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Abstract: In this article, we present deterministic single objective economic order quantity model with limited storage
capacity in neutrosophic environment. We consider variable limit production cost and time dependent holding cost into
account. Here we minimize total average cost of proposed model by applying neutrosophic geometric programming,
which is obtained by extending existing fuzzy and intuitionistic fuzzy geometric programming for solving resultant
non-linear optimization model. Next we consider numerical application to show that optimal solution obtained by
neutrosophic geometric programming is more desirable than that of crisp, fuzzy and intuitionistic fuzzy geometric
programming. Also we perform sensitivity analysis of parameters and present key managerial insights. Finally we
draw the conclusions.

Keywords: Economic Order Quantity, Neutrosophic geometric programming, Non-linear optimization, Limited
storage capacity, Shape parameter.

1 Introduction
We define i nventory a s a n i dle r esource o f a ny e nterprise. Although i dle, a  c ertain a mount o f i nventory is 
essential for smooth conduction of organisational activities. We find control of inventory as one of the key 
areas for operational management. We observe that an adequate control of inventory significantly brings 
down operating cost and increases efficiency [1, 2]. So we determine Economic Order Quantity (EOQ) to 
minimize total cost of inventory e.g., holding cost, order cost, and shortage cost. In most cases, optimization of 
corrosponding mathematical model requires Non-Linear Programming(NLP). And one of the most popular and 
constructive method for solving NLP problem is Geometric Programming (GP). It is convenient in applications 
of variety of optimization models and is under general class of signomial problems. We employ it to solve large
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scale, real life based models by quantifying them into an equivalent optimization problem. Also GP allows
sensitivity analysis to be performed efficiently.

Historically, F. Harries [3, 4] first presented concept of EOQ and subsequently Wilson applied it. Hoon 
Jung et al. [5,6] discussed optimal inventory policies for maximizing profit of EOQ models under various cost 
functions. N. K. Mondal et al. [7] considered a model with deteriorating items. S. Islam [8] formulated multi-
objective inventory model with capacity constraint and shortage cost. S. Sadjadi et al. [2] considered a model 
with cubic demand function. L. Janseen et al. [9] presented one extensive literature review of deteriorating 
inventory models. In recent era, development of EOQ model is primarily based on several constraints, among 
which budgetary and limited storage capacitys generate considerable attention of researchers.

Again through investigation of cost minimization techniques for engineering and designing problem [10,
11] Zenner introduced notion of GP. Later, Duffin et al. [12,13] presented the mathematical formulations of GP.
Kochenberger [14] was the first scientist to solve non-linear EOQ problem by GP. Beightler and Phillips 
[15] studied advantages of applying GP to real life based problems. Afterwards, Cheng [16, 17] 
formulated an EOQ model with unit production cost. Lee [18] proposed GP formulations for optimal order 
quantities and prices with storage capacity limitations. Nezami et al. [19] determined optimal demand rate 
and production quantity by GP. Sadjadi et al. [1,2] investigated the integrated pricing, lot sizing and marketing 
planning model and reviewed literature of last two decades. Tabatabaei et al. [20] discussed optimal 
pricing and marketing planning for deteriorating items. Again total inventory cost of an EOQ model is 
controlled by constraints in real life based imprecise environment. Among numerous constraints that affect 
optimal inventory cost, e.g. ceiling on storage capacity, number of orders and production cost, In this 
article, we consider upper limit on storage capacity to be imprecise in nature. The much needed paradigm 
shift to bring impreciseness in math-ematics was formaly acted by Zadeh [21]. Next Bellman and Zadeh 
[22] used fuzzy set in decision making problems. Tanaka et al. [23] proposed objectives as fuzzy goals. 
Zimmerman [24] presented solution method for multi-objective linear programming problem in fuzzy 
environment. In subsequent years, mathematicians developed various optimization methods and employed 
them in different directions. Sommer [25] employed fuzzy concept to inventory and production-scheduling 
problem. Park [26] examined fuzzy EOQ model. Roy and Maiti [27] solved single objective EOQ model 
using GP technique in fuzzy environment. Islam and Mon-dal [28] formulated one fuzzy Eeconomic 
Production Quantity (EPQ) model having flexibility and reliability considerations. Mahapatra et al. [29] 
considered fuzzy EPQ model and solved by applying parametric GP technique.

On the other hand, fuzzy set theory has been widely developed and recently several modifications have 
appeared. Atanassov presented Intuitionistic Fuzzy (IF) set theory, where we consider non-membership func-
tion along with membership function of imprecise information. Whereas Atanassov and Gargov [30] listed 
optimization in IF environment as an open problem, Angelov [31] developed optimization technique in IF 
environment. Pramanik and Roy [32] analyzed vector operational problem using IF goal programming. A 
transportation model was elucidated by Jana and Roy [33] by using multi-objective IF linear programming. 
Chakraborty et al. [34] applied IF optimization technique for Pareto optimal solution of manufacturing in-
ventory model with shortages. Garai et al. [35, 36] worked on T-Sets based on optimization technique in 
air quality strategies and supply chain management respectively. Pramanik and Roy [37–39] applied IF goal 
programming approach to solve quality control problem and multi objective transportation problem also they 
investigated bilevel programming in said environment.

Again F. Smarandache [40, 41] introduced Neutrosophic (NS) Set, by combining nature with philosophy. 
It is the study of neutralities as an extension of dialectics. Interestingly, whereas IF sets can only handle 
incomplete information but failed in case of indeterminacy, NS set can manipulate both incomplete and im-

Bappa Mondal, Chaitali Kar, Arindam Garai and Tapan Kumar Roy, Optimization of EOQ Model with
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precise information [40]. We characterize NS set by membership function (or, truth membership degree), 
hesitancy function (or, indeterminacy membership degree) and non-membership function (or, falsity mem-
bership degree). In NS environment, decision maker maximizes degree of membership function, minimizes 
both degree of indeterminacy and degree of non-membership function. Whereas we find application of NS in 
different directions of research, in this article, we concentrate on optimization in NS environment. Roy and 
Das [42] solved multi-criteria production planning problem by NS linear programming approach. Baset et 
al. [43] presented NS Goal Programming (NSGP) problem. Pramanik et al. [44] presented TOPSIS method for 
multi-attribute group decision-making under single-valued NS environment Basset et al. [45] used Analytic 
Hierarchy Process (AHP) in multi-criteria group decision making problems in NS environment. Also they 
extended AHP-SWOT analysis in NS environment [46]. Sarkar et al. [47] used NS optimization technique in 
truss design and multi-objective cylindrical skin plate design problem. S. Pramanik [48, 49] discussed multi-
objective linear goal programming problem in neutrosophic number environment.

Recently Several researcher has worked on Multi-Criteria Decision Making (MCDM) or Multi-Attribute 
Decision Making (MADM) problem using neutrosophic environment. Biswas et al. [50] discussed neutro-
sophic MADM with unknown weight information. Mondal and Pramanik [51] extended Multi-Criteria Group 
Decision Making (MCGDM) approach for teacher recruitment in higher education in neutrosophic environ-
ment. Also, Biswas et al. [52] discussed MADM using entropy based grey relational analysis method under 
SVNSs environment. Afterwards, Mondal and Pramanik [53] explained neutrosophic decision making model 
for school choice. Pramanik et al. [54] investigated the contribution of some indian researchers to MADM in 
neutrosophic environment. Later on, Mondal and Pramanik [55] applied tangent similarity measure to neutro-
sophic MADM process. Mondal et al. [56] developed MADM process for SVNSs using similarity measures 
based on hyperbolic sine functions. Mondal et al. [57, 58] used hybrid binary logarithm similarity measure 
and refined similarity measure based on cotangent function to solve Multi-Attribute Group Decision Making 
(MAGDM) problem under SVNSs environment. Recently mondal et al. [59] analyzed interval neutrosophic 
tangent similarity measure based MADM strategy and its application to MADM problems. In recent era, Pra-
manik et al. [60–62] solved MAGDM problem using NS and IN cross entropy, also they investigate 
MAGDM problem for logistic center location selection. Recently Biswas et al. [63–69] discussed distance 
measure based MADM and TOPSIS strategies with interval trapeziodal neutrosophic numbers, also they 
worked on aggrega-tion of triangular fuzzy neutrosophic set, value and ambiguity index based ranking 
method of SVTNs, hybrid vector similarity measures and their application to MADM problem respectively.

Although we have performed extensive literature reviews and have found case studies of EOQ models
in NS environment, we observe that in most cases, models are optimized through various existing software
packages only. In this article, we consider one EOQ model with limited storage capacity. Next we solve it by
using NSGP method.

We organize the rest of the article as follows. In Section 2, we present elementary definitions. In Section 
3, we construct single objective EOQ model with limited storage capacity. In Section 4, we solve the model 
in crisp environment by applying classical GP. In Section 5, we present optimal solution of proposed model 
in fuzzy GP. In Section 6, we present optimal solution of proposed model in IFGP. In Section 7, we consider 
the model in NS environment and solve it by applying NSGP. Next numerical application in Section 8.1 shows 
that optimal solution in NS environment is more preferable than crisp, fuzzy and IF environment. Also we 
perform sensitivity analysis and present key managerial insights. Finally in Section 9, we draw conclusions 
and discuss future scopes of research.
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2 Definitions

2.1 Intuitionistic fuzzy set

Let X be an universal set. An intuitionistic fuzzy set A in X is an object of the form:

A =
{
(x, µA(x), νA(x)) : x ∈ X

}
.

Here µA(x) : X → [0, 1] and νA(x) : X → [0, 1] are membership function and non-membership function of
A in X respectively and satisfy the condition 0 ≤ µA(x) + νA(x) ≤ 1, ∀x ∈ X .

2.2 Neutrosophic set

Let X be an universal set. A neutrosophic (NS) set A ∈ X is defined by:

A = {(x, µA(x), σA(x), νA(x)) : x ∈ X} .

Here µA(x), σA(x) and νA(x) are called membership function, hesitancy function and non-membership func-
tion respectively. They are respectively defined by:

µA(x) : X →
]
0−, 1+

[
, σA(x) : X →

]
0−, 1+

[
, νA(x) : X →

]
0−, 1+

[
subject to 0− ≤ sup µA(x) + sup σA(x) + sup νA(x) ≤ 3+.

2.3 Single valued NS set

Let X be an universal set. A single valued NS set A ∈ X is defined by:

µA(x) : X → [0, 1], σA(x) : X → [0, 1], νA(x) : X → [0, 1]

subject to 0 ≤ µA(x) + σA(x) + νA(x) ≤ 3. here µA(x), σA(x) and νA(x) are called membership function,
hesitancy function and non-membership function respectively.

2.4 Union of two NS sets

LetX be an universal set and A andB are any two subsets ofX . Here µA(x) : X → [0, 1], σA(x) : X → [0, 1]
and νA(x) : X → [0, 1] are membership function, hesitancy function and non-membership function of A
respectively. Then union of A and B is denoted by A ∪B and is definded as:

A ∪B = {(x,max(µA(x), µB(x)),max(σA(x), σB(x)),min(νA(x), νB(x))) : x ∈ X} .

2.5 Intersection of two NS sets

LetX be an universal set and A andB are any two subsets ofX . Here µA(x) : X → [0, 1], σA(x) : X → [0, 1]
and νA(x) : X → [0, 1] are membership function, hesitancy function and non-membership function of A

Bappa Mondal, Chaitali Kar, Arindam Garai and Tapan Kumar Roy, Optimization of EOQ Model with
Limited Storage Capacity by Neutrosophic Geometric Programming.
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respectively. Then intersection of A and B is denoted by A ∩B and is definded as:

A ∩B = {(x,min(µA(x), µB(x)),min(σA(x), σB(x)),max(νA(x), νB(x))) : x ∈ X} .

3 Formulation of single objective EOQ model with limited storage ca-
pacity

In this article, we take a single objective EOQ model, along with limited storage capacity. Here we take
following unit production cost:

P (D,S) = θD−xS−1

We note that shape parameter (x) should lie within pre-determined values so as to satisfy positivity conditions 
of Dual Geometric Programming Problem (DGPP). We present the notations and assumptions of proposed 
model, for which explanations are given in Table 9, as follows:

3.1 Assumptions

To specify scopes of study and to further simplify the proposed EOQ model, we consider following assump-
tions
(i) proposed EOQ model shall involve exactly one item;
(ii) we consider infinite rate for instantaneously replenishment;
(iii) lead time is negligible;
(iv) we take demand rate as constant;
(v) the holding cost of proposed model is a funtion of time, i.e. we take H(t) = at;
(vi) upgradation to modern machineries involves higher costs, which is a part of set up cost. Since these ma-
chineries have higher production rates and other advantages, large scale production can bring down the unit
production cost and it is generally adopted when demand is high. Therefore we find that unit production cost
is inversely releated to set-up cost and rate of demand. Hence we get as follows:

P (D,S) = θD−xS−1; θ, x ∈ R+

(vii) We do not allow any shortage in inventory.

3.2 Formulation of model

In this article, we take initial inventory level at t = 0 as Q. Also inventory level gradually decreases in [0, T] 
and it is zero at time T. Since we do not allow shortage, the cycle is repeated over time period T. We 
illustrate the proposed inventory model graphically in Fig.1. Here inventory level at any time t in [0, T] is 
denoted by Q(t). Hence differential equation for instantaneous inventory level Q(t) at time t in [0, T] is as 
follows:

dI(t)

dt
= −D for 0 6 t 6 T

Bappa Mondal, Chaitali Kar, Arindam Garai and Tapan Kumar Roy, Optimization of EOQ Model with
Limited Storage Capacity by Neutrosophic Geometric Programming.
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Figure 1: Inventory model

with boundary conditions as I(0) = Q, I(T ) = 0.
By applying those conditions, we obtain as follows:

I(t) = D(T − t)

Therefore inventory holding cost becomes as follows:∫ T

0

H(t)I(t)d(t) =
aQ3

6D2

Hence total average inventory cost per cycle [0, T] is as follows:

TAC(D,S,Q) =
SD

Q
+
aQ2

6D
+ θD1−xS−1

Here maximum floor capacity for storing items in warehouse is W . So storage area w0Q for production quan-
tity Q can never go beyond maximum floor capacity in warehouse for storing items at any time t. Therefore
limited storage capacity is as follows:

w0Q 6 W

Finally we have inventory model in crisp environment as follows:

min TAC(D,S,Q) =
SD

Q
+
aQ2

6D
+ θD1−xS−1 (3.1)

subject to
S(Q) ≡ w0Q 6 W

D,S,Q > 0.
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4 Solution of EOQ model by crisp GP

We apply classical or crisp GP to solve proposed EOQ model. Here DD is 0. We apply Duffin and 
Peterson theorem [13] of GP on equation (3.1) and obtain DGPP as follows:

max d(w) =

(
1

w01

)w01
(

a

6w02

)w02
(

θ

w03

)w03
(

w0

Ww11

)w11

w11
w11

subject to
w01 + w02 + w03 = 1,

w01 − w02 + (1− x)w03 = 0,

w01 − w03 = 0,

−w01 + 2w02 + w11 = 0,

w01, w02, w03, w11 ≥ 0.

The optimal solution in crisp environment is as follows:

w∗01 = w∗03 =
1

4− x
, w∗02 =

2− x
4− x

, w∗11 =
2x− 3

4− x
.

Since value of shape paremeter x has to lie in interval [1.5, 2], all dual variables remain positive. Thus optimal
values of primal variables are as follows:

D∗ =

{
1

θ

(
a

6(2− x)

)2(
W

w0

)5
} 1

4−x

,

S∗ =

{(
θW

w0

)2(
6w3

0(2− x)
aW 3

)x} 1
4−x

,

Q∗ =
W

w0

.

with optimal TAC as follows:

TAC∗(D∗, S∗, Q∗) = (4− x)

{
θ
(w0

W

)(2x−3)( a

6(2− x)

)(2−x)
} 1

4−x

= T1 (say)

5 Solution of EOQ model by fuzzy GP

We apply max-additive operator to solve proposed EOQ model in fuzzy environment. Here we compute 
individual optimum values of objective function: TAC and constraint: limited storage capacity of model (3.1), 
as given in Table 1. Also DM supplies goal and goal plus tolerance values for membership functions of 
objective function and constraint. For sake of simplicity, we consider linear membership function for TAC 
and limited storage capacity as follows:

Bappa Mondal, Chaitali Kar, Arindam Garai and Tapan Kumar Roy, Optimization of EOQ Model with
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Table 1: Individual maximum and minimum values of decision variables and TAC
Maximum value Minimum value

Demand per
unit time (D)

{
1
θ

(
a

6(2−x)

)2 (
W
w0

)5} 1
4−x

{
1
θ

(
a

6(2−x)

)2 (
W+wp

w0

)5
,

} 1
4−x

Set up cost
(S)

{(
θW
w0

)2 (
6w3

0(2−x)
aW 3

)x} 1
4−x

{(
θ(W+wp)

w0

)2 (
6w3

0(2−x)
a(W+wp)3

)x} 1
4−x

Production quantity
per batch (Q)

W
w0

W+wp

w0

Total Average Cost
TAC(D, S, Q) (4− x)

{
θ
(
w0

W

)(2x−3)
(

a
6(2−x)

)(2−x)} 1
4−x

(4− x)
{
θ
(

w0

W+wp

)(2x−3) (
a

6(2−x)

)(2−x)} 1
4−x

Figure 2: Membership function of fuzzy objective function

µÕ(TAC(D,S,Q)) =


1 if TAC(D,S,Q) 6 T0
T1−TAC(D,S,Q)

T1−T0 if T0 6 TAC(D,S,Q) 6 T1

0 if otherwise.

µC̃(S(Q)) =


1 if w0Q 6 W
W+wp−w0Q

wp
if W 6 w0Q 6 W + wp

0 if otherwise.

Figure 3: Membership function of fuzzy constraint

Next we formulate the mathematical model as follows:
max {µÕ(TAC(D,S,Q))µC̃(S(Q))}
subject to
0 < µÕ(TAC(D,S,Q)) + µC̃(S(Q)) < 1,
D, S,Q > 0.

Bappa Mondal, Chaitali Kar, Arindam Garai and Tapan Kumar Roy, Optimization of EOQ Model with
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By applying max-additive operator, we get crisp Primal Geometric Programming Problem (PGPP) and use
convex combination operator to obtain as follows:

max V FFA(D,S,Q) = FK − V FFA1(D,S,Q)

Here FK = T0
T1−T0 +

W+wp

wp
and V FFA1(D,S,Q) =

TAC(D,S,Q)
T1−T0 + w0Q

wp
.

Therefore the problem reduces to the following model:

min V FFA1(D,S,Q) =
SD

Q(T1 − T0)
+

aQ2

6D(T1 − T0)
+

θD1−x

(T1 − T0)S
+
w0Q

wp
subject to

D,S > 0, Q ∈
[
W

w0

,
W + wp
w0

]
, TAC(D,S,Q) ∈ [T0, T1]. (5.1)

It is unconstrained PGPP with DD = 0. Hence optimal values for primal variables of model (5.1) are as follows:

D∗ =
3

2

{
θ 6(x−2)

(
a

2− x

)3(
w0

wp

)(2x−3)(
2x− 3

T1 − T0

)5
} 1

x+1

,

S∗ = 2

{
θ 6(x−2)

(
T1 − T0
2x− 3

)(3x−2)(
w0

wp

)(2x−3)(
a

2− x

)(1−2x)
} 1

x+1

,

Q∗ = 3(2x− 3)

{
θ

(
1

T1 − T0

)(4−x)(
a

6(2− x)

)(2−x)(
w0

wp(2x− 3)

)(2x−3)
} 1

x+1

,

with optimal TAC as follows:

TAC∗(D∗, S∗, Q∗) =

[{
θ

(
a

6(2− x)

)(2−x)(
w0(T1 − T0)
wp(2x− 3)

)(2x−3)
} 1

x+1
{
1 +

(
2− x
6x

) 1
x+1

+

(
wp
3w0

)(2x−3)
}]

provided Q∗ ∈
[
W
w0
, W+wp

w0

]
,TAC∗(D∗, S∗, Q∗) ∈ [T0, T1].

6 Solution of EOQ model by IFGP

We employ IF optimization method and solve proposed EOQ model (3.1). Goal and goal plus tolerance values
of non-membership functions of TAC and limited storage capacity, as obtained from DM, are given in Table
1. Based on these values, we construct following linear non-membership functions of TAC and limited storage
capacity:

νÕ(TAC(D,S,Q)) =


0 if TAC(D,S,Q) 6 T0 + εo
TAC(D,S,Q)−T0−εo

T1−T0−εo if T0 + εo 6 TAC(D,S,Q) 6 T1

1 otherwise.

Bappa Mondal, Chaitali Kar, Arindam Garai and Tapan Kumar Roy, Optimization of EOQ Model with
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Figure 4: Membership and non-membership function of IF objective function

Figure 5: Membership and non-membership function for IF constraint

νC̃(S(Q)) =


0 if w0Q 6 W + εC
w0Q−W−εC

wp−εC
if W + εC 6 w0Q 6 W + wp

1 if w0Q ≥ W + wp

Next we formulate EOQ model as follows:

max {µÕ(TAC(D,S,Q))µC̃(S(Q))}
min {νÕ(T (D,S,Q)), νC̃(S(Q))}
subject to
0 < µÕ(TAC(D,S,Q)) + νÕ(TAC(D,S,Q)) < 1;

0 < µC̃(S(Q)) + νC̃(S(Q)) < 1;

D,S,Q > 0.

By applying max-additive operator and then GP in IF environment, we obtain optimal decision variables as
follows:

D∗ =

{
θ

(
a

6(2− x)

)3(
IK1 (2x− 3)

IK2 w0

)5
} 1

x+1

,

S∗ =

{
θ

(
IK2 w0

IK1 (2x− 3)

)(3x−2)(
a

6(2− x)

)(1−2x)
} 1

x+1

,

Q∗ =

{
θ

(
IK1 (2x− 3)

IK2 w0

)(4−x)(
a

6(2− x)

)(2−x)
} 1

x+1
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with optimal TAC as follows:

TAC∗(D∗, S∗, Q∗) =

[{
θ
(a
6

)(2−x)(IK1(2x− 3)

Ik2 w0

)(3−2x)
} 1

x+1
{
2

(
1

2− x

)( 2−x
x+1

)

+

(
1

2− x

)( 1−2x
x+1

)
}]

providedQ∗ ∈
[
W+εC
w0

, W+wp

w0

]
,TAC∗(D∗, S∗,Q∗) ∈ [T0 + εO,T1].

7 Solution of EOQ model by NSGP
The world is full of indeterminacy and hence we require more precise imprecision. Thus the concept of NS set 
comes into picture. We consider membership function, hesitancy function, non-membership function for each 
objective function and constraint of proposed model. we consider same memebership function, as given in 
Section 5 and same non-membership function, as given in Section 6. We take hesitancy functions for objective 
function and constraint as follows:

Figure 6: Membership, hesitancy and non-membership function of objective function in NS environment.

σÕ(TAC(D,S,Q)) =


1 if TAC(D,S,Q) 6 T0
T0+δo−TAC(D,S,Q)

δo
if T0 6 TAC(D,S,Q) 6 T0 + δo

0 if TAC(D,S,Q) ≥ T0 + δo

Figure 7: Membership, hesitancy and non-membership function of constraint in NS environment.

σC̃(S(Q)) =


1 if w0Q 6 W
W+δc−w0Q

δc
if W 6 w0Q 6 W + δc

0 if w0Q ≥ W + δC
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We note that 0 < εC , δc < wp. Here we consider the case when hesitancy function behaves like non-
membership function. We present several more cases in Table 2. Then linear hesitancy functions of objective 
function and constraint are as follows:

Table 2: On different natures of hesitancy function
Nature of hesitancy function in Value of parameter

Objective function Constraint Nk1 Nk2

non-increasing non-increasing
(

1
T1−T0

+ 1
δo

+ 1
T1−T0−εO

) (
1
wp

+ 1
δc

+ 1
wp−εC

)
non-decreasing non-decreasing

(
1

T1−T0
+ 1

T1−T0−δo + 1
T1−T0−εO

) (
1
wp

+ 1
wp−δc + 1

wp−εC

)
non-increasing non-decreasing

(
1

T1−T0
+ 1

δo
+ 1

T1−T0−εO

) (
1
wp

+ 1
wp−δc + 1

wp−εC

)
non-decreasing non-increasing

(
1

T1−T0
+ 1

T1−T0−δo + 1
T1−T0−εO

) (
1
wp

+ 1
δc

+ 1
wp−εC

)

Figure 8: Membership, hesitancy and non-membership function of objective function in NS environment.

σÕ(TAC(D,S,Q)) =


0 if TAC(D,S,Q) 6 T0 + δo
TAC(D,S,Q)−(T0+δo)

T1−T0−δo if T0 + δo 6 TAC(D,S,Q) 6 T1

1 if TAC(D,S,Q) ≥ T1

Figure 9: Membership, hesitancy and non-membership function of constraint in NS environment.

σC̃(S(Q)) =


0 if w0Q 6 W + δc
w0Q−(W+δc)

wp−δc if W + δc 6 w0Q 6 W + wp

1 if w0Q ≥ W + wp
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Then we obtain following optimization model in NS environment:

max {µÕ(TAC(D,S,Q))µC̃(S(Q))}
max {σÕ(T (D,S,Q)), σC̃(S(Q))}
min {νÕ(T (D,S,Q)), νC̃(S(Q))}
subject to
µÕ(TAC(D,S,Q)) ≥ σÕ(TAC(D,S,Q)), µC̃(S(Q)) ≥ σC̃(S(Q))

µÕ(TAC(D,S,Q)) ≥ νÕ(TAC(D,S,Q)), µC̃(S(Q)) ≥ νC̃(S(Q))

0 6 µÕ(TAC(D,S,Q)), σÕ(TAC(D,S,Q)), νÕ(TAC(D,S,Q)) ≤ 1

0 ≤ µC̃(S(Q)), σC̃(S(Q)), νC̃(S(Q)) ≤ 1

D,S,Q > 0.

The corrosponding single objective optimization model is as follows:

Max V FNFA(D,S,Q) = µÕ(TAC(D,S,Q)) + µC̃(S(Q)) + σÕ(TAC(D,S,Q))

+ σC̃(S(Q)) − νÕ(TAC(D,S,Q))− νC̃(S(Q))
subject to
µÕ(TAC(D,S,Q)) ≥ σÕ(TAC(D,S,Q)), µC̃(S(Q)) ≥ σC̃(S(Q))

µÕ(TAC(D,S,Q)) ≥ νÕ(TAC(D,S,Q)), µC̃(S(Q)) ≥ νC̃(S(Q))

0 6 µÕ(TAC(D,S,Q)), σÕ(TAC(D,S,Q)), νÕ(TAC(D,S,Q)) ≤ 1

0 ≤ µC̃(S(Q)), σC̃(S(Q)), νC̃(S(Q)) ≤ 1;

D,S,Q > 0.

We rewrite the above model as follows:

max VFNFA(D, S,Q) = NK − VFNFA1(D, S,Q)

subject to

D,S > 0, Q ∈
[
W + εC
w0

,
W + wp
w0

]
,TAC(D, S,Q) ∈ [T0 + εO,T1].

Here NK =
(

T1
T1−T0 +

T0+δo
δo

+ T0+εO
T1−T0−εO

)
+
(
W+wp

wp
+ W+δc

δc
+ W+εC

wp−εC

)
,

V FNFA1(D,S,Q) =
NK1 SD

Q
+ NK1 aQ

2

6D
+NK1 θD

1−xS−1 +NK2 w0Q,

with NK1 =
(

1
T1−T0 +

1
δo
+ 1

T1−T0−εO

)
and NK2 =

(
1
wp

+ 1
δc
+ 1

wp−εC

)
.

Hence unconstrainted PGPP is as follows:

min VFNFA1(D, S,Q) =
NK1 SD

Q
+

NK1 aQ
2

6D
+

NK1 θD
1−x

S
+ NK2 w0Q

subject to

D,S > 0, Q ∈
[
W + εC
w0

,
W + wp
w0

]
,TAC(D, S,Q) ∈ [T0 + εO,T1]. (7.1)
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Here DD=0. we solve above model by NSGP [8, 14] and obtain as follows:

max d(w) =

(
NK1

w01

)w01
(
aNK1

6w02

)w02
(
θNK1

w03

)w03
(
w0NK2

w04

)w04

subject to
w01 + w02 + w03 + w04 = 1,

w01 − w02 + (1− x)w03 = 0,

w01 − w03 = 0,

−w01 + 2w02 + w04 = 0,

w01, w02, w03, w04 ≥ 0.

Therefore optimal dual variables are as follows:

w∗01 =
1

4− x
,w∗02 =

2− x
4− x

,w∗03 =
1

4− x
,w∗04 =

2x− 3

4− x
.

Hence optimal decision variables are as follows:

D∗ =

{
θ

(
a

6(2− x)

)3(
NK1 (2x− 3)

NK2 w0

)5
} 1

x+1

S∗ =

{
θ

(
NK2 w0

NK1 (2x− 3)

)(3x−2)(
a

6(2− x)

)(1−2x)
} 1

x+1

Q∗ =

{
θ

(
NK1 (2x− 3)

NK2 w0

)(4−x)(
a

6(2− x)

)(2−x)
} 1

x+1

with optimal TAC as follows:

TAC∗(D∗, S∗, Q∗) =

[{
θ
(a
6

)(2−x)(NKI(2x− 3)

NK2 w0

)(3−2x)
} 1

x+1
{
2

(
1

2− x

)( 2−x
x+1

)

+

(
1

2− x

)( 1−2x
x+1

)
}]

providedQ∗ ∈
[
W+εC
w0

, W+wp

w0

]
,TAC∗(D∗, S∗,Q∗) ∈ [T0 + εO,T1].

8 Numerical application

We consider a simple numerical application to solve proposed model in NS environment as follows:
A manufacturing company produces machines PBA597. The inventory carrying cost for the machines

is Rs.105 per unit per year. The production cost of this machine varies inversely with the demand and set-
up cost. From the past experiences, we can consider the production cost of the machine PBA597 at about
120D−0.75S−1, where D is the demand rate and S is the set-up cost. The company has storage capacity area
per unit time (w0) and total storage capacity area (W ) as 100 sq. ft. and 2000 sq. ft. respectively. The task is
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to determine the optimal demand rate (D), set-up cost (S), production quantity (Q) and hence optimal TAC of
the production system.
Here mathematical model is of the following form:

min TAC(D,S,Q) =
SD

Q
+

105Q2

6D
+ 120D−0.75S−1 (8.1)

subject to
S(Q) ≡ 100Q 6 2000,

D, S,Q > 0.

We consider goal and goal plus tolerance values for TAC and limited storage capacity as given in Table 3.
Based on these values, we construct following linear membership, hesitancy and non-membership functions
of TAC and limited storage capacity:

Table 3: Goal and goal plus tolerance values of TAC and variables

Demand (D) Set-up cost (S)
Production

quantity (Q)
Total Average Cost

(TAC(D,S,Q))
Goal 4047.477 0.034 20.000 15.565

Goal plus
tolerance 5521.645 0.028 23.000 15.089

µÕ(TAC(D,S,Q)) =


1 if TAC(D,S,Q) 6 15.089
15.565−TAC(D,S,Q)

0.476
if 15.089 6 TAC(D,S,Q) 6 15.565

0 if otherwise.

µC̃(S(Q)) =


1 if 100Q 6 2000
2300−100Q

300
if 2000 6 100Q 6 2300

0 if otherwise.

σÕ(TAC(D,S,Q)) =


1 if TAC(D,S,Q) 6 15.089
15.389−TAC(D,S,Q)

0.3
if 15.089 6 TAC(D,S,Q) 6 15.389

0 if TAC(D,S,Q) ≥ 15.389

σC̃(S(Q)) =


1 if 100Q 6 2000
2170−100Q

170
if 2000 6 100Q 6 2170

0 if 100Q ≥ 2170

νÕ(TAC(D,S,Q)) =


0 if TAC(D,S,Q) 6 15.306
TAC(D,S,Q)−15.306

0.259
if 15.306 6 TAC(D,S,Q) 6 15.565

1 if otherwise.

νC̃(S(Q)) =


0 if 100Q 6 2070
100Q−2070

230
if 2070 6 100Q 6 2300

1 if 100Q ≥ 2300
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Therefore single objective EOQ model with limited storage capacity is as follows:

min TAC(D,S,Q) =
9.295SD

Q
+

162.663Q2

D
+ 1115.4D−0.75S−1 + 1.356Q

subject to
D,S > 0, Q ∈ [20.5, 23],TAC(D,S,Q) = [15.089, 15.565] (8.2)

We solve the model (8.2) by GP. Here DD = 0. Hence DGPP of (8.2) is as follows:

max d(w) =

(
9.295

w01

)w01
(
162.663

w02

)w02
(
1115.4

w03

)w03
(
1.356

w04

)w04

subject to
w01 + w02 + w03 + w04 = 1,

w01 − w02 + (1− x)w03 = 0,

w01 − w03 = 0,

−w01 + 2w02 + w04 = 0,

w01, w02, w03, w04 ≥ 0.

Therefore optimal values of dual variables are as follows:

w∗01 = 0.444, w∗02 = 0.111, w∗03 = 0.444, w∗04 = 0.222.

Hence optimal values of decision variables are as follows:

D∗ = 5575.110, S∗ = 0.028, Q∗ = 22.998, TAC∗(D∗, S∗, Q∗) = 15.094.

We note that optimal TAC is 15.094 units with demand as 5575.110 units, set-up cost as 0.030 units and 
production quantity as 22.998 units. Also the optimal order quantity and TAC satify the necessary conditions. 
Next we compare the relative performance of proposed model by comparing its result with that obtained by 
employing crisp GP, fuzzy GP and IFGP and present it in Table 4. We find that optimal TAC is more 
preferable in NS environment than that of crisp, fuzzy and IF environments. Also NS environment yields 
higher demand for the machine PBA597 with lower set-up cost. Moreover production quantity increases in NS 
environment.

Table 4: Optimal solutions of model (3.1) in different environments

Environment Demand (D) Set-up cost (S)
Production

quantity (Q)
Total Average Cost

(TAC(D,S,Q))
Crisp 4047.477 0.034 20.000 15.565
Fuzzy 4742.869 0.031 21.479 15.320

IF 4998.630 0.030 21.993 15.240
NS 5575.110 0.028 22.998 15.094
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8.1 Sensitivity analysis
In this article, we investigate optimal policy of DM of proposed model in real life based NS environment. We 
perform sensitivity analysis of following key parameters
(i) storage capacity per machine ’w0’ (Table 5)
(ii) shape parameter ’x’ (Table 6)
(iii) variational parameter ’a’ (Table 7)
(iv) shape parameter ’θ’ (Table 8)
and present corresponding optimal solution in NS environment.

8.1.1 Managerial insights

We present phenomenon of change of storage capacity per machine ’w0’ in Table 5 . We observe that optimal 
TAC is most preferable to DM in NS environment, which is well explained in Fig.10 . Also we find that 
each reduction in storage capacity per machine reduces TAC not only in NS environment but also in other 
environ-ments. Hence the management should trim down the size of packet of finished goods to reduce TAC. 

Table 5: Sensitivity analysis in different environments of storage capacity per machine ′w′0

TAC in
Storage capacity ′w′0

80 90 100 110 120
Crisp environment 14.812 15.205 15.565 15.898 16.209
Fuzzy environment 14.718 15.032 15.320 15.595 15.840
IF environment 14.513 14.826 15.240 15.379 15.623
NS environment 14.494 14.805 15.094 15.355 15.600

Figure 10: Effect on TAC in different environment due to change in storage space per machine ’w0’.

Next we consider change of shape parameter ’x’ in Table 6. Here we find that optimal TAC rapidly reduces 
for every increment in value of shape parameter and hence for every rise in demand in each of the said 
environments. It is consistent with common knowledge. Also in nearly all cases, we get most preferable 
optimal TAC in NS environment. This can be observed in Fig. 11. Again we perform sensitivity analysis of 
variational parameter ’a’ and present in Table 7. Here in all cases, we obtain most desirable TAC in NS 
environment among said environments. It can be visualized in Fig. 12. Also optimal TAC reduces as 
holding cost decreases in all said environments. 
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Table 6: Sensitivity analysis in different environments of shape parameter ′x′

TAC in
Shape parameter ′x′

1.6 1.7 1.75 1.8 1.9
Crisp environment 25.799 18.612 15.565 12.860 8.385
Fuzzy environment 26.582 18.554 15.320 12.585 8.408
IF environment 26.429 18.349 15.240 12.385 8.198
NS environment 26.413 18.328 15.094 12.366 8.179

Figure 11: Effect on TAC in different environments due to change in shape parameter’x’.

Table 7: Sensitivity analysis in different environments of variational parameter ′a′

TAC in
Variational parameter ′a′

95 100 105 110 115
Crisp environment 15.393 15.481 15.565 15.646 15.723
Fuzzy environment 15.182 15.253 15.320 15.387 15.448
IF environment 15.103 15.174 15.240 15.307 15.368
NS environment 14.956 15.024 15.094 15.155 15.217

Figure 12: Effect on TAC in different environments due to change in variational parameter ’a’.
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Also we consider change of shape parameter ’θ’ and present result in Table 8. As before, we find that optimal 
TAC is most favourable to DM in NS environment among said environments. Fig.13 brings clarity to this 
phenomenon. Additionally, we observe that optimal TAC can be further reduced by decreasing the value of 
shape parameter.

Table 8: Sensitivity analysis in different environments of shape parameter ′θ′

TAC in
Shape parameter ′x′

100 110 120 130 140
Crisp environment 14.354 14.975 15.565 16.129 16.669
Fuzzy environment 14.338 14.843 15.320 15.773 16.037
IF environment 14.146 14.643 15.240 15.560 15.985
NS environment 14.123 14.622 15.094 15.536 15.962

Figure 13: Effect on TAC in different environments due to change in shape parameter ’θ’.

9 Conclusions
In this article, we consider deterministic single objective EOQ model with limited storage capacity and solve 
it by applying GP in NS environment. We know it well that fuzzy set can better represent real life cases 
than crisp set. Again Ranjit Biswas [70] has shown how IF set can better represent real life cases than fuzzy 
set in many cases. Next Smarandache introduced NS set by generalizing IF set and at which we consider 
hesitancy function along with membership and non-membership function with appropriate constraints. Again 
advantages of GP among non-linear optimization methods are manifold. As per Cao [71], GP provides us with 
a systematic approach for solving a class of non-linear optimization problems by determining optimal values 
of decision variables and objective functions.

Whereas existing literature survey finds that GP is extended and thereby employed to solve mathematical
models in fuzzy and IF environment, we can find very few articles, where EOQ models with limited storage
capacity are solved by GP in NS environment. In this article, we employ max-additive operator to convert
EOQ model with limited storage capacity to single objective PGPP and thereby solve it by applying NSGP. In
numerical application, we find that optimal solution, obtained by NSGP is more preferable to DM than those
obtained in crisp GP, fuzzy GP and IFGP. Next we perform sensitivity analysis of key parameters of proposed

Bappa Mondal, Chaitali Kar, Arindam Garai and Tapan Kumar Roy, Optimization of EOQ Model with
Limited Storage Capacity by Neutrosophic Geometric Programming.



24 Neutrosophic Sets and Systems, Vol. 22, 2018

model and list several key managerial insights. Also we explain them graphically.

Future scopes of research
We locate lot of scopes for further research and enlist few of them as follows:
(i) We can consider multiple products scenario. In this case, we can employ modified GP in NS environment.
(ii) Shape parameters can be neutrsophic in nature.
(iii) We can allow shortage of items in inventory and update the mathematical model accordingly.
(iv) We can use other optimization methods to solve non-linear models in NS environment.
(v) And last but not the least, we can discuss present model in other imprecise environments.
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Table 9: Notations and their explanations
D Demand per unit time, which is constant
H(t) Holding cost per unit item, which is time (t) depended
I(t) Inventory level at any time, t ≥ 0
P(D,S) Unit demand (D) and set-up cost (S) dependent production cost
Q Production quantity per batch
S Set-up cost per unit time
T Period of cycle
TAC(D,S,Q) Total average cost per unit time
W Total storage capacity area
w0 capacity area per unit quantity
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Abstract. In this paper, we introduce and study some neutrosophic probability distributions, The study is done through  generalization
of some classical probability distributions as Poisson distribution, Exponential distribution and Uniform distribution, this study opens 
the way for dealing with issues that follow the classical distributions and at the same time contain data not specified accurately. 

Keywords: Poisson, Exponential & Uniform distributions, Classical Logic, Neutrosophic Logic, Neutrosophic crisp sets.

1 Introduction: Neutrosophy theory introduced by Smarandache in 1995. It is a new branch of philosophy, presented 
as a generalization for the fuzzy logic [5] and as a generalization for the intuitionistic fuzzy logic [6]. The fundamental 
concepts of neutrosophic set, introduced by Smarandache in [7, 8, 9, 10], and Salama et al. in [11, 12, 13, 14, 15, 16, 17, 
18, 19, 20, 21, 22, 23], provides a new foundation for dealing with issues that have indeterminate data. The indeterminate 
data may be numbers, and the neutrosophic numbers have been defined in [24, 25, 26, 27]. In this paper, we highlight the 
use of neutrosophic crisp sets theory [3,4] with  the classical probability distributions, particularly Poisson distribution, 
Exponential distribution and  Uniform distribution, which opens the way for dealing with issues that follow the classical 
distributions and at the same time contain data  not specified accurately. The extension of  classical distributions according 
to the neutrosophic logic , means that  parameters of classical distribution take undetermined values, which allows dealing 
with all the situations that one may encounter while working with statistical data and especially when working with vague 
and inaccurate statistical data, Florentin Smarandache presented the neutrosophic binomial distribution and the 
neutrosophic natural distribution  [1,2] in 2014 , In this paper, we will discuss continuous random distributions such as the 
Exponential distribution and Uniform distribution , and discontinuous random distribution such as Poisson distribution by 
using neutrosophic logic. 

2 TERMINOLOGIES: We recollect some relevant basic preliminaries, and in particular, the work of Smarandache in [1, 9, 
10], and Salama et al. [22, 23]. We consider the following classic statistical distributions Poisson distribution, Exponential 
distribution and Uniform distribution. 

3 Neutrosophic probability Distributions: 

3.1 Neutrosophic Poisson Distribution: 

 3.1.a Definition: Neutrosophic Poisson distribution of a discrete variable X is a classical Poisson distribution of X, 
but its parameter is imprecise. For example, λ can be set with two or more elements. The most common such 
distribution is when λ is interval. 

𝑁𝑃(x) =  eି஛ొ  . 
(஛ొ)౮

୶!
 ;      𝑥 = 0,1, … .. 

𝜆ே ∶ Is the distribution parameater .

 λ୒  : is equal to the expected value  and the variance .
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𝑁𝐸(𝑥) = 𝑁𝑉(𝑥) =  λ୒

Where, N = d + I is a neutrosophic statistical number in [2]. 

3.1.b Example for Case study: 

In a company, Phone employee receives phone calls, the calls arrive with rate of [1, 3] calls per minute, we will calculate 
the probability that: 

-  The employee will not receive any call within a minute: 

Assuming x: the number of calls in a minute. 

Then:  

𝑁𝑃(x = 0) = eି஛ొ  . 
(஛ొ)బ

଴!
= eି஛ొ = eି[ଵ,ଷ]

For    λ = 1: 

𝑁𝑃(0) = eିଵ = 0.3679

For    λ = 3 : 

𝑁𝑃(0) = eିଷ = 0.0498

Thus, the probability that employee won't receive any call, within a minute 

 , ranges between [0.0498, 0.3697]. 

- the probability that employee won't receive any call ,within  5 minutes: 

Then: 

λ୒ = 5. [1,3] = [5 , 15]

𝑁𝑃(x) =  eି[ହ,ଵହ]  . 
([ହ,ଵହ])౮

୶!
 ;      𝑥 = 0,1, … .. 

𝑁𝑃(x = 0) = eି஛ొ  . 
(஛ొ)బ

଴!
= eି஛ొ = eି[ହ,ଵହ]

For     λ = 5: 

𝑁𝑃(0) = eିହ = 0.0067

For   λ = 15: 

𝑁𝑃(0) = eିଵହ = 0.000000306

Thus, the probability that the employee will not receive any call within 5 minutes ranges between 
[0.000000306, 0.0067]. 

Neutrosophic Sets and Systems, Vol. 22, 2018 31



Rafif Alhabib, Moustafa Mzher Ranna, Haitham Farah, A.A. Salama, Some Neutrosophic Probability Distributions

 3.2 The Neutrosophic Exponential Distribution: 

3.2.a Definition: Neutrosophic exponential distribution [21] is defined as a generalization of classical exponential 
distribution , Neutrosophic exponential distribution can deals with all the data even non-specific, we express the density 
function as: 

𝑋୒  ~ exp(𝜆ே) =  𝑓𝑁
(𝑥) = 𝜆𝑁 𝑒−𝑥  .𝜆𝑁      ;  0 < 𝑥 < ∞     , 

exp(𝜆ே)  : Neutrosophic Exponential Distribution. 

NX :  X neutrosophic random variable [22].

𝜆ே ∶  distribution parameater.

 3.2.b the distribution properties: 

1- Expected value: 

 𝐸(𝑥) =
ଵ

ఒಿ

Variance: 

 𝑣𝑎𝑟(𝑥) =
1

(𝜆
𝑁

)2

2- Distribution function: 

Probability to terminate the client's service in less than a minute: 

𝑁𝐹(𝑥) = 𝑁𝑃(𝑋 ≤ 𝑥) = ൫1 − 𝑒ି୶ .ఒಿ൯  

 Figure 1 

3.2.c. Example for Case study: 

The time required to terminate client's service in the bank follows an exponential distribution, with an average of one 
minute, let us write a density function that represents the time required for terminating client's service, and then calculate 
the probability of terminating client's service in less than a minute. 
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Solution: 

-Assuming x: represents the time required for termination of the client's service per minute. 

      1/𝜆 = 1  ⇒    λ = 1    -The average

 Therefore, the Probability density function: 

 𝑓(𝑥) = 𝑒ି ௫  ;  0 < 𝑥 < ∞

-The possibility of client's service terminated in less than a minute: 

𝑝(𝑋 ≤ 1) = (1 − 𝑒ି ୶) = ൫1 − 𝑒ି(ଵ)൯ = 0.63 

-The above example is a simple example practically, but if it is changed to the following: 

 The time required to terminate client's service in the bank follow an exponential distribution, with an average of [0.67, 2] 
minute. We know that classical exponential distribution only deals with data defined accurately, note that the average here 
is an interval, how we will deal with this situation.  
So, we will turn to the neutrosophic exponential distribution to solve this issue:  

For exponential distribution, its average [0.67, 2] minutes, we write: 

ଵ

ఒಿ
= [0.67 ,2 ]  ⇒    𝜆ே =

ଵ

[଴.଺଻ ,ଶ ]
= [0.5 , 1.5] 

The probability density function: 

𝑓ே(𝑥) = 𝜆ே 𝑒ି௫  .ఒಿ       ;  0 < 𝑥 < ∞     , 

𝑓ே(𝑥) = [0.5 , 1.5] 𝑒ି[଴.ହ ,ଵ.ହ] ௫  ;   0 < 𝑥 < ∞ 

Probability to terminate the client's service in less than a minute: 

𝑁𝐹(𝑥) = 𝑁𝑃(𝑋 ≤ 𝑥) = ൫1 − 𝑒ି୶ .ఒಿ൯  

𝑁𝑃(𝑋 ≤ 1) = ൫1 − 𝑒ି[଴.ହ ,ଵ.ହ] ୶൯ = ൫1 − 𝑒ି[଴.ହ ,ଵ.ହ](ଵ)൯ = 1 − 𝑒ି[଴.ହ ,ଵ.ହ] 

We note: 

 For        λ = 0.5          : 

𝑁𝑃(𝑋 ≤ 1) = 1 − 𝑒ି0.5 = 0.39

 For       λ = 1.5    :

𝑁𝑃(𝑋 ≤ 1) = 1 − 𝑒ି1.5 = 0.78

That is, the probability of terminating client's service in less than a minute ranges between [0.39, 0.78]. 

Neutrosophic Sets and Systems, Vol. 22, 2018 33



Rafif Alhabib, Moustafa Mzher Ranna, Haitham Farah, A.A. Salama, Some Neutrosophic Probability Distributions

- Note that, the value of the classic probability to terminate client's service in less than a minute is one of the domain 
values for the neutrosophic probability: 

𝑝(𝑋 ≤ 1) = 0.63 ∈ [0.39 , 0.78] = 𝑁𝑃(𝑋 ≤ 1) 

 And the solutions are the shaded area in Figure 1. 

