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Behaviour of ring ideal in neutrosophic and soft sense

Tuhin Bera1, Said Broumi2 and Nirmal Kumar Mahapatra3
1 Department of Mathematics, Boror S. S. High School, Bagnan, Howrah-711312, WB, India. E-mail: tuhin78bera@gmail.com
2 Administrator of Faculty of Arts and Humanities, Hassan II Mohammedia University, Hay El Baraka Ben Msik Casablanca

B.P. 7951, Morocco, E-mail: broumisaid78@gmail.com
3 Department of Mathematics, Panskura Banamali College, Panskura RS-721152, WB, India. E-mail: nirmal hridoy@yahoo.co.in

Abstract . This article enriches the idea of neutrosophic soft ideal (NSI). The notion of neutrosophic soft prime ideal
(NSPI) is also introduced here. The characteristics of both NSI and NSPI are investigated. Their relations are drawn
with the concept of ideal and prime ideal in crisp sense. Any neutrosophic soft set (Nss) can be made into NSI or NSPI
using the respective cut set under a situation. The homomorphic characters of ideal and prime ideal in this new class
are also drawn critically.

Keywords : Neutrosophic soft ideal (NSI); Neutrosophic soft prime ideal (NSPI); Homomorphic image.

1 Introduction

In today’s world, the most of our routine activities are full of uncertainty and ambiguity. Whenever solving any
problem arisen in decision making, political affairs, medicine, management, industrial and many other different
real worlds, analysts suffer from a major confusion instead of directly moving towards a positive decision.
The situation can be nicely conducted by practice of Neutrosophic set (NS) theory introduced by Smarandache
[7,8]. This theory represents an object by an additional value namely indeterministic function beside another
two characters seen in Attanasov’s theory [16]. So, Attanasov’s theory can not be a proper choice in uncertain
situation. Hence, the NS theory is more reliable to an analyst, since an object is estimated here by three
independent characters namely true value, indeterminate value and false value. The analysis of uncertain fact is
possible in a more convenient way on the availability of adequate parameters. The soft set theory innovated by
Molodtsov [5] brought that opportunity to practice the different theories in uncertain atmosphere.

Researchers are trying to extend the various mathematical structures over fuzzy set, intuitionistic fuzzy set,
soft set from the very beginning. Some attempts [1,2,3,4,6,11,12,21,32,33,45] allied to group and ring theory
are pointed out. Maji [22] took a successful effort to combine the neutrosophic logic with soft set theory and
thus the Nss theory was brought forth. Later, modifying the different operations of Nss theory using t-norm
and s-norm, Deli and Broumi [13] gave this Nss theory a new look. Doing the habit of this modified formation,
Bera and Mahapatra [36] began to study the notion of NSI. From initiation, the authors are making attempt to
unite with the neutrosophic logic in different mathematical areas and in many real sectors. These [9,10,14,15,
17-20, 23-31, 34-44] are some accomplishments.

The present study investigates the characteristics of NSI. Section 2 states some necessary definitions to carry
on the main result. In Section 3, the structural characteristics of NSIs are investigated. Section 4 introduces and
develops the concept of NSPI. Section 5 describes the nature of homomorphic image of NSI and the conclusion
is given in Section 6.
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2 Preliminaries
We shall remember some definitions here to make out the main thought.

2.1 Definition [38]
1. A continuous t-norm4 maps [0, 1]× [0, 1]→ [0, 1] and satisfies the followings.
(i) 4 is continuous and associative.
(ii) m4 q = q4m, ∀m, q ∈ [0, 1].
(iii) m4 1 = 14m = m, ∀m ∈ [0, 1].
(iv) m4 q ≤ n4 s if m ≤ n, q ≤ s with m, q, n, s ∈ [0, 1].
m4 q = mq,m4 q = min{m, q},m4 q = max{m+ q − 1, 0} are some necessary continuous t-norms.
2. A continuous t - conorm (s - norm)5 maps [0, 1]× [0, 1]→ [0, 1] and obeys the followings.
(i) 5 is continuous and associative.
(ii) w5 p = p5 w, ∀w, p ∈ [0, 1].
(iii) w5 0 = 05 w = w, ∀w ∈ [0, 1].
(iv) w5 p ≤ v5 q if w ≤ v, p ≤ q with w, v, p, q ∈ [0, 1].
w5 p = w + p− wp,w5 p = max{w, p}, w5 p = min{w + p, 1} are some useful continuous s-norms.

2.2 Definition [7]
An element u of a universal set X is described under an NS H by three characters viz. truth-membership
TH , indeterminacy-membership IH and falsity-membership FH such that TH(u), IH(u), FH(u) ∈]−0, 1+[ and
−0 ≤ supTH(u) + sup IH(u) + supFH(u) ≤ 3+. For 1+ = 1 + ε, 1 is the standard part and ε is the non-
standard part and so on for −0 also. The non-standard subsets of ]−0, 1+[ is practiced in philosophical ground
but in real atmosphere, only the standard subsets of ]−0, 1+[ i.e., [0, 1] is used. Thus the NS H is put as :
{< u, (TH(u), IH(u), FH(u)) >: u ∈ X}.

2.3 Definition [5]
Suppose X be the universe of discourse and E be a parametric set. Then for B ⊆ E and ℘(X) being the set of
all subsets of X , a soft set is narrated by a pair (G,B) when G maps B → ℘(X).

2.4 Definition [22]
Suppose X be the universe of discourse and E be a parametric set. Then for B ⊆ E and NS(X) being the set
of all NSs over X , an Nss is narrated by a pair (G,B) when G maps B → NS(X).
The Nss theory appeared in a new look by Deli and Broumi [13] as follows.

2.5 Definition [13]
Suppose X be the universe of discourse and E being a parametric set describes the elements of X . An Nss
D over (X,E) is put as : {(b, hD(b)) : b ∈ E} where hD maps E → NS(X) given by hD(b) = {<
u, (ThD(b)(u), IhD(b)(u), FhD(b)(u)) >: u ∈ X}. ThD(b), IhD(b), FhD(b) ∈ [0, 1] are three characters of hD(b) as
mentioned in Definition [7] and they are connected by the relation 0 ≤ ThD(b)(u) + IhD(b)(u) + FhD(b)(u) ≤ 3.
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2.5.1 Definition [13]

Over (X,E), suppose P,Q be two Nss. ∀b ∈ E and ∀u ∈ X , if ThP (b)(u) ≤ ThQ(b)(u), IhP (b)(u) ≥ IhQ(b)(u),
FhP (b)(u) ≥ FhQ(b)(u), then P is called a neutrosophic soft subset of Q (denoted as P ⊆ Q)

2.6 Proposition [34]

A neutrosophic soft group (NSG) D is an Nss on (V, o), a classical group, obeying the inequalities mentioned
below with respect to m4 q = min{m, q} and p5 n = max{p, n}.

ThD(b)(uov
−1) ≥ ThD(b)(u)4 ThD(b)(v), IhD(b)(uov

−1) ≤ IhD(b)(u)5 IhD(b)(v) and
FhD(b)(uov

−1) ≤ FhD(b)(u)5 FhD(b)(v), ∀u, v ∈ V, ∀b ∈ E.

2.7 Definition [36]

1. For a neutrosophic soft ring (NSR) D on a ring (S,+, ·) in crisp sense if each hD(b) is a neutrosophic left
ideal for b ∈ E, then D is called a neutrosophic soft left ideal (NSLI) i.e.,

(i) hD(b) is a neutrosophic subgroup of (S,+) for every b ∈ E and
(ii) ThD(b)(x.y) ≥ ThD(b)(y), IhD(b)(x.y) ≤ IhD(b)(y), FhD(b)(x.y) ≤ FhD(b)(y); for x, y ∈ S.

2. For an NSR D on (S,+, ·) if each hD(b) is a neutrosophic right ideal for b ∈ E, then D is called a
neutrosophic soft right ideal (NSRI) i.e.,

(i) hD(b) is a neutrosophic subgroup of (S,+) for every b ∈ E and
(ii) ThD(b)(x.y) ≥ ThD(b)(x), IhD(b)(u.v) ≤ IhD(b)(x), FhD(b)(x.y) ≤ FhD(b)(x); for x, y ∈ S.

3. For an NSR D on (S,+, ·) if each hD(b) is an NSLI as well as NSRI for b ∈ E, then D is called an NSI i.e.,
(i) hD(b) is a neutrosophic subgroup of (S,+) for every b ∈ E and
(ii) ThD(b)(x.y) ≥ max{ThD(b)(x), ThD(b)(y)}, IhD(b)(x.y) ≤ min{IhD(b)(x), IhD(b)(y)} and

FhD(b)(x.y) ≤ min{FhD(b)(x), FhD(b)(y)}; for x, y ∈ S.

2.8 Definition [35]

1. Let M be an NS on the universe of discourse X . Then M(σ,η,δ) is called (σ, η, δ)-cut of M and is described
as a set {u ∈ X : TM(u) ≥ σ, IM(u) ≤ η, FM(u) ≤ δ} where σ, η, δ ∈ [0, 1] and 0 ≤ σ + η + δ ≤ 3. This
M(σ,η,δ) is called (σ, η, δ)-level set or (σ, η, δ)-cut set of the NS M and clearly, M(σ,η,δ) ⊂ X .

2. Let D be an Nss on (X,E). Then the soft set D(σ,η,δ) = {(b, [hD(b)](σ,η,δ)) : b ∈ E} is called (σ, η, δ)-level
soft set or (σ, η, δ)-cut soft set for σ, η, δ ∈ [0, 1] with 0 ≤ σ + η + δ ≤ 3. Here each [hD(b)](σ,η,δ) is an
(σ, η, δ)-level set of the NS hD(b) over X .

In the main results, we shall restrict ourselves by the t-norm as m4 q = min{m, q} and s-norm as p5 n =
max{p, n} and shall take b ∈ E, a parametric set, as an arbitrary parameter.

3 Neutrosophic soft ideal

Some features of NSI are studied by developing a number of theorems here.
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3.1 Proposition

Let K be an NSLI (NSRI) on (S,E). If 0S is the additive identity of the ring S, then
(i) ThK(b)(u) ≤ ThK(b)(0S), IhK(b)(u) ≥ IhK(b)(0S), FhK(b)(u) ≥ FhK(b)(0S), ∀u ∈ R and ∀b ∈ E.
(ii) K(σ,η,δ) is a left (right) ideal for 0 ≤ σ ≤ ThK(b)(0S), IhK(b)(0S) ≤ η ≤ 1, FhK(b)(0S) ≤ δ ≤ 1.

Proof. (i) Here, for every b ∈ E, hK(b) is a neutrosophic subgroup of (S,+). Then ∀u ∈ S and ∀b ∈ E,

ThK(b)(0S) = ThK(b)(u− u) ≥ ThK(b)(u)4 ThK(b)(u) = ThK(b)(u),

IhK(b)(0S) = IhK(b)(u− u) ≤ IhK(b)(u)5 IhK(b)(u) = IhK(b)(u),

FhK(b)(0S) = FhK(b)(u− u) ≤ FhK(b)(u)5 FhK(b)(u) = FhK(b)(u);

(ii) Let u, v ∈ K(σ,η,δ) and r ∈ S. Then,

ThK(b)(u− v) ≥ ThK(b)(u)4 ThK(b)(v) ≥ σ4 σ = σ,

IhK(b)(u− v) ≤ IhK(b)(u)5 IhK(b)(v) ≤ η5 η = η,

FhK(b)(u− v) ≤ FhK(b)(u)5 FhK(b)(v) ≤ δ5 δ = δ;

and ThK(b)(ru) ≥ ThK(b)(u) ≥ σ, IhK(b)(ru) ≤ IhK(b)(u) ≤ η, FhK(b)(ru) ≤ FhK(b)(u) ≤ δ.
Hence u− v, ru ∈ K(σ,η,δ) and so K(σ,η,δ) is a left ideal of S. Similarly, one right ideal of S is K(σ,η,δ) also.

3.2 Theorem

(i) Q be a non-empty ideal of crisp ring S if and only if ∃ an NSI K on (S,E) where hK : E −→ NS(S) is
given as, ∀b ∈ E,

ThK(b)(u) =

{
p1 if u ∈ Q
s1 (< p1) if u /∈ Q. IhK(b)(u) =

{
p2 if u ∈ Q
s2 (> p2) if u /∈ Q. FhK(b)(u) =

{
p3 if u ∈ Q
s3 (> p3) if u /∈ Q.

Briefly stated hK(b)(u) =

{
(p1, p2, p3) when u ∈ Q
(s1, s2, s3) when u /∈ Q.

where s1 < p1, s2 > p2, s3 > p3 and pi, si ∈ [0, 1] for all i = 1, 2, 3.
(ii) Specifically, Q is a non empty ideal of a crisp ring S iff it’s characteristic function λQ is an NSI on (S,E)
where λQ : E −→ NS(S) is given as, ∀b ∈ E,

TλQ(b)(u) =

{
1 if u ∈ Q
0 if u /∈ Q. IλQ(b)(u) =

{
0 if u ∈ Q
1 if u /∈ Q. FλQ(b)(u) =

{
0 if u ∈ Q
1 if u /∈ Q.

Proof.(i) First let Q be a non empty ideal of S in crisp sense and consider an Nss K on (S,E). We now take the
following cases.
Case 1 : When u, v ∈ Q, then u− v ∈ Q, an ideal. So, ∀b ∈ E,

ThK(b)(u− v) = p1 = p14 p1 = ThK(b)(u)4 ThK(b)(v)

IhK(b)(u− v) = p2 = p25 p2 = IhK(b)(u)5 IhK(b)(v)

FhK(b)(u− v) = p3 = p35 p3 = FhK(b)(u)5 FhK(b)(v)
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Case 2 : If u ∈ Q but v /∈ Q, then u− v /∈ Q. So, ∀b ∈ E,

ThK(b)(u− v) = s1 = p14 s1 = ThK(b)(u)4 ThK(b)(v)

IhK(b)(u− v) = s2 = p25 s2 = IhK(b)(u)5 IhK(b)(v)

FhK(b)(u− v) = s3 = p35 s3 = FhK(b)(u)5 FhK(b)(v)

Case 3 : If u, v /∈ Q, then ∀b ∈ E,

ThK(b)(u− v) ≥ s1 = s14 s1 = ThK(b)(u)4 ThK(b)(v)

IhK(b)(u− v) ≤ s2 = s25 s2 = IhK(b)(u)5 IhK(b)(v)

FhK(b)(u− v) ≤ s3 = s35 s3 = FhK(b)(u)5 FhK(b)(v)

Thus in any case ∀u, v ∈ R and ∀b ∈ E,
ThK(b)(u− v) ≥ ThK(b)(u)4 ThK(b)(v), IhK(b)(u− v) ≤ IhK(b)(u)5 IhK(b)(v) and
FhK(b)(u− v) ≤ FhK(b)(u)5 FhK(b)(v).

We shall now test the 2nd condition of the Definition [2.7].
Case 1 : When u ∈ Q then uv, vu ∈ Q, an ideal on S, for v ∈ S. So, ∀b ∈ E,

ThK(b)(uv) = ThK(b)(vu) = p1 = ThK(b)(u),

IhK(b)(uv) = IhK(b)(vu) = p2 = IhK(b)(u),

FhK(b)(uv) = FhK(b)(vu) = p3 = FhK(b)(u);

Case 2 : If u /∈ Q then either uv ∈ Q or uv /∈ Q and so, ∀b ∈ E,

ThK(b)(uv) ≥ s1 = ThK(b)(u), ThK(b)(vu) ≥ s1 = ThK(b)(u),

IhK(b)(uv) ≤ s2 = IhK(b)(u), IhK(b)(vu) ≤ s2 = IhK(b)(u),

FhK(b)(uv) ≤ s3 = FhK(b)(u), FhK(b)(vu) ≤ s3 = FhK(b)(u);

This shows that K is NSLI and also NSRI on (S,E). Thus K is an NSI on (S,E).
Reversely, suppose K be an NSI on (S,E) in the specified form. We are to show Q(6= φ) is a crisp ideal of
S. Let u, v ∈ Q and a ∈ S. Then ThK(b)(u) = ThK(b)(v) = p1, IhK(b)(u) = IhK(b)(v) = p2, FhK(b)(u) =
FhK(b)(v) = p3. Now,

ThK(b)(u− v) ≥ ThK(b)(u)4 ThK(b)(v) = p1, IhK(b)(u− v) ≤ IhK(b)(u)5 IhK(b)(v) = p2 and
FhK(b)(u− v) ≤ FhK(b)(u)5 FhK(b)(v) = p3.

Further, as K is an NSI over (S,E) and as either 0S ∈ Q or 0S /∈ Q,
ThK(b)(u− v) ≤ ThK(b)(0S) ≤ p1, IhK(b)(u− v) ≥ IhK(b)(0S) ≥ p2, FhK(b)(u− v) ≥ FhK(b)(0S) ≥ p3.

This implies ThK(b)(u−v) = p1, IhK(b)(u−v) = p2, FhK(b)(u−v) = p3 and so by construction ofK, u−v ∈ Q.
Next, K is an NSLI over (S,E) and so,

ThK(b)(au) ≥ ThK(b)(u) = p1, IhK(b)(au) ≤ IhK(b)(u) = p2, FhK(b)(au) ≤ FhK(b)(u) = p3.
Again K is an NSLI over (S,E) and as either 0S ∈ Q or 0S /∈ Q,

ThK(b)(au) ≤ ThK(b)(0S) ≤ p1, IhK(b)(au) ≥ IhK(b)(0S) ≥ p2, FhK(b)(au) ≥ FhK(b)(0S) ≥ p3.
This shows ThK(b)(au) = p1, IhK(b)(au) = p2, FhK(b)(au) = p3. So, au ∈ Q by structure of K. In a same
corner, ua ∈ Q. Therefore, Q is a crisp ideal of S.
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(ii) First suppose Q be a non empty crisp ideal of S and on (S,E), λQ be an Nss. Following cases are needed
to discuss.
Case 1 : When u, v ∈ Q, then u− v ∈ Q, an ideal. So, ∀b ∈ E,

TλQ(b)(u− v) = 1 = 14 1 = TλQ(b)(u)4 TλQ(b)(v)

IλQ(b)(u− v) = 0 = 05 0 = IλQ(b)(u)5 IλQ(b)(v)

FλQ(b)(u− v) = 0 = 05 0 = FλQ(b)(u)5 FλQ(b)(v)

Case 2 : If u ∈ Q but v /∈ Q, then u− v /∈ Q. Then ∀b ∈ E,

TλQ(b)(u− v) = 0 = 14 0 = TλQ(b)(u)4 TλQ(b)(v)

IλQ(b)(u− v) = 1 = 05 1 = IλQ(b)(u)5 IλQ(b)(v)

FλQ(b)(u− v) = 1 = 05 1 = FλQ(b)(u)5 FλQ(b)(v)

Case 3 : If u, v /∈ Q, then ∀b ∈ E,

TλQ(b)(u− v) ≥ 0 = 04 0 = TλQ(b)(u)4 TλQ(b)(v)

IλQ(b)(u− v) ≤ 1 = 15 1 = IλQ(b)(u)5 IλQ(b)(v)

FλQ(b)(u− v) ≤ 1 = 15 1 = FλQ(b)(u)5 FλQ(b)(v)

Thus in any case ∀u, v ∈ S and ∀b ∈ E,
TλQ(b)(u− v) ≥ TλQ(b)(u)4 TλQ(b)(v), IλQ(b)(u− v) ≤ IλQ(b)(u)5 IλQ(b)(v) and
FλQ(b)(u− v) ≤ FλQ(b)(u)5 FλQ(b)(v).

We shall now test the 2nd condition of Definition [2.7].
Case 1 : When u ∈ Q then uv, vu ∈ Q, an ideal of S, for v ∈ S. So, ∀b ∈ E,

TλQ(b)(uv) = TλQ(b)(vu) = 1 = TλQ(b)(u), IλQ(b)(uv) = IλQ(b)(vu) = 0 = IλQ(b)(u) and
FλQ(b)(uv) = FλQ(b)(vu) = 0 = FλQ(b)(u).

Case 2 : If u /∈ Q then either uv ∈ Q or uv /∈ Q and so ∀b ∈ E,

TλQ(b)(uv) ≥ 0 = TλQ(b)(u), TλQ(b)(vu) ≥ 0 = TλQ(b)(u),

IλQ(b)(uv) ≤ 1 = IλQ(b)(u), IλQ(b)(vu) ≤ 1 = IλQ(b)(u),

FλQ(b)(uv) ≤ 1 = FλQ(b)(u), FλQ(b)(vu) ≤ 1 = FλQ(b)(u);

This shows that λQ is NSLI and NSRI on (S,E). Thus λQ is NSI on (S,E).
Reversely, let λQ be an NSI over (S,E) in the prescribed form. We shall have to show Q(6= φ) is a crisp ideal
of S. Let u, v ∈ Q and a ∈ S. Then TλQ(b)(u) = TλQ(b)(v) = 1, IλQ(b)(u) = IλQ(b)(v) = 0, FλQ(b)(u) =
FλQ(b)(v) = 0. Now,

TλQ(b)(u− v) ≥ TλQ(b)(u)4 TλQ(b)(v) = 1, IλQ(b)(u− v) ≤ IλQ(b)(u)5 IλQ(b)(v) = 0 and
FλQ(b)(u− v) ≤ FλQ(b)(u)5 FλQ(b)(v) = 0.

Further, as λQ is an NSI over (S,E) and as either 0S ∈ Q or 0S /∈ Q,
TλQ(b)(u− v) ≤ TλQ(b)(0S) ≤ 1, IλQ(b)(u− v) ≥ IλQ(b)(0S) ≥ 0, FλQ(b)(u− v) ≥ FλQ(b)(0S) ≥ 0.

This implies TλQ(b)(u− v) = 1, IλQ(b)(u− v) = 0, FλQ(b)(u− v) = 0 and so by construction of λQ, u− v ∈ Q.
Next, λQ is an NSLI over (S,E) and so,

TλQ(b)(au) ≥ TλQ(b)(u) = 1, IλQ(b)(au) ≤ IλQ(b)(u) = 0, FλQ(b)(au) ≤ FλQ(b)(u) = 0.
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Again λQ is an NSLI over (S,E) and as either 0S ∈ Q or 0S /∈ Q,
TλQ(b)(au) ≤ TλQ(b)(0S) ≤ 1, IλQ(b)(au) ≥ IλQ(b)(0S) ≥ 0, FλQ(b)(au) ≥ FλQ(b)(0S) ≥ 0.

This shows TλQ(b)(au) = 1, IλQ(b)(au) = 0, FλQ(b)(au) = 0. So, au ∈ Q by structure of λQ. By same logic,
ua ∈ Q. Thus, Q is a crisp ideal of S.

3.3 Theorem
Consider an NSLI (NSRI) Q over (S,E). Then, Q0 = {u ∈ S : ThQ(b)(u) = ThQ(b)(0S), IhQ(b)(u) =
IhQ(b)(0S), FhQ(b)(u) = FhQ(b)(0S)} is a crisp left (right) ideal of S for b ∈ E.

Proof. Following the reverse part of Theorem [3.2], it will be as usual.

3.4 Theorem
Q, an Nss on (S,E), is an NSLI (NSRI) iff Q̂ = {u ∈ S : ThQ(b)(u) = 1, IhQ(b)(u) = 0, FhQ(b)(u) = 0} with
0S ∈ Q̂ is a crisp left (right) ideal of S.

Proof. We can put Q, an Nss on (S,E), as given below, ∀b ∈ E,

hQ(b)(u) =

{
(1, 0, 0) when u ∈ Q̂
(s1, s2, s3) when u /∈ Q̂.

where 0 ≤ s1 < 1, 0 < s2 ≤ 1, 0 < s3 ≤ 1. Assume Q̂ be a crisp left ideal of S for Q being an Nss on (S,E).
We shall now take the cases stated below.
Case 1 : When u, v ∈ Q̂, then u− v ∈ Q̂, a crisp left ideal. So, ∀b ∈ E,

ThQ(b)(u− v) = 1 = 14 1 = ThQ(b)(u)4 ThQ(b)(v)

IhQ(b)(u− v) = 0 = 05 0 = IhQ(b)(u)5 IhQ(b)(v)

FhQ(b)(u− v) = 0 = 05 0 = FhQ(b)(u)5 FhQ(b)(v)

Case 2 : If u ∈ Q̂ but v /∈ Q̂, then u− v /∈ Q̂. Then ∀b ∈ E,

ThQ(b)(u− v) = s1 = 14 s1 = ThQ(b)(u)4 ThQ(b)(v)

IhQ(b)(u− v) = s2 = 05 s2 = IhQ(b)(u)5 IhQ(b)(v)

FhQ(b)(u− v) = s3 = 05 s3 = FhQ(b)(u)5 FhQ(b)(v)

Case 3 : If u, v /∈ Q̂, then ∀b ∈ E,

ThQ(b)(u− v) ≥ s1 = s14 s1 = ThQ(b)(u)4 ThQ(b)(v)

IhQ(b)(u− v) ≤ s2 = s25 s2 = IhQ(b)(u)5 IhQ(b)(v)

FhQ(b)(u− v) ≤ s3 = s35 s3 = FhQ(b)(u)5 FhQ(b)(v)

Thus in any case ∀u, v ∈ S and ∀b ∈ E,
ThQ(b)(u− v) ≥ ThQ(b)(u)4 ThQ(b)(v), IhQ(b)(u− v) ≤ IhQ(b)(u)5 IhQ(b)(v) and
FhQ(b)(u− v) ≤ FhQ(b)(u)5 FhQ(b)(v).

We are to test now the 2nd condition of Definition [2.7].
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Case 1 : If u ∈ Q̂ then vu ∈ Q̂, a crisp left ideal on S, for v ∈ S. So, ∀b ∈ E,
ThQ(b)(vu) = 1 = ThQ(b)(u), IhQ(b)(vu) = 0 = IhQ(b)(u), FhQ(b)(vu) = 0 = FhQ(b)(u).

Case 2 : If u /∈ Q̂ then either vu ∈ Q̂ or vu /∈ Q̂ for v ∈ R and so ∀b ∈ E,
ThQ(b)(vu) ≥ s1 = ThQ(b)(u), IhQ(b)(vu) ≤ s2 = IhQ(b)(u), FhQ(b)(vu) ≤ s3 = FhQ(b)(u).

This shows that Q is an NSLI over (S,E).
Conversely, letQ be an NSLI on (S,E) in the assumed structure. Let u, v ∈ Q̂ and a ∈ S. Then ThQ(b)(u) =

ThQ(b)(v) = 1, IhQ(b)(u) = IhQ(b)(v) = 0, FhQ(b)(u) = FhQ(b)(v) = 0. Now,
ThQ(b)(u− v) ≥ ThQ(b)(u)4 ThQ(b)(v) = 1, IhQ(b)(u− v) ≤ IhQ(b)(u)5 IhQ(b)(v) = 0 and
FhQ(b)(u− v) ≤ FhQ(b)(u)5 FhQ(b)(v) = 0.

Further, as Q is an NSLI over (R,E) and as either 0S ∈ Q̂ or 0S /∈ Q̂,
ThQ(b)(u− v) ≤ ThQ(b)(0S) ≤ 1, IhQ(b)(u− v) ≥ IhQ(b)(0S) ≥ 0, FhQ(b)(u− v) ≥ FhQ(b)(0S) ≥ 0.

This implies ThQ(b)(u− v) = 1, IhQ(b)(u− v) = 0, FhQ(b)(u− v) = 0 and so by construction of Q, u− v ∈ Q̂.
Next, Q is an NSLI over (R,E) and so,

ThQ(b)(au) ≥ ThQ(b)(u) = 1, IhQ(b)(au) ≤ IhQ(b)(u) = 0, FhQ(b)(au) ≤ FhQ(b)(u) = 0.

Again Q is an NSLI over (R,E) and as either 0R ∈ Q̂ or 0R /∈ Q̂,
ThQ(b)(au) ≤ ThQ(b)(0R) ≤ 1, IhQ(b)(au) ≥ IhQ(b)(0R) ≥ 0, FhQ(b)(au) ≥ FhQ(b)(0R) ≥ 0.

This shows ThQ(b)(au) = 1, IhQ(b)(au) = 0, FhQ(b)(au) = 0 i.e., au ∈ Q̂. Therefore, Q̂ is a crisp left ideal of S
and so is Q̂ over S similarly.

3.5 Theorem

Let K be an Nss over (S,E). Then K is an NSLI (NSRI) iff each nonempty cut set [hK(b)](δ,η,σ) of the NS

hK(b) is a crisp left (right) ideal of S for δ ∈ ImThK(b), η ∈ Im IhK(b), σ ∈ ImFhK(b).

Proof. Let K be an NSLI (NSRI) over (S,E) and u, v ∈ [hK(b)](δ,η,σ), r ∈ S. Then,

ThK(b)(u− v) ≥ ThK(b)(u)4 ThK(b)(v) ≥ δ4 δ = δ

IhK(b)(u− v) ≤ IhK(b)(u)5 IhK(b)(v) ≤ η5 η = η

FhK(b)(u− v) ≤ FhK(b)(u)5 FhK(b)(v) ≤ σ5 σ = σ and

ThK(b)(ru) ≥ ThK(b)(u) ≥ δ, IhK(b)(ru) ≤ IhK(b)(u) ≤ η, FhK(b)(ru) ≤ FhK(b)(u) ≤ σ.
Hence u − v, ru ∈ [hK(b)](δ,η,σ) and so [hK(b)](δ,η,σ) is a crisp left ideal of S. By same way, [hK(b)](δ,η,σ) is a
right ideal of S.
Reversely, assume [hK(b)](δ,η,σ) be a crisp left (right) ideal of S and u, v ∈ S. If possible, let

ThK(b)(u− v) < ThK(b)(u)4 ThK(b)(v), IhK(b)(u− v) > IhK(b)(u)5 IhK(b)(v) and
FhK(b)(u− v) > FhK(b)(u)5 FhK(b)(v).

If ThK(b)(u) 4 ThK(b)(v) = s (say), then ThK(b)(u) ≥ s and ThK(b)(v) ≥ s. As cut set is a crisp left ideal,
so ThK(b)(u − v) ≥ s is natural. It shows a contradiction for ThK(b)(u − v) < s. Hence ThK(b)(u − v) ≥
ThK(b)(u)4 ThK(x)(v). Other two can be shown as usual.

For r ∈ S, let, ThK(b)(ru) < ThK(b)(u), IhK(b)(ru) > IhK(b)(u) and FhK(b)(ru) > FhK(b)(u).
If ThK(b)(u) = t, then ThK(b)(ru) < t. As cut set is a crisp left ideal, then ThK(x)(ru) ≥ t is obvious. It is
against our assumption. So, ThK(x)(ru) ≥ ThK(x)(u). Other two can be set naturally. Thus K is an NSLI on
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(S,E). K can also be shown an NSRI over (S,E) by same path and thus the theorem is ended.

4 Neutrosophic soft prime ideal

This section defines and illustrates NSPI along with the development of some theorems.

4.1 Definition

A constant Nss K on (S,E) is one whose hK(b) is constant ∀b ∈ E. It means, for every b ∈ E, the triplet
(ThK(b)(u), IhK(b)(u), FhK(b)(u)) always gives same value ∀u ∈ S.
If for every b ∈ E, the triplet (ThK(b)(u), IhK(b)(u), FhK(b)(u)) is at least of two different kinds ∀u ∈ S, then K
is called a nonconstant Nss.

4.2 Definition

Let C,D be two Nss on (S,E). Then CoD (= P , say) is also an Nss on (S,E). ∀b ∈ E and ∀u ∈ S, it is
defined as :

ThP (b)(u) =

{
maxu=vz[ThC(x)(v)4 ThD(x)(z)]
0 ifu is not put as u = vz.

IhP (b)(u) =

{
minu=vz[IhC(x)(v)5 IhD(x)(z)]
1 ifu is not put as u = vz.

FhP (b)(u) =

{
minu=vz[FhC(x)(v)5 FhD(x)(z)]
1 ifx is not put as u = vz.

4.3 Definition

An NSIK over (S,E) is called an NSPI when (i)K is not constant NSI, (ii) for any two NSIs C,D over (S,E),
CoD ⊆ K implies either C ⊆ K or D ⊆ K.

4.3.1 Example

Consider the integer set Z and the parametric set E = {b1, b2, b3}. Take a division Z into 3Z and Z − 3Z.
Consider an Nss K on (Z,E) given below.

Table 1 : Tabular form of Nss K
hK(b1) hK(b2) hK(b3)

3Z (0.9, 0.4, 0.1) (0.4, 0.3, 0.4) (0.8, 0.7, 0.3)
Z − 3Z (0.6, 0.7, 0.5) (0.1, 0.6, 0.5) (0.2, 0.9, 0.4)

Now the following several cases are taken into consideration.
Case 1 : If u, v ∈ 3Z then u− v, uv ∈ 3Z.
Case 2 : If u, v ∈ Z − 3Z then u− v ∈ 3Z or Z − 3Z, uv ∈ Z − 3Z.
Case 3 : If u ∈ 3Z, v ∈ Z − 3Z then u− v ∈ Z − 3Z and uv ∈ 3Z.
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Obviously, K is an NSI on (Z,E). To make out that, consider Case 3 with respect to the parameter b1. Other
two are as usual.

ThK(b1)(u− v) = 0.6 = min{0.9, 0.6} = ThK(b1)(u)4 ThK(b1)(v)
IhK(b1)(u− v) = 0.7 = max{0.4, 0.7} = IhK(b1)(u)5 IhK(b1)(v)
FhK(b1)(u− v) = 0.5 = max{0.1, 0.5} = FhK(b1)(u)5 FhK(b1)(v).
ThK(b1)(uv) = 0.9 = max{0.9, 0.6} = max{ThK(b1)(u), ThK(b1)(v)}
IhK(b1)(uv) = 0.4 = min{0.4, 0.7} = min{IhK(b1)(u), IhK(b1)(v)}
FhK(b1)(uv) = 0.1 = min{0.1, 0.5} = min{FhK(b1)(u), FhK(b1)(v)}.

To prove K as NSPI, we now let another two NSIs C (by Table 2) and D (by Table 3) on (Z,E). Table 4 refers
the operation CoD.

Table 2 : Table for NSI C
hC(b1) hC(b2) hC(b3)

3Z (0.3, 0.4, 0.6) (0.7, 0.2, 0.5) (0.6, 0.5, 0.1)
Z − 3Z (0.1, 0.5, 0.8) (0.1, 0.6, 0.7) (0.3, 0.8, 0.2)

Table 3 : Table for NSI D
hD(b1) hD(b2) hD(b3)

3Z (0.6, 0.4, 0.5) (0.3, 0.5, 0.6) (0.4, 0.8, 0.4)
Z − 3Z (0.2, 0.8, 0.9) (0.1, 0.7, 0.8) (0.1, 1.0, 0.5)

Table 4 : Table for CoD = Q(say)
hQ(b1) hQ(b2) hQ(b3)

3Z (0.3, 0.4, 0.6) (0.3, 0.5, 0.6) (0.4, 0.8, 0.4)
Z − 3Z (0.1, 0.8, 0.9) (0.1, 0.7, 0.8) (0.1, 1.0, 0.5)

The discussion of hQ(b1) is provided to convince the Table 4.
When uv ∈ 3Z, then either u, v ∈ 3Z or u ∈ 3Z, v ∈ Z − 3Z or u ∈ Z − 3Z, v ∈ 3Z.
When uv ∈ Z − 3Z, then u, v ∈ Z − 3Z only. Now for w = uv ∈ 3Z,

ThQ(b1)(w) = max
w
{ThC(b1)(u)4 ThD(b1)(v)} = max{0.34 0.6, 0.34 0.2, 0.14 0.6} = 0.3

IhQ(b1)(w) = min
w
{IhC(b1)(u)5 IhD(b1)(v)} = min{0.45 0.4, 0.45 0.8, 0.55 0.4} = 0.4

FhQ(b1)(w) = min
w
{FhC(b1)(u)5 FhD(b1)(v)} = min{0.65 0.5, 0.65 0.9, 0.85 0.5} = 0.6

Next for u = uv ∈ Z − 3Z,

ThQ(b1)(u) = max
u
{ThC(b1)(u)4 ThD(b1)(v)} = max{0.14 0.2} = 0.1

IhQ(b1)(u) = min
u
{IhC(b1)(u)5 IhD(b1)(v)} = min{0.55 0.8} = 0.8

FhQ(b1)(u) = min
u
{FhC(b1)(u)5 FhD(b1)(v)} = min{0.85 0.9} = 0.9

Table 1, Table 3, Table 4 execute that D ⊂ K and CoD ⊂ K. Therefore, K is an NSPI on (Z,E).

4.4 Theorem
Consider an NSPI K on (S,E). Then ∀b ∈ E, hK(b) exactly attains two distinct values on S i.e., |hK(b)| = 2.
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Proof. As K is non-constant, hence |hK(b)| ≥ 2, ∀b ∈ E. Let |hK(b)| > 2. Take x = glb{ThK(b)(u)}, y =
lub{IhK(b)(u)}, z = lub{FhK(b)(u)}. Then ∃ s1, p1, s2, p2, s3, p3 such that x ≤ s1 < p1 < ThK(b)(0S), y ≥ s2 >
p2 > IhK(b)(0S), z ≥ s3 > p3 > FhK(b)(0S). Define two Nss C,D on (S,E) as :

ThC(b)(u) =
1
2
(s1 + p1), IhC(b)(u) =

1
2
(s2 + p2), FhC(b)(u) =

1
2
(s3 + p3), ∀u ∈ S and

ThD(b)(u) = x, IhD(b)(u) = y, FhD(b)(u) = z if u /∈ K(p1,p2,p3),

ThD(b)(u) = ThK(b)(0S), IhD(b)(u) = IhK(b)(0S), FhD(b)(u) = FhK(b)(0S) if u ∈ K(p1,p2,p3).
Clearly, C is an NSI on (S,E). We are to prove that D is an NSI over (S,E). Since K is an NSI on (S,E) then
K(p1,p2,p3) is a crisp ideal of S. Let u, v ∈ S. Following facts are considered.
Case 1 : When u, v ∈ K(p1,p2,p3) then u− v ∈ K(p1,p2,p3). So,

ThD(b)(u− v) = ThK(b)(0S) = ThK(b)(0S)4 ThK(b)(0S) = ThD(b)(u)4 ThD(b)(v)

IhD(b)(u− v) = IhK(b)(0S) = IhK(b)(0S)5 IhK(b)(0S) = IhD(b)(u)5 IhD(b)(v)

FhD(b)(u− v) = FhK(b)(0S) = FhK(b)(0S)5 FhK(b)(0S) = FhD(b)(u)5 FhD(b)(v)

Case 2 : When u ∈ K(p1,p2,p3), v /∈ K(p1,p2,p3) then u− v /∈ K(p1,p2,p3) and so,

ThD(b)(u− y) = x = ThK(b)(0S)4 x = ThD(b)(u)4 ThD(b)(v)

IhD(b)(u− v) = y = IhK(b)(0S)5 y = IhD(b)(u)5 IhD(b)(v)

FhD(b)(u− v) = z = FhK(b)(0S)5 z = FhD(b)(u)5 FhD(b)(v)

Case 3 : When u, v /∈ K(p1,p2,p3) then,

ThD(b)(u− v) ≥ x = x4 x = ThD(b)(u)4 ThD(b)(v)

IhD(b)(u− v) ≤ y = y5 y = IhD(b)(u)5 IhD(b)(v)

FhD(b)(u− v) ≤ z = z 5 z = FhD(b)(u)5 FhD(b)(v)

Thus in any case ∀u, v ∈ S and ∀b ∈ E,
ThD(b)(u− v) ≥ ThD(b)(u)4 ThD(b)(v), IhD(b)(u− v) ≤ IhD(b)(u)5 IhD(b)(v) and
FhD(b)(u− v) ≤ FhD(b)(u)5 FhD(b)(v).

We are to test the 2nd condition of Definition [2.7].
Case 1 : When u ∈ K(p1,p2,p3) then uv, vu ∈ K(p1,p2,p3), a crisp ideal of S, for u, v ∈ S. So,

ThD(b)(uv) = ThD(b)(vu) = ThK(b)(0S) = ThD(b)(u)

IhD(b)(uv) = IhD(b)(vu) = IhK(b)(0S) = IhD(b)(u)

FhD(b)(uv) = FhD(b)(vu) = FhK(b)(0S) = FhD(b)(u)

Case 2 : If u /∈ K(p1,p2,p3) then,

ThD(b)(uv) ≥ x = ThD(b)(u), ThD(b)(vu) ≥ x = ThD(b)(u)

IhD(b)(uv) ≤ y = IhD(b)(u), IhD(b)(vu) ≤ y = IhD(b)(u)

FhD(b)(uv) ≤ z = FhD(b)(u), FhD(b)(vu) ≤ z = FhD(b)(u)

This shows that D is both NSLI and NSRI over (S,E). So, D is an NSI on (S,E). We claim CoD ⊆ K. We
require following cases to analyse.
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Case 1 : Tell P = CoD. For u = 0S ,

ThP (b)(u) = max
u=vw

[ThC(b)(v)4 ThD(b)(w)] ≤
1

2
(s1 + p1)4 ThK(b)(0S)

< ThK(b)(0S)4 ThK(b)(0S) [as s1 < p1 < ThK(b)(0S)] = ThK(b)(0S)

IhP (b)(u) = min
u=vw

[IhC(b)(v)5 IhD(b)(w)] ≥
1

2
(s2 + p2)5 IhK(b)(0S)

> IhK(b)(0S)5 IhK(b)(0S) [as s2 > p2 > IhK(b)(0S)] = IhK(b)(0S)

FhP (b)(u) = min
u=vw

[FhC(b)(v)5 FhD(b)(w)] ≥
1

2
(s3 + p3)5 FhK(b)(0S)

> FhK(b)(0S)5 FhK(b)(0S) [as s3 > p3 > FhK(b)(0S)] = FhK(b)(0S)

Case 2 : For u 6= 0S but u ∈ K(p1,p2,p3),

ThP (b)(u) = max
u=vw

[ThC(b)(v)4 ThD(b)(w)] ≤
1

2
(s1 + p1)4 ThK(b)(0S)

=
1

2
(s1 + p1) [as s1 < p1 < ThK(b)(0S)]

< p1 [as s1 < p1] ≤ ThK(b)(u)

IhP (b)(u) = min
u=vw

[IhC(b)(v)5 IhD(b)(w)] ≥
1

2
(s2 + p2)5 IhK(b)(0S)

=
1

2
(s2 + p2) [as s2 > p2 > IhK(b)(0S)]

> p2 [as t2 > m2] ≥ IhK(b)(u)

FhP (b)(u) = min
u=vw

[FhC(b)(v)5 FhD(b)(w)] ≥
1

2
(s3 + p3)5 FhK(b)(0S)

=
1

2
(s3 + p3) [as s3 > p3 > FhK(b)(0S)]

> p3 [as s3 > p3] ≥ FhK(b)(u)

Case 3 : When 0S 6= u /∈ K(p1,p2,p3), for v, w ∈ S such that u = vw, v /∈ K(p1,p2,p3) and w /∈ K(p1,p2,p3),

ThP (b)(u) = max
u=vw

[ThC(b)(v)4 ThD(b)(w)] =
1

2
(s1 + p1)4 x = x [as x ≤ s1 < p1] ≤ ThK(b)(u)

IhP (b)(u) = min
u=vw

[IhC(b)(v)5 IhD(b)(w)] =
1

2
(s2 + p2)5 y = y [as y ≥ s2 > p2] ≥ IhK(b)(u)

FhP (b)(u) = min
u=vw

[FhC(b)(v)5 FhD(b)(w)] =
1

2
(s3 + p3)5 z = z [as z ≥ s3 > p3] ≥ FhK(b)(u)

Therefore, CoD ⊆ K. Lastly, let v ∈ S such that ThK(b)(v) = s1, IhK(b)(v) = s2, FhK(b)(v) = s3.
Then, ThC(b)(v) = 1

2
(s1 + p1) > ThK(b)(v). Then C 6⊆ K. Again assume w ∈ S for which ThK(b)(w) =

p1, IhK(b)(w) = p2, FhK(b)(w) = p3 i.e., w ∈ K(p1,p2,p3). Then ThD(b)(w) = ThK(b)(0S) > p1 = ThK(b)(w)
imply D 6⊆ K. Hence, neither C 6⊆ K nor D 6⊆ K if CoD ⊆ K. Therefore, K is not an NSPI on (S,E) and it
is against the hypothesis. So, hK(b) exactly attains two distinct values on S for b ∈ E i.e., |hK(b)| = 2.
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4.5 Theorem

If K is an NSPI on (S,E), then ThK(b)(0S) = 1, IhK(b)(0S) = 0, FhK(b)(0S) = 0, ∀b ∈ E.

Proof. For K being an NSPI on (S,E), |hK(b)| = 2, ∀b ∈ E. Assume ThK(b)(0S) < 1, IhK(b)(0S) >
0, FhK(b)(0S) > 0. For K being nonconstant, ∃u ∈ S for which ThK(b)(u) < ThK(b)(0S), IhK(b)(u) >
IhK(b)(0S), FhK(b)(u) > FhK(b)(0S). Let ThK(b)(u) = p1, ThK(b)(0S) = m1, IhK(b)(u) = p2, IhK(b)(0S) =
m2, FhK(b)(u) = p3, FhK(b)(0S) = m3. Take s1, s2, s3 for that p1 < m1 < s1 ≤ 1, p2 > m2 > s2 ≥ 0, p3 >
m3 > s3 ≥ 0. We assume two Nss C,D on (S,E) so that,

ThC(b)(u) =
1
2
(p1 +m1), IhC(b)(u) =

1
2
(p2 +m2), FhC(b)(u) =

1
2
(p3 +m3), ∀u ∈ S and

ThD(b)(u) = p1, IhD(b)(u) = p2, FhD(b)(u) = p3 for u /∈ K0,

ThD(b)(u) = s1, IhD(b)(u) = s2, FhD(b)(u) = s3 if u ∈ K0

where K0 = {u ∈ S : ThK(b)(u) = ThK(b)(0S), IhK(b)(u) = IhK(b)(0S), FhK(b)(u) = FhK(b)(0S)}.
Clearly, C is an NSI on (S,E). D is an NSI on (S,E) for K0 being an ideal of S. We are now to show that
CoD ⊆ K. Following facts are needed to consider.
Case 1 : Take Q = CoD. For u = 0S ,

ThQ(b)(u) = max
u=vw

[ThC(b)(v)4 ThD(b)(w)] = max[
1

2
(p1 +m1)4 p1,

1

2
(p1 +m1)4 s1]

= max[p1,
1

2
(p1 +m1)] =

1

2
(p1 +m1) < m1 = ThK(b)(0S)

IhQ(b)(u) = min
u=vw

[IhC(b)(v)5 IhD(b)(w)] =
1

2
(p2 +m2) > m2 = IhK(b)(0S)

FhQ(b)(u) = min
u=vw

[FhC(b)(v)5 FhD(b)(w)] =
1

2
(p3 +m3) > m3 = FhK(b)(0S)

Case 2 : When 0S 6= u = vw ∈ K0 for v, w ∈ K0 ⊂ S,

ThQ(b)(u) = max
u=vw

[ThC(b)(v)4 ThD(b)(w)] =
1

2
(p1 +m1)4 s1 =

1

2
(p1 +m1) < m1 = ThK(b)(0S) = ThK(b)(u)

IhQ(b)(u) = min
u=vw

[IhC(b)(v)5 IhD(b)(w)] =
1

2
(p2 +m2)4 s2 =

1

2
(p2 +m2) > m2 = IhK(b)(0S) = IhK(b)(u)

FhQ(b)(u) = min
u=vw

[FhC(b)(v)5 FhD(b)(w)] =
1

2
(p3 +m3)4 s3 =

1

2
(p3 +m3) > m3 = FhK(b)(0S) = FhK(b)(u)

Case 3 : When 0S 6= u = vw /∈ K0 for v, w ∈ S −K0,

ThQ(b)(u) = max
u=vw

[ThC(b)(v)4 ThD(b)(w)] =
1

2
(p1 +m1)4 p1 = p1 = ThK(b)(u)

IhQ(b)(u) = min
u=vw

[IhC(b)(v)5 IhD(b)(w)] =
1

2
(p2 +m2)5 p2 = p2 = IhK(b)(u)

FhQ(b)(u) = min
u=vw

[FhC(b)(v)5 FhD(b)(w)] =
1

2
(p3 +m3)5 p3 = p3 = FhK(b)(u)

So including all, CoD ⊆ K. As ThK(b)(0S) = m1 < s1 = ThD(b)(0S), so D 6⊆ K. Further ∃u ∈ S so that
ThK(b)(u) = p1 <

1
2
(p1 +m1) = ThC(b)(u) impliy C 6⊆ K. This means that K is not an NSPI which is against

the hypothesis. Therefore ThK(b)(0S) = 1, IhK(b)(0S) = 0, FhK(b)(0S) = 0, ∀b ∈ E.
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4.6 Theorem

For an Nss K on (S,E), let |hK(b)| = 2 and ThK(b)(0S) = 1, IhK(b)(0S) = 0, FhK(b)(0S) = 0,∀b ∈ E. If
K0 = {u ∈ S : ThK(b)(u) = ThK(b)(0S), IhK(b)(u) = IhK(b)(0S), FhK(b)(u) = FhK(b)(0S)} is a prime ideal on S,
then K is an NSPI on (S,E).

Proof. By hypothesis, ∃ one u ∈ S with s1 = ThK(b)(u) < 1, s2 = IhK(b)(u) > 0, s3 = FhK(b)(u) > 0. The
facts stated below are taken.
Case 1 : When u, v ∈ K0, then u− v ∈ K0, an ideal. So ∀b ∈ E,

ThK(b)(u− v) = ThK(b)(0) = 1 = 14 1 = ThK(b)(u)4 ThK(b)(v)

IhK(b)(u− v) = IhK(b)(0) = 0 = 05 0 = IhK(b)(u)5 IhK(b)(v)

FhK(b)(u− v) = IhK(b)(0) = 0 = 05 0 = FhK(b)(u)5 FhK(b)(v)

Case 2 : If u ∈ K0 but v /∈ K0, then u− v /∈ K0. Then ∀b ∈ E,

ThK(b)(u− v) = s1 = 14 s1 = ThK(b)(u)4 ThK(b)(v)

IhK(b)(u− v) = s2 = 05 s2 = IhK(b)(u)5 IhK(b)(v)

FhK(b)(u− v) = s3 = 05 s3 = FhK(b)(u)5 FhK(b)(v)

Case 3 : If u, v /∈ K0, then ∀b ∈ E,

ThK(b)(u− v) ≥ s1 = ThK(b)(u)4 ThK(b)(v)

IhK(b)(u− v) ≤ s2 = IhK(b)(u)5 IhK(b)(v)

FhK(b)(u− v) ≤ s3 = FhK(b)(u)5 FhK(b)(v)

Thus in any case ∀u, v ∈ S and ∀b ∈ E,
ThK(b)(u− v) ≥ ThK(b)(u)4 ThK(b)(v), IhK(b)(u− v) ≤ IhK(b)(u)5 IhK(b)(v) and
FhK(b)(u− v) ≤ FhK(b)(u)5 FhK(b)(v).

To verify the final item, we consider the following cases.
Case 1 : When u ∈ K0 then uv, vu ∈ K0, an ideal over S, for v ∈ s. So ∀b ∈ E,

ThK(b)(uv) = ThK(b)(vu) = 1 = ThK(b)(u), IhK(b)(uv) = IhK(b)(vu) = 0 = IhK(b)(u),
FhK(b)(uv) = FhK(b)(vu) = 0 = FhK(b)(u).

Case 2 : If u /∈ K0 then,

ThK(b)(uv) ≥ s1 = ThK(b)(u), ThK(b)(vu) ≥ s1 = ThK(b)(u)

IhK(b)(uv) ≤ s2 = IhK(b)(u), IhK(b)(vu) ≤ s2 = IhK(b)(u)

FhK(b)(uv) ≤ s3 = FhK(b)(u), FhK(b)(vu) ≤ s3 = FhK(b)(u)

This shows that K is NSI over (S,E). Let CoD ⊆ K but C 6⊆ K, D 6⊆ K for C,D being two NSIs on (S,E).
So, ∀u, v ∈ S and ∀b ∈ E,

ThC(b)(u) > ThK(b)(u), IhC(b)(u) < IhK(b)(u), FhC(b)(u) < FhK(b)(u) and
ThD(b)(v) > ThK(b)(v), IhD(b)(v) < IhK(b)(v), FhD(b)(v) < FhK(b)(v).

Clearly, these u, v /∈ K0 otherwise ThC(b)(u) > ThK(b)(u) = ThK(b)(0S) = 1 and ThD(b)(u) > ThK(b)(u) =
ThK(b)(0S) = 1 which are impossible. Then rv, urv /∈ K0, a prime ideal of S, for r ∈ S. Thus,
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ThK(b)(urv) = s1 = ThK(b)(u) = ThK(b)(v), IhK(b)(urv) = s2 = IhK(b)(u) = IhK(b)(v) and

FhK(b)(urv) = s3 = FhK(b)(u) = FhK(b)(v).
Now, if Q = CoD then ∀b ∈ E and ∀w ∈ S,

ThQ(b)(w) = max
w=yz

[ThC(b)(y)4 ThD(b)(z)] ≥ ThC(b)(u)4 ThD(b)(rv) ≥ ThC(b)(u)4 ThD(b)(v)

> ThK(b)(u)4 ThK(b)(v) = s14 s1 = ThK(b)(w)

Hence CoD 6⊆ K. Then either C ⊆ K or D ⊆ K implies K is an NSPI on (S,E).

4.7 Theorem

For an NSPI K on (S,E), K0 = {u ∈ R : ThK(b)(u) = ThK(b)(0S), IhK(b)(u) = IhK(b)(0S), FhK(b)(u) =
FhK(b)(0S)} is a crisp prime ideal of S.

Proof. Here, K0 is a crisp ideal of S by Theorem [3.3]. To prove K0 being prime, let A,B be two crisp ideals
of K0 with AB ⊆ K0. Assume C,D as two Nss on (S,E) as given below, ∀b ∈ E,

hC(b) =

{
(ThK(b)(0S), IhK(b)(0S), FhK(b)(0S)) if u ∈ A
(0, 1, 1) if u /∈ A.

hD(b) =

{
(ThK(b)(0S), IhK(b)(0S), FhK(b)(0S)) if u ∈ B
(0, 1, 1) if u /∈ B.

Clearly C,D are two NSIs on (R,E) by Theorem [3.2]. We are to prove CoD ⊆ K. Consider the following
facts.
Case 1 : If Q = CoD and u ∈ K0,

ThQ(b)(u) = max
u=vz

[ThC(b)(v)4 ThD(b)(z)] ≤ ThK(b)(0S)4 ThK(b)(0S) = ThK(b)(0S) = ThK(b)(u)

IhQ(b)(u) = min
u=vz

[IhC(b)(v)5 IhD(b)(z)] ≥ IhK(b)(0S)5 IhK(b)(0S) = IhK(b)(0S) = IhK(b)(u)

FhQ(b)(u) = min
u=vz

[FhC(b)(v)5 FhD(b)(z)] ≥ FhK(b)(0S)5 FhK(b)(0S) = FhK(b)(0S) = FhK(b)(u)

Case 2 : If u /∈ K0 then for v, z ∈ R such that u = vz, v /∈ K0 and z /∈ K0. Now,

ThQ(b)(u) = max
u=vz

[ThC(b)(v)4 ThD(b)(z)] = 0 ≤ ThK(b)(u)

IhQ(b)(u) = min
u=vz

[IhC(b)(v)5 IhD(b)(z)] = 1 ≥ IhK(b)(u)

FhQ(b)(u) = min
u=vz

[FhC(b)(v)5 FhD(b)(z)] = 1 ≥ FhK(b)(u)

Thus in either case CoD ⊆ K. Then either C ⊆ K or D ⊆ K, an NSPI over (S,E). Suppose C ⊆ K but
A 6⊆ K0. Then ∃u ∈ A such that u /∈ K0 i.e., ThK(b)(u) 6= ThK(b)(0S), IhK(b)(u) 6= IhK(b)(0S), FhK(b)(u) 6=
FhK(b)(0S), ∀x ∈ E. This implies ThK(b)(u) < ThK(b)(0S), IhK(b)(u) > IhK(b)(0S), FhK(b)(u) > FhK(b)(0S)
by Proposition [3.1](i). Thus ThC(b)(u) = ThK(b)(0S) > ThK(b)(u), IhC(b)(u) = IhK(b)(0S) < IhK(b)(u),
FhC(b)(u) = FhK(b)(0S) < FhK(b)(u) which is against the assumption C ⊆ K. So, A ⊆ K0. Identically,
D ⊆ K ⇒ B ⊆ K0. Hence AB ⊆ K0 ⇒ either A ⊆ K0 or B ⊆ K0 implies K0 is a prime ideal.
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4.8 Theorem
(i) Q is a non empty crisp prime ideal of S if and only if ∃ an NSPI M on (S,E) where hM : E −→ NS(S) is
put as, ∀b ∈ E,

hM(b) =

{
(1, 0, 0) when u ∈ Q
(p1, p2, p3) when u /∈ Q.

with 0 ≤ p1, p2, p3 ≤ 1.
(ii) Particularly, Q is a non empty crisp prime ideal of S if and only if it’s characteristic function λQ is an NSPI
on (S,E) when λQ : E −→ NS(S) is put as, ∀b ∈ E,

λQ(b)(u) =

{
(1, 0, 0) when u ∈ Q
(0, 1, 1) when u /∈ Q.

Proof. (i) If Q be a crisp prime ideal, then M is an NSI on (S,E) by Theorem [3.2]. Consider two NSIs C,D
on (S,E) with CoD ⊆M but C 6⊆M and D 6⊆M . For u, v ∈ S and b ∈ E,

ThC(b)(u) > ThM (b)(u), IhC(b)(u) < IhM (b)(u), FhC(b)(u) < FhM (b)(u) and
ThD(b)(v) > ThM (b)(v), IhD(b)(v) < IhM (b)(v), FhD(b)(v) < FhM (b)(v).

Obviously u, v /∈ Q otherwise ThC(b)(u) > 1, IhC(b)(u) < 0, FhC(b)(u) < 0 and ThD(b)(v) > 1, IhD(b)(v) <
0, FhD(b)(v) < 0 which are impossible. Then z = uv /∈ Q i.e., ThM (b)(z) = p1, IhM (b)(z) = p2, FhM (b)(z) = p3.
Now since CoD ⊆M , then

p1 = ThM (b)(z) ≥ ThCoD(b)(z) = maxz=uv[ThC(b)(u)4 ThD(b)(v)] > ThM (b)(u)4 ThM (b)(v) = p14 p1 = p1

So p1 > p1 makes a contradiction and thus C 6⊆ M and D 6⊆ M are false. Hence CoD ⊆ M implies either
C ⊆M or D ⊆M i.e., M is an NSPI on (S,E).
The ‘only if’ part can be drawn from Theorem [4.7] by taking ThM (b)(0S) = 1, IhM (b)(0S) = 0, FhM (b)(0S) = 0.
(ii) Following the sense of 1st part, it can be easily proved.

4.9 Theorem
An Nss K on (S,E) with |hK(b)| = 2, ∀b ∈ E is an NSPI over (S,E) if and only if K̂ = {u ∈ S : ThK(b)(u) =

1, IhK(b)(u) = 0, FhK(b)(u) = 0, ∀b ∈ E} with 0S ∈ K̂ is a crisp prime ideal of S.

Proof. Combining Theorem [4.7] and Theorem [4.8], it can be proved.

4.10 Theorem
An Nss K on (S,E) is an NSPI iff each nonempty cut set [hK(b)](δ,η,σ) of hK(b), an NS , is a crisp prime ideal
of S when δ ∈ ImThK(b), η ∈ Im IhK(b), σ ∈ ImFhK(b), ∀b ∈ E.

Proof. Let K be an NSPI over (S,E). Then, by Theorem [3.5], [hK(b)](δ,η,σ) is a crisp ideal of S. Consider
another two crisp ideals A,B of S so as AB ⊆ [hK(b)](δ,η,σ). On (S,E), define two Nss C,D as :

hC(b) =

{
(δ, 0, 0) if u ∈ A
(0, η, σ) otherwise . hD(b) =

{
(δ, 0, 0) if u ∈ B
(0, η, σ) otherwise .

Then C,D are two NSIs over (R,E) and CoD ⊆ K. Since K is an NSPI over (R,E) then either C ⊆ K
or D ⊆ K. Now if possible, suppose A 6⊆ [hK(b)](δ,η,σ). Then ∃u ∈ A such that u /∈ [hK(b)](δ,η,σ) i.e.,
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ThK(b)(u) < δ, IhK(b)(u) > η, FhK(b)(u) > σ. Now for u ∈ A,
ThC(b)(u) = δ > ThK(b)(u), IhC(b)(u) = 0 ≤ η < IhK(b)(u), FhC(b)(u) = 0 ≤ σ < FhK(b)(u).

This shows C 6⊆ K. AlsoD 6⊆ K similarly. These are against the situation. Therefore A ⊆ [hK(b)](δ,η,σ) means
[hK(b)](δ,η,σ) is a crisp prime ideal of S.
Reversely, we need to clear that K is an NSPI over (S,E) if [hK(b)](δ,η,σ) is a crisp prime ideal of S. Take two
NSIs C,D on (S,E) so as CoD ⊆ K. Let C 6⊆ K, D 6⊆ K. Then ∀u, v ∈ S and ∀b ∈ E,

ThC(b)(u) > ThK(b)(u), IhC(b)(u) < IhK(b)(u), FhC(b)(u) < FhK(b)(u) and
ThD(b)(v) > ThK(b)(v), IhD(b)(v) < IhK(b)(v), FhD(b)(v) < FhK(b)(v).

Clearly ThK(b)(u) 6= 1, IhK(b)(u) 6= 0, FhK(b)(u) 6= 0 and ThK(b)(v) 6= 1, IhK(b)(v) 6= 0, FhK(b)(v) 6= 0.
Let ThK(b)(u) = ThK(b)(v) = p, IhK(b)(u) = IhK(b)(v) = q, FhK(b)(u) = FhK(b)(v) = r. Then ThC(b)(u) >
p, IhC(b)(u) < q, FhC(b)(u) < r and ThD(b)(v) > p, IhD(b)(v) < q, FhD(b)(v) < r i.e., u ∈ [hC(b)](p,q,r) and
v ∈ [hD(b)](p,q,r). Now since CoD ⊆ K,

ThK(b)(z) ≥ max
z=uv

[ThC(b)(u)4 ThD(b)(v)] > ThC(b)(u)4 ThD(b)(v) > p

IhK(b)(z) ≤ min
z=uv

[IhC(b)(u)5 IhD(b)(v)] < IhC(b)(u)5 IhD(b)(v) < q

FhK(b)(z) ≤ min
z=uv

[FhC(b)(u)5 FhD(b)(v)] < FhC(b)(u)5 FhD(b)(v) < r

Thus z = uv ∈ [hK(b)](p,q,r) i.e., [hC(b)](p,q,r)[hD(b)](p,q,r) ⊆ [hK(b)](p,q,r), a crisp prime ideal of S. Then
either [hC(b)](p,q,r) ⊆ [hK(b)](p,q,r) or [hD(b)](p,q,r) ⊆ [hK(b)](p,q,r). If [hC(b)](p,q,r) ⊆ [hK(b)](p,q,r), then
u ∈ [hC(b)](p,q,r) implies u ∈ [hK(b)](p,q,r). This means ThC(b)(u) ≥ p ⇒ ThK(b)(u) ≥ p, IhC(b)(u) ≤ q ⇒
IhK(b)(u) ≤ q, FhC(b)(u) ≤ r ⇒ FhK(b)(u) ≤ r i.e., ThK(b)(u) ≥ ThC(b)(u), IhK(b)(u) ≤ IhC(b)(u), FhK(b)(u) ≤
FhC(b)(u). It is against the assumption. Therefore, C ⊆ K or D ⊆ K and the proof is reached.

5 Homomorphic image of NSI and NSPI
The homomorphic image of NSI and NSPI are analysed here. We let R1, R2 as two crisp rings and π : R1 −→
R2 being a ring homomorphism throughout this section.

5.1 Definition

If C,D be two Nss on (R1, E), (R2, E) respectively, then π(C), π−1(D) are also Nss over (R2, E), (R1, E)
respectively and these are described as :
(i) π(C)(v) = {(Thπ(C)(b)(v), Ihπ(C)(b)(v), Fhπ(C)(b)(v)) : b ∈ E}, ∀v ∈ R2 where

Thπ(C)(b)(v) =

{
max{ThC(b)(u) : u ∈ π−1(v)}, if π−1(v) 6= φ
0 if π−1(v) = φ.

Ihπ(C)(b)(v) =

{
min{IhC(b)(u) : u ∈ π−1(v)}, if π−1(v) 6= φ
1 if π−1(v) = φ.

Fhπ(C)(b)(v) =

{
min{FhC(b)(u) : u ∈ π−1(v)}, if π−1(v) 6= φ
1 if π−1(v) = φ.

(ii) π−1(D)(u) = {(Thπ−1(D)(b)
(u), Ihπ−1(D)(b)

(u), Fhπ−1(D)(b)
(u)) : b ∈ E}, ∀u ∈ R1 where

Thπ−1(D)(b)
(u) = ThD(b)[π(u)], Ihπ−1(D)(b)

(u) = IhD(b)[π(u)] and Fhπ−1(D)(b)
(u) = FhD(b)[π(u)].
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5.2 Proposition

Let C and D be two NSLIs (NSRIs) on (R1, E) and (R2, E) respectively. Then,
(i) π(C) is an NSLIs (NSRIs) over (R2, E) if π is epimorphism.
(ii) π−1(D) is an NSLIs (NSRIs) over (R1, E).

Proof. (i) Let v1, v2, s ∈ R2. If π−1(v1) = φ or π−1(v2) = φ, the proof is usual. So, let ∃u1, u2, r ∈ R1 so as
π(u1) = v1, π(u2) = v2, π(r) = s. Now,

Thπ(C)(b)(v1 − v2) = max
π(u)=v1−v2

{ThC(b)(b)} ≥ ThC(b)(u1 − u2) ≥ ThC(b)(u1)4 ThC(b)(u2),

Thπ(C)(b)(sv1) = max
π(u)=sv1

{ThC(b)(u)} ≥ ThC(b)(ru1) ≥ ThC(b)(u1)

As all the inequalities are carried ∀u1, u2, r ∈ R1 obeying π(u1) = v1, π(u2) = v2, π(r) = s hence,

Thπ(C)(b)(v1 − v2) ≥ ( max
π(u1)=v1

{ThC(b)(u1)})4 ( max
π(u2)=v2

{ThC(b)(u2)}) = Thπ(C)(b)(v1)4 Thπ(C)(b)(v2),

Thπ(C)(b)(sv1) ≥ max
π(u1)=v1

{ThC(b)(u1)} = Thπ(C)(b)(v1). Next,

Ihπ(C)(b)(v1 − v2) = min
π(u)=v1−v2

{IhC(b)(u)} ≤ IhC(b)(u1 − u2) ≤ IhC(b)(u1)5 IhC(b)(u2),

Ihπ(C)(b)(sv1) = min
π(u)=sv1

{IhC(b)(u)} ≤ IhC(b)(ru1) ≤ IhC(b)(u1).

As all the inequalities are carried ∀u1, u2, r ∈ R1 obeying π(u1) = y1, π(u2) = v2, π(r) = s hence,

Ihπ(C)(b)(v1 − v2) ≤ ( min
π(u1)=v1

{IhC(b)(u1)})5 ( min
π(u2)=v2

{IhC(b)(u2)}) = Ihπ(C)(b)(v1)5 Ihπ(C)(b)(v2),

Ihπ(C)(b)(sv1) ≤ min
π(u1)=v1

{IhC(b)(u1)} = Ihπ(C)(b)(v1).

Similarly, we can show that
Fhπ(C)(b)(v1 − v2) ≤ Fhπ(C)(b)(v1)5 Fhπ(C)(b)(v2), Fhπ(C)(b)(sv1) ≤ Fhπ(C)(b)(v1).

This brings the 1st result.
(ii) For u1, u2 ∈ R1, we have,

Thπ−1(D)(b)
(u1 − u2) = ThD(b)[π(u1 − u2)] = ThD(b)[π(u1)− π(u2)]

≥ ThD(b)[π(u1)]4 ThD(b)[π(u2)] = Thπ−1(D)(b)
(u1)4 Thπ−1(D)(b)

(u2),

Thπ−1(D)(b)
(ru1) = ThD(b)[π(ru1)] = ThD(b)[π(r)π(u1)] = ThD(b)[sπ(u1)]

≥ ThD(b)[π(u1)] = Thπ−1(D)(b)
(u1),

Ihπ−1(D)(b)
(u1 − u2) = IhD(b)[π(u1 − u2)] = IhD(b)[π(u1)− π(u2)]

≤ IhD(b)[π(u1)]5 IhD(b)[π(u2)] = Ihπ−1(D)(b)
(u1)5 Ihπ−1(D)(b)

(u2),

Ihπ−1(D)(b)
(ru1) = IhD(b)[π(ru1)] = IhD(b)[π(r)π(u1)] = IhD(b)[sπ(u1)]

≤ IhD(b)[π(u1)] = Ihπ−1(D)(b)
(u1).

