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Neutrosophic Units of Neutrosophic Rings and 
Fields 

T. Chalapathi1, and R. V. M. S. S. Kiran Kumar2

1Department of Mathematics, Sree Vidyanikethan Eng.College Tirupati,-517502, Andhra Pradesh, India.  

E-mail: chalapathi.tekuri@gmail.com.
2Research Scholar, Department of Mathematics, S.V.University, Tirupati,-517502, Andhra Pradesh, India.  

 E-mail: kksaisiva@gmail.com. 

Abstract. Let ( , )N R I be a commutative Neutrosophic ring with unity. Then the set of all Neutrosophic group units of 

( , )N R I is denoted by ( , )N R I . In this paper, we studied concrete properties of ( , )N R I and presented some standard 

examples with construction of different illustrations and also examine properties of ( , )N R I  satisfied by certain general 

collections of classical rings and fields. Further, we proved an important result ( , )m nN Z Z I  ( , ) ( , )m nN Z I N Z I   

for all positive integers m and n . 

 Keywords: Classical ring, group units, Neutrosophic ring, Neutrosophic units, Neutrosophic isomorphism.

1. Introduction

In recent years, the inter connection between classical structures and Neutrosophic structures is studied by 

few researchers. For such kind of study, researchers defined new algebraic structures whose elements are 

generated by elements in classical algebraic set and indeterminate of the real world problem with respect to 

algebraic operations on the well defined Neutrosophic elements.  

The idea of associating a Neutrosophic structure to a classical structure first appears in [1, 2].  For the 

elements of the Neutrosophic set, Vasantha Kandasamy and Smarandache takes all elements of a classical ring 

R together with indeterminate I . The notion ( , )N R I  of Neutrosophic ring was introduced by Vasantha 

Kandasamy and Smarandache in 2006 and the Neutrosophic element in ( , )N R I is denoted by a bI if for all 

,a b R and 2I I . Basically, they specify that ( , )N R I is not a classical ring with respect to Neutrosophic 

addition and Neutrosophic multiplication. Further investigation of Neutrosophic rings was done by Agboola, 

Akinola and Oyebolain  [3, 4]. Recently, Chalapathi and Kiran studied the enumeration of Neutrosophic self 

additive inverse elements of Neutrosophic rings and fields in [5].   

Neutrosophic rings are additive Neutrosophic groups with a new binary operation of Neutrosophic 

multiplication. This new kind of Neutrosophic multiplication operation constrains the new generated algebraic 

structures of classical rings and makes it more benefit than classical rings to obtained elementary structural 

theorems of indeterminacy modeled situations. So, the use of Neutrosophic algebraic theory becomes inevitable 

when a real world problem contains indeterminacy. 
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 In this paper, we study some concepts of Neutrosophic units of Neutrosophic rings and fields explained with 

suitable examples, and examine properties satisfied by certain general collections of classical rings. The classical 

rings of primary interest are finite, so many of the results about classical groups and Neutrosophic groups will be 

helpful fundamentally.  

2. Definitions and notations

In this section, we discuss the terminology used when working with the two Neutrosophic operations, 

namely Neutrosophic addition and Neutrosophic multiplication, in an abstractly given Neutrosophic rings. 

Before going to the abstract definition of a Neutrosophic ring, we get some definitions and notations by 

considering the classical rings from [6]. 

Let R  be a ring. If there is an element 1 R  such that 1 0 and 1 1a a a  for each element a R , 

we say that R is a ring with unity. The ring R is commutative if ab ba for all ,a b R . Suppose R has 

unity 1 . Then R denote the units of R . So, an element u R is a unit of R if there exist u R such that 

1uu u u   , and R forms an abelian group under usual multiplication of R . Next the ring F is a field if its 

multiplication is commutative and if every non zero element of F is a unit. Now we recall that the following 

well known results about R and F  from [6]. 

Theorem.2.1  Let R and S be finite commutative rings. Then ( )R S R S
    as groups. Also, 

R S R S
   

  . 

Theorem.2.2 Let nZ  be the ring of integers modulo n . Then ( )m nZ Z  m nZ Z
 

  if and only 

if gcd( , ) 1m n  . 

Theorem.2.3 Let R be a finite Boolean ring .Then 1R  . 

Theorem.2.4 Let F  be a finite field of order 1n  . Then its unit group F   is a cyclic group of order 1n  . 

Now define the Neutrosophic group and these groups in general do not have classical group structure, 

which are defined specifically with respect to Neutrosophic multiplication as follows. 

Definition.2.5  Let ( , )G  be a multiplicative group. Then the set G I  2, : ,a aI a G I I  is called a 

Neutrosophic group generated by G and I under the operation on  G , where I is the Neutrosophic element. 

Based on this definition we have the following. 

1. Neutrosophic group G I of G is also denoted by ( , )N G I .

2. ( , )N G I G GI  , where G GI   and { : }GI aI a G  .

3. ( , )G N G I and ( , )N G I G .

4. Let 1n  be a positive integer. Then ( )n naI a I for every a G .

Now we proceed on to define the Neutrosophic ring and consider their basic properties from [2].  

Definition.2.6 Let  , ,R    be a ring.  Then the Neutrosophic set ( , )N R I  : ,a bI a b R   2, I I is called

Neutrosophic ring generated by R and I under the following Neutrosophic addition and Neutrosophic 

multiplication operations.  

1. ( ) ( )a bI c dI   ( ) ( )a c b d I    .
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2. ( )( )a bI c dI  ( )ac bc ad bd I    .

Properties of ( , )N R I .2.7 

1. R is a commutative ring with unity 1  ( , )N R I is a commutative Neutrosophic  ring with unity 1

and Neutrosophic unity I .

2. If R is finite ring then
2

( , )N R I R . 

3. In general, I I I   and I I  , where I exist in ( , )N R I . In particular, I I  if and only if

2( , ) ( , )N R I N Z I .

4. nI I for each 1n 

For further details about Neutrosophy and Neutrosophic rings the reader should refer [7, 8]. 

3. Neutrosophic units

In this section we define Neutrosophic units of finite commutative rings, fields and study its concrete

properties which are comparing the group units of classical rings and fields.  

Definition.3.1  Let R  be the set of group units of the commutative ring R . Then the set 

( , )N R I , : ,u uI u R  2I I

is called Neutrosophic group units or simply Neutrosophic units generated by R and I under the operations 

of R , where 1I   does not exist.  

Examples.3.2 

1. 3( , )N Z I {1, 2, , 2 }I I . 

2. 6( , )N Z I {1, 5, , 5 }I I . 

Properties of ( , )N R I .3.3 

1. ( , )N R I is a Neutrosophic group but not a classical group.

2. ( , )R N R I  ( , )N R I .

3. ( , )R I N R I  ( , )N R I .

4. R R I    and ( , )N R I R R I   .

5. For any ,u u R , the Neutrosophic element u u I is a  Neutrosophic unit if and only if either

0u  or 0u  .

6. Let ( , )N R I be a Neutrosophic ring without zero devisors. Then for any ,u u R ,

uI vI  0uI vI   ( ) 0u v I  u v  , since 0I  .

Theorem. 3.4 For any non-trivial integral domain R we have R R I  . 

Proof. Define a map :f R R I  by the relation 1( )f u u I for every u R , 2I I and 1I   does not exist. 

Trivially, (1)f I . Further, for any ,u v R , ( )f uv  1( )uv I  1 1u v I   1 1( )( )u I v I  ( ) ( )f u f v  this
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implies that f  is a group homomorphism. Also, for each u R , there exist unique 1u R  such that 

1( )f u  1 1( )u I uI   , f  is onto. Finally, ( ) ( )f u f v implies that 1 1u I v I  .  

Therefore, 1(1 ) 0uv I  implies u v because ( , )N R I has no zero devisors and 0I  . This proves that there

is a one-one correspondence between R and R I , and hence R R I  . 

Theorem.3.5 If 1R  , then ( , )N R I is empty. 

Proof. Follows from well-known result that {0}R  if and only if ( , ) {0}N R I  . 

Theorem. 3.6 For any finite non-trivial commutative ring R we have 2 ( , ) 2N R I R   . 

Proof. Suppose 2R  . Then {1}R  and ( , ) {1, }N R I I  . Therefore, ( , ) 2N R I  , it is one extremity of 

the required inequality. Further, if 2R  , then by the definition of ( , )N R I , we have 

( , )N R I R R I   and R R I    . Thus, by the Theorem [3.4], ( , )N R I R R I   2 R , which 

are maximum number of elements in ( , )N R I . This completes the proof. 

In what follows here onward, ( )n denotes the well known Euler-Totient function of the integer 1n  , 

which gives the  number of positive integers less than n  that are relatively prime to n . For more details of 

( )n  we refer [9]. The immediate results are consequences of the Theorem [3.6]. 

Corollary. 3.7 Let 1n  be a positive integer. Then the maximum number of elements in  ( , )nN Z I is 2 ( )n . 

Moreover, this bound is sharp. 

Proof.  We know that  nZ
 is the group of units of the ring nZ of integers modulo n . Then clearly, in view of 

Theorem [3.6], ( , ) 2 2 ( )n nN Z I Z n   . 

Corollary.3.8 Let 1n  . If R is a Boolean ring of order 2n , then ( , )N R I 2 . 

Proof. By the Theorem [2.3], we know that R is a finite Boolean ring if and only if {1}R  . 

Hence ( , )N R I 2 . 

Let F be a finite field of order 1F  . Then *F {0}F  F   is a cyclic group with respect to 

multiplication on F . But ( , )N F I is not a cyclic group with respect to either multiplication or Neutrosophic 

multiplication. However, F I is a Neutrosophic semigroup and it is generated by uI where u generator of F  . 

In this connection we have to prove that the following results and for further information of fields and 

Neutrosophic field’s reader refer [10] and [5], respectively.  

Theorem.3.9  The Neutrosophic group ( , )N F I  is not a cyclic group. 

Proof. By characterization of finite fields, it is well known that F be a finite field of order n if and only if F   is 

a cyclic group of order 1n  with respect to multiplication defined on F . Therefore, for a generator u F we 

have F  u . To complete the proof, it is enough to show that the Neutrosophic group ( , )N F I  is not a 

cyclic. If possible assume that ( , )N F I generated by its Neutrosophic unit uI , then  

 T. Chalapathi and R. V M S S Kiran Kumar. Neutrosophic Units of Neutrosophic Rings and Fields



Neutrosophic Sets and Systems, Vol. 21, 2018 9 

( , )N F I uI  2( 1)n uI  

 
2( 1)( ) 1nuI    

 
22 ( 1)( 1) 1

nnu I
   

 
2( 1) 1nu I  , 

which is not possible because 1I  , 
2( 1) 1nu    and

2( 1)nu  is not multiplicative inverse of I . 

The above theorem proves that the following result, which is of fundamental importance of Neutrosophic rings 

and fields.  

Theorem. 3.10 F  u if and only if F I uI . 

Proof. Let u F . Then 

F  u 1 1nu   where n F

 
1 1 1n n nu I I   

 
1( )nuI I   

uI F I  . 

We usually write 1 1u u u  for every u in R and uI u Iu  for every 1u  in R . So, the 

element 1 is unity and I is not unity but it is Neutrosophic unit because 2I I and 1I  does not exist. The 

most familiar examples of infinite Neutrosophic units of infinite rings Z and [ ]Z i , respectively, are 

( , )N Z I  1, 1, ,I I   and ( [ ] , )N Z i I 1, 1, , ,i i I   , , ,I iI iI  where 2 1i   and 2I I . These

examples support our claim that the sum of elements in ( , )N R I is zero. However, the following important 

results showing that the sum of elements of a Neutrosophic ring is zero when char( ) 2R  . This is one of 

similar result of classical rings.  

Theorem. 3.11 If char( ) 2R   then the sum of elements of ( , )N R I is not zero. 

Proof.It is obvious because 1, ( , )I N R I implies 1 0I  .  

Theorem. 3.12 Let ( , )N R I be a commutative Neutrosophic ring whose characteristic is not equal to 2 , 

then bI bI  for every b R .  

Proof. Suppose bI bI   2 0bI  and  

2 0a  2( ) 0a bI   2( ) 0a bI     char ( , ) 2N R I  because ( , )a bI N R I  .

Theorem. 3.13 Let F be a finite field. If 2F  then the sum of the elements of ( , )N F I is zero. 

Proof. Suppose that 2F n  . Then the Neutrosophic units group ( , )N F I is the disjoint union of 

F  and F I . By the Theorem [3.9] and Theorem [3.10], we have 

1nu  and ( )nuI I 1 nu  0  and ( )nI uI 0  

(1 )u  2 1(1 ) 0nu u u         and 

( )I uI 2 1( ( ) ( ) )nI uI uI uI       0 . 
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As uI I and 1u  , these relations becomes 

2 11 0nu u u       and  
2 1( ) ( ) 0nI uI uI uI         . 

This implies that the sum of elements in the Neutrosophic units group ( , )N F I is zero. Hence the result. 

The following table illustrates the main differences between classical field and their Neutrosophic filed. 

4. Isomorphic properties of Neutrosophic units

Isomorphism of finite groups is central to the study of point symmetries and geometric symmetries of 

any object in the nature. They also provide abundant relations of abelian and non-abelian groups. If the group 

R is isomorphic to the group S , we write R S  , the map :f R S  is an isomorphism if there exist a one-

one and onto map such that the group operation preserved. The concept of isomorphism of groups is analogues 

to the concept of Neutrosophic isomorphism of Neutrosophic groups. For this reason the authors Agboola et al. 

[3, 4] and Chalapathi and Kiran [5] define Neutrosophic group isomorphism as follows.  

Definition.4.1 Two Neutrosophic groups ( , )N R I and ( , )N S I are Neutrosophic isomorphic if there exist a 

well-defined map : ( , ) ( , )N R I N S I    such that 

1. (1) 1   and ( )I I  ,

2.  is a group homomorphism,

3.  is one-one correspondence.

If ( , )N R I is Neutrosophic isomorphic to ( , )N S I , we write ( , ) ( , )N R I N S I  . 

Theorem.4.2 [6]. Let R and S be any two non-trivial finite commutative rings. Then R S if and only if 

R S  . 

An important consequence of above theorem is the following immediate in Neutrosophic rings which 

we state as a theorem in view of its importance throughout our study of Neutrosophic ring theory.  

Theorem.4.3 If R S  then ( , ) ( , )N R I N S I  . 

Classical filed Neutrosophic filed. 

1 nF p 2( , ) nN F I p

2 F   is a group of 

order 1np   

( , )N F I  is a Neutrosophic 

group of order 2( 1)np   

3 F   is a cyclic 

group 

( , )N F I  is not a cyclic group 

4 F  u F I uI 

5 1 F  1 F I

6 
2 {1}Z    2( , ) {1, }N Z I I   
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Proof. Let R and S be the set of units of the rings R and S respectively. Suppose, R S  . Then there exist 

a group isomorphism :f R S  such that (1) 1f  . Now define a map : ( , ) ( , )N R I N S I   by setting  

( )
( )

( )

f x if x R
x

f x I if x R I






  


for all ( , )x N R I R R I   . Because f is a group isomorphism, we get  is well defined. For I R I , 

we have ( ) (1 )I I  (1)f I 1I I  . Next, we show that  is a homomorphism. Writing x for uI and y for 

u I , where ,u u R , ( )xy   ( )( )uI u I  ( )uu I  ( )f uu I ( ) ( )f u f u I ( ( ) )( ( ) )f u I f u I

( ) ( )x y  .Clearly,  is onto, since f is onto. Finally, we show that  is one-one. For this let ( ) ( )x y  ,

then ( ) ( )f u I f u I  ( ) ( ) 0f u f u I  

( ) ( ) 0f u f u   , since 0I  and f is one-one. Hence, ( , ) ( , )N R I N S I  . 

In view of the Theorem [2.2] and Theorem [4.3], the proof of the following result is obvious.  

Theorem. 4.4 Let mand n be two positive integers such that 1m  and 1n  . Then the following are equivalent. 

1. gcd( , ) 1m n  ,

2. mn m nZ Z Z    ,

3. ( , )mnN Z I ( , ) ( , )m nN Z I N Z I   . 

Theorem. 4.5 Let 1m  and 1n  be any two positive integers. Then 

( , )m nN Z Z I  ( , ) ( , )m nN Z I N Z I  . 

Proof. Let 1m  and 1n  be any two positive integers. By Theorem [2.1] and Corollary [3.7] we have 

( )mZ m  , ( )nZ n  and ( , )m nN Z Z I  2 ( ) ( )m m  . But 

( , ) ( , )m nN Z I N Z I  ( , ) ( , )m nN Z I N Z I 

 4 ( ) ( )m m  . Hence the result. 
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Neutrosophic Approach to Grayscale Images Domain 
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Abstract. In this paper, we propose a new technique for the enhancing images. It will work on removing the noise contained in 
the image as well as improving its contrast based on three different enhancing transforms, we commence by embedding the im-
age into a neutrosophic domain; where the image will be mapped in three different levels, a level of trueness, a level of false-
ness and a level of indeterminacy. Hence, we act separately on each level using the enhancement transforms. Finally, we intro-
duce  a new analysis in the field of analysis and processing of images using the neutrosophic crisp set theory via Mat lab pro-
gram where has been obtained three images, which helps in a new analysis to improve and retrieve images. 

Keywords: Image analysis, Image  Enhancement, Image processing,  Neutrosophic Crisp Set, Gaussian Distribution,  Logarithmic 
Transform, Neutrosophic Crisp Mathematical Morphology

1. Introduction

As a discipline, neutrosophic is an active and growing area of image processing and analysis. Mathematically, a gray scale image 
is represented by an nm  array nmm jigI  )],([ with entities ),( jig  corresponding to the intensity of the pixel located at ),( ji .
Presently applications require different kinds of images as sources of information for interpretation and analysis. Whenever an image is 
converted from one form to another (such as digitizing, scanning, transmitting, storing, etc.) some form of declination occurs at the 
output. Hence, the output image has to undergo a process called image enhancement which consists of a collection of techniques that 
seek to improve the visual appearance of an image [12]. Image enhancement is a process which mainly used to improve the quality of 
images, removing noise from the images.It has important role in many fields like high definition TV (HDTV), X-rayprocessing, motion 
detection, remote sensing and in studying medical images [8]. The fundamental concepts of neutrosophic set, introduced by 
Smarandache in [22, 23] and many applications, introduced by Salama et al. in [14-21],[27, 28] provides a natural foundation for 
treating mathematically the neutrosophic phenomena which exist pervasively in our real world and for building new branches of 
neutrosophic mathematics, as an extension of the concept of the fuzzy set theory introduced by Zadeh [25].  

2. Preliminaries

we recall some definitions for essential concepts of neutrosophic sets and its operations, which were introduced by Smarandache in [22, 
23] and many applications by Salama et al. in [14-21].

2.1. Image Enhancement 

Recent applications are in need of different kinds of images as a source of information for interpretation and analysis. Whenever 
an image is transformed from one structure to another, such as: digitizing, scanning, and transmitting, some kind of distortion might oc-
cur to the output image. Hence, a process called image enhancement must be done. The process of an image enhancement contains a 
collection of techniques with the aim of providing a better visual appearance of the image; it is to improve the image quality so that the 
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resultant image is better than the original image for a specific application. In other words, to convert the image to an appropriate form 
for analysis by either a human eye or a machine. Currently, the image enhancement research covers wide topics such as: algorithms 
based on the human visual system [6], histograms with hue-preservation [9], JPEG-based enhancement for the visually impaired [24], 
and histogram modification techniques [5]. Additive noise, Gaussian noise, Impulse noise and Poisson noise represent several types of 
noises that corrupt the image, to remove any of such there are various filters available. For instance: Gaussian filter, Median filter, High 
pass filter and Low pass filter; each of these can be used to remove the image noise and, hence, enhance the image. The applications of 
image enhancement are in every field where images are needed to be understood and analyzed, as in medical image analysis, and analy-
sis of images from satellites. Generally, the enhancement techniques can be categorized into two main groups, which are the Spatial 
Domain Methods and the Frequency Domain Methods [26]. 

2.2. Spatial Domain for Image Enhancement 

The spatial domain is the normal image space, which is a direct handling of image pixels [2]. It is the manipulation or the change 
of image representations. Moreover, spatial domain is used in several applications as smoothing, sharpening and filtering images 
.Spatial domain techniques such as the logarithmic transforms[7], power law transforms[11], and histogram equalization[13], are basi-
cally to perform on the direct manipulation of the image pixels. In practice, spatial techniques are useful for directly changing the gray 
level intensities of individual pixels and consequently the contrast of the entire image. Usually, the spatial domain techniques enhance 
the whole image uniformly, which in various cases produces undesirable results and do not make it possible to efficiently enhance 
edges or other required information. 

2.3 Frequency Domain for Image Enhancement 

While in the spatial domain an image is treated as it is, and the value of the pixels of the image changes with respect to the scene, 
in the frequency domain we are dealing with the rate at which the values of the pixel are changing in the spatial domain. In all the me-
thods applied, a Fourier transform of the image is firstly computed so that the image is transferred into the frequency domain. Hence, 
any operation used for the purpose of image enhancement will be performed on the Fourier transform of the image. Afterward an In-
verse Fourier transform is performed to obtain the resultant image. The main objective of all the enhancement operations is to modify 
the image contrast, brightness or the grey levels distribution. Therefore, the value of the pixels of the output image will be changed ac-
cording to the transformation applied on the input values. In image processing and image analysis, the image transform is a mathemati-
cal tool which is used for detecting the rough or unclear area in the image and fix it. The image transformation allows us to move from 
frequency domain to time domain to perform the desired task in an easy manner. Various types of image transforms are available such 
as Fourier Transform [1], Walsh Transform [10], Hadamard Transform, Stant Transform, and Wavelet Transform [4]. The image trans-
formation to neutrosophic  
domain in [3] 

3. Hesitancy Degrees with Neutrosophic Image Domain
Salama et al. in [27, 28] presented the texture features for images embedded in the neutrosophic domain with Hesitancy degree. 

Definition 3.1 [15,27,28]: 
Let  on  . Then for a Neutrosophic set  in X, 
We call , the Neutrosophic index of x in A, It is a hesitancy degree of x to A it is obvious that 

. 
In this section we are transforming the image mI  into a neutrosophic domain using four functions: T, I, F and   . A pixel ),( jiP in the

image is described by a forth ( ),( jiT ; ),( jiI ; ),( jiF ; ),( ji ). Where ),( jiT is the membership degree of the pixel in the white set, 

and ),( jiF is its membership degree in the non-white (black) set; while ),( jiI is how much it is neither white nor black; k and ),( ji  is 

hesitancy degree. The values of ),( jiT , ),( jiI , ),( jiF  and ),( ji are defined as follows: 

min

_

max

_
min

__
),(

),(
gg

gjig
jiT



  , 
minmax

min),(1),( 



 jijiI , 

),(1),( jiTjiF  , 
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),(),(),((3),( jiFjiIjiTji  , where ),(
_

jig  is the local mean intensity in some neighborhood w of the pixel, 
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jig ),( ji is the homogeneity value computed by the absolute value of difference between the 

intensity and its local mean value ),(),((),(
_

jigjigabsji  . 

4. A Neutrosophic Image Enhancement Filter

Consider an Image G in the neutrosophic domain with four functions (T, I, F,   ) describing the three levels of trueness, indeterminacy 
and falseness with hesitancy degree as previously explained in 2. The filter we propose to enhance G is two fold. In one hand it aims to 
remove the noise from the image, in the other hand it improves the image contrast. To do so, we will work on each level separately. 

Firstly, in the indeterminacy level, we will force the stability of this blur area around the mean using the Gaussian distribution. 

A general form of the Gaussian distribution is 





 


 t

, where   is the standard deviation and   is the mean value. Secondly, in the 

falseness level, a logarithmic transform is applied to enhance the details in ; 2 the dark areas while considering the brighter ones. Its 
general form is, c log (1 + t), where t is assumed to be non-negative; t   0, and c is a scaling parameter. 
  Thirdly, a power-law transform is working over the shattered areas in the trueness level. The power law transformations include the nth 
power and the  nth   root transformation, these transformations are also known as gamma transformation and can be given by the general 

expression, cr  . Variation in the value of   varies the enhancement of the images. Finally, we have got the output image, G
_

 of the

enhancement process with the triple ),,,(
____
FIT  where 

),(),(
_

jiCTjiT
 , 

)2(,
2

)),((
exp

2

1
),(

2

2_









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






jiI
jiI

)),,(1ln(),(
_

jiFCjiF 

)),(),(),((3
____

jijiji FIT 

5. A Neutrosophic Crisp Operators for Grayscale Image
 5.1. Grayscale Image via Neutrosophic Crisp Domain. 

In this section, we introduce  a new analysis in the field of analysis and processing of images using the neutrosophic crisp set theory
due to Salama et  al. in [14,17]  via Matlab program where has been obtained three images representing, which helps in a new analysis 
to improve and retrieve images 

A grayscale image in a 2D Cartesian domain 

Fig. 1: a) Grayscale image 
The following figure shows a grayscale image in a neutrosophic crisp components. 
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Fig. 1:  b) Neutrosophic Crisp Components  respectively 

At this point, we have noticed that there exist some crisp sets which having the neutrosophic triple structure and are not classified in 
either categories of the neutrosophic crisp sets' classification. In this case, the three components of those sets may overlap. In this 
section, we deduced a new triple structured set; where the three components are disjoint. 

Fig. 2: b) Neutrosophic Crisp Components  respectively 
The following figure shows a grayscale image in star neutrosophic crisp components. 

Fig. 3  b) Star Neutrosophic  Crisp Components  respectively 
Definition 5.1 

For any triple structured crisp set , of the form the retract neutrosophic crisp set  is the 
structure ,where

and
 Furthermore, the three components  and  are disjoint and . 

The following figure shows a grayscale image in a neutrosophic retract crisp components. 

Fig.4: b) Neutrosophic Retract Components  respectively 

5.2. A Grayscale Image & Neutrosophic Crisp Operators 
  Salama et al. [17] extended the definitions of some morphological  filters using the neutrosophic crisp sets concept. The idea behind 
the new introduced operators and filters is to act  on  the image in the neutrosophic crisp domain instead of the spatial domain. 
The following figure shows a grayscale image in a neutrosophic crisp Dilation components. 
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Fig.5: Neutrosophic Crisp Dilation components in type 1  respectively 

Fig.6: Neutrosophic Crisp Dilation components in type 2  respectively 

The following figure shows a grayscale image in a neutrosophic crisp Erosion components. 

Fig.7: Neutrosophic Crisp Erosion components in type 1 respectively

Fig.8: Neutrosophic Crisp Erosion components in type2 respectively

The following figure shows a grayscale image in a neutrosophic crisp Opening components. 

Fig.9: Neutrosophic Crisp opening components in type1 respectively

Fig.10: Neutrosophic Crisp opening components in type2  respectively

The following figure shows a grayscale image in a neutrosophic crisp Closing components. 

Fig.11: Neutrosophic Crisp closing components in type1 
321 ,, AAA  respectively
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Fig.12: Neutrosophic Crisp closing components in type2 
321 ,, AAA  respectively

Conclusion 
As a discipline, neutrosophic is an active and growing area of image processing and analysis. In this work, we introduce a neutrosophic 
technique for the image processing, analysis and enhancement. The two fold proposed technique aims to remove the noise from the 
image, as well as improving the image contrast. To commence, we construct the embedding of the image in the neutrosophic domain; in 
which the image is mapped into three different levels, describing the levels of trueness, falseness and indeterminacy. Using the Power-
law, Logarithmic and Gaussian transforms, the proposed a technique acts on each level of the image separately. Our plan next is to 
experiment our technique on different types of images, such as medical images. 
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1 Introduction 

Neutrosophy is a branch of philosophy, introduced by Smarandache in 1980, which studies the origin, nature 
and scope of neutralities, as good as their interactions with distinctive ideational spectra. Neutrosophy is the 
basis of neutrosophic logic, neutrosophic probability, neutrosophic set and neutrosophic facts in [1]. 
Neutrosophic logic is a general framework for unification of many existing logics such as fuzzy logic which is 
introduced by Zadeh in [2] and intuitionistic fuzzy logic which is introduced by Atanassov in [3]. Fuzzy set has 
best measure of membership; intuitionistic fuzzy set has most effective degree of membership and degree of 
non-membership. Thus; they do not explain the indeterminacy states. But neutrosophic set has degree of 
membership (t), degree of indeterminacy (i) and degree of   non-membership (f) and define the neutrosophic set 
on three components (t, i, f). A lot of    researchers have been dealing with neutrosophic set theory in [4-22]. 
Recently; Broumi, Bakali, Talea and Smarandache studied the single valued neutrosophic graphs in [23] and 
interval valued neutrosophic graphs in [24]. Liu studied the aggregation operators based on Archimedean 
t-conorm and t-norm for the single valued neutrosophic numbers in [25]. Additionally, Smarandache and Ali 
introduced NT theory in [26] and NT groups in [27, 28]. The NT set is completely different from the classical 
one,  since for each element “a” in  NT set N    together with a binary operation *; there exist a neutral of “a” 
called neut(a) such that a*neut(a)=neut(a)*a=a and an opposite of “a” called anti(a) such that 
a*anti(a)=anti(a)*a=neut(a).  Where, neut(a) is different from the classical algebraic unitary element. A NT is of 
the form <a, neut(a), anti(a)>.  Also, Smarandache and Ali studied the NT field in [29] and the NT ring in [30]. 
Recently, some researchers have been dealing with NT set thought. For instance, Şahin and Kargın introduced 
NT metric space, NT vector space and NT normed space in [31]. Şahin and Kargin studied NT inner product in 
[32].  

 Normed ring is an algebraic structure. Some of the properties of the normed rings are similarly to some of 
the properties of the classical norms, but the normed rings also have their own characteristic properties. Shilov 
introduced the notion of commutative normed ring in [33] and Jarden introduced the notion of normed ring in 
[34].  Recently Ulucay, Şahin and Olgun introduced normed rings with soft set theory in [35].  

In this paper, we introduced NT normed ring space and we give properties of NT normed ring space. 
In section 2, we give some preliminary results and definition for NT structures. In section 3, NT normed ring 
space is defined and some properties of a NT normed ring space are given. It is show that NT normed ring is 
different from the classical normed ring. Also, it is show that if certain conditions are met, every NT normed ring 
can be a NT metric and NT norm at the same time. Furthermore, the convergence of a sequence and a Cauchy 
sequence in a NT normed ring space are defined. In section 4, conclusions are given. 

2 Preliminaries 

Definition 2.1. [27] Let N be a set together with a binary operation *. Then, N is called a NT set if for any a∈ N, 
there exists a neutral of “a” called neut(a), different from the classical algebraic unitary element, and an opposite 
of “a” called anti(a), with neut(a) and anti(a) belonging to N, such that 

a*neut(a) = neut(a)* a=a 
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a*anti(a)= anti(a)* a=neut(a). 

The elements a, neut(a) and anti(a) are collectively called as neutrosophic triplet, and we denote it by 
(a, neut(a), anti(a)). Here, we mean neutral of a and apparently, “a” is just the first coordinate of a NT and it is 
not a neutrosophic triplet. For the same element “a” in N, there may be more neutrals to it neut(a)’s and more 
opposites of it anti(a)’s.  

Theorem 2.2. [27] Let (N,*) be a commutative NT group with respect to * and a, b  N; 

i) neut(a)*neut(b)= neut(a*b);
ii) anti(a)*anti(b)= anti(a*b);

Definition 2.3. [29] Let (NTF,*, #) be a NT set together with two binary operations * and #. Then (NTF,*, #) is 
called NT field if the following conditions hold. 

i. (NTF,*) is a commutative NT group with respect to *
ii. (NTF, #) is a NT group with respect to #.

iii. a#(b*c)= (a#b)*(a#c) and  (b*c)#a = (b#a)*(c#a) for all a, b, c  NTF.

Definition 2.4. [30] The NT ring is a set endowed with two binary laws (M,*, #) such that, 

a) (M, *) is a commutative NT group; which means that:
 (M, *) is a commutative neutrosophic triplets with respect to the law * (i.e. if x belongs to M, then

neut(x) and anti(x), defined with respect to the law *, also belong to M)
 The law * is well – defined, associative, and commutative on M (as in the classical sense);
b) (M, *) is a set such that the law # on M is well-defined and associative (as in the classical sense);
c) The law is distributive with respect to the law * (as in the classical sense)

Theorem 2.5. [31] Let (N,*) be a NT group with no zero divisors and with respect to *. For a  N, 

i) neut(neut(a))= neut(a)
ii) anti(neut(a))= neut(a))
iii) anti(anti(a))= a
iv) neut(anti(a))= neut(a)

Theorem 2.6. [31] Let (NTV, *, #) be a NT vector space on a NT field. If (NTV, *, #) is satisfies the following 
condition, (NTV, *, #) is also a NT field; 

1) a#b∊ NTV; for all a, b∊ NTV;
2) a#(b#c) = (a#b)#c;  for all a, b, c ∊ NTV;
3) a#(b*c) = (a#b)*(a#c) and  (b*c)#a = (b#a)*(c#a); for all a, b, c ∊ NTV.

Definition 2.7. [31] Let (N,*) be a NT set and let x*y ∊ N for all x, y ∊ N. If the function 
d:NxN→ ∪{0}satisfies the following conditions; d is called a NT metric. For all x, y, z ∈ N; 

a) d(x, y)≥0;
b) If x=y; then d(x, y)=0
c) d(x, y)= d(y, x)
d) If there exists any element y ∊N such that;
d(x, z)≤ d(x, z*neut(y)), then 
d(x, z*neut(y)) ≤ d(x, y)+ d(y, z). 

Furthermore, ((N,*), d) is called NT metric space. 

Definition 2.8. [31] Let (NTV, , )) be a NT vector space on (NTF, , , ) NT field. If 
‖.‖ : NTV → +∪{0}  function satisfies following condition; ‖.‖ is called NT normed on (NTV, , , ). Where; 

f: NTF X NTV  → ∪{0}, f(α,x)= f(anti(α), anti(x)) 
is a function and for every x, y ∊ NTV  and α ∊ NTF; 

a) ‖x‖ ≥0;
b) If x=neut(x), then ‖x‖ =0
c) ‖α  x‖ = f(α,x).‖x‖
d) ‖anti(x)‖= ‖x‖
e) If there exists any element k ∊ NTV such that ‖x  y‖ ≤ ‖x  y neut(k)‖ then; 
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‖x y neut(k)‖≤‖x‖+‖y‖. 
Furthermore, ((NTV, , ), ‖.‖) is called a NT normed space on (NTF, , , ) NT field. 

Definition 2.9. [34] Let R be an associative ring with 1. A norm on R is a function ‖.‖ : R → R that satisfies the 
following conditions for all a, b ∈ R.  

a) ‖a‖≥0 and ‖a‖ = 0 if and only if
a = 0; further ‖1‖ = ‖-1‖ = 1

b) There is an x  R with 0< ‖x‖<1
c) ‖a.b‖≤ ‖a‖.‖b‖
d) ‖a+b‖≤ max {‖a‖, ‖b‖}

3 Neutrosophic Triplet Normed Ring Space 

Definition 3.1. Let (NTR,*,#) be a NT ring. If ‖.‖ : NTR → ∪{0} function satisfies following condition; ‖.‖ is 
called NT normed ring on (NTR,* ,#). For x, y, z  NTR, 

a) ‖x‖ ≥0;
b) If x= (x), then ‖x‖ =0. Where, (x)) is neutral of x with respect to #. 
c) There is a x  NTR such that

‖ (x)‖ Where, (x) is neutral of x with respect to # and (x) is neutral 
of x with respect to * . 

d) ‖ (x)‖= ‖x‖. Where, (x) is anti of x with respect to *. 
e) If there exists a element k  NTR such that ‖x# y‖ ≤ ‖x# y# (k)‖; then 

 ‖x# y# (k)‖  ‖x‖.‖y‖ 
f) If there exists a element k  NTR such that ‖x* y‖ ≤ ‖x* y* (k)‖; then 

 ‖x* y* (k)‖  max{‖x‖,‖y‖} 

Furthermore, ((NTR,* ,#) ‖.‖) is called NT normed ring space. 

Example 3.2. Let X = {1, 2}, and P(X) be power set of X. From Definition 2.4; (P(X), *, ∩) is a NT ring. Where, 

A*B = 

The NT  with respect to *; 
neut(∅)=∅, anti(∅) = ∅; neut({1})= {1, 2},  
anti({1}) ={2}; neut({2}) = {1, 2},  
anti({2}) ={1}; neut({1, 2}) = ∅, anti({1,2}) ={1, 2}; 

The NT with respect to ∩; neut(A) =A and anti(A) = B. Where, B A and s(A) is number of elements in 
A  P(X) and is complement of  A P(X). Now we show that (P(X), *, ∩), ‖,‖)  is a NT normed ring space 
such that   ‖A‖ = s(A). 

a)‖A‖=s(A)≥0 
b)Since neut(∅)=∅, ‖∅‖ = s(∅) = 0
c) For ∅ ∈P(X), (∅) = ∅, (∅) = ∅; then ‖ (x)‖
d) Since anti(∅) = ∅, anti({1})={2}, anti({2})={1},

  anti({1,2})={1, 2}; 
 ‖∅‖ = ‖∅‖, ‖{1}‖ = ‖{2}‖, ‖{1, 2}‖ = ‖{1, 2}‖. Thus; ‖anti(A)‖= ‖A‖ for A ∈P(X). 

e) Since neut(∅)=∅, anti(∅)=∅;
 neut({1})= {1, 2}, anti({1})={2};  
 neut({2})= {1, 2}, anti({2})={1};  
 neut({1, 2})= ∅, anti({1,2})={1, 2}; 
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For ∅ and ∅; 
       ‖ ∅ ‖ = ‖∅‖ = 0   ‖ ∅ neut({1})‖ = ‖ ‖ = 2 

Thus; ‖ ∅ ‖ = 0  ‖∅‖+ ‖∅‖=0 

For ∅ and {1}; 
‖ ∅*{1}‖ = ‖{2}‖ = 1   ≤ ‖ ∅*{1}*neut({2})‖ = ‖{1}‖ = 1. Thus; ‖ ∅*{1}‖ = 1 ≤ ‖∅‖+ ‖{1}‖=1 

For ∅ and {2}; 
 ‖ ∅*{2}‖ = ‖{1}‖ = 1  ≤ ‖ ∅*{2}*neut({1})‖ = ‖{2}‖= 1. Thus;  ‖ ∅*{2}‖ = 1 ≤ ‖∅‖+ ‖{2}‖=1 

For ∅ and {1,2}; 
   ‖ ∅*{1,2}‖ = ‖{1,2}‖ = 2  ≤ ‖ ∅*{1,2}*neut({∅})‖ =  ‖{1,2}‖= 2. 
Thus; ‖ ∅*{1, 2}‖ = 2 ≤ ‖∅‖+ ‖{1,2}‖=2 

For {1} and {1}; 
    ‖ {1}*{1}‖ = ‖∅‖ = 0   ≤ ‖ {1}*{1}*neut({2})‖ = ‖{1,2}‖ = 2. 
Thus; ‖ {1}*{1}‖ = 0 ≤ ‖{1}‖+ ‖{1}‖=2 

For {1} and {2}; 
 ‖ {1}*{2}‖ = ‖∅‖ = ‖ {1}*{2}*neut({2})‖ 

       = ‖{1,2}‖ = 2.  
Thus; ‖ {1}*{2}‖ = 0 ≤ ‖{1}‖+ ‖{1}‖=2 

For {1} and {1,2}; 
 ‖ {1}*{1,2}‖ = ‖{2}‖ = 1   ≤  ‖ {1}*{1,2}*neut({2})‖ 

       = ‖{1}‖ = 1.  
Thus; ‖ {1}*{1,2}‖ = 0 ≤ ‖{1}‖+ ‖{1,2}‖=3 

For {2} and {2}; 
 ‖ {2}*{2}‖ = ‖∅‖ = 0   ≤  ‖ {2}*{2}*neut({1})‖ 

       = ‖{1,2}‖ = 2. 
 Thus; ‖ {2}*{2}‖ = 0 ≤ ‖{2}‖+ ‖{2}‖=2 

For {2} and {1,2}; ‖ {2}*{1,2}‖ = ‖{1}‖ = 1   ≤‖ {2}*{1,2}*neut({1})‖ = ‖{2}‖ = 1. 
Thus; ‖ {2}*{1,2}‖ = 1 ≤ ‖{2}‖+ ‖{1,2}‖=3 

f) Since A, B P(X) and neut({1}) = {1, 2} = X; A∩B∩X = A ∩ B. Thus; ‖A∩B‖ = ‖ A∩B∩ neut({1})‖. Now we
show that; 

 ‖A∩B‖= ‖ A∩B∩ neut({1})‖ ≤ max{‖A‖,‖B‖}. 

For ∅ and ∅; 
 ‖ ∅∩∅‖ = 0 ≤ max{‖∅‖,‖∅‖} = ∅ 

For ∅ and {1}; 
 ‖ ∅∩{1}‖ = 0 ≤ max{‖∅‖,‖{1}‖} = 1 

For ∅ and {2}; 
 ‖ ∅∩{2}‖ = 0 ≤ max{‖∅‖,‖{2}‖} = 1 

For ∅ and {1,2}; 
 ‖ ∅∩{1,2}‖ = 0 ≤ max{‖∅‖,‖{1,2}‖} = 2 

For {1} and {1}; 
 ‖{1} ∩{1}‖ = 1 ≤ max{‖{1}‖,‖{1}‖} = 1 

For {1} and {2}; 
 ‖{1} ∩{2}‖ = 0 ≤ max{‖{1}‖,‖{2}‖} = 1 

For {1} and {1, 2}; 
 ‖{1} ∩{1,2}‖ = 0 ≤ max{‖{1}‖,‖{1,2}‖} = 2 
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For {2} and { 2}; 
 ‖{2} ∩{2}‖ = 1≤ max{‖{2}‖,‖{2}‖} = 1 

For {2} and {1, 2}; 
 ‖{2} ∩{1,2}‖ = 0 ≤ max{‖{2}‖,‖{1,2}‖} = 2. 

For {1,2} and {1, 2}; ‖{1,2} ∩{1,2}‖ = 2 
 ≤ max{‖{1,2}‖,‖{1,2}‖} = 2 

Thus; (P(X), *, ∩), ‖,‖)  is a NT normed ring space. 

Corollary 3.3. It is clear that NT normed ring spaces are generally different from classical normed ring spaces 
since for neut(x) different from classical unit element. However; if certain conditions are met; every classical 
normed space can be a NT normed space at the same time.  

Proposition 3.4. Let (NTR, *, #), ) be a NT normed ring space. 

a) If there exists a element k  NTR such that
 ‖x* y‖ ≤ ‖x* y*neut(k)‖ and <  then = . 

b) If there exists a element k  NTR such that ‖x* y‖ ≤ ‖x* y*neut(k)‖ then  + 

Proof. 
a) From Definition 3.1, now that there exists a element k  NTR such that
 ‖x* y‖ ≤ ‖x* y*neut(k)‖, it is clear that 

‖z‖ ≤ ‖z*neut(k)‖ for x* y = z, z NTR        (i) 
Furthermore, from Definition 3.1, now that there exists a element k  NTR such that 

       ‖x* y‖ ≤ ‖x* y*neut(k)‖, ‖x* y‖  max{‖x‖,‖y‖}. 
For < ,  it is clear that ‖x* y*neut(k)‖  ‖y‖.  
Assume that ‖x* y*neut(k)‖  ‖y‖. 
 From (i), we can take x = k such that ‖y‖ ≤ ‖y*neut(x)‖. 
 Thus; 

= . 
b) From definition 1, now that there exists a element k  NTR such that

 ‖x* y‖ ≤ ‖x* y*neut(k)‖, it is clear that 
 ‖x* y‖  max{‖x‖,‖y‖}  (ii) 

Furthermore,  
 max{‖x‖,‖y‖}  ‖x‖+‖y‖  (iii) 

From (ii) and (iii), it is clear that, 
 + . 

Theorem 3.5. Let (NTR, * ,#), ) be a NT normed ring space. If   : NTR → ∪ {0} function and 
(NTR,* ,#), ) satisfy following conditions; it is called NT normed space on (NTR,* ,#), ). For x, y, z ∈ 
NTR, 

a) (NTR,* ,#) be a NT vector space.
b) ‖x# y‖ =‖x‖.‖y‖

Proof.  
Now that (NTR,* ,#)) is a NT ring, 

a#b ∊ NTR; for all a, b∊ NTV;  
a#(b#c)=(a#b)#c;  for all a, b, c ∊ NTR; 

 a#(b*c)= (a#b)*(a#c) and   
 (b*c)#a = (b#a)*(c#a); for all a, b, c ∈ NTR. 

From a), (NTR,* ,#) is a NT vector space. Thus, (NTR,* ,#) be a NT field. Now we show that (NTR,* ,#), ) is 
a NT normed space.  
For x, y, k ∊ NTR,  
a) From Definition 3.1, ‖x‖  0
b) From Definition 3.1, if x= (x), then ‖x‖ =0 
c) Now that (NTR,* ,#) is a NT field and from b),
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‖x# y‖ =‖x‖.‖y‖. Then we can take  
f: NTR X NTR  → ∪{0}, f(x, y)= ‖x‖. Where, it is clear that f(x, y) = ‖x‖ = ‖ (x)‖ = f( (x), (y)). 
Thus;     ‖x# y‖ = f(x, y).‖y‖ 
d) From Definition 3.1, ‖ (x)‖= ‖x‖ 
e) From Definition 3.1, and Proposition 3.4, it is clear that If there exists a element k ∊ NTR such that

 ‖x*y‖ ≤ ‖x*y*neut(k)‖; 
then 

 ‖x*y*neut(k)‖  ‖x‖+‖y‖. 
Thus; (NTR,* ,#), ) is a NT normed space. 

Proposition 3.6. Let ((NTR,* ,#), ‖.‖) be a NT normed ring space. If  = 0, for x ∈ NTR, then the   func-
tion d: NTR x NTR→ ℝ defined by d(x, y) = ‖x* anti(y)‖ provides NT metric space conditions. 

Proof. 
 Let x, y, z ∈ NTR. From the Definition 3.1, 
1) d(x, y) = )≥0; 
2) If x = y then; d(x, y) = =  =  = . Now that  = 0, 
d(x, y) = 0. 
3) Now that = , we have d(x, y) =  = . From the Theorem 2.2 and 
Theorem 2.5, we have 
d(x, y)=  =  =  = d(y, x). 
4) For any k ∊ NTV; suppose that
d(x, z) = ≤ = 
 d(x, z neut(k)), then 

≤ 
= 

.  
Now that NTV is a commutative group with respect to “*”, we have 

= 
≤ 

max{ ,  } 
+ .  

Thus, if d(x, z) ≤ d(x, z neut(k)), then d(x, z neut(k)) ≤ d(x, k)+ d(k, z). 

Definition 3.7. Let (NTR,* ,#), ) be a NT normed ring space, { } be a sequence  in this space. For all ε>0, 
for all n ≥M such that 

< ε 
if there exists a M∊ ℕ; { } sequence converges to  x. It is denoted by 

= x or → x 

Definition 3.8. Let (NTR,* ,#), ) be a NT normed ring space, { } be a sequence in this space. For all ε>0 
such that for all n, m ≥M 

< ε 
If there exists a M ∊ ℕ, then { } sequence is called  Cauchy sequence. 

Definition 3.9. Let (NTR,* ,#), ) be a NT normed ring space, { } be a sequence  in this space. If each } 
Cauchy sequence in this space is convergent to d reduced NT metric; (NTR,* ,#), )  is called complete NT 
normed ring space. 

Theorem 3.10. Let (NTR, *, #), ) be a NT normed ring space, { } be a sequence in this space.  If there exist 
a M ∊ ℕ such that < ε for all n, m ≥M and there exist a  k  ∊ NTR such that ‖x* y‖ ≤ ‖x* 
y*neut(k)‖, then { } is a Cauchy sequence. 

Proof. 
  Let n>m  M. From Definition 3.1, now that there exist a k ∊ NTR such that 
‖x* y‖ ≤ ‖x* y*neut(k)‖,  

<  (iv) 
Thus, from definition 3.1, 

< 
 = 
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 max{‖ ‖,‖ ‖}. 
Similarly from (iv), 

for   ‖ ‖; 
 max{‖ ‖,‖ ‖} 

. 

. 

. 
for ‖ ‖; 

 max{‖ ‖,‖ ‖}. Thus, 

max{‖ ‖,‖ ‖,…,‖ ‖} 
and now that < ε, it is clear that < ε. Therefore; { } is a Cauchy 
sequence. 

4 Conclusion 

      In this paper; we introduced NT normed ring space. We also show that NT normed ring different from 
the classical one. This NT notion has several extraordinary properties compared to the classical one. We also 
studied some interesting properties of this newly born structure. We give rise to a new field or research called 
NT structures. 
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1. Introduction

The concept of "neutrosophic set" was first given by F. Smarandache [4,5].
[1] presented the concept of neutrosophic
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topological spaces. In 2014, A. A. Salama
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2. Preliminaries

Throughout this paper, (𝒰, 𝑇)
complement of a neutrosophic crisp open set
NC-CS) in (𝒰, 𝑇). For a neutrosophic
𝑁𝐶𝑖𝑛𝑡(𝒜) and 𝒜௖ denote the neutrosophic
trosophic crisp complement of 𝒜, respectively.

Definition 2.1: 
A neutrosophic crisp subset 𝒜 of a neutrosophic
(i) A neutrosophic crisp pre-open set (briefly
OS is called a neutrosophic crisp pre
CS) of 𝒰 is denoted by NCPO(𝒰) (resp.
(ii) A neutrosophic crisp semi-open set (briefly
NCS-OS is called a neutrosophic crisp
(resp. NCS-CS) of 𝒰 is denoted by NC
(iii) A neutrosophic crisp α-open set (briefly
of a NCα-OS is called a neutrosophic crisp
(resp. NCα-CS) of 𝒰 is denoted by N

Definition 2.2: 
(i) The neutrosophic crisp pre-interior of a
(𝒰, 𝑇) is the union of all NCP-OS contained in
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closed sets, neutrosophic crisp semi--open sets, neutrosophic

of "neutrosophic set" was first given by F. Smarandache [4,5]. A. A. Salama and S.
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crisp topological space (briefly NCTS). The objective of this paper is to 
closed sets and study their fundamental properties in neutrosophic

neutrosophic crisp semi--closure and neutrosophic crisp semi

) (or simply 𝒰) always mean a neutrosophic crisp topological space.
crisp open set (briefly NC-OS) is called a neutrosophic crisp closed set (briefly
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respectively. 
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open set (briefly NCP-OS) [3] if 𝒜 ⊆ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝒜)). The complement of a

pre-closed set (briefly NCP-CS) in (𝒰, 𝑇). The family of all
) (resp. NCPC(𝒰)). 
open set (briefly NCS-OS) [3] if 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)). The complement of a

crisp semi-closed set (briefly NCS-CS) in (𝒰, 𝑇). The family of all
NCSO(𝒰) (resp. NCSC(𝒰)). 

open set (briefly NCα-OS) [3] if 𝒜 ⊆ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜
neutrosophic crisp α-closed set (briefly NCα-CS) in (𝒰, 𝑇). The family of all
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(ii) The neutrosophic crisp semi-interior of a neutrosophic crisp set 𝒜 of a neutrosophic crisp topological space 
(𝒰, 𝑇) is the union of all NCS-OS contained in 𝒜 and is denoted by 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)[3]. 
(iii) The neutrosophic crisp α-interior of a neutrosophic crisp set 𝒜 of a neutrosophic crisp topological space 
(𝒰, 𝑇) is the union of all NCα-OS contained in 𝒜 and is denoted by 𝛼𝑁𝐶𝑖𝑛𝑡(𝒜)[3]. 

Definition 2.3: 
(i) The neutrosophic crisp pre-closure of a neutrosophic crisp set 𝒜 of a neutrosophic crisp topological space 
(𝒰, 𝑇) is the intersection of all NCP-CS that contain 𝒜 and is denoted by 𝑃𝑁𝐶𝑐𝑙(𝒜)[3]. 
(ii) The neutrosophic crisp semi-closure of a neutrosophic crisp set 𝒜 of a neutrosophic crisp topological space 
(𝒰, 𝑇) is the intersection of all NCS-CS that contain 𝒜 and is denoted by 𝑆𝑁𝐶𝑐𝑙(𝒜)[3]. 
(iii) The neutrosophic crisp α-closure of a neutrosophic crisp set 𝒜 of a neutrosophic crisp topological space 
(𝒰, 𝑇) is the intersection of all NCα-CS that contain 𝒜 and is denoted by 𝛼𝑁𝐶𝑐𝑙(𝒜)[3]. 

Proposition 2.4 [7]:  
In a neutrosophic crisp topological space (𝒰, 𝑇) , the following statements hold, and the equality of each 
statement are not true: 
(i) Every NC-CS (resp. NC-OS) is a NCα-CS (resp. NCα-OS). 
(ii) Every NCα-CS (resp. NCα-OS) is a NCS-CS (resp. NCS-OS). 
(iii) Every NCα-CS (resp. NCα-OS) is a NCP-CS (resp. NCP-OS). 

Proposition 2.5 [7]:   
A neutrosophic crisp subset 𝒜 of a neutrosophic crisp topological space (𝒰, 𝑇) is a NCα-CS (resp. NCα-OS) iff 
𝒜 is a NCS-CS (resp. NCS-OS) and NCP-CS (resp. NCP-OS). 

Theorem 2.6 [7]: 
For any neutrosophic crisp subset 𝒜 of a neutrosophic crisp topological space (𝒰, 𝑇), 𝒜 ∈ NCαO(𝒰) iff there 
exists a NC-OS ℋ such that ℋ ⊆ 𝒜 ⊆ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ)). 

Proposition 2.7 [7]: 
The union of any family of NCα-OS is a NCα-OS. 

Proposition 2.8: 
(i) If 𝒦 is a NC-OS, then 𝑆𝑁𝐶𝑐𝑙(𝒦) = 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝒦)). 
(ii) If 𝒜 is a neutrosophic crisp subset of a neutrosophic crisp topological space (𝒰, 𝑇), then 
𝑆𝑁𝐶𝑖𝑛𝑡൫𝑁𝐶𝑐𝑙(𝒜)൯ = 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝒜))). 
Proof: This follows directly from the definition (2.1) and proposition (2.4). 

3. Neutrosophic Crisp Semi-𝛂-Closed Sets

In this section, we present and study the neutrosophic crisp semi-α-closed sets and some of its properties. 

Definition 3.1:  
A neutrosophic crisp subset 𝒜 of a neutrosophic crisp topological space (𝒰, 𝑇) is called neutrosophic crisp semi-
α-closed set (briefly NCSα-CS) if there exists a NCα-CS ℋ in 𝒰 such that 𝑁𝐶𝑖𝑛𝑡(ℋ) ⊆ 𝒜 ⊆ ℋ or equivalently 
if 𝑁𝐶𝑖𝑛𝑡(𝛼𝑁𝐶𝑐𝑙(𝒜)) ⊆ 𝒜. The family of all NCSα-CS of 𝒰 is denoted by NCSαC(𝒰). 

Definition 3.2:  
A neutrosophic crisp set 𝒜 is called a neutrosophic crisp semi-α-open set (briefly NCSα-OS) if and only if its 
complement 𝒜௖ is a NCSα-CS or equivalently if there exists a NCα-OS ℋ in 𝒰 such that ℋ ⊆ 𝒜 ⊆ 𝑁𝐶𝑐𝑙(ℋ). 
The family of all NCSα-OS of 𝒰 is denoted by NCSαO(𝒰). 

Proposition 3.3:  
It is evident by definitions that in a neutrosophic crisp topological space (𝒰, 𝑇), the following hold: 
(i) Every NC-CS (resp. NC-OS) is a NCSα-CS (resp. NCSα-OS). 
(ii) Every NCα-CS (resp. NCα-OS) is a NCSα-CS (resp. NCSα-OS). 
The converse of Proposition (3.3) need not be true as shown by the following example. 

Example 3.4:  
Let 𝒰 = {𝑝, 𝑞, 𝑟, 𝑠}, 𝒜 = 〈{𝑝}, {𝑞, 𝑠}, {𝑟}〉, ℬ = 〈{𝑝}, {𝑞}, {𝑟}〉 .Then 𝑇 = {∅ே , 𝒜, ℬ, 𝒰ே}  is a neutrosophic crisp 
topology on 𝒰. 
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(i) Let  ℋ = 〈{𝑝}, {𝑞, 𝑟, 𝑠}, ∅〉, 𝒜 ⊆ ℋ ⊆ 𝑁𝐶𝑐𝑙(𝒜) = 𝒰ே , the neutrosophic crisp set ℋ is a NCSα-OS but not 
NC-OS. It is clear that ℋ௖ = 〈{𝑞, 𝑟, 𝑠}, {𝑝}, 𝒰〉 is a NCSα-CS but not NC-CS. 
(ii) Let 𝒦 = 〈∅, {𝑞, 𝑟, 𝑠}, {𝑟, 𝑠}〉 and so 𝒦 ⊈ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒦))), the neutrosophic crisp set 𝒦 is a NCSα-
OS but not NCα-OS. It is clear that 𝒦௖ = 〈𝒰, {𝑝}, {𝑝, 𝑞}〉 is a NCSα-CS but not NCα-CS. 

Remark 3.5:  
The concepts of NCSα-CS (resp. NCSα-OS) and NCP-CS (resp. NCP-OS) are independent, as the following 
examples show. 

Example 3.6:   
Let 𝒰 = {𝑝, 𝑞, 𝑟, 𝑠}, 𝒜 = 〈{𝑝}, {𝑞}, {𝑟}〉, ℬ = 〈{𝑟}, {𝑞}, {𝑠}〉, 𝒞 = 〈{𝑝, 𝑟}, {𝑞}, ∅〉, 𝒟 = 〈∅, {𝑞}, {𝑟, 𝑠}〉.  
Then 𝑇 = {∅ே , 𝒜, ℬ, 𝒞, 𝒟, 𝒰ே} is a neutrosophic crisp topology on 𝒰 . Let ℋ = 〈{𝑟, 𝑠}, {𝑝, 𝑞}, {𝑠}〉, ℬ ⊆ ℋ ⊆
𝑁𝐶𝑐𝑙(ℬ) = 〈{𝑟, 𝑠}, {𝑞}, ∅〉, the neutrosophic crisp set ℋ is a NCSα-OS but not NCP-OS. It is clear that ℋ௖ =
〈{𝑠}, {𝑝, 𝑞}, {𝑟, 𝑠}〉 is a NCSα-CS but not NCP-CS. 

Example 3.7: 
Let 𝒰 = {𝑝, 𝑞, 𝑟, 𝑠}, 𝒜ଵ = 〈{𝑝}, {𝑞}, {𝑟}〉, 𝒜ଶ = 〈{𝑝}, {𝑞, 𝑠}, {𝑟}〉 . Then 𝑇 = {∅ே , 𝒜ଵ, 𝒜ଶ, 𝒰ே}  is a neutrosophic 
crisp topology on 𝒰. If 𝒜ଷ = 〈{𝑝, 𝑞}, {𝑟}, {𝑠}〉, then 𝒜ଷ is a NCP-OS but not NCSα-OS. It is clear that 𝒜ଷ

௖ =
〈{𝑠}, {𝑟}, {𝑝, 𝑞}〉 is a NCP-CS but not NCSα-CS. 

Remark 3.8: 
(i) If every NC-OS is a NC-CS and every nowhere neutrosophic crisp dense set is NC-CS in any neutrosophic crisp 
topological space (𝒰, 𝑇), then every NCSα-CS (resp. NCSα-OS) is a NC-CS (resp. NC-OS).  
(ii) If every NC - OS  is a NC - CS  in any neutrosophic crisp topological space (𝒰, 𝑇) , then every NCSα -CS 
(resp. NCSα-OS) is a NCα-CS (resp. NCα-OS). 

Remark 3.9:  
(i) It is clear that every NCS-CS (resp. NCS-OS) and NCP-CS (resp. NCP-OS) of any neutrosophic crisp 
topological space (𝒰, 𝑇) is a NCSα-CS (resp. NCSα-OS) (by Proposition (2.5) and Proposition (3.3) (ii)). 
(ii) A NCSα-CS (resp. NCSα-OS) in any neutrosophic crisp topological space (𝒰, 𝑇) is a NCP-CS (resp. NCP-OS) 
if every NC-OS of 𝒰 is a NC-CS (from Proposition (2.4) (iii) and Remark (3.8) (ii)). 

