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Abstract: In this paper, we introduce new type of similarity 

measures for single valued neutrosophic sets based on hyperbolic 

sine function. The new similarity measures are namely, single 

valued neutrosophic hyperbolic sine similarity measure and 

weighted single valued neutrosophic hyperbolic sine similarity 

measure. We prove the basic properties of the proposed 

similarity measures. We also develop a multi-attribute decision-

making strategy for single valued neutrosophic set based on the 

proposed weighted similarity measure. We present a numerical 

example to verify the practicability of the proposed strategy. 

Finally, we present a comparison of the proposed strategy with 

the existing strategies to exhibit the effectiveness and practicality 

of the proposed strategy. 

Keywords: Single valued neutrosophic set, Hyperbolic sine function, Similarity measure, MADM, Compromise function 

1 Introduction 

Smarandache  [1]  introduced  the concept of neutrosophic 
set (NS) to deal with imprecise and indeterminate data. In 

the concept of NS, truth-membership, indeterminacy-

membership, and falsity-membership are independent. In-
determinacy plays an important role in many real world 

decision-making problems. NS generalizes the Cantor set 
discovered by Smith [2] in 1874 and introduced by 

German mathematician Cantor [3] in 1883, fuzzy set 
introduced by Zadeh [4], intuitionistic fuzzy set proposed 

by Atanassov [5]. Wang  et al. [6] introduced the concept 

of single valued neutrosophic set (SVNS) that is the sub-
class of a neutrosophic set. SVNS is capable to represent 

imprecise, incomplete, and inconsistent information that 
manifest the real world.  

Neutrosophic sets and its various extensions have been 

studied and applied in different fields such as medical 
diagnosis [7, 8, 9], decision making problems [10, 11, 12, 

13, 14], social problems [15, 16], educational problem [17, 
18], conflict resolution [19], image processing [ 20, 21, 

22], etc.  

The concept of similarity is very important in studying 

almost every scientific field.  Many strategies have been 

proposed for measuring the degree of similarity between 

fuzzy sets studied by Chen [23], Chen et al. [24], Hyung et 

al. [25], Pappis and Karacapilidis [26], Pramanik and Roy 

[27], etc. Several strategies have been proposed for meas-

uring the degree of similarity between intuitionistic fuzzy  

sets studied by Xu [28], Papakostas et al. [29], Biswas and 

Pramanik [30], Mondal and Pramanik [31], etc. However, 

these strategies are not capable of dealing with the similari-

ty measures involving indeterminacy. SVNS can handle 

this situation. In the literature, few studies have addressed 

similarity measures for neutrosophic sets and single valued 

neutrosophic sets [32, 33, 34, 35]. 

Ye [36] proposed an MADM method with completely 

unknown weights based on similarity measures under 
SVNS environment. Ye [37] proposed vector similarity 

measures of simplified neutrosophic sets and applied it in 

multi-criteria decision making problems. Ye [38] 
developed improved cosine similarity measures of 

simplified neutrosophic sets for medical diagnosis. Ye [39] 
also proposed exponential similarity measure of 

neutrosophic numbers for fault diagnoses of steam turbine. 
Ye [40] developed clustering algorithms based on 

similarity measures for SVNSs. Ye and Ye [41] proposed 

Dice similarity measure between single valued 
neutrosophic multisets. Ye et al. [42] proposed distance-

based similarity measures of single valued neutrosophic 
multisets for medical diagnosis. Ye and Fu [43] developed 

a single valued neutrosophic similarity measure based on 

tangent function for multi-period medical diagnosis. 
In hybrid environment Pramanik and Mondal [44] 

proposed cosine similarity measure of rough neutrosophic 
sets and provided its application in medical diagnosis. 

Pramanik and Mondal [45] also proposed cotangent 
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mailto:bibhasc.giri@jadavpuruniversity.in
http://en.wikipedia.org/wiki/Henry_John_Stephen_Smith
http://en.wikipedia.org/wiki/Georg_Cantor
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similarity measure of rough neutrosophic sets and its 

application to medical diagnosis. 

Research gap: MADM strategy using similarity measure 

based on hyperbolic sine function under single valued 

neutrosophic environment is yet to appear. 

Research questions: 

 Is it possible to define a new similarity measure

between single valued neutrosophic sets using hyper-

bolic sine function?

 Is it possible to develop a new MADM strategy based

on the proposed similarity measures in single valued

neutrosophic environment?

Having motivated from the above researches on 
neutrosophic similarity measures, we have introduced the 

concept of hyperbolic sine similarity measure for SVNS 

environment. The new similarity measures called single 
valued neutrosophic hyperbolic sine similarity measure 

(SVNHSSM) and single valued neutrosophic weighted 
hyperbolic sine similarity measure (SVNWHSSM). The 

properties of hyperbolic sine similarity are established. We 

have developed a MADM model using the proposed 
SVNWHSSM. The proposed hyperbolic sine similarity 

measure is applied to multi-attribute decision making.  

The objectives of the paper: 

 To define hyperbolic sine similarity measures for

SVNS environment and prove some of it’s basic
properties.

 To define conpromise function for determining
unknown weight of attributes.

 To develop a multi-attribute decision making model
based on proposed similarity measures.

 To present a numerical example for the efficiency

and effectiveness of the proposed strategy.

Rest of the paper is structured as follows. Section 2 pre-

sents preliminaries of neutrosophic sets and single valued 
neutrosophic sets. Section 3 is devoted to introduce hyper-

bolic sine similarity measure for SVNSs and some of its 

properties. Section 4 presents a method to determine un-
known attribute weights. Section 5 presents a novel deci-

sion making strategy based on proposed neutrosophic hy-
perbolic sine similarity measure. Section 6 presents an il-

lustrative example for the application of the proposed 
method. Section 7 presents a comparison analysis for the 

applicability of the proposed strategy. Section 8 presents 

the main contributions of the proposed strategy. Finally, 
section 9 presents concluding remarks and scope of future 

research. 

2 Neutrosophic preliminaries 

2.1 Neutrosophic set (NS) 

Definition 2.1 [1] Let U be a universe of discourse. Then 

the neutrosophic set P can be presented of the form:     

P = {< x:TP(x ), IP(x ), FP(x)> | x U},  where  the  

functions T, I, F: U→ ]−0,1+[ define  respectively the 

degree of  membership, the degree  of indeterminacy, and 

the degree of  non-membership of the element xU to the 

set P satisfying the following the condition.  

−0 ≤ supTP(x) + supIP( x) + supFP(x) ≤ 3+ 

2.2 Single valued neutrosophic set (SVNS) 

Definition 2.2 [6] Let X be a space of points with generic 

elements in X denoted by x. A SVNS P in X is 

characterized by a truth-membership function TP(x), an 

indeterminacy-membership function IP(x), and a falsity 

membership function FP(x), for each point x in X. 

 TP(x), IP(x), FP(x) [0, 1]. When X is continuous, a 

SVNS P can be written as follows: 

Xx
x

xxx
P

X
PPP FIT




  :
)(),(),(

 When X is discrete, a SVNS P can be written as 

follows: 

Xx
x

xxx
P i

n
i

i

iPiPiP FIT



  :

)(),(),(
1

For two SVNSs, 

PSVNS  = {<x: TP(x ), IP(x), FP(x )> | x X} and 

QSVNS  = {<x, TQ(x), IQ(x), FQ(x)> | xX } the two relations 

are defined as follows: 

(1) PSVNS  QSVNS if and only if TP(x)  TQ(x), 

IP(x)  IQ(x), FP(x)  FQ(x) 

(2)   PSVNS = QSVNS if and only if TP(x) = TQ(x), IP(x) = 

IQ(x), FP(x) = FQ(x) for any xX . 

3. Hyperbolic sine similarity measures for SVNSs

Let A = <x(TA(x), IA(x), FA(x))> and B = <x(TB(x), IB(x), 

FB(x))> be two SVNSs. Now hyperbolic sine similarity 

function which measures the similarity between two 

SVNSs can be presented as follows (see Eqn. 1): 

















































n

i

iBiA

iBiAiBiA

xFxF

xIxIxTxT

n

BA

1 11

)()(

)()()()(
sinh

1
1

),(SVNHSSM

        (1) 

Theorem 1. The defined hyperbolic sine similarity 

measure SVNHSSM(A, B) between SVNSs A and B 

satisfies the following properties: 
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1. 0   SVNHSSM(A, B)  1

2. SVNHSSM(A, B) = 1 if and only if A = B

3. SVNHSSM (A, B) = SVNHSSM(B, A)

4. If R is a SVNS in X and ABR then

SVNHSSM(A, R)   SVNHSSM(A, B) and

SVNHSSM(A, R)   SVNHSSM(B, R).

Proofs: 

1. For two neutrosophic sets A and B,

1)(),(),(),(),(),(0  iBiBiBiAiAiA xxxxxx FITFIT  

3)()(

)()()()(0





iBiA

iBiAiBiA

xx

xxxx

FF

IITT

1
11

)()(

)()()()(
sinh

0 



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








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






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





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
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


iBiA

iBiAiBiA

xx

xxxx

FF

IITT

 

Hence 0   SVNHSSM(A, B)   1 

2. For any two SVNSs A and B, if  A = B,

  TA(x) = TB(x), IA(x) = IB(x), FA(x) = FB(x) 

  0)()(  xx TT BA  , 0)()(  xx II BA , 

0)()(  xx FF BA  

 Hence SVNHSSM(A, B) = 1. 

Conversely,  

SVNHSSM(A, B) = 1 

 0)()(  xx TT BA , 0)()(  xx II BA , 

0)()(  xx FF BA . 

This implies, TA(x) = TB(x) , IA(x) = IB(x), FA(x)  = FB(x). 

Hence A = B.          

3. Since,

)()()()( xxxx TTTT ABBA  , 

)()()()( xxxx IIII ABBA  , 

)()()()( xxxx FFFF ABBA  . 

We can write, SVNHSSM(A, B) = SVNHSSM(B, A). 

4. ABR

 TA(x)  TB(x)  TR(x), IA(x)  IB(x)  IR(x), 

 FA(x)  FB(x)  FR(x) for xX. 

Now we have the following inequalities: 

)()()()( xxxx TTTT RABA  , 

)()()()( xxxx TTTT RARB  ;

)()()()( xxxx IIII RABA  , 

)()()()( xxxx IIII RARB  ;

)()()()( xxxx FFFF RABA  , 

)()()()( xxxx FFFF RARB  . 

Thus, SVNHSSM(A, R)   SVNHSSM(A, B) and 

SVNHSSM(A, R)   SVNHSSM(B, R). 

3.1 Weighted hyperbolic sine similarity measures 
for SVNSs 

Let A = <x(TA(x), IA(x), FA(x))> and B = <x(TB(x), 

IB(x), FB(x))> be two SVNSs. Now weighted hyperbolic 

sine  similarity function which measures the similarity 

between two SVNSs can be presented as follows (see Eqn. 

2): 


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i
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Theorem 2. The defined weighted hyperbolic sine 

similarity measure SVNWHSSM(A, B) between SVNSs A 

and B satisfies the following properties: 

1. 0   SVNWHSSM(A, B)  1

2. SVNWHSSM (A, B) = 1 if and only if A = B

3. SVNWHSSM (A, B) = SVNWHSSM (B, A)

4. If R is a SVNS in X and ABR then

SVNWHSSM (A, R)   SVNWHSSM(A, B) and

SVNWHSSM (A, R)   SVNWHSSM (B, R).

Proofs: 

1. For two neutrosophic sets A and B,

1)(),(),(),(),(),(0  iBiBiBiAiAiA xxxxxx FITFIT  

3)()(

)()()()(0
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Again, ,10  w
i

.1
1
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n

i
iw  

Hence 0  SVNWHSSM(A, B)   1 

2. For any two SVNSs A and B, if  A = B,
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  TA(x) = TB(x), IA(x) = IB(x), FA(x) = FB(x) 

  0)()(  xx TT BA  , 0)()(  xx II BA , 

0)()(  xx FF BA  

 Hence SVNWHSSM(A, B) = 1. 

Conversely,  

SVNWHSSM(A, B) = 1 

 0)()(  xx TT BA , 0)()(  xx II BA , 

0)()(  xx FF BA . 

This implies, TA(x) = TB(x) , IA(x) = IB(x), FA(x)  = FB(x). 

Hence A = B.          

3. Since,

)()()()( xxxx TTTT ABBA  , 

)()()()( xxxx IIII ABBA  , 

)()()()( xxxx FFFF ABBA  . 

We can write, SVNWHSSM(A, B) = SVNWHSSM(B, A). 

4. ABR

 TA(x)  TB(x)  TR(x), IA(x)  IB(x)   IR(x), 

 FA(x)   FB(x)  FR(x) for xX. 

Now we have the following inequalities: 

)()()()( xxxx TTTT RABA  , 

)()()()( xxxx TTTT RARB  ;

)()()()( xxxx IIII RABA  , 

)()()()( xxxx IIII RARB  ;

 )()()()( xxxx FFFF RABA  , 

)()()()( xxxx FFFF RARB  . 

Thus SVNWHSSM(A, R)   SVNWHSSM(A, B) and 

SVNWHSSM(A, R)   SVNWHSSM(B, R).  

4. Determination of unknown attribute weights

When attribute weights are completely unknown to 

decision makers, the entropy measure [46] can be used to 

calculate attribute weights. Biswas et al. [47] employed 

entropy measure for MADM problems to determine 

completely unknown attribute weights of SVNSs.  

4.1  Compromise function 

The compromise function of a SVNS A = FIT
A
ij

A
ij

A
ij ,,

(i = 1, 2, ..., m; j = 1, 2, ..., n) is defined as follows (see 

Eqn. 3):  

  
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A
ij

A
ij
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ijj FITAC
1

32)(                (3) 

The weight of j-th attribute is defined as follows (see Eqn. 

4). 
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Theorem 3. The compromise function Cj(A) satisfies the 

following properties: 

P1. 1)( AC j , if 0,1  ijijij IFT .

P2. 0)( AC j , if .1,1,0,, FIT ijijij  

P3. )()( BEAC jj  , if FIFITT
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Proofs. 
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 0)()(  BA CC jj , Since, FIFITT
B
ij

B
ij

A
ij

A
ij

B
ij

A
ij  and . 

Hence, )()( BA CC jj  . 

5. Decision making procedure

Let A1, A2 , ..., Am be a discrete set of alternatives, C1, C2, 

..., Cn be the set of attributes of each alternative. The val-

ues associated with the alternatives Ai (i = 1, 2,..., m)

against the attribute Cj (j = 1, 2, ..., n) for MADM problem 

is presented in a SVNS based decision matrix.  

      The steps of decision-making (see Figure 2) based on 

single valued neutrosophic weighted hyperbolic sine simi-

larity measure (SVNWHSSM) are presented using the fol-

lowing steps. 

Step 1: Determination of the relation between al-

ternatives and attributes 

 The relation between alternatives Ai (i = 1, 2, ..., m)

and the attribute Cj (j = 1, 2, ..., n) is presented in the Eqn. 

(5). 
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(5) 

Here ijijij FIT ,,  (i = 1, 2, ..., m; j = 1, 2, ..., n) be SVNS 

assessment value. 

Step 2: Determine the weights of attributes 

Using the Eqn. (3) and (4), decision-maker calculates the 

weight of the attribute Cj (j = 1, 2, …, n). 

Step 3: Determine ideal solution 

Generally, the evaluation attribute can be categorized into 

two types: benefit type attribute and cost type attribute. In 

the proposed decision-making method, an ideal alternative 

can be identified by using a maximum operator for the 

benefit type attributes and a minimum operator for the cost 

type attributes to determine the best value of each attribute 

among all the alternatives. Therefore, we define an ideal 

alternative as follows:

𝐴* = {C1*, C2*, … , Cm*}. 

Here, benefit attribute C j
* can be presented as follows: 







)()()(* min,min,max Ai
C ji

Ai
C ji

Ai
C ji

j FITC  (6) 

for j = 1, 2, ..., n. 

Similarly, the cost attribute C j
* can be presented as

follows: 







)()()(* max,max,min Ai
C ji

Ai
C ji

Ai
C ji

j FITC  (7)

for j = 1, 2, ..., n 

Step 4: Determine the similarity values 

Using Eqns. (2) and (5), calculate SVNWHSSM values 

for each alternative between positive (or negative) ideal so-

lutions and corresponding single valued neutrosophic from 

decision matrix D[A|C]. 

Step 5: Ranking the alternatives 

 Ranking the alternatives is prepared based on the de-

scending order of similarity measures. Highest value indi-

cates the best alternative. 

Step 6: End 

6. Numerical example

In this section, we illustrate a numerical example as an ap-

plication of the proposed approach. We consider a deci-

sion-making problem stated as follows. Suppose a person 
who wants to purchase a SIM card for his/her mobile con-

nection. Therefore, it is necessary to select suitable SIM 

card for his/her mobile connection. After initial screening, 
there are four possible alternatives (SIM cards) for mobile 

connection. The alternatives (SIM cards) are presented as 

follows: 

 A1: Airtel

 A2: Vodafone
 A3: BSNL

 A4: Reliance Jio

The person must take a decision based on the 
following five attributes of SIM cards:  

 C1: Service quality
 C2: Cost

 C3: Initial talk time
 C4: Call rate per second

 C5: Internet and other facilities

The decision-making strategy is presented using the fol-

lowing steps. 

Step 1: Determine the relation between alternatives 

and attributes 

 The relation between alternatives A1, A2, A3, and A4 

and the attributes C1, C2, C3, C4, C5 is presented in the Eqn. 

(8). 
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 (8) 

Step 2: Determine the weights of attributes 

Using the Eq. (3) and (4), we calculate the weight of the 

attributes C1, C2, C3, C4, C5 as follows: 

[w1, w2, w3, w4, w5] = 

[0.2023, 0.1917, 0.2078, 0.2009,   0.1973] 

Step 3: Determine ideal solution 

In this problem, attributes C1, C3, C4, C5 are benefit type 

attributes and , C2 is the cost type attribute.

𝐴* = {(0.8, 0.1, 0.1), (0.5, 0.4, 0.3), (0.8, 0.0, 0.1), (0.7, 

0.1, 0.0), (0.9, 0.1, 0.1)}. 

Step 4: Determine the weighted similarity values 

Using Eq. (2) and Eq. (8), we calculate similarity measure 

values for each alternative as follows. 

422290),SVNWHSSM( 1 .=AA*  

956290),SVNWHSSM( 2 .=AA*  

866790),SVNWHSSM( 3 .=AA*



 Kalyan Mondal, Surapati Pramanik, and Bibhas C. Giri. Single Valued Neutrosophic Hyperbolic Sine Similarity Measure Based 
MADM Strategy 

967950),SVNWHSSM( 4 .=AA*  

Step 5: Ranking the alternatives 

 Ranking the alternatives is prepared based on the de-

scending order of similarity measures (see Figure 1). Now 

the final ranking order will be as follows. 

A3  A4  A2  A1 

Highest value indicates the best alternative. 

Step 6: End 
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FIGURE 1: Graphical representation of alternatives versus 

weighted similarity measures. 

7. Comparison analysis

The ranking results calculated from proposed strategy and 

different existing strategies [38, 48, 49, 50] are furnished in 

Table 1. We observe that the ranking results obtained from 

proposed and existing strategies in the literature differ.  

The proposed strategy reflects that the optimal alternative 

is A3. The ranking result obtained from Ye [38] is similar 

to the proposed strategy. The ranking results obtained from 

Ye and Zhang [48] and Mondal and Pramanik [49] differ 

from the optimal result of the proposed strategy. In Ye 

[50], the ranking order differs but the best alternative is the 

same to the proposed strategy. 

Table 1 The ranking results of existing strategies 

8. Contributions of the proposed strategy

1) SVNHSSM and SVNWHSSM in SVNS

environment are firstly defined in the literature. We

have also proved their basic properties.

2) We have proposed ‘compromise function’ for cal-

culating unknown weights structure of attributes in

SVNS environment.

3) We develop a decision making strategy based on

the proposed weighted similarity measure

(SVNWHSSM).

4) Steps and calculations of the proposed strategy are

easy to use.

5) We have solved a numerical example to show the

feasibility, applicability, and effectiveness of the

proposed strategy.

9. Conclusion

In the paper, we have proposed hyperbolic sine similarity 
measure and weighted hyperbolic sine similarity measures 

for SVNSs and proved their basic properties. We have 
proposed compromise function to determine unknown 

weights of the attributes in SVNS environment. We have 
developed a novel MADM strategy based on the proposed 

weighted similarity measure to solve decision problems. 

We have solved a numerical problem and compared the 
obtained result with other existing strategies to demon-

strate the effectiveness of the proposed MADM strategy. 
The proposed MADM strategy can be applied in other 

decision-making problem such as supplier selection, pat-

tern recognition, cluster analysis, medical diagnosis, weav-
er selection [51-53], fault diagnosis [54], brick selection 

[55-56], data mining [57], logistic centre location selection 
[58-60], teacher selection [61, 62], etc.  

Strategies     Ranking results 

Ye and Zhang[48]     A4  A2  A3  A1  

Mondal and Pramanik [49] A4  A3  A2  A1 

Ye [38]     A3  A4  A2  A1 

Ye [50]     A3  A2  A4  A1  

Proposed strategy A3  A4  A2  A1 
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FIGURE 2: Phase diagram of the proposed decision making strategy 
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Abstract: Single valued neutrosophic set is an important math-

ematical tool for tackling uncertainty in scientific and engineer-

ing problems because it can handle situation involving indeter-

minacy. In this research, we introduce new similarity measures 

for single valued neutrosophic sets based on binary logarithm 

function. We define two type of binary logarithm similarity 

measures and weighted binary logarithm similarity measures 

for single valued neutrosophic sets. Then we define hybrid 

binary logarithm similarity measure and weighted hybrid binary 

logarithm similarity measure for single valued neutrosophic 

sets. We prove the basic properties of the proposed measures. 

Then, we define a new entropy function for determining 

unknown attribute weights. We develop a novel multi attribute 

group decision making strategy for single valued neutrosophic 

sets based on the weighted hybrid binary logarithm similarity 

measure. We present an illustrative example to demonstrate the 

effectiveness of the proposed strategy. We conduct a sensitivity 

analysis of the developed strategy. We also present a 

comparison analysis between the obtained results from 

proposed strategy and different existing strategies in the 

literature.

Keywords: single valued neutrosophic set; binary logarithm function; similarity measure; entropy function; ideal solution; 

MAGDM 

1 Introduction 

Smarandache [1] introduced neutrosophic sets (NSs) to 
pave the way to deal with problems involving uncertainty, 

indeterminacy and inconsistency. Wang et al. [2] grounded 
the concept of single valued neutrosophic sets (SVNSs), a 

subclass of NSs to tackle engineering and scientific 

problems. SVNSs have been applied to solve various 
problems in different fields such as medical problems [3–

5], decision making problems [6–18], conflict resolution 
[19], social problems [20–21] engineering problems [22- 

23], image processing problems [24–26] and so on.   

The concept of similarity measure is very significant in 
studying almost every practical field. In the literature, few 

studies have addressed similarity measures for SNVSs 
[27–30]. Peng et al. [31] developed SVNSs based multi 

attribute decision making (MADM) strategy employing 
MABAC (Multi-Attributive Border Approximation area 

Comparison and similarity measure), TOPSIS (Technique 

for Order Preference by Similarity to an Ideal Solution) 
and a new similarity measure.  

Ye [32] proposed cosine similarity measure based 
neutrosophic multiple attribute decision making (MADM) 

strategy. In order to overcome some disadvantages in the 

definition of cosine similarity measure, Ye [33] proposed  

‘improved cosine similarity measures’ based on cosine 
function. Biswas et al. [34] studied cosine similarity  

measure based MCDM with trapezoidal fuzzy 

neutrosophic numbers. Pramanik and Mondal [35] 
proposed weighted fuzzy similarity measure based on 
tangent function. Mondal and Pramanik [36] proposed 
intuitionistic fuzzy similarity measure based on tangent 
function. Mondal and Pramanik [37] developed tangent 

similarity measure of SVNSs and applied it to MADM. 
Ye and Fu [38] studied medical diagnosis problem using a 

SVNSs similarity measure based on tangent function. Can 
and Ozguven [39] studied a MADM problem for adjusting 

the proportional-integral-derivative (PID) coefficients 
based on neutrosophic Hamming, Euclidean, set-theoretic, 

Dice, and Jaccard similarity measures.  
Several studies [40–42] have been reported in the literature 
for multi-attribute group decision making (MAGDM) in 

neutrosophic environment. Ye [43] studied the similarity 
measure based on distance function of SVNSs and applied 

it to MAGDM. Ye [44] developed several clustering 

methods using distance-based similarity measures for 
SVNSs. 

mailto:kalyanmathematic@gmail.com
mailto:sura_pati@yahoo.co.in
mailto:bibhasc.giri@jadavpuruniversity.in
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Mondal et al. [45] proposed sine hyperbolic similarity 

measure for solving MADM problems. Mondal et al. [46] 
also proposed tangent similarity measure to deal with 

MADM problems for interval neutrosophic environment. 

Lu and Ye [47] proposed logarithmic similarity 
measure for interval valued fuzzy set [48] and applied it in 

fault diagnosis strategy. 

Research gap: 

MAGDM strategy using similarity measure based on 

binary logarithm function under single valued neutrosophic 
environment is yet to appear. 

Research questions: 

 Is it possible to define a new similarity measure

between single valued neutrosophic sets using binary

logarithm function?

 Is it possible to define a new entropy function for

single valued neutrosophic sets for determining un-

known attribute weights?

 Is it possible to develop a new MAGDM strategy

based on the proposed similarity measures in single

valued neutrosophic environment?

The objectives of the paper: 

 To define binary logarithm similarity measures for
SVNS environment and prove the basic properties.

 To define a new entropy function for determining
unknown weight of attributes.

 To develop a multi-attribute droup decision making
model based on proposed similarity measures.

 To present a numerical example for the efficiency

and effectiveness of the proposed strategy.

Having motivated from the above researches on 

neutrosophic similarity measures, we introduce the concept 
of binary logarithm similarity measures for SVNS 

environment. The properties of binary logarithm similarity 

measures are established. We also propose a new entropy 
function to determine unknown attribute weights. We 

develope a MAGDM strategy using the proposed hybrid 
binary logarithm similarity measures. The proposed 

similarity measure is applied to a MAGDM problem.  

The structure of the paper is as follows. Section 2 
presents basic concepts of NSs, operations on NSs, SVNSs 

and operations on SVNSs. Section 3 proposes binary 
logarithm similarity measures and weighted binary 

logarithm similarity measures, hybrid binary logarithm 
similarity measure (HBLSM), weighted hybrid binary 

logarithm similarity measure (WHBLSM) in SVNSs 

environment. Section 4 proposes a new entropy measure to 

calculate unknown attribute weights and proves basic 
properties of entropy function. Section 5 presents a 

MAGDM strategy based weighted hybrid binary logarithm 

similarity measure. Section 6 presents an illustrative 
example to demonstrate the applicability and feasibility of 

the proposed strategies. Section 7 presents a sensitivity 
analysis for the results of the numerical example. Section 8 

conducts a comparative analysis with the other existing 

strategies. Section 9 presents the key contribution of the 
paper. Section 10 summarizes the paper and discusses 

future scope of research.  

2 Preliminaries 

In this section, the concepts of NSs, SVNSs, operations on 

NSs and SVNSs and binary logarithm function are 

outlined. 

2.1 Neutrosophic set (NS) 

Assume that X be an universe of discourse. Then a 

neutrosophic sets [1] N can be defined as follows: 

N = {< x: TN(x), IN(x), FN(x) > | xX}. 

Here the functions T, I and F define respectively the 

membership degree, the indeterminacy degree, and the 

non-membership degree of the element xX to the set N. 

The three functions T, I and F satisfy the following the 

conditions: 

 T, I, F: X → ]−0,1+[

 −0 ≤ supTN(x) + supIN( x) + supFN(x) ≤ 3+

For two neutrosophic sets M = {< x: TM (x), IM(x), 

FM(x) > | x X} and N = {< x, TN(x), IN(x), FN(x) > | xX 

}, the two relations are defined as follows:  

 M   N  if and only if TM(x)  TN(x), IM(x)  IN(x),

FM(x )  FN(x)

 M = N if and only if TM(x) = TN(x), IM(x) = IN(x),

FM(x) = FN(x).

2.2. Single valued Neutrosophic sets (SVNSs) 

Assume that X be an universe of discourse. A SVNS 

[2] P in X is formed by a truth-membership function TP(x), 

an indeterminacy membership function IP(x), and a falsity 

membership function FP(x). For each point x in X, TP(x), 

IP(x), and FP(x)[0, 1].  

For continuous case, a SVNS P can be expressed as 

follows: 

Xx
x

xFxIxT
P

x

PPP 


 :
)(),(),(

, 
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For discrete case, a SVNS P can be expressed as 

follows: 

Xx
x

xxx
P i

n

i i

iPiPiP FIT



 



:
)(),(),(

1

For two SVNSs P = {< x: TP(x), IP(x), FP(x)> | xX} 

and Q = {< x: TQ(x), IQ(x), FQ(x)> | xX}, some definitions 

are stated below: 

 P  Q  if and only if TP(x)  TQ(x), IP(x)  IQ(x), and

FP(x)  FQ(x).

 P  Q  if and only if TP(x)  TQ(x), IP(x)  IQ(x), and

FP(x)  FQ(x).

 P = Q if and only if TP(x) = TQ(x), IP(x) = IQ(x),

and FP(x) = FQ(x) for any xX.

 Complement of P i.e. Pc ={< x: FP(x), 1− IP(x),

TP(x)> | xX }.

2.3. Some arithmetic operations on SVNSs 

Definition 1 [49] 

Let )(),(),( xFxIxTP PPP and )(),(),( xFxIxTQ QQQ be 

any two SVNSs in a universe of discourse then arithmetic 

operations are stated as follows. 













 


)()(

,)()(,)()()()(

xFxF

xIxIxTxTxTxT
QP

QP

QPQPQP




















)()()()(

,)()()()(,)()(

xFxFxFxF

xIxIxIxIxTxT
QP

QPQP

QPQPQP

       0;)(,)(,)(11   xFxIxTP PPP

         0;)(11,)(11,)(   xFxIxTP PPP

2.4. Binary logarithm function 

In mathematics, the logarithm of the form log2
x , x > 0 is 

called binary logarithm function [50]. For example, the 
binary logarithm of 1 is 0, the binary logarithm of 4 is 2, 

the binary logarithm of 16 is 4, and the binary logarithm 

of 64 is 6. 

3. Binary logarithm similarity measures for
SVNSs 

In this section, we define two types of binary logarithm 

similarity measures and their hybrid and weighted hybrid 

similarity measures. 

3.1. Binary logarithm similarity measures of SVNSs 

(type-I) 

Definition 2. Let A = <x(TA(xi), IP(xi), FP(xi))> and B = 

<x(TB(xi), IB(xi), FB(xi))> be any two SVNSs. The binary 

logarithm similarity measure (type-I) between SVNSs A 

and B are defined as follows: 

),(BL1 BA = 



















































n

i iBiA

iBiAiBiA

xFxF

xIxIxTxT

n
1

2
)()(

)()()()(

3

1
2log

1

  (1) 

Theorem 1. The binary logarithm similarity 

measure ),(BL1 BA between any two SVNSs A and B 

satisfy the following properties: 

 1),(BL0.1P
1

 BA  

 
1),(BL.2P 1 BA , if and only if A = B 

),(BL),(BL.3P 11 ABBA   

  P4. If C is a SVNS in X and A B C then 

),(BL),(BL 11 BACA   and ),(BL),(BL 11 CBCA  . 

Proof 1.  

From the definition of SVNS, we write, 

0 ≤ TA(x) + IA( x) + FA(x) ≤ 3 and  

0 ≤ TB(x) + IB(x) + FB(x) ≤ 3      



,3)()()()()()(0  iBiAiBiAiBiA xFxFxIxIxTxT

1
)()(

,)()(,)()(
max0 




















iBiA

iBiAiBiA

xFxF

xIxIxTxT
 

 1),(BL0 1
 BA . 

Proof 2. 

For any two SVNSs A and B,  

A = B  

 TA(x) = TB(x), IA(x) = IB(x), FA(x) = FB(x) 

 0)()(  xTxT BA , 0)()(  xIxI BA , 

     0)()(  xFxF BA  

 1),(BL1 BA . 

Conversely, 

 for 1),(BL1 BA , we have, 

 0)()(  xTxT BA , 0)()(  xIxI BA , 
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     0)()(  xFxF BA

 )()( xTxT BA  , )()( xIxI BA  , )()( xFxF BA   

  A = B. 

Proof 3. 

We have, 

)()()()( xTxTxTxT ABBA  , 

)()()()( xIxIxIxI ABBA  , 

)()()()( xFxFxFxF ABBA 

 ),(BL),(BL 11 ABBA  . 

Proof 4. 

 For A B C, we have,

 TA(x)  TB(x)  TC(x), IA(x)  IB(x)  IC(x), 

FA(x)  FB(x)  FC(x) for xX. 

 )()()()( xTxTxTxT CABA  , 

)()()()( xTxTxTxT CACB  ; 

)()()()( xIxIxIxI CABA  , 

)()()()( xIxIxIxI CACB  ; 

)()()()( xFxFxFxF CABA  , 

)()()()( xFxFxFxF CACB  . 

 ),(BL),(BL 11 BACA   and ),(BL),(BL 11 CBCA  . 

3.2. Binary logarithm similarity measures of SVNSs ( 

type-II)

Definition 3. [51]  Let A = <x(TA(xi), IP(xi), FP(xi))> and B 

= <x(TB(xi), IB(xi), FB(xi))> be any two SVNSs. The binary 

logarithm similarity measure (type-II) between SVNSs A 

and B are defined as follows: 

),(BL2 BA =





































n

i iBiA

iBiAiBiA

xFxF

xIxIxTxT

n
1

2
)()(

,)()(,)()(
max2log

1
(2) 

Theorem 2. The binary logarithm similarity 

measure ),(BL 2 BA between any two SVNSs A and B 

satisfy the following properties: 

 1),(BL0.1P
2

 BA  

 
1),(BL.2P 2 BA , if and only if A = B 

),(BL),(BL.3P 22 ABBA   

  P4. If C is a SVNS in X and A B C then 

),(BL),(BL 22 BACA   and ),(BL),(BL 22 CBCA  . 

Proof. 

Proofs of the properties are shown in [51]. 

3.3. Weighted binary logarithm similarity measures of 

SVNSs for type-I 

Definition 4.  Let A = <x(TA(xi), IP(xi), FP(xi))> and 

B = <x(TB(xi), IB(xi), FB(xi))> be any two SVNSs. Then the 

weighted binary logarithm similarity measure for type-I 

between SVNSs A and B are defined as follows: 

),(BL1 BAw = 



















































n

1i
iBiA

iBiAiBiA

2i
)x(F)x(F

)x(I)x(I)x(T)x(T

3

1
2logw

 (3) 

Here, 10  iw and 1
1




n

i
iw . 

Theorem 3. The weighted binary logarithm similarity 

measures ),(BL1 BAw  between SVNSs A and B satisfy the 

following properties: 

1),(BL0.1P 1  BAw  

1),(BL.2P 1 BAw , if and only if A = B 

),(BL),(BL.3P 11 ABBA ww   

P4. If C is a SVNS in X and A B C, then 

),(BL),(BL 11 BACA ww   and ),(BL),(BL 11 CBCA ww  ; 

1
1




n

i
iw . 

Proof 1. 

From the definition of SVNSs A and B, we write, 

0 ≤ TA(x) + IA( x) + FA(x) ≤ 3 and  

0 ≤ TB(x) + IB( x) + FB(x) ≤ 3 

 1
)()(

,)()(,)()(
max0 




















iBiA

iBiAiBiA

xFxF

xIxIxTxT
         

 3)()()()()()(0  iBiAiBiAiBiA xFxFxIxIxTxT , 

 1),(BL0 1
 BA

w . since, 1
1




n

i
iw . 

Proof 2. 

For any two SVNSs A and B if A = B, then we have, 

TA(x) = TB(x), IA(x) = IB(x), FA(x) = FB(x) 

 0)()(  xTxT BA , 0)()(  xIxI BA , 

0)()(  xFxF BA
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 1),(BL1 BAw , (t = 1, 2), since 1
1




n

i
iw .

Conversely, 

For 1),(BL1 BAw , then we have, 

 0)()(  xTxT BA , 0)()(  xIxI BA , 

0)()(  xFxF BA

 )()( xTxT BA  , )()( xIxI BA  , )()( xFxF BA   

  A = B, since 1
1




n

i
iw . 

Proof 3.  

For any two SVNSs A and B, we have,

)()()()( xTxTxTxT ABBA  , 

)()()()( xIxIxIxI ABBA  , 

)()()()( xFxFxFxF ABBA 

 ),(BL),(BL 11 ABBA ww 
 
for. 

Proof 4. 

For A B C, we have,

 TA(x)  TB(x)  TC(x), IA(x)   IB(x)   IC(x), 

FA(x)   FB(x)  FC(x) for xX. 

 )()()()( xTxTxTxT CABA  , 

)()()()( xTxTxTxT CACB  ; 

)()()()( xIxIxIxI CABA  , 

)()()()( xIxIxIxI CACB  ; 

)()()()( xFxFxFxF CABA  , 

)()()()( xFxFxFxF CACB  . 

 ),(BL),(BL 11 BACA ww   and ),(BL),(BL 11 CBCA ww 

since 11  
n
i iw . 

3.4. Weighted binary logarithm similarity measures of 

SVNSs for type-II 

Definition 5. [51]  Let A = <x(TA(xi), IP(xi), FP(xi))> and 

B = <x(TB(xi), IB(xi), FB(xi))> be any two SVNSs. Then the 

weighted binary logarithm similarity measure (type-II 

between SVNSs A and B is defined as follows: 

),(BL2 BAw = 





































n

i iBiA

iBiAiBiA

i
xFxF

xIxIxTxT
w

1

2
)()(

,)()(,)()(
max2log

(4) 

Here, 10  iw and 1
1




n

i
iw . 

Proof. 

For proof, see [51]. 

3.3. Hybrid binary logarithm similarity measures 

(HBLSM) for SVNSs 

Definition 6. Let A = <x(TA(xi), IP(xi), FP(xi))> and B = 

<x(TB(xi), IB(xi), FB(xi))> be any two SVNSs. The hybrid 

binary logarithm similarity measure between SVNSs A and 

B is defined as follows:

 BAHyb ,BL = 


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
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n
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xFxF

xIxI
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xFxF
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n

1

2

1
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,)()(

,)()(

max2log)1(

)()(

)()(

)()(

3

1
2log

1
        (5) 

Here, 10  . 

Theorem 4. The hybrid binary logarithm similarity 

measure  BAHyb ,BL between any two SVNSs A and B 

satisfy the following properties: 

1),(.1P BL0  BAHyb  

1),(.2P BL BAHyb , if and only if A = B 

),(),(.3P BLBL ABBA HybHyb   

  P4.  If C is a SVNS in X and A B C then 

),(BL),(BL BACA HybHyb 

and ),(BL),(BL CBCA HybHyb  .

Proof 1.  

From the definition of SVNS, we write, 

0 ≤ TA(x)+ IA( x)+ FA(x) ≤ 3 and 

0 ≤ TB(x) + IB(x) + FB(x) ≤ 3  
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Proof 2.  

For any two SVNSs A and B,  

for A = B, we have,   

 TA(x) = TB(x), IA(x) = IB(x), FA(x) = FB(x) 

 0)()(  xTxT BA , 0)()(  xIxI BA , 

0)()(  xFxF BA

 1),(BL BAHyb . 

Conversely, 

for 1),(BL BAHyb , we have, 

0)()(  xTxT BA , 0)()(  xIxI BA , 

0)()(  xFxF BA

 )()( xTxT BA  , )()( xIxI BA  , )()( xFxF BA   

  A = B.  

Proof 3. 

For any two SVNSs A and B, we have, 
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)()()()( xIxIxIxI ABBA  , 
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 ),(BL),(BL ABBA HybHyb  . 

Proof 4.  

For A B C, we have,

 TA(x)  TB(x)  TC(x), IA(x)  IB(x)  IC(x), 

FA(x)  FB(x)  FC(x) for xX. 

 )()()()( xTxTxTxT CABA  ,

)()()()( xTxTxTxT CACB  ; 

)()()()( xIxIxIxI CABA  , 

)()()()( xIxIxIxI CACB  ; 

)()()()( xFxFxFxF CABA  , 

)()()()( xFxFxFxF CACB  . 

 ),(BL),(BL BACA HybHyb 

and ),(BL),(BL CBCA HybHyb  . 

3.4. Weighted hybrid binary logarithm similarity 

measures (WHBLSM) for SVNSs 

Definition 7. Let A = <x(TA(xi), IP(xi), FP(xi))> and B = 

<x(TB(xi), IB(xi), FB(xi))> be any two SVNSs. The 

weighted hybrid binary logarithm similarity measure 

between SVNSs A and B is defined as follows: 
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Here, 10  . 

Theorem 5. The weighted hybrid binary logarithm 

similarity measure ),(BL BAwHyb  between any two SVNSs 

A and B satisfy the following properties: 

1),(BL0.1P  BA
wHyb  

1),(BL.2P BAwHyb , if and only if A = B 

),(BL),(BL.3P ABBA wHybwHyb   

 P4. If C is a SVNS in X and A B C, 

then ),(BL),(BL BACA wHybwHyb 

 and ),(BL),(BL CBCA wHybwHyb  . 

Proof 1. 

From the definition of SVNS, we write, 

0 ≤ TA(x)+ IA( x)+ FA(x) ≤ 3 and 

 0 ≤ TB(x) + IB(x) + FB(x) ≤ 3 
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Proof 2.  

For any two SVNSs A and B, 
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for A = B, we have,   

 TA(x) = TB(x), IA(x) = IB(x), FA(x) = FB(x) 

 0)()(  xTxT BA , 0)()(  xIxI BA , 

0)()(  xFxF BA

 1),(BL BAwHyb . 

Conversely, 

for 1),(BL BAwHyb , we have, 

0)()(  xTxT BA , 0)()(  xIxI BA , 

0)()(  xFxF BA

 )()( xTxT BA  , )()( xIxI BA  , )()( xFxF BA   

  A = B.  

Proof 3.  

For any two SVNSs A and B, we have, 

)()()()( xTxTxTxT ABBA  , 

)()()()( xIxIxIxI ABBA  , 

)()()()( xFxFxFxF ABBA 

 ),(BL),(BL ABBA wHybwHyb  . 

Proof 4.  

For A B C, we have,

 TA(x)  TB(x)  TC(x), IA(x)  IB(x)  IC(x), 

FA(x)  FB(x)  FC(x) for all xX. 

 )()()()( xTxTxTxT CABA  , 

)()()()( xTxTxTxT CACB  ; 

)()()()( xIxIxIxI CABA  , 

)()()()( xIxIxIxI CACB  ; 

)()()()( xFxFxFxF CABA  , 

)()()()( xFxFxFxF CACB  . 

 ),(BL),(BL BACA wHybwHyb  and 

),(BL),(BL CBCA wHybwHyb  . 

4. A new entropy measure for SVNSs

Entropy strategy [52] is an important contribution for 

determining indeterminate information. Zhang et al. [53] 

introduced the fuzzy entropy. Vlachos and Sergiadis [54] 

proposed entropy function for intuitionistic fuzzy sets. 

Majumder and Samanta [55] developed some entropy 

measures for SVNSs. When attribute weights are 

completely unknown to decision makers, the entropy 

measure is used to calculate attribute weights. In this 

paper, we define an entropy measure for determining 

unknown attribute weights.  
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5. MAGDM strategy based on weighted hybrid bi-
nary logarithm similarity measure for SVNSs 

Assume that (P1, P2, ..., Pm) be the alternatives, (C1, C2, ..., 

Cn) be the attributes of each alternative, and {D1, D2, ..., 

Dr} be the decision makers. Decision makers provide the 

rating of alternatives based on the predefined attribute. 

Each decision maker constructs a neutrosophic decision 

matrix associated with the alternatives based on each at-

tribute shown in Equation (9). Using the following steps, 

we present the MAGDM strategy (see figure 1) based on 

weighted hybrid binary logarithm similarity measure 

(WHBLSM).  

Step 1: Determine the relation between the alternatives 

and the attributes 

At first, each decision maker prepares decision matrix. The 

relation between alternatives Pi (i = 1, 2, ..., m) and the at-

tribute Cj (j = 1, 2, ..., n) corresponding to each decision 

maker is presented in the Equation (9).
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Here, FIT rD
ij

rD
ij

rD
ij ,, (i = 1, 2, ..., m; j = 1, 2, ..., n) is the 

single valued neutrosophic rating value of the alternative Pi 

with respect to the attribute Cj corresponding to the deci-

sion maker Dr. 

Step 2: Determine the core decision matrix 

We form a new decision matrix, called core decision 

matrix to combine all the decision maker’s opinions into a 

group opinion. Core decision matrix minimizes the 

biasness which is imposed by different decision makers 

and hence credibility to the final decision increases. The 

core decision matrix is presented in Equation (10). 
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Step 3: Determine the ideal solution 

The evaluation of attributes can be categorized into benefit 

attribute and cost attribute. An ideal alternative can be de-

termined by using a maximum operator for the benefit at-

tributes and a minimum operator for the cost attributes for 

determining the best value of each attribute among all the 

alternatives. An ideal alternative [42] is presented as fol-

lows: 

P* = {C1*, C2*, … , Cm*}. 

where the benefit attribute is 

)()()(* min,min,max Pi
C ji

Pi
C ji

Pi
C ji

j FITC  (11) 

and the cost attribute is 

)()()(* max,max,min Pi
C ji

Pi
C ji

Pi
C ji

j FITC  (12) 

Step 4: Determine the attribute weights 

Using Equation (8), determine the weights of the attribute. 

Step 5:  Determine the WHBLSM values 

Using Equation (6), calculate the weighted similarity 

measures for each alternative. 

Step 6:  Ranking the priority 

All the alternatives are preference ranked based on the de-

creasing order of calculated measure values. The highest 

value reflects the best alternative. 

Step 7: End. 

6. An illustrative example

Suppose that a state government wants to construct an eco-

tourism park for the development of state tourism and 

especially for mental refreshment of children. After initial 

screening, three potential spots namely, spot-1 (P1), spot-2 

(P2), and spot-3 (P3) remain for further selection. A team 
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of three decision makers, namely, D1, D2, and D3 has been 

constructed for selecting the most suitable spot with 

respect to the following attributes. 

 Ecology (C1),

 Costs (C2),

 Technical facility (C3),

 Transport (C4),

 Risk factors (C5)

The steps of decision-making strategy to select the 

best potential spot to construct an eco-tourism park based 

on the proposed strategy are stated below:  

6.1. Steps of MAGDM strategy 

We present MAGDM strategy based on the proposed 

WHBLSM using the following steps. 

Step 1:  Determine the relation between alternatives and 

attributes 

The relation between alternatives P1, P2 and P3 and the at-

tribute set {C1, C2, C3, C4, C5} corresponding to the set of 

decision makers {D1, D2, D3} are presented in Equations 

(13), (14), and (15). 
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Step 2:  Determine the core decision matrix 

Using Equation (10), we construct the core decision matrix 

for all decision makers shown in Equation (16). 
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Step 3:  Determine the ideal solution 

Here, C3 and C4 denote benefit attributes and C1, C2 and C5 

denote cost attributes. Using Equations (11) and (12), we 

calculate the ideal solutions as follows: 
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404.0,452.0,908.0

,203.0,203.0,989.0,184.0,184.0,989.0

,395.0,324.0,956.0,420.0,324.0,938.0

*P .

Step 4: Determine the attribute weights 

Using Equation (8), we calculate the attribute weights as 

follows: 

[w1, w2, w3, w4, w5] = 

[0.1680, 0.3300, 0.2285, 0.2485, 0.0250] 

Step 5: Determine the weighted hybrid binary logarithm 

similarity measures 

Using Equation (6), we calculate similarity values for 

alternatives shown in Table 1. 
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Step 6:  Ranking the alternatives 

Ranking order of alternatives is prepared as the descending 

order of similarity values. Highest value indicates the best 

alternative. Ranking results are shown in Table 1 for dif-

ferent values of  . 

Step 7. End. 

7. Sensitivity analysis

In this section, we discuss the variation of ranking results 

(see Table 1) for different values of  . From the results 

shown in Tables 1, we observe that the proposed strategy 

provides the same ranking order for different values of  .  

8. Comparison analysis

In this section, we solve the problem with different 

existing strategies [33, 37, 38, 56]. Outcomes are furnished 

in the Table 2 and figure 2. 

9. Contributions of the proposed strategy

 We propose two types of binary logarithm similarity

measures and their hybrid similarity measure for

SVNS environment. We have proved their basic

properties.

 To calculate unknown weights structure of attributes

in SVNS environment, we have proposed a new en-

tropy function.

 We develop a decision making strategy based on the

proposed weighted hybrid binary logarithm similarity

measure (WHBLSM).

 We have solved a illustrative example to show the

feasibility, applicability, and effectiveness of the

proposed strategy.

10. Conclusion

Conclusions in the paper are concise as follows: 

1. We have proposed hybrid binary logarithm similarity

measure and weighted hybrid binary logarithm

similarity measure for dealing indeterminacy in

decision making situation.

2. We have defined a new entropy function to determine

unknown attribute weights.

3. We have developed a new MAGDM strategy based

on the proposed weighted hybrid binary logarithm

similarity measure.

4. We have presented a numerical example to illustrate

the proposed strategy.

5. We have conducted a sensitivity analysis

6. We have presented comparative analyses between the

obtained results from the proposed strategies and

different existing strategies in the literature. The

proposed weighted hybrid binary logarithm similarity

measure can be applied to solve MAGDM problems

in clustering analysis, pattern recognition, personnel

selection, etc.

7. Future research can be continued to investigate the

proposed similarity measures in neutrosophic hybrid

environment for tackling uncertainty, inconsistency

and indeterminacy in decision making. The concept

of the paper can be applied in practical decision-

making, supply chain management, data mining, clus-

ter analysis, teacher selection etc.

Table 1 Ranking order for different values of  . 

Similarity 

measures 

(  ) Measure values Ranking 

order 

)*,(BL PP iwHyb 0.10 ;9426.0)*,(BL 1 PPwHyb ;9233.0)*,(BL 2 PPwHyb 9101.0)*,(BL 3 PPwHyb P1 P2 P3 

)*,(BL PP iwHyb 0.25 ;9479.0)*,(BL 1 PPwHyb ;9296.0)*,(BL 2 PPwHyb 9153.0)*,(BL 3 PPwHyb P1 P2 P3

)*,(BL PP iwHyb 0.40 ;9532.0)*,(BL 1 PPwHyb ;9357.0)*,(BL 2 PPwHyb 9207.0)*,(BL 3 PPwHyb P1 P2 P3 

)*,(BL PP iwHyb 0.55 ;9585.0)*,(BL 1 PPwHyb ;9419.0)*,(BL 2 PPwHyb 9260.0)*,(BL 3 PPwHyb P1 P2 P3 

)*,(BL PP iwHyb 0.70 ;9638.0)*,(BL 1 PPwHyb ;9482.0)*,(BL 2 PPwHyb 9313.0)*,(BL 3 PPwHyb P1 P2 P3 

)*,(BL PP iwHyb 0.90 ;9708.0)*,(BL 1 PPwHyb ;9565.0)*,(BL 2 PPwHyb 9384.0)*,(BL 3 PPwHyb  P1 P2 P3
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Table 2 Ranking order for different existing strategies 

Similarity measures Measure values for P1, P2 and P3 Ranking order 

Mondal and Pramanik [37] 0.8901, 0.8679, 0.8093 P1 P2 P3 

Ye [33]  0.8409, 0.8189, 0.7766 P1 P2 P3 

Biswas et al. [56] )55.0(  0.9511, 0.9219, 0.9007 P1 P2 P3 

Ye and Fu [38] 0.9161, 0.8758, 0.7900 P1 P2 P3 

Proposed strategy )55.0(  0.9585, 0.9419, 0.9260 P1 P2 P3 

Fig. 1: Decision making phases of the proposed approach 

 WHBLSM based decision making strategy 

Determination of the relation between 

alternatives and attributes Step-1 

Determine the core decision matrix 
Step- 2 

Step- 3 Determine ideal solution 

Determine the attribute weights Step-4 

Step-5 
Calculate the WHBLSM values 

Ranking the alternatives Step- 6 

  Decision making analysis phase 
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Fig. 2: Ranking order of different strategies 
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Abstract: Saeid and Jun introduced the notion of neutrosophic
points, and studied neutrosophic subalgebras of several types in
BCK/BCI-algebras by using the notion of neutrosophic points
(see [4] and [6]). More general form of neutrosophic points is consid-
ered in this paper, and generalizations of Saeid and Jun’s results are

discussed. The concepts of (∈,∈ ∨q(kT ,kI ,kF ))-neutrosophic sub-
algebra, (q(kT ,kI ,kF ), ∈ ∨q(kT ,kI ,kF ))-neutrosophic subalge-
bra and (∈, q(kT ,kI ,kF ))-neutrosophic subalgebra are introduced,
and several properties are investigated. Characterizations of (∈,
∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra are discussed.

