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Abstract:

This paper is dedicated to find a general algorithm for generating different
solutions for Pythagoras non-linear Diophantine equation in four variables x* +
y% +2z% =t* in symbolic 2-plithogenic rings, which are known as Pythagoras

quadruples.
Also, we present some examples about those quadruples in some finite symbolic
2-plithogenic rings.

Keywords: symbolic 2-plithogenic ring, Pythagoras quadruples, Diophantine

equations
Introduction and Preliminaries

Symbolic n-plithogenic algebraic structures are a new generalization of classical

algebraic structures, as they have serious algebraic properties to study.

In the previous literature, we can clearly note several algebraic studies that were
interested in discovering the properties of these algebraic structures, for example
we can find some applications of plithogenic structures in probability, ring theory,

linear spaces, matrices, and equations [1-10].
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Researchers have studied Pythagorean quadruples in the ring of ordinary algebraic

numbers [11-14].

Several efficient algorithms for calculating these quadruples have been presented,

as solutions to the corresponding Diophantine equation.

This has motivated us to study Pythagoras quadruples in the symbolic
2-plithogenic commutative case, where we find a general algorithm for generating
different solutions for Pythagoras non-linear Diophantine equation in four

variables x* + y% + z = t* in symbolic 2-plithogenic rings.

Definition.
The symbolic 2-plithogenic ring of real numbers is defined as follows:
2—SPg ={to+ t;P, + t,Py;t; €ER,Py X Py = P, X P, = P,,P,* = P,” = P,}
The addition operation on 2 — SPy is defined as follows:
(to + t1 Py + t5P)) + (o + 1Py + 65P,) = (0 + o) + (&1 + 6Py + (t, + £5)P,
The multiplication on 2 — SPy is defined as follows:
(to + 6Py + 6,P,) (6o + 64 Py + £5,P,)
= toty + (toty + tity + t1t) Py + (toty + tits + tots + tyty + tat1)P,
Main Discussion
Definition.
Let T =ty + t,P, + t,P5,S = Sg + 5Py + 5Py, K = ko + ky Py + kyPy, L = Ly + L, P, +
[,P, be four symbolic 2-plithogenic elements of a symbolic 2-plithogenic
commutative ring
2 — SPg, then (T,S,K,L) is called a symbolic 2-plithogenic Pythagoras quadruple if
and only if T? +S% + K2 = [2.
Theorem.
Let T =ty + t;P, + t,P,,S = 5o + 51P; + 5,P5, K = ko + kP, + kyPy, L = 1o+ 1P, +
[,P, € 2 — SPg, then (T,S,K,L) is a symbolic 2-plithogenic Pythagoras quadruple if

and only if:

Yaser Ahmad Alhasan, Abuobida Mohammed A. Alfahal, Raja Abdullah Abdulfatah, Generating Pythagoras Quadruples in
Symbolic 2-Plithogenic Commutative Rings
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(to, S0, ko, Lo), (to + t1, S0 + S, ko + ki, Lo+ 11), (tg + t1 + ty, 50 + 51 + S5, kg + kq +
k,,ly +1; + 1;) are three Pythagoras quadruples in R.

Proof.

We have:

T = to” + [(to + t1)* — to®IPy + [(to + t1 +12)* — (&0 + 11)°]P,,

5% =502+ [(so + 51)% — 50%]Py + [(sg + S1 + 52)% — (59 + 51)%] P,

K% = ko® + [(ko + k1) — ko”|Py + [(ko + ky + k3)? — (ko + k1)2]Py,

L2 = 1"+ [o + L)% = 1°] Py + [(Uo + 1y + 1)% — (lp + 1)?]P,,

The equation T? + S? + K% = L* is equivalent to:

to? + 502 + ko =1, (1)

(to +t1)? + (so +51)% + (ko + k1)? = (lo + 1))* (2)

(to+ts +t2)* + (so+ 5145202+ (ko + ky + k2)? = (lp + 1, + 1)* (3)

Thus, the proof holds.

Theorem.

Let (to, S0, ko, lo), (t1,51, k1, 11), (2,52, k, 1) be three Pythagoras quadruples in R,
then the corresponding Pythagoras quadruple in 2 — SP; is (T, S, K, L), where:

T =ty + [t; — to]l Py + [t2 — t1]P;,

S =50+ [s1 —SolP1 + [52 — 51]P,,

K = ko + [ky — kolPy + [k2 — k4] P,

L=1y+ [l —]P + [l; — LL]P.

Proof.

We must compute T? + S + K?,

T2+ S% + K? = tp® + (612 — t®)Py + (t2° — t12)Py 4+ 5% + (51° — sp2)Py +

(522 = 512)Py + ko® + (ky® — ko®)Py + (ky® — ky*)Py = (8o + 502 + ko?) +
(L2452 4+ k" —t? =502 — ko )Py + (L2 + 5.2 + k> — 2 — 512 —kyP)Py = 1y* +
(L2 = 5P+ (L2 = 1,*)P, = 12

So that, the proof is complete.

Example.