Theorem 3.10: 
For any neutrosophic crisp subset 𝒜 of a neutrosophic crisp topological space (𝒰, 𝑇). The following properties 
are equivalent: 
(i) 𝒜 ∈ NCSαO(𝒰). 
(ii) There exists a NC-OS, say ℋ, such that ℋ ⊆ 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ))). 
(iii) 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))). 
Proof: 
(𝑖) ⟹ (𝑖𝑖) Let 𝒜 ∈ NCSαO(𝒰). Then, there exists 𝒦 ∈ NCαO(𝒰), such that 𝒦 ⊆ 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝒦). Hence there 
exists ℋ NC-OS such that ℋ ⊆ 𝒦 ⊆ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ))(by Theorem (2.6)). Therefore, 𝑁𝐶𝑐𝑙(ℋ) ⊆ 𝑁𝐶𝑐𝑙(𝒦) ⊆
𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ))), implies that 𝑁𝐶𝑐𝑙(𝒦) ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ))).  
Then ℋ ⊆ 𝒦 ⊆ 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝒦) ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ))). Hence, ℋ ⊆ 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ))), for 
some ℋ NC-OS. 
(𝑖𝑖) ⟹ (𝑖𝑖𝑖) Suppose that there exists a NC-OS ℋ such that ℋ ⊆ 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ))). We know that 
𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝒜. On the other hand, ℋ ⊆ 𝑁𝐶𝑖𝑛𝑡(𝒜) (since 𝑁𝐶𝑖𝑛𝑡(𝒜) is the largest NC-OS contained in 𝒜). 
Hence 𝑁𝐶𝑐𝑙(ℋ) ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)), then 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ)) ⊆ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜))),  
therefore 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ))) ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))). But 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ))) 
(by hypothesis). Hence 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ))) ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))),  
then 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))). 
(𝑖𝑖𝑖) ⟹ (𝑖)  Let 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) . To prove 𝒜 ∈ NCSαO(𝒰) , let 𝒦 = 𝑁𝐶𝑖𝑛𝑡(𝒜) ; we 
know that 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝒜. To prove 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)).  
Since 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜))) ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)). 
Hence, 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) = 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)).  
But 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) (by hypothesis). Hence, 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) 
⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)) ⟹ 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)). Hence, there exists an NC-OS  say 𝒦 , such that 𝒦 ⊆ 𝒜 ⊆
𝑁𝐶𝑐𝑙(𝒜). On the other hand, 𝒦 is a NCα-OS (since 𝒦 is a NC-OS). Hence 𝒜 ∈ NCSαO(𝒰). 
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Corollary 3.11: 
For any neutrosophic crisp subset 𝒜 of a neutrosophic crisp topological space (𝒰, 𝑇), the following properties 
are equivalent: 
(i)  𝒜 ∈ NCSαC(𝒰). 
(ii) There exists a NC-CS ℱ such that 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(ℱ))) ⊆ 𝒜 ⊆ ℱ. 
(iii) 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝒜)))) ⊆ 𝒜. 
Proof: 
(𝑖) ⟹ (𝑖𝑖) Let  𝒜 ∈ NCSαC(𝒰), then 𝒜௖ ∈ NCSαO(𝒰). Hence there is ℋ NC-OS such that ℋ ⊆ 𝒜௖ ⊆
𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ))) (by Theorem (3.10)). Hence (𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ))))௖ ⊆ 𝒜௖ ௖ ⊆ ℋ௖ ,  
i.e., 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(ℋ௖))) ⊆ 𝒜 ⊆ ℋ௖. Let ℋ௖ = ℱ, where ℱ is a NC-CS in 𝒰.
Then 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(ℱ))) ⊆ 𝒜 ⊆ ℱ, for some ℱ NC-CS. 
(𝑖𝑖) ⟹ (𝑖𝑖𝑖) Suppose that there exists ℱ NC-CS such that 𝑁𝐶𝑖𝑛𝑡 ቀ𝑁𝐶𝑐𝑙൫𝑁𝐶𝑖𝑛𝑡(ℱ)൯ቁ ⊆ 𝒜 ⊆ ℱ, but 𝑁𝐶𝑐𝑙(𝒜) is 
the smallest NC-CS containing 𝒜. Then 𝑁𝐶𝑐𝑙(𝒜) ⊆ ℱ, and therefore: 𝑁𝐶𝑖𝑛𝑡൫𝑁𝐶𝑐𝑙(𝒜)൯ ⊆ 𝑁𝐶𝑖𝑛𝑡(ℱ)  
⟹ 𝑁𝐶𝑐𝑙 ቀ𝑁𝐶𝑖𝑛𝑡൫𝑁𝐶𝑐𝑙(𝒜)൯ቁ ⊆ 𝑁𝐶𝑐𝑙൫𝑁𝐶𝑖𝑛𝑡(ℱ)൯ ⟹ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝒜)))) ⊆
𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(ℱ))) ⊆ 𝒜 ⟹ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝒜)))) ⊆ 𝒜. 
(𝑖𝑖𝑖) ⟹ (𝑖)  Let 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝒜)))) ⊆ 𝒜 . To prove  𝒜 ∈ NCSαC(𝒰) , i.e., to prove 𝒜௖ ∈
NCSαO(𝒰) . Then 𝒜௖ ⊆ (𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝒜)))))௖ = 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜௖)))) , but 
(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝒜)))))௖ = 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜௖)))).  
Hence 𝒜௖ ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜௖)))), and therefore 𝒜௖ ∈ NCSαO(𝒰), i.e.,  𝒜 ∈ NCSαC(𝒰). 

Theorem 3.12: 
The union of any family of NCSα-OS is a NCSα-OS. 
Proof: Let {𝒜ఒ}ఒ∈ஃ be a family of NCSα-OS. To prove ⋃ 𝒜ఒఒ∈ஃ  is a NCSα-OS. Since 𝒜ఒ ∈ NCSαO(𝒰). Then 
there is a NCα-OS ℬఒ such that ℬఒ ⊆ 𝒜ఒ ⊆ 𝑁𝐶𝑐𝑙(ℬఒ), ∀𝜆 ∈ Λ. Hence ⋃ ℬఒఒ∈ஃ ⊆ ⋃ 𝒜ఒఒ∈ஃ ⊆ ⋃ 𝑁𝐶𝑐𝑙(ℬఒ)ఒ∈ஃ ⊆
𝑁𝐶𝑐𝑙(⋃ ℬఒఒ∈ஃ ). But ⋃ ℬఒఒ∈ஃ ∈ NCαO(𝒰) (by Proposition (2.7)). Hence ⋃ 𝒜ఒఒ∈ஃ ∈ NCSαO(𝒰). 

Corollary 3.13: 
The intersection of any family of NCSα-CS is a NCSα-CS. 
Proof: This follows directly from Theorem (3.12). 

Remark 3.14: 
The following diagram shows the relations among the different types of weakly neutrosophic crisp closed sets 
that were studied in this section: 

NC-CS NCα-CS 

NCP-CS 

NCS-CS 

+ 

NCSα-CS 

+ 

+ 

Diagram (3.1) 

every nowhere NC-dense 
set is a NC-CS 

every NC-OS is a NC-CS 
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4. Neutrosophic Crisp Semi--Closure and Neutrosophic Crisp Semi--Interior

We present neutrosophic crisp semi--closure and neutrosophic crisp semi--interior and obtain some of 
their properties in this section. 

Definition 4.1:  
The intersection of all NCS - CS  in a neutrosophic crisp topological space (𝒰, 𝑇)  containing 𝒜  is called 
neutrosophic crisp semi--closure of 𝒜  and is denoted by 𝑆𝑁𝐶𝑐𝑙(𝒜) , 𝑆𝑁𝐶𝑐𝑙(𝒜) = ⋂{ℬ: 𝒜 ⊆ ℬ, ℬ is a 
NCS-CS}. 

Definition 4.2:  
The union of all NCS-OS in a neutrosophic crisp topological space (𝒰, 𝑇) contained in 𝒜 is called neutrosophic 
crisp semi--interior of 𝒜 and is denoted by 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜), 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) = ⋃{ℬ: ℬ ⊆ 𝒜, ℬ is a NCS-OS}. 

Proposition 4.3:  
Let 𝒜 be any neutrosophic crisp set in a neutrosophic crisp topological space (𝒰, 𝑇), the following properties are 
true: 
(i) 𝑆𝑁𝐶𝑐𝑙(𝒜) = 𝒜 iff 𝒜 is a NCS-CS. 
(ii) 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝒜 iff 𝒜 is a NCS-OS. 
(iii) 𝑆𝑁𝐶𝑐𝑙(𝒜) is the smallest NCS-CS containing 𝒜. 
(iv) 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) is the largest NCS-OS contained in 𝒜. 
Proof: (i), (ii), (iii) and (iv) are obvious. 

Proposition 4.4:  
Let 𝒜 be any neutrosophic crisp set in a neutrosophic crisp topological space (𝒰, 𝑇), the following properties 
hold:  
(i) 𝑆𝑁𝐶𝑖𝑛𝑡(𝒰ே − 𝒜) = 𝒰ே − (𝑆𝑁𝐶𝑐𝑙(𝒜)), 
(ii) 𝑆𝑁𝐶𝑐𝑙(𝒰ே − 𝒜) = 𝒰ே − (𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)). 
Proof: (i) By definition (2.3), 𝑆𝑁𝐶𝑐𝑙(𝒜) = ⋂{ℬ: 𝒜 ⊆ ℬ, ℬ is a NCS-CS} 
𝒰ே − ( 𝑆𝑁𝐶𝑐𝑙(𝒜)) = 𝒰ே − ⋂{ℬ: 𝒜 ⊆ ℬ, ℬ is a NCS-CS} 

 = ⋃{𝒰ே − ℬ: 𝒜 ⊆ ℬ, ℬ is a NCS-CS} 
 = ⋃{ℋ: ℋ ⊆ 𝒰ே − 𝒜, ℋ is a NCS-OS} 
 = 𝑆𝑁𝐶𝑖𝑛𝑡(𝒰ே − 𝒜). 

(ii) The proof is similar to (i). 

Theorem 4.5:  
Let 𝒜 and ℬ be two neutrosophic crisp sets in a neutrosophic crisp topological space (𝒰, 𝑇). The following 
properties hold: 
(i) 𝑆𝑁𝐶𝑐𝑙(∅ே) = ∅ே, 𝑆𝑁𝐶𝑐𝑙(𝒰ே) = 𝒰ே. 
(ii) 𝒜 ⊆ 𝑆𝑁𝐶𝑐𝑙(𝒜). 
(iii) 𝒜 ⊆ ℬ ⟹ 𝑆𝑁𝐶𝑐𝑙(𝒜) ⊆ 𝑆𝑁𝐶𝑐𝑙(ℬ). 
(iv) 𝑆𝑁𝐶𝑐𝑙(𝒜⋂ℬ) ⊆ 𝑆𝑁𝐶𝑐𝑙(𝒜)⋂𝑆𝑁𝐶𝑐𝑙(ℬ). 
(v) 𝑆𝑁𝐶𝑐𝑙(𝒜)⋃𝑆𝑁𝐶𝑐𝑙(ℬ) ⊆ 𝑆𝑁𝐶𝑐𝑙(𝒜⋃ℬ). 
(vi) 𝑆𝑁𝐶𝑐𝑙(𝑆𝑁𝐶𝑐𝑙(𝒜)) = 𝑆𝑁𝐶𝑐𝑙(𝒜). 
Proof: (i) and (ii) are evident. 
(iii) By (ii), ℬ ⊆ 𝑆𝑁𝐶𝑐𝑙(ℬ). Since 𝒜 ⊆ ℬ, we have 𝒜 ⊆ 𝑆𝑁𝐶𝑐𝑙(ℬ). But 𝑆𝑁𝐶𝑐𝑙(ℬ) is a NCS-CS. Thus 
𝑆𝑁𝐶𝑐𝑙(ℬ) is a NCS-CS containing 𝒜.  
Since 𝑆𝑁𝐶𝑐𝑙(𝒜) is the smallest NCS-CS containing 𝒜 , we have 𝑆𝑁𝐶𝑐𝑙(𝒜) ⊆ 𝑆𝑁𝐶𝑐𝑙(ℬ). Hence, 𝒜 ⊆
ℬ ⟹ 𝑆𝑁𝐶𝑐𝑙(𝒜) ⊆ 𝑆𝑁𝐶𝑐𝑙(ℬ). 
(iv) We know that 𝒜⋂ℬ ⊆ 𝒜  and 𝒜⋂ℬ ⊆ ℬ . Therefore, by (iii), 𝑆𝑁𝐶𝑐𝑙(𝒜⋂ℬ) ⊆ 𝑆𝑁𝐶𝑐𝑙(𝒜)  and 
𝑆𝑁𝐶𝑐𝑙(𝒜⋂ℬ) ⊆ 𝑆𝑁𝐶𝑐𝑙(ℬ). Hence 𝑆𝑁𝐶𝑐𝑙(𝒜⋂ℬ) ⊆ 𝑆𝑁𝐶𝑐𝑙(𝒜)⋂𝑆𝑁𝐶𝑐𝑙(ℬ). 
(v) Since 𝒜 ⊆ 𝒜⋃ℬ and ℬ ⊆ 𝒜⋃ℬ, it follows from part (iii) that 𝑆𝑁𝐶𝑐𝑙(𝒜) ⊆ 𝑆𝑁𝐶𝑐𝑙(𝒜⋃ℬ)  
and 𝑆𝑁𝐶𝑐𝑙(ℬ) ⊆ 𝑆𝑁𝐶𝑐𝑙(𝒜⋃ℬ). Hence 𝑆𝑁𝐶𝑐𝑙(𝒜)⋃𝑆𝑁𝐶𝑐𝑙(ℬ) ⊆ 𝑆𝑁𝐶𝑐𝑙(𝒜⋃ℬ). 
(vi) Since 𝑆𝑁𝐶𝑐𝑙(𝒜) is a NCS-CS, we have by Proposition (4.3)(i), 𝑆𝑁𝐶𝑐𝑙(𝑆𝑁𝐶𝑐𝑙(𝒜)) = 𝑆𝑁𝐶𝑐𝑙(𝒜). 

Theorem 4.6:  
Let 𝒜 and ℬ be two neutrosophic crisp sets in a neutrosophic crisp topological space (𝒰, 𝑇). The following 
properties hold: 
(i) 𝑆𝑁𝐶𝑖𝑛𝑡(∅ே) = ∅ே, 𝑆𝑁𝐶𝑖𝑛𝑡(𝒰ே) = 𝒰ே. 
(ii) 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝒜. 
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(iii) 𝒜 ⊆ ℬ ⟹ 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(ℬ). 
(iv) 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜⋂ℬ) ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)⋂𝑆𝑁𝐶𝑖𝑛𝑡(ℬ). 
(v) 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)⋃𝑆𝑁𝐶𝑖𝑛𝑡(ℬ) ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜⋃ℬ). 
(vi) 𝑆𝑁𝐶𝑖𝑛𝑡(𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)) = 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜). 
Proof: (i), (ii), (iii), (iv), (v) and (vi) are obvious. 

Proposition 4.7:  
For any neutrosophic crisp subset 𝒜 of a neutrosophic crisp topological space (𝒰, 𝑇), then: 
(i) 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝑆𝑁𝐶𝑐𝑙(𝒜) ⊆ 𝑁𝐶𝑐𝑙(𝒜) ⊆ 𝑁𝐶𝑐𝑙(𝒜). 
(ii) 𝑁𝐶𝑖𝑛𝑡൫𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)൯ = 𝑆𝑁𝐶𝑖𝑛𝑡൫𝑁𝐶𝑖𝑛𝑡(𝒜)൯ = 𝑁𝐶𝑖𝑛𝑡(𝒜). 
(iii) 𝑁𝐶𝑖𝑛𝑡൫𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)൯ = 𝑆𝑁𝐶𝑖𝑛𝑡൫𝑁𝐶𝑖𝑛𝑡(𝒜)൯ = 𝑁𝐶𝑖𝑛𝑡(𝒜). 
(iv) 𝑁𝐶𝑐𝑙൫𝑆𝑁𝐶𝑐𝑙(𝒜)൯ = 𝑆𝑁𝐶𝑐𝑙൫𝑁𝐶𝑐𝑙(𝒜)൯ = 𝑁𝐶𝑐𝑙(𝒜). 
(v) 𝑁𝐶𝑐𝑙൫𝑆𝑁𝐶𝑐𝑙(𝒜)൯ = 𝑆𝑁𝐶𝑐𝑙൫𝑁𝐶𝑐𝑙(𝒜)൯ = 𝑁𝐶𝑐𝑙(𝒜). 
(vi) 𝑆𝑁𝐶𝑐𝑙(𝒜) = 𝒜⋃𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝒜)))). 
(vii) 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝒜⋂𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))). 
(viii) 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝒜)) ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡൫𝑆𝑁𝐶𝑐𝑙(𝒜)൯. 
Proof: We shall prove only (ii), (iii), (iv), (vii) and (viii). 
(ii) To prove 𝑁𝐶𝑖𝑛𝑡൫𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)൯ = 𝑆𝑁𝐶𝑖𝑛𝑡൫𝑁𝐶𝑖𝑛𝑡(𝒜)൯ = 𝑁𝐶𝑖𝑛𝑡(𝒜), we know that 𝑁𝐶𝑖𝑛𝑡(𝒜) is a NC-
OS. It follows that 𝑁𝐶𝑖𝑛𝑡(𝒜) is a NCS-OS. Hence 𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝑆𝑁𝐶𝑖𝑛𝑡൫𝑁𝐶𝑖𝑛𝑡(𝒜)൯ (by Proposition (4.3)).  
Therefore: 𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝑆𝑁𝐶𝑖𝑛𝑡൫𝑁𝐶𝑖𝑛𝑡(𝒜)൯…...….................................................................(1) 
Since 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) ⟹ 𝑁𝐶𝑖𝑛𝑡൫𝑁𝐶𝑖𝑛𝑡(𝒜)൯ ⊆ 𝑁𝐶𝑖𝑛𝑡൫𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)൯ ⟹ 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆
𝑁𝐶𝑖𝑛𝑡൫𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)൯. Also, 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝒜 ⟹ 𝑁𝐶𝑖𝑛𝑡൫𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)൯ ⊆ 𝑁𝐶𝑖𝑛𝑡(𝒜).  
Hence: 𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝑁𝐶𝑖𝑛𝑡൫𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)൯…………………...................................................(2) 
Therefore by (1) and (2), we get 𝑁𝐶𝑖𝑛𝑡൫𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)൯ = 𝑆𝑁𝐶𝑖𝑛𝑡൫𝑁𝐶𝑖𝑛𝑡(𝒜)൯ = 𝑁𝐶𝑖𝑛𝑡(𝒜). 
(iii) Now we prove 𝑁𝐶𝑖𝑛𝑡൫𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)൯ = 𝑆𝑁𝐶𝑖𝑛𝑡൫𝑁𝐶𝑖𝑛𝑡(𝒜)൯ = 𝑁𝐶𝑖𝑛𝑡(𝒜).  
Since 𝑁𝐶𝑖𝑛𝑡(𝒜) is NC-OS, therefore 𝑁𝐶𝑖𝑛𝑡(𝒜) is NCS-OS. Therefore by Proposition (4.3): 
𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝑆𝑁𝐶𝑖𝑛𝑡൫𝑁𝐶𝑖𝑛𝑡(𝒜)൯………............................................................................(1) 
Now, to prove 𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝑁𝐶𝑖𝑛𝑡൫𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)൯, we have 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) ⟹  
𝑁𝐶𝑖𝑛𝑡൫𝑁𝐶𝑖𝑛𝑡(𝒜)൯ ⊆ 𝑁𝐶𝑖𝑛𝑡൫𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)൯ ⟹ 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝑁𝐶𝑖𝑛𝑡൫𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)൯. 
Also, 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝒜 ⟹ 𝑁𝐶𝑖𝑛𝑡൫𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)൯ ⊆ 𝑁𝐶𝑖𝑛𝑡(𝒜).  
Hence: 𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝑁𝐶𝑖𝑛𝑡൫𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)൯………………............................................(2) 
Therefore by (1) and (2), we get 𝑁𝐶𝑖𝑛𝑡൫𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)൯ = 𝑆𝑁𝐶𝑖𝑛𝑡൫𝑁𝐶𝑖𝑛𝑡(𝒜)൯ = 𝑁𝐶𝑖𝑛𝑡(𝒜). 
(iv) To prove 𝑁𝐶𝑐𝑙൫𝑆𝑁𝐶𝑐𝑙(𝒜)൯ = 𝑆𝑁𝐶𝑐𝑙൫𝑁𝐶𝑐𝑙(𝒜)൯ = 𝑁𝐶𝑐𝑙(𝒜). We know that 𝑁𝐶𝑐𝑙(𝒜) is a NC-CS, so it 
is NCS-CS. Hence by proposition (4.3), we have: 𝑁𝐶𝑐𝑙(𝒜) = 𝑆𝑁𝐶𝑐𝑙൫𝑁𝐶𝑐𝑙(𝒜)൯….......(1) 
To prove 𝑵𝑪𝒄𝒍(𝓐) = 𝑵𝑪𝒄𝒍൫𝑺𝑵𝑪𝒄𝒍(𝓐)൯, we have  𝑺𝑵𝑪𝒄𝒍(𝓐) ⊆ 𝑵𝑪𝒄𝒍(𝓐) (by part (i)). 
Then 𝑵𝑪𝒄𝒍൫𝑺𝑵𝑪𝒄𝒍(𝓐)൯ ⊆ 𝑵𝑪𝒄𝒍൫𝑵𝑪𝒄𝒍(𝓐)൯ = 𝑵𝑪𝒄𝒍(𝓐) ⟹ 𝑵𝑪𝒄𝒍൫𝑺𝑵𝑪𝒄𝒍(𝓐)൯ ⊆ 𝑵𝑪𝒄𝒍(𝓐). 
Since 𝓐 ⊆ 𝑺𝑵𝑪𝒄𝒍(𝓐) ⊆ 𝑵𝑪𝒄𝒍൫𝑺𝑵𝑪𝒄𝒍(𝓐)൯, then  𝓐 ⊆ 𝑵𝑪𝒄𝒍൫𝑺𝑵𝑪𝒄𝒍(𝓐)൯.  
Hence, 𝑁𝐶𝑐𝑙(𝒜) ⊆ 𝑁𝐶𝑐𝑙 ቀ𝑁𝐶𝑐𝑙൫𝑆𝑁𝐶𝑐𝑙(𝒜)൯ቁ = 𝑁𝐶𝑐𝑙൫𝑆𝑁𝐶𝑐𝑙(𝒜)൯ ⟹ 𝑁𝐶𝑐𝑙(𝒜) ⊆ 𝑁𝐶𝑐𝑙൫𝑆𝑁𝐶𝑐𝑙(𝒜)൯ 
and therefore: 𝑁𝐶𝑐𝑙(𝒜) = 𝑁𝐶𝑐𝑙൫𝑆𝑁𝐶𝑐𝑙(𝒜)൯……...........................................................(2) 
Now, by (1) and (2), we get that 𝑁𝐶𝑐𝑙൫𝑆𝑁𝐶𝑐𝑙(𝒜)൯ = 𝑆𝑁𝐶𝑐𝑙൫𝑁𝐶𝑐𝑙(𝒜)൯. Hence 𝑁𝐶𝑐𝑙൫𝑆𝑁𝐶𝑐𝑙(𝒜)൯ =
𝑆𝑁𝐶𝑐𝑙൫𝑁𝐶𝑐𝑙(𝒜)൯ = 𝑁𝐶𝑐𝑙(𝒜). 
(vii) To prove 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝒜⋂𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))), since 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) ∈ NCSO(𝒰) ⟹
𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙൫𝑁𝐶𝑖𝑛𝑡(𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)൯))) = 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜))))  
(by part (ii)). Hence, 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))), also 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝒜. Then: 
𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝒜⋂𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜))))......................................................(1) 
To prove 𝒜⋂𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) is a NCS-OS contained in 𝒜.  
It is clear that 𝒜⋂𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) and also it is clear 
that 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)) ⟹ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑖𝑛𝑡(𝒜)) ⊆ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜))) ⟹ 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆
𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜))) ⟹ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)) ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜))) and 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 
𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜))  ⟹ 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜))))  and 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝒜 ⟹ 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆
𝒜⋂𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) . We get 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝒜⋂𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) ⊆
𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))). Hence 𝒜⋂𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) is a NCS-OS (by Proposition 
(4.3)). Also, 𝒜⋂𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) is contained in 𝒜.  
Then 𝒜⋂𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)  (since 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)  is the largest NCS - OS 
contained in 𝒜). Hence: 𝒜⋂𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜)...............(2) 
By (1) and (2), we get that 𝑆𝑁𝐶𝑖𝑛𝑡(𝒜) = 𝒜⋂𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))).    
(viii) To prove that 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝒜)) ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡൫𝑆𝑁𝐶𝑐𝑙(𝒜)൯, we know that 𝑆𝑁𝐶𝑐𝑙(𝒜) is a NCS-CS, 
therefore 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡൫𝑁𝐶𝑐𝑙(𝑆𝑁𝐶𝑐𝑙(𝒜)൯))) ⊆ 𝑆𝑁𝐶𝑐𝑙(𝒜) (by Corollary (3.11)). Hence 
𝑁𝐶𝑖𝑛𝑡൫𝑁𝐶𝑐𝑙(𝒜)൯ ⊆ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝒜))) ⊆ 𝑆𝑁𝐶𝑐𝑙(𝒜) (by part (iv)). Therefore, 
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𝑆𝑁𝐶𝑖𝑛𝑡 ቀ𝑁𝐶𝑖𝑛𝑡൫𝑁𝐶𝑐𝑙(𝒜)൯ቁ ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡൫𝑆𝑁𝐶𝑐𝑙(𝒜)൯ ⟹ 𝑁𝐶𝑖𝑛𝑡൫𝑁𝐶𝑐𝑙(𝒜)൯ ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝑆𝑁𝐶𝑐𝑙(𝒜)) (by 
(ii)).    

Theorem 4.8:  
For any neutrosophic crisp subset 𝒜 of a neutrosophic crisp topological space (𝒰, 𝑇). The following properties 
are equivalent: 
(i) 𝒜 ∈ NCSO(𝒰). 
(ii) ℋ ⊆ 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ))), for some NC-OS ℋ. 
(iii) ℋ ⊆ 𝒜 ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ)), for some NC-OS ℋ. 
(iv) 𝒜 ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜))). 
Proof: 
(𝑖) ⟹ (𝑖𝑖) Let  𝒜 ∈ NCSO(𝒰), then 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) and 𝑁𝐶𝑖𝑛𝑡(𝒜) ⊆ 𝒜. Hence 
ℋ ⊆ 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ))), where ℋ = 𝑁𝐶𝑖𝑛𝑡(𝒜). 
(𝑖𝑖) ⟹ (𝑖𝑖𝑖) Suppose ℋ ⊆ 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ))), for some NC-OS ℋ. But 𝑆𝑁𝐶𝑖𝑛𝑡൫𝑁𝐶𝑐𝑙(ℋ)൯ =
𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ)))  (by Proposition (2.8)). Then ℋ ⊆ 𝒜 ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ)) , for some NC-OS ℋ. 
(𝑖𝑖𝑖) ⟹ (𝑖𝑣) Suppose that ℋ ⊆ 𝒜 ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ)), for some NC-OS ℋ. Since ℋ is a NC-OS contained in 
𝒜. Then ℋ ⊆ 𝑁𝐶𝑖𝑛𝑡(𝒜) ⟹ 𝑁𝐶𝑐𝑙(ℋ) ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)) 
⟹ 𝑆𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ)) ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜))). But 𝒜 ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℋ)) (by hypothesis), then 
𝒜 ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜))). 
(𝑖𝑣) ⟹ (𝑖) Let 𝒜 ⊆ 𝑆𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜))).  
But 𝑆𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜))) = 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜))))  (by Proposition (2.8)). 
Hence, 𝒜 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝒜)))) ⟹  𝒜 ∈ NCSO(𝒰).     

Corollary 4.9:  
For any neutrosophic crisp subset ℬ of a neutrosophic crisp topological space (𝒰, 𝑇), the following properties 
are equivalent: 
(i) ℬ ∈ NCSC(𝒰). 
(ii) 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(ℱ))) ⊆ ℬ ⊆ ℱ, for some ℱ NC-CS. 
(iii) 𝑆𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(ℱ)) ⊆ ℬ ⊆ ℱ, for some ℱ NC-CS. 
(iv) 𝑆𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℬ))) ⊆ ℬ. 
Proof: 
(𝑖) ⟹ (𝑖𝑖) Let ℬ ∈ NCSC(𝒰) ⟹  𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℬ)))) ⊆ ℬ (by Corollary(3.11))  
and ℬ ⊆ 𝑁𝐶𝑐𝑙(ℬ). Hence we obtain 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℬ)))) ⊆ ℬ ⊆ 𝑁𝐶𝑐𝑙(ℬ).  
Therefore, 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(ℱ))) ⊆ ℬ ⊆ ℱ, where ℱ = 𝑁𝐶𝑐𝑙(ℬ). 
(𝑖𝑖) ⟹ (𝑖𝑖𝑖) Let 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(ℱ))) ⊆ ℬ ⊆ ℱ, for some ℱ NC-CS. But 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(ℱ))) =
𝑆𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(ℱ))  (by Proposition (2.8)). Hence 𝑆𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(ℱ)) ⊆ ℬ ⊆ ℱ, for some ℱ NC-CS. 
(𝑖𝑖𝑖) ⟹ (𝑖𝑣) Let 𝑆𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(ℱ)) ⊆ ℬ ⊆ ℱ, for some ℱ NC-CS. Since ℬ ⊆ ℱ (by hypothesis), then we have 
𝑁𝐶𝑐𝑙(ℬ) ⊆ ℱ ⟹ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℬ) ⊆ 𝑁𝐶𝑖𝑛𝑡(ℱ) ⟹ 𝑆𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℬ))) ⊆ 𝑆𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(ℱ)) ⊆ ℬ ⟹
𝑆𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℬ))) ⊆ ℬ. 
(𝑖𝑣) ⟹ (𝑖) Let 𝑆𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℬ))) ⊆ ℬ.  
But 𝑆𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℬ))) = 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℬ))))  (by Proposition (2.8)). 
Hence, 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(ℬ)))) ⊆ ℬ ⟹ ℬ ∈ NCSC(𝒰). 

5. Conclusion

In this work, we have the new concept of neutrosophic crisp closed sets called neutrosophic crisp semi--
closed sets and studied their fundamental properties in neutrosophic crisp topological spaces. The neutrosophic 
crisp semi--closed sets can obtain to derive a new decomposition of neutrosophic crisp continuity. 
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Abstract. The concepts of rough neutrosophic multisets can be easily extended to a relation, mainly since a relation is also 

a set, i.e. a subset of a Cartesian product. Therefore, the objective of this paper is to define the definition of rough 

neutrosophic multisets relation of Cartesian product over a universal set. Some of the relation properties of rough 

neutrosophic multisets such as max, min, the composition of two rough neutrosophic multisets relation, inverse rough 

neutrosophic multisets relation, and reflexive, symmetric and transitive rough neutrosophic multisets relation over the 

universe are defined. Subsequently, their properties are successfully proven. Finally, the application of rough neutrosophic 

multisets relation for decision making in marketing strategy is presented.  

Keywords: Neutrosophic Multisets, relation, rough set, rough neutrosophic multisets 

1 Introduction 

 Imperfect information resulted in an incomplete, imprecision, inconsistency and uncertainty information 

whereby all the condition must be overcome to represent the perfect information. A relation between each 

information from the same universe or object is also an important criterion of the information to explain the 

strong relationship element between them. Fuzzy sets as defined by Zadeh [1] has been used to model the 

imperfect information especially for uncertainty types of information by representing the membership value 

between [0, 1]. This indicates the human thinking opinion by replacing the information of linguistic value. 

Many theories were later introduced with the aim of establishing a fuzzy relation structure [2]. Attanassov 

introduced an intuitionistic fuzzy set by generalizing the theory of fuzzy sets and introducing two grades of the 

membership function, namely the degree of membership function and degree of non-membership function [3]. 

This theory has made the uncertainty decision more interesting. Meanwhile, Burillo et al. studied the 

intuitionistic fuzzy relation with properties [4]. There are also another theory introduced for solving uncertainty 

condition such as rough set [5] and soft set [6]. All these studies have extended to rough relation [7] and soft 

set relation [8].  

Smarandache introduced a neutrosophic set as a generalization of the intuitionistic fuzzy set theory [9]. He 

believed that somehow in a life situation, especially for uncertainty condition, there also exist in-between 

(indeterminacy) opinion or unexpected condition that cannot be controlled. Instead of two grades of the 

membership function, neutrosophic set introduced in-between (indeterminacy) function where there exists an 

element which consists of a set of truth membership function (T), indeterminacy function (I) and falsity 

membership function (F). Compared to other uncertainty theories, the neutrosophic set can deal with 

indeterminacy situation. The study in neutrosophic relation with properties are also discussed [10], [11].  

Later, Smarandache et al. refined T, I, F to T1, T2, …, Tm and I1, I2, …, In and F1, F2, …, Fr  was also known 

as a neutrosophic refined set or neutrosophic multisets [12], [13]. Instead of one-time occurring for each 

element of T, I, F, the neutrosophic refined set allowed an element of T, I, F to occur more than once with 
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possibly the same or different truth membership values, indeterminacy values, and falsity membership values. 

The study of the neutrosophic refined set is a generalization of a multi fuzzy set [14] and intuitionistic fuzzy 

multisets [15]. Later, Deli et al. have studied the relation on neutrosophic refined set with properties [16], [17]. 

Latest, Smarandache has discussed in detail about neutrosophic perspectives in theory and application parts for 

neutrosophic triplets, neutrosophic duplets, neutrosophic multisets, hybrid operators and modal logic [18]. The 

successful application of the neutrosophic refined set in multi criteria decision making problem such as in 

medical diagnosis and selection problem [13], [19]–[25] has made this theory more applicable in decision 

making area. 

Hybrid theories of uncertainty and imprecision condition were introduced, especially with rough set theory, 

such as rough fuzzy set and fuzzy rough set [26], rough intuitionistic fuzzy set [27],  intuitionistic rough fuzzy 

set [28], rough neutrosophic set [29], neutrosophic rough set [30], interval rough neutrosophic set [31], rough 

neutrosophic soft set [32], rough bipolar neutrosophic set [33], single valued neutrosophic rough set model 

[34] and rough neutrosophic multiset [35]. This is because a rough set theory can handle the imprecision 

condition from the existence of a value which cannot be measured with suitable precision. Samanta et al. have 

discussed the fuzzy rough relation on universe set and their properties [36]. Then, Xuan Thao et. al have 

extended that concept by introducing the rough fuzzy relations on the Cartesian product of two universal sets 

[37].   

The hybrid theory of a rough set also gives a contribution for solving a problem in decision making area. 

Some researchers already proved that hybrid theory such as rough neutrosophic set can handle the decision 

making problem in order to get the best solution according to three membership degree (truth, indeterminate 

and falsity) [38]–[44].  

The objective of this paper is to define a rough neutrosophic multisets relation properties as a novel notion. 

This study also generalizes relation properties of a rough fuzzy relation, rough intuitionistic fuzzy relation and 

rough neutrosophic relation over universal. Subsequently, their properties are examined. 

The remaining parts of this paper are organized as follows. In section 2, some mathematical preliminary 

concepts were recalled for a deeper understanding of rough neutrosophic multisets relations. Section 3 

introduces the definition of rough neutrosophic multisets relation of Cartesian product on a universe set with 

some examples. Related properties and operations are also investigated. Section 3 also defined the composition 

of two rough neutrosophic multisets relation, inverse rough neutrosophic multisets relation and the reflexive, 

symmetric and transitive rough neutrosophic multisets relation.  Subsequently, their properties are examined.  

In section 4, the rough neutrosophic multisets relation is represented as a marketing strategy by evaluating the 

quality of the product. Finally, section 5 concludes the paper. 

2 Preliminaries 

In this section, some mathematical preliminary concepts were recalled to understanding more about rough 

neutrosophic multisets relations.  

Definition 2.1 ([10]) Let U be a non-empty set of objects, ℛ is an equivalence relation on U. Then the space 

(𝑈, ℛ) is called an approximation space. Let X be a fuzzy set on U. We define the lower and upper 

approximation set and upper approximation of X, respectively  

 ℛ𝑈(𝑋) = {𝑥 ∈ 𝑈: [𝑥]ℛ ⊂ 𝑋},  

ℛ𝑈(𝑋) = {𝑥 ∈ 𝑈: [𝑥]ℛ ∩ 𝑋 ≠ 0}              

where 

𝑇ℛ𝑈
(𝑋) = 𝑖𝑛𝑓𝑦∈𝑈{𝑇𝑋(𝑦): 𝑦 ∈ [𝑥]ℛ},  

  𝑇ℛ𝑈
(𝑋) = 𝑠𝑢𝑝𝑦∈𝑈{𝑇𝑋(𝑦): 𝑦 ∈ [𝑥]ℛ}.             

The boundary of X, 𝐵𝑁𝐷(𝑋) = ℛ𝑈(𝑋) − ℛ𝑈(𝑋). The fuzzy set X is called the rough fuzzy set if 𝐵𝑁𝐷(𝑋) ≠

0.  

Definition 2.2 ([18]) Let U be a non-empty set of objects, ℛ is an equivalence relation on U. Then the space 

(𝑈, ℛ) is called an approximation space. Let X be an intuitionistic fuzzy set on U. We define the lower and 

upper approximation set and upper approximation of X, respectively 

 ℛ𝑈(𝑋) = {𝑥 ∈ 𝑈: [𝑥]ℛ ⊂ 𝑋}  

ℛ𝑈(𝑋) = {𝑥 ∈ 𝑈: [𝑥]ℛ ∩ 𝑋 ≠ 0},                  
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where 

𝑇ℛ𝑈
(𝑋) = 𝑖𝑛𝑓𝑦∈𝑈{𝑇𝑋(𝑦): 𝑦 ∈ [𝑥]ℛ},  

𝑇ℛ𝑈
(𝑋) = 𝑠𝑢𝑝𝑦∈𝑈{𝑇𝑋(𝑦): 𝑦 ∈ [𝑥]ℛ},  

𝐹ℛ𝑈
(𝑋) = 𝑠𝑢𝑝𝑦∈𝑈{𝐹𝑋(𝑦): 𝑦 ∈ [𝑥]ℛ},  

𝐹ℛ𝑈
(𝑋) = 𝑖𝑛𝑓𝑦∈𝑈{𝑇𝑋(𝑦): 𝑦 ∈ [𝑥]ℛ}.                                        

The boundary of X, 𝐵𝑁𝐷(𝑋) = ℛ𝑈(𝑋) − ℛ𝑈(𝑋). The intuitionistic fuzzy set X is called the rough intuitionistic 

fuzzy set if 𝐵𝑁𝐷(𝑋) ≠ 0.  

 

Definition 2.3 ([6]) Let U be a non-null set and R be an equivalence relation on U. Let A be neutrosophic set 

in U with the membership function 𝑇𝐴, indeterminacy function 𝐼𝐴 and non-membership function 𝐹𝐴. The lower 

and the upper approximations of A in the approximation (U, R) denoted by 𝑁(𝐴) and 𝑁(𝐴) are respectively 

defined as follows: 

𝑁(𝐴) = {〈𝑥, (𝑇𝑁(𝐴)(𝑥), 𝐼𝑁(𝐴)(𝑥), 𝐹𝑁(𝐴)(𝑥), )〉|𝑦 ∈ [𝑥]𝑅 , 𝑥 ∈ 𝑈},  

𝑁(𝐴) = {〈𝑥, (𝑇𝑁(𝐴)(𝑥), 𝐼𝑁(𝐴)(𝑥), 𝐹𝑁(𝐴)(𝑥), )〉|𝑦 ∈ [𝑥]𝑅 , 𝑥 ∈ 𝑈}  

where 

𝑇𝑁(𝐴)(𝑥) = ⋀ 𝑇𝐴(𝑦)𝑦∈[𝑥]𝑅
,  𝐼𝑁(𝐴)(𝑥) = ⋁ 𝐼𝐴(𝑦)𝑦∈[𝑥]𝑅

, 𝐹𝑁(𝐴)(𝑥) = ⋁ 𝐹𝐴(𝑦)𝑦∈[𝑥]𝑅
, 

𝑇𝑁(𝐴)(𝑥) = ⋁ 𝑇𝐴(𝑦)𝑦∈[𝑥]𝑅
, 𝐼𝑁(𝐴)(𝑥) = ⋀ 𝐼𝐴(𝑦)𝑦∈[𝑥]𝑅

,  𝐹𝑁(𝐴)(𝑥) = ⋀ 𝐹𝐴(𝑦)𝑦∈[𝑥]𝑅
.  

such that, 

𝑇𝑁(𝐴)(𝑥), 𝐼𝑁(𝐴)(𝑥), 𝐹𝑁(𝐴)(𝑥), 𝑇𝑁(𝐴)(𝑥), 𝐼𝑁(𝐴)(𝑥), 𝐹𝑁(𝐴)(𝑥): 𝐴 ∈ [0, 1],  

0 ≤ 𝑇𝑁(𝐴)(𝑥) + 𝐼𝑁(𝐴)(𝑥) + 𝐹𝑁(𝐴)(𝑥) ≤ 3 and  

0 ≤ 𝑇𝑁(𝐴)(𝑥) + 𝐼𝑁(𝐴)(𝑥) + 𝐹𝑁(𝐴)(𝑥) ≤ 3            

 

Here ∧ and ∨ denote “min” and “max’’ operators respectively, and [𝑥]𝑅 is the equivalence class of the 𝑥. 𝑇𝐴(𝑦), 

 𝐼𝐴(𝑦) and  𝐹𝐴(𝑦) are the membership sequences, indeterminacy sequences and non-membership sequences of 

y with respect to A.  

Since 𝑁(𝐴) and 𝑁(𝐴) are two neutrosophic sets in U, thus the neutrosophic set mappings 𝑁, 𝑁: 𝑁(𝑈) →

𝑁(𝑈) are respectively referred as lower and upper rough neutrosophic set approximation operators, and the 

pair of (𝑁(𝐴), 𝑁(𝐴)) is called the rough neutrosophic set in (𝑈, ℛ). 

 

Definition 2.4 ([1]) Let U be a non-null set and R be an equivalence relation on U. Let A be neutrosophic 

multisets in U with the truth-membership sequence TA
 𝑖, indeterminacy-membership sequences IA

 𝑖 and falsity-

membership sequences F A
𝑖 . The lower and the upper approximations of A in the approximation (𝑈, ℛ) denoted 

by 𝑁𝑚(𝐴) and 𝑁𝑚(𝐴) are respectively defined as follows: 

 

𝑁𝑚 = {〈𝑥, (𝑇𝑁𝑚(𝐴)
𝑖 (𝑥), 𝐼𝑁𝑚(𝐴)

𝑖 (𝑥), 𝐹𝑁𝑚(𝐴)
𝑖 (𝑥), )〉 |𝑦 ∈ [𝑥]𝑅 , 𝑥 ∈ 𝑈},  

𝑁𝑚(𝐴) = {〈𝑥, (𝑇
𝑁𝑚(𝐴)
𝑖 (𝑥), 𝐼

𝑁𝑚(𝐴)
𝑖 (𝑥), 𝐹

𝑁𝑚(𝐴)
𝑖 (𝑥), )〉 |𝑦 ∈ [𝑥]𝑅 , 𝑥 ∈ 𝑈}                                                    

where   

𝑖 = 1, 2, … , 𝑝 and positive integer   

𝑇𝑁𝑚(𝐴)
𝑖 (𝑥) = ⋀ 𝑇𝐴

𝑖(𝑦)𝑦∈[𝑥]𝑅
,  

𝐼𝑁𝑚(𝐴)
𝑖 (𝑥) = ⋁ 𝐼𝐴

𝑖 (𝑦)𝑦∈[𝑥]𝑅
, 

𝐹𝑁𝑚(𝐴)
𝑖 (𝑥) = ⋁ 𝐹𝐴

𝑖(𝑦)𝑦∈[𝑥]𝑅
, 

𝑇
𝑁𝑚(𝐴)
𝑖 (𝑥) = ⋁ 𝑇𝐴

𝑖(𝑦)𝑦∈[𝑥]𝑅
,  

𝐼
𝑁𝑚(𝐴)
𝑖 (𝑥) = ⋀ 𝐼𝐴

𝑖 (𝑦)𝑦∈[𝑥]𝑅
,  

𝐹
𝑁𝑚(𝐴)
𝑖 (𝑥) = ⋀ 𝐹𝐴

𝑖(𝑦)𝑦∈[𝑥]𝑅
.               

 



Neutrosophic Sets and Systems, Vol. 21, 2018  

 

 
Suriana Alias, Daud Mohamad and Adibah Shuib, Rough Neutrosophic Multisets Relation with Application in 
Marketing Strategy 

 

39 

Here ∧ and ∨ denote “min” and “max’’ operators respectively, and [𝑥]𝑅 is the equivalence class of the 𝑥. 𝑇𝐴
𝑖(𝑦), 

𝐼𝐴
𝑖 (𝑦) and 𝐹𝐴

𝑖(𝑦) are the membership sequences, indeterminacy sequences and non-membership sequences of 

y with respect to A.  

It can be said that 𝑇𝑁𝑚(𝐴)
𝑖 (𝑥), 𝐼𝑁𝑚(𝐴)

𝑖 (𝑥), 𝐹𝑁𝑚(𝐴)
𝑖 (𝑥) ∈ [0, 1]  and  0 ≤ 𝑇𝑁𝑚(𝐴)

𝑖 (𝑥) +  𝐼𝑁𝑚(𝐴)
𝑖 (𝑥) +

𝐹𝑁𝑚(𝐴)
𝑖 (𝑥) ≤ 3. Then, Nm(A) is a neutrosophic multisets. Similarly, we have 

𝑇
𝑁𝑚(𝐴)
𝑖 (𝑥), 𝐼

𝑁𝑚(𝐴)
𝑖 (𝑥), 𝐹

𝑁𝑚(𝐴)
𝑖 (𝑥) ∈ [0, 1] and 0 ≤ 𝑇

𝑁𝑚(𝐴)
𝑖 (𝑥) +  𝐼

𝑁𝑚(𝐴)
𝑖 (𝑥) + 𝐹

𝑁𝑚(𝐴)
𝑖 (𝑥) ≤ 3 . Then, 𝑁𝑚(𝐴) 

is neutrosophic multisets.  

Since 𝑁𝑚(𝐴) and 𝑁𝑚(𝐴) are two neutrosophic multisets in U, the neutrosophic multisets mappings 

𝑁𝑚, 𝑁𝑚: 𝑁𝑚(𝑈) → 𝑁𝑚(𝑈) are respectively referred to as lower and upper rough neutrosophic multisets 

approximation operators, and the pair of (𝑁𝑚(𝐴), 𝑁𝑚(𝐴)) is called the rough neutrosophic multisets in 

(𝑈, ℛ), respectively.  

 

3 Rough Neutrosophic Multisets Relation  

 The concept of a rough set can be easily extended to a relation since the relation is also a set, i.e. a subset 

of the Cartesian product. This concept is also used to define the rough neutrosophic multisets relation over the 

universe. 

In the following section, the Cartesian product of two rough neutrosophic multisets is defined with some 

examples. We only considered the case where T, I, F are refined into the same number of subcomponents 1, 2, 

…, p, and TA
 𝑖, I A

𝑖  and FA
 𝑖 are a single valued neutrosophic number. Some of the concepts are quoted from [2], 

[10], [12], [36] 

Definition 3.1 ([7]) Let 𝐴 = (𝑈, 𝑅) be an approximation space. Let 𝑋 ⊆ 𝑈. A relation T on X is said to be a 

rough relation on X if 𝑇 ≠ 𝑇, where 𝑇 and 𝑇 are a lower and upper approximation of T, respectively defined 

by; 

 

 𝑇 = {(𝑥, 𝑦) ∈ 𝑈 × 𝑈: [𝑥, 𝑦]𝑅 ⊆ 𝑋} 

 𝑇 = {(𝑥, 𝑦) ∈ 𝑈 × 𝑈: [𝑥, 𝑦]𝑅 ⋂ 𝑋 ≠ ∅         

                 

Definition 3.2 Let 𝑈 be a non-empty set and X and Y be the rough neutrosophic multisets in 𝑈 . Then, Cartesian 

product of X and Y is rough neutrosophic multisets in 𝑈 × 𝑈, denoted by 𝑋 × 𝑌, defined as 

 

𝑋 × 𝑌 = {< (𝑥, 𝑦), (𝑇𝑋×𝑌
𝑖 (𝑥, 𝑦)) (𝐼𝑋×𝑌

𝑖 (𝑥, 𝑦)) , ( 𝐹𝑋×𝑌
𝑖 (𝑥, 𝑦)) >: (𝑥, 𝑦) ∈ 𝑈 × 𝑈}                                                                                 

where  

𝑇𝑋×𝑌
𝑖 (𝑥, 𝑦) = min{𝑇𝑋

𝑖 (𝑥), 𝑇𝑌
𝑖(𝑦)},  

𝐼𝑋×𝑌
𝑖 (𝑥, 𝑦) = max{𝐼𝑋

𝑖 (𝑥), 𝐼𝑌
𝑖 (𝑦)}, 

𝐹𝑋×𝑌
𝑖 (𝑥, 𝑦) = max{𝐹𝑋

𝑖 (𝑥), 𝐹𝑌
𝑖 (𝑦)}, 

𝑇𝑋×𝑌
𝑖 , 𝐼𝑋×𝑌

𝑖 , 𝐹𝑋×𝑌
𝑖 : 𝑈 → [0, 1], and 𝑖 = 1, 2, … , 𝑝.      

                                                                              

Definition 3.3 Let 𝑈 be a non-empty set and X and Y be the rough neutrosophic multisets in 𝑈. We call ℜ ⊆
𝑈 × 𝑈 is a rough neutrosophic multisets relation on 𝑈 × 𝑈 based on the 𝑋 × 𝑌, where 𝑋 × 𝑌 is characterized 

by truth-membership sequence Tℜ
 𝑖, indeterminacy-membership sequences Iℜ

 𝑖  and falsity-membership 

sequences F ℜ
𝑖  , defined as 

 

ℜ = {< (𝑥, 𝑦), (𝑇ℜ
𝑖 (𝑥, 𝑦)) (𝐼ℜ

𝑖 (𝑥, 𝑦)) , ( 𝐹ℜ
𝑖 (𝑥, 𝑦)) >: (𝑥, 𝑦) ∈ 𝑈 × 𝑈}                                                          

with a condition if it satisfies:  

 

(1) i) 𝑇ℜ
𝑖 (𝑥, 𝑦) = 1  for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 where 𝑋 × 𝑌 = ℛ𝑈(𝑋) × ℛ𝑈(𝑌), 

 ii) 𝑇ℜ
𝑖 (𝑥, 𝑦) = 0, for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈 − 𝑋 × 𝑌 where 𝑋 × 𝑌 = ℛ𝑈(𝑋) × ℛ𝑈(𝑌), 

 iii) 0 < 𝑇ℜ
𝑖 (𝑥, 𝑦) < 1, for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 − 𝑋 × 𝑌. 
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(2) i) 𝐼ℜ
𝑖 (𝑥, 𝑦) = 0, for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 where 𝑋 × 𝑌 = ℛ𝑈(𝑋) × ℛ𝑈(𝑌), 

 ii) 𝐼ℜ
𝑖 (𝑥, 𝑦) = 1, for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈 − 𝑋 × 𝑌 where 𝑋 × 𝑌 = ℛ𝑈(𝑋) × ℛ𝑈(𝑌),  

 iii) 0 < 𝐼ℜ
𝑖 (𝑥, 𝑦) < 1, for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 − 𝑋 × 𝑌. 

 

(3) i) 𝐹ℜ
𝑖 (𝑥, 𝑦) = 0, for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 where 𝑋 × 𝑌 = ℛ𝑈(𝑋) × ℛ𝑈(𝑌), 

 ii) 𝐹ℜ
𝑖 (𝑥, 𝑦) = 1, for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈 − 𝑋 × 𝑌 where 𝑋 × 𝑌 = ℛ𝑈(𝑋) × ℛ𝑈(𝑌), 

 iii) 0 < 𝐹ℜ
𝑖 (𝑥, 𝑦) < 1, for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 − 𝑋 × 𝑌. 

 

Remark 3.4: The rough neutrosophic multisets relation is a relation on neutrosophic multisets, so we can 

consider that is a rough neutrosophic multisets relation over the universe. The rough neutrosophic multisets 

relation follows the condition of relation on neutrosophic multisets which is 𝑇ℜ
𝑖 (𝑥, 𝑦) ≤ 𝑇𝑋×𝑌

𝑖 (𝑥, 𝑦),  𝐼ℜ
𝑖 (𝑥, 𝑦) ≥

𝐼𝑋×𝑌
𝑖 (𝑥, 𝑦), 𝐹ℜ

𝑖 (𝑥, 𝑦) ≥ 𝐹𝑋×𝑌
𝑖 (𝑥, 𝑦) for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈, and 0 ≤ 𝑇ℜ

𝑖 (𝑥, 𝑦) + 𝐼ℜ
𝑖 (𝑥, 𝑦) + 𝐹ℜ

𝑖 (𝑥, 𝑦) ≤ 3.  

Therefore, the rough neutrosophic multisets relation will generalize the following relation: 

(1) Rough Neutrosophic Set Relation 

When 𝑖 = 1 for all element T, I, F in definition 3.2, we obtain the relation for rough neutrosophic set over 

universe;  

ℜ = {< (𝑥, 𝑦), (𝑇ℜ(𝑥, 𝑦))(𝐼ℜ(𝑥, 𝑦)), ( 𝐹ℜ(𝑥, 𝑦)) >: (𝑥, 𝑦) ∈ 𝑈 × 𝑈}.                                                           

 

(2) Rough Intuitionistic Fuzzy Set Relation 

When 𝑖 = 1 for element T and F, and properties (2) in definition 3.3 is also omitted, we obtain the relation 

for rough intuitionistic fuzzy set over universe;  

ℜ = {< (𝑥, 𝑦), (𝑇ℜ(𝑥, 𝑦)), ( 𝐹ℜ(𝑥, 𝑦)) >: (𝑥, 𝑦) ∈ 𝑈 × 𝑈}.                                                                           

 

(3) Rough Fuzzy Set Relation 

When 𝑖 = 1 for element T and properties (2) and (3) in definition 3.3 is also omitted, we obtain the relation 

for rough fuzzy set over universe;  

ℜ = {< (𝑥, 𝑦), (𝑇ℜ(𝑥, 𝑦)) >: (𝑥, 𝑦) ∈ 𝑈 × 𝑈}.                                                                                            

The rough neutrosophic multisets relation can be presented by relational tables and matrices, like a 

representation of fuzzy relation. Since the triple (𝑇𝐴
𝑖 , 𝐼𝐴

𝑖 , 𝐹𝐴
𝑖) has values within the interval [0, 1], the elements 

of the neutrosophic matrix also have values within [0, 1]. Consider the following example:  

 

Example 3.5: Let 𝑈 = {𝑢1, 𝑢2, 𝑢3} be a universal set and ℛ𝑈 = (𝑥, 𝑦): 𝑥ℛ𝑈𝑦 is equivalent relations on U. Let 

 𝑋 =
(1,0.3),(0.4,0.7),(0.6,0.8) 

𝑢1
+

(0.5,0.7),(0.1,0.3),(0.4,0.5)

𝑢2
+

(1,0.6),(0.4,0.5),(0.6,0.7)

𝑢3
 , and 

𝑌 =
(0.4,0.6),(0.3,0.5),(0.1,0.7)

𝑢1
+

(0.5,0.4),(0.1,0.7),(0.3,0.8)

𝑢2
+

(1,0.7),(0.2,0.5),(0.1,0.7)

𝑢3
  

are rough neutrosophic multisets on U.  

Here we can define a rough neutrosophic multisets relation ℜ by a matrix. 𝑥ℛ𝑈𝑦 is composed by ℛ𝑈 =
{{𝑢1, 𝑢3}, {𝑢2}. Based on definition 2.4 and 3.2, we solve for;  

ℛ𝑈(𝑋) =
(1,0.3),(0.4,0.7),(0.6,0.8)

𝑢1
+

(0.5,0.7),(0.1,0.3),(0.4,0.5)

𝑢2
+

(1,0.3),(0.4,0.7),(0.6,0.8)

𝑢3
,                    

ℛ𝑈(𝑋) =
(1,0.6),(0.4,0.5),(0.6,0.7)

𝑢1
+

(0.5,0.7),(0.1,0.3),(0.4,0.5)

𝑢2
+

(1,0.6),(0.4,0.5),(0.6,0.7)

𝑢3
,               

ℛ𝑈(𝑌) =
(0.4,0.6),(0.3,0.5),(0.1,0.7)

𝑢1
+

(0.5,0.4),(0.1,0.7),(0.3,0.8)

𝑢2
+

(0.4,0.6),(0.3,0.5),(0.1,0.7)

𝑢3
,                                                     

ℛ𝑈(𝑌) =
(1,0.7),(0.2,0.5),(0.1,0.7)

𝑢1
+

(0.5,0.4),(0.1,0.7),(0.3,0.8)

𝑢2
+

(1,0.7),(0.2,0.5),(0.1,0.7)

𝑢3
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We have 𝑋 × 𝑌 = ℛ𝑈(𝑋) × ℛ𝑈(𝑌) and 𝑋 × 𝑌 = ℛ𝑈(𝑋) × ℛ𝑈(𝑌). Then, by satisfied all the condition in 

definition 3.3, we defined ℜ ⊆ 𝑈 × 𝑈 as a rough neutrosophic multisets relation on 𝑈 × 𝑈 based on the 𝑋 × 𝑌 

by a matrix form: 

𝑀(ℜ) = [

(0.3, 0), (1, 1), (1, 1) (0, 0), (1, 1), (1, 1) (0.9, 0), (1, 1), (1, 1)
(0, 0), (1, 1), (1, 1) (0, 0), (1, 1), (1, 1) (0, 0), (1, 1), (1, 1)

(0.4, 0), (1, 1), (1, 1) (0, 0), (1, 1), (1, 1) (0.9, 0), (1, 1), (1, 1)
] 

 

Now, we consider some properties of a rough neutrosophic multisets relation. 

 

Proposition 3.6 Let ℜ1, ℜ2 be two rough neutrosophic multisets relation on 𝑈 × 𝑈 based on the 𝑋 × 𝑌.  

Then ℜ1 ∧ ℜ2 where 

  𝑇ℜ1∧ ℜ2

𝑖 (𝑥, 𝑦) = min{ 𝑇ℜ1

𝑖 (𝑥, 𝑦), 𝑇ℜ2

𝑖 (𝑥, 𝑦)},  

𝐼ℜ1∧ ℜ2

𝑖 (𝑥, 𝑦) = max{𝐼ℜ1

𝑖 (𝑥, 𝑦), 𝐼ℜ2

𝑖 (𝑥, 𝑦)},  

𝐹ℜ1∧ ℜ2

𝑖 (𝑥, 𝑦) = max{𝐹ℜ1

𝑖 (𝑥, 𝑦), 𝐹ℜ2

𝑖 (𝑥, 𝑦)}  

for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈, is a rough neutrosophic multisets on 𝑈 × 𝑈 based on the 𝑋 × 𝑌 and 𝑖 = 1, 2, … , 𝑝. 

 

Proof: We show that ℜ1 ∧ ℜ2 satisfy definition 3.3.  

(1) i) 

 
Since 𝑇ℜ1

𝑖 (𝑥, 𝑦) = 𝑇ℜ2

𝑖 (𝑥, 𝑦) = 1 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 then       

 𝑇ℜ1∧ ℜ2

𝑖 (𝑥, 𝑦) = min{ 𝑇ℜ1

𝑖 (𝑥, 𝑦), 𝑇ℜ2

𝑖 (𝑥, 𝑦)} = 1 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌.  

 ii) Since 𝑇ℜ1

𝑖 (𝑥, 𝑦) = 𝑇ℜ2

𝑖 (𝑥, 𝑦) = 0 for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈 − 𝑋 × 𝑌  

then 𝑇ℜ1∧ ℜ2

𝑖 (𝑥, 𝑦) = min{ 𝑇ℜ1

𝑖 (𝑥, 𝑦), 𝑇ℜ2

𝑖 (𝑥, 𝑦)} = 0 for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈 − 𝑋 × 𝑌. 

 iii) Since 0 < 𝑇ℜ1

𝑖 (𝑥, 𝑦), 𝑇ℜ2

𝑖 (𝑥, 𝑦) < 1, for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 − 𝑋 × 𝑌 then  

0 < 𝑇ℜ1∧ ℜ2

𝑖 (𝑥, 𝑦) = min{ 𝑇ℜ1

𝑖 (𝑥, 𝑦), 𝑇ℜ2

𝑖 (𝑥, 𝑦)} < 1 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 − 𝑋 × 𝑌. 

 

(2) i) Since 𝐼ℜ1

𝑖 (𝑥, 𝑦) = 𝐼ℜ2

𝑖 (𝑥, 𝑦) = 0 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 then       

 𝐼ℜ1∧ ℜ2

𝑖 (𝑥, 𝑦) = max{ 𝐼ℜ1

𝑖 (𝑥, 𝑦), 𝐼ℜ2

𝑖 (𝑥, 𝑦)} = 0 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌.  

 ii) Since 𝐼ℜ1

𝑖 (𝑥, 𝑦) = 𝐼ℜ2

𝑖 (𝑥, 𝑦) = 1 for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈 − 𝑋 × 𝑌  

then 𝐼ℜ1∧ ℜ2

𝑖 (𝑥, 𝑦) = max{ 𝐼ℜ1

𝑖 (𝑥, 𝑦), 𝐼ℜ2

𝑖 (𝑥, 𝑦)} = 1 for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈 − 𝑋 × 𝑌. 

 iii) Since 0 < 𝐼ℜ1

𝑖 (𝑥, 𝑦), 𝐼ℜ2

𝑖 (𝑥, 𝑦) < 1, for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 − 𝑋 × 𝑌 then  

0 < 𝐼ℜ1∧ ℜ2

𝑖 (𝑥, 𝑦) = max{𝐼ℜ1

𝑖 (𝑥, 𝑦), 𝐼ℜ2

𝑖 (𝑥, 𝑦)} < 1 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 − 𝑋 × 𝑌. 

 

Proof (3) for falsity function are similarly to proving (2) for indeterminate function.  

 

Proposition 3.7 Let ℜ1, ℜ2 be two rough neutrosophic multisets relation on 𝑈 × 𝑈 based on the 𝑋 × 𝑌.  

Then ℜ1 ∨ ℜ2 where 

  𝑇ℜ1∨ ℜ2

𝑖 (𝑥, 𝑦) = max{ 𝑇ℜ1

𝑖 (𝑥, 𝑦), 𝑇ℜ2

𝑖 (𝑥, 𝑦)},  

𝐼ℜ1∨ ℜ2

𝑖 (𝑥, 𝑦) = min{𝐼ℜ1

𝑖 (𝑥, 𝑦), 𝐼ℜ2

𝑖 (𝑥, 𝑦)},   

𝐹ℜ1∨ ℜ2

𝑖 (𝑥, 𝑦) = min{𝐹ℜ1

𝑖 (𝑥, 𝑦), 𝐹ℜ2

𝑖 (𝑥, 𝑦)}  

for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈, is a rough neutrosophic multisets on 𝑈 × 𝑈 based on the 𝑋 × 𝑌 and 𝑖 = 1, 2, … , 𝑝.  

 

Proof: We show that ℜ1 ∨ ℜ2 satisfy definition 3.3.  

(1) i) Since 𝑇ℜ1

𝑖 (𝑥, 𝑦) = 𝑇ℜ2

𝑖 (𝑥, 𝑦) = 1 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 then       

 𝑇ℜ1∨ ℜ2

𝑖 (𝑥, 𝑦) = max{ 𝑇ℜ1

𝑖 (𝑥, 𝑦), 𝑇ℜ2

𝑖 (𝑥, 𝑦)} = 1 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌.  

 ii) Since 𝑇ℜ1

𝑖 (𝑥, 𝑦) = 𝑇ℜ2

𝑖 (𝑥, 𝑦) = 0 for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈 − 𝑋 × 𝑌  

then 𝑇ℜ1∨ ℜ2

𝑖 (𝑥, 𝑦) = max{ 𝑇ℜ1

𝑖 (𝑥, 𝑦), 𝑇ℜ2

𝑖 (𝑥, 𝑦)} = 0 for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈 − 𝑋 × 𝑌. 

 iii) Since 0 < 𝑇ℜ1

𝑖 (𝑥, 𝑦), 𝑇ℜ2

𝑖 (𝑥, 𝑦) < 1, for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 − 𝑋 × 𝑌 then  

0 < 𝑇ℜ1∨ ℜ2

𝑖 (𝑥, 𝑦) = max{ 𝑇ℜ1

𝑖 (𝑥, 𝑦), 𝑇ℜ2

𝑖 (𝑥, 𝑦)} < 1 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 − 𝑋 × 𝑌. 
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(2) i) Since 𝐼ℜ1

𝑖 (𝑥, 𝑦) = 𝐼ℜ2

𝑖 (𝑥, 𝑦) = 0 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 then       

 𝐼ℜ1∨ ℜ2

𝑖 (𝑥, 𝑦) = min{ 𝐼ℜ1

𝑖 (𝑥, 𝑦), 𝐼ℜ2

𝑖 (𝑥, 𝑦)} = 0 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌.  

 ii) Since 𝐼ℜ1

𝑖 (𝑥, 𝑦) = 𝐼ℜ2

𝑖 (𝑥, 𝑦) = 1 for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈 − 𝑋 × 𝑌  

then 𝐼ℜ1∨ ℜ2

𝑖 (𝑥, 𝑦) = min{ 𝐼ℜ1

𝑖 (𝑥, 𝑦), 𝐼ℜ2

𝑖 (𝑥, 𝑦)} = 1 for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈 − 𝑋 × 𝑌. 

 iii) Since 0 < 𝐼ℜ1

𝑖 (𝑥, 𝑦), 𝐼ℜ2

𝑖 (𝑥, 𝑦) < 1, for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 − 𝑋 × 𝑌 then  

0 < 𝐼ℜ1∨ ℜ2

𝑖 (𝑥, 𝑦) = min{𝐼ℜ1

𝑖 (𝑥, 𝑦), 𝐼ℜ2

𝑖 (𝑥, 𝑦)} < 1 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 − 𝑋 × 𝑌. 

