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Abstract: In this paper, we introduce new type of similarity
measures for single valued neutrosophic sets based on hyperbolic
sine function. The new similarity measures are namely, single
valued neutrosophic hyperbolic sine similarity measure and
weighted single valued neutrosophic hyperbolic sine similarity
measure. We prove the basic properties of the proposed
similarity measures. We also develop a multi-attribute decision-

making strategy for single valued neutrosophic set based on the
proposed weighted similarity measure. We present a numerical
example to verify the practicability of the proposed strategy.
Finally, we present a comparison of the proposed strategy with
the existing strategies to exhibit the effectiveness and practicality
of the proposed strategy.

Keywords: Single valued neutrosophic set, Hyperbolic sine function, Similarity measure, MADM, Compromise function

1 Introduction

Smarandache [1] introduced the concept of neutrosophic
set (NS) to deal with imprecise and indeterminate data. In
the concept of NS, truth-membership, indeterminacy-
membership, and falsity-membership are independent. In-
determinacy plays an important role in many real world
decision-making problems. NS generalizes the Cantor set
discovered by Smith [2] in 1874 and introduced by
German mathematician Cantor [3]in 1883, fuzzy set
introduced by Zadeh [4], intuitionistic fuzzy set proposed
by Atanassov [5]. Wang et al. [6] introduced the concept
of single valued neutrosophic set (SVNS) that is the sub-
class of a neutrosophic set. SVNS is capable to represent
imprecise, incomplete, and inconsistent information that
manifest the real world.

Neutrosophic sets and its various extensions have been
studied and applied in different fields such as medical
diagnosis [7, 8, 9], decision making problems [10, 11, 12,
13, 14], social problems [15, 16], educational problem [17,
18], conflict resolution [19], image processing [ 20, 21,
22], etc.

The concept of similarity is very important in studying
almost every scientific field. Many strategies have been
proposed for measuring the degree of similarity between
fuzzy sets studied by Chen [23], Chen et al. [24], Hyung et
al. [25], Pappis and Karacapilidis [26], Pramanik and Roy
[27], etc. Several strategies have been proposed for meas-
uring the degree of similarity between intuitionistic fuzzy

sets studied by Xu [28], Papakostas et al. [29], Biswas and
Pramanik [30], Mondal and Pramanik [31], etc. However,
these strategies are not capable of dealing with the similari-
ty measures involving indeterminacy. SVNS can handle
this situation. In the literature, few studies have addressed
similarity measures for neutrosophic sets and single valued
neutrosophic sets [32, 33, 34, 35].

Ye [36] proposed an MADM method with completely
unknown weights based on similarity measures under
SVNS environment. Ye [37] proposed vector similarity
measures of simplified neutrosophic sets and applied it in
multi-criteria decision making problems. Ye [38]
developed improved cosine similarity measures of
simplified neutrosophic sets for medical diagnosis. Ye [39]
also proposed exponential similarity measure of
neutrosophic numbers for fault diagnoses of steam turbine.
Ye [40] developed clustering algorithms based on
similarity measures for SVNSs. Ye and Ye [41] proposed
Dice similarity measure between single valued
neutrosophic multisets. Ye et al. [42] proposed distance-
based similarity measures of single valued neutrosophic
multisets for medical diagnosis. Ye and Fu [43] developed
a single valued neutrosophic similarity measure based on
tangent function for multi-period medical diagnosis.

In hybrid environment Pramanik and Mondal [44]
proposed cosine similarity measure of rough neutrosophic
sets and provided its application in medical diagnosis.
Pramanik and Mondal [45] also proposed cotangent
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similarity measure of rough neutrosophic sets and its
application to medical diagnosis.

Research gap: MADM strategy using similarity measure
based on hyperbolic sine function under single valued
neutrosophic environment is yet to appear.

Research questions:

e s it possible to define a new similarity measure
between single valued neutrosophic sets using hyper-
bolic sine function?

e Isit possible to develop a new MADM strategy based
on the proposed similarity measures in single valued
neutrosophic environment?

Having motivated from the above researches on
neutrosophic similarity measures, we have introduced the
concept of hyperbolic sine similarity measure for SVNS
environment. The new similarity measures called single
valued neutrosophic hyperbolic sine similarity measure
(SYNHSSM) and single valued neutrosophic weighted
hyperbolic sine similarity measure (SVNWHSSM). The
properties of hyperbolic sine similarity are established. We
have developed a MADM model using the proposed
SVNWHSSM. The proposed hyperbolic sine similarity
measure is applied to multi-attribute decision making.

The objectives of the paper:

e To define hyperbolic sine similarity measures for
SVNS environment and prove some of it’s basic
properties.

e To define conpromise function for determining
unknown weight of attributes.

e To develop a multi-attribute decision making model
based on proposed similarity measures.

e To present a numerical example for the efficiency
and effectiveness of the proposed strategy.

Rest of the paper is structured as follows. Section 2 pre-
sents preliminaries of neutrosophic sets and single valued
neutrosophic sets. Section 3 is devoted to introduce hyper-
bolic sine similarity measure for SVNSs and some of its
properties. Section 4 presents a method to determine un-
known attribute weights. Section 5 presents a novel deci-
sion making strategy based on proposed neutrosophic hy-
perbolic sine similarity measure. Section 6 presents an il-
lustrative example for the application of the proposed
method. Section 7 presents a comparison analysis for the
applicability of the proposed strategy. Section 8 presents
the main contributions of the proposed strategy. Finally,
section 9 presents concluding remarks and scope of future
research.

2 Neutrosophic preliminaries
2.1 Neutrosophic set (NS)

Definition 2.1 [1] Let U be a universe of discourse. Then
the neutrosophic set P can be presented of the form:

P={<xTp(x), Ip(x), Fp(X)> | x € U}, where the
functions T, I, F: U— 17°0,1*[ define respectively the
degree of membership, the degree of indeterminacy, and
the degree of non-membership of the element x e U to the
set P satisfying the following the condition.

“0 < supTp(X) + suplp( x) + supFp(x) < 3*

2.2 Single valued neutrosophic set (SVNS)

Definition 2.2 [6] Let X be a space of points with generic
elements in X denoted by x. A SVNS P in X is
characterized by a truth-membership function Te(x), an
indeterminacy-membership function Ip(x), and a falsity
membership function Fp(x), for each point x in X.
Te(x), Ip(X), Fp(x) € [0, 1]. When X is continuous, a
SVNS P can be written as follows:
P=| <Tp(X):1p(X),Fp(X)>
X X
When X is discrete, a SVNS P can be written as
follows:

P=>
For two SVNSs,

Pswns = {<x: Tp(x), Ip(X), Fp(x )>|x e X} and
Qswns = {<x, To(x), lo(x), Fo(X)> | x e X } the two relations
are defined as follows:

(1) PswscQswns if and only
1p(X) = 1o(X), Fp(X) = Fo(X)

(2) Pswns= Qswns if and only if Tp(x) = To(X), Ip(x) =
lo(X), Fp(X) = Fo(x) for any xe X .

Xxe X

<TP(Xi)v|P(Xi):FP(Xi)>:X_EX

X; :

if Te(X) < To(X),

3. Hyperbolic sine similarity measures for SVNSs

Let A = <x(Ta(x), 1a(x), Fa(x))> and B = <x(Ts(x), Is(x),
Fg(x))> be two SVNSs. Now hyperbolic sine similarity
function which measures the similarity between two
SVNSs can be presented as follows (see Eqgn. 1):

SVNHSSM (A, B) =
(T aba)-Te )| +[1a(x) -1 B(Xi)q
sinh
@

+ |FA(Xi)_ FB(Xi)|
N =] 11

Theorem 1. The defined hyperbolic sine similarity
measure SVNHSSM(A, B) between SVNSs A and B
satisfies the following properties:
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0= SVNHSSM(A,B)=1

SVNHSSM(A, B) =1ifandonly if A=B
SVNHSSM (A, B) = SVNHSSM(B, A)

If Risa SVYNS in X and AcBcR then
SVNHSSM(A, R) = SVNHSSM(A, B) and
SVNHSSM(A, R) < SVNHSSM(B, R).

LR

Proofs:

1. For two neutrosophic sets A and B,
0<TalX) 1a(X), Fa(X), Te(X): 15(X;), Fe(x) <1
=0 SITA(Xi)_-|-B(Xi)|+||A(Xi)_|B(Xi)|
+|FA(Xi)— FB(Xi)l <3

h ITA(Xi)—TB(Xi)|+||A(Xi)—|B(Xi)|
+|FA(Xi)*FB(Xi)|
11

=0< <1

Hence 0< SVNHSSM(A,B)< 1

2. For any two SVNSs A and B, if A =B,

= TA(X) = TB(X), |A(X) = |B(X), FA(X) = FB(X)
= [Ta()-Te()[=0, [Ia(x)—-15(x)|=0,

|FA(X)_FB(X)|:O
Hence SVNHSSM(A, B) = 1.
Conversely,
SVNHSSM(A, B) = 1
= [Ta)-Ts()]=0, [1A(x)~15(x)|=0,
|FA(X)_FB(X)|:O-

This implies, Ta(x) = Ta(x) , 1a(x) = Ia(x), Fa(x) = Fa(X).

Hence A = B.
3. Since,
A -TeM)|=[Te()-TAX)],
|| A1 B(X)|:|| s(X)—1 A(X)l ;
[FA()-Fe()|=|Fe(x)-Fa(¥)|.
We can write, SVNHSSM(A, B) = SVNHSSM(B, A).

4. AcBcR
= Ta(X) < Te(X) < Tr(X), 1a(X) > Ia(X) > Ir(X),
Fa(x) > Fg(x) > Fr(x) for xe X.

Now we have the following inequalities:
Ta()-Ts()|<[Ta()-Tr(),
Te()-TrO)<Ta()-Tr()|;
NaC) =1 <[1a() = 1r(X),

e 0= 1R <[1a() = 1r(X) ;

|FA(X)_ FB(X)lglFA(X)_FR(X)l,
|FB(X)_FR(X)lglFA(X)_FR(X)l.

Thus, SVNHSSM(A, R) < SVNHSSM(A, B) and
SVNHSSM(A, R) < SVNHSSM(B, R).

3.1 Weighted hyperbolic sine similarity measures
for SVNSs

Let A = <x(Ta(x), 1a(x), Fa(X))> and B = <x(Tg(x),
Is(x), Fa(x))> be two SVNSs. Now weighted hyperbolic
sine  similarity function which measures the similarity
between two SVNSs can be presented as follows (see Egn.
2):

SVN WHSSM (A, B) =
. |T A(Xi)—Ts (Xi)| +|| Alx) =18 (Xi)|
sinh

i ' +|FA(Xi)—FB(Xi)| (2)
i:lW 11

n
Here, 0 < w, <1, Yw=1
i=1

Theorem 2. The defined weighted hyperbolic sine
similarity measure SWVNWHSSM(A, B) between SVNSs A
and B satisfies the following properties:

0= SVNWHSSM(A, B)=1

SVNWHSSM (A, B) =1 ifandonly if A=B
SVNWHSSM (A, B) = SVNWHSSM (B, A)

If Risa SVNS in X and AcBcR then
SVNWHSSM (A, R) = SVNWHSSM(A, B) and
SVNWHSSM (A, R) £ SVNWHSSM (B, R).

AwphE

Proofs:

1. For two neutrosophic sets A and B,
O0<TA(Xi) 1a(Xi), Fa(%) Te(X), 15(X), Fg(Xj) <1
:>0SI-rA(Xi)_TB(Xi)|+||A(Xi)_|B(Xi)|

+|FA(Xi)— FB(Xi)l <3

sinh T a0 =T D[ +[1a06) = 15 (%)
+[Fa(x) = Fg(x)|
11

n
Again, 0<w, <1, Y»w=1
i=1

Hence 0 < SVNWHSSM(A, B)< 1
2. For any two SVNSs A and B, if A=B,
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= Ta(X) = Ta(x), 1a(X) = 18(x), Fa(x) = Fa(X)
= Ta()-Te()|=0, [1a()-15(x)|=0,
|FA(X)_ FB(X)l =0

Hence SVNWHSSM(A, B) = 1.

Conversely,

SVNWHSSM(A, B) =1

= [Ta()-Ts()|=0, [Ia()-15()| =0,
[FA()-Fg(x)]=0.
This implies, Ta(X) = Ts(X) , 1a(X) = Ia(X), Fa(X) = Fs(x).
Hence A = B.
3. Since,

A -TeM)|=[Te()-TAX)],

|| A =1 B(X)l :|| s(X) -1 A(X)l )

|FA(X)_ FB(X)l :|FB(X)_ FA(X)l .
We can write, SVNWHSSM(A, B) = SVNWHSSM(B, A).

4, AcBcR
= Ta(X) < Ta(X) < Tr(X), 1a(X) = Ig(X) = Ir(X),
Fa(x) > Fg(x) > Fgr(x) for xe X.

Now we have the following inequalities:
|T A(X)_TB(X)l S|-|_ A(x)_TR(X)l ,
Te()-TrOY<TAC)-Tr();
A0 =150 <[1a() -1 (X,

0= 1) <[1A() -1 ()| ;
[FA()-Fa(| <|Fa()-Fr(X),
[Fs()—Fr()|<|Fa()-Fr(X).

Thus SVNWHSSM(A, R) < SVNWHSSM(A, B) and
SVNWHSSM(A, R) < SVNWHSSM(B, R).

4. Determination of unknown attribute weights

When attribute weights are completely unknown to
decision makers, the entropy measure [46] can be used to
calculate attribute weights. Biswas et al. [47] employed
entropy measure for MADM problems to determine
completely unknown attribute weights of SVNSs.

4.1 Compromise function

The compromise function of a SVNS A = (T,’j 1, Fﬁ>
i=12 ..,m;j=1,2, .. n)is defined as follows (see
Eqn. 3):

C;i(A) =§(2+T§—|{,-*—Fﬁ\)/3 )

i=1

The weight of j-th attribute is defined as follows (see Eqn.
4).

C;i(A
= 4
SIS @

Here, Enjwjzl.

j=1
Theorem 3. The compromise function Cj(A) satisfies the
following properties:
PL c;(A)=1,if Ty=LF;=1;=0.
P2. C;(M)=0,if (Ty 1y, Fy)=(0.11).
P3. c;(M=E;B), iIfTf>Tfand I+ Ff<I1F+FF.
Proofs.
PL Tyj=LF;=1;=0
~ C (A =—3y3=—m=1
mi= m
P2 <TIJ y Iij' Fij>: <0, 1, 1> .
1m
= C;(A)==>0/3=0
M=t
P3. c;(A-C;(B)

= {%i(zﬂ{i—h?— Pl 2 leti-i- ) 3}> °

i=1 i=1

= C;(A-C;(B)>0, Since, T{>T{and If+F{<I§+F;.

Hence, c;(A)=C;(B) -

5. Decision making procedure

Let Ai, A2, ..., Am be a discrete set of alternatives, Ci, Ca,
..., Cn be the set of attributes of each alternative. The val-
ues associated with the alternatives Ai (i = 1, 2,..., m)
against the attribute C; (j = 1, 2, ..., n) for MADM problem
is presented in a SVNS based decision matrix.

The steps of decision-making (see Figure 2) based on
single valued neutrosophic weighted hyperbolic sine simi-
larity measure (SVNWHSSM) are presented using the fol-
lowing steps.

Step 1: Determination of the relation between al-
ternatives and attributes

The relation between alternatives A;i (i = 1, 2, ..., m)
and the attribute C; (j = 1, 2, ..., n) is presented in the Eqgn.
(5).
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D[A|C]=
Cl C2 Cn
Ay <T111|11:F11> <T127|121F12> <T1n’|1n'Fln>
A, (ToloF T oyl o F Ty Lon F ©)
2 < 20 1ot 21> < 220 1 225 22> < 2no | 2ps 2n>
Am <Tmlr|mlrFlm1> <Tm21|mZva2> <Tmnr|mnvan>
Here ( i L > (i = . m;j=1,2,..n) be SVNS

assessment value.
Step 2: Determine the weights of attributes

Using the Eqgn. (3) and (4), decision-maker calculates the
weight of the attribute C;(j=1, 2, ..., n).

Step 3: Determine ideal solution

Generally, the evaluation attribute can be categorized into
two types: benefit type attribute and cost type attribute. In
the proposed decision-making method, an ideal alternative
can be identified by using a maximum operator for the
benefit type attributes and a minimum operator for the cost
type attributes to determine the best value of each attribute
among all the alternatives. Therefore, we define an ideal
alternative as follows:

A* = {Cs*, Co*, ..., Cn*}.

Here, benefit attribute ¢ can be presented as follows:
C’;:tm?xch(Ai)lmiin ICJ_(A.) mln Fe (A|)J (6)
forj=1,2,..,n

Similarly, the cost attribute ¢} can be presented as
follows:

C*j:tmiinch(Ai)’m?ij(A') MaxFc (A')J (7
forj=1,2,..,n

Step 4: Determine the similarity values

Using Egns. (2) and (5), calculate SVNWHSSM values
for each alternative between positive (or negative) ideal so-
lutions and corresponding single valued neutrosophic from
decision matrix D[A|C].

Step 5: Ranking the alternatives

Ranking the alternatives is prepared based on the de-
scending order of similarity measures. Highest value indi-
cates the best alternative.

Step 6: End
6. Numerical example

In this section, we illustrate a numerical example as an ap-
plication of the proposed approach. We consider a deci-
sion-making problem stated as follows. Suppose a person
who wants to purchase a SIM card for his/her mobile con-

nection. Therefore, it is necessary to select suitable SIM
card for his/her mobile connection. After initial screening,
there are four possible alternatives (SIM cards) for mobile
connection. The alternatives (SIM cards) are presented as
follows:

Aq: Airtel
A,: Vodafone
As: BSNL
As: Reliance Jio
The person must take a decision based on the
following five attributes of SIM cards:
e Cj: Service quality
C>: Cost
Ca: Initial talk time
Ca: Call rate per second
Cs: Internet and other facilities
The decision-making strategy is presented using the fol-
lowing steps.

Step 1: Determine the relation between alternatives
and attributes

The relation between alternatives Ai, Az, Az, and A4
and the attributes C;, Cy, Cs, C4, Cs is presented in the Eqn.

(8).
D[A|C;,C,,C5,C4,Cs]=

o c, Cy C, Cs
A (7.3.3) (6,.4,.3) (8.1.1) (5.4,.4) (523.2)
Ay (5.3.1) (7,.1,.3) (7,.3.1) (6.1.1) (5.2.3) ®
A; (8,.2,2) (6,4,3) (6,0.1) (7,30) (5.3.4)
A, (6,13 (5.1.2) (6.3.1) (5.1,.2) (9.1.1)

Step 2: Determine the weights of attributes

Using the Eq. (3) and (4), we calculate the weight of the
attributes Cy, Cy, Cs, Cs, Cs as follows:

[wi, Wz, W3, Wa, Ws] =
[0.2023, 0.1917, 0.2078, 0.2009, 0.1973]
Step 3: Determine ideal solution

In this problem, attributes C;, Cs, Cs, Cs are benefit type
attributes and , C, is the cost type attribute.

A* = {(0.8, 0.1, 0.1), (0.5, 0.4, 0.3), (0.8, 0.0, 0.1), (0.7,
0.1,0.0), (0.9, 0.1, 0.1)}.

Step 4: Determine the weighted similarity values

Using Eg. (2) and Eqg. (8), we calculate similarity measure
values for each alternative as follows.

SVNWHSSM( A*, A,) = 0.92422
SVNWHSSM( A*, A,)= 0.95629
SVNWHSSM( A*, A)= 0.97866
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SVNWHSSM( A*, A,)= 0.96795

Step 5: Ranking the alternatives

Ranking the alternatives is prepared based on the de-
scending order of similarity measures (see Figure 1). Now
the final ranking order will be as follows.

A3 - A4 - A2 - A1

Highest value indicates the best alternative.

Step 6: End

H
o
!

o o o
kS ES ®
L L L

Weighted similarity measure values
°
N
L

o
o

T
Al A2 A3 Ad

Alternatives

FIGURE 1: Graphical representation of alternatives versus
weighted similarity measures.

7. Comparison analysis

The ranking results calculated from proposed strategy and
different existing strategies [38, 48, 49, 50] are furnished in
Table 1. We observe that the ranking results obtained from
proposed and existing strategies in the literature differ.

The proposed strategy reflects that the optimal alternative
is As. The ranking result obtained from Ye [38] is similar
to the proposed strategy. The ranking results obtained from
Ye and Zhang [48] and Mondal and Pramanik [49] differ
from the optimal result of the proposed strategy. In Ye
[50], the ranking order differs but the best alternative is the
same to the proposed strategy.

Table 1 The ranking results of existing strategies

Strategies Ranking results
Ye and Zhang[48] A= Ar- Az As
Mondal and Pramanik [49] A=Az Ar- As
Ye [38] A3 - A4 - Az - A1
Ye [50] A3 - Az - A4 - A1
Proposed strategy Az = As- Az - A

8. Contributions of the proposed strategy

1) SVNHSSM and SVNWHSSM in SVNS
environment are firstly defined in the literature. We
have also proved their basic properties.

2) We have proposed ‘compromise function’ for cal-
culating unknown weights structure of attributes in
SVNS environment.

3) We develop a decision making strategy based on

the proposed weighted similarity —measure
(SVNWHSSM).

4) Steps and calculations of the proposed strategy are
easy to use.

5) We have solved a numerical example to show the
feasibility, applicability, and effectiveness of the
proposed strategy.

9. Conclusion

In the paper, we have proposed hyperbolic sine similarity
measure and weighted hyperbolic sine similarity measures
for SVNSs and proved their basic properties. We have
proposed compromise function to determine unknown
weights of the attributes in SVNS environment. We have
developed a novel MADM strategy based on the proposed
weighted similarity measure to solve decision problems.
We have solved a numerical problem and compared the
obtained result with other existing strategies to demon-
strate the effectiveness of the proposed MADM strategy.
The proposed MADM strategy can be applied in other
decision-making problem such as supplier selection, pat-
tern recognition, cluster analysis, medical diagnosis, weav-
er selection [51-53], fault diagnosis [54], brick selection
[55-56], data mining [57], logistic centre location selection
[58-60], teacher selection [61, 62], etc.
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Multi attribute decision making problem
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FIGURE 2: Phase diagram of the proposed decision making strategy
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Abstract: Single valued neutrosophic set is an important math-
ematical tool for tackling uncertainty in scientific and engineer-
ing problems because it can handle situation involving indeter-
minacy. In this research, we introduce new similarity measures
for single valued neutrosophic sets based on binary logarithm
function. We define two type of binary logarithm similarity
measures and weighted binary logarithm similarity measures
for single valued neutrosophic sets. Then we define hybrid
binary logarithm similarity measure and weighted hybrid binary
logarithm similarity measure for single valued neutrosophic
sets. We prove the basic properties of the proposed measures.

Then, we define a new entropy function for determining
unknown attribute weights. We develop a novel multi attribute
group decision making strategy for single valued neutrosophic
sets based on the weighted hybrid binary logarithm similarity
measure. We present an illustrative example to demonstrate the
effectiveness of the proposed strategy. We conduct a sensitivity
analysis of the developed strategy. We also present a
comparison analysis between the obtained results from
proposed strategy and different existing strategies in the
literature.

Keywords: single valued neutrosophic set; binary logarithm function; similarity measure; entropy function; ideal solution;

MAGDM

1 Introduction

Smarandache [1] introduced neutrosophic sets (NSs) to
pave the way to deal with problems involving uncertainty,
indeterminacy and inconsistency. Wang et al. [2] grounded
the concept of single valued neutrosophic sets (SVNSs), a
subclass of NSs to tackle engineering and scientific
problems. SVNSs have been applied to solve various
problems in different fields such as medical problems [3—
5], decision making problems [6-18], conflict resolution
[19], social problems [20-21] engineering problems [22-
23], image processing problems [24—26] and so on.

The concept of similarity measure is very significant in
studying almost every practical field. In the literature, few
studies have addressed similarity measures for SNVSs
[27-30]. Peng et al. [31] developed SVNSs based multi
attribute decision making (MADM) strategy employing
MABAC (Multi-Attributive Border Approximation area
Comparison and similarity measure), TOPSIS (Technique
for Order Preference by Similarity to an Ideal Solution)
and a new similarity measure.

Ye [32] proposed cosine similarity measure based
neutrosophic multiple attribute decision making (MADM)
strategy. In order to overcome some disadvantages in the
definition of cosine similarity measure, Ye [33] proposed

‘improved cosine similarity measures’ based on cosine
function. Biswas et al. [34] studied cosine similarity
measure based MCDM with trapezoidal fuzzy
neutrosophic numbers. Pramanik and Mondal [35]
proposed weighted fuzzy similarity measure based on
tangent function. Mondal and Pramanik [36] proposed
intuitionistic fuzzy similarity measure based on tangent
function. Mondal and Pramanik [37] developed tangent
similarity measure of SVNSs and applied it to MADM.
Ye and Fu [38] studied medical diagnosis problem using a
SVNSs similarity measure based on tangent function. Can
and Ozguven [39] studied a MADM problem for adjusting
the proportional-integral-derivative (PID) coefficients
based on neutrosophic Hamming, Euclidean, set-theoretic,
Dice, and Jaccard similarity measures.

Several studies [40-42] have been reported in the literature
for multi-attribute group decision making (MAGDM) in
neutrosophic environment. Ye [43] studied the similarity
measure based on distance function of SVNSs and applied
it to MAGDM. Ye [44] developed several clustering
methods using distance-based similarity ~measures for
SVNSs.
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Mondal et al. [45] proposed sine hyperbolic similarity
measure for solving MADM problems. Mondal et al. [46]
also proposed tangent similarity measure to deal with
MADM problems for interval neutrosophic environment.

Lu and Ye [47] proposed logarithmic similarity
measure for interval valued fuzzy set [48] and applied it in
fault diagnosis strategy.

Research gap:

MAGDM strategy using similarity measure based on
binary logarithm function under single valued neutrosophic
environment is yet to appear.

Research questions:

e Is it possible to define a new similarity measure
between single valued neutrosophic sets using binary
logarithm function?

e Is it possible to define a new entropy function for
single valued neutrosophic sets for determining un-
known attribute weights?

e Is it possible to develop a new MAGDM strategy
based on the proposed similarity measures in single
valued neutrosophic environment?

The objectives of the paper:

e To define binary logarithm similarity measures for
SVNS environment and prove the basic properties.

e To define a new entropy function for determining
unknown weight of attributes.

e To develop a multi-attribute droup decision making
model based on proposed similarity measures.

e To present a numerical example for the efficiency
and effectiveness of the proposed strategy.

Having motivated from the above researches on
neutrosophic similarity measures, we introduce the concept
of binary logarithm similarity measures for SVNS
environment. The properties of binary logarithm similarity
measures are established. We also propose a new entropy
function to determine unknown attribute weights. We
develope a MAGDM strategy using the proposed hybrid
binary logarithm similarity measures. The proposed
similarity measure is applied to a MAGDM problem.

The structure of the paper is as follows. Section 2
presents basic concepts of NSs, operations on NSs, SVNSs
and operations on SVNSs. Section 3 proposes binary
logarithm similarity measures and weighted binary
logarithm similarity measures, hybrid binary logarithm
similarity measure (HBLSM), weighted hybrid binary
logarithm similarity measure (WHBLSM) in SVNSs

environment. Section 4 proposes a new entropy measure to
calculate unknown attribute weights and proves basic
properties of entropy function. Section 5 presents a
MAGDM strategy based weighted hybrid binary logarithm
similarity measure. Section 6 presents an illustrative
example to demonstrate the applicability and feasibility of
the proposed strategies. Section 7 presents a sensitivity
analysis for the results of the numerical example. Section 8
conducts a comparative analysis with the other existing
strategies. Section 9 presents the key contribution of the
paper. Section 10 summarizes the paper and discusses
future scope of research.

2 Preliminaries

In this section, the concepts of NSs, SVNSs, operations on
NSs and SVNSs and binary logarithm function are
outlined.

2.1 Neutrosophic set (NS)

Assume that X be an universe of discourse. Then a
neutrosophic sets [1] N can be defined as follows:

N = {<x: Tn(X), In(x), Fn(X) > | x e X3

Here the functions T, | and F define respectively the
membership degree, the indeterminacy degree, and the
non-membership degree of the element x € X to the set N.
The three functions T, | and F satisfy the following the
conditions:

e T,I,F:X—>101
o 0 <supTn(X) + supln(X) + supFn(x) <3*

For two neutrosophic sets M = {< x: Tm (X), Im(X),
Fu(x) > | x eX} and N = {< x, Tn(X), In(X), Fn(X) > | xeX
}. the two relations are defined as follows:

e M c N ifand only if Tu(x) < Tn(x), Im(X) = In(X),

Fm(X ) > FN(X)
e M= Nifand only if Tm(X) = Tn(x), Im(X) = In(X),
Fm(X) = FN(X).

2.2. Single valued Neutrosophic sets (SVNSSs)

Assume that X be an universe of discourse. A SVNS
[2] P in X is formed by a truth-membership function Tp(X),
an indeterminacy membership function Ip(x), and a falsity
membership function Fp(x). For each point x in X, Tp(X),
Ip(x), and Fp(x) € [0, 1].

For continuous case, a SVNS P can be expressed as
follows:

P:J-X<TP(X)iIP§(X)1FP(X)> ‘Xe x ’
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For discrete case, a SVNS P can be expressed as
follows:
p- zn:<TP(Xi)’ Ip(Xi), Fp(X)> X X
i=1 Xj
For two SVNSs P = {< x: Tp(X), Ip(X), Fp(X)> | x € X}
and Q = {< x: To(x), lo(x), Fo(X)> | x € X}, some definitions
are stated below:
o PcQ ifandonlyif Te(x) < To(x), Ip(X) > lg(x), and
FP(X) > FQ(X).
e PoQ ifandonlyif Te(x) = To(x), Ir(X) < Ig(x), and
FP(X) < FQ(X).
e P =Qifandonly if Tp(x) = To(X), Ip(X) = lo(x),
and Fp(x) = Fo(x) for any x € X.
e Complement of P i.e. P ={< x: Fp(X), 1 Ip(X),
Te(x)> | xeX }.

2.3. Some arithmetic operations on SVNSs
Definition 1 [49]
Let P = (T o(x), 1p(x), Fp(x)) and Q = (T (%), 1(X), Fo(X)) be

any two SVNSs in a universe of discourse then arithmetic

operations are stated as follows.

. Tp(X) + To(X) = Tp(X)T o(X), 1 p(X) 19(x),
Fp(X)Fq(x)

. Te()T (%), 1p(X) + 1o(X) = 1p(X)1 o(X),
Fp(x) + FQ(X) - Fp(x)FQ(x)

o oP =-0-To(0%). (1,00), (Fp(0)* ) >0

o Pr =100y 1-0-100% ) 1-L-F (0% ) >0
2.4. Binary logarithm function

In mathematics, the logarithm of the form logy* , x > 0 is
called binary logarithm function [50]. For example, the
binary logarithm of 1is 0, the binary logarithm of 4 is 2,
the binary logarithm of 16 is 4, and the binary logarithm
of 64 is 6.
3. Binary logarithm similarity measures for
SVNSs

In this section, we define two types of binary logarithm
similarity measures and their hybrid and weighted hybrid
similarity measures.

3.1. Binary logarithm similarity measures of SVNSs
(type-I)

Definition 2. Let A = <x(Ta(xi), Ip(xi), Fp(x}))> and B =
<xX(Ts(Xi), Is(xi), Fs(xi))> be any two SVNSs. The binary
logarithm similarity measure (type-1) between SVNSs A
and B are defined as follows:

BL.(AB) =
12": [ [1(|TA(xi)—TB(xi)|+|IA(xi>—|B<xi)|m
= > log,|2-| =
n i=1 3 +|FA(Xi)_FB(Xi)|

(@)
Theorem 1. The binary logarithm  similarity

measure BL1(A, B) between any two SVNSs A and B
satisfy the following properties:

P1. 0<BL,(AB)<1

P2. BL1(AB)=1,ifandonlyifA=B

P3. BL1(A B) =BL1(B,A)
P4, If C is a SVNS in X and AcBcC then

BL1(AC) <BL1(AB) andBL;(A,C) < BL(B,C).
Proof 1.

From the definition of SVNS, we write,
0 < Ta(X) + 1a( X) + Fa(x) <3 and
0<Tg(X) + Ig(X) + Fa(x) <3

=
0= [Ta(%) =Tg O6)|+ [T 06) = 15 (%) +[Fa(x) = Fa (x)[<3,

0< max[|TA(Xi)_TB(Xi)|v |IA(Xi)_ IB(Xi)|! <1
[Fa(xi) = Fg (%)]

— 0<BL,(AB)<1.

Proof 2.

For any two SVNSs A and B,

A=B

= TA(X) = TB(X), |A(X) = |B(X), FA(X) = FB(X)

= [Ta()-Te(X)]=0,[1a()-15(x)|=0,
|FA(X)_FB(X)|:O

= BL1(A B) =1.

Conversely,
for BL1(A, B) =1, we have,
= ITA(X)_TB(X)|:OI ||A(X)_ |B(X)|:O,
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|FA(X)_FB(X)|:O
= Ta(X)=Te(X), 1a(X)=15(X), Fa(X)=Fs(X)
= A=B.
Proof 3.

We have,
ITA(X)—TB(X)|:|TB(X)_TA(X)|.
||A(X)_ |B(X)| :|| g(X) - |A(X)| ;
|FA(X)_FB(X)|:|FB(X)_FA(X)|
= BL1(AB) =BL1(B,A).

Proof 4.

For AcBc C, we have,

Ta(X) < Ta(X) < Te(X), 1a(X) = 1s(X) = Ic(x),

Fa(x) > Fa(x) > Fc(x) for xe X.

= [Ta(x) =T )| <[Ta(x) - Tc (%),
|TB(X)_TC(X)|S|TA(X)_TC(X)|;

||A(X)_ |B(X)|5||A(X)_ |c(X)| ,

||B(X)_ |C(X)|S||A(X)_ |c(X)| ;

|FA(X) - FB(X)| S||:A(X) —Fc (X)| ,

|FB(X) —Fc (X)| = |FA(X)_ Fc (X)| .

= BL1(A.C) <BL1(A B) and BL1(A,C) <BL41(B,C).

3.2. Binary logarithm similarity measures of SVNSs (
type-11)

Definition 3. [51] Let A = <x(Ta(xi), Ir(Xi), Fp(xi))> and B
= <x(Te(xi), ls(Xi), Fa(xi))> be any two SVNSs. The binary
logarithm similarity measure (type-I1) between SVNSs A
and B are defined as follows:

BL.(A/B) =

1Zn:'OG]z 2— max [T 06) = Ta 06} [106) = o (), )
A i=L |FA(Xi)_FB (Xi)|

Theorem 2. The binary logarithm  similarity
measure BL , (A, B) between any two SVNSs A and B

satisfy the following properties:
P1. 0<BL,(AB)<1
P2. BL,(AB)=1,ifandonlyifA=B

P3. BL2(AB) =BL2(B,A)
P4, If C is a SVNS in X and AcBcC then

BL2(AC) <BL2(AB) andBL,(AC) <BL,(B,C).

Proof.
Proofs of the properties are shown in [51].

3.3. Weighted binary logarithm similarity measures of
SVNSs for type-I

Definition 4. Let A = <x(Ta(xi), Ip(xi), Fp(xi))> and

B = <x(Ts(Xi), Is(xi), Fa(x))> be any two SVNSs. Then the
weighted binary logarithm similarity measure for type-I
between SVNSs A and B are defined as follows:

BL1'(A B)=

iw_ log Lz_[l(h—A(Xi)_Ts(xi»-i- |IA(Xi)_ IB(Xi)']JJ

3 +|FA (X;)—Fg (Xi)|

©)

Here, 0 < w, < land znlwizl.
i=1

Theorem 3. The weighted binary logarithm similarity
measures BL;'(A,B) between SVNSs A and B satisfy the

following properties:

P1. 0<BLY(A B)<1

P2. BLY(AB)=1,ifandonlyif A=B

P3. BL'(A/B) =BL;'(B,A)

P4, If C is a SVNS in X and AcBcC,
BL:'(A,C) <BL}'(A/B) and BL{'(A,C) <BL{'(B,C);

2wi=1.
i=1

then

Proof 1.

From the definition of SVNSs A and B, we write,
0 <Ta(x) + la(X) + Fa(X) <3 and
0< TB(X) + |B( X) + FB(X) <3

|TA(Xi) -Tg (Xi)|1|IA(Xi) - |B(Xi)|, <1
|FA(Xi) -F (Xi)| -
= 0< |TA(Xi)_TB(Xi)|+|IA(Xi)_ IB(Xi)|+|FA(Xi)_ Fg (Xi)|331

= 0< maxL

= 0<BL,'(AB)<1.since, Swi=l.
i=1
Proof 2.

For any two SVNSs A and B if A = B, then we have,
Ta(x) = Ta(x), 1a(x) = la(x), Fa(x) = Fa(x)
= ITA(X)_TB(X)| =0, ||A(X)_ | B(X)| =0,

|FA(X)_ FB(X)| =0
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= BL}'(AB)=1, (t=1,2), sinceiwizl
Conversely, |

For BL}'(A B) =1, then we have,

= Ta(¥)-Te()[=0, [1.()—15(X)]|=0
[FA()—Fa(x)|=0
= Ta()=Te(), 1.(X)=1a(x), Falx) =Fs(X)

= A=B, sinceiwizl
i=1

Proof 3.
For any two SVNSs A and B, we have,

T -Te () =[Te () -Ta(x),
1A 00 =15 (0] =15 ()= 1a(X)],
IFa(¥) = Fs(¥)] =[Fa(X) = Fa(¥)
= BLY(A,B) =BL}'(B,A) for.
Proof 4.

For AcBc C, we have,
Ta(X) < Te(X) <Te(X), 1a(X) > 1s(X) > Ic(X),
Fa(X) > Fg(x) > Fc(x) for xe X.

= |TA(X) —Ts (X)| < ITA(X) —Tc (X)| :

|TB () -Tc (X)| < ITA(X) —Tc (X)| ;

||A(X)_ |B(X)|S||A(X)_ |c(x)| ,

15 () =T (@) < |14 (x) 1 ()] ;

|FA(X) - FB(X)| < |FA(X) - FC(X)| ,

|FB(X) - Fc(x)| < |FA(X) - FC(X)|

= BL{'(AC) <BL}(A B) and BL}'(A,C) <BL{(B,C)
since Y, wi=1.

3.4. Weighted binary logarithm similarity measures of
SVNSs for type-I1

Definition 5. [51] Let A = <x(Ta(x;), Ip(xi), Fp(xi))> and

B = <x(Ts(Xi), Is(xi), Fa(x))> be any two SVNSs. Then the
weighted binary logarithm similarity measure (type-II
between SVNSs A and B is defined as follows:

BL? (A B) =

anwi log,| 2— maX(FA(Xi) —Te (%)) [Ta(X) -
=) [Fa(x) = Fa (%)

")

(4)

Here, 0 < w, < land iwizl
i=1

Proof.

For proof, see [51].

3.3. Hybrid binary logarithm similarity measures
(HBLSM) for SVNSs

Definition 6. Let A = <x(Ta(xi), Ir(Xi), Fp(xi))> and B =
<X(Ts(xi), Is(xi), Fa(x))> be any two SVNSs. The hybrid
binary logarithm similarity measure between SVNSs A and
B is defined as follows:

BLuys(A B)=
[Ta (%) =Ta (%)
ngz 2- 1 106 = 150%))
+|F (%) — Fg (X))
X ©)
Ta () =Tg (%)),
+(2- x)ng2 2-max| [1,(x)—15(%)]
I Fax) = Fe )] |
Here, 0<A <1.

Theorem 4. The hybrid binary logarithm similarity
measure BL (A, B)between any two SVNSs A and B

satisfy the following properties:
P1. 0<BL,,(AB)<1
P2. BLuys(A B)=1,ifandonlyif A=B
P3. BLwys (A B) = BLuys(B, A)
P4. If Cisa SVNS in X and Ac Bc C then
BL s (A/C) <BL (A B)
and BL 1y (A, C) <BLwy»(B,C) .

Proof 1.

From the definition of SVNS, we write,
0< TA(X)+ |A( X)+ FA(X) <3 and
0<Ts(x) + Ig(X) + Fa(x) <3
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|TA(Xi) _TB (Xi )|I|IA(Xi) - IB(Xi)LJ
= 0< max <1
|FA(Xi)_FB(Xi)|
- 0< ITA(Xi)_TB(Xi)|+|IA(Xi)_ IB(Xi)| .
+|Fa () = Fo (x)|<3 ’
=0 SBLHyb(A, B) <1.

Proof 2.

For any two SVNSs A and B,

for A =B, we have,

= TA(X) = TB(X), |A(X) = |B(X), FA(X) = FB(X)
= ITA(X)_TB(X)|:01||A(X)_ |B(X)|:0 ,
|FA(X)_FB(X)|:O

= BLHyb(A, B) :1 .

Conversely,

for BL wyb (A, B) =1, we have,
|TA(X)_TB(X)| =0, ||A(X)_ |B(X)| =0,
|FA(X)_FB(X)|:O

= Ta(¥)=Ts(X), 1a() =18(x), Fa(X)=Fa(X)
= A=B.

Proof 3.

For any two SVNSs A and B, we have,
ITA(X)_TB(X)|:ITB(X)_TA(X)|,

1A () =15 (9| =16 (X) = 1a(X)],
IFa(¥) = Fa(X)|=|Fa(X) = Fa(X)

= BLys (A B) =BL (B, A) .

Proof 4.

For AcBc C, we have,

Ta(x) = Te(X) = Te(x), 1a(x) 2 18(X) = Ic(x),
Fa(x) = Fg(x) = Fc(x) for xe X.

= Ta()-Te(X)| <[Ta()-Tc(X),
Te(¥)=TcX)|<[Ta0)-Tc (X
1) =15 () <[1A(¥) =1 (¥)],
1) = 1c ) <[1a() = 1c ()| ;
[Fa(¥) = Fs(¥)| <|Fa(¥) - Fc(X),
[Fe(¥) = Fc (9| <|Fa(¥)—Fc(¥)].
= BLny (AC) <BLny (A B)

and BL b (A, C) <BLwy»(B,C) .

3.4. Weighted hybrid binary logarithm similarity
measures (WHBLSM) for SVNSs

Definition 7. Let A = <x(Ta(x), Ie(Xi), Fr(xi))> and B =
<x(Te(xi), Is(x), Fs(x))> be any two SVNSs. The
weighted hybrid binary logarithm similarity measure
between SVNSs A and B is defined as follows:

BLuys (A B)=

n Ta00)-To(X)
2 mog, 2| 5+ (00~ 1o (4)
‘ HE) o)
©)
|TA(Xi)_TB(Xi)|I

+(1_}\')Zn:Wi log,| 2— max |IA(Xi)_IB(Xi)|!
Fat)=Fs ()] )|

Here, 0 <A <1.

Theorem 5. The weighted hybrid binary logarithm
similarity measure BLyuy, (A B) between any two SVNSs

A and B satisfy the following properties:

PL 0<BL,,(AB)<1

P2. BLunyp (A B)=1,ifandonlyif A=B

P3. BLuyn (A B) = BLusy (B, A)

P4. If C is a SVNS in X and AcBcC,
then BL wys (A C) <BLuyb (A B)

and BL b (A C) <BLwys (B, C).

Proof 1.

From the definition of SVNS, we write,
0 < Ta(X)+ la( X)+ Fa(X) <3 and
0 <Te(x) + Ie(x) + Fs(x) <3

Ta06) = Ta (DL Tatx) = Ts (1)
|FA(Xi) - FB(Xi)| -
0< |TA(Xi) —Tg (Xi)|+|IA(Xi)_ IB(Xi)| _
+|Fa(x) - Fg(x)|<3 '
—~ 0<BL,,,(AB)<L.
Proof 2.

— 0< maX[

For any two SVNSs A and B,
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for A = B, we have,

= TA(X) = TB(X), |/.\(X) = |B(X), FA(X) = FB(X)
= ITA(X)_TB(X)| =0, ||A(X)_ | B(X)| =0
|FA(X) —Fs (X)| =

= BLutyb (A,B) =1.

Conversely,

for BLuwwy» (A, B) =1, we have,
ITA(X)_TB(X)| =0, ||A(X)_ | B(X)| =0
|FA(X) - FB(X)| =

= Ta(X)=Te(X), 1a(X)=1s(x), FalX)=Fs(X)
= A=B.

Proof 3.

For any two SVNSs A and B, we have,
ITA(X)_TB(X)|:ITB(X)_TA(X)|1
||A(X)_ |B(X)|:||B(X)_ |A(X)|,
|FA(X) - FB(X)| = |FB(X) - FA(X)|

= BLutyb (A B) =BLuys (B, A).

Proof 4.

For AcBc C, we have,

Ta(X) < Te(X) < Te(X), 1a(X) = Is(X) = 1c(X),
Fa(x) = Fg(x) > Fc(x) for all xe X.

= |TA(X)_TB(X)|S|TA(X)_TC(X)|,
|TB(X) —Tc (X)| < ITA(X) —Tc (X)| ;
||A(X)_ |B(X)|$||A(X)_ |c(X)| ,
||B(X)_ |c(X)| §||A(X)_ |c(x)| ;
|FA(X)_FB(X)|S|FA(X)_FC(X)|,
|FB(X)_FC(X)|5|FA(X)_FC(X)|.
= BLutyb (A C) <BLuwny» (A, B) and
BL wtys (A C) <BLuy (B, C).

4. A new entropy measure for SVNSs

Entropy strategy [52] is an important contribution for
determining indeterminate information. Zhang et al. [53]
introduced the fuzzy entropy. Vlachos and Sergiadis [54]
proposed entropy function for intuitionistic fuzzy sets.
Majumder and Samanta [55] developed some entropy
measures for SVNSs. When attribute weights are
completely unknown to decision makers, the entropy
measure is used to calculate attribute weights. In this

paper, we define an entropy measure for determining
unknown attribute weights.

Definition 8. The entropy function of a SVNS P
:<TiFj’(x),|iFj’(x),|:iFj’(x)> i=12.,mij=1,2 .,n)is

defined as follows:

E,-(F>)=1—1 ( > (9+ FE(-212(9)° @
1—E1(P)
== =N 8
WIS e (P) ®
Here, iw,:l
i

Theorem 6. The entropy function E i(P) satisfies the
following properties:
Pl E (P) = 0, |f Tijzlv Fij: I ij :O .

P2. E,(P)=1, if (Tyj. Iy, Fy) = (0.5,05,05).

P3. EJ(P)ZEj(Q)’IfTij_"Fi}j)ST% u: II]—IQ-
P4. Ej(P): EJ—(PC).
Proof 1.
Tij:l,FiJ':lijIO
L E,(P)=1- 1§ [a+0)c1-"=0
n|_1 n
Proof 2.
<Tij +Tijs F,’j>= <0.5, 0.5, 0.5> .
= E,-(P)=1—£z[(05+05)x0] 1-0=1
i=1
Proof 3.
T'T+F|TST +F|] ) ”J:Zlff
U 2
(TIJ+FIJX1 2'“) S% FEJ?X]__ZII(J?)

