision making context.  The decision maker may 
use normalized weights or differential weights for 
attributes based on his/her needs and practical decision 
making situation. If the attributes are assumed as extremely 
importance to the decision maker, then the weight of each 
attribute will be taken as 1/n where n is the number of 
attributes. 

Step 5: Determination of the accumulated measure values 

To aggregate the similarity measures corresponding to 
each alternative, we define accumulated measure function 
(AMF) as follows: 

*),(.
1

PPTwD ij

n

j
IVNSj

i
AMF 



         (5) 

Step 6: Ranking the alternatives 

Ranking the alternatives is prepared based on the descend-
ing order of accumulated measure values. Highest value re-
flects the best alternative. 

Step 7: End 

5 Numerical example 

Consider the illustrative example, which is very im-
portant for Indian government employees after a financial 
year to select suitable money Investment Company for 
more tax rebate and more return value after investment 
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span. For a financial year, every government employee de-
sires to invest a sum of money to reduce his/her annual in-
come tax amount and to place the money in more secure 
investment company. This is the crucial time when most of 
the government employee gets confused too much and 
takes a decision which he/she starts to dislike later. Em-
ployees often confuse to decide which money Investment 
Company should choose. If the chosen Investment Com-
pany is improper, the employee may encounter a negative 
impact to his/her future economical condition. It is very 
important for any employee to choose carefully from vari-
ous options available to him/her in which he/she is inter-
ested. So, it is necessary to utilize a suitable mathematical 
decision making strategy. 

The feature of the proposed strategy is that it includes 
interval valued truth membership, interval valued indeter-
minate and interval valued falsity membership function 
simultaneously. Assume that, a government employee de-
termines to invest a sum of money to a suitable investment 
sector, namely, Public provident fund (S1), Postal Life in-
surance (S2), Stock Market (S3). The employee must invest 
his/her money with respect to the attributes, namely, 
Growth analysis (C1), Risk analysis (C2), Government 
norms and regulation (C3). Our solution is to make deci-
sion to choose suitable money Investment Company. The 
values associated with the alternatives for multi- attributes 
decision-making problem can be presented in the following 
decision matrix: 

  Table 3: The decision matrix 
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The decision making calculation is presented using the fol-
lowing steps: 

Step 1: Determine the decision matrix in terms of SVNS 

Each element of IVNS in Table 3 is transformed to an ele-
ment of SVNS. This transformation is shown in Table 4. 

Table 4: Relation between alternatives and attributes 
in terms of SVNSs 
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Step 2: Determine the benefit type attributes and cost type 
attributes 

C1, C3 are treated as benefit type attributes and C2 is 
treated as cost type attributes. Using Table 2, eqn.(3) and 
eqn.(4), we calculate ideal alternative solutions as follows 
(Table 5): 

Table 5: Ideal alternative solutions 

P* 

        C1 C2 C3 

0.1 [0.78, 0.38, 
0.48] 

[0.28, 
0.58, 0.66] 

[0.76, 
0.48, 0.46] 

0.2 [0.76, 0.36, 
0.46] 

[0.26, 
0.56, 0.62] 

[0.72, 
0.46, 0.42] 

0.3 [0.74, 0.34, 
0.44] 

[0.24, 
0.54, 0.58] 

[0.68, 
0.44, 0.38] 

0.4 [0.72, 0.32, 
0.42] 

[0.22, 
0.52, 0.54] 

[0.62, 
0.42, 0.34] 

0.5 [0.70, 0.30, 
0.40] 

[0.20, 
0.50, 0.50] 

[0.60, 
0.40, 0.30] 

0.6 [0.58, 0.28, 
0.38] 

[0.18, 
0.48, 0.46] 

[0.56, 
0.38, 0.26] 

0.7 [0.66, 0.26, 
0.36] 

[0.16, 
0.32, 0.42] 

[0.56, 
0.36, 0.22] 

0.8 [0.64, 0.24, 
0.34] 

[0.14, 
0.44, 0.38] 

[0.54, 
0.34, 0.18] 

0.9 [0.62, 0.22, 
0.32] 

[0.12, 
0.42, 0.34] 

[0.52, 
0.32, 0.14] 

Step 3: Calculate the measure values between ideal alter-
natives and decision elements 

Using eqn. (1), we calculate tangent similarity 
measures for different values of  between ideal alterna-
tives (Table 5) and the decision elements in Table 4 (see 
Table 6).  

Step 4: Determine the weights of the attributes 

We take each attribute weight as wi =1/3 (i = 1, 2, 3). 

Step 5: Determine the accumulated measure values 
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Using eqn. 5, we calculate AMF values as follows (Table 
7). 

Table 7: Ranking results (with equal attributes 
weights) 

Proposed 

strategy
 Measure values Ranking 

orders 

TIVNS(P, P*) 

0.1 0.9633; 0.8964; 

0.9386 

S1  S3  S2 

0.2 0.9615; 0.8982; 

0.9386 

S1  S3  S2 

0.3 0.9598; 0.9000; 

0. 9386

S1  S3  S2 

0.4 0.9562; 0.9036; 

0.9404 

S1  S3  S2  

0.5 0.9562; 0.9036, 

0.9616 

S3  S1  S2 

0.6 0.9545; 0.9107; 

0.9386 

S1  S3  S2 

0.7 0.9369;0.9070, 

0.9475 

S3  S1  S2 

0.8 0.9456; 0.9036; 

0.9333 

S1  S3  S2 

0.9 0.9420; 0.9036, 

0.9316 

S1  S3  S2 

Step 6: Ranking the alternatives 

Ranking of the alternatives is prepared based on the 
descending order of accumulated measure values. 
When ,9.0,8.0,6.0,4.0,3.0,2.0,1.0 Public provident 
fund (S1) is the best alternative to invest money (see Table 
7). When ,7.0,5.0  Stock market (S3) is the best alter-
native to invest money (see Table 7). 

6 Comparative analysis 

For the sake of validating the flexibility and feasibility of 
the proposed strategy, a comparative study is conducted. In 
order to do so, different existing strategies are used to 
solve the same decision-making problem with the interval 
valued neutrosophic information. Literature review reflects 
that Broumi and Smarandache [36] proposed cosine 

similarity measure of interval valued neutrosophic sets. Ye 
[35] proposed Similarity measures between interval 
neutrosophic sets and apply in multicriteria decision-
making. Şahin [45] proposed cross-entropy measure on 
interval valued neutrosophic sets and presenter its 
applications in multicriteria decision making. Table 8 
shows that the ranking results obtained from different 
strategy differ. Ranking results from proposed strategy 
with 9.0,8.0,6.0,4.0,3.0,2.0,1.0 are similar to the 
ranking result of cosine similarity measure [36] (Broumi 
and Smarandache, 2014). Ranking results obtained from 
proposed strategy with 7.0,5.0 are similar to the 
ranking results of Ye`s strategy (Ye, 2014d) and cross 
entropy strategy [45].  

Table 8: The ranking results of different strategies 

strategies Ranking 
results 

Proposed strategy with 
9.0,8.0,6.0,4.0,3.0,2.0,1.0

S1  S3  S2 

Proposed strategy with 7.0,5.0  S3  S1  S2 
Cosine similarity measure (Broumi and 
Smarandache, [36] 

S1  S2  S3 

Ye [35] S3  S1  S2  

Cross entropy strategy  [45] S3  S1  S2 

7. Contributions of the paper

 We define tangent similarity measures for IVNS.
We have also proved their basic properties.

 We developed a decision making strategy based
on the proposed weighted tangent similarity
measure.

 Steps and calculations of the proposed strategy are
easy to use.

 We have solved a numerical example to show the
applicability of the proposed strategy.

8. Conclusion

In this paper, we have defined tangent similarity measure 
and proved its properties in interval valued neutrosophic 
environment. We also also developed a novel multi 
attribute decision making strategy based on the proposed 
tangent similarity measure in interval valued neutrosophic 
environment. We have presented an application, namely, 
selection of best investment sector for an Indian 
government employee. We also presented a comparative 
analysis with the existing strategies in the literature.The 
concept presented in this paper can be applied  in teacher 
selection, school choice, medical diagnosis, pattern 
rcognition, purchasing decision making, commodity 
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recommendation in interval valued neutrosophic 
environment. It is worth of further study to formulate a 
multi attribute decision making strategy that considers the 
priority of attributes. 
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Table 6: Tangent similarity measure values 

1.0  2.0 3.0  
C1 C2 C3 C1 C2 C3 C1 C2 C3 

S1 1.0000 0.9738 0.9160 1.0000 0.9738 0.9108 1.0000 0.9738 0.9055 
S2 0.8683 0.9686 0.8523 0.8683 0.9633 0.8630 0.8683 0.9581 0.8737 
S3 0.9738 0.8683 0.9738 0.9738 0.8683 0.9738 0.9738 0.8683 0.9738 

4.0 5.0 6.0
C1 C2 C3 C1 C2 C3 C1 C2 C3 

S1 1.0000 0.9738 0.8949 1.0000 0.9738 0.8949 1.0000 0.9738 0.8896 
S2 0.8683 0.9528 0.8896 0.8683 0.9476 0.8949 0.8949 0.9423 0.8949 
S3 0.9738 0.8683 0.9790 0.9738 0.9371 0.9738 0.9738 0.8683 0.9738 

7.0 8.0 9.0
C1 C2 C3 C1 C2 C3 C1 C2 C3 

S1 1.0000 0.9371 0.8737 1.0000 0.9738 0.8630 1.0000 0.9738 0.8523 
S2 0.8683 0.9738 0.8790 0.8683 0.9318 0.9108 0.8949 0.9266 0.9160 
S3 0.9738 0.9055 0.9633 0.9738 0.8683 0.9580 0.9738 0.8683 0.9528 

56 Neutrosophic Sets and Systems, Vol. 19, 2018

Received : January 30, 2018. Accepted : March 19, 2018.



Neutrosophic Sets and Systems, Vol. 19, 2018  57 

Surapati Pramanik, Shyamal Dalapati, Shariful Alam, Tapan Kumar Roy, VIKOR Based Multi Attribute Group Decision 
Making strategy under Bipolar Neutrosophic Set Environment 

University of New Mexico 

VIKOR Based MAGDM strategy under Bipolar 
Neutrosophic Set Environment 

Surapati Pramanik1, Shyamal Dalapati2, Shariful Alam3, Tapan Kumar Roy4, 

1 Department of Mathematics, Nandalal Ghosh B.T. College, Panpur, P.O.-Narayanpur, District –North 24 Parganas, Pin code-743126, West Bengal, India. E-mail: sura_pati@yahoo.co.in 
2 Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, P.O.-Botanic Garden, Howrah-711103, West Bengal, 

India. E-mail: dalapatishyamal30@gmail.com 
3 Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, P.O.-Botanic Garden, Howrah-711103, West Bengal, 

India. E-mail: salam50in@yahoo.co.in 
4Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, West Bengal, India

Abstract. In this paper, we extend the VIKOR 
(VIsekriterijumska optimizacija i KOmpromisno Resenje) 
strategy to multiple attribute group decision-making 
(MAGDM) with bipolar neutrosophic set environment. In 
this paper, we first define VIKOR strategy in bipolar 
neutrosophic set environment to handle MAGDM 
problems, which means we combine the VIKOR with 
bipolar neutrosophic number to deal with MAGDM. We 

propose a new strategy for solving MAGDM. Finally, we 
solve MAGDM problem using our newly proposed 
VIKOR strategy under bipolar neutrosophic set 
environment. Further, we present sensitivity analysis to 
show  the impact of different values of  the decision 
making mechanism coefficient on ranking order of the 
alternatives.

Keywords: Bipolar neutrosophic sets, VIKOR strategy, Multi attribute group decision making.

1 Introduction 

In 1965, Zadeh [1] first introduced the fuzzy set to deal 
with the vague, imprecise data in real life specifying the 
membership degree of an element. Thereafter, in 1986 
Atanassov [2] introduced intuitionistic fuzzy set to tackle 
the uncertainity in data in real life expressing membership 
degree and non-membership degree of an element as 
independent component. As a generalization of classical 
set, fuzzy set and intuitionistic fuzzy set, Smarandache [3] 
introduced the neutrosophic set by expressing the 
membership degree (truth membership degree), 
indeterminacy degree and non-membership degree (falsity 
membership degree) of an element independently. For real 
applications of neutrosophic set, Wang et al. [4] introduced 
the single valued neutrosophic set which is a sub class of 
neutrosophic set. 
Decision making process involves seleting the best 
alternative from the set of feasible alternatives. There exist 
many decision making strategies in crisp set 
environment[5-7], fuzzy [8-12], intuitionistic fuzzy set 
environment [13-19]. vauge set environment [20, 21]. 
Theoretical as well as practical applications multi attribute 
decision making (MADM) of SVNS environment [22-42] 
and interval neutrosophic set (INS) environment [43-56] 
have been reported in the literaure. Recently, decision 

making in hybrid neutrosophic set environment have 
drawn much attention of the researches such as rough 
neutrosophic environment [57-73], neutrosophic soft set 
environment [74-80], neutrosophic soft expert set 
environment [81-82], neutrosophic hesitant fuzzy set 
environment [83-87], neutrosophic refined set environment 
[88-93], neutrosophic cubic set environment [94-104], etc. 
In 2015, Deli et al. [105] proposed bipolar neutrosophic set 
(BNS) using the concept of bipolar fuzzy sets [106, 107] 
and neutrosophic sets [3]. A BNS consists of two fully 
independent parts, which are positive membership degrees 
T+   [0, 1], I+   [0, 1], F+   [0, 1], and negative 
membership degrees T-   [-1, 0], I-   [-1, 0], F-   [-1, 
0] where the positive membership degrees T+, I+, F+

represent truth membership degree, indeterminacy 
membership degree and false membership degree 
respectively of an element and the negative membership 
degrees T-, I-, F- represent truth membership degree, 
indeterminacy membership degree and false membership 
degree respectively of an element to some implicit counter 
property corresponding to a BNS. Deli et al. [105] defined 
some operations namely, score function, accuracy function, 
and certainty function to compare BNSs and provided 
some operators in order to aggregate BNSs. Deli and Subas 
[108] defined correlation coefficient similarity measure for 
dealing with MADM problems under bipolar set 
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environment. Şahin et al. [109] proposed Jaccard vector 
similarity measure for MADM problems under bipolar 
neutrosophic set environment. Uluçay et al. [110] 
presented Dice similarity measure, weighted Dice 
similarity measure, hybrid vector similarity measure, 
weighted hybrid vector similarity measure for BNSs and 
established a MADM strategy by employing the proposed 
similarity measures. Dey et al. [111] established TOPSIS 
strategy for MADM problems with bipolar neutrosophic 
information where the weights of the attributes are 
completely unknown to the decision maker. Pramanik et 

al. [112] defined projection, bidirectional projection and 
hybrid projection measures for BNSs and proved their 
basic properties. In the same study, Pramanik et al. [112], 
proposed three new MADM strategies based on the 
proposed projection, bidirectional projection and hybrid 
projection measures with bipoar neutrosophic information. 
Wang et al. [113] defined Frank operations of bipolar 
neutrosophic numbers (BNNs) and proposed Frank bipolar 
neutrosophic Choquet Bonferroni mean operators by 
combining Choquet integral operators and Bonferroni 
mean operators based on Frank operations of BNNs. In the 
same study, Wang et al. [113] developed MADM strategy 
based on Frank Choquet Bonferroni operators of BNNs in 
bipolar neutrosophic environment. Recently, many 
researcher has given attention to develop various strategies 
under bipolar neutrosophic set environment in various 
fields [114-117]. 
Opricovic [118] proposed the VIKOR strategy for a 
MCDM problem with conflicting attributes [119-120]. In 
2015, Bausys and Zavadskas [121] proposed VIKOR 
strategy to solve multi criteria decision making problem in 
interval neutrosophic set environment. Further, Hung et al. 
[122] proposed VIKOR strategy for interval neutrosophic 
multi attribute group decision making (MAGDM). 
Pouresmaeil et al. [123] proposed a MAGDM strategy 
based on TOPSIS and VIKOR strategies in single valued 
neutrosophic set environment. Liu and Zhang [124] 
extended VIKOR strategy in neutrosophic hesitant fuzzy 
set environment. Hu et al. [125] proposed interval 
neutrosophic projection based VIKOR strategy and applied 
it for doctor selection. Selvakumari et al. [126] proposed 
VIKOR strategy for decision making problem using 
octagonal neutrosophic soft matrix.  
VIKOR strategy in bipolar neutrosophic set is yet to ap-
pear. 

Research gap: 

VIKOR based MAGDM strategy in BNS environ-
ment. This study answers the following research questions: 
i. Is it possible to extend VIKOR strategy in BNS
environment? 

ii. Is it possible to develop a new VIKOR based MAGDM
strategy in BNS environment? 

 Motivation: 

The above-mentioned analysis [118-126] describes the mo-
tivation behind proposing a novel VIKOR strategy for 
MAGDM in the BNS environment. This study develops a 
novel VIKOR strategy for MAGDM that can deal with 
multiple decision-makers. 

The objectives of the paper are: 
i. To extend VIKOR strategy in BNS environment.
ii. To develop a new MAGDM strategy based on proposed
VIKOR strategy in BNS environment. 
To fill the research gap, we propose VIKOR based 
strategy, which is capable of dealing with MAGDM 
problem in BNS environment. 

The main contributions of this paper are 
summarized below: 

i. We extend VIKOR strategy in bipolar neutrosophic envi-
ronment. 
ii. We introduce a bipolar neutrosophic weighted aggrega-
tion operator and prove its basic properties. 
iii. We develop a novel VIKOR based MAGDM strategy
in bipolar neutrosophic set environment to solve MAGDM 
problems.  
iv. In this paper, we solve a MAGDM problem based on
proposed VIKOR strategy. 

The remainder of this paper is organized as follows: In the 
Section 2, we review some basic concepts and operations 
related to neutrosophic set, single valued neutrosophic set 
(SVNS), bipolar neutrosophic set. In Section 3, we propose 
the bipolar neutrosophic number weighted aggregation 
(BNNWA) operator and  prove its basic properties.  In 
section 4, we develop a novel MAGDM strategy based on 
VIKOR strategy to solve the MADGM problems with 
bipolar neutrosophic information. In Section 5,  we present 
an example to illustrate the proposed strategy. Then in 
Section 6, we present the sensitivity analysis to show  the 
impact of different values of  the decision making 
mechanism coefficient on ranking order of the 
alternatives.. In section 7,  we present conclusion and 
future direction of research.  

2. Preliminaries

In this section, we describe the basic definitions related to 
neutrosophic sets, bipolar neutrosophic sets.  

Definition 2.1 Neutrosophic set 

 Let U be a space of points (objects), with a generic 
element in U denoted by u. A neutrosophic sets [3] A in U 
is characterized by a truth-membership function )u(TA , an
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indeterminacy-membership function )u(IA and a falsity-

membership function )u(FA ,

where, )u(TA , )u(IA , )u(FA : [1,0]U  .  
Neutrosophic set A can be written as: 
A = { u, < )u(TA , )u(IA , )u(FA >: u ∈U}, 
where, )u(TA , )u(IA , )u(FA ∈ [,0] 1 . 
The sum of )u(TA , )u(IA , )u(FA is 
 0 ≤ )u(TA  + )u(IA + )u(FA  ≤ 3 . 

Definition 2.2: Single valued neutrosophic set  

Let U be a space of points (objects) with a generic element 
in U denoted by u. A single valued neutrosophic set [4] J in 
U is characterized by a truth-membership function )u(TJ , 
an indeterminacy-membership function )u(IJ and a falsity-
membership function )u(FJ , where, 

)u(TJ , )u(IJ , )u(FJ : ]1,0[U . A single valued 
neutrosophic set J can be expressed by 
J = {u,< ( )u(TJ , )u(IJ , )u(FJ )>: uU}. 
Therefore for each uU, )u(TJ , )u(IJ , )u(FJ [0, 1] the
sum of three functions lies between 0 and 1, i.e. 
0 )u(TJ + )u(IJ + )u(FJ  3. 

Definition 2.3: Bipolar neutrosophic set 

Let U be a space of points (objects) with a generic element 
in U denoted by u. A bipolar neutrosophic set [105] H in U 
is defined as an object of the form 

}Uu:)u(F),u(T),u(T),u(F),u(I),u(T,u{H HHHHHH   , where, 

]1,0[U:)u(F),u(I),u(T HHH   and 

]0,1[U:)u(F),u(I),u(T HHH  . 
We denote 

}Uu:)u(F),u(I),u(T),u(F),u(I),u(T,u{H HHHHHH   s

imply H =  

HHHHHH F,I,T,F,I,T as a bipolar 
neutrosophic number (BNN). 

Definition 2.4 Containment of two bipolar 
neutrosophic sets  [105]   

Let 
}Uu:)u(F),u(I),u(T),u(F),u(I),u(T,u{H 1111111    

and 
}Uu:)u(F),u(I),u(T),u(F),u(I),u(T,u{H 2222222   be 

any two bipolar neutrosophic sets in U. Then HH 21  iff 
)u(T)u(T 21

  , )u(I)u(I 21
  , )u(F)u(F 21

  and 

)u(T)u(T 21
  , )u(I)u(I 21

  , )u(F)u(F 21
  for all .Uu  

Definition 2.5 Equality of two bipolar 
neutrosophic sets [103] 

Let
}Uu:)u(F),u(I),u(T),u(F),u(I),u(T,u{H 1111111    

and 
}Uu:)u(F),u(I),u(T),u(F),u(I),u(T,u{H 2222222    

be any two bipolar neutrosophic sets in U. Then, 

21 HH  iff )u(T)u(T 21
  , )u(I)u(I 21

  , 
)u(F)u(F 21

  and )u(T)u(T 21
  , )u(I)u(I 21

  , 
)u(F)u(F 21

  for all .Uu  

Definition 2.6 Union of any two bipolar 
neutrosophic sets [105]   

Let }Uu:)u(F),u(I),u(T),u(F),u(I),u(T,u{H 1111111   and 
}Uu:)u(F),u(I),u(T),u(F),u(I),u(T,u{H 2222222   be any 

two bipolar neutrosophic sets in U. Then, their union is 
defined as follows:  

  U.u allfor },Uu:))u(F),u(F(max
)),u(I),u(I(max)),u(T),u(T(min

)),u(F),u(F(min)),u(I),u(I(min
,))u(T),u(T(max,u{)u(H)u(H)u(H

21

2121

2121

21213













Definition 2.7 Intersection of two bipolar 
neutrosophic sets 
Let }Uu:)u(F),u(I),u(T),u(F),u(I),u(T,u{H 1111111   and 

}Uu:)u(F),u(I),u(T),u(F),u(I),u(T,u{H 2222222   be any 
two bipolar neutrosophic sets  in U. Then, their intersection 
[105] is defined as follows: 

 U.u allfor }Uu:))u(F),u(F(min
)),u(I),u(I(min)),u(T),u(T(max
)),u(F),u(F(max)),u(I),u(I(max

,))u(T),u(T(min,u{)u(H)u(H)u(H

21

2121

2121

21214













Definition 2.8 Complement of a bipolar 
neutrosophic set [105] 

Let }Uu:)u(F),u(I),u(T),u(F),u(I),u(T,u{H 1111111   be 
a bipolar neutrosophic set in U. Then the complement of 

1H is denoted by c
1H and is defined by 

}Uu:)u(F}1{),u(I}1{

),u(T}1{),u(F1),u(I1),u(T1,u{H

11

1111
c
1









 U.u allfor 

Definition 2.13 Hamming distance measure 
between two BNNs [115] 

Let   FITFIT 1111111 ,,,,,h and

  FITFIT 2222222 ,,,,,h  be any two BNNs in U. 
Then Hamming distance measure between h1 and h2 is 



 Surapati Pramanik, Shyamal Dalapati, Shariful Alam, Tapan Kumar Roy, VIKOR Based Multi Attribute Group Decision 
Making strategy under Bipolar Neutrosophic Set Environment 

denoted by )h,D(h 21 and  defined as follows: 

]FFIITTFFIITT[
6
1

)h,h(D

212121212121

21

 


   (1) 

Definition 2.14: Normalization procedure 

In decision making situation, cost type attribute and benefit 
type attribute may exist simultaneously. Assume that, 

ijh be a BNN to express the rating value of i-th alternative
with respect to j-th attribute (cj). If cj belongs to the cost 
type attributes, then ijh  should be standardized by 

employing the complement of BNN ijh . When the attribute 

cj belongs to benefit type attributes, ijh  does not need to be 
standardized, we use the following formula of 
normalization as follows: 









FIT

FIT

ijijij

ijijij
*
ij

}1{,}1{,}1{
,}1{,}1{,}1{h

 (2) 

3. Bipolar neutrosophic number weighted
aggregation operator 

Let }h..,.,h,h{ t
ij

2
ij

1
ij be the set of t bipolar neutrosophic 

numbers and }...,,,,{ t321  be the set of corresponding 
weights of t bipolar neutrosophic numbers with conditions 

p 0 and 1
t

1p
p 



. Then the bipolar neutrosophic number 

weighted aggregation (BNNWA) operator is defined as 
follows:  

  )h
~

 ...h
~

h
~

(BNNWAh t
ij

2
ij

1
ijij

)h~...h~h~h~( t
ij

3
ij3

2
ij2

1
ij1  = 









 
 


















t

1p

t

1p

)p(
ijp

t

1p

)p(
ijp

t

1p

)p(
ijp

t

1p

)p(
ijp

t

1p

)p(
ijp

)p(
ijp F~,I~,T~,F~,I~,T~                                                                        

     (3) 
The BNNWA operator satisfies the following properties: 
1. Idempotency
2. Monotoncity
3. Boundedness

Property: 1. Idempotency 

If all hh, ..,.h,h t
ij

2
ij

1
ij  are equal, then 

h)h, ..,.h,h(BNNWAh t
ij

2
ij

1
ijij  

Proof: 

Since hh ...hh t
ij

2
ij

1
ij  , based on the Equation (3) 

and with conditions, p 0 and 1
t

1p
p 



, we obtain 

  )h, ..,.h,h(BNNWAh t
ij

2
ij

1
ijij

)h...hhh( t
ijt

3
ij3

2
ij2

1
ij1  =

)h...hhh( t321  =





 




 

 











 


t

1p

t

1p
p

t

1p
pp

t

1p
p

t

1p

t

1p
pp ]F,I,T,F,I,T[

=  .h)F,I,T,F,I,T  

Property: 3. Monotonicity 

Assume that }h, ..,h,h{ t
ij

2
ij

1
ij and }h, ..,h,h{ t*

ij
2*

ij
1*

ij be 
any two set of collections of t bipolar neutrosophic nubers 
with the condition p*

ij
p
ij tt  (p = 1, 2, ..., t), then 

).h..,,.h,h(BNNWA)h,..,.h,h(BNNWA t*
ij

2*
ij

1*
ij

t
ij

2
ij

1
ij  

Proof: 

From  the given condition TT )p(*
ij

)p(
ij

  , we have 

TT p
)p(*

ijp
)p(

ij












t

1p
p

)p(*
ij

t

1p

)p(
ijp TT . 

From  the given condition II )p(*
ij

)p(
ij

  , we have 

II p
)p(*

ij
)p(

ijp 










t

1p
p

)p(*
ij

t

1p

)p(
ijp II . 
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From the above relations, we obtain 
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2
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1
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).h ..,,.h,h(BNNWA)h..,,.h,h(NCNWA t*
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ij
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1
ij  

Property: 2. Boundedness 

Let }h.,..,h,h{ t
ij

2
ij

1
ij be any collection of t bipolar 

neutrosophic numbers. 
If 
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(p= 1, 2, 3, ....,t). 
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Proof: 

From Property 1 and Property 2, we obtain 

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2
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1
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So, we have 
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2
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1
ij
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4. VIKOR strategy for solving MAGDM problem
under bipolar neutrosophic environment 

In this section, we propose a MAGDM strategy under 
bipolar neutrosophic set environment. Assume that, 

}A,...,A,A,A{A r321 be a set of r alternatives and 
}c...,,c,c,c{C s321  be a set of s attributes. Assume that, 

}...,,,,{ s321   be the weight vector of the 

attributes, where k 0 and .1
s

1k
k 



 Let 

}DM...,,DM,DM,DM{DM t321   be the set of t decision 
makers and }...,,,,{ t321  be the set of weight vector 

of decision makers, where p 0 and 1
t

1p
p 



. 

In this section, we describe the VIKOR based MAGDM 
strategy under bipolar neutrosophic set environment. The 
proposed strategy consists of the following steps (see 
Figure 1): 

Step: 1. Construction of the decision matrix 

Let M p = sr
p
ij)(h 

 (p = 1, 2, 3, …, t) be the p-th decision
matrix, where information about the alternative Ai  is 
provided by the decision maker pDM with respect to 

attribute jc (j = 1, 2, 3, …, s). The p-th decision matrix

denoted by M p  (See eq. (4)) is constructed as follows: 
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M    (4) 

Here p = 1, 2, 3,…, t;  i = 1, 2, 3,…, r;  j = 1, 2, 3,…, s. 

Step: 2. Normalization of the decision matrix 

Cost type attributes and benefit type attributes are 
generally existed in decision making process. 
Therefore the considered attribute values need to be 
normalized to aviod different physical dimensional 
unit. To normalize we can use the following equation: 
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Using the normalized method, we obtain the following 
normalized decision matrix (See eq. (5)):  
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Step: 3. Aggregation of the decision matrices 

Using BNNWA operator in eq. (3), we obtain the 
aggregated decision matrix as follows:    
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M   (6) 

where, i = 1, 2, 3, …, r; j = 1, 2, 3, …, s;  p=1, 2, ….t. 

Step: 4. Define the positive ideal solution and 

negative ideal solution 
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 (8) 

Step: 5. Define  and compute the value of i  and iZ

(i = 1, 2, 3, ..., r) 

i and iZ represent the average and worst group 
scores for the alternative Ai respectively, with the 
relations  

  

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
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
s

1j ijij

ijijj
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Here, j is the weight of cj.

The smaller values of i and iZ correspond to the 
better average and worse group scores for alternative 
Ai , respectively. 

Step: 6. Calculate the values of index VIKOR i (i 

= 1, 2, 3, …, r) by the relation 

)ZZ(
)ZZ(

)1(
)(
)( ii
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


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


  (11) 

Here, iiiiii max,min   , 
iiiiii ZmaxZ,ZminZ    (12)  

and   depicts the decision making mechanism coefficient. 
If 5.0 , it is for “the maximum group utility”; if 5.0 , 
it is “ the minimum regret”; it has been inferred that the 
decision making mechanism coefficient is mostly 
taken as v = 0.5. 
Step: 7. Rank the priority of alternatives 

We rank the alternatives by i , i , and iZ  according 
to the rule of traditional VIKOR strategy. The smaller 
value indicates the better alternative.   