 

Proof (3) for falsity function are similarly to proving (2) for indeterminate function.  

 

Lemma 3.8: If 0 < 𝑥, 𝑦 < 1, then  

(i) 0 < 𝑥𝑦 < 1, 

(ii) 0 < 𝑥 + 𝑦 − 𝑥𝑦 < 1. 

Since 0 < 𝑥, 𝑦 < 1 then 𝑥 + 𝑦 ≥ 2√𝑥𝑦 > 2𝑥𝑦 > 𝑥𝑦 > 0, therefore 𝑥 + 𝑦 − 𝑥𝑦 > 0. On the other hand, 1 −

(𝑥 + 𝑦 − 𝑥𝑦) = (1 − 𝑥)(1 − 𝑦) > 0 then 𝑥 + 𝑦 − 𝑥𝑦 < 1. The following properties of a rough neutrosophic 

multisets relation are obtained by using these algebraic results. 

Proposition 3.9 Let ℜ1, ℜ2 be two rough neutrosophic multisets relation on 𝑈 × 𝑈 based on the 𝑋 × 𝑌. Then 

ℜ1 ⊗ ℜ2 where 

𝑇ℜ1⊗ℜ2

𝑖 (𝑥, 𝑦) = 𝑇ℜ1

𝑖 (𝑥, 𝑦) ⋅ 𝑇 ℜ2

𝑖 (𝑥, 𝑦), 

𝐼ℜ1⊗ℜ2

𝑖 (𝑥, 𝑦) = 𝐼ℜ1

𝑖 (𝑥, 𝑦) + 𝐼ℜ2

𝑖 (𝑥, 𝑦) − 𝐼ℜ1

𝑖 (𝑥, 𝑦). 𝐼 ℜ2

𝑖 (𝑥, 𝑦)  

𝐹ℜ1⊗ℜ2

𝑖 (𝑥, 𝑦) = 𝐹ℜ1

𝑖 (𝑥, 𝑦) + 𝐹ℜ2

𝑖 (𝑥, 𝑦) − 𝐹ℜ1

𝑖 (𝑥, 𝑦). 𝐹 ℜ2

𝑖 (𝑥, 𝑦)  

for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈, is a rough neutrosophic multisets on 𝑈 × 𝑈 based on the 𝑋 × 𝑌 and 𝑖 = 1, 2, … , 𝑝. 
 

Proof: The relation  ℜ1 ⊗ ℜ2satisfied definition 3.3. Indeed: 

(1) i) Since 𝑇ℜ1

𝑖 (𝑥, 𝑦) = 𝑇ℜ2

𝑖 (𝑥, 𝑦) = 1 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 then       

 𝑇ℜ1⊗ℜ2

𝑖 (𝑥, 𝑦) = 𝑇ℜ1

𝑖 (𝑥, 𝑦) ⋅ 𝑇 ℜ2

𝑖 (𝑥, 𝑦) = 1 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌.  

 ii) Since 𝑇ℜ1

𝑖 (𝑥, 𝑦) = 𝑇ℜ2

𝑖 (𝑥, 𝑦) = 0 for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈 − 𝑋 × 𝑌  

then 𝑇ℜ1⊗ℜ2

𝑖 (𝑥, 𝑦) = 𝑇ℜ1

𝑖 (𝑥, 𝑦) ⋅ 𝑇 ℜ2

𝑖 (𝑥, 𝑦) = 0 for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈 − 𝑋 × 𝑌. 

 iii) Since 0 < 𝑇ℜ1

𝑖 (𝑥, 𝑦), 𝑇ℜ2

𝑖 (𝑥, 𝑦) < 1, for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 − 𝑋 × 𝑌 then  

0 < 𝑇ℜ1⊗ℜ2

𝑖 (𝑥, 𝑦) = 𝑇ℜ1

𝑖 (𝑥, 𝑦) ⋅ 𝑇 ℜ2

𝑖 (𝑥, 𝑦) < 1 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 − 𝑋 × 𝑌 (Lemma 3.8 (i)). 

 

(2) i) Since 𝐼ℜ1

𝑖 (𝑥, 𝑦) = 𝐼ℜ2

𝑖 (𝑥, 𝑦) = 0 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 then       

 𝐼ℜ1⊗ℜ2

𝑖 (𝑥, 𝑦) = 𝐼ℜ1

𝑖 (𝑥, 𝑦) + 𝐼ℜ2

𝑖 (𝑥, 𝑦) − 𝐼ℜ1

𝑖 (𝑥, 𝑦) ⋅ 𝐼 ℜ2

𝑖 (𝑥, 𝑦) = 0 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌.  

 ii) Since 𝐼ℜ1

𝑖 (𝑥, 𝑦) = 𝐼ℜ2

𝑖 (𝑥, 𝑦) = 1 for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈 − 𝑋 × 𝑌 then 𝐼ℜ1⊗ℜ2

𝑖 (𝑥, 𝑦) =

𝐼ℜ1

𝑖 (𝑥, 𝑦) + 𝐼ℜ2

𝑖 (𝑥, 𝑦) − 𝐼ℜ1

𝑖 (𝑥, 𝑦) ⋅ 𝐼 ℜ2

𝑖 (𝑥, 𝑦) = 1 for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈 − 𝑋 × 𝑌. 

 iii) Since 0 < 𝐼ℜ1

𝑖 (𝑥, 𝑦), 𝐼ℜ2

𝑖 (𝑥, 𝑦) < 1, for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 − 𝑋 × 𝑌 then  

0 < 𝐼ℜ1⊗ℜ2

𝑖 (𝑥, 𝑦) = 𝐼ℜ1

𝑖 (𝑥, 𝑦) + 𝐼ℜ2

𝑖 (𝑥, 𝑦) − 𝐼ℜ1

𝑖 (𝑥, 𝑦) ⋅ 𝐼 ℜ2

𝑖 (𝑥, 𝑦) < 1 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 −

𝑋 × 𝑌 (Lemma 3.8 (ii)). 

 

Proof (3) for falsity function are similarly to proving (2) for indeterminate function.  

 

Proposition 3.10 Let ℜ1, ℜ2 be two rough neutrosophic multisets relation on 𝑈 × 𝑈 based on the 𝑋 × 𝑌. Then 

ℜ1 ⨁ ℜ2 where 

𝑇ℜ1 ⨁ ℜ2

𝑖 (𝑥, 𝑦) = 𝑇ℜ1

𝑖 (𝑥, 𝑦) + 𝑇 ℜ2

𝑖 (𝑥, 𝑦) − 𝑇ℜ1

𝑖 (𝑥, 𝑦) ⋅ 𝑇 ℜ2

𝑖 (𝑥, 𝑦), 

𝐼ℜ1 ⨁ ℜ2

𝑖 (𝑥, 𝑦) = 𝐼ℜ1

𝑖 (𝑥, 𝑦) ⋅ 𝐼 ℜ2

𝑖 (𝑥, 𝑦), 

𝐹ℜ1 ⨁ ℜ2

𝑖 (𝑥, 𝑦) = 𝐹ℜ1

𝑖 (𝑥, 𝑦) ⋅ 𝐹 ℜ2

𝑖 (𝑥, 𝑦)  

for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈, is a rough neutrosophic multisets on 𝑈 × 𝑈 based on the 𝑋 × 𝑌 and 𝑖 = 1, 2, … , 𝑝. 
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Proof: The relation  ℜ1 ⊕  ℜ2 satisfied definition 3.3. Indeed: 

(1) i) Since 𝑇ℜ1

𝑖 (𝑥, 𝑦) = 𝑇ℜ2

𝑖 (𝑥, 𝑦) = 1 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 then       

 𝑇ℜ1 ⨁ ℜ2

𝑖 (𝑥, 𝑦) = 𝑇ℜ1

𝑖 (𝑥, 𝑦) + 𝑇 ℜ2

𝑖 (𝑥, 𝑦) − 𝑇ℜ1

𝑖 (𝑥, 𝑦) ⋅ 𝑇 ℜ2

𝑖 (𝑥, 𝑦) = 1 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌.  

 ii) Since 𝑇ℜ1

𝑖 (𝑥, 𝑦) = 𝑇ℜ2

𝑖 (𝑥, 𝑦) = 0 for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈 − 𝑋 × 𝑌 then 𝑇ℜ1 ⨁ ℜ2

𝑖 (𝑥, 𝑦) =

𝑇ℜ1

𝑖 (𝑥, 𝑦) + 𝑇 ℜ2

𝑖 (𝑥, 𝑦) − 𝑇ℜ1

𝑖 (𝑥, 𝑦) ⋅ 𝑇 ℜ2

𝑖 (𝑥, 𝑦) = 0 for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈 − 𝑋 × 𝑌. 

 iii) Since 0 < 𝑇ℜ1

𝑖 (𝑥, 𝑦), 𝑇ℜ2

𝑖 (𝑥, 𝑦) < 1, for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 − 𝑋 × 𝑌 then  

0 < 𝑇ℜ1 ⨁ ℜ2

𝑖 (𝑥, 𝑦) = 𝑇ℜ1

𝑖 (𝑥, 𝑦) + 𝑇 ℜ2

𝑖 (𝑥, 𝑦) − 𝑇ℜ1

𝑖 (𝑥, 𝑦) ⋅ 𝑇 ℜ2

𝑖 (𝑥, 𝑦) < 1 for all (𝑥, 𝑦) ∈

𝑋 × 𝑌 − 𝑋 × 𝑌 (Lemma 3.8 (ii)). 

 

(2) i) Since 𝐼ℜ1

𝑖 (𝑥, 𝑦) = 𝐼ℜ2

𝑖 (𝑥, 𝑦) = 0 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 then       

 𝐼ℜ1 ⨁ ℜ2

𝑖 (𝑥, 𝑦) = 𝐼ℜ1

𝑖 (𝑥, 𝑦) ⋅ 𝐼 ℜ2

𝑖 (𝑥, 𝑦) = 0 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌.  

 ii) Since 𝐼ℜ1

𝑖 (𝑥, 𝑦) = 𝐼ℜ2

𝑖 (𝑥, 𝑦) = 1 for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈 − 𝑋 × 𝑌 then 𝐼ℜ1 ⨁ ℜ2

𝑖 (𝑥, 𝑦) = 𝐼ℜ1

𝑖 (𝑥, 𝑦) ⋅

𝐼 ℜ2

𝑖 (𝑥, 𝑦) = 1 for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈 − 𝑋 × 𝑌. 

 iii) Since 0 < 𝐼ℜ1

𝑖 (𝑥, 𝑦), 𝐼ℜ2

𝑖 (𝑥, 𝑦) < 1, for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 − 𝑋 × 𝑌 then  

0 < 𝐼ℜ1 ⨁ ℜ2

𝑖 (𝑥, 𝑦) = 𝐼ℜ1

𝑖 (𝑥, 𝑦) ⋅ 𝐼 ℜ2

𝑖 (𝑥, 𝑦) < 1 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 − 𝑋 × 𝑌 (Lemma 3.8 (i)). 

 

Proof (3) for falsity function are similarly to proving (2) for indeterminate function. 

 

3.1 Composition of Two Rough Neutrosophic Multisets Relation 

The composition of relation is important for applications because if a relation on X and Y is known and if a 

relation on Y and Z is known, then the relation on X and Z could be computed over a universe with the useful 

significance. 

Definition 3.1.1 Let 𝑈 be a non-empty set and X, Y and Z are the rough neutrosophic multisets in 𝑈. Let ℜ1, ℜ2 

are two rough neutrosophic multisets relations on 𝑈 × 𝑈, based on 𝑋 × 𝑌, 𝑌 × 𝑍, respectively. The composition 

of  ℜ1, ℜ2 denote as ℜ1 ∘  ℜ2 which defined on 𝑈 × 𝑈 based on 𝑋 × 𝑍 where 

𝑇ℜ1∘ ℜ2

𝑖 (𝑥, 𝑧) = max𝑦∈𝑈{min[𝑇ℜ1

𝑖 (𝑥, 𝑦), 𝑇ℜ2

𝑖 (𝑦, 𝑧)]}, 

𝐼ℜ1∘ ℜ2

𝑖 (𝑥, 𝑧) = min𝑦∈𝑈{max[𝐼ℜ1

𝑖 (𝑥, 𝑦), 𝐼ℜ2

𝑖 (𝑦, 𝑧)]},  

𝐹ℜ1∘ ℜ2

𝑖 (𝑥, 𝑧) = min𝑦∈𝑈{max[𝐹ℜ1

𝑖 (𝑥, 𝑦), 𝐹ℜ2

𝑖 (𝑦, 𝑧)]}. 

for all (𝑥, 𝑧) ∈ 𝑈 × 𝑈 and 𝑖 = 1, 2, … , 𝑝. 
 

Proposition 3.1.2 ℜ1 ∘  ℜ2 is a rough neutrosophic multisets relation on 𝑈 × 𝑈 based on 𝑋 × 𝑍. 

Proof: Since ℜ1, ℜ2 are two rough neutrosophic multisets relations on 𝑈 × 𝑈 based on 𝑋 × 𝑌, 𝑌 × 𝑍 

respectively; 

(1) i) Then 𝑇ℜ1

𝑖 (𝑥, 𝑧) = 1 = 𝑇ℜ2

𝑖 (𝑥, 𝑧) for all (𝑥, 𝑧) ∈ 𝑋 × 𝑍. Let (𝑥, 𝑧) ∈ 𝑋 × 𝑍, now  

 𝑇ℜ1∘ ℜ2

𝑖 (𝑥, 𝑧) = max𝑦∈𝑈{min[𝑇ℜ1

𝑖 (𝑥, 𝑦), 𝑇ℜ2

𝑖 (𝑦, 𝑧)]} = 1. This holds for all (𝑥, 𝑧) ∈ 𝑋 × 𝑍.  

 ii) Let (𝑥, 𝑧) ∈ 𝑈 × 𝑈 − 𝑋 × 𝑍. So, 𝑇ℜ1

𝑖 (𝑥, 𝑧) = 0 = 𝑇ℜ2

𝑖 (𝑥, 𝑧) for all (𝑥, 𝑧) ∈ 𝑈 × 𝑈 − 𝑋 × 𝑍. 

Then 𝑇ℜ1∘ ℜ2

𝑖 (𝑥, 𝑧) = max𝑦∈𝑈{min[𝑇ℜ1

𝑖 (𝑥, 𝑦), 𝑇ℜ2

𝑖 (𝑦, 𝑧)]} = 0 for all (𝑥, 𝑧) ∈ 𝑈 × 𝑈 − 𝑋 × 𝑍. 

 iii) Again, since 0 < 𝑇ℜ1

𝑖 (𝑥, 𝑧), 𝑇ℜ2

𝑖 (𝑥, 𝑧) < 1, for all (𝑥, 𝑧) ∈ 𝑋 × 𝑍 − 𝑋 × 𝑍,  

then 0 < max𝑦∈𝑈{min[𝑇ℜ1

𝑖 (𝑥, 𝑦), 𝑇ℜ2

𝑖 (𝑦, 𝑧)]} < 1 such that 0 < 𝑇ℜ1∘ ℜ2

𝑖 (𝑥, 𝑧) < 1 for all 

(𝑥, 𝑧) ∈ 𝑋 × 𝑍 − 𝑋 × 𝑍. 

(2) i) Then 𝐼ℜ1

𝑖 (𝑥, 𝑧) = 0 = 𝐼ℜ2

𝑖 (𝑥, 𝑧) for all (𝑥, 𝑧) ∈ 𝑋 × 𝑍. Let (𝑥, 𝑧) ∈ 𝑋 × 𝑍, now  

 𝐼ℜ1∘ ℜ2

𝑖 (𝑥, 𝑧) = min𝑦∈𝑈{max[𝐼ℜ1

𝑖 (𝑥, 𝑦), 𝐼ℜ2

𝑖 (𝑦, 𝑧)]} = 0. This holds for all (𝑥, 𝑧) ∈ 𝑋 × 𝑍.  
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 ii) Let (𝑥, 𝑧) ∈ 𝑈 × 𝑈 − 𝑋 × 𝑍. So, 𝐼ℜ1

𝑖 (𝑥, 𝑧) = 1 = 𝐼ℜ2

𝑖 (𝑥, 𝑧) for all (𝑥, 𝑧) ∈ 𝑈 × 𝑈 − 𝑋 × 𝑍. Then 

𝐼ℜ1∘ ℜ2

𝑖 (𝑥, 𝑧) = min𝑦∈𝑈{max[𝐼ℜ1

𝑖 (𝑥, 𝑦), 𝐼ℜ2

𝑖 (𝑦, 𝑧)]} = 1 for all (𝑥, 𝑧) ∈ 𝑈 × 𝑈 − 𝑋 × 𝑍. 

 iii) Again, since 0 < 𝐼ℜ1

𝑖 (𝑥, 𝑧), 𝐼ℜ2

𝑖 (𝑥, 𝑧) < 1, for all (𝑥, 𝑧) ∈ 𝑋 × 𝑍 − 𝑋 × 𝑍,  

then 0 < min𝑦∈𝑈{max[𝐼ℜ1

𝑖 (𝑥, 𝑦), 𝐼ℜ2

𝑖 (𝑦, 𝑧)]} < 1 such that 0 < 𝐼ℜ1∘ ℜ2

𝑖 (𝑥, 𝑧) < 1 for all (𝑥, 𝑧) ∈

𝑋 × 𝑍 − 𝑋 × 𝑍. 

 

Proof (3) for falsity function are similarly to proving (2) for indeterminate function. 

 

Proposition 3.1.3 Let 𝑈 be a non-empty set. ℜ1, ℜ2, ℜ3 are rough neutrosophic multisets relations on 𝑈 × 𝑈 

based on 𝑋 × 𝑌, 𝑌 × 𝑍, 𝑍 × 𝑍′, respectively. Then (ℜ1 ∘  ℜ2) ∘ ℜ3 = ℜ1 ∘ (ℜ2 ∘ ℜ3) 

 

Proof: We only proof for truth function. For all 𝑥, 𝑦, 𝑧, 𝑡 ∈ 𝑈 we have 

𝑇ℜ1∘(ℜ2∘ℜ3)
𝑖 (𝑥, 𝑡) = max𝑦∈𝑈{min[𝑇ℜ1

𝑖 (𝑥, 𝑦), 𝑇(ℜ2∘ℜ3)
𝑖 (𝑦, 𝑡)]}  

= max𝑦∈𝑈{min [𝑇ℜ1

𝑖 (𝑥, 𝑦), max𝑧∈𝑈{min[𝑇ℜ2

𝑖 (𝑦, 𝑧), 𝑇ℜ3

𝑖 (𝑧, 𝑡)]]}} 

= max𝑧∈𝑈{min{max𝑦∈𝑈{min[𝑇ℜ1

𝑖 (𝑥, 𝑦), 𝑇ℜ2

𝑖 (𝑦, 𝑧)] , 𝑇ℜ3

𝑖 (𝑧, 𝑡)]}}} 

= max𝑧∈𝑈{min [𝑇(ℜ1∘ℜ2)
𝑖 (𝑥, 𝑦), 𝑇ℜ3

𝑖 (𝑦, 𝑡)]} 

= 𝑇(ℜ1∘ℜ2)∘ℜ3

𝑖 (𝑥, 𝑡); 

 

Similarly proof for indeterminate function and falsity function. 

 

Note that ℜ1 ∘ ℜ2 ≠ ℜ2 ∘ ℜ1, since the composition of two rough neutrosophic multisets relations ℜ1, ℜ2 

exists, the composition of two rough neutrosophic multisets relations ℜ2, ℜ1 does not necessarily exist. 

 

3.2 Inverse Rough Neutrosophic Multisets Relation 

Definition 3.2.1 Let 𝑈 be a non-empty set and X and Y be the rough neutrosophic multisets in 𝑈. ℜ ⊆ 𝑈 × 𝑈 

is a rough neutrosophic multisets relation on 𝑈 × 𝑈 based on the 𝑋 × 𝑌. Then, we define ℜ−1 ⊆ 𝑈 × 𝑈 is the 

rough neutrosophic multisets relation on 𝑈 × 𝑈 based on 𝑌 × 𝑋 as follows: 

 

ℜ−1 = {< (𝑦, 𝑥), (𝑇ℜ−1
𝑖 (𝑦, 𝑥)) (𝐼ℜ−1

𝑖 (𝑦, 𝑥)) , ( 𝐹ℜ−1
𝑖 (𝑦, 𝑥)) >: (𝑦, 𝑥) ∈ 𝑈 × 𝑈}                                       

where 

𝑇ℜ−1
𝑖 (𝑦, 𝑥) = 𝑇ℜ

𝑖 (𝑥, 𝑦), 𝐼ℜ−1
𝑖 (𝑦, 𝑥) = 𝐼ℜ

𝑖 (𝑥, 𝑦), 𝐹ℜ−1
𝑖 (𝑦, 𝑥) = 𝐹ℜ

𝑖 (𝑥, 𝑦)  

for all (𝑦, 𝑥) ∈ 𝑈 × 𝑈 and 𝑖 = 1, 2, … , 𝑝.    
    

Definition 3.2.2 The relation ℜ−1 is called the inverse rough neutrosophic multisets relation of ℜ. 

 

Proposition 3.2.3  (ℜ−1)−1 = ℜ. 

Proof: From definition 3.3; 

 

 

 

 

 

 

 

 

 

 

 

Proof (3) for falsity function are similarly to proving (2) for indeterminate function. 

(1) i) 𝑇(ℜ−1)−1
𝑖 (𝑥, 𝑦) = 𝑇ℜ−1

𝑖 (𝑦, 𝑥) = 𝑇ℜ
𝑖 (𝑥, 𝑦) = 1 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 

 ii) 𝑇(ℜ−1)−1
𝑖 (𝑥, 𝑦) = 𝑇ℜ−1

𝑖 (𝑦, 𝑥) = 𝑇ℜ
𝑖 (𝑥, 𝑦) = 0 for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈 − 𝑋 × 𝑌 

 iii) 0 < 𝑇(ℜ−1)−1
𝑖 (𝑥, 𝑦) = 𝑇ℜ−1

𝑖 (𝑦, 𝑥) = 𝑇ℜ
𝑖 (𝑥, 𝑦) < 1 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 − 𝑋 × 𝑌 

 

(2) i) 𝐼(ℜ−1)−1
𝑖 (𝑥, 𝑦) = 𝐼ℜ−1

𝑖 (𝑦, 𝑥) = 𝐼ℜ
𝑖 (𝑥, 𝑦) = 0 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 

 ii) 𝐼(ℜ−1)−1
𝑖 (𝑥, 𝑦) = 𝐼ℜ−1

𝑖 (𝑦, 𝑥) = 𝐼ℜ
𝑖 (𝑥, 𝑦) = 1 for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈 − 𝑋 × 𝑌 

 iii) 0 < 𝐼(ℜ−1)−1
𝑖 (𝑥, 𝑦) = 𝐼ℜ−1

𝑖 (𝑦, 𝑥) = 𝐼ℜ
𝑖 (𝑥, 𝑦) < 1 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 − 𝑋 × 𝑌 

   



Neutrosophic Sets and Systems, Vol. 21, 2018  

 

 
Suriana Alias, Daud Mohamad and Adibah Shuib, Rough Neutrosophic Multisets Relation with Application in 
Marketing Strategy 

 

45 

 

It means (ℜ−1)−1 = ℜ. 

 

Proposition 3.2.4 Let ℜ1, ℜ2 be two rough neutrosophic multisets relations on 𝑈 × 𝑈, based on 𝑋 × 𝑌, 𝑌 × 𝑍, 

respectively. Then (ℜ1 ∘  ℜ2)−1 = ℜ2
−1 ∘  ℜ1

−1
. 

Proof: For all 𝑥, 𝑦, 𝑧 ∈ 𝑈, we have  

𝑇(ℜ1∘ℜ2)−1
𝑖 (𝑧, 𝑥) = 𝑇ℜ1∘ℜ2

𝑖 (𝑥, 𝑧) 

= max𝑦∈𝑈{min[𝑇ℜ1

𝑖 (𝑥, 𝑦), 𝑇ℜ2

𝑖 (𝑦, 𝑧)]} = max𝑦∈𝑈 {min [𝑇(ℜ1)−1
𝑖 (𝑦, 𝑥), 𝑇(ℜ2)−1

𝑖 (𝑧, 𝑦)]} 

= max𝑦∈𝑈 {min [𝑇(ℜ2)−1
𝑖 (𝑧, 𝑦), 𝑇(ℜ1)−1

𝑖 (𝑦, 𝑥)]} 

= 𝑇(ℜ2)−1∘(ℜ1)−1
𝑖 (𝑧, 𝑥); 

 

Similarly, proof for indeterminate function and falsity function. 

 

That means (ℜ1 ∘  ℜ2)−1 = ℜ2
−1 ∘  ℜ1

−1
. 

 

The representation of inverse rough neutrosophic multisets relation ℜ−1 can be represented by rough 

neutrosophic multisets relation ℜ by using a matrix 𝑀(ℜ)𝑡, it is the transposition of a matrix 𝑀(ℜ).  

 

Example 3.2.5: Consider the rough neutrosophic multisets relation 𝑀(ℜ) in example 3.5; 

𝑀(ℜ) = [

(0.3, 0), (1, 1), (1, 1) (0, 0), (1, 1), (1, 1) (0.9, 0), (1, 1), (1, 1)
(0, 0), (1, 1), (1, 1) (0, 0), (1, 1), (1, 1) (0, 0), (1, 1), (1, 1)

(0.4, 0), (1, 1), (1, 1) (0, 0), (1, 1), (1, 1) (0.9, 0), (1, 1), (1, 1)
] 

Then the inverse rough neutrosophic multisets relation ℜ−1  

𝑀(ℜ−1) = 𝑀(ℜ)𝑡 = [

(0.3, 0), (1, 1), (1, 1) (0, 0), (1, 1), (1, 1) (0.4, 0), (1, 1), (1, 1)
(0, 0), (1, 1), (1, 1) (0, 0), (1, 1), (1, 1) (0, 0), (1, 1), (1, 1)

(0.9, 0), (1, 1), (1, 1) (0, 0), (1, 1), (1, 1) (0.9, 0), (1, 1), (1, 1)
] 

 

3.3 The Reflexive, Symmetric, Transitive Rough Neutrosophic Multisets Relation 

In this section, we consider some properties of rough neutrosophic multisets on universe, such as reflexive, 

symmetric and transitive properties. 

Let (𝑈, ℛ) be a crisp approximation space and X is a rough neutrosophic multisets on (𝑈, ℛ). From here 

onwards, the rough neutrosophic multisets relation ℜ is called a rough neutrosophic multisets relation on 

(𝑈, ℛ) based on the rough neutrosophic multisets X. 

 

Definition 3.3.1 The rough neutrosophic multisets relation ℜ is said to be reflexive rough neutrosophic 

multisets relation if 𝑇ℜ
𝑖 (𝑥, 𝑥) = 1, 𝐼ℜ

𝑖 (𝑥, 𝑥) = 𝐹ℜ
𝑖 (𝑥, 𝑥) = 0 and for all (𝑥, 𝑥) ∈ 𝑈 × 𝑈, 𝑖 = 1, 2, … , 𝑝. 

 

Proposition 3.3.2 Let ℜ1, ℜ2 be two rough neutrosophic multisets relation on U based X. If ℜ1, ℜ2 are the 

reflexive rough neutrosophic multisets relations then ℜ1 ∧  ℜ2, ℜ1 ∨ ℜ2, ℜ1 ⊗  ℜ2, ℜ1 ⊕  ℜ2 and ℜ1 ∘  ℜ2 

is also reflexive. 

 

Proof: If ℜ1, ℜ2 are reflexive rough neutrosophic multisets relation, then 

𝑇ℜ1

𝑖 (𝑥, 𝑥) =  𝑇ℜ2

𝑖 (𝑥, 𝑥) = 1 , 𝐼ℜ1

𝑖 (𝑥, 𝑥) =  𝐼ℜ2

𝑖 (𝑥, 𝑥) = 0 and 𝐹ℜ1

𝑖 (𝑥, 𝑥) =  𝐹ℜ2

𝑖 (𝑥, 𝑥) = 0 for all (𝑥, 𝑥) ∈

𝑈 × 𝑈. We have  

i) 𝑇ℜ1∧ ℜ2

𝑖 (𝑥, 𝑥) = min{ 𝑇ℜ1

𝑖 (𝑥, 𝑥), 𝑇ℜ2

𝑖 (𝑥, 𝑥)} = 1; 

𝐼ℜ1∧ ℜ2

𝑖 (𝑥, 𝑥) = max{𝐼ℜ1

𝑖 (𝑥, 𝑥), 𝐼ℜ2

𝑖 (𝑥, 𝑥)} = 0; and 

𝐹ℜ1∧ ℜ2

𝑖 (𝑥, 𝑥) = max{𝐹ℜ1

𝑖 (𝑥, 𝑥), 𝐹ℜ2

𝑖 (𝑥, 𝑥)} = 0     
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for all (𝑥, 𝑥) ∈ 𝑈 × 𝑈 and  ℜ1 ∧ ℜ2 is reflexive rough neutrosophic multisets relation.  

 

ii) 𝑇ℜ1∨ ℜ2

𝑖 (𝑥, 𝑥) = max{ 𝑇ℜ1

𝑖 (𝑥, 𝑥), 𝑇ℜ2

𝑖 (𝑥, 𝑥)} = 1;  

𝐼ℜ1∨ ℜ2

𝑖 (𝑥, 𝑥) = min{𝐼ℜ1

𝑖 (𝑥, 𝑥), 𝐼ℜ2

𝑖 (𝑥, 𝑥)} = 0; and  

𝐹ℜ1∨ ℜ2

𝑖 (𝑥, 𝑥) = min{𝐹ℜ1

𝑖 (𝑥, 𝑥), 𝐹ℜ2

𝑖 (𝑥, 𝑥)} = 0  

for all (𝑥, 𝑥) ∈ 𝑈 × 𝑈 and ℜ1 ∨ ℜ2 is reflexive rough neutrosophic multisets relation.  

 

iii) 𝑇ℜ1 ⨂ ℜ2

𝑖 (𝑥, 𝑥) = 𝑇ℜ1

𝑖 (𝑥, 𝑥) ⋅ 𝑇 ℜ2

𝑖 (𝑥, 𝑥) = 1; 

𝐼ℜ1 ⨂ ℜ2

𝑖 (𝑥, 𝑥) = 𝐼ℜ1

𝑖 (𝑥, 𝑥) + 𝐼ℜ2

𝑖 (𝑥, 𝑥) − 𝐼ℜ1

𝑖 (𝑥, 𝑥) ⋅ 𝐼 ℜ2

𝑖 (𝑥, 𝑥) = 0; and  

𝐹ℜ1 ⨂ ℜ2

𝑖 (𝑥, 𝑥) = 𝐹ℜ1

𝑖 (𝑥, 𝑥) + 𝐹ℜ2

𝑖 (𝑥, 𝑥) − 𝐹ℜ1

𝑖 (𝑥, 𝑥) ⋅ 𝐹 ℜ2

𝑖 (𝑥, 𝑥) = 0  

 

for all (𝑥, 𝑥) ∈ 𝑈 × 𝑈 and ℜ1 ⨂ ℜ2 is reflexive rough neutrosophic multisets relation.  

 

iv) 𝑇ℜ1 ⨁ ℜ2

𝑖 (𝑥, 𝑥) = 𝑇ℜ1

𝑖 (𝑥, 𝑥) + 𝑇 ℜ2

𝑖 (𝑥, 𝑥) − 𝑇ℜ1

𝑖 (𝑥, 𝑥) ⋅ 𝑇 ℜ2

𝑖 (𝑥, 𝑥) = 1; 

𝐼ℜ1 ⨁ ℜ2

𝑖 (𝑥, 𝑥) = 𝐼ℜ1

𝑖 (𝑥, 𝑥) ⋅ 𝐼 ℜ2

𝑖 (𝑥, 𝑥) = 0; and  

𝐹ℜ1 ⨁ ℜ2

𝑖 (𝑥, 𝑥) = 𝐹ℜ1

𝑖 (𝑥, 𝑥) ⋅ 𝐹 ℜ2

𝑖 (𝑥, 𝑥) = 0  

 

for all (𝑥, 𝑥) ∈ 𝑈 × 𝑈 and ℜ1 ⨁ ℜ2 is reflexive rough neutrosophic multisets relation. 

 

v) 𝑇ℜ1∘ ℜ2

𝑖 (𝑥, 𝑥) = max𝑦∈𝑈{min[𝑇ℜ1

𝑖 (𝑥, 𝑦), 𝑇ℜ2

𝑖 (𝑦, 𝑥)]} 

= max𝑦∈𝑈{min[𝑇ℜ1

𝑖 (𝑥, 𝑥), 𝑇ℜ2

𝑖 (𝑥, 𝑥)]} = 1; 

𝐼ℜ1∘ ℜ2

𝑖 (𝑥, 𝑥) = min𝑦∈𝑈{max[𝐼ℜ1

𝑖 (𝑥, 𝑦), 𝐼ℜ2

𝑖 (𝑦, 𝑥)]} 

= min𝑦∈𝑈{max[𝐼ℜ1

𝑖 (𝑥, 𝑥), 𝐼ℜ2

𝑖 (𝑥, 𝑥)]} = 0; and  

𝐹ℜ1∘ ℜ2

𝑖 (𝑥, 𝑥) = min𝑦∈𝑈{max[𝐹ℜ1

𝑖 (𝑥, 𝑦), 𝐹ℜ2

𝑖 (𝑦, 𝑥)]}  

= min𝑦∈𝑈{max[𝐹ℜ1

𝑖 (𝑥, 𝑥), 𝐹ℜ2

𝑖 (𝑥, 𝑥)]} = 0  

 

for all (𝑥, 𝑥) ∈ 𝑈 × 𝑈, 𝑋 ≡ 𝑌 and ℜ1 ∘  ℜ2 is reflexive rough neutrosophic multisets relation. 

 

Definition 3.3.3 The rough neutrosophic multisets relation ℜ is said to be symmetric rough neutrosophic 

multisets relation if 𝑇ℜ
𝑖 (𝑥, 𝑦) = 𝑇ℜ

𝑖 (𝑦, 𝑥), 𝐼ℜ
𝑖 (𝑥, 𝑦) = 𝐼ℜ

𝑖 (𝑦, 𝑥) and 𝐹ℜ
𝑖 (𝑥, 𝑦) = 𝐹ℜ

𝑖 (𝑦, 𝑥) for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈, 

𝑖 = 1, 2, … , 𝑝. 

 

We note that if ℜ is a symmetric rough neutrosophic multisets relation then the matrix 𝑀(ℜ) is a symmetric 

matrix.  

Proposition 3.3.4 If ℜ is said to be symmetric rough neutrosophic multisets relation, then ℜ−1 is also 

symmetric. 

Proof: Assume that ℜ is symmetric rough neutrosophic multisets relation, then we have 

𝑇ℜ
𝑖 (𝑥, 𝑦) = 𝑇ℜ

𝑖 (𝑦, 𝑥), 𝐼ℜ
𝑖 (𝑥, 𝑦) = 𝐼ℜ

𝑖 (𝑦, 𝑥) and 𝐹ℜ
𝑖 (𝑥, 𝑦) = 𝐹ℜ

𝑖 (𝑦, 𝑥).      

                    

Also, if ℜ−1 is an inverse rough neutrosophic multisets relation, then we have 

𝑇ℜ−1
𝑖 (𝑥, 𝑦) = 𝑇ℜ

𝑖 (𝑦, 𝑥), 𝐼ℜ−1
𝑖 (𝑥, 𝑦) = 𝐼ℜ

𝑖 (𝑦, 𝑥) and 𝐹ℜ−1
𝑖 (𝑥, 𝑦) = 𝐹ℜ

𝑖 (𝑦, 𝑥) for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈. 

 

To prove ℜ−1 is symmetric, we must prove that 

𝑇ℜ−1
𝑖 (𝑥, 𝑦) = 𝑇ℜ−1

𝑖 (𝑦, 𝑥), 𝐼ℜ−1
𝑖 (𝑥, 𝑦) = 𝐼ℜ−1

𝑖 (𝑦, 𝑥) and 𝐹ℜ−1
𝑖 (𝑥, 𝑦) = 𝐹ℜ−1

𝑖 (𝑦, 𝑥) for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈. 

Therefore, 

 𝑇ℜ−1
𝑖 (𝑥, 𝑦) = 𝑇ℜ

𝑖 (𝑦, 𝑥) = 𝑇ℜ
𝑖 (𝑥, 𝑦) = 𝑇ℜ−1

𝑖 (𝑦, 𝑥); 

𝐼ℜ−1
𝑖 (𝑥, 𝑦) = 𝐼ℜ

𝑖 (𝑦, 𝑥) = 𝐼ℜ
𝑖 (𝑥, 𝑦) = 𝐼ℜ−1

𝑖 (𝑦, 𝑥); and 

𝐹ℜ−1
𝑖 (𝑥, 𝑦) = 𝐹ℜ

𝑖 (𝑦, 𝑥) = 𝐹ℜ
𝑖 (𝑥, 𝑦) = 𝐹ℜ−1

𝑖 (𝑦, 𝑥)  
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for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈 and ℜ is said to be symmetric rough neutrosophic multisets relation, then ℜ−1 is also 

symmetric rough neutrosophic multisets relation. 

Proposition 3.3.5 Let ℜ1, ℜ2 be two rough neutrosophic multisets relations on U based rough neutrosophic 

multisets. If ℜ1, ℜ2 are the symmetric rough neutrosophic multisets relations then ℜ1 ∧  ℜ2, ℜ1 ∨  ℜ2, ℜ1 ⊗
 ℜ2 and ℜ1 ⊕  ℜ2 also symmetric. 

Proof: Since ℜ1 is symmetric, then we have; 

𝑇ℜ1

𝑖 (𝑥, 𝑦) = 𝑇ℜ1

𝑖 (𝑦, 𝑥), 𝐼ℜ1

𝑖 (𝑥, 𝑦) = 𝐼ℜ1

𝑖 (𝑦, 𝑥) and 𝐹ℜ1

𝑖 (𝑥, 𝑦) = 𝐹ℜ1

𝑖 (𝑦, 𝑥) 

 

Similarly, ℜ2 is symmetric, then we have; 

𝑇ℜ2

𝑖 (𝑥, 𝑦) = 𝑇ℜ2

𝑖 (𝑦, 𝑥), 𝐼ℜ2

𝑖 (𝑥, 𝑦) = 𝐼ℜ2

𝑖 (𝑦, 𝑥) and 𝐹ℜ2

𝑖 (𝑥, 𝑦) = 𝐹ℜ2

𝑖 (𝑦, 𝑥)  

 

Therefore; 

 

i) 𝑇ℜ1∧ ℜ2

𝑖 (𝑥, 𝑦) = min{ 𝑇ℜ1

𝑖 (𝑥, 𝑦), 𝑇ℜ2

𝑖 (𝑥, 𝑦)} 

= min{ 𝑇ℜ1

𝑖 (𝑦, 𝑥), 𝑇ℜ2

𝑖 (𝑦, 𝑥)} = 𝑇ℜ1∧ ℜ2

𝑖 (𝑦, 𝑥); 

𝐼ℜ1∧ ℜ2

𝑖 (𝑥, 𝑦) = max{𝐼ℜ1

𝑖 (𝑥, 𝑦), 𝐼ℜ2

𝑖 (𝑥, 𝑦)} 

= max{ 𝐼ℜ1

𝑖 (𝑦, 𝑥), 𝐼ℜ2

𝑖 (𝑦, 𝑥)} = 𝐼ℜ1∧ ℜ2

𝑖 (𝑦, 𝑥); and 

𝐹ℜ1∧ ℜ2

𝑖 (𝑥, 𝑦) = max{𝐹ℜ1

𝑖 (𝑥, 𝑦), 𝐹ℜ2

𝑖 (𝑥, 𝑦)} 

= max{ 𝐹ℜ1

𝑖 (𝑦, 𝑥), 𝐹ℜ2

𝑖 (𝑦, 𝑥)} = 𝐹ℜ1∧ ℜ2

𝑖 (𝑦, 𝑥)  

 

for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈 and  ℜ1 ∧ ℜ2 is symmetric rough neutrosophic multisets relation.  

 

ii) 𝑇ℜ1∨ ℜ2

𝑖 (𝑥, 𝑦) = max{ 𝑇ℜ1

𝑖 (𝑥, 𝑦), 𝑇ℜ2

𝑖 (𝑥, 𝑦)} 

= max{ 𝑇ℜ1

𝑖 (𝑦, 𝑥), 𝑇ℜ2

𝑖 (𝑦, 𝑥)} = 𝑇ℜ1∨ ℜ2

𝑖 (𝑦, 𝑥);  

𝐼ℜ1∨ ℜ2

𝑖 (𝑥, 𝑦) = min{𝐼ℜ1

𝑖 (𝑥, 𝑦), 𝐼ℜ2

𝑖 (𝑥, 𝑦)} 

= min{𝐼ℜ1

𝑖 (𝑦, 𝑥), 𝐼ℜ2

𝑖 (𝑦, 𝑥)} = 𝐼ℜ1∨ ℜ2

𝑖 (𝑦, 𝑥); and  

𝐹ℜ1∨ ℜ2

𝑖 (𝑥, 𝑦) = min{𝐹ℜ1

𝑖 (𝑥, 𝑦), 𝐹ℜ2

𝑖 (𝑥, 𝑦)} 

= min{𝐹ℜ1

𝑖 (𝑦, 𝑥), 𝐹ℜ2

𝑖 (𝑦, 𝑥)} = 𝐹ℜ1∨ ℜ2

𝑖 (𝑦, 𝑥)  

 

for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈 and ℜ1 ∨  ℜ2 is symmetric rough neutrosophic multisets relation.  

 

iii)     𝑇ℜ1 ⨂ ℜ2

𝑖 (𝑥, 𝑦) = 𝑇ℜ1

𝑖 (𝑥, 𝑦) ⋅ 𝑇 ℜ2

𝑖 (𝑥, 𝑦) = 𝑇ℜ1

𝑖 (𝑦, 𝑥) ⋅ 𝑇 ℜ2

𝑖 (𝑦, 𝑥) = 𝑇ℜ1 ⨂ ℜ2

𝑖 (𝑦, 𝑥); 

𝐼ℜ1 ⨂ ℜ2

𝑖 (𝑥, 𝑦) = 𝐼ℜ1

𝑖 (𝑥, 𝑦) + 𝐼ℜ2

𝑖 (𝑥, 𝑦) − 𝐼ℜ1

𝑖 (𝑥, 𝑦) ⋅ 𝐼 ℜ2

𝑖 (𝑥, 𝑦) 

      = 𝐼ℜ1

𝑖 (𝑦, 𝑥) + 𝐼ℜ2

𝑖 (𝑦, 𝑥) − 𝐼ℜ1

𝑖 (𝑦, 𝑥) ⋅ 𝐼 ℜ2

𝑖 (𝑦, 𝑥) 

= 𝐼ℜ1 ⨂ ℜ2

𝑖 (𝑦, 𝑥); and  

𝐹ℜ1 ⨂ ℜ2

𝑖 (𝑥, 𝑦) = 𝐹ℜ1

𝑖 (𝑥, 𝑦) + 𝐹ℜ2

𝑖 (𝑥, 𝑦) − 𝐹ℜ1

𝑖 (𝑥, 𝑦) ⋅ 𝐹 ℜ2

𝑖 (𝑥, 𝑦)  

= 𝐹ℜ1

𝑖 (𝑦, 𝑥) + 𝐹ℜ2

𝑖 (𝑦, 𝑥) − 𝐹ℜ1

𝑖 (𝑦, 𝑥) ⋅ 𝐹 ℜ2

𝑖 (𝑦, 𝑥) 

= 𝐹ℜ1 ⨂ ℜ2

𝑖 (𝑦, 𝑥) 

 

for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈 and ℜ1 ⨂ ℜ2 is symmetric rough neutrosophic multisets relation.  

 

iv) 𝑇ℜ1 ⨁ ℜ2

𝑖 (𝑥, 𝑦) = 𝑇ℜ1

𝑖 (𝑥, 𝑦) + 𝑇 ℜ2

𝑖 (𝑥, 𝑦) − 𝑇ℜ1

𝑖 (𝑥, 𝑦) ⋅ 𝑇 ℜ2

𝑖 (𝑥, 𝑦) 

 = 𝑇ℜ1

𝑖 (𝑦, 𝑥) + 𝑇 ℜ2

𝑖 (𝑦, 𝑥) − 𝑇ℜ1

𝑖 (𝑦, 𝑥) ⋅ 𝑇 ℜ2

𝑖 (𝑦, 𝑥) = 𝑇ℜ1 ⨁ ℜ2

𝑖 (𝑦, 𝑥); 

𝐼ℜ1 ⨁ ℜ2

𝑖 (𝑥, 𝑦) = 𝐼ℜ1

𝑖 (𝑥, 𝑦) ⋅ 𝐼 ℜ2

𝑖 (𝑥, 𝑦) = 𝐼ℜ1

𝑖 (𝑦, 𝑥) ⋅ 𝐼 ℜ2

𝑖 (𝑦, 𝑥) = 𝐼ℜ1 ⨁ ℜ2

𝑖 (𝑦, 𝑥); and  

𝐹ℜ1 ⨁ ℜ2

𝑖 (𝑥, 𝑦) = 𝐹ℜ1

𝑖 (𝑥, 𝑦) ⋅ 𝐹 ℜ2

𝑖 (𝑥, 𝑦) = 𝐹ℜ1

𝑖 (𝑦, 𝑥) ⋅ 𝐹 ℜ2

𝑖 (𝑦, 𝑥) = 𝐹ℜ1 ⨁ ℜ2

𝑖 (𝑦, 𝑥)  

 

for all (𝑥, 𝑦) ∈ 𝑈 × 𝑈 and ℜ1 ⨁ ℜ2 is symmetric rough neutrosophic multisets relation. 
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Remark 3.3.6: ℜ1 ∘  ℜ2 in general is not symmetric, as 

  𝑇ℜ1∘ ℜ2

𝑖 (𝑥, 𝑧) = max𝑦∈𝑈{min[𝑇ℜ1

𝑖 (𝑥, 𝑦), 𝑇ℜ2

𝑖 (𝑦, 𝑧)]} 

= max𝑦∈𝑈{min[𝑇ℜ1

𝑖 (𝑦, 𝑥), 𝑇ℜ2

𝑖 (𝑧, 𝑥)]} ≠ 𝑇ℜ1∘ ℜ2

𝑖 (𝑧, 𝑥) 

 

The proof is similarly for indeterminate function and falsity function. 

 

But, ℜ1 ∘  ℜ2 is symmetric if ℜ1 ∘  ℜ2 = ℜ2 ∘  ℜ1, for ℜ1 and ℜ2 are symmetric relations. 

𝑇ℜ1∘ ℜ2

𝑖 (𝑥, 𝑧) = max𝑦∈𝑈{min[𝑇ℜ1

𝑖 (𝑥, 𝑦), 𝑇ℜ2

𝑖 (𝑦, 𝑧)]} 

= max𝑦∈𝑈{min[𝑇ℜ1

𝑖 (𝑦, 𝑥), 𝑇ℜ2

𝑖 (𝑧, 𝑦)]} = max𝑦∈𝑈{min[𝑇ℜ2

𝑖 (𝑦, 𝑥), 𝑇ℜ2

𝑖 (𝑧, 𝑦)]} 

= max𝑦∈𝑈{min[𝑇ℜ2

𝑖 (𝑧, 𝑦), 𝑇ℜ2

𝑖 (𝑦, 𝑥)]} = max𝑦∈𝑈{min[𝑇ℜ1

𝑖 (𝑧, 𝑦), 𝑇ℜ2

𝑖 (𝑦, 𝑥)]} 

= 𝑇ℜ1∘ ℜ2

𝑖 (𝑧, 𝑥) 

 

for all (𝑥, 𝑧) ∈ 𝑈 × 𝑈 and 𝑦 ∈ 𝑈. 

 

The proof is similarly for indeterminate function and falsity function. 

 

Definition 3.3.7 The rough neutrosophic multisets relation ℜ is said to be transitive rough neutrosophic 

multisets relation if ℜ ∘  ℜ ⊆ ℜ such that 𝑇ℜ
𝑖 (𝑦, 𝑥) ≥ 𝑇ℜ∘ ℜ

𝑖 (𝑦, 𝑥), 𝐼ℜ
𝑖 (𝑦, 𝑥) ≤ 𝐼ℜ∘ ℜ

𝑖 (𝑦, 𝑥) and 𝐹ℜ
𝑖 (𝑦, 𝑥) ≤

𝐹ℜ∘ ℜ
𝑖 (𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑈. 

 

Definition 3.3.8 The rough neutrosophic multisets relation ℜ on U based on the neutrosophic multisets X is 

called a rough neutrosophic multisets equivalence relation if it is reflexive, symmetric and transitive rough 

neutrosophic multisets relation.   

 

Proposition 3.3.9 If ℜ is transitive rough neutrosophic multisets relation, then ℜ−1 is also transitive. 

Proof: ℜ is transitive rough neutrosophic multisets relation if ℜ ∘  ℜ ⊆ ℜ, hence if ℜ−1 ∘  ℜ−1 ⊆ ℜ−1, then 

ℜ−1 is transitive.  

Consider; 

𝑇ℜ−1
𝑖 (𝑥, 𝑦) = 𝑇ℜ

𝑖 (𝑦, 𝑥) ≥ 𝑇ℜ∘ ℜ
𝑖 (𝑦, 𝑥) 

= max𝑧∈𝑈{min[𝑇ℜ
𝑖 (𝑦, 𝑧), 𝑇ℜ

𝑖 (𝑧, 𝑥)]} 

= max𝑧∈𝑈{min[𝑇ℜ−1
𝑖 (𝑧, 𝑦), 𝑇ℜ−1

𝑖 (𝑥, 𝑧)]} = max𝑧∈𝑈{min[𝑇ℜ−1
𝑖 (𝑥, 𝑧), 𝑇ℜ−1

𝑖 (𝑧, 𝑦)]} 

        = 𝑇ℜ−1∘ ℜ−1
𝑖 (𝑥, 𝑦); 

 

The proof is similarly for indeterminate function and falsity function. 

 

Hence, the proof is valid. 

Proposition 3.3.10 Let ℜ1, ℜ2 be two rough neutrosophic multisets relations on U based rough neutrosophic 

multisets. If ℜ1 are the transitive rough neutrosophic multisets relation, then ℜ1 ∧  ℜ2 is also transitive. 

Proof: As ℜ1 and ℜ2 are transitive rough neutrosophic multisets relation, ℜ1  ∘  ℜ1  ⊆ ℜ1 and ℜ2  ∘  ℜ2  ⊆
ℜ2. Also 

𝑇ℜ1∧ ℜ2

𝑖 (𝑥, 𝑦) ≥ 𝑇(ℜ1∧ ℜ2)∘(ℜ1∧ ℜ2)
𝑖 (𝑥, 𝑦); 

𝐼ℜ1∧ ℜ2

𝑖 (𝑥, 𝑦) ≤ 𝐼(ℜ1∧ ℜ2)∘(ℜ1∧ ℜ2)
𝑖 (𝑥, 𝑦); and  

 𝐹ℜ1∧ ℜ2

𝑖 (𝑥, 𝑦) ≤ 𝐹(ℜ1∧ ℜ2)∘(ℜ1∧ ℜ2)
𝑖 (𝑥, 𝑦) 

 

implies that (ℜ1 ∧ ℜ2) ∘ (ℜ1 ∧ ℜ2) ⊆  ℜ1 ∧ ℜ2, hence ℜ1 ∧  ℜ2 is transitive. 
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Proposition 3.3.11 If ℜ1 and ℜ2 are transitive rough neutrosophic multisets relations, then ℜ1 ∨  ℜ2, ℜ1 ⊗
 ℜ2 and ℜ1 ⊕  ℜ2 are not transitive. 

 

Proof: 

i)  As  

𝑇ℜ1∨ ℜ2

𝑖 (𝑥, 𝑦) = max{ 𝑇ℜ1

𝑖 (𝑥, 𝑦), 𝑇ℜ2

𝑖 (𝑥, 𝑦)},  

𝐼ℜ1∨ ℜ2

𝑖 (𝑥, 𝑦) = min{𝐼ℜ1

𝑖 (𝑥, 𝑦), 𝐼ℜ2

𝑖 (𝑥, 𝑦)}, and  

𝐹ℜ1∨ ℜ2

𝑖 (𝑥, 𝑦) = min{𝐹ℜ1

𝑖 (𝑥, 𝑦), 𝐹ℜ2

𝑖 (𝑥, 𝑦)}  

and, 

𝑇ℜ1∨ ℜ2

𝑖 (𝑥, 𝑦) ≤ 𝑇(ℜ1∨ ℜ2)∘(ℜ1∨ ℜ2)
𝑖 (𝑥, 𝑦); 

𝐼ℜ1∨ ℜ2

𝑖 (𝑥, 𝑦) ≥ 𝐼(ℜ1∨ ℜ2)∘(ℜ1∨ ℜ2)
𝑖 (𝑥, 𝑦); and  

𝐹ℜ1∨ ℜ2

𝑖 (𝑥, 𝑦) ≥ 𝐹(ℜ1∨ ℜ2)∘(ℜ1∨ ℜ2)
𝑖 (𝑥, 𝑦) 

 

ii)  As  

 

𝑇ℜ1 ⨂ ℜ2

𝑖 (𝑥, 𝑦) = 𝑇ℜ1

𝑖 (𝑥, 𝑦) ⋅ 𝑇 ℜ2

𝑖 (𝑥, 𝑦), 

𝐼ℜ1 ⨂ ℜ2

𝑖 (𝑥, 𝑦) = 𝐼ℜ1

𝑖 (𝑥, 𝑦) + 𝐼ℜ2

𝑖 (𝑥, 𝑦) − 𝐼ℜ1

𝑖 (𝑥, 𝑦) ⋅ 𝐼 ℜ2

𝑖 (𝑥, 𝑦), and 

𝐹ℜ1 ⨂ ℜ2

𝑖 (𝑥, 𝑦) = 𝐹ℜ1

𝑖 (𝑥, 𝑦) + 𝐹ℜ2

𝑖 (𝑥, 𝑦) − 𝐹ℜ1

𝑖 (𝑥, 𝑦) ⋅ 𝐹 ℜ2

𝑖 (𝑥, 𝑦)  

and,  

𝑇ℜ1 ⨂ ℜ2 
𝑖 (𝑥, 𝑦) ≤ 𝑇(ℜ1⨂ ℜ2)∘(ℜ1⨂ ℜ2)

𝑖 (𝑥, 𝑦); 

𝐼ℜ1 ⨂ ℜ2 
𝑖 (𝑥, 𝑦) ≥ 𝐼(ℜ1⨂ ℜ2)∘(ℜ1⨂ ℜ2)

𝑖 (𝑥, 𝑦); and 𝐹ℜ1 ⨂  ℜ2

𝑖 (𝑥, 𝑦) ≥ 𝐹(ℜ1⨂ ℜ2)∘(ℜ1⨂ ℜ2)
𝑖 (𝑥, 𝑦) 

 

(iii) As 

 

 𝑇ℜ1 ⨁ ℜ2

𝑖 (𝑥, 𝑦) = 𝑇ℜ1

𝑖 (𝑥, 𝑦) + 𝑇 ℜ2

𝑖 (𝑥, 𝑦) − 𝑇ℜ1

𝑖 (𝑥, 𝑦) ⋅ 𝑇 ℜ2

𝑖 (𝑥, 𝑦), 

𝐼ℜ1 ⨁ ℜ2

𝑖 (𝑥, 𝑦) = 𝐼ℜ1

𝑖 (𝑥, 𝑦) ⋅ 𝐼 ℜ2

𝑖 (𝑥, 𝑦), and  

𝐹ℜ1 ⨁ ℜ2

𝑖 (𝑥, 𝑦) = 𝐹ℜ1

𝑖 (𝑥, 𝑦) ⋅ 𝐹 ℜ2

𝑖 (𝑥, 𝑦)  

and 

𝑇ℜ1 ⨁ ℜ2 
𝑖 (𝑥, 𝑦) ≤ 𝑇(ℜ1⨁ ℜ2)∘(ℜ1⨁ ℜ2)

𝑖 (𝑥, 𝑦); 

𝐼ℜ1 ⨁ ℜ2 
𝑖 (𝑥, 𝑦) ≥ 𝐼(ℜ1⨁ ℜ2)∘(ℜ1⨁ ℜ2)

𝑖 (𝑥, 𝑦); and 𝐹ℜ1 ⨁ ℜ2 
𝑖 (𝑥, 𝑦) ≥ 𝐹(ℜ1⨁ ℜ2)∘(ℜ1⨁ ℜ2)

𝑖 (𝑥, 𝑦) 

 

Hence, ℜ1 ∨ ℜ2, ℜ1 ⊗  ℜ2 and ℜ1 ⊕  ℜ2 are not transitive. 

 

4 An application to marketing strategy 
 

The aims of multi criteria decision making (MCDM) are to solve the problem involving multi decision by 

many expert opinions and many alternatives given and MCDM also try to get the best alternative solution based 

on the multi criteria evaluate by many experts. The study of MCDM with the neutrosophic environment is well 

established in [38]–[44].  

This section gives a situation of solving a real application of the rough neutrosophic multisets relation in 

marketing strategy. 

Assume 𝐽 = {𝑗1, 𝑗2, 𝑗3} denotes for three jeans showed available to be purchased in a shop G. Let ℛ𝐽 be a 

relation defined on the 𝐽 as  𝑎ℛ𝐽𝑏 if and only if 𝑎, 𝑏 coming from the same continent about quality of the jeans. 

𝑎ℛ𝐽𝑏 is composed by ℛ𝐽 = {𝑗1, 𝑗2, 𝑗3}. The relation ℛ𝐽 is explains the effect of the quality of jeans in shop Z. 

We now try to get the opinion from two independent customers about the quality of jeans considering whether 

the jeans are comprised of "good texture", a level of indeterminacy with respect to the customers which is “no 

comment” and whether they feel that the jean is comprised of "a not all that great texture". In the customers’ 

opinion, rough neutrosophic multisets, A and B can be defined as follows:  

 𝐴 = {< 𝑗1, (0.9, 0.2), (0.3, 0.6), (0.5,0.7) >,  
   < 𝑗2, (0.4, 0.6), (0.2, 0.4), (0.5, 0.6) >,  
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   < 𝑗3, (1.0, 0.6), (0.4,0.5), (0.6, 0.7) >}  and 

 

 𝐵 = {< 𝑗1, (0.5, 0.7), (0.4, 0.6), (0.2, 0.8) >,  
   < 𝑗2, (0.6, 0.7), (0.2, 0.8), (0.4, 0.5) >,  
   < 𝑗3, (1.0, 0.8), (0.3, 0.6), (0.2, 0.8) >} 

 

By satisfied all the condition in definition 3.3, we will define the relation of rough neutrosophic multisets ℜ on 

qualities of jeans  𝐽 × 𝐽 based on customers opinion 𝐴 × 𝐵 as follows: 

Step 1: Compute lower and upper approximation values for rough neutrosophic multisets. 

ℛ𝐽(𝐴) = {< 𝑗1, (0.4, 0.2), (0.4, 0.6), (0.6,0.7) >,   

   < 𝑗2, (0.4, 0.2), (0.4, 0.6), (0.6,0.7) >,  
    < 𝑗3, (0.4, 0.2), (0.4, 0.6), (0.6,0.7) >}   

ℛ𝐽(𝐵) = {< 𝑗1, (0.5, 0.7), (0.4, 0.8), (0.4,0.8) >,   

 
  

       < 𝑗
2

, (0.5, 0.7), (0.4, 0.8), (0.4,0.8) >,                                                          

                   < 𝑗3, (0.5, 0.7), (0.4, 0.8), (0.4,0.8) >}   

 

ℛ𝐽(𝐴) = {< 𝑗1, (1.0, 0.6), (0.2, 0.4), (0.5,0.6) >,   

   < 𝑗2, (1.0, 0.6), (0.2, 0.4), (0.5,0.6) >,  
    < 𝑗3, (1.0, 0.6), (0.2, 0.4), (0.5,0.6) >}   

ℛ𝐽(𝐵) = {< 𝑗1, (1.0, 0.8), (0.2, 0.6), (0.2,0.5) >,   

   < 𝑗2, (1.0, 0.8), (0.2, 0.6), (0.2,0.5) >,  
    < 𝑗3, (1.0, 0.8), (0.2, 0.6), (0.2,0.5) >}   

Step 2: Construct the relation of  𝐴 × 𝐵 = ℛ𝐽(𝐴) × ℛ𝐽(𝐵), relation of 𝐴 × 𝐵 = ℛ𝐽(𝐴) × ℛ𝐽(𝐵), and relation 

of 𝐽 × 𝐽. All the relation was represented in the Table 1, Table 2 and Table 3, respectively.  