Keywords: (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra; (q(kT ,kI ,kF ), ∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra; (∈, q(kT ,kI ,kF ))-neutrosophic sub-
algebra.

1 Introduction
As a generalization of fuzzy sets, Atanassov [1] introduced the
degree of nonmembership/falsehood (f) in 1986 and defined the
intuitionistic fuzzy set. As a more general platform which ex-
tends the notions of the classic set and fuzzy set, intuitionistic
fuzzy set and interval valued (intuitionistic) fuzzy set, Smaran-
dache introduced the notion of neutrosophic sets (see [7, 8]),
which is useful mathematical tool for dealing with incomplete,
inconsistent and indeterminate information. For further particu-
lars on neutrosophic set theory, we refer the readers to the site

http://fs.gallup.unm.edu/FlorentinSmarandache.htm

Jun [4] introduced the notion of (Φ, Ψ)-neutrosophic subalgebra
of a BCK/BCI-algebra X for Φ, Ψ ∈ {∈, q, ∈ ∨ q}, and in-
vestigated related properties. He provided characterizations of an
(∈,∈)-neutrosophic subalgebra and an (∈,∈ ∨ q)-neutrosophic
subalgebra, and considered conditions for a neutrosophic set to
be a (q, ∈ ∨ q)-neutrosophic subalgebra. Saeid and Jun [6] gave
relations between an (∈, ∈ ∨ q)-neutrosophic subalgebra and a
(q, ∈ ∨ q)-neutrosophic subalgebra, and investigated properties
on neutrosophic q-subsets and neutrosophic ∈ ∨ q-subsets.

The purpose of this article is to give an algebraic tool of neu-
trosophic set theory which can be used in applied sciences, for
example, decision making problems, medical sciences etc. We
consider a general form of neutrosophic points, and then we
discuss generalizations of the papers [4] and [6]. As a gen-
eralization of (∈, ∈ ∨ q)-neutrosophic subalgebras, we intro-
duce the notions of (∈,∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra,
and (∈, q(kT ,kI ,kF ))-neutrosophic subalgebra in BCK/BCI-
algebras, and investigate several properties. We discuss charac-

terizations of (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra. We
consider relations between (∈,∈)-neutrosophic subalgebra, (∈,
q(kT ,kI ,kF ))-neutrosophic subalgebra and (∈, ∈ ∨q(kT ,kI ,kF ))-
neutrosophic subalgebra.

2 Preliminaries
By a BCI-algebra, we mean a set X with a binary operation ∗
and the special element 0 satisfying the conditions (see [3, 5]):

(a1) (∀x, y, z ∈ X)(((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),

(a2) (∀x, y ∈ X)((x ∗ (x ∗ y)) ∗ y = 0),

(a3) (∀x ∈ X)(x ∗ x = 0),

(a4) (∀x, y ∈ X)(x ∗ y = y ∗ x = 0 ⇒ x = y).

If a BCI-algebra X satisfies the axiom

(a5) 0 ∗ x = 0 for all x ∈ X,
then we say that X is a BCK-algebra (see [3, 5]). A nonempty
subset S of aBCK/BCI-algebraX is called a subalgebra ofX
(see [3, 5]) if x ∗ y ∈ S for all x, y ∈ S.

The collection of all BCK-algebras and all BCI-algebras are
denoted by BK(X) and BI(X), respectively. Also B(X) :=
BK(X) ∪ BI(X).

We refer the reader to the books [3] and [5] for further infor-
mation regarding BCK/BCI-algebras.

Let X be a non-empty set. A neutrosophic set (NS) in X (see
[7]) is a structure of the form:

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X} (2.1)
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where AT , AI and AF are a truth membership function, an inde-
terminate membership function and a false membership function,
respectively, from X into the unit interval [0, 1]. The neutro-
sophic set (2.1) will be denoted by A = (AT , AI , AF ).

Given a neutrosophic setA = (AT , AI , AF ) in a setX , α, β ∈
(0, 1] and γ ∈ [0, 1), we consider the following sets (see [4]):

T∈(A;α) := {x ∈ X | AT (x) ≥ α},
I∈(A;β) := {x ∈ X | AI(x) ≥ β},
F∈(A; γ) := {x ∈ X | AF (x) ≤ γ},
Tq(A;α) := {x ∈ X | AT (x) + α > 1},
Iq(A;β) := {x ∈ X | AI(x) + β > 1},
Fq(A; γ) := {x ∈ X | AF (x) + γ < 1},
T∈∨ q(A;α) := {x ∈ X | AT (x) ≥ α or AT (x) + α > 1},
I∈∨ q(A;β) := {x ∈ X | AI(x) ≥ β or AI(x) + β > 1},
F∈∨ q(A; γ) := {x ∈ X | AF (x) ≤ γ or AF (x) + γ < 1}.

We say T∈(A;α), I∈(A;β) and F∈(A; γ) are neutrosophic
∈-subsets; Tq(A;α), Iq(A;β) and Fq(A; γ) are neutrosophic q-
subsets; and T∈∨ q(A;α), I∈∨ q(A;β) and F∈∨ q(A; γ) are neu-
trosophic ∈ ∨ q-subsets. It is clear that

T∈∨ q(A;α) = T∈(A;α) ∪ Tq(A;α), (2.2)
I∈∨ q(A;β) = I∈(A;β) ∪ Iq(A;β), (2.3)
F∈∨ q(A; γ) = F∈(A; γ) ∪ Fq(A; γ). (2.4)

Given Φ,Ψ ∈ {∈, q,∈ ∨ q}, a neutrosophic set A = (AT , AI ,
AF ) in X ∈ B(X) is called a (Φ, Ψ)-neutrosophic subalgebra
of X (see [4]) if the following assertions are valid.

x ∈ TΦ(A;αx), y ∈ TΦ(A;αy)
⇒ x ∗ y ∈ TΨ(A;αx ∧ αy),

x ∈ IΦ(A;βx), y ∈ IΦ(A;βy)
⇒ x ∗ y ∈ IΨ(A;βx ∧ βy),

x ∈ FΦ(A; γx), y ∈ FΦ(A; γy)
⇒ x ∗ y ∈ FΨ(A; γx ∨ γy)

(2.5)

for all x, y ∈ X , αx, αy, βx, βy ∈ (0, 1] and γx, γy ∈ [0, 1).

3 Generalizations of (∈, ∈∨q)-neutroso-
phic subalgebras

In what follows, let kT , kI and kF denote arbitrary elements of
[0, 1) unless otherwise specified. If kT , kI and kF are the same
number in [0, 1), then it is denoted by k, i.e., k = kT = kI = kF .

Given a neutrosophic setA = (AT , AI , AF ) in a setX , α, β ∈

(0, 1] and γ ∈ [0, 1), we consider the following sets:

TqkT
(A;α) := {x ∈ X | AT (x) + α+ kT > 1},

IqkI
(A;β) := {x ∈ X | AI(x) + β + kI > 1},

FqkF
(A; γ) := {x ∈ X | AF (x) + γ + kF < 1},

T∈∨ qkT
(A;α) := {x ∈ X | AT (x) ≥ α or

AT (x) + α+ kT > 1},
I∈∨ qkI

(A;β) := {x ∈ X | AI(x) ≥ β or
AI(x) + β + kI > 1},

F∈∨ qkF
(A; γ) := {x ∈ X | AF (x) ≤ γ or

AF (x) + γ + kF < 1}.

We say TqkT
(A;α), IqkI

(A;β) and FqkF
(A; γ) are neu-

trosophic qk-subsets; and T∈∨ qkT
(A;α), I∈∨ qkI

(A;β) and
F∈∨ qkF

(A; γ) are neutrosophic (∈ ∨ qk)-subsets. For Φ ∈ {∈,
q, qk, qkT

, qkI
, qkF

, ∈ ∨ q, ∈ ∨ qk, ∈ ∨ qkT
, ∈ ∨ qkI

, ∈ ∨ qkF
},

the element of TΦ(A;α) (resp., IΦ(A;β) and FΦ(A; γ)) is called
a neutrosophic TΦ-point (resp., neutrosophic IΦ-point and neu-
trosophic FΦ-point) with value α (resp., β and γ).

It is clear that

T∈∨ qkT
(A;α) = T∈(A;α) ∪ TqkT

(A;α), (3.1)

I∈∨ qkI
(A;β) = I∈(A;β) ∪ IqkI

(A;β), (3.2)

F∈∨ qkF
(A; γ) = F∈(A; γ) ∪ FqkF

(A; γ). (3.3)

Given a neutrosophic setA = (AT , AI , AF ) in a setX , α, β ∈
(0, 1] and γ ∈ [0, 1), we consider the following sets:

T ∗∈(A;α) := {x ∈ X | AT (x) > α}, (3.4)
I∗∈(A;β) := {x ∈ X | AI(x) > β}, (3.5)
F ∗∈(A; γ) := {x ∈ X | AF (x) < γ}. (3.6)

Proposition 3.1. For any neutrosophic set A = (AT , AI , AF )
in a set X , α, β ∈ (0, 1] and γ ∈ [0, 1), we have

α ≤ 1−k
2 ⇒ Tqk(A;α) ⊆ T ∗∈(A;α), (3.7)

β ≤ 1−k
2 ⇒ Iqk(A;β) ⊆ I∗∈(A;β), (3.8)

γ ≥ 1−k
2 ⇒ Fqk(A; γ) ⊆ F ∗∈(A; γ), (3.9)

α > 1−k
2 ⇒ T∈(A;α) ⊆ Tqk(A;α), (3.10)

β > 1−k
2 ⇒ I∈(A;β) ⊆ Iqk(A;β), (3.11)

γ < 1−k
2 ⇒ F∈(A; γ) ⊆ Fqk(A; γ). (3.12)

Proof. If α ≤ 1−k
2 , then 1− α ≥ 1+k

2 and α ≤ 1− α. Assume
that x ∈ Tqk(A;α). Then AT (x) + k > 1 − α ≥ 1+k

2 , and
so AT (x) > 1+k

2 − k = 1−k
2 ≥ α. Hence x ∈ T ∗∈(A;α).

Similarly, we have the result (3.8). Suppose that γ ≥ 1−k
2 and let

x ∈ Fqk(A; γ). Then AF (x) + γ + k < 1, and thus

AF (x) < 1− γ − k ≤ 1− 1−k
2 − k = 1−k

2 ≤ γ.

Hence x ∈ F ∗∈(A; γ). Suppose that α > 1−k
2 . If x ∈ T∈(A;α),
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then

AT (x) + α+ k ≥ 2α+ k > 2 · 1−k
2 + k = 1

and so x ∈ Tqk(A;α). Hence T∈(A;α) ⊆ Tqk(A;α). Similarly,
we can verify that if β > 1−k

2 , then I∈(A;β) ⊆ Iqk(A;β). Sup-
pose that γ < 1−k

2 . If x ∈ F∈(A; γ), then AF (x) ≤ γ, and
thus

AF (x) + γ + k ≤ 2γ + k < 2 · 1−k
2 + k = 1,

that is, x ∈ Fqk(A; γ). Hence F∈(A; γ) ⊆ Fqk(A; γ).

Definition 3.2. A neutrosophic set A = (AT , AI , AF ) in X ∈
B(X) is called an (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra
of X if

x ∈ T∈(A;αx), y ∈ T∈(A;αy)
⇒ x ∗ y ∈ T∈∨qkT

(A;αx ∧ αy),
x ∈ I∈(A;βx), y ∈ I∈(A;βy)

⇒ x ∗ y ∈ I∈∨qkI
(A;βx ∧ βy),

x ∈ F∈(A; γx), y ∈ F∈(A; γy)
⇒ x ∗ y ∈ F∈∨qkF

(A; γx ∨ γy)

(3.13)

for all x, y ∈ X , αx, αy, βx, βy ∈ (0, 1] and γx, γy ∈ [0, 1).

An (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra with kT =
kI = kF = k is called an (∈, ∈ ∨qk)-neutrosophic subalgebra.

Lemma 3.3 ([4]). A neutrosophic set A = (AT , AI , AF ) in
X ∈ B(X) is an (∈, ∈)-neutrosophic subalgebra of X if and
only if it satisfies:

(∀x, y ∈ X)

 AT (x ∗ y) ≥ AT (x) ∧AT (y)

AI(x ∗ y) ≥ AI(x) ∧AI(y)

AF (x ∗ y) ≤ AF (x) ∨AF (y)

 . (3.14)

Theorem 3.4. If A = (AT , AI , AF ) is an (∈, ∈)-neutrosophic
subalgebra of X ∈ B(X), then neutrosophic qk-subsets
TqkT

(A;α), IqkI
(A;β) and FqkF

(A; γ) are subalgebras of X
for all α, β ∈ (0, 1] and γ ∈ [0, 1) whenever they are nonempty.

Proof. Let x, y ∈ TqkT
(A;α). Then AT (x) + α + kT > 1 and

AT (y) + α+ kT > 1. It follows from Lemma 3.3 that

AT (x ∗ y) + α+ kT ≥ (AT (x) ∧AT (y)) + α+ kT

= (AT (x) + α+ kT ) ∧ (AT (y) + α+ kT ) > 1

and so that x∗y ∈ TqkT
(A;α). Hence TqkT

(A;α) is a subalgebra
of X . Similarly, we can prove that IqkI

(A;β) is a subalgebra of
X . Now let x, y ∈ FqkF

(A; γ). Then AF (x) + γ + kF < 1 and
AF (y) + γ + kF < 1, which imply from Lemma 3.3 that

AF (x ∗ y) + γ + kF ≤ (AF (x) ∨AF (y)) + γ + kF

= (AF (x) + γ + kF ) ∨ (AF (y) + γ + kF ) < 1.

Hence x ∗ y ∈ FqkF
(A; γ) and so FqkF

(A; γ) is a subalgebra of
X .

Corollary 3.5. If A = (AT , AI , AF ) is an (∈, ∈)-neutrosophic
subalgebra of X ∈ B(X), then neutrosophic qk-subsets
Tqk(A;α), Iqk(A;β) and Fqk(A; γ) are subalgebras of X for
all α, β ∈ (0, 1] and γ ∈ [0, 1) whenever they are nonempty.

If we take kT = kI = kF = 0 in Theorem 3.4, then we have
the following corollary.

Corollary 3.6 ([4]). If A = (AT , AI , AF ) is an (∈, ∈)-
neutrosophic subalgebra of X ∈ B(X), then neutrosophic q-
subsets Tq(A;α), Iq(A;β) and Fq(A; γ) are subalgebras of X
for all α, β ∈ (0, 1] and γ ∈ [0, 1) whenever they are nonempty.

Definition 3.7. A neutrosophic set A = (AT , AI , AF ) in X ∈
B(X) is called a (q(kT ,kI ,kF ), ∈ ∨q(kT ,kI ,kF ))-neutrosophic sub-
algebra of X if

x ∈ TqkT
(A;αx), y ∈ TqkT

(A;αy)

⇒ x ∗ y ∈ T∈∨qkT
(A;αx ∧ αy),

x ∈ IqkI
(A;βx), y ∈ IqkI

(A;βy)

⇒ x ∗ y ∈ I∈∨qkI
(A;βx ∧ βy),

x ∈ FqkF
(A; γx), y ∈ FqkF

(A; γy)

⇒ x ∗ y ∈ F∈∨qkF
(A; γx ∨ γy)

(3.15)

for all x, y ∈ X , αx, αy, βx, βy ∈ (0, 1] and γx, γy ∈ [0, 1).

A (q(kT ,kI ,kF ), ∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra with
kT = kI = kF = k is called a (qk, ∈ ∨qk)-neutrosophic subal-
gebra.

Theorem 3.8. If A = (AT , AI , AF ) is a (q(kT ,kI ,kF ), ∈
∨q(kT ,kI ,kF ))-neutrosophic subalgebra of X ∈ B(X), then neu-
trosophic qk-subsets TqkT

(A;α), IqkI
(A;β) and FqkF

(A; γ) are
subalgebras of X for all α ∈ ( 1−kT

2 , 1], β ∈ ( 1−kI

2 , 1] and
γ ∈ [0, 1−kF

2 ) whenever they are nonempty.

Proof. Let x, y ∈ TqkT
(A;α) for α ∈ ( 1−kT

2 , 1]. Then x ∗ y ∈
T∈∨ qkT

(A;α), that is, x ∗ y ∈ T∈(A;α) or x ∗ y ∈ TqkT
(A;α).

If x ∗ y ∈ T∈(A;α), then x ∗ y ∈ TqkT
(A;α) by (3.10).

Therefore TqkT
(A;α) is a subalgebra of X . Similarly, we prove

that IqkI
(A;β) is a subalgebra of X . Let x, y ∈ FqkF

(A; γ)

for γ ∈ [0, 1−kF

2 ). Then x ∗ y ∈ F∈∨ qkF
(A; γ), and so

x∗y ∈ F∈(A; γ) or x∗y ∈ FqkF
(A; γ). If x∗y ∈ F∈(A; γ), then

x ∗ y ∈ FqkF
(A; γ) by (3.12). Hence FqkF

(A; γ) is a subalgebra
of X .

Taking kT = kI = kF = 0 in Theorem 3.8 induces the fol-
lowing corollary.

Corollary 3.9 ([4]). If A = (AT , AI , AF ) is a (q, ∈ ∨ q)-
neutrosophic subalgebra of X ∈ B(X), then neutrosophic q-
subsets Tq(A;α), Iq(A;β) and Fq(A; γ) are subalgebras of X
for all α, β ∈ (0.5, 1] and γ ∈ [0, 0, 5) whenever they are
nonempty.

We provide characterizations of an (∈, ∈ ∨q(kT ,kI ,kF ))-neu-
trosophic subalgebra.
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Theorem 3.10. Given a neutrosophic set A = (AT , AI , AF ) in
X ∈ B(X), the following are equivalent.

(1) A = (AT , AI , AF ) is an (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic
subalgebra of X .

(2) A = (AT , AI , AF ) satisfies the following assertion.

AT (x ∗ y) ≥
∧
{AT (x), AT (y), 1−kT

2 }
AI(x ∗ y) ≥

∧
{AI(x), AI(y), 1−kI

2 }
AF (x ∗ y) ≤

∨
{AF (x), AF (y), 1−kF

2 }
(3.16)

for all x, y ∈ X .

Proof. Let A = (AT , AI , AF ) be an (∈, ∈ ∨q(kT ,kI ,kF ))-
neutrosophic subalgebra of X . Assume that there exist a, b ∈ X
such that

AT (a ∗ b) <
∧
{AT (a), AT (b), 1−kT

2 }.

If AT (a) ∧ AT (b) < 1−kT

2 , then AT (a ∗ b) < AT (a) ∧ AT (b).
Hence

AT (a ∗ b) < αt ≤ AT (a) ∧AT (b)

for some αt ∈ (0, 1]. It follows that a ∈ T∈(A;αt) and b ∈
T∈(A;αt) but a ∗ b /∈ T∈(A;αt). Moreover,

AT (a ∗ b) + αt < 2αt < 1− kT ,

and so a ∗ b /∈ TqkT
(A;αt). Thus a ∗ b /∈ T∈∨ qkT

(A;αt), a con-
tradiction. If AT (a) ∧ AT (b) ≥ 1−kT

2 , then a ∈ T∈(A; 1−kT

2 ),
b ∈ T∈(A; 1−kT

2 ) and a ∗ b /∈ T∈(A; 1−kT

2 ). Also,

AT (a ∗ b) + 1−kT

2 < 1−kT

2 + 1−kT

2 = 1− kT ,

i.e., a ∗ b /∈ TqkT
(A; 1−kT

2 ). Hence a ∗ b /∈ T∈∨ qkT
(A; 1−kT

2 ), a
contradiction. Consequently,

AT (x ∗ y) ≥
∧
{AT (x), AT (y), 1−kT

2 }

for all x, y ∈ X . Similarly, we know that

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 1−kI

2 }

for all x, y ∈ X . Suppose that there exist a, b ∈ X such that

AF (a ∗ b) >
∨
{AF (a), AF (b), 1−kF

2 }.

Then AF (a ∗ b) > γF ≥
∨
{AF (a), AF (b), 1−kF

2 } for some
γF ∈ [0, 1). If AF (a) ∨AF (b) ≥ 1−kF

2 , then

AF (a ∗ b) > γF ≥ AF (a) ∨AF (b)

which implies that a, b ∈ F∈(A; γF ) and a ∗ b /∈ F∈(A; γF ).
Also,

AF (a ∗ b) + γF > 2γF ≥ 1− kF ,

that is, a ∗ b /∈ FqkF
(A; γF ). Thus a ∗ b /∈ F∈∨ qkF

(A; γF ),

which is a contradiction. If AF (a) ∨AF (b) < 1−kF

2 , then a, b ∈
F∈(A; 1−kF

2 ) and a ∗ b /∈ F∈(A; 1−kF

2 ). Also,

AF (a ∗ b) + 1−kF

2 > 1−kF

2 + 1−kF

2 = 1− kF

and so a∗b /∈ FqkF
(A; 1−kF

2 ). Hence a∗b /∈ F∈∨ qkF
(A; 1−kF

2 ),
a contradiction. Therefore

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 1−kF

2 }

for all x, y ∈ X .
Conversely, let A = (AT , AI , AF ) be a neutrosophic set in X

which satisfies the condition (3.16). Let x, y ∈ X and βx, βy ∈
(0, 1] be such that x ∈ I∈(A;βx) and y ∈ I∈(A;βy). Then

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 1−kI

2 } ≥
∧
{βx, βy, 1−kI

2 }.

Suppose that βx ≤ 1−kI

2 or βy ≤ 1−kI

2 . Then AI(x ∗ y) ≥
βx ∧ βy , and so x ∗ y ∈ I∈(A;βx ∧ βy). Now, assume that
βx >

1−kI

2 and βy > 1−kI

2 . Then AI(x ∗ y) ≥ 1−kI

2 , and so

AI(x ∗ y) + βx ∧ βy > 1−kI

2 + 1−kI

2 = 1− kI ,

that is, x ∗ y ∈ IqkI
(A;βx ∧ βy). Hence

x ∗ y ∈ I∈∨ qkI
(A;βx ∧ βy).

Similarly, we can verify that if x ∈ T∈(A;αx) and y ∈
T∈(A;αy), then x ∗ y ∈ T∈∨ qkT

(A;αx ∧ αy). Finally, let
x, y ∈ X and γx, γy ∈ [0, 1) be such that x ∈ F∈(A; γx) and
y ∈ F∈(A; γy). Then

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 1−kF

2 } ≤
∨
{γx, γy, 1−kF

2 }.

If γx ≥ 1−kF

2 or γy ≥ 1−kF

2 , then AF (x ∗ y) ≤ γx ∨ γy and thus
x ∗ y ∈ F∈(A; γx ∨ γy). If γx < 1−kF

2 and γy < 1−kF

2 , then
AF (x ∗ y) ≤ 1−kF

2 . Hence

AF (x ∗ y) + γx ∨ γy < 1−kF

2 + 1−kF

2 = 1− kF ,

that is, x ∗ y ∈ FqkF
(A; γx ∨ γy). Thus

x ∗ y ∈ F∈∨ qkF
(A; γx ∨ γy).

Therefore A = (AT , AI , AF ) is an (∈, ∈ ∨ qkF
)-neutrosophic

subalgebra of X .

Corollary 3.11 ([4]). A neutrosophic set A = (AT , AI , AF ) in
X ∈ B(X) is an (∈, ∈ ∨ q)-neutrosophic subalgebra ofX if and
only if it satisfies:

(∀x, y ∈ X)

 AT (x ∗ y) ≥
∧
{AT (x), AT (y), 0.5}

AI(x ∗ y) ≥
∧
{AI(x), AI(y).0.5}

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 0.5}

 .
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Proof. It follows from taking kT = kI = kF = 0 in Theorem
3.10.

Theorem 3.12. Let A = (AT , AI , AF ) be a neutrosophic set in
X ∈ B(X). Then A = (AT , AI , AF ) is an (∈, ∈ ∨q(kT ,kI ,kF ))-
neutrosophic subalgebra of X if and only if neutrosophic ∈-
subsets T∈(A;α), I∈(A;β) and F∈(A; γ) are subalgebras of X
for all α ∈ (0, 1−kT

2 ], β ∈ (0, 1−kI

2 ] and γ ∈ [ 1−kF

2 , 1) when-
ever they are nonempty.

Proof. Assume that A = (AT , AI , AF ) is an (∈, ∈
∨q(kT ,kI ,kF ))-neutrosophic subalgebra of X . Let β ∈ (0, 1−kI

2 ]
and x, y ∈ I∈(A;β). Then AI(x) ≥ β and AI(y) ≥ β. It
follows from Theorem 3.10 that

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 1−kI

2 } ≥ β ∧
1−kI

2 = β

and so that x ∗ y ∈ I∈(A;β). Hence I∈(A;β) is a subalgebra
of X for all β ∈ (0, 1−kI

2 ]. Similarly, we know that T∈(A;α)

is a subalgebra of X for all α ∈ (0, 1−kT

2 ]. Let γ ∈ [ 1−kF

2 , 1)
and x, y ∈ F∈(A; γ). Then AF (x) ≤ γ and AF (y) ≤ γ. Using
Theorem 3.10 implies that

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 1−kF

2 } ≤ γ ∨ 1−kF

2 = γ.

Hence x ∗ y ∈ F∈(A; γ), and therefore F∈(A; γ) is a subalgebra
of X for all γ ∈ [ 1−kF

2 , 1).
Conversely, suppose that the nonempty neutrosophic∈-subsets

T∈(A;α), I∈(A;β) and F∈(A; γ) are subalgebras of X for all
α ∈ (0, 1−kT

2 ], β ∈ (0, 1−kI

2 ] and γ ∈ [ 1−kF

2 , 1). If there exist
a, b ∈ X such that

AT (a ∗ b) <
∧
{AT (a), AT (b), 1−kT

2 },

then a, b ∈ T∈(A;αT ) by taking

αT :=
∧
{AT (a), AT (b), 1−kT

2 }.

Since T∈(A;αT ) is a subalgebra of X , it follows that a ∗ b ∈
T∈(A;αT ), that is, AT (a ∗ b) ≥ αT . This is a contradiction, and
hence

AT (x ∗ y) ≥
∧
{AT (x), AT (y), 1−kT

2 }

for all x, y ∈ X . Similarly, we can verify that

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 1−kI

2 }

for all x, y ∈ X . Now, assume that there exist a, b ∈ X such that

AF (a ∗ b) >
∨
{AF (a), AF (b), 1−kF

2 }.

Then AF (a ∗ b) > γF ≥
∨
{AF (a), AF (b), 1−kF

2 } for some
γF ∈ [ 1−kF

2 , 1). Hence a, b ∈ F∈(A; γF ), and so a ∗ b ∈
F∈(A; γF ) since F∈(A; γF ) is a subalgebra of X . It follows that

AF (a ∗ b) ≤ γF which is a contradiction. Thus

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 1−kF

2 }

for all x, y ∈ X . Therefore A = (AT , AI , AF ) is an (∈, ∈
∨q(kT ,kI ,kF ))-neutrosophic subalgebra of X by Theorem 3.10.

Corollary 3.13. Let A = (AT , AI , AF ) be a neutrosophic set
in X ∈ B(X). Then A = (AT , AI , AF ) is an (∈, ∈ ∨ q)-
neutrosophic subalgebra of X if and only if neutrosophic ∈-
subsets T∈(A;α), I∈(A;β) and F∈(A; γ) are subalgebras of
X for all α, β ∈ (0, 0.5] and γ ∈ [0.5, 1) whenever they are
nonempty.

Proof. It follows from taking kT = kI = kF = 0 in Theorem
3.12.

Theorem 3.14. Every (∈, ∈)-neutrosophic subalgebra is an (∈,
∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra.

Proof. Straightforward.

The converse of Theorem 3.14 is not true as seen in the fol-
lowing example.

Example 3.15. Consider a BCI-algebra X = {0, a, b, c} with
the binary operation ∗ which is given in Table 1 (see [5]).

Table 1: Cayley table for the binary operation “∗”

∗ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

Let A = (AT , AI , AF ) be a neutrosophic set in X ∈ BI(X)
defined by Table 2

Table 2: Tabular representation of “A = (AT , AI , AF )”

X AT (x) AI(x) AF (x)
0 0.6 0.5 0.2
a 0.7 0.3 0.6
b 0.3 0.6 0.6
c 0.3 0.3 0.4

If kT = 0.36, then

T∈(A;α) =

{
X if α ∈ (0, 0.3],
{0, a} if α ∈ (0.3, 0.32].
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If kI = 0.32, then

I∈(A;β) =

{
X if β ∈ (0, 0.3],
{0, b} if β ∈ (0.3, 0.34].

If kF = 0.36, then

F∈(A; γ) =

 {0} if γ ∈ [0.32, 0.4),
{0, c} if γ ∈ [0.4, 0.6),
X if γ ∈ [0.6, 1].

We know that T∈(A;α), I∈(A;β) and F∈(A; γ) are subalgebras
of X for all α ∈ (0, 0.32], β ∈ (0, 0.34] and γ ∈ [0.32, 1). It
follows from Theorem 3.12 that A = (AT , AI , AF ) is an (∈,
∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra of X for kT = 0.36,
kI = 0.32 and kF = 0.36. Since

AT (0) = 0.6 < 0.7 = AT (a) ∧AT (a)

and/or
AI(0) = 0.5 > 0.3 = AI(c) ∨AI(c),

we know that A = (AT , AI , AF ) is not an (∈, ∈)-neutrosophic
subalgebra of X by Lemma 3.3.

Definition 3.16. A neutrosophic set A = (AT , AI , AF ) in X ∈
B(X) is called an (∈, q(kT ,kI ,kF ))-neutrosophic subalgebra of
X if

x ∈ T∈(A;αx), y ∈ T∈(A;αy)
⇒ x ∗ y ∈ TqkT

(A;αx ∧ αy),
x ∈ I∈(A;βx), y ∈ I∈(A;βy)

⇒ x ∗ y ∈ IqkI
(A;βx ∧ βy),

x ∈ F∈(A; γx), y ∈ F∈(A; γy)
⇒ x ∗ y ∈ FqkF

(A; γx ∨ γy)

(3.17)

for all x, y ∈ X , αx, αy, βx, βy ∈ (0, 1] and γx, γy ∈ [0, 1).

An (∈, q(kT ,kI ,kF ))-neutrosophic subalgebra with kT = kI =
kF = k is called an (∈, qk)-neutrosophic subalgebra.

Theorem 3.17. Every (∈, q(kT ,kI ,kF ))-neutrosophic subalgebra
is an (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra.

Proof. Straightforward.

The converse of Theorem 3.17 is not true as seen in the fol-
lowing example.

Example 3.18. Consider the BCI-algebra X = {0, a, b, c} and
the neutrosophic set A = (AT , AI , AF ) which are given in Ex-
ample 3.15. Taking kT = 0.2, kI = 0.3 and kF = 0.24 imply
that

T∈(A;α) =

{
X if α ∈ (0, 0.3],
{0, a} if α ∈ (0.3, 0.4],

I∈(A;β) =

{
X if β ∈ (0, 0.3],
{0, b} if β ∈ (0.3, 0.35],

and

F∈(A; γ) =

 {0} if β ∈ [0.38, 0.4),
{0, c} if β ∈ [0.4, 0.6),
X if β ∈ [0.6, 1).

Since X , {0}, {0, a}, {0, b} and {0, c} are subalgebras of X ,
we know from Theorem 3.12 that A = (AT , AI , AF ) is an (∈,
∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra of X for kT = 0.2,
kI = 0.3 and kF = 0.24. Note that

a ∗ b /∈ Tq0.2(A; 0.25 ∧ 0.4)

for a ∈ T∈(A; 0.4) and b ∈ T∈(A; 0.25),

b ∗ c /∈ Iq0.3(A; 0.5 ∧ 0.27)

for b ∈ I∈(A; 0.5) and c ∈ I∈(A; 0.27), and/or

a ∗ c /∈ Fq0.24(A; 0.6 ∨ 0.44)

for a ∈ F∈(A; 0.6) and c ∈ F∈(A; 0.44). Hence A = (AT , AI ,
AF ) is not an (∈, q(0.2,0.3,0.24))-neutrosophic subalgebra of X .

Theorem 3.19. If 0 ≤ kT < jT < 1, 0 ≤ kI < jI < 1 and
0 ≤ jF < kF < 1, then every (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic
subalgebra is an (∈, ∈ ∨q(jT ,jI ,jF ))-neutrosophic subalgebra.

Proof. Straightforward.

The following example shows that if 0 ≤ kT < jT < 1,
0 ≤ kI < jI < 1 and 0 ≤ jF < kF < 1, then an
(∈, ∈ ∨q(jT ,jI ,jF ))-neutrosophic subalgebra may not be an (∈,
∈∨q(kT ,kI ,kF ))-neutrosophic subalgebra.

Example 3.20. Let X be the BCI-algebra given in Example
3.15 and let A = (AT , AI , AF ) be a neutrosophic set in X
defined by Table 3

Table 3: Tabular representation of “A = (AT , AI , AF )”

X AT (x) AI(x) AF (x)
0 0.42 0.40 0.44
a 0.40 0.44 0.66
b 0.48 0.36 0.66
c 0.40 0.36 0.33

If kT = 0.04, then

T∈(A;α) =

 X if α ∈ (0, 0.40],
{0, b} if α ∈ (0.40, 0.42],
{b} if α ∈ (0.42, 0.48].

Note that T∈(A;α) is not a subalgebra ofX for α ∈ (0.42, 0.48].
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If kI = 0.08, then

I∈(A;β) =


X if β ∈ (0, 0.36],
{0, a} if β ∈ (0.36, 0.40],
{a} if β ∈ (0.40, 0.44],
∅ if β ∈ (0.44, 0.46].

Note that I∈(A;β) is not a subalgebra of X for β ∈ (0.40, 0.44].
If kF = 0.42, then

F∈(A; γ) =


∅ if γ ∈ [0.29, 0.33),
{c} if γ ∈ [0.33, 0.44),
{0, c} if γ ∈ [0.44, 0.66),
X if γ ∈ [0.66, 1).

Note that F∈(A; γ) is not a subalgebra of X for γ ∈ [0.33, 0.44).
Therefore A = (AT , AI , AF ) is not an (∈, ∈ ∨q(kT ,kI ,kF ))-
neutrosophic subalgebra of X for kT = 0.04, kI = 0.08 and
kF = 0.42.

If jT = 0.16, then

T∈(A;α) =

{
X if α ∈ (0, 0.40],
{0, b} if α ∈ (0.40, 0.42].

If jI = 0.20, then

I∈(A;β) =

{
X if β ∈ (0, 0.36],
{0, a} if β ∈ (0.36, 0.40].

If jF = 0.12, then

F∈(A; γ) =

{
{0, c} if γ ∈ [0.44, 0.66),
X if γ ∈ [0.66, 1).

Therefore A = (AT , AI , AF ) is an (∈, ∈ ∨q(jT ,jI ,jF ))-
neutrosophic subalgebra of X for jT = 0.16, jI = 0.20 and
jF = 0.12.

Given a subset S of X , consider a neutrosophic set AS =
(AST , ASI , ASF ) in X defined by

AS(x) :=

{
(1, 1, 0) if x ∈ S,
(0, 0, 1) otherwise,

that is,

AST (x) :=

{
1 if x ∈ S,
0 otherwise,

ASI(x) :=

{
1 if x ∈ S,
0 otherwise,

and

ASF (x) :=

{
0 if x ∈ S,
1 otherwise.

Theorem 3.21. A nonempty subset S of X ∈ B(X) is a

subalgebra of X if and only if the neutrosophic set AS =
(AST , ASI , ASF ) is an (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic sub-
algebra of X .

Proof. Let S be a subalgebra of X . Then neutrosophic ∈-
subsets T∈(AST ;α), I∈(AST ;β) and F∈(AST ; γ) are obviously
subalgebras of X for all α ∈ (0, 1−kT

2 ], β ∈ (0, 1−kI

2 ] and
γ ∈ [ 1−kF

2 , 1). Hence AS = (AST , ASI , ASF ) is an (∈,
∈∨q(kT ,kI ,kF ))-neutrosophic subalgebra of X by Theorem 3.12.

Conversely, assume that AS = (AST , ASI , ASF ) is an (∈,
∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra of X . Let x, y ∈ S.
Then

AST (x ∗ y) ≥
∧
{AST (x), AST (y), 1−kT

2 }

= 1 ∧ 1−kT

2 = 1−kT

2 ,

ASI(x ∗ y) ≥
∧
{ASI(x), ASI(y), 1−kI

2 }

= 1 ∧ 1−kI

2 = 1−kI

2

and

ASF (x ∗ y) ≤
∨
{ASF (x), ASF (y), 1−kF

2 }

= 0 ∨ 1−kF

2 = 1−kF

2 ,

which imply that

AST (x ∗ y) = 1, ASI(x ∗ y) = 1 and ASF (x ∗ y) = 0.

Hence x ∗ y ∈ S, and so S is a subalgebra of X .

Theorem 3.22. Let S be a subalgebra of X ∈ B(X). For every
α ∈ (0, 1−kT

2 ], β ∈ (0, 1−kI

2 ] and γ ∈ [ 1−kF

2 , 1), there ex-
ists an (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra A = (AT ,
AI , AF ) of X such that T∈(A;α) = S, I∈(A;β) = S and
F∈(A; γ) = S.

Proof. Let A = (AT , AI , AF ) be a neutrosophic set in X de-
fined by

A(x) :=

{
(α, β, γ) if x ∈ S,
(0, 0, 1) otherwise,

that is,

AT (x) :=

{
α if x ∈ S,
0 otherwise,

AI(x) :=

{
β if x ∈ S,
0 otherwise,

and

AF (x) :=

{
γ if x ∈ S,
1 otherwise.
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Obviously, T∈(A;α) = S, I∈(A;β) = S and F∈(A; γ) = S.
Suppose that

AT (a ∗ b) <
∧
{AT (a), AT (b), 1−kT

2 }

for some a, b ∈ X . Since #Im(AT ) = 2, it follows that∧
{AT (a), AT (b), 1−kT

2 } = α and AT (a ∗ b) = 0. Hence
AT (a) = α = AT (b), and so a, b ∈ S. Since S is a subalgebra
of X , we have a ∗ b ∈ S. Thus AT (a ∗ b) = α, a contradiction.
Therefore

AT (x ∗ y) ≥
∧
{AT (x), AT (y), 1−kT

2 }

for all x, y ∈ X . Similarly, we can verify that

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 1−kI

2 }

for all x, y ∈ X . Assume that there exist a, b ∈ X such that

AF (a ∗ b) >
∨
{AF (a), AF (b), 1−kF

2 }.

Then AF (a ∗ b) = 1 and
∨
{AF (a), AF (b), 1−kF

2 } = γ since
#Im(AF ) = 2. It follows that AF (a) = γ = AF (b) and so that
a, b ∈ S. Hence a ∗ b ∈ S, and so AF (a ∗ b) = γ, which is a
contradiction. Thus

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 1−kF

2 }

for all x, y ∈ X . Therefore A = (AT , AI , AF ) is an (∈, ∈
∨q(kT ,kI ,kF ))-neutrosophic subalgebra of X by Theorem 3.10.

Corollary 3.23. Let S be a subalgebra of X ∈ B(X). For every
α ∈ (0, 0.5], β ∈ (0, 0.5] and γ ∈ [0.5, 1), there exists an (∈,
∈ ∨q)-neutrosophic subalgebra A = (AT , AI , AF ) of X such
that T∈(A;α) = S, I∈(A;β) = S and F∈(A; γ) = S.

Proof. It follows from taking kT = kI = kF = 0 in Theorem
3.22.

Theorem 3.24. Given a neutrosophic set A = (AT , AI , AF ) in
X ∈ B(X), the following are equivalent.

(1) A = (AT , AI , AF ) is an (∈, ∈∨q(kT ,kI ,kF ))-neutrosophic
subalgebra of X .

(2) The neutrosophic (∈ ∨ qk)-subsets T∈∨ qkT
(A;α),

I∈∨ qkI
(A;β) and F∈∨ qkF

(A; γ) are subalgebras of X for
all α, β ∈ (0, 1] and γ ∈ [0, 1).

Proof. Assume that A = (AT , AI , AF ) is an (∈, ∈
∨q(kT ,kI ,kF ))-neutrosophic subalgebra of X . Let x, y ∈
I∈∨ qkI

(A;β) for β ∈ (0, 1]. Then AI(x) ≥ β or AI(x) + β +
kI > 1, and AI(y) ≥ β or AI(y) + β + kI > 1. Using Theorem
3.10, we have

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 1−kI

2 }.

Case 1. AI(x) ≥ β and AI(y) ≥ β. If β > 1−kI

2 , then

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 1−kI

2 } = 1−kI

2 ,

and so AI(x ∗ y) + β > 1−kI

2 + 1−kI

2 = 1− kI . Hence x ∗ y ∈
IqkI

(A;β). If β ≤ 1−kI

2 , then

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 1−kI

2 } ≥ β,

and thus x ∗ y ∈ I∈(A;β). Hence

x ∗ y ∈ I∈(A;β) ∪ IqkI
(A;β) = I∈∨ qkI

(A;β).

Case 2. AI(x) ≥ β and AI(y) + β + kI > 1. If β > 1−kI

2 ,
then

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 1−kI

2 }

= AI(y) ∧ 1−kI

2 > (1− β − kI) ∧ 1−kI

2

= 1− β − kI ,

and so x ∗ y ∈ IqkI
(A;β). If β ≤ 1−kI

2 , then

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 1−kI

2 }

≥
∧
{β, 1− β − kI , 1−kI

2 } = β,

and thus x ∗ y ∈ I∈(A;β). Therefore x ∗ y ∈ I∈∨ qkI
(A;β).

Case 3. AI(x) + β + kI > 1 and AI(y) ≥ β. We have
x ∗ y ∈ I∈∨ qkI

(A;β) by the similar way to the Case 2.

Case 4. AI(x) + β + kI > 1 and AI(y) + β + kI > 1. If
β > 1−kI

2 , then 1− β − kI < 1−kI

2 , and so

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 1−kI

2 } > 1− β − kI ,

i.e., x ∗ y ∈ IqkI
(A;β). If β ≤ 1−kI

2 , then

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 1−kI

2 }

≥ (1− β − kI) ∧ 1−kI

2

= 1−kI

2 ≥ β,

i.e., x ∗ y ∈ I∈(A;β). Hence x ∗ y ∈ I∈∨ qkI
(A;β). Con-

sequently, I∈∨ qkI
(A;β) is a subalgebra of X . Similarly, we

can prove that if x, y ∈ T∈∨ qkT
(A;α) for α ∈ (0, 1], then

x ∗ y ∈ T∈∨ qkT
(A;α), that is, T∈∨ qkT

(A;α) is a subalgebra
of X . Let x, y ∈ F∈∨ qkF

(A; γ) for γ ∈ [0, 1). Then AF (x) ≤ γ
orAF (x)+γ+kF < 1, andAF (y) ≤ γ orAF (y)+γ+kF < 1.
Using Theorem 3.10, we have

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 1−kF

2 }.
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Case 1. AF (x) ≤ γ and AF (y) ≤ γ. If γ < 1−kF

2 , then

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 1−kF

2 } = 1−kF

2 ,

and so AF (x ∗ y) + γ < 1−kF

2 + 1−kF

2 = 1 − kF . Hence
x ∗ y ∈ FqkF

(A; γ). If γ ≥ 1−kF

2 , then

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 1−kF

2 } ≤ γ,

and thus x ∗ y ∈ F∈(A; γ). Hence

x ∗ y ∈ F∈(A; γ) ∪ FqkF
(A; γ) = F∈∨ qkF

(A; γ).

Case 2. AF (x) ≤ γ and AF (y) + γ + kF < 1. If γ < 1−kF

2 ,
then

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 1−kF

2 }

= AF (y) ∨ 1−kF

2 < (1− γ − kF ) ∨ 1−kF

2

= 1− γ − kF ,

and so x ∗ y ∈ FqkF
(A; γ). If γ ≥ 1−kF

2 , then

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 1−kF

2 }

≤
∨
{γ, 1− γ − kF , 1−kF

2 } = γ,

and thus x ∗ y ∈ F∈(A; γ). Therefore x ∗ y ∈ F∈∨ qkF
(A; γ).

Similarly, if AI(x) +β+ kI < 1 and AI(y) ≤ β, then x ∗ y ∈
F∈∨ qkF

(A; γ).

Finally, assume that AF (x) + γ + kF < 1 and AF (y) + γ +
kF < 1. If γ < 1−kF

2 , then 1− γ − kF > 1−kF

2 , and so

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 1−kF

2 } < 1− γ − kF ,

i.e., x ∗ y ∈ FqkF
(A; γ). If γ ≥ 1−kF

2 , then

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 1−kF

2 }

≤ (1− γ − kF ) ∨ 1−kF

2

= 1−kF

2 ≤ γ,

i.e., x ∗ y ∈ F∈(A; γ). Hence x ∗ y ∈ F∈∨ qkF
(A; γ). Therefore

F∈∨ qkF
(A; γ) is a subalgebra of X .

Conversely, suppose that (2) is valid. If it is possible, let

AT (x ∗ y) < α ≤
∧
{AT (x), AT (y), 1−kT

2 }

for some α ∈ (0, 1−kT

2 ). Then

x, y ∈ T∈(A;α) ⊆ T∈∨ qkT
(A;α),

which implies that x ∗ y ∈ T∈∨ qkT
(A;α). Thus AT (x ∗ y) ≥ α

or AT (x ∗ y) + α+ kT > 1, a contradiction. Hence

AT (x ∗ y) ≥
∧
{AT (x), AT (y), 1−kT

2 }

for all x, y ∈ X . Similarly, we can verify that

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 1−kI

2 }

for all x, y ∈ X . Now assume that there exist a, b ∈ X and
γ ∈ ( 1−kF

2 , 1) such that

AF (a ∗ b) > γ ≥
∨
{AF (a), AF (b), 1−kF

2 }.

Then a, b ∈ F∈(A; γ) ⊆ F∈∨ qkF
(A; γ), which implies that

a ∗ b ∈ F∈∨ qkF
(A; γ).

Thus AF (a ∗ b) ≤ γ or AF (a ∗ b) + γ + kF < 1, which is a
contradiction. Hence

AF (x ∗ y) ≥
∨
{AF (x), AF (y), 1−kF

2 }

for all x, y ∈ X . Using Theorem 3.10, we conclude that A =
(AT , AI , AF ) is an (∈, ∈∨q(kT ,kI ,kF ))-neutrosophic subalgebra
of X .

4 Conclusions

Neutrosophic set theory is a nice mathematical tool which can
be applied to several fields. The aim of this paper is to consider
a general form of neutrosophic points, and to discuss general-
izations of the papers [4] and [6]. We have introduce the no-
tions of (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra, and (∈,
q(kT ,kI ,kF ))-neutrosophic subalgebra in BCK/BCI-algebras,
and have investigated several properties. We have discussed
characterizations of (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic subalge-
bra. We have considered relations between (∈,∈)-neutrosophic
subalgebra, (∈, q(kT ,kI ,kF ))-neutrosophic subalgebra and (∈,
∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra. We hope the idea and
result in this paper can be a mathematical tool for dealing with
several informations containing uncertainty such as medical diag-
nosis, decision making, graph theory, etc. So, based on the results
in this article, our future research will be focused to solve real-life
problems under the opinions of experts in a neutrosophic set envi-
ronment such as medical diagnosis, decision making, graph the-
ory etc. In particular, Bucolo et al. [2] suggested a generalization
of the synchronization principles for the class of array of fuzzy
logic chaotic based dynamical systems and evaluated as alterna-
tive approach to build locally connected fuzzy complex systems
by manipulating both the rules driving the cells and the architec-
ture of the system. We will also try to study complex dynamics
through neutrosophic environment. The future works also may
use the study neutrosophic set environment on several related al-
gebraic structures, for example,MV -algebras,BL-algebras,R0-
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Abstract: Characterizations of an(∈, ∈)-neutrosophic ideal are
considered. Any ideal in aBCK/BCI-algebra will be realized as
level neutrosophic ideals of some(∈, ∈)-neutrosophic ideal. The re-
lation between(∈, ∈)-neutrosophic ideal and(∈, ∈)-neutrosophic
subalgebra in aBCK-algebra is discussed. Conditions for an(∈,

∈)-neutrosophic subalgebra to be a(∈, ∈)-neutrosophic ideal are
provided. Using a collection of ideals in aBCK/BCI-algebra, an
(∈, ∈)-neutrosophic ideal is established. Equivalence relations on
the family of all (∈, ∈)-neutrosophic ideals are introduced, and re-
lated properties are investigated.

Keywords: (∈, ∈)-neutrosophic subalgebra,(∈, ∈)-neutrosophic ideal.

1 Introduction

Neutrosophic set (NS) developed by Smarandache [8,9, 10] in-
troduced neutrosophic set (NS) as a more general platform which
extends the concepts of the classic set and fuzzy set, intuitionis-
tic fuzzy set and interval valued intuitionistic fuzzy set. Neutro-
sophic set theory is applied to various part which is refered to the
site

http://fs.gallup.unm.edu/neutrosophy.htm.

Jun et al. studied neutrosophic subalgebras/ideals in
BCK/BCI-algebras based on neutrosophic points (see [1], [5]
and [7]).

In this paper, we characterize an(∈, ∈)-neutrosophic ideal in a
BCK/BCI-algebra. We show that any ideal in aBCK/BCI-
algebra can be realized as level neutrosophic ideals of some
(∈, ∈)-neutrosophic ideal. We investigate the relation between
(∈, ∈)-neutrosophic ideal and(∈, ∈)-neutrosophic subalgebra
in a BCK-algebra. We provide conditions for an(∈, ∈)-
neutrosophic subalgebra to be a(∈, ∈)-neutrosophic ideal. Using
a collection of ideals in aBCK/BCI-algebra, we establish an
(∈, ∈)-neutrosophic ideal. We discuss equivalence relations on
the family of all (∈, ∈)-neutrosophic ideals, and investigate re-
lated properties.

2 Preliminaries

A BCK/BCI-algebra is an important class of logical algebras
introduced by K. Iśeki (see [2] and [3]) and was extensively in-

vestigated by several researchers.
By aBCI-algebra, we mean a setX with a special element0

and a binary operation∗ that satisfies the following conditions:

(I) (∀x, y, z ∈ X) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),

(II) (∀x, y ∈ X) ((x ∗ (x ∗ y)) ∗ y = 0),

(III) (∀x ∈ X) (x ∗ x = 0),

(IV) (∀x, y ∈ X) (x ∗ y = 0, y ∗ x = 0 ⇒ x = y).

If a BCI-algebraX satisfies the following identity:

(V) (∀x ∈ X) (0 ∗ x = 0),

thenX is called aBCK-algebra. Any BCK/BCI-algebraX
satisfies the following conditions:

(∀x ∈ X) (x ∗ 0 = x) , (2.1)

(∀x, y, z ∈ X)
(

x ≤ y ⇒ x ∗ z ≤ y ∗ z
x ≤ y ⇒ z ∗ y ≤ z ∗ x

)
, (2.2)

(∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y) , (2.3)

(∀x, y, z ∈ X) ((x ∗ z) ∗ (y ∗ z) ≤ x ∗ y) (2.4)

wherex ≤ y if and only if x ∗ y = 0. A nonempty subsetS of a
BCK/BCI-algebraX is called asubalgebraof X if x ∗ y ∈ S
for all x, y ∈ S. A subsetI of aBCK/BCI-algebraX is called
an idealof X if it satisfies:

0 ∈ I, (2.5)

(∀x ∈ X) (∀y ∈ I) (x ∗ y ∈ I ⇒ x ∈ I) . (2.6)
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We refer the reader to the books [4,6] for further information
regardingBCK/BCI-algebras.