Figure 1. Decision making procedure of proposed MAGDM 
strategy. 

5. Illustrative example

To demonstrate the applicability and fesibility of the 
proposed strategy, we solve a MAGDM problem adapted 
from [45]. We assume that an investment company wants 
to invest a sum of money in the best option. The 
investment company forms a decision making board 
involving of three members (DM1, DM2, DM3) who 
evaluate the four alternatives to invest money. The 
alternatives are Car company ( 1A ), Food company ( 2A ), 
Computer company ( 3A ) and Arm company ( 4A ). 
Decision makers take decision to evaluate alternatives 
based on the criteria namely, risk factor ( 1c ), growth 

factor ( 2c ), environment impact ( 3c ). We consider three 
criteria as benefit type based on Zhang et al. [127]. 
Assume that the weight vector of attributes is 

Multi attribute group decision 
making problem 

Construction of the decision matrix 

Normalization of the decision 
matrices 

Aggregation of the decision matrix 

Define the positive ideal solution and 
negative ideal solution 

Define i  and iZ

Calculate the values of i

Rank the priority of alternatives 
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T)3.0,33.0,37.0( and weight vector of decision makers 

is T)3.0,32.0,38.0( . Now, we apply the proposed 
MAGDM strategy to solve the problem using the 
following steps. 

Step: 1. Construction of the decision matrix 

We construct the decision matrix information provided by 
the decision makers in terms of BNNs with respect to the 
criteria as follows:   

Decision matrix for DM1 
M1 = 
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)7.,4.,3.,4.,3.,6(..1)- .6,- .8,- .2, .7, (.8, .3)- .3,- .6,- .3, .5, (.7,A
.2)-.3,.5,.8,.2,(.4,.3)- .5,- .1,- .4, .2, (.5, .5)- .4,- .6,- .5, .3, (.8,A

)3.,3.,4.,3.,5.,7.(.5)- .3,- .4,- .7, .3, (.6,.3)- .5,- .4,- .2, .2, (.6,A
.5)- .6,- .1,- .6, .4, (.9,.3)- .6,- .4,- .6, .5, (.8, .3)- .6,- .3,- .7, .6, (.5,  A

CCc

4

3

2

1
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      Decision matrix for DM2 
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.2)-.3,.4,.4,.5,(.7,.4)- .3,- .6,- .1, .2, (.3, .6)- .2,- .5,- .2, .3, (.8,A

)9.,2.,5.,7.,2.,6.(.2)- .3,- .7,- .5, .4, (.8,.1)- .2,- .3,-.5, .4, (.7,A
.6)- .2,- .5,- .7, .5, (.1,.4)- .3,- .3,- .4, .3, (.5, .7)- .3,- .5,- .4, .3, (.6,  A
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  Decision matrix for DM3 
M3 = 
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.6)-.3,.2,.4,.2,(.8,.5)- .3,- .2,- .7, .2, (.3, .7)- .5,- .4,- .6, .5, (.2,A

)3.,6.,7.,2.,3.,6.(.5)- .2,- .3,- .7, .2, (.5,.1)- .4,- .6,- .2, .3, (.5,A
.7)- .5,- .2,- .3, .2, (.4,.5)- .2,- .6,- .3, .5, (.7, .2)- .3,- .7,- .4, .6, (.9,  A
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Step: 2. Normalization of the decision matrix 

Since all the criteria are considered as benefit type, we do 
not need to normalize the decision matrices (M1, M2, M3). 

Step: 3. Aggregated decision matrix 

Using eq. (3), the aggregated decision matrix is 
presented as follows: 

M = 
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)21.,16.,11.,17.,11.,19(..16)- .20,- .19,- .11, .18, (.24, .10)- .15,- .17,- .11, .17, (.20,A
.11)-.10,.13,.18,.10,(.21,.13)- .12,- .10,- .13, .10, (.13, .20)- .12,- .17,- .16, .12, (.21,A

)16.,12.,17.,13.,11.,21.(.13)- .10,- .15,- .21, .10, (.21,.10)- .12,- .14,- .10, .10, (.20,A
.20)- .10,- .10,- .18, .12, (.16,.13)- .13,- .14,- .15, .14, (.22, .13)- .14,- .16,- .17, .17, (.22, A
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Step: 4. Define the positive ideal solution and negative 

ideal solution 

The positive ideal solution 

ijh = 
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and the negative ideal solution 

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CCc 321

Step: 5. Compute i  and iZ

We have computed the values of i by eq. (9) and the 
values of iZ by eq. (10), the values are presented as 
follows: 

1 = 0.75, 2 = 0.38, 3 = 0.60, 4 = 0. 75 and 1Z = 
0.34, 2Z = 0.16, 3Z = 0.33, 4Z = 0.34 

Step: 6. Calculate the values of i

Using 5.0 , and eq. (11) and eq. (12),  we obtain 

1 = 1, 2 = 0, 3 = 0.77, 4 = 1 

Step: 7. Rank the priority of alternatives 

The preference order of the alternatives based on the 
traditional rules of the VIKOR strategy is 
2A

3
A 4A   1A .      

6. The influence of parameter 

In this section, we present sensitivity analysis to show 
the impact of different values of  the decision making 
mechanism coefficient on ranking order of the 
alternatives Figure 2 represents the graphical 
representation of alternatives (

iA ) versus (i = 1, 2, 
3, 4) for different values of  . 

………………………………………………………………………………………………………………………….. 
Table 1 shows that the ranking order of alternatives (

iA ) with the value of  changing from 0.1 to 0.9.  
Values of 


Values of i Preference order of alternatives 
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 = 0.1 1 = 1, 2 = 0, 3 = 0.915, 4 = 1 2A 3A 4A = 1A . 

 = 0.2 1 = 1, 2 = 0, 3 = 0.880, 4 = 1 2A 3A 4A = 1A . 

 = 0.3 1 = 1, 2 = 0, 3 = 0.845, 4 = 1 2A 3A 4A = 1A . 

 = 0.4 1 = 1, 2 = 0, 3 = 0.810, 4 = 1 2A 3A 4A = 1A . 

 = 0.5 1 = 1, 2 = 0, 3 = 0.770, 4 = 1 2A 3A 4A = 1A . 

 = 0.6 1 = 1, 2 = 0, 3 = 0.740, 4 = 1 2A 3A 4A = 1A . 

 = 0.7 1 = 1, 2 = 0, 3 = 0.700, 4 = 1 2A 3A 4A = 1A . 

 = 0.8 1 = 1, 2 = 0, 3 = 0.670, 4 = 1 2A 3A 4A = 1A . 

 = 0.9 1 = 1, 2 = 0, 3 = 0.640, 4 = 1 2A 3A 4A = 1A . 

Table 1. Values of i (i = 1, 2, 3, 4) and ranking of alternatives for different values of  . 

…………………………………………………………………………………………………………………………… 
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Fig 2. Graphical representation of ranking order of alternatives for different values of  . 
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7. Conclusion

In this paper, we have extended the VIKOR strategy to 
MAGDM with bipolar neutrosophic environment. We have 
introduced bipolar neutrosophic numbers weighted aggre-
gation operator and applied it to aggregate the individual 
opinion to one group opinion. We have developed a 
VIKOR based MAGDM strategy with bipolar 
neutrosophic set.  Finally, we have solved a MAGDM 
problem to show the feasibility and efficiency of the 
proposed MAGDM strategy. We have presented a 
sensitivity analysis to show  the impact of different values 
of  the decision making mechanism coefficient on ranking 
order of the alternatives. The proposed VIKOR based 
MAGDM strategy can be employed to solve a variety of 
problems such as logistics center selection [128], teacher 
selection [19, 129], renewable energy selection [131], fault 
diagnosis [132], weaver selection [14, 54], brick selection 
[13], school choice [130] etc.  
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Abstract. Interval bipolar neutrosophic set is a signifi-
cant extension of interval neutrosophic set where every 
element of the set comprises of three independent posi-
tive membership functions and three independent nega-
tive membership functions. In this study, we first define 
correlation coefficient, and weighted correlation coeffi-
cient measures of interval bipolar neutrosophic sets and 

prove their basic properties. Then, we develop a new 
multi-attribute decision making strategy based on the 
proposed weighted correlation coefficient measure. Fi-
nally, we solve an investment problem with interval bipo-
lar neutrosophic information and comparison is given to 
demonstrate the applicability and effectiveness of the 
proposed strategy. 

Keywords: Interval bipolar neutrosophic set, multi-attribute decision making, correlation coefficient measure.

1 Introduction

Correlation coefficient is an important decision making 
apparatus in statistics to evaluate the relation between two 
sets. In neutrosophic environment [1], Hanafy et al. [2] 
derived a formula for correlation coefficient between two 
neutrosophic sets (NSs). Hanafy et al. [3] obtained the 
correlation coefficient of NSs by using centroid strategy 
which lies in [-1, 1]. The correlation coefficient obtained 
from [3] provides the information about the degree of the 
relationship between two NSs and also informs us whether 
the NSs are positive or negatively related. In 2013, Ye [4] 
defined correlation, correlation coefficient, weighted 
correlation coefficient in single valued neutrosophic set 
(SVNS) [5] environment and established a multi-criteria 
decision making (MCDM) based on the proposed weighted 
correlation coefficient measure. Broumi and Smarandache 
[6] introduced the concept of correlation coefficient and 
weighted correlation coefficient between two interval 
neutrosophic sets (INSs) [7] and established some of their 
basic properties. Hanafy et al. [8] studied the notion of 
correlation and correlation coefficient of neutrosophic data 
under probability spaces. Ye [9] suggested an improved 
correlation coefficient between two SVNSs in order to 
overcome the drawbacks of the correlation coefficient 
discussed in [4] and investigated its properties. In the same 

study, Ye [9] extended the concept of correlation 
coefficient measure of SVNS to correlation coefficient 
measure of INS environment. Furthermore, Ye [9] 
developed strategies for solving multi-attribute decision 
making (MADM) problems with single valued 
neutrosophic and interval neutrosophic environments based 
on the proposed correlation coefficient measures.   Broumi 
and Deli [10] defined correlation measure of two 
neutrosophic refined (multi) sets [11] by extending the 
correlation measure of two intuitionistic fuzzy multi-sets 
proposed by Rajarajeswari and Uma [12] and proved some 
of its basis properties. Zhang et al. [13] defined an 
improved weighted correlation coefficient on the basis of 
integrated weight for INSs and a decision making strategy 
is developed. Karaaslan [14] proposed a strategy to 
compute correlation coefficient between possibility 
neutrosophic soft sets and presented several properties 
related to the proposed strategy. Karaaslan [15] defined a 
new mathematical structure called single-valued 
neutrosophic refined soft sets (SNRSSs) and presented its 
set theoretical operations such as union, intersection and 
complement and proved some of their basic properties. In 
the same study [15], two formulas to determine correlation 
coefficient between two SNRSSs are proposed and the 
developed strategy is used to solve a clustering analysis 
problem. Şahin and Liu [16]  defined single valued 
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neutrosophic hesitant fuzzy sets (SVNHFSs) and 
established some basic properties and finally proposed a 
decision making strategy. Liu and Luo [17] defined 
correlation coefficient and weighted correlation coefficient 
for interval-valued neutrosophic hesitant fuzzy sets 
(INHFSs) due to Liu and Shi [18] and studied their 
properties. Then, Liu and Luo [17] developed a MADM 
strategy within the framework of INHFSs based on 
weighted correlation coefficient.  Ye [19] suggested a 
dynamic single valued neutrosophic multiset (DSVNM) 
based on dynamic information obtained from different time 
intervals in several practical situations in order to express 
dynamical data and operational relations of DSVNMs. In 
the same study [19], correlation coefficient and weighted 
correlation coefficient measures between DSVNMs are 
proposed and a MADM strategy is developed on the basis 
of the proposed weighted correlation coefficient under 
DSVNM setting. Recently, Ye [20] proposed two 
correlation coefficient between normal neutrosophic sets 
(NNSs) based on the score functions of normal 
neutrosophic numbers and investigated their essential 
properties. In the same study, Ye [20] formulated a 
MADM strategy by employing correlation coefficient of 
NNSs in normal neutrosophic environment.  Pramanik et 
al. [21] defined correlation coefficient and weighted 
correlation coefficient between two rough neutrosophic 
sets and proved their basic properties. In the same study, 
Pramanik et al. [21] developed a multi-criteria decision 
making strategy based on the proposed correlation 
coefficient measure and solved an illustrative example in 
medical diagnosis. 

In 2015, Deli et al. [22] introduced a novel concept 
called bipolar neutrosophic sets (BNSs) by 
generalizing the concepts of bipolar fuzzy sets [23, 24] 
and bipolar intuitionistic fuzzy sets [25]. In the same 
study, Deli et al. [22] defined score, accuracy and 
certainty functions to compare BNSs and formulated a 
MCDM approach based on the score, accuracy and 
certainty functions and bipolar neutrosophic weighted 
average operator (Aw) and bipolar neutrosophic 
weighted geometric operator (Gw). In bipolar 
neutrosophic environment, Dey et al. [26] developed a 
MADM approach based on technique for order of 
preference by similarity to ideal solution (TOPSIS) 
strategy. Deli and Subas [27] and Şahin et al. [28] 
developed MCDM strategies based on correlation 
coefficient and Jaccard similarity measures, 
respectively in BNS environment. Uluçay et al. [29] 
defined Dice, weighted Dice similarity measures, 
hybrid and weighted hybrid similarity measures for 

MCDM problems with bipolar neutrosophic 
information. Pramanik et al. [30] defined projection, 
bidirectional projection and hybrid projection 
measures between BNSs and proved their basic 
properties and then, three new MADM models are 
developed based on proposed measures.   

Mahmood et al. [31] and Deli et al. [32] incorporated 
the notion of interval bipolar neutrosophic sets 
(IBNSs) and defined some operations and operators 
for IBNSs. Recently, Pramanik et al. [33] defined new 
cross entropy and weighted cross entropy measures in 
BNS and IBNS environment and discussed some of 
their essential properties. In the same study, Pramanik 
et al. [33] developed two novel MADM strategies on 
the basis of the proposed weighted cross entropy 
measures.  

Research gap: 

MADM strategy based on correlation coefficient under 
IBNSs environment. 

This paper answers the following research questions: 

i. Is it possible to introduce a novel correlation
coefficient measure for IBNSs?

ii. Is it possible to introduce a novel weighted
correlation coefficient measure for IBNSs?

iii. Is it feasible to formulate a novel MADM strategy
based on the proposed correlation coefficient measure
in IBNS environment?

iv. Is it feasible to formulate a novel MADM strategy
based on the proposed weighted correlation
coefficient measure in IBNS environment?

Motivation: 

The aforementioned analysis presents the motivation be-
hind developing correlation coefficient -based strategy for 
handling MADM problems with IBNS information.  

The objectives of the paper are as follows: 
1. To define a new correlation coefficient measure and a

new weighted correlation coefficient measure in IBNS
environment and prove their basic properties.

2. To develop a new MADM strategy based on weighted
correlation coefficient measure in IBNS environment.

In order to fill the research gap, we propose correlation 
coefficient-based MADM strategy in IBNS environment.  
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Rest of the article is organized as follows. Section 2 
provides the preliminaries of bipolar fuzzy sets, bipolar in-
tuitionistic fuzzy sets, BNSs and IBNSs. Section 3 defines 
the correlation coefficient and weighted correlation coeffi-
cient measures in IBNS environment and establishes their 
basic properties. In section 4, a new MADM strategy based 
on the proposed weighted correlation coefficient measure 
is developed. In section 5, we solve a numerical example 
and comparison analysis is given. Finally, in the last sec-
tion, conclusions are presented. 

2 Preliminaries 

2.1 Bipolar fuzzy sets 

A bipolar fuzzy set [23, 24] B in X is characterized by 
a positive membership function )(xB

  and a negative 
membership function )(xB

 . A bipolar fuzzy set B is 
expressed in the following way. 

B = {x, )(),( xx BB

    xX} 

where :)(xB

  X  [0, 1] and :)(xB

  X  [-1, 0] for 
each point x X. 

2.2 Bipolar intuitionistic fuzzy sets 

Consider X be a non-empty set, then a BIFS [25] E is ex-
pressed in the following way. 

E= {x, )(),(),(),( xxxx EEEE

    xX}       

where :)(),( xx EE

   X  [0, 1] and :)(),( xx EE

   X  

[-1, 0] for each point x X such that 0  )()( xx EE

    1 

and -1  )()( xx EE

   0. 

2.3 Bipolar neutrosophic sets 

A BNS [22]M in X is presented as follows: 
M = {x, )( ),( ),(),(),(),( xxxxxx MMMMMM

    x 

X} 
where )(xM

 , )(xM

 , )(xM

 : X  [0, 1] 

and )(xM

 , )(xM

 , )(xM

 : X  [-1, 0].The positive 

membership degrees )(xM

 , )(xM

 , )(xM

 denote the 
truth membership, indeterminate membership, and false 
membership functions of an object x X corresponding to 
a BNS M and the negative membership 
degrees )(xM

 , )(xM

 , )(xM

 denote the truth 
membership, indeterminate membership, and false 
membership of an object x X to several implicit counter 
property associated with a BNS M. 

Definition 2.3.1 

Let, M1 = {x, )( ),( ),(),(),(),(
111111

xxxxxx MMMMMM

    x 

X} and M2 = {x, )( ),( ),(),(),(),(
222222

xxxxxx MMMMMM

    

x X} be any two BNSs. Then, a BNS M1 is contained in 
another BNS M2, represented by M1 M2 if and only if 

)(
1

xM

  )(
2

xM

 , )(
1

xM

  )(
2

xM

 , )(
1

xM

  )(
2

xM

 ;

)(
1

xM

  )(
2

xM

 , )(
1

xM

  )(
2

xM

 , )(
1

xM

  )(
2

xM

 for 
all x X. 

Definition 2.3.2 

Let, M1 = 
{x, )( ),( ),(),(),(),(

111111
xxxxxx MMMMMM

   x 

X} and M2 = 
{x, )( ),( ),(),(),(),(

222222
xxxxxx MMMMMM

   x 

X} be any two BNSs [22] , then M1 = M2 if and only if 
)(

1
xM

  ),(
2

xM

 )(
1

xM

  ),(
2

xM

 )(
1

xM

  ),(
2

xM



)(
1

xM

  ),(
2

xM

 )(
1

xM

  ),(
2

xM

 )(
1

xM

  )(
2

xM

 for 
all x X. 

Definition 2.3.3 

The complement of a BNS [33] M is Mc == {x,
)( ),( ),(),(),(),( xxxxxx CCCCCC MMMMMM

   x 

X} 
where 

)(c x
M

 = )(xM

 , )(c x
M

 = 1 - )(xM

 , )(c x
M

 = )(xM

 ; 

)(c x
M

 = )(xM

 , )(c x
M

 = -1 - )(xM

 , )(c x
M

 = )(xM

 . 

Definition 2.3.4 

The union [30]of two BNSs M1 and M2 represented by 
M1M2 is defined as follows: 
M1M2 = {Max ( )(

1
xTM

 , )(
2

xTM

 ), Min ( )(
1

xI M

 , )(
2

xI M

 ), 

Min ( )(
1

xFM

 , )(
2

xFM

 ), Min ( )(
1

xTM

 , )(
2

xTM

 ), Max 

( )(
1

xI M

 , )(
2

xI M

 ), Max ( )(
1

xFM

 , )(
2

xFM

 )},  xX.

Definition 2.3.5 

The intersection [30] of two BNSs M1 and M2 denoted 
by M1M2 is defined as follows: 

M1M2 = {Min ( )(
1

xTM

 , )(
2

xTM

 ), Max 

( )(
1

xI M

 , )(
2

xI M

 ), Max ( )(
1

xFM

 , )(
2

xFM

 ), Max 

( )(
1

xTM

 , )(
2

xTM

 ), Min ( )(
1

xI M

 , )(
2

xI M

 ), Min 

( )(
1

xFM

 , )(
2

xFM

 )},  x X. 
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2.4 Interval bipolar neutrosophic sets 

Consider X  be the space of objects, then an IBNS     
[31, 32] L in X is is represented as follows: 

 L= {x,

)](sup),([inf)],(sup),([inf

)],(sup),([inf)],(sup),([inf

)],(sup),([inf)],(sup),([inf

xxxx

xxxx

xxxx

LLLL

LLLL
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  x X}  

where L is characterized by positive and negative truth-
membership 

L (x), 


L  (x); inderterminacy-membership 


L (x), 


L (x); falsity-membership 

L (x), 


L (x) 

functions respectively. Here, 

L (x), 

L (x), 


L (x) [0,1]; 

L (x), 

L (x), 

L (x)  [-1, 0] for all x X 

with the conditions  0  sup 

L  (x) + sup 

L  (x) + sup


L (x)  3, and -3  sup 

L (x) + sup 

L (x) + sup


L (x)  0. 

Definition 2.4.1 :  Let LI = {x, < [inf 

1L (x), sup 

1L (x)]; 

[inf 

1L (x), sup 

1L (x)]; [inf 

1L (x), sup 

1L (x)]; [inf 

1L (x), 

sup 

1L (x)]; [inf 

1L (x), sup 

1L (x)]; [inf 

1L (x), sup 

1L (x)] 

>  x X} and L2 == {x, < [inf 

2L  (x), sup 

2L (x)]; 

[inf 

2L (x), sup 

2L (x)]; [inf 

2L (x), sup 

2L (x)]; 

[inf 

2L (x), sup 

2L (x)]; [inf 

2L (x), sup 

2L (x)]; 

[inf 

2L (x), sup 

2L (x)] >  x X} be two IBNSs [31] . Then 
LI   L2 if and only if 

inf 

1L (x)  inf 

2L (x), sup 

1L (x)  sup 

2L (x), 

inf 

1L (x)  inf 

2L (x), sup 

1L (x)  sup 

2L (x), 

inf 

1L (x)  inf 

2L (x), sup 

1L (x)  sup 

2L (x), inf 

1L (x) 
 inf 

2L (x), sup 

1L (x)  sup 

2L (x), inf 

1L

(x)  inf 

2L (x), sup 

1L  (x)  sup 

2L (x),  inf 

1L (x)  inf 


2L (x), sup 

1L (x)  sup 

2L (x), for all xX. 

Definition 2.4.2: Consider LI = {x, < [inf 

1L (x), 

sup 

1L (x)]; [inf 

1L (x), sup 

1L (x)]; [inf 

1L (x), 

sup 

1L (x)]; [inf 

1L (x), sup 

1L (x)]; [inf 

1L (x), 

sup 

1L (x)]; [inf 

1L (x), sup 

1L (x)] >  x X} and L2 = {x, 

< [inf 

2L (x), sup 

2L (x)]; [inf 

2L (x), sup 

2L (x)]; 

[inf 

2L (x), sup 

2L (x)]; [inf 

2L (x), sup 

2L (x)]; 

[inf 

2L (x), sup 

2L (x)]; [inf 

2L (x), sup 

2L (x)] >  x X} 
be two IBNSs [31] . Then LI = L2 if and only if 

inf 

1L (x) = inf 

2L (x), sup 

1L (x) = sup 

2L (x), 

inf 

1L (x) = inf 

2L (x), sup 

1L (x) = sup 

2L (x), inf 

1L (x) 

= inf 

2L (x), sup 

1L (x) = sup 

2L (x), inf 

1L (x) = 

inf 

2L (x), sup 

1L (x) = sup 

2L (x), inf 

1L (x) = 

inf 

2L (x), sup 

1L  (x) = sup 

2L (x),  inf 

1L (x) = inf 


2L (x), sup 

1L (x)  = sup 

2L (x), for all xX. 

Definition 2.4.3: The complement [33]of L = {x, < [inf 


L (x), sup 

L (x)]; [inf 

L (x), sup 

L (x)]; [inf 

L (x), 

sup 

L (x)]; [inf 

L (x), sup 

L (x)]; [inf 

L (x), sup 

L (x)]; 

[inf 

L (x), sup 

L (x)] >  x X} is defined as LC = {x, < 

[inf 
CL

 (x), sup 
CL

 (x)]; [inf 
CL

 (x), sup 
CL

 (x)]; 

[inf 
CL

 (x), sup 
CL

 (x)]; [inf 
CL

 (x), sup 
CL

 (x)]; 

[inf 
CL

 (x), sup 
CL

 (x)]; [inf 
CL

 (x), sup 
CL

 (x)] >  x X} 
where 

inf 
CL

 (x) = inf 

L (x), sup 
CL

 (x) = sup 

L (x), inf 


CL
 (x) = 1 - sup 

L (x), sup 
CL

 (x) = 1 - inf 

L (x), 

inf 
CL

 (x) = inf 

L , sup 
CL

 (x) = sup 

L , inf 
CL

 (x) = 

inf 

L , sup 
CL

 (x) = sup 

L , inf 
CL

 (x) = -1 - sup 

L (x), 

sup 
CL

 (x) = -1 - inf 

L (x), inf 
CL

 (x) = inf 

L  (x), 

sup 
CL

 (x) = sup 

L  (x) for all x X. 

3 Correlation coefficient measures under IBNSs 
setting 

Definition 3.1: Let L1 and L2 be two IBNSs in X = {x1, 
x2, …, xn}, then the correlation between  L1 and L2 is 
defined as follows: 
R (L1, L2) = 


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Definition 3.2: Consider L1 and L2 be two IBNSs in X 
= {x1, x2, …, xn}, then the correlation coefficient between 
L1 and L2 is defined as follows: 
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Cor (L1, L2) = 2/1
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Theorem 1. The correlation coefficient measure Cor (L1, 
L2) between two IBNSs L1, L2 satisfies the following 
properties: 

(C1) Cor (L1, L2) = Cor (L2, L1) ; 
(C2) 0Cor (L1, L2) 1; 
(C3) Cor (L1, L2) = 1, if L1= L2. 

Proof: 

       (1) Cor (L1, L2) =
2/1
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=
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= Cor (L2, L1). 

(2) Since, R (L1, L2) 0, R (L1, L1) 0, R (L2, L2) 0 
and using Cauchy-Schwarz inequality we can easily prove 
that Cor (L1, L2)  1, therefore, 0Cor (L1, L2) 1. 

(3) If L1 = L2, then inf 

1L (x) = inf 

2L (x), sup 

1L (x) =
sup 

2L (x), inf 

1L (x) = inf 

2L (x), sup 

1L (x) = 

sup 

2L (x),inf 

1L (x) = inf 

2L (x), sup 

1L (x) = sup 

2L (x), 

inf 

1L (x) = inf 

2L (x), sup 

1L (x) = sup 

2L (x), inf 

1L (x) 

= inf 

2L (x), sup 

1L (x) = sup 

2L (x), inf 

1L (x) = inf



2L (x), sup 

1L (x) = sup 

2L (x) for any x X and 
therefore, Cor (L1, L2) = 1. 

Definition 3.3: Let wi = (w1, w2, ..., wn)  [0, 1] be the 
weight vector of the elements xj (j = 1, 2, ..., n), the 
weighted correlation coefficient between two IBNSs L1, L2 

can be defined by the following formula  
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If w = (1/n, 1/n, ..., 1/n)T, the Eq. (2) is reduced to Eq. (1). 

Theorem 2. The weighted correlation coefficient 
measure Corw (L1, L2) between two IBNSs L1, L2 also

satisfies the following properties: 
(C1) Corw (L1, L2) = Corw (L2, L1); 
(C2) 0Corw (L1, L2) 1; 
(C3) Corw (L1, L2) = 1, if L1= L2. 

Proof: 

 (1)  Corw (L1, L2) =
2/1

2211

21

)],().,([
),(

LLRLLR

LLR

ww

w

= 2/1
1122

12

)],().,([
),(

LLRLLR

LLR

ww

w = Corw (L2, L1). 

(2) Since, Rw (L1, L2) 0, Rw (L1, L1) 0, Rw (L2, 
L2) 0 and using Cauchy-Schwarz inequality we can easily 
prove that Corw (L1, L2) 1, so, 0Corw (L1, L2) 1. 
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(3) If L1 = L2, then inf 

1L (x) = inf 

2L (x), sup 

1L (x) = 

sup 

2L (x), inf 

1L (x) = inf 

2L (x), sup 

1L (x) = 

sup 

2L (x),inf 

1L (x) = inf 

2L (x), sup 

1L (x) = sup 

2L (x), 

inf 

1L (x) = inf 

2L (x), sup 

1L (x) = sup 

2L (x), inf 

1L (x) 

= inf 

2L (x), sup 

1L (x) = sup 

2L (x), inf 

1L (x) = inf 


2L (x), sup 

1L (x) = sup 

2L (x) for any x X and hence, 
Corw (L1, L2) = 1. 

Example 1. Suppose that L1 = < [0.3, 0.7], [0.3, 0.8], 
[0.5, 0.9], [-0.9, -0.3], [-0.6, -0.2], [-0.8, -0.4] > and L2 = < 
[0.1, 0.6], [0.2, 0.7], [0.3, 0.5], [-0.8, -0.2], [-0.8, -0.3], [-
0.7, -0.4] > be two IBNSs, then correlation coefficient 
between L1 and L2 is obtain using Eq. (1) as follows: 

Cor (L1, L2) == 0.4870391. 

Example 2. If w = 0.4, then the weighted correlation 
coefficient between L1 = < [0.3, 0.7], [0.3, 0.8], [0.5, 0.9], 
[-0.9, -0.3], [-0.6, -0.2], [-0.8, -0.4] > and L2 = < [0.1, 0.6], 
[0.2, 0.7], [0.3, 0.5], [-0.8, -0.2], [-0.8, -0.3], [-0.7, -0.4] > 
is calculated by using Eq. (2) as follows. 

Corw (L1, L2) = 0.5689123. 

4. MADM strategy based on weighted corre-
lation coefficient measure in IBNS environment 

In this section, we have developed a novel MADM 
strategy based on weighted correlation coefficient measure 
in interval bipolar neutrosophic environment. Let, F = {F1, 
F2, …, Fm}, (m  2) be a discrete set of m feasible 
alternatives,  G = {G1, G2, …, Gn}, (n  2) be a set of n 
predefined attributes and wj be the weight vector of the 
attributes such that 0wj 1 and 



n
w

1j j = 1. The steps for 

solving MADM problems in IBNS environment are 
presented as follows. 