𝐴 × 𝐵 𝑗1 𝑗2 𝑗3 

𝑗1 (0.4, 0.2), 

(0.4, 0.8), 

(0.6, 0.8) 

(0.4, 0.2), 

(0.4, 0.8), 

(0.6, 0.8) 

(0.4, 0.2), 

(0.4, 0.8), 

(0.6, 0.8) 

𝑗2 (0.4, 0.2), 

(0.4, 0.8), 

(0.6, 0.8) 

(0.4, 0.2), 

(0.4, 0.8), 

(0.6, 0.8) 

(0.4, 0.2), 

(0.4, 0.8), 

(0.6, 0.8) 

𝑗3 (0.4, 0.2), 

(0.4, 0.8), 

(0.6, 0.8) 

(0.4, 0.2), 

(0.4, 0.8), 

(0.6, 0.8) 

(0.4, 0.2), 

(0.4, 0.8), 

(0.6, 0.8) 

Table 1: Relation of A × B 

 

𝐴 × 𝐵 𝑗1 𝑗2 𝑗3 

𝑗1 (1.0, 0.6), 

(0.4, 0.6), 

(0.5, 0.6) 

(1.0, 0.6), 

(0.4, 0.6), 

(0.5, 0.6) 

(1.0, 0.6), 

(0.4, 0.6), 

(0.5, 0.6) 

𝑗2 (1.0, 0.6), 

(0.4, 0.6), 

(0.5, 0.6) 

(1.0, 0.6), 

(0.4, 0.6), 

(0.5, 0.6) 

(1.0, 0.6), 

(0.4, 0.6), 

(0.5, 0.6) 

𝑗3 (1.0, 0.6), 

(0.4, 0.6), 

(0.5, 0.6) 

(1.0, 0.6), 

(0.4, 0.6), 

(0.5, 0.6) 

(1.0, 0.6), 

(0.4, 0.6), 

(0.5, 0.6) 

Table 2: Relation of A × B 

 
Note that 𝑇ℜ

𝑖 (𝑎, 𝑏) = 1, 𝐼ℜ
𝑖 (𝑎, 𝑏) = 0 and 𝐹ℜ

𝑖 (𝑎, 𝑏) = 0 for all (𝑎, 𝑏) ∈ 𝐴 × 𝐵. Therefore, the relation of 𝐽 × 𝐽 

is 
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𝐽 × 𝐽 𝑗1 𝑗2 𝑗3 

𝑗1 (1.0, 1.0), 

(0.0, 0.0), 

(0.0, 0.0) 

(1.0, 1.0), 

(0.0, 0.0), 

(0.0, 0.0) 

(1.0, 1.0), 

(0.0, 0.0), 

(0.0, 0.0) 

𝑗2 (1.0, 1.0), 

(0.0, 0.0), 

(0.0, 0.0) 

(1.0, 1.0), 

(0.0, 0.0), 

(0.0, 0.0) 

(1.0, 1.0), 

(0.0, 0.0), 

(0.0, 0.0) 

𝑗3 (1.0, 1.0), 

(0.0, 0.0), 

(0.0, 0.0) 

(1.0, 1.0), 

(0.0, 0.0), 

(0.0, 0.0) 

(1.0, 1.0), 

(0.0, 0.0), 

(0.0, 0.0) 

Table 3: Relation of J × J 

 

Step 3: Construct a rough neutrosophic multisets relation ℜ. Note that, 𝑇ℜ
𝑖 (𝑎, 𝑏) = 0, 𝐼ℜ

𝑖 (𝑎, 𝑏) = 1 and 

𝐹ℜ
𝑖 (𝑎, 𝑏) = 1 for all (𝑎, 𝑏) ∈ 𝐽 × 𝐽 − 𝐴 × 𝐵. Table 4 represent the rough neutrosophic multisets relation ℜ. 

 

ℜ 𝑗1 𝑗2 𝑗3 

𝑗1 (t1, 0.0), 

(1.0, 1.0), 

(1.0, 1.0) 

(t2, 0.0), 

(1.0, 1.0), 

(1.0, 1.0) 

(t3, 0.0), 

(1.0, 1.0), 

(1.0, 1.0) 

𝑗2 (t4, 0.0), 

(1.0, 1.0), 

(1.0, 1.0) 

(t5, 0.0), 

(1.0, 1.0), 

(1.0, 1.0) 

(t6, 0.0), 

(1.0, 1.0), 

(1.0, 1.0) 

𝑗3 (t7, 0.0), 

(1.0, 1.0), 

(1.0, 1.0) 

(t8, 0.0), 

(1.0, 1.0), 

(1.0, 1.0) 

(t9, 0.0), 

(1.0, 1.0), 

(1.0, 1.0) 

Table 4: Rough neutrosophic multi relation ℜ. 

 

Step 4: Compute the values for 𝑡1 until 𝑡9 in Table 4.  

Note that 𝒕𝟏, 𝒕𝟐, . . , 𝒕𝟗 ∈ [0, 1] and 0 < 𝑇ℜ
𝑖 (𝑎, 𝑏) < 1, for all (𝑎, 𝑏) ∈ 𝐴 × 𝐵 − 𝐴 × 𝐵 and neutrosophic multi 

relation of  𝑇ℜ
𝑖 (𝑎, 𝑏) ≤ 𝑇𝐴×𝐵

𝑖 (𝑎, 𝑏) ∀ (𝑎, 𝑏) ∈ 𝐽 × 𝐽.  

 

(i) 𝒕𝟏 = 𝑇ℜ
1(𝑗

1
, 𝑗

1
) = 𝑇

𝐴×𝐵
1 (𝑗

1
, 𝑗

1
) − 𝑇𝐴×𝐵

1 (𝑗
1
, 𝑗

1
) = 1 − 0.4 = 0.6, 𝑇ℜ

1(𝑗
1
, 𝑗

1
) ≤ 𝑇𝐴×𝐵

1 (𝑗
1
, 𝑗

1
) where  0.6 ≤

1. Therefore, the possible values of 𝒕𝟏 is 0.9, 0.8, 0.7 and 0.6. 

(ii) 𝒕𝟐 = 𝑇ℜ
1(𝑗

1
, 𝑗

2
) = 𝑇

𝐴×𝐵
1 (𝑗

1
, 𝑗

2
) − 𝑇𝐴×𝐵

1 (𝑗
1
, 𝑗

2
) = 1 − 0.4 = 0.6, 𝑇ℜ

1(𝑗
1
, 𝑗

2
) ≤ 𝑇𝐴×𝐵

1 (𝑗
1
, 𝑗

2
) where  0.6 ≤

1. Therefore, the possible values of 𝒕𝟐 is 0.9, 0.8, 0.7 and 0.6. 

(iii)  The same calculation was used for 𝑡3 until 𝑡9. Therefore, the possible values for 𝑡1 until 𝑡9 is represent 

in Table 5. 

 
𝑡𝑛, 𝑛
= 1, 2, … , 9 

Possible values 𝑡𝑛, 𝑛
= 1, 2, … , 9 

Possible values 

𝑡1 0.6, 0.7, 0.8, 0.9 𝑡6 0.6, 0.7, 0.8, 0.9 
𝑡2 0.6, 0.7, 0.8, 0.9 𝑡7 0.6, 0.7, 0.8, 0.9 
𝑡3 0.6, 0.7, 0.8, 0.9 𝑡8 0.6, 0.7, 0.8, 0.9 
𝑡4 0.6, 0.7, 0.8, 0.9 𝑡9 0.6, 0.7, 0.8, 0.9 
𝑡5 0.6, 0.7, 0.8, 0.9   

Table 5: Possible values for 𝑡1until 𝑡9 

 

Step 5: We defined ℜ ⊆ 𝐽 × 𝐽 as a rough neutrosophic multisets relation on 𝐽 × 𝐽 based on the 𝐴 × 𝐵 by a 

matrix form. We can have different values for 𝑡1 until 𝑡9 as it is true for all possible values in Table 5. We try 

to get some pattern of the rough neutrosophic multisets relation matrix of our study by three possible cases. 

 

Case 1: (𝑗1, 𝑗𝑛) > (𝑗2, 𝑗𝑛) > (𝑗3, 𝑗𝑛) for all 𝑛, and unknown value. Therefore, there are two rough neutrosophic 

multisets relation matrix resulted for this case, represented as  𝑀(ℜ1) and 𝑀(ℜ2), respectively. 

 

𝑀(ℜ1) = [

(0.9, 0), (1, 1), (1, 1) (0.9,0), (1, 1), (1, 1) (0.9, 0), (1, 1), (1, 1)
(0.8, 0), (1, 1), (1, 1) (0.8, 0), (1, 1), (1, 1) (0.8, 0), (1, 1), (1, 1)
(0.7, 0), (1, 1), (1, 1) (0.7, 0), (1, 1), (1, 1) (0.7, 0), (1, 1), (1, 1)

] 
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𝑀(ℜ2) = [

(0.8, 0), (1, 1), (1, 1) (0.8,0), (1, 1), (1, 1) (0.8, 0), (1, 1), (1, 1)
(0.7, 0), (1, 1), (1, 1) (0.7, 0), (1, 1), (1, 1) (0.7, 0), (1, 1), (1, 1)
(0.6, 0), (1, 1), (1, 1) (0.6, 0), (1, 1), (1, 1) (0.6, 0), (1, 1), (1, 1)

] 

 

Case 2: (𝑗1, 𝑗𝑛) < (𝑗2, 𝑗𝑛) < (𝑗3, 𝑗𝑛) for all 𝑛, and unknown value. Therefore, there are two rough neutrosophic 

multisets relation matrix resulted for this case, represented as  𝑀(ℜ3) and 𝑀(ℜ4), respectively. 

 

𝑀(ℜ3) = [

(0.7, 0), (1, 1), (1, 1) (0.7,0), (1, 1), (1, 1) (0.7, 0), (1, 1), (1, 1)
(0.8, 0), (1, 1), (1, 1) (0.8, 0), (1, 1), (1, 1) (0.8, 0), (1, 1), (1, 1)
(0.9, 0), (1, 1), (1, 1) (0.9, 0), (1, 1), (1, 1) (0.9, 0), (1, 1), (1, 1)

] 

 

𝑀(ℜ4) = [

(0.6, 0), (1, 1), (1, 1) (0.6,0), (1, 1), (1, 1) (0.6, 0), (1, 1), (1, 1)
(0.7, 0), (1, 1), (1, 1) (0.7, 0), (1, 1), (1, 1) (0.7, 0), (1, 1), (1, 1)
(0.8, 0), (1, 1), (1, 1) (0.8, 0), (1, 1), (1, 1) (0.8, 0), (1, 1), (1, 1)

] 

 

Case 3: (𝑗1, 𝑗𝑛) = (𝑗2, 𝑗𝑛) = (𝑗3, 𝑗𝑛) for all 𝑛, and unknown value. Therefor the rough neutrosophic multisets 

relation matrix resulted as  𝑀(ℜ5). 

 

𝑀(ℜ5) = [

(0.8, 0), (1, 1), (1, 1) (0.8,0), (1, 1), (1, 1) (0.8, 0), (1, 1), (1, 1)
(0.8, 0), (1, 1), (1, 1) (0.8, 0), (1, 1), (1, 1) (0.8, 0), (1, 1), (1, 1)
(0.8, 0), (1, 1), (1, 1) (0.8, 0), (1, 1), (1, 1) (0.8, 0), (1, 1), (1, 1)

] 

 

Case 4: Random possible value for all unknown. Therefore, the rough neutrosophic multisets relation matrix 

resulted as 𝑀(ℜ6). 

 

𝑀(ℜ6) = [

(0.9, 0), (1, 1), (1, 1) (0.8,0), (1, 1), (1, 1) (0.9, 0), (1, 1), (1, 1)
(0.8, 0), (1, 1), (1, 1) (0.7, 0), (1, 1), (1, 1) (0.8, 0), (1, 1), (1, 1)
(0.7, 0), (1, 1), (1, 1) (0.6, 0), (1, 1), (1, 1) (0.7, 0), (1, 1), (1, 1)

] 

 

Step 6: Compute the comparison matrix using the formula 𝐷ℜ
𝑖 = 𝑇ℜ

𝑖 + 𝐼ℜ
𝑖 − 𝐹ℜ

𝑖  for all 𝑖, and select the maximum 

value for comparison table. The result is shown in Table 6 and Table 7, respectively. 

 𝑗1 𝑗2 𝑗3 

ℜ1    

𝑗1 (0.9, 0) (0.9, 0) (0.9, 0) 

𝑗2 (0.8, 0) (0.8, 0) (0.8, 0) 
𝑗3 (0.7, 0) (0.7, 0) (0.7, 0) 

ℜ2    

𝑗1 (0.8, 0) (0.8, 0) (0.8, 0) 

𝑗2 (0.7, 0) (0.7, 0) (0.7, 0) 
𝑗3 (0.6, 0) (0.6, 0) (0.6, 0) 

ℜ3    

𝑗1 (0.7, 0) (0.7, 0) (0.7, 0) 

𝑗2 (0.8, 0) (0.8, 0) (0.8, 0) 
𝑗3 (0.9, 0) (0.9, 0) (0.9, 0) 

ℜ4    

𝑗1 (0.6, 0) (0.6, 0) (0.6, 0) 

𝑗2 (0.7, 0) (0.7, 0) (0.7, 0) 
𝑗3 (0.8, 0) (0.8, 0) (0.8, 0) 

ℜ5    

𝑗1 (0.8, 0) (0.8, 0) (0.8, 0) 

𝑗2 (0.8, 0) (0.8, 0) (0.8, 0) 
𝑗3 (0.8, 0) (0.8, 0) (0.8, 0) 

ℜ6    

𝑗1 (0.9, 0) (0.8, 0) (0.9, 0) 

𝑗2 (0.8, 0) (0.7, 0) (0.8, 0) 
𝑗3 (0.7, 0) (0.6, 0) (0.7, 0) 

Table 6: Comparison matrix of rough neutrosophic multi relation ℜ. 
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𝐽 𝑗1 𝑗2 𝑗3 

𝐽1    

𝑗1 0.9 0.9 0.9 

𝑗2 0.8 0.8 0.8 

𝑗3 0.7 0.7 0.7 

𝐽2    

𝑗1 0.8 0.8 0.8 

𝑗2 0.7 0.7 0.7 

𝑗3 0.6 0.6 0.6 

𝐽3    

𝑗1 0.7 0.7 0.7 

𝑗2 0.8 0.8 0.8 

𝑗3 0.9 0.9 0.9 
𝐽4    

𝑗1 0.6 0.6 0.6 

𝑗2 0.7 0.7 0.7 

𝑗3 0.8 0.8 0.8 

𝐽5    

𝑗1 0.8 0.8 0.8 

𝑗2 0.8 0.8 0.8 

𝑗3 0.8 0.8 0.8 

𝐽6    

𝑗1 0.9 0.8 0.9 

𝑗2 0.8 0.7 0.8 

𝑗3 0.7 0.6 0.7 

Table 7: Comparison table for rough neutrosophic multisets, J 

 

Step 7: Next we compute the row-sum, column-sum, and the score for all cases as shown in Table 8.  

𝐽 Row sum Column sum Score 

𝑱𝟏    

𝑗1 2.7 2.4 0.3 

𝑗2 2.4 2.4 0 

𝑗3 2.1 2.4 -0.3 

𝑱𝟐    

𝑗1 2.4 2.1 0.3 

𝑗2 2.1 2.1 0 

𝑗3 1.8 2.1 -0.3 

𝑱𝟑    

𝑗1 2.1 2.4 -0.3 

𝑗2 2.4 2.4 0 

𝑗3 2.7 2.4 0.3 

𝑱𝟒    

𝑗1 1.8 2.1 -0.3 

𝑗2 2.1 2.1 0 

𝑗3 2.4 2.1 0.3 

𝑱𝟓    

𝑗1 2.4 2.4 0 

𝑗2 2.4 2.4 0 

𝑗3 2.4 2.4 0 

𝑱𝟔    

𝑗1 2.6 2.4 0.2 

𝑗2 2.3 2.1 0.2 

𝑗3 2.0 2.4 -0.4 

Table 8: Score of three jeans for all cases. 

 

The relation of quality of jeans in shop G is successfully approximate by using rough neutrosophic multisets 
relation. Jean type 𝑗1 has the highest score of 0.3 for case 1, jean type 𝑗3 has the highest score of 0.3 for case 2, 
neither choose a jean or not for case 3, and jeans type 𝑗1 and 𝑗2 have a highest score of 0.2 for case 4. The 
different selection of jeans has resulted in different cases. From the scoring perspective, the highest value for 
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each unknown will resulted in the highest possibility to select the subject. Besides that, it cannot take the same 
possible values for each unknown at the same time because the score result will be equal to zero (case 3). 

Based on the result, the customers should purchase the jeans of type 𝑗1 in the shop G and the manager should 
sell more jeans of type 𝑗1. 

 

Conclusion 

The successful discussion of rough neutrosophic multisets relation with application in marketing strategy 
is obtained in this paper. Firstly, this paper is defined the rough neutrosophic multisets relation with their 

properties and operations such as max, min, the composition of two rough neutrosophic multisets, inverse 
rough neutrosophic multisets, and symmetry, reflexive and transitive of rough neutrosophic multisets. The 

approximation set boundary of rough neutrosophic multisets was applied for rough neutrosophic multisets 
relation. This relation theory is useful to apply in marketing strategy problem by getting the real relation of 

goods sold in the market. Decision matrix analysis is further conducted to get the best result. For further work, 

the relation of two universe sets can be derived as a rough neutrosophic multisets relation of two universe sets.   
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Abstract. In this  paper, we state a new class of sets and  called them fuzzy neutrosophic Alpham-closed sets, and we prove some 

theorem related to this definition. Then, we investigate the relation between fuzzy neutrosophic Alpham-closed sets, fuzzy neutrosophic 

α closed sets, fuzzy neutrosophic closed sets, fuzzy neutrosophic semi closed sets and fuzzy neutrosophic pre closed sets. On the other 

hand, some properties of the fuzzy neutrosophic Alpham-closed set are given. 
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1. Introduction:

The concept of  fuzzy sets was introduced by Zadeh in 1965 [14]. Then the fuzzy set theory are extension by 

many researchers. The concept of intutionistic fuzzy sets (IFS) was one of the extension sets by K. Atanassov in 

1983 [2, 3, 4], when fuzzy set give the digree of membership of an element in the sets, the intuitionistic fuzzy 

sets give a degree of membership and a degree of non-membership. Then, several researches were conducted on 

the generalizations of the notion of intuitionistic fuzzy sets, one of them was Floretin Smarandache in 2010 [7] 

when he developed another membership in addition to the two memberships which was defined in intuitionistic 

fuzzy sets and called it neutrosophic set.  

The concept of neutrosophic sets was defined with membership, non-membership and indeterminacy 

degrees. In the last year, (2017) Veereswari [13] introduced  fuzzy neutrosophic topological spaces. This concept 

is the solution and representation of the problems with various fields. 

Neutrosophic topological spaces and many applications have been investigated by Salama et al. in [ 9-

12] 

In this paper, the concept of Alpham-closed sets in double fuzzy topological spaces [6] were developed. 

We discussed some  new class of sets and called them fuzzy neutrosophic Alpham-closed sets in fuzzy 

neutrosophic topological spaces, and we also discussed some new properties and examples based of this defined 

concept. 

2. Basic definitions and terminologies

Definition 2.1 [8]: A neutrosophic topology (𝑁𝑇, for short) on a non-empty set 𝑋 is a family 𝜏 of neutrosophic 

subsets of  𝑋 satisfying the following axioms: 

i) ∅𝑁, 𝑋𝑁∈ 𝜏.
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ii) 𝐴1⋂𝐴2∈ 𝜏 for any 𝐴 1 and 𝐴 2∈ 𝜏.

iii) ⋃𝐴 j∈ 𝜏 for any {𝐴j : j ∈ J}⊆ 𝜏.

In this case the pair (𝑋, 𝜏) is called a neutrosophic topological space (𝑁𝑇𝑆, for short) in 𝑋. The elements in 𝜏 

are called neutrosophic open sets (𝑁-open sets for short) in 𝑋. A 𝑁-set is said to be neutrosophic closed set (𝑁-

closed set,  for short)  if and only if its complement is a 𝑁-open set.  

Definition  2.2 [1, 13]: Let X be a non-empty fixed set. A fuzzy  neutrosophic set ( FNS, for short), λN  is an 

object having the form λN  < x, λN (x), λN (x), 𝜈 λN (x) >: x X where the functions λN, λN, 𝜈λN : X [0, 

1] denote  the degree of membership function (namely λNx), the degree of indeterminacy function (namely λN

(x )) and the degree of  non-membership function (namely 𝜈λN x) respectively, of each set λN  we have,  0 ≤ 

λN(x) + λ(x) +  𝜈λN (x) ≤ 3, for each x X. 

Remark 2.3 [13]:  FNS λN = {< x, 𝜇 λN (x), 𝜎 λN (x), 𝜈 λN (x) >: x ∈ X} can be identified to an ordered triple <x, 𝜇 

λN, 𝜎 λN, 𝜈 λN > in  [0, 1] on X.  

Definition 2.4[13]: Let X be a non-empty set and the FNSs 

 λN and βN be in the form:       

λN = {< x, 𝜇λN (x), 𝜎λN (x), 𝜈λN (x) >: x ∈ X} and,       

βN ={< x, 𝜇βN (x), 𝜎βN (x), 𝜈βN (x) >: x ∈X} on X then: 

i. λN ⊆ βN iff  𝜇λN (x) ≤ 𝜇 βN (x), 𝜎 λN (x) ≤ 𝜎 βN (x) and 𝜈 λN (x) ≥ 𝜈 βN (x) for all x ∈ X,

ii. λN = βN iff  λN ⊆ βN and βN ⊆ λN,

iii. 1N-λN
  = {<x, 𝜈λN (x), 1 − 𝜎λN (x), 𝜇λN (x) >: x ∈X}

iv. λN ∪ βN = {< x, Max(𝜇λN (x), 𝜇βN (x)), Max(𝜎λN(x),

𝜎βN (x)), Min(𝜈λN (x), 𝜈βN (x))    >: x ∈ X},

v. λN ∩ βN = {< x, Min( 𝜇λN (x), 𝜇βN (x)), Min(𝜎λN

(x), 𝜎βN (x)), Max(𝜈λN (x), 𝜈 βN (x)) >: x ∈ X}, 

vi. 0𝑁 = < x, 0, 0, 1> and 1𝑁 = <x, 1, 1, 0>.

Definition 2.5 [13]: A Fuzzy neutrosophic topology (FNT, for short) on a non-empty set X is a family 𝜏N of 

fuzzy neutrosophic subsets in X satisfying the following axioms.       

i. 0𝑁, 1𝑁 ∈ 𝜏N,

ii. λN1 ∩ λN2 ∈ 𝜏N for any λN1, λN2 ∈ 𝜏N,

iii. ∪ λNj ∈ 𝜏N, ∀{λNj: j ∈ J} ⊆ 𝜏N.

In this case the pair (X, 𝜏N) is called fuzzy neutrosophic topological space (FNTS, for short). The

elements of 𝜏 are called fuzzy neutrosophic open sets (FN-open set, for short). The complement of FN-open sets 

in the FNTS (X, 𝜏N) are called fuzzy  neutrosophic closed sets (FN-closed set, for short). 

Definition 2.6 [13]: Let (X, 𝜏N) be FNTS and λ 𝑁 = <x, 𝜇λ 𝑁, 𝜎λ 𝑁, 𝜈λ𝑁 > be FNS in X. Then, the fuzzy 

neutrosophic closure of  λ𝑁 (FNCl, for short) and fuzzy neutrosophic interior of  λ𝑁 (FNInt, for short) are defined 

by: 
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FNCl(λ𝑁) = ∩ { βN: βN is FN-closed set in X and λ𝑁 ⊆ βN }, 

FNInt (λ𝑁) = ∪ { βN: βN is FN-open set in X and βN ⊆ λ𝑁 }.  

 Note that FNCl(λ𝑁) be FN-closed set and FNInt (λ 𝑁) be FN-open set in X. 

Further, 

i. λN be FN-closed set in X iff  FNCl (λ𝑁) = λ𝑁,

ii. λN be FN-open set in X iff  FNInt (λ𝑁) = λ𝑁.

Proposition 2.7 [13]: Let (X, 𝜏N) be FNTS and λN, βN are FNSs in X. Then, the following properties hold: 

i. FNInt(λN) ⊆ λN and λN ⊆ FNCl(λN),

ii. λN ⊆ βN ⟹ FNInt (λN) ⊆ FNInt (βN) and λN ⊆ βN ⟹ FNCl(λN) ⊆ FNCl(βN),

iii. Int(FNInt(λN)) = FNInt(λN) and FNCl(FNCl(λN)) = FNCl(λN),

iv. FNInt (λN ∩ βN) = FNInt(λN) ∩ FNInt(βN) and  FNCl(λN ∪ βN) = FNCl(λN) ∪ FNCl(βN),

v. FNInt(1𝑁) =1𝑁 and FNCl(1𝑁) = 1N,

vi. FNInt(0𝑁) = 0𝑁 and FNCl(0𝑁) = 0N.

Definition 2.8 [2]: FNS λN in FNTS (X, 𝜏N) is called: 

i. fuzzy neutrosophic semi-open set (FNS-open, for short) if λN ⊆  FNCl(FNInt(λN),

ii. fuzzy neutrosophic semi-closed set (FNS-closed, for short) if FNInt(FNcl(λN)) ⊆ λN,

iii. fuzzy neutrosophic pre-open set (FNP-open, for short) if λN ⊆   FNInt (FNCl(λN)).

iv. fuzzy neutrosophic pre-closed set (FNP-closed, for short) if FNCl(FNInt(λN)) ⊆ λN,

v. fuzzy neutrosophic α-open set (FNα-open, for short ) if λN ⊆ FNInt(FNCl(FNInt(λN))),

vi. fuzzy neutrosophic α-closed set (FNα-closed, for short)  if  FNCl(FNInt(FNCl(λN))) ⊆ λN.

3. Fuzzy Neutrosophic Alpham - Closed Sets in Fuzzy Neutrosophic Topological Spaces.

Now, the concept of fuzzy neutrosophic Alpham-closed set in fuzzy neutrosophic topological space is introduced, 

as follows: 

Definition 3.1: Fuzzy neutrosophic subset λN of FNTS (X, 𝜏N) is called fuzzy neutrosophic Alpham-closed set 

(FNαm- closed set,  for short   ) if FNint(FNcl (λN)) ⊆ UN, wherever λN ⊆ UN and UN be FNα-open set. And λN is 

said to be fuzzy neutrosophic Alpham-open set (FNαm-open set, for short) in (X, 𝜏N) if the complement 1N-λN
 be 

FNαm-closed set in (X, 𝜏N). 

Proposition 3.2: For any FNS, the following statements satisfy: 

i. Every FN-open set is FNα-open set.

ii. Every FNα-closed set is FNαm-closed set.

iii. Every FN-closed set is FNαm-closed set.

iv. Every FNS-closed set is FNαm-closed set.

Proof: 
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i. Let λ𝑁  ={<x, λN (x), 𝜎λN (x), 𝜈λN (x) >: x  X} be FN-open set in FNTS (X, 𝜏N).Then, by Definition 2.6 (ii)

we  get, 

       λN = FNInt(λN)……(1)  

 And, by  Proposition 2.7 (i) we get, λN ⊆ FNCl(λN). But, λN ⊆ FNCl(FNInt(λN)).  

 Then, FNInt(λN) ⊆ FNInt(FNCl(FNInt(λN))). 

 Therefore, by (1) we get, λN ⊆ FNInt(FNCl(FNInt(λN))). Hence, λN be FNα-open set in (X, 𝜏N). 

ii. Let λN ={<x, λN(x), 𝜎λN(x), 𝜈λN(x) >: x  X } be FNα-closed set in FNTS (X, 𝜏N).

Then, FNCl(FNInt(FNCl(λN))) ⊆ λN.

Now, let βN be FN-open set such that, λN⊆ βN.

Since, βN be FN-open set then, is FNα-open set by (i).Then, FNInt(FNCl(λN)) ⊆ FNInt(λN) ⊆ λN ⊆ βN.

Therefore, FNInt(FNCl(λN)) ⊆ βN.

Hence, λN  be FNαm- closed set in (X, 𝜏N).

iii. Let λN  = {< x, λN(x), 𝜎λN(x), 𝜈λN(x) >: x  X } is FN-closed set in

 FNTS (X, 𝜏N).Then, by Definition 2.6 (i). We get, λN = FNcl(λN).... (1). 

 And, by Proposition 2.7 (i). We get, FNint(λN) ⊆ λN……(2). But,       

 FNint(FNcl(λN)) ⊆ FNcl(λN).Then,  by (1). We get,       

 FNint(FNcl(λN) ⊆ λN. Now, let βN is FN-open set such that, λN ⊆ UN. By, Proposition 3.2 (i). If, βN is FN- 

   open set. Then, is FNα-open set. Then, FNint(FNcl(λN) ⊆ λN⊆βN. Therefore,  FNint(FNcl(λN)) ⊆ βN. 

 Hence, λN is FNαm-closed set in (X, 𝜏N). 

iv. Let λN ={<x, λN(x), 𝜎λN(x), 𝜈λN(x) >:x  X } be FNS-closed set in FNTS (X, 𝜏N).

Then, FNInt(FNCl(λN)) ⊆λN.

Now, let βN be FN-open set such that, λN⊆ βN

Since, βN be FN-open set then, is FNα-open set, by (i)

Then, FNInt(FNCl (λN)) ⊆ λN ⊆ βN.

Therefore, FNInt(FNCl (λN)) ⊆ βN.

Hence, λN be FNαm- closed set in (X, 𝜏N).

Remark 3.3: The converse of  Proposition 3.2 is not true in general and we can show it by the following 

examples: 

Example 3.4: 

i. Let X={x} define FNSs λN and βN in X as  follows:

λN ={<x, 0.7, 0.6, 0.5>: x  X }, βN ={<x, 0.8, 0.9, 0.4>:

x  X }.

And the family 𝜏N = {0N, 1N, λN, βN } be FNT such that,  1N-𝜏N ={1N, 0N, <x, 0.5, 0.4, 0.7>, <x, 0.4, 0.1, 0.8>}.

Now if , 
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N = {<x, 0.8, 0.6, 0.5 >: x  X }.  

Then, FNInt( N) ={<x, 0.7, 0.6, 0.5>: x  X }, FNCl(FNInt( N)) = 1N,and  FNInt(FNCl(FNInt( N))) =1N. 

Therefore, N ⊆ FNInt(FNCl(FNInt( N))). 

Hence, N be FNα-open set. But, not FN-open set. 

ii. Let X={x} define FNSs λN, βN, ƞN  and  ΨN in X as  follows:

λN = {<x, 1, 0.5, 0.7>: x  X}, βN = {<x, 0, 0.9, 0.2>: x    X }, 

ƞN = {<x, 1, 0.9, 0.2>: x  X } and ΨN = {<x, 0, 0.5, 0.7>: x  X }    

And the family 𝜏N ={0N, 1N, λN, βN,  ƞN, ΨN } be FNT.such that, 1N-𝜏N ={1N, 0N, <x, 0.7, 0.5, 1 >, <x, 0.2, 0.1, 0 >, 

<x, 0.2, 0.1,1 >, <x, 0.7, 0.5, 0 >}  

Now if, N = {<x, 0, 0.4, 0.8>: x  X } and UN = {<x, 0, 0.5, 0.7>: x  X}.  

Where, UN be FN-open set such that, N ⊆ UN.  

Since,UN be FN-open set then, is FNα-open set by Proposition 3.2 (i).  

Then, FNCl N) ={<x, 0.7, 0.5, 0>: x  X }and FNInt(FNCl( N)) ={<x, 0, 0.5, 0.7>: x  X }. 

Therefore, FNInt(FNCl( N)) ⊆ UN..  

 Hence, N  be FNαm- closed set. 

 But, FNCl( N) ={<x, 0.7, 0.5,  0>: x  X },   

FNInt(FNCl( N)) ={<x, 0, 0.5, 0.7>: x  X } and  

FNCl(FNInt(FNCl( N))) ={<x, 0.7, 0.5, 0>: x  X }  

Therefore, FNCl(FNInt(FNCl( N)))  N. Hence, N be not FNα- closed set. 

iii. Take, the example which defined in ii. Then, we can see N
 be FNαm-closed set. But, not FN-closed set.

Take again, the example which defined in ii. Then, N
 be FNαm-closed set. But, not FNS-closed set. 

Remark 3.5: The relation between FNP-closed sets and FNαm- closed sets are independent and we can show it 

by the following examples. 

Example 3.6: (1) Let X={x} define FNSs λN and βN in X as  follows: 

λN = {<x, 0.1, 0.2, 0.4>: x  X }, βN = {<x, 0.7, 0.5, 0.2>: x  X }, 

And, the family 𝜏N ={0N, 1N, λN, βN } be FNT such that, 1N-𝜏N ={1N, 0N, <x, 0.4, 0.8, 0.1>, <x, 0.2, 0.5, 0.7>}.   

Now if, N = {<x, 0.1, 0.3, 0.4>: x  X }and 

UN = {<x, 0.7, 0.5, 0.2>: x  X }where, UN be FN-open set such that, N ⊆ UN. 

Since, UN be FN-open set then, is FNα-open set by Proposition 3.2 (i) 

Then, FNCl ( N) ={<x, 0.4, 0.8, 0.1>: x  X }and  

FNInt(FNCl( N))={<x, 0.1, 0.2, 0.4>: x  X }.Therefore, FNInt(FNCl( N)) ⊆ UN. 

Hence, N be FNαm- closed set. 

But, FNInt( N) ={<x, 0.1, 0.2, 0.4>: x  X },  

FNCl(FNInt ( N)) = {<x, 0.4, 0.8, 0.1>: x  X }.Therefore, FNCl(FNInt ( N))  N.  

Hence, N be not FNP-closed set. 

       (2) Let X={a, b} define FNS λN in X as follows: 

λN = <x, (a\0.5, b\0.5) , (a\0.5, b\0.5) , (a\0.4, b\0.5) >. And the family 𝜏N ={0N, 1N, λN } be FNT. 
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Such that, 1N-𝜏N = {1N, 0N, <x, , (a\0.4, b\0.5),  (a\0.5, b\0.5) , (a\0.5, b\0.5) >}. 

Now if, N = <x, (a\0.5, b\0.4) , (a\0.5, b\0.5) , (a\0.6, b\0.5) > And, UN = λN be FN-open set such that, N  UN. 

Since, UN be FN-open set then, is FNα-open set by Proposition 3.2 (i) 

Then, FNInt ( N) = 0N and FNCl(FNInt( N)) = 0N. 

Therefore, FNCl(FNInt ( N))   N. Hence, N be FNP-closed set. 

But, FNCl ( N) = 1N and FNInt(FNCl( N)) = 1N. 

Therefore, FNInt(FNCl( N))  UN. Hence, N be not FNαm- closed set. 

Proposition 3.7: If λN be FNαm- closed set and λN ⊆ ƞN ⊆ FNInt(FNCl(λN)), Then, ƞN be FNαm- closed set. 

Proof: Let λN ={<x, λN (x), 𝜎λN (x), 𝜈λN (x) >: x  X} be FNαm- closed set such that,λN ⊆ ƞN ⊆ FNInt(FNCl(λN)). 

Now let βN be FNα- open set such that, ƞN⊆ βN. 

Since, λN be FNαm-closed set then, we have    

FNInt(FNCl(λN)) ⊆ βN, where λN ⊆ βN.       

Since, λN ⊆ ƞN  and ƞN ⊆ FNInt(FNCl(λN)) we get,       

FNInt(FNCl(ƞN)) ⊆ FNInt(FNCl(FNInt(FNCl(λN)))) ⊆ FNInt(FNCl(λN)) ⊆ βN.       

Therefore, FNInt(FNCl(ƞN)) ⊆ βN. Hence, ƞN be FNαm- closed set in (X, 𝜏N). 

Proposition 3.8: Let (X, 𝜏N) be FNTS. So, the intersection of  two FNαm-closed sets be FNαm-closed set. 

Proof: Let λN and βN  are FNS-closed sets on FNTS (X, 𝜏N)   

Then,  FNInt(FNCl(λN)) ⊆ λN……(1) 

And,   FNInt(FNCl(βN)) ⊆ βN……(2) 

Consider λN  βN FNInt(FNCl(λN))  FNInt(FNCl(βN)) 

 FNInt(FNCl(λN)  FNCl(βN)) 

   FNInt(FNCl(λN  βN)). 

Therefore, FNInt(FNCl(λN  βN)) ⊆ λN  βN 

Now, let ƞN be FN-open set such that, λN  βN ⊆ ƞN. 

Since, ƞN be FN-open set then it is FNα-open set, by Proposition 3.2 (i). 

Then, FNInt(FNCl(λN  βN)) ⊆ λN  βN ⊆ ƞN.  

Therefore, FNInt(FNCl(λN  βN)) ⊆ ƞN. Hence, λN  βN be FNαm-closed set in (X, 𝜏N). 

Remark 3.9: The union of any FNαm-closed sets is not necessary to be FNαm-closed set and we can show it by 

the following example. 

Example 3.10: Take, Example 3.4 (ii)  if, 

N1 ={<x, 0.4,0.5, 1>: x  X } and N2 ={<x, 0.2, 0, 0.8>: x  X}. And UN ={<x, 1,0.5, 0.7>: x  X } 

Then, FNCl( N1) ={<x, 0.7, 0.5,1>: x  X } and FNInt(FNCl( N1) = 0N.  

Therefore, FNInt(FNCl( N1) ⊆ UN.

Hence, N1 be FNαm- closed set. 
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And, FNCl( N2) ={<x, 0.2, 0.1,0>: x  X}, FNInt(FNCl( N2)) = 0N.  

Therefore, FNInt(FNCl( N2)) ⊆ UN.  Hence, N2 be FNαm- closed set.

 Therefore, N1  N2 be not FNαm- closed set. 

Definition 3.11: Let (X, 𝜏N) be FNTS and λ𝑁 = <x, λN (x), 𝜎λN (x), 𝜈λN (x)> be FNS in X. Then, the fuzzy 

neutrosophic Alpham closure of  λ𝑁 (FNαmCl, for short)  and fuzzy neutrosophic Alpham  interior of  λ𝑁 (FNαmInt, 

for short) are defined by: 

i. FNαmCl(λ 𝑁)  = ∩{β𝑁: β𝑁 is FNαm-closed set in X and λ𝑁 ⊆ β𝑁},

ii. FNαmInt(λ 𝑁) = ∪{β𝑁: β𝑁 is FNαm-open set in X and β𝑁 ⊆ λ𝑁}.

Proposition 3.12: Let (X, 𝜏N) be FNTS and λN, βN are FNSs in X. Then the following properties hold: 

i. FNαmCl(0𝑁) = 0N and FNαmCl (1𝑁) =1𝑁,

ii. λN ⊆ FNαmCl(λN),

iii. If λN ⊆ βN, then FNαmCl(λN) ⊆ FNαmCl(βN),

iv. λN be FNαm-closed set iff  λ𝑁 = FNαmCl (λ𝑁),

v. FNαmCl(λN) = FNαmCl(FNαmCl(λN)).

 Proof: 

i. by  Definition 3.11 (i) we get,

FNαmCl(0𝑁) = ∩ {β𝑁: β𝑁 is FNαm-closed set in X and 0𝑁 ⊆ β𝑁 } = 0𝑁. 

 And,  

FNαmCl(1𝑁) = ∩ {β𝑁: β𝑁 is FNαm-closed set in X and 1𝑁 ⊆ β𝑁 } =1𝑁.  

ii. λN ⊆ ∩ {β𝑁: β𝑁 is FNαm-closed set in X and  λN ⊆ β𝑁 } = FNαmCl (λN).

iii. Suppose that λN ⊆ β𝑁 then,

∩{β𝑁: β𝑁 is FNαm-closed set in X and λN ⊆ β𝑁 }  ⊆ ∩{ ƞN: ƞN is FNαm-closed set in X and

β𝑁 ⊆ ƞN }. Therefore, FNαmCl(λN) ⊆ FNαmCl(βN).

iv. If, λN be FNαm-closed set, then

FNαmCl (λN) = ∩{β𝑁: β𝑁 is FNαm-closed set in X and λN ⊆ β𝑁}……(1)

And, by (ii) we get, λN ⊆ FNαmCl (λN)……(2) but, λN is necessarily to be the smallest set.

Thus, λN = ∩{β𝑁: β𝑁 is FNαm-closed set in X and λN ⊆ β𝑁 },

Therefore, λ 𝑁 = FNαmCl (λ𝑁).

 Conversely; Let λN =  FNαmCl (λN) by using Definition 3.11 (i),we get, λ𝑁 be FNαm-closed set. 

v. Since, by (iv)  we get, λ𝑁 = FNαmCl (λ𝑁)

Then, FNαmCl (λ𝑁) = FNαmCl(FNαmCl(λ𝑁)).

Proposition 3.13: Let (X, 𝜏N) be FNTS and λN, βN are FNSs in X. Then the following properties hold: 

i. FNαmInt(0𝑁) = 0N and  FNαmInt (1𝑁) =1𝑁, 

ii. FNαmInt(λN) ⊆ λN,  

iii. If λN ⊆ βN, then FNαmInt(λN) ⊆ FNαmInt(βN), 

iv. λN be FNαm-open set iff  λ𝑁 = FNαmInt (λ𝑁), 
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v. FNαmInt (λN) = FNαmInt (FNαmInt (λN)). 

Proof: 

i. by  Definition 3.11 (ii) we get,

FNαmInt(0𝑁) = ∪{β𝑁: β𝑁 is FNαm-open set in X and β𝑁 ⊆ 0𝑁} = 0𝑁,

And, FNαmInt(1𝑁) = ∪{β𝑁: β𝑁 is FNαm-open set in X and β𝑁 ⊆ 1𝑁} =1𝑁.

ii. Follows from Definition 3.11 (ii).

iii. FNαmInt(λ 𝑁) = ∪{β𝑁: β𝑁 is FNαm-open set in X and β𝑁 ⊆ λ𝑁}.Since, λ𝑁 ⊆ β𝑁 then,

∪{β𝑁: β𝑁 is FNαm-open set in X and β𝑁 ⊆ λ𝑁}⊆∪{ ƞN: ƞN is FNαm-open set in X and ƞN ⊆ β𝑁 }

Therefore, FNαmInt(λN) ⊆ FNαmInt(βN).

iv. We must proof that, FNαmInt(λ𝑁) ⊆ λ𝑁  and λ𝑁  ⊆ FNαmInt(λ𝑁).

Suppose that λ𝑁 be FNαm-open set in X.        

Then, FNαmInt(λ𝑁) =  ∪{β𝑁: β𝑁 is FNαm-open set in X and β𝑁 ⊆ λ𝑁}.        

by using (ii) we get, FNαmInt(λN) ⊆ λN….(1)        

Now to proof, λN ⊆ FNαmInt(λN), we have, For all λN ⊆ λN, the FNαmInt(λN) ⊆ λN 

So, we get λN ⊆ ∪{β𝑁: β𝑁 is FNαm-open set in X and β𝑁 ⊆ λ𝑁 }= FNαmInt(λN) ……(2) 

From (1) and (2) we have, λ 𝑁 = FNαmInt (λ𝑁). 

Conversely; assume that λ 𝑁 = FNαmInt (λ𝑁) and by using  Definition 3.11 (ii) we get, λ𝑁 be FNαm-open set in X. 

v. By (iv) we get, λ𝑁 = FNαmInt(λ𝑁)

Then, FNαmInt(λ𝑁) =  FNαmInt(FNαmInt(λ𝑁)). 

Proposition 3.14: Let (X, 𝜏N) be FNTS. Then, for any 

fuzzy neutrosophic subsets λN of X. 

i. 1N- (FNαmInt(λN)) = FNαmCl(1N-λN),

ii. 1N- (FNαmCl(λN)) = FNαmInt(1N-λN).

Proof: 

i. FNαmInt(λ 𝑁) = ∪{β𝑁: β𝑁 is FNαm-open set in X and β𝑁 ⊆ λ𝑁}, by the complement we get,

1N-(FNαmInt(λ 𝑁)) = 1N- (∪{β𝑁: β𝑁 is FNαm-open set in X and β𝑁 ⊆ λ𝑁}).

So, 1N- (FNαmInt(λ 𝑁)) = ∩{ (1N-β𝑁):

(1N-β𝑁) is FNαm-closed set in X and (1N-λ𝑁) ⊆ (1N-β𝑁) }.

Now, replacing (1N-β𝑁) by ƞN we get,

1N- (FNαmInt(λ 𝑁)) = ∩{ ƞN: ƞN is FNαm-closed set in X and (1N-λ𝑁) ⊆ ƞN} = FNαmCl(1N-λN).

ii. FNαmCl(λ 𝑁) = ∩{β𝑁: β𝑁 is FNαm-closed set in X and λ𝑁 ⊆ β𝑁 }, by the complement we get,

1N-(FNαmCl(λ 𝑁)) = 1N- (∩{β𝑁: β𝑁 is FNαm-closed set in X and λ𝑁 ⊆ β𝑁 }).

So, 1N- (FNαmCl(λ 𝑁)) = ∪{(1N-β𝑁): (1N-β𝑁) is FNαm-open set in X and

(1N-β𝑁) ⊆(1N- λ𝑁)}. Again replacing (1N-β𝑁) by ƞN we get,

1N- (FNαmCl(λ 𝑁)) = ∪{ ƞN: ƞN is FNαm-open set in X and ƞN ⊆(1N-λ𝑁)}= FNαmint(1N-λN).

Proposition 3.15: Fuzzy neutrosophic interior of FN-closed set be FNαm-closed set. 
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proof:    Let λN ={<x, λN(x), 𝜎λN(x), 𝜈λN(x) >:x X} be FN-closed set in FNTS (X, 𝜏N).Then, by Definition  2.6 

(i)  we get,  λN = FNCl(λN). So, FNInt(λN) = FNInt(FNCl(λN))……(1),  

 And, by  Proposition 2.7 (i)  we get, 

FNInt(λN)  λN ……(2) 

From (1) and (2) we get, FNInt(FNCl(λN))  λN 

Now, let βN be FN-open set such that, λN⊆ βN. 

Since, βN be FN-open set, then βN is FNα-open set by Proposition 3.2 (i)  

Therefore, FNInt(FNCl(λN)) ⊆ βN. Hence, λN be FNαm-closed set in (X, 𝜏N). 

Remark 3.16: The relationship between different sets in FNTS can be showing in the next diagram and the 

converse is not true in general. 

FNα-closed set     FN-closed set   FNS-closed set 

FNαm-closed set 

FNP-closed set 

Diagram 1 

Conclusion  

In this paper, the new concept of a new class of sets and  called them fuzzy neutrosophic Alpham-closed sets. we 

investigated the relation between fuzzy neutrosophic Alpham-closed sets, fuzzy neutrosophic α closed sets, fuzzy 

neutrosophic closed sets, fuzzy neutrosophic semi closed sets and fuzzy neutrosophic pre closed sets with some properties.  
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Abstract. In this paper, neutrosophic crisp bi-topological spaces, new types of open and closed sets in neutrosophic crisp bi-
topological spaces, the closure and interior neutrosophic crisp set and a new concept of open and closed sets are introduced. 
The basic properties of these types of open and closed sets and their properties are studied. 

Keywords: Neutrosophic crisp bi-topological spaces, neutrosophic crisp bi-open set, neutrosophic crisp bi-closed set, neutrosophic 
crisp S-open sets and neutrosophic crisp S-closed.

1. Introduction

Smarandache [1, 2] proposed a new branch of philosophy, called “Neutrosophy”. From neu-
trosophy, Smarandache [1, 2, 3, 4] defined neutrosophic set. Neutrosophic set consists of 
three independent components T, I, and F which represent the membership, indeterminacy, 
and non membership values respectively. T, I, and F assumes the values from  the non-standard 
unit interval]-0,1+[.  Smarandache [1, 2] made the foundation of neutrosophic logic which 
generalizes fuzzy logic [5] and intuitionistic fuzzy logic [6]. Salama, Smarandache proposed 
the Neutrosophic Crisp Set Theory [16]. 

Alblowi, Salama and M. Eisa [7, 8] defined studied on neutrosophic sets and defined normal 
neutrosophic set, convex set, the concept of α-cut and neutrosophic ideals. Hanafy, Salama 
and Mahfouz [9] considered some possible definitions for basic concepts of the Neutrosophic 
Crisp Data  And Its Operations.  

Salama and Alblowi [10] defined neutrosophic topological spaces and established some of its 
properties. Salama and Alblowi 11] defined generalized neutrosophic set and defined 
generalized neutrosophic topological spaces. In the same study, Salama and Alblowi [11] es-
tablished some properties of generalized neutrosophic topological spaces. Salama and 
Elagamy [12] introduced the notion of filters on neutrosophic sets and studied several relations 
between different neutrosophic filters and neutrosophic topologies. Salama and Smarandache 
[13] studied several relations between different neutrosophic crisp filters and neutroso-
phic topologies. 

Salama, Smarandache and Kroumov [14] generalized the crisp topological spaces to the no-
tion of neutrosophic crisp topological space. In the same study, Salama, Smarandache and 
Kroumov [14] introduced the definitions of neutrosophic crisp continuous function and neu-
trosophic crisp compact spaces. 

In this paper we introduce the concept of neutrosophic crisp bi-topological spaces as generali-
zation of neutrosophic crisp topological spaces. We introduce few new types of open and 
closed sets as neutrosophic crisp bi-open sets, neutrosophic crisp bi-closed sets, neutrosophic 
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crisp S-open sets and neutrosophic crisp S-closed sets. We investigate the properties of these 
new four types of neutrosophic crisp sets. 

Rest of the paper is organized as follows: Section 2 presents preliminaries of neutrosophic 
crisp set, neutrosophic crisp topology. Section 3 presents Neutrosophic crisp bi-topological 
spaces. Section 4 devotes the closure and the interior via neutrosophic crisp bi-open sets (Bi-
NCOS) and neutrosophic crisp bi-closed (Bi-NCCS). Section 5 devotes the neutrosophic crisp 
S-open sets (S-NCOS) and neutrosophic crisp S-closed sets (S-NCOS). Section r presents 
conclusion of the paper. 

2. Preliminaries Of Neutrosophic Crisp Sets:

 Definition 2.1. [14] Let X be a non-empty fixed set. A neutrosophic crisp set (NCS) A is 
an object having the form 1 2 3 { ,  ,  },  A A A A where 1 2 3,   and  A A A are subsets of X  satisfy-

ing 1 2 1 3 2 1     ,        and     .A A A A A A        

Definition 2.2. [14, 15]  Types of NCSs   and  N NX in X

1. N  may be defined in many ways as a N CS as follows: 

 

 
 
 

1. , , or

2. , , or

3. , , or

N

N

N

X

X X

X

  

 

  







 4. , , .N   
2. NX may be defined in many ways as a NCS, as follows: 

 

 
 
 

1. , , or

2. , , or

3. , , .

N

N

N

X X

X X X

X X X X

 









Definition 2.3. [14] A neutrosophic set A is a subset of a neutrosophic set B denoted by 
 A B  , may be defined as: 

1 1 2 2 3 3

1 1 2 2 3 3

1.   , .

2.   , .

A B A B A B and B A

A B A B B A and B A

    

    

Definition 2.4. [14] Let X be a non-empty set, and the NCSs A  and B  in the form 

1 2 3 1 2 3  { ,  ,  },    { ,  ,  }. A A A A B B B B  Then: 

1. A B  may be defined in two ways:

1 1 2 2 3 3

1 1 2 2 3 3

i)     (  ,   ,   )

ii)     (  ,   ,   ).

A B A B A B A B

A B A B A B A B





   

   

2. A B may be defined in two ways as a N CSs.

1 1 2 2 3 3i)     ( ,   ,   )

ii)     ( 1  1,  2  2,  3  3).

A B A B A B A B

A B A B A B A B




   

   

Definition 2.5. [14] A neutrosophic crisp topology (NCT) on a non-empty set X  is a fami-
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ly   of  neutrosophic crisp subsets in X  satisfying the following axioms:

1 2 1 2

1. , .

2. ,  for any and .

3. , { : } .

N N

j j

X

A A A A

A A j J

 

 
    





 

The pair (X, )  is said to be a neutrosophic crisp topological space (NCTS) in X, a set of 
elements in Γ is said to be a neutrosophic crisp open set (NCOS), neutrosophic crisp set F is 
closed (NCCS) if and only if its complement cF is an open neutrosophic crisp set. 

Definition 2.6. [14] Let X be a non-empty set, and the NCS A in the form 1 2 3  { ,  ,  }A A A A . 

Then cA  may be defined in three ways as an N CS, as follows: 

1 2 3

3 2 1

3 2 1

) , , or

) , , or

) , , .

c c c c

c

c c

i A A A A

ii A A A A

iii A A A A

 

 

 

3. Neutrosophic Crisp Bi-Topological Space

In this section, we introduce neutrosophic bi-topological crisp spaces. Moreover we intro-
duce new types of open and closed sets in neutrosophic bi-topological crisp spaces. 

Definition 3.1. Let 1 2,  be any two neutrosophic crisp topology (NCT) on a nonempty 

set X . Then 1 2( , , )X   is a neutrosophic crisp bi-topological space (Bi-NCTS for short). 

Example  3.1. Let {1, 2,3,4},X 

1 2{ , , D, C}, { , , A, B},N N N NX X    
A {1},{2, 4},{3} , {1},{2{,{2,3} ,C B    {1},{2{,{3} .D    

Then    1 2, , ,X X  are two neutrosophic crisp spaces. Therefore  1 2, ,X   is a neutro-

sophic crisp bi-topological space (Bi-NCTS). 

Definition 3.2. Let  1 2, ,X    be a neutrosophic crisp Bi-topological space (Bi-NCTS) . 

The elements in 1 2  are said to be neutrosophic crisp bi-open sets (Bi-NCOS  for short ).  

A neutrosophic crisp set F is closed (Bi-NCCS for short ) if and only if its complement Fc is 
an neutrosophic crisp bi-open set. 

- the family of all neutrosophic crisp bi-open sets is denoted  by ( Bi-NCOS(X) ).  

- the family of all neutrosophic crisp bi-closed sets is denoted  by ( Bi-NCCS(X) ).  

Example  3.2.  In Example 3.1,  the neutrosophic crisp bi-open sets (Bi-NCOS) are : 

1 2Bi-NCOS(X)  { , , , , , }N NX A B C D     

the neutrosophic crisp bi-closed sets (Bi-NCCS) are : 

1 11 2 1 1Bi-NCCS(X)  { , , , , , }N NX A B C D    where: 1 1 {2,3,4},{1,3},{1,2, 4}A C  , 

1 {2,3,4},{1,3, 4},{1, 2} ,B  
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1 {2,3, 4},{1,3, 4},{1, 2, 4}D    

Remark  3.1. 

1) Every neutrosophic crisp open set in    1 2, ,X or X   is a neutrosophic crisp bi-

open set.

2) Every neutrosophic crisp closed set in    1 2, ,X or X   is a neutrosophic crisp bi-

closed set.

Remark 3.2. 

Every neutrosophic crisp bi-topological space  1 2, ,X    induces two neutrosophic crisp 

topological spaces as    1 2, , ,X X  .

Remark 3.3. 

If  ,X  be a neutrosophic crisp topological space then  , ,X   is a neutrosophic crisp

Bi-topological space. 

Theorem 3.1. Let  1 2, ,X    be  a neutrosophic crisp bi-topological space (Bi-NCTS).

Then, the union of two neutrosophic crisp bi-open (bi-closed) sets is not a neutrosophic 
crisp bi-open (bi-closed) set. 

The proof of the theorem 3.1 follows  from the example 3.3. 

Example 3.3. 

{1, 2,3,4},X  1 2{ , , D, C}, { , , A, B},N N N NX X    
A {3},{2,4},{1} , {1},{2},{3} ,D    {1},{2, 4},{3}C  

It is clear that    1 2, , ,X X   are neutrosophic crisp topological spaces. Therefore 

 1 2, ,X    is a neutrosophic crisp bi-topological space 

,A D  are two neutrosophic crisp bi-open sets but {1,3},{2,4},A D    is not neutro-

sophic crisp bi-open set. {1, 2,4},{1,3},{2,3,4} ,cA   {2,3,4},{1,3, 4},{1, 2, 4}cD    

are two neutrosophic crisp bi-closed sets but ,{1,3},{2, 4}c cA D X    is not a neutro-
sophic crisp bi-closed set. 

Theorem 3.2. Let   1 2, ,X   be a neutrosophic crisp bi-topological space (Bi-NCTS).

Then, the intersection of two neutrosophic crisp bi-open (bi-closed) sets is a neutrosophic 
crisp bi-open (bi-closed)  set. 

The proof of the theorem 3.2 follows  from the example 3.4 

Example 3.4. In example 3.3, ,A D are two neutrosophic crisp bi-open sets 
but  ,{2},{1,3}A D    is not a neutrosophic crisp bi-open set. 

 {1,2,4},{1,3},{2,3, 4} ,cA  
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 {2,3, 4},{1,3, 4},{1, 2,4} ,cD      are two neutrosophic crisp bi-closed sets but 

 {2, 4},{1,3},c cA D X   is not a neutrosophic crisp bi-closed set. 
4. The closure and the interior via neutrosophic crisp bi-open sets (Bi-NCOS) and

neutrosophic crisp bi-closed (Bi-NCCS) 
In this section, we use this new concept of open and closed sets in the definition of closure and interior neu-

trosophic crisp set, where we define the closure and interior neutrosophic crisp set based on these new varieties 
of open and closed neutrosophic crisp sets. Also we introduce the basic properties of closure and the interior.  

Definition 4. 1. Let  1 2, ,X    be a neutrosophic crisp bi-topological space (Bi-NCTS) 

and A is a neutrosophic crisp set. Then, the union of neutrosophic crisp bi-open sets 
containing A is called neutrosophic crisp bi-interior of A (NCBiInt(A)  for short ). 

NCBiInt(A)   {B :BA ; B is neutrosophic crisp bi-open set}. 

Theorem 4.1. Let  1 2, ,X    be neutrosophic crisp bi-topological space (Bi-NCTS), A is 

neutrosophic crisp set then: 

1. NCBiInt(A)  A.

2. NCBiInt(A)  is not neutrosophic crisp bi-open set .

Proof : 

1. It follows from the definition of NCBiInt(A) as a union of  neutrosophic crisp bi-open
sets contains A.

2. Follow from Theorem 3.2.

Theorem 4.2. Let  1 2, ,X    be a neutrosophic crisp bi-topological space (Bi-NCTS), A and 

B are neutrosophic crisp sets. Then, 

AB  NCBiInt(A)  NCBiInt(B) . 

Proof: The Proof is obvious. 

Definition 4.2.  Let  1 2, ,X    be a neutrosophic crisp bi-topological space (Bi-NCTS), A is

neutrosophic crisp set. Then, the intersection of neutrosophic crisp bi-open sets, contained 
A is called neutrosophic crisp Bi-closure of A ( NCBi-Cl(A)for short ). 

NCBi-Cl(A) {B :BA ; B is a neutrosophic bi-closed set}. 

Theorem 4. 3. Let  1 2, ,X    be a neutrosophic crisp bi-topological space (Bi-NCTS), and A 

is neutrosophic crisp set. Then 

1. A ⊆ NCBicl(A)  .

2. NCBicl(A)  is not a neutrosophic crisp bi-closed set.

Proof : 

1. It follow from the definition of  NCBicl(A) as an intersection of neutrosophic crisp bi-
closed sets, contained  in A.

2. It follows from the Theorem 3.2.
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5. The neutrosophic crisp S-open sets (S-NCOS) and neutrosophic crisp S-closed sets (S-
NCOS): 

We introduce new concept of open and closed sets in neutrosophic crisp bi-topological 
space in this section, as neutrosophic crisp  S-open sets (S-NCOS) and neutrosophic crisp S-
closed sets (S-NCCS).  Also we introduce the basic properties of this new concept of open 
and closed sets in bi-NCTS, and their relationship with neutrosophic crisp bi-open sets and 
neutrosophic crisp bi-closed sets.  

Definition 5.1. Let  1 2, ,X    be a neutrosophic crisp bi-topological space (Bi-NCTS). Then,

a subset A of space X is said to be a neutrosophic crisp S-open set (S-NCOS for short ) if 

1 2A and A  or 2 1A and A  and its  complement is said to be neutrosophic 

crisp S-closed set (S-NCCS for short ). 

* the family of all neutrosophic crisp S-open sets is denoted  by ( S-NCOS(X) ).

* the family of all neutrosophic crisp S-closed sets is denoted  by ( S-NCCS(X) ).

Example 5.1. In Example 3.1, B, D are two neutrosophic crisp S-open sets. 

Theorem 5.1  Let  1 2, ,X    be a neutrosophic crisp bi-topological space (Bi-NCTS), then 

1. Every S-NCOS  is  Bi-NCOS.

2. Every S-NCCS  is Bi-NCCS.

Proof: 

1. Let A be neutrosophic crisp S-open set ,then 1 2A and A  or 

2 1A and A   therefore A is Bi-NCOS.

2. Let A be neutrosophic crisp S-closed set,then Ac is neutrosophic crisp S-open set
therefore 1 2

c cA and A  or  2 1
c cA and A   , so Ac is Bi-NCOS

therefore A is a Bi-NCCS .

Remark 5.1. The converse of  Theorem 5.1 is not true. It is shown in example 5.2. 

Example 5.2. In any neutrosophic crisp bi-topo-logical space, ,N NX  are two neutrosophic 

crisp bi-open sets, but ,N NX are not neutrosophic crisp bi-open sets. 

Also ,N NX  are two neutrosophic crisp bi-closed sets, but ,N NX are not neutrosophic 

crisp bi-closed sets. 

Theorem 5.2. Let  1 2, ,X    be  a neutrosophic crisp bi-topological space (Bi-NCTS). Then,

the union of two neutrosophic crisp S-open (S-closed) sets is not a neutrosophic crisp S-open 
(S-closed) set. 

Proof. The proof follows from the following example  5.3. 
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Example 5.3. In example 3.4 

1{1, 2, 3, 4}, { , , A},N NX X  

2 { , , D,C}, {3},{2,4},{1} .N NX A     

 {1},{2},{3} , {1},{2, 4},{3} .D C     

It is clear that    1 2, , ,X X   are neutrosophic crisp topological spaces, therefore 

 1 2, ,X    is a neutrosophic crisp bi-topological space. 

 ,A D  are two neutrosophic crisp S-open sets but  {1,3},{2,4},A D     is not a  neu-
trosophic crisp S-open set. 

 {1,2,4},{1,3},{2,3, 4} ,cA      {2,3, 4},{1,3, 4},{1,2,4}cD   are two neutrosophic crisp 

S-closed sets but  ,{1,3},{2, 4}c cA D X   is not a neutrosophic crisp S-closed set.  

Theorem 5.3. Let  1 2, ,X    be a  neutrosophic crisp Bi-topological space (Bi-NCTS),  then

the intersection of two neutrosophic crisp S-open (S-closed) sets is not a neutrosophic crisp 
S-open (S-closed) set.  

Proof. The proof follows from the following example 5.4. 

Example5.4 In example 3.4, ,A D  are two neutrosophic crisp S-open sets 
but  ,{2},{1,3}A D    is not a neutrosophic crisp S-open set. 

 {1,2,4},{1,3},{2,3, 4} ,cA    {2,3, 4},{1,3, 4},{1,2,4}cD   are two neutrosophic crisp 

S-closed sets but  {2, 4},{1,3},c cA D X   is not a neutrosophic crisp S-closed set. 

6 Conclusion 

In this paper we have introduced neutrosophic crisp bi-topological space, neutrosophic crisp 
Bi-open, neutrosophic crisp bi-closed, neutrosophic crisp S-open, neutrosophic crisp S-open 
set’s. Also we have studied some of their basic properties and their relationship with each 
other. Finally, these new concepts are going to pave the way for new types of open and closed 
sets as neutrosophic crisp bi-α-open sets, neutrosophic crisp bi-β-open sets, neutrosophic crisp 
bi-pre-open sets, neutrosophic crisp bi-semi-open sets. 
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1. Introduction:

       Markowitz [5] first introduced the theory of mean-variance efficient portfolios and also gave his critical 
line method for finding these. He combined probability and optimization theory. Roll [2] gave an analytical 
method to find modified mean-variance efficient portfolios where he allowed short sales. Single objective 
portfolio optimization method using fuzzy decision theory, possibilistic and interval programming are given by 
Wang et. al.[7].Inuiguchi and Tanino [3] proposed a new approach to the possibilistic portfolio selection 
problem.  