For any family{ai | i ∈ Λ} of real numbers, we define∨
{ai | i ∈ Λ} := sup{ai | i ∈ Λ}

and ∧
{ai | i ∈ Λ} := inf{ai | i ∈ Λ}.

If Λ = {1, 2}, we will also usea1 ∨ a2 anda1 ∧ a2 instead of∨
{ai | i ∈ Λ} and

∧
{ai | i ∈ Λ}, respectively.

Let X be a non-empty set. Aneutrosophic set(NS) in X (see
[9]) is a structure of the form:

A∼ := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}

where AT : X → [0, 1] is a truth membership function,
AI : X → [0, 1] is an indeterminate membership function, and
AF : X → [0, 1] is a false membership function. For the sake of
simplicity, we shall use the symbolA∼ = (AT , AI , AF ) for the
neutrosophic set

A∼ := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}.

Given a neutrosophic setA∼ = (AT , AI , AF ) in a setX,
α, β ∈ (0, 1] andγ ∈ [0, 1), we consider the following sets:

T∈(A∼;α) := {x ∈ X | AT (x) ≥ α},
I∈(A∼;β) := {x ∈ X | AI(x) ≥ β},
F∈(A∼; γ) := {x ∈ X | AF (x) ≤ γ}.

We sayT∈(A∼;α), I∈(A∼;β) andF∈(A∼; γ) areneutrosophic
∈-subsets.

A neutrosophic setA∼ = (AT , AI , AF ) in a BCK/BCI-
algebraX is called an(∈, ∈)-neutrosophic subalgebraof X (see
[5]) if the following assertions are valid.

(∀x, y ∈ X)


x ∈ T∈(A∼;αx), y ∈ T∈(A∼;αy)

⇒ x ∗ y ∈ T∈(A∼;αx ∧ αy),
x ∈ I∈(A∼;βx), y ∈ I∈(A∼;βy)

⇒ x ∗ y ∈ I∈(A∼;βx ∧ βy),
x ∈ F∈(A∼; γx), y ∈ F∈(A∼; γy)

⇒ x ∗ y ∈ F∈(A∼; γx ∨ γy)

 (2.7)

for all αx, αy, βx, βy ∈ (0, 1] andγx, γy ∈ [0, 1).

A neutrosophic setA∼ = (AT , AI , AF ) in a BCK/BCI-
algebraX is called an(∈, ∈)-neutrosophic idealof X (see [7])
if the following assertions are valid.

(∀x ∈ X)

 x ∈ T∈(A∼;αx) ⇒ 0 ∈ T∈(A∼;αx)
x ∈ I∈(A∼;βx) ⇒ 0 ∈ I∈(A∼;βx)
x ∈ F∈(A∼; γx) ⇒ 0 ∈ F∈(A∼; γx)

 (2.8)

and

(∀x, y ∈ X)


x ∗ y ∈ T∈(A∼;αx), y ∈ T∈(A∼;αy)

⇒ x ∈ T∈(A∼;αx ∧ αy)
x ∗ y ∈ I∈(A∼;βx), y ∈ I∈(A∼;βy)

⇒ x ∈ I∈(A∼;βx ∧ βy)
x ∗ y ∈ F∈(A∼; γx), y ∈ F∈(A∼; γy)

⇒ x ∈ F∈(A∼; γx ∨ γy)


(2.9)

for all αx, αy, βx, βy ∈ (0, 1] andγx, γy ∈ [0, 1).

3 (∈, ∈)-neutrosophic subalgebras and
ideals

We first provide characterizations of an(∈, ∈)-neutrosophic
ideal.

Theorem 3.1. Given a neutrosophic setA∼ = (AT , AI , AF ) in
a BCK/BCI-algebraX, the following assertions are equiva-
lent.

(1) A∼ = (AT , AI , AF ) is an(∈, ∈)-neutrosophic ideal ofX.

(2) A∼ = (AT , AI , AF ) satisfies the following assertions.

(∀x ∈ X)

 AT (0) ≥ AT (x),
AI(0) ≥ AI(x),
AF (0) ≤ AF (x)

 (3.1)

and

(∀x, y ∈ X)

 AT (x) ≥ AT (x ∗ y) ∧AT (y)
AI(x) ≥ AI(x ∗ y) ∧AI(y)
AF (x) ≤ AF (x ∗ y) ∨AF (y)

 (3.2)

Proof. Assume thatA∼ = (AT , AI , AF ) is an (∈, ∈)-
neutrosophic ideal ofX. Suppose there exista, b, c ∈ X be
such thatAT (0) < AT (a), AI(0) < AI(b) and AF (0) >
AF (c). Then a ∈ T∈(A∼;AT (a)), b ∈ I∈(A∼;AI(b)) and
c ∈ F∈(A∼;AF (c)). But

0 /∈ T∈(A∼;AT (a)) ∩ I∈(A∼;AI(b)) ∩ F∈(A∼;AF (c)).

This is a contradiction, and thusAT (0) ≥ AT (x), AI(0) ≥
AI(x) and AF (0) ≤ AF (x) for all x ∈ X. Suppose that
AT (x) < AT (x ∗ y) ∧ AT (y), AI(a) < AI(a ∗ b) ∧ AI(b)
andAF (c) > AF (c ∗ d) ∨ AF (d) for somex, y, a, b, c, d ∈ X.
Takingα := AT (x∗y)∧AT (y), β := AI(a∗b)∧AI(b) andγ :=
AF (c∗d)∨AF (d) imply thatx∗y ∈ T∈(A∼;α), y ∈ T∈(A∼;α),
a ∗ b ∈ I∈(A∼;β), b ∈ I∈(A∼;β), c ∗ d ∈ F∈(A∼; γ) and
d ∈ F∈(A∼; γ). But x /∈ T∈(A∼;α), a /∈ I∈(A∼;β) and
c /∈ F∈(A∼; γ). This is impossible, and so (3.2) is valid.

Conversely, supposeA∼ = (AT , AI , AF ) satisfies two con-
ditions (3.1) and (3.2). For anyx, y, z ∈ X, let α, β ∈ (0, 1]
andγ ∈ [0, 1) be such thatx ∈ T∈(A∼;α), y ∈ I∈(A∼;β) and
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z ∈ F∈(A∼; γ). It follows from (3.1) thatAT (0) ≥ AT (x) ≥ α,
AI(0) ≥ AI(y) ≥ β andAF (0) ≤ AF (z) ≤ γ and so that
0 ∈ T∈(A∼;α)∩I∈(A∼;β)∩F∈(A∼; γ). Leta, b, c, d, x, y ∈ X
be such thata ∗ b ∈ T∈(A∼;αa), b ∈ T∈(A∼;αb), c ∗ d ∈
I∈(A∼;βc), d ∈ I∈(A∼;βd), x ∗ y ∈ F∈(A∼; γx), andy ∈
F∈(A∼; γy) for αa, αb, βc, βd ∈ (0, 1] andγx, γy ∈ [0, 1). Us-
ing (3.2), we have

AT (a) ≥ AT (a ∗ b) ∧AT (b) ≥ αa ∧ αb

AI(c) ≥ AI(c ∗ d) ∧AI(d) ≥ βc ∧ βd

AF (x) ≤ AF (x ∗ y) ∨AF (y) ≤ γx ∨ γy.

Hencea ∈ T∈(A∼;αa ∧ αb), c ∈ I∈(A∼;βc ∧ βd) andx ∈
F∈(A∼; γx ∨ γy). ThereforeA∼ = (AT , AI , AF ) is an(∈, ∈)-
neutrosophic ideal ofX.

Theorem 3.2. Let A∼ = (AT , AI , AF ) be a neutrosophic set
in a BCK/BCI-algebraX. Then the following assertions are
equivalent.

(1) A∼ = (AT , AI , AF ) is an(∈, ∈)-neutrosophic ideal ofX.

(2) The nonempty neutrosophic∈-subsets T∈(A∼;α),
I∈(A∼;β) and F∈(A∼; γ) are ideals of X for all
α, β ∈ (0, 1] andγ ∈ [0, 1).

Proof. Let A∼ = (AT , AI , AF ) be an(∈, ∈)-neutrosophic ideal
of X and assume thatT∈(A∼;α), I∈(A∼;β) andF∈(A∼; γ) are
nonempty forα, β ∈ (0, 1] and γ ∈ [0, 1). Then there exist
x, y, z ∈ X such thatx ∈ T∈(A∼;α), y ∈ I∈(A∼;β) andz ∈
F∈(A∼; γ). It follows from (2.8) that

0 ∈ T∈(A∼;α) ∩ I∈(A∼;β) ∩ F∈(A∼; γ).

Let x, y, a, b, u, v ∈ X be such thatx ∗ y ∈ T∈(A∼;α),
y ∈ T∈(A∼;α), a ∗ b ∈ I∈(A∼;β), b ∈ I∈(A∼;β), u ∗ v ∈
F∈(A∼; γ) andv ∈ F∈(A∼; γ). Then

AT (x) ≥ AT (x ∗ y) ∧AT (y) ≥ α ∧ α = α
AI(a) ≥ AI(a ∗ b) ∧AI(b) ≥ β ∧ β = β
AF (u) ≤ AF (u ∗ v) ∨AF (v) ≤ γ ∨ γ = γ

by (3.2), and sox ∈ T∈(A∼;α), a ∈ I∈(A∼;β) and
u ∈ F∈(A∼; γ). Hence the nonempty neutrosophic∈-subsets
T∈(A∼;α), I∈(A∼;β) and F∈(A∼; γ) are ideals ofX for all
α, β ∈ (0, 1] andγ ∈ [0, 1).

Conversely, letA∼ = (AT , AI , AF ) be a neutrosophic
set in X for which T∈(A∼;α), I∈(A∼;β) and F∈(A∼; γ)
are nonempty and are ideals ofX for all α, β ∈ (0, 1] and
γ ∈ [0, 1). Assume thatAT (0) < AT (x), AI(0) < AI(y)
and AF (0) > AF (z) for some x, y, z ∈ X. Then x ∈
T∈(A∼;AT (x)), y ∈ I∈(A∼;AI(y)) andz ∈ F∈(A∼;AF (z)),
that is, T∈(A∼;α), I∈(A∼;β) and F∈(A∼; γ) are nonempty.
But 0 /∈ T∈(A∼;AT (x)) ∩ I∈(A∼;AI(y)) ∩ F∈(A∼;AF (z)),
which is a contradiction sinceT∈(A∼;AT (x)), I∈(A∼;AI(y))
andF∈(A∼;AF (z)) are ideals ofX. HenceAT (0) ≥ AT (x),
AI(0) ≥ AI(x) andAF (0) ≤ AF (x) for all x ∈ X. Suppose

that

AT (x) < AT (x ∗ y) ∧AT (y),
AI(a) < AI(a ∗ b) ∧AI(b),
AF (u) > AF (u ∗ v) ∨AF (v)

for somex, y, a, b, u, v ∈ X. Takingα := AT (x ∗ y) ∧ AT (y),
β := AI(a ∗ b)∧AI(b) andγ := AF (u ∗ v)∨AF (v) imply that
α, β ∈ (0, 1], γ ∈ [0, 1), x ∗ y ∈ T∈(A∼;α), y ∈ T∈(A∼;α),
a ∗ b ∈ I∈(A∼;β), b ∈ I∈(A∼;β), u ∗ v ∈ F∈(A∼; γ) and
v ∈ F∈(A∼; γ). But x /∈ T∈(A∼;α), a /∈ I∈(A∼;β) andu /∈
F∈(A∼; γ). This is a contradiction sinceT∈(A∼;α), I∈(A∼;β)
andF∈(A∼; γ) are ideals ofX. Thus

AT (x) ≥ AT (x ∗ y) ∧AT (y),
AI(x) ≥ AI(x ∗ y) ∧AI(y),
AF (x) ≤ AF (x ∗ y) ∨AF (y)

for all x, y ∈ X. ThereforeA∼ = (AT , AI , AF ) is an (∈,
∈)-neutrosophic ideal ofX by Theorem3.1.

Proposition 3.3. Every (∈, ∈)-neutrosophic idealA∼ =
(AT , AI , AF ) of a BCK/BCI-algebraX satisfies the follow-
ing assertions.

(∀x, y ∈ X)

x ≤ y ⇒

 AT (x) ≥ AT (y)
AI(x) ≥ AI(y)
AF (x) ≤ AF (y)

 , (3.3)

(∀x, y, z ∈ X)

x ∗ y ≤ z ⇒

 AT (x) ≥ AT (y) ∧AT (z)
AI(x) ≥ AI(y) ∧AI(z)
AF (x) ≤ AF (y) ∨AF (z)

 .

(3.4)

Proof. Let x, y ∈ X be such thatx ≤ y. Thenx ∗ y = 0, and so

AT (x) ≥ AT (x ∗ y) ∧AT (y) = AT (0) ∧AT (y) = AT (y),
AI(x) ≥ AI(x ∗ y) ∧AI(y) = AI(0) ∧AI(y) = AI(y),
AF (x) ≤ AF (x ∗ y) ∨AF (y) = AF (0) ∨AF (y) = AF (y)

by Theorem3.1. Hence (3.3) is valid. Letx, y, z ∈ X be such
thatx ∗ y ≤ z. Then(x ∗ y) ∗ z = 0, and thus

AT (x) ≥ AT (x ∗ y) ∧AT (y)
≥ (AT ((x ∗ y) ∗ z) ∧AT (z)) ∧AT (y)
≥ (AT (0) ∧AT (z)) ∧AT (y)
≥ AT (z) ∧AT (y),

AI(x) ≥ AI(x ∗ y) ∧AI(y)
≥ (AI((x ∗ y) ∗ z) ∧AI(z)) ∧AI(y)
≥ (AI(0) ∧AI(z)) ∧AI(y)
≥ AI(z) ∧AI(y)
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and

AF (x) ≤ AF (x ∗ y) ∨AF (y)
≤ (AF ((x ∗ y) ∗ z) ∨AF (z)) ∨AF (y)
≤ (AF (0) ∨AF (z)) ∨AF (y)
≤ AF (z) ∨AF (y)

by Theorem3.1.

Theorem 3.4. Any ideal of aBCK/BCI-algebraX can be re-
alized as level neutrosophic ideals of some(∈, ∈)-neutrosophic
ideal ofX.

Proof. Let I be an ideal of aBCK/BCI-algebraX and let
A∼ = (AT , AI , AF ) be a neutrosophic set inX given as fol-
lows:

AT : X → [0, 1], x 7→
{

α if x ∈ I,
0 otherwise,

AI : X → [0, 1], x 7→
{

β if x ∈ I,
0 otherwise,

AF : X → [0, 1], x 7→
{

γ if x ∈ I,
1 otherwise

where(α, β, γ) is a fixed ordered triple in(0, 1]× (0, 1]× [0, 1).
Then T∈(A∼;α) = I, I∈(A∼;β) = I and F∈(A∼; γ) = I.
Obviously, AT (0) ≥ AT (x), AI(0) ≥ AI(x) and AF (0) ≤
AF (x) for all x ∈ X. Let x, y ∈ X. If x ∗ y ∈ I andy ∈ I, then
x ∈ I. Hence

AT (x ∗ y) = AT (y) = AT (x) = α,

AI(x ∗ y) = AI(y) = AI(x) = β,

AF (x ∗ y) = AF (y) = AF (x) = γ,

and so

AT (x) ≥ AT (x ∗ y) ∧AT (y),
AI(x) ≥ AI(x ∗ y) ∧AI(y),
AF (x) ≤ AF (x ∗ y) ∨AF (y).

If x ∗ y /∈ I andy /∈ I, then

AT (x ∗ y) = AT (y) = 0,

AI(x ∗ y) = AI(y) = 0,

AF (x ∗ y) = AF (y) = 1.

Thus

AT (x) ≥ AT (x ∗ y) ∧AT (y),
AI(x) ≥ AI(x ∗ y) ∧AI(y),
AF (x) ≤ AF (x ∗ y) ∨AF (y).

If x ∗ y ∈ I andy /∈ I, then

AT (x ∗ y) = α andAT (y) = 0,
AI(x ∗ y) = β andAI(y) = 0,
AF (x ∗ y) = γ andAF (y) = 1,

It follows that

AT (x) ≥ 0 = AT (x ∗ y) ∧AT (y),
AI(x) ≥ 0 = AI(x ∗ y) ∧AI(y),
AF (x) ≤ 1 = AF (x ∗ y) ∨AF (y).

Similarly, if x ∗ y /∈ I andy ∈ I, then

AT (x) ≥ AT (x ∗ y) ∧AT (y),
AI(x) ≥ AI(x ∗ y) ∧AI(y),
AF (x) ≤ AF (x ∗ y) ∨AF (y).

ThereforeA∼ = (AT , AI , AF ) is an(∈, ∈)-neutrosophic ideal
of X by Theorem3.1. This completes the proof.

Lemma 3.5 ([5]). A neutrosophic setA∼ = (AT , AI , AF ) in a
BCK/BCI-algebraX is an(∈, ∈)-neutrosophic subalgebra of
X if and only if it satisfies:

(∀x, y ∈ X)

 AT (x ∗ y) ≥ AT (x) ∧AT (y)
AI(x ∗ y) ≥ AI(x) ∧AI(y)
AF (x ∗ y) ≤ AF (x) ∨AF (y)

 . (3.5)

Theorem 3.6. In a BCK-algebra, every(∈, ∈)-neutrosophic
ideal is an(∈, ∈)-neutrosophic subalgebra.

Proof. Let A∼ = (AT , AI , AF ) be an(∈, ∈)-neutrosophic ideal
of aBCK-algebraX. Sincex∗y ≤ x for all x, y ∈ X, it follows
from Proposition3.3and (3.2) that

AT (x ∗ y) ≥ AT (x) ≥ AT (x ∗ y) ∧AT (y) ≥ AT (x) ∧AT (y),
AI(x ∗ y) ≥ AI(x) ≥ AI(x ∗ y) ∧AI(y) ≥ AI(x) ∧AI(y),
AF (x ∗ y) ≤ AF (x) ≤ AF (x ∗ y) ∨AF (y) ≤ AF (x) ∨AF (y).

ThereforeA∼ = (AT , AI , AF ) is an(∈, ∈)-neutrosophic subal-
gebra ofX by Lemma3.5.

The following example shows that the converse of Theorem
3.6 is not true in general.

Example 3.7. Consider a setX = {0, 1, 2, 3} with the binary
operation∗ which is given in Table1.
Then(X; ∗, 0) is aBCK-algebra (see [6]). LetA∼ = (AT , AI ,
AF ) be a neutrosophic set inX defined by Table2
It is routine to verify thatA∼ = (AT , AI , AF ) is an (∈, ∈)-
neutrosophic subalgebra ofX. We know thatI∈(A∼;β) is an
ideal ofX for all β ∈ (0, 1]. If α ∈ (0.3, 0.7], thenT∈(A∼;α) =
{0, 1, 3} is not an ideal ofX. Also, if γ ∈ [0.2, 0.8), then
F∈(A∼; γ) = {0, 1, 3} is not an ideal ofX. ThereforeA∼ =
(AT , AI , AF ) is not an(∈, ∈)-neutrosophic ideal ofX by The-
orem3.2.
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Table 1: Cayley table for the binary operation “∗”

∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 1
2 2 1 0 2
3 3 3 3 0

Table 2: Tabular representation ofA∼ = (AT , AI , AF )

X AT (x) AI(x) AF (x)
0 0.7 0.9 0.2
1 0.7 0.6 0.2
2 0.3 0.6 0.8
3 0.7 0.4 0.2

We give a condition for an(∈, ∈)-neutrosophic subalgebra to
be an(∈, ∈)-neutrosophic ideal.

Theorem 3.8. Let A∼ = (AT , AI , AF ) be a neutrosophic set
in a BCK-algebraX. If A∼ = (AT , AI , AF ) is an (∈, ∈)-
neutrosophic subalgebra ofX that satisfies the condition(3.4),
then it is an(∈, ∈)-neutrosophic ideal ofX.

Proof. Takingx = y in (3.5) and using (III) induce the condition
(3.1). Sincex∗ (x∗y) ≤ y for all x, y ∈ X, it follows from (3.4)
that

AT (x) ≥ AT (x ∗ y) ∧AT (y),
AI(x) ≥ AI(x ∗ y) ∧AI(y),
AF (x) ≤ AF (x ∗ y) ∨AF (y)

for all x, y ∈ X. ThereforeA∼ = (AT , AI , AF ) is an (∈,
∈)-neutrosophic ideal ofX by Theorem3.1.

Theorem 3.9. Let{Dk | k ∈ ΛT ∪ ΛI ∪ ΛF } be a collection of
ideals of aBCK/BCI-algebraX, whereΛT , ΛI andΛF are
nonempty subsets of[0, 1], such that

X = {Dα | α ∈ ΛT } ∪ {Dβ | β ∈ ΛI} ∪ {Dγ | γ ∈ ΛF },
(3.6)

(∀i, j ∈ ΛT ∪ ΛI ∪ ΛF ) (i > j ⇔ Di ⊂ Dj) . (3.7)

Let A∼ = (AT , AI , AF ) be a neutrosophic set inX defined as
follows:

AT : X → [0, 1], x 7→
∨
{α ∈ ΛT | x ∈ Dα},

AI : X → [0, 1], x 7→
∨
{β ∈ ΛI | x ∈ Dβ},

AF : X → [0, 1], x 7→
∧
{γ ∈ ΛF | x ∈ Dγ}.

(3.8)

ThenA∼ = (AT , AI , AF ) is an(∈, ∈)-neutrosophic ideal ofX.

Proof. Letα, β ∈ (0, 1] andγ ∈ [0, 1) be such thatT∈(A∼;α) 6=
∅, I∈(A∼;β) 6= ∅ andF∈(A∼; γ) 6= ∅. We consider the follow-

ing two cases:

α =
∨
{i ∈ ΛT | i < α} andα 6=

∨
{i ∈ ΛT | i < α}.

First case implies that

x ∈ T∈(A∼;α)⇔ x ∈ Di for all i < α
⇔ x ∈ ∩{Di | i < α}. (3.9)

HenceT∈(A∼;α) = ∩{Di | i < α}, which is an ideal ofX. For
the second case, we claim thatT∈(A∼;α) = ∪{Di | i ≥ α}.
If x ∈ ∪{Di | i ≥ α}, thenx ∈ Di for somei ≥ α. Thus
AT (x) ≥ i ≥ α, and sox ∈ T∈(A∼;α). If x /∈ ∪{Di | i ≥ α},
thenx /∈ Di for all i ≥ α. Sinceα 6=

∨
{i ∈ ΛT | i < α},

there existsε > 0 such that(α− ε, α) ∩ΛT = ∅. Hencex /∈ Di

for all i > α − ε, which means that ifx ∈ Di theni ≤ α − ε.
ThusAT (x) ≤ α − ε < α, and sox /∈ T∈(A∼;α). Therefore
T∈(A∼;α) = ∪{Di | i ≥ α} which is an ideal ofX since{Dk}
forms a chain. Similarly, we can verify thatI∈(A∼;β) is an ideal
of X. Finally, we consider the following two cases:

γ =
∧
{j ∈ ΛF | γ < j} andγ 6=

∧
{j ∈ ΛF | γ < j}.

For the first case, we have

x ∈ F∈(A∼; γ)⇔ x ∈ Dj for all j > γ
⇔ x ∈ ∩{Dj | j > γ}, (3.10)

and thusF∈(A∼; γ) = ∩{Dj | j > γ} which is an ideal ofX.
The second case implies thatF∈(A∼; γ) = ∪{Dj | j ≤ γ}. In
fact, if x ∈ ∪{Dj | j ≤ γ}, thenx ∈ Dj for somej ≤ γ. Thus
AF (x) ≤ j ≤ γ, that is,x ∈ F∈(A∼; γ). Hence∪{Dj | j ≤
γ} ⊆ F∈(A∼; γ). Now if x /∈ ∪{Dj | j ≤ γ}, thenx /∈ Dj for
all j ≤ γ. Sinceγ 6=

∧
{j ∈ ΛF | γ < j}, there existsε > 0

such that(γ, γ+ε)∩ΛF is empty. Hencex /∈ Dj for all j < γ+ε,
and so ifx ∈ Dj , thenj ≥ γ + ε. ThusAF (x) ≥ γ + ε > γ, and
hencex /∈ F∈(A∼; γ). ThusF∈(A∼; γ) ⊆ ∪{Dj | j ≤ γ}, and
thereforeF∈(A∼; γ) = ∪{Dj | j ≤ γ} which is an ideal ofX.
Consequently,A∼ = (AT , AI , AF ) is an(∈, ∈)-neutrosophic
ideal ofX by Theorem3.2.

A mappingf : X → Y of BCK/BCI-algebras is called
a homomorphismif f(x ∗ y) = f(x) ∗ f(y) for all x, y ∈ X.
Note that iff : X → Y is a homomorphism ofBCK/BCI-
algebras, thenf(0) = 0. Given a homomorphismf : X → Y
of BCK/BCI-algebras and a neutrosophic setA∼ = (AT , AI ,

AF ) in Y , we define a neutrosophic setAf
∼ = (Af

T , Af
I , Af

F ) in
X, which is called theinduced neutrosophic set, as follows:

Af
T : X → [0, 1], x 7→ AT (f(x)),

Af
I : X → [0, 1], x 7→ AI(f(x)),

Af
F : X → [0, 1], x 7→ AF (f(x)).

Theorem 3.10. Let f : X → Y be a homomorphism of
BCK/BCI-algebras. If A∼ = (AT , AI , AF ) is an (∈,
∈)-neutrosophic ideal ofY , then the induced neutrosophic set
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Af
∼ = (Af

T , Af
I , Af

F ) in X is an(∈, ∈)-neutrosophic ideal ofX.

Proof. For anyx ∈ X, we have

Af
T (x) = AT (f(x)) ≤ AT (0) = AT (f(0)) = Af

T (0),
Af

I (x) = AI(f(x)) ≤ AI(0) = AI(f(0)) = Af
I (0),

Af
F (x) = AF (f(x)) ≥ AF (0) = AF (f(0)) = Af

F (0).

Let x, y ∈ X. Then

Af
T (x ∗ y) ∧Af

T (y) = AT (f(x ∗ y)) ∧AT (f(y))
= AT (f(x) ∗ f(y)) ∧AT (f(y))

≤ AT (f(x)) = Af
T (x),

Af
I (x ∗ y) ∧Af

I (y) = AI(f(x ∗ y)) ∧AI(f(y))
= AI(f(x) ∗ f(y)) ∧AI(f(y))

≤ AI(f(x)) = Af
I (x),

and

Af
F (x ∗ y) ∨Af

F (y) = AF (f(x ∗ y)) ∨AF (f(y))
= AF (f(x) ∗ f(y)) ∨AF (f(y))

≥ AF (f(x)) = Af
F (x).

ThereforeAf
∼ = (Af

T , Af
I , Af

F ) is an(∈, ∈)-neutrosophic ideal
of X by Theorem3.1.

Theorem 3.11. Let f : X → Y be an onto homomorphism of
BCK/BCI-algebras and letA∼ = (AT , AI , AF ) be a neutro-
sophic set inY . If the induced neutrosophic setAf

∼ = (Af
T , Af

I ,

Af
F ) in X is an(∈, ∈)-neutrosophic ideal ofX, thenA∼ = (AT ,

AI , AF ) is an(∈, ∈)-neutrosophic ideal ofY .

Proof. Assume that the induced neutrosophic setAf
∼ = (Af

T ,

Af
I , Af

F ) in X is an (∈, ∈)-neutrosophic ideal ofX. For any
x ∈ Y , there existsa ∈ X such thatf(a) = x sincef is onto.
Using (3.1), we have

AT (x) = AT (f(a)) = Af
T (a) ≤ Af

T (0) = AT (f(0)) = AT (0),
AI(x) = AI(f(a)) = Af

I (a) ≤ Af
I (0) = AI(f(0)) = AI(0),

AF (x) = AF (f(a)) = Af
F (a) ≥ Af

F (0) = AF (f(0)) = AF (0).

Let x, y ∈ Y . Thenf(a) = x andf(b) = y for somea, b ∈ X.
It follows from (3.2) that

AT (x) = AT (f(a)) = Af
T (a)

≥ Af
T (a ∗ b) ∧Af

T (b)
= AT (f(a ∗ b)) ∧AT (f(b))
= AT (f(a) ∗ f(b)) ∧AT (f(b))
= AT (x ∗ y) ∧AT (y),

AI(x) = AI(f(a)) = Af
I (a)

≥ Af
I (a ∗ b) ∧Af

I (b)
= AI(f(a ∗ b)) ∧AI(f(b))
= AI(f(a) ∗ f(b)) ∧AI(f(b))
= AI(x ∗ y) ∧AI(y),

and

AF (x) = AF (f(a)) = Af
F (a)

≤ Af
F (a ∗ b) ∨Af

F (b)
= AF (f(a ∗ b)) ∨AF (f(b))
= AF (f(a) ∗ f(b)) ∨AF (f(b))
= AF (x ∗ y) ∨AF (y).

ThereforeA∼ = (AT , AI , AF ) is an(∈, ∈)-neutrosophic ideal
of Y by Theorem3.1.

Let N(∈,∈)(X) be the collection of all(∈, ∈)-neutrosophic
ideals ofX and letα, β ∈ (0, 1] andγ ∈ [0, 1). Define binary
relationsRα

T ,Rβ
I andRγ

F onN(∈,∈)(X) as follows:

ATRα
T BT ⇔ T∈(A∼;α) = T∈(B∼;α)

AIRβ
I BI ⇔ I∈(A∼;β) = I∈(B∼;β)

AFRγ
F BF ⇔ F∈(A∼; γ) = F∈(B∼; γ)

(3.11)

for all A∼ = (AT , AI , AF ) and B∼ = (BT , BI , BF ) in
N(∈,∈)(X).

Clearly Rα
T , Rβ

I and Rγ
F are equivalence relations on

N(∈,∈)(X). For anyA∼ = (AT , AI , AF ) ∈ N(∈,∈)(X),
let [A∼]T (resp., [A∼]I and [A∼]F ) denote the equivalence
class ofA∼ = (AT , AI , AF ) in N(∈,∈)(X) underRα

T (resp.,

Rβ
I andRγ

F ). Denote byN(∈,∈)(X)/Rα
T , N(∈,∈)(X)/Rβ

I and
N(∈,∈)(X)/Rγ

F the collection of all equivalence classes under

Rα
T ,Rβ

I andRγ
F , respectively, that is,

N(∈,∈)(X)/Rα
T = {[A∼]T | A∼ = (AT , AI , AF ) ∈ N(∈,∈)(X),

N(∈,∈)(X)/Rβ
I = {[A∼]I | A∼ = (AT , AI , AF ) ∈ N(∈,∈)(X),

N(∈,∈)(X)/Rγ
F = {[A∼]F | A∼ = (AT , AI , AF ) ∈ N(∈,∈)(X).

Now let I(X) denote the family of all ideals ofX. Define
mapsfα, gβ andhγ fromN(∈,∈)(X) to I(X) ∪ {∅} by

fα(A∼) = T∈(A∼;α), gβ(A∼) = I∈(A∼;β) and
hγ(A∼) = F∈(A∼; γ),

respectively, for allA∼ = (AT , AI , AF ) in N(∈,∈)(X). Then
fα, gβ andhγ are clearly well-defined.

Theorem 3.12. For anyα, β ∈ (0, 1] andγ ∈ [0, 1), the maps
fα, gβ andhγ are surjective fromN(∈,∈)(X) to I(X) ∪ {∅}.

Proof. Let 0∼ := (0T , 0I , 1F ) be a neutrosophic set inX where
0T , 0I and 1F are fuzzy sets inX defined by0T (x) = 0,
0I(x) = 0 and 1F (x) = 1 for all x ∈ X. Obviously,
0∼ := (0T , 0I , 1F ) is an (∈, ∈)-neutrosophic ideal ofX.
Also, fα(0∼) = T∈(0∼;α) = ∅, gβ(0∼) = I∈(0∼;β) = ∅
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and hγ(0∼) = F∈(0∼; γ) = ∅. For any idealI of X, let
A∼ = (AT , AI , AF ) be the(∈, ∈)-neutrosophic ideal ofX
in the proof of Theorem3.4. Thenfα(A∼) = T∈(A∼;α) = I,
gβ(A∼) = I∈(A∼;β) = I andhγ(A∼) = F∈(A∼; γ) = I.
Thereforefα, gβ andhγ are surjective.

Theorem 3.13. The quotient sets N(∈,∈)(X)/Rα
T ,

N(∈,∈)(X)/Rβ
I and N(∈,∈)(X)/Rγ

F are equivalent to
I(X) ∪ {∅} for anyα, β ∈ (0, 1] andγ ∈ [0, 1).

Proof. Let A∼ = (AT , AI , AF ) ∈ N(∈,∈)(X). For anyα, β ∈
(0, 1] andγ ∈ [0, 1), define

f∗α : N(∈,∈)(X)/Rα
T → I(X) ∪ {∅}, [A∼]T 7→ fα(A∼),

g∗β : N(∈,∈)(X)/Rβ
I → I(X) ∪ {∅}, [A∼]I 7→ gβ(A∼),

h∗γ : N(∈,∈)(X)/Rγ
F → I(X) ∪ {∅}, [A∼]F 7→ hγ(A∼).

Assume thatfα(A∼) = fα(B∼), gβ(A∼) = gβ(B∼) and
hγ(A∼) = hγ(B∼) for B∼ = (BT , BI , BF ) ∈ N(∈,∈)(X).
ThenT∈(A∼;α) = T∈(B∼;α), I∈(A∼;β) = I∈(B∼;β) and
F∈(A∼; γ) = F∈(B∼; γ) which imply thatATRα

T BT , AIRβ
I BI

and AFRγ
F BF . Hence [A∼]T = [B∼]T , [A∼]I = [B∼]I

and [A∼]F = [B∼]F . Thereforef∗α, g∗β and h∗γ are injec-
tive. Consider the(∈, ∈)-neutrosophic ideal0∼ := (0T , 0I ,
1F ) of X which is given in the proof of Theorem3.12. Then
f∗α([0∼]T ) = fα(0∼) = T∈(0∼;α) = ∅, g∗β([0∼]I) = gβ(0∼) =
I∈(0∼;β) = ∅, andh∗γ([0∼]F ) = hγ(0∼) = F∈(0∼; γ) = ∅.
For any idealI of X, consider the(∈, ∈)-neutrosophic ideal
A∼ = (AT , AI , AF ) of X in the proof of Theorem3.4. Then
f∗α([A∼]T ) = fα(A∼) = T∈(A∼;α) = I, g∗β([A∼]I) =
gβ(A∼) = I∈(A∼;β) = I, and h∗γ([A∼]F ) = hγ(A∼) =
F∈(A∼; γ) = I. Hencef∗α, g∗β andh∗γ are surjective, and the
proof is over.

For anyα, β ∈ [0, 1], we define another relationsRα andRβ

onN(∈,∈)(X) as follows:

(A∼, B∼) ∈ Rα ⇔ T∈(A∼;α) ∩ F∈(A∼;α)
= T∈(B∼;α) ∩ F∈(B∼;α),

(A∼, B∼) ∈ Rβ ⇔ I∈(A∼;β) ∩ F∈(A∼;β)
= I∈(B∼;β) ∩ F∈(B∼;β)

(3.12)

for all A∼ = (AT , AI , AF ) and B∼ = (BT , BI , BF ) in
N(∈,∈)(X). Then the relationsRα andRβ are also equivalence
relations onN(∈,∈)(X).

Theorem 3.14. Givenα, β ∈ (0, 1), we define two maps

ϕα : N(∈,∈)(X) → I(X) ∪ {∅},
A∼ 7→ fα(A∼) ∩ hα(A∼),

ϕβ : N(∈,∈)(X) → I(X) ∪ {∅},
A∼ 7→ gβ(A∼) ∩ hβ(A∼)

(3.13)

for eachA∼ = (AT , AI , AF ) ∈ N(∈,∈)(X). Thenϕα andϕβ

are surjective.

Proof. Consider the(∈, ∈)-neutrosophic ideal0∼ := (0T , 0I ,
1F ) of X which is given in the proof of Theorem3.12. Then

ϕα(0∼) = fα(0∼) ∩ hα(0∼) = T∈(0∼;α) ∩ F∈(0∼;α) = ∅,
ϕβ(0∼) = gβ(0∼) ∩ hβ(0∼) = I∈(0∼;β) ∩ F∈(0∼;β) = ∅.

For any idealI of X, consider the(∈, ∈)-neutrosophic ideal
A∼ = (AT , AI , AF ) of X in the proof of Theorem3.4. Then

ϕα(A∼) = fα(A∼) ∩ hα(A∼)
= T∈(A∼;α) ∩ F∈(A∼;α) = I

and

ϕβ(A∼) = gβ(A∼) ∩ hβ(A∼)
= I∈(A∼;β) ∩ F∈(A∼;β) = I.

Thereforeϕα andϕβ are surjective.

Theorem 3.15. For any α, β ∈ (0, 1), the quotient sets
N(∈,∈)(X)/ϕα andN(∈,∈)(X)/ϕβ are equivalent toI(X) ∪
{∅}.

Proof. Givenα, β ∈ (0, 1), define two mapsϕ∗α andϕ∗β as fol-
lows:

ϕ∗α : N(∈,∈)(X)/ϕα → I(X) ∪ {∅}, [A∼]Rα
7→ ϕα(A∼),

ϕ∗β : N(∈,∈)(X)/ϕβ → I(X) ∪ {∅}, [A∼]Rβ
7→ ϕβ(A∼).

If ϕ∗α ([A∼]Rα
) = ϕ∗α ([B∼]Rα

) and ϕ∗β
(
[A∼]Rβ

)
=

ϕ∗β
(
[B∼]Rβ

)
for all [A∼]Rα

, [B∼]Rα
∈ N(∈,∈)(X)/ϕα and

[A∼]Rβ
, [B∼]Rβ

∈ N(∈,∈)(X)/ϕβ , then

fα(A∼) ∩ hα(A∼) = fα(B∼) ∩ hα(B∼)

and

gβ(A∼) ∩ hβ(A∼) = gβ(B∼) ∩ hβ(B∼),

that is,

T∈(A∼;α) ∩ F∈(A∼;α) = T∈(B∼;α) ∩ F∈(B∼;α)

and

I∈(A∼;β) ∩ F∈(A∼;β) = I∈(B∼;β) ∩ F∈(B∼;β).

Hence(A∼, B∼) ∈ Rα and (A∼, B∼) ∈ Rβ . It follows that
[A∼]Rα

= [B∼]Rα
and [A∼]Rβ

= [B∼]Rβ
. Thusϕ∗α andϕ∗β

are injective. Consider the(∈, ∈)-neutrosophic ideal0∼ := (0T ,
0I , 1F ) of X which is given in the proof of Theorem3.12. Then

ϕ∗α ([0∼]Rα
) = ϕα(0∼) = fα(0∼) ∩ hα(0∼)

= T∈(0∼;α) ∩ F∈(0∼;α) = ∅
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and

ϕ∗β
(
[0∼]Rβ

)
= ϕβ(0∼) = gβ(0∼) ∩ hβ(0∼)

= I∈(0∼;β) ∩ F∈(0∼;β) = ∅.

For any idealI of X, consider the(∈, ∈)-neutrosophic ideal
A∼ = (AT , AI , AF ) of X in the proof of Theorem3.4. Then

ϕ∗α ([A∼]Rα) = ϕα(A∼) = fα(A∼) ∩ hα(A∼)
= T∈(A∼;α) ∩ F∈(A∼;α) = I

and

ϕ∗β
(
[A∼]Rβ

)
= ϕβ(A∼) = gβ(A∼) ∩ hβ(A∼)

= I∈(A∼;β) ∩ F∈(A∼;β) = I.

Thereforeϕ∗α andϕ∗β are surjective. This completes the proof.
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[2] K. Iséki, OnBCI-algebras, Math. Seminar Notes8 (1980),
125–130.
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Abstract: The notions of a commutative(∈, ∈)-neutrosophic ideal
and a commutative falling neutrosophic ideal are introduced, and
several properties are investigated. Characterizations of a commu-
tative (∈, ∈)-neutrosophic ideal are obtained. Relations between
commutative(∈, ∈)-neutrosophic ideal and(∈, ∈)-neutrosophic
ideal are discussed. Conditions for an(∈, ∈)-neutrosophic ideal to

be a commutative(∈, ∈)-neutrosophic ideal are established. Rela-
tions between commutative(∈, ∈)-neutrosophic ideal, falling neu-
trosophic ideal and commutative falling neutrosophic ideal are con-
sidered. Conditions for a falling neutrosophic ideal to be commuta-
tive are provided.

Keywords: (commutative)(∈, ∈)-neutrosophic ideal; neutrosophic random set; neutrosophic falling shadow; (commutative) falling neutrosophic ideal.

1 Introduction

Neutrosophic set (NS) developed by Smarandache [11,12,
13] is a more general platform which extends the concepts
of the classic set and fuzzy set, intuitionistic fuzzy set and
interval valued intuitionistic fuzzy set. Neutrosophic set
theory is applied to various part which is refered to the
site http://fs.gallup.unm.edu/neutrosophy.htm. Jun, Borumand
Saeid andÖztürk studied neutrosophic subalgebras/ideals in
BCK/BCI-algebras based on neutrosophic points (see [1], [6]
and [10]). Goodman [2] pointed out the equivalence of a fuzzy
set and a class of random sets in the study of a unified treatment
of uncertainty modeled by means of combining probability and
fuzzy set theory. Wang and Sanchez [16] introduced the theory of
falling shadows which directly relates probability concepts with
the membership function of fuzzy sets. The mathematical struc-
ture of the theory of falling shadows is formulated in [17]. Tan et
al. [14, 15] established a theoretical approach to define a fuzzy
inference relation and fuzzy set operations based on the theory of
falling shadows. Jun and Park [7] considered a fuzzy subalgebra
and a fuzzy ideal as the falling shadow of the cloud of the sub-
algebra and ideal. Jun et al. [8] introduced the notion of neutro-
sophic random set and neutrosophic falling shadow. Using these
notions, they introduced the concept of falling neutrosophic sub-
algebra and falling neutrosophic ideal inBCK/BCI-algebras,
and investigated related properties. They discussed relations be-
tween falling neutrosophic subalgebra and falling neutrosophic
ideal, and established a characterization of falling neutrosophic
ideal.

In this paper, we introduce the concepts of a commutative(∈,
∈)-neutrosophic ideal and a commutative falling neutrosophic
ideal, and investigate several properties. We obtain characteri-

zations of a commutative(∈, ∈)-neutrosophic ideal, and discuss
relations between a commutative(∈, ∈)-neutrosophic ideal and
an (∈, ∈)-neutrosophic ideal. We provide conditions for an(∈,
∈)-neutrosophic ideal to be a commutative(∈, ∈)-neutrosophic
ideal, and consider relations between a commutative(∈, ∈)-
neutrosophic ideal, a falling neutrosophic ideal and a commu-
tative falling neutrosophic ideal. We give conditions for a falling
neutrosophic ideal to be commutative.

2 Preliminaries

A BCK/BCI-algebra is an important class of logical algebras
introduced by K. Iśeki (see [3] and [4]) and was extensively in-
vestigated by several researchers.

By aBCI-algebra, we mean a setX with a special element0
and a binary operation∗ that satisfies the following conditions:

(I) (∀x, y, z ∈ X) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),

(II) (∀x, y ∈ X) ((x ∗ (x ∗ y)) ∗ y = 0),

(III) (∀x ∈ X) (x ∗ x = 0),

(IV) (∀x, y ∈ X) (x ∗ y = 0, y ∗ x = 0 ⇒ x = y).

If a BCI-algebraX satisfies the following identity:

(V) (∀x ∈ X) (0 ∗ x = 0),

thenX is called aBCK-algebra. Any BCK/BCI-algebraX
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satisfies the following conditions:

(∀x ∈ X) (x ∗ 0 = x) , (2.1)

(∀x, y, z ∈ X)
(

x ≤ y ⇒ x ∗ z ≤ y ∗ z
x ≤ y ⇒ z ∗ y ≤ z ∗ x

)
, (2.2)

(∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y) , (2.3)

(∀x, y, z ∈ X) ((x ∗ z) ∗ (y ∗ z) ≤ x ∗ y) (2.4)

wherex ≤ y if and only if x ∗ y = 0. A nonempty subsetS of a
BCK/BCI-algebraX is called asubalgebraof X if x ∗ y ∈ S
for all x, y ∈ S. A subsetI of aBCK/BCI-algebraX is called
an idealof X if it satisfies:

0 ∈ I, (2.5)

(∀x ∈ X) (∀y ∈ I) (x ∗ y ∈ I ⇒ x ∈ I) . (2.6)

A subsetI of aBCK-algebraX is called acommutative ideal
of X if it satisfies (2.5) and

(x ∗ y) ∗ z ∈ I, z ∈ I ⇒ x ∗ (y ∗ (y ∗ x)) ∈ I (2.7)

for all x, y, z ∈ X.

Observe that every commutative ideal is an ideal, but the con-
verse is not true (see [9]).

We refer the reader to the books [5,9] for further information
regardingBCK/BCI-algebras.

For any family{ai | i ∈ Λ} of real numbers, we define∨
{ai | i ∈ Λ} := sup{ai | i ∈ Λ}

and ∧
{ai | i ∈ Λ} := inf{ai | i ∈ Λ}.

If Λ = {1, 2}, we will also usea1 ∨ a2 anda1 ∧ a2 instead of∨
{ai | i ∈ Λ} and

∧
{ai | i ∈ Λ}, respectively.

Let X be a non-empty set. Aneutrosophic set(NS) in X (see
[12]) is a structure of the form:

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}

where AT : X → [0, 1] is a truth membership function,
AI : X → [0, 1] is an indeterminate membership function, and
AF : X → [0, 1] is a false membership function. For the sake of
simplicity, we shall use the symbolA = (AT , AI , AF ) for the
neutrosophic set

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}.

Given a neutrosophic setA = (AT , AI , AF ) in a setX, α, β ∈

(0, 1] andγ ∈ [0, 1), we consider the following sets:

T∈(A;α) := {x ∈ X | AT (x) ≥ α},
I∈(A;β) := {x ∈ X | AI(x) ≥ β},
F∈(A; γ) := {x ∈ X | AF (x) ≤ γ}.

We sayT∈(A;α), I∈(A;β) andF∈(A; γ) areneutrosophic∈-
subsets.

A neutrosophic setA = (AT , AI , AF ) in a BCK/BCI-
algebraX is called an(∈, ∈)-neutrosophic subalgebraof X (see
[6]) if the following assertions are valid.

(∀x, y ∈ X)


x ∈ T∈(A;αx), y ∈ T∈(A;αy)

⇒ x ∗ y ∈ T∈(A;αx ∧ αy),
x ∈ I∈(A;βx), y ∈ I∈(A;βy)

⇒ x ∗ y ∈ I∈(A;βx ∧ βy),
x ∈ F∈(A; γx), y ∈ F∈(A; γy)

⇒ x ∗ y ∈ F∈(A; γx ∨ γy)

 (2.8)

for all αx, αy, βx, βy ∈ (0, 1] andγx, γy ∈ [0, 1).

A neutrosophic setA = (AT , AI , AF ) in a BCK/BCI-
algebraX is called an(∈, ∈)-neutrosophic idealof X (see [10])
if the following assertions are valid.

(∀x ∈ X)

 x ∈ T∈(A;αx) ⇒ 0 ∈ T∈(A;αx)
x ∈ I∈(A;βx) ⇒ 0 ∈ I∈(A;βx)
x ∈ F∈(A; γx) ⇒ 0 ∈ F∈(A; γx)

 (2.9)

and

(∀x, y ∈ X)


x ∗ y ∈ T∈(A;αx), y ∈ T∈(A;αy)

⇒ x ∈ T∈(A;αx ∧ αy)
x ∗ y ∈ I∈(A;βx), y ∈ I∈(A;βy)

⇒ x ∈ I∈(A;βx ∧ βy)
x ∗ y ∈ F∈(A; γx), y ∈ F∈(A; γy)

⇒ x ∈ F∈(A; γx ∨ γy)

 (2.10)

for all αx, αy, βx, βy ∈ (0, 1] andγx, γy ∈ [0, 1).

In what follows, let X and P(X) denote aBCK/BCI-
algebra and the power set ofX, respectively, unless otherwise
specified.

For eachx ∈ X andD ∈ P(X), let

x̄ := {C ∈ P(X) | x ∈ C}, (2.11)

and

D̄ := {x̄ | x ∈ D}. (2.12)

An ordered pair(P(X),B) is said to be ahyper-measurable
structureonX if B is aσ-field inP(X) andX̄ ⊆ B.

Given a probability space(Ω,A, P ) and a hyper-measurable
structure(P(X),B) onX, aneutrosophic random setonX (see
[8]) is defined to be a tripleξ := (ξT , ξI , ξF ) in whichξT , ξI and
ξF are mappings fromΩ to P(X) which areA-B measurables,

Y.B. Jun, F. Smarandache, M.A.Özẗurk, Commutative falling neutrosophic ideals inBCK-algebras.

Neutrosophic Sets and Systems, Vol. 20, 2018 45



that is,

(∀C ∈ B)

 ξ−1
T (C) = {ωT ∈ Ω | ξT (ωT ) ∈ C} ∈ A

ξ−1
I (C) = {ωI ∈ Ω | ξI(ωI) ∈ C} ∈ A

ξ−1
F (C) = {ωF ∈ Ω | ξF (ωF ) ∈ C} ∈ A

 .

(2.13)

Given a neutrosophic random setξ := (ξT , ξI , ξF ) onX, con-
sider functions:

H̃T : X → [0, 1], xT 7→ P (ωT | xT ∈ ξT (ωT )),

H̃I : X → [0, 1], xI 7→ P (ωI | xI ∈ ξI(ωI)),

H̃F : X → [0, 1], xF 7→ 1− P (ωF | xF ∈ ξF (ωF )).

ThenH̃ := (H̃T , H̃I , H̃F ) is a neutrosophic set onX, and we
call it aneutrosophic falling shadow(see [8]) of the neutrosophic
random setξ := (ξT , ξI , ξF ), andξ := (ξT , ξI , ξF ) is called a
neutrosophic cloud(see [8]) ofH̃ := (H̃T , H̃I , H̃F ).

For example, consider a probability space(Ω,A, P ) =
([0, 1],A,m) whereA is a Borel field on[0, 1] andm is the usual
Lebesgue measure. Let̃H := (H̃T , H̃I , H̃F ) be a neutrosophic
set inX. Then a tripleξ := (ξT , ξI , ξF ) in which

ξT : [0, 1] → P(X), α 7→ T∈(H̃;α),

ξI : [0, 1] → P(X), β 7→ I∈(H̃;β),

ξF : [0, 1] → P(X), γ 7→ F∈(H̃; γ)

is a neutrosophic random set andξ := (ξT , ξI , ξF ) is a neu-
trosophic cloud ofH̃ := (H̃T , H̃I , H̃F ). We will call ξ :=
(ξT , ξI , ξF ) defined above as theneutrosophic cut-cloud(see [8])
of H̃ := (H̃T , H̃I , H̃F ).

Let (Ω,A, P ) be a probability space and letξ := (ξT , ξI , ξF )
be a neutrosophic random set onX. If ξT (ωT ), ξI(ωI) and
ξF (ωF ) are subalgebras (resp., ideals) ofX for all ωT , ωI , ωF ∈
Ω, then the neutrosophic falling shadow̃H := (H̃T , H̃I , H̃F )
of ξ := (ξT , ξI , ξF ) is called afalling neutrosophic subalgebra
(resp.,falling neutrosophic ideal) ofX (see [8]).