Yaser Ahmad Alhasan, Abuobida Mohammed A. Alfahal, Raja Abdullah Abdulfatah, Generating Pythagoras Quadruples in
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We have L,=(,-1,i,1),L,=(,1,-1,-1),L3=(—i,—1,1,—1) are three
Pythagoras quadruples in C.

The corresponding 2-plithogenic Pythagoras quadruple is (T, S, K, L), where:
T=1+(-1+i)P, —2iP,

§S=-1+2P, - 2P,

K=i+(-1-10)P, +2P,

L=1-2P +2P,

On the other hand, we have:

T2 =1 - 2P,
§2=1,
K2=_1+2P1,

[?=1=T?+5*+K>

Example.

Consider the following three Pythagoras quadruples in Z;:

L, = (0,0,0,0), L, = (1,1,1,1), L5 = (1,1,0,0)

For every triple (L;Lj,Ls);1<1i,j,s <3, we can get a symbolic 2-plithogenic
pythagoras quadruple.

We will find some symbolic 2-plithogenic Pythagoras quadruple in 2 — SPy,.

Let us write the following quadruples:

Y1:O
Y, =0
Y1,’:0
Y1,’, 0
(Y, =P,
Y,2:P2
A

YZ =P2
LY2”’:P2
( Y3:0
Y;=0
4 "o_
;7 =P,
kY3,”=P2

Yaser Ahmad Alhasan, Abuobida Mohammed A. Alfahal, Raja Abdullah Abdulfatah, Generating Pythagoras Quadruples in
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Y, =P +P,
Y,=P +P,
Y,” =P +P,
Y, =P +P,
(Ys =P+ P,

Yiu=1+P,
Yiu=1+P,
Yi:. =1+ P,
Y. =1+P,
Yio=1+P,
Yio=1+P,
Y, =1
Y, =1
Yis=1+P +P,
Yis=1+P +P,
Yis' =1+P +P,

nr

Y13 =1+P1+P2

Yaser Ahmad Alhasan, Abuobida Mohammed A. Alfahal, Raja Abdullah Abdulfatah, Generating Pythagoras Quadruples in
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Y14,=1
Yia=1
Y14”:1+P1+P2
Y14,”:1+P1+P2
Y15=1+P1+P2
Yis=1+P +P,

;s =1
Vi =1
(Ve =P
| o=
Yie. =P
\Y;," =P,
( Yi,=1
< ﬁz=1
Yi;7 =P
\Y;," =P,
Y6 = Py
[Yée =P
Yo' =1
L' =1
( Y%7 =1
Y, =1
iyy” =
Y., =0
Y30 =1
Y30 =1
{Y32” =P,
Y3," =P,
Y;3=1+P,
Y3 =1+ P,
Y33” =P,
Y33m =P,
Y5 =1
Vs =1

V35" =Py + P,
Yas"' =P + P,
Y;6 =1+P, +P,
Ys6 =14 P, + P,
Y3 =P, + P,
Y3 =P, + P,
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Y37 - Pl
Y3; = Py
Y3, =0
Y3, =0
( Yg=1
Yag =1
< Y3 =1+ P
Vs =1+ P,
( Ys9=P;
Y;9 =P
Y3 =1+ P;
Yo' =1+P;
Yo =0
Yo =0
Yo =1
Yo' =1
Yiu. =0
Y =0
Y, =1+P,

Y4_4_”I - 1 +P2

Yis = P,
Yys = P,

Y45” = 1
ky45”’ — 1
Yie = P,
Yie = P,
Y46” = 1 + PZ
Y46I” = 1 + PZ
Y47 = 0
Y47 =0

Y47”:1+P1+P2
Y47”’:1+P1+P2

Yig =P+ P,
Yig =P+ P,
Y =1
Y48HI =1
Yo =P+ P,
Yo =P+ P,

Y49”=1+P1+P2
nr

Y49 =1+P1+P2
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Y50 =0
Yoo = 0
Y50” =P
Ysom =P
(Ys1=1+P;
) Y51 =”1 + P
Y59 =1
\ Y, =1
(Yso =1+ P;
Yo =1+P;
Y52” =P
\ Y., =P,
Yoz =P
Yé3 =P
Ys3" = P, + P,

Yos = P
Y55 = P
Y55” =P,
Yo' = P,
Ys = P; + P,
Ys = P; + P,
Y56” =P,
Yo' =P
Ys7 =P,
Y57 = P,
Y57” =P
Y57”, - Pl
Ysg = P,
Yig =P,

Y =P + P,
Yo' =P+ P,
Yoo=1+P, +P,
Yso =14 P, + P,
Yso =1+ P;
Yoo ' =14+ P;
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Yoo =1+ P,
Yoo=1+P;
Yoo = P,
Yeo' =P,
Y1 =1+P; + P,
Y1 =1+P; +P,

Y61”=P2
Y61HI=P2
Y62=1+P1
Y62=1+P1
Y62”:P2
Y62HI:P2
( Ye3 = P,
Ye3 =P,
Y63”=1+P2
Y63”I=1+P2
(Y64:P2
Yeu =P,
Y64”=1
Y64III=1
(Y65=1+P2
{Y65=1+P2
Y65”:1
Y65Hl:1
Y66:1+P2
Yoo =1+ P,