3.2.d Note: We also mention the relationship of exponential distribution with Poisson distribution, If the occurrence of 
events follows the Poisson distribution, the duration between the occurrence of two events follow exponential distribution. 
For example, arrival of customers to a service centre follows the Poisson distribution, the time between the arrival of a 
customer and the next customer follow the exponential distribution. Thus, when the parameter λ is inaccurately defined, 
we are dealing with the neutrosophic exponential distribution and the neutrosophic Poisson distribution  
, and we write: 
If an event is repeated in time according to the neutrosophic Poisson distribution: 

𝑁𝑃(x) =  eି஛ొ  . 
(஛ొ)౮

୶!
 ;      𝑥 = 0,1, … .. 

Then, the time between two events follows the neutrosophic exponential distribution: 

𝑓୒(t) = λ୒  .  eି஛ొ  ௧           ;           𝑡 > 0 

3.2.d.i. Example: 
Assuming that we have a machine in a factory. The rate of machine breakdowns is [1, 2] per week, let's calculate the 
possibility of no breakdowns per week, and calculate the possibility that at least two weeks pass before the appearance of 
the following breakdowns. 

 Solution: 
-  The possibility of no breakdowns in the week: 

 Assume x:  variable represents occurrence of breakdowns in the week. 

We note that, x is a variable that is subject to the neutrosophic Poisson distribution, the distribution parameter is 

𝜆ே =   [1,2] , thus: 

𝑁𝑃(x = 0) =  eି஛ొ  . 
(஛ొ)౮

୶!
 = eି஛ొ  . 

(஛ొ)బ

଴!
= eି஛ొ = eି[ଵ,ଶ] 

Then, the possibility of no breakdowns in the week ranges between [0.135, 0.368]. 

-  Assuming y: is represent the time before the appearance of the following breakdowns, we note that y is a variable 
following the neutrosophic exponential distribution, then: 

𝑁𝐹(𝑥) = 𝑁𝑃(𝑋 ≤ 𝑥) = ൫1 − 𝑒ି୶ .ఒಿ൯    

𝑁𝑃(𝑦 > 2) = 1 − 𝑁𝑃(𝑦 ≤ 2) = 1 − 𝑁𝐹(2) =  1 − ൫1 − e−2.λN൯ 

= eିଶ.஛ొ = eିଶ[ଵ,ଶ] = e[ିସ,ିଶ] 
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Thus, the possibility that at least two weeks pass before the appearance of the following breakdowns, ranges 
between [0.018, 0.135].  

3.3 Neutrosophic Uniform Distribution: 
3.3.a Definition: Neutrosophic Uniform distribution of a continuous variable X, is a classical Uniform 

distribution , but distribution parameters a or b or both are imprecise. For example, a or b or both are sets 

with two or more elements (may a or b or both are intervals) with   𝑎 < 𝑏 . 

3.3.b Example for Case study: 

Assuming x is a variable represents a person's waiting time to passengers' bus (in minutes), bus's arrival time is not 

specified, the station official said: 

1- the bus arrival time is: either from now to 5 minutes [0,5] or will arrive after 15 to 20 minutes[15,20], then: 

a= [0, 5]     ,   b= [15, 20]  
Then, the density function: 

𝑓ே(𝑥) =  
ଵ

௕ି௔
=

ଵ

[ଵହ,ଶ଴]ି[଴,ହ]
=

ଵ

[ଵ଴,ଶ଴]
= [ 0.05 , 0.1] 

 The solution in the Graph  is the shaded area, with the probability to moving (a) between [0, 5] and (b) between [15, 20]. 

 Figure 2 

2- The bus arrives after five minutes or will arrive after 15 to 20 minutes [15 , 20] , then: 
a=5   b= [15, 20]  

Then, the density function: 

𝑓ே(𝑥) =  
ଵ

௕ି௔
=

ଵ

[ଵହ,ଶ଴]ିହ
=

ଵ

[ଵ଴ ,ଵହ]
= [0.067 , 0.1] 

The solution is the shaded area, with the probability to moving (b) between [15, 20]. 
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 Figure 3 

- There are many non-specific situations that we encounter about the values a, b such as a, b or both are intervals 
(a, b or both are sets with two or more elements), we deal with these situations as the cases studied above. 

4 The research gap 
The classical probability distributions only deal with the specified data. The classical distribution parameters 
are always given with a specified value. This paper contributes to the study of classical distributions with 
undetermined values, and distribution parameters such as periods. We call these distributions neutrosophic 

probability distributions. 

Conclusion: 
We conclude from this paper that the neutrosophic probability distributions gives us a more general and 
clarity study of the studied issue, So that the classical probability  is one solution among the solutions 
resulting from the study, of course, this is produced by giving the distribution parameters several options 
possible and does not remain linked to a single value. This paper is to present some the neutrosophic 
probability distributions, and we present various solved for the problems that classic logic is not deal with it. 
We look forward in the future to study other types of probability distributions according to the neutrosophic 
logic, especially the gamma distribution and student distribution and other distributions that have not yet 
been studied. 
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Abstract.Many organizations are seeking to contract services from cloud computing with many cloud services
numerous criteria that should be counted in the selection process. Therefore, the selection process of cloud services can be co
sidered as a type of multi-criteria decision analysis problems with multiples stakeholders. In this paper a
ing cloud services taking into account consensus and using single valued neutrosophic
tion is presented.The proposed framework
ences, computing consensus degree, advice generation,
automatic search mechanisms for conflict areas and recommendations to the experts to bring closer their preferences.
trative example that corroborates the applicability of the model is presented.
or research recommendations.  
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1 Introduction 

Cloud Computing is experiencing a strong adoption in the market and this trend is expected to continue
Due to the diversity of cloud service providers, it is a very significant defy for organizations to select the appr
priate cloud services which can fulfil
ess of cloud services and diverse stakeholder
can be considered as a type of multi-
we present how to aid a decision maker to
criteria decision analysis including a consensus process. To demonstrate the pertinence of the proposed model
and illustrative example is presented.

Neutrosophy is mathematical theory developed by Florentín Smarandache
6]. It has been the base for developing of new methods to handle indeterminate and inconsistent information
neutrosophic sets and neutrosophic logic, especiallyused on
precise nature of the linguistic assessments new techniques have been developed. Single valued neutrosophic
sets (SVNS) [9] for handling indeterminate and inconsistent information is a relatively
per a new model for cloud service selection is developed based on single valued neutrosophic number
number) allowing the use of linguistic variables
ling makes recommendable to develop a consensus process
among members of a group. A consensus reaching process is iterative process comprising several rounds where
the experts adapt their preferences [13]

This paper is structured as follows: Section 2 reviews some preliminaries concepts about neutrosophic dec
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Many organizations are seeking to contract services from cloud computing with many cloud services
should be counted in the selection process. Therefore, the selection process of cloud services can be co
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sion analysis and consensus process. In Section 3, a framework for selecting cloud computing services based on 
single valued neutrosophic numbers and consensus process is presented. Section 4 shows an illustrative example 
of the proposed model. The paper ends with conclusions and further work recommendations. 

2 Preliminaries 

In this section, we first provide a brief revision of neutrosophic multicriteria decision analysis, consensus 
process and cloud computing. 

2.1Neutrosophic multicriteria decision analysis 

Fuzzy logic was initiallyproposedby Zadeh [15], for helping in modeling knowledge in a more natural way. The 
basic idea is the notion of the membership relation which takes truth values in the interval [0, 1] [16]. 
The intuitionistic fuzzy set(IFS) on a universe was introduced by K. Atanassov as a generalization of fuzzy sets 
[17, 18]. In IFS besides the degree of membership (𝝁𝑨(𝒙)  ∈  [𝟎, 𝟏] ) of each element 𝑥∈𝑋 to a set A there was 
considered a degree of non-membership 𝝂𝑨(𝒙)  ∈  [𝟎, 𝟏], such that: 
∀ 𝒙 ∈  𝑿𝝁𝑨(𝒙)  + 𝝂𝑨(𝒙)  ≤  𝟏  (1) 
Neutrosophic set (NS) introduced the degree of indeterminacy (i) as independent component [6, 19].  
The truth value in neutrosophic set is as follows [20, 21]:  
Let 𝑵 be a set defined as: 𝑵 =  {(𝑻, 𝑰, 𝑭) ∶  𝑻, 𝑰, 𝑭 ⊆  [𝟎, 𝟏]}, a neutrosophic valuation n is a mapping from the 
set of propositional formulas to 𝑵 , that is for each sentence p we have 𝒗 (𝐩)  =  (𝑻, 𝑰, 𝑭).  
Single valued neutrosophic set (SVNS ) [9] was developed to facilitate real world applications ofneutrosophic set 
and set-theoretic operators. A single valued neutrosophic set is a special case of neutrosophic set proposed as a 
generalization of intuitionistic fuzzy sets in order to deal with incomplete information [10].  
Single valued neutrosophic numbers (SVN number) are denoted by 𝐴= (𝑎,b,𝑐), where 𝑎,𝑏,𝑐∈[0,1] and 
𝑎+𝑏+𝑐≤3[22] . In real world problems, sometimes we can use linguistic terms such as ‘good ’, ‘bad ’ to obtain 
preferences aboutan alternativeand cannot use some numbers to express some qualitative information [23, 
24].Some classical multicriteria decision models[25, 26] have been adapted to neutrosophic for 
exampleAHP[27], TOPSIS[28] and DEMATEL [29].  

2.2 Consensus reaching process 

Consensus is an active area of research in fields such as group decision making and learning [30, 31]. A consen-
sus reaching process is defined as a dynamic and iterative process composed by several rounds where the experts 
express, discuss, and modify their opinions or preferences[13, 32]. The process is generally supervised by a 
moderator (Fig. 1), who helps the experts to make their preferences closer to each other’s. 
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Figure1. Phases of the consensus process supervised by the moderator [32]. 

A frequent approach to consensus modeling involves the aggregation of preferences and the computing of indi-
vidual differences with that value[33]. In each round the moderator helps to make closer the opinions with dis-
cussions and advices to experts to change preferences in case [12]. A consensus previous to group decision mak-
ing allows the discussion and change of preferences helping to reach a state of agreement satisfying experts. 
Consensual points of view obtained from this process provide a stable base for decisions making[31]. 

2.3 Cloud computing services 

Cloud computing has emerged as a paradigm to deliver on demand resources like infrastructure, platform, soft-
ware, among others,to customers similar to other utilities. Traditionally, small and medium enterprises (SMEs) 
had to make high capital investment for procuring IT/software infrastructure, skilled developers and system ad-
ministrators, which results in a high cost of ownership. Cloud computing aims to deliver virtual services so that 
users can access them from anywhere in the world on subscription at competitive costs for SMEs [34]..  
Due to the fast expansion of cloud computing, many cloud services have been developed [35]. Therefore, given 
the diversity of Cloud service offerings, an important challenge for customers is to discover who are the ‘‘right’’ 
Cloud providers that can satisfy their requirements. Numerous criteria should be counted in the selection process 
of cloud services and various stakeholders are involved. Consequently, the selection process of cloud services 
can be considered as a type of multi-criteria multi-expert decision analysis problems [2, 3]. 

3 Proposed framework. 

Our aim is to develop a framework for cloud service provider selection based on a consensus process. The model 
consists of the following phases (fig. 2). 
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Figure 2: A framework for cloud serivece selection. 

The proposed framework is composed of five activities: 
 Framework
 Gathering parameters
 Eliciting preferences
 Computing consensus degree
 Advice generation
 Rating alternatives
 Cloud service selection.

Following, the proposed decision method is described in further detail, showing the operation of each phase 
1. Framework: In this phase, the evaluation framework, for the decision problem of cloud serviceselection

is defined. The framework is established as follows: 
 C={𝑐ଵ, 𝑐ଶ, … , 𝑐௡} with 𝑛 ≥ 2 , a set of criteria.
 E={𝑒ଵ, 𝑒ଶ, … , 𝑒௞} with 𝑘 ≥ 2, a set of experts.
 𝑋 = {𝑥ଵ, 𝑥ଶ, … , 𝑥௠} with 𝑚 ≥ 2, a finite set of information technologies cloud services alternatives.
Criteria and experts might be grouped. The set of experts will provide the assessments of the decision problem. 
Main criteria for cloud service selection are visually summarizes as follows. 
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Figure 3. Cloud service selection criteria. 

2. Gathering parameters: The granularity of the linguistic term is selected. Parameters are gathered for
controlling the consensus process: consensus threshold 𝜇 ∈ [0,1] and 𝑀𝐴𝑋𝑅𝑂𝑈𝑁𝐷 ∈ ℕ to limit the
maximum number of discussion rounds. Acceptability threshold 𝜀 ≥ 0, to allow a margin of accepta-
bility for prevents generating unnecessary recommendations is also gathered.

3. Eliciting preferences: for each expert his /her preference is gathered using the linguistic term set chosen.
In this phase, each expert, 𝑒௞provides the assessments by means of assessment vectors:
𝑈௄ = (𝑣௜

௞ , 𝑖 = 1, . . , 𝑛, 𝑗 = 1, . . , 𝑚)  (2)
The assessment𝑣௜

௞ , provided by each expert𝑒௞, for each criterion 𝑐௜ of each cloud service alternative𝑥௝, is
expressed using SVN numbers.

4. Computing consensus degree: The degree of collective agreement is computed
in [0,1].
For each pair of experts 𝑒௞, 𝑒௧, (𝑘 < 𝑡), a similarity[36, 37] vector 𝑆𝑀௞௧ = (𝑠𝑚௜

௞௧) , 𝑠𝑚௜
௞௧ ∈ [0,1], is

computed:

sm୧
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(𝑖 = 1,2, … , 𝑚)  

A consensus vector 𝐶𝑀 = (𝑐𝑚௜)  is obtained by aggregating similarity values: 

𝑐𝑚௜ = 𝑂𝐴𝐺ଵ(𝑆𝐼𝑀௜) (4) 

where 𝑂𝐴𝐺ଵis an aggregationoperator, 𝑆𝐼𝑀௜ = {𝑠𝑚௜
ଵଶ, … , 𝑠𝑚௜

ଵ௠ , … , 𝑠𝑚௜
(௠ିଵ)௠ } represents all pairs of

experts’ similarities in their opinion on preference between (𝑣௜ , 𝑣௝) and 𝑐𝑚௜ is the degree of consensus 
achieved by the group in their opinion. 
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Finally, an overall consensus degree is computed: 

𝑐𝑔 =
∑ ௖௩೔

೙
೔సభ

௡
(5) 

5. Consensus Control: Consensus degree 𝑐𝑔 is compared with the consensus threshold (𝜇). If 𝑐𝑔 ≥  𝜇, the
consensus process ends; otherwise, the process requires additional discussion. The number of rounds is
compared with parameter 𝑀𝐴𝑋𝑅𝑂𝑈𝑁𝐷 to limit the maximum number of discussion rounds.

6. Advice generation: When 𝑐𝑔 < 𝜇, experts must modify the preferences relations to make their prefe-
rencescloser to each other and increase the consensus degree in the following round. Advice generation
begin computing a collective preferences Wୡ. This collective preference model is computed aggregating
each experts’preference vector:

𝑤௜
௖ = 𝑂𝐴𝐺ଶ(𝑣ଵ

ଵ , … , 𝑣௜
௠) (6) 

where 𝑣 ∈ 𝑈 and 𝑂𝐴𝐺ଶis anaggregation operator. 

After that, a proximity vector (𝑃𝑃௞) between each one of the 𝑒௞experts and 𝑊௖ is obtained.Proximity 
values, 𝑝𝑝௜௝

௞ ∈ [0,1] are computed as follows: 

𝑝𝑝௜
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(7) 

Afterwards, preferences relations to change (CC) are identified. preference relation between criteriac୧ 
andc୨ with consensus degree under the defined (μ) are identified: 

CC = {𝑤௜
௖|cm୧ < μ}   (8) 

Later, based on CC, those experts who should change preference are identified. To compute an average 
proximity pp୧

୅ , proximity measures are aggregate 

pp୧
୅ = OAGଶ(pp୧

ଵ,…,pp୧
୫) (9) 

where 𝑂𝐴𝐺ଶ is a SVN aggregation operator. 

Experts e୩ whose pp୧
୩ < pp୧

୅ are advised to modify their preference relation w୧
୩. 

Finally direction rules are checked to suggest the direction of changes proposed. Thresholdε ≥  0is es-
tablished to prevents generating an excessive number of unnecessary advice .  

DR 1: If v ୧
୩ − w ୧

ୡ < −εthen e୩ should increase his/her the value of preference relation v୧. 

DR 2: If v ୧
୩ − w ୧

ୡ > ε then e୩ should decrease his/her the value of preference relation v୧. 

DR 3: If−ε ≤ v ୧
୩ − w ୧

ୡ ≤ ε then e୩ should not modify his/her the value of preference relation v୧. 

Step from3-6 are repeated until consensus reachedor maximum number of rounds.  

7. Rating alternatives: The aim of this phase is to obtain a global assessment for each alternative. Taking
into account the previous phase, an assessment for each alternative is computed, using the selected solv-
ing process that allows managing the information expressed in the decision framework.

In this case alternatives are rated according to single valued neutrosophic weighted averaging (SVNWA)
aggregation operator as proposed by Ye [38] for SVNSs as follows[10]:
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where 𝑊 = (𝑤ଵ, 𝑤ଵ, . . . , 𝑤௡) is the weighting vector of𝐴௝(𝑗 = 1, 2, … , 𝑛) , 𝑤௡ ∈  [0, 1]and ∑ 𝑤௝ = 1௡
௝ . 

8. Cloudserviceselection: In this phase of the alternatives are rankedand the most desirable one is chosen-
by the score function [39, 40].According to the scoring and accuracy functions for SVN-sets, a ranking
order of the set of the alternatives can be generated [41]. Selecting the option(s) with higher scores.

For ordering alternatives a scoring function is used [42]:

𝑠൫𝑉௝൯ = 2 + 𝑇௝ − 𝐹௝ − 𝐼௝ (11) 

Additionally an accuracy function is defined: 

𝑎൫𝑉௝൯ = 𝑇௝ − 𝐹௝ (12) 

And then  

1. If 𝑠(𝑉𝑗 )  <  𝑠(𝑉𝑖), then 𝑉𝑗 is smaller than𝑉𝑖, denoted by 𝑉𝑗 <  𝑉𝑖
2. If𝑠(𝑉𝑗 ) =  𝑠(𝑉𝑖)

a. If 𝑎(𝑉𝑗 )  <  𝑎(𝑉𝑖), then 𝑉𝑗 is smaller than 𝑉𝑖, denoted by 𝑉𝑗 <  𝑉𝑖
b. If 𝑎(𝑉𝑗 ) =  𝑎(𝑉𝑖), then 𝑉𝑗 and 𝑉𝑖 are the same, denoted by 𝑉𝑗 =  𝑉𝑖

Another option is to use the scoring function proposed in[28]: 

𝑠൫𝑉௝൯ = (1 + 𝑇௝ − 2𝐹௝ − 𝐼௝)/2  (13) 

where 𝑠൫𝑉௝൯ ∈ [−1,1]. 

If 𝑠(𝑉𝑗 )  < 𝑠(𝑉𝑖), then 𝑉𝑗 is smaller than𝑉𝑖, denotedby 𝑉𝑗 < 𝑉𝑖 

According to the scoring function ranking method of SVN-sets, the ranking order of the set of cloud service 
alternatives can be generated and the best alternative can be determined. 

4 Illustrative example 

In this case study three experts E = {eଵ, eଶ, eଷ}(n = 3) are inquired about their preferences. A linguistic term 
sets with cardinality nine (Table 1) is used. 

Linguistic terms SVNSs 

Extremely good 
(EG) 

(1,0,0) 

Very very good 
(VVG) 

(0.9, 0.1, 0.1) 

Very good (VG) (0.8,0,15,0.20) 
Good (G) (0.70,0.25,0.30) 
Medium good (MG) (0.60,0.35,0.40) 
Medium (M) (0.50,0.50,0.50) 
Medium bad (MB) (0.40,0.65,0.60) 
Bad (B) (0.30,0.75,0.70) 
Very bad (VB) (0.20,0.85,0.80) 
Very very bad 
(VVB) 

(0.10,0.90,0.90) 

Extremely bad (EB) (0,1,1) 
Table 1. Linguistic terms used to provide the assessments [28] 

The scope of the consensus processis defined by five criteria 𝐶 = ( 𝑐ଵ, … , 𝑐ହ) shown in Table 2. 
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Node Description 

A  Accountability 

B Agility 

C Assurance 

D Cost 

E Performance 

F Security 

Table 2. Criteria for Cloud service selection 

Parameters used in this case study are shown in Table 3. 

Consensus threshold 𝝁 = 𝟎. 𝟗 

Maximum number of discussion rounds  𝑀𝐴𝑋𝑅𝑂𝑁𝐷 = 10 

Acceptability threshold 𝜀 = 0.15 

Table 3.Parameters defined 

Initially, the experts provide the following preferences. 

A B C D E 

E1 G M B G B 

E2 VG VG M G VB 

E3 G G G G VG 

Table 4. Preferences Round 1. 

First round 
Similarity vector are obtained 
𝑆ଵଶ=[0.9, 0.682, 0.782, 1,0.9] 
𝑆ଵଷ=[1, 0.782, 0.564, 1,0.465] 
𝑆ଶଷ= [0.9, 0.9, 0.782, 1, and 0.365] 
The consensus vector CV=[0.933, 0.676, 0.79, 1, 0,577] 

Finally, an overall consensus degree is computed:𝑐𝑔 = 0.795 

Because cg = 0.795 < 𝜇 = 0.9 the advice generation is activated. 

The collective preferences is calculated using the SVNWA operator giving in this case equal importance to each 
expertWୡ =[(0.64, 0.246, 0.377),(0.591,0.303, 0.427), (0.437,0.492, 0.578), (0.62, 0.287,0.416), (0.428, 0.495, 
0.587)] 

Proximity vectors are calculated 𝑃𝑃௞ : 
𝑃𝑃ଵ= [0.944, 0.68, 0.817, 0.916, 0.823] 
𝑃𝑃ଶ= [0.852, 0.801, 0.942, 0.916,  0.632] 
𝑃𝑃ଷ=[0.944,0.899, 0.739, 0.916, 0.632] 
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After that preference to change (CC) are identified (11). 
𝐶𝐶 = {𝑊௜|𝑐𝑣௜ <  0.9 }={𝑤ଶ, 𝑤ଷ, 𝑤ହ} 

Average proximity for this value is computed as follows: 
 (𝑝𝑝ଶ

஺ = 0.793, 𝑝𝑝ଷ
஺ = 0.833, 𝑝𝑝ହ

஺ = 0.696) 
Proximity values for each expert in preferences {𝑤ଶ, 𝑤ଷ, 𝑤ହ} is as follows: 

 (𝑝𝑝ଶ
ଵ = 0.68, 𝑝𝑝ଷ

ଵ = 0.817 𝑝𝑝ହ
ଵ = 0.823) 

(𝑝𝑝ଶ
ଶ = 0.81, 𝑝𝑝ଷ

ଶ = 0.942, 𝑝𝑝ହ
ଶ = 0.632)) 

(𝑝𝑝ଶ
ଷ = 0.899, 𝑝𝑝ଷ

ଷ = 0.739, 𝑝𝑝ହ
ଷ = 0.632) 

The sets of preferences to change (pp୧
୩ < pp୧

୅) are: 
{𝑣ଶ

ଵ, 𝑣ଷ
ଵ , 𝑣ହ

ଶ, 𝑣ଷ
ଷ , 𝑣ହ

ଷ} 
According to rule DR1, the experts are required to increase the following relations: 

{𝑣ଷ
ଵ , 𝑣ହ

ଶ } 
According to rule DR2, the experts are required to decrease the following relations: 

{𝑣ଷ
ଷ , 𝑣ହ

ଷ} 
And According to rule DR3 this relations should not be changed: 

{𝑣ଶ
ଵ} 

Second Round 
According to the previous advices, the experts implemented changes, and the new elicited preferences 

A B C D E 

E1 G M M G B 

E2 VG VG M G B 

E3 G G M G B 

Table 4. Preferences Round 2. 

Similarity vector are obtained again: 
𝑆ଵଶ=[0.9, 0.682, 1, 1,1] 
𝑆ଵଷ=[1, 0.782, 1, 1,1] 
𝑆ଶଷ=[0.9, 0.9, 1, 1,1] 
The consensus vector CV=[0.933, 0.676, 1, 1, 1] 

Finally, an overall consensus degree is computed: 
𝑐𝑔 = 0.922 

Because cg=0.93>μ = 0.9 the desired level of consensus is achieved. 

5 Conclusions. 

The fast expansion of cloud computinghas caused the development of many cloud services. Given the diver-
sity of cloud service offerings, an important challenge for customers is to discover who are the ‘‘right’’ cloud 
providers that can satisfy their requirements with numerous criteria that should be counted in the selection 
process and diverse stakeholders involved. Therefore, the selection process of cloud services can be considered 
as a type of multi-criteria multi-expert decision analysis problems.A consensus process allows developing a bet-
ter group decision process. 
Recently, neutrosophic sets and its application to multiple attribute decision making have become a topic of great 
importance for researchers and practitioners alike. In this paper a new framework for selecting cloud services 
taking into account consensus and using single valued neutrosophic numbers for indeterminacy representation is 
presented.  

The proposed framework is composed of five activities: framework, gathering parameters, eliciting prefe-
rences, computing consensus degree, advice generation, rating alternatives and cloud service selection.  The 
model includes automatic search mechanisms for conflict areas and recommendations to the experts to bring 
closer their preferences. To demonstrate the applicability of the proposed model and illustrative example ispre-
sented. 
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Further works will concentrate in extending the model for dealing with heterogeneous information and the 
development of a software tool. New measures of consensus based on neutrosophic theory will be additionally 
developed.  
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Abstract. Neutrosophic sets and their application to decision support have become a very important topic. In real situations, 
there are different sources of indeterminacy. This paper suggests a new decision-making model based on Neutrosophic Cogni-
tive Maps (NCMs) for making comprehensive decisions from a multi-objective approach (diagnosis, decisions, and prediction) 
during the execution of many projects simultaneously. A Soft Computing technique like Fuzzy Cognitive Maps (FCMs) has 
been widely used for decision-making process in project management, but this technique has the limitation of not considering 
the indeterminacy between concepts. This limitation is overcome by the proposed model since NCMs can represent the inde-
terminacy or neutrality. The new model includes neutrosophic sets in the map’s connections. Finally, the suggested model has 
been compared with traditional FCM-based model considering efficiency and efficacy 

Keywords: Neutrosophic cognitive maps, neutrosophic sets, project management, single valued neutrosophic numbers. 

1 Introduction 

Project management is characterized by being a complex and dynamic system with high degrees of uncertainty [1]. 
Consequently, there is a low percentage of success in projects as shown in the reports of the Standish Group International 
Incorporated. Standish Group is continuously studying the behavior of different companies since 2004; these studies 
address around 5000 projects annually. Reports of this group show that the numbers of satisfactorily delivered, closed or 
failed, and renegotiated projects have moved by around 35%, 18%, and 43% respectively [2].  

To mitigate this situation, many international project management schools like Project Management Institute (PMI) 
with its PMBOK standard [3], ISO 21500 standard developed by the International Standards Organization (ISO) [4], and 
CMMI proposed by Software Engineering Institute [5] have developed guidelines and recommendations for project 
managers. However, these guides are very generic and frequently need to be personalized to be applied in different con-
texts. Besides, the techniques they propose do not define clearly how to deal with uncertainty, impression, and 
incomplete information [6]. In other words, these guidelines are not enough to solve the problems and limitations still 
presented in project management. Nevertheless, many of these problems are associated with the decision-making process 
in project management.    

In this sense, different authors have referred to decision making as an essential process in project management [7], 
and others like Trumper et al. [8] defined the project management as the art of making right decisions. Cunha et al. [9] 
stated that project success depends on how software project managers deal with the problems and make decisions.  

In project management, the main decision-making process occurs in project’s cuts, see Figure 1. In this respect, 
decisions should be made out of a multi-objective approach, which includes a diagnosis to know the real state of the 
ongoing project, making corrective decisions in order to mitigate delays and deviations, and finally predict the project 
evolution according to the decisions made. It is also important in project management to consider an adequate balance 
between time, cost, and quality [10]. 
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Figure 1. Decision making by cuts in projects. 

Generally, the decision-making process in project management involves multiple stakeholders with different 
degrees of expertise; hence, a consensus process should be carried out in order to reach a generally accepted 
opinion. Besides, experts on many occasions need to express indeterminacy relationships existing between con-
cepts.  

From the previous analysis, it is perceived that there are opportunities to improve the guidelines and 
recommendations provided by international Standards and schools for project management through the use of 
Soft Computing techniques. Fuzzy Cognitive Maps (FCMs) is a suitable tool for the representation and 
simulation of dynamic and complex systems with the presence of uncertainty and incomplete information [11]. 
    FCMs were introduced by Kosko in 1986 [12] as an extension of the Cognitive Maps Theory developed by 
Axelrod in 1976 [13]. In FCMs, there are three possible types of relations between concepts: positive relation, 
negative relation, or non-existence of relations, see Figure 2. The widespread use of Fuzzy Cognitive Maps is 
due to its features of simplicity, adaptability, and capability of dealing with uncertainty, vagueness and 
incomplete information, besides their capacity to represent feedback relationship [14]. For this reason, FCMs 
have been widely employed for modeling complex and dynamic systems such as project management [15]. 

 

 

 

Figure 2. Representation of a basic Fuzzy Cognitive Map. 

Some authors have focused on IT projects, such is the case of Rodriguez-Repiso, Setchi, and Salmeron who 
used FCMs in [16] to model critical success factors and the relationships between them. Following this line, 
Salmeron et al. [17] presented a model for predicting the impact of risks in ERP maintenance projects. Leyva et 
al. [18] presented a model to select IT projects using the business modeling and FCMs. Zare Ravasan et al. [19] 
proposed a dynamic model based on FCMs to identify the most important ERP projects failure factors. 

In construction projects, Ahn et al. [20] used FCMs for the prediction of labor productivity. Bağdatlı, 
Akbıyıklı, and Papageorgiou developed in [21] a decision-making model based on FCMs for the cost-benefit 
analysis, taking into account the risk analysis. Khanzadi et al. [22] presented an FCM model for dynamic 
analysis of changes in construction projects. 

Regarding risk analysis, Jamshidia et. al [23] had developed an FCM model for risk analysis in maintenance 
outsourcing projects, and in another work [24] he proposed the use of FCM to support decision making for the 
dynamic risk assessment in project management, taking into account the probability of occurrence and the 
impact of each risk factor. Other authors following different approaches developed models based on FCMs for 
stakeholders evaluation [25], and project schedule overrun prediction [26]. 
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From the previous revision, it was perceived that the mentioned models based on traditional FCMs in project 
management do not consider, despite its importance, the indeterminacy between concepts. Indeterminacy is 
frequently presented in the decision-making process [27], mainly, when experts are not sure if one factor may or 
may not impact another.  

However, traditional FCMs have the limitation of not considering the indeterminacy relations between 
concepts [28]. In this respect, Smarandache in 1995 introduced the Neutrosophic Theory, making possible the 
representation of indeterminacy [29]. Such characteristic is helpful for modeling decision-making problems [30] 
since it considers all aspects of decision such as agree, not sure, and disagree [31]. For this reason, Neutrosophic 
Logic has been widely used in decision-making environments [32], [33], [34].  

An application of this theory in FCMs is the Neutrosophic Cognitive Maps (NCMs) developed by Vasantha 
& Smarandache in 2003 [35]. NCMs overcomes the drawback presented in traditional FCMs of not representing 
the indeterminacy relations between concepts.  

However, NCMs have been little applied in project management. Bhutani et al. [36] used NCMs for the 
identification and evaluation of success factors in IT projects. Betancourt, Leyva, and Pérez proposed in [37] a 
new method for modeling risk interdependencies ing projects. In another context, Pramanik and Chackrabarti 
carried out in [38] a study to assess the impact of problems faced by construction workers in West Bengal, India, 
based on NCMs to find its solutions. Following this line, Monda and Pramanik modeled in [39] the problems of 
Hijras in West Bengal, India, using NCM.  

It was noticed that in the previous papers, the linguistic evaluations are not represented by neutrosophic sets, 
but by a single number which represents the degree of causality between two concepts or by the letter I to 
indicate the indeterminacy, without sufficiently exploiting all the potentialities of neutrosophic sets. 

In general, many of the aforementioned articles about decision making in project management, only make a 
diagnosis without making decisions or predictions. In some of them, the map is constructed with the help of 
multiple experts without proposing any method for the consensus process. On the other hand, in the majority of 
these papers, the concepts of time, cost, and quality were not properly considered. 

This article aims at proposing a model based on neutrosophic cognitive maps for making comprehensive 
decisions out of a multi-objective approach (diagnosis, decision, and prediction) during projects execution, 
considering the indeterminacy relations between concepts. In the proposed model, experts’ evaluations are 
expressed by neutrosophic sets, taking into account an adequate balance between cost, time, and quality. 

The remaining of the paper is structured as follows: Section 2 describes preliminary concepts and notation of 
Neutrosophic theory. In section 3, the neutrosophic cognitive map for decision making in project management is 
introduced. In section 4, authors compare the results of project management decisions by using a traditional 
fuzzy cognitive map with the neutrosophic cognitive map. The paper ends with conclusions in Section 5. 

2 Preliminary concepts and notation 

The traditional fuzzy set introduced by Zadeh in 1965 [40] uses one real value μA(x)  [0,1] to represent the 
grade of membership of fuzzy set A defined on universe X. 
Definition 1. A fuzzy set consists of two elements, a linguistic label, and a membership function μ. Function μ 
of X is a mapping from the set X to the unit interval μ: X → [0, 1], where μ(x) is called a degree of member-
ship. 

An example of a fuzzy set is represented by the triangular functions as shown in Figure 3. Let A be a fuzzy 
set represented by the following function of membership: 

1

a 0 b c x

Figure 3. Fuzzy set “High” based on triangular membership  A (x) with values (a, b, c) and its graphical representation. 

In this case, a triangular number (a, b, c) represents the membership function. However, fuzzy set only 
considers the membership degree of an element x of a fuzzy set A and fails to consider falsity-membership [41].  

In 1986, Atanassov introduced the intuitionistic fuzzy sets (IFS) [42] which is a generalization of fuzzy sets. 
The intuitionistic fuzzy sets consider both truth-membership μA(x) and falsity-membership fA(x), with μA(x), fA(x) 
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∈ [0,1] and 0 ≤ μA(x)+fA(x) ≤ 1. Intuitionistic fuzzy sets can only handle incomplete information but not the inde-
terminate and inconsistent information [43]. 

An alternative that extends the theory of fuzzy logic and helps to improve the treatment of uncertainty is the 
introduction of concepts of neutrality dealing with neutrosophic numbers. Neutrosophy logic was introduced by 
Smarandache in 1995 [44].   

Definition 2. Let M be a neutrosophic set in universe X characterized by a quintuple (Label, X, μM(x), M(x), 
σM(x)) where: Label is a linguistic term which represents the name of set,  X represents the universe of discourse, 
μM(x) [0,1] represents a membership function, M(x)  [0,1] represents a indeterminacy-membership function, 
and σM(x)  [0,1] represents a falsity-membership function, where  0 ≤ μM(x) +M(x) + σM(x) ≤ 3.  

This definition implies that each value of the domain x  X when evaluated in neutrosophic set M, such that 
M(x) returns the value (μM (x), M (x), σM (x)) where the first component represents the membership degree of the 
value x to the set M, the second component represents the indetermination degree of the value x to the set M, and 
the third component means the non-membership degree of the value x to the set M. 

Single Valued Neutrosophic Set (SVNS) is an instance of a neutrosophic set which can be used in real scien-
tific and engineering applications, see definition 3. 

Definition 3. Let X be a space of points (objects), with a generic element in X denoted by x represents a 
single valued neutrosophic number (SVN) and is characterized by a vector (V, I, F) where V indicates truth-value, 
I indeterminacy-value, and F falsity-value.  

In order to extend fuzzy logic definitions with neutrosophic theory, authors include a definition 4 of neutro-
sophic linguistic variables. 

Definition 4.  A neutrosophic linguistic variable consists of quintuple (Var, T(x), X, G, M) in which Var is 
the name of the variable, T(X) is the set of linguistic terms associated with the variable, X is the universe of dis-
course, M is a semantic rule which associates to each linguistic value zT(x) its meaning M(z), where M(z) de-
notes a neutrosophic set in X, see definition 2, and G is the set of syntactic rules for the generation of compound 
terms, based on the atomic terms that make up the sentences that give place to each linguistic value. 

Figure 4. Neutrosophic set, μA(x) membership function, A(x) indeterminacy-membership function and σA(x) falsity-membership function. 

Other important concept is a T-norm and S-Conorms functions. Let T be a T-norm function and S a co-norm 
function: 

TNorma funtion T: [0,1] x [0,1] → [0,1] for example (min), with following properties: 
o T(a, b) = T(b, a)  Commutativity 
o T(T(a, b), c) = T(a, T(b, c)) Associativity 
o Si a ≥ b y c ≥ d then T(a, c) ≥ T(b, d)  Monotony 
o T(a, 1) = a  Neutro element 

Conorma funtion S: [0,1] x [0,1] → [0,1] for example (max), with following properties: 
o S(a, b) = S(b, a)  Commutativity 
o S(S(a, b), c) = S(a, S(b, c))   Associativity 
o Si a ≥ b y c ≥ d then S(a, c) ≥ S(b, d)  Monotony 
o S(a, 0) = a  Neutro element 

In order to operate with single valued triangular neutrosophic numbers, Şahin, Kargın, and Smarandache in 
[45] describe operations as follows: 

Let A1 be represented by number ((a1, b1, c1); uA, rA, fA) and B2 is represented by number ((a2,b2 ,c2); uB, rB, fB) 
with T as T-norm and S1, S2 two co-norms then:  

Sum: A1 (+) B2= ((a1+a1
 , b1+b2, c1+c2); T(uA, uB ), S1(rA , rB ), S2(fA, fB ))               (1) 
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Difference: A1 (-) B2= ((a1-c2, b1-b2, c1-a2); T(uA, uB ), S1(rA , rB ), S2(fA, fB )) (2)
Product: A1 (*) B2= ((a1a2, b1b2, c1c2); T(uA, uB ), S1(rA , rB ), S2(fA, fB ))   if  c1 , c2 > 0 (3) 

 A1 (*) B2= ((a1c2, b1b2, c1a2); T(uA, uB ), S1(rA , rB ), S2(fA, fB ))   if  c1 < 0  , c2 > 0 (4) 
 A1 (*) B2= ((c1c2, b1b2, a1a2); T(uA, uB ), S1(rA , rB ), S2(fA, fB ))   if  c1 , c2 < 0 (5) 

Division: A1 (/) B2= ((a1/c2, b1/b2, c1/a2); T(uA, uB ), S1(rA , rB ), S2(fA, fB ))   if  c1 , c2 > 0 (6) 
 A1 (/) B2= ((a1/a2, b1/b2, c1/c2); T(uA, uB ), S1(rA , rB ), S2(fA, fB ))   if  c1 < 0  , c2 > 0  (7) 
 A1 (/) B2= ((c1/a2, b1/b2, a1/c2); T(uA, uB ), S1(rA , rB ), S2(fA, fB ))   if  c1 , c2 < 0 (8) 

Product by scalar: kA1 = ((ka1, kb1, kc1); uA, rA, fA) if k > 0  (9) 
       kA1 = ((kc1, kb1, ka1); uA, rA, fA) if k < 0       (10) 

Inverse: (A1)
-1 = ((1/c1, 1/b1, 1/a1); uA, rA, fA) with A1 ≠ (0,0,0) (11) 

3 A Neutrosophic Cognitive Map for decision making in Project Management 

In this section, the model based on a NCMs for making comprehensive decisions out of a multi-objective 
approach (diagnosis, decision, and prediction) during projects execution, considering the indeterminacy relations 
between concepts is proposed. The main characteristics of the model are:  

o It is based on expert triangulation methods to avoid high dependence of one expert and mitigate the
experts slant. 

o Introduces a new representation of neutrosophic cognitive maps by including neutrosophic sets into
maps connections. 

o Manages two types of indeterminacy, the first one is when the value of some indicators is unknown
and the second one is when experts declare indeterminacy between two concepts, see Figure . 

o Takes into account an adequate balance between cost, time, and quality.
o Provides solutions for diagnosis, decision, and prediction simultaneously.
o Uses computing with word techniques to aggregate the individual cognitive maps.

Figure 5. Neutrosophic cognitive map with indeterminacy relationships between concepts 

The proposed model consists of two algorithms: 

Algorithm PM_NCM 1:  the construction of the neutrosophic cognitive map 

1. Defining the project management’s problems, context, and particularities.
2. Selecting k experts in project management.
3. Evaluating the expertise degree for each expert, by using co-evaluation methods and computing with

word techniques (t-tuples technique [46]).
for each Experti

 for  each Expertj  :  i  j 
 Experti =  Aggregate(Experti , Evaluation (Expertji ) ) // Expertji represents evaluation of expert j 

over expert i. 
 end for 

 end for 
4. Establishing indicator, diagnosis, decision, and prediction concepts associated with project manage-

ment problems by using brain storming techniques (carrousel style).
5. Building the individual maps for each expert

For each Experti

QueueMaps   Experti builds a map by considering identified concepts in the previous step. 
Each map edge is represented by a neutrosophic set represented in Table 1 

very low 
 C4 

indeterminacy 

mean 
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 C5 very high 

Missing value C2 

indeterminacy 

C1 

 C6 

 C3 

high 
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End for 
6. Ncm = AggregateMaps(QueueMaps)  //Finally getting a map, where each map’s node represents one of

the following elements: a cause of project delay, a 
decision, a prognosis. 

In the proposed model, five experts were selected, who identified the following concepts for the construction 
of the individual maps: 

 Indicators: these reflect the current state of the project under evaluating, they can be expressed in
different domains, numerical, linguistic or interval. the Indicators are calculated by project 
management systems and they are associated with each project management knowledge area such 
as performance, quality, and logistic. For the construction of the individual maps, experts have 
identified the following indicators concepts: 

o SPI: scheduling performance indicator.
o CPI: cost performance indicator.
o EFPI:  efficacy performance indicator, represents the quality of the project.
o LPI: logistic performance indicator.
o DQPI: data quality performance indicator, representing the quality of data in project man-

agement information system.
o HRCPI: human resource correlation performance indicator, which represents the correla-

tion between the plan and real-time in human resource scheduling.
o HREPI: human resource efficacy performance indicator, which represents the efficacy of

human resources.
o HREFI:  human resource efficiency performance indicator.

 Diagnosis concepts reflect the causes of project difficulties. In order to improve the project
performance, these elements should be identified carefully, since they have a crucial impact on
projects decisions. The following factors were selected by experts as diagnosis concepts:

F1. Defects quality control. 
F2. Defects tasks control. 
F3. Defects HR efficiency: defects on human resource efficiency. 
F4. Defects HR efficacy: defects on human resource efficacy. 
F5. Defects on scheduling. 
F6. Defects on logistic. 
F7. Defects on cost management. 
F8. Defects on cost scheduling. 

 Decision concepts represent the possible decisions to be made in order to correct project deviation
and they are mainly related to the causes of the problems. Decision concepts were identified as 
follows: 

D1. Increase quality control. 
D2. Leave the project manager. 
D3. Increase control milestones. 
D4. Rewards HR: rewards to human resources. 
D5. Penalize HR: penalize to human resources. 
D6. New HR contracts: contracts more human resources. 
D7. Rescheduling.  
D8. Extra hours scheduling. 
D9. Improve logistics management. 
D10. Decrease cost. 
D11. Rescheduling scope. 

 Prediction concepts are identified to know what will happen to the project if a certain decision is
made. Experts defined the following prediction concepts: 

P1. Improve quality.  
P2. Recover delays.  
P3. Improve cost balance. 
P4. Increase perceived quality. 
P5. Increase HR motivation: increase human resource motivation. 
P6. Decrease quality.  
P7. Increase delays.  
P8. Increase costs defects. 
P9. Increase scope defects.  
P10. Decrease HR motivation: decrease human resource motivation. 
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In the algorithm 1, each expert builds his own map establishing his preferences by using the neutrosophic 
sets defined in Table 1. The relations are represented with positive influence, negative influence or without in-
fluence (indeterminacy). Experts describe their preferences by using the following linguistic terms LBTL = 
{negative highest, negative very high, negative high, negative mean, negative low, negative very low, none, very 
low, low, mean, high, very high, highest, indeterminacy} 

Linguistic terms Neutrosophic sets based on triangular functions 
neg_highest (-0.83, -1.0, -1.0, 0.95, 0.45, 0.15) 

neg_very high (0.67, -0.83, -1.0, 0.95, 0.45, 0.15) 
neg_high (-0.5, -0.67, -0.83, 0.95, 0.45, 0.15) 
neg_mean (-0.33, -0.5, -0.67, 0.95, 0.45, 0.15) 
neg_low (-0.17, -0.33, -0.5, 0.95, 0.45, 0.15) 

neg_very low (0, -0.17, -0.33, 0.95, 0.45, 0.15) 
none (0, 0.07, 0.17, 0.95, 0.45, 0.15) 

very low (0, 0.17, 0.33, 0.95, 0.45, 0.15) 
low (0.17, 0.33, 0.5, 0.95, 0.45, 0.15) 

mean (0.33, 0.5, 0.67, 0.95, 0.45, 0.15) 
high (0.5, 0.67, 0.83, 0.95, 0.45, 0.15) 

very high (0.67, 0.83, 1.0, 0.95, 0.45, 0.15) 
highest (0.83, 1.0, 1.0, 0.95, 0.45, 0.15) 

indeterminacy (0, 0, 0, 0.1, 0.9, 0.1) 

Table 1. Neutrosophic sets to represent map relationships. 

Algorithm PM_NCM 2: the simulation process of the neutrosophic cognitive map 

Inputs 
  ncm: neutrosophic cognitive map 
 maxepoch: max number of epoch  
 indicators: means project indicators to evaluate project during cut 

1. Initialize(prediction_memory)
2. continue_criteriom = true
3. diagnosis = do_initial_diagnosis(indicator, ncm)
4. epoch = 1
5. while continue_criteriom && epoch <= maxepoch do
6. decisions = do_aggregate_svns(diagnostic, decisions, ncm)
7. prediction = do_aggregate_svns(decisions, prediction, , ncm)
8. continue_criteriom = do_compare_distance (prediction_memory, prediction, epsilon)
9.  if continue_criteriom 
10.  prediction_memory   = prediction 
11.  diagnosis = do_aggregate_svns(prediction, diagnosis, ncm) 
12. end if
13. epoch += 1
14. end while
15. Sort diagnosis, decisions, prediction
16. Return diagnosis, decisions, prediction
In the simulation process, users can exploit the map, using it to make comprehensive decisions. The process 

is started with the activation of some of the map’s indicator nods during the execution of a project, triggering off 
the activation of the rest of the map’s concepts (diagnosis, decisions, and predictions). The simulation process is 
carried out by using equations (12) and (13), where Wij represents a neutrosophic set, not a single value, such is 
the case of traditional FCMs or other neutrosophic cognitive maps’ approaches. In order to operate with 
neutrosophic sets between neutrosophic sets and numbers, the equations (2), (3), (4), (5), (6), (7), (8), (9), (10) 
and (11) were used. 
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The hyperbolic tangent function is used in order to force the concept value to be monotonically mapped into 
the range [-1,1] [47]. 
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4 Analysis and discussion. 

To validate the proposed model, the authors selected the database DPME5 from the Research Database Re-
pository for Project Management provided by UCI [48]. This database contains 6115 records with 8 attributes. 
All attributes are represented by real values in [0, 1] interval. This database contains 3175 projects evaluated as 
“bad performance”, 607 project evaluated as “regular performance”, and 2333 projects evaluated as “correct per-
formance”.   

Authors implemented two cognitive maps. The first map “PM_FCM” is based on a traditional fuzzy cogni-
tive map FCM for decision making in project management. The Map was constructed by means of the concepts 
and relations illustrated in tables 2.3.4.6. 

Defects 

quality 

control F1 

Defects 

tasks con-

trol F2 

Defects HR 

efficiency 

F3 

Defects HR 

efficacy F4 

Defects on 

scheduling 

F5 

Defects on 

logistic F6 

Defects on 

cost man-

agement F7 

Defects cost  

scheduling 

F8 

SPI very low very high very high low very high mean very low mean 

CPI very low very high very high none mean high very high very high 

EFPI highest mean none very high mean none none none 

LPI low low very low very low low very high high mean 

DQPI high mean very low high none none low none 

HRCPI very low very low high low very high very low very low very low 

HREPI very high mean very low very high none none none none 

HRFPI very low high very high very low high very low low very low 

Table 2. Initial diagnosis: the relations between indicators and diagnosis concepts. 