       Very few authors discussed entropy based multi-objective portfolio selection method. Here entropy is 
acted as a measure of dispersal. The entropy maximization model has attracted a good deal of attention in urban 
and regional analysis as well as in other areas. Usefulness of entropy optimization models in portfolio selection 
based problems are illustrated in two well-known books ([4],[6]). 

       Zadeh [1] first introduced the concept of fuzzy set theory. Zimmermann [13] used Bellman and Zadeh’s 
[14] fuzzy decision concept. Zimmermann applied the fuzzy set theory concept with some suitable membership 
functions to solve linear programming problem with several objective functions. In traditional fuzzy sets, one 
real value   represents the truth membership function of fuzzy set defined on universe of discourse 
X. But sometimes we have problems due to uncertainty of  itself. It is very hard to find a crisp value then. 
To avoid the problem, the concept of interval valued fuzzy sets was proposed. In real life problem, we should 
consider the truth membership function supported by the evident as well as  the falsity membership function 
against by the evident. So, Atanassov ([8],[10]) introduced the intuitionistic  fuzzy sets in 1986. The 
intuitionistic fuzzy sets consider both truth and falsity membership functions. But it can only effective for 
incomplete information. Intuitionistic fuzzy sets cannot handle when we have indeterminate information and 
inconsistent information. In decision making theory, decision makers can make a decision, cannot make a 
decision or can hesitate to make a decision. We cannot use intuitionistic fuzzy sets in this situation. Then 
Neutrosophy was introduced by Smarandache [11] in 1995. Realising the difference between absolute truth and 
relative truth or between absolute falsehood and relative falsehood, Smarandache started to use non-standard 
analysis. Then he combined the non-standard analysis with  logic, set, probability theory and philosophy. 
Neutrosophic theory has various fields like Neutrosophic Set, Neutrosophic Logic, Neutrosophic Probability, 
Neutrosophic Statistics, Neutrosophic Precalculus and Neutrosophic Calculus. In neutrosophic sets we have truth 
membership, indeterminacy membership and falsity membership functions which are independent. In 
Neutrosophic logic, a proposition has a degree of truth(T), degree of indeterminacy(I) and a degree of falsity(F), 
where T,I,F are standard or non-standard subsets of  . Wang,  Smarandache,  Zhang and Sunderraman 
[12] discussed about single valued neutrosophic sets, multispace and multistructure. S. Pramanik ([15], [16]) and 
Abdel-Baset, Hezam & Smarandache ([18], [19]) used Neutrosophic theory in multi-objective linear 
programming, linear goal programming. Sahidul Islam, Tanmay Kundu [20] applied Neutrosophic optimization 
technique to solve multi- objective Reliability problem.  M. Sarkar, T. K. Roy [17] used Neutrosophic 
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optimization technique in optimization of welded beam structure. Pintu Das, T.K.Roy [9] applied Neutrosophic 
optimization technique in Riser design problem.   

      Our objective in this paper is to give a computational algorithm for solving multi-objective portfolio 
selection problem with diversification by single valued neutrosophic optimization technique. We also take 
different weights on objective functions. The models are illustrated with numerical examples.  

2. Mathematical Model:
       Suppose that a prosperous individual has an opportunity to invest an asset (i.e. a fixed amount of money) in 
n different bonds and stocks. Let x =(x1, x2,……..,xn)

T , where xj is the proportion of his assets invested in the j-
th security. The vector x is called portfolio. Clearly, a physically realizable portfolio must satisfy 

=1. The   agents are assumed to strike balance between maximizing the return and 
minimizing the risk of their investment decision. Return is quantified by the mean, and risk is characterized by 
the variance, of a portfolio assets. The return Rj for the j-th security, ( j =1,2,…,n ), is a random variable, with 
expected return rj= E(Rj). Let R = (R1, R2…… Rn)

T , r = (r1, r2…… rn)
T . The return for the portfolio is thus 

RTx= and expected return Er(x)=E(RTx)= . 
Let be the covariance matrix of a random vector R, the variance of the portfolio is Vr(x) = Var(RTx) 
=  where 

=
 =

 is the variance of Rj and  is the correlation coefficient between Rj and Ri

2.1  Portfolio Selection problem (PSP): 
The two objectives of an investor are thus to maximize the expected value of return and minimize the variance 
subject to a constraint of a Portfolio. So the Portfolio Selection Problem (PSP) is: 

 Maximize Er(x) ,       
 Minimize   Vr(x)   , 

 subject to 
=1, 

       and   ,  
Markowitz’s mean variance criterion simply states that an investor should always choose an efficient portfolio. 

2.2  Entropy: 
In physics, the word entropy has important physical implications as the amount of “disorder” of a system but in 
mathematics, we use more abstract definition. The (Shannon) entropy of a variable X is defined as 

 , where is the probabilty that X is in the state x, and  is defined as 0 if = 0. 

2.3   Portfolio Selection problem with Diversification (PSPD): 

In real life problem, we introduce another entropy objective function in problem  which is a Portfolio 
Selection Problem with Diversification (PSPD) and it is written as  

 Maximize 
 Maximize Er(x) , 
 Minimize   Vr(x) , 

 subject to 

 and 

2.4   Generalized Portfolio Selection problem with Diversification (GPSPD): 

 For generalization of the above model, an investor can construct a portfolio based on m potential market 
scenarios from an investment universe of n assets. Let 

k
jR  denotes the return of

the  asset and let denotes the portfolio return with expected return 
 and 
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 Where is the variance of  and  is the correlation coefficient between   and
(  for the k-th market scenario at the end of investment period, then Vrk(x) 
=  denote the risk for the  scenario. So Generalized Portfolio Selection Problem with 
Diversification (GPSPD) can be stated as follows: 

 Maximize 
 Maximize   Er1(x) = , 
 Maximize   Er2(x) = , 
       ……………………………, 
 Maximize   Erm(x) = , 
 Minimize   Vr1(x) = , 
 Minimize   Vr2(x) = , 
      ……………………………………, 
 Minimize   Vrm(x) =  , 

 Subject to 

3. Preliminaries:
3.1  Fuzzy Set: 

      Fuzzy set was introduced by Zadeh [1] in 1965. A fuzzy set   in a universe of discourse  is 
defined as  . Here  is a mapping which is called the membership function 
of the fuzzy set  and  is called the membership value of  in the fuzzy set . The larger   is 
the stronger the grade of membership form in  

3.2  Neutrosophic Set: 
 Let  be a universe of discourse. A neutrosophic set  in  is defined by a Truth-membership 

function , an indeterminacy-membership function  and a falsity-membership function  having 
the form , . 
Where, 

 and there is no restriction on the sum of ,  and . 
So, . 

3.3   Single valued Neutrosophic Set: 
       Let  be a universe of discourse. A single valued neutrosophic set  over  is an object with the 

form , , where  

with

3.4   Complement of Single valued Neutrosophic Set: 
      Let  be a universe of discourse. The complement of a single valued neutrosophic set  is 

denoted by c( ) and is defined by   

 , 

3.5   Union of two Single valued Neutrosophic Sets: 
The union of two single valued neutrosophic sets  and  is a single valued neutrosophic set , where 

 and 

, 

3.6   Intersection of two Single valued Neutrosophic Sets: 
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 The union of two single valued neutrosophic sets  and  is a single valued neutrosophic set , 
where  and 

, 

4. Neutrosophic Optimization Method to solve minimization type multi-objective non-linear
programming problem. 

 A minimization type multi-objective non-linear problem is of the form 
       (

We define the decision set  which is a conjunction of neutrosophic objectives and constraints and is defined 
by  

, , where 
 ,
 ,

 ,
Here  are Truth-membership function, indeterminacy-membership function  and  falsity-
membership function of neutrosophic decision set respectively. 
Now the transformed non-linear programming problem of the problem  can be written as  

 With 

 , 

5. Computational Algorithm:
Step-1:   First we convert all the objective functions of the problem  into minimization type. So the 
problem  becomes  

 Minimize   Er1(x) , 
 Minimize   Er2(x) , 

       ……………………………, 
 Minimize   Erm(x) , 
 Minimize   Vr1(x) , 
 Minimize   Vr2(x) , 

 ……………………………………, 
 Minimize   Vrm(x) , 

 Subject to 

Let us rename the above  objective functions as  respectively. Now solve 
the problem as a single objective non-linear programming problem using only one objective at a time and 
ignoring the others. These solutions are known as ideal solutions. 
Step-2:    From the results of step 1, determine the corresponding values for every objective  
at each solution derived. With the values of all objectives at each ideal solution, pay-off matrix can be 
formulated as follows: 
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 … 

 ... 
 …..  …….  …  …. 

 … 

Step-3:    For each objective   , we now find lower and upper bounds  and 
respectively for truth-membership of objectives. 

and  ,where . 
The upper and lower bounds for indeterminacy and falsity membership of objectives can be calculated as 
follows: 

 and . 
 and . 

Here  and  are predetermined real number in . 
Step-4:    We define Truth-membership function, indeterminacy-membership function and falsity-membership 
function as follows: 

( ,

( ,

( ,

Step-5:    Now by using neutrosophic optimization method, we can write the problem as: 

 Such that 

 , for 

 ,  

Again we reduce the problem  to equivalent non-linear programming problem as: 

Such that 

 , 
for 

 , 

So the problem  is reduced to equivalent non-linear programming problem as: 
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 Model-A: 

 , 




n

j
jx

1

=1 

If we take 

in problem , then it reduced to equivalent non-linear programming problem as: 
 Model-B: 

And same constraints as problem . 
Now, positive weights  reflect the decision maker’s preferences regarding the relative importance of each 
objective goal  for . 
These weights can be normalized by taking . If we take weights  for ,  for  and 

 for where ,  and 
Then the problem  becomes: 

 , 




n

j
jx

1

=1 

6. Numerical Examples

 6.1 Numerical Examples (for PSP and PSPD): 
 Let us consider the three-security problems with expected returns vector and covariance matrix 

given by 

 and 

 ,
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Let x =(x1, x2, x3)
T , where x1, x2, x3 is the proportion of an asset  invested in the 1-st, 2-nd and 3-rd security 

respectively . 

So model-  (PSP) is 

Maximize Er(x) 0.073 +0.165 +0.133 

Minimize Vr(x) 0.0152 +0.0678 +0.0294 
       +2(0.0211 +0.0197 +0.0256 ) 

 Subject to 
, 

 and  , , . 

And Model-II (PSPD) is 

Maximize En(x) )lnlnln( 332211 xxxxxx 
Maximize Er(x) 0.073 +0.165 +0.133 
Minimize Vr(x) 0.0152 +0.0678 +0.0294 

       +2(0.0211 +0.0197 +0.0256 ) 
 subject to  

, 
 and , , . 

 Converting problem into minimization problem, we have 

Minimize En(x)  )lnlnln( 332211 xxxxxx 
Minimize Er(x) (0.073 +0.165 +0.133 )
Minimize Vr(x) 0.0152 +0.0678 +0.0294 

       +2(0.0211 +0.0197 +0.0256 ) 
 subject to  

, 
 and , , . 

Here 
, 

, 

, 
, 

, 

   We take  in all the examples which are considered in this paper. 

So optimal solutions for model-  (PSP) and Model-II (PSPD) are given below (Table-1): 
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 Model 
*
1x

*
2x  

*
3x Er(x*) Vr(x*)  En(x*) 

 Model- I 
 (PSP) ___ 

Model- II 
 (PSPD) 

Table-1: Optimal solutions of Model-I and Model-II. 

We see that model-I has one variable  with zero value whereas there is no non-zero value of  , ,  in 

Model-II. Here entropy is acted as a measure of dispersal of assets investment with small changes of Er(x), 
Vr(x). If an investor wishes to distribute his asset in various bonds, the PSPD (Model-II) will be more realistic 
for him.     

Comparison of  Model-A & Model-B are given below (Table-2): 

Model 
 *
1x

 *
2x  

 *
3x Er(x*) Vr(x*) En(x*) 

Model-A 0.717 0 0.528 0.053 0.285 0.662 0.139 0.03 0.787 

Model-B 0.717 0 0 0.053 0.285 0.662 0.139 0.03 0.787 

Table-2: Optimal solutions of Model-A and Model-B. 

In Model-A (where we maximize γ), we see that there is an indeterminacy but in Model-B (where we minimize 
γ), there is no indeterminacy condition. So we can conclude that Model-B is no longer neutrosophic set, it be-
comes intuitionistic set. The result is only for this particular model which we considered in this paper. We verify 
this by taking different problems of Portfolio model and we get same results except the value of γ in each prob-
lem. In Model-A, we have positive value of γ and in Model-B we get γ as 0. 

For using different weights, optimal solution of Model-II is given below (Table-3): 

 Weights 
*
1x

*
2x  

*
3x Er(x*) Vr(x*)  En(x*) Type 

we

wv

w 
0.05328 0.28499 0.66173 0.13892 0.03011 0.78721  I 

we

wv 0.17 
w 

0.109 0.16616 0.72484 0.13178 0.02754 0.77307  II 

we

wv

w = 0.4 
0 0.47698 0.52302 0.14826 0.03624 0.69209  III 

Table-3: Optimal solutions of Model-II . 

Here, results have been presented for model-II with the different weights to the objectives.  Types-I, II and III , 
give respectively, the results with equal importance of the objectives, more importance of the expected return 
and more importance of the risk. 
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6.2 Numerical example of GPSPD : 

 Consider the three-security problems with expected returns vector and covariance matrix given by 

 (0.073, 0.165, 0.133)  and 

 ,

 (0.104, 0.187, 0.077)  and 
 ,
 ,

 (0.082, 0.106, 0.128)  and 
 ,
 ,

So the optimal solutions of  GPSPD is 

 x1= 0.08699 ,  x2 = 0.54754,  x3 = 0.36548, 
 Er1(x) = 0.1453,  Er2(x)= 0.139578,  
 Er3(x) = 0.111953 
 Vr1(x) = 0.0378765, Vr2(x)= 0.028769, 
 Vr3(x) = 0.0395095, En(x) =0.910089.  

For using different weights, optimal solution of  GPSPD are given below (Table-4): 

Weights Er1(x
*) Er2(x

*) Er3(x
*) Vr1(x

*) Vr2(x
*) Vr3(x

*) En(x*) Type 

we1= we2 = we3 = 
wv1 = wv2 = wv3 = 

w=1/7 
0.1453 0.13958 0.11195 0.03788 0.02877 0.03951 0.91009 I 

we1= we2 = we3 = 
0.04, 

wv1 = wv2 =wv3 

=0.14, 
w =0.46 

0.14475 0.13728 0.11248 0.03702 0.02948 0.03856 0.91493 II 

we1=we2=we3

=0.12, 
wv1=wv3=0.1, 

wv2 =0.03 
w=0.41

0.14538 0.13992 0.11187 0.03801 0.02867 0.03965 0.9092 III 

we1= we2= 0.15 
we3 = 0.06, 

wv1 = wv2 =wv3

=0.09, 
w =0.37 

0.14552 0.1405 0.11174 0.03823 0.02851 0.0399 0.90759 IV 

Table-4:Optimal solutions of  GPSPD. 
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Here, results have been presented with the different weights to the objectives.  Types-I, II, III and IV give, 
respectively, the results with equal importance of the objectives, more importance of the expected returns, more 
importance of the anyone expected return say Er3(x

*) and more importance of the any  one risk  say Vr3(x
*).  

We also consider the condition if we do not consider falsity and indeterminacy membership functions in 
objective function. We see that the result remains same except the value of  (truth membership function). 

7. Conclusion:

In this paper, we consider a general application of portfolio selection problem in fuzzy environment. We first 
consider a multi-objective Portfolio Selection model and then we added another entropy objective function and 
next we generalized the model. Neutrosophic optimization technique is used to solve the problems. We also take 
different weights on objective functions. The models are illustrated with numerical examples. The method 
presented in the paper is quite general and can be applied to other areas of Operation Research and Engineering 
Sciences. 
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Abstract.Neutrosophic cognitive maps and its application in decision
searchers and practitioners alike.PEST (Political, Economic, Social and Technological), analysis is a prec
with the main functions of the identification of the environment within which and organization or project the operates and pr
viding data and information for enabling the organization to make predictions about new situations and circumstances
paper, a new model PEST analysis for food industry
proposed framework is composed of four
PEST factors, calculate centrality measures and
environment analysis. Our approach allows
analysis. Further works will concentrate exten

Keywords:PEST, Neutrosophy, Neutrosophic Cognitive

1 Introduction 

PEST (Political, Economic, Social and Technological)
business or project situation [1]. If 
Economic, Socio-cultural, Technological, En
tive approach to the measurement of interrelation
Fuzzy cognitive maps (FCM) is a tool for
just numeric ones therefore  relationship of two events should be linear
nate and inconsistent information, while fuzzy sets and intuitionistic fuzzy sets
[4]. 
Neutrosophic cognitive maps (NCM)
concept of fuzzy cognitive maps fails to deal with the indeterminate relation
introduced as a generalization of the fuzzy logic
sophic components: 

T is the degree of truth, F the degree of falsehood, and I the degree of indeterminacy.
was introduced by F. Smarandache who introduced the degree of
[9]. 
A neutrosophic matrix is a matrix where the elements
neutrosophic graph is a graph in which at least one edge is a neutrosophic edge
duced in cognitive mapping it is called Neutrosophic Cognitive Map (NCM)
sophic logic to represent uncertainty and indeterminacy in cognitive maps
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ognitive maps and its application in decision making have become a topic of great importance for r
(Political, Economic, Social and Technological), analysis is a prec

of the identification of the environment within which and organization or project the operates and pr
viding data and information for enabling  the organization to make predictions about new situations and circumstances

for food industry is presented based on neutrosophic cognitive maps static analysis. The
four activities, identifying PEST factors and sub-factors, modeling
sures and factor classification andranking. A case study is presented

allowsranking of factors based in interrelation and incorporating indeterminacy in the
analysis. Further works will concentrate extending the model for incorporating scenario analysis and group decision making

PEST, Neutrosophy, Neutrosophic Cognitive Maps, Static Analysis, Food Industry.

PEST (Political, Economic, Social and Technological) analysis, is used to assess these four factors in relation to
 environment and legal factors are included it is name

cultural, Technological, Environment and Legal) analysis [2]. PEST analysis lacks a quantit
tive approach to the measurement of interrelation among factors. 
Fuzzy cognitive maps (FCM) is a tool for modeling and analyzing interrelations [3]. Connections in FCMs are

numeric ones therefore relationship of two events should be linear [4]. Neutrosophy can handle indeter
nate and inconsistent information, while fuzzy sets and intuitionistic fuzzy sets don’t describe them appropriately

(NCM) is an extension of FCM where indeterminacy is included
concept of fuzzy cognitive maps fails to deal with the indeterminate relation [7]. Neutrosophic Logic (NL) was

n of the fuzzy logic [8]. A logical proposition P is characterized by three neutr

𝑁𝐿 (𝑃)  = (𝑇, 𝐼, 𝐹) 

T is the degree of truth, F the degree of falsehood, and I the degree of indeterminacy. N
was introduced by F. Smarandache who introduced the degree of indeterminacy (I) as independent component

A neutrosophic matrix is a matrix where the elementsa =  (a୧୨)  have been replaced by elements in
neutrosophic graph is a graph in which at least one edge is a neutrosophic edge [10]. If indeterminacy is intr

ng it is called Neutrosophic Cognitive Map (NCM) [11, 12]. NCM are based on neutr
phic logic to represent uncertainty and indeterminacy in cognitive maps [13]. A NCM is a directed graph in
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making have become a topic of great importance for re-
(Political, Economic, Social and Technological), analysis is a precondition analysis 

of the identification of the environment within which and organization or project the operates and pro-
viding data and information for enabling the organization to make predictions about new situations and circumstances. In this 

is presented based on neutrosophic cognitive maps static analysis. The 
modeling interrelation among 

A case study is presented for food industry 
based in interrelation and incorporating indeterminacy in the 

scenario analysis and group decision making 

, is used to assess these four factors in relation to 
luded it is named PESTEL (Political, 

. PEST analysis lacks a quantita-

Connections in FCMs are 
Neutrosophy can handle indetermi-

describe them appropriately 

is an extension of FCM where indeterminacy is included [5, 6]. The 
Neutrosophic Logic (NL) was 

. A logical proposition P is characterized by three neutro-

 (1) 

Neutrosophic Sets (NS) 
) as independent component 

have been replaced by elements in 〈R ∪ I〉. A 
. If indeterminacy is intro-

. NCM are based on neutro-
. A NCM is a directed graph in 
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which at least one edge is an indeterminacy denoted by dotted lines [14] (Figure 1.). NCMs are generalization of 
Fuzzy Cognitive Maps [15]. Recent development on NCM have been presented for example  in the classification 
of Rheumatoid Arthritis  disease with  Dynamic Neutrosophic Cognitive Map with Bat Algorithm [16]. 

Figure 1:Neutrosophic Cognitive Map example. 

In this paper a new model PEST analysis based on neutrosophic cognitive maps is presented giving methodolog-
ical support and the possibility of dealing with interdependence, feedback and indeterminacy. Additionally the 
new approach make possible to rank and to reduce factors.   
This paper is structured as follows: Section 2 reviews some important concepts about PEST analysis framework, 
a framework for PEST analysis based on NCM static analysis is presented. Section 4 shows a case study of the 
proposed model applied to food industry. The paper ends with conclusions and further work recommendations. 

2 Preliminaries 

In this section, we first provide a brief revision PEST analysis and the interdependency of its factors. 

2.1 PEST Analysis 

PEST (Political, Economic, Social and Technological), analysis is a precondition analysis with the mains func-
tion of the identification of the environment within which and organization or project the operates and providing 
data and information for enabling  the organization to make predictions about new situations and circumstances 
[17, 18]. Factors in PEST analyzed are generally measured and evaluated independently [2] not taking into ac-
count interdependency.  In [19] a new approach based on fuzzy decision maps is presented taking into account 
ambiguity, vagueness in their interrelations 

This study presents a model to address problems encountered in the measurement and evaluation process of 
PEST taking into account interdependencies among sub-factors. The integrated structure of PESTEL sub-factors 
were modeled by NCM and quantitative analysis is developed based on static analysis making possible to rank 
and to reduce factors.  

For developing a quantitative analysis of PEST factor based on NCM a static analysis is needed. In  [5] a model 
static analysis model for NCM is presented. The result of the static analysis result is in the form of neutrosophic 
numbers a+bI, for a, b ∈ R (all real numbers), which consists in the determinate part 𝑎 and the indeterminate part 
𝑏𝐼[20] . So it can express determinate and/or indeterminate information in incomplete, uncertain, and indetermi-
nate problems.A de-neutrosophication process as proposedby Salmeron and Smarandachecould be applied final 
ranking value[21] for the PEST analysis.  

3. Proposed Framework
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Our aim is to develop and further detail aframework based on PEST and NCM[22]. The model consists of the 
followingfour phases (graphically, Figure 2). 

Figure 2:  Proposed framework for PEST analysis. 

3.1   Identifying PEST factors and sub-factors 

In this step relevant PEST factors and sub-factors are identified. PEST factors are derived from the themes: polit-
ical, economic, socio-cultural, technological factors. Identifying PEST factors and sub-factors to form a hierar-
chical structure of PEST model is the main goal.  

The model consists of three levels[2]. The first level includes the objective function that is “to analyze the food 
industry’s macro environment”. The second level contains the 4 main factors of the PEST analysis. The third 
level of the model consists of  sub-factors clustered within the main factors. 

3.2   Modeling interdependencies 

Causal interdependencies among PEST sub-factors are modeled. This step consists of the formation of NCM of 
sub-factors, according to the views of an expert orexpert’s team. 

When a set of experts (k) participates, the adjacency matrix of the collective NCM is calculated as follows: 

E = μ(Eଵ, Eଶ, … , E୩) (2) 

the operator is usually the arithmetic mean [23]. 

3.3 Calculate centrality measures 

Centrality measures are calculated[24]  with absolute values of the  NCM adjacency matrix [25]: 

1. Outdegree𝑜𝑑(𝑣௜) is the row sum of absolute values of a variable in the neutrosophic adjacency matrix.
It shows the cumulative strengths of connections (𝑐௜௝) exiting the variable.

𝑜𝑑(𝑣௜) = ∑ 𝑐௜௝
ே
௜ୀଵ  (3) 

Identifying PEST 
factors and sub-

factors

Modeling 
interdependencies

Calculate centrality 
measures

Factors classification 
and ranking
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2. Indegree𝑖𝑑(𝑣௜)  is the column sum of absolute values of a variable. It shows the cumulative strength of
variables entering the variable.

𝑖𝑑(𝑣௜) = ∑ 𝑐௝௜
ே
௜ୀଵ  (4) 

3. The centrality (total degree 𝑡𝑑(𝑣௜)), of a variable is the summation of its indegree (in-arrows) and out-
degree (out-arrows)

𝑡𝑑(𝑣௜) = 𝑜𝑑(𝑣௜) + 𝑖𝑑(𝑣௜) (5) 

3.4 Factors classification and ranking 

Factors are classified according to the following rules: 

a) Transmitter variables have a positive or indeterminacy outdegree, 𝑜𝑑(𝑣௜) and zero indegree, 𝑖𝑑(𝑣௜).

b) Receiver variables have a positive indegree or indeterminacy, 𝑖𝑑(𝑣௜)., and zero outdegree, 𝑜𝑑(𝑣௜).

c) Ordinary variables have both a non-zero indegree and. Ordinary variables can be more or less a receiver
or transmitter variables, based on the ratio of their indegrees and outdegrees.

A de-neutrosophication process gives an interval number for centrality based on max-min values of I . A neutro-
sophic value is transformed in an interval with two values, the maximum and the minimum value ∈ [0,1] . 

The contribution of a variable in a NCM can be understood by calculating its degree centrality, which shows 
how connected the variable is to other variables and what the cumulative strength of these connections are. The 
median of the extreme values as proposed by Merigo[26] is used  to give an unified  centrality value : 

𝜆([𝑎ଵ, 𝑎ଶ]) =
௔భା ௔మ

ଶ
(6) 

Then 

𝐴 > 𝐵 ⇔
௔భା ௔మ

ଶ
>

௕భା ௕మ

ଶ
 (7) 

Finally, a ranking of variables is given. 

The numerical value it used for sub-factor prioritization and/or reduction [27]. Threshold values may be set to 
the 10 % of the total sum of total degree measures for subfactor reduction. Additionally, sub-factor could be 
grouped by parent factor a to extend the analysis to political economical social and technological general factor.  

4Case Study 

This case study is a demonstrative example from real data modeled by an expert. PEST analysis identifies external 
factors which influence a specific business. In this case, we’re examining how the food industry could be affected 
by political, economic, social and technological factors. 

Public health policies are pushing the food industry to produces with lower sodium and sugar. Additionally, 
current policies push for the public to be more conscious when buying foods[28]. Political factor identified in-
clude environmental regulations, and evolving health policies. Economics factor of a country like unemployment 
rates can affect the food industry. Healthier alternatives to foods are more expensive to buy compared to fast food 
or easy-to-make meals. Economic factor identified are taxation, and consumer spending .  

Food industry is not only pushed by governmental authorities, but by consumers, as well. Social factors identi-
fied are lifestyle changes and awareness of citizen about ecological issues[29]. Technology can give a competitive 
edge. In food industry Technology is necessary to create packaging, food labels, and the production of food and 
for reaching consumers in new and easier methods[30]. As technological factor identified are online presence and 
technological access.  

Initially factors and sub-factors were identified. Figure 3 shows the hierarchical structure. 
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Figure 3: The hierarchical model of PEST in the vertical farming project. 

Interdependencies are identified and modeled using a NCM. NCM with weighs is represented in Table 1. 

P1 P2 E1 E2 S1 S2 T1 T2 

P1 0 0 0 -0.3 0 0 0 0 

P2 0 0 0 0 0 0 0.25 0 

E1 0 0 0 0.2 0 0 0 0 

E2 0 0 0 0 0 0 0 0.3 

S1 0.4 I 0 0 0 0 0.3 0 

S2 0 0 0 0 I 0 0 0 

T1 0 0 0 0.2 0 0 0 0 

T2 0 0 0 0.35 0 0 0 0 

Table 1:Neutrosophic Adjacency Matrix  

The centralities measures are calculated. Outdegree and indegree measures are presented in Table 2. 

Analyzing the food 
industry’s macro 

environment

Political

Environmental 
regulations (P1)

Health policies 
(P2)

Economic

Taxation (E1)

Consumer 
spending (E2)

Social

Lifestyle 
changes(S1)

Awareness about 
ecological issues 

(S2)

Technological

Online presence 
(T1)

Technological 
access (T2) 
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Node Id Od 

P1 0.4 0.3 

P2 I 0.25 

E1 0 0.2 

E2 1.05 0.3 

S1 I 0.7+I 

S2 0 I 

T1 0.55 0.2 

T2 0.3 0.35 

Table 2:  Centrality measures, outdegree, indegree. 

Later nodes are classified. In this case, E2 and S2 nodes are receiver. The rest of the nodes are ordinary. 

Transmitter Receiver Ordinary 

P1 X 
P2 X 
E1 X 
E2 X 
S1 X 
S2 X 
T1 X 
T2 X 

Table 3: Nodes classification 

Total degree (Eq.  5) was calculated. Results are show in Table 4. 

td 

P1 0.7 

P2 0.25+I 

E1 0.2 

E2 1.35 

S1 0.7+2I 

S2 I 

T1 0.75 

T2 0.65 
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The next step is the de-neutrosophication process as proposes by Salmeron and Smarandache
placed by both maximum and minimum values. In Table 5

Finally we work with the median of the extreme

Table 6

Graphically the result is shown in Figure 4

The ranking obtained is as follows: 

Neutrosophic Sets and Systems, V

__________________________________________________________________________________________
ga Alava, José Muñoz Murillo, Roy Barre Zambrano, María Isabel Zambrano Vélez, Maikel Le

PEST Analysis Based on Neutrosophic Cognitive Maps: A Case Study for Food Industry

Table 4: Total degree 

neutrosophication process as proposes by Salmeron and Smarandache
m and minimum values. In Table 5 are presented as interval values.

Td 

P1 0.7 

P2 [0.25, 1.25] 

E1 0.2 

E2 1.35 

S1 [0.7, 2.7] 

S2 [0, 1] 

T1 0.75 

T2 0.65 

Table 5: De-neutrosophication, total degree values 

with the median of the extreme values (Eq 6) [26]. 

Td 

P1 0.7 

P2 0.75 

E1 0.2 

E2 1.35 

S1 1.7 

S2 0.5 

T1 0.75 

T2 0.65 
Table 6: Total degree using median of the extreme values 

the result is shown in Figure 4. 

Figure 4:  Total degree measures 
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neutrosophication process as proposes by Salmeron and Smarandache[31].  I ∈[0,1] is re-
are presented as interval values. 
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𝐒𝟏 ≻ 𝐄

Lifestyle changes and Consumer spending are the top
according to its parent factor (Figure 5

Fig

Based on total centrality measure, factor
rule in current case study E1 could be eliminated
high flexibility and take into account interdepende

4. Conclusions

Food industry is affected by political, economic, social and technological factors.
address problems encountered in the measurement and evaluation process of PEST analysis
ing into account interdependencies among sub
grated structure of PEST sub-factors
static analysis. The proposed framework is co
modeling interrelation among PEST factors, calculate centrality measures, factor classification
ing.Further works will concentrate in
work is the developing a consensus framework
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Abstract: In this paper, an inventory model is developed without shortages where the production cost is inversely related to the set up cost and pro-
duction quantity. In addition, the holding cost is considered time dependent. Here impreciseness is introduced in the storage area. The objective and
constraint functions are defined by the truth (membership) degree, indeterminacy (hesitation) degree and falsity (non-membership) degree. Likewise,
a non-linear programming problem with a constraint is also considered. Then these are solved by Neutrosophic Geometric Programming Technique
for linear membership, hesitation and non-membership functions. Also the solution procedure for Neutrosophic Non-linear Programming Problem is
proposed by using additive operator and Geometric Programming method. Numerical examples are presented to illustrate the models using the proposed
procedure and the results are compared with the results obtained by other optimization techniques.

Keywords: Neutrosophic Sets, Non-linear Programming, Inventory, Additive Operator, Geometric Programming, Neutrosophic Optimization.

1 Introduction
In general, most of the classical inventory models assume that the unit production cost and the holding cost of an item are constant and independent

in nature. But these assumptions may not be true in real life. In practical situations, unit production cost may depend on the production quantity. Also
the unit holding cost may depend on the amount produced. Cheng [1, 2] used these ideas to formulate inventory models and solved them by Geometric
Programming (GP) method and obtained closed form optimal solutions. Later on, Jung and Klein [3] developed three cost minimization inventory
models: Model 1 considered demand dependent unit cost, Model 2 assumed order quantity dependent unit cost and both of demand and order quantity
dependent unit cost is considered in Model 3. All these models are then solved by GP method.

In general, GP is an effective method to solve a class of non-linear problem in comparison with other non-linear methods. The main advantage of
GP method is that in this method a complicated problem with non-linear and inequality constraints (primal problem) is converted into an equivalent
problem with linear and equality constraints (dual problem). Therefore the dual problem is easier to solve than the primal problem. GP method was
first introduced by Zener [4]. Later on, Duffin et al. [5] developed GP method for optimization problems. Kotchenberger [6] was the first Scientist
who tackled the inventory problem by GP method. After that, Lee [7] presented a profit maximizing selling price and order quantity problem where
the demand is taken as non-linear function of price with a constant elasticity and solved by GP approach. After that, Hariri and Ata [8] presented GP
approach for solving a multi-item production lot size inventory model with varying order cost. Later on, Jung and Klein [9] discussed a comparative
analysis between the total cost minimization model and the profit maximization model via GP. Then a constrained inventory model of deteriorated items
was built-up with and without trancation on the deterioration term and solved using GP method by Mandal et al. [10]. Leung [11] proposed an EPQ
model with a flexible and imperfect production process by GP approach and also established more general results using the arithmetic-geometric mean
inequality. In the recent era, Wakeel et al. [12] discussed multi-product, multi-vendors inventory models with different cases of rational function under
linear and non-linear constraints via GP method.

In many inventory models the objective and constraint goals are assumed to be known. The optimum cost in an inventory model is affected by the
restrictions on the storage area, number of orders and production cost. But, in real life, it is not always possible to predict the total cost and resources
precisely. So these may be assumed to be fuzzy in nature. In this case, the inventory problem along with the constraints may be realistically represented
formulating the model under fuzzy environment and the fuzzy model can be solved by different fuzzy programming methods.

In 1965, Zadeh [13] first introduced the concept of fuzzy set theory. Later on, Bellman and Zadeh [14] introduced fuzzy decision making process.
Then Zimmermann [15] solved multi objective linear programming problem based on fuzzy decision making process. Many researchers used fuzzy
set theory in inventory control system. Sommer [16] applied fuzzy concept to inventory model. After that, Roy and Maiti [17] studied and solved
a fuzzy EOQ model with demand dependent unit cost and limited storage capacity by GP and non-linear programming method. Mandal et al. [18]
applied GP method to solve a multi-item inventory problem with three constraints under fuzzy environment. Again, Islam and Roy [19] proposed and
solved a fuzzy production inventory model considering fuzziness in objective function, constraint goals and coefficients of the objective function and
the constraint. Later on, Sadjadi et al. [20] suggested a pricing and marketing planning model where demand and cost function depend on price and
marketing expenditure in imprecise environment and solved the problem by GP method.

In the case, where available information is not sufficient for the definition of an imprecise concept by means of a conventional fuzzy set, the concept
of an Intuitionistic Fuzzy Set (IFS) can be viewed as an alternative approach to define a fuzzy set. The IFS may represent information more abundant and
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flexible than the fuzzy set when uncertainty such as hesitancy degree is involved and hereby seems to be suitable for dealing with natural attributes of
physical phenomena in complex management situations. The IFS uses two indexes, degree of membership and degree of non-membership, to describe
the fuzziness. The degree of membership and degree of non-membership can be arbitrary satisfying the condition that the sum of the both is less than
one.

The concept of IFS was introduced as a successful generalization of the fuzzy set by Atanassov [21]. Atanassov also analysed open problems in IFS
theory in an explicit way. After that, Atanassov and Gargov [22] discussed interval valued IFS. Then Angelov [23] presented an optimization problem
in intuitionistic fuzzy environment and solved the problem by converting into a crisp one. Pramanik and Roy [24–26] applied intuitionistic fuzzy goal
programming approach to solve vector optimization problem, quality control problem and multi objective transportation problem respectively. After
that, Pramanik et al. [27] investigated bilevel programming in intuitionistic environment. Later on, Jana and Roy [28] suggested a new intuitionistic
fuzzy optimization approach for solving a multi objective intuitionistic fuzzy linear programming problem with equality and inequality constraints with
intuitionistic fuzzy goals. They also discussed the application of this approach in transportation problems. After that, Banerjee and Roy [29] considered
a stochastic inventory model with fuzzy cost components and solved by fuzzy GP and intuitionistic fuzzy GP techniques. Banerjee and Roy [30] also
analysed and solved a stochastic inventory model with deterministic constraint by fuzzy GP and intuitionistic fuzzy GP method. A constrained multi
objective inventory model of deteriorating items was solved under intuitionistic fuzzy environment by Mahapatra [31]. In recent era, Jafarian et al. [32]
proposed a process to solve multi objective non-linear programming problem under intuitionistic environment using GP method.

The IFS can only handle incomplete information. In the case of indeterminate or inconsistent information the concept of IFS becomes insufficient.
So, it cannot deal with all types of uncertainties in real life problems. In that case, Neutrosophic Set (NS) was introduced as a generalization of fuzzy
set and IFS. In 1995, Smarandache [33–35] introduced the term ’Neutrosophy’ which means knowledge of neutral thought. Neutrosophic is the deriva-
tive of neutrosophy and it includes neutrosophic set, neutrosophic probability, neutrosophic statistics, neutrosophic logic etc. NS is defined by three
independent degrees; truth (membership) degree, indeterminacy (hesitation) degree and falsity (non-membership) degree. Here all the three degrees are
standard or non-standard subsets of ]0−, 1+[.

Nowadays, NS is used in different fields of research work. Roy and Das [36] solved multi objective production planning problem by neutrosophic
linear programming approach. Banerjee et al. [37] discussed single objective linear goal programming problem in neutrosophic number environment.
In recent era, Pramanik and Banerjee [38] formulated three new neutrosophic goal programming model to solve multi objective programming problems
with neutrosophic number coefficients. Basset et al. [39, 40], S. Pramanik [41] analysed neutrosophic goal programming problem under neutrosophic
sets environment. Again, a multi objective neutrosophic optimization technique is investigated and its application to structural design is developed by
Sarker et al. [42]. Then Basset et al. [43] introduced and solved a neutrosophic linear programming model where the parameters are considered as
trapezoidal neutrosophic numbers. Again, Basset et al. [44] represented a framework to estimate different cloud services by providing a neutrosophic
multi-criteria decision analysis approach and devolved a model depending on neutrosophic Analytic Hierarchy Process (AHP) using triangular neutro-
sophic numbers and estimated the quality of cloud services.

There are several papers on decision making using NS and Single Valued Neutrosophic Sets (SVNSs) environment. Basset et al. [45] discussed
AHP decision making model under neutrosophic environment. Also, Basset et al. [46] extended AHP-SWOT analysis in neutrosophic environment.
After that, NS was introduced for decision making and evaluation method to determine the factors influencing the selection of SCM suppliers by Basset
et al. [47]. Basset et al. [48] also introduced a new neutrosophic association rule algorithm for big data analysis and discovered all of the possible
association rules and minimized the losing processes of rules. Afterwards, Mondal and Pramanik [49, 50] explained neutrosophic decision making
model for school choice and clay-brick selection respectively. The research field is then extended to neutrosophic Multi-Attribute Decision Making
(MADM) process by some researchers. Biswas et al. [51] discussed neutrosophic MADM with unknown weight information. Again, Pramanik et
al. [52] investigated the contribution of some Indian researchers to MADM in neutrosophic environment. Later on, Mondal and Pramanik [53] applied
tangent similarity measure to neutrosophic MADM process. Ye and Zhang [54] established MADM with the help of similarity measures between
SVNSs. After that, J. Ye [55] presented MADM model using a proposed form of correlation coefficient of SVNSs under neutrosophic environment.
Recently, Mondal et al. [56] developed MADM process for SVNSs using similarity measures based on hyperbolic sine functions. Moreover, Multi-
Criteria Decision Making (MCDM) approach is presented in neutrosophic environment by Zhang and Wu [57]. Mondal and Pramanik [58] extended
Multi-Criteria Group Decision Making (MCGDM) approach in neutrosophic environment. Mondal et al. [59] used hybrid binary logarithm similarity
measure to solve Multi-Attribute Group Decision Making (MAGDM) problem under SVNSs environment. Also, Biswas et al. [60] discussed MADM
using entropy based grey relational analysis method under SVNSs environment. In recent era,, Pramanik et al. [61] solved MAGDM problem using NS
cross entropy.

Rough neutrosophic sets also have been used by several investigators to solve the decision making problems. Mondal et al. [62] discussed decision
making process based on several trigonometric hamming similarity measures under rough neutrosophic environment. Recently, Pramanik et al. [63]
used trigonometric hamming similarity measures to develop MADM model under rough neutrosophic environment. Also, Mondal et al. [64] presented
MAGDM based on rough neutrosophic TOPSIS. Later on, the same authors extended MADM on rough neutrosophic variational coefficient similarity
measure [65]. After that, Mondal and Pramanik [66] proposed tri-complex rough neutrosophic similarity measure and its applications in MADM. In
recent era, Pramanik et al. [67, 68] discussed MCDM using projection and bidirectional projection measures and correlation coefficient under rough
neutrosophic environment respectively. Again, Mondal and Pramanik [69] investigated decision making approach based on some similarity measure
using interval rough neutrosophic sets. The same authors also discussed rough neutrosophic MADM using rough accuracy function [70]. Afterwards,
Pramanik and Mondal [71] investigated rough neutrosophic similarity measures and MADM. Mondal and Pramanik [72] studied rough neutrosophic
MADM based on grey relational analysis. Later on, Pramanik and Mondal [73, 74] used cotangent and cosine similarity measures under rough neu-
trosophic environment and its application in medical diagnosis. Later, Basset and Mohamed [75] proposed a general framework for dealing with
imperfectness and incompleteness using single valued neutrosophic and rough set theories.

There are some developments on neutrosophic programming method which have been applied on some real life problems. Jiang and Ye [76] defined
neutrosophic functions and numbers for optimization models. They formulated a two bar truss structure design problem and minimized its weight under
stress and stability constraints using the neutrosophic number optimization method. Later, Ye [77] applied the neutrosophic number (NN) optimization
method to a three bar planer truss structural design for minimum weight under stress and deflection constraints. Ye [78] and Ye et al. [79] developed
neutrosophic number linear and non-linear programming methods respectively. In both cases, authors made applications under NN environment.

In spite of the above developments, there are several gaps in the literature of Neutrosophic Optimization. Till now, none has demonstrated that a
non-linear Neutrosophic Optimization Problem can be reduced to a Geometric Programming Problem (GPP) with posynomial terms and solved by GP
technique. Thus the motivation of the present investigation is to develop a procedure to reduce a non-linear Neutrosophic Problem to a corresponding
GPP and then to solve it by the appropriate technique depending upon its degree of difficulty. Hence the main contributions of the present paper are the
following.
• Representation of a non-linear Neutrosophic Programming Problem to a corresponding Geometric Programming Problem with posynomial terms.
• For illustration, a virgin non-linear inventory programming problem is formulated under neutrosophic environment.
• The said Neutrosophic Problem is reduced to a GPP with zero degree of difficulty.
• Reduced GPP is now solved by three methods-(i) Fuzzy Optimization technique, (ii) Intuitionistic Optimization method and (iii) Neutrosophic Opti-
mization procedure.
• The superiority of Neutrosophic Optimization procedure is demonstrated with the help of some numerical data.
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In this paper, we formulate an inventory model along with the space constraint. The holding cost has been taken as time dependent and the production
cost has been taken as inversely related with set-up cost and production quantity. The constraint is considered here in neutrosophic environment. The
inventory model is then converted into a crisp programming problem using additive operator and Neutrosophic Optimization Technique. Finally, it has
been solved by GP method. Also a non-linear problem has been considered and solved proceeding the same procedure. At last, the numerical examples
are considered to illustrate the problems.

This research paper is organized as follows. The introduction is described in Section 1. In Section 2, the basic definitions and operations are presented.
Some notations and assumptions are made in Section 3. An inventory model is developed and solved in Section 4. The general form of Neutrosophic
Non-linear Programming problem is given in Section 5. In Section 6, a solution procedure to solve Neutrosophic Non-linear Programming problem is
described. Application of Neutrosophic Optimization Technique on a non-linear inventory model and a non-linear programming problem are illustrated
in Section 7. In Section 8, the numerical experiments are presented. Discussion on numerical experiments is presented in Section 9. The conclusions
and future research scope are described in Section 10.

2 Mathematical Preliminaries
2.1 Fuzzy Set [13]

Let X be a space of points (objects). A fuzzy set A in X is an object of the form A = {(x, µA(x)) : x ∈ X} where µA : X → [0, 1] is called the
membership function of the fuzzy set A.

2.2 Intuitionistic Fuzzy Set [21]
Let X denotes the universal set. An intuitionistic fuzzy set A in X is an object of the form A = {(x, µA(x), νA(x)) : x ∈ X} with the condition

0 < µA(x) + νA(x) < 1 ∀ x ∈ X . Here µA, νA : X → [0, 1] define the membership function and the non-membership function for every element
x in X respectively.

2.3 Neutrosophic Set [35]
Let the set X be a space of points (objects) and x ∈ X . A neutrosophic set A in X is defined by a truth (i.e., membership) function µA(x), an indeter-

minacy (i.e., hesitation) function σA(x) and a falsity (i.e., non-membership) function νA(x) and having the form A = {(x, µA(x), σA(x), νA(x)) :
x ∈ X}. Here µA(x), σA(x) and νA(x) are real standard or real non standard subset of

]
0−, 1+

[
, that is, µA, σA, νA : X →

]
0−, 1+

[
.

There is no restriction on the sum of µA(x), σA(x) and νA(x), so 0− ≤ Sup µA(x) + Sup σA(x) + Sup νA(x) ≤ 3+ ∀ x ∈ X .

2.4 Single Valued Neutrosophic Set (SVNS) [33]
Let the set X be the universe of discourse. A single valued neutrosophic set A over X is an object having the formA = {(x, µA(x), σA(x), νA(x)) :

x ∈ X}, where µA, σA, νA : X → [0, 1] with the condition 0 ≤ µA(x) + σA(x) + νA(x) ≤ 3 ∀ x ∈ X . µA(x), σA(x) and νA(x) denote the
truth degree, indeterminacy degree and falsity degree of the member x to A respectively.

2.5 Complement of SVNS [33]
The complement of a single valued neutrosophic set A is denoted by c (A) whose truth, indeterminacy and falsity functions are respectively given by

µc(A)(x) = νA(x),

σc(A)(x) = 1− σA(x),

νc(A)(x) = µA(x) for all x ∈ X.

2.6 Union of SVNS [33]
The union of two single valued neutrosophic sets A and B is a single valued neutrosophic set C, written as C = A ∪B , whose truth, indeterminacy

and falsity functions are respectively given by

µA∪B(x) = max (µA(x), µB(x)) ,

σA∪B(x) = max (σA(x), σB(x)) ,

νA∪B(x) = min (νA(x), νB(x)) for all x ∈ X.

2.7 Intersection of SVNS [33]
The intersection of two single valued neutrosophic sets A and B is a single valued neutrosophic set C, written as C = A ∩ B , whose truth,

indeterminacy and falsity functions are respectively given by

µA∩B(x) = min (µA(x), µB(x)) ,

σA∩B(x) = min (σA(x), σB(x)) ,

νA∩B(x) = max (νA(x), νB(x)) for all x ∈ X.

3 Mathematical Model
An Inventory model is developed under the following notations and assumptions:
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3.1 Notations
The inventory model is developed under the following notations:

D: Demand per unit time (Decision variable).
f(S,Q): Total production cost per cycle.
H: Holding cost per unit item, which is time depended.
I(t): Inventory level at any time, t ≥ 0.
Q: Production quantity per batch (Decision variable).
S: Set-up cost per unit time (Decision variable).
T: Cycle of length.
TAC(D,S,Q): Total average cost per unit time.
W: Total storage space area.
w0: Space area per unit quantity.

3.2 Assumptions
Following assumptions have been considered in the model:

a) The inventory system involves only one item.
b) The replenishment occurs instantaneously at infinite rate.
c) The lead time is negligible.
d) Demand rate is constant.
e) The total production cost is inversely related to set up cost(S) and production quantity(Q) i.e., f(S,Q) = bS−xQ−y , b, x, y ∈ R(> 0).
( It is a fact that modern machineries which may be costlier than the earlier ones perform better in terms of production rate, products’ quality, etc. The
cost of machineries are considered to a part of set up cost. As the high production rate reduces the unit price, set up cost may be considered to be
inversely related to the production cost. Moreover, it is well known that when the quantities are procured in lot, the per unit cost reduces with the size
of procured units, i.e., the production cost is inversely related with the procured amount.)
f) In general, holding cost is assumed to be constant. But it is more realistic if we consider the holding cost increases with time, that is, it is time
depended. Assume H = at.

4 Model Formation
In this model the inventory level gradually decreases to meet the demand (See Fig. 1). Therefore the differential equation describing I(t) at time t

over the time period (0,T) is given by
dI(t)

dt
= −D, 0 6 t 6 T (1)

with the initial and boundary conditions I(0) = Q and I(T ) = 0.

Figure 1: Crisp inventory model

The solution of the above differential equation is I(t) = Q−Dt.
Also we have, T = Q

D

Inventory holding cost =
∫ T
0 H I(t) dt =

∫ T
0 at I(t) dt = aQ3

6D2 .

Total inventory related cost per cycle = set up cost + holding cost + production cost = S + aQ3

6D2 + f(S,Q)

Total average cost per unit cycle is TAC(D,S,Q) = SD
Q

+ aQ2

6D
+ bD
SxQ1+y

There is a limitation on the available storage space area where the items are to be stored, i.e., w0Q ≤ W . This restriction on available storage space in
the inventory problem cannot be ignored to derive the optimal total cost.

Thus the primal problem for the inventory model can be written as:

Min TAC(D,S,Q) =
SD

Q
+
aQ2

6D
+

bD

SxQ1+y

subject to C(Q) ≡ w0Q ≤W,
D, S,Q > 0.

(2)

The problem (2) is a constrained posynomial Primal Geometric Programming Problem (PGPP). Here Degree of Difficulty (DD) [It is defined as DD =
total number of terms in objective and constraint functions - total number of decision variables - 1] for the problem = 4-3-1 =0.

Therefore the Dual Geometric Programming Problem (DGPP) of (2) is as follows:

Max dc(w) =

(
1

w01

)w01
(

a

6w02

)w02
(

b

w03

)w03(w0

W

)w11
(3)

Chaitali Kar, Bappa Mondal, Tapan Kumar Roy, An Inventory Model under Space Constraint in Neutrosophic 
Environment: A Neutrosophic Geometric Programming Approach

Neutrosophic Sets and Systems, Vol. 21, 2018 96 



subject to the normality and orthogonality conditions

w01 + w02 + w03 = 1,

w01 − w02 + w03 = 0,

w01 − xw03 = 0,

−w01 + 2w02 − (1 + y)w03 + w11 = 0,

and the positivity conditions are w01, w02, w03, w11 ≥ 0
where w = (w01, w02, w03, w11)T .
Solving the above equations we get the dual variables and the dual objective function as given below:

w∗01 =
x

2(1 + x)
, w∗02 =

1

2
, w∗03 =

1

2(1 + x)
, w∗11 =

y − x− 1

2(1 + x)
, and d∗c(w

∗) =

(
2a(x+ 1)

3

)1/2[ b
xx

(w0

W

)y−x−1
] 1

2(1+x)

(4)

where w∗ = (w∗01, w
∗
02, w

∗
03, w

∗
11)

T .
[Noted that from positivity conditions we have, x > 0 and y > x+ 1.]
Now primal-dual relations for obtaining the decision variables are

SD

Q
= w∗01d

∗
c(w
∗),

aQ2

6D
= w∗02d

∗
c(w
∗),

bD

SxQ1+y
= w∗03d

∗
c(w
∗) and

w0Q

W
=
w∗11
w∗11

(5)

Solving the above equations (5), the optimum decision variables are obtained as follows:

D∗ =

(
a

6(x+ 1)

)1/2
[
xx

b

(
W

w0

)3x+y+3
] 1

2(1+x)

, S∗ =
[
bx
(w0

W

)y] 1
1+x

, and Q∗ =
W

w0
. (6)

The corresponding optimal value of the cost function T ∗c (D
∗, S∗, Q∗) is obtained as

T ∗c (D
∗, S∗, Q∗) =

(
2a(x+ 1)

3

)1/2[ b
xx

(w0

W

)y−x−1
] 1

2(1+x)

(7)

5 Neutrosophic Non-linear Programming
A non-linear programming problem can be written in the following general form:

Min f(x)

subject to gj(x) ≤ cj , (j = 1, 2, ..., n)

x ≡ (x1, x2, ..., xm)T ≥ 0. (8)

Usually the constraint goals are taken as fixed. But in real life one can find that the constraint goals may be imprecise. So let us take the constraint goal
be at least cjand the maximum allowable tolerance due to impreciseness be c1j for the jth constraint. For this fact the constraint goals are converted
into neurosophic constraint goals.

Thus the non-linear programming problem reduces to the following Neutrosophic Non-linear Programming (NNP) Problem:

Min f(x)

subject to gj(x) � cj with maximum allowable tolerance c1j, (j = 1, 2, ..., n)

x ≥ 0. (9)

6 Solution Procedure
6.1 Step I:

To solve the NNP problem (9) following Werner’s Approach the problem is divided into two sub-problems; one sub-problem is considered without
maximum allowable tolerance and another sub-problem is considered with maximum allowable tolerance in the constraints. Therefore the two sub-
problems are as follows:
Sub-problem I:

Min f(x)

subject to gj(x) ≤ cj , (j = 1, 2, ..., n)

x ≥ 0. (10)

Sub-problem II:
Min f(x)

subject to gj(x) ≤ cj + c1j , (j = 1, 2, ..., n)

x ≥ 0. (11)

Let the optimum solutions for the two sub-problems (10) and (11) be (x1∗, f(x1∗)) and (x2∗, f(x2∗)) respectively.

6.2 Step II:
For Neutrosophic Optimization Problem (NOP) problem we assume that Uµ

f(x)
, Uσ
f(x)

, Uν
f(x)

and Lµ
f(x)

, Lσ
f(x)

, Lν
f(x)

be the upper and lower
bounds of the truth, indeterminacy and falsity functions for objective respectively.
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Now we define those upper and lower bounds as follows:

Uµ
f(x)

= max{f(x1∗), f(x2∗)}, Lµ
f(x)

= min{f(x1∗), f(x2∗)},

Uσf(x) = Lµ
f(x)

+ δσ(U
µ
f(x)
− Lµ

f(x)
), Lσf(x) = Lµ

f(x)
,

Uνf(x) = Uµ
f(x)

, Lνf(x) = Lµ
f(x)

+ δν(U
µ
f(x)
− Lµ

f(x)
).

where δσ and δν are predetermined real numbers in (0, 1).
Similarly, for the jth constraint let Uµ

gj(x)
, Uσ
gj(x)

, Uν
gj(x)

and Lµ
gj(x)

, Lσ
gj(x)

, Lν
gj(x)

be the upper and lower bounds of the truth, indeterminacy
and falsity functions respectively. Then let us define them as

Uµ
gj(x)

= cj + c1j , Lµ
gj(x)

= cj ,

Uσgj(x) = Lµ
gj(x)

+ εσj , Lσgj(x) = Lµ
gj(x)

,

Uνgj(x) = Uµ
gj(x)

, Lνgj(x) = Lµ
gj(x)

+ ενj .

where εσj and ενj are predetermined real numbers in with 0 ≤ εσj , ενj ≤ c1j , j = 1, 2, ..., n.

6.3 Step III:
According to the assumptions given in step II the truth, indeterminacy and falsity functions for the objective are defined as follows (See Fig. 2):

µf(x)(x) =


1 if f(x) ≤ Lµ

f(x)
U
µ
f(x)
−f(x)

U
µ
f(x)
−Lµ

f(x)

if Lµ
f(x)

≤ f(x) ≤ Uµ
f(x)

0 if f(x) ≥ Uµ
f(x)

and

σf(x)(x) =


1 if f(x) ≤ Lσ

f(x)
Uσf(x)−f(x)
Uσ
f(x)
−Lσ

f(x)
if Lσ

f(x)
≤ f(x) ≤ Uσ

f(x)

0 if f(x) ≥ Uσ
f(x)

and

νf(x)(x) =


0 if f(x) ≤ Lν

f(x)
f(x)−Lνf(x)
Uν
f(x)
−Lν

f(x)
if Lν

f(x)
≤ f(x) ≤ Uν

f(x)

1 if f(x) ≥ Uν
f(x)

Figure 2: Rough sketch of truth, indeterminacy and falsity functions for objective function

Similarly, according to the assumptions the truth, indeterminacy and falsity functions for the jth constraint are defined as follows (See Fig. 3):

µgj(x)(x) =


1 if gj(x) ≤ Lµgj(x)
U
µ
gj(x)

−gj(x)

U
µ
gj(x)

−Lµ
gj(x)

if Lµ
gj(x)

≤ gj(x) ≤ Uµgj(x)

0 if gj(x) ≥ Uµgj(x)

and

σgj(x)(x) =


1 if gj(x) ≤ Lσgj(x)
Uσgj(x)

−gj(x)

Uσ
gj(x)

−Lσ
gj(x)

if Lσ
gj(x)

≤ g(x) ≤ Uσ
gj(x)

0 if gj(x) ≥ Uσgj(x)
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and

νgj(x)(x) =


0 if gj(x) ≤ Lνgj(x)
gj(x)−Lνgj(x)
Uν
gj(x)

−Lν
gjx)

if Lν
gj(x)

≤ gj(x) ≤ Uνgj(x)
1 if gj(x) ≥ Uνgj(x)

Figure 3: Rough sketch of truth, indeterminacy and falsity functions for jth constraint

6.4 Step IV:
In Neutrosophic Optimization Technique the decision maker wants to maximize the degree of truth and to minimize the degree of indeterminacy and

the degree of falsity of the objective and the constraints both. Therefore the NNP problem can be formulated in the following form:

Max µf(x)(x), µg1(x)(x), µg2(x)(x), ..., µgn(x)(x),

min σf(x)(x), σg1(x)(x), σg2(x)(x), ..., σgn(x)(x),

min νf(x)(x), νg1(x)(x), νg2(x)(x), ..., νgn(x)(x)

subject to µf(x)(x) ≥ σf(x)(x), µgj(x)(x) ≥ σgj(x)(x), (j = 1, 2, ..., n)

µf(x)(x) ≥ νf(x)(x), µgj(x)(x) ≥ νgj(x)(x), (j = 1, 2, ..., n)

µf(x)(x), σf(x)(x), νf(x)(x), µgj(x)(x), σgj(x)(x), νgj(x)(x) ∈ [0, 1], (j = 1, 2, ..., n)

x ≥ 0. (12)

Based on weighted sum approach with equal weights the above problem reduces to the following crisp non-linear programming problem:

Max V FA(x) = µf(x)(x) +

n∑
j=1

µgj(x)(x)− σf(x)(x)−
n∑
j=1

σgj(x)(x)− νf(x)(x)−
n∑
j=1

νgj(x)(x)

subject to µf(x)(x) ≥ σf(x)(x), µgj(x)(x) ≥ σgj(x)(x), (j = 1, 2, ..., n)

µf(x)(x) ≥ νf(x)(x), µgj(x)(x) ≥ νgj(x)(x), (j = 1, 2, ..., n)

µf(x)(x), σf(x)(x), νf(x)(x), µgj(x)(x), σgj(x)(x), νgj(x)(x) ∈ [0, 1], (j = 1, 2, ..., n)

x ≥ 0. (13)

The above problem is equivalent to

Max V FA(x) = K − V FA1(x)

subject to f(x) ∈ [Lf , Uf ] and gj(x) ∈ [Lgj , Ugj ] , (j = 1, 2, ..., n)

x > 0.

(14)
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where

Lf =
Uµ
f(x)

Lσ
f(x)
− Uσ

f(x)
Lµ
f(x)

Uµ
f(x)
− Lµ

f(x)
− Uσ

f(x)
+ Lσ

f(x)

, Uf =
Uµ
f(x)

Uν
f(x)
− Lµ

f(x)
Lσ
f(x)

Uµ
f(x)
− Lµ

f(x)
+ Uν

f(x)
− Lν

f(x)

,

Lgj =
Uµ
gj(x)

Lσ
gj(x)

− Uσ
gj(x)

Lµ
gj(x)

Uµ
gj(x)

− Lµ
gj(x)

− Uσ
gj(x)

+ Lσ
gj(x)

, Ugj =
Uµ
gj(x)

Uν
gj(x)

− Lµ
gj(x)

Lσ
gj(x)

Uµ
gj(x)

− Lµ
gj(x)

+ Uν
gj(x)

− Lν
gj(x)

, (j = 1, 2, ..., n)

K =
Uµ
f(x)

Uµ
f(x)
− Lµ

f(x)

−
Uσ
f(x)

Uσ
f(x)
− Lσ

f(x)

+
Lν
f(x)

Uν
f(x)
− Lν

f(x)

+

n∑
j=1

 Uµ
gj(x)

Uµ
gj(x)

− Lµ
gj(x)

−
Uσgj(x)

Uσ
gj(x)

− Lσ
gj(x)

+
Uν
gj(x)

Uν
gj(x)

− Lν
gj(x)

 ,
and

V FA1(x) =

[
f(x)

Uµ
f(x)
− Lµ

f(x)

−
f(x)

Uσ
f(x)
− Lσ

f(x)

+
f(x)

Uν
f(x)
− Lν

f(x)

]
+

n∑
j=1

 gj(x)

Uµ
gj(x)

− Lµ
gj(x)

−
gj(x)

Uσ
gj(x)

− Lσ
gj(x)

+
gj(x)

Uν
gj(x)

− Lν
gj(x)

 .
Now it is sufficient to solve the following crisp minimization problem

MinV FA1(x) =

[
f(x)

Uµ
f(x)
− Lµ

f(x)

−
f(x)

Uσ
f(x)
− Lσ

f(x)

+
f(x)

Uν
f(x)
− Lν

f(x)

]
+

n∑
j=1

 gj(x)

Uµ
gj(x)

− Lµ
gj(x)

−
gj(x)

Uσ
gj(x)

− Lσ
gj(x)

+
gj(x)

Uν
gj(x)

− Lν
gj(x)


subject to the same restrictions as given in (14)

(15)
If f(x) =

∑P0
k=1 C0k

∏m
r=1 x

a0kr
r and gj(x) =

∑Pj
k=1+Pj−1

Cjk
∏m
r=1 x

ajkr
r

where Cjk > 0 for k = 1, 2, ..., Pj ; j = 0, 1, 2, ..., n and ajkr (k = 1, 2, ..., 1 + Pj−1, ..., Pj ; j = 0, 1, 2, ..., n; r = 1, 2, ...,m.) are
real numbers.
Then the problem can be taken as a crisp unconstrained posynomial PGPP with DD =

∑n
j=0 Pj − m − 1, provided that the optimal solution of

f(x) ∈ [Lf , Uf ] and that of gj(x) ∈ [Lgj , Ugj ] , j = 1, 2, ..., n.