Yo =1+ P, + P,
Yoo =1+P +P,
Yo, =1+ P,
Yo, =1+P,
Yo, =P, + P,
Yo, =P, + P,
Yos =1+ P,
<g8i1+5
Yo =1
\ Y =1
(Yoo =1+ P,
Yoo =1+ P,
Y69” =P
Y69m =P
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Y70=1+P1+P2
Yo=1+P +P,

Y70” =P
Y70III — P1
Y, =P, + P,
Y71” == 1
Y711II — 1
Y;, =P
Y. =P

(Yy3 =P + P,
Yoo =P, +P,
Y. =1+P,

\Y,;"" =1+ P,

( Yu=P

Y =P
Y., =1+P,

Y., ' =1+P,
Ys =1+ P;
Yoe=1+P;
Y.s' =1+P,

Y, =1+P,
Y,6=1+P, +P,
Y6 =1+P, +P,

Y. =1+ P,

Y. =1+P,

Y., =1
Y., =1
Y,, =1+P,
Y., ' =1+P,

Conclusion.
In this paper, we have studied Pythagoras quadruples in symbolic 2-plithogenic
commutative rings, where necessary and sufficient conditions for a symbolic

2-plithogenic quadruple (x,y,z,t) to be a Pythagoras quadruple.
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Also, we have presented some related examples that explain how to find

2-plithogenic quadruples from classical quadruples.
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Abstract:

This paper is dedicated to find all symbolic 2-plithogenic integer solutions for the

symbolic 2-plithogenic Fermat's Diophantine equation X" +Y" = Z" for n > 3.

We prove that it has exactly 27 solutions, and we find all possible solutions.

Keywords: symbolic 2-plithogenic integer, Fermat's Diophantine equation,

symbolic 2-plithogenic ring.

Introduction and basic definitions.

The theory of Diophantine equations is considered as an important and central
theory in commutative algebra.

In our days, many developments of algebraic structures have helped us with
general cases of Diophantine equations, for example, neutrosophic rings and their
generalizations [1-4] have led to many new related Diophantine equations such as
neutrosophic Pell's equation [5], refined neutrosophic Diophantine equation [6] and
n-refined equations [7]. The main application of generalized versions of number
theory is cryptography algorithms, see [15-19].

The concept of symbolic 2-plithogenic rings was defined in [8], then it was studied

and generalized by many authors, see [9-14].
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The Fermat's triple is defined as a solution of the Diophantine non-linear equation
X" +Y"=Z" in thering R, with n > 3.

We refer to that for the special case of n =2, the Fermat's triple is called a
Pythagoras triple.

It is useful for the reader to ensure that neutrosophic and plithogenic number
theory is useful in cryptography [16-20].

In this work, we find all solutions of X™ + Y™ = Z" in the symbolic ring of integers
2 — SP,.

Definition.

Let Z be the ring of integers, the corresponding symbolic 2-plithogenicc ring of
integers is defined as follow:

2—SP; ={x+yP, +2zPy;x,y,2€ Z, P> = P,,P, X P, = P, X P, = P, }.

Theorem.

For X =1y + P, + [,P, € 2 — SP,, then;

X" = 1"+ P[(lo + 1)" = "] + Po[(Lo + Iy + 1) = (Lo + 1D"].

Remark.

In Z, we have three Fermat's triples:

(0,1,1),(1,0,1),(0,0,0) forall n > 3.

Main results

Theorem.

Let 2 — SP; be the symbolic 2-plithogenic ring of integers, then it has exactly 27
Fermat's triples.

Proof.

Let (T,S,K) be a Fermat's triple of 2 — SP,

with T =ty + t,P; + t,P5,S = s + $1Py + 5,P5, K = ko + k1 Py + k, Py,

the equation T™ + S™ = K" is equivalent to:

ton + Son = kon
(to +e)™ + (so +51)™ = (ko + k™
(tO + tl + tz)n + (SO + S1 + Sz)n = (ko + k1 + kz)n
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Thus A; = (ty, So, ko), Az = (tg +t1,S9 + S, ko + k1), A3 = (ty +t1 + ty, 50 + 51 +

Sz, ko + ky + k) are three triples in Z.

So that, A;,4,,45 € {(0,1,1),(1,0,1),(0,0,0)}, thus three exists 27 solutions of the
symbolic 2-plithogenic Fermat's Diophantine equation.