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 

F1 
highest low mean 

very 

low 
low 

very 

low 
low low 

very 

low 
very 

low 
mean 

F2 
mean highest highest low low 

very 

low 
mean 

low 
very 

low 
very 

low 
mean 

F3 very 

low 

very 

high 
mean 

very 

high 

very 

high 

high mean 
high 

low low mean 

F4 very 

high 
high mean 

very 

high 

very 

high 

low mean mean low very 

low 
high 

F5 
mean high highest low low low 

very 

high 
low mean low 

high 

F6 
low 

very 

high 
low low 

very 

low 
very 

low 
mean very 

low 
very 

high 
low 

mean 

F7 
low low highest 

very 

low 

very 

low 
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mean very 

low 
high very 

high 

mean 

F8 very 

low 
highest low 

very 

low 

very 

low 
very 

low 
very 

high 

very 

low 
mean mean 

very 

high 

Table 3. Represents the decision process through relations between diagnosis and decisions concepts. 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

D1 very 

high 
low low 

very 

high 

very 

low 

neg_very 

high 
neg_mean mean neg_highest low 

D2 mean mean none mean mean low neg_high very low very low low 

D3 

high 

very 

high 
high mean low 

neg_very 

high 
very low none low low 
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D4 
high high mean high 

very 

high 
neg_high 

neg_very 

high 
very high low 

very 

low 

D5 
mean mean mean mean 

low 
mean high 

neg_very 

high 
mean mean 

D6 low high low none low very high mean neg_highest very high low 

D7 
high 

very 

high 
high low mean none neg_mean low low low 

D8 
mean 

very 

high 
high mean 

low 
none 

neg_very 

high 
neg_low very low mean 

D9 
mean high 

very 

high 
mean 

low 
very low low neg_very low low low 

D10 
none low 

very 

high 
low 

low 
mean very low neg_highest low low 

D11 
high 

very 

high 
high low mean low 

neg_very 

high 
low mean low 

Table 4. Represents the prediction process through relations between decisions and prediction concepts, used by PM_FCM model. 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

D1 very high neg_

low  

low very high very 

low 

neg_very 

high 

neg_mea

n 

mean neg_highes

t 

low 

D2 
mean 

mea

n 

indeterminac

y 
mean 

mea

n 
low neg_high very low very low low 

D3 

high 

very 

high 
high 

indeterminac

y 
low 

neg_very 

high 
very low none low low 

D4 
high high 

indeterminac

y 
high 

very 

high 
neg_high 

neg_very 

high 
very high low 

very 

low 

D5 
mean 

mea

n 
mean mean 

low 
mean high 

neg_very 

high 
mean 

mea

n 

D6 
low high low 

indeterminac

y 

low 
very high mean 

neg_highes

t 
very high low 

D7 
high 

very 

high 
high low 

mea

n 

indeterminac

y 

neg_mea

n 
low low low 

D8 
mean 

very 

high 
high mean 

low indeterminac

y 

neg_very 

high 
neg_low very low 

mea

n 

D9 
mean high very high mean 

low 
very low low 

neg_very 

low 
low low 

D10 indetermina

cy 
low very high low 

low 
mean very low 

neg_highes

t 
low low 

D11 
high 

very 

high 
high low 

mea

n 
low 

neg_very 

high 
low mean low 

Table 5. Represents the prediction process through relations between decisions and prediction concepts, used by PM_NCM model. 

F1 F2 F3 F4 F5 F6 F7 F8 

P1 very low low low very low low low very low low 

P2 none very low very low low very low very low very low very low 

P3 none very low very low very low very low very low very low very low 

P4 very low mean very low low very low very low very low very low 

P5 very low very low very low low low low low low 

P6 highest highest low very high mean mean low low 

P7 low very high very high high very high high high high 

P8 very low high high low mean mean very high very high 

P9 highest very high mean highest high low high mean 

P10 high highest very high highest high mean mean mean 

Table 6. Represents the prediction process through relations between prediction and diagnosis concepts. 
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The second map “PM_NCM” is based on a neutrosophic cognitive map NCM for decision making in project 
management. The Map was constructed by means of the concepts and relations illustrated in tables 2.3.5.6, and 
according to the algorithms (1) and (2) explained previously, see Figure 6.     

Figure 6. Partial representation of the aggregated neutrosophic cognitive map “PM_NCM”. 

The relationships between the maps’ concepts are shown in the following tables: Table 2 represents the ini-
tial diagnosis process of both maps, which connects the indicator and diagnosis nods. Table 3 represents the de-
cision process of both maps through the connection between diagnosis and decision nods. Tables 4 represents the 
prediction processes in PM_FCM through the connection between decision and prediction nods whereas table 5 
represents the same process in PM_NCM, in which the indeterminacy relations were considered, see Figure 6. 
Table 6 represents the prediction process of both maps through the connection between prediction and diagnosis 
nods, in which the feedback relationships is expressed.   

The two models were compared considering efficiency and efficacy. Concerning efficiency, PM_FCM ob-
tained better results, PM_FCM was 6.9 times faster than PM_NCM. The model PM_FCM evaluated the 6115 
records in 9.8 sec as an average, while PM_NCM evaluated the same records in 63.22 sec.  

In regards to the indeterminacy relations between concepts, the simulation results showed that PM_NCM 
have the capability to represent efficiently the indeterminacy relations, in contrast with PM_FCM. Hence, 
PM_NCM is better than PM_FCM when it comes to dealing with uncertainty, missing values, and incomplete 
information.  

In terms of efficacy, the authors of this paper introduced a metric success C to evaluate the two models as 
follows: Let  be a model, a metric success C is defined in (14) as a percentage of records classified as experts 
do, where n represents the number of records. This equation was applied in order to evaluate the result of diag-
nosis, decisions, and prediction of both PM_FCM and PM_NCM.     

 
n

)(S
100 1

i


n

i=C


 (14) 

The authors of this paper consider model’s efficacy metrics to be the capacity to detect true indeterminacy 
records. In this sense, this paper redefines precision P (15) and recalls R (16) metrics to evaluate the models 
capacity to detect the indeterminacy as follows: 
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Let  be a model, Z() is the set of records that a model  detects with high indeterminacy and I is the set of 
records with true high indeterminacy. 

Algorithm PM_FCM PM_NCM 
Successful diagnosis 85% 95,33 
Successful decision 93% 100% 

Successful prediction 84,1% 94,45% 
Precision on indeterminacy detection (diagnosis) - 60% 
Precision on indeterminacy detection (decisions) - 75% 
Precision on indeterminacy detection (prediction) - 72% 

Recall on indeterminacy detection (diagnosis) - 100% 
Recall on indeterminacy detection (decisions) - 100% 
Recall on indeterminacy detection (prediction) - 95% 

Table 7. The comparison results between PM_FCM and PM_NCM. 

Respecting successful evaluation in diagnosis, decision, and prediction, PM_NCM reported better results 
than PM_FCM. Regarding precision on indeterminacy detection (P) and recall of indeterminacy detection (R), 
PM_NCM reported good results. PM_FCM did not report any results since it does not consider the indetermi-
nacy relations between concepts. 

5. Conclusions

In this paper, we proposed a new decision-making model based on Neutrosophic Cognitive Maps (NCMs) 
for making comprehensive decisions from multi-objective approach (diagnosis, decisions, and prediction), con-
sidering an adequate balance between time, cost, and quality, during the execution of many projects simultane-
ously. The suggested model overcomes the drawback of not representing indeterminacy relations between con-
cepts presented in traditional Fuzzy Cognitive Maps FCMs. Besides, the NCM model constitutes a more realistic 
and robust tool to decision support through considering all aspects of the decision-making process and dealing 
efficiently with uncertainty, missing values, and incomplete information. The suggested model was compared 
with a traditional FCM-based model, showing its superiority regarding successful evaluation in diagnosis, deci-
sion, and prediction; and when it comes to dealing with uncertainty, missing values, and incomplete information. 
The traditional FCM-based model provided better results in respect to efficiency. In the future, we will extend 
the application of the proposed model to other disciplines, mainly, in medical diagnosis. 
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Abstract: In many real-life situations, it is often observed that the degree of indeterminacy (neutrality) plays an important role along with the
satisfaction and dissatisfaction levels of the decision maker(s) (DM(s)) in any decision making process. Due to some doubt or hesitation, it
may necessary for DM(s) to take opinions from experts which leads towards a set of conflicting values regarding satisfaction, indeterminacy
and dis-satisfaction level of DM(s). In order to highlight the above-mentioned insight, we have developed an effective framework which reflects
the reality involved in any decision-making process. In this study, a multiobjective nonlinear programming problem (MO-NLPP) has been
formulated in the manufacturing system. A new algorithm, neutrosophic hesitant fuzzy programming approach (NHFPA), based on single-
valued neutrosophic hesitant fuzzy decision set has been proposed which contains the concept of indeterminacy hesitant degree along with truth
and falsity hesitant degrees of different objectives. In order to show the validity and applicability of the proposed approach, a numerical example
has been presented. The superiority of the proposed approach has been shown by comparing with other existing approaches. Based on the
present work, conclusions and future scope have been presented.

Keywords: Indeterminacy hesitant membership function, Neutrosophic hesitant fuzzy programming, Multiobjective nonlinear programming problem.

1 Introduction
Many decision-making processes inherently involved different conflicting objectives which are to be optimized (maximize/minimize) under given circumstances.
In the present competitive era, it is indispensable for decision maker(s) (DM(s)) to obtain better possible outcomes/results when dealing with multiple objectives
at a time. Although, it is quite difficult to have an optimal solution which satisfies all the objectives efficiently a compromise solution is possible which is
accepted by DM(s) up to some extent. Literature reveals various approaches for multiobjective optimization problem and continuous effort have been made to
obtain the best compromise solution. It is often observed that the modeling and formulation of the problem arising in agriculture production planning, man-
ufacturing system etc. takes the form of nonlinear programming problem with multiple objective which is realistic in nature. Thus, multiobjective nonlinear
programming problem (MO-NLPP) is also a challenging problem due to its local and global optimal concept, unlike multiobjective linear programming problem.

Bellman and Zadeh [5] introduced fuzzy set (FS) and based on that set Zimmermann [27] proposed fuzzy programming approach (FPA) for multiobjective
optimization problems. The FPA deals only degree of belongingness but sometimes it may necessary to deal with non-membership function (non-belongingness)
in order to obtain the results in the more realistic way. To overcome the above fact, Atanassov [4] introduced the intuitionistic fuzzy set (IFS) which is the ex-
tension of the FS. The IFS is based on more intuition as compared to FS because it also deals with the non-membership function (non-belongingness) of the
element in the set. Based on IFS, intuitionistic fuzzy programming approach (IFPA) gained its own popularity among the existing multiobjective optimization
techniques. Angelov [3] first used the optimization technique under intuitionistic fuzzy environment. Mahmoodirad et al. [15] proposed a new approach for the
balanced transportation problem by considering all parameters and variables are of triangular intuitionistic fuzzy values and pointed out some shortcomings of
existing approaches. Singh and Yadav [19] discussed multiobjective nonlinear programming problem in the manufacturing system and solved by using three
approaches namely; Zimmerman’s technique, γ- operator and Min. bounded sum operator with intuitionistic fuzzy parameters. Bharati and Singh [6] also
proposed a new computational algorithm for multiobjective linear programming problem in the interval-valued intuitionistic fuzzy environment.

In recent years, the extensions or generalizations of FS and IFS have been presented with the fact that indeterminacy degree exists in real life and as a
result, a set named neutrosophic set came in existence. Smarandache [20] introduced the concept of the neutrosophic set (NS). The term neutrosophic is the
combination of two words, neutre from French meaning, neutral, and sophia from Greek meaning, skill/wisdom. Thus neutrosophic literally means knowledge
of neutral thoughts which well enough differentiate it from FS and IFS. The neutrosophic set involves three membership functions, namely; maximization of
truth (belongingness), indeterminacy (belongingness to some extent) and minimization of falsity (non-belongingness) in an efficient manner. Based on NS,
neutrosophic programming approach (NPA) came into existence and extensively used in real life applications. Abdel-Basset et al. [1] proposed a novel ap-
proach to solving fully neutrosophic linear programming problem and applied to production planning problem. Rizk-Allah et al. [16] solved the MO-TPs under
neutrosophic environment and compared the obtained results with the existing approach by measuring the ranking degree using TOPSIS approach. Ye et al.
[23] formulated neutrosophic number nonlinear programming problem (NN-NPP) and proposed an effective method to solve the problem under neutrosophic
number environments. Liu and You [12] extended Muirhead mean to interval neutrosophic set and developed some new operator named as interval neutrosophic
Muirhead mean operators which have been further applied to multi-attribute decision making (MADM) problem. Liu et al. [14] have combined the power
average operator with Herorian mean operator which results in linguistic neutrosophic power Herorian aggregation operator and extended them for neutrosophic
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information process. Ahmad and Adhami [2] have also solved the nonlinear transportation problem with fuzzy parameters using neutrosophic programming
approach and compared the solution results with other existing approaches. Liu and Shi [10] have introduced the valued neutrosophic uncertain linguistic set and
developed some operators which have been further used to multi-attribute group decision making (MAGDM) problem. Liu and Teng [11] have proposed some
normal neutrosophic operator based on normal neutrosophic numbers and developed an MADM method based on neutrosophic number generalized weighted
power averaging operator. Zhang et al. [25] have proposed some new MAGDM methods in which the attributes are interactive in the form of the interval-valued
hesitant uncertain linguistic number. Liu and Zhang [13] have extended the Maclaurian symmetric mean operator to single-valued trapezoidal neutrosophic
numbers and developed a method to deal with MAGDM problem based on single-valued trapezoidal neutrosophic weighted Maclaurian symmetric mean oper-
ator.

Sometimes, the DM(s) is(are) not sure about the single specific value of the parameters in the set due to doubt or incomplete information but a set of
different conflicting values may possible to represent the membership degree for any element to the set. In order to deal with the above fact, Torra and Narukawa
[21] introduced the concept of the hesitant fuzzy set (HFS). The HFS is the generalization of fuzzy set and is very useful tools by ensuring the active involve-
ment of different experts’ opinions in the decision-making process. Based on HFS, hesitant fuzzy programming approach (HFPA) has been developed which
incontinently allows the DM(s) to collaborate with experts in order to collect their incompatible opinions. Bharati [7] developed the hesitant computational
algorithm for multiobjective linear programming problem and applied to production planning problem. Zhang et al. [24] developed a hesitant fuzzy program-
ming technique to deal with multi-criteria decision-making problems within the hesitant fuzzy elements environment. Zhou and Xu [26] proposed new portfolio
selection and risk investment approaches under hesitant fuzzy environment. All the above-discussed sets have its own limitations regarding the existence of each
element in the set. In brief, FS deals only the membership degree of the element in the set whereas IFS considers both membership and non-membership degree
of the element in the set simultaneously. NS is the generalization of FS and IFS because it allows the DM(s) to implement the thoughts of neutrality which
gives the indeterminacy membership degree for an element to the set. Furthermore, HFS is also an extension of FS as its membership is represented by a set of
different conflicting values in the set. Based on the above-mentioned sets, various optimization techniques such as fuzzy optimization techniques, intuitionistic
fuzzy optimization techniques, neutrosophic optimization techniques, and hesitant fuzzy optimization techniques have been developed and widely used to solve
multiobjective optimization problem which usually exists in real life.

In real life, hesitancy is the most trivial issue in the decision-making process. To deal with it, HFS may be used as an appropriate tool by assigning a set of
different membership degree for an element in the set. The limitation of HFS is that it only represents the truth hesitant membership degree and does not deals
with indeterminacy hesitant membership degree and falsity hesitant membership degree for an element in the set which arises due to inconsistent, imprecise,
inappropriate and incomplete information. On the other hand, a single-valued neutrosophic set (SVNS) is a special case of NS which provides an additional
opportunity to the DM(s) by incorporating the thoughts of neutrality. It is only confined to the truth, indeterminacy and a falsity membership degree for an
element to the set. It can not ensure the interference of a set of membership values due to doubt and consequently the involvement of different experts’ opinions
in the decision-making process. The crucial situation arises when the two aspects namely; hesitations and neutral thoughts exist simultaneously in the decision-
making process. In this case, HFS and SVNS may not be an appropriate tool to represent the situation in an efficient and effective manner. Thus, this kind of
situations are beyond the scope of FS, IFS, SVNS, and HFS and consequently beyond the scope of FPA, IFPA, NPA, and HFPA to decision making process
respectively. Therefore, truth, indeterminacy and the falsity situations under hesitant uncertainty is more practical terminology in real life optimization problems.

To get rid of the above limitations, Ye [22] investigated a new set named single-valued neutrosophic hesitant fuzzy set (SVNHFS) which is the combination
of HFS and SVNS respectively. The SVNHFS contemplate over truth hesitant fuzzy membership, indeterminacy hesitant fuzzy membership and the falsity
hesitant fuzzy membership degrees for an element to the set. Biswas et al. [8] discussed multi-attribute decision-making problems in which the rating values
are expressed with single-valued neutrosophic hesitant fuzzy set information and proposed grey relational analysis method for multi-attribute decision making.
Şahin and Liu [17] investigated correlation and correlation coefficient of SVNHFSs and discussed its applications in the decision-making process. Biswas et al.
[9] proposed a variety of distance measures for single-valued neutrosophic sets and applied these measures to multi-attribute decision-making problems. In
this present study, a new computational method, neutrosophic hesitant fuzzy programming approach (NHFPA) has been proposed to obtain the best possible
solution of MO-NLPP which is based on SVNHFS. The proposed NHFPA involves the three membership function, namely; maximization of truth hesitant fuzzy
(belongingness), indeterminacy hesitant fuzzy (belongingness to some extent) and minimization of falsity hesitant fuzzy (non-belongingness) in an emphatic
manner.

To best of our knowledge, no such method has been proposed in the literature to solve the MO-NLPP. The proposed method covers different aspects of
impreciseness, vagueness, inaccuracy, the incompleteness that are often encountered in real life optimization problems and provides flexibility in the decision-
making process. The remarkable point is that the proposed approach actively seeks opinions from different experts under the neutrosophic environment which
is more practical in real life situations and strongly concerned with the involvement of distinguished experts in order to make the fruitful decision. The neu-
tral/indeterminacy hesitant fuzzy concept involved in single-valued neutrosophic hesitant fuzzy set leads towards the future research scope in this domain.

The rest of the paper has been summarized as follows:
In section 2, the preliminaries regarding neutrosophic set, hesitant fuzzy set, and single-valued neutrosophic hesitant fuzzy set have been discussed while section
3 represents the problem formulation and development of the proposed neutrosophic hesitant fuzzy programming approach (NHFPA). In section 4, a numerical
study has been presented in order to show the applicability and validity of the proposed approach. A comparative study has also done with other existing
approaches. Finally, conclusions and future scope have been discussed based on the present work in section 5.

2 Preliminaries
2.1 Neutrosophic Set (NS)
Definition 2.1.1: [20] Let X be a universe discourse such that x ∈ X, then a neutrosophic set A in X is defined by three membership functions namely, truth
TA(x), indeterminacy IA(x) and a falsity FA(x) and is denoted by the following form:

A = {< x, TA(x), IA(x), FA(x) > |x ∈ X} (1)

where TA(x), IA(x) andFA(x) are real standard or non-standard subsets belong to ]0−, 1+[, also given as, TA(x) : X → ]0−, 1+[, IA(x) : X → ]0−, 1+[,
and FA(x) : X → ]0−, 1+[. There is no restriction on the sum of TA(x), IA(x) and FA(x), so we have,

0− ≤ sup TA(x) + IA(x) + sup FA(x) ≤ 3+ (2)
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Definition 2.1.2: [20] A single valued neutrosophic set A over universe of discourse X is defined as

A = {< x, TA(x), IA(x), FA(x) > |x ∈ X} (3)

where TA(x), IA(x) and FA(x) ∈ [0, 1] and 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3 for each x ∈ X .

2.2 Hesitant Fuzzy Set (HFS)
Definition 2.2.1: [21] Let there be a fixed set X; a hesitant fuzzy set A on X is defined in terms of a function hA(x) that when applied to X returns a finite
subset of [0,1] and mathematically can be represented as follows:

A = {< x, hA(x) > |x ∈ X} (4)

where hA(x) is a set of some different values in [0,1], denoting the possible membership degrees of the element x ∈ X to A. Also, we call hA(x) a hesitant
fuzzy element.

Definition 2.2.2: [21] For a given hesitant fuzzy element h, its lower and upper bounds are defined as h−(x) = min h(x) and h+(x) = max h(x),
respectively.

2.3 Single Valued Neutrosophic Hesitant Fuzzy Set (SVNHFS)
Definition 2.3.1: [22] Let there be a fixed set X; an SVNHFS on X is defined as follows:

Nh = {< x, Th(x), Ih(x), Fh(x) > |x ∈ X} (5)

where Th(x), Ih(x) and Fh(x) are three sets of some values in [0,1], denoting the possible truth hesitant membership degree, indeterminacy hesitant mem-
bership degree and the falsity hesitant membership degree of the element x ∈ X to the set Nh, respectively, with the conditions 0 ≤ α, β, γ ≤ 1 and
0 ≤ α+, β+, γ+ ≤ 3, where α ∈ Th(x), β ∈ Ih(x), γ ∈ Fh(x) with α+ ∈ T+

h (x) = ∪α∈Th(x)max{α}, β+ ∈ I+h (x) = ∪β∈Ih(x)max{β} and
γ+ ∈ F+

h (x) = ∪γ∈Fh(x)max{γ} for all x ∈ X .
For simplicity, the three-tuple Nh(x) = {Th(x), Ih(x), Fh(x)} is called a single-valued neutrosophic hesitant fuzzy element (SVNHFE) or triple hesitant
fuzzy element.

From Definition 2.3.1, it is clear that the SVNHFS comprises three different kinds of membership functions, namely; truth hesitant membership function,
indeterminacy hesitant membership function and the falsity hesitant membership function, which consequently results in a more reliable framework and pro-
vides pliable access to assign values for each element in the domain, and can deal with three kind of hesitancy in this situation at a time. Thus, classical sets,
including fuzzy sets, intuitionistic fuzzy sets, single-valued neutrosophic sets, hesitant fuzzy sets, can be considered as special cases of SVNHFSs (see [22]).
Fig. 1 shows the graphical representation of classical sets to SVNHFSs.

Figure 1: Diagrammatic coverage of classical sets to SVNHFSs.

Definition 2.3.2: [22] Let Nh1 and Nh2
be two SVNHFSs in a fixed set X; then their union can be defined as follows:

Nh1
∪Nh2

={Th ∈ (Th1 ∪ Th2
)|Th ≥ max (min {Th1 ∪ Th2

}),
Ih ∈ (Ih1

∪ Ih2
)|Ih ≤ min (max {Ih1

∪ Ih2
}),

Fh ∈ (Fh1
∪ Fh2 )|Fh ≤ min (max {Fh1 ∪ Fh2})}

Definition 2.3.3: [22] Let Nh1 and Nh2
be two SVNHFSs in a fixed set X; then their intersection can be defined as follows:

Nh1
∩Nh2

={Th ∈ (Th1 ∩ Th2
)|Th ≤ min (max {Th1 ∩ Th2

}),
Ih ∈ (Ih1

∩ Ih2
)|Ih ≥ max (min {Ih1

∩ Ih2
}),

Fh ∈ (Fh1
∩ Fh2 )|Fh ≥ max (min {Fh1 ∩ Fh2})}

3 Problem formulation and solution algorithm
3.1 General mathematical model of multiobjective nonlinear programming problem (MO-NLPP)
Generally, a mathematical programming problem is said to be nonlinear programming problem (NLPP) if either objective function, constraints or both are real-
valued nonlinear functions. The objective function(s) is (are) to be optimized (minimize or maximize) under the given constraints. The classical multiobjective
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nonlinear programming problem (MO-NLPP) is represented in M1.

M1 : Optimize Zk(x), k = 1, 2, ...,K,

s.t gj(x) ≤ dj , j = 1, 2, ...,m1,

gj(x) ≥ dj , j = m1 + 1,m1 + 2, ...,m2,

gj(x) = dj , j = m2 + 1,m2 + 2, ...,m,

x ≥ 0.

where, either Zk, (k = 1, 2, ...,K), gj , (j = 1, 2, ...,m) or both may be real valued nonlinear functions. x = (x1, x2, ..., xq) is a set of decision variables.

3.2 Development of proposed neutrosophic hesitant fuzzy programming approach (NHFPA)
In this study, a new approach based on single-valued neutrosophic hesitant fuzzy set to solve MO-NLPP has been investigated. The proposed approach is based
on the hybrid combination of the two sets, namely; neutrosophic set (Smarandache [20]) and hesitant fuzzy set (Torra and Narukawa [21]) respectively. The
proposed neutrosophic hesitant fuzzy programming approach (NHFPA) introduces more realistic aspects in dealing with the indeterminacy hesitation present
in the decision-making problem. The interesting point is that the proposed NHFPA also considers the conflicting opinions of different experts regarding some
parameters in real life problem which enables the DM(s) to obtain the adequate results under neutrosophic environment.
According to Bellman and Zadeh [5], the fuzzy set includes three concepts, namely; fuzzy decision (D), fuzzy goal (G) and fuzzy constraints (C) and incorporated
these concepts in many real-life applications of decision-making under fuzzy environment. So, the fuzzy decision set is defined as follows:

D = G ∩ C (6)

Consequently, the neutrosophic hesitant fuzzy decision set DNh , with neutrosophic hesitant objectives and constraints, is defined as follows:

DNh = G ∩ C = (∩Kk=1Dk)(∩
m
i=1Ci)

= {x, TD(x), ID(x), FD(x)}
= {TD ∈ (TGh

∩ TCh
) | TD ≤ min (max {TGh

∩ TCh
}),

ID ∈ (IGh
∩ ICh

) | ID ≥ max (min {IGh
∩ ICh

}),
FD ∈ (FGh

∩ FCh
) | FD ≥ max (min {FGh

∩ FCh
})}

Where, TD(x), ID(x) and FD(x) are a set of degree of acceptance of neutrosophic hesitant fuzzy decision solution under single-valued neutrosophic hesitant
fuzzy decision set. Fig.2 shows the neutrosophic hesitant fuzzy membership degree for the objective function.
On solving each objective function individually, we have k solutions set, X1, X2, ..., Xk , after that the obtained solutions are substituted in each objective
function to determine the lower and upper bound for each objective as given below:

Uk = max[Zk(X
k)] and Lk = min[Zk(X

k)] ∀ k = 1, 2, 3, ...,K. (7)

Now, we can define the different hesitant membership function more elaborately under neutrosophic hesitant fuzzy environment as follows:

Figure 2: Graphical representation of neutrosophic hesitant fuzzy membership of objective function.

Case− I : For maximization type objective function.
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The truth hesitant-membership functions:

TE1

h+ (Zk(x)) =


0 if Zk(x) < Lk

α1
(Zk(x))

t−(Lk)
t

(Uk)
t−(Lk)

t if Lk ≤ Zk(x) ≤ Uk
1 if Zk(x) > Uk

(8)

TE2

h+ (Zk(x)) =


0 if Zk(x) < Lk

α2
(Zk(x))

t−(Lk)
t

(Uk)
t−(Lk)

t if Lk ≤ Zk(x) ≤ Uk
1 if Zk(x) > Uk

(9)

. ...

. ...

. ...

TEn

h+ (Zk(x)) =


0 if Zk(x) < Lk

αn
(Zk(x))

t−(Lk)
t

(Uk)
t−(Lk)

t if Lk ≤ Zk(x) ≤ Uk
1 if Zk(x) > Uk

(10)

The indeterminacy hesitant-membership functions:

IE1

h+ (Zk(x)) =


0 if Zk(x) < Lk

β1
(Zk(x))

t−(Lk)
t

(sk)t
if Lk ≤ Z1(x) ≤ Lk + sk

1 if Zk(x) > Lk + sk

(11)

IE2

h+ (Zk(x)) =


0 if Zk(x) < Lk

β2
(Zk(x))

t−(Lk)
t

(sk)
t if Lk ≤ Zk(x) ≤ Lk + sk

1 if Zk(x) > Lk + sk

(12)

. ...

. ...

. ...

IEn

h+ (Zk(x)) =


0 if Zk(x) < Lk

βn
(Zk(x))

t−(Lk)
t

(sk)t
if Lk ≤ Zk(x) ≤ Lk + sk

1 if Zk(x) > Lk + sk

(13)

The falsity hesitant-membership functions:

FE1

h+ (Zk(x)) =


1 if Zk(x) < Lk + tk

γ1
(Uk)

t−(Zk(x))
t−(tk)

t

(Uk)
t−(Lk)

t−(tk)
t if Lk + tk ≤ Zk(x) ≤ Uk

0 if Zk(x) > Uk

(14)

FE2

h+ (Zk(x)) =


1 if Zk(x) < Lk + tk

γ2
(Uk)

t−(Zk(x))
t−(tk)

t

(Uk)
t−(Lk)

t−(tk)
t if Lk + tk ≤ Zk(x) ≤ Uk

0 if Zk(x) > Uk

(15)

. .. .

. .. .

. .. .

FEn

h+ (Zk(x)) =


1 if Zk(x) < Lk + tk

γn
(Uk)

t−(Zk(x))
t−(tk)

t

(Uk)
t−(Lk)

t−(tk)
t if Lk + tk ≤ Zk(x) ≤ Uk

0 if Zk(x) > Uk

(16)

where parameter t > 0 and sk, tk ∈ (0, 1) ∀k, are indeterminacy and falsity tolerance values, which is assigned by DM(s) and h+ represents the maximization
type hesitant objective function.
TE1

h+ (Zk(x)), I
E1

h+ (Zk(x)), F
E1

h+
(Zk(x)) are truth, indeterminacy and the falsity-hesitant-membership degrees assigned by 1st expert.

TE2

h+ (Zk(x)), I
E2

h+ (Zk(x)), F
E2

h+
(Zk(x)) are truth, indeterminacy and the falsity-hesitant-membership degrees assigned by 2nd expert.

......

......
TEn

h+ (Zk(x)), I
En

h+
(Zk(x)), F

En

h+ (Zk(x)) are truth, indeterminacy and the falsity-hesitant-membership degrees assigned by nth expert.

Case− II : For minimization type objective function.
The truth hesitant-membership functions:

TE1

h− (Zk(x)) =


1 if Zk(x) < Lk

α1
(Uk)

t−(Zk(x))
t

(Uk)
t−(Lk)

t if Lk ≤ Zk(x) ≤ Uk
0 if Zk(x) > Uk

(17)

TE2

h− (Zk(x)) =


1 if Zk(x) < Lk

α2
(Uk)

t−(Zk(x))
t

(Uk)
t−(Lk)

t if Lk ≤ Zk(x) ≤ Uk
0 if Zk(x) > Uk

(18)
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. .. .

. .. .

. .. .

TEn

h− (Zk(x)) =


1 if Zk(x) < Lk

αn
(Uk)

t−(Zk(x))
t

(Uk)
t−(Lk)

t if Lk ≤ Zk(x) ≤ Uk
0 if Zk(x) > Uk

(19)

The indeterminacy hesitant-membership functions:

IE1

h− (Zk(x)) =


1 if Zk(x) < Uk − sk
β1

(Uk)
t−(Zk(x))

t

(sk)
t if Uk − sk ≤ Zk(x) ≤ Uk

0 if Zk(x) > Uk

(20)

IE2

h− (Zk(x)) =


1 if Zk(x) < Uk − sk
β2

(Uk)
t−(Zk(x))

t

(sk)
t if Uk − sk ≤ Zk(x) ≤ Uk

0 if Zk(x) > Uk

(21)

. ...

. ...

. ...

IEn

h− (Zk(x)) =


1 if Zk(x) < Uk − sk
βn

(Uk)
t−(Zk(x))

t

(sk)t
if Uk − sk ≤ Zk(x) ≤ Uk

0 if Zk(x) > Uk

(22)

The falsity hesitant-membership functions:

FE1

h− (Zk(x)) =


0 if Zk(x) < Lk + tk

γ1
(Zk(x))t−(Lk)

t−(tk)
t

(Uk)
t−(Lk)

t−(tk)
t if Lk + tk ≤ Zk(x) ≤ Uk

1 if Zk(x) > Uk

(23)

FE2

h− (Zk(x)) =


0 if Zk(x) < Lk + tk

γ2
(Zk(x))t−(Lk)

t−(tk)
t

(Uk)
t−(Lk)

t−(tk)
t if Lk + tk ≤ Zk(x) ≤ Uk

1 if Zk(x) > Uk

(24)

. ...

. ...

. ...

FEn

h− (Zk(x)) =


0 if Zk(x) < Lk + tk

γn
(Zk(x))t−(Lk)

t−(tk)
t

(Uk)
t−(Lk)

t−(tk)
t if Lk + tk ≤ Zk(x) ≤ Uk

1 if Zk(x) > Uk

(25)

where parameter t > 0 and sk, tk ∈ (0, 1) ∀k, are indeterminacy and falsity tolerance values, which is assigned by DM(s) and h− represents the minimization
type hesitant objective function.
TE1

h− (Zk(x)), I
E1

h− (Zk(x)), F
E1

h− (Zk(x)) are truth, indeterminacy and the falsity-hesitant-membership degrees assigned by 1st expert.

TE2

h− (Zk(x)), I
E2

h− (Zk(x)), F
E2

h− (Zk(x)) are truth, indeterminacy and the falsity-hesitant-membership degrees assigned by 2nd expert.
......
......
TEn

h− (Zk(x)), I
En

h−
(Zk(x)), F

En

h− (Zk(x)) are truth, indeterminacy and the falsity-hesitant-membership degrees assigned by nth expert.

Let TEn
h = min (TEn

h+ , TEn

h− ), IEn
h = min (IEn

h+ , I
En

h− ) and FEn
h = max (FEn

h+
, FEn

h−
) ∀ k = 1, 2, ...,K. Now, the motive is to determine the

highest degree of satisfaction for DM(s) by establishing a balance between objectives and constraints.
The neutrosophic hesitant fuzzy model for MO-NLPP (M1) can be represented as follows:

M2 :Max mink=1,2,3,...,K TEn
h (Zk(x))

Max mink=1,2,3,...,K IEn
h (Zk(x))

Min maxk=1,2,3,...,K FEn
h (Zk(x))

s.t gj(x) ≤ dj , j = 1, 2, ...,m1,

gj(x) ≥ dj , j = m1 + 1,m1 + 2, ...,m2,

gj(x) = dj , j = m2 + 1,m2 + 2, ...,m,

x ≥ 0.
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With the help of auxiliary parameters, model M2 can be transformed into the following form M3.

M3 :Max

∑
αn

n

Max

∑
βn

n

Min

∑
γn

n

s.t. TEn

h+
(Zk(x)) ≥ αn, IEn

h+ (Zk(x)) ≥ βn, FEn

h+
(Zk(x)) ≤ γn

TEn

h−
(Zk(x)) ≥ αn, IEn

h−
(Zk(x)) ≥ βn, FEn

h−
(Zk(x)) ≤ γn

gj(x) ≤ dj , j = 1, 2, ...,m1,

gj(x) ≥ dj , j = m1 + 1,m1 + 2, ...,m2,

gj(x) = dj , j = m2 + 1,m2 + 2, ...,m,

x ≥ 0, αn, βn, γn ∈ (0, 1)

αn + βn + γn ≤ 3, αn ≥ βn, αn ≥ γn, ∀ n.

Using linear membership function, model M3 can be written as in M4.

M4 :Max χ =
α1 + α2 + ...+ αn

n
+
β1 + β2 + ...+ βn

n
−
γ1 + γ2 + ...+ γn

n

s.t. TE1

h+
(Zk(x)) ≥ α1, T

E2

h+ (Zk(x)) ≥ α2, ..., T
En

h+ (Zk(x)) ≥ αn

IE1

h+ (Zk(x)) ≥ β1, IE2

h+ (Zk(x)) ≥ β2, ..., IEn

h+ (Zk(x)) ≥ βn

FE1

h+ (Zk(x)) ≤ γ1, FE2

h+ (Zk(x)) ≤ γ2, ..., FEn

h+ (Zk(x)) ≤ γn

TE1

h−
(Zk(x)) ≥ α1, T

E2

h−
(Zk(x)) ≥ α2, ..., T

En

h− (Zk(x)) ≥ αn

IE1

h− (Zk(x)) ≥ β1, IE2

h−
(Zk(x)) ≥ β2, ..., IEn

h−
(Zk(x)) ≥ βn

FE1

h− (Zk(x)) ≤ γ1, FE2

h− (Zk(x)) ≤ γ2, ..., FEn

h− (Zk(x)) ≤ γn
gj(x) ≤ dj , j = 1, 2, ...,m1,

gj(x) ≥ dj , j = m1 + 1,m1 + 2, ...,m2,

gj(x) = dj , j = m2 + 1,m2 + 2, ...,m,

x ≥ 0, 0 ≤ α1, α2, ..., αn ≤ 1, 0 ≤ β1, β2, ..., βn ≤ 1

0 ≤ γ1, γ2, ..., γn ≤ 1, αn ≥ βn, αn ≥ γn,
αn + βn + γn ≤ 3, ∀ n.

Finally, model M4 gives the compromise solution to MO-NLPP.

3.3 Proposed NHFPA algorithm for MO-NLPP
The whole procedure from problem formulation to final solvable model M4 discussed in section 3 is summarized as step-wise algorithm.
Step-1. Formulate the multiobjective nonlinear programing problems as in M1.
Step-2. Determine the bounds Uk and Lk , for each objective by using equation (7).
Step-3. By using Uk and Lk , define the upper and lower bound for truth hesitant, indeterminacy hesitant and falsity hesitant membership functions as given in
equation (8)-(25).
Step-4. Ask for the truth hesitant, indeterminacy hesitant and the falsity hesitant membership degrees from different experts or DM(s).
Step-5. Formulate MO-NLPP under neutrosophic hesitant fuzzy environment defined in M4.
Step-6. Solve the multiobjective nonlinear programing problem in order to obtain the compromise solution using suitable techniques or some optimizing
software packages.

4 Experimental study
In order to show the efficiency and validity of the proposed method, we adopted the numerical example of the manufacturing system discussed by Singh and
Yadav [19]. The DM(s) of the company intends to maximize the total profit incurred over products and minimize the total time required for each product.
Also, assumed that the DM(s) seeks three experts’ opinion in the decision-making process. Therefore, the crisp multiobjective non-linear programming problem
formulation [19] is given as follows:

M1 : Max Z1(x) = 99.875x
1
2
1 − 8x1 + 119.875x

1
2
2 − 10.125x2 + 95.125x

1
3
3 − 8x3

Min Z2(x) = 3.875x1 + 5.125x2 + 5.9375x3

s.t 2.0625x1 + 3.875x2 + 2.9375x3 ≤ 333.125

3.875x1 + 2.0625x2 + 2.0625x3 ≤ 365.625

2.9375x1 + 2.0625x2 + 2.9375x3 ≥ 360

x1, x2, x3 ≥ 0.

On solving each objective function individually given in (M1), we get the following individual best solution, lower and upper bound for each objective.
X1 = (57.82, 13.09, 55.53), X2 = (62.26, 0, 60.28) along with L1 = 180.72, U1 = 516.70, L2 = 599.23 and U2 = 620.84.
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Since, the first objective Z1(x) is of maximization type and the satisfaction level of Experts or DMs increases if the values of objective function tends towards
its upper bound. Therefore the truth hesitant membership, indeterminacy hesitant membership and falsity hesitant membership functions of upper bound can be
represented as follows:

For Z1: The upper and lower bound for first objective and its membership functions.

TE1

h+ (Z1(x)) =


0 if Z1(x) < 180.72

0.98
(99.875x

1
2
1 −8x1+119.875x

1
2
2 −10.125x2+95.125x

1
3
3 −8x3)

t−(180.72)t

(516.70)t−(180.72)t
if 180.72 ≤ Z1(x) ≤ 516.70

1 if Z1(x) > 516.70

(26)

TE2

h+ (Z1(x)) =


0 if Z1(x) < 180.72

0.99
(99.875x

1
2
1 −8x1+119.875x

1
2
2 −10.125x2+95.125x

1
3
3 −8x3)

t−(180.72)t

(516.70)t−(180.72)t
if 180.72 ≤ Z1(x) ≤ 516.70

1 if Z1(x) > 516.70

(27)

TE3

h+ (Z1(x)) =


0 if Z1(x) < 180.72

(99.875x
1
2
1 −8x1+119.875x

1
2
2 −10.125x2+95.125x

1
3
3 −8x3)

t−(180.72)t

(516.70)t−(180.72)t
if 180.72 ≤ Z1(x) ≤ 516.70

1 if Z1(x) > 516.70

(28)

IE1

h+ (Z1(x)) =


0 if Z1(x) < 180.72

0.98
(99.875x

1
2
1 −8x1+119.875x

1
2
2 −10.125x2+95.125x

1
3
3 −8x3)

t−(180.72)t

(s1)t
if 180.72 ≤ Z1(x) ≤ 180.72 + s1

1 if Z1(x) > 180.72 + s1

(29)

IE2

h+ (Z1(x)) =


0 if Z1(x) < 180.72

0.99
(99.875x

1
2
1 −8x1+119.875x

1
2
2 −10.125x2+95.125x

1
3
3 −8x3)

t−(180.72)t

(s1)t
if 180.72 ≤ Z1(x) ≤ 180.72 + s1

1 if Z1(x) > 180.72 + s1

(30)

IE3

h+ (Z1(x)) =


0 if Z1(x) < 180.72

(99.875x
1
2
1 −8x1+119.875x

1
2
2 −10.125x2+95.125x

1
3
3 −8x3)

t−(180.72)t

(s1)t
if 180.72 ≤ Z1(x) ≤ 180.72 + s1

1 if Z1(x) > 180.72 + s1

(31)

FE1

h+ (Z1(x)) =


1 if Z1(x) < 180.72

0.98
(516.70)t−(t1)

t−(99.875x
1
2
1 −8x1+119.875x

1
2
2 −10.125x2+95.125x

1
3
3 −8x3)

t

(516.70)t−(180.72)t−(t1)t
if 180.72 ≤ Z1(x) ≤ 516.70− t1

0 if Z1(x) > 516.70− t1

(32)

FE2

h+
(Z1(x)) =


1 if Z1(x) > 516.70

0.99
(516.70)t−(t1)

t−(99.875x
1
2
1 −8x1+119.875x

1
2
2 −10.125x2+95.125x

1
3
3 −8x3)

t

(516.70)t−(180.72)t−(t1)t
if 180.72 + t1 ≤ Z1(x) ≤ 516.70

0 if Z1(x) < 180.72 + t1

(33)

FE3

h+ (Z1(x)) =


1 if Z1(x) > 516.70

(516.70)t−(t1)
t−(99.875x

1
2
1 −8x1+119.875x

1
2
2 −10.125x2+95.125x

1
3
3 −8x3)

t

(516.70)t−(180.72)t−(t1)t
if 180.72 + t1 ≤ Z1(x) ≤ 516.70

0 if Z1(x) < 180.72 + t1

(34)

Similarly, the second objective Z2(x) is of minimization type and the satisfaction level of Experts or DMs increases if the values of objective function tends
towards its lower bound. Thus the truth hesitant membership, indeterminacy hesitant membership and falsity hesitant membership functions of lower bound can
be represented as follows:

For Z2: The upper and lower bound for second objective and its membership functions.

TE1

h− (Z2(x)) =


1 if Z2(x) < 599.23

0.98
(620.84)t−(3.875x1+5.125x2+5.9375x3)

t

(620.84)t−(599.23)t
if 599.23 ≤ Z2(x) ≤ 620.84

0 if Z2(x) > 620.84

(35)

TE2

h− (Z2(x)) =


1 if Z2(x) < 599.23

0.99
(620.84)t−(3.875x1+5.125x2+5.9375x3)

t

(620.84)t−(599.23)t
if 599.23 ≤ Z2(x) ≤ 620.84

0 if Z2(x) > 620.84

(36)

TE3

h− (Z2(x)) =


1 if Z2(x) < 599.23
(620.84)t−(3.875x1+5.125x2+5.9375x3)

t

(620.84)t−(599.23)t
if 599.23 ≤ Z2(x) ≤ 620.84

0 if Z2(x) > 620.84

(37)

IE1

h− (Z2(x)) =


1 if Z2(x) < 620.84− s2
0.98

(620.84)t−(3.875x1+5.125x2+5.9375x3)
t

(s2)t
if 620.84− s2 ≤ Z2(x) ≤ 620.84

0 if Z2(x) > 620.84

(38)

IE2

h− (Z2(x)) =


1 if Z2(x) < 620.84− s2
0.99

(620.84)t−(3.875x1+5.125x2+5.9375x3)
t

(s2)t
if 620.84− s2 ≤ Z2(x) ≤ 620.84

0 if Z2(x) > 620.84

(39)
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IE3

h− (Z2(x)) =


1 if Z2(x) < 620.84− s2
(620.84)t−(3.875x1+5.125x2+5.9375x3)

t

(s2)t
if 620.84− s2 ≤ Z2(x) ≤ 620.84

0 if Z2(x) > 620.84

(40)

FE1

h−
(Z2(x)) =


0 if Z2(x) < 599.23 + t2

0.98
(3.875x1+5.125x2+5.9375x3)

t−(599.23)t−(t2)
t

(620.84)t−(599.23)t−(t2)t
if 599.23 + t2 ≤ Z2(x) ≤ 620.84

1 if Z2(x) > 620.84

(41)

FE2

h− (Z2(x)) =


0 if Z2(x) < 599.23 + t2

0.99
(3.875x1+5.125x2+5.9375x3)

t−(599.23)t−(t2)
t

(620.84)t−(599.23)t−(t2)t
if 599.23 + t2 ≤ Z2(x) ≤ 620.84

1 if Z2(x) > 620.84

(42)

FE3

h− (Z2(x)) =


0 if Z2(x) < 599.23 + t2
(3.875x1+5.125x2+5.9375x3)

t−(599.23)t−(t2)
t

(620.84)t−(599.23)t−(t2)t
if 599.23 + t2 ≤ Z2(x) ≤ 620.84

1 if Z2(x) > 620.84

(43)

The final solution model is given as follows:

M4 :Max χ =
α1 + α2 + α3

3
+
β1 + β2 + β3

3
−
γ1 + γ2 + γ3

3

s.t. 0.98
(99.875x

1
2
1 − 8x1 + 119.875x

1
2
2 − 10.125x2 + 95.125x

1
3
3 − 8x3)t − (180.72)t

(516.70)t − (180.72)t
≥ α1

0.99
(99.875x

1
2
1 − 8x1 + 119.875x

1
2
2 − 10.125x2 + 95.125x

1
3
3 − 8x3)t − (180.72)t

(516.70)t − (180.72)t
≥ α2

(99.875x
1
2
1 − 8x1 + 119.875x

1
2
2 − 10.125x2 + 95.125x

1
3
3 − 8x3)t − (180.72)t

(516.70)t − (180.72)t
≥ α3

0.98
(99.875x

1
2
1 − 8x1 + 119.875x

1
2
2 − 10.125x2 + 95.125x

1
3
3 − 8x3)t − (180.72)t

(s1)t
≥ β1

0.99
(99.875x

1
2
1 − 8x1 + 119.875x

1
2
2 − 10.125x2 + 95.125x

1
3
3 − 8x3)t − (180.72)t

(s1)t
≥ β2

(99.875x
1
2
1 − 8x1 + 119.875x

1
2
2 − 10.125x2 + 95.125x

1
3
3 − 8x3)t − (180.72)t

(s1)t
≥ β3

0.98
(516.70)t − (t1)t − (99.875x

1
2
1 − 8x1 + 119.875x

1
2
2 − 10.125x2 + 95.125x

1
3
3 − 8x3)t

(516.70)t − (180.72)t − (t1)t
≤ γ1

0.99
(516.70)t − (t1)t − (99.875x

1
2
1 − 8x1 + 119.875x

1
2
2 − 10.125x2 + 95.125x

1
3
3 − 8x3)t

(516.70)t − (180.72)t − (t1)t
≤ γ2

(516.70)t − (t1)t − (99.875x
1
2
1 − 8x1 + 119.875x

1
2
2 − 10.125x2 + 95.125x

1
3
3 − 8x3)t

(516.70)t − (180.72)t − (t1)t
≤ γ3

0.98
(620.84)t − (3.875x1 + 5.125x2 + 5.9375x3)t

(620.84)t − (599.23)t
≥ α1

0.99
(620.84)t − (3.875x1 + 5.125x2 + 5.9375x3)t

(620.84)t − (599.23)t
≥ α2

(620.84)t − (3.875x1 + 5.125x2 + 5.9375x3)t

(620.84)t − (599.23)t
≥ α3

0.98
(620.84)t − (3.875x1 + 5.125x2 + 5.9375x3)t

(s2)t
≥ β1

0.99
(620.84)t − (3.875x1 + 5.125x2 + 5.9375x3)t

(s2)t
≥ β2

(620.84)t − (3.875x1 + 5.125x2 + 5.9375x3)t

(s2)t
≥ β3

0.98
(3.875x1 + 5.125x2 + 5.9375x3)t − (599.23)t − (t2)t

(620.84)t − (599.23)t − (t2)t
≤ γ1

0.99
(3.875x1 + 5.125x2 + 5.9375x3)t − (599.23)t − (t2)t

(620.84)t − (599.23)t − (t2)t
≤ γ2

(3.875x1 + 5.125x2 + 5.9375x3)t − (599.23)t − (t2)t

(620.84)t − (599.23)t − (t2)t
≤ γ3

2.0625x1 + 3.875x2 + 2.9375x3 ≤ 333.125

3.875x1 + 2.0625x2 + 2.0625x3 ≤ 365.625

2.9375x1 + 2.0625x2 + 2.9375x3 ≥ 360

Firoz Ahmad, Ahmad Yusuf Adhami and Florentin Smarandache. Single Valued Neutrosophic Hesitant Fuzzy Computational
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x1, x2, x3 ≥ 0, 0 ≤ α1, α2, α3 ≤ 1, 0 ≤ β1, β2, β3 ≤ 1,

0 ≤ γ1, γ2, γ3 ≤ 1, 0 ≤ s1, t1 ≤ 1, 0 ≤ s2, t2 ≤ 1,

αn ≥ βn, αn ≥ γn, αn + βn + γn ≤ 3, ∀ n = 1, 2, 3.