7 Application of Neutrosophic Optimization Technique
7.1 An Inventory Model

Consider the inventory model (2) and assume that the storage area is flexible. Also assume that the maximum allowable tolerance be wp due to
impreciseness in the space constraint.

Therefore the inventory problem is converted into the NOP with flexible space constraint as given below:

Min TAC(D,S,Q) =
SD

Q
+
aQ2

6D
+

bD

SxQ1+y

subject to w0Q �W with maximum allowable tolerance wp,

D,S,Q > 0.

(16)

According to step I following Werner’s Approach we first have to solve the following two sub-problems.
Sub-problem I:

Min TAC(D,S,Q) =
SD

Q
+
aQ2

6D
+

bD

SxQ1+y

subject to w0Q ≤W,
D, S,Q > 0. (17)

Sub-problem II:

Min TAC(D,S,Q) =
SD

Q
+
aQ2

6D
+

bD

SxQ1+y

subject to w0Q ≤W + wp,

D, S,Q > 0. (18)

Solving (17) by GP method the optimum decision variables and the corresponding optimal objective T1 are obtained as:

D∗ =

(
a

6(x+ 1)

)1/2
[
xx

b

(
W

w0

)3x+y+3
] 1

2(1+x)

, S∗ =
[
bx
(w0

W

)y] 1
1+x

, Q∗ =
W

w0
,

and T1 =

(
2a(x+ 1)

3

)1/2 [ b
xx

(w0

W

)y−x−1
] 1

2(1+x)

.

(19)
Similarly, solving (18) by GP method the optimum decision variables and the corresponding optimal objective T0 are obtained as:

D∗ =

(
a

6(x+ 1)

)1/2
[
xx

b

(
W + wp

w0

)3x+y+3
] 1

2(1+x)

, S∗ =

[
bx

(
w0

W + wp

)y] 1
1+x

, Q∗ =
W + wp

w0
,

and T0 =

(
2a(x+ 1)

3

)1/2
[
b

xx

(
w0

W + wp

)y−x−1
] 1

2(1+x)

.

(20)
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According to step II assume the upper and the lower bounds for the truth, indeterminacy and falsity functions for the objective respectively as given
below:

UµT = max{T0, T1} = T1, LµT = min{T0, T1} = T0,

UσT = T0 + δσ(T1 − T0), LσT = T0,

UνT = T1, LνT = T0 + δν(T1 − T0).

where δσ and δν are predetermined real numbers in (0, 1).
Similarly, the upper and the lower bounds for the truth, indeterminacy and falsity functions for the constraint are as follows:

UµC =W + wp, LµC =W,

UσC =W + εσ , LσC =W,

UνC =W + wp, LνC =W + εν .

where 0 < εσ , εν < wp.
Now let us write the truth, indeterminacy and falsity functions for the objective with the help of step III (See Fig. 4).

µT (TAC(D,S,Q)) =


1 if TAC(D,S,Q) ≤ T0
T1−TAC(D,S,Q)

T1−T0
if T0 ≤ TAC(D,S,Q) ≤ T1

0 if TAC(D,S,Q) ≥ T1
(21)

and

σT (TAC(D,S,Q)) =


1 if TAC(D,S,Q) ≤ T0
T0+δσ(T1−T0)−TAC(D,S,Q)

δσ(T1−T0)
if T0 ≤ TAC(D,S,Q) ≤ T0 + δσ(T1 − T0)

0 if TAC(D,S, ) ≥ T0 + δσ(T1 − T0)
(22)

and

νT (TAC(D,S,Q)) =


0 if TAC(D,S,Q) ≤ T0 + δν(T1 − T0)
TAC(D,S,Q)−{T0+δν(T1−T0)}

(T1−T0)(1−δν)
if T0 + δν(T1 − T0) ≤ TAC(D,S,Q) ≤ T1

1 if TAC(D,S,Q) ≥ T1

(23)

Figure 4: Rough sketch of truth, indeterminacy and falsity functions for objective function

In the same way, the truth, indeterminacy and falsity functions for the constraint are respectively as follows (See Fig. 5):

µC(C(Q)) =


1 if C(Q) ≤W
W+wp−C(Q)

wp
if W ≤ C(Q) ≤W + wp

0 if C(Q) ≥W + wp

(24)

and

σC(C(Q)) =


1 if C(Q) ≤W
W+εσ−C(Q)

εσ
if W ≤ C(Q) ≤W + εσ

0 if C(Q) ≥W + εσ

(25)

and

νC(C(Q)) =


0 if C(Q) ≤W + εν
C(Q)−(W+εν)

wp−εν
if W + εν ≤ C(Q) ≤W + wp

1 if C(Q) ≥W + wp

(26)

where 0 < ε1, ε2 < wp.

According to step IV the NOP can be written as an equivalent crisp non-linear programming problem as follows:
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Figure 5: Rough sketch of truth, indeterminacy and falsity functions for constraint

Sub-model I:

Max V FA2(D,S,Q) = µT (TAC(D,S,Q)) + µC(C(Q)− σT (TAC(D,S,Q))− σC(C(Q))− νT (TAC(D,S,Q))− νC(C(Q))

subject to µT (TAC(D,S,Q)) ≥ σT (TAC(D,S,Q)),

µC(C(Q)) ≥ σC(C(Q)),

µT (TAC(D,S,Q)) ≥ νT (TAC(D,S,Q)),

µC(C(Q)) ≥ νC(C(Q)),

µT (TAC(D,S,Q)), σT (TAC(D,S,Q)), νT (TAC(D,S,Q)),

µC(C(Q)), σC(C(Q)), νC(C(Q)) ∈ [0, 1],

D, S,Q > 0. (27)

Above non-linear programming problem can be reduced into the following unconstrained non-linear programming problem.

Min V FA3(D,S,Q) = K1

(
SD

Q
+
aQ2

6D
+

bD

SxQ1+y

)
+K2Q

subject to D,S,Q > 0. (28)

provided that

TAC(D,S,Q) ∈
[
T0,

T1 + (1− δν)T0
2− δν

]
and Q ∈

[
W

wp
,
W

wp
+

wp2

(2wp − εν)w0

]
. (29)

where V FA2(D,S,Q) =
(

1
T1−T0

)(
T0 − T0

δσ
+
T0+δν(T1−T0)

1−δν

)
+ W
wp
− W
εσ

+ W+εν
wp−εν

− V FA3(D,S,Q),

K1 = 1
T1−T0

[
1− 1

δσ
+ 1

1−δν

]
and K2 =

[
w0
wp
− w0

εσ
+ w0
wp−εν

]
.

It is an unconstrained posynomial PGPP with DD = 0.
Therefore the DGPP of (28) is as follows:

Max dn(w) =

(
K1

w01

)w01
(
aK1

6w02

)w02
(
bK1

w03

)w03
(
K2

w04

)w04

subject to the normality and orthogonality conditions,

w01 + w02 + w03 = 1,

w01 − w02 = 0,

w01 − xw03 = 0,

−w01 + 2w02 − yw03 + w04 = 0,

and the positivity conditions are w01, w02, w03, w04 ≥ 0
where w = (w01, w02, w03, w04)T .
Solving the above equations we get the dual variables as,

w∗01 =
x

1 + x+ y
, w∗02 =

1 + x

1 + x+ y
, w∗03 =

1

1 + x+ y
, and w∗04 =

y − x− 1

1 + x+ y
. (30)

Using the above values we get

d∗n(w
∗) = (1 + x+ y)

[(
a

6(1 + x)

)1+x

K2+2x
1

b

xx

(
K2

y − x− 1

)y−x−1
] 1

1+x+y

(31)

To find the decision variables, the primal dual relations are,

SDK1

Q
= w∗01d

∗
n(w

∗),
aQ2K1

6D
= w∗02d

∗
n(w

∗),
bDK1

SxQ1+y
= w∗03d

∗
n(w

∗), K2Q = w∗04d
∗
n(w

∗). (32)
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By solving the above equations the optimum decision variables and the corresponding optimum objective function T ∗n(D
∗, S∗, Q∗) are obtained as:

D∗ =

[(
a

6(1 + x)

)2+2x+y b

xx

(
K1(y − x− 1)

K2

)3x+y+3
] 1

1+x+y

, S∗ =

[(
6(1 + x)

a

)y
bx1+y

(
K2

K1(y − x− 1)

)2y
] 1

1+x+y

,

Q∗ =

[(
a

6(1 + x)

)1+x b

xx

(
K1(y − x− 1)

K2

)2x+2
] 1

1+x+y

,

and T ∗n(D
∗, S∗, Q∗) =

[
x

1−x+y
1+x+y + (1 + x) + 1

] [(
a

6(1 + x)

)1+x b

xx

(
K1(y − x− 1)

K2

)1+x−y
] 1

1+x+y

. (33)

We know the fact that in case of neutrosophic set there is no restriction on truth function, indeterminacy function and falsity function other than they
are subsets of

]
0−, 1+

[
, thus; 0− ≤ Inf µ+ Inf σ + Inf ν ≤ Sup µ+ Sup σ + Sup ν ≤ 3+.

In the Sub-model I, the indeterminacy function is taken as monotonically non increasing function like truth function. But one can define it as
monotonically non decreasing function like falsity function also. In that case, the indeterminacy function for the objective and the constraint respectively
will be defined as follows (See Fig. 6 and 7):

σ
′
T (TAC(D,S,Q)) =


0 if TAC(D,S,Q) ≤ T0 + δσ(T1 − T0)
TAC(D,S,Q)−(T0+δσ(T1−T0))

(T1−T0)(1−δσ)
if T0 + (T1 − T0)δ1 ≤ TAC(D,S,Q) ≤ T1

1 if TAC(D,S, q) ≥ T1

(34)

and

σ
′
C(C(Q)) =


0 if C(Q) ≤W + εσ
C(Q)−(W+εσ)

wp−εσ
if W + εσ ≤ C(Q) ≤W + wp

1 if C(Q) ≥W + wp

(35)

where δσ ∈ [0, 1] and 0 < εδ < wp.

Figure 6: Rough sketch of truth, indeterminacy and falsity functions for objective in Sub-model II

Figure 7: Rough sketch of truth, indeterminacy and falsity functions for constraint in Sub-model II

Now depending on the choice of indeterminacy function we can change the model formulation. If we take the indeterminacy functions as given in
(34) and (35) and the truth and falsity functions as they are in Sub-model I, then after applying Neutrosophic Optimization technique the problem (16)
reduces to the following crisp non-linear programming problem:
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Sub-model II:

Max V FAII(D,S,Q) = µT (TAC(D,S,Q)) + µC(C(Q))− σ
′
T (TAC(D,S,Q))− σ

′
C(C(Q))− νT (TAC(D,S,Q))− νC(C(Q))

subject to µT (TAC(D,S,Q)) ≥ σ
′
T (TAC(D,S,Q)),

µC(C(Q)) ≥ σ
′
C(C(Q)),

µT (TAC(D,S,Q)) ≥ νT (TAC(D,S,Q)),

µC(C(Q)) ≥ νC(C(Q)),

µT (TAC(D,S,Q)), σ
′
T (TAC(D,S,Q)), νT (TAC(D,S,Q)),

µC(C(Q)), σ
′
C(C(Q)), νC(C(Q)) ∈ [0, 1],

D, S,Q > 0.
(36)

In this case also, required restrictions like (29) can be derived as before. Now this problem also can be solved by GP method as shown in Sub-model I.
In another case, one can take the indeterminacy function for the constraint as considered in (35) and consider the indeterminacy function for the

objective and the truth and falsity functions for the objective and constraints both as shown in Sub-model I. In this case, we have

Sub-model III:

Max V FAIII(D,S,Q) = µT (TAC(D,S,Q)) + µC(C(Q))− σT (TAC(D,S,Q))− σ
′
C(C(Q))− νT (TAC(D,S,Q))− νC(C(Q))

subject to µT (TAC(D,S,Q)) ≥ σT (TAC(D,S,Q)),

µC(C(Q)) ≥ σ
′
C(C(Q)),

µT (TAC(D,S,Q)) ≥ νT (TAC(D,S,Q)),

µC(C(Q)) ≥ νC(C(Q)),

µT (TAC(D,S,Q)), σT (TAC(D,S,Q)), νT (TAC(D,S,Q)),

µC(C(Q)), σ
′
C(C(Q)), νC(C(Q)) ∈ [0, 1],

D, S,Q > 0.
(37)

Similarly, one can take the indeterminacy function for the objective as given in (34). Now assume that the indeterminacy function for the constraint
and the truth and falsity functions for objective and constraint both are same as in Sub-model I. In this case, the problem (16) reduces to
Sub-model IV:

Max V FAIV (D,S,Q) = µT (TAC(D,S,Q)) + µC(C(Q))− σ
′
T (TAC(D,S,Q))− σC(C(Q))− νT (TAC(D,S,Q))− νC(C(Q))

subject to µT (TAC(D,S,Q)) ≥ σ
′
T (TAC(D,S,Q)),

µC(C(Q)) ≥ σC(C(Q)),

µT (TAC(D,S,Q)) ≥ νT (TAC(D,S,Q)),

µC(C(Q)) ≥ νC(C(Q)),

µT (TAC(D,S,Q)), σ
′
T (TAC(D,S,Q)), νT (TAC(D,S,Q)),

µC(C(Q)), σC(C(Q)), νC(C(Q)) ∈ [0, 1],

D, S,Q > 0.
(38)

In Sub-models III and IV, appropriate restrictions like (29) can be derived and they can also be solved proceeding the same solution procedure as in
Sub-model I.

7.2 A Non-linear Problem
We consider the following non-linear problem with a constraint in neutrosophic environment:

Min f(x, y, z) = x−1y−2z−3

subject to g(x, y, z) ≡ x3 + y2 + z ≤ 1 with maximum allowable tolerance 0.5,

x, y, z > 0. (39)

Now proceeding as in 7.1, we get the following four Sub-models.
Sub-model I:

Min fI(x, y, z) = KI(x
−1y−2z−3) +K

′
I(x

3 + y2 + z)

subject to x, y, z > 0. (40)

where KI = 1
f1−f0

[
1− 1

δσ
+ 1

1−δν

]
and K

′
I =

[
1
0.5
− 1
εσ

+ 1
0.5−εν

]
.

Sub-model II:

Min fII(x, y, z) = KII(x
−1y−2z−3) +K

′
II(x

3 + y2 + z)

subject to x, y, z > 0. (41)
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where KII = 1
f1−f0

[
1 + 1

δσ
+ 1

1−δν

]
and K

′
II =

[
1
0.5

+ 1
εσ

+ 1
0.5−εν

]
.

Sub-model III:

Min fIII(x, y, z) = KIII(x
−1y−2z−3) +K

′
III(x

3 + y2 + z)

subject to x, y, z > 0. (42)

where KIII = 1
f1−f0

[
1 + 1

1−δσ
+ 1

1−δν

]
and K

′
III =

[
1
0.5

+ 1
εσ

+ 1
0.5−εν

]
.

Sub-model IV:

Min fIV (x, y, z) = KIV (x−1y−2z−3) +K
′
IV (x3 + y2 + z)

subject to x, y, z > 0. (43)

where KIV = 1
f1−f0

[
1− 1

δσ
+ 1

1−δν

]
and K

′
IV =

[
1
0.5

+ 1
0.5−εσ

+ 1
0.5−εν

]
.

8 Numerical Experiments
8.1 For Inventory Model 7.1

A manufacturing company produces machines in lots. The company has a warehouse with total floor area (W)= 1000 sq. ft. which is flexible upto
(wp)= 500 sq. ft. to store any excess spare parts, if necessary. The space area per unit quantity is (w0)= 216 sq. ft. The production cost of the machine
is related inversely with the set up (S) and the production quantity (Q). It is known from the past records that the production cost is 5S−1Q−3. The
holding cost per unit item is (H)= 21t.

The decision maker wants to determine the optimal values of demand (D), set-up cost (S), production quantity (Q) and the optimal total average cost
TAC(D,S,Q).
According to the input data, the problem (16) becomes

Min TAC(D,S,Q) =
SD

Q
+

21Q2

6D
+

5D

SQ4

subject to 216Q � 1000 with maximum allowable tolerance 500,

D, S,Q > 0.

(44)

The values of pre-assigned real numbers on the indeterminacy and falsity functions for objective and constraints are given in Table 1. The optimum
results of the Sub-models i.e., Sub-model I, II, III and IV by Neutrosophic Optimization Technique are given in Table 2 and 3. Now we evaluate the
optimum solutions of Sub-model I by different optimization techniques; Fuzzy Optimization Technique, Intuitionistic Optimization Technique [80] and
Neutrosophic Optimization Technique and present the results in Table 4.

8.2 For Non-linear Problem 7.2
For this problem, the pre-assigned numbers for indeterminacy and falsity functions are assumed as shown in Table 1. The optimum solutions for

all the Sub-models (Sub-model I, II, III and IV) by Neutrosophic Optimization Technique are described in Table 2 and 3. In Table 4, we express the
optimum solutions of Sub-model I of problem 7.2 by different optimization techniques like Fuzzy Optimization Technique, Intuitionistic Optimization
Technique [80] and Neutrosophic Optimization Technique.

Model/Problem Indeterminacy functiuon Falsity function
Objective δσ Constraint εσ Objective δν Constraint εν

Inventory Model 7.1 0.6 250 0.4 240
Non-linear Problem 7.2 0.6 0.3 0.4 0.1

Table 1: Values of pre-assigned numbers in indeterminacy and falsity functions

Model/Problem Sub-models Optimum dual variables Optimum decision variables Optimum objective
functionw∗01 w∗02 w∗03 w∗11/w

∗
04 S∗/x∗ D∗/y∗ Q∗/z∗

Inventory Model 7.1
Sub-problem I 0.25 0.50 0.25 0.25 0.22 27.81 4.3 T1 = 5.39
Sub-problem II 0.25 0.50 0.25 0.25 0.11 69.26 6.94 T0 = 4.87

Sub-model I 0.20 0.40 0.20 0.20 0.15 51.22 6.07 T ∗n(D
∗, S∗, Q∗) =5.04

Non-linear Problem 7.2
Sub-problem I 1.00 0.33 1.00 3.00 0.46 0.55 0.60 f1 = 19.95
Sub-problem II 1.00 0.33 1.00 3.00 0.53 0.67 0.90 f0 = 5.16

Sub-model I 0.19 0.06 0.19 0.56 0.51 0.64 0.82 f∗(x∗, y∗, z∗) =8.60

Table 2: Optimal solution of Sub-model I

9 Discussion
9.1 Verification of restrictions

Here we verify the restrictions given in (29) using the result in Table 2.
Here T0 = 4.87 , TAC∗n(D

∗, S∗, Q∗) = 5.04 and
T1+(1−δν)T0

2−δν
= 5.20. i.e., TAC∗n(D

∗, S∗, Q∗) = 5.04 ∈ [4.87, 5.20].
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Model/Problem Sub-models Optimum decision variables Optimum objective
functionS∗/x∗ D∗/y∗ Q∗/z∗

Inventory Model 7.1
Sub-model II 0.15 48.41 5.93 5.07
Sub-model III 1.13 2.52 1.59 7.04
Sub-model IV 0.21 948.46 22.59 3.63

Non-linear Problem 7.2
Sub-model II 0.50 0.61 0.74 13.31
Sub-model III 0.44 0.50 0.51 1.66
Sub-model IV 0.58 0.77 1.20 69.91

Table 3: Optimum result of different Sub-models using Neutrosophic Optimization Technique

Model/Problem Technique Optimum decision variables Optimum objective
functionS∗/x∗ D∗/y∗ Q∗/z∗

Inventory Model 7.1
Fuzzy Optimization 0.16 44.39 5.70 5.12

Intuitionistic Optimization 0.15 48.67 5.94 5.07
Neutrosophic Optimization 0.15 51.22 6.07 5.04

Non-linear Problem 7.2
Fuzzy Optimization 0.49 0.60 0.72 14.72

Intuitionistic Optimization 0.50 0.61 0.45 12.44
Neutrosophic Optimization 0.51 0.64 0.82 8.60

Table 4: Optimal solution of Model 7.1 and Problem 7.2 using different optimization techniques

Also W
w0

= 4.63, Q∗ = 6.07 and W
w0

+
w2
p

(2wp−εν)w0
= 6.15 i.e., Q∗ = 6.07 ∈ [4.63, 6.15].

Similarly for other Sub-models, this type of verifications can be performed.

9.2 Comparison by different methods
Though the fuzzy, intuitionistic fuzzy and neutrosophic fuzzy environments are different, still from the Table 4 it is concluded that Neutrosophic

Optimization Technique gives better optimum solution compared with the other techniques for these models.

9.3 Model with best optimum results
From Table 2 and 3 , it is seen that, for the present model 7.1 and problem 7.2, the Sub-model I gives the best result. From this, it does not mean that

always Sub-model I will give the best one. In other models, any of the four Sub-models may give the best results.

10 Conclusions
The main objective of this work is to illustrate how Neutrosophic Geometric Programming Technique can be utilized to solve a non-linear pro-

gramming problem. The concept allows one to define the degree of truth, indeterminacy and falsity functions simultaneously. This research work also
presents how to convert NNP into a crisp PGPP with the help of the above mentioned degrees and solve the problem.

In this paper, we have considered two examples- (i) an inventory model and (ii) a non-linear problem with space constraint under neutrosophic
environment. From the numerical examples of these two problems, one can observe that Neutrosophic Optimization Technique has given better solution
than Fuzzy Optimization and Intuitionistic Optimization Technique. The positive advantages of this technique is that it allows to imitate the real life
situation more accurately and hence furnishes more useful solution to the management. This feature has been nicely illustrated in this paper. The
limitation of the present investigation is that for illustration, we have restricted ourselves to the problem of GP type. Obviously, it limits the scope of
modelling as GP problems demand posynomial expressions with zero degree of difficulty for less computation. However, the proposed method can be
applied to any type of linear and non-linear optimization problems in the areas of supply chain management, portfolio management, etc. In the present
problem, we have considered only one objective function. Present method can also be applied to multi-objective problems using any one of the available
methods to convert multi-objective problem to a single objective one.

Thus, in future, this research work can be extended to develop Neutrosophic Geometric Programming Technique for solving several types of single
objective and multi objective inventory models.
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Abstract. The paper presents a novel strategy for solving bi-level linear programming problem based on goal programming in 
neutrosophic numbers environment. Bi-level linear programming problem comprises of two levels namely upper or first level 
and lower or second level with one objective at each level. The objective function of each level decision maker and the system 
constraints are considered as linear functions with neutrosophic numbers of the form [p + q I], where p, q are real numbers and 
I represents indeterminacy. In the decision making situation, we convert neutrosophic numbers into interval numbers and the 
original problem transforms into bi-level interval linear programming problem. Using interval programming technique, the tar-
get interval of the objective function of each level is identified and the goal achieving function is developed. Since, the objec-
tives of upper and lower level decision makers are generally conflicting in nature, a possible relaxation on the decision vari-
ables under the control of each level is taken into account for avoiding decision deadlock. Then, three novel goal programming 
models are presented in neutrosophic numbers environment. Finally, a numerical problem is solved to demonstrate the feasibil-
ity, applicability and novelty of the proposed strategy. 

Keywords: Neutrosophic set, neutrosophic number, bi-level linear programming, goal programming, preference bounds.

1 Introduction 

Bi-level programming [1, 2, 3, 4] consists of the objective of the upper level decision maker (UDM) at its 
upper or first level and that of the lower level decision maker (LDM) at the lower or second level where every 
decision maker (DM) independently controls a set of decision variables. Candler and Townsley [3] as well as 
Fortuny-Amat and McCarl [4] were credited to develop the traditional bi-level programming problem (BLPP) in 
crisp environment. Using Stackelberg solution concept, Anandalingam [5] proposed a new solution procedure 
for multi-level programming problem (MLPP) and extended the concept to decentralized BLPP (DBLPP). After 
the introduction of fuzzy sets by L. A. Zadeh [6], many important methodologies have been proposed for solving 
MLPPs, and DBLPPs  such as satisfactory solution concept [7], solution procedure based on non-compensatory 
max-min aggregation operator [8] and compensatory fuzzy operator [9], interactive fuzzy programming [10, 11], 
fuzzy mathematical programming [12, 13], fuzzy goal programming (FGP) [14], etc. 

Goal programming (GP) [15-21] is an significant and widely used mathematical apparatus for dealing with 
multi-objective mathematical programming problems with numerous and often conflicting objectives in 
computing optimal compromise solutions. In 1991, Inuguchi and Kume [22] introduced interval GP. GP in fuzzy 
setting is called fuzzy goal programming (FGP), where unity (one) is the maximum (highest) aspiration level.  In 
1980, Narasimhan [23] incorporated the concept of FGP by using deviational variables. Mohamed [24] 
established the relation between GP and FGP and applied the concept to multi-objective programming problems. 
After its inception, FGP received much attention to the researchers and has been applied to solve BLPPs [25, 26, 
27], multi-objective BLPPs [28], multi-objective decentralized BLPPs [29, 30], MLPPs [14, 31], multi-objective 
MLPPs [32, 33], fractional BLPP [34], multi-objective fractional BLPPs [35-39], decentralized fractional BLPP 
[40], fractional MLPPs [41], quadratic BLPPs [42, 43], multi-objective quadratic BLPP [44, 45], water quality 
management [46], project network [47], transportation [48, 49], etc.   

GP in intuitionistic fuzzy environment [50] is termed as an intuitionistic fuzzy GP (IFGP). IFGP has been 
employed to vector optimization [51], transportation [52], quality control [53], bi-level programming [54], multi-
objective optimization problems [55-57], etc. 
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 In 1998, Smarandache [58] incorporated a new set in mathematical philosophy called neutrosophic sets to 
cope with inconsistent, incomplete, indeterminate information where indeterminacy is an independent and 
important factor and it plays a pivotal role in decision making. In 2010, Wang et al. [59] defined single valued 
neutrosophic set (SVNS) by simplifying neutrosophic set for practical applications. SVNS has been widely 
employed to decision making problems [60-75].  
Smarandache [76] incorporated the idea of neutrosophic number (NN) and proved its fundamental properties. In 
2015, Smarandache [77] also defined neutrosophic interval function (thick function). Jiang and Ye [78] provided 
basic definition of NNs and NN functions for optimization model for solving optimal design of truss structures. 
Pramanik et al. [79] presented teacher selection strategy based on bidirectional projection measure in neutrosophic 
number environment. Mondal et al. [80] proposed score and accuracy functions of NNs for ranking. NNs. In the 
same study,  Modal et al. [80] defined neutrosophic number harmonic mean operator (NNHMO); Neutrosophic 
number weighted harmonic mean operator (NNWHMO) and proved thier basic properties. Mondal et al.[80] 
also developed two multi-attribute group decision making (MAGDM) startegies in NN environment.  

Ye [81] proposed a neutrosophic number linear programming method for solving neutrosophic number 
optimization. Recently, Ye et al. [82] introduced some basic operations of NNs and concepts of NN nonlinear 
functions and inequalities and formulated a NN- nonlinear programming method. 

Pramanik and Banerjee and [83] suggested a goal programming strategy for single-objective linear 
programming problem involving neutrosophic coefficients where the coefficients of objective functions and the 
system constraints are neutrosophic numbers of the form p + q I , p, q are real numbers and I denotes 
indeterminacy. Pramanik and Banerjee [84] extended the concept of Pramanik and Banerjee [83] to develop goal 
programming strategy for multi-objective linear programming problem in neutrosophic number environment.  

Research gap:  
GP strategy for BLPP with neutrosophic  numbers. 

In order to fill the gap, we propose a novel strategy for BLPP through GP with neutrosophic  numbers. 
At the beginning, we convert the BLPP with neutrosophic numbersinto interval BLPP by interval 

programming technique. Then, the goal achieving function is developed by defining target interval of the 
objective function of each level. A possible relaxation on the decision variables is considered for both level DMs 
to find the compromise optimal solution of the bi-level system. Then, three novel GP models are developed for 
BLPP in indeterminate environments. Finally, a BLPP is solved to demonstrate applicability and effectiveness of 
the developed strategy. 

The remainder of the article is organized as follows: Section 2 presents some basic concepts regarding inter-
val numbers, neutrosophic numbers. Section 3 provides the formulation of BLPP with neutrosophic numbers. GP 
strategy for BLPP with neutrosophic numbers is described in section 4. A numerical example is solved in the 
next section to show the proposed procedure. Finally, conclusions are given in the last section. 

2 Preliminaries 

In this section, we present several basic discussions concerning interval numbers and neutrosophic numbers 

2.1 Interval number [85] 

An interval number is represented by S = [SL, SU] = {s: SL  s  SU, s  }, where SL, SU are left and right 
limit of the interval S on the real line . 

Definition 2.1: Suppose m (S) and w (S) be the midpoint and the width of an interval number, respectively. 

Then, m (S) = 
2

1
[SL + SU] and w (S) = [SU - SL] 

The scalar multiplication of S by  is represented as follows: 

 S =
0],,[

,0],,[








LU

UL

SS

SS

The absolute value of S is defined as follows: 

| S| = 

0],,[

0}],,max{,0[

,0],,[







ULU

ULUL

LUL

SSS

SSSS

SSS

The binary operation * between S1 = [ LS1 , US1 ] and S2 = [ LS2 , US2 ] is presented as given below. 

S1* S2 = {s1* s2: 
LS1  s1 

US1 , LS2  s2 
US2  , s1, s2  }. 
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2.2 Neutrosophic number [76] 

A neutrosophic number is represented by N = p + q I, where p, q are real numbers where p is determinate 
part and q I is indeterminate part and I  [I L, I U ] denotes indeterminacy. 

Therefore, N = [p + q I L, p + q I U] = [NL, NU], (say) 

Example: Suppose a neutrosophic number N = 1+ 2I, where 1 is determinate part and 2 I is indeterminate 
part. Here, we consider I  [0.3, 0.5]. Then, N becomes an interval number of the form N = [1.6, 2]. 

Now, we present some properties of neutrosophic numbers as follows: 

Consider, N1 = [p1 + q1 I1] = [p1 + q1
LI1 , p1 + q1

UI1 ] = [ LN1 , UN1 ] and N2 = [p2 + q2 I2 ] = [p2 + q2
LI2 , p2 + 

q2
UI2 ] = [ LN2 , UN2 ] be two neutrosophic numberswhere I1  [ LI1 , UI1 ], I2  [ LI2 , UI2 ], then 

(i). N1 + N2 = [ LN1 + LN2 , UN1 + UN2 ], 

(ii). N1 - N2 = [ LN1 - UN2 , UN1 - LN2 ], 

(iii). N1   N2 = [Min { LN1  LN2 , LN1  UN2 , UN1  LN2 , UN1  UN2 }, Max 

{ LN1  LN2 , LN1  UN2 , UN1  LN2 , UN1  UN2 }] 
(iv). N1 / N2 = [Min { LN1 /

LN2 , LN1 /
UN2 , UN1 /

LN2 , UN1 /
UN2 }, Max 

{ LN1 /
LN2 , LN1 /

UN2 , UN1 /
LN2 , UN1 /

UN2 }], if 0  N2.. 

3 Formulation of BLPP for minimization-type objective function with neutrosophic numbers 

We consider a BLPP for minimization-type objective function at each level. Mathematically, a BLPP with 
neutrosophic numbers can be presented as follows: 

UDM: 
1x

Min f1 (x) = [C11 + D11I11] x1 + [C12 + D12 I12] x2 + [E1 + F1I13]  (1) 

LDM: 
2x

Min f2 (x) = [C21 + D21 I21] x1 + [C22 + D22 I22] x2 + [E2 + F2I23]  (2) 

Subject to 

x  X ={x = (x1, x2)   RN |[A1 + B1 I1] x1 + [A2 + B2 I2] x2  + I3, x  0}.  (3) 

Here, x1 = (x11, x12, ..., 
11Nx )T: Decision vector under the control of UDM, 

x2 = (x21, x22, ..., 
22Nx )T: Decision vector under the control of LDM 

Ci1, Di1 (i = 1, 2) are N1- dimension row vectors; Ci2, Di2 (i = 1, 2) are N2 - dimension row vectors where N = 
N1 + N2; and Ei, Fi (i = 1, 2) are constants. Ai, Bi (i = 1, 2) are M Ni (i = 1, 2) constant matrix and  , are M 

dimensional constant column matrix. X (  ) is considered compact and convex in RN. Also, we have Iij 

 [ L
ijI , U

ijI ], i = 1, 2, 3; j = 1, 2 and Ii  [ L
iI , U

iI ], i = 1, 2, 3. Representation of a BLPP is shown in Fig. 1. 

Fig. 1. Depiction of a BLPP 

Upper (First) level 

Lower (Second) level 
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4 Goal programming formulation for BLPP with neutrosophic numbers 

The objective functions of both level DMs of the problem defined in section 3 can be written as: 

UDM: 

1x
Min f1 (x) = [C11 + D11I11] x1 + [C12 + D12 I12] x2 + [E1 + F1I13] = {[C11 + D11

LI11 ] x1 + [C12 + D12
LI12 ] x2 + [E1 

+ F1
LI13 ], [C11 + D11

UI11 ] x1 + [C12 + D12
UI12 ] x2 + [E1 + F1

UI13 ]} = [ LY1 (x), UY1 (x)] (say);  (4) 

LDM: 

2x
Min f2 (x) = [C21 + D21 I21] x1 + [C22 + D22 I22]  x2 + [E2 +    F2I23] = {[C21 + D21

LI21] x1 + [C22 + D22
LI22 ] x2 + 

[E2 + F2
LI23 ], [C21 + D21

UI21] x1 + [C22 + D22
UI22 ] x2 + [E2 + F2

UI23 ]} = [ LY2 (x), UY2  (x)] (say);  (5) 

and the system constrains  reduce to  
[A1 + B1 I1] x1 + [A2 + B2 I2] x2  + I3 

  {[A1 + B1
LI1 ] x1 + [A2 + B2

LI2 ] x2, [A1 + B1
UI1 ] x1 + [A2 + B2

UI2 ] x2}  [  + LI3 ,  + UI3 ] = [gL, gU] 

(say) 

 [ LZ (x), UZ (x)]  [g
L, gU].  (6) 

Proposition 6  1. [86] 

Suppose 
 j

jjn

j
zee ],[ 21

1
[f1, f2], then 

 j
jn

j
ze ][ 2

1
 f1, 

 j
jn

j
ze ][ 1

1
 f2 are the maximum and minimum value 

range  inequalities for the constraint condition, respectively. 

Now, from the proposition 1 due to Shaocheng [86], the interval inequality of the system constraints (6) 
reduce to the following inequalities as given below. 

[A1 + B1
LI1 ] x1 + [A2 + B2

LI2 ] x2  gU, [A1 + B1
UI1 ] x1 + [A2 + B2

UI2 ] x2  gL, xi0, i = 1, 2, 

i.e. LZ (x)   gU, UZ (x)   gL, x0. 
The minimization-type BLPP can be re-stated as follows: 

UDM: 
1x

Min f1 (x) = [ LY1 (x), UY1 (x)], 

LDM: 
2x

Min f2 (x) = [ LY2 (x), UY2  (x)] 

Subject to 

[ LZ (x), UZ (x)]  [g
L, gU], x0. 

For obtaining the best optimal solution of fi, (i = 1, 2), we solve the following problem due to Ramadan [87] 
as follows: 

Xx
Min


fi (x) = L
iY (x), i = 1, 2 

UZ (x)   gL, x 0, i = 1, 2. 

Suppose b
ix = ( b

i1x , b
i2x , ..., b

IiNx , b

1IiNx


, ..., b
iNx ), (i = 1, 2)  be the individual best solution of i-th level DM 

subject to the given constraints and L
iY ( b

ix ), (i = 1, 2) be the  individual best objective value of i-th level DM. 

Now for determining the worst optimal solution of fi, (i = 1, 2), we solve the following problem due to 
Ramadan [85] as given below. 

Xx
Min


fi (x) = U
iY (x), i = 1, 2 

ZL (x)   gU, x0. 
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Let w
ix = ( w

i1x , w
i2x , ..., w

IiNx , w

1IiNx


, ..., iNx w ), (i = 1, 2)  be the individual worst solution of i-th level DM subject 

to the given constraints and U
iY ( w

ix ), (i = 1, 2) be the  individual worst objective value of i-th level DM. 

 Therefore, [ L
iY ( b

ix ), U
iY ( w

ix )] be the optimal value of i-th level DM in the interval form. 

Suppose that [ *
iY , 

iY ] be the target interval of i-th objective functions set by level DMs. 

Now the target level of i-th objective function can be written as follows: 
U

iY (x) 
*

iY , (i = 1, 2) 
L

iY (x) 


iY , (i = 1, 2). 

Hence, the goal achievement functions are presented in the following form: 

- U
iY (x) + U

iD = - *
iY , (i = 1, 2) 

L
iY (x) +

L
iD = 

iY , (i = 1, 2) 

where U
iD , L

iD , (i = 1, 2) are deviational variables. 

However, since the individual best solutions of the level DMs are not same, cooperation between the two 
level DMs is necessary to arrive at a compromise optimal solution. For more details see [27, 30, 31, 36, 37, 42, 
44, 45, 55, 88].  

Let, )x,...,x,x,...,x,x( b
iN

b
1iN

b
iN

b
i2

b
i1 ii b

ix , (i = 1, 2) be the individual best solution of i-th level DM. Suppose 

( b
1ix - l1i ) and ( b

1ix + u1i), (i = 1, 2, ..., N1) be the lower and upper bounds of decision vector provided by UDM 

where l1i and u1i, (i = 1, 2, ..., N1) are the negative and positive tolerance variables which are not essentially same. 

Also, suppose that ( b
2ix - l2i ) and ( b

2ix + u2i), (i = 1, 2, ..., N2) be the lower and upper bounds of decision vector 

provided by LDM where l2i and u2i, (i = 1, 2, ..., N2) are the negative and positive tolerance variables which are 
not same in general. Therefore, we can write 

( b
1ix - l1i ) x1i  ( b

1ix + u1i), (i = 1, 2, ..., N1) 

( b
2ix - l2i) x2i  ( b

2ix + u2i), (i = 1, 2, ..., N2) 

Finally, we develop three new GP models (see the flowchart of GP model in Fig.2) for solving BLPP with 
neutrosophic numbers as follows: 

GP Model I. 

Min 


2

1i
( U

iD + L
iD ) 

Subject to 

- U
iY (x) + U

iD = - *
iY , (i = 1, 2) 

L
iY (x) +

L
iD = 

iY , (i = 1, 2) 
LZ (x)   gU, 

UZ (x)  gL, 

( b
1ix - l1i ) x1i  ( b

1ix + u1i), (i = 1, 2, ..., N1) 

( b
2ix - l2i) x2i  ( b

2ix + u2i), (i = 1, 2, ..., N2) 
L
iD , U

iD , x0, (i = 1, 2). 

GP Model II. 

Min 


2

1i
( U

i
U
i Dw + L

i
L
i Dw ) 

Subject to 

- U
iY (x) + U

iD = - *
iY , (i = 1, 2) 

L
iY (x) +

L
iD = 

iY , (i = 1, 2) 
LZ (x)   gU, 

UZ (x)  gL, 

( b
1ix - l1i ) x1i  ( b

1ix + u1i), (i = 1, 2, ..., N1) 

( b
2ix - l2i) x2i  ( b

2ix + u2i), (i = 1, 2, ..., N2) 
U
iw 0, L

iw 0, (i = 1, 2), L
iD , U

iD , x0, (i = 1, 2). 
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Here, U L

i i
w and w are the negative deviational variables. 

GP Model III. 
Min  
Subject to 

- U
iY (x) + U

iD = - *
iY , (i = 1, 2) 

L
iY (x) +

L
iD = 

iY , (i = 1, 2) 
LZ (x)   gU, 

UZ (x)  gL, 

( b
1ix - l1i ) x1i  ( b

1ix + u1i), (i = 1, 2, ..., N1) 

( b
2ix - l2i) x2i  ( b

2ix + u2i), (i = 1, 2, ..., N2) 

  U
iD ,  L

iD , (i = 1, 2), L
iD , U

iD , x 0, (i = 1, 2). 

Fig. 2.  Flowchart of the GP strategy for BLPP 

                                         

                                 

 Each level DM presents his/ her linear objective 
function with Smarandache numbers 

System constraints with 
neutrosophic numbers are given 

Step-1 

Convert the original problem into 
the BLPP with interval numbers 
and goal achievement functions 
are constructed  

Preference upper and lower bounds 
are assigned by the DMs  

Step- 2 

Step- 3 

GP Models are constructed Step-4 

End 

Start 

GP Models are solved Step-5 
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5 Numerical Example 

Consider the following BLPP with neutrosophic numbers to show the efficiency of the proposed strategy. 
We consider I [0, 1]. 

UDM: 
1x

Min f1 (x) = [1 + 2I] x1 + [4 + 5I] x2 + [1 + 2I], 

LDM: 
1x

Min f1 (x) = [3 + 4I] x1 + [2 + 3I] x2 + [3 + 2I], 

Subject to  
[4+ 2I] x1 + [3 + 7I] x2 [15+ 10I],  
[6+ I] x1 + [-2 + 4I] x2 [5+ 3I], 
x1, x20. 
The transformed problem of UDM is shown Table 1. 

Table 1. UDM’s problem for best and worst solutions 
UDM’s problem to find best solution UDM’s problem to find worst solution 

Min LY1 (x) = x1 + 4x2 + 1 

Subject to 
6 x1 + 10 x215, 
7 x1 + 2 x25, 

x1, x20. 

Min UY1 (x) = 3x1 + 9x2 + 3 

Subject to 
4 x1 + 3x225, 
6 x1 - 2 x28, 

x1, x20. 

The best and worst solutions of UDM are computed as given below (see Table 2) 

Table 2. UDM’s best and worst solutions 
The best solution of 

UDM 
The worst solution of 

UDM 
*

1Y = 3.5 at (2.5, 0) 
1Y = 21.75 at (6.25, 0) 

The transformed problem of LDM can be presented as follows (see Table 3). 

Table 3. LDM’s problem for best and worst solutions 
LDM’s problem to find best solution LDM’s problem to find worst solution 

Min LY2 (x) = 3x1 + 2x2 + 3 

Subject to 
6 x1 + 10 x215, 
7 x1 + 2 x25, 

x1, x20. 

Min UY2 (x) = 7x1 + 5x2 + 5 

Subject to 
4 x1 + 3x225, 
6 x1 - 2 x28, 

x1, x20. 

The best and worst solutions of LDM are determined as given below (see Table 4) 

Table 4. LDM’s best and worst solutions 
The best solution of 

LDM 
The worst solution of 

LDM 
*

2Y = 6.621 at (0.345, 

1.293) 


2Y = 47.615 at (2.846, 

4.538) 

The objective function of UDM with specified targets can be presented as given below. 
x1 + 4x2 + 121.5, 3x1 + 9x2 + 34, 
The goal achievement functions of UDM with specified targets can be presented as 

x1 + 4x2 + 1+ LD1  =21.5, -3x1 - 9x2 – 3+ UD1 = -4, 

The objective function of LDM with specified targets can be presented as given below. 
3x1 + 2x2 + 347, 7x1 + 5x2 + 57, 
Also, the goal achievement functions of LDM with specified targets can be written as follows: 

3x1 + 2x2 + 3+ LD2  = 47, -7x1 - 5x2 - 5+ UD2 = -7. 
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Suppose, the UDM provides preference bounds on the decision variable x1 as 2.5 - 1.5  x12.5 + 2 and the 
LDM offers preference bounds on the decision variable x2 as 1.293 – 0.793  x21.293 + 1.207 to reach optimal 
compromise solution.  

Therefore, the GP models are developed as given below. 

GP Model I. 

Min ( LD1 + UD1 + LD2 + UD2 ) 

Subject to 

x1 + 4x2 + 1+ LD1  =21.5, 

-3x1 - 9x2 – 3+ UD1 = -4, 

3x1 + 2x2 + 3+ LD2  = 47, 

 -7x1 - 5x2 - 5+ UD2 = -7, 

6 x1 + 10 x215, 
7 x1 + 2 x25, 
 4 x1 + 3x225,  
6 x1 - 2 x28, 
2.5 - 1.5  x12.5 + 2, 
1.293 – 0.793  x21.293 + 1.207, 

L
iD , U

iD 0, (i = 1, 2) 

x1, x20. 

GP Model II. 

Min 4
1 ( LD1 + UD1 + LD2 + UD2 ) 

Subject to 

x1 + 4x2 + 1+ LD1  =21.5, 

-3x1 - 9x2 – 3+ UD1 = -4, 

3x1 + 2x2 + 3+ LD2  = 47, 

 -7x1 - 5x2 - 5+ UD2 = -7, 

6 x1 + 10 x215, 
7 x1 + 2 x25, 
 4 x1 + 3x225,  
6 x1 - 2 x28, 
2.5 - 1.5  x12.5 + 2, 
1.293 – 0.793  x21.293 + 1.207, 
x1, x20. 

GP Model III. 
Min   
Subject to  

x1 + 4x2 + 1+ LD1  =21.5, 

-3x1 - 9x2 – 3+ UD1 = -4, 

3x1 + 2x2 + 3+ LD2  = 47, 

 -7x1 - 5x2 - 5+ UD2 = -7, 

6 x1 + 10 x215, 
7 x1 + 2 x25, 
 4 x1 + 3x225,  
6 x1 - 2 x28, 
2.5 - 1.5  x12.5 + 2, 
1.293 – 0.793  x21.293 + 1.207, 

  L
iD ,  U

iD , (i = 1, 2) 
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L
iD , U

iD 0, (i = 1, 2) 

x1, x20. 

The solutions of the proposed GP models are shown in the Table 5 as given below. 

Table 5. The solutions of the BLPP 
Solution point Objective values of UDM Objective values of 

LDM 
GP Model I (4.5, 2.333) [14.832, 37.497] [21.166, 37.497] 
GP Model II (4.5, 2.333) [14.832, 37.497] [21.166, 37.497] 

GP Model 
III 

(4.375, 2.5) [15.375, 38.625] [21.125, 48.125] 

Conclusion 

The paper presented three new goal programming models for bi-level linear programming problem where the 
objective functions of both level decision makers and the system constraints are linear functions with 
neutrosophic  numbers. Using interval programming technique, we transform the bi-level linear programming 
problem into interval programming problem and calculated the best and the worst solutions for both level 
decision makers. Both decision makers assign preference upper and lower bounds on the decision variables 
under their control to obtain optimal compromise solution of the hierarchical organization. Finally, a new goal 
programming strategy has been developed to solve bi-level linear programming problem by minimizing 
deviational variables. We obtain the optimal compromise solution of the system in interval form which is more 
realistic. A numerical problem involving neutrosophic numbersis is solved to demonstrate the applicability and 
efficiency of the proposed procedure. 

We hope that the bi-level linear programming technique in neutrosophic number environment will open up a 
new avenue of research for future neutrosophic researchers. Furthermore, we believe that the proposed strategy 
can be effective for dealing with multi-objective bi-level linear programming, multi-objective decentralized bi-
level linear programming, multi-objective decentralized multi-level linear programming, priority based multi-
objective linear programming problems, real world decision making problems such as agriculture, bio-fuel pro-
duction, portfolio selection, transportation, etc. with neutrosophic numbers information. 

References 

[1] J. F. Bard. Optimality conditions for the bi-level programming problem. Naval Research Logistics Quarterly, 31 (1984), 
13-26. 

[2] W. F. Bialas, and M. H. Karwan. Two level linear programming. Management Science, 30 (1984), 1004-1020. 
[3] W. Candler, and R. Townsley. A linear bilevel programming problem. Computers and Operations Research, 9 (1982), 

59 – 76. 
[4] J. Fortuni- Amat, and B. McCarl. A representation and economic interpretation of a two-level programming problem. 

Journal of the Operational Research Society, 32 (1981), 783-792. 
[5] G. Anandalingam. A mathematical programming model of decentralized multi-level systems. Journal of the Operational 

Research Society, 39 (11) (1988), 1021-1033. 
[6] L. A. Zadeh. Fuzzy sets. Information and Control, 8(3) (1965), 338-353. 
[7] Y. J. Lai. Hierarchical optimization: a satisfactory solution. Fuzzy Sets and Systems, 77 (3) (1996), 321–335. 
[8] H. S. Shih, Y. J. Lai, and E. S. Lee. Fuzzy approach for multi-level programming problems. Computers and Operations 

Research, 23(1) (1996), 73-91. 
[9] H. S. Shih, and E. S. Lee. Compensatory fuzzy multiple level decision making. Fuzzy Sets and Systems, 114(1) (2000), 

71-87. 
[10] M. Sakawa, I. Nishizaki, and Y. Uemura. Interactive fuzzy programming for multilevel linear programming problems. 

Computers and Mathematics with Applications, 36 (2) (1998), 71-86. 
[11]  M. Sakawa, and I.  Nishizaki. Interactive fuzzy programming for decentralized two-level linear programming problems. 

Fuzzy Sets and Systems, 125 (3) (2002), 301-315. 
[12] S. Sinha. Fuzzy mathematical programming applied to multi-level programming problems. Computers and Operations 

Research, 30 (9) (2003), 1259 – 1268. 
[13] S. Sinha. Fuzzy programming approach to multi-level programming problems. Fuzzy Sets and Systems, 136 (2) (2003), 

189 – 202. 
[14] S. Pramanik, and T. K. Roy. Fuzzy goal programming approach to multilevel programming problems. European Journal 

of Operational Research, 176 (2007), 1151-1166. 
[15] A. Charnes, W. W.  Cooper. Management models and industrial applications of linear programming, Wiley, New York, 

1961. 

Neutrosophic Sets and Systems, Vol. 21, 2018 118 



Surapati Pramanik, Partha Pratim Dey, Bi-level Linear Programming Problem with Neutrosophic Numbers 

[16] Y. Ijiri. Management goals and accounting for control, North-Holland Publication, Amsterdam, 1965. 
[17] S. M. Lee. Goal programming for decision analysis. Auerbach Publishers Inc., Philadelphia, 1972. 
[18] [18]  J.  P. Ignizio. Goal programming and extensions. Lexington Books, D. C. Heath and Company, London, 1976. 
[19] C. Romero. Handbook of critical issues in goal programming. Pergamon Press, Oxford, 1991. 
[20] M. J. Schniederjans. Goal programming: Methodology and applications. Kluwer Academic Publishers, Boston, 1995. 
[21] C. T. Chang. Multi-choice goal programming. Omega, 35(4) (2007), 389-396. 
[22] M. Inuiguchi, and Y. Kume. Goal programming problems with interval coefficients and target intervals. European Jour-

nal of Operational Research, 52 (1991), 345-361. 
[23] R. Narasimhan. Goal programming in a fuzzy environment. Decision Sciences, 11 (2) (1980), 325-336. 
[24] R. H. Mohamed. The relationship between goal programming and fuzzy programming. Fuzzy Sets and Systems, 89 (2) 

(1997), 215 -222. 
[25] B. N. Moitra, and B. B. Pal. A fuzzy goal programming approach for solving bilevel programming problems, in: Pal, N. 

R. & Sugeno, M. (Eds.), AFSS 2002, INAI 2275, Springer-Verlag, Berlin, Heidelberg, pp.91-98 (2002). 
[26]  S. R. Arora, and R. Gupta. Interactive fuzzy goal programming approach for bi-level programming problem. European 

Journal of Operational Research, 194 (2) (2009), 368-376. 
[27] S. Pramanik. Bilevel programming problem with fuzzy parameters: a fuzzy goal programming approach. Journal of Ap-

plied Quantitative Methods, 7(1) (2012), 9-24. 
[28] S. Pramanik, and P. P. Dey. Bi-level multi-objective programming problem with fuzzy parameters. International Journal 

of Computer Applications, 30(10) (2011), 13-20. 
[29] I. A. Baky. Fuzzy goal programming algorithm for solving decentralized bi-level multi-objective programming prob-

lems. Fuzzy Sets and Systems, 160(18) (2009), 2701-2713. 
[30] S. Pramanik, P. P. Dey, and B. C. Giri. Decentralized bilevel multiobjective programming problem with fuzzy parame-

ters based on fuzzy goal programming. Bulletin of Calcutta Mathematical Society, 103(5) (2011), 381—390. 
[31] S. Pramanik. Multilevel programming problems with fuzzy parameters: a fuzzy goal programming approach. Interna-

tional Journal of Computer Applications, 122(21) (2015), 34-41. 
[32] I. A. Baky. Solving multi-level multi-objective linear programming problems through fuzzy goal programming ap-

proach. Applied Mathematical Modelling, 34 (9) (2010), 2377-2387. 
[33] N. Arbaiy, and J. Watada. Fuzzy goal programming for multi-level multi-objective problem: an additive model. Soft-

ware Engineering and Computer Systems Communication in Computer and Information Science, 180 (2011), 81-95. 
[34] S. Pramanik, and P. P. Dey. Bi-level linear fractional programming problem based on fuzzy goal programming ap-

proach. International Journal of Computer Applications, 25 (11) (2011), 34-40. 
[35] M. A. Abo-Sinna, and I. A. Baky. Fuzzy goal programming procedure to bilevel multiobjective linear fraction pro-

gramming problems. International Journal of Mathematics and Mathematical Sciences, (2010), 01-15, ID 148975 
(2010) 01-15. doi: 10.1155/2010/148975. 

[36] P. P. Dey, S. Pramanik, and B. C. Giri. Fuzzy goal programming algorithm for solving bi-level multi-objective linear 
fractional programming problems. International Journal of Mathematical Archive, 4(8) (2013), 154-161. 

[37] P. P. Dey, S. Pramanik, and B.C. Giri. TOPSIS approach to linear fractional bi-level MODM problem based on fuzzy 
goal programming. Journal of Industrial and Engineering International, 10(4) (2014), 173-184. 

[38] K. C. Lachhwani. On fuzzy goal programming procedure to bi-level multiobjective linear fractional programming prob-
lems. International Journal of Operational Research, 28(3) (2017), 348-366. 

[39] S. Pramanik, I. Maiti, and T. Mandal. A Taylor series based fuzzy mathematical approach for multi objective linear 
fractional programming problem with fuzzy parameters. International Journal of Computer Applications, 180(45) 
(2018), 22-29. 

[40] S. Pramanik, P. P. Dey, and T. K. Roy. Fuzzy goal programming approach to linear fractional bilevel decentralized pro-
gramming problem based on Taylor series approximation. The Journal of Fuzzy Mathematics, 20(1) (2012), 231- 238. 

[41] P. P. Dey, S. Pramanik, and B.C. Giri. Multilevel fractional programming problem based on fuzzy goal programming. 
International Journal of Innovative Research in Technology & Science (IJIRTS), 2(4) (2014), 17-26. 

[42] B. B. Pal, and B. N. Moitra. A fuzzy goal programming procedure for solving quadratic bi-level programming problems. 
International Journal of Intelligent Systems, 18 (5) (2003), 529-540. 

[43] S. Pramanik, and P. P. Dey. Quadratic bi-level programming problem based on fuzzy goal programming approach. In-
ternational Journal of Software Engineering & Applications, 2(4) (2011), 41-59. 

[44] S. Pramanik, P. P. Dey, and B. C. Giri. Fuzzy goal programming approach to quadratic bi-level multi-objective pro-
gramming problem. International Journal of Computer Applications, 29(6) (2011), 09-14. 

[45] S. Pramanik, and D. Banerjee. Chance constrained quadratic bi-level programming problem. International Journal of 
Modern Engineering Research, 2(4) (2012), 2417-2424. 

[46] C. S. Lee, and C. G. Wen. Fuzzy goal programming approach for water quality management in a river basin. Fuzzy Sets 
and Systems, 89 (2) (1997), 181-192. 

[47] F. Arıkan, and Z. Güngör. An application of fuzzy goal programming to a multiobjective project network problem. 
Fuzzy Sets and Systems, 119 (1) (2001), 49-58. 

[48] S. Pramanik, and T. K. Roy. A fuzzy goal programming technique for solving multi-objective transportation problem. 
Tamsui Oxford Journal of Management Sciences, 22 (1) (2006), 67-77. 

[49] S. Pramanik, and D. Banerjee. Multi-objective chance constrained capacitated transportation problem based on fuzzy 
goal programming. International Journal of Computer Applications, 44(20) (2012), 42-46. 

[50] K. Atanassov. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20 (1986), 87-96. 

Neutrosophic Sets and Systems, Vol. 21, 2018 119



Surapati Pramanik, Partha Pratim Dey, Bi-level Llinear Programming Problem with Neutrosophic Numbers 

[51] S. Pramanik, and T. K. Roy. An intuitionistic fuzzy goal programming approach to vector optimization problem. Notes 
on Intuitionistic Fuzzy Sets, 11(5) (2005), 01-14. 

[52] S. Pramanik, and T. K. Roy. Intuitionistic fuzzy goal programming and its application in solving multi-objective trans-
portation problem. Tamsui Oxford Journal of Management Sciences, 23(1) (2007), 01-17. 

[53] S. Pramanik, and T. K. Roy. An intuitionistic fuzzy goal programming approach for a quality control problem: a case 
study. Tamsui Oxford Journal of Management Sciences, 23 (3) (2007), 01-18. 

[54] S. Pramanik, P. P. Dey, and T. K. Roy. Bilevel programming in an intuitionistic fuzzy environment. Journal of Tech-
nology, XXXXII (2011), 103-114. 

[55] S. Dey, and T. K. Roy. Intuitionistic fuzzy goal programming technique for solving non-linear multi-objective structural 
problem. Journal of Fuzzy Set Valued Analysis, 2015(3) (2015), 179-193. 

[56] J. Razmi, E. Jafarian, and S. H. Amin. An intuitionistic fuzzy goal programming approach for finding Pareto-optimal 
solutions to multi-objective programming problems. Expert Systems with Applications, 65 (2016), 181-193. DOI: 
10.1016/j.eswa.2016.08.048. 

[57] S. Rukmani, and R. S. Porchelvi. Goal programming approach to solve multi-objective intuitionistic fuzzy non-linear 
programming models. International Journal of Mathematics Trends and Technology, 53(7) (2018), 505-514. 

[58] F. Smarandache.  A unifying field of logics. Neutrosophy: Neutrosophic probability, set and logic. American Research 
Press, Rehoboth, 1998. 

[59] H. Wang, F. Smarandache, Y. Q. Zhang, and R. Sunderraman. Single valued neutrosophic sets. Multispace & Multis-
tructure, 4 (2010), 410–413. 

[60] P. Biswas, S. Pramanik, and B. C. Giri. Entropy based grey relational analysis method for multi-attribute decision mak-
ing under single valued neutrosophic assessments. Neutrosophic Sets and Systems 2(2014), 102–110.  

[61] P. Biswas, S. Pramanik, and B. C. Giri. A new methodology for neutrosophic multi-attribute decision making with un-
known weight information. Neutrosophic Sets and Systems 3 (2014), 42–52. 

[62] K. Mondal, S. Pramanik. Multi-criteria group decision making approach for teacher recruitment in higher education un-
der simplified neutrosophic environment. Neutrosophic Sets and Systems, 6 (2014), 28–34.  

[63] K. Mondal, and S. Pramanik. Neutrosophic decision making model of school choice. Neutrosophic Sets and Systems, 
7(2015), 62-68.  

[64] P. Biswas, S. Pramanik, and B. C. Giri. Cosine similarity measure based multi-attribute decision-making with trapezoi-
dal fuzzy neutrosophic numbers. Neutrosophic Sets Systems,  8 (2015), 47–57. 

[65] K. Mondal, S. Pramanik. Neutrosophic tangent similarity measure and its application to multiple attribute decision mak-
ing. Neutrosophic Sets Systems, 9 (2015), 80–87. 

[66] P. Biswas, S. Pramanik, and B. C. Giri. Aggregation of triangular fuzzy neutrosophic set information and its application 
to multi-attribute decision making. Neutrosophic Sets and Systems, 12 (2016), 20–40. 

[67] P. Biswas, S. Pramanik, and B. C. Giri. Value and ambiguity index based ranking   method of single-valued trapezoidal 
neutrosophic numbers and its application to multi-attribute decision making. Neutrosophic Sets and Systems 12 (2016), 
127–138.  

[68] P. Biswas, S. Pramanik, and B. C. Giri. TOPSIS method for multi-attribute group decision-making under single-valued 
neutrosophic environment. Neural Computing and Applications, 27(3) (2016), 727–737. 

[69] S. Pramanik, S. Dalapati, and T. K. Roy. Logistics center location selection approach based on neutrosophic multi-
criteria decision making. In F. Smarandache, & S. Pramanik (Eds), New trends in neutrosophic theory and applications). 
Pons Editions, Brussels, 2016,161-174. 

[70] P. Biswas, S. Pramanik, and B. C. Giri. Multi-attribute group decision making based on expected value of neutrosophic 
trapezoidal numbers. New Trends in Neutrosophic Theory and Applications-Vol-II. Pons Editions, Brussells (2017). In 
Press. 

[71] P. Biswas, S. Pramanik, and B. C. Giri. Multi-attribute group decision making based on expected value of neutrosophic 
trapezoidal numbers. New Trends in Neutrosophic Theory and Applications-Vol-II. Pons Editions, Brussells (2017). In 
Press. 

[72] S. Pramanik, P. Biswas, and B. C. Giri. Hybrid vector similarity measures and their applications to multi-attribute deci-
sion making under neutrosophic environment. Neural Computing and Applications, 28 (2017), 1163–1176. 

[73] K. Mondal, S Pramanik, and B. C. Giri. Single valued neutrosophic hyperbolic sine similarity measure based strategy 
for MADM problems. Neutrosophic Sets and Systems, 20 (2018), 3-11.  

[74] K. Mondal, S. Pramanik, and B.C. Giri. Hybrid binary logarithm similarity measure for MAGDM problems under 
SVNS assessments.  Neutrosophic Sets and Systems, 20 (2018), 12-25.  