In a similar fashion,
Fhπ−1(D)(b)

(u1 − u2) ≤ Fhπ−1(D)(b)
(u1)5 Fhπ−1(D)(b)

(u2), Fhπ−1(D)(b)
(ru1) ≤ Fhπ−1(D)(b)

(u1).
This brings the 2nd result.
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5.3 Proposition
Take two NSLIs (NSRIs) C,D over (R1, E) and (R2, E), respectively. If 01, 02 are the additive identities of
R1, R2 respectively, then (i) π(C)(02) = C(01) (ii) π−1(D)(01) = D(02)

Proof. (i) Here π(C)(02) = {(Thπ(C)(b)(02), Ihπ(C)(b)(02), Fhπ(C)(b)(02)) : b ∈ E} and
C(01) = {(ThC(b)(01), IhC(b)(01), FhC(b)(01)) : b ∈ E}; Now,

Thπ(C)(b)(02) = max {ThC(b)(u) : u ∈ π−1(02)} ≥ ThC(b)(01) [as π(01) = 02]

Since C is an NSLIs over (R1, E), so ∀u ∈ R and ∀b ∈ E,
ThC(b)(u) ≤ ThC(b)(01) ⇒ max {ThC(b)(u) : u ∈ π−1(02)} ≤ ThC(b)(01) ⇒ Thπ(C)(b)(02) ≤ ThC(b)(01)

Thus Thπ(C)(b)(02) = ThC(b)(01). Next,

Ihπ(C)(b)(02) = min {IhC(b)(u) : u ∈ π−1(02)} ≤ IhC(b)(01) [as π(01) = 02]

Since C is an NSLIs over (R1, E), so ∀u ∈ R and ∀b ∈ E,
IhC(b)(u) ≥ IhC(b)(01)⇒ min {IhC(b)(u) : u ∈ π−1(02)} ≥ IhC(b)(01)⇒ Ihπ(C)(b)(02) ≥ IhC(b)(01).

Thus Ihπ(C)(b)(02) = IhC(b)(01). Similarly, Fhπ(C)(b)(02) = FhC(b)(01) and this follows the 1st result.
(ii) Here, we have

Thπ−1(D)(b)
(01) = ThD(b)[π(01)] = ThD(b)(02), Ihπ−1(D)(b)

(01) = IhD(b)[π(01)] = IhD(b)(02) and
Fhπ−1(D)(b)

(01) = FhD(b)[π(01)] = FhD(b)(02). This follows the 2nd result.

5.4 Definition
Consider two nonempty sets X,E and a lattice [0, 1]. Then K = {(ThK(b), IhK(b), FhK(b))|b ∈ E} : X −→
[0, 1] × [0, 1] × [0, 1] attains the sup property when ThK(b)(X) = {ThK(b)(x) : x ∈ X} (the image of ThK(b))
admits a maximal element and each of IhK(b)(X) = {IhK(b)(x) : x ∈ X}, FhK(b)(X) = {FhK(b)(x) : x ∈ X}
(the image of IhK(b), FhK(b) respectively) admits a minimal element ∀b ∈ E.

5.5 Proposition
For two NSLIs (NSRIs) K,L on (R1, E) and (R2, E), respectively, followings hold.
(i) π(K0) ⊆ (π(K))0 (Theorem [3.3] describes K0).
(ii) π(K0) = (π(K))0 when K attains sup property.
(iii) π−1(L0) = (π−1(L))0.

Proof. (i) If v ∈ π(K0) signifies v = π(u) for u ∈ K0 ⊂ R1 so as ThK(b)(u) = ThK(b)(01), IhK(b)(u) =
IhK(b)(01), FhK(b)(u) = FhK(b)(01). Now,

Thπ(K)(b)(v) = max {ThK(b)(u) : u ∈ π−1(v)} = max {ThK(b)(01)} = ThK(b)(01) = Thπ(K)(b)(02)

Ihπ(K)(b)(v) = min {IhK(b)(u) : u ∈ π−1(v)} = min {IhK(b)(01)} = IhK(b)(01) = Ihπ(K)(b)(02)

Similarly, Fhπ(K)(b)(v) = Fhπ(K)(b)(02). It signifies v ∈ (π(K))0 when v ∈ π(K0) i.e., π(K0) ⊆ (π(K))0.
(ii)Take u ∈ R1 so as v = π(u) ∈ (π(K))0 ⊂ R2. Then ∀b ∈ E,

Thπ(K)(b)(02) = Thπ(K)(b)(v)⇒ ThK(b)(01) = max {ThK(b)(t) : t ∈ π−1(v)} = ThK(b)(t)

for t ∈ R1 so as t ∈ π−1(v). Further,
Ihπ(K)(b)(02) = Ihπ(K)(b)(v)⇒ IhK(b)(01) = min {IhK(b)(t) : t ∈ π−1(v)} = IhK(b)(t)

for t ∈ R1 so as t ∈ π−1(v).
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Identical picture is drawn for F and thus t ∈ K0 i.e., π(t) ∈ π(K0) ⇒ v = π(u) ∈ π(K0). Therefore
(π(K))0 ⊆ π(K0). Then π(K0) = (π(K))0 using (i).

(iii) u ∈ π−1(L0) ⊂ R1

⇔ ThL(b)[π(u)] = ThL(b)(02) = ThL(b)[π(01)], IhL(b)[π(u)] = IhL(b)(02) = IhL(b)[π(01)] and
FhL(b)[π(u)] = FhL(b)(02) = FhL(b)[π(01)];

⇔ Thπ−1(L)(b)
(u) = Thπ−1(L)(b)

(01), Ihπ−1(L)(b)
(u) = Ihπ−1(L)(b)

(01), Fhπ−1(L)(b)
(u) = Fhπ−1(L)(b)

(01);

⇔ u ∈ (π−1(L))0

Therefore, π−1(L0) = (π−1(L))0.

5.6 Definition

Take a classical function π : R1 −→ R2 and an Nss K(u) = {(ThK(b)(u), IhK(b)(u), FhK(b)(u)) : b ∈ E},
u ∈ R1. Then K is said to be π- invariant if π(u) = π(v) ⇒ K(u) = K(v) for u, v ∈ R1. K(u) = K(v) hold
if ThK(b)(u) = ThK(b)(v), IhK(b)(u) = IhK(b)(v), FhK(b)(u) = FhK(b)(v), ∀b ∈ E.

5.7 Theorem

Let π : R1 −→ R2 be an epimorphism and K be a π- invariant NSI on (R1, E). Then the followings hold.
(i) If K attains sup property, then (π(K))0 is a crisp prime ideal of R2 when K0 is a prime ideal of R1.
(ii) If K(R1) is finite and K0 is prime ideal of R1, then π(K0) is so of R2 and π(K0) = (π(K))0.
(iii) If K is an NSPI over (R1, E), then π(K) is also an NSPI over (R2, E).

Proof. (i) By Theorem [5.5], π(K0) = (π(K))0 obviously. Let y, z ∈ R2 such that yz ∈ π(K0) = (π(K))0.
Then there exists u, v ∈ R1 so as π(u) = y, π(v) = z and π(uv) = π(u)π(v) = yz ∈ (π(K))0. Then ∀b ∈ E,

Thπ(K)(b)[π(uv)] = Thπ(K)(b)(02)⇒ max {ThK(b)(t) : t ∈ π−1(yz)} = ThK(b)(01),

Ihπ(K)(b)[π(uv)] = Ihπ(K)(b)(02)⇒ min {IhK(b)(t) : t ∈ π−1(yz)} = IhK(b)(01),

Fhπ(K)(b)[π(uv)] = Fhπ(K)(b)(02)⇒ min {FhK(b)(t) : t ∈ π−1(yz)} = FhK(b)(01).

For w ∈ π−1(yz) i.e., for π(w) = yz = π(uv), sup property tells,
ThK(b)(w) = ThK(b)(01), IhK(b)(w) = IhK(b)(01), FhK(b)(w) = FhK(b)(01).

But as K is π-invariant, so K(w) = K(uv). Then ∀b ∈ E,
ThK(b)(uv) = ThK(b)(01), IhK(b)(uv) = IhK(b)(01), FhK(b)(uv) = FhK(b)(01).

Therefore, uv ∈ K0. As K0 is a crisp prime ideal of R1, so u ∈ K0 or v ∈ K0. It refers π(u) ∈ π(K0) or
π(v) ∈ π(K0). This furnishes the proof.

(ii) Combining the 1st part and Theorem [5.5], the proof is onward.

(iii) By Proposition [5.2](i), π(K) is an NSI over (R2, E). Since K is an NSPI over (R,E), then |hK(b)| =
2, [hK(b)](01) = (1, 0, 0), ∀b ∈ E and using Theorems [4.4, 4.5, 4.7],K0 is a prime ideal. But [hπ(K)(b)](02) =
[hK(b)](01) = (1, 0, 0), ∀b ∈ E and by 1st part, (π(K))0 is a prime ideal of R2. As |hK(b)| = 2, ∃u ∈ R1 so
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as [hK(b)](u) = (p1, p2, p3) for b ∈ E. Then,

Thπ(K)(b)(π(u)) = max{ThK(b)(u) : u ∈ π−1(π(u))} = p1

Ihπ(K)(b)(π(u)) = min{IhK(b)(u) : u ∈ π−1(π(u))} = p2

Fhπ(K)(b)(π(u)) = min{FhK(b)(u) : u ∈ π−1(π(u))} = p3

So, [hπ(K)(b)](π(u)) = (p1, p2, p3) = [hK(b)](u) for b ∈ E. Then [hK(b)](R1) = [hπ(K)(b)](R2) as π is
epimorphism and u is arbitrary. Now consider two NSIs L,M over (R2, E) such that LoM ⊆ π(K) but
L 6⊆ π(K) and M 6⊆ π(K). Then for all y, z ∈ R2,

ThL(b)(y) > Thπ(K)(b)(y), IhL(b)(y) < Ihπ(K)(b)(y), FhL(b)(y) < Fhπ(K)(b)(y) and
ThM (b)(z) > Thπ(K)(b)(z), IhM (b)(z) < Ihπ(K)(b)(z), FhM (b)(z) < Fhπ(K)(b)(z).

For y, z ∈ R2 − (π(K))0, consider Thπ(K)(b)(y) = Thπ(K)(b)(z) = p1, Ihπ(K)(b)(y) = Ihπ(K)(b)(z) = p2 and
Fhπ(K)(b)(y) = Fhπ(K)(b)(z) = p3. Then,

ThL(b)(y) > p1, IhL(b)(y) < p2, FhL(b)(y) < p3 and ThM (b)(z) > p1, IhM (b)(z) < p2, FhM (b)(z) < p3.
Clearly, yz /∈ (π(K))0 as y, z /∈ (π(K))0, a prime ideal of R2.
Then, Thπ(K)(b)(yz) = p1, Ihπ(K)(b)(yz) = p2, Fhπ(K)(b)(yz) = p3.
Now, p1 = Thπ(K)(b)(yz) ≥ ThLoM (b)(yz) = ThL(b)(y)4 ThM (b)(z) > p14 p1 = p1

The opposition p1 > p1 ensures L ⊆ π(K),M ⊆ π(K) and this furnishes the 1st part.

5.8 Theorem

Let Q be an NSI over (R2, E) and π is onto homomorphism. Then,
(i) (π−1(Q))0 is a crisp prime ideal on R1 when Q0 is so over R2.
(ii) π−1(Q) is NSPI on (R1, E) when Q is an NSPI over (R2, E).

Proof. (i) We have by Theorem [5.5], π−1(Q0) = (π−1(Q))0. Let u, v ∈ R1 so as uv ∈ π−1(Q0). Then
π(uv) = π(u)π(v) ∈ Q0. Again π(u) ∈ Q0 or π(v) ∈ Q0 as Q0 is a prime ideal.

π(u) ∈ Q0 ⇒ ThQ(b)[π(u)] = ThQ(b)(02)⇒ Thπ−1(Q)(b)
(u) = Thπ−1(Q)(b)

(01)⇒ u ∈ (π−1(Q))0.

Identically, v ∈ (π−1(Q))0 when π(v) ∈ Q0. Therefore, uv ∈ (π−1(Q))0 refers u ∈ (π−1(Q))0 or v ∈
(π−1(Q))0. Hence, the 1st part follows.
(ii) By Theorem [5.2], π−1(Q) is an NSI over (R1, E) and by Theorem [5.3], π−1(Q)(01) = Q(02). Also since
Q is an NSPI over (R2, E), then |hQ(b)| = 2, [hQ(b)](02) = (1, 0, 0) and Q0 is a crisp prime ideal of R2

respectively by Theorem [4.4], Theorem [4.5] and Theorem [4.7]. Then, by 1st result, (π−1(Q))0 is a crisp
prime ideal of R1 and [hπ−1(Q)(b)](01) = (1, 0, 0). Construct [hQ(b)](R2) = {(1, 0, 0) ∪ (q1, q2, q3)} for a fixed
b ∈ E with (1, 0, 0) 6= (q1, q2, q3). Let [hQ(b)](v) = (q1, q2, q3) for v ∈ R2. Then ∃u ∈ R1 for which π(u) = v
and [hπ−1(Q)(b)](u) = [hQ(b)](v) = (q1, q2, q3). Therefore, [π−1(Q)](R1) = Q(R2) as b ∈ E is arbitrary and π
is epimorphism.
For two NSIs A,B on (R1, E), let AoB ⊆ π−1(Q) with A 6⊆ π−1(Q) and B 6⊆ π−1(Q). Then ∀u, v ∈ R1,

ThA(b)(u) > Thπ−1(Q)(b)
(u), IhA(b)(u) < Ihπ−1(Q)(b)

(u), FhA(b)(u) < Fhπ−1(Q)(b)
(u) and

ThB(b)(v) > Thπ−1(Q)(b)
(v), IhB(b)(v) < Ihπ−1(Q)(b)

(v), FhB(b)(v) < Fhπ−1(Q)(b)
(v).

For u, v ∈ R1 − (π−1(Q))0, let Thπ−1(Q)(b)
(u) = Thπ−1(Q)(b)

(v) = q1, Ihπ−1(Q)(b)
(u) = Ihπ−1(Q)(b)

(v) = q2
and Fhπ−1(Q)(b)

(u) = Fhπ−1(Q)(b)
(v) = q3. Then,

ThA(b)(u) > q1, IhA(b)(u) < q2, FhA(b)(u) < q3 and ThB(b)(v) > q1, IhB(b)(v) < q2, FhB(b)(v) < q3.
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It indicates uv /∈ (π−1(Q))0 as u, v /∈ (π−1(Q))0, a prime ideal of R1.
Then, Thπ−1(Q)(b)

(uv) = q1, Ihπ−1(Q)(b)
(uv) = q2, Fhπ−1(Q)(b)

(uv) = q3 and

so, q1 = Thπ−1(Q)(b)
(uv) ≥ ThAoB(b)(uv) = ThA(b)(u)4 ThB(b)(v) > q14 q1 = q1

The opposition q1 > q1 ensures A ⊆ π−1(Q), B ⊆ π−1(Q) and this leads the 2nd part.

6 Conclusion
This effort is made to extend the notion of ideal and prime ideal of a classical ring in the parlance of NS

theory and soft set theory. Their structural behaviours are innovated by developing a number of properties
and theorems. Using neutrosophic cut set, it is shown how an Nss will be an NSI or NSPI. The nature of
homomorphic image of NSI and NSPI are also studied in different aspect. This theoretical attempt will help to
cultivate the NS theory in several mode in future, we think.
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 -Abstract.The main idea of this .research is,to define a new neutrosophic.crisp points  in neutrosophic.crisp 
topological.space .namely [NCPN].,the concept of neutrosophic.crisp limit point was defind using [NCPN],with 
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Introduction. 
 " Smarandache [1,2,3] introduced the notions of neutrosophic theory and introduced the neutrosophic. 
components,(𝑇,𝐼,𝐹,) which represent,the membership., indeterminacy., and non membership.values resp-
ectively, where.]−0,1+[. is a non standard.unit interval,. In [4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 
,20] many scientists presented the concepts of  the neutrosophic set theory in their works. Salama et al. 
[21,22] provided .natural foundations. to put mathematical treatments for the neutrosophic pervasively 
phenomena.. in our real .world. and for building. new branches. of neutrosophic. mathematics,. " 
 " Salama et al..[23,24] put some .basic concepts, of the neutrosophic.crisp set, and their operations, 
and because, of their .wide applications, and their grate. flexibility, to solve the problem., we used 
these concepts, to define new types of neutrosophic. points, that, we called neutrosophic.crisp 
points,[NCPN].." 
" .Fainally,,we used these.points [NCPN], to define the concept of neutrosophic.crisp limit point, with 
some of its properties  and constructe the separation. axioms[N-𝒯i-space,i=0,1,2] in neutrosophic.crisp 
topological. and ,examine. the .relationship. between.them. in details. " 
" Throughout this paper,(NCTS) means a neutrosophic.crisp topological space. Also, simply we 
denote  neighborhood by (nhd). " 
1"Basic Concepts 
1.1=Definition=[25]  
    Let 𝒳. be a non-empty fixed, set . A neutrosophic.crisp set [.NCS  for short.] B is an object. having, the 
form, B .B1, B2, B3> where B1,.B2 and .B3 are .subsets of 𝒳.. 
1.2=Definition=[25]  
  .The object having. the form, BB1., B2., B3.>  is called,,: " 
1."A neutrosophic.crisp set of Type1 [.NCS/Type1] if satisfying,

, 

, B1.  B2. ∅, B1. B3. ∅and B2.  B3. ∅ 
"A neutrosophic.crisp set of Type2 [.NCS/Type2] if satisfying,

,, 
 B1. B2. ∅, B1. B3.  ∅and  B2.  B3.  ∅ , B1.⋃ B2. ⋃ B3. 𝒳."
"A. neutrosophic.crisp set of Type3 [.NCS/Type3] if satisfying,

,  
 B1. B2. B3. ∅ , B1.⋃ B2. ⋃ B3. 𝒳  
1.3=Definition=[25]  
 " Types of NCSs ∅N & 𝒳N in 𝒳. as follows,: " 
 1.. . ∅N  may. be defined. in .many ways. as, a .N CS, as follows,:  

1. Type1  : ∅N. =  > 𝜑. , 𝜑 , .𝒳. < 
2.  Type2 : ∅N. =  > 𝜑. , .𝒳. , .𝒳.  < 
3.  Type3 : ∅N.=  > 𝜑. , .𝒳., 𝜑 <   
4.  Type4 : ∅N. =  > 𝜑. , 𝜑. , 𝜑. <   

2..  𝒳N may. be defined. in .many ways. as, a .N CS, as follows,: 
1. Type1: . 𝒳N =  > .𝒳., 𝜑.  , 𝜑.  <  
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2. Type2: . 𝒳N =  > .𝒳., .𝒳., 𝜑.  <  
3. Type3: . 𝒳N =  > .𝒳., 𝜑. , .𝒳. <  
4. Type4: . 𝒳N =  > .𝒳., .𝒳. , .𝒳. <  

1.4=Definition=[25]  
   .Let 𝒳. be a non-empty, set and the .NCSs, C & D .in the form,,C C1,C2,C3> , D D1,D2,D3>   

then, we .may consider. two. possible definitions. for subsets, C ⊆ D, may be defined. in .two ways, :" 

1. C ⊆. D, ⇔ C1 ⊆. D1. , C2 ⊆. D2 and D3. ⊆. C3.  

2. C ⊆. D,⇔ C1 ⊆. D1. , D2 ⊆. C2 and D3. ⊆. C3. " 

1.5=Definition=[25]  
    .Let 𝒳. be a non-empty, set and the .NCSs, C & D .in the form,,C C1,C2,C3> , D D1,D2,D3>   

then,:  "" 

1.. ".C ⋂ D.  may. be defined. in . two ways. as, a .N CS, as follows,: 
 . C ⋂ D. = [.C1 ⋂ D1. ] , [.C2 ⋃ D2.]  , [.C3 ⋃ D3 ]  

 ..C ⋂ D. = [.C1 ⋂ D1. ] , [.C2 ⋂ D2.]  , [.C3 ⋃ D3.]  

2. "C ⋃ D may. be defined. in . two ways. as, a .N CS, as follows,: 
   C ⋃ D. = [ C1 ⋃ D1 ] , [ C2 ⋃ D2 ] , [ C3 ⋂ D3. ]  

  .C ⋃ D. = [ C1 ⋃ D1 ] , [ C2 ⋂ D2 ] , [ C3 ⋂ D3. ]  
1.6=Definition=[25]  
 " A neutrosophic.crisp.topology (.NCT) on a non-empty, set , 𝒳,  is a family, 𝒯 of neutrosophic.crisp 
subsets, in ,𝒳 satisfying, the following, axioms,:" 

1. . ∅N. , 𝒳N. ∈  𝒯 " 
2.  C⋂D ∈ 𝒯 , for any  C, D ∈  𝒯 " 
3. ,The union, of any number, of sets, in 𝒯. belongs, to 𝒯. 

"[The pair .(𝒳, 𝒯). is .said to be a neutrosophic.crisp topological space (.NCTS) in .𝒳. Moreover, The 
elements in . 𝒯 are ,said to be neutrosophic.crisp open sets (.NCOS), a neutrosophic.crisp set F is 
closed (.NCCS ), iff  its complement, FC is an open neutrosophic.crisp set.]" 
1.7=Definition=[25]  
    .Let 𝒳. be a non-empty, set and the .NCS, D .in the form,, D D1,D2,D3> .Then Dc  may. be 
defined. in . three ways. as, a .N CS, as follows,:"  

Dc  D1
c, D2

c , D3
c>  ,  Dc D3,D2,D1>   or  Dc D3,D2

c ,D1> 

1.8=Definition=[25]  
  .Let, (. 𝒳, 𝒯). be  neutrosophic.crisp topological ,space,, (.NCTS. ). A  be neutrosophic.crisp set then: 
The intersection, of any neutrosophic.crisp closed sets contained, A is called neutrosophic.crisp closure 
of A. ( .NC-Cl(.A.) ,for short. ).. 


2 "Neutrosophic crisp limit point :" 
  " .In this, section, ,we will introduce, the neutrosophic.crisp limit points, with some of its properties. 
This work contains an adjustment for the above-mentioned definitions 1.4 & 1.5, this was necessary to 
homogeneous suitable results for the upgrade of this research." 
2.1=Definition== 

   Let 𝒳. be a non-empty, set and the .NCSs, C & D .in the form,,C C1,C2,C3> , D D1,D2,D3>   
then ,the additional new ways for the intersection , union and inclusion between C & D are 

C ⋂ D. = [.C1 ⋂ D1. ] , [.C2 ⋂ D2.]  , [.C3 ⋂ D3 ]  
C ⋃ D. = [.C1 ⋃ D1. ] , [.C2 ⋃ D2.]  , [.C3 ⋃ D3 ]  

C ⊆. D, ⇔ C1 ⊆. D1. , C2 ⊆. D2 and C3. ⊆. D3.  
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2.2=Definition=. 
    For all,..x,.y,.z belonging to a non-empty, set .𝒳. Then the neutrosophic.crisp points related to x, y, z 
are defined as follows.: 
 " xN1

{x},∅,∅ >,  is called, a neutrosophic.crisp point (NCPN1
)  in .𝒳." 

 " yN2
∅,{y},∅ >,  is called, a neutrosophic.crisp point (NCPN2

)  in .𝒳." " 
 " zN3

∅,∅, {z} >,  is called, a neutrosophic.crisp point (NCPN3
)  in .𝒳."" 

The set of all, neutrosophic.crisp points (NCPN1
, NCPN2

, NCPN3
) is denoted by NCPN. 

2.3=Definition=. 
   Let .𝒳."be to a non-empty, set and ,x ,y, z ∈𝒳. Then the neutrosophic.crisp point,:" 
 " xN1

 is belonging to the neutrosophic.crisp set BB1,B2,B3>, denoted by xN1
∈ B, if  x ∈

B1,wherein xN1
 does not .belong to the neutrosophic.crisp set B denoted by xN1

∉ B , if x ∉ B1. " 
 " yN2

 is belonging to the neutrosophic.crisp set BB1,B2,B3>, denoted by yN2
∈ B, if  y ∈ B2. In 

contrast yN2
 does not .belong to the neutrosophic.crisp set B, denoted by yN2

∉ B , if  y ∉ B2.. 
  " zN3

 is belonging to the neutrosophic.crisp set BB1,B2,B3>, denoted by zN3
∈ B, if z ∈ B3. In 

contrast zN3
 does not .belong to the neutrosophic.crisp set B ,denoted by zN3

∉ B , if  z ∉ B3. "  
2.4/Remark."   
  If , B B1,B2,B3>  is a .NCS  in, a non-empty set 𝒳, then.: 
 B\xN1

=< B1\{x}, B2, B3 >. B\xN1
"means that the component B doesn't contain xN1

. 
 B\yN2

=< B1, B2\{y}, B3 > . B\yN2
 "means that the component B doesn't contain yN2

. 
 B\zN3

=< B1, B2, B3\{z} > . B\zN3
  "means that the component B doesn't contain zN3

.  
2.5/Example. 
    If  B =  < { a , . b } , { c , . b} , { c , . a } >  is an NCS in  𝒳 = { a , . b , . c } , then:"  
    B\aN1

= < {  . b  } , { c , . b } , { c , . a } >  
    B\bN2

= < { a , . b }  , { c } , { c , . a} >  
    B\cN3

= < { a , . b }  , { c , . b } , {  . b  } > 
2.6/Remark." 
    If , B B1,B2,B3>  is a .NCS  in, a non-empty set 𝒳, then.: 

,B ⋃ xN1
: xN1

∈ B⋃⋃ yN2
: yN2

∈ B ⋃⋂ zN3
: zN3

∈ B

⋃< { x. } , ∅ , ∅ > ∶ x. ∈ 𝒳 ⋃⋃< ∅ , { y. } , ∅ > ∶ y. ∈ 𝒳 ⋃⋂< ∅ , ∅ , { z. } > ∶ z. ∈ 𝒳 
or   B ⋃ xN1

: xN1
∈ B ⋃⋃ yN2

: yN2
∈ B ⋃⋃  zN3

: zN3
∈ B

⋃< { x. } , ∅ , ∅ > : x. ∈ 𝒳 ⋃⋃< ∅, { y. } , ∅ > : y. ∈ 𝒳 ⋃⋃< ∅, ∅ , { z. } > : z. ∈ 𝒳 
2.7=Definition=. 
    Let (𝒳, 𝒯) be  NCTS , P ∈ NCPN in 𝒳 , a neutrosophic.crisp set ,B B1,B2,B3>   ∈ 𝒯 is called  
neutrosophic.crisp open nhd of,  P in (𝒳, 𝒯)  if  P ∈ B . 
2.8=Definition=. 
   .Let, (. 𝒳, 𝒯) be  NCTS , P ∈ NCPN in 𝒳 , a neutrosophic.crisp set ,B B1 , B2 , B3 >   ∈ 𝒯 is called 
 neutrosophic.crisp nhd of,  P in (𝒳, 𝒯) , if there is neutrosophic.crisp open set  ,A A1, A2, A3 > 
containing P such that A ⊆ B. 

Note"2.9 
" Every  neutrosophic crisp open nhd of any point P ∈ NCPN in 𝒳 is  neutrosophic crisp nhd of P, but 
in general the inverse.is not  true., the following example illustrates this fact.." 
2.10/Example. 
  " If 𝒳 = {x, y, z} , 𝒯 = {𝒳N , ∅N , . A , . B , . C } ,  
A   { x. } , ∅ , ∅ > , B  { y. } , ∅ , ∅ > , G  { 𝑥 , 𝑦} , ∅ , ∅ >  
If we take U  { 𝑥 , 𝑦 } ,{ z. } , ∅ >.  
Then G  { 𝑥 , 𝑦 }, ∅ , ∅  > is an open set containing P = xN1

 { x. }, ∅ , ∅  > and G ⊆ U. That is 
U is a neutrosophic.crisp nhd of P in, (. 𝒳 , 𝒯) , while it is not a neutrosophic.crisp open nhd of P ." 
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2.11=Definition 
    .Let, (. 𝒳, 𝒯)  be .NCTS, and B B1 , B2 , B3 > be NCS, of ,𝒳. A neutrosophic.crisp point P ∈ 
. NCPN in .𝒳 is called a neutrosophic.crisp limit point, of B B1 ,B2 ,B3 > iff every neutrosophic.crisp 
open set containing P must contains at least one neutrosophic.crisp point of B different from P, . It is 
easy, to say that, the point, P , is not neutrosophic.crisp limit point of B ,if there, is a neutrosophic.crisp 
open. set, G of P and  B ∩ (G\, P) = ∅N. " 
2.12=Definition 
 " The set of all neutrosophic.crisp limit points of a neutrosophic.crisp set B is called neutrosophic.crisp 
derived set, of B , denoted by, NCD(B, ) ." 
2.13/Example. 

" If 𝒳 = {x, y, z} , 𝒯 = {𝒳N , ∅N , . A , . B , . C } , A   { x. } , ∅ , ∅ > , B  { y. } , ∅ , ∅ > , G  { 𝑥 ,

𝑦} , ∅ , ∅ > . If we take D { 𝑥 , 𝑦 },∅,∅>, Then P= 𝑍N1
{ Z },∅,∅> is the only neutrosophic.crisp 

limit point of D. i.e. NCD(D) ={𝑍N1
} " 

2.14/,Remarks., 

 Let B, be, any neutrosophic.crisp set of .𝒳 , If  P= { x },∅,∅> ∈ 𝒯 in any NCT space (𝒳, 𝒯), then 
P ∈ NCD(B). 

 Let B, be, any neutrosophic.crisp set of .𝒳 , the following facts is true: 
 NCD(B) ⊄ B , B ⊄ NCD(B) , and sometimes NCD(B) ∩ B = ∅N or NCD(B) ∩ B ≠ ∅N. 

 In any NCT space (𝒳, 𝒯), we have NCD(∅) = ∅N . 
2.15/Theorem." 
  " Let (𝒳, 𝒯) be  NCTS and B B1 ,B2 ,B3 >  be a neutrosophic.crisp set of 𝒳,then B is  
neutrosophic.crisp closed set, (.NCCS, for. short,) iff NCD(B, ) ⊆ B" 
Proof 
     Let B be NCCS, then (𝒳\B) is neutrosophic.crisp .open set, (.NCOS for. short ) this implies that for 
each, neutrosophic.crisp point, P ∈ NCPN in, , (𝒳\B) , . P ∉ B, there is, a neutrosophic.crisp open set, G 
of, P and  G ⊆, ( 𝒳\, B ) . 
Since , B ∩, ( 𝒳\B ) = ∅𝑁 , then P is not neutrosophic. crisp limit point of B, thus G ∩ B = ∅𝑁 ,which 
implies that P ∉ NCD(B).Hence NCD(B) ⊆ B 
Conversely,, assume that P ∉ NCD(B), implis that P is not neutrosophic. crisp limit point of B, hence, 
there is a neutrosophic.crisp open set, G of, P  and  , G ∩ B = ∅𝑁 , which means that G ⊆ (𝒳\B) and 
since (𝒳\B) is a neutrosophic.crisp open set . Hence  B is neutrosophic. crisp closed. set .  .. 
2.16/Theorem." 
  . Let (𝒳, 𝒯) be  NCTS , B G ,be a neutrosophic.crisp sets, of .𝒳 , .then the following. properties. .hold,: 
(1)  NCD(∅𝑁,) = ∅𝑁, 
(2) If B ⊆ G , then NCD(B) ⊆ NCD(G) 
(3) NCD(B ∩ G) ⊆ NCD(B) ∩ NCD(G) 
(4) NCD(B ∪ G) = NCD(B) ∪ NCD(G) 
Proof..

/ (1)" the proof, is, directly." 
Proof../ (2) 
  " Assume that NCD(B) be a neutrosophic.crisp set containing a neutrosophic.crisp point, , P ∈ NCPN, 
then by definition 2.11, for each neutrosophic crisp open set V of P , we have B ∩ V\P ≠ ∅𝑁,but B ⊆

G, hence G ∩ V\P ≠ ∅𝑁, this means that P ∈ NCD(G). Hence , NCD(B) ⊆ NCD(G)  " 
Proof/ (3)  
    Since  B ∩ G ⊆ B , then by (2) NCD(B ∩ G) ⊆ NCD(B)                                                            (1) 
 B ∩ G ⊆ G , implies NCD(B ∩ G) ⊆ NCD(G)                                                                                (2) 
From (1) & (2) NCD(B ∩ G) ⊆ NCD(B) ∩ NCD(G) 
Proof/ (4) 
    Let P ∈ NCPN such that P ∉ NCD(B) ∪ NCD(G) , then either P ∉ NCD(B) and P ∉ NCD(G),then 
there is a neutrosophic.crisp open. set, K of P and  B ∩ K\P = ∅𝑁 and G ∩ K\P = ∅𝑁, this implies that 
(B ∪ G) ∩ K\P = ∅𝑁 , i.e P ∉ NCD(B ∪ G) , hence NCD(B ∪ G) ⊆ NCD(B) ∪ NCD(G)             (3) 
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Conversely, .since B ⊆ B ∪ G ,G ⊆ B ∪ G ,then by property (2) NCD(B) ⊆ NCD(𝐵 ∪ 𝐺) and NCD(G) ⊆

NCD(B∪G) , thus NCD(B ∪ G) ⊇ NCD(B) ∪ NCD(G)                                                                                 (4) " 
from (3) and (4) we have NCD(B ∪ G) = NCD(B) ∪ NCD(G). " 
2.17/Remark.   
 " In general, the inverse of property 2 & 3 in Th.(2.16) is not true. The following examples act as an 
evidence to this claim." 
2.18/Example. 
 " If 𝒳 = {x, y, z} , 𝒯 = {𝒳N , ∅N, B }, B ∅,{𝑥},∅> . If we take, A  ∅, {. 𝑥. }, ∅ >, G  ∅, {. 𝑦. },∅ > 
Notes that; NCD(. A. ) = < ∅, {. 𝑦 , 𝑧. }, ∅ >, NCD(G) =< ∅, {. 𝑦, . 𝑧}, ∅ > and NCD(A) ⊆ NCD(G), but 
A ⊄ G. 
2.19/Example. 
"  If 𝒳 = {x, y, z} , 𝒯 = {𝒳N , ∅N, B }, B ∅,{𝑥},∅> . If we take A ∅, {𝑥},∅>, G ∅, {𝑦},∅> .  
Notes that; NCD(B ∩ G) ⊅ NCD(B) ∩ NCD(G)." 
2.20/Theorem." 
 " For any neutrosophic crisp set B over the universe 𝒳,.then NC-Cl(B) = B ∪ NCD(B) 
Proof/   
   Let us first prove that B ∪ NCD(B) is a neutrosophic.crisp closed. set .that is 
 𝒳N\(. B ∪ NCD(. B)) = (𝒳N\B) ∩ (𝒳N\NCD(. B))  is a neutrosophic.crisp open. set . 
Now for, a neutrosophic.crisp point P ∈ (𝒳N\(. B)) ∩ (𝒳N\NCD(. B)) , then. P ∈, ( 𝒳N\, (B) ) and P ∈

𝒳N,\NCD(. B), thus P ∉. B and P ∉ NCD(. B). So by definition 2.12, there is a neutrosophic.crisp .set  R 
of P  S.t  R ∩ B = ∅N, hence R ⊆ 𝒳N\B . 
Now for each P1 ∈ R, then P1 ∉ NCD(B), then R ∩ NCD(B) = ∅N, this implies that R ⊆ 𝒳N\

NCD(B) [i.e R ⊆ (, 𝒳N\, B) ∩ (, 𝒳N\, NCD(. B))] .Thus (, 𝒳N\, B ) ∩ (, 𝒳N\NCD(B)) is a neutrosophic 
crisp nhd of all its elements and hence (𝒳N\B) ∩ (𝒳N\NCD(B)) is a neutrosophic.crisp open set. and 
thus B ∪ NCD(B)  .is a neutrosophic.crisp closed set, containing B, therefore NC-Cl(B)  ⊆ B ∪ NCD(B). 
S ince NC-Cl(B)  .is a neutrosophic.crisp closed set (see definition 2.12) and NC-Cl(B) contains all its 
neutrosophic crisp limits points .Thus NCD(B) ⊆ NC-Cl(B) and B ⊆ NC-Cl(B), hence NC-Cl(B) 
= B ∪ NCD(B) . 
 
3 .Separation Axioms In a neutrosophic. Crisp Topological Space 
3.1/Definition 
    A neutrosophic.crisp topological. space (. 𝒳, 𝒯)  is called: 
 N1-.𝒯o-space if ∀ xN1

 yN1
𝒳 ∃ a neutrosophic.crisp open set, G in ,𝒳 .containing one of them but 

not  the other. 
 N2-𝒯o-space if ∀ xN2

 yN2
𝒳 ∃ a neutrosophic.crisp open set, G in ,𝒳.containing one of them but 

not  the other .  
 N3-𝒯o-space if ∀ xN3

 yN3
𝒳 ∃ a neutrosophic.crisp open set, G in ,𝒳.containing one of them but 

not the other . 
 N1-𝒯1-space if ∀ xN1

  yN1
𝒳 ∃ a  neutrosophic.crisp open sets  G1. , G2. in ,.𝒳 such. that  xN1

 G1 

, yN1
  G1 .and  xN1

 .G2 , yN1
  G2. 

 N2-𝒯1-space if ∀ xN2
  yN2

𝒳 ∃ a neutrosophic.crisp open sets  G1. , G2. in ,.𝒳 such. that  xN2
 G1. 

, yN2
  G1 .and  xN2

  .G2 , yN2
  G2 

 N3-𝒯1-space if ∀ xN3
  yN3

𝒳 ∃ a neutrosophic.crisp open sets  G1. , G2. in ,.𝒳 such. that  xN3
 G1. 

, yN3
  G1 .and    xN3

  .G2 , yN3
  G2 

 N1-𝒯2-space if ∀ xN1
  yN1

𝒳 ∃ a neutrosophic.crisp open sets  G1. , G2. in ,.𝒳 such. that  xN1
 G1. 

, yN1
  G1 .and  xN1

  .G2 , yN1
  G2 with G1∩G2= ∅.  

 N2-𝒯2-space if ∀ xN2
  yN2

𝒳 ∃ a neutrosophic.crisp open sets  G1. , G2. in ,.𝒳 such. that  xN2
 G1. 

, yN2
  G1 .and    xN2

  .G2 , yN2
  G2 with G1∩G2= ∅.  
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 N3-𝒯2-space if ∀ xN3
  yN3

𝒳 ∃ a neutrosophic.crisp open sets  G1. , G2. in ,.𝒳 such. that  xN3
 G1. 

, yN3
  G1 .and  xN3

  .G2 , yN3
  G2  with G1∩G2 = ∅. 

3.2/Definition 
    A neutrosophic.crisp topological. space (. 𝒳, 𝒯)  is called: 
 N-.𝒯o-space if (𝒳, 𝒯. ) is N1-𝒯o-space , N2-𝒯o-space and N3-𝒯o-space  
 N-𝒯1-space if (𝒳, 𝒯) is N1-𝒯1-space , N2-𝒯1-space and N3-𝒯1-space  
 N-𝒯2-space if (𝒳, 𝒯) is N1-𝒯2-space , N2-𝒯2-space and N3-𝒯2-space  
3.3/Remark., 
" For a neutrosophic. crisp topological space (𝒳, 𝒯) "" 
 .Every N-.𝒯o-space,   is N1-𝒯o-space,  
 .Every N-.𝒯0- space   is N2-𝒯0-space,  
 .Every  N-.𝒯0- space  is N3-𝒯0-space,  
Proof,

/  " the proof  is, directly from definition 3.2 ."                                                                               
The inverse. of remark 3.3 is not true, the following. example explain this state. " " 

3.4/Example. 
" If 𝒳 = {x, y} , 𝒯1 = {𝒳N, ∅N, A } ,𝒯2 = {𝒳N , ∅N, B }, 𝒯3 = {𝒳N, ∅N, G }, A {x},∅,∅>, B ∅,{y},∅> , 
G ∅,∅,{x}>,  Then (𝒳,𝒯1) is N1-𝒯o-space but it is not N-𝒯o-space,  (𝒳,𝒯2) is N2-𝒯o-space but it is not 
N-𝒯o-space, (𝒳,𝒯3) is N3-𝒯o-space but it is not N-𝒯o-space. 
3.5/Remark.,  
" For a neutrosophic. crisp topological space (𝒳, 𝒯) """ 
 .Every N-.𝒯1-space,   is N1-𝒯1-space,  
 .Every N-.𝒯1- space   is N2-𝒯1-space,  
 .Every  N-.𝒯1- space  is N3-𝒯1-space,  
Proof  " the proof  is directly from definition 3.2 .        "                                                                         
The inverse. of remark (3.5) is not true. as it is shown. in the following example,."  

3.6/Example. 
    If 𝒳 = {x, y} ,𝒯1 = {𝒳N , ∅N , A, B } , 𝒯2 = {𝒳N, ∅N, G , F }, A {x},{y},∅>, B {y},{x},∅>,              
G ∅,∅,{x}>, F ∅,∅,{y}>, Then  (𝒳,𝒯1) is N1-𝒯1-space but it is not N-𝒯1-space. (𝒳,𝒯1) is N2-𝒯1-
space but it is not N-𝒯1-space. (𝒳,𝒯2) is N3-𝒯1-space but it is not N-𝒯1-space " 

3.7/Remark.,  
"  For a neutrosophic. crisp topological space (𝒳, 𝒯)  
 Every N-𝒯2-space is N1-𝒯2-space  
 Every N-𝒯2-space is N2-𝒯2-space  
 Every N-𝒯2-space is N3-𝒯2-space  
Proof/  " the proof  is directly from definition 3.2 ."                                                                               
The inverse. of remark (3.7) is not true. as it is shown. in the example.(3.6). "" 

3.8/Remark ,  
"  For a neutrosophic. crisp topological space (𝒳, 𝒯) " 
 Every N-𝒯1-space is N-𝒯0-space  
 Every N-𝒯2-space is N-𝒯1-space  
Proof/  " the proof  is directly.                                                                                                           
The inverse. of remark (3.8) ,is not true. as it is shown. in the following. example,.:"" 

3.9/Example. 
" If  = { x , y } , 𝒯 = { 𝒳N ,  ∅N , A , B , G }  
 A { x }, ∅ , ∅ > , B  ∅, { y }, ∅ > , G  ∅ , ∅ ,{ x } > , 
 Then (. 𝒳,𝒯) is N-𝒯o-space but not N-𝒯1-space " 
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Conclusion"". 

 " We defined a new neutrosophic. crisp points  in neutrosophic.crisp topological,space " 
 " We introduced the concept of neutrosophic.crisp limit point, with .some of  its properties  " 
 " We constructed the separation axioms [N-𝒯i-space , i= 0,1,2] in neutrosophic.crisp topological 

and ,examine. the .relationship between them in details.   " 
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Abstract: Interval valued generalized single valued neutrosophic trapezoidal number (IVGSVTrN-number), which
permits the membership degrees of an element to a set expressed with intervals rather than exact numbers, is con-
sidered to be very useful to describe uncertain information for analyzing multiple criteria decision making (MCDM)
problems. In this paper, we firstly introduced the concept of IVGSVTrN-number with some operations based on neu-
trosophic number. Then, we presented some aggregation and geometric operators. Finally, we developed a approaches
for multiple criteria group decision making problems based on the proposed operators and we applied the method to
a numerical example to illustrate proposed approach.

Keywords: Neutrosophic set, interval eutrosophic set, neutrosophic numbers, IVGSVTrN-numbers, aggregation and
geometric operators, multiple criteria group decision making.

1 Introduction
Since the nature of real world and limited knowledge and perception capability of human beings, their real life
contain different styles of vagueness, inexact and imprecise information. To handle and analyze various kinds
of vagueness, inexact and imprecise information a number of methods and theories have been developed. For
example; in 1965, fuzzy set theory [53] has gradually become the mainstream in the field of representing and
handling vagueness, inexact and imprecise information in decision-making, pattern recognition, game theory
and so on. After fuzzy set theory, various classes of extensions have been defined and extended successively
such as; intuitionistic fuzzy sets introduced Atanassov[3], neutrosophic sets by proposed by Smarandache[43],
interval neutrosophic sets by developed by Wang et al. [44]. Recently, some studies on the sets have been
researched by many authors (e.g. [7, 8, 9, 10, 16, 21, 22, 36, 41, 42, 50, 54]).

In recent years, many researchers have realized the need for a set that has the ability to accurately model and
represent intuitionistic information in [48]. As a theory to model different styles of uncertainty, intuitionistic
fuzzy set is usually employed to analyze uncertain MCDM problems through intuitionistic fuzzy number. As
an important representation of fuzzy numbers, intuitionistic trapezoidal fuzzy numbers in [33]. Some of the
recent research done on the MCDM of intuitionistic fuzzy number were presented in [28, 37].

In some real problems, a information can be modelling with intervals rather than exact numbers. Therefore,
Wan [46] presented interval-valued intuitionistic trapezoidal fuzzy numbers which is its membership function
and non-membership function are intervals rather than exact numbers. After Wan [46] some authors studied
on the interval-valued intuitionistic trapezoidal fuzzy numbers in [4, 12, 27, 34, 38, 39]. Then, Wei [47]
introduced some aggregating oprators and gave an illustrative example.

İrfan Deli, Some operators with IVGSVTrN-numbers and their applications to multiple criteria group
decision making.



Neutrosophic Sets and Systems, Vol. 25, 2019 34

To modelling an ill-known quantity some decision making problems Deli and Şubaş [23, 24] defined sin-
gle valued neutrosophic numbers. Some of the recent researchs done on the MCDM of neutrosophic num-
bers such as; on triangular neutrosophic numbers [1, 5, 18, 35] and on trapezoidal neutrosophic numbers
[6, 13, 15, 17, 19, 26, 30, 31, 32, 40, 49, 51, 52]. Although single valued neutrosophic numbers can characterize
possible membership degrees of x into the set A in a exact number way, it may lose some original information.
For this, interval valued single valued neutrosophic trapezoidal numbers studied in [2, 11, 14, 25, 29]. This pa-
per is organized as follows; in section 2, we presented a literature review that presents papers about fuzzy sets,
intuitionistic fuzzy sets, neutrosophic sets, single valued neutrosophic sets and single valued neutrosophic num-
bers. In section 3, we gave the concept of interval valued generalized single valued neutrosophic trapezoidal
number(IVGSVTrN-number) which is a generalization of fuzzy number, intuitionistic fuzzy number, neutro-
sophic number, and so on. In section 4, we presented some aggregation is called IVGSVTrN ordered weighted
aggregation operator, IVGSVTrN ordered hybrid weighted aggregation operator. In section 5 proposed some
geometric operators is called IVGSVTrN ordered weighted geometric operator, IVGSVTrN ordered hybrid
weighted geometric operator. In section 6, we developed a approaches for multiple criteria decision making
problems based on the operator and we applied the method to a numerical example to illustrate the practicality
and effectiveness of the proposed approach. In section 7, we concluded the research and determines the future
directions of the work.

2 Preliminary
In this section, we recall some of the necessary notions related to fuzzy sets, neutrosophic sets, single valued
neutrosophic sets and single valued neutrosophic numbers.

From now on we use In = {1, 2, ..., n} and Im = {1, 2, ...,m} as an index set for n ∈ N and m ∈ N,
respectively.

Definition 2.1. [53] Let E be a universe. Then a fuzzy set X over E is defined by

X = {(µX(x)/x) : x ∈ E}

where µX is called membership function of X and defined by µX : E → [0.1]. For each x ∈ E, the value
µX(x) represents the degree of x belonging to the fuzzy set X .

Definition 2.2. [54] t-norm a function such that t : [0, 1]× [0, 1]→ [0, 1]

1. t(0, 0) = 0 and t(µX1(x), 1) = t(1, µX1(x)) = µX1(x), x ∈ E

2. If µX1(x) ≤ µX3(x) and µX2(x) ≤ µX4(x), then
t(µX1(x), µX2(x)) ≤ t(µX3(x), µX4(x))

3. t(µX1(x), µX2(x)) = t(µX2(x), µX1(x))

4. t(µX1(x), t(µX2(x), µX3(x))) = t(t(µX1(x), µX2)(x), µX3(x))

Definition 2.3. [54] s-norm a function such that s : [0, 1]× [0, 1]→ [0, 1] with the following conditions:

1. s(1, 1) = 1 and s(µX1(x), 0) = s(0, µX1(x)) = µX1(x), x ∈ E

İrfan Deli, Some operators with IVGSVTrN-numbers and their applications to multiple criteria group
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2. if µX1(x) ≤ µX3(x) and µX2(x) ≤ µX4(x), then
s(µX1(x), µX2(x)) ≤ s(µX3(x), µX4(x))

3. s(µX1(x), µX2(x)) = s(µX2(x), µX1(x))

4. s(µX1(x), s(µX2(x), µX3(x))) = s(s(µX1(x), µX2)(x), µX3(x))

t-norm and t-conorm are related in a sense of lojical duality as;

t(µX1(x), µX2(x)) = 1− s(1− µX3(x), 1− µX4(x))

Some t-norm and t-conorm are given as;

1. Drastic product:

tw(µX1(x), µX2(x)) =

{
min{µX1(x), µX2(x)}, max{µX1(x)µX2(x)} = 1
0, otherwise

2. Drastic sum:

sw(µX1(x), µX2(x)) =

{
max{µX1(x), µX2(x)}, min{µX1(x)µX2(x)} = 0
1, otherwise

3. Bounded product:
t1(µX1(x), µX2(x)) = max{0, µX1(x) + µX2(x)− 1}

4. Bounded sum:
s1(µX1(x), µX2(x)) = min{1, µX1(x) + µX2(x)}

5. Einstein product:

t1.5(µX1(x), µX2(x)) =
µX1(x).µX2(x)

2− [µX1(x) + µX2(x)− µX1(x).µX2(x)]

6. Einstein sum:

s1.5(µX1(x), µX2(x)) =
µX1(x) + µX2(x)

1 + µX1(x).µX2(x)

7. Algebraic product:
t2(µX1(x), µX2(x)) = µX1(x).µX2(x)

8. Algebraic sum:
s2(µX1(x), µX2(x)) = µX1(x) + µX2(x)− µX1(x).µX2(x)

9. Hamacher product:

t2.5(µX1(x), µX2(x)) =
µX1(x).µX2(x)

µX1(x) + µX2(x)− µX1(x).µX2(x)
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10. Hamacher sum:

s2.5(µX1(x), µX2(x)) =
µX1(x) + µX2(x)− 2.µX1(x).µX2(x)

1− µX1(x).µX2(x)

11. Minumum:
t3(µX1(x), µX2(x)) = min{µX1(x), µX2(x)}

12. Maximum:
s3(µX1(x), µX2(x)) = max{µX1(x), µX2(x)}

Definition 2.4. [45] Let E be a universe. An single valued neutrosophic set (SVN-set) over E defined by

TA : E → [0, 1], IA : E → [0, 1], FA : E → [0, 1]

such that 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

Definition 2.5. [44] Let U be a universe. Then, an interval value neutrosophic set (IVN-sets) A in U is given
as;

A = {〈TA(u), IA(u), FA(u)〉/u : u ∈ U}

In here, (TA(u), IA(u), FA(u)) = ([infTA(u), supTA(u)], [infIA(u), supIA(u)]], [infFA(u), supFA(u)])
is called interval value neutrosophic number for all u ∈ U and all interval value neutrosophic numbers over U
will be denoted by IV N(U).

%begindefinition[24]

3 Interval valued generalized SVTrN -numbers
In this section, we give definitions of interval valued generalized SVTrN-numbers with operations. Some of it
is quoted from application in [2, 11, 23, 24, 25].

Definition 3.1. [2, 11, 25, 29] A interval valued generalized single valued trapezoidal neutrosophic number
(IVGSVTrN-number)

ã = 〈(a1, b1, c1, d1); [T−
ã , T

+
ã ], [I−ã , I

+
ã ], [F−

ã , F
+
ã ]〉

is a special neutrosophic set on the set of real numbers R, whose truth-membership, indeterminacy-membership
and falsity-membership functions are respectively defined by

T−
ã (x) =


(x− a1)T−

ã /(b1 − a1) (a1 ≤ x < b1)
T−
ã (b1 ≤ x ≤ c1)

(d1 − x)T−
ã /(d1 − c1) (c1 < x ≤ d1)

0 otherwise,

T+
ã (x) =


(x− a1)T+

ã /(b1 − a1) (a1 ≤ x < b1)
T+
ã (b1 ≤ x ≤ c1)

(d1 − x)T+
ã /(d1 − c1) (c1 < x ≤ d1)

0 otherwise,
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I−ã (x) =


(b1 − x+ I−ã (x− a1))/(b1 − a1) (a1 ≤ x < b1)
I−ã (b1 ≤ x ≤ c1)
(x− c1 + I−ã (d1 − x))/(d1 − c1) (c1 < x ≤ d1)
1 otherwise

I+ã (x) =


(b1 − x+ I+ã (x− a1))/(b1 − a1) (a1 ≤ x < b1)
I+ã (b1 ≤ x ≤ c1)
(x− c1 + I+ã (d1 − x))/(d1 − c1) (c1 < x ≤ d1)
1 otherwise

F−
ã (x) =


(b1 − x+ F−

ã (x− a1))/(b1 − a1) (a1 ≤ x < b1)
F−
ã (b1 ≤ x ≤ c1)

(x− c1 + F−
ã (d1 − x))/(d1 − c1) (c1 < x ≤ d1)

1 otherwise

and

F+
ã (x) =


(b1 − x+ F+

ã (x− a1))/(b1 − a1) (a1 ≤ x < b1)
F+
ã (b1 ≤ x ≤ c1)

(x− c1 + F+
ã (d1 − x))/(d1 − c1) (c1 < x ≤ d1)

1 otherwise

If a1 ≥ 0 and at least d1 > 0, then ã = 〈(a1, b1, c1, d1); [T−
ã , T

+
ã ], [I−ã , I

+
ã ], [F−

ã , F
+
ã ]〉, is called a positive

IVGSVTrN, denoted by ã > 0. Likewise, if d1 ≤ 0 and at least a1 < 0, then ã = 〈(a1, b1, c1, d1); [T−
ã , T

+
ã ], [I−ã , I

+
ã ],

[F−
ã , F

+
ã ]〉, is called a negative IVGSVTrN, denoted by ã < 0.

Note that the set of all IVGSVTrN-number on R will be denoted by Ω.

[2, 11, 25, 29] give some operations based algebraic sum-product norms on interval valued generalized
SVTrN -numbers . We now give alternative operations based maximum-minimum norms on interval valued
generalized SVTrN -numbers as;

Definition 3.2. Let ã = 〈(a1, b1, c1, d1); [T−
ã , T

+
ã ], [I−ã , I

+
ã ], [F−

ã , F
+
ã ]〉, b̃ = 〈(a2, b2, c2, d2); [T−

b̃
, T+

b̃
], [I−

b̃
, I+
b̃

],

[F−
b̃
, F+

b̃
]〉 ∈ Ω and Ω 6= 0 be any real number. Then,

1. sum of ã and b̃, denoted by ã+ b̃, defined as;

ã+ b̃ = 〈(a1 + a2, b1 + b2, c1 + c2, d1 + d2);
[min{T−

ã , T
−
b̃
},min{T+

ã , T
+

b̃
}], [max{I−ã ∨ I−b̃ },max{I

+
ã , I

+

b̃
}],

[max{F−
ã , F

−
b̃
},max{F+

ã , F
+

b̃
}]〉

(3.1)

2.
ã− b̃ = 〈(a1 − d2, b1 − c2, c1 − b2, d1 − a2);

[min{T−
ã , T

−
b̃
},min{T+

ã , T
+

b̃
}], [max{I−ã ∨ I−b̃ },max{I

+
ã , I

+

b̃
}],

[max{F−
ã , F

−
b̃
},max{F+

ã , F
+

b̃
}]〉

(3.2)
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3.

ãb̃ =



〈(a1a2, b1b2, c1c2, d1d2); [min{T−
ã , T

−
b̃
},min{T+

ã , T
+

b̃
}], [max{I−ã ∨ I−b̃ },max{I

+
ã , I

+

b̃
}],

[max{F−
ã , F

−
b̃
},max{F+

ã , F
+

b̃
}]〉(d1 > 0, d2 > 0)

〈(a1d2, b1c2, c1b2, d1a2); [min{T−
ã , T

−
b̃
},min{T+

ã , T
+

b̃
}], [max{I−ã ∨ I−b̃ },max{I

+
ã , I

+

b̃
}],

[max{F−
ã , F

−
b̃
},max{F+

ã , F
+

b̃
}]〉(d1 < 0, d2 > 0)

〈(d1d2, c1c2, b1b2, a1a2); [min{T−
ã , T

−
b̃
},min{T+

ã , T
+

b̃
}], [max{I−ã ∨ I−b̃ },max{I

+
ã , I

+

b̃
}],

[max{F−
ã , F

−
b̃
},max{F+

ã , F
+

b̃
}]〉(d1 < 0, d2 < 0)

(3.3)

4.

ã/b̃ =



〈(a1/d2, b1/c2, c1/b2, d1/a2); [min{T−
ã , T

−
b̃
},min{T+

ã , T
+

b̃
}], [max{I−ã ∨ I−b̃ },max{I

+
ã , I

+

b̃
}],

[max{F−
ã , F

−
b̃
},max{F+

ã , F
+

b̃
}]〉(d1 > 0, d2 > 0)

〈(d1/d2, c1/c2, b1/b2, a1/a2); [min{T−
ã , T

−
b̃
},min{T+

ã , T
+

b̃
}], [max{I−ã ∨ I−b̃ },max{I

+
ã , I

+

b̃
}],

[max{F−
ã , F

−
b̃
},max{F+

ã , F
+

b̃
}]〉(d1 < 0, d2 > 0)

〈(d1/a2, c1/b2, b1/c2, a1/d2); [min{T−
ã , T

−
b̃
},min{T+

ã , T
+

b̃
}], [max{I−ã ∨ I−b̃ },max{I

+
ã , I

+

b̃
}],

[max{F−
ã , F

−
b̃
},max{F+

ã , F
+

b̃
}]〉(d1 < 0, d2 < 0)

(3.4)

5.

ã =

{
〈(γa1, γb1, γc1, γd1); [T−

ã , T
+
ã ], [I−ã , I

+
ã ], [F−

ã , F
+
ã ]〉 (γ > 0)

〈(γd1, γc1, γb1, γa1); [T−
ã , T

+
ã ], [I−ã , I

+
ã ], [F−

ã , F
+
ã ]〉 (γ < 0)

(3.5)

6.

ãγ =

{
〈(aγ1 , b

γ
1 , c

γ
1 , d

γ
1); [T−

ã , T
+
ã ], [I−ã , I

+
ã ], [F−

ã , F
+
ã ]〉 (γ > 0)

〈(dγ1 , c
γ
1 , b

γ
1 , a

γ
1); [T−

ã , T
+
ã ], [I−ã , I

+
ã ], [F−

ã , F
+
ã ]〉 (γ < 0)

(3.6)

7.
ã−1 = 〈(1/d1, 1/c1, 1/b1, 1/a1); [T−

ã , T
+
ã ], [I−ã , I

+
ã ], [F−

ã , F
+
ã ]〉 (ã 6= 0). (3.7)

Definition 3.3. Let ã = 〈(a, b, c, d); [T−
ã , T

+
ã ], [I−ã , I

+
ã ], [F−

ã , F
+
ã ]〉 ∈ Ω. Then, we defined a method to normal-

ize ã as;

〈(a
d
,
b

d
,
c

d
, 1); [T−

ã , T
+
ã ], [I−ã , I

+
ã ], [F−

ã , F
+
ã ]〉

such that d 6= 0.

Definition 3.4. Let ã = 〈(a, b, c, d); [T−
ã , T

+
ã ], [I−ã , I

+
ã ], [F−

ã , F
+
ã ]〉 ∈ Ω, then

S(ã) =
1

16
[a+ b+ c+ d]× [4 + (T−

ã − I−ã − F−
ã ) + (T+

ã − I+ã − F+
ã )] (3.8)

and

A(ã) =
1

16
[a+ b+ c+ d]× [4 + (T−

ã − I−ã + F−
ã ) + (T+

ã − I+ã + F+
ã )] (3.9)

is called the score and accuracy degrees of ã, respectively.
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Example 3.5. Let ã = 〈(0.3, 0.4, 0.8, 0.9); [0.5, 0.7], [0.4, 0.6], [0.3, 0.7]〉 be a IVGSVTrN-number then, based
on Equation 3.8 and 3.9, S(ã) and A(ã) is computed as;

S(ã) =
1

16
[0.3 + 0.4 + 0.8 + 0.9]× [4 + (0.5− 0.4− 0.3) + (0.7− 0.6− 0.7)] = 0.533

A(ã) =
1

16
[0.3 + 0.4 + 0.8 + 0.9]× [4 + (0.5− 0.4 + 0.3) + (0.7− 0.6 + 0.7)] = 0.866

Definition 3.6. Let ã1, ã2 ∈ Ω. Then,

1. If S(ã1) < S(ã2)⇒ ã1 < ã2

2. If S(ã1) > S(ã2)⇒ ã1 > ã2

3. If S(ã1) = S(ã2);

(a) If A(ã1) < A(ã2)⇒ ã1 < ã2

(b) If A(ã1) > A(ã2)⇒ ã1 > ã2

(c) If A(ã1) = A(ã2)⇒ ã1 = ã2

4 Aggregation operators on IVGSVTrN-numbers
In this section, three IVGSVTrN weighted aggregation operator of IVGSVTrN-numbers is given. Some of it
is quoted from application in [2, 11, 23, 24, 25].

Definition 4.1. Let ãj = 〈(aj, bj, cj, dj); [T−
ãj
, T+

ãj
], [I−ãj , I

+
ãj

], [F−
ãj
, F+

ãj
]〉 ∈ Ω (j ∈ In). Then IVGSVTrN

weighted aggregation operator, denoted by Kao, is defined as;

Kao : Ωn → Ω, Kao(ã1, ã2, ..., ãn) =
n∑
i=1

ωiãi (4.1)

where, ω = (ω1, ω2, ..., ωn)T is a weight vector associated with the Kao operator, for every j ∈ In such that,
ωj ∈ [0, 1] and

∑n
j=1 ωj = 1.

Theorem 4.2. Let ãj = 〈(aj, bj, cj, dj); [T−
ãj
, T+

ãj
], [I−ãj , I

+
ãj

], [F−
ãj
, F+

ãj
]〉 ∈ Ω (j ∈ I), ω = (ω1, ω2, ..., ωn)Tbe a

weight vector of ãj , for every j ∈ In such that ωj ∈ [0, 1] and
∑n

j=1 ωj = 1. Then, their aggregated value by
using Kao operator is also a IVGSVTrN-number and

Kao(ã1, ã2, ..., ãn) =

〈(∑n
j=1 ωjaj,

∑n
j=1 ωjbj,

∑n
j=1 ωjcj,

∑n
j=1 ωjdj

)
; [min1≤j≤n{T−

ãj
},min1≤j≤n{T+

ãj
}],

[max1≤j≤n{I−ãj},max1≤j≤n{I+ãj}], [max1≤j≤n{F−
ãj
},max1≤j≤n{F+

ãj
}]
〉

(4.2)

Proof: The proof can be made by using mathematical induction on n as; Assume that,

ã1 = 〈(a1, b1, c1, d1); [T−
ã1
, T+

ã1
], [I−ã1 , I

+
ã1

], [F−
ã1
, F+

ã1
]〉
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and
ã2 = 〈(a2, b2, c2, d2); [T−

ã2
, T+

ã2
], [I−ã2 , I

+
ã2

], [F−
ã2
, F+

ã2
]〉

be two IVGSVTrN-numbers then, for n = 2, we have

ω1ã1 + ω2ã2 =

〈(∑2
j=1 ωjaj,

∑2
j=1 ωjbj,

∑2
j=1 ωjcj,

∑2
j=1 ωjdj

)
; [min1≤j≤2{T−

ãj
},min1≤j≤2{T+

ãj
}],

[max1≤j≤2{I−ãj},max1≤j≤2{I+ãj}], [max1≤j≤2{F−
ãj
},max1≤j≤2{F+

ãj
}]
〉

(4.3)
If holds for n = k, that is

ω1ã1 + ω2ã2 + · · ·+ ωkãk =

〈(∑k
j=1 ωjaj,

∑k
j=1 ωjbj,

∑k
j=1 ωjcj,

∑k
j=1 ωjdj

)
;

[min1≤j≤k{T−
ãj
},min1≤j≤k{T+

ãj
}], [max1≤j≤k{I−ãj},max1≤j≤k{I+ãj}],

[max1≤j≤k{F−
ãj
},max1≤j≤k{F+

ãj
}]
〉 (4.4)

then, when n = k + 1, by the operational laws in Definition 3.2, I have

ω1ã1 + ω2ã2 + · · ·+ ωk+1ãk+1 =

〈(∑k
j=1 ωjaj,

∑k
j=1 ωjbj,

∑k
j=1 ωjcj,

∑k
j=1 ωjdj

)
;

[min1≤j≤k{T−
ãj
},min1≤j≤k{T+

ãj
}], [max1≤j≤k{I−ãj},max1≤j≤k{I+ãj}],

[max1≤j≤k{F−
ãj
},max1≤j≤k{F+

ãj
}]
〉

+〈(
ωk+1 ak+1, ωk+1 bk+1, ωk+1ck+1, ωk+1dk+1

)
;

[T−
ãk+1

, T+
ãk+1

], [I−ãk+1
, I+ãk+1

], [F−
ãk+1

, F+
ãk+1

]

〉
=

〈(∑k+1
j=1 ωjaj,

∑k+1
j=1 ωjbj,

∑k+1
j=1 ωjcj,

∑k+1
j=1 ωjdj

)
;

[min1≤j≤k+1{T−
ãj
},min1≤j≤k+1{T+

ãj
}], [max1≤j≤k+1 I

−
ãj
,max1≤j≤k+1{I+ãj}],

[max1≤j≤k+1{F−
ãj
},max1≤j≤k+1{F+

ãj
}]
〉

(4.5)
Finally, based on Equation 4.3, 4.4 and 4.5, the proof is valid.

Example 4.3. Let

ã1 =
〈
(0.125, 0.439, 0.754, 0.847); [0.5, 0.6], [0.4, 0.7], [0.6, 0.9]

〉
,

ã2 =
〈
(0.326, 0.427, 0.648, 0.726); [0.8, 0.9], [0.2, 0.5], [0.4, 0.8]

〉
,

ã3 =
〈
(0.427, 0.524, 0.578, 0.683); [0.4, 0.6], [0.3, 0, 8], [0, 5, 0.7]

〉
be three IVGSVTrN-numbers, and ω = (0.4, 0.3, 0.3)T be the weight vector of ãj(j = 1, 2, 3). Then, based on
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Equation 4.2,

Kao(ã1, ã2, ..., ãn) =
〈
(0.276, 0.461, 0.669, 0.762); [0.4, 0.6], [0.4, 0.8], [0.6, 0.9]

〉
and, based on Equation 3.8, their score is 0.312.