The multiobjective nonlinear programming problem M4 has been written in AMPL language and solved using solvers available on NEOS server online
facility provided by Wisconsin Institutes for Discovery at the University of Wisconsin in Madison for solving Optimization problems, see (Server [18]).
At t = 2, the optimal solution of the multiobjective nonlinear programming problem by using the proposed neutrosophic hesitant fuzzy programming approach
(NHFPA) is x = (60.48, 5.26, 58.37), Z1 = 416.58, Z2 = 607.88 with the degree of satisfaction χ = 1.20 respectively.

4.1 Comparative study
The multiobjective nonlinear programming problem of manufacturing system with conflicting objectives have been solved by using proposed neutrosophic
hesitant fuzzy programming approach (NHFPA). The solution results obtained by proposed method and with other existing approaches discussed in [19] have
been summarized in Table-1. From the table, it is clear that the minimum deviation from ideal solution of each objective function is 100.12 and 0.41 by using
proposed NHFPA and γ- operator respectively. Furthermore, the highest satisfaction level has been attained by proposed approach i.e; χ=1.20, which reveals
the superiority of proposed NHFPA over other existing approaches in terms of satisfactory degree of DM(s). Fig-3 shows the graphical representation of the
objective functions and satisfaction level obtained by different approaches.

Table 1: Comparison of results with existing methods.

Solution method Objective values Deviations from ideal solutions Satisfaction level
Max. Z1 Min. Z2 (U1 − Z1) (Z2 − L2)

Zimmerman’s technique [19] 409.70 607.28 107 8.05 λ= 0.62
γ- operator [19] 288.86 599.64 227.84 0.41(min.) φ(x)= 0.96

Min. bounded sum operator [19] 416.58 607.88 100.12 8.65 ψ(x)= 0.99
Proposed NHFPA 416.58 607.88 100.12(min.) 8.65 χ= 1.20 (max.)

(a) Objective functions obtained by different approaches. (b) Satisfaction level achieved by different approaches.

Figure 3: Comparison of results with proposed NHFPA and different existing approaches.

5 Conclusions
In this study, a new approach has been suggested to solve the multiobjective nonlinear programming problem in the neutrosophic hesitant fuzzy environment.
The proposed neutrosophic hesitant fuzzy programming approach (NHFPA) comprises three different membership functions, namely; truth hesitant, indetermi-
nacy hesitant and a falsity hesitant membership function which contains a set of different values between 0 and 1. The proposed approach provides the more
realistic framework and considers various aspects of the DM’s neutral thoughts with hesitations in the decision-making process. The main contribution by
introducing the proposed approach is that it allows the DM(s) to express his/her(their) degree of hesitation and neutral thoughts according to the need of adverse
situations in a convenient manner. In order to show the superiority of proposed NHFPA, it is applied to solve multiobjective nonlinear programming problem in
the manufacturing system. To best of our knowledge, no such approach is suggested in the literature to solve MO-NLPP in such an efficient and effective manner.

Therefore, the proposed NHFPA will be very helpful in such a typical situation when the DM(s) have some neutral thoughts and also with a set some
hesitation values in the decision-making process. In future, the proposed approach may be applied to the multiobjective fractional programming problem,
bi-level nonlinear programming problem, multilevel fractional programming problem etc.
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Abstract. The quick development of the markets and companies, especially those that apply information technology, has made 
it easy to store a large volume of digital information. Nevertheless, the extraction of potentially useful knowledge is difficult; 
also could not be easily understandable by humans. One of the techniques applied to the solution to this problem is the linguis-
tic data summarizations, whose objective is to discover knowledge to extract patterns from databases, from which are gener-
ated explicit and concise summaries. Another important element of the linguistic summaries is the indicators (T) for their 
evaluation proposed by Zadeh when including linguistic terms evaluation in fuzzy sets. However, these indicators not include 
the analysis in indeterminate sets. In this paper, it is discussed the use of linguistic data summarization in project management 
environments and new T indicators are proposed including neutrosophic sets with single value neutrosophic numbers. Authors 
evaluate T-values proposed by Zadeh and T-values based on neutrosophic theory in the evaluation of linguistic summaries re-
covered.  

Keywords: neutrosophic sets, single value neutrosophic numbers, linguistic data summarization, project management.

1 Introduction 

The market growth, even in the digital world, has led to the availability of a large volume of data, in different 
formats and from various sources. Unfortunately, while greater are data volumes, the more difficult is interpreta-
tion. The important information of those data is non-trivial dependencies, which are encoded. These dependen-
cies usually are hidden; their discovery requires some intelligence. 

In general, many companies have limitations in data analysis that affect their decisions. Making decision 
problems can be classified in structured and not structured. Structured decision-making problems have defined 
methods for solutions and they are supported by procedures and rules. In another hand, not structured decision 
making, resolve low frequency problems that need specific solutions. Examples of not structure problems are al-
ternative selection [1] [2] [3], diagnostics, prediction [4] [5] [6], prognosis, a classification, machine learning and 
data mining [7]. In the context of this paper, authors focus in a data mining problem by using linguistic data 
summarization (LDS) techniques. 

Frequently, companies have large databases, that contains heterogeneous data and difficult to understand. In 
this context, Kacprzyk [8] and other authors develop linguistic data summarization algorithms. This technique is 
oriented to produce linguistic summaries in natural language from numeric data. Besides, it will help the 
organization to solve the dilemma rich data poor information for making decisions.  

About linguistic data summarization, Kacprzyk and Zadrożny [8] said “data summarization is one of the 
basic capabilities that is now needed by any “intelligent” system that is mean to operate in real life”. They define 
a set of six protoforms that describe the structure of the linguistic summaries and queries for their search [9], see 
Table 1. All summaries are represented in the following two basic structures:  
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(i) First: summaries without filters Qy's are S, representing relationships such as: 
T(Most of projects are renegotiated) = 0.8 

(ii) Second: summaries with filters QRy´s are S, which describes relationships such as: 
T(Most of the projects with low performance of human resources are renegotiated) = 0.7 

Where: 
(a) “Q” represents quantifiers such: most, some, a few, etc. 
(b) “R” represents filters for example: “high planned material resources”, or concepts that influence the 

objects recovery. 
(c) The objects “y” represents the object of study for example “outlier projects”.   
(d) The “S” represents summarizer such as: “very high “amount of human resources” and concepts un-

der which the "y" objects are grouped in the query. 
(e) The “T” represents measures to evaluate the linguistic summaries quality, the most of authors use 

the T values [9][10]. 

Table 1: Classification of protoforms of LDS, taken from [11]. 

Type Protoform Given Sought 
0 QRy’s are S All Validity T 
1 Qy’s are S S Q 
2 QRy’s are S S and R Q 
3 Qy’s are S Q and structure of S Linguistic values in S 
4 QRy’s are S Q, R and structure of S Linguistic values in S 
5 QRy’s are S Nothing S, R and Q 

In order to evaluate summaries, authors develop different T measures [8][11], proposed: degree of truth, 
degree of imprecision, degree of coverage and the length of the summary.  

 Degree of truth (T1): evaluates the truth of summary based on the object's membership to the summary
and to summary's quantifier. 

 Degree of imprecision (T2): calculates the summary vagueness degree and summary imprecision´s de-
gree by considering the alternative values for each summarizer. 

 Degree of coverage (T3): calculates the objects relative frequency that belongs to summarizer´s fuzzy
set and to the filter´s fuzzy sets. 

 Degree of appropriateness (T4): measures the usefulness of the summary, combining the coincidence
relative frequency between the objects, and the summary with the degree of coverage. This measure re-
ports low values with high values of coverage degrees.  

 Length of summary (T5): measure to get the summary length based on variables number implicated on
it. Very large summaries with a high length usually are incompressible. 

 Degree of validity (T6): measure to combine the rest of T values based on OWA aggregators.

But some of these measures fail when in a database there are objects with a high vagueness that such as ob-
jects with a high level of neutrality respect to the specific fuzzy sets memberships.  

Traditional linguistic data summarization techniques do not consider the neutrality on data. The creation of 
new measures by considering the linguistic summaries neutrality can help to select the best summaries to make 
decisions. Neutrosophic numbers theory extends the fuzzy logic theory and helps improve neutrality treatment.  

Neutrosophy was introduced by Smarandache in 1995 [12] and in this theory is essentially the definition of 
neutrosophic sets defined by Smarandache and Wang et al. in [13]. The use of neutrosophic theory in linguistic 
data summarization techniques allows the introduction of concepts of indetermination; also, improve the inter-
pretability of the summaries [14].  

The aim of this work extends measures to evaluate linguistic summaries by considering different elements of 
neutrosophic theory. In the work are applied the new measures and traditional measures to evaluate linguistic 
summaries on project management environment.  

The remaining of the paper is structured as follows. Section 2 describes preliminary concepts and notation of 
linguistic data summarization techniques and neutrosophic theory. In section 3, the authors present different ex-
tensions to traditional measures proposed by Zadeh; they introduce neutrosophic sets and other concepts into the 
computation of quality´s measures of the linguistic summaries. In section 4, authors compare the results of 
measures in a project management environment. Finally, the paper ends with conclusions and further work rec-
ommendations in Section 5. 

2 Preliminary concepts and notation 

In this section, authors present preliminary concepts associated with this work. The first subsection dis-
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cusses in details the measures proposed for Zadeh to evaluate linguistic summaries. In second subsection authors 
present preliminary concepts associated to neutrosophic theory useful in linguistic data summarization environ-
ments.  

2.2 Measures to evaluate the linguistic summaries quality, based on traditional fuzzy sets 

Different authors have been proposed measures to evaluate linguistic summaries quality. In this sense, a set 
of measures proposed by Zadeh are well known. In this section, the measures proposed by Zadeh [15] are 
described in details. 

The degree of truth (T1) is a measure of how much data supports a linguistic summary. 
 For summaries with the structure “Qy’s are S” can be used equation (1), while for summaries with structure 

“QRy’s are S” when R is a filter, can be used equation (2).   

(1) 

 (2) 

Where 

 (3) 

Degree of imprecision (T2) is a useful validity criterion. Basically, a vague linguistic summary has a T2 with 
a very high degree of truth, but it is not a relevant summary (for example, on almost projects with low-
performance indicators are bad evaluated).  

 (4) 

Where m is the implicated summarizers number in the summary and in(Sj) is defined as: 

 (5) 

Equation (5) measure the cardinality of the corresponding set and all Xj domains. That is, the more "flat" the 
diffuse Sj set is, the higher the value of in (Sj). 

 The degree of imprecision T2 depends on the summary form; its calculation does not involve all records on 
the database, for this reason, does not require searching the database. 

The degree of coverage (T3) is defined by: 

 (6) 

Where: 

 (7) 
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 (8) 

The degree of appropriateness, T4, describes how relevant is the summary for the particular environment 
represented by objects in the database and is defined as: 

 (9) 

Where: 

j = 1,…, n 

The length of the summary (T5) can be defined as: 

                   (10)

Finally, the total degree of validity, (T6), could be calculated by using different operators of aggregation, for 
example in [15], this indicator is defined as the weighted average of the previous 5 degrees of validity, i.e.  

 (11) 

Total validity of a linguistic overview, where: 
 k is the quantity of T that is calculated, in this case, there are five, that is, from T1 to T5.
 w is weight assigned for the aggregation of the T, therefore i = [1,…,5]. Each weight is a values be-

tween [0,1].
The combination of T values is very useful to detect the most relevant summaries. To find the optimal sum-

mary for an S* ∈ {S} would be:  

 (12) 

Where k is the total number of language overviews generated and arg is a function that returns the language 
summary obtained as a result of the operation. 

Art state study of “linguistic data summarization” led to the following partial conclusions: 
 The T values proposed does not consider the indeterminacy or the falsity of objects respect to different

fuzzy sets memberships. In this sense objects with high indeterminacy could be considered with the 
same weight during calculation than objects with high membership value and low indeterminacy. 

 In many T values calculation, are consider all elements with memberships value greater than 0. But this
condition is not so good because this approach considers objects with very low memberships as the 
same relevance as objects with the highest membership. Authors of this paper consider as necessary to 
limit the calculation just for objects with membership values greater than an epsilon value.   

 In particular, there are different scenarios with high vagueness and ambiguous concepts where is neces-
sary taking into account elements as neutrality and the uncertainty of concept to making decisions proc-
ess. For example, in project management some time the experts do not have a definitive opinion about a 
decision and they have to take neutral positions before a definitive decision.  

 Authors of this paper consider that the aggregation of different T values proposed in T6 (total degree of
validity), in some cases create a noise in the selection of summaries, and recommend the use of Pareto 
approach [16]. 
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Next subsection presents preliminary concepts of neutrosophic theory necessaries to introduce the exten-
sions to traditional T values.  

2.3 Preliminary concepts about the neutrosophic theory 

In [17][18] Smarandache introduced the concept of neutrosophic set and neutrosophic logic,  which allows 
handling efficiently the indeterminate and inconsistent information. Neutrosophic set is a generalization of the 
theory of fuzzy set [19], intuitionistic fuzzy sets, interval-valued fuzzy sets [20] [21] and interval-valued in-
tuitionistic fuzzy sets [6]. A neutrosophic set has the three following degrees: truth-membership degree, indeter-
minacy-membership degree, and a falsity-membership degree. All these degrees are in the interval [-0, 1+].  

However, the neutrosophic theory is difficult to be directly applied in real scientific and engineering areas. 
For this reason, Smarandache [17] proposed the neutrosophic set theory, which is the more general form of in-
tuitionistic fuzzy logic, whose functions of truth, indeterminacy, and falsity lie in [0, 1]. Since then, publications 
on neutrosophic set theory and its applications in several fields have been increasing in recent years; this is evi-
denced by the works presented in [22] [23] [24] [25] [26] [27]. 

For this work is particularly important the definition 1 of neutrosophic sets defined by Smarandache and 
Wang et al. in [13], [12], [27].   

Definition 1. Let M a neutrosophic set in universe X characterized by a triple (Label, X, μM(x), M(x), σM(x)) 
where: Label is a linguistic term which represents the name of set,  X represents the universe of discourse, 
μM(x) [0,1] represents a membership function , M(x)  [0,1] represents a indeterminacy-membership function 
and σM(x)  [0,1] represents a falsity-membership function, where  0 ≤ μM(x) +M(x) + σM(x) ≤ 3.  

This definition implies that each value of the domain x  X when evaluated in neutrosophic set M, such that 
M(x) returns the value (μM (x), M (x), σM (x)) where the first component represents the membership degree of the 
value x to the set M, the second component represents the indetermination degree of the value x to the set M and 
the third component means the non-membership degree of the value x to the set M. 

 (13) 

Figure 1: Representation of a fuzzy set incorporating the truth-membership (µA), indeterminacy-membership (A) and falsity-membership 
(σA) functions. 

Single Valued Neutrosophic Set (SVNS) concept permits the application of neutrosophic set theories on real 
scientific and engineering applications [13], see definition 2. Many studies have been done on this theory and 
have been used in many application fields. In this theory, the values of truth, falsity, and indeterminacy of a 
situation are considered. Many uncertainties and complex situations arise in decision-making applications.   

Definition 2. Let X be a set of objects and x  X represents a single valued neutrosophic number (SVN) and 
is characterized by a vector (V, I, F) where V indicates truth-value, I indeterminacy-value and F falsity-value.  

Other important group of definitions are proposed by Subas [28]. He defines a single valued triangular neu-
trosophic number x = ((a, b, c), μA(x), A(x), σA(x)) where: 

a, b ,c +     if x is a positive single valued triangular neutrosophic number and 

a, b, c  -      if x is a negative single valued triangular neutrosophic number. 

In neutrosophic theory, different authors define operations between single value neutrosophic numbers [29] 
[30] [18] as follows: 

Let A be a variable represented by number ((a1, a2, a3); uA, rA, fA) and B is represented by number ((b1, b2, 
b3); uB, rB, fB) 

Sum:  A (+) B= ((a1+b1
 , a2+b2 , a3+b3);  T(uA, uB ), S1(rA , rB ), S2(fA, fB ))       (13) 

Difference: A (-) B= ((a1-b3, a2-b2, b3-a1), T(uA, uB ), S1(rA , rB ), S2(fA, fB ))      (14) 
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Product: lets £ = {a1b1, a3b3, a1b3, a3b1} 
 where  λ1 : is the minimum value of  £, λ2 : be the largest of  £ 

       A (*) B= ((a1b1, a1a2, b1bc2); T(uA, uB ), S1(rA , rB ), S2(fA, fB )) (15) 
Division: lets £ = {a1/b1, a3/b3, a1/b3, a3/b1}   

 where  λ1 : is the minimum value of  £, λ2 : be the largest of  £ 
 A (/) B= ((λ1 , a1b2, λ2); T(uA, uB ), S1(rA , rB ), S2(fA, fB ))  (16) 

Let x = (a, b, c, u, r, f) be a single valued triangular neutrosophic number [5] [6][7]: 

Score:  sc(x) = a+1- b+1- c; (17) 

Certainty:   ac(x) = a - c;  (18) 

Let x = (a1, a2, a3) and y = (b1, b2, b3) be two single valued neutrosophic numbers, the comparison ap-
proach can be defined as follows [5]: 

If sc(x)>sc(y), then x is greater than y and denoted x ≻y. 

If sc(x)=sc(y) and ac(x)>ac(y), then x is greater than y and denoted x ≻y. 

If sc(x)=sc(y) and ac(x)=ac(y), then x is equal to y and denoted by x∼y. 

T-Norm function TNorm: [0,1] x [0,1] → [0,1]  Example (min)  (19) 
 T(a, b) = T(b, a)         Commutativity  
 T(T(a, b), c) = T(a, T(b, c)) Associativity 
 Si a ≥ b y c ≥ d then T(a, c) ≥ T(b, d)  Monotony 

 T(a, 1) = a         Neutral element 
Conorma function SNorm: [0,1] x [0,1] → [0,1]        Example (max)  (20) 

 S(a, b) = S(b, a)        Commutativity  
 S(S(a, b), c) = S(a, S(b, c))  Associativity 
 Si a ≥ b y c ≥ d entonces S(a, c) ≥ S(b, d)    Monotony 
 S(a, 0) = a  Neutral element 

All these operations are necessary to extend the measures to evaluate the quality of linguistic summaries. 

3 Extensions to T-values to evaluate linguistic summaries based on neutrosophic numbers 

In this section, different extensions to traditional T–values are proposed.  
Inspired in rough sets theory [31] the authors of this work propose the following equations and notation. 
Lets YA* the set of objects with memberships to neutrosophic set A (definition 2) greater than alpha-cut: 
where α[0,1] and  YA

* the set of objects with memberships to neutrosophic set A greater than 0.  

For summaries, A with structure “Qy’s are S” see equation (21), (22), (23), (24), (25) and (26) 

 (21) 

 (22) 

 (23) 

 (24) 

(25) 

For summaries, A with structure “QRy’s are S” see equation (26), (27), (28), (29) and (30) 

(26) 

 (27) 

  } 0  )(y : y {= *Y iSUMMARYiA 

  }   )(y : y {= Y iSUMMARYi*A  

  )(y ),(yTNorm=)(y iiiUMMARY SRS 

  )(y ),(yTNorm=)(y iiiUMMARY SRS 

  )(yTNorm=)(y iiUMMARY jSS 

  )(yTNorm=)(y iiUMMARY jSS 

  )(y TNorm=)(y iiUMMARY jSS 
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(28) 

(29) 

(30) 

Then T1 applied to summary A is extended Te1a as equation (31): 

(31) 

Another T1 extension on summary A is Te1b as equation (32): 

(32) 

To complement T1 extension a new metric called precision is introduced, Te1c as equation (33) 

(33) 

T2 extension on summary A is Te2a imprecision degree as equation (34):

(34) 

To complement Te2a authors introduce a metric degree of indeterminacy called Te2b as equation (35) 

 (35) 

To complement Te2a authors introduce a metric degree of falsity called Te2c as equation (36) 

 (36) 

T3 extension on summary A is Te3a as equation (37):       (37) 
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T4 extension on summary A is Te4a appropriateness degree as equation (38): 

(38) 

Introducing a new T called certainty on summary A is Te4b certainty degree as equation (39) 

(39) 

T5 extension on summary A is Te5a as equation (40): 

  (40) 

Where m is the number of variables, R is the cardinality of filters of linguistic summary and S is the 
cardinality of summarizer of a linguistic summary.   

In order to select the best summaries, the authors of this work recommend using the Pareto approach, com-
bining all the proposed extensions in the selection. The best summaries will be those has the best value regarding 
the combination of the proposed T values.       

6 Results and discussion 

To proof the extensions proposed in this work, data related to project management was used. From them, 
linguistic summaries were generated to make decisions in the project management environment. This environ-
ment is characterized by the following elements: 

 There are different information systems with a lot of heterogeneous data.
 There are different project management schools [32] that develop good practices through standards as

PMBok [33], ISO 21500 [34] and CMMI v1.3 [35, p. 1], but persist difficulties in projects.
 Different studies develop by the Standish Group [36] shows that there are numerous difficulties in

projects associated with TIC technologies. Approximately 52% of the projects are renegotiated while
just around 33 % corresponds with successful projects.

 In particular, TIC projects are affected by numerous risks due to their high dependence on the creativity
and skills of its human resources.

 Among the fundamental causes of project failure are: poor management, inadequacies in planning, con-
trol and monitoring processes [37]. These causes can be mitigated if techniques are available for knowl-
edge discovery and analysis of data historical summaries in linguistic form. From this, decision-makers
would have easily understandable information to facilitate tasks such as decision analysis, prediction or
forecasting [38].

 Different authors point to causes of this phenomenon: poor management and insufficient planning, con-
trol and monitoring processes [37]. In this scenario, it is useful to have techniques for linguistic summa-
ries discovery that allow the complex interrelationships between variables to be presented in natural
language [39][40][41].

In this scenario, learning from the mistakes and successes contained in project history data becomes a neces-
sity. On the other hand, in the project management scenario, most decision makers are not experts in data mining 
and require understandable information for decision-making.  

In this context, the techniques for linguistic summarization of data are applied as one of the descriptive 
knowledge discovery techniques, with a promising and interesting approach to producing linguistic summaries 
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from heterogeneous data using natural language. 
For all reasons explained, authors of this paper select a Database for Project Management Evaluation 

(DPME01) from the Research Database Repository of the Project Management Research Group [42]. This data-
base contains: 

 8430 records with 24 attributes represented by real values in [0, 1] interval,
 4254 projects evaluated as “bad performance”,
 1021 project evaluated as “regular performance” and
 3155 projects evaluated as “correct performance”.
Table 2 contains attributes associated with the database. 

Table 2: Variables in DPME01 data set. 
Variables Description 
cant_comp_alta, cant_comp_media, 
cant_comp_baja,  

Variables to calculate amount of persons by competence levels. 

cant_rrhh_eval_b, cant_rrhh_eval_m, 
cant_rrhh_eval_r 

Variables to calculate amount of persons for each performance level. 

time_availability, time_plan, time_real, tptp, 
tptr, trtr 

Variables associated with the availability of time planned and real-time 
dedicated for human resources. 

icd, iref (quality) ie, ire, irp (control of time) 
irl (procurements) 
irha, irhe, irhf, irht, irrh (human resources) 

Main indicators evaluated during the cut of the project, these indicators 
are associated to control of scheduling. 

eval_fuzzysystem_advanced_01 Variable to calculate evaluation of the project. 

The summaries were generated by using the algorithm AprioriUnificatorLDS [43] based on the combination 
of the apriori algorithm and fuzzy logic techniques. This algorithm generates 79 linguistic summaries that were 
evaluated by 7 experts and preferences of these experts were consider in final results.  

In order to evaluate the summaries, each expert provides his preferences through a vector X = (xj
ki, xj

ki,…, 
xj

k ), where xj
ki represents the preference of expert ei about summary j and considering the criterion ck. Later the 

preferences of experts are aggregated by using the computing with words technique 2-tuples [44]. The criteria 
used to evaluate the summaries were: level of novelty, complexity, simplicity, relevance for making decision. In 
this work authors use specifically, weighted average operator, to combine the preferences of experts. The sum-
maries with high relevance for experts were:  

First summary (O1): Many “projects” with (Around 50% "quantity of human resources with high compe-
tences") or (Around 50% "quantity of human resources with low competences”) or (High "quantity of human 
resources with bad evaluation ") or (Mean "quantity of human resources with good evaluation ") or (Mean 
"quantity of human resources with Regular evaluation ") have Bad “Performance indicator”.  

Zadeh quality of summary:  T(0.872, 0.29, 0.748, 0.04, 1, 0.74)  
T extended quality of summary: T(0.976, 0.68, 0.706, 0.56, 0.589, 0.503, 0.618, 0.205, 0.062, 0.915) 

This summary indicates that human resource performance has a high influence on project evaluation. 
Summary explains that there are many projects with bad evaluation having a bad performance of its human re-
sources too. Organizations that develop these projects have to improve human resource control.  

About its T-values: The T-values proposed by Zadeh presents this summary with low appropriateness than T-
values based on neutrosophic. In this case, the project manager’s preferences are closer to T-values based on 
neutrosophic than Zadeh´s T-values. The truth values in T-values, based on neutrosophic, report better results 
than Zadeh´s T-values respect to nearness to project managers’ preferences.  

Second summary (O2): Around 50% of “projects” with (High "quantity of “human resources with bad 
evaluation") have (Perfect "real time of real work").  

Zadeh quality of summary:  T(0.610, 0.83, 0.209, 0.04, 1, 0.42) 
T extended quality of summary: T(0.979, 0.57, 0.880, 0.441, 0.309, 0.049, 0.504, 0.925, 0.458, 0.915) 

This summary has a high degree of truth and it explains that in Around 50% of projects with “High” quantity 
of human resources bad evaluated to have a “real time of real work” “Perfect”. Besides, this summary states that 
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in these projects there are false statements of real-time dedicated. The Project Management Office (PMO) that 
control these projects have to improve the control of time declared by human resources and to analyze with 
Project managers and team leaders the false declarations. 

Third summary (O3): Around 50% of “projects” with (Regular "useful performance of human resources ") 
or (Low "quantity of human resources well evaluated") or (Regular "performance of human resources ") or 
(Mean "time availability ") have (Bad "efficacy"). 

Zadeh quality of summary:  T(0.863, 0.29, 0.802, 0.09, 1, 0.76)  
T extended quality of summary: T(0.965, 0.56, 0.655, 0.637, 0.609, 0.574, 0.539, 0.189, 0.062, 0.915) 

This summary indicates that human resources have a high influence on project quality. In situations with low 
performance of human resources or with low available time, then it affected the quality of the project frequently. 
In this case, the project manager has to check the dedicated time of human resources and the quality of the 
project.  

Four summary (O4): Around 50% of “projects” with (Bad "performance indicator ") or (Low "quantity of 
human resources well evaluated ") or (Regular "Project evaluation ") or (Low "quantity of human resources 
regular evaluated") have (Bad "production on process of project "). 

Zadeh quality of summary:  T(0.664, 0.96, 0.127, 0.09, 1, 0.41)  
T extended quality of summary: T(0.903, 0.686, 0.833, 0.622, 0.259, 0.243, 0.053, 0.972, 0.277, 0.915) 

This summary shows that in 50% of projects with a bad evaluation, presents difficulties with its production 
on a process. This situation should be attending quickly because of would trigger conflicts with clients in the fu-
ture.  

Five summaries (O5): Around 50% of “projects” with (Mean "quantity of human resources bad evaluated ") 
have (Bad "efficacy"). 

Zadeh quality of summary:  T(0.976, 0.98, 0.011, 0.01, 1, 0.5)  
T extended quality of summary: T(0.931, 0.766, 0.808, 0.516, 0.242, 0.227, 0.059, 0.976, 0.383, 0.915) 

This summary means that projects with bad performance of human resources present serious problems in the 
quality of the project. Besides; PMO that controls these projects have to elevate the control of quality. In order to 
elevate the levels of quality, they should have decisions such as: to increase the rewards to human resources, pe-
nalize the bad performance of human resources or to contract new workers with better competencies.  

Six summaries (O6): Few “projects” with (Perfect "dedicated time") have (Around 50% "human resources 
with low competence”).  

Zadeh quality of summary:  T(0.728, 0.89, 0.103, 0.01, 1, 0.43) 
T extended quality of summary:  T(0.761, 0.234, 0.764, 0.513, 0.244, 0.076, 0.130, 0.959, 0.486, 0.915) 

This summary shows high dependence between human competences and efficiency. In this case, project 
managers should keep this work to improve the competencies.  

In order to compare the results of two methods, authors, create three ranking list of linguistic summaries: 
 The first ranking called “ideal ranking” represents the order of summaries by considering the prefe-

rences of project managers implicated on validations. 
 The second ranking contains the order of summaries by considering the T-values from Zadeh.
 The third ranking of summaries represents the order of summaries by considering the T-values

based on neutrosophic theory, proposed in this work.
Authors calculate deviations between “ideal ranking” with respect to the others by using the least squares 

method, see equation (41). 

 (41) 

Where z represents the number of summaries obtained and ideali outputi represents the position of summary 
on ranking. The method with a low deviation to “ideal ranking” represents the method with better results. The 
results of the T exposed above of the six summaries analyzed are presented in table 3.  

 )-output(output) D(ideal, 2
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Table 3: Comparisons of rankings, in algorithms outputs. 
Ideal ranking, considering project 
managers 

Ranking based on T-values 
of Zadeh 

Ranking based on neutrosophic 
T-values 

1 2 2 

2 5 1 

3 3 4 

4 6 5 

5 1 3 

6 4 6 

Least squares measure of deviation 5.83 2.83 

Results of comparison permit to identify that ranking obtained from proposed T-values is closer to “ideal 
ranking” than ranking based on T-values of Zadeh. The T-values proposed permits to evaluate the indeterminacy 
and the falsity of the membership of objects to linguistic summaries while T-values of Zadeh does not permits to 
evaluate these values.  

The T-values based on neutrosophic evaluate more dimensions of summaries and report more data useful to 
select the relevant summaries. For example, the combination of Te1a, Te1b, Te1c (equations 31, 32, and 33 
respectively) reports more information than T1 proposed by Zadeh associated with the truth of summary.  

The length of the summary called T5 proposed by Zadeh does not consider the number of variables impli-
cated on search while the Te5 (equations 40) consider the number of variables. Indicator Te5 is represented by a 
bell function with a better behavior than the exponential function proposed by Zadeh.  

Conclusion 

The use of neutrosophic theory in linguistic data summarization techniques permits the introduction of the 
indeterminacy concepts on linguistic summaries and permits to improve the interpretability of summaries. 

The incorporation of neutrosophic sets in T certainty calculation allows having a fairer notion about the 
certainty of the objects of the summary. 

Ranking of summaries obtained from T-values based on neutrosophic is closer to “ideal ranking” than rank-
ing based on T-values of Zadeh.   

The T-values proposed permits to evaluate the indeterminacy and the falsity of the membership of objects to 
linguistic summaries while T-values of Zadeh do not permits to evaluate these values.  

The T-values based on neutrosophic evaluate more dimensions of summaries and report more data useful to 
select the relevant summaries. 

The incorporation of the alpha-cut value avoids recovering objects with low influence in summaries into the 
T-values calculation. 

Experts consider neutrosophic T-values more expressiveness than traditional T-values. The application of 
linguistic data summarization techniques combined with neutrosophic numbers in the project management envi-
ronment reports good results and should be applied in future works too. 

Summaries obtained permit to project managers and to PMO personal improve the decisions. The use of neu-
trosophic theory combined with linguistic data summarization techniques constitutes a new area of investigations. 

Summaries show high dependence between human competences and efficiency. Summaries obtained permit 
detection in some projects of false declarations of "real time dedicated" indicator and permit to increase the con-
trol of projects with these difficulties. 

Summaries obtained help to detect project with serious problems in the indicator “production on process” 
and to emit alerts to PMO personal about these projects. 
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Abstract:The fuzzy set and intuitionistic fuzzy set are two useful mathematical tool for dealing with impression
and uncertainty. However sometimes these theories may not suffice to model indeterminate and inconsistent informa-
tion encountered in real world. To overcome this insufficiency, neutrosophic set theory and single-valued neutrosophic
set (SVNS) theory which is useful in practical applications, were proposed. Many researchers have studied on single-
valued triangular neutrosophic numbers and single-valued trapezoidal neutrosophic numbers. In this paper, concepts
of Gaussian single-valued neutrosophic number (GSVNN), α-cut of a GSVNN and parametric form of a GSVNN
are defined, and based on α-cuts of GSVNNs, arithmetic operations for GSVNNs are defined. Also, some results
are obtained related to arithmetic operations of GSVNNs. Furthermore, a decision making algorithm is developed by
using GSVNNs operations, and its an application in medical diagnosis is given.

Keywords: Neutrosophic set, Single-valued neutrosophic number, Gaussian single-valued neutrosophic number,
α−cut, decision making

1 Introduction
The concept of fuzzy set was defined by Zadeh [38] in 1965. A fuzzy set A on a fixed set X is character-ized 
by membership function denoted by µA such that µA : A → [0, 1]. In 1976, Sanchez [32] proposed a method to 
solve basic fuzzy relational equations, and in [33] he gave a method for medical diagnosis based on 
composition of fuzzy relations. In 2013, ¸Celik and Yamak [11] applied the fuzzy soft set theory to Sanchezs 
approach for medical diagnosis by using fuzzy arithmetic operations, and presented a hypothetical case study 
to illustrate process of proposed method. Concept of Gaussian fuzzy number and its α−cuts were defined by 
Dutta and Ali [13]. Garg and Singh [15] suggested the numerical solution for fuzzy system of equations by 
using the Gaussian membership function to the fuzzy numbers considering in its parametric form. In 2017, 
Dutta and Limboo [14] introduced a new concept called Bell-shaped fuzzy soft set, and gave some 
applications of this set in medical diagnosis based on C¸ elik and Yamak’s work [11].

The concept of neutrosophic set, which is a generalization of fuzzy sets [38], intuitionistic fuzzy sets [1], 
was introduced by Smarandache [34] to overcome problems including indeterminate and inconsistent in-
formation. A neutrosophic set is characterized by three functions called truth-membership function (T (x)), 
indeterminacy-membership function (I(x)) and falsity membership function (F (x)). These functions are real 
standard or nonstandard subsets of ]−0, 1+[. In some areas such as engineering and real scientific fields, mod-
eling of some problems is difficult with real standard or nonstandard subsets of ]−0, 1+[. To make a success of
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this difficulties, concepts of single-valued neutrosophic set (SVNS) and interval neutrosophic set (INS) were 
in-troduced by Wang et al. in [35] and [36]. Recently, many researchers have studied on concept of single-
valued neutrosophic numbers, which are a special case of SVNS, and is very important tool for multi criteria 
decision making problems. For example, Liu et al. [19] proposed some new aggregation operators and 
presented some new operational laws for neutrosophic numbers (NNs) based on Hamacher operations and 
studied their prop-erties. Then, they proposed the generalized neutrosophic number Hamacher weighted 
averaging (GNNHWA) operator, generalized neutrosophic number Hamacher ordered weighted averaging 
(GNNHOWA) operator, and generalized neutrosophic number Hamacher hybrid averaging (GNNHHA) 
operator, and explored some properties of these operators and analyzed some special cases of them. Biswas et 
al. [4] studied on trape-zoidal fuzzy neutrosophic numbers and its application in multi-attribute decision 
making Deli and Subas¸[16] defined single-valued triangular neutrosophic numbers (SVTrNN) and proposed 
some new geometric operators for SVTrNNs. They also gave MCDM under SVTrN information based on 
geometric operators of SVTrNN. In [17], Deli and Subas¸ defined α−cut of SVNNs to apply the single-valued 
trapezoidal neutrosophic num-bers (SVTNNs) and SVTrNNs, then they used these new concepts to solve a 
MCDM problem. Also, many researchers studied on applications in decision making and group decision 
making of neutrosophic sets and their some extensions and subclasses, based on similarity measures [37, 23, 
24, 25, 21, 27], TOPSIS method [26, 5, 7, 10, 39], grey relational analysis [2, 12], distance measure [8], 
entropy [28], correlation coefficient [18] and special problem in real life [3, 6, 9, 30, 31, 20, 22].

The SVTrNNs and SVTNNs are useful tool indeterminate and inconsistent information. However, in some 
cases obtained data may not be SVTrN or SVTN. Therefore, in this study, a new kind of SVNNs called 
Gaussian single-valued neutrosophic numbers (GSVNNs) is introduced. Also, α−cut, parametric form of 
GSVNNs, and arithmetic operations of GSVNNs by using α−cuts of GSVNNs are defined, and some results 
are obtained related to α−cut of GSVNNs. Furthermore, based on C¸ elik and Yamak’s work in [11] and Dutta 
and Limboo’s work in [14], a decision making method is proposed for medical diagnosis problem. Finally, a 
hypothetical case study is given to illustrate processing of the proposed method.

2 Preliminaries

2.1 Single-valued neutrosophic sets

A neutrosophic set ã on the universe of discourse X is defined as follows:

ã =
{
〈x, at(x), ai(x), af (x))〉 : x ∈ X

}
where at, ai, af : X →]−0, 1+[ and −0 ≤ at(x) + ai(x) + af (x) ≤ 3+ [34]. From philosophical point of view, 
the neutrosophic set takes the value from real standard or non-standard subsets of ]−0, 1+[. In some real life 
applications, modeling of problems by using real standard or nonstandard subsets of ]−0, 1+[ may not be easy 
sometimes. Therefore concept of single valued neutrosophic set (SVN-set) was defined by Wang et al. [36] as 
follow:

Let X 6= ∅, with a generic element in X denoted by x. A single-valued neutrosophic set (SV NS) ã is
characterized by three functions called truth- membership function at(x), indeterminacy-membership function
ai(x) and falsity-membership function af (x) such that at(x), ai(x), af (x) ∈ [0, 1] for all x ∈ X .
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If X is continuous, a SV NS ã can be written as follows:

ã =

∫
X

〈at(x), ai(x), af (x)〉 /x, for all x ∈ X.

If X is crisp set, a SV NS ã can be written as follows:

ã =
∑
x

〈at(x), ai(x), af (x)〉 /x, for all x ∈ X.

Here 0 ≤ at(x) + ai(x) + af (x) ≤ 3 for all x ∈ X . For convenience, a SVNN is denoted by ã = 〈at, ai, af〉.

Definition 2.1. (Gaussian fuzzy number) A fuzzy number is said to be Gaussian fuzzy number GFN(µ, σ)
whose membership function is given as follows:

f(x) = exp(−1

2
(
x− µ
σ

)2),−∞ < x <∞,

where µ denotes the mean and σ denotes standard deviations of the distribution.

Definition 2.2. α-cut of Gaussian fuzzy number: Let membership function for Gaussian fuzzy number is
given as follows:

f(x) = exp(−1

2
(
x− µ
σ

)2).

Then, α-cut is given Aα =
[
µ− σ

√
−2 logα, µ+ σ

√
−2 logα

]
3 Gaussian SVN-number:
Definition 3.1. A SVN-number is said to be Gaussian SVN-number
GSV NN

(
(µt, σt), (µi, σi), (µf , σf )

)
whose truth-membership function, indeterminacy-membership function

and falsity-membership function are given as follows:

ϕ(xt) = exp
(
−1

2
(
xt − µt
σt

)2
)
,

ϕ(xi) = 1−
(
exp(−1

2
(
xi − µi
σi

)2
)
,

ϕ(xf ) = 1−
(
exp(−1

2
(
xf − µf
σf

)2
)
,

respectively. Here µt (µi, µf ) denotes mean of truth-membership (indeterminacy-membership, falsity-membership)
value. σt (σi, σf ) denotes standard deviation of the distribution of truth-membership (indeterminacy-membership,
falsity-membership) value.

Example 3.2. Let Ã = GSV NN
(
(0.4, 0.2), (0.6, 0.3), (0.3, 0.1)

)
be Gaussian SVN-number. Then graph-

ics of truth-membership function, indeterminacy-membership function and falsity-membership function of
GSVNN Ã are depicted in Fig 1.
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Figure 1: GSVNN Ã

Definition 3.3. α-cut of Gaussian SVN-number: Truth-membership function, indeterminacy-membership
function and falsity-membership function for Gaussian SVN-number Ã are given as follows:

ϕ(xt) = exp(−1

2
(
xt − µt
σt

)2),

ϕ(xi) = 1− exp(−1

2
(
xi − µi
σi

)2),

ϕ(xf ) = 1− exp(−1

2
(
xf − µf
σf

)2)

respectively.
Then α-cuts of them are as follows:

Atα =
[
µt − (σt

√
−2 logα), µt + (σt

√
−2 logα)

]
,

Aiα =
[
µi − (σi

√
−2 log(1− α)), µi + (σi

√
−2 log(1− α))

]
,

Afα =
[
µf − (σf

√
−2 log(1− α)), µf + (σf

√
−2 log(1− α))

]
,

respectively.

3.1 Arithmetic operations of Gaussian SVN-numbers

Let Ã = GSV NN
(
(µAt , σAt), (µAi , σAi), (µAf , σAf )

)
and B̃ = GSV NN

(
(µBt , σBt), (µBi , σBi), (µBf , σBf )

)
be two Gaussian SVN-numbers. Then their α-cuts (0 < α < 1) of these numbers are as follows:

Atα =
[
µAt − (σAt

√
−2 logα), µAt + (σAt

√
−2 logα)

]
,

Aiα =
[
µAi − (σAi

√
−2 log(1− α)), µAi + (σAi

√
−2 log(1− α))

]
,
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Afα =
[
µAf − (σAf

√
−2 log(1− α)), µAf + (σAf

√
−2 log(1− α))

]
and

Btα =
[
µBt − (σBt

√
−2 logα), µBt + (σBt

√
−2 logα)

]
,

Biα =
[
µBi − (σBi

√
−2 log(1− α)), µBi + (σBi

√
−2 log(1− α))

]
,

Bfα =
[
µBf − (σBf

√
−2 log(1− α)), µBf + (σBf

√
−2 log(1− α))

]
,

respectively.
Based on α-cuts of Ã and B̃, arithmetic operations between GSVNN Ã and GSVNN B̃ are defined as

follows:

1. Addition:
Atα +Btα =

[
(µAt + µBt)− (σAt + σBt)

√
−2 logα, µAt + (σAt + σBt)

√
−2 logα

]
Aiα +Biα =

[
(µAi +µBi)− (σAi +σBi)

√
−2 log(1− α), (µAi +µBi)+ (σAi +σBi)

√
−2 log(1− α)

]
,

Afα+Bfα =
[
(µAf+µBf )−(σAf+σBf )

√
−2 log(1− α), (µAf+µBf )+(σAf+σBf )

√
−2 log(1− α)

]
,

Truth-membership function, indeterminacy-membership function and falsity-membership function of
addition of GSVNNs Ã and B̃ are as follows:

ϕ(A+B)(xt) = exp
(
− 1

2
(
xt − (µAt + µBt)

σAt + σBt
)2
)
,

ϕ(A+B)(xi) = 1− exp
(
− 1

2
(
xi − (µAi + µBi)

σAi + σBi
)2
)
,

and

ϕ(A+B)(xf ) = 1− exp
(
− 1

2
(
xf − (µAf + µBf )

σAf + σBf
)2
)
,

respectively.

2. Substraction:
Atα −Btα =

[
(µAt − µBt)− (σAt + σBt)

√
−2 logα, µAt − (σAt + σBt)

√
−2 logα

]
Aiα −Biα =

[
(µAi −µBi)− (σAi +σBi)

√
−2 log(1− α), (µAi −µBi)+ (σAi +σBi)

√
−2 log(1− α)

]
,

Afα−Bfα =
[
(µAf−µBf )−(σAf+σBf )

√
−2 log(1− α), (µAf−σBf )+(σAf+σBf )

√
−2 log(1− α)

]
,

Truth-membership function, indeterminacy-membership function and falsity-membership function of
substraction of GSVNNs Ã and B̃ are as follows:

ϕ(A−B)(xt) = exp
(
− 1

2
(
xt − (µAt − µBt)

σAt + σBt
)2
)
,

ϕ(A−B)(xi) = 1− exp
(
− 1

2
(
xi − (µAi − µBi)

σAi + σBi
)2
)
,
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and

ϕ(A−B)(xf ) = 1− exp
(
− 1

2
(
xf − (µAf − µBf )

σAf + σBf
)2
)
,

respectively.

3. Multiplication:
Atα .Btα =

[
(µAt−σAt

√
−2 logα)·(µBt−σBt

√
−2 logα), (µAt+σAt

√
−2 logα)·(µBt+σBt

√
−2 logα)

]
Aiα .Biα =

[
(µAi − σAi

√
−2 log(1− α)) · (µBi − σBi

√
−2 log(1− α)), (µAi + σAi

√
−2 log(1− α)) ·

(µBi + σBi
√
−2 log(1− α))

]
Afα .Bfα =

[
(µAf −σAf

√
−2 log(1− α)) ·(µBf −σBf

√
−2 log(1− α)), (µAf +σAf

√
−2 log(1− α)) ·

(µBf + σBf
√
−2 log(1− α))

]
4. Division:

Atα
Btα

=
[
µAt−(σAt

√
−2 logα)

µBt+(σBt
√
−2 logα) ,

µAt+(σAt
√
−2 logα)

µBt−(σBt
√
−2 logα)

]
,

Aiα
Biα

=
[
µAi−(σAi

√
−2 log(1−α))

µBi+(σBi

√
−2 log(1−α))

,
µAi+(σAi

√
−2 log(1−α))

µBi−(σBi
√
−2 log(1−α))

]
,

Afα
Bfα

=
[
µAf
−(σAf

√
−2 log(1−α))

µBf
+(σBf

√
−2 log(1−α))

,
µAf

+(σAf

√
−2 log(1−α))

µBf
−(σBf

√
−2 log(1−α))

]
.

3.2 Parametric Form of SVN-numbers
A SVN ñ in parametric form is a triple of pairs ((nt(x), nt(x)), (ni(x), ni(x)), (nf (x), nf (x))) of the functions
nt(x), nt(x), ni(x), ni(x), nf (x) and nf (x) for 0 ≤ x ≤ 1 which satisfies the following conditions.

1. (a) nt(x) is bounded and monotonic increasing left continuous function,

(b) nt(x) is bounded and monotonic decreasing right continuous function,

(c) nt(x) ≤ nt(x) for 0 ≤ x ≤ 1.

2. (a) ni(x) is bounded and monotonic decreasing left continuous function,

(b) ni(x) is bounded and monotonic increasing right continuous function,

(c) ni(x) ≤ ni(x) for 0 ≤ x ≤ 1.

3. (a) nf (x) is bounded and monotonic decreasing left continuous function,

(b) nf (x) is bounded and monotonic increasing right continuous function,

(c) nf (x) ≤ nf (x) for 0 ≤ x ≤ 1.

A SVN-number α̃ = 〈αt, αi, αf〉 is simply represented by nt(x) = nt(x) = αt, ni(x) = ni(x) = αi and
nf (x) = nf (x) = αf , 0 ≤ x ≤ 1. For ñ = ((nt(x), nt(x)), (ni(x), ni(x)), (nf (x), nf (x))) and m̃ =
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((mt(x),mt(x)), (mi(x),mi(x)), (mf (x),mf (x))), we may define addition and scalar multiplication as

(n+m)
t
(x) = (n)

t
(x)+(m)

t
(x), (n+m)

i
(x) = (n)

i
(x)+(m)

i
(x), (n+m)

f
(x) = (n)

f
(x)+(m)

f
(x)

(n+m)t(x) = (n)t(x)+(m)t(x), (n+m)i(x) = (n)i(x)+(m)i(x), (n+m)f (x) = (n)f (x)+(m)f (x)

and
(cn)

t
(x) = cni(x), (cn)i(x) = cni(x), (cn)f (x) = cnf (x), c 6= 0

(cn)t(x) = cni(x), (cn)i(x) = cni(x), (cn)f (x) = cnf (x), c 6= 0,

(cn)
t
(x) = cni(x), (cn)

i
(x) = cni(x), (cn)

f
(x) = cnf (x), c ≤ 0

(cn)t(x) = cni(x), (cn)i(x) = cni(x), (cn)f (x) = cnf (x), c ≤ 0.