Now, we discus all possible cases:

Casel.

tOZSOZkOZO
{ t0+t1=50+51=k0+k1=0
t0+t1+t2:SO+51+52:k0+k1+k2:O

Thus F; = (0,0,0)

Case2.

tOZSO:kOZO
{ t0+t1=50+51=k0+k1=0
t0+t1+t2:0,So+51+52:k0+k1+k2:1

Thus FZ = (0, Pz,Pz)
Case3.

tOZSO:kOZO
t0+t1:SO+Sln:k0+k1:O
t0+t1+t2=k0+k1+k2=1,50+51+52=0

Thus F; = (P,,0,P,)

Case4.

t0=50=k0=0
{ t0+t1:k0+k1:1,50+51:0
t0+t1+t2=k0+k1+k2=50+51+52=0

Thus F, = (P, — P,,0,P, — P,)

Caseb5.

tOZSO:kOZO
{ t0+t1=k0+k1=1,50+51=0
t0+t1+t2=k0+k1+k2=1,50+51+52=O

Thus F5 = (Pl,O,Pl)

Case6.

t0=SO=k0=0
{ t0+t1:k0+k1:1,50+51:0
t0+t1+t2=0,k0+k1+k2=50+51+52=1
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Thus Fs = (P, — P, P, Py)

Case7.

tOZSOZkOZO
{ t0+t1=0,k0+k1=50+51=1
t0+t1+t2:k0+k1+k2:SO+Sl+82:O

Thus F7:(0,P1_P2,P1_P2)

CaseS8.

t0=50=k0=0
{ t0+t1:0,k0+k1280+81:1
t0+t1+t2=k0+k1+k2=1,50+51+52=0

Thus F8 = (PZ'PI _PZJPl)

Case9.

tOZSO:kOZO
{ t0+t1=0,k0+k1=50+51=1
t0+t1+t2:0,k0+k1+k2250+51+52:1

Thus Fg = (O, P]J Pl)

Casel0.

t0:k0:1,50:0
{ t0+t1=k0+k1=50+51=0
t0+t1+t2:k0+k1+k2250+51+52:o

Thus FlO = (1 —P1,0,1 _Pl)

Casell.

t0=k0=1,50=0
{ t0+t1:k0+k1:SO+51:0
t0+t1+t2=k0+k1+k2=1,50+51+52=0

Thus F11=(1_P11011_P1+P2)

Casel2.

t0=k0=1,50=0
{ t0+t1=k0+k1=50+51=0
t0+t1+t2:0,k0+k1+k2250+51+52:1

Thus F12=(1_P1;P2’1_P1+P2)

Casel3.

t0:k0:1,50:0
{ t0+t1=k0+k1=1,50+51=0
t0+t1+t2:k0+k1+k2250+51+52:o
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Thus F13:(1_P1,0,1_P2)

Casel4.

t0:k0:1,50:0
{ t0+t1=k0+k1=1,50+51=0
t0+t1+t2:k0+k1+k2:1,50+51+52:0

Thus F14_ = (1,0,1)

Casel5.

t0=k0=1,50=0
{ t0+t1:k0+k1:1,80+81:0
t0+t1+t2=0,k0+k1+k2=50+51+52=0

Thus F15 = (1 _PlJPZJ 1)

Caselsé.

t0=k0=1,50=0
{ t0+t1=0,k0+k1=50+51=1
t0+t1+t2:0,k0+k1+k2250+51+52:o

Thus F16=(1_P1,P1_P2,1_P1)

Casel?.

t0=k0=1,50=0
{ t0+t1=0,k0+k1=50+51=1
t0+t1+t2=k0+k1+k2=1,50+51+52=0

Thus F17:(1_P1+P2,P1_P2,1)

Casel8.

t0=k0=1,50=0
{ t0+t1:O,k0+k1:SO+51:1
t0+t1+t2=0,k0+k1+k2=50+51+52=1

Thus F18 = (1 - Pl,Pl, 1)

Casel9.

tOZO,kOZSO:].
{ t0+t1=k0+k1=50+51=0
t0+t1+t2:k0+k1+k2250+51+52:o

Thus F19 = (0;1 _Plll _Pl)

Case20.

t0:0,k0250:1
{ t0+t1=k0+k1=50+51=0
t0+t1+t2=k0+k1+k2=1,50+51+52=0
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Thus FZOZ(Pz,l_Pl,l_P1+P2)

Case21.

tOZO,kOZS():l
{ t0+t1=k0+k1=50+51=0
t0+t1+t2:0,k0+k1+k2250+51+52:0

Thus F21:(0,1_P1+P2,1_P1+P2)

Case22.

t0=0,k0=50=1
{ t0+t1:k0+k1:1,80+81:0
t0+t1+t2=0,k0+k1+k2=50+51+52=0

Thus F22=(P1_P2,1_P1,1_P2)

Case23.

t0:0,k0250:1
{ t0+t1=k0+k1=1,50+51=0
t0+t1+t2=k0+k1+k2=1,50+51+52=0

Thus F23 = (Pl,l _Pll 1)

Case24.

t0:0,k0250:1
{ t0+t1=k0+k1=1,50+51=0
t0+t1+t2:0,k0+k1+k2250+51+52:1

Thus FZZZ(Pl_Pz,l_P1+P2,1)

Case25.

t0=0,k0=50=1
{ t0+t1:O,k0+k1:SO+51:1
t0+t1+t2=k0+k1+k2=50+51+52=0

Thus F,s = (0,1 —P,,1—P,)

Case26.

t0:0,k0250:1
{ t0+t1=k0+k1=1,50+51=0
t0+t1+t2=k0+k1+k2=1,50+51+52=O

Thus F26 = (Pz,l _Pz,l)

Case27.

t0:0,k0250:1
{ t0+t1=k0+k1=1,50+51=0
t0+t1+t2:0,k0+k1+k2250+51+52:1
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Thus F,, = (0,1,1).