Definition 4.4. Let ãj = 〈(aj, bj, cj, dj); [T−
ãj
, T+

ãj
], [I−ãj , I

+
ãj

], [F−
ãj
, F+

ãj
]〉 ∈ Ω (j ∈ In).Then IVGSVTrN or-

dered weighted aggregation operator(Koao) is defined as;

Koao : Ωn → Ω, Koao(ã1, ã2, ..., ãn) =
n∑
k=1

ωkb̃k (4.6)

where b̃k = 〈(ak, bk, ck, dk); [T−
ãk
, T+

ãk
], [I−ãk , I

+
ãk

], [F−
ãk
, F+

ãk
]〉 is the k-th largest of the n IVGSVTrN-numbers

ãj (j ∈ In) based on Equation 3.6.
Their aggregated value by using Koao operator is also a IVGSVTrN-number and computed as;

Koao(ã1, ã2, ..., ãn) =

〈(∑n
k=1 ωkak,

∑n
k=1 ωkbk,

∑n
k=1 ωkck

∑n
k=1 ωkdk

)
;

[min1≤j≤n T
−
ãj
,min1≤j≤n T

+
ãj

], [max1≤j≤n I
−
ãj
,max1≤j≤n I

+
ãj

],

[max1≤j≤n F
−
ãj
,max1≤j≤n F

+
ãj

]

〉 (4.7)

Definition 4.5. Let ãj = 〈(aj, bj, cj, dj); [T−
ãj
, T+

ãj
], [I−ãj , I

+
ãj

], [F−
ãj
, F+

ãj
]〉 ∈ Ω (j ∈ In). Then, IVGSVTrN

ordered hybrid weighted averaging operator denoted by Khao is defined as;denoted Khao

Khao : Ωn → Ω, Khao(ã1, ã2, ..., ãn) =
n∑
k=1

ωkb̂k (4.8)

where ω = (ω1, ω2, ..., ωn)T is a weight vector associated with the mapping Khao such that ωk ∈ [0, 1] and∑n
k=1 ωk = 1, ãj ∈ Ω weighted with n$j(j ∈ In) is denoted by Ãj, i.e., Ãj = n$j ãj, here n is regarded as

a balance factor; $ = ($1, $2, ..., $n)T is a weight vector of the ãj ∈ Ω (j ∈ In)n such that $j ∈ [0, 1] and∑n
j=1$j = 1; b̂k is the k-th largest of the n IVGSVTrN-number Ãj ∈ Ω (j ∈ In) based on Equation 3.6.

Their aggregated value by using Khao operator is also a IVGSVTrN-number and computed as

Khao(ã1, ã2, ..., ãn) =

〈(∑n
k=1 ωkak,

∑n
k=1 ωkbk,

∑n
k=1 ωkck,

∑n
k=1 ωkdk

)
;

[min1≤j≤n T
−
ãj
,min1≤j≤n T

+
ãj

], [max1≤j≤n I
−
ãj
,max1≤j≤n I

+
ãj

],

[max1≤j≤n F
−
ãj
,max1≤j≤n F

+
ãj

]

〉 (4.9)

Example 4.6. Let

ã1 =
〈
(0.123, 0.278, 0.347, 0.426); [0.7, 0.8], [0.4, 0.7], [0.1, 0.6]

〉
,

ã2 =
〈
(0.133, 0.268, 0.357, 0.416); [0.1, 0.6], [0.7, 0.8], [0.4, 0.7]

〉
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and
ã3 =

〈
(0.143, 0.258, 0.367, 0.406); [0.4, 0.7], [0.1, 0.6], [0.7, 0.8]

〉
be three IVGSVTrN-numbers. Assume that $ = (0.2, 0.3, 0.5)T be a weight vector and ω = (0.5, 0.3, 0.2)T

be a position weight vector.Then evaluation of the three numbers by using the Equation 4.9 is given as;

Solving

Ã1 = 3× 0.2× ã1 =
〈
(0.074, 0.167, 0.208, 0.256); [0.7, 0.8], [0.4, 0.7], [0.1, 0.6]

〉
Likewise, we obtain:

Ã2 = 3× 0.3× ã2 =
〈
(0.160, 0.322, 0.428, 0.499); [0.1, 0.6], [0.7, 0.8], [0.4, 0.7]

〉
Ã3 = 3× 0.5× ã3 =

〈
(0.286, 0.516, 0.734, 0.812); [0.4, 0.7], [0.1, 0.6], [0.7, 0.8]

〉
we obtain the scores of the IVGSVTrN-numbers Ãj(j=1,2,3), based on Equation 3.8, as follows:

S(Ã1) =
1

16
[0.074 + 0.167 + 0.208 + 0.256]× (4 + (0.7− 0.4− 0.1) + (0.8− 0.7− 0.6)) = 0.163

S(Ã2) =
1

16
[0.160 + 0.322 + 0.428 + 0.499]× (4 + (0.1− 0.7− 0.4) + (0.6− 0.8− 0.7)) = 0.185

S(Ã3) =
1

16
[0.286 + 0.516 + 0.734 + 0.812]× (4 + (0.4− 0.1− 0.7) + (0.7− 0.6− 0.8)) = 0.426

respectively. Obviously, S(Ã3) > S(Ã2) > S(Ã1). Thereby, according to the Equation 3.6, we have

b̂1 = Ã3 =
〈
(0.143, 0.258, 0.367, 0.406); [0.4, 0.7], [0.1, 0.6], [0.7, 0.8]

〉
b̂2 = Ã2 =

〈
(0.133, 0.268, 0.357, 0.416); [0.1, 0.6], [0.7, 0.8], [0.4, 0.7]

〉
b̂3 = Ã1 =

〈
(0.123, 0.278, 0.347, 0.426); [0.7, 0.8], [0.4, 0.7], [0.1, 0.6]

〉
It follows from Equation 4.9 that

Khao(ã1, ã2, ã3) =
〈(

0.143× 0.5 + 0.133× 0.3 + 0.123× 0.2,
0.258× 0.5 + 0.268× 0.3 + 0.278× 0.2,
0.367× 0.5 + 0.357× 0.3 + 0.347× 0.2,
0.406× 0.5 + 0.416× 0.3 + 0.326× 0.2

)
; [0.1, 0.6], [0.7, 0.8], [0.7, 0.8]

〉
=

〈(
0.1360, 0.2650, 0.3600, 0.4130

)
; [0.1, 0.6], [0.7, 0.8], [0.7, 0.8]

〉
5 Geometric operators of the IVGSVTrN-number

In this section, we give three IVGSVTrN weighted geometric operator of IVGSVTrN-numbers. Some of it is
quoted from application in [2, 11, 24, 33].

Definition 5.1. Let ãj = 〈(aj, bj, cj, dj); [T−
ãj
, T+

ãj
], [I−ãj , I

+
ãj

], [F−
ãj
, F+

ãj
]〉 ∈ Ω (j ∈ In). Then IVGSVTrN
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weighted geometric operator, denoted by Lgo, is defined as;

Lgo : Ωn → Ω, Lgo(ã1, ã2, ..., ãn) =
n∏
i=1

ãωi
i (5.1)

where, ω = (ω1, ω2, ..., ωn)T is a weight vector associated with the Lgo operator, for every j ∈ In such that,
ωj ∈ [0, 1] and

∑n
j=1 ωj = 1.

Their aggregated value by using Lgo operator is also a IVGSVTrN-number and computed as;

Lgo(ã1, ã2, ..., ãn) =

〈(∏n
j=1 a

ωj

j ,
∏n

j=1 b
ωj

j ,
∏n

j=1 c
ωj

j

∏n
j=1 d

ωj

j

)
;

[min1≤j≤n{T−
ãj
},min1≤j≤n{T+

ãj
}], [max1≤j≤n{I−ãj},max1≤j≤n{I+ãj}],

[max1≤j≤n{F−
ãj
},max1≤j≤n{F+

ãj
}]
〉 (5.2)

Example 5.2. Let

ã1 =
〈
(0.125, 0.439, 0.754, 0.847); [0.5, 0.6], [0.4, 0.7], [0.6, 0.9]

〉
,

ã2 =
〈
(0.326, 0.427, 0.648, 0.726); [0.8, 0.9], [0.2, 0.5], [0.4, 0.8]

〉
,

ã3 =
〈
(0.427, 0.524, 0.578, 0.683); [0.4, 0.6], [0.3, 0, 8], [0, 5, 0.7]

〉
be four IVGSVTrN-numbers, and w = (0.4, 0.3, 0.3)T be the weight vector of ãj(j = 1, 2, 3). Then, based on
Equation 5.2,

Lgo(ã1, ã2, ..., ãn) =
〈
(0.241, 0.459, 0.665, 0.758); [0.4, 0.6], [0.4, 0.8], [0.6, 0.9]

〉
and, based on Equation 3.8, their score is 0.305.

Definition 5.3. Let ãj = 〈(aj, bj, cj, dj); [T−
ãj
, T+

ãj
], [I−ãj , I

+
ãj

], [F−
ãj
, F+

ãj
]〉 ∈ Ω (j ∈ In). Then IVGSVTrN

ordered weighted geometric operator denoted by Logo, is defined as;

Logo : Ωn → Ω, Logo(ã1, ã2, ..., ãn) =
n∏
k=1

b̃wk
k (5.3)

where ωk ∈ [0, 1],
∑n

k=1 ωk = 1; b̃k = 〈(ak, bk, ck, dk); [T−
ãk
, T+

ãk
], [I−ãk , I

+
ãk

], [F−
ãk
, F+

ãk
]〉 is the k-th largest of

the n neutrosophic sets ãj (j ∈ In) based on Equation 3.6.

Their aggregated value by using Logo operator is also a IVGSVTrN-number and computed as;

Logo : Ωn → Ω, Logo(ã1, ã2, ..., ãn) =〈(∏n
k=1 a

wk
k ,
∏n

k=1 b
wk
k ,
∏n

k=1 c
wk
k

∏n
k=1 d

wk
k

)
;

[min1≤j≤n{T−
ãj
},min1≤j≤n{T+

ãj
}], [max1≤j≤n{I−ãj},max1≤j≤n{I+ãj}],

[max1≤j≤n{F−
ãj
},max1≤j≤n{F+

ãj
}]
〉 (5.4)
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Definition 5.4. Let ãj = 〈(aj, bj, cj, dj); [T−
ãj
, T+

ãj
], [I−ãj , I

+
ãj

], [F−
ãj
, F+

ãj
]〉 ∈ Ω (j ∈ In). Then IVGSVTrN

ordered hybrid weighted geometric operator denoted by Lhgo, is defined as;

Lhgo : Ωn → Ω, Lhgo(ã1, ã2, ..., ãn) =
n∏
k=1

b̂ωk
k (5.5)

where ω = (ω1, ω2, ..., ωn)T . ωj ∈ [0, 1] and
∑n

j=1 ωj = 1 is a weight vector associated with the mapping
Lhgo, aj ∈ Ω a weight with n$(j ∈ In) is denoted by Ãj i.e., Ãj = n$ãj , here n is regarded as a balance factor
$ = ($1, $2, ..., $n)T is a weight vector of the aj ∈ Ω (j ∈ In); b̂k is the k-th largest of the n IVGSVTrN-
numbers Ãj ∈ Ω (j ∈ In) based on Equation 3.6.

Their aggregated value by using Lhgo operator is also a IVGSVTrN-number and computed as

Lhgo : Ωn → Ω, Lhgo(ã1, ã2, ..., ãn) =〈(∏n
k=1 a

wk
k ,
∏n

k=1 b
wk
k ,
∏n

k=1 c
wk
k

∏n
k=1 d

wk
k

)
;

[min1≤j≤n T
−
ãj
,min1≤j≤n T

+
ãj

], [max1≤j≤n I
−
ãj
,max1≤j≤n I

+
ãj

],

[max1≤j≤n F
−
ãj
,max1≤j≤n F

+
ãj

]

〉 (5.6)

6 IVGSVTrN-multi-criteria decision-making method

In this section, we define a multi-criteria decision making method as follows. Some of it is quoted from
application in [2, 11, 23, 24, 25].

Definition 6.1. Let X = (x1, x2, ..., xm) be a set of alternatives, U = (u1, u2, ..., un) be the set of attributes. If
ãij = 〈(aij, bij, cij, dij); [T−

ãij
, T+

ãij
], [I−ãij , I

+
ãij

], [F−
ãij
, F+

ãij
]〉 ∈ Ω, then

[ãij]m×n =


u1 u2 · · · un

x1 ã11 ã12 · · · ã1n
x2 ã21 ã22 · · · ã2n
...

...
...

...
...

xm ãm1 ãm2 · · · ãmn

 (6.1)

is called an IVGSVTrN-multi-criteria decision-making matrix of the decision maker.

Now, we can give an algorithm of the IVGSVTrN-multi-criteria decision-making method as follows;
Algorithm:

Step 1. Construct the decision-making matrix [ãij]m×n for decision based on Equation 6.1;

Step 2. Compute the IVGSVTrN-numbers Ãij = n$iãij (i ∈ Im; j ∈ In) and write the decision-making matrix
[Ãij]m×n;

Step 3. Obtain the scores of the IVGSVTrN-numbers Ãij (i ∈ Im; j ∈ In) based on Equation 3.8;
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Step 4. Rank all IVGSVTrN-numbers Ãij(i ∈ Im; j ∈ In) by using the ranking method of IVGSVTrN-numbers
and determine the IVGSVTrN-numbers [bi]1×n = b̃ik(i ∈ Im; k ∈ In) where b̃ik is k-th largest of Ãij for
j ∈ In based on Equation 3.6 ;

Step 5. Give the decision matrix [bi]1×n for i = 1, 2, 3, 4 ;

Step 6. Compute Khao(b̃i1, b̃i2, ..., b̃in) for i ∈ Im based on Equation 4.9;

Step 7. Compute Lhgo(b̃i1, b̃i2, ..., b̃in) for i ∈ Im based on Equation 5.6;

Step 8. Rank all alternatives xi by using the Equation 3.6 and determine the best alternative.

Example 6.2. Let us consider the decision-making problem adapted from [24, 52]. There is an investment
company, which wants to invest a sum of money in the best option. There is a panel with the set of the
four alternatives is denoted by X = {x1= car company, x2=food company, x3=computer company, x4=arms
company} to invest the money. The investment company must take a decision according to the set of the four
attributes is denoted by U = {u1 = risk, u2 = growth, u3 = environmental impact, u4 = performance}.
Then, the weight vector of the attributes is $ = (0.2, 0.3, 0.2, 0.3)T and the position weight vector is ω =
(0.3, 0.2, 0.3, 0.2)T by using the weight determination based on the normal distribution. For the evaluation
of an alternative xi (i = 1, 2, 3, 4) with respect to a criterion uj (j = 1, 2, 3, 4), it is obtained from the
questionnaire of a domain expert. Then, the four possible alternatives are to be evaluated under the above three
criteria by corresponding to linguistic values of IVGSVTrN-numbers for linguistic terms (adapted from [24]),
as shown in Table 1.

Linguistic terms Linguistic values of IVGSVTrN-numbers
Absolutely low

〈
(0.1, 0.2, 0.3, 0.4); [0.1, 0.2], [0.8, 0.9], [0.8, 0.9]

〉
Low

〈
(0.1, 0.3, 0.4, 0.7); [0.2, 0.4], [0.7, 0.8], [0.6, 0.8]

〉
Fairly low

〈
(0.1, 0.4, 0.5, 0.7); [0.3, 0.5], [0.6, 0.7], [0.5, 0.7]

〉
Medium

〈
(0.2, 0.4, 0.5, 0.8); [0.5, 0.6], [0.5, 0.6], [0.4, 0.5]

〉
Fairly high

〈
(0.4, 0.5, 0.6, 0.8); [0.6, 0.7], [0.4, 0.5], [0.3, 0.5]

〉
High

〈
(0.5, 0.6, 0.7, 0.9); [0.7, 0.8], [0.3, 0.4], [0.2, 0.3]

〉
Absolutely high

〈
(0.6, 0.7, 0.8, 0.9); [0.8, 0.9], [0.1, 0.2], [0.1, 0.2]

〉
Table 1: IVGSVTrN-numbers for linguistic terms

Step 1. The decision maker construct the decision matrix [ãij]4x4 based on Equation 6.1 as follows:


〈
(0.2, 0.4, 0.5, 0.8); [0.5, 0.6], [0.5, 0.6], [0.4, 0.5]

〉 〈
(0.1, 0.4, 0.5, 0.7); [0.3, 0.5], [0.6, 0.7], [0.5, 0.7]

〉〈
(0.1, 0.3, 0.4, 0.7); [0.2, 0.4], [0.7, 0.8], [0.6, 0.8]

〉 〈
(0.1, 0.2, 0.3, 0.4); [0.1, 0.2], [0.8, 0.9], [0.8, 0.9]

〉〈
(0.6, 0.7, 0.8, 0.9); [0.8, 0.9], [0.1, 0.2], [0.1, 0.2]

〉 〈
(0.4, 0.5, 0.6, 0.8); [0.6, 0.7], [0.4, 0.5], [0.3, 0.5]

〉〈
(0.5, 0.6, 0.7, 0.9); [0.7, 0.8], [0.3, 0.4], [0.2, 0.3]

〉 〈
(0.2, 0.4, 0.5, 0.8); [0.5, 0.6], [0.5, 0.6], [0.4, 0.5]

〉
〈
(0.1, 0.4, 0.5, 0.7); [0.3, 0.5], [0.6, 0.7], [0.5, 0.7]

〉 〈
(0.1, 0.3, 0.4, 0.7); [0.2, 0.4], [0.7, 0.8], [0.6, 0.8]

〉〈
(0.2, 0.4, 0.5, 0.8); [0.5, 0.6], [0.5, 0.6], [0.4, 0.5]

〉 〈
(0.6, 0.7, 0.8, 0.9); [0.8, 0.9], [0.1, 0.2], [0.1, 0.2]

〉〈
(0.6, 0.7, 0.8, 0.9); [0.8, 0.9], [0.1, 0.2], [0.1, 0.2]

〉 〈
(0.1, 0.2, 0.3, 0.4); [0.1, 0.2], [0.8, 0.9], [0.8, 0.9]

〉〈
(0.1, 0.2, 0.3, 0.4); [0.1, 0.2], [0.8, 0.9], [0.8, 0.9]

〉 〈
(0.5, 0.6, 0.7, 0.9); [0.7, 0.8], [0.3, 0.4], [0.2, 0.3]

〉

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Step 2. Compute Ãij = n$iãij (i = 1, 2, 3, 4; j = 1, 2, 3, 4) as follows:

Ã11 = 4× 0.2×
〈
(0.2, 0.4, 0.5, 0.8); [0.5, 0.6], [0.5, 0.6], [0.4, 0.5]

〉
=

〈(
0.16, 0.32, 0.40, 0.64

)
; [0.5, 0.6], [0.5, 0.6], [0.4, 0.5]

〉
Likewise, we can obtain other IVGSVTrN-numbers Ãij = n$iãij (i = 1, 2, 3, 4; j = 1, 2, 3, 4) which
are given by the IVGSVTrN-decision matrix [Ãij]4×4 as follows:

〈
(0.16, 0.32, 0.40, 0.64); [0.5, 0.6], [0.5, 0.6], [0.4, 0.5]

〉 〈
(0.12, 0.48, 0.60, 0.84); [0.3, 0.5], [0.6, 0.7], [0.5, 0.7]

〉〈
(0.08, 0.24, 0.32, 0.56); [0.2, 0.4], [0.7, 0.8], [0.6, 0.8]

〉 〈
(0.12, 0.24, 0.36, 0.48); [0.1, 0.2], [0.8, 0.9], [0.8, 0.9]

〉〈
(0.48, 0.56, 0.64, 0.72); [0.8, 0.9], [0.1, 0.2], [0.1, 0.2]

〉 〈
(0.48, 0.60, 0.72, 0.96); [0.6, 0.7], [0.4, 0.5], [0.3, 0.5]

〉〈
(0.40, 0.48, 0.56, 0.72); [0.7, 0.8], [0.3, 0.4], [0.2, 0.3]

〉 〈
(0.24, 0.48, 0.60, 0.96); [0.5, 0.6], [0.5, 0.6], [0.4, 0.5]

〉
〈
(0.08, 0.32, 0.40, 0.56); [0.3, 0.5], [0.6, 0.7], [0.5, 0.7]

〉 〈
(0.12, 0.36, 0.48, 0.84); [0.2, 0.4], [0.7, 0.8], [0.6, 0.8]

〉〈
(0.16, 0.32, 0.40, 0.64); [0.5, 0.6], [0.5, 0.6], [0.4, 0.5]

〉 〈
(0.72, 0.84, 0.96, 1.08); [0.8, 0.9], [0.1, 0.2], [0.1, 0.2]

〉〈
(0.08, 0.16, 0.24, 0.32); [0.1, 0.2], [0.8, 0.9], [0.8, 0.9]

〉 〈
(0.12, 0.24, 0.36, 0.48); [0.1, 0.2], [0.8, 0.9], [0.8, 0.9]

〉〈
(0.48, 0.56, 0.64, 0.72); [0.8, 0.9], [0.1, 0.2], [0.1, 0.2]

〉 〈
(0.60, 0.72, 0.84, 1.08); [0.7, 0.8], [0.3, 0.4], [0.2, 0.3]

〉


Step 3. We can obtain the scores of the IVGSVTrN-numbers Ãij of the alternatives xj (j = 1, 2, 3, 4) on the four
attributes ui (i = 1, 2, 3, 4) based on Equation 3.8 as follows:

S(Ã11) = 0.295 S(Ã12) = 0.293 S(Ã13) = 0.196 S(Ã14) = 0.191

S(Ã21) = 0.128 S(Ã22) = 0.068 S(Ã23) = 0.295 S(Ã24) = 1.148

S(Ã31) = 0.765 S(Ã32) = 0.621 S(Ã33) = 0.045 S(Ã34) = 0.068

S(Ã41) = 0.581 S(Ã42) = 0.442 S(Ã43) = 0.765 S(Ã44) = 0.871

respectively.

Step 4. The ranking order of all IVGSVTrN-numbers Ãij(i = 1, 2, 3, 4; j = 1, 2, 3, 4) based on Equation 3.6 as
follows;

Ã11 > Ã12 > Ã13 > Ã14

Ã24 > Ã23 > Ã21 > Ã22

Ã31 > Ã32 > Ã34 > Ã33

Ã44 > Ã43 > Ã41 > Ã42

Thus, we have:

b̃11 = Ã11, b̃12 = Ã12, b̃13 = Ã13, b̃14 = Ã14

b̃21 = Ã24, b̃22 = Ã23, b̃23 = Ã21, b̃24 = Ã22

b̃31 = Ã31, b̃32 = Ã32, b̃33 = Ã34, b̃34 = Ã33

b̃41 = Ã44, b̃42 = Ã43, b̃43 = Ã41, b̃44 = Ã42

Step 5. The decision matrix [bi]1×n for i = 1, 2, 3, 4 are given by;
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b̃1 =
(〈

(0.16, 0.32, 0.40, 0.64); [0.5, 0.6], [0.5, 0.6], [0.4, 0.5]
〉
,
〈
(0.12, 0.48, 0.60, 0.84); [0.3, 0.5], [0.6, 0.7], [0.5, 0.7]

〉
,〈

(0.08, 0.32, 0.40, 0.56); [0.3, 0.5], [0.6, 0.7], [0.5, 0.7]
〉
,
〈
(0.12, 0.36, 0.48, 0.84); [0.2, 0.4], [0.7, 0.8], [0.6, 0.8]

〉)
b̃2 =

(〈
(0.72, 0.84, 0.96, 1.08); [0.8, 0.9], [0.1, 0.2], [0.1, 0.2]

〉
,
〈
(0.16, 0.32, 0.40, 0.64); [0.5, 0.6], [0.5, 0.6], [0.4, 0.5]

〉
,〈

(0.08, 0.24, 0.32, 0.56); [0.2, 0.4], [0.7, 0.8], [0.6, 0.8]
〉
,
〈
(0.12, 0.24, 0.36, 0.48); [0.1, 0.2], [0.8, 0.9], [0.8, 0.9]

〉)
b̃3 =

(〈
(0.48, 0.56, 0.64, 0.72); [0.8, 0.9], [0.1, 0.2], [0.1, 0.2]

〉
,
〈
(0.48, 0.60, 0.72, 0.96); [0.6, 0.7], [0.4, 0.5], [0.3, 0.5]

〉
,〈

(0.12, 0.24, 0.36, 0.48); [0.1, 0.2], [0.8, 0.9], [0.8, 0.9]
〉
,
〈
(0.08, 0.16, 0.24, 0.32); [0.1, 0.2], [0.8, 0.9], [0.8, 0.9]

〉)
b̃4 =

(〈
(0.60, 0.72, 0.84, 1.08); [0.7, 0.8], [0.3, 0.4], [0.2, 0.3]

〉
,
〈
(0.48, 0.56, 0.64, 0.72); [0.8, 0.9], [0.1, 0.2], [0.1, 0.2]

〉
,〈

(0.40, 0.48, 0.56, 0.72); [0.7, 0.8], [0.3, 0.4], [0.2, 0.3]
〉
,
〈
(0.24, 0.48, 0.60, 0.96); [0.5, 0.6], [0.5, 0.6], [0.4, 0.5]

〉)

Step 6. We can calculate the IVGSVTrN-numbers based on Equation 4.9 Khao(bi) = Khao(b̃i1, b̃i2, b̃i3, b̃i4) for
i = 1, 2, 3, 4 as follows:

Khao(b1) = Khao(b̃11, b̃12, b̃13, b̃14)
=

〈(
0.16× 0.3 + 0.72× 0.2 + 0.48× 0.3 + 0.60× 0.2,
0.32× 0.3 + 0.84× 0.2 + 0.56× 0.3 + 0.72× 0.2,
0.40× 0.3 + 0.96× 0.2 + 0.64× 0.3 + 0.84× 0.2,
0.64× 0.3 + 1.08× 0.2 + 0.72× 0.3 + 1.08× 0.2

)
; [0.5, 0.6], [0.5, 0.6], [0.4, 0.5]

〉
=

〈(
0.456, 0.576, 0.672, 0.840

)
; [0.5, 0.6], [0.5, 0.6], [0.4, 0.5]

〉
Khao(b2) = Khao(b̃21, b̃22, b̃23, b̃24)

=
〈(

0.12× 0.3 + 0.16× 0.2 + 0.48× 0.3 + 0.48× 0.2,
0.48× 0.3 + 0.32× 0.2 + 0.60× 0.3 + 0.56× 0.2,
0.60× 0.3 + 0.40× 0.2 + 0.72× 0.3 + 0.64× 0.2,
0.84× 0.3 + 0.64× 0.2 + 0.96× 0.3 + 0.72× 0.2

)
; [0.3, 0.5], [0.6, 0.7], [0.7, 0.8]

〉
=

〈(
0.308, 0.500, 0.604, 0.812

)
; [0.3, 0.5], [0.6, 0.7], [0.7, 0.8]

〉
Khao(b3) = Khao(b̃31, b̃32, b̃33, b̃34)

=
〈(

0.08× 0.3 + 0.08× 0.2 + 0.12× 0.3 + 0.40× 0.2,
0.32× 0.3 + 0.24× 0.2 + 0.24× 0.3 + 0.48× 0.2,
0.40× 0.3 + 0.32× 0.2 + 0.36× 0.3 + 0.56× 0.2,
0.56× 0.3 + 0.56× 0.2 + 0.48× 0.3 + 0.72× 0.2

)
; [0.1, 0.2], [0.8, 0.9], [0.8, 0.9]

〉
=

〈(
0.156, 0.312, 0.404, 0.568

)
; [0.1, 0.2], [0.8, 0.9], [0.8, 0.9]

〉
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and

Khao(b4) = Khao(b̃41, b̃42, b̃43, b̃44)
=

〈(
0.12× 0.3 + 0.12× 0.2 + 0.08× 0.3 + 0.24× 0.2,
0.36× 0.3 + 0.24× 0.2 + 0.16× 0.3 + 0.48× 0.2,
0.48× 0.3 + 0.36× 0.2 + 0.24× 0.3 + 0.60× 0.2,
0.84× 0.3 + 0.48× 0.2 + 0.32× 0.3 + 0.96× 0.2

)
; [0.1, 0.2], [0.8, 0.9], [0.8, 0.9]

〉
=

〈(
0.132, 0.300, 0.408, 0.636

)
; [0.1, 0.2], [0.8, 0.9], [0.8, 0.9]

〉
Step 7. We can calculate the IVGSVTrN-numbers Lhgo(bi) = Lhgo(b̃i1, b̃i2, b̃i3, b̃i4) for i = 1, 2, 3, 4 based on

Equation 5.6 as follows:

Lhao(b1) = Lhao(b̃11, b̃12, b̃13, b̃14)
=

〈(
0.160.3 + 0.720.2 + 0.480.3 + 0.600.2,
0.320.3 + 0.840.2 + 0.560.3 + 0.720.2,
0.400.3 + 0.960.2 + 0.640.3 + 0.840.2,
0.640.3 + 1.080.2 + 0.720.3 + 1.080.2

)
; [0.5, 0.6], [0.5, 0.6], [0.4, 0.5]

〉
=

〈(
0.391, 0.540, 0.636, 0.817

)
; [0.5, 0.6], [0.5, 0.6], [0.4, 0.5]

〉
Lhao(b2) = Lhao(b̃21, b̃22, b̃23, b̃24)

=
〈(

0.120.3 + 0.160.2 + 0.480.3 + 0.480.2,
0.480.3 + 0.320.2 + 0.600.3 + 0.560.2,
0.600.3 + 0.400.2 + 0.720.3 + 0.640.2,
0.840.3 + 0.640.2 + 0.960.3 + 0.720.2

)
; [0.3, 0.5], [0.6, 0.7], [0.7, 0.8]

〉
=

〈(
0.254, 0.488, 0.592, 0.803

)
; [0.3, 0.5], [0.6, 0.7], [0.7, 0.8]

〉
Lhao(b3) = Lhao(b̃31, b̃32, b̃33, b̃34)

=
〈(

0.080.3 + 0.080.2 + 0.120.3 + 0.400.2,
0.320.3 + 0.240.2 + 0.240.3 + 0.480.2,
0.400.3 + 0.320.2 + 0.360.3 + 0.560.2,
0.560.3 + 0.560.2 + 0.480.3 + 0.720.2

)
; [0.1, 0.2], [0.8, 0.9], [0.8, 0.9]

〉
=

〈(
0.125, 0.301, 0.396, 0.562

)
; [0.1, 0.2], [0.8, 0.9], [0.8, 0.9]

〉
and

Lhao(b4) = Lhao(b̃41, b̃42, b̃43, b̃44)
=

〈(
0.120.3 + 0.120.2 + 0.080.3 + 0.240.2,
0.360.3 + 0.240.2 + 0.160.3 + 0.480.2,
0.480.3 + 0.360.2 + 0.240.3 + 0.600.2,
0.840.3 + 0.480.2 + 0.320.3 + 0.960.2

)
; [0.1, 0.2], [0.8, 0.9], [0.8, 0.9]

〉
=

〈(
0.122, 0.276, 0.385, 0.577

)
; [0.1, 0.2], [0.8, 0.9], [0.8, 0.9]

〉
Step 8. The scores of Khao(b̃i) for i = 1, 2, 3, 4 can be obtained based on Equation 3.8 as follows:

S(Khao(b1)) = 0.493
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S(Khao(b2)) = 0.320

S(Khao(b3)) = 0.081

S(Khao(b4)) = 0.083

respectively. It is obvious based on Equation 3.6 that

Khao(b1) > Khao(b2) > Khao(b4) > Khao(b3)

Therefore, the ranking order of the alternatives xj (j = 1, 2, 3, 4) is generated as follows:

x1 � x2 � x4 � x3

The best supplier for the enterprise is x1.

Similarly, the scores of Lhgo(b̃i) for i = 1, 2, 3, 4 can be obtained based on Equation 3.8 as follows:

S(Lhgo(b1)) = 0.462

S(Lhgo(b2)) = 0.307

S(Lhgo(b3)) = 0.078

S(Lhgo(b4)) = 0.077

respectively. It is obvious that

Lhgo(b1) > Lhgo(b2) > Lhgo(b3) > Lhgo(b4)

Therefore, the ranking order of the alternatives xj (j = 1, 2, 3, 4) is generated based on Equation 3.6 as
follows:

x1 � x2 � x3 � x4

The best supplier for the enterprise is x1.

7 Conclusion
The paper gave the concept of interval valued generalized single valued neutrosophic trapezoidal number
(IVGSVTrN-number) which is a generalization of fuzzy number, intuitionistic fuzzy number, neutrosophic
number, and so on. An IVGSVTrN-number is a special interval neutrosophic set on the set of real numbers R.
To aggregating the information with IVGSVTrN-numbers, we give some operations on IVGSVTrN-numbers.
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Also, we presented some aggregation and geometric operators is called IVGSVTrN weighted aggregation
operator, IVGSVTrN ordered weighted aggregation operator, IVGSVTrN ordered hybrid weighted aggrega-
tion operator, IVGSVTrN weighted geometric operator, IVGSVTrN ordered weighted geometric operator,
IVGSVTrN ordered hybrid weighted geometric operator. Furtermore, for these operators, we examined some
desirable properties and special cases. Finally, we developed a approach for multiple criteria decision making
problems based on the operator and we applied the method to a numerical example to demonstrate its practi-
cality and effectiveness. In the future, we shall focus on the multiple criteria group decision making problems
problems with IVGSVTrNs in which the information of attributes weights is partially unknown in advance.
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Abstract. This paper introduces a single valued (2n as well as 2n+1) sided polygonal neutrosophic numbers in 
continuation with other defined single valued neutrosophic numbers. The paper provides basic algebra like addi-
tion, subtraction and multiplication of a single valued (2n as well as 2n+1) sided polygonal neutrosophic numbers 
with examples. In addition, the paper introduces matrix for single valued (2n as well as 2n+1) sided polygonal 
neutrosophic matrix and its properties. 

 
Keywords: Fuzzy numbers, Intuitionistic fuzzy numbers, Single valued trapezoidal neutrosophic numbers, Single 
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1 Introduction 

In the real world problems, uncertainty occurs in many situations which cannot be handled precisely via crisp set 
theory. To approximate those uncertainties exists in the given linguistics words the fuzzy set theory is introduced 
by Zadeh [10]. After that, Dubois and Prade [2] defined the fuzzy number as a generalization of real number.  In 
continuation, many authors [5-8, 11-23] introduced various types of fuzzy numbers such as triangular, trapezoi-
dal, pentagonal, hexagonal fuzzy numbers etc. with their membership functions. Atanassov [1] introduced the 
concept of intuitionistic fuzzy sets that provides precise solutions to the problems in uncertain situations than 
fuzzy sets with membership and non-membership functions. After developing intuitionistic fuzzy sets, authors in 
[4, 6, 10, 19] defined various types of intuitionistic fuzzy numbers and different types of operations on intuition-
istic fuzzy sets are also established by suitable examples. Smarandache [9] introduced the generalization of both 
fuzzy and intuitionistic fuzzy sets and named it as neutrosophic set. The Single valued neutrosophic number and 
its applications are described in [3]. The results of the problems using neutrosophic sets are more accurate than 
the results given by fuzzy and intuitionistic fuzzy sets [11-20]. Due to which it is applied in various fields for 
multi-decision tasks [20-32]. The applications of n-valued neutrosophic set [24-26] in data analytics research 
fields given a thrust to study the neutrosophic numbers. This paper focuses on introducing mathematical opera-
tion of 2n and 2n+1 sided polygonal neutrosophic numbers and its matrices with examples.   
 
  The rest of the paper is organized as follows: The section 2 contains preliminaries. Section 3 explains single 
valued 2n+1 polygonal neutrosophic numbers whereas the Section 4 demonstrates Single valued 2n side polygo-
nal neutrosophic numbers. Section 5 provides conclusions followed by acknowledgements and references.  
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2. Preliminaries 
 
Definition 1 (Fuzzy Number)[4]: A fuzzy number is nothing but  an extension of a regular number in the sense 
that  it  does  not  refer  to  one  single  value  but  rather  to  a  connected  set  of  possible  values,  where  each 
of the possible value has its own weight between 0 and 1. This weight is called the membership function. The 
complex fuzzy set for a given fuzzy number  𝑨̃  can be defined as 𝝁𝑨̃(𝒙) is non-decreasing for 𝑥 ≤ 𝒙𝟎 and non-
increasing for ≥ 𝒙𝟎 . Similarly other properties can be defined.  
 
Definition 2 (Triangular fuzzy number [4]): A fuzzy number 𝑨̃= {a, b, c } is  said  to  be  a triangular  fuzzy   
number  if  its  membership  function  is  given  by ,  where 𝑎 ≤ 𝑏 ≤ 𝑐 
 

𝝁𝑨̃(𝒙)=

{
 

 
(𝒙−𝒂)

(𝒃−𝒂)
𝑓𝑜𝑟  𝑎 ≤ 𝑥 ≤ 𝑏

(𝒄−𝒙)

(𝒄−𝒃)
𝑓𝑜𝑟  𝑏 ≤ 𝑥 ≤ 𝑐

𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 

 
Definition 3 (Trapezoidal fuzzy number [4]) 
 A Trapezoidal fuzzy number (TrFN) denoted by 𝑨̃𝑃  is defined as (a, b, c, d), where the membership function 
 

𝝁𝑨̃𝑷(𝒙)=

{
  
 

  
 
𝟎 𝑓𝑜𝑟 𝑥 ≤ 𝑎

(𝒙−𝒂)

(𝒃−𝒂)
𝑓𝑜𝑟  𝑎 ≤ 𝑥 ≤ 𝑏

𝟏 𝑓𝑜𝑟  𝑏 ≤ 𝑥 ≤ 𝑐
(𝒅−𝒙)

(𝒅−𝒄)
𝑓𝑜𝑟  𝑐 ≤ 𝑥 ≤ 𝑑

𝟎 𝒇𝒐𝒓 𝒙 ≥ 𝒅

 

 
Or, 𝝁𝑨̃𝑷(𝒙)= max ( min ((𝒙−𝒂)

(𝒃−𝒂)
 , 1, (𝒅−𝒙)

(𝒅−𝒄)
 ) ,0) 

 
Definition 4 (Generalized Trapezoidal Fuzzy Number) (GTrFNs) 
A Generalized Fuzzy Number (a, b, c, d, w), is called a Generalized Trapezoidal Fuzzy Number “x” if its mem-
bership function is given by 
 

(𝒙)=

{
  
 

  
 

𝟎 𝑓𝑜𝑟 𝑥 ≤ 𝑎
(𝒙−𝒂)

(𝒃−𝒂)
𝒘 𝑓𝑜𝑟  𝑎 ≤ 𝑥 ≤ 𝑏

𝒘 𝑓𝑜𝑟  𝑏 ≤ 𝑥 ≤ 𝑐
(𝒅−𝒙)

(𝒅−𝒄)
𝒘 𝑓𝑜𝑟  𝑐 ≤ 𝑥 ≤ 𝑑

𝟎 𝒇𝒐𝒓 𝒙 ≥ 𝒅

 

 
Or, 𝝁𝑨̃𝑷(𝒙)= max ( min (w (𝒙−𝒂)

(𝒃−𝒂)
,  w,𝒘 (𝒅−𝒙)

(𝒅−𝒄)
) ,0) 

Definition 5 (Pentagonal fuzzy number [4]) 
A pentagonal fuzzy number (PFN) of a fuzzy set 𝑨̃𝑃= {a, b, c, d, e} and its membership function is given by, 
 

𝝁𝑨̃𝑷(𝒙)=

{
 
 
 
 

 
 
 
 
𝟎 𝑓𝑜𝑟 𝑥 < 𝑎

(𝒙−𝒂)

(𝒃−𝒂)
𝑓𝑜𝑟  𝑎 ≤ 𝑥 ≤ 𝑏

(𝒙−𝒃)

(𝒄−𝒃)
𝑓𝑜𝑟  𝑏 ≤ 𝑥 ≤ 𝑐

𝟏 𝒙 = 𝒄
(𝒅−𝒙)

(𝒅−𝒄)
𝑓𝑜𝑟  𝑐 ≤ 𝑥 ≤ 𝑑

(𝒆−𝒙)

(𝒆−𝒅)
𝑓𝑜𝑟  𝑑 ≤ 𝑥 ≤ 𝑒

𝟎 𝒇𝒐𝒓 𝒙 > 𝒅
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Definition 6 (Hexagonal fuzzy number [4]) 
 A Hexagonal fuzzy number (HFN) of a fuzzy set 𝑨̃𝑃= {a, b, c, d, e, f} and its membership function is given by, 

𝝁𝑨̃𝑷(𝒙)=

{
 
 
 
 

 
 
 
 

𝟎 𝑓𝑜𝑟 𝑥 < 𝑎
𝟏

𝟐
(
𝒙−𝒂

𝒃−𝒂
) 𝑓𝑜𝑟  𝑎 ≤ 𝑥 ≤ 𝑏

𝟏

𝟐
+

𝟏

𝟐
(
𝒙−𝒃

𝒄−𝒃
) 𝑓𝑜𝑟  𝑏 ≤ 𝑥 ≤ 𝑐

𝟏 𝑐 ≤ 𝑥 ≤ 𝑑

𝟏 −
𝟏

𝟐
(
𝒙−𝒅

𝒆−𝒅
) 𝑓𝑜𝑟  𝑐 ≤ 𝑥 ≤ 𝑑

𝟏

𝟐
(
𝒇−𝒙

𝒇−𝒆
) 𝑓𝑜𝑟  𝑑 ≤ 𝑥 ≤ 𝑒

𝟎 𝒇𝒐𝒓 𝒙 > 𝑑

 

Definition 7 (Octagonal fuzzy number [4]) 
 A Octagonal fuzzy number (OFN) of a fuzzy set 𝑨̃𝑃= { 87654321 ,,,,,,, aaaaaaaa } and its membership 
function is given by, 

,
12

1

aa
axk



  21 axa   

  ,k   32 axa   

,)1(
34

3

aa
ax

kk



   43 axa   

PA~ =   ,1   54 axa   

,)1(
56

6

aa
xa

kk



   65 axa   

,k   76 axa   

,
78

8

aa
xa

k



  87 axa   

0,   Otherwise 
 
Where k= max{ 87654321 ,,,,,,, aaaaaaaa } 

 
Definition 8 (A triangular intuitionistic fuzzy number)[4] 
A triangular intuitionistic fuzzy number a~ is denoted as (( , , ), ( , , )),a a b c a b c    where 'a a b b c c     

with the following membership function )(~ xa  and non-membership function )(~ xa  

,
ab
ax




  ba   

)(~ xa  ,
bc
xc




  cb   

0, otherwise 

 

,
ab
xb



  ba   

)(~ xa  ,
bc
bx




  cb   

1, otherwise 
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Definition 9 (Trapezoidal Intuitionistic fuzzy number) 
 

𝝁𝑎̃(𝒙)=

{
 
 

 
 
0 x ≤ 0

(x−a)

(b−a)
for  a < 𝑥 < 𝑏

w for  b ≤ x ≤ c
(d−x)

(d−c)
for  c < x < 𝑑

0 otherwise

         , 𝝂𝑎̃(𝒙)=

{
 
 

 
 

1 x ≤ 0
(b−x+ 𝑢𝑎̃(x−a))

(b−a)
for  a < 𝑥 < 𝑏

𝑢𝑎̃ for  b ≤ x ≤ c
(x−c+ 𝑢𝑎̃(d−x))

(d−c)
for  c < 𝑥 < 𝑑

1 otherwise

 

Definition 10 (Single valued triangular neutrosophic number [3]): 
A triangular neutrosophic number 𝑎̃=< (𝑎, 𝑏,𝑐) ;𝑤𝑎̃, 𝑢𝑎̃,𝑦𝑎̃>  is a special neutrosophic set on the real number set 
R, whose truth-membership, indeterminacy– membership and falsity-membership functions are defined as fol-
lows: 

𝝁𝑎̃(𝒙)=

{
 
 

 
 
(x−a)

(b−a)
wã for  a ≤ x ≤ b

wã for  x = b
(c−x)

(c−b)
wã for  b ≤ x ≤ c

0 otherwise

         , 𝝂𝑎̃(𝒙)=

{
 
 

 
 
(b−x+ 𝑢𝑎̃(x−a))

(b−a)
for  a ≤ x ≤ b

𝑢𝑎̃ for  x = b
(x−b+ 𝑢𝑎̃(c−x))

(c−b)
for  b ≤ x ≤ c

1 otherwise

 

 
 

𝝀𝑎̃(𝒙)=

{
 
 

 
 
(b−x+ 𝑦𝑎̃(x−a))

(b−a)
for  a ≤ x ≤ b

𝑦𝑎̃ for  x = b
(x−b+ 𝑦𝑎̃(c−x))

(c−b)
for  b ≤ x ≤ c

1 otherwise

 

A triangular neutrosophic number 𝑎̃ =< (𝑎, 𝑏,𝑐) ;𝑤𝑎̃, 𝑢𝑎̃,𝑦𝑎̃>  may express an ill-known quantity about  b which 
is approximately equal to b. 
Definition 11 (Single valued trapezoidal neutrosophic number [3]): 
A triangular neutrosophic number 𝑎̃=< (𝑎, 𝑏,𝑐, d) ;𝑤𝑎̃, 𝑢𝑎̃,𝑦𝑎̃>  is a special neutrosophic set on the real number 
set R, whose truth-membership, indeterminacy– membership and falsity-membership function are defined as fol-
lows: 
 

𝝁𝑎̃(𝒙)=

{
 
 

 
 
(x−a)

(b−a)
wã for  a ≤ x ≤ b

wã for  b ≤ x ≤ c
(d−x)

(d−c)
wã for  c ≤ x ≤ d

0 otherwise

         , 𝝂𝑎̃(𝒙)=

{
 
 

 
 
(b−x+ 𝑢𝑎̃(x−a))

(b−a)
for  a ≤ x ≤ b

𝑢𝑎̃ for  b ≤ x ≤ c
(x−c+ 𝑢𝑎̃(d−x))

(d−c)
for  c ≤ x ≤ d

1 otherwise

 

 
 

𝝀𝑎̃(𝒙)=

{
 
 

 
 
(b−x+ 𝑦𝑎̃(x−a))

(b−a)
for  a ≤ x ≤ b

𝑦𝑎̃ for  b ≤ x ≤ c
(x−c+ 𝑦𝑎̃(d−x))

(d−c)
for  c ≤ x ≤ d

1 otherwise

 

The single valued trapezoidal neutrosophic numbers are a generalization of the intuitionistic trapezoidal fuzzy 
numbers, Thus,  the neutrosophic number may express more uncertainty than the intuitionstic fuzzy number. 
 
3. Single valued 2n+1 polygonal neutrosophic numbers 
 
Definition 12 (Single valued 2n+1 polygonal neutrosophic number):  
A single valued 2n+1 sided polygonal neutrosophic number 𝑎̃=< (𝑎1,𝑎2 ,….,𝑎𝑛,…,𝑎2𝑛,𝑎2𝑛+1) ;𝑤𝑎̃, 𝑢𝑎̃,𝑦𝑎̃> is a 
special neutrosophic set on the real number set R, whose truth-membership, indeterminacy– membership and 
falsity-membership functions are defined as follows: 
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Example:1 If  𝑤𝑎̃ = 0.2  ,𝑢𝑎̃ = 0.4 𝑦𝑎̃ = 0.3  and n= 4 , then we have an nanogonal neutrosophic number 𝑎̃ and it 
is taken as 𝑎̃ =< (3,6,8,10,11,21,43,44,56) >. Figure 1 demonstrates the Example 1. 

 
           
                                                                            Figure: 1 
Example: 2 
If  𝑤𝑎̃ = 0.2  ,𝑢𝑎̃ = 0.4 𝑦𝑎̃ = 0.3  and n= 4 , then we have an nanogonal neutrosophic number 𝑎̃ and it is taken as 
𝑎̃ =< (3,6,8,10,1,2,4,7,5) >. Figure 2 demonstrates the Example 2 and its neutrosophic membership. 

 
                                                                               Figure: 2 
 
Note 
The single valued triangular neutrosophic number can be generalized to a single valued 2n+1 polygonal neutro-
sophic number, where n=1,2,3,…,n 
 
𝑎̃=< (𝑎1,𝑎2 ,….,𝑎𝑛,…,𝑎2𝑛,𝑎2𝑛+1) ;𝑤𝑎̃, 𝑢𝑎̃,𝑦𝑎̃>, where𝑎̃ may express an ill –known quantity about  𝑎𝑛 which is 
gradually equal to 𝑎𝑛. 
We mean that 𝑎2approximates𝑎𝑛, 𝑎3approximates𝑎𝑛 a littel better than𝑎2,………………. 𝑎𝑛−1approximates𝑎𝑛 a 
litte better than all previous 𝑎1, 𝑎2,…𝑎𝑛,  
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Remark 
If 0≤ 𝑤𝑎̃, 𝑢𝑎̃,𝑦𝑎̃ ≤1, 0≤ 𝑤𝑎̃+ 𝑢𝑎̃+𝑦𝑎̃ ≤1, 𝑦𝑎̃= 0  and the single valued 2n+1 sided polygonal neutrosophic num-
ber reduced to the case single valued 2n+1 sided polygonal fuzzy number. 
 
3.1. Operations of single valued 2n+1 sided polygonal neutrosophic numbers 

Following are the three operations that can be performed on single valued 2n+1 polygonal neutrosophic numbers 
suppose 𝑨𝑷𝑵𝑵=< (𝒂𝟏,𝒂𝟐 ,….,𝒂𝒏,…,𝒂𝟐𝒏 ,𝒂𝟐𝒏+𝟏); 𝒘𝒂̃, 𝒖𝒂̃,𝒚𝒂̃> and 𝑩𝑷𝑵𝑵=< (𝒃𝟏,𝒃𝟐 ,….,𝒃𝒏 ,…,𝒃𝟐𝒏 ,𝒃𝟐𝒏+𝟏) ;𝒘𝒃̃, 
𝒖𝒃̃,𝒚𝒃̃ >are two single valued 2n+1 polygonal neutrosophic numbers then  
 
(i) Addition: 

𝑨𝑷𝑵𝑵 + 𝑩𝑷𝑵𝑵= < (𝒂𝟏+𝒃𝟏 , 𝒂𝟐+𝒃𝟐, …, 𝒂𝒏+𝒃𝒏 , …, 𝒂𝟐𝒏+𝒃𝟐𝒏 , 𝒂𝟐𝒏+𝟏+𝒃𝟐𝒏+𝟏); 𝒘𝒂̃+𝒘𝒃̃-𝒘𝒂̃ ∙ 𝒘𝒃̃  , 𝒖𝒃̃ ∙
𝒖𝒃̃,𝒚𝒂̃ ∙ 𝒚𝒃̃> 

 
(ii) Subtraction: 

 𝑨𝑷𝑵𝑵 - 𝑩𝑷𝑵𝑵  = < (𝒂𝟏-𝒃𝟏 , 𝒂𝟐-𝒃𝟐 , …, 𝒂𝒏-𝒃𝒏 , …, 𝒂𝟐𝒏 -𝒃𝟐𝒏 , 𝒂𝟐𝒏+𝟏-𝒃𝟐𝒏+𝟏);   𝒘𝒂̃+𝒘𝒃̃-𝒘𝒂̃ ∙ 𝒘𝒃̃  , 𝒖𝒃̃ ∙
𝒖𝒃̃,𝒚𝒂̃ ∙ 𝒚𝒃̃ > 
Multiplication: 
𝑨𝑷𝑵𝑵*𝑩𝑷𝑵𝑵 = < (𝒂𝟏 ∙ 𝒃𝟏 ,𝒂𝟐 ∙ 𝒃𝟐  ,….,𝒂𝒏 ∙ 𝒃𝒏 ,…,𝒂𝟐𝒏 ∙ 𝒃𝟐𝒏 ,𝒂𝟐𝒏+𝟏 ∙ 𝒃𝟐𝒏+𝟏 ) ;𝒘𝒂̃ ∙ 𝒘𝒃̃  ,𝒖𝒂̃ + 𝒖𝒃̃ - 𝒖𝒂̃ ∙ 𝒖𝒃̃ ,𝒚𝒂̃ +
𝒚𝒃̃ − 𝒚𝒂̃ ∙ 𝒚𝒃̃> 
 
Remark 
If 𝑤𝑎̃ = 1  ,𝑢𝑎̃ = 0 𝑦𝑎̃ = 0   then  single valued 2n+1 sided polygonal neutrosophic number 𝑨𝑷𝑵𝑵=< (𝒂𝟏,𝒂𝟐 
,….,𝒂𝒏,…,𝒂𝟐𝒏,𝒂𝟐𝒏+𝟏) ;𝒘𝒂̃, 𝒖𝒂̃,𝒚𝒂̃> reduced to the case of single valued 2n+1 sided polygonal fuzzy num-
ber𝑨𝑷𝑭𝑵=< (𝒂𝟏,𝒂𝟐 ,….,𝒂𝒏,…,𝒂𝟐𝒏,𝒂𝟐𝒏+𝟏)>, n=1,2,3,…,n. 
 
Remark 
If 0≤ 𝑤𝑎̃, 𝑢𝑎̃,𝑦𝑎̃ ≤1 , 0≤ 𝑤𝑎̃+ 𝑢𝑎̃+𝑦𝑎̃ ≤3,  and n=1, the single valued 2n+1 -sided polygonal neutrosophic num-
ber reduced to the case of the single valued triangular neutrosophic number𝑨𝑷𝑵𝑵=< (𝒂𝟏,𝒂𝟐,𝒂𝟑);𝒘𝒂̃, 𝒖𝒂̃,𝒚𝒂  ̃>[3]. 
 
Example 3: Let 𝑤𝑎̃ = 1, 𝑢𝑎̃ = 0, 𝑦𝑎̃ = 0 and n= 1 
 
If  𝑤𝑎̃ = 1, 𝑢𝑎̃ = 0, 𝑦𝑎̃ = 0 and n= 2, then we have an Pentagonal fuzzy number [5]: 
 
Let  A=( 1, 2, 3 , 4, 5)  and B=(2, 3,4,5,6) be two Pentagonal fuzzy numbers, then  
 

i. A + B = (3, 5, 7, 9,11) 
 

ii. A – B = (-1,-1, -1,-1,-1) 
 

iii. 2A = (2, 4, 6, 8, 10) 
 

iv. A.B = ( 2, 6, 12, 20, 30) 
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Figure: 3 

 
Figure 3 demonstrates operation given in Example 3.  The single valued 2n+1 polygonal neutrosophic number 
are generalization of the Pentagonal fuzzy number numbers [5] , and single valued triangular neutrosophic num-
ber [3] 
 
4. Single valued 2n-sided polygonal neutrosophic numbers 
 
Definition  13: The single valued trapezoidal neutrosophic number can be extended to a single valued 2n sided 
polygonal neutrosophic number 𝑎̃=< (𝑎1 ,𝑎2  ,….,𝑎𝑛 ,𝑎𝑛+1 ,  …,𝑎2𝑛−1 ,𝑎2𝑛); 𝒘𝒂̃ , 𝒖𝒂̃ ,𝒚𝒂̃> where n=1,2,3,…,n, 
whose truth-membership, indeterminacy– membership and falsity-membership functions are defined as follows:  
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                               0,   Otherwise 
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  1,   Otherwise 
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       1,   Otherwise 
where 𝑎̃ may represent an ill–known quantity of range,  which is gradually approximately equal to the interval 
[𝑎𝑛, 𝑎𝑛+1]. 
We mean that (𝑎2, 𝑎2𝑛−1 ) approximates [𝑎𝑛, 𝑎𝑛+1], 
(𝑎, 𝑎2𝑛−2 )  approximates [𝑎𝑛, 𝑎𝑛+1] a little better than (𝑎2, 𝑎2𝑛−1 ),  …………………(an, an+1 )  approximates 
[an, an+1] a little  better than all previous  intervals. 
Remark 
If 0≤ 𝑤𝑎̃, 𝑢𝑎̃,𝑦𝑎̃ ≤1, 0≤ 𝑤𝑎̃+ 𝑢𝑎̃+𝑦𝑎̃ ≤1, 𝑦𝑎̃ = 0  and the single valued 2n -sided polygonal neutrosophic number 
reduced to the case of single valued 2n-sided polygonal fuzzy number. 
  

4.1 Single valued 2n-sided polygonal neutrosophic number 

 
Following are the three operations that can be performed on single valued 2n-sided  polygonal neutrosophic 
numbers suppose 𝑨𝑷𝑵𝑵=< (𝑎1 ,𝑎2  ,….,𝑎𝑛 ,𝑎𝑛+1,  …,𝑎2𝑛−1 ,𝑎2𝑛);𝒘𝒂̃, 𝒖𝒂̃ ,𝒚𝒂̃> and 𝑩𝑷𝑵𝑵=<(𝑏1 ,𝑏2 ,….,𝑏𝑛,𝑏𝑛+1 ,  
…,𝑏2𝑛−1,𝑏2𝑛);𝒘𝒃̃, 𝒖𝒃̃,𝒚𝒃̃>are two2n-sided polygonal neutrosophic number. 

(i) Addition:  𝑨𝑷𝑵𝑵+𝑩𝑷𝑵𝑵=(𝑎1 + 𝑏1,𝑎2 + 𝑏2,….,𝑎𝑛 + 𝑏𝑛,𝑎𝑛+1 + 𝑏𝑛+1,…,𝑎2𝑛−1 + 𝑏2𝑛−1,𝑎2𝑛 +
𝑏2𝑛);𝒘𝒂̃+𝒘𝒃̃-𝒘𝒂̃ ∙ 𝒘𝒃̃ , 𝒖𝒃̃ ∙ 𝒖𝒃̃,𝒚𝒂̃ ∙ 𝒚𝒃̃> 

(ii) Subtraction:𝑨𝑷𝑵𝑵-𝑩𝑷𝑵𝑵=<(𝑎1 − 𝑏2𝑛,𝑎2 − 𝑏2𝑛−1,….,𝑎𝑛 − 𝑏𝑛,𝑎𝑛+1 − 𝑏𝑛−1,…,𝑎2𝑛−1 − 𝑏2,𝑎2𝑛 −
𝑏1);𝒘𝒂̃+𝒘𝒃̃-𝒘𝒂̃ ∙ 𝒘𝒃̃ , 𝒖𝒃̃ ∙ 𝒖𝒃̃,𝒚𝒂̃ ∙ 𝒚𝒃̃> 

(iii) Multiplication:𝑨𝑷𝑵𝑵*𝑩𝑷𝑵𝑵 =<(𝑎1 ∙ 𝑏1,𝑎2 ∙ 𝑏2,….,𝑎𝑛 ∙ 𝑏𝑛,𝑎𝑛+1 ∙ 𝑏𝑛+1,  …,𝑎2𝑛−1 ∙ 𝑏2𝑛−1,𝑎2𝑛 ∙
𝑏2𝑛);𝒘𝒂̃ ∙ 𝒘𝒃̃ ,𝒖𝒂̃ +𝒖𝒃̃- 𝒖𝒂̃ ∙ 𝒖𝒃̃,𝒚𝒂̃ + 𝒚𝒃̃ − 𝒚𝒂̃ ∙ 𝒚𝒃̃> 

Remark 
If 𝑤𝑎̃  = 1  ,𝑢𝑎̃  = 0 𝑦𝑎̃  = 0   then  single valued 2nsidedpolygonal neutrosophic number 𝑨𝑷𝑵𝑵=<(𝑎1 ,𝑎2 
,….,𝑎𝑛,𝑎𝑛+1,  …,𝑎2𝑛−1,𝑎2𝑛);𝒘𝒂̃, 𝒖𝒂̃,𝒚𝒂̃> reduced to the case of single valued 2n- sided polygonal fuzzy 
number𝑨𝑷𝑭𝑵=<(𝑎1,𝑎2 ,….,𝑎𝑛,𝑎𝑛+1,  …,𝑎2𝑛−1,𝑎2𝑛) for  n=1,2,3,…,n. 
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Remark 
If 0≤ 𝑤𝑎̃, 𝑢𝑎̃,𝑦𝑎̃ ≤1 , 0≤ 𝑤𝑎̃+ 𝑢𝑎̃+𝑦𝑎̃ ≤3,  and n=2, the single valued 2n-sided polygonal neutrosophic number 
reduced to the case of single valued trapezoidal neutrosophic number 𝑨𝑷𝑵𝑵=< (𝒂𝟏,𝒂𝟐,𝒂𝟑 , 𝒂𝟒);𝒘𝒂̃, 𝒖𝒂̃,𝒚𝒂̃>[x]. 
 
Example 4:  if 𝑤𝑎̃ = 1  ,𝑢𝑎̃ = 0 𝑦𝑎̃ = 0  and n= 3 then we have an Hexagonal fuzzy number [7-8]: 
Let  A=( 1, 2, 3 ,5 ,6)  and B=(2, 4,6,8,10,12) be two Hexagonal fuzzy numbers then  
A+ B= (3, 6,9, 13,16,19) 

 
Figure: 4 

Figure 4 demonstrates operation given in Example 4. 
 The single valued 2n-sided polygonal neutrosophic number are generalization of the hexagonal fuzzy numbers 
[8] ,intuitionistic trapezoidal fuzzy numbers[x] and single valued trapezoidal neutrosophic number [3] with its 
application [12-23] for multi-decision process [24-26]. 
 
5. Conclusion: 
This paper introduces single valued (2n and 2n+1) sided polygonal neutrosophic numbers its addition, subtrac-
tion, multiplication as well as polygonal neutrosophic matrix with an illustrative example. In near future our fo-
cus will be on applications of single-valued 2n sided polygonal neutrosophic numbers and its other mathematical 
algebra.  
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Abstract.  
Recently, vague sets and neutrosophic sets have received great attention among the scholars and have been applied in many 
applications. But, the actual theoretical impacts of the combination of these two sets in dealing uncertainties are still not fully 
explored until now. In this paper, a new generalized mathematical model called interval neutrosophic vague sets is proposed, 
which is a combination of vague sets and interval neutrosophic sets and a generalization of interval neutrosophic vague sets. 
Some definitions of interval neutrosophic vague set such as union, complement and intersection are presented. Furthermore, 
the basic operations, the derivation of its properties and related example are included. 
Keywords: neutrosophic set, vague set, interval neutrsophic vague set.

 
1 Introduction  
     Many attempts that used classical mathematics to model uncertain data may not be successful. This is due to 
the concept of uncertainty which is too complicated and not clearly defined. Therefore, many different theories 
were developed to solve uncertainty and vagueness including the fuzzy set theory [1], intuitionistic fuzzy set [2], 
rough sets theory [3], soft set [4], vague sets [5], soft expert set [6] and some other mathematical tools. There are 
many real applications were solved using these theories related to the uncertainty of these applications [7], [8], 
[9], [10] . However, these theories cannot deals with indeterminacy and consistent information. Furthermore, all 
these theories have their inherent difficulties and weakness. Therefore, neutrosophic set is developed by 
Smarandache in 1998 which is generalization of probability set, fuzzy set and intuitionistic fuzzy set [11]. The 
neutrosophic set contains three independent membership functions. Unlike fuzzy and intuitionistic fuzzy sets, the 
memberships in neutrosophic sets are truth, indeterminacy and falsity. The neutrosophic set has received more 
and more attention since its appearance. Hybrid neutrosophic set were introduced by many researchers [12], [13], 
[14], [15], [16]. In line with these developments, these extensions have been used in multi criteria decision    
making problem such as  ANP, VIKOR, TOPSIS and DEMATEL with different application [17]–[20]. 

Vague sets have been introduced by Gau and Buehrar in 1993 as an extension of fuzzy set theory [5]. Vague 
sets is  considered as an effective tool to deal with uncertainty since it provides more information as compared to 
fuzzy sets [21]. Several studies have revealed that, many researchers have combined vague sets with others     
theories. Xu et al. proposed vague soft sets and examined its properties [22]. Later, Hassan [23] have combined 
vague set with soft expert set and its operations were introduced. In addition, others hybrid theories such as 
complex vague soft set [24], interval valued vague soft set [25], generalized interval valued vague set [26] and  
possibility vague soft set [27]  were presented to solve uncertainty problem in decision making. Recently,        
Al- Quran and Hassan [28]  proposed new hybrid of neutrosophic vague such as [29], [30], [31] and [32]. 

 Until now, there has been no study on interval neutrosophic vague set (INVS) and its combination           
particularly with vague sets. Therefore, the objective of this paper is to develop a mathematical tool to solve    
uncertainty problem, namely INVS which is a combination of vague sets and interval neutrosophic set and as a 
generalization of interval neutrosophic vague set. This set theory provides an interval-based membership     
structure to handle the neutrosophic vague data. This feature allows users to record their hesitancy in assigning 
membership values which in turn better capture the vagueness and uncertainties of these data. 

This paper is structured in the following manner. Section 2 presents some basic mathematical concepts to        
enhance the understanding of INVS. Section 3 describes definitions IVNS and its properties together with       
example. Finally, conclusion of INVS is stated in section 4. 
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2 Preliminaries 
Some basic concepts associated to neutrosophic sets and interval neutrosophic set are presented in this section. 
          

2.1 Vague Set  
Definition 2.1 [5] 

Let e  be a vague value,  ee fte  1, where  1,0et ,  1,0ef and 110  ee ft . If 1et  and 0ef  then 

e  is named a unit vague value so as  1,1e  . Meanwhile if 0et and 1ef , hence e  is named a zero vague 

value such that  0,0e . 

Definition 2.1.1 [5] 

Let e and f be two vague values, where  ee fte  1, and  ff ftf  1, . If fe tt  and fe ff  , then vague 

values e and f are named equal     ffee ftft  1,1,i.e. . 

Definition 2.1.2 [5] 

Let p be a vague set of the universe E . If Een  ,   1np et and   0np ef , then p is named a unit vague set 

where mn 1 . If   0np et  and   1np et  hence p  named a zero vague set where mn 1 . 

2.2 Neutrosophic Set 
Definition 2.2 [11] 
A neutrosophic set e in E is described by three functions: truth membership function  eVp , indeterminacy- 

membership function  eWp and falsity-membership function  eX p as   EeeXeWeVep ppp  ),(,),(:  

where  
 1,0:,, EXWV and         3supsupsup0 eXeWeV ppp  

2.3 Interval Neutrosophic Set 
Definition 2.3 [12] 
Let E  be a universe. An interval neutrosophic set denoted as (INS) can be defined as follows:  

               EeeXeXeWeWeVeVp U
p

L
p

U
p

L
p

U
p

L
p  ,,,,,  where for each point Ee , we have  eVp  1,0 , 

 eWp  1,0 ,    1,0eX p  and         3supsupsup0 eXeWeV ppp . 

2.4 Neutrosophic Vague Set 
Definition 2.4  [28] 
A neutrosophic vague set p in E denoted (NVS) as an object of the form  

  EeeXeWeVep NVpNVpNVpNV  )(,),(:  and  

         XXeXWWeWVVeV NVpNVpNVp ,)(,,,,)(  

where  
  XV 1 ,   VX 1 and   20 XWV . 

 
Definition 2.4.1 [28] 
Let   be a NVS in E . Then  is called a unit NVS where mn 1  

 1,1)( eV NV ,  0,0)( eW NV ,  0,0)( eX NV  
. 
Definition 2.4.2 [28] 
Let   be a NVS in E . Then  is called a zero NVS where mn 1 . 

 0,0)( eV NV ,  1,1)( eW NV ,  1,1)( eX NV  
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For two NVS 
  EeeXeWeVep NVpNVpNVpNV  )(,),(:  and 

  EeeXeWeVeq NVqNVqNVqNV  )(,),(:  

The relations of NVS is presented as follows: 
(i) NVNV qp  if and only if )()( eVeV

NVqNVp  , )()( eWeW
NVqNVp  and )()( eXeX

NVqNVp  . 

(ii) NVNV qp  if and only if )()( eVeV
NVqNVp  , )()( eIeW

NVqNVp  and )()( eXeX
NVqNVp  . 

(iii) The union of p and q is denoted by NVNVNV qpR   is defined by; 

  






















 

NVeqNVepNVeqNVepNVR VVVVeV ,max,,max

  






















 

NVeqNVepNVeqNVepNVR WWWWeW ,min,,min , 

  






















 

NVeqNVepNVeqNVepNVR XXXXeX ,min,,min  

(iv) The intersection of p and q is denoted by NVNVNV qpS   is defined by; 

  






















 

NVeqNVepNVeqNVepNVS VVVVeV ,min,,min  

  






















 

NVeqNVepNVeqNVepNVS WWWWeW ,max,,max , 

  






















 

NVeqNVepNVeqNVepNVS XXXXeX ,max,,max  

(v) The complement of a NVS NVp is denoted by cp and is defined by 

   VVeV c
NVp 1,1)(  

   WWeW c
NVp 1,1)(  

   XXeX c
NVp 1,1)(  

3 Interval Neutrosophic Vague Sets 
The formal definition of an INVS and its basic operations of complement, union and intersection are introduced. 
Related properties and suitable examples are presented in this section. 
 
Definition 3.1 
 An interval valued neutrosophic vague set INVA also known as INVS in the universe of discourse E . An INVS 
is characterized by truth membership, indeterminacy membership and fasilty-membership functions is defined 
as: 
 

               EeeXeXeWeWeVeVeA U
A

L
A

U
A

L
A

U
A

L
AINV  |~,~,~,~,~,~,  

 

 






 LLL

A VVeV ,~  ,  






 UUU

A T,TeV~ , 

 






 LLL

A WWeW ,~ ,  






 UUU

A WWeW ,~ , 

 








 LLL
A XXeX ,~  ,  







 UUU

A XXeX ,~  

where 


 LL XV 1 ,


 LL VX 1 ,


 UU XV 1 ,


 UU VX 1  and  
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  40 ULULUL XXWWVV  

  40 ULULUL XXWWVV  

An INVS INVA when E is continuous is presented as follows: 

              
 

E

U
A

L
A

U
A

L
A

U
A

L
A

INV Ee
e

eXeXeWeWeVeV
A :

~,~,~,~,~,~
 

 and when E is discrete an INVS INVA  can be presented as follows: 

              





n

i i

U
A

L
A

U
A

L
A

U
A

L
A

INV Ee
e

eXeXeWeWeVeV
A

1

:
~,~,~,~,~,~

 

      3~sup~sup~sup0  eXeWeV AAA  
 
Example 3.1 
Let  321 ,, eeeE  . Then 

              

              

               

































8.0,5.0,4.0,1.0,6.0,4.0,7.0,3.0,5.0,2.0,9.0,6.0

9.0,3.0,6.0,5.0,3.0,1.0,5.0,5.0,7.0,1.0,5.0,4.0

,
8.0,7.0,8.0,5.0,6.0,3.0,6.0,1.0,3.0,2.0,5.0,2.0

3

2

1

e

e

e

AINV  

 is an INVS subset of E . 
 