If c = 〈ct, ci, cf〉 is a SVN-value, then cñ is defined as follows:

(cn)
t
(x) = ctnt(x), (cn)i(x) = cini(x), (cn)f (x) = cfnf (x),

(cn)t(x) = ctnt(x), (cn)i(x) = cini(x), (cn)f (x) = cfnf (x).

Let Ã be a GSVNN as ϕA(xt) = exp(−1
2
(xt−µt

σt
)2), ϕA(xi) = − exp(−1

2
(xi−µi

σi
)2) + 1 and ϕA(xf ) =

− exp(−1
2
(
xf−µf
σf

)2) + 1. Then, parametric form of GSVNN Ã can be transformed as

((nt(x), nt(x)), (ni(x), ni(x)), (nf (x), nf (x))) =
(
(µt − σt

√
−2 logα), µt + σt

√
−2 logα),

(µi − σi
√
−2 log(1− α), µi + σi

√
−2 log(1− α)),

(µf − σf
√
−2 log(1− α), µf + σf

√
−2 log(1− α))

)
Example 3.4. Let us consider (0.5, 0.2, 0.8) = GSV NN((0.5, 0.02), (0.2, 0.05), (0.8, 0.01)) to be a SVN-
number with Gaussian membership functions. Then, its parametric form is as follows:(

(0.5− 0.02
√
−2ln(α), 0.5 + 0.02

√
−2ln(α)), (0.2− 0.05

√
−2ln(1− α), 0.2 + 0.05

√
−2ln(1− α)),

(0.8− 0.01
√
−2ln(1− α), 0.8 + 0.01

√
−2ln(1− α))

)
Proposition 3.5. Addition of two GSVNNs is a GSVNN. Namely;
(Ã+ B̃)(xt) =

(
µA(xt) + µB(xt)− (σAt + σBt)

√
−2 ln(α), µA(xt) + µB(xt) + (σAt + σBt)

√
−2 ln(α)

)
,

(Ã+B̃)(xi) =
(
µA(xi)+µB(xi)−(σAi+σBi)

√
−2 ln(1− α), µA(xi)+µB(xi)+(σAi+σBi)

√
−2 ln(1− α)

)
,

(Ã+B̃)(xf ) =
(
µA(xf )+µB(xf )−(σAf+σBf )

√
−2 ln(1− α), µA(xf )+µB(xf )+(σAf+σBf )

√
−2 ln(1− α)

)
.

Proof. The proof is obvious from definition.

Let us consider GSVNNs A = GSV NN((0.3, 0.5), (0.4, 0.2), (0.7, 0.1)) and B = GSV NN((0.6, 0.2),
(0.5, 0.1), (0.4, 0.3)). Their graphics are shown in Figs (2) and (3)
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Figure 2: GSVNN Ã

Figure 3: GSVNN B̃
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Truth-membership, indeterminacy-membership and falsity-membership function of GSVNN A + B and
A−B are as follows:

ϕ(A+B)(xt) = exp
(
− 1

2
(
x− 0.9

0.7
)2
)
,

ϕ(A+B)(xi) = 1− exp
(
− 1

2
(
x− 0.9

0.3
)2
)
,

ϕ(A+B)(xf ) = 1− exp
(
− 1

2
(
x− 1.1

0.4
)2
)
,

and
ϕ(A−B)(xt) = exp

(
− 1

2
(
x− 0.3

0.7
)2
)
,

ϕ(A−B)(xi) = 1− exp
(
− 1

2
(
x− 0.1

0.3
)2
)
,

ϕ(A−B)(xf ) = 1− exp
(
− 1

2
(
x− 0.3

0.4
)2
)
.

Then, figures of GSVNNs Ã+ B̃ and Ã− B̃ are as in Figs (4) and (5).

Figure 4: GSVNN Ã+ B̃

4 Application of Gaussian SVN-numbers in Medical Diagnosis

Let us consider the decision-making problem adapted from [11].

4.1 Method and Algorithm

Let P = {p1, p2, ..., pp} be a set of patients, S = {s1, s2, ..., ss} be set of symptoms and D = {d1, d2, ..., dd}
be a set of diseases. Patients pi(i = 1, 2, ..., p) are evaluated by experts by using Table 1 for each symptom
sj(j = 1, 2, ..., s), and patient-symptom (PS) matrix is given as follows:
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Figure 5: GSVNN Ã− B̃

PS =


m̃11 m̃12 · · · m̃1s

m̃21 m̃22 · · · m̃2s
...

...
...

...
m̃p1 m̃p2 · · · m̃ps


Here m̃ij = 〈mtij ,miij ,mfij〉 denotes SVN-value of patient pi related to symptom sj .

Table 1: SVN-numbers for linguistic terms
Linguistic terms Linguistic values of SVN-numbers
Absolutely low(AL) 〈0.05, 0.95, 0.95〉
Low(L) 〈0.20, 0.75, 0.80〉
Fairly low(FL) 〈0.35, 0.60, 0.65〉
Medium(M) 〈0.50, 0.50, 0.50〉
Fairly high(FH) 〈0.65, 0.40, 0.35〉
High(H) 〈0.80, 0.25, 0.20〉
Absolutely high(AH) 〈0.95, 0.10, 0.05〉

Symptoms si(i = 1, 2, ..., s) are evaluated with Gaussian SVN-numbers for each disease dk(j = 1, 2, ..., d),
and symptoms-disease (SD) matrix is given as follows:

SD =


ñ11 ñ12 · · · ñ1d

ñ21 ñ22 · · · ñ2d
...

...
...

...
ñs1 ñs2 · · · ñsd

 .

Here ñjk = GSV NN〈(ntjk , σt), (nijk , σi), (nfjk , σf )〉 denotes Gaussian SVN-value of symptom sj related
to disease dk (k = 1, 2, ..., d).
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Decision matrix (PD) is defined by using composition of matrices PS and SD as follows:

PD =


q̃11 q̃12 · · · q̃1d
q̃21 q̃22 · · · q̃2d
...

...
...

...
q̃p1 q̃s2 · · · q̃pd

 =


m̃11 m̃12 · · · m̃1s

m̃21 m̃22 · · · m̃2s
...

...
...

...
m̃p1 m̃p2 · · · m̃ps

 ◦


ñ11 ñ12 · · · ñ1d

ñ21 ñ22 · · · ñ2d
...

...
...

...
ñs1 ñs2 · · · ñsd

 .

Here q̃ik (i = 1, 2, ..., p; k = 1, 2, ..., d) is calculated by

(〈ũt, ũi, ũf〉GSV NN〈(ntjk , σt), (nijk , σi), (nfjk , σf )〉)(x) =

〈(utntjk − utσt
√
−2ln(α), utntjk + utσt

√
−2ln(α)),

(uinijk − uiσi
√
−2ln(1− α), uinijk + uiσi

√
−2ln(1− α)),

(ufnfjk − ufσf
√
−2ln(1− α), ufnfjk + ufσf

√
−2ln(1− α))〉.

For the sake of shortness, (〈ũt, ũi, ũf〉GSV NN〈(ntjk , σt), (nijk , σi), (nfjk , σf )〉)(x) will be denoted by 〈(a, a), (b, b),
(c, c)〉.

For obtained parametric forms of Gaussian SVN-numbers, score functions are defined as follows:

Sqik =
4− (a− b− c) + (a− b− c)

6
(4.1)

If maxSqik = Sqit for 1 ≤ t ≤ k, then it is said that patient pi suffers from disease dt. In case maxSqik
occurs for more than one value, for 1 ≤ t ≤ k, then symptoms can be reassessed.

Algorithm 1
Input: The matrix PS (patient-symptom) obtained according to opinion of expert (decision maker)
Output: Diagnosis of disease

algorithmic
1. Construct matrix PS according to opinions of experts by using Table 1.

2. Construct matrix SD by using GSVNNs.

3. Calculate decision matrix PD.

4. Compute score values of elements of decision matrix PD.

5. Find t for which maxSqik = Sqit for 1 ≤ t ≤ k
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5 Hypothetical case study

In this section, a hypothetical case study is given to illustrate processing of the proposed method.

There are three patients p1, p2, p3, p4 and p5 who it is considered that they suffer from d1 =viral fever,
d2 =tuberculosis, d3 =typhoid, d4 =throat disease or d5 =malaria. In these diseases, common symptoms are
s1 =temperature, s2 =cough, s3 =throat pain, s4 =headache, s5 =body pain.
Step 1: In the results of observation made by an expert, suppose that matrix PS is as follows:

PS =



s1 s2 s3 s4 s5
p1 〈0.95, 0.10, 0.05〉 〈0.65, 0.40, 0.35〉 〈0.20, 0.75, 0.80〉 〈0.20, 0.75, 0.80〉 〈0.80, 0.25, 0.20〉
p2 〈0.35, 0.60, 0.65〉 〈0.65, 0.40, 0.35〉 〈0.50, 0.50, 0.50〉 〈0.80, 0.25, 0.20〉 〈0.95, 0.10, 0.05〉
p3 〈0.65, 0.40, 0.35〉 〈0.50, 0.50, 0.50〉 〈0.80, 0.25, 0.20〉 〈0.20, 0.75, 0.80〉 〈0.80, 0.25, 0.20〉
p4 〈0.20, 0.75, 0.80〉 〈0.80, 0.25, 0.20〉 〈0.95, 0.10, 0.05〉 〈0.35, 0.60, 0.65〉 〈0.20, 0.75, 0.80〉
p5 〈0.80, 0.25, 0.20〉 〈0.35, 0.65, 0.65〉 〈0.05, 0.10, 0.95〉 〈0.80, 0.25, 0.20〉 〈0.20, 0.250.80〉



Step 2: Suppose that matrix SD is as follows:

SD =



d1 d2 d3 d4 d5

s1

〈(.30, .10),
(.50, .01),
(.20, .03)〉

〈(.25, .03),
(.70, .02),
(.50, .01)〉

〈(.25, .15),
(.25, .015),
(.50, .02)〉

〈(.60, .03),
(.40, .18),
(.20, .1)〉

〈(.71, .04),
(.52, .05),
(.45, .02)〉

s2

〈(.65, .12),
(.48, .02),
(.25, .04)〉

〈(.25, .03),
(.32, .02),
(.60, .01)〉

〈(.60, .10),
(.64, .06),
(.18, .018)〉

〈(.60, .09),
(.80, .001),
(.40, .13)〉

〈(.60, .05),
(.30, .05),
(.20, .02)〉

s3

〈(.40, .1),
(.23, .08),
(.50, .01)〉

〈(.50, .06),
(.35, .02),
(.32, .03)〉

〈(.45, .12),
(.40, .15),
(.56, .03)〉

〈(.45, .10),
(.90, .015),
(.50, .18)〉

〈(.88, .02),
(.60, .07),
(.40, .02)

s4

〈(.90, .35),
(.43, .05),
(.80, .07)〉

〈(.25, .01),
(.12, .09),
(.44, .04)〉

〈(.60, .22),
(.30, .19),
(.13, .022)〉

〈(.65, .14),
(.23, .012),
(.41, .20)〉

〈(.90, .06),
(.30, .20),
(.65, .01)〉

s5

〈(.50, .09),
(.32, .021),
(.44, .06)〉

〈(.33, .02),
(.70, .08),
(.60, .07)〉

〈(.75, .03),
(.50, .11),
(.25, .02)〉

〈(.48, .12),
(.43, .02),
(.41, .04)〉

〈(.28, .02),
(.63, .20),
(.50, .08)〉


Step 3: Elements of decision matrix PD = PS ◦ SD are obtained as follows:

For the sake of shortness, some annotations are adapted as follows:
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x =
√
−2ln(α)) and y =

√
−2ln(1− α))

q̃11 =
(
(0.285− 0.095x, 0.285 + 0.095x), (0.050− 0.001y, 0.050

+ 0.001y), (0.010− 0.002y, 0.010 + 0.002y)
)
+
(
(0.423

− 0.078x, 0.423 + 0.078x), (0.192− 0.008y, 0.192

+ 0.008y), (0.088− 0.014y, 0.088 + 0.014y)
)

+
(
(0.08− 0.02x, 0.08 + 0.02x), (0.173− 0.06y, 0.173

+ 0.06y), (0.40− 0.008y, 0.40 + 0.008y)
)

+
(
(0.18− 0.07x, 0.18 + 0.07x), (0.323− 0.038y, 0.323

+ 0.038y), (0.64− 0.056y, 0.64 + 0.056y)
)

+
(
(0.40− 0.072x, 0.40 + 0.072x), (0.080− 0.005y, 0.080

+ 0.005y), (0.088− 0.012y, 0.088 + 0.012y)
)

=
(
(1.368− 0.335x, 1.368 + 0.335x), (0.817− 0.112y,

0.817 + 0.112y), (1.226− 0.092y, 1.226 + 0.092y)
)

By similar way, we have q̃12 =
(
(0.814 − 0.078x, 0.814 + 0.078x), (0.726 − 0.113y, 0.726 + 0.113y), (0.963 −

0.074y, 0.963 + 0.074y)
)

q̃13 =
(
(1.438− 0.300x, 1.438 + 0.300x), (0.931− 0.308y, 0.931 + 0.308y), (0.690− 0.053y, 0.690 + 0.053y)

)
q̃14 =

(
(1.564− 0.231x, 1.564 + 0.231x), (1.314− 0.044y, 1.314 + 0.044y), (0.960− 0.363y, 0.960 + 0.363y)

)
q̃15 =

(
(1.645− 0.103x, 1.645 + 0.103x), (1.005− 0.278y, 1.005 + 0.278y), (1.033− 0.048y, 1.033 + 0.048y)

)
q̃21 =

(
(1, 923− 0.529x, 1.923 + 0.529x), (0.747− 0.069y, 0.747 + 0.069y), (0.650− 0, 056y, 0.650 + 0.056y)

)
q̃22 =

(
(1.014− 0.087x, 1.014 + 0.087x), (0.823− 0.061y, 0.823 + 0.061y), (0.813− 0.037y, 0.813 + 0.037y)

)
q̃23 =

(
(1.895− 0.382x, 1.895 + 0.382x), (0.731− 0.167y, 0.731 + 0.167y), (0.707− 0.040y, 0.707 + 0.040y)

)
q̃24 =

(
(1.801− 0.345x, 1.801 + 0.345x), (1.111− 0.121y, 1.111 + 0.121y), (0.623− 0.243y, 0.623 + 0.243y)

)
q̃25 =

(
(2.065− 0.124x, 2.065 + 0.124x), (0.870− 0.155y, 0.870 + 0.155y), (0.718− 0.036y, 0.718 + 0.036y)

)
q̃31 =

(
(1, 420− 0.347x, 1.429 + 0.347x), (0.900− 0.077y, 0.900 + 0.077y), (1.023− 0, 101y, 1.023 + 0.101y)

)
q̃32 =

(
(1.002− 0.101x, 1.002 + 0.101x), (0.793− 0.111y, 0.793 + 0.111y), (1.011− 0.061y, 1.011 + 0.061y)

)
q̃33 =

(
(1.543− 0.312x, 1.543 + 0.312x), (0.870− 0.244y, 0.870 + 0.244y), (0.531− 0.044y, 0.531 + 0.044y)

)
q̃34 =

(
(1.564− 0.269x, 1.564 + 0.269x), (1.065− 0.090y, 1.065 + 0.090y), (0.780− 0.304y, 0.780 + 0.304y)

)
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q̃35 =
(
(1.870− 0.095x, 1.870 + 0.095x), (0.891− 0.263y, 0.891 + 0.263y), (0.958− 0.045y, 0.958 + 0.045y)

)
q̃41 =

(
(1.375− 0.352x, 1.375 + 0.352x), (1.016− 0.066y, 1.016 + 0.066y), (1.107− 0, 126y, 1.107 + 0.126y)

)
q̃42 =

(
(0.879− 0.095x, 0.879 + 0.095x), (1.237− 0.136y, 1.237 + 0.136y), (1.302− 0.094y, 1.302 + 0.094y)

)
q̃43 =

(
(1.318− 0.307x, 1.318 + 0.307x), (0.943− 0.238y, 0.943 + 0.238y), (0.749− 0.051y, 0.749 + 0.051y)

)
q̃44 =

(
(1.423− 0.264x, 1.423 + 0.264x), (0.986− 0.156y, 0.986 + 0.156y), (0.798− 0.271y, 0.798 + 0.271y)

)
q̃45 =

(
(1.829− 0.092x, 1.829 + 0.092x), (1.178− 0.327y, 1.178 + 0.327y), (1.243− 0.092y, 1.243 + 0.092y)

)
q̃51 =

(
(1.308− 0.425x, 1.308 + 0.425x), (0.648− 0.041y, 0.648 + 0.041y), (1.190− 0.104y, 1.190 + 0.104y)

)
q̃52 =

(
(0.579− 0.050x, 0.579 + 0.050x), (0.623− 0.063y, 0.623 + 0.063y), (1.362− 0.101y, 1.362 + 0.101y)

)
q̃53 =

(
(1.063− 0.343x, 1.063 + 0.343x), (0.719− 0.133y, 0.719 + 0.133y), (0.975− 0.065y, 0.975 + 0.065y)

)
q̃54 =

(
(1.329− 0.197x, 1.329 + 0.197x), (0.875− 0.055y, 0.875 + 0.055y), (1.185− 0.348y, 1.185 + 0.348y)

)
q̃55 =

(
(1.589− 0.103x, 0.509 + 0.103x), (0.618− 0.152y, 0.618 + 0.152y), (1.130− 0.102y, 1.130 + 0.102y)

)
Step 4: By using Eq. (4.1), scores of elements of decision matrix PD are obtained as follows:

SM =



d1 d2 d3 d4 d5
p1 0.442 0.375 0.606 0.430 0.536
p2 0.842 0.459 0.819 0.689 0.826
p3 0.499 0.399 0.714 0.573 0.674
p4 0.417 0.113 0.542 0.546 0.470
p5 0.490 0.198 0.456 0.423 0.617


Step 5: According to score matrix SM, we say that patient 1 suffer from typhoid, patient 2 suffer from viral
fever, patient 3 suffer from typhoid, patient 4 suffer from threat disease and patient 5 suffer from malaria.

6 Conclusion
In this paper, some new concepts and operations was defined such as GSVNNs, α−cuts of GSVNNs, paramet-
ric forms of GSVNNs and arithmetic operations of GSVNNs. Also, based on operations between parametric
forms of GSVNNs and composition of matrices, a decision making method was proposed and presented an
application in medical diagnosis based on hypothetical data. In future, Cauchy single-valued neutrosophic
numbers may be defined and its properties can be investigated. Also, this study can be extended for other
distributions in mathematical statistics. Furthermore, decision making methods can be developed for proposed
new SVNNs.
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Abstract.  VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) is a popular strategy for multi- attribute decision 
making (MADM). We extend the VIKOR strategy for MAGDM problems in trapezoidal neutrosophic number environment. In 
decision making situation, single-valued trapezoidal neutrosophic numbers are employed to express the attribute values. Then we 
develop an extended VIKOR strategy to deal with MAGDM in single-valued trapezoidal neutrosophic number environment. The 
influence of decision-making mechanism coefficient is presented. To illustrate and validate the proposed VIKOR strategy, an 
illustrative numerical example of MAGDM problem is solved in trapezoidal neutrosophic number environment. 

Keywords:  Neutrosophic set, Trapezoidal neutrosophic fuzzy number, Multi-attribute decision making, VIKOR strategy..

1. Introduction:

Smarandache [1] poineered the neutrosophic set based on neutrosophy in 1998. In 2010, Wang et al. [2] 
proposed single valued neutrosophic set (SVNS). SVNS has been successfully applied  to solve decision making 
problems [3-31], image processing [32-35], conflict resolution [36], educational problem [37, 38], social 
problem [39, 40], etc.  Broumi et al. [41] presented an overview neutrosophic sets. Recently, Peng and Dai [42] 
presented a bibliometric analysis of neutrosophic sets for last two decades.  
Single valued trapezoidal neutrosophic number (SVTrNN) [43] is an extension of SVNS. Every element of 
SVTrNN is a trapezoidal number with three membership degress namely, truth, indeterminacy and falsity 
membership degrees.  Deli and Subhas [10] developed a ranking strategy of SVTrNNs. Biswas et al. [7] 
established  value and ambiguity based ranking strategy for SVTrNN and employed the strategy to deal with 
MADM problem.  Biswas et al. [44] developed TOPSIS strategy for MADM with trapezoidal neutrosophic 
numbers (TrNNs). Biswas et al. [45] presented distance measure based MADM strategy with interval trapezoidal 
neutrosophic numbers (ITrNNs). For simplicity, we call SVTrNN as TrNN.  
In 1998,  Opricovic [46] first introduced the VIKOR strategy in the literature to deal with multi criteria group 
decision making (MCGDM) with conflicting objectives[47,48]. 
Using TOPSIS and VIKOR, Pouresmaeil et al.[49] proposed an MAGDM strategy in SVNS environment. 
Bausys and Zavadskas[50] proposed the VIKOR strategy in interval neutrosophic set (INS) environment.  Huang 
et al.[51] developed a VIKOR strategy in INS environment. Liu and Zhang[52]  studied VIKOR strategy in 
neutrosophic hesitant fuzzy set environment. In 2017, Hu et al.[53] developed a projection based VIKOR 
strategy for doctor selection problem in INS environment. In 2017, Selvakumari et al. [54] studied VIKOR 
strategy using octagonal neutrosophic soft matrix.  Pramanik et al. [55] developed a VIKOR based MAGDM 
strategy in bipolar neutrosophic set environment. In 2018, Pramanik et al. [56] introduced a VIKOR strategy for 
MAGDM in neutrosophic cubic set environment. Dalapati and Pramanik [57] further revisited VIKOR based 
MAGDM strategy [56] to make it more comprehensive.  

VIKOR strategy in trapezoidal neutrosophic number (TrNN) environment is not studied in the literature.  
To fill up this research gap, we propose a VIKOR strategy to deal with MAGDM problems in TrNN 
environment. Also, we solve an MAGDM problem based on VIKOR  strategy in trapezoidal neutrosophic 
number. 

The rest of the paper is develpoed as follows. In section 2, we briefly describe definitions of trapezoidal fuzzy 
number, TrNN, trapezoidal neutrosophic weighted arithmetic averaging (TrNWAA) operator, Hamming distance 
between two TrNNs. In section 3, we briefly describe extended VIKOR strategy. Thereafter in section 4, we 
present a VIKOR strategy in TrNN environment. In section 5, we solve an MAGDM problem using the proposed 
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VIKOR strategy. In section 6, we present  the sensitivity analysis. We represent conclusion and scope of future 
research in section 7. 

2. Preliminaries
We present some fundamental definitions of fuzzy sets, neutrosophic set, SVNS, and TrNN. 

Definition 2.1 [58] Let Y   be a universal set . Then, a fuzzy set F is presented as: 
{ , ( ) : }FF y y y Y      (1) 

 where ( )F y   is the degree of membership which maps Y to [0,1] or we can express by : [0,1]
F

Y  . 

Definition 2.2[1]Let Y  be an universal set . A neutrosophic set N can be presented of the form: 
{ : ( ), ( ), ( ) }

N N N
N z T y I y F y y Y         (2) 

 where the functions , , : ] 0,1 [T I F Y    define repectively the degree of truth membership, the degree of 

indeterminacy, and the degree of non-membership or falsity of the component y Y   and satisfy the condition, 

0 ( ) ( ) ( ) 3
N N N

T y F y I y        (3) 

Definition 2.3 [2] Let Y  be a universal set. An SVNS N in Y  is described by 
{ : ( ), ( ), ( ) }

N N N
N y T y I y F y y Y          

 where ( ) : [0,1]
N

T y Y   , ( ) : [0,1]
N

I y Y  and ( ) : [0,1]
N

F y Y  with the condition 0 ( ) ( ) ( ) 3
N N N

T y F y I y       for 

all y Y .The functions ( ), ( )N NT y I y  and ( )NF y  are  respectively, the truth membership function, the 

indeterminacy membership function and the falsity membership function of the element y  to the set N. 

Definition 2.4[59]  A generalized trapezoidal fuzzy number T denoted by 1 2 3 4( , , , ; )T b b b b v     is described as a

fuzzy subset of the real number  R with membership function 


 which is defined by 

 
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where 1 2 3 4, , ,b b b b     are real number satisfying 1 2 3 4b b b b       and v is the membership degree.

Definition 2.5[43, 44] Let x be a TrNN. Then, its truth membership, indeterminacy membership, and falsity 
membership functions are presented respectively as: 
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Here 0 ( ) 1, 0 ( ) 1
x x

T z I z     and 0 ( ) 1
x

F z  and 1 2 3 40 ( ) ( ) ( ) 3; , , , .
x x x

T z I z F z b b b b R        Then 

1 2 3 4([ , , , ] : , , )x x xx b b b b t i f     is called a TrNN. 

Definition 2.6 [43] Let 
imimimiiiii FITbbbbm ,,);,,,( 4321 (i = 1, 2, …., n ) be a group of TrNNs, then a

trapezoidal neutrosophic weighted arithmetic averaging (TrNWAA) operator is defined as follows: 
n

1 2 n i i
i 1

TrNWAA(m , m ,..., m ) w m



   (8)

where, iw is the weight of im (i = 1, 2, …, n) such that iw >0 and 
1

1
n

i
i

w




  .Specially, when 1/iw n for

i=1,2,…, n  the TrNWAA operator transform into the trapezoidal neutrosophic arithmetic averaging (TrNAA)
operator. 
Definition 2.7[44] Let 1 1 1 1 1 1 1 1

([ , , , ]; , , )m m mm p q r s t i f      and
2 2 22 2 2 2 2([ , , , ]; , )m m mm p q r s t i f      be any two 

TrNNs. The normalized Hamming distance between 1m and 2m is defined as: 

1 1 1 2 2 2 1 1 1 2 2 2

1 1 1 2 2 2 1 1 1 2 2 2

1 2 1 2

1 2

1 2 1 2

(2 ) (2 ) (2 ) (2 )1
( , )
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p t i f p t i f q t i f q t i f
d m m

r t i f r t i f s t i f s t i f
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 
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   
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 (9) 

2.8. Standardize the decision matrix[44] 
Let ( )ij p nD b   be a neutrosophic matrix, where 1 2 3 4([ , , , ]; , , )

ij ij ijij ij ij ij ij b b bb b b b b t i f  is the rating value of  the 

alternative ix  with respect to attribute iy . To remove the effect of several physical dimensions, we standardize 

the decision matrix ( )ij p nb   for benefit type and cost type attributes. 

We denote the standardized decision matrix by * ( )ij p nD s  
1. For benefit type attribute

1 2 3 4
* ([ , , , ]; , , )

ij ij ij

ij ij ij ij
ij b b b

j j j j

b b b b
b t i f

v v v v     (10) 

2.For cost type attribute:

 (11) 

Here 4max{ : 1, 2,..., }j ijv b i p    and 1min{ : 1,2, ..., }j ijv b i p   for j = 1, 2, ..., n

Hence, we obtain standardized matrix *D  as: 

1 2

1 11 12 1
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...
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...( )

... ... ... ... ...

...

n

n

nij p n

p p p p n

b b b

a s s s

a s s sD s

a s s s





 

    

 
 
 
  
 
 
 
 

  (12) 

3.VIKOR Strategy for MADM
Assume that 1 2, ,..., sB B B  are the s alternatives. For the alternative iB  , assume that the rating of the j th

criterion is i jh   , i.e. i jh   is the value of j th criterion for the alternative iB ; the number of criteria is assumed to 

be r. Development of the extended VIKOR strategy is started with the following form of LP - metric: 

*
4 3 2 1

([ , , , ]; , , )
   


ij ij ij

j j j j
ij b b b

ij ij ij ij

v v v v
b t i f

b b b b
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1

1
 { [( ) / (h )] } ,1 ; 1, 2,..., s

r
q q

i q i i j i i
i

L h h h q i  
     


       (13) 

 To formulate ranking measure, 1,iL   (as iS   ) and ,iL   (as iR  ) are employed. The solution obtained by 

min iS   reflects a maximum group utility (‘‘majority” rule), and the solution obtained by min iR    reflects a 

minimum individual regret of the ‘‘opponent”. 
VIKOR stratgey is presented using the following steps: 

(a) Evaluate the best jh  and the worst jh   values of all criteria j = 1, 2, ..., n .

 max ,h minj i j j i j
ii

h h h 
     
  ,for benefit criterion, (14) 

min , h maxj i j j i j
i i

h h h 
      
  ,for cost criterion  (15) 

(a) Calculate  the values iF   and iG  ; i  = 1, 2, ..., m , by these relations:

1

(h )

(h )

n
j j i j

i
j j j

w h
F

h


   

  
  




 (16) 

(h )
max

(h )
j j i j

i
j

j j

w h
G

h


   

  
 

 
    

(17) 

where jw   ( j  =1, 2, …, r) represent the weights  of criteria.

(b) Evaluate the value iK  ; i= 1, 2, ..., s, using following relation:

(F ) (1 )(G )

(F ) (G )
i i

i

v F v G
K

F G

 
 

   

  
 

 
 (18) 

where 
min ,F maxi i

i i
F F F 

  
 

 min ,G maxi i
i i

G G G 
  

 

Here, v indicates the weight of the technique of ‘‘the majority of criteria” (or ‘‘the maximum group utility”) 
. Here we set v = 0.5.  

(c) Sorting by the values F, G and K in decreasing order, we rank the alternatives.  
(d) Propose the alternative B1 as a compromise solution that is ranked the best by the measure K (minimal) sub-

ject to the conditions A1 and A2: 
 A1. Acceptable advantage: 

2 1K(B ) K(B ) DK 

where 2B  is second alternative in the ranking list by K; DK= 1/(s-1); s = the number of alternatives. 
 A2. Acceptable stability in decision making: 
Using F or/and G,   we must have alternative 1B  as the best ranked.  We say the compromise solution as  stable 
subject to 

i. ‘‘voting by majority rule” (when v > 0.5 is needed),
ii. or ‘‘by consensus” v   0.5,
iii. or ‘‘with veto” (v < 0.5).
 v refelcts the weight of the decision making  strategy of ‘‘the majority of criteria” (or ‘‘the maximum group 
utility”).  

 1B  and 2B  are compromise solutions if   A2 is not satisfied, Or
 1 2, ,...., MB B B  are compromise solutions if  A1 is not satisfied.

Evaluate 2 1K(B ) K(B ) DK   to determine BM for maxium M (the positions of these alternatives are 

‘‘in closeness”).  

The minimal  value of K determines the best alternative. 
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4.VIKOR strategy for solving MAGDM problem in TrNN environment:

Consider an MADGM problem consisitng of r alternatives and t attributes. The alternatives and attributes are 
presented by 1 2{ , ,..., }r       and 1 2{ , ,..., }t        respectively.  Assume that 1 2 t{ , ,..., }     is the set of

weights of the attributes, where 0i   and
1

1
t

i
i

 


 . Assume that 1 2 KB {B ,B ,...,B }   be the set of K decision

makers and 1 2{ , ,..., }K        be the set of weights of the decision makers, where 0K   and 
1

1
K

i
i

 


  .  The

rating values offfered by the experts are presented in terms of Trnn 
The MAGDM strategy is described as follows: 

Step-1: Let N
i jD (p )   ( N   = 1, 2, ..., s) be the N  -th decision matrix where i  is alternative with respect to

attribute i  . The N  -th decision matrix denoted by ND  is  presented as:

1 2

1 11 12 1

2 21 22 2

1 2

...

...

...

... ... ... ... ...

...

t
N N N

t
M N N N

t

N N N
r r r rt

p p p

D p p p

p p p

  





  

  

  

   
  
 
 
 
  

(19) 

where N   = 1, 2, ....., s; i  = 1,2, ..., r; j  = 1, 2, ..., t.

Step-2: To standardize the benefit criterion, we use the equation (10) and for cost criterion, we use (11). After 
standardizing,  the decision matrix reduces to 

1 2
* * *

1 11 12 1
* * *

2 21 22 2

* * *
1 2

...

...

...

... ... ... ... ...

...

t
N N N

t
M N N N

t

N N N
r r r rt

p p p

D p p p

p p p

  





  

  

  

   
  
 
 
 
  

 

N =1, 2, ..., s; i=1, 2, ..., r; j  = 1, 2, ..., t..

Step-3:To obtain aggregate decision matrix, we use trapezoidal neutrosophic weighted arithmetic 
operator(TrNWAA) which is presented below: 

1 2 M
ij ij ij ijp TrNWAA(p , p ,..., p )

M q
q ij

q 1
p


  (20) 

Therefore, we obtain the aggregated decision matrix as: 

1 2

1 11 12 1

2 21 22 2

1 2

...

...

...

... ... ... ... ...

...

t

t
N

t

r r r rt

p p p
D p p p

p p p

  







   
 

 
   
 
 

 

  

  

  

Step -4: Define the positive ideal solution (PIS)  S and negative ideal solution (NIS)  S

1 2 3 4 1 2 3 4([ , , , ]; , , ) ([ , , , ]; max , min , min )                 
       

b b b b b b
S b b b b t i f b b b b t i f (21) 

1 2 3 4 1 2 3 4([ , , , ]; , , ) ([ , , , ];max , min , min )                 
       

b b b b b b
S b b b b t i f b b b b t i f  (22) 

Step 5:Compute 

1 2 3 4 1 2 3 4

1 1 2 3 4 1 2 3 4

(([ , , , ]; , , ), ([ , , , ]; , , ))

(([ , , , ]; , , ), ([ , , , ]; , , ))

t
m j j j j nj nj njb b b

m
j b b b b b b

d b b b b t i f b b b b t i f

d b b b b t i f b b b b t i f

       

             



    

     

       

       
(23) 

Neutrosophic Sets and Systems, Vol. 22, 2018 122 



Surapati Pramanik, Rama Mallick. VIKOR based MAGDM Strategy with Trapezoidal Neutrosophic Numbers

1 2 3 4 1 2 3 4

1 1 2 3 4 1 2 3 4

(([ , , , ]; , , ), ([ , , , ]; , , ))
max

(([ , , , ]; , , ), ([ , , , ]; , , ))

t
m j j j j nj nj njb b b

m
j b b b b b b

d b b b b t i f b b b b t i f
Z

d b b b b t i f b b b b t i f

       

             



    

     

       

       
(24) 

where  m is the weight of m  .

Using equation (9), we obtain 

1 2 3 4 1 2 3 4

1 1 2 2

3 3

(([ , , , ]; , , ), ([ , , , ]; , , )

(2 ) (2 ) (2 ) (2 )1

12 (2 ) (2

j j j j nj nj njb b b

j nj nj nj j nj nj njb b b b b b

j njb b b

d b b b b t i f b b b b t i f

b t i f b t i f b t i f b t i f

b t i f b t

      

       

   

              


      

  

     

  

       

   

 
4 4) (2 ) (2 )nj nj j nj nj njb b b

i f b t i f b t i f   

 
 
            

 

and 

1 2 3 4 1 2 3 4

1 1 2 2

3

(([ , , , ]; , , ), ([ , , , ]; , , ))

(2 ) (2 )) (2 ) (2 ))1

12 (2 )

b b b b b b

b b b b b b b b b b b b

b b b

d b b b b t i f b b b b t i f

b t i f b t i f b t i f b t i f

b t i f

             

               

   

              


   

     

           

  

       

   


3 4 4(2 )) (2 ) (2 ))

b b b b b b b b b
b t i f b t i f b t i f           



 
 
                     

 

Step 6: Compute the  by the following formula: 

( ) ( )
(1 )

( ) ( )
m m m m

m
m m m m

Z Z

Z Z 

   
    

   
(25)

 where minm m
m

   , maxm m
m

   (26) 

minm m
m

Z Z   ,  maxm m
m

Z Z  (27) 

Here,  denotes “decision-making mechanism coefficient”. 
i.    is the minimal if 0.5 
ii.    is the “maximum group utility” if 0.5  ,
iii. is both the minimal and the   “maximum group utility” if 0.5  .
Step-7: Ranking the alternative by m m m, Z ,and  .

Step-8: Determine the compromise solution 

Obtain alternative 1 as a compromise solution, that is ranked as the best by the measure   (minimal) if the A1 
and A2 are satisfied: 
A1.  Acceptable  stability:  

2 1 1
( ) ( )

r 1
     


(28) 

where 1 , 2 are the alternatives with 1st and 2nd positions in the ranking by ;  r = the number of alternatives. 
A2.  Acceptable stability in decision making:  

Alternative 1  must also be the best ranked by  or/and Z. This compromise solution is stable within whole 
decision making process. 

o 1 and 2 are compromise solutions if A2 is not satisfied, or

o 1 2 r, ,....,      are compromise solutions if A1 is not satisfied and r  is decided by

constraint 2 1 1
( ) ( )

r 1
     


 for maximum r. 

The minimal  value of   determines the best alternative. 
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 Figure 1. VIKOR based MAGDM strategy in trapezoidal neutrosophic number environment 

5. Numerical example
To illustrate the developed VIKOR strategy, we consider an MAGDM problem adapted from [57].   The 
considered MAGDM problem is described as follows: 

 Define  MAGDM in TrNN environment 

Formulate of the decision matrices Step-1 

Standardize the decision matrices 

Construct aggregated decision matrix using 
trapezoidal neutrosophic weighted arithmetic 
operator 

Step- 2 

Step- 3 

Identify the positive ideal solution S 
and

negative ideal solution S 

Compute mΓ and mZ

Step-4 

Step-5 

Compute m Step- 6 

Rank the alternative by m , mZ , m Step- 7 

Identify compromise solution Step-8 

Start 

End 
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An investment company constitutes a decision making board with three experts to invest certain amount of 
money in  the best alternative. The experts evaluate the four alternatives and three attributes which are described 
below : 
Alteranatives:  

1. Car company( 1  )
2. Food company( 2  ) 
3. Computer company( 3  )
4. Arms company( 4  ) 

Attributes: 
1. Risk factor( 1  )
2. Growth  factor( 2  )
3. Environment impact( 3  )

Suppose, (0.30,0.42,0.28)  be the set of weigts of the decision makers and (0.33,0.39.0.28)  be the set of 

weights of the attributes. 
Step-1: In this step,we construct the decision matrix in TrNNs form 

Decision matrix 1D
1 2 3

1

2

(0.5,0.6,0.7,0.8);0.1,0.4,0.7 (0.1,0.1,0.2,0.3);0.6,0.7,0.5 (0.1,0.2,0.2,0.3);0.7,0.2,0.4

(0.3,0.4,0.5,0.5);0.4,0.5,0.2 (0.1,0.2,0.2,0.4);0.1,0.4,0.3 (0.1,0.1,0.2,0.3);0.5,0.3,0.5

  




  

      

     

3

4

(0.3,0.3,0.30.3);0.1,0.2,0.3 (0.2,0.3,0.4,0.4);0.8,0.2,0.5 (0.6,0.7,0.8,0.9);0.4,0.3,0.1

(0.7,0.8,0.8,0.9);0.3,0.3,0.2 (0.1,0.2,0.3,0.3);0.6,0.5,0.2 (0.2,0.2,0.2,0.2);0.5,0.2,0.2






      

      



















 (29) 

Decision matrix 2D
1 2 3

1

2

(0.1,0.1,0.2,0.3);0.2,0.5,0.1 (0.2,0.2,0.3,0.4);0.2,0.5,0.1 (0.4,0.5,0.6,0.7);0.5,0.7,0.2

(0.2,0.3,0.4,0.5);0.3,0.3,0.2 (0.1,0.1,0.2,0.3);0.3,0.3,0.4 (0.2,0.2,0.3,0.3);0.4,0.5,0.2

  




  

      

     

3

4

(0.1,0.2,0.2,0.3);0.2,0.5,0.6 (0.2,0.3,0.3,0.4);0.2,0.2,0.1 (0.4,0.5,0.6,0.6);0.8,0.1,0.1

(0.5,0.6,0.7,0.7);0.5,0.2,0.1 (0.2,0.2,0.2,0.2);0.3,0.4,0.5 (0.1,0.1,0.2,0.2);0.3,0.7,0.4






      

      
















 


 (30) 

Decision matrix 3D
1 2 3

1

2

(0.3,0.4,0.4,0.5);0.5,0.1,0.1 (0.1,0.2,0.2,0.3);0.5,0.1,0.1 (0.2,0.2,0.3,0.4);0.6,0.2,0.1

(0.2,0.2,0.2,0.2);0.3,0.2,0.7 (0.1,0.1,0.1,0.1);0.4,0.4,0.1 (0.6,0.7,0.8,0.8);0.4,0.1,0.1

  




  

      

     

3

4

(0.2,0.3,0.4,0.5);0.4,0.5,0.3 (0.2,0.3,0.3,0.4);0.5,0.4,0.3 (0.3,0.4,0.4,0.5);0.5,0.2,0.3)

(0.3,0.4,0.4,0.5);0.5,0.2,0.1 (0.1,0.2,0.2,0.3);0.5,0.1,0.1 (0.1,0.2,0.3,0.4);0.2,0.2,0.5)






      

      













 
 
 



 (31) 

Step-2: We do not need to standardize the defining matrix as all the criteria are profit type. 
Step-3:Using TrNWAA operator of  equation (20),we get aggregate decision matrix of (29), (30), and (31) 
which is presented below: 

1 2 3

1

2

(0.276,0.334,0.406,0.506);0.273,0.298,0.179 (0.142,0.17,0.242,0.342);.431,0.352,0.162 (0.254,0.326,0.396,0.496);0.633,0.294,0.203

(0.23,0.302,0.374,0.416);0.332,0.312,0.284 (0.1,0.

  



  
      
   

3

13,0.172,0.274);0.277,0.354,0.249 (0.282,0.31,0.41,0.44);0.564,0.242,0.217

(0.188,0.258,0.286,0.356);0.235,0.380,0.401 (0.2,0.3,0.33,0.372);0.537,0.242,0.162 (0.432,0.532,0.604,0.662);0.640,0.1
  

     

4

69,0.136

(0.504,0.604,0.646,0.704);0.447,0.226,0.123 (0.142,0.2,0.23,0.258);0.461,0.290,0.242 (0.13,0.158,0.228,0.256);0.343,0.338,0.346

 
 
 
 
 

 
        

step-4:Here we define positive ideal soluton and negative solution by employing equations  (21) and (22) 
The positive ideal solution R  is presented as: 

1 2 3

(0.504, 0.604, 0.646, 0.704); 0.447, 0.226, 0.123 (0.2, 0.3, 0.33, 0.372); 0.537,0.242, 0.162 (0.432, 0.532, 0.604, 0.662);0.640, 0.169, 0.136

    

     

The negative ideal solution R  is presented as: 
1 2 3

(0.188, 0.258,0.286,0.356);0.235,0.380, 0.401 (0.1,0.13, 0.172, 0.274);0.277, 0.354,0.249 (0.13, 0.158, 0.228, 0.256);0.343, 0.338, 0.346

    

     

Step-5:Using  equations (23) and (24), we compute m  and  mZ which are presented as:
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1

2

3

0.601,

0.805,

0.33 0.202 0.39 0.070 0.28 0.172

0.294 0.121 0.327

0.33 0.238 0.39 0.119 0.28 0.181

0.294 0.121 0.327

0.33 0.298 0.39 0 0.28 0

0.294 0.121 0

 

  

 

              
     

             
     

         
   

4

0.334,

0.501.

.327

0.33 0 0.39 0.080 0.28 0.284

0.294 0.121 0.327



  

 
 
 

             
     

Here we use Hamming distance to measure the distantance between two TrNN . 
And 

1

2

3

0.227,

max 0.383,

max

0.33 0.202 0.39 0.070 0.28 0.172
max

0.294 0.121 0.327

0.33 0.238 0.39 0.119 0.28 0.181

0.294 0.121 0.327

0.33 0.298 0.39

0.294

Z

Z

Z



 



                 
      

                
      

   
 

4

0.334,

max 0.258.

0 0.28 0

0.121 0.327

0.33 0 0.39 0.080 0.28 0.284

0.294 0.121 0.327
Z



 

          
    

                
      

Step-6:Using (25),(26), and (27) we calculate i

1 2 3 40.283, 1, 0.342, 0.274         

Step -7:The ranking order of alternatives is 

4 1 3 2      

Table 1. Preference ranking order and compromise solution based on  , Z and   

1
 2

 3
 4

 Ranking Compromise 
solution 

 0.6 0.805 0.334 0.501 
3 4 1 2          3

Z 0.228 0.383 0.334 0.258
1 3 3 2         1

)5.0( 

0.282 1 0.342 0.274 
4 1 3 2          4

Step 8: Determine the compromise solution 

If we rank  in decreasing order, the best position alternative is 4 with  ( 4 ) =0.274, and the 2nd best 

position 1   with  ( 1  )=0.283. Therefore,  ( 1 )-  ( 4 )=O.008<0.33(since  r = 4;1/(r-1)=0.33) , which 

does not satisfy the condition 1( ( 2 )-  ( 1  )
1

1




r
 ). 

Here 4  is ranked best by   and Z and satisfies the condition 2.

So, the compromise solution as follows: 

 ( 1  )- ( 4  )=0.008<0.33,

 ( 2  )- ( 4  )=0.726>0.33,
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 ( 3  )- ( 4  )=0.05<0.33,

Therefore, 1 3,   and 4   
are compromise solutions.

6.1 The impact of parameter 

Table 2 demonstrates how the different values of   impact the ranking order of  the alternatives i  . 

 Table 2. For different values of  , ranking the value of i   ( i  = 1, 2, 3, 4) .

Values of  Values of i   Preference order 

0.1   1  =0.057,
 2   =1, 3  =0.615 ,

 4  =0.209 1 4 3 2        

0.2  1  =0.113 ,
 2  =1, 3  =0.547, 4  =0.225 1 4 3 2        

0.3  1  =0.170 , 2  =1, 3  =0.479, 4  =0.241 1 4 3 2        

0.4  1  =0.227 , 2  =1, 3  =0.410 , 4  =0.257 1 4 3 2        

0.5  1  =0.282 , 2  =1, 3  =0.342 , 4  =0.274 4 1 3 2        

0.6  1  =0.340 , 2  =1, 3  =0.274, 4  =0.290 3 4 1 2        

0.7  1  =0.370, 2  =1, 3  =0.205, 4  =0.306 3 4 1 2        

0.8  1  =0.454 , 2  =1, 3  =0.137 , 4  =0.399 3 4 1 2        

0.9  1  =0.510 , 2  =1, 3  =0.068 , 4  =0.338 3 4 1 2        

7. Conclusions

 Extended VIKOR strategy for MAGDM in trapezoidal neutrosophic number environment is presented in the 
paper. TrNWAA operator and Hamming distance are employed to develop the VIKOR strategy for MAGDM. 
Finally, an MAGDM problem is solved to demonstrate the proposed VIKOR strategy. Here, a sensitivity 
analysis is performed to demonstrate the impact of different values of the “decision making mechanism 
coefficient’’ on ranking system. The proposed extended VIKOR strategy for MAGDM problems can be used to 
deal with decision making problems  such as brick selection [60, 61], logistics center selection [62], teacher 
selection  [63], weaver selection [64],  etc. 
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Abstract: In this paper, we first introduce single valued trapezoidal neutrosophic (SVTN) numbers with their proper-
ties. We then define some operations and distances of the SVTN-numbers. Based on these new operations, we also
define some aggregation operators, including SVTN-ordered weighted geometric operator, SVTN-hybrid geometric
operator, SVTN-ordered weighted arithmetic operator and SVTN-hybrid arithmetic operator. We then examine the
properties of these SVTN-information aggregation operators. By using the SVTN-weighted geometric operator and
SVTN-hybrid geometric operator, we also define a multi attribute group decision making method, called SVTN-group
decision making method. We finally give an illustrative example and comparative analysis to verify the developed
method and to demonstrate its practicality and effectiveness.

Keywords: Single valued neutrosophic sets, neutrosophic numbers, trapezoidal neutrosophic numbers, SVTN-
numbers, SVTN-group decision making.