3 Commutative (∈, ∈)-neutrosophic
ideals

Definition 3.1. A neutrosophic setA = (AT , AI , AF ) in a
BCK-algebraX is called acommutative(∈, ∈)-neutrosophic
idealof X if it satisfies the condition (2.9) and

(x ∗ y) ∗ z ∈ T∈(A;αx), z ∈ T∈(A;αy)
⇒ x ∗ (y ∗ (y ∗ x)) ∈ T∈(A;αx ∧ αy)

(x ∗ y) ∗ z ∈ I∈(A;βx), z ∈ I∈(A;βy)
⇒ x ∗ (y ∗ (y ∗ x)) ∈ I∈(A;βx ∧ βy)

(x ∗ y) ∗ z ∈ F∈(A; γx), z ∈ F∈(A; γy)
⇒ x ∗ (y ∗ (y ∗ x)) ∈ F∈(A; γx ∨ γy)

(3.1)

for all x, y, z ∈ X, αx, αy, βx, βy ∈ (0, 1] andγx, γy ∈ [0, 1).

Example 3.2. Consider a setX = {0, 1, 2, 3} with the binary
operation∗ which is given in Table1.

Table 1: Cayley table for the binary operation “∗”

∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 1
2 2 1 0 2
3 3 3 3 0

Then (X; ∗, 0) is a BCK-algebra (see [9]). LetA =
(AT , AI , AF ) be a neutrosophic set inX defined by Table2

Table 2: Tabular representation ofA = (AT , AI , AF )

X AT (x) AI(x) AF (x)
0 0.7 0.9 0.2
1 0.3 0.6 0.8
2 0.3 0.6 0.8
3 0.5 0.4 0.7

It is routine to verify thatA = (AT , AI , AF ) is a commutative
(∈, ∈)-neutrosophic ideal ofX.

Theorem 3.3. For a neutrosophic setA = (AT , AI , AF ) in a
BCK-algebraX, the following are equivalent.

(1) The non-empty∈-subsetsT∈(A;α), I∈(A;β) andF∈(A; γ)
are commutative ideals ofX for all α, β ∈ (0, 1] andγ ∈
[0, 1).

(2) A = (AT , AI , AF ) satisfies the following assertions.

(∀x ∈ X)

 AT (0) ≥ AT (x)
AI(0) ≥ AI(x)
AF (0) ≤ AF (x)

 (3.2)

and for allx, y, z ∈ X,

AT (x ∗ (y ∗ (y ∗ x)))
≥ AT ((x ∗ y) ∗ z) ∧AT (z)

AI(x ∗ (y ∗ (y ∗ x)))
≥ AI((x ∗ y) ∗ z) ∧AI(z)

AF (x ∗ (y ∗ (y ∗ x)))
≤ AF ((x ∗ y) ∗ z) ∨AF (z)

(3.3)

Proof. Assume that the non-empty∈-subsets T∈(A;α),
I∈(A;β) and F∈(A; γ) are commutative ideals ofX for all
α, β ∈ (0, 1] andγ ∈ [0, 1). If AT (0) < AT (a) for somea ∈ X,
then a ∈ T∈(A;AT (a)) and 0 /∈ T∈(A;AT (a)). This is a
contradiction, and soAT (0) ≥ AT (x) for all x ∈ X. Similarly,
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AI(0) ≥ AI(x) for all x ∈ X. Suppose thatAF (0) > AF (a) for
somea ∈ X. Thena ∈ F∈(A;AF (a)) and0 /∈ F∈(A;AF (a)).
This is a contradiction, and thusAF (0) ≤ AF (x) for all x ∈ X.
Therefore (3.2) is valid. Assume that there exista, b, c ∈ X such
that

AT (a ∗ (b ∗ (b ∗ a))) < AT ((a ∗ b) ∗ c) ∧AT (c).

Takingα := AT ((a ∗ b) ∗ c) ∧ AT (c) implies that(a ∗ b) ∗ c ∈
T∈(A;α) andc ∈ T∈(A;α) but a ∗ (b ∗ (b ∗ a)) /∈ T∈(A;α),
which is a contradiction. Hence

AT (x ∗ (y ∗ (y ∗ x))) ≥ AT ((x ∗ y) ∗ z) ∧AT (z)

for all x, y, z ∈ X. By the similar way, we can verify that

AI(x ∗ (y ∗ (y ∗ x))) ≥ AI((x ∗ y) ∗ z) ∧AI(z)

for all x, y, z ∈ X. Now suppose there arex, y, z ∈ X such that

AF (x ∗ (y ∗ (y ∗ x))) > AF ((x ∗ y) ∗ z) ∨AF (z) := γ.

Then(x∗y)∗z ∈ F∈(A; γ) andz ∈ F∈(A; γ) butx∗(y∗(y∗x)) /∈
F∈(A; γ), a contradiction. Thus

AF (x ∗ (y ∗ (y ∗ x))) ≤ AF ((x ∗ y) ∗ z) ∨AF (z)

for all x, y, z ∈ X.

Conversely, letA = (AT , AI , AF ) be a neutrosophic set inX
satisfying two conditions (3.2) and (3.3). Assume thatT∈(A;α),
I∈(A;β) andF∈(A; γ) are nonempty forα, β ∈ (0, 1] andγ ∈
[0, 1). Let x ∈ T∈(A;α), a ∈ I∈(A;β) and u ∈ F∈(A; γ)
for α, β ∈ (0, 1] andγ ∈ [0, 1). ThenAT (0) ≥ AT (x) ≥ α,
AI(0) ≥ AI(a) ≥ β, andAF (0) ≤ AF (u) ≤ γ by (3.2). It
follows that0 ∈ T∈(A;α), 0 ∈ I∈(A;β) and0 ∈ F∈(A; γ). Let
a, b, c ∈ X be such that(a ∗ b) ∗ c ∈ T∈(A;α) andc ∈ T∈(A;α)
for α ∈ (0, 1]. Then

AT (a ∗ (b ∗ (b ∗ a))) ≥ AT ((a ∗ b) ∗ c) ∧AT (c) ≥ α

by (3.3), and soa ∗ (b ∗ (b ∗ a)) ∈ T∈(A;α). If (x ∗ y) ∗ z ∈
I∈(A;β) andz ∈ I∈(A;β) for all x, y, z ∈ X andβ ∈ (0, 1],
thenAI((x ∗ y) ∗ z) ≥ β andAI(z) ≥ β. Hence the condition
(3.3) implies that

AI(x ∗ (y ∗ (y ∗ x))) ≥ AI((x ∗ y) ∗ z) ∧AI(z) ≥ β,

that is,x ∗ (y ∗ (y ∗ x)) ∈ I∈(A;β). Finally, suppose that

(x ∗ y) ∗ z ∈ F∈(A; γ) andz ∈ F∈(A; γ)

for all x, y, z ∈ X andγ ∈ (0, 1]. ThenAF ((x ∗ y) ∗ z) ≤ γ and
AF (z) ≤ γ, which imply from the condition (3.3) that

AF (x ∗ (y ∗ (y ∗ x))) ≤ AF ((x ∗ y) ∗ z) ∨AF (z) ≤ γ.

Hencex ∗ (y ∗ (y ∗ x)) ∈ F∈(A; γ). Therefore the non-empty∈-

subsetsT∈(A;α), I∈(A;β) andF∈(A; γ) are commutative ideals
of X for all α, β ∈ (0, 1] andγ ∈ [0, 1).

Theorem 3.4. Let A = (AT , AI , AF ) be a neutrosophic set in
a BCK-algebraX. ThenA = (AT , AI , AF ) is a commutative
(∈, ∈)-neutrosophic ideal ofX if and only if the non-empty neu-
trosophic∈-subsetsT∈(A;α), I∈(A;β) andF∈(A; γ) are com-
mutative ideals ofX for all α, β ∈ (0, 1] andγ ∈ [0, 1).

Proof. Let A = (AT , AI , AF ) be a commutative(∈, ∈)-
neutrosophic ideal ofX and assume thatT∈(A;α), I∈(A;β) and
F∈(A; γ) are nonempty forα, β ∈ (0, 1] andγ ∈ [0, 1). Then
there existx, y, z ∈ X such thatx ∈ T∈(A;α), y ∈ I∈(A;β)
and z ∈ F∈(A; γ). It follows from (2.9) that0 ∈ T∈(A;α),
0 ∈ I∈(A;β) and0 ∈ F∈(A; γ). Let x, y, z, a, b, c, u, v, w ∈ X
be such that

(x ∗ y) ∗ z ∈ T∈(A;α), z ∈ T∈(A;α),
(a ∗ b) ∗ c ∈ I∈(A;β), c ∈ I∈(A;β),
(u ∗ v) ∗ w ∈ F∈(A; γ), w ∈ F∈(A; γ).

Then

x ∗ (y ∗ (y ∗ x)) ∈ T∈(A;α ∧ α) = T∈(A;α),
a ∗ (b ∗ (b ∗ a)) ∈ I∈(A;β ∧ β) = I∈(A;β),
u ∗ (v ∗ (v ∗ u)) ∈ F∈(A; γ ∨ γ) = F∈(A; γ)

by (2.10). Hence the non-empty neutrosophic∈-subsets
T∈(A;α), I∈(A;β) andF∈(A; γ) are commutative ideals ofX
for all α, β ∈ (0, 1] andγ ∈ [0, 1).

Conversely, letA = (AT , AI , AF ) be a neutrosophic set inX
for which T∈(A;α), I∈(A;β) andF∈(A; γ) are nonempty and
are commutative ideals ofX for all α, β ∈ (0, 1] andγ ∈ [0, 1).
Obviously, (2.9) is valid. Letx, y, z ∈ X andαx, αy ∈ (0, 1]
be such that(x ∗ y) ∗ z ∈ T∈(A;αx) andz ∈ T∈(A;αy). Then
(x ∗ y) ∗ z ∈ T∈(A;α) andz ∈ T∈(A;α) whereα = αx ∧ αy.
SinceT∈(A;α) is a commutative ideal ofX, it follows that

x ∗ (y ∗ (y ∗ x)) ∈ T∈(A;α) = T∈(A;αx ∧ αy).

Similarly, if (x ∗ y) ∗ z ∈ I∈(A;βx) andz ∈ I∈(A;βy) for all
x, y, z ∈ X andβx, βy ∈ (0, 1], then

x ∗ (y ∗ (y ∗ x)) ∈ I∈(A;βx ∧ βy).

Now, suppose that(x∗y)∗z ∈ F∈(A; γx) andz ∈ F∈(A; γy) for
all x, y, z ∈ X andγx, γy ∈ [0, 1). Then(x ∗ y) ∗ z ∈ F∈(A; γ)
andz ∈ F∈(A; γ) whereγ = γx ∨ γy. Hence

x ∗ (y ∗ (y ∗ x)) ∈ F∈(A; γ) = F∈(A; γx ∨ γy)

sinceF∈(A; γ) is a commutative ideal ofX. ThereforeA =
(AT , AI , AF ) is a commutative(∈, ∈)-neutrosophic ideal ofX.

Corollary 3.5. Let A = (AT , AI , AF ) be a neutrosophic set in
a BCK-algebraX. ThenA = (AT , AI , AF ) is a commuta-

Y.B. Jun, F. Smarandache, M.A.Özẗurk, Commutative falling neutrosophic ideals inBCK-algebras.

Neutrosophic Sets and Systems, Vol. 20, 2018 47



tive (∈, ∈)-neutrosophic ideal ofX if and only if it satisfies two
conditions(3.2)and (3.3).

Proposition 3.6. Every commutative(∈, ∈)-neutrosophic ideal
A = (AT , AI , AF ) of aBCK-algebraX satisfies:

(∀x, y ∈ X)


x ∗ y ∈ T∈(A;α)

⇒ x ∗ (y ∗ (y ∗ x)) ∈ T∈(A;α)
x ∗ y ∈ I∈(A;β)

⇒ x ∗ (y ∗ (y ∗ x)) ∈ I∈(A;β)
x ∗ y ∈ F∈(A; γ)

⇒ x ∗ (y ∗ (y ∗ x)) ∈ F∈(A; γ)

 (3.4)

for all α, β ∈ (0, 1] andγ ∈ [0, 1).

Proof. It is induced by takingz = 0 in (3.1).

Theorem 3.7. Every commutative(∈, ∈)-neutrosophic ideal of
a BCK-algebraX is an(∈, ∈)-neutrosophic ideal ofX.

Proof. Let A = (AT , AI , AF ) be a commutative(∈, ∈)-
neutrosophic ideal of aBCK-algebraX. Assume that

x ∗ y ∈ T∈(A;αx), y ∈ T∈(A;αy),
a ∗ b ∈ I∈(A;βa), b ∈ I∈(A;βb),
c ∗ d ∈ F∈(A; γc), d ∈ F∈(A; γd)

for all x, y, a, b, c, d ∈ X. Using (2.1), we have

(x ∗ 0) ∗ y = x ∗ y ∈ T∈(A;αx),
(a ∗ 0) ∗ b = a ∗ b ∈ I∈(A;βa),
(c ∗ 0) ∗ d = c ∗ d ∈ F∈(A; γc).

It follows from (3.1), (2.1) and (V) that

x = x ∗ 0 = x ∗ (0 ∗ (0 ∗ x)) ∈ T∈(A;αx ∧ αy),
a = a ∗ 0 = a ∗ (0 ∗ (0 ∗ a)) ∈ I∈(A;βa ∧ βb),
c = c ∗ 0 = c ∗ (0 ∗ (0 ∗ c)) ∈ F∈(A; γc ∨ γd).

ThereforeA = (AT , AI , AF ) is an(∈, ∈)-neutrosophic ideal of
X.

The converse of Theorem3.7 is not true as seen in the follow-
ing example.

Example 3.8. Consider a setX = {0, 1, 2, 3, 4} with the binary
operation∗ which is given in Table3

Table 3: Cayley table for the binary operation “∗”

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 0 0
3 3 3 3 0 0
4 4 4 4 3 0

Then (X; ∗, 0) is a BCK-algebra (see [9]). LetA =
(AT , AI , AF ) be a neutrosophic set inX defined by Table4

Table 4: Tabular representation ofA = (AT , AI , AF )

X AT (x) AI(x) AF (x)
0 0.66 0.77 0.27
1 0.55 0.45 0.37
2 0.33 0.66 0.47
3 0.33 0.45 0.67
4 0.33 0.45 0.67

Routine calculations show thatA = (AT , AI , AF ) is an(∈, ∈)-
neutrosophic ideal ofX. But it is not a commutative(∈, ∈)-
neutrosophic ideal ofX since(2 ∗ 3) ∗ 0 ∈ T∈(A; 0.6) and0 ∈
T∈(A; 0.5) but 2 ∗ (3 ∗ (3 ∗ 2)) /∈ T∈(A; 0.5 ∧ 0.6), (1 ∗ 3) ∗
2 ∈ I∈(A; 0.55) and2 ∈ I∈(A; 0.63) but 1 ∗ (3 ∗ (3 ∗ 1)) /∈
I∈(A; 0.55 ∧ 0.63), and/or(2 ∗ 3) ∗ 0 ∈ F∈(A; 0.43) and0 ∈
F∈(A; 0.39) but2 ∗ (3 ∗ (3 ∗ 2)) /∈ F∈(A; 0.43 ∨ 0.39).

We provide conditions for an(∈, ∈)-neutrosophic ideal to be
a commutative(∈, ∈)-neutrosophic ideal.

Theorem 3.9.LetA = (AT , AI , AF ) be an(∈,∈)-neutrosophic
ideal of aBCK-algebraX in which the condition(3.4) is valid.
ThenA = (AT , AI , AF ) is a commutative(∈, ∈)-neutrosophic
ideal ofX.

Proof. Let A = (AT , AI , AF ) be an(∈, ∈)-neutrosophic ideal
of X andx, y, z ∈ X be such that(x ∗ y) ∗ z ∈ T∈(A;αx) and
z ∈ T∈(A;αy) for αx, αy ∈ (0, 1]. Thenx∗y ∈ T∈(A;αx∧αy)
sinceA = (AT , AI , AF ) is an(∈, ∈)-neutrosophic ideal ofX.
It follows from (3.4) thatx ∗ (y ∗ (y ∗ x)) ∈ T∈(A;αx ∧ αy).
Similarly, if (x ∗ y) ∗ z ∈ I∈(A;βx) andz ∈ I∈(A;βy), then
x ∗ (y ∗ (y ∗ x)) ∈ I∈(A;βx ∧ βy). Let a, b, c ∈ X andγa, γb ∈
[0, 1) be such that(a ∗ b) ∗ c ∈ F∈(A; γa) andc ∈ F∈(A; γa).
Then a ∗ b ∈ F∈(A; γa ∨ γb), which implies from (3.4) that
a ∗ (b ∗ (b ∗ a)) ∈ F∈(A; γa ∨ γb). ThereforeA = (AT , AI , AF )
is a commutative(∈, ∈)-neutrosophic ideal ofX.

Lemma 3.10. Every (∈, ∈)-neutrosophic ideal A =
(AT , AI , AF ) of aBCK-algebraX satisfies:

y, z ∈ T∈(A;α) ⇒ x ∈ T∈(A;α)
y, z ∈ I∈(A;β) ⇒ x ∈ I∈(A;β)
y, z ∈ F∈(A; γ) ⇒ x ∈ F∈(A; γ)

(3.5)

for all α, β ∈ [0, 1), γ ∈ (0, 1] andx, y, z ∈ X with x ∗ y ≤ z.

Proof. For anyα, β ∈ [0, 1), γ ∈ (0, 1] andx, y, z ∈ X with
x ∗ y ≤ z, let y, z ∈ T∈(A;α), y, z ∈ I∈(A;β) and y, z ∈
F∈(A; γ). Then

(x ∗ y) ∗ z = 0 ∈ T∈(A;α) ∩ I∈(A;β) ∩ F∈(A; γ)
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by (2.9). It follows from (2.10) that

x ∗ y ∈ T∈(A;α) ∩ I∈(A;β) ∩ F∈(A; γ)

and so that

x ∈ T∈(A;α) ∩ I∈(A;β) ∩ F∈(A; γ).

Thus (3.5) is valid.

Theorem 3.11. In a commutativeBCK-algebra, every(∈, ∈)-
neutrosophic ideal is a commutative(∈, ∈)-neutrosophic ideal.

Proof. Let A = (AT , AI , AF ) be an(∈, ∈)-neutrosophic ideal
of a commutativeBCK-algebraX. Letx, y, z ∈ X be such that

(x ∗ y) ∗ z ∈ T∈(A;αx) ∩ I∈(A;βx) ∩ F∈(A; γx)

and

z ∈ T∈(A;αy) ∩ I∈(A;βy) ∩ F∈(A; γy)

for αx, αy, βx, βy ∈ (0, 1] andγx, γy ∈ [0, 1). Note that

((x ∗ (y ∗ (y ∗ x))) ∗ ((x ∗ y) ∗ z)) ∗ z

= ((x ∗ (y ∗ (y ∗ x))) ∗ z) ∗ ((x ∗ y) ∗ z)
≤ (x ∗ (y ∗ (y ∗ x))) ∗ (x ∗ y)
= (x ∗ (x ∗ y)) ∗ (y ∗ (y ∗ x))
= 0

by (2.3), (2.4) and (III), which implies that

(x ∗ (y ∗ (y ∗ x))) ∗ ((x ∗ y) ∗ z) ≤ z.

It follows from Lemma3.10that

x ∗ (y ∗ (y ∗ x)) ∈ T∈(A;αx) ∩ I∈(A;βx) ∩ F∈(A; γx).

Therefore A = (AT , AI , AF ) is a commutative(∈, ∈)-
neutrosophic ideal ofX.

4 Commutative falling neutrosophic
ideals

Definition 4.1. Let (Ω,A, P ) be a probability space and letξ :=
(ξT , ξI , ξF ) be a neutrosophic random set on aBCK-algebra
X. Then the neutrosophic falling shadow̃H := (H̃T , H̃I , H̃F )
of ξ := (ξT , ξI , ξF ) is called acommutative falling neutrosophic
idealof X if ξT (ωT ), ξI(ωI) andξF (ωF ) are commutative ideals
of X for all ωT , ωI , ωF ∈ Ω.

Example 4.2. Consider a setX = {0, 1, 2, 3, 4} with the binary
operation∗ which is given in Table5
Then (X; ∗, 0) is a BCK-algebra (see [9]). Consider
(Ω,A, P ) = ([0, 1],A,m) and letξ := (ξT , ξI , ξF ) be a neu-

Table 5: Cayley table for the binary operation “∗”

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 1 1
2 2 1 0 2 2
3 3 3 3 0 3
4 4 4 4 4 0

trosophic random set onX which is given as follows:

ξT : [0, 1] → P(X), x 7→


{0, 3} if t ∈ [0, 0.25),
{0, 4} if t ∈ [0.25, 0.55),
{0, 1, 2} if t ∈ [0.55, 0.85),
{0, 3, 4} if t ∈ [0.85, 1],

ξI : [0, 1] → P(X), x 7→

 {0, 1, 2} if t ∈ [0, 0.45),
{0, 1, 2, 3} if t ∈ [0.45, 0.75),
{0, 1, 2, 4} if t ∈ [0.75, 1],

and

ξF : [0, 1] → P(X), x 7→


{0} if t ∈ (0.9, 1],
{0, 3} if t ∈ (0.7, 0.9],
{0, 4} if t ∈ (0.5, 0.7],
{0, 1, 2, 3} if t ∈ (0.3, 0.5],
X if t ∈ [0, 0.3].

Then ξT (t), ξI(t) and ξF (t) are commutative ideals ofX for
all t ∈ [0, 1]. Hence the neutrosophic falling shadow̃H :=
(H̃T , H̃I , H̃F ) of ξ := (ξT , ξI , ξF ) is a commutative falling neu-
trosophic ideal ofX, and it is given as follows:

H̃T (x) =


1 if x = 0,
0.3 if x ∈ {1, 2},
0.4 if x = 3,
0.45 if x = 4,

H̃I(x) =

 1 if x ∈ {0, 1, 2},
0.3 if x = 3,
0.25 if x = 4,

and

H̃F (x) =

 0 if x = 0,
0.5 if x ∈ {1, 2, 4},
0.3 if x = 3.

Given a probability space(Ω,A, P ), let H̃ := (H̃T , H̃I , H̃F )
be a neutrosophic falling shadow of a neutrosophic random set
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ξ := (ξT , ξI , ξF ). Forx ∈ X, let

Ω(x; ξT ) := {ωT ∈ Ω | x ∈ ξT (ωT )},
Ω(x; ξI) := {ωI ∈ Ω | x ∈ ξI(ωI)},
Ω(x; ξF ) := {ωF ∈ Ω | x ∈ ξF (ωF )}.

ThenΩ(x; ξT ),Ω(x; ξI),Ω(x; ξF ) ∈ A (see [8]).

Proposition 4.3. Let H̃ := (H̃T , H̃I , H̃F ) be a neutrosophic
falling shadow of the neutrosophic random setξ := (ξT , ξI , ξF )
on aBCK-algebraX. If H̃ := (H̃T , H̃I , H̃F ) is a commutative
falling neutrosophic ideal ofX, then

Ω((x ∗ y) ∗ z; ξT ) ∩ Ω(z; ξT )
⊆ Ω(x ∗ (y ∗ (y ∗ x)); ξT )

Ω((x ∗ y) ∗ z; ξI) ∩ Ω(z; ξI)
⊆ Ω(x ∗ (y ∗ (y ∗ x)); ξI)

Ω((x ∗ y) ∗ z; ξF ) ∩ Ω(z; ξF )
⊆ Ω(x ∗ (y ∗ (y ∗ x)); ξF )

(4.1)

and

Ω(x ∗ (y ∗ (y ∗ x)); ξT ) ⊆ Ω((x ∗ y) ∗ z; ξT )
Ω(x ∗ (y ∗ (y ∗ x)); ξI) ⊆ Ω((x ∗ y) ∗ z; ξI)
Ω(x ∗ (y ∗ (y ∗ x)); ξF ) ⊆ Ω((x ∗ y) ∗ z; ξF )

(4.2)

for all x, y, z ∈ X.

Proof. Let

ωT ∈ Ω((x ∗ y) ∗ z; ξT ) ∩ Ω(z; ξT ),
ωI ∈ Ω((x ∗ y) ∗ z; ξI) ∩ Ω(z; ξI),
ωF ∈ Ω((x ∗ y) ∗ z; ξF ) ∩ Ω(z; ξF )

for all x, y, z ∈ X. Then

(x ∗ y) ∗ z ∈ ξT (ωT ) andz ∈ ξT (ωT ),
(x ∗ y) ∗ z ∈ ξI(ωI) andz ∈ ξI(ωI),
(x ∗ y) ∗ z ∈ ξF (ωF ) andz ∈ ξF (ωF ).

SinceξT (ωT ), ξI(ωI) andξF (ωF ) are commutative ideals ofX,
it follows from (2.7) that

x ∗ (y ∗ (y ∗ x)) ∈ ξT (ωT ) ∩ ξI(ωI) ∩ ξF (ωF )

and so that

ωT ∈ Ω(x ∗ (y ∗ (y ∗ x)); ξT ),
ωI ∈ Ω(x ∗ (y ∗ (y ∗ x)); ξI),
ωF ∈ Ω(x ∗ (y ∗ (y ∗ x)); ξF ).

Hence (4.1) is valid. Now let

ωT ∈ Ω(x ∗ (y ∗ (y ∗ x)); ξT ),
ωI ∈ Ω(x ∗ (y ∗ (y ∗ x)); ξI),
ωF ∈ Ω(x ∗ (y ∗ (y ∗ x)); ξF )

for all x, y, z ∈ X. Then

x ∗ (y ∗ (y ∗ x)) ∈ ξT (ωT ) ∩ ξI(ωI) ∩ ξF (ωF ).

Note that

((x ∗ y) ∗ z) ∗ (x ∗ (y ∗ (y ∗ x)))
= ((x ∗ y) ∗ (x ∗ (y ∗ (y ∗ x)))) ∗ z

≤ ((y ∗ (y ∗ x)) ∗ y) ∗ z = ((y ∗ y) ∗ (y ∗ x)) ∗ z

= (0 ∗ (y ∗ x)) ∗ z = 0 ∗ z = 0,

which yields

((x ∗ y) ∗ z) ∗ (x ∗ (y ∗ (y ∗ x)))
= 0 ∈ ξT (ωT ) ∩ ξI(ωI) ∩ ξF (ωF ).

SinceξT (ωT ), ξI(ωI) andξF (ωF ) are commutative ideals and
hence ideals ofX, it follows that

(x ∗ y) ∗ z ∈ ξT (ωT ) ∩ ξI(ωI) ∩ ξF (ωF ).

Hence

ωT ∈ Ω((x ∗ y) ∗ z; ξT ),
ωI ∈ Ω((x ∗ y) ∗ z; ξI),
ωF ∈ Ω((x ∗ y) ∗ z; ξF ).

Therefore (4.2) is valid.

Given a probability space(Ω,A, P ), let

F(X) := {f | f : Ω → X is a mapping}. (4.3)

Define a binary operation~ onF(X) as follows:

(∀ω ∈ Ω) ((f ~ g)(ω) = f(ω) ∗ g(ω)) (4.4)

for all f, g ∈ F(X). Then (F(X);~, θ) is a BCK/BCI-
algebra (see [7]) whereθ is given as follows:

θ : Ω → X, ω 7→ 0.

For any subsetA of X andgT , gI , gF ∈ F(X), consider the
followings:

Ag
T := {ωT ∈ Ω | gT (ωT ) ∈ A},

Ag
I := {ωI ∈ Ω | gI(ωI) ∈ A},

Ag
F := {ωF ∈ Ω | gF (ωF ) ∈ A}

and

ξT : Ω → P(F(X)), ωT 7→ {gT ∈ F(X) | gT (ωT ) ∈ A},
ξI : Ω → P(F(X)), ωI 7→ {gI ∈ F(X) | gI(ωI) ∈ A},
ξF : Ω → P(F(X)), ωF 7→ {gF ∈ F(X) | gF (ωF ) ∈ A}.

ThenAg
T , Ag

I , Ag
F ∈ A (see [8]).
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Theorem 4.4. If K is a commutative ideal of aBCK-algebra
X, then

ξT (ωT ) = {gT ∈ F(X) | gT (ωT ) ∈ K},
ξI(ωI) = {gI ∈ F(X) | gI(ωI) ∈ K},
ξF (ωF ) = {gF ∈ F(X) | gF (ωF ) ∈ K}

are commutative ideals ofF(X).

Proof. Assume thatK is a commutative ideal of aBCK-algebra
X. Sinceθ(ωT ) = 0 ∈ K, θ(ωI) = 0 ∈ K andθ(ωF ) = 0 ∈ K
for all ωT , ωI , ωF ∈ Ω, we haveθ ∈ ξT (ωT ), θ ∈ ξI(ωI) and
θ ∈ ξF (ωF ). Let fT , gT , hT ∈ F(X) be such that

(fT ~ gT ) ~ hT ∈ ξT (ωT ) andhT ∈ ξT (ωT ).

Then

(fT (ωT ) ∗ gT (ωT )) ∗ hT (ωT ) = ((fT ~ gT ) ~ hT )(ωT ) ∈ K

and hT (ωT ) ∈ K. SinceK is a commutative ideal ofX, it
follows from (2.7) that

(fT ~ (gT ~ (gT ~ fT )))(ωT )
= fT (ωT ) ∗ (gT (ωT ) ∗ (gT (ωT ) ∗ fT (ωT ))) ∈ K,

that is,fT ~ (gT ~ (gT ~ fT )) ∈ ξT (ωT ). HenceξT (ωT ) is a
commutative ideal ofF(X). Similarly, we can verify thatξI(ωI)
is a commutative ideal ofF(X). Now, letfF , gF , hF ∈ F(X)
be such that(fF ~gF )~hF ∈ ξF (ωF ) andhF ∈ ξF (ωF ). Then

(fF (ωF ) ∗ gF (ωF )) ∗ hF (ωF )
= ((fF ~ gF ) ~ hF )(ωF ) ∈ K

andhF (ωF ) ∈ K. Then

(fF ~ (gF ~ (gF ~ fF )))(ωF )
= fF (ωF ) ∗ (gF (ωF ) ∗ (gF (ωF ) ∗ fF (ωF ))) ∈ K,

and sofF ~ (gF ~ (gF ~ fF )) ∈ ξF (ωF ). HenceξF (ωF ) is a
commutative ideal ofF(X). This completes the proof.

Theorem 4.5. If we consider a probability space(Ω,A, P ) =
([0, 1],A,m), then every commutative(∈, ∈)-neutrosophic ideal
of aBCK-algebra is a commutative falling neutrosophic ideal.

Proof. Let H̃ := (H̃T , H̃I , H̃F ) be a commutative(∈, ∈
)-neutrosophic ideal ofX. Then T∈(H̃;α), I∈(H̃;β) and
F∈(H̃; γ) are commutative ideals ofX for all α, β ∈ (0, 1] and
γ ∈ [0, 1). Hence a tripleξ := (ξT , ξI , ξF ) in which

ξT : [0, 1] → P(X), α 7→ T∈(H̃;α),

ξI : [0, 1] → P(X), β 7→ I∈(H̃;β),

ξF : [0, 1] → P(X), γ 7→ F∈(H̃; γ)

is a neutrosophic cut-cloud of̃H := (H̃T , H̃I , H̃F ). Therefore
H̃ := (H̃T , H̃I , H̃F ) is a commutative falling neutrosophic ideal

of X.

The converse of Theorem4.5 is not true as seen in the follow-
ing example.

Example 4.6. Consider a setX = {0, 1, 2, 3, 4} with the binary
operation∗ which is given in Table6

Table 6: Cayley table for the binary operation “∗”

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 0 2
3 3 2 1 0 3
4 4 4 4 4 0

Then (X; ∗, 0) is a BCK-algebra (see [9]). Consider
(Ω,A, P ) = ([0, 1],A,m) and letξ := (ξT , ξI , ξF ) be a neu-
trosophic random set onX which is given as follows:

ξT : [0, 1] → P(X), x 7→


{0, 1} if t ∈ [0, 0.2),
{0, 2} if t ∈ [0.2, 0.55),
{0, 2, 4} if t ∈ [0.55, 0.75),
{0, 1, 2, 3} if t ∈ [0.75, 1],

ξI : [0, 1] → P(X), x 7→


{0, 1} if t ∈ [0, 0.34),
{0, 4} if t ∈ [0.34, 0.66),
{0, 1, 4} if t ∈ [0.66, 0.78),
X if t ∈ [0.78, 1],

and

ξF : [0, 1] → P(X), x 7→


{0} if t ∈ (0.87, 1],
{0, 2} if t ∈ (0.76, 0.87],
{0, 4} if t ∈ (0.58, 0.76],
{0, 2, 4} if t ∈ (0.33, 0.58],
X if t ∈ [0, 0.33].

Then ξT (t), ξI(t) and ξF (t) are commutative ideals ofX for
all t ∈ [0, 1]. Hence the neutrosophic falling shadow̃H :=
(H̃T , H̃I , H̃F ) of ξ := (ξT , ξI , ξF ) is a commutative falling neu-
trosophic ideal ofX, and it is given as follows:

H̃T (x) =


1 if x = 0,
0.45 if x = 1,
0.8 if x = 2,
0.25 if x = 3,
0.2 if x = 4,

H̃I(x) =


1 if x = 0,
0.68 if x = 1,
0.22 if x ∈ {2, 3},
0.66 if x = 4,
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and

H̃F (x) =


0 if x = 0,
0.67 if x ∈ {1, 3},
0.31 if x = 2,
0.24 if x = 4.

But H̃ := (H̃T , H̃I , H̃F ) is not a commutative(∈, ∈)-
neutrosophic ideal ofX since

(3 ∗ 4) ∗ 2 ∈ T∈(H̃; 0.4) and2 ∈ T∈(H̃; 0.6),

but3 ∗ (4 ∗ (4 ∗ 3)) = 3 /∈ T∈(H̃; 0.4).

We provide relations between a falling neutrosophic ideal and
a commutative falling neutrosophic ideal .

Theorem 4.7. Let (Ω,A, P ) be a probability space and let
H̃ := (H̃T , H̃I , H̃F ) be a neutrosophic falling shadow of a neu-
trosophic random setξ := (ξT , ξI , ξF ) on a BCK-algebra. If
H̃ := (H̃T , H̃I , H̃F ) is a commutative falling neutrosophic ideal
of X, then it is a falling neutrosophic ideal ofX.

Proof. Let H̃ := (H̃T , H̃I , H̃F ) be a commutative falling neu-
trosophic ideal of aBCK-algebraX. ThenξT (ωT ), ξI(ωI) and
ξF (ωF ) are commutative ideals ofX for all ωT , ωI , ωF ∈ Ω.
ThusξT (ωT ), ξI(ωI) andξF (ωF ) are ideals ofX for all ωT , ωI ,
ωF ∈ Ω. ThereforeH̃ := (H̃T , H̃I , H̃F ) is a falling neutro-
sophic ideal ofX.

The following example shows that the converse of Theorem
4.7 is not true in general.

Example 4.8. Consider a setX = {0, 1, 2, 3, 4} with the binary
operation∗ which is given in Table7

Table 7: Cayley table for the binary operation “∗”

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 1 0
2 2 1 0 2 0
3 3 3 3 0 3
4 4 4 4 4 0

Then (X; ∗, 0) is a BCK-algebra (see [9]). Consider
(Ω,A, P ) = ([0, 1],A,m) and letξ := (ξT , ξI , ξF ) be a neu-
trosophic random set onX which is given as follows:

ξT : [0, 1] → P(X), x 7→

 {0, 3} if t ∈ [0, 0.27),
{0, 1, 2, 3} if t ∈ [0.27, 0.66),
{0, 1, 2, 4} if t ∈ [0.67, 1],

ξI : [0, 1] → P(X), x 7→
{
{0, 3} if t ∈ [0, 0.35),
{0, 1, 2, 4} if t ∈ [0.35, 1],

and

ξF : [0, 1] → P(X), x 7→


{0} if t ∈ (0.84, 1],
{0, 3} if t ∈ (0.76, 0.84],
{0, 1, 2, 4} if t ∈ (0.58, 0.76],
X if t ∈ [0, 0.58].

ThenξT (t), ξI(t) andξF (t) are ideals ofX for all t ∈ [0, 1].
Hence the neutrosophic falling shadow̃H := (H̃T , H̃I , H̃F ) of
ξ := (ξT , ξI , ξF ) is a falling neutrosophic ideal ofX. But it
is not a commutative falling neutrosophic ideal ofX because if
α ∈ [0, 0.27), β ∈ [0, 0.35) andγ ∈ (0.76, 0.84], thenξT (α) =
{0, 3}, ξI(β) = {0, 3} andξF (γ) = {0, 3} are not commutative
ideals ofX respectively.

Since every ideal is commutative in a commutativeBCK-
algebra, we have the following theorem.

Theorem 4.9. Let (Ω,A, P ) be a probability space and let
H̃ := (H̃T , H̃I , H̃F ) be a neutrosophic falling shadow of a neu-
trosophic random setξ := (ξT , ξI , ξF ) on a commutativeBCK-
algebra. IfH̃ := (H̃T , H̃I , H̃F ) is a falling neutrosophic ideal
of X, then it is a commutative falling neutrosophic ideal ofX.

Corollary 4.10. Let (Ω,A, P ) be a probability space. For any
BCK-algebraX which satisfies one of the following assertions

(∀x, y ∈ X)(x ≤ y ⇒ x ≤ y ∗ (y ∗ x)), (4.5)

(∀x, y ∈ X)(x ≤ y ⇒ x = y ∗ (y ∗ x)), (4.6)

(∀x, y ∈ X)(x ∗ (x ∗ y) = y ∗ (y ∗ (x ∗ (x ∗ y)))), (4.7)

(∀x, y, z ∈ X)(x, y ≤ z, z ∗ y ≤ z ∗ x ⇒ x ≤ y), (4.8)

(∀x, y, z ∈ X)(x ≤ z, z ∗ y ≤ z ∗ x ⇒ x ≤ y), (4.9)

let H̃ := (H̃T , H̃I , H̃F ) be a neutrosophic falling shadow of
a neutrosophic random setξ := (ξT , ξI , ξF ) on X. If H̃ :=
(H̃T , H̃I , H̃F ) is a falling neutrosophic ideal ofX, then it is a
commutative falling neutrosophic ideal ofX.
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On Neutrosophic Soft Prime Ideal
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Abstract The motivation of the present paper is to extend the concept of neu-
trosophic soft prime ideal over a ring. In this paper the concept of neutrosophic soft
completely prime ideals, neutrosophic soft completely semi-prime ideals and neutro-
sophic soft prime k - ideals have been introduced. These are illustrated with suitable
examples also. Several related properties, theorems and structural characteristics of
each are studied here.

Keywords Neutrosophic soft completely prime ideals; Neutrosophic soft com-
pletely semi-prime ideals; Neutrosophic soft prime k - ideals.

1 Introduction

Because of the insufficiency in the available information situation, evaluation of mem-
bership values and nonmembership values are not always possible to handle the uncer-
tainties appearing in daily life situations. So there exists an indeterministic part upon
which hesitation survives. The neutrosophic set theory by Smarandache [1,2] which
is a generalisation of fuzzy set and intuitionistic fuzzy set theory, makes description
of the objective world more realistic, practical and very promising in nature. The
neutrosophic logic includes the information about the percentage of truth, indetermi-
nacy and falsity grade in several real world problems in law, medicine, engineering,
management, industrial, IT sector etc which are not available in intuitionistic fuzzy
set theory. But each of the theories suffers from inherent difficulties because of the
inadequacy of parametrization tools. Molodtsov [3] introduced a nice concept of soft
set theory which is free from the parametrization inadequacy syndrome of different
theories dealing with uncertainty. The parametrization tool of soft set theory makes
it very convenient and easy to apply in practice. The classical algebraic structures
were extended over fuzzy set, intuitionistic fuzzy set, soft set, fuzzy soft set and in-
tuitionistic fuzzy soft set by so many authors, for instance, Rosenfeld [4], Malik and
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Mordeson [5,6], Lavanya and Kumar [8], Bakhadach et al. [9], Dutta et al. [10-12],
Maji et al. [13], Aktas and Cagman [14], Augunoglu and Aygun [15], Zhang [16],
Maheswari and Meera [17] and others.

The notion of neutrosophic soft set theory (NSS) has been innovated by Maji [18].
Later, it has been modified by Deli and Broumi [19]. Cetkin et al. [20,21], Bera and
Mahapatra [22-26] and others have produced their research works on fundamental
algebraic structures on the NSS theory context.

This paper presents the notion of neutrosophic soft completely prime ideals, neu-
trosophic soft completely semi-prime ideals and neutrosophic soft prime k-ideals along
with investigation of some related properties and theorems. The content of the present
paper is designed as following :

Section 2 gives some preliminary useful definitions related to it. In Section 3, neu-
trosophic soft completely prime ideals is defined and illustrated by suitable examples
along with investigation of its structural characteristics. Section 4 deals with the
notion of neutrosophic soft completely semi-prime ideals with development of related
theorems. The concept of neutrosophic soft prime k-ideals along with some properties
has been introduced in Section 6. Finally, the conclusion of our work has been stated
in Section 7.

2 Preliminaries

We recall some basic definitions related to fuzzy set, soft set, neutrosophic soft set
for the sake of completeness.

2.1 Definition [24]

1. A binary operation ∗ : [0, 1]× [0, 1] → [0, 1] is said to be continuous t - norm if ∗
satisfies the following conditions :
(i) ∗ is commutative and associative.
(ii) ∗ is continuous.
(iii) a ∗ 1 = 1 ∗ a = a, ∀a ∈ [0, 1].
(iv) a ∗ b ≤ c ∗ d if a ≤ c, b ≤ d with a, b, c, d ∈ [0, 1].

A few examples of continuous t-norm are a ∗ b = ab, a ∗ b = min{a, b}, a ∗ b =
max{a+ b− 1, 0}.
2. A binary operation � : [0, 1]× [0, 1]→ [0, 1] is said to be continuous t - conorm (s
- norm) if � satisfies the following conditions :
(i) � is commutative and associative.
(ii) � is continuous.
(iii) a � 0 = 0 � a = a, ∀a ∈ [0, 1].
(iv) a � b ≤ c � d if a ≤ c, b ≤ d with a, b, c, d ∈ [0, 1].

A few examples of continuous s-norm are a�b = a+b−ab, a�b = max{a, b}, a�b =
min{a+ b, 1}.
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2.2 Definition [1]

Let X be a space of points (objects), with a generic element in X denoted by x.
A neutrosophic set A in X is characterized by a truth-membership function TA,
an indeterminacy-membership function IA and a falsity-membership function FA.
TA(x), IA(x) and FA(x) are real standard or non-standard subsets of ]−0, 1+[. That
is TA, IA, FA : X →]−0, 1+[. There is no restriction on the sum of TA(x), IA(x), FA(x)
and so, −0 ≤ supTA(x) + sup IA(x) + supFA(x) ≤ 3+.

2.3 Definition [3]

Let U be an initial universe set and E be a set of parameters. Let P (U) denote the
power set of U . Then for A ⊆ E, a pair (F,A) is called a soft set over U , where
F : A→ P (U) is a mapping.

2.4 Definition [18]

Let U be an initial universe set and E be a set of parameters. Let NS(U) denote the
set of all NSs of U . Then for A ⊆ E, a pair (F,A) is called an NSS over U , where
F : A→ NS(U) is a mapping.

This concept has been redefined by Deli and Broumi [19] as given below.

2.5 Definition [19]

1. Let U be an initial universe set and E be a set of parameters. Let NS(U) denote
the set of all NSs of U . Then, a neutrosophic soft set N over U is a set defined by a
set valued function fN representing a mapping fN : E → NS(U) where fN is called
approximate function of the neutrosophic soft set N . In other words, the neutrosophic
soft set is a parameterized family of some elements of the set NS(U) and therefore it
can be written as a set of ordered pairs,

N = {(e, fN(e)) : e ∈ E}
= {(e, {< x, TfN (e)(x), IfN (e)(x), FfN (e)(x) >: x ∈ U}) : e ∈ E}

where TfN (e)(x), IfN (e)(x), FfN (e)(x) ∈ [0, 1], respectively called the truth-membership,
indeterminacy-membership, falsity-membership function of fN(e). Since supremum
of each T, I, F is 1 so the inequality 0 ≤ TfN (e)(x) + IfN (e)(x) + FfN (e)(x) ≤ 3 is
obvious.

2. Let N1 and N2 be two NSSs over the common universe (U,E). Then N1 is said to
be the neutrosophic soft subset of N2 if TfN1

(e)(x) ≤ TfN2
(e)(x), IfN1

(e)(x) ≥ IfN2
(e)(x),

FfN1
(e)(x) ≥ FfN2

(e)(x), ∀e ∈ E and ∀x ∈ U .

We write N1 ⊆ N2 and then N2 is the neutrosophic soft superset of N1.
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2.6 Proposition [22]

An NSS N over the group (G, o) is called a neutrosophic soft group iff followings hold
on the assumption that a ∗ b = min{a, b} and a � b = max{a, b}.

TfN (e)(xoy
−1) ≥ TfN (e)(x) ∗ TfN (e)(y),

IfN (e)(xoy
−1) ≤ IfN (e)(x) � IfN (e)(y),

FfN (e)(xoy
−1) ≤ FfN (e)(x) � FfN (e)(y)); ∀x, y ∈ G,∀e ∈ E.

2.7 Definition [24]

1. A neutrosophic soft ring N over the ring (R,+, ·) is called a neutrosophic soft left
ideal over R if fN(e) is a neutrosophic left ideal of R for each e ∈ E i.e.,
(i) fN(e) is a neutrosophic subgroup of (R,+) for each e ∈ E and

(ii)


TfN (e)(x · y) ≥ TfN (e)(y)
IfN (e)(x · y) ≤ IfN (e)(y)
FfN (e)(x · y) ≤ FfN (e)(y); for x, y ∈ R.

2. A neutrosophic soft ring N over the ring (R,+, ·) is called a neutrosophic soft
right ideal over R if fN(e) is a neutrosophic right ideal of R for each e ∈ E i.e.,
(i) fN(e) is a neutrosophic subgroup of (R,+) for each e ∈ E and

(ii)


TfN (e)(x · y) ≥ TfN (e)(x)
IfN (e)(x · y) ≤ IfN (e)(x)
FfN (e)(x · y) ≤ FfN (e)(x); for x, y ∈ R.

3. A neutrosophic soft ring N over the ring (R,+, ·) is called a neutrosophic soft
ideal over R if fN(e) is a both neutrosophic left and right ideal of R for each e ∈ E.

2.8 Definition [25]

1. Let ϕ : U → V and ψ : E → E be two functions where E is the parameter set for
each of the crisp sets U and V . Then the pair (ϕ, ψ) is called an NSS function from
(U,E) to (V,E). We write, (ϕ, ψ) : (U,E) → (V,E). If M is an NSS over U via
parametric set E, we shall write (M,E) an NSS over U .

2. Let (M,E), (N,E) be two NSSs defined over U, V respectively and (ϕ, ψ) be an
NSS function from (U,E) to (V,E). Then,
(i) The image of (M,E) under (ϕ, ψ), denoted by (ϕ, ψ)(M,E), is an NSS over V
and is defined by :
(ϕ, ψ)(M,E) = (ϕ(M), ψ(E)) = {< ψ(a), fϕ(M) >: a ∈ E} where ∀b ∈ ψ(E),∀y ∈ V ,

Tfϕ(M)(b)(y) =

{
maxϕ(x)=y maxψ(a)=b [TfM (a)(x)], ifx ∈ ϕ−1(y)
0 , otherwise.

Ifϕ(M)(b)(y) =

{
minϕ(x)=y minψ(a)=b [IfM (a)(x)], ifx ∈ ϕ−1(y)
1 , otherwise.

Ffϕ(M)(b)(y) =

{
minϕ(x)=y minψ(a)=b [FfM (a)(x)], ifx ∈ ϕ−1(y)
1 , otherwise.
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(ii) The pre-image of (N,E) under (ϕ, ψ), denoted by (ϕ, ψ)−1(N,E), is an NSS over
U and is defined by :
(ϕ, ψ)−1(N,E) = (ϕ−1(N), ψ−1(E)) where ∀a ∈ ψ−1(E),∀x ∈ U ,

Tfϕ−1(N)(a)
(x) = TfN [ψ(a)](ϕ(x))

Ifϕ−1(N)(a)
(x) = IfN [ψ(a)](ϕ(x))

Ffϕ−1(N)(a)
(x) = FfN [ψ(a)](ϕ(x))

If ψ and ϕ is injective (surjective), then (ϕ, ψ) is injective (surjective).

2.9 Definition [26]

1. An NSS M over (R,E) is said to be constant if each fM(e) is constant for e ∈ E
i.e., (TfM (e)(x), IfM (e)(x), FfM (e)(x)) is same ∀e ∈ E, ∀x ∈ R.

ForM to be nonconstant, if for each e ∈ E the triplet (TfM (e)(x), IfM (e)(x), FfM (e)(x))
is atleast of two different kinds ∀x ∈ R.

2. Let R be a ring and M,N be two NSSs over (R,E). Then MoN = L (say) is also
an NSS over (R,E) and is defined as following, for e ∈ E and x ∈ R,

TfL(e)(x) =

{
maxx=yz[TfM (e)(y) ∗ TfN (e)(z)]
0 ifx is not expressible as x = yz.

IfL(e)(x) =

{
minx=yz[IfM (e)(y) � IfN (e)(z)]
1 ifx is not expressible as x = yz.

FfL(e)(x) =

{
minx=yz[FfM (e)(y) � FfN (e)(z)]
1 ifx is not expressible as x = yz.

3. A neutrosophic soft ideal P over (R,E) is said to be a neutrosophic soft prime
ideal if (i) P is not constant neutrosophic soft ideal, (ii) for any two neutrosophic soft
ideals M,N over (R,E), MoN ⊆ P ⇒ either M ⊆ P or N ⊆ P .

2.10 Theorem [26]

1. Let P be an NSS over (R,E) such that cardinality of fP (e) is 2 i.e., |fP (e)| = 2
and [fP (e)](0r) = (1, 0, 0) for each e ∈ E. If P0 = {x ∈ R : [fP (e)](x) = [fP (e)](0r)}
is a prime ideal over R, then P is a neutrosophic soft prime ideal over (R,E).

2. Let P be an NSS over (R,E). Then P is a neutrosophic soft left (right) ideal over

(R,E) iff P̂ = {x ∈ R : [fP (e)](x) = (1, 0, 0)} with 0r ∈ P̂ is a left (right) ideal of R.

3. S(6= φ) ⊂ R is an ideal of R iff there exists a neutrosophic soft ideal M over (R,E)
where fM : E −→ NS(R) is defined as, ∀e ∈ E,

[fM(e)](x) =

{
(r1, r2, r3) if x ∈ S
(t1, t2, t3) if x /∈ S.

with r1 > t1, r2 < t2, r3 < t3 and r1, r2, r3, t1, t2, t3 ∈ [0, 1].
In particular, S( 6= φ) ⊂ R is an ideal of R iff the characteristic function χS is a

Neutrosophic Sets and Systems, Vol. 20, 2018 58

Tuhin Bera, Nirmal Kumar Mahapatra. On Neutrosophic Soft Prime Ideal 



neutrosophic soft ideal over (R,E) where χS : E −→ NS(R) is defined as, ∀e ∈ E,

[χS(e)](x) =

{
(1, 0, 0) if x ∈ S
(0, 1, 1) if x /∈ S.

4. An NSS M over (R,E) is a neutrosophic soft left (right) ideal iff each nonempty
level set [fM(e)](α,β,γ) of the neutrosophic set fM(e) is a left (right) ideal of R where
α ∈ ImTfM (e), β ∈ Im IfM (e), γ ∈ ImFfM (e).

5. Let P be a neutrosophic soft left (right) ideal over (R,E). Then P0 = {x ∈ R :
[fP (e)](x) = [fP (e)](0r)} is a left (right) ideal of R.

6. Let P be a neutrosophic soft prime ideal over (R,E). Then P0 = {x ∈ R :
[fP (e)](x) = [fP (e)](0r)} is a prime ideal of R.

2.11 Definition [7]

A left k-ideal I of a semiring S is a left ideal such that if a ∈ I and x ∈ S and if
either a+ x ∈ I or x+ a ∈ I, then x ∈ I.
Right k-ideal of a semiring is defined dually. A non-empty subset I of a semiring S
is called a k-ideal if it is both a left k-ideal and a right k-ideal.

3 Neutrosophic soft completely prime ideal

Here first we have defined a completely prime ideal of a ring and then defined a neu-
trosophic soft completely prime ideal. These are illustrated with suitable examples.
Along with several related properties and theorems have been developed.