Consider Example 3.1 .Then we check the INVS  for 1e  by Definition 3.1 as follows: 

150501 


..XV LL , 120801 


..VX LL  

170301 


..XV UU , 120801 


..VX UU  

Using condition   40 ULULUL XXWWVV ,  

therefore we have 2705030102020  ......  and  
  40 ULULUL XXWWVV , therefore we have 

63808060603050 .......   
 The calculations for INVS in Example 3.2, Example 3.3 are calculated similarly. 
 
Definition 3.2 
Consider INV be an INVS of the universe E  where Een  , 

   1,1~
 eV L

INV ,    1,1~
 eV U

INV , 

   0,0~
 eW L

INV ,    0,0~
 eW U

INV , 

   0,0~
 eX L

INV ,    0,0~
 eX U

INV  

Therefore, INV is defined a unit INVS where mn 1  
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Consider INV be a INVS of the universe E  where Een   

   0,0~
eV L

INV ,    0,0~
eV U

INV , 

   1,1~
eW L

INV ,    1,1~
eW U

INV , 

   1,1~
eX L

INV ,    1,1~
eX U

INV  

Therefore, INV is defined a zero INVS where mn 1  
Definition 3.3 
Let c

INVA is defined as complemnet of INVS 

   





 
 LLcL

A VVeV 1,1~ ,    





 
 UUcU

A VVeV 1,1~ , 

   





 
 LLcL

A WWeW ,11~ ,    





 
 UUcU

A WWeW 1,1~ , 

   








 LLcL
A XXeX 1,1~ ,    






 
 UUcU

A XXeX 1,1~  

 
Example 3.2 
Considering Example 3.1, by using Definition 3.3, we have  

              

              

               

































7.0,2.0,9.0,6.0,6.0,4.0,7.0,3.0,8.0,3.0,4.0,1.0

7.0,1.0,5.0,4.0,9.0,7.0,5.0,5.0,9.0,3.0,6.0,5.0

,
3.0,2.0,5.0,2.0,7.0,4.0,9.0,4.0,8.0,7.0,8.0,5.0

3

2

1

e

e

e

Ac
INV  

 
Definition 3.5  
Let INVA  and INVB be two INVS of the universe. If Een  ,  

   n
L

Bn
L

A eVeV ~~
  ,    n

U
Bn

U
A eVeV ~~

 ,    n
L

Bn
L
A eWeW ~~

 ,    n
U
Bn

U
A eWeW ~~

 ,    n
L
Bn

L
A eXeX ~~

  and 

   n
U
Bn

U
A eXeX ~~

  
Then the INVS INVA  and INVB  are equal, where mn 1  
Definition 3.6  
Let INVA  and INVB  be two INVS of the universe. If Een  , 

   n
L

Bn
L

A eVeV ~~
  and    n

U
Bn

U
A eVeV ~~

 , 

   n
L

Bn
L
A eWeW ~~

 and     n
U
Bn

U
A eWeW ~~

 , 

   n
L
Bn

L
A eXeX ~~

  and    n
U
Bn

U
A eXeX ~~

  

Then the INVS  INVA  are included by INVB  denoted by INVINV BA  , where mn 1 . 
Definition 3.7 
The union of two INVS INVA  and INVB  is a INVS INVC , written as INVINVINV BAC  is defined as follows: 

  





















 L

B
L
A

L
B

L
A

L
A VVVVeV ,max,,max~  and   





















 U

B
U
A

U
B

U
A

U
A VVVVeV ,max,,max~ , 

  























,,min,,min~ L
B

L
A

L
B

L
A

L
A WWWWeW and   























,,min,,min~ U
B

U
A

U
B

U
A

U
A WWWWeW  

  

























 L
B

L
A

L
B

L
A

L
A XXXXeX ,min,,min~  and   


























 UL
B

U
A

U
B

U
A

U
A XXXXeX ,min,,min~  
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Definition 3.8  
The intersection of two INVS INVA  and INVB  is a INVS INVC , written as INVINVINV BAD  , is defined as 
below: 

  





















 L

B
L
A

L
B

L
A

L
A VVVVeV ,min,,min~  and   





















 U

B
U
A

U
B

U
A

U
A VVVVeV ,min,,min~ , 

  























,,max,,max~ L
B

L
A

L
B

L
A

L
A WWWWeW and   ,,max,,max~























 U

B
U
A

U
B

U
A

U
A WWWWeW  

  

























 L
B

L
A

L
B

L
A

L
A XXXXeX ,max,,max~  and   


























 UL
B

U
A

U
B

U
A

U
A XXXXeX ,max,,max~  

 
Example 3.3  
Consider that there are two INVS INVA  and INVB consist of  321 ,, eeeE  defined as follows: 

              

              

               

































8.0,5.0,4.0,1.0,6.0,4.0,7.0,3.0,5.0,2.0,9.0,6.0

9.0,3.0,6.0,5.0,3.0,1.0,5.0,5.0,7.0,1.0,5.0,4.0

,
8.0,7.0,8.0,5.0,6.0,3.0,6.0,1.0,3.0,2.0,5.0,2.0

3

2

1

e

e

e

AINV  

 

              

              

               

































8.0,5.0,6.0,1.0,6.0,2.0,8.0,1.0,5.0,2.0,9.0,4.0

8.0,7.0,8.0.0,4.0,5.0,5.0,6.0,2.0,3.0,2.0,6.0,2.0

,
6.0,1.0,8.0,4.0,6.0,3.0,5.0,5.0,9.0,4.0,6.0,2.0

3

2

1

e

e

e

BINV  

 
By using Definition 3.7, then we obtain INV union, INVINVINV BAC   presented as follows: 

              

              

               

































8.0,5.0,4.0,1.0,6.0,2.0,7.0,1.0,5.0,2.0,9.0,6.0

8.0,3.0,6.0,5.0,3.0,1.0,5.0,2.0,7.0,2.0,6.0,4.0

,
6.0,1.0,8.0,4.0,6.0,3.0,5.0,1.0,9.0,4.0,6.0,2.0

3

2

1

e

e

e

CINV  

Moreover, by using Definition 3.8, we obtained INV intersection, INVINVINV BAD  as follows: 

              

              

               

































8.0,5.0,6.0,1.0,6.0,4.0,8.0,3.0,5.0,2.0,9.0,4.0

9.0,7.0,8.0,5.0,5.0,5.0,6.0,5.0,3.0,1.0,5.0,2.0

,
8.0,7.0,8.0,5.0,6.0,3.0,6.0,5.0,3.0,2.0,5.0,2.0

3

2

1

e

e

e

DINV  
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Proposition 3.1 Let INVA and INVB  be two INVS in X . Then 

(i) INVINVINV AAA   
(ii) INVINVINV AAA   

(iii) INVINVINVINV ABBA   
(iv) INVINVINVINV ABBA   
 
Proof (i):  
If x  is any arbitrary element in INVINVINV AAA  by definition of union, we have INVAx or INVAx . 
Hence INVAx . Therefore INVINVINV AAA  . Conversely, If x  is any arbitrary element 

in INVINVINV AAA  , then INVAx and INVAx . Therefore, 

INVINVINV AAA  INVINVINV AAA   
 
Proof (ii): similar to the proof of (i). 
 
 
Proof (iii):  
Let x is any arbitrary element in INVINVINVINV ABBA  , then by definition of union, 

INVAx and INVBx . But, if x is in INVA and INVB , then it is in INVB or INVA , and by definition of union,  

this means INVINV ABx  . Therefore, INVINVINVINV ABBA  .  
The other inclusion is identical: if x is any element INVINV AB  . Therefore, then we know 

INVBx or INVAx . But, INVBx or INVAx implies that x  is in INVA or INVB  ; hence, INVINV BAx  . 

Therefore, INVINVINVINV BAAB  . Hence INVINVINVINV ABBA  . 
 
Proof (iv): same to the proof (iii)  
 
Proposition 3.2 Let INVA , INVB and INVC  be three INVS over the common universe X . Then, 
(i)     INVINVINVINVINVINV CBACBA   
(ii)     INVINVINVINVINVINV CBACBA   
(iii)      INVINVINVINVINVINVINV CABACBA   
(iv)      INVINVINVINVINVINVINV CABACBA   

 
Proof (i):  
First, let x be any element in  INVINVINV CBA  . This means that INVAx  or  INVINV CBx  .     If 

INVAx then  INVINV CBx  ; hence,  INVINVINV CBAx  . On the other side, if INVAx , then 

 INVINV CBx  . This means INVBx or INVCx . If , INVBx then 

INVINV BAx     INVINVINV CBAx  . If INVCx , Then,   INVINVINV CBAx  Hence, 
    INVINVINVINVINVINV CBACBA  . 

For the reverse inclusion, let x be any element of   INVINVINV CBA  .Then,  INVINV BAx  or INVCx . 

If  INVINV BAx  , we know INVAx  or INVBx . If INVAx , then  INVINVINV CBAx  . 
If INVBx ,then  INVINV CBx  . Hence  INVINVINV CBAx  . On the other side, if INVCx , 

hence  INVINV CBx  , and so,  INVINVINV CBA  .  
Therefore,     INVINVINVINVINVINV CBACBA  . 

Thus,     INVINVINVINVINVINV CBACBA  . 
Proof (ii): associativity of intersections is similar to the proof (i) 
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Proof (iii): Distributive Laws are satisfied for INVS 
Let  INVINVINV CBAx  . If  INVINVINV CBAx   then x is either in INVA or in  INVINV CB  .  
This means that INVAx or  INVINV CBx  .  

If INVAx  or  INVINV CxBx  and  .  

Then,  INVINV BxAx  or  and  INVINV CxAx  or .  
So we have, 

INVINV BAx or and INVINV CAx or  

 INVINV BAx   and  INVINV BAx   

   INVINVINVINV BABAx   
Hence,      INVINVINVINVINVINVINV CABACBA   
Therefore, 

     INVINVINVINVINVINVINV CABACBA   
Let    INVINVINVINV CABAx  . If    INVINVINVINV CABAx   then x is in  INVINV BA or  

and x  INVINV CA or . 
So we have, 

 INVINV BAx or and  INVINV CAx or  

 INVINV BxAx  or and  INVINV CxAx  or  

INVAx or  INVINV CxBx  and  

  INVINVINV CBxAx and  

  INVINVINV CBxAx   

 INVINVINV CBAx   

     INVINVINVINVINVINVINV CBAxCABAx   
 Therefore, 
     INVINVINVINVINVINVINV CBACABA   

     INVINVINVINVINVINVINV CABACBA   
Proof (iv): similar to the prove of (iii) 
 
Proposition 3.3:  
(i)   c

INV
c
INV

c
INVINV BABA   

(ii)   c
INV

c
INV

c
INVINV BABA   

(iii)    cINVINVINV
c
INV

c
INV

c
INV CBACBA   

(iv)    cINVINVINV
c
INV

c
INV

c
INV CBACBA   

 
Proof (i):  
Let  cINVINV BAx   

INVINV BAx   

INVINV BxAx  and  
c
INV

c
INV BxAx  and  

Since for all  cINVINV BAx  such that c
INV

c
INV BAx   

Therefore,   c
INV

c
INV

c
INVINV BABA   

 
Proof (ii): similar to the prove of (i) 
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Proof (ii):  
Let  c

INV
c
INV

c
INV CBAx   

c
INV

c
INV

c
INV CxBxAx   

INVINVINV CxBxAx   

  INVINVINV CBAx   

 INVINVINV CBAx   

 cINVINVINV CBAx   

Since for all  c
INV

c
INV

c
INV CBAx   such that  cINVINVINV CBAx   

Therefore,    cINVINVINV
c
INV

c
INV

c
INV CBACBA   

 
Proof (iv): similar to the prove of (iv) 
 

4 Conclusion 

In this paper, the concept of interval neutrosophic vague was successfully established. The idea of this concept 
was taken from the theory of vague sets and interval neutrosophic. Neutrosophic set theory is mainly concerned 
with indeterminate and inconsistent information. However, interval nutrosophic vague sets were developed to 
improvise results in decision making problem. Meanwhile, vague set capturing vagueness of data. It is clear that, 
interval neutrosophic vague sets, can be utilize in solving decision making problems that inherited   uncertainties. 
The basic operations involving union, complement, intersection for interval neutrosophic vague set was well    
defined. Subsequently, the basic properties of these operations related to interval neutrosophic vague set were 
given and mathematically proven. Finally, some examples are presented. In future, this new extension will 
broaden the knowledge of existing set theories and subsequently, can be used in practical decision making   
problem. 
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Abstract. Many real time problems are based on uncertainity and chaotic environment. To demonstrate this ambiguous suitua-
tion more precisely we intend to amalgamate the ideas of chaos theory and neutrosophy. Neutrosophy is a flourishing arena 
which conceptualizes the notions of true, falsity and indeterminacy attributes of an event. Chaos theory is another branch 
which brings out the concepts of periodic point, orbit and sensitive of a set. Hence in this paper we focus on the introducing the 
idea of chaotic periodic points, orbit sets, sensitive functions under neutrosophic settings. We start with defining a neutrosoph-
ic chaotic space and enlist its properties, As a futher extension we coin neutrosophic chaotic continuous functions and discuss 
its charaterizations and their interrelationships. We have also illustrated the above said concepts with suitable examples. 

 
Keywords: Neutrosophic periodic points, neutrosophic orbit sets, neutrosophic chaotic sets, neutrosophic sensitive functions, 
neutrosophic orbit extremally disconnected spaces. 

 
1 Introduction 

The introduction of the idea of fuzzy set was introduced in the year 1965 by Zadeh[16]. He proposed that each 
element in a fuzzy set has a degree of membership. Following this concept K.Atanassov[1,2,3] in 1983 
introduced the idea of intuitionistic fuzzy set on a universe X as a generalization of fuzzy set. Here besides the 
degree of membership a degree of non-membership for each element is also defined. Smarandache[11,12] 
originally gave the definition of a neutrosophic set and neutrosophic logic. The neutrosophic logic is a formal 
frame trying to measure the truth, indeterminacy and falsehood. The significance of neutrosophy is that it finds 
and indispensible place in decision making. Several authors[7, 8, 9, 10] have done remarkable achievements in 
this area. One of the prime discoveries of the 20th century which has been widely investigated with significant 
progress and achievements is the theory of  Chaos and fractals.It has become an exciting emerging 
interdisciplinary area in which a broad spectrum of technologies and methodologies have emerged to deal with 
large-scale, complex and dynamical systems and problems. In 1989, R.L. Deveney[4] defined chaotic function in 
general metric space. A breakthrough in the conventional general topology was intiated by T. Thrivikraman and 
P.B. Vinod Kumar[15] by defining Chaos and fractals in general topological spaces. M. Kousalyaparasakthi, E. 
Roja, M.K. Uma[6] introduced the above said idea to  intuitionistic chaotic continuous functions. Tethering 
around this concept we introduce neutrosophic periodic points, neutrosophic orbit sets, neutrosophic sensitive 
functions, neutrosophic clopen chaotic sets and neutrossophic chaos spaces. The concepts of neutrosophic 
chaotic continuous functions, neutrosophic chaotic* continuous functions, neutrosophic chaotic** continuous 
functions, neutrosophic chaotic*** continuous functions are introduced and studied. Some interrelation are 
discussed with suitable examples. Also the concept of neutrosophic orbit extremally disconnected spaces, 
neutrosophic chaotic extremally disconnected spaces, neutrosophic orbit irresolute function are discussed. 

2 Preliminaries 
2.1 Definition [12] 

Let X be a non empty set. A neutrosophic set (NS for short) V is an object having the form V = <x, V1, V2, 
V3> where V1, V2, V3 represent the degree of membership, the degree of indeterminacy and the degree of non-
membership respectively of each element x ∈ X to the set V. 

2.2 Definition [12] 

Let X be a non empty set, U = <x, U1, U2, U3> and V = <x, V1, V2, V3> be neutrosophic sets on X, and let {Vi: i 
∈ J} be an arbitrary family of neutrosophic sets in X, where Vi = <x, V1, V2, V3>   
(i) U ⊆ V   U1 ⊆ V1, U2 ⊇ V2 and U3 ⊇ V3  
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(ii) U = V   U ⊆ V and V ⊆ U.  

(iii) V = <x, V3, V2, V1>   
(iv)U∩V=<x, U1∩V1, U2∪V2, U3∪V3>  

(v) U∪V=<x, U1∪V1, U2∩V2, U3∩V3>  
(vi) ∪Vi = <x, ∪Vi

1, ∩Vi
2, ∩Vi

3>  
(vii) ∩Vi = <x, ∩Vi

1, ∪Vi
2, ∪Vi

3>   

(viii)U − V = U ∩ V .  
(ix) φN = <x, φ, X, X>; XN = <x, X, φ, φ >. 

 

2.3 Definition [14] 

A neutrosophic topology (NT for short) on a nonempty set X is a family τ of neutrosophic set in X satisfying the 
following axioms:  
(i) φN, XN ∈ τ.  
(ii) T1∩ T2 ∈ τ for any T1, T2 ∈ τ.  
(iii) ∪Ti ∈ τ for any arbitrary family {Ti : i∈J} ⊆ τ. 
In this case the pair (X, τ) is called a neutrosophic topological space (NTS for short) and any neutrosophic set in 
τ is called a neutrosophic open set (NOS for short) in X. The complement V of a neutrosophic open set V is 
called a neutrosophic closed set (NCS for short) in X. 

2.4 Definition [14] 
Let (X, τ) be a neutrosophic topological space and V = <X, V1, V2, V3> be a set in X. Then the closure and inte-
rior of V are defined by  
Ncl(V) = ∩{M : M is a neutrosophic closed set in X and V ⊆ M},  
Nint(V) = ∪{N : N is a neutrosophic open set in X and N ⊆ V}. 
It can be also shown that Ncl(V) is a neutrosophic closed set and Nint(V) is a neutrosophic open set in X, and V 
is a neutrosophic closed set in X iff Ncl(V) = V; and V is a neutrosophic open set in X iff Nint(V) = V. 
Where Ncl - neutrosophic closure and Nint – neutrosophic interior 

2.5 Definition [5] 

(a) If V = <y,V1,V2,V3> is a neutrosophic set in Y , then the preimage of V under f, denoted by f−1(V), is the neu-
trosophic set in X defined by f−1(V) = <x,f−1(V1),f−1(V2),f−1(V3)>.  
(b) If U = <x,U1,U2,U3> is a neutrosophic set in X, then the image of U under f, denoted by f(U), is the neutro-
sophic set in Y defined by f(U) = <y,f(U1),f(U2),Y-f(X-U3)> where  

f(U1)=





 





otherwise

yfifU
yfx

0

)(sup 11

)(1 
  

f(U2)=





 





otherwise

yfifU
yfx

0

)(sup 12

)(1 
  

Y-f(X-U3)= 





 





otherwise

yfifU
yfx

1

)(inf 13

)(1 
  

2.6 Definition [13]  
Let (X, τ) and (Y,σ) be any two neutrosophic topological spaces and let f : X → Y be a function. Then f is said to 
be continuous if and only if the preimage of each neutrosophic set in σ is a neutrosophic set in τ. 
2.7 Definition [13]  
Let (X, τ) and (Y,σ) be two neutrosophic topological spaces and let f : (X, τ) → (Y,σ) be a function. Then f is 
said to be open iff the image of each neutrosophic set in τ is a neutrosophic set in σ. 
2.8 Definition [4]  
Orbit of a point x in X under the mapping f is Of(x)={x, f(x), f 2(x),...} 
2.9 Definition [4]  
x in X is called a periodic point of f if fn(x) =x, for some n ∈ Z+. Smallest of these n is called period of x. 
2.10 Definition [4]  
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f is sensitive if for each  >0   (a)   (b) y  and (c) n  Z+  d(x,y)<   and d(fn(x),fn(y))>  . 
2.11 Definition [4]  
f is chaotic on (X,d) if (i) Periodic points of f are dense in X (ii) Orbit of x is dense in X for some x in X and       
(iii) f is sensitive.  
2.12 Definition [15]  
Let (X, τ) be a topological space and f : (X, τ) → (X, τ) be continuous map. Then f is sensitive at x ∈ X if given 
any open set U containing x   (i) y ∈ U (ii) n ∈ Z+ and (iii) an open set V   fn(x) ∈ V , fn(y) cl(V ). We say 
that f is sensitive on a F if f|F is sensitive at every point of F. 
2.13 Definition [15]  
Let (X, τ) be a topological space and F ∈ K(X). Let f : F → F be a continuous. Then f is chaotic on F if  

(i) cl(Of(x)) = F for some x ∈ F.  
(ii) periodic points of f are dense in F.  
(iii) f ∈ S(F). 

2.14 Definition [15] 

(i) C(F) = {f : F → F | f is chaotic on F} and (ii) CH(X) = {F ∈ NK(X) | C(F)  φ}. 

2.15 Definition [15] 

A topological space (X, τ) is called a chaos space if CH(X)  φ. The members of CH(X) are called chaotic sets. 

3 Characterizations of neutrosophic chaotic continuous functions  

3.1 Definition  
Let (X, τ) be a neutrosophic topological space and V =<X,V1,V2,V3> be a neutrosophic set of X. 
(i) Ncl(V) denotes neutrosophic closure of V.  
(ii) Nint(V) denotes neutrosophic interior of V.   
(iii) NK(X) denotes the collection of all non empty neutrosophic compact sets of X.  
(iv) clopen denotes closed and open 
3.2 Definition  
Let (X, τ) be a neutrosophic topological space. An orbit of a point x in X under the function f : (X, τ) → (X, τ) is 
denoted and defined as Of(x) = {x,f1(x),f2(x),...fn(x)} for x ∈ X and n ∈ Z+.  
3.3 Example  
Let X = {p,q,r}. Let f : X → X be a function defined by f(p) = q, f(q) = r, and f(r) = p. If n = 1, then the orbit 
points Of(p) = {p,q}, Of(q) = {q,r} and Of(r) = {p,r}. If n = 2, then the orbit points Of(p) = X, Of(q) = X and Of(r) 
= X. 
3.4 Definition  
Let (X, τ) be a neutrosophic topological space. A neutrosophic orbit set in X under the function f : (X, τ) → (X, 
τ) is denoted and defined as NOf(x) = <x,OfT(x),OfI(x),OfF(x)> for x ∈ X. 
3.5 Example  
Let X = {p,q,r,s}. Let f : X → X be a function defined by f(p) = <q,s,q>, f(q) = <s,p.r>, f(r) = <p,q,s> and f(s) = 
<r,r,p>. If n = 1, then the neutrosophic orbit sets NOf(p) = <x,{p,q},{p,s},{p,q}>, NOf(q) = 
<x,{q,s},{q,p},{q,r}>, NOf(r) = <x,{p,r},{q,r},{r,s}> and NOf(s) = <x,{r,s},{r,s},{p,s}>. If n = 2, then the neu-
trosophic orbit sets NOf(p) = <x,{p,q,s},{p,r,s},{p,q,r}>, NOf(q) = <x,{q,r,s},{p,q,s},{q,r,s}>, NOf(r) = 
<x,{p,q,r},{p,q,r},{p,r,s}> and NOf(s) =<x,{p,r,s},{q,r,s},{p,q,s}>. If n = 3, then the neutrosophic orbit sets 
NOf(a) = <x,X,X,X>, NOf(b) =<x,X,X,X>, NOf(c) = <x,X,X,X>and NOf(d) =<x,X,X,X>. 
3.6 Definition  
Let (X, τ) be a neutrosophic topological space and f : (X, τ) → (X, τ) be a neutrosophic continuous function. 
Then f is said to be neutrosophic sensitive at x ∈ X if given any neutrosophic open set U = <x,U1,U2,U3> con-
taining x   a neutrosophic open set V = <x,V1,V2,V3>   fn(x) ∈ V , fn(y) Ncl(V ) and y ∈ U, n ∈ Z+. We say 
that f is neutrosophic sensitive on a neutrosophic compact set F = <x,F1,F2.F3> if f|F is neutrosophic sensitive at 
every point of F. 
3.7 Example  
Let X = {p,q,r,s}. Then the neutrosophic sets P, Q, R and S are defined by P = <x,{p,r,s},{p,q,r},{p,r,s}>, Q = 
<x,{r,s},{p,r},{p,s}>, R = <x,{r,s},{p,q,r},{p,r,s}> and S = <x,{p,r,s},{p,r},{p,s}>. Then the family τ = 
{XN,φN,P,Q,R,S} is neutrosophic topology on X. Clearly, (X, τ) is an neutrosophic topological space. Let f : (X, 
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τ) → (X, τ) be a function defined by f(p) = <r,q,s> f(q) = <s,s,r>, f(r) =< q,p,p> and f(s) = <p,r,q>. Let x = p and 
y = r. If n = 1,3,5, then the neutrosophic open set P = <x,{p,r,s},{p,q,r},{p,r,s}> containing x there exists an 
neutrosophic open set R = <x,{r,s},{p,q,r},{p,r,s}> such that fn(x) ∈ R,fn(y) Ncl(R) and y ∈ P. Hence the 
function f is called neutrosophic sensitive. 
3.8 Notation  
Let (X, τ) be a neutrosophic topological space. Let F = <x,F1,F2,F3> ⊆ XN then S(F) = <x,S(F)1,S(F)2,S(F)3> 
where S(F)1 = {f | f is neutrosophic sensitive on F}, S(F)2 = {f | f is indeterminacy neutrosophic sensitive on F} 
and S(F)3 = {f | f is not neutrosophic sensitive on F}. 
3.9 Definition  
Let (X, τ) be a two neutrosophic topological space. Let f : (X, τ) → (X, τ) be a function. A neutrosophic periodic 
set is denoted and defined as NPf(x) = <x,{x ∈ X | fn

T(x) = x},{x ∈ X | fn
I(x) = x},{x ∈ X | fn

F(x) = x}> 
3.10 Example  
Let X = {p,q,r}. Let f : X → X be a function defined by f(p) = <p,q,r>, f(q) = <r,p,q> and f(r) = <q,r,p>. If n = 1, 
then the neutrosophic periodic set NPf(p) = <x,{p},{q},{r}>, NPf(q) = <x,{r},{p},{q}>and NPf(q) = 
<x,{q},{r},{p}>. If n = 2, then the neutrosophic periodic sets NPf(p) = <x,{p},{p},{p}>,  NPf(q) = 
<x,{q},{q},{q}> and NPf(r) = <x,{r},{r},{r}>. 
3.11 Definition  
Let (X, τ) be a neutrosophic topological space. A neutrosophic set V = <X,V1,V2,V3> of X is said to be a 
neutrosophic dense in X, if Ncl(V) = X. 
3.12 Definition  
Let (X, τ) be a neutrosophic topological space and F = <x,F1,F2,F3> ∈ NK(X). Let f : F → F be a neutrosophic 
continuous function. Then f is said to be neutrosophic chaotic on F if  

(i) Ncl(NOf(x)) = F for some x ∈ F.  
(ii) neutrosophic periodic points of f are neutrosophic dense in F. That is, Ncl(NPf(x)) = F.  
(iii) f ∈ S(F). 

3.13 Notation  
Let (X, τ) be a neutrosophic topological space then C(F) = <x,C(F)1,C(F)2,C(F)3> where C(F)1 = {f : F → F | f is 
neutrosophic chaotic on F}, C(F)2 = {f : F → F | f is indeterminacy neutrosophic chaotic on F},and C(F)3 = {f : F 
→ F | f is not neutrosophic chaotic on F}. 
3.14 Notation  
Let (X, τ) be a neutrosophic topological space then CH(X) = {F = <x,F1,F2,F3> ∈ NK(X) | C(F)  φ}. 
3.15 Definition  
A neutrosophic topological space (X, τ) is called a neutrosophic chaos space if CH(X)  φ. The members of 
CH(X) are called neutrosophic chaotic sets. 
3.16 Definition  
Let (X, τ) be a neutrosophic topological space. A neutrosophic set V = <x,V1,V2,V3> is neutrosophic clopen if it 
is both neutrosophic open and neutrosophic closed. 
3.17 Definition  
Let (X, τ) be a neutrosophic topological space.  

(i)        A neutrosophic open orbit set is a neutrosophic set which is both neutrosophic open and neutro-
sophic orbit.  

(ii)        A neutrosophic closed orbit set is a neutrosophic set which is both neutrosophic closed and neutro-
sophic orbit.  

(iii)        A neutrosophic clopen orbit set is a neutrosophic set which is both neutrosophic clopen and neutro-
sophic orbit. 

3.18 Definition  
Let (X, τ) be a neutrosophic topological space.  

(i)        A neutrosophic open chaotic set is a neutrosophic set which is both neutrosophic open and neutro-
sophic chaotic.  

(ii)        A neutrosophic closed chaotic set is a neutrosophic set which is both neutrosophic closed and neu-
trosophic chaotic.  

(iii)        A neutrosophic clopen chaotic set is a neutrosophic set which is both neutrosophic clopen and neu-
trosophic chaotic. 

3.19 Definition  
Let (X, τ) and (X,σ) be any two neutrosophic chaos spaces. A function f : (X, τ) → (X,σ) is said to be neutro-
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sophic chaotic continuous if for each periodic point x ∈ X and each neutrosophic clopen chaotic set F = 
<x,F1,F2,F3> of f(x)   a neutrosophic open orbit set NOf(x) of the periodic point x   f(NOf(x)) ⊆ F. 
3.20 Example  
Let X={p,q,r,s}. Then the neutrosophic sets M,N,O,P,Q and R are defined by M=<x,{q,r},{r},{p,r}>, 
N=<x,{p},{p,q},{p,s}>, O=<x,{p,q,r},φ,{p}>, P=<x,φ,{p,q,r},{p,r,s}>, Q=<x,{p,q,r},{r},{p}>, 
R=<x,{p},{r},{p,q,r}>. Let τ={XN,φN,M,N,O,P} and σ = {XN,φN,Q,R} be a neutrosophic topologies on X. 
Clearly (X, τ) and (X,σ) be any two neutrosophic chaos spaces. The function f : (X, τ) → (X, σ) is defined by 
f(p) = <p,q,s> f(q) = <r,s,r>, f(r) =< q,r,p> and f(s) = <s,p,q>. Now the function f is called neutrosophic chaotic 
continuous.       
3.21 Theorem  
Let (X, τ) and (X,σ) be any two neutrosophic chaos spaces. Let f : (X, τ) → (X,σ) be a function. Then the 
following statements are equivalent: 

(i)        f is neutrosophic chaotic continuous.  
(ii)        Inverse image of every neutrosophic clopen chaotic set of (X,σ) is a neutrosophic open orbit set of 

(X, τ).  
(iii)        Inverse image of every neutrosophic clopen chaotic set of (X,σ) is a neutrosophic clopen orbit set of 

(X, τ). 

Proof  
(i)⇒ (ii) Let F = <x,F1,F2,F3>  be a neutrosophic clopen chaotic set of (X, σ) and the periodic point x ∈ f−1(F). 
Then f(x) ∈ F. Since f is neutrosophic chaotic continuous,   a neutrosophic open orbit set NOf(x) of (X, τ)   x 
∈ NOf(x), f(NOf(x)) ⊆ F. That is,  x ∈ NOf(x) ⊆ f−1(F). Now, f−1(F) = ∪{NOf(x) : x ∈ f−1(F)}. Since f−1(F) is 
union of neutrosophic open orbit sets. Therefore, f−1(F) is an neutrosophic open orbit set.  
(ii) ⇒ (iii) Let F be a neutrosophic clopen chaotic set of (X, σ). Then X − F is also a neutrosophic clopen chaotic 
set, By (ii) f−1(X − F) is neutrosophic open orbit in (X, τ). So X − f−1(F) is a neutrosophic open orbit set in (X, τ). 
Hence, f−1(F) is neutrosophic closed orbit in (X, τ). By (ii), f−1(F) is a neutrosophic open orbit set of (X, τ). 
Therefore, f−1(F) is both neutrosophic open orbit and neutrosophic closed orbit in (X, τ). Hence, f−1(F) is a 
neutrosophic clopen orbit set of (X, τ).  
(iii) ⇒ (i) Let x be a periodic point, x ∈ X and F be a neutrosophic clopen chaotic set containing f(x) then f−1(F) 
is a neutrosophic open orbit set of (X, τ) containing x and f(f−1(F)) ⊆ F. Hence, f is neutrosophic chaotic 
continuous. 
3.22 Definition  
Let (X, τ) and (X, σ) be any two neutrosophic chaos spaces. A function f : (X, τ) → (X, σ) is said to be 
neutrosophic chaotic* continuous if for each periodic point x ∈ X and each neutrosophic closed chaotic set F 
containing f(x),   neutrosophic open orbit set NOf(x) containing x   f(Ncl(NOf(x))) ⊆ F. 
3.23 Theorem 
A neutrosophic chaotic continuous function is a neutrosophic chaotic* continuous function.  
Proof Since f is a neutrosophic chaotic continuous function, F is a neutrosophic clopen chaotic set containing 
f(x),   a neutrosophic open orbit set NOf(x) containing x   f(NOf(x)) ⊆ F. Then f−1(F) is a neutrosophic clopen 
chaotic set of (X, σ). By (iii) of Theorem 3.21., f−1(F) is a neutrosophic clopen orbit set in (X, τ). Therefore, F is 
a neutrosophic closed chaotic set containing f(x) and f−1(F) is a neutrosophic open orbit set   f(f−1(F)) ⊆ F. 
Since f−1(F) is neutrosophic closed orbit set, Ncl(f−1(F)) = f−1(F). This implies that, f(Ncl(f−1(F))) ⊆ F. Hence, f is 
a neutrosophic chaotic* continuous function. 
3.24 Remark 
The converse of Theorem 3.23. need not be true as shown in Example 3.25. 
3.25 Example 
Let X={p,q,r,s}. Then the neutrosophic sets M,N,O,P,Q,R,S and T are defined by M=<x,{p,r},{q,r},{r}>, 
N=<x,{r},{q},{p,q,r}>, O=<x,{r},{q,r},{p,q,r}>, P=<x,{p,r},{q},{r}>, Q=<x,{p,q,s},{q,s},{p,r}>, 
R=<x,{q,s},{p,q},{q,r}>, S=<x,{q,s},{p,q,s},{p,q,r}>  and T=<x,{p,q,s},{q},{r}>. Let τ={XN,φN,M,N,O,P} and  
σ = {XN,φN,Q,R,S,T} be a neutrosophic topologies on X. Clearly (X, τ) and (X,σ) be any two neutrosophic chaos 
spaces. The function f : (X, τ) → (X, σ) is defined by f(p) = <q,p,s> f(q) = <s,r,p>, f(r) =< p,q,r> and f(s) = 
<r,s,q>. Now the function f is neutrosophic chaotic* continuous but not neutrosophic chaotic continuous. Hence, 
neutrosophic chaotic* continuous function need not be neutrosophic chaotic continuous function.     
3.26 Definition  
Let (X, τ) and (X, σ) be any two neutrosophic chaos spaces. A function f : (X, τ) → (X, σ) is said to be 
neutrosophic chaotic** continuous if for each periodic point x ∈ X and each neutrosophic closed chaotic set F of 
f(x),   a neutrosophic open orbit set NOf(x) of the periodic point x   f(NOf(x)) ⊆ Nint(F). 
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3.27 Theorem 
A neutrosophic chaotic continuous function is a neutrosophic chaotic** continuous function.  
Proof Since f is a neutrosophic chaotic continuous function, F is a neutrosophic clopen chaotic set containing 
f(x),   a neutrosophic open orbit set NOf(x) containing x   f(NOf(x)) ⊆ F. Since F is a neutrosophic open orbit 
set in (X, σ), F = Nint(F). This implies that, f(NOf(x)) ⊆ Nint(F). Hence, f is an neutrosophic chaotic** 
continuous function. 
3.28 Remark  
The converse of Theorem 3.27 need not be true as shown in the Example 3.29. 
3.29 Example 
Let X={p,q,r,s}. Then the neutrosophic sets M,N,O,P,Q,R,S and T are defined by M=<x,{q,r},{r},{p,r}>, 
N=<x,{p,s},{p,q},{p,q}>,O=<x,φ,{p,q,r},{p,q,r}>,P=<x,X,φ,{p}>,Q=<x,{p,q,r},{r},{p,s}>,R=<x,{q},{q,r},{p,r
}>, S=<x,{p,q,r},{r},{p}>  and T=<x,{q},{r},{p,r,s}>. Let τ={XN,φN,M,N,O,P} and  σ = {XN,φN,Q,R,S,T} be a 
neutrosophic topologies on X. Clearly (X, τ) and (X,σ) be any two neutrosophic chaos spaces. The function                 
f : (X, τ) → (X, σ) is defined by f(p) = <p,q,s> f(q) = <r,s,r>, f(r) =< q,r,p> and f(s) = <s,p,q>. Now the function 
f is neutrosophic chaotic** continuous but not neutrosophic chaotic continuous. Hence, neutrosophic chaotic** 
continuous function need not be neutrosophic chaotic continuous function.   
3.30 Definition 
Let (X, τ) and (X, σ) be any two neutrosophic chaos spaces. A function f : (X, τ) → (X, σ) is said to be a 
neutrosophic chaotic*** continuous if for each periodic point x ∈ X and each neutrosophic closed chaotic set F 
of f(x)   a neutrosophic clopen orbit set NOf(x) of the periodic point x   f(Nint(NOf(x))) ⊆ F.  
3.31 Theorem 
A neutrosophic chaotic continuous function is a neutrosophic chaotic*** continuous function.  
Proof Since f is a neutrosophic chaotic continuous function, F is a neutrosophic clopen chaotic set containing 
f(x),   a neutrosophic open orbit set NOf(x) containing x   f(NOf(x)) ⊆ F. This implies that, NOf(x) ⊆ f−1(F). 
Then, f−1(F) is a neutrosophic clopen chaotic set of (X, σ). By (iii) of Theorem 3.21, f−1(F) is a neutrosophic 
clopen orbit set in (X, τ). Therefore, F is a neutrosophic closed chaotic set containing f(x) and f−1(F) is a 
neutrosophic open orbit set   f(f−1(F)) ⊆ F. Since f−1(F) is neutrosophic open orbit set, Nint(f−1(F)) = f−1(F). This 
implies that, f(Nint(f−1(F))) ⊆ F. Hence, f is a neutrosophic chaotic*** continuous function. 
3.32 Remark 
The converse of Theorem 3.31 need not be true as shown in the Example 3.33. 
3.33 Example 
Let X={p,q,r,s}. Then the neutrosophic sets M,N,O,P,Q,R,S and T are defined by M=<x,{q,r},{r},{p,r}>, 
N=<x,{p,r},{r},{q,r}>, O=<x,{p,q,r},{r},{r}>, P=<x,{r},{r},{p,q,r}>, Q=<x,{p,q,r},{q,r},{p,s}>, 
R=<x,{q,r},{p,q},{r,s}>, S=<x,    {p,q,r},{r},{p}> and T=<x,{q},{r},{p,r,s}>. Let τ={XN,φN,M,N,O,P} and  σ = 
{XN,φN,Q,R,S,T} be a neutrosophic topologies on X. Clearly (X, τ) and (X,σ) be any two neutrosophic chaos 
spaces. The function f : (X, τ) → (X, σ) is defined by f(p) = <p,q,s> f(q) = <r,s,r>, f(r) =< q,r,p> and f(s) = 
<s,p,q>. Now the function f is neutrosophic chaotic*** continuous but not neutrosophic chaotic continuous. 
Hence, neutrosophic chaotic*** continuous function need not be neutrosophic chaotic continuous function.   
3.34 Remark 
The interrelation among the functions introduced are given clearly in the following diagram. 
  

Figure 1:  
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neutrosophic closure of every neutrosophic open orbit set is neutrosophic open orbit. 
4.2 Theorem 
Let (X, τ) and (X, σ) be any two neutrosophic chaos spaces. If f : (X, τ) → (X, σ) is a neutrosophic chaotic 
continuous function and (X, τ) is a neutrosophic orbit extremally disconnected space then f is a neutrosophic 
chaotic* continuous function.  
Proof Let x be a periodic point and x ∈ X. Since f is neutrosophic chaotic continuous, F = <x,F1,F2,F3> is a 
neutrosophic clopen chaotic set of (X, σ),   a neutrosophic open orbit set NOf(x) of (X, τ) containing x   
f(NOf(x)) ⊆ F. Therefore, NOf(x) is a neutrosophic open orbit set NOf(x) of (X, τ). Since (X, τ) is neutrosophic 
orbit extremally disconnected, Ncl(NOf(x)) is a neutrosophic open orbit set. Therefore, F is a neutrosophic closed 
chaotic set containing f(x)   a neutrosophic open orbit set Ncl(NOf(x))   f(Ncl(NOf(x))) ⊆ F. Hence, f is 
neutrosophic chaotic* continuous. 
4.3 Definition 
A neutrosophic chaos space (X, τ) is said to be neutrosophic chaotic 0- dimensional if it has a neutrosophic base 
consisting of neutrosophic clopen chaotic sets. 
4.4 Theorem 
Let (X, τ) and (X, σ) be any two neutrosophic chaos spaces. Let f : (X, τ) → (X, σ) be a neutrosophic chaotic*** 
continuous function. If (X, σ) is neutrosophic chaotic 0-dimensional then f is a neutrosophic chaotic continuous 
function.  
Proof Let the periodic point x ∈ X. Since (X, σ) is neutrosophic chaotic 0-dimensional,   a neutrosophic clopen 
chaotic set F = <x,F1,F2,F3> in (X, σ). Since f is a neutrosophic chaotic*** continuous function,   a 
neutrosophic clopen orbit set NOf(x)   f(Nint(NOf(x))) ⊆ F. Since NOf(x) is a neutrosophic open orbit set, 
Nint(NOf(x) = NOf(x). This implies that, f(NOf(x)) ⊆ F. Therefore, f is neutrosophic chaotic continuous. 
4.5 Definition 
A neutrosophic chaos space (X, τ) is said to be a neutrosophic orbit connected space if XN cannot be expressed 
as the union of two neutrosophic open orbit sets NOf(x) and NOf(y), x,y ∈ X of (X, τ) with NOf(x) ∩NOf(y) φN. 
4.6 Definition 
A neutrosophic chaos space (X, τ) is said to be a neutrosophic chaotic connected space if XN cannot be expressed 
as the union of two neutrosophic open chaotic sets U = <x,U1,U2,U3> and V = <x,V1,V2,V3>  of (X, τ) with U∩V 

 φN. 
4.7 Theorem 
A neutrosophic chaotic continuous image of a neutrosophic orbit connected space is a neutrosophic chaotic 
connected space.  
Proof Let (X, σ) be neutrosophic chaotic disconnected. Let F1 = <x, 3

1
2

1
1

1 ,, FFF > and F2 = <x, 3
2

2
2

1
2 ,, FFF >  be 

a neutrosophic chaotic disconnected sets of (X, σ). Then F1 φN and F2  φN are neutrosophic clopen chaotic 
sets in (X, σ) and YN= F1∪F2 where F1 ∩ F2 = φN . Now, XN = f−1(YN) = f−1(F1 ∪ F2) = f−1(F1) ∪ f−1(F2).Since f is 
neutrosophic chaotic continuous, f−1(F1) and f−1(F2) are neutrosophic open orbit sets in (X, τ). Also 
f−1(F1)∩f−1(F2) = φN. Therefore, (X, τ) is not neutrosophic orbit connected. Which is a contradiction. Hence, (X, 
σ) is neutrosophic chaotic connected. 
4.8 Theorem 
Let (X, τ) and (X, σ) be any two neutrosophic chaos spaces. If f : (X, τ) → (X, σ) is a neutrosophic chaotic 
continuous function and NOf(x) is neutrosophic open orbit set then the restriction f|NOf(x) : NOf(x) → (X, σ) is 
neutrosophic chaotic continuous.  
Proof Let F = <x,F1,F2,F3> be a neutrosophic clopen chaotic set in (X, σ). Then, (f|NOf(x))−1(F) = f−1(F) ∩ 
NOf(x). Since f is neutrosophic chaotic continuous, f−1(F) is neutrosophic open orbit in (X, τ) and NOf(x) is a 
neutrosophic open orbit set. This implies that, f−1(F) ∩ NOf(x) is a neutrosophic open orbit set. Therefore, 
(f|NOf(x))−1(F) is neutrosophic open orbit in (X, τ). Hence, f|NOf(x) is neutrosophic chaotic continuous. 
4.9 Definition 
Let (X, τ) be a neutrosophic chaos space. If a family {NOf(xi) : i ∈ J} of neutrosophic open orbit set in (X, τ) 
satisfies the condition ∪NOf(xi) = XN, then it is called a neutrosophic open orbit cover of (X, τ).  
4.10 Theorem 
Let {NOf(x)γ : γ ∈ Γ} be any neutrosophic open orbit cover of a neutrosophic chaos space (X, τ). A function f : 
(X, τ) → (X, σ) is a neutrosophic chaotic continuous function if and only if the restriction f|NOf(x)γ : NOf(x)γ → 
(X, σ) is neutrosophic chaotic continuous for each γ ∈ Γ.  
Proof Let γ be an arbitrarily fixed index and NOf(x)γ be a neutrosophic open orbit set of (X, τ). Let the periodic 
point x ∈ NOf(x)γ and F = <x,F1,F2,F3> is neutrosophic clopen chaotic set containing (f|NOf(x)γ)(x) = f(x). Since 
f is neutrosophic chaotic continuous there exists a neutrosophic open orbit set NOf(x) containing x such that 
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f(NOf(x)) ⊆ F. Since (NOf(x)γ) is neutrosophic open orbit cover in (X, τ), x ∈ NOf(x)∩NOf(x)γ and 
(f|NOf(x)γ)(NOf(x) ∩ (NOf(x)γ) = f(NOf(x) ∩ (NOf(x)γ)) ⊂ f(NOf(x) ⊂ F. Hence f|NOf(x)γ is a neutrosophic cha-
otic continuous function. Conversely, let the periodic point x ∈ X and F be a neutrosophic chaotic set containing 
f(x). There exists an γ ∈ Γ such that x ∈ NOf(x)γ. Since (f|NOf(x)γ) : NOf(x)γ → (X, σ) is neutrosophic chaotic 
continuous, there exists a NOf(x) ∈ NOf(x)γ containing x such that (f|NOf(x)γ)(NOf(x)) ⊆ F. Since NOf(x) is neu-
trosophic open orbit in (X, τ), f(NOf(x)) ⊆ F. Hence, f is neutrosophic chaotic continuous. 
4.11 Theorem 
If a function f : (X, τ) →  (X, σ)λ is neutrosophic chaotic continuous then Pλ◦ f : (X, τ) → (X, σ)λ is neutro-
sophic chaotic continuous for each λ ∈ Λ, where Pλ is the projection of  (X, σ)λ onto (X, σ)λ.  
Proof Let Fλ = <x, 321 ,,


FFF > be any neutrosophic clopen chaotic set of (X, σ)λ. Then 1


P  (Fλ) is a neutro-

sophic clopen chaotic set in  (X, σ)λ and hence (Pλ ◦ f)−1(Fλ) = f−1( 1


P (Fλ)) is a neutrosophic open orbit set in 
(X, τ). Therefore, Pλ ◦ f is neutrosophic chaotic continuous. 
4.12 Theorem 
If a function f :  (X, τ)λ →  (X, σ)λ is neutrosophic chaotic continuous then fλ : (X, τ)λ → (X, σ)λ is a neutro-
sophic chaotic continuous function for each λ ∈ Λ.  
Proof Let Fλ =<x, 321 ,,


FFF > be any neutrosophic clopen chaotic set of (X, σ)λ. Then 1


P   (Fλ) is neutrosoph-

ic clopen chaotic in  (X, σ)λ and f−1( 1


P (Fλ)) = 1


f (Fλ)×  {(X, τ)α : α ∈ Λ − {λ}}. Since f is neutrosophic 

chaotic continuous, f−1( 1


P (Fλ)) is a neutrosophic open orbit set in  (X, τ)λ. Since the projection Pλ of  (X, 

τ)λ onto (X, τ)λ is a neutrosophic open function, 1


f (Fλ) is neutrosophic open orbit in (X, τ)λ. Hence, fλ is neu-
trosophic chaotic continuous. 
4.13 Definition 
Let (X, τ) and (X, σ) be any two neutrosophic chaos spaces. A function f : (X, τ) → (X, σ) is said to be neutro-
sophic chaotic irresolute if for each neutrosophic clopen chaotic set F = <x,F1,F2,F3> in (X, σ), f−1(A) is a neutro-
sophic clopen chaotic set of (X, τ). 
4.14 Theorem 
Let (X, τ) and (X, σ) be any two neutrosophic chaos spaces. If f : (X, τ) → (X, σ) is a neutrosophic chaotic con-
tinuous function and g : (X, σ) → (X, ) is a neutrosophic chaotic irresolute function, then g ◦ f : (X, τ) → 
(X, ) is neutrosophic chaotic continuous.  
Proof Let F = <x,F1,F2,F3> be a neutrosophic clopen set of (X, ). Since g is neutrosophic chaotic irresolute, 
g−1(F) is neutrosophic clopen chaotic set of (X, σ). Since f is neutrosophic chaotic continuous, f−1(g−1(F)) = (g ◦ 
f)−1(F) is a neutrosophic open orbit set of (X, τ) such that f−1(g−1(F)) ⊆ F. Hence g ◦ f is neutrosophic chaotic 
continuous. 
4.15 Definition 
Let (X, τ) and (X, σ) be any two neutrosophic chaos spaces. A function f : (X, τ) → (X, σ) is said to be neutro-
sophic orbit irresolute if for each neutrosophic open orbit set NOf(x) in (X, σ), f−1(NOf(x)) is a neutrosophic open 
orbit set of (X, τ). 
4.16 Definition 
Let (X, τ) and (X, σ) be any two neutrosophic chaos spaces. Let f : (X, τ) → (X, σ) be a function. Then f is said 
to be a neutrosophic open orbit function if the image of every neutrosophic open orbit set in (X, τ) is neutrosoph-
ic open orbit in (X, σ). 
4.17 Theorem 
Let f : (X, τ) → (X, σ) be neutrosophic orbit irresolute, surjective and neutrosophic open orbit function. Then g ◦ 
f : (X, τ) → (X, ) is neutrosophic chaotic continuous iff  g : (X, σ) → (X, ) is neutrosophic chaotic continuous.                                              

Proof Let Fλ =<x, 321 ,,


FFF > be a neutrosophic clopen chaotic set of (X, ). Since g is neutrosophic chaotic 
continuous, g−1(F) is neutrosophic open orbit in (X, σ). Since f is neutrosophic orbit irresolute, f−1(g−1(F)) = (g ◦ 
f)−1(F) is neutrosophic open orbit in (X, τ). Hence g ◦ f is neutrosophic chaotic continuous. Conversely, let g ◦ f : 
(X, τ) → (X, ) be  neutrosophic chaotic continuous function. Let F be a neutrosophic clopen chaotic set of 
(X, ), then (g ◦ f)−1(F) is a neutrosophic open orbit set of (X, τ). Since f is neutrosophic open orbit and surjec-
tive, f(f−1(g−1(F)) is a neutrosophic open orbit set of (X, σ). Therefore, g−1(F) is a neutrosophic open orbit set in 
(X, σ). Hence, g is neutrosophic chaotic continuous. 
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Conclusion  
In this paper, characterization of neutrosophic chaotic continuous functions are studied. Some interrelations are 
discussed with suitable examples. Also, neutrosophic orbit, extremally disconnected spaces and neutrosophic 
chaotic zero-dimensional spaces has been discussed with some interesting properties. This paper paves way in 
future to introduce and study the notions of neutrosophic orbit Co-kernal spaces, neutrosophic hardly open orbit 
spaces, neutrosophic orbit quasi regular spaces and neutrosophic orbit strongly complete spaces, neutrosophic 
orbit Co-kernal function, neutrosophic hardly open orbit function for which the above discussed set form the ba-
sis. 
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Abstract . In this paper, the concept of single valued neutrosophic number (SV N -number) is presented in a gener-
alized way. Using this notion, a crisp linear programming problem (LP -problem) is extended to a neutrosophic linear
programming problem (NLP -problem). The coefficients of the objective function of a crisp LP -problem are consid-
ered as generalized single valued neutrosophic number (GSV N -number). This modified form of LP -problem is here
called an NLP -problem. An algorithm is developed to solve NLP -problem by simplex method. Finally, this simplex
algorithm is applied to a real life problem. The problem is illustrated and solved numerically.

Keywords : Single valued neutrosophic number; Neutrosophic linear programming problem; Simplex method.

1 Introduction
Introduction of fuzzy set by Zadeh [10] and then intuitionistic fuzzy set by Atanassov [8] brought a golden
opportunity to handle the uncertainty and vagueness in our daily life activities. The fuzzy sets are evaluated by
the membership grade of an object only, whereas intuitionistic fuzzy set meets the membership and the non-
membership grade of an object simultaneously. To deal with uncertainty more precisely, Smarandache [3,4]
initiated the notion of neutrosophic set (NS), a generalised version of classical set, fuzzy set, intuitionistic fuzzy
set etc. In the neutrosophic logic, each proposition is estimated by a triplet viz., truth grade, indeterminacy grade
and falsity grade. The indeterministic part of uncertain data, introduced in NS theory, plays an important role
to make a proper decision which is not possible by intuitionistic fuzzy set theory. Since indeterminacy always
appears in our routine activities, theNS theory can analyse the various situations smoothly. But it is too difficult
to apply the NS theory in real life scenario for it’s initial character as pointed out by Smarandache. So to apply
in real spectrum, Wang et al. [6] brought the concept of single valued neutrosophic set (SV N -set). Ranking of
fuzzy number and intuitionistic fuzzy number is an interesting subject needed in decision making, optimization,
even in developing of various mathematical structures. From time to time, several ranking methods [2,5,9,13-
15] have been adopted by researchers. Naturally, the ranking of neutrosophic number also was come into
consideration from beginning of NS theory. Deli and Subas [7] considered a ranking way of neutrosophic
numbers and have used it to a decision making problems. Abdel-Baset [11,12] solved group decision making
problems based on TOPSIS technique by use of neutrosophic number. To estimate and solve the NLP -problem
in different direction, some respective attempts [1,16] by researchers are seen.

This paper introduces the structure of SV N -number in a different way to opt the notion of generalized single
valued trapezoidal neutrosophic number (GSV TN -number), generalized single valued triangular neutrosophic
number (GSV TrN -number) and develops an algorithm to solveNLP -problem by simplex method. The proposed
simplex algorithm is applied to a real life problem. The problem is illustrated and solved numerically.

The organisation of this paper is as follows. Section 2 deals some preliminary definitions. The concept of
GSV N -number, GSV TN -number, GSV TrN -number and their respective parametric form are presented in Sec-
tion 3. The concept of NLP -problem and it’s solution procedure are proposed in Section 4 and Section 5,
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respectively. In Section 6, the simplex method is illustrated by suitable examples. Finally, the present work is
summarised in Section 7.

2 Preliminaries
Some basic definitions are provided to bring the main thought of this paper here.

2.1 Definition [18]

A continuous t- norm ∗ and t- conorm � are two continuous binary operations assigning [0, 1]× [0, 1]→ [0, 1]
and obey the under stated principles :
(i) ∗ and � are both commutative and associative.
(ii) x ∗ 1 = 1 ∗ x = x and x � 0 = 0 � x = x, ∀x ∈ [0, 1].
(iii) x ∗ y ≤ p ∗ q and x � y ≤ p � q if x ≤ p, y ≤ q with x, y, p, q ∈ [0, 1].
x ∗ y = xy, x ∗ y = min{x, y}, x ∗ y = max{x+ y − 1, 0} are most useful t-norms and
x � y = x+ y − xy, x � y = max{x, y}, x � y = min{x+ y, 1} are most useful t-conorms.

2.2 Definition [3]

An NS Q on an initial universe X is presented by three characterisations namely true value TQ, indeter-
minant value IQ and false value FQ so that TQ, IQ, FQ : X →]−0, 1+[. Thus Q can be designed as : {<
u, (TQ(u), IQ(u), FQ(u)) >: u ∈ X} with −0 ≤ supTQ(u) + sup IQ(u) + supFQ(u) ≤ 3+. Here 1+ = 1 + δ,
where 1 is standard part and δ is non-standard part. Similarly −0 = 0 − δ. The non-standard set ]−0, 1+[ is
basically practiced in philosophical ground and because of the difficulty to adopt it in real field, the standard
subset of ]−0, 1+[ i.e., [0,1] is applicable in real neutrosophic environment.

2.3 Definition [6]

An SV N -set Q over a universe X is a set Q = {< x, TQ(x), IQ(x), FQ(x) >: x ∈ X and TQ(x), IQ(x),
FQ(x) ∈ [0, 1]} with 0 ≤ supTQ(x) + sup IQ(x) + supFQ(x) ≤ 3.

2.4 Definition [7]

Let ai, bi, ci, di ∈ R (the set of all real numbers) with ai ≤ bi ≤ ci ≤ di (i = 1, 2, 3) and wp̃, up̃, yp̃ ∈ [0, 1] ⊂ R.
Then an SV N -number p̃ = 〈([a1, b1, c1, d1];wp̃), ([a2, b2, c2, d2];up̃), ([a3, b3, c3, d3]; yp̃)〉 is a special SV N -set
on R whose true value, indeterminant value, false value are respectively defined by the mappings Tp̃ : R →
[0, wp̃], Ip̃ : R→ [up̃, 1], Fp̃ : R→ [yp̃, 1] and they are given as :

Tp̃(x) =


glT (x), a1 ≤ x ≤ b1,
wp̃, b1 ≤ x ≤ c1,
grT (x), c1 ≤ x ≤ d1,
0, otherwise.

Ip̃(x) =


glI(x), a2 ≤ x ≤ b2,
up̃, b2 ≤ x ≤ c2,
grI(x), c2 ≤ x ≤ d2,
1, otherwise.

Fp̃(x) =


glF (x), a3 ≤ x ≤ b3,
yp̃, b3 ≤ x ≤ c3,
grF (x), c3 ≤ x ≤ d3,
1, otherwise.

The functions glT : [a1, b1] → [0, wp̃], g
r
I : [c2, d2] → [up̃, 1], g

r
F : [c3, d3] → [yp̃, 1] are continuous and non-

decreasing functions satisfying : glT (a1) = 0, glT (b1) = wp̃, g
r
I(c2) = up̃, g

r
I(d2) = 1, grF (c3) = yp̃, g

r
F (d3) = 1.
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The functions grT : [c1, d1] → [0, wp̃], g
l
I : [a2, b2] → [up̃, 1], g

l
F : [a3, b3] → [yp̃, 1] are continuous and non-

increasing functions satisfying : grT (c1) = wp̃, g
r
T (d1) = 0, glI(a2) = 1, glI(b2) = up̃, g

l
F (a3) = 1, glF (b3) = yp̃.

2.4.1 Definition [7]

If [a1, b1, c1, d1] = [a2, b2, c2, d2] = [a3, b3, c3, d3], then the SV N -number p̃ is reduced to a single valued trape-
zoidal neutrosophic number as : p̃ = 〈([a1, b1, c1, d1];wp̃, up̃, yp̃)〉.
p̃ = 〈([a1, b1, d1];wp̃, up̃, yp̃)〉 is called a single valued triangular neutrosophic number if b1 = c1.

2.5 Definition [17]
The (α, β, γ)-cut of an NS P is denoted by P(α,β,γ) and is defined as : P(α,β,γ) = {x ∈ X : TP (x) ≥
α, IP (x) ≤ β, FP (x) ≤ γ} with α, β, γ ∈ [0, 1] and 0 ≤ α + β + γ ≤ 3. Clearly, it is a crisp subset X .

2.6 Definition [14]
In parametric form, a fuzzy number P is a pair (PL, PR) of functions PL(r), PR(r), r ∈ [0, 1] satisfying the
followings.
(i) Both are bounded functions.
(ii) PL is monotone increasing left continuous and PR is monotone decreasing right continuous function.
(iii) PL(r) ≤ PR(r), 0 ≤ r ≤ 1.
A trapezoidal fuzzy number is put as P = (x0, y0, δ, ζ) where [x0, y0] is interval defuzzifier and δ(> 0), ζ(> 0)
are respectively called left fuzziness, right fuzziness. (x0 − δ, y0 + ζ) is the support of P and it’s membership
function is :

P (x) =


1
δ
(x− x0 + δ), x0 − δ ≤ x ≤ x0,

1, x ∈ [x0, y0],
1
ζ
(y0 − x+ ζ), y0 ≤ x ≤ y0 + ζ,

0, otherwise.

In parametric form PL(r) = x0 − δ + δr, PR(r) = y0 + ζ − ζr.
For arbitrary trapezoidal fuzzy numbers P = (PL, PR), Q = (QL, QR) and scalar k > 0, the addition and scalar
multiplication are P +Q, kQ and they are defined by :

(P +Q)L(r) = PL(r) +QL(r), (P +Q)R(r) = PR(r) +QR(r) and
(kQ)L(r) = kQL(r), (kQ)R(r) = kQR(r).

3 Generalised single valued neutrosophic number
Here, the structure of GSV N -number, GSV TN -number and GSV TrN -number have been presented.

3.1 Definition
• The support of three components of an SV N -set Q over X are given by a triplet (SQT , SQI , SQF ) where
SQT = {u ∈ X|TQ(u) > 0}, SQI = {u ∈ X|IQ(u) < 1}, SQF = {u ∈ X|FQ(u) < 1}.
• The height of the components of Q are given by a triplet (HQT , HQI , HQF ) where HQT = max{TQ(u)|u ∈
X}, HQI = max{IQ(u)|u ∈ X}, HQF = max{FQ(u)|u ∈ X}.
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3.1.1 Example

Define an SV N -setQ on {0, 1, · · · , 10} ⊂ Z (the set of integers) as : {< u, ( u
1+u

, 1− 1
2u
, 1
1+u

) > |0 ≤ u ≤ 10}.
Then SQT = {1, · · · , 10}, SQI = {0, · · · , 10}, SQF = {1, · · · , 10} and HQT = 0.909 at u = 10, HQI = 0.999
at u = 10, HQF = 1 at u = 0.

3.2 Definition

A GSV N -number p̃ = 〈([a1, b1, σ1, η1];wp̃), ([a2, b2, σ2, η2];up̃), ([a3, b3, σ3, η3]; yp̃)〉 is a special SV N -set on R
where σi(> 0), ηi(> 0) are respectively called left spreads, right spreads and [ai, bi] are the modal intervals of
truth, indeterminacy and falsity functions for i = 1, 2, 3 respectively in p̃ and wp̃, up̃, yp̃ ∈ [0, 1] ⊂ R. The truth,
indeterminacy and falsity functions are defined as follows :

Tp̃(x) =


1
σ1
wp̃(x− a1 + σ1), a1 − σ1 ≤ x ≤ a1,

wp̃, x ∈ [a1, b1],
1
η1
wp̃(b1 − x+ η1), b1 ≤ x ≤ b1 + η1,

0, otherwise.

Ip̃(x) =


1
σ2
(a2 − x+ up̃(x− a2 + σ2)), a2 − σ2 ≤ x ≤ a2,

up̃, x ∈ [a2, b2],
1
η2
(x− b2 + up̃(b2 − x+ η2)), b2 ≤ x ≤ b2 + η2,

1, otherwise.

Fp̃(x) =


1
σ3
(a3 − x+ yp̃(x− a3 + σ3)), a3 − σ3 ≤ x ≤ a3,

yp̃, x ∈ [a3, b3],
1
η3
(x− b3 + yp̃(b3 − x+ η3)), b3 ≤ x ≤ b3 + η3,

1, otherwise.

In parametric form, aGSV N -number p̃ consists of three pairs (T lp̃, T
u
p̃ ), (I

l
p̃, I

u
p̃ ), (F

l
p̃, F

u
p̃ ) of functions T lp̃(r), T

u
p̃ (r),

I lp̃(r), I
u
p̃ (r), F

l
p̃(r), F

u
p̃ (r), r ∈ [0, 1] satisfying the followings.

(i) T lp̃, I
u
p̃ , F

u
ã are bounded monotone increasing continuous function.

(ii) T up̃ , I
l
p̃, F

l
ã are bounded monotone decreasing continuous function.

(iii) T lp̃(r) ≤ T up̃ (r), I
l
p̃(r) ≥ Iup̃ (r), F

l
p̃(r) ≥ F u

p̃ (r), r ∈ [0, 1].

3.2.1 Definition

• The support of the components of a GSV N -number p̃ are given by a triplet (SPT , SPI , SPF ) where SPT = {x ∈
R|Tp̃(x) > 0}, SPI = {x ∈ R|Ip̃(x) < 1}, SPF = {x ∈ R|Fp̃(x) < 1}.
• The height of the components of p̃ are given by a triplet (HPT , HPI , HPF ) where Hp̃T = wp̃, Hp̃I = 1 −
up̃, Hp̃F = 1− yp̃.
• The boundaries of the truth function of p̃ are : LBp̃T = (a1 − σ1, a1) and RBp̃T = (b1, b1 + η1). LBp̃T

and RBp̃T are respectively called left boundary and right boundary for truth function of p̃. Similarly, LBp̃I =
(a2 − σ2, a2), RBp̃I = (b2, b2 + η2) and LBp̃F = (a3 − σ3, a3), RBp̃F = (b3, b3 + η3).
• The core for the truth function of p̃ is a set of points at which it’s height is measured. Similarly, the core for
other two components are defined.
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3.2.2 Example

Consider a GSV N -number p̃ on R whose three components are as follows :

Tp̃(x) =


0.6(x−11)

4
, x ∈ [11, 15]

0.6, x ∈ [15, 25]
0.6(36−x)

11
, x ∈ [25, 36]

0, otherwise.

Ip̃(x) =


4.4−0.1x

4
, x ∈ [4, 8]

0.9, x ∈ [8, 13]
0.1x+5

7
, x ∈ [13, 20]

1, otherwise.

Fp̃(x) =


26−x
3
, x ∈ [23, 26]

0, x ∈ [26, 30]
x−30
8
, x ∈ [30, 38]

1, otherwise.

Then SPT = (11, 36), SPI = (4, 20) and SPF = (23, 38).
For that p̃, Hp̃T = 0.6, Hp̃I = 0.1, Hp̃F = 1. Here,
LBp̃T = (11, 15), RBp̃T = (25, 36); LBp̃I = (4, 8), RBp̃I = (13, 20); LBp̃F = (23, 26), RBp̃F = (30, 38).
The core of truth, indeterminacy and falsity function are [15, 25], [8, 13], [26, 30] respectively.

3.3 Definition

Let us assume two GSV N -numbers p̃ and q̃ as follows :
p̃ = 〈([a1, a′1, σ1, η1];wp̃), ([a2, a′2, σ2, η2];up̃), ([a3, a′3, σ3, η3]; yp̃)〉,
q̃ = 〈([b1, b′1, ξ1, δ1];wq̃), ([b2, b′2, ξ2, δ2];uq̃), ([b3, b′3, ξ3, δ3]; yq̃)〉.

Then for any real number x,
(i) Image of p̃ :
−p̃ = 〈([−a′1,−a1, η1, σ1];wp̃), ([−a′2,−a2, η2, σ2];up̃), ([−a′3,−a3, η3, σ3]; yp̃)〉.

(ii) Addition :
p̃+ q̃ = 〈([a1 + b1, a

′
1 + b′1, σ1 + ξ1, η1 + δ1];wp̃ ∗ wq̃), ([a2 + b2, a

′
2 + b′2, σ2 + ξ2, η2 + δ2];up̃ � uq̃),

([a3 + b3, a
′
3 + b′3, σ3 + ξ3, η3 + δ3]; yp̃ � yq̃)〉.

(iii) Scalar multiplication :
xp̃ = 〈([xa1, xa′1, xσ1, xη1];wp̃), ([xa2, xa′2, xσ2, xη2];up̃), ([xa3, xa′3, xσ3, xη3]; yp̃)〉

for x > 0.
xp̃ = 〈([xa′1, xa1,−xη1,−xσ1];wp̃), ([xa′2, xa2,−xη2,−xσ2];up̃), ([xa′3, xa3,−xη3,−xσ3]; yp̃)〉

for x < 0.