1 Introduction
In real decision making, there usually are many multiple attribute group decision making (MAGDM) prob-
lems. Due to the ambiguity of people’s thinking and the complexity of objective things, the attribute val-
ues of the MAGDM problems cannot always be expressed by exact and crisp values and it may be easier 
to describe them by neutrosophic information. Zadeh [77] initiated fuzzy set theory. It is one of the most 
effective tools for processing fuzzy information which has only one membership, and is unable to express 
non-membership. Therefore, Atanassov [3] presented the intuitionistic fuzzy sets by adding a nonmembership 
function. Also, Atanassov and Gargov [4] proposed the interval-valued intuitionistic fuzzy set by extending 
the membership function and nonmembership function to the interval numbers. These sets can only han-
dle incomplete information, not the indeterminate information and inconsistent information. For this reason, 
Smarandache [53, 54, 55] introduced a new concept that is called neutrosophic set by adding an independent 
indeterminacy-membership on the basis of intuitionistic fuzzy sets from philosophical point of view, which 
is a generalization of the concepts of classical sets, probability sets, rough sets [43], fuzzy sets [77, 23], 
intuitionistic fuzzy sets [3], paraconsistent sets, dialetheist sets, paradoxist sets and tautological sets. In 
theory of neutrosophic sets, truth-membership, indeterminacy-membership and falsity-membership are rep-
resented independently. Also, Wang et al. [62] proposed the interval neutrosophic sets by extending the 
truth-membership, indeterminacy-membership, and falsity-membership functions to interval numbers. After
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Smarandache, Broumi et al. [5, 6, 7], Biswas et al.[8, 9, 10, 11, 12, 13, 14, 15], Kahraman and Otay [32], 
Mondal et al. [35, 36, 37, 38, 39, 40] and Pramanik et al. [44, 45, 46, 47] studied on some decision making 
problems based on neutrosophic information. Recently, fuzzy and neutrosophic models have been studied by 
many authors, such as [1, 2, 19, 20, 28, 29, 30, 48, 49, 50, 52, 57, 58, 62, 63, 80, 81, 82, 83].

Gani et al. [27] presented a method called weighted average rating method for solving group decision 
making problem by using an intuitionistic trapezoidal fuzzy hybrid aggregation operator. Wan et al. [65] in-
vestigated MAGDM problems, in which the ratings of alternatives are expressed with triangular intuitionistic 
fuzzy numbers. Wei [66, 67], introduced some new group decision making methods by developing aggre-
gation operators with intuitionistic fuzzy information. Xu and Yager [60], presented some new geometric 
aggregation operators, such as intuitionistic fuzzy weighted geometric operator, intuitionistic fuzzy ordered 
weighted geometric operator, and intuitionistic fuzzy hybrid geometric operator. Wu and Cao [68] developed 
some geometric aggregation operators with intuitionistic trapezoidal fuzzy numbers and examined their de-
sired properties. Power average operator of real numbers is extended to four kinds of power average operators 
of trapezoidal intuitionistic fuzzy numbers by Wan [64]. Farhadinia and Ban [25] initiated a novel method to 
extend a similarity measure of generalized trapezoidal fuzzy numbers to similarity measures of generalized 
trapezoidal intuitionistic fuzzy numbers and generalized interval-valued trapezoidal fuzzy numbers. Ye [71] 
proposed an extended technique for order preference by similarity to ideal solution method for group deci-
sion making with interval-valued intuitionistic fuzzy numbers to solve the partner selection problem under 
incomplete and uncertain information environment. Recently, some intuitionistic models with intuitionistic 
values have been studied by many authors. For example, on intuitionistic fuzzy sets [26, 59, 76], on interval-
valued intuitionistic fuzzy sets [16, 26], interval-valued intuitionistic trapezoidal fuzzy numbers [26, 69], on 
triangular intuitionistic fuzzy number [17, 24, 26, 33, 34, 61, 78], on trapezoidal intuitionistic fuzzy numbers 
[18, 26, 31, 34, 41, 42, 51, 72, 75, 79], on generalized trapezoidal fuzzy numbers, on generalized trapezoidal 
intuitionistic fuzzy numbers and generalized interval-valued trapezoidal fuzzy numbers [25].

A neutrosophic set can handle a incomplete, indeterminate and inconsistent information from philosophical 
point of view. Ye [74] and ¸Subas¸ [56] introduced single valued neutrosophic numbers, which is a 
generaliza-tion of fuzzy numbers and intuitionistic fuzzy numbers. The neutrosophic numbers are special 
single valued neutrosophic sets on the real number sets, which are useful to deal with ill-known quantities in 
decision data and decision making problems themselves. Then, Ye [73] and Deli and ¸Subas¸ [21, 22] 
developed new methods on single valued neutrosophic numbers based on multi-criteria decision making 
problem. But, multi-criteria group decision making problem has not yet been studied.

The paper is organized as follows. In the next section, we give some basic definitions and properties of
single valued trapezoidal neutrosophic (SVTN) numbers. In Section 3, some operations for SVTN-numbers
and distance between two SVTN-number are presented. In Section 4, we introduce some new geometric ag-
gregation operators, including SVTN-ordered weighted geometric operator, SVTN-hybrid geometric operator,
SVTN-ordered weighted arithmetic operator and SVTN-hybrid arithmetic operator. In Section 5, we develope
a group decision making method, so called SVTN-group decision making method to solve MAGDM problems
based on the SVTN-weighted geometric operator and the SVTN-hybrid geometric operators. We then present
an illustrative example to verify the developed method and to demonstrate its practicality. In Section 6 we give
a comparative analysis. In Section 7, we conclude the paper and give some remarks.
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2 Preliminary
In this section, some basic concepts and definitions on fuzzy sets, intuitionistic fuzzy sets, neutrosophic sets,
single valued neutrosophic sets and single valued neutrosophic numbers are given.

Definition 2.1. [77] Let E be a universe. Then, a fuzzy set X over E is defined by

X = {(µX(x)/x) : x ∈ E}

where µX : E → [0.1] is called membership function of X . For each x ∈ E, the value µX(x) represents the
degree of x belonging to the fuzzy set X .

Definition 2.2. [3] Let E be a universe. Then, an intuitionistic fuzzy set K over E is defined by

K = {< x, µK(x), γK(x) >: x ∈ E}

where µK : E → [0, 1] and γK : E → [0, 1] such that 0 ≤ µK(x)+γK(x) ≤ 1 for any x ∈ E. For each x ∈ E,
the values µK(x) and γK(x) are the degree of membership and degree of non-membership of x, respectively.

Definition 2.3. [54] Let E be a universe. Then, a neutrosophic set A over E is defined by

A = {< x, (TA(x), IA(x), FA(x)) >: x ∈ E}.

where TA(x), IA(x) and FA(x) are called truth-membership function, indeterminacy-membership function and
falsity-membership function, respectively. They are respectively defined by TA : E →]−0, 1+[, IA : E →
]−0, 1+[, FA : E →]−0, 1+[ such that 0− ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

Definition 2.4. [63] Let E be a universe. Then, a single valued neutrosophic set over E is a neutrosophic 
set over E, but the truth-membership function, indeterminacy-membership function and falsity-membership 
function are respectively defined by

TA : E → [0, 1], IA : E → [0, 1], FA : E → [0, 1]

such that 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

Definition 2.5. [22, 56] A single valued trapezoidal neutrosophic number ã = 〈(a1, b1, c1, d1);wã, uã, yã〉 is a
special neutrosophic set on the real number set R, whose truth-membership, indeterminacy-membership, and
a falsity-membership are given as follows:

µã(x) =


(x− a1)wã/(b1 − a1), (a1 ≤ x < b1)
wã, (b1 ≤ x ≤ c1)
(d1 − x)wã/(d1 − c1), (c1 < x ≤ d1)
0, otherwise,

νã(x) =


(b1 − x+ uã(x− a1))/(b1 − a1), (a1 ≤ x < b1)
uã, (b1 ≤ x ≤ c1)
(x− c1 + uã(d1 − x))/(d1 − c1), (c1 < x ≤ d1)
1, otherwise
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and

λã(x) =


(b1 − x+ yã(x− a1))/(b1 − a1), (a1 ≤ x < b1)
yã, (b1 ≤ x ≤ c1)
(x− c1 + yã(d1 − x))/(d1 − c1), (c1 < x ≤ d1)
1, otherwise

respectively.
Sometimes, we use the ãi = 〈(ai, bi, ci, di);wi, ui, yi〉, instead of ãi = 〈(ai, bi, ci, ci);wãi , uãi , yãi〉.

Note that the single valued trapezoidal neutrosophic number is abbreviated as SVTN-number and the set
of all SVTN-numbers on R will be denoted by Ω.

3 Operations and Distances of SVTN-Numbers
In this section, we give operations and distances of SVTN-numbers and investigate their related properties.

Definition 3.1. [73] Let ã = 〈(a1, b1, c1, d1);wã, uã, yã〉, b̃ = 〈(a2, b2, c2, d2);wb̃, ub̃, yb̃〉 ∈ Ω and γ ≥ 0 be any
real number. Then,

1. ã⊕ b̃ = 〈(a1 + a2, b1 + b2, c1 + c2, d1 + d2);wã + wb̃ − wãwb̃, uãub̃, yãyb̃〉

2. ã⊗ b̃ = 〈(a1a2, b1b2, c1c2, d1d2);wãwb̃, uã + ub̃ − uãub̃, yã + yb̃ − yãyb̃〉

3. γã = 〈(γa1, γb1, γc1, γd1); 1− (1− wã)γ, uγã, y
γ
ã〉

4. ãγ = 〈(aγ1 , b
γ
1 , c

γ
1 , d

γ
1);wγã , 1− (1− uã)γ, 1− (1− yã)γ〉

Theorem 3.2. Let ã = 〈(a1, b1, c1, d1);w1, u1, y1〉, b̃ = 〈(a2, b2, c2, d1); w2, u2, y2〉 ∈ Ω. Then, ã⊕ b̃, ã⊗ b̃, γã
and ãγ are also SVTN-numbers.

Proof: It is easy from Definition 3.1.

Theorem 3.3. Let ã = 〈(a1, b1, c1, d1);w1, u1, y1〉, b̃ = 〈(a2, b2, c2, d2);w2, u2, y2〉, c̃ = 〈(a3, b3, c3, d3);w3, u3, y3〉 ∈
Ω and γ, γ1, γ2 be positif real numbers. Then, the followings are valid.

1. ã⊕ b̃=b̃⊕ ã

2. ã⊗ b̃=b̃⊗ ã

3. (ã⊗ b̃)⊗ c̃=ã⊗ (b̃⊗ c̃)

4. (ã⊕ b̃)⊕ c̃=ã⊕ (b̃⊕ c̃)

5. ã⊗ (b̃⊕ c̃)=(ã⊗ b̃)⊕ (ã⊗ c̃)

6. (ã⊗ b̃)γ=b̃γ ⊗ ãγ1

7. ãγ1 ⊗ ãγ2= ã(γ1+γ2) or b̃γ2 ⊗ b̃γ2= b̃(γ1+γ2)

Proof: It is easy from Definition 3.1.
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Definition 3.4. Let ã = 〈(a1, b1, c1, d1);w1, u1, y1〉, b̃ = 〈(a2, b2, c2, d2); w2, u2, y2〉 ∈ Ω. Then, the distance
between ã and b̃ is defined by

dh(ã, b̃) = 1
6

(
|(1 + w1 − u1 − y1)a1 − (1 + w2 − u2 − y2)a2|+

|(1 + w1 − u1 − y1)b1 − (1 + w2 − u2 − y2)b2|+
|(1 + w1 − u1 − y1)c1 − (1 + w2 − u2 − y2)c2|+
|(1 + w1 − u1 − y1)d1 − (1 + w2 − u2 − y2)d2|

)
Example 3.5. Assume that ã = 〈(1, 4, 5, 6); 0.3, 0.4, 0.7〉, b̃ = 〈(1, 2, 5, 7); 0.7, 0.5, 0.1〉 ∈ Ω. Then, the
distance of ã and b̃ is computed by

dh(ã, b̃) = 1
6

(
|(1 + 0.3− 0.4− 0.7)1− (1 + 0.7− 0.5− 0.1)1|+

|(1 + 0.3− 0.4− 0.7)4− (1 + 0.7− 0.5− 0.1)2|+
|(1 + 0.3− 0.4− 0.7)5− (1 + 0.7− 0.5− 0.1)5|+
|(1 + 0.3− 0.4− 0.7)6− (1 + 0.7− 0.5− 0.1)7|

)
∼= 7.78

Theorem 3.6. Let ã = 〈(a1, b1, c1, d1);w1, u1, y1〉, b̃ = 〈(a2, b2, c2, d2); w2, u2, y2〉 ∈ Ω. Then, dh(ã, b̃) meet
the nonnegative, symmetric and triangle inequality (or metric).

Proof: Clearly, the dh(ã, b̃) meet the nonnegative, symmetric properties. For ã = 〈(a1, b1, c1, d1);w1, u1, y1〉,
b̃ = 〈(a2, b2, c2, d2); w2, u2, y2〉, c̃ = 〈(a3, b3, c3, d3); w3, u3, y3〉 ∈ Ω, to prove the triangle inequality, since

|(1 + w1 − u1 − y1)a1 − (1 + w2 − u2 − y2)a2|+
|(1 + w2 − u2 − y2)a2 − (1 + w3 − u3 − y3)a3|
≥ |(1 + w1 − u1 − y1)a1 − (1 + w3 − u3 − y3)a3|

|(1 + w1 − u1 − y1)b1 − (1 + w2 − u2 − y2)b2|+
|(1 + w2 − u2 − y2)b2 − (1 + w3 − u3 − y3)b3|
≥ |(1 + w1 − u1 − y1)b1 − (1 + w3 − u3 − y3)b3|

|(1 + w1 − u1 − y1)c1 − (1 + w2 − u2 − y2)c2|+
|(1 + w2 − u2 − y2)c2 − (1 + w3 − u3 − y3)c3|
≥ |(1 + w1 − u1 − y1)c1 − (1 + w3 − u3 − y3)c3|

|(1 + w1 − u1 − y1)d1 − (1 + w2 − u2 − y2)d2|+
|(1 + w2 − u2 − y2)d2 − (1 + w3 − u3 − y3)d3|
≥ |(1 + w1 − u1 − y1)d1 − (1 + w3 − u3 − y3)d3|
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we have
|(1 + w1 − u1 − y1)a1 − (1 + w2 − u2 − y2)a2|+
|(1 + w2 − u2 − y2)a2 − (1 + w3 − u3 − y3)a3|
+|(1 + w1 − u1 − y1)b1 − (1 + w2 − u2 − y2)b2|+
|(1 + w2 − u2 − y2)b2 − (1 + w3 − u3 − y3)b3|
+|(1 + w1 − u1 − y1)c1 − (1 + w2 − u2 − y2)c2|+
|(1 + w2 − u2 − y2)c2 − (1 + w3 − u3 − y3)c3|
+|(1 + w1 − u1 − y1)d1 − (1 + w2 − u2 − y2)d2|+
|(1 + w2 − u2 − y2)d2 − (1 + w3 − u3 − y3)d3|
≥ |(1 + w1 − u1 − y1)a1 − (1 + w3 − u3 − y3)a3|+
|(1 + w1 − u1 − y1)b1 − (1 + w3 − u3 − y3)b3|
+|(1 + w1 − u1 − y1)c1 − (1 + w3 − u3 − y3)c3|+
|(1 + w1 − u1 − y1)d1 − (1 + w3 − u3 − y3)d3|

and then,
dh(ã, b̃) + dh(b̃, c̃) ≥ dh(ã, c̃)

Definition 3.7. [56] Let ã = 〈(a1, b1, c1, d1);w1, u1, y1〉 ∈ Ω. Then, a normalized SVTN-number of ã is
defined by

〈( a1
a1+b1+c1+d1

, b1
a1+b1+c1+d1

, c1
a1+b1+c1+d1

, d1
a1+b1+c1+d1

);w1, u1, y1〉

Example 3.8. Assume that ã = 〈(1, 4, 5, 10); 0.3, 0.4, 0.7〉 ∈ Ω. Then, a normalized SVTN-number of ã is
computed as

〈(0.05, 0.2, 0.25, 0.5); 0.3, 0.4, 0.7〉

Definition 3.9. The SVTN-numbers ã+ = 〈(1, 1, 1, 1); 1, 0, 0〉, ã+
s = 〈(1, 1, 1, 1); 1, 1, 0〉, ã− = 〈(0, 0, 0, 0); 0, 1, 1〉

and ã−s = 〈(0, 0, 0, 0); 0, 0, 1〉 are called SVTN-positive ideal solution, strongly SVTN-positive ideal solution,
SVTN-negative ideal solution and strongly SVTN-negative ideal solution, respectively.

Definition 3.10. Let ãi = 〈(ai, b1, ci, di);wi, ui, yi〉 ∈ Ω for all i = 1, 2 and ã+, ã+
s , ã− and ã−s be SVTN-

positive ideal solution, strongly SVTN-positive ideal solution, SVTN-negative ideal solution and strongly
SVTN-negative ideal solution, respectively. Then, the distance between ãi and ã+, ã+

s , ã−, ã−s are denoted as
dh(ãi, ã

+), dh(ãi, ã+
s ), dh(ãi, ã−), dh(ãi, ã−s ) for all i = 1, 2, respectively. Then,

1. If dh(ã1, ã
+) < dh(ã2, ã

+), then ã2 is smaller than ã1, denoted by ã1 > ã2

2. If dh(ã1, ã
+) = dh(ã2, ã

+);

(a) If dh(ã1, ã
+
s ) < dh(ã2, ã

+
s ), then ã2 is smaller than ã1, denoted by ã1 > ã2

(b) If dh(ã1, ã
+
s ) = dh(ã2, ã

+
s );

i. If dh(ã1, ã
−) < dh(ã2, ã

−), then ã1 is smaller than ã2, denoted by ã1 < ã2

ii. If dh(ã1, ã
−) = dh(ã2, ã

−);
A. If dh(ã1, ã

−
s ) < dh(ã2, ã

−
s ), then ã1 is smaller than ã2, denoted by ã1 < ã2

B. If dh(ã1, ã
−
s ) = dh(ã2, ã

−
s ); ã1 and ã2 are the same, denoted by ã1 = ã2
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Example 3.11. Assume that ã1 = 〈(2, 3, 5, 6); 0.3, 0.4, 0.7〉, ã2 = 〈(1, 3, 6, 7); 0.7, 0.5, 0.1〉,
ã+ = 〈(1, 1, 1, 1); 1, 0, 0〉 ∈ Ω. Then,

dh(ã1, ã
+) = 1

6

(
|(1 + 0.3− 0.4− 0.7)2− |(1 + 1− 0.0− 0.0)1|+

|(1 + 0.3− 0.4− 0.7)3− |(1 + 1− 0.0− 0.0)1|+
|(1 + 0.3− 0.4− 0.7)5− |(1 + 1− 0.0− 0.0)1|+
|(1 + 0.3− 0.4− 0.7)6− |(1 + 1− 0.0− 0.0)1|

)
= 7

60

and

dh(ã2, ã
+) = 1

6

(
|(1 + 0.7− 0.5− 0.1)1− |(1 + 1− 0.0− 0.0)1|+

|(1 + 0.7− 0.5− 0.1)3− |(1 + 1− 0.0− 0.0)1|+
|(1 + 0.7− 0.5− 0.1)6− |(1 + 1− 0.0− 0.0)1|+
|(1 + 0.7− 0.5− 0.1)7− |(1 + 1− 0.0− 0.0)1|

)
= 65

60

Since dh(ã1, ã
+) < dh(ã2, ã

+), ã2 is smaller than ã1 (or ã1 > ã2).

From now on we use In = {1, 2, ..., n} Im = {1, 2, ...,m} and It = {1, 2, ..., t} as an index set for n ∈ N ,
m ∈ N and t ∈ N , respectively.

4 SVTN-Weighted Operators
In this section, we present some arithmetic and geometric operators including SVTN-weighted geometric op-
erator, SVTN-ordered weighted geometric operator, SVTN-hybrid geometric operator, SVTN-weighted arith-
metic operator, SVTN-ordered weighted arithmetic operator and SVTN-hybrid arithmetic operator with their
properties.

4.1 SVTN-Weighted Geometric Operators
In this subsection, we introduce some SVTN-weighted geometric operators on the SVTN-numbers.

Definition 4.1. [73] Let a˜j = 〈(aj , bj , cj , dj ); wa˜j , ua˜j , ya˜j 〉 ∈ Ω for all j ∈ In. Then, SVTN-weighted 
geometric operator, denoted by Sgo, is defined by S go : Ω n → Ω,

Sgo(ã1, ã2, ..., ãn) = ãw1
1 ⊗ ãw2

2 ⊗ · · · ⊗ ãwnn

where w = (w1, w2, ..., wn)T is a weight vector of ãj for every j ∈ In such that wj ∈ [0, 1] and
∑n

j=1wj = 1.

Theorem 4.2. [73] Let a˜j = 〈(aj , bj , cj , dj ); wa˜j , ua˜j , ya˜j 〉 ∈ Ω for j ∈ In and Sgo be the SVTN-weighted 
geometric operator. Then, their aggregated value by using Sgo : Ωn → Ω, operator is also a SVTN-number
and

Sgo(ã1, ã2, ..., ãn) =
∏n

j=1 ã
wj
j

= 〈(
∏n

j=1 a
wj
j ,
∏n

j=1 b
wj
j ,
∏n

j=1 c
wj
j ,
∏n

j=1 d
wj
j );∏n

j=1 w
wj
ãj
, 1−

∏n
j=1(1− uãj)wj , 1−

∏n
j=1(1− yãj)wj〉

where w = (w1, w2, ..., wn)T is a weight vector of ãj for all j ∈ In such that wj ∈ [0, 1] and
∑n

j=1 wj = 1.
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Theorem 4.3. [73] Let a˜j = 〈(aj , bj , cj , dj ); wa˜j , ua˜j , ya˜j 〉 ∈ Ω for j ∈ In. Then,

1. If ãj = ã, for all j ∈ In, then Sgo(ã1, ã2, ..., ãn) = ã,

2. minj∈I{ãj} ≤ Sgo(ã1, ã2, ..., ãn) ≤ maxj∈I{ãj},

3. If ã∗j = 〈(a∗j , b∗j , c∗j , dj)∗;w∗ãj , u
∗
ãj
, y∗ãj〉 ∈ Ω and ãj ≤ ãj

∗ for all j ∈ In,
then Sgo(ã1, ã2, ..., ãn) ≤ Sgo(ã

∗
1, ã
∗
2, ..., ã

∗
n).

Definition 4.4. Let ãj = 〈(aj, bj, cj, dj);wãj , uãj , yãj〉 ∈ Ω for all j ∈ In. Then, an SVTN-ordered weighted
geometric operator, denoted by Sogo, is defined by Sogo : Ωn → Ω,

Sogo(ã1, ã2, ..., ãn) = ãw1

σ(1) ⊗ ã
w2

σ(2) ⊗ · · · ⊗ ã
wn
σ(n)

where w = (w1, w2, ..., wn)T is a weight vector of ãj for every j ∈ I such that wj ∈ [0, 1] and
∑n

j=1wj = 1.
Here, (σ(1), σ(2), ..., σ(n)) is a permutation of (1, 2, ..., n) such that aσ(j−1) ≥ aσ(j) for all j ∈ In.

Theorem 4.5. Let ãj = 〈(aj, bj, cj, dj);wãj , uãj , yãj〉 ∈ Ω for j ∈ In and Sogo be an SVTN-ordered weighted
geometric operator. Then, their aggregated value by using Sogo operator is also a SVTN-number an

Sogo(ã1, ã2, ..., ãn) =
∏n

j=1 ã
wj
σ(j) = 〈(

∏n
j=1 a

wj
σ(j),

∏n
j=1 b

wj
σ(j),

∏n
j=1 c

wj
σ(j),

∏n
j=1 d

wj
σ(j));∏n

j=1w
wj
ãσ(j)

, 1−
∏n

j=1(1− uãσ(j))wj , 1−
∏n

j=1(1− yãσ(j))wj〉

where w = (w1, w2, ..., wn)T is a weight vector of ãj for all j ∈ In such that wj ∈ [0, 1] and
∑n

j=1 wj = 1.

Theorem 4.6. Let ãj = 〈(aj, bj, cj, dj);wãj , uãj , yãj〉 ∈ Ω for j ∈ In. Then,

1. If ãj = ã, then Sogo(ã1, ã2, ..., ãn) = ã.

2. minj{ãj} ≤ Sogo(ã1, ã2, ..., ãn) ≤ maxj{ãj}

3. If ã∗j = 〈(a∗j , b∗j , c∗j , dj)∗;w∗ãj , u
∗
ãj
, y∗ãj〉 ∈ Ω and ãj≤ãj∗, then

Sogo(ã1, ã2, ..., ãn) ≤ Sogo(ã
∗
1, ã
∗
2, ..., ã

∗
n)

4. If ˜́aj ∈ Ω, then

Sogo(ã1, ã2, ..., ãn) = Sogo(˜́a1, ˜́a2, ..., ˜́an) where (˜́a1, ˜́a2, ..., ˜́an) is any permutation of (ã1, ã2, ..., ãn).

Theorem 4.7. Let ãj = 〈(aj, bj, cj, dj);wãj , uãj , yãj〉 ∈ Ω for j ∈ In and Sogo be the SVTN-geometric averag-
ing operator. Then, for all j ∈ In,

1. If w = (1, 0, ..., 0)T , then Sogo(ã1, ã2, ..., ãn) = maxj{ãj}.

2. If w = (0, 0, ..., 1)T , then Sogo(ã1, ã2, ..., ãn) = minj{ãj}.
Definition 4.8. Let ãj = ((aj, bj, cj, dj);wãj , uãj , yãj) ∈ Ω for j ∈ In. Then, an SVTN-hybrid geometric
operator, denoted by S s̃hgo, is defined by

S s̃hgo : Ωn → Ω, S s̃hgo(ã1, ã2, ..., ãn) = ˜̄as̃1σ(1) ⊗ ˜̄as̃2σ(2) ⊗ · · · ⊗ ˜̄as̃nσ(n)

where for j ∈ In, ˜̄aσ(j) is the jth largest of the weighted SVTN-numbers ˜̄aj , ˜̄aj = ã
nwj
j , w = (w1, w2, ..., wn)T

is a weight vector of ãj such that wj ∈ [0, 1] and
∑n

j=1wj = 1, and s̃ = (s̃1, s̃2, ..., s̃n)T is a vector associated
with the S s̃hgo such that s̃j ∈ [0, 1] and

∑n
j=1 s̃j = 1.
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Theorem 4.9. Let ãj = ((aj, bj, cj, dj);wãj , uãj , yãj) ∈ Ω for j ∈ In and S s̃hgo be the SVTN-hybrid geometric
operator. Then, their aggregated value by using S s̃hgo operator is also a SVTN-number and

S s̃hgo(ã1, ã2, ..., ãn) =
∏n

j=1
˜̄a
s̃j
σ(j) = 〈(

∏n
j=1 ā

s̃j
σ(j),

∏n
j=1 b̄

s̃j
σ(j)

∏n
j=1 c̄

s̃j
σ(j),

∏n
j=1 d̄

s̃j
σ(j));∏n

j=1w
s̃j
˜̄aσ(j)

, 1−
∏n

j=1(1− u˜̄aσ(j)
)s̃j , 1−

∏n
j=1(1− y˜̄aσ(j)

)s̃j〉

where for j ∈ In, ˜̄aσ(j) is the jth largest of the weighted SVTN-numbers ˜̄aj , ˜̄aj = ã
nwj
j ,w = (w1, w2, ..., wn)T

is a weight vector of ãj such that wj ∈ [0, 1] and
∑n

j=1wj = 1, and s̃ = (s̃1, s̃2, ..., s̃n)T is a vector associated
with the S s̃hgo such that s̃j ∈ [0, 1] and

∑n
j=1 s̃j = 1.

Corollary 4.10. Let ãj = ((aj, bj, cj, dj);wãj , uãj , yãj) ∈ Ω for j ∈ In. Then, SVTN-weighted geometric
operator Sgo and SVTN-ordered weighted geometric operator Sogo operator is a special case of the SVTN-
hybrid geometric operator S s̃hgo.

4.2 SVTN-Weighted arithmetic Operators
In this subsection, we introduce some SVTN-weighted arithmetic operators on the SVTN-numbers.

Definition 4.11. [73] Let a˜j = 〈(aj , bj , cj , dj ); wa˜j , ua˜j , ya˜j 〉 ∈ Ω for all j ∈ In. Then, SVTN-weighted 
arithmetic operator, denoted by Sao : Ωn → Ω, is defined by

Sao(ã1, ã2, ..., ãn) = w1ã1 ⊕ w2ã2 ⊕ · · · ⊕ wnãn

where w = (w1, w2, ..., wn)T is a weight vector of ãj for every j ∈ In such that wj ∈ [0, 1] and
∑n

j=1 wj = 1.

Theorem 4.12. [73] Let a˜j = 〈(aj , bj , cj , dj ); wa˜j , ua˜j , ya˜j 〉 ∈ Ω for j ∈ In and Sao be the SVTN-weighted 
arithmetic operator. Then, their aggregated value by using Sao operator is also a SVTN-number and

Sao(ã1, ã2, ..., ãn) =
∑n

j=1wj ãj = 〈(
∑n

j=1wjaj,
∑n

j=1wjbj,
∑n

j=1wjcj,
∑n

j=1 wjdj);

= 1−
∏n

j=1(1− wãj)wj ,
∏n

j=1 u
wj
ãj
,
∏n

j=1 y
wj
ãj
〉 ∑n

j=1 wj = 1.where w = (w1, w2, ..., wn)T is a weight vector of a˜j for all j ∈ In such that wj ∈ [0, 1] and 

Theorem 4.13. [73] Let a˜j = 〈(aj , bj , cj , dj ); wa˜j , ua˜j , ya˜j 〉 ∈ Ω for j ∈ In. Then,

1. If ãj = ã, for all j ∈ In, then Sao(ã1, ã2, ..., ãn) = ã,

2. minj{ãj} ≤ Sao(ã1, ã2, ..., ãn) ≤ maxj{ãj},

3. If ã∗j = 〈(a∗j , b∗j , c∗j , dj)∗;w∗ãj , u
∗
ãj
, y∗ãj〉 ∈ Ω and ãj ≤ ãj

∗ for all j ∈ In,
then Sao(ã1, ã2, ..., ãn) ≤ Sao(ã

∗
1, ã
∗
2, ..., ã

∗
n).

Definition 4.14. Let ãj = 〈(aj, bj, cj, dj);wãj , uãj , yãj〉 ∈ Ω for all j ∈ In. Then, an SVTN-ordered weighted
arithmetic operator, denoted by Soao : Ωn → Ω, is defined by

Soao(ã1, ã2, ..., ãn) = w1ãσ(1) ⊕ w2ãσ(2) ⊕ · · · ⊕ wnãσ(n)

where w = (w1, w2, ..., wn)T is a weight vector of ãj for every j ∈ I such that wj ∈ [0, 1] and
∑n

j=1wj = 1.
Here, (σ(1), σ(2), ..., σ(n)) is a permutation of (1, 2, ..., n) such that aσ(j−1) ≥ aσ(j) for all j ∈ In.
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Theorem 4.15. Let ãj = 〈(aj, bj, cj, dj);wãj , uãj , yãj〉 ∈ Ω for j ∈ In and Soao be an SVTN-ordered weighted
arithmetic operator. Then, their aggregated value by using Soao operator is also a SVTN-number and

Soao(ã1, ã2, ..., ãn) =
∑n

j=1 wj ãσ(j) = 〈(
∑n

j=1wjaσ(j),
∑n

j=1wjbσ(j),
∑n

j=1wjcσ(j),
∑n

j=1wjdσ(j));

= 1−
∏n

j=1(1− wãσ(j))wj ,
∏n

j=1 u
wj
ãσ(j)

,
∏n

j=1 y
wj
ãσ(j)
〉

where w = (w1, w2, ..., wn)T is a weight vector of ãj for all j ∈ In such that wj ∈ [0, 1] and
∑n

j=1wj = 1.

Theorem 4.16. Let ãj = 〈(aj, bj, cj, dj);wãj , uãj , yãj〉 ∈ Ω for j ∈ In and Soao be the SVTN-arithmetic
averaging operator. Then, for all j ∈ In,

1. If ãj = ã, then Soao(ã1, ã2, ..., ãn) = ã.

2. minj{ãj} ≤ Soao(ã1, ã2, ..., ãn) ≤ maxj{ãj}

3. If ã∗j = 〈(a∗j , b∗j , c∗j , dj)∗;w∗ãj , u
∗
ãj
, y∗ãj〉 ∈ Ω and ãj≤ãj∗, then Soao(ã1, ã2, ..., ãn) ≤ Soao(ã

∗
1, ã
∗
2, ..., ã

∗
n)

4. If ˜́aj ∈ Ω, then Soao(ã1, ã2, ..., ãn) = Soao(˜́a1, ˜́a2, ..., ˜́an) where (˜́a1, ˜́a2, ..., ˜́an) is any permutation of
(ã1, ã2, ..., ãn).

Theorem 4.17. Let ãj = 〈(aj, bj, cj, dj);wãj , uãj , yãj〉 ∈ Ω for j ∈ In and Soao be the SVTN-arithmetic
averaging operator. Then, for all j ∈ In,

1. If w = (1, 0, ..., 0)T , then Soao(ã1, ã2, ..., ãn) = maxj{ãj}.

2. If w = (0, 0, ..., 1)T , then Soao(ã1, ã2, ..., ãn) = minj{ãj}.
Definition 4.18. Let ãj = ((aj, bj, cj, dj);wãj , uãj , yãj) ∈ Ω for j ∈ In. Then, an SVTN-hybrid arithmetic
operator, denoted by S s̃hao : Ωn → Ω,, is defined by

S s̃hao(ã1, ã2, ..., ãn) = s̃1˜̄aσ(1) ⊕ s̃2˜̄aσ(2) ⊕ · · · ⊕ s̃n˜̄aσ(n)

where for j ∈ In, ˜̄aσ(j) is the jth largest of the weighted SVTN-numbers ˜̄aj , ˜̄aj = ã
nwj
j , w = (w1, w2, ..., wn)T

is a weight vector of ãj such that wj ∈ [0, 1] and
∑n

j=1wj = 1, and s̃ = (s̃1, s̃2, ..., s̃n)T is a vector associated
with the S s̃hao such that s̃j ∈ [0, 1] and

∑n
j=1 s̃j = 1.

Theorem 4.19. Let ãj = ((aj, bj, cj, dj);wãj , uãj , yãj) ∈ Ω for j ∈ In and S s̃hao be the SVTN-hybrid arithmetic
operator. Then, their aggregated value by using S s̃hao operator is also a SVTN-number and

S s̃hao(ã1, ã2, ..., ãn) =
∑n

j=1
˜̄aσ(j)s̃j = 〈(

∑n
j=1 ā

s̃j
σ(j),

∑n
j=1 b̄

s̃j
σ(j)

∑n
j=1 c̄

s̃j
σ(j),

∑n
j=1 d̄

s̃j
σ(j));

= 1−
∏n

j=1(1− w˜̄aσ(j)
s̃j),

∏n
j=1 u˜̄aσ(j)

s̃j,
∏n

j=1 y˜̄aσ(j)
s̃j〉

where for j ∈ In, ˜̄aσ(j) is the jth largest of the weighted SVTN-numbers ˜̄aj , ˜̄aj = ã
nwj
j ,w = (w1, w2, ..., wn)T

is a weight vector of ãj such that wj ∈ [0, 1] and
∑n

j=1wj = 1, and s̃ = (s̃1, s̃2, ..., s̃n)T is a vector associated
with the S s̃hao such that s̃j ∈ [0, 1] and

∑n
j=1 s̃j = 1.

Corollary 4.20. Let ãj = ((aj, bj, cj, dj);wãj , uãj , yãj) ∈ Ω for j ∈ In. Then, SVTN-weighted arithmetic
operator Sao and SVTN-weighted arithmetic operator Soao operator is a special case of the SVTN-hybrid
arithmetic operator S s̃hao.
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5 SVTN-Group Decision Making Method

In this section, by using the S s̃hgo and Sgo operators we define a multi attribute group decision making method
called SVTN-group decision making method.

Definition 5.1. Let B = {B1, B2, ..., Bm} be a set of alternatives, U = {u1, u2, ..., un} be a set of attributes,
D = {d1, d2, ..., dt} be a set of decision makers, s̃ = (s̃1, s̃2, ..., s̃n)T be a weighting vector of the attributes
where s̃j ∈ [0, 1] for j ∈ In and

∑n
j=1 s̃j = 1, and w = (w1, w2, ..., wt)

T be a weighting vector of the decision
makers such that wj ∈ [0, 1] for j ∈ In and

∑t
j=1wj = 1. If ãkij = 〈(akij, bkij, ckij, dkij);wkij, ukij, ykij〉 ∈ Ω, then

[ãkij]m×n =


u1 u2 · · · un

B1 ãk11 ãk12 · · · ãk1n
B2 ãk21 ãk22 · · · ãk2n
...

...
... . . . ...

Bm ãkm1 ãkm2 · · · ãkmn


is called an SVTN-group decision making matrix of the decision maker dk for each k ∈ It. The matrix is also
written shortly as

[ãkij]m×n = 〈(akij, bkij, ckij, dkij);wkij, ukij, ykij〉

Now, we can give an algorithm of the SVTN-group decision making method as follows;

Algorithm:
Step 1. Construct

[ãkij]m×n = 〈(akij, bkij, ckij, dkij);wkij, ukij, ykij〉 of dk for each k ∈ It.
Step 2. Compute ãki = Sgo(ã

k
i1, ã

k
i2, ..., ã

k
in) =

∏n
j=1(ãkij)

wj for each k ∈ It and i ∈ Im to derive the
individual overall preference SVTN-values ãki of the alternative Bi.

Step 3. Compute ãi = S s̃hgo(ã
1
i , ã

2
i , ..., ã

t
i) =< (ai, bi, ci);wãi , uãi , yãi > for each i ∈ Im to derive the

collective overall preference SVTN-values ãi of the alternative Bi.

Step 4. Compute dh(ãi, ã+) for each i ∈ Im.

Step 5. Rank all alternatives Bi according to the dh(ãi, ã+) for each i ∈ Im.

Example 5.2. (It’s adopted from [70]) Let us suppose there is a risk investment company, which wants to 
invest a sum of money in the best option. There is a panel with five possible alternatives (engineer construction 
projects) to invest the money. The risk investment company must take a decision according to four attributes: 
u1 = ”risk analysis”, u2 = ”growth analysis”, u3 = ”social-political impact analysis”, u4 = ”environmental 
impact analysis”. The five possible alternatives B i (i = 1, 2, ..., 5) are to be evaluated using the SVTN-numbers 
by the four decision makers (whose weighting vector w = (0.2, 0.4, 0.1, 0.3)T ) under the above four attributes 
(whose weighting vector s̃ = (0.25, 0.25, 0.25, 0.25)T ), and construct, respectively,

Step 1. For each k = 1, 2, 3, 4, the decision maker dk construct own decision matrices [ãkij]5x4 as Table 1:
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Step 2. For each k = 1, 2, 3, 4 and i = 1, 2, 3, 4, 5 compute ãki = Sgo(ã
k
i1, ã

k
i2, ..., ã

k
in) as follows:

ã1
1 =

(
(0.170, 0.411, 0.606, 0.814); 0.442, 0.749, 0.409

)
ã1

2 =
(
(0.194, 0.342, 0.517, 0.800); 0.534, 0.543, 0.302

)
ã1

3 =
(
(0.224, 0.259, 0.517, 0.628); 0.237, 0.513, 0.281

)
ã1

4 =
(
(0.214, 0.332, 0.464, 0.774); 0.460, 0.518, 0.407

)
ã1

5 =
(
(0.139, 0.209, 0.401, 0.580); 0.186, 0.587, 0.332

)
ã2

1 =
(
(0.226, 0.278, 0.459, 0.763); 0.540, 0.423, 0.500

)
ã2

2 =
(
(0.285, 0.388, 0.592, 0.728); 0.379, 0.686, 0.522

)
ã2

3 =
(
(0.476, 0.581, 0.700, 0.814); 0.394, 0.349, 0.300

)
ã2

4 =
(
(0.230, 0.332, 0.613, 0.738); 0.564, 0.714, 0.346

)
ã2

5 =
(
(0.132, 0.147, 0.355, 0.531); 0.293, 0.396, 0.635

)
ã3

1 =
(
(0.115, 0.155, 0.459, 0.599); 0.275, 0.806, 0.674

)
ã3

2 =
(
(0.298, 0.375, 0.592, 0.806); 0.309, 0.387, 0.679

)
ã3

3 =
(
(0.107, 0.112, 0.150, 0.513); 0.491, 0.537, 0.670

)
ã3

4 =
(
(0.200, 0.310, 0.565, 0.673); 0.500, 0.346, 0.693

)
ã3

5 =
(
(0.164, 0.176, 0.355, 0.650); 0.426, 0.527, 0.519

)
ã4

1 =
(
(0.182, 0.302, 0.537, 0.781); 0.275, 0.627, 0.527

)
ã4

2 =
(
(0.154, 0.305, 0.428, 0.693); 0.225, 0.568, 0.617

)
ã4

3 =
(
(0.000, 0.232, 0.504, 0.675); 0.354, 0.551, 0.513

)
ã4

4 =
(
(0.200, 0.300, 0.417, 0.660); 0.509, 0.481, 0.342

)
ã4

5 =
(
(0.000, 0.182, 0.374, 0.625); 0.282, 0.424, 0.270

)

ã1
1 =

(
(0.170, 0.411, 0.606, 0.814); 0.442, 0.749, 0.409

)
ã1

2 =
(
(0.194, 0.342, 0.517, 0.800); 0.534, 0.543, 0.302

)
ã1

3 =
(
(0.224, 0.259, 0.517, 0.628); 0.237, 0.513, 0.281

)
ã1

4 =
(
(0.214, 0.332, 0.464, 0.774); 0.460, 0.518, 0.407

)
ã1

5 =
(
(0.139, 0.209, 0.401, 0.580); 0.186, 0.587, 0.332

)
ã2

1 =
(
(0.226, 0.278, 0.459, 0.763); 0.540, 0.423, 0.500

)
ã2

2 =
(
(0.285, 0.388, 0.592, 0.728); 0.379, 0.686, 0.522

)
ã2

3 =
(
(0.476, 0.581, 0.700, 0.814); 0.394, 0.349, 0.300

)
ã2

4 =
(
(0.230, 0.332, 0.613, 0.738); 0.564, 0.714, 0.346

)
ã2

5 =
(
(0.132, 0.147, 0.355, 0.531); 0.293, 0.396, 0.635

)
ã3

1 =
(
(0.115, 0.155, 0.459, 0.599); 0.275, 0.806, 0.674

)
ã3

2 =
(
(0.298, 0.375, 0.592, 0.806); 0.309, 0.387, 0.679

)
ã3

3 =
(
(0.107, 0.112, 0.150, 0.513); 0.491, 0.537, 0.670

)
ã3

4 =
(
(0.200, 0.310, 0.565, 0.673); 0.500, 0.346, 0.693

)
ã3

5 =
(
(0.164, 0.176, 0.355, 0.650); 0.426, 0.527, 0.519

)
ã4

1 =
(
(0.182, 0.302, 0.537, 0.781); 0.275, 0.627, 0.527

)
ã4

2 =
(
(0.154, 0.305, 0.428, 0.693); 0.225, 0.568, 0.617

)
ã4

3 =
(
(0.000, 0.232, 0.504, 0.675); 0.354, 0.551, 0.513

)
ã4

4 =
(
(0.200, 0.300, 0.417, 0.660); 0.509, 0.481, 0.342

)
ã4

5 =
(
(0.000, 0.182, 0.374, 0.625); 0.282, 0.424, 0.270

)
Step 3. Assume that w = (0.2, 0.4, 0.1, 0.3)T and s̃ = (0.25, 0.25, 0.25)T . We can compute

ãi = S s̃hgo(ã
1
i , ã

2
i , ..., ã

t
i) =< (ai, bi, ci);wãi , uãi , yãi >
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for each i = 1, 2, 3, 4, 5 as follows:

ã1 =
(
(0.187, 0.291, 0.509, 0.760); 0.396, 0.569, 0.513

)
ã2 =

(
(0.219, 0.351, 0.523, 0.738); 0.340, 0.584, 0.536

)
ã3 =

(
(0.000, 0.298, 0.524, 0.698); 0.352, 0.451, 0.414

)
ã4 =

(
(0.214, 0.320, 0.512, 0.714); 0.519, 0.553, 0.404

)
ã5 =

(
(0.000, 0.171, 0.370, 0.579); 0.274, 0.450, 0.479

)
Step 4. Compute dh(ãi, ã+

i ) for each alternative Bi, i = 1, 2, 3, 4, 5, as follows:

dh(ã1, ã
+) = 1.242, dh(ã2, ã

+) = 1.266,
dh(ã3, ã

+) = 1.210, dh(ã4, ã
+) = 1.169,

dh(ã5, ã
+) = 1.269

Then we get the rank,

dh(ã5, ã
+) > dh(ã2, ã

+) > dh(ã1, ã
+) > dh(ã3, ã

+) > dh(ã4, ã
+)

Step 5. Therefore, we can rank all alternatives Bi according to the dh(ãi, ã+
i ) for each i = 1, 2, 3, 4, 5.

B5 < B2 < B1 < B3 < B4

and thus the most desirable alternative is B4.

6 Comparative Analysis and Discussion

In this section, a comparative study is presented to show the flexibility and feasibility of the introduced SVTN-
group decision making method. Different methods used to solve the same SVTN-group decision making 
problem with SVTN-information is given by Ye [73]. The ranking results obtained by different methods are 
summarized in Table 2.

From the results presented in Table 2, the best alternative in proposed method and Ye’s method [73] 
with geometric operator is B4, whilst the worst one is B5. In contrast, by using the methods in the proposed 
method and Ye’s method [73] with arithmetic operator, the best is B3, whilst the worst is B5. There are a 
number of reasons why differences exist between the final rankings of the methods. First, the author uses 
a score and accurate function in Ye’s method [73] with arithmetic operator and Ye’s method [73] with 
geometric opera-tor. Moreover, different aggregation operators, which is arithmetic and geometric 
operator, lead to different rankings because the operators emphasize the decision makers judgments 
differently. The proposed method is different in that it contains two major phrases. First, the proposed 
method uses both SVTN-weighted geo-metric operator and the SVTN-hybrid geometric operator to 
aggregate the SVTN-numbers. Second, based on distance measure, the method uses SVTN-positive ideal 
solution and SVTN-negative ideal solution to rank the SVTN-information. Finally, the ranking of the 
proposed method is similar to other methods. Therefore, the proposed method is flexible and feasible.
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7 Conclusion
Due to the ambiguity of people’s thinking and the complexity of objective things, the attribute values of the
MAGDM problems cannot always be expressed by exact and crisp values and it may be easier to escribe them
by neutrosophic information. This paper introduced an MAGDM in which the attribute values are expressed
with the SVTN-numbers, which are solved by developing a new decision method based on geometric ag-
gregation operators of SVTN-numbers. The proposed method with SVTN-numbers is more suitable for real
scientific and engineering applications, because the proposed decision-making method includes much more in-
formation and can deal with indeterminate and inconsistent decision-making problems. In the future, we shall
further develop more aggregation operators for SVTN-numbers and apply them to solve practical applications
in areas such as group decision making, expert system, information fusion system, fault diagnoses, medical
diagnoses and so on.
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Table 1. The decision matrices of decision maker dk.