Through out this paper, unless otherwise stated, E is treated as the parametric set
and e ∈ E, an arbitrary parameter. Moreover the standard t-norm and s-norm are
taken into consideration wherever needed through out this paper i.e., a∗b = min{a, b}
and a � b = max{a, b}.

3.1 Definition

An ideal S of a ring R is called a completely prime ideal of R if for x, y ∈ R,
xy ∈ S ⇒ either x ∈ S or y ∈ S.

3.1.1 Example

1. For the ring (Z,+, ·) (Z being the set of integers), an ideal (2Z,+, ·) is a completely
prime ideal.

2. We assume a ring R = {0, x, y, z}. The two binary operations addition and
multiplication on R are given by the following tables :

Table 1

+ 0 x y z
0 0 x y z
x x 0 z y
y y z 0 x
z z y x 0

Table 2

· 0 x y z
0 0 0 0 0
x 0 0 0 0
y 0 0 y y
z 0 0 y y

Neutrosophic Sets and Systems, Vol. 20, 2018 59

Tuhin Bera, Nirmal Kumar Mahapatra. On Neutrosophic Soft Prime Ideal 



It is an abelian ring. With respect to these two tables, {0, x} and {0, y} are two ideals
of R. From 2nd table, it is evident that {0, x} is a completely prime ideal of R but
{0, y} is not so because z · z = y though z /∈ {0, y}.
3. Consider the another ring R = {0, x, y, z} with two binary operations addition
and multiplication on R are given by the following tables :

Table 3

+ 0 x y z
0 0 x y z
x x 0 z y
y y z 0 x
z z y x 0

Table 4

· 0 x y z
0 0 0 0 0
x 0 0 0 0
y 0 0 0 0
z 0 x y x

It is not an abelian ring. With respect to these two tables, {0, x} is an ideal of R but
not completely prime ideal. Because y · z = 0, z · z = x, y · y = 0 but y, z /∈ {0, x}.

3.2 Proposition

If S is a completely prime ideal of a ring R then S is a prime ideal of R.

Proof. Let S be a completely prime ideal of a ring R and A,B be two ideals of R
such that AB ⊆ S. Suppose A 6⊆ S and B 6⊆ S. Then there exists x ∈ A and y ∈ B
such that x, y /∈ S. But xy ∈ S as AB ⊆ S. Since S is a completely prime ideal of
R, so either x ∈ S or y ∈ S and this leads a contradiction to the fact x, y /∈ S. Hence
S is a prime ideal of R.

3.3 Definition

A neutrosophic soft ideal N over (R,E) is called a neutrosophic soft completely prime
ideal if ∀x, y ∈ R and ∀e ∈ E,

TfN (e)(x · y) ≤ max{TfN (e)(x), TfN (e)(y)}
IfN (e)(x · y) ≥ min{IfN (e)(x), IfN (e)(y)}
FfN (e)(x · y) ≥ min{FfN (e)(x), FfN (e)(y)}.

3.3.1 Example

Consider the Example [3.1.1](2). We define an NSS M over (R,E) as following,
∀r ∈ R and ∀e ∈ E,

[fM(e)](r) =

{
(1, 0.3, 0.1) if r ∈ {0, x}
(0.8, 0.6, 0.4) if r /∈ {0, x}.

Then M is a neutrosophic soft completely prime ideal over (R,E).

3.4 Theorem

An NSS N is a neutrosophic soft completely prime ideal over (R,E) iff for e ∈
E, |fN(e)| = 2, [fN(e)](0r) = (1, 0, 0) and N̂ = {x ∈ R : [fN(e)](x) = (1, 0, 0)} is a
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completely prime ideal of R.

Proof. Let N be a neutrosophic soft completely prime ideal over (R,E). Then N

is a neutrosophic soft ideal over (R,E) and so N̂ is an ideal over R by Theorem

[2.11](2). To prove N̂ is a complete prime ideal, let xy ∈ N̂ for x, y ∈ R. Then
[fN(e)](xy) = (1, 0, 0) for e ∈ E. But,

1 = TfN (e)(xy) ≤ max{TfN (e)(x), TfN (e)(y)},
0 = IfN (e)(xy) ≥ min{IfN (e)(x), IfN (e)(y)},
0 = FfN (e)(xy) ≥ min{FfN (e)(x), FfN (e)(y)};

This implies that

TfN (e)(0r) = 1 ≤ max{TfN (e)(x), TfN (e)(y)},
IfN (e)(0r) = 0 ≥ min{IfN (e)(x), IfN (e)(y)},
FfN (e)(0r) = 0 ≥ min{FfN (e)(x), FfN (e)(y)};

This shows that,

either TfN (e)(0r) ≤ TfN (e)(x) or TfN (e)(0r) ≤ TfN (e)(y),

either IfN (e)(0r) ≥ IfN (e)(x) or IfN (e)(0r) ≥ IfN (e)(y),

either FfN (e)(0r) ≥ FfN (e)(x) or FfN (e)(0r) ≥ FfN (e)(y);

But TfN (e)(0r) ≥ TfN (e)(x), IfN (e)(0r) ≤ IfN (e)(x), FfN (e)(0r) ≤ FfN (e)(x), ∀x ∈ R.
Hence TfN (e)(x) = TfN (e)(0r), IfN (e)(x) = IfN (e)(0r), FfN (e)(x) = FfN (e)(0r), ∀x ∈ R

i.e., x, y ∈ N̂ . Thus N̂ is a complete prime ideal.
Conversely suppose N̂ is a completely prime ideal with the given conditions. As N̂

is an ideal of R, so N is a neutrosophic soft ideal over (R,E) by Theorem [2.11](2).
For contrary, suppose N is not neutrosophic soft completely prime ideal. Then,

TfN (e)(xy) > max{TfN (e)(x), TfN (e)(y)},
IfN (e)(xy) < min{IfN (e)(x), IfN (e)(y)},
FfN (e)(xy) < min{FfN (e)(x), FfN (e)(y)};

Since |fN(e)| = 2 and [fN(e)](0r) = (1, 0, 0) then there exists x, y ∈ R so that
[fN(e)](x) = [fN(e)](y) = (r1, r2, r3) 6= (1, 0, 0) (say) for 0 ≤ r1 < 1 and 0 < r2, r3 ≤ 1.
Then,

TfN (e)(xy) > r1, IfN (e)(xy) < r2, FfN (e)(xy) < r3

⇒ TfN (e)(xy) = 1, IfN (e)(xy) = FfN (e)(xy) = 0

⇒ [fN(e)](xy) = (1, 0, 0)

⇒ xy ∈ N̂
Since N̂ is completely prime ideal, so either x ∈ N̂ or y ∈ N̂ i.e., [fN(e)](x) =
[fN(e)](y) = (1, 0, 0). A contradiction arises to the fact that [fN(e)](x) = [fN(e)](y) =
(r1, r2, r3) 6= (1, 0, 0). Thus,

TfN (e)(xy) ≤ max{TfN (e)(x), TfN (e)(y)},
IfN (e)(xy) ≥ min{IfN (e)(x), IfN (e)(y)},
FfN (e)(xy) ≥ min{FfN (e)(x), FfN (e)(y)};

and so N is a neutrosophic soft completely prime ideal over (R,E).
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3.5 Theorem

Let N be a neutrosophic soft completely prime ideal over (R,E) with |fN(e)| =
2, [fN(e)](0r) = (1, 0, 0) for each e ∈ E. Then N is a neutrosophic soft prime ideal
over (R,E).

Proof. Let the condition hold. By Theorem [3.4], N̂ = {x ∈ R : [fN(e)](x) = (1, 0, 0)}
is a completely prime ideal of R. Then by Proposition [3.2], N̂ is a prime ideal of R.
Hence N is a neutrosophic soft prime ideal over (R,E) by Theorem [2.11](1).

3.6 Theorem

Let R be a ring. Then S(6= φ) ⊂ R be a completely prime ideal of R iff an NSS N
over (R,E) is a neutrosophic soft completely prime ideal where fN : E −→ NS(R)
is defined as :

[fN(e)](x) =

{
(r1, r2, r3) if x ∈ S
(t1, t2, t3) if x /∈ S.

with r1 > t1, r2 < t2, r3 < t3 and r1, r2, r3, t1, t2, t3 ∈ [0, 1].

Proof. First let S( 6= φ) ⊂ R be a completely prime ideal of R. Then S is an ideal of
R and so by Theorem [2.11](3), N is a neutrosophic soft ideal over (R,E). To end
the theorem, we shall just show that N is completely prime. For contrary, suppose

TfN (e)(xy) > max{TfN (e)(x), TfN (e)(y)},
IfN (e)(xy) < min{IfN (e)(x), IfN (e)(y)},
FfN (e)(xy) < min{FfN (e)(x), FfN (e)(y)};

Then by definition of fN(e), we have [fN(e)](xy) = (r1, r2, r3) and [fN(e)](x) =
[fN(e)](y) = (t1, t2, t3). This implies xy ∈ S but x, y /∈ S which is a contradic-
tion to the fact that S is a completely prime ideal of R. Hence N is a neutrosophic
soft completely prime ideal over (R,E).

Conversely, let N in given form be a neutrosophic soft completely prime ideal over
(R,E). Then N is a neutrosophic soft ideal over (R,E) and so by Theorem [2.11](3),
S is an ideal of R. To show S is a completely prime ideal of R, let xy ∈ S. Then,

[fN(e)](xy) = (r1, r2, r3)

⇒ TfN (e)(xy) = r1, IfN (e)(xy) = r2, FfN (e)(xy) = r3

⇒ max{TfN (e)(x), TfN (e)(y)} ≥ r1, min{IfN (e)(x), IfN (e)(y)} ≤ r2,

min{FfN (e)(x), FfN (e)(y)} ≤ r3

⇒ either TfN (e)(x) ≥ r1, IfN (e)(x) ≤ r2, FfN (e)(x) ≤ r3

or TfN (e)(y) ≥ r1, IfN (e)(y) ≤ r2, FfN (e)(y) ≤ r3

⇒ either x ∈ S or y ∈ S

Thus S is a completely prime ideal of R.
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3.6.1 Corollary

A non empty subset S of a ring R is a completely prime ideal iff the characteristic
function χS is a neutrosophic soft completely prime ideal over (R,E) where χS :
E −→ NS(R) is defined by :

[χS(e)](x) =

{
(1, 0, 0) if x ∈ S
(0, 1, 1) if x /∈ S.

Proof. It is the particular case of Theorem [3.6].

3.7 Theorem

An NSS M over (R,E) is a neutrosophic soft completely prime ideal means each
nonempty level set [fM(e)](α,β,γ) of the neutrosophic set fM(e), e ∈ E is a completely
prime ideal of R where α ∈ ImTfM (e), β ∈ Im IfM (e), γ ∈ ImFfM (e).

Proof. Here M is a neutrosophic soft completely prime ideal over (R,E). Then M is
a neutrosophic soft ideal over (R,E) and so by Theorem [2.11](4), [fM(e)](α,β,γ) is an
ideal of R. To complete the theorem, let xy ∈ [fM(e)](α,β,γ). Then,

TfM (e)(xy) ≥ α, IfM (e)(xy) ≤ β, FfM (e)(xy) ≤ γ

⇒ max{TfM (e)(x), TfM (e)(y)} ≥ α, min{IfM (e)(x), IfM (e)(y)} ≤ β,

min{FfM (e)(x), FfM (e)(y)} ≤ γ

⇒ either TfM (e)(x) ≥ α, IfM (e)(x) ≤ β, FfM (e)(x) ≤ γ

or TfM (e)(y) ≥ α, IfM (e)(y) ≤ β, FfM (e)(y) ≤ γ

⇒ either x ∈ [fM(e)](α,β,γ) or y ∈ [fM(e)](α,β,γ)

Thus [fM(e)](α,β,γ) is a completely prime ideal of R.

3.8 Proposition

Let S be a completely prime ideal of a ring R. Then there exists a neutrosophic soft
completely prime ideal M over (R,E) such that [fM(e)](α,β,γ) = S for e ∈ E and
α, β, γ ∈ (0, 1).

Proof. As S is a completely prime ideal of a ring R, so S is an ideal of R. For
α, β, γ ∈ (0, 1) define an NSS M over (R,E) as following :

[fM(e)](x) =

{
(α, β, γ) if x ∈ S
(0, 1, 1) if x /∈ S.

Then by Theorem [2.11](3),M is a neutrosophic soft ideal over (R,E). If possible let
M is not a neutrosophic soft completely prime ideal over (R,E). Then,

TfM (e)(xy) > max{TfM (e)(x), TfM (e)(y)},
IfM (e)(xy) < min{IfM (e)(x), IfM (e)(y)},
FfM (e)(xy) < min{FfM (e)(x), FfM (e)(y)};
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Then by definition of fM(e), we have [fM(e)](xy) = (α, β, γ) and [fM(e)](x) =
[fM(e)](y) = (0, 1, 1). This implies xy ∈ S but x, y /∈ S which is a contradiction
to the fact that S is a completely prime ideal of R. Hence M is a neutrosophic soft
completely prime ideal over (R,E). Obviously [fM(e)](α,β,γ) = S for each e ∈ E.

3.9 Theorem

Let (ϕ, ψ) : (R1, E) −→ (R2, E) be a neutrosophic soft homomorphism where R1, R2

be two rings. Suppose (M,E) and (N,E) be two neutrosophic soft left (right) ideals
over R1 and R2, respectively. Then,
1. (ϕ, ψ)(M,E) is a neutrosophic soft left (right) ideal over R2 if (ϕ, ψ) is epimor-
phism.
2. (ϕ, ψ)−1(N,E) is a neutrosophic soft left (right) ideal over R1.

Proof. 1. Let b ∈ ψ(E) and y1, y2, s ∈ R2. For ϕ−1(y1) = φ or ϕ−1(y2) = φ, the proof
is straight forward.
So, we assume that there exists x1, x2, r ∈ R1 such that ϕ(x1) = y1, ϕ(x2) = y2, ϕ(r) =
s. Then,

Tfϕ(M)(b)(y1 − y2) = max
ϕ(x)=y1−y2

max
ψ(a)=b

[TfM (a)(x)]

≥ max
ψ(a)=b

[TfM (a)(x1 − x2)]

≥ max
ψ(a)=b

[TfM (a)(x1) ∗ TfM (a)(x2)]

= max
ψ(a)=b

[TfM (a)(x1)] ∗ max
ψ(a)=b

[TfM (a)(x2)]

Tfϕ(M)(b)(sy1) = max
ϕ(x)=sy1

max
ψ(a)=b

[TfM (a)(x)]

≥ max
ψ(a)=b

[TfM (a)(rx1)]

≥ max
ψ(a)=b

[TfM (a)(x1)]

Since, this inequality is satisfied for each x1, x2 ∈ R1 satisfying ϕ(x1) = y1, ϕ(x2) = y2
so we have,

Tfϕ(M)(b)(y1 − y2)
≥ ( max

ϕ(x1)=y1
max
ψ(a)=b

[TfM (a)(x1)]) ∗ ( max
ϕ(x2)=y2

max
ψ(a)=b

[TfM (a)(x2)])

= Tfϕ(M)(b)(y1) ∗ Tfϕ(M)(b)(y2)

Also, Tfϕ(M)(b)(sy1) ≥ maxϕ(x1)=y1 maxψ(a)=b [TfM (a)(x1)] = Tfϕ(M)(b)(y1)

Next,

Ifϕ(M)(b)(y1 − y2) = min
ϕ(x)=y1−y2

min
ψ(a)=b

[IfM (a)(x)]

≤ min
ψ(a)=b

[IfM (a)(x1 − x2)]

≤ min
ψ(a)=b

[IfM (a)(x1) � IfM (a)(x2)]

= min
ψ(a)=b

[IfM (a)(x1)] � min
ψ(a)=b

[IfM (a)(x2)]
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Ifϕ(M)(b)(sy1) = min
ϕ(x)=sy1

min
ψ(a)=b

[IfM (a)(x)]

≤ min
ψ(a)=b

[IfM (a)(rx1)]

≤ min
ψ(a)=b

[IfM (a)(x1)]

Since, this inequality is satisfied for each x1, x2 ∈ R1 satisfying ϕ(x1) = y1, ϕ(x2) = y2
so we have,

Ifϕ(M)(b)(y1 − y2)
≤ ( min

ϕ(x1)=y1
min
ψ(a)=b

[IfM (a)(x1)]) � ( min
ϕ(x2)=y2

min
ψ(a)=b

[IfM (a)(x2)])

= Ifϕ(M)(b)(y1) � Ifϕ(M)(b)(y2)

Also, Ifϕ(M)(b)(sy1) ≤ minϕ(x1)=y1 minψ(a)=b [IfM (a)(x1)] = Ifϕ(M)(b)(y1).
Similarly, we can show that
Ffϕ(M)(b)(y1 − y2) ≤ Ffϕ(M)(b)(y1) � Ffϕ(M)(b)(y2), Ffϕ(M)(b)(sy1) ≥ Ffϕ(M)(b)(y1);
This completes the proof.

2. For a ∈ ψ−1(E) and x1, x2 ∈ R1, we have,

Tfϕ−1(N)(a)
(x1 − x2) = TfN [ψ(a)](ϕ(x1 − x2))

= TfN [ψ(a)](ϕ(x1)− ϕ(x2))

≥ TfN [ψ(a)](ϕ(x1)) ∗ TfN [ψ(a)](ϕ(x2))

= Tfϕ−1(N)(a)
(x1) ∗ Tfϕ−1(N)(a)

(x2)

Tfϕ−1(N)(a)
(rx1) = TfN [ψ(a)](ϕ(rx1))

= TfN [ψ(a)](ϕ(r)ϕ(x1))

≥ TfN [ψ(a)](sϕ(x1))

≥ TfN [ψ(a)](ϕ(x1))

= Tfϕ−1(N)(a)
(x1)

Next,

Ifϕ−1(N)(a)
(x1 − x2) = IfN [ψ(a)](ϕ(x1 − x2))

= IfN [ψ(a)](ϕ(x1)− ϕ(x2))

≤ IfN [ψ(a)](ϕ(x1)) � IfN [ψ(a)](ϕ(x2))

= Ifϕ−1(N)(a)
(x1) � Ifϕ−1(N)(a)

(x2)

Ifϕ−1(N)(a)
(rx1) = IfN [ψ(a)](ϕ(rx1))

= IfN [ψ(a)](ϕ(r)ϕ(x1))

≤ IfN [ψ(a)](sϕ(x1))

≤ IfN [ψ(a)](ϕ(x1))

= Ifϕ−1(N)(a)
(x1)

Similarly, Ffϕ−1(N)(a)
(x1 − x2) ≤ Ffϕ−1(N)(a)

(x1) � Ffϕ−1(N)(a)
(x2) and

Ffϕ−1(N)(a)
(rx1) ≤ Ffϕ−1(N)(a)

(x1);

This proves the 2nd part.
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3.10 Theorem

Let (ϕ, ψ) be a neutrosophic soft homomorphism from a ring R1 to a ring R2. Suppose
(M,E) and (N,E) are neutrosophic soft completely prime ideals over R1 and R2,
respectively. Then,
1. (ϕ, ψ)(M,E) is a neutrosophic soft completely prime ideal over R2.
2. (ϕ, ψ)−1(N,E) is a neutrosophic soft completely prime ideal over R1.

Proof. 1. If possible, let (M,E) be a neutrosophic soft completely prime ideal over
R1 but (ϕ, ψ)(M,E) is not so over R2. Then for b ∈ ψ(E) and y1, y2 ∈ R2,

Tfϕ(M)(b)(y1y2) > max{Tfϕ(M)(b)(y1), Tfϕ(M)(b)(y2)}
⇒ max

ϕ(x)=y1y2
max
ψ(a)=b

[TfM (a)(x)] > max{( max
ϕ(x)=y1

max
ψ(a)=b

[TfM (a)(x)]),

( max
ϕ(x)=y2

max
ψ(a)=b

[TfM (a)(x)])}

⇒ max
ϕ(x)=y1y2

[TfM (a)(x)] > max{( max
ϕ(x)=y1

[TfM (a)(x)]), ( max
ϕ(x)=y2

[TfM (a)(x)])}

⇒ max
ϕ(x)=y1y2

[TfM (a)(x)] ≥ max{TfM (a)(x1), TfM (a)(x2)}

Since the inequality holds for each x1, x2 ∈ R1 satisfying ϕ(x1) = y1, ϕ(x2) = y2 so we
have TfM (a)(x1x2) > max{TfM (a)(x1), TfM (a)(x2)} which is a contradiction to the truth
that (M,E) is a neutrosophic soft completely prime ideal over R1. We can reach to
the same conclusion taking the indeterminacy membership function (I) and falsity
membership function (F ) also. Hence we get the first result.

2. For a ∈ ψ−1(E) and x1, x2 ∈ R1, we have,

Tfϕ−1(N)(a)
(x1x2) = TfN [ψ(a)](ϕ(x1x2))

= TfN [ψ(a)](ϕ(x1)ϕ(x2))

≤ max{TfN [ψ(a)](ϕ(x1)), TfN [ψ(a)](ϕ(x2))}
= max{Tfϕ−1(N)(a)

(x1), Tfϕ−1(N)(a)
(x2)}

Ifϕ−1(N)(a)
(x1x2) = IfN [ψ(a)](ϕ(x1x2))

= IfN [ψ(a)](ϕ(x1)ϕ(x2))

≥ min{IfN [ψ(a)](ϕ(x1)), IfN [ψ(a)](ϕ(x2))}
= min{Ifϕ−1(N)(a)

(x1), Ifϕ−1(N)(a)
(x2)}

Ffϕ−1(N)(a)
(x1x2) = FfN [ψ(a)](ϕ(x1x2))

= FfN [ψ(a)](ϕ(x1)ϕ(x2))

≥ min{FfN [ψ(a)](ϕ(x1)), FfN [ψ(a)](ϕ(x2))}
= min{Ffϕ−1(N)(a)

(x1), Ffϕ−1(N)(a)
(x2)}

This shows the 2nd result.

4 Neutrosophic Soft Completely Semi-Prime Ideal

In this section the concept of semi-prime ideal, completely semi-prime ideal of a ring
R and neutrosophic soft completely semi-prime ideal are focussed.
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4.1 Definition

1. An ideal I of a ring R is called a semi-prime ideal if there is another ideal J of R
such that JJ ⊆ I ⇒ J ⊆ I.

2. An ideal J of a ring R is called a completely semi-prime ideal if for x ∈ R,
xx ∈ J ⇒ x ∈ J . xx is denoted by x2.

4.1.1 Example

1. Let R = {0, x, y, z} be a ring. The two binary operations addition and multipli-
cation on R are given by the following tables :

Table 5

+ 0 x y z
0 0 x y z
x x 0 z y
y y z 0 x
z z y x 0

Table 6

· 0 x y z
0 0 0 0 0
x 0 x x 0
y 0 x y z
z 0 0 z z

Then {0, x} is a completely semi-prime ideal of R as 0·0 = 0, x·x = x, y·y = y, z·z = z.

2. Consider the Example [3.1.1](3). Then {0, x} is not a completely semi-prime ideal,
because z · z = x, y · y = 0 but y, z /∈ {0, x}.

4.2 Proposition

Every completely prime ideal of a ring R is a completely semi-prime ideal of R.

Proof. By taking y = x, the proof follows directly from Definition [3.1].

4.3 Definition

Let R be a ring and E be a parametric set. A neutrosophic soft ideal N over (R,E)
is called a neutrosophic soft completely semi-prime ideal if ∀x, y ∈ R and ∀e ∈ E,

TfN (e)(x
2) ≤ TfN (e)(x), IfN (e)(x

2) ≥ IfN (e)(x), FfN (e)(x
2) ≥ FfN (e)(x).

4.3.1 Example

Consider the Example [4.1.1](1). We define an NSS M over (R,E) as following,
∀r ∈ R and ∀e ∈ E,

[fM(e)](r) =

{
(0.4, 0.1, 0.5) if r ∈ {0, x}
(0.2, 0.5, 0.8) if r /∈ {0, x}.

Then M is a neutrosophic soft completely semi-prime ideal over (R,E).
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4.4 Lemma

A neutrosophic soft ideal N over (R,E) is a neutrosophic soft completely semi-prime
ideal iff [fN(e)](x2) = [fN(e)](x), for every e ∈ E, x ∈ R.

Proof. Let N be a neutrosophic soft ideal over (R,E) with [fN(e)](x2) = [fN(e)](x),
∀e ∈ E and ∀x ∈ R. Then by Definition [4.3], N is a neutrosophic soft completely
semi-prime ideal over (R,E).

Conversely, if N is a neutrosophic soft completely semi-prime ideal by Definition
[4.3], TfN (e)(x

2) ≤ TfN (e)(x), IfN (e)(x
2) ≥ IfN (e)(x), FfN (e)(x

2) ≥ FfN (e)(x) and as N
is a neutrosophic soft ideal over (R,E), then TfN (e)(x

2) ≥ TfN (e)(x), IfN (e)(x
2) ≤

IfN (e)(x), FfN (e)(x
2) ≤ FfN (e)(x). Hence [fN(e)](x2) = [fN(e)](x) for every e ∈ E, x ∈

R.

4.5 Theorem

An NSS N over (R,E) is a neutrosophic soft completely semi-prime ideal iff for
e ∈ E, S = {x ∈ R : [fN(e)](x) = [fN(e)](0r)}, 0r being the additive identity of ring
R, is a completely semi-prime ideal of R.

Proof. Let N be a neutrosophic soft completely semi-prime ideal over (R,E). Then
[fN(e)](x2) = [fN(e)](x) for every e ∈ E, x ∈ R. Now let x2 ∈ S. Then [fN(e)](x2) =
[fN(e)](0r)⇒ [fN(e)](x) = [fN(e)](0r)⇒ x ∈ S. Hence S is a completely semi-prime
ideal of R.

Conversely, if S is a completely semi-prime ideal of R. Then x2 ∈ S ⇒ x ∈ S. Since
x2 ∈ S, then [fN(e)](x2) = [fN(e)](0r) and [fN(e)](x) = [fN(e)](0r) ⇒ [fN(e)](x2) =
[fN(e)](x). Hence by Lemma [4.4], N is a neutrosophic soft completely semi-prime
ideal over (R,E).

4.6 Theorem

An NSSN is a neutrosophic soft completely semi-prime ideal over (R,E) iff [fN(e)](α,β,γ)
is a completely semi-prime ideal of R where α ∈ ImTfN (e), β ∈ Im IfN (e), γ ∈
ImFfN (e).

Proof. Let N be a neutrosophic soft completely semi-prime ideal over (R,E). Then
[fN(e)](x2) = [fN(e)](x). Now,

x2 ∈ [fN(e)](α,β,γ)

⇒ TfN (e)(x
2) ≥ α, IfN (e)(x

2) ≤ β, FfN (e)(x
2) ≤ γ

⇒ TfN (e)(x) ≥ α, IfN (e)(x) ≤ β, FfN (e)(x) ≤ γ

⇒ x ∈ [fN(e)](α,β,γ)

Hence, [fN(e)](α,β,γ) is a completely semi-prime ideal of R.
Conversely, let [fN(e)](α,β,γ) be a completely semi-prime ideal of R. Then x2 ∈

[fN(e)](α,β,γ) ⇒ x ∈ ([fN(e)](α,β,γ) i.e.,

TfN (e)(x
2) ≥ α, IfN (e)(x

2) ≤ β, FfN (e)(x
2) ≤ γ

⇒ TfN (e)(x) ≥ α, IfN (e)(x) ≤ β, FfN (e)(x) ≤ γ
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Now, suppose [fN(e)](x2) 6= [fN(e)](x). Let [fN(e)](x) = (t1, t2, t3). Then x2 /∈
[fN(e)](t1,t2,t3) but x ∈ [fN(e)](t1,t2,t3) which is a contradiction as [fN(e)](α,β,γ) is a
completely semi-prime ideal of R. Hence [fN(e)](x2) = [fN(e)](x) and so N is a
neutrosophic soft completely semi-prime ideal over (R,E) by Lemma [4.4].

4.7 Theorem

Let (ϕ, ψ) be a neutrosophic soft homomorphism from a ring R1 to a ring R2. Suppose
(M,E) and (N,E) are neutrosophic soft completely semi-prime ideals over R1 and
R2, respectively. Then,
1. (ϕ, ψ)(M,E) is a neutrosophic soft completely semi-prime ideal over R2.
2. (ϕ, ψ)−1(N,E) is a neutrosophic soft completely semi-prime ideal over R1.

Proof. 1. If possible, let (M,E) be a neutrosophic soft completely semi-prime ideal
over R1 but (ϕ, ψ)(M,E) is not so over R2. Then for b ∈ ψ(E) and y ∈ R2,

Tfϕ(M)(b)(y
2) > Tfϕ(M)(b)(y)

⇒ max
ϕ(x)=y2

max
ψ(a)=b

[TfM (a)(x)] > max
ϕ(x)=y

max
ψ(a)=b

[TfM (a)(x)]

⇒ max
ϕ(x)=y2

[TfM (a)(x)] > max
ϕ(x)=y

[TfM (a)(x)]

⇒ max
ϕ(x)=y2

[TfM (a)(x)] ≥ TfM (a)(x)

Since the inequality holds for each x ∈ R1 satisfying ϕ(x) = y, so we have TfM (a)(x
2) >

TfM (a)(x) which is a contradiction to the fact that (M,E) is a neutrosophic soft
completely semi-prime ideal over R1. We can reach to the same conclusion taking the
indeterminacy membership function (I) and falsity membership function (F ) also.
Hence we get the first result.

2. For a ∈ ψ−1(E) and x ∈ R1, we have,

Tfϕ−1(N)(a)
(x2) = TfN [ψ(a)](ϕ(x2)) = TfN [ψ(a)](ϕ(x))2 ≤ TfN [ψ(a)](ϕ(x)) = Tfϕ−1(N)(a)

(x),

Ifϕ−1(N)(a)
(x2) = IfN [ψ(a)](ϕ(x2)) = IfN [ψ(a)](ϕ(x))2 ≥ IfN [ψ(a)](ϕ(x)) = Ifϕ−1(N)(a)

(x),

Ffϕ−1(N)(a)
(x2) = FfN [ψ(a)](ϕ(x2)) = FfN [ψ(a)](ϕ(x))2 ≥ FfN [ψ(a)](ϕ(x)) = Ffϕ−1(N)(a)

(x);

This proves the 2nd result.

5 Neutrosophic soft prime k-ideal

5.1 Definition

A neutrosophic soft ideal N over (R,E) is said to be a neutrosophic soft k-ideal over
(R,E) if ∀x, y ∈ R and ∀e ∈ E,

TfN (e)(x) ≥ min{TfN (e)(x+ y), TfN (e)(y)}
IfN (e)(x) ≤ max{IfN (e)(x+ y), IfN (e)(y)}
FfN (e)(x) ≤ max{FfN (e)(x+ y), FfN (e)(y)}.
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5.1.1 Example

1. Let Z be the set of all integers and E = {e1, e2, e3} be a parametric set. We
consider an NSS N over (Z, E) given by the following table :

Table 7
fN(e1) fN(e2) fN(e3)

Z1 (0.3, 0.8, 0.5) (0.4, 0.5, 0.7) (0.7, 0.6, 0.4)
Z2 (0.4, 0.6, 0.3) (0.6, 0.2, 0.4) (0.7, 0.4, 0.2)
Z3 (0.6, 0.2, 0.1) (1, 0, 0) (0.9, 0.1, 0.1)

where Z1 = {±1,±3,±5, · · · },Z2 = {±2,±4,±6, · · · },Z3 = {0}. Then N is a neu-
trosophic soft k-ideal over (Z, E). To verify it, we shall show
(i) fN(e) is neutrosophic subgroup of (Z,+) for each e ∈ E.
(ii) fN(e) is both neutrosophic left and right ideal of Z for each e ∈ E.
(iii) fN(e) is neutrosophic k-ideal of Z for each e ∈ E.

If x ∈ Z1, y ∈ Z2 then x− y ∈ Z1. We then write Z1 − Z2 = Z1 and so on.
Here Z1 − Z1 = Z2 or Z3, Z1 − Z2 = Z1, Z1 − Z3 = Z3, Z2 − Z2 = Z2 or Z3,
Z2 − Z3 = Z2, Z3 − Z3 = Z3. Then Table 7 shows the result (i) obviously.

Next Z1.Z1 = Z1, Z2.Z2 = Z2, Z3.Z3 = Z3, Z2.Z1 = Z1.Z2 = Z2, Z1.Z3 =
Z3.Z1 = Z3, Z2.Z3 = Z3.Z2 = Z3. Then the result (ii) also holds by Table 7.

Finally Z1 + Z1 = Z2 or Z3, Z1 + Z2 = Z1, Z1 + Z3 = Z3, Z2 + Z2 = Z2 or Z3,
Z2 + Z3 = Z2, Z3 + Z3 = Z3. The Table 7 then meets the result (iii) clearly.

2. Let R be the set of real numbers and E = {e1, e2, e3} be a parametric set. Consider
an NSS M over (R, E) given by the following table :

Table 8
fM(e1) fM(e2) fM(e3)

Q (0.6, 0.1, 0.3) (0.8, 0.2, 0.4) (0.5, 0.6, 0.7)
Qc (0.5, 0.4, 0.7) (0.4, 0.5, 0.6) (0.3, 0.7, 1)

where Q and Qc are the set of rational and irrational numbers, respectively. If
x ∈ Q, y ∈ Qc then x− y ∈ Qc. We write Q−Qc = Qc and so on.
Then Q−Q = Q, Q−Qc = Qc, Qc−Qc = Q or Qc. Clearly fM(e) is neutrosophic
subgroup of (R,+) for each e ∈ E by Table 8.
Next, Q.Q = Q, Q.Qc = Qc, Qc.Qc = Q or Qc. Then Table 8 shows that fM(e) is
neutrosophic ideal of R for each e ∈ E.
Finally Q + Q = Q, Q + Qc = Qc, Qc + Qc = Q or Qc. Then fM(e) is neutrosophic
k-ideal of R for each e ∈ E by Table 8.
Hence M is a neutrosophic soft k-ideal over (R, E).

5.2 Definition

A neutrosophic soft k-ideal P over (R,E) is said to be a neutrosophic soft prime
k-ideal if (i) P is not constant over (R,E), (ii) for any two neutrosophic soft ideals
M,N over (R,E), MoN ⊆ P ⇒ either M ⊆ P or N ⊆ P .
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5.3 Theorem

Let P be a neutrosophic soft prime k-ideal over (R,E). Then P0 = {x ∈ R :
[fP (e)](x) = [fP (e)](0r),∀e ∈ E} is a prime k-ideal of R.

Proof. Let x, x+ y ∈ P0 for x, y ∈ R. Then [fP (e)](x) = [fP (e)](x+ y) = [fP (e)](0r).
Since P is a neutrosophic soft k-ideal over (R,E), so ∀e ∈ E,

TfP (e)(y) ≥ min{TfP (e)(x+ y), TfP (e)(x)} = TfP (e)(0r),

IfP (e)(y) ≤ max{IfP (e)(x+ y), IfP (e)(x)} = IfP (e)(0r),

FfP (e)(y) ≤ max{FfP (e)(x+ y), FfP (e)(x)} = FfP (e)(0r);

But TfP (e)(0r) ≥ TfP (e)(y), IfP (e)(0r) ≤ IfP (e)(y), FfP (e)(0r) ≤ FfP (e)(y), ∀e ∈ E.
Thus TfP (e)(y) = TfP (e)(0r), IfP (e)(y) = IfP (e)(0r), FfP (e)(y) ≤ FfP (e)(0r), ∀e ∈ E
i.e., [fP (e)](y) = [fP (e)](0r) and so y ∈ P0. Hence P0 is a k-ideal of R. Also by
Theorem [2.11](6), P0 is a prime ideal of R. This completes the proof.

5.4 Theorem

Let P be a neutrosophic soft prime k-ideal over (Z, E),Z being the set of integers
with P0 = {x ∈ R : [fP (e)](x) = [fP (e)](0), ∀e ∈ E} = nZ, n being a natural number.
Then |fP (e)| ≤ r, where r is the number of distinct positive divisor of n.

Proof. Let a(6= 0) be an integer and d = gcd(a, n). Then there exists r, s ∈ Z − {0}
such that ns = ar + d or ar = ns+ d. We shall now estimate following two cases :
Case 1 : When ns = ar + d, then ∀e ∈ E and as n ∈ P0 = nZ,

TfP (e)(ar + d) = TfP (e)(ns) ≥ TfP (e)(n) = TfP (e)(0) ≥ TfP (e)(ar),

IfP (e)(ar + d) = IfP (e)(ns) ≤ IfP (e)(n) = IfP (e)(0) ≤ IfP (e)(ar),

FfP (e)(ar + d) = FfP (e)(ns) ≤ FfP (e)(n) = FfP (e)(0) ≤ FfP (e)(ar);

Again P is a neutrosophic soft k-ideal over (Z, E). So,

TfP (e)(d) ≥ min{TfP (e)(ar + d), TfP (e)(ar)} = TfP (e)(ar) ≥ TfP (e)(a),

IfP (e)(d) ≤ max{IfP (e)(ar + d), IfP (e)(ar)} = IfP (e)(ar) ≤ IfP (e)(a),

FfP (e)(d) ≤ max{FfP (e)(ar + d), FfP (e)(ar)} = FfP (e)(ar) ≤ FfP (e)(a);

Case 2 : When ar = ns+ d, then ∀e ∈ E and as n ∈ P0 = nZ,

TfP (e)(ns+ d) = TfP (e)(ar) ≥ TfP (e)(a),

IfP (e)(ns+ d) = IfP (e)(ar) ≤ IfP (e)(a),

FfP (e)(ns+ d) = FfP (e)(ar) ≤ FfP (e)(a);

Again,

TfP (e)(ns) ≥ TfP (e)(n) = TfP (e)(0) ≥ TfP (e)(a),

IfP (e)(ns) ≤ IfP (e)(n) = IfP (e)(0) ≤ IfP (e)(a),

FfP (e)(ns) ≤ FfP (e)(n) = FfP (e)(0) ≤ FfP (e)(a);
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Now as P is a neutrosophic soft k-ideal over (Z, E) so,

TfP (e)(d) ≥ min{TfP (e)(ns+ d), TfP (e)(ns)} ≥ TfP (e)(a),

IfP (e)(d) ≤ max{IfP (e)(ns+ d), IfP (e)(ns)} ≤ IfP (e)(a),

FfP (e)(d) ≤ max{FfP (e)(ns+ d), FfP (e)(ns)} ≤ FfP (e)(a);

Thus in either case ∀e ∈ E,
TfP (e)(d) ≥ TfP (e)(a), IfP (e)(d) ≤ IfP (e)(a), FfP (e)(d) ≤ FfP (e)(a);
Further since d is a divisor of a, there exists t ∈ Z−{0} such that a = dt. So ∀e ∈ E,
TfP (e)(a) = TfP (e)(dt) ≥ TfP (e)(d), IfP (e)(a) = IfP (e)(dt) ≤ IfP (e)(d),
FfP (e)(a) = FfP (e)(dt) ≤ FfP (e)(d);
Hence TfP (e)(d) = TfP (e)(a), IfP (e)(d) = IfP (e)(a), FfP (e)(d) = FfP (e)(a), ∀e ∈ E.
Thus for any integer a(6= 0) there exists a divisor d of n such that [fP (e)](d) =
[fP (e)](a), ∀e ∈ E.
If a = 0 then TfP (e)(a) = TfP (e)(0) = TfP (e)(n), IfP (e)(a) = IfP (e)(0) = IfP (e)(n),
FfP (e)(a) = FfP (e)(0) = FfP (e)(n), ∀e ∈ E.
This follows the theorem.

5.5 Lemma

For a neutrosophic soft prime k-ideal N over (Z, E)(Z being the set of integers),
N0 = pZ is a prime k-ideal of Z iff p is either zero or prime.

This result is similar to the matter incase of prime ideal in the ring of integers in
classical sense. So the proof is omitted.

5.6 Theorem

Let N be a neutrosophic soft prime k-ideal over (Z, E),Z being the set of integers.
Then |fN(e)| = 2 for each e ∈ E.
Conversely, if N is an NSS over (Z, E) such that for each e ∈ E, [fN(e)](x) = (1, 0, 0)
when p|x and [fN(e)](x) = (α, β, γ) when p 6 |x, p being a fixed prime and β > 0, γ >
0, α < 1, then N be a neutrosophic soft prime k-ideal over (Z, E).

Proof. Let N be a neutrosophic soft prime k-ideal over (Z, E) with N0 = pZ. By
Theorem [5.3], N0 is a prime k-ideal of Z. Hence by Lemma [5.5], p is prime i.e., p
has only two distinct divisors namely 1, p. So by Theorem [5.4], |fN(e)| ≤ 2. But N
being a neutrosophic soft prime k-ideal can not be constant, so |fN(e)| = 2, ∀e ∈ E.
Conversely, let N be an NSS over (Z, E) satisfying the given conditions. Let x, y ∈ Z.
If TfN (e)(x) = α or TfN (e)(y) = α then TfN (e)(x+ y) = 1 or α and so
TfN (e)(x+ y) ≥ min{TfN (e)(x), TfN (e)(y)}.
If TfN (e)(x) = 1 and TfN (e)(y) = 1 then p|x and p|y. It implies p|(x+ y) and
TfN (e)(x+ y) = 1 = min{TfN (e)(x), TfN (e)(y)}.
Thus in either case TfN (e)(x+ y) ≥ min{TfN (e)(x), TfN (e)(y)}, ∀x, y ∈ Z, ∀e ∈ E.
Next, if IfN (e)(x) = β or IfN (e)(y) = β then IfN (e)(x+ y) = 0 or β and so,
IfN (e)(x+ y) ≤ max{IfN (e)(x), IfN (e)(y)}.
If IfN (e)(x) = 0 and TfN (e)(y) = 0 then p|x and p|y. It implies p|(x+ y) and
IfN (e)(x+ y) = 0 = min{IfN (e)(x), IfN (e)(y)}.
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Thus in either case IfN (e)(x+ y) ≤ max{IfN (e)(x), IfN (e)(y)}, ∀x, y ∈ Z, ∀e ∈ E.
Finally, if FfN (e)(x) = β or FfN (e)(y) = β then FfN (e)(x+ y) = 0 or β and so
FfN (e)(x+ y) ≤ max{FfN (e)(x), FfN (e)(y)}.
If FfN (e)(x) = 0 and FfN (e)(y) = 0 then p|x and p|y. It implies p|(x+ y) and
FfN (e)(x+ y) = 0 = min{FfN (e)(x), FfN (e)(y)}.
Thus in either case FfN (e)(x+ y) ≤ max{FfN (e)(x), FfN (e)(y)}, ∀x, y ∈ Z, ∀e ∈ E.
Further if [fN(e)](x) = (α, β, γ) then either [fN(e)](xy) = (α, β, γ) or [fN(e)](xy) =
(1, 0, 0) i.e., TfN (e)(xy) ≥ TfN (e)(x), IfN (e)(xy) ≤ IfN (e)(x), FfN (e)(xy) ≤ FfN (e)(x).
If [fN(e)](x) = (1, 0, 0) then p|x and so p|xy. Then [fN(e)](x) = [fN(e)](xy) =
(1, 0, 0). Thus in either case we have ∀x, y ∈ Z and ∀e ∈ E,
TfN (e)(xy) ≥ TfN (e)(x), IfN (e)(xy) ≤ IfN (e)(x), FfN (e)(xy) ≤ FfN (e)(x).
So N is a neutrosophic soft ideal over (Z, E).
We shall now prove that N is a neutrosophic soft k-ideal over (Z, E).
If [fN(e)](x + y) = (α, β, γ) or [fN(e)](y) = (α, β, γ), then the inequalities in Defini-
tion [5.1] are obvious.
If [fN(e)](x+ y) = (1, 0, 0) or [fN(e)](y) = (1, 0, 0), then p|(x+ y) and p|y. It implies
p|x and so [fN(e)](x) = (1, 0, 0). Thus the inequalities in Definition [5.1] hold clearly.
Therefore N is a neutrosophic soft k-ideal over (Z, E) and so N0 is a k-ideal over Z.
Finally, we shall prove that N is a neutrosophic soft prime k-ideal over (Z, E).
To prove it, we shall first show that N0 = pZ is a prime k-ideal of Z. Now,
x ∈ N0 ⇔ [fN(e)](x) = [fN(e)](0) = (1, 0, 0) ⇔ p|x ⇔ x = pm,m ∈ Z ⇔ x ∈ pZ.
Thus N0 = pZ, p being a prime and so N0 is a prime k-ideal of Z by Lemma [5.5].
Further, |fN(e)| = 2, ∀e ∈ E namely (1, 0, 0) and (α, β, γ). So N is not con-
stant over (Z, E). Now assume two neutrosophic soft ideals S,Q over (Z, E) such
that SoQ ⊆ N and S 6⊆ N, Q 6⊆ N . Then there exists x, y ∈ Z such that
TfS(e)(x) > TfN (e)(x), IfS(e)(x) < IfN (e)(x), FfS(e)(x) < FfN (e)(x) and TfQ(e)(y) >
TfN (e)(y), IfQ(e)(y) < IfN (e)(y), FfQ(e)(y) < FfN (e)(y), ∀e ∈ E. Then [fN(e)](x) =
[fN(e)](y) = (α, β, γ) obviously and so x, y /∈ N0. It implies xy /∈ N0 as it is a
prime k-ideal of an abelian ring Z. So [fN(e)](xy) = (α, β, γ). Thus TfSoQ(e)(xy) ≤
TfN (e)(xy) = α, IfSoQ(e)(xy) ≥ IfN (e)(xy) = β, FfSoQ(e)(xy) ≥ FfN (e)(xy) = γ. But,

TfSoQ(e)(xy) ≥ TfS(e)(x) ∗ TfQ(e)(y) > α,

IfSoQ(e)(xy) ≤ IfS(e)(x) � IfQ(e)(y) < β,

FfSoQ(e)(xy) ≤ FfS(e)(x) � FfQ(e)(y) < γ;

It opposes the fact. This ends the theorem.

6 Conclusion

The aim of this paper is to put forward the study of the concept neutrosophic soft
prime ideal introduced in [26]. Here we have studied about neutrosophic soft com-
pletely prime ideal, neutrosophic soft completely semi-prime ideal and neutrosophic
soft prime k-ideal. They are defined and illustrated by suitable examples. Their re-
lated properties and structural characteristics have been investigated also. Moreover
a number of theorems have been developed in virtue of these notions. The concepts
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will bring a new opportunity in research and development of algebraic structures over
NSS theory context, we expect.
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Abstract. This paper aims to introduce a single valued 

neutrosophic soft approach to rough sets based on neu-

trosophic right minimal structure. Some of its properties 

are deduced and proved. A comparison between tradi-

tional rough model and suggested model, by using their 

properties is concluded to show that Pawlak’s approach 

to rough sets can be viewed as a special case of single 

valued neutrosophic soft approach to rough sets. Some of 

rough concepts are redefined and then some properties of 

these concepts are deduced, proved and illustrated by 

several examples. Finally, suggested model is applied in 

a decision making problem, supported with an algorithm.

Keywords: Neutrosophic set, soft set, rough set approximations, neutrosophic soft set, single valued neutrosophic soft set.

1 Introduction 

    Set theory is a basic branch of a classical mathematics, 

which requires that all input data must be precise, but 

almost, real life problems in biology, engineering, 
economics, environmental science, social science, medical 

science and many other fields, involve imprecise data. In 
1965, L.A. Zadeh [1] introduced the concept of fuzzy logic 

which extends classical logic by assigning a membership 

function ranging in degree between 0 and 1 to variables. 
As a generalization of fuzzy logic, F. Smarandache in 1995, 

initiated a neutrosophic logic which introduces a new 
component called indeterminacy and carries more 

information than fuzzy logic. In it, each proposition is 
estimated to have three components: the percentage of 

truth (t %), the percentage of indeterminacy (i %) and the 

percentage of falsity (f %), his work was published in [2]. 
From scientific or engineering point of view, neutrosophic 

set’s operators need to be specified. Otherwise, it will be 
difficult to apply in the real applications. Therefore, Wang 

et al.[3] defined a single valued neutrosophic set and 

various properties of it. This thinking is further extended to 
many applications in decision making problems such as [4, 

5]. 
    Rough set theory, proposed by Z. Pawlak [6], is an 

effective tool in solving many real life problems, based on 
imprecise data, as it does not need any additional data to 

discover a knowledge hidden in uncertain data. Recently, 

many papers have been appeared to development rough set 
model and then apply it in many real life applications such 

as [7-11]. In 1999, D. Molodtsov [12], suggested a soft set 
model. By using it, he created an information system from 

a collected data. This model has been successfully used in 
the decision making problems and it has been modified in 

many papers such as [13-17]. In 2011, F. Feng et al.[18] 

introduced a soft rough set model and proved its properties. 
E.A. Marei generalized this model in [19]. In 2013, P.K. 

Maji [20] introduced neutrosophic soft set, which can be 
viewed as a new path of thinking to engineers, 

mathematicians, computer scientists and many others in 

various tests. In 2014, Broumi et al. [21] introuduced the 
concept of rough neutrosophic sets. It is generalized and 

applied in many papers such as [22-31]. In 2015, E.A. 
Marei [32] introduced the notion of neutrosophic soft 

rough sets and its modification. 

    This paper aims to introduce a new approach to soft 

rough sets based on the neutrosophic logic, named single 
valued neutrosophic soft (VNS in short) rough set 

approximations. Properties of VNS-lower and VNS-upper 
approximations are included along with supported proofs 

and illustrated examples. A comparison between traditional 

rough and single valued neutrosophic soft rough 
approaches is concluded to show that Pawlak’s approach to 

rough sets can be viewed as a special case of single valued 
neutrosophic soft approach to rough sets. This paper delves 

into single valued neutrosophic soft rough set by defining 
some concepts on it as a generalization of rough concepts. 

Single valued neutrosophic soft rough concepts (NR-

concepts in short) include NR-definability, NR-
membership function, NR-membership relations, NR-

inclusion relations and NR-equality relations. Properties of 
these concepts are deduced, proved and illustrated by 
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several examples. Finally, suggested model is applied in a 

decision making problem, supported with an algorithm. 

2 Preliminaries 

    In this section, we recall some definitions and properties 

regarding rough set approximations, neutrosophic set, soft 
set and neutrosophic soft set required in this paper. 

Definition 2.1 [6] Lower, upper and boundary 

approximations of a subset UX  , with respect to an 

equivalence relation, are defined as 
},][:]{[)(},,][:]{[)(  XxxXEX

E
x

E
xXE EE

whereXEXEXBNDE ),()()(   

)}.()(:{][ ,, xExEUxx E   

Definition 2.2 [6] Pawlak determined the degree of 

crispness of any subset UX  by a mathematical tool, 

named the accuracy measure of it, which is defined as 

.)(),(/)()(   XEXEXEX
E

 

Obviously, 1)(0  XE . If  )()( XEXE  , then X  is 

crisp (exact) set, with respect to E , otherwise X is rough 

set. 

Properties of Pawlak’s approximations are listed in the fol-

lowing proposition.        

Proposition 2.1 [6] Let ),( EU  be a Pawlak 

proximation space and let UYX , . Then, 

(a) )()( XEXXE  .           

(b) )(==)(  EE  and )(==)( UEUUE .        

(c) )()(=)( YEXEYXE  .          

(d) )()(=)( YEXEYXE  .                             

(e) YX  , then )()( YEXE   and )()( YEXE  .                

(f) )()()( YEXEYXE  .                                 

(g) )()()( YEXEYXE  .       

(h) cc

XEXE )]([=)( , 
C

X  is the complement of X .                       

(i) cc

XEXE )]([=)( .              

(j) )(=))((=))(( XEXEEXEE .                     

(k) )(=))((=))(( XEXEEXEE . 

Definition 2.3 [33] An information system is a quadruple 

),,,(= fVAUIS , where U is a non-empty finite set of 

objects, A  is a non-empty finite set of attributes, 

},{= Ae
e

VV  ,
e

V is the value set of attribute e , 

VAUf : is called an information (knowledge) 

function. 

Definition 2.4 [12] Let U  be an initial universe set, E be 

a set of parameters, EA  and let )(UP  denotes the 

power set of U . Then, a pair ),(= AFS  is called a soft set 

overU , where F  is a mapping given by )(: UPAF  . 
In other words, a soft set over U  is a parameterized family 

of subsets of U . For )(, eFAe may be considered as 

the set of e -approximate elements of S .  