Step 1. The evaluation of the performance value of 
alternative Fi (i = 1, 2, …, m) with regard to the predefined 
attribute Gj (j = 1, 2, …, n) provided by the decision maker 
or expert can be presented in terms of  interval bipolar 
neutrosophic values qij = < [inf 

ij , sup 

ij ], [inf 

ij , sup


ij ], [inf 

ij , sup 

ij ], [inf 

ij , sup 

ij ], [inf 

ij , sup


ij ], [inf 

ij , sup 

ij ] > = < cij, dij, eij, fij, gij, hij, rij, sij, tij, 
uij, vij, wij>, i = 1, 2, ..., m; j = 1, 2, ..., n. The interval 
bipolar neutrosophic decision matrix

nmijR ]~[ is presented 
as given below. 

nmijR ]~[ = 
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Step 2.The interval bipolar neutrosophic positive ideal 
solution (IBN-PIS) can be defined as follows: *Q < 

jc , 


jd , 

je , 

jf , 

jg , 

jh , 

jr , 

js , 

jt , 

ju , 

jv , 

jw > = < 
[{ )(Max

i ijc |jJ+; )(Min
i ijc |jJ-}, { )(Max

i ijd |jJ+}; 

)(Min
i ijd |jJ-}], [{ )(Min

i ije |jJ+; )(Max
i ije |jJ-}, 

{ )(Min
i ijf |jJ+}; )(Max

i ijf |jJ-}], [{ )(Min
i ijg |jJ+; 

)(Max
i ijg |jJ-}, { )(Min

i ijh |jJ+}; )(Max
i ijh |jJ-}], 

[{ )(Min
i ijr |jJ+; )(Max

i ijr |jJ-}, { )(sMin
i ij |jJ+; 

)(Max
i ijs |jJ-}], [{ )(Max ijt |jJ+; { )(Min

i ijt |jJ-}, 

{ )(Max
i iju |jJ+}; )(Min

i iju |jJ-}], [{ )(Max
i ijv |jJ+; 

{ )(Min
i ijv |jJ-}, { )(Max iji

w |jJ+}; )(Min iji
w |j  J-}] >, 

j = 1, 2, …, n, where J+, J- denote the benefit and cost type 
attributes, respectively. 

Step 3. The weighted correlation coefficient of IBNS 
between alternative Fi (i = 1, 2, ..., m) and the ideal 
alternative *Q  can be derived as follows: 

Corw (Fi, *Q ) = 2/1**

*

)],().,([
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Step 4: The biggest value of Corw (Fi, *Q ), i = 1, 2, ..., 
m implies Fi , (i = 1, 2, ..., m) is the better alternative. 

In Fig 1. we represent the steps for solving MADM 
problems based on weighted correlation coefficient 
measure in IBNS environment.  
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Figure.1 Decision making procedure of proposed MADM strategy 

5. Numerical example
In this section, an illustrative numerical problem is

solved to illustrate the proposed strategy. We consider an 
MADM studied in [31, 33] where there are four possible 
alternatives to invest money namely, a food company (F1), 
a car company (F2), a arm company (F3), and a computer 
company (F4). The investment company must take a 
decision based on the three predefined attributes namely 
growth analysis (G1), risk analysis (G2), and environment 
analysis (G3) where G1, G2 are the benefit type and G3 is 
the cost type attribute [34] and the weight vector of G1, G2, 
and G3 is given by w = (w1, w2, w3) = (0.35, 0.25, 0.4) [31].  

The proposed strategy consisting of the following steps: 

Step 1. The evaluation of performance value of the 
alternatives with respect to the attributes provided by the 
decision maker can be expressed by interval bipolar 
neutrosophic values and the decision matrix is presented as 
follows:  

Interval bipolar neutrosophic decision matrix 
G1 

 
 
 
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

]7.0,8.0[],1.0,2.0[],0.0,1.0[],2.0,1.0[],1.0,0.0[],8.0,7.0[
]3.0,6.0[],3.0,4.0[],2.0,3.0[],4.0,3.0[],3.0,2.0[],6.0,3.0[
]6.0,7.0[],2.0,3.0[],1.0,2.0[],3.0,2.0[],2.0,1.0[],7.0,6.0[
]4.0,5.0[],3.0,4.0[],2.0,3.0[],4.0,3.0[],3.0,2.0[],5.0,4.0[
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]6.0,7.0[],1.0,3.0[],1.02.0[],3.0,1.0[],2.0,1.0[],7.0,6.0[
]5.0,6.0[],3.0,4.0[],2.0,3.0[],4.0,3.0[],3.0,2.0[],6.0,5.0[
]6.0,7.0[],2.0,3.0[],1.0,2.0[],3.0,2.0[],2.0,1.0[],7.0,6.0[
]4.0,6.0[],2.0,4.0[],1.0,3.0[],4.0,2.0[],3.0,1.0[],6.0,4.0[
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 Multi attribute decision making problem 

    

 

Formulate the interval bipolar 

neutrosophic decision matrix Step-1 

Determine interval bipolar 

neutrosophic positive ideal 

solution 
Step- 2 

Step- 3 
Calculate weighted correlation 

coefficient measures between 

alternatives and the ideal 

solution 

  Decision making analysis phase 

Rank the alternatives and 

select the best option 

Step-4 
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 
 
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]6.0,7.0[],8.0,9.0[],3.0,4.0[],9.0,8.0[],4.0,3.0[],7.0,6.0[
]4.0,5.0[],7.0,9.0[],2.0,4.0[],9.0,7.0[],4.0,2.0[],5.0,4.0[
]3.0,6.0[],8.0,9.0[],3.0,5.0[],9.0,8.0[],5.0,3.0[],6.0,3.0[
]7.0,9.0[],4.0,5.0[],2.0,3.0[],5.0,4.0[],3.0,2.0[],9.0,7.0[
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F
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F

. 
Step 2. Determine the IBN-PIS ( *Q ) from interval bipolar 

neutrosophic decision matrix as follows: 

],[],,[],,[],,[],,[],,[ 1111
-

11111111
 wvutsrhgfedc = 

< [0.7, 0.8], [0.0, 0.1], [0.1, 0.2], [-0.3, -0.2], [-0.2, -0.1], [-

0.5, -0.3]; 

],[],,[],,[],,[],,[],,[ 222222222222
 wvutsrhgfedc = < 

[0.6, 0.7], [0.1, 0.2], [0.1, 0.3], [-0.3, -0.2], [-0.3, -0.1], [-

0.6, -0.4]; 

],[],,[],,[],,[],,[],,[ 333333333333
 wvutsrhgfedc = < 

[0.3, 0.5], [0.3, 0.5], [0.8, 0.9], [-0.3, -0.2], [-0.9, -0.8], [-

0.9, -0.7]. 

Step 3. The weighted correlation coefficient Corw (Fi, *Q ) 

between alternative Fi (i = 1, 2, ..., m) and IBN-PIS *Q is 

obtained as given below. 

Rw (F1, Q*) = 2.4465, Rw (F1, F1,) = 2.585351, Rw (Q*, Q*) 

= 2.850693, Corw (F1, Q*) = 0.331952, 

Rw (F2, Q*) = 2.9205, Rw (F2, F2) = 2.905408, Corw (F2, Q*) 

= 0.3526141, 

Rw (F3, Q*) = 2.6625, Qw (F3, F3) = 2.701919, Corw (F3, 

Q*) = 0.3456741, 

Rw (F4, Q*) = 3.098, Qw (F4, F4) = 3.048081, Corw (F4, Q*) 

= 0.3565369. 

We observe that Corw (F4, Q*) > Corw (F2, Q*) > Corw (F3, 

Q*) > Corw (F1, Q*).  

Step 4. According to the weighted correlation coefficient 

values, the ranking order of the companies is presented as: 

F4 > F2 > F3 > F1.  

Hence, the most desirable investment company is F4. 

In Fig 2. we represent the graphical representation of 

alternatives versus weighted correlation coefficient values.  
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Fig 2. Graphical representation of alternatives versus 

weighted correlation coefficient values. 

Next, we compare the obtained results with the results of 

Mahmood et al. [31] and Pramanik et al. [33] in Table 1 

where the weight vector of the attributes is w = (0.35, 0.25, 

0.4) [31]. We see that ranking orders of alternatives 

derived by the proposed strategy and the strategies 

discussed by Mahmood et al. [31] and Pramanik et al. [33] 

are different. We also observe that F4 is the best option 

obtained by the proposed strategy as well as the strategy 

discussed by Mahmood et al. [31] . However, Pramanik et 

al. [33] found that F2 is the most desirable alternative 

based on weighted cross entropy measure. 

Table 1.  The results derived from different strategies 

strategy Ranking results Best 
choice 

The proposed 
weighted correlation 
coefficient strategy 

F4   F2   F3   F1 F4 

Mahmood et al.’s 
strategy [31] 

F4   F1   F3   F2 F4 

Weighted cross       
entropy measure [33] 

F1 ≺ F3 ≺ F4 ≺ F2 F2 
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6 Conclusion 

In the study, we have defined correlation coefficient 
and weighted correlation coefficient measures in interval 
bipolar neutrosophic environments and prove their basic 
properties. Using the proposed weighted correlation coeffi-
cient measure, we have developed a novel MADM strategy 
in interval bipolar neutrosophic environment. We have 
solved an investment problem with interval bipolar neutro-
sophic information. Comparison analysis with other exist-
ing strategies is presented to demonstrate the feasibility 
and applicability of the proposed strategy. We hope that 
the proposed correlation coefficient measures can be em-
ployed to tackle realistic multi attribute decision making 
problems such as clustering analysis [15], medical diagno-
sis [21], weaver selection [35-37], fault diagnosis [38], 
brick selection [39- 40], data mining [41], logistic centre 
location selection [42- 43], school selection [44], teacher 
selection [45-47], image processing, information fusion, 
etc. in interval bipolar neutrosophic environment. Using 
aggregation operators, the proposed strategy can be ex-
tended to multi attribute group decision making problem in 
interval bipolar neutrosophic set environment.    
. 
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Abstract:  This paper describes neutrosophic

goal geometric programming method, a new 
concept to solve multi-objective non-linear 
optimization problem under uncertainty. The  
proposed method is described here as an 
extension of fuzzy and intuitionistic fuzzy goal 
geometric programming technique in which the 
degree of acceptance , degree of indeterminacy 
and degree of rejection is simultaneously 
considered. A bridge network complex model is 

presented here to demonstrate the applicability 
and efficiency of the proposed method. The 
method is numerically illustrated  and the result 
shows that the neutrosophic goal geometric 
programming is very efficient to find the best 
optimal solution than compare to other existing 

methods. 

Keywords: Neutrosophic set, Goal 
programming, Geometric programming, Bridge 
network, Reliability optimization. 

INTRODUCTION: 

In real life situations, most of the time it is 
unable to find deterministic optimization 
problems which are well defined because of 
imprecise information and unknown data. Thus 
to handle this type of uncertainty and imprecise 
nature , fuzzy set theory was first introduced by 
Zadeh [ 1 ] in 1965. Fuzzy optimization 
problems are more realistic and allow to find 
solutions which are more acceptable to the real 
problems . In recent time, fuzzy set theory has 
been widely developed and there are various 
modification and generalizations has appeared, 
intuitionistic fuzzy sets (IFS) is one of them. In 
1986, Atanassov [  2  ] developed the idea of IFS 
, which is characterized by the membership 
degree as well as non-membership degree such 
that the sum of these two values is less than one. 
Intuitionistic fuzzy sets can handle the 
incomplete information but unable to deal with 
the indeterminate information. Thus further  

generalization of it is required. To overcome 
this, neutrosophy [  3  ] was first introduced by 
Samarandache in 1995, by adding another 
independent membership function named as 
indeterminacy membership along with truth 
membership and falsity membership function. 

Goal programming (GP) is one of the most 
effective and efficient methods among various 
kinds of existing methods to solve a particular 
type of non-linear multi-objective decision 
making problems. In 1977, Charns and Copper   
[ 4 ] first introduced  goal programming problem 
for a linear model.  In a standard GP problem, 
goals and constraints are not always well defined 
and it is not possible to find the exact value due 
to vague nature of the coefficients and 
parameters. Fuzzy and intuitionistic fuzzy 
approach can handle this type of situations. 
Many authors use fuzzy goal programming 
technique to solve various types of multi-
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objective linear programming problems [7]  ,[8] 
. M.Zangiabadi [18] applied goal programming 
approach to solve multi-objective transportation 
problem in fuzzy environment. B.B.Pal [5] 
described a goal programming procedure for 
multi-objective linear programming problem. 
Since geometric programming gives better result 
to solve non-linear goal programming problem 
compare to the other non-linear programming 
methods, P.Ghosh and T.K.Roy [12] ,[ 13 ] 
described the fuzzy goal geometric 
programming method in intuitionistic 
environment. Paramanik and Roy [6] introduced 
intuitionistic fuzzy goal programming approach 
in vector optimization problem. Sometimes goal 
of the system and conditions include some vague 
and undetermined situations. Hence we cannot 
handle this type of situations by the concept of 
fuzzy set and intuitionistic fuzzy set theory. 
Mathematically,  to express the decision maker’s 
unclear target levels for the goals and to 
optimize all goals at the same level, we have to 
go through a complicated calculations. Here we 
introduced neutrosophic approach for goal 
programming to solve this kind of unclear 
difficulties. Many researchers applied goal 
programming for solving multi-objective 
problems in neutrosophic environment           
[9],[10],[11] . But it is very first when 
neutrosophic goal geometric programming 
method is applied to multi-objective non-linear 
programming problem. 
The present study investigates computational 
algorithm for solving multi-objective goal 
geometric programming problem by single 
valued NGGPP technique . The motivation of 
this paper is to apply an efficient and modified 
optimization technique to find a pareto optimal 
solution of the proposed bridge network 
reliability model to produce highly reliable 
system with minimum system cost than the other 
existing methods. An illustrative example is 
given to show the utility of NGGPP on the 
reliability model and also the result of the 

proposed approach  is compared with fuzzy goal 
geometric programming (FGGP) and 
intuitionistic fuzzy goal geometric programming 
(IFGGP) approach at the  end of this paper.  
The structure of the paper is as follows: In 
Section 2, some basic definitions and 
Neutrosophic goal geometric programming 
problem (NGGPP) method is introduced; In 
section 3, a bridge network reliability model is 
introduced and provide NGGPP method for 
solving the proposed model.  In Section 4, 
numerical examples are solved and compared 
with the existing method .Finally the 
conclusions are drawn in section 4. 

2. Neutrosophic goal geometric 
programming problem (NGGPP): 

Definition 2.1.  Let X be a space of points and 

� ∈ X. A neutrosophic set (NS) 
�� in X having
the form 


�� = {< �  �����, ����� , ����� > | � ∈ �} ,
where �����, ����� and ����� denote the truth
membership degree ,  falsity membership degree 
and indeterminacy membership degree of  �
respectively and they are real standard or non-
standard subsets of   ] 0�,1![     i.e.

�����: � →  ] 0�,1![
�����: �  →  ] 0�,1![

and        �����: �  → ] 0�,1![
 There is no restriction on the sum of 
�����, ����� %&' �����.  So,

0� ≤ sup  ����� + sup  ����� + sup ����� ≤
3!.

Ye [ 14 ] ,[15] reduced NSs of non-standards 
intervals into a kind of  simplified neutrosophic 
sets of standard intervals that will preserve the 
operations of NSs.  
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Definition 2.2. [17]  Let X be a space of points 
with a generic element � in X. A single-valued
neutrosophic set (SVNS) 
�� in X is
characterized by �����, ����� and ����� , and
of the form  


�� = {< � : �����, ����� , ����� > | � ∈ �}
Where      �����: � →   [0,1] 

�����: �  →  [0,1] 
and     �����: �  →  [0,1]  with  

0 ≤ ����� +  ����� +  ����� ≤ 3 for all  
� ∈ �.
Here we consider neutrosophic goal geometric 
problem as an extension of intuitionistic fuzzy 
goal geometric programming problem. In 
NGGPP , degree of indeterminacy is also taken 
into consideration for neutrosophic goal 
programming objectives together with the 
degree of acceptance and degree of rejection. 

A multi-objective non-linear neutrosophic goal 
geometric programming problem with k 
objective functions can be taken as follows- 

Find X = ��
, �0, … �2� so as to

34&454678  (9:
��� = ∑ <:=> ∏ �@ABCDE2@F

�BG>F


satisfying target goal achievement value <:

with acceptance tolerance H:
IJJ, rejection

tolerance H:
KL@and indeterminacy tolerance

H:
=MN.

34&454678  (9:0��� = ∑ <:=> ∏ �@ABCDE2@F

�BO>F


satisfying target goal achievement value <:0
with acceptance  tolerance H:0IJJ, rejection

tolerance H:0KL@and indeterminacy tolerance

H:0=MN.

:  : 

34&454678  (9:P��� = ∑ <:=> ∏ �@ABCDE2@F

�BQ>F


satisfying target goal achievement value <:P

with acceptance  tolerance H:PIJJ, rejection

tolerance H:PKL@ and indeterminacy tolerance

H:P=MN.

Subject to, 

9K��� = ∑ <K> ∏ �@ARDE2@F

�RQ>F
!S�RTG�Q ,   

U = 1,2, … , W  ,   � = ��
, �0, … … , �2� > 0.
Where we have                                   …(2.1) 

<:=> > 0, ( for p = 1,2,3 , .. , X:= ; Y = 1,2, … , Z),

<K> > 0,  (for k = 1 + X:P, … , X
P , X
P + 1, … , [\P;

U = 1,2, … , W  ) ,

]:=>@ ( p = 1,2, .. , X:=; Y = 1,2, … , ^ ; j = 1,2, …,m)

and   ]K>@  (k = 1 + X:P, … , X
P , X
P + 1, … , X\P;  j

= 1,2, …,m) are real numbers. 

Now using the concept of neutrosophic sets, 
construct the truth membership function 
�=�9_=����, indeterminacy membership function
�=�9_=���� and falsity membership function
`=�9_=���� of NGP objectives are given by  –

 1 ,   9_= ≤  <:=;

�=a9_=���b =    1 − deC�f��gBC
hBCijj   , <:= ≤ 9_=  ≤ <:= + H:=IJJ

 0 , 9_= ≥  <:= + H:=IJJ ;  …(2.2)

 0 ,      9_= ≤  <:=;

=̀a9_=���b =    deC�f��gBC
hBCRmE  , <:= ≤ 9_=  ≤ <:= + H:=KL@

 1 ,         9_= ≥  <:= + H:=KL@ ;   …(2.3)

 and 

 1 ,     9_=  ≤  <:=;

�=a9_=���b =     1 − deC�f��gBC
hBCCno   , <:= ≤ 9_=  ≤ <:= + H:==MN

 0 ,   9_=   ≥  <:= + H:==MN  ; …(2.4)
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�=, `= , �=

 �=�9_=�  `=�9_=� 
1 

 �=�9_=�

 

  0  <:=  <:= + H:==MN            <:= + H:= IJJ     <:= + H:=KL@
       90Y��� 

Fig (1) : truth membership function, indeterminacy 
membership function and falsity membership 
function for the objective functions 9:=���.

Now the above NGP model (3.1) can be reduced 
to a crisp model by maximizing the degree of 
acceptance, degree of indeterminacy  as well as 
minimizing the degree of falsity of NGP 
objective functions. Hence we have  

Maximize �=a9_=���b       for  i = 1,2,…,k

Minimize  =̀a9_=���b       for  i = 1,2,…,k

Maximize �=a9_=���b       for  i = 1,2,…,k

Subject to,   9K��� ≤  pK  ; U = 1,2, … , W
0 ≤ �=�9_=� + `=�9_=� + �=�9_=� ≤ 3,

`=�9_=� ≥ 0,
�=�9_=� ≥  `=�9_=� ,

�=�9_=� ≥ �=�9_=� , for i = 1,2,…,p
and X = ��
, �0, … … , �2� > 0.       … (2.5)

Now (2.5) is equivalent to- 

Maximize ]    Minimize  q     Maximize  r
Subject to,  �=a9_=���b ≥  ]

`=a9_=���b ≤  q 

�=a9_=���b ≥  r   , for  i = 1,2,…,

 9K��� ≤  pK  ;      U = 1,2, … , W

0 ≤ ] + q + r ≤ 3  , ] ≥  q ,    ] ≥ r,
], q, r ∈ [0,3]  ,
and   X= ��
, �0, … … , �2� > 0.      ….(2.6)

Now by geometric mean method , the above 
model (2.6) can be written as – 

Minimize  q�1 −  ]��1 − r�
Subject to,  

 9_=��� ≤  <:= + %:=IJJ × %:=KL@ × %:==MN�t�
� A��
�u�
v �  ,

           (for i = 1,2,….,k.)         



wR
 9K��� ≤ 1,         U = 1,2, … , W. 

0 ≤ ] + q + r ≤ 3  , ] ≥  q ,    ] ≥ r,
], q, r ∈ [0,3]  ,
and  X= ��
, �0, … … , �2� > 0.          …(2.7)    

Let , q�1 −  ]��1 − r� = x > 0, then the above
model becomes-  

Minimize  x

Subject to ,   deC�f�
gBC!IBCijj×IBCRmE×IBCCno×y ≤ 1  ,

        (for i = 1,2,….,k); 

    



wR
 9K��� ≤ 1,     U = 1,2, … , W. 

X= ��
, �0, … … , �2� > 0. …(2.8)

From (3.8) we construct the dual programming 
model as – 

Maximize 

� x
z::

�{BB | |[  <:=>
a<0Y + %0Y%}} × %0YU7~ × %0YY&' × xb z:=>

]{BCD
�BC

>F


P

=F


× | |  [ <K�
<K z_K�

] {eR�
�RQ

�F
!S�RTG�Q

\

KF

�� z:=>�

�BC

PF


�∑ {BCD��BC
Q�G

×   �� z:K�
�RQ

�F
!S�RTG�Q
�∑ {BR�

�RQ��G���RTG�Q  
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Subject to, z:: = 1

∑ z:=> = 1�BC
>F
  Normality Condition 

∑ z:K�
�RQ
�F
!S�RTG�Q = 1,   (for i =1,2,…,k; U = 1,2, … , W) 

� � ]:=>@z:=> + � � ]K>@

�RQ

�F
!�K�
�P

\

KF


�BC

>F


P

=F

z:K� = 0.  

(for j =  1,2, … , m. �  Orthogonality condition 

where 
z:=> > 0 �for p = 1,2, … , N:�; i = 1,2, … , k�                                                                                        
z:K� > 0 �for q = 1 + N���
��, … , T��; r = 1,2, … , l�     
( Positivity conditions ) … (2.9)

Let there are total T number of terms in the 
above primal problem. Then the degree of 
difficulty (DD) of the single objective geometric 
programming problem is T – (m+1). 

Case I : for T > (m+1) , a solution vector exists 
for the dual variables. 

Case II : T < (m+1)  , generally no solution 
vectors exist for the dual variables, but we can 
get the approximate solution for this system 
using different methods. 

Now to find out the solution of the geometric 
programming model (2.8) , firstly we have to 
find out the optimal solution of the dual problem 
(2.9) .Hence from the primal-dual relationship, 
the corresponding values of the primal variable 
vector � can be easily obtained. The LINGO-
16.0 software is used here to find optimal dual 
variables from the equations of (2.9). 

Lemma 3.1: The ranges of truth , indeterminacy 
and falsity membership function of neutrosophic 
goal geometric programming problem will 

satisfy if H:=KL@ > 2H:==MN and H:=IJJ > H:==MN,

where H:=IJJ , H:=KL@and H:==MN are acceptance
tolerance, rejection tolerance and indeterminacy 

tolerance respectively of the NGP objective 
functions. 

Proof:  From the equations (3.5) we have – 

�=�9_=� ≥ �=�9_=�

implies        1 − deC�f��gBC
hBCijj ≥  1 − deC�f��gBC

hBCCno

or, � 9_=��� − <:=� � 

hBCCno − 


hBCijj� ≥ 0       (i) 

In the above  mentioned neutrosophic goal 
programming problem , we consider each 
objective functions 9_=��� satisfying target
achievement value <:= and also from the relation
– `=�9_=� ≥ 0

or,       
deC�f��gBC

hBCRmE ≥ 0

or,(9_=��� − <:=� ≥ 0     (ii)  

Thus the relation (i) is true if  

� 

hBCCno − 


hBCijj� ≥ 0

i.e.     H:=IJJ > H:==MN        (iii) 

Hence from relation (iii), we have in 
neutrosophic goal geometric programming 
problem, acceptance tolerance H:=IJJ should be

greater than indeterminacy tolerance H:==MN .
Again from the relation  �=�9_=� ≥  `=�9_=�  and
�=�9_=� ≥ �=�9_=�

we have,    1 − deC�f��gBC
hBCijj ≥  deC�f��gBC

hBCRmE           (iv)     

and     1 − deC�f��gBC
hBCijj ≥  1 − deC�f��gBC

hBCCno             (v)    

Adding  the above inequalities (iv) and (v)  , we 
get- 

1 − deC�f��gBC
hBCijj ≥  


0 + �deC�f��gBC�
0 � 


hBCRmE − 

hBCCno�

    (vi) 
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Now from (3.5) using the relation 

�=�9_=� ≥  `=�9_=� ≥ 0 and

�=�9_=� + `=�9_=� + �=�9_=� ≤ 3
we get ,   �=�9_=� ≤ 3

or,      1 − deC�f��gBC
hBCCno ≤ 3

or,      9_=��� − <:= ≥  −2H:==MN

     or    



deC�f��gBC
≤  − 


0hBCCno        (vii)                                                 

Hence from �=�9_=� + `=�9_=� + �=�9_=� ≤ 3
using (vi) and (vii) – 



0 + �deC�f��gBC�

0 � 

hBCRmE − 


hBCCno� + deC�f��gBC
hBCRmE +

1 − deC�f��gBC
hBCCno ≤ 3        gives  H:=KL@ > 2H:==MN.

Thus from the  above relation it is clear that in 
neutrosophic goal geometric programming 
problem half of the rejection tolerance  

H:=KL@  should be greater than the indeterminacy

tolerance H:==MN .
Theorem 3.1: �∗ is  a pareto optimal solution  to
NGGPP (3.1) iff �∗ is a pareto optimal solution
to fuzzy goal geometric programming problem 
(FGGPP) which is of the form  

Minimize (9:
���, 9:0���, … , 9:P����
Subject to,   9K��� ≤  pK ,   U = 1,2, … , W                 

X = ��
, �0, … … , �2� > 0.

          ….(2.10)                                                                        

Proof: 

Definition: �∗ is said to be a pareto optimal
solution  to the neutrosophic goal geometric 
programming problem (2.1) iff there does not 
exist another � such that �=�9_=���� ≥
 �=�9_=��∗�� , `=�9_=���� ≤ `=�9_=��∗ �� and

�=�9_=���� ≥ �=�9_=��∗�� for all  i = 1,2, … , k
with strict inequality holds for at least one i. 

If �∗ be a pareto optimal solution of the FGGPP
(2.10) then there does not exist any � such that
9_=��� ≤ 9_=��∗�  for all i=1,2,…,k. and
9_=��∗� ≠ 9_=���  for at least one i.

Then  we have  for all � = ��
, �0, … … , �2�
9_=��� ≤ 9_=��∗�  …. (A)  

with strict inequality hold for at least one i. 

i.e.      9_=��� − <:= ≤ 9_=��∗� − <:=

or,       
deC�f��gBC

hBCijj ≤ deC�f∗��gBC
hBCijj

or,        1 − deC�f��gBC
hBCijj ≥ 1 − deC�f∗��gBC

hBCijj  implies 

�=�9_=���� ≥  �=�9_=��∗��.

Similarly from (A) we have 

deC�f��gBC
hBCRmE ≤  deC�f∗��gBC

hBCRmE  which implies 

`=�9_=���� ≤ `=�9_=��∗ ��

and also    
deC�f��gBC

hBCCno ≤  deC�f∗��gBC
hBCCno

or, 1 − deC�f��gBC
hBCCno ≥ 1 −  deC�f∗��gBC

hBCCno

or, �=�9_=���� ≥ �=�9_=��∗�� . Hence from the
definition of pereto optimal solution to the 
NGGPP , we have �∗ is the pareto optimal
solution of (2.1). 

Conversely, let �∗ is a pareto optimal solution
to NGGPP (2.1), then from the expression of 
membership function given in (2.2) we get  

1 − deC�f��gBC
hBCijj ≥  1 − deC�f∗��gBC

hBCijj

i.e. 9_=��� ≤ 9_=��∗�.

Again using (3.3) we have  

Neutrosophic Sets and Systems, Vol. 19, 2018 85

Sahidul Islam, Tanmay Kundu: Neutrosophic Goal Geometric Programming Problem based on Geometric 
Mean Method and its Application



deC�f��gBC
hBCCno ≤  deC�f∗��gBC

hBCCno which implies 

9_=��� ≤ 9_=��∗�.
Similarly, using (3.4) , 

1 − deC�f��gBC
hBCCno ≥ 1 −  deC�f∗��gBC

hBCCno  gives 

9_=��� ≤ 9_=��∗�.
Thus we have 9_=��� ≤ 9_=��∗� with strict
inequality hold for at least one i , Y ∈ {1,2, … , Z}
and which shows that �∗ is a pareto optimal
solution of (2.10). 

3. Numerical Example:

3.1. Bridge network Model [ 16] : 

Fig (2) :  A  five-component complex bridge 

network system 

Here a bridge network system as shown in 

the figure(3) has been considered, each 

having a component reliability R� , j = 1,2,…,5 .

Based on the simple probability theorem 

Pr�X ∪ Y� = Pr�X� + Pr�Y� − Pr�X ∩ Y�      ( 3.1 )

the system reliability R��R�  of the  bridge

network system is given by  as follows: 

Now to use equation (3.1) ,  it is required to 

found all possible paths from the input node 

to output node. The system will operate if the 

components in any one the following sets  

{R
 ,R0 } , {Rv ,R� } ,  {R
 ,R� , R�}  and {Rv ,R�
, R0 } operate.

Thus the system reliability is given by 

R��R� = Pr  ( {R
 ,R0 } ∪ {Rv ,R� } ∪{R
 ,R� , R�} ∪
{Rv ,R� , R0 } )

Since all the components operate 

independently , thus- 

Pr  ( {R
 ,R0 } ) = R
R0 ,

Pr  �{Rv , R� }� = RvR� ,
Pr  �{R
 , R� , R�}� =  R
R�R� ,

Pr  �{Rv , R� , R0 }� = RvR�R0  .

Now using equation (3.1) ,  

Pr  ( {R
 ,R0 } ∪ {Rv ,R� } )

= Pr  ( {R
 ,R0 } ) + Pr  ( {Rv ,R� }) – Pr �{1,2} ∩ {3,4}�

=  R
R0 + RvR� − R
R0RvR�

Similarly  

Pr  ( {R
 ,R0 } ∪ {Rv ,R� } ∪{R
 ,R� , R�} ) =

R
R0 + RvR� − R
R0RvR� + R
R�R� − R
R0R�R�
−R
RvR�R� + R
R0RvR�R� .