3|I—\ HMB

JiN

S R I

27+ F-219)
Fili-219)

%%(T.,JrFU)(l 218) >1—— (T
. E,(P)2E,(Q).
Proof 4.
since (T 1y, Fiy )= (Fiy . 1= 1y, Typ) , we have
E,(P)=E,(P%).
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5. MAGDM strategy based on weighted hybrid bi-
nary logarithm similarity measure for SVNSs

Assume that (P1, P2, ..., Pm) be the alternatives, (C4, Ca, ...,
Cn) be the attributes of each alternative, and {Di, Dy, ...,
D/} be the decision makers. Decision makers provide the
rating of alternatives based on the predefined attribute.
Each decision maker constructs a neutrosophic decision
matrix associated with the alternatives based on each at-
tribute shown in Equation (9). Using the following steps,
we present the MAGDM strategy (see figure 1) based on
weighted hybrid binary logarithm similarity measure
(WHBLSM).

Step 1: Determine the relation between the alternatives
and the attributes

At first, each decision maker prepares decision matrix. The
relation between alternatives P; (i = 1, 2, ..., m) and the at-
tribute C; (j = 1, 2, ..., n) corresponding to each decision
maker is presented in the Equation (9).

D/[PIC]=

c, c, c,
P (TR 18 FR) (T2 13 FOY) (Tln,lm,FPnf>

Po | (T2 18 FOr) (TR 1% FY) - (T2r 150, FBr)
Pol (TRL 100 FRE) (85 105, FRE) - (T4 Fn’n,Fm>

©)
Here, (TP, 19 FPr) (i=1,2, ., m j=1,2 .., n)is the

single valued neutrosophic rating value of the alternative P;
with respect to the attribute C; corresponding to the deci-
sion maker D,.

Step 2: Determine the core decision matrix

We form a new decision matrix, called core decision
matrix to combine all the decision maker’s opinions into a
group opinion. Core decision matrix minimizes the
biasness which is imposed by different decision makers
and hence credibility to the final decision increases. The
core decision matrix is presented in Equation (10).

DIP|C]=

o C, c,
r r
o lrid FR) S RIRFR)  STRRLFR)
! r r r
SrRIRFR) STRIRLFR)  S(TRLRLFR)
P2 : . - .
OrRIRFR) STRIRLFR)  o(rR.RLFR)
P r r r
(10)

Step 3: Determine the ideal solution

The evaluation of attributes can be categorized into benefit
attribute and cost attribute. An ideal alternative can be de-
termined by using a maximum operator for the benefit at-
tributes and a minimum operator for the cost attributes for
determining the best value of each attribute among all the
alternatives. An ideal alternative [42] is presented as fol-

lows:
P*={Ci*, Co*, ..., Cn*}.

where the benefit attribute is

C*j=<m?Xch(Pi):miin ch(Pi)l miin ch(Pi)> (11)
and the cost attribute is
C’}=<minch(P') max ¢ o MaxFg (P')> (12)

Step 4: Determine the attribute weights
Using Equation (8), determine the weights of the attribute.
Step 5: Determine the WHBLSM values

Using Equation (6), calculate the weighted similarity
measures for each alternative.

Step 6: Ranking the priority

All the alternatives are preference ranked based on the de-
creasing order of calculated measure values. The highest
value reflects the best alternative.

Step 7: End.

6. An illustrative example

Suppose that a state government wants to construct an eco-
tourism park for the development of state tourism and
especially for mental refreshment of children. After initial
screening, three potential spots namely, spot-1 (P1), spot-2
(P2), and spot-3 (P3) remain for further selection. A team
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of three decision makers, namely, D, D2, and D3 has been  Ds[P|C] =
constructed for selecting the most suitable spot with C, C, C, C, Cs
respect to the following attributes. 0.7, 038, 0.6, 0.7, 0.5,
e Ecology (Cy), P (04, ) (02 ) (03 ) (02 ) (08
e Costs (Cy), 0.3 0.1 0.3 05 0.5
o Technical facility (Cs), 0.6, 0.5, 0.7, 0.5, 0.3, (15)
e Transport (Cs), P, (0.2 0.1, 0.4, 0.3, 0.4,
¢ Risk factors (Cs) 0.3 0.3 0.4 04 0.4
The steps of decision-making strategy to select the 0.6, 0.6, 0.5, 0.7, 0.5,
best potential spot to construct an eco-tourism park based P, (02 0.4, 03, 0.4, 0.6,
on the proposed strategy are stated below: 0.3 0.2 0.3 0.2 0.4

6.1. Steps of MAGDM strategy

We present MAGDM strategy based on the proposed
WHBLSM using the following steps.

Step 1: Determine the relation between alternatives and
attributes

The relation between alternatives P1, P, and P3 and the at-

tribute set {C4, Cy, Cs, C4, Cs} corresponding to the set of

decision makers {Di, D2, D3} are presented in Equations

(13), (14), and (15).

DiP|C]=
(o C, C, C, Cs
07\ /o7,\ /o8\ Jo7,\ /os,
P (04, ) (04, ) (01 ) (02 ) (05
04/ \o3 01/ \o1 05
04,\ /05\ /o6\ /07,\ /04, (13)
P, (03 ) (02 ) (02 ) (03 ) (03
06/ \o5/ \o2/ \o3 0.4
04,\ /os8\ /o5)\ Jo5\ /07,
P (02 ) (01 ) (04, ) (02 ) (03
0.3 03/ \o04 0.2 0.2
D2[PIC]=
o c, C, C. Cs
05\ /07\ /o8)\ /o5\ /05
P (02 ) (04, ) (02 ) (02 ) (05
03/ \o04 0.2 0,2 0.4
05\ /05\ o5\ /o8\ /o4, (14)
P, (04,) (02 ) (03 ) (03 ) (01
0.4 0.4 0.3 0.3 0.4
04,\ /0s8\ o5\ Jo7,\ /o7,
P02 ) (02 ) (03 ) (02 ) (04
0.5 0.2 03/ \o02 0.2

Step 2: Determine the core decision matrix

Using Equation (10), we construct the core decision matrix
for all decision makers shown in Equation (16).

D[P|C]
o c, Cs C, Cs
0984\ /0.988\ /0.989,\ /0.956,\ /0.961,
P, (0324 ) (0324 ) (0184 ) (0203 ) (0452
0332/ \0232/ \oisa/ \0219/ \0219
0938\ 0956\ /0979\ 0989\ /0.908
P, (0202 ) (0162 ) (0292 ) (0304 ) (0232
0420/ \0395/ \0292/ \0334/ \o404/| (16)
0949\ /0.994\ /0.956,\ /0.984\ /0.984,
P, (0203 ) (0203 ) (0334 ) (0255 ) (0420
0359/ \0232/ \0334/ 10203/ \0.255

Step 3: Determine the ideal solution

Here, C3 and C4 denote benefit attributes and C1, C; and Cs
denote cost attributes. Using Equations (11) and (12), we
calculate the ideal solutions as follows:

(0.938,0.324,0.420),(0.956,0.324,0.395),

P*=1(0.989,0.184,0.184),(0.989,0.203,0.203),
(0.908,0.452,0.404)

Step 4: Determine the attribute weights

Using Equation (8), we calculate the attribute weights as
follows:

[w1, Wa, W3, Wa, Ws] =

[0.1680, 0.3300, 0.2285, 0.2485, 0.0250]

Step 5: Determine the weighted hybrid binary logarithm
similarity measures

Using Equation (6), we calculate similarity values for
alternatives shown in Table 1.
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Step 6: Ranking the alternatives

Ranking order of alternatives is prepared as the descending
order of similarity values. Highest value indicates the best
alternative. Ranking results are shown in Table 1 for dif-
ferent values of A .

Step 7. End.

7. Sensitivity analysis

In this section, we discuss the variation of ranking results
(see Table 1) for different values of A . From the results
shown in Tables 1, we observe that the proposed strategy
provides the same ranking order for different values of 2.

8. Comparison analysis

In this section, we solve the problem with different
existing strategies [33, 37, 38, 56]. Outcomes are furnished
in the Table 2 and figure 2.

9. Contributions of the proposed strategy

» We propose two types of binary logarithm similarity
measures and their hybrid similarity measure for
SVNS environment. We have proved their basic
properties.

» To calculate unknown weights structure of attributes
in SVNS environment, we have proposed a new en-
tropy function.

» We develop a decision making strategy based on the
proposed weighted hybrid binary logarithm similarity
measure (WHBLSM).

» We have solved a illustrative example to show the
feasibility, applicability, and effectiveness of the
proposed strategy.

10. Conclusion

Conclusions in the paper are concise as follows:;

1.

We have proposed hybrid binary logarithm similarity
measure and weighted hybrid binary logarithm
similarity measure for dealing indeterminacy in
decision making situation.

We have defined a new entropy function to determine
unknown attribute weights.

We have developed a new MAGDM strategy based
on the proposed weighted hybrid binary logarithm
similarity measure.

We have presented a numerical example to illustrate
the proposed strategy.

We have conducted a sensitivity analysis

We have presented comparative analyses between the
obtained results from the proposed strategies and
different existing strategies in the literature. The
proposed weighted hybrid binary logarithm similarity
measure can be applied to solve MAGDM problems
in clustering analysis, pattern recognition, personnel
selection, etc.

Future research can be continued to investigate the
proposed similarity measures in neutrosophic hybrid
environment for tackling uncertainty, inconsistency
and indeterminacy in decision making. The concept
of the paper can be applied in practical decision-
making, supply chain management, data mining, clus-
ter analysis, teacher selection etc.

Table 1 Ranking order for different values of 2.

Similarity (n) Measure values Ranking
measures order
BLwyo(P*,Pi)  0.10  BLwhyb(P*,P1)=0.9426; BLyyb(P*,P2)=0.9233; BLwHyb(P*,P3)=0.9101 Pi> P> P3
BLwHyb(P*vPi) 0.25 BLwHyb(P*,Pl):O.9479; BLwHyb(P*vPZ)ZO-gzgs; BLwHyb(P*vP3):0-9153 Pi1>Po>P3
BLuyb (P*,Pi)  0.40  BLwHyb(P*,P1) =0.9532; BL ywhyn (P*,P2)=0.9357; BLwhyn(P*,P3)=0.9207 P1> Py~ P3
BLwyo (P*,Pi)  0.55  BLwHyb(P*,P1)=0.9585; BLwHyb(P*,P2)=0.9419; BLyHyn (P*,P3)=0.9260 Pi> P> P3
BLuys (P*:Pi)  0.70  BLwhyb(P*,P1)=0.9638; BLyybh (P*,P2)=0.9482; BLwHyb(P*,P3)=0.9313 P1>P2>P3
BLwyo (P*,Pi)  0.90  BLwryb(P*,P1)=0.9708; BLwHyb(P*,P2)=0.9565; BLwHyn(P*,P3)=0.9384 P1> P> P3
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Table 2 Ranking order for different existing strategies

Similarity measures Measure values for Py, P> and Ps3 Ranking order
Mondal and Pramanik [37] 0.8901, 0.8679, 0.8093 P1>Po>P3
Ye [33] 0.8409, 0.8189, 0.7766 P1>P2>Ps
Biswas et al. [56] (,=0.55) 0.9511, 0.9219, 0.9007 P1>Po>P3
Ye and Fu [38] 0.9161, 0.8758, 0.7900 P1>P2>P3
Proposed strategy (»=0.55) 0.9585, 0.9419, 0.9260 P1>P2>P3

WHBLSM based decision making strategy

Decision making analysis phase

Determination of the relation between
alternatives and attributes
Determine the core decision matrix

Determine ideal solution

Step- 3

Determine the attribute weights a

Calculate the WHBLSM values H

Ranking the alternatives \— Step- 6

:

Fig. 1: Decision making phases of the proposed approach
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Hzpot-1
Hzpot-2
spot-3

Mondal and
Pramanik [37]

Ye[33]

0.8 - —
0.6 —
04 - —
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Biswazetal [56]

YeandFu[38] Proposedstrategy
forlamda=0.55

Fig. 2: Ranking order of different strategies
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Abstract: Saeid and Jun introduced the notion of neutrosophic
points, and studied neutrosophic subalgebras of several types in
BCK/BC1I-algebras by using the notion of neutrosophic points
(see [4] and [6]). More general form of neutrosophic points is consid-
ered in this paper, and generalizations of Saeid and Jun’s results are

discussed. The concepts of (€, € Vq(kr kp k F))—neutrosophic sub-
algebra, (q(kTykIakF)7 € Vq(krp k;,kp))-Neutrosophic subalge-
bra and (€, Akrp kr.k F>)—neutrosophic subalgebra are introduced,
and several properties are investigated. Characterizations of (€,
€ Vq(kp,kr ku>)—neutrosophic subalgebra are discussed.

Keywords: (€, € Vq(xp k; k))-neutrosophic subalgebra; (¢(xr k7 kp)s € Vd(kp k1, k) )-neutrosophic subalgebra; (€, q(kyp &,k ) )-neutrosophic sub-

algebra.
1 Introduction

As a generalization of fuzzy sets, Atanassov [1] introduced the
degree of nonmembership/falsehood (f) in 1986 and defined the
intuitionistic fuzzy set. As a more general platform which ex-
tends the notions of the classic set and fuzzy set, intuitionistic
fuzzy set and interval valued (intuitionistic) fuzzy set, Smaran-
dache introduced the notion of neutrosophic sets (see [7, 8]),
which is useful mathematical tool for dealing with incomplete,
inconsistent and indeterminate information. For further particu-
lars on neutrosophic set theory, we refer the readers to the site

http://fs.gallup.unm.edu/FlorentinSmarandache.htm

Jun [4] introduced the notion of (®, ¥)-neutrosophic subalgebra
of a BCK/BCTI-algebra X for ®, ¥ € {€, ¢, € V¢}, and in-
vestigated related properties. He provided characterizations of an
(€, €)-neutrosophic subalgebra and an (€, € V ¢)-neutrosophic
subalgebra, and considered conditions for a neutrosophic set to
be a (g, € V ¢)-neutrosophic subalgebra. Saeid and Jun [6] gave
relations between an (€, € V ¢)-neutrosophic subalgebra and a
(g, € V q)-neutrosophic subalgebra, and investigated properties
on neutrosophic g-subsets and neutrosophic € V g-subsets.

The purpose of this article is to give an algebraic tool of neu-
trosophic set theory which can be used in applied sciences, for
example, decision making problems, medical sciences etc. We
consider a general form of neutrosophic points, and then we
discuss generalizations of the papers [4] and [6]. As a gen-
eralization of (€, € V ¢)-neutrosophic subalgebras, we intro-
duce the notions of (€, € Vq(j, i, k))-neutrosophic subalgebra,
and (€, q(x; k; kp))-Neutrosophic subalgebra in BCK/BCI-
algebras, and investigate several properties. We discuss charac-

terizations of (€, € V(i k, k))-nNeutrosophic subalgebra. We
consider relations between (€, €)-neutrosophic subalgebra, (€,
q(kT,kIJcF))-neutrosophic subalgebra and (€, € Vqu, k; kp))-
neutrosophic subalgebra.

2 Preliminaries

By a BC'I-algebra, we mean a set X with a binary operation *
and the special element 0 satisfying the conditions (see [3, 5]):

(al) (Vz,y,2 € X)(((xxy) x (x*x2)) * (zxy) = 0),
(@2) (Ve,y € X)((z* (z*xy)) xy =0),

(@3) (Vz € X)(zxx =0),

(@d) Vz,ye X)(zxy=yxx=0 = z=1y).

If a BCI-algebra X satisfies the axiom

(@) Oxx=0forallz € X,

then we say that X is a BC K-algebra (see [3, 5]). A nonempty
subset S of a BCK/BCI-algebra X is called a subalgebra of X
(see [3,5])ifxxy e Sforallz,y € S.

The collection of all BC K -algebras and all BC'[-algebras are
denoted by Bx(X) and B;(X), respectively. Also B(X) :=
BK(X) U B[(X)

We refer the reader to the books [3] and [5] for further infor-
mation regarding BC' K/ BC'I-algebras.

Let X be a non-empty set. A neutrosophic set (NS) in X (see
[7D is a structure of the form:

A= {{z; Ar(2), Ar(z), Ap(2)) | 2 € X} (2.1)
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where Ap, A; and Ap are a truth membership function, an inde-
terminate membership function and a false membership function,
respectively, from X into the unit interval [0,1]. The neutro-
sophic set (2.1) will be denoted by A = (Ap, A;, Ar).

Given a neutrosophic set A = (Ar, A, Ap)inaset X, o, 8 €
(0,1] and y € [0, 1), we consider the following sets (see [4]):

Te(4;0) :={z e X | Ar(z) > a},

Ie(4A;9) == {z € X | Ar(x) = B},

Fe(A;y) i={z e X [ Ap(x) <7},

T,(A;a) ={z € X | Ap(z) + a > 1},
I(A;B)={ze X | Ar(z) + 8 > 1},

Fy(A37) = {z € X | Ap(z) +7 < 1},
Tevqe(Aja):={zx € X | Ap(z) > aor Ap(z) + o > 1},
Tevq(A;B) = {o € X | Ar(x) 2 Bor Ar(z) + 5 > 11,
Fevg(A;y) ={z € X | Ap(z) <yor Ap(z)+v < 1}.

We say TG(A a), Ie(A'ﬁ) and Fc(A;~) are neutrosophic
€-subsets; Ty (A; a), 1,(A; 8) and F,(A;~) are neutrosophic g-
subsets; and Tevq(A a) Iy o(4; ) and Fey 4(A;7y) are neu-
trosophic € V q-subsets. 1t is clear that

Tevq(A;a) =Te(A;a) UT,(A; @), (2.2)
Tev o(A; B) = 1e(A; B) U 14(4; B), (2.3)
Fevq(A;y) = Fe(A;7) U Fy(4;7). 2.4)

Given ®, ¥ € {€, ¢, € V g}, aneutrosophic set A = (Ap, Ay,
Ap)in X € B(X) is called a (®, ¥)-neutrosophic subalgebra
of X (see [4]) if the following assertions are valid.

z€To(Asag), y € To(A;ay)
= zxy € Ty(A4; 0, A ay),
A;ﬁz)> ye I<I>(A§ By)
= T*Y € I\I’(A76$ /\ﬁy)v
x € Fo(A;7z), y € Fo(Ajy)
= zxy € Fy(A;7: V)

x e Iq>( 2.5)

forallz,y € X, ag, oy, Bz, By € (0,1] and 7y, v, € [0,1).

3 Generalizations of (€, € Vg)-neutroso-
phic subalgebras

In what follows, let k7, k; and kr denote arbitrary elements of
[0,1) unless otherwise specified. If kr, k; and kp are the same
number in [0, 1), then itis denoted by &, i.e., k = kpr = k;r = kp.

Given a neutrosophic set A = (Ar, A7, Ap)inaset X, o, 8 €

(0,1] and 7y € [0, 1), we consider the following sets:

Ty, (Asa) i={z € X | Ar(z) + a+kr > 1},
ku(A B)={xeX|A/(x)+B+kr>1},
Fy, (A7) ={z € X | Ap(x) + v+ kr <1},
Tev gy, (Aja) :={z € X | Ar(z) > avor
Ap(z) +a+ kr > 1},
Tevq,, (A;B) :={z € X | Af(x) > Bor
Ap(xz)+ B+ kr > 1},
Fewan, (A7) = {z € X | Ap(z) <~ or

We say Ty, (A;a), Iy, (A;8) and Fy, (A;v) are neu-
trosophic qi-subsets; and Tey g, (A;a), levq,, (A;B) and
Fey g, (A; ) are neutrosophic (€ V qy)-subsets. For ® € {€,
@ Gk Qo> Qhor Qo € VG EV Qs €V Qips €V Qs € Vg b
the element of T (A; «) (resp., Io(A; B) and Fp(A; 7)) is called
a neutrosophic Tg-point (resp., neutrosophic Ig-point and neu-
trosophic Fg-point) with value « (resp., 5 and ).

It is clear that

Teva, (Aa) =Te(A;a) UT,, (4 a), (3.1)
IGV%I (A;ﬁ) = IE(A'B) le (A B) (3.2)
FGVQkF(A;7):F€(A )UFqu<A;’y). (3.3)

Given a neutrosophic set A = (Ar, Ar, Ap)inaset X, o, 8 €
(0,1] and v € [0, 1), we consider the following sets:

TE(Aso) i ={z € X | Ap(x) > o}, 3.4
IE(A; B) :=A{x € X | Ar(x) > B}, 3.5
Fi(A;y) ={z e X | Ar(z) <~} (3.6)
Proposition 3.1. For any neutrosophic set A = (Ar, A1, Ar)
inaset X, o, 8 € (0,1] and y € [0, 1), we have
a< Bk = T, (Aja) CTE(A @), 3.7)
B< G = 1, (4;B) C IE(4;B), 38)
7245 = Fo (A7) C FE(40), (3.9)
a>5E = To(A0) C T, (4 a), (3.10)
B>15E = I(4;8) C qu(A B), (3.11)
v <FE = Fe(4;) C Fy (A7), (3.12)
Proof. If a < 5=, thenl — o > # and o <1 — «. Assume

that = € qu(A,oz). Then A7(z) +k > 1 —a > £ and

so Ap(z) > Hk —k = 17’“ > «. Hence z € T*(A a).

Similarly, we have the result (3 8). Suppose that v > 1 k and let
x € Fy, (A;v). Then Ap(z) + v+ k < 1, and thus

Ap(r) <1l—-y—k<1-35E =12k <y

Hence z € FZ(A;7). Suppose that o > 155 If 2 € Tc(4;a),
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then
Ar(z)+a+k>2a+k>2- 58 + k=1

and so z € T, (A; o). Hence Te(A4; o) C Ty, (4; ). Similarly,
we can verify that if 5 > 1;2’“, then Ic(A; 8) C Iy, (4; B). Sup-

pose that v < 2. If 2 € Fe(A;v), then Ap(z) < v, and
thus

Ap(z)+y+k<2y+k<2-5E+k=1,
that is, z € F,, (4;~). Hence Fe(A;v) C Fy, (4;7). O

Definition 3.2. A neutrosophic set A = (Ap, Aj, Ap)in X €
B(X) is called an (€, € Vq(y i, k) )-Neutrosophic subalgebra
of X if

re€Te(Aay), y e Te(A4; o)

= 2%y € Tevg,, (A;az A ay),
T € IG(A;ﬂz)a ye IE(Avﬁy)

= T* Yy € IE\/ku (Avﬁm A By)’
z € Fe(A;72), y € Fe(A;vy)

= T*Y € Fevg,, (472 V)

(3.13)

forall z,y € X, ay, oy, Be, By € (0,1] and 7,7y, € [0,1).
An (€, € V(i k; kp))-Neutrosophic subalgebra with kr =
kr = kp = kis called an (€, € Vqy)-neutrosophic subalgebra.

Lemma 3.3 ([4]). A neutrosophic set A = (Ar, A;, Ap) in
X € B(X) is an (€, €)-neutrosophic subalgebra of X if and
only if it satisfies:

Ar(zxy) > Ar(z) A Ar(y)

Ar(zxy) > Ar(z) A Ar(y)
Ap(zxy) < Ap(z)V Ap(y)

(Va,y € X) (3.14)

Theorem 3.4. If A = (Ar, Ar, Ar) is an (€, €)-neutrosophic
subalgebra of X € B(X), then neutrosophic qj-subsets
Ty, (Asa), Lo, (A;B) and Fy, (A;y) are subalgebras of X

9k

SJorall a, 8 € (0,1] and v € [0, 1) whenever they are nonempty.

Proof. Letz,y € Ty, (A;a). Then Ar(z) + a+ kr > 1 and
Ar(y) + o+ kp > 1. It follows from Lemma 3.3 that

Ar(z*y) + a+kr > (Ar(z) A Ar(y)) + o+ kr
= (Ar(z) + a+kr) A(Ar(y) + a+ kr) > 1

and so thatzxy € Ty, (A; ). Hence Ty, (A; @) is a subalgebra
of X. Similarly, we can prove that I,, (A; ) is a subalgebra of
X. Now letz,y € Fy, (A;v). Then Ap(z) + 7+ kp < 1and
Ar(y) + v + kr < 1, which imply from Lemma 3.3 that

Ap(z*y) +7+kp < (Ap(x) V Ap(y) + 7+ kr
= (Ap(x)+v+Ekr)V(Ar(y) +v+kr) < 1.

Hence z xy € Fy, (A;7) and so Fy, (A;7) is a subalgebra of
X. O

Corollary 3.5. If A = (Ar, A1, Ar) is an (€, €)-neutrosophic
subalgebra of X € B(X), then neutrosophic qy-subsets
T, (A ), I, (A; B) and Fy, (A;~) are subalgebras of X for
all o, B € (0,1] and v € [0, 1) whenever they are nonempty.

If we take k7 = k; = kr = 0 in Theorem 3.4, then we have
the following corollary.

Corollary 3.6 ([4]). If A = (A, A, Ap) is an (€, €)-
neutrosophic subalgebra of X € B(X), then neutrosophic -
subsets T,(A; o), I1,(A; B) and Fy(A;~) are subalgebras of X
SJorall a, 5 € (0,1] and v € [0, 1) whenever they are nonempty.

Definition 3.7. A neutrosophic set A = (Ap, A;, Ap)in X €
B(X)is called a (q(iy iy kr)> € VA(kr by ki) -NeUtrosophic sub-
algebra of X if

S TQkT (A;az)7 y e TQkT (A? O‘y)
= 1%y € Tevg,, (A az N ay),
x € 1y, (A; Bz), y € I, (A; By)
= T * Yy € IEquI (A, ﬁz A By)»
x € Fy, (A7), y € Fyy, (A7)
= r*y € FE\/qu(A;’Ya: V’Yy)

(3.15)

forallz,y € X, ag, oy, Bz, By € (0,1] and 7., v, € [0,1).

A (Q(krp ky kr)s € VQ(kr kr kp))-NEUtrosophic subalgebra with
kr = kr = krp = kis called a (g, € Vg )-neutrosophic subal-
gebra.

Theorem 38. If A = (Ar, A1, Arp) is a (Quip ks kr), €
VQ(kr k1 ,kp))-neutrosophic subalgebra of X € B(X), then neu-
trosophic qi-subsets Ty, (A; ), 1y, (A; B) and Fy, (A;7y) are
subalgebras of X for all o € (1=£2.1], B e (2=£L,1] and

2 2
v € [0, 1_2’“” ) whenever they are nonempty.

Proof. Letx,y € Ty, (A;a) fora € (1_2kT ,1]. Then z x y €
Tev g, (Aja), thatis, z x y € Te(Aja) orz *x y € Ty, (A ).
If zxy € Te(A;a), then x xy € Ty, (A;a) by (3.10).
Therefore Ty, (A; «) is a subalgebra of X. Similarly, we prove
that I, (A;fB) is a subalgebra of X. Let z,y € Fy, (4;7)
for v € [0,252). Then z xy € Fev g, (A;7), and so
zxy € Fe(Asy)oraxy € Fy, (A;y). faxy € Fe(A;y), then
zxy € Fy, (A;v)by (3.12). Hence Fy, (A;7) is a subalgebra
of X. O

Taking k7 = k; = krp = 0 in Theorem 3.8 induces the fol-
lowing corollary.

Corollary 3.9 ([4]). If A = (Arp, Ay, Ap) is a (¢, € Vq)-
neutrosophic subalgebra of X € B(X), then neutrosophic gq-
subsets T,(A; o), I,(A; B) and Fy(A;~) are subalgebras of X
for all a,B € (0.5,1] and v € [0,0,5) whenever they are
nonempty.

We provide characterizations of an (€, € Vq(i, i, k) )-NEU-
trosophic subalgebra.
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Theorem 3.10. Given a neutrosophic set A =
X € B(X), the following are equivalent.

(1) A= (Ar, Ay, Ap) isan (€, € V(ky k, k))-neutrosophic
subalgebra of X.

() A=

(AT, A[7 AF) in

(Ar, Ay, AF) satisfies the following assertion.

Ap(z xy) > NAr(x), Ar(y), 252}
Ar(zxy) = MAr(z), Ar(y), 5 ’“}
Ap(zxy) < V{Ar(z), Ar(y), 5

forall z,y € X.

Proof. Let A = (Ap, Ar, Ar) be an (€, € Vq(ip k; kr))-
neutrosophic subalgebra of X. Assume that there exist a,b € X
such that

(3.16)

e}

Ar(axb) < N{Ar(a), Ap(b), 5z},

then AT(a * b) < At (a) A AT(b)

If AT(a) AN AT(b) < l_sz s
Hence

Ar(axb) < ay < Ap(a) A Ap(b)

for some a; € (0,1]. It follows that a € Te(A; ;) and b €
Te(A;aq) butax b ¢ Te(A; o). Moreover,

AT(a*b)+o¢t<2at<l—kT,

andsoaxb ¢ Ty, (A;a). Thus axb¢ Teyq,, (A;a),acon-
tradiction. If Ar(a) A Ap(b) > k- then a € Te(A; 15fr),
be Te(A; 1) and a x b ¢ Te(A; 22L). Also,

AT(a*b) 1kT<1kT_|_1kT_

- kT7

1—2167' ), a

ie,axb¢ T, (A7) Henceaxb¢ Teyg,, (4;
contradiction. Consequently,

Ap(x xy) >/\{AT

for all z,y € X. Similarly, we know that

AT( ) : 2kT}

Ar(z*y) > /\{Al(x) Ar(y), %}

forall z,y € X. Suppose that there exist a, b € X such that

Then Ap(a xb) > vp > V{Ar(a), Ap(b), 2=£E} for some
vr €[0,1). If Ap(a) V Ap(b) > 1_2’“F,then

Ap(axb) > \/{Ar(a), A

AF(CL * b) >Yp 2> Ap(a) V AF(b)

which implies that a,b € Fc(A;vp) and a xb ¢ Fe(A;vr).
Also,
Ap(a*xb) +p > 2y > 1 —kp,

thatis, a x b ¢ Fy, (A;yr). Thus a x b ¢ Feyg, (A7F),
which is a contradiction. If Ap(a) V Ap(b) < 1_2’” ,thena,b €
Fe(A; 222 ) and a + b ¢ Fe(A; 12E2). Also,

1—kp 1—kp 1-kr _ 1 _
i e =1—kr

L1-k
andsoaxb & Fy, (A;==5F
a contradiction. Therefore

Ap(zxy) < \/{Ar(z)

forall z,y € X.

Conversely, let A = (Ap, A;, Ar) be a neutrosophic set in X
which satisfies the condition (3.16). Let z,y € X and 3., 8y €
(0,1] be such that z € Ic(A; ;) andy € Ic(A; 3,). Then

Aroxy) > NAr@), Ary), 552} > \{Be, By, 554}

Suppose that 5, < % or B, < 1*2'”.

Bus A By, and so x xy € Ie(A;Bs A By).
> s, 5 T d o) >

1—2k’p )7

). Hence axb & Fey g, (4;

; AF (y)v 1_2kF }

Then Aj(x x y) >
Now, assume that
1*2’” , and so

Ar(@*y) + B A By > 5 + 15 =

- kb
thatis, z xy € I, (A; Bz A By). Hence
Yy € ley gy, (A; B N By).

Similarly, we can verify that if + € Tc(A;,) and y €
Te(Asay), then z xy € Teyg, (Ajaz A ay). Finally, let
z,y € X and ~,,7v, € [0,1) be such that x € Fc(A;~,) and
y € Fe(A;y). Then

Ap(exy) < \/{Ar(2), Ar(y), 52} <\ v, 2521
If v, > L=E2 or vy, > (z*y) < vz V7, and thus
xxy € Fe(4;7, V 'yy) If Yo < 15 kF and v, < 1*2]”, then
Ap(z xy) < 152 Hence

Ap(zxy) +m Vo < 55+ 155 =1—kp,

thatis, z xy € Fy, (A;7z V yy). Thus

Txy € FE\/qu<A;’Y:vv7y)'

Therefore A = (Ap, Ar, Ar) is an (€, € V g, )-neutrosophic
subalgebra of X. O

Corollary 3.11 ([4]). A neutrosophic set A = (A, Ay, Af) in
X € B(X) isan (€, € V q)-neutrosophic subalgebra of X if and
only if it satisfies:

Ap(x xy) = N{Ar(2), Ar(y), 0.5}

Ar(z+y) = N{A1(z), Ar(y).0.5}
Ap(z*y) < V{Ar(z), Ap(y),0.5}

(Vz,y € X)
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Proof. 1t follows from taking kr = k;y = kr = 0 in Theorem
3.10. O]

Theorem 3.12. Let A = (Ar, A, Ar) be a neutrosophic set in
X € B(X). Then A = (A1, Ar, Ar) is an (€, € VQ(ky oy kp))-
neutrosophic subalgebra of X if and only if neutrosophic €-
subsets Tc (A; a) E(A B) and Fe (A;~) are subalgebras of X
forall a € (0,2F2], B € (0,5 and v € [22£E, 1) when-
ever they are nonempty

Proof. Assume that A = (Ar, A;, Ap) is an (€, €
Vq(kr k1, kp))-neutrosophic subalgebra of X. Let 3 € (0, %]
and x,y € Ic(A;5). Then A;(x) > B and A;(y) > 5. It
follows from Theorem 3.10 that

Ar(wxy) > \{Ar(z), Ar(y), S5} > BA L5 = 8

and so that x x y € Ic(A; ). Hence Ic(A; ) is a subalgebra
of X forall 5 € (0, 1;’”]. Similarly, we know that T¢ (4; o)
is a subalgebra of X for all & € (0, 1=£2]. Let v € [1=££ 1)
and 2,y € Fc(A;7). Then Ap(z) < v and Ap(y) < ~. Using
Theorem 3.10 implies that

Ap(ovy) < \[{Ar(@), Ap(y), e} < v 1ke
Hence = *xy € Fc(A;~), and therefore Fe(A;y) is a subalgebra
of X forall y € [15£2 1),

Conversely, suppose that the nonempty neutrosophic €-subsets
Tc(A; a) (A' B) and FE(A,fy) are subalgebras of X for all
a € (0,55F7), B € (0,552 and v € [25E, 1). If there exist
a,be X such that

Ar(axb) < \{Ar(a), Ap(b), 5},

then a,b € Tc (A; ar) by taking

ar = \{Ar(a), Ap(b), 5=},

Since Te(A; ) is a subalgebra of X, it follows that a x b €
Te(A; ar), thatis, Ar(a *b) > ar. This is a contradiction, and
hence

Ap(z+y) > \{Ar(z
for all z,y € X. Similarly, we can verify that
(y), 75}
for all x,y € X. Now, assume that there exist a, b € X such that
> \/{Ar(a) S},

Then Ap(a *b) > vp > V{Ar(a), Ar(b), =22} for some
g € [1*2’“‘?,1). Hence a,b € Fc(A;7vr), and so a x b €
Fec(A;~r) since Fe(A;r) is a subalgebra of X. Tt follows that

)VAT(y)7 %}

Ar(zry) > NAr(2), A

r(a*b)

Ap(a*b) <~ which is a contradiction. Thus

Ap(z*y) <\/{AF

for all z,y € X. Therefore A = (Ap, A;, Ap) is an (€, €
Vq(ky,ky kr))-NEUtrosophic subalgebra of X by Theorem 3.10.
O

AF( ) ng}

Corollary 3.13. Let A = (Ap, Ar, Ar) be a neutrosophic set
in X € B(X). Then A = (Ar, A1, Ap) is an (€, € Vq)-
neutrosophic subalgebra of X if and only if neutrosophic -
subsets Tc(A;a), Ic(A;B) and Fe(A;~y) are subalgebras of
X for all a,8 € (0,0.5] and v € [0.5,1) whenever they are
nonempty.

Proof. 1t follows from taking kr = k; = krp = 0 in Theorem
3.12. O

Theorem 3.14. Every (€, €)-neutrosophic subalgebra is an (€,
€ Vq(ip k1 kp))-Neutrosophic subalgebra.

Proof. Straightforward. O

The converse of Theorem 3.14 is not true as seen in the fol-

lowing example.

Example 3.15. Consider a BCT-algebra X = {0, a, b, c} with
the binary operation * which is given in Table 1 (see [5]).

44 EL)

Table 1: Cayley table for the binary operation “x

QO Qe O %
o o R OO
0 O QR
QOO0 oS
o oo

Let A = (Ar, A;, Ar) be a neutrosophic set in X € Br(X)
defined by Table 2

Table 2: Tabular representation of “A = (Ap, A;, Ap)”
X AT(x) A](J?) AF(l‘)

0 0.6 0.5 0.2

a 0.7 0.3 0.6

b 0.3 0.6 0.6

c 0.3 0.3 0.4
If k+ = 0.36, then

ifa € (0,0.3],

X
Te(A;a) = { {0,a} ifa € (0.3,0.32].

S.J. Kim, S.Z. Song, Y.B. Jun, Generalizations of neutrosophic subalgebras in BCK / BCI-algebras based on neutrosophic points



Neutrosophic Sets and Systems, Vol. 20, 2018

31

If k; = 0.32, then

X if 3 € (0,0.3],
Te(4;8) = { {0,b} if B €(0.3,0.34].
If kp = 0.36, then
{0}  ify€[0.32,0.4),
Fe(A;7) = {0,¢} ify €[0.4,0.6),
X if v € [0.6, 1].

We know that T (A; a), Ic(A; B) and Fe (A;~y) are subalgebras
of X for all & € (0,0.32], 8 € (0,0.34] and v € [0.32,1). It
follows from Theorem 3.12 that A = (Ar, Ay, Ap) is an (€,
€ \/q(kT,kI’kF))-neutrosophic subalgebra of X for kr = 0.36,
kr = 0.32 and kr = 0.36. Since

A7(0) = 0.6 < 0.7 = Ap(a) A Ap(a)

and/or
Ar(0)=0.5>0.3= As(c) VvV As(c),

we know that A = (Ap, A;, Ar) is not an (€, €)-neutrosophic
subalgebra of X by Lemma 3.3.

Definition 3.16. A neutrosophic set A = (Ar, A, Ap)in X €
B(X) is called an (€, Gk i, kp))-neutrosophic subalgebra of
X if
re€Te(Aay), y e Te(A4; o)
= x*xy € quT (A5 aq A ay),
MRS IE(A;ﬁz)v ye IE(Avﬂy)
= wxy € Iy (A;Bs A By),
T € Fe(Aiva), y € Fe(A;y)
= xxy € Fy (4572 V)

(3.17)

forall z,y € X, ag, oy, Bz, By € (0,1] and 7,7, € [0, 1).

An (€, Gy ky kp))-Neutrosophic subalgebra with kr = k; =
kr = kis called an (€, qi )-neutrosophic subalgebra.

Theorem 3.17. Every (€, q(iy i k) -n€utrosophic subalgebra
isan (€, € \/q(kT,kI,kF))-neutrosophic subalgebra.

Proof. Straightforward. O

The converse of Theorem 3.17 is not true as seen in the fol-
lowing example.

Example 3.18. Consider the BC'I-algebra X = {0, a,b,c} and
the neutrosophic set A = (Ar, Ar, Ar) which are given in Ex-
ample 3.15. Taking kr = 0.2, k; = 0.3 and kr = 0.24 imply
that

(X if o € (0,0.3],

TE (Av Oé) - { {0’ a} ifa € (03a04}’
[ X if 3 € (0,0.3],

Ie(A;B) = { {0,b} if B € (0.3,0.35],

and
{0} if 5 €[0.38,0.4),

{0,¢} if B €[0.4,0.6),
X if 3 €[0.6,1).

Fe(A;y) =

Since X, {0}, {0,a}, {0,b} and {0,c} are subalgebras of X,
we know from Theorem 3.12 that A = (Ar, A7, Ap)is an (€,
€ Vq(ky,k; kr))-Neutrosophic subalgebra of X for kr = 0.2,
kr = 0.3 and kr = 0.24. Note that

axb¢ T, ,(A;02510.4)
fora € Te(A;0.4) and b € Tc(A;0.25),

brcd I, ,(A;0.5A0.27)
forb € Ic(A;0.5) and ¢ € Ic(A;0.27), and/or

axc¢ Fy,,(A;0.6V0.44)

0.24(

fora € Fc(A;0.6) and ¢ € Fe(A;0.44). Hence A = (Ar, Ag,
AFp)isnotan (€, g(0.2,0.3,0.24))-neutrosophic subalgebra of X.

Theorem 3.19. If0 < kp < jr < 1,0 < kr < j;r < 1 and
0 <jr < kp <1, then every (€, € V (kg ky kr))-NeUtrosophic
subalgebra is an (€, € Vq(;, j, ;) )-neutrosophic subalgebra.

Proof. Straightforward. O

The following example shows that if 0 < kp < jr < 1,
0 < ky < jr < land 0 < jr < kp < 1, then an
(€, € Vq(jr,j;.jr))-neutrosophic subalgebra may not be an (&,
EVQ(kp k1 kr) )-neutrosophic subalgebra.

Example 3.20. Let X be the B(C'I-algebra given in Example
3.15 and let A = (Ar, A;, Ar) be a neutrosophic set in X
defined by Table 3

Table 3: Tabular representation of “A = (Ar, A7, Ap)”

X AT(I') A[(ir) AF({,C)
0 0.42 0.40 0.44
a 0.40 0.44 0.66
b 0.48 0.36 0.66
c 0.40 0.36 0.33

If k7 = 0.04, then

X if & € (0,0.40],
{0,b} if @ € (0.40,0.42],
{b} if € (0.42,0.48].

Note that T¢ (A; «) is not a subalgebra of X for o € (0.42,0.48].

Te(4A;a)
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If k; = 0.08, then

X if 3 € (0,0.36],

{0,a} if B € (0.36,0.40)],
{a}  if B € (0.40,0.44],
0 if 3 € (0.44,0.46].

IE(A§5) =

Note that I (A; () is not a subalgebra of X for 5 € (0.40,0.44].
If kr = 0.42, then

0 if y € [0.29,0.33),
) if v € [0.33,0.44),
Feldin) =9 fo.e} it e [0.44.0.66).
X if v € [0.66,1).
Note that Fe (A; ) is not a subalgebra of X for v € [0.33,0.44).

Therefore A = (Ar, A;, Ap) is not an (€, € \/q(kT}k,’kF))
neutrosophic subalgebra of X for kr = 0.04, k; = 0.08 and
kp = 0.42.

If j7 = 0.16, then

Te(As ) = { X if a € (0,0.40],

0,6} ifa e (0.40,0.42].
If j; = 0.20, then
[ X ifBe(0,0.36),
Ie(4;:8) { {0,a) if 8 € (0.36,0.40].

If jp = 0.12, then

v A0,¢} ify€]0.44,0.66),
Fe(Ai7) = { X if v € [0.66,1).
Therefore A = (Ar, A, Ap) is an (€, € Vq(,j,.jr))-
neutrosophic subalgebra of X for jo = 0.16, j; = 0.20 and
Jjr =0.12.

Given a subset S of X, consider a neutrosophic set Ag =
(Ast, Asr, Asr) in X defined by

[ (1,100 ifzxes,
As(w) := { (0,0,1) otherwise,
that is,
1 ifzxels,
Asr(x) = { 0 otherwise,
1 ifzxels,
Asi (@) = { 0 otherwise,
and
0 ifxels,
Asp(z) = { 1 otherwise.

Theorem 3.21. A nonempty subset S of X € B(X) is a

subalgebra of X if and only if the neutrosophic set Ag =
(Ast, As1, Asr) is an (€, € V(g k; kp))-neutrosophic sub-
algebra of X.

Proof. Let S be a subalgebra of X. Then neutrosophic -
subsets T (Asr; ), Ic(Agt; ) and Fe (Agr;y) are obviously
subalgebras of X for all « € (0,5F2], B € (0, 1*2’”] and
v € [%,1). Hence As = (Asr, Asr, Asr) is an (€,
EV(kr, ;ﬁ’kF))-neutrosophic subalgebra of X by Theorem 3.12.

Conversely, assume that Ag = (Asr, Asr, Agr) is an (€,
€ Vq(ky ky,kp))-neutrosophic subalgebra of X. Let z,y € S.
Then

Agr(x*xy) > /\{AST(x), Asr(y), =2}

Asi(zxy) > \{Asr(z), Asi(y), 54}
R
and
Asp(zxy) < \[{Asr(z), Asr(y), fr}
=0V 1—2kp — 1—2/€F7
which imply that

Ast(zxy) =1, Asr(z*y) =1and Asp(z *y) = 0.
Hence z xy € S, and so S is a subalgebra of X. O

Theorem 3.22. Let S be a subalgebra of X € B(X). For every
a € (0,57], B € (0,55] and v € [Y5£E,1), there ex-
ists an (€, € V(i ky k) )-neutrosophic subalgebra A = (Ar,
Ajp, Ap) of X such that Tc(A;a) = S, Ic(A;8) = S and
Fe(A;y) = 5.

Proof. Let A = (Ar, A;, Ar) be a neutrosophic set in X de-
fined by
_ [ (a,B,y) ifzeS,
Alw) = { (0,0,1)  otherwise,
that is,
a ifzes,
Ar(x) = { 0 otherwise,
| B ifzes,
Ar(w) = { 0 otherwise,
and
v ifzesS,
Ap(w) = { 1 otherwise.
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Obviously, Te(A4;a) = S, Ic(A;8) = S and Fe(A4;7v) = S.
Suppose that
Ar(axb) < N{Ar(a), Ap(b), 5z}

for some a,b € X. Since #Im(Ar) = 2, it follows that
MNAr(a), Ar(b), 22} = o and Ag(a * b) = 0. Hence
Ar(a) = a = Ap(b), and so a,b € S. Since S is a subalgebra
of X, we have a xb € S. Thus Ar(a % b) = «, a contradiction.
Therefore

Ar(zxy) > /\{AT(:C

forall z,y € X. Similarly, we can verify that

)a AT(y)a %}

(@*y) > \{Ar(z) 54}
forall z,y € X. Assume that there exist a,b € X such that
AF((L * b) > \/{AF(G) AF(b)7 1_2kF}.

Then Ap(a*b) = 1 and \/{Ar(a), Ap(b), 2=£E} = ~ since
#Im(Ap) = 2. It follows that Ap(a) = v = Ap(b) and so that
a,b € S. Hence axb € S, and so Ap(a x b) = ~, which is a
contradiction. Thus

Ap(zxy) < \/{Ap(z

for all x,y € X. Therefore A = (Arp, A1, Ap) is an (€, €
Vq(kr k1 ,kr))-NEutrosophic subalgebra of X by Theorem 3.10.
O

), Ar(y), 5}

Corollary 3.23. Let S be a subalgebra of X € B(X). For every
€ (0,0.5], B € (0,0.5] and v € [0.5,1), there exists an (€,
€ Vq)-neutrosophic subalgebra A = (Ar, A;, Ar) of X such

that Tc(A; ) = S, Ic(A; 8) = Sand Fe(A;v) = S.
Proof. 1t follows from taking kr = k; = krp = 0 in Theorem
3.22. O

Theorem 3.24. Given a neutrosophic set A =
X € B(X), the following are equivalent.

(AT; A[, AF) m

(1) A= (A7, A1, Ap) is an (€, €Vq(iy k; k) )-neutrosophic
subalgebra of X.

(2) The neutrosophic (€  V qx)-subsets Tey g, (4;),
Ievq,, (A; B) and Fey g, (A;7y) are subalgebras ofoor
all a, p € (0,1] and v € ﬁ) 1).