Definition 2.5 [2] A neutrosophic set A on the universe of 
discourse U is defined as 

whereUxx
A

Fx
A

Ix
A

TxA },:)(),(),(,{= 





  1,0,,,3)()()(0 FITandx

A
Fx

A
Ix

A
T

Definition 2.6 [20] Let U  be an initial universe set and E  

be a set of parameters. Consider EA , and let 

)(UP denotes the set of all neutrosophic sets of U . The 

collection ),( AF is termed to be the neutrosophic soft set 
over U , where F is a mapping given by ).(: UPAF   

Definition 2.7 [3] Let X  be a space of points (objects), 

with a generic element in X denoted by x . A single 

valued  neutrosophic set A  in X  is characterized by 

truth-embership function ,AT  indeterminacy-membership 

function 
AI  and falsity-membership function .AF  For 

each point x  in X ,  1,0(X)(X),F(X),IT AAA
. When X  is 

continuous, a single valued neutrosophic set A  can be 

written as X/x,xF(x)T(x),I(x),A X  )( . When X  is 

discrete, A   can be written as .)(1 X,x/x)),F(x),I(xT(xA iiiii

n

i  
 

 3 Single valued neutrosophic soft rough set 

approximations  

    In this section, we give a definition of a single valued 
neutrosophic soft (VNS in short) set. VNS-lower and 

VNS-upper approximations are introduced and their 
properties are deduced, proved and illustrated by many 

counter examples.  

Definition 3.1  Let U be an initial universe set and E be a 
set of parameters. Consider EA  , and let 

)(UP denotes the set of all single valued neutrosophic sets 
ofU . The collection (G,A) is termed to be VNS set over 

U , where G is a mapping given by )(: UPAG  . 

    For more illustration the meaning of VNS set, we 

consider the following example 
Example 3.1 Let U be a set of cars under consideration 

and E  is the set of parameters (or qualities). Each 
parameter is a neutrosophic word. Consider E = {elegant,

trustworthy, sporty, comfortable, modern}. In this case, to 

define a VNS means to point out elegant cars, trustworthy 
cars and so on. Suppose that, there are five cars in the 

universe U , given by },,,,{ 54321 hhhhhU  and the set of 
parameters },,,{ 4321 eeeeA  , where EA   and each 

ie  is 

a specific criterion for cars: 
1e stands for elegant, 

2e stands 
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for trustworthy, 
3e stands for sporty and 

4e stands for 

comfortable. 
A VNS set can be represented in a tabular form as shown 

in Table 1. In this table, the entries are cij corresponding to

the car hi  and the parameter 
je , where

ijC  = (true 
membership value of hi , indeterminacy-membership value 

of hi , falsity membership value of hi ) in )(eiG .

Table1: Tabular representation of (G, A) of Example 3.1. 

Definition 3.2 Let ),( AG  be a VNS set on a universe U . 
For any element Uh  , a neutrosophic right 

neighborhood, with respect to Ae is defined as follows  

= { :e ih h U

( ) ( ), ( ) ( ), ( ) ( )}.e i e e i e e i eT h T h I h I h F h F h    

Definition 3.3 Let (G,A) be a VNS set on U. Neutrosophic 

right minimal structure is defined as follows 

},:,,{ AeUhheU    

Illustration of Definitions 3.2 and 3.3 is introduced in the 

following example

Example 3.2 According Example 3.1, we can deduce the 

following results: 
1

1e
h 

2
1e

h
3

1e
h 

4
1e

h }{
1

h , 
1

2 e
h 

3
2e

h  

},{
21

hh , 
2

2e
h  },,,{

5421
hhhh , 

4
2e

h ,{
1

h },
32

hh , 
1

3e
h 

4
3e

h },{
31

hh ,


2

3e
h ,,{

31
hh  },

54
hh , 

3
3e

h },,{
531

hhh , 
1

4e
h ,,{ 3

1
hh  }

4
h , 

2
4e

h },{
54

hh ,

Uh
e


3
4

, 
4

4e
h },,,{

4321
hhhh , 

1
5 e

h 
2

5e
h 

4
5e

h }{
5

h , 
3

5e
h },{

51
hh .

It follows that, 

},},,,,{},,,,{,

},,,{},,,{},,,{},,,{

},,{},,{},,{},,{},{},{{

54315421

4321531431321

5451312151





Uhhhhhhhh

hhhhhhhhhhhhh

hhhhhhhhhh

Proposition 3.1 Let ),( AG  be a VNS set on a universe U , 

  is the family of all neutrosophic right neighborhoods on 

it, and let  

eee hhRUR =)(,: 

Then,         

(a) 
eR is reflexive relation. 

(b) 
eR is transitive relation.             

(c) 
eR may be not symmetric relation. 

Proof  Let  )(),(),(,
1111

hFhIhTh
eee

,  )(),(),(,
2222

hFhIhTh
eee

 

and ,
3

h  ),(
3

hT
e

 ),(
3

hI
e

)()(
3

AGhF
e

 . Then, 

(a) Obviously, )(=)(
11

hThT
ee

, )(=)(
11

hIhI
ee

and )(
1

hF
e

)(=
1

hF
e

.  For every Ae , 
1h    

eh1
. Then 

1h eR 1h   and 

then 
eR is reflexive relation. 

(b) Let 
1

h
e

R
2

h  and 
2

h
e

R
3

h ,  then 
2

h 
e

h
1

and 
3

h 

e
h

2

. Hence, )(
2

hT
e

   )(
1

hT
e

, )(
2

hI
e

   )(
1

hI
e

, )(
2

hF
e

 

  )(
1

hF
e

, )(
3

hT
e

   )(
2

hT
e

, )(
3

hI
e

   )(
2

hI
e

 and 

)(
3

hF
e

   )(
2

hF
e

. Consequently, we have )(
3

hT
e

   

)(
1

hT
e

, )(
3

hI
e

   )(
1

hI
e

 and )(
3

hF
e

   )(
1

hF
e

. It 

follows that, 
3

h    
e

h
1

. Then 
1

h  
e

R  
3

h  and then 
e

R  is 

transitive relation. 

The following example proves (c) of Proposition 3.1. 

Example 3.3 From Example 3.2, we have, 
1

1e
h }{ 1h  and 


1

3e
h },{

31
hh . Hence, ),( 12 hh

1eR  but ),(
31

hh
1eR . 

Then, 
eR  isn’t symmetric relation. 

Definition 3.4 Let (G,A) be a VNS set on U , and let  be 

a neutrosophic right minimal structure on it. Then, VNS-
lower and VNS-upper approximations of any subset X

based on  , respectively, are 

},:{ XYYXS    

}.:{ XYYXS    

Remark 3.1 For any considered set X in a VNS set (G,A), 

the sets  

,XSXNRP   ,][
c

XSXNRN




XPNRXSXNRb 




are called single valued neutrosophic positive, single 
valued neutrosophic negative and single valued 

neutrosophic boundary regions of a considered set X , 

respectively. The real meaning of single valued 
neutrosophic positive of X  is the set of all elements which 

are surely belonging to X, single valued neutrosophic 
negative of X is the set of all elements which are surely not 

belonging to X and single valued neutrosophic boundary of 

X is the elements of X which are not determined by (G,A). 
Consequently, the single valued neutrosophic boundary 

region of any considered set is the initial problem of any 
real life application. 

VNS rough set approximations properties are introduced in 

the following proposition. 

Proposition 3.2 Let (G,A) be a VNS set on U, and let 

UZX , . Then the following properties hold 

U  
1e  

2e  
3e 4e

h1  
 (.6, .6, .2) (.8, .4, .3) (.7, .4, .3) (.8, .6, .4) 

h2  
(.4, .6, .6)  (.6, .2, .4)  (.6, .4, .3)  (.7, .6, .6) 

h3  
(.6, .4, .2)  (.8, .1, .3)  (.7, .2, .5)  (.7, .6, .4) 

h4  
(.6, .3, .3) (.8, .2, .2)  (.5, .2, .6)  (.7, .5, .6) 

h5  
(.8, .2, .3) (.8, .3, .2) (.7, .3, .4) (.9, .5, .7)
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(a) XSXXS 

  . 

(b)  

 == SS . 

(c) UUSUS == 


. 

(d) ZX     ZSXS   . 

(e) ZX     ZSXS   . 

(f) ZSXSZXS   )( . 

(g) ZSXSZXS   )( . 

(h) ZSXSZXS   )(

(i) ZSXSZXS   )( . 

Proof   

(a) From Definition 3.3, obviously, we can deduce that,  

XSXXS 

  . 

(b) From Definition 3.4, we can deduce that  S  and 

  }:{ YYS . 

 (c) From Property (a), we have  USU   but U  is the 

universe set, then UUS  . Also, from Definition 3.4, we 

have US
}:{ UYY   , but U . Then, US U

(d) Let ZX   and XSh  , then there exists Y such 

that XYh  . But ZX  , then ZYh  . Hence, 

ZSh  . Consequently .ZSXS    

(e) Let ZX  and ZSh  . But  ZS  YY :{ 

. Yh and ZY   such that U  there exists Then.  }Z

But ZX  , then XY 
 
and Yh . Hence ZSh  . 

Thus ZSXS   . 

(f) Let }:{)( ZXYYZXSh    . So, there 

exists Y such that, ZXYh  , then XYh 

and ZYh  . Consequently, XSh  and ZSh  , 

then ZSXSh   . Thus .)( ZSXSZXS    

(g) Let )( ZXSh  
}:{ ZXYY   . So, for all 

YhY  , , we have ZXY  , then XY   and 

ZY  . Consequently, XSh  and ZSh  . So

ZSXSh   . Thus  )( ZXS ZSXS   . 

 (h) Let ZSXSh   . Then, XSh  or ZSh  and 

then there exists Y such that YhXY  , or ,XY   

Yh . Consequently )( ZXSh   . Thus 

 )( ZXS ZSXS   . 

(i) Let )( ZXSh   . But  )( ZXS  YY :{   

}ZX  . Then, there exists Y such that ZXY   

and Yh . Then, XY  , Yh  and ZY  , Yh . 

It follows that, ZSXSh   . Thus  )( ZXS XS 

ZS  . 

The following example illustrates that the converse of 

Property (a) doesn’t hold 
Example 3.4 From Example 3.1, if }{ 3hX  , then  XS  

 . XSX   and XXS 
 Hence. },{ 31 hhXS  and    

The following example illustrates that the converse of 

Property (d) doesn’t hold 
Example 3.5 From Example 3.1, if }{ 2hX   and Z  

},{ 21 hh , then XS , ZS },{ 21 hh . Thus ZSXS   . 

The following example illustrates that the converse of 

Property (e) doesn’t hold 

Example 3.6 From Example 3.1, if }{ 5hX  and 

},{ 52 hhZ  , then, }{ 5hXS  and ,,{ 21 hhZS   

}, 54 hh . Hence, ZSXS   . 

The following example illustrates that the converse of 

Property (f) doesn’t hold 

 Example 3.7 From Example 3.1, If },,{ 431 hhhX   

and },,{ 541 hhhZ  , then },,{ 431 hhhXS 
,  ,{ 1hZS 

 

 XSZXS   )(  Hence. }{)( 1hZXS 
 and }, 54 hh

. ZS

The following example illustrates that the converse of 

Property (g) doesn’t hold 

 Example 3.8 From Example 3.1, if }{ 1hX  and Z  

}{ 2h then }{ 1hXS 
, ZS and  )( ZXS },{ 21 hh . 

Hence  )( ZXS  ZSXS   . 

The following example illustrates that the converse of 

Property (h) doesn’t hold 

 Example 3.9 From Example 3.1, if },,{ 421 hhhX   and 

},,{ 521 hhhZ  then },,{ 421 hhhXS  , 

},,,{ 5421 hhhhZS   and },{)( 21 hhZXS  . Hence 

ZSXSZXS   )(

The following example illustrates that the converse of 

Property (i) doesn’t hold 

 Example 3.10 From Example 3.1, if },{ 32 hhX   and 
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}{ 5hZ  then },,{ 321 hhhXS  , }{ 5hZS  and 

UZXS  )( . Hence ZSXSZXS   )( . 

Proposition 3.3  Let ),( AG  be a neutrosophic soft set on 

a unverse U , and let UZX , . Then the following 

properties hold. 

(a) XSXSS  

(b) XSXSS  

(c) XSXSS 

 

(d) XSXSS 

 

 Proof 

(a) Let XSW =  and Wh }:{ XYY   . Then, for 

some Ae , we have .WYh 
 
So WSh  . Hence W

WS . Thus, WS WSS 
. Also, from Property (a) of 

Proposition 3.2, we have XXS 
and by using Property 

(d) of Proposition 3.2, we get XSXSS   . 

Consequently. XS
= XSS 

(b) Let XSW   and
 

Wh , from Definition 3.4, we 

have }.:{ XYYW    Then there exists Y , such 

that XY   and Yh . Hence, there exists Y , such 

that WY   and Yh , it follows that .WSh   

Consequently WSW  . Also, by using Property (a) of 

Proposition 3.2, we have WSW  . Thus WSWSS  

Properties (c) and (d) can be proved directly from 

Proposition 3.2. 

The following example illustrates that the converse of 

Property (c) doesn’t hold. 
Example 3.11 From Example 3.1, if }{ 4hX  . Then 

XS 
}{ 4h and 

 XSS . Hence, .XSXSS 

   

The following example illustrates that the converse of 
Property (c) doesn’t hold.        

Example 3.12 From Example 3.1, if },,{ 521 hhhX  , then 

},,{ 521 hhhXS 
and },,,{ 5421 hhhhXSS 

 . Hence 

XSXSS 

 

Proposition 3.4 Let ),( AG  be a VNS set on U and let 

UZX , . Then 

ZSXSZXS   )(

Proof  

Let h )}(:{)( ZXYYZXS   . So, there
exists Y  such that )( ZXYh  , then XYh 

and ZYh  . Consequently, h XS
 and h ZS , then 

h ZSXS   . Therefore ZSXSZXS   )( . 

The following example illustrates that the converse of 

Proposition 3.4 doesn’t hold.
Example 3.13 From Example 3.1, if },,{ 531 hhhX   

and },{ 51 hhZ  , then },,{ 531 hhhXS 
, },{ 51 hhZS 

, 

 )( ZXS and }{ 3hZSXS  
. Hence,  )( ZXS  

ZSXS  

Proposition 3.5 Let ),( AG  be a VNS set on U and let 

UZX , . Then the following properties don’t hold 

(a) cc XSXS ][ 

   

(b) cc XSXS ][ 

 

(c) ZSXSZXS   )(

The following example proves Properties (a) and (b) of 
Proposition 3.5. 

Example 3.14 From Example 3.1, if }{ 1hX  . Then, 

}{ 1hXSXS  


, },{ 54 hhXS c 

and .UXS c   Thus 
cc XSXS ][ 

  and cc XSXS ][ 

 

The following example proves Property (c) of Proposition 

3.5. 
Example 3.15 From Example 3.1, if },{ 21 hhX  and 

}{ 1hZ  . Then },{ 21 hhXS  , }{ 1hZS  ,  )( ZXS  

},{ 21 hh . Hence .)( ZSXSZXS    

Remark 3.2 A comparison between traditional rough and 
single valued neutrosophic soft rough approaches, by using 

their properties, is concluded in Table 2, as follows 

4 Single valued neutrosophic soft rough concepts 

     In this section, some of single valued neutrosophic soft 

rough concepts (NR-concepts in short) are defined as a 

generalization of traditional rough concepts. 

Definition 4.1 Let ),( AG  be a VNS set on U . A subset 

UX   is called 

(a) NR-definable (NR-exact) set if XXSXS  



(b) Internally NR-definable set if XXS 
and XXS 

(c) Externally NR-definable set if XXS 
and XXS 

(d) NR-rough set if XXS 
and XXS 

The following example illustrates Definition 4.1. 

Example 4.1 From Example 3.1, we can deduce that }{ 1h , 

},{},,{},,{},,{},{ 545131215 hhhhhhhhh , ,{},,,{},,,{ 1431321 hhhhhhh

},,,{},,,{},, 432154153 hhhhhhhhh , },,,{},,,,{ 54315421 hhhhhhhh are 

NR-definable sets, },,,{},,,{ 5321521 hhhhhhh are internally 
NR-definable sets, },,{},,{},{ 421414 hhhhhh are externally 

NR-definable sets and the rest of proper subsets of U are 
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NR-rough sets. 

We can determine the degree of single valued neutrosophic 

soft-crispness (exactness) of any subset UX   by using 

NR-accuracy measure, denoted by XC
, which is defined 

as follows 

Definition 4.2 Let (G,A) be a VNS on U , and let UX  . 
Then  

 

 XXSXSXC ,  

Remark 4.1 Let (G,A) be a VNS onU . A subset UX   is 

NR-definable (NR-exact) if and only if 1XC . 

Definition 4.3 Let (G,A) be a VNS on U and let ,UX   

.Xx NR-membership function of an element x  to a set 

X denoted by xX  is defined as follows:

|,|/|| AAX xXxx   where }:{ Aexx eA   and 
ex  is a 

neutrosophic right neighborhood, defined in Definition 3.2. 

Proposition 4.1  Let (G,A) be a VNS on ,U UX   and let 

xX  be the membership function defined in Definition 4.3. 

Then 

]1,0[xX  

Proof 

Where
AA xXx  then 

AA xXx 0 and then 

10  xX . 

Proposition 4.2 Let (G,A) be a VNS on U and let ,UX   

then  

XxxX 1
Proof 

Let ,1xX then 
AA xXx  . Consequantly XxA  . 

From Proposition 3.1, we have 
eR  is a reflexive relation 

for all Ae . Hence Aexx e  . It follows that 
Axx . 

Thus Xx

The following example illustrates that the converse of 

Proposition 4.2 doesn’t hold. 
Example 4.2 From Example 3.2, we get },{ 313 hhh A  . If 

}
5

,
3

,
2

{ hhhX  , then 213 hX . Although Xh 3

Proposition 4.3 Let (G,A) be a VNS on U and let ZX ,  

.U  If ZX  , then the following properties hold 

(a) xx ZX  

(b) xx ZSXS 
   

(c) xx
ZSXS     

Proof     

(a) Where UX  , for any Ux   we can deduce that 

xx ZX   . Thus ZxXx AA  then ,ZxA  XxA 

We get the proof of Properties (b) and (c) of Proposition 

4.3, directly from property (a) of Proposition 4.3 and 
properties (d) and (e) of Proposition 3.2. 

Table 2: Comparison between traditional, VNS rough 

Proposition 4.4 Let (G,A) be a VNS on U and let XU, 

then the following properties hold 

 (a) xx XXS  


 

(b) xx
XSX    

(c) 


xXS x
XS

  

Proof can be obtained directly from Propositions 3.2 and 

property (a) of Proposition 4.3. 

Definition 4.4 Let (G,A) be a VNS set on ,U and let Ux , 

UX  . NR-membership relations, denoted by 
  and


are defined as follows  

Xx  if XSx  and Xx  if XSx 

Proposition 4.5 Let (G,A) be a VNS set on ,U and let x  

,U  UX  . Then  

(a) XxXx 

(b) XxXx 

Proof 

(a) Let Xx  , hence by using Definition 4.4, we get 

XSx  . 

But from Proposition 3.2, we have XXS 
, then 

Xx . 

(b) Let Xx , according to Proposition 3.2, we have 

XSX  , then XSx  , by using Definition 4.4, 
we can deduce that Xx  . 

Consequently XxXx 
. 

The following example illustrates that the converse of 

Proposition 4.5 doesn’t hold. 
Example 4.3 From Example 3.1, if },{ 52 hhX  , then 

XS }{ 5h and  XS },,,{ 5421 hhhh . Hence, Xh 2
, 

although Xh 2
 and Xh 4

, although Xh 4
. 

Proposition 4.6 Let (G,A) be a VNS on U and let .UX   
Then the following properties hold   

Traditional rough properties VNS rough properties 

ZEXEZXE  )( ZSXSZXS   )(
)()(=)( YEXEYXE   ZSXSZXS   )(

E )(=))(( XEXE XSXSS 

 

E )(=))(( XEXE  XSXSS 

 

E c
XE

c
X )]([=)(  cc XSXS ][ 

 

[=)( cXE E cX )]( cc XSXS ][ 

 
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(a) 1 xXx X  

(b) XxxX

 1

Proof can be obtained directly from Definition 4.4 and 

Propositions 4.2 and 4.5. 

The following example illustrates that the converse of 

property (a) does not hold. 
Example 4.4 From Example 3.1, if },{ 41 hhX  then 

}{ 1hXS 
and }{ 44 hh

A
 , it follows that 14 hX . 

Although  Xh 4

The following example illustrates that the converse of 
property (b) does not hold. 

Example 4.5 From Example 3.1, if }{ 2hX  , then 

},{ 21 hhXS  and },{ 212 hhh
A
 , it follows that Xh 2

, 

although 12 hX  

Proposition 4.7 Let (G,A) be a VNS on U and let 

UX  . Then  

(a) XxxX  0

(b) XxxX  0

Proof is straightforward and therefore is omitted. 

The following example illustrates that the converse of 

property (a), does not hold. 
Example 4.6 From Example 3.1, if },,{ 431 hhhX  and from 

Example 3.2, we get },{ 212 hhh
A
 , then 02 hX  , although 

Xh 2

The following example illustrates that the converse of 

property (b), does not hold. 

Example 4.7 From Example 3.1, if },,{ 541 hhhX  , then 

},,{ 541 hhhXS 
, from Example 3.2, we get ,{ 12 hh

A
 }2h , it 

follows that 02 hX , although Xh 2

Proposition 4.8 Let (G,A) be a VNS on U and let XU. 

The following property does not hold  

XxxX

 0

The following example proves Proposition 4.8. 
Example 4.8 From Example 3.1, if }{ 2hX  then XS 

},{ 21 hh , from Example 3.2, we get }{ 11 hh
A
 , it follows that 

Xh 1
, although 01 hX  

Definition 4.5 Let (G,A) be a VNS on U and let ZX ,  

.U  NR-inclusion relations, denoted by 
  and 

  which 

are defined as follows 

ZX  If   ZSXS  

ZX  If   ZSXS  

Proposition 4.9 Let (G,A) be a VNS on U and let ZX ,
.U  Then  

ZXZXZX 

 

Proof comes directly From Proposition 3.2. 

The following example illustrates that, the converse of 
Proposition 4.9 doesn’t hold. 

Example 4.9 In Example 3.1, if },{ 41 hhX   and ,,{ 21 hhZ   
}5h , then },{ 1hXS  },,{ 521 hhhZS 

, },{ 41 hhXS   and 

},,,{ 5421 hhhhZS  . Hence, ZX   and ZX  . 

Although ZX 

From Definition 4.5 and Proposition 4.3, the following 
remarks can be deduced 

Remark 4.2 Let (G,A) be a VNS on U and let UZX , . 

If ZX  , then the following properties hold  

(a) xx ZSXS 
   

(b) xx ZXS  


 

(c) xx
ZSXS 


   

Remark 4.3  Let (G,A) be a VNS on U and let UZX , . 

If ZX  , then the following properties hold 

(a) xx
ZSXS     

(b) xx
ZSX  

(c) xx
ZSXS 


   

Definition 4.6 Let (G,A) be a VNS onU and let ZX ,
.U  NR-equality relations are defined as follows  

ZX  If    ZSXS  

ZX  If    ZSXS  

   If ZX 

 ZX  ZX 

The following example illustrates Definition 4.6. 

Example 4.10 According to Example 3.1. Let }{ 1eA  , 
then }},,{},,{},,{},{},{,,{ 431312151 hhhhhhhhhU   . If },{ 21 hX   

},{},,{},{ 32421332 hhXhhXhX   and },{ 425 hhX  , then 
1XS

  2XS , 
31 XSXS    },{ 21 hh ,   54 XSXS and 

4XS  

UXS 

5
. Consequently 

21 XX  , 
31 XX  and 

54 XX 



Proposition 4.10 Let (G,A) be a VNS set on U and let 

UZX , .  Then 

(a) XSX 

(b) XSX 

(c) ZXZX 



(d)    XZZX ,  
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(e) UZUXZX  ,

(f)    XZZX ,  

(g) UZUXZX   ,

Proof. From Definition 4.6 and Propositions 3.2 and 3.3 

we get the proof, directly. 

From Definition 4.6 and Proposition 4.3, the following 
remarks can be deduced 

Remark 4.4 Let (G,A) be a VNS on U and let UZX , . 

If ZX  , then the following properties hold 

(a) xx ZSXS 
   

(b) xx ZXS  


 

(c) xx
ZSXS 


   

Remark 4.5 Let (G,A) be a VNS on U and let UZX , . 
If ZX  , then the following properties hold 

(a) xx
ZSXS     

(b) xx
ZSX    

(c) xx
ZSXS 


   

The following remark is introduced to show that Pawlak’s 

approach to rough sets can be viewed as a special case of 
proposed model. 

Remark 4.6  Let (G,A) be a VNS on U and let UZX , . 
If we consider the following case  

( If 5.0)( ie hT , then 1)( he , otherwise 0)( he ) 

and the neutrosophic right neighborhood of an element h is 

replaced by the following equivalence class  

Uhh ie {][  }.),()(: Aehehe i   

Then VNS-lower and VNS-upper approximations will be 

traditional Pawlak’s approximations. It follows that NR-

concepts will be Pawlak’s concepts. Therefor Pawlak’s 

approach to rough sets can be viewed as a special case of 

suggested single valued neutrosophic soft approach to 

rough sets.   

5   A decision making problem 

     In this section, suggested single valued neutrosophic 
soft rough model is applied in a decision making problem. 

We consider the problem to select the most suitable car 

which a person X  is going to choose from n cars ,...,,( 21 hh  

)nh  by using m  parameters (
meee ,..,, 21

). 

Since these data are not crisp but neutrosophic, the 
selection is not straightforward. Hence our problem in this 

section is to select the most suitable car with the choice 

parameters of the person X. To solve this problem, we need 

the following definitions 

Definition 5.1 Let (G,A) be a VNS set on ,...,,{ 21 hhU   
}nh as the objects and },..,,{ 21 meeeA   is the set of 

parameters. The value matrix is a matrix whose rows are 

labeled by the objects, its columns are labeled by the 
parameters and the entries 

ijC  are calculated by 

)),()()(( iejiejiejij hFhIhTC   mjni  1,1

Definition 5.2 Let (G,A) be a VNS set on ,...,,{ 21 hhU   
}nh , where A  },..,,{ 21 meee . The score of an object jh  is 

defined as follows 




m
j ijCihS 1)(

Remark 5.1 Let (G, A) be a VNS set on U and 

,,{ 21 eeA  then   is the set of parameters.  }.., me  

(a) ,21  ijC  mjni  1,1

(b) ,2)( mhSm i   Uhi 

The real meaning of AC
 is the degree of crispness of A . 

Hence, if 1AC , then A  is NR-definable set. It means 

that the collected data are sufficient to determine the set A . 
Also, from the meaning of the neutrosophic right 

neighborhood, we can deduce the most suitable choice by 
using the following algorithm. 

Algorithm 

1. Input VNS set (G,A)

2. Compute the accuracy measures of all singleton sets

3. Consider the objects of NR-definable singleton sets

4. Compute the value matrix of  the considered objects

5. Compute the score of all considered objects in a tabular
form

6. Find the maximum score of the considered objects

7. If there are more than one object has the maximum

scare, then any object of them could be the suitable
choice

8. If there is no NR-definable singleton set, then we
consider the objects of all NR-definable sets consisting

two elements and then repeat steps (4-7), else, consider
the objects of all NR-definable sets consisting three

elements and then repeat steps (4-7),and so on...

For illustration the previous technique, the following 

example is introduced. 
Example 5.1 According to Example 3.1, we can create 

Tables 3, as follows 
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Singleton sets  }{ 1h  }{ 2h   }{ 3h  }{ 4h  }{ 5h  

XC
1 0 0 0 1 

Table 3: Accuracy measures of all singleton sets. 

Hence 1}{}{ 51   hChC . It follows that 
1h and

5h  are the 

NR-definable singleton sets. Consequently 1h and 5h are 
concidered objects. Therefore Table 4 can be created as 

follows 

Object 1e 2e 3e
4e

1h (.6,.6,.2) (.8,.4,.3) (.7,.4,.3) (.8,.6,.4) 

5h (.8,.2,.3) (.8,.3,.2) (.7,.3,.4) (.9,.5,.7) 

Table 4: Tabular representation of considered objects. 

The value matrix of considered objects can be viewed as 
Table 5. 

Object 1e 2e 3e
4e

1h 1 0.9 0.8 1 

5h 0.7 0.9 0.6 0.7 

Table 5: Value matrix of considered objects. 

Finally, the scores of considered objects are concluded in 

Table 6, as follows 

Object  Score of the object 

1h 3.7 

5h 2.9 

Table 6: The scores of considered objects. 

Clearly, the maximum score is 3.7, which is scored by the 

car 
1h . Hence, our decision in this case study is that a car 

1h is the most suitable car for a person X , under his choice 
parameters. Also, the second suitable car for him is a car 

.5h
Obviously, the selection is dependent on the choice 

parameters of the buyer. Consequently, the most suitable 
car for a person X  need not be suitable car for another 

person Y . 

Conclusion 

This paper introduces the notion of single valued 

neutrosophic soft rough set approximations by using a new 
neighborhood named neutrosophic right neighborhood. 

Suggested model is more realistic than the other traditional 

models, as each proposition is estimated to have three 
components: the percentage of truth, the percentage of 

indeterminacy and the percentage of falsity. Several 
properties of single valued neutrosophic soft rough sets 

have been defined and propositions and illustrative 
examples have been presented. It has been shown that 

Pawlak’s approach to rough sets can be viewed as a special 

case of single valued neutrosophic soft approach to rough 

sets. Finally, proposed model is applied in a decision 

making problem, supported with algorithm. 
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Abstract: The main objective of this study is to introduce a new hybrid intelligent
structure called Neutrosophic nano topology. Fuzzy nano topology and intuitionistic
nano topology can also be deduced from the neutrosophic nano topology. Based on the
neutrosophic nano approximations we have classified neutrosophic nano topology. Some
properties like neutrosophic nano interior and neutrosophic nano closure are derived.
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1 INTRODUCTION

Nano topology explored by Thivagar et.al can be described as a collection of nano
approximations, a non-empty finite universe and empty set for which equivalence classes
are buliding blocks. It is named as nano topology because whatever may be the size of the
universe it has at most five open sets. After this, there has been many models built upon
different aspect, i.e, universe, relations, object and operators. One of the interesting
generalizations of the theories of fuzzy sets and intuitionistic fuzzy sets is the theory
of neutrosophic sets introduced by F.Smarandache. Neutrosophic set is described by
three functions : a membership function, indeterminacy function and a nonmembership
function that are independently related. The theories of neutrosophic set have achieved
greater success in various areas such as medical diagnosis, database, topology, image
processing and decision making problem. While the neutrosophic set is a powerful tool
to deal with indeterminate and inconsistent data, the theory of rough set is a powerful
mathematical tool to deal with incompleteness. Neutrosophic sets and rough sets are two
different topics, none conflicts the other. The main objective of this study is to introduce
a new hybrid intelligent structure called neutrosophic nano topology. The significance of
introducing hybrid structures is that the computational techniques, based on any one of
these structures alone, will not always yield the best results but a fusion of two or more
of them can often give better results. The rest of this paper is organized as follows. Some
preliminary concepts required in our work are briefly recalled in section 2. In section 3 ,
the concept of neutrosophic nano topology is investigated. Section 4 concludes the paper
with some properties on neutrosophic nano interior and neutrosophic nano closure.
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2 Preliminaries

The following recalls requisite ideas and preliminaries necessitated in the sequel of our
work.

Definition 2.1 [8]: Let U be a non-empty finite set of objects called the universe and
R be an equivalence relation on U named as the indiscernibility relation. Elements
belonging to the same equivalence class are said to be indiscernible with one another.
The pair (U , R) is said to be the approximation space. Let X ⊆ U .

(i) The lower approximation of X with respect to R is the set of all objects, which
can be for certain classified as X with respect to R and it is denoted by LR(X).
That is, LR(X) =

∪
x∈U

{R(x) : R(x) ⊆ X}, where R(x) denotes the equivalence

class determined by x.

(ii) The upper approximation of X with respect to R is the set of all objects, which
can be possibly classified as X with respect to R and it is denoted by UR(X). That
is, UR(X) =

∪
x∈U

{R(x) : R(x) ∩X ̸= ϕ}.

(iii) The boundary region of X with respect to R is the set of all objects, which can be
classified neither as X nor as not-X with respect to R and it is denoted by BR(X).
That is, BR(X) = UR(X)− LR(X).

Remark 2.2 [8]: If (U , R) is an approximation space and X, Y ⊆ U , then the following
statements hold:

(i) LR(X) ⊆ X ⊆ UR(X).

(ii) LR(ϕ) = UR(ϕ) = ϕ and LR(U) = UR(U) = U .

(iii) UR(X ∪ Y ) = UR(X) ∪ UR(Y ).

(iv) UR(X ∩ Y ) ⊆ UR(X) ∩ UR(Y )

(v) LR(X ∪ Y ) ⊇ LR(X) ∪ LR(Y ).

(vi) LR(X ∩ Y ) = LR(X) ∩ LR(Y ).

(vii) LR(X) ⊆ LR(Y ) and UR(X) ⊆ UR(Y ), whenever X ⊆ Y .

(viii) UR(X
C) = [LR(X)]C and LR(X

C) = [UR(X)]C .

(ix) URUR(X) = LRUR(X) = UR(X).

(x) LRLR(X) = URLR(X) = LR(X).

Definition 2.3 [8]: Let U be an universe, R be an equivalence relation on U and
τR(X) = {U , ϕ, LR(X), UR(X), BR(X)} where X ⊆ U . τR(X) satisfies the following
axioms:

(i) U and ϕ ∈ τR(X).

(ii) The union of the elements of any sub-collection of τR(X) is in τR(X).

(iii) The intersection of the elements of any finite sub-collection of τR(X) is in τR(X).
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That is, τR(X) forms a topology on U called the nano topology on U with respect to
X. We call (U , τR(X)) as the nano topological space. The elements of τR(X) are called
nano-open sets.

Proposition 2.4 [8]: Let U be a non-empty finite universe and X ⊆ U . Then the
following statements hold:

(i) If LR(X) = ϕ and UR(X) = U , then τR(X) = {U , ϕ}, is the indiscrete nano
topology on U .

(ii) If LR(X) = UR(X) = X, then the nano topology, τR(X) = {U , ϕ, LR(X)}.

(iii) If LR(X) = ϕ and UR(X) ̸= U , then τR(X) = {U , ϕ, UR(X)}.

(iv) If LR(X) ̸= ϕ and UR(X) = U , then τR(X) = {U , ϕ, LR(X), BR(X)}.

(v) If LR(X) ̸= UR(X) where LR(X) ̸= ϕ and UR(X) ̸= U , then
τR(X) = {U , ϕ, LR(X), UR(X), BR(X)} is the discrete nano topology on U .

Definition 2.5 [3]: Let X be a non empty set. A fuzzy set A is an object having
the form A = {< x : µA(x), x ∈ X}, where 0 ≤ µA(x) ≤ 1 represent the degree of
membership of each x ∈ X to the set A.

Definition 2.6 [2]: Let X be a non empty set. An intuitionstic set A is of the form
A = {< x : µA(x), νA(x), x ∈ X}, where µA(x) and νA(x) represent the degree of
membership function and the degree of non membership respectively of each x ∈ X to
the set A and 0 ≤ µA(x) + νA(x) ≤ 1 for all x ∈ X.

Definition 2.7 [6]: Let X be an universe of discourse with a generic element in X
denoted by x, the neutrosophic set is an object having the form
A = {< x : µA(x), σA(x), νA(x) >, x ∈ X}, where the functions µ, σ, ν : X → [0, 1]
define respectively the degree of membership or truth , the degree of indeterminancy,
and the degree of non-membership (or Falsehood) of the element x ∈ X to the set A
with the condition. −0 ≤ µA(x) + σA(x) + νA(x) ≤ 3.

3 Neutrosophic Nano Topological Space

In this section we introduce the notion of neutrosophic nano topology by means of nano
neutrosophic nano approximations namely neutrosophic nano lower, neutrosophic nano
upper and neutrosophic nano boundary. From Neutrosophic nano topology we have also
defined and deduced intuitionistic nano topology and fuzzy nano topology.

Definition 3.1 : Let U be a non-empty set and R be an equivalence relation on U .
Let F be a neutrosophic set in U with the membership function µF , the indetermi-
nancy function σF and the non-membership function νF . The neutrosophic nano lower,
neutrosophic nano upper approximation and neutrosophic nano boundary of F in the
approximation (U , R) denoted by N(F ), N(F )and BN(F ) are respectively defined as
follows:

(i) N(F ) = {< x, µR(A)(x), σR(A)(x), νR(A)(x) > /y ∈ [x]R, x ∈ U}.

(ii) N(F ) = {< x, µR(A)(x), σR(A)(x), νR(A)(x) > /y ∈ [x]R, x ∈ U}.

(iii) BN(F)= N(F )−N(F ).
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where µR(A)(x) =
∧

y∈[x]R µA(y), σR(A)(x) =
∧

y∈[x]R σA(y), νR(A)(x) =
∨

y∈[x]R νA(y).

µR(A)(x) =
∨

y∈[x]R µA(y), σR(A)(x) =
∨

y∈[x]R σA(y), νR(A)(x) =
∧

y∈[x]R νA(y).

Definition 3.2 : Let U be an universe, R be an equivalence relation on U and F be a
neutrosophic set in U and if the collection τN (F ) = {0N , 1N , N(F ), N(F ), BN(F )} forms
a topology then it is said to be a neutrosophic nano topology. We call (U , τN (F )) as
the neutrosophic nano topological space. The elements of τN (F ) are called neutrosophic
nano open sets.

Remark 3.3 : From Neutrosophic nano topology we can deduce and define the
fuzzy nano topology and intuitionistic nano topology. Fuzzy nano topology is
obtained by considering the membership values alone whereas in case of intuitionistic
nano topology both membership and non member ship values are considered.

Definition 3.4 : Let U be a non-empty set and R be an equivalence relation on U .
Let F be an intuitionistic set in U with the membership function µF and the non-
membership function νF . The intuitionistic nano lower, intuitionistic nano upper ap-
proximation and intuitionistic nano boundary of F in the approximation (U , R) denoted
by I(F ), I(F )and BI(F ) are respectively defined as follows:

(i) I(F ) = {< x, µR(A)(x), νR(A)(x) > /y ∈ [x]R, x ∈ U}.

(ii) I(F ) = {< x, µR(A)(x), νR(A)(x) > /y ∈ [x]R, x ∈ U}.

(iii) BI(F )= I(F )− I(F ).

where µRI(A)(x) =
∧

y∈[x]R µA(y), νRI(A)(x) =
∨

y∈[x]R νA(y).

µR(A)(x) =
∨

y∈[x]R µA(y), νRI(A)(x) =
∧

y∈[x]R νA(y).

Definition 3.5 : Let U be an universe, R be an equivalence relation on U and F be an
intuitionistic set in U and if the collection τI(F ) = {0N , 1N , I(F ), I(F ), BI(F )} forms
a topology then it is said to be a intuitionistic nano topology. We call (U , τI(F )) as
the intuitionistic nano topological space. The elements of τI(F ) are called intuitionistic
nano open sets.

Definition 3.6 : Let U be a non-empty set and R be an equivalence relation on U . Let
F be a fuzzy set in U with the membership function µF . Then the fuzzy nano lower,
fuzzy nano upper approximation of F and fuzzy nano boundary of F in the approximation
(U , R) denoted by F(F ),F(F )and BF (F ) are respectively defined as follows:

(i) F(F ) = {< x, µR(A)(x) > /y ∈ [x]R, x ∈ U}.

(ii) F(F ) = {< x, µR(A)(x) > /y ∈ [x]R, x ∈ U}.

(iii) BF (F )= F(F )−F(F ).

where µR(A)(x) =
∧

y∈[x]R µA(y), µR(A)(x) =
∨

y∈[x]R µA(y)

Definition 3.7 : Let U be an universe, R be an equivalence relation on U and F be
a fuzzy set in U and if the collection τF (F ) = {0N , 1N ,F(F ),F(F ), BF (F )} forms a
topology then it is said to be a fuzzy nano topology. We call (U , τF (F )) as the fuzzy
nano topological space. The elements of τF (F ) are called fuzzy nano open sets.
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Remark 3.8 : Thus from the above definitions of intuitionistic and fuzzy nano topolo-
gies we can assure that throughout this paper all the properties and examples also holds
good when it is possible for neutrosophic nano topology.

Remark 3.9 : Since our main purpose is to construct tools for developing neutrosophic
nano topological spaces, we must introduce 0N , 1N and certain neutrosophic set oper-
ations in X as follows:

Definition 3.10 : Let U be a nonempty set and the neutrosophic sets A and B in the
form A = {< x : µA(x), σA(x), νA(x) >, x ∈ U}, B = {< x : µB(x), σB(x), νB(x) >, x ∈
U}. Then the following statements hold:

(i) 0N = {< x, 0, 0, 1 >: x ∈ U} and 1N = {< x, 1, 1, 0 >: x ∈ U}.

(ii) A ⊆ B iff µA(x) ≤ µB(x), σA(x) ≤ σB(x), νA(x) ≥ νB(x)for all x ∈ U}.

(iii) A = B iff A ⊆ Band B ⊆ A.

(iv) AC = {< x, νA(x), 1− σA(x), µA(x) >: x ∈ U}.

(v) A ∩B = {x, µA(x) ∧ µB(x), σA(x) ∧ σB(x), νA(x) ∨ νB(x)for all x ∈ U}.

(vi) A ∪B = {x, µA(x) ∨ µB(x), σA(x) ∨ σB(x), νA(x) ∧ νB(x)for all x ∈ U}.

Theorem 3.11 [8]: Let U be a non-empty finite universe and X ⊆ U . Let τR(X) be
the nano topology on U with respect to X. Then [τR(X)]C , whose elements are AC for
A ∈ τR(X), is a topology on U .

Remark 3.12 : [τN (F )]C is called the dual neutrosophic nano topology of τN (F ).
Elements of [τN (F )]C are called neutrosophic nano closed sets. Thus, we note that a
neutrosophic set N(G) of U is neutrosophic nano closed in τN (F ) if and only if U−N(G)
is neutrosophic nano open in τN (F ).

Example 3.13 : Let U = {p1, p2, p3} be the universe of discourse. Let U/R =
{{p1, p2}, {p3}} be an equivalence relation on U and A = {< p1, (0.7, 0.6, 0.5) >,<
p2, (0.3, 0.4, 0.5) >,< p3, (0.1, 0.5, 0.1) >} be a neutrosophic set on U then N(A) = {<
p1, (0.3, 0.4, 0.5) >,< p2, (0.3, 0.4, 0.5) >,< p3, (0.1, 0.5, 0.1) >}, N(A) = {< p1, (0.7, 0.6, 0.5) >
,< p2, (0.7, 0.6, 0.5) >,< p3, (0.1, 0.5, 0.1) >} , B(A) = {< p1, (0.5, 0.6, 0.5) >,< p2, (0.5, 0.6, 0.5) >
,< p3, (0.1, 0.5, 0.1) >}. Then the collection τN (A) = {0N , 1N , {< p1, (0.3, 0.4, 0.5) >,
< p2, (0.3, 0.4, 0.5) >,< p3, (0.1, 0.5, 0.1) >}, {< p1, (0.7, 0.6, 0.5) >,< p2, (0.7, 0.6, 0.5) >
,< p3, (0.1, 0.5, 0.1) >}, {< p1, (0.5, 0.6, 0.5) >,< p2, (0.5, 0.6, 0.5) >,< p3, (0.1, 0.5, 0.1) >
}} is a neutrosophic nano topology on U and [τN (A)]C is also a neutrosophic nano topol-
ogy on U . Thus τI(A) = {0N , 1N , {< p1, (0.3, 0.5) >,< p2, (0.3, 0.5) >,< p3, (0.1, 0.1) >
}, {< p1, (0.7, 0.5) >,< p2, (0.7, 0.5) >,< p3, (0.1, 0.1) >}, {< p1, (0.5, 0.5) >,< p2, (0.5, 0.5) >
,< p3, (0.1, 0.1) >}} and τF (A) = {0N , 1N , {< p1, (0.3) >,< p2, (0.3) >,< p3, (0.1) >
}, {< p1, (0.7) >,< p2, (0.7) >,< p3, (0.1) >}, {< p1, (0.5) >,< p2, (0.5) >,< p3, (0.1) >
}} are the intuitionistic nano topology and fuzzy nano topology.

Remark 3.14 : In neutrosophic nano topological space, the neutrosophic nano bound-
ary cannot be empty. Since the difference between neutrosophic nano upper and neu-
trosophic nano lower approximations is defined here as the maximum and minimum of
the values in the neutrosophic sets.
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Proposition 3.15 : Let U be a non-empty finite universe and F be a neutrosophic set
on U . Then the following statements hold:

(i) The collection τN (F ) = {0N , 1N}, is the indiscrete neutrosophic nano topology on
U .

(ii) If N(F ) = N(F ) = N(F ), then the neutrosophic nano topology,
τN (F ) = {0N , 1N , N(F ), BN(F )}.

(iii) If N(F ) = BN(F ), then τN (F ) = {0N , 1N , N(F ), N(F )} is a neutrosophic nano
topology

(iv) If N(F ) = BN(F ) then τN (F ) = {0N , 1N , N(F ), BN(F )}.

(v) The collection τN (F ) = {0N , 1N , N(F ), N(F ), BN(F )} is the discrete neutro-
sophic nano topology on U .

4 Neutrosophic nano closure and interior

In this section we have defined neutrosophic nano closure and neutrosophic nano interior
on neutrosophic nano topological space. Based on this we also prove some properties.

Definition 4.1 : If (U , τN (F )) is a neutrosophic nano topological space with respect to
neutrosophic subset of U and if A be any neutrosophic subset of U , then the neutrosophic
nano interior of A is defined as the union of all neutrosophic nano open subsets of A
and it is denoted by NF int(A). That is, NF int(A) is the largest neutrosophic nano
open subset of A. The neutrosophic nano closure of A is defined as the intersection of
all neutrosophic nano closed sets containing A and it is denoted by NFcl(A). That is,
NFcl(A) is the smallest neutrosophic nano closed set containing A.

Remark 4.2 : Let (U , τN (F )) be a neutrosophic nano topological space with respect
to F where F is a neutrosophic subset of U . The neutrosophic nano closed sets in U are
0N ,1N , (N(F ))C , (N(F ))C and (BN (F ))C .

Theorem 4.3 [8]: Let (U , τR(X)) be a nano topological space with respect to X ⊆ U
then N cl(X) = U .

Remark 4.4 : The above theorem need not be true for all neutrosophic nano topolog-
ical space (U , τN (F )) with respect to F where F is a neutrosophic subset of U . That is
NFcl(A) need not be equal to U which can be shown by the following example.

Example 4.5 : Let U = {p1, p2, p3, p4, p5} be the universe of discourse. Let U/R =
{{p1, p4}, {p2, p3}, {p5}} be an equivalence relation on U and A = {< p1, (0.2, 0.3, 0.4) >
,< p4, (0.2, 0.3, 0.4) >,< p5, (0.4, 0.6, 0.2) >} be a neutrosophic set on U . Then N(A) =
{< p1, (0.2, 0.3, 0.4) >,< p4, (0.2, 0.3, 0.4) >,< p5, (0.4, 0.6, 0.2) >}, N(A) = {< p1, (0.2, 0.3, 0.4) >
,< p4, (0.2, 0.3, 0.4) >,< p5, (0.4, 0.6, 0.2) >}B(A) = {< p1, (0.2, 0.3, 0.4) >,< p4, (0.2, 0.3, 0.4) >
,< p5, (0.2, 0.4, 0.4) >}. Now we have τN (A) = {0N , 1N , {< p1, (0.2, 0.3, 0.4) >,<
p4, (0.2, 0.3, 0.4) >,< p5, (0.4, 0.6, 0.2) >}, {< p1, (0.2, 0.3, 0.4) >,< p4, (0.2, 0.3, 0.4) >
,< p5, (0.2, 0.4, 0.4) >}} which is a neutrosophic nano topology on U . [τN (A)]c =
{0N , 1N , {< p1, (0.2, 0.3, 0.4) >,< p4, (0.2, 0.3, 0.4) >,< p5, (0.4, 0.6, 0.2) >}, {< p1, (0.2, 0.3, 0.4) >
,< p4, (0.2, 0.3, 0.4) >,< p5, (0.2, 0.4, 0.4) >}. Here NFcl(A) ̸= U
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Theorem 4.6 : Let (U , τN (F )) be a neutrosophic nano topological space with respect
to F where F is a neutrosophic subset of U . Let A and B be neutrosophic subsets of U .
Then the following statements hold:

(i) A ⊆ NFcl(A).

(ii) A is nano closed if and only if NFcl(A) = A.

(iii) NFcl(0N ) = 0N and NFcl(1N ) = 1N .

(iv) A ⊆ B ⇒ NFcl(A) ⊆ NFcl(B).

(v) NFcl(A ∪B) = NFcl(A) ∪NFcl(B).

(vi) NFcl(A ∩B) ⊆ NFcl(A) ∩NFcl(B).

(vii) NFcl(NFcl(A)) = NFcl(A).

Proof :

(i) By definition of neutrosophic nano closure, A ⊆ NFcl(A).

(ii) If A is neutrosophic nano closed, then A is the smallest neutrosophic nano closed
set containing itself and hence NFcl(A) = A. Conversely, if NFcl(A) = A, then
A is the smallest neutrosophic nano closed set containing itself and hence A is
neutrosophic nano closed.

(iii) Since 0N and 1N are neutrosophic nano closed in (U , τN (F )), NFcl(0N ) = 0N and
NFcl(1N ) = 1N .

(iv) If A ⊆ B, since B ⊆ NFcl(B), then A ⊆ NFcl(B). That is, NFcl(B) is a Neu-
trosophic nano closed set containing A. But NFcl(A) is the smallest Neutrosophic
nano closed set containing A. Therefore, NFcl(A) ⊆ NFcl(B).

(v) Since A ⊆ A ∪ B and B ⊆ A ∪ B, NFcl(A) ⊆ NFcl(A ∪ B) and NFcl(B) ⊆
NFcl(A ∪ B). Therefore, NFcl(A) ∪ NFcl(B) ⊆ NFcl(A ∪ B). By the fact that
A ∪ B ⊆ NFcl(A) ∪NFcl(B), and since NFcl(A ∪ B) is the smallest nano closed
set containing A∪B, soNFcl(A∪B) ⊆ NFcl(A)∪NFcl(B). Thus, NFcl(A∪B) =
NFcl(A) ∪NFcl(B).

(vi) Since A ∩B ⊆ A and A ∩B ⊆ B,NFcl(A ∩B) ⊆ NFcl(A) ∩NFcl(B).

(vii) Since NFcl(A) is nano closed, NFcl(NFcl(A)) = NFcl(A).

Theorem 4.7 : (U , τN (F )) be a neutrosophic nano topological space with respect to
F where F is a neutrosophic subset of U . Let A be a neutrosophic subset of U . Then

(i) 1N −NFInt(A) = NFcl(1N −A).

(ii) 1N −NFcl(A) = NFInt(1N −A).

Remark 4.8 : Taking complements on either side of(i) and (ii) Theorem 4.8, we get
(NFInt(A)) = 1N −NFcl(1N −A)) and (NFcl(A)) = 1N − (NFInt(1N −A)).

Example 4.9 : Let U = {a, b, c} and U/R = {{a, b}, {c}}. Let F = {< a, (0.4, 0.5, 0.5) >
,< b, (0.4, 0.5, 0.5) >,< c, (0.5, 0.5, 0.5) >} be a neutrosophic set on U then the τN (A) =
{0N , 1N , {< a, (0.4, 0.5, 0.5) >,< b, (0.4, 0.5, 0.5) >,< c, (0.5, 0.5, 0.5) >}} is a neutro-
sophic nano topology on U . [τN (A)]c = {0N , 1N , {< a, (0.5, 0.5, 0.4) >,< b, (0.5, 0.5, 0.4) >
,< c, (0.5, 0.5, 0.5) >}}. IfA = {< a, (0.7, 0.6, 0.5) >,< b, (0.3, 0.4, 0.5) >,< c, (0.7, 0.5, 0.5) >
}, then (NFInt(A))

C = 1N NFcl(1N −A) = 1N . That is, 1N −NFInt(A) = NFcl(1N −
A) Also, 1N −NFcl(A) = NFInt(1N −A) = 0N
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Theorem 4.10 : Let (U , τN (F )) be a neutrosophic nano topological space with respect
to F where F is a neutrosophic subset of U . Let A and B be neutrosophic subsets of U ,
then the following statements hold:

(i) A is neutrosophic nano open if and only if NFInt(A) = A.