[75] S. Pramanik, S. Dalapati, S. Alam, F. Smarandache, T. K. Roy. NS-cross entropy-based MAGDM under single-valued 
neutrosophic set environment. Information, 9(2) (2018), 37; doi:10.3390/info9020037 

[76] F. Smarandache. Introduction of neutrosophic statistics. Sitech and Education Publisher, Craiova, 2013. 
[77] F. Smarandache. Neutrosophic precalculus and neutrosophic calculus. Europa-Nova, Brussels, 2015. 
[78] W. Jiang, and J. Ye. Optimal design of truss structures using a neutrosophic number optimization model under an inde-

terminate environment. Neutrosophic Sets and Systems, 15 (2017), 8-17. 
[79] K. Mondal, S. Pramanik, B. C. Giri, and F. Smarandache. NN-harmonic mean aggregation operators-based MCGDM 

strategy in a neutrosophic number environment. Axioms 7 (1), doi:10.3390/axioms7010012 
[80] S.  Pramanik, R. Roy, and T.K. Roy.  Teacher selection strategy based on bidirectional projection measure in neutroso-

phic number environment. In Neutrosophic Operational Research; Smarandache, F., Abdel-Basset, M., El-Henawy, I., 
Eds.; Pons Publishing House / Pons asbl: Bruxelles, Belgium, 2017; Volume 2, pp. 29-53. ISBN 978-1-59973-537-5. 

Neutrosophic Sets and Systems, Vol. 21, 2018 120 



Surapati Pramanik, Partha Pratim Dey, Bi-level Linear Programming Problem with Neutrosophic Numbers 

[81]  J. Ye. Neutrosophic number linear programming method and its application under neutrosophic number environment. 
Soft Computing, (2017). doi: 10.1007/s00500-017-2646-z. 

[82] J. Ye, W. Cai, and Z. Lu, Neutrosophic number non-linear programming problems and their general solution methods 
under neutrosophic number environment. Axioms, 7(1) (2018). doi:10.3390/axioms7010013. 

[83] D. Banerjee, and S. Pramanik. Single-objective linear goal programming problem with neutrosophic numbers. Interna-
tional Journal of Engineering Science & Research Technology,   7(5) (2018), 454-469.

[84] S. Pramanik, and D. Banerjee. Neutrosophic number goal programming for multi-objective linear programming prob-
lem in neutrosophic number environment. MOJ Current Research & Review,   1(3) (2018), 135-141. 

[85] R. E. Moore. Interval analysis, Prentice-Hall, New Jersey, 1998. 
[86] T. Shaocheng. Interval number and fuzzy number linear programming. Fuzzy Sets and Systems, 66(3) (1994), 301-306. 
[87] K. Ramadan. Linear programming with interval coefficients Doctoral dissertation, Carleton University, 1996. 
[88] P. P. Dey, and S. Pramanik. Goal programming approach to linear fractional bilevel programming problem based on 

Taylor series approximation. International Journal of Pure and Applied Sciences and Technology, 6(2) (2011), 115-123. 

Received: July 30, 2018.   Accepted: August 22, 2018.

Neutrosophic Sets and Systems, Vol. 21, 2018 121



_________________________________________________________________________________________ 
Milton Villegas Alava, Stella Paola Delgado Figueroa, Hilda Mercedes Blum Alcivar, Maikel Leyva Vázquez, 
Single Valued Neutrosophic Numbers and Analytic Hierarchy Process for Project Selection 

 Single Valued Neutrosophic Numbers and Analytic 
Hierarchy Process for Project Selection 

Milton Villegas Alava3, Stella Paola Delgado Figueroa2, Hilda Mercedes Blum Alcivar3, Maikel 
Leyva Vázquez4 

1Universidad de Guayaquil, Facultad de Ciencias Administrativas, Guayaquil Ecuador. E-mail: milton.villegasa@ug.edu.ec  
2Universidad de Politécnica Salesiana, Sede Guayaquil, Facultad de Administración de Empresas, Guayaquil Ecuador. E-mail: sdelga-

dof@ups.edu.ec 
3Universidad de Guayaquil, Facultad de Ciencias Administrativas, Guayaquil Ecuador. E-mail: hilda.bluma@ug.edu.ec 

4Universidad de Guayaquil, Facultad de Ciencias Matemáticas y Físicas, Guayaquil Ecuador. E-mail: mleyvaz@gmail.com 

Abstract. Neutrosophic sets and its application to decision support have become a topic of great importance. In this paper, a 
new model for decision making in the selection of projects is presented based on single valued neutrosophic number (SVN-
numbers) and the analytic hierarchy process (AHP). The proposed framework is composed of five activities, framework, crite-
ria weighting, gathering information, rating alternatives and project selection. Project alternatives are rated based on aggrega-
tion operator and the ranking of alternatives is based on scoring and accuracy functions.  The AHP method is included and al-
lows a correct weighting of different criteria involved.  Additionally the common decision resolution scheme for helping deci-
sion maker to reach a reliable decision is used giving methodological support t. A case study is developed showing the appli-
cability of the proposal for information technologies project selection. Further works will concentrate in extending the proposal 
for group decision making and developing a software tool. 
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1 Introduction 

      Fuzzy logic or multi-valued logic is based on fuzzy set theory proposed by Zadeh [1], for helping in model-
ing knowledge in a more natural way. The basic idea is the notion of the membership relation which takes truth 
values in the closed interval of real numbers [0, 1] [2]. 
      The intuitionistic fuzzy set  (IFS) on a universe was introduced by K. Atanassov as a generalization of fuzzy 
sets [3]. In IFS besides the degree of membership (  ) of each element 𝑥 ∈ 𝑋 to a set A there was 
considered a degree of non-membership , such that: 

(1) 

      Later the neutrosophic set (NS) was introduced by F. Smarandache who introduced the degree of indetermi-
nacy (i) as indepedent component [4].  
      Decision analysis is a discipline with the goal of computing an overall assessment that summarizes the in-
formation gathered and providing useful information about each evaluated element [5]. In real world decision 
making problems uncertainty is presented and the use of linguistic information to model and manage such an un-
certainty is recommended [6].  
      Experts feel more comfortable providing their knowledge by using terms close to the way  human beings use 
[7] by means of  linguistic variables. A linguistic variable is a variable whose values are words or sentences in a 
natural or artificial language [8]. 
      Because of the imprecise nature of the linguistic assessments new techniques have been developed. Single 
valued neutrosophic sets (SVNS) [9] for handling indeterminate and inconsistent information is a relatively new 
approach.  In this paper a new model of project selection is developed based on single valued neutrosophic num-
ber (SVN-number) allowing the use of linguistic variables [10, 11] and the analytical hierarchy process (AHP) 

Neutrosophic Sets and Systems, Vol. 21, 2018 

  University of New Mexico 

122 



Milton Villegas Alava, Stella Paola Delgado Figueroa, Hilda Mercedes Blum Alcivar, Maikel Leyva Vázquez, 
Single Valued Neutrosophic Numbers and Analytic Hierarchy Process for Project Selection 

for weighting criteria according to its importance [12]. Weighting criteria is important in decision making prob-
lems. In some similar proposals weight are given but no method is explained [13] or [14]. Additionally the 
common decision resolution scheme for helping decision maker to reach a reliable decision is used giving solid 
methodological support. 
      This paper is structured as follows: Section 2 reviews some preliminaries concepts about decision analysis 
framework SVN numbers and AHP method to find the attributes weight. In Section 3, a decision analysis 
framework based on SVN numbers for project selection. Section 4 shows a case study of the proposed model. 
The paper ends with conclusions and further work recommendations. 

2 Preliminaries 

In this section, we first provide a brief revision of a general decision scheme, the use of linguistic information 
using SVN numbers project selection and the Analytic Hierarchy Process.  

2.1 Decision Scheme 

Decision analysis is a discipline with the purpose of helping decision maker to reach a reliable decision. 
A common decision resolution scheme consists of following phases [6, 15]: 
 Identify decision and objectives.
 Identify alternatives.
 Framework:
 Gathering information.
 Rating alternatives.
 Choosing the alternative/s:
 Sensitive analysis
 Make a decision
Inside the framework phase, the structures and elements of the decision problem are defined. Experts provides 

information, according to the defined framework. 
 The gathered information provided by experts is then aggregated in the rating phase to obtain a collective val-

ue of alternatives. In rating phase, it is necessary to carry out a solving process to compute the collective assess-
ments for the set of alternatives, using aggregation operators  [16].  
Aggregation operator are important in decision making.  Aggregation operator , [17], are function with the fol-

lowing form:: 

(2) 

Some example of operators are the Bonferroni mean which  is a very useful aggregation operator, and can con-
sider the correlations between the aggregated arguments[18-20], the weighted geometric operator [21, 22], the He-
ronian means for considering the interrelationships between parameters [23, 24] and the power Heronian aggrega-
tion  operator [25] among others 

Project selection is  a multicriteria decision problem [26] . This fact makes the process of selecting information 
systems projects suitable for decision analysis scheme model.  

2.2 SVN-numbers 

Neutrosophy is mathematical theory developed by Florentín Smarandache for dealing with indeterminacy. 
[27]. It has been the base for developing of new methods to handle indeterminate and inconsistent information like 
neutrosophic sets an neutrosophic logic  and specially in  in decision making problems [28, 29] .  

The truth value in neutrosophic set is as follows [30]: 
Let  be a set defined as: , a neutrosophic valuation n is a mapping from 

the set of propositional formulas to  , that is for each sentence p we have .  
Single valued neutrosophic set (SVNS ) [9] was developed with the goal of facilitate real world applications of 

neutrosophic set and set-theoretic operators. A single-valued neutrosophic set is a special case of neutrosophic set 
.proposed as a generalization of crisp sets, fuzzy sets, and intuitionistic fuzzy sets in order to deal with incomplete 
information [10].  

A single valued neutrosophic set (SVNS) is defined as follows  (Definition 1) [9]: 
Definition 1: Let 𝑋 be a universe of discourse. A single valued neutrosophic set 𝐴 over 𝑋 is an object having 

the form of:  

𝐴 = {〈𝑥, (𝑥), (𝑥), (𝑥)〉: 𝑥 ∈ 𝑋} (3) 

where ,  and  with 0 ≤ ≤ 3 for all 
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𝑥 ∈ 𝑋. The intervals  y  denote the truth- membership degree, the indeterminacy-membership 
degree and the falsity membership degree of 𝑥 to 𝐴 respectively. 

Single valued neutrosophic numbers (SVN number) are denoted by 𝐴= (𝑎,b,𝑐), where 𝑎,𝑏,𝑐∈[0,1] and 
𝑎+𝑏+𝑐≤3 . 

Alternatives are frequently rated according Euclidean distance in SVN [31-33]. 

Definition 2: Let  be a vector of 𝑛 SVN numbers such that ,  j=(1,2, … , 
𝑛) and  = ( , , … , ) (𝑖 = 1,2, … , 𝑚) be 𝑚 vectors of 𝑛 SVN numbers such that  = ( , , )  (𝑖 
= 1,2, … , 𝑚), (𝑗 = 1,2, … , 𝑛). Then the separation measure between  y  is defined as follows: 

(4) 

(𝑖 = 1,2, … , 𝑚) 

Some hybrid vector similarity measures and weighted hybrid vector similarity measures for both single valued 
and interval neutrosophic sets can be found on [34]. 

In real world problems, sometimes we can use linguistic terms such as ‘good ’, ‘bad ’ to describe the state or 
performance of an alternative  and cannot use some numbers to express some qualitative information [35].   

The 2-tuple linguistic model could be used[36]  for qualitative information but lack indeterminacy. In this pa-
per the concept of linguistic variables [37] is used  by mean of single valued neutrosophic numbers [32]for devel-
oping a framework to decision support due to the fact that provides adequate computational models to deal with 
linguistic information [37] in decision allowing to include handling of indeterminate and inconsistent in project 
selection . 

2.3 AHP Method 

The Analytic Hierarchy Process (AHP) is a technique created by Tom Saaty [38] for making complex decision 
based. The steps for implementing the AHP model are [39]: 

1. Decompose the problem into a hierarchy of goal, criteria, sub-criteria and alternatives.
2. Collect data from experts or decision-makers corresponding to the hierarchic structure, in the pairwise com-

parison of alternatives on a qualitative scale. 
3. Assign a weight to criteria and sub-criteria.
4. Calculate the score for each of the alternatives through pairwise comparison.
One of the great advantages of the analytic hierarchy process is simplicity. Regardless of how many criteria 

are involved in making the decision, the AHP method only requires comparing a pair of elements. Another impor-
tant advantage is that it allows the inclusion of tangible variables such as , cost, time as well as intangible ones as 
criteria such as, comfort, beauty in the decision [40]. 

Weighting criteria is important in decision making problems in some example weight are given but no method 
is explained [13] or [14]. In this work the integration of AHP model with project selection allows to assign a 
weight to each of the criteria involved this more in line with reality and therefore more reliable.  

3 Proposed framework. 

Our aim is to develop a framework for project selection based on SVN numbers and AHP method. The model 
has been adapted from the common decision scheme that was showed in Fig. 1.  

Figure 1: Decision resolution scheme. 
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The model consists of the following phases (fig. 2). 

Figure 2: A framework for project selection. 

The proposed framework is composed of five activities: 
 Framework
 Criteria weighting
 Gathering information,
 Rating alternatives
 Project selection.

Following, the proposed decision method is described in further detail, showing the operation of each phase 

Framework 

In this phase, the evaluation framework, the decision problem of project selection is defined. The framework is 
established as follows: 

 C={ } with , a set of criteria. 

 E={ } with , a set of experts. 

  with , a finite set of information technologies projects alternatives. 

Criteria and experts might be grouped. The set of experts will provide the assessments of the decision problem. 

Criteria Weighting 

The first step in an AHP analysis is to build a hierarchy, also called decision modeling and it simply consists of 
building a hierarchy to analyze the decision.  
Second step in the AHP process is to derive the relative weights for the criteria. It is called relative because the 
obtained criteria priorities are measured with respect to each other using Saaty’s pairwise comparison scale (Ta-
ble I).  

TABLE I. TABLE I. SAATY’S PAIRWISE COMPARISON SCALE 

Verbal judgment Numeric value 
Extremely im-
portant 

9 
8 

Very Strongly 
more important 

7 
6 

Strongly more 5 

Neutrosophic Sets and Systems, Vol. 21, 2018 125



__________________________________________________________________________________________ 
Milton Villegas Alava, Stella Paola Delgado Figueroa, Hilda Mercedes Blum Alcivar, Maikel Leyva Vázquez, 
Single Valued Neutrosophic Numbers and Analytic Hierarchy Process for Project Selection 

important 4 
Moderately 
more important 

3 
2 

Equally impor-
tant 

1 

Based on the responses of the experts, a preference matrix is derived for each respondent for each  the criteria 
involved in the decision  with the following format. 

TABLE II.   PAIRWISE COMPARISON MATRIX OF CRITERIA 

Goal Criteria1 Criteria 
2 

... Criteria n 

Criteria 1 
Criteria 2 
... 
Criteria n 

Cells in comparison matrices will have a value from the numeric scale shown in Table I, to reflect relative pre-
ference also called intensity judgment or simply judgment in each of the compared pairs [40].   

If  is the element of row  column of the matrix, then the lower diagonal is filled using the following for-
mula:  

(5) 

Note that that all the element in the comparison matrix are positive, . 

For calculating criteria weights the approximate method is considered simplest. Approximate method for AHP 
requires the normalization of the comparison matrix adding the values in each column. Next, each cell is divided 
by the total of the column.  

Another approach is proposed in [41]based on row geometrics means of the pairwise comparison matrix: 

(6) 

Saaty [42] proposed  the eigenvalue method by calculating the principal eigenvector . This vector corres-
ponds to the largest eigenvalue, 𝜆𝑚𝑎𝑥 of matrix D, as follows: 

(7) 
Some discussions have been developed but there is no clear conclusion about the better method for weight de-

termination.   
Once judgments have been entered, it is necessary to check that they are consistent.  AHP calculates a consis-

tency ratio (CR) comparing the consistency index (CI) of the matrix with our judgments versus the consistency 
index of a random-like matrix (RI) [43]: 

(8) 

A consistency ratio (CR) of 0.10 or less is acceptable to continue the AHP analysis. If the consistency ratio is 
greater than 0.10, it is necessary to revise the judgments to locate the cause of the inconsistency and then correct it 
[43]. 

Gathering information 

In this phase, each expert, provides the assessments by means of assessment vectors: 

(9) 

The assessment , provided by each expert , for each criterion  of each project alternative  , is expressed 
using   SVN numbers.  

Since humans might feel more comfortable using words by means of linguistic labels or terms to articulate 
their preferences, the ratings of each alternative with respect to each attribute are given as linguistic variables cha-
racterized by SVN-numbers in the evaluation process.  

Granularity of the linguistic assessments could vary according to the uncertainty and the nature of criteria as 
well as the background of each expert. 
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Rating alternatives 

The aim of this phase is to obtain a global assessment for each alternative. Taking into account the previous 
phase, an assessment for each alternative is computed, using the selected solving process that allows to manage 
the information expressed in the decision framework.  

Information is aggregated selecting aggregation operators in order to obtain a global assessment for each alter-
native that summarizes its gathered information.  

In this case alternatives are rated according to single valued neutrosophic weighted averaging (SVNWA) ag-
gregation operator was proposed by Ye [44] for SVNSs as follows[10]: 

(10) 

where  is the waiting vector of    ,  and . 

or the single valued neutrosophic weighted geometric averaging aggregation operator ( ) [44] : 

(11) 

where  is the waiting vector of  ,  and . 

Weights (w) in both cases are obtained by the AHP method in phase 2. 

Project Selection 

In this phase of the alternatives are ranked  and the most desirable one is chosen  by the score function [45, 
46].According to the scoring and accuracy functions for SVN-sets, a ranking order of the set of the alternatives 
can be generated [47]. Selecting option(s) with higher scores.  
For ordering alternatives a scoring function is used [48]:  

(12) 

Additionally an accuracy function is defined 31]: 

(13) 

And then 

1. If  then  is smaller than , denoted by 
2. If

a. If  then  is smaller than , denoted by 
b. If  then  and  are the same, denoted by 

Another option is to use the scoring function proposed in  [32]: 

(14) 

where 

If  then  is smaller than , denoted  by 

According to the scoring function ranking method of SVN-sets, the ranking order of the set of project alter-
natives can be generated and the best alternative can be determined. 

4 Illustrative Example 

In this section, we present an illustrative example in order to show the applicability of the proposed framework 
for information technologies project selection. 

An information technology project is a temporary effort undertaken by or on behalf of  an organization that 
[49]: 

 Establishes a new technology-based system or service
 Facilitates a significant business process transformation using technology
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 Includes a major change in technology architecture or a system migration beyond that considered as
general maintenance, enhancement, or refresh activity

An information technology project typically performs one or more of these functions: 
 Develop a new system or service
 Improvements to a system or service
 Improve business processes or introduce new ones
 Build or enhance infrastructure
 Apply new technologies
 Upgrade enterprise applications

In this case study the evaluation framework is compose by an expert evaluate 3 alternatives (information tech-
nologies development projects). 

x1: CRM  
x2: ERP 
x3: BI 
These projects are described in Table #1. 

TABLE III. PROJECTS  OPTIONS 

Id Name Description 
1 CRM. Custumer Relation 

Management  Software 
2 ERP   Enterprise Relationship 

Managemet Software 
3 BI Business intelligence System 

3 criteria are involved, which are shown below: 
c1: Benefits 
c2: Feasibility 
c3: Cost 
In Table 2, we give the set of linguistic terms used for experts to provide the assessments. 

TABLE IV. LINGUISTIC TERMS USED TO PROVIDE THE ASSESSMENTS [32] 

Linguistic terms SVNSs 
Extremely good (EG) (1,0,0) 
Very very good (VVG) (0.9, 0.1, 0.1) 
Very good (VG) (0.8,0,15,0.20) 
Good (G) (0.70,0.25,0.30) 
Medium good (MG) (0.60,0.35,0.40) 
Medium (M) (0.50,0.50,0.50) 
Medium bad (MB) (0.40,0.65,0.60) 
Bad (B) (0.30,0.75,0.70) 
Very bad (VB) (0.20,0.85,0.80) 
Very very bad (VVB) (0.10,0.90,0.90) 
Extremely bad (EB) (0,1,1) 

Once the evaluation framework has been determined the information about the projects is gathered (see Table 
3). 

TABLE V. RESULT OF GATHERING INFORMATION 

x1 x2 x3 
c1 MG EG MB 

c2 G MG M 

c3 MG MG G 

Using the AHP method the following weights structure (Table IV) was obtained. These are translated into weight 
vector associated with the criteria W = (0.55, 0.26, 0.19).  

TABLE VI. CRITERIA WEIGHTS CALCULATION 

Weights 
Criteria c1 c2 c3 Weights 
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c1 1 3 2 0.55 
c2 1/3 1 2 0.26 
c3 ½ ½ 1 0.19 

For rating alternatives an initial aggregation process is developed. Then the aggregated SVN decision matrix 
obtained by aggregating of opinions of decision makers is constructed by Eq. (10). The result is given in Table V.  

TABLE VII.  DISTANCE TO THE IDEAL SOLUTION  

Aggregation Scoring 
function 

Ranking 

x1 (0.53, 0.4, 0.56) 1.73 2 
x2 (0.43, 0.0, 0.0) 2.43 1 

x3 (0.66, 0.52, 0.63) 1.62 3 

According the scoring function, three alternatives are ranked as: . 

5 Conclusions. 

Recently, neutrosophic sets and its application to multiple attribute decision making have become a topic of 
great importance for researchers and practitioners. In this paper a new model project selection based on SVN-
number applied allowing the use of linguistic variables. The AHP method is included and allows a correct weight-
ing of different criteria involved.  

To demonstrate the applicability of the proposal an illustrative example is presented. Our approach has many 
application project selection that include indeterminacy and the weighting of criteria 
Further works will concentrate extending the model for dealing with heterogeneous information. Another area of 
future work is the developing of new aggregation models based like the prioritized ordered weighted average op-
erator [50] and the Choquet integral by considering the correlations between the attributes [51] . 
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Abstract. Multi attribute group decision making with VIKOR (VlseKriterijuska Optimizacija I Komoromisno Resenje) strategy has 
been widely applied to solving real-world problems. Recently, Pramianik et al. [S. Pramanik, S. Dalapati, S. Alam, and T. K. Roy. NC-
VIKOR based MAGDM strategy under neutrosophic cubic set environment, Neutrosophic Sets and Systems, 20 (2018), 95-108] 
proposed VIKOR strategy for solving MAGDM, where compromise solutions are not identified in neutrosophic cubic environment. To 
overcome the shortcomings of the paper, we further modify the VIKOR strategy by incorporating compromise solution in neutrosophic 
cubic set environment. Finally, we solve an MAGDM problem using the modified NC-VIKOR strategy to show the feasibility, 
applicability and effectiveness of the proposed strategy. Further, we present sensitivity analysis to show the impact of different values 
of the decision making mechanism coefficient on ranking order of the alternatives. 

Keywords: MAGDM, NCS, NC-VIKOR strategy.

1. Introduction

Neutrosophic set [1] is derived from Neutrosophy [1], a new branch of philosophy. It  is characterized by the 
three independent functions, namely, truth membership function, indeterminacy function and falsity membership 
function as independent components. Each of three independent components of NS belongs to [-0, 1+]. Wang et 
al. [4] introduced single valued neutrosophic set (SVNS) where each of truth, indeterminacy and falsity 
membership function belongs to [0, 1]. Applications of NSs and SVNSs are found in various areas of research 
such as conflict resolution [5], clustering analysis [6-9], decision making [10-39], educational problem [40, 41], 
image processing [42-45], medical diagnosis [46, 47], social problem [48, 49], etc. Wang et al. [50] proposed in-
terval neutrosophic set (INS). Mondal et al. [51] defined tangent function of interval neutrosophic set and de-
velop a strategy for multi attribute decision making (MADM) problems. Dalapati et al. [52] defined a new cross 
entropy measure for interval neutrosophic set and developed a multi attribute group decision making (MAGDM) 
strategy.  
By combining SVNS and INS, Ali et al. [53] proposed neutrosophic cubic set (NCS). Zhan et al. [54] presented 
two weighted average operators on NCSs and employed the operators for MADM problems. Banerjee et al. [55] 
introduced the grey relational analysis based MADM strategy in NCS environment. Lu and Ye [56] proposed 
three cosine measures between NCSs and presented MADM strategy in NCS environment. Pramanik et al. [57] 
defined similarity measure for NCSs and proved its basic properties. In the same study, Pramanik et al. [57] 
presented a new MAGDM strategy with linguistic variables in NCS environment. Pramanik et al. [58] proposed 
the score and accuracy functions for NCSs and prove their basic properties. In the same study, Pramanik et al. 
[58] developed a strategy for ranking of neutrosophic cubic numbers (NCNs) based on the score and accuracy 
functions. In the same study, Pramanik et al. [58] first developed a TODIM (Tomada de decisao interativa e 
multicritévio), called the NC-TODIM and presented new NC-TODIM [58] strategy for solving MAGDM in 
NCS environment. Shi and Ye [59] introduced Dombi aggregation operators of NCSs and applied them for 
MADM problem. Pramanik et al. [60] proposed an extended technique for order preference by similarity to ideal 
solution (TOPSIS) strategy in NCS environment for solving MADM problem. Ye [61] present operations and 
aggregation method of neutrosophic cubic numbers for MADM.  Pramanik et al. [62] presented some operations 
and properties of neutrosophic cubic soft set. 

Neutrosophic Sets and Systems, Vol. 21, 2018 

  University of New Mexico 

131 



Neutrosophic Sets and Systems, Vol. 21, 2018 

Shyamal Dalapati, Surapati Pramanik. A Revisit to NC-VIKOR Based MAGDM Strategy under Neutrosophic 
Cubic Set Environment 

132 

Opricovic [63] proposed the VIKOR strategy for a multi criteria decision making (MCDM) problem with 
conflicting criteria [64-65]. In 2015, Bausys and Zavadskas [66] extended the VIKOR strategy to INS 
environment and applied it to solve MCDM problem. Further, Hung et al. [67] proposed VIKOR strategy for 
interval neutrosophic MAGDM. Pouresmaeil et al. [68] proposed an MAGDM strategy based on TOPSIS and 
VIKOR in SVNS environment. Liu and Zhang [69] extended VIKOR startyegy in neutrosophic hesitant fuzzy 
set environment. Hu et al. [70] proposed interval neutrosophic projection based VIKOR strategy and employed it 
for doctor selection. Selvakumari et al. [71] proposed VIKOR strategy for decision making problem using 
octagonal neutrosophic soft matrix. Pramanik et al. [72] proposed VIKOR based MAGDM strategy under 
bipolar neutrosophic set environment. 
The remainder of the paper is organized as follows: In the section 2, we review some basic concepts and 
operations related to NS, SVNS, NCS. In Section 3, we present a modified NC-VIKOR  strategy to solve the 
MAGDM problems in NCS environment. In Section 4, we solve an illustrative example using the modified NC-
VIKOR in NCS environment. Then, in Section 5, we present the sensitivity analysis. In Section 6, we present 
conlcusion and future scope research. 

2. Preliminaries

Definition 1. Single valued neutrosophic set 

Let X be a space of points (objects) with a generic element in X denoted by x. A single valued neutrosophic set 
[4] B in X is expressed as: 
B = {< x: ( BT (x) , BI (x) , BF (x) )>: xX}, where BT (x) , BI (x) , BF (x) [0, 1].

For each xX, BT (x) , BI (x) , BF (x) [0, 1] and 0  BT (x)  + BI (x)  + BF (x)  3.

Definition 2.  Interval neutrosophic set 

An interval neutrosophic set [50] A(x)  of a nonempty set X is expressed by truth-membership function AT (x) ,

the indeterminacy membership function AI (x) and falsity membership function AF (x) . For each xX, AT (x) ,

AI (x) , AF (x)    [0, 1] and A defined as follows:

A(x) = {< x, A A
[T (x),T (x)] 

  , A A
[I (x),I (x)] 
  , A A

[F (x),F (x)] 
  |  xX}. Here, AT (x)

 , A
T (x)
 , 

AI (x)
 , A

I (x)
 , AF (x)

 , A
F (x)
 : X ]  0, 1  [ and A A A

0 sup (x) sup (x) sup (x) 3T I F         . 

Here, we consider AT (x)
 , A

T (x)
 , AI (x)

 , A
I (x)
 , AF (x)

 , A
F (x)
 : X [0, 1] for real applications.

Definition 3. Neutrosophic cubic set 

A neutrosophic cubic set [53] in a non-empty set X is defined as N = {< x, A(x) , A(x) >:  xX}, where A
~

and A are the interval neutrosophic set and neutrosophic set in X respectively. For convenience, we can simply 

use N = < A
~

, A > to represent an element N in neutrosophic cubic set and the element N can be called a neutro-
sophic cubic number (NCN). 

 Some operations of neutrosophic cubic sets: [53] 

i. Union of any two neutrosophic cubic sets

Let  
1 1 1A (x),A (x)N and 2 2 2A (x),A (x)N   be any two neutrosophic cubic sets in a non-empty set 

H. Then the union of N1  and N 2 denoted by  NN 21 is defined as follows: 

1 2 1 2 1 2A (x) A (x),A (x) A (x), x XN N       , where,
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1 2A (x) A (x)  = {< x , [max{ A1
(x)T

 , A2
(x)T

 },max { A1(x)T
 , A2

(x)T
 }], [min { A1

(x)I , A2
(x)I }, min

{ A1
(x)I , A2

(x)I }], [min { A1
(x)F , A2

(x)F }, min { A1
(x)F , A2

(x)F
 }]>: xX} and 1 2A (x) A (x) = {< x,

max { A1
(x)T , A2

(x)T }, min { A1
(x)I , A2

(x)I }, min { A1
(x)F , A 2

(x)F }>: xX}.

ii. Intersection of any two neutrosophic cubic sets

Intersection of  NandN 21 denoted by  NN 21 is defined as follows: 

 NN 21 = 1 2 1 2A (x) A (x),A (x) A (x) x X     , where 1 2A (x) A (x)  = {< x, [min { A1
(x)T

 , A2
(x)T

 }, 

min {
A1

(x)T
 , A2

(x)T
 }], [max { A1

(x)I , A2
(x)I }, max { A1

(x)I , A2
(x)I }], [max { A1

(x)F , A2
(x)F }, max 

{ A1
(x)F , A2

(x)F
 }]>: xX} and 1 2A (x) A (x) = {< x, min { A1

(x)T , A2
(x)T }, max { A1

(x)I , A2
(x)I },

max { A1
(x)F , A 2

(x )F }>: xX}.

iii. Complement of a neutrosophic cubic set

Let 1 1 1A (x),A (x)N   be an NCS in X. Then compliment of 1 1 1A (x),A (x)N   is denoted by c
1N  = {< 

x, c
1A

~
(x), c

1A (x)>:  xX}.

Here, 
c

1A
~

= {< x, [ cA1
(x)T


, cA1

(x)T


], [ cA1
(x)I


, cA1

(x)I


], [ cA1
(x)F


, cA1

(x)F


]>:  x X},

where, cA1
(x)T


= {1} - A1

(x)T
 , cA1

(x)T


= {1} - A1
(x)T

 , cA1
(x)I


 = {1} - A1

(x)I , cA1
(x)I  = {1} - A1

(x)I ,

cA1
(x)F


= {1} - A1

(x)F , cA1
(x)F


 = {1} - A1

(x)F , and 
cA1

(x)T  = {1} - A1
(x)T , cA1

(x)I = {1} - A1
(x)I ,

cA1
(x)F = {1} - A1

(x)F .

iv. Containment

Let  111 A,A
~

N = {< x, [ A1
T (x)
 , A1

T (x)
 ], A A1 1

[I (x),I (x)] 
  ,  A A A1 1 1

T (x),I (x),F (x)  >: xX} and

 222 A,A
~

N = {< x, [ A2
T (x)
 , A2

T (x)
 ], A A2 2

[I (x),I (x)] 
  ,  A A A2 2 2

T (x),I (x),F (x)  >: xX} be

any two neutrosophic cubic sets in a non-empty set X, 

then, (i) 1N  2N  if and only if A1
(x)T

  A2
(x)T

 , A1
(x)T

 
A2

(x)T
 , A1

(x)I  A2
(x)I , 

A1
(x)I 

A2
(x)I ,

A1
(x)F  A2

(x)F , 
A1

(x)F
 

A2
(x)F

 , and A A1 2
T (x) T (x), A A1 2

I (x) I (x), A A1 2
F (x) F (x) for all xX. 

Definition 4. Distance between two  NCNs 
Let N1= < [a1, a2], [b1, b2], [c1, c2], (a, b, c) > and N2 = < [d1, d2], [e1, e2], [f1, f2], (d, e, f) > be any two NC-

numbers, then distance [58] between them is defined by  

H (N1, N2) = 1 1 2 2 1 1 2 2 1 1 2 2
1 [ a d a d b e b e c f c f a d b e c f ]
9

                  (1) 

 Definition 5. Procedure of normalization 

In general, benefit type attributes and cost type attributes can exist simultaneously in MAGDM problem. 
Therefore the decision matrix must be normalized. Let ija be an NC-number to express the rating value of i-th
alternative with respect to j-th attribute ( j). When attribute  j C or Ψ j  G (where C and G be the set of
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cost type attributes and set of  benefit type attributes respectively), the normalized values for cost type attribute 
and benefit type attribute are calculated  by using the following expression (2).  

 











Cifa1

Gifa
a

jij

jij*
ij  (2) 

where aij is the performance rating of i th alternative for attribute j .

3. VIKOR strategy for solving MAGDM problem in NCS environment

In this section, we propose modified NC-VIKOR strategy fro an MAGDM strategy in NCS environment. 
Assume that 1 2 3 rΦ {Φ , Φ , Φ ,..., Φ } be a set of r alternatives and }...,,,,{ s321   be a set of s 

attributes. Assume that }w...,,w,w,w{W s321  be the weight vector of the attributes, where kw 0 

and 1w
s

1k
k 


. Assume that 1 2 3 ME {E , E , E ,..., E } be the set of M decision makers and 

1 2 3 Mζ {ζ ,ζ ,ζ ,...,ζ } be the set of weight vector of decision makers, where p 0 and
M

p
p 1

1


  . 

The proposed MAGDM strategy consists of the following steps: 

Step: 1. Construction of the decision matrix 

Let DMp = sr
p
ij)a(   (p = 1, 2, 3, …, t) be the p-th decision matrix, where information about the alternative iΦ

provided by the decision maker or expert pE with respect to attribute j (j = 1, 2, 3, …, s). The p-th decision

matrix denoted by pDM  (See Equation (3)) is constructed as follows: 

 

1 2 s
p p p

p 1 11 12 1s
p p p

2 21 22 2s

p p p

r r1 r2 rs

 
...

a a ... a
DM

a a a
. . . . .

a a ... .a

 
   
    
 
  

 (3) 

Here p = 1, 2, 3,…, M; i = 1, 2, 3,…, r;  j = 1, 2, 3,…, s. 

Step: 2. Normalization of the decision matrix 

We use Equation (2) for normalizing the cost type attributes and benefit type attributes. After 
normalization, the normalized decision matrix (Equation (3)) is represented as follows (see Equation 4): 

 

































p
rs

*p
2r

*p
r1

*
r

p
s2

*p
22

*p
21

*
2

p
s1

*p
12

*p
11

*
1

s21

p

aaa

aaa

aaa

....

......

 ...

...

DM  (4) 

Here, p = 1, 2, 3,…, M; i = 1, 2, 3,…, r;  j = 1, 2, 3,…, s. 

Step: 3. Aggregated decision matrix 

For group decision, we aggregate all the individual decision matrices ( pDM , p 1, 2,..., M) to an aggregated 

decision matrix (DM) using the neutrosophic cubic numbers weighted aggregation (NCNWA) [73] operator as 
follows: 
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1 2 M
ij ζ ij ij ija NCNWA (a , a ,...,a )  1 2 3 M

1 ij 2 ij 3 ij M ij(ζ a ζ a ζ a ... ζ a )    =

M M M M(p) (p) (p) (p)
p p p pij ij ij ij

p 1 p 1 p 1 p 1
[ ζ , ζ ],[ ζ , ζ ],T T I I

   

   


    

M M M M M(p) (p) (p) (p) (p)

p p p p pij ij ij ij ij
p 1 p 1 p 1 p 1 p 1

[ ζ , ζ ],( ζ , ζ , ζ ]F F T I F
 

    


     


  (5) 

Therefore, the aggregated decision matrix is defined as follows: 

1 2 s

1 11 12 1s

2 21 22 2s

r r1 r2 rs

 Ψ Ψ ... ..Ψ
Φ a a ... a

DM Φ a a a
. .

Φ a a ... a

 
 
 
 
 
 
 
 

  (6) 

Here, i = 1, 2, 3, …, r; j = 1, 2, 3, …, s; p =1, 2, …., M. 

 Step: 4. Define the positive ideal solution and negative ideal solution 

ijij ij ij ij ij ij ij ijij i i i i i ii i i
a [max , max ],[min i , min i ],[min f , min i ],(max t ,min f , min f )t t        (7) 

ijij ij ij ij ij ij ij ijiji i ii i i i i i
a [min , min ],[max i ,max i ],[max f , max i ],(min t , max f , max f )t t        (8) 

Step: 5. Compute i  and iZ

i and iZ represent the average and worst group scores for the alternative Ai respectively with the relations 

 

*
s j ij ij

i
j 1 ij ij

w D(a ,a )
Γ

D(a ,a )



 


   (9) 











 

 



)a,a(D

)a,a(Dw
maxZ

ijij

*
ijijj

j
i  (10) 

Here, wj is the weight of jΨ .

The smaller values of i and iZ correspond to the better average and worse group scores for alternative Ai , 

respectively. 

Step: 6. Calculate the values of i (i = 1, 2, 3, …, r)

i i
i

(Γ Γ ) (Z Z )
φ γ (1 γ)

(Γ Γ ) (Z Z )

 

   

 
  

 
 (11) 

Here, i i i ii i
Γ min Γ , Γ maxΓ   , i i i ii i

Z min Z , Z max Z                                                                           (12)

and  depicts the decision making mechanism coefficient. If 5.0 , it is for “the maximum group utility”; If 
5.0 , it is “ the minimum regret”, and it is both if γ 0.5.  

Step: 7. Rank the priority of alternatives 

Rank the alternatives by i , i and iZ according to the rule of traditional VIKOR strategy. The smaller value 

reflects the better alternative. 



Neutrosophic Sets and Systems, Vol. 21, 2018 

Shyamal Dalapati, Surapati Pramanik, A Revisit to NC-VIKOR Based MAGDM Strategy under Neutrosophic 
Cubic Set Environment 

136

Step: 8. Determine the compromise solution 

Obtain alternative 1Φ as a compromise solution, which is ranked as the best by the measure φ (Minimum) if the

following two conditions are satisfied: 

Condition 1. Acceptable stability: 2 1 1φ( Φ ) φ( Φ )
(r 1)

 


, where 1Φ , 2Φ  are the alternatives with first and

second position in the ranking list by φ ;  r is the number of alternatives.

Condition 2. Acceptable stability in decision making: Alternative 1Φ must also be the best ranked by   or/and
Z. This compromise solution is stable within whole decision making process. 
If one of the conditions is not satisfied, then a set of compromise solutions is proposed as follows: 

 Alternatives 1Φ and 2Φ are compromise solutions if only condition 2 is not satisfied, or

 1Φ , 2Φ , 3Φ ,…, rΦ  are compromise solutions if condition 1 is not satisfied and rΦ  is decided by

constraint r 1 1φ( Φ ) φ( Φ )
(r 1)

 


for maximum r. 

4. Illustrative example

To demonstrate the feasibility, applicability and effectiveness of the proposed strategy, we solve an MAGDM 
problem adapted from [74]. We assume that an investment company wants to invest a sum of money in the best 
option. The investment company forms a decision making board comprising of three members (E1, E2, E3) who 
evaluate the four alternatives to invest money. The alternatives are Car company ( 1 ), Food company ( 2 ), 

Computer company ( 3 ) and Arms company ( 4 ). Decision makers take decision to evaluate alternatives 

based on the attributes namely, risk factor ( 1 ), growth factor ( 2 ), environment impact ( 3 ). We consider

three criteria as benefit type based on Pramanik et al. [58]. Assume that the weight vector of attributes is 
T)27.0,37.0,36.0(W  and weight vector of decision makers or experts is T)34.0,40.0,26.0( . Now, we apply 

the modified NC-VIKOR strategy using the following steps. 

Step: 1. Construction of the decision matrix 

We construct the decision matrices as follows:
       Decision matrix for DM1 in NCN form 































>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.7) .6, (.4, .7], [.5, .6], [.5, .4], [.3,<

>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.4) .3, (.8, .4], [.2, .3], [.2, .8], [.6,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<

>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.4) .3, (.8, .4], [.2, .3], [.2, .8], [.6,<

>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,< >.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<

4

3

2

1

321

 (13) 

 Decision matrix for DM2 in NCN form 































>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.4) .3, (.8, .4], [.2, .3], [.2, .8], [.6,< 

>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<

>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<

>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.7) .6, (.4, .7], [.5, .6], [.5, .4], [.3,< 

   

4

3

2

1

321

 (14) 

 Decision matrix for DM3 in NC-number form 
































>.7) .6, (.4, .7], [.5, .6], [.5, .4], [.3,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,< 

>.4) .3, (.8, .4], [.2, .3], [.2, .8], [.6,<>.4) .3, (.8, .4], [.2, .3], [.2, .8], [.6,<>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,< 

>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,< 

>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,< 

4

3

2

1

321

 (15) 

Step: 2. Normalization of the decision matrix 

Since all the criteria are considered as benefit type, we do not need to normalize the decision matrices (DM1, 
DM2, DM3). 
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Step: 3. Aggregated decision matrix 

Using equation eq. (5), the aggregated decision matrix of  (13,  14, 15) is presented below: 

1 2 3

1

2

Ψ Ψ Ψ
Φ <[.44, .56], [.36, .46], [.36, .51], (.56, .46,.50)> <[.48, .60], [.32, .42], [.32, .42], (.60, .42,.42)> <[.62, .80], [.18, .28], [.18, .28], (.80, .28, .28)>
Φ <[.45, .58], [.35, .45], [.35, .

3

47], (.58, .45, .47)> <[.50, .64], [.30, .40], [.30, .40], (.64, .40, .40)> <[.60, .76], [.20, .30], [.20, .30], (.76, .30,.30)>
Φ <[.62, .80], [.18, .28], [.18, .28], (.80, .28, .28)> <[.64, .84], [.16, 

4

.26], [.16, .32], (.84, .26, .32)> <[.47, .60], [.33, .43], [.33, .47], (.60, .43, .47)>
Φ <[.56, .73], [.24, .34], [.24, .41], (.73, .34, .41)> <[.40, .50], [.40, .50], [.40, .50], (.50, .50, .50)> <[.56, .73], [.24, .34], [.24, .37], (.73, .34,.37)>

 
 
 
 
 
 
 
 

 (16) 

Step: 4. Define the positive ideal solution and negative ideal solution 

The positive ideal solution 
ija = 

1 2 3Ψ Ψ Ψ
<[.62, .80], [.18, .28], [.18, .28], (.80, .28,.28)> <[.64, .84], [.16, .26], [.16, .32], (.84, .26,.32)> <[.62, .80], [.18, .28], [.18, .28], (.80, .28, .28)>
 and the negative ideal solution 


ija =

1 2 3Ψ Ψ Ψ
<[.44, .56], [.36, .46], [.36, .51], (.56, .46,.50)> <[.40, .50], [.40, .50], [.40, .50], (.50, .50,.50)> <[.47, .60], [.33, .43], [.33, .43], (.60, .43, .47)>

Step: 5. Compute i  and iZ

Using Equation (9) and Equation (10), we obtain 

,43.0
16.0

027.0

25.0

16.037.0

37.0

2.036.0
1 






 







 







 

  ,42.0
16.0

02.027.0

25.0

14.037.0

37.0

18.036.0
2 






 







 







 

  

,32.0
16.0

19.027.0

25.0

037.0

37.0

036.0
3 






 







 







 

  .57.0
16.0

07.027.0

25.0

25.037.0

37.0

08.036.0
4 






 







 







 

  

And ,24.0
16.0

027.0
,

25.0

16.037.0
,

37.0

2.036.0
maxZ1 















 







 







 

  ,21.0
16.0

02.027.0
,

25.0

14.037.0
,

37.0

18.036.0
maxZ2 















 







 







 

  

,32.0
16.0

19.027.0
,

25.0

037.0
,

37.0

036.0
maxZ3 















 







 







 

  
4

0.36 0.08 0.37 0.25 0.27 0.07Z max , , 0.37.
0.37 0.25 0.16

                
       

Step: 6. Calculate the values of i

Using Equations (11), (12) and 5.0 , we obtain 

1
(0.43 0.32) (0.24 0.21)

φ 0.5 0.5 0.31,
0.25 0.16
 

      ,2.0
16.0

)21.021.0(
5.0

25.0

)32.042.0(
5.02 





  

,34.0
16.0

)21.032.0(
5.0

25.0

)32.032.0(
5.03 





  1

16.0

)21.037.0(
5.0

25.0

)32.057.0(
5.04 





 . 

Step 7. Rank the priority of alternatives 

The preference ranking order of the alternatives is presented in Table 1 

1 2 3 4 Ranking order Best alternative 

 0.43 0.42 0.32 0.57 
3  2  1 4 3

Z 0.24 0.21 0.32 0.37 
2  1  3 4 2

( 0.5)   0.31 0.20 0.34 1 
2  1  3 4 2

Table 1 Preference ranking order and compromise solution based on  , Z and 
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Step 8. Determine the compromise solution 

The preference ranking order based on  in decreasing order and alternative with best position is 2 with

2( )  = 0.20, and second best position 1 with 1( )  = 0.31. Therefore,  1 2( ) ( ) 0.11 0.333       (since,

r = 4; 1/(r-1) = 0.333), which does not satisfy the condition 1 

( 2 1 1φ( Φ ) φ( Φ )
(r 1)

 


), but alternative 2 is the best ranked by , Z, which satisfies the condition 2.

Therefore, we obtain the compromise solution as follows: 

1 2( ) ( ) 0.11 0.333      , 3 2( ) ( ) 0.14 0.333      ,  4 2( ) ( ) 0.80 0.333      .

So 1 2 3, ,   are compromise solutions.

5. The influence of parameter 
Table 2 shows  how the ranking order of alternatives )( i  changes with the change of the value of 

 Table 2. Values of i (i = 1, 2, 3, 4) and ranking of alternatives for different values of  .

Values of  Values of i Preference order of alternatives 

 = 0.1 1 = 0.22, 2 = 0.04, 3 = 0.62, 4 = 1 2 1 3 4

 = 0.2 1 = 0.24, 2 = 0.08, 3 = 0.55, 4 = 1 2 1 3 4

 = 0.3 1 = 0.26, 2 = 0.12, 3 = 0.48, 4 = 1 2 1 3 4

 = 0.4 1 = 0.29, 2 = 0.16, 3 = 0.41, 4 = 1 2 1 3 4

 = 0.5 1 = 0.31, 2 = 0.2, 3 = 0.34, 4 = 1 2 1 3 4

 = 0.6 1 = 0.34, 2 = 0.24, 3 = 0.28, 4 = 1 2 3 1 4

 = 0.7 1 = 0.36, 2 = 0.28, 3 = 0.21, 4 = 1 3 2 1 4

 = 0.8 1 = 0.39, 2 = 0.32, 3 = 0.14, 4 = 1 3 2 1 4

 = 0.9 1 = 0.42, 2 = 0.36, 3 = 0.07, 4 = 1 3 2 1 4

6. Conclusion

In this article, we have presented a modified NC-VIKOR strategy to overcome the shortcomings of obtaining 
compromise solution [73]. In the modified NC-VIKOR stratgey, we have incorporated the technique of 
determining  compromise solution. Finally, we solve an MAGDM problem to show the feasibility, applicability 
and efficiency. We present a sensitivity analysis to show the impact of different values of the decision making 
mechanism coefficient on ranking order of the alternatives. 
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Abstract: In this paper, we first propose the concept of divergence measure on neutrosophic sets. We also provide 
some formulas for the divergence measure for neutrosophic sets. After that, we investigate the properties of pro-
posed neutrosophic divergence measure. Finally, we also apply these formulas in medical problem and the classi-
fication problem.  
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1 Introduction 

The neutrosophic set [25] was first introduced by Smarandache as an extension of intuitionistic fuzzy set [1] 
and fuzzy set [36]. It is a useful mathematical tool for dealing with ambiguous and inaccurate problems [4-6, 10, 
24, 26-35, 37]. So far, many theoretical and applied results have been exploited on neutrosophic sets as the simi-
larity/distance measures of neutrosophic sets [7-9, 11, 17-19, 22]. Neutrosophic set is applied in the multi-criteria 
decision making (MCDM) problem [4-6, 10-16, 23]. A special case of neutrosophic set is Single valued neutro-
sophic set (SVNS) which introduced by Wang et al [29].  In 2014, Ye proposed distance-based similarity 
measures of single valued neutrosophic sets and their multiple attribute group decision making method [32]. In 
2017, Ye studied cotangent similarity measures for single-valued neutrosophic sets and applied it in the MCDM 
problem and in the fault diagnosis of steam turbine [34].  

In the study of the applications of fuzzy set theory, the measurements are focused heavily on research. 
Measurements are often used to measure the degree of similarity or dissimilarity between objects. One of the 
dissimilarity measures of fuzzy sets/intuitionistic fuzzy sets was recently investigated by investigators as a 
measure of the divergence of fuzzy sets [3, 12, 20, 21]. Divergence measures also have many applications in 
practical problem classes and give us interesting results [3, 12, 20, 21]. Some authors have applied divergence 
measure to determine the relationship between the patient and the treatment regimen based on symptoms, 
thereby selecting the most appropriate treatment regimen for each patient [3]. Divergence measure is also used in 
multi-criterion decision problems [3, 12, 20, 21].  

In this paper, we introduce the concept of divergence measure of neutrosophic sets, called neutrosophic 
divergence measure. We also give some expressions that define the neutrosophic divergence measures. After that, 
we investigate the properties of them. Finally, we use these neutrosophic divergence measure to identify 
appropriate treatment regimens for each patient and use them in the sample recognition problem.  

The article is organized as follows: In section 2, we recall the knowledge related to neutrosophic sets. In 
section 3, we introduce the concept of neutrosophic divergence measure and investigate their properties. We 
show some applications of neutrosophic divergence measures in section 4. In section 5, we give conclusion on 
neutrosophic divergence measure and its some development direction. 

2 Preliminary 

Definition 1. Neutrosophic set (NS) [28]: 
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 ( , ( ), ( ), ( )) |A A AA x T x I x F x x U  (1) 

where ( ) [0,1]AT x  is a trust membership function,  ( ) 0,1AI x  is indeterminacy membership function, 

 ( ) 0,1AF x   is falsity-membership function of A . 

 We denote ( )NS U  is a collection of neutrosophic set on U . In which 

 ( ,1,1,0) |U u u U 
and 

 ( , 0, 0,1) |u u U  

For two set , ( )A B NS U we have:

- Union of A and B :  

  , ( ), ( ), ( )A B x T x I x F xA B A B A B    

where 

max( ( ), ( ))( )A BT T x T xBAx  , 

( ) min( ( ), ( ))I x I x I xBAA B 
and 

( ) min( ( ), ( ))F x F x F xBAA B 

for all x X .

- Intersection of A and B : 

  , ( ), ( ), ( )A B x T x I x F xA B A B A B    

where 

min( ( ), ( ))( )A BT T x T xBAx  , 

( ) max( ( ), ( ))I x I x I xBAA B 
and 

( ) max( ( ), ( ))F x F x F xBAA B 

for all x X .

- Subset: A B  if only if

( ) ( ), ( ) ( ), ( ) ( )T x T x I x I x F x F xB B BA A A  

for all x X .

- Equal set: A B  if only if A B  and .B A
- Complement of A : 

 ( , ( ),1 ( ), ( )) |C
A A AA x F x I x T x x U  

3 Divergence measures of neutrosophic sets 

Definition 2. Let A and B  be two neutrosophic sets on U . A function : ( ) ( )D NS U NS U R   is a

divergence measure of neutrosophic sets if it satisfies the following conditions: 

Div1. ( , ) ( , )D A B D B A ,

Div2. ( , ) 0D A B   iff A B
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Div3. ( , ) ( , )D A C B C D A B   for all ( )C NS U ,

Div4. ( , ) ( , )D A C B C D A B   for all ( )C NS U .

We can easily verify that the divergence measures of neutrosophic sets are non-negative. Because, if we choose 

C   then conditions Div2 and Div3 in definition 2, then we have

( , ) ( , ) ( , ) 0D A B D A C B C D       . 

Now we give some divergence measures of Neutrosophic sets and their properties. 

Definition 3. Let A  and B  be two neutrosophic sets on 
1 2{u , ,..., }nU u u . A function : ( )D NS U

( )NS U R   is defined as follows

1

1
( , ) [ ( , ) ( , ) ( , )]

n
i i i
T I F

i

D A B D A B D A B D A B
n 

    (2) 

where 
2 ( ) 2 ( )

( , ) ( ) ln ( ) ln
( ) ( ) ( ) ( )

T u T ui i iA BD A B T u T ui iT BA T u T u T u T ui i i iB BA A

 
 

 (3) 

2 ( ) 2 ( )
( , ) ( ) ln ( )ln

( ) ( ) ( ) ( )
i A i B i
I A i B i

A i B i A i B i

I u I u
D A B I u I u

I u I u I u I u
 

    (4) 
and 

2 ( ) 2 ( )
( , ) ( )ln ( )ln

( ) ( ) ( ) ( )
i A i B i
F A i B i

A i B i A i B i

F u F u
D A B F u F x

F u F u F u F u
 

 
.  (5) 

To proof that ( , )D A B is a divergence measure of neutrosophic sets we need some following lemma. 

Lemma 1. Given (0,1]a . For all [0,1 ]z a   then  

( ) ln 2 ( ) (2 2 ) (2 ) ln(2 )f z a a a z ln a z a z a z         (6) 

is a non-decreasing function and ( ) 0f z  .

Proof. 

We obtain 
( )

ln(2 2 ) ln(2 ) 0
f z

a z a z
z


    


 for all [0,1 ]z a  . □ 

Lemma 2. Given (0,1]b . For all (0, ]z b  then 

( ) ln 2 ln 2 ( ) ln( )f z b b z z b z b z      (7) 

is a non-increasing function and ( ) 0f z  .

Proof. 

We have 
( )

ln 2 ln( ) 0
f z

z b z
z


   


 for all (0, ]z b . □ 

Lemma 3. Given (0,1]a . For all [ ,1]z a  then 

( ) ln 2 ( ) ln( ) ln 2f z a a a z a z z z      (8) 

is a non-decreasing function and ( ) 0f z  .

Proof. 

We have 
( )

ln 2 ln( ) 0
f z

z a z
z


   


 for all [ ,1]z a . □ 

Theorem 1. The function ( , )D A B  defined by eq (2, 3, 4, 5) (in definition 3) is a divergence measure of two 

Neutrosophic sets.  
Proof.  

We check the conditions of the definition. For two Neutrosophic sets A and B  on U , we have: 
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 Div1: ( , ) ( , )D A B D B A ,

 Div2:

+ If A B  we have ( , ) ( , ) ( , ) 0i i i
T I FD A B D A B D A B   . So that ( , ) 0D A B  .

+ Assume that 

1

1
( , ) [ ( , ) ( , ) ( , )] 0

n
i i i
T I F

i

D A B D A B D A B D A B
n 

   

For each iu U we have ( ) ( )A i B iT u T u (or ( ) ( )A i B iT u T u ). So that, using Lemma 1 with 

( ), ( ) ( )A i B i A ia T u z T u T u    (if ( ) ( )A i B iT u T u ) we have 

( ) ln 2 ( ) (2 2 ) (2 ) ln(2 )

2 2( )
ln ( ) ln 0

2 2

f z a a a z ln a z a z a z

a a z
a a z

a z a z

      


   
 

We obtain 

0
2 ( ) 2 ( )

( , ) ( )ln ( )ln
( ) ( ) ( ) ( )

T u T ui i iA BD AB T u T ui iT BA T u T u T u T ui i i iB BA A

 
 

and ( , ) 0iD A BT  if only if ( ) ( ) 0B i A iz T u T u    i.e. ( ) ( )B i A iT u T u .

By same way, we also obtain ( , ) 0i
ID A B  and ( , ) 0i

ID A B  if only if ( ) ( )B i A iI u I u ;

( , ) 0i
FD A B  and ( , ) 0i

FD A B  if only if ( ) ( )B i A iF u F u . Those imply that ( , ) 0D A B   if only if

.A B

 Div3. For all ( )C NS U and for all , ( 1,2,..., )iu U i n  . Because of the symmetry of divergence meas-

ures, we can consider the following cases:
- With falsity-membership  function we have: 

+ If ( ) ( ) ( )A i B i C iT u T u T u    then ( ) ( )A C i A iT u T u   and ( ) ( )B C i B iT u T u  so that 

( , )

2 ( ) ( )
( ) ln ( ) ln

( ) ( ) ( ) ( )

i
T

A C i B C i
A C i B C i

A C i B C i A C i B C i

D A C B C

T u T u
T u T u

T u T u T u T u
 

 
   

 

 
 

2 ( ) 2 ( )
( ) ln ( ) ln

( ) ( ) ( ) ( )
A i B i

A i B i
A i B i A i B i

T u T u
T u T u

T u T u T u T u
 

 

( , )i
TD A B

+ If ( ) ( ) ( )A i C i B iT u T u T u    then ( ) ( )A C i C iT u T u   and ( ) ( )B C i B iT u T u  . So that, according the 

lemma 3 with ( )A ia T u , we have

( , )

2 ( ) 2 ( )
( ) ln ( ) ln

( ) ( ) ( ) ( )

i
T

A i C i
A i C i

A i C i A i C i

D A C B C

T u T u
T u T u

T u T u T u T u

 

 
 
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2 ( ) 2 ( )
( ) ln ( ) ln

( ) ( ) ( ) ( )

( , )

A i B i
A i C i

A i B i A i B i

i
T

T u T u
T u T u

T u T u T u T u

D A B

 
 



+ If ( ) ( ) ( )C i A i B iT u T u T u   then ( ) ( ) ( )A C i B C i C iT u T u T u    and ( ) ( )B i C iT u T u z  with

[0,1 ( )]A iz T u  so that according the lemma 1 we have

( , )i
TD A C B C   

2 ( ) 2 ( )
( ) ln ( ) ln 0

( ) ( ) ( ) ( )
C i C i

C i C i
C i C i C i C i

T u T u
T u T u

T u T u T u T u
  

 

2 ( ) 2 ( ) 2
( ) ln ( ) ln

2 ( ) 2 ( )
A i A i

A i B i
A i A i

T u T u z
T u T u

T u z T u z


 

 
2 ( ) 2 ( )

( ) ln ( ) ln
( ) ( ) ( ) ( )

A i B i
A i B i

A i B i A i B i

T u T u
T u T u

T u T u T u T u
 

 

( , ).i
TD A B

- With indeterminacy membership function: we prove similarly to the case of falsity-membership function. 
- With falsity membership function, we have:  

+ If ( ) ( ) ( )A i B i C iF u F u F u    then ( ) ( )A C i C iF u F u   and ( ) ( )B C i C iF u F u  so that according lemma 

1 we have 

( , )i
FD A C B C   

2 ( ) 2 ( )
( )ln ( )ln

( ) ( ) ( ) ( )
A C i B C i

A C i B C i
A C i B C i A C i B C i

F u F u
F u F u

F u F u F u F u
 

 
   

 
 

2 ( ) 2 ( )
( ) ln ( ) ln 0

( ) ( ) ( ) ( )
C i C i

C i C i
C i C i C i C i

F u F u
F u F u

F u F u F u F u
  

 

2 ( ) 2 ( )
( ) ln ( ) ln

( ) ( ) ( ) ( )
B i B i

A i B i
A i B i A i B i

F u F u
F u F u

F u F u F u F u
 

 

( , )i
FD A B

+ If ( ) ( ) ( )A i C i B iF u F u F u    then ( ) ( )A C i C iF u F u   and ( ) ( )B C i B iF u F u  . So that, according the 

lemma 2 with ( )B ib F u we have

( , )

2 ( ) 2 ( )
( ) ln ( ) ln

( ) ( ) ( ) ( )

i
F

C i B i
C i B i

C i B i C i B i

D A C B C

F u F u
F u F u

F u F u F u F u

 

 
 

2 ( ) 2 ( )
( ) ln ( ) ln

( ) ( ) ( ) ( )
A i B i

A i B i
A i B i A i B i

F u F u
F u F u

F u F u F u F u
 

 

( , ).i
FD A B

 + If ( ) ( ) ( )C i A i B iF u F u F u    then according the lemma 1 we have

( , )i
FD A C B C   

2 ( ) 2 ( )
( ) ln ( ) ln

( ) ( ) ( ) ( )
A i B i

A i B i
A i B i A i B i

F u F u
F u F u

F u F u F u F u
 

 

( , ).i
FD A B
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Now, we add that with respect to the respective components we have 

1

( , )

1
[ ( , ) ( , ) ( , )]

n
i i i
T I F

i

D A C B C

D A C B C D A C B C D A C B C
n 

 

        

1

1
[ ( , ) ( , ) ( , ) ]

( , )

n
i i i

T I F
i

D A B D A B D A B
n

D A B


  





 Div4. We perform as Div 3. □

Now we consider some properties of the divergence measures defined in definition 3. 

Theorem 2. For all Neutrosophic set , ( )A B PFS U . We have

(D1) For all  A B , or B A we have

( , ) ( , ) ( , ),D A B B D A A B D A B   
(D2) ( , ) ( , )D A B A B D A B   ,

(D3) For all  A B C  we have

( , ) ( , ),D A B D A C

(D4) For all  A B C   we have

( , ) ( , )D B C D A C .

Proof. 

(D1). If A B  then ( , ) ( , )D A B B D A B   so that, we have

( , ) ( , )D A A B D A B  .

If B A  then ( , ) ( , ) 0D A B B D B B   so that, we have

( , ) ( , ) 0D A A B D A A   .