Proof. Assume that A = (Ap, A;, Ap) is an (€, €
\/q(kT,k.I,kF))-neutrosophiC subalgebra of X. Let z,y €
Iev g, (A;B) for B € (0,1]. Then A;(z) > Bor Ar(x) + B +
kr>1,and A;(y) > Bor Ar(y) + B+ kr > 1. Using Theorem
3.10, we have

Ar(z+y) > N{Ar(z)

Af(y)v 1;k1 }

, then

Case 1. Aj(z) > Band Ar(y) > B. If B > 1_2’”

Ar(zxy) > N{Ar(z), Ar(y), 58 = 155,

and so Aj(x xy) + 8 > %4»%:17
Iy, (A; B). 1f B < 152 then

kr.Hence x xy €

Ar(zxy) > N{Ar(z), A
and thus z x y € Ic(A4; 3). Hence

zxy € Ie(A; B) Uly, (A B) = lev g, (4; B).

(y), 54} > B,

Case 2. As(x) > Band A;(y) + B+ kr > 1. If g > 154,
then

Ar(zxy) > /\{Al(ff) Ap(y), 5}

:Al(y)/\%>(l_5_k1)/\%
:1_B_k17
andsox xy € Iy, (4;8). If B < 1=EL | then

Ar(wxy) > \{Ar(z), A (y), 52}
> \{B.1-B -k, 5y =8,

and thus @ x y € Ic(A; B). Therefore z x y € Iey ¢, (4; B).

Case 3. Aj(x

)+ B8+ kr > 1and A;(y) > B. We have
Ty € ley g, (4

B) by the similar way to the Case 2.

Case 4. Az )+ﬂ+k1>1andA1( )+ B8 +kr > 1 If
5>1 KL then1— 8 —ky < * kf , and so

Ar(wxy) > \{Ar(2), Ar(y), 51} > 18—k,

ie,zxy €l (A;B).1f 5 < 5K

, then

Ap(z=y) > N{Ar(z), Ar(y), 52}
>(1-B—k) A1

ie, zxy € Ic(A;B). Hence x xy € Ievg, (A4;5). Con-
sequently, Iey g, (A;B) is a subalgebra of X. Similarly, we
can prove that if 7,y € Tevg, (A;a) for a € (0,1], then
z*y € Teyg,, (A;a), thatis, Tey g, (A;a) is a subalgebra
of X. Letx,y € Fevg,, (A;7) fory € [0,1). Then Ap(z) < v
or Ap(z)+v+kr < 1,and Ap(y) < yor Ap(y)+v+kp < 1.
Using Theorem 3.10, we have

Ap(z xy) < \/{AF(x), Ap(y), 5=}
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1—k
Case . Ap(z) <vand Ap(y) <. If v < =5£, then

Ap(zxy) < \[{Ap(2), Ap(y), 5=} = 5=,

and so Ap(z *y) +v < “F£ . Hence

rxy € Iy, (A7) Iy > 1-kr | then

Ap(z*y) < \/{AF( L Ap(y), 552} <7,

and thus = x y € Fc(A;~). Hence

xxy € Fe(A;y)U Fy, . (4;7v) = Fevq,, (4;7).

Case 2. Ap(z) < vand Ap(y) +7+kr < 1. If y < 152,
then

Ap(z xy) < \/{AF(»T),AFQ/)» ey

=Ap(y)VIEEE < (1—y —kp) v A2
=1 _’y_ka
andsoz *xy € Fy, (A;7). Ify > L=kr  then
Ap(z+y) < \[{Ar(z), Ar(y), 52}

S\/{’%l_'y_ka _QkF}:'Ya
and thus x x y € Fe(A;7). Therefore x x y € Fey g, (4;7).

Similarly, if A;(z)+ 8 +kr < land A;(y) < B, thenzxy €
FE\/qu(A§'7)'

Finally, assume that Ap(z) +v+ kp < 1 and Ap(y) +v +
kp<1l.Ify< 1*2’“F,then1—'y—kp > %,andso

Ap(zxy) < \[{Ar(2), Ap(y), 52} <1 -7 — kp,

, then

ie,zxy € Fy (A7) Ify > 5

AF(x * y) < \/{AF(I) AF(y)a 172kF}
<(1—vy-— kF) Vv %

:1kp v
_a

ie,x*y € Fe(A;v). Hence z *x y € Fey g, (A;7y). Therefore

Fevy g, (A;7) is a subalgebra of X.

Conversely, suppose that (2) is valid. If it is possible, let

a < N\{Az(2), Az (y), 157}

for some v € (0, 2=2). Then

Ar(zxy) <

z,y € Te(A,Oé) g TG\/qkT (A7 Oé),

which implies that 2 * y € Tev g, (4; ). Thus Ar(z xy) > a

or Ap(z *y) + a + kr > 1, a contradiction. Hence
Ar(z+y) > \{Ar(z), Ar(y), =52}

for all z,y € X. Similarly, we can verify that
Ap(wxy) > \{Ar(z), A (y), 52}

for all z,y € X. Now assume that there exist a,b € X and
v € (3££,1) such that

Ap(axb) > Ap(b), 15pe .

), which implies that

v > \/{Ar(a)
Then a,b € Fe(A;7) C Fevg,, (A1
axbe Fevg,, (A;7).

Thus Ap(a *b) < yor Ap(a *b) + v + kr < 1, which is a
contradiction. Hence

Ap(zxy) > \[{Ap(z

for all z,y € X. Using Theorem 3.10, we conclude that A =
(Ar, A7, Ap)isan (€, € Vq(u, k; kp))-neutrosophic subalgebra
of X. O

),AF(y>7 %}

4 Conclusions

Neutrosophic set theory is a nice mathematical tool which can
be applied to several fields. The aim of this paper is to consider
a general form of neutrosophic points, and to discuss general-
izations of the papers [4] and [6]. We have introduce the no-
tions of (€, € Vq(ky k, kp))-neutrosophic subalgebra, and (€,
Q(kr,k1,kp))-Neutrosophic subalgebra in BC'K/BCI-algebras,
and have investigated several properties. We have discussed
characterizations of (€, € Vq(k, k,,k,))-neutrosophic subalge-
bra. We have considered relations between (€, €)-neutrosophic
subalgebra, (€, (kg k;,k,))-neutrosophic subalgebra and (€,
€ Vq(kp ks, kF))—neutrosophic subalgebra. We hope the idea and
result in this paper can be a mathematical tool for dealing with
several informations containing uncertainty such as medical diag-
nosis, decision making, graph theory, etc. So, based on the results
in this article, our future research will be focused to solve real-life
problems under the opinions of experts in a neutrosophic set envi-
ronment such as medical diagnosis, decision making, graph the-
ory etc. In particular, Bucolo et al. [2] suggested a generalization
of the synchronization principles for the class of array of fuzzy
logic chaotic based dynamical systems and evaluated as alterna-
tive approach to build locally connected fuzzy complex systems
by manipulating both the rules driving the cells and the architec-
ture of the system. We will also try to study complex dynamics
through neutrosophic environment. The future works also may
use the study neutrosophic set environment on several related al-
gebraic structures, for example, MV -algebras, B L-algebras, Ry-

algebras, F(Q-algebras, equality algebras, M T L-algebras etc.
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Abstract: Characterizations of afie, €)-neutrosophic ideal are €)-neutrosophic subalgebra to bg@, €)-neutrosophic ideal are
considered. Any ideal in 8C K/BC-algebra will be realized as provided. Using a collection of ideals inBC K/ BCI-algebra, an
level neutrosophic ideals of sonte, €)-neutrosophic ideal. The re- (€, €)-neutrosophic ideal is established. Equivalence relations on
lation between(e, €)-neutrosophic ideal anfk, €)-neutrosophic the family of all (€, €)-neutrosophic ideals are introduced, and re-
subalgebra in &BC K-algebra is discussed. Conditions for @, lated properties are investigated.

Keywords: (€, €)-neutrosophic subalgebrggs, €)-neutrosophic ideal.

1 Introduction vestigated by several researchers.

By a BC'I-algebra, we mean a s&f with a special elemertt
Neutrosophic set (NS) developed by Smarandachg,[50] in- and a binary operatioathat satisfies the following conditions:
troduced neutrosophic set (NS) as a more general platform which
extends the concepts of the classic set and fuzzy set, intuitionfé: (Vz,y,2 € X) (((z*y) * (xx2)) * (2 y) = 0),
tic fuzzy set and interval valued intuitionistic fuzzy set. NeutrcE“) (Va,y € X) (z * (xxy)) *y = 0),
sophic set theory is applied to various part which is refered to the

site my (Ve e X) (zxx=0),

http://fs.gallup.unm.edu/neutrosophy.htm. (V) (Vz,ye X) (zxy=0,yxx=0 = z=y).
Jun et al studied neutrosophic subalgebras/ideals Ifia BCI-algebraX satisfies the following identity:
aBnC(;I[(/])BiOI-aIgebras based on neutrosophic points (see [1], [(\}) (Ve € X) (02 = 0),

In this paper, we characterize én, €)-neutrosophic ideal in athen X is called aBC K -algebra. Any BC K/BCI-algebraX
BCK/BCI-algebra. We show that any ideal inBC' K/BCI- satisfies the following conditions:
algebra can be realized as level neutrosophic ideals of some

(€, €)-neutrosophic ideal. We investigate the relation between (Vz € X) (z 0 =z), (2.1)
(€, €)-neutrosophic ideal anfe, €)-neutrosophic subalgebra r<y = zxz<y*z -
in a BCK-algebra. We provide conditions for afe, €)- (Vz,y,2 € X) <y = zky<zkz )’ (2.2)
neutrosophic subalgebra to bésg €)-neutrosophic ideal. Using (Va2 € X) (zsy) # 2 = (3%2) +y), 2.3)

a collection of ideals in &8CK/BCI-algebra, we establish an
(€, €)-neutrosophic ideal. We discuss equivalence relations on  (V4, 4,2 € X) ((z % 2) # (y * 2) < w xy) (2.4)

the family of all -neut hic ideals, and i tigate re- . .
Iateeda[;rrl:)};;grtizs(e’ €)-neutrosophic ideals, and investigate rG\}/vhere:zc < yifandonly if z x y = 0. A nonempty subsef of a

BCK/BCI-algebraX is called asubalgebreof X if z xy € S
forall z,y € S. A subsetl ofa BOCK/BC1I-algebraX is called

2 Preliminaries anideal of X if it satisfies:
A BCK/BCI-algebra is an important class of logical algebras 0el, (2.5)
introduced by K. I&ki (see [2] and [3]) and was extensively in- VeeX)Vyel)(zxyel = xzel). (2.6)
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We refer the reader to the books [],for further information
regardingBC K/ BCI-algebras.

For any family{a; | ¢ € A} of real numbers, we define

\/{ai | i€ A} :=sup{a; | i € A}
and

Ndai i€ A} :=inf{a; | i € A},

If A ={1,2}, we will also usez; V as anda; A as instead of
VH{a; | i € A} andA{a; | i € A}, respectively.

Let X be a non-empty set. Aeutrosophic sefNS) in X (see
[9]) is a structure of the form:

Ao = {{2: Ar(2), Ar (), Ap(2)) | « € X}

where Ay : X — [0,1] is a truth membership function
A; : X — [0,1] is an indeterminate membership function, al
Ar : X — [0,1] is a false membership function. For the sake
simplicity, we shall use the symbdl.. = (A, A;, Ar) for the
neutrosophic set

Ao = {{z; Ar(z), Ar(z), Ap(z)) | © € X}.

Given a neutrosophic set.. = (Ar, A;, Ar) in a setX,
a, 8 € (0,1] and~y € [0, 1), we consider the following sets:

Te(Avsa) :i={z € X | Ar(z) > a},
Ie(Av; B) = A{z € X [ As(x) = B},
Fe(Av;y) i ={z e X | Ap(z) <~}

We sayTc(A-; ), Ic(Av; B) and Fe (A~ ;) areneutrosophic
€-subsets.

A neutrosophic setd.. = (Ar,A;, Ar) in a BCK/BCI-
algebraX is called an(e, €)-neutrosophic subalgebraf X (see
[5]) if the following assertions are valid.

€ Te(Avian), y € Te(Avs ay)
= axy € Tc(Av; oz N ay),

v € Ic(Av; Be), y € Ie(A; By)
= xxy € Ic(A; By A By),

T € Fe(Av;va), y € Fe(Avsyy)
= %y € Fe(Av;vz V)

(Va,y € X) 2.7)

forall ag, ay, Bz, By € (0,1] and~y,, v, € [0,1).

A neutrosophic setd.. = (Ar,A;, Ar) in a BCK/BCI-
algebraX is called an(e, €)-neutrosophic ideabf X (see [7])
if the following assertions are valid.

) (2.8)

(VxEX)(

x€Te(Av;az) = 0€ Te(An; )
S IG(A“‘;ﬁm) = 0¢€ IE(AN;ﬂx)
z € Fe(Avive) = 0€ Fe(Av;va)

and

rxy € Te(Avsag), y € Te(An; ay)
= e Te(Av;ag Nay)

v xy € Ie(Av; Ba), y € Ic(An; By)
= x € Ic(Av; Ba N By)

rxy € Fe(Av;va), y € Fe(An;yy)
=z € Fc(Av; vz Vyy)

(Vz,y € X)

2.9)

for all oy, vy, Bz, By € (0,1] @and-y,, vy, € [0,1).

3 (€&, €)-neutrosophic subalgebras and

ideals

We first provide characterizations of g, €)-neutrosophic
ideal.

r']'gheorem 3.1. Given a neutrosophic set.. = (Ar, Ar, Ar)in

BCK/BCTI-algebra X, the following assertions are equiva-

(1) A~ = (Ar, A1, Ar) is an(g, €)-neutrosophic ideal oX .

(2) A. = (Ar, A;, Ar) satisfies the following assertions.
( Ar(0) > Ap(z), )
Ar(0) < Ar(z)

and
( Ar(z) > Ar(z *y) A Ar(y) )
(Vz,y € X) | Ar(z) = Ar(z*y) AN Ar(y) (3.2)
Ap(z) < Ar(zxy) V Ar(y)

Proof. Assume thatA.. (Ap, A1, Ap) is an (g€, €)-
neutrosophic ideal ofX. Suppose there exist b,c € X be
such thatAr(0) < Ar(a), A7(0) < Ar(b) and Ap(0) >
Ap(c). Thena € Tc(Av;Ar(a)), b € Ic(Av; Ar(b)) and
c € Fe(A; Ar(c)). But

0¢ Te(Av; Ar(a)) NIe(Av; Ar(b)) N Fe(An; Ap(c)).

This is a contradiction, and thudr(0) > Ar(x), A;(0) >
Aj(z) and Ap(0) < Ap(z) for all x € X. Suppose that
AT(IL') < AT(IC * y) N AT(y), A[(a) < A[(a * b) N A](b)
andAp(c) > Ap(cxd) vV Ap(d) for somez, y, a,b, ¢,d € X.
Takinga := Ar(zxy)ANAr(y), B := Ar(axb) AAr(b) andy :=
Ap(cxd)V Ap(d) imply thatzxy € Te(Av; ),y € Te(Av; @),
axb € Ic(A;B),b € Ic(Av;B), cxd € Fc(Av;v) and
d € Fe(Av;). Butz ¢ Te(Av;a), a ¢ Ic(A-;B) and
¢ ¢ Fc(A~;~). Thisis impossible, and so (3.2) is valid.
Conversely, supposé.. = (Ar, A;, Ar) satisfies two con-
ditions (3.1) and (3.2). For any,y,z € X, leta, 5 € (0,1]
andy € [0,1) be such that € Te(A-; ),y € Ic(A; 3) and
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z € Fe(A~;7). Itfollows from (3.1) thatdr(0) > Ar(z) > «,

Ar(0) > As(y) > B andAp(0) < Ap(z) < 7 and so that
0eTc(Av;)NIc(Av; B)NFe(Av;y). Leta, b, e, d,z,y € X

be such thatt x b € Tc(Av;a,), b € Te(Av;ap), cxd €

Ie(Av;Be), d € Ie(AviBa), v xy € Fe(Av;v:), andy €

Fe(A~;ny) for aq, o, Be, Ba € (0,1] and~,, v, € [0,1). Us-

ing (3.2), we have

AT( ) > AT(a* b) /\AT(b) > g N\ ap
A[(C)>A[(C*d)/\A[( )Z /\ﬁd
Ap(z) < Ap(zxy) VvV Ap(y )<%\/7y

Hencea € Tc(Av;aq A ), ¢ € Ic(A; B A Bq) andax €
Fe(Av;vz V). Therefored., = (Ap, Ar, Ar) is an(e, €)-
neutrosophic ideal ok . O

Theorem 3.2. Let A,

= (Ar, A;, Ar) be a neutrosophic set

that

AT(.%') < AT(;E * y) A AT(y),
A[(G) < AI(a*b)/\A[(b),
Ap(u) > Ap(uxv)V Ap(v)

for somezx, y,a,b,u,v € X. Takinga := Ar(x xy) A Ar(y),
B :=Ar(a*b) NAr(b) andy := Ap(u=*v) vV Ap(v) imply that
a,f € (0,1],y €[0,1), xxy € Te(Av;a),y € Te(Av; ),
axb € Ic(A;0),b € Ic(Av;8), uxv € Fe(Av;y) and
v € Fe(Av;n). Butz ¢ Te(Av; ), a ¢ Ie(Av; 3) andu ¢
Fc(A-;~). Thisis a contradiction sSinCB- (A ; «), Ic(A~; )
andF¢ (A ;) are ideals ofX. Thus

Ar(z) > Ar(z *y) A Ar(y),
Ar(w) > Ar(z xy) A Ar(y),
Ap(z) < Ap(zxy) V Ap(y)

ina BCK/BC1I-algebraX. Then the following assertions are

equivalent.

(1) A~ = (Ap, A;, Ap)is an(€, €)-neutrosophic ideal ok

(2) The nonempty neutrosophice-subsets Te(A; ),
Ic(A.;B8) and Fc(A.;vy) are ideals of X for all
a,B € (0,1l andy € [0,1).

Proof. Let A = (Ar, A1, Ar) be an(e, €)-neutrosophic ideal
of X and assume th&8t-(A; «), Ic(A~; 8) andFc (A ;) are
nonempty fora, 5 € (0,1] and~ € [0,1). Then there exist
x,y,2z € X suchthatr € Tc(Av;a), y € Ic(A;8) andz €
Fe(A; ). It follows from (2.8) that

0€Te(Av;a) NIe(Av; B) N Fe(Avsy).
Let z,y,a,b,u,v € X be such thatr x y € Tc(A;q),

y € Te(Av;a), axb € Ic(Av;B), b € Ie(Av;B), uxv €
Fc(Av;y)andv € Fc(A;y). Then

Ar(x) > Ar(zxy) NAr(y) > aha =«
Ar(a) > Ar(axb) NA(b) > BAB=0
Ap(u) < Ap(uxv)V Ap(v) <yVy=17y

by (3.2), and sox € Tc(A~;a), a € I(A-;0) a

u € Fe(A~;7). Hence the nonempty neutrosopkﬂesubsets
Tc(Av;a), Ic(Av; B) and Fe(A~; ) are ideals ofX for all
a,f € (0,1] andy € [0,1).

Conversely, letA.. = (Ar, A;, Ar) be a neutrosophic
set in X for which Te(Av;a), Ic(A;B) and Fe(Av;v)
are nonempty and are ideals &f for all a,3 € (0,1] and
v € [0,1). Assume thatdr(0) < Ar(z), Ar(0) < Ar(y)
and Ap(0) > Ap(z) for somez,y,z € X. Thenz €
Te(Av; Ar(2)), y € Ie(Av; Ar(y)) andz € Fe(Av; Ap(2)),
that is, Tc(A; @), Ic(A~; ) and Fc(A.;~) are nonempty.
But0 ¢ Te(Av; Ar(x)) N Ie(Av; Ar(y)) N Fe(Av; Ap(2)),
which is a contradiction sinc&c: (A-; Ar(z)), Ic(Av; Ar(y))
and F¢(A.; Ap(z)) are ideals ofX. HenceAr(0) > Ar(x),
Ar(0) > Aj(xz) andAp(0) < Ap(z) forallz € X. Suppose

for all x,y € X. ThereforeA. = (Ar, A;, Ar) is an (€,
€)-neutrosophic ideal oK by Theorens.1. O

Proposition 3.3. Every (€, €)-neutrosophic idealA.
(Ar, A;, Ar) of a BCK/BC1I-algebra X satisfies the follow-
ing assertions.

(Va,y € X) (mgy:{

(Vz,y,2 € X) (gc*ygz =

(3.3)

Proof. Letx,y € X be such that < y. Thenz * y = 0, and so

Ar(z) > Ar(zxy) N Ar(y) = AT(O)AAT(y)=AT(y)7
Ar(z) = Ar(zxy) A Ar(y) = Ar(0) A Ar(y) = Ar(y),
Ap(z) < Ap(x*y) V Ar(y) = Ar(0) V Ar(y) = Ar(y)

by Theorem3.1. Hence (3.3) is valid. Let,y,z € X be such
thatx * y < z. Then(z x y) * z = 0, and thus

Ar(z) = Ar(z +y) A Ar(y)
> (Ar((z xy) * 2) N Ap(2)) A Ar(y)
> (Ar(0) A Ar(2)) A Ar(y)
> Ar(z) N Ar(y),
Ar(z) > Ar(zxy) AN Ar(y)
1((zxy) = 2) NAr(z)) N Ar(y)
( )N AL(2)) N Ar(y)
z) NAr(y)

’:.;

A

—~

(AVARAVAR VARV

h>
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and

Ap(z) < Ap(zxy) V Ar(y)
Ar((z*xy) x2)V Ar(2)) V Ar(y)
A ( )V Ap(2)) V Ar(y)

z)V Ar(y)

—

VAN VAN VAN VAN

{L
A*q

by Theorens.1.

Theorem 3.4. Any ideal of aBC' K/ BCI-algebraX can be re-
alized as level neutrosophic ideals of sofre €)-neutrosophic
ideal of X.

Proof. Let I be an ideal of aBCK/BCI-algebraX and let

A. = (Ar, A;, Ar) be a neutrosophic set iX given as fol-
lows:
a ifzel,
Ar: X —[0,1], 20— { 0 otherwise,
6 ifxel,
Ar: X - [0, { 0 otherwise,
. ~ ifzel,

Ap X =01, { 1 otherwise
where(a, 3, ) is a fixed ordered triple if0, 1] x (0,1] x [0, 1).
ThenTec(Av;a) = I, Ic(Au;B) = 1 andFe(AN,y) = I
Obviously,AT( ) > Ar(z), Ar(0) > Ar(z) and Ap(0) <

t

Ap(x)forallz € X. Letz,y € X. If x xy € I andy € I, then
x € 1. Hence

Ar(z xy) = AT(Z/) Ar(z) = a,
Ar(z xy) = Ar(y) = Ar(z) = 3,
Ap(zxy) = Ap(y) = Ar(z) =7,
and so
Ar(z) > Ar(z *y) A Ar(y),
Ar(x) > Ar(z xy) AN Ar(y),
Ap(r) < Ap(z*y) vV Ar(y).

If z+xy ¢ I andy ¢ I, then

Ar(zxy) =
Ar(z xy) =
Ap(xzxy) =

Ar(y) =
Ar(y) =
Ar(y)

Thus

zxy) A Ar(y),
rxy) AN Ar(y),

(x*xy)V Ap(y).

> Ar
> Aq(
< Ap

If zxy € Iandy ¢ I, then

Ar(xxy) = aandAr(y) =0,
Ar(zxy) = gandA;(y) = 0,
Ap(x*xy) =vyandArp(y) = 1,

It follows that

Ar(z) 20 = Ap(z xy) A Ar(y),
Ar(w) > 0= Ar(z xy) AN Ar(y),
Arp(z) < 1= Ar(z*xy)V Ap(y).

Y

Similarly, if x x y ¢ I andy € I, then

Ar(x) > Ap(z +y) A Ar(y),
A[(.’lﬁ) Z A[(SL’ * y) N A[(y),

ThereforeA.. = (Ar, Ar, Ar) is an(€, €)-neutrosophic ideal
of X by Theorens.1. This completes the proof. O

Lemma 3.5 ([5]). A neutrosophic sefl.. = (Ar, A7, Ar)ina
BCK/BCI-algebraX is an(e, €)-neutrosophic subalgebra of
X ifand only if it satisfies:

) . (3.5)

Theorem 3.6. In a BCK-algebra, every(€, €)-neutrosophic
ideal is an(e, €)-neutrosophic subalgebra.

Ar(z*y) > Ar(z) N Ar(y)
Ar(z*xy) > Ar(z) A Ar(y)

(Va,y € X) (
Ar(zxy) < Ap(x) V Ap(y)

Proof. Let A = (Ar, A, Ar) be an(e€, €)-neutrosophic ideal
ofaBCK-algebraX. Sincerxy < xforall z,y € X, it follows
from Propositior3.3and (3.2) that

Ar(z*y) 2 Ar(z) = Ap(z xy) A Ar(y) = Ar(z) A Ar(y),
Ar(zxy) > Ar(z) > Ar(zxy) ANAr(y) > Ar(z) A Ar(y),
Ap(zxy) < Ap(z) < Ap(zxy) V Ar(y) < Ap(z) V Ar(y).

ThereforeA.. = (Ar, A1, Ar) is an(€, €)-neutrosophic subal-
gebra ofX by Lemma3.5. O

The following example shows that the converse of Theorem

3.6is not true in general.

Example 3.7. Consider a seX = {0,1,2,3} with the binary
operation« which is given in Tablel.
Then(X;«,0) is aBCK-algebra (see [6]). Lefi .
Ar) be a neutrosophic set i defined by Table
It is routine to verify thatd.. = (Ar, Ar, Ar) is an(e, €)-
neutrosophic subalgebra of. We know that/-(A.;3) is an
ideal of X forall 8 € (0,1]. If « € (0.3,0.7], thenT¢ (A~; ) =
{0,1,3} is not an ideal ofX. Also, if v € [0.2,0.8), then
Fc(Ao;v) = {0,1,3} is not an ideal ofX. ThereforeA..
(Ar, A;, Ar) is not an(e, €)-neutrosophic ideal X by The-
orem3.2.

- (AT7 AIv
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. i i t :
Table 1: Cayley table for the binary operation “+” NG tWo cases

N 0 1 B 3 a=\/{ie A" |i<a}anda # \/{i e A" |i<a}.

0 0 0 0 0 ) N

1 1 0 0 1 First case implies that

; § :1,) g (2) x€Tc(Av;a) & x e Dforalli < « (3.9)

@I’EQ{D1|Z<OL}

Hencelc(A.;a) = N{D; | i < a}, whichis an ideal ofX. For
the second case, we claim thHat(A;a) = U{D; | i > a}.

Table 2: Tabular representation.df. = (Ar, A;, A ) )
P (Ar, Ar, Ar) If € U{D; | i > a}, thenz € D, for somei > «. Thus

X Ar(z) Ar(z) Ap(x) Ar(z) >i> a,and s € Te(Av;a). If x ¢ U{D; | i > a},
0 0.7 0.9 0.2 thenz ¢ D, foralli > . Sincea # \/{i € AT | i < a},
1 0.7 0.6 0.2 there existg > 0 such thala — ¢,) N AT = (). Hencer ¢ D;
2 0.3 0.6 0.8 for all i > o« — ¢, which means that it € D, theni < o — «.
3 0.7 0.4 0.2 ThusAr(z) < a —e < o, and sar ¢ Te(A~;«). Therefore

Te(Av; o) = U{D; | i > a} which is an ideal ofX since{Dy,}
forms a chain. Similarly, we can verify that (A ; 3) is an ideal

) N _ of X. Finally, we consider the following two cases:
We give a condition for afie, €)-neutrosophic subalgebra to

be an(e, €)-neutrosophic ideal. = /\{j e A |y < j}andy # /\{j e AF |y <j}.

Theorem 3.8. Let A.. = (Ar, A;, Ar) be a neutrosophic set
ina BCK-algebraX. If A. = (Ap, A7, Ap) is an (g, €)-
neutrosophic subalgebra of that satisfies the conditiog8.4), z € Fe(Av;y) & x e Djforallj >y

then it is an(e, €)-neutrosophic ideal oX . saeeniD,|j > (3.10)

For the first case, we have

Proof. Takingz = y in (3.5) and using (IIl) induce the condition

: : and thusFe (A;v) = N{D, | 7 > ~} which is an ideal ofX.
(3.1). Sincer x (x*xy) < yforallz,y € X, it follows from (3.4) The second case implies tht (A:) = U{D; | j < ~}. In

that fact, if € U{D; | j < v}, thenz € D; for somej < ~. Thus
Ap(z) > Ap(z «y) A Ap(y), Ap(z) < j < v, thatis,z € Fe(A~;v). HenceU{D; | j <
Ar(z) > Ar(z x y) N Ar(y), 7} C Fe(Av;y). Nowif o ¢ U{D; | j < v}, thenz ¢ D; for
Ap(z) < Ap(z+y) V Ar(y) all j < . Sincey # A{j € AT | v < j}, there existg > 0

such thaty, y+)NAT is empty. Hence ¢ D; forall j < y+e,
for all z,y € X. ThereforeA. = (Ar, A;, Ap)is an(e, andsoifr € D;,thenj > vy+e. ThusAp(z) > v+¢ > v, and
€)-neutrosophic ideal ok by Theorens.1. O hencer ¢ Fe(A~;v). ThusFe(Av;y) CU{D; | j <~}, and

) thereforeFc (A;v) = U{D; | j < v} which is an ideal ofX.
Theorem 3.9. Let{D;, | k € AT U AT U AT} be a collection of Consequentlyd.. — (Ar, /Jlu Ap) is an(e, €)-neutrosophic
ideals of aBC'K/BCI-algebra X, whereA”, A" and A" are 4oa of ¥ by Theorens.2. O

nonempty subsets ff, 1], such that

T I F A mappingf : X — Y of BCK/BCI-algebras is called
X={DalacA }U{Ds|[BeA}U{Dy|7vEA (}3’6) a homomorphisnif f(z % y) = f(z)  f(y) for all z,y € X.
: Note that if f : X — Y is a homomorphism oBCK/BC1I-
(Vi,j e A"UANM UAF) (i > 5 & D;C Dy). (3.7) algebras, therf(0) = 0. Given a homomorphisnf : X — Y
of BCK/BC1I-algebras and a neutrosophic get = (Ar, Aj,
LetA. = (A7, A;, Ar) be a neutrosophic set iX defined as Ap)in'Y, we define a neutrosophic séf. = (A%, A{, Aj;) in
follows: X, which is called thénduced neutrosophic set, as follows:
Ar: X = [0,1], z— V{a € AT |z € D,},

Ar: X — 00,1, = \/{Be€ Al |z € Dg}, (3.8)
Ap: X — 0,1, z— AN{y € AF |z € D,}.

Al X —[0,1], z — Ap(f(2)),
AT X —[0,1], z — Af(f(2)),
AL X —[0,1], @ — Ap(f(z)).

Theorem 3.10. Let f : X — Y be a homomorphism of
Proof. Leta, 5 € (0,1]andy € [0,1) besuchthalc (A.; ) # BCK/BCI-algebras. IfA. = (Ar, A1, Ap) is an (€,
0, Ic(A~; B) # 0 andFc(A~;y) # 0. We consider the follow- €)-neutrosophic ideal ot”, then the induced neutrosophic set

ThenA. = (Ar, Ar, Ar) is an(&, €)-neutrosophic ideal oX .
[0,
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Af = (AL A Al)in X is an(e, €)-neutrosophic ideal ok .

Proof. For anyz € X, we have

Al (2) = Ar(f(2)) < Ap(0) = Ar(£(0)) = AL(0),
Al(@)=A <aw<Awn=mum»=Aﬁw
AL(z) = Ap(f(x)) > Ap(0) = Ap(f(0)) = AL(0)

Letx,y € X. Then

and

=Ap(f(z) = f(y) vV Ar(f(y))

> Ap(f(2)) = A% (2)
ThereforeA!, = (Af., A, AL)is an(e, €)-neutrosophic ideal for all A,
of X by TheorenB.1. O

Theorem 3.11.Let f : X — Y be an onto homomorphism o
= (Ar, Ar, Ar) be a neutro-

BCK/BCI-algebras and led.,

sophic set irf”. If the induced neutrosophic sdf, = Af Af

I

A{;) in X is an(e, €)-neutrosophic ideal ok, thenA.. = (AT,
Aj, Ar)is an(eg, €)-neutrosophic ideal of".
Proof. Assume that the induced neutrosophic 8¢t = (A7,

Al ATYin X is an (€, €)-neutrosophic ideal of¢. For any
x €Y, there existss € X such thatf(a) = x sincef is onto.
Using (3.1), we have

Ar(z) = Ar(f(a)) = Al(a) < AL(0) = Ar(£(0)) = Ar(0)
Ar(z) = Ar(f(a)) = Af(a) < AJ(0) = Ar(£(0)) = A;(0),
Ap(z) = Ap(f(a)) = AL(a) > AL(0) = Ap(f(0)) = Ap(0)

Letz,y € Y. Thenf(a) = x and f(b) = y for somea,b € X.
It follows from (3.2) that

and

ThereforeA.. = (Ar, A7, Ar) is an(€, €)-neutrosophic ideal
of Y by Theorens.1. O

Let Vic,e)(X) be the collection of al(€, €)-neutrosophic
ideals of X and leta, 8 € (0,1] and~y € [0,1). Define binary
relationsR§, Rf andR}. on N ¢ (X) as follows:

AIR’?BI & Ic(Av; B) = Ie(B; B)
ArREBr & Fe(Av;y) = Fe(Ba;v)

(3.11)

= (AT, A[, AF) and B. = (BT, By, BF) in
/\/(e,e)(X)-

Clearly R$, RY and R}, are equivalence relations on

(ee X. For anyA. = (Ar, A, Ap) € N o)(X),
~]r (resp., [A.]; and [A.]r) denote the equivalence
class ofA. = (Ar, A1, Ap) in Nic ¢)(X) underR$ (resp.,

R} andR},). Denote byN ¢ ¢)(X)/R%, Nic.c)(X)/R} and
N(e,e)(X)/R}. the collection of all equivalence classes under

R$, RY andR7,, respectively, that is,

Nee)(X)/Rs = {[A-]r | A~
Nie.o)(X)/R] = {[A]1 | Ax
N(e,e)(X)/R} = [AN}F | A

Now let Z(X

= (Ar, A1, Afp) € Me,e)(X)v
= (ATaAvaF) € MG,G)(X)'
= (ATvAIaAF) € -A/(E,E)(X)'

) denote the family of all ideals oX. Define

' mapsf,, g andh,, from N ¢)(X) to Z(X) U {0} by

fa(AL) =Te(Avsa), gp(An) = Ie(Av; B) and

hy(Ax) = Fe(Ax;7),
respectively, for allA. = (Ar, A7, Ar) in N ¢)(X). Then
far g3 andh., are clearly well-defined.

Theorem 3.12. For any«, 5 € (0,1] and~ € [0,1), the maps
far gp @andh., are surjective fromV¢ ¢y (X) to Z(X) U {0}.

Proof. Let0.. := (07, 07, 1r) be a neutrosophic set i where
Or, Oy and 1p are fuzzy sets inX defined byOr(z) = 0,

01( ) = 0andlg(z) = 1 for all z € X. Obviously,
= (0, 07, 1p) is an (€, €)-neutrosophic ideal ofX.
Also fa(0~) = Te(0ns0) = 0, g5(0~) = Ic(0~;8) =
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and h,(0~) = Fe(0~;y) = 0. For any ideall of X, let Proof. Consider thge, €)-neutrosophic ided.. := (07, Oy,
A. = (Ar, A1, Ar) be the(g, €)-neutrosophic ideal o 1) of X which is given in the proof of Theoref12. Then
in the proof of Theoren3.4. Thenf,(A.) = Te(Av; ) = I,

98(A) = Ie(Av;B) = T andhy(A) = Fe(Aw;y) = 1. $al02) = fa(0~) Nha(0) = Te(0~; ) N Fe (005 0) =0,
Thereforef.,, g5 andh., are surjective. O #s(0~) = g5(0~) Nhg(0~) = Ie(0~; B) N Fe(0~; 8) = 0.

. ., For any ideall of X, consider the(c, €)-neutrosophic ideal
Theorem ~ 3.13. The quotient sets N(G’e)_(X)/R " Ao = (Ar, A7, Ap) of X in the proof of Theorens.4. Then
N(e,e)(X)/Rg and N e (X)/R}, are equivalent to
Z(X)U {0} foranya, 8 € (0,1] andy € [0, 1). Val(A) = fa(AL) Nho(AL)

Proof. Let A = (Ap, A, Ap) € Nic,¢)(X). Foranya, 5 € = TelA~ia)nFe(Ania) =1

(0,1) andy € [0,1), define and
fi: Neoy(X) /R — T(X) U {0}, [A]r — fa(AL), (AL) = gs(A) Nha(AL)
95+ Nie.o)(X)/RY = Z(X) U{0}, [A]r = gs(A), - Ziz(AN;ﬂ) ﬁﬁFe(AN;ﬁ) =1

h:: Nie,e)(X)/RE — Z(X) U {0}, [Al]p — hy(AL).

Y

Thereforep, andyg are surjective. O
Assume thatf,(A~) = fa(B~), g8(A~) = gp(B~) and

hy(A~) = hy(B.) for B. = (Br, Br, Br) € Ne)(X).
ThenTe(Av;a) = Te(Bwja), Ie(Av; B) = Ie(Bw; f) and
Fe(An;7) = Fe(B.;~) whichimply thatA; R Br, A;RY By
and AFR’]Y?BF Hence [AN]T = [BN}T, [AN][ = [BN]]
and [A.]r = [B.]r. Thereforef;, g5 and h are injec-
tive. Consider thge, €)-neutrosophic idead.. := (0r, Oy,
1r) of X which is given in the proof of Theore®.12. Then
Fa((0-]7) = fa(02) = Te(0~;a) = 0, g5([0~]1) = gs(0~) = Proof. Givena, 3 € (0,1), define two maps;, andyj as fol-
Ie(0~;8) = 0, andh3([0~]p) = hy(0~) = Fe(0-;7) = 0. lows:
For any ideall of X, consider the(e, €)-neutrosophic ideal .

: %:/\/(e,@(X)/%—J(X)U{ },[ ~IRa H%(A )
oy Ao o et mwomad men 3 e TR Bl

()—I(N;ﬂ)—landh*([])—h(fl) o . _
FG(AN,V) _EI Hencef;, g5 andh* arerurjectlve and thehc o ([Ar.) = @5 ([B~]r,) and @B([AN]RLJ) -

proof is over. O #5 ([B-lr,) for all [Al]z,,[Blr, € Nee)(X)/¢a and
[A ]Rg’ [BN]Rﬁ € '/V.(E,E)(X)/Qoﬁ’ then

Theorem 3.15. For any «,8 € (0,1), the quotient sets
Nie,e)(X)/pa and N ¢)(X)/pp are equivalent taZ(X) U

For anya, 8 € [0, 1], we define another relatiorfs, andR FalA) N ha(A) = fa(Bo) N ho(Bo)
on N ¢y (X) as follows:
(e:€)
and
(Av,B.) € Ry & Te(Av;a) N Fe(An; )
=Te(Bio) N Fe(Buia) (599 98(A~) Nhg(AL) = gs(B~) Nhg(B~),
(Av, Br) € Rp & 1e(Av; B) N Fe(Ax; B) i
= Ic(B~; B) N Fe(B-; 3) thatis,
forall A. = (Ar, A;, Ap) and B = (Br, By, Bp) in Te(Av;o) NFe(Avia) = Te(Basa) N Fe(Brs )

N(e,e)(X). Then the relation®,, andR s are also equivalence
relations onV¢ ¢ (X). and

Theorem 3.14. Givena, 3 € (0, 1), we define two maps Ie(Av; B) N Fe(Ani f) = Ie(B~i B) N Fe(Brs )
Hence(A.,B.) € R, and(A.,B.) € Rgs. It follows that
a M X)u{n B
po: Mee(X ) (f EA {) b ha(AL), [A-lr, = [B.lr, and[AJz, = [B~lr,. Thusy; andyj
o5 Nic o (X ) 7(x) U {0}, (3.13) are injective. Consider thes, €)-neutrosophic idedl .., := (07,
e s g(A) N hg(AL) 07, 1r) of X which is given in the proof of Theoreﬁllz Then
for eachA. = (A7, A1, Ar) € Nic,e)(X). Theny, and g o ([0~]Ro) = Pa(0~) = fa(0~) N ha(0~)
are surjective. =Tc(0o;a) N Fe(0;a) =0
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and

¢ ([0~]r,) = ©5(0~) = ga(0~) N he(0.)
= Ie(O~§ﬁ) N Fe(0; 8) = 0.

For any ideall of X, consider the(e, €)-neutrosophic ideal
A. = (Ar, A;, Ap) of X in the proof of Theoren3.4. Then

Pa ([AN]RQ) = pa(An) = fo(AL) Nha(AL)
=Tc(Av;a)NFe(Av;a)=1

and

o5 ([Ax]r,) = 0p(An) = gs(A) Nhp(AL)

=Ic(Av; )N Fe(Av; B) = I

Thereforep?, andyj; are surjective. This completes the proof.
O
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Abstract: The notions of a commutatives, €)-neutrosophic ideal

and a commutative falling neutrosophic ideal are introduced, and
several properties are investigated. Characterizations of a commu-
tative (€, €)-neutrosophic ideal are obtained. Relations between
commutative(e, €)-neutrosophic ideal an¢e, €)-neutrosophic
ideal are discussed. Conditions for @, €)-neutrosophic ideal to

be a commutativée, €)-neutrosophic ideal are established. Rela-
tions between commutaties, €)-neutrosophic ideal, falling neu-
trosophic ideal and commutative falling neutrosophic ideal are con-
sidered. Conditions for a falling neutrosophic ideal to be commuta-
tive are provided.

Keywords: (commutative) €, €)-neutrosophic ideal; neutrosophic random set; neutrosophic falling shadow; (commutative) falling neutrosophic ideal.

[ zations of a commutativés, €)-neutrosophic ideal, and discuss

1 Introduction f hic ideal, and d
relations between a commutatiye, €)-neutrosophic ideal and

Neutrosophic set (NS) developed by Smarandache 7}, an (e, e)-neutrlos_ophic ideal. We providg conditions for(@
] is a more general platform which extends the conce )S-neutrosophlc_ldeal to t_)e a commutatie e)-neutr(_)sophlc
of the classic set and fuzzy set, intuitionistic fuzzy set a al, and _consmer relat_lons between a gommuta(twee)-
interval valued intuitionistic fuzzy set.  Neutrosophic sé}eUtrOSOph'C ideal, a falling neutrosophic ideal and a commu-
theory is applied to various part which is refered to thtg\tive falling neutrosophic ideal. We give conditions for a falling
site http://fs.gallup.unm.edu/neutrosophy.htm.  Jun, Boruma{?%'trosom'c ideal to be commutative.
Saeid andOztiirk studied neutrosophic subalgebras/ideals in
BCK/BCI-algebras based on neutrosophic points (see [1], [6] o )
and [10]). Goodman [2] pointed out the equivalence of a fuzg Preliminaries

set and a class of random sets in the study of a unified treatment

of uncertainty modeled by means of combining probability aWBCK/BOI-aIgebra is an important class of logical algebras
fuzzy set theory. Wang and Sanchez [16] introduced the theoryfifoduced by K. 18ki (see [3] and [4]) and was extensively in-
falling shadows which directly relates probability concepts witipstigated by several researchers.

the membership function of fuzzy sets. The mathematical strucBy a BCI-algebra, we mean a séf with a special elemerit

ture of the theory (,)f falling shadoyvs is formulated in | : ]. Tan ghd a binary operationthat satisfies the following conditions:
al. [14,15] established a theoretical approach to define a fuzzy

inference relation and fuzzy set operations based on the theory qf _
falling shadows. Jun and Park [7] considered a fuzzy subalgeb@\ (Vz,9,2 € X) (@ y) * (@5 2)) + (25 y) = 0),
and a fuzzy ideal as the falling shadow of the cloud of the sub-

algebra and ideal. Jun et al. [2] introduced the notion of neutrdD (Vz,y € X) ((z x (xxy)) xy = 0),

sophic random set and neutrosophic falling shadow. Using these

notions, they introduced the concept of falling neutrosophic s(i) (Vz € X) (z x 2z = 0),

algebra and falling neutrosophic ideal BC K /BCI-algebras,

and investigated related properties. They discussed relationglg- (Vx,y € X) (zxy =0, yxx =0 = x =y).
tween falling neutrosophic subalgebra and falling neutrosophic

ideal, and established a characterization of falling neutrosopiig BC I-algebraX satisfies the following identity:
ideal.

In this paper, we introduce the concepts of a commutgtive (V) (Vz € X) (0xz = 0),
€)-neutrosophic ideal and a commutative falling neutrosophic
ideal, and investigate several properties. We obtain charactémen X is called aBC K -algebra. Any BCK/BCI-algebraX
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satisfies the following conditions: (0, 1] andy € [0, 1), we consider the following sets:
(Ve X)(xx0=1), (2.2) Te(A;a) :={z € X | Ar(z) > a},
Ic(A;B) ={re X | Aj(x) >

(v$7y’Z€X)<x§y:>$*z§y*z>7 2.2) c(A;B) {z e X | Ai(z) > 3},

TSY = ZRYSZHT Fe(A;7y) i ={z e X | Ap(z) <~}
Ve, y,z € X = , 2.3 .
(V29,2 H(@sy)xz=(ex2)xy) (23) We sayTe(A4;a), Ic(A; 5) and Fc(A;~y) areneutrosophice-
(Ve,y,z€ X)((xx2)* (yx2) <z xy) (24) gubsets.

wherez < y if and only if z x y = 0. A nonempty subsef ofa A neutrosophic setd = (Ar, A7, Ar) in a BCK/BCI-
BCK/BCI-algebraX is called asubalgebreof X if z +y € S algebraX is called anc, €)-neutrosophic subalgebrmaf X (see
forallz,y € S. A subsetl of a BCK/BC1I-algebraX is called [6]) if the following assertions are valid.
anideal of X if it satisfies:
z€Te(Asay), y € Te(A4; ay)
0el, (2.5) = zxy € Te(A;az A ay),
x € Ic(A;8:), y € 1e(A;58y)
VeeX)Vyel)(zxyel = zel). (2.6) (Va,y € X) :> w*yeIG(A;ﬁm/ilﬁy), (2.8)
T € Fe(Ajve), y € Fe(Asvy)
A subset/ of a BC K -algebraX is called acommutative ideal = zxy € Fe(A;7: V)
of X if it satisfies (2.5) and
for all oy, vy, Bz, By € (0, 1] andy,, v, € [0, 1).

A neutrosophic sed = (Ar,Ar,Ar) in a BCK/BCI-

algebraX is called an(e, €)-neutrosophic ideabf X (see [10])
if the following assertions are valid.

Observe that every commutative ideal is an ideal, but the con-
verse is not true (see []). z€Te(A;az) = 0€Te(A;aq)
(Vz € X) (2.9)

(xxy)xzel, zel = xx(yx(yxx)) el (2.7)

forallz,y,z € X.