3.4 Corollary

Let p̃ = 〈([a1, b1, σ1, η1];wp̃), ([a2, b2, σ2, η2];up̃), ([a3, b3, σ3, η3]; yp̃)〉 be an GSV N -number.
1. Any α-cut set of the GSV N -number p̃ for truth function is denoted by p̃α and is given by a closed interval as :

p̃α = [Lp̃(α), Rp̃(α)] = [a1 − σ1 +
σ1α

wp̃
, b1 + η1 −

η1α

wp̃
], for α ∈ [0, wp̃].

The value of p̃ corresponding α-cut set is denoted by VT (p̃) and is calculated as :

VT (p̃) =

∫ wp̃

0

[(a1 − σ1 +
σ1α

wp̃
) + (b1 + η1 −

η1α

wp̃
)]α dα

=

∫ wp̃

0

[a1 + b1 + η1 − σ1 −
(η1 − σ1)α

wp̃
]α dα

=
1

6
(3a1 + 3b1 − σ1 + η1)w

2
p̃.
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2. Any β- cut set of the GSV N -number p̃ for indeterminacy membership function is denoted by p̃β and is given
by a closed interval as :

p̃β = [L′p̃(β), R
′
p̃(β)]

= [
(up̃ − β)σ2 + (1− up̃)a2

1− up̃
,
(β − up̃)η2 + (1− up̃)b2

1− up̃
], for β ∈ [up̃, 1].

The value of p̃ corresponding β- cut set is denoted by VI(p̃) and is calculated as :

VI(p̃) =

∫ 1

up̃

[
(up̃ − β)σ2 + (1− up̃)a2

1− up̃
+

(β − up̃)η2 + (1− up̃)b2
1− up̃

](1− β) dβ

=

∫ 1

up̃

[a2 + b2 − σ2 + η2 +
(σ2 − η2)(1− β)

1− up̃
](1− β) dβ

=
1

6
(3a2 + 3b2 − σ2 + η2)(1− up̃)2.

3. Any γ-cut set of the GSV N -number p̃ for falsity membership function is denoted by γ p̃ and is given by a
closed interval as :

γ p̃ = [L′′p̃(γ), R
′′
p̃(γ)]

= [
(up̃ − γ)σ3 + (1− yp̃)a3

1− yp̃
,
(γ − yp̃)η3 + (1− yp̃)b3

1− yp̃
], for γ ∈ [yp̃, 1].

The value of p̃ corresponding γ-cut set is denoted by VF (p̃) and is calculated as :

VF (p̃) =

∫ 1

yp̃

[
(up̃ − γ)σ3 + (1− yp̃)a3

1− yp̃
+

(γ − yp̃)η3 + (1− yp̃)b3
1− yp̃

](1− γ) dγ

=

∫ 1

yp̃

[a3 + b3 − σ3 + η3 +
(σ3 − η3)(1− γ)

1− yp̃
](1− γ) dγ

=
1

6
(3a3 + 3b3 − σ3 + η3)(1− yp̃)2.

3.5 Definition
For κ ∈ [0, 1], the κ-weighted value of an GSV N -number b̃ is denoted by Vκ(b̃) and is defined as :
Vκ(b̃) = κnVT (b̃) + (1− κn)VI(b̃) + (1− κn)VF (b̃), n being any natural number.

Thus, the κ - weighted value for the GSV N - number p̃ defined in Corollary 3.4 is :

Vκ(p̃) =
1

6
[(3a1 + 3b1 − σ1 + η1)κ

nw2
p̃ + (3a2 + 3b2 − σ2 + η2)(1− κn)(1− up̃)2

+(3a3 + 3b3 − σ3 + η3)(1− κn)(1− yp̃)2].

3.5.1 Property of κ - weighted value function

The κ- weighted value Vκ(p̃) and Vκ(q̃) of two GSV N -numbers p̃, q̃ respectively obey the followings.
(i) Vκ(p̃± q̃) ≤ Vκ(p̃) + Vκ(q̃), Vκ(p̃+ q̃) ≥ Vκ(p̃) ∼ Vκ(q̃).
(ii) Vκ(p̃− p̃) = Vκ(0̃), Vκ(µp̃) = µVκ(p̃)) for µ being any real number.
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(iii) Vκ(p̃) is monotone increasing or decreasing or constant according as VT (p̃) > VI(p̃) + VF (p̃)
or VT (p̃) < VI(p̃) + VF (p̃) or VT (p̃) = VI(p̃) + VF (p̃) respectively.

Proof. We shall here prove (vi) only. Others can be easily verified by taking any two GSV N -numbers. Here,

Vκ(p̃) = κnVT (p̃) + (1− κn)(VI(p̃) + VF (p̃))

dVκ(p̃)

dκ
= nκn−1[VT (p̃)− (VI(p̃) + VF (p̃))]

As κ ∈ [0, 1], so dVκ(p̃)
dκ

>,<,= 0 for [VT (p̃)− (VI(p̃) + VF (p̃))] >,<,= 0 respectively. This clears the fact.

3.6 Definition

Let GSV N(R) be the set of all GSV N -numbers defined over R. For κ ∈ [0, 1], a mapping <κ : GSV N(R) −→ R
is called a ranking function and it is defined as : <κ(ã) = Vκ(ã) for ã ∈ GSV N(R).

For ã, b̃ ∈ GSV N(R), their ranking is defined as :

ã ><κ b̃ iff <κ(ã) > <κ(b̃), ã <<κ b̃ iff <κ(ã) < <κ(b̃), ã =<κ b̃ iff <κ(ã) = <κ(b̃).

3.7 Definition

AnGSV N -number p̃ is called aGSV TN -number if three modal intervals in p̃ are equal. Thus p̃ = 〈([a0, b0, σ1, η1];wp̃),
([a0, b0, σ2, η2];up̃), ([a0, b0, σ3, η3]; yp̃)〉 is an GSV TN -number whose truth, indeterminacy and falsity functions
are as follows :

Tp̃(x) =


1
σ1
wp̃(x− a0 + σ1), a0 − σ1 ≤ x ≤ a0,

wp̃, x ∈ [a0, b0],
1
η1
wp̃(b0 − x+ η1), b0 ≤ x ≤ b0 + η1,

0, otherwise.

Ip̃(x) =


1
σ2
(a0 − x+ up̃(x− a0 + σ2)), a0 − σ2 ≤ x ≤ a0,

up̃, x ∈ [a0, b0],
1
η2
(x− b0 + up̃(b0 − x+ η2)), b0 ≤ x ≤ b0 + η2,

1, otherwise.

Fp̃(x) =


1
σ3
(a0 − x+ yp̃(x− a0 + σ3)), a0 − σ3 ≤ x ≤ a0,

yp̃, x ∈ [a0, b0],
1
η3
(x− b0 + yp̃(b0 − x+ η3)), b0 ≤ x ≤ b0 + η3,

1, otherwise.

In parametric form for r ∈ [0, 1] :

T lp̃(r) = a0 − σ1 +
σ1r

wp̃
, T up̃ (r) = b0 + η1 −

η1r

wp̃
;

I lp̃(r) =
(1− up̃)a0 + (up̃ − r)σ2

1− up̃
, Iup̃ (r) =

(1− up̃)b0 + (r − up̃)η2
1− up̃

;

F l
p̃(r) =

(1− yp̃)a0 + (yp̃ − r)σ3
1− yp̃

, F u
p̃ (r) =

(1− yp̃)b0 + (r − yp̃)η3
1− yp̃

.
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3.8 Definition
A GSV TN -number p̃ is called a GSV TrN -number if the modal interval in p̃ is reduced to a modal point. Thus
p̃ = 〈([a0, σ1, η1];wp̃), ([a0, σ2, η2];up̃), ([a0, σ3, η3]; yp̃)〉 is a GSV TrN -number whose truth, indeterminacy and
falsity functions are as follows :

Tp̃(x) =


1
σ1
wp̃(x− a0 + σ1), a0 − σ1 ≤ x ≤ a0,

wp̃, x = a0,
1
η1
wp̃(a0 − x+ η1), a0 ≤ x ≤ a0 + η1,

0, otherwise.

Ip̃(x) =


1
σ2
(a0 − x+ up̃(x− a0 + σ2)), a0 − σ2 ≤ x ≤ a0,

up̃, x = a0,
1
η2
(x− a0 + up̃(a0 − x+ η2)), a0 ≤ x ≤ a0 + η2,

1, otherwise.

Fp̃(x) =


1
σ3
(a0 − x+ yp̃(x− a0 + σ3)), a0 − σ3 ≤ x ≤ a0,

yp̃, x = a0,
1
η3
(x− a0 + yp̃(a0 − x+ η3)), a0 ≤ x ≤ a0 + η3,

1, otherwise.

3.8.1 Definition

Let ã and b̃ be two GSV TrN -numbers as follows :
ã = 〈([a, σ1, η1];wã), ([a, σ2, η2];uã), ([a, σ3, η3]; yã)〉,
b̃ = 〈([b, ξ1, δ1];wb̃), ([b, ξ2, δ2];ub̃), ([b, ξ3, δ3]; yb̃)〉.

Then for any real number x,
(i) Image of ã :
−ã = 〈([−a, η1, σ1];wã), ([−a, η2, σ2];uã), ([−a, η3, σ3]; yã)〉.

(ii) Addition :
ã+ b̃ = 〈([a+ b, σ1 + ξ1, η1 + δ1];wã ∗ wb̃), ([a+ b, σ2 + ξ2, η2 + δ2];uã � ub̃),

([a+ b, σ3 + ξ3, η3 + δ3]; yã � yb̃)〉.
(iii) Scalar multiplication :
xã = 〈([xa, xσ1, xη1];wã), ([xa, xσ2, xη2];uã), ([xa, xσ3, xη3]; yã)〉 for x > 0.
xã = 〈([xa,−xη1,−xσ1];wã), ([xa,−xη2,−xσ2];uã), ([xa,−xη3,−xσ3]; yã)〉

for x < 0.
(iv) The κ - weighted value Vκ(ã) of ã is given as :

Vκ(ã) =
1

6
[(6a− σ1 + η1)κ

nw2
ã + {(6a− σ2 + η2)(1− uã)2 + (6a− σ3 + η3)(1− yã)2}(1− κn)].

3.8.2 Remark

Definition 2.4.1 shows that the supports ( i.e. the bases of trapeziums (triangles)) for truth, indeterminacy
and falsity function are all same. Then the value of truth, indeterminacy and falsity function (i.e., the area of
individual trapezium (triangle)) differs in respect to their corresponding height only. But by Definition 3.7, we
consider different supports (i.e. bases of trapeziums (triangles) formed ) for truth, indeterminacy and falsity
functions. Thus we can allow the supports and heights together to differ the value of truth, indeterminacy and
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falsity functions in the present study. Briefly, Definition 2.4.1 is a particular case of Definition 3.7. Hence
decision maker has a scope of flexibility to choose and compare different GSV N -numbers in their study. The
facts are shown by the graphical Figure 1 and 2. Figure 1 and Figure 2 represent Definition 2.4.1 and Definition
3.7 respectively.

3.9 Definition

1. The zero GSV TN -number is denoted by 0̃ and is defined as :
0̃ = 〈([0, 0, 0, 0]; 1), ([0, 0, 0, 0]; 0), ([0, 0, 0, 0]; 0)〉.

2. The zero GSV TrN -number is denoted by 0̃ and is defined as :
0̃ = 〈([0, 0, 0]; 1), ([0, 0, 0]; 0), ([0, 0, 0]; 0)〉.

4 Neutrosophic Linear Programming Problem

Before to discuss the main result, we shall remember the crisp concept of an LP -problem. The standard form
of an LP -problem is :

Max z = cx such that Ax = b, x ≥ 0

where c = (c1, c2, · · · , cn), b = (b1, b2, · · · , bn)t and A = [aij]m×n.
In this problem, all the parameters are crisp. we shall now define NLP -problem.

4.1 Definition

An LP -problem having some parameters as GSV N -number is called an NLP -problem. Considering the coeffi-
cient of the variables in the objective function in an LP -problem in term of GSV N -numbers, an NLP -problem
is designed as follows :

Max z̃ =<κ c̃x

such that Mx = b; x ≥ 0 (4.1)
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where b ∈ Rm, x ∈ Rn,M ∈ Rm×n, c̃t ∈ (GSV N(R))n and <κ is a ranking function.

4.2 Definition
1. x ∈ Rn is a feasible solution to equation (4.1) if x satisfies the constraints of that.
2. A feasible solution x∗ is an optimal solution if for all solutions x to (4.1), c̃x∗ ≥<κ c̃x.
3. For the NLP -problem (4.1), suppose rank(M, b) = rank(M) = m. M is partitioned as [B,N ] where B is a
non-singular m ×m matrix i.e., rank(B) = m. A feasible solution x = (xB, xN)

t to (4.1) obtained by setting
xB = B−1b, xN = 0 is called a neutrosophic basic feasible solution (NBFS). Here B and N are respectively
called basis and non basis matrix. xB is called a basic variable and xN is called a non-basic variable.
4. In an NBFS if all components of xB > 0, then x is non-degenerate NBFS and if at least one component of
xB = 0, then x is degenerate NBFS .

5 Simplex Method for NLP -problem
The NLP-problem (4.1) can be put as follows :

Max z̃ =<κ c̃BxB + c̃NxN

such that BxB +NxN = b; xB, xN ≥ 0

where the characters B,N, xB and xN are already stated. Then we have,

xB +B−1NxN = B−1b (5.1)
⇒ c̃BxB + c̃BB

−1NxN =<κ c̃BB
−1b

⇒ z̃ − c̃NxN + c̃BB
−1NxN =<κ c̃BB

−1b

⇒ z̃ + (c̃BB
−1N − c̃N)xN =<κ c̃BB

−1b. (5.2)

For an NBFS , treating xN = 0, we have xB = B−1b and z̃ =<κ c̃BB
−1b from (5.1) and (5.2), respectively. We

can rewrite the NLP -problem as given in Table 1.

Table 1 : Tabular form of an NLP -problem.
c̃j c̃B c̃N
z̃ xB xN R.H.S

xB 0 1 B−1N B−1b

z̃ 1 0 c̃BB
−1N − c̃N c̃BB

−1b

We can get all required initial information to proceed with the simplex method from Table 1. The neutrosophic
cost row in the Table 1 is λ̃j =<κ (c̃BB

−1aj − cj)aj /∈B giving λ̃j =<κ (z̃j − c̃j) for non-basic variables. The
optimality arises if λ̃j ≥<κ 0̃, ∀aj /∈ B. If λ̃l <<κ 0̃ for any al /∈ B, we need to replace xBi by xl. We then
compute yl = B−1al. If yl ≤ 0, then xl can be increased indefinitely and so the problem admits unbounded
optimal solution. But if yl has at least one positive component, then one of the current basic variables blocks
that increase, which drops to zero.

5.1 Theorem
In every column aj ofM , if z̃j− c̃j ≥<κ 0̃ holds for anNBFS xB of theNLP -problem (4.1) then it is an optimal
solution to that.
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Proof. Let M = [aij]m×n = [a1, a2, · · · , an] where each al = (a1l, a2l, · · · , aml)t is m component column
vector. Suppose B = [η1, η2, · · · , ηm] is the basis matrix and z̃B =<κ c̃BxB =<κ

∑m
i=1 c̃BixBi , where c̃Bi is the

price corresponding to the basic variable xBi . Then any column al of M may be put as a linear combination of
the vectors η1, η2, · · · , ηm of B. Let

al = y1lη1 + y2lη2 + · · ·+ ymlηm =
m∑
i=1

yilηi = Byl ⇒ yl = B−1al.

where yl = (y1l, y2l, · · · , yml)t being m component scalars represents al, the l-th vector of M . Assume that
z̃l =<κ c̃Byl =<κ

∑m
i=1 c̃Biyil.

Let x = [x1, x2, · · · , xn]t be any other feasible solution of the NLP -problem (4.1) and z̃ be the correspond-
ing objective function. Then,

BxB = b =Mx ⇒ xB = B−1(Mx) = (B−1M)x = yx

where B−1M = y = [yij]m×n = [y1, y2, · · · , yn] with yl defined as above. Thus,
xB1

xB2

...
xBm

 =


y11 y12 · · · y1n
y21 y22 · · · y2n
...

... . . . ...
ym1 ym2 · · · ymn




x1
x2
...
xn


Equating i-th component from both sides, we have xBi =

∑n
j=1 yijxj . Now,

z̃j − c̃j ≥<κ 0̃⇒ (z̃j − c̃j)xj ≥<κ 0̃ [ as xj > 0 ]⇒
n∑
j=1

(z̃j − c̃j)xj ≥<κ 0̃

⇒
n∑
j=1

z̃jxj −
n∑
j=1

c̃jxj ≥<κ 0̃⇒
n∑
j=1

xj(c̃Byj)− z̃ ≥<κ 0̃

⇒
n∑
j=1

xj(
m∑
i=1

c̃Biyij)− z̃ ≥<κ 0̃⇒
m∑
i=1

c̃Bi(
n∑
j=1

yijxj)− z̃ ≥<κ 0̃

⇒
m∑
i=1

c̃Bix̃Bi − z̃ ≥<κ 0̃⇒ z̃B − z̃ ≥<κ 0̃.

Thus z̃B is the maximum value of the objective function. This optimality criterion holds for all non-basic vectors
of M . If al be in the basis matrix B, say al = ηl, then

al = ηl = 0.η1 + 0.η2 + · · ·+ 0.ηl−1 + 1.ηl + 0.ηl+1 + · · ·+ 0.ηm
i.e., yl is a unit vector el with l-th component unity.
Since al = ηl, we have c̃l = c̃Bl and so

z̃l − c̃l =<κ (c̃Byl − c̃l) =<κ (c̃Bel − c̃l) =<κ (c̃Bl − c̃Bl) =<κ 0̃.
Thus as a whole z̃j − c̃j ≥<κ 0̃ is the necessary condition for optimality.

5.2 Theorem
A non-degenerate NBFS xB = B−1b, xN = 0 is optimal to NLP -problem (4.1) iff z̃j − c̃j ≥<κ 0̃,∀1 ≤ j ≤ n.
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Proof. Suppose x∗ = (xtB, x
t
N)

t be an NBFS to (4.1) where xB = B−1b, xN = 0. If z̃∗ be the objective function
corresponding to x∗, then z̃∗ =<κ c̃BxB =<κ c̃BB

−1b. Let x = [x1, x2, · · · , xn]t be another feasible solution of
NLP -problem (4.1) and z̃ be the corresponding objective function. Then,

z̃ =<κ c̃BxB + c̃NxN =<κ c̃BB
−1b−

∑
aj /∈B

(c̃BB
−1aj − c̃j)xj =<κ z̃∗ −

∑
aj /∈B

(z̃j − c̃j)xj

This shows that the solution is optimal iff z̃j − c̃j ≥<κ 0̃ for all 1 ≤ j ≤ n.

5.3 Theorem
For any NBFS to NLP -problem (4.1), if there is some column not in basis such that z̃l − c̃l <<κ 0̃ and
yil ≤ 0, i = 1, 2, · · · ,m, then (4.1) admits an unbounded solution.

Proof. Let xB be a basic solution to the NLP -problem (4.1). Re-writing the constraints,

BxB +NxN = b

⇒ xB +B−1NxN = B−1b

⇒ xB +B−1
∑
j

(ajxj) = B−1b, ajs are the columns of N

⇒ xB +
∑
j

(B−1ajxj) = B−1b

⇒ xB +
∑
j

(yjxj) = y0, where aj = Byj, aj /∈ B

⇒ xBi +
∑
j

(yijxj) = yi0, 1 ≤ i ≤ m, 1 ≤ j ≤ n

⇒ xBi = yi0 −
∑
j

(yijxj), 1 ≤ i ≤ m, 1 ≤ j ≤ n.

If xl enters into the basis, then xl > 0 and xj = 0 for j 6= Bi∪l. Since yil ≤ 0, 1 ≤ i ≤ m hence yi0−yilxl ≥ 0.
So, the basic solution remains feasible and for that, the objective function is :

z̃∗ =<κ c̃BxB + c̃NxN =<κ

m∑
i=1

c̃Bi(yi0 − yilxl) + c̃lxl =<κ

m∑
i=1

c̃Biyi0 − (
m∑
i=1

c̃Biyil − c̃l)xl

=<κ c̃By0 − (c̃Byl − c̃l)xl =<κ z̃ − (z̃l − c̃l)xl.

It shows that z̃∗ ><κ z̃, as z̃l − c̃l <<κ 0̃ and this completes the fact.

5.4 Simplex algorithm for solving NLP -problem
To solve any NLP -problem by simplex method, the existence of an initial basic feasible solution is always
assumed. This solution will be optimised through some iterations. The required steps are as follows :
Step 1. Check whether the objective function of the givenNLP -problem is to be maximized or minimized. If it
is to be minimized, then it is converted into a maximization problem by using the resultMin(z̃) = −Max(−z̃).
Step 2. Convert all the inequations of the constraints (≤ type) into equations by introducing slack variables.
Put the costs of the respective variables equal to 0̃.
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Step 3. Obtain an NBFS to the problem in the form xB = B−1b = y0 and xN = 0. The corresponding objective
function is z̃ =<κ c̃BB−1b =<κ c̃By0.
Step 4. For each basic variable, put λ̃B =<κ z̃B − c̃B =<κ 0̃. For each non-basic variable, calculate λ̃j =<κ
z̃j − c̃j =<κ c̃BB−1aj − c̃j in the current iteration. If all z̃j − c̃j ≥<κ 0̃, then the present solution is optimal.
Step 5. If for some non-basic variables, λ̃j =<κ z̃j − c̃j <<κ 0̃ then find out λ̃l = min{λ̃j}. If yil < 0 for
all i = 1, · · · ,m, then the given problem will have unbounded solution and stop the iteration. Otherwise to
determine the index of the variable xBr that is to be removed from the current basis, compute

yr0
yrl

= min{yi0
yil

: yil > 0, 1 ≤ i ≤ m}.

Step 6. Update yi0 by replacing yi0 − yr0
yrl
yil for i 6= r and yr0 by yr0

yrl
.

Step 7. Construct new basis and repeat the Step 4, Step 5 until the optimality is reached.
Step 8. Find the optimal solution and hence the optimal value of objective function.

6 Numerical Example

The NLP -problems with both GSV TN -number and GSV TrN -number are solved by the use of proposed algo-
rithm. For simplicity, we define the κ-weighted value function for n = 1 in rest of the paper.

6.1 Example

Two friends F1 and F2 wish to invest in a raising share market. They choose two particular shares S1 and
S2 of two multinational companies. They also decide to purchase equal unit of two shares individually. The
maximum investment of F1 is Rs. 4000 and that of F2 is Rs. 7000. The price per unit of S1 and S2 are Re. 1
and Rs. 3, respectively when F1 purchases. These are Rs. 2 and Rs. 5 at the time of purchasing of share by F2.
The current value of share S1 and S2 per unit is Rs. c̃1 and Rs. c̃2 (given in GSV N -numbers), respectively. Now
if they sell their shares, formulate an NLP -problem to maximize their returns.

The problem can be summarised as follows :

Table 2
Friends ⇓ Shares : S1 S2 Purchasing capacity ⇓

F1 Re. 1 Rs. 3 Rs. 4000
F2 Rs. 2 Rs. 5 Rs. 7000

Price per unit ⇒ c̃1 c̃2

Let they individually purchase x1 units of share S1 and x2 units of share S2. The problem is formulated as :

Max z̃ =<κ c̃1x1 + c̃2x2

such that x1 + 3x2 ≤ 4000

2x1 + 5x2 ≤ 7000; x1, x2 ≥ 0

It is anNLP -problem where c̃1 = 〈([5, 8, 1, 3]; 0.2), ([5, 8, 3, 4]; 0.3), ([5, 8, 2, 1]; 0.4)〉 and c̃2 = 〈([3, 7, 2, 4]; 0.3),
([3, 7, 1, 3]; 0.5), ([3, 7, 2, 5]; 0.6)〉 are two GSV TN -numbers with a pre-assigned κ = 0.45.
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Rewriting the given constraints by introducing slack variables :

x1 + 3x2 + x3 = 4000

2x1 + 5x2 + x4 = 7000

x1, x2, x3, x4 ≥ 0

We take the t-norm and s-norm as p ∗ q = min{p, q} and p � q = max{p, q}, respectively. The first feasible
simplex table is as follows :

Table 3 : First iteration

c̃j ⇒ c̃1 c̃2 0̃ 0̃
xB ⇓ x1 x2 x3 x4 R.H.S
x3 1 3 1 0 4000
x4 2 5 0 1 7000→

z̃ ⇒ c̃
(1)
1 ↑ c̃

(1)
2 c̃

(1)
3 c̃

(1)
4

Here c̃(1)1 = −c̃1 = 〈([−8,−5, 3, 1]; 0.2), ([−8,−5, 4, 3]; 0.3), ([−8,−5, 1, 2]; 0.4)〉,
c̃
(1)
2 = −c̃2 = 〈([−7,−3, 4, 2]; 0.3), ([−7,−3, 3, 1]; 0.5), ([−7,−3, 5, 2]; 0.6)〉

and Vκ(c̃
(1)
3 ) = Vκ(c̃

(1)
4 ) = Vκ(0̃).

Then Vκ(c̃
(1)
1 ) = 1

6
(31.64κ− 33.28) and Vκ(c̃

(1)
2 ) = 1

6
(10.4κ− 13.28) by Definition 3.5.

Clearly Vκ(c̃
(1)
1 ) < 0, Vκ(c̃

(1)
2 ) < 0 and Vκ(c̃

(1)
1 )− Vκ(c̃(1)2 ) < 0 for κ = 0.45.

Then c̃(1)1 <<κ c̃
(1)
2 . So x1 enters in the basis and as min{4000/1, 7000/2} = 3500, the leaving variable is x4.

The revised table is :

Table 4 : Second iteration

c̃j ⇒ c̃1 c̃2 0̃ 0̃
xB ⇓ x1 x2 x3 x4 R.H.S
x3 0 1/2 1 -1/2 500
x1 1 5/2 0 1/2 3500

z̃ ⇒ c̃
(2)
1 c̃

(2)
2 c̃

(2)
3 c̃

(2)
4 3500c̃1

where Vκ(c̃
(2)
1 ) = Vκ(c̃

(2)
3 ) = Vκ(0̃) and

c̃
(2)
2 =

5

2
c̃1 − c̃2

= 2.5〈([5, 8, 1, 3]; 0.2), ([5, 8, 3, 4]; 0.3), ([5, 8, 2, 1]; 0.4)〉
−〈([3, 7, 2, 4]; 0.3), ([3, 7, 1, 3]; 0.5), ([3, 7, 2, 5]; 0.6)〉

= 〈([5.5, 17, 6.5, 9.5]; 0.2), ([5.5, 17, 10.5, 11]; 0.5), ([5.5, 17, 10, 4.5]; 0.6)〉.

c̃
(2)
4 =

1

2
c̃1 = 〈([2.5, 4, 0.5, 1.5]; 0.2), ([2.5, 4, 1.5, 2]; 0.3), ([2.5, 4, 1, 0.5]; 0.4)〉.

Then Vκ(c̃
(2)
2 ) = 1

6
(26.92− 24.1κ) and Vκ(c̃

(2)
4 ) = 1

6
(16.64− 15.82κ) by Definition 3.5.

Clearly Vκ(c̃
(2)
2 ) > 0 and Vκ(c̃

(2)
4 ) > 0 for κ = 0.45.
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Hence the optimality arises and Max z̃ =<κ 3500c̃1 , which, using κ - weighted function, becomes Rs.
11107 approximately. Then corresponding return of F1 and F2 becomes Rs. 7607 and of Rs. 4107 respectively.

6.1.1 Example

Consider the NLP -problem defined in Example 6.1 with a pre-assigned κ = 0.96.
The initial simplex table (Table 5) is same as Table 3.

Table 5 : First iteration

c̃j ⇒ c̃1 c̃2 0̃ 0̃
xB ⇓ x1 x2 x3 x4 R.H.S
x3 1 3 1 0 4000→
x4 2 5 0 1 7000

z̃ ⇒ c̃
(1)
1 c̃

(1)
2 ↑ c̃

(1)
3 c̃

(1)
4

Here Vκ(c̃
(1)
3 ) = Vκ(c̃

(1)
4 ) = Vκ(0̃) and Vκ(c̃

(1)
1 ) < 0, Vκ(c̃

(1)
2 ) < 0 with Vκ(c̃

(1)
1 ) − Vκ(c̃(1)2 ) > 0 for κ = 0.96.

Then c̃(1)1 ><κ c̃
(1)
2 . So x2 enters in the basis and as min{4000

3
, 7000

5
} = 4000

3
, the leaving variable is x3. The

revised table is :

Table 6 : Second iteration

c̃j ⇒ c̃1 c̃2 0̃ 0̃
xB ⇓ x1 x2 x3 x4 R.H.S
x2 1/3 1 1/3 0 4000/3
x4 1/3 0 -5/3 1 1000/3→

z̃ ⇒ c̃
(2)
1 ↑ c̃

(2)
2 c̃

(2)
3 c̃

(2)
4

4000
3
c̃2

where Vκ(c̃
(2)
2 ) = Vκ(c̃

(2)
4 ) = Vκ(0̃) and

c̃
(2)
1 =

1

3
c̃2 − c̃1 = 〈([−7,−8/3, 11/3, 7/3]; 0.2), ([−7,−8/3, 13/3, 4]; 0.5), ([−7,−8/3, 5/3, 11/3]; 0.6)〉,

c̃
(2)
3 =

1

3
c̃2 = 〈([1, 7/3, 2/3, 4/3]; 0.3), ([1, 7/3, 1/3, 1]; 0.5), ([1, 7/3, 2/3, 5/3]; 0.6)〉.

Then Vκ(c̃
(2)
1 ) = 1

18
(31.32κ− 34.96) and Vκ(c̃

(2)
3 ) = 1

18
(13.28− 10.4κ).

Clearly Vκ(c̃
(2)
1 ) < 0 and Vκ(c̃

(2)
3 ) > 0 for κ = 0.96. So x1 enters in the basis and as min{4000/3

1/3
, 1000/3

1/3
} = 1000,

the leaving variable is x4. The revised table is :

Table 7 : Third iteration

c̃j ⇒ c̃1 c̃2 0̃ 0̃
xB ⇓ x1 x2 x3 x4 R.H.S
x2 0 1 2 -1 1000→
x1 1 0 -5 3 1000

z̃ ⇒ c̃
(3)
1 c̃

(3)
2 c̃

(3)
3 ↑ c̃

(3)
4 1000(c̃1 + c̃2)
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where Vκ(c̃
(3)
1 ) = Vκ(c̃

(3)
2 ) = Vκ(0̃) and

c̃
(3)
3 = −5c̃1 + 2c̃2 = 〈([−34,−11, 19, 13]; 0.2), ([−34,−11, 22, 21]; 0.5), ([−34,−11, 9, 20]; 0.6)〉,

c̃
(3)
4 = 3c̃1 − c̃2 = 〈([8, 21, 7, 11]; 0.2), ([8, 21, 12, 13]; 0.5), ([8, 21, 11, 5]; 0.6)〉.

Then Vκ(c̃
(3)
3 ) = 1

6
(48.2κ− 53.84) < 0 and Vκ(c̃

(3)
4 ) = 1

6
(34.96− 31.32κ) > 0 for κ = 0.96. So x3 enters in the

basis and the leaving variable is x2. The revised table is :

Table 8 : Fourth iteration

c̃j ⇒ c̃1 c̃2 0̃ 0̃
xB ⇓ x1 x2 x3 x4 R.H.S
x3 0 1/2 1 -1/2 500
x1 1 5/2 0 1/2 3500

z̃ ⇒ c̃
(4)
1 c̃

(4)
2 c̃

(4)
3 c̃

(4)
4 3500c̃1

where Vκ(c̃
(4)
1 ) = Vκ(c̃

(4)
3 ) = Vκ(0̃) and c̃(4)2 = 5

2
c̃1 − c̃2 and c̃(4)4 = 1

2
c̃1. Then Vκ(c̃

(4)
2 ) = 1

6
(26.92− 24.1κ) > 0

and Vκ(c̃
(4)
4 ) = 1

6
(16.64− 15.82κ) > 0 for κ = 0.96.

Hence the optimality arises and the optimal solution is x1 = 3500, x2 = 0.

6.1.2 Remark

From Example 6.1 and Example 6.1.1, it is seen that the final simplex tables in both cases are same. So, if
the optimality exists for an NLP -problem, the optimal solutions are always unique whatever the value of κ
assigned. Depending upon the chosen κ, the number of iteration to reach at optimality stage may vary but it
does not affect the optimal solutions. However, the character κ plays an important role to assign the optimal
value of the objective function in a problem. The fact is shown in Table 9. So, the value of κ is an important
factor in any such NLP -problem. Since the share market depends on so many factors, we claim κ as the degree
of political turmoil of the country in the present problem.

6.1.3 Sensitivity analysis in post optimality stage

We shall analyse the results of the problem in Example 6.1 for different values of κ in post optimality stage,
shown by the Table 9.

Table 9 : Sensitivity analysis
κ 0 0.1 0.2 0.3 0.4
x1 3500 3500 3500 3500 3500
x2 0 0 0 0 0

Vκ(z̃) 19413.33 17567.67 15722 13876.33 12030.67
κ 0.5 0.6 0.7 0.8 0.9 1
x1 3500 3500 3500 3500 3500 3500
x2 0 0 0 0 0 0

Vκ(z̃) 10185 8339.33 6493.67 4648 2802.33 956.67
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6.2 Example

Max z̃ =<κ c̃1x1 + c̃2x2

s.t. 2x1 + 3x2 ≤ 4

5x1 + 4x2 ≤ 15

x1, x2 ≥ 0

is an NLP -problem where c̃1 = 〈([8, 1, 3]; 0.6), ([8, 3, 4]; 0.2), ([8, 2, 1]; 0.5)〉 and
c̃2 = 〈([6, 2, 6]; 0.7), ([6, 4, 3]; 0.4), ([6, 3, 5]; 0.3)〉 are two GSV TrN -numbers with a pre-assigned κ = 0.9.

Rewriting the given constraints by introducing slack variables :

2x1 + 3x2 + x3 = 4

5x1 + 4x2 + x4 = 15

x1, x2, x3, x4 ≥ 0

The t-norm and s-norm are p∗ q = max{p+ q−1, 0} and p� q = min{p+ q, 1}, respectively. The first feasible
simplex table is as follows :

Table 10 : First iteration

c̃j ⇒ c̃1 c̃2 0̃ 0̃
xB ⇓ x1 x2 x3 x4 R.H.S
x3 2 3 1 0 4→
x4 5 4 0 1 15

z̃ ⇒ c̃
(1)
1 c̃

(1)
2 ↑ c̃

(1)
3 c̃

(1)
4

Here c̃(1)1 = −c̃1 = 〈([−8, 3, 1]; 0.6), ([−8, 4, 3]; 0.2), ([−8, 1, 2]; 0.5)〉,
c̃
(1)
2 = −c̃2 = 〈([−6, 6, 2]; 0.7), ([−6, 3, 4]; 0.4), ([−6, 5, 3]; 0.3)〉

and Vκ(c̃
(1)
3 ) = Vκ(c̃

(1)
4 ) = Vκ(0̃).

Then Vκ(c̃
(1)
1 ) = 1

6
(25.11κ− 43.11) and Vκ(c̃

(1)
2 ) = 1

6
(11.62κ− 31.22) by Definition 3.8.1.

Clearly Vκ(−c̃1) < 0, Vκ(−c̃2) < 0 and Vκ(−c̃1)− Vκ(−c̃2) > 0 for κ = 0.9.
So x2 enters in the basis and as min{4/3, 15/4} = 4/3, the leaving variable is x3. The revised table is as :

Table 11 : Second iteration

c̃j ⇒ c̃1 c̃2 0̃ 0̃
xB ⇓ x1 x2 x3 x4 R.H.S
x2 2/3 1 1/3 0 4/3→
x4 7/3 0 -4/3 1 29/3

z̃ ⇒ c̃
(2)
1 ↑ c̃

(2)
2 c̃

(2)
3 c̃

(2)
4

4
3
c̃2
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where Vκ(c̃
(2)
2 ) = Vκ(c̃

(2)
4 ) = Vκ(0̃) and

c̃
(2)
1 =

2

3
c̃2 − c̃1 = 〈([−4, 13/3, 5]; 0.3), ([−4, 20/3, 5]; 0.6), ([−4, 3, 16/3]; 0.8)〉,

c̃
(2)
3 =

1

3
c̃2 = 〈([2, 2/3, 2]; 0.7), ([2, 4/3, 1]; 0.4), ([2, 1, 5/3]; 0.3)〉.

Then Vκ(c̃
(2)
1 ) = 1

18
(8.62κ− 14.92) and Vκ(c̃

(2)
3 ) = 1

18
(31.22− 11.62κ) by Definition 3.8.1.

Clearly, Vκ(c̃
(2)
1 ) < 0 but Vκ(c̃

(2)
3 ) > 0 for κ = 0.9. So x1 enters in the basis and as min{4/3

2/3
, 29/3

7/3
} = 2, the

leaving variable is x2. The revised table is :

Table 12 : Third iteration

c̃j ⇒ c̃1 c̃2 0̃ 0̃
xB ⇓ x1 x2 x3 x4 R.H.S
x1 1 3/2 1/2 0 2
x4 0 -7/2 -5/2 1 5

z̃ ⇒ c̃
(3)
1 c̃

(3)
2 c̃

(3)
3 c̃

(3)
4 2c̃1

where Vκ(c̃
(3)
1 ) = Vκ(c̃

(3)
4 ) = Vκ(0̃) and

c̃
(3)
2 =

3

2
c̃1 − c̃2 = 〈([6, 7.5, 6.5]; 0.3), ([6, 7.5, 10]; 0.6), ([6, 8, 4.5]; 0.8)〉,

c̃
(3)
3 =

1

2
c̃1 = 〈([4, 0.5, 1.5]; 0.6), ([4, 1.5, 2]; 0.2), ([4, 1, 0.5]; 0.5)〉.

Then Vκ(c̃
(3)
2 ) = 1

6
(7.46− 4.31κ) and Vκ(c̃

(3)
3 ) = 1

6
(21.555− 12.555κ) by Definition 3.8.1.

Obviously, Vκ(c̃
(3)
2 ) > 0 and Vκ(c̃

(3)
3 ) > 0 for κ = 0.9. Hence the optimality arises. The optimal solution is

x1 = 2, x2 = 0 and so Max z̃ =<κ 2c̃1.

7 Conclusion
In this paper, the crispLP -problem has been generalised by considering the coefficients of the objective function
as GSV N -numbers. This generalised form of crisp LP -problem is called NLP -problem. Then a simplex
algorithm has been proposed to solve suchNLP -problems. Finally, the newly developed simplex algorithm has
been applied to a real life problem. The concept has been illustrated by suitable examples using both GSV TN -
numbers and GSV TrN -numbers. In future, the concept of a linear programming problem may be extended in
more generalised way by considering some or all of the parameters as GSV N -numbers.
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1 Introduction
A K-algebra (G, ·,�, e) is a new class of logical algebra, introduced by Dar and Akram [1] in 2003. A K-
algebra is constructed on a group (G, ·, e) by adjoining an induced binary operation � on G and attached to an
abstract K-algebra (G, ·,�, e). This system is, in general, non-commutative and non-associative with a right
identity e. If the given group G is not an elementary abelian 2-group, then the K-algebra is proper . Therefore,
a K-algebra K = (G, ·,�, e) is abelian and non-abelian, proper and improper purely depends upon the base
group G. In 2004, a K-algebra renamed as K(G)-algebra due to its structural basis G and characterized by left
and right mappings when the group G is abelian and non-abelian by Dar and Akram in [2, 3] . In 2007, Dar
and Akram [4] investigated the K-homomorphisms of K-algebras.
Non-classical logic leads to classical logic due to various aspects of uncertainty. It has become a conventional
tool for computer science and engineering to deal with fuzzy information and indeterminate data and execu-
tions. In our daily life, the most frequently encountered uncertainty is incomparability. Zadeh’s fuzzy set
theory [5] revolutionized the systems, accomplished with vagueness and uncertainty. A number of researchers
extended the conception of Zadeh and presented different theories regarding uncertainty which includes intu-
itionistic fuzzy set theory, interval-valued intuitionistic fuzzy set theory [6] and so on. In addition, Smaran-
dache [7] generalized intuitionistic fuzzy set by introducing the concept of neutrosophic set in 1998. It is such
a branch of philosophy which studies the origin, nature, and scope of neutralities as well as their interactions
with different ideational spectra. To have real life applications of neutrosophic sets such as in engineering
and science, Wang et al. [8] introduced the single-valued neutrosophic set in 2010. In 1999, Molodtsov [9]
introduced another mathematical approach to deal with ambiguous data, called soft set theory. Soft set theory
gives a parameterized outlook to uncertainty. Maji [10] defined the notion of neutrosophic soft set by unifying
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the fundamental theories of neutrosophic set and soft set to deal with inconsistent data in a much-unified mode.
A large number of theories regarding uncertainty with their respective topological structures have been intro-
duced. In 1968, Chang [11] introduced the concept of fuzzy topology. Chattopadhyay and Samanta [12], Pu
and Liu [13] and Lowan [14] defined some certain notions related to fuzzy topology. Recently, Tahan et al. [15]
presented the notion of topological hypergroupoids. Onasanya and Hoskova-Mayerova [16] discussed some
topological and algebraic properties of α−level subsets of fuzzy subsets. Coker [17] considered the notion
of an intuitionistic fuzzy topology. Salama and Alblowi [18] studied the notion of neutrosophic topological
spaces. In 2017, Bera and Mahapatra [19] described neutrosophic soft topological spaces. Akram and Dar
[20, 21] considered fuzzy topological K-algebras and intuitionistic topological K-algebras. Recently, Akram
et al. [22, 23, 24, 25] presented some notions, including single-valued neutrosophic K-algebras, single-valued
neutrosophic topological K-algebras and single-valued neutrosophic Lie algebras. In this research article,
In this paper, we propose the notion of single-valued neutrosophic soft topological K-algebras. We discuss
certain concepts, including interior, closure, C5-connected, super connected, Compactness and Hausdorff in
single-valued neutrosophic soft topological K-algebras. We illustrate these concepts with examples and inves-
tigate some of their related properties. We also study image and pre-image of single-valued neutrosophic soft
topological K-algebras.
The rest of the paper is organized as follows: In Section 2, we review some elementary concepts related to
K-algebras, single-valued neutrosophic soft sets and their topological structures. In Section 3, we define the
concept of single-valued neutrosophic soft topological K-algebras and discuss certain concepts with some
numerical examples. In Section 4, we present concluding remarks.

2 Preliminaries
This section consists of some basic definitions and concepts, which will be used in the next sections.

Definition 2.1. [1] A K-algebra K = (G, ·,�, e) is an algebra of the type (2, 2, 0) defined on the group
(G, ·, e) in which each non-identity element is not of order 2 with the following �− axioms:

(K1) (x� y)� (x� z) = (x� (z−1 � y−1))� x = (x� ((e� z)� (e� y)))� x,

(K2) x� (x� y) = (x� y−1)� x = (x� (e� y))� x,

(K3) (x� x) = e,

(K4) (x� e) = x,

(K5) (e� x) = x−1

for all x, y, z ∈ G.

Definition 2.2. [1] A nonempty set S in a K-algebra K is called a subalgebra of K if for all x, y ∈ S,
x� y ∈ S.

Definition 2.3. [1] Let K1 and K2 be two K-algebras. A mapping f : K1 → K2 is called a homomorphism if
f(x� y) = f(x)� f(y) for all x, y ∈ K.

Definition 2.4. [7] Let Z be a nonempty set of objects. A single-valued neutrosophic set H in Z is of the form
H = {s ∈ Z : TH(s), IH(s),FH(s)}, where T , I,F : Z → [0, 1] for all s ∈ Z with 0 ≤ TH(s) + IH(s) +
FH(s) ≤ 3.
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Definition 2.5. [22] Let H = (TH , IH ,FH) be a single-valued neutrosophic set in K, then H is said to be a
single-valued neutrosophic K-subalgebra of K if it possess the following properties:

(a) TH(s� t) ≥ min{TH(s), TH(t)},

(b) IH(s� t) ≥ min{IH(s), IH(t)},

(c) FH(s� t) ≤ max{FH(s),FH(t)} for all s, t ∈ K.

A K-subalgebra also satisfies the following conditions:
TH(e) ≥ TH(s), IH(e) ≥ IH(s), FH(e) ≤ FH(s) for all s 6= e ∈ K.

Definition 2.6. [26] A t-norm is a two-valued function defined by a binary operation ∗, where ∗ : [0, 1] ×
[0, 1]→ [0, 1]. A t-norm is an associative, monotonic and commutative function possess the following proper-
ties, for all a, b, c, d ∈ [0, 1],

(i) ∗ is a commutative binary operation.

(ii) ∗ is an associative binary operation.

(iii) ∗(0, 0) = 0 and ∗(a, 1) = ∗(1, a) = a.

(iv) If a ≤ c and b ≤ d, then ∗(a, b) ≤ ∗(c, d).

Definition 2.7. [26] A t-conorm (s-norm) is a two-valued function defined by a binary operation ◦ such that
◦ : [0, 1] × [0, 1] → [0, 1]. A t-conorm is an associative, monotonic and commutative two-valued function,
possess the following properties, for all a, b, c, d ∈ [0, 1],

(i) ◦ is a commutative binary operation.

(ii) ◦ is an associative binary operation.

(iii) ◦(1, 1) = 1 and ◦(a, 0) = ◦(0, a) = a.

(iv) If a ≤ c and b ≤ d, then ◦(a, b) ≤ ◦(c, d).

Definition 2.8. [23] Let χK be a single-valued neutrosophic topology over K. Let H be a single-valued
neutrosophic K-algebra of K and χH be a single-valued neutrosophic topology on H . Then H is called a
single-valued neutrosophic topological K-algebra over K if the self map ρa : (H,χH) → (H,χH) for all
a ∈ K, defined as ρa(s) = s� a, is relatively single-valued neutrosophic continuous.

Definition 2.9. [9] Let Z be a universe of discourse and E be a universe of parameters. Let P (Z) denotes the
set of all subsets of Z and A ⊆ E. Then a soft set FA over Z is represented by a set-valued function ζA, where
ζA : E → P (Z) such that ζA(θ) = ∅ if θ ∈ E − A. In other words, FA can be represented in the form of a
collection of parameterized subsets of Z such as FA = {(θ, ζA(θ)) : θ ∈ E, ζA(θ) = ∅ if θ ∈ E − A}.

Definition 2.10. [27] Let Z be a universe of discourse and E be a universe of parameters. A single-valued
neutrosophic soft set H in Z is defined by a set-valued function ζH , where ζH : E → P (Z) and P (Z) denotes
the power set set of Z. In other words, a single-valued neutrosophic soft set is a parameterized family of
single-valued neutrosophic sets in Z and therefore can be written as:
H = {(θ,

〈
u, TζH(θ)(u), IζH(θ)(u),FζH(θ)(u)

〉
: u ∈ Z) : θ ∈ E}, where TζH(θ), IζH(θ),FζH(θ) are called truth

, indeterminacy and falsity membership functions of ζH(θ), respectively.
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Definition 2.11. [27] Let H be a single-valued neutrosophic soft set. The compliment of H , denoted by Hc, is
defined as follows:

Hc = {(θ,
〈
u,FζH(θ)(u), IζH(θ)(u), TζH(θ)(u)

〉
: u ∈ Z) : θ ∈ E}.

Definition 2.12. [27] Let H and J be two single-valued neutrosophic soft sets over (Z,E). Then H is called
a neutrosophic soft subset of J, denoted by H ⊆ J, if the following conditions hold:

(i) TζH(θ)(u) ≤ TηJ (θ)(u),

(ii) IζH(θ)(u) ≤ IηJ (θ)(u),

(iii) FζH(θ)(u) ≥ FηJ (θ)(u) for all θ ∈ E, u ∈ Z.

Throughout this article, we take the t-norm (∗) as min(a, b) and t-conorm (◦) as max(a, b) for intersection
of two single-valued neutrosophic soft sets and (∗) as max(a, b) and t-conorm (◦) as min(a, b) for union of
two single-valued neutrosophic soft sets. The union and the intersection for two single-valued neutrosophic
soft sets are defined as follows.

Definition 2.13. [27] Let H and J be two single-valued neutrosophic soft sets over (Z,E). Then the union of
H and J is denoted by H ∪ J = L and defined as:

L =
{(
θ,
〈
u, TϑL(θ)(u), IϑL(θ)(u),FϑL(θ)(u)

〉
: u ∈ Z

)
: θ ∈ E

}
,

where

TϑL(θ)(u) = {TζH(θ)(u) ∗ TηJ (θ)(u)} = max{TζH(θ)(u), TηJ (θ)(u)},
IϑL(θ)(u) = {IζH(θ)(u) ∗ TηJ (θ)(u)} = max{IζH(θ)(u), IηJ (θ)(u)},
FϑL(θ)(u) = {FζH(θ)(u) ◦ FηJ (θ)(u)} = min{FζH(θ)(u),FηJ (θ)(u)}.

Definition 2.14. [27] Let H and J be two single-valued neutrosophic soft sets over (Z,E). Then their inter-
section is denoted by H ∩ J = L and defined as:

L =
{(
θ,
〈
u, TϑL(θ)(u), IϑL(θ)(u),FϑL(θ)(u)

〉
: u ∈ Z

)
: θ ∈ E

}
,

where

TϑL(θ)(u) = {TζH(θ)(u) ∗ TηJ (θ)(u)} = min{TζH(θ)(u), TηJ (θ)(u)},
IϑL(θ)(u) = {IζH(θ)(u) ∗ TηJ (θ)(u)} = min{IζH(θ)(u), IηJ (θ)(u)},
FϑL(θ)(u) = {FζH(θ)(u) ◦ FηJ (θ)(u)} = max{FζH(θ)(u),FηJ (θ)(u)}.

Definition 2.15. [27] A single-valued neutrosophic soft set H over the universe Z is termed to be an empty or
null single-valued neutrosophic soft set with respect to the parametric set E if TζH(θ)(u) = 0, IζH(θ)(u) = 0,
FζH(θ)(u) = 1, for all u ∈ Z , θ ∈ E, denoted by ∅E and can be written as:

∅E(u) = {u ∈ Z : TζH(θ)(u) = 0, IζH(θ)(u) = 0,FζH(θ)(u) = 1 : θ ∈ E}.
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Definition 2.16. [27] A single-valued neutrosophic soft set H over the universe Z is called an absolute or a
whole single-valued neutrosophic soft set if TζH(θ)(u) = 1, IζH(θ)(u) = 1, FζH(θ)(u) = 0, for all u ∈ Z ,
θ ∈ E, denoted by 1E and can be written as:

1E(u) = {u ∈ Z : TζH(θ)(u) = 1, IζH(θ)(u) = 1,FζH(θ)(u) = 0 : θ ∈ E}.

Definition 2.17. [10] Let (Z1, E) and (Z2, E) be two initial universes. Then a pair (ϕ, ρ) is called a single-
valued neutrosophic soft function from (Z1, E) into (Z2, E), where ϕ : Z1 → Z2 and ρ : E → E, and E is a
parametric set of Z1 and Z2.

Definition 2.18. [10] Let (H,E) and (J,E) be two single-valued neutrosophic soft sets over G1 and G2, re-
spectively. If (ϕ, ρ) is a single-valued neutrosophic soft function from (G1, E) into (G2, E), then under this
single-valued neutrosophic soft function (ϕ, ρ), image of (H,E) is a single-valued neutrosophic soft set on
K2, denoted by (ϕ, ρ)(H,E) and defined as follows:
for all m ∈ ρ(E) and y ∈ G2, (ϕ, ρ)(H,E) = (ϕ(H), ρ(E)), where

Tϕ(ζ)m(y) =

{ ∨
ϕ(x)=y

∨
ρ(a)=m ζa(x) if x ∈ ρ−1(y),

1, otherwise,

Iϕ(ζ)m(y) =

{ ∨
ϕ(x)=y

∨
ρ(a)=m ζa(x) if x ∈ ρ−1(y),

1, otherwise,

Fϕ(ζ)m(y) =

{ ∧
ϕ(x)=y

∧
ρ(a)=m ζa(x) if x ∈ ρ−1(y),

0, otherwise.

The preimage of (J,E), denoted by (ϕ, ρ)−1(J,E), is defined as ∀ l ∈ ρ−1(E) and for all x ∈ G1, (ϕ, ρ)−1(J,E) =
(ϕ−1(J), ρ−1(E)), where

Tϕ−1(η)l
(x) = Tηρ(l)(ϕ(x)),

Iϕ−1(η)l
(x) = Iηρ(l)(ϕ(x)),

Fϕ−1(η)l
(x) = Fηρ(l)(ϕ(x)).

Proposition 2.19. Let Z1 and Z2 be two initial universes with parametric set E1 and E2, respectively. Let H,
(Hi, i ∈ I) be a single-valued neutrosophic soft set in Z1 and J be a single-valued neutrosophic soft set in Z2.
Let f : Z1 → Z2 be a function. Then

(i) f(1E1) = 1E2 , if f is a surjective function.

(ii) f(∅E1) = ∅E2 .

(iii) f−1(1E2) = 1E1 .

(iv) f−1(∅E2) = ∅E1 .

(v) f−1(
n⋃
i=1

Hi) =
n⋃
i=1

f−1(Hi).

Through out this article, Z is considered as initial universe, E is a parametric set and θ ∈ E an arbitrary
parameter.
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3 Single-Valued Neutrosophic Soft Topological K-Algebras
Definition 3.1. Let Z be a nonempty set and E be a universe of parameters. A collection χ of single-valued
neutrosophic soft sets is called a single-valued neutrosophic soft topology if the following properties hold:

(1) ∅E, 1E ∈ χ.

(2) The intersection of any two single-valued neutrosophic soft sets of χ belongs to χ.

(3) The union of any collection of single-valued neutrosophic soft sets of χ belongs to χ.

The triplet (Z,E, χ) is called a single-valued neutrosophic soft topological space over (Z,E). Each element
of χ is called a single-valued neutrosophic soft open set and compliment of each single-valued neutrosophic
soft open set is a single-valued neutrosophic soft closed set in χ . A single-valued neutrosophic soft topology
which contains all single-valued neutrosophic soft subsets of Z is called a discrete single-valued neutrosophic
soft topology and indiscrete single-valued neutrosophic soft topology if it consists of ∅E and 1E .

Definition 3.2. Let H be a single-valued neutrosophic soft set over a K-algebras K. Then H is called a
single-valued neutrosophic soft K-subalgebra of K if the following conditions hold:

(i) Tζθ(s� t) ≥ min{Tζθ(s), Tζθ(t)},
(ii) Iζθ(s� t) ≥ min{Iζθ(s), Iζθ(t)},
(iii) Fζθ(s� t)≤ max{Fζθ(s),Fζθ(t)} for all s, t ∈ G and θ ∈ E.

Note that

Tζθ(e) ≥ Tζθ(s),
Iζθ(e) ≥ Iζθ(s),
Fζθ(e) ≤ Fζθ(s), for all s 6= e ∈ G.

Example 3.3. Consider aK-algebraK = (G, ·,�, e) on a group (G, ·), whereG = {e, x, x2, x3, x4, x5, x6, x7}
is the cyclic group of order 8 and � is given by the following Cayley’s table as:

� e x x2 x3 x4 x5 x6 x7

e e x7 x6 x5 x4 x3 x2 x
x x e x7 x6 x5 x4 x3 x2

x2 x2 x e x7 x6 x5 x4 x3

x3 x3 x2 x e x7 x6 x5 x4

x4 x4 x3 x2 x e x7 x6 x5

x5 x5 x4 x3 x2 x e x7 x6

x6 x6 x5 x4 x3 x2 x e x7

x7 x7 x6 x5 x4 x3 x2 x e

Let E be a set of parameters defined as E = {l1, l2}. We define single-valued neutrosophic soft sets H, J and
L in K as:

ζH(l1) = {(e, 0.8, 0.7, 0.2), (h, 0.6, 0.5, 0.4)},
ζH(l2) = {(e, 0.7, 0.7, 0.2), (h, 0.6, 0.6, 0.5)},
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ζJ(l1) = {(e, 0.7, 0.7, 0.2), (h, 0.4, 0.1, 0.5)},
ζJ(l2) = {(e, 0.4, 0.6, 0.6), (h, 0.3, 0.5, 0.7)},

ζL(l1) = {(e, 0.9, 0.8, 0.1), (h, 0.7, 0.6, 0.4)},
ζL(l2) = {(e, 0.9, 0.7, 0.1), (h, 0.7, 0.6, 0.4)}

for all h 6= e ∈ G.
The collection χK = {∅E, 1E, H, J, L} is a single-valued neutrosophic soft topology on K and the triplet
(K, E, χK) is a single-valued neutrosophic soft topological space over K. It is interesting to note that corre-
sponding to each parameter θ ∈ E, we get a single-valued neutrosophic topology over K which means that a
single-valued neutrosophic soft topological space gives a parameterized family of single-valued neutrosophic
topological space on K. Now, we define a single-valued neutrosophic soft set Q in K as:

ζQ(l1) = {(e, 0.8, 0.5, 0.1), (h, 0.6, 0.4, 0.3)},
ζQ(l2) = {(e, 0.5, 0.6, 0.5), (h, 0.3, 0.4, 0.6)}.

Clearly, by Definition 3.2, Q is a single-valued neutrosophic soft K-subalgebra over K.

Proposition 3.4. Let (K, E, χ′K) and (K, E, χ′′K) be two single-valued neutrosophic topological spaces over
K. If χ′K ∩ χ

′′
K = M

′
, where M ′ is a single-valued neutrosophic soft set from the set of all single-valued

neutrosophic soft sets in K, then χ′K ∩ χ
′′
K is also a single-valued neutrosophic soft topology on K.

Remark 3.5. The union of two single-valued neutrosophic soft topologies over K may not be a single-valued
neutrosophic soft topology over K.

Example 3.6. Consider a K-algebra K = (G, ·,�, e), where G = {e, x, x2, x3, x4, x5, x6, x7} is the cyclic
group of order 8 and Cayley’s table for� is given in Example 3.3. We take E = {l1, l2} and two single-valued
neutrosophic soft topological spaces χ′K = {∅E, 1E, H, J}, χ

′′
K = {∅E, 1E, R, S} on K, where R = H and

single-valued neutrosophic soft set S is defined as:

ζS(l1) = {(e, 0.7, 0.6, 0.2), (h, 0.5, 0.5, 0.6)},
ζS(l2) = {(e, 0.9, 0.8, 0.2), (h, 0.7, 0.7, 0.3)}.

Suppose that χ′′′K = χ
′
K ∪ χ

′′
K = {∅E, 1E, H, J, S}. We see that χ′′′K is not a single-valued neutrosophic soft

topology over K since S ∩ J /∈ χ′′′K .

Definition 3.7. Let (K, E, χK) be a single-valued neutrosophic soft topological space over K, where χK is a
single-valued neutrosophic soft topology over K. Let F be a single-valued neutrosophic soft set in K, then
χF = {F ∩H : H ∈ χK} is called a single-valued neutrosophic soft topology on F and (F,E, χF ) is called a
single-valued neutrosophic soft subspace of (K, E, χK).

Definition 3.8. Let (K1, E, χ1) and (K2, E, χ2) be two single-valued neutrosophic soft topological spaces,
where K1 and K2 are two K-algebras. Then, a mapping f : (K1, E, χ1)→ (K2, E, χ2) is called single-valued
neutrosophic soft continuous mapping of single-valued neutrosophic soft topological spaces if it the following
properties hold:

(i) For each single-valued neutrosophic soft set H ∈ χ2 , f−1(H) ∈ χ1 .
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(ii) For each single-valued neutrosophic soft K-subalgebra H ∈ χ2 , f−1(H) is a single-valued neutrosophic
soft K-subalgebra ∈ χ1 .

Definition 3.9. LetH and J be two single-valued neutrosophic soft sets in aK-algebraK and f : (H,E, χH)→
(J,E, χJ). Then, f is called a relatively single-valued neutrosophic soft open function if for every single-
valued neutrosophic soft open set V in χH , the image f(V ) ∈ χJ .

Definition 3.10. If f is a mapping such that f : (K1, E, χ1) → (K2, E, χ2). Then f is a mapping from
(H,E, χH) into (J,E, χJ) if f(H) ⊂ J, where (H,E, χH) and (J,E, χJ) are two single-valued neutrosophic
soft subspaces of (K1, E, χ1) and (K2, E, χ2), respectively.

Definition 3.11. A mapping f such that f : (H,E, χH) → (J,E, χJ) is called relatively single-valued neu-
trosophic soft continuous if for every single-valued neutrosophic soft open set YJ ∈ χJ , f−1(yJ) ∩H ∈ χH .

Definition 3.12. Let (K1, E, χ1) and (K2, E, χ2) be two single-valued neutrosophic soft topological spaces.
Then, a function f : (K1, E, χ1) → (K2, E, χ2) is called a single-valued neutrosophic soft homomorphism if
it satisfies the following properties:

(i) f is a bijective function.

(ii) Both f and f−1 are single-valued neutrosophic soft continuous functions.

Proposition 3.13. Let f : (K1, E, χ1)→ (K2, E, χ2) be a single-valued neutrosophic soft continues mapping
and (H,E, χH) and (J,E, χJ) two single-valued neutrosophic soft topological subspaces of (K1, E, χ1) and
(K2, E, χ2), respectively. If f(H) ⊆ J , then f is a relatively single-valued neutrosophic soft continuous
mapping from (H,E, χH) into (J,E, χJ).

Proposition 3.14. Let (K1, E, χ1) and (K2, E, χ2) be two single-valued neutrosophic soft topological spaces,
where χ1 is a single-valued neutrosophic soft topology onK1 and χ2 is an indiscrete single-valued neutrosophic
soft topology on K2. Then for each θ ∈ E, every function f : (K1, E, χ1) → (K2, E, χ2) is a single-valued
neutrosophic soft continues function.

Proof. Let χ1 be a single-valued neutrosophic soft topology on K1 and χ2 an indiscrete single-valued neutro-
sophic soft topology on K2 such that χ2 = {∅E, 1E}. Let f : (K1, E, χ1) → (K2, E, χ2) be any function.
Now, to prove that f is a single-valued neutrosophic soft continues function for each θ ∈ E, we show that f
satisfies both conditions of Definition 3.8. Clearly, every member of χ2 is a single-valued neutrosophic soft
K-subalgebra of K2 for each θ ∈ E. Now, there is only need to show that for all H ∈ χ2 and for each
θ ∈ E, f−1(H) ∈ χ1. For this purpose, let us assume that ∅θ ∈ χ2, for any u ∈ K1 and θ ∈ E, we have
f−1(∅θ)(u) = ∅θ(f(u)) = ∅θ(u) ⇒ ∅θ ∈ χ1. Similarly, f−1(1θ)(u) = 1θ(f(u)) = 1θ(u) ⇒ 1θ ∈ χ1. For
an arbitrary choice of θ, result holds for each θ ∈ E. This shows that f is a single-valued neutrosophic soft
continues function.

Proposition 3.15. Let χ1 and χ2 be any two discrete single-valued neutrosophic soft topological spaces on
K1 and K2, respectively and (K1, E, χ1) and (K2, E, χ2) two discrete single-valued neutrosophic soft topolog-
ical spaces. Then for each θ ∈ E, every homomorphism f : (K1, E, χ1) → (K2, E, χ2) is a single-valued
neutrosophic soft continuous function.
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Proof. Let H = {(TζH(θ), IζH(θ),FζH(θ)) : θ ∈ E} be a single-valued neutrosophic soft set in K2 defined by a
set-valued function ζH . Let f : (K1, E, χ1)→ (K2, E, χ2) be a homomorphism (not a usual inverse homomor-
phism). Since χ1 and χ2 be two discrete single-valued neutrosophic soft topologies, then for every H ∈ χ2,
f−1(H) ∈ χ1. Now, we show that for each θ ∈ E, the mapping f−1(H) is a single-valued neutrosophic soft
K-subalgebra of K-algebra K1. Then for any s, t ∈ K1 and θ ∈ E, we have

f−1(TζH(θ))(s� t) = TζH(θ)

(
f(s� t)

)
= TζH(θ)(f(s)� f(t))

≥ min{TζH(θ)(f(s))� TζH(θ)(f(t))}
= min{f−1(TζH(θ))(s), f

−1(TζH(θ))(t)},

f−1(IζH(θ))(s� t) = IζH(θ)(f(s� t))
= IζH(θ)(f(s)� f(t))

≥ min{IζH(θ)(f(s))� IζH(θ)(f(t))}
= min{f−1(IζH(θ))(s), f

−1(IζH(θ))(t)},

f−1(FζH(θ))(s� t) = FζH(θ)(f(s� t))
= FζH(θ)(f(s)� f(t))

≥ min{FζH(θ)(f(s))�FζH(θ)(f(t))}
= min{f−1(FζH(θ))(s), f

−1(FζH(θ))(t)},

Therefore, f−1(H) is single-valued neutrosophic soft K-subalgebra of K1. Hence f−1(H) ∈ χ2 which
shows that f is a single-valued neutrosophic soft continuous function from (K1, E, χ1) into (K2, E, χ2).

Proposition 3.16. Let χ1 and χ2 be any two single-valued neutrosophic soft topological spaces on K and
(K, E, χ1) and (K, E, χ2) be two single-valued neutrosophic soft topological spaces. Then for each θ ∈ E,
every homomorphism f : (K1, E, χ1)→ (K2, E, χ2) is a single-valued neutrosophic soft continuous function.

Definition 3.17. Let χ be a single-valued neutrosophic soft topology onK-algebraK. LetH = (TζH , IζH ,FζH )
be a single-valued neutrosophic soft K-algebra (K-subalgebra) of K and χH a single-valued neutrosophic soft
topology over H . Then H is called a single-valued neutrosophic soft topological K-algebra of K if the self
mapping ρa : (H,E, χH) → (H,E, χH) defined as ρa(u) = u � a, ∀ a ∈ K, is a relatively single-valued
neutrosophic soft continuous mapping.

Theorem 3.18. Let χ1 and χ2 be two single-valued neutrosophic soft topological spaces on K1 and K2, re-
spectively. Let f : K1 → K2 be a homomorphism of K-algebras such that f−1(χ2) = χ1. If for each θ ∈ E,
H = {TζH , IζH ,FζH} is a single-valued neutrosophic soft topological K-algebra of K2, then for each θ ∈ E,
f−1(H) is a single-valued neutrosophic soft topological K-algebra of K1.

Proof. In order to prove that f−1(H) is a single-valued neutrosophic soft topological K-algebra of K-algebra
K1. Firstly, we show that f−1(H) is a single-valued neutrosophic soft K-algebra of K1. One can easily show
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that for all s 6= e ∈ G and θ ∈ E, Tζθ(e) ≥ Tζθ(s), Iζθ(e) ≥ Iζθ(s), Fζθ(e) ≤ Fζθ(s).
Let for any s, t ∈ K1 and θ ∈ E,

Tf−1(H)(s� t) = TH(f(s� t))
≥ min{TH(f(s)), TH(f(t))}
= min{Tf−1(H)(s), Tf−1(H)(t)},

If−1(H)(s� t) = IH(f(s� t))
≥ min{IH(f(s)), IH(f(t))}
= min{If−1(H)(s), If−1(H)(t)},

Ff−1(H)(s� t) = FH(f(s� t))
≥ min{FH(f(s)),FH(f(t))}
= min{Ff−1(H)(s),Ff−1(H)(t)}.

This shows that f−1(H) is a single-valued neutrosophic soft K-algebra of K1.
Since f is a homomorphism and also a single-valued neutrosophic soft continuous mapping, then clearly, f
is relatively single-valued neutrosophic soft continuous mapping from (H,E, χH) into (f−1(H), E, χf−1(H))
such that for a single-valued neutrosophic soft set V in χH , and a single-valued neutrosophic soft set U in
χ(f−1(H),

f−1(V ) = U. (1)

Now, we prove that the self mapping ρa : (f−1(H), E, χf−1(H)) → (f−1(H), E, χf−1(H)) is relatively single-
valued neutrosophic soft continuous mapping. Now, for any a ∈ K1 and θ ∈ E, we have

Tρ−1
a (U)(s) = T(U)(ρa(s)) = T(U)(s� a)

= Tf−1(V )(s� a) = T(V )(f(s� a))

= T(V )(f(s)� f(a)) = T(V )(ρf(a)(f(s)))

= T ρ−1f(a)V (f(s)) = T f−1(ρ−1f(a)(V )(s)),

Iρ−1
a (U)(s) = I(U)(ρa(s)) = I(U)(s� a)

= If−1(V )(s� a) = I(V )(f(s� a))

= I(V )(f(s)� f(a)) = I(V )(ρf(a)(f(s)))

= Iρ−1f(a)V (f(s)) = If−1(ρ−1f(a)(V )(s)),
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Fρ−1
a (U)(s) = F(U)(ρa(s)) = F(U)(s� a)

= Ff−1(V )(s� a) = F(V )(f(s� a))

= F(V )(f(s)� f(a)) = F(V )(ρf(a)(f(s)))

= Fρ−1f(a)V (f(s)) = Ff−1(ρ−1f(a)(V )(s)).