Pr ( {R
 ,R0 } ∪ {Rv ,R� } ∪{R
 ,R� , R�} ∪ {Rv ,R� , R0 } )

=  R
R0 + RvR� + R
R�R� + RvR�R0 −
R
R0RvR�− R
R0R�R� − R
RvR�R� −
R
RvR�R0 − R0RvR�R�  + 2R
R0RvR�R�

Thus the multi- objective reliability 

optimization model becomes 

Maximize R��R� =  R
R0 + RvR� + R
R�R� +
RvR�R0 − R
R0RvR�− R
R0R�R� −
R
RvR�R� − R
RvR�R0 − R0RvR�R�  +
2R
R0RvR�R�

Minimize C��R� = ∑ <=¢=ICM=F


0 < ¢@ ≤ 1 ,  0 ≤ ¢£ ≤ 1 , j =1,2, … ,5.  (3.2) 

Where C��R�  denote the cost of the system

and <\=2  is the available cost of the system.

R�

R
 R0

R�Rv 
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3.1. Application of Neutrosophic Goal 
Geometric Programming on Bridge 
Network Reliability Model: 

To solve the above multi-objective problem 
using geometric programming approach , the 
problem should be in minimization form. 
Thus , the suitable form of optimization 
model is taken as 

Minimize ¢£¤�¢� = −R
R0 − RvR� −
R
R�R� − RvR�R0 + R
R0RvR� + R0R�R� +
R
RvR�R� + R
RvR�R0 + R0RvR�R� −
2R
R0RvR�R�

satisfying target achievement value R: with
acceptance tolerance H¥IJJ, rejection tolerance

H¥KL@ and indeterminacy tolerance H¥=MN .                                               

Also , we Minimize  <£�¢� = ∑ <=¢=ICM=F

satisfying target achievement value C: with
acceptance tolerance  HgIJJ, rejection tolerance
HgKL@ and indeterminacy tolerance Hg=MN. Now ,
construct the truth membership function , falsity 
membership function and indeterminacy 
membership function as follows – 

 1 ,     ¢£¤�¢� ≤  R:;

�¥¦§ �¢� =  1 − ¥¦§�¨B
 h©ijj;   , R: ≤ ¢£¤�¢� ≤ R: +  H¥IJJ;

 0 ,    ¢£¤�¢� ≥  R: +  H¥IJJ; 

 0 ,      ¢£¤�¢� ≤  R:;

`¥¦§ �¢� =     ¥¦§ �¨B
h©RmE    ,     R: ≤ ¢£¤�¢�   ≤ R: + H¥KL@

1      ,        ¢£¤�¢�  ≥  R: + H¥KL@  ;

 1 ,   ¢£¤�¢� ≤  R:;

�¥¦§�¢� =    1 − ¥¦§�¨B
h©Cno   , R: ≤ ¢£¤�¢� ≤ R: + H¥=MN

 0 ,   ¢£¤�¢� ≥  R: + H¥=MN  ;

 1  ,  <£�¢� ≤  C:;

�g¦�¢�  =   1 −   g¦�ªB
h«ijj   , C: ≤   <¬�¢�  ≤ C: + HgIJJ

 0 ,   <£�¢� ≥  C0 +  H<%}}

 0 ,     <£�¢�  ≤  C:;

`g¦ �¢� =         g¦ �ªB
h«RmE    , C: ≤   <£�¢�   ≤ C: + HgKL@

1 ,   <£�¢�  ≥  C: + HgKL@ ;

 1 ,    <£�¢� ≤  C:;

�g¦�¢� =   1 −   g¦�ªB
h«Cno     ,    C: ≤   <£�¢�  ≤ C: + Hg=MN

0 ,    <£�¢� ≥  C: + Hg=MN  ;

Now using (2.5),  the above model (3.2) reduces 
to the following form – 

Maximize  �¥¦′ Maximize  �g¦

Maximize  �¥¦ ′ Maximize   �g¦

Minimize  ¥̀¦′ Minimize   g̀¦

Subject to ,     0 ≤ �¥¦′ + `¥¦′ + �¥¦′ ≤ 3 ,

0 ≤ �g¦ + �g¦ + `g¦ ≤ 3 ,

`¥¦′ ≥ 0       ,       g̀¦ ≥ 0

�¥¦ ′ ≥ `¥¦′  ,     �g¦ ≥ `g¦  ,

�¥¦ ′ ≥ �¥¦′   ,     �g¦ ≥ �g¦ ,

0 < ¢= ≤ 1;   i=1,2,…,n;         ..…(3.1.1)
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The above model (3.1.1) is equivalent to 

Maximize ],    Minimize q,   Maximize r
Subject to,   �¥¦′ ≥ ],    �g¦ ≥ ], 

`¥¦′ ≤ q,    g̀¦ ≤ q,

�¥¦′ ≥ r,    �g¦ ≥ r ,

0 ≤  ] + q + r ≤ 3 , ] ≥ q , ] ≥ r ,

 0 ≤  ], q, r ≤ 1                  …..(3.1.2)

Using geometric mean method (4.1.8) becomes- 

Minimize  x

Subject to ,  

�R1R2− R3R4−R1R5R4−R3R5R2+R1R2R3R4+R2R5R4+
R1R3R5R4+R1R3R5R2+R2R3R5R4−2R1R2R3R5R4 

¢0+IBCijj×IBCRmE×IBCCno×x ≤ 1      ;

∑ <Y¢Y%Y5Y=1  
<0+IBCijj×IBCRmE×IBCCno×x ≤ 1;

0 < ¢= ≤ 1;  i=1,2,…,5;  ..(3.1.3)

where we take x = q�1 −  ]��1 − r� > 0 as a
parameter. The degree of difficulty (D.D) of 
(4.1.9) is �5 + 2� − �5 + 1� = 1 �>  0�.
Now using ( 2.9) , the above model (3.1.3) can 
be solved by geometric programming technique 
after finding its dual. 

4  Numerical Example 

Here we consider the bridge network reliability 
optimization model for the numerical exposure. 
Thus the model (4.1) becomes- 

Maximize R��R� =  R
R0 + RvR� + R
R�R� +
RvR�R0 − R
R0RvR�− R
R0R�R� − R
RvR�R� −
R
RvR�R0 − R0RvR�R�  + 2R
R0RvR�R�

Minimize C��R� = ∑ <=¢=ICM=F


0 < ¢@ ≤ 1 ,  0 ≤ ¢£ ≤ 1 , j =1,2, … ,5.   …(4.1)

Table (1) : The input data for  the neutrosophic goal geometric programming problem (5.1) is given as 
follows – 

<
 <0 <v <� <� <: HgIJJ   HgKL@ Hg=MN H¥IJJ    H¥KL@ H¥=MN %= , ∀Y R:
12 10 15 18 16 100 8 14 6 0.3 0.52 0.25 0.15 0.2 

Table (2): Comparison  of optimal solutions of (4.1) by  NGGPP method with fuzzy goal geometric 
programming problem (FGGPP) approach and intuitionistic fuzzy goal geometric programming 
(IFGGPP) approach: 

Method R
 R0 Rv R� R� R��R� C��R�
FGGPP 0.905917 0.905923 0.896927 0.796213 0.948311 0.970147 69.702 

IFGGPP 0.812514 0.992162 0.992359 0.992842 0.892531 0.998364 70.313 

NGGPP 0.967124 0.992981 0.993162 0.965927 0.985742 0.999519 70.786 
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The above table describes the comparison of 
results of objective functions for primal problem 
of the proposed neutrosophic goal geometric 
programming approach with the FGGPP and 
IFGGPP approach. It is clear from the above      
table (2) that NGGPP approach gives better 
result than the IFGGPP approach in perspective 
of system reliability. But in view of system cost 
the proposed approach gives a little bit higher 
value than the IFGGPP and FGGPP method. 

5. Conclusion and future work:

A new concept to non-linear multi-objective 
optimization problem in neutrosophic 
environment is discussed in this paper. In this 
work we have introduced NGGPP technique to 
find the best optimal solution of the multi-
objective bridge network reliability model in 
which system reliability and system cost are 
chosen as two objective function. Finally an 
illustrative numerical example is provided by 
comparing the result obtained in NGGPP  
technique with IFGGPP and FGGPP approach to 
demonstrate the efficiency of the proposed 
method. Thus the proposed method is an 
efficient and modified optimization technique 
and can construct a highly reliable system than 
the other existing method. The method presented 
here is quite general and can be applied to the 
typical problems in other areas of Operation 
Research and Engineering Sciences, like 
Transportation problems, Inventory problems, 
Structural optimization, etc.  

References : 

[1] Zadeh, L.A.  Fuzzy sets , Information and 
Control,8(1965), pp.338-353. 

[ 2 ] Atanassov, K.  “ Intuitionistic fuzzy sets”, 
Fuzzy sets and system, 20(1986), pp. 87-96. 

[3] Smarandache, F.“Neutrosophy, Neutrosophic 
probability, set and logic “, Amer. Res. Press, 
Rehoboth, USA, 105p, 1998. 

[4] Charns,A. & Cooper,R.  Management 
models and Industrial application of linear 
programming.(1961), Wiley, New York. 

[5] Pal, B.B., Maitra, B.N. & Maulik, U. “ A 
goal programming procedure for multi-objective 
linear programming problem” , Fuzzy Sets and 
Systems, 139 (2003), 395-405. 

[6] Parmanik,P, & Roy,T.K. “An intuitionistic 
fuzzy goal programming approach to vector 
minimization problem”, Notes on Intuitionistic 
fuzzy sets, no.1.(2005),pp.1-14. 

[ 7 ] El- Wahed, A. , M-Lee, S. “ Interactive 
fuzzy goal programming for multi-objective 
transportation problems” , The International 
Journal of Management Science , 34(2006), 158-
166. 

[ 8 ] Hwang, C.L.& Lee, H.B. “ Non-linear 
integer goal programming applied to optimal 
system reliability”, IEEE Transaction on 
Reliability, VolR-33 (2004), 431-438. 

[9] Roy, R. & Das, P. “ Neutrosophic Goal 
Programming applied to Bank:  Three 
Investment Problem”, NSS, vol(12), 97-104, 
2016 

[10] Ye, J. “Trapezoidal neutrosophic set and its 
application to multiple attribute decision-
making”, Neural Computing and Applications, 
Volume 26 Issue 5, July (2015) 
Pages 1157-1166. 

[11] Das, P. & Roy, T.K. “ Multi-objective 
Programming Problem Based on Neutrosophic 
Geometric Programming Technique”, 
Neutrosophic Operational Research, Vol(I), 
2016, 131-142. 

Neutrosophic Sets and Systems, Vol. 19, 2018 89

Sahidul Islam, Tanmay Kundu: Neutrosophic Goal Geometric Programming Problem based on Geometric 
Mean Method and its Application



[ 12 ] Ghosh, P. &.Roy, T.K “ Intuitionistic 
fuzzy goal geometric programming problem”, 
Notes on Intuitionistic Fuzzy Sets, 20(2014), 
No. 1, 63-78. 

[13] Ghosh, P., Roy, T.K. & Majumder, C.  “ 
Optimization of industrial wastewater treatment 
using intuitionistic fuzzy goal geometric 
programming problem”, Fuzzy Information and 
Engineering , 8(2016), 329-343. 

[14]  Ye , J. “ Multi-criteria decision making 
method using the correlation coefficient under 
single-value neutrosophic environment”, 
International Journal of General system, 42(4), 
2013,pp.386-394.  

[15] Ye , J.  “ Multi-criteria decision making 
method using aggregation operators for 
simplified neutrosophic sets” , Journal of 
Intelligent and fuzzy systems, 2013, 
Doi:10.3233/IFS-130916  

[16]  Tillman, F. A. , Hwng, C. L. , Fan, L. T. & 
Lai, K. C.  “Optimal Reliability of a Complex 
system”, IEEE Transactions on Reliability, 19 
(3),(1970) 

[17] Wang, H., Smarandache, F. , Zhang, Y. & 
Sunderraman, R. “Single valued neutrosophic 
sets”, multispace and multistructure, vol-
4(2010),pp-410-413. 

[ 18 ] Zangiabadi, M. and Maleki, H.R. “ Fuzzy 
goal programming for multi-objective 
transportation problem”, Journal Of Applied 
Mathematics and Computing, 24(2007), 449-
460. 

90 Neutrosophic Sets and Systems, Vol. 19, 2018

F., & Chang, V. (2018). Neutrosophic Association  

Rule Mining Algorithm for Big Data Analysis.  

Symmetry, 10(4), 106. 

[20] Abdel-Basset, M., & Mohamed, M. (2018). The 

Role of Single Valued Neutrosophic Sets and 

Rough Sets in Smart City: Imperfect and 

Incomplete Information Systems. Measurement. 

Volume 124, August 2018, Pages 47-55 

M., & Smarandache, F. A novel method for  
solving the fully neutrosophic linear programming  
problems. Neural Computing and Applications, 1- 
11. 

[22] Abdel-Basset, M., Manogaran, G., Gamal, A., & 

Smarandache, F. (2018). A hybrid approach of 

neutrosophic sets and DEMATEL method for 

developing supplier selection criteria. Design 

Automation for Embedded Systems, 1-22. 

(2018). NMCDA: A framework for evaluating  
cloud computing services. Future Generation  
Computer Systems, 86, 12-29. 

Hezam, I. (2017). Multi-criteria group decision  

making based on neutrosophic analytic hierarchy  

process. Journal of Intelligent & Fuzzy Systems,  

33(6), 4055-4066. 

F. An Extension of Neutrosophic AHP–SWOT  
Analysis for Strategic Planning and Decision- 
Making. Symmetry 2018, 10, 116. 

[19] Abdel-Basset, M., Mohamed, M., Smarandache,  

[21] Abdel-Basset, M., Gunasekaran, M., Mohamed,  

[23] Abdel-Basset, M., Mohamed, M., & Chang, V.  

[24] Abdel-Basset, M., Mohamed, M., Zhou, Y., &  

[25] Abdel-Basset, M.; Mohamed, M.; Smarandache,  

Sahidul Islam, Tanmay Kundu: Neutrosophic Goal Geometric Programming Problem based on Geometric 
Mean Method and its Application

Received : February 15, 2018. Accepted : March 28, 2018.



The Ingenuity of Neutrosophic Topology 
via N-Topology

1M. Lellis Thivagar 2 S. Jafari 3V. Antonysamy 4V. Sutha Devi

Abstract: In this paper we desire to extend the neutrosophic topological spaces into
N -neutrosophic topological spaces. Also we show that this theory can be deduced to
N -intuitionistic and N -fuzzy topological spaces etc. Further we develop not only the concept
of classical generalized closed sets into N -neutrosophic topological spaces but also obtain its
basic properties. Finally we investigate its continuous function and generalized continuous
function.

2010 MSC: 54A05, 54A40, 03E72.

Keywords: Nk-topology, Nkint(A), Nkcl(A), Nk-generalized closed set,
Nk-continuous function, Nk-generalized continuous function.

1 Introduction

Set theory is the fundamental concept in mathematics developed by a Russian
Mathematician George Cantor in 1877. He showed that the points on two dimensional
square has a one to one correspondent with points on different line segment leading to the
development of dimensional theory. Frechet and Hausdorff along with others studied general
topology. Hausdorff, the German mathematician, following the footsteps of Cantor devel-
oped set theory. Set theory enabled us to study various precise concepts in mathematics.
But in real life situation we do come across many imprecise concepts or uncertain situation.
If a class has fifty students say, to distinguish the taller/stronger students we are left with
some short of uncertainty or vagueness. We can overcome the vagueness by fixing the per-
centage of membership namely the percentage of membership enables us to find out the level
of inexactness. This theory is known as fuzzy theory.

The concepts of fuzzy set was established by Zadeh.A [12]. This is an essential tool
to analyse imprecise mathematical information. Since 1965, this theory has been greatly
acknowledged by the community of mathematicians, scientists, engineers and social sci-
entists [4,9,10,11]. The idea of fuzzy topological space was introduced by Chang.C.L [3].
Atanassov.K introduced the seed of intuitionistic fuzzy set [1] and his colleagues [2] developed
it further. Smarandache extended it to a neutrosophic set[7,8]. The notion of neutrosophic
crisp sets and topological spaces were the contribution of Salama.A.A and Alblowi.S.A [6].
The geometric existence of N -topology was given by Lellis Thivagar et al. [5] which is a
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nonempty set equipped with N -arbitrary topologies.

In this paper, we explore the possibility of expanding the classical neutrosophic topo-
logical spaces into N -neutrosophic topological spaces and also try to deduce N -intuitionistic
and N -fuzzy topological spaces etc. Further we develop the concept of classical general-
ized closed sets into N -neutrosophic topological spaces and verify its properties. Finally, we
investigate the related continuous function and generalized continuous function.

2 Preliminaries

In this section, we discuss some basic definitions and properties of N -topological
spaces as well as fuzzy, intuitionistic and neutrosophic topological spaces which are useful in
sequel.

Definition 2.1 [5] Let X be a non empty set, then τ1, τ2, ... , τN be N -arbitrary topologies
defined on X and the collection Nτ = {S ⊆ X : S = (

∪N
i=1 Ai) ∪ (

∩N
i=1Bi), Ai, Bi ∈ τi} is

called a N -topology on X if the following axioms are satisfied:

(i) X, ∅ ∈ Nτ .

(ii)
∪∞

i=1 Si ∈ Nτ for all {Si}∞i=1 ∈ Nτ .

(iii)
∩n

i=1 Si ∈ Nτ for all {Si}ni=1 ∈ Nτ .

Then (X,Nτ) is called a N -topological space on X. The elements of Nτ are known as
Nτ -open sets on X and its complement is called as Nτ -closed on X.

Definition 2.2 [12] Let X be a non empty set. A fuzzy set A is an object having the form
A = {(x, µA(x)) : x ∈ X}, where 0 ≤ µA(x) ≤ 1 represents the degree of membership of
each x ∈ X to the set A.

Definition 2.3 [1,2] Let X be a non empty set. An intuitionistic set A is of the form
A = {(x, µA(x), γA(x)) : x ∈ X}, where µA(x) and γA(x) represent the degree of membership
and non membership function respectively of each x ∈ X to the set A and 0 ≤ µA(x) +
γA(x) ≤ 1 for all x ∈ X.

Definition 2.4 [7] Let X be a non empty set. A neutrosophic set A having the form
A = {(x, µA(x), σA(x), γA(x)) : x ∈ X}, where µA(x), σA(x) and γA(x) represent the degree
of membership function (namely µA(x)), the degree of indeterminacy (namely σA(x)) and
the degree of non membership (namely γA(x)) respectively of each x ∈ X to the set A. Also
−0 ≤ µA(x) + σA(x) + γA(x) ≤ 3+ for all x ∈ X.

Remark 2.5 The following definitions can be deduced into fuzzy if the percentages of in-
determinacy and non membership are not taken into consideration so also for intuitionistic
case the percentage of indeterminacy is not considered.
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Definition 2.6 [7] Let X be a non empty neutrosophic set. if A = {(x, µA(x), σA(x),
γA(x)) : x ∈ X} and B = {(x, µB(x), σB(x), γB(x)) : x ∈ X} are two neutrosophic sets in
X, then the following statements hold:

(i) A ⊆ B if and only if µA(x) ≤ µB(x), σA(x) ≤ σB(x) and γA(x) ≥ γB(x) for all x ∈ X.

(ii) A = B if and only if A ⊆ B and B ⊆ A.

(iii) Ac = {(x, γA(x), σA(x), µA(x)) : x ∈ X} [Complement of A].

(iv) A ∩B = {(x, min{µA(x), µB(x)}, min{σA(x), σB(x)}, max{γA(x), γB(x)}) : x ∈ X}.

(v) A ∪B = {(x,max{µA(x), µB(x)},max{σA(x), σB(x)}, min{γA(x), γB(x)}) : x ∈ X}.

Remark 2.7 Let X be a non empty neutrosophic set. We consider the neutrosophic empty
set 0 as 0 = {(x, 0, 0, 1) : x ∈ X} and the neutrosophic whole set 1 as
1 = {(x, 1, 1, 0) : x ∈ X}.

Remark 2.8 By the notion k-set we mean any one of the following sets: fuzzy set, intu-
itionistic set, neutrosophic set.

Definition 2.9 [6,7] Let X be a non empty set. A k-topology on X is a family kτ of k-sets
in X satisfying the following axioms:

(i) the sets 1 and 0 belong to the family kτ .

(ii) an arbitrary union of sets of the family kτ belong to kτ .

(iii) the finite intersection of sets of the family kτ belong to kτ .

Then the ordered pair (X, kτ) (simply X) is called k-topological space on X. The elements
of kτ are known as k-open sets on X and its complement is called as k-closed on X.

Definition 2.10 [6] The interior and closure of a k-set A of a k-topological space
(X, kτ) are respectively defined as

(i) kint(A) = ∪{G : G ⊆ A and G is k-open in X}.

(ii) kcl(A) = ∩{F : A ⊆ F and F is k-closed in X}.

Corollary 2.11 [7] If A,B,C and D are k-sets in X, then the followings are true:

(i) A ⊆ B and C ⊆ D ⇒ A ∩ C ⊆ B ∩D and A ∪ C ⊆ B ∪D.

(ii) If A ⊆ B and A ⊆ C, then A ⊆ B ∩ C. If A ⊆ C and B ⊆ C, then A ∪B ⊆ C.

(iii) If A ⊆ B and B ⊆ C ⇒ A ⊆ C.

(iv) (A ∩B)c = Ac ∪Bc, (A ∪B)c = Ac ∩Bc and (Ac)c = A. If A ⊆ B ⇒ Bc ⊆ Ac.
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(v) 1c = 0 and 0c = 1.

Now, we introduce the notions of image and pre-image of neutrosophic sets. Let us
consider X and Y as two non empty sets and f : X → Y be a function.

Definition 2.12 [6] Let X and Y be two non empty sets, A = {(x, µA(x), σA(x), γA(x)) :
x ∈ X} be a neutrosophic set in X and B = {(y, µB(y), σB(y), γB(y)) : y ∈ Y } be a
neutrosophic set in Y . Then

(i) the pre-image of B under f , denoted by f−1(B), is the neutrosophic set in X defined
by f−1(B) = {(x, f−1(µB)(x), f

−1(σB)(x), f
−1(γB)(x)) : x ∈ X}.

(ii) the image of A under f , denoted by f(A), is the neutrosophic set in Y defined by
f(A) = {(y, f(µA)(y), f(σA)(y), (1− f(1− γA))(y)) : y ∈ Y }, where

f(µA)(y) =

{
supx∈f−1(y)µA(x) if f−1(y) ̸=∅

0 otherwise

f(σA)(y) =

{
supx∈f−1(y)σA(x) if f−1(y) ̸=∅

0 otherwise

(1− f(1− γA))(y) =

{
infx∈f−1(y)γA(x) if f−1(y) ̸=∅

1 otherwise

For the sake of simplicity, let us use the symbol f−(γA) for (1− f(1− γA)).

Corollary 2.13 [6] Let Ai∈J , Bi∈J be k-sets in X and Y respectively and f : X → Y a
function. Then

(a) A1 ⊆ A2 ⇒ f(A1) ⊆ f(A2).

(b) B1 ⊆ B2 ⇒ f−1(B1) ⊆ f−1(B2).

(c) Ai∈J ⊆ f−1(f(Ai∈J)) { If f is injective, then Ai∈J = f−1(f(Ai∈J))}.

(d) f(f−1(Bi∈J)) ⊆ Bi∈J { If f is surjective, then f(f−1(Bi∈J)) = Bi∈J}.

(e) f−1(∪Bi) = ∪f−1(Bi).

(f) f−1(∩Bi) = ∩f−1(Bi).

(g) f(∪Ai) = ∪f(Ai).

(h) f(∩Ai) ⊆ f(Ai) { If f is injective, then f(∩Ai) = ∩f(Ai)}.
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(i) f−1(1) = 1.

(j) f−1(0) = 0.

(k) f(1) = 1, if f is surjective.

(l) f(0) = 0.

(m) (f(Ai∈J))
c ⊆ f(Ac

i∈J), if f is surjective.

(n) (f−1(Bi∈J))
c = f−1(Bc

i∈J).

3 Nk-Topological Spaces

In this section, we introduce N -fuzzy, N -intuitionistic and N -neutrosophic topo-
logical spaces and discuss their properties. Henceforth in this paper by the notion Nkτ we
mean N -fuzzy topology (if k = f), N -intuitionistic topology (if k = i) and N -neutrosophic
topology ( if k = n).

Definition 3.1 LetX be a non empty set, then kτ1, kτ2, ... , kτN beN -arbitrary k topologies
defined on X and the collection Nkτ = {G ⊆ X : G = (

∪N
i=1Ai)∪ (

∩N
i=1Bi), Ai, Bi ∈ kτi} is

called Nk-topology on X if the following axioms are satisfied:

(i) 1, 0 ∈ Nkτ .

(ii)
∪∞

i=1Gi ∈ Nkτ for all {Gi}∞i=1 ∈ Nkτ .

(iii)
∩n

i=1Gi ∈ Nkτ for all {Gi}ni=1 ∈ Nkτ .

Then (X,Nkτ) is called Nk-topological space on X. The elements of Nkτ are known as
Nk-open sets on X and its complement is called Nk-closed sets on X.

Example 3.2 Let N = 3, X = {a, b, c}. Define the neutrosophic sets A = {(x, (a
1
, b
1
, c
1
),

(a
0
, b
0
, c
0
), ( a

0.7
, b
0.7

, c
0.7

))} and B = {(x, ( a
0.6

, b
0.6

, c
0.6

), (a
0
, b
0
, c
0
), (a

0
, b
0
, c
0
))} in X. Then

A∪B = {(x, (a
1
, b
1
, c
1
), (a

0
, b
0
, c
0
), (a

0
, b
0
, c
0
))}, A∩B = {(x, ( a

0.6
, b
0.6

, c
0.6

), (a
0
, b
0
, c
0
), ( a

0.7
, b
0.7

, c
0.7

))}.
Considering nτ1O(X) = {0, 1, A}, nτ2O(X) = {0, 1, B} and nτ3O(X) = {0, 1}, we get
3nτO(X) = {0, 1, A,B,A ∪ B,A ∩ B} which is a tri-neutrosophic topology on X. The
pair (X, 3nτ) is called a tri-neutrosophic topological space on X.

Remark 3.3 Considering N = 2 in definition 3.1 we get the required definition of bi-
neutrosophic topology on X. The pair (X, 2nτ) is called a bi-neutrosophic topological space
on X.

Example 3.4 Let N = 2, X = {a, b, c}. Define the neutrosophic set A = {(x, ( a
0.4

, b
0.3

, c
0.6

),
( a
0.4

, b
0.5

, c
0.6

), ( a
0.3

, b
0.2

, c
0.3

))} in X. If nτ1O(X) = {0, 1, A} and nτ2O(X) = {0, 1} are two
neutrosophic topologies then we get 2nτO(X) = {0, 1, A} which is a bi-neutrosophic topology
on X.
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Definition 3.5 Let (X,Nkτ) be a Nk-topological space on X and A be a k-set on X then
the Nkint(A) and Nkcl(A) are respectively defined as

(i) Nkint(A) = ∪{G : G ⊆ A and G is a Nk-open set in X}.

(ii) Nkcl(A) = ∩{F : A ⊆ F and F is a Nk-closed set in X}.

Proposition 3.6 Let (X,Nkτ) be any Nk-topological space. If A and B are any two k-sets
in (X,Nkτ), then the Nk-closure operator satisfy the following properties:

(i) A ⊆ Nkcl(A).

(ii) Nkint(A) ⊆ A.

(iii) A ⊆ B ⇒ Nkcl(A) ⊆ Nkcl(B).

(iv) A ⊆ B ⇒ Nkint(A) ⊆ Nkint(B).

(v) Nkcl(A ∪B) = Nkcl(A) ∪Nkcl(B).

(vi) Nkint(A ∩B) = Nkint(A) ∩Nkint(B).

(vii) (Nkcl(A))
c = Nkint(A)

c.

(viii) (Nkint(A))
c = Nkcl(A)

c.

Proof

(i) Nkcl(A) = ∩{G : G is a Nk-closed set in X and A ⊆ G}. Thus, A ⊆ Nkcl(A).

(ii) Nkint(A) = ∪{G : G is a Nk-open set in X and G ⊆ A}. Thus, Nkint(A) ⊆ A.

(iii) Nkcl(B) = ∩{G : G is a Nk-closed set in X and B ⊆ G} ⊇ ∩{G : G is a Nk-closed set
in X and A ⊆ G} ⊇ Nkcl(A). Thus, Nkcl(A) ⊆ Nkcl(B).

(iv) Nkint(B) = ∪{G : G is a Nk-open set in X and B ⊇ G} ⊇ ∪{G : G is a Nk-open set
in X and A ⊇ G} ⊇ Nkint(A). Thus, Nkint(A) ⊆ Nkint(B).

(v) Nkcl(A ∪ B) = ∩{G : G is a Nk-closed set in X and A ∪ B ⊆ G} = (∩{G : G is a
Nk-closed set in X and A ⊆ G}) ∪ (∩{G : G is a Nk-closed set in X and B ⊆ G}) =
Nkcl(A) ∪Nkcl(B). Thus, Nkcl(A ∪B) = Nkcl(A) ∪Nkcl(B).

(vi) Nkint(A ∩ B) = ∪{G : G is a Nk-open set in X and A ∩ B ⊇ G} = (∪{G : G is a
Nk-open set in X and A ⊇ G}) ∩ (∪{G : G is a Nk-open set in X and B ⊇ G}) =
Nkint(A) ∩Nkint(B). Thus, Nkint(A ∩B) = Nkint(A) ∩Nkint(B).

(vii) Nkcl(A) = ∩{G : G is a Nk-closed set in X and A ⊆ G}, (Nkcl(A))
c = ∪{Gc : Gc is a

Nk-open set in X and Ac ⊇ Gc} = Nkint(A)
c. Thus, (Nkcl(A))

c = Nkint(A)
c.

(viii) Nkint(A) = ∪{G : G is a Nk-open set in X and A ⊇ G}, (Nkint(A))
c = ∩{Gc : Gc is a

Nk-closed set in X and Ac ⊇ Gc} = Nkcl(A)
c. Thus, (Nkint(A))

c = Nkcl(A)
c.
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4 Generalized Closed Sets in Nk-topology

We introduce here the generalized closed sets in Nk-topological spaces and investigate
their properties.

Definition 4.1 Let (X,Nkτ) be a Nk-topological space. A k-set A in (X,Nkτ) is said to be
a Nk-generalized closed set if Nkcl(A) ⊆ G, whenever A ⊆ G and G is a Nk-open set. The
complement of a Nk-generalized closed set is called a Nk-generalized open set.

Definition 4.2 Let (X,Nkτ) be a Nk-topological space and A be a k-set in X. Then the
Nk-generalized closure and Nk-generalized interior of A are defined as:

(i) NkGcl(A) = ∩{G : G is a Nk-generalized closed set in X and A ⊆ G}

(ii) NkGint(A) = ∪{G : G is a Nk-generalized open set in X and G ⊆ A}.