(iii) NFInt(0N ) = 0N and NFInt(1N ) = 1N .

(iv) A ⊆ B ⇒ NFInt(A) ⊆ NFInt(B).

(v) NFInt(A) ∪NFInt(B) ⊆ NFInt(A ∪B).

(vi) NFInt(A ∩B) = NFInt(A) ∩NFInt(B).

(vii) NFInt(NFInt(A)) = NFInt(A).

Proof :

(i) A is neutrosophic nano open if and only if 1N −A is neutrosophic nano closed, if
and only if NFcl(1N −A) = 1N −A, if and only if 1N −NFcl(1N −A) = A if and
only if NFInt(A) = A, by Remark 4.8.

(ii) Since 0N and 1N are neutrosophic nano open, NFInt(0N ) = 0N and NFInt(1N ) =
1N .

(iii) A ⊆ B ⇒ 1N −B ⊆ 1N −A. Therefore, NFcl(1N −B) ⊆ NFcl(1N −A). That is,
1N −NFcl(1N −A) ⊆ 1N −NFcl(1N −B). That is, NFIntA ⊆ NFIntB.

Proof of (iv), (v) and (vi) follow similarly from Theorem 4.7 and Remark 4.8.
Conclusion: Neutrosophic set is a general formal framework, which generalizes the
concept of classic set, fuzzy set, interval valued fuzzy set, intuitionistic fuzzy set, and
interval intuitionistic fuzzy set. Since the world is full of indeterminacy, the neutro-
sophic nano topology found its place into contemporary research world. This paper can
be further developed into several possible such as Geographical Information Systems
(GIS) field including remote sensing, object reconstruction from airborne laser scanner,
real time tracking, routing applications and modeling cognitive agents. In GIS there is
a need to model spatial regions with indeterminate boundary and under indeterminacy.
Hence this neutrosophic nano topological spaces can also be extended to a neutrosophic
spatial region.
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Abstract. Neutrosophic cubic set consists of interval 

neutrosophic set and single valued neutrosophic set 

simultaneously. Due to its unique structure, neutrosophic 

cubic set can express hybrid information consisting of 

single valued neutrosophic information and interval 

neutrosophic information simultaneously. VIKOR 

(VIsekriterijumska optimizacija i KOmpromisno 

Resenje) strategy is an important decision making 

strategy which selects the optimal alternative by utilizing 

maximum group utility and minimum of an individual 

regret. In this paper, we propose VIKOR strategy in 

neutrosophic cubic set environment, namely NC-VIKOR. 

We first define NC-VIKOR strategy in neutrosophic 

cubic set environment to handle multi-attribute group 

decision making (MAGDM) problems, which means we 

combine the VIKOR with neutrosophic cubic number to 

deal with multi-attribute group decision making problems. 

We have proposed a new strategy for solving MAGDM 

problems. Finally, we solve MAGDM problem using our 

newly proposed NC-VIKOR strategy to show the 

feasibility, applicability and effectiveness of the proposed 

strategy. Further, we present sensitivity analysis to show  

the impact of different values of  the decision making 

mechanism coefficient on ranking order of the 

alternatives.  

Keywords: MAGDM, NCS, NC-VIKOR strategy.

1. Introduction
Smarandache [1] introduced neutrosophic set (NS) by 

defining the truth membership function, indeterminacy 

function and falsity membership function as 

independent components by extending fuzzy set [2] and 

intuitionistic fuzzy set [3]. Each of three independent 

component of NS belons to [
-
0, 1

+
]. Wang et al. [4] 

introduced single valued neutrosophic set (SVNS) 

where each of truth, indeterminacy and falsity 

membership degree belongs to [0, 1]. Many researchers 

developed and applied the NS and SVNS in various 

areas of research such as conflict resolution [5], cluster-

ing analysis [6-9], decision making [10-39], educational 

problem [40, 41],  image processing [42-45], medical 

diagnosis [46, 47], social problem [48, 49]. Wang et al. 

[50] proposed interval neutrosophic set (INS). Ye [51] 

defined similarity measure of two interval neutrosophic 

sets and applied it to solve multi criteria decision mak-

ing (MCDM) problem. By combining SVNS and INS 

Jun et al. [52], and Ali et al. [53] proposed neutrosophic 

cubic set (NCS).  Thereafter, Zhan et al. [54] presented 

two weighted average operators on NCSs and applied 

the operators for MADM problem. Banerjee et al. [55] 

introduced the grey relational analysis based MADM 

strategy  in NCS environment. Lu and Ye [56] proposed 

three cosine measures between NCSs and presented 

MADM strategy in NCS environment. Pramanik et al. 

[57] defined similarity measure for NCSs and proved its 

basic properties and presented a new multi criteria 

group decision making strategy with linguistic variables 

in NCS environment. Pramanik et al. [58] proposed the 

score and accuracy functions for NCSs and prove their 

basic properties. In the same study, Pramanik et al. [59] 

developed a strategy for ranking of neutrosophic cubic 

numbers (NCNs) based on the score and accuracy func-

tions. In the same study, Pramanik et al. [58] first de-

veloped a TODIM (Tomada de decisao interativa e mul-

ticritévio), called the NC-TODIM and presented new 

NC-TODIM [58] strategy for solving (MAGDM) in 

NCS environment. Shi and Ye [59] introduced Dombi 

aggregation operators of NCSs and applied them for 

MADM problem. Pramanik et al. [60] proposed an ex-
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tended technique for order preference by similarity to 

ideal solution (TOPSIS) strategy in NCS environment 

for solving MADM problem. Ye [61] present operations 

and aggregation method of neutrosophic cubic numbers 

for MADM.  Pramanik et al. [62] presented some opera-

tions and properties of neutrosophic cubic soft set. 

Opricovic [63] proposed the VIKOR strategy for a 

MAGDM problem with conflicting attributes [64-65]. 

In 2015, Bausys and Zavadskas [66] extended the 

VIKOR strategy to INS environment and applied it to 

solve MCDM problem. Further, Hung et al. [67] 

proposed VIKOR method for interval neutrosophic 

MAGDM. Pouresmaeil et al. [68] proposed an 

MAGDM strategy based on TOPSIS and VIKOR in 

SVNS environment. Liu and Zhang [69] extended 

VIKOR method in neutrosophic hesitant fuzzy set 

environment. Hu et al. [70] proposed interval 

neutrosophic projection based VIKOR method and 

applied it for doctor selection. Selvakumari et al. [70] 

proposed VIKOR Method for decision making problem 

using octagonal neutrosophic soft matrix.  

VIKOR strategy in NCS environment is yet to appear in 

the literature. 

Research gap: 

MAGDM strategy based on NC-VIKOR. This 

study answers the following research questions: 

i. Is it possible to extend VIKOR strategy in NCS

environment?

ii. Is it possible to develop a new MAGDM strategy based

on the proposed NC-VIKOR method in NCS

environment?

Motivation: 

The above-mentioned analysis [64-69] describes 

the motivation behind proposing a novel NC-VIKOR 

method based MAGDM strategy under the NCS envi-

ronment. This study develops a novel NC-VIKOR -

based MAGDM strategy that can deal with multiple de-

cision-makers. 

The objectives of the paper are: 

i. To extend VIKOR strategy in NCS environment.

ii. To define aggregation operator.

iii. To develop a new MAGDM strategy based on

proposed NC-VIKOR in NCS environment. 

To fill the research gap, we propose NC-VIKOR 

strategy, which is capable of dealing with MAGDM 

problem in NCS environment. 

The main contributions of this paper are 

summarized below: 

i. We developed a new NC-VIKOR strategy to deal

with MAGDM problems in NCS environment. 

ii. We introduce a neutrosophic cubic number aggrega-

tion operator and prove its basic properties. 

iii. In this paper, we develop a new MAGDM strategy

based on proposed NC-VIKOR method under NCS en-

vironment to solve MAGDM problems.  

iv. In this paper, we solve a MAGDM problem based on

proposed NC-VIKOR method. 

The remainder of this paper is organized as follows: In 

the section 2, we review some basic concepts and 

operations related to NS, SVNS, NCS. In Section 3, we 

develop a novel MAGDM strategy based on NC-

VIKOR to solve the MADGM problems with NCS 

environment. In Section 4,  we solve an illustrative 

numerical example using the proposed NC-VIKOR in 

NCS environment. Then in Section 5, we present the 

sensitivity analysis. The conclusions of the whole paper 

and further direction of research are given in Section 6. 

2. Preliminaries

Definition 1. Neutrosophic set 

Let X be a space of points (objects) with a generic 

element in X denoted by x, i.e. xX. A neutrosophic 

set [1] A in X is characterized by truth-membership 

function )x(tA , indeterminacy-membership 

function )x(iA and falsity-membership function )x(f A ,

where )x(tA , )x(iA , )x(f A are the functions from X 

to  ]

0, 1


[  i.e. tA , iA , f A : X  ]


0, 1


[  that means

)x(tA , )x(iA , )x(f A  are the real standard or non-

standard subset of ] 0, 1


[. Neutrosophic set can be

expressed as A = {<x , ( )x(tA , )x(iA , )x(f A )>: 

 xX} and 
  3)x(f)x(i)x(t0 AAA .

Example 1. Suppose that X = { n321 x...,,x,x,x } be the 

universal set of n points. Let 
1

A be any neutrosophic 

set in X. Then 1A expressed as 1A = {<
1

x , (0.7, 0.4, 

0.3)>: 1x X}. 

Definition 2. Single valued neutrosophic set 

Let X be a space of points (objects) with a generic 

element in X denoted by x. A single valued 

neutrosophic set [4] B in X is expressed as: 

B = {< x: ( )x(t
B

, )x(i
B

, )x(f
B

)>: x X}, where 

)x(t
B

, )x(i
B

, )x(f
B

[0, 1]. 

For each xX, )x(t
B

, )x(i
B

, )x(f
B

[0, 1] and  

0  )x(tB
 + )x(iB

 + )x(fB
 3. 
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Definition 3. Interval neutrosophic set 

An interval neutrosophic set [50] A
~

 of a non empty set 

H is expreesed by truth-membership function )h(t
A
~  

the indeterminacy membership function )h(i
A
~ and 

falsity membership function )h(f
A
~ . For each hH, 

)h(t
A
~ , )h(i

A
~ , )h(f

A
~   [0, 1] and A

~
defined as 

follows: 

A
~

= {< h, [ )h(t
A
~


, )h(t
A
~


], [ )h(i
A
~


, )h(i
A
~


], 

[ )h(f
A
~


, )h(f
A
~


]:  hH}. Here, )h(t
A
~


, )h(t
A
~


, 

)h(i
A
~


, )h(i
A
~


, )h(f
A
~


, )h(f
A
~


: H   ]


0, 1  [ and

3)h(fsup)h(isup)h(tsup0
A
~

A
~

A
~

  . 

Here, we consider )h(t
A
~


, )h(t
A
~


, )h(i
A
~


, )h(i
A
~


, 

)h(f
A
~


, )h(f
A
~


: H  [0, 1] for real applications.

Example 2. 

Assume that H = { ...,h,h,h 321 , hn} be a non-empty set. 

Let A
~

1
be any interval neutrosophic set. Then 

A
~

1
expressed as A

~
1
= {< h1 : [0.30, 0.70], [0.20, 0.45], 

[0.18, 0.39]: hH}.

Definition 4. Neutrosophic cubic set 

A neutrosophic cubic set [52, 53] in a non-empty set H 

is defined as N = {< h, )h(A
~

, A(h) >:  hH}, where 

A
~

 and A are the interval neutrosophic set and 

neutrosophic set in H respectively. Neutrosophic cubic 

set can be presented as an order pair N = < A
~

, A >, then 

we call it as neutrosophic cubic (NC) number.  

Example 3. 

Suppose that  H = { ...,h,h,h 321 , hn} be a non-empty set. 

Let N1 be any NC-number. Then N1  can be expressed 

as N1 = {< h1 ; [0.35, 0.47], [0.20, 0.43], [0.18, 0.42], 

(0.7, 0.3, 0.5)>: h1H}.

 Some operations of NC-numbers: [52, 53] 

i. Union of any two NC-numbers 

Let  111 A,A
~

N and  222 A,A
~

N be any two 

NC-numbers in a non-empty set H. Then the union of 

N1  and N2 denoted by  NN 21 is defined as 

follows: 

 NN 21 = < Hh)h(A)h(A),h(A
~

)h(A
~

2121  >, 

where 

)h(A
~

)h(A
~

21  = {< h, [max{ t 1A
~ (h), t 2A

~ (h)},max 

{ t 1A
~
 (h), t

2A
~


(h)}], [min { i 1A
~ (h), i 2A

~ (h)}, min { i
1A

~


(h), 

i
2A

~


(h)}], [min { f 1A
~ (h), f 2A

~ (h)}, min { f
1A

~


(h), 

f
2A

~


(h)}]>: h H} and )h(A)h(A 21  = {< h, max 

{ t 1A (h), t 2A (h)}, min { i 1A (h), i 2A (h)}, min { f 1A (h),

f 2A (h)}>: hH}.

Example 4. 

Assume that 

N1 = < [0.39, 0.47], [0.17, 0.43], [0.18, 0.36], (0.6, 0.3, 

0.4)> and N2 = < [0.56, 0.70], [0.27, 0.42], [0.15, 0.26], 

(0.7, 0.3, 0.6)> be two NC-numbers. Then  NN 21 = 

< [0.56, 0.7], [0.17, 0.42], [0.15, 0.26], (0.7, 0.3, 0.4)>. 

ii. Intersection of any two NC-numbers

Intersection of  NandN 21 denoted by  NN 21 is de-

fined as follows: 

 NN 21 = < Hh)h(A)h(A),h(A
~

)h(A
~

2121 

>, where )h(A
~

)h(A
~

21  = {< h, [min { t 1A
~ (h), t 2A

~ (h)}, 

min { t 1A
~
 (h), t

2A
~


(h)}], [max { i 1A
~ (h), i 2A

~ (h)}, max 

{ i
1A

~


(h), i
2A

~


(h)}], [max { f 1A
~ (h), f 2A

~ (h)}, max { f
1A

~


(h), 

f
2A

~


(h)}]>: h H} and )h(A)h(A 21  = {< h, min 

{ t 1A (h), t 2A (h)}, max { i 1A (h), i 2A (h)}, max { f 1A (h),

f 2A (h)}>: hH}.

Example 5. 

Assume that 

N1 = < [0.45, 0.57], [0.27, 0.33], [0.18, 0.46], (0.7, 0.3, 

0.5)> and N2 = < [0.67, 0.75], [0.22, 0.44], [0.17, 0.21], 

(0.8, 0.4, 0.4)> be two NC numbers. Then  NN 21 = 

< [0.45, 0.57], [0.22, 0.33], [0.18, 0.46], (0.7, 0.3, 0.4)>. 

iii. Compliment of a NC-number

Let  111 A,A
~

N be a NCS in H. Then compliment 

of  111 A,A
~

N is denoted by c

1N  = {< h, c

1A
~

(h), 

c

1A (h)>:  hH}. 

Here, 
c

1A
~

= {< h, [ t c
1A

~


(h), t c
1A

~


(h)], [ i c
1A

~


(h), i c
1A

~


(h)], 

[ f c
1A

~


(h), f c
1A

~


(h)]>:  hH}, where, t c
1A

~


(h) = {1} - 

t 1A
~ (h), t c

1A
~


(h) = {1} - t
1A

~


(h), i c
1A

~


(h) = {1} - i 1A
~ (h), 

i c
1A

~


(h) = {1} - i
1A

~


(h), f c
1A

~


(h) = {1} - f 1A
~ (h), f c

1A
~


(h) 
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= {1} - f
1A

~


(h), and  t c
1A

(h) = {1} - t 1A (h), c
1A´i (g) = 

{1} - i 1A (h), f c
1

A (h) = = {1} - f 1A (h).

Example 6. 

Assume that  N1 be any NC-number in H in the form: 

 N1 = < [.45, .57], [.27, .33], [.18, .46], (.7, .3, .5)>. 

Then compliment of  N1 is obtained as 
c

1N = < [0.18, 

0.46], [0.67, 0.73], [0.45, 0.57], (0.5,0.7, 0.7) >. 

iv. Containment

Let  111 A,A
~

N = {< h, [ )h(t 1A
~ , )h(t

1A
~
 ], [ )h(i 1A

~ ,

)h(i
1A

~
 ], [ )h(f 1A

~ , )h(f
1A

~
 ], ( )h(f),h(i),h(t

1A1A1A ) >: 

hH} and  222 A,A
~

N = {< h, [ )h(t 2A
~ , )h(t

2A
~
 ], 

[ )h(i 2A
~ , )h(i

2A
~
 ], [ )h(f 2A

~ , )h(f
2A

~
 ], 

( )h(f),h(i),h(t
2A2A2A ) >: hH}

be any two NC-numbers in a non-empty set H, 

then, (i) 1N  2N  if and only if 

)h(t 1A
~  )h(t 2A

~ , )h(t 1A
~
  )h(t

2A
~
 , 

)h(i 1A
~  )h(i 2A

~ , )h(i
1A

~
  )h(i

2A
~
 , 

)h(f 1A
~  )h(f 2A

~ , )h(f
1A

~
  )h(f

2A
~
  

and ),h(t)h(t
2A1A 

),h(i)h(i
2A1A  )h(f)h(f

2A1A  for all hH.

Definition 7.  

Let N1= < [a1, a2], [b1, b2], [c1, c2], (a, b, c) > and N2 = < 

[d1, d2], [e1, e2], [f1, f2], (d, e, f) > be any two NC-

numbers, then distance [58] between them is defined by  

D (N1, N2) = 

]fcebdafcfc

ebebdada[
9

1

2211

22112211




    (1) 

 Definition 2.14:  Procedure of normalization 

In general, benefit type attributes and cost type 

attributes can exist simultaneously in MAGDM 

problem. Therefore the decision matrix must be 

normalized. Let ij
a be a NC-numbers to express the

rating value of i-th alternative with respect to j-th 

attribute (  j). When attribute  j C or  j  G 

(where C and G be the set of cost type attribute and set 

of  benefit type attributes respectively) The normalized 

values for cost type attribute and benefit type attribute 

are calculated  by using the following expression (2).  












Cifa1

Gifa
a

jij

jij*

ij
  (2) 

Where, aij is the performance rating of i th alternative 

for attribute 
j

  and max aj is the maximum 

performance rating among alternatives for attribute
j

 . 

VIKOR strategy 

The VIKOR strategy is an MCDM or multi-criteria 

decision analysis strategy to deal with  multi-criteria 

optimization problem.  This strategy focuses on ranking 

and selecting the best alternatives from a set of feasible 

alternatives in the presence of conflicting criteria for a 

decision problem. The compromise solution [63, 64] 

reflects a feasible solution that is the closest to the ideal, 

and a compromise means an agreement established by 

mutual concessions. The  Lp -metric  is used to develop 

the stategy [65]. The VIKOR strategy is developed 

using the following form of L p –metric 

   
1

pn p

pi j ij j j
j 1

L /     



        

.,....,,,; m321ip1   

In the VIKOR strategy, 
1i

L (as Si) and
i

L


, i (as

Ri ) are utilized to formulate ranking measure. The 

solution obtained by min Si reflects the maximum group 

utility (‘‘majority” rule), and the solution obtained by 

min Ri indicates the minimum individual regret of the 

“opponent”. 

Suppose that each alternative is evaluated by each 

criterion function, the compromise ranking is prepated 

by comparing the measure of closeness to the ideal 

alternative. The m alternatives are denoted as A1, A2, 

A3, ..., Am. For the alternative Ai, the rating of the j th 

aspect is denoted by 
ij

 , i.e. 
ij

  is the value of  j th 

criterion function for the alternative Ai;  n is the number 

of criteria. 

The compromise ranking algorithm of the VIKOR 

strategy is presented using the  following steps: 

Step 1: Determine the best 
j

 
 and the worst 

j
 

values of all criterion functions j =1, 2,..., n . If the 
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j-th function represents a benefit then: 

j iji
max   , 

j iji
min  

Step 2:  Compute the values Si and Ri ;  i = 1, 2,..., m, 

by these relations: 

   
n

i j j ij j j
j 1

S w / ,  



    

   i j j ij j jj
R max w / ,      

Here, wj is the weight of the criterion that expressss its 

relative importance. 

Step 3: Compute the values Qi: i = 1, 2,..., m, using the 

following relation: 

        ./1/ RRRRSSSSQ iii   

Here,  i
i

SS max
, i

i
SS min

i
i

RR max
, i

i
RR min

Here, v represents ‘‘the decision making mechanism 

coefficient” (or ‘‘the maximum group utility”). Here 

we consider v = 0.5 . 

Step 4: Preference ranikng order of the the alternatives 

is done by sorting the values of S, R and Q in 

decreasing order. 

3. VIKOR strategy for solving MAGDM problem
in NCS environment 
In this section, we propose a MAGDM strategy in NCS 

environment. Assume that  },...,,,{ r321  be a 

set of r alternatives and }...,,,,{ s321   be a set 

of s attributes. Assume that }w...,,w,w,w{W s321  be 

the weight vector of the attributes, where kw 0 

and 1w
s

1k
k 



. Assume that
1 2 3 M

E {E ,E ,E ,...,E }   be 

the set of M decision makers and 

}...,,,,{ M321  be the set of weight vector of 

decision makers, where p 0 and
M

p
p 1

1


 . 

The proposed MAGDM strategy consists of the 

following steps: 

Step: 1. Construction of the decision matrix 

Let DM
p = sr

p
ij)a(   (p = 1, 2, 3, …, t) be the p-th

decision matrix, where information about the alternative 

 i  provided by the decision maker or expert
p

E with 

respect to attribute j (j = 1, 2, 3, …, s). The p-th 

decision matrix denoted by DM
p  (See Equation (3)) is

constructed as follows: 

  

2 s
p p p

p 11 12 1s
p p

2 21 2s

p p

r2 rs

a a a
DM

a

a .a

1

1
p

22

p

r r1

     
...

... 

a

. . ... .
a ...

  



 



 
 
 
 
 
 
 
 

                          (3) 

Here p = 1, 2, 3,…, M; i = 1, 2, 3,…, r;  j = 1, 2, 3,…, s. 

Step: 2. Normalization of the decision matrix 

In decision making situation, cost type attributes 

and benefit type attributes play an important role to 

select the best alternative. Cost type attributes and 

benefit type attributes may exist simultaneously, so 

the decision matrices need to be normalized. We 

use Equation (2) for normalizing the cost type at-

tributes and benefit type attributes. After normali-

zation, the normalized decision matrix (Equation 

(3)) is represented as follows (see Equation 4): 

  

































p

rs
*p

2r
*p

r1
*

r

p

s2
*p

22
*p

21
*

2

p

s1
*p

12
*p

11
*

1

s21

p

aaa

aaa

aaa

....

......

 ...

...

DM   (4)   

Here, p = 1, 2, 3,…, M; i = 1, 2, 3,…, r;  j = 1, 2, 3,…, s. 

  Step: 3. Aggregated decision matrix 

For obtaining group decision, we aggregate all the 

individual decision matrices (
pDM ,p 1,2,..., M) to an 

aggregated decision matrix (DM) using the 

neutrosophic cubic numbers weighted aggregation 

(NCNWA) operator as follows: 

  )a, ..,.a,a(NCNWAa M

ij

2

ij

1

ijij

)a...aaa( M

ijM

3

ij3

2

ij2

1

ij1  =





 
 










M

1p

M

1p

)p(
ijp

M

1p

)p(
ijp

M

1p

)p(
ijp

)p(
ijp ],i,i[],t,t[





 
 






M

1p

M

1p

)p(
ijp

M

1p

)p(
ijp

)p(
ijp

M

1p

)p(
ijp

M

1p

)p(
ijp ]f,i,t(],f,f[  (5) 

The NCNWA operator satisfies the following 

properties: 

1. Idempotency

2. Monotoncity

3. Boundedness

Property: 1. Idempotency 

If all aa, ..,.a,a M

ij

2

ij

1

ij  are equal, then 

1 2 M

ij ij ij ij
a NCNWA (a , a ,... ,a ) a


 
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Since aa ...aa M

ij

2

ij

1

ij  , based on the Equation 

(5), we get 

  )a ...aa(NCNWAa M

ij

2

ij

1

ijij

)a...aaa( M

ijM

3

ij3

2

ij2

1

ij1  =

)a...aaa( M321  =





 
 










M

1p

M

1p
p

M

1p
p

M

1p
pp ],i,i[],t,t[





 
 






M

1p

M

1p
p

M

1p
pp

M

1p
p

M

1p
p ]f,i,t(],f,f[

=  .a])f,i,t(],f,f[,]i,i[],t,t[  

Property: 3. Monotonicity 

Assume that }a, ..,a,a{ M

ij

2

ij

1

ij and }a,...,a,a{ M*

ij

2*

ij

1*

ij be 

any two set of collections of M NC-numbers with the 

condition  p*

ij

p

ij aa  (p = 1, 2, ..., M), then 

).a..,,.a,a(NCNWA)a..,,.a,a(NCNWA M*

ij

2*

ij

1*

ij

M

ij

2

ij

1

ij  

Proof: 

From  the given condition tt
)p(*

ij
)p(

ij
  , we have 

*(p)(p)
ij pp ij

tt
  







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From the above relations, we obtain 
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 Property: 2. Boundedness 
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Proof:  

From Property 1 and Property 2, we obtain 



  a)a..,.,a,a(NCNWA)a..,,.a,a(NCNWA M
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2
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2
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1
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- 
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Therefore, the aggregated decision matrix is defined as 

follows: 
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































rsr2r1r

s222212

1s12111

s21

a...aa

..............

aaa

a ...aa

.... 

DM   (6) 

Here, i = 1, 2, 3, …, r; j = 1, 2, 3, …, s; p =1, 2, …., M. 

 Step: 4. Define the positive ideal solution 

and negative ideal solution 




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


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ij
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ij
i

ij
i

ij
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ij
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ij
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ij
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ij
i

ij
i

ij
 (8)                             

Step: 5. Compute 
i

and 
iZ

i
and 

iZrepresent the average and worst group 

scores for the alternative Ai respectively with the 

relations   

  








s

1j
ijij

*

ijijj

i
)a,a(D

)a,a(Dw
   (9) 











 






)a,a(D

)a,a(Dw
maxZ

ijij

*

ijijj

j
i   (10) 

Here, wj is the weight of 
j

 . 

The smaller values of 
i

and 
iZcorrespond to the

better average and worse group scores for 

alternative Ai , respectively. 

Step: 6. Calculate the values of i (i = 1, 2, 3, 

…, r)

)ZZ(

)ZZ(
)1(

)(

)( ii

i 















   (11) 

Here, i
i

ii
i

i max,min  
, 

i
i

ii
i

i ZmaxZ,ZminZ  
  (12)  

and   depicts the decision making mechanism 
coefficient. If 5.0 , it is for “the maximum group 

utility”; If 5.0 , it is “ the minimum regret”; and it is 
both if 5.0 . 

Step: 7. Rank the priority of alternatives 

Rank the alternatives by i , 
i

 and 
iZ according

to the rule of traditional VIKOR strategy. The 

smaller value reflects the better alternative. 

4. Illustrative example

To demonstrate the feasibility, applicability and 

effectiveness of the proposed strategy, we solve a 

MAGDM problem adapted from [51]. We assume that 

an investment company wants to invest a sum of money 

in the best option. The investment company forms a 

decision making board involving of three members (E1, 

E2, E3) who evaluate the four alternatives to invest 

money. The alternatives are Car company ( 1 ), Food 

company ( 2 ), Computer company (
3 ) and Arms 

company ( 4 ). Decision makers take decision to 

evaluate alternatives based on the attributes namely, 

risk factor (
1

 ), growth factor (
2 ), environment 

impact ( 3 ). We consider three criteria as benefit type 

based on Pramanik et al. [58]. Assume that the weight 

vector of attributes is T)27.0,37.0,36.0(W and weight 

vector of decision makers or experts 

is T)34.0,40.0,26.0( . Now, we apply the proposed 

MAGDM strategy using the following steps. 
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  Figure.1 Decision making procedure of proposed MAGDM method 

                                                       

 Multi attribute group decision making problem 

Construction of the decision matrix Step-1 

Normalization of the decision 

matrices 

Aggregated decision matrix 

Step- 2 

Step- 3 

Define the positive ideal solution 

and negative ideal solution 

Compute i  and iZ

Step-4 

Step-5 

Calculate the values 

of i
Step- 6 

Rank the priority of 
alternatives 

Step- 7 

  Decision making analysis phase 
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Step: 1. Construction of the decision matrix We construct the decision matrices as follows:

……………………………………………………………………………………………………………………………..

Decision matrix for DM
1
 in NCN form 

































>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.7) .6, (.4, .7], [.5, .6], [.5, .4], [.3,<

>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.4) .3, (.8, .4], [.2, .3], [.2, .8], [.6,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<

>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.4) .3, (.8, .4], [.2, .3], [.2, .8], [.6,<

>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,< >.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<

4

3

2

1

321

     (13) 

      Decision matrix for DM
2
 in NCN form 

































>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.4) .3, (.8, .4], [.2, .3], [.2, .8], [.6,< 

>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<

>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<

>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.7) .6, (.4, .7], [.5, .6], [.5, .4], [.3,< 

   

4

3

2

1

321

    (14) 

        Decision matrix for DM
3
 in NC-number form 

































>.7) .6, (.4, .7], [.5, .6], [.5, .4], [.3,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,< 

>.4) .3, (.8, .4], [.2, .3], [.2, .8], [.6,<>.4) .3, (.8, .4], [.2, .3], [.2, .8], [.6,<>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,< 

>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,< 

>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,< 

4

3

2

1

321

 (15) 

Step: 2. Normalization of the decision matrix  
Since all the criteria are considered as benefit type, we do not need to normalize the decision matrices (DM

1
, DM

2
, DM

3
). 

Step: 3. Aggregated decision matrix 

Using equation eq. (5), the aggregated decision matrix of  (13,  14, 15) is presented below: 

































>.34,.37) (.73, .37], [.24, .34], [.24, .73], [.56,<>.50) .50, (.50, .50], [.40, .50], [.40, .50], [.40,<>.41) .34, (.73, .41], [.24, .34], [.24, .73], [.56,<

>.47) .43, (.60, .47], [.33, .43], [.33, .60], [.47,<>.32) .26, (.84, .32], [.16, .26], [.16, .84], [.64,<>.28) .28, (.80, .28], [.18, .28], [.18, .80], [.62,<

>.30,.30) (.76, .30], [.20, .30], [.20, .76], [.60,<>.40) .40, (.64, .40], [.30, .40], [.30, .64], [.50,<>.47) .45, (.58, .47], [.35, .45], [.35, .58], [.45,<

>.28) .28, (.80, .28], [.18, .28], [.18, .80], [.62,<>.42,.42) (.60, .42], [.32, .42], [.32, .60], [.48,< >.46,.50) (.56, .51], [.36, .46], [.36, .56], [.44,<

4

3

2

1

321

 (16) 

Step: 4. Define the positive ideal solution and negative ideal solution 

The positive ideal solution 


ija = 

>.28) .28, (.80, .28], [.18, .28], [.18, .80], [.62,<>.26,.32) (.84, .32], [.16, .26], [.16, .84], [.64,< >.28,.28) (.80, .28], [.18, .28], [.18, .80], [.62,<

321 

 and the negative ideal solution 


ija =
>.47) .43, (.60, .43], [.33, .43], [.33, .60], [.47,<>.50,.50) (.50, .50], [.40, .50], [.40, .50], [.40,< >.46,.50) (.56, .51], [.36, .46], [.36, .56], [.44,<

321 

………………………………………………………………………………………………………………………………

 Step: 5. Compute 
i

and 
iZ

Using Equation (9) and Equation (10), we obtain 

,43.0
16.0

027.0

25.0

16.037.0

37.0

2.036.0
1 







 








 







 
  

,42.0
16.0

02.027.0

25.0

14.037.0

37.0

18.036.0
2 







 








 







 
  

,32.0
16.0

19.027.0

25.0

037.0

37.0

036.0
3 







 








 







 
  

.57.0
16.0

07.027.0

25.0

25.037.0

37.0

08.036.0
4 







 








 







 
  

And

,24.0
16.0

027.0
,

25.0

16.037.0
,

37.0

2.036.0
maxZ1 
















 







 







 
  

,21.0
16.0

02.027.0
,

25.0

14.037.0
,

37.0

18.036.0
maxZ2 
















 







 







 
  

,32.0
16.0

19.027.0
,

25.0

037.0
,

37.0

036.0
maxZ3 
















 







 







 
  

.37.0
16.0

07.027.0
,

25.0

25.037.0
,

37.0

08.036.0
maxZ4 
















 







 







 
  

Step: 6. Calculate the values of 
i

Using Equations (11), (12) and 5.0 , we obtain 
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,31.0
16.0

)21.024.0(
5.0

25.0

)32.043.0(
5.01 





  

,2.0
16.0

)21.021.0(
5.0

25.0

)32.042.0(
5.02 





  

,34.0
16.0

)21.032.0(
5.0

25.0

)32.032.0(
5.03 





  

1
16.0

)21.037.0(
5.0

25.0

)32.057.0(
5.04 





 . 

Step: 7. Rank the priority of alternatives 

The preference order of the alternatives based on 

the traditional rules of the VIKOR startegy 

is 2 1 3 4 . 

…………………………………………………………

………………....................................................................................................................... ...........................................

5. The influence of parameter 

Table 1 shows  how the ranking order of alternatives )( i  changes with the change of the value of 

Values of 


Values of 

i
Preference order of alternatives 

 = 0.1 1 = 0.22, 2 = 0.04, 3 = 0.62, 4 = 1 2 1 3 4

 = 0.2 1 = 0.24, 2 = 0.08, 3 = 0.55, 4 = 1 2 1 3 4

 = 0.3 1 = 0.26, 2 = 0.12, 3 = 0.48, 4 = 1 2 1 3 4

 = 0.4 1 = 0.29, 2 = 0.16, 3 = 0.41, 4 = 1 2 1 3 4

 = 0.5 1 = 0.31, 2 = 0.2, 3 = 0.34, 4 = 1 2 1 3 4

 = 0.6 1 = 0.34, 2 = 0.24, 3 = 0.28, 4 = 1 2 3 1 4

 = 0.7 1 = 0.36, 2 = 0.28, 3 = 0.21, 4 = 1 3 2 1 4

 = 0.8 1 = 0.39, 2 = 0.32, 3 = 0.14, 4 = 1 3 2 1 4

 = 0.9 1 = 0.42, 2 = 0.36, 3 = 0.07, 4 = 1 3 2 1 4

   Table1. Values of 
i

 (i = 1, 2, 3, 4) and ranking of alternatives for different values of  . 

…………………………………………………………………………………………………………………….. 

Figure 2 represents the graphical representation of 

alternatives (
i

A ) versus 
i

 (i = 1, 2, 3, 4) for 

different values of  .  

……………………………………………………………………………………………………………………………. 
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Fig 2. Graphical representation of ranking of alternatives for different values of  . 

………………………………………………………………………………………………………………………………

6. Conclusions
In this paper, we have extended the traditional VIKOR 

strategy to NC-VIKOR. We introduced neutrosophic cubic 

numbers weighted aggregation (NCNWA) operator and 

applied it to aggregate the individual opinion to group 

opinion prove its three properties. We develpoed a novel 

NC-VIKOR based MAGDM strategy in neutrosophic 

cubic set environment. Finally, we solve a MAGDM 

problem to show the feasibility, applicability and 

efficiency of the proposed MAGDM strategy. We present a 

sensitivity analysis to show  the impact of different values 

of  the decision making mechanism coefficient on ranking 

order of the alternatives. The proposed NC-VIKOR based 

MAGDM strategy can be employed to solve a variety of 

problems such as logistics center selection [28, 74], teacher 

selection [75], renewable energy selection[70], fault 

diagnosis[71], brick selection [76, 77], weaver selection 

[78], etc.  
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Abstract Multi-attribute decision making (MADM) is a 
mathematical tool to solve decision problems involving 
conflicting attributes. With the increasing complexity, 
uncertainty of objective things and the neutrosophic nature of 
human thought, more and more attention has been paid to the 
investigation on multi attribute decision making in neutrosophic 
environment, and convincing research results have been reported 
in the literature. While modern algebra and number theory have 
well documented and established roots deep into India's ancient 
scholarly history, the understanding of the springing up of 

neutrosophics, specifically neutrosophic decision making, 
demands a closer inquiry. The objective of the study is to present 
a brief review of the pioneering contributions of personalities as 
diverse as those of P. P. Dey, K. Mondal, P. Biswas, D. Banerjee, 
S. Dalapati, P. K. Maji, A. Mukherjee, T. K. Roy, B. C. Giri,  H. 
Garg, S. Bhattacharya. A survey of various concepts, issues, etc. 
related to neutrosophic decision making is discussed. New 
research direction of neutrosophic decision making is also 
provided.  

Keywords:Bipolar neutrosophic sets, VIKOR method, multi attribute group decision making.

1 Introduction 
Every human being has to make decision in every 
sphere of his/her life. So decision making should be 
pragmatic and elegant. Decision making involves 
multi attributes. Multi attribute decision making 
(MADM) refers to making selections among some 
courses of actions in the presence of multiple, usually 
conflicting attributes. MADM is the most well-known 
branch of decision making. To solve a MADM one 
needs to employ sorting and ranking (see Figure 1).  
It has been widely recognized that most real world 
decisions take place in uncertain environment where 
crisp values cannot capture the reflection of the 
complexity, indeterminacy, inconsistency and 
uncertainty of the problem. 
To deal with  crisp MADM problem [1], classical set 
or crisp set [2] is employed. The classical MADM 
generally assumes that all the criteria and their 
respective weights are expressed in terms of crisp 
numbers and, thus, the rating and the ranking of the 
alternatives are determined. However, practical 
decision making problem involves imprecision or 

vagueness. Imprecision or vagueness may occur from 
different sources such as unquantifiable information, 
incomplete information, non-obtainable information, 
and partial ignorance.  
To tackle uncertainty, Zadeh [3] proposed the fuzzy 
set by introducing membership degree of an element. 
Different strategies [4-9] have been proposed for 
dealing with MADM in fuzzy environment.  In fuzzy 
set, non-membership membership function is the 
complement of membership function. However, non-
membership function may be independent in real 
situation. Sensing this, Atanassov [10] proposed 
intuitionistic fuzzy set by incorporating non-
membership as an independent component.  Many 
MADM strategies [11-14] in intuitionistic fuzzy 
environment have been studied in the literature. 
Deschrijver and Kerre [15] proved that intuitionistic 
fuzzy set is equivalent to interval valued fuzzy set 
[16], an extension of fuzzy set.  
In real world decision making often involves 
incomplete, indeterminate and inconsistent 
information. Fuzzy set and intuitionistic fuzzy set 
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cannot deal with the situation where indeterminacy 
component is independent of truth and falsity 
components. To deal with this situation, Smarandache 
[17] defined neutrosophic set. In 2005, Wang et al. 
[18] defined interval neutrosophic set.  In 2010, Wang 
et al. [19] introduced the single valued neutrosophic 
set (SVNS) as a sub class of neutrosophic set. SVNS 
have caught much attention of the researchers. SVNS 
have been applied in many areas such as conflict 
resolution [20], decision making [21-30], image proc-
essing [31-33], medical diagnosis [34], social prob-
lem [35-36], and so on. In 2013, a new journal, “Neu-
trosophic Sets and Systems” came into being to 
propagate neutrosophic study, which can be seen in 
the journal website, namely, 
http://fs.gallup.unm.edu/nss. By hybridizing the con-
cept of neutrosophic sets or SVNSs with the various 
established sets, several neutrosophic hybrid sets have 
been introduced in the literature such as neutrosophic 
soft sets [37], neutrosophic soft expert set [38], single 
valued neutrosophic hesitant fuzzy sets [39], interval 
neutrosophic hesitant sets [40], interval neutrosophic 
linguistic sets [41], rough neutrosophic set [42, 43], 
interval rough neutrosophic set [44], bipolar neutro-
sophic set [45], bipolar rough neutrosophic set [46], 
tri-complex rough neutrosophic set [47], hyper 
complex rough neutrosophic set [48], neutrosophic 
refined set [49], bipolar neutrosophic refined sets [50], 
neutrosophic cubic set [51], etc. 
So many new areas of decision making in neutroso-
phic hybrid environment began to emerge. Young re-
searchers demonstrate great interest to conduct re-
search on decision making in neutrosophic as well as 
neutrosophic hybrid environment.  According to Pra-
manik [52], the concept of neutrosophic set was ini-
tially ignored, criticized by many [53, 54], while it 
was supported only by a very few, mostly young, un-
known, and uninfluential researchers. As we see Sma-
randache [55, 55, 56, 57] leads from the front and 
makes the paths for research by publishing new books, 
journal articles, monographs, etc. In India, W. B. V. 
Kandasamy [58, 59] did many research works on 
neutrosophic algebra, neutrosophic cognitive 
maps, etc. She is a well-known researcher in neu-
trosophic study. Pramanik and Chackrabarti [36] 
and Pramanik [60, 61] did some work on neutro-
sophic related problems. Initially, publishing neu-
trosophic research paper in a recognized journal 
was a hard work. Pramanik and his colleagues 
were frustrated by the rejection of several neutro-
sophic research papers without any valid reasons.  
After the publication of the International Journal 

namely, “Neutrosophic Sets and Systems” Pra-
manik and his colleagues explored the area of de-
cision making in neutrosophic environment to es-
tablish their research work.  
In 2016, to present history of neutrosophic theory 
and applications, Smarandache [62] published an 
edited volume comprising of the short biography 
and research work of neutrosophic researchers. 
“The Encyclopedia of Neutrosophic Researchers” 
includes the researchers, who published neutroso-
phic papers, books, or defended neutrosophic 
master theses or Ph. D. dissertations. It encour-
ages researchers to conduct study in neutrosophic 
environment. The fields of neutrosophics have 
been extended and applied in various fields, such 
as artificial intelligence, data mining, soft com-
puting, image processing, computational model-
ling, robotics, medical diagnosis, biomedical en-
gineering, investment problems, economic fore-
casting, social science, humanistic and practical 
achievements, and decision making. Decision 
making in incomplete / indeterminate / inconsis-
tent information systems has been deeply studied 
by the Indian researchers. New trends in neutro-
sophic theory and applications can be found in 
[62-67].  

Considering the potentiality of SVNS and its various 
extensions and their importance of decision making, 
we feel a sense of commitment to survey the 
contribution of Indian mathematicians to multi 
attribute decision making. The venture is exclusively 
new and therefore it may be considered as an 
exploratory study.  

Research gap: 

Survey of new research in MADM conducted by 
the Indian researchers. 

Statement of the problem: 

Contributions of selected Indian researchers to multi- 
attribute decision making in neutrosophic 
environment: An overview. 

Motivation: 
The above-mentioned analysis describes the motiva-
tion behind the present study. 

Objectives of the study 

The objective of the study is: 

 To present a brief review of the pioneering
contributions of personalities as diverse as those
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of  Dr. Partha Pratim Dey, Dr. Pranab Biswas, 
Dr. Durga Banerjee, Mr. Kalyan Mondal, Shya-
mal Dalapati, Dr. P. K. Maji, Prof. T. K. Roy, 
Prof. B. C. Giri, Prof. Anjan Mukherjee, Dr. Har-
ish Garg and Dr. Sukanto Bhattacharya. 

Rest of the paper is organized as follows: In section 2, 
we review some basic concepts related to 
neutrosophic set. Section 3 presents the contribution 
of the selected Indian researchers. Section 4 presents 
conclusion and future scope of research. 

......................................................................................................................................... 

 Figure 1. Decision making steps 

 

Step2. Formulate 
weighted aggregated 

decision matrices 

Step2. Apply decision 
making method 

Step4. Rank the 
priority 

Stop 

Step1. Formulate the decision 
matrix 

Multiple decision 
makers 

Start 

Single decision 
maker 

Step1. Formulate the 
decisionmatrices  

Step3. Apply decision 
making method 

Step3. Rank the 
priority 

For Group 
Decision 
Making 

For Single 
DecisionMa

king



Neutrosophic Sets and Systems, Vol. 20, 2018  112 

Surapati Pramanik, Rama Mallick, Anindita Dasgupta, Contributions of Selected Indian Researchers to Multi Attribute 
Decision Making in Neutrosophic Environment: An Overview

2. Preliminaries
In this section we recall some basic definitions related 
to this topic. 

Definition.2.1 Neutrosophic Set 

Let X be the universe. A neutrosophic set (NS) [17] P 
in X is characterized by a truth membership function 
TP, an indeterminacy membership function IP and a 
falsity membership function FP whereTP, IP and FP are 
real standardor non-standard subset of ]-0,1+[. It can 
be defined as:  
P={<x,(TP(x),IP(x),FP(x))>:xϵX,TP,IP,FP ϵ]-0,1+[} 
There is no restriction on the sum ofTP(x),IP(x) and 
FP(x) and so 0-≤TP(x)+IP(x)+FP(x)≤3+. 

Definition 2.2 Single valued neutrosophic set 

Let X be a space of points (objects) with generic ele-
ment in X denoted by x. A single valued neutrosophic 
set [19] P is characterized by a truth-membership 
functionTP(x), an indeterminacy-membership function 
IP(x), and a falsity-membership functionFP(x). For 
each point x in X, TP(x),IP(x),FP(x)[0, 1]. A SVNS
A can be written as: 
A = {<x:TP(x),IP(x),FP(x)>, x X}.

Definition 2.3 Interval valued neutrosophic 
set 

Let X be a space of points (objects) with generic ele-
ments in X denoted by x. An interval valued neutro-
sophic set [18] P is characterized by an interval truth-
membership function TP(x)=[𝑇௉ ,

௅ 𝑇௉
௎], an interval in-

determinacy-membership function IP(x)=[𝐼௉
௅ , 𝐼௉

௎], and 
an interval falsity-membership function 
FP(x)=[ 𝐹௉

௅ , 𝐹௉
௎ ]. For each point xϵX, TP(x), IP(x), 

FP(x) [0, 1]. An IVNS P can be written as:
P = {< x: TP(x),IP(x),FP(x)>x X}.

Definition 2.4: Bipolar neutrosophic set 

A bipolar neutrosophic set [45] P in X is defined as an 
object of the formP={<x, Tm (x),Im(x),Fm(x),

( )nT x ,In(x), ( )nF x >: x X}, whereTm , Im,Fm:X
[1, 0] and nT , nI , nF : X  [-1, 0] . The positive
membership degree Tm (x), Im(x), Fm(x) denotes   
respectively the truth membership, indeterminate 
membership and false membership degree of an ele-
ment X         corresponding to a bipolar neutrosoph-
ic set P and the negative membership degree ( ),nT x

In(x), ( )nF x denotes respectively the truth member-

ship, indeterminate membership and false member-

ship degree of an element x X to some implicit
counter-property corresponding to a bipolar neutro-
sophic set P. 

Definition 2.5: Neutrosophich hesitant fuzzy 
set 
Let 𝑋  be a  fixed set, a neutrosophic hesitantfuzzy set 
[39] (NHFS) on X is defined  as: 
M={<x,T(x),I(x),F(x)>|x ∈ 𝑋 },where T(x) ={ 𝛼|𝛼 ∈
𝑇(𝑥)},I(x) ={𝛽|𝛽 ∈ 𝐼(𝑥)} and F(x) ={𝛾|𝛾 ∈ 𝐹(𝑥)} 
are the three sets of some different values in the 
interval [0, 1], which represent the possible truth-
membership hesitant degree, indeterminacy-
membership hesitant degree, and falsity-membership 
hesitant degree of the element  xϵX to the set M, and 
satisfies the following conditions: 
𝛼𝜖[0,1], 𝛽𝜖[0,1], 𝛾𝜖[0,1]  and 0 ≤ 𝑠𝑢𝑝 𝛼ା +
𝑠𝑢𝑝𝛽ା + 𝑠𝑢𝑝𝛾ା ≤ 3 where 𝛼ା =
⋃ 𝑚𝑎𝑥{𝛼}ఈ∈்(௫) , 𝛽ା = ⋃ 𝑚𝑎𝑥𝛽ఉ∈ூ(௫) and 𝛾ା =

⋃ 𝑚𝑎𝑥{𝛾}ఊ∈ி(௫) for𝑥 ∈ 𝑋. 
The  𝑡𝑟𝑖𝑝𝑙𝑒𝑡 𝑚 = {𝑇(𝑥), 𝐼(𝑥), 𝐹(𝑥)}  is called a 
neutrosophic hesitant fuzzy element (NHFE) which is 
the basic unit of the NHFS and is denoted by the 
symbol m={T, I, F}. 

Definition 2.6: Interval neutrosophic hesitant 
fuzzy set 

Let X  be a  nonempty fixed set, an Interval 
neutrosophic hesitant fuzzy set  [67] onX  is defined 
as :  

𝑃 = { 〈𝑥, 𝑇(𝑥), 𝐼(𝑥), 𝐹(𝑥)〉|𝑥 ∈ 𝑋}. 
Here𝑇(𝑥), 𝐼(𝑥) and 𝐹(𝑥)  are sets of some different 
interval values in [0, 1], which denotes respectively 
the possible truth-membership hesitant degree, 
indeterminacy-membership hesitant degree, and 
falsity-membership hesitant degree of the element 𝑥 ∈
Ω to the set  P. Then,T(x)={𝛼 ෥ |𝛼෤ ∈ 𝑇(𝑥)}, 𝑤here 𝛼෤ =
[𝛼෤௅ , 𝛼෤௎] is an interval number; 𝛼෤௅ = 𝑖𝑛𝑓 𝛼 ෥ and 𝛼෥ ௎ =
𝑠𝑢𝑝𝛼 ෥  represents the lower and upper limits 
of 𝛼 ෥ , respectively; 𝐼(𝑥) = ൛𝛽෨|𝛽෨ ∈ 𝐼(𝑥)ൟ, 𝑤here 𝛽෨ =

[𝛽෨௅ , 𝛽෨௎] is an interval number; 𝛽෨௅ = inf 𝛽෨ and 
𝛽෨௎ = sup 𝛽෨ represents the lower and upper limits of 
𝛽෨,   respectively; F(x)= {𝛾෤|𝛾෤ ∈ 𝐹(𝑥) , where 𝛾෤ =
[𝛾෤௅ , 𝛾෥ ௎]is an intervalnumber;  𝛾෤௅ = 𝑖𝑛𝑓𝛾෤   and , 𝛾෤௎ =
𝑠𝑢𝑝𝛾෤  represents the lower and upper limits of 𝛾෤, 
respectively and satisfied the condition 
0 ≤ 𝑠𝑢𝑝𝛼෤ା + 𝑠𝑢𝑝𝛽෨ା + 𝑠𝑢𝑝𝛾෤ା ≤ 3 
where 𝛼෤ା = ⋃ 𝑚𝑎𝑥{𝛼෤}ఈ෥∈்(௫) , 𝛽෨ା =

⋃ 𝑚𝑎𝑥൛𝛽෨ൟఉ෩∈ூ(௫) 𝑎𝑛𝑑𝛾෤ା = ⋃ 𝑚𝑎𝑥{𝛾෤}ఊ෥∈ி(௫) for𝑥 ∈ 𝑋. 
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The triplet 𝑝෤ = {𝑇(𝑥), 𝐼(𝑥), 𝐹(𝑥)} is called an interval 
neutrosophic hesitant fuzzy element or simply INHFE, 
which is denoted by the symbol   𝑝෦ = {𝑇, 𝐼, 𝐹}. 