[ã1
ij]5x4 =


(
(0.5, 0.7, 0.8, 0.9); 0.5, 0.6, 0.7

) (
(0.1, 0.3, 0.4, 0.7); 0.4, 0.9, 0.3

)(
(0.4, 0.5, 0.7, 0.8); 0.3, 0.2, 0.3

) (
(0.2, 0.3, 0.5, 0.8); 0.7, 0.4, 0.2

)(
(0.5, 0.6, 0.7, 0.8); 0.2, 0.7, 0.2

) (
(0.1, 0.1, 0.4, 0.5); 0.1, 0.4, 0.3

)(
(0.4, 0.5, 0.6, 0.7); 0.2, 0.5, 0.4

) (
(0.2, 0.3, 0.4, 0.9); 0.5, 0.5, 0.6

)(
(0.3, 0.5, 0.6, 0.7); 0.2, 0.5, 0.4

) (
(0.1, 0.2, 0.5, 0.8); 0.1, 0.8, 0.3

)(
(0.1, 0.1, 0.8, 0.9); 0.7, 0.5, 0.3

) (
(0.2, 0.7, 0.8, 0.9); 0.4, 0.5, 0.3

)(
(0.3, 0.4, 0.7, 0.8); 0.7, 0.4, 0.6

) (
(0.1, 0.3, 0.4, 0.8); 0.5, 0.8, 0.3

)(
(0.2, 0.3, 0.5, 0.7); 0.4, 0.7, 0.3

) (
(0.4, 0.5, 0.6, 0.7); 0.7, 0.4, 0.3

)(
(0.1, 0.3, 0.4, 0.7); 0.5, 0.8, 0.2

) (
(0.2, 0.3, 0.5, 0.7); 0.7, 0.4, 0.1

)(
(0.3, 0.4, 0.4, 0.8); 0.1, 0.5, 0.4

) (
(0.1, 0.1, 0.2, 0.3); 0.5, 0.1, 0.3

)



[ã2
ij]5x4 =


(
(0.1, 0.1, 0.2, 0.5); 0.8, 0.4, 0.7

) (
(0.2, 0.3, 0.4, 0.8); 0.8, 0.4, 0.3

)(
(0.3, 0.4, 0.7, 0.8); 0.2, 0.4, 0.8

) (
(0.3, 0.4, 0.7, 0.9); 0.7, 0.9, 0.3

)(
(0.6, 0.7, 0.8, 0.9); 0.5, 0.1, 0.3

) (
(0.6, 0.7, 0.8, 0.9); 0.3, 0.4, 0.3

)(
(0.4, 0.5, 0.6, 0.7); 0.6, 0.4, 0.5

) (
(0.2, 0.3, 0.7, 0.8); 0.7, 0.8, 0.3

)(
(0.1, 0.1, 0.4, 0.8); 0.3, 0.4, 0.2

) (
(0.2, 0.2, 0.5, 0.6); 0.2, 0.3, 0.1

)(
(0.1, 0.1, 0.8, 0.9); 0.3, 0.3, 0.3

) (
(0.6, 0.7, 0.8, 0.9); 0.3, 0.5, 0.6

)(
(0.6, 0.7, 0.7, 0.8); 0.8, 0.5, 0.7

) (
(0.2, 0.3, 0.4, 0.5); 0.2, 0.2, 0.4

)(
(0.2, 0.3, 0.5, 0.7); 0.7, 0.4, 0.3

) (
(0.4, 0.5, 0.6, 0.7); 0.4, 0.4, 0.3

)(
(0.2, 0.3, 0.4, 0.7); 0.3, 0.9, 0.3

) (
(0.2, 0.3, 0.6, 0.7); 0.5, 0.6, 0.3

)(
(0.10.3, 0.4, 0.8); 0.5, 0.4, 0.9

) (
(0.1, 0.1, 0.2, 0.3); 0.4, 0.5, 0.9

)



[ã3
ij]5x4 =


(
(0.1, 0.1, 0.2, 0.5); 0.5, 0.9, 0.9

) (
(0.1, 0.2, 0.4, 0.8); 0.1, 0.6, 0.3

)(
(0.3, 0.4, 0.7, 0.8); 0.5, 0.1, 0.3

) (
(0.4, 0.4, 0.7, 0.9); 0.5, 0.3, 0.9

)(
(0.1, 0.1, 0.1, 0.4); 0.4, 0.7, 0.8

) (
(0.1, 0.1, 0.1, 0.4); 0.8, 0.6, 0.8

)(
(0.4, 0.5, 0.8, 0.9); 0.5, 0.4, 0.3

) (
(0.2, 0.3, 0.7, 0.8); 0.5, 0.4, 0.9

)(
(0.3, 0.3, 0.4, 0.8); 0.5, 0.2, 0.3

) (
(0.2, 0.2, 0.5, 0.8); 0.5, 0.7, 0.3

)(
(0.4, 0.5, 0.8, 0.9); 0.8, 0.7, 0.3

) (
(0.1, 0.1, 0.8, 0.4); 0.5, 0.9, 0.8

)(
(0.3, 0.5, 0.7, 0.8); 0.5, 0.4, 0.3

) (
(0.2, 0.3, 0.4, 0.7); 0.1, 0.6, 0.3

)(
(0.2, 0.3, 0.7, 0.9); 0.1, 0.1, 0.3

) (
(0.1, 0.1, 0.2, 0.7); 0.5, 0.4, 0.3

)(
(0.4, 0.5, 0.8, 0.9); 0.5, 0.4, 0.3

) (
(0.1, 0.2, 0.3, 0.4); 0.5, 0.2, 0.4

)(
(0.1, 0.2, 0.4, 0.8); 0.1, 0.5, 0.3

) (
(0.1, 0.1, 0.2, 0.4); 0.5, 0.4, 0.8

)



[ã4
ij]5x4 =


(
(0.5, 0.7, 0.8, 0.9); 0.1, 0.9, 0.3

) (
(0.2, 0.3, 0.5, 0.8); 0.5, 0.6, 0.6

)(
(0.2, 0.4, 0.5, 0.6); 0.5, 0.4, 0.3

) (
(0.2, 0.3, 0.4, 0.8); 0.1, 0.4, 0.8

)(
(0.1, 0.2, 0.3, 0.4); 0.1, 0.2, 0.3

) (
(0.0, 0.1, 0.6, 0.7); 0.5, 0.7, 0.3

)(
(0.2, 0.3, 0.4, 0.7); 0.5, 0.6, 0.3

) (
(0.2, 0.3, 0.4, 0.5); 0.5, 0.2, 0.4

)(
(0.0, 0.1, 0.2, 0.8); 0.5, 0.4, 0.3

) (
(0.1, 0.3, 0.7, 0.9); 0.5, 0.4, 0.3

)(
(0.1, 0.2, 0.4, 0.5); 0.5, 0.4, 0.3

) (
(0.1, 0.2, 0.5, 0.8); 0.2, 0.3, 0.6

)(
(0.1, 0.2, 0.5, 0.8); 0.5, 0.4, 0.3

) (
(0.1, 0.3, 0.4, 0.6); 0.3, 0.8, 0.5

)(
(0.0, 0.1, 0.4, 0.7); 0.4, 0.7, 0.2

) (
(0.4, 0.5, 0.8, 0.9); 0.5, 0.4, 0.8

)(
(0.2, 0.3, 0.6, 0.7); 0.6, 0.9, 0.3

) (
(0.2, 0.3, 0.4, 0.9); 0.5, 0.4, 0.3

)(
(0.4, 0.5, 0.7, 0.8); 0.2, 0.6, 0.5

) (
(0.0, 0.1, 0.2, 0.3); 0.1, 0.4, 0.1

)


Irfan Deli, Operators on Single Valued Trapezoidal Neutrosophic Numbers and SVTN-Group Decision
Making.
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Table 2. The ranking results of different methods.
Methods Ranking results

B5 < B2 < B1 < B4 < B3

B5 < B2 < B1 < B3 < B4

B5 < B2 < B3 < B1 < B4

T he proposed method with arithmetic operator
T he proposed method with geometric operator
Y e′s method [73] with geometric operator
Y e′s method [73] with arithmetic operator B5 < B2 < B1 < B4 < B3

Irfan Deli, Operators on Single Valued Trapezoidal Neutrosophic Numbers and SVTN-Group Decision
Making.
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Abstract: TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) is a very common method for
Multiple Attribute Decision Making (MADM) problem in crisp as well as uncertain environment. The interval trape-
zoidal neutrosophic number can handle incomplete, indeterminate and inconsistent information which are generally
occurred in uncertain environment. In this paper, we propose TOPSIS method for MADM, where the rating values
of the attributes are interval trapezoidal neutrosophic numbers and the weight information of the attributes are known
or partially known or completely unknown. We develop optimization models to obtain weights of the attributes with
the help of maximum deviation strategy for partially known and completely unknown cases. Finally, we provide a
numerical example to illustrate the proposed approach and make a comparative analysis.

Keywords: Interval trapezoidal neutrosophic number, Multi-attribute decision making, TOPSIS, Unknown weight
information.

1 Introduction
Multi-attribute decision making (MADM) is a popular field of study in decision analysis. MADM refers

to making choice of the best alternative from a finite set of decision alternatives in terms of multiple, usu-
ally conflicting criteria. The decision maker uses the rating value of the attribute in terms of fuzzy sets [1],
intuitionistic fuzzy sets [2], hesitant fuzzy sets [3], and neutrosophic sets [4].

In classical MADM methods, the ratings and weights of the criteria are known precisely. TOPSIS [5] is
one of the classical methods among many MADM techniques like Preference Ranking Organization METHod
for Enrichment of Evaluations (PROMETHEE) [6], Vlse Kriterijuska OptimizacijaI Komoromisno Resenje
(VIKOR) [7], ELimination Et Choix Traduisant la REalit (ELECTRE) [8], Analytic Hierarchy Process (AHP)
[9], etc. MADM problem has also been studied in fuzzy environment [10–14] and intuitionistic fuzzy envi-
ronment [15–18]. Researchers have extended the TOPSIS method to deal with MADM problems in different
environment. Chen [19] extended the concept of TOPSIS method to develop a methodology for MADM prob-
lem in fuzzy environment. Boran et al. [20] extended the TOPSIS method for MADM in intutionistic fuzzy
sets. Zhao [21] proposed TOPSIS method under interval intutionistic fuzzy number. Liu [22] proposed TOP-
SIS method for MADM under trapezoidal intuitionistic fuzzy environment with partial and unknown attribute
weight information.

Compared to fuzzy set and intutionistic fuzzy set, neutrosophic set [4] has the potential to deal with
MADM problem because it can effectively handle indeterminate and incomplete information. Hybrids of
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neutrosophic set have been applied in MADM and multi-attribute group decision making (MAGDM) problems
[23–30]. Biswas et al. [31] developed TOPSIS strategy for MAGDM with single valued neutrosophic sets [32].
Chi and Liu [33] extended TOPSIS method for MADM problem based on interval neutrosophic set [4]. Zhang
and Wu [34] developed TOPSIS strategy in single valued neutrosophic set where weights of the attributes
are completely unknown. Biswas et al. [35] introduced Neutrosophic TOPSIS with group decision making.
Pramanik et al. [36] extended TOPSIS approach for MAGDM in refined neutrosophic environment. Dey et
al. [37] introduced TOPSIS for solving MADM problems under bi-polar neutrosophic environment. Mondal
et al. [38] developed Rough neutrosophic TOPSIS for MAGDM problem. Ye [39] proposed TOPSIS method
for MAGDM problem based on single valued neutrosophic linguistic number. Dey et al. [40] developed
generalized neutrosophic soft MADM based on TOPSIS. Pramanik et al. [41] extended TOPSIS method for
MADM based on soft expert set environment. Biswas et al. [42] developed TOPSIS strategy for MADM with
trapezoidal neutrosophic numbers.

Interval trapezoidal neutrosophic number (ITrNN) [43] is a generalization of single valued trapezoidal
neutrosophic number (SVTrNN). Ye [44] and Subhaş [45] introduced the SVTrNN where each element is
expressed by trapezoidal number that has truth, indeterminacy and falsity membership degrees which are
single valued. However, decision makers may face difficulties to express their opinions in terms of single
valued truth, indeterminacy and falsity membership degrees. In interval trapezoidal neutrosophic number
truth, indeterminacy and falsity membership degrees are interval valued. Therefore, decision makers can
express their opinion throughout this number in a flexible way to face such difficulties.

The above literature review reflects that the TOPSIS method has not been studied earlier based on interval
trapezoidal neutrosophic number, even though this number can play effective role with indeterminate and
uncertain information in MADM problem. To fill this research gap, our objectives in this paper are as follows:

• To propose TOPSIS method for MADM problem based on interval valued trapezoidal neutrosophic
number.

• To develop the model where the rating values of the attributes are ITrNN and weight information is
known, partially known and completely unknown.

We organise the paper as follows: Section 2 describes the preliminaries of fuzzy sets, trapezoidal fuzzy num-
ber, neutrosophic sets, SVTrNN, ITrNN, and Hamming distance between ITrNNs. Section 3 briefly presents
classical TOPSIS method. Section 4 presents TOPSIS method for MADM based on ITrNN. An application
example with comparative analysis is given in Section 5. Finally, Section 6 presents some conclusions and
future scopes of research.

2 Preliminaries
In this section, we briefly review the definition of fuzzy sets, single-valued neutrosophic sets, single-valued

trapezoidal neutrosophic number, and interval trapezoidal neutrosophic numbers.

Definition 1. [1] Let X be a universe of discourse. Then a fuzzy set A is defined by

A = {〈x, µA(x)〉| x ∈ X}, (1)

which is characterized by a membership function µA : X → [0, 1], where µA(x) is the degree of membership
of the element x to the set A.
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Definition 2. [46,47] A generalized trapezoidal fuzzy number A denoted by A = (a, b, c, d;w) is described as
a fuzzy subset of a real number R with membership function µA which is defined by

µA(x) =



(x− a)w

b− a
, a ≤ x < b

w, b ≤ x ≤ c
(d− x)w

d− c
, c < x ≤ d

0, otherwise.

where a, b, c, d ∈ R and w is a membership degree.

Definition 3. [32] Let X be universe of discourse. Then a single-valued neutrosophic set A is defined as
A = {< x, TA(x), FA(x), IA(x) >: x ∈ X} which is characterized by a truth-membership function TA(x) :
X → [0, 1], falsity membership function FA : X → [0, 1], and an indeterminacy membership function IA :
X → [0, 1] of the element x to the set A, and the condition 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3 ∀ x ∈ X .

Definition 4. [44,45] Let α be a single-valued neutrosophic trapezoidal number (SVNTrN). Then its member-
ship functions are given by

Tα(x) =



(x− a)tα
b− a

, a ≤ x < b

tα, b ≤ x ≤ c
(d− x)tα
d− c

, c < x ≤ d

0, otherwise.

Iα(x) =



b− x+ (x− a)iα
b− a

, a ≤ x < b

iα, b ≤ x ≤ c
x− c+ (d− x)iα

d− c
, c < x ≤ d

0, otherwise.

Fα(x) =



b− x+ (x− a)fα
b− a

, a ≤ x < b

fα, b ≤ x ≤ c
x− c+ (d− x)fα

d− c
, c < x ≤ d

0, otherwise.

where Tα is truth membership function, Iα is indeterminancy membership function and Fα is falsity member-
ship function, and they all lie between 0 and 1 and satisfy the condition 0 ≤ Tα(x) + Iα(x) +Fα(x) ≤ 3 where
a, b, c, d are real numbers. Then α = ([a, b, c, d]; tα, iα, fα) is called a neutrosophic trapezoidal number.
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Definition 5. [43] Let α̃ be trapezoidal neutrosophic number. Then its membership functions are given by

Tα̃(x) =



(x− a)tα̃
b− a

, a ≤ x < b

tα̃, b ≤ x ≤ c
(d− x)tα̃
d− c

, c < x ≤ d

0, otherwise.

Iα̃(x) =



b− x+ (x− a)iα̃
b− a

, a ≤ x < b

iα̃, b ≤ x ≤ c
x− c+ (d− x)iα̃

d− c
, c < x ≤ d

0, otherwise.

Fα̃(x) =



b− x+ (x− a)fα̃
b− a

, a ≤ x < b

fα̃, b ≤ x ≤ c
x− c+ (d− x)fα̃

d− c
, c < x ≤ d

0, otherwise.

where Tα̃ is truth membership function, Iα̃ is indeterminancy membership function and Fα̃ is falsity mem-
bership function and tα̃, iα̃, fα̃ are subsets of [0,1] and 0 ≤ sup(tα̃) + sup(iα̃) + sup(fα̃) ≤ 3. Then α is
called an interval trapezoidal neutrosophic number and it is denoted by α̃ = ([a, b, c, d]; tα̃, iα̃, fα̃). We take
tα̃ = [

¯
t, t̄], iα̃ = [i, i] and fα̃ = [

¯
f, f̄ ]

Definition 6. [43] An interval trapezoidal neutrosophic number (ITrNN) α̃ = ([a, b, c, d]; [t, t], [i, i], [f, f ]) is
said to be positive ITrNN if a ≥ 0 and one of the four values of a, b, c, d is not equal to zero.

Definition 7. Let α̃ = ([a1, b1, c1, d1]; [
¯
t1, t̄1], [

¯
i1, ī1], [

¯
f1, f̄1]) and β̃ = ([a2, b2, c2, d2]; [

¯
t2, t̄2], [

¯
i2, ī2], [

¯
f2, f̄2])

be two ITrNNs. Then the following operations are valid:

1. α̃
⊕

β̃ =

(
[a1 + a2, b1 + b2, c1 + c2, d1 + d2];

[
¯
t1 +

¯
t2 −

¯
t1t2, t̄1 + t̄2 − t̄1t̄2], [

¯
i1

¯
i2, ī1ī2], [

¯
f1

¯
f2, f̄1f̄2]

)
;

2. α̃
⊗

β̃ =

 ([a1a2, b1b2, c1c2, d1d2]; [
¯
t1

¯
t2, t̄1t̄2],

[
¯
i1 +

¯
i2 −

¯
i1

¯
i2, ī1 + ī2 − ī1ī2],

[
¯
f1 +

¯
f2 −

¯
f1

¯
f2, f̄1 + f̄2 − f̄1f̄2]

 ;

3. λα̃ =

( [
λa1, λb1, λc1, λd1

]
;
[
1− (1−

¯
t1)

λ, 1− (1− t̄1)λ
][

(
¯
i1)

λ, (̄i1)
λ
]
,
[
(
¯
f1)

λ, (f̄1)
λ
] )

, λ ≥ 0;

4. (α̃)λ =


[
(a1)

λ, (b1)
λ, (c1)

λ, (d1)
λ
]
;
[
(
¯
t1)

λ, (t̄1)
λ
]
,[

1− (1−
¯
i1)

λ, 1− (1− ī1)λ
]
,[

1− (1−
¯
f1)

λ, 1− (1− f̄1)λ
]

 , λ ≥ 0.
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Definition 8. [43] Let α̃ = ([a1, b1, c1, d1]; [t̄1,
¯
t1], [̄i1,

¯
i1], [f̄1,

¯
f1]) and β̃ = ([a2, b2, c2, d2]; [t̄2,

¯
t2], [̄i2,

¯
i2], [f̄2,

¯
f2])

be two ITrNNs. Then the distance between two numbers is defined as

d(α̃, β̃) =
1

24

(∣∣∣∣∣ a1(2 +
¯
t1 −

¯
i1 −

¯
f1) + a1(2 + t̄1 − ī1 − f̄1)

− a2(2 +
¯
t2 −

¯
i2 −

¯
f2)− a2(2 + t̄2 − ī2 − f̄2)

∣∣∣∣∣
+

∣∣∣∣∣ b1(2 +
¯
t1 −

¯
i1 −

¯
f1) + b1(2 + t̄1 − ī1 − f̄1)

− b2(2 +
¯
t2 −

¯
i2 −

¯
f2)− b2(2 + t̄2 − ī2 − f̄2)

∣∣∣∣∣
+

∣∣∣∣∣ c1(2 +
¯
t1 −

¯
i1 −

¯
f1) + c1(2 + t̄1 − ī1 − f̄1)

− c2(2 +
¯
t2 −

¯
i2 −

¯
f2)− c2(2 + t̄2 − ī2 − f̄2)

∣∣∣∣∣
+

∣∣∣∣∣ d1(2 +
¯
t1 −

¯
i1 −

¯
f1) + d1(2 + t̄1 − ī1 − f̄1)

− d2(2 +
¯
t2 −

¯
i2 −

¯
f2)− d2(2 + t̄2 − ī2 − f̄2)

∣∣∣∣∣
)

(2)

This distance is called normalized Hamming distance.

3 TOPSIS method for MADM

TOPSIS [5] method is based on the concept that the chosen alternative should have the shortest geometric
distance from the positive ideal solution and the longest geometric distance from the negative ideal solution.

Let A= {Ai|i = 1, 2, . . . ,m} be the set of alternatives, C= {Cj|j = 1, 2, . . . , n} be the set of criteria
and D= {dij|i = 1, 2, . . . ,m : j = 1, 2, . . . , n} be the performance ratings with the criteria weight vector W=
{wj|j = 1, 2, . . . , n}. The idea of classical TOPSIS method can be expressed in a series of following steps:

Step 1. Normalize the decision matrix.

The normalized value d̄ij is calculated as follows:

d̄ij =
dij√∑m
i=1(dij)

2
, i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Step 2. Calculate the weighted normalized decision matrix.

In the weighted normalized decision matrix, the modified ratings are calculated as given below:

vij = wj × d̄ij for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. (3)

where wj is the weight of the j-th attribute such that wj ≥ 0 for j = 1, 2, . . . , n and
∑n

j=1wj = 1.

Step 3. Determine the positive and the negative ideal solutions.
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The positive ideal solution (PIS) and the negative ideal solution (NIS) are determined as follows:

PIS = A+ =
{
v+1 , v

+
2 , . . . v

+
n ,
}

(4)

=

{(
max
j
vij|j ∈ J1

)
,

(
min
j
vij|j ∈ J2

)
|j = 1, 2, . . . , n

}
;

NIS = A− =
{
v−1 , v

−
2 , . . . v

−
n ,
}

=

{(
min
j
vij|j ∈ J1

)
,

(
max
j
vij|j ∈ J2

)
|j = 1, 2, . . . , n

}
,

where J1 and J2 are the benefit type and the cost type attributes, respectively.

Step 4. Calculate the separation measures for each alternative from the PIS and the NIS.

The separation values for the PIS can be measured using the n-dimensional Euclidean distance measure as
follows:

D+
i =

√√√√ n∑
j=1

(
vij − v+j

)2
i = 1, 2, . . .m. (5)

Similarly, separation values for the NIS can be measured as

D−
i =

√√√√ n∑
j=1

(
vij − v−j

)2
i = 1, 2, . . .m. (6)

Step 5. Calculate the relative closeness coefficient to the positive ideal solution.

The relative closeness coefficient for the alternative Ai with respect to A+ is calculated as

Ci =
D−
i

D+
i +D−

i

for i = 1, 2, . . .m. (7)

Step 6. Rank the alternatives.

According to relative closeness coefficient to the ideal alternative, the larger value of Ci reflects the better
alternative Ai.

4 TOPSIS for multi-attribute decision making based on ITrNN
In this section, we put forward a framework for determining the attribute weights and the ranking orders for all
the alternatives with incomplete weight information under neutrosophic environment.

For a multi-attribute decision making problem, let A = (A1, A2, ....., An) be a discrete set of alternatives
and C = (C1, C2, ...., Cn) be a discrete set of attributes. Suppose that D = [ãij] is the decision matrix, where
ãij = ([a1ij, a

2
ij, a

3
ij, a

4
ij]; t̃ij, ĩij, f̃ij) is ITrNN for alternative Ai with respect to attribute Cj and t̃ij, ĩij and f̃ij

are subsets of [0, 1] and 0 ≤ sup t̃ij + sup ĩij + sup f̃ij ≤ 3 for i = 1, 2, ...,m and j = 1, 2, ...., n. Here
t̃ij denotes interval truth membership function, ĩij denotes interval indeterminate membership function, f̃ij
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denotes interval falsity membership function. Then we have the following decision matrix:

D = (ãij)m×n =



C1 C2 . . . Cn

A1 ã11 ã12 . . . ã1n

A2 ã21 ã22 . . . ã2n
...

...
... . . . ...

Am ãm1 ãm2 . . . ãmn

 (8)

Now, we develop this method when attribute weights are completely known, partially known and completely
unknown. The steps of the ranking are as follows:

Step 1: Standardize the decision matrix.

This step transforms various attribute dimensions into non-dimensional attributes which allow comparison
across criteria because various criteria are usually measured in various units. In general, there are two types of
attribute. One is benefit type attribute and another one is cost type attribute. Let D = (aij)m×n be a decision
matrix where the ITrNN ãij = ([a1ij, a

2
ij, a

3
ij, a

4
ij]; t̃ij, ĩij, f̃ij) is the rating value of the alternativeAi with respect

to the attribute Cj .

In order to eliminate the influence of attribute type, we consider the following technique and obtain the
standardize matrix R = (r̃ij)m×n, where r̃ij = ([r1ij, r

2
ij, r

3
ij, r

4
ij]; [

¯
tij, t̄ij], [

¯
fij, f̄ij], [

¯
fij, f̄ij]) is ITrNN. Then we

have

r̃ij =
([a1ij
u+j
,
a2ij
u+j
,
a3ij
u+j
,
a4ij
u+j

]
; [

¯
tij, t̄ij], [

¯
fij, f̄ij], [

¯
fij, f̄ij]

)
, for benefit type attribute (9)

r̃ij =
([u−j
a4ij
,
u−j
a3ij
,
u−j
a2ij
,
u−j
a1ij

]
; [

¯
tij, t̄ij], [

¯
fij, f̄ij], [

¯
fij, f̄ij]

)
, for cost type attribute (10)

where u+j = max{a4ij : i = 1, 2, ....,m} and u−j = min{a1ij : i = 1, 2, ....,m} for j = 1, 2, ..., n.

Step 2: Calculate the attribute weight.

The attribute weights may be completely known, partially known or completely unknown. So we need to de-
termine the attribute weights by maximum deviation method which is proposed by Wang [48]. If the attributes
have larger deviation, smaller deviation and no deviation then we assign larger weight, smaller weight and zero
weight, respectively.

For MADM problem, the deviation values of alternative Ai to the other alternatives under the attribute Cj
can be defined as follows:

dij(w) =
m∑
k=1

d(ãij, ãkj)wj, i = 1, 2, ....,m; j = 1, 2, ....., n,where
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d(ãij, ãkj) =
1

24

(∣∣∣∣∣ a
1
ij(2 +

¯
tij −

¯
iij −

¯
fij) + a1ij(2 + t̄ij − īij − f̄ij)

− a1kj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− a1kj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
+

∣∣∣∣∣ a
2
ij(2 +

¯
tij −

¯
iij −

¯
fij) + a2ij(2 + t̄ij − īij − f̄ij)

− a2kj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− a2kj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
+

∣∣∣∣∣ a
3
ij(2 +

¯
tij −

¯
iij −

¯
fij) + a3ij(2 + t̄ij − īij − f̄ij)

− a3kj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− a3kj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
+

∣∣∣∣∣ a
4
ij(2 +

¯
tij −

¯
iij −

¯
fij) + a4ij(2 + t̄ij − īij − f̄ij)

− a4kj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− a4kj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
)

=
1

24

4∑
p=1

(∣∣∣∣∣ a
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
)

The deviation values of all the alternatives to other alternatives for the attributes Cj can be defined as

Dj(w) =
m∑
i=1

dij(w) =
m∑
i=1

m∑
k=1

d(ãij, ãkj)wj

=
m∑
i=1

m∑
k=1

( 1

24

4∑
p=1

∣∣∣∣∣ a
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣)wj
Therefore, the total deviation value D(w) =

∑n
j=1Dj(w).

In the following, we develop three cases:
Case 1. When the attribute weights are completely known.
In this case, the attribute weights w1, w2, ........, wn are known in advance and

∑n
j=1wj = 1, wj ≥ 0, for j =

1, 2, ...., n.
Case 2. When attributes weights are partially known.
In this case, we assume a non-linear programming model. This model maximizes all deviation values of the
attributes.

Model 1



max D(w)

=
1

24

n∑
j=1

m∑
i=1

m∑
k=1

4∑
p=1

(∣∣∣∣∣ a
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
)
wj

subject to w ∈ ∆,
n∑
j=1

w = 1, wj ≥ 0, for j = 1, 2, ......, n.

Here, the incomplete attribute weight information ∆ is taken in the following form ([49, 50]):

1. A weak ranking:{wi ≥ wj}, i 6= j;

2. A strict ranking:{wi − wj ≥ εi(> 0)}, i 6= j;

3. A ranking of difference:{wi − wj ≥ wk − wp}, i 6= j 6= k 6= p;

4. A ranking with multiples:{wi ≥ αiwj}, 0 ≤ αi ≤ 1, i 6= j;
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5. An interval form:{βi ≤ wi ≤ βi + εi(> 0)}, 0 ≤ βi ≤ βi + εi ≤ 1.

Solving this model, we get the optimal solution which is to be used as the weight vector.
Case 3. When attribute weights are completely unknown:
In this case, we can establish the following programming model:

Model 2



max D(w)

=
1

24

n∑
j=1

m∑
i=1

m∑
k=1

4∑
p=1

(∣∣∣∣∣ a
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
)
wj

subject to w ∈ ∆,
n∑
j=1

w2
j = 1, wj ≥ 0, for j = 1, 2, ......, n.

To solve this model, we construct the Lagrangian function:

L(w, ξ) =
1

24

n∑
j=1

m∑
i=1

m∑
k=1

4∑
p=1

(∣∣∣∣∣ a
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
)
wj

+
ξ

48

( n∑
j=1

w2
j − 1

)
(11)

where ξ ∈ R is Lagrange multiplier.
Now, we calculate the partial derivatives of L with respect to wj(j = 1, 2, ....n) and ξ:

∂L

∂wj
=

m∑
i=1

m∑
k=1

4∑
p=1

(∣∣∣∣∣ a
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
)

+ ξwj = 0 (12)

∂L

∂ξ
=

n∑
j=1

w2
j − 1 = 0 (13)

From Eq. (12), we get

wj =

−
m∑
i=1

m∑
k=1

4∑
p=1

(∣∣∣∣∣ a
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
)

ξ
, j = 1, 2, ....., n (14)

Putting this value in Eq.(13), we get

ξ2 =
n∑
j=1

(
m∑
i=1

m∑
k=1

m∑
p=1

(∣∣∣∣∣ apij(2 +
¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
) )2

(15)

⇒ ξ = −

√√√√ n∑
j=1

(
m∑
i=1

m∑
k=1

m∑
p=1

(∣∣∣∣∣ apij(2 +
¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
) )2

for ξ < 0

(16)

Bibhas C. Giri, Mahatab Uddin Molla, and Pranab Biswas : TOPSIS Method for MADM based on Interval
Trapezoidal Neutrosophic Number

Neutrosophic Sets and Systems, Vol. 22, 2018 159



From Eq. (14) and Eq. (16), we get the formula for determining attribute weights for Cj(j = 1, 2, ..., n) :

wj =

m∑
i=1

m∑
k=1

m∑
p=1

(∣∣∣∣∣ a
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
)

√√√√ n∑
j=1

(
m∑
i=1

m∑
k=1

m∑
p=1

(∣∣∣∣∣ apij(2 +
¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
) )2

(17)

Now, we can get the normalized attribute weight as

w̄j =
wj∑n
j=1wj

=

m∑
i=1

m∑
k=1

m∑
p=1

(∣∣∣∣∣ a
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
)

n∑
j=1

m∑
i=1

m∑
k=1

m∑
p=1

(∣∣∣∣∣ a
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + apij(2 + t̄ij − īij − f̄ij)

− apkj(2 +
¯
tkj −

¯
ikj −

¯
fkj)− apkj(2 + t̄kj − īkj − f̄kj)

∣∣∣∣∣
) (18)

Therefore, we get the normalized weight vector w̄ = {w̄1, w̄2, . . . , w̄n}.
Step 3: Determine the positive and negative ideal solutions.
The normalized decision matrix R = (r̃ij)m×n in the interval trapezoidal neutroshopic number, the positive
and negative ideal solutions are defined as follows:
r̃+ = (r̃+1 , r̃

+
2 , . . . , r̃

+
n ) and r̃− = (r̃−1 , r̃

−
2 , . . . , r̃

−
n ) where,

r̃+j =([r1+j , r2+j , r3+j , r4+j ]; [
¯
t+j , t̄

+
j ], [

¯
i+j , ī

+
j ], [

¯
f+
j , f̄

+
j ])

=
(

[max
i

(r1ij),max
i

(r2ij),max
i

(r3ij),max
i

(r4ij)];

[max
i

(
¯
tij),max

i
(t̄ij)][min

i
(
¯
iij),min

i
(̄iij)], [min

i
(
¯
fij),min

i
(f̄ij)]

)
(19)

r̃−j =([r1−j , r2−j , r3−j , r4−j ]; [
¯
t−j , t̄

−
j ], [

¯
i−j , ī

−
j ], [

¯
f−
j , f̄

−
j ])

=
(

[min
i

(r1ij),min
i

(r2ij),min
i

(r3ij),min
i

(r4ij)];

[min
i

(
¯
tij),min

i
(t̄ij)][max

i
(
¯
iij),max

i
(̄iij)], [max

i
(
¯
fij),max

i
(f̄ij)]

)
(20)

The global positive and negative ideal solutions for ITrNN can be considered as r̃+j = ([1, 1, 1, 1]; [1, 1], [0, 0], [0, 0])
and r̃−j = ([0, 0, 0, 0]; [0, 0], [1, 1], [1, 1]).
Step 4: Calculate the separation measure from ideal solutions.
Now, using Eqs.(2), (19) and (20), we calculate separation measure d+i from positive ideal solution and d−i
from negative ideal solution as

d+i =
n∑
j=1

wjd(r̃ij, r̃
+
j )

=
1

24

n∑
j=1

wj

4∑
p=1

( ∣∣∣∣∣ r
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + rpij(2 + t̄ij − īij − f̄ij)

− rp+j (2 +
¯
t+j −¯

i+j −
¯
f+
j )− rp+j (2 + t̄+j − ī+j − f̄+

j )
∣∣∣
∣∣∣∣∣
)
, i = 1, 2, ....,m. (21)
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d−i =
n∑
j=1

wjd(r̃ij, r̃
−
j )

=
1

24

n∑
j=1

wj

4∑
p=1

( ∣∣∣∣∣ r
p
ij(2 +

¯
tij −

¯
iij −

¯
fij) + rpij(2 + t̄ij − īij − f̄ij)

− rp−j (2 +
¯
t−j −¯

i−j −
¯
f−
j )− rp−j (2 + t̄−j − ī−j − f̄−

j )
∣∣∣
∣∣∣∣∣
)
, i = 1, 2, ...,m. (22)

Step 5: Calculate the relative closeness co-efficient.
We calculate the relative closeness co-efficient of an alternative Ai with respect to the ideal alternative A+ as

RCC(Ai) =
d−i

d+i + d−i
, for i = 1, 2, ...., n, (23)

where 0 ≤ RCC(Ai) ≤ 1. We then rank the best alternative according to RCC.
Step 6: End.

5 An illustrative example

In order to demonstrate the proposed method, we consider the following MADM problem. Suppose that a
person wants to buy a laptop. Let there be four companies A1, A2, A3, A4 and laptop of each company has
three attributes such as cost, warranty, and quality. We consider C1 for cost, C2 for warranty and C3 for quality
type of attribute.
The person evaluates the rating values of the alternatives Ai (i = 1, 2, 3, 4) with respect to attributes Cj(j =
1, 2, 3). Then we get the neutrosophic decision matrix D = (ãij)4×3 =

C1

A1 ([50, 60, 70, 80]; [0.1, 0.2], [0.2, 0.3], [0.4, 0.5])
A2 ([30, 40, 50, 60]; [0.3, 0.4], [0.2, 0.3], [0.1, 0.2])
A3 ([70, 80, 90, 100]; [0.6, 0.7], [0.2, 0.3], [0.4, 0.5])
A4 ([40, 50, 60, 70]; [0.4, 0.5], [0.6, 0.7], [0.2, 0.3])

C2

A1 ([30, 40, 50, 60]; [0.2, 0.3], [0.4, 0.5], [0.6, 0.7])
A2 ([10, 20, 30, 40]; [0.1, .2], [0.3, 0.4], [0.6, 0.7])
A3 ([50, 60, 70, 80]; [0.1, 0.2], [0.3, 0.4], [0.6, 0.7])
A4 ([70, 80, 90, 100]; [0.2, 0.3], [0.4, 0.5], [0.6, 0.8])

C3

A1 ([40, 50, 60, 70]; [0.4, 0.5], [0.6, 0.7], [0.7, 0.8])
A2 ([20, 30, 40, 50]; [0.1, 0.2], [0.3, 0.4], [0.8, 0.9])
A3 ([70, 80, 90, 100]; [0.3, 0.5], [0.4, 0.6], [0.7, 0.8])
A4 ([30, 40, 50, 60]; [0.4, 0.5], [0.6, 0.7], [0.7, 0.8])

Now, with the help of the proposed method, we find the best alternative following the steps given below:
Step 1: Standardize the decision matrix.
In the decision matrix, the first column represents the cost type attribute, and the second and the third columns
represent benefit type attribute. Then, using Eqs. (9) and (10), we get the following standardize decision
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matrix Rij =
C1

A1 ([0.38, 0.43, 0.50, 0.60]; [0.1, 0.2], [0.2, 0.3], [0.4, 0.5])
A2 ([0.50, 0.60, 0.75, 1.0]; [0.3, 0.4], [0.2, 0.3], [0.1, 0.2])
A3 ([0.30, 0.33, 0.38, 0.43]; [0.6, 0.7], [0.2, 0.3], [0.4, 0.5])
A4 ([0.43, 0.50, 0.60, 0.75]; [0.4, 0.5], [0.6, 0.7], [0.2, 0.3])

C2

A1 ([0.30, 0.40, 0.50, 0.60]; [0.2, .3], [0.4, 0.5], [0.6, 0.7])
A2 ([0.10, 0.20, 0.30, 0.40]; [0.1, 0.2], [0.3, 0.4], [0.6, 0.7])
A3 ([0.50, 0.60, 0.70, 0.80]; [0.1, 0.2], [0.3, 0.4], [0.6, 0.7])
A4 ([0.70, 0.80, 0.90, 1.0]; [0.2, 0.3], [0.4, .5], [0.6, 0.8])

C3

A1 ([0.40, 0.50, 0.60, 0.70]; [0.4, 0.5], [0.6, 0.7], [0.7, 0.8])
A2 ([0.20, 0.30, 0.40, 0.50]; [0.1, 0.2], [0.3, 0.4], [0.8, 0.9])
A3 ([0.70, 0.80, 0.90, 1.0]; [0.3, 0.5], [0.4, 0.6], [0.7, 0.8])
A4 ([0.30, 0.40, 0.50, 0.60]; [0.4, .5], [0.6, 0.7], [0.7, 0.8])

Step 2: Calculate the attribute weight.

Here we assume three cases for the attribute weight.

Case 1 : When the attribute weights are completely known, let the weight vector be w̄ = (0.25, 0.55, 0.20).

Case 2 : When the attribute weights are partially known, we select the weight information as follows:

∆ =


0.35 ≤ w1 ≤ 0.75
0.25 ≤ w2 ≤ 0.60
0.30 ≤ w3 ≤ 0.45
and w1 + w2 + w3 = 1

Using Model 1, we develop the single objective programming problem as{
max(D) = 45.92w1 + 109.56w2 + 98.20w3

subject to w ∈ ∆ and
∑3

j=1wj = 1, wj > 0 for j = 1, 2, 3.

Solving this problem with optimization software LINGO 11, we get the optimal weight vector as

w̄ = (0.35, 0.35, 0.30).

Case 3 : When the attribute weights are completely unknown, we use Model 2 and Eqn. (18) and obtain the
following weight vector:

w̄ = (0.18, 0.43, 0.39).

Step 3: Determine the positive and negative ideal solutions.

Since the cost of the laptop is cost type attribute, and warranty and quality are benefit type attributes, therefore,
using Eqs.(19) and (20), we get the following neutrosophic positive and negative ideal solutions:

A+ =


(

[0.30,0.33,0.38,0.43];[0.10,0.20],[0.20,0.30],[0.20,0.30]
)(

[0.70,0.80,0.90,1.0];[0.20,0.30],[0.40,0.50],[0.60,0.70]
)(

[0.70,0.80,0.90,1.0];[0.40,0.50],[0.60,0.70],[0.80,0.90]
)

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A− =


(

[0.50,0.60,0.75,1.0];[0.60,0.70],[0.40,0.50],[0.40,0.50]
)(

[0.10,0.20,0.30,0.40];[0.10,0.20],[0.30,0.40],[0.60,0.70]
)(

[0.20,0.30,0.40,0.50];[0.10,0.20],[0.30,0.40],[0.70,0.80]
)


Step 4 : Calculate the separation measure from ideal solutions.

Case 1 : From Eq. (21), we get the separation measure d+i of each Ai from A+:
d+1 = d(A1, A

+) = 0.179, d+2 = d(A2, A
+) = 0.425, d+3 = d(A3, A

+) = 0.106, d+4 = d(A4, A
+) = 0.325

From Eq. (22), we get the separation measure d−i of each Ai from A−:
d−1 = d(A1, A

−) = 0.304, d−2 = d(A2, A
−) = 0.083, d−3 = d(A3, A

−) = 0.485, d−4 = d(A4, A
−) = 0.503

Case 2 : From Eq. (21), we get the separation measure d+i of each Ai from A+:
d+1 = d(A1, A

+) = 0.185, d+2 = d(A2, A
+) = 0.434, d+3 = d(A3, A

+) = 0.141, d+4 = d(A4, A
+) = 0.335

From Eq. (22), we get the separation measure d−i of each Ai from A−:
d−1 = d(A1, A

−) = 0.299, d−2 = d(A2, A
−) = 0.084, d−3 = d(A3, A

−) = 0.479, d−4 = d(A4, A
−) = 0.381

Case 3 : From Eq. (21), we get the separation measure d+i of each Ai from A+:
d+1 = d(A1, A

+) = 0.167, d+2 = d(A2, A
+) = 0.429, d+3 = d(A3, A

+) = 0.126, d+4 = d(A4, A
+) = 0.307

From Eq. (22), we get the separation measure d−i of each Ai from A−:
d−1 = d(A1, A

−) = 0.604, d−2 = d(A2, A
−) = 0.094, d−3 = d(A3, A

−) = 0.554, d−4 = d(A4, A
−) = 0.467

Step 5: Calculate the relative closeness co-efficient.

In this step, using Eq. (22), we calculate the relative closeness coefficient of the alternatives A1, A2, A3, A4

and obtain the following results (see Table 1):

Table 1: Relative closeness co-efficient

RCC(Ai) Case 1 Case 2 Case 3

RCC(A1) 0.629 0.618 0.783
RCC(A2) 0.163 0.162 0.180
RCC(A3) 0.819 0.773 0.814
RCC(A4) 0.607 0.532 0.603

From the above table, we see that RCC(A3) ≥ RCC(A1) ≥ RCC(A4) ≥ RCC(A2) in all cases. Therefore,
we conclude that

A3 � A1 � A4 � A2

where A3 is the best alternative.
Step 6: End.

5.1 Comparative analysis
The study made by Liu [22] presents TOPSIS method for MADM based on trapezoidal intuitionistic fuzzy
number and does not include indeterminate type information in the decision making process. The preference
value considered in our paper is interval trapezoidal neutrosophic number, which deals with indeterminate type
information effectively along with truth and falsity type information. The method presented by Ye [44] and
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Subaş [45] discusses some aggregation operators of trapezoidal neutrosophic number and the decision making
method proposed by Biswas et al. [42] presents trapezoidal neutrosophic number based TOPSIS method for
MADM with partially known, and completely unknown weight information. We know that interval trape-
zoidal neutrosophic number is a generalization of trapezoidal neutrosophic number. The approach provided
by Biswas et al. [43] discusses ITrNN based MADM with known weight information, whereas our proposed
model develops ITrNN based MADM model with known, partially known, and completely unknown weight
information. Furthermore, the methods suggested by Biswas et al. [42], Ye [44], and Subaş [45] are not suit-
able for the decision making problem in this paper. In Table 2, we compare our results with those obtained by
the method given by Biswas et al. [43].

Table 2: A comparison of the results

Method Type of weight information Ranking result

Biswas et al.’s method [43]
Partially known Not Applicable

Completely unknown Not Applicable

Proposed method
Partially known A3 � A1 � A4 � A2

Completely unknown A3 � A1 � A4 � A2

Therefore, our proposed method is more general than the existing methods because the existing methods cannot
deal with ITrNN based MADM with partially known, and completely unknown weight information.

6 Conclusions

TOPSIS method is a very popular method for MADM problem and this method has been extended under
different environments like fuzzy sets, intuitionistic fuzzy sets and neutrosophic sets. In this paper, we have
extended TOPSIS method based on ITrNN. First, we have developed an optimization model to calculate the
attribute weight with the help of maximum deviation strategy when the weight information is partially known.
We have also developed another model by using Lagrangian function to determine attributes’ weights for
unknown weight information case. With these weights we have solved MADM problem by TOPSIS method.
Finally we have provided a numerical example of MADM problem and compared with existing methods. The
proposed strategy can be extended to multi-attribute group decision making problem with ITrNN. This model
can be used in various selection problems like weaver selection problem [51, 52], data mining [53], teacher
selection problem [54], brick field selection problem [55], center location selection problem [56,57], etc. under
ITrNN environment.
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1 Introduction 

We generalize the soft set to the hypersoft set by transforming the function F into a multi-argument function. 
Then we make the distinction between the types of Universes of Discourse: crisp, fuzzy, intuitionistic fuzzy, 

neutrosophic, and respectively plithogenic. 
Similarly, we show that a hypersoft set can be crisp, fuzzy, intuitionistic fuzzy, neutrosophic, or plithogenic. 

A detailed numerical example is presented for all types. 

2 Definition of Soft Set [1] 

Let 𝒰 be a universe of discourse, 𝒫(𝒰) the power set of 𝒰, and A a set of attributes. Then, the pair (F, 𝒰), 
where  

𝐹: 𝐴 ⟶ 𝒫(𝒰)           (1) 
is called a Soft Set over 𝒰. 

3 Definition of Hypersoft Set 

Let 𝒰 be a universe of discourse, 𝒫(𝒰) the power set of 𝒰. 
Let 𝑎1, 𝑎2, … , 𝑎𝑛, for 𝑛 ≥ 1, be n distinct attributes, whose corresponding attribute values are respectively the

sets 𝐴1, 𝐴2, … , 𝐴𝑛, with 𝐴𝑖 ∩ 𝐴𝑗 = ∅, for 𝑖 ≠ 𝑗, and 𝑖, 𝑗 ∈ {1, 2, … , 𝑛}.
Then the pair (𝐹, 𝐴1 × 𝐴2 × … × 𝐴𝑛), where:
𝐹: 𝐴1 × 𝐴2 × … × 𝐴𝑛 ⟶ 𝒫(𝒰)         (2)

is called a Hypersoft Set over 𝒰. 

4 Particular case 

For 𝑛 = 2, we obtain the Γ–Soft Set [2]. 

5 Types of Universes of Discourses 

5.1. A Universe of Discourse 𝒰𝐶 is called Crisp if ∀𝑥 ∈ 𝒰𝐶 , x belongs 100% to 𝒰𝐶, or x’s membership (Tx)
with respect to 𝒰𝐶 is 1. Let’s denote it x(1).

5.2. A Universe of Discourse 𝒰𝐹 is called Fuzzy if ∀𝑥 ∈ 𝒰𝑐, x partially belongs to 𝒰𝐹, or 𝑇𝑥 ⊆ [0, 1], where
𝑇𝑥 may be a subset, an interval, a hesitant set, a single-value, etc. Let’s denote it by 𝑥(𝑇𝑥).

5.3. A Universe of Discourse 𝒰𝐼𝐹 is called Intuitionistic Fuzzy if ∀𝑥 ∈ 𝒰𝐼𝐹, x partially belongs (𝑇𝑥) and
partially doesn’t belong (𝐹𝑥) to 𝒰𝐼𝐹, or 𝑇𝑥 , 𝐹𝑥 ⊆ [0, 1], where 𝑇𝑥 and 𝐹𝑥 may be subsets, intervals, hesitant sets,
single-values, etc. Let’s denote it by 𝑥(𝑇𝑥, 𝐹𝑥).

5.4. A Universe of Discourse 𝒰𝑁 is called Neutrosophic if ∀𝑥 ∈ 𝒰𝑁, x partially belongs (𝑇𝑥), partially its

membership is indeterminate (𝐼𝑥), and partially it doesn’t belong (𝐹𝑥) to 𝒰𝑁, where 𝑇𝑥, 𝐼𝑥 , 𝐹𝑥 ⊆ [0, 1], may be
subsets, intervals, hesitant sets, single-values, etc. Let’s denote it by 𝑥(𝑇𝑥 , 𝐼𝑥, 𝐹𝑥).

5.5. A Universe of Discourse 𝒰𝑃 over a set V of attributes’ values, where 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}, 𝑛 ≥ 1, is
called Plithogenic, if ∀𝑥 ∈ 𝒰𝑃, x belongs to 𝒰𝑃 in the degree 𝑑𝑥

0(𝑣𝑖) with respect to the attribute value 𝑣𝑖, for all
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𝑖 ∈ {1, 2, … , 𝑛}. Since the degree of membership 𝑑𝑥
0(𝑣𝑖) may be crisp, fuzzy, intuitionistic fuzzy, or neutrosophic,

the Plithogenic Universe of Discourse can be Crisp, Fuzzy, Intuitionistic Fuzzy, or respectively Neutrosophic. 
Consequently, a Hypersoft Set over a Crisp / Fuzzy / Intuitionistic Fuzzy / Neutrosophic / or Plithogenic Uni-

verse of Discourse is respectively called Crisp / Fuzzy / Intuitionistic Fuzzy / Neutrosophic / or Plithogenic 

Hypersoft Set. 

6 Numerical Example 

Let 𝒰 = {𝑥1, 𝑥2, 𝑥3, 𝑥4} and a set ℳ = {𝑥1, 𝑥3} ⊂ 𝒰.
Let the attributes be: 𝑎1 = size, 𝑎1 = color, 𝑎1 = gender, 𝑎1 = nationality, and their attributes’ values respec-

tively: 
Size = 𝐴1 ={small, medium, tall},
Color = 𝐴2 ={white, yellow, red, black},
Gender = 𝐴3 ={male, female},

Nationality = 𝐴4 ={American, French, Spanish, Italian, Chinese}.
Let the function be:  
𝐹: 𝐴1 × 𝐴2 × 𝐴3 × 𝐴4 ⟶ 𝒫(𝒰). (3) 
Let’s assume: 

𝐹({tall, white, female, Italian}) = {𝑥1, 𝑥3}.
With respect to the set ℳ, one has: 

6.1 Crisp Hypersoft Set 

𝐹({tall, white, female, Italian}) = {𝑥1(1), 𝑥3(1)},       (4)
which means that, with respect to the attributes’ values {tall, white, female, Italian} all together, 𝑥1 belongs 100%
to the set ℳ; similarly 𝑥3.