Proposition 4.3 Let (X,Nkτ) be any Nk-topological space. If A and B are any two k-sets
in (X,Nkτ), then the Nk-generalized closure operator satisfies the following properties:

(i) A ⊆ NkGcl(A).

(ii) NkGint(A) ⊆ A.

(iii) A ⊆ B ⇒ NkGcl(A) ⊆ NkGcl(B).

(iv) A ⊆ B ⇒ NkGint(A) ⊆ NkGint(B).

(v) NkGcl(A ∪B) = NkGcl(A) ∪NkGcl(B).

(vi) NkGint(A ∩B) = NkGint(A) ∩NkGint(B).

(vii) (NkGcl(A))c = NkGint(A)c.

(viii) (NkGint(A))c = NkGcl(A)c.

Proof The proof is analogous to Proposition 3.6.

Proposition 4.4 Let (X,Nkτ) be a Nk-topological space. If B is a Nk-generalized closed
set and B ⊆ A ⊆ Nkcl(B), then A is a Nk- generalized closed set.

Proof. Let G be a Nk-open set in (X,Nkτ) such that A ⊆ G. Since B ⊆ A,B ⊆ G.
Now, B is a Nk-generalized closed set and Nkcl(B) ⊆ G. But Nkcl(A) ⊆ Nkcl(B). Since
Nkcl(A) ⊆ Nkcl(B) ⊆ G,Nkcl(A) ⊆ G. Hence, A is a Nk-generalized closed set.

Proposition 4.5 Let (X,Nkτ) be a Nk-topological space. Then A is a Nk-generalized open
set if and only if B ⊆ N

k
int(A), whenever B is an Nk-closed set and B ⊆ A.
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Proof. Let A be a Nk-generalized open set and B a Nk-closed set such that B ⊆ A. Now,
B ⊆ A ⇒ Ac ⊆ Bc and since Ac is a Nk-generalized closed set, then Nkcl(A

c) ⊆ Bc. This
means that B = (Bc)c ⊆ (Nkcl(A

c))c. But (Nkcl(A
c))c = Nkint(A). Hence, B ⊆ Nkint(A).

Conversely, suppose that A is a k-set such that B ⊆ Nkint(A), whenever B is a Nk-closed
set and B ⊆ A. Now, Ac ⊆ B ⇒ Bc ⊆ A. Hence by assumption, Bc ⊆ Nkint(A). That is,
(Nkint(A))

c ⊆ B. But (Nkint(A))
c = Nkcl(A)

c. Hence, N
k
cl(A)c ⊆ B. This means that A

is a Nk-generalized closed set. Therefore, A is a Nk-generalized open set.

Proposition 4.6 If Nkint(A) ⊆ B ⊆ A and A is a Nk-generalized open set, then B is also
a Nk-generalized open set.
Proof. Now, Ac ⊆ Bc ⊆ (Nkint(A))

c = Nkcl(A)
c. Since A is a Nk-generalized open set,

then Ac is a Nk-generalized closed set. By Proposition 3.6, Bc is a Nk-generalized closed set.
That is, B is a Nk-generalized open set.

5 Continuous Functions in Nk-Topology

In this section, we generalize continuous functions inN -neutrosophic topological spaces
and also establish its relationship with other existing continuous functions.

Definition 5.1 Let (X,Nkτ)) and (Y,Nkσ) be any two Nk-topological spaces. A map
f : (X,Nkτ) → (Y,Nkσ) is said to be Nk-continuous if the inverse image of every Nk-
closed set in (Y,Nkσ) is a Nk-closed set in (X,Nkτ). Equivalently if the inverse image of
every Nk-open set in (Y,Nkσ) is a Nk-open set in (X,Nkτ).

Remark 5.2 By considering N = 2 in definition 5.1 we obtain bi-neutrosophic continuous
function.

The following properties can be extended to N -fuzzy and N -intuitionistic topological spaces
too.

Proposition 5.3 Let (X,Nkτ)) and (Y,Nkσ) be any two Nk-topological spaces. Let f :
(X,Nkτ) → (Y,Nkσ) be aNk- continuous function. Then for every k-setA inX, f(Nkcl(A)) ⊆
Nkcl(f(A)).

Proof. Let A be a k-set in (X,Nkτ). Since Nkcl(f(A)) is a Nk-closed set and f is a Nk-
continuous function, f−1(Nkcl(f(A)) is a Nk-closed set and f−1(Nkcl(f(A))) ⊇ A. Now,
Nkcl(A) ⊆ f−1(Nkcl(f(A))). Therefore, f(Nkcl(A)) ⊆ Nkcl(f(A)).

Proposition 5.4 Let (X,Nkτ) and (Y,Nkσ) be any two Nk-topological spaces.
Let f : (X,Nkτ) → (Y,Nkσ) be a Nk-continuous function. Then for every Nk-set A in
Y , Nkcl(f

−1(A)) ⊆ f−1(Nkcl(A)).

Proof. Let A be a Nk-set in (Y,Nkσ). Let B = f−1(A). Then, f(B) = f(f−1(A)) ⊆ A. By
Proposition 5.3, f(Nkcl(f

−1(A))) ⊆ Nkcl(f(f
−1(A))). Thus, Nkcl(f

−1(A)) ⊆ f−1(Nkcl(A)).
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Definition 5.5 Let (X,Nkτ)) and (Y,Nkσ) be any two Nk-topological spaces. A map f :
(X,Nkτ) → (Y,Nkσ) is said to be Nk-generalized continuous if the inverse image of every
Nk-closed set in (Y,Nkσ) is a Nk-generalized closed set in (X,Nkτ). Equivalently if the
inverse image of every Nk-open set in (Y,Nkσ) is a Nk-generalized open set in (X,Nkτ).

Remark 5.6 For N = 2 in the above definition we aquire the needed definition of bi-
generalized neutrosophic continuous function.

Proposition 5.7 Let (X,Nkτ)) and (Y,Nkσ) be any two Nk-topological spaces. Let f :
(X,Nkτ) → (Y,Nkσ) be a Nk-generalized continuous function. Then for every Nk-set A in
X, f(NkGcl(A)) ⊆ Nkcl(f(A)).

Proof. Let A be a Nk-set in (X,Nkτ). Since Nkcl(f(A)) is a Nk-closed set and f is a Nk-
continuous function, f−1(Nkcl(f(A)) is a Nk-generalized closed set and f−1(Nkcl(f(A))) ⊇
A. Now, NkGcl(A) ⊆ f−1(Nkcl(f(A))). Therefore, f(NkGcl(A)) ⊆ Nkcl(f(A)).

Proposition 5.8 Let (X,Nkτ) and (Y,Nkσ) be any two Nk-topological spaces. Let f :
(X,Nkτ) → (Y,Nkσ) be a Nk-generalized continuous function. Then for every Nk-set A in
Y , NkGcl(f−1(A)) ⊆ f−1(Nkcl(A)).

Proof. Let A be a Nk-set in (Y,Nkσ). Let B = f−1(A). Then, f(B) = f(f−1(A)) ⊆
A. By Proposition 5.7, f(NkGcl(f−1(A))) ⊆ Nkcl(f(f

−1(A))). Thus, NkGcl(f−1(A)) ⊆
f−1(Nkcl(A)).

Proposition 5.9 Let (X,Nkτ) and (Y,Nkσ) be any two Nk-topological spaces. If f :
(X,Nkτ) → (Y,Nkσ) is a Nk-continuous function, then it is a Nk-generalized continuous
function.

Proof. Let A be a Nk-open set in (Y,Nkσ). Since f is a Nk-continuous function, f
−1(A) is

a Nk-open set in (X,Nkτ). Every Nk-open set is a Nk-generalized open set. Now, f−1(A) is
a Nk-generalized open set in (X,Nkτ). Hence, f is a Nk-generalized continuous function.
The converse of Proposition 5.9 need not be true as it is shown in the following example.

Example 5.10 Let N = 2, X = {a, b, c} and Y = {p, q, r}. Define the neutrosophic sets
A = {(x, ( a

0.4
, b
0.4

, c
0.5

), ( a
0.4

, b
0.4

, c
0.5

), ( a
0.2

, b
0.4

, c
0.3

))} in X and B = {(y, ( p
0.4

, q
0.5

, r
0.6

),
( p
0.4

, q
0.5

, r
0.6

), ( p
0.3

, q
0.2

, r
0.3

))} in Y . Considering nτ1O(X) = {0, 1, A} and nτ2O(X) = {0, 1} we
get 2nτO(X) = {0, 1, A}. Also by considering nσ1O(Y ) = {0, 1} and nσ2O(Y ) = {0, 1, B}
we get 2nσO(Y ) = {0, 1, B}. Thus, (X, 2nτ) and (Y, 2nσ) are bi-neutrosophic topological
space on X and Y , respectively. Define f : X → Y as f(a) = q, f(b) = p, f(c) = r. Then f
is bi-generalized neutrosophic continuous but not bi-neutrosophic continuous.

Conclusion
Neutrosophic topology is well equipped to deal with imprecise data. By employing

neutrosophic set in spacial data models, we can express the vagueness of the object as
expected. This paper has gone a step forward in extending the theory to N -neutrosophic
topology that can be used to determine the uncertain situation effectively. Further we also
extended the same to N -Fuzzy and N -Intuitionistic topologies and discussed not only the
relations but also its properties.
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Abstract. In this paper, we define projection and 
bidirectional projection measures between interval rough 
neutrosophic sets and prove their basic properties. Then 
two new multi attribute decision making strategies are 
proposed based on interval rough neutrosophic projection 

and bidirectional projection measures respectively. Then 
the proposed methods are applied for solving multi 
attribute decision making problems. Finally, a numerical 
example is solved to show the feasibility, applicability 
and effectiveness of the proposed strategies.

Keywords: Projection measure, Bidirectional projection measure, Interval rough neutrosophic set, MADM problem.

1 Introduction

The concept of neutrosophic set[1, 2, 3, 4, 5] introduced by 
Smarandache is a generalization of crisp set[6], fuzzy 
set[7] and intuitionistic fuzzy set[8]. To use neutrosophic 
set in real fields, Wang et al. extended it to single valued 
neutrosophic set[9]. 
Broumi et al. introduced rough neutrosophic set[10, 11] by 
combining the concept of rough set[12] and neutrosophic 
set. 
Broumi and Smarandache defined interval rough 
neutrosophic set[13] by combining the concept of rough 
set and interval neutrosophic set theory[14].  
Projection measure is a very useful for solving decision 
making problems because it takes into account the distance 
as well as the included angle between points. Yue [15] 
studied projection based MADM problem in crisp 
environment.Yue also[16] presented a projection method 
to obtain weights of the experts in a group decision making 
problem. Xu and Da [17] and Xu [18] studied projection 
method for decision making in uncertain environment with 
preference information. Yang et al. [19] develop projection 
method for material selection in fuzzy environment. Xu 
and Hu [20] developed two projection based models for 
MADM in intuitionistic fuzzy and interval valued 
intuitionistic fuzzy environment. Zeng et al. [21] provided 
weighted projection algorithm for intuitionistic fuzzy 

MADM problems and interval-valued intuitionistic fuzzy 
MADM problems. Chen and Ye [22] developed the 
projection based model for solving MADM problem and 
applied it to select clay-bricks in construction field.  
To overcome the shortcomings of the general projection 
measure Ye [23] introduced a bidirectional projection 
measure between single valued neutrosophic numbers and 
developed MADM method for selecting problems of 
mechanical design schemes under a single valued 
neutrosophic environment. Ye [24] also presented the 
bidirectional projection method for multiple attribute group 
decision making with neutrosophic numbers. Dey et al. 
[25] defined weighted projection measure with interval 
neutrosophic environment and applied it to solve MADM 
problems with interval valued neutrosophic information. 
Yue [26] proposed a projection based approach for partner 
selection in a group decision making problem with 
linguistic value and intuitionistic fuzzy information.Dey et 
al. [27] defined projection, bidirectional projection and 
hybrid projection measures between bipolar neutrosophic 
sets and presented bipolar neutrosophic projection based 
models for MADM problems. Pramanik et al. [28] defined 
projection and bidirectional projection measure between 
rough neutrosophic sets and proposed the decision making 
methods based on them.

mailto:sura_pati@yahoo.co.in
mailto:roy.rumi.r@gmail.com
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Research gap MADM strategy using projection and 
bidirectional projection measures under interval rough 
neutrosophic environment. 
Research questions  

(i) Is it possible to define two new projection and 
bidirectional projection measure between 
interval rough neutrosophic sets? 

(ii)  Is it possible to develop two new MADM 
strategies based on the proposed measures in 
interval rough neutrosophic environment? 

The objectives of the paper are 
(i) To define two new projection and bidirectional 

projection measure between interval rough 
neutrosophic sets. 

(ii) To develop two new MADM strategies based on 
the proposed measures in interval rough 
neutrosophic environment. 

Contributions 
(i) In this paper, we propose projection and 

bidirectional projection measures under 
interval rough neutrosophic environment.  

(ii) In this paper, we develop two new MADM 
strategies based on the proposed measures in 
interval rough neutrosophic environment. 

(iii) We also present numerical example to show the 
effectiveness and applicability of the 
proposed measures. 

Rest of the paper is organized as follows: Section 2 
describes preliminaries of neutrosophic number, SVNS, 
RNS and IRNS. Section 3 presents definitions and 
properties of proposed projection and bidirectional 
projection measure between IRNSs. Section 4 describes 
the MADM methods based on projection and bidirectional 
projection measures of IRNSs.  In section 5 we describe a 
numerical example. Finally, section 6 presents the 
conclusion. 

2 Preliminaries 

In this Section, we provide some basic definitions 
regarding SVNSs, IRNSs which are useful in the paper. 

2.1 Neutrosophic set: 
In 1999, Smarandache gave the following definition of 
neutrosophic set(NS) [1]. 
Definition 2.1.1. Let X be a space of points (objects) with 
generic element in X denoted by x. A NS A in X is 

characterized by a truth-membership function TA, an 
indeterminacy membership function IA  and a falsity 
membership function FA. The functions TA , IA  and FA are 
real standard or non-standard subsets of (-0,1+) that is 
TA:X  (-0, 1+) , IA:X  (-0, 1+) and FA:X  (-0, 1+).  It 
should be noted that there is no restriction on the sum of 
TA(x) , IA(x) and FA(x) i.e. 

A A A
0 T (X) I (X) F (X) 3    

 Definition 2.1.2: (complement)  
The complement of a neutrosophic set A is denoted by 
C(A) and is defined by Tc(A)(x) = {1+}-TA(x),Ic(A)(x)={1+}-
IA(x),Fc(A)(x)={1+}-FA(x). 
Definition 2.1.3: (Containment) 
 A neutrosophic set A is contained in the other 
neutrosophic set B, denoted by A  B iff 

A B A B

A B A B

A B A B

inf T (x) inf T (x),supT (x) supT (x),
infI (x) infI (x),supI (x) supI (x),
infF (x) infF (x),supF (x) supF (x) x X

 

 

   

Definition 2.1.4: (Single-valued neutrosophic set).  
Let X be a universal space of points (objects) with a 
generic element of X denoted by x. A single valued 
neutrosophic set A is characterized by a truth membership 
function TA(x) , a falsity membership function FA(x) and 
indeterminacy function IA(x) with 

Xin  x   [0,1]   (x)F  and  (x)I(x),T AAA 
When X is continuous, a SNVS S can be written as follows 

A A A
x

A T (x),F (x), I (x) /x x X    

 and when X is discrete, a SVNS S can be written as 
follows  

A A A
A T (x),F (x), I (x) /x x X    

For a SVNS S, 0≤supTA(x) + supIA(x) + supFA(x) ≤3. 
Definition2.1.5:  
The complement of a single valued neutrosophic set A is 
denoted by c(A) and is defined by Tc(A)(x) = FA(x), Ic(A)(x) 
= 1-IA(x), Fc(A)(x) = TA(x). 
Definition 2.1.6: A SVNS A is contained in the other 
SVNS B, denoted as AB iff, 

A B A B
T (x) T (x), I (x) I (x) 

and 
B

F (x) F (x) x X.
A

    

2.2Rough neutrosophic set 

Rough neutrosophic sets [10, 11] are the generalization of 
rough fuzzy sets [29, 30] and rough intuitionistic fuzzy sets 
[31]. 
Definition 2.2.1: 
 Let Y be a non-null set and R be an equivalence relation 
on Y. Let P be neutrosophic set in Y with the membership 
function TP , indeterminacy function IP and non-
membership function FP . The lower and the upper 
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approximations of P in the approximation (Y, R) denoted 
by are respectively defined as:

N(P) N(P) N(P)

R

N(P) x,T (x), I (x), F (x) /
y [x] , x Y

 

  

 and 

N(P)N(P) N(P)

R

N(P) x,T (x), I (x),F (x) /
y [x] , x Y

 

  

where, 
N(P) R P

N(P) R P

N(P) R P

T (x) z [x] T (Y),
I (x) z [x] I (Y),
F (x) z [x] F (Y)

  

  

  

and 

R PN(P)

R PN(P)

R PN(P)

T (x) z [x] T (Y),
I (x) z [x] I (Y),
F (x) z [x] F (Y)

  

  

  

. 

So, 

N(P) N(P) N(P)
0 T (x) I (x) F (x) 3     

 and
 

N ( P )N(P) N(P)
0 T (x) I (x) F (x) 3     

Here  and denote “max” and “min” operators
respectively,TP(y),IP(y) and FP(y) are  the membership , 
indeterminacy and non-membership of Y  with respect to 
P. 
Thus NS mapping ,   
N, N : N(Y) N(Y) are, respectively, referred to as the 
lower and upper rough NS approximation operators, and 
the pair  (N(P), N(P))  is called the rough neutrosophic set 

in (Y, R). 

Definition 2.2.2  If  N(P) (N(P), N(P))

 is a rough neutrosophic set in (Y, R) , the rough 
complement of N(P) is the rough neutrosophic set denoted 
by 

C C~ N(P) ((N(P)) ,(N(P)) )  
,where 

C(N(P))  and C(N(P))
are  the  complements of neutrosophic sets N(P)  and 
N(P) respectively. 
2.3 Interval rough neutrosophic set 
Interval neutrosophic rough set is the hybrid structure of 
rough sets and interval neutrosophic sets. According to 
Broumi and Smarandache  interval neutrosophic roughset 
is the generalizations of interval valued intuitionistic fuzzy 
rough set. 

Definition 2.3.1  
Let R be an equivalence relation on the universal set 
U.Then the pair (U, R) is called a Pawlak 
approximationspace. An equivalence class of R containing 
x will bedenoted by [x]R for X    U, the lower and upper 
approximationof X with respect to (U, R) are denoted by 
respectively, 
RX and RX and are defined by 
RX  = {x   U : [x]R  X }, 

RX  = { x   U : [x]R  X ≠ Ø}.
Now if RX   = RX , then X is called definable; otherwise 
Xis called a rough set. 
Definition 2.3.2  
Let U be a universe and X, a rough set in U. An 
intuitionistic fuzzy rough set A in U is characterized by a 
membership function μA:U→ [0, 1] and non-membership 
functionνA: U→ [0, 1] such that μA(RX)=1and νA(RX) = 0 
ie, [μA (x),νA (x)]=[1,0] if x∈ (RX) and μA(U− R X)= 0, 
νA(U− R X)=1 
ie, 

A A
 0   RX RX  ( ) (RX )RX 1        
Definition 2.3.3 
Assume that, (U, R) be a Pawlak approximation space, for 
an interval neutrosophic set 
A = {<x, [TA

L(x),TA
U(x)], [IA

L(x),IA
U(x)], [FA

L(x),FA
U(x)]> 

: xU} 
The lower approximation AR and the upper approximation 

RA of A in the Pawlak approximation space (U, R) are 
expressed as follows: 

R

R

R

R

R

L
R y [x] A y [x] A

L
y [x] A y [x] A

L
y [x] A y [x] A

L
R y [x] A y [x] A

L
y [x] A y [x] A

A  = {<x, [ {T (y)}, {T (y)}],
[ {I (y)}, {I (y)}],
[ {F (y)}, {F (y)}]> : x U}

A  = {<x, [ {T (y)}, {T (y)}],
[ {I (y)}, {I (y)}]















  





R

L
y [x] A y [x] A

,
[ {F (y)}, {F (y)}]> : x U}


  

The symbols  and   indicate “min” and “max” 
operators respectively. R denotes an equivalence relation 
for interval neutrosophic set A. Here [x]R is the 
equivalence class of the element x. It is obvious that 

R

R

R

R R R

L
y [x] A y [x] A

U
y [x] A y [x] A

U
y [x] A y [x] A

U U U
y [x] A y [x] A y [x] A

[ {T (y)}, {T (y)}] [0,1],
[ {I (y)}, {I (y)}] [0,1],

[ {F (y)}, {F (y)}] [0,1].
and 0 {T (y)} {I (y)} {F (y)} 3







  

  

  

  

    

Then AR is an interval neutrosophic set (INS) 
Similarly, we have 
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R R

R R

R R

L U
y [x] A y [x] A

L U
y [x] A y [x] A

L U
y [x] A y [x] A

 [ {T (y)}, {T (y)}] [0,1],
 [ {I (y)}, {I (y)}] [0,1],
 [ {F (y)}, {F (y)}] [0,1]

 

 

 

  

  

  

and 

R R

R

U U
y [x] A y [x] A

U
y [x] A

0  {T (y)} {I (y)}
{F (y)}] 3
 



    

 

Then AR is an interval neutrosophic set. 

If AR = RA  then A is a definable set, otherwise A is an 

interval valued neutrosophic rough set. Here, AR and RA  
are called the lower and upper approximations of interval 
neutrosophic set with respect to approximation space (U,R) 

respectively. AR and RA  are simply denoted by A and A
respectively. 
3 Projection and Bidirectional projection measure 
of interval rough neutrosophic sets : 
Existing projection and bidirectional projection measure 
does not deal with interval rough neutrosophic set(IRNS)s. 
Therefore, a new projection and bidirectional projection 
measure between IRNSs is proposed. 
Assume that there are two IRNSs 

i iM iM iM iM iM iM

iM iM iM iM iM iM

M { x ,([T ,T ],[I , I ],[F ,F ],

[T ,T ],[I , I ],[F ,F ] : i 1,2,..., n}

     

     

 

 

and 

i iN iN iN iN iN iN

iN iN iN iN iN iN

N { x ,[T ,T ],[I , I ],[F ,F ],

[T ,T ],[I , I ],[F ,F ] :i 1,2,..., n}

     

     

 

 

Then the inner product of M and N denoted by M.N can be 
defined as 

n

iM iN iM iN iM iN iM iNi 1

iM iN iM iN iM iN iM iN

iM iN iM iN iM iN iM iN

M.N [ T .T T T I I I I

F F F F T T T T

I I I I F F F F ]

       



       

       

   

   

   

The modulus of M can be defined as 

iM iM iM iM
n

2 2
iM iM iM iMi 1

2 2 2
iM iM iM iM

T T I I

M F F (T ) (T )

(I ) (I ) (F ) (F )

2 2 2 2

2 2

( ) ( ) ( ) ( )

( ) ( )

   

   


   

   
 

     
 
     

 and the modulus of N can be defined as 

iN iN iN iN
n

2 2
iN iN iN iNi 1

2 2 2
iN iN iN iN

T T I I

N F F (T ) (T )

(I ) (I ) (F ) (F )

2 2 2 2

2 2

( ) ( ) ( ) ( )

( ) ( )

   

   


   

   
 

     
 
     

Definition4.1.The projection of M on N can be defined as 

N

1Pr oj(M) M.N.
N

  

Definition4.2.The bidirectional projection measure 
between the RNSs M and N is defined as 

1BPr oj(M, N)
1 M N M.N

M N
M N M N M.N


 


 

Here also the bidirectional projection measure satisfies 
the following properties : 
(1) BProj(M,N) = BProj(N,M);  

       (2) 0 1;BProj(M,N)   
       (3) BProj(M,N) = 1, iff M = N. 
Proof: 

(i)  

BPr oj(M, N)
1

1 M N M.N
1

1 N M N.M
BPr oj(N,M)


 


 



(ii)As  
1 0

1 M N M.N


 
 

and 
1 1

1 M N M.N


 
 

 so, ;1N)BProj(M,0 

(iii)If M=N then 
BPr oj(M, N)

BPr oj(M,M)
1

1 M M M.M
1




 


4. Projection And Bidirectional Projection Based
Decision Making Methods For MADM Problems 
With Interval Rough Neutrosophic Information 
In this section, we develop projection and bidirectional 
projection based decision making models to solve MADM 
problems with interval rough neutrosophic information. 
Consider C={C1, …..,Cm} be the set of attributes and 
A={A1,……, An} be a set of alternatives. Now we provide 
two algorithms for MADM problems involving interval 
rough neutrosophic information. 
4.1. Algorithm 1.(see Fig 1) 
Step 1. The value of alternative Ai(i=1,…..,n) for the 
attribute Cj(j=1,……,m) is evaluated by the decision maker 
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in terms of IRNSs and the interval rough neutrosophic 
decision matrix is constructed as:  

11 12 1m

21 22 2m

ij n m

n1 n2 nm

z z .........z
z z .........z

D z ... ... ... ... ... ...
... ... ... ... ... ...
z z .........z



 
 
   
 
 
 
 

 

where 

iM iM iM iM iM iM

iM iM iM iM iM iM

[T ,T ],[I , I ],[F ,F ],

[T ,T ],[I , I ],[F ,F ])
ij

z  = <(

>

     

     

with 
3(y)}]{F(y)}{I(y)}{T 0 U

A[x]y
U
A[x]y

U
A[x]y RRR

 

Step 2. Calculate the weighted alternative decision matrix 
For the attribute Cj (j=1,……,m) the weight vector of 
attribute is considered as : W = (w1, w2, … , wm) with 

j
w 0      and  

n

ji 1
w 1



  

On calculating 

j iM j iM j iM j iM

j iM j iM j iM j iM

j iM j iM j iM j iM

s [w T , w T ],[w I , w I ],

[w F , w F ],[w T , w T ],

[w I , w I ],[w F , w F ])

ij
= <(

>

   

   

   

for i=1, 2, … , n and j=1, 2, … , m , we obtain the 
weighted alternative decision matrix 

11 12 1m

21 22 2m

ij n m

n1 n2 nm

s s .........s
s s .........s

S s ... ... ... ... ... ...
... ... ... ... ... ...
s s .........s



 
 
   
 
 
 
 

Step 3. Determine the ideal solution S*. 
For benefit type attribute, 

*
i ij i ij i ij i ij i ij i ij

S {(min T , max I , max F ), (max T , min I , min F )}

For cost type attribute, 
*

i ij i ij i ij i ij i ij i ij
S {(max T ,min I ,min F ),(min T ,max I ,max F )}  

Step 4. Compute the projection measure between S* and Zi 
= <Zij>nxm for all i = 1, ….., n and j = 1, ….., m. 
Step 5. Ranking of alternatives is prepared based on the 
values of projection measure. The highest value reflects the 
best alternatives. 
Step 6. End. 

 

 Fig 1. A flowchart of the proposed decision making 
method 

4.2. Algorithm 2.(see Fig 2) 
Step 1. The value of alternative Ai(i=1,…..,n) for the 
attribute Cj(j=1,……,m) is evaluated by the decision maker 
in terms of IRNSs and the interval rough neutrosophic 
decision matrix is constructed as:  

11 12 1m

21 22 2m

ij n m

n1 n2 nm

z z .........z
z z .........z

D z ... ... ... ... ... ...
... ... ... ... ... ...
z z .........z



 
 
   
 
 
 
 

where 

iM iM iM iM iM iM

iM iM iM iM iM iM

[T ,T ],[I , I ],[F ,F ],

[T ,T ],[I , I ],[F ,F ])
ij

z  = <(

>

     

     

with 

Start 

Set the criteria (in terms of IRNSs) 

Construct the decision matrices 

Determine the ideal alternative 

Calculate the projection measure 
between the alternatives and the 
ideal alternative 

Rank the alternative 

End 

Obtain the weighted decision matrices 

Neutrosophic Sets and Systems, Vol. 19, 2018 105



Surapati Pramanik, Rumi Roy, Tapan Kumar Roy, Florentin Smarandache , Multi Attribute Decision Making Strategy 
on Projection and Bidirectional Projection Measures of Interval Rough Neutrosophic Sets 

3(y)}]{F

(y)}{I(y)}{T 0
U

AR[x]y

U
AR[x]y

U
AR[x]y









Step 2. Calculate the weighted alternative decision matrix 
For the attribute Cj (j=1,……,m) the weight vector of 
attribute is considered as : W = (w1, w2, … , wm) with 

j
w 0      and 

n

ji 1
w 1



  

On calculating 

j iM j iM j iM j iM

j iM j iM j iM j iM

j iM j iM j iM j iM

s [w T , w T ],[w I , w I ],

[w F , w F ],[w T , w T ],

[w I , w I ],[w F , w F ])

ij
= <(

>

   

   

   

for i=1, 2, … , n and j=1, 2, … , m , we obtain the 
weighted alternative decision matrix 

11 12 1m

21 22 2m

ij n m

n1 n2 nm

s s .........s
s s .........s

S s ... ... ... ... ... ...
... ... ... ... ... ...
s s .........s



 
 
   
 
 
 
 

Step 3. Determine the ideal solution S*. 
For benefit type attribute, 

*
i ij i ij i ij i ij i ij i ij

S {(min T , max I , max F ), (max T , min I , min F )}

For cost type attribute, 
*

i ij i ij i ij i ij i ij i ij
S {(max T ,min I ,min F ),(min T ,max I ,max F )}  

. 
Step 4. Compute the bidirectional projection measure 
between S* and Zi = <Zij>nxm for all i = 1, ….., n and j = 1, 
….., m. 
Step 5. Ranking of alternatives is prepared based on the 
values of bidirectional projection measure. The highest 
value reflects the best alternatives. 
Step 6. End. 

Fig 2. A flowchart of the proposed decision making 
method  

5. A Numerical Example:

Assume that a decision maker intends to select the most 
suitable laptop for random use from the three initially 
chosen laptops (A1, A2, A3) by considering four attributes 
namely: features C1, reasonable price C2, customer care C3, 
risk factor C4. Based on the proposed approach discussed 
in section 5, the considered problem is solved by the 
following steps: 
Step1: Construct the decision matrix with interval rough 
neutrosophic number 
The decision maker construct the decision matrix with 
respect to the three alternatives and four attributes in terms 
of interval rough neutrosophic number. 