Definition 2.7 Triangular fuzzy neutrosophic 
sets 

Let X be the finite universe and F [0, 1] be the set of 
all triangular fuzzy numbers on [0, 1]. A triangular 
fuzzy neutrosophicset (TFNS) [68] P with 
TP(x):X→ 𝐹[0,1],IP:X→ [0,1] and FP:X→ 
in X is defined as: 
P={<x:TP(x),IP(x),Fp(x)>,xϵX},  

where TP(x):X → 𝐹[0,1] , IP:X → [0,1]  and FP:X →
[0,1] . The triangular fuzzy numbers TP(x) 
=(𝑇௉

ଵ, 𝑇௉
ଶ, 𝑇௉

ଷ), IP(x)=(𝐼௉
ଵ, 𝐼௉

ଶ, 𝐼௉
ଷ) and FP(x) =(𝐹௉

ଵ, 𝐹௉
ଶ, 𝐹௉

ଷ), 
respectively, denotesrespectively the possible truth-
membership, indeterminacy-membership and a falsi-
ty-membership degree of x in P and for every xX 
0≤ 𝑇௉

ଷ(𝑥) + 𝐼௉
ଷ(𝑥) + 𝐹௉

ଷ(𝑥) ≤ 3. 
The triangular fuzzy neutrosophic value (TFNV)P is 
symbolized by 
<(l,m,n),(p,q,r),(u,v,w)>where,(𝑇௉

ଵ(𝑥), 𝑇௉
ଶ(𝑥), 𝑇௉

ଷ(𝑥)) 
= (𝑙, 𝑚, 𝑛) ,൫𝐼௉

ଵ(𝑥), 𝐼௉
ଶ(𝑥), 𝐼௉

ଷ(𝑥)൯ = (𝑝, 𝑞, 𝑟) and 
(𝐹௣

ଵ(𝑥), 𝐹௣
ଶ(𝑥), 𝐹௣

ଷ(𝑥)) = (u,v,w). 

Definition2.8Neutrosophic soft set 

Let V be an initial universe set and E be a set of 
parameters. Consider A ⊂ E. Let P( V ) denote the set 
of all neutrosophic sets of V. The collection ( F, A ) is 
termed to be the soft neutrosophic set [37] over V, 
where F is a mapping given by F : A → P(V). 

Definition 2.9 Neutrosophic cubic set 

Let U be the space of points with generic element in 
U denoted by uU. A neutrosophic cubic set [51]in

U defined as N  = {< u, A (u),  (u) >: uU} in
which A (u) is the interval valued neutrosophic set 
and (u) is the neutrosophic set in U. A neutrosophic

cubic set in U denoted by N  = <A,  >. We use

)(UNC   as a notation which implies that collection of 

all neutrosophic cubic sets in U. 
Definition 2.10 Rough Neutrosophic Sets 

Let X be a non empty  set and R be an 
equivalence relation on X . Let P be a neutrosophic 
set in Y with the  membership function TP, 
indeterminacy function IP and non-membership 
function FP. The lower and the upper approximations 
of P in the approximation (X, R) denoted 

by 𝐿(𝑃) 𝑎𝑛𝑑 𝐿(𝑃) are respectively defined as 
follows: 

    L( P ) L( P ) L( P ) R
L( P ) x, ( x ), ( x ), ( x ) / y [ x ] ,x X ,T I F

    L( P ) L( P ) L( P ) R
L( P ) x, ( x ), ( x ), ( x ) / y [ x ] ,x X ,T I F

),(][)()( yTxxT PRyPL 

L (P) Py R
(x) [x] (y),I I 

 
L(P) Py R

(x) [x] (y),F F 

),(][)()( yTxxT PRyPL 

L(P) Py R
(x) [x] (y),I I 

L(P) Py R
(x) [x] (y)F F 

So, 0 )(sup )( xT PL )(sup )( xI PL )(sup )( xF PL

3.
0 )(sup )( xT PL )(sup )( xI PL )(sup )( xF PL 3.

Here  and  denotes “max” and “min’’ 
operators respectively. TP(y), IP(y) and FP(y) are  the 
membership, indeterminacy and non-membership 
function of y with respect to P and  also )(PL and

)(PL are two neutrosophic sets in X. 

Therefore, NS mapping ,L L:L(X)  L(X) are, 

respectively, referred to as the lower  and  the upper 
rough  NS  approximation  operators,  and the pair

))(),(( PLPL  is called the rough neutrosophic set 

[42] in (Y, R). 

Definition 2.11Refined Neutrosophic Sets 

LetX be a universe.  A neutrosophic refined set 
(NRS) [49]A on X can be defined as follows: 

1 2 1 2

1 2

, ( (x), (x), ..., (x)), ( (x), (x), ..., (x)),

( (x), (x), ..., (x))

    
  

p p
A A A AA A

p
A A A

x T T T I I I
A

F F F

Here, 1 2(x), (x ), ..., (x) : X [0,1],p
A A AT T T

1 2(x), (x), ..., (x) : X [0,1],p
A A AI I I and 
1 2(x), (x), ..., (x) : X [0,1]p
A A AF F F . For any  x ϵ X 

 1 2( x ) , ( x ) , . . . , ( x )p
A A AT T T ,  1 2( x ) , ( x ) , . . . , ( x )p

A A AI I I and

 1 2( x ) , ( x ) , . . . , ( x )p
A A AF F F is the truth-membership 

sequence, indeterminacy-membership sequence and 
falsity-membership sequence of the element x, 
respectively. 
Section 3 The contribution of the selected Indian 
researchers 
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3.1 Dr. Partha Pratim Dey 

Dr. Partha Pratim Dey was born at Chak, P. O.- 
Islampur, Murshidabad, West Bengal, India, PIN-
742304. Dr. Dey qualified CSIR-NET-Junior 
Research Fellowship (JRF) in 2008. His paper 
entitled“Fuzzy goal programming for multilevel 
linear fractional programming problem"coauthored 
with Surapati Pramanik was awarded as the best 
paper in West Bengal State Science and Technology 
Congress (2011) in mathematics. He obtained Ph. D. 
in Science from Jadavpur University, India in 
2015.Title of his Ph. D. Thesis [70] is:“Some studies 
on linear and non-linear bi-level programming 
problems in fuzzy envieonment``.  He continues his 
research in the feild of fuzzy multi-criteria decision 
making and extends them in neutrosophic 
environment. Curently, he is an assistant teacher of 
Mathematics in Patipukur Pallisree Vidyapith, 
Patipukur, Kolkata-48. His research interest includes 
decision making in neutrosophic environemnt and 
optimization.   

Contribution: 

In 2015, Dey, Pramanik, and Giri [71] proposed a 
novel MADM strategy based on extended grey 
relation analysis (GRA) in interval neutrosophic 
environment with unknown weight of the attributes. 
Maximizing deviation method is employed to 
determine the unknown weight information of the 
atributes. Dey et al. [71] also developed linguistic 
scale to transform linguistic variable into interval 
neutrosophic values. They employed the developed 
strategy for dealing with practical problem of 
selecting weaver for Khadi Institution.  Partha Pratim 
Dey, coming from a weaver family, is very familiar 
with the parameters of weaving and criteria of 
selection of weavers. Several parameters are defined 
by Dey et al. [71] to conduct the study. 

Dey et al. [72] proposed a TOPSIS strategy at first in 
single valued neutrosophic soft expert set 
environmnet in 2015. Dey et al. [72]  determined the 
weights of the parameters by employing maximizing 

deviation method and demonstrated an illustrative 
example of teacher selection problem. According to 
Google Scholar Citation, this paper [72] has been 
cited by 15 studies so far.  
In 2015, Dey et al. [73] established TOPSIS startegy 
in generalized neutrosophic soft set environmnet and 
solved an illustrative MAGDM problem. In 
neutrosophic soft set environment, Dey et al. [74] 
grounded a new MADM strategy based on grey 
relational projection technique. 

In 2016, Dey et al. [75] developed two new strategies 
for solving MADM problems with interval-valued 
neutrosophic assessments. The empolyed measures 
[75] are namely, i) weighted projection measure and 
ii) angle cosine and projection measure. Dey et al.
[76] defined Hamming distance function and 
Euclidean distance function between bipolar 
neutrosophic sets. In the same study, Dey et al. [76] 
defined bipolar neutrosophic relative positive ideal 
solution (BNRPIS) and neutrosophic  relative 
negative ideal solution(BNRNIS) and developed an 
MADM strategy in bipolar neutrosophic environemnt. 

Deyet et al. [77] presented a GRA strategy for solving 
MAGDM problem under neutrosophic soft 
environment and solved an illustrative numerical 
example to show the effectiveness of the proposed 
strategy. 
In 2016, Dey et al. [78] discussed a solution strategy 
for MADM problems with interval neutrosophic 
uncertain linguistic information through extended 
GRA method. Dey et al. [78] also proposed Euclidean 
distance between two interval neutrosophic uncertain 
linguistic values.  

Pramanik, Dey,  Giri, and Smarandache [79]  defined 
projection, bidirectional projection and hybrid 
projection measures between bipolar neutrosophic 
sets in 2017 and proved their basic properties. In the 
same study [79],  the same authors developed three 
new MADM strategies based on the proposed 
projection measures. They validated their result by 
solving a numerical example of MADM. 

In 2017,  Pramanik, Dey,  Giri, and Smarandache [80] 
defined some operation rules for neutrosophic cubic 
sets and introduced the Euclidean distance between 
them.nThe authors also defined neutrosophic cubic 
positive and negative ideal solutions and established 
a new MADM strategy.  In 2018, Dey, Pramanik, Ye 
and Smarandache [81] introduced cross entropy and 
weighted cross entropy measures for bipolar neutro-
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sophic sets and interval bipolar neutrosophic sets and 
proved their basic properties. The authors also devel-
oped two new multi-attribute decision-making strate-
gies in bipolar and interval bipolar neutrosophic set 
environment. The authors solved two illustrative nu-
merical examples and compared the obtained results 
with existing strategies to demonstrate the feasibility, 
applicability, and efficiency of their strategies. 

Pramanik, Dey and Giri [82] defined hybrid vector 
similarity measure between single valued refined 
neutrosophic sets (SVRNSs) and proved their basic 
properties and developed an MADM strategy and 
employed them to solve an illustrative example of 
MADM in SVRNS environment. 

Pramanik, Dey and Smarandache [83] defined the 
correlation coefficient measure Cor (L1, L2) between 
two interval bipolar neutrosophic sets (IBNSs) L1, L2

and proved the following properties: 
(1) Cor (L1, L2) = Cor (L2, L1) ; 

(2) 0 Cor (L1, L2) 1;
(3) Cor (L1, L2) = 1, if L1= L2. 
In the same study, the authors defined weighted 

correlation coefficient measure Corw(L1, L2) between 
two IBNSs L1, L2 and established the following 
properties: 

(1) Corw(L1, L2) = Corw (L2, L1); 

(2) 0Corw(L1, L2)1;
(3) Corw(L1, L2) = 1, if L1= L2. 

 The authors [83] also developed a novel MADM 
straegy based on weighted correlation coefficient 
measure and empolyed to solve an investment 
problem and compared the solution with existing 
startegies. 
Pramanik, Dey, and Smarandache [84] defined 
Hamming and Euclidean distances measures, 
similarity measures based on maximum and minimum 
operators between two IBNSs and proved their basic 
properties. In the same research,  Pramanik et al. [84] 
deveolped a novel MADM strategy in  IBNS 
environment. 
In fuzzy environment, work of  Dey and Pramanik 
[85] obtained the best paper award in Mathematics in 
2011 at 18th West Bengal State Science & 
Technology Congress Tilte of the paper was:‘ Fuzzy 
goal programming for multilevel linear fractional 
programming problems’. 
In 2015, Dr. Dey obtained “Diploma Certificate” 
from Neutrosophic Science InternationalAssociation 
(NISA) for his outstanding performance in 
neutrosophic research. He was awarded the certificate 
of outstanding contribution in reviewing for the 
International Journal “Neutrosophic Sets and 
Systems“. His works in neutrosophics draw much 

attention of the researchers international level. 
According to “ResearchGate’’ a social networking 
site for scientists and researchers, citation of his 
research exceeds 200. He is an active member of 
‘‘Indian society for neutrosophic study’’.
Dr. Dey is very much intersted in neutrosophic study. 
He continues his research work with great 
mathematician like Prof. Florentin Smarandache and 
Prof. Jun Ye. 

3.2 Kalyan Mondal 

Kalyan Mondal was born at Shantipur, Nadia, West 
Bengal, India, Pin-741404. He qualified CSIR-NET-
Junior Research Fellowship (JRF) in 2012. He is a 
research scholar in Mathematics of Jadavpur 
University, India since 2016. Title of his Ph. D. thesis 
is: “Some decision making models based on 
neutrosophic strategy”. His paper entiled “MAGDM 
based on contra-harmonic aggregation operator in 
neutrosophic number (NN) environment’’ coauthored 
with Surapsati Pramanik and Bibhas C. Giri was 
awarded outstanding paper in West Bengal State 
Science and Technology Congress (2018) in 
mathematics. He continues his research in the field 
neutrosophic multi-attribute decision making; 
aggregation operators; soft computing; pattern 
recognitions; neutrosophic hybrid systems, rough 
neutrosophic sets, neutrosophic numbers, 
neutrosophic game theory, neutrosophic algebraic 
structures. Presently, he is an assistant teacher of 
Mathematics in Birnagar High School (HS) Birnagar, 
Ranaghat, Nadia, Pin-741127, West Bengal, India. 

Contribution: 

In 2014, Mondal and Pramanik [86]initiated to study 
teacher selection problem using neutrosophic logic.  
Pramanik and Mondal [87] defined cosine similarity 
measure for rough neutrosophic sets as CRNS(A, B) 
between two rough neutrosophic sets A, B and 
established the following properties: 

(1) CRNS(A, B) = CRNS (B, A); 

(2) 0CRNS(A, B)1;
(3) CRNS(A, B) = 1, iff A= B. 
In the same study, Pramanik and Mondal [87] 

applied cosine similarity measure for medical 
diagnosis. 
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Mondal et al. [88] proposed a rough cotangent 
similarity measure  in 2015 and studied some of its 
basic properties. The authors demonstrated an 
application of cotangent similarity measure of rough 
neutrosophic sets for medical diagnosis. 
Pramanik and Mondal [89] introduced interval 
neutrosophic  MADM strategy with completely 
unknown attribute weight information based on 
extended grey relational analysis. 
In 2015, Mondal and Pramanik [90] presents rough 
neutrosphic MADM strategy based on GRA. They 
also extended the neutrosophic GRA strategy to 
rough neutrosophic GRA strategy and applied it to 
MADM problem. The authors first defined 
accumulated geometric operator to transform rough 
neutrosophic number (neutrosophic pair) to single 
valued neutrosophic number. 

In 2015, Mondal and Pramanik [91] presented a 
neutrosophic  MADM strategy  for school choice 
problem. The authors used five criteria to modeling 
the school choice problem in neutrosophic 
environment.  

In 2015, Mondal and Prammanik [92] defined 
cotangent similarity measure for neutrosophic sets as 
COTNRS(N, P) between two refined neutrosophic sets N, 
P and established the following properties: 

(1) COTNRS(N, P) = COTNRS (P, N); 

(2) 0COTNRS(N, P) 1;
(3) COTNRS(P, N) = 1, if P = N. 

In the same study, Mondal and Pramanik [92] 
presented an application of cotangent similarity 
measure of neutrosophic single valued sets in a 
decision making problem for educational stream 
selection. 
Mondal and Pramanik [93] also defined rough 
accuracy score function and proved their basic 
properties. The authors also introduced entropy based 
weighted rough accuracy score value. The authors 
developed a novel rough neutrosophic MADM 
startegy with incompletely known or completely 
unknown attribute weight information based on rough 
accuracy score function.  
Pramanik and Mondal [94] presented rough Dice and 
Jaccard similarity measures between rough neutro-
sophic sets. The authors proposed weighted rough 
Dice and Jaccard similarity measures, and proved 
their basic properties. The authors presented an appli-
cation of rough neutrosophic Dice and Jaccard simi-
larity measures in medical diagnosis. 

Mondal and Pramanik [95] defined  tangent similarity 
measure and proved their basic properties. In the 
same study, Mondal and Pramanik developed a novel 
MADM strategy for MADM  problems in SVNS 
environment. The authors resented two illustrattive 
exaxmples,  namely selection of educational stream 
and medical diagnosis to demonstrate the feasibility, 
and applicability of the proposed MADM strategy. 
Mondal and Pramanik [96] studied the quality clay-
brick selection strategy based on MADM with single 
valued neutrosophic GRA.The authors used 
neutrosophic grey relational coefficient on Hamming 
distance between each alternative to ideal 
neutrosophic estimates reliability solution and ideal 
neutrosophic estimates unreliability solution. They 
also used  neutrosophic relational degree to determine 
the ranking order of all alternatives. 
In 2015, Mondal and Pramanik [97] defined a refined 
tangent similarity measure strategy of refined 
neutrosophic sets and proved  its basic properties. 
They presented an application of refined tangent 
similarity measure in medical diagnosis.  
Mondal and Pramanik [98] introduced  cosine, Dice 
and Jaccard similarity measures of interval rough 
neutrosophic sets and proved their basic properties. 
They developed three MADM strategies based on 
interval rough cosine, Dice and Jaccard similarity 
measures and presented an illustrative example, 
namely selection of best laptop for random use.  
In 2016, Mondal and Pramanaik [47] defined rough 
tri-complex similarity measure in  rough neutrosophic 
environment and proved its basic properties.  In the 
same study, Mondal and Pramnaik [47] developed a 
novel MADM strategy for dealing with MADM 
problem in rough tri-complex neutrosophic 
envioronment. Mondal, Pramanik, and Smarandache 
[48]  introduced the rough neutrosophic hyper-
complex set and the rough neutrosophic hyper-
complex cosine function in 2016, and proved their 
basic properties. They also defined  the rough 
neutrosophic hyper-complex similarity measure and 
proved their basic properties. They also developed a 
new MADM strategy to deal with MADM problems 
in rough neutrosophic hyper-complex set 
environment. They presented a hypothetical 
application to the selection problem of best candidate 
for marriage for Indian context.  
Mondal, Pramanik, and Smarandache [99] defined 
rough trigonometric Hamming similarity measures 
and proved their basic properties. In the same study, 
Mondal et al. [99] developed a novel MADM 
strategies to solve MADM problems in rough 
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neutrosophic environment. The authors  provided an 
application, namely selection of the most suitable 
smart phone for rough use.  
In 2017, Mondal, Pramanik and Smarandache [100] 
developed a new MAGDM strategy by extending the 
TOPSIS strategy in rough neutrosphic environment, 
called rough neutrosophic TOPSIS strategy for 
MAGDM. They also proposed rough neutrosophic 
aggregate operator and rough neutrosophic weighted 
aggregate operator. Finally, the authors solved a 
numerical example to demonstrate the applicability 
and effectiveness of the proposed TOPSIS startegy. 

Mondal, Pramanik, Giri and Smarandache [101] 
proposed neutrosophic number harmonic mean 
operator (NNHMO) and neutrosophic number 
weighted harmonic mean operator NNWHMO and 
cosine function to determine unknown criterion 
weights in neutrosophic number (NN) environment. 
The authors  developed two strategies of ranking NNs 
based on score function and accuracy function. The 
authors  also developed two novel MCGDM 
strategies based on the proposed aggregation 
operators. The authors  solved a hypothetical case 
study and compared the obtained results with other 
existing strategies to demonstrate the effectiveness of 
the proposed MCGDM strategies. The significance of 
these stratigies is that they combine NNs with 
harmonic aggregation operators to cope with 
MCGDM problem. 
In 2018, Mondal, Pramanik and Giri [102] inroduced 
hyperbolic sine similarity measure and weighted 
hyperbolic sine similarity measure namely, 
SVNHSSM(A, B) for SVNSs. They proved the 
following basic properties.  

1. 0   SVNHSSM(A, B)  1
2. SVNHSSM(A, B) = 1 if and only ifA = B
3. SVNHSSM (A, B) = SVNHSSM(B, A)
4. If R is a SVNS in X and ABR then

SVNHSSM(A, R)   SVNHSSM(A, B) and
SVNHSSM(A, R)   SVNHSSM(B, R). 
The authors also defined weighted hyperbolic sine 
similarity measure for SVNS namely, 
SVNWHSSM(A, B) and proved the following 
basicproperties. 

1. 0  SVNWHSSM(A, B)  1
2. SVNWHSSM (A, B) = 1 if and only ifA = B
3. SVNWHSSM (A, B) = SVNWHSSM(B, A)
4. If R is a SVNS in X and A  B  R then

SVNWHSSM (A, R)   SVNWHSSM(A, B)
and SVNWHSSM (A, R)  SVNWHSSM (B,
R).

The authors defined compromise function to 
determine unknown weight of the attributes in SVNS 
environment. The authors  developed a novel MADM 

strategy based on the proposed weighted similarity 
measure. Lastly, the authors  solved a numerical 
example and compared the obtained results with the 
existing strategies to demonstrate the effectiveness of 
the proposed MADM strategy. 
Mondal, Pramanik, and Giri [103] defined tangent 
similarity measure and proved its properties in 
interval valued neutrosophic environment. The 
authors developed a novel MADM strategy based on 
the proposed tangent similarity measure in interval 
valued neutrosophic environment. The authors also 
solved a numerical example namely, selection of the 
best investment sector for an Indian government 
employee. The authors also presented a comparative 
analysis. 
Mondal et al. [104] employed refined neutrosophic 
set to express linguistic variables.  The authors 
proposed linguistic refined neutrosophic set. The 
authors developed an MADM strategy based on 
linguistic refined neutrosophic set. The authors also 
proposed an entropy method to determine unknown 
weight of the criterion in linguistic neutrosophic 
refined set environment. They presented an 
illustrative example of constructional spot selection to 
show the feasubility and applicability of the proposed 
strategy.  
Mr. Kalyan Mondal is a young and hardworking 
researcher in neutrosophic field. He acts as an area 
editor of international journal,“Journal of New 
Theory” and acts as a reviewer for different 
international peer reviewed journals. In 2015, Mr. 
Mondal was awarded Diploma certificate from 
Neutrosophic Science InternationalAssociation 
(NISA) for his outstanding performance in 
neutrosophic research. He was awarded the certificate 
of outstanding contribution in reviewing for the 
International Journal “Neutrosophic Sets and 
Systems’’. His works in neutrosophics draw much 
attention of the researchers at international level. 
According to “Researchgate’’, citation of his research 
exceeds 430.

3.3 Dr. Pranab Biswas 

Pranab Biswas obtained his Bachelor of Science 
degree in Mathematics and Master degree in Applied 
Mathematics from University of Kalyani. He obtained 
Ph. D. in Science from Jadavpur University, India. 
Title of his thesis is “Multi-attribute decision making 
in neutrosophic environment”. 
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He is currently an assistant teacher of Mathematics. 
His research interest includes multiple criteria deci-
sion making, aggregation operators, soft computing, 
optimization, fuzzy set, intuitionistic fuzzy set, neu-
trosophic set. 
Contribution: 
In 2014, Biswas, Pramanik and Giri  [105] 
proposed entropy based grey relational analysis 
strategy for MADM problem with single valued 
neutrosophic attribute values. In neutrosophic 
environment, this is the first case where GRAwas 
applied to solve MADM problem. The authors 
also defined  neutrosophic relational degree. 
Lastly, the authors provided a numerical example 
to show the feasibility and applicability of the 
developed strategy. 
In 2014, Biswas et al. [106] introduced single –valued 
neutrosophic MADM strategy with incompletely 
known and completely unknown attribute weight 
information based on modified GRA.The authors also 
solved an optimization model to find out the 
completely unknown attribute weight by ustilizing 
Lagrange function. At the end, the authors provided 
an illustrative example to show the feasibility, 
practicalitry and effectiveness of the proposed 
strategy. 

Biswas et al. [69]  introduced a new strategy called 
“Cosine similarity based MADM with trapezoidal 
fuzzy neutrosophic numbers”.The authors also 
established  expected interval and the expected value 
for trapezoidal fuzzy neutrosophic number and cosine 
similarity measure of trapozidal fuzzy neutrosophic 
numbers.  

In 2015, Biswas et al. [107] extended TOPSIS 
strategy for MAGDM in neutrosophic 
environment. In the study, rating values of 
alternative are expressed by linguistic terms such 
as Good, Very Good, Bad, Very Bad, etc. and 
these terms are scaled with single-valued 
neutrosophic numbers. Single-valued neutrosophic 
set-based weighted averaging operator is used to 
aggregate all the individual decision maker’s 
opinion into one common opinion for rating the 
importance of criteria and alternatives. The 
authors provided an illustrative example to 
demonstrate the proposed TOPSIS strategy. 
Biswas et al. [108] further extened the TOPSIS 
strategy for MAGDM in single-valued 
neutrosophic environment. The authors developed 
a non-linear programming based strategy to study 

MAGDM problem. In the same study, the authors 
converted the single valued neutrosophic numbers 
into interval numbers. The authors employed 
nonlinear programming model to determine  the 
relative closeness co-efficient intervals of 
alternatives for each decision maker. Then, the 
closeness co-efficient intervals of each alternative 
are aggregated according to the weight of decision 
makers. Further, the authors developed  a priority 
matrix with the aggregated intervals of the 
alternatives. The authors obtained the ranking 
order of all alternatives by computing the optimal 
membership degrees of alternatives with the 
ranking method of interval numbers. Finally, the 
authors presented an illustrative example to show 
the effectiveness of the proposed strategy. 

In 2015, Pramanik, Biswas, and Giri [109] 
proposed  two new hybrid vector similarity 
measures of single valued and interval 
neutrosophic sets by hybriding the concept of Dice 
and  cosine similarity measures.The authors also 
proved their basic properties. The authors also 
presented their applications in multi-attribute 
decision making in neutrosophic environment. 

Biswas et al. [110] proposed triangular fuzzy 
number neutrosophic sets by combining triangular 
fuzzy number with single valued neutrosophic set 
in 2016. Biswas et al. [110] also defined some of 
its  operational rules. The authors defined 
triangular fuzzy number neutrosophic weighted 
arithmetic averaging operator and triangular fuzzy 
number neutrosophic weighted geometric 
averaging operator to aggregate triangular fuzzy 
number nuetrosophic set. The authors also 
established  some of their properties of the 
proposed operators. The authors also presented  an 
MADM strategy to solve MADM in triangular 
fuzzy number neutrosophic set environment. 

In 2016, Biswas et al. [111] defined score value, 
accuracy value, certainty value, and normalized 
Hamming distance of single valued neutrosophic 
hesitant fuzzy sets.The authors also defined positive 
ideal solution and negative ideal solution  by score 
value and accuracy value. The authors calculated the 
degree of grey relational coefficent  between each 
alternative and ideal alternative. The authors also 
determined a relative closeness coefficient to obtain 
the ranking order of all alternatives. Finally, the 
authors provided an illustrative example to show the 
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validity and effectiveness of the proposed grey 
relational analysis based MADM strategy in single 
valued neutrosophic hesitant fuzzy set environment.   

Biswas, Pramanik, and Giri [112] proposed a class of 
distance measures for single-valued neutrosophic 
hesitant fuzzy sets in 2016 and proved their 
properties with variational parameters. The authors 
applied weighted distance measures to calculate the 
distances between each alternative and ideal 
alternative in the MADM problems. The authors 
developed a MADM strategy based on the proposed 
distance functions in single valued neutrosophic 
hesitant fuzzy set environment.  The authors 
provided an illustrative example to verify the 
proposed strategy and to show its fruitfulness. The 
authors also compared the proposed strategy with 
other existing startegies for solving MADM in single 
valued neutrosophic hesitant fuzzy set environment. 

Biswas et al. [113]  introduced single-valued 
trapezoidal neutrosophic number (SVTrNN), which is 
a special case of single-valued neutrosophic number 
and developed a ranking method for ranking 
SVTrNNs.  The authors presented some operational 
rules as well as cut sets of SVTrNNs. The authors 
defined the value and ambiguity indices of truth, 
indeterminacy, and falsity membership functions of 
SVTrNNs. Using the proposed ranking strategy and 
proposed indices, the authors developoed a new 
MADM strategy to solve MADM problem in which 
the ratings of the alternatives over the attributes are 
expressed in terms of TrNFNs. Finally,  the authors 
provided an illustrative example to demonstrate the 
validity and applicability of the proposed MADM 
strategy with SVTrNNs. 

In 2016, Biswas et al.[114] introduced the concept of 
SVTrNN in the form: 

𝐴ሚଵ = 〈(𝑎ଵଵ, 𝑎ଶଵ, 𝑎ଷଵ, 𝑎ସଵ), (𝑏ଵଵ, 𝑏ଶଵ, 𝑏ଷଵ, 𝑏ସଵ), 
(𝑐ଵଵ, 𝑐ଶଵ, 𝑐ଷଵ, 𝑐ସଵ) 〉 ,where 𝑎ଵଵ, 𝑎ଶଵ, 𝑎ଷଵ, 𝑎ସଵ, 
𝑏ଵଵ, 𝑏ଶଵ, 𝑏ଷଵ, 𝑏ସଵ, 𝑐ଵଵ, 𝑐ଶଵ, 𝑐ଷଵ, 𝑐ସଵ are real numbers 
and satisfy the inequality 
𝑐ଵଵ ≤ 𝑏ଵଵ ≤ 𝑎ଵଵ ≤ 𝑐ଶଵ ≤ 𝑏ଶଵ ≤ 𝑎ଶଵ ≤ 𝑎ଷଵ ≤ 𝑏ଷଵ ≤
𝑐ଷଵ ≤ 𝑎ସଵ ≤ 𝑏ସଵ ≤ 𝑐ସଵ. 
The authors defined some arithmetical operational 
rules. The authors also defined value index and 
ambiguity index of SVTrNNs and established some 
of their properties. The authors developed a ranking 
strategy with the proposed indicess to rank SVTrNNs. 
The authors developed a new MADM strategy to 
solve MADM problems in SVTrNN environment. 

Biswas et al. [115] extended the TOPSIS strategy of 
MADM problems in single-valued trapezoidal 
neutrosophic number environment. In their study, the 
attribute values are expressed in terms of single-

valued trapezoidal neutrosophic numbers.  The 
authors deal with the situation where the weight 
information of attribute is incompletely known or 
completely unknown.  The authors developed an 
optimization model using maximum deviation 
strategy to obtain the weight of the attributes. The 
authors also illustrated and validated the proposed 
TOPSIS strategy by solving a numerical example of 
MADM problems. 
Biswas et al. [116] introduced a new neutrosophic 
numbers called interval neutrosophic trapezoidal 
number (INTrN) characterized by interval valued 
truth, indeterminacy, and falsity membership degrees 
and defined some arithmetic operations on INTrNs, 
and normalized Hamming distance between INTrNs. 
In the same study, Biswas et al. [116] developed a 
new MADM strategy, where the rating values of al-
ternatives over the attributes and the importance of 
weight of attributes assume the form of INTrNs. 
Biswas et al. [116] employed the entropy strategy to 
determine thr attribute weight and then used it to cal-
culate aggregated weighted distance measure and de-
termined ranking order of alternatives with the help of 
aggregated weighted distance measures. Biswas et al. 
[116] also solved an illustrative example to show the 
feasibility, applicability and effectiveness of the pro-
posed strategy. 
Dr. Biswas’s work [117] obtained outstanding paper 
award at “Second Regional Science and Technology 
Congress, 2017’’ held at University of Kalyani, 
Nadia, West Bengal, India.  His resesrch interest 
includes fuzzy, intuitionistic fuzzy and neutrosophic 
decision making. 

Dr. Pranab Biswas is a young and hardworking 
researcher in neutrosophic field. In 2015, Dr. Biswas 
was awarded “Diploma Certificate” from 
Neutrosophic Science International Association 
(NISA) for his outstanding performance in 
neutrosophic research. He was awarded the certificate 
of outstanding contribution in reviewing for the 
International Journal “Neutrosophic Sets and 
Systems’’ in 2018. According to “Researchgate’’, 
citation of his research exceeds 375.  Research papers 
of Biswas et al. [105, 112] received the best paper 
award from “Neutrosophic Sets and Systems’’  for 
volume 2, 2014 and volume 12, 2016. His works in 
neutrosophics draw much attention of the researchers 
in national as well international level. His Ph. D. 
thesis entilted:“Multi-attribute decision making in 
neutrosophic environment” was awarded “Doctorate 
of Neutrosophic theory” by Indian Society for 
Neutrosophic Study (ISNS) with sponsorship by 
Neutrosophic Science International Association 
(NSIA). 
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3.4 Dr.Durga Banerjee 

Durga Banerjee passed M. Sc. from Jadavpur 
University in 2005. In 2017, D. Banerjee obtained Ph. 
D. Degree in Science from Jadavpur University. Her 
research interest includes operations research, fuzzy 
optimization, and neutrosophic decision making. Title 
of her Ph. D. Thesis  [118] is: “Some studies on 
decision making in an uncertain environment’’. Her 
Ph. D. thesis comprises of few chapters dealing  with 
MADM in neutrosophic environment.  

Contribution: 

In 2016, Pramanik, Banerjee, and Giri [119] 
introduced refined tangent similarity measure.The 
authors presented  an MAGDM model based on 
tangent similarity measure of neutrosophic refined set. 
The authors also introduced simplified form of 
tangent similarity measure. The authors defined new 
ranking method  based on refined tangent similarity 
measure. Lastly, the authors solved a numerical 
example of teacher selectionin in neutrosophic refined 
set environment to see the effectiveness of the 
proposed strategy. 

In 2016, Banerjee et al.[120] developed TOPSIS 
startegy for MADM in refined neutrosophic 
environment. The authors also provided a numerical 
example to show the feasibility and applicability of 
the proposed  TOPSIS strategy. 

In 2017, Banerjee, Pramanik, Giri and Smarandache 
[121] at first developed an MADM strategy in 
neutrosophic cubic set environment using grey 
relational analysis. The authors discussed  about 
positive and negative grey relational coefficients,and 
weighted grey relational coefficients, Hamming 
distances for weighted grey relational coefficients and 
standard grey relational coefficient. 

Her Ph. D. thesis  [118] entilted:“Multi-attribute deci-
sion making in neutrosophic environment” was 
awarded “Doctorate of Neutrosophic theory” by the 
Indian Society for Neutrosophic Study (ISNS) with 
sponsorship by Neutrosophic Science International 

Association (NSIA). According to “Researchgate’’, 
citation of his research exceeds 55. 

3.5 Shyamal Dalapati 

Shyamal Dalapati qualified CSIR-NET-Junior 
Research Fellowship (JRF) in 2017. He is a research 
scholar  in Mathematics at the Indian Institute of En-
gineering Science and Technology (IIEST), Shibpur, 
West Bengal, India.Title of his Ph. D. thesis is:“Some 
studies on neutrosophic decision making”. He 
continues his research in the field of neutrosophic 
multi attribute group decision making; neutrosophic 
hybrid systems; neutrosophic soft MADM . Curently, 
he is  an assistant teacher of Mathematics His 
research interest includes decision making in 
neutrosophic environemnt and optimization.   

Contribution: 

In 2016, Dalapati and Pramanik [122] defined 
neutrosophic soft weighted average operator.They 
determined the order of the alternatives and identify 
the most suitable alternative based on grey relational 
coefficient. They also presented a numerical example 
of logistics center location selection problem to show 
the effectiveness and applicability of the proposed 
strategy. 

Dalapati,Pramanik, and Roy [123] proposed modeling 
of logistics center location problem using the score 
and accuracy function, hybrid-score-accuracy func-
tion of SVNNs and linguistic variables under single-
valued neutrosophic environment, where weight of 
the decision makers are completely unknown and the 
weight of criteria are incompletely known. 

Dalapati, Pramanik, Alam, Roy, and Smaradache 
[124] defined IN-cross entropy measure in INS 
environment in 2017. The authors proved  the basic 
properties of the cross entropy measure. The authors 
also defined weighted IN- cross entropy measure and 
proved its basic properties. They also introduced a 
novel MAGDM strategy based on weighted IN-cross 
entropy.  Finally, the authors solved a MAGDM 
problem to show the feasibility and efficiency of the 
proposed MAGDM strategy.  
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Pramanik, Dalapati, Alam, and Roy [125]  defined 
TODIM strategy in bipolar neutrosophic set 
environment to handle MAGDM. The authors 
proposed a new strategy for solving MAGDM 
problems. The authors also solved an MADM 
problem to show the applicability and effectiveness of 
the proposed startegy. 

Pramanik, Dalapati, Alam, and Roy [126] introduced 
the score and accuracy functions for neutrosophic 
cubic sets and prove their basic properties in 2017. 
The authors developed a new  strategy for ranking of 
neutrosophic cubic numbers based on the score and 
accuracy functions. The authors first developed a 
TODIM (Tomada de decisao interativa e 
multicritévio) stratey in the neutrosophic cubic set 
(NCS) environment strategy. The authors also solved 
an MAGDM problem to show the applicability and 
effectiveness of the developed strategy. Lastly, the 
authors conducted  a comparative study  to show the 
usefulness of proposed strategies. 

In 2018, Pramanik, Dalapati, Alam, and Roy 
[127]extended the traditional VIKOR strategy to NC-
VIKOR strategy and developed an NC-VIKOR based 
MAGDM  strategy in neutrosophic cubic set 
environment. The authors defined  the basic concept 
of neutrosophic cubic set. Then, the authors 
introduced neutrosophic cubic number weighted 
averaging operator and applied it to aggregate the 
individual opinion to one group opinion. The authors 
presented  an NC-VIKOR based MAGDM strategy 
with neutrosophic cubic set. They also presented a 
sensitivity analysis.  Finally, the authors  solved an 
MAGDM problem to show the feasibility and 
efficiency of the proposed MAGDM strategy. 

Pramanik, Dalapati, Alam, and Roy [128] extended 
the VIKOR strategy to MAGDM with bipolar 
neutrosophic environment. The authors introduced the 
bipolar neutrosophic numbers weighted averaging 
operator and applied it to aggregate the individual 
opinion to one group opinion. The authors  proposed 
a VIKOR based MAGDM strategy with bipolar 
neutrosophic set.  Lastly, the authors  solved an 
MAGDM strategy to show the feasibility and 
efficiency of the proposed MAGDM strategy and 
presented a sensitivity analysis.  

Pramanik, Dalapati, Alam,  and Roy [129] studied 
some operations and properties of neutrosophic cubic 
soft sets.The authors defined some operations such as 
P-union, P-intersection, R-union, R-intersection for 
neutrosophic cubic soft sets (NCSSs). The authors 
proved some theorems on neutrosophic cubic soft 
sets.The authors also discussed various approaches of 
internal neutrosophic cubic soft sets (INCSSs) and 

external neutrosophic cubic soft sets (ENCSSs) and 
also investigated some of their properties. 
Pramanik, Dalapati, Alam, Smarandache, and Roy 
[130] defined a new cross entropy measure in SVNS 
environment.The authors also proved the basic 
properties of the NS cross entropy measure. The 
authors  defined weighted SN-cross entropy measure 
and proved its basic properties. At first the authors 
proposed an MAGDM  strategy based on NS- cross 
entropy measure. 

Pramanik, Dalapati, Alam, Roy, Smarandache [131] 
defined similarity measure between neutrosophic 
cubic sets and proved its basic properties. They 
developed a new MADM strategy basd on the 
proposed similarity measure. They also provided an 
illustrative example for MADM strategy to show its 
applicability and effectiveness. 

Mr. Dalapati’s neutrosophic paper [132] was awarded 
as the outstanding research paper at the  “1st Regional 
Science and Technology Congress, 2016 in 
mathematics. 

Mr. Shamal Dalapati is a young and hardworking 
researchers in neutrosophic field. In 2017, Mr. 
Dalapati was awarded “Diploma Certificate” from 
Neutrosophic Science InternationalAssociation 
(NISA) for his outstanding performance in 
neutrosophic research. His research articles receive 
more than sevent citations. 

3.6 Prof.Tapan Kumar Roy 

Prof. T. K. Roy, Ph. D. in mathematics,  is a 
Professor of mathematics in Indian Institute of 
Engineering  Science and Technology (IIEST), 
Shibpur. His main research interest includes 
neutrosophic optimization, neutrosophic game theory, 
decision making in neutrosophic environment, 

neutrosophy,  etc. 
Contribution: 
In 2014, Pramanik and Roy [133] presented the 
framework of the application of game theory to 
Jammu Kashmir conflict between India and Pakistan. 
Pramanik and Roy [20] extended the concept of game 
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theoretic model [133]  of the Jammu and Kashmir 
conflict in neutrosophic environment. 
At first, Roy and Das[134] presented  multi-objective 
non –linear programming problem based on 
neutrosophic optimization technique and its 
application in Riser design problem in 2015. 
Roy, Sarkar, and Dey [133] presented a multi-
objective neutrosophic optimization technique and its 
application to structural design in 2016. 

In 2017, Roy and Sarkar [135-138] also presented 
several applications of neutrosophic optimization 
technique. 

In 2017, Pramanik, Roy, Roy, and Smarandache 
[139] presented multi criteria decision making using 
correlation coefficient under rough neutrosophic 
environment. The authors defined correlation 
coefficient measure between any two rough 
neutrosophic sets and also proved some of its basic 
properties.  

In 2018, Pramanik, Roy, Roy, and Smarandache 
[140] defined projection and bidirectional projection 
measures between interval rough neutrosophic sets 
and proved their basic properties. The authors 
developed two new MADM strategies based on 
interval rough neutrosophic projection and 
bidirectional projection measures. Then the authors 
solved a numerical example to show the feasibility, 
applicability and effectiveness of the proposed 
strategies. 

In 2018, Pramanik, Roy, Roy, and Smarandache [141] 
proposed the sine, cosine and cotangent similarity 
measures of interval rough neutrosophic sets and 
proved their basic properties.  The authors presented 
three MADM strategies based on proposed similarity 
measures. To demonstrate the applicability, the au-
thors solved a numerical example. Prof. Roy did re-
search work on decision making in SVNS, INS, neu-
trosophic hybrid environment [124-132, 139-141] 
with S. Pramanik, S. Dalapati, S. Alam and Rumi 
Roy. 

His paper [142] together with S. Pramanik and S. 
Chackrabarti was awarded as the best research paper 
in 15th West Bengal State Science & Technology 
Congress, 2008 held on 28th February-29th February, 
2008, at Bengal Engineering and Science University, 
Shibpur.  
Prof. Roy is a great motivator and a very hardworking 
person. He works with Prof. Florentin Smarandache. 

According to “Googlescholar” his research gets cita-
tion over 2635.  

3.7Prof.Bibhas C. Giri 

Prof. Bibhas C.Giri is a Prof. of mathematics in 
Jadavpur University. He did his M.S. in Mathematics 
and Ph. D. in Operations Research both from 
Jadavpur University, Kolkata, India. His research 
interests include inventory/supply chain management, 
production planning and scheduling, reliability and 
maintenance. 
He was a JSPS Research Fellow at Hiroshima 
University, Japan during the period 2002-2004 and 
Humboldt Research Fellow at Mannheim University, 
Germany during the period 2007-2008, Fulbright 
Senior Research Fellow at Louisiana State University 
in the year 2012. 

Contribution: 

Prof. Giri works with S. Pramanik, P. Biswas and P. P. 
Dey in neutrosophic environment. His neutrosophic 
paper [143] coauthored with Kalyan Mondal and 
Surapati Pramanik received the outstanding research 
paper award at the“1st Regional Science and 
Technology Congress, 2016 in mathematics. His 
neutrosophic paper [144] together with Kalyan 
Mondal and Surapati Pramanik received the best 
research paper in 25 th West Bengal State Science 
and Technology Congress 2018  in mathematics. His 
neutrosophic research work  and vast contribution can 
be found in [71-80, 82, 101-119]. 

Prof. Giri is a great motivator. According to 
“Googlescholar’, his research receives more than 
4920 citations having h-index-31 and i-10 index-78. 

3.8 Prof. Anjan Mukherjee
Anjan Mukherjee was born in 1955. He completed 
his  B. Sc. and M. Sc. in Mathematics from Universi-
ty of Calcutta and Ph. D. from Tripura University. 
Currently, he is a Professor and Pro -Vice Chancellor 
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of Tripura University. Under his guidance, 12 candi-
dates obtained Ph. D. award. He has 30 years of re-
search and teaching experience. His main research 
interest includes topology, fuzzy  set theory, rough 
sets, soft sets, neutrosophic set, neutrosophic soft set, 
etc. 

Contribution: 

In 2014, Anjan Mukherjee and Sadhan Sarkar [145] 
defined  the Hamming and Euclidean distances 
between two interval valued neutrosophic soft sets 
(IVNSSs). The authors also introduced similarity 
measures based on distances between two interval 
valued neutrosophic soft sets.The authors proved 
some basic properties of the similarity measures 
between two interval valued neutrosophic soft sets. 
They established an MADM strategy for interval 
valued neutrosophic soft set setting using similarity 
measures.
 Mukherjee and Sarkar [146] also defined several 
distances between two interval valued neutrosophoic 
soft sets in 2014. The authors proposed similarity 
measure between two interval valued neutrosophic 
soft sets. The authors  also proposed similarity 
measure between two interval valued neutrosophic 
soft sets based on set theoretic approach. They also 
presented a comparative study of different similarity 
measures. 
Mukherjee and Sarkar [147]defined several distances 
between two neutrosophoic soft sets.The authors also 
defined similarity measure between two neutrosophic 
soft sets.The authors  developed  an MADM strategy 
based on the proposed similarity measure. 
Mukherjee and Sarkar [148] proposed a new method 
of measuring degree of similarity and weighted 
similarity between two neutrosophic soft sets and 
studied some properties of similarity measure. Based 
on the comparison between the proposed strategy 
[148] and existing strategies introduced by Mukherjee 
and Sarkar[147], the authors found that the proposed 
strategy [148] offers strong similarity measure.  The 
authors also proposed a decision making strategy 
based on similarity measure.  
Prof. Anjan Mukherjee evaluated many Ph. D. theses. 
Among them, the Ph. D. thesis of Durga Banerjee 
[118] dealing with neutrosophic decision making was 
evaluated by Prof. Anjaan Mukherjee.  Research of 
Prof. Mukherjee receives more than 700 citations for 
his works. Prof. Mukherjee is working with his group 
members with neutrosophic soft sets and its 
applications.   
3.9 Dr.Pabitra Kumar Maji 

Dr. Pabitra Kumar Maji, M. Sc., Post Doc., is an 
Assistant Professor of mathematics in Bidhan 
Chandra College, Asansol, West bengal. He works on 
soft set, fuzzy soft set, intuitionistic fuzzy set, fuzzy 
set,  neutrosophic set, neutrosophic soft set, etc., 

Contribution: 

In 2011, Maji [149]  presented an application of 
neutrosophic soft set in object recognition problem 
based on multi-observer input data set. The author 
also introduced an algorithm to choose an appropriate 
object from a set of objects depending on some 
specified parameters. 
In 2014, Maji, Broumi, and Smarandache [150] 
defined  intuitionistic neutrosophic soft set over ring 
and proved some  properties related to this concept. 
They also defined  intersection, union, AND and OR 
operations over ring (INSSOR). Finally, the authors 
defined the product of two intuitionistic neutrosophic 
soft set over ring. 
In 2015, Maji [151] presented weighted neutrosophic 
soft sets. The author presented an application of 
weighted neutrosophic soft sets in MADM problem. 
According “Googlescholar’’, his publication includes 
20 research paper having citations 5948. 
Maji [152] studied the concept of weighted 
neutrosophic soft sets. The author considered a multi-
observer decision-making problem as an application 
of weighted neutrosophic soft sets. We have 
considered here a recognition strategy based on 
multi-observer input parameter data set. 
3.10 Dr. Harish Kumar Garg

Dr. Harish Garg is an Assistant Professor in the 
School of Mathematics, Thapar Institute of 
Engineering &Technology (Deemed University) 
Patiala. He completed his post graduation (M.Sc) in 
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Mathematics from Punjabi University Patiala, India in 
2008 and  Ph.D. from Department of Mathematics, 
Indian Institute of Technology (IIT) Roorkee, India in 
2013. His  research interest includes neutrosophic 
decision-making, aggregation operators, reliability 
theory, soft computing technique, fuzzy and 
intuitionistic fuzzy set theory, etc. 

Contribution: 

In 2016, Garg and Nancy [153] defined some opera-
tions of SVNNs such as sum, product, and scalar mul-
tiplication under Frank norm operations. The authors 
also defined some averaging and geometric aggrega-
tion operators and established their basic proper-
ties.The authors also established a decision-making 
strategy based on the proposed operators and pre-
sented an illustrative numerical example. 

In 2017, Garg and Nancy [154] developed a non-
linear programming (NP) model based on TOPSIS to 
solve decision-making problems. At first, the authors-
constructed a pair of the nonlinear fractional pro-
gramming model based on the concept of closeness 
coefficient and then transformed it into the linear pro-
gramming model. 

Garg and Nancy [155] defined some new types of 
distance measures to overcome the shortcomings of 
the existing measures for SVNSs. The authors 
presented a comparison between the proposed and the 
existing measures in terms of counter-intuitive cases 
for showing validity. The authors  also demonstrated 
the defined  measures with hypothetical case studies 
of pattern recognition as well as medical diagnoses. 

Garg and Nancy [156] studied the entropy measure of 
order α for single valued neutrosophic numbers. The 
authors established some desirable properties of 
entropy measure. The author also developed a 
MADM strategy based on entropy measures and 
solved a numerical example of investment problem.  

Nancy and Garg [157] proposed an improved score 
function for ranking the single as well as interval-
valued neutrosophic sets by incorporating the idea of 
hesitation degree between the truth and false degrees. 
The authors also presented an MADM strategy based 
on proposed function and solved a numerical example 
to show its practicality and effectiveness. 

Garg and Nancy [158] introduced some new 
linguistic prioritized aggregation operators in the 
linguistic single-valued neutrosophic set (LSVNS) 

environment.The authors proposed some prioritized 
weighted and ordered weighted averaging as well as 
geometric aggregation operators for a collection of 
linguistic single-valued neutrosophic numbers and 
established their basic properties. The authors also 
proposed MADM strategy and solved a numerical 
example.  

Dr. Garg research receives more than 2000 citations. 
Dr. Garg acts an active reviewer for reputed 
international journals and received certificate of 
outstanding in reviewing from “Computer & 
Industrial Engineering’’, “Engineering Applications 
of Artificial Intelligence’’, “Applied Soft 
Computing’’, “Applied Mathematical Modeling’’, etc. 
Dr. Garg acts as editor for many international journals. 

3.11 Dr.Sukanto Bhattacharya 

Sukanto Bhattacharya is a faculy member and 
associated with Deakin Business School, Deakin 
University.

Sukanto Bhattacharya [159] is the first researcher 
who employed utility theory to financial decision-
making and obtained Ph. D. for applying 
neutrosophic probability in finance.  His Ph. D. the-
sis covers a substantial mosaic of related concepts 
in utility theory as applied to financial decision-
making. The author reviewed some of the classi-
cal notions of Benthamite utility and the norma-
tive utility paradigm. The author proposed some 
key theoretical constructs like the neutrosophicno-
tion of perceived risk and the entropic utility 
measure.  
Khoshnevisan, and Bhattacharya [160] added a 
neutrosophic dimension to the problem of 
determining the conditional probability that a 
financial misrepresentation of the data set. 
Prof. Bhattacharya is an active researcher and his 
works in neutrosophics are found in [159-163]. 
His research receives more than 380 citations. 
4. Conclusions
We have presented a brief overview of the 
contributions of some selected Indian researchers who 



Neutrosophic Sets and Systems, Vol. 20, 2018 125 

Surapati Pramanik, Rama Mallick, Anindita Dasgupta, Contributions of Selected Indian Researchers to Multi Attribute 
Decision Making in Neutrosophic Environment: An Overview

conducted research in neutrosophic decision making. 
We briefly presented the contribution of the selected 
Indian neutrosophic researchers in MADM. In future, 
the contribution of Indian researchers such as W. B. 
V. Kandasamy, Pinaki Majumdar,Surapati Pramanik, 
Samarjit Kar, and other Indian mathematicians in 
developing neutrosophics can  be studied. The study 
can also be extended for mathematicians from other 
countries who contributed in developing neutrosophic 
science. Decision making in neutrosophic hybrid 
environment is gaining much attention. So it is a 
promising field of research in different neutrosophic 
hybrid environment and the real cahllenge lies in the 
applications of the developed theories. Since some of 
the selected researchers are young, it is hoped that the 
researchers will do more creative works and new 
research regarding their contributions will have to be 
conducted in future.  
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