It means that if A B , or B A we have

( , ) ( , ) ( , ).D A B B D A A B D A B   
(D2). Because of the symmetry of the divergence measure. We consider the cases: 
+ If ( ) ( )A i B iT u T u  then we have 

( , )i
TD A B A B 

2 ( ) 2 ( )
( ) ln ( ) ln

( ) ( ) ( ) ( )
B i A i

B i A i
A i B i A i B i

T u T u
T u T u

T u T u T u T u
 

 

( , ),D A B  

+ if ( ) ( )B i A iT u T u  then we have 

( , )i
TD A B A B 

2 ( ) 2 ( )
( ) ln ( ) ln

( ) ( ) ( ) ( )
A i B i

A i B i
A i B i A i B i

T u T u
T u T u

T u T u T u T u
 

 
( , ).D A B  

By the same consideration for indeterminacy membership function and falsity membership function, we obtain 

( , ) ( , )D A B A B D A B   ,

(D3). For all  A B C  and for all iu U  we have:

- With the falsity-membership  function: 
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From condition ( ) ( ) ( )A i B i C iT u T u T u   and lemma 2 we have:

( , )i
TD A B

2 ( ) 2 ( )
( ) ln ( ) ln

( ) ( ) ( ) ( )
A i B i

A i B i
A i B i A i B i

T u T u
T u T u

T u T u T u T u
 

 

2 ( ) 2 ( )
( ) ln ( ) ln

( ) ( ) ( ) ( )
A i C i

A i C i
A i C i C i A i

T u T u
T u T u

T u T u T u T u
 

 

( , ),i
TD A C

- With the indeterminacy membership function: 

By the same way as falsity- membership function we have ( , ) ( , ),i i
I ID A B D A C  

- With the falsity- membership function: 

From condition ( ) ( ) ( )A i B i C iF u F u F u   and lemma 3 we have: 

( , )i
FD A B

2 ( ) 2 ( )
( ) ln ( ) ln

( ) ( ) ( ) ( )
A i B i

A i B i
A i B i A i B i

F u F u
F u F u

F u F u F u F u
 

 

2 ( ) 2 ( )
( ) ln ( ) ln

( ) ( ) ( ) ( )
A i C i

A i C i
A i C i A i C i

F u F u
F u F u

F u F u F u F u
 

 
( , ).i

FD A C  

So that, we obtain the result ( , ) ( , ).D A B D A C
(D4). By the same way as (D4) using lemma 1, lemma 2 and lemma 3, it is easy to derive these results when 
considering specific cases. □ 

4 Applications of divergence measure of Neutrosophic set 

In this section we apply the Neutrosophic divergence measures in the medical diagnosis and classification 
problems.  

4.1 In the medical diagnosis 

Now, we applied the Neutrosophic divergence measure for obtaining a proper diagnosis for the data given in 
Table 1 and Table 2.  This data was modified from the data that introduced in [2]. Usage of diagnostic methods 

D = {Viral fever ( 1A ), Malaria ( 2A ), Typhoid ( 3A ), Stomach problem ( 4A ), Chest problem( 5A )} for patients 

with given values of symptoms S = {temperature ( 1s ), headache ( 2s ), stomach pain ( 3s ), cough ( 4s ), chest 

pain ( 5s )}. In this case, the neutrosophic set is useful to handle them. Here, for each , ( 1, 2,...,5)kA D k  , 

is expressed in form that is a neutrosophic set on the universal set  1 2 3 4 5, , , ,S s s s s s , see Table 1. The

information of symptoms characteristic for the considered patients is given in Table 2. In which, for each patient 

( 1, 2,3,4)jB j  is a neutrosophic set in the universal set  1 2 3 4 5, , , ,S s s s s s .

To select the appropriate diagnostic method we calculate the divergence measure between each patient and 
each diagnosis. After that, we chose the smallest value of them. This will be to give us the best diagnosis for 
each patient (Table 3).  

The divergence measure of a diagnosis ( 1,2,...,5)kA D k  for each patient ( 1, 2,3,4)jB j   is computed 

by using the Eq.(2), Eq.(3), Eq.(4), Eq.(5) as  follows: 

1

1
( , ) [ ( , ) ( , ) ( , )]

n
i i i

k j T k j I k j F k j
i

D A B D A B D A B D A B
n 

  
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where 
2 ( )2 ( )

( ) ( ) ln ( ) ln
( ) ( ) ( ) ( )

, jk

k j

k j k j

BA
k j A B

A B A B

T uT u ii iD T u T ui iT T u T u T u T ui i i i
A B  

 

2 ( )2 ( )
( ) ( ) ln ( ) ln

( ) ( ) ( ) ( )
, jk

k j

k j k j

BA
I k j A B

A B A BI I

I uI u ii iD I u I ui iu I u u I ui i i i
A B  

 

and 
2 ( )2 ( )

( ) ( ) ln ( ) ln
( ) ( ) ( ) ( )

, jk

k j

k j k j

BA
F k j A B

A B A BF F

F uF u ii iD F u F ui iu F u u F ui i i i
A B  

 
. 

Table 1. Symptoms Characteristics for the Diagnosis 

Viral fever Malaria Typhoid 
Stomach 

Problem 
Chest 

Problem 

Temperature (0.7,0.5,0.6) (0.7,0.9,0.1) (0.3,0.7,0.2) (0.1,0.6,0.7) (0.1,0.9,0.8) 

Headache (0.8,0.2,0.9) (0.4,0.5, 0.5) (0.6,0.9,0.2) (0.7,0.4,0.3) (0.1,0.6,0.7) 

Somach pain (0.8,1,0.1) (0.5,0.9,0.2) (0.2,0.5,0.5) (0.7,0.7,0.8) (0.5,0.7,0.6) 

Cough (0.45,0.8,0.7) (0.7,0.8,0.6) (0.2,0.5,0.5) (0.2,0.8,0.65) (0.2,0.8,0.6) 

Chest pain (0.2,0.6,0.5) (0.1,0.6,0.8) (0.1,0.8,0.8) (0.5,0.8,0.6) (0.8,0.8,0.2) 

Table 2. Symptoms Characteristics for the Patients  

Temperature Headache Stomach pain Cough Chest pain 

Al ( )1B ) (0.7,0.6,0.5) (0.6,0.3,0. 5) (0. 5,0. 5,0.75) (0.8,0.75,0.5) (0.7,0.2,0.6) 

Bob ( )2B (0.7,0.3,0.5) (0.5,0.5,0.8) (0.6,0. 5,0. 5) (0.65,0.4,0.75) (0. 2,0.85,0.65) 

Joe ( )3B (0.75,0.5,0.5) (0.2,0.85,0.7) (0.7,0.6,0.4) (0.7,0.55,0. 5) (0. 5,0. 9,0.64) 

Ted 
4

( )B (0.4,0.7,0.6) (0.7,0.5,0.7) (0.6,0.7,0.5) (0.5,0.9,0.65) (0.6,0.5,0.85) 

The computed results of the divergence measures are listed in Table 3. From the results, we see that Al and Ted 
should use diagnostic methods corresponding to Stomach Problem, Bob use a Viral fever, Joe use a Malaria.  

Table 3. Diagnosis results for the divergence measure using eq. (2)  

Viral fever Malaria Typhoid 
Stomach 
Problem 

Chest 
Problem 

Al 0.81614 0.82946 1.14558 0.75326 1.10798 

Bob 0.49750 0.59104 0.73430 0.79456 1.14038 

Joe 0.75011 0.60603 0.89659 0.88206 0.79920 

Ted 0.48722 0.61785 0.81009 0.36199 0.72614 

4.2 In the classification problem 

Assume that, we have m  pattern 1 2{ , ,..., }mA A A , in which each pattern is a Neutrosophic set on 

universal set 1 2{ , ,..., }nU u u u . Suppose that, we have a sample B  with the given feature information. Our 

goal is to classify sample B into which sample. To solve this, we calculate the divergence measure of B  with 

each pattern ( 1, 2,..., )iA i m . Then we choose the smallest value. It gives us the class that B belongs to. 

Example 1. Assume that three are three Neutrosophic patterns in 1 2 3{ , , }U u u u  as following
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1 1 2 3{(u ,0.7,0.7,0.2),(u ,0.7,0.8,0.4), (u ,0.6,0.8,0.2)}A 

2 1 2 3{(u ,0.5,0.7,0.3),(u ,0.7,0.7,0.5),(u ,0.8,0.6,0.1)}A 

3 1 2 3{(u ,0.9,0.5,0.1),(u ,0.7,0.6,0.4),(u ,0.8,0.5,0.2)}A 
Assume that a sample 

1 2 3{(u ,0.7,0.8,0.4),(u ,0.8,0.5,0.3),(u ,0.5,0.8,0.5)}B 
Using the divergence measure in Eq.(2) we have 

1( , ) 0.15372D A B  , 
2( , ) 0.26741D A B  3( , ) 0.29516D A B  . 

So that we can classifies that B belongs to class 1A . 

5 Conclusion 

Neutrosophic set theory is more and more interested by researches. There are many theoretical and applied 
results on Neutrosophic sets that are built and developed. In this paper, we study the divergence measure of 
Neutrosophic sets. Along with that, we offer some divergence formulas on Neutrosophic sets and give some 
properties of these measurements. Finally we apply the proposed measures in some cases.  

In the future, we will continue to study this measure and offer some of their applications in other areas such 
as image segmentation or multi-criteria decision making. 

. 
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Abstract. In this paper, we introduce the plithogenic set (as generalization of crisp, fuzzy, intuitionistic fuzzy, and neutrosoph-

ic sets), which is a set whose elements are characterized by many attributes’ values. An attribute value v has a corresponding 

(fuzzy, intuitionistic fuzzy, or neutrosophic) degree of appurtenance d(x,v) of the element x, to the set P, with respect to some 

given criteria. In order to obtain a better accuracy for the plithogenic aggregation operators in the plithogenic set, and for a more 

exact inclusion (partial order), a (fuzzy, intuitionistic fuzzy, or neutrosophic) contradiction (dissimilarity) degree is defined be-

tween each attribute value and the dominant (most important) attribute value. The plithogenic intersection and union are linear 

combinations of the fuzzy operators tnorm and tconorm, while the plithogenic complement, inclusion (inequality), equality are in-

fluenced by the attribute values contradiction (dissimilarity) degrees. This article offers some examples and applications of these 

new concepts in our everyday life. 

Keywords: Plithogeny; Plithogenic Set; Neutrosophic Set; Plithogenic Operators.

1 Informal Definition of Plithogenic Set 

Plithogeny is the genesis or origination, creation, formation, development, and evolution of new entities from 
dynamics and organic fusions of contradictory and/or neutrals and/or non-contradictory multiple old entities. 

While plithogenic means what is pertaining to plithogeny. 

A plithogenic set P is a set whose elements are characterized by one or more attributes, and each attribute may 

have many values. Each attribute’s value v has a corresponding degree of appurtenance d(x,v) of the element x, to 

the set P, with respect to some given criteria. 

In order to obtain a better accuracy for the plithogenic aggregation operators, a contradiction (dissimilarity) 

degree is defined between each attribute value and the dominant (most important) attribute value. 

{However, there are cases when such dominant attribute value may not be taking into consideration or may 

not exist [therefore it is considered zero by default], or there may be many dominant attribute values. In such cases, 

either the contradiction degree function is suppressed, or another relationship function between attribute values 

should be established.} 

The plithogenic aggregation operators (intersection, union, complement, inclusion, equality) are based on con-

tradiction degrees between attributes’ values, and the first two are linear combinations of the fuzzy operators’ tnorm 

and tconorm. 

Plithogenic set is a generalization of the crisp set, fuzzy set, intuitionistic fuzzy set, and neutrosophic set, since 

these four types of sets are characterized by a single attribute value (appurtenance): which has one value (mem-
bership) – for the crisp set and fuzzy set, two values (membership, and nonmembership) – for intuitionistic fuzzy 
set, or three values (membership, nonmembership, and indeterminacy) – for neutrosophic set. 

2 Formal Definition of Single (Uni-Dimensional) Attribute Plithogenic Set 

Let U be a universe of discourse, and P a non-empty set of elements, P ⊆ U. 

2.1 Attribute Value Spectrum 

Let A be a non-empty set of uni-dimensional attributes A = {α1, α2, …, αm}, m ≥ 1; and α ∈ A be a given

attribute whose spectrum of all possible values (or states) is the non-empty set S, where S can be a finite discrete 

set, S = {s1, s2, …, sl}, 1 ≤ l <∞, or infinitely countable set S = {s1, s2, …, s∞}, or infinitely uncountable (continuum) 

set S = ]𝑎, 𝑏[, a < b, where ]… [ is any open, semi-open, or closed interval from the set of real numbers or from 

other general set. 
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2.2 Attribute Value Range 

Let V be a non-empty subset of S, where V is the range of all attribute’s values needed by the experts for their 

application. Each element 𝑥 ∈ 𝑃 is characterized by all attribute’s values in V = {v1, v2, …, vn}, for n ≥ 1. 

2.3 Dominant Attribute Value 

Into the attribute’s value set V, in general, there is a dominant attribute value, which is determined by the 

experts upon their application.  Dominant attribute value means the most important attribute value that  the experts 

are interested in.  

{However, there are cases when such dominant attribute value may not be taking into consideration or not 
exist, or there may be many dominant (important) attribute values - when different approach should be employed.} 

2.4 Attribute Value Appurtenance Degree Function 

Each attributes value v ∈ V has a corresponding degree of appurtenance d(x, v) of the element x, to the set P, 

with respect to some given criteria. 

The degree of appurtenance may be: a fuzzy degree of appurtenance, or intuitionistic fuzzy degree of 

appurtenance, or neutrosophic degree of appurtenance to the plithogenic set. 

Therefore, the attribute value appurtenance degree function is: 

∀𝑥 ∈ P, d: P×V→ P ([0, 1]z), (1) 

so d(x, v) is a subset of [0, 1]z, and P([0, 1] z) is the power set of the [0, 1] z, where z = 1 (for fuzzy degree of
appurtenance), z = 2 (for intuitionistic fuzzy degree of appurtenance), or z = 3 (for neutrosophic degree de appur-
tenance). 

2.5 Attribute Value Contradiction (Dissimilarity) Degree Function 

Let the cardinal |V| ≥ 1. 

Let c: V×V → [0, 1] be the attribute value contradiction (dissimilarity) degree function (that we introduce now 

for the first time) between any two attribute values v1 and v2, denoted by  

c(v1, v2), and satisfying the following axioms:  

c(v1, v1) = 0, the contradiction degree between the same attribute values is zero; 

c(v1, v2) = c(v2, v1), commutativity. 

For simplicity, we use a fuzzy attribute value contradiction degree function (c as above, that we may denote 

by cF in order to distinguish it from the next two), but an intuitionistic attribute value contradiction function (cIF : 

V×V → [0, 1]2), or more general a neutrosophic attribute value contradiction function (cN : V×V → [0, 1]3) may 

be utilized increasing the complexity of calculation but the accuracy as well. 

We mostly compute the contradiction degree between uni-dimensional attribute values. For multi-dimensional 

attribute values we split them into corresponding uni-dimensional attribute values. 

The attribute value contradiction degree function helps the plithogenic aggregation operators, and the 

plithogenic inclusion (partial order) relationship to obtain a more accurate result. 

The attribute value contradiction degree function is designed in each field where plithogenic set is used in 

accordance with the application to solve. If it is ignored, the aggregations still work, but the result may lose 

accuracy. 

Several examples will be provided into this paper. 

Then (𝑃, 𝑎, 𝑉, 𝑑, 𝑐) is called a plithogenic set: 

● where “P” is a set, “a” is a (multi-dimensional in general) attribute, “V” is the range of the attribute’s values,

“d” is the degree of appurtenance of each element x’s attribute value to the set P with respect to some given  criteria 

(x ∊ P), and “d”  stands for “𝑑𝐹” or “𝑑𝐼𝐹” or “𝑑𝑁”, when dealing with fuzzy degree of appurtenance, intuitionistic

fuzzy degree of appurtenance, or neutrosophic degree of appurtenance respectively of an element x to the 

plithogenic set P; 

● and “c” stands for “cF” or “cIF” or “cN”, when dealing with fuzzy degree of contradiction, intuitionistic fuzzy

degree of contradiction, or neutrosophic degree of contradiction between attribute values respectively. 

The functions 𝑑(∙,∙) and 𝑐(∙,∙) are defined in accordance with the applications the experts need to solve. 

One uses the notation: 𝑥(𝑑(𝑥, 𝑉)), where 𝑑(𝑥, 𝑉) = {𝑑(𝑥, 𝑣), for all 𝑣 ∈ 𝑉}, ∀𝑥 ∈ 𝑃. 
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2.6 About the Plithogenic Aggregation Set Operators 

The attribute value contradiction degree is calculated between each attribute value with respect to the dominant 

attribute value (denoted vD) in special, and with respect to other attribute values as well. 

The attribute value contradiction degree function c between the attribute’s values is used into the definition of 

plithogenic aggregation operators {Intersection (AND), Union (OR), Implication (  ), Equivalence (  ), 

Inclusion Relationship (Partial Order, or Partial Inequality), and other plithogenic aggregation operators that 

combine two or more attribute value degrees - that tnorm and tconorm act upon}.  

Most of the plithogenic aggregation operators are linear combinations of the fuzzy tnorm (denoted ∧F ), and 

fuzzy tconorm (denoted ∨F), but non-linear combinations may as well be constructed. 

If one applies the tnorm on dominant attribute value denoted by vD, and the contradiction between vD and v2 is 

c(vD, v2), then onto attribute value v2 one applies: 

[1 − c(vD, v2)]⋅tnorm(vD, v2) + c(vD, v2)⋅tconorm(vD, v2),      (2) 

Or, by using symbols:  

[1 − c(vD, v2)]⋅(vD∧Fv2) + c(vD, v2)⋅(vD∨Fv2).       (3) 

Similarly, if one applies the tconorm on dominant attribute value denoted by vD, and the contradiction between 

vD and v2 is c(vD, v2), then onto attribute value v2 one applies: 

[1 − c(vD, v2)]⋅tconorm(vD, v2) + c(vD, v2)⋅tnorm(vD, v2),      (4) 

Or, by using symbols:  

[1 − c(vD, v2)]⋅(vD∨Fv2) + c(vD, v2)⋅(vD∧Fv2).        (5) 

3 Plithogenic Set as Generalization of other Sets 

Plithogenic set is a generalization of the crisp set, fuzzy set, intuitionistic fuzzy set, and neutrosophic set, since 
these four types of sets are characterized by a single attribute (appurtenance): which has one value (membership) 
– for the crisp set and for fuzzy set, two values (membership, and nonmembership) – for intuitionistic fuzzy set, 

or three values (membership, nonmembership, and indeterminacy) – for neutrosophic set. 
For examples:  
Let U be a universe of discourse, and a non-empty set P ⊆ U. Let x ∈ P be a generic element. 

3.1 Crisp (Classical) Set (CCS) 

The attribute is α = “appurtenance”;  
the set of attribute values V = {membership, nonmembership}, with cardinal |V| = 2;  

the dominant attribute value = membership; 
the attribute value appurtenance degree function:  

d: P×V→{0, 1},           (6) 

d(x, membership) = 1,  d(x, nonmembership) = 0,  
and the attribute value contradiction degree function: 

c: V×V→{0, 1},          (7) 

c(membership, membership) = c(nonmembership, nonmembership) = 0, 
c(membership, nonmembership) = 1. 

3.1.1 Crisp (Classical) Intersection 

a /\ b ∊ {0, 1}          (8) 

3.1.2 Crisp (Classical) Union 

a \/ b ∊ {0, 1}          (9) 

3.1.3 Crisp (Classical) Complement (Negation) 

 a ∊ {0, 1}.          (10) 
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3.2 Single-Valued Fuzzy Set (SVFS) 

The attribute is α = “appurtenance”;  
the set of attribute values V = {membership}, whose cardinal |V| = 1;  
the dominant attribute value = membership; 
the appurtenance attribute value degree function:  

d: P×V→[0, 1],           (11) 

with d(x, membership) ∈ [0, 1];  
and the attribute value contradiction degree function: 

c: V×V→[0, 1],          (12) 

c(membership, membership) = 0. 

3.2.1 Fuzzy Intersection 

a /\F b ∊ [0, 1]          (13) 

3.2.2 Fuzzy Union 

a \/F b ∊ [0, 1]          (14) 

3.2.3 Fuzzy Complement (Negation) 

 F a = 1 – a ∊ [0, 1].          (15) 

3.3 Single-Valued Intuitionistic Fuzzy Set (SVIFS) 

The attribute is α = “appurtenance”;  

the set of attribute values V = {membership, nonmembership}, whose cardinal |V| = 2;  
the dominant attribute value = membership; 
the appurtenance attribute value degree function:  

d: P×V→[0, 1],           (16) 

d(x, membership) ∈ [0, 1], d(x, nonmembership) ∈ [0, 1],  
with d(x, membership) + d(x, nonmembership) ≤ 1,  

and the attribute value contradiction degree function: 

c: V×V→[0, 1],          (17) 

c(membership, membership) = c(nonmembership, nonmembership) = 0, 
c(membership, nonmembership) = 1, 

which means that for SVIFS aggregation operators’ intersection (AND) and union (OR), if one applies the tnorm on 
membership degree, then one has to apply the tconorm on nonmembership degree – and reciprocally. 

Therefore: 

3.3.1 Intuitionistic Fuzzy Intersection 

 (a1, a2) /\IFS (𝑏1, 𝑏2) = (𝑎1 ∧𝐹 𝑏1, 𝑎2 ∨𝐹 𝑏2)        (18) 

3.3.2 Intuitionistic Fuzzy Union 

 (a1, a2) \/IFS (𝑏1, 𝑏2) = (𝑎1 ∨𝐹 𝑏1, 𝑎2 ∧𝐹 𝑏2),       (19) 

and 

3.3.3 Intuitionistic Fuzzy Complement (Negation) 

 IFS (a1, a2) = (a2, a1).         (20) 

where ∧F and ∨F are the fuzzy tnorm and fuzzy tconorm respectively. 

3.3.4 Intuitionistic Fuzzy Inclusions (Partial Orders) 

Simple Intuitionistic Fuzzy Inclusion (the most used by the intuitionistic fuzzy community):  

(a1, a2) ≤IFS (𝑏1, 𝑏2)           (21) 

iff a1 ≤ b1 and a2 ≥ b2. 
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Plithogenic (Complete) Intuitionistic Fuzzy Inclusion (that we now introduce for the first time):  

(a1, a2) ≤P (𝑏1, 𝑏2)           (22) 

iff 
1 1 2 2,(1 ) (1 )v va c b a c b      ,  

where cv ∊ [0, 0.5) is the contradiction degree between the attribute dominant value and the attribute value v { the 
last one whose degree of appurtenance with respect to Expert A is (a1, a2), while with respect to Expert B is (b1, 
b2) }. If cv does not exist, we take it by default as equal to zero. 

3.4 Single-Valued Neutrosophic Set (SVNS) 

The attribute is α = “appurtenance”;  
the set of attribute values V = {membership, indeterminacy, nonmembership}, whose cardinal |V| = 3;  

the dominant attribute value = membership; 
the attribute value appurtenance degree function:  

d: P×V→[0, 1],           (23) 

d(x, membership) ∈ [0, 1], d(x, indeterminacy) ∈ [0, 1], 
d(x, nonmembership) ∈ [0, 1],  
with 0 ≤ d(x, membership) + d(x, indeterminacy) + d(x, nonmembership) ≤ 3;  

and the attribute value contradiction degree function: 

c: V×V→[0, 1],          (24) 

c(membership, membership) = c(indeterminacy, indeterminacy) =  
c(nonmembership, nonmembership) = 0, 
c(membership, nonmembership) = 1, 
c(membership, indeterminacy) = c(nonmembership, indeterminacy) = 0.5, 

which means that for the SVNS aggregation operators (Intersection, Union, Complement etc.), if one applies the 
tnorm on membership, then one has to apply the tconorm on nonmembership {and reciprocally), while on 
indeterminacy one applies the average of tnorm and tconorm, as follows: 

3.4.1 Neutrosophic Intersection 

Simple Neutrosophic Intersection (the most used by the neutrosophic community): 

 (a1, a2, a3) ∧NS (𝑏1, 𝑏2, 𝑏3) =  11 2 2 3 3, , F F Fa b a b a b        (25) 

Plithogenic Neutrosophic Intersection: 

  (a1, a2, a3) ∧P (𝑏1, 𝑏2, 𝑏3) = 

   1 1 2 2 2 2 3 3

1
, , 
2

F F F Fa b a b a b a b
 

       
         (26) 

3.4.2 Neutrosophic Union 

Simple Neutrosophic Union (the most used by the neutrosophic community): 

 (a1, a2, a3) ∨NS (𝑏1, 𝑏2, 𝑏3) = 

 11 2 2 3 3, , F F Fa b a b a b           (27) 

Plithogenic Neutrosophic Union: 

(a1, a2, a3) ∨P (𝑏1, 𝑏2, 𝑏3) 

=    1 1 2 2 2 32 3

1
, , 
2

F F F Fa b a b a b a b
 

       
 

.     (28) 

In other way, with respect to what one applies on the membership, one applies the opposite on non-membership, 
while on indeterminacy one applies the average between them. 

3.4.3 Neutrosophic Complement (Negation) 

NS (𝑎1, 𝑎2, 𝑎3) = (𝑎3, 𝑎2, 𝑎1).        (29) 
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3.4.4 Neutrosophic Inclusions (Partial-Orders) 

Simple Neutrosophic Inclusion (the most used by the neutrosophic community): 

 (a1, a2, a3) ≤NS (𝑏1, 𝑏2, 𝑏3)          (30) 

iff a1 ≤ b1 and a2 ≥ b2, a3 ≥ b3. 

Plithogenic Neutrosophic Inclusion (defined now for the first time): 
Since the degrees of contradiction are 

c(a1, a2) = c(a2, a3) = c(b1, b2) = c(b2, b3) = 0.5,       (31) 

one applies: a2 ≥ [1- c(a1, a2)]b2  or  a2 ≥ (1-0.5)b2  or  a2 ≥ 0.5∙b2 
while  

c(a1, a3) = c(b1, b3) = 1          (32) 

{having a1 ≤ b1 one does the opposite for a3 ≥ b3}, 
whence 

(a1, a2, a3) ≤P (𝑏1, 𝑏2, 𝑏3)          (33) 

iff a1 ≤ b1 and a2 ≥ 0.5∙b2, a3 ≥ b3. 

4 Classifications of the Plithogenic Set 

4.1 First Classification 

4.1.1 Refined Plithogenic Set 

If at least one of the attribute’s values vk ∈ 𝑉 is split (refined) into two or more attribute sub-values: vk1, vk2, … 

∈ 𝑉, with the attribute sub-value appurtenance degree function: d(x, vki) ∈ P ([0, 1]), for i = 1, 2, …, then (Pr, α, 
V, d, c) is called a Refined Plithogenic Set, where “r” stands for “refined”. 

4.1.2 Plithogenic Overset / Underset / Offset 

If for at least one of the attribute’s values vk ∈ V, of at least one element x ∈ P, has the attribute value 
appurtenance degree function d(x, vk) exceeding 1, then (Po, α, V, d, c) is called a Plithogenic Overset, where “o” 
stands for “overset”; but if d(x, vk) is below 0, then (Pu, α, V, d, c) is called a Plithogenic Underset, where “u” 

stands for “underset”; while if d(x, vk) exceeds 1, and d(y, sj) is below 0 for the attribute values vk, vj ∈ V that may 
be the same or different attribute values corresponding to the same element or to two different elements x, y ∈ P, 
then (Poff, α, V, d, c) is called a Plithogenic Offset, where “off” stands for “offset” (or  plithogenic set that is both 
overset and underset).  

4.1.3 Plithogenic Multiset 

A plithogenic set 𝑃 that has at least an element 𝑥 ∈ 𝑃, which repeats into the set P with the same plithogenic 

components 

𝑥(𝑎1, 𝑎2, … , 𝑎𝑚), 𝑥(𝑎1, 𝑎2, … , 𝑎𝑚)         (34) 

or with different plithogenic components 

𝑥(𝑎1, 𝑎2, … , 𝑎𝑚), 𝑥(𝑏1, 𝑏2, … , 𝑏𝑚),        (35) 

then (Pm, α, V, d, c) is called a Plithogenic Multiset, where “m” stands for “multiset”.  

4.1.4 Plithogenic Bipolar Set 

If ∀x ∈ P, d: P×V→ {P([-1, 0]) × P([0, 1])}z, then (Pb, α, V, d, c) is called a Plithogenic Bipolar Set, since d(x, 
v), for v ∈ V, associates an appurtenance negative degree (as a subset of [-1, 0]) and a positive degree (as a subset 
of [0, 1]) to the value v; where z = 1 for fuzzy degree, z = 2 for intuitionistic fuzzy degree, and z = 3 for neutro-
sophic fuzzy degree.  

4.1.5-6 Plithogenic Tripolar Set & Plitogenic Multipolar Set 

Similar definitions for Plithogenic Tripolar Set and Plitogenic Multipolar Set (extension from Neutrosophic 

Tripolar Set and respectively Neutrosophic Multipolar Set {[4], 123-125}.  
 
 



Neutrosophic Sets and Systems, Vol. 21, 2018  

 

Florentin Smarandache. Plithogenic Set, an Extension of Crisp, Fuzzy, Intuitionistic Fuzzy, and Neutrosophic Sets 

- Revisited 

 

159 

4.1.7 Plithogenic Complex Set 

If, for any 𝑥 ∈ P, d: P×V→ {P([0, 1]) × P([0, 1])}z, and for any v ∈ V, d(x, v) is a complex value, i.e. d(x, v) 
= M1∙ 𝑒𝑗𝑀2, where M1 ⊆ [0, 1] is called amplitude, and M2 ⊆ [0, 1] is called phase, and the appurtenance degree 
may be fuzzy (z = 1), intuitionistic fuzzy (z = 2), or neutrosophic (z = 3), then (Pcom, α, V, d, c) is called a Plitho-
genic Complex Set.  

4.2 Second Classification 

Upon the values of the appurtenance degree function, one has: 

4.2.1 Single-Valued Plithogenic Fuzzy Set 

If 

∀𝑥 ∈ P, d: P×V→[0, 1],         (36) 

and ∀v ∈ V, d(x, v) is a single number in [0, 1]. 

4.2.2 Hesitant Plithogenic Fuzzy Set 

If 

∀𝑥 ∈ P, d: P×V→ P([0, 1]),         (37) 

and ∀v ∈ V, d(x, v) is a discrete finite set of the form {n1, n2, …, np}, where 1≤ p < ∞, included in [0, 1]. 

4.2.3 Interval-Valued Plithogenic Fuzzy Set 

If 

∀𝑥 ∈ P, d: P×V→ P ([0, 1]),         (38) 

and ∀v ∈ V, d(x, v) is an (open, semi-open, closed) interval included in [0, 1].  

5 Applications and Examples  

5.1 Applications of Uni-Dimensional Attribute Plithogenic Single-Valued Fuzzy Set 

Let U be a universe of discourse, and a non-empty plithogenic set P ⊆ U. Let x ∈ P be a generic element.  
For simplicity, we consider the uni-dimensional attribute and the single-valued fuzzy degree function.  

5.1.1 Small Discrete-Set of Attribute-Values 

If the attribute is “color”, and we consider only a discrete set of attribute values V, formed by the following 
six pure colors:  

V = {violet, blue, green, yellow, orange, red},  

the attribute value appurtenance degree function: 

d: P×V→[0, 1],          (39) 

d(x, violet) = v ∈ [0, 1], d(x, blue) = b ∈ [0, 1], d(x, green) = g ∈ [0, 1],  
d(x, yellow) = y ∈ [0, 1], d(x, orange) = o ∈ [0, 1], d(x, red) = r ∈ [0, 1], 

then one has: x(v, b, g, y, o, r), where v, b, g, y, o, r are fuzzy degrees of violet, blue, green, yellow, orange, and 
red, respectively, of the object x with respect to the set of objects P, where v, b, g, y, o, r ∊ [0, 1]. 

The cardinal of the set of attribute values V is 6. 
The other colors are blends of these pure colors. 

5.1.2 Large Discrete-Set of Attribute-Values 

If the attribute is still “color” and we choose a more refined representation of the color values as: 

x{d390, d391, …, d699, d700}, 

measured in nanometers, then we have a discrete finite set of attribute values, whose cardinal is: 700 – 390 + 1 = 
311, where for each j ∈  𝑉 ={390, 391, …, 699, 700}, dj represents the degree to which the object x’s color, with 
respect to the set of objects P, is of “j” nanometers per wavelength, with di ∊[0, 1]. A nanometer (nm) is a billionth 

part of a meter.  



Neutrosophic Sets and Systems, Vol. 21, 2018 

 

Florentin Smarandache. Plithogenic Set, an Extension of Crisp, Fuzzy, Intuitionistic Fuzzy, and Neutrosophic Sets 

- Revisited 

160 

5.1.3 Infinitely-Uncountable-Set of Attribute-Values 

But if the attribute is again “color”, then one may choose a continuous representation:   

𝑥(d([390, 700])),  

having 𝑉 =  [390, 700] a closed real interval, hence an infinitely uncountable (continuum) set of attribute values. 
The cardinal of the V is ∞. 

For each 𝑗 ∊ [390, 700], dj represents the degree to which the object x’s color, with respect to the set of objects 

P, is of “j” nanometers per wavelength, with di ∊[0, 1]. And 𝑑([390, 700]) = {dj, 𝑗 ∊ [390, 700]}. 
The light, ranging from 390 (violet color) to 700 (red color) nanometers per wavelengths is visible to the eye 

of the human. The cardinal of the set of attribute values V is continuum infinity.  

5.2 Example of Uni-Attribute (of 4-Attribute-Values) Plithogenic Single-Valued Fuzzy Set Com-
plement (Negation) 

Let’s consider that the attribute “size” that has the following values: small (the dominant one), medium, big, 

very big.  
 

Degrees of 

contradiction 

0 0.50 0.75 1 

Attribute values small medium big very big 

Degrees of 

appurtenance 

0.8 0.1 0.3 0.2 

Table 1. 

5.3 Example of Refinement and Negation of a Uni-Attribute (of 4-Attribute-Values) Plithogenic 
Single-Valued Fuzzy Set 

As a refinement of the above table, let’s add the attribute “bigger” as in the below table. 

The opposite (negation) of the attribute value “big”, which is 75% in contradiction with “small”, will be an 

attribute value which is 1 − 0.75 = 0.25 = 25%  in contradiction with “small”, so it will be equal to 
1

2
["𝑠𝑚𝑎𝑙𝑙" + "𝑚𝑒𝑑𝑖𝑢𝑚"]. Let’s call it “less medium”, whose degree of appurtenance is 1 – 0.3 = 0.7. 

If the attribute “size” has other values, small being dominant value: 

 

Degrees of 

contradiction 

0 0.14 0.25 0.50 0.75 0.86 1 

Attribute 

values 

small above 

small 

(anti-

bigger) 

less 

medium 

(anti-

big) 

medium big bigger very 

big 

Degrees of 

appurtenance 

0.8 0.6 0.7 0.1 0.3 0.4 0.2 

Table 2. 
 

The opposite (negation) of “bigger” is 1 - 0.86 = 0.14 = 14% in contradiction degree with the dominant attribute 
value (“small”), so it is in between “small” and “medium”, we may say it is included into the attribute-value 

interval [small, medium], much closer to “small” than to “medium”. Let’s call is “above small”, whose degree of 
appurtenance is 1 – 0.4 = 0.6. 

5.4 Example of Multi-Attribute (of 24 Attribute-Values) Plithogenic Fuzzy Set Intersection, Union, 
and Complement 

Let 𝑃 be a plithogenic set, representing the students from a college. Let 𝑥 ∈ 𝑃 be a generic student that is 
characterized by three attributes: 

- altitude, whose values are {tall, short}≝ {𝑎1, 𝑎2}; 
- weight, whose values are {obese, fat, medium, thin}≝ {𝑤1, 𝑤2, 𝑤3, 𝑤4}; 
- hair color, whose values are {blond, reddish, brown}≝ {ℎ1, ℎ2, ℎ3}. 
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The multi-attribute of dimension 3 is 

𝑉3 = {(𝑎𝑖 , 𝑤𝑗 , ℎ𝑘), for all 1 ≤ 𝑖 ≤ 2, 1 ≤ 𝑗 ≤ 4, 1 ≤ 𝑘 ≤ 3}. 

The cardinal of  𝑉3 is |𝑉3| = 2 × 4 × 3 = 24. 

The uni-dimensional attribute contradiction degrees are: 
𝑐(𝑎1, 𝑎2) = 1; 

𝑐(𝑤1, 𝑤2) =
1

3
, 𝑐(𝑤1, 𝑤3) =

2

3
, 𝑐(𝑤1, 𝑤4) = 1; 

𝑐(ℎ1, ℎ2) = 0.5, 𝑐(ℎ1, ℎ3) = 1. 

Dominant attribute values are: 𝑎1, 𝑤1, and ℎ1 respectively for each corresponding uni-dimensional attribute.  
Let’s use the fuzzy 𝑡𝑛𝑜𝑟𝑚 =  a ∧F b = ab, and fuzzy 𝑡𝑐𝑜𝑛𝑜𝑟𝑚 = 𝑎 ∨F b = a + b – ab.  

5.4.1 Tri-Dimensional Plithogenic Single-Valued Fuzzy Set Intersection and Union 

Let  

𝑥𝐴 = {
𝑑𝐴(𝑥, 𝑎𝑖 , 𝑤𝑗 , ℎ𝑘),

𝑓𝑜𝑟 𝑎𝑙𝑙 1 ≤ 𝑖 ≤ 2, 1 ≤ 𝑗 ≤ 4, 1 ≤ 𝑘 ≤ 3
}       (40) 

and 

𝑥𝐵 = {
𝑑𝐵(𝑥, 𝑎𝑖 , 𝑤𝑗 , ℎ𝑘),

𝑓𝑜𝑟 𝑎𝑙𝑙 1 ≤ 𝑖 ≤ 2, 1 ≤ 𝑗 ≤ 4, 1 ≤ 𝑘 ≤ 3
}.       (41) 

Then:  

   

     

     

     

     

     

(1 ,  ) ,  , 

,  ,  ,  ,1 2;

(1 ,  ) ,  , 
, ,  , , 

,  ,  ,  ,1 4;

(1 ,  ) ,  , 

, 

D i A D F B i

D i A D F B i

D j A D F B

A i j k P B i j k

D A D F B

D A

j

j j

kFk D B

D

c a a d x a d x a

c a a d x a d x a i

c w d x w d x w
a w h x a w h

c w d x w d x w j

c h d x h d

w
x

w

h x h

c hh

    

      

   
 

 
     
 

    

      ,  ,  ,1 3.A D F B kk d x h d x h k

 
 
 
 
  
 
 
 
 
 

           (42) 

and 

   

     

     

     

     

     

(1 ,  ) ,  , 

,  ,  ,  ,1 2;

(1 ,  ) ,  , 
, ,  , , 

,  ,  ,  ,1 4;

(1 ,  ) ,  , 

, 

D i A D F B i

D i A D F B i

D j A D F B

A i j k P B i j k

D A D F B

D A

j

j j

kFk D B

D

c a a d x a d x a

c a a d x a d x a i

c w d x w d x w
a w h x a w h

c w d x w d x w j

c h d x h d

w
x

w

h x h

c hh

    

      

   
 

 
     
 

    

      ,  ,  ,1 3.A D F B kk d x h d x h k

 
 
 
 
  
 
 
 
 
 

          (43) 

Let’s have  

𝑥𝐴(𝑑𝐴(𝑎1) = 0.8, 𝑑𝐴(𝑤2) = 0.6, 𝑑𝐴(ℎ3) = 0.5) 

and 

𝑥𝐵(𝑑𝐵(𝑎1) = 0.4, 𝑑𝐵(𝑤2) = 0.1, 𝑑𝐵(ℎ3) = 0.7). 

We take only one 3-attribute value: (𝑎1, 𝑤2, ℎ3), for the other 23 3-attribute values it will be analougsly.  

For 𝑥𝐴 ∧𝑝 𝑥𝐵 we calculate for each uni-dimensional attribute separately:   

[1 − 𝑐(𝑎𝐷, 𝑎1)] ∙ [0.8 F 0.4] + 𝑐(𝑎𝐷, 𝑎1) ∙ [0.8 F 0.4] = (1 − 0) ∙ [0.8(0.4)] + 0 ∙ [0.8 F 0.4] = 0.32; 

[1 − 𝑐[𝑤𝐷, 𝑤2] ∙ [0.6 F 0.1] + 𝑐(𝑤𝐷, 𝑤2) ∙ [0.6 F 0.1]] = (1 −
1

3
) [0.6(0.1)] +

1

3
[0.6 + 0.1 − 0.6(0.1)]

=
2

3
[0.06] +

1

3
[0.64] =

0.76

3
≈ 0.25; 
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[1 − 𝑐(ℎ𝐷, ℎ3)] ∙ [0.5 F 0.7] + 𝑐(ℎ𝐷, ℎ3) ∙ [0.5 F 0.7] = [1 − 1] ∙ [0.5(0.7)] + 1 ∙ [0.5 + 0.7 − 0.5(0.7)]

= 0 ∙ [0.35] + 0.85 = 0.85. 

Whence 𝑥𝐴 ∧𝑝 𝑥𝐵(𝑎1, 𝑤2, ℎ3) ≈ (0.32, 0.25, 0.85). 

For 𝑥𝐴 ∨𝑝 𝑥𝐵 we do similarly: 

[1 − 𝑐(𝑎𝐷, 𝑎1)] ∙ [0.8 F 0.4] + 𝑐(𝑎𝐷, 𝑎1) ∙ [0.8 F 0.4] = (1 − 0) ∙ [0.8 + 0.4 − 0.8(0.4)] + 0 ∙ [0.8(0.4)]

= 1 ∙ [0.88] + 0 = 0.88; 

[1 − 𝑐[𝑤𝐷, 𝑤2] ∙ [0.6 F 0.1] + 𝑐(𝑤𝐷, 𝑤2) ∙ [0.6 F 0.1]] = (1 −
1

3
) [0.6 + 0.1 − 0.6(0.1)] +

1

3
[0.6(0.1)]

=
2

3
[0.64] +

1

3
[0.06] =

1.34

3
≈ 0.44; 

[1 − 𝑐(ℎ𝐷, ℎ3)] ∙ [0.5 F 0.7] + 𝑐(ℎ𝐷, ℎ3) ∙ [0.5 F 0.7] = [1 − 1] ∙ [0.5 + 0.7 − 0.5(0.7)] + 1 ∙ [0.5(0.7)]

= 0 + 0.35 = 0.35. 
Whence 𝑥𝐴 ∨𝑝 𝑥𝐵(𝑎1, 𝑤2, ℎ3) ≈ (0.88, 0.44, 0.35). 

For ¬𝑝𝑥𝐴(𝑎1, 𝑤2, ℎ3) = (𝑑𝐴(𝑎2) = 0.8, 𝑑𝐴(𝑤3) = 0.6, 𝑑𝐴(ℎ1) = 0.5), since the opposite of 𝑎1 is 𝑎2, the op-

posite of 𝑤2 is 𝑤3, and the opposite of ℎ3 is ℎ1.  

5.5 Another Example of Multi-Attribute (of 5 Attribute-Values) Plithogenic Fuzzy Set Complement 
and Refined Attribute-Value Set 

The 5-attribute values plithogenic fuzzy complement (negation) of  

𝑥 (
0

small
0.8

,
0.50

medium
0.1

,
0.75
big
0.3

,
0.86

 bigger
0.4

,
1

very big
0.2

) 

Is:  

¬𝑝𝑥 (
1 − 1

anti − very big
0.2

,
1 − 0.86

anti − bigger
0.4

,
1 − 0.75

anti − big
0.3

,
1 − 0.50

 anti − medium
0.1

,
1 − 0

anti − small
0.8

)

= ¬𝑝𝑥 (
0

small
0.2

,
0.14

anti − bigger
0.4

,
0.25

anti − big
0.3

,
0.50

 medium
0.1

,
1

very big
0.8

) 

= ¬𝑝𝑥 (
0

small

0.2

,

0.14

above small

0.4

,

0.25

below medium

0.3

,

0.50

 medium

0.1

,

1

very big

0.8

). 

Therefore, the original attribute-value set  

V = {small, medium, big, bigger, very big} 

has been partially refined into:  

RefinedV = {small, above small, below medium, medium, very big}, 

where above small, below medium ∊ [small, medium].  

5.6 Application of Bi-Attribute Plithogenic Single-Valued Set 

Let 𝒰 be a universe of discourse, and 𝑃 ⊂ 𝒰 a plithogenic set. 

In a plithogenic set 𝑃, each element (object) 𝑥 ∈ 𝑃 is characterized by 𝑚 ≥ 1 attributes 𝛼1, 𝛼2, … , 𝛼𝑚, and 

each attribute 𝛼𝑖 , 1 ≤ 𝑖 ≤ 𝑚, has 𝑟𝑖 ≥ 1 values: 

1 2{ , ,..., }.
ii i i irV v v v

 

Therefore, the element 𝑥 is characterized by 𝑟 = 𝑟1 × 𝑟2 × … × 𝑟𝑚 attributes’ values. 

For example, if the attributes are “color” and “height”, and their values (required by the application the experts 

want to do) are: 

𝐶𝑜𝑙𝑜𝑟 = {𝑔𝑟𝑒𝑒𝑛, 𝑦𝑒𝑙𝑙𝑜𝑤, 𝑟𝑒𝑑} 
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and 

𝐻𝑒𝑖𝑔ℎ𝑡 = {𝑡𝑎𝑙𝑙, 𝑚𝑒𝑑𝑖𝑢𝑚}, 

then the object 𝑥 ∈ 𝑃 is characterized by the Cartesian product 

𝐶𝑜𝑙𝑜𝑟 × 𝐻𝑒𝑖𝑔ℎ𝑡 = {
(𝑔𝑟𝑒𝑒𝑛, 𝑡𝑎𝑙𝑙), (𝑔𝑟𝑒𝑒𝑛, 𝑚𝑒𝑑𝑖𝑢𝑚), (𝑦𝑒𝑙𝑙𝑜𝑤, 𝑡𝑎𝑙𝑙),
(𝑦𝑒𝑙𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚), (𝑟𝑒𝑑, 𝑡𝑎𝑙𝑙), (𝑟𝑒𝑑, 𝑚𝑒𝑑𝑖𝑢𝑚)

}. 

Let’s consider the dominant (i.e. the most important, or reference) value of attribute “color” be “green”, and 

of attribute “height” be “tall”.  

The attribute value contradiction fuzzy degrees are: 

𝑐(𝑔𝑟𝑒𝑒𝑛, 𝑔𝑟𝑒𝑒𝑛) = 0, 

𝑐(𝑔𝑟𝑒𝑒𝑛, 𝑦𝑒𝑙𝑙𝑜𝑤) =
1

3
, 

𝑐(𝑔𝑟𝑒𝑒𝑛, 𝑟𝑒𝑑) =
2

3
,  

𝑐(𝑡𝑎𝑙𝑙, 𝑡𝑎𝑙𝑙) = 0,  

𝑐(𝑡𝑎𝑙𝑙, 𝑚𝑒𝑑𝑖𝑢𝑚) =
1

2
. 

Suppose we have two experts A and B. Further on, we consider (fuzzy, intuitionistic fuzzy, or neutrosophic) 

degrees of appurtenance of each attribute value to the set 𝑃 with respect to experts’ criteria. 

We consider the single value number fuzzy degrees, for simplicity of the example. 

Let 𝑣𝑖 be a uni-attribute value and its degree of contradiction with respect to the dominant uni-attribute value 

𝑣𝐷 be 𝑐(𝑣𝐷 , 𝑣𝑖) ≝ 𝑐𝑖. 

Let 𝑑𝐴(𝑥, 𝑣𝑖) be the appurtenance degree of the attribute value 𝑣𝑖 of the element 𝑥 with respect to the set A. 

And similarly for 𝑑𝐵(𝑥, 𝑣𝑖). Then, we recall the plithogenic aggregation operators with respect to this attribute 

value 𝑣𝑖 that will be employed:  

5.6.1 One-Attribute Value Plithogenic Single-Valued Fuzzy Set Intersection 

𝑑𝐴(𝑥, 𝑣𝑖) ∧𝑝 𝑑𝐵(𝑥, 𝑣𝑖) = (1 − 𝑐𝑖) ∙ [𝑑𝐴(𝑥, 𝑣𝑖) ∧𝐹 𝑑𝐵(𝑥, 𝑣𝑖)] + 𝑐𝑖 ∙ [𝑑𝐴(𝑥, 𝑣𝑖) ∨𝐹 𝑑𝐵(𝑥, 𝑣𝑖)]   (44) 

5.6.2 One-Attribute Value Plithogenic Single-Valued Fuzzy Set Union 

𝑑𝐴(𝑥, 𝑣𝑖) ∨𝑝 𝑑𝐵(𝑥, 𝑣𝑖) = (1 − 𝑐𝑖) ∙ [𝑑𝐴(𝑥, 𝑣𝑖) ∨𝐹 𝑑𝐵(𝑥, 𝑣𝑖)] + 𝑐𝑖 ∙ [𝑑𝐴(𝑥, 𝑣𝑖) ∧𝐹 𝑑𝐵(𝑥, 𝑣𝑖)]   (45) 

5.6.3 One Attribute Value Plithogenic Single-Valued Fuzzy Set Complement (Negation) 

¬𝑝𝑣𝑖 = 𝑎𝑛𝑡𝑖(𝑣𝑖) = (1 − 𝑐𝑖) ∙ 𝑣𝑖         (46) 

¬𝑝𝑑𝐴(𝑥, (1 − 𝑐𝑖)𝑣𝑖) = 𝑑𝐴(𝑥, 𝑣𝑖)         (47) 

5.7 Singe-Valued Fuzzy Set Degrees of Appurtenance 

According to Expert A: 𝑑A: {𝑔𝑟𝑒𝑒𝑛, 𝑦𝑒𝑙𝑙𝑜𝑤, 𝑟𝑒𝑑; 𝑡𝑎𝑙𝑙, 𝑚𝑒𝑑𝑖𝑢𝑚} → [0, 1]. 
One has: 

𝑑A(𝑔𝑟𝑒𝑒𝑛) = 0.6, 
𝑑A(𝑦𝑒𝑙𝑙𝑜𝑤) = 0.2, 

𝑑A(𝑟𝑒𝑑) = 0.7; 
𝑑A(𝑡𝑎𝑙𝑙) = 0.8, 
𝑑A(𝑚𝑒𝑑𝑖𝑢𝑚) = 0.5. 

We summarize as follows: 
 

According to Expert A: 

Contradiction 

Degrees 

0 1

3
 

2

3
 

 0 1

2
 

Attributes’ Values green yellow red  tall medium 

Fuzzy Degrees 0.6 0.2 0.7  0.8 0.5 

Table 3. 
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According to Expert B: 

Contradiction 

Degrees 

0 1

3
 

2

3
 

 0 1

2
 

Attributes’ Values green yellow red  tall medium 

Fuzzy Degrees 0.7 0.4 0.6  0.6 0.4 

Table 4. 

The element  

x{ (green, tall), (green, medium), (yellow, tall), (yellow, medium), (red, tall), (red, medium) } ∈ 𝑃 

with respect to the two experts as above is represented as: 

𝑥𝐴{(0.6, 0.8), (0.6, 0.5), (0.2, 0.8), (0.2, 0.5), (0.7, 0.8), (0.7, 0.5)} 

and 

𝑥𝐵{(0.7, 0.6), (0.7, 0.4), (0.4, 0.6), (0.4, 0.4), (0.6, 0.6), (0.6, 0.4)}. 

In order to find the optimal representation of 𝑥, we need to intersect 𝑥𝐴  and 𝑥𝐵 , each having six duplets. 
Actually, we separately intersect the corresponding duplets.  

In this example, we take the fuzzy 𝑡𝑛𝑜𝑟𝑚: 𝑎 ∧𝐹 𝑏 = 𝑎𝑏 and the fuzzy 𝑡𝑐𝑜𝑛𝑜𝑟𝑚: 𝑎 ∨𝐹 𝑏 = 𝑎 + 𝑏 − 𝑎𝑏. 

5.7.1 Application of Uni-Attribute Value Plithogenic Single-Valued Fuzzy Set Intersection 

Let’s compute 𝑥𝐴 ∧𝑝 𝑥𝐵. 

    0      0           0      0   {degrees of contradictions}        
(0.6, 0.8) ∧𝑝 (0.7, 0.6) = (0.6 ∧𝑝 0.7, 0.8 ∧𝑝 0.6) = (0.6 ∙ 0.7, 0.8 ∙ 0.6) = (0.42, 0.48), 

where above each duplet we wrote the degrees of contradictions of each attribute value with respect to their 

correspondent dominant attribute value. Since they were zero, ∧𝑝 coincided with ∧𝐹. 

 

{the first raw below 0 ½ and again 0 ½ represents the contradiction degrees} 

(
0

0.6
,

1

2
0.5

) ∧𝑝 (
0

0.7
,

1

2
0.4

) = (0.6 ∧𝑝 0.7, 0.5 ∧𝑝 0.4) = (0.6 ∙ 0.7, (1 − 0.5) ∙ [0.5 ∧𝐹 0.4] + 0.5 ∙ [0.5 ∨𝐹 0.4])

= (0.42, 0.5[0.2] + 0.5[0.5 + 0.4 − 0.5 ∙ 0.4]) = (0.42, 0.45). 

(
1

3
0.2

,
0

0.8
) ∧𝑝 (

1

3
0.4

,
0

0.6
) = (0.2 ∧𝑝 0.4, 0.8 ∧𝑝 0.6) = ({ 1 −

1

3
} ∙ [0.2 ∧𝐹 0.4] + {

1

3
} ∙ [0.2 ∨𝐹 0.4], 0.8 ∙ 0.6)

≈ (0.23, 0.48). 

(
1

3
0.2

,
1

2
0.5

) ∧𝑝 (
1

3
0.4

,
1

2
0.4

) = (0.2 ∧𝑝 0.4, 0.5 ∧𝑝 0.4) 

(they were computed above)  

≈ (0.23, 0.45). 

(
2

3
0.7

,
0

0.8
) ∧𝑝 (

2

3
0.6

,
0

0.6
) = (0.7 ∧𝑝 0.8, 0.8 ∧𝑝 0.6) = ({1 −

2

3
} ∙ [0.7 ∧𝐹 0.6] + {

2

3
} ∙ [0.7 ∨𝐹 0.6], 0.48) 

(the second component was computed above) 

= (
1

3
[0.7 ∙ 0.6] +

2

3
[0.7 + 0.6 − 0.7 ∙ 0.6], 0.48) ≈ (0.73, 0.48). 

And the last duplet: 

(
2

3
0.7

,
1

2
0.5

) ∧𝑝 (
2

3
0.6

,
1

2
0.4

) = (0.7 ∧𝑝 0.6, 0.5 ∧𝑝 0.4) 

≈ (0.73, 0.45) 

(they were computed above). 
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Finally:  

𝑥𝐴 ∧𝑝 𝑥𝐵 ≈ {
(0.42, 0.48), (0.42, 0.45), (0.23, 0.48), (0.23, 0.45),

(0.73, 0.48), (0.73, 0.45)
}, 

or, after the intersection of the experts’ opinions A/\PB, we summarize the result as: 

 
 

Contradiction 

Degrees 

0 1

3
 

2

3
 

 0 1

2
 

Attributes’ Values green yellow red  tall medium 

Fuzzy Degrees of 

Expert A for x 

0.6 0.2 0.7  0.8 0.5 

Fuzzy Degrees of 

Expert B for x 

0.7 0.4 0.6  0.6 0.4 

Fuzzy Degrees of 

𝑥𝐴 ∧𝑝 𝑥𝐵 

0.42 0.23 0.73  0.48 0.45 

Fuzzy Degrees of 

𝑥𝐴  𝑝
𝑥𝐵 

0.88 0.37 0.57  0.92 0.45 

Table 5. 

 

5.7.2 Application of Uni-Attribute Value Plithogenic Single-Valued Fuzzy Set Union 

We separately compute for each single attribute value: 

𝑑𝐴
𝐹(𝑥, 𝑔𝑟𝑒𝑒𝑛) ∨𝑝 𝑑𝐵

𝐹(𝑥, 𝑔𝑟𝑒𝑒𝑛) = 0.6 ∨𝑝 0.7 = (1 − 0) ∙ [0.6 ∨𝐹 0.7] + 0 ∙ [0.6 ∧𝐹 0.7]

= 1 ∙ [0.6 + 0.7 − 0.6 ∙ 0.7] + 0 = 0.88. 

𝑑𝐴
𝐹(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) ∨𝑝 𝑑𝐵

𝐹(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) = 0.2 ∨𝑝 0.4 = (1 −
1

3
) ∙ [0.2 ∨𝐹 0.4] +

1

3
∙ [0.2 ∧𝐹 0.4]

=
2

3
∙ (0.2 + 0.4 −  0.2 ∙ 0.4) +

1

3
(0.2 ∙ 0.4) ≈ 0.37. 

𝑑𝐴
𝐹(𝑥, 𝑟𝑒𝑑) ∨𝑝 𝑑𝐵

𝐹(𝑥, 𝑟𝑒𝑑) = 0.7 ∨𝑝 0.6 = {1 −
2

3
} ∙ [0.7 ∨𝐹 0.6] +

2

3
∙ [0.7 ∧𝐹 0.6]

=
1

3
∙ (0.7 + 0.6 − 0.7 ∙ 0.6) +

2

3
(0.7 ∙ 0.6) ≈ 0.57. 

𝑑𝐴
𝐹(𝑥, 𝑡𝑎𝑙𝑙) ∨𝑝 𝑑𝐵

𝐹(𝑥, 𝑡𝑎𝑙𝑙) = 0.8 ∨𝑝 0.6 = (1 − 0) ∙ (0.8 + 0.6 − 0.8 ∙ 0.6) + 0 ∙ (0.8 ∙ 0.6) = 0.92. 

𝑑𝐴
𝐹(𝑥, 𝑚𝑒𝑑𝑖𝑢𝑚) ∨𝑝 𝑑𝐵

𝐹(𝑥, 𝑚𝑒𝑑𝑖𝑢𝑚) = 0.5 ∨𝑝 0.4 =
1

2
(0.5 + 0.4 − 0.5 ∙ 0.4) +

1

2
∙ (0.5 ∙ 0.4)  = 0.45. 

5.7.3 Properties of Plithogenic Single-Valued Set Operators in Applications 

1) When the attribute value contradiction degree with respect to the corresponding dominant attribute value is 

0 (zero), one simply use the fuzzy intersection: 

𝑑𝐴∧𝑝𝐵(𝑥, 𝑔𝑟𝑒𝑒𝑛) = 𝑑𝐴(𝑥, 𝑔𝑟𝑒𝑒𝑛) ∧𝐹 𝑑𝐵(𝑥, 𝑔𝑟𝑒𝑒𝑛) = 0.6 ∙ 0.7 = 0.42, 

and 

𝑑𝐴∧𝑝𝐵(𝑥, 𝑡𝑎𝑙𝑙) = 𝑑𝐴(𝑥, 𝑡𝑎𝑙𝑙) ∧𝐹 𝑑𝐵(𝑥, 𝑡𝑎𝑙𝑙) = 0.8 ∙ 0.6 = 0.48. 

2) But, if the attribute value contradiction degree with respect to the corresponding dominant attribute value is 

different from 0 and from 1, the result of the plithogenic intersection is between the results of fuzzy 𝑡𝑛𝑜𝑟𝑚 and 

fuzzy 𝑡𝑐𝑜𝑛𝑜𝑟𝑚.  

Examples: 

𝑑𝐴(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) ∧𝐹 𝑑𝐵(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) = 0.2 ∧𝐹 0.4 = 0.2 ∙ 0.4 = 0.08 (𝑡𝑛𝑜𝑟𝑚), 
𝑑𝐴(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) ∨𝐹 𝑑𝐵(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) = 0.2 ∨𝐹 0.4 = 0.2 + 0.4 − 0.2 ∙ 0.4 = 0.52 (𝑡𝑐𝑜𝑛𝑜𝑟𝑚); 

while  

𝑑𝐴(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) ∧𝑝 𝑑𝐵(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) = 0.23 ∈ [0.08, 0.52]  
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{or 0.23 ≈ 0.2266… = (2/3)×0.08 + (1/3)×0.52, i.e. a linear combination of 𝑡𝑛𝑜𝑟𝑚 and 𝑡𝑐𝑜𝑛𝑜𝑟𝑚}. 

Similarly: 

𝑑𝐴(𝑥, 𝑟𝑒𝑑) ∧𝑝 𝑑𝐵(𝑥, 𝑟𝑒𝑑) = 0.7 ∧𝐹 0.6 = 0.7 ∙ 0.6 = 0.42 (𝑡𝑛𝑜𝑟𝑚), 

𝑑𝐴(𝑥, 𝑟𝑒𝑑) ∨𝑝 𝑑𝐵(𝑥, 𝑟𝑒𝑑) = 0.7 ∨𝐹 0.6 = 0.7 + 0.6 − 0.7 ∙ 0.6 = 0.88 (𝑡𝑐𝑜𝑛𝑜𝑟𝑚); 

while 

𝑑𝐴(𝑥, 𝑟𝑒𝑑) ∧𝑝 𝑑𝐵(𝑥, 𝑟𝑒𝑑) = 0.57 ∈ [0.42, 0.88]  

{linear combination of 𝑡𝑛𝑜𝑟𝑚 and 𝑡𝑐𝑜𝑛𝑜𝑟𝑚}. 

And 

𝑑𝐴(𝑥, 𝑚𝑒𝑑𝑖𝑢𝑚) ∧𝐹 𝑑𝐵(𝑥, 𝑚𝑒𝑑𝑖𝑢𝑚) = 0.5 ∧𝐹 0.4 = 0.5 ∙ 0.4 = 0.20, 

𝑑𝐴(𝑥, 𝑚𝑒𝑑𝑖𝑢𝑚) ∨𝐹 𝑑𝐵(𝑥, 𝑚𝑒𝑑𝑖𝑢𝑚) = 0.5 ∨𝐹 0.4 = 0.5 + 0.4 − 0.5 ∙ 0.4 = 0.70, 

while 

𝑑𝐴(𝑥, 𝑚𝑒𝑑𝑖𝑢𝑚) ∧𝑝 𝑑𝐵(𝑥, 𝑚𝑒𝑑𝑖𝑢𝑚) = 0.45,  

which is just in the middle (because “medium” contradiction degree is  
1

2
) of the interval [0.20, 0.70]. 

Conclusion & Future Research 

As generalization of dialectics and neutrosophy, plithogeny will find more use in blending diverse philosoph-

ical, ideological, religious, political and social ideas. After the extension of fuzzy set, intuitionistic fuzzy set, and 

neutrosophic set to the plithogenic set; the extension of classical logic, fuzzy logic, intuitionistic fuzzy logic and 

neutrosophic logic to plithogenic logic; and the extension of classical probability, imprecise probability, and neu-

trosophic probability to plithogenic probability [12] – more applications of the plithogenic set/logic/probabil-

ity/statistics in various fields should follow. The classes of plithogenic implication operators and their correspond-

ing sets of plithogenic rules are to be constructed in this direction. Also, exploration of non-linear combinations of 

tnorm and tconorm, or of other norms and conorms, in constructing of more sophisticated plithogenic set, logic and 

probabilistic aggregation operators, for a better modeling of real life applications. 
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