Start 

Set the criteria (in terms of IRNSs) 

Construct the decision matrices 

Determine the ideal alternative 

Calculate the bidirectional 
projection measure between 
the alternatives and the ideal 
alternative 

Rank the alternative 

End 

Obtain the weighted decision matrices 
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Step 2: The weight vectors considered by the decision 
maker are 0.35, 0.25, 0.25 and 0.15 respectively. The 
weighted decision matrix is: 

C1 C2 C3 C4

S1 <([0.21,0.245], 
[0.105,0.175], 
[0.105,0.14]), 
([0.28,0.315], 
[0.035,0.105], 
[0.035,0.07])> 

<([0.125,0.175], 
[0.075,0.1], 
[0.025,0.05]), 
([0.175,0.225], 
[0.075,0.125], 
[0.075,0.1])> 

<([0.125,0.15], 
[0.1,0.125], 
[0.1,0.15]), 
([0.175,0.2], 
[0.05,0.1], 
[0.075,0.1])> 

<([0.12,0.135], 
[0.045,0.06], 
[0.075,0.09]), 
([0.105,0.12], 
[0.045,0.075], 
[0.045,0.75])> 

S2 <([0.245,0.28], 
[0.07,0.105], 
[0.0,0.07]), 
([0.245,0.315], 
[0.035,0.07], 
[0.035,0.07])> 

<([0.15,0.175], 
[0.025,0.05], 
[0.0,0.05]), 
([0.15,0.175], 
[0.025,0.075], 
[0.025,0.075])> 

<([0.125,0.175], 
[0.05,0.075], 
[0.025,0.05]), 
([0.15,0.225], 
[0.075,0.125], 
[0.05,0.1])> 

<([0.105,0.12], 
[0.045,0.75], 
[0.015,0.045]), 
([0.075,0.105], 
[0.075,0.09], 
[0.03,0.045])> 

S3 <([0.21,0.245], 
[0.105,0.14], 
[0.0,0.105]), 
([0.21,0.315], 
[0.035,0.7], 
[0.035,0.7])> 

<([0.125,0.175], 
[0.05,0.1], 
[0.05,0.1]), 
([0.15,0.2], 
[0.025,0.075], 
[0.025,0.05])> 

<([0.15,0.2], 
[0.05,0.1], 
[0.075,0.1]), 
([0.15,0.2], 
[0.05,0.125], 
[0.075,0.125])> 

<([0.06,0.105], 
[0.03,0.06], 
[0.06,0.075]), 
([0.075,0.12], 
[0.03,0.075], 
[0.0,0.03])> 

Step3: Determine the benefit type attribute and cost type 
attribute 
Here three benefit type attributes C1, C2, C3 and one cost 
type attribute C4. We calculate the ideal alternative as 
follows: 

*S { ([.21,.245],[.07,.175],[.105,.14]),
([.28,.315],[.035,.07],[.035,.07]) ,
 



([.15,.175],[.075,.1],[.05,.1]),
([.175,.225],[.025,.075],[.025,.05]) ,




([.15,.15],[.1,.1],[.1,.1]),
([.175,.225],[.075,.125],[.075,.125]) ,

([.12,.135],[.03,.06],[.015,.045]),
([.075,.105],[.075,.09],[.045,.075]) ) }





 

Step4:Calculate the projection and bidirectional projection 
measure of the alternatives

1

2

S 0.918273,
S 0.829533,





3
*

*
1

*
2

*
3

S 0.832331.
S 0.818175.

S .S 0.815425,
S .S 0.563137,
S .S 0.7337.











*

*

*

* * *

1 S

2 S

3 S

1 3 2S S S
*

1
*

2
*

3
* *

2 3

Pr oj(S ) 0.99663886,
Pr oj(S ) 0.68828490,
Pr oj(S ) 0.89675192.

Pr oj(S ) Pr oj(S ) Pr oj(S ) .
BPr oj(S ,S ) 0.92453705,
BPr oj(S ,S ) 0.99364454,
BPr oj(S ,S ) 0.98972051.

BPr oj(S ,S ) BPr oj(S ,S ) B







  







   *
1

Pr oj(S ,S ).
Step5: Rank the alternatives 
Ranking of alternatives is prepared based on the 
descending order of projection and bidirectional measures. 
The highest value reflects the best alternatives. 
Hence, according to the projection measure, the laptop A1 
is the best alternative and according to the bidirectional 

C1 C2 C3 C4 
A1 <([.6, .7], [.3, .5], 

[.3, .4]), ([.8, .9], 
[.1, .3], [.1, .2])> 

<([.5, .7], [.3, .4], 
[.1, .2]), ([.7, .9], 
[.3, .5], [.3, .4])> 

<([.5, .6], [.4, .5], 
[.4, .6]), ([.7, .8], 
[.2, .4], [.3, .4])> 

<([.8, .9], [.3, .4], 
[.5, .6]), ([.7, .8], 
[.3, .5], [.3, .5])> 

A2 <([.7, .8], [.2, .3], 
[.0, .2]), ([.7, .9], 
[.1, .2], [.1, .2])> 

<([.6, .7], [.1, .2], 
[.0, .2]), ([.6, .7], 
[.1, .3], [.1, .3])> 

<([.5, .7], [.2, .3], 
[.1, .2]), ([.6, .9], 
[.3, .5], [.2 .4])> 

<([.7, .8], [.3, .5], 
[.1, .3]), ([.5, .7], 
[.5, .6], [.2, .3])> 

A3 <([.6, .7], [.3, .4], 
[.0, .3]), ([.6, .9], 
[.1, .2], [.1, .2])> 

<([.5, .7], [.2, .4], 
[.2, .4]), ([.6, .8], 
[.1, .3], [.1, .2])> 

<([.6, .8], [.2, .4], 
[.3, .4]), ([.6, .8], 
[.2, .5], [.3, .5])> 

<([.4, .7], [.2, .4], 
[.4, .5]), ([.5, .8], 
[.2, .5], [.0, .2])> 
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projection measure, the laptop A2 is the best alternative. As 
bidirectional projection measure gives better result than 
projection measure, so A2 is the best laptop for random 
use. 
6. Comparative study and discussions:
Mondal and Pramanik study the MADM method in 
interval rough neutrosophic environment using cosine, dice 
and Jaccard similarity measure [32]. We take the same 
problem and solve the problem using projection and 
bidirectional projection measure based decision making 
method. In the existing  methods, S2 is the best 
alternatives. But in new method S1 is the best alternative. 
7. Conclusion:
In this paper, we have defined projection measure, 
weighted projection measure,  bidirectional projection 
measure, weighted bidirectional projection measure 
between interval rough neutrosophic sets. We have also 
proved their basic properties. We have developed two new 
MADM strategies based on the proposed projection and 
bidirectional projection measures respectively. Finally, we 
have solved  a numerical example to demonstrate the 
feasiblity, applicability and effectiveness of the proposed 
strategies. The proposed strategies can be applied to solve 
different MADM problems such as teacher selection [33, 
34, 35], school selection [36], weaver selection [37, 38, 
39], brick field selection [40, 41], logistics center location 
selection [42, 43], data mining [44] etc. The proposed 
strategies can also  be extended for MAGDM in interval 
rough neutrosophic environment. 
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Abstract. In this paper, the sine, cosine and cotangent similarity 
measures of interval rough neutrosophic sets is proposed. Some 
properties of the proposed measures are discussed. We have 

proposed multi attribute decision making approaches based on 
proposed similarity measures. To demonstrate the applicability, a 
numerical example is solved. 

Keywords: sine hamming similarity measure, cosine hamming similarity measure, cotangent hamming similarity measure, interval 
rough neutrosophic set. 

1 Introduction 

The basic concept of neutrosophic set grounded by 
Smarandache [1, 2, 3, 4, 5] is a generalization of classical 
set or crisp set [6], fuzzy set [7], intuitionistic fuzzy set [8]. 
Wang et al.[9] extended the concept of neutrosophic set to 
single valued neutrosophic sets (SVNSs). Broumi et al. 
[10, 11] proposed new hybrid intelligent structure namely, 
rough neutrosophic set combing the concept of rough set 
theory [12] and the concept of neutrosophic set theory to 
deal with uncertainty and incomplete information. Rough 
neutrosophic set is the generalization of rough fuzzy sets 
[13, 14] and rough intuitionistic fuzzy sets [15]. Several 
studies of rough neutrosophic sets have been reported in 
the literature. Mondal and Pramanik [16] applied the 
concept of rough neutrosophic set in multi-attribute 
decision making based on grey relational analysis. 
Pramanik and Mondal [17] presented cosine similarity 
measure of rough neutrosophic sets and its application in 
medical diagnosis. Pramanik and Mondal [18] also 
proposed some rough neutrosophic similarity measures 
namely Dice and Jaccard similarity measures of rough 
neutrosophic environment. Mondal and Pramanik [19] 
proposed rough neutrosophic multi attribute decision 
making based on rough score accuracy function. Pramanik 

and Mondal [20] presented cotangent similarity measure of 
rough neutrosophic sets and its application to medical 
diagnosis. Pramanik and Mondal [21] presented 
trigonometric Hamming similarity measure of rough 
neutrosophic sets. Pramanik et al. [22] proposed rough 
neutrosophic multi attribute decision making based on 
correlation coefficient. Pramanik et al. [23] also proposed 
rough neutrosophic projection and bidirectional projection 
measures. Mondal et al. [24] presented multi attribute 
decision making based on rough neutrosophic variational 
coefficient similarity measures. Mondal at al. [25] also 
presented rough neutrosophic TOPSIS for multi attribute 
group decision making. Mondal and Pramanik [26] 
presented tri-complex rough neutrosophic similarity 
measure and its application in multi-attribute decision 
making.  In 2015, Broumi and Smarandache [27] 
combined the concept of rough set theory [12] and interval 
neutrosophic set theory [28] and defined interval rough 
neutrosophic set. Pramanik et al. [29] presented multi 
attribute decision making based on projection  and 
bidirectional projection measures under  interval rough 
neutrosophic environment. 
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Multi-attribute decision making using trigonometric 
Hamming similarity measures under interval rough 
neutrosophic environment is not addressed in the literature.  

Research gap MADM strategy using sine, cosine and 
cotangent similarity measures under interval rough 
neutrosophic environment. 
Research questions  

(i) Is it possible to define sine, cosine and cotangent 
similarity measures between interval rough 
neutrosophic sets? 

(ii)  Is it possible to develop new MADM strategies 
based on the proposed measures in interval 
rough neutrosophic environment? 

The objectives of the paper are 
i. to define sine, cosine and cotangent similarity

measures between interval rough neutrosophic
sets.

ii. to prove the basic properties of sine, cosine and
cotangent similarity measures of interval rough
neutrosophic sets.

iii. to develop new MADM strategies based on the
proposed measures in interval rough neutrosophic
environment.

Contributions 

(i) In this paper, we propose sine, cosine and 
cotangent similarity measures under interval 
rough neutrosophic environment.  

(ii) We develop new MADM strategy based on the 
proposed measures in interval rough 
neutrosophic environment. 

(iii) We also present numerical example to show the 
feasibility and applicability of the proposed 
measures. 

Rest of the paper is organized in the following way. 
Section 2 describes preliminaries of neutrosophic sets and 
rough neutrosophic sets and interval rough neutrosophic 
sets. Section 3, Section 4 and Section 5 presents definitions 
and propositions of the proposed measures. Section 6 
presents multi attribute decision-making strategies based 
on the similarity measures. Section 7 provides a numerical 
example. Section 8 presents the conclusion and future 
scopes of research. 

2 Preliminaries 

In this Section, we provide some basic definitions 
regarding SVNSs, IRNSs which are useful in the paper. 

In 1999, Smarandache presented the following definition 
of neutrosophic set (NS) [1]. 

Definition 2.1.1. Let X be a space of points (objects) with 
generic element in X denoted by x. A NS A in X is 
characterized by a truth-membership function TA, an 
indeterminacy membership function IA and a falsity 
membership function FA. The functions TA , IA  and FA are 
real standard or non-standard subsets of (-0,1+) that is 
TA:X  (-0, 1+) , IA:X  (-0, 1+) and FA:X  (-0, 1+).  It 
should be noted that there is no restriction on the sum of 
TA(x) , IA(x) and FA(x) i.e. 

A A A
0 T (X) I (X) F (X) 1    

 Definition 2.1.2: (Single-valued neutrosophic set) [9]. Let 
X be a universal space of points (objects) with a generic 
element of X denoted by x. A single valued neutrosophic 
set A is characterized by a truth membership function TA(x) 
, a falsity membership function FA(x) and indeterminacy 
function IA(x) with 

A A A
 T (x),I (x)  and  F (x)   [0,1]   x in X 

 When X is continuous, a SNVS S can be written as 
follows 

A A A
x

A T (x),F (x), I (x) / x X    

 and when X is discrete, a SVNS S can be written as 
follows  

A A A
A T (x),F (x), I (x) / x X      

For a SVNS S, 0 ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3. 

2.2 Rough neutrosophic set 

Rough neutrosophic sets [10, 11] are the generalization of 
rough fuzzy sets [13, 14] and rough intuitionistic fuzzy sets 
[15]. 

Definition 2.2.1: Let Y be a non-null set and R be an 
equivalence relation on Y. Let P be neutrosophic set in Y 
with the membership function TP , indeterminacy function 
IP and non-membership function FP . The lower and the 
upper approximations of P in the approximation (Y, R) 
denoted by are respectively defined as:

N(P) N(P) N(P) R
N(P) x,T (x), I (x),F (x) /y [x] ,
x Y

  

 
 and 

N ( P )
RN(P) N(P)

N(P) x,T (x), I (x),F (x) /y [x] ,
x Y

  

 

where, 
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N(P) R P N(P) R P

N(P) R P

T (x) z [x] T (Y), I (x) z [x] I (Y),
F (x) z [x] F (Y)

     

  

and 

R P R PN(P) N(P)

R PN(P)

T (x) z [x] T (Y), I (x) z [x] I (Y),
F (x) z [x] F (Y)

     

  
. 

So, 

N(P) N(P) N(P)
0 T (x) I (x) F (x) 3     

 and
 

N ( P )N(P) N(P)
0 T (x) I (x) F (x) 3     

Here and  denote “max” and “min” operators 
respectively,TP(y), IP(y) and FP(y) are  the membership , 
indeterminacy and non-membership of Y  with respect to 
P. 
Thus NS mapping,  
N, N : N(Y) N(Y) are, respectively, referred to as the 
lower and upper rough NS approximation operators, and 
the pair (N(P), N(P))  is called the rough neutrosophic set 

in (Y, R). 
2.3 Interval rough neutrosophic set 

Interval rough neutrosophic set (IRNS) [22] is the hybrid 
structure of rough sets and interval neutrosophic sets. 
According to Broumi and Smarandache, IRNS is the 
generalizations of interval valued intuitionistic fuzzy rough 
set. 

Definition 2.3.1 

Let R be an equivalence relation on the universal set 
U.Then the pair (U, R) is called a Pawlak 
approximationspace. An equivalence class of R containing 
x will bedenoted by [x]R for X    U, the lower and upper 
approximationof X with respect to (U, R) are denoted by 
respectively 
RX and RX and are defined by 
RX  = {x   U : [x]R  X }, 

RX  = { x   U : [x]R  X ≠ Ø}.
Now if RX   = RX , then X is called definable; otherwise 
Xis called a rough set. 

Definition 2.3.2 

Let U be a universe and X, a rough set in U. An 
intuitionistic fuzzy rough set A in U is characterized by a 
membership function μA:U→ [0, 1] and non-membership 
functionνA: U→ [0, 1] such that μA(RX)=1and νA(RX) = 0 
ie, [μA (x),νA (x)]=[1,0] if x∈ (RX) and μA(U− R X)= 0, 
νA(U− R X)=1 
ie, 

A A
 0   RX RX  ( ) (RX )RX 1        

Definition 2.3.3 

Assume that, (U, R) be a Pawlak approximation space, for 
an interval neutrosophic set 
A = {<x, [TA

L(x), TA
U(x)], [IA

L(x), IA
U(x)], [FA

L(x), 
FA

U(x)]> : xU} 
The lower approximation AR and the upper approximation 

RA of A in the Pawlak approximation space (U, R) are 
expressed as follows: 

R

R

R

R

R

L
R y [x] A y [x] A

L
y [x] A y [x] A

L
y [x] A y [x] A

L
R y [x] A y [x] A

L
y [x] A y [x] A

A  = {<x, [ {T (y)}, {T (y)}],
[ {I (y)}, {I (y)}],
[ {F (y)}, {F (y)}]> : x U}

A  = {<x, [ {T (y)}, {T (y)}],
[ {I (y)}, {I (y)}]















  





R

L
y [x] A y [x] A

,
[ {F (y)}, {F (y)}]> : x U}


  

The symbols and    indicate “min” and “max” 
operators respectively. R denotes an equivalence relation 
for interval neutrosophic set A. Here [x]R is the 
equivalence class of the element x. It is obvious that 

R

R

R

R

R

U
y [x] A y [x] A

L
y [x] A y [x] A

L
y [x] A y [x] A

U
y [x] A y [x] A

U
y [x] A

[ {T (y)}, {T (y)}] [0,1],
[ {I (y)}, {I (y)}] [0,1],

[ {F (y)}, {F (y)}] [0,1].
and 0 {T (y)} {I (y)}

{F (y)} 3











  

  

  

   



Then AR is an interval neutrosophic set (INS) 
Similarly, we have   

R

R

R

R

R

L
y [x] A y [x] A

L
y [x] A y [x] A

L
y [x] A y [x] A

U
y [x] A y [x] A

U
y [x] A

[ {T (y)}, {T (y)}] [0,1],
[ {I (y)}, {I (y)}] [0,1],
[ {F (y)}, {F (y)}] [0,1] and

0  {T (y)} {I (y)}
{F (y)}] 3











  

  

  

    



Then AR is an interval neutrosophic set. 

If AR =  RA  then A is a definable set, otherwise A is an 

interval valued neutrosophic rough set. Here, AR and  RA  
are called the lower and upper approximations of interval 
neutrosophic set with respect to approximation space (U,R) 

respectively. AR and  RA  are simply denoted by A and 
A  respectively. 
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2.4  Hamming distance 

Hamming distance  between two neutrosophic sets 
))(),(),(( xFxIxTM MMM   and ))(),(),(( xFxIxTN NNN is 

defined as  

).)()(

)()()()((
3
1

),(

1

iNiM

iNiM

n

i
iNiM

xFxF

xIxIxTxT

NMH



 





3. Cosine Hamming Similarity Measure of IRNS

Assume that 

i iM iM iM iM iM iM

iM iM iM iM iM iM

M { x ,([T ,T ],[I , I ],[F ,F ],

[T ,T ],[I , I ],[F ,F ] : i 1,2,..., n}

     

     

 

 

and 

i iN iN iN iN iN iN

iN iN iN iN iN iN

N { x ,[T ,T ],[I , I ],[F ,F ],

[T ,T ],[I , I ],[F ,F ] :i 1,2,..., n}

     

     

 

   
in X = {x1, x2, …, xn}be any two IRNSs. A cosine 
Hamming similarity operator between IRNS M and N is 
defined as follows: 

n

M i N ii 1

M i N i M i N i

1cos(M, N) cos( ( T (x ) T (x )
n 6

I (x ) I (x ) F (x ) F (x ) )).

 

   



  

  

iM iM iM iM

M i

iM iM iM iM

M i

iM iM iM iM

M i

iN iN iN iN

N i

iN iN iN iN

N i

iN iN iN iN

N i

(T T T T )
T (x ) ,

4
(I I I I )

I (x ) ,
4

(F F F F )
F (x ) ,

4
(T T T T )

T (x ) ,
4

(I I I I )
I (x ) ,

4
(F F F F )

F (x ) .
4













   

   

   



   

   

  


  


  


  


  


  


Properties 3.1 

The defined rough neutrosophic cosine hamming similarity 
operator cos(M, N) between IRNSs M and N satisfies the 
following properties: 
1. 0 cos(M,N) 1. 

2. cos(M,N) = 1 if and only if M = N.

3. cos(M,N) = cos(N,M).

Proof: 

1. Since the functions
)(),(),(),(),( xIxTxFxIxT NNMMM   and )(xFN

the value of the cosine function are within [0, 1], the 
similarity measure based on interval rough neutrosophic 
cosine Hamming similarity function also lies within [ 0, 1]. 
Hence 0 cos(M,N) 1.   
This completes the proof. 
2. For any two RNSs M and N, if M = N, then the
following relations hold 

).()(
),()(),()(

iNiM

iNiMiNiM

xFxF

xIxIxTxT





Hence, 

.0)()(

,0)()(,0)()(





iNiM

iNiMiNiM

xFxF

xIxIxTxT

Thus cos(M,N) = 1 

Conversely, 

If cos(M,N) = 1, then 

.0)()(

,0)()(,0)()(





iNiM

iNiMiNiM

xFxF

xIxIxTxT

Since cos(0) = 1. So we can write 

).()(
),()(),()(

iNiM

iNiMiNiM

xFxF

xIxIxTxT





Hence M = N. 

3. As
n

M i N ii 1

M i N i M i N i
n

N i M ii 1

N i M i N i M i

1cos(M, N) cos( ( T (x ) T (x )
n 6

I (x ) I (x ) F (x ) F (x ) ))
1 cos( ( T (x ) T (x )
n 6
I (x ) I (x ) F (x ) F (x ) ))
cos(N,M)

 

   

 

   






  

  


  

  



This completes the proof. 

4. Sine Hamming Similarity Measure of IRNS

Assume that 

i iM iM iM iM iM iM
M { x ,([T ,T ],[I , I ],[F ,F ],      

iM iM iM iM iM iM
[T ,T ],[I , I ],[F ,F ] : i 1, 2,..., n}         
and 

i iN iN iN iN iN iN

iN iN iN iN iN iN

N { x ,[T ,T ],[I , I ],[F ,F ],

[T ,T ],[I , I ],[F ,F ] :i 1,2,..., n}

     

     

 

   
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in X = {x1, x2, …, xn}be any two IRNSs. A sine Hamming 
similarity operator between IRNS M and N is defined as 
follows: 

n

M i N ii 1

M i N i M i N i

1sin(M, N) 1 [ sin( ( T (x ) T (x )
n

I (x ) I (x ) F (x ) F (x ) ))].

 

   



   

  

Here, 

.
4

)(
)(

,
4

)(
)(

,
4

)(
)(

,
4

)(
)(

,
4

)(
)(

,
4

)(
)(































iNiNiNiN

iN

iNiNiNiN

iN

iNiNiNiN

iN

iMiMiMiM

iM

iMiMiMiM

iM

iMiMiMiM

iM

FFFF
xF

IIII
xI

TTTT
xT

FFFF
xF

IIII
xI

TTTT
xT

Properties 4.1 

The defined rough neutrosophic sine hamming similarity 
operator sin (M, N) between IRNSs M and N satisfies the 
following properties: 
1. 0 sin (M,N) 1. 

2. sin (M,N) = 1 if and only if M = N.

3. sin (M,N) = sin (N,M).

Proof: 

1.Since the functions
)(),(),(),(),( xIxTxFxIxT NNMMM   and )(xFN  

the value of the sine function are within [0,1], the 
similarity measure based on interval rough neutrosophic 
cosine Hamming similarity function also lies within [ 0,1]. 
Hence 0 sin (M,N) 1.   
This completes the proved. 

2.For any two RNSs M and N, if M = N, then the
following relations hold 

).()(
),()(),()(

iNiM

iNiMiNiM

xFxF

xIxIxTxT





Hence, 

.0)()(

,0)()(,0)()(





iNiM

iNiMiNiM

xFxF

xIxIxTxT

Thus sin(M,N) = 1 

Conversely, 

If sin(M,N) = 1, then 

.0)()(

,0)()(,0)()(





iNiM

iNiMiNiM

xFxF

xIxIxTxT

Since sin(0) = 1. So we can write 

).()(
),()(),()(

iNiM

iNiMiNiM

xFxF

xIxIxTxT





Hence M = N. 

3. As
n

M i N ii 1

M i N i M i N i
n

N i M ii 1

N i M i N i M i

1sin(M, N) 1 [ sin( ( T (x ) T (x )
n

I (x ) I (x ) F (x ) F (x ) ))]
11 [ sin( ( T (x ) T (x )
n

I (x ) I (x ) F (x ) F (x ) ))]
sin(N,M).

 

   

 

   






   

  


   

  



This completes the proof. 

5. Cotangent Hamming Similarity Measure of

IRNS 

Assume that 

i iM iM iM iM iM iM

iM iM iM iM iM iM

M { x ,([T ,T ],[I , I ],[F ,F ],

[T ,T ],[I , I ],[F ,F ] : i 1,2,..., n}

     

     

 

 

and 

i iN iN iN iN iN iN

iN iN iN iN iN iN

N { x ,[T ,T ],[I , I ],[F ,F ],

[T ,T ],[I , I ],[F ,F ] :i 1,2,..., n}

     

     

 

   
in X = {x1, x2, …, xn}be any two IRNSs. A cosine 
Hamming similarity operator between IRNS M and N is 
defined as follows: 

n

M i N ii 1

M i N i M i N i

cot(M, N)
1 cot( ( T (x ) T (x )
n 4 12

I (x ) I (x ) F (x ) F (x ) )).

 

   



 
  

  

Here, 

iM iM iM iM

M i

(T T T T )
T (x ) ,

4

 
  

iM iM iM iM

M i

(I I I I )
I (x ) ,

4

 

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iM iM iM iM

M i

iN iN iN iN

N i

iN iN iN iN

N i

iN iN iN iN

N i

(F F F F )
F (x ) ,

4
(T T T T )

T (x ) ,
4

(I I I I )
I (x ) ,

4
(F F F F )

F (x ) .
4

   

   

   

   

  
 

  
 

  
 

  
 

Properties 5.1 

The defined rough neutrosophic cosine hamming similarity 
operator cot(M, N) between IRNSs M and N satisfies the 
following properties: 

1. cot(M, N) = 1 if and only if M = N.

2. cot(M, N) = cot(N, M).

Proof: 

1.For any two RNSs M and N, if M = N, then the
following relations hold 

).()(),()(),()( iNiMiNiMiNiM xFxFxIxIxTxT 

Hence, 

.0)()(

,0)()(,0)()(





iNiM

iNiMiNiM

xFxF

xIxIxTxT

Thus cot(M,N) = 1 

Conversely, 

If cot(M,N) = 1, then 

.0)()(

,0)()(,0)()(





iNiM

iNiMiNiM

xFxF

xIxIxTxT

Since cot(
4
 ) = 1. So we can write 

).()(
),()(),()(

iNiM

iNiMiNiM

xFxF

xIxIxTxT





Hence M = N. 

2. As,
n

M i N ii 1

1cot(M, N) cot( ( T (x ) T (x )
n 4 12

 


 
     

M i N i M i N i
I (x ) I (x ) F (x ) F (x ) ))     

n

N i M ii 1

N i M i N i M i

1 cot( ( T (x ) T (x )
n 4 12
I (x ) I (x ) F (x ) F (x ) ))

 

   


 
   

  

cot(N,M).  
This completes the proof. 

6. Decision making under trigonometric interval

rough neutrosophic Hamming similarity 

measures 

In this section, we apply interval rough cosine, sine and 
cotangent Hamming similarity measures between IRNSs to 
the multi-attribute decision making problem. Consider 
C={C1,C2, ... ,Cm} be the set of attributes and A={A1,A2, ... 

, An} be a set of alternatives. Now we provide an algorithm 
for MADM problems involving interval rough 
neutrosophic information. 
Algorithm 1. (see Fig 1) 

Step 1: Construction of the decision matrix with interval 
rough neutrosophic number 

Decision maker considers the decision matrix with respect 
to m alternatives and n attributes in 
terms of interval rough neutrosophic numbers as follows: 

Table1: Interval Rough neutrosophic decision matrix 

D=<Zij>nxm=

11 12 1m

21 22 2m

n1 n2 nm

Z Z ... ... ... Z
Z Z ... ... ... Z
... ... ... ... ... ...
... ... ... ... ... ...
... ... ... ... ... ...
Z Z ... ... ... Z

 
 
 
 
 
  
 

Where 

iM iM iM iM iM iM

iM iM iM iM iM iM

[T ,T ],[I , I ],[F ,F ],

[T ,T ],[I , I ],[F ,F ])

Zij = <(

>

     

     
with 

3(y)}]{F(y)}{I(y)}{T 0 U
AR[x]y

U
AR[x]y

U
AR[x]y  

Step 2: Determination of the ideal alternative 

Generally, the evaluation attribute can be categorized into 
two types: benefit type attribute and cost type attribute. We 
define an ideal alternative S* . 
For benefit type attribute, 
S*=

)}min,min,(max),max,max,{(min ijiijiijiijiijiiji FITFIT . 

For cost type attribute, 
S*=

)}max,max,(min),min,min,{(max ijiijiijiijiijiiji FITFIT .

Step 3: Determination of the interval rough trigonometric 
neutrosophic Hamming similarity function of the 
alternatives 
We compute interval rough trigonometric neutrosophic 
similarity measure between the ideal alternative S* and 
each alternative Zi = <Zij>nxm for all i = 1, ….., n and j = 1, 
….., m.  
Step 4: Ranking the alternatives 
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Using the interval rough trigonometric neutrosophic 
similarity measure between each alternative and the ideal 
alternative, the ranking order of all alternatives can be 
determined and the best alternative is selected with the 
highest similarity value. 
Step 5: End. 

      Fig 1. A flowchart of the proposed decision making 
method  

7. Numerical example

Assume that a decision maker intends to select the most 
suitable laptop for random use from the three initially 
chosen laptops (S1, S2, S3) by considering four attributes 
namely: features C1, reasonable price C2, customer care C3, 
risk factor C4. Based on the proposed approach discussed 
in section 5, the considered problem is solved by the 
following steps: 

Step1: Construct the decision matrix with interval rough 
neutrosophic number 

The decision maker construct the decision matrix with 
respect to the three alternatives and four attributes in terms 
of interval rough neutrosophic number. 