This implies that ρ−1a (U) = f−1(ρ−1f(a)(V )). Thus, ρ−1a (U) ∩ f−1(H) = f−1(ρ−1f(a)(V )) ∩ f−1(H) is a single-
valued neutrosophic soft set in f−1(H) and a single-valued neutrosophic soft set in χf−1(H). Hence f−1(H) is
a single-valued neutrosophic soft topological K-algebra of K1. This completes the proof.

Theorem 3.19. Let χ1 and χ2 be two single-valued neutrosophic soft topologies on K1 and K2, respec-
tively and f : K1 → K2 an isomorphism of K-algebras such that f(χ1) = χ2. If for each θ ∈ E,
H = {(TζH(θ), IζH(θ),FζH(θ)) : θ ∈ E} is a single-valued neutrosophic soft topological K-algebra of K-
algebra K1, then for each θ ∈ E, f(H) is a single-valued neutrosophic soft topological K-algebra of K2.

Proof. Let H be a single-valued neutrosophic soft topological K-algebra of K1. For u, v ∈ K2.

Let to ∈ f−1(u), so ∈ f−1(v) such that

TH(to) = supt∈f−1(u) TH(t), TH(yo) = supt∈f−1(v) TH(t).

We now have,

Tf(H)(u� v) = sup
t∈f−1(u�v)

TH(t)

≥ TH(to, so)

≥ min{TH(to), TH(so)}
= min{ sup

t∈f−1(u)

TH(t), sup
a∈f−1(v)

TH(t)}

= min{Tf(H)(u), Tf(H)(v)},

If(H)(u� v) = sup
t∈f−1(u�v)

IH(t)

≥ IH(to, so)

≥ min{IH(to), IH(so)}
= min{ sup

t∈f−1(u)

IH(t), sup
t∈f−1(v)

IH(t)}

= min{If(H)(u), If(H)(v)},
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Ff(H)(u� v) = inf
t∈f−1(u�v)

FH(t)

≤ FH(to, so)

≤ max{FH(to),FH(so)}
= max{ inf

t∈f−1(u)
FH(t), inf

t∈f−1(v)
FH(t)}

= max{Ff(H)(u),Ff(H)(v)}.

Hence f(H) is a single-valued neutrosophic soft K-subalgebra of K2. To show that f(H) is a single-valued
neutrosophic soft topological K-algebra of K2, i.e., the self map ρb : (f(H), χf(H))→ (f(H), χf(H)), defined
as ρb(v) = v � b, ∀ b ∈ K2 is a relatively single-valued neutrosophic soft continuous mapping. Let YH be a
single-valued neutrosophic soft set in χH , then there exists a single-valued neutrosophic soft set Y in χ1 be
such that YH = Y ∩H .

ρ−1b(Yf(H)) ∩ f(H) ∈ χf(H)

Then f(YH) = f(Y ∩ H) = f(Y ) ∩ f(H) is a single-valued neutrosophic soft set in χf(H) since f is an
injective function. Thus, f is relatively single-valued neutrosophic soft open. Since f is also an onto function,
then for all b ∈ K2 and a ∈ K1, a = f(b), we have

Tf−1(ρ−1
b(Yf(H)))(u) = Tf−1(ρ−1

f (a)(Yf(H)))(u)

= Tρ−1
f (a)(Yf(H))

(
f(u)

)
= T(Yf(H))

(
ρf(a)(f(u))

)
= T(Yf(H))

(
f(u)� f(a)

)
= Tf−1(Yf(H))(u� a)

= Tf−1(Yf(H))(ρa(u))

= Tρ−1
(a)(f

−1(Yf(H)))(u),

If−1(ρ−1
b(Yf(H)))(u) = If−1(ρ−1

f (a)(Yf(H)))(u)

= Iρ−1
f (a)(Yf(H))

(
f(u)

)
= I(Yf(H))(ρf(a)

(
f(u))

)
= I(Yf(H))

(
f(u)� f(a)

)
= If−1(Yf(H))(u� a)

= If−1(Yf(H))(ρa(u))

= Iρ−1
(a)(f

−1(Yf(H)))(u),
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Ff−1(ρ−1
b(Yf(H)))(u) = Ff−1(ρ−1

f (a)(Yf(H)))(u)

= Fρ−1
f (a)(Yf(H))

(
f(u)

)
= F(Yf(H))(ρf(a)

(
f(u))

)
= F(Yf(H))

(
f(u)� f(a)

)
= Ff−1(Yf(H))(u� a)

= Ff−1(Yf(H))(ρa(u))

= Fρ−1
(a)(f

−1(Yf(H)))(u).

This shows that f−1(ρ−1(b)((Yf(H)))) = ρ−1(a)(f
−1(Y(H))). Since ρa : (H,χH) → (H,χH) is relatively single-

valued neutrosophic soft continuous mapping and f is also relatively single-valued neutrosophic soft continues
function. Therefore, f−1(ρ−1(b)((Yf(H))))∩H = ρ−1(a)(f

−1(Y(H)))∩H is a single-valued neutrosophic soft set in
χH . Thus, f(f−1(ρ(b)((Yf(H))))∩A) = ρ−1(b)(Yf(A))∩ f(A) is a single-valued neutrosophic soft set in χA.

Example 3.20. Consider aK-algebraK on a cyclic group of order 8 and Cayley’s table for� is given Example
3.3, where G = {e, x, x2, x3, x4, x5, x6, x7}. Consider a set of parameters E = {l1, l2} and single-valued
neutrosophic soft sets H, J, L defined as:

ζH(l1) = {(e, 0.8, 0.7, 0.2), (h, 0.6, 0.5, 0.4)},
ζH(l2) = {(e, 0.7, 0.7, 0.2), (h, 0.6, 0.6, 0.5)},

ζJ(l1) = {(e, 0.7, 0.7, 0.2), (h, 0.4, 0.1, 0.5)},
ζJ(l2) = {(e, 0.4, 0.6, 0.6), (h, 0.3, 0.5, 0.7)},

ζL(l1) = {(e, 0.9, 0.8, 0.1), (h, 0.7, 0.6, 0.4)},
ζL(l2) = {(e, 0.9, 0.7, 0.1), (h, 0.7, 0.6, 0.4)}

for all h 6= e ∈ G. Then the family χK = {∅E, 1E, H, J, L} is a single-valued neutrosophic soft topology on K
and (K, E, χK) is a single-valued neutrosophic soft topological space over K. We define another single-valued
neutrosophic soft set Q in K as:

ζQ(l1) = {(e, 0.8, 0.5, 0.1), (h, 0.6, 0.4, 0.3)},
ζQ(l2) = {(e, 0.5, 0.6, 0.5), (h, 0.3, 0.4, 0.6)}.

It is obvious that Q is a single-valued neutrosophic soft K-algebra of K.
Now, we prove that the self map ρa : (Q,E, χQ) → (Q,E, χQ), defined as ρa(s) = s � a for all a ∈ K, is a
relatively single-valued neutrosophic soft continuous mapping.
We get Q∩ ∅E = ∅E, Q∩ 1E = 1E, Q∩H = R1, Q∩ J = R2, Q∩L = R3, where R1, R2, R3 are as follows:

ζR1(l1) = {(e, 0.8, 0.5, 0.2), (h, 0.6, 0.4, 0.4)},
ζR1(l2) = {(e, 0.5, 0.6, 0.5), (h, 0.3, 0.4, 0.6)},
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ζR2(l1) = {(e, 0.7, 0.5, 0.2), (h, 0.4, 0.1, 0.5)},
ζR2(l2) = {(e, 0.4, 0.6, 0.6), (h, 0.3, 0.4, 0.7)},

ζR3(l1) = {(e, 0.8, 0.5, 0.1), (h, 0.4, 0.1, 0.5)},
ζR3(l2) = {(e, 0.5, 0.6, 0.5), (h, 0.3, 0.4, 0.7)}.

Thus, χQ = {∅E, 1E, R1, R2, R3} is a relatively topology of Q and (Q,E, χQ) is a single-valued neutrosophic
soft subspace of (K, E, χK). Since ρa is a homomorphism, then for a single-valued neutrosophic soft set
R ∈ χQ, ρ−1a (R) ∩Q ∈ χQ. Which shows that ρa : (Q,E, χQ) → (Q,E, χQ) is relatively single-valued neu-
trosophic soft continuous mapping. Therefore, Q is a single-valued neutrosophic soft topological K-algebra.

4 Single-Valued Neutrosophic Soft C5-connected K-Algebras
In this section, we discuss single-valued neutrosophic soft C5-connected K-algebras.

Definition 4.1. Let (K, E, χK) be a single-valued neutrosophic soft topological space over K. A single-valued
neutrosophic soft separation of (K, E, χK) is a pair of nonempty single-valued neutrosophic soft open sets
H, J if the following conditions hold:

(i) H ∪ J = 1E .

(ii) H ∩ J = ∅E .

Definition 4.2. Let (K, E, χK) be a single-valued neutrosophic soft topological space overK. Then (K, E, χK)
is called a single-valued neutrosophic soft C5-disconnected if there exists a single-valued neutrosophic soft
separation of (K, E, χK), otherwise C5-connected.

Definition 4.2 can be written as:

Definition 4.3. Let (K, E, χK) be a single-valued neutrosophic soft topological space over K. If there exists a
single-valued neutrosophic soft open set and single-valued neutrosophic soft closed set L such that L 6= 1E and
L 6= ∅E, then (K, E, χK) is called a single-valued neutrosophic soft C5-disconnected, otherwise (K, E, χK) is
called a single-valued neutrosophic soft C5-connected.

Example 4.4. By considering Example 3.3, we consider a single-valued neutrosophic soft topological space
χK = {∅E, 1E, H, J, L}. SinceH∩J 6= ∅E, H∩L 6= ∅E, J∩L 6= ∅E andH∪J 6= 1E, H∪L 6= 1E, J∪L 6= 1E .
Thus, χK is a single-valued neutrosophic soft C5-connected.

Example 4.5. Every indiscrete single-valued neutrosophic soft space is C5-connected since the only single-
valued neutrosophic soft sets in single-valued neutrosophic soft indiscrete space that are both single-valued
neutrosophic soft open and single-valued neutrosophic soft closed are ∅E and 1E .

Theorem 4.6. Let (K, E, χK) be a single-valued neutrosophic soft topological space on K-algebra K. Then
(K, E, χK) is a single-valued neutrosophic soft C5-connected if and only if χK contains only ∅E and 1E which
are both single-valued neutrosophic soft open and single-valued neutrosophic soft closed.
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Proof. Straightforward.

Proposition 4.7. Let K1 and K2 be two K-algebras and (K1, E, χK1), (K2, E, χK2) two single-valued neutro-
sophic soft topological spaces on K1 and K2, respectively. Let f : K1 → K2 be a single-valued neutrosophic
soft continuous surjective function. If (K1, E, χK1) is a single-valued neutrosophic soft C5-connected space,
then (K2, E, χK2) is also single-valued neutrosophic soft C5-connected.

Proof. Let (K1, E, χK1) and (K2, E, χK2) be two single-valued neutrosophic soft topological spaces and (K1, E, χK1)
be a single-valued neutrosophic soft C5-connected space. We prove that (K2, E, χK2) is also single-valued
neutrosophic soft C5-connected. Let us suppose on contrary that (K2, χ2) be a single-valued neutrosophic soft
C5-disconnected space. According to Definition 4.3, we have both single-valued neutrosophic soft open set
and single-valued neutrosophic soft closed set L such that L 6= 1SN and L 6= ∅SN . Then f−1(L) = 1SN or
f−1(L) = ∅SN since f is a single-valued neutrosophic soft continuous surjective mapping , where f−1(L)
is both single-valued neutrosophic soft open set and single-valued neutrosophic soft closed set. Therefore,
L = f(f−1(L)) = f(1SN) = 1SN and L = f(f−1(L)) = f(∅SN) = ∅SN , a contradiction. Hence (K2, E, χ2)
is a single-valued neutrosophic soft C5-connected space.

5 Single-Valued Neutrosophic Soft Super Connected K-Algebras
Definition 5.1. Let (K, E, χK) be a single-valued neutrosophic soft topological space over K and H =
{TζH , IζH ,FζH} a single-valued neutrosophic soft set in K. Then the interior and closure of H in a K-algebra
K is defines as:

HInt =
⋃
{O : O is a single-valued neutrosophic soft open set in K and O ⊆ H},

HClo =
⋂
{C : C is a single-valued neutrosophic soft closed set in K and H ⊆ C}.

It is interesting to note that HInt, being union of single-valued neutrosophic soft open sets is single-valued
neutrosophic soft open and HClo, being intersection of single-valued neutrosophic soft closed set is single-
valued neutrosophic soft closed.

Theorem 5.2. Let (K, E, χK) be a single-valued neutrosophic soft topological space onK. LetH = {TζH , IζH ,FζH}
be a single-valued neutrosophic soft set in χK. Then HInt is the largest single-valued neutrosophic soft open
set contained in H.

Proof. Obvious.

Proposition 5.3. Let H be a single-valued neutrosophic soft set in K. Then the following properties hold:

(i) (1E)Int = 1E.

(ii) (∅E)Clo = ∅E.

(iii) (H)
Int

= (H)Clo.

(iv) (H)
Clo

= (H)Int.
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Corollary 5.4. If H is a single-valued neutrosophic soft set in K, then H is single-valued neutrosophic soft
open if and only if HInt = H and H is a single-valued neutrosophic soft closed if and only if HClo = H.

Definition 5.5. Let (K, E, χK) be a single-valued neutrosophic soft topological space onK and χK be a single-
valued neutrosophic soft topology on K. Let H = {TζH , IζH ,FζH} be a single-valued neutrosophic soft open
set in K. Then H is called a single-valued neutrosophic soft regular open if

H = (HClo)Int.

Remark 5.6. (1) Every single-valued neutrosophic soft regular is single-valued neutrosophic soft open.
(2) Every single-valued neutrosophic soft clopen set is single-valued neutrosophic soft regular open.

Definition 5.7. Let χK be a single-valued neutrosophic soft topology on K. Then K is called a single-valued
neutrosophic soft super disconnected if there exists a single-valued neutrosophic soft regular open set H =
{TζH , IζH ,FζH} such that 1E 6= H and ∅E 6= H. But if there does not exist such a single-valued neutrosophic
soft regular open set H such that 1E 6= H and ∅E 6= H , then K is called single-valued neutrosophic soft super
connected.

Example 5.8. Consider a K-algebra on a cyclic group of order 8 and Cayley’s table for � is given in
Example 3.3, where G = {e, x, x2, x3, x4, x5, x6, x7}. We have a single-valued neutrosophic soft topology
χK = {∅E, 1E, H, J}, where H, J with a parametric set E = {l1, l2} are given as:

ζH(l1) = {(e, 0.8, 0.7, 0.2), (h, 0.6, 0.5, 0.4)},
ζH(l2) = {(e, 0.7, 0.7, 0.2), (h, 0.6, 0.6, 0.5)},

ζJ(l1) = {(e, 0.7, 0.7, 0.2), (h, 0.4, 0.1, 0.5)},
ζJ(l2) = {(e, 0.4, 0.6, 0.6), (h, 0.3, 0.5, 0.7)},

for all h 6= e ∈ G.
Let L be a single-valued neutrosophic soft set in K, defined by:

ζL(l1) = {(e, 0.9, 0.8, 0.1), (h, 0.7, 0.6, 0.4)},
ζL(l2) = {(e, 0.9, 0.7, 0.1), (h, 0.7, 0.6, 0.4)}.

Now, we have single-valued neutrosophic soft open sets : ∅E, 1E, H, J .
single-valued neutrosophic soft closed sets : (∅E)c = 1E, (1E)c = ∅E, (H)c = H

′
, (J)c = J

′
, where H ′ , J ′

are obtained as:

ζH′ (l1) = {(e, 0.2, 0.7, 0.8), (h, 0.4, 0.5, 0.6)},
ζH′ (l2) = {(e, 0.2, 0.7, 0.7), (h, 0.5, 0.6, 0.6)},

ζJ ′ (l1) = {(e, 0.2, 0.7, 0.7), (h, 0.5, 0.1, 0.4)},
ζJ ′ (l2) = {(e, 0.6, 0.6, 0.4), (h, 0.7, 0.5, 0.3)},
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for all h 6= e ∈ G. Then, interior and closure of a single-valued neutrosophic soft set L is obtained as:

LInt = H,
LClo = 1E.

For L to be a single-valued neutrosophic soft regular open, then L = (LClo)Int. But since L = (1E)Int = 1E 6=
L. This shows that 1E 6= L 6= ∅E is not a single-valued neutrosophic soft regular open set. By Definition 5.7,
defined K-algebra is a single-valued neutrosophic soft super connected K-algebra.

6 Single-Valued Neutrosophic Soft Compactness K-Algebras

Definition 6.1. Let χK be a single-valued neutrosophic soft topology on K. Let H be a single-valued neutro-
sophic soft set in K . A collection Ω = {(TζHi , IζHi ,FζHi ) : i ∈ I} of single-valued neutrosophic soft sets in
K is called a single-valued neutrosophic soft open covering of H if H ⊆

⋃
Ω. A finite sub-collection of Ω say

(Ω
′
) is also a single-valued neutrosophic soft open covering of H , called a finite subcovering of H.

Definition 6.2. Let (K, E, χK) be a single-valued neutrosophic soft topological space of K. Let H be a single-
valued neutrosophic soft set in K. Then H is called a single-valued neutrosophic soft compact if every single-
valued neutrosophic soft open covering Ω of H has a finite sub-covering (Ω

′
).

Example 6.3. A single-valued neutrosophic soft topological space (K, E, χK) is single-valued neutrosophic
soft compact if either K is finite or χK is a finite single-valued neutrosophic soft topology on K.

Proposition 6.4. Let f : (K1, E, χK1) → (K2, E, χK2) be a single-valued neutrosophic soft continuous map-
ping, where (K1, E, χK1) and (K2, E, χK2) are two single-valued neutrosophic soft topological spaces of K1

and K2, respectively. If H is a single-valued neutrosophic soft compact in (K1, E, χK1), then f(H) is single-
valued neutrosophic soft compact in (K2, E, χK2).

Proof. Let f be a single-valued neutrosophic soft continuous map fromK1 intoK2. Let Ω = {f−1(Hi : i ∈ I)}
be a single-valued neutrosophic soft open covering of H and ∆ = {Hi : i ∈ I} a single-valued neutrosophic

soft open covering of f(H). Then there exists a single-valued neutrosophic soft finite sub-covering
n⋃
I=1

f−1(Hi)

such that

H ⊆
n⋃
i=1

f−1
(
Hi

)
.

Thus,

f(H) ⊆
n⋃
i=1

(
Hi

)
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H ⊆
n⋃
i=1

f−1
(
Hi

)
f(H) ⊆ f

( n⋃
i=1

f−1(Hi)
)

f(H) ⊆
n⋃
i=1

(
f(f−1(Hi))

)
f(H) ⊆

n⋃
i=1

(
Hi

)
.

This shows that there exists a single-valued neutrosophic soft finite sub-covering of f(H). Therefore, f(H) is
single-valued neutrosophic soft compact in (K2, E, χK2).

7 Single-Valued Neutrosophic Soft Hausdorff K-Algebras
Definition 7.1. Let H = {TζH , IζH ,FζH} be a single-valued neutrosophic soft set in a K. Then H is called a
single-valued neutrosophic soft point if, for θ ∈ E

ζH(θ) 6= ∅E,

and

ζH(θ
′
) = ∅E,

for all θ′ ∈ E − {θ}. A single-valued neutrosophic soft point in H is denoted by θH .

Definition 7.2. A single-valued neutrosophic soft point θH is said to belong to a single-valued neutrosophic
soft set J, i.e., θH ∈ J if, for θ ∈ E

ζH(θ) ≤ ζJ(θ).

Definition 7.3. Let (K, E, χK) be a single-valued neutrosophic soft topological space overK and θL, θQ be two
single-valued neutrosophic soft points in K. If for these two single-valued neutrosophic soft points, there exist
two disjoint single-valued neutrosophic soft open sets H , J such that θL ∈ H and θQ ∈ J. Then (K, E, χK)
is called a single-valued neutrosophic soft Hausdorff topological space over K and K is called a single-valued
neutrosophic soft Hausdorff K-algebra.

Example 7.4. Consider a K-algebra K on a cyclic group of order 8 and Cayley’s table for � is given in
Example 3.3, where G = {e, x, x2, x3, x4, x5, x6, x7}. Let E = {l} and χK = {∅E, 1E, H, J} be a single-
valued neutrosophic soft topological space over K. We define two single-valued neutrosophic soft points lL, lQ
such that

lL = {(e, 1, 0, 1), (h, 0, 0, 1)},
lQ = {(e, 0, 0, 1), (h, 0, 1, 0)}.
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Since for l ∈ E, ζL(l) 6= ∅E, ζQ(l) 6= ∅E, and lL 6= lQ, then clearly lL and lQ are two single-valued neutrosophic
soft points. Now, consider two single-valued neutrosophic soft open sets H and J defined as:

ζH(l) = {(e, 1, 1, 0), (h, 0, 0, 1)},
ζJ(l) = {(e, 0, 0, 1), (h, 1, 1, 0)},

for all h 6= e ∈ G. Since ζL(l) ≤ ζH(l) and ζQ(l) ≤ ζJ(l), i.e., lL ∈ H and lQ ∈ J and H ∩ J = ∅E. Thus,
(K, E, χK) is a single-valued neutrosophic soft Hausdorff space and K is a single-valued neutrosophic soft
Hausdorff K-algebra.

Theorem 7.5. Let f : (K1, E, χ1) → (K2, E, χ2) be a single-valued neutrosophic soft homomorphism. Then
K1 is a single-valued neutrosophic soft Hausdorff space if and only if K2 is a single-valued neutrosophic soft
Hausdorff K-algebra.

Proof. Let f : (K1, E, χ1) → (K2, E, χ2) be a single-valued neutrosophic soft homomorphism and χ1, χ2 be
two single-valued neutrosophic soft topologies on K1 and K2, respectively. Suppose that K1 is a single-valued
neutrosophic soft Hausdorff space. To prove thatK2 is a single-valued neutrosophic soft Hausdorff K-algebra,
Let for l ∈ E, lL and lQ be two single-valued neutrosophic soft points in χ2 such that lL 6= lQ with u, v ∈ K1,
u 6= v. Then for these two distinct single-valued neutrosophic soft points, there exist two single-valued neu-
trosophic soft open sets H and J such that lL ∈ H, lQ ∈ J with H

⋂
J = ∅E. For x ∈ K1, we consider

(f−1(lL))(x) = lL(f−1(x)) =

{
s ∈ (0, 1] ifx = f−1(u),
0 otherwise.

= ((f−1(l))L(x))

Therefore, f−1(lL) = (f−1(l))L. Likewise, f−1(lQ) = (f−1(l))Q. Since f is a single-valued neutrosophic soft
continuous function from K1 into K2 and also f−1 is a single-valued neutrosophic soft continuous function
from K2 into K1, then there exist two disjoint single-valued neutrosophic soft open sets f(H) and f(J) of
single-valued neutrosophic soft points lL and lQ, respectively be such that f(H)

⋂
f(J) = f(∅E) = ∅E.

This shows that K2 is a single-valued neutrosophic soft Hausdorff K-algebra. The proof of converse part is
straightforward.

Theorem 7.6. let f : K1 → K2 be a bijective single-valued neutrosophic soft continuous function, where K1

is a single-valued neutrosophic soft compact K-algebra and K2 is a single-valued neutrosophic soft Hausdorff
K-algebra. Then mapping f is a K1 is a single-valued neutrosophic soft homomorphism.

Proof. Let f be a bijective single-valued neutrosophic soft mapping from a single-valued neutrosophic soft
compact K-algebra into a single-valued neutrosophic soft Hausdorff K-algebra. Then clearly, f is a single-
valued neutrosophic soft homomorphism. We only prove that f is single-valued neutrosophic soft closed since
f is a bijective mapping. Let a single-valued neutrosophic soft set Q = {TζQ , IζQ ,FζQ} be closed in K-
algebra K1. Now if Q = ∅E, then f(Q) = ∅E is single-valued neutrosophic soft closed in K2. But if Q 6= ∅E,
then being a subset of a single-valued neutrosophic soft compact K-algebra, Q is single-valued neutrosophic
soft compact. Also f(Q) is single-valued neutrosophic soft compact, being a single-valued neutrosophic soft
continuous image of a single-valued neutrosophic soft compact K-algebra. Hence f is closed thus, f is a
single-valued neutrosophic soft homomorphism.
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8 Conclusions
In 1998, Smarandache originally considered the concept of neutrosophic set from philosophical point of view.
The notion of a single-valued neutrosophic set is a subclass of the neutrosophic set from a scientific and
engineering point of view, and an extension of intuitionistic fuzzy sets [32]. In 1999, Molodtsov introduced
the idea of soft set theory as another powerful mathematical tool to handle indeterminate and inconsistent
data. This theory fixes the problem of establishing the membership function for each specific case by giving
a parameterized outlook to indeterminacy. By using a hybrid model of these two mathematical techniques
with a topological structure, we have developed the concept of single-valued neutrosophic soft topological
K-algebras to analyze the element of indeterminacy in K-algebras. We have defined some certain concepts
such as the interior, closure, C5-connected, super connected, compactness and Hausdorff of single-valued
neutrosophic soft topological K-algebras. In future, we aim to extend our notions to (1) Rough neutrosophic
K-algebras, (2) Soft rough neutrosophic K-algebras, (3) Bipolar neutrosophic soft K-algebras, and (4) Rough
neutrosophic K-algebras.
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Abstract. In this paper, the idea bipolar single-valued neutrosophic (BSVN) set was introduced. We also introduce bipolar 
single-valued neutrosophic topological space and some of its properties were characterized. Comparing Bipolar single-valued 
neutrosophic sets with score function, certainty function and accuracy function .Bipolar single-valued neutrosophic weighted 
average operator (Aω) and bipolar single-valued neutrosophic weighted geometric operator (Gω) were developed and based on 
Bipolar single-valued neutrosophic set, a multiple decision making problem were evaluated through an example to select the 
desirable one. 

Keywords: Bipolar single-valued neutrosophic set, bipolar single-valued neutrosophic topological space, bipolar single-valued 
neutrosophic average operator, bipolar single-valued neutrosophic geometric operator, score, certainty and accuracy functions. 

1. Introduction
 Fuzzy Logic resembles the human decision making methodology.Zadeh [39] who was considered as 

the Father of Fuzzy Logic introduced the fuzzy sets in 1965 and it is a tool in learning logical subject. He put 
forth the concept of fuzzy sets to deal with contrasting types of uncertainties. Using single value  μA(x)∈[0, 1] , 
the degree of membership of the fuzzy set is in classic fuzzy, which is defined on a universal scale, they cannot 
grasp convinced cases where it is hard to define μA by one specific value.  

Intuitionistic fuzzy sets which was proposed by Atanassov [2] is the extension of Zadeh’s Fuzzy Sets to 
overthrown the lack of observation of non-membership degrees. Intuitionistic fuzzy sets generally tested in 
solving multi-criteria decision making problems. Intuitionistic fuzzy sets detailed into the membership degree, 
non-membership degree and simultaneously with degree of indeterminancy.  

Neutrosophic is the base for the new mathematical theories derives both their classical and fuzzy 
depiction. Smarandache [4,5]  introduced  the neutrosophic set . Neutrosophic set has the capability to induce 
classical sets, fuzzy set, Intuitionistic fuzzy sets. Introduceing the components of the neutrosophic set are 
True(T), Indeterminacy(I), False(F) which represent the membership, indeterminacy, and non-membership 
values respectively.The notion of classical set, fuzzy set [17], interval-valued fuzzy set [39], Intuitionistic fuzzy 
[2], etc were generalized by the neutrosophic set. Majumdar & Samant [19] recommended the Single-valued 
neutrosophic sets (SVNSs), which is a variation of Neutrosophic Sets. Wang, et.al [38] describe an example of 
neutrosophic set and sgnify single valued Neutrosophic set (SVNs).They give many properties of Single-Valued 
Neutrosophic Set, which are associated to the operations and relations by Single-Valued Neutrosophic Sets.The 
correlation coefficient of SVNSs placed on the development of the correlation coefficient of Intuitionistic fuzzy 
sets and tested that the cosine similarity measure of SVNS is a special case of the correlation coefficient and 
correlated it to single valued neutrosophic multicriteria decision-making problems which was presented by Jun 
Ye [7]. For solving multi-criteria decision-making problems, he overworked similarity measure for interval 
valued neutrosophic set. Single valued neutrosophic sets (SVNSs) can handle the undetermined and uncertain 
information and also symbolize, which fuzzy sets and Intuitionistic fuzzy sets cannot define and finalize.  

Turksen [37] proposed the Interval-valued fuzzy set is similar as Intuitionistic fuzzy set. The concept is 
to hook the anxiety of class of membership . Interval- valued fuzzy set need an interval value [μA

L(a), μA
U(a)] 

with 0≤μA
L(a)≤μA

U(a)≤1 to represent the class of membership of a fuzzy set A. But it is not suffient to take only 
the membership function,  but also to have the non-membership function . 

Bipolar fuzzy relations was given by Bosc and Pivert [3] where a pair of satisfaction degrees is made 
with each tuple. In 1994, an development of fuzzy set termed bipolar fuzzy was given by Zhang [40].By the 
notion of fuzzy sets, Lee [16] illustrate bipolar fuzzy sets. Manemaran and Chellappa [20] provide some 
applications in groups are called the bipolar fuzzy groups, fuzzy d-ideals of groups under (T-S) norm. They also 
explore few properties of the groups and the relations. Bipolar fuzzy subalgebras and bipolar fuzzy ideals of 
BCK/BCI-algebras were researched by K. J. Lee[17]. Multiple attribute decision-making method situated on 
single-valued neutrosophic was granted by P. Liu and Y. Wang[18]. 
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In bipolar neutrosophic environment, bipolar neutrosophic sets(BNS) was developed by Irfan Deli [6] 
and et.al. The application based on multi-criteria decision making problems were also given by them in bipolar 
neutrosophic set. To collect bipolar neutrosophic information, they defined score, accuracy, and certainty 
functions  to compare BNS and developed bipolar neutrosophic weighted average (BNWA) and bipolar 
neutrosophic weighted geometric (BNWG) operators. In the study, a Multi Criteria Decision Making approach 
were discussed on the basis of score, accuracy, and certainty functions, bipolar Neutrosophic Weighted Average 
and bipolar Neutrosophic Weighted Geometric operators were calculated. Fuzzy neutrosophic sets and its 
Topological spaces  was introduced  by I.Arockiarani and J.Martina Jency [1].  

Positive and Negative effects count on Decision making . Multiple decision-making problems have 
gained very much attention in the area of systemic optimization, urban planning, operation research, 
management science and many other fields. Correlation Coefficient between Single Valued Neutrosophic Sets 
and its Multiple Attribute Decision Making Method given by Jun Ye [7]. A Neutrosophic Multi-Attribute 
Decision making with Unknown Weight data was investigated by Pranab Biswas, Surapati Pramanik, Bibhas C. 
Giri[30]. Neutrosophic Tangent Similarity Measure and its Application was given by  Mondal, Surapati 
Pramanik [11]. Many of the authors[8-14,21,22,24-29,31,32,33,35,36] studied and examine different and 
variation of neutrosophic set theory in Decision making  problems.  

Here, we introduce bipolar single-valued neutrosophic set which is an expansion of the fuzzy sets, 
Intuitionistic fuzzy sets, neutrosophic sets and  bipolar fuzzy sets. Bipolar single-valued neutrosophic topological 
spaces were also proposed. Bipolar single-valued neutrosophic topological spaces characterized a few of its 
properties and a numerical example were illustrated. Bipolar single-valued neutrosophic sets were compared  
with score function, certainty function and accuracy function. Then,the bipolar single-valued Neutrosophic 
weighted average operator (Aω) and bipolar single-valued neutrosophic weighted geometric operator (Gω) are 
developed to aggregate the data.To determine the application and the performance of this method to choose the 
best one, atlast a numerical example of the method was given. 
 
2  Preliminaries 
 
2.1 Definition [34]: Let X be a non-empty fixed set. A neutrosophic set B is an object having the form 
B={<x,μB(x),σB(x),γB(x)>x∈X} Where μB(x),σB(x) and γB(x) which represent the degree of membership 
function , the degree of indeterminacy  and the degree of non-membership respectively of each element x∈X to 
the set B . 

2.2 Definition [38]: Let a universe X of discourse. Then ANS={<x,FA(x),TA(x)IA(x)>x∈X} defined as a single-
valued neutrosophic set where truth-membership function TA:X→[0,1],an indeterminacy-membership function 
IA: X→[0,1] and a falsity-membership function FA: X → [0,1].No restriction on the sum of TA(x), IA(x) and 

FA(x), so 0≤sup TA(x) ≤sup IA(x) ≤supFA(x) ≤3. A~ =<T, I, F> is denoted as a single-valued neutrosophic number. 
 

2.3 Definition [23]: Let two single-valued neutrosophic number be A~ 1=<T1, I1, F1> and A~ 2=<T2, I2, F2> . 
Then,the operations for NNs are defined as follows: 

i. λ A~ =<1-(1-T1)λ,I1
λ,F1

λ> 
ii. 

1
~A =<(T1

λ,1-(1-I1)λ,1-(1-F1)λ> 

iii. A~ 1+ A~ 2=<T1+T2-T1T2,I1I2,F1F2> 

iv. A~ 1. A~ 2=<T1T2,I1+I2-I1I2,F1+F2-F1F2> 

2.4 Definition [15]: Let a single-valued neutrosophic number be B~ 1=<T1, I1, F1>. Then, SNN are defined as  
i. score function  s( B~ 1) = (T1+1- I1+ 1-F1)/3; 

ii. accuracy function  a( B~ 1) = T1-F1; 
iii. certainty function  c ( B~ 1) = T1. 

2.5 Definition [23]: Let two single-valued neutrosophic number be B~ 1=<T1, I1, F1> and B~ 2=<T2, I2, F2>. The 
comparison method defined as: 

i. if s( B~ 1) > s( B~ 2), then  B~ 1 is greater than B~ 2, that is, B~ 1 is superior to B~ 2, denoted by B~ 1> B~ 2 
. 

ii. if s( B~ 1) = s( B~ 2) and a( B~ 1)>a( B~ 2), then  B~ 1 is greater than B~ 2, that is, B~ 1 is superior to B~ 2, denoted by  
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B~ 1< B~ 2. 
iii.if s( B~ 1) = s( B~ 2) and a( B~ 1)=a( B~ 2) and c( B~ 1) >c( B~ 2), then  B~ 1 is greater than B~ 2, that is, B~ 1 is superior 

to B~ 2, denoted by B~ 1> B~ 2. 
iv.if s( B~ 1) = s( B~ 2) and a( B~ 1)=a( B~ 2) and c( B~ 1)=c( B~ 2), then  B~ 1 is equal to B~ 2, that is, B~ 1 is indifferent 

to B~ 2, denoted by B~ 1= B~ 2. 

2.6 Definition [6]: In X, a bipolar neutrosophic set B  is defined in the form 
B=<x, (T+(x), I+(x), F+(x), T-(x), I-(x), F-(x)):x∈X> 

Where T+, I+, F+: X→ [1, 0] and T- , I - , F- : X [-1, 0].The positive membership degree denotes the truth 
membership T+(x), indeterminate membership I+ (x) and false membership F+ (x) of an element x∈X 
corresponding to the set A and the negative membership degree denotes the truth membership T-(x), 
indeterminate membership I-(x) and false membership F-(x)  of an element x∈ X to some implicit counter-
property corresponding to a bipolar neutrosophic set . 
 
2.7 Definition [39, 2]: Each element had a degree of membership (T) in the fuzzy set . The Intuitionistic fuzzy 
set on a universe, where the degree of membership μB(x) ∈[0,1] of each element x∈X to a set B, there was a 
degree of non-membership νB(x)∈[0,1],such that  x∈X, μB(x) + ν B(x) ≤1. 
 
2.8 Definition [15, 20]: Let a non-empty set be X. Then, BBF= {<x, μ+

B(x), μ-
B(x)>: x∈X}is a bipolar-valued 

fuzzy set denoted by BBF ,where μ+
B: X → [0, 1] and μ-

B: X → [0, 1]. The positive Membership degree μ+
B(x) 

denotes the satisfaction degree of an element x to the property corresponding to BBF and the negative 
membership degree μB

-(x) denotes the satisfaction degree of x to some implicit counter property of BBF . 

In this section, we give the concept bipolar single-valued neutrosophic set and its operations. We also 
developed the bipolar single-valued neutrosophic weighted (Aω) average operator and geometric operator (Gω). 
Some of it is quoted from [2, 5, 7, 10, and 14]. 

 
3. Bipolar single-valued Neutrosophic set(BSVN): 
 
3.1 Definition : A Bipolar Single-Valued Neutrosophic set (BSVN) S in X is defined in the form of 

BSVN (S) =<v,(TBSVN
+,TBSVN

-),(IBSVN
+,IBSVN

-),(FBSVN
+,FBSVN

-):v∈X>   
where (TBSVN

+,IBSVN
+,FBSVN

+):X→[0,1] and (TBSVN
-,IBSVN

-,FBSVN
-):X→ [-1,0] .In this definition, there TBSVN

+ and 
TBSVN

- are acceptable and unacceptable in past. Similarly IBSVN
+ and IBSVN

- are acceptable and unacceptable in 
future. FBSVN

+ and FBSVN
- are acceptable and unacceptable in present respectively. 

3.2 Example : Let X={s1,s2,s3}.Then a bipolar single-valued neutrosophic subset of  X  is  

S=























)7.0,7.0(),4.0,6.0(),8.0,2.0(,
)5.0,6.0(),4.0,4.0(),3.0,2.0(,

)5.0,3.0(),3.0,2.0(),1.0,1.0(,

3

2

1

s
s
s

 

 
3.3 Definition : Let two bipolar single-valued neutrosophic sets BSVN1(S) and BSVN2(S) in X defined as 
BSVN1 (S)=<v,(TBSVN

+(1),TBSVN
-(1)),(IBSVN

+(1),IBSVN
-(1)),(FBSVN

+(1),FBSVN
-(1)):v∈X>  and  

BSVN2(S)=<v,(TBSVN
+(2),TBSVN

-(2)),(IBSVN
+(2),IBSVN

-(2)),(FBSVN
+(2),FBSVN

-(2)):v∈X>. Then the operators  
are defined as follows: 

(i) Complement 
       BSVNc(S) = {< v,(1-TBSVN

+), (-1-TBSVN
-), (1-IBSVN

+), (-1-IBSVN
-), (1-FBSVN

+), (-1-FBSVN
-): v∈X >} 

(ii) Union of two BSVN 
BSVN1(S) U BSVN2(S) = 

))2(),1(min()),2(),1(min()),2(),1(max(

))2(),1(min()),2(),1(min( (2)),T(1),(Tmax BSVNBSVN




BSVNBSVNBSVNBSVNBSVNBSVN

BSVNBSVNBSVNBSVN

FFIITT

FFII
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(iii)  Intersection of two BSVN 
 
BSVN1(S) ∩BSVN2(S) = 

))2(),1(max()),2(),1(max()),2(),1(min(

))2(),1(max()),2(),1(max()),2(),1(min(




BSVNBSVNBSVNBSVNBSVNBSVN

BSVNBSVNBSVNBSVNBSVNBSVN

FFIITT

FFIITT
 

3.4 Example : Let X={s1,s2,s3}.Then the bipolar single-valued neutrosophic subsets S1 and S2 of X ,  

S1 =






















)7.0,7.0(),4.0,6.0(),8.0,2.0(,
)5.0,6.0(),4.0,4.0(),3.0,2.0(,

)5.0,3.0(),3.0,2.0(),1.0,1.0(,

3

2

1

s
s
s

and S2 =






















)7.0,8.0(),3.0,6.0(),3.0,5.0(,
)6.0,4.0(),5.0,3.0(),3.0,3.0(,
)5.0,4.0(),5.0,3.0(),1.0,2.0(,

3

2

1

s
s
s

 

(i) Complement of S1 is S c
1 =























3.0,3.0(),6.0,4.0(),2.0,8.0(,
5.0,4.0(),6.0,6.0(),7.0,8.0(,
5.0,7.0(),7.0,8.0(),9.0,9.0(,

3

2

1

s
s
s

 

(ii) Union of S1 and S2 is S1US2=






















)7.0,7.0(),4.0,6.0(),3.0,5.0(,
)6.0,4.0(),5.0,3.0(),3.0,3.0(,

5.0,3.0(),5.0,2.0(),1.0,2.0(,

3

2

1

s
s
s

 

(iii) Intersection of S1 and S2 is S1∩S2=






















)7.0,8.0(),3.0,6.0(),8.0,2.0(,
)5.0,6.0(),4.0,4.0(),3.0,2.0(,

)5.0,4.0(),3.0,3.0(),1.0,1.0(,

3

2

1

s
s
s

 

3.5 Definition : Let two bipolar single-valued neutrosophic sets be BSVN1(S) and BSVN2(S) in X defined as 
BSVN1(S)=<v,(TBSVN

+(1),TBSVN
-(1)),(IBSVN

+(1),IBSVN
-(1)),(FBSVN

+(1),FBSVN
-(1)):v∈X>  and  

BSVN2(S)=<v, (TBSVN
+(2),TBSVN

-(2)),(IBSVN
+(2),IBSVN

-(2)), (FBSVN
+(2),FBSVN

-(2)):v∈X>. 

Then S1=S2 if and only if 

TBSVN
+(1) = TBSVN

+(2) , IBSVN
+(1) = IBSVN

+(2) , FBSVN
+(1) = FBSVN

+(2) , 
TBSVN

-(1) = TBSVN
-(2) , IBSVN

-(1) = IBSVN
-(2) , FBSVN

-(1) = FBSVN
-(2)  for all v∈X. 

3.6 Definition :  Let two bipolar single-valued neutrosophic sets be BSVN1 and BSVN2 in X defined as 
BSVN1(S)=<v,(TBSVN

+(1),TBSVN
-(1)),(IBSVN

+(1),IBSVN
-(1)),(FBSVN

+(1),FBSVN
-(1)):v∈X>  and  

BSVN2(S)=<v, (TBSVN
+(2),TBSVN

-(2)),(IBSVN
+(2),IBSVN

-(2)), (FBSVN
+(2),FBSVN

-(2)):v∈X>. 

Then S1⊆S2 if and only if 

TBSVN
+(1) ≤ TBSVN

+(2) , IBSVN
+(1) ≥ IBSVN

+(2) , FBSVN
+(1) ≥ FBSVN

+(2) , 
TBSVN

-(1) ≤ TBSVN
-(2) , IBSVN

-(1) ≥ IBSVN
-(2) , FBSVN

-(1) ≥ FBSVN
-(2)  for all v∈X. 

4. Bipolar single-valued Neutrosophic Topological space: 

4.1 Definition : A bipolar single-valued neutrosophic topology on a non-empty set X is a τ of BSVN sets 
satisfying the axioms 

(i) 0BSVN , 1BSVN ∈ τ 
(ii) S1 ∩ S2 ∈ τ for any S1,S2 ∈ τ 
(iii) USi ∈ τ for any arbitrary family {Si :i∈ j} ∈ τ 
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The pair (X,τ) is called BSVN topological space. Any BSVN set in τ is called as BSVN open set in X. The 
complement Sc of BSVN set in BSVN topological space (X,τ) is called a BSVN closed set. 
 
4.2 Definition : Null or Empty bipolar single-valued neutrosophic set of a Bipolar single-valued Neutrosophic 
set S over X is said to be if  <v, (0, 0), (0, 0), (0, 0)> for all v∈X and it is denoted by 0BSVN. 
 
4.3 Definition : Absolute Bipolar single-valued neutrosophic set denoted by 1BSVN of a Bipolar single-valued 
Neutrosophic set S over X is said to be if <v, (1,-1), (1,-1), (1,-1)> for all v∈X. 

4.4 Example : Let X={s1,s2,s3} and τ= {0BSVN,1BSVN,P,Q,R,S}Then a bipolar single-valued neutrosophic subset 
of X is 

P=






















)1.0,4.0(),3.0,4.0(,7.0,2.0(),
)4.0,4.0(),1.0,7.0(),6.0,3.0(,
)3.0,5.0(),2.0,4.0(),5.0,3.0(,

3

2

1

s
s
s

      Q=






















)4.0,4.0(),3.0,4.0(),2.0,3.0(,
)2.0,4.0(),2.0,4.0(),4.0,3.0(,
)2.0,3.0(),2.0,5.0(),2.0,5.0(,

3

2

1

s
s
s

 

R=






















)4.0,4.0(),3.0,4.0(),2.0,3.0(,
)4.0,4.0(),2.0,4.0(),4.0,3.0(,
)3.0,3.0(),2.0,4.0(),2.0,5.0(,

3

2

1

s
s
s

       

S=






















)1.0,4.0(),3.0,4.0(),7.0,2.0(,
)2.0,4.0(),1.0,7.0(),6.0,3.0(,
)2.0,5.0(),2.0,5.0(),5.0,3.0(,

3

2

1

s
s
s

 

Then (X,τ) is called BSVN topological space on X. 

4.5 Definition : Let (X,τ) be a BSVN topological space and 

 
BSVN (S) =<v, (TBSVN

+,TBSVN
-), (IBSVN

+,IBSVN
-),(FBSVN

+,FBSVN
-):v∈X> be a BSVN set in X. Then the closure and 

interior of A is defined as  
Int (S) = U {F: F is a BSVN open set (BSVNOs) in X and F⊆S} 
Cl (S) = ∩ {F: F is a BSVN closed set (BSVNCs) in X and S⊆F}.  

Here cl(S) is a BSVNCs and int (S) is a BSVNOs in X. 
(a) S is a BSVNCs in X iff cl (S) =S. 
(b) S is a BSVNOs in X iff int (S) =S. 

4.6 Example : Let X={s1,s2,s3} and τ={0BSVN,1BSVN,P,Q,R,S}. Then a bipolar single-valued neutrosophic subset 
of X is  

P=






















)1.0,4.0(),3.0,4.0(),7.0,2.0(,
)4.0,4.0(),1.0,7.0(),6.0,3.0(,
)3.0,5.0(),2.0,4.0(),5.0,3.0(,

3

2

1

s
s
s

Q=






















)4.0,4.0(),3.0,4.0(),2.0,3.0(,
)2.0,4.0(),2.0,4.0(),4.0,3.0(,
)2.0,3.0(),2.0,5.0(),2.0,5.0(,

3

2

1

s
s
s

 

R=






















)4.0,4.0(),3.0,4.0(),2.0,3.0(,
)4.0,4.0(),2.0,4.0(),4.0,3.0(,
)3.0,3.0(),2.0,4.0(),2.0,5.0(,

3

2

1

s
s
s

S=






















)1.0,4.0(),3.0,4.0(),7.0,2.0(,
)2.0,4.0(),1.0,7.0(),6.0,3.0(,
)2.0,5.0(),2.0,5.0(),5.0,3.0(,

3

2

1

s
s
s

 

T=






















6.0,5.0,5.0,3.0,2.0,5.0,
5.0,5.0,3.0,3.0,6.0,6.0,
4.0,2.0,5.0,3.0,3.0,7.0,

3

2

1

s
s
s

 Then int(T)=P and cl(T)=1BSVN. 

4.7 Proposition : Let BSVNTS of (X,τ) and S,T be BSVN’s in X. Then the properties hold: 
i. int (S) ⊆ S and  S ⊆ cl(S) 
ii. S⊆ T ⇒int(S) ⊆ int(T)  

S⊆ T ⇒cl(S) ⊆ cl(T) 
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iii. int(int(S))=int(S) 
cl(cl(S))=cl(S) 

iv. int(S∩T)=int(S)∩int(T) 
cl(SUT)=cl(S)Ucl(T) 

v. int(1BSVN)=1BSVN 
cl(0BSVN)=0BSVN 

 
Proof: The proof is obvious. 
 
4.8 Proposition : Let BSVN sets of Si's and T in X, then Si⊆T  for each i∈J⇒ (a). USi⊆T  and (b). T ⊆ ∩Si. 
Proof: (a).Let Si⊆B (i.e) S1⊆B, S2⊆B,….., Sn⊆B. 

⇒ {TBSVN
+(S1) ≤ TBSVN

+(T) , TBSVN
-(S1) ≤ TBSVN

-(T) , IBSVN
+(S1) ≥ IBSVN

+(T) , IBSVN
-(S1) ≥ IBSVN

-(T),  
FBSVN

+(S1) ≥ FBSVN
+(T) , FBSVN

-(S1) ≥ FBSVN
-(T) ,TBSVN

+(S2) ≤ TBSVN
+(T) , TBSVN

-(S2) ≤ TBSVN
-(T) ,  

IBSVN
+(S2)≥IBSVN

+(T),IBSVN
-(S2)≥IBSVN

-(T),FBSVN
+(S2)≥FBSVN

+(T),FBSVN
-(S2)≥FBSVN

-(T)…..................., 
TBSVN

+(Sn)≤ TBSVN
+(T), TBSVN

-(Sn) ≤ TBSVN
-(T) , IBSVN

+(Sn) ≥ IBSVN
+(T) , IBSVN

-(Sn) ≥ IBSVN
-(T), 

FBSVN
+(Sn) ≥ FBSVN

+(T) , FBSVN
-(Sn) ≥ FBSVN

-(T)  } 
 
⇒max{(TBSVN

+(S1), TBSVN
+(S2) ,...,TBSVN

+(Sn)),( TBSVN
-(S1) ,TBSVN

-(S2) ,..,TBSVN
-(Sn) )}≤(TBSVN

+(T),TBSVN
-(T)) 

    min{(IBSVN
+(S1) ,IBSVN

+(S2) ,…,IBSVN
+(Sn) ), (IBSVN

-(S1) ,IBSVN
-(S2) ,…,IBSVN

-(Sn) )} ≥ (IBSVN
+(T) ,IBSVN

-(T)) 
    min{(FBSVN

+(S1) ,FBSVN
+(S2) ,…,FBSVN

+(Sn)),(FBSVN
-(S1),FBSVN

-(S2) ,…,FBSVN
-(Sn) )} ≥ (FBSVN

+(T),FBSVN
-(T)) 

where UAi = <x,  max {(TBSVN
+(S1), TBSVN

+(S2) ,...,TBSVN
+(Sn) ),( TBSVN

-(S1) ,TBSVN
-(S2) ,..,TBSVN

-(Sn) )} 
                  min{(IBSVN

+(S1) ,IBSVN
+(S2) ,…,IBSVN

+(Sn) ), (IBSVN
-(S1) ,IBSVN

-(S2) ,…,IBSVN
-(Sn) )} 

                 min{(FBSVN
+(S1) ,FBSVN

+(S2) ,…,FBSVN
+(Sn) ), (FBSVN

-(S1) ,FBSVN
-(S2) ,…,FBSVN

-(Sn) )} > 
 U Si ⊆ T .Hence proved. 

 
(b)Let  T⊆Si (i.e) T⊆S1, T⊆S2, … T⊆Si. 

⇒< TBSVN
+(T) ≤ TBSVN

+(S1) , TBSVN
-(T) ≤ TBSVN

-(S1) , IBSVN
+(T) ≥ IBSVN

+(S1) , IBSVN
-(T) ≥ IBSVN

-(S1),         
FBSVN

+(T) ≥ FBSVN
+(S1) , FBSVN

-(T) ≥ FBSVN
-(S1) , TBSVN

+(T) ≤ TBSVN
+(S2) , TBSVN

-(T) ≤ TBSVN
-(S2), 

IBSVN
+(T) ≥ IBSVN

+(S2) , IBSVN
-(T) ≥ IBSVN

-(S2),FBSVN
+(T) ≥ FBSVN

+(S2) ,FBSVN
-(T) ≥ FBSVN

-(S2) ,………………,  
TBSVN

+(T)≤ TBSVN
+(Sn) , TBSVN

-(T) ≤ TBSVN
-( Sn) ,IBSVN

+(T) ≥ IBSVN
+( Sn) , IBSVN

-(T) ≥ IBSVN
-( Sn), 

FBSVN
+(T) ≥ FBSVN

+(Sn) , FBSVN
-(T) ≥ FBSVN

-( Sn) }> 
 
⇒(TBSVN

+(T),TBSVN
-(T)) ≤ min{(TBSVN

+(S1),TBSVN
+(S2) ,...,TBSVN

+(Sn) ),( TBSVN
-(S1) ,TBSVN

-(S2) ,..,TBSVN
-(Sn) )} 

    (IBSVN
+(T) ,IBSVN

-(T)) ≥ max {( IBSVN
+(S1) ,IBSVN

+(S2) ,…,IBSVN
+(Sn) ), (IBSVN

-(S1) ,IBSVN
-(S2) ,…,IBSVN

-(Sn) )} 
    (FBSVN

+(T),FBSVN
-(T))≥ max{(FBSVN

+(S1) ,FBSVN
+(S2) ,…,FBSVN

+(Sn) ),(FBSVN
-(S1) ,FBSVN

-(S2) ,…, FBSVN(Sn))} 
 
Where ∩Ai=  <x, min {(TBSVN

+(S1), TBSVN
+(S2) ,...,TBSVN

+(Sn) ),( TBSVN
-(S1) ,TBSVN

-(S2) ,..,TBSVN
-(Sn) )} 

                             max{(IBSVN
+(S1) ,IBSVN

+(S2) ,…,IBSVN
+(Sn) ), (IBSVN

-(S1) ,IBSVN
-(S2) ,…,IBSVN

-(Sn) )} 
                            max{(FBSVN

+(S1) ,FBSVN
+(S2) ,…,FBSVN

+(Sn) ), (FBSVN
-(S1) ,FBSVN

-(S2) ,…,FBSVN
-(Sn) )} > 

 T ⊆ ∩Si .Hence proved. 

4.9 Proposition : Let Si's and T are BSVN sets in X then (i). (USi)c = ∩Si
c , (ii). (∩Si)c =  USi

c and  
(iii). (Sc)c = S. 
Proof: (i)  Let USi = <x, max {(TBSVN

+(S1), TBSVN
+(S2) ,...,TBSVN

+(Sn) ),( TBSVN
-(S1) ,TBSVN

-(S2) ,..,TBSVN
-(Sn))} 

                                         min{(IBSVN
+(S1) ,IBSVN

+(S2) ,…,IBSVN
+(Sn) ), (IBSVN

-(S1) ,IBSVN
-(S2) ,…,IBSVN

-(Sn) )} 
                                         min{(FBSVN

+(S1) ,FBSVN
+(S2) ,…,FBSVN

+(Sn) ),(FBSVN
-(S1) ,FBSVN

-(S2) ,..,FBSVN
-(Sn))} > 

(USi)c = <x,min{(1-TBSVN
+(S1),1-TBSVN

+(S2) ,..,1-TBSVN
+(Sn) ),(-1- TBSVN

-(S1) ,-1-TBSVN
-(S2) ,..,-1- TBSVN

-(Sn))}                
 max{(1-IBSVN

+(S1) ,1-IBSVN
+(S2) ,…,1-IBSVN

+(Sn) ), (-1-IBSVN
-(S1) ,-1-IBSVN

-(S2) ,…,-1-IBSVN
-(Sn))} 

               max{(1-FBSVN
+(S1) ,1-FBSVN

+(S2) ,..,1-FBSVN
+(Sn) ), (-1-FBSVN

-(S1) ,-1-FBSVN
-(S2) ,..,-1-FBSVN

-(Sn)) > 
         ------------------->(1) 

Si
c = <x,(1-TBSVN

+(S1),1- TBSVN
+(S2) ,...,1-TBSVN

+(Sn) ),(-1- TBSVN
-(S1) ,-1-TBSVN

-(S2) ,..,-1-TBSVN
-(Sn)) 

               (1-IBSVN
+(S1) ,1-IBSVN

+(S2) ,…,1-IBSVN
+(Sn) ), (-1-IBSVN

-(S1) ,-1-IBSVN
-(S2) ,…,-1-IBSVN

-(Sn) ) 
               (1-FBSVN

+(S1) ,1-FBSVN
+(S2) ,…,1-FBSVN

+(Sn) ), (-1-FBSVN
-(S1) ,-1-FBSVN

-(S2) ,…,-1-FBSVN
-(Sn)> 
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∩Si
c =  <x,min {(1-TBSVN

+(S1),1-TBSVN
+(S2) ,...,1-TBSVN

+(Sn) ),(-1- TBSVN
-(S1) ,-1-TBSVN

-(S2) ,..,-1-TBSVN
-(Sn) )} 

                    max{(1-IBSVN
+(S1) ,1-IBSVN

+(S2) ,…,1-IBSVN
+(Sn) ), (-1-IBSVN

-(S1) ,-1-IBSVN
-(S2) ,…,-1-IBSVN

-(Sn) )} 
                    max{(1-FBSVN

+(S1) ,1-FBSVN
+(S2) ,..,1-FBSVN

+(Sn) ), (-1-FBSVN
-(S1) ,-1-FBSVN

-(S2) ,..,-1-FBSVN
-(Sn)}> 

         ------------------->(2) 
 From (1) and (2), (USi)c = ∩Si

c  .Hence proved. 
 
(ii). Similar as proof of (i). 
 
(iii). Let S=< (TBSVN

+(S),TBSVN
-(S)), (IBSVN

+(S), IBSVN
-(S)),(FBSVN

+(S), FBSVN
-(S))> be a BSVN set in X, then 

Sc
 = < (1-TBSVN

+(S), -1-TBSVN
-(S)),(1-IBSVN

+(S), -1-IBSVN
-(S)),(1-FBSVN

+(S), -1-FBSVN
-(S)> 

(Sc)c
 = < (TBSVN

+(S), TBSVN
-(S)),(IBSVN

+(S), IBSVN
-(S)),(FBSVN

+(S), FBSVN
-(S))> 

(Sc)c = S. Hence proved. 
 
5. Bipolar single-valued Neutrosophic Number (BSVNN) 

5.1 Definition : Let two bipolar single-valued neutrosophic number(BSVNN) be  
s~ 1=<TBSVN

+(1),TBSVN
-(1)),(IBSVN

+(1),IBSVN
-(1)),(FBSVN

+(1),FBSVN
-(1)>  and   

s~ 2=<TBSVN
+(2),TBSVN

-(2)),(IBSVN
+(2),IBSVN

-(2)), (FBSVN
+(2),FBSVN

-(2)> . Then the operations are 
i. λ s~ 1=<1-(1-TBSVN

+(1))λ, -(-TBSVN
-(1))λ, (IBSVN

+(1))λ, -(-IBSVN
-(1))λ, (FBSVN

+(1))λ, -(1-(1-(-FBSVN
-(1)))λ)> 

ii. 

1
~s =<(TBSVN

+(1))λ, -(1-(1-(-TBSVN
-(1)))λ), 1-(1-IBSVN

+(1))λ, -(-IBSVN
-(1))λ, 1-(1-FBSVN

+(1))λ, -(-FBSVN
-(1))λ> 

iii. s~ 1+ s~ 2= <TBSVN
+(1)+ TBSVN

+(2)- TBSVN
+(1) TBSVN

+(2),- TBSVN
-(1) TBSVN

-(2),  
             IBSVN

+(1) IBSVN
+(2), - (- IBSVN

- (1) - IBSVN
-(2) - IBSVN

-(1) IBSVN
-(2)), 

             FBSVN
+ (1) FBSVN

+ (2), -(- FBSVN
-(1) - FBSVN

-(2) - FBSVN
-(1)FBSVN

-(2))> 
iv. s~ 1. s~ 2 =< TBSVN

+(1) TBSVN
+(2),-(- TBSVN

-(1)- TBSVN
-(2)- TBSVN

-(1)TBSVN
-(2)),  

           IBSVN
+(1)+ IBSVN

+(2)- IBSVN
+(1) IBSVN

+(2),- IBSVN
-(1) IBSVN

-(2),  
             FBSVN

+(1)+ FBSVN
+(2)- FBSVN

+(1) FBSVN
+(2),- FBSVN

-(1) FBSVN
-(2)> 

5.2 Definition : Let a bipolar single-valued neutrosophic number(BSVNN) be 
s~ 1=<TBSVN

+(1),TBSVN
-(1)),(IBSVN

+(1),IBSVN
-(1)),(FBSVN

+(1),FBSVN
-(1)>.Then   

i. score function:  s( s~ 1)=( TBSVN
+(1)+1- IBSVN

+(1)+1- FBSVN
+(1)+1+TBSVN

-(1)- IBSVN
-(1)-FBSVN

-(1))/6 
ii. accuracy function:  a( s~ 1)= TBSVN

+(1)-FBSVN
+(1)+TBSVN

-(1)-FBSVN
-(1) 

iii. certainty function : c( s~ 1)= TBSVN
+(1)-FBSVN

+(1) 

5.3 Definition : The two bipolar single-valued neutrosophic numbers (BSVNN) are compared 
s~ 1=<TBSVN

+(1),TBSVN
-(1)),(IBSVN

+(1),IBSVN
-(1)),(FBSVN

+(1),FBSVN
-(1)> 

s~ 2=< TBSVN
+(2),TBSVN

-(2)),(IBSVN
+(2),IBSVN

-(2)), (FBSVN
+(2),FBSVN

-(2)> can be defined as 
 

i. If s( s~ 1)>s( s~ 2), s~ 1 is superior to s~ 2 ,(i.e.) s~ 1 is greater than s~ 2 denoted as s~ 1> s~ 2. 
ii. If s( s~ 1)=s( s~ 2) and s~  ( s~ 1)> s~  ( s~ 2), s~ 1is superior to s~ 2,(i.e.) s~ 1 is greater than s~ 2 denoted as  

s~ 1 < s~ 2. 
iii. If s( s~ 1)=s( s~ 2) and s~  ( s~ 1)= s~  ( s~ 2) and c( s~ 1)>c( s~ 2), s~ 1 is greater than s~ 2,that is s~ 1 is superi-

or to s~ 2,denoted as s~ 1> s~ 1. 
iv. If s( s~ 1)=s( s~ 2) and s~  ( s~ 1)= s~  ( s~ 2) and c( s~ 1)=c( s~ 2), s~ 1 is equal to s~ 2,that is s~ 1 is indifferent 

to s~ 2 ,denoted as s~ 1= s~ 1. 

5.4 Definition : Let a family of bipolar single-valued neutrosophic numbers(BSVNN) be s~ j=<TBSVN
+(j), 

TBSVN
-(j)),(IBSVN

+(j),IBSVN
-(j)),(FBSVN

+(j),FBSVN
-(j)>(j=1,2,3,…,n). A mapping A :Fn→F is called bipolar  

single-valued Neutrosophic weighted average (BSVNWAω) operator if satisfies  
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Aω( 1
~s , 2

~s ,.., ns~ )= 


n

j 1

ωj js~  = < 1-



n

j 1

1( TBSVN
+(j)) j , -



n

j 1

(-TBSVN
-(j)) j , 



n

j 1

IBSVN
+(j) j ,                  

-(1-


n

j 1

(1-(-IBSVN
-)) j ), 



n

j 1

 FBSVN
+(j) j , - (1-



n

j 1

(1-(- FBSVN
-)) j )> 

Here ωj is the weight of js~ (j=1,2,…n), 


n

j 1

ωj=1 and ωj∈[0,1]. 

 
5.5 Definition : Let a family of bipolar single-valued neutrosophic numbers(BSVNN) be js~ =<TBSVN

+(j), 
TBSVN

-(j)),(IBSVN
+(j),IBSVN

-(j)),(FBSVN
+(j),FBSVN

-(j)>(j=1,2,3,…,n) . A mapping Gω:Fn→F is called bipolar  
single-valued neutrosophic weighted geometric(BSVNWGω) operator if it satisfies 

Gω ( 1
~s , 2

~s ,.., ns~ )= 


n

j 1

 js~  j  =  < 


n

j 1

TBSVN
+ (j)) j  , -(1- 



n

j 1

(1-(-TBSVN
-(j))) j ), 

 1-


n

j 1

 (1-IBSVN
+ (j)) j , -



n

j 1

(- IBSVN
-)) j ,1-



n

j 1

(1- FBSVN
+(j) j , -



n

j 1

(- FBSVN
-) j > where  ωj is the 

weight of js~  (j=1,2,…n), 


n

j 1

ωj=1 and  ωj∈[0,1]. 

5.6. Decision making problem: 

Here, with bipolar single-valued neutrosophic data, we develop decision making problem based on Aω operator  
Suppose the set of alternatives is S = {S1,S2,...Sm} and the set of all criterions (or attributes) are  

G= {G1,G2,….,Gn}.Let ω=(ω1,ω2,….ωn)T be the weight vector of attributes such that  


n

j 1

ωj=1 and ωj ≥ 0 

(j=1,2,…n) and ωj assign to the weight of attribute Gj.An alternative on criterions is calculated by the decision 
maker and the assess values are represented by the design of bipolar single-valued neutrosophic  numbers. 

Assume the decision matrix ( s~ ij)m n =(<TBSVN
+(ij),TBSVN

-(ij)),(IBSVN
+(ij),IBSVN

-(ij)),(FBSVN
+(ij),FBSVN

-(ij)>)mxn 
contributed by the decision maker, for Alternative Si with criterion Gj ,the bipolar single-valued neutrosophic 
number is s~ ij. The conditions are TBSVN

+(ij),TBSVN
-(ij),(IBSVN

+(ij),IBSVN
-(ij),FBSVN

+(ij),FBSVN
-(ij) ∈ [0,1] such that 

0 ≤ TBSVN
+(ij) -TBSVN

-(ij) +IBSVN
+(ij) -IBSVN

-(ij) +FBSVN
+(ij) -FBSVN

-(ij) ≤ 6 for i=1,2,3,…m and j=1,2,…n. 

Algorithm: 

STEP 1:  Construct the decision matrix  by the decision maker. 

    ( s~ ij)m n =(<TBSVN
+(ij),TBSVN

-(ij)),(IBSVN
+(ij),IBSVN

-(ij)),(FBSVN
+(ij),FBSVN

-(ij)>)mxn  

STEP 2: Compute s~ i=Aω( s~ i1, s~ i2,… s~ in) for each i=1,2,….m. 

STEP 3: Using the set of overall bipolar single-valued neutrosophic number of s~ i (i=1,2,…m),calculate the 
score values s~ ( s~ i). 

STEP 4: Rank all the structures of s~ i (i=1,2,…m) according to the score values. 
 
Example (5.7): A patient is intending to analyze which disease is caused to him. Four types of diseases 
Si(i=1,2,3,4) are Cancer, Asthuma, Hyperactive, Typhoid. The set of symptoms are G1=cough, 
G2=Headache,G3=stomach pain,G4=blood cloting. To evaluate the 4 diseases (alternatives) Si(i=1,2,3,4) under 
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the above four symptoms(attributes) using the bipolar single-valued neutrosophic values.The weight vector of 
the attributes Gj (j=1, 2, 3, 4) is ω= (0.25,0.35,0.20,0.20) T. 

STEP 1: The decision matrix provided by the patient is constructed as below: 

Si /Gi G1 G2 G3 G4 
S1 (0.3,-0.5)(0.4,-0.4) 

(0.4,-0.2) 
(0.3,-0.3)(0.5,-0.2) 

(0.3,-0.4) 
(0.6,-0.4)(0.4,-0.3) 

(0.3,-0.5) 
(0.1,-0.3)(0.6,-0.4) 

(0.5,-0.3) 
S2 (0.3,-0.4)(0.7,-0.5) 

(0.4,-0.5) 
(0.1,-0.3)(0.2,-0.4) 

(0.3,-0.5) 
(0.3,-0.5)(0.2,-0.4) 

(0.1,-0.3) 
(0.4,-0.2)(0.2,-0.3) 

(0.1,-0.2) 
S3 (0.3,-0.4)(0.4,-0.5) 

(0.5,-0.6) 
(0.1,-0.2)(0.2,-0.3) 

(0.3,-0.4) 
(0.5,-0.4)(0.4,-0.5) 

(0.5,-0.6) 
(0.1,-0.3)(0.2,-0.4) 

(0.3,-0.6) 
S4 (0.3,-0.2)(0.2,-0.1) 

(0.1,-0.2) 
(0.3,-0.1)(0.4,-0.2) 

(0.5,-0.3) 
(0.2,-0.3)(0.4,-0.7) 

(0.7,-0.8) 
(0.1,-0.3)(0.2,-0.5) 

(0.3,-0.7) 
  
STEP 2: Compute s~ i=Aω( s~ i1, s~ i2, s~ i3, s~ i4) for  each i=1,2,3,4;  

s~ 1=< (0.3,-0.4) (0.5,-0.3) (0.4,-0.4)> 
  s~ 2=< (0.2,-0.3) (0.3,-0.4) (0.2,-0.4)> 
  s~ 3=< (0.2,-0.3) (0.3,-0.4) (0.4,-0.5)> 
  s~ 4=< (0.2,-0.2) (0.3,-0.4) (0.3,-0.5)> 
STEP 3: The score value of s~ ( s~ i ) (i=1, 2, 3, 4) are computed for the set of overall bipolar single-valued 
neutrosophic number . 

s~ ( s~ 1)=0.45  

s~ ( s~ 2)=0.53 

s~ ( s~ 3)=0.51 

s~ ( s~ 4)=0.55 
STEP 4: According to the score values rank all the software systems of Si (i=1, 2, 3, and 4) 

S4 > S2 > S3 > S1 

Thus S4 is the most affected disease (alternative) . Typhoid(S4)  is affected to him. 
 