6.2 Fuzzy Hypersoft Set 

𝐹({tall, white, female, Italian}) = {𝑥1(0.6), 𝑥3(0.7)},      (5)

which means that, with respect to the attributes’ values {tall, white, female, Italian} all together, 𝑥1 belongs 60%
to the set ℳ; similarly, 𝑥3 belongs 70% to the set ℳ.

6.3 Intuitionistic Fuzzy Hypersoft Set 

𝐹({tall, white, female, Italian}) = {𝑥1(0.6, 0.1), 𝑥3(0.7, 0.2)},     (6)
which means that, with respect to the attributes’ values {tall, white, female, Italian} all together, 𝑥1 belongs 60%
and 10% it does not belong to the set ℳ; similarly, 𝑥3 belongs 70% and 20% it does not belong to the set ℳ.

6.4 Neutrosophic Hypersoft Set 

𝐹({tall, white, female, Italian}) = {𝑥1(0.6, 0.2, 0.1), 𝑥3(0.7, 0.3, 0.2)},    (7)
which means that, with respect to the attributes’ values {tall, white, female, Italian} all together, 𝑥1 belongs 60%
and its indeterminate-belongness is 20% and it doesn’t belong 10% to the set ℳ; similarly, 𝑥3 belongs 70% and
its indeterminate-belongness is 30% and it doesn’t belong 20%. 

6.5 Plithogenic Hypersoft Set 

𝐹({tall, white, female, Italian}) = {
𝑥1 (𝑑𝑥1

0 (tall), 𝑑𝑥1
0 (white), 𝑑𝑥1

0 (female), 𝑑𝑥1
0 (Italian)) ,

𝑥2 (𝑑𝑥2
0 (tall), 𝑑𝑥2

0 (white), 𝑑𝑥2
0 (female), 𝑑𝑥2

0 (Italian))
}, (8) 

where 𝑑𝑥1
0 (𝛼) means the degree of appurtenance of element 𝑥1 to the set ℳ with respect to the attribute value α;

and similarly 𝑑𝑥2
0 (𝛼) means the degree of appurtenance of element 𝑥2 to the set ℳ with respect to the attribute

value α; where 𝛼 ∈ {tall, white, female, Italian}. 
Unlike the Crisp / Fuzzy / Intuitionistic Fuzzy / Neutrosophic Hypersoft Sets [where the degree of appurte-

nance of an element x to the set ℳ is with respect to all attribute values tall, white, female, Italian together (as a 
whole), therefore a degree of appurtenance with respect to a set of attribute values], the Plithogenic Hypersoft Set 
is a refinement of Crisp / Fuzzy / Intuitionistic Fuzzy / Neutrosophic Hypersoft Sets [since the degree of appurte-

nance of an element x to the set ℳ is with respect to each single attribute value]. 
But the Plithogenic Hypersoft St is also combined with each of the above, since the degree of degree of appurte-
nance of an element x to the set ℳ with respect to each single attribute value may be: crisp, fuzzy, intuitionistic 
fuzzy, or neutrosophic. 
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7 Classification of Plithogenic Hypersoft Sets 

7.1 Plithogenic Crisp Hypersoft Set 

It is a plithogenic hypersoft set, such that the degree of appurtenance of an element x to the set ℳ, with respect 
to each attribute value, is crisp: 

𝑑𝑥
0(𝛼) = 0 (nonappurtenance), or 1 (appurtenance).

In our example: 

𝐹({tall, white, female, Italian}) = {𝑥1(1, 1, 1, 1), 𝑥3(1, 1, 1, 1)}.      (9)

7.2 Plithogenic Fuzzy Hypersoft Set 

It is a plithogenic hypersoft set, such that the degree of appurtenance of an element x to the set ℳ, with respect 
to each attribute value, is fuzzy: 

𝑑𝑥
0(𝛼) ∈ 𝒫([0, 1]), power set of [0, 1],

where 𝑑𝑥
0(∙) may be a subset, an interval, a hesitant set, a single-valued number, etc.

In our example, for a single-valued number: 
𝐹({tall, white, female, Italian}) = {𝑥1(0.4, 0.7, 0.6, 0.5), 𝑥3(0.8, 0.2, 0.7, 0.7)}.     (10)

7.3 Plithogenic Intuitionistic Fuzzy Hypersoft Set 

It is a plithogenic hypersoft set, such that the degree of appurtenance of an element x to the set ℳ, with respect 
to each attribute value, is intuitionistic fuzzy: 

𝑑𝑥
0(𝛼) ∈ 𝒫([0, 1]2), power set of [0, 1]2,

where similarly 𝑑𝑥
0(𝛼) may be: a Cartesian product of subsets, of intervals, of hesitant sets, of single-valued num-

bers, etc. 
In our example, for single-valued numbers: 

𝐹({tall, white, female, Italian}) = {
𝑥1(0.4,0.3)(0.7,0.2)(0.6, 0.0)(0.5, 0.1)

𝑥3(0.8,0.1)(0.2,0.5)(0.7, 0.0)(0.7, 0.4)
}. (11)

7.4 Plithogenic Neutrosophic Hypersoft Set 

It is a plithogenic hypersoft set, such that the degree of appurtenance of an element x to the set ℳ, with respect 
to each attribute value, is neutrosophic: 

𝑑𝑥
0(𝛼) ∈ 𝒫([0, 1]3), power set of [0, 1]3,

where 𝑑𝑥
0(𝛼) may be: a triple Cartesian product of subsets, of intervals, of hesitant sets, of single-valued numbers,

etc. 

In our example, for single-valued numbers: 

𝐹({tall, white, female, Italian}) = {
𝑥_1 [(0.4,0.1, 0.3)(0.7, 0.0, 0.2)(0.6, 0.3, 0.0)(0.5, 0.2, 0.1)]
𝑥_3 [(0.8, 0.1, 0.1)(0.2, 0.4, 0.5)(0.7, 0.1, 0.0)(0.7, 0.5, 0.4)]

}.  (12) 

Conclusion & Future Research 

For all types of plithogenic hypersoft sets, the aggregation operators (union, intersection, complement, inclu-
sion, equality) have to be defined and their properties found. 

Applications in various engineering, technical, medical, social science, administrative, decision making and 
so on, fields of knowledge of these types of plithogenic hypersoft sets should be investigated. 
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1 Introduction

Uncertainty is something that we cannot be sure about. It is a common phenomenon of our daily existence, because our world is full of uncertainties. There are

many situations and complex physical processes, where we encounter uncertainties of different types and often face many problems due to it. Therefore it is natural

for us to understand and try to model these uncertain situations prevailing in those physical processes. From centuries, the Science, whether Physics or Biology,

or in Philosophy, i.e. every domain of knowledge has strived to understand the manifestations and features of uncertainty. Perhaps that is the main reason behind

the development of Probability theory and Stochastic techniques which started in early eighteenth century, which has the ability to model uncertainties arising due

to randomness. But the traditional view of Science, especially Mathematics was to worship certainty and to avoid uncertainty by all possible means. Therefore

the classical mathematics failed to model many complex physical phenomena such as complex chemical processes or biological systems where uncertainty was

unavoidable. Again probabilistic techniques cannot also model all kinds of uncertain situations. Natural language processing is an example of such problem where

the above method fails. Thus the need for a fundamentally different approach to study such problems, where uncertainty plays a key role, was felt and that stimulated

new developments in Mathematics.

Recently a new theory has been introduced and which is known as neutrosophic logic and sets. The term neutro-sophy means knowledge of neutral thought

and this neutral represents the main distinction between fuzzy and intuitionistic fuzzy logic and set. Neutrosophic logic was introduced by Florentin Smarandache in

1995. It is a logic in which each proposition is estimated to have a degree of truth (T), a degree of indeterminacy (I) and a degree of falsity (F). A Neutrosophic set is

a set where each element of the universe has a degree of truth, indeterminacy and falsity respectively and which lies between, the non-standard unit interval. Unlike

in intuitionistic fuzzy sets, where the incorporated uncertainty is dependent of the degree of belongingness and degree of non belongingness, here the uncertainty

present, i.e. indeterminacy factor, is independent of truth and falsity values. In 2005, Wang et. Al. introduced an instance of neutrosophic set known as single

valued neutrosophic sets which were motivated from the practical point of view and that can be used in real scientific and engineering applications. The single valued

neutrosophic set is a generalization of classical set, fuzzy set, intuitionistic fuzzy set and paraconsistent sets etc.

The recently proposed notion of neutrosophic sets is a general formal framework for studying uncertainties arising due to indeterminacy factors. From the

philosophical point of view, it has been shown that a neutrosophic set generalizes a classical set, fuzzy set, interval valued fuzzy set, intuitionistic fuzzy set etc. Also

single valued neutrosophic (SVN) set can be used in modeling real scientific and engineering problems. The SVN set is a generalization of classical fuzzy set [54],

intuitionstic fuzzy set [7] etc. Therefore the study of neutrosophic sets and its properties have a considerable significance in the the sense of applications as well as in

understanding the fundamentals of uncertainty [See [2, 3, 4, 5, 8, 10, 15, 16, 28, 29, 32, 33, 35, 36, 37, 38, 39, 40, 55]]. This new topic is very sophisticated and only

a handful of papers have been published till date but it has immense possibilities which are to be explored.

Graphs and Digraphs play an important role to solve many pratical problems in algebra, analysis, geometry etc. A couple of researchers are continuously engaged

in research on fuzzy graph theory, fuzzy digraph theory, intuitionstic fuzzy graphs, soft digraphs [17, 22, 23, 24, 49]. However Neutrosophic graphs, SVN graphs

concept have been defined by Samarandache and Broumi et al. in their papers [12, 45]. We have defined the SVN digraphs in our previous paper [50]

In this paper we have developed the notion of SVN digraphs. Some preliminaries regarding SVN sets, graph theory etc. are discussed in Section 2. In section 3,

we have defined the some terminologies regarding SVN digraph with examples. We have discussed SVN signed digraphs for the first time in Section 4. In section 5,

we have solved a real life networking problem by using SVN signed digraph. Section 6 concludes the paper.

2 Preliminaries

Neutrosophic sets play an important role in decision making under uncertain environment of Mathematics. Most of the preliminary ideas regarding Neutrosophic sets

and its possible applications can be easily found in any standard reference say [30, 43, 45, 46]. However we will discuss some definitions and terminologies regarding

neutrosophic sets which will be used in the rest of the paper. Also we have added some new definitions and results on SVN digraphs in this section.

Definition 1 [30] Let X be a universal set. A neutrosophic set A on X is characterized by a truth membership function tA , an indeterminacy function iA and a

falsity function fA, where tA, iA, fA : X → [0, 1], are functions and ∀ x ∈ X , x = x(tA(x), iA(x), fA(x)) ∈ A is a single valued neutrosophic element of A.

A single valued neutrosophic set (SVNS) A over a finite universe X = {x1, x2, . . . , xn} is represented as below:

A =
n
∑

i=1

xi

〈tA(xi), iA(xi), fA(xi)〉
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Definition 2 [1] Let A = {〈x; tA(x); iA(x); fA(x)〉; x ∈ X} be a single-valued neutrosophic set of the set X . For α ∈ [0, 1], the α-cut of A is the crisp set Aα

Aα = {x ∈ X : either(tA(x); iA(x)) ≥ α or fA(x) < 1− α}.

Let B = {〈(x, y); tB(x, y); iB(x, y); fB(x, y)〉} be a neutrosophic set on E ⊆ X ×X . For α ∈ [0, 1], the α-cut is the crisp set Bα defined by,

Bα = {(x, y) ∈ E : either (tB(x, y); iB(x, y) ≥ α) or

fB(x, y) ≤ 1− α}.

Definition 3 [30] Suppose N(X) be the collection of all SVN sets on X and A,B ∈ N(X). A similarity measure between two SVN sets A and B is a function

S : N(X) ×N(X) → [0, 1] which satisfies the following condition:

(i) 0 ≤ S(A,B) ≤ 1,

(ii) S(A,B) = 1 if and only if A = B.

(iii) S(A,B) = S(B,A)

(iv) If A ⊆ B ⊆ C, then S(A,C) ≤ S(A,B) and S(A,C) ≤ S(B,C) for all A,B, C ∈ N(X).

Note that here (i)-(iii) are essential for any similarity measure and (iv) is a desirable property although not mandatory.

Definition 4 The entropy of SVNS A is defined as a function E : N(X) → [0, 1] which satisfies the following axioms:

(i) E(A) = 0 if A is a crisp set.

(ii) E(A) = 1 if (tA(x), iA(x), fA(x)) = (0.5, 0.5, 0.5) ∀x ∈ X .

(iii) E(A) ≥ E(B) if A is more uncertain than B i.e. tA(x) + fA(x) ≤ tB(x) + fB(x) and |iA(x)− iAc(x)| ≤ |iB(x)− iBc(x)| ∀ x ∈ X A,B ∈ X .

(iv) E(A) = E(Ac) ∀A ∈ N(X), where N(X) is the collection of all SVNS over X .

Example 5 An entropy measure of an element x1 of a SVNS A can be calculated as follows:

E1(x1) = 1− (tA(x1) + fA(x1)) × |iA(x1)− iAc(x1)|.

Graph theory are widely used in different areas of neutrosophic theory. Many authors have used different types of graphs in neutrosophic theory. Consider a SVN set

VD = {(vi, 〈tVD
(vi), iVD

(vi), fVD
(vi)〉), i = 1, . . . , n} over a finite universal set X .

Definition 6 [50] A SVN digraph D is of the form D = (VD , AD) where,

(i) VD = {v1, v2, v3, . . . , vn} and the functions tVD
: VD → [0, 1], iVD

: VD → [0, 1], fVD
: VD → [0, 1] denote the truth-membership function, a

indeterminacy-membership function and falsity-membership function of the element vi ∈ VD respectively such that 0 ≤ tVD
(vi)+iVD

(vi)+fVD
(vi) ≤ 3,

∀vi ∈ VD , i = 1, 2, . . . , n.

(ii) AD = {(vi, vj); (vi, vj) ∈ VD × VD} provided 0 < E(vi)− E(vj) ≤ 0.5 and the functions tAD
: AD → [0, 1], iAD

: AD → [0, 1], fAD
: AD →

[0, 1] are defined by

tAD
({vi, vj}) ≤ min[tVD

(vi), tVD
(vj)],

iAD
({vi, vj}) ≥ max[iVD

(vi), iVD
(vj)],

fAD
({vi, vj}) ≥ max[fVD

(vi), fVD
(vj)]

where tAD
, iAD

, fAD
denotes the truth-membership function, a indeterminacy-membership function and falsity-membership function of the arc (vi, vj) ∈

AD respectively where 0 ≤ tAD
(vi, vj) + iAD

(vi, vj) + fAD
(vi, vj) ≤ 3, ∀(vi, vj) ∈ AD, i, j ∈ {1, 2, . . . n}.

We call VD as the vertex set of D, AD as the arc set of D where E(v) is the entropy of the vertex v. Please note that if E(vi) = E(vj), then {(vi, vj), (vj , vi)} ∈
AD . Since for a vertex v ∈ VD of a SVN digraph D we have E(v) = E(v), thus every vertex of a SVN digraph D contains a loop (v, v) at v. On the other hand, if

E(vi)− E(vj) > 0.5, we define that there exists no arc between the vertices vi and vj .

Example 7 Consider the SVN digraph D0 = (VD0
, AD0

) in Figure 1 with vertex set VD0
= {v1, v2, v3} and arc set AD0

= {(v2, v1), (v1, v3), (v2, v3)} with

one loop at each vertex as follows:











v1 v2 v3
tVD

0.4 0.4 0.5
iVD

0.1 0.3 0.2
fVD

0.2 0.1 0.5
E 0.52 0.8 0.4











,









(v2, v1) (v2, v3) (v1, v3)
tAD

0.3 0.2 0.4
iAD

0.4 0.3 0.3
fAD

0.2 0.6 0.4









.

It is clear that the D0 is a SVN digraph.

Definition 8 Suppose D = (VD , AD) and H = (VH , AH ) be two SVN digraphs with |VD| = |VH | corresponding to the SVNS VD and VH over an universal set

X . Then the cartesian product of two SVN digraphs D and H is defined as a SVN digraph C = (VC , AC) in which the following holds:

(i) VC = VD × VH ,
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v1

� v3
�v2

Figure 1: The SVN Digraph D0

(ii) tVC
(v1, v2) ≤ min(tVD

(v1), tVH
(v2)); iVC

(v1, v2) ≤ min(iVD
(v1), iVH

(v2));
fVC

(v1, v2) ≥ max(fVD
(v1), fVH

(v2)); ∀ (v1, v2) ∈ VD ∩ VH and ,

(iii) AC = {
(

(vi, vj), (vk , vl)
)

;
(

(vi, vj), (vk , vl)
)

∈ VC × VC} provided 0 < E(vi, vj)− E(vk, vl) ≤ 0.5.

Definition 9 The degree and the total degree of a vertex vi of a SVN digraph D = (V,A) are denoted by

dD(vi) = (dt(vi), di(vi), df (vi))

=
(

∑

j,i6=j

tA(vi, vj),
∑

j,i6=j

iA(vi, vj),
∑

j,i6=j

fA(vi, vj)
)

,

TdD(vi) =
(

∑

j,i6=j

tA(vi, vj) + tV (vi),
∑

j,i6=j

iA(vi, vj) +

iV (vi),
∑

j,i6=j

fA(vi, vj) + fV (vi)
)

.

Example 10 The degree and total degree of the vertex v2 of the digraph D0 in Example 7 are dD(v2) = (0.5, 0.7, 0.8) and TdD(v2) = (0.9, 1, 0.9).

Definition 11 A SVN digraph D = (VD , AD) is called a k-regular SVN digraph if dD(vi) = (k, k, k) ∀vi ∈ VD .

Definition 12 A SVN digraph D = (VD , AD) is called a totally regular SVN digraph of degree (k1, k2, k3) if TdD(vi) = (k1, k2, k3) ∀vi ∈ VD .

It is quite clear that the concept of a regular SVN digraph and totally regular SVN digraph are completely different. We have seen that the arc set AD in D forms a

SVN set [50]. Now we consider the concept of degree and total degree of an arc of a SVN digraph in the next definition.

Definition 13 The degree and the total degree of an arc (u, v) of a SVN digraph are denoted by dD(u, v) = (dt(u, v), di(u, v), df (u, v)) and TdD(u, v) =
(Tdt(u, v), Tdi(u, v), Tdf (u, v)), respectively and are defined as follows:

dD(u, v) = dD(u) + dD(v) −
1

2
(tA(u, v), iA(u, v), fA(u, v)),

TdD(u, v) = dD(u, v) + (tA(u, v), iA(u, v), fA(u, v))

Example 14 Consider the SVN digraph D0 in Figure 1. Here the degree and total degree of the vertices {v1, v2, v3} of D0 as follows:

dD(v1) = (0.4, 0.3, 0.4), TdD(v1) = (0.8, 0.4, 0.6),

dD(v2) = (0.5, 0.7, 0.8), TdD(v2) = (0.9, 1, 0.9),

dD(v3) = (0, 0, 0), TdD(v3) = (0.5, 0.2, 0.5).

Now we calculate the degree and total degree of each arc of AD0
of D0 as follows:

dD(v2, v1) = (0.85, 0.8, 1.1), TdD(v2, v1) = (0.6, 0.6, 0.1),

dD(v2, v3) = (0.4, 0.55, 0.5), TdD(v2, v3) = (0.3, 0.4, 0.2),

dD(v1, v3) = (0.2, 0.15, 0.2), TdD(v1, v3) = (0, 0, 0).

Definition 15 The maximum degree of a SVN digraph D = (VD , AD) is defined as ∆(D) = (∆t(D),∆i(D),∆f (D)) where

∆t(D) = max{dt(v) : v ∈ VD},

∆i(D) = max{di(v) : v ∈ VD},

∆f (D) = max{df (v) : v ∈ VD},

Definition 16 The minimum degree of a SVN digraph D = (VD , AD) is defined as δ(D) = (δt(D), δi(D), δf (D)) where

δt(D) = min{dt(v) : v ∈ VD},

δi(D) = min{di(v) : v ∈ VD},

δf (D) = min{df (v) : v ∈ VD},
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Example 17 For the SVN digraph D0 in Figure 1, we have ∆(D) = (0.5, 0.7, 0.8) and δ(D) = (0, 0, 0, ).

Definition 18 Suppose D = (VD , AD) be a SVN digraph corresponding to a SVN set VD . Then D is said to be

(i) arc regular SVN digraph if every arc in D has the same degree (k1, k2, k3).

(ii) equally arc regular SVN digraph if k1 = k2 = k3.

(iii) totally arc regular SVN digraph if every arc in D has the same total degree (k1, k2, k3).

It is also quite clear that the above three concepts are completely different to each other.

3 SVN Signed Digraph

In this paper, we will define the SVN signed digraph for the first time.

Definition 19 Suppose D = (VD , AD) be a SVN digraph over a single valued neutrosophic set VD . A signing of a SVN digraph D is an assignment of a sign (+
or −) to each arc of the digraph; the sign of arc (v, w) is denoted sgn(v, w). The result of a signing of D is called a SVN signed digraph.

However to assign the sign of the arcs, we will follow some rules. For this, we will consider the α-level subdigraph D1 of a SVN digraph D. Then we will assign

+ sign only to those arcs of D which are also the arcs of D1. For the rest of arcs of D, we will assign − sign.

Example 20 Consider the SVN digraph D1 = (VD1
, AD1

) in Figure 2 with vertex set VD1
= {v1, v2, v3, v4} and arc set AD1

= {(v2, v1), (v1, v3), (v2, v3),
(v2, v4), (v3, v4), (v4, v1)} with one loop at each vertex as follows:













v1 v2 v3 v4
tVD1

0.4 0.4 0.5 0.2

iVD1
0.1 0.3 0.2 0.5

fVD1
0.2 0.1 0.5 0.3

E 0.52 0.8 0.4 1













,









(v2, v1) (v2, v3) (v4, v1) (v1, v3) (v4, v2)
tAD1

0.3 0.2 0.1 0.4 0.2

iAD1
0.4 0.3 0.5 0.3 0.5

fAD1
0.2 0.6 0.3 0.4 0.4









.

We take α = 0.5. In this case, the vertices {v1, v2, v4} of D1 are α-level vertices and the arcs {(v2, v1), (v4, v1), (v4, v2)} are the α-level arcs. Thus we will

assign the sign as follows to the arcs of D1

sgn(v2, v1) = sgn(v4, v1) = sgn(v4, v2) = +

sgn(v1, v1) = sgn(v2, v2) = sgn(v4, v4) = +,

sgn(v2, v3) = sgn(v1, v3) = sgn(v3, v3) = −

�

v4(0.2, 0.5, 0.3)

�

v3(0.5, 0.2, 0.5)

�

v2(0.4, 0.3, 0.1)
�

v1(0.4, 0.1, 0.2)

Figure 2: The SVN Digraph D1

Remark 21 Throughout this paper, we have taken the value of α is 0.5. However, for different values of α we will get different signed SVN digraphs. Also, by Kn,

we denote the complete SVN digraph of n-vertices.

Definition 22 The sets of positive and negative arcs of a SVN signed digraph D are respectively denoted by D+
and D−

. Thus D = D+ ∪D−
.

Definition 23 A SVN signed digraph is said to be homogeneous if all of its arcs have either positive sign or negative sign, otherwise heterogeneous.

Definition 24 The sign of a SVN signed digraph is defined as the product of signs of its arcs.A SVN signed digraph is said to be positive (negative) if its sign is

positive (negative) i.e., it contains an even (odd) number of negative arcs. A signed digraph is said to be all-positive (respectively, all negative) if all its arcs are

positive (negative).

Example 25 It is clear that the sign of the SVN digraph D1 in Example 20 is negative. It is clear that the SVN digraph D1 is neither all positive nor all negative.

Definition 26 A SVN signed digraph is said to be cycle balanced if each of its cycles is positive, otherwise non cycle balanced.
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Definition 27 A SVN signed digraph is symmetric if (u, v) ∈ D+ (orD−) then (v, u) ∈ D+ (orD−) where u, v ∈ VD .

Definition 28 The adjacency matrix of a SVN signed digraph D is the square matrix M = (aij ) whose (i, j) entry aij is +1 if arc (vi, vj) in D has a + sign, −1
if arc (vi, vj) in D has a − sign, and 0 if arc (vi, vj) is not in D.

Example 29 The adjacency matrix M of the SVN signed digraph D1 in Figure 2 is as following:

M =









1 0 −1 0
1 1 −1 0
0 0 −1 0
1 1 0 1









.

Definition 30 The characteristic polynomial δ(t) = |tI −M | of the adjacency matrix M of a SVN signed digraph D is called the characteristic polynomial of D

and it is denoted by p(t). The eigenvalues of M are called the spectral of the digraph D.

Example 31 The characteristic polynomial δ(t) of the SVN signed digraph D1 in Figure 2 is δ(t) = (t − 1)3(t+ 1) and spectral values are 1, 1, 1,−1.

Definition 32 Suppose D = (VD , AD) be a SVN signed digraph over a single valued neutrosophic set VD = {v1, v2, . . . , vn}. Consider the complement SVN

digraph DC
corresponding to the complement SVN set V C

D
. The digraph V C

D
with a signing of arcs is called the signed complement of the SVN signed digraph VD .

Here we choose the same value of α as of D and also consider the α-arcs and α-vertices. According to the α-arcs and α-vertices we assign signs to the arcs of V c
D

.

Example 33 Consider the SVN complement digraph Dc
of the SVN digraph D1 in Figure 2.

sgn(v2, v1) = sgn(v4, v1) = sgn(v4, v2) = −,

sgn(v1, v1) = sgn(v2, v2) = sgn(v4, v4) = +,

sgn(v2, v3) = sgn(v1, v3) = sgn(v3, v3) = +.

�

v4(0.2, 0.5, 0.3) v3(0.5, 0.2, 0.5)

v2(0 .4, 0.3, 0.1)



v1(0.4, 0.1, 0.2)

Figure 3: The SVN Digraph DC

4 Some important results of a SVN Signed Digraph

In this section we will discuss some results regarding SVN signed Neutrosophic digraphs. Like wise a SVN digraph D, we define the terminologies of a SVN signed

digraph. However, the order of a SVN signed digraph D, denoted by |D|, is the number of vertices of D. The size of a SVN signed digraph D, is the number of arcs

of D i.e. |AD|.

Theorem 34 A SVN (signed) digraph D 6= Kn of order ≥ 3 is always acyclic.

Proof 35 Suppose there exist a cyclic SVN (signed) digraph D = (VD , AD) has vertex set VD = {v1, v2, v3, . . . , vn}. Without loss of generality, let D has a

cycle of length k, where k ≥ 3 say 〈v1, v2, . . . , vk〉. Then we have E(v1) > E(v2) > . . . , E(vk) > E(v1)- which is impossible. Hence D does not have a cycle

of length k.

Corollary 36 Any asymmetric SVN signed digraph of order ≥ 3 is not balanced.

Theorem 37 Any asymmetric SVN (signed) digraph H of order ≥ 3 is not strongly connected.

Proof 38 Since there does not exists any SVN (signed) digraph with a cycle of length ≥ 3, hence the results follows.

Theorem 39 In any complete symmetric SVN digraph D = (VD , AD), where VD = {v1, v2, . . . , vn},

∑

dD(vi) = (dt(vi), di(vi), df (vi))

=
(

∑

j,i6=j

tA(vi, vj),
∑

j,i6=j

iA(vi, vj),
∑

j,i6=j

fA(vi, vj)
)

,

∀vi ∈ VD .
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Proof 40 For any symmetric complete SVN digraph D = (VD , AD), where VD = {v1, v2, . . . , vn}, we have,

∑

dD(vi) = (
∑

dt(vi),
∑

di(vi),
∑

df (vi))
= (dt(v1), di(v1), df (v1)) + . . .+ (dt(vn), di(vn), df (vn))
=

(
∑

j,16=j tA(v1, vj),
∑

j,16=j iA(v1, vj),
∑

j,16=j fA(v1, vj)
)

+ . . .+
(
∑

j,n6=j tA(vn, vj),
∑

j,n6=j iA(vn, vj),
∑

j,n6=j fA(vn, vj)
)

= 2
(
∑

j,i6=j tA(vi, vj),
∑

j,i6=j iA(vi, vj),
∑

j,i6=j fA(vi, vj)
)

.

However the converse of the Theorem 39 is not true for a asymmetric and incomplete SVN digraph which can be followed from the Example 10. The SVN digraph

D0 is asymmetric as well as incomplete. Clearly the Theorem 39 does not hold.

Theorem 41 Suppose D = (VD , AD) be a SVN symmetric digraph which has a cycle C on p-vertices, say {v1, v2, . . . , vp}. Then,

∑

dD(vi)

=
∑

dD(vi, vj) +
3

2

(

∑

j,i6=j

tA(vi, vj),
∑

j,i6=j

iA(vi, vj),
∑

j,i6=j

fA(vi, vj)
)

where (vi, vj) ∈ C, i 6= j.

Proof 42 We have,

∑

dD(vi, vj) = dD(v1, v2) + . . .+ dD(vp, v1)

= dD(v1) + dD(v2)−
1

2
(tA(v1, v2), iA(v1, v2), fA(v1, v2)) + . . .+

dD(vp) + dD(v1)−
1

2
(tA(vp, v1), iA(vp, v1), fA(vp, v1)),

= 2
∑

vi∈C dD(vi)−
1

2

{
∑

j,i6=j tA(vi, vj),
∑

j,i6=j iA(vi, vj),
∑

j,i6=j fA(vi, vj)
}

=
∑

vi∈C dD(vi)+,

2
{
∑

j,i6=j tA(vi, vj),
∑

j,i6=j iA(vi, vj),
∑

j,i6=j fA(vi, vj)
}

− 1

2

(
∑

j,i6=j tA(vi, vj),
∑

j,i6=j iA(vi, vj),
∑

j,i6=j fA(vi, vj)
)

,

=
∑

dD(vi, vj)+,

3

2

(
∑

j,i6=j tA(vi, vj),
∑

j,i6=j iA(vi, vj),
∑

j,i6=j fA(vi, vj)
)

.

Theorem 43 The maximum value of the degree of any vertex in a complete SVN digraph D with n vertices is (n− 1, n− 1, n− 1).

Proof 44 Suppose D = (VD , AD) be a complete SVN digraph. Then the maximum truth-membership value given to an arc is 1 and the number of arcs incident on

a vertex can be at most n − 1. Hence the maximum truth-membership degree of any vertex in a complete SVN-digraph with n vertices is n − 1. Similar argument

can be done for indeterminacy-membership degree and falsity-membership degree of any vertex. Hence the result follows.

The following remarks are quite natural for a SVN signed digraph:

Remark 45 (i) A single valued neutrosophic signed digraph is a single valued neutrosophic positive signed digraph if every even length cycles having all

negative signed arcs.

(ii) Odd length cycle having all negative signed arcs is always a negative signed digraph.

(iii) An odd length single valued signed neutrosophic cycle is balanced if and only if it contains at least one positive arcs or odd number of positive arcs.

5 Applications of a SVN Signed digraph

The applications of SVN sets in solving real life problems under uncertainty has been shown by many authors. In this section we have shown the application of our

SVN signed digraphs in solving two problems namely a classification problem and a decision making problem.

5.1 Classification problem

Consider the SVN set V (D) = {v1, v2, v3.v4} in Example 20 and the corresponding SVN signed digraph D = (VD , AD) in Figure 2. To draw SVN signed

digraph, we have taken α = 0.5. Based on this α, we find that the vertices {v1, v2, v4} of D1 as α-level vertices and the arcs {(v2, v1), (v4, v1), (v4, v2)} as the

α-level arcs. Then we assign the signs to the arcs of D as follows:

sgn(v2, v1) = sgn(v4, v1) = sgn(v4, v2) = +,

sgn(v1, v1) = sgn(v2, v2) = sgn(v4, v4) = +,

sgn(v2, v3) = sgn(v1, v3) = sgn(v3, v3) = −.

Hence, we can form a partition of two sets namely P,Q, where P = {v1, v2, v4} and Q = {v3} from the elements of a SVN set V (D). The partition is done on

the basis of signing of the α-level vertices. Thus by drawing SVN signed digraph of a SVN set, we can get a 2-point classification of a SVN set.

5.2 Algorithm for 2-point classification of a SVN set

One can attempt for 2-point classification of a SVN set by using the following algorithm:

(i) Consider a SVN set V (D).

(ii) Draw a SVN digraph D = (V (D), A(D)), where V (D), A(D) are the vertex set and arc set of D respectively.

(iii) Choose the value of α and find out α level vertices of D. The choice of the value of the α is completely depend on the programmer.

(iv) Assign the positive sign with the α level vertices, arcs and negative sign to rest of the vertices, arcs of D. In that case D turns into a SVN signed digraph.

(v) Finally consider two sets P,Q s.t P consists the positive vertices and Q contains the negative vertices. Hence a partition of the SVN sets V (D) is done

consisting of two sets P and Q respectively.
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5.3 A Decision Making Problem

Suppose A,B, C be three nations willing to explore the possibility trade between them. Considering various situations in there countries like, political stability, case

of doing business, human resource, trade laws etc. Each country was assigned grades of positive factors, indeterminacy and negative factors as follows:

A(0.4, 0.3, 0.2), B(0.4, 0.1, 0.2), C(0.5, 0.2, 0.4).

In these way, we can characterize the three country A,B,C respectively. We must to find the possibility of trade between them. For this, we consider A,B, C as the

three vertices v1, v2, v3 respectively as a vertex set VD4
of a proposed SVN digraph D4 = (VD4

, AD4
). Now we draw the SVN digraph D4 as follows:











v1 v2 v3
tVD

0.4 0.4 0.5
iVD

0.3 0.1 0.2
fVD

0.2 0.2 0.4
E 0.76 0.52 0.46











,









(v1, v2) (v1, v3) (v2, v3)
tAD

0.3 0.2 0.4
iAD

0.4 0.3 0.3
fAD

0.2 0.6 0.4









.

Here, we have seen that AD4
= {(v1, v2), (v1, v3), (v2, v3)}. So we can say that, there is a good transport communication between the country pair (A,B), (A,C), (B,C)

�

v2

v3v1

Figure 4: The SVN Digraph D4

respectively. Now consider α = 0.3. Here, the vertices {v1, v2} of D4 are α-level vertices and the arcs {(v1, v2)} is the only α-level arcs. Thus we will assign the

sign as follows to the arcs of D4

sgn(v1, v2) = sgn(v1, v1) = sgn(v2, v2) = +,

sgn(v2, v3) = sgn(v1, v3) = sgn(v3, v3) = −

From this SVN signed digraph D4 we can conclude that both A and B have a common enemy C. Hence although there is a good communication between two

country (A,C) and (B,C), it is not possible to do business between them due to their political situation. Hence a cyclic triple SVN signed digraph D4 with one

positive arcs can evaluate the real networks.

6 Conclusion

F. Smarandache introduced the neutrosophic set theory in his paper [43] as a generalization of fuzzy intuitionistic set theory. After that many researchers have

developed the neutrosophic set theory, SVN theory, neutrosophic graph theory etc. and have applied those theories in solving many practical problems ([1, 6, 10, 12,

13, 14, 19, 20, 21, 26, 31, 41, 42, 48, 50, 51, 52, 53] etc.). We have developed earlier SVN digraph theory corresponding to a SVN set in our paper [50]. In this

paper we have further developed the SVN digraph theory and introduced the notion of SVN signed digraphs and studied some of its important properties and applied

it in a decision making problem. In future, one may study the decision making problems using SVN signed digraphs. The study of deeper properties of SVN signed

digraphs and solution of more real life problems will be done in our subsequent papers.
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Abstract: In this paper, we introduce the notion of a single-valued co-neutrosophic graphs and study some methods
of construction of new single-valued co-neutrosophic graphs. We compute degree of a vertex, strong single-valued
co-neutrosophic graphs and complete single-valued co-neutrosophic graphs. We also introduce and give properties of
regular and totally regular single-valued co-neutrosophic graphs.

Keywords: Single-valued neutrosophic graphs; degree of a vertex; strong single-valued co-neutrosophic graphs;
complete single-valued co-neutrosophic graphs; regular and totally regular single-valued co-neutrosophic graphs.

1 Introduction and preliminaries
Zadeh [21] introduced the concepts of fuzzy set theory as a generalized concept of crisp set theory. The concept
of fuzzy graph theory as a generalization of Eulers graph theory was first introduced by Rosenfeld [17] in 1975.
Later, Bhattacharya [5] gave some remarks on fuzzy graphs. The concept of cofuzzy graphs by M. Akram [1].
The concepts of intuitionistic cofuzzy graph by Dhavaseelan [9]. Smarandache [20] introduced the concept of
neutrosophic sets. Certain types of neutrosophic graphs were introduced by R. Dhavaseelan et al. [10].Some
more work in single valued neutrosophic set,interval valued neutrosophic set and their application may be
found in Karaaslan,et .al., [13], Hamidi,et .al., [11, 14], Broumi, et.al., [6–8, 15] and Shimaa Fathi,et.al [18].
Kandasamy, et.al [12], introduced the new dimension of neutrosophic graph.

In this paper, we introduce the notion of a single-valued co-neutrosophic graphs and study some methods
of construction of new single-valued co-neutrosophic graphs. We compute degree of a vertex, strong single-
valued co-neutrosophic graphs and complete single-valued co-neutrosophic graphs. We also introduce and
give properties of regular and totally regular single-valued co-neutrosophic graphs.

Definition 1.1. [19] Let X be a space of points. A neutrosophic set A in X is characterized by a truth-
membership function T

A
(x), an indeterminacy membership function I

A
(x) and a falsity membership function

F
A

(x). The functions T
A

(x), I
A

(x)and F
A

(x) are real standard or non standard subsets of ]0−, 1+[. That is,
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T
A

(x) : X →]0−, 1+[, I
A

(x) : X →]0−, 1+[,F
A

(x) : X →]0−, 1+[ and 0− ≤ T
A

(x) + I
A

(x) + F
A

(x) ≤ 3+.
From philosophical point view, the neutrosophic set takes the value from real standard or non standard subsets
of ]0−, 1+[. In real life applications in scientific and engineering problems, it is difficult to use neutrosophic
set with value from real standard or non standard subset of ]0−, 1+[.

Definition 1.2. [2, 4] A single-valued neutrosophic graph is a pair G = (A,B), where A : V → [0, 1] is
single-valued neutrosophic set in V and B : V × V → [0, 1] is single-valued neutrosophic relation on V such
that
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for all x, y ∈ V . A is called single-valued neutrosophic vertex set of G and B is called single-valued neu-
trosophic edge set of G, respectively. We note that B is symmetric single-valued neutrosophic relation on A.
If B is not symmetric single-valued neutrosophic relation on A, then G = (A,B) is called a single-valued
neutrosophic directed graph.

2 Single-valued co-neutrosophic graphs
Definition 2.1. A single-valued co-neutrosophic graph is a pair G = (A,B), where A : V → [0, 1] is a single-
valued co-neutrosophic set in V and B : V × V → [0, 1] is a single-valued co-neutrosophic relation on V such
that
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for all x, y ∈ V . A and B are called the single-valued co-neutrosophic vertex set of G and the single-valued
co-neutrosophic edge set of G, respectively. We note that B is a symmetric single-valued co-neutrosophic
relation on A. If B is not a symmetric single-valued co-neutrosophic relation on A, then G = (A,B) is called
a single-valued co-neutrosophic directed graph.

Notation 2.1. The triples 〈TA(x), IA(x), FA(x)〉 denotes the degree of membership, an indeterminacy member-
ship and nonmembership of vertex x, The triples 〈TB(xy), IB(xy), FB(xy)〉 denote the degree of membership,
an indeterminacy membership and nonmembership of edge relation xy = (x, y) on V .

Definition 2.2. A partial single-valued co-neutrosophic subgraph of single-valued co-neutrosophic graph G =
(A,B) is a single-valued co-neutrosophic graph H = (V ′, E ′) such that

(i) V ′ ⊆ V , where T ′A(vi) ≤ TA(vi), I
′
A(vi) ≤ IA(vi), F

′
A(vi) ≥ FA(vi) for all vi ∈ V .

(ii) TB(xy)
′ ≤ TB(xy);IB(xy)

′ ≤ IB(xy); FB(xy)
′ ≥ FB(xy) for every x and y

Definition 2.3. A single-valued co-neutrosophic graphH = 〈A′
, B

′〉 is said to be a single-valued co-neutrosophic
subgraph of the single-valued co-neutrosophic graph G = 〈A,B〉 if A′ ⊆ A and B′ ⊆ B. In other words if
TA

′
(x) = TA(x);IA

′
(x) = IA(x); F ′

A(x) = FA(x) and TB(xy)
′

= TB(xy);IB(xy)
′

= IB(xy); FB(xy)
′

=
FB(xy) for every x and y

R. Dhavaseelan, S. Jafari, M. R. Farahani, S. Broumi: On single-valued co-neutrosophic graphs



Neutrosophic Sets and Systems, Vol. 22, 2018 182

a

(0.5, 0.5, 0.4)

b

(0.6, 0.6, 0.4)

c (0.3, 0.3, 0.7)d(0.5, 0.5, 0.5)

e

(0.6, 0.6, 0.3)

(0.6,0.6,0.3)

(0.5,0.5,0.4) (0.7,0.7,0.3)

(0.6,0.6,0.3)

(0.7,0.7,0.2)
(0.6,0.6,0.3)

Figure 1: G : Single-valued co-neutrosophic graph
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Figure 2: H : Single-valued co-neutrosophic partial subgraph (H ⊆ G)

Definition 2.4. A single-valued co-neutrosophic graph G = 〈A,B〉 is said to be strong single-valued co-
neutrosophic graph if TB(xy) = max(TA(x), TA(y)),IB(xy) = max(IA(x), IA(y)) andFB(xy) = min(FA(x), FA(y)),
for all (xy) ∈ E.

Definition 2.5. A single-valued co-neutrosophic graph G = 〈A,B〉 is said to be complete single-valued co-
neutrosophic graph if TB(xy) = max(TA(x), TA(y)), IB(xy) = max(IA(x), IA(y)) andFB(xy) = min(FA(x), FA(y)),
for every x, y ∈ V .

Definition 2.6. Let G = 〈A,B〉 be a single-valued co-neutrosophic graph. Then the degree of a vertex v
is defined by d(v) = (dT (v), dI(v), dF (v)), where dT (v) =

∑
u6=v TB(u, v), dI(v) =

∑
u6=v IB(u, v) and

dF (v) =
∑

u6=v FB(u, v)

Definition 2.7. The minimum degree of G is δ(G) = (δT (G), δI(G), δF (G)), where δT (G) = min{dT (v)|v ∈
V }, δI(G) = min{dI(v)|v ∈ V } and δF (G) = max{dF (v)|v ∈ V }
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Figure 3: H : Single-valued co-neutrosophic subgraph
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Figure 4: Complete single-valued co-neutrosophic graph

Definition 2.8. The maximum degree of G is ∆(G) = (∆T (G),∆I(G),∆F (G)), where ∆T (G) = max{dT (v)|v ∈
V }, ∆I(G) = max{dI(v)|v ∈ V } and ∆F (G) = min{dF (v)|v ∈ V }

Example 2.1. Let G = 〈A,B〉 be a single-valued co-neutrosophic graph. Draw as below

The degrees are dT (a) = 1.6, dI(a) = 1.6, dF (a) = 1.0, dT (c) = 1.3, dI(c) = 1.3, dF (c) = 0.5, dT (d) =
1.7, dI(d) = 1.7, dF (d) = 1.1, dT (b) = 1.0, dI(b) = 1.0, dF (b) = 0.8.
Minimum degree of a graph is δT (G) = 1.0, δI(G) = 1.0, δF (G) = 1.1
Maximum degree of a graph is ∆T (G) = 1.7,∆I(G) = 1.7,∆F (G) = 0.5

Definition 2.9. Let G = 〈A,B〉 be a single-valued co-neutrosophic graph. The total degree of a vertex v ∈ V
is defined as :
Td(v) = TdT (v)+TdI(v)+TdF (v), where TdT (v) =

∑
(u,v)∈E

TB(u, v)+TA(v), TdI(v) =
∑

(u,v)∈E
IB(u, v)+

IA(v) and TdF (v) =
∑

(u,v)∈E
FB(u, v) + FA(v).
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If each vertex of G has the same total degree (r1, r2, r3), then G is said to be an (r1, r2, r3) totally regular
single-valued co-neutrosophic graph.

Definition 2.10. Let G = 〈A,B〉 be a single-valued co-neutrosophic graph. If each vertex has same degree
(r, s, t), then G is called (r, s, t) regular single-valued co-neutrosophic graph. Thus r = dT (v), s = dI(v), t =
dF (v);for v ∈ V .

Example 2.2. Let G = 〈A,B〉 be a single-valued co-neutrosophic graph. Draw as below

x(0.4, 0.4, 0.5)

y(0.3, 0.3, 0.5)

u (0.5, 0.5, 0.4)
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d(y) = (1.8, 1.8, 1.1), d(v) = (1.8, 1.8, 1.1), d(u) = (1.8, 1.8, 1.1), d(x) = (1.8, 1.8, 1.1). So, G is a
regular single-valued co-neutrosophic graph. But G is not totally regular single-valued co-neutrosophic graph.
Since Td(y) = 5.8 6= 6.1 = Td(v).

Remark 2.1. (a) For a single-valued co-neutrosophic graph, H = (A,B) to be both regular & totally regular,
the number of vertices in each edge must be same.

(b) And also each vertex lies in exactly same number of edges.

Proposition 2.1. Let G = 〈A,B〉 be a single-valued co-neutrosophic graph. Then TA : V → [0, 1], IA : V →
[0, 1], FA : V → [0, 1] is a constant function iff following are equivalent.
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(1) G is a regular single-valued co-neutrosophic graph,

(2) G is a totally regular single-valued co-neutrosophic graph.

Proof. suppose that (TA, IA, FA) is a constant function. Let TA(vi) = k1, IA(vi) = k2, FA(vi) = k3 for
all vi ∈ V . Assume that G is a (r1, r2, r3) regular single-valued co-neutrosophic graph. Then dT (vi) =
r1, dI(vi) = r2, dF (vi) = r3 for all vi ∈ V . So Td(vi) = TdT (vi) + TdI(vi) + TdF (vi)
TdT (vi) = dT (vi) + TA(vi), for all vi ∈ V

= r1 + k1 = c1.

TdI(vi) = dI(vi) + IA(vi), for all vi ∈ V
= r2 + k2 = c2.

TdF (vi) = dF (vi) + FA(vi), for all vi ∈ V
= r3 + k3 = c3.

Hence G is totally regular single-valued co-neutrosophic graph. Thus (1)⇒ (2) is proved.
Now, suppose that G is a (t1, t2, t3) totally regular single-valued co-neutrosophic graph, then TdT (vi) =

t1, TdT (vi) = t2, TdF (vi) = t3 for all vi ∈ V .

TdT (vi) = dT (vi) + TA(vi) = t1,
⇒ dT (vi) = t1 − TA(vi) = t1 − k1, for all vi ∈ V .

Similarly, TdI(vi) = dI(vi) + IA(vi) = t2,
⇒ dI(vi) = t2 − IA(vi) = t2 − k2, for all vi ∈ V .

TdF (vi) = dF (vi) + FA(vi) = t3,
⇒ dF (vi) = t3 − FA(vi) = t3 − k3, for all vi ∈ V . So, G is a regular single-valued co-neutrosophic graph.
Thus (2)⇒ (1) is proved. Hence (1) and (2) are equivalent.

Proposition 2.2. If a single-valued co-neutrosophic graph is both regular and totally regular, then (TA, IA, FA)
is constant function.

Proof. Let G be a (r, s, t) regular and (k1, k2, k3) totally regular single-valued co-neutrosophic graphs. So,
dT (v1) = r, dI(v1) = s, dF (v1) = t for v1 ∈ V and TdT (v1) = k1, TdI(v1) = k2, TdF (v1) = k3 for all
v1 ∈ V . Now,

TdT (v1) = k1, for all v1 ∈ V,
dT (v1) + TA = k1, for all v1 ∈ V,
r + TA(v1) = k1, for all v1 ∈ V,

TA(v1) = k1 − r, for all v1 ∈ V.
Hence TA(v1) is a constant function.

Similarly, IA(v1) = k2 − s for all v1 ∈ V and FA(v1) = k3 − t for all v1 ∈ V . Hence (TA, IA, FA) is a
constant.

3 Conclusion
In this paper, we introduced the notion of a single-valued co-neutrosophic graphs and study some methods of
construction of new single-valued co-neutrosophic graphs. We computed degree of a vertex, strong single-
valued co-neutrosophic graphs and complete single-valued co-neutrosophic graphs. Properties of regular and
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totally regular single-valued co-neutrosophic graphs are discussed. In future, we are introduce and discuss the
energy of Single-valued co-neutrosophic graphs.
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