T e IG(A76I) = 0¢€ IE(A761>
We refer the reader to the books P,for further information v e Fe(A;v:) = 06 Fe(A; )

regardingBC K /BCI-algebras.

and
For any family{a; | ¢ € A} of real numbers, we define vry e Te(Aian), y € Te(Asay)
\/{ai\ieA} :=sup{a; | i € A} = IETE(A a A ay)
(Vz,y € X) zxy € Ie(A; Br), yGIE( i By) (2.10)
and ’ = x € Ic(A; 5 A By)
zxy € Fe(A;vs), y € Fe(A;y)
Nfai| i€ A} :=inf{a; | i € A}. = © € Fe(A;7m V)

for all vy, oy, Bz, By € (0,1] @andy,, vy, € [0,1).
If A = {1,2}, we will also useu; V a; anda, A ay instead of  |n what follows, let X and P(X) denote aBCK/BCI-

VA{ai | i € A} and/{a; | i € A}, respectively. algebra and the power set &f, respectively, unless otherwise
Let X be a non-empty set. Aeutrosophic seNS) in X (see specified.
[12]) is a structure of the form: For eachr € X andD € P(X), let
A= {(zx; Ar(x), Ar(x), Ap(x)) |z € X} z:={CePX)|zel} (2.11)

where A; : X — [0,1] is a truth membership function,2nd
Ar : X — [0,1] is an indeterminate membership function, and
Arp : X — [0,1] is a false membership function. For the sake of

simplicity, we shall use the symbel = (Ar, A;, Ar) forthe  an ordered pair(P(X), B) is said to be shyper-measurable
neutrosophic set structureon X if B is ac-field in P(X) andX C B.

A= {{z; Ar(x), A1 (z), Ap(2)) | z € X} Given a probability spac&?, A, P) and a hyper-measurable
structure(P(X), B) on X, aneutrosophic random sen X (see
[8]) is defined to be a tripl€ := ({7, &1, £r) iInwWhich&r, & and
Given a neutrosophic sét = (Ar, A7, Ar)inasetX,a,8 € ¢p are mappings fronf2 to P(X) which areA-B measurables,

D:={z|ze D} (2.12)
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that is, forallz,y,z € X, ag, ay, Bz, By € (0,1] andy,, v, €
5;1(0) ={wreQ|ér(wr)eCle A Example 3.2. Consider a se = {0, 1,2, 3} with the binary
(YO € B) 5;1(0) —{wr eQ|&(w) el e A operation« which is given in Tabléel.

GHC) ={wreQ|ér(wr) eCle A
(2.13)

Given a neutrosophic random set= ({1, &r,&r) ON X, con-
sider functions:
.HT X — [0, 1], T — P(wT | T € §T(wT)),
f{] X — [O 1] Ty — P(WI | Ty € f[((x)])),
HF X — [0 1] Txpt— 1 —P(CLJF | Tp € §F(wp))

ThenH := (Hp, H;, Hr) is a neutrosophic set oii, and we

Table 1: Cayley table for the binary operation “x”

* 0 1 2 3

0 0 0 0 0

1 1 0 0 1

2 2 1 0 2

3 3 3 3 0
Then (X;*,0) is a BCK-algebra (see [9]). LetA =

(Ar, Ar, Ar) be a neutrosophic set i defined by Table

call it aneutrosophic falling shadoy{see [3]) of the neutrosophic

random set := ({7,&1,&F), and§ = (£7,&1,€F) is called a
neutrosophic cloudsee [8]) ofH := (Hrp, H;, Hr).

For example, consider a probability spa¢®, A, P)
([0,1],.A,m) whereA is a Borel field or{0, 1] andm is the usual
Lebesgue measure. L&k = (HT,HI,HF) be a neutrosophic
setinX. Then atripleg := ({1, &1, &F) in which

&r 1 10,1] > P(X), o = Te(H; av),
& :10,1] = P(X), 8+ Ic(H; B),
€F:[071]_>,P(X)’7’_>F€(f{§7)

is a neutrosophic random set aid:= ({1,¢7,&r) is a neu-
trosophic cloud ofH := (HT,HI,HF) We will call € :
(&1, &1, Er) defined above as threutrosophic cut-clousee B])
of H = (HT, H], HF)

Let (Q2, A, P) be a probability space and let= (¢r, &1, &F)
be a neutrosophic random set éa If &r(wr), &(wy) and
¢r(wr) are subalgebras (resp., |deals)>()for allwr, wr, wr €
Q, then the neutrosophic falling shadad : (HT,HI,HF)

of £ := (&r,&1,&r) is called afalling neutrosophlc subalgebra

(resp. falling neutrosophic ideal) o (see [8]).

3 Commutative (€, €)-neutrosophic
ideals

Definition 3.1. A neutrosophic setd (Ar,Ar, Arp) in a
BCK-algebraX is called acommutative(e, €)-neutrosophic
ideal of X if it satisfies the condition (2.9) and

(xxy)*z€Te(Aaz), z € Te(A; ay)

= wx(y* (y*2)) € Te(Ajap N ay)
(xxy)*z € le(A;8:), 2 € Ie(A; By)

= xx* (y* (y*z)) € Ic(A; Bz A By)
(xxy)xz€ Fe(A;va), 2 € Fe(A;yy)

= xx (y* (y*2)) € Fe(A;72 V)

(3.1)

Table 2: Tabular representation &f= (Ar, A;, Ar)

0 0.7 0.9 0.2
1 0.3 0.6 0.8
2 0.3 0.6 0.8
3 0.5 0.4 0.7

It is routine to verify thatd =
(€, €)-neutrosophic ideal oX..

(Ap, Ar, Ap) is a commutative

Theorem 3.3. For a neutrosophic sel = (Ar, A7, Ar) in a
BCK-algebraX, the following are equivalent.

(1) The non-emptg-subsetdc (A; «), Ic(A;3) andFc(A;7)
are commutative ideals of for all a, 8 € (0,1] andy €
[0,1).

(2) A= (Ar, A5, AF) satisfies the following assertions.

Ar(0) > Ar(z)
(Vz € X) < Ar(0) > Aq(x) ) (3.2)
Ar(0) < Ap(z)
and forallz,y, z € X,
Ar(z * (y * (y * x)))
> Ar((z*xy) % 2) A Ap(2)
Ar(z* (y * (y x 2)))
! > Ar((mxy) x 2) N Ag(2) (3:3)
Ar(z * (y (y*m)))
< Arp((z*xy)*2)V Ap(2)

Proof. Assume that the non-emptye-subsets T¢(4;«),
Ic(A;8) and Fe(A;~) are commutative ideals oK for all
a, € (0,1]andy € [0,1). If A7(0) < Ar(a) for somea € X,
thena € Tc(A; Ar(a)) and0 ¢ Tc(A; Ar(a)). Thisis a
contradiction, and sel(0) > Ar(x) for all z € X. Similarly,
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Ar(0) > Aj(z)forallz € X. Suppose thallz(0) > Ap(a) for subset§c(A4; ), Ic(A4; 3) andFc(A; ) are commutative ideals
somea € X. Thena € Fc(A; Ar(a)) and0 ¢ Fe(A; Ap(a)). of X forall o, 8 € (0,1] andy € [0,1). O
This is a contradiction, and thu$r(0) < Ap(x) forall z € X.

Therefore (3.2) is valid. Assume that there exigh, c € X such Theorem 3.4. LetA = (Ar, A;, Ar) be a neutrosophic set in
that a BCK-algebraX. ThenA = (Ap, A;, Ap) is a commutative

(€, €)-neutrosophic ideal oX if and only if the non-empty neu-
Ap(ax (bx (bxa))) < Ar((a*xb)xc) A Ar(c). trosophice-subsetd« (4; ), Ic(A; 8) and Fc(A;~) are com-
mutative ideals of for all o, 5 € (0,1] andy € [0, 1).
Takinga := Ap((a*b) * ¢) A Ap(c) implies that(a * b) * ¢ €
Te(A;a) ande € Te(A; ) buta * (b (b* a)) ¢ Te(A;a), Proof. Let A = (Ar, A;,Ar) be a commutative(e, €)-

which is a contradiction. Hence neutrosophic ideal ok’ and assume that: (4; «), Ie(A; 8) and
Fc(A;~) are nonempty fory, 5 € (0,1] andvy € [0,1). Then

Ap(zx (y* (y*x2))) > Ar((z *y) * 2) A Ap(2) there existr,y,z € X such thatr € Tc(A;a), y € Ic(4;0)

andz € Fc(A;v). It follows from (2.9) thatd € Tc(4;a),

forall z,y, 2 € X. By the similar way, we can verify that 0 € Ic(A; 8) and0 € Fc(A;y). Letz,y, z,a,b,c,u,v,w € X

be such that
Ar(z = (y* (y*2)) > Ar((x y) * 2) A Ar(2)
(xxy)*xz € Tec(A; ),z € Te(4; ),
forall z,y, z € X. Now suppose there arey, z € X such that (axb)xce Ic(A;B), c e Ic(A;B),
(uxv)xw € Fe(A;7y), w € Fe(A;7).
Ap(zx(y*(y*xx))) > Ap((z*y) x 2) V Ap(z) = 1.

Then
Then(zxy)*z € Fc(A;vy)andz € Fc(A;y) butzs(yx(yxz)) ¢
Fc(A;~), a contradiction. Thus zx(y*(yxx)) € Te(4d;aNa) =Te(4;a),
Ap(z(y* (y*2)) < Ap((z*y) *2) V Ap(2) ax(bx(bxa)) € Ic(A; BN B) = Ic(A;8),

ux (v (vxu)) € Fe(A;yVy) = Fe(A;7)
forallz,y,z € X.
by (2.10). Hence the non-empty neutrosopldesubsets

Conversely, letd = (A7, A7, Ar) be a neutrosophic set i Ze(A4; a), Ie(A; 3) and Fe (4; ) are commutative ideals of
satisfying two conditions32) and (3.3). Assume thd@t (A; o), foralla,3 € (0,1] andy € [0,1).
Ic(A; B) and F<(A; ) are nonempty fory, 3 € (0,1] andy € Conversely, letd = (A1, A;, Ar) be a neutrosophic set ik
[0,1). Letz € Te(A;a), a € Ic(A;B) andu € Fe(A;~) forwhich Te(4; a), Ie(A; 3) and Fe(A; ) are nonempty and
for a,3 € (0,1 andy € [0,1). ThenAp(0) > Ap(z) > o, are commutative ideals of forall o, 8 € (0,1] andy € [0, 1).
A7(0) > Aj(a) > 3, andAp(0) < Ap(u) < v by (3.2). It Obviously, (2.9) is valid. Let,y,2 € X anday, ay € (0,1]
follows that0 € Te(A;a), 0 € Ic(A; 3) and0 € Fe(A;~). Let be suchthatz * y) x z € Te(A; o) andz € Te(A; ). Then
a,b,c € X be such thata «b) xc € Te(A; o) ande € Te(A;0)  (x*y) x 2 € Te(A; o) andz € Te(A; a) wherea = ag A ay,.
for o € (0,1]. Then SinceT<(A; «) is a commutative ideal ok, it follows that

Ar(a* (b* (bxa))) = Ar((a*xb) xc) A Ar(c) > a z* (y* (y*z)) € Te(Aya) = Te(Ajap A ay).
by (3.3), and s * (b * (b* a)) € Te(A;). If (zxy) xz € Similarly, if (z «y) x z € Ic(A4;5;) andz € Ic(4; ) for all

Ic(A;B) andz € Ic(A;p) forall z,y,z € X andj € (0,1], %,¥,2 € X andf,, B, € (0,1], then
thenA;((x *y) x z) > fandA;(z) > (. Hence the condition

(3.3) implies that wx (Y (yxx) € Ie(A; B A By)-
Al (y % (U % > A )% 2) A A >3, Now, suppose thdtr«y)*z € Fc(A;v,) andz € Fe(A;~y,) for
1@y (y ) 2 Ar((w«y) «2) 1(2) 28 all z,y,z € X and,,vy, € [0,1). Then(z x y) * z € Fe(A;7)

thatis,z + (y * (y * z)) € Ic(A; 3). Finally, suppose that andz € Fe(A;y) wherey = v, V . Hence
(x*xy)*z € Fe(A;v) andz € Fe(A4;7) zx(yx(yxz)) € Fe(A;v) = Fe(A;va V)

forallz,y,z € X andy € (0,1]. ThenAp((z *y)*z) < yand SinceFe (A;v)' is a commutgtive ideal ok . ThgreforeA =
Ap(z) < 7, which imply from the condition (3.3) that (Ar, Ar, Ap) is a commutativé e, €)-neutrosophic ideal oX'.
O

Ap(zx(yx(yx2))) < Ap((xxy) x2) V Ap(2) <. _ _
Corollary 3.5. LetA = (Ar, A;, Ar) be a neutrosophic set in

Hencer x (y = (y xx)) € Fe(A;~). Therefore the non-empty- a BCK-algebraX. ThenA = (Ar, A;, Ar) is a commuta-
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tive (€, €)-neutrosophic ideal oK if and only if it satisfies two Then (X;x,0) is a BCK-algebra (see [9]). Letd =

conditions(3.2)and (3.3). (Ar, Ar, Ar) be a neutrosophic set ik defined by Tablel
Proposition 3.6. Every commutativée, <)-neutrosophic ideal
A= (Ap, A5, Ar) of aBCK-algebraX satisfies: Table 4: Tabular representation &f= (A, A, Ar)
xxy € Te(A; ) X Ar(z) Af(x) Ar(z)
wxy € Ie(A; B) 1 0.55 0.45 0.37
(Y2, y € X) Sy (yra) e le(ap | CA 2 0.33 0.66 0.47

forall a, 8 € (0,1] andy € [0,1).

Routine calculations show that = (Ap, Ay, Ap) is an(eg, €)-
neutrosophic ideal of. But it is not a commutativée, €)-
neutrosophic ideal oK since(2 x 3) x 0 € T¢(A;0.6) and0 €
Te(A;0.5) but2 % (3% (3%2)) ¢ Te(A;0.5A0.6), (1x3)x*
2 € Ic(A;0.55) and2 € Ic(A;0.63) butl « (3% (3x1)) ¢
Proof. Let A = (Ar,A;, Ap) be a commutative(e, €)- 1e(A;0.55 A 0.63), and/or(2 = 3) 0 € Fe(A;0.43) and0

Proof. Itis induced by taking = 0 in (3.1).

Theorem 3.7. Every commutativée, €)-neutrosophic ideal of
a BCK-algebraX is an(e, €)-neutrosophic ideal ok .

neutrosophic ideal of 8C K -algebraX. Assume that Fe(A;0.39) but2 (3 (3% 2)) ¢ Fe(A;0.43 Vv 0.39).
zxy € Te(A;an),y € Te(A; ), We provide conditions for afe, €)-neutrosophic ideal to be
axbelc(A;Ba), b€ Ic(A;By), a commutativé €, €)-neutrosophic ideal.

cxd € Fe(A;n.),d € Fe(A; .
e(4i%e) e(4i7) Theorem 3.9.LetA = (Ar, A;, Ar) be an(e€, €)-neutrosophic

forall z,y,a,b,c,d € X. Using €.1), we have ideal of aBC K-algebra X in which the conditior{3.4)is valid.
ThenA = (Ar, A;, Ar) is a commutativée, €)-neutrosophic
(@x0)*xy=xxy € Te(4ay), ideal of X.
(ax0)xb=uaxbe I(A; L),
(cx0)xd=cxde Fc(A;7.). Proof. Let A = (Ar, A;, Ar) be an(e€, €)-neutrosophic ideal
of X andx,y, z € X be such thafz x y) x 2 € Tc(4; a,) and
It follows from (3.1), (2.1) and (V) that € To(A: ) for s,y € (0,1). Thenzxy € Te (A: ap Aary)

sinceA = (Ar, A7, Ar) is an(€, €)-neutrosophic ideal oX'.
v=2%0=2x(0x(0x2)) € Te(4; 00 N ay), It follows from (3.4) thatz « (y * (y * z)) € Te(A; g A ay).
a=ax0=ax(0x(0xa)) € Ic(A;fa A ), Similarly, if (z % ) * z € Ic(A;8,) andz € Ic(A;f,), then
c=cx0=cx(0x(0xc)) € Fe(A; 7V 7a)- 2 (y* (y*2)) € Ie(A; By A By). Leta,b,c € X andya, 7p €
[0,1) be such thafa * b) * ¢ € Fc(A;7,) ande € Fe(A;7,).
Thena x b € Fc(A4;v4 V ), which implies from (3.4) that
ax(bx(bxa)) € Fe(A;7, V). ThereforeA = (Ap, Ar, Ar)
is a commutativée, €)-neutrosophic ideal ok . O

ThereforeA = (Ar, A;, Ar) is an(€, €)-neutrosophic ideal of
X.

The converse of Theoref7is not true as seen in the follow-
ing example. o
Lemma 3.10. Every (€, €)-neutrosophic ideal A =

Example 3.8. Consider a seX = {0, 1,2, 3,4} with the binary (Ar,A;, Ar) of a BCK-algebraX satisfies:

operation« which is given in Table
Y,z €ETe(4;0) = x € Te(4; )

Y,z € Ie(4;8) = z € Ic(A;B) (3.5)
Table 3: Cayley table for the binary operation “«” Y,z € Fe(A;y) = z € Fe(A;y)
* 0 1 2 3 4 ;

forall o, €10,1),v € (0,1] andz,y,z € X withz xy < 2.

- . 5 5 . 5 Bel0,1),~ € (0,1] y y
1 1 0 1 0 0 Proof. For anya, 3 € [0,1), v € (0,1] andz,y,z € X with
2 2 2 0 0 0 zxy < z, lety,z € Te(4;0), y,z € Ic(4;3) andy,z €
3 3 3 3 0 0 Fe(A;7). Then
4 4 4 4 3 0

(rxy)*2=0¢€Te(A;a)NIc(A;8) N Fe(4;7)
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2.9). 2.1 : :
by (2.9). It follows from (2.10) that Table 5: Cayley table for the binary operation “x”

rxy € Te(A;a) N Ic(A; B) N Fe(4;7)

* 0 1 2 3 4

0 0 0 0 0 0

and so that | . 0 0 . .
x € Te(A;a) N Ic(A; B) N Fe(A; 7). 2 2 1 0 2 2

e( ) e( ) e( ) 3 3 3 3 0 3

Thus (3.5) is valid. O 4 4 4 4 4 0

Theorem 3.11. In a commutativeBC K -algebra, everye, €)-
neutrosophic ideal is a commutatiye, €)-neutrosophic ideal.

Proof. Let A = (Ar, A;, Ar) be an(e, €)-neutrosophic ideal
of a commutativeBC K -algebraX . Letz, y, 2 € X be such that trosophic random set ol which is given as follows:

(xxy)* 2z € Te(Asaz) N Ie(A; B2) N Fe(A; ) {03} if t €[0,0.25),
, (0,4} ift € [0.25,0.55),
and r 0] =PX), 2= £/ 91 ifte[0.55,0.85),
[

{0,3,4} ift €[0.85,1],
kAS TG(A;O‘y) N IE(A§ﬁy) N FG(A§7y)
for o, oy, Ba, By € (0,1] @and-y,, v, € [0,1). Note that 1 if £ €[0,0.45),
if ¢ € [0.45,0.75),

3
(@ (y = (y*x))* ((xxy)*2)) * 2 ,4{ if t € [0.75,1],

= ((z* (y=* (yx))) *2) * ((xxy) * 2) J
S (@x(yx(y*a)))*(x*y) an
= (zx (zxy))* (y* (y*z)) {0} if £ € (0.9, 1],
-0 {0,3} if t € (0.7,0.9],
¢&r:0,1] = P(X), z— ¢ {0,4} if t € (0.5,0.7],
by (2.3), (2.4) and (Ill), which implies that {0,1,2,3} if ¢t € (0.3,0.5],
X if t € [0,0.3].

(@ (y* (yxx)))* ((z*y)xz) <z o
Thenér(t), £7(t) and &g (t) are commutative ideals ok for

It follows from Lemma3.10that all t € [0,1]. Hence the neutrosophic falling shaddw :=
(Hr,Hr,Hp) of £ := (&7, &5, &) is a commutative falling neu-
zx(y* (y*z)) € Te(Ayar) NIe(A; Br) N Fe(A;7z). trosophic ideal ofY, and it is given as follows:
Therefore A = (Ar,A;, Ap) is a commutative(e, €)- 1 if =0,
neutrosophic ideal ok . O . 0.3 if z € {1,2},
Ar(@) =93 04  ife=3,
. . ] 045 ifz =4,
4 Commutative falling neutrosophic
ideals ] 1 ifze{0,1,2},
H = 0.3 if x =3,
Definition 4.1. Let (2, .A, P) be a probability space and lgt= 1) 0.25 :f i 4
(ér,&1.&r) be a neutrosophic random set onB&' K -algebra ' '
X. Then the neutrosophic falling shaddw := (Hp, H;, Hr) and
of ¢ := (¢r, &1, &F) is called acommutative falling neutrosophic _
idealof X if &7(wr), &7 (wr) andé(wr) are commutative ideals y 0 ifz=0,
of X for all wr, wy, wp € Q. Hp(z)=< 05 ifxe{l,2,4},
0.3 ifx=3.

Example 4.2. Consider a seX = {0, 1, 2, 3,4} with the binary

operation« which is given in Tablé&

Then (X;%,0) is a BCK-algebra (see [9]).  Consider Given a probability spac&, A, P), let H := (Hyp, H;, Hp)
(Q,A,P) = (]0,1],4,m) and let := (¢r,&7,&r) be a neu- be a neutrosophic falling shadow of a neutrosophic random set
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5 = (€T7£I7§F)- FOI’:C S X, Iet

Qx;&r) :={wr € Q| z € &r(wr)},
Qz;&r) = {wr € Q| 2 € &(wr)},
(.’E fF = {wF cN | T € §F(wF)}

ThenQ(x; &r), Q(x; &1), Ux;6r) € A (see [8]).

Proposition 4.3. Let H :=
falling shadow of the neutrosophic random §et= (¢7,&7,&F)
onaBCK-algebraX. If H :=
falling neutrosophic ideal ok, then

Q(z *y) * 2;67) N Q23 &7)
C Q= (y*(y*));ér)
Q(z xy) * 2;€1) N Q(2; 1)
CQz*(y*(yxx));&)
Q(z xy) x 2;€r) N Q25 EF)
CQz*(y*(y*z));&r)

(4.1)

and

*(y*x));ér) C Q(x*y) * ;1)
x(y*2));&r) CQU(z*y) *2;&r)
# (y*2));6r) CQ(x *y) * 2;8F)

(4.2)

2
—
* %
—~
<
~~

forall z,y,z € X.

Proof. Let

wr € Q((x *y) * z;6r) N QU2 ),
wr € Q((x xy) * 2;&) Nz €p),
wr € Q(z *xy) * 2;6r) N Q2 6F)

forall z,y,z € X. Then

(x*xy)*z € &r(wr) andz € Er(wr),
(xxy)*z € &(wr)andz € &r(wy),
(rxy)*2z € ép(wp)andz € Ep(wr).

Sincer(wr), &1 (wr) andér(wr) are commutative ideals of,
it follows from (2.7) that

T (y* (y*2)) € &r(wr) N&r(wr) NEr(wr)
and so that

wp € Qz * (y* (y*x)); €7),
wr € Qz* (y * (y*1)); &),
wr € Q@ (y* (y*2));Ep).

Hence (4.1) is valid. Now let

wr € Qz* (y* (y*x)); 1),
wr € Uz * (y * (y *x)); &),
wp € Qz* (y* (y*x));&r)

(Hr,H;, Hr) be a neutrosophic

forall z,y,z € X. Then

xx(yx*(yxx)) € &r(wr) N&r(wr) NEp(wr).

Note that

—~
/\

z*y) * ) * (z* (y* (y* 2)))
(zxy)* (z*(y*(y*z))))*2
((y* (y*xx)) xy)xz=((yxy) =
Ox(y*xx))x2=0%x2=0,

(VAN

(HT, Hy, Hp) is a commutative \hich yields

((zxy) * 2) * (v (y* (y * 7))
=0 € &{p(wr) Nér(wr) NEp(wr)-

Sinceér(wr), &r(wr) andép(wr) are commutative ideals and
hence ideals ok, it follows that

(:L' * y) * 2 € fT(wT) ﬂf[(&)[) Ofp(wp).

Hence
wr € Q(z *y) * z;&7),
wr € Q((z *y) * z;£1),
wr € Q(z *y) * 2;{F).
Therefore 4.2) is valid. O

Given a probability spacé?, A, P), let

F(X):={f]|f:Q— Xisamapping}. (4.3)
Define a binary operatio® on F(X) as follows:
(Vw e Q) ((f®9)(w) = f(w) * g(w)) (4.4)

for all f,g € F(X). Then(F(X);®,6) is a BCK/BCI-
algebra (see [7]) wheris given as follows:

0:Q— X, wr— 0.

For any subsetl of X andgr, g5, gr € F(X), consider the

followings:
AL = {wr € Q| gr(wr) € A},
A7 = {wr € Q| gr(wr) € A},
A% ={wr € Q| gr(wrp) € A}
and

§r 1 Q — P(F(X)), wr — {gr € F(X) | gr(wr) € A},
§1:Q — P(F(X)), wr— {91 € F(X) | g1(wr) € A},
Er 1 Q= P(F(X)), wr — {gr € F(X) | gr(wr) € A}.

ThenA?., AY, AY. € A (see [3]).
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Theorem 4.4. If K is a commutative ideal of 8C K-algebra of X. O
X, then . .
The converse of Theorem5is not true as seen in the follow-
ér(wr) ={9r € F(X) | gr(wr) € K}, ing example.
§r(wr) :7{91 € f(X))(| gr(wr) € K%r’{ Example 4.6. Consider a seX = {0, 1,2, 3,4} with the binary
¢r(wr) = {gr € F(X) [ gr(wr) € K} operation« which is given in Tableé

are commutative ideals of (X).

Proof. Assume thaf( is a commutative ideal of BC K-algebra Table 6: Cayley table for the binary operation "+

X. Sincef(wr) =0€ K,0(wy) =0€ K andf(wp) =0€ K * 0 1 2 3 4
for all wr, wr, wrp € Q, we haved € {p(wr), 0 € &(wy) and 0 0 0 0 0 0
0 € &p(wr). Let fr, g7, hy € F(X) be such that 1 1 0 1 0 1
2 2 2 0 0 2

(fr ® gr) ® hy € {p(wr) andhy € Ep(wr). 3 3 2 1 0 3

4 4 4 4 4 0

Then

(fr(wr) * gr(wr)) * hr(wr) = ((fr ® g7) ® hr)(wr) € K Then (X;*,0) is a BCK-algebra (see [9]).  Consider

andhr(wr) € K. SinceK is a commutative ideal oX, it (2,4, P) = ([0,1],.A,m) and let{ := ({7,&1,£r) be a neu-

follows from (2.7) that trosophic random set ol which is given as follows:

(fr @ (g7 ® (97 ® f1)))(wr) 1) itre0),

= fr(wr) * (9r(wr) * (97 (wr) * fr(wr))) € K, &r:[0,1] = P(X), z+— %0:2’}4} :f i E {0:5’57'0.7;)’)'
that iS,fT ® (gT ® (gT ® fT)) S gT(WT). HencefT(wT) is a {07 1,2, 3} ifte [0757 ]-]’

commutative ideal ofF (X). Similarly, we can verify thag; (w;y)
is a commutative ideal af (X). Now, let fr, gr, hp € F(X)

(0,1} ifte0,0.34),
be such thatfr ® gr) ® hr € {p(wrp) andhp € {p(wr). Then 6 0,1 PX), 51 {0,4} if ¢ € [0.34,0.66),
(fr(wr) * gp(wr)) * hp(wr) ’ ) g((?, 1,4} |I i € [8.?2,(1).78),

=(fr®gr)®hp)(lwr) € K if t €[0.78,1],

and
andhr(wr) € K. Then

{0} if ¢ € (0.87, 1],
(fr ® (97 ® (9r ® fr)))(wr) (0,2} ifte(0.76,0.87),
= fr(wr) < (grlwr) * (gr(wr) + frwe) € K, & 0,1 = P(X), w3 {04} i 1€ (058,076,
{0,2,4} if t € (0.33,0.58],

and sofr ® (gr ® (gr ® fr)) € &r(wr). Hencetp(wr) is a X ¢ [0.033]

commutative ideal ofF (X). This completes the proof. O

_ N Thené&r(t), &(t) and &g (t) are commutative ideals ok for
Theorem 4.5. If we consider a probability spack?, A, P) = g1 ¢ < [0,1]. Hence the neutrosophic falling shadd® :=
([0,1],.4,m), then every commutatie, €)-neutrosophic ideal (Hrp, Hy, Hp) of € := (&7, &1, £p) is @ commutative falling neu-
of a BC'K-algebra is a commutative falling neutrosophic idea'trosophic ideal ofX, and it is given as follows:

Proof. Let H := (Hr,H;, Hr) be a commutative(c, €

)-neutrosophic ideal ofX. Then Tc(H;a), Ic(H;pB) and (1)45 II v = (1)
Fc<(H;~) are commutative ideals of for all o, 8 € (0, 1] and i B 0.8 !f x = 2,
v € 10,1). Hence a triple := (&7,&1,€r) in which r(z) = 0.25 :f i - 31
& :10,1] = P(X), a— Te(H;a), 02 ifz=4,
&r:[0,1] = P(X), B Ic(H; ),
Ep [0,1] — P(X), v — Fe(H:7) ] (1)68 :;ii(l)
~ ~ ~ ~ H](.’IZ‘) = ’ . o
is a neutrosophic cut-cloud @ := (Hr, H;, Hp). Therefore 022 if x € {2,3},
H := (Hr, Hy, Hr) is a commutative falling neutrosophic ideal 0.66 if z =4,
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and and
0 if £ =0, {0} if t €(0.84,1],
~ ) 067 ifxe{1,3}, . {0,3} if t € (0.76,0.84],
Hp(@) =9 031 ifz—2 & 0] = PX) 229 10" 179 4y it ¢ € (0.58,0.76),
0.24 ifz=4. X if £ € [0,0.58].
But H := (Hp, H;,Hp) is not a commutative(e, €)- Then&r(t), {r(t) andx(t) are ideals ofX for all ¢ € [0,1].
neutrosophic ideal oK since Hence the neutrosophic falling shadd := (HT, Hy, HF) of
: . & = (&1,&1,¢F) is a falling neutrosophic ideal k. But it
(3x4) %2 € Tc(H;0.4) and2 € Tc(H;0.6), is not a commutative falling neutrosophic ideal¥fbecause if
) € [0,0.27), 8 € [0,0.35) and~y € (0.76,0.84], thenép(a) =
but3 « (4« (4% 3)) =3 ¢ Tc(H;0.4). {0,3}, &1(B) = {0,3} andégr(y) = {0, 3} are not commutative

ideals ofX respectively.
We provide relations between a falling neutrosophic ideal and

a commutative falling neutrosophic ideal . Since every ideal is commutative in a commutatBé’ K -

» algebra, we have the following theorem.
Theorem 4.7. Let (2, 4, P) be a probability space and let
H:= (HT,HLHF) be a neutrosophic falling shadow of a neufheorem 4.9. Let (22, A, P) be a probability space and let
trosophic random sef := (¢7,&7,&r) on a BCK-algebra. If H := (Hr, H;, Hy) be a neutrosophic falling shadow of a neu-
H:= (HT, Hy, HF) is a commutative falling neutrosophic ideatrosophic random st := ({7, {1, {r) on a commutativé3C K -
of X, then it is a falling neutrosophic ideal df. algebra. IfH := (HT,HI,HF) is a falling neutrosophic ideal

. L. ) _ of X, then it is a commutative falling neutrosophic idealof
Proof. Let H := (Hr, H;, Hr) be a commutative falling neu-

trosophic ideal of 8BC K -algebraX. Thenér(wr), £7(wy) and Corollary 4.10. Let (Q, A, P) be a probability space. For any
¢r(wp) are commutative ideals of for all wr, wr, wr € Q. BC K-algebraX which satisfies one of the following assertions
Thusér(wr), &r(wr) andgF(wF) are ideals ofX for all wr, wy,
wp € Q. ThereforeH := (Hyp, H;, Hp) is a falling neutro-
sophic ideal ofX. O

Ve,y € X)(z <y = x <yx(yxx)), (4.5)
Ve,y e X)(x <y = x=yx*(yxx)), (4.6)

(

(
The following example shows that the converse of Theorem Evm Y EX) @ (zry) =yx(y*(zx(wxy))),  (47)
(

4.7is not true in general. Vo,y,2 € X)(v,y < z,2xy<zxz = x<y), (4.8)
. _ _ Vr,y, 2 € X)(z < < = 2 < 4.9
Example 4.8. Consider a seX = {0, 1, 2, 3,4} with the binary nY e Jeszzrys<zre T<Y), (4.9)

operation which is given in Table/ let # := (Hy,H;, Hr) be a neutrosophic falling shadow of

a neutrosophic random sét := (&7,67,&r) On X, If H =

Table 7: Cayley table for the binary operation “+” (Hr, H;, Hp) is a falling neutrosophic ideal ok, then it is a
commutative falling neutrosophic ideal &f.

* 0 1 2 3 4

0 0 0 0 0 0

1 1 0 0 1 0
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Abstract The motivation of the present paper is to extend the concept of neu-
trosophic soft prime ideal over a ring. In this paper the concept of neutrosophic soft
completely prime ideals, neutrosophic soft completely semi-prime ideals and neutro-
sophic soft prime k - ideals have been introduced. These are illustrated with suitable
examples also. Several related properties, theorems and structural characteristics of
each are studied here.

Keywords  Neutrosophic soft completely prime ideals; Neutrosophic soft com-
pletely semi-prime ideals; Neutrosophic soft prime k - ideals.

1 Introduction

Because of the insufficiency in the available information situation, evaluation of mem-
bership values and nonmembership values are not always possible to handle the uncer-
tainties appearing in daily life situations. So there exists an indeterministic part upon
which hesitation survives. The neutrosophic set theory by Smarandache [1,2] which
is a generalisation of fuzzy set and intuitionistic fuzzy set theory, makes description
of the objective world more realistic, practical and very promising in nature. The
neutrosophic logic includes the information about the percentage of truth, indetermi-
nacy and falsity grade in several real world problems in law, medicine, engineering,
management, industrial, I'T sector etc which are not available in intuitionistic fuzzy
set theory. But each of the theories suffers from inherent difficulties because of the
inadequacy of parametrization tools. Molodtsov [3] introduced a nice concept of soft
set theory which is free from the parametrization inadequacy syndrome of different
theories dealing with uncertainty. The parametrization tool of soft set theory makes
it very convenient and easy to apply in practice. The classical algebraic structures
were extended over fuzzy set, intuitionistic fuzzy set, soft set, fuzzy soft set and in-
tuitionistic fuzzy soft set by so many authors, for instance, Rosenfeld [4], Malik and
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Mordeson [5,6], Lavanya and Kumar [8], Bakhadach et al. [9], Dutta et al. [10-12],
Maji et al. [13], Aktas and Cagman [14], Augunoglu and Aygun [15], Zhang [16],
Maheswari and Meera [17] and others.

The notion of neutrosophic soft set theory (NSS) has been innovated by Maji [18].
Later, it has been modified by Deli and Broumi [19]. Cetkin et al. [20,21], Bera and
Mahapatra [22-26] and others have produced their research works on fundamental
algebraic structures on the NSS theory context.

This paper presents the notion of neutrosophic soft completely prime ideals, neu-
trosophic soft completely semi-prime ideals and neutrosophic soft prime k-ideals along
with investigation of some related properties and theorems. The content of the present
paper is designed as following :

Section 2 gives some preliminary useful definitions related to it. In Section 3, neu-
trosophic soft completely prime ideals is defined and illustrated by suitable examples
along with investigation of its structural characteristics. Section 4 deals with the
notion of neutrosophic soft completely semi-prime ideals with development of related
theorems. The concept of neutrosophic soft prime k-ideals along with some properties
has been introduced in Section 6. Finally, the conclusion of our work has been stated
in Section 7.

2 Preliminaries

We recall some basic definitions related to fuzzy set, soft set, neutrosophic soft set
for the sake of completeness.

2.1 Definition [24]

1. A binary operation x* : [0, 1] x [0,1] — [0,1] is said to be continuous t - norm if =
satisfies the following conditions :
(i) * is commutative and associative.
(ii) * is continuous.
(ili) ax 1 =1%a=a, Va € [0,1].
(iv) axb<cxd if a<c,b<d with a,b,c,de€|0,1].
A few examples of continuous t-norm are a * b = ab,a x b = min{a,b},a x b =
max{a +b—1,0}.
2. A binary operation ¢ : [0,1] x [0, 1] — [0, 1] is said to be continuous ¢ - conorm (s
- norm) if ¢ satisfies the following conditions :
(i) © is commutative and associative.
(ii) © is continuous.
(iii) ao0=00a=a, Ya € [0,1].
(iv) aob<cod if a<ec, b<d with a,bede[0,1].
A few examples of continuous s-norm are a©b = a+b—ab,aob = max{a,b},aob =
min{a + b, 1}.
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2.2 Definition [1]

Let X be a space of points (objects), with a generic element in X denoted by z.
A neutrosophic set A in X is characterized by a truth-membership function T,
an indeterminacy-membership function I, and a falsity-membership function Fjy.
Ta(z), Ia(z) and Fa(x) are real standard or non-standard subsets of |0, 1*[. That
is Ta, I, Fa : X —]70,1F[. There is no restriction on the sum of Ty(x), I4(x), Fa(x)
and so, 0 < sup Ta(z) 4+ sup Ia(x) + sup Fa(x) < 3T.

2.3 Definition [3]

Let U be an initial universe set and E be a set of parameters. Let P(U) denote the
power set of U. Then for A C FE, a pair (F, A) is called a soft set over U, where
F:A— P(U) is a mapping.

2.4 Definition [18]

Let U be an initial universe set and E be a set of parameters. Let NS(U) denote the
set of all NSs of U. Then for A C E, a pair (F, A) is called an NSS over U, where
F:A— NS(U) is a mapping.

This concept has been redefined by Deli and Broumi [19] as given below.

2.5 Definition [19]

1. Let U be an initial universe set and E be a set of parameters. Let NS(U) denote
the set of all NSs of U. Then, a neutrosophic soft set N over U is a set defined by a
set valued function fx representing a mapping fn : F — NS(U) where fy is called
approximate function of the neutrosophic soft set N. In other words, the neutrosophic
soft set is a parameterized family of some elements of the set NS(U) and therefore it
can be written as a set of ordered pairs,

N = {(e, fn(e)):e€ E}
= {(e,{< x?TfN(e)(x>>IfN(€)(x)?FfN(e)(m) >xeU}):e€E}

where Ty (e)(2), Lty (e) (%), Frye) () € [0, 1], respectively called the truth-membership,
indeterminacy-membership, falsity-membership function of fy(e). Since supremum
of each T, I, F is 1 so the inequality 0 < Ty, (¢)(2) + Lpy ) (@) + Frye)(z) < 3 is
obvious.

2. Let Ny and N, be two NSSs over the common universe (U, E'). Then N; is said to
be the neutrosophic soft subset of Ny if Ty () (2) < Ty (0)(@), L1y, (e)(T) = Ly, () (@),
Fle(e)({B) > FfN2(e)(l'), Vee F and Vx € U.

We write N; C N, and then N, is the neutrosophic soft superset of Nj.
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2.6 Proposition [22]

An NSS N over the group (G, 0) is called a neutrosophic soft group iff followings hold
on the assumption that a * b = min{a, b} and a ¢ b = max{a, b}.

Try(e) (@) * Try(e)(y),

Ity (@) © Ipy(e)(y),
Five)(®) 0 Fro(v)); Va,y € G,Ve € E.

TfN(e) (xoyil)
Iy () (woy™)
Fryey(zoy™")

ININ IV

2.7 Definition [24]

1. A neutrosophic soft ring N over the ring (R, +, -) is called a neutrosophic soft left
ideal over R if fy(e) is a neutrosophic left ideal of R for each e € F i.e.,
(7) fn(e) is a neutrosophic subgroup of (R, +) for each e € E and

| T (@ y) 2 Tiyeo(y)
(1) § Iy (@ y) < Iye(y)
FfN( )(1’ y) < FfN e)( ) for z,y € R.

2. A neutrosophic soft ring N over the ring (R, +,-) is called a neutrosophic soft
right ideal over R if fy(e) is a neutrosophic right ideal of R for each e € F i.e.,
(1) fn(e) is a neutrosophic subgroup of (R, +) for each e € E and

| v (@) 2 Tiye(2)
(1) S Lrnie)(® - y) < Lpye) ()
Frye)(@ - y) < Fiye)(v); for v,y € R.

3. A neutrosophic soft ring N over the ring (R, +,-) is called a neutrosophic soft
ideal over R if fy(e) is a both neutrosophic left and right ideal of R for each e € E.

2.8 Definition [25]

1. Let p: U — V and ¢ : E — E be two functions where F is the parameter set for
each of the crisp sets U and V. Then the pair (p,1)) is called an NSS function from
(U,E) to (V, E). We write, (¢,v): (U, E) — (V,E). If M is an NSS over U via
parametric set F, we shall write (M, E') an NSS over U.

2. Let (M, E), (N, E) be two NSSs defined over U,V respectively and (¢,%) be an
NSS function from (U, E) to (V, E). Then,

(i) The image of (M, E) under (¢,1), denoted by (¢, v)(M, E), is an NSS over V
and is defined by :

(0, ) (M, E) = (p(M),(E)) = {< ¥(a), foor) >: a € E} where Vb € ¢(E), vy € V,
T maxg, y Maxy)=b L) (2)], ifz € v '(y)
Focan ) (Y , otherw1se
I MiNg () =y Mily(a)=p [, (2)], ifz € 7' (y)
St ® Y 1, otherw1se
Ia mlngp(x miniﬁ( )=b [FfM(a) (ZE)], ifr e 9071<y)
Fo(an) () 1, otherw1se
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(ii) The pre-image of (N, E) under (¢, 1)), denoted by (p, ) (N, E), is an NSS over
U and is defined by :
(0, )M (N, E) = (¢7'(N), v 1(E)) where Va € "' (E),Vz € U,
T fo-1(a (@ (l‘) - TN (@(‘r))
@ () = Ty (e(2))
)

F @ (T) = FfN[w(a)](SD(ﬂf))

If ¢ and ¢ is injective (surjective), then (¢, ) is injective (surjective).

2.9 Definition [26]

1. An NSS M over (R, E) is said to be constant if each fy/(e) is constant for e € E
l.e., (TfM(e) (ZE), ]fM(e)<J]), FfM(e) (ZE)) is same Ve € F, Vx € R.

For M to be nonconstant, if for each e € E the triplet (T,,e) (%), L1y, (e) (@), Frpre)(€))
is atleast of two different kinds Vz € R.
2. Let R be a ring and M, N be two NSSs over (R, E). Then MoN = L (say) is also
an NSS over (R, F) and is defined as following, for e € E and x € R,

T (z) = MaXg=yz [TfM(e) (y) = TfN(e)(Z)]
fule) 0 ifxis notexpressibleas r = yz.

o minz:yz [IfM (e) (y) < ‘[fN(e) (Z)]
It () = { 1 ifxis notexpressibleas x = yz.

. minx:yz [FfM (6) (y) ¢ FfN(e) (Z>]
Freo(2) = { 1 ifxis notexpressibleas © = yz.

3. A neutrosophic soft ideal P over (R, E) is said to be a neutrosophic soft prime
ideal if (i) P is not constant neutrosophic soft ideal, (ii) for any two neutrosophic soft
ideals M, N over (R, E), MoN C P = either M C P or N C P.

2.10 Theorem [26]

1. Let P be an NSS over (R, E) such that cardinality of fp(e) is 2 i.e., |fp(e)| = 2

and [fp(e)](0,) = (1,0,0) for each e € E. If Py ={z € R : [fp(e)](x) = [fr(e)](0,)}
is a prime ideal over R, then P is a neutrosophic soft prime ideal over (R, E).

2. Let P be an NSS over (R, E'). Then P is a neutrosophic soft left (right) ideal over
(R,E)iff P={z € R:[fr(e)l(x) = (1,0,0)} with 0, € P is a left (right) ideal of R.
3. S(# ¢) C Ris an ideal of R iff there exists a neutrosophic soft ideal M over (R, E)
where fy: E — NS(R) is defined as, Ve € E,

(7“1,7'2,’1"3) ifzeS
o) = { (s e e

with r; > t1, 7o < to, T3 <13 and r1,7T2,73,11,19,13 € [0, 1]
In particular, S(# ¢) C R is an ideal of R iff the characteristic function xg is a
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neutrosophic soft ideal over (R, F') where xs : B — NS(R) is defined as, Ve € E,

1,0,0) ifzes

Wﬂ@”“Z{EQLS if z ¢ S
4. An NSS M over (R, E) is a neutrosophic soft left (right) ideal iff each nonempty
level set [far(€)](a,8,4) Of the neutrosophic set fi(e) is a left (right) ideal of R where
a € ImTyy (e, B € Im Iy e), v € Im Fy o).
5. Let P be a neutrosophic soft left (right) ideal over (R, E). Then Py = {x € R :
[fr(e)](z) = [fr(e)](0,)} is a left (right) ideal of R.
6. Let P be a neutrosophic soft prime ideal over (R, E). Then Py = {z € R :
[fp(e)](z) = [fr(e)](0,)} is a prime ideal of R.

2.11 Definition [7]

A left k-ideal I of a semiring S is a left ideal such that if @ € I and z € S and if
eithera+x €l orx+ac€l, thenx e l.

Right k-ideal of a semiring is defined dually. A non-empty subset [ of a semiring S
is called a k-ideal if it is both a left k-ideal and a right k-ideal.

3 Neutrosophic soft completely prime ideal

Here first we have defined a completely prime ideal of a ring and then defined a neu-
trosophic soft completely prime ideal. These are illustrated with suitable examples.
Along with several related properties and theorems have been developed.

Through out this paper, unless otherwise stated, E is treated as the parametric set
and e € F, an arbitrary parameter. Moreover the standard ¢-norm and s-norm are
taken into consideration wherever needed through out this paper i.e., axb = min{a, b}
and a ¢ b = max{a, b}.

3.1 Definition
An ideal S of a ring R is called a completely prime ideal of R if for =,y € R,
xy € S = eitherxz € Sory e S.

3.1.1  FEzample

1. For the ring (Z, +, ) (Z being the set of integers), an ideal (2Z, +, -) is a completely
prime ideal.

2. We assume a ring R = {0,z,y,z}. The two binary operations addition and
multiplication on R are given by the following tables :

+10|x|y|= Olx|y|=z
0|0z |y ]| = 000|100
Tablel| z |2 |0 |2 |y Table 2| 2 [0 [0 ]0 |0
ylylz|0]a y10]0lyly
zlz|lylz|O0 z10]0|yl|ly
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It is an abelian ring. With respect to these two tables, {0, z} and {0, y} are two ideals
of R. From 2nd table, it is evident that {0, x} is a completely prime ideal of R but
{0,y} is not so because z - z = y though z ¢ {0, y}.

3. Consider the another ring R = {0,x,y, z} with two binary operations addition
and multiplication on R are given by the following tables :

+ 10|z |y |z Olxz|y| =
Olz|y|= 0/]0]0[0/0

Table3 |z [z | 0| 2z |y Table4 |2 | 0000
y|lylz|0]x y|0[0]0|0
zlz|ly|lxz|0 z|0 |z |y |

It is not an abelian ring. With respect to these two tables, {0, z} is an ideal of R but
not completely prime ideal. Because y-2=10,z-z=x,y-y =0 but y,z ¢ {0, x}.

3.2 Proposition

If S is a completely prime ideal of a ring R then S is a prime ideal of R.

Proof. Let S be a completely prime ideal of a ring R and A, B be two ideals of R
such that AB C S. Suppose A € S and B € S. Then there exists t € A and y € B
such that x,y ¢ S. But zy € S as AB C S. Since S is a completely prime ideal of
R, so either z € S or y € S and this leads a contradiction to the fact z,y ¢ S. Hence
S is a prime ideal of R.