Step 2: Determine the benefit type attribute and cost type 
attribute 
Here three benefit type attributes C1, C2, C3 and one cost 
type attribute C4. We calculate the ideal alternative as 
follows: 

})])5.,3[.],6.,5[.],7.,5([.]),3.,1[.],4.,2[.],9.,8([.
,])4.,2[.],4.,2[.],9.,7([.]),6.,4[.],5.,4[.],6.,5([.
,])2.,1[.],3.,1[.],9.,7([.]),4.,2[.],4.,3[.],7.,5([.
,])2.,1[.],2.,1[.],9.,8([.]),4.,3[.],5.,3[.],7.,6([.{

*









S

Step3: Calculate the interval rough trigonometric 
neutrosophic Hamming similarity measure of the 
alternatives

*
1

*
1

*
1

cos(S ,S ) 0.999998923,
cos(S ,S ) 0.999997135,
cos(S ,S ) 0.999998505,







 

*
1

*
1

sin(S ,S ) 0.999531651
sin(S ,S ) 0.997658256

,

,





C1 C2 C3 C4 

S1 <([.6, .7], 
[.3, .5], 
[.3, .4]), 
([.8, .9], 
[.1, .3], 
[.1, .2])> 

<([.5, .7], 
[.3, .4], 
[.1, .2]), 
([.7, .9], 
[.3, .5], 
[.3, .4])> 

<([.5, .6], 
[.4, .5], 
[.4, .6]), 
([.7, .8], 
[.2, .4], 
[.3, .4])> 

<([.8, .9], 
[.3, .4], 
[.5, .6]), 
([.7, .8], 
[.3, .5], 
[.3, .5])> 

S2 <([.7, .8], 
[.2, .3], 
[.0, .2]), 
([.7, .9], 
[.1, .2], 
[.1, .2])> 

<([.6, .7], 
[.1, .2], 
[.0, .2]), 
([.6, .7], 
[.1, .3], 
[.1, .3])> 

<([.5, .7], 
[.2, .3], 
[.1, .2]), 
([.6, .9], 
[.3, .5], 
[.2 .4])> 

<([.7, .8], 
[.3, .5], 
[.1,.3]), 
([.5, .7], 
[.5, .6], 
[.2, .3])> 

S3 <([.6, .7], 
[.3, .4], 
[.0, .3]), 
([.6, .9], 
[.1, .2], 
[.1, .2])> 

<([.5, .7], 
[.2, .4], 
[.2, .4]), 
([.6, .8], 
[.1, .3], 
[.1, .2])> 

<([.6, .8], 
[.2, .4], 
[.3, .4]), 
([.6, .8], 
[.2, .5], 
[.3, .5])> 

<([.4, .7], 
[.2, .4], 
[.4, .5]), 
([.5, .8], 
[.2, .5], 
[.0, .2])> 

Start 

Set the attributes(in terms of IRNSs) 

Construct the decion matrices 

Determine the ideal alternative 

Calculate the interval rough trigonometric 
neutrosophic Hamming similarity 
measures 

     Rank the alternative 

End 
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*
1

*
1

*
1

*
1

sin(S ,S ) 0.998343644
cot(S ,S ) 70.25049621,
cot(S ,S ) 67.22363275,
cot(S ,S ) 68.81008448.

,







Step 4: Rank the alternatives 

Ranking of alternatives is prepared based on the 
descending order of similarity measures. The highest value 
reflects the best alternatives. 
Here,  

1 3 2

1 3 2

1 3 2

cos(S , S*)> cos(S , S*)> cos(S , S*).
sin(S , S*)> sin(S , S*)> sin(S , S*).
cot(S , S*)> cot(S , S*)> cot(S , S*).
Hence, the laptop S1 is the best alternative for random use. 

8. Conclusions

In this paper, we have proposed interval rough 
trigonometric Hamming similarity measures and proved 
their properties. We have developed three MADM 
strategies base on sine, cosine and cotangent similarity 
measures under interval rough neutrosophic environment. 
Then we solved an illustrative numerical example to 
demonstrate the feasibility, applicability of the developed 
strategies. The concept presented in this paper can be 
applied other multiple attribute decision making problems 
such as teacher selection [30, 31, 32], school selection 
[33], weaver selection [34, 35, 36], brick field selection 
[37, 38], logistics center location selection [39, 40], data 
mining [41] etc. under interval rough neutrosophic 
environment. 
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Abstract: This paper introduces the single valued neutrosophic (i.e.

SVN) digraph. The basic terminologies and operations of SVN di-

graphs have been defined. Later certain types of SVN digraphs are

shown and some of the important properties of SVN digraphs are

investigated. Finally SVN digraphs are applied in solving a multi-

criterion decision making problems.

Keywords: SVN set, SVN digraph, Entropy, Similarity, Decision making.

1 Introduction

In 1995, neutrosophic logic and set theory was introduced by

Smarandache [22, 23]. The neutrosophic sets are characterized

by a truth membership function(t), a falsity membership func-

tion (f) and an indeterminacy membership function(i) respec-

tively, which lies between the nonstandard unit interval [0, 1]∗.

Unlike intuitionistic fuzzy sets, here the uncertainties present i.e.

the indeterminacy factor, is independent of truth and falsity val-

ues. Hence Neutrosophic sets are more general than intuitionis-

tic fuzzy set [6] and draw a special attraction to the researchers.

Later on Wang et al. [25] introduced a special type of neutro-

sophic set say single valued neutrosophic set (SVNS). They also

introduced the interval valued neutrosophic set (IVNS) in [26].

The SVN set is a generalization of classical set, fuzzy set [27],

intuitionistic fuzzy set [6] etc. To see the practical application of

the neutrosophic sets and SVN sets, one may see [1, 2, 3, 4, 7, 8]

etc.

On the other hand, nowadays graphs and digraphs are widely

used by the researchers to solve many pratical problems. The

graphs are used as a tool for solving combinatorial problems

in algebra, analysis, geometry etc. Many works on fuzzy

graph theory, fuzzy digraph theory, intuitionistic fuzzy graphs,

soft digraphs etc. are carried out by a number of researchers

[12, 13, 15, 16, 17, 21]. Four main categories of neutrosophic

graphs have been defined by Samarandache in the paper [24].

However the concept of single valued neutrosophic graphs was

introduced by Broumi et al. [9, 10, 11].

In this paper we have introduced the notion of SVN digraphs

for the first time. In section 2, some preliminaries regarding neu-

trosophic sets, graph theory, SVN sets etc. are discussed. In sec-

tion 3, we have defined the SVN digraph and some terminologies

regarding SVN digraphs with examples. We have solved a real

life problem by using SVN digraph in Section 4. In Section 5,

we have defined the volume of a SVN digraph and also the sim-

ilarity measure between two SVN digraphs by using the volume

of each SVN digraph. Finally in this section, we have computed

the similarity measure of the digraphs of Section 4 and compared

the results. Section 6 concludes the paper.

2 Preliminaries

In this section, we will discuss some definitions and terminolo-

gies regarding neutrosophic sets which will be used in the rest of

the paper. However, for details on the neutrosophic sets, one can

see [20].

Definition 1 [20] Let X be a universal set. A neutrosophic set

A on X is characterized by a truth membership function tA, an

indeterminacy membership function iA and a falsity membership

function fA, where tA, iA, fA : X → [0, 1], are functions and

∀ x ∈ X , x = x(tA(x), iA(x), fA(x)) ∈ A is a single valued

neutrosophic element of A.

A single valued neutrosophic set (SVNS) A over a finite uni-

verse X = {x1, x2, . . . , xn} is represented as below:

A =
n∑

i=1

xi

〈tA(xi), iA(xi), fA(xi)〉

Definition 2 [20] The complement of a SVNS A is denoted by Ac

and is defined by tAc(x) = fA(x), iAc(x) = 1−iA(x), fAc(x) =
tA(x) ∀ x ∈ X .

Definition 3 [20] A SVNS A is contained in the other SVNS B,

denoted as A ⊆ B, if and only if tA(x) ≤ tB(x), iA(x) ≤ iB(x)
and fA(x) ≥ fB(x) ∀x ∈ X . Two sets will be equal if A ⊆ B

and B ⊆ A.

Definition 4 [20] Suppose N(X) be the collection of all SVN

sets on X and A,B ∈ N(X). A similarity measure between two

SVN sets A and B is a function S : N(X) × N(X) → [0, 1]
which satisfies the following condition:

(i) 0 ≤ S(A,B) ≤ 1,

(ii) S(A,B) = 1 if and only if A = B.
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Abstract: The single valued neutrosophic set (SVNS) is a subclass
of neutrosophic set, which can describe and handle indeterminate in-
formation and inconsistent information. Since a SVNS is character-
ized independently by three functions: a truth-membership function,
an indeterminacy-membership function, and a falsity-membership

function. This paper introduces (α, β, γ)-equalities of SVNS, which
contains three parameters corresponding to three characteristic func-
tions of SVNS. Then we show how various operations of single val-
ued neutrosophic sets affect these three parameters.

Keywords: Neutrosophic set, Single valued neutrosophic set, (α, β, γ)-equality.

1 Introduction

Neutrosophic sets introduced by Smarandache [17] are the
generalization of fuzzy sets [23] and intuitionistic fuzzy sets
[3]. A neutrosophic set is characterized independently by
three functions: a truth-membership function, an indeterminacy-
membership function, and a falsity-membership function. How-
ever, since these three functions are real standard or non-standard
subsets of ]−0, 1+[, it will be difficult to apply in real engi-
neering fields [18]. Thus, Wang et.al [18] introduced the con-
cept of single valued neutrosophic set (SVNS), which member-
ship functions are the normal standard subsets of real unit inter-
val [0, 1]. SVNS can deal with indeterminate and inconsistent
information and therefore have been applied to many domains
[9, 13, 14, 19, 20, 21].

Pappis [16] studied the value approximation of fuzzy systems
variables. As a generalization of the work of Pappis, Hong and
Hwang [10] discussed the value similarity of fuzzy system vari-
ables. Further, Cai introduced the so-called δ-equalities of fuzzy
sets and applied them to discuss robustness of fuzzy reasoning.
Georgescu [7, 8] generalized δ-equalities of fuzzy sets to (δ,H)-
equality of fuzzy sets based on triangular norms. Dai et al. [6]
and Jin et al. [11] discussed robustness of fuzzy reasoning based
on (δ,H)-equality of fuzzy sets. Zhang et al. [22] studied the δ-
equalities of complex fuzzy sets and applied the new concept in
a signal processing application. Ngan and Ali [15] studied the δ-
equalities of intuitionistic fuzzy sets and applied the new concept
the application of medical diagnosis. Ali et al. [2] studied the δ-
equalities of neutrosophic sets. Moreover, Ali and Smarandache
[1] studied the δ-equalities of complex neutrosophic sets.

However, the concepts in [4, 5, 15, 22, 1, 2] are based on dis-
tance measures. Only one parameter is used to measure the de-
gree of equality of fuzzy sets and their extensions. As we know,
a SVNS is characterized independently by three functions. For
example, from [2] we have A = (0.2)B and A = (0.2)C for
A ≡ (1, 0, 0), B ≡ (1, 0, 0.8) and C ≡ (0.2, 0.8, 0.8), i.e., B

and C satisfy the same δ-equality with respect to A for δ = 0.2.
But B and C are quite different. Based on the above analysis,
we find out that the only parameter given in [2] is a little rough
to some extent. In view of this, it is more suitable to use three
parameters to measure the degree of equality in these three func-
tions respectively.

This paper investigates the concept of (α, β, γ)-equalities be-
tween single valued neutrosophic sets by following the work of
Smarandache [17], Wang et.al [18] and Cai [4, 5]. Different from
the distance based concepts in [1, 4, 5, 22], the new concept uses
three parameters to measure the equality degree of three charac-
teristic functions independently.

The rest of this paper is organized as follows: In section 2
,we first briefly recall the concept of single valued neutrosophic
set and its operations. In section 3, we introduce the concept
of (α, β, γ)-equalities of single valued neutrosophic sets and its
basic properties. Section 4 discusses (α, β, γ)-equalities with re-
spect to operations of single valued neutrosophic sets. Finally,
conclusions are stated in section 6.

2 Preliminaries
Definition 1. [18] SupposeX is a universe containing all related
objects. A SVNS A in X is characterized by three functions, i.e.,
a truth-membership function TA : X → [0, 1], an indeterminacy-
membership function IA : X → [0, 1], and a falsity-membership
function FA : X → [0, 1]. Then, a SVNS A can be defined as
follows

A = {x, TA(x), IA(x), FA(x)|x ∈ X},

where TA(x), IA(x), FA(x) ∈ [0, 1] for each x ∈ X .

We use the notation SV N(X) to denote the set of all single
valued neutrosophic sets of X .

Suppose A and B are two single valued neutrosophic sets of
X , then the following relations and operations are defined as fol-
lows [18, 21].

S. Dai: (α, β, γ)-Equalities of single valued neutrosophic sets
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(i) A ⊆ B if and only if TA(x) ≤ TB(x), IA(x) ≥
IB(x), FA(x) ≥ FB(x), ∀x ∈ X .

(ii) A = B if and only if A ⊆ B, B ⊆ A.

(iii) Ac = {x, FA(x), 1− IA(x), TA(x)|x ∈ X}.

(iv) A ∪ B = {x, TA(x) ∨ TB(x), IA(x) ∧ IB(x), FA(x) ∧
FB(x)|x ∈ X}.

(v) A ∩ B = {x, TA(x) ∧ TB(x), IA(x) ∨ IB(x), FA(x) ∨
FB(x)|x ∈ X}.

(vi) A + B = {x, TA(x) + TB(x) −
TA(x)TB(x), IA(x)IB(x), FA(x)FB(x)|x ∈ X}.

(vii) A × B = {x, TA(x) + TB(x) −
TA(x)TB(x), IA(x)IB(x), FA(x)FB(x)|x ∈ X}.

(viii) λA = {x, 1− (1−TA(x))λ, IλA(x), FλA(x)|x ∈ X}, λ > 0.

(ix) Aλ = {x, TλA(x), 1− (1− IA(x))λ, 1− (1− FA(x))λ|x ∈
X}, λ > 0.

To facilitate future discussion, we review the following two
lemmas.

Lemma 2. [10] Let f and g be bounded, real valued functions
on a set X . Then

(i) |
∨
x∈X

f(x)−
∨
x∈X

g(x)| ≤
∨
x∈X
|f(x)− g(x)|,

(ii) |
∧
x∈X

f(x)−
∧
x∈X

g(x)| ≤
∨
x∈X
|f(x)− g(x)|.

Lemma 3. [12] Let a, b ∈ [0, 1] and λ > 0. Then

(i) If 0 < λ ≤ 1, then |aλ − bλ| ≤ |a− b|λ;

(ii) If λ ≥ 1, then |aλ − bλ| ≥ |a− b|λ.

3 (α, β, γ)-equalities of single valued
neutrosophic sets

Definition 4. [2] Suppose A and B are two neutrosophic sets
and δ ∈ [0, 1], then A and B are said to be δ-equal, if and only
if, the following properties hold∨

x∈X

∣∣TA(x)− TB(x)∣∣ ≤ 1− δ,∨
x∈X

∣∣IA(x)− IB(x)∣∣ ≤ 1− δ,∨
x∈X

∣∣FA(x)− FB(x)∣∣ ≤ 1− δ.

It is denoted by A = (δ)B.

Definition 5. Suppose A and B are two single valued neutro-
sophic sets and α, β, γ ∈ [0, 1], then A and B are said to be
(α, β, γ)-equal, if and only if, the following properties hold∨

x∈X

∣∣TA(x)− TB(x)∣∣ ≤ 1− α, (1)∨
x∈X

∣∣IA(x)− IB(x)∣∣ ≤ 1− β, (2)∨
x∈X

∣∣FA(x)− FB(x)∣∣ ≤ 1− γ. (3)

It is denoted by A = (α, β, γ)B.

Remark 6.

(i) In Definition 4, if two single valued neutrosophic sets A and
B are 1-equal, then A = B holds and vice versa, i.e., A =
(1)B iff A = B. However, when we consider the case A =
(δ)B for δ 6= 1. See the example in the Introduction section,
let A ≡ (1, 0, 0), B ≡ (1, 0, 0.8) and C ≡ (0.2, 0.8, 0.8),
then it follows from [2] that B and C satisfy the same δ-
equality with respect to A for δ = 0.2. Note that B and
C are quite different. Using Definition 5, we have A =
(1, 1, 0.2)B, andA = (0.2, 0.2, 0.2)C. These are consistent
with the fact that B is close to A while C is far from A.

(ii) The new concept is a generalization of the existing concepts
in [2, 4, 15]. We note that A = (α, β, γ)B ⇒ A = (δ)B,
where δ = min(α, β, γ). When A and B are two intu-
itionistic fuzzy sets, i.e, TA(x) + IA(x) + FA(x) = 1 and
TB(x) + IB(x) + FB(x) = 1 for all x ∈ X , then it follows
from [15] that A and B are δ-equal for δ = min(α, γ).
When A and B are two fuzzy sets, i.e, TA(x) + FA(x) = 1
and TB(x) + FB(x) = 1 for all x ∈ X , then we have
α = γ, β = 1 from A = (α, β, γ)B, it follows from [4] that
A and B are δ-equal for δ = α.

Example 7. Let X = {x1, x2} and two single valued neutro-
sophic sets defined as

A =
{
< x1, 0.1, 0.2, 0.9 >,< x2, 0.1, 0.2, 1.0 >

}
,

B =
{
< x1, 0.2, 0.2, 0.1 >,< x2, 0.1, 0.1, 0.1 >

}
.

It is easy to know that A = (0.9, 0.9, 0.1)B.
If we consider the degree of equality based on the single val-

ued neutrosophic distance measure, we only obtain one value for
the degree of equality between single valued neutrosophic sets.
For instance, if we use the following distance of single valued
neutrosophic sets

d(A,B) = max
{ ∨
x∈X
|TA(x)− TB(x)|,∨

x∈X
|IA(x)− IB(x)|,

∨
x∈X
|FA(x)− FB(x)|

}
(4)
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then we have d(A,B) = 0.9 = 1 − 0.1. However, 0.1 is not
a rational estimation of degree of equality for truth-membership
function and indeterminacy-membership function in this exam-
ple. We note that A = (δ)B ⇔ d(A,B) ≤ 1 − δ. Based on
an overall consideration of three characteristic functions, there
parameters have been used accordingly.

And it is easy to know that A = (α, β, γ)B implies d(A,B) ≤
1− α ∧ β ∧ γ.

Theorem 8. SupposeA,B andC are single valued neutrosophic
sets, then the following hold

(i) A = (0, 0, 0)B;

(ii) A = (1, 1, 1)B if and only if A = B;

(iii) A = (α, β, γ)B if and only if B = (α, β, γ)A;

(iv) A = (α1, β1, γ1)B and α2 ≤ α1, β2 ≤ β1 and γ2 ≤ γ1,
then A = (α2, β2, γ2)B ;

(v) If A = (α1, β1, γ1)B and B = (α2, β2, γ2)C, then A =
(α1 ∗ α2, β1 ∗ β2, γ1 ∗ γ2)C,

where a ∗ b = (a+ b− 1) ∨ 0 for any a, b ∈ [0, 1]

Proof. Properties (i)(iv) can be proved easily. We only prove (v).
Since A = (α1, β1, γ1)B, then∨

x∈X

∣∣TA(x)− TB(x)∣∣ ≤ 1− α1, (5)∨
x∈X

∣∣IA(x)− IB(x)∣∣ ≤ 1− β1, (6)∨
x∈X

∣∣FA(x)− FB(x)∣∣ ≤ 1− γ1. (7)

From B = (α2, β2, γ2)C, we obtain∨
x∈X

∣∣TB(x)− TC(x)∣∣ ≤ 1− α2, (8)∨
x∈X

∣∣IB(x)− IC(x)∣∣ ≤ 1− β2, (9)∨
x∈X

∣∣FB(x)− FC(x)∣∣ ≤ 1− γ2. (10)

Then from (5) and (8),∨
x∈X

∣∣TA(x)− TC(x)∣∣
=

∨
x∈X

∣∣TA(x)− TB(x) + TB(x)− TC(x)
∣∣

≤
∨
x∈X

∣∣TA(x)− TB(x)∣∣+ ∨
x∈X

∣∣TB(x)− TC(x)∣∣
≤ 1− α1 + 1− α2

= 1− (α1 + α2 − 1).

And from the definition 1, 1 − (α1 + α2 − 1) ∈ [0, 1]. Thus,∨
x∈X |TA(x)− TC(x)| ≤ 1− α1 ∗ α2.

Similarly, we can get
∨
x∈X

∣∣IA(x) − IC(x)∣∣ ≤ 1 − β1 ∗ β2
from (6) and (9), and

∨
x∈X

∣∣FA(x)−FC(x)∣∣ ≤ 1−γ1 ∗γ2 from
(7) and (10). Thus, A = (α1 ∗ α2, β1 ∗ β2, γ1 ∗ γ2)C.

4 (α, β, γ)-equalities with respect to op-
erations

Theorem 9. If A = (α, β, γ)B, then Ac = (γ, β, α)Bc.

Proof. Since∨
x∈X

∣∣TAc(x)− TBc(x)
∣∣ = ∨

x∈X

∣∣FA(x)− FB(x)∣∣ ≤ 1− γ,∨
x∈X

∣∣FAc(x)− FBc(x)
∣∣ = ∨

x∈X

∣∣TA(x)− TB(x)∣∣ ≤ 1− α,

and∨
x∈X

∣∣IAc(x)− IBc(x)
∣∣ =

∨
x∈X

∣∣1− IA(x)− (1− IB(x))
∣∣

=
∨
x∈X

∣∣IA(x)− IB(x)∣∣
≤ 1− β.

Then, Ac = (γ, β, α)Bc.

Remark 10. In [2], we have A = (δ)B ⇔ Ac = (δ)Bc.
However, by using Definition 5 we have A = (α, β, γ)B ⇔
Ac = (γ, β, α)Bc, where (α, β, γ) 6= (γ, β, α). It is consistent
with the fact that A(x) =

(
TA(x), IA(x), FA(x)

)
⇒ Ac(x) =(

FA(x), IA(x), TA(x)
)
.

Example 11. Let A,B be two single valued neutrosophic sets
defined in Example 1, then

Ac =
{
< x1, 0.9, 0.8, 0.1 >,< x2, 1.0, 0.8, 0.1 >

}
,

Bc =
{
< x1, 0.1, 0.8, 0.2 >,< x2, 0.1, 0.9, 0.1 >

}
.

It is easy to know that Ac = (0.1, 0.9, 0.9)Bc, whereas A =
(0.9, 0.9, 0.1)B.

However, if we use the distance defined in (4), we obtain
d(Ac, Bc) = d(A,B) = 0.9 = 1 − 0.1. Thus we have
A = (0.1)B and Ac = (0.1)Bc from Definition 4. This is dif-
ficult to know the changes of single valued neutrosophic sets by
using the complement operation.

Theorem 12. If A1 = (α1, β1, γ1)B1 and A2 = (α2, β2, γ2)B2,
then

A1 ∪A2 = (α1 ∧ α2, β1 ∧ β2, γ1 ∧ γ2)B1 ∪B2, (11)
A1 ∩A2 = (α1 ∧ α2, β1 ∧ β2, γ1 ∧ γ2)B1 ∩B2, (12)
A1 +A2 = (α1 ∗ α2, β1 ∗ β2, γ1 ∗ γ2)B1 +B2, (13)
A1 ×A2 = (α1 ∗ α2, β1 ∗ β2, γ1 ∗ γ2)B1 ×B2. (14)
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Proof. We only give the proof of (11). From lemma 1, we obtain∨
x∈X

∣∣TA1∪A2
(x)− TB1∪B2

(x)
∣∣

=
∨
x∈X

∣∣TA1
(x) ∨ TA2

(x)− TB1
(x) ∨ TB2

(x)
∣∣,

≤ max
{ ∨
x∈X

∣∣TA1(x)− TB1(x)
∣∣, ∨
x∈X

∣∣TA2(x)− TB2(x)
∣∣}

≤ (1− α1) ∨ (1− α2)

≤ 1− α1 ∧ α2.

∨
x∈X

∣∣IA1∪A2(x)− IB1∪B2(x)
∣∣

=
∨
x∈X

∣∣IA1
(x) ∧ IA2

(x)− IB1
(x) ∧ IB2

(x)
∣∣

≤ max
{ ∨
x∈X

∣∣IA1
(x)− IB1

(x)
∣∣, ∨
x∈X

∣∣IA2
(x)− IB2

(x)
∣∣}

≤ (1− β1) ∨ (1− β2)
≤ 1− β1 ∧ β2.

and ∨
x∈X

∣∣FA1∪A2
(x)− FB1∪B2

(x)
∣∣

=
∨
x∈X

∣∣FA1(x) ∧ FA2(x)− FB1(x) ∧ FB2(x)
∣∣

≤ max
{ ∨
x∈X

∣∣FA1
(x)− FB1

(x)
∣∣, ∨
x∈X

∣∣FA2
(x)− FB2

(x)
∣∣}

≤ (1− γ1) ∨ (1− γ2)
≤ 1− γ1 ∧ γ2.

Thus, A1 ∪A2 = (α1 ∧ α2, β1 ∧ β2, γ1 ∧ γ2)B1 ∪B2.

Corollary 13. If Ak = (αk, βk, γk)Bk and k = 1, 2, ..., n, then

n⋃
k=1

Ak = (α, β, γ)
n⋃
k=1

Bk, (15)

n⋂
k=1

Ak = (α, β, γ)

n⋂
k=1

Bk, (16)

n∑
k=1

Ak = (α′, β′, γ′)
n∑
k=1

Bk, (17)

n∏
k=1

Ak = (α′, β′, γ′)
n∏
k=1

Bk, (18)

where α =
∧n
k−1 αk, β =

∧n
k−1 βk, γ =

∧n
k−1 γk, α′ = α1 ∗

α2 ∗ · · · ∗αn, β′ = β1 ∗ β2 ∗ · · · ∗ βn and γ′ = γ1 ∗ γ2 ∗ · · · ∗ γn.

Proof. It can be proven from Theorem 12.

Theorem 14. Let A,B be two single valued neutrosophic sets,
the following properties hold

(i) If A = (α, β, γ)B and 0 < λ ≤ 1, then

λA = (α′, β′, γ′)λB, (19)

Aλ = (α′, β′, γ′)Bλ, (20)

where α′ = 1−(1−α)λ, β′ = 1−(1−β)λ and γ′ = 1−(1−γ)λ.

(ii) If λA = (α, β, γ)λB for some λ ≥ 1, then

A = (α′, β′, γ′)B, (21)

where α′ = 1 − (1 − α)1/λ, β′ = 1 − (1 − β)1/λ and
γ′ = 1− (1− γ)1/λ.

(iii) If Aλ = (α, β, γ)Bλ for some λ ≥ 1, then

A = (α′, β′, γ′)B, (22)

where α′ = 1 − (1 − α)1/λ, β′ = 1 − (1 − β)1/λ and γ′ =
1− (1− γ)1/λ.

Proof. We only give the proof of (i). From lemma 1 and lemma
2(i), we obtain∨

x∈X

∣∣TλA(x)− TλB(x)∣∣
=

∨
x∈X

∣∣1− (1− TA(x))λ − (1− (1− TB(x))λ)
∣∣

=
∨
x∈X

∣∣(1− TA(x))λ − (1− TB(x))λ
∣∣

≤
∨
x∈X

∣∣(1− TA(x))− (1− TB(x))
∣∣λ

=
∨
x∈X

∣∣TA(x)− TB(x)∣∣λ
≤ (1− α)λ = 1− (1− (1− α)λ).

∨
x∈X

∣∣IλA(x)− IλB(x)∣∣
=

∨
x∈X

∣∣IA(x)λ − IB(x)λ∣∣
≤

∨
x∈X

∣∣IA(x)− IB(x)∣∣λ
≤ (1− β)λ = 1− (1− (1− β)λ).
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and ∨
x∈X

∣∣FλA(x)− FλB(x)∣∣
=

∨
x∈X

∣∣FA(x)λ − FB(x)λ∣∣
≤

∨
x∈X

∣∣FA(x)− FB(x)∣∣λ
≤ (1− γ)λ = 1− (1− (1− γ)λ).

Thus, λA = (α′, β′, γ′)λB, where α′ = 1 − (1 − α)λ, β′ =
1− (1− β)λ and γ′ = 1− (1− γ)λ.

5 Conclusions
Since a SVNS is characterized by three functions independently,
this paper introduced (α, β, γ)-equalities corresponding to char-
acteristic functions of SVNS. The new concept is more com-
prehensive than the traditional method based distance measure.
Firstly, three parameters in the new concept can measure the de-
gree of equality for different characteristic functions (See Exam-
ple 1). Secondly, the new concept describe the changes of de-
gree of equality with respect to operations more accurate and de-
tailed (See Example 2). Thirdly, since A = (α, β, γ)B implies
d(A,B) ≤ 1−α∧ β ∧ γ, we can obtain the traditional distance-
based parameter by δ = α ∧ β ∧ γ.

As future work , we can consider the soundness of neutro-
sophic logic systems and the reliability of neutrosophic fault di-
agnosis.
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Abstract The concept of neutrosophic can provide a generaliza-
tion of fuzzy set and intuitionistic fuzzy set that make it is the 
best fit in representing indeterminacy and uncertainty. Single 
Valued Triangular Numbers (SVTrN-numbers) is a special case 
of neutrosophic set that can handle ill-known quantity very diffi-
cult problems. This work intended to introduce a framework with 
two types of ranking methods. The results indicated that each 
ranking method has its own advantage. In this perspective, the 
weighted value and ambiguity based method gives more attention 
to uncertainty in ranking and evaluating ISQ as well as it takes 
into account cut sets of SVTrN numbers that can reflect the in-
formation on Truth-membership-membership degree, false mem-
bership-membership degree and Indeterminacy-membership de-
gree. The value index and ambiguity index method can reflect the 
decision maker's subjectivity attitude to the SVTrN- numbers.  

Key words: Single Valued Triangular Neutrosophic Num-
ber (SVTrN), Single-Valued Trapezoidal Neutrosophic 
Number (SVTN number), Information Systems Quality 
(ISQ),  Multi-Criteria Decision Making (MCDM). 