Conclusion: 
 In this paper, bipolar single-valued neutrosophic sets were developed. Bipolar single-valued 
neutrosophic topological spaces were also introduced and characterized some of its properties. Further score 
function, certainty function and accuracy functions of the Bipolar single-valued neutrosophic were given. We 
proposed the average and geometric operators (Aω and Gω) for bipolar single-valued neutrosophic information. 
To calculate the integrity of alternatives on the attributes taken, a bipolar single-valued neutrosophic decision 
making approach using the score function, certainty function and accuracy function were refined.  
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Abstract: Neutrosophic sets has gained wide popularity and acceptance in both academia and industry. Different
fields have successfully adopted and utilized neutrosophic sets. However, there is no open-source implementation that
provides the basic neutrosophic concepts. Open-source is a global movement that enables developers to share their
source-code, as researchers do share their research ideas and results. Presented Open-source python neutrosophic
package is the first of its kind. It utilizes object oriented concepts. It is based on one of the most popular multi-
paradigm programming languages that is widely used in different academic and industry fields and activities; namely
python. Presented package tends to dissolve the barriers and enable both researchers and developers to adopt neutro-
sophic sets and theory in research and applications. In this paper, the first Open-source, Object-Oriented, Python based
Neutrosophic package is presented. This paper intensively scanned neutrosophic sets research attempting to reach the
most widely accepted neutrosophic proofs, and then transforming them into source-code. Presented package imple-
ments most of the basic neutrosophic concepts. Presented neutrosophic package presents four different classes: Single
Valued Neutrosophic Number, Single Valued Neutrosophic Sets, Interval Valued Neutrosophic Number, and Interval
Valued Neutrosophic Sets. Presented package source code, test cases, usage examples, and updated documentation
can be found online at https://www.github.com/helghareeb/neutrosophic. Presented neutrosophic
package can be easily integrated into research and applications. This is an ongoing work and research, as neutrosophic
theory is largely expanding, and there are lots of features to cover.

Keywords: Single Valued Neutrosophic Number, Neutrosophic Sets, Open Source, Python

1 Neutrosophic Theory
Neutrosophic sets have been introduced to the literature by Smarandache to handle incomplete, indetermi-
nate, and inconsistent information [18]. In neutrosophic sets, indeterminacy is quantified explicitly through a
new parameter I. Truth-membership (T), indeterminacy membership (I) and falsity-membership (F) are three
independent parameters that are used to define a Neutrosophic Number.

•
N =

{
< x;T •

N
(x) , I •

N
(x) , F •

N
(x) >, x ∈ X

}
x ∈ X, T •

N
(x) , I •

N
(x) , F •

N
(x) ∈ [0, 1] (1.1)

This paper presents the first novel open source implementation of a Neutrosophic Package in Python pro-
gramming language. Proposed implementation aims to facilitate Neutrosophic sets utilization in different
Python based applications. Python programming language has been chosen exclusively for different reasons.
Python is a high-level programming language, that is efficient, supports high-level data structures, and is highly
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utilized in different academic and industry disciplines; including big data analytics, artificial intelligence, and
machine learning. There are no reasons that prevents porting the proposed Neutrosophic package implementa-
tion to other programming languages. Porting presented package is a step to take in the near future. However,
Python will be the main focus of this research paper.

Presented characteristics and operations are implemented in the presented Open-Source Python Package
can be found at https://www.github.com/helghareeb/neutrosophic. Presented Neutrosophic
Package development covers the following neutrosophic objects:

• Single Valued Neutrorosphic Number (SVNN)

• Interval Valued Neutrosophic Number (IVNN)

• Single Valued Neutrosophic Sets (SVNS)

• Interval Valued Neutrosophic Sets (IVNS)

Rest of the paper goes as follows:

Section 2 presents a literature review on the most recent areas of applications that utilize neutrosophy theory
and neutrosophic sets. Neutrosophic sets has been widely accepted among different disciplines, and the need
for an open source neutrosophic package implementation has become a necessity.

Section 3 presents the core design methodology and concepts around the presented novel neutrosophic pack-
age. Presented package is object oriented based, that supports open-source concepts, and utilizes some Python
magic to enhance the performance and functionality.

In the following sections, an introduction to the neutrosophic theory of the presented section is high-
lighted, followed by the equation that implements the presented operation. Implementation of the presented
equation is presented immediately after the equation, so the reader can follow each section of the code and
what it is actually responsible for. The complete source code is available at https://www.github.com/
helghareeb/neutrosophic. This paper avoids mathematical proofs of the implemented equations, and
includes external references that include the proofs of the implemented equations and calculations.

Section 4 presents the basic element and the most widely used neutrosophic number, that is the single valued
neutrosophic number (SVNN). SVNNs operations and their implementation are presented in this section.

Section 5 introduces the Single Valued Neutrosophic Sets (SVNS). SVNS consists of multiple SVNNs.
Aggregation operations are presented in this section. Implementation details simplified the calculation, and
hopefully will act as an enabler for researchers in academia and developers in industry as a guidance and
concrete implementation on how to adopt neutrosophic sets in real world applications.

Section 6 highlights one of the most important concepts in neutrosophic theory; that is Interval Valued
Neutrosophic Numbers (IVNNs). Though IVNNs are really important in describing real world cases, they are
tough to implement because they lack the crisp mathematical characteristics presented in SVNNs. This section
presents a simplified way to convert mathematical concepts into concrete implementations.
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Section 7 presents the Interval Valued Neutrosophic Sets (IVNSs). IVNS is an importnat neutrosophic con-
cept that must be supported in neutrosophic packages. Averaging function of IVNNs is presented.

Section 8 concludes the paper, highlighting the main features and advantages of the presented open source
neutrosophic package, and presents the future work. This is an ongoing work that needs continous develop-
ment, and will grow exponentially as neutrosophic theory, sets, and systems keeps in growing and gaining
wide popularity and acceptance. Paper ends with references.

2 Neutrosophic Sets in Applications and Disciplines
Neutrosophic has been widely adopted in important areas. – Here we need to include important references for
important areas of neutrosophic applications, specially areas where our package can be utilized.

2.1 MADM and MCDM
Utilizing neutrosophic sets in Multi Attributed Decision Making (MADM) and Multi Criteria Decision Making
(MCDM) has gained wide acceptance in research and academia.

Analytic Hierarchy Process (AHP) in neutrosophic environment has gained polpularity and achieved suc-
cess in different cases. In some realistic situations, the decision makers might be unable to assign deterministic
evaluation values to the comparison judgments due to limited knowledge or the differences of individual judg-
ments in group decision making. To overcome these challenges, neutrosophic set theory to have been utilized
to handle the AHP, where each pair-wise comparison judgment is represented as a triangular neutrosophic num-
ber (TNN). [3] presents such a utilization and applies it to a real life example based on expert opinions from
Zagazig University, Egypt. The problem is solved to show the effectiveness of the proposed neutrosophic-AHP
decision making model.

An Extension of Neutrosophic AHP–SWOT Analysis for Strategic Planning and Decision-Making is pre-
sented in [1]. Every organization seeks to set strategies for its development and growth and to do this, it must
take into account the factors that affect its success or failure. The most widely used technique in strategic plan-
ning is SWOT analysis. SWOT examines strengths (S), weaknesses (W), opportunities (O) and threats (T), to
select and implement the best strategy to achieve organizational goals. The chosen strategy should harness the
advantages of strengths and opportunities, handle weaknesses, and avoid or mitigate threats. SWOT analysis
does not quantify factors (i.e., strengths, weaknesses, opportunities and threats) and it fails to rank available
alternatives. To overcome this drawback, [1] integrated it with the analytic hierarchy process (AHP). The AHP
is able to determine both quantitative and the qualitative elements by weighting and ranking them via compar-
ison matrices. Due to the vague and inconsistent information that exists in the real world. The proposed model
have been applied in a neutrosophic environment in a real case study of Starbucks Company to validate the
model.

A Hybrid Neutrosophic Group ANP-TOPSIS Framework for Supplier Selection Problems is presented in
[2]. One of the most significant competitive strategies for organizations is sustainable supply chain manage-
ment (SSCM). The vital part in the administration of a sustainable supply chain is the sustainable supplier
selection, which is a multi-criteria decision-making issue, including many conflicting criteria. The valuation
and selection of sustainable suppliers are difficult problems due to vague, inconsistent and imprecise knowl-
edge of decision makers. In the literature on supply chain management for measuring green performance, the
requirement for methodological analysis of how sustainable variables affect each other, and how to consider
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vague, imprecise and inconsistent knowledge, is still unresolved. [2] provides an incorporated multi-criteria
decision-making procedure for sustainable supplier selection problems (SSSPs). An integrated framework is
presented via interval-valued neutrosophic sets to deal with vague, imprecise and inconsistent information that
exists usually in real world. The analytic network process (ANP) is employed to calculate weights of selected
criteria by considering their interdependencies. For ranking alternatives and avoiding additional comparisons
of analytic network processes, the technique for order preference by similarity to ideal solution (TOPSIS) is
used. The proposed framework is turned to account for analyzing and selecting the optimal supplier. An actual
case study of a dairy company in Egypt is examined within the proposed framework. Comparison with other
existing methods is implemented to confirm the effectiveness and efficiency of the proposed approach.

An Integrated Neutrosophic-TOPSIS Approach and its Application to Personnel Selection as a New Trend
in Brain Processing and Analysis is presented in [17]. Personnel selection is a critical obstacle that influences
the success of enterprise. The complexity of personnel selection is to determine efficiently the proper appli-
cant to fulfill enterprise requirements. The decision makers do their best to match enterprise requirements with
the most suitable applicant. Unfortunately, the numerous criteria, alternatives, and goals make the process
of choosing among several applicants very complex and confusing to decision makers. The environment of
decision making is a MCDM surrounded by inconsistency and uncertainty. [17] contributes to support per-
sonnel selection process by integrating neutrosophic Analytical Hierarchy Process (AHP) with Technique for
Order Preference by Similarity to an Ideal Solution (TOPSIS) to illustrate an ideal solution among different
alternatives. A case study on smart village Cairo Egypt is developed based on decision maker’s judgments rec-
ommendations. The proposed study applies neutrosophic analytical hierarchy process and TOPSIS to enhance
the traditional methods of personnel selection to achieve the ideal solutions. By reaching to the ideal solutions,
the smart village will enhance the resource management for attaining the goals to be a success enterprise. The
proposed method demonstrates a great impact on the personnel selection process rather than the traditional
decision making methods.

Neutrosophic AHP can be used to help decision makers to estimate the influential factors of IoT in enter-
prises. A study that combines AHP methods with neutrosophic techniques to estimate the influential factors
for a successful enterprise is presented in [16].

2.2 Control Systems
The indeterminacy of parameters in actual control systems is inherent property because some parameters in
actual control systems are changeable rather than constants in some cases, such as manufacturing tolerances,
aging of main components, and environmental changes, which present an uncertain threat to actual control
systems. Therefore, these indeterminate parameters can affect the control behavior and performance. [25] de-
velops a new neutrosophic design method that introduces neutrosophic state space models and the neutrosophic
controllability and observability in indeterminate linear systems. Then, establishes a neutrosophic state feed-
back design method for achieving a desired closed-loop state equation or a desired control ratio for single-input
single-output (SISO) neutrosophic linear systems.

2.3 Image Processing and Segmentation
Segmentation is considered as an important step in image processing and computer vision applications, which
divides an input image into various non-overlapping homogenous regions and helps to interpret the image more
conveniently. [11] presents an efficient image segmentation algorithm using neutrosophic graph cut (NGC).
An image is presented in neutrosophic set, and an indeterminacy filter is constructed using the indeterminacy
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value of the input image, which is defined by combining the spatial information and intensity information.
The indeterminacy filter reduces the indeterminacy of the spatial and intensity information. A graph is defined
on the image and the weight for each pixel is represented using the value after indeterminacy filtering. The
segmentation results are obtained using a maximum-flow algorithm on the graph.

Medical field touches everyone’s life, and it has benefited a lot from neutrosophic. Fully automated algo-
rithm for image segmentation in medical field is presented in [19]. Such algorithm segments fluid-associated
(fluid-filled) and cyst regions in optical coherence tomography (OCT) retina images of subjects with diabetic
macular edema. The OCT image is segmented using a novel neutrosophic transformation and a graph-based
shortest path method. An image g is transformed into three sets: T (true), I (indeterminate) that represents
noise, and F (false). Fully automatic and accurate breast lesion segmentation that utilizes a novel phase fea-
ture to improve the image quality, and a novel neutrosophic clustering approach to detect the accurate lesion
boundary is presented in [23].

An efficient scheme for unsupervised colour-texture image segmentation using neutrosophic set (NS) and
non-subsampled contourlet transform (NSCT) is presented in [13]. First, the image colour and texture infor-
mation are extracted via CIE Luv colour space model and NSCT, respectively. Then, the extracted colour and
texture information are transformed into the NS domain efficiently by the authors’ proposed approach. In the
NS-based image segmentation, the indeterminacy assessment of the images in the NS domain is notified by the
entropy concept. The lower quantity of indeterminacy in the NS domain, the higher confidence and easier seg-
mentation could be achieved. Therefore, to achieve a better segmentation result, an appropriate indeterminacy
reduction operation is proposed. Finally, the K -means clustering algorithm is applied to perform the image
segmentation in which the cluster number K is determined by the cluster validity analysis.

2.4 Pattern Recognition and Machine Learning
Data clustering, or cluster analysis, is an important research area in pattern recognition and machine learning
which helps the understanding of a data structure for further applications. The clustering procedure is generally
handled by partitioning the data into different clusters where similarity inside clusters and the dissimilarity
between different clusters are high.

New clustering algorithm, neutrosophic c-means (NCM) for uncertain data clustering, which is inspired
from fuzzy c-means and the neutrosophic set framework. To derive such a structure, a novel suitable objective
function is defined and minimized, and the clustering problem is formulated as a constrained minimization
problem, whose solution depends on the objective function in [12].

The work presented in [12] has been extended by [5] via presenting a new clustering algorithm that is called
Kernel Neutrosophic c-Means(KNCM), that has been evaluated through extensive experiments.

3 Proposed Novel Neutrosophic Package Design
Attempting informally to categorize neutrosophic research based implementations, it is clear from scanning the
neutrosophic literature that spreadsheets are the most widely used tool. Though spreadsheets is an excellent
tool for certain types of problems; such as Multi Criteria Decision Making (MCDM), it is not suitable for
automated software systems and machine learning based solutions. The need for an open source neutrosophic
package to be utilized via different programming languages is clear.

An attempt to utilize Object Oriented Programming to build a neutrosophic package was presented in [21]
and [20], and an attempt to use it in e-Learning systems has been presented in [22]. This attempt suffered from
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different shortages, including not only:

• It was not even a close start to implementing the basic operations of any neutrosophic family subset

• It was not an open source based attempt, so its source code was never made available to neutrosophic
research community to be tested, verified, validated, and utilized

• Though that solution utilized Object Oriented Concepts in CSharp, Programming was used only to cal-
culate values to be exported to Microsoft Excel that was used for plotting the graphs. This approach
suffers a lot when developers attempt to integrate it within software solutions.

• Presented OOP CSharp based package has not been tested, verified, or used in real world situations

• There is no clear documentation and illustration of the design of that package. When combined with the
lack of software source code, utilizing such a package is almost impossible

• It is clear that it was a very early immature attempt that never made its way through implementation and
adoption in neutrosophic community or real world examples and projects. There has been no updates or
research papers related to this package since then

In this section, key decisions about the presented novel neutrosophic open source package are discussed.
Those key decisions reflects the philosophy of the package author, and shapes the current state, and the future
state of the neutrosophic package. Those decisions include:

• Programming Language used

• Open Source Choice (Source Code Availability)

• Neutrosophic Package Licensing

• Packaging choices and alternatives

• Programming Methodology

3.1 Python

Python is considered a multilanguage model, where a high-level language is used to interface libraries and
software packages written in low-level languages. In a high-level scientific computing environment, this type
of interoperability with software packages written in low-level languages (e.g., Fortran, C, or C++) is an
important requirement. Python excels at this type of integration, and as a result, Python has become an interface
for setting up and controlling computations that use code written in low-level programming languages for time-
consuming number crunching. This is an important reason for why Python is a popular language for numerical
computing. The multilanguage model enables rapid code development in a high-level language while retaining
most of the performance of low-level languages. [14]

Haitham A. El-Ghareeb, Novel Open Source Python Neutrosophic Package.



142 Neutrosophic Sets and Systems, Vol. 25, 2019

Table 1: MIT License Permissions, Limitations, and Conditions
Permissions Limitations Conditions
XCommercial use 7Liability License and copyright notice
XModification 7Warranty
XDistribution
XPrivate use

3.2 Open Source
Open Source software is a form of intellectual gratification with an intrinsic utility similar to that of scientific
discovery [8]. Emerging as it does from the university and research environment, the movement adopts the
motivations of scientific research, transferring them into the production of technologies that have a potential
commercial value. The process of scientific discovery involves the sharing of results, just as the dictates of the
Open Source movement involve sharing source code. Sharing results enables researchers both to improve their
results through feedback from other members of the scientific community and to gain recognition and hence
prestige for their work. The same thing happens when source code is shared: other members of the group
provide feedback that helps to perfect it, while the fact that the results are clearly visible to everyone confers a
degree of prestige which expands in proportion to the size of the community.

3.3 Neutrosophic Package Licensing
Presented Neutrosophic Package is licensed under the MIT License. Table 1 presents the MIT License Permis-
sions, Limitations, and Conditions. MIT License is a short and simple permissive license with conditions only
requiring preservation of copyright and license notices. Licensed works, modifications, and larger works may
be distributed under different terms and without source code. License and copyright notice condition means
that a copy of the license and copyright notice must be included with the software. License can be found at
https://github.com/helghareeb/neutrosophic/blob/master/LICENSE

3.4 Software Packaging
Effective reuse depends not only on finding and reusing components, but also on the ways those components
are combined [24]. Software engineering provides a number of diverse styles for organizing software systems.
These styles, or architectures, show how to compose systems from components; different styles expect different
kinds of component packaging and different kinds of interactions between the components. Unfortunately,
these styles and packaging distinctions are often implicit; as a consequence, components with appropriate
functionality may fail to work together. Different packaging techniques have been presented in both academia
and industry. Though there is no single agreed on packaging methodology; due to differences in features and
programming languages, different guidelines are available to achieve successful packaging process. Presented
Python Neutrosophic package will be packaged and shipped as a standard Python package.

3.5 Object Oriented Programming
Object oriented programming departs from conventional programming by emphasizing the relationship be-
tween consumers and suppliers of codes rather then the relationship between a programmer and code [10].

Haitham A. El-Ghareeb, Novel Open Source Python Neutrosophic Package.

https://github.com/helghareeb/neutrosophic/blob/master/LICENSE


Neutrosophic Sets and Systems, Vol. 25, 2019 143

Main Object Oriented Concepts include [6]

• Inheritance: a mechanism by which object implementations can be organized to share descriptions

• Object: both a data carrier and executes actions. Object is something that has state, behavior, and identity

• Class: set of objects described by the same declaration and is the basic element of Object Oriented
modeling

• Encapsulation: There are three primary conceptualizations of encapsulation in the literature.

– First conceptualization: a process used to package data with the functions that act on the data

– Second conceptualization: hides the details of the object’s implementation so that clients access
the object only via its defined external interface

– Third conceptualization: information about an object, how that information is processed, kept
strictly together, and separated from everything else

• Method: involves accessing, setting, or manipulating the object’s data

• Message Passing: Message is merely a procedure call from one function to another. Message passing
makes a request to one of object’s methods

• Polymorphism: There are different conceptualization

– First conceptualization: ability to hide different implementations behind a common interface

– Second conceptualization: ability of different objects to respond to the same message and invoke
different responses

– Third conceptualization: ability of different classes to contain different methods of the same name,
which appear to behave the same way in a given context; yet different objects can respond to the
same message with their own behavior

– Fourth conceptualization: refers to late binding or dynamic binding

– Fifth conceptualization: ability of different classes to respond to the same message and each im-
plement the method appropriately

• Abstraction:

– First conceptualization: mechanism that allows representing a complex reality in terms of a sim-
plified model so that irrelevant details can be suppressed in order to enhance understanding

– Second conceptualization: the act of removing certain distinctions between objects so that we can
see commonalities

– Third conceptualization: the act of creating classes to simplify aspects of reality using distinctions
inherent to the problem
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4 Single Valued Neutrosophic Number

4.1 Constructor
Section 1 highlighted that each neutrosophic number consists of three elements: truth, indeterminacy, and false
values. Listing 1 highlights the constructor function (the function that gets invoked automatically) when in-
stantiating a new object instance from the Single Valued Neutrosophic Class. New Single Valued Neutrosophic
Number validates the values of T, I, F to satisfy 1.1.

Listing 1: SVNN - Constructor
class SingleValuedNeutrosophicNumber:

def init (self, id, truth, indeterminacy, falsehood):
”””Initialize neutrosophic element
:truth:
:indeterminacy:
:falsehood:”””
assert id is not None, ’provide id for element to be initialized’
assert 0 <= truth <= 1, ’invalid truth value’
assert 0 <= indeterminacy <= 1, ’invalid indeterminacy value’
assert 0 <= falsehood <= 1, ’invalid falsehood value’
assert 0 <= truth + falsehood + indeterminacy <= 3, ’invalid combined sum

↪→ values’
self. id = id
self. truth = truth
self. indeterminacy = indeterminacy
self. falsehood = falsehood

4.2 SVNN Operations
Single Valued Nuetrosophic Numbers arithmetic operations are defined in [15] as follows: Let two single-
valued neutrosophic numbers be

x = 〈Tx, Ix, Fx〉

y = 〈Ty, Iy, Fy〉

4.2.1 SVNN Complement

Calculating SVNN Complement is based on the Equation 4.1 and implemented in Listing 2

xc = 〈Fx, 1− Ix, Tx〉 (4.1)

Listing 2: SVNN - Complement
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def complement(self):
”””
:return: SVNN object with the new TIF values
”””
return SingleValuedNeutrosophicNumber (f’{self. id} complement’, self.

↪→ falsehood, 1 − self. indeterminacy, self. truth)

4.2.2 SVNN is subset of

Identifying either an SVNN is a subset of another SVNN is determined based on the Equation 4.2 and imple-
mented in Listing 3. This method returns a bool value type with either True or False, if the current SVNN
object is a subset of another SVNN.

x ⊆ y ⇐⇒ Tx ≤ Ty, Ix ≥ Iy, Fx ≥ Fy (4.2)

Listing 3: SVNN - is subset of

def is subset of(self, svnn):
”””Check if SVNN is a subset of another SVNN
:param svnn: Single Value Neutrosohpic Number to compare with
:return: True or False
”””
if self. truth <= svnn. truth and self. indeterminacy >= svnn.

↪→ indeterminacy and self. falsehood >= svnn. falsehood:
return True

return False

4.2.3 SVNN Equal

Comparing two SVNN to detect if they are equal or not is calculated based on the Equation 4.3 and imple-
mented in Listing 4. One of the advantages of Python magic is utilized in this function via implementing it as
eq which gives the neutrosophic package capability of comparing two SVNN numbers via the equal sign

operator.

x = y ⇐⇒ x ⊆ y, y ⊆ x (4.3)

Listing 4: SVNN - Equal

def eq (self, svnn):
if self.is subset of(svnn) and svnn.is subset of(self):

return True
return False
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4.2.4 SVNN Add

Two SVNNs can be added using the Equation 4.4 and implemented in Listing 5. Added SVNNs return a new
SVNN. Using Python magic by implementing the add functionality through add enables us to utilize the
plus operator ⊕ operator on SVNNs.

x⊕ y = 〈Tx + Ty − TxTy, IxIy, FxFy〉 (4.4)

Listing 5: SVNN Add
def add (self, svnn):
return svnn(f’{self. id} + {svnn. id}’, (self. truth + svnn. truth) − (self.

↪→ truth ∗ svnn. truth), self. indeterminacy ∗ svnn. indeterminacy, self.
↪→ falsehood ∗ svnn. falsehood)

4.2.5 SVNN Multiply by SVNN

Two SVNNs can be multiplied by the Equation 4.5 and implemented in Listing 6. Using Python magic by im-
plementing the multiply functionality through mul enables us to utilize the multiply operator⊗ on SVNNs.

x⊗ y = 〈TxTy, Ix + Iy − IxIy, Fx + Fy − FxFy〉 (4.5)

Listing 6: SVNN Multiply by SVNN
def mul (self, svnn):

return svnn(f’{self. id} ∗ {svnn. id}’, self. truth ∗ svnn. truth, svnn
↪→ . indeterminacy − (self. indeterminacy ∗ svnn. indeterminacy), (
↪→ self. falsehood + svnn. falsehood) − (self. falsehood ∗ svnn.
↪→ falsehood))

4.2.6 SVNN Multiply by Alpha

SVNN can be multiplied by constant (alpha) using the Equation 4.6 and implemented in Listing 7. Multiplying
by constant is an important operation that is very useful in scaling, that is crucial for computer graphics and
image processing, among other fields.

αx = 〈1− (1− Tx)α, Iαx , Fα
x 〉 ←− α > 0 (4.6)

Listing 7: Multiply by Number
def multiply by alpha(self, alpha):

assert alpha > 0, ’Alpha must be larger than zero’
return svnn(f’{self. id} multiplied by {alpha}’, 1 − pow(1 − self.

↪→ truth), alpha, pow(self. indeterminacy, alpha), pow(self.
↪→ falsehood, alpha))
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4.2.7 SVNN Score

Calculating SVNN Score is important for MCDM. Listing 8 presents the implementation of the SVNN Score
function calculated in Equation 4.7

E(x) =
(2 + Tx − Ix − Fx)

3
, E(x) ∈ [0, 1] (4.7)

Listing 8: SVNN Score
def score(self):

return ( 2 + self. truth − self. indeterminacy − self. falsehood ) /
↪→ 3

4.2.8 SVNN Accuracy

SVNN Accuracy also plays an important rule in MCDM. Examples include, not only: rule engines. Listing 9
highlights the Python code that calculates SVNN Accuracy presented in Equation 4.8

H(x) = Tx − Fx, H(x) ∈ [−1, 1] (4.8)

Listing 9: SVNN Accuracy
def accuracy(self):

return self. truth − self. falsehood

4.2.9 SVNN Ranking

The ranking method is based on both the score values of E(x) and E(y) [15] and the accuracy degrees of H(x)
and H(y) has the following relations depicted in Equations 4.9, 4.10, 4.11 and implemented in Listing 10 as
follows:

if E(x) > E(y) then x � y (4.9)

if E(x) = E(y) and H(x) > H(y) then x � y (4.10)

if E(x) = E(y) and H(x) > H(y) then x = y (4.11)

Listing 10: SVNN Rank
def ranking compared to(self, svnn):

”””
:param svnn:
:return: −1 −> Not Applicable, 0 −> equal ranking, 1 −> higher ranking
”””
if self.score() > svnn.score():
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return 1
if self.score() == svnn.score() and self.accuracy() > svnn.accuracy()

↪→ :
return 1

if self.score() == svnn.score() and self.accuracy() == svnn.accuracy
↪→ ():
return 0

return −1

4.2.10 SVNN Deneutrosophication / Score Function

Deneutrosophication can be defined as mapping a Single Valued Neutrosophic Number into a crisp output and
is calculated in [7] as

ψ = 1−
√

(1− Tx)2 + I2x + F 2
x

3
(4.12)

Listing 11 presents the Python code required to implement the Equation 4.12

Listing 11: SVNN Deneutrosophy
def deneutrosophy(self):

from math import sqrt, pow
return 1 − (sqrt (((pow(1 − self. truth),2) + pow(self. indeterminacy

↪→ ,2) + pow(self. falsehood,2)) / 3))

4.3 SVNN Helper Methods
Those are additional methods required for coding, debugging, and documentation purposes. SVNN additional
methods are listed in Listing 12

Listing 12: SVNN - Helper Methods
def str (self):
return f’ID: {self. id} − Truth: {self. truth} − Indeterminacy: {self.

↪→ indeterminacy} − Falsehood: {self. falsehood}’

def repr (self):
return f’ID: {self. id} − Truth: {self. truth} − Indeterminacy: {self.

↪→ indeterminacy} − Falsehood: {self. falsehood}’

5 Single Valued Neutrosophic Sets
The implementation in Listing 13 represents thinking of a Single Valued Neutrosophic Set (SVNS) as a Set of
Single Valued Neutrosophic Numbers (SVNNs). Utilizing Object Oriented Concepts in proposed neutrosophic
package, SVNN is presented as a class, and SVNS is presented as another class, and there is an association
relationship between them. This justifies importing SVNN within SVNS class.
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Listing 13: SVNS - Constructor
from svnn import SingleValuedNeutrosophicNumber

class SVNSet:
”””This class has association relationship with SVNN
”””

def init (self):
# List of SVNNs
self. items = []
# Index variable − used for iteration over SVNNs in SVNS
self. idx = −1

5.1 SVNS Hybrid Arithmetic Operators
where ∧ is the t-norm, and ∨is the t-conorm. Hybrid arithmetic and geometric aggregation operators are
defined in [15] as follows

• Single Valued Neutrosophic Number Weighted Arithmetic Average (SVNNWAA)

• Single Valued Neutrosophic Number Weighted Geometric Average (SVNNWGA)

• Single Valued Neutrosophic Number Ordered Weighted Arithmetic Average (SVNNOWAA)

• Single Valued Neutrosophic Number Ordered Weighted Geometric Average (SVNNOWGA)

5.1.1 Single Valued Neutrosophic Number Weighted Arithmetic Average (SVNNWAA)

Listing 14 presents the Python code that calculates SVNWAA as presented in Equation 5.1

SV NNWAA(z1, z2, . . . , zn) =
n∑
j=1

wjzj = 〈1−
n∏
j=1

(1− Tj)wj ,
n∏
j=1

(Uj)
wj ,

n∏
j=1

(Vj)
wj〉 (5.1)

Listing 14: SVNNWAA
def weighted arithmetic average(self, weights):

”””
single−valued neutrosophic number weighted arithmetic average (SVNNWAA)
weights: List of weights of each item − list length must be equal to the length of the items
For more information: Google weighted arithmetic average
or watch https://www.youtube.com/watch?reload=9&v=IuuBU6fwtNo
:return: Three values: T, U, V
”””
assert len(weights) == len(self. items), ’Weights List Length Does Not

↪→ Match Collection SVNN Items’
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weights sum = 0.0
for weight in weights:

weights sum += weight
assert weights sum == 1, ’Weight\’s sum does not equal 1’
truth total = 1.0
indetermenacy total = 1.0
falsehood total = 1.0
for item, weight in zip(self. items, weights):

truth total ∗= pow(1 − item. truth, weight)
indetermenacy total ∗= pow(item. indeterminacy, weight)
falsehood total ∗= pow(item. falsehood, weight)

return 1 − truth total, indetermenacy total, falsehood total

5.1.2 Single Valued Neutrosophic Number Weighted Geometric Average (SVNNWGA)

Listing 15 implements Equation 5.2.

SV NNWGA(z1, z2, . . . , zn) =
n∏
j=1

z
wj

j = 〈
n∏
j=1

(Tj)
wj , 1−

n∏
j=1

(1− Uj)wj , 1−
n∏
j=1

(1− Vj)wj〉 (5.2)

Listing 15: SVNNWGA

def weighted geometric average(self, weights):
”””single−valued neutrosophic number weighted geometric average
”””
weights sum = 0.0
for weight in weights:

weights sum += weight
assert weights sum == 1, ’Weight\’s sum does not equal 1’
truth total = 1.0
indetermenacy total = 1.0
falsehood total = 1.0
weights.sort()
for item, weight in zip(self. items, weights):

truth total ∗= pow(item. truth, weight)
indetermenacy total ∗= pow(1 − item. indeterminacy, weight)
falsehood total ∗= pow(1 − item. falsehood, weight)

return truth total, 1 − indetermenacy total, 1 − falsehood total
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5.2 SVNS Geometric Aggregation Operators
5.2.1 Single Valued Neutrosophic Number Ordered Weighted Arithmetic Average (SVNNOWAA)

Listing 16 presents Python implementation of Equation 5.3.

SV NNOWAA(z1, z2, . . . , zn) =
n∑
j=1

ζjzp(j) = 〈1−
n∏
j=1

(1− Tp(j))ζj ,
n∏
j=1

(Up(j))
ζj ,

n∏
j=1

(Vp(j))
ζj〉 (5.3)

Listing 16: SVNNOWAA
def ordered weighted arithmetic average(self, weights, ordered by position =

↪→ False):
assert len(weights) == len(self. items), ’Weights List Length Does Not

↪→ Match Collection SVNN Items’
weights sum = 0.0
for weight in weights:

weights sum += weight
assert weights sum == 1, ’Weight\’s sum does not equal 1’
truth total = 1.0
indetermenacy total = 1.0
falsehood total = 1.0
for item, weight in zip(self. items, weights):

truth total ∗= pow(1 − item. truth, weight)
indetermenacy total ∗= pow(item. indeterminacy, weight)
falsehood total ∗= pow(item. falsehood, weight)

return 1 − truth total, indetermenacy total, falsehood total

5.2.2 Single Valued Neutrosophic Number Ordered Weighted Geometric Average (SVNNOWGA)

Listing 17 depicts the implementation of Equation 5.4. Python provides efficient ways that helps in building
such complicated calculations. Here, Weights are sorted to be used for the calculation. Python utilizes efficient
builtin methods, for example like the one presented for sorting.

SV NNOWGA(z1, z2, . . . , zn) =
n∏
j=1

z
ζj
p(j) = 〈

n∏
j=1

(Tp(j))
ζj , 1−

n∏
j=1

(1− Up(j))ζj , 1−
n∏
j=1

(1− Vp(j))ζj〉

(5.4)

Listing 17: SVNNOWGA
def ordered weighted geometric average(self, weights):

”””single−valued neutrosophic number weighted geometric average
”””
weights sum = 0.0
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for weight in weights:
weights sum += weight

assert weights sum == 1, ’Weight\’s sum does not equal 1’
truth total = 1.0
indetermenacy total = 1.0
falsehood total = 1.0
# The following line is the main difference
weights.sort()
for item, weight in zip(self. items, weights):

truth total ∗= pow(item. truth, weight)
indetermenacy total ∗= pow(1 − item. indeterminacy, weight)
falsehood total ∗= pow(1 − item. falsehood, weight)

return truth total, 1 − indetermenacy total, 1 − falsehood total

5.3 SVNS Helper Methods
Additional helper methods are needed for supporting basic SVNS operations, such as

5.3.1 Add SVNN

Supports adding SVNN to SVNS, as depicted in Listing 18

Listing 18: SVNS - Add SVNN
def add svnn(self, svnn):
# TODO: Prevent Duplication

self. items.append(svnn)

5.3.2 Delete SVNN

Supports removing SVNN from SVNS, as implemented in Listing 19

Listing 19: SVNS - Delete SVNN
def delete svnn(self, svnn):

#TODO: Notify user about Exception handling
self. items.remove(svnn)

5.3.3 Retrieve All SVNNs

Retrieving a list of all SVNNs in SVNS is a crucial task. Returned list is an iterable one that can be used for
further processing. Listing 20 presents such functionality implementation.

Listing 20: SVNS - Retrieve All SVNNs
def get all svnns(self):

return self. items
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5.3.4 Count All SVNNs in SVNS

Counting all SVNNs in SVNS is a primitive task. Listing 21 presents the code to implement such a function-
ality. Using Python magic, via utilizing the len enables us to use the len() function syntax over SVNN
object.

Listing 21: SVNS - Count All SVNNs
def len (self):

return len(self. items)

5.3.5 SVNS: is empty

Though checking either SVNS is empty or not can be achieved via len () function, it is important to enable
proposed neutrosophic package to check is empty() in conditionals. Listing 22 depicts such functionality.

Listing 22: SVNS - is empty
def is empty(self):

if len(self) == 0:
return True

return False

5.3.6 SVNS - Iteration

Iteration is a general term for taking each item of something, one after another. While using a loop for example,
going over a group of items is called iteration. An iterable object is an object that has an iter method
which returns an iterator. getitem method can take sequential indexes starting from zero (and raises an
IndexError when the indexes are no longer valid). An iterator is an object with a next method.

Providing iteration functionality within our proposed neutrosophic package is critical, so later users can
either loop, or apply map functionalities over SVNNs within SVNSs. Such characteristic is an important
feature for future use cases. Listing 23 depicts how iteration functionality is implemented in SVNS.

Listing 23: SVNS - Iteration
def iter (self):

return self

def next (self):
self. idx += 1
try:

return self. items[self. idx]
except IndexError:

self. idx = 0
raise StopIteration

def getitem (self, id):
try:
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return self. items[id]
except IndexError:

raise StopIteration

6 Interval Valued Neutrosophic Number

Given the following definitions, operational laws can be applied as defined in [9]

•
N1 =

{
< x :

[
TL•
N1

, TU•
N1

]
,

[
IL•
N1

, IU•
N1

]
,

[
FL

•
N1

, FU
•
N1

]
>, x ∈ X

}
•
N2 =

{
< x :

[
TL•
N2

, TU•
N2

]
,

[
IL•
N2

, IU•
N2

]
,

[
FL

•
N2

, FU
•
N2

]
>, x ∈ X

}
Listing 24 presents the IVNN Class Declaration and Constructor. In the presented implementation, t lower

↪→ and t upper for example represents the following mathematical symbols respectively

TL•
N1

, TU•
N1

Listing 24: IVNN Class Declaration and Constructor

class IVNN:

def init (self, id, t lower, t upper, i lower, i upper, f lower, f upper):

assert 0 <= t lower <= 1
assert 0 <= t upper <= 1
assert 0 <= i lower <= 1
assert 0 <= i upper <= 1
assert 0 <= f lower <= 1
assert 0 <= f upper <= 1

assert 0 <= t lower + i lower + f lower <= 3

self. id = id
self. t lower = t lower
self. t upper = t upper
self. i lower = i lower
self. i upper = i upper
self. f lower = f lower
self. f upper = f upper
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6.1 IVNN Operations

6.1.1 IVNN Complement

The complement of an interval valued neutrosophic number

A = 〈[T lA, T rA], [I lA, IrA], [F l
A, F

r
A]〉

is defined by [4] as

Ac = 〈[F l
A, F

r
A], [I

l
A, I

r
A], [T

l
A, T

r
A]〉 (6.1)

Listing 25: IVNN - Complement

def complement(self):
return IVNN(f’{self. id} complement’,
self. f lower,
self. f upper,
self. i lower,
self. i upper,
self. t lower,
self. t upper)

6.1.2 IVNN Add

Two SVNNs can be added using the Equation 6.2 and implemented in Listing 26. Added IVNNs return a new
IVNN. Again, using Python magic by implementing the add functionality through add enables us to utilize
the plus operator ⊕ operator on IVNNs.

•
N1⊕

•
N2 =

〈[
TL•
N1

+ TL•
N2

− TL•
N1

TL•
N2

, TU•
N1

+ TU•
N2

− TU•
N1

TU•
N2

]
,

[
IL•
N1

IL•
N2

, IU•
N1

IU•
N2

]
,

[
FL

•
N1

FL
•
N2

, FU
•
N1

FU
•
N2

]〉
(6.2)

Listing 26: IVNN - Add Two IVNNs

def add (self, ivnn):
return IVNN(f’{self. id} + {ivnn. id}’,
self. t lower + ivnn. t lower − self. t lower ∗ ivnn. t lower,
self. t upper + ivnn. t upper − self. t upper ∗ ivnn. t upper,
self. i lower ∗ ivnn. i lower,
self. i upper ∗ ivnn. i upper,
self. f lower ∗ ivnn. f lower,
self. f upper ∗ ivnn. f upper)
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6.1.3 IVNN Multiply by IVNN

Two IVNNs can be multiplied by the Equation 6.3 and implemented in Listing 27. Using Python magic
by implementing the multiply functionality through mul enables us to utilize the multiply operator ⊗ on
IVNNs.

•
N1⊗

•
N2 =

〈[
TL•
N1

TL•
N2

, TU•
N1

TU•
N2

]
,

[
IL•
N1

+ IL•
N2

− IL•
N1

IL•
N2

, IU•
N1

+ IU•
N2

− IU•
N1

IU•
N2

]
,

[
FL

•
N1

+ FL
•
N2

− FL
•
N1

FL
•
N2

, FU
•
N1

+ FU
•
N2

− FU
•
N1

FU
•
N2

]〉
(6.3)

Listing 27: IVNN - Multiply Two IVNNs
def mul (self, ivnn):

return IVNN(f’P{self. id} ∗ {ivnn. id}’,
self. t lower ∗ ivnn. t lower,
self. t upper ∗ ivnn. t upper,
self. i lower + ivnn. i lower − self. i lower ∗ ivnn. i lower,
self. i upper + ivnn. i upper − self. i upper ∗ ivnn. i upper,
self. f lower + ivnn. f lower − self. f lower ∗ ivnn. f lower,
self. f upper + ivnn. f upper − self. f upper ∗ ivnn. f upper)

6.1.4 IVNN Multiply by Alpha

IVNN can be multiplied by constant (alpha) using the Equation 6.4 and implemented in Listing 28.

δ
•
N =

〈[
1−

(
1− TLN

)δ
, 1−

(
1− TUN

)δ]
,
[(
TLN
)δ
,
(
TUN
)δ]

,
[(
FL
N

)δ
,
(
FU
N

)δ]〉
(6.4)

Listing 28: IVNN - Multiply by Alpha
def multiply by(self, alpha):

return IVNN(f’{alpha} ∗ {self. id}’,
1 − pow((1 − self. t lower),alpha),
1 − pow((1 − self. t upper),alpha),
pow(self. i lower, alpha),
pow(self. i upper, alpha),
pow(self. f lower, alpha),
pow(self. i upper, alpha))

7 Interval Valued Neutrosophic Sets

7.1 IVNS - Weighted Average
Interval Neutrosophic Number Weighted Average Operator (INNWA) defined by [26] Let

Aj = 〈TAj
, IAj

, FAj
〉(j = 1, 2, ..., n)
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be a collection of IVNNs, and let
INNWA : INNn → INN

INNWAw(A1, A2, . . . , An)
= 〈[1−

∏n
i=1 (1− inf TAi

)wi , 1−
∏n

i=1 (1− supTAi
)wi ],

[
∏n

i=1 inf I
wi
Ai
,
∏n

i=1 sup I
wi
Ai
],

[
∏n

i=1 inf F
wi
Ai
,
∏n

i=1 supF
wi
Ai
]〉,

(7.1)

Listing 29 presents Python implementation of 7.1

Listing 29: INNWA

def weighted average(self, weights):
”””
:return: IVNN
”””
weights sum = 0
for weight in weights:

assert 0 <= weight <= 1
weights sum += weight

assert weights sum == 1

t lower dot product = 1.0
t upper dot product = 1.0
i lower dot product = 1.0
i upper dot product = 1.0
f lower dot product = 1.0
f upper dot product = 1.0

for ivnn, weight in zip(self. ivnns, weights):
t lower dot product ∗= pow(1 − ivnn. t lower, weight)
t upper dot product ∗= pow(1 − ivnn. t upper, weight)
i lower dot product ∗= pow(ivnn. i lower, weight)
i upper dot product ∗= pow(ivnn. i upper, weight)
f lower dot product ∗= pow(ivnn. f lower, weight)
f upper dot product ∗= pow(ivnn. i upper, weight)

return IVNN(1 − t lower dot product, 1 − t upper dot product,
↪→ i lower dot product, i upper dot product, f lower dot product,
↪→ f upper dot product)

7.2 IVNS Helper Methods

Additional IVNS helper method is presented in Listing 30. IVNS is a collection of IVNNs, and thus the method
add ivnn is presented.
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Listing 30: IVNN - Helper Methods
def add ivnn(self, ivnn):

self. ivnns.append(ivnn)

8 Conclusion and Future Work
Neutrosophic sets has gained wide popularity and acceptance in different disciplines. This paper presented
an Open Source Python Neutrosophic package. Presented package utilizes Object Oriented Design and im-
plementation concepts. Presented package is licensed under MIT License. Licensing was chosen carefully to
support and enable both open source and neutrosophic community. Python was chosen for this package as a
result of Python’s wide applicability in different paradigms, including mainly Big Data Analytics, Machine
Learning, and Artificial Intelligence. Presented package is an open source one, so developers and researchers
in different disciplines can adopt it effectively. Presented Neutrosophic package is a work on progress, as
Neutrosophic sets and theory becomes more popular and gets utilized in different fields. Presented pack-
age presented support for: Single Valued Neutrosophic Numbers, Single Valued Neutrosophic Sets, Interval
Valued Neutrosophic Numbers, and Interval Valued Neutrosophic Sets. Different operations were presented.
Presented package can be found at https://www.github.com/helghareeb/neutrosophic.

The main challenge was the multiple definitions and proofs for the same operation, with different cal-
culation methods. Example of such a challenge is the Score Function. There are numerous deneutrosophy
functions for the same neutrosophic number, each with its own proof. Future Work includes uploading the
presented Neutrosophic package to one of the most widely utilized Python Package servers. Besides, porting
the presented neutrosophic package into different Programming Languages. Implementing Different Deneu-
trosophication / Score Functions, highlighting the differences between them is another step to take. Support of
Triangular and Trapezoidal Neutrosophic Numbers is another challenge to tackle.

References
[1] ABDEL-BASSET, M., MOHAMED, M., AND SMARANDACHE, F. An extension of neutrosophic ahp–

swot analysis for strategic planning and decision-making. Symmetry 10, 4 (2018), 116.

[2] ABDEL-BASSET, M., MOHAMED, M., AND SMARANDACHE, F. A hybrid neutrosophic group anp-
topsis framework for supplier selection problems. Symmetry 10, 6 (2018), 226.

[3] ABDEL-BASSET, M., MOHAMED, M., ZHOU, Y., AND HEZAM, I. Multi-criteria group decision mak-
ing based on neutrosophic analytic hierarchy process. Journal of Intelligent & Fuzzy Systems 33, 6
(2017), 4055–4066.

[4] AIWU, Z., JIANGUO, D., AND HONGJUN, G. Interval valued neutrosophic sets and multi-attribute
decision-making based on generalized weighted aggregation operator. Journal of Intelligent & Fuzzy
Systems 29, 6 (2015), 2697–2706.
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Abstract: In the present paper, we discuss the Neutrosophic quadruple q-ideals and (regular) neutrosophic quadruple
ideals and investigate their related properties. Also, for any two nonempty subsets U and V of a BCI-algebra S,
conditions for the set NQ(U, V ) to be a (regular) neutrosophic quadruple ideal and a neutrosophic quadruple q-ideal
of a neutrosophic quadruple BCI-algebra NQ(S) are discussed. Furthermore, we prove that let U, V, I and J be
ideals of a BCI-algebra S such that I ⊆ U and J ⊆ V . If I and J are q-ideals of S, then the neutrosophic quadruple
(U, V )-set NQ(U, V ) is a neutrosophic quadruple q-ideal of NQ(S).

Keywords: neutrosophic quadruple BCK/BCI-number, neutrosophic quadruple BCK/BCI-algebra, (regular) neutro-
sophic quadruple ideal, neutrosophic quadruple q-ideal.

1 Introduction
To deal with incomplete, inconsistent and indeterminate information, Smarandache introduced the notion of
neutrosophic sets (see ([1], [2] and [3]). In fact, neutrosophic set is a useful mathematical tool which extends
the notions of classic set, (intuitionistic) fuzzy set and interval valued (intuitionistic) fuzzy set. Neutrosophic
set theory has useful applications in several branches (see for e.g., [4], [5], [6] and [7]).

In [8], Smarandache considered an entry (i.e., a number, an idea, an object etc.) which is represented by a
known part (a) and an unknown part (bT, cI, dF ) where T, I, F have their usual neutrosophic logic meanings
and a, b, c, d are real or complex numbers, and then he introduced the concept of neutrosophic quadruple num-
bers. Neutrosophic quadruple algebraic structures and hyperstructures are discussed in [9] and [10]. Recently,
neutrosophic set theory has been applied to the BCK/BCI-algebras on various aspects (see for e.g., [11], [12]
[13], [14], [15], [16], [17], [18], [19] and [20].) Using the notion of neutrosophic quadruple numbers based on
a set, Jun et al. [21] constructed neutrosophic quadruple BCK/BCI-algebras. They investigated several prop-
erties, and considered ideal and positive implicative ideal in neutrosophic quadruple BCK-algebra, and closed
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ideal in neutrosophic quadruple BCI-algebra. Given subsets A and B of a neutrosophic quadruple BCK/BCI-
algebra, they considered sets NQ(U, V ) which consists of neutrosophic quadruple BCK/BCI-numbers with a
condition. They provided conditions for the set NQ(U, V ) to be a (positive implicative) ideal of a neutrosophic
quadruple BCK-algebra, and the set NQ(U, V ) to be a (closed) ideal of a neutrosophic quadruple BCI-algebra.
They gave an example to show that the set {0̃} is not a positive implicative ideal in a neutrosophic quadru-
ple BCK-algebra, and then they considered conditions for the set {0̃} to be a positive implicative ideal in a
neutrosophic quadruple BCK-algebra. Muhiuddin et al. [22] discussed several properties and (implicative)
neutrosophic quadruple ideals in (implicative) neutrosophic quadruple BCK-algebras.

In this paper, we introduce the notions of (regular) neutrosophic quadruple ideal and neutrosophic quadru-
ple q-ideal in neutrosophic quadruple BCI-algebras, and investigate related properties. Given nonempty sub-
sets A and B of a BCI-algebra S, we consider conditions for the set NQ(U, V ) to be a (regular) neutrosophic
quadruple ideal of NQ(S) and a neutrosophic quadruple q-ideal of NQ(S).

2 Preliminaries
We begin with the following definitions and properties that will be needed in the sequel.

A nonempty set S with a constant 0 and a binary operation ∗ is called a BCI-algebra if for all x, y, z ∈ S
the following conditions hold ([23] and [24]):

(I) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),

(II) ((x ∗ (x ∗ y)) ∗ y = 0),

(III) (x ∗ x = 0),

(IV) (x ∗ y = 0, y ∗ x = 0 ⇒ x = y).

If a BCI-algebra S satisfies the following identity:

(V) (∀x ∈ S) (0 ∗ x = 0),

then S is called a BCK-algebra. Define a binary relation ≤ on X by letting x ∗ y = 0 if and only if x ≤ y.
Then (S,≤) is a partially ordered set.

Theorem 2.1. Let S be a BCK/BCI-algebra. Then following conditions are hold:

(∀x ∈ S) (x ∗ 0 = x) , (2.1)
(∀x, y, z ∈ S) (x ≤ y ⇒ x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x) , (2.2)
(∀x, y, z ∈ S) ((x ∗ y) ∗ z = (x ∗ z) ∗ y) , (2.3)
(∀x, y, z ∈ S) ((x ∗ z) ∗ (y ∗ z) ≤ x ∗ y) (2.4)

where x ≤ y if and only if x ∗ y = 0.

Any BCI-algebra S satisfies the following conditions (see [25]):

(∀x, y ∈ S)(x ∗ (x ∗ (x ∗ y)) = x ∗ y), (2.5)
(∀x, y ∈ S)(0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y)), (2.6)
(∀x, y ∈ S)(0 ∗ (0 ∗ (x ∗ y)) = (0 ∗ y) ∗ (0 ∗ x)). (2.7)
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A nonempty subset A of a BCK/BCI-algebra S is called a subalgebra of S if x ∗ y ∈ A for all x, y ∈ A. A
subset I of a BCK/BCI-algebra S is called an ideal of S if it satisfies:

0 ∈ I, (2.8)
(∀x ∈ S) (∀y ∈ I) (x ∗ y ∈ I ⇒ x ∈ I) . (2.9)

An ideal I of a BCI-algebra S is said to be regular (see [26]) if it is also a subalgebra of S.
It is clear that every ideal of a BCK-algebra is regular (see [26]).
A subset I of a BCI-algebra S is called a q-ideal of S (see [27]) if it satisfies (2.8) and

(∀x, y, z ∈ S)(x ∗ (y ∗ z) ∈ I, y ∈ I ⇒ x ∗ z ∈ I). (2.10)

We refer the reader to the books [25, 28] for further information regarding BCK/BCI-algebras, and to the
site “http://fs.gallup.unm.edu/neutrosophy.htm” for further information regarding neutrosophic set theory.

We consider neutrosophic quadruple numbers based on a set instead of real or complex numbers.

Definition 2.2 ([21]). Let S be a set. A neutrosophic quadruple S-number is an ordered quadruple (a, xT, yI,
zF ) where a, x, y, z ∈ S and T, I, F have their usual neutrosophic logic meanings.

The set of all neutrosophic quadruple S-numbers is denoted by NQ(S), that is,

NQ(S) := {(a, xT, yI, zF ) | a, x, y, z ∈ S},

and it is called the neutrosophic quadruple set based on S. If S is a BCK/BCI-algebra, a neutrosophic quadru-
ple S-number is called a neutrosophic quadruple BCK/BCI-number and we say that NQ(S) is the neutrosophic
quadruple BCK/BCI-set.

Let S be a BCK/BCI-algebra. We define a binary operation ~ on NQ(S) by

(a, xT, yI, zF )~ (b, uT, vI, wF ) = (a ∗ b, (x ∗ u)T, (y ∗ v)I, (z ∗ w)F )

for all (a, xT, yI, zF ), (b, uT, vI, wF ) ∈ NQ(S). Given a1, a2, a3, a4 ∈ S, the neutrosophic quadruple
BCK/BCI-number (a1, a2T, a3I, a4F ) is denoted by ã, that is,

ã = (a1, a2T, a3I, a4F ),

and the zero neutrosophic quadruple BCK/BCI-number (0, 0T, 0I, 0F ) is denoted by 0̃, that is,

0̃ = (0, 0T, 0I, 0F ).

We define an order relation “�” and the equality “=” on NQ(S) as follows:

x̃� ỹ⇔ xi ≤ yi for i = 1, 2, 3, 4,
x̃ = ỹ⇔ xi = yi for i = 1, 2, 3, 4

for all x̃, ỹ ∈ NQ(S). It is easy to verify that “�” is an equivalence relation on NQ(S).

Theorem 2.3 ([21]). If S is a BCK/BCI-algebra, then (NQ(S);~, 0̃) is a BCK/BCI-algebra.
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We say that (NQ(S);~, 0̃) is a neutrosophic quadruple BCK/BCI-algebra, and it is simply denoted by
NQ(S).

Let S be a BCK/BCI-algebra. Given nonempty subsets A and B of S, consider the set

NQ(U, V ) := {(a, xT, yI, zF ) ∈ NQ(S) | a, x ∈ U & y, z ∈ V },

which is called the neutrosophic quadruple (U, V )-set.
The set NQ(U,U) is denoted by NQ(U), and it is called the neutrosophic quadruple U -set.

3 (Regular) neutrosophic quadruple ideals
Definition 3.1. Given nonempty subsets U and V of a BCI-algebra S, if the neutrosophic quadruple (U, V )-
set NQ(U, V ) is a (regular) ideal of a neutrosophic quadruple BCI-algebra NQ(S), we say NQ(U, V ) is a
(regular) neutrosophic quadruple ideal of NQ(S).

Question 1. If U and V are subalgebras of a BCI-algebra S, then is the neutrosophic quadruple (U, V )-set
NQ(U, V ) a neutrosophic quadruple ideal of NQ(S)?

The answer to Question 1 is negative as seen in the following example.

Example 3.2. Consider a BCI-algebra S = {0, 1, a, b, c}with the binary operation ∗, which is given in Table 1.
Then the neutrosophic quadruple BCI-algebra NQ(S) has 625 elements. Note that U = {0, a} and V = {0, b}

Table 1: Cayley table for the binary operation “∗”

∗ 0 1 a b c
0 0 0 a b c
1 1 0 a b c
a a a 0 c b
b b b c 0 a
c c c b a 0

are subalgebras of S. The neutrosophic quadruple (U, V )-set NQ(U, V ) consists of the following elements:

NQ(U, V ) = {0̃, 1̃, 2̃, 3̃, 4̃, 5̃, 6̃, 7̃, 8̃, 9̃, 1̃0, 1̃1, 1̃2, 1̃3, 1̃4, 1̃5}

where
0̃ = (0, 0T, 0I, 0F ), 1̃ = (0, 0T, 0I, bF ), 2̃ = (0, 0T, bI, 0F ),
3̃ = (0, 0T, bI, bF ), 4̃ = (0, aT, 0I, 0F ), 5̃ = (0, aT, 0I, bF ),
6̃ = (0, aT, bI, 0F ), 7̃ = (0, aT, bI, bF ), 8̃ = (a, 0T, 0I, 0F ),
9̃ = (a, 0T, 0I, bF ), 1̃0 = (a, 0T, bI, 0F ), 1̃1 = (a, 0T, bI, bF ),
1̃2 = (a, aT, 0I, 0F ), 1̃3 = (a, aT, 0I, bF ),
1̃4 = (a, aT, bI, 0F ), 1̃5 = (a, aT, bI, bF ).
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If we take (1, aT, bI, 0F ) ∈ NQ(S), then (1, aT, bI, 0F ) /∈ NQ(U, V ) and

(1, aT, bI, 0F )~ 9̃ = 1̃5 ∈ NQ(U, V ).

Hence the neutrosophic quadruple (U, V )-set NQ(U, V ) is not a neutrosophic quadruple ideal of NQ(S).

We consider conditions for the neutrosophic quadruple (U, V )-set NQ(U, V ) to be a regular neutrosophic
quadruple ideal of NQ(S).

Lemma 3.3 ([21]). If U and V are subalgebras (resp., ideals) of a BCI-algebra S, then the neutrosophic
quadruple (U, V )-set NQ(U, V ) is a neutrosophic quadruple subalgebra (resp., ideal) of NQ(S).

Theorem 3.4. Let U and V be subalgebras of a BCI-algebra S such that

(∀x, y ∈ S)(x ∈ U (resp., V ), y /∈ U (resp., V ) ⇒ y ∗ x /∈ U (resp., V )). (3.1)

Then the neutrosophic quadruple (U, V )-set NQ(U, V ) is a regular neutrosophic quadruple ideal of NQ(S).

Proof. By Lemma 3.3, NQ(U, V ) is a neutrosophic quadruple subalgebra of NQ(S). Hence it is clear that
0̃ ∈ NQ(U, V ). Let x̃ = (x1, x2T, x3I, x4F ) ∈ NQ(S) and ỹ = (y1, y2T, y3I, y4F ) ∈ NQ(S) be such that
ỹ ~ x̃ ∈ NQ(U, V ) and x̃ ∈ NQ(U, V ). Then xi ∈ U and xj ∈ V for i = 1, 2 and j = 3, 4. Also,

ỹ ~ x̃ = (y1, y2T, y3I, y4F )~ (x1, x2T, x3I, x4F )

= (y1 ∗ x1, (y2 ∗ x2)T, (y3 ∗ x3)I, (y4 ∗ x4)F ) ∈ NQ(U, V ),

and so y1 ∗ x1 ∈ U , y2 ∗ x2 ∈ U , y3 ∗ x3 ∈ V and y4 ∗ x4 ∈ V . If ỹ /∈ NQ(U, V ), then yi /∈ A or yj /∈ B for
some i = 1, 2 and j = 3, 4. It follows from (3.1) that yi ∗xi /∈ U or yj ∗xj /∈ V for some i = 1, 2 and j = 3, 4.
This is a contradiction, and so ỹ ∈ NQ(U, V ). Thus NQ(U, V ) is a neutrosophic quadruple ideal of NQ(S),
and therefore NQ(U, V ) is a regular neutrosophic quadruple ideal of NQ(S).

Corollary 3.5. Let U be a subalgebra of a BCI-algebra S such that

(∀x, y ∈ S)(x ∈ U, y /∈ U ⇒ y ∗ x /∈ U). (3.2)

Then the neutrosophic quadruple U -set NQ(U) is a regular neutrosophic quadruple ideal of NQ(S).

Theorem 3.6. Let U and V be subsets of a BCI-algebra S. If any neutrosophic quadruple ideal NQ(U, V )
of NQ(S) satisfies 0̃ ~ x̃ ∈ NQ(U, V ) for all x̃ ∈ NQ(U, V ), then NQ(U, V ) is a regular neutrosophic
quadruple ideal of NQ(S).

Proof. For any x̃, ỹ ∈ NQ(U, V ), we have

(x̃~ ỹ)~ x̃ = (x̃~ x̃)~ ỹ = 0̃~ ỹ ∈ NQ(U, V ).

Since NQ(U, V ) is an ideal of NQ(S), it follows that x̃~ ỹ ∈ NQ(U, V ). Hence NQ(U, V ) is a neutrosophic
quadruple subalgebra of NQ(S), and therefore NQ(U, V ) is a regular neutrosophic quadruple ideal of NQ(S).

Corollary 3.7. Let U be a subset of a BCI-algebra S. If any neutrosophic quadruple ideal NQ(U) of NQ(S)
satisfies 0̃ ~ x̃ ∈ NQ(U) for all x̃ ∈ NQ(U), then NQ(U) is a regular neutrosophic quadruple ideal of
NQ(S).
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Theorem 3.8. If U and V are ideals of a finite BCI-algebra S, then the neutrosophic quadruple (U, V )-set
NQ(U, V ) is a regular neutrosophic quadruple ideal of NQ(S).

Proof. By Lemma 3.3, NQ(U, V ) is a neutrosophic quadruple ideal of NQ(S). Since S is finite, NQ(S) is
also finite. Assume that |NQ(S)| = n. For any element x̃ ∈ NQ(U, V ), consider the following n+1 elements:

0̃, 0̃~ x̃, (0̃~ x̃)~ x̃, · · · , (· · · ((0̃~ x̃)~x̃)~ · · · )~ x̃︸ ︷︷ ︸
n-times

.

Then there exist natural numbers p and q with p > q such that

(· · · ((0̃~ x̃)~x̃)~ · · · )~ x̃︸ ︷︷ ︸
p-times

= (· · · ((0̃~ x̃)~x̃)~ · · · )~ x̃︸ ︷︷ ︸
q-times

.

Hence

0̃ = ((· · · ((0̃~ x̃)~x̃)~ · · · )~ x̃︸ ︷︷ ︸
p times

)~ ((· · · ((0̃~ x̃)~x̃)~ · · · )~ x̃︸ ︷︷ ︸
q times

)

= ((· · · ((0̃~ x̃)~x̃)~ · · · )~ x̃︸ ︷︷ ︸
q times

)~x̃)~ · · · )~ x̃︸ ︷︷ ︸
p− q times

)~ ((· · · ((0̃~ x̃)~x̃)~ · · · )~ x̃︸ ︷︷ ︸
q times

)

= (· · · ((0̃~ x̃)~x̃)~ · · · )~ x̃︸ ︷︷ ︸
p− q times

∈ NQ(U, V ).

Since NQ(U, V ) is an ideal of NQ(S), it follows that 0̃ ~ x̃ ∈ NQ(U, V ). Therefore NQ(U, V ) is a regular
neutrosophic quadruple ideal of NQ(S) by Theorem 3.6.

Corollary 3.9. If U is an ideal of a finite BCI-algebra S, then the neutrosophic quadruple U -set NQ(U) is a
regular neutrosophic quadruple ideal of NQ(S).

4 Neutrosophic quadruple q-ideals
Definition 4.1. Given nonempty subsets U and V of S, if the neutrosophic quadruple (U, V )-set NQ(U, V )
is a q-ideal of a neutrosophic quadruple BCI-algebra NQ(S), we say NQ(U, V ) is a neutrosophic quadruple
q-ideal of NQ(S).

Example 4.2. Consider a BCI-algebra S = {0, 1, a} with the binary operation ∗, which is given in Table 2.
Then the neutrosophic quadruple BCI-algebra NQ(S) has 81 elements. If we take U = {0, 1} and V = {0, 1},
then

NQ(U, V ) = {0̃, 1̃, 2̃, 3̃, 4̃, 5̃, 6̃, 7̃, 8̃, 9̃, 1̃0, 1̃1, 1̃2, 1̃3, 1̃4, 1̃5}

is a neutrosophic quadruple q-ideal of NQ(S) where
0̃ = (0, 0T, 0I, 0F ), 1̃ = (0, 0T, 0I, 1F ), 2̃ = (0, 0T, 1I, 0F ),
3̃ = (0, 0T, 1I, 1F ), 4̃ = (0, 1T, 0I, 0F ), 5̃ = (0, 1T, 0I, 1F ),
6̃ = (0, 1T, 1I, 0F ), 7̃ = (0, 1T, 1I, 1F ), 8̃ = (1, 0T, 0I, 0F ),
9̃ = (1, 0T, 0I, 1F ), 1̃0 = (1, 0T, 1I, 0F ), 1̃1 = (1, 0T, 1I, 1F ),
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Table 2: Cayley table for the binary operation “∗”

∗ 0 1 a
0 0 0 a
1 1 0 a
a a a 0

1̃2 = (1, 1T, 0I, 0F ), 1̃3 = (1, 1T, 0I, 1F ),
1̃4 = (1, 1T, 1I, 0F ), 1̃5 = (1, 1T, 1I, 1F ).

Theorem 4.3. For any nonempty subsets U and V of a BCI-algebra S, if the neutrosophic quadruple (U, V )-set
NQ(U, V ) is a neutrosophic quadruple q-ideal of NQ(S), then it is both a neutrosophic quadruple subalgebra
and a neutrosophic quadruple ideal of NQ(S).

Proof. Assume that NQ(U, V ) is a neutrosophic quadruple q-ideal of NQ(S). Since 0̃ ∈ NQ(U, V ), we
have 0 ∈ U and 0 ∈ V . Let x, y, z ∈ S be such that x ∗ (y ∗ z) ∈ U ∩ V and y ∈ U ∩ V . Then
(y, yT, yI, yF ) ∈ NQ(U, V ) and

(x, xT, xI, xF )~ ((y, yT, yI, yF )~ (z, zT, zI, zF ))

= (x, xT, xI, xF )~ (y ∗ z, (y ∗ z)T, (y ∗ z)I, (y ∗ z)F )

= (x ∗ (y ∗ z), (x ∗ (y ∗ z))T, (x ∗ (y ∗ z))I, (x ∗ (y ∗ z))F ) ∈ NQ(U, V ).

Since NQ(U, V ) is a neutrosophic quadruple q-ideal of NQ(S), it follows that

(x ∗ z, (x ∗ z)T, (x ∗ z)I, (x ∗ z)F ) = (x, xT, xI, xF )~ (z, zT, zI, zF ) ∈ NQ(U, V ).

Hence x ∗ z ∈ U ∩ V , and therefore U and V are q-ideals of S. Since every q-ideal is both a subalgebra
and an ideal, it follows from Lemma 3.3 that NQ(U, V ) is both a neutrosophic quadruple subalgebra and a
neutrosophic quadruple ideal of NQ(S).

The converse of Theorem 4.3 is not true as seen in the following example.

Example 4.4. Consider a BCI-algebra S = {0, a, b, c} with the binary operation ∗, which is given in Table 3.

Table 3: Cayley table for the binary operation “∗”

∗ 0 a b c
0 0 c b a
a a 0 c b
b b a 0 c
c c b a 0
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Then the neutrosophic quadruple BCI-algebra NQ(S) has 256 elements. If we take A = {0} and B = {0},
then NQ(U, V ) = {0̃} is both a neutrosophic quadruple subalgebra and a neutrosophic quadruple ideal of
NQ(S). If we take x̃ := (c, bT, 0I, aF ), z̃ := (a, bT, 0I, cF ) ∈ NQ(S), then

x̃~ (0̃~ z̃) = (c, bT, 0I, aF )~ (0̃~ (a, bT, 0I, cF ))

= (c, bT, 0I, aF )~ (c, bT, 0I, aF ) = 0̃ ∈ NQ(U, V ).