3.3 Definition

A neutrosophic soft ideal N over (R, F) is called a neutrosophic soft completely prime

ideal if Vx,y € R and Ve € F,

TfN( )(x y) < maX{TfN 6)( ) TfN(€ ( )}

[fN(e)(x Z/) > mln{[fzv (SL’) [fN e)( )}

FfN( )(J} y) > mln{FfN(e)( ) FfN 6)( >}
3.3.1 Example

Consider the Example [3.1.1](2). We define an NSS M over (R, E) as following,
Vr € R and Ve € E,

(1,0.3,0.1) ifr € {0,2}
Far(e))r) = { (0.8,06,04) if r ¢ {0,2}.

Then M is a neutrosophic soft completely prime ideal over (R, E).

3.4 Theorem

An NSS N is a neutrosophic soft completely prime ideal over (R, E) iff for e €
E, |fn(e)] =2, [fn(e)](0;) = (1,0,0) and N = {z € R : [fn(e)|(z) = (1,0,0)} is a
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completely prime ideal of R.

Proof. Let N be a neutrosophic soft completely prime ideal over (R, F). Then N
is a neutrosophic soft ideal over (R, E) and so N is an ideal over R by Theorem
[2.11](2). To prove Nis a complete prime ideal, let zy € N for x,y € R. Then
[fn(e)](zy) = (1,0,0) for e € E. But,

1 =Ty (zy) < max{Tyy()(2), Ty (y)}

0 = Ipy(e)(zy) = min{ gy o) (2), iy () ()}

0= FfN(e)(xy) > mln{FfN ( ) FfN (y)}a
This implies that

TfN(e)(O ) =1< maX{TfN 6)(m) TfN(e)( )}

Ity (0p) = 0 2> min{Tyy o) (%), Ly (o) (1)}

FfN(e)(OT‘> =02> min{FfN 6)( ), Frye )( )}
This shows that,

either TfN(e)(OT) < TfN(e)(x) or Tyy(e )(O ) < TfN(e)(y)

either ]fN(e)(OT) > IfN(e)(I) or ]fN(e)(O ) > IfN (y)a

either FfN(€)<0 ) 2 FfN(e)< ) or FfN(e)(O ) > Fry( )(y>
But Ty e)(0r) = Tiy(e)(2), Iry(e)(0r) < Tpy(e)(2); Fry(e)(0r) < Fyy(ey(2), Vo € R.
Hence Ty () () = Tyye)(0r), Tpye) (%) = Lpy(e)(0r), Frye)(®) = Frye)(0r), V2 € R
ie., z,y € N. Thus N i is a complete prime ideal.

Conversely suppose Nisa completely prime ideal with the given conditions. As N

is an ideal of R, so N is a neutrosophic soft ideal over (R, E) by Theorem [2.11](2).
For contrary, suppose N is not neutrosophic soft completely prime ideal. Then,

TfN( )(xy) > InaX{TfN e)( ), TfN(e)( )}

]fN(e)(Iy) <m1n{]f1\7 ( ) ]fN ( )}

FfN(e)(xy) < min{FfN(e ( )7 FfN(e)(y)}S
Since |fn(e)| = 2 and [fx(e)](0,) = (1,0,0) then there exists x,y € R so that
[fv(e)](x) =[fn(e)](y) = (r1,7re,7r3) # (1,0,0) (say) for 0 < r; < land 0 < ro,rg < 1.
Then,

Tryie)(@y) > 11, Iiye)(xy) <12y Fiye)(y) <73
= Tiye (x ) =1, [fN(e)('ry) = FfN(e)(xy) =0
= [/n(e)l(zy) = (1,0,0)

= xzye N
Since N is completely prime ideal, so either x € N or y € N e, [fn(e)](z) =
[fn(e)](y) = (1,0,0). A contradiction arises to the fact that [fx(e)](z) = [fn(e)](y) =
(ri,m2,73) # (1,0,0). Thus,
TfN(e) (xy) < maX{TfN(e) ('T)vaN(e) (y)},
Ipy(o(wy) 2 min{Iyy o) (), Iy ()}

Fye)(wy) = min{ Fyy o) (x), Frye)(4)};
and so N is a neutrosophic soft completely prime ideal over (R, E).

Tuhin Bera, Nirmal Kumar Mahapatra. On Neutrosophic Soft Prime Ideal



Neutrosophic Sets and Systems, Vol. 20, 2018

3.5 Theorem

Let N be a neutrosophic soft completely prime ideal over (R, E) with |fy(e)| =
2, [fn(e)](0,) = (1,0,0) for each e € E. Then N is a neutrosophic soft prime ideal
over (R, E).

Proof. Let the condition hold. By Theorem [3.4], N = {z e R:[fn(e)](x)=(1,0,0)}
is a completely prime ideal of R. Then by Proposition [3.2], N is a prime ideal of R.
Hence N is a neutrosophic soft prime ideal over (R, E') by Theorem [2.11](1).

3.6 Theorem

Let R be a ring. Then S(# ¢) C R be a completely prime ideal of R iff an NSS N
over (R, F) is a neutrosophic soft completely prime ideal where fy : E — NS(R)
is defined as :

(ri,re,r3) ifxes
[fN( )]( ) { (tl,t27t3> if x ¢ S.
with ry > 11, 1o < to, T3 < 13 and r1,7T2,73,11,109,13 € [0, 1]

Proof. First let S(# ¢) C R be a completely prime ideal of R. Then S is an ideal of
R and so by Theorem [2.11](3), N is a neutrosophic soft ideal over (R, E). To end
the theorem, we shall just show that N is completely prime. For contrary, suppose

Ty (zy) > max{Tyy (o) (@), Tyy(e) ()}
IfN(e)(xy) < Inin{]fz\r(6 (z), ]fN ( e
FfN(e) (acy) < min{FfN 6)( )7 FfN(e (y)}7

Then by definition of fy(e), we have [fn(e)](zy) = (r1,7r9,73) and [fy(e)](x) =
[fv(e)](y) = (t1,t2,t3). This implies xzy € S but z,y ¢ S which is a contradic-
tion to the fact that S is a completely prime ideal of R. Hence N is a neutrosophic
soft completely prime ideal over (R, E).

Conversely, let N in given form be a neutrosophic soft completely prime ideal over
(R, E). Then N is a neutrosophic soft ideal over (R, E') and so by Theorem [2.11](3),
S is an ideal of R. To show S is a completely prime ideal of R, let xy € S. Then,

[fn(e))(zy) = (r1,72,73)
Tine)(@y) =11, Liy(e) (Ty) = 19, Frye(zy) =13
max{Tyye)(2), Try(e)(y)} = r1, min{lpy(e)(@), Iye)(y)} < 72,
min{ Fyye) (@), Fry(e)(y)} < 73
= either Ty ()(2) = 11, Ly (e)(2) <725 Fryie)(3) <73

or Tryie)(y) =71, Liy(e)(y) <12, Frye)(y) <73
= eitherz e Sorye S

4J

Thus S is a completely prime ideal of R.
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3.6.1 Corollary

A non empty subset S of a ring R is a completely prime ideal iff the characteristic

function yg is a neutrosophic soft completely prime ideal over (R, E) where g :
E — NS(R) is defined by :

(1,0,0) ifzes
[xs(e)l(z) = { 0,1,1) ifx ¢S,

Proof. 1t is the particular case of Theorem [3.6].

3.7 Theorem

An NSS M over (R, E) is a neutrosophic soft completely prime ideal means each
nonempty level set [far(e)](a,8,) Of the neutrosophic set fas(e), e € E is a completely
prime ideal of R where o € ImT¥,, ¢y, B € Im Iy, ), v € Im F},, ().

Proof. Here M is a neutrosophic soft completely prime ideal over (R, ). Then M is
a neutrosophic soft ideal over (R, E) and so by Theorem [2.11](4), [fa(€)](a,8) is an
ideal of R. To complete the theorem, let zy € [far(€)](a,8,4). Then,

True)(@y) = a, Iy (zy) < B, Fpyelzy) <v

= max{Ty, ) (@), Trye)(y)} = o, min{ly, @) (), L5y (y)} < 6,
mm{FfM(e)( )7FfM(6 ( )} <7

= ecither sz\z(e)( T) > a, ]fzxf(e)(x) < B, FfM(e)(x) <7
or Tpye)(y) 2 o, Ipye)(y) < B, Fryo)(y) <

= either z € [far(€)](a,8,0) Or ¥ € [far(€)] (a7

Thus [far(€)l(a,s) is @ completely prime ideal of R.

3.8 Proposition

Let S be a completely prime ideal of a ring R. Then there exists a neutrosophic soft
completely prime ideal M over (R, E) such that [fi(e)](a,s,) = S for e € E and
a, 3,7 € (0,1).

Proof. As S is a completely prime ideal of a ring R, so S is an ideal of R. For
a,f,7 € (0,1) define an NSS M over (R, E) as following :

a, 3, ifzes
[fule)l(z) = { Eo, 1, S) if v ¢ S.

Then by Theorem [2.11](3), M is a neutrosophic soft ideal over (R, E). If possible let
M is not a neutrosophic soft completely prime ideal over (R, E'). Then,

TfM(e)(xy) > maX{TfM(e) (LL’), TfM(e) (y)}v
Ipy(e)(@y) <min{ly, (), Lpy e (y)}
FfM(e)(xy) < min{FfM(e)(l‘)? FfM(E)(y)};
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Then by definition of fy(e), we have [fy(e)](zy) = (o, B,7) and [fa(e)](z) =
[fa(e)](y) = (0,1,1). This implies zy € S but x,y ¢ S which is a contradiction
to the fact that S is a completely prime ideal of R. Hence M is a neutrosophic soft
completely prime ideal over (R, E). Obviously [fa(€e)](a,5,) = S for each e € E.

3.9 Theorem

Let (o, ) : (R1, E) — (Rq, E') be a neutrosophic soft homomorphism where Ry, Ry
be two rings. Suppose (M, E) and (N, E) be two neutrosophic soft left (right) ideals
over Ry and R,, respectively. Then,

1. (p,¥)(M, E) is a neutrosophic soft left (right) ideal over Ry if (p,1) is epimor-
phism.

2. (p,v)7Y(N, E) is a neutrosophic soft left (right) ideal over Rj.

Proof. 1. Let b € ¥(F) and y1, 99,8 € Ry. For o~ (yy) = ¢ or o~ (y2) = ¢, the proof
is straight forward.
So, we assume that there exists xq, xo, 7 € Ry such that p(z1) = y1, @(x2) = yo, p(r) =
s. Then,
T — = max — max T x
faan® (U1 —¥2) = max - max [Ty, ()(v)]

w%z)ix [TfM(a L1 — x2)]

(
max [TfM(a (z1) * Trppa)(22)]
(

v

v

P(a)=b

T/JI&?X [TfM( xl)] * m?i(b [TfM( )(1’2)]

max max T T
ax - max (Ttpr(a) ()]

max |1, (o) (rx
Jax [Ty (@) (rz1)]

> Tt (e
> max [Tp,)(21)]

TfW(M)(b) (Syl)

v

Since, this inequality is satisfied for each x1, 29 € Ry satisfying o(x1) = y1, p(22) = 2
so we have,

ngo(M) (b) (11 — v2)

> max maX T T * ( max max T x
(w(zl) =y1 9(a)=b Trasta) (21)]) * ( ax max Ty (@2)])

ng;(M)(b) (y1) * wa(M)(b) (2)
AlSO7 ng;(M)(b)(Syl) > MaXy(z)=y; MaAXy(a)=b [TfM(a)<m1)] = Tf(p(M)(b) (yl)
Next,

min min [IfM(a)( )]

Ifw(M>(b)<y1 - yz) e(@)=y1—y2 P(a)=b

< wf(fgn Ly (a) (21 — 72)]

< wf(lgnb U par(a) (1) © Lppp(a) (72)]

= mm[ o (x <>m1nI N
Jnin, L ppr(a) (21))] Jnin, [y (a)(22)]
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lapw(sy) = min - min [l (@)
< min |/ rT
< i p(ron)]
< I
= wr(nﬁnb[ fu(a )(.2131)]
Since, this inequality is satisfied for each x1, 9 € Ry satisfying ¢(x1) = y1, p(22) = 2
so we have,

Ii on® (Y1 — y2)

< min min [/ z1)]) o ( min min [J x
< (min - min [y @(@)]) o ( min ©min [, @/(2)])

]fgp(lw) (b) (yl) < If¢<M)(b) (yQ)

AlSO, If«p(]\l)(b)(syl> < min‘p(xl):yl minw(a):b [IfM(a)(xl)} = If(p(M)(b) (yl)
Similarly, we can show that

FfﬂM)( )(yl y2) < Fy o(a1)(b) (1) © nga(M)(b) (¥2), Ff&p(hf}(b)(syl) > Ffw(M)(b)@l);
This completes the proof.

2. For a € v "Y(F) and z1, 75 € Ry, we have,

Ty @ (@1 = 22) = Tryp(p(rr — 22))

= TfN[¢(a)](<P(951) - 80(952))
Tixiw@)(@(21)) * Try o) ((22))
T o @ (@) % Ty ) (22)
Tyyuay(e(ra))
Tty iwa) (0(r)e(r1))
Tryip)(se(z1))
Ty (p(z1))
va—lu\;)(a)( )

v

T sy ) (1)

(AVARAVS

Next,

Ty (p(zr — 22))

Iy (e(z1) — o(z2))
Iy (@(21)) © Ly ey (p(22))
I; s@@) oy o @)(22)
Iy o o@(rz1) = Tpyw@)(e(re))

Iyt (e(r)e(z)

Ty (se(a1))
Iyt (e(@1))
= I @@

Lt s o) (21— 72)

IN

IAIA

Similarly, Fy _, () (1 — 29) < Fr 1@ (1) © Fr i@ (x2) and

Fy so@(ren) < Fr @ (@);
This proves the 2nd part.
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3.10 Theorem

Let (¢, 1) be a neutrosophic soft homomorphism from a ring R; to a ring Rs. Suppose
(M, E) and (N, E) are neutrosophic soft completely prime ideals over R; and Ry,
respectively. Then,

1. (¢,¥)(M, E) is a neutrosophic soft completely prime ideal over Rs.

2. (¢,¥) (N, E) is a neutrosophic soft completely prime ideal over R;.

Proof. 1. If possible, let (M, E') be a neutrosophic soft completely prime ideal over
Ry but (p,9)(M, E) is not so over Ry. Then for b € ¥(E) and yi, 42 € Ra,

Tf(p(]\/l)(b)(yly2) > maX{Tﬂa(M) )(y1> qu; ) () (y2)}

= max max T > max{( max maX T: (a4 ,
o(x)=y1y2 ¥(a)=b [ fula )( )] {(90( Y=y1 t(a)=b [ fm( )( )])

<£>a}§2 Jnax, Ty (@)]) }

= max [Tt (a) ()] > max{( max Ty (@)]), ( max [Ty, @) (z)])}
o(@)=1192 o(@)=11 o(x)=y2

= max [TfM(a) (@)] = ma‘X{TfM(a)(x1>7TfAI(a) (22)}
p(e)=y1y2

Since the inequality holds for each x1, x € Ry satisfying ¢(x1) = y1, p(22) = y2 so we
have T, (o) (x122) > max{T},,()(21), Tty (a)(x2) } which is a contradiction to the truth
that (M, F) is a neutrosophic soft completely prime ideal over R;. We can reach to
the same conclusion taking the indeterminacy membership function (I) and falsity
membership function (F') also. Hence we get the first result.

2. For a € ¢ ™Y(FE) and z, 79 € Ry, we have,
Ty @ (@172) = Ty (p(2122))
= Ty (e(z1)p(z2))
max{Tyypa)(P(21)), Tty @) (@(z2))}
max{Ty _, o (@(€1), T iy @ (22)}
Iy (p(z122))
= Iy (p(z1)p(z2))
min{ (o) (9(21)); Ly fway ((22)) }
min{ly @ (@), Iy @(72)}
Fy o @(@1m2) = Fryppay(e(z122))
i@y (e(x1)p(z2))
min{ Fry () (2(21)), Fry ) ((22))}
= min{Fy | (1), Fr _  @(22)}
This shows the 2nd result.

IN

I oy ) (2122)

v

v

4 Neutrosophic Soft Completely Semi-Prime Ideal

In this section the concept of semi-prime ideal, completely semi-prime ideal of a ring
R and neutrosophic soft completely semi-prime ideal are focussed.
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4.1 Definition

1. An ideal I of a ring R is called a semi-prime ideal if there is another ideal J of R
such that JJ C I = J C .

2. An ideal J of a ring R is called a completely semi-prime ideal if for x € R,
xx € J = x € J. xx is denoted by 2.

4.1.1  Ezample

1. Let R ={0,z,y, 2} be a ring. The two binary operations addition and multipli-
cation on R are given by the following tables :

Table 5 Table 6

w8 o+
vy |olo
NSl RN Renl R I
olo|lo|lolo
ORI | OR
N QIR IO
N o|lofw

KON | |
o|lR Q||
N8O -

Then {0, z} is a completely semi-prime ideal of R as 0-0 = 0, z-x = z,y-y =y, 2:2 = z.
2. Consider the Example [3.1.1](3). Then {0, 2} is not a completely semi-prime ideal,
because z -z = z,y -y = 0 but y, 2z ¢ {0,z}.

4.2 Proposition

Every completely prime ideal of a ring R is a completely semi-prime ideal of R.

Proof. By taking y = x, the proof follows directly from Definition [3.1].

4.3 Definition

Let R be a ring and F be a parametric set. A neutrosophic soft ideal N over (R, E)
is called a neutrosophic soft completely semi-prime ideal if Va,y € R and Ve € E,

Thyie)(@?) < Trye) (), Lrye)(2%) = Iry(e)(2), Frye)(2%) > Frye)(2).

4.3.1  Ezample

Consider the Example [4.1.1](1). We define an NSS M over (R, E) as following,
Vr € R and Ve € F,

(0.4,0.1,0.5) if r € {0,z}
[Far(e))(r) = { (0.2,0.5,0.8) if r ¢ {0,2}.

Then M is a neutrosophic soft completely semi-prime ideal over (R, E).
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4.4 Lemma

A neutrosophic soft ideal N over (R, E') is a neutrosophic soft completely semi-prime
ideal iff [fx(e)](z?) = [fn(e)](x), for every e € E,z € R.

Proof. Let N be a neutrosophic soft ideal over (R, E) with [fy(e)](2?) = [fn(e)](2),
Ve € F and Yz € R. Then by Definition [4.3], N is a neutrosophic soft completely
semi-prime ideal over (R, E).

Conversely, if N is a neutrosophic soft completely semi-prime ideal by Definition
[4'3]7 TfN(e)(w2> < TfN(e)(I)v IfN(e)(xQ) > ]fN(e)('r)’ FfN(E)(xQ) > FfN(e)(x) and as N
is a neutrosophic soft ideal over (R, E), then Ty ()(2?) > Trye) (), Ipye(2?) <
Ini@(®)s Fro(o (@) < Fiy(o(w). Hence [fx(0))(z?)  [fx(e)](x) for every ¢ € B,z €
R.

4.5 Theorem

An NSS N over (R, E) is a neutrosophic soft completely semi-prime ideal iff for
ec E,S={xeR:|[fn(e)](x) =[fn(e)](0,)},0, being the additive identity of ring
R, is a completely semi-prime ideal of R.
Proof. Let N be a neutrosophic soft completely semi-prime ideal over (R, E'). Then
[fn(e)](z?) = [fn(e)](z) for every e € B,z € R. Now let 22 € S. Then [fy(e)](2?) =
[fn(€)](0,) = [fn(e)](x) = [fn(e)](0,) = x € S. Hence S is a completely semi-prime
ideal of R.

Conversely, if S is a completely semi-prime ideal of R. Then 2?2 € S = x € S. Since

z? € S, then [fy(e)](z?) = [fn(e)](0,) and [fn(e)](x) = [fn(e)](0;) = [fn(e)](z?) =
[fv(e)](x). Hence by Lemma [4.4], N is a neutrosophic soft completely semi-prime
ideal over (R, E).

4.6 Theorem

An NSS N is a neutrosophic soft completely semi-prime ideal over (R, E) iff [ fy(€)](a,8,7)
is a completely semi-prime ideal of R where a € ImTy (o), B € ImIyye), 7 €
Im FfN(e)-

Proof. Let N be a neutrosophic soft completely semi-prime ideal over (R, E'). Then
[fn(e)](2?) = [fv(e)](x). Now,

2% € [fn(e)] (s
= TfN(e)(x2> > [fN(e) (:CQ) <8, FfN(e) (xQ) <z
= Tpye)(®) 2 a Iy (x) < B, Frye(z) <v
= Tc [fN(e)](oc,Bﬂ)

Hence, [fn(€)](a,8,) is a completely semi-prime ideal of R.
Conversely, let [fy(€)](a,5) be a completely semi-prime ideal of R. Then 2? €

[fn(@)]pr = 7 € ([fn(€)](as.) 1,

Troe)(2?) > a, Iy )(2%) < B, Fryo(2?) < v
= Tiye)(®) > a, Iye)(x) < B, Fry@e(r) <7
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Now, suppose [fnx(e)](z?) # [fx(e)](x). Let [fx(e)](x) = (t1,t2,t3). Then z* ¢
[N ()]t t205) DUt & € [fn(€)](t1,t2,45) Which is a contradiction as [fn(e)](,s,) Is @
completely semi-prime ideal of R. Hence [fy(e)](z?) = [fn(e)](x) and so N is a
neutrosophic soft completely semi-prime ideal over (R, E') by Lemma [4.4].

4.7 Theorem

Let (¢, 1) be a neutrosophic soft homomorphism from a ring R; to a ring Rs. Suppose
(M, E) and (N, E) are neutrosophic soft completely semi-prime ideals over R; and
R, respectively. Then,

1. (p,¥)(M, E) is a neutrosophic soft completely semi-prime ideal over Rj.

2. (¢,¥)" (N, E) is a neutrosophic soft completely semi-prime ideal over R;.

Proof. 1. If possible, let (M, E) be a neutrosophic soft completely semi-prime ideal
over Ry but (p,v)(M, E) is not so over Ry. Then for b € )(E) and y € Ry,

Tt ary (V) > Tt 0 ) ()
= max max [T, ()] > max max [T, q)(z)

p(z)=y2 $(a)=b o(z)=y $(a)=b
= max [T}, o) (z)] > max [T}, @ (z)]
w(z)=y p(r)=y
= max Tty (a) ()] = Ty ()

Since the inequality holds for each « € Ry satisfying p(z) = y, so we have T}, (o) (2?) >
Tty (a)(x) which is a contradiction to the fact that (M, FE) is a neutrosophic soft
completely semi-prime ideal over R;. We can reach to the same conclusion taking the
indeterminacy membership function (I) and falsity membership function (F) also.
Hence we get the first result.

2. For a € 7! (E) and = € Ry, we have,

Tf 1 @ (@) = Trywan(0(2) = Tyt (9(2))* < Tyypan (@) = Tf_ @ (@),
It s @) = Lpypsn (@) = Iy (9(2)* 2 Iyp@)(@(2) = I o @(),
Fr 1 @) = Frypu@) (0(2%)) = Fry @) (0(2))* = Fryp@i(e@) = Fr__, @ (@);

This proves the 2nd result.

5 Neutrosophic soft prime k-ideal

5.1 Definition

A neutrosophic soft ideal N over (R, E) is said to be a neutrosophic soft k-ideal over
(R,E) ifVz,y € R and Ve € E,

Trye) (@) > min{ Ty o) (x + ), Ty (¥)}
IfN 6)(x) < maX{IfN(e)(x + y)v IfN(e)(y)}
Five) (@) <max{Fyy ) (7 +y), Frye)(y)}-
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5.1.1 Ezample

1. Let Z be the set of all integers and E = {ej,eq,e3} be a parametric set. We
consider an NSS N over (Z, E') given by the following table :

Table 7
fn(er) fn(ea) fn(es)
Z, [ (0.3,0.8,05) (0.4,0.5,0.7) (0.7,0.6,0.4)
Zo | (0.4,0.6,0.3) (0.6,0.2,0.4) (0.7,0.4,0.2)
Zs | (0.6,0.2,0.1)  (1,0,0)  (0.9,0.1,0.1)

where Z; = {£1,+3,45,--- },Zy = {£+2,+4,46,--- },Z3 = {0}. Then N is a neu-
trosophic soft k-ideal over (Z, E'). To verify it, we shall show
(i) fn(e) is neutrosophic subgroup of (Z,+) for each e € E.
(ii) fw(e) is both neutrosophic left and right ideal of Z for each e € E.
(iii) fwn(e) is neutrosophic k-ideal of Z for each e € E.
If v € Zy,y € Zy then x — y € Z;. We then write Z; — Zs = Z; and so on.
Here Z1 — Zl = ZQ or Zg, Zl — ZQ = Zl, 21 — Zg = Z3, ZQ — 22 = Z2 or Z37
Zyo — 73 =75, 73— 7Z3="7Z3. Then Table 7 shows the result () obviously.
Next Z1.Zh = 721, ZoZo = 1o, Z3 713 =73, 7Zo2y =717 =75, 7175 =
Z3.74 =73, Z973="73.75—= 73 Then the result (ii) also holds by Table 7.
Flnally Z1 -+ Z1 = ZQ or Z3, Z1 + Z2 = Zl, Z1 + Zg = Zg, Z2 + Z2 = Z2 or Zg,
Zo+ 723 =75, Zs+ Z3= 73 The Table 7 then meets the result (iii) clearly.

2. Let R be the set of real numbers and E = {ey, 3, e3} be a parametric set. Consider
an NSS M over (R, E) given by the following table :

Table 8
Suler) Ju(ea) Su(es)
Q | (0.6,0.1,0.3) (0.8,0.2,0.4) (0.5,0.6,0.7)
Q° | (0.5,0.4,0.7) (0.4,0.5,0.6) (0.3,0.7,1)

where Q and Q° are the set of rational and irrational numbers, respectively. If
r € Q,y € Q° then z — y € Q°. We write Q — Q° = Q° and so on.

Then Q-Q=Q, Q—-Q°=Q° Q°—Q°=Q or Q°. Clearly fy/(e) is neutrosophic
subgroup of (R, +) for each e € E by Table 8.

Next, Q.Q = Q, Q.Q° = Q°, Q°.Q° = Q or Q°. Then Table 8 shows that fy(e) is
neutrosophic ideal of R for each e € F.

Finally Q+Q=Q, Q+Q° =Q° Q°+ Q° = Q or Q°. Then fy,(e) is neutrosophic
k-ideal of R for each e € F by Table 8.

Hence M is a neutrosophic soft k-ideal over (R, E).

5.2 Definition

A neutrosophic soft k-ideal P over (R, F) is said to be a neutrosophic soft prime

k-ideal if (i) P is not constant over (R, E), (ii) for any two neutrosophic soft ideals
M, N over (R, E), MoN C P = either M C Por N C P.
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5.3 Theorem

Let P be a neutrosophic soft prime k-ideal over (R, E). Then Py = {z € R :
[fr(e)](x) = [fp(e)](0,),Ve € E} is a prime k-ideal of R.

Proof. Let z,x+y € Py for z,y € R. Then [fp(e)|(x) = [fr(e)](z +y) = [fr(e)](0,).
Since P is a neutrosophic soft k-ideal over (R, E), so Ve € E,

TfP <y> > min{TfP( (I—i_y) TfP ( )} TfP )(0 )
Trpe)(y) < max{lp,(e)(® +¥y), Lpe) ()} = Lfpe)(0r),
Froe)(y) < max{Fy,e)(x +¥), Frpe)(2)} = Fro(e)(0,);

But Tfpe (O> TfP ( ) IfP €)<0) < IfP(e)<y>7 FfP(e)(OT) < FfP(e( ) Ve € F.

(e)
Thus Ty o) (y) Tfp(e>(0) Lip ) = Lip(0r), Fro)(y) < Froe(0r), Ve € B

. [fr(e)](y) = [fr(e)](0,) and so y € Fy. Hence Fy is a k-ideal of R. Also by
Theorem [2.11](6), P is a prime ideal of R. This completes the proof.

|| Vv

]
2.

5.4 Theorem

Let P be a neutrosophic soft prime k-ideal over (Z, F),Z being the set of integers
with Py = {x € R: [fp(e)](z) = [fr(e)](0),Ve € E} = nZ,n being a natural number.
Then |fp(e)| < r, where r is the number of distinct positive divisor of n.

Proof. Let a(# 0) be an integer and d = ged(a,n). Then there exists r,s € Z — {0}
such that ns = ar + d or ar = ns + d. We shall now estimate following two cases :
Case 1 : When ns = ar 4+ d, then Ve € E and as n € Py = nZ,

Tipey(ar +d) = Tp(e)(n8) 2 Thpe)(n) = Tp(e)(0) 2> Thpey(ar),
Iipey(ar +d) = I (ns) < Ifpe)(n) = L1pe)(0) < Ijpe)(ar),
Froey(ar +d) = Froe)(ns) < Froe)(n) = Fip(e)(0) < Frpe)(ar);

Again P is a neutrosophic soft k-ideal over (Z, F). So,

Ttp(e)(d) > min{Ty, ) (ar + d), Tyoe)(ar)} = Trpe)(ar) > Trpe(a),
Ifp(e)(d) < max{ly, @ (ar +d), I,y (ar)} = Ipe)(ar) < Ippe)(a),
(

Fro(e)(d) < max{Fy.e)(ar +d), Fyoe)(ar)} = Froe)(ar) < Fype)(a);
Case 2 : When ar = ns +d, then Ve € E and as n € Py = nZ,

TfP(e)(TLS + d) = TfP(e)(aT) > TfP(e) (a),

Ity (ns +d) = I, (ar) < Ip0(a),
Fro(ns +d) = Fpe(ar) < Froe)(a);

Again,

Tp(e)(n5) = Trpe)(n) = Thp(e)(0) = Tp(e)(a),
Ito(e)(ns) < Ippe)(n) = I1p(e)(0) < Ippe) (),
Froe)(ns) < Froey(n) = Frpe)(0) < Froe)(a);
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Now as P is a neutrosophic soft k-ideal over (Z, F) so,

Ttp(ey(d) > min{Ty, ey (ns + d), Typ(e)(ns)} > Tp(e)(a),
Ifpe)(d) < max{ly,(e)(ns +d), I (ns)} < Irpe)(a),
Froe)(d) < max{Fy,)(ns + d), Fy,e)(ns)} < Fpoe)(a);

Thus in either case Ve € F,

TfP(€)<d) > TfP(e)(a)v [fP(e)<d) < [fP(e)(a)7 FfP(e)<d) < FfP(e)<a);

Further since d is a divisor of a, there exists t € Z — {0} such that a = dt. So Ve € F,
Trp(e)(a) = Trp(e)(dt) = Thpe)(d), Igpe)(@) = Lppie)(dE) < Tpp(e)(d),

Frpe)(a) = Fp(e)(dt) < Frp(e)(d);

Hence Ty o)(d) = Trp(e)(@); Lip(e)(d) = Lppe)(a), Froe)(d) = Frpe(a), Ve €
Thus for any integer a(# 0) there exists a divisor d of n such that [fp(e)](d)
[fp(e))(a), Ve € E.

If a = 0 then Ty, (¢)(a) = T, ()(0) = Type) (1), Lp(e)(@) = L1p(e)(0) = Lyp(ey(n),
Froe)(a) = Frp)(0) = Fpe)(n), Ve € E.

This follows the theorem.

5.5 Lemma

For a neutrosophic soft prime k-ideal N over (Z, F)(Z being the set of integers),
Ny = pZ is a prime k-ideal of Z iff p is either zero or prime.

This result is similar to the matter incase of prime ideal in the ring of integers in
classical sense. So the proof is omitted.

5.6 Theorem

Let N be a neutrosophic soft prime k-ideal over (Z, F),Z being the set of integers.
Then |fn(e)| = 2 for each e € E.

Conversely, if N is an NSS over (Z, E') such that for each e € E, [fn(e)](z) = (1,0,0)
when p|z and [fn(e)](x) = (a, 5,7) when p fx, p being a fixed prime and § > 0,y >
0,a < 1, then N be a neutrosophic soft prime k-ideal over (Z, F).

Proof. Let N be a neutrosophic soft prime k-ideal over (Z, F) with Ny = pZ. By
Theorem [5.3], Ny is a prime k-ideal of Z. Hence by Lemma [5.5], p is prime i.e., p
has only two distinct divisors namely 1, p. So by Theorem [5.4], |fx(e)| < 2. But N
being a neutrosophic soft prime k-ideal can not be constant, so |fy(e)| =2, Ve € E.
Conversely, let N be an NSS over (Z, F) satisfying the given conditions. Let x,y € Z.
If Try(e)(@) = a or Ty (e)(y) = « then Ty y(z +y) =1 or o and so

TfN(5)<x + y) > min{TfN(e) (I)7 TfN(6)<y>}‘

If Ty (e)(x) = 1 and Ty, (¢)(y) = 1 then p|z and pl|y. It implies p|(x + y) and
Tiy(e)(x+y) =1 =min{Ty o) (), Ty e (y)}-

Thus in either case Ty ) (x +y) > min{T,(e)(x), Ty (y)}, Y,y € Z, Ve € E.
Next, if Ir,(e)(z) = B or Iy (e)(y) = f then Iy (z+y) =0 or S and so,

IfN(e)(m +y) < maX{]fN(e) (2), ]fN(e)(y)}‘

If Ity (e)(z) = 0 and T, () (y) = 0 then p|z and p|y. It implies p|(z + y) and

Iy (@ +y) =0=min{l ) (7), Iy (¥)}-
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Thus in either case Iy ) (@ +y) < max{Isy()(x), Irye)(¥)}, Yo,y € Z, Ve € E.
Finally, if Fye)(x) = B or Fyye)(y) = B then Fy()(z 4+ y) = 0 or 3 and so
FfN(e)(x +y) < maX{FfN(e) (@), Fryie) ()}

If Frye)(z) =0 and Ffy)(y) = 0 then p|z and p|y. It implies p|(z + y) and
Frye (@ +y) =0=min{Fy)(x), Frye(y)}-

Thus in either case Fy (¢)(z 4+ y) < max{Fy () (), Frye) ()}, Yo,y € Z, Ve € E.
Further if [fy(e)](z) = (a, B,7) then either [fy(e)](zy) = (o, B,7) or [fn(e)](zy) =
(1,0,0) ie., TfN(€)<xy) > TfN(e)(x)v [fN(e)(xy) < IfN(8)<x)7 FfN(B)(xy) < FfN(e)<x>'

If [fn(e)l(z) = (1,0,0) then plz and so plzy. Then [fy(e)](z) = [fn(e)/(zy) =
(1,0,0). Thus in either case we have Vz,y € Z and Ve € E,

Trye)(xy) = Trye) (@), L) (2Y) < L) (2), Frye)(2y) < Frye) (7).

So N is a neutrosophic soft ideal over (Z, E).

We shall now prove that N is a neutrosophic soft k-ideal over (Z, E).

If [fn(e)](x+y) = (o, B,7) or [fn(e)](y) = (o, B,7), then the inequalities in Defini-
tion [5.1] are obvious.

If [fn(e)](x+y) = (1,0,0) or [fn(e)](y) = (1,0,0), then p|(z +y) and p|y. It implies
plz and so [fn(e)](z) = (1,0,0). Thus the inequalities in Definition [5.1] hold clearly.
Therefore N is a neutrosophic soft k-ideal over (Z, E) and so Ny is a k-ideal over Z.
Finally, we shall prove that N is a neutrosophic soft prime k-ideal over (Z, E).

To prove it, we shall first show that Ny = pZ is a prime k-ideal of Z. Now,

x € Ny < [fn(e)](z) = [fn(e)](0) = (1,0,0) & plz & x =pm,m € Z & z € pZ.
Thus Ny = pZ,p being a prime and so Ny is a prime k-ideal of Z by Lemma [5.5].
Further, |fx(e)| = 2, Ve € E namely (1,0,0) and («,3,7). So N is not con-
stant over (Z, E). Now assume two neutrosophic soft ideals S, Q over (Z, F) such

that SoQQ € N and S € N,Q ¢ N. Then there exists x,y € Z such that
Trge)(x) > Tiy() (@), Irg0)(@) < Ipye) (@), Froe)(t) < Fpye(r) and Troe(y) >
True) W) Tig(¥) < Ity W), Froe (W) < Frye(y), Ve € E. Then [fy(e)](z) =
[fv(e)](y) = («,B,7) obviously and so x,y ¢ Ny. It implies 2y ¢ N; as it is a
prime k-ideal of an abelian ring Z. So [fn(e)](zy) = (o, B,7). Thus Ty (o) (7y) <

Tive)(@y) = a, Lo (xy) = Ly (2y) = B, Frgpoe) (1Y) = Frye)(ry) = 7. But,

Tsoo(e)(®y) = Trge) (1) * Try(e)(y) >
Ttso0(0)(7Y) < Tpg(e) () © Lio(e)(y) < B,
Frsoo0)(y) < Frge)(7) © Froe)(y) <

It opposes the fact. This ends the theorem.

6 Conclusion

The aim of this paper is to put forward the study of the concept neutrosophic soft
prime ideal introduced in [26]. Here we have studied about neutrosophic soft com-
pletely prime ideal, neutrosophic soft completely semi-prime ideal and neutrosophic
soft prime k-ideal. They are defined and illustrated by suitable examples. Their re-
lated properties and structural characteristics have been investigated also. Moreover
a number of theorems have been developed in virtue of these notions. The concepts
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will bring a new opportunity in research and development of algebraic structures over
NSS theory context, we expect.
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Abstract. This paper aims to introduce a single valued
neutrosophic soft approach to rough sets based on neu-
trosophic right minimal structure. Some of its properties
are deduced and proved. A comparison between tradi-
tional rough model and suggested model, by using their
properties is concluded to show that Pawlak’s approach

to rough sets can be viewed as a special case of single
valued neutrosophic soft approach to rough sets. Some of
rough concepts are redefined and then some properties of
these concepts are deduced, proved and illustrated by
several examples. Finally, suggested model is applied in
a decision making problem, supported with an algorithm.

Keywords: Neutrosophic set, soft set, rough set approximations, neutrosophic soft set, single valued neutrosophic soft set.

1 Introduction

Set theory is a basic branch of a classical mathematics,
which requires that all input data must be precise, but
almost, real life problems in biology, engineering,
economics, environmental science, social science, medical
science and many other fields, involve imprecise data. In
1965, L.A. Zadeh [1] introduced the concept of fuzzy logic
which extends classical logic by assigning a membership
function ranging in degree between 0 and 1 to variables.
As a generalization of fuzzy logic, F. Smarandache in 1995,
initiated a neutrosophic logic which introduces a new
component called indeterminacy and carries more
information than fuzzy logic. In it, each proposition is
estimated to have three components: the percentage of
truth (t %), the percentage of indeterminacy (i %) and the
percentage of falsity (f %), his work was published in [2].
From scientific or engineering point of view, neutrosophic
set’s operators need to be specified. Otherwise, it will be
difficult to apply in the real applications. Therefore, Wang
et al.[3] defined a single valued neutrosophic set and
various properties of it. This thinking is further extended to
many applications in decision making problems such as [4,
5].

Rough set theory, proposed by Z. Pawlak [6], is an
effective tool in solving many real life problems, based on
imprecise data, as it does not need any additional data to
discover a knowledge hidden in uncertain data. Recently,
many papers have been appeared to development rough set
model and then apply it in many real life applications such
as [7-11]. In 1999, D. Molodtsov [12], suggested a soft set
model. By using it, he created an information system from

a collected data. This model has been successfully used in
the decision making problems and it has been modified in
many papers such as [13-17]. In 2011, F. Feng et al.[18]
introduced a soft rough set model and proved its properties.
E.A. Marei generalized this model in [19]. In 2013, P.K.
Maji [20] introduced neutrosophic soft set, which can be
viewed as a new path of thinking to engineers,
mathematicians, computer scientists and many others in
various tests. In 2014, Broumi et al. [21] introuduced the
concept of rough neutrosophic sets. It is generalized and
applied in many papers such as [22-31]. In 2015, E.A.
Marei [32] introduced the notion of neutrosophic soft
rough sets and its modification.

This paper aims to introduce a new approach to soft
rough sets based on the neutrosophic logic, named single
valued neutrosophic soft (VNS in short) rough set
approximations. Properties of VNS-lower and VVNS-upper
approximations are included along with supported proofs
and illustrated examples. A comparison between traditional
rough and single valued neutrosophic soft rough
approaches is concluded to show that Pawlak’s approach to
rough sets can be viewed as a special case of single valued
neutrosophic soft approach to rough sets. This paper delves
into single valued neutrosophic soft rough set by defining
some concepts on it as a generalization of rough concepts.
Single valued neutrosophic soft rough concepts (NR-
concepts in short) include NR-definability, NR-
membership function, NR-membership relations, NR-
inclusion relations and NR-equality relations. Properties of
these concepts are deduced, proved and illustrated by
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several examples. Finally, suggested model is applied in a
decision making problem, supported with an algorithm.

2 Preliminaries

In this section, we recall some definitions and properties
regarding rough set approximations, neutrosophic set, soft
set and neutrosophic soft set required in this paper.

Definition 2.1 [6] Lower, upper and boundary
approximations of a subset X < U , with respect to an
equivalence relation, are defined as
E(X) = A ¥ < XHEX) = A 2 [Xle 0 X # 6},
BND. (X) = E(X)—E(X), where
[Xle ={x eU:E(X)=E(x)}.
Definition 2.2 [6] Pawlak determined the degree of
crispness of any subset X < U by a mathematical tool,
named the accuracy measure of it, which is defined as

ag (X) = E(X)/E(X),E(X) # ¢.

Obviously, 0 < (X) <1. If E(X)=E(X), then X is
crisp (exact) set, with respect to E, otherwise x is rough
set.

Properties of Pawlak’s approximations are listed in the fol-
lowing proposition.
Proposition 2.1 [6] Let (U, E) be a Pawlak

proximation space and let X,Y < U . Then,

(@) E(X)c= X E(X)-

(b) E(p)=¢=E(p) and EU)=U=EV)-

(€) E(X UY)=E(X)UE()-

(d) E(XNY)=E(X)nE(Y):

(€) X <Y, then E(X) < E(Y) and E(X) < E(Y)-

() E(X WY) 2 E(X)wE(Y).

(@) E(X NY) < E(X)NE(Y)-

(h) E(x ) =[E(x)]°, X isthe complement of X .

() E(x ") =[ECOT"

() E(E(X))=E(E(X))=E(X)-

(k) E(E(X))=E(E(X))=E(X)-

Definition 2.3 [33] An information system is a quadruple
IS=(U,AV, f), whereu is a non-empty finite set of

objects, A is a non-empty finite set of attributes,
V= ec AT, is the value set of attribute € ,

f:UxA->V is called an
function.

information (knowledge)

Definition 2.4 [12] Let U be an initial universe set, E be
a set of parameters, A E and let pu) denotes the

power set of U . Then, a pair s=(F,A) is called a soft set
overy , where F is a mapping given by F: A— PU).
In other words, a soft set over U is a parameterized family
of subsets of U . For e € A, F(e) may be considered as
the set of e -approximate elements of s.

Definition 2.5 [2] A neutrosophic set Aon the universe of
discourse U is defined as
A= {(x,TA(x), IA(x), FA(X)> :xeU},where

- + -0t
0T ()+1,(9+F () <3 ,andT,I,FaJ 01 [

Definition 2.6 [20] Let U be an initial universe set and E
be a set of parameters. Consider A< E , and let
P(U)denotes the set of all neutrosophic sets ofu . The
collection (F,A)is termed to be the neutrosophic soft set
over U, where F isa mapping givenby F : A— P(U).

Definition 2.7 [3] Let X be a space of points (objects),
with a generic element in X denoted by X . A single
valued neutrosophic set A in X is characterized by
truth-embership function T,, indeterminacy-membership

function |, and falsity-membership function F,. For
each point X in X, T,(X),I ,X),F.(X) €[0]. When X is
continuous, a single valued neutrosophic set A can be
written as A =], (T(x),I(x),Fx))/xxe X . When X is
discrete, A can be writtenas A =x" (T(x,)I(x, )F(x ))/x X € X.

3 Single valued soft

approximations

In this section, we give a definition of a single valued
neutrosophic soft (VNS in short) set. VNS-lower and
VNS-upper approximations are introduced and their
properties are deduced, proved and illustrated by many
counter examples.

Definition 3.1 Let U be an initial universe set and E be a
set of parameters. Consider Ac E , and let
P (U ) denotes the set of all single valued neutrosophic sets
ofU . The collection (G,A) is termed to be VNS set over
U , where G is a mapping given by G : A — P(U).

neutrosophic rough set

For more illustration the meaning of VNS set, we
consider the following example
Example 3.1 Let U be a set of cars under consideration
and E is the set of parameters (or qualities). Each
parameter is a neutrosophic word. Consider E = {elegant,
trustworthy, sporty, comfortable, modern}. In this case, to
define a VNS means to point out elegant cars, trustworthy
cars and so on. Suppose that, there are five cars in the
universe U , given byu ={n, h,, h, h,, h.}and the set of
parameters A={e,e,, e, e}, Where Ac E and each ¢ is
a specific criterion for cars: e, stands for elegant, e, stands
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for trustworthy, e, stands for sporty and e, stands for
comfortable.

A VNS set can be represented in a tabular form as shown
in Table 1. In this table, the entries are Cj orresponding to
the car h; and the parameter e \*/here C; (true
membership value of p;, mdetermlnacy membershlp value
of h;, falsity membership value of ;) in G(e;) -

U ) &, & e,

hi (6,62 (84,3 (7.4.3) (8.6 4)
h2 (4,66 (624 (6.4.3) (7,6 6
hs (6,42 (8.1,3) (7.2.5) (7,6 4)
he (6,33 (8.2.2) (5.2.6) (7,5 .6
hs (8,23 (83.2) (7.3.4) (9 5.7

Tablel: Tabular representation of (G, A) of Example 3.1.
Definition 3.2 Let (G, A) be a VNS set on a universe U .

For any element heU , a neutrosophic right
neighborhood, with respect to e € Ais defined as follows
h ={h eU:
T.(h) =T, (h), I.(h) = 1. (), F.(h) < F.(h)}

Definition 3.3 Let (G,A) be a VNS set on U. Neutrosophic
right minimal structure is defined as follows

¢ ={U,phe:heU,ec A}

INlustration of Definitions 3.2 and 3.3 is introduced in the
following example

Example 3.2 According Example 3.1, we can deduce the
following results: b, =hy, =h, =h, =} h,

=h, =
{hhy o, = qhhhhd by =gh bbb h, =h ={h 0}

My, ={0 0, h b3 Ry =g hhde by, =gk e by, =0}
Ny, =U s by, ={0h hhYhe, =t =hy, ={h} hy, =£{h,h 3}
It follows that,

¢ ={{h s} {h,, h ;. {h, h; 3. {h;, hs }.{h, . hs },
{h. hy he 3 {h by b3 {h by hs 3 {hy by by hy 3
1{h1' h2 ’ h4 ’ hS}V{hl’ h3 ’ h4 ’ h5}!U !¢}

Proposition 3.1 Let (G, A) be a VNS set on a universe U ,

& is the family of all neutrosophic right neighborhoods on
it, and let

R,:U = &R(h)=h,
Then,
(@) R, is reflexive relation.

(b) R,is transitive relation.