Conclusion

In this paper, we have studied the solutions of symbolic 2-plithogenic Fermat's
non-linear Diophantine equation, where we have proved that it has exactly 27
solutions, and we presented the all-27 possible solutions.
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Abstract:

The main goal of this research paper is to find an algebraic ring homomorphism

between symbolic 2-plithogenic ring and the corresponding 2-cyclic refined ring.

This work presents some applications of the defined homomorphism to explain
some algebraic relationships between symbolic 2-plithogenic algebraic structures

and 2-cyclic refined structures.
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Introduction and preliminaries

Algebraic homomorphisms play a central role in the classification of rings, where
they are considered a very rich material to find the algebraic relationships between

different rings.

The symbolic 2-plithogenic rings were defined in [3], they have many interesting
properties, since they are a good extension of classical rings, see [1-2, 7-10].
Symbolic 2-plithogenic rings are examples about symbolic n-plithogenic sets and

structures founded by Smarandache [4, 11-12].
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On the other hand, another extension of rings was defined and handled by many
authors, where n-cyclic refined rings are neutrosophic structures with an algebraic

structure similar to the cyclic ring of integers [5-6].

This work is dedicated to find an algebraic relation by using homomorphisms
between symbolic 2-plithogenic rings and 2-cyclic refined rings, where these
homomorphisms can be used between the matrices defined over these rings, and

vectors defined over them.
Many examples will be presented as a sign of the validity of our work.

For the definitions of algebraic relations between symbolic 2-plithogenic elements
see [3]. For the definitions of algebraic relations between n—cyclic refiend elements

see [6].

Main discussion

Theorem.

Let R,(I) be the 2-cyclic refined ring, ideals of the ring R, 2 — SP; be the symbolic
2-plithogenic ring refined over the ring R, then there exists a ring homomorphism
fiR,(I) > 2 — SPy.

Proof.

We define f:R,(I) - 2 — SPg such that:

fWo + Vily + Valp) = Vo + (Vy + V3) Py — 2V, P,

f is well defined:

Assume that Vo + Vi + VoI, = wy +wyly + wyl,, then V; =w; for all 0<i<2,
thus:

Vo + (Vi + Vo)P, — 2ViP, = wy + (wy + wy)P; — 2w, P,

hence f(V, + Vil + V,1,) = f(wy + wily + wyl,).

f preserves addition:

For V = VO + V]_Il + V2W = 12, Wy + W]_Il + W2[2 ’
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we have:
V+W=Us+wy)+Vy+w)l + (V, +wy)l,
fW+W)=Wo+wy)+ WV +wy +V, +wy)Py —2(Vy + wy)P, =
Vo + (V1 + V) Py — 2ViPo] + [wo + (wy + wy) Py — 2w, Pp] = f(V) + f(W).
f preserves multiplication:
V.W = Vo we + (Vowy + Vawy + Viw, + Vowy)l; + (Vow, + Vowg + Vow, + Viwy) I,
fW.W) =Vy.wy + (Vowy + Viwy + Viw, + Vowy + Vow, + Vowy + Vow, + Viwy )Py
—2(Vowy + Vawy + Vaw, + Vow; )P,
On the other hand, we have:
fW).f(W) = [Vo + (Vy + V2) Py — 2Vi Py ] [wg + (W + wp) Py — 2wy Po] = Vo.wy +
(Vowy + Viwy + Viw, + Vowy + Vow, + Vowy + Vow, + Viwy )Py — 2(Vpwy + Viwg +
Viw, + Vow )P, = f(V.W).
So that, f is a ring homomorphism.
Theorem.
Let f be the previous homomorphism defined with f:R,(I) = 2 — SPg, then:
1. ker(f) ={ylL —yl;2y =0,y € R}
2. ker(f) isa zero ring.
Proof.
1. ker(f) ={x+yl, + zl,; f(x + yI; + zI,) = 0}, hence x + (y + z)P; — 2yP, =
0,

thus x = 0,z = —y, 2y = 0 which implies that:
ker(f) ={yly —yl;;2y = 0,y € R}.

2. Let M = ml, — ml,,N = nl; —nl, € ker(f), then 2m — 2n = 0, thus:
M.N = (ml; — ml,)(nl; — nl,) = mnl, — mnl; — mnl; + mnl, = —2mnl; + 2mnl, =
0 — 0 = 0, which means that ker(f) is a zero ring.

Theorem.
Let R be a field, then R,(I) =2 — SPg

Proof.
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According to the previous theorem, we have 2y = 0 implies that y =0, thus
ker(f) = {0} and f isinjective.

To prove that the homomorphism f is surjective, we take an arbitrary element

Vo + V1P, + V,P, € 2 — SP, then there exists

W=Vo+ (22) 1+ (Vs +2) L € R (D).

Such that:

f(W) =V, +ViP; + V,P,, so that f is an isomorphism.

Applications to Vector Spaces.

By using the previous relationship between symbolic 2-plithogenic ring and 2-cyclic
refined rings, we will be able to show the algebraic relations between symbolic
2-plithogenic vector spaces and 2-cyclic refined vector spaces.