But

x̃~ z̃ = (c, bT, 0I, aF )~ (a, bT, 0I, cF )

= (c ∗ a, (b ∗ b)T, (0 ∗ 0)I, (a ∗ c)F )

= (b, 0T, 0I, bF ) /∈ NQ(U, V ).

Therefore NQ(U, V ) is not a neutrosophic quadruple q-ideal of NQ(S).

We provide conditions for the neutrosophic quadruple (U, V )-set NQ(U, V ) to be a neutrosophic quadruple
q-ideal.

Theorem 4.5. If U and V are q-ideals of a BCI-algebra S, then the neutrosophic quadruple (U, V )-set
NQ(U, V ) is a neutrosophic quadruple q-ideal of NQ(S).

Proof. Suppose that U and V are q-ideals of a BCI-algebra S. Obviously, 0̃ ∈ NQ(U, V ). Let x̃ =
(x1, x2T, x3I, x4F ), ỹ = (y1, y2T, y3I, y4F ) and z̃ = (z1, z2T, z3I, z4F ) be elements of NQ(S) be such
that x̃~ (ỹ ~ z̃) ∈ NQ(U, V ) and ỹ ∈ NQ(U, V ). Then yi ∈ A, yj ∈ B for i = 1, 2 and j = 3, 4, and

x̃~ (ỹ ~ z̃) = (x1, x2T, x3I, x4F )~ ((y1, y2T, y3I, y4F )~ (z1, z2T, z3I, z4F ))

= (x1, x2T, x3I, x4F )~ (y1 ∗ z1, (y2 ∗ z2)T, (y3 ∗ z3)I, (y4 ∗ z4)F )

= (x1 ∗ (y1 ∗ z1), (x2 ∗ (y2 ∗ z2))T, (x3 ∗ (y3 ∗ z3))I, (x4 ∗ (y4 ∗ z4))F )

∈ NQ(U, V ),

that is, xi ∗ (yi ∗ zi) ∈ U and xj ∗ (yj ∗ zj) ∈ B for i = 1, 2 and j = 3, 4. It follows from (2.10) that xi ∗ zi ∈ U
and xj ∗ zj ∈ V for i = 1, 2 and j = 3, 4. Thus

x̃~ z̃ = (x1 ∗ z1, (x2 ∗ z2)T, (x3 ∗ z3)I, (x4 ∗ z4)F ) ∈ NQ(U, V ), (4.1)

and therefore NQ(U, V ) is a neutrosophic quadruple q-ideal of NQ(S).

Corollary 4.6. If A is a q-ideal of a BCI-algebra S, then the neutrosophic quadruple U -set NQ(U) is a
neutrosophic quadruple q-ideal of NQ(S).

Corollary 4.7. If {0} is a q-ideal of a BCI-algebra S, then the neutrosophic quadruple (U, V )-set NQ(U, V )
is a neutrosophic quadruple q-ideal of NQ(S) for any ideals U and V of S.

Corollary 4.8. If {0} is a q-ideal of a BCI-algebra S, then the neutrosophic quadruple U -set NQ(U) is a
neutrosophic quadruple q-ideal of NQ(S) for any ideal U of S.
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Theorem 4.9. Let U and V be ideals of a BCI-algebra S such that

(∀x, y, z ∈ S)(x ∗ (y ∗ z) ∈ U ∩ V ⇒ (x ∗ y) ∗ z ∈ U ∩ V ). (4.2)

Then the neutrosophic quadruple (U, V )-set NQ(U, V ) is a neutrosophic quadruple q-ideal of NQ(S).

Proof. It is clear that 0̃ ∈ NQ(U, V ). Let x̃ = (x1, x2T, x3I, x4F ), ỹ = (y1, y2T, y3I, y4F ) and z̃ =
(z1, z2T, z3I, z4F ) be elements of NQ(S) be such that x̃ ~ (ỹ ~ z̃) ∈ NQ(U, V ) and ỹ ∈ NQ(U, V ). Then
y1, y2 ∈ U , y3, y4 ∈ V and

x̃~ (ỹ ~ z̃) = (x1, x2T, x3I, x4F )~ ((y1, y2T, y3I, y4F )~ (z1, z2T, z3I, z4F ))

= (x1, x2T, x3I, x4F )~ (y1 ∗ z1, (y2 ∗ z2)T, (y3 ∗ z3)I, (y4 ∗ z4)F )

= (x1 ∗ (y1 ∗ z1), (x2 ∗ (y2 ∗ z2))T, (x3 ∗ (y3 ∗ z3))I, (x4 ∗ (y4 ∗ z4))F )

∈ NQ(U, V ),

that is, xi ∗ (yi ∗ zi) ∈ U and xj ∗ (yj ∗ zj) ∈ V for i = 1, 2 and j = 3, 4. It follows from (2.3) and (4.2) that
(xi ∗ zi) ∗ yi = (xi ∗ yi) ∗ zi ∈ U and (xj ∗ zj) ∗ yj = (xj ∗ yj) ∗ zj ∈ V for i = 1, 2 and j = 3, 4. Since U and
V are ideals of S, we have xi ∗ zi ∈ U and xj ∗ zj ∈ V for i = 1, 2 and j = 3, 4. Thus

x̃~ z̃ = (x1 ∗ z1, (x2 ∗ z2)T, (x3 ∗ z3)I, (x4 ∗ z4)F ) ∈ NQ(U, V ), (4.3)

and therefore NQ(U, V ) is a neutrosophic quadruple q-ideal of NQ(S).

Corollary 4.10. Let U be an ideal of a BCI-algebra S such that

(∀x, y, z ∈ S)(x ∗ (y ∗ z) ∈ U ⇒ (x ∗ y) ∗ z ∈ U). (4.4)

Then the neutrosophic quadruple U -set NQ(U) is a neutrosophic quadruple q-ideal of NQ(S).

Theorem 4.11. Let U and V be ideals of a BCI-algebra S such that

(∀x, y ∈ S)(x ∗ (0 ∗ y) ∈ U ∩ V ⇒ x ∗ y ∈ U ∩ V ). (4.5)

Then the neutrosophic quadruple (U, V )-set NQ(U, V ) is a neutrosophic quadruple q-ideal of NQ(S).

Proof. Assume that x ∗ (y ∗ z) ∈ U ∩ V for all x, y, z ∈ S. Note that

((x ∗ y)) ∗ (0 ∗ z)) ∗ (x ∗ (y ∗ z)) = ((x ∗ y) ∗ (x ∗ (y ∗ z))) ∗ (0 ∗ z)
≤ ((y ∗ z) ∗ y) ∗ (0 ∗ z)
= (0 ∗ z) ∗ (0 ∗ z) = 0 ∈ U ∩ V

Thus (x ∗ y) ∗ (0 ∗ z) ∈ U ∩ V since U and V are ideals of S. It follows from (4.9) that (x ∗ y) ∗ z ∈ U ∩ V .
Using Theorem 4.9, NQ(U, V ) is a neutrosophic quadruple q-ideal of NQ(S).

Corollary 4.12. Let U be an ideal of a BCI-algebra S such that

(∀x, y ∈ S)(x ∗ (0 ∗ y) ∈ U ⇒ x ∗ y ∈ U). (4.6)

Then the neutrosophic quadruple U -set NQ(U) is a neutrosophic quadruple q-ideal of NQ(S).
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Theorem 4.13. Let U and V be ideals of a BCI-algebra S such that

(∀x, y ∈ S)(x ∈ U ∩ U ⇒ x ∗ y ∈ U ∩ V ). (4.7)

Then the neutrosophic quadruple (U, V )-set NQ(U, V ) is a neutrosophic quadruple q-ideal of NQ(S).

Proof. Assume that x ∗ (y ∗ z) ∈ U ∩ V and y ∈ U ∩ V for all x, y, z ∈ S. Using (2.3) and (4.7), we get
(x ∗ z) ∗ (y ∗ z) = (x ∗ (y ∗ z)) ∗ z ∈ U ∩ V and y ∗ z ∈ U ∩ V . Since U and V are ideals of S, it follows that
x ∗ z ∈ U ∩ V . Hence U and V are q-ideals of S, and therefore NQ(U, V ) is a neutrosophic quadruple q-ideal
of NQ(S) by Theorem 4.5.

Corollary 4.14. Let U be an ideal of a BCI-algebra S such that

(∀x, y ∈ S)(x ∈ U ⇒ x ∗ y ∈ U). (4.8)

Then the neutrosophic quadruple U -set NQ(U) is a neutrosophic quadruple q-ideal of NQ(S).

Theorem 4.15. Let U, V, I and J be ideals of a BCI-algebra S such that I ⊆ U and J ⊆ V . If I and J are
q-ideals of S, then the neutrosophic quadruple (U, V )-set NQ(U, V ) is a neutrosophic quadruple q-ideal of
NQ(S).

Proof. Let x, y, z ∈ S be such that x ∗ (0 ∗ y) ∈ U ∩ V . Then

(x ∗ (x ∗ (0 ∗ y))) ∗ (0 ∗ y) = (x ∗ (0 ∗ y)) ∗ (x ∗ (0 ∗ y)) = 0 ∈ I ∩ J

by (2.3) and (III). Since I and J are q-ideals of S, it follows from (2.3) and (2.10) that

(x ∗ y) ∗ (x ∗ (0 ∗ y)) = (x ∗ (x ∗ (0 ∗ y))) ∗ y ∈ I ∩ J ⊆ U ∩ V

Since U and V are ideals of S, we have x ∗ y ∈ U ∩ V . Therefore NQ(U, V ) is a neutrosophic quadruple
q-ideal of NQ(S) by Theorem 4.11.

Corollary 4.16. Let U and I be ideals of a BCI-algebra S such that I ⊆ U . If I is a q-ideal of S, then the
neutrosophic quadruple U -set NQ(U) is a neutrosophic quadruple q-ideal of NQ(S).

Theorem 4.17. Let U, V, I and J be ideals of a BCI-algebra S such that I ⊆ U , J ⊆ V and

(∀x, y, z ∈ S)(x ∗ (y ∗ z) ∈ I ∩ J ⇒ (x ∗ y) ∗ z ∈ I ∩ J). (4.9)

Then the neutrosophic quadruple (U, V )-set NQ(U, V ) is a neutrosophic quadruple q-ideal of NQ(S).

Proof. Let x, y, z ∈ S be such that x ∗ (y ∗ z) ∈ I ∩ J and y ∈ I ∩ J . Then

(x ∗ z) ∗ y = (x ∗ y) ∗ z ∈ I ∩ J

by (2.3) and (4.9). Since I and J are ideals of S, it follows that x ∗ z ∈ I ∩ J . This shows that I and J are
q-ideals of S. Therefore NQ(U, V ) is a neutrosophic quadruple q-ideal of NQ(S) by Theorem 4.15.

Corollary 4.18. Let U and I be ideals of a BCI-algebra S such that I ⊆ U and

(∀x, y, z ∈ S)(x ∗ (y ∗ z) ∈ I ⇒ (x ∗ y) ∗ z ∈ I). (4.10)
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Then the neutrosophic quadruple U -set NQ(U) is a neutrosophic quadruple q-ideal of NQ(S).

Theorem 4.19. Let U, V, I and J be ideals of a BCI-algebra S such that I ⊆ U , J ⊆ V and

(∀x, y ∈ S)(x ∈ I ∩ J ⇒ x ∗ y ∈ I ∩ J). (4.11)

Then the neutrosophic quadruple (U, V )-set NQ(U, V ) is a neutrosophic quadruple q-ideal of NQ(S).

Proof. By the proof of Theorem 4.13, we know that I and J are q-ideals of S. Hence NQ(U, V ) is a neutro-
sophic quadruple q-ideal of NQ(S) by Theorem 4.15.

Corollary 4.20. Let U and I be ideals of a BCI-algebra S such that I ⊆ U and

(∀x, y ∈ S)(x ∈ I ⇒ x ∗ y ∈ I). (4.12)

Then the neutrosophic quadruple A-set NQ(U) is a neutrosophic quadruple q-ideal of NQ(S).

Theorem 4.21. Let U, V, I and J be ideals of a BCI-algebra S such that I ⊆ U , J ⊆ V and

(∀x, y ∈ S)(x ∗ (0 ∗ y) ∈ I ∩ J ⇒ x ∗ y ∈ I ∩ J). (4.13)

Then the neutrosophic quadruple (U, V )-set NQ(U, V ) is a neutrosophic quadruple q-ideal of NQ(S).

Proof. Assume that x∗(y∗z) ∈ I∩J For all x, y, z ∈ S. Then (x∗y)∗z ∈ I∩J by the proof of Theorem 4.11.
It follows from Theorem 4.17 that neutrosophic quadruple (U, V )-set NQ(U, V ) is a neutrosophic quadruple
q-ideal of NQ(S).

Corollary 4.22. Let U and I be ideals of a BCI-algebra S such that I ⊆ U and

(∀x, y ∈ S)(x ∗ (0 ∗ y) ∈ I ⇒ x ∗ y ∈ I). (4.14)

Then the neutrosophic quadruple U -set NQ(U) is a neutrosophic quadruple q-ideal of NQ(S).

Future Work: Using the results of this paper, we will aply it to another algebraic structures, for example,
MV-algebras, BL-algebras, MTL-algebras, R0-algebras, hoops, (ordered) semigroups and (semi, near) rings
etc.
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Abstract: In this paper, we proposed a different approach on bipolar neutrosophic soft sets and discussed their prop-
erties with examples which was initially introduced by Mumtaz Ali et al.[15]. Also we defined some similarity and
entropy measurements between any two bipolar neutrosophic soft sets. Further, we proposed the representation of
a 2-D digital image in bipolar neutrosophic soft domain. Finally, based on similarity measurements, we propose a
decision making process of real-time problem in image analysis.

Keywords: Neutrosophic set, Bipolar Neutrosophic set, similarity, entropy, Digital image.

1 Introduction
In our physical world, many real life situations don’t have an exact solution. For that problems, we cannot use
conventional method to determine the solution. To avoid those difficulties in dealing with uncertainities, we ap-
ply the concepts of Neutrosophy. Neutrosophy is the branch of philosophy which was introduced by Florentin
Smarandache [10]. Neutrosophy deals with three components truth-membership, indeterminacy-membership
and falsity-membership. Apparently, in the case of uncertainty, we have different solution methods like fuzzy
theory, rough theory, vague theory etc. Since Neutrosophy is the extension of fuzzy theory, it is one of the
efficient method among those. By using Neutrosophy, we can analyze the origin, nature and scope of the
neutralities. Neutrosophy is the base for neutrosophic sets. Neutrosophic set was introduced by Smarandache
which has three components called Truth-membership, Indeterminacy-membership and Falsity-membership
ranges in the non-standard interval ]−0, 1+[.

But for engineering and real life problems we prefer specific solution. Since it will be difficult to apply in
real life problems, Wang et al. [11] introduced the concept of single valued neutrosophic set (SVNS) which
is the immediate result of neutrosophic set by taking standard interval [0,1] instead of non-standard interval
]−0, 1+[. Single valued neutrosophic theory is useful in modeling uncertain imprecision. Yanhui et al. [8]
proposed image segmentation through neutrosophy whereas A. A. Salama et al. [7] proposed a neutrosophic
approach to grayscale images. Majundar et al. [5, 6] introduced some measures of similarity and entropy of
neutrosophic sets (as well as SVNS). Aydogdu [4] proposed these similarity and entropy to Interval valued
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neutrosophic sets (IVNS). Also ahin and Kk [1] proposed the concepts similarity and entropy to neutrosophic
soft sets.

In 2015, Deli et al. [2] introduced the concepts of bipolar neutrosophic sets (BNS) as an extension of
neutrosophic sets. In 2016, Uluay et al. [3] proposed some measures of similarities of bipolar neutrosophic
sets. In 2017, Mumtaz Ali et al.[15] introduced the concepts of bipolar neutrosophic soft sets which is a
combined version of bipolar neutrosophic set and neutrosophic soft set. Neutrosophic set concepts are very
useful in decision making problem. Abdel-Basset et al.[18, 19, 20] proposed some decision making algorithms
for problems in engineering and medical fields.

In this paper, we proposed slightly different approach on bipolar neutrosophic soft sets(BNSS). Section 2
contains important preliminary definitions. In section 3, we propose different approach on bipolar neutrosophic
soft set which was introduced by Ali et al.[15] and also we discuss their properties with examples. In section
4, we define entropy measurement to calculate the indeterminacy. In section 5, we defined various distances
between any two BNSSs to calculate the similarity between them. In section 6, we propose the representation
of 2-D digital image in bipolar neutrosophic soft domain. In section 7, we propose the decision making
process of image based on similarity measurements for a real-time problem in image analysis. Finally, section
8 contains conclusion of our work.

2 Preliminaries
Definition 2.1. [12]
Let X be a universal set which contains arbitrary points x. A Neutrosophic set A is defined by

A = {〈x, TA(x), IA(x), FA(x)〉 : x ∈ X}

where TA(x), IA(x), FA(x) referred as truth-membership function, indeterminacy-membership function and
falsity-membership function respectively.
Here

TA(x), IA(x), FA(x) : X → ]−0, 1+[.

Further it satisfies the condition

−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

Example 2.2. Let X = {x1, x2, x3} be the universal set. Here, x1, x2, x3 represents capacity, trustworthiness
and price of a machine, respectively. Then TA(x), IA(x), FA(x) gives the degree of ’good service’, degree of
indeterminacy, degree of ’poor service’ respectively. The neutrosophic set is defined by
A = {〈x1, 0.3, 0.4, 0.5〉 , 〈x2, 0.5, 0.2, 0.3〉 , 〈x3, 0.7, 0.2, 0.2〉}
where −0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+

Definition 2.3. [11]
Neutrosophic set(NS) is defined over the non-standard unit interval ]−0, 1+[ whereas single valued neutro-
sophic set is defined over standard unit interval [0,1].
It means a single valued neutrosophic set A is defined by

A = {〈x, TA(x), IA(x), FA(x)〉 : x ∈ X}
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where

TA(x), IA(x), FA(x) : X → [0, 1]

such that

0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

Definition 2.4. [13, 16]
A pair (F,A) is a soft set over X if

F : A→ P (x)

That means the soft set is a parameterized family of subsets of the set X .
For any parameter e ∈ A, F (e) ⊆ X is the set of e-approximation elements of the soft set (F,A).

Example 2.5. Let X = {x1, x2, x3, x4} be a set of 2-dimensional images and let A = {e1, e2, e3} be set of
parameters. where e1=contrast, e2=saturation and e3=sharpness.
suppose that

F (e1) = {x1, x2}
F (e2) = {x1, x3}
F (e3) = {x2, x4}.

Then, the set

F (A) = {F (e1), F (e2), F (e3)}

is the parameterized family of subsets of X .

Definition 2.6. [14]
A neutrosophic soft set (FA, E) over X is defined by the set

(FA, E) =
{
〈e, FA(e)〉 : e ∈ E,FA(e) ∈ NS(X)

}
where FA : E −→ NS(x) such that FA(e) = ϕ if e /∈ A.
Also, since FA(e) is a neutrosophic set over X is defined by

FA(e) =
{〈
x, uFA(e)(x), vFA(e)(x), wFA(e)(x)

〉
: x ∈ X

}
where uFA(e)(x), vFA(e)(x), wFA(e)(x) represents truth-membership degree of x which holds the parameter e,
indeterminacy-membership degree of xwhich holds the parameter e and falsity-membership degree of xwhich
holds the parameter e.

Example 2.7. Let X = {x1, x2, x3, x4} be a set of houses under consideration. Let A = {e1, e2, e3} be set of
parameters where e1, e2, e3 represents beautiful, wooden and costly, respectively.
Then we define

(FA, E) =
{
〈e1, FA(e1)〉 , 〈e2, FA(e2)〉 , 〈e3, FA(e3)〉

}
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Here

FA(e1) =

{
〈x1, 0.4, 0.3〉 , 〈x2, 0.5, 0.6, 0.7〉 , 〈x3, 0.5, 0.6, 0.7〉 , 〈x4, 0.5, 0.6, 0.7〉

}

FA(e1) =

{
〈x1, 0.5, 0.6, 0.3〉 , 〈x2, 0.4, 0.7, 0.6〉 , 〈x3, 0.6, 0.2, 0.3〉 , 〈x4, 0.7, 0.2, 0.3〉

}

FA(e2) =

{
〈x1, 0.6, 0.3, 0.5〉 , 〈x2, 0.7, 0.4, 0.3〉 , 〈x3, 0.8, 0.1, 0.2〉 , 〈x4, 0.7, 0.1, 0.3〉

}

FA(e3) =

{
〈x1, 0.7, 0.4, 0.3〉 , 〈x2, 0.6, 0.1, 0.2〉 , 〈x3, 0.7, 0.2, 0.5〉 , 〈x4, 0.5, 0.2, 0.6〉

}
Hence (FA, E) is a neutrosophic soft set.

Definition 2.8. [2, 3]
Let X be the universal set which contains arbitrary points x. A bipolar neutrosophic set (BNS) A is defined by

A =

{
〈x, T+(x), I+(x), F+(x), T−(x), I−(x), F−(x)〉 : x ∈ X

}
where

T+, I+, F+ : E → [0, 1] (positive membership-degrees)
T−, I−, F− : E → [−1, 0] (negative membership-degrees)

such that

0 ≤ T+(x) + I+(x) + F+(x) ≤ 3 , −3 ≤ T−(x) + I−(x) + F−(x) ≤ 0.

Example 2.9. Let X = {x1, x2, x3} be the universal set. A bipolar neutrosophic set (BNS) is defined by

A =
{
〈x1, 0.3, 0.4, 0.5,−0.2,−0.4,−0.1〉 ,
〈x2, 0.5, 0.2, 0.3,−0.2,−0.7,−0.5〉 ,
〈x3, 0.7, 0.2, 0.2,−0.5,−0.4,−0.5〉

}
where 0 ≤ T+

A (x) + I+A (x) + F+
A (x) ≤ 3 and −3 ≤ T−A (x) + I−A (x) + F−A (x) ≤ 0.

Also T+
A (x), I+A (x), F+

A (x)→ [0, 1] and T−A (x), I−A (x), F−A (x)→ [−1, 0].

3 Different approach on bipolar neutrosophic soft set
In this section, we propose a slightly different approach on bipolar neutrosophic soft sets which is the com-
bined version of neutrosophic soft set and bipolar neutrosophic set and this was initially introduced by Mumtaz
Ali et al.[15]. He defined a bipolar neutrosophic soft set associated with the whole parameter set E.

In our approach, we define a bipolar neutrosophic soft set associated with only subset of a parameter set E.
Because, there is a possibility to exist different bipolar neutrosophic soft sets associated with different subsets
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of E.

Ali et al.[15] definition is given below.

Definition 3.1. Let U be a universe and E be a set of parameters that are describing the elements of U . A
bipolar neutrosophic soft set B in U is defined as:

B =
{

(e,
{

(u, T+(u), I+(u), F+(u), T−(u), I−(u), F−(u) : u ∈ U
}

: e ∈ E
}

where T+, I+, F+ → [0, 1] and T−, I−, F− → [−1, 0]. The positive membership degree T+(u), I+(u), F+(u),
denotes the truth membership, indeterminate membership and false membership of an element corresponding
to a bipolar neutrosophic soft set B and the negative membership degree T−(u), I−(u), F−(u) denotes the
truth membership, indeterminate membership and false membership of an element u ∈ U to some implicit
counter-property corresponding to a bipolar neutrosophic soft set B.

Our approach is given below.

Definition 3.2. Let X be the universe and E be the parameter set. Let A be subset of the parameter set E.
A bipolar neutrosophic soft set B over X is defined by

B=(FA, E) =

{
〈e, FA(e)〉 : e ∈ E,FA(e) ∈ BNS(X)

}
Here

FA(e) =

{〈
x, u+FA(e)(x), v+FA(e)(x), w+

FA(e)(x), u−FA(e)(x), v−FA(e)(x), w−FA(e)(x)
〉

: x ∈ X
}

.

where u+FA(e)(x), v+FA(e)(x), w+
FA(e)(x) represents positive truth-membership degree , positive indeterminacy-

membership degree and positive falsity-membership degree of x which holds the parametrer e, and simi-
larly u−FA(e)(x), v−FA(e)(x), w−FA(e)(x) represents negative truth-membership degree , negative indeterminacy-
membership degree and negative falsity-membership degree of x which holds the parameter e .

Example 3.3. Let X = {x1, x2, x3, x4} be a universal set and let E = {e1, e2, e3} be the parameter set.
Also, let A = {e1, e2} ⊆ E and B = {e3} ⊆ E be two subsets of E.

Then we define

B1 = (FA, E) = {〈e, FA(e)〉 : e ∈ E,FA(e) ∈ BNS(X)}
B2 = (GB, E) = {〈e,GB(e)〉 : e ∈ E,GB(e) ∈ BNS(X)}

where,

FA(e1) =

{
〈x1, 0.5, 0.4, 0.3,−0.02,−0.4,−0.5〉 , 〈x2, 0.4, 0.7, 0.6,−0.3,−0.5,−0.02〉 ,

〈x3, 0.4, 0.3, 0.5,−0.6,−0.4,−0.2〉 , 〈x4, 0.4, 0.6, 0.3,−0.6,−0.2,−0.3〉
}
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FA(e2) =

{
〈x1, 0.6, 0.3, 0.2,−0.4,−0.5,−0.04〉 , 〈x2, 0.5, 0.2, 0.3,−0.1,−0.3,−0.6〉 ,

〈x3, 0.3, 0.4, 0.2,−0.3,−0.4,−0.7〉 , 〈x4, 0.8, 0.2, 0.01,−0.4,−0.5,−0.1〉
}

GB(e3) =

{
〈x1, 0.6, 0.3, 0.4,−0.4,−0.5,−0.3〉 , 〈x2, 0.4, 0.5, 0.1,−0.2,−0.6,−0.4〉 ,

〈x3, 0.2, 0.3, 0.1,−0.4,−0.4,−0.2〉 , 〈x4, 0.3, 0.4, 0.4,−0.5,−0.3,−0.2〉
}

Then B1 and B2 are the parameterized family of bipolar neutrosophic soft sets over X .

3.1 Properties of Bipolar Neutrosophic soft sets
In this section, we have discussed some basic properties of Bipolar neutrosophic soft sets.

3.1.1 Subsets and Eqiuvalent sets

Let X be universal set and E be a parameter set. Let A,B ⊆ E. Suppose B1 and B2 be two bipolar neutro-
sophic soft sets. Then B1 ⊆ B2 if and only if A ⊆ B and
u+FA(e)(x) ≤ u+GB(e)(x), v+FA(e)(x) ≥ v+GB(e)(x), w+

FA(e)(x) ≥ w+
GB(e)(x) and

u−FA(e)(x) ≥ u−GB(e)(x), v−FA(e)(x) ≤ v−GB(e)(x), w−FA(e)(x) ≤ w−GB(e)(x).
Also B1 and B2 are called equivalent sets only if A = B and all the parameters of B1 and B2 are corre-

sponding to each other.

Example 3.4. Suppose B1 and B2 be two bipolar neutrosophic soft sets associated with A = {e2} and B =
{e1, e2}.
Let B1 = (FA, E) = {〈e, FA(e)〉 : e ∈ E} and B2 = (GB, E) = {〈e,GB(e)〉 : e ∈ E}
Here,

FA(e2) =

{
〈x1, 0.4, 0.3, 0.9,−0.2,−0.3,−0.4〉 , 〈x2, 0.5, 0.6, 0.7,−0.3,−0.4,−0.6〉

}
GB(e1) =

{
〈x1, 0.5, 0.4, 0.3,−0.6,−0.2,−0.4〉 , 〈x2, 0.6, 0.3, 0.2,−0.5,−0.3,−0.2〉

}
GB(e2) =

{
〈x1, 0.6, 0.4, 0.2,−0.5,−0.1,−0.1〉 , 〈x2, 0.7, 0.6, 0.3,−0.4,−0.2,−0.3〉

}
This implies B1 ⊆ B2.

3.1.2 Union and Intersection

The union is defined by

B1 ∪ B2 = (FA

⋃
GB) =

{〈
max(u+FA(e)(x), u+GB(e)(x)),

v+FA(e)(x) + v+GB(e)(x)

2
,min(w+

FA(e)(x), w+
GB(e)(x)),

min(u−FA(e)(x), u−GB(e)(x)),
v−FA(e)(x) + v−GB(e)(x)

2
,max(w−FA(e)(x), w−GB(e)(x))

〉}
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The intersection is defined by

B1 ∩ B2 = (FA

⋂
GB, E) =

{〈
min(u+FA(e)(x), u+GB(e)(x)),

v+FA(e)(x) + v+GB(e)(x)

2
,max(w+

FA(e)(x), w+
GB(e)(x)),

max(u−FA(e)(x), u−GB(e)(x)),
v−FA(e)(x) + v−GB(e)(x)

2
,min(w−FA(e)(x), w−GB(e)(x))

〉}
Example 3.5. Suppose

B1 = (FA, E) = {〈x1, 0.4, 0.3, 0.9,−0.5,−0.2,−0.1〉 , 〈x2, 0.5, 0.6, 0.7,−0.3,−0.4,−0.6〉}

B2 = (GB, E) = {〈x1, 0.5, 0.4, 0.3,−0.6,−0.3,−0.4〉 , 〈x2, 0.6, 0.3, 0.2,−0.5,−0.3,−0.2〉}

be two bipolar neutrosophic sets. Then the union is

B1 ∪B2 = (FA

⋃
GB, E) = {〈x1, 0.5, 0.35, 0.3,−0.6,−0.25,−0.1〉 , 〈x2, 0.6, 0.45, 0.2,−0.5,−0.35,−0.2〉}

the intersection is

B1 ∩B2 = (FA

⋂
GB, E) = {〈x1, 0.4, 0.35, 0.9,−0.3,−0.25,−0.4〉 , 〈x2, 0.5, 0.45, 0.7,−0.3,−0.35,−0.6〉}

3.1.3 The complement

The complement of a BNSS is

Bc = (FA, E)c = (F c
A,¬E) =

〈
w+

FA(e)(x), 1− v+FA(e)(x), u+FA(e)(x), w−FA(e)(x),−1− v−FA(e)(x), u−FA(e)(x)
〉

Example 3.6. Let B be a bipolar neutrosophic soft set.

B = (FA, E) = {〈x1, 0.4, 0.3, 0.9,−0.5,−0.2,−0.1〉 , 〈x2, 0.5, 0.6, 0.7,−0.3,−0.4,−0.6〉}

Then the complement is defined by

Bc = (FA, E)c = {〈x1, 0.9, 0.7, 0.4,−0.1,−0.8,−0.5〉 , 〈x2, 0.7, 0.4, 0.5,−0.6,−0.6,−0.3〉}

3.1.4 Complete BNSS and null BNSS

The complete bipolar neutrosophic soft set comp− B is defined by
comp− B = {e, 〉xi, 1, 0, 0, 0,−1,−1〉 : e ∈ E;x ∈ X}

The null bipolar neutrosophic soft set is defined by
null − B = {e, 〉xi, 0, 1, 1,−1, 0, 0〉 : e ∈ E;x ∈ X}

The following propositions were given by Ali et al. for bipolar neutrosophic soft set associated with the
whole parameter set. These propositions are also suitable for our approach.
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Proposition 3.7. Let X be a universe and E be a parameter set. Also, A,B,C ∈ E. Let B1 = (FA, E) =
{〈e, FA(E)〉 : e ∈ E,FA(E) ∈ BNS(X)}, B2 = (GB, E) = {〈e,GB(E)〉 : e ∈ E,GB(E) ∈ BNS(X)},
B3 = (HC , E) = {〈e,HC(E)〉 : e ∈ E,HC(E) ∈ BNS(X)} be three bipolar neutrosophic soft sets over
X . Then,

1. B1 ∪ B2 = B2 ∪ B1

2. B1 ∩ B2 = B2 ∩ B1

3. B1 ∪ (B2 ∪ B3) = (B1 ∪ B2) ∪ B2

4. B1 ∩ (B2 ∩ B3) = (B1 ∩ B2) ∩ B2

Proof. This proof is obvious.

Proposition 3.8. Let X be a universe and E be a parameter set. Also, A,B ∈ E. Let B1 = (FA, E) =
{〈e, FA(E)〉 : e ∈ E,FA(E) ∈ BNS(X)}, B2 = (GB, E) = {〈e,GB(E)〉 : e ∈ E,GB(E) ∈ BNS(X)} be
two bipolar neutrosophic soft sets over X . Then the following De Morgan’s laws are valid.

1. (B1 ∪ B2)c = (B1)c ∩ (B1)c

2. (B1 ∩ B2)c = (B1)c ∪ (B1)c

Proof. Let B1 =
{
e,
〈
x, u+FA(e)(x), v+FA(e)(x), w+

FA(e)(x), u−FA(e)(x), v−FA(e)(x), w−FA(e)(x)
〉

: e ∈ E
}

B2 =
{
e,
〈
x, u+GB(e)(x), v+GB(e)(x), w+

GB(e)(x), u−GB(e)(x), v−GB(e)(x), w−GB(e)(x)
〉

: e ∈ E
}

Then,

(B1 ∪ B2)c =

{
e,

〈
x,max(u+FA(e)(x), u+GB(e)(x)),min(v+FA(e)(x), v+GB(e)(x)),min(w+

FA(e)(x), w+
GB(e)(x)),

min(u−FA(e)(x), u−GB(e)(x)),max(v−FA(e)(x), v−GB(e)(x)),max(w−FA(e)(x), w−GB(e)(x))

〉
: e ∈ E

}c

=

{
e,

〈
x,min(w+

FA(e)(x), w+
GB(e)(x)), 1−min(v+FA(e)(x), v+GB(e)(x)),max(u+FA(e)(x), u+GB(e)(x)),

max(w−FA(e)(x), w−GB(e)(x)),−1−max(v−FA(e)(x), v−GB(e)(x)),min(u−FA(e)(x), u−GB(e)(x))

〉
: e ∈ E

}
=

{
e,

〈
x,min(w+

FA(e)(x), w+
GB(e)(x)),max(1− v+FA(e)(x), 1− v+GB(e)(x)),max(u+FA(e)(x), u+GB(e)(x)),

max(w−FA(e)(x), w−GB(e)(x)),min(−1− v−FA(e)(x),−1− v−GB(e)(x)),min(u−FA(e)(x), u−GB(e)(x))

〉
: e ∈ E

}
=
{
e,
〈
x,w+

FA(e)(x), 1− v+FA(e)(x), u+FA(e)(x), w−FA(e)(x),−1− v−FA(e)(x), u−FA(e)(x)
〉

: e ∈ E
}

∩
{
e,
〈
x,w+

GB(e)(x), 1− v+GB(e)(x), u+GB(e)(x), w−GB(e)(x),−1− v−GB(e)(x), u−GB(e)(x)
〉

: e ∈ E
}

= (B1)c ∩ (B2)c
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(B1 ∩ B2)c =

{
e,

〈
x,min(u+FA(e)(x), u+GB(e)(x)),max(v+FA(e)(x), v+GB(e)(x)),max(w+

FA(e)(x), w+
GB(e)(x)),

max(u−FA(e)(x), u−GB(e)(x)),min(v−FA(e)(x), v−GB(e)(x)),min(w−FA(e)(x), w−GB(e)(x))

〉
: e ∈ E

}c

=

{
e,

〈
x,max(w+

FA(e)(x), w+
GB(e)(x)), 1−max(v+FA(e)(x), v+GB(e)(x)),min(u+FA(e)(x), u+GB(e)(x)),

min(w−FA(e)(x), w−GB(e)(x)),−1−min(v−FA(e)(x), v−GB(e)(x)),max(u−FA(e)(x), u−GB(e)(x))

〉
: e ∈ E

}
=

{
e,

〈
x,max(w+

FA(e)(x), w+
GB(e)(x)),min(1− v+FA(e)(x), 1− v+GB(e)(x)),min(u+FA(e)(x), u+GB(e)(x)),

min(w−FA(e)(x), w−GB(e)(x)),max(−1− v−FA(e)(x),−1− v−GB(e)(x)),max(u−FA(e)(x), u−GB(e)(x))

〉
: e ∈ E

}
=
{
e,
〈
x,w+

FA(e)(x), 1− v+FA(e)(x), u+FA(e)(x), w−FA(e)(x),−1− v−FA(e)(x), u−FA(e)(x)
〉

: e ∈ E
}

∪
{
e,
〈
x,w+

GB(e)(x), 1− v+GB(e)(x), u+GB(e)(x), w−GB(e)(x),−1− v−GB(e)(x), u−GB(e)(x)
〉

: e ∈ E
}

= (B1)c ∪ (B2)c

Proposition 3.9. Let X be a universe and E be a parameter set. Also, A,B,C ∈ E. Let B1 = (FA, E) =
{〈e, FA(E)〉 : e ∈ E,FA(E) ∈ BNS(X)}, B2 = (GB, E) = {〈e,GB(E)〉 : e ∈ E,GB(E) ∈ BNS(X)},
B3 = (HC , E) = {〈e,HC(E)〉 : e ∈ E,HC(E) ∈ BNS(X)} be three bipolar neutrosophic soft sets over
X . Then,

1. B1 ∩ (B2 ∪ B3) = (B1 ∩ B2) ∪ (B1 ∩ B3)

2. B1 ∪ (B2 ∩ B3) = (B1 ∪ B2) ∩ (B1 ∪ B3)

Proof. This proof is obvious.

4 Entropy measure of bipolar neutrosophic soft sets
Generally Entropy measures are used to calculate indeterminacy of sets. In this section, we define entropy
measurement for bipolar neutrosophic soft sets.

Definition 4.1. Let X = {x1, x2, . . . , xm} be a universe of discourse set and E = {e1, e2, . . . , en} be subset of
a parameter set A. Let B1 = (FA, E) and B2 = (GA, E) be two bipolar neutrosophic soft sets. The mapping
E : BNSS(X) → R+ ∪ {0} is called an entropy on bipolar neutrosophic soft sets if E satisfies the following
conditions.
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1. E(B) = 0 if and only if B ∈ IFSS(X) (Intiutionistic fuzzy soft set)

2. E(B) is maximum if and only if u+FA(e)(x) = v+FA(e)(x) = w+
FA(e)(x) and u−FA(e)(x) = v−FA(e)(x) =

w−FA(e)(x) for all e ∈ E and x ∈ X

3. E(B) = E(Bc) for all B ∈ BNSS(X)

4. E(B1) ≤ E(B2) if B2 ⊆ B1.

Definition 4.2. Let B be a bipolar neutrosophic soft set. Then, entropy of B is denoted by E(B) and defined as
follows:

E(B) = 1− 1

2mn

m∑
i=1

n∑
j=1

[(
u+B(ej)(xi) + w+

B(ej)(xi)
)
·
∣∣∣v+B(ej)(xi)− v+Bc(ej)(xi)∣∣∣

−
(
u−B(ej)(xi) + w−B(ej)(xi)

)
·
∣∣∣v−B(ej)(xi)− v−Bc(ej)(xi)∣∣∣]

Example 4.3. Let X = {x1, x2, x3, x4} be a universal set and let E = {e1, e2, e3} be the parameter set.
Let A = {e1, e2} be a subset of E.

1. Define B1 = (FA, E) = {〈e1, FA(e1)〉 , 〈e2, FA(e2)〉}
where,

FA(e1) =

{
〈x1, 0.6, 0, 0.4,−0.3, 0,−0.7〉 , 〈x2, 0.3, 0, 0.7,−0.2, 0,−0.8〉 ,

〈x3, 0.4, 0, 0.6,−0.6, 0,−0.4〉 , 〈x4, 0.1, 0, 0.9,−0.5, 0,−0.5〉
}

FA(e2) =

{
〈x1, 0.5, 0, 0.5,−0.4, 0,−0.6〉 , 〈x2, 0.2, 0, 0.8,−0.1, 0,−0.9〉 ,

〈x3, 0.3, 0, 0.7,−0.7, 0,−0.3〉 , 〈x4, 0.8, 0, 0.2,−0.4, 0,−0.6〉
}

Since all the indeterminacy degrees are zero, B1 becomes intituitionistic fuzzy soft set(IFSS).
By Definition 4.2, E(B1) = 0

2. Define B2 = (FA, E) = {〈e1, FA(e1)〉 , 〈e2, FA(e2)〉} where,

FA(e1) =

{
〈x1, 0.5, 0.5, 0.5,−0.9,−0.9,−0.9〉 , 〈x2, 0.3, 0.3, 0.3,−0.8,−0.8,−0.8〉 ,

〈x3, 0.4, 0.4, 0.4,−0.5,−0.5,−0.5〉 , 〈x4, 0.5, 0.5, 0.5,−0.5,−0.5,−0.5〉
}
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FA(e2) =

{
〈x1, 0.4, 0.4, 0.4,−0.4,−0.4,−0.4〉 , 〈x2, 0.5, 0.5, 0.5,−0.1,−0.1,−0.1〉 ,

〈x3, 0.3, 0.3, 0.3,−0.5,−0.5,−0.5〉 , 〈x4, 0.8, 0.8, 0.8,−0.2,−0.2,−0.2〉
}

Since truth-membership, indeterminacy and falsity-membership degrees are equal,
By Definition 4.2, E(B1) = 1 (i.e maximum).

3. Define B3 = (FA, E) = {〈e1, FA(e1)〉 , 〈e2, FA(e2)〉} where,

FA(e1) =

{
〈x1, 0.5, 0.4, 0.7,−0.2,−0.5,−0.7〉 , 〈x2, 0.4, 0.7, 0.3,−0.6,−0.2,−0.1〉 ,

〈x3, 0.4, 0.6, 0.2,−0.5,−0.3,−0.7〉 , 〈x4, 0.6, 0.3, 0.2,−0.7,−0.5,−0.3〉
}

FA(e2) =

{
〈x1, 0.6, 0.3, 0.7,−0.4,−0.2,−0.4〉 , 〈x2, 0.4, 0.7, 0.3,−0.7,−0.3,−0.4〉 ,

〈x3, 0.3, 0.5, 0.1,−0.5,−0.7,−0.3〉 , 〈x4, 0.8, 0.3, 0.1,−0.5,−0.2,−0.4〉
}

Then,
(B3)c = (F c

A,¬E) = {〈e1, F c
A(e1)〉 , 〈e2, F c

A(e2)〉}

where,

F c
A(e1) =

{
〈x1, 0.7, 0.6, 0.5,−0.7,−0.5,−0.2〉 , 〈x2, 0.3, 0.3, 0.4,−0.1,−0.8,−0.6〉 ,

〈x3, 0.2, 0.4, 0.4,−0.7,−0.7,−0.5〉 , 〈x4, 0.2, 0.7, 0.6,−0.3,−0.5,−0.7〉
}

F c
A(e2) =

{
〈x1, 0.7, 0.7, 0.6,−0.4,−0.8,−0.4〉 , 〈x2, 0.3, 0.3, 0.4,−0.4,−0.7,−0.7〉 ,

〈x3, 0.1, 0.5, 0.7,−0.3,−0.3,−0.5〉 , 〈x4, 0.1, 0.7, 0.8,−0.4,−0.8,−0.5〉
}

Since the sum of indeterminacy and its complement is one and complement of truth-membership be-
comes falsify-membership and vice versa,
By Definition 4.2, E(B) = E(Bc) for any BNSS.

4. Let B1 = (FA, E) = {〈e, FA(e)〉 : e ∈ E} and B2 = (GB, E) = {〈e,GB(e)〉 : e ∈ E}
Here,

FA(e2) =

{
〈x1, 0.4, 0.3, 0.9,−0.2,−0.3,−0.4〉 , 〈x2, 0.5, 0.6, 0.7,−0.3,−0.4,−0.6〉

}
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GB(e1) =

{
〈x1, 0.5, 0.4, 0.3,−0.6,−0.2,−0.4〉 , 〈x2, 0.6, 0.3, 0.2,−0.5,−0.3,−0.2〉

}
GB(e2) =

{
〈x1, 0.6, 0.4, 0.2,−0.5,−0.1,−0.1〉 , 〈x2, 0.7, 0.6, 0.3,−0.4,−0.2,−0.3〉

}
Here B1 ⊆ B2.
By Definition 4.2,

E(B1) = 0.705
E(B2) = 0.6725

Hence

E(B2) ≤ E(B1) if B1 ⊆ B2

5 Distance between bipolar neutrosophic soft sets

In this section, we will define some distance measures of bipolar neutrosophic soft sets. Let X be a universe,
E be a parameter set and let A,B be two subsets of E.
Let B1 = (FA, E) and B2 = (GB, E) be two bipolar neutrosophic soft sets.

Here

FA(e) =

{〈
x, u+FA(e)(x), v+FA(e)(x), w+

FA(e)(x), u−FA(e)(x), v−FA(e)(x), w−FA(e)(x)
〉

: x ∈ X
}

GB(e) =

{〈
x, u+GB(e)(x), v+GB(e)(x), w+

GB(e)(x), u−GB(e)(x), v−GB(e)(x), w−GB(e)(x)
〉

: x ∈ X
}

Definition 5.1. Consider the two Bipolar neutrosophic soft sets B1 = (FA, E) and B2 = (GB, E) defined
above. Let d be a mapping defined as d : BNSS(x) × BNSS(x) → R+ ∪ {0} and it satisfies the following
conditions.
i) d(B1,B2) ≥ 0
ii) d(B1,B2) = d(B2,B1)
iii) d(B1,B2) = 0iffB1 = B2
iv) d(B1,B2) + d(B2,B3) ≥ d(B1,B3) (for any B3)

Then, d(B1,B2) is called a distance measure between two bipolar neutrosopihic soft sets B1 and B2 .

Definition 5.2. A real function S : BNSS(X)× BNSS(X)→ [0, 1] is called a similarity measure between
two bipolar neutrosophic soft sets B1 = [aij]m×n and B2 = [bij]m×n if S satisfies the following conditions.
i)S(B1,B2) ∈ [0, 1]
ii)S(B1,B2) = S(B2,B1)
iii)S(B1,B2) = 1iff [aij]m×n = [bij]m×n
iv)S(B1,B3) ≤ S(B1,B2) + S(B2,B3) if B1 ⊆ B2 ⊆ B3 (for any B3)
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5.1 Hamming distance between two bipolar neutrosophic soft sets

dHBNSS(B1,B2) =
n∑

j=1

m∑
i=1

|∆iju(x)|+ |∇iju(x)|+ |∆ijv(x)|+ |∇ijv(x)|+ |∆ijw(x)|+ |∇ijw(x)|
6

.

where

∆iju(x) = u+B1(ej)(xi)− u
+
B2(ej)(xi)

∇iju(x) = u−B1(ej)(xi)− u
−
B2(ej)(xi)

Proof. i) Since |∆iju(x)| , |∇iju(x)| , |∆ijv(x)| , |∇ijv(x)| , |∆ijw(x)| , |∇ijw(x)| are all positive,
dHBNSS(B1,B2) ≥ 0

ii) Since
∣∣∣u+B1(ej)(xi)− u+B2(ej)(xi)∣∣∣ =

∣∣∣u+B2(ej)(xi)− u+B1(ej)(xi)∣∣∣,
|∆iju(X)| is same for both dHBNSS(B1,B2) and dHBNSS(B2,B1).
Also this is true for all membership degrees.
Hence dHBNSS(B1,B2) = dHBNSS(B2,B1)
iii) Since ∆iju(X) = u+B1(ej)(xi)− u

+
B2(ej)(xi) and ∇iju(X) = u−B1(ej)(xi)− u

−
B2(ej)(xi) = 0 are both zero for

B1 = B2,
dHBNSS(B1,B2) = 0 if B1 = B2.
iv) Let

dHBNSS(B1, B2) =
n∑

j=1

m∑
i=1

|∆iju1(x)|+ |∇iju1(x)|+ |∆ijv1(x)|+ |∇ijv1(x)|+ |∆ijw1(x)|+ |∇ijw1(x)|
6

dHBNSS(B2, B3) =
n∑

j=1

m∑
i=1

|∆iju2(x)|+ |∇iju2(x)|+ |∆ijv2(x)|+ |∇ijv2(x)|+ |∆ijw2(x)|+ |∇ijw2(x)|
6

dHBNSS(B1, B2) + dHBNSS(B2, B3)

=
n∑

j=1

m∑
i=1

∣∣∣u+B1(ej)(xi)− u+B2(ej)(xi)∣∣∣+
∣∣∣u+B2(ej)(xi)− u+B3(ej)(xi)∣∣∣+

∣∣∣u−B1(ej)(xi)− u−B2(ej)(xi)∣∣∣+
6∣∣∣u−B2(ej)(xi)− u−B3(ej)(xi)∣∣∣+

∣∣∣v+B1(ej)(xi)− v+B2(ej)(xi)∣∣∣+
∣∣∣v+B2(ej)(xi)− v+B3(ej)(xi)∣∣∣+∣∣∣v−B1(ej)(xi)− v−B2(ej)(xi)∣∣∣+

∣∣∣v−B2(ej)(xi)− v−B3(ej)(xi)∣∣∣+
∣∣∣w+
B1(ej)(xi)− w

+
B2(ej)(xi)

∣∣∣+
∣∣∣w+
B2(ej)(xi)− w

+
B3(ej)(xi)

∣∣∣+
∣∣∣w−B1(ej)(xi)− w−B2(ej)(xi)∣∣∣+

∣∣∣w−B2(ej)(xi)− w−B3(ej)(xi)∣∣∣
≥

n∑
j=1

m∑
i=1

∣∣∣u+B1(ej)(xi)− u+B3(ej)(xi)∣∣∣+
∣∣∣v+B1(ej)(xi)− v+B3(ej)(xi)∣∣∣+

∣∣∣w+
B1(ej)(xi)− w

+
B3(ej)(xi)

∣∣∣
6

This implies
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dHBNSS(B1, B2) + dHBNSS(B2, B3) ≥ dHBNSS(B1, B3)

5.2 Normalized Hamming distance

dnHBNSS(B1, B2) =
dHBNSS(B1, B2)

mn

Proof. Since dHBNSS(B1, B2) satisfies definition 5.1, for any positive m,n

dnHBNSS(B1, B2) =
dHBNSS(B1, B2)

mn

also satisfies definition 5.1

5.3 Euclidean distance between two BNSS

dEBNSS(B1,B2) =

[ n∑
j=1

m∑
i=1

(∆iju(x))2 + (∇iju(x))2 + (∆ijv(x))2 + (∇ijv(x))2 + (∆ijw(x))2 + (∇ijw(x))2

6

] 1
2

where

∆iju(x) = u+B1(ej)(xi)− u
+
B2(ej)(xi)

∇iju(x) = u−B1(ej)(xi)− u
−
B2(ej)(xi)

Proof. i) Since (∆iju(x))2, (∇iju(x))2, (∆ijv(x))2, (∇ijv(x))2, (∆ijw(x))2, (∇ijw(x))2 are all positive,
dEBNSS(B1,B2) ≥ 0

ii) Since (u+B1(ej)(xi)−u
+
B2(ej)(xi))

2 = (u+B2(ej)(xi)−u
+
B1(ej)(xi))

2, (∆iju(X))2 is same for both dEBNSS(B1,B2)
and dEBNSS(B2,B1).
Also this is true for all membership degrees.
Hence dEBNSS(B1,B2) = dEBNSS(B2,B1)

iii) Since ∆iju(X) = u+B1(ej)(xi)− u
+
B2(ej)(xi) and ∇iju(X) = u−B1(ej)(xi)− u

−
B2(ej)(xi) = 0 are both zero

for B1 = B2,
dEBNSS(B1,B2) = 0 if B1 = B2.

iv) Let

dEBNSS(B1,B2) =

[ n∑
j=1

m∑
i=1

(∆iju1(x))2 + (∇iju1(x))2 + (∆ijv1(x))2 + (∇ijv1(x))2 + (∆ijw1(x))2 + (∇ijw1(x))2

6

] 1
2

dEBNSS(B2,B3) =

[ n∑
j=1

m∑
i=1

(∆iju2(x))2 + (∇iju2(x))2 + (∆ijv2(x))2 + (∇ijv2(x))2 + (∆ijw2(x))2 + (∇ijw2(x))2

6

] 1
2
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By the definition of Euclidean norm, we take
dEBNSS(B1,B2) = ‖B1 − B2‖2
dEBNSS(B2,B3) = ‖B2 − B3‖2
Then, ‖B1 − B3‖2 = ‖B1 − B2 + B2 − B3‖2
By Triangle inequality,
‖B1 − B3‖2 ≤ ‖B1 − B2‖2 + ‖B2 − B3‖2
Hence dEBNSS(B1,B2) + dEBNSS(B2,B3) ≥ dEBNSS(B1,B3)

5.4 Normalized Euclidean distance

dnEBNSS(B1, B2) =
dEBNSS(B1, B2)√

mn

Proof. Since, dEBNSS(B1,B2) satisfies Definition 5.1,

dnEBNSS(B1,B2) =
dEBNSS(B1,B2)√

mn

also satisfies Definition 5.1 for all m,n.

Note 5.3. From the above measurements, we conclude the following conditions.

i) 0 ≤ dHBNSS(B1, B2) ≤ mn [Obviously true]
ii) 0 ≤ dnHBNSS(B1, B2) ≤ 1 [from i) ]
iii) 0 ≤ dEBNSS(B1, B2) ≤

√
mn [Obvious from i) ]

iv) 0 ≤ dnEBNSS(B1, B2) ≤ 1 [from iii) ]

Based on these distance measures, we can calculate the similarity between two BNSSs using the following
measures.
i) SH

BNSS(B1, B2) =
1

1 + dHBNSS(B1, B2)

ii) SE
BNSS(B1, B2) =

1

1 + dEBNSS(B1, B2)

iii) SnHBNSS(B1, B2) =
1

1 + dnHBNSS(B1, B2)

iv) SnEBNSS(B1, B2) =
1

1 + dnEBNSS(B1, B2)

6 Representation of image in bipolar neutrosophic soft Domain
In this section, we convert 2-dimensional digital image into bipolar neutrosophic set. A digital image con-
tains many pixels. According to pixel intensity values, we classified digital image as foreground image and
background image.

we define bipolar neutrosophic soft set as parameterization of family of subsets which contains positive
mebership degrees and negative membership degrees. Here we assign positive membership degrees to fore-
ground image and negative membership degree to background image.
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For example, Let us consider a 2-dimensional digital image as X = {x1, x2, x3, y1, y2, y3} . Here x1, x2, x3
represents foreground pixels and y1, y2, y3 represents background pixels. Let A = {e1, e2, e3} be set of param-
eters, where e1, e2, e3 denotes contrast, brightness and sharpness of given image respectively.

Define B = (FA, E) = 〈e, FA(e)〉 : e ∈ E,FA(e) ∈ BNS(X)
Here

FA(e1) =

{〈
x1, u

+
FA(e1)

(x1), v
+
FA(e1)

(x1), w
+
FA(e1)

(x1), u
−
FA(e1)

(x1), v
−
FA(e1)

(x1), w
−
FA(e1)

(x1)

〉
,〈

x2, u
+
FA(e1)

(x2), v
+
FA(e1)

(x2), w
+
FA(e1)

(x2), u
−
FA(e1)

(x2), v
−
FA(e1)

(x2), w
−
FA(e1)

(x2)

〉
,〈

x3, u
+
FA(e1)

(x3), v
+
FA(e1)

(x3), w
+
FA(e1)

(x3), u
−
FA(e1)

(x3), v
−
FA(e1)

(x3), w
−
FA(e1)

(x3)

〉}

FA(e2) =

{〈
x1, u

+
FA(e2)

(x1), v
+
FA(e2)

(x1), w
+
FA(e2)

(x1), u
−
FA(e2)

(x1), v
−
FA(e2)

(x1), w
−
FA(e2)

(x1)

〉
,〈

x2, u
+
FA(e2)

(x2), v
+
FA(e2)

(x2), w
+
FA(e2)

(x2), u
−
FA(e2)

(x2), v
−
FA(e2)

(x2), w
−
FA(e2)

(x2)

〉
,〈

x3, u
+
FA(e2)

(x3), v
+
FA(e2)

(x3), w
+
FA(e2)

(x3), u
−
FA(e2)

(x3), v
−
FA(e2)

(x3), w
−
FA(e2)

(x3)

〉}

FA(e3) =

{〈
x1, u

+
FA(e3)

(x1), v
+
FA(e3)

(x1), w
+
FA(e3)

(x1), u
−
FA(e3)

(x1), v
−
FA(e3)

(x1), w
−
FA(e3)

(x1)

〉
,〈

x2, u
+
FA(e3)

(x2), v
+
FA(e3)

(x2), w
+
FA(e3)

(x2), u
−
FA(e3)

(x2), v
−
FA(e3)

(x2), w
−
FA(e3)

(x2)

〉
,〈

x3, u
+
FA(e3)

(x3), v
+
FA(e3)

(x3), w
+
FA(e3)

(x3), u
−
FA(e3)

(x3), v
−
FA(e3)

(x3), w
−
FA(e3)

(x3)

〉}

where u+FA(e)(x), v+FA(e)(x), w+
FA(e)(x) represents positive truth-membership degree , positive indeterminacy-

membership degree and positive falsity-membership degree of a pixel xwhich holds the parametrer e, and sim-
ilarly u−FA(e)(x), v−FA(e)(x), w−FA(e)(x) represents negative truth-membership degree , negative indeterminacy-
membership degree and negative falsity-membership degree of a pixel x which holds the parameter e .

Remark 6.1. We assume the pixels are already classified as foreground and background pixels based on their
intensity values. This assumption leads us to the following conditions.

For absolute foreground pixels,
u+(x) = [0, 1] u−(x) = 0
v+(x) = [0, 1] v−(x) = −1
w+(x) = [0, 1] w−(x) = −1
For absolute background pixels,
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u+(x) = 0 u−(x) = [−1, 0]
v+(x) = 1 v−(x) = [−1, 0]
w+(x) = 1 w−(x) = [−1, 0]

6.1 Pixels in BNSS domain
Digital images are just array of pixels; each and every pixel has particular intensity values. Initially, Yanhui et
al.,[8, 17] proposed the technique to transform image into neutrosophic domain. In this subsection, we extend
this technique to bipolar neutrosophic domain.

We allocate membership values for each pixel according to their attributes. For foreground pixels
u+(i, j), v+(i, j), w+(i, j) named as positive truth-membership, positive indeterminacy, positive falsity-membership
respectively and for background pixels u−(i, j), v−(i, j), w−(i, j) named as negative truth-membership, nega-
tive indeterminacy, negative falsity-membership respectively.

An arbitrary pixel can be represented as follows:
PBNS(i, j) = {u+(i, j), v+(i, j), w+(i, j), u−(i, j), v−(i, j), w−(i, j)}.
Here

u+(i, j) =
ḡ(i, j)− ḡmin

ḡmax − ḡmin

v+(i, j) =
δ(i, j)− δmin

δmax − δmin

w+(i, j) = 1− u+(i, j) =
ḡmax − ḡ(i, j)

ḡmax − ḡmin

u−(i, j) =
ĝmin − ĝ(i, j)

ĝmax − ĝmin

v−(i, j) =
δmin − δ(i, j)
δmax − δmin

w−(i, j) = −1− u−(i, j) =
ĝ(i, j)− ĝmax

ĝmax − ĝmin

where ḡ(i, j) represents mean intensity of foreground pixel in some neighbourhoods W and ĝ(i, j) represents
the mean intensity of background pixel in some neighbourhoods W ∗.
Here

ḡ(i, j) =
1

W ×W

i+w/2∑
m=i−w/2

j+w/2∑
n=j−w/2

g(m,n)

ĝ(i, j) =
1

W ∗ ×W ∗

i+w∗/2∑
m=i−w∗/2

j+w∗/2∑
n=j−w∗/2

g(m,n)

δ(i, j) = |g(i, j)− ḡ(i, j)|
δ(i, j) = |g(i, j)− ĝ(i, j)|

δmax = maxδ(i, j) δmin = minδ(i, j)

Example 6.2. Let X = {f1, f2, b1, b2} be pixel set of a 2-D image. Also let E = {e1, e2, e3} be the subset of
the parameter set A with parameters e1, e2, e3 as contrast, brightness and sharpness, respectively.
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Now we define
(FA, E) = {〈e, FA(e)〉 : e ∈ E,FA(e) ∈ BNS(X)}.
Here

F (e1) =

{
〈f1, 0.5, 0.4, 0.3, 0,−1,−1〉 , 〈f2, 0.4, 0.7, 0.6, 0,−1,−1〉 , 〈f3, 0.4, 0.3, 0.5, 0,−1,−1〉 ,

〈b1, 0, 1, 1,−0.6,−0.2,−0.3〉 , 〈b2, 0, 1, 1,−0.7,−0.1,−0.3〉 , 〈b3, 0, 1, 1,−0.4,−0.2,−0.3〉
}

F (e2) =

{
〈f1, 0.6, 0.3, 0.2, 0,−1,−1〉 , 〈f2, 0.5, 0.2, 0.3, 0,−1,−1〉 , 〈f3, 0.3, 0.4, 0.2, 0,−1,−1〉 ,

〈b1, 0, 1, 1,−0.4,−0.5,−0.1〉 , 〈b2, 0, 1, 1,−0.6,−0.2,−0.3〉 , 〈b3, 0, 1, 1,−0.4,−0.5,−0.1〉
}

F (e3) =

{
〈f1, 0.6, 0.3, 0.4, 0,−1,−1〉 , 〈f2, 0.4, 0.5, 0.1, 0,−1,−1〉 , 〈f3, 0.2, 0.3, 0.1, 0,−1,−1〉

〈b1, 0, 1, 1,−0.5,−0.3,−0.2〉 , 〈b2, 0, 1, 1,−0.5,−0.4,−0.2〉 , 〈b3, 0, 1, 1,−0.7,−0.9,−0.1〉
}

Then (FA, E) is a bipolar neutrosophic soft set which is the parameterized family of soft subsets of X .

7 Decision making process based on similarity measurements
Since neutrosophic set theory deals with uncertainities, it is useful for decision making problems. Due to lack
of parametrization tools in neutrosophic sets alone, we have some difficulties while making decisions. There
fore, neutrosophic set along with parameters are more favorable for decision making problems.

In this evaluation criteria, we have two types of membership degrees as positive and negative membership
degrees. So we consider positive membership degrees for foreground pixels and negative membership de-
grees for background pixels. This means, we expect maximum positive truth-membership value and minimum
negative truth-membership value for foreground pixels while maximum negative truth-membership value and
minimum positive truth-membership value for background pixels.

So we define ideal neutrosophic values for our criteria in the following way.

[fij] =

{
ej,

〈
max(u+F (ej)

(xi)),min(v+F (ej)
(xi)),min(w+

F (ej)
(xi)),max(u−F (ej)

(xi)),min(v−F (ej)
(xi)),

min(w−F (ej)
(xi))

〉
: ej ∈ E;xi ∈ X

}
[bij] =

{
ej,

〈
min(u+F (ej)

(xi)),max(v+F (ej)
(xi)),max(w+

F (ej)
(xi)),min(u−F (ej)

(xi)),max(v−F (ej)
(xi)),

max(w−F (ej)
(xi))

〉
: ej ∈ E;xi ∈ X

}
So our aim is to select the most relevant foreground and background set of pixels by their brightness,

contrast level and sharpness level from the image samples of a particular image. The different types of lena
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images and their corresponding neutrosophic values are given below.

(a) Blur image (b) Noisy image (c) Low resolution

Figure 1: Different types of Lena images

B1 Brightness(e1) Contrast(e2) Sharpness(e3)
f1 (0.5,0.4,0.3,-0.2,-0.3,-0.9) (0.8,0.2,0.4,-0.3,-0.4,-0.8) (0.4,0.7,0.6,-0.2,-0.3,-0.9)
f2 (0.2,0.3,0.7,-0.1,-0.4,-0.3) (0.6,0.3,0.3,-0.6,-0.3,-0.5) (0.5,0.6,0.3,-0.4,-0.6,-0.8)
b1 (0.7,0.2,0.4,-0.5,-0.6,-0.9) (0.5,0.6,0.2,-0.7,-0.3,-0.2) (0.2,0.1,0.3,-0.7,-0.5,-0.5)
b1 (0.4,0.6,0.8,-0.7,-0.3,-0.3) (0.6,0.6,0.8,-0.7,-0.2,-0.2) (0.3,0.4,0.3,-0.9,-0.1,-0.2)

Table 1:Neutrosophic values of (a) Blur image.

B2 Brightness(e1) Contrast(e2) Sharpness(e3)
f1 (0.6,0.5,0.4,-0.1,-0.2,-0.8) (0.7,0.1,0.3,-0.4,-0.5,-0.9) (0.3,0.6,0.5,-0.3,-0.4,-0.9)
f2 (0.8,0.3,0.5,-0.4,-0.5,-0.8) (0.4,0.5,0.1,-0.8,-0.4,-0.3) (0.4,0.3,0.5,-0.5,-0.3,-0.5)
b1 (0.5,0,0.2,-0.7,-0.4,-0.7) (0.3,0.4,0.4,-0.8,-0.4,-0.3) (0.4,0.3,0.5,-0.5,-0.3,-0.3)
b2 (0.2,0.4,0.6,-0.9,-0.1,-0.1) (0.4,0.4,0.8,-0.5,-0.2,-0.2) (0.2,0.2,0.3,-0.5,-0.1,-0.4)

Table 2:Neutrosophic values of (b) Noisy image.

B3 Brightness(e1) Contrast(e2) Sharpness(e3)
f1 (0.4,0.5,0.7,-0.9,-0.8,-0.2) (0.3,0.8,0.7,-0.6,-0.5,-0.1) (0.7,0.4,0.5,-0.7,-0.6,-0.1)
f2 (0.2,0.7,0.5,-0.6,-0.5,-0.2) (0.6,0.5,0.9,-0.2,-0.6,-0.7) (0.6,0.7,0.5,-0.5,-0.7,-0.5)
b1 (0.5,0.4,0.8,-0.3,-0.6,-0.3) (0.7,0.4,0.6,-0.2,-0.6,-0.7) (0.6,0.7,0.5,-0.5,-0.7,-0.7)
b2 (0.8,0.6,0.4,-0.1,-0.9,-0.9) (0.6,0.6,0.2,-0.5,-0.8,-0.8) (0.8,0.8,0.7,-0.5,-0.9,-0.6)

Table 3:Neutrosophic values of (c) Low resolution image.

Following table shows that the neutrosophic values of absolute foreground and background pixels.

model − B Brightness(e1) Contrast(e2) Sharpness(e3)
f (1,0,0,0,-1,-1) (1,0,0,0,-1,-1) (1,0,0,0,-1,-1)
b (0,1,1,-1,0,0) (0,1,1,-1,0,0) (0,1,1,-1,0,0)
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By our criteria, we define ideal neutrosobhic values as follows.

B Brightness(e1) Contrast(e2) Sharpness(e3)
f1 (0.6,0.4,0.3,-0.1,-0.8,-0.9) (0.8,0.1,0.3,-0.6,-0.5,-0.9) (0.7,0.4,0.5,-0.2,-0.6,-0.9)
f2 (0.8,0.3,0.5,-0.1,-0.5,-0.9) (0.6,0.5,0.9,-0.2,-0.3,-0.3) (0.6,0.3,0.3,-0.4,-0.7,-0.8)
b1 (0.5,0.4,0.8,-0.7,-0.4,-0.3) (0.3,0.6,0.6,-0.8,-0.3,-0.2) (0.2,0.7,0.5,-0.7,-0.3,-0.3)
b2 (0.2,0.6,0.8,-0.9,-0.1,-0.1) (0.4,0.6,0.8,-0.7,-0.2,-0.2) (0.2,0.8,0.7,-0.9,-0.1,-0.2)

Now we compute the Hamming distance between our ideal bipolar neutrosophic soft set and the bipolar
neutrosophic set of each images to find the similarity.

dHBNSS(B,B1) = 1.9
dHBNSS(B,B2) = 1.7667
dHBNSS(B,B3) = 3.6

Then the similarity values are,

SH
BNSS(B,B1) =

1

1 + dHBNSS(B,B1)
= 0.3448

SH
BNSS(B,B2) =

1

1 + dHBNSS(B,B2)
= 0.3614

SH
BNSS(B,B3) =

1

1 + dHBNSS(B,B3)
= 0.2174

Based on these similarity scores, we choose B2 as the reliable bipolar neutrosophic soft set. This means
among these three types of image samples, second image is more favorable to our criteria.

8 Conclusion and Future work
In this paper, we proposed a different approach on bipolar neutrosophic soft sets and discussed their properties
which was initially introduced by Ali et al. Further we defined some distance measures between any two bipo-
lar neutrosophic soft sets to check similarity between them. And also we defined entropy measure to calculate
indeterminacy. In section 6, we gave the representation of 2-D image in bipolar neutrosophic domain. Finally,
the proposed similarity measurements have been applied to decision making problem in image analysis. Our
future work will include more decision making methods based upon different similarity measurements.
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