(c) R, may be not symmetric relation.
Proof  Let (h T (h).1 (n )F () <h T (h )1 (h).F (h))
and (h, T (h),'1 (h), F.(h ) cG(A): Then!
(a) Obviously, T (h)=T (h ). I (h)=1 (h)and F (h)
=F (h)- Forevery ec A, h, € h,.Then h R, h and
then R is reflexive relation.
(b)Lethn R h andh R h ,thenph €h andph €

1 e 2 2 e 3 2 le 3

h . Hence, T (h) =T (h) 1 (h)21(h) F(h)

< F (h) T(h,) I (h) and

F(h) <

2T ()l ()=
F (h ). Consequently, we have T (h ) 2
e 2 e 3

T (h) 1 .(h) 2 I (h) and F (h) < Fe(hl)-”

followsthat, h € h .Thenn R h andthen R is
3 le 1 e 3 e

transitive relation.
The following example proves (c) of Proposition 3.1.

Example 3.3 From Example 3.2, we have, h, ={h} and
={n.h} Hence, (hz,hl)e R, but (h h)e R,
hén R, ish’t symmetric relation.
Deflnltlon 3.4 Let (G,A) be a VNS seton U , and let ¢ be
a neutrosophic right minimal structure on it. Then, VNS-
lower and VNS-upper approximations of any subset X
based on ¢, respectively, are

S.X =Y ed:Y c X},
S'X=n{Yel:Y 22X}

Remark 3.1 For any considered set X in a VNS set (G,A),
the sets

PNRX = S« X, NygX =[s"X1°,

byrX =S X - Pyr X

are called single valued neutrosophic positive, single
valued neutrosophic negative and single valued
neutrosophic boundary regions of a considered set X ,
respectively. The real meaning of single valued
neutrosophic positive of X is the set of all elements which
are surely belonging to X, single valued neutrosophic
negative of X is the set of all elements which are surely not
belonging to X and single valued neutrosophic boundary of
X is the elements of X which are not determined by (G,A).
Consequently, the single valued neutrosophic boundary
region of any considered set is the initial problem of any
real life application.

VNS rough set approximations properties are introduced in
the following proposition.

Proposition 3.2 Let (G,A) be a VNS set on U, and let

X,Z < U . Then the following properties hold
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(@ s, XcXcS'X.

(b) s,o=5'0=0.
(c)su=sU=U.

(d XcZ = s,XcS.Z.
() XcZ — S'XcS'Z.
(M) S.(XNZ)=S,XNS,Z.
(@) S.(XuZ)2S,XUS,Z.
(h) (X "Z) =S X nS°Z

(i) S"(X UZ) S X US*Z.

Proof
(@) From Definition 3.3, obviously, we can deduce that,

S XcXcS'X.

(b) From Definition 3.4, we can deduce that S ¢ =¢ and
Sp={Yel:Y2}=¢.

(c) From Property (a), we have U < S*U but U isthe
universe set, thenS'U U . Also, from Definition 3.4, we
have SU = Y e£:Y cU}, butU e £. Then,SU =U
(d) Let X = Z and heS, X, then there exists Y e & such

that heY c X.But X ¢ Z,then heY < Z. Hence,
heS,zZ.Consequently S X = S,Z.

(e)Let X cZand hgS"Z.ButS*Z =n{Yeé:Y o
.hegYandY oZ suchthatU e & there exists Then. Z}
But X cZ,thenY 2> X and heY .Hence hgsz.
Thus s*x = s°Z.

(Let heS,(XNZ)=AY e&:Y = X nZ}. So, there
exists Y e £suchthat, heY c X nZ,then heY < X
and heY < Z. Consequently, heS Xand heS,Z,
then he S, X nS,Z. Thus S (X nZ) =S, X NS, Z.

(@LethegS,(XuzZ)=UY e&:Y c XuZ}. So, forall
Yeé heY,wehave Y ¢ X UZ , then Y & X and
Y & Z.Consequently, hg S, X and hg S.Z . So
heS,X US,Z.Thus S,(X UZ) 5 S.X US,Z.

(hyLet hg S*X nS*Z.Then, hg S*X or hg S*Z and
then there exists Y e £suchthat Y o X,hgY or Y o X,
h &Y . Consequently h¢S*(X nZz). Thus

S*(XNZ)c S XNS*Z.

(Let hgs (Xuz).Buts'(xuz)y==n{Y e:Y >

X W Z}. Then, there exists Ye& suchthat Y o> X U Z
and hegVY .Then, Y o X,hgY andY>Z, hegY.
It follows that, h ¢ S*X U S"Z . Thus $*(X UZ) o S'X
uSZ.

The following example illustrates that the converse of
Property (a) doesn’t hold

Example 3.4 From Example 3.1, if X ={n,},then S X =
X #8"X andS X # X Hence. s°x ={h,,h}and ¢

The following example illustrates that the converse of
Property (d) doesn’t hold

Example 3.5 From Example 3.1, if X ={h,} and Z =
{h,h} thens X =¢, 5.z ={h,h,}. Thus S X #S.Z.

The following example illustrates that the converse of
Property (e) doesn’t hold

Example 3.6 From Example 3.1, if X = {h,}and
Z ={h,,h;}. then,s*x ={nh3and s*Z = {h,, h,,
h,,h,}. Hence, S"X = S"Z.

The following example illustrates that the converse of
Property (f) doesn’t hold

Example 3.7 From Example 3.1, If X ={h,,h,,h,}
and zZ ={h,,h,,h.}, then s X ={n ,h,,h,}, S.Z=4%h,
S.(XNZ)=S,X Hence. S, (X nZ)={n}andh,,h}
NS, Z

The following example illustrates that the converse of
Property (g) doesn’t hold

Example 3.8 From Example 3.1, if X ={h,}andZ =
{h,}then S X ={h}, S,Z =gand S, (X UZ)={h,h}.
Hence S, (X uZ)= S,XUS,Z.

The following example illustrates that the converse of
Property (h) doesn’t hold

Example 3.9 From Example 3.1, if X ={nh,,h,,h,} and
Z ={h,,h,,h}then s*X ={h,,h,,h,},

sz ={h,h,,h,,h.} and s*(X nZz) ={h,,h,}. Hence
S'(XNZ)#S'XNSZ

The following example illustrates that the converse of
Property (i) doesn’t hold

Example 3.10 From Example 3.1, if X = {nh,,h,} and
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Z ={hy}then s*x ={h,,h,,h;} $*Z ={h,}and
S*(XwZ)=U .Hence S"(XUZ)=S'XUS'Z.

Proposition 3.3 Let (G, A) be a neutrosophic soft set on

aunverse U , and let X,Z c U . Then the following
properties hold.

(@) S.5,X =S.X
(b) S°S*X =S°X
(© §,"X =S*X

(d)s*s,Xx o8,X
Proof

(@) Letw=5,X and heW =U{Y € :Y < X}. Then, for
some e € A, we have heY cW. So heSW . Hence W
cSW.Thus, SW c S,S,W . Also, from Property (a) of
Proposition 3.2, we have S X < X and by using Property
(d) of Proposition 3.2, we get .S, X < S, X .
Consequently. S, X =S,S, X

(b) Let W =S"X and h ¢ W, from Definition 3.4, we
have W ={Y € £:Y o X}. Then there exists Y € £, such

that Y > X andh ¢ Y . Hence, there exists Y e £, such
that Y oW and h Y , it follows thath ¢ S'W.
Consequently W o S*W . Also, by using Property (a) of
Proposition 3.2, we have W < S'W . Thus S*S*W =S*'W

Properties (c) and (d) can be proved directly from
Proposition 3.2.

The following example illustrates that the converse of
Property (c) doesn’t hold.

Example 3.11 From Example 3.1, if X ={h,}. Then
S*X ={h,}ands s*X =¢. Hence,S,S"X = S°X.

The following example illustrates that the converse of
Property (c) doesn’t hold.

Example 3.12 From Example 3.1, if X ={n ,h,,h.}, then
S.X ={nh,h,,h}and s°S X ={h,,h,,h,,hs}- Hence

S°S.X #8,X

Proposition 3.4 Let (G, A) be a VNS seton U and let
X,Z < U .Then

S.(X-Z)cS,X-S.Z

Proof

Let e S (X-2Z)=Y e&:Y < (X -2Z)}- So, there
exists Y € & suchthat heY c (X -Z),then heY < X

and heY ¢ Z . Consequently,he S X andhg S, 7, then
hes,X -S,Z. Therefore S (X -Z)cS,X-S,Z.

The following example illustrates that the converse of
Proposition 3.4 doesn’t hold.

Example 3.13 From Example 3.1, if X ={h,,h,,h}

andz ={n, h}. then s.x ={n h,h}. 5.2 ={, h},
S.(X-Z)=g¢and s X —-S,Z ={h,}. Hence, S (X -Z) =
S, X-S,Z

Proposition 3.5 Let (G, A) be a VNS seton U and let
X,Z < U . Then the following properties don’t hold

(@) s, X° =[S"X]°
(b) s*X° =[S,X]°
(€) S*(X-2)=S8"X-5"Z

The following example proves Properties (a) and (b) of
Proposition 3.5.

Example 3.14 From Example 3.1, if X ={n}. Then,
S.X =S"X ={h} $,X°¢ ={h,,h.3and S"X* =U. Thus
S, X =[S"X]Fands*X ¢ =[S, X]°

The following example proves Property (c) of Proposition
3.5.

Example 3.15 From Example 3.1, if X ={nh,h,}and

Z ={h} Then s*X ={h,,h,},S'Z={h}, S*(X-2)=
{h,,h,}. Hence " (X -2)#$'X -S'Z.

Remark 3.2 A comparison between traditional rough and
single valued neutrosophic soft rough approaches, by using
their properties, is concluded in Table 2, as follows

4 Single valued neutrosophic soft rough concepts

In this section, some of single valued neutrosophic soft
rough concepts (NR-concepts in short) are defined as a
generalization of traditional rough concepts.

Definition 4.1 Let (G, A) bea VNS seton U . A subset
X cU iscalled

(a) NR-definable (NR-exact) setif S, X =S*X = X

(b) Internally NR-definable set if S X =X and S™X = X
(c) Externally NR-definable set if S X =X and S$'X =X
(d) NR-rough set if S, X = X and S"X = X

The following example illustrates Definition 4.1.
Example 4.1 From Example 3.1, we can deduce that {h },

hsh{h, b oAb hod Ay, bk dhy bk s {hy, by, by by, by 3y,

hy,he}.{h,h,, he}{h, by g, 0} {hy 0y by e} {hy, g by bR are
NR-definable sets, {n ,h,,nh.}{n,h, h, h}are internally

NR-definable sets, {h,},{h,,h,}.{h,h,,h,} are externally
NR-definable sets and the rest of proper subsets of U are
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NR-rough sets.

We can determine the degree of single valued neutrosophic
soft-crispness (exactness) of any subset X < U by using
NR-accuracy measure, denoted by C_X , which is defined
as follows
Definition 4.2 Let (G,A) be aVNSon U ,and let X cU.
Then

C.X=S,X/S'X, X #¢

Remark 4.1 Let (G,A) be a VNS onU . Asubset X cU is
NR-definable (NR-exact) if and only if C X =1.

Definition 4.3 Let (G,A) be aVNS on U and let X cU,

X ¢ X.NR-membership function of an element X to a set
X denoted by 4, x is defined as follows:

XA X, VX | 1], |, where x, = ~{x, ;e e A} and x, isa
neutrosophic right neighborhood, defined in Definition 3.2.

Proposition 4.1 Let (G,A)beaVNSon U, X cU and let
uy x be the membership function defined in Definition 4.3.
Then

Hy X €[0]]
Proof
Where ¢ < x, N X < x,then 0<|x, N X| S‘XA‘and then
0< u x<1.

Proposition 4.2 Let (G,A) be a VNS on U and let X cU,
then

Uy X=1=>Xxe X
Proof
Let 4, x =1, then gA AX| =X, Consequantly x, < X .
From Proposition 3.1, we have R_ is a reflexive relation
foralle € A.Hence x e x_ e e A. It follows that x e x,, .
Thus X € X

The following example illustrates that the converse of
Proposition 4.2 doesn’t hold.

Example 4.2 From Example 3.2, we get h,, ={n,,h.}. If
X :{h2’h3‘h5}' then uxh, =1/2. Although h, € X
Proposition 4.3 Let (G,A) be a VNS on U and let X,Z c
U. If X ¢ Z, then the following properties hold

(@) fx X< f1; X
(b) 415 x X < pug 7 X
(©) Ugy X =t X

Proof
(@) Where X cU, forany xcU we can deduce that
Uy X< g, X Thus ‘XAQX‘S‘XAmz‘then X, NZ, X, N X

We get the proof of Properties (b) and (c) of Proposition
4.3, directly from property (a) of Proposition 4.3 and
properties (d) and (e) of Proposition 3.2.

Traditional rough properties VNS rough properties

E(XUZ)=EXUEZ S (XuZ)2S'XusSZ

E(XNY)=E(X)NE(Y) S.(XNZ)c= S, X "S,Z
E (E(X)) = E(X) S.S*X = S*"X

E (E(X)) = E(X) $*S,X oS, X

E (X% =[E(X)° S.X° =#[S"X]°
E(X®)=[E (X)I° S*X° #[S.X]°

Table 2: Comparison between traditional, VNS rough

Proposition 4.4 Let (G,A) be a VNS on U and let XcU,
then the following properties hold

(@) Hs x X< py X
(b) ,uXXS,uS,XX
(©) g x< Hee X

Proof can be obtained directly from Propositions 3.2 and
property (a) of Proposition 4.3.

Definition 4.4 Let (G,A) be a VNS seton U, and let xeU,
X cU. NR-membership relations, denoted by e, ande”
are defined as follows

xe, Xif xeS,Xand xe* X if xeS*X

Proposition 4.5 Let (G,A) be a VNS seton U, and let x €
U, XcU.Then

(@ xe, X=>xeX

() xg" X = x¢g X

Proof

(a) Let x e, X, hence by using Definition 4.4, we get
xeS, X.
But from Proposition 3.2, we have S _X < X, then
Xxe X.

(b) Let X € X, according to Proposition 3.2, we have
X = S*X, then x € S* X, by using Definition 4.4,
we can deduce that x € X .
Consequently xg" X = x ¢ X.

The following example illustrates that the converse of
Proposition 4.5 doesn’t hold.

Example 4.3 From Example 3.1, if X ={h,,h.}, then
S,X = {nyandS'X = fn, h, n, h}. Hence, h, ¢, X,
although h, e X and h, ¢ X, although h, " X .

Proposition 4.6 Let (G,A) be a VNS on U and let X cU.
Then the following properties hold
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(@ xe, X=u,x=1
(b) uyx=1=xe" X

Proof can be obtained directly from Definition 4.4 and
Propositions 4.2 and 4.5.

The following example illustrates that the converse of
property (a) does not hold.

Example 4.4 From Example 3.1, if
S, X ={h}and h, ={h} .
Although h, ¢, X

X ={h,,h,} then
it follows that ;. h, =1 .

The following example illustrates that the converse of
property (b) does not hold.
Example 4.5 From Example 3.1,
S'X ={h,h} and hy, ={h.h,} >
although 4, h, =1

if X ={h,}, then
it follows that h,e" X ,

Proposition 4.7 Let (G,A) be a VNS on U and let
X cU . Then

(@ uyx=0=>xgX
(b) u,x=0=>xg, X
Proof is straightforward and therefore is omitted.

The following example illustrates that the converse of
property (a), does not hold.

Example 4.6 From Example 3.1, if X {hlvhslh yand from
Example 3.2, we get h,, ={n,,h,}, then x,h, =0, although
h, ¢ X

The following example illustrates that the converse of
property (b), does not hold.

Example 4.7 From Example 3.1, if X ={n,h,,h,}, then
S.X ={n,h,,h;}, from Example 3.2, we get h,, ={n,, h,}, it
follows that 4, h, =0, although h, ¢, X

Proposition 4.8 Let (G,A) be a VNS on U and let XcU.
The following property does not hold

U Xx=0=xg" X

The following example proves Proposition 4.8.

Example 4.8 From Example 3.1, if X ={h,}then S*X
={h,h,}, from Example 3.2, we get h, ={n}, it follows that
h €' X, although 4, h =0

Definition 4.5 Let (G,A) be a VNS on U and let X,Z
U. NR-inclusion relations, denoted by =, and <" which
are defined as follows

Xc,ZIf §XcS.Z

Xc"ZIf $XcS'Z

Proposition 4.9 Let (G,A) be a VNS on U and let X,Z
cU. Then
XcZ=>Xc,ZAXS Z

Proof comes directly From Proposition 3.2.

The following example illustrates that, the converse of
Proposition 4.9 doesn’t hold.

Example 4.9 In Example 3.1, if X ={h,,h,} and Z ={h ,h,
hs} . then S X ={h}, S.z={h.h, h}  S°X {hl,h} and
$'z={h,h,,h, h} - Hence, X c,Z and X c
Although X &« Z

From Definition 4.5 and Proposition 4.3, the following
remarks can be deduced

Remark 4.2 Let (G,A) beaVNSon U andlet X,Z cU .
If X <, Z, then the following properties hold

(@) Hs x X< pis 7 X

(b) Hs x X< pz X

(©) pgyx< Hgoy X

Remark 4.3 Let (G,A)beaVNSon U andlet X,Z cU .
If X <* Z, then the following properties hold

(@) Mg X< 1. X
®) ux= pa._x

(c) s x X < p1. X

Definition 4.6 Let (G,A) be a VNS onU and let X,Z ¢
U. NR-equality relations are defined as follows

X=ZIf SX=S57
X="ZIf S'X=S5"Z
Ifx ="z X=2AX="Z

The following example illustrates Definition 4.6.
Example 4.10 According to Example 3.1. Let A={e },

then ¢&={ug.{h}dhbdhh b hhdhhoh 3y - 1 X ={h},
X, ={n}, X, ={h,h}, X, ={h,,h,} and X, ={h,,h,}, then S X,
=S.X,=¢, $°X,=5"X, ={h,,h,}, $,X, =S,X, =gand S*X, =
$'X, =U- Consequently X, =, X,, X, = xgand X, = X

Proposition 4.10 Let (G,A) be a VNS set on U and let
X,ZcU. Then

@X=,S,X

(b) X =" S*X

) X=z=X=2

d) XczZ,2=¢=>X=¢

Emad Marei, Single valued neutrosophic soft approach to rough sets, theory and application



Neutrosophic Sets and Systems, Vol. 20, 2018

83

e Xcz,X=U=72=U
N Xcz,Z2="¢p=>X=¢
@ Xcz,X="U=z="U

Proof. From Definition 4.6 and Propositions 3.2 and 3.3
we get the proof, directly.

From Definition 4.6 and Proposition 4.3, the following
remarks can be deduced

Remark 4.4 Let (G,A) beaVNSon U andlet X,Z cU .
If X =, Z, then the following properties hold

@) Hs x X = Hsz X
(b) Hs x X< iz X
(c) s x X < p1 . X

Remark 4.5 Let (G,A) beaVNSon U and let X,Z cU .
If X =" Z, then the following properties hold

(@) Moo X< 1 X
®) x= pr_x
(c) s x X < p1 X

The following remark is introduced to show that Pawlak’s
approach to rough sets can be viewed as a special case of
proposed model.

Remark 4.6 Let (G,A)beaVNSon U andlet X,Z cU .

If we consider the following case
(If 1,(h)>05, then e(h) =1, otherwise e(h)=0)

and the neutrosophic right neighborhood of an element h is
replaced by the following equivalence class

[h], ={h, €U :e(h)=e(h).e  A}.

Then VNS-lower and VNS-upper approximations will be
traditional Pawlak’s approximations. It follows that NR-
concepts will be Pawlak’s concepts. Therefor Pawlak’s
approach to rough sets can be viewed as a special case of
suggested single valued neutrosophic soft approach to
rough sets.

5 A decision making problem

In this section, suggested single valued neutrosophic
soft rough model is applied in a decision making problem.
We consider the problem to select the most suitable car
which a person X is going to choose from ncars (h,h
h,) by using m parameters (ee,,...€,)-

Since these data are not crisp but neutrosophic, the
selection is not straightforward. Hence our problem in this
section is to select the most suitable car with the choice

) yeey

parameters of the person X. To solve this problem, we need
the following definitions

Definition 5.1 Let (G,A) be a VNS seton U ={h,, h,,...,
h.} as the objects and A={ee,,.e } is the set of
parameters. The value matrix is a matrix whose rows are
labeled by the objects, its columns are labeled by the
parameters and the entries c, are calculated by

¢, =M, ()+1,(0)-F,(), 1=i<nl<j<m

Definition 5.2 Let (G,A) be a VNS set on U ={h,h,....,
h,}, where A= {e e,,.e,} The score of an object h; is
defined as follows

S(hj) = ZT:lcij
Remark 5.1 Let (G, A) be a VNS set on U and
A={e e, then isthe set of parameters. . e }

@ -1<c <2 1<i<nl<j<m
(b) —m<S(h)<2m, h eU

The real meaning of C_A is the degree of crispness of A.
Hence, if C_A=1, then A is NR-definable set. It means
that the collected data are sufficient to determine the set A.
Also, from the meaning of the neutrosophic right
neighborhood, we can deduce the most suitable choice by
using the following algorithm.

Algorithm

1. Input VNS set (G,A)

Compute the accuracy measures of all singleton sets
Consider the objects of NR-definable singleton sets
Compute the value matrix of the considered objects

Compute the score of all considered objects in a tabular
form

Find the maximum score of the considered objects

7. If there are more than one object has the maximum
scare, then any object of them could be the suitable
choice

8. If there is no NR-definable singleton set, then we
consider the objects of all NR-definable sets consisting
two elements and then repeat steps (4-7), else, consider
the objects of all NR-definable sets consisting three
elements and then repeat steps (4-7),and so on...

ok wn

S

For illustration the previous technique, the following
example is introduced.

Example 5.1 According to Example 3.1, we can create
Tables 3, as follows
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Singleton sets

thy tht {h} {h} {hs}

C. X 1 0 0 0 1

Table 3: Accuracy measures of all singleton sets.

Hence C {h}=C {h.,}=1. It follows that h andh, are the
NR-definable singleton sets. Consequently ]h1 and hare
concidered objects. Therefore Table 4 can be created as
follows

Object €, e, €, €

h (662 (84.3) (7423 (8.6.2)
he (8.2.3) (8.3.2) (7.3.4) (9,.5.7)

Table 4: Tabular representation of considered objects.

The value matrix of considered objects can be viewed as
Table 5.

Object € e, €, e,
h, 1 0.9 0.8 1
h, 0.7 0.9 0.6 0.7

Table 5: Value matrix of considered objects.

Finally, the scores of considered objects are concluded in
Table 6, as follows

Object Score of the object
h, 3.7
h. 2.9

Table 6: The scores of considered objects.

Clearly, the maximum score is 3.7, which is scored by the
car h,. Hence, our decision in this case study is that a car
h, is the most suitable car for a person X, under his choice
parameters. Also, the second suitable car for him is a car

h,.

OSbvioust, the selection is dependent on the choice
parameters of the buyer. Consequently, the most suitable
car for a person X need not be suitable car for another
person Y .

Conclusion

This paper introduces the notion of single valued
neutrosophic soft rough set approximations by using a new
neighborhood named neutrosophic right neighborhood.
Suggested model is more realistic than the other traditional
models, as each proposition is estimated to have three
components: the percentage of truth, the percentage of
indeterminacy and the percentage of falsity. Several
properties of single valued neutrosophic soft rough sets
have been defined and propositions and illustrative
examples have been presented. It has been shown that
Pawlak’s approach to rough sets can be viewed as a special
case of single valued neutrosophic soft approach to rough

sets. Finally, proposed model is applied in a decision
making problem, supported with algorithm.
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Abstract: The main objective of this study is to introduce a new hybrid intelligent
structure called Neutrosophic nano topology. Fuzzy nano topology and intuitionistic
nano topology can also be deduced from the neutrosophic nano topology. Based on the
neutrosophic nano approximations we have classified neutrosophic nano topology. Some
properties like neutrosophic nano interior and neutrosophic nano closure are derived.
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1 INTRODUCTION

Nano topology explored by Thivagar et.al can be described as a collection of nano
approximations, a non-empty finite universe and empty set for which equivalence classes
are buliding blocks. It is named as nano topology because whatever may be the size of the
universe it has at most five open sets. After this, there has been many models built upon
different aspect, i.e, universe, relations, object and operators. One of the interesting
generalizations of the theories of fuzzy sets and intuitionistic fuzzy sets is the theory
of neutrosophic sets introduced by F.Smarandache. Neutrosophic set is described by
three functions : a membership function, indeterminacy function and a nonmembership
function that are independently related. The theories of neutrosophic set have achieved
greater success in various areas such as medical diagnosis, database, topology, image
processing and decision making problem. While the neutrosophic set is a powerful tool
to deal with indeterminate and inconsistent data, the theory of rough set is a powerful
mathematical tool to deal with incompleteness. Neutrosophic sets and rough sets are two
different topics, none conflicts the other. The main objective of this study is to introduce
a new hybrid intelligent structure called neutrosophic nano topology. The significance of
introducing hybrid structures is that the computational techniques, based on any one of
these structures alone, will not always yield the best results but a fusion of two or more
of them can often give better results. The rest of this paper is organized as follows. Some
preliminary concepts required in our work are briefly recalled in section 2. In section 3 ,
the concept of neutrosophic nano topology is investigated. Section 4 concludes the paper
with some properties on neutrosophic nano interior and neutrosophic nano closure.
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2 Preliminaries

The following recalls requisite ideas and preliminaries necessitated in the sequel of our
work.

Definition 2.1 [8]: Let U be a non-empty finite set of objects called the universe and
R be an equivalence relation on 4 named as the indiscernibility relation. Elements
belonging to the same equivalence class are said to be indiscernible with one another.
The pair (U, R) is said to be the approximation space. Let X C U.

(i) The lower approximation of X with respect to R is the set of all objects, which
can be for certain classified as X with respect to R and it is denoted by Lr(X).

That is, Lr(X) = U {R(z) : R(z) € X}, where R(x) denotes the equivalence
zeU
class determined by x.

(ii) The upper approximation of X with respect to R is the set of all objects, which
can be possibly classified as X with respect to R and it is denoted by Ur(X). That

is, Ur(X) = U {R(2): R() N X # ¢}.

zeU

(iii) The boundary region of X with respect to R is the set of all objects, which can be
classified neither as X nor as not-X with respect to R and it is denoted by Br(X).
That is, BR(X) = UR(X) — LR(X)

Remark 2.2 /8] If (U, R) is an approximation space and X, Y C U, then the following
statements hold:

(i) Lr(X) € X C Ur(X).

Lr(¢) = Ur(¢) = ¢ and Lg(U) = Ur(UU) =U.

) Lr(
i) Lp(
(iti) Ur(X UY) = Ur(X) UUR(Y).
(iv) Ur(X NY) C Up(X) N Ug(Y)
(v) Lr(X UY) 2 Lr(X)U Lg(Y).
(vi) Lr(X NY) = Lp(X) N Lp(Y)
(vil) La(X) C Lr(Y) and Up(X) C Ux(Y), whenever X C Y.
(viii) Ur(X%) = [Lr(X)]° and Lr(X®) = [Ur(X)].
(ix) URUR(X) = LRUR(X) = Ug(X).
(x) LrLR(X) = UgrLRp(X) = Lr(X).

Definition 2.3 [8]: Let U be an universe, R be an equivalence relation on U and
TrR(X) = {U, ¢, Lr(X),Ur(X), Br(X)} where X C U. 7r(X) satisfies the following

axioms:
(i) U and ¢ € TR(X).
(ii) The union of the elements of any sub-collection of 75(X) is in 7(X).

(iii) The intersection of the elements of any finite sub-collection of 7r(X) is in 7(X).
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That is, 7r(X) forms a topology on U called the nano topology on U with respect to
X. We call (U, 7r(X)) as the nano topological space. The elements of 75(X) are called
nano-open sets.

Proposition 2.4 [8/: Let U be a non-empty finite universe and X C Y. Then the
following statements hold:

(i) If Lr(X) = ¢ and Ugr(X) = U, then 7r(X) = {U, ¢}, is the indiscrete nano
topology on U.
(ii) If Lr(X) = Ur(X) = X, then the nano topology, 7r(X) = {U, ¢, Lr(X)}.
(iii) If Lr(X) = ¢ and Ur(X) # U, then 7r(X) = {U, ¢, Ur(X)}.
(iv) If Lr(X) # ¢ and Ur(X) = U, then 7p(X) = {U, ¢, Lr(X), Br(X)}.
) (X)
) =

(v) If Lr(X) # Ugr(X) where Lr(X) # ¢ and Ur(X) # U, then
TR(X

Definition 2.5 [3/: Let X be a non empty set. A fuzzy set A is an object having
the form A = {< x : pa(x),x € X}, where 0 < pa(xz) < 1 represent the degree of
membership of each z € X to the set A.

={U, ¢, Lr(X),Ur(X), Br(X)} is the discrete nano topology on U.

Definition 2.6 [2/: Let X be a non empty set. An intuitionstic set A is of the form

A ={< z: pa(z),va(z),xr € X}, where pa(xr) and vu(x) represent the degree of
membership function and the degree of non membership respectively of each z € X to
the set A and 0 < pa(z) +va(zr) <1forall z € X.

Definition 2.7 [6]: Let X be an universe of discourse with a generic element in X
denoted by x, the neutrosophic set is an object having the form

A ={<z: pa(z),0a(x),va(x) >,z € X}, where the functions u,o,v : X — [0,1]
define respectively the degree of membership or truth , the degree of indeterminancy,
and the degree of non-membership (or Falsehood) of the element = € X to the set A
with the condition. —0 < pa(x) + oa(x) + va(z) < 3.

3 Neutrosophic Nano Topological Space

In this section we introduce the notion of neutrosophic nano topology by means of nano
neutrosophic nano approximations namely neutrosophic nano lower, neutrosophic nano
upper and neutrosophic nano boundary. From Neutrosophic nano topology we have also
defined and deduced intuitionistic nano topology and fuzzy nano topology.

Definition 3.1 : Let U/ be a non-empty set and R be an equivalence relation on .
Let F be a neutrosophic set in & with the membership function pp, the indetermi-
nancy function oz and the non-membership function vg. The neutrosophic nano lower,
neutrosophic nano upper approximation and neutrosophic nano boundary of F in the
approximation (U, R) denoted by N(F), N(F)and BN(F) are respectively defined as
follows:

(i) N(F) =A{< , pr(a)y(x),o0p4)(2), vra)(2) > [y € [2]R, 2 €U}
(i) N(F) = {< z, puga)(®), 0504 (2), vy () > /y € [2]r, 2z € U}

(ili) BN(F)= N(F) — N(F).
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where pp(a)(®) = Ayepy, #AW)s Or) (@) = Nyep1n 0AW)s V) (@) = Ve, VA W)

HER(A) () = \/yE[I]R 1A(Y), OR(A) (z) = \/ye[x}R ca(y), VRA) (z) = /\ye[x}R va(y)-

Definition 3.2 : Let U be an universe, R be an equivalence relation on ¢ and F be a
neutrosophic set in & and if the collection 7y (F) = {On, 1n, N(F), N(F), BN(F)} forms
a topology then it is said to be a neutrosophic nano topology. We call (U, 7n(F)) as
the neutrosophic nano topological space. The elements of 7 (F') are called neutrosophic

nano open sets.

Remark 3.3 : From Neutrosophic nano topology we can deduce and define the
fuzzy nano topology and intuitionistic nano topology. Fuzzy nano topology is
obtained by considering the membership values alone whereas in case of intuitionistic
nano topology both membership and non member ship values are considered.

Definition 3.4 : Let U be a non-empty set and R be an equivalence relation on .
Let F be an intuitionistic set in & with the membership function pr and the non-
membership function vp. The intuitionistic nano lower, intuitionistic nano upper ap-
proximation and intuitionistic nano boundary of F in the approximation (U, R) denoted
by I(F),I(F)and Br(F) are respectively defined as follows:

(i) L(F) ={< =, pr(a)(2), vr(a)(x) > [y € [2]r, 2 € U}.
(i) I(F) = {< =, pga) (@), vga)(x) > /y € [2]r, 2z €U}
(iii) B(F)=I(F) — L(F).

where pig_(4)(2) = Aye)p £AY)s VR (4)(2) = Ve, va(y).

HER(4) () = \/ye[z]R 1A(Y), YRz (A) (z) = /\ye[x]R va(y)-

Definition 3.5 : Let U be an universe, R be an equivalence relation on ¢/ and F be an
intuitionistic set in U and if the collection 77(F) = {On, 1n,L(F),I(F), B;(F)} forms
a topology then it is said to be a intuitionistic nano topology. We call (U, 7;(F)) as
the intuitionistic nano topological space. The elements of 77(F') are called intuitionistic

nano open sets.

Definition 3.6 : Let U/ be a non-empty set and R be an equivalence relation on . Let
F be a fuzzy set in U with the membership function pupr. Then the fuzzy nano lower,
fuzzy nano upper approximation of F and fuzzy nano boundary of F in the approximation

(U, R) denoted by F(F), F(F)and Bx(F) are respectively defined as follows:
(i) E(F) ={<z,pra(z) > /y € [z]r,x € U}.
(i) F(F) ={< @, puga (@) > [y € [z]r,z € U}.
(iii) Br(F)= F(F) - E(F).
where ppa)(2) = Ayepa, PAW): 174 (@) =V e, pa(y)

Definition 3.7 : Let U be an universe, R be an equivalence relation on ¢ and F be
a fuzzy set in U and if the collection 77(F) = {On, 1y, F(F), F(F), Br(F)} forms a
topology then it is said to be a fuzzy nano topology. We call (U, 7x(F)) as the fuzzy

nano topological space. The elements of 7x(F') are called fuzzy nano open sets.
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Remark 3.8 : Thus from the above definitions of intuitionistic and fuzzy nano topolo-
gies we can assure that throughout this paper all the properties and examples also holds
good when it is possible for neutrosophic nano topology.

Remark 3.9 : Since our main purpose is to construct tools for developing neutrosophic
nano topological spaces, we must introduce Oy , 1 and certain neutrosophic set oper-
ations in X as follows:

Definition 3.10 : Let U be a nonempty set and the neutrosophic sets A and B in the
form A = {< z: pa(x),04(z),va(z) >, 2 €U}, B={<z:pup(x),op(z),ve(z) >z €
U}. Then the following statements hold:

(i
(i) AC Biff pa(x) < pup(x),04(x) < op(x),va(x) > vp(z)for all x € U}.

Oy ={<2,0,0,1 >z €U} and 1y ={<2,1,1,0 >: z € U}.

)
)
(iii) A=Biff AC Band B C A.

(iv) AC = {< z,v4(2),1 — oa(x), palz) >: x € U}.

(v) AN B = {z, pa(z) A pp(z),oa(z) A op(x),valz) V vg(z) for all z € U
(vi) AUB = {z, pa(z) V up(z),04(z) V op(z), va(z) Ave(z) for all z € U}.

Theorem 3.11 [8/: Let U be a non-empty finite universe and X C U. Let 7r(X) be
the nano topology on U with respect to X. Then [r(X)]¢, whose elements are A® for
A € 1r(X), is a topology on U.

Remark 3.12 : [ry(F)]¢ is called the dual neutrosophic nano topology of 7y (F).
Elements of [ry(F)]¢ are called neutrosophic nano closed sets. Thus, we note that a
neutrosophic set N(G) of U is neutrosophic nano closed in 7 (F') if and only if i — N (G)
is neutrosophic nano open in 7y (F).

Example 3.13 : Let U4 = {p1,p2,p3} be the universe of discourse. Let U/R =
{{p1,p2},{p3}} be an equivalence relation on U and A = {< p1,(0.7,0.6,0.5) >, <
p2,(0.3,0.4,0.5) >, < ps3,(0.1,0.5,0.1) >} be a neutrosophic set on U then N(A) = {<
p1,(0.3,0.4,0.5) >, < pa, (0.3,0.4,0.5) >, < ps, (0.1,0.5,0.1) >}, N(A) = {< p1, (0.7,0.6,0.5) >
,< p2, (0.7,0.6,0.5) >, < ps, (0.1,0.5,0.1) >}, B(A) = {< p1, (0.5,0.6,0.5) >, < p, (0.5,0.6,0.5) >
, < p3,(0.1,0.5,0.1) >}. Then the collection 75 (A) = {On, 1n,{< p1,(0.3,0.4,0.5) >

< p2,(0.3,0.4,0.5) >, < p3, (0.1,0.5,0.1) >}, {< p1, (0.7,0.6,0.5) >, < pa, (0.7,0.6,0.5) >

,< ps, (0.1,0.5,0.1) >}, {< p1, (0.5,0.6,0.5) >, < pa, (0.5,0.6,0.5) >, < ps, (0.1,0.5,0.1) >

}} is a neutrosophic nano topology on I and [rx(A)] is also a neutrosophic nano topol-

ogy on U. Thus 77(A) = {On, 1n,{< p1,(0.3,0.5) >, < p2,(0.3,0.5) >, < ps,(0.1,0.1) >

H{< p1,(0.7,0.5) >, < p2,(0.7,0.5) >, < ps3,(0.1,0.1) >}, {< p1,(0.5,0.5) >, < po, (0.5,0.5) >
, < p3,(0.1,0.1) >}} and 7£(A) = {On, 1n,{< p1,(0.3) >, < p2,(0.3) >, < ps3,(0.1) >
HA{<p1,(0.7) >, < p2,(0.7) >, < p3,(0.1) >},{< p1,(0.5) >, < p2,(0.5) >, < ps3,(0.1) >

}} are the intuitionistic nano topology and fuzzy nano topology.

Remark 3.14 : In neutrosophic nano topological space, the neutrosophic nano bound-
ary cannot be empty. Since the difference between neutrosophic nano upper and neu-
trosophic nano lower approximations is defined here as the maximum and minimum of
the values in the neutrosophic sets.
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Proposition 3.15 : Let U be a non-empty finite universe and F be a neutrosophic set
on U. Then the following statements hold:

(i) The collection 7 (F') = {On, 1n}, is the indiscrete neutrosophic nano topology on
U.

(ii) If N(F) = N(F) = N(F), then the neutrosophic nano topology,
™~(F) ={0n,1n,N(F),BN(F)}.

(iii) If N(F) = BN(F), then 7n(F) = {On,1n,N(F), N(F)} is a neutrosophic nano
topology

(iv) If N(F) = BN(F) then 7y(F) = {Oy, 1y, N(F), BN(F)}.

(v) The collection 7n5(F) = {On,1n,N(F),N(F),BN(F)} is the discrete neutro-
sophic nano topology on U.

4 Neutrosophic nano closure and interior

In this section we have defined neutrosophic nano closure and neutrosophic nano interior
on neutrosophic nano topological space. Based on this we also prove some properties.

Definition 4.1 : If (U, 7y (F)) is a neutrosophic nano topological space with respect to
neutrosophic subset of i and if A be any neutrosophic subset of ¢/, then the neutrosophic
nano interior of A is defined as the union of all neutrosophic nano open subsets of A
and it is denoted by Ngint(A). That is, Nrint(A) is the largest neutrosophic nano
open subset of A. The neutrosophic nano closure of A is defined as the intersection of
all neutrosophic nano closed sets containing A and it is denoted by Nrcl(A). That is,
Nzcl(A) is the smallest neutrosophic nano closed set containing A.

Remark 4.2 : Let (U, 7n(F')) be a neutrosophic nano topological space with respect
to F where F is a neutrosophic subset of . The neutrosophic nano closed sets in ¢ are
On 1, (N(F))Y, (N(F))C and (By (F))C.

Theorem 4.3 [8]: Let (U, 7r(X)) be a nano topological space with respect to X C U
then Nel(X) =U.

Remark 4.4 : The above theorem need not be true for all neutrosophic nano topolog-
ical space (U, 7n(F)) with respect to F where F is a neutrosophic subset of /. That is
Nzcl(A) need not be equal to U which can be shown by the following example.

Example 4.5 : Let U = {p1,p2,p3,p4,p5} be the universe of discourse. Let U/R =
{{p1,p4},{pP2, 03}, {ps}} be an equivalence relation on U and A = {< p1,(0.2,0.3,0.4) >

, < p4,(0.2,0.3,0.4) >, < ps,(0.4,0.6,0.2) >} be a neutrosophic set on /. Then N(A) =

{< p1,(0.2,0.3,0.4) >, < p4, (0.2,0.3,0.4) >, < ps, (0.4,0.6,0.2) >}, N(A) = {< p1,(0.2,0.3,0.4) >
< pa, (0.2,0.3,0.4) >, < ps, (0.4,0.6,0.2) >} B(A) = {< p1,(0.2,0.3,0.4) >, < pa, (0.2,0.3,0.4) >
,< p5,(0.2,0.4,0.4) >}. Now we have 75(A) = {On,1n,{< p1,(0.2,0.3,0.4) > <
p1,(0.2,0.3,0.4) >, < ps,(0.4,0.6,0.2) >}, {< p1,(0.2,0.3,0.4) >, < ps,(0.2,0.3,0.4) >

,< ps5,(0.2,0.4,0.4) >}} which is a neutrosophic nano topology on U. [rn(A)]¢ =

{On, 1y, {< p1,(0.2,0.3,0.4) >, < pa4, (0.2,0.3,0.4) >, < ps, (0.4,0.6,0.2) >}, {< p1, (0.2,0.3,0.4) >
, < p4,(0.2,0.3,0.4) >, < p5,(0.2,0.4,0.4) >}. Here Nrcl(A) #U
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Theorem 4.6 : Let (U, 7n(F')) be a neutrosophic nano topological space with respect
to F where F is a neutrosophic subset of /. Let A and B be neutrosophic subsets of U/.
Then the following statements hold:

(i) AC Nzcl(A).
(ii) A is nano closed if and only if Nrcl(A) = A.

(ill N]:CZ(ON) = ON and N]:Cl(lN) = lN'

(v) Nrcl(AUB) = Ngcl(A) U Nrcl(B).
(vi) Necl(ANB) C Nrcl(A) N Nxcl(B).

)
)
(iv) AC B = Nrcl(A) C Nrcl(B).
)
)
(vii) Nrcl(Nrcl(A)) = Nrcl(A).

Proof:
(i) By definition of neutrosophic nano closure, A C Nzcl(A).

(ii) If A is neutrosophic nano closed, then A is the smallest neutrosophic nano closed
set containing itself and hence Nrcl(A) = A. Conversely, if Nrcl(A) = A, then
A is the smallest neutrosophic nano closed set containing itself and hence A is
neutrosophic nano closed.

(iii) Since On and 1y are neutrosophic nano closed in (U, 75 (F')), Nrcl(On) = On and
N]:Cl(lN) =1y.

(iv) If A C B, since B C Ngcl(B), then A C Nxcl(B). That is, Nrcl(B) is a Neu-
trosophic nano closed set containing A. But Nzcl(A) is the smallest Neutrosophic
nano closed set containing A. Therefore, Nxcl(A) C Nxcl(B).

(v) Since A C AUB and B C AU B, Nrcl(A) C Nrcl(AU B) and Nxcl(B) C
Nzcl(AU B). Therefore, Nrcl(A) U Nrcl(B) C Nrcl(AU B). By the fact that
AUB C Nzcl(A) U Nrcl(B), and since Nrcl(A U B) is the smallest nano closed
set containing AUB, soNzcl(AUB) C Nrcl(A)UNzcl(B). Thus, Nrcl(AUB) =
Nrcl(A) U Ncl(B).

(vi) Since ANBC Aand ANB C B,Ngcl(AN B) C Nrcl(A) N Ngcl(B).
(vii) Since Nrcl(A) is nano closed, Nrcl(Nrcl(A)) = Ngcl(A).

Theorem 4.7 : (U, 7n(F)) be a neutrosophic nano topological space with respect to
F where F is a neutrosophic subset of ¢. Let A be a neutrosophic subset of &/. Then

(i) 1y — NrInt(A) = Nrcl(1y — A).
(i) 1y — Nrcl(A) = NrInt(ly — A).

Remark 4.8 : Taking complements on either side of(i) and (ii) Theorem 4.8, we get
(N]:Int(A)) = 1N — N]:Cl(lN — A)) and (N}'CZ(A)) = 1N — (N]:Int(lN — A))

Example 4.9 : Let U = {a,b,c} andU/R = {{a,b},{c}}. Let F = {< a,(0.4,0.5,0.5) >
,<1,(0.4,0.5,0.5) >, < ¢, (0.5,0.5,0.5) >} be a neutrosophic set on I then the 7 (A) =
{On,1N,{< @,(0.4,0.5,0.5) >,< b,(0.4,0.5,0.5) >, < ¢,(0.5,0.5,0.5) >}} is a neutro-
sophic nano topology on U. [7n5(A)]¢ = {O0n, 1N, {< a,(0.5,0.5,0.4) >, < b,(0.5,0.5,0.4) >

,< ¢,(0.5,0.5,0.5) >}}. If A = {< a, (0.7,0.6,0.5) >, < b, (0.3,0.4,0.5) >, < ¢, (0.7,0.5,0.5) >
}, then (NzInt(A))¢ = 1y Nrcl(ly — A) = 1y. That is, 1y — NeInt(A) = Nrcl(1y —

A) AISO, 1N — N]:CZ(A) == N]:Int(lN - A) == ON
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Theorem 4.10 : Let (U, 7n(F')) be a neutrosophic nano topological space with respect
to F where F is a neutrosophic subset of /. Let A and B be neutrosophic subsets of U,
then the following statements hold:

(i) A is neutrosophic nano open if and only if NrInt(A) = A.

(111 N]:Int(()N) = ON and N]:Int(lN) = 1N-

(v) NeInt(A)UNgInt(B) C NriInt(AU B).

)

)
(iv) AC B= NriInt(A) C NrInt(B).

)
(vi) NrInt(An B) = NelInt(A) N NrInt(B).
)

(Vii N;Int(N;Int(A)) = N]:I’)”Lt(A).
Proof:

(i) A is neutrosophic nano open if and only if 15 — A is neutrosophic nano closed, if
and only if Nrcl(ly — A) =1y — A, if and only if 1y — Nrcl(1y — A) = A if and
only if NrInt(A) = A, by Remark 4.8.

(ii) Since On and 1y are neutrosophic nano open, NrInt(On) = On and NeInt(1y) =
1n.

(ili) ACB= 1y — B C 1y — A. Therefore, Nrcl(1y — B) C Nrcl(1y — A). That is,
Iy — Nrcl(1y — A) C 1y — Necl(1y — B). That is, NyIntA C NrIntB.

Proof of (iv), (v) and (vi) follow similarly from Theorem 4.7 and Remark 4.8.
Conclusion: Neutrosophic set is a general formal framework, which generalizes the
concept of classic set, fuzzy set, interval valued fuzzy set, intuitionistic fuzzy set, and
interval intuitionistic fuzzy set. Since the world is full of indeterminacy, the neutro-
sophic nano topology found its place into contemporary research world. This paper can
be further developed into several possible such as Geographical Information Systems
(GIS) field including remote sensing, object reconstruction from airborne laser scanner,
real time tracking, routing applications and modeling cognitive agents. In GIS there is
a need to model spatial regions with indeterminate boundary and under indeterminacy.
Hence this neutrosophic nano topological spaces can also be extended to a neutrosophic
spatial region.
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Abstract. Neutrosophic cubic set consists of interval
neutrosophic set and single valued neutrosophic set
simultaneously. Due to its unique structure, neutrosophic
cubic set can express hybrid information consisting of
single valued neutrosophic information and interval
neutrosophic  information  simultaneously. VIKOR
(Vlsekriterijumska  optimizacija i  KOmpromisno
Resenje) strategy is an important decision making
strategy which selects the optimal alternative by utilizing
maximum group utility and minimum of an individual
regret. In this paper, we propose VIKOR strategy in
neutrosophic cubic set environment, namely NC-VIKOR.
We first define NC-VIKOR strategy in neutrosophic

Keywords: MAGDM, NCS, NC-VIKOR strategy.