Theorem.

Let F be an algebraic field, T be a vector space over F. Assume that 2 — SP; =
{to + t,P; + t,P5;t; € T} is the corresponding symbolic 2-plithogenic vector space
over 2 — SPg.

T,(I) = {ty + t,P; + t;P,; t; € T} is the corresponding 2-cyclic refined vector space
over F,(I), then there exists a semi module homomorphism between T,(I) and
2 — SP;.

Proof.

According to the previous theorems, there exists a ring homomorphism f: F,(I) -
2 — SPr such that

fWo+Vily +Volp) = Vo + (Vi + V)P, — 2V1 P,

We define g:T,(I) - 2 — SP; such that:

9(to + taly + t21)) = to + (& + )Py — 244 P,

g is well defined:

If to+ ty; + t,l, = tg + &1, + E51,, then t; = ;0 <i <2 and

to+ (ty + t2)Py — 2t P, = to + (&, + £,)P; — 2t1P,,

which means that

Hasan Sankari, Mohammad Abobala, On The Algebraic Homomorphisms Between Symbolic 2-plithogenic Rings And
2-cyclic Refined Rings



Neutrosophic Sets and Systems, Vol. 59, 2023 26

g(to + t11y + t15) = g(to + E11; + L 15).

g preserves addition:

For M =ty + t11; + t,1,, N =ty + t,1; + t,1, € R,(1).

M+ N = (to + o) + (ty + E) + (5 + E) 1

gM +N) = (to+ L) + (ty + & +ty +E)P — 2(t, + E)P, = [t + (b + )P, —

2t1P,] + [to + (E1 + )Py — 28, P,] = g(M) + g(N).

To complete the proof, we must prove that:

g@M) = f(q)- gM); q = qo + q111 + q21; € F,(I) and M =t + t11; + t;1; € To(D).

First, we have:

qM = qo.to + (qot1 + qato + qatz + qat1) ]y + (qotz + G2to + G2ty + qat1)]y

9(@M) = qo.to + (qots + q1to + q1ts + G2ty + qoty + Qato + gtz + q1t1)Py
—2(qoty + q1to + qit2 + q2t1) P,

f(@ =qo + (q1 +q2)P1 — 2q,P,
gM) =ty + (t1 +t)P; — 2t, P,

f(@).gM) = qo.to + (qots + qrto + gitz + gats + qotz + G2to + G2tz + qut) Py —
2(qoty + q1to + g1ty + q2t)P, = g(gM).

This implies that f is a semi-module homomorphism, and T,(I) is semi
homomorphic to 2 — SPr.

Remark.

Consider that H = {ho + hyl, + hyly; h; € H,H is a subspace of T} , then H is a
submodule of T,(I) , let us find it direct image according to the
semi-homomorphism g.

Im(H) = g(H) = {ho + (hy + hy)P, — 2hyPy; h; € H}.

We prove that Im(H) is a submodule of 2 — SPy.

Let X =x¢+ (x; +x)P; —2x.P,,Y = yo + (y1 + y2)P1 — 2y, P, € Im(H) , where
x,y; €H

X+Y = (xo+y0)+ (x1+x3+y1 +y2)Pr — 2(x1 + y1)P, € Im(H)

Let ¢ = qo + q11; + g1, € 2 — SPg, then:

qgX = qo.xo + (qox1 + qox2 + q1X0 + q1X2 + q1x1)P;
+ (—2q0x1 + qoX2 — 291X, + q2x1 + q2X3) P,
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G=a0+ (") L + (g1 + L)L, € Fy(1), then:
f(g) = q, which implies that:
X = f(@g(X), X =x,+ (_sz) I + (x1 +x2_2) I, hence gX = g(¢X) € Im(H) is a
submodule of 2 — SP;.
Remark.
Let us find the kernel of the semi-homomorphism g.
ker(g) = {M =ty + t 1, + t;1, € T,(I),g(M) = 0}, so that:
to=0
tt+t,=0=1¢t,=0
—2t,=0=1¢,=0
Hence, ker(g) = {0}.
Result:
Let M =ty + t 1, + t,1, € T,(I), assume that E = {ey,....,e,} is a basis of T,(I)
over F,(I), then
M = nyey + nyeq + -+ ngeg; n; € F,(1).
By taking the direct image of M , we can find g(M)=g(Xi,ne) =
i'{=0f(ni)g(ei)-
This means that the elements of Im(TZ (1 )) can be written as a linear combination
with respect to the elements of the basis E.
On the other hand, the set g(E) = {g(ep), ..., g(ex)} is linearly independent, that is
because Y of(n)gle) =0= 3 g(ne) =0= g(Tlonie) = 0= Xk ne; =
0=n=0,0<i<k.
Applications to matrices.
Let M = (m; j)kxk be a square matrix with 2-cyclic refined entries, then M = M, +
M;I; + M,1,, where My, M;, M, are there k X k classical matrices.
If we take the direct image of M by the ring homomorphism
f(M) = My + (My + M,)P; — 2M, P,, we get a symbolic 2-plithogenic matrix.
For a 2-cyclic refined real number q = qq + q11; + q,1,, we see that gM is a 2-cyclic

refined square real matrix.
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We can use the semi-homomorphism g to write:
g(qM) = f(@g(M); g(M) = My + (My + My)P, — 2M, P,
Example.