1. Introduction
The neutrosophic concept became a key research topic. 
Neutrosophic theory involves philosophy viewpoint which 
addresses nature and scope of neutralities, as well as their 
interactions with different ideational spectra [9].  Neutro-
sophic includes neutrosophic set, neutrosophic probability, 
neutrosophic statistics and neutrosophic logic that it can be 
applied in many fields in order to solve problems related to 
indeterminacy [26, 23]. Neutrosophic not only considers 
the truth-membership and falsity- membership but also in-
determinacy. Neutrosophic can provide is a generalization 
of classical set, fuzzy set and intuitionistic fuzzy set [22, 
25, 23]. The neutrosophic set can handle many applica-
tions in information systems and decision support systems 
such as relational database systems, semantic web ser-
vices, and financial data set detection [28].  Neutrosophic 
sets can represent inconsistent and incomplete information 
about real world problems [27, 24]. The neutrosophic set 
theory can be used to handle the uncertainty that related to 

ambiguity in a manner analogous to human thought [22]. 
In the neutrosophic set, the membership function inde-
pendently indicates: Truth-membership-membership de-
gree, false membership-membership degree, and Indeter-
minacy-membership degree. According to [24] neutro-
sophic set can exemplify ambiguous and conflicting in-
formation about real world. SVTrN-number is a special 
case of neutrosophic set that can handle ill-known quantity 
very difficult problem in Multi-Criteria Decision Making 
(MCDM) MCDM involves a process of solving the prob-
lem and achieving goals under asset of constraints, and it 
can be very difficult in some cases because of incomplete 
and imprecise information [1]. Also, in a MCDM problem 
the process of ranking alternatives with neutrosophic 
numbers is very difficult because neutrosophic numbers 
are not ranked by ordinary methods as real numbers. How-
ever, it is possible with score functions, aggregation opera-
tors, distance measures, and so on. Ye [14] introduced the 
notations of simplified neutrosophic sets and developed a 
ranking method. Then, he introduced some aggregation 
operators. Biswas et al. [35] developed a new approach for 
multi-attribute group decision making problems by extend-
ing the technique for order preference by similarity to ide-
al solution under single-valued neutrosophic environment. 
In [32] introduced combination of a neutrosophic set and a 
soft set that can be applied to problems that contain uncer-
tainty. In [38] a new cross entropy measure under interval 
neutrosophic set (INS) environment was defined and can 
call IN-cross entropy measure and prove its basic proper-
ties. De and Das [20] developed a ranking method for 
trapezoidal intuitionistic fuzzy numbers and presented the 
values and ambiguities of the membership degree and the 
non-membership degree. Pramanik et al. [37] developed a 
new multi attribute group decision making (MAGDM) 
strategy for ranking of the alternatives based on the 
weighted SN-cross entropy measure between each alterna-
tive and the ideal alternative. Mitchell [2] proposed a rank-
ing method to order triangular intuitionistic fuzzy numbers 
by accepting a statistical viewpoint and interpreting each 
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IFN as ensemble of ordinary fuzzy numbers. In [33] the 
notion of the interval valued neutrosophic soft set (ivn-soft 
sets) and generalized the concept of the soft set, fuzzy soft 
set, interval valued fuzzy soft set, intuitionistic fuzzy soft 
set, interval valued intuitionistic fuzzy soft set and neutro-
sophic soft set. Prakash et al [21] introduced a ranking 
method for both trapezoidal intuitionistic fuzzy numbers 
and triangular intuitionistic fuzzy numbers using the cen-
troid concept and showed the proposed method is flexible 
and effective. Pramanik et al. [39] introduced new vector 
similarity measures of single valued and interval neutro-
sophic sets by hybridizing the concepts of Dice and cosine 
similarity measures and presented their applications in 
multi attribute decision making under neutrosophic envi-
ronment. Peng et al [13] introduced the concept of multi-
valued neutrosophic set, gave two multi-valued neutro-
sophic power aggregation operators. In [11, 29] the score 
based method can provide a simple method to rank the 
Single-Valued Trapezoidal Neutrosophic Number (SVTN 
number). Li [4] provides ratio ranking method for TIFNs 
and cut sets of intuitionistic trapezoidal fuzzy numbers. 
The existing methods of ranking fuzzy numbers and intui-
tionistic fuzzy number may be extended to SVN-numbers 
[10]. In [34] triangular fuzzy number neutrosophic 
weighted arithmetic averaging operator and triangular 
fuzzy number neutrosophic weighted geometric averaging 
operator are defined to aggregate triangular fuzzy number 
neutrosophic sets. Li et al. [5] introduced a ranking meth-
od of triangular intuitionistic fuzzy numbers and defined 
the notation of cut sets of intuitionistic fuzzy numbers and 
their values and ambiguities of membership and non-
membership functions. The main advantage of this method 
that it pays more attention to the impact of uncertainty and 
takes into account θ-weighted value of intuitionistic fuzzy 
numbers by using the concepts of cut sets of intuitionistic 
fuzzy numbers. Biswas et al. [36] developed a ranking 
method based on value and ambiguity index based of sin-
gle-valued trapezoidal neutrosophic numbers. According 
to [3] there are many ranking methods. However, there is 
no unique best method exists. This paper intended to in-
troduce a framework with two types of ranking methods. 
This paper is organized as the follows: the first section 
presents the introduction for this work; the second section 
provides basic definitions; the third section describes the 
proposed framework with two ranking methods of SVTrN-
numbers with the scale based approach for evaluating ISQ; 
the fourth section describes a case study; the fifth section 
gives conclusion and future work; the final section pro-
vides references. 

2. Basic Definitions
Fuzzy theory is an important and interesting research topic 
in decision-making theory and science. However, fuzzy set 
is characterized only by its membership function between 
0 and 1, but not a non-membership function [12]. To over-
come the insufficient of fuzzy set, Atanassov [19] extend-

ed fuzzy set and introduced intuitionistic fuzzy set by add-
ing an additional non-membership degree, which may ex-
press more flexible information as compared with the 
fuzzy set. Intuitionistic fuzzy set can be defined as the fol-
lows:  

Definition 1. According to [18], let E be a universe. An in-
tuitionistic fuzzy set K over E is defined by: K = {<x, 
μk(x), γk (x) >: x ∈ E} where μk: E [0, 1] and   γk : E  [0, 1] 
such that 0≤, μk(x) + γk (x) ≥1 for any   x ∈ E. For each x ∈ 
E, the values, μk (x) and γk (x) are degree of membership 
function and non-membership function of x, respectively.  

Smarandache [7] introduced the concept of neutrosophic 
set, which is differentiated by truth-membership function, 
indeterminacy-membership function and falsity member-
ship function. The concept of neutrosophic set came from 
a philosophical point of view to express indeterminate and 
inconsistent information Neutrosophic set can be defined 
as the follows:  

Definition 2. . According to [8], let E be a universe. Neu-
trosophic sets A over E is defined by: A = {<x, (TA(x), 
IA(x), FA (x)) >: x∈ E} where TA(x), IA(x), and FA (x) are 
called truth-membership function, indeterminacy-
membership function and falsity membership function, re-
spectively. They are respectively defined by TA: E]-0, 1+[ 
, IA : E  ]-0, 1+[,  FA : E  ]-0, 1+[ Such that.   0≤- (TA(x) + 
IA(x) + FA (x) ≥3+ 

  2.1. Single Valued Triangular Neutrosophic Numbers 
Single valued triangular neutrosophic numbers (SVTrN-
numbers) is a special case of neutrosophic set that can 
handle ill-known quantity very difficult problem in multi-
attribute decision making and ranking. SVTrN-numbers is 
suitable for the expression of incomplete, indeterminate, 
and inconsistent information in actual applications. Spe-
cially, it has been widely applied in many areas [16]. Ac-
cording to [31] the SVTrN-number ā can be defined as the 
follows: 

Definition 3. As [31] [10] pointed out, Let ā = ((a, b, c); 
wā, uā ,yā) where is ā SVTrN-number whose truth-
membership, indeterminacy-membership and falsity-
membership functions can be respectively defined by : 

 (2.1) 

      (2.2) 

Samah Ibrahim Abdel Aal, Mahmoud M. A. Abd Ellatif, Mohamed Monir Hassan: Two Ranking Methods of Single Valued 
Triangular Neutrosophic Numbers to Rank and Evaluate Information Systems Quality



      (2.3) 
If a≥0 and at least c>0, then ā = ((a, b, c); wā, uā, yā) is 
called a positive SVTrN-number, denoted by ā>0. Like-
wise, If a≤0 and at least c<0, ā = ((a, b, c); wā, uā, yā) is 
called a negative SVTrN-number, denoted by ā<0.  

Definition 4. According to [31] let ā = ((a1, b1, c1); wā, uā, 
yā), ē = ((a2, b2, c2); wē, uē, yē) be two SVTrN-numbers and 
γ≠0 0 be any real number, then  

ā + ē= ((a1+ a2, b1+ b2, c1+ c2 ); min{wā ,wē},max{uā , uē}, 
max{yā , yē })        (2.4) 
āē=       

(2.5) 

ā =
(2.6) 

3.1.1 Concepts of Values and Ambiguities for SVTrN-

Numbers 

Concept of cut (or level) sets, values, ambiguities, 
weighted values and weighted ambiguities of SVTrN-
numbers have desired properties and can reflect infor-
mation on membership degrees and non-membership de-
grees.  

Definition 5. As [10] [4] pointed out, let ā = ((a1, b1, c1); 
wā, uā, yā) is an arbitrary SVTrN-number. Then,  

(1)  α -cut set of the SVTrN-number ā for truth-
membership is calculated as: 

[Lā (α), Rā (α)] = [((wā - α) a+ αb)/wā, ((wā-α) c + αb)/wā] 

If f( α ) =α, where f( α ) ∈  [0, 1] and f( α )  is monotonic 
and non-decreasing of α ∈  [0, wā ], the value and ambigui-
ty of the SVTrN-number ā can be calculated as: 

=[   +   ]|

  =     (2.7) 

And 

   = 

     =                              (2.8) 
(2)  β -cut set of the SVTrN-number ā for indetermi-

nacy membership is calculated as; 
 [Ĺā (β), Ŕā (β)] = [((1- β)b + ( β- uā)a)/(1- uā), ((1- β)b+( β-
uā)c )/(1- uā)] 

If g(β) =1- β , where g(β) ∈ [0, 1] and g(β)   is monotonic 
and non-increasing of β∈ [uā,1], the value and ambiguity 
of the SVTrN-number ā can be calculated, respectively, as 
the follows: 

= [ +   |

   =  (2.9) 
And 

= [  +  ]|

     =  (2.10) 
(3) γ - cut set of the SVTrN-number a for falsity-

membership is calculated as: 

 [Ĺ ́ā (γ ), Ŕ ́ā (γ )] = [((1-γ)b+ ( γ - yā )a)/(1-yā)),((1-
γ)b+ ( γ - yā)c )/(1-yā)] 

If h(γ )=1-γ   , where h(γ ) ∈   [0, 1] and h(γ ) is 
monotonic and non-increasing of γ ∈ [yā,1], the value and 

ambiguity of the SVTrN-number , respectively, as; 

= [  - 

    =     (2.11) 
And 

= [ -  - ] 
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   =  (2.12) 

The function f( α ) gives different weights to elements at 
different  α -cut sets and these cut sets come from values 
of µā (x) which have a considerable amount of uncertainty. 
Therefore, Vµ(ā) can reflect the information on member-
ship degrees. Also, g(β) can lessen the contribution of the 
higher  β -cut sets come from values of υā (x) which have a 
considerable amount of uncertainty. Therefore, Vυ(ā) can 
reflect the information on non-membership degrees. Like-
wise, Vλ(ā)  can reflect the information on non-
membership degrees.  

   3.1.2 The Weighted Values and Ambiguities of the 

SVTrN-numbers 

The weighted values of the SVTrN-numbers can be calcu-
lated as follows:   

Definition 6.  According to [10] let ā = ((a1, b1, c1); wā, uā, 
yā) be a SVTrN-number. Then, for θ∈ [0, 1], the θ -
weighted value of the SVTrN-number ā can be defined as:  

Vθ (ā) =  (a + 4b + c)/6 [θwā
2 + (1-θ) (1-uā) 2+ (1-θ) (1-yā) 2]      

(2.13) 

The θ - weighted ambiguity of SVTrN-number a are de-
fined as: 

Aθ (ā) = (c-a) /6 [θwā
 2+ (1-θ) (1-uā) 2+ (1-θ) (1-yā) 2]                          

(2.14) 

Definition 7.  Let ā = ((a1, b1, c1); wā, uā, yā) be a SVTrN-
number. Based on [10]; [20] [4] the values index and am-
biguities index can generalized to the SVTrN-numbers and 
they can be respectively calculated for  [0, 1] as fol-
lows: 
V (ā, λ) = (a+4b+c)/6 [λwā

2 + (1- λ)(1-uā) 2 +  (1- λ)(1-yā) 2] 
(2.15) 

    = Vµ (ā) λ + Vυ (ā) (1- λ) + Vλ (ā) (1- λ)   (2.16) 

And 
A (ā, λ) =  (c-a)/6 [ λwā

 2+ (1- λ)(1-uā) 2+ (1- λ) (1-yā) 2] 
(2.17)     

    = Aµ (ā) λ + Aυ (ā) (1- λ) + Aλ (ā)(1- λ)          (2.18) 

Where λ ∈ [0, 1] and λ is a weight which represents the 
decision maker's preference information. λ  ∈  [0,1/2] 
shows that the decision maker prefers pessimistic or nega-
tive feeling; λ  ∈  [1/2,1]  shows that the decision maker 
prefers optimistic or positive feeling;  λ = 1/2 shows that 
the decision maker is indifferent between positive feeling 
and negative feeling. 

V (ā, 1/2) = Vµ (ā) 1/2 + Vυ (ā) (1-1/2) + Vλ (ā) (1-1/2) 

       = Vµ (ā) 1/2+ Vυ (ā) 1/2+ Vλ (ā) 1/2 
      =½(Vµ (ā) + Vυ (ā) + Vλ (ā))       (2.19) 

And 

A(ā, 1/2) = Aµ (ā) 1/2 + Aυ (ā) )(1-1/2 )+ Aλ (ā)(1-1/2 ) 

       = Aµ (ā) 1/2+ Aυ (ā) 1/2+ Aλ (ā) 1/2 
  = ½ (Aµ (ā) + Aυ (ā) + Aλ (ā))         (2.20) 

Definition 8.  Let ā and ē be two SVTrN-numbers and θ∈ 
[0, 1]. For weighted values and ambiguities of the SVTrN-
numbers ā and ē, the ranking order of ā and ē can be de-
fined as; 

(1) If Vθ (ā) > Vθ (ē), then ā is bigger than ē 
(2) If Vθ (ā) < Vθ (ē), then ā is smaller than ē 
(3) If Vθ (ā) = Vθ (ē), then  

(i) If Aθ (ā) = Aθ (ē), then then ā is equal to ē 
(ii) If Aθ (ā) > Aθ (ē), then ā is bigger than ē 

(iii) If Aθ (ā) < Aθ (ē), then ā is smaller than ē 

3. The Proposed Framework with Two Ranking

Methods for Evaluating Information Systems

Quality

The proposed framework aims to introduce the scale based 
approach with SVTrN-numbers for evaluating ISQ. The 
proposed framework consists of four phases as the follows: 

Phase 1: Using Single Valued Triangular Neutrosophic 
Numbers with scale based approach 
The first phase aims to enable the IS evaluator to give eve-
ry quality attribute one of the scale categories. The scale 
ranging is designed from 0 to 1 on which the value of eve-
ry attribute needs to be marked. The scale is divided into 
categories:  Low, Not low, Very low, Completely low, 
More or less low, Fairly low, Essentially low, Neither low 
nor high, High, Not high, Very high, Completely high, 
More or less high, Fairly high, Essentially high, having 
corresponding values ((4.6; 5.5; 8.6); 0.4; 0.7; 0.2), ((4.7; 
6.9; 8.5); 0.7; 0.2; 0.6), ((6.2; 7.6; 8.2); 0.4; 0.1; 0.3), 
((7.1; 7.7; 8.3); 0.5; 0.2; 0.4), ((5.8; 6.9; 8.5); 0.6; 0.2; 
0.3), ((5.5; 6.2; 7.3); 0.8; 0.1; 0.2), ((5.3; 6.7; 9.9); 0.3; 
0.5; 0.2), ((6.2; 8.9; 9.1); 0.6; 0.3; 0.5), ((6.2; 8.9; 9.1); 
0.6; 0.3; 0.5), ((4.4; 5.9; 7.2); 0.7; 0.2; 0.3), ((6.6; 8.8; 10); 
0.6; 0.2; 0.2), ((6.3; 7.5; 8.9); 0.7; 0.4; 0.6), ((5.3; 7.3; 
8.7); 0.7; 0.2; 0.8), ((6.5; 6.9; 8.5); 0.6; 0.8; 0.1), ((7.5; 
7.9; 8.5); 0.8; 0.5; 0.4). The user according to his/her eval-
uation of every quality attribute (in table 1) gives them one 
of the 15 defined values.  

Phase 2: Construct the SVTrN-Multi-Criteria Decision 
Matrix of Decision Maker  
The second phase aims to construct the SVTrN-Multi-
Criteria Decision Matrix of Decision Maker as the follows: 
Let Q= (q1, q2… qn) a set of information systems. C= (c1, 
c2… cm) be ISQ criteria, and let [Aij] = ((aij, bij, cij); wāij 

Samah Ibrahim Abdel Aal, Mahmoud M. A. Abd Ellatif, Mohamed Monir Hassan: Two Ranking Methods of Single Valued 
Triangular Neutrosophic Numbers to Rank and Evaluate Information Systems Quality



,uāij ,yāij) (i ∈ Im for ISQ criteria , j ∈ In information sys-
tems)  be a SVTrN-number. Then decision matrix can be 
identified as the follows:  

[Aij]m*n = 

Phase 3: Calculate the Comprehensive Values 
At the first, Compute the normalized decision-making ma-
trix R= [rij] m*n and compute  
U= [uij] m*n as the follows: 

 Compute the normalized decision-making matrix
R= [rij] m*n where

Rij= ((aij/ā+, bij/ā+, cij/ā+); wāij ,uāij ,yāij) 
Such that ā+= max {cij.  i ∈ Im, j  ∈ In} 

 Compute U= [uij] m*n of R. Where,  uij= ωirij  (i ∈ Im 

for ISQ criteria , j ∈ In information systems),
ω = (ω1, ω2 …. ωm) be the weight vector of ISQ criteria, 

where ωi ∈ [0, 1], i ∈ Im    and 
Then, calculate the comprehensive values Sj as: 
Sj = 

  (j ∈ In)  (3.1) 

Phase 4: Evaluate and Rank ISQ 
This phase aims to introduce two evaluating and ranking 
methods: (1) - weighted value and ambiguity based meth-
od, (2) the value index and ambiguity index method to 
give more than one option for evaluating and ranking ISQ. 

(1)- Weighted value and ambiguity method 
Firstly, calculate the value of truth-membership-
membership degree, and indeterminacy-membership, and 
falsity-membership degree for each comprehensive value 
based on “Eq. (2.7)” “Eq. (2.9)”and “Eq. (2.11)”, respec-
tively, as the follows: 
Vµ (Sj) = ((a + 4b + c) (wsj)2)/6              (3.2) 
Vυ (Sj) = ((a + 4b + c) (1-usj) 2)/6           (3.3) 
Vλ (Sj) = ((a + 4b + c) (1-ysj) 2)/6            (3.4) 
And, calculate the ambiguity of truth-membership-
membership degree, and indeterminacy-membership, and 
falsity-membership degree for each comprehensive value 
based on “Eq. (2.8)” “Eq. (2.10)”and “Eq. (2.12)”, respec-
tively, as the follows: 
Aµ (Sj) = ((c-a) (wsj) 2)/6           (3.5) 
Aυ (Sj) = ((c-a) (1-usj) 2)/6         (4.6) 
Aλ (Sj) = ((c-a) (1-ysj) 2)/6         (3.7) 

Secondly, calculate the weighted values (θ - weighted val-
ue) for each alternative as the follows:   
the θ -weighted value of each comprehensive value Sj is 
defined as:  

Vθ (Sj) = Vµ (Sj) θ + Vυ (Sj)(1- θ) + Vλ (Sj) (1- θ)  (3.8) 

The θ - weighted ambiguity of a comprehensive value Sj 
can be defined as: 
Aθ (Sj) =  (c-a) /6 [θwj

2+ (1-θ) (1-usj) 2+ (1-θ) (1-ysj) 2] 
(3.9)     

   = Aµ (Sj) θ + Aυ (Sj) +(1- θ)  Aλ (Sj) (1- θ)       (3.10) 

4. Case study

An IS evaluation committee wants to evaluate quality of 
three IS centers at three universities according eight quali-
ty characteristics based ISO/IEC 25010: C= (c1, c2, c3, c4, 
c5, c6, c7, c8) be quality characteristics: functionality c1, re-
liability c2, usability c3, efficiency c4, maintainability c5, 
portability c6, security c7, compatibility c8. The weight 
vector of the eight quality characteristics is ω = (.25, .25, 
.30, .20, .25, .20, .20, and .15).  

Phase I: Using Single Valued Triangular Neutrosophic 
Numbers with scale based approach  
Apply the scale based approach to enable the IS evaluator 
to give every quality attribute one of the following catego-
ries:  Low, Not low, Very low, Completely low, More or 
less low, Fairly low, Essentially low, Neither low nor high, 
High, Not high, Very high, Completely high, More or less 
high, Fairly high, Essentially high, having corresponding 
values ((4.6; 5.5; 8.6); 0.4; 0.7; 0.2), ((4.7; 6.9; 8.5); 0.7; 
0.2; 0.6), ((6.2; 7.6; 8.2); 0.4; 0.1; 0.3), ((7.1; 7.7; 8.3); 
0.5; 0.2; 0.4), ((5.8; 6.9; 8.5); 0.6; 0.2; 0.3), ((5.5; 6.2; 
7.3); 0.8; 0.1; 0.2), ((5.3; 6.7; 9.9); 0.3; 0.5; 0.2), ((6.2; 
8.9; 9.1); 0.6; 0.3; 0.5), ((6.2; 8.9; 9.1); 0.6; 0.3; 0.5), 
((4.4; 5.9; 7.2); 0.7; 0.2; 0.3), ((6.6; 8.8; 10); 0.6; 0.2; 0.2), 
((6.3; 7.5; 8.9); 0.7; 0.4; 0.6), ((5.3; 7.3; 8.7); 0.7; 0.2; 
0.8), ((6.5; 6.9; 8.5); 0.6; 0.8; 0.1), ((7.5; 7.9; 8.5); 0.8; 
0.5; 0.4). The quality attributes of the three information 
systems can be presented based on the scale based ap-
proach as the follows: 

 The first information system

The following table represents the quality attributes of the 
first information system based on the scale based ap-
proach. 

Table (1): The quality attributes of the first information system 
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 The second information system

The following table represents the quality attributes of the 
second information system based on the scale based ap-
proach. 

Table (2): The quality attributes of the second information system 

 The third information system

The following table represents the quality attributes of the 
third information system based on the scale based ap-
proach. 

Table (3): The quality attributes of the third information system 

Phase 2: Construct the SVTrN-Multi-Criteria Decision 
Matrix of Decision Maker 
Let Q= (q1, q2, q3) be a set of the three IS. C= (c1, c2, c3, c4, 
c5, c6, c7, c8) be ISQ criteria: functionality c1, reliability c2, 

usability c3, efficiency c4, maintainability c5, portability c6, 
security c7, compatibility c8. Let A= [Aij] 8*3 = ((aij, bij, cij); 
wāij ,uāij ,yāij) (i∈ I8  for ISQ criteria, j ∈ I3 the three infor-
mation systems )  be a SVTrN-numbers. Then 

Phase 2: Construct the SVTrN-Multi-Criteria Decision 
Matrix of Decision Maker 
Let Q= (q1, q2, q3) be a set of the three IS. C= (c1, c2, c3, c4, 
c5, c6, c7, c8) be ISQ criteria: functionality c1, reliability c2, 
usability c3, efficiency c4, maintainability c5, portability c6, 
security c7, compatibility c8. Let A= [Aij] 8*3 = ((aij, bij, cij); 
wāij ,uāij ,yāij) (i∈ I8  for ISQ criteria, j ∈ I3 the three infor-
mation systems )  be a SVTrN-numbers. Then 

Phase 3: Calculate the Comprehensive Values 
Before calculating the comprehensive values, Compute the 
normalized decision-making matrix R= [rij] 8*3 and com-
pute U= [uij] 8*3 as the follows: 

Compute the normalized decision-making matrix R= [rij] 
m*n where  
R= ((aij/ā+, bij/ā+, cij/ā+); wāij ,uāij ,yāij), such that ā+= Max 
{cij.  i  Im, j  In} 
R= 

Compute U= [uij] m*n of R.  Where, uij= ωi rij   (i  Im for ISQ 
criteria, j  In information systems), 
ω = (.35, .25, .30, .20, .25, .20, .30, .20) be the weight vec-
tor of ISQ criteria, where ωi [0, 1], i  Im   , and 
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Calculate the comprehensive values Sj as: 

U= 

Then, calculate the comprehensive values Sj as: 
Sj = 

S1= ((1.18, 1.468, 1.705); .4, .7, .5) 
S2= ((1.176, 1.572, 1.801); .6, .8, .8) 
S3= ((1.288, 1.592, 1.818); .6, .8, .8) 

Phase 4: Rank ISQ     
Apply the two evaluating and ranking methods: (1) - 
weighted value and ambiguity based method, (2) the value 
index and ambiguity index method     

1. Weighted value and  ambiguity method
Calculate the weighted value and ambiguity of truth-
membership and indeterminacy membership, and falsity-
membership degree for each comprehensive value  

Vµ (S1) = 1.459 (.4)2 = .233
Vυ(S1) = 1.459 (1-.7)2 = .131  
Vλ (S1) = 1.459 (1-.5)2 = .364 

Vµ (S2) = 1.544 (.6)2 = .555;
Vυ (S2) = 1.544 (1-.8)2 = .061; 
Vλ (S2) = 1.544 (1-.8)2 = .061 

Vµ (S3) =1.581 (.6)2 = .569;      
Vυ (S3) = 1.581 (1-.8)2 = .063; 
 Vλ (S3) = 1.581 (1-.8)2 = .063 

Vθ = .233 θ + .131(1- θ) + .364(1- θ) 
Vθ =.555 θ + .061 (1- θ) + .061(1- θ) 
Vθ = .569 θ + .063(1- θ) + .063(1- θ) 

Thirdly, graphically represents weighted values for evalu-
ating and ranking quality of IS. The following figure rep-
resents the weighted values of the S1, S2 and S3 

0

0.1

0.2

0.3

0.4

0.5

0.6

Vθ(S1) Vθ(S2) Vθ(S3)

Fig. 1.  The weighted values of the S1, S2 and S3

 From figure (1) for any θ ∈ [0, .523] the weighted
values of the S1, S2 and S3 can ranked as the 
follows: Vθ (S1) > Vθ (S3) > Vθ (S2). Conse-
quently, the quality of the first information sys-
tem > the quality of the third information sys-
tem > the quality of the second information 
system  

 From figure (1), the weighted values of S1 and S3
have equal values at θ = .523. The weighted 

ambiguities of S1 and S3 can be calculated 
based on Eq. (3.9)  as follows: 

A.523 (S1) = .0212 
A. 523 (S3) = .0198   
Therefore, S1 > S3, Consequently, the quality of the first 
information system is greater than the quality of the third 
information system  

 From figure (1) for any θ ∈ [.523, .536] the
weighted values of the S1, S2 and S3 can ranked 
as the follows: Vθ (S1) > Vθ (S3) > Vθ (S2). 
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Consequently, the quality of the first infor-
mation system > the quality of the third infor-
mation system > the quality of the second in-
formation system  

 From figure (1), the weighted values of S1 and S2
have equal values at θ = .536. The weighted 
ambiguities of S1 and S2 can be calculated 
based on Eq. (4.9) as follows: 

Aθ (Sj) =  (c-a) /6 [θwj
2+ (1-θ) (1-usj) 2+ (1-θ) (1-ysj) 2] 

A.536 (S1) = .0210 
A. 536 (S2) = .0237   
Therefore, S2 > S1, Consequently, the quality of the second 
information system is greater than the quality of the first 
information system  

 From figure (1) for any θ ∈ [.536, 1] the weighted
values of the S1, S2 and S3 can ranked as the 
follows: Vθ (S3) > Vθ (S2) > Vθ (S1). Conse-
quently, the quality of the third information 
system > the quality of the second information 
system > the quality of the first information 
system  

This method gives more attention to uncertainty in deci-
sion making as well as it takes into account cut sets of 
SVTrN numbers that can reflect the information on mem-
bership degrees and non-membership degrees. However, 
the calculations and graphically representation of this 
method become complex when alternatives increase.     

1. The value index and ambiguity index method

Apply the value index and ambiguity index method to rank 
Information Systems Quality (ISQ) as the follows:                                      
Vµ (S1) = 1.459 (.4)2 = .233
Vυ(S1) = 1.459 (1-.7)2 = .131     
Vλ (S1) = 1.459 (1-.5)2 = .364 

Vµ (S2) = 1.544 (.6)2 = .555;
Vυ (S2) = 1.544 (1-.8)2 = .061; 
Vλ (S2) = 1.544 (1-.8)2 = .061 

Vµ (S3) =1.581 (.6)2 = .569;      
Vυ (S3) = 1.581 (1-.8)2 = .063; 
 Vλ (S3) = 1.581 (1-.8)2 = .063 

V (S1, λ) = .233 λ + .131(1- λ) + .364(1- λ) 
V (S2, λ) =.555 λ + .061 (1- λ) + .061(1- λ) 
V (S3, λ) = .569λ + .063(1- λ) + .063(1- λ) 

Table (4): Ranking results based on the Weighted Values and 
Ambiguities index method of SVTrN-numbers 

λ V (S1, 

λ) 

V (S2, λ) V (S3, λ) Ranking results 

.1   [0,1/2] .468 .165 .170 S1 >S3> S2 

.3   [0,1/2] .416 .251 .258 S1 >S3> S2 

.5 .364 .338 .347 S1 >S3> S2 
.7   [1/2 ,1] .311 .425 .436 S3 >S2> S1 

.8   [1/2 ,1] .285 .468 .480 S3 >S2> S1 

(1) From table (4) values: .1 and .3 where λ   [0, 1/2], 
the results show when the decision maker prefers 
negative feeling, the ranking of quality of the three 
information systems is S1 >S3> S2, Consequently, the 
quality of the first IS > the quality of the third IS > 
the quality of the second IS. 

(2) From table (4) where λ = ½ shows that the decision 
maker is indifferent between positive feeling and 
negative feeling, the ranking of quality of the three 
information systems is S1 >S3> S2, Consequently, the 
quality of the first IS > the quality of the third IS > 
the quality of the second IS. 

(3) From table (4) values: .7 and .8 where λ   [1/2,1], 
the results show when the decision maker prefers 
positive feeling, evaluation and ranking of quality of 
the three information systems is S3 >S2> S1, Conse-
quently, the quality of the third IS > the quality of 
the second IS > the quality of the first IS. 

This method focuses on value index and ambiguity index 
and it can reflect the decision maker's subjectivity attitude 
to the SVTrN- numbers.   

5. Conclusion and Future Work

This work intended to introduce a framework with two 
ranking methods of SVTrN- numbers with the scale based 
approach for evaluating and ranking ISQ. The proposed 
framework consists of four phases. The results indicated 
that each ranking method has its own advantage that make. 
In this perspective, the weighted value and ambiguity 
based method gives more attention to uncertainty in rank-
ing and evaluating ISQ as well as it takes into account cut 
sets of SVTrN numbers that can reflect the information on 
membership degrees and non-membership degrees. The 
value index and ambiguity index can handle indeterminacy 
and uncertainty and it can reflect the decision maker's sub-
jectivity attitude to the SVTrN- numbers.   

     For future work, SVTrN-numbers can be applied 
widely for more real practical applications with adapting 
and generalizing existing methods of ranking fuzzy num-
bers and intuitionistic fuzzy number to give more efficient 
results. 
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