1. Introduction

Smarandache [1] introduced neutrosophic set (NS) by
defining the truth membership function, indeterminacy
function and falsity membership function as
independent components by extending fuzzy set [2] and
intuitionistic fuzzy set [3]. Each of three independent
component of NS belons to [0, 17]. Wang et al. [4]
introduced single valued neutrosophic set (SVNS)
where each of truth, indeterminacy and falsity
membership degree belongs to [0, 1]. Many researchers
developed and applied the NS and SVNS in various
areas of research such as conflict resolution [5], cluster-
ing analysis [6-9], decision making [10-39], educational
problem [40, 41], image processing [42-45], medical
diagnosis [46, 47], social problem [48, 49]. Wang et al.
[50] proposed interval neutrosophic set (INS). Ye [51]
defined similarity measure of two interval neutrosophic
sets and applied it to solve multi criteria decision mak-
ing (MCDM) problem. By combining SVNS and INS
Jun et al. [52], and Ali et al. [53] proposed neutrosophic
cubic set (NCS). Thereafter, Zhan et al. [54] presented

cubic set environment to handle multi-attribute group
decision making (MAGDM) problems, which means we
combine the VIKOR with neutrosophic cubic number to
deal with multi-attribute group decision making problems.
We have proposed a new strategy for solving MAGDM
problems. Finally, we solve MAGDM problem using our
newly proposed NC-VIKOR strategy to show the
feasibility, applicability and effectiveness of the proposed
strategy. Further, we present sensitivity analysis to show
the impact of different values of the decision making
mechanism coefficient on ranking order of the
alternatives.

two weighted average operators on NCSs and applied
the operators for MADM problem. Banerjee et al. [55]
introduced the grey relational analysis based MADM
strategy in NCS environment. Lu and Ye [56] proposed
three cosine measures between NCSs and presented
MADM strategy in NCS environment. Pramanik et al.
[57] defined similarity measure for NCSs and proved its
basic properties and presented a new multi criteria
group decision making strategy with linguistic variables
in NCS environment. Pramanik et al. [58] proposed the
score and accuracy functions for NCSs and prove their
basic properties. In the same study, Pramanik et al. [59]
developed a strategy for ranking of neutrosophic cubic
numbers (NCNs) based on the score and accuracy func-
tions. In the same study, Pramanik et al. [58] first de-
veloped a TODIM (Tomada de decisao interativa e mul-
ticritévio), called the NC-TODIM and presented new
NC-TODIM [58] strategy for solving (MAGDM) in
NCS environment. Shi and Ye [59] introduced Dombi
aggregation operators of NCSs and applied them for
MADM problem. Pramanik et al. [60] proposed an ex-
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tended technique for order preference by similarity to
ideal solution (TOPSIS) strategy in NCS environment
for solving MADM problem. Ye [61] present operations
and aggregation method of neutrosophic cubic humbers
for MADM. Pramanik et al. [62] presented some opera-
tions and properties of neutrosophic cubic soft set.
Opricovic [63] proposed the VIKOR strategy for a
MAGDM problem with conflicting attributes [64-65].
In 2015, Bausys and Zavadskas [66] extended the
VIKOR strategy to INS environment and applied it to
solve MCDM problem. Further, Hung et al. [67]
proposed VIKOR method for interval neutrosophic
MAGDM. Pouresmaeil et al. [68] proposed an
MAGDM strategy based on TOPSIS and VIKOR in
SVNS environment. Liu and Zhang [69] extended
VIKOR method in neutrosophic hesitant fuzzy set
environment. Hu et al. [70] proposed interval
neutrosophic projection based VIKOR method and
applied it for doctor selection. Selvakumari et al. [70]
proposed VIKOR Method for decision making problem
using octagonal neutrosophic soft matrix.
VIKOR strategy in NCS environment is yet to appear in
the literature.
Research gap:

MAGDM strategy based on NC-VIKOR. This
study answers the following research questions:
Is it possible to extend VIKOR strategy in NCS
environment?
Is it possible to develop a new MAGDM strategy based
on the proposed NC-VIKOR method in NCS
environment?

Motivation:

The above-mentioned analysis [64-69] describes
the motivation behind proposing a novel NC-VIKOR
method based MAGDM strategy under the NCS envi-
ronment. This study develops a novel NC-VIKOR -
based MAGDM strategy that can deal with multiple de-
cision-makers.

The objectives of the paper are:

i. To extend VIKOR strategy in NCS environment.

ii. To define aggregation operator.

iii. To develop a new MAGDM strategy based on

proposed NC-VIKOR in NCS environment.

To fill the research gap, we propose NC-VIKOR
strategy, which is capable of dealing with MAGDM
problem in NCS environment.

The main contributions of this paper are
summarized below:

i. We developed a new NC-VIKOR strategy to deal
with MAGDM problems in NCS environment.

ii. We introduce a neutrosophic cubic number aggrega-
tion operator and prove its basic properties.

iii. In this paper, we develop a new MAGDM strategy
based on proposed NC-VIKOR method under NCS en-
vironment to solve MAGDM problems.

iv. In this paper, we solve a MAGDM problem based on
proposed NC-VIKOR method.

The remainder of this paper is organized as follows: In
the section 2, we review some basic concepts and
operations related to NS, SVNS, NCS. In Section 3, we
develop a novel MAGDM strategy based on NC-
VIKOR to solve the MADGM problems with NCS
environment. In Section 4, we solve an illustrative
numerical example using the proposed NC-VIKOR in
NCS environment. Then in Section 5, we present the
sensitivity analysis. The conclusions of the whole paper
and further direction of research are given in Section 6.

2. Preliminaries

Definition 1. Neutrosophic set

Let X be a space of points (objects) with a generic
element in X denoted by X, i.e. xe X. A neutrosophic
set [1] A in X is characterized by truth-membership

function  ta(X) , indeterminacy-membership
function j (X) and falsity-membership function f (X) ,
where ta (X) ,ia(X) , fa(X) are the functions from X
t0 170,17 i.e. ta,ia,fa: X—=> 170,17 [ that means
ta(X) , ia(X) , fa(x) are the real standard or non-

standard subset of ] 0, 1" [. Neutrosophic set can be
expressed as A = {<X , (ta(X) ., ia(X) , fa(x))>

V xeX}and “0<ta(X)+ia(X)+fa(X)<3".
Example 1. Suppose that X = { X;,X,,X5,...,X,, } be the
universal set of n points. Let A be any neutrosophic

set in X. Then A expressed as A, = {<X,, (0.7, 0.4,
0.3)>: x, eX}.

Definition 2. Single valued neutrosophic set

Let X be a space of points (objects) with a generic
element in X denoted by x. A single valued
neutrosophic set [4] B in X is expressed as:

B = {< xt (tz(X),15(x) ., (X))> xeX} where
ty(X).i5(X) . f (x) [0, 1].

For each xe X, t,(X),i5(X).f,(X) [0, 1] and

0< ty(X) +ig(X) + Fa(X) <3
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Definition 3. Interval neutrosophic set

An interval neutrosophic set [50] A of a non empty set
H is expreesed by truth-membership function t (h)

the indeterminacy membership function 1 (h) and
falsity membership function f, (h) . For each heH,
t;(h). iz(h), fz(h) < [0, 1] and A defined as
follows:

A= {< h [ta(h), 5 (h) 1, iz(h) iZ(h) ],
[fz(h), T2 (") I: ¥ h & H} Here, t3(h), t3(h),
iz (h),iz(h), fxh),fz(N): H—> 170, 17 [ and
0 <supt (h)+supi; (h) +supf3 (h)< 3".

Here, we consider tz(h) , tz(h) , iz(h),i%(h),
f-(h), T3 (h) : H—> [0, 1] for real applications.

Example 2.

Assume that H = { h;,h,,hs,..., hn} be a non-empty set.
Let A, be any interval neutrosophic set. Then
A, expressed as A, = {<h;: [0.30, 0.70], [0.20, 0.45],
[0.18, 0.39]: h& H}.

Definition 4. Neutrosophic cubic set

A neutrosophic cubic set [52, 53] in a non-empty set H
is defined as N = {< h, A(h), A(h) > V heH}, where
;\ and A are the interval neutrosophic set and
neutrosophic set in H respectively. Neutrosophic cubic
set can be presented as an order pair N =< A, A >, then
we call it as neutrosophic cubic (NC) number.

Example 3.

Suppose that H = { h;,h,,hs,..., n} be a non-empty set.
Let N, be any NC-number. Then N, can be expressed
as N; = {<h;; [0.35, 0.47], [0.20, 0.43], [0.18, 0.42],
(0.7,0.3,0.5)>: h, €EH}.

Some operations of NC-numbers: [52, 53]

i Union of any two NC-numbers
Let N;=<A, A, >and N,=<A,,A, >be any two

NC-numbers in a non-empty set H. Then the union of
N, and N, denoted by N;\WN, is defined as

follows:
NN, = <A () UA, (), A () UA,(h) VheH >,
where

A (MUA, (M) = {< h, [max{ t5, (), tz, (N)}max
{tx, (), t, (M3, [min Lz (M), iz, (W} min {i7, (h),
iz, (M3, [min { fa (h), fa, (N} min {7 (h),
f,§2 (h3}1>: heH} and A (h)UA,(h) = {< h, max
{ta, () ta, (MY, min {ia, (M), in, (M} min {£, (h),

fa, (N}> VhEH}

Example 4.

Assume that

N, = <[0.39, 0.47], [0.17, 0.43], [0.18, 0.36], (0.6, 0.3,
0.4)>and N, =<[0.56, 0.70], [0.27, 0.42], [0.15, 0.26],
(0.7, 0.3, 0.6)> be two NC-numbers. Then N;\WN, =
< [0.56, 0.7], [0.17, 0.42], [0.15, 0.26], (0.7, 0.3, 0.4)>.

ii. Intersection of any two NC-numbers
Intersection of N,and N, denoted by N; N, is de-
fined as follows:

NN, = <A (h)NA,(h), A (h)NA,(h)VheH
>, where A, (h) A, (h) = {< h, [min {t&, (h). &, (W)},
min { tx, (), t;, (], [max {iz, (h), iz, ()}, max
Li, (), i5, (3], [max {5, (), &, ()3}, max {5, (h),
fxz, (M}>: he H} and A (h)nA,(h) = {< h, min
{ta, (), ta, (M} max {ia, (h),ia, (M} max {54, (h),

fa, (N}>V hEHY.

Example 5.
Assume that
N, = < [0.45, 0.57], [0.27, 0.33], [0.18, 0.46], (0.7, 0.3,
0.5)>and N, =<[0.67, 0.75], [0.22, 0.44], [0.17, 0.21],
(0.8, 0.4, 0.4)> be two NC numbers. Then N;N, =
< [0.45, 0.57], [0.22, 0.33], [0.18, 0.46], (0.7, 0.3, 0.4)>.

iii. Compliment of a NC-number
Let N;=<A;,A; >be a NCS in H. Then compliment

of Nu=<A,, A, >is denoted by N = {< h, AS (h),
A° (h)>: V heH}.

Here, A= {< h, [t ¢ (0, ty o (W], Lz (), i c (O]
[f3c (). f5c (> V hEHY, where, t . (h) = {1} -
th, ().t () = {13 - t5 (), e (N = {1} - i& (),
ize ()= {1}~ i3 (), F5c (0) = {1} - f& (), f5. ()
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= {13} - 5, (), and t,e () = {1} - ta, (), iaf(Q) =

{1} - iag (), fag () =={1} - fa ().
Example 6.
Assume that N; be any NC-number in H in the form:

N; = < [.45, .57], [.27, .33], [.18, .46], (.7, .3, .5)>.
Then compliment of N, is obtained as N; = < [0.18,

0.46], [0.67, 0.73], [0.45, 0.57], (0.5,0.7, 0.7) >.
iv. Containment

Let Ny=<A,, A, >={<h, [ta,(h), t; (] [iz, (M),
iz, (M1 [FR, (M), £3, ()] (ta (N)iag (0).Fay(h)) >:
hEH}and Ny=<A,, A, >={<h, [tz, (h), ts, (M1,

iz, (0. i5, (V1 2, (M), £3, (M1,
(ta, (N)iia, (h).fa,(h)) > hEH}

be any two NC-numbers in a non-empty set H,

then, (i) N, = N, ifand only if

ta () < 12, (n), t5,(h) < t3 (),

in(h) 2 i, (h) ., i, () 2 s, (h),

fa,(h) > f5,(h), 5 (h) > 5 ()

and t, (h)<t,, (h),

i, (N) 214, (N), T, (N)2F,, () forallhEH,
Definition 7.

Let Ny= < [ag a,], [by, b2], [c1.C2], (@, b, ) >and N, =<
[di, d2], [e4, €2], [fi, T2], (d, e, ) > be any two NC-

numbers, then distance [58] between them is defined by
D (Nll NZ) =

1
§[|a1 —d,|+[a, —d,|+|b, —e,|+|b, —e,|+ @

lc, —f,|+|c, —f,|+|a—d|+|b—¢|+|c—f[]

Definition 2.14: Procedure of normalization

In general, benefit type attributes and cost type
attributes can exist simultaneously in MAGDM
problem. Therefore the decision matrix must be

normalized. Let a; be a NC-numbers to express the

rating value of i-th alternative with respect to j-th
attribute (¥ ;). When attribute ¥ je Cor ¥; € G
(where C and G be the set of cost type attribute and set
of benefit type attributes respectively) The normalized
values for cost type attribute and benefit type attribute
are calculated by using the following expression (2).

a; 2
U |1-a;if ¥, eC @

Where, a; is the performance rating of i th alternative
for attribute ‘¥, and max g is the maximum

) %aij if ¥, G

performance rating among alternatives for attribute ‘Pj .
VIKOR strategy

The VIKOR strategy is an MCDM or multi-criteria
decision analysis strategy to deal with multi-criteria
optimization problem. This strategy focuses on ranking
and selecting the best alternatives from a set of feasible
alternatives in the presence of conflicting criteria for a
decision problem. The compromise solution [63, 64]
reflects a feasible solution that is the closest to the ideal,
and a compromise means an agreement established by
mutual concessions. The L, -metric is used to develop
the stategy [65]. The VIKOR strategy is developed
using the following form of L , —metric

L :{é[(“@; 4 ) ! (QJ+ el )T }p

1<p<;i=1,2,3,....,m.
In the VIKOR strategy, L (as S) andL_, i (as

-

R; ) are utilized to formulate ranking measure. The
solution obtained by min S; reflects the maximum group
utility (‘‘majority” rule), and the solution obtained by
min R; indicates the minimum individual regret of the

“opponent”.

Suppose that each alternative is evaluated by each
criterion function, the compromise ranking is prepated
by comparing the measure of closeness to the ideal
alternative. The m alternatives are denoted as A;, Ay,
As ..., An. For the alternative A;, the rating of the j th
aspect is denoted by Qij, i.e. Qij is the value of j th

criterion function for the alternative A;; n is the number
of criteria.

The compromise ranking algorithm of the VIKOR
strategy is presented using the following steps:

Step 1: Determine the best QJ_+ and the worst

.Qj’ values of all criterion functions j =1, 2,..., n . If the
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j-th function represents a benefit then:
QJ_* =mainj, Qj‘ =minQij vV, .
1 ! p p p
Step 2: Compute the values S;and R; ; i=1, 2,..., m, DMP = 2, a&l a&z"' alps 3)
by these relations: o, a,a, ¥,

5=xw, (@r-0,)/(e-9)),

R, =Mmaxw, (Q: _Qij)/(Qi+ _Q;)’

Here, w; is the weight of the criterion that expressss its
relative importance.

Step 3: Compute the values Q;: i =1, 2,..., m, using the
following relation:

Q =v(s, -5 )/(s' -5 )+ (1-v)R, -R)/(R" -R).
Here, S* =maxS;, S™ =minS,

R*=maxR;, R™ =minR,

Here, v represents ‘‘the decision making mechanism
coefficient” (or ‘‘the maximum group utility”’). Here
we consider v=0.5.

Step 4: Preference ranikng order of the the alternatives
is done by sorting the values of S, R and Q in
decreasing order.

3. VIKOR strategy for solving MAGDM problem
in NCS environment

In this section, we propose a MAGDM strategy in NCS
environment. Assume that @® ={®,,®,,®,,...,D,}be a
set of r alternatives and W ={¥,,V,,‘V;,...,'t; } be a set
of s attributes. Assume that W={w,,w,,w,,...,w_} be
the weight vector of the attributes, where w, > 0
and iwk =1. Assume that E={E.E,E,..E} be

k=1

the set  of M decision makers and
C={¢,.¢,.C5,....C 1} be the set of weight vector of

M
decision makers, where ¢, >0 and . {p =1.
p=1

The proposed MAGDM strategy consists of the
following steps:
Step: 1. Construction of the decision matrix

Let DMP = (af),.c ( = 1, 2, 3, ..., t) be the p-th
decision matrix, where information about the alternative
®; provided by the decision maker or expert Epwith
respect to attribute ¥, (j = 1, 2, 3, ..., s). The p-th

decision matrix denoted by DMP (See Equation (3)) is
constructed as follows:

p p p
CZjr arl arz"' 'ars

Herep=1,2,3,..,M;i=1,2,3,...,r; j=1,2,3,...,s.
Step: 2. Normalization of the decision matrix

In decision making situation, cost type attributes
and benefit type attributes play an important role to
select the best alternative. Cost type attributes and
benefit type attributes may exist simultaneously, so
the decision matrices need to be normalized. We
use Equation (2) for normalizing the cost type at-
tributes and benefit type attributes. After normali-
zation, the normalized decision matrix (Equation
(3)) is represented as follows (see Equation 4):

¥Ow, .. W

*p_*p *p

ch a1 dwz.. ais

p_ *p D *p
DM’ = CD2 adaza a2 4)

*P *p *P
CDr drl Ar2. s

Here,p=1,2,3,...,M;i=1,2,3,....1; j=1,2,3,...,s.
Step: 3. Aggregated decision matrix

For obtaining group decision, we aggregate all the
individual decision matrices (DM”,p =1,2,...,M) to an
aggregated  decision matrix (DM) using the
neutrosophic cubic numbers weighted aggregation
(NCNWA) operator as follows:

a;= NCNWA (aj, aj,... ,aj")=

(8} ©@C,a. @ a; ©..0,a)) =
M M M M
<L[z§p tﬁ(p)' Y5, ta(p)]’[ Y5, ii(p)' >C, ia(p)]’
p=t p=1 p=1 p=1

(3¢, 69,50, OLEE, 0, 3¢, if, %gpfg,.m]J> 5)
pt p=L p=1 p=l p-1

The NCNWA operator satisfies the following
properties:

1. Idempotency

2. Monotoncity

3. Boundedness

Property: 1. Idempotency

Ifall ai, a2 ,aj' =a are equal, then

ijr Aijoeee

a_= NCNWA (a’, a%,... ,a')=a
ij [N} ] ]
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Proof:

Since aj =aj =
(5), we get

a;= NCNWA (aj aj.. aj')=
(8} ®C,a DA @..0Ca") =
((a@l,adla®..0Ca)=

<L[t-%r;,,r%cp],[i-fcp,r%f;p],
p=1 p=1 p=1 p=1

=aj' =a, based on the Equation

M .M M M M
[F- 3¢, .f ch],(tch,nch,fqu]J>
p=1 p=1 p=1 p=1 p=1
:<([t’,t*],[i’,i LIF~, £71,(t,0,f]) >=a.
Property: 3. Monotonicity
Assume that{aj, a;,..,aj' }and {a;!, a;’,....a;" }be
any two set of collectlons of M NC-numbers with the
condition aj <a; p(p 1,2, .., M), then
NCNWA . (a},a;,....a}') <NCNWA . (aj

Proof:
From the given condition ¢;”<t;"® , we have

I]’ Ij’ Ij ' IJ "

=(p)
Cpt” <Cpt“
M M %
= 36, Pt
ij
p=1 p=1
From the given condition t;®<¢;"® , we have
¢ <ttt ®)
p-l Pij
“ Mo )
=G, tg(")s Zl;ptij .
p=1 p=1l
From the given condition j;®”>j;"® , we have

*(p)
é; I'J Z;P ij
R A
pli "= Z5pl;
p=l p=1l
From the given condition j;(®>j;"®, we have
4 S +*(p)
g Ii_(P)Z(; |" P
P> S )
= ZC i >2Cp|ij .
p=1l
From the given condition f;®>f;"®, we have
) -*(p)
Cpfij ngfij
M M *
—(p) -*(p)
:>pZ:lefij szzlgpfij ’

From the given condition f;®>f;"® we have

agh).

) +*(p)
g, fi"=C,f
u )
= 2L, 2320 f
p=1l p=1
From the given condition ”<¢;®”, we have
*(p)
(; tlp)<(; tl
*(p)
= Z(;pti(jp)s zz;ptu )
p=1 p=1
From the given condition P >j;® , we have

. *(p)
C IUP) (;|

P ij
+ *(p)
= ZC i< ZCplij
From the given condition t{”<t;*® , we have
) *(p)
SpFi ZCPfij

=36, iP<300

From the above relations, we obtain
NCNWA  (aj,a:,...,ai')SNCNWA  (aj'
Property 2. Boundedness

Let{a; ,ag"}be any collection of M NC-numbers.
If

a'=<[max{t, 3, [max{t*(p)}],[mgn G5 @3 mingi5 3],

[mln{fg“’)} mln{f ®}1, (max{e}, min{if}, min{f(}) >

a-=<[min{t; ™}, [min{t; 3], [max{i; '}, max{i 3],
p p

[mgx{f i3 mgx{fa“”}] min{t}, mgx{if}}, mgx{f >

*M
ij ? u' 1au )

I]’

Then, a"<NCNWA _(a} aj.. aj')<a”.

Proof:
From Property 1 and Property 2, we obtain

NCNWA  (aj,aj,...,a;')>NCNWA . (a",a",...,a ) =a"
and

NCNWA  (aj,a;,...,a}') <NCNWA (a*,a",...,.a") =a".
So, we have

a’< NCNWA_ (aj,a;,....aj') <a”.

Therefore, the aggregated decision matrix is defined as
follows:
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vOw, LW,
®; ay e Ay

DM =@, aya, a ()
(Dr a'rl ar2 ars

Here,i=1,2,3,...,15j=1,2,3,...,8;p=1,2,...., M.

Step: 4. Define the positive ideal solution
and negative ideal solution

a,+:<[maxtu,maxt+] [m|n i, mini;], @)
[mln i mini;], (max t;, min f;, min ;) >
a; =< m|n i‘-,min 1, maxii,maxii*. ,

[min t; til [ il ®)

[maxf maX| il (mlnt maxf maxf i) >

Step: 5. Compute and T, 7
and rrepresgnt the average and worst group

scores for 'the alternative A; respectively with the
relations

s w; xD(a;,a;)
L=y ijr 4 9
' El D(a;,a;) ®)
Z7,~max| D 08) (10)
] D(aj,ay)

Here, w; is the weight of ‘¥',.

The smaller values of and Ieorres&ond to the

better average and worse group scores  for
alternative A; , respectively.

Step: 6. Calculate the values of ¢,(i =1, 2, 3,

vy 1)
M -T) (Z -2)
o; _mer(l_Y)ﬁ (11)

Here, I, =min T}, I;" =maxT; ,
1 1

Z =min Z,, Z} =maxZz, (12)

and y depicts the decision making mechanism
coefficient. If y>0.5, it is for “the maximum group
utility”; If y<0.5, it is *“ the minimum regret”; and it is
both if y=0.5.

Step: 7. Rank the priority of alternatives

Rank the alternatives by ¢, , and T, accor%mg

to the rule of traditional VIKOR strategy The
smaller value reflects the better alternative.

4. lllustrative example

To demonstrate the feasibility, applicability and
effectiveness of the proposed strategy, we solve a
MAGDM problem adapted from [51]. We assume that
an investment company wants to invest a sum of money
in the best option. The investment company forms a
decision making board involving of three members (Ej,
E,, E3) who evaluate the four alternatives to invest
money. The alternatives are Car company (@, ), Food
company (@, ), Computer company ( ®,) and Arms
company ( @, ). Decision makers take decision to
evaluate alternatives based on the attributes namely,
risk factor (¥, ), growth factor (¥, ), environment
impact (V). We consider three criteria as benefit type
based on Pramanik et al. [58]. Assume that the weight
vector of attributes is W=(0.36,0.37,0.27)" and weight
vector of decision makers or experts
is £=(0.26,0.40,0.34)" . Now, we apply the proposed
MAGDM strategy using the following steps.
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Multi attribute group decision making problem

Decision making analysis phase

Construction of the decision matrix [z

J

Normalization of the decision
matrices

A2
Aggregated decision matrix

V

Define the positive ideal solution
and negative ideal solution

l

Compute T, and Z,
Calculate the values
of ¢,

v

Rank the priority of
alternatives

Figure.1 Decision making procedure of proposed MAGDM method
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Step: 1. Construction of the decision matrix We construct the decision matrices as follows:

Decision matrix for DM* in NCN form
\Pl \PZ \FS
@, <[.7,.9],[.1,.21,[.1,.2],(.9,.2,.2)> <[.7,.9]1,[.1,.2],[.1,.2],(.9,.2,.2) > <[.4,.5],[.4,.5],[.4,.5],(.5..5,.5) >
®, <[.6,.8],[.2,.3],[.2,.4],(.8,.3,.4) > <[.4,.5],[.4,.5],[.4,.5],(.5,.5,.5) > <[.7,.9],[.1,.2],[.1,.2], (.9, .2,.2) >
®, <[.4,.5],[.4,.5],[.4,.5],(.5,5,.5) > <[.6,.8],[.2,.3],[.2,.4],(.8,.3,.4) > <[.4,.5],[.4,.5],[.4,.5],(.5,.5,.5) >
@, <[.3,.4],[.5,.6],[.5,.71,(.4,.6,.7) > <[.4,.5],[.4,.5],[.4,.5],(.5,.5,.5) > <[.7,.9],[.1,.2],[.1,.2],(.9,.2,.2) >
Decision matrix for DM? in NCN form
¥, v, v,
®, <[.3,.41,[.5,.6],[.5,.7],(.4,.6,.7) > <[.4,.5],[.4,.5],[.4,.5],(.5,.5,.5) > <[.7,.91,[.1,.2],[.1,.2],(.9,.2,.2) >
®, <[.4,.5],[.4,.5],[.4,.5],(.5,5,.5) > <[.4,.5],[.4,.5],[.4,.5],(.5,.5,.5) > <[.7,.9],[.1,.2],[.1,.2],(.9,.2,.2) >
@, <[.7,.9],[.1,.21.[.1,.2],(.9,.2,.2)> <[.7,.9],[.1,.2],[.1,.2],(.9,.2,.2) > <[.4,.5],[.4,.5],[.4,.5],(.5,.5,.5) >
®, <[.6,.8],[.2,.3],[.2,.4],(.8,.3,.4) > <[.4,.5],[.4,.5],[.4,.5],(.5,.5,.5) > <[.7,.9],[.1,.2],[.1,.2],(.9,.2,.2) >
Decision matrix for DM?® in NC-number form
LFI \PZ lPS

®, <[.4,.5],[.4,.5],[.4,.5],(.5,.5,.5) > <[.4,.5],[.4,.5],[.4,.5],(.5,.5,.5) > <[.7,.9],[.1,.2],[.1,.2],(.9,.2,.2) >
®, <[.4,.5],[.4,.5],[.4,.5],(.5,.5,.5) > <[.7,.9],[.1,.2],[.1,.2],(.9,.2,.2) > <[.4,.5],[.4,.5],[.4,.5],(.5,.5,.5) >
@, <[.7,.9],[.1,.21,[.1,.2],(.9,.2,.2) > <[.6,.8],[.2,.3].[.2,.4],(.8,.3,.4) > < [.6,.8],[.2,.3],[.2,.4],(.8,.3,.4) >
®, <[.7,.91,[.1,.2],[.1,.2],(.9,.2,.2) > <[ 4,.5],[.4,.5],[.4,.5],(.5,.5,.5) > < [.3,.4],[.5,.6],[.5,.7],(.4,.6,.7) >
Step: 2. Normalization of the decision matrix

Since all the criteria are considered as benefit type, we do not need to normalize the decision matrices (DM*, DM? DM?3).

(13)

(14)

(15)

Step: 3. Aggregated decision matrix
Using equation eq. (5), the aggregated decision matrix of (13, 14, 15) is presented below:
¥, Y, ¥
®, <[.44,.56],[.36,.46],[.36,.51],(.56,.46,.50) > < [.48,.60],[.32,.42],[.32,.42],(.60,.42,.42) > < [.62,.80],[.18,.28],[.18,.28],(.80,.28, .28) > (16)
®, <[.45,.58],[.35,.45],[.35,.47],(.58,.45,.47) > < [.50,.64],[.30,.40],[.30,.40], (.64,.40,.40) > < [.60,.76],[.20,.30],[.20,.30],(.76,.30,.30) >
®, <[.62,.80],[.18,.28],[.18,.28],(.80,.28,.28) > < [.64,.84],[.16,.26],[.16,.32],(.84,.26,.32) > < [.47,.60],[.33,.43],[.33,.47],(.60,.43, .47) >
D, <[.56,.73],[.24,.34],[.24,.41],(.73,.34,.41) > <[.40,.50],[.40,.50],[.40,.50],(.50,.50,.50) > < [.56,.73],[.24,.34],[.24,.37],(.73,.34,.37) >

Step: 4. Define the positive ideal solution and negative ideal solution
The positive ideal solution a; =
LI}1 '{}2 LPS
<[.62,.80],[.18,.28],[.18,.28],(.80,.28,.28) > <[.64,.84],[.16,.26],[.16,.32],(.84,.26,.32) > <[.62,.80],[.18,.28],[.18,.28],(.80,.28,.28) >
and the negative ideal solution
ai = \Vl \Pz \Ps
<[.44,.56],[.36,.46],[.36,.51],(.56,.46,.50) > <[.40,.50],[.40,.50],[.40,.50], (.50,.50,.50) > <[.47,.60],[.33,.43],[.33,.43],(.60,.43,.47) >

Step: 5. Compute  and 7 And
Using Equation (9) and Equation (10),'we obtain 7 —max £0.36x0.2) (0.37x0.16J £0.27X0j 024
_[0.36x0.2J+Lo.37x0.16J+L0.27x0J_043 ' 0.37 025 J\ 016 ’
o037 0.25 0.16 o (0.36><0.18J [0.37><0.14J[0.27><0.02J
Z,=max : I =0.21,
_L0.36><0.18J+L0.37><0.14J+L0.27><0.02J_042 { 037 0.25 0.16 }
2= =V. 1
0.37 0.25 0.16 5 7maX{0.36><OJ (o.37x0JL0.27x0.19J} 0.3
3= ’ ’ =V 1
1,3:L0.36><O]J{O.B?xo]_|_£0.27><0.19J:0.32’ 0.37 0.25 0.16
0.37 0.25 0.16 7 —ma[ 036X 0.08 ) (037x0.25) (027007 )| _o
r :Lo.e,sx0.08J+L0.37x0.25J+L0.27x0.o7J:O 57 ‘o {L 0.37 J[ 0.25 j[ 0.16 J}’ o
) 0.37 0.25 0.16 Step: 6. Calculate the values of

d;
Using Equations (11), (12) and y=0.5, we obtain
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(0.43-0.32) (0.24-0.21) Step: 7. Rank the priority of alternatives

6= 0.5 ===+ 0.5x =0.31,
© 42-0 32) (0.21-0.21) The preference order of the alternatives based on
$,=0.5x-— 5 25' +0.5x— 227 -0.2, the traditional rules of the VIKOR startegy
. iSCD2> DD, - D,.
3 =0.5% (032-032) o0 (082-021) o) e
0.25 0.16
b, =0.5% (057-032) 5 (037-021)
0.25 016

5. The influence of parameter y
Table 1 shows how the ranking order of alternatives (®;) changes with the change of the value of y

Values of Values of 0, Preference order of alternatives
Y
y=0.1 ¢,=0.22, $,=0.04, $,=0.62, ¢,=1 D, O,> O, - D,
y =02 ¢,=0.24, ¢,=0.08, ¢,=0.55, ¢,=1 D, O~ O, =D,
y=03 ¢,=0.26, ¢,=0.12, ¢,=0.48, ¢,=1 D, O~ O, =D,
y=04 ¢,=0.29, ¢,=0.16, ¢,=041, ¢,=1 D,- D, >D, -,
y =05 ¢,=0.31, ¢,=0.2, $,=0.34, ¢,=1 D, D, - D, ~D,
vy =06 ¢,=0.34, ¢,=0.24, $,=0.28, ¢,=1 D,- G- O, D,
vy =07 ¢,=0.36, ¢,=0.28, $,=0.21, ¢,=1 D, > O, > D,
vy =08 ¢,=0.39, ¢,=0.32, ,=0.14, ¢,=1 O, D, O, > D,
vy =0.9 $,=0.42, ¢,=0.36, $,=0.07, ¢,=1 O~ D, > O, > D,

Tablel. Values of ¢, (i =1, 2, 3, 4) and ranking of alternatives for different values of 7y .

Figure 2 represents the graphical representation of
alternatives ( A, ) versus o, (i =1, 2 3 4 for
different values of vy .
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Line of lowest values of ¢

Line of greatest values of ¢

/
/
/

/

@, o, D,

@,

0.95
- Fors
3 E=d
| Los7 ©
3 [}
L (0]
L >
[ ©
' Loss >
77:_ 0.19
V' /01
0.2
0.3
0.4
0.5
A
0.6 0)6\
0.7 g
>
0.8 A\

6. Conclusions

In this paper, we have extended the traditional VIKOR
strategy to NC-VIKOR. We introduced neutrosophic cubic
numbers weighted aggregation (NCNWA) operator and
applied it to aggregate the individual opinion to group
opinion prove its three properties. We develpoed a novel
NC-VIKOR based MAGDM strategy in neutrosophic
cubic set environment. Finally, we solve a MAGDM
problem to show the feasibility, applicability and
efficiency of the proposed MAGDM strategy. We present a
sensitivity analysis to show the impact of different values
of the decision making mechanism coefficient on ranking
order of the alternatives. The proposed NC-VIKOR based
MAGDM strategy can be employed to solve a variety of
problems such as logistics center selection [28, 74], teacher
selection [75], renewable energy selection[70], fault
diagnosis[71], brick selection [76, 77], weaver selection
[78], etc.
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Abstract Multi-attribute decision making (MADM) is a
mathematical tool to solve decision problems involving
conflicting attributes. With the increasing complexity,
uncertainty of objective things and the neutrosophic nature of
human thought, more and more attention has been paid to the
investigation on multi attribute decision making in neutrosophic
environment, and convincing research results have been reported
in the literature. While modern algebra and number theory have
well documented and established roots deep into India's ancient
scholarly history, the understanding of the springing up of

neutrosophics, specifically neutrosophic decision making,
demands a closer inquiry. The objective of the study is to present
a brief review of the pioneering contributions of personalities as
diverse as those of P. P. Dey, K. Mondal, P. Biswas, D. Banerjee,
S. Dalapati, P. K. Maji, A. Mukherjee, T. K. Roy, B. C. Giri, H.
Garg, S. Bhattacharya. A survey of various concepts, issues, etc.
related to neutrosophic decision making is discussed. New
research direction of neutrosophic decision making is also
provided.

Keywords:Bipolar neutrosophic sets, VIKOR method, multi attribute group decision making.

1 Introduction

Every human being has to make decision in every
sphere of his/her life. So decision making should be
pragmatic and elegant. Decision making involves
multi attributes. Multi attribute decision making
(MADM) refers to making selections among some
courses of actions in the presence of multiple, usually
conflicting attributes. MADM is the most well-known
branch of decision making. To solve a MADM one
needs to employ sorting and ranking (see Figure 1).

It has been widely recognized that most real world
decisions take place in uncertain environment where
crisp values cannot capture the reflection of the
complexity, indeterminacy, inconsistency and
uncertainty of the problem.

To deal with crisp MADM problem [1], classical set
or crisp set [2] is employed. The classical MADM
generally assumes that all the criteria and their
respective weights are expressed in terms of crisp
numbers and, thus, the rating and the ranking of the
alternatives are determined. However, practical
decision making problem involves imprecision or

vagueness. Imprecision or vagueness may occur from
different sources such as unquantifiable information,
incomplete information, non-obtainable information,
and partial ignorance.

To tackle uncertainty, Zadeh [3] proposed the fuzzy
set by introducing membership degree of an element.
Different strategies [4-9] have been proposed for
dealing with MADM in fuzzy environment. In fuzzy
set, non-membership membership function is the
complement of membership function. However, non-
membership function may be independent in real
situation. Sensing this, Atanassov [10] proposed
intuitionistic fuzzy set by incorporating non-
membership as an independent component. Many
MADM strategies [11-14] in intuitionistic fuzzy
environment have been studied in the literature.
Deschrijver and Kerre [15] proved that intuitionistic
fuzzy set is equivalent to interval valued fuzzy set
[16], an extension of fuzzy set.

In real world decision making often involves
incomplete, indeterminate and inconsistent
information. Fuzzy set and intuitionistic fuzzy set
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cannot deal with the situation where indeterminacy
component is independent of truth and falsity
components. To deal with this situation, Smarandache
[17] defined neutrosophic set. In 2005, Wang et al.
[18] defined interval neutrosophic set. In 2010, Wang
et al. [19] introduced the single valued neutrosophic
set (SVNS) as a sub class of neutrosophic set. SVNS
have caught much attention of the researchers. SVNS
have been applied in many areas such as conflict
resolution [20], decision making [21-30], image proc-
essing [31-33], medical diagnosis [34], social prob-
lem [35-36], and so on. In 2013, a new journal, “Neu-
trosophic Sets and Systems” came into being to
propagate neutrosophic study, which can be seen in
the journal website, namely,
http://fs.gallup.unm.edu/nss. By hybridizing the con-
cept of neutrosophic sets or SVNSs with the various
established sets, several neutrosophic hybrid sets have
been introduced in the literature such as neutrosophic
soft sets [37], neutrosophic soft expert set [38], single
valued neutrosophic hesitant fuzzy sets [39], interval
neutrosophic hesitant sets [40], interval neutrosophic
linguistic sets [41], rough neutrosophic set [42, 43],
interval rough neutrosophic set [44], bipolar neutro-
sophic set [45], bipolar rough neutrosophic set [46],
tri-complex rough neutrosophic set [47], hyper
complex rough neutrosophic set [48], neutrosophic
refined set [49], bipolar neutrosophic refined sets [50],
neutrosophic cubic set [51], etc.

So many new areas of decision making in neutroso-
phic hybrid environment began to emerge. Young re-
searchers demonstrate great interest to conduct re-
search on decision making in neutrosophic as well as
neutrosophic hybrid environment. According to Pra-
manik [52], the concept of neutrosophic set was ini-
tially ignored, criticized by many [53, 54], while it
was supported only by a very few, mostly young, un-
known, and uninfluential researchers. As we see Sma-
randache [55, 55, 56, 57] leads from the front and
makes the paths for research by publishing new books,
journal articles, monographs, etc. In India, W. B. V.
Kandasamy [58, 59] did many research works on
neutrosophic algebra, neutrosophic cognitive
maps, etc. She is a well-known researcher in neu-
trosophic study. Pramanik and Chackrabarti [36]
and Pramanik [60, 61] did some work on neutro-
sophic related problems. Initially, publishing neu-
trosophic research paper in a recognized journal
was a hard work. Pramanik and his colleagues
were frustrated by the rejection of several neutro-
sophic research papers without any valid reasons.
After the publication of the International Journal

namely, “Neutrosophic Sets and Systems” Pra-
manik and his colleagues explored the area of de-
cision making in neutrosophic environment to es-
tablish their research work.

In 2016, to present history of neutrosophic theory
and applications, Smarandache [62] published an
edited volume comprising of the short biography
and research work of neutrosophic researchers.
“The Encyclopedia of Neutrosophic Researchers”
includes the researchers, who published neutroso-
phic papers, books, or defended neutrosophic
master theses or Ph. D. dissertations. It encour-
ages researchers to conduct study in neutrosophic
environment. The fields of neutrosophics have
been extended and applied in various fields, such
as artificial intelligence, data mining, soft com-
puting, image processing, computational model-
ling, robotics, medical diagnosis, biomedical en-
gineering, investment problems, economic fore-
casting, social science, humanistic and practical
achievements, and decision making. Decision
making in incomplete / indeterminate / inconsis-
tent information systems has been deeply studied
by the Indian researchers. New trends in neutro-
sophic theory and applications can be found in
[62-67].

Considering the potentiality of SVNS and its various
extensions and their importance of decision making,
we feel a sense of commitment to survey the
contribution of Indian mathematicians to multi
attribute decision making. The venture is exclusively
new and therefore it may be considered as an
exploratory study.

Research gap:

Survey of new research in MADM conducted by
the Indian researchers.

Statement of the problem:

Contributions of selected Indian researchers to multi-
attribute  decision making in  neutrosophic
environment: An overview.

Motivation:

The above-mentioned analysis describes the motiva-
tion behind the present study.

Objectives of the study
The objective of the study is:

e To present a brief review of the pioneering
contributions of personalities as diverse as those
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of Dr. Partha Pratim Dey, Dr. Pranab Biswas,  Rest of the paper is organized as follows: In section 2,
Dr. Durga Banerjee, Mr. Kalyan Mondal, Shya-  we review some basic concepts related to
mal Dalapati, Dr. P. K. Maji, Prof. T. K. Roy,  neutrosophic set. Section 3 presents the contribution
Prof. B. C. Giri, Prof. Anjan Mukherjee, Dr. Har-  of the selected Indian researchers. Section 4 presents
ish Garg and Dr. Sukanto Bhattacharya. conclusion and future scope of research.

Figure 1. Decision making steps
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2. Preliminaries
In this section we recall some basic definitions related
to this topic.

Definition.2.1 Neutrosophic Set

Let X be the universe. A neutrosophic set (NS) [17] P
in X is characterized by a truth membership function
Tp, an indeterminacy membership function /p and a
falsity membership function FpwhereTp Ipand Fpare
real standardor non-standard subset of 7°0,/7/. It can
be defined as:

P={<x,(Tp(x).Ip(x),Fp(x))>:xX, Tp,Ip,Fp] 0,1 [}
There is no restriction on the sum of7p(x),Ip(x) and
Fp(x) and s0 0<Tp(x)+Ip(x)+Fp(x)<3".

Definition 2.2 Single valued neutrosophic set

Let X be a space of points (objects) with generic ele-
ment in X denoted by x. A single valued neutrosophic
set [19] P is characterized by a truth-membership
functionTp(x), an indeterminacy-membership function
Ip(x), and a falsity-membership functionFp(x). For
each point x in X, Tp(x),Ip(x),Fp(x) €[0, 1]. A SVNS
A can be written as:

A = {<x:Tp(x),Ip(x),Fp(x)>, x € X}.

Definition 2.3 Interval valued neutrosophic
set

Let X be a space of points (objects) with generic ele-
ments in X denoted by Xx. An interval valued neutro-
sophic set [18] P is characterized by an interval truth-
membership function Tp(x)=/T, PL,T,ﬁ’ /, an interval in-
determinacy-membership function Ip(x)=/15,15 ], and
an interval falsity-membership function
Fp(x)=[ FE,F¥Y ]. For each point xcX, Tp(x), Ip(x),
Fp(x) [0, 1]. An IVNS P can be written as:
P = {<x: Tp(x),Ip(x),Fp(x)>x € X}.

Definition 2.4: Bipolar neutrosophic set

A bipolar neutrosophic set [45] P in X is defined as an
object of the formP={<x, T" (x)I"(x),F"(x),
T"(x),I"(x), F"(x) >: x €X}, whereT", I",F":X—>
[1,0] and T", I" ,F": X—> [-1, 0] . The positive
membership degree 7" (x), I"(x), F"(x) denotes
respectively the truth membership, indeterminate
membership and false membership degree of an ele-
ment € X corresponding to a bipolar neutrosoph-

ic set P and the negative membership degree T'" (x),
I'(x), F" (x) denotes respectively the truth member-
ship, indeterminate membership and false member-

ship degree of an element x € X to some implicit
counter-property corresponding to a bipolar neutro-
sophic set P.

Definition 2.5: Neutrosophich hesitant fuzzy
set

Let X be a fixed set, a neutrosophic hesitantfuzzy set
[39] (NHFS) on X is defined as:
M={<x,T(x),I(x),F(x)>|x € X },where T(x) ={ca|a €
T(x)},1(x) ={B|B € I(x)} and F(x) ={y|y € F(x)}
are the three sets of some different values in the
interval [0, 1], which represent the possible truth-
membership  hesitant  degree, indeterminacy-
membership hesitant degree, and falsity-membership
hesitant degree of the element xeX to the set M, and
satisfies the following conditions:

ael0,1], Be[0,1], y€[0,1] and O<supat+
supB* + supy*t <3 where at =
Uaercy max{a}, B+ = Ugejymaxfandy™ =
Uyer) max{y} forx € X.

The triplet m = {T(x),I(x),F(x)} is called a
neutrosophic hesitant fuzzy element (NHFE) which is
the basic unit of the NHFS and is denoted by the
symbol m={T, I, F}.

Definition 2.6: Interval neutrosophic hesitant
fuzzy set

Let X be a nonempty fixed set, an Interval
neutrosophic hesitant fuzzy set [67] onX is defined
as:

P={xTx),I(x),F(x))|x € X}.

HereT (x),I(x) and F(x) are sets of some different
interval values in [0, 1], which denotes respectively
the possible truth-membership hesitant degree,
indeterminacy-membership hesitant degree, and
falsity-membership hesitant degree of the element x €
Q to the set P. Then, T(x)={@ |& € T(x)}, where & =
[@f,&Y] is an interval number; &" = inf @and @V =
sup&@ represents the lower and upper limits
of &, respectively; I(x) = {ﬁlﬁ € I(x)}, where f§ =
[L,BY] is an interval number; B“ = inff and
BY = sup f3 represents the lower and upper limits of
B, respectively; F(x)= {J|7 € F(x) , where 7 =
[#5,7Y]is an intervalnumber; 7% = inf7 and, 7Y =
supy represents the lower and upper limits of ¥,
respectively and satisfied the condition

0 < sup@* + supf* + supy* <3

where a* = Ugereymax{a},f* =
Ugern max{f} andy* = Uyer max{7} forx € X.
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The triplet 5 = {T(x), I(x), F(x)} is called an interval
neutrosophic hesitant fuzzy element or simply INHFE,
which is denoted by the symbol p = {T, I, F}.

Definition 2.7 Triangular fuzzy neutrosophic
sets

Let X be the finite universe and F [0, 1] be the set of
all triangular fuzzy numbers on [0, 1]. A triangular
fuzzy neutrosophicset (TFNS) [68] P with

Tp(x):X— F[0,1],1p:X- [0,1] and Fp:X—

in X is defined as:

P={<x:Tp(x).Ip(x),F,(x)>xeX}>

where Tp(x).X— F[0,1], Ip:X— [0,1] and Fp. X -
[0,1] . The triangular fuzzy numbers Tp(x)
(T4, T3, T3), In(x)=(13, I3, I3) and Fp(x) =(F, F3, F3),
respectively, denotesrespectively the possible truth-
membership, indeterminacy-membership and a falsi-
ty-membership degree of x in P and for every xe X
0< T3(x) + I3(x) + F3(x) < 3.