Consider the following 2-cyclic refined real square matrix:

e R i R I R LR G

= MO + Mlll + lez

The corresponding symbolic 2-plithogeni matrix g(M) is equal to:

o=@ Do Yre(2 (L 1L

Remark.
Let us study the relation between detM and det( g (M)).

detM = det My + I,[det (Mo + My + M,) — det(Mo — My + M)] + I [det(Mo + M; +
M,) — det(My — My + M,) — 2 det M, +] see [1].

det(g(M)) = det[My + (M; + Mp)P; — 2M; P,] = det My + P;[det(My + My + M) —
det My]| + P,[det(My — M; + M,) — det(My + M, + M,)] see [2].
Consider the ring homomorphism:
fiRy(I) » 2 —SPg; f(apg + a;l; + ayl,) = ay + (a; + a,)P; — 2a4P,, then:

f(detM) = det My + P;[det(My + My + M,) — det My] + P,[det(My — M; + M) —
det(My + M; + M,)]
Applications to modules.
If R isaring, K be a module over R.
Let 2 — SP;, R,(I) be the corresponding symbolic 2-plithogenic ring and 2-cyclic
refined respectively.
Let 2 — SPy be the corresponding symbolic 2-plithogenic module over 2 — SPg
and M,(I) be the corresponding 2-cyclic refined module over R,(I), then by a
similar discussion of the case of vector spaces, we can write:

1. g:M,(I) > 2 — SPy such that:

glmy + myl; + myl,) = my + (mg + my)P; — 2m, P, is a semi module

homomorphism.
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2. If S is a submodule of M,(I), then Im(S) = g(S) is a submodule of 2 —
SPy,.
3. For q=q¢+ q.1; + ;1 € R,(I) and m = my + myI; + m,I, € M,(I), then
g(q) = 0 does not imply that m = 0, because:
g(gm) = 0= f(q)g(m) =0, since R is not a field, then it may has zero divisors,
which means that f(q) = 0 withoutq = 0.
This is a big difference between the case of 2-cyclic refined vector spaces and
2-cyclic refined modules.
Conclusion
In this paper, we have found an algebraic homomorphism between 2-cyclic refined
rings and symbolic 2-plithogenic rings, and we have used this homomorphism to
study some algebraic relations between 2-cyclic refined matrices and symbolic
2-plithogenic matrices.
In the future, we aim to find the algebraic relations between other kinds of
neutrosophic rings and symbolic n-plithogenic rings.
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Abstract:

The objective of this paper is to combine split-complex numbers with symbolic
2-plithogenic numbers in one algebraic structure called split-complex symbolic

2-plithogenic real numbers.

Also, many elementary properties of the suggested system will be handled such as

Invertibility and idempotency by many related theorems and examples.
Keywords: Split-complex, symbolic 2-plithogenic number, invertible, idempotent.

Introduction and basic concepts

Split-complex numbers are considered as a generalization of real numbers, where
they are defined as follows:

S={a+bJ;J*=1,abeR} [1].

Split-complex numbers together make a commutative ring with many interesting
properties [2-4, 24].

Addition on S is defined as follows:

(to +tJ) + (ko + kqJ) = (tog + ko) +J(t1 + kq).

Multiplication on S is defined as follows:
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(to + 1)) X (ko + k1)) = (toko + tiky) +J(Loky + tiko).

In [5], Smarandache presented symbolic n-plithogenic sets, then they were used in
generalizing many famous algebraic structures such as ring, matrices, and other
structures [6-9,15-18].

We refer to many similar numerical systems that generalize real numbers, such as
neutrosophic, refined neutrosophic numbers and weak fuzzy numbers
[10-14,19-23].

Through this paper, we use symbolic 2-plithogenic real numbers with split-complex
numbers to build a new generalization of real numbers, and we present some of its
elementary algebraic properties.

Definition.

The symbolic 2-plithogenic ring of real numbers is defined as follows:

2—SPy ={to+t;P, + t,Py;t; €ER Py X P, = P, X P, = P,,P,* = P,” = P,}.

The addition operation on 2 — SPy is defined as follows:

(to + t1Py + t,P5) + (£ + £, Py + £5P,) = (to + to) + (&, + t)Py + (t; + t5)P,

The multiplication on 2 — SPy is defined as follows:

(to + 6Py + 6,P) (o + taPy + 6o P,) = toly + (boty + tyty + 18Py + (toty + tity +
tats + toty + o) P,

Main concepts.

Definition.

The set of split-complex symbolic 2-plithogenic numbers is defined as follows:

2 = SPs = {(xo + x1Py + x2P,) + ] (Yo + y1P1 + ¥, P2); X, y; € RJ? = 1}

Definition.