The triangular fuzzy neutrosophic value (TFNV)P is
symbolized by

<(L,m,n),(p,q.7),(u,v,w)>where,(Tp (x), T§ (x), T§ (x))
= (L,mn) (I3(),13(x),13(x)) = (p,q,7) and

(Fy (x), B (x), F3 (%)) = (u,v,w).

Definition2.8Neutrosophic soft set

Let V' be an initial universe set and £ be a set of
parameters. Consider A € E. Let P( V') denote the set
of all neutrosophic sets of V. The collection ( F, 4 ) is
termed to be the soft neutrosophic set [37] over V,
where Fis a mapping given by F : 4 — P(V).

Definition 2.9 Neutrosophic cubic set

Let U be the space of points with generic element in
U denoted by u € U. A neutrosophic cubic set [51]in
U defined as N = {< u, 4 (), A(w) > u€ U} in
which 4 (u) is the interval valued neutrosophic set
and A (u) is the neutrosophic set in U. A neutrosophic

cubic set in U denoted by N = <4, A >. We use
CN (U) as a notation which implies that collection of

all neutrosophic cubic sets in U.
Definition 2.10 Rough Neutrosophic Sets

Let X be a non empty set and R be an
equivalence relation on X . Let P be a neutrosophic
set in Y with the membership function Tp,
indeterminacy function /» and non-membership
function Fp. The lower and the upper approximations
of P in the approximation (X, R) denoted

by L(P) and L(P)
follows:

L(P)=(<X.T oo X ) 1o f%), FrpfX)>/ y€[x] X e X),
LOP)=(<X,Tinf(X) Iio (X ). Figr(x) >/ y€[x] , X € X),
Trpy(X)=n,elx]g Tp(»),

Ley(X)=V e[x], Ir(y)s

Froy(x)=v € [X], Fe(y),

Trp(X)=V, €[x]g Tp(»),

Iee(X)=A €[X], TY),

Fie(X)=A €[x], Fi(y)

So, 0< sup TQ(P)(x) + sup Ié([,)(x)+ sup Fé([,)(x)

<3.

0< sup T7py(X)+ sup 17 p)(x)+ sup F7p)(x) <3.

are respectively defined as

Here v and A denotes “max” and “min”’
operators respectively. Tp(y), Ip(y) and Fp(y) are the
membership, indeterminacy and non-membership
function of y with respect to P and also L(P) and

L(P) are two neutrosophic sets in X.

Therefore, NS mapping L, i:L(X) » L(X) are,
respectively, referred to as the lower and the upper
rough NS approximation operators, and the pair
(L(P),L(P)) is called the rough neutrosophic set

[42]in (Y, R).
Definition 2.11Refined Neutrosophic Sets

LetX be a universe. A neutrosophic refined set
(NRS) [49]4 on X can be defined as follows:

) ={< 2, (T3 (O TE (), T (0) (L (), 15 (), lf(x»,}
(Fi(x), Fi(X),, FL(x)) >

Ty(x),T7(x),....TF(x): X = [0,1],

I (x), 15 (%), 12 (x) 1 X = [0,1], and

Fi(x),F;(x),.FF(x): X > [0,1] . For any x e¢ X

(T4 T2 TP )) (15 (015 (X051 (X)) and

(F,}(x),Fj(x) ,,,, F,{’(x)) is the truth-membership

Here,

sequence, indeterminacy-membership sequence and
falsity-membership sequence of the element x,
respectively.
Section 3 The contribution of the selected Indian
researchers
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3.1 Dr. Partha Pratim Dey

Dr. Partha Pratim Dey was born at Chak, P. O.-
Islampur, Murshidabad, West Bengal, India, PIN-
742304. Dr. Dey qualified CSIR-NET-Junior
Research Fellowship (JRF) in 2008. His paper
entitled “Fuzzy goal programming for multilevel
linear fractional programming problem"coauthored
with Surapati Pramanik was awarded as the best
paper in West Bengal State Science and Technology
Congress (2011) in mathematics. He obtained Ph. D.
in Science from Jadavpur University, India in
2015.Title of his Ph. D. Thesis [70] is:“Some studies
on linear and non-linear bi-level programming
problems in fuzzy envieonment''. He continues his
research in the feild of fuzzy multi-criteria decision

making and extends them in neutrosophic
environment. Curently, he is an assistant teacher of
Mathematics in Patipukur Pallisree Vidyapith,

Patipukur, Kolkata-48. His research interest includes
decision making in neutrosophic environemnt and
optimization.

Contribution:

In 2015, Dey, Pramanik, and Giri [71] proposed a
novel MADM strategy based on extended grey
relation analysis (GRA) in interval neutrosophic
environment with unknown weight of the attributes.
Maximizing deviation method is employed to
determine the unknown weight information of the
atributes. Dey et al. [71] also developed linguistic
scale to transform linguistic variable into interval
neutrosophic values. They employed the developed
strategy for dealing with practical problem of
selecting weaver for Khadi Institution. Partha Pratim
Dey, coming from a weaver family, is very familiar
with the parameters of weaving and criteria of
selection of weavers. Several parameters are defined
by Dey et al. [71] to conduct the study.

Dey et al. [72] proposed a TOPSIS strategy at first in
single valued neutrosophic soft expert set
environmnet in 2015. Dey et al. [72] determined the
weights of the parameters by employing maximizing

deviation method and demonstrated an illustrative
example of teacher selection problem. According to
Google Scholar Citation, this paper [72] has been
cited by 15 studies so far.

In 2015, Dey et al. [73] established TOPSIS startegy
in generalized neutrosophic soft set environmnet and
solved an illustrative MAGDM problem. In
neutrosophic soft set environment, Dey et al. [74]
grounded a new MADM strategy based on grey
relational projection technique.

In 2016, Dey et al. [75] developed two new strategies
for solving MADM problems with interval-valued
neutrosophic assessments. The empolyed measures
[75] are namely, i) weighted projection measure and
ii) angle cosine and projection measure. Dey et al.
[76] defined Hamming distance function and
Euclidean distance function between bipolar
neutrosophic sets. In the same study, Dey et al. [76]
defined bipolar neutrosophic relative positive ideal
solution (BNRPIS) and neutrosophic relative
negative ideal solution(BNRNIS) and developed an
MADM strategy in bipolar neutrosophic environemnt.

Deyet et al. [77] presented a GRA strategy for solving
MAGDM problem wunder neutrosophic soft
environment and solved an illustrative numerical
example to show the effectiveness of the proposed
strategy.

In 2016, Dey et al. [78] discussed a solution strategy
for MADM problems with interval neutrosophic
uncertain linguistic information through extended
GRA method. Dey et al. [78] also proposed Euclidean
distance between two interval neutrosophic uncertain
linguistic values.

Pramanik, Dey, Giri, and Smarandache [79] defined
projection, bidirectional projection and hybrid
projection measures between bipolar neutrosophic
sets in 2017 and proved their basic properties. In the
same study [79], the same authors developed three
new MADM strategies based on the proposed
projection measures. They validated their result by
solving a numerical example of MADM.

In 2017, Pramanik, Dey, Giri, and Smarandache [80]
defined some operation rules for neutrosophic cubic
sets and introduced the Euclidean distance between
them.nThe authors also defined neutrosophic cubic
positive and negative ideal solutions and established
a new MADM strategy. In 2018, Dey, Pramanik, Ye
and Smarandache [81] introduced cross entropy and
weighted cross entropy measures for bipolar neutro-
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sophic sets and interval bipolar neutrosophic sets and
proved their basic properties. The authors also devel-
oped two new multi-attribute decision-making strate-
gies in bipolar and interval bipolar neutrosophic set
environment. The authors solved two illustrative nu-
merical examples and compared the obtained results
with existing strategies to demonstrate the feasibility,
applicability, and efficiency of their strategies.

Pramanik, Dey and Giri [82] defined hybrid vector
similarity measure between single valued refined
neutrosophic sets (SVRNSs) and proved their basic
properties and developed an MADM strategy and
employed them to solve an illustrative example of
MADM in SVRNS environment.

Pramanik, Dey and Smarandache [83] defined the
correlation coefficient measure Cor (L;, L,) between
two interval bipolar neutrosophic sets (IBNSs) L;, L,
and proved the following properties:

(1) Cor (Ly, Ly) = Cor (La, Ly)

(2) 0= Cor (L;, L)< 1;

(3) Cor (L;, L)) =1,if L= L,.

In the same study, the authors defined weighted
correlation coefficient measure Cor,(L;, L;) between
two IBNSs L;, L, and established the following
properties:

(1) COVW(Lj, Lg) = COI"W (Lg, L]),

(2) 0=Cor (L, L,)<1;

(3) COVW(Lj, Lg) = 1, ifL]Z Lg.
The authors [83] also developed a novel MADM
straegy based on weighted correlation coefficient
measure and empolyed to solve an investment
problem and compared the solution with existing
startegies.
Pramanik, Dey, and Smarandache [84] defined
Hamming and Euclidean distances measures,
similarity measures based on maximum and minimum
operators between two IBNSs and proved their basic
properties. In the same research, Pramanik et al. [84]
deveolped a novel MADM strategy in  IBNS
environment.
In fuzzy environment, work of Dey and Pramanik
[85] obtained the best paper award in Mathematics in
2011 at 18th West Bengal State Science &
Technology Congress Tilte of the paper was:* Fuzzy
goal programming for multilevel linear fractional
programming problems’.
In 2015, Dr. Dey obtained “Diploma Certificate”
from Neutrosophic Science InternationalAssociation
(NIS4) for his outstanding performance in
neutrosophic research. He was awarded the certificate
of outstanding contribution in reviewing for the
International  Journal “Neutrosophic Sets and
Systems®. His works in neutrosophics draw much

attention of the researchers international level.
According to “ResearchGate’ a social networking
site for scientists and researchers, citation of his
research exceeds 200. He is an active member of
““Indian society for neutrosophic study’’.

Dr. Dey is very much intersted in neutrosophic study.
He continues his research work with great
mathematician like Prof. Florentin Smarandache and
Prof. Jun Ye.

3.2 Kalyan Mondal

Kalyan Mondal was born at Shantipur, Nadia, West
Bengal, India, Pin-741404. He qualified CSIR-NET-
Junior Research Fellowship (JRF) in 2012. He is a
research scholar in Mathematics of Jadavpur
University, India since 2016. Title of his Ph. D. thesis
is: “Some decision making models based on
neutrosophic strategy”. His paper entiled “MAGDM
based on contra-harmonic aggregation operator in
neutrosophic number (NN) environment’ coauthored
with Surapsati Pramanik and Bibhas C. Giri was
awarded outstanding paper in West Bengal State
Science and Technology Congress (2018) in
mathematics. He continues his research in the field
neutrosophic ~ multi-attribute  decision  making;
aggregation operators; soft computing; pattern
recognitions; neutrosophic hybrid systems, rough
neutrosophic sets, neutrosophic numbers,
neutrosophic game theory, neutrosophic algebraic
structures. Presently, he is an assistant teacher of
Mathematics in Birnagar High School (HS) Birnagar,
Ranaghat, Nadia, Pin-741127, West Bengal, India.

Contribution:

In 2014, Mondal and Pramanik [86]initiated to study
teacher selection problem using neutrosophic logic.
Pramanik and Mondal [87] defined cosine similarity
measure for rough neutrosophic sets as Crys(4, B)
between two rough neutrosophic sets 4, B and
established the following properties:

(1) Crys(4, B) = Crs (B, A);

(2) 0=Cyys(4, B)1;

(3) Crns(4, B) =1, iff A= B.

In the same study, Pramanik and Mondal [87]
applied cosine similarity measure for medical
diagnosis.
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Mondal et al. [88] proposed a rough cotangent
similarity measure in 2015 and studied some of its
basic properties. The authors demonstrated an
application of cotangent similarity measure of rough
neutrosophic sets for medical diagnosis.

Pramanik and Mondal [89] introduced interval
neutrosophic = MADM strategy with completely
unknown attribute weight information based on
extended grey relational analysis.

In 2015, Mondal and Pramanik [90] presents rough
neutrosphic MADM strategy based on GRA. They
also extended the neutrosophic GRA strategy to
rough neutrosophic GRA strategy and applied it to
MADM problem. The authors first defined
accumulated geometric operator to transform rough
neutrosophic number (neutrosophic pair) to single
valued neutrosophic number.

In 2015, Mondal and Pramanik [91] presented a
neutrosophic MADM strategy for school choice
problem. The authors used five criteria to modeling
the school choice problem in neutrosophic
environment.

In 2015, Mondal and Prammanik [92] defined
cotangent similarity measure for neutrosophic sets as
COTwrs(N, P) between two refined neutrosophic sets N,
P and established the following properties:

(1) COTwps(N, P) = COTygs (P, N);

(2) 0ScoTws(N, P)S 1;

(3) COTNRs(P, N) = 1, if P=N.
In the same study, Mondal and Pramanik [92]
presented an application of cotangent similarity
measure of neutrosophic single valued sets in a
decision making problem for educational stream
selection.
Mondal and Pramanik [93] also defined rough
accuracy score function and proved their basic
properties. The authors also introduced entropy based
weighted rough accuracy score value. The authors
developed a novel rough neutrosophic MADM
startegy with incompletely known or completely
unknown attribute weight information based on rough
accuracy score function.
Pramanik and Mondal [94] presented rough Dice and
Jaccard similarity measures between rough neutro-
sophic sets. The authors proposed weighted rough
Dice and Jaccard similarity measures, and proved
their basic properties. The authors presented an appli-
cation of rough neutrosophic Dice and Jaccard simi-
larity measures in medical diagnosis.

Mondal and Pramanik [95] defined tangent similarity
measure and proved their basic properties. In the
same study, Mondal and Pramanik developed a novel
MADM strategy for MADM problems in SVNS
environment. The authors resented two illustrattive
exaxmples, namely selection of educational stream
and medical diagnosis to demonstrate the feasibility,
and applicability of the proposed MADM strategy.
Mondal and Pramanik [96] studied the quality clay-
brick selection strategy based on MADM with single
valued neutrosophic GRA.The authors used
neutrosophic grey relational coefficient on Hamming
distance between each alternative to ideal
neutrosophic estimates reliability solution and ideal
neutrosophic estimates unreliability solution. They
also used neutrosophic relational degree to determine
the ranking order of all alternatives.

In 2015, Mondal and Pramanik [97] defined a refined
tangent similarity measure strategy of refined
neutrosophic sets and proved its basic properties.
They presented an application of refined tangent
similarity measure in medical diagnosis.

Mondal and Pramanik [98] introduced cosine, Dice
and Jaccard similarity measures of interval rough
neutrosophic sets and proved their basic properties.
They developed three MADM strategies based on
interval rough cosine, Dice and Jaccard similarity
measures and presented an illustrative example,
namely selection of best laptop for random use.

In 2016, Mondal and Pramanaik [47] defined rough
tri-complex similarity measure in rough neutrosophic
environment and proved its basic properties. In the
same study, Mondal and Pramnaik [47] developed a
novel MADM strategy for dealing with MADM
problem in rough tri-complex neutrosophic
envioronment. Mondal, Pramanik, and Smarandache
[48] introduced the rough neutrosophic hyper-
complex set and the rough neutrosophic hyper-
complex cosine function in 2016, and proved their
basic properties. They also defined the rough
neutrosophic hyper-complex similarity measure and
proved their basic properties. They also developed a
new MADM strategy to deal with MADM problems
in rough neutrosophic  hyper-complex  set
environment. They presented a hypothetical
application to the selection problem of best candidate
for marriage for Indian context.

Mondal, Pramanik, and Smarandache [99] defined
rough trigonometric Hamming similarity measures
and proved their basic properties. In the same study,
Mondal et al. [99] developed a novel MADM
strategies to solve MADM problems in rough
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neutrosophic environment. The authors provided an
application, namely selection of the most suitable
smart phone for rough use.

In 2017, Mondal, Pramanik and Smarandache [100]
developed a new MAGDM strategy by extending the
TOPSIS strategy in rough neutrosphic environment,
called rough neutrosophic TOPSIS strategy for
MAGDM. They also proposed rough neutrosophic
aggregate operator and rough neutrosophic weighted
aggregate operator. Finally, the authors solved a
numerical example to demonstrate the applicability
and effectiveness of the proposed TOPSIS startegy.

Mondal, Pramanik, Giri and Smarandache [101]
proposed neutrosophic number harmonic mean
operator (NNHMO) and neutrosophic number
weighted harmonic mean operator NNWHMO and
cosine function to determine unknown criterion
weights in neutrosophic number (NN) environment.
The authors developed two strategies of ranking NNs
based on score function and accuracy function. The
authors also developed two novel MCGDM
strategies based on the proposed aggregation
operators. The authors solved a hypothetical case
study and compared the obtained results with other
existing strategies to demonstrate the effectiveness of
the proposed MCGDM strategies. The significance of
these stratigies is that they combine NNs with
harmonic aggregation operators to cope with
MCGDM problem.
In 2018, Mondal, Pramanik and Giri [102] inroduced
hyperbolic sine similarity measure and weighted
hyperbolic  sine  similarity measure namely,
SVNHSSM(4, B) for SVNSs. They proved the
following basic properties.

1. 0= SVNHSSM(4, B)=<1

2. SVNHSSM(4, B) =1 if and only if4 = B

3. SVNHSSM (4, B) = SVNHSSM(B, 4)

4. IfRisa SVNS in Xand 4 cBcR then

SVNHSSM(4, R)< SVNHSSM(4, B) and

SVNHSSM(4, R)< SVNHSSM(B, R).
The authors also defined weighted hyperbolic sine

similarity measure for SVNS namely,
SVNWHSSM(4, B) and proved the following
basicproperties.

1. 0=SVNWHSSM(, B)=<1

2. SVNWHSSM (4, B) =1 if and only if4 = B

3. SVNWHSSM (4, B) = SVNWHSSM(B, 4)

4. If R is a SVNS in X and 4 c B<c R then
SVNWHSSM (4, R)< SVNWHSSM(4, B)
and SVNWHSSM (4, R)s SVNWHSSM (B,
R).

The authors defined compromise function to

determine unknown weight of the attributes in SVNS

environment. The authors developed a novel MADM

strategy based on the proposed weighted similarity
measure. Lastly, the authors solved a numerical
example and compared the obtained results with the
existing strategies to demonstrate the effectiveness of
the proposed MADM strategy.

Mondal, Pramanik, and Giri [103] defined tangent
similarity measure and proved its properties in
interval valued neutrosophic environment. The
authors developed a novel MADM strategy based on
the proposed tangent similarity measure in interval
valued neutrosophic environment. The authors also
solved a numerical example namely, selection of the
best investment sector for an Indian government
employee. The authors also presented a comparative
analysis.

Mondal et al. [104] employed refined neutrosophic
set to express linguistic variables. The authors
proposed linguistic refined neutrosophic set. The
authors developed an MADM strategy based on
linguistic refined neutrosophic set. The authors also
proposed an entropy method to determine unknown
weight of the criterion in linguistic neutrosophic
refined set environment. They presented an
illustrative example of constructional spot selection to
show the feasubility and applicability of the proposed
strategy.

Mr. Kalyan Mondal is a young and hardworking
researcher in neutrosophic field. He acts as an area
editor of international journal,“Journal of New
Theory” and acts as a reviewer for different
international peer reviewed journals. In 2015, Mr.
Mondal was awarded Diploma certificate from
Neutrosophic ~ Science  InternationalAssociation
(NIS4) for his outstanding performance in
neutrosophic research. He was awarded the certificate
of outstanding contribution in reviewing for the
International  Journal  “Neutrosophic Sets and
Systems’’. His works in neutrosophics draw much
attention of the researchers at international level.
According to “Researchgate’’, citation of his research
exceeds 430.

3.3 Dr. Pranab Biswas

Pranab Biswas obtained his Bachelor of Science
degree in Mathematics and Master degree in Applied
Mathematics from University of Kalyani. He obtained
Ph. D. in Science from Jadavpur University, India.
Title of his thesis is “Multi-attribute decision making
in neutrosophic environment”.
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He is currently an assistant teacher of Mathematics.
His research interest includes multiple criteria deci-
sion making, aggregation operators, soft computing,
optimization, fuzzy set, intuitionistic fuzzy set, neu-
trosophic set.

Contribution:

In 2014, Biswas, Pramanik and Giri [105]
proposed entropy based grey relational analysis
strategy for MADM problem with single valued
neutrosophic attribute values. In neutrosophic
environment, this is the first case where GRAwas
applied to solve MADM problem. The authors
also defined neutrosophic relational degree.
Lastly, the authors provided a numerical example

to show the feasibility and applicability of the
developed strategy.

In 2014, Biswas et al. [106] introduced single —valued
neutrosophic MADM strategy with incompletely
known and completely unknown attribute weight
information based on modified GRA.The authors also
solved an optimization model to find out the
completely unknown attribute weight by ustilizing
Lagrange function. At the end, the authors provided
an illustrative example to show the feasibility,
practicalitry and effectiveness of the proposed
strategy.

Biswas et al. [69] introduced a new strategy called
“Cosine similarity based MADM with trapezoidal
fuzzy neutrosophic numbers”. The authors also
established expected interval and the expected value
for trapezoidal fuzzy neutrosophic number and cosine
similarity measure of trapozidal fuzzy neutrosophic
numbers.

In 2015, Biswas et al. [107] extended TOPSIS
strategy for MAGDM in  neutrosophic
environment. In the study, rating values of
alternative are expressed by linguistic terms such
as Good, Very Good, Bad, Very Bad, etc. and
these terms are scaled with single-valued
neutrosophic numbers. Single-valued neutrosophic
set-based weighted averaging operator is used to
aggregate all the individual decision maker’s
opinion into one common opinion for rating the
importance of criteria and alternatives. The
authors provided an illustrative example to
demonstrate the proposed TOPSIS strategy.
Biswas et al. [108] further extened the TOPSIS
strategy for MAGDM in  single-valued
neutrosophic environment. The authors developed
a non-linear programming based strategy to study

MAGDM problem. In the same study, the authors
converted the single valued neutrosophic numbers
into interval numbers. The authors employed
nonlinear programming model to determine the
relative  closeness co-efficient intervals of
alternatives for each decision maker. Then, the
closeness co-efficient intervals of each alternative
are aggregated according to the weight of decision
makers. Further, the authors developed a priority
matrix with the aggregated intervals of the
alternatives. The authors obtained the ranking
order of all alternatives by computing the optimal
membership degrees of alternatives with the
ranking method of interval numbers. Finally, the
authors presented an illustrative example to show
the effectiveness of the proposed strategy.

In 2015, Pramanik, Biswas, and Giri [109]
proposed two new hybrid vector similarity
measures of single valued and interval
neutrosophic sets by hybriding the concept of Dice
and cosine similarity measures.The authors also
proved their basic properties. The authors also
presented their applications in multi-attribute
decision making in neutrosophic environment.

Biswas et al. [110] proposed triangular fuzzy
number neutrosophic sets by combining triangular
fuzzy number with single valued neutrosophic set
in 2016. Biswas et al. [110] also defined some of
its operational rules. The authors defined
triangular fuzzy number neutrosophic weighted
arithmetic averaging operator and triangular fuzzy
number  neutrosophic  weighted  geometric
averaging operator to aggregate triangular fuzzy
number nuetrosophic set. The authors also
established some of their properties of the
proposed operators. The authors also presented an
MADM strategy to solve MADM in triangular
fuzzy number neutrosophic set environment.

In 2016, Biswas et al. [111] defined score value,
accuracy value, certainty value, and normalized
Hamming distance of single valued neutrosophic
hesitant fuzzy sets.The authors also defined positive
ideal solution and negative ideal solution by score
value and accuracy value. The authors calculated the
degree of grey relational coefficent between each
alternative and ideal alternative. The authors also
determined a relative closeness coefficient to obtain
the ranking order of all alternatives. Finally, the
authors provided an illustrative example to show the
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validity and effectiveness of the proposed grey
relational analysis based MADM strategy in single
valued neutrosophic hesitant fuzzy set environment.

Biswas, Pramanik, and Giri [112] proposed a class of
distance measures for single-valued neutrosophic
hesitant fuzzy sets in 2016 and proved their
properties with variational parameters. The authors
applied weighted distance measures to calculate the
distances between each alternative and ideal
alternative in the MADM problems. The authors
developed a MADM strategy based on the proposed
distance functions in single valued neutrosophic
hesitant fuzzy set environment. The authors
provided an illustrative example to verify the
proposed strategy and to show its fruitfulness. The
authors also compared the proposed strategy with
other existing startegies for solving MADM in single
valued neutrosophic hesitant fuzzy set environment.

Biswas et al. [113] introduced single-valued
trapezoidal neutrosophic number (SVTrNN), which is
a special case of single-valued neutrosophic number
and developed a ranking method for ranking
SVTrNNs. The authors presented some operational
rules as well as cut sets of SVTrNNs. The authors
defined the value and ambiguity indices of truth,
indeterminacy, and falsity membership functions of
SVTrNNs. Using the proposed ranking strategy and
proposed indices, the authors developoed a new
MADM strategy to solve MADM problem in which
the ratings of the alternatives over the attributes are
expressed in terms of TrNFNs. Finally, the authors
provided an illustrative example to demonstrate the
validity and applicability of the proposed MADM
strategy with SVTrNNs.

In 2016, Biswas et al.[114] introduced the concept of
SVTINN in the form:

Ay = ((a11, a1, A31, A41), (b11, b31, b3, byy),
(€11, €21, €31, €41) ) ;Where ay4, @zy, A31, Aas,
bi1,by1, b31, ba1, €11, C21, €31, €41 are real numbers
and satisfy the inequality
11 <b;1 a1 <61 <byy<ay, Laz; <b3 <
€31 < Qyq S byy < €4
The authors defined some arithmetical operational
rules. The authors also defined value index and
ambiguity index of SVTrNNs and established some
of their properties. The authors developed a ranking
strategy with the proposed indicess to rank SVTrNNs.
The authors developed a new MADM strategy to
solve MADM problems in SVTrNN environment.

Biswas et al. [115] extended the TOPSIS strategy of
MADM problems in single-valued trapezoidal
neutrosophic number environment. In their study, the
attribute values are expressed in terms of single-

valued trapezoidal neutrosophic numbers.  The
authors deal with the situation where the weight
information of attribute is incompletely known or
completely unknown. The authors developed an
optimization model using maximum deviation
strategy to obtain the weight of the attributes. The
authors also illustrated and validated the proposed
TOPSIS strategy by solving a numerical example of
MADM problems.

Biswas et al. [116] introduced a new neutrosophic
numbers called interval neutrosophic trapezoidal
number (INTrN) characterized by interval valued
truth, indeterminacy, and falsity membership degrees
and defined some arithmetic operations on INTrNs,
and normalized Hamming distance between INTrNs.
In the same study, Biswas et al. [116] developed a
new MADM strategy, where the rating values of al-
ternatives over the attributes and the importance of
weight of attributes assume the form of INTrNs.
Biswas et al. [116] employed the entropy strategy to
determine thr attribute weight and then used it to cal-
culate aggregated weighted distance measure and de-
termined ranking order of alternatives with the help of
aggregated weighted distance measures. Biswas et al.
[116] also solved an illustrative example to show the
feasibility, applicability and effectiveness of the pro-
posed strategy.

Dr. Biswas’s work [117] obtained outstanding paper
award at “Second Regional Science and Technology
Congress, 2017’ held at University of Kalyani,
Nadia, West Bengal, India. His resesrch interest
includes fuzzy, intuitionistic fuzzy and neutrosophic
decision making.

Dr. Pranab Biswas is a young and hardworking
researcher in neutrosophic field. In 2015, Dr. Biswas
was awarded “Diploma  Certificate”  from
Neutrosophic  Science International Association
(NISA) for his outstanding performance in
neutrosophic research. He was awarded the certificate
of outstanding contribution in reviewing for the
International  Journal “Neutrosophic Sets and
Systems’’ in 2018. According to “Researchgate’’,
citation of his research exceeds 375. Research papers
of Biswas et al. [105, 112] received the best paper
award from “Neutrosophic Sets and Systems’’ for
volume 2, 2014 and volume 12, 2016. His works in
neutrosophics draw much attention of the researchers
in national as well international level. His Ph. D.
thesis entilted:“Multi-attribute decision making in
neutrosophic environment” was awarded “Doctorate
of Neutrosophic theory” by Indian Society for
Neutrosophic Study (ISNS) with sponsorship by
Neutrosophic  Science International Association
(NSIA).
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3.4 Dr.Durga Banerjee

Durga Banerjee passed M. Sc. from Jadavpur
University in 2005. In 2017, D. Banerjee obtained Ph.
D. Degree in Science from Jadavpur University. Her
research interest includes operations research, fuzzy
optimization, and neutrosophic decision making. Title
of her Ph. D. Thesis [118] is: “Some studies on
decision making in an uncertain environment’’. Her
Ph. D. thesis comprises of few chapters dealing with
MADM in neutrosophic environment.

Contribution:

In 2016, Pramanik, Banerjee, and Giri [119]
introduced refined tangent similarity measure.The
authors presented an MAGDM model based on
tangent similarity measure of neutrosophic refined set.
The authors also introduced simplified form of
tangent similarity measure. The authors defined new
ranking method based on refined tangent similarity
measure. Lastly, the authors solved a numerical
example of teacher selectionin in neutrosophic refined
set environment to see the effectiveness of the
proposed strategy.

In 2016, Banerjee et al.[120] developed TOPSIS
startegy for MADM in refined neutrosophic
environment. The authors also provided a numerical
example to show the feasibility and applicability of
the proposed TOPSIS strategy.

In 2017, Banerjee, Pramanik, Giri and Smarandache
[121] at first developed an MADM strategy in
neutrosophic cubic set environment using grey
relational analysis. The authors discussed about
positive and negative grey relational coefficients,and
weighted grey relational coefficients, Hamming
distances for weighted grey relational coefficients and
standard grey relational coefficient.

Her Ph. D. thesis [118] entilted:“Multi-attribute deci-
sion making in neutrosophic environment” was
awarded “Doctorate of Neutrosophic theory” by the
Indian Society for Neutrosophic Study (ISNS) with
sponsorship by Neutrosophic Science International

Association (NSIA). According to “Researchgate’,
citation of his research exceeds 55.

3.5 Shyamal Dalapati
p s

Dalapati
Research Fellowship (JRF) in 2017. He is a research
scholar in Mathematics at the Indian Institute of En-
gineering Science and Technology (IIEST), Shibpur,
West Bengal, India.Title of his Ph. D. thesis is:“Some

Shyamal qualified CSIR-NET-Junior

studies on neutrosophic decision making”. He
continues his research in the field of neutrosophic
multi attribute group decision making; neutrosophic
hybrid systems; neutrosophic soft MADM . Curently,
he is an assistant teacher of Mathematics His
research interest includes decision making in
neutrosophic environemnt and optimization.

Contribution:

In 2016, Dalapati and Pramanik [122] defined
neutrosophic soft weighted average operator.They
determined the order of the alternatives and identify
the most suitable alternative based on grey relational
coefficient. They also presented a numerical example
of logistics center location selection problem to show
the effectiveness and applicability of the proposed
strategy.

Dalapati,Pramanik, and Roy [123] proposed modeling
of logistics center location problem using the score
and accuracy function, hybrid-score-accuracy func-
tion of SVNNs and linguistic variables under single-
valued neutrosophic environment, where weight of
the decision makers are completely unknown and the
weight of criteria are incompletely known.

Dalapati, Pramanik, Alam, Roy, and Smaradache
[124] defined IN-cross entropy measure in INS
environment in 2017. The authors proved the basic
properties of the cross entropy measure. The authors
also defined weighted IN- cross entropy measure and
proved its basic properties. They also introduced a
novel MAGDM strategy based on weighted IN-cross
entropy. Finally, the authors solved a MAGDM
problem to show the feasibility and efficiency of the
proposed MAGDM strategy.
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Pramanik, Dalapati, Alam, and Roy [125] defined
TODIM strategy in bipolar neutrosophic set
environment to handle MAGDM. The authors
proposed a new strategy for solving MAGDM
problems. The authors also solved an MADM
problem to show the applicability and effectiveness of
the proposed startegy.

Pramanik, Dalapati, Alam, and Roy [126] introduced
the score and accuracy functions for neutrosophic
cubic sets and prove their basic properties in 2017.
The authors developed a new strategy for ranking of
neutrosophic cubic numbers based on the score and
accuracy functions. The authors first developed a
TODIM (Tomada de decisao interativa e
multicritévio) stratey in the neutrosophic cubic set
(NCS) environment strategy. The authors also solved
an MAGDM problem to show the applicability and
effectiveness of the developed strategy. Lastly, the
authors conducted a comparative study to show the
usefulness of proposed strategies.

In 2018, Pramanik, Dalapati, Alam, and Roy
[127]extended the traditional VIKOR strategy to NC-
VIKOR strategy and developed an NC-VIKOR based
MAGDM strategy in neutrosophic cubic set
environment. The authors defined the basic concept
of neutrosophic cubic set. Then, the authors
introduced neutrosophic cubic number weighted
averaging operator and applied it to aggregate the
individual opinion to one group opinion. The authors
presented an NC-VIKOR based MAGDM strategy
with neutrosophic cubic set. They also presented a
sensitivity analysis. Finally, the authors solved an
MAGDM problem to show the feasibility and
efficiency of the proposed MAGDM strategy.

Pramanik, Dalapati, Alam, and Roy [128] extended
the VIKOR strategy to MAGDM with bipolar
neutrosophic environment. The authors introduced the
bipolar neutrosophic numbers weighted averaging
operator and applied it to aggregate the individual
opinion to one group opinion. The authors proposed
a VIKOR based MAGDM strategy with bipolar
neutrosophic set. Lastly, the authors solved an
MAGDM strategy to show the feasibility and
efficiency of the proposed MAGDM strategy and
presented a sensitivity analysis.

Pramanik, Dalapati, Alam, and Roy [129] studied
some operations and properties of neutrosophic cubic
soft sets.The authors defined some operations such as
P-union, P-intersection, R-union, R-intersection for
neutrosophic cubic soft sets (NCSSs). The authors
proved some theorems on neutrosophic cubic soft
sets.The authors also discussed various approaches of
internal neutrosophic cubic soft sets (INCSSs) and

external neutrosophic cubic soft sets (ENCSSs) and
also investigated some of their properties.

Pramanik, Dalapati, Alam, Smarandache, and Roy
[130] defined a new cross entropy measure in SVNS
environment.The authors also proved the basic
properties of the NS cross entropy measure. The
authors defined weighted SN-cross entropy measure
and proved its basic properties. At first the authors
proposed an MAGDM strategy based on NS- cross
entropy measure.

Pramanik, Dalapati, Alam, Roy, Smarandache [131]
defined similarity measure between neutrosophic
cubic sets and proved its basic properties. They
developed a new MADM strategy basd on the
proposed similarity measure. They also provided an
illustrative example for MADM strategy to show its
applicability and effectiveness.

Mr. Dalapati’s neutrosophic paper [132] was awarded
as the outstanding research paper at the “1st Regional
Science and Technology Congress, 2016 in
mathematics.

Mr. Shamal Dalapati is a young and hardworking
researchers in neutrosophic field. In 2017, Mr.
Dalapati was awarded “Diploma Certificate” from
Neutrosophic ~ Science  InternationalAssociation
(NIS4) for his outstanding performance in
neutrosophic research. His research articles receive
more than sevent citations.

3.6 Prof.Tapan Kumar Roy

Prof. T. K. Roy, Ph. D. in mathematics, is a
Professor of mathematics in Indian Institute of
Engineering  Science and Technology (IIEST),
Shibpur. His main research interest includes
neutrosophic optimization, neutrosophic game theory,
decision making in neutrosophic environment,

neutrosophy, etc.

Contribution:

In 2014, Pramanik and Roy [133] presented the
framework of the application of game theory to
Jammu Kashmir conflict between India and Pakistan.
Pramanik and Roy [20] extended the concept of game
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theoretic model [133] of the Jammu and Kashmir
conflict in neutrosophic environment.

At first, Roy and Das[134] presented multi-objective
non -linear programming problem based on
neutrosophic  optimization technique and its
application in Riser design problem in 2015.

Roy, Sarkar, and Dey [133] presented a multi-
objective neutrosophic optimization technique and its
application to structural design in 2016.

In 2017, Roy and Sarkar [135-138] also presented
several applications of neutrosophic optimization
technique.

In 2017, Pramanik, Roy, Roy, and Smarandache
[139] presented multi criteria decision making using
correlation coefficient under rough neutrosophic
environment. The authors defined correlation
coefficient measure between any two rough
neutrosophic sets and also proved some of its basic
properties.

In 2018, Pramanik, Roy, Roy, and Smarandache
[140] defined projection and bidirectional projection
measures between interval rough neutrosophic sets
and proved their basic properties. The authors
developed two new MADM strategies based on
interval  rough  neutrosophic  projection and
bidirectional projection measures. Then the authors
solved a numerical example to show the feasibility,
applicability and effectiveness of the proposed
strategies.

In 2018, Pramanik, Roy, Roy, and Smarandache [141]
proposed the sine, cosine and cotangent similarity
measures of interval rough neutrosophic sets and
proved their basic properties. The authors presented
three MADM strategies based on proposed similarity
measures. To demonstrate the applicability, the au-
thors solved a numerical example. Prof. Roy did re-
search work on decision making in SVNS, INS, neu-
trosophic hybrid environment [124-132, 139-141]
with S. Pramanik, S. Dalapati, S. Alam and Rumi
Roy.

His paper [142] together with S. Pramanik and S.
Chackrabarti was awarded as the best research paper
in 15th West Bengal State Science & Technology
Congress, 2008 held on 28th February-29th February,
2008, at Bengal Engineering and Science University,
Shibpur.

Prof. Roy is a great motivator and a very hardworking
person. He works with Prof. Florentin Smarandache.

According to “Googlescholar” his research gets cita-
tion over 2635.

3.7Prof.Bibhas C. Giri

Toa s

-
Prof. Bibhas C.Giri is a Prof. of mathematics in
Jadavpur University. He did his M.S. in Mathematics
and Ph. D. in Operations Research both from
Jadavpur University, Kolkata, India. His research
interests include inventory/supply chain management,
production planning and scheduling, reliability and
maintenance.
He was a JSPS Research Fellow at Hiroshima
University, Japan during the period 2002-2004 and
Humboldt Research Fellow at Mannheim University,
Germany during the period 2007-2008, Fulbright
Senior Research Fellow at Louisiana State University
in the year 2012.

Contribution:

Prof. Giri works with S. Pramanik, P. Biswas and P. P.
Dey in neutrosophic environment. His neutrosophic
paper [143] coauthored with Kalyan Mondal and
Surapati Pramanik received the outstanding research
paper award at the“lst Regional Science and
Technology Congress, 2016 in mathematics. His
neutrosophic paper [144] together with Kalyan
Mondal and Surapati Pramanik received the best
research paper in 25 th West Bengal State Science
and Technology Congress 2018 in mathematics. His
neutrosophic research work and vast contribution can
be found in [71-80, 82, 101-119].

Prof. Giri is a great motivator. According to
“Googlescholar’, his research receives more than
4920 citations having h-index-31 and i-10 index-78.

3.8 Prof. Anjan Mukherjee

Anjan Mukherjee was born in 1955. He completed
his B. Sc. and M. Sc. in Mathematics from Universi-
ty of Calcutta and Ph. D. from Tripura University.
Currently, he is a Professor and Pro -Vice Chancellor
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of Tripura University. Under his guidance, 12 candi-
dates obtained Ph. D. award. He has 30 years of re-
search and teaching experience. His main research
interest includes topology, fuzzy set theory, rough
sets, soft sets, neutrosophic set, neutrosophic soft set,
etc.

Contribution:

In 2014, Anjan Mukherjee and Sadhan Sarkar [145]
defined the Hamming and Euclidean distances
between two interval valued neutrosophic soft sets
(IVNSSs). The authors also introduced similarity
measures based on distances between two interval
valued neutrosophic soft sets.The authors proved
some basic properties of the similarity measures
between two interval valued neutrosophic soft sets.
They established an MADM strategy for interval
valued neutrosophic soft set setting using similarity
measures.

Mukherjee and Sarkar [146] also defined several
distances between two interval valued neutrosophoic
soft sets in 2014. The authors proposed similarity
measure between two interval valued neutrosophic
soft sets. The authors also proposed similarity
measure between two interval valued neutrosophic
soft sets based on set theoretic approach. They also
presented a comparative study of different similarity
measures.

Mukherjee and Sarkar [147]defined several distances
between two neutrosophoic soft sets. The authors also
defined similarity measure between two neutrosophic
soft sets.The authors developed an MADM strategy
based on the proposed similarity measure.

Mukherjee and Sarkar [148] proposed a new method
of measuring degree of similarity and weighted
similarity between two neutrosophic soft sets and
studied some properties of similarity measure. Based
on the comparison between the proposed strategy
[148] and existing strategies introduced by Mukherjee
and Sarkar[147], the authors found that the proposed
strategy [148] offers strong similarity measure. The
authors also proposed a decision making strategy
based on similarity measure.

Prof. Anjan Mukherjee evaluated many Ph. D. theses.
Among them, the Ph. D. thesis of Durga Banerjee
[118] dealing with neutrosophic decision making was
evaluated by Prof. Anjaan Mukherjee. Research of
Prof. Mukherjee receives more than 700 citations for
his works. Prof. Mukherjee is working with his group
members with neutrosophic soft sets and its
applications.

3.9 Dr.Pabitra Kumar Maji

Dr. Pabitra Kumar Maji, M. Sc., Post Doc., is an
Assistant Professor of mathematics in Bidhan
Chandra College, Asansol, West bengal. He works on
soft set, fuzzy soft set, intuitionistic fuzzy set, fuzzy
set, neutrosophic set, neutrosophic soft set, etc.,

Contribution:

In 2011, Maji [149] presented an application of
neutrosophic soft set in object recognition problem
based on multi-observer input data set. The author
also introduced an algorithm to choose an appropriate
object from a set of objects depending on some
specified parameters.

In 2014, Maji, Broumi, and Smarandache [150]
defined intuitionistic neutrosophic soft set over ring
and proved some properties related to this concept.
They also defined intersection, union, AND and OR
operations over ring (INSSOR). Finally, the authors
defined the product of two intuitionistic neutrosophic
soft set over ring.

In 2015, Maji [151] presented weighted neutrosophic
soft sets. The author presented an application of
weighted neutrosophic soft sets in MADM problem.
According “Googlescholar’’, his publication includes
20 research paper having citations 5948.

Maji [152] studied the concept of weighted
neutrosophic soft sets. The author considered a multi-
observer decision-making problem as an application
of weighted neutrosophic soft sets. We have
considered here a recognition strategy based on
multi-observer input parameter data set.

3.10 Dr. Harish Kumar Garg

Dr. Harish Garg is an Assistant Professor in the
School of Mathematics, Thapar Institute of
Engineering &Technology (Deemed University)
Patiala. He completed his post graduation (M.Sc) in
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Mathematics from Punjabi University Patiala, India in
2008 and Ph.D. from Department of Mathematics,
Indian Institute of Technology (IIT) Roorkee, India in
2013. His research interest includes neutrosophic
decision-making, aggregation operators, reliability
theory, soft computing technique, fuzzy and
intuitionistic fuzzy set theory, etc.

Contribution:

In 2016, Garg and Nancy [153] defined some opera-
tions of SVNNs such as sum, product, and scalar mul-
tiplication under Frank norm operations. The authors
also defined some averaging and geometric aggrega-
tion operators and established their basic proper-
ties.The authors also established a decision-making
strategy based on the proposed operators and pre-

sented an illustrative numerical example.

In 2017, Garg and Nancy [154] developed a non-
linear programming (NP) model based on TOPSIS to
solve decision-making problems. At first, the authors-
constructed a pair of the nonlinear fractional pro-
gramming model based on the concept of closeness
coefficient and then transformed it into the linear pro-
gramming model.

Garg and Nancy [155] defined some new types of
distance measures to overcome the shortcomings of
the existing measures for SVNSs. The authors
presented a comparison between the proposed and the
existing measures in terms of counter-intuitive cases
for showing validity. The authors also demonstrated
the defined measures with hypothetical case studies
of pattern recognition as well as medical diagnoses.

Garg and Nancy [156] studied the entropy measure of
order a for single valued neutrosophic numbers. The
authors established some desirable properties of
entropy measure. The author also developed a
MADM strategy based on entropy measures and
solved a numerical example of investment problem.

Nancy and Garg [157] proposed an improved score
function for ranking the single as well as interval-
valued neutrosophic sets by incorporating the idea of
hesitation degree between the truth and false degrees.
The authors also presented an MADM strategy based
on proposed function and solved a numerical example
to show its practicality and effectiveness.

Garg and Nancy [158] introduced some new
linguistic prioritized aggregation operators in the
linguistic single-valued neutrosophic set (LSVNS)

environment.The authors proposed some prioritized
weighted and ordered weighted averaging as well as
geometric aggregation operators for a collection of
linguistic single-valued neutrosophic numbers and
established their basic properties. The authors also
proposed MADM strategy and solved a numerical
example.

Dr. Garg research receives more than 2000 citations.
Dr. Garg acts an active reviewer for reputed
international journals and received certificate of
outstanding in reviewing from “Computer &
Industrial Engineering’’, “Engineering Applications
of  Artificial Intelligence’’,  “Applied  Soft
Computing’’, “Applied Mathematical Modeling’’, etc.
Dr. Garg acts as editor for many international journals.

3.11 Dr.Sukanto Bhattacharya

Sukanto Bhattacharya is a faculy member and
associated with Deakin Business School, Deakin
University.

Sukanto Bhattacharya [159] is the first researcher
who employed utility theory to financial decision-
making and obtained Ph. D. for applying
neutrosophic probability in finance. His Ph. D. the-
sis covers a substantial mosaic of related concepts
in utility theory as applied to financial decision-
making. The author reviewed some of the classi-
cal notions of Benthamite utility and the norma-
tive utility paradigm. The author proposed some
key theoretical constructs like the neutrosophicno-
tion of perceived risk and the entropic utility
measure.

Khoshnevisan, and Bhattacharya [160] added a
neutrosophic  dimension to the problem of
determining the conditional probability that a
financial misrepresentation of the data set.

Prof. Bhattacharya is an active researcher and his
works in neutrosophics are found in [159-163].
His research receives more than 380 citations.

4. Conclusions

We have presented a brief overview of the
contributions of some selected Indian researchers who
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conducted research in neutrosophic decision making.
We briefly presented the contribution of the selected
Indian neutrosophic researchers in MADM. In future,
the contribution of Indian researchers such as W. B.
V. Kandasamy, Pinaki Majumdar,Surapati Pramanik,
Samarjit Kar, and other Indian mathematicians in
developing neutrosophics can be studied. The study
can also be extended for mathematicians from other
countries who contributed in developing neutrosophic
science. Decision making in neutrosophic hybrid
environment is gaining much attention. So it is a
promising field of research in different neutrosophic
hybrid environment and the real cahllenge lies in the
applications of the developed theories. Since some of
the selected researchers are young, it is hoped that the
researchers will do more creative works and new
research regarding their contributions will have to be
conducted in future.
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