Addition on 2 — SPs is defined as follows:

[(o + 1Py + x2P2) + ] (Vo + ¥1 Py + ¥2P2)] + [(20 + 21Py + 25Pp) + ] (8o + t1 Py +
t2Py)] = [(xo + 20) + (x1 +21)Py + (%2 + 22)Po] + J[(Vo + to) + (1 + t) Py +

(y2 + t2)P2].

Multiplication on 2 — SPs is defined as follows
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For X = (xo + x1Py + x2P;) + ] (Xy + X, Py + %3 P),Y = (yo + y1Py + y2P2) +

J o + 1Py + Y2 Pa),

then

X.Y = (x0 + %Py + x,P) (Vo + y1 Py + y2P2) + (X + X1 Py + X5 P) (Vo + Vi Py +
V2P2) + J[(x0 + %1 Py + x2P5) (Yo + Y1 Py + Yo Po) + (Xg + %1 Py + X5 P2) (vo + y1 Py +
y2P2)].

Example.

Consider X = (P; +P,)+J(1+3P,),Y =(1—-P,)+J(2 — P;), then:
X+Y=Q0Q+P)+]B3—P +3P,)
XY=FP+P)(A—-P)+(1+3P,)2—-P)+]J[(PL+P)2—-P)+ (1 +3P,)(1—
P) =P, —Py+P,—P,+2—P, +6P,—3P, +J[2P, — P, + 2P, — P, + 1 — P, +
3P, =3P, = (2+2P,) +J(1 + P)).

Remark.

(2 — SPs, +,.) Is a commutative ring.

Invertibility.

Theorem.

Let X = (my + myP; + myP,) + J(ny + n,P; + n,P,) € 2 — SPs, then X is invertible
if and only if:

{(mo —ng) + (Mg —ny)P; + (M, —ny)P,
(mg +ng) + (Mg +ny)P; + (M, +n,)P,

Are invertible in 2 — SPg.

On the other hand:
1 my my+m m
Xt= 7T Py [ O2 - 2 2 - 2]
X mp? — ng? (mo + my)? — (ng +ny)? me? —ny
+P[ my+my +m, mo + my ]
2limg + my + mp)2 — (ng +ny +n3)% (Mg +my)% — (ngy + ny)2
g [ ng +ny ng ]
J my? — ng 2t (my + my)? — (ng + ny)?  my? — ny?
+P[ ng+ny +n, ng +ny ]
2 (mo +my; +my)? — (no +ny +ny)? (mo +m;)? — (no +ny)?

Proof.
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Put X:M‘l'N];M :m0+m1P1+m2P2,N =Tl0+n1P1+Tl2P2.
According to [2], X is invertible if and only if M + N,M — N are invertible, hence:

{(mo —ng) + (my —ny)P; + (my —ny)P,
(mo +np) + (Mg + ny)P; + (M, + )P,
Are invertible in 2 — SPg.

1 M-N] _ M N
x = wz=nz = weenz e

Also, X~ 1 =

According to [ ], we can write:

M 1
MZ_N2=M'M2_N2

= (mo + myP; + myP;)

moz - noz

1 1 ]

+P [ -
(mg + m2 — (ng + ny)2  my? — ny?

1 1
o : |
2limo +my + mp)?2 — (ng + 1y +n2)2 (Mg + my)2 — (ng + ny)? ]

my my + my mo
- my? —ng z + [(mo +m)?— (ng +ny)? my? — noz]
+P[ my + my + m, ~ my + my ]
2lme +my +my)? — (ng +ny +ny)% (Mg +my)? — (g +ny)?

By a similar argument, we get:

N _ Ng [ ng +ny Ng
M2—N2 _mo _no (m0+m1)2_(n0+n1)2 moz_noz
+P[ ng +ny +n, ng +ny ]
2 (mo +my +my)2 — (ng +ny +ny)?2 (Mg +my)? — (ng +ny)?
Thus, the proof holds.
Example.

Take X =(1+P)+J(2—P; +2P,) € 2 — SP;, then:
M=1+P,N=2—P, +2P,M+N =3+P,,M—N =—1+2P, — 2P,
M+ N,M — N are invertible in 2 — SPg.

y-1 1+P<2 1)+P(2 2) 2+P<1 1)+P<3 1>]
-3 "1\3 3 2\-5 3 ]—3 1\3 -3 2\—5 3

—_1+P+P(16>+ (2 2P+4P>
~ 3 1Pz 15 J 3717152

Idempotenty.
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LetX=M+N];M=m0+m1P1+m2P2,N=TlO+Tl1P1+n2P2EZ—SPR.

then X is called idempotent if and only if X* = X.

First, we compute X

XZ = 1\42 +N2 + ZMN] == moz +n02 +P1[(m0 +m1)2 + (no +n1)2 _m02 _noz] +

P,[(mg + my +mp)? + (ng + ny +nz)? — (Mo + my)? — (ng + ny)?].
The equation X? = X is equivalent to:

me? +ny® =m, (1)
(mo + my)* + (g +ny)? =my+my; (2)
(mo + m1 + m2)2 + (no + nl + nz)z = mO + ml + mz (3)
N2M—-1)=0 (4)
Equation (4) is equivalent to:
no(Zmy—1) =0 (5)
(no + nl)(zmo + Zml - 1) = O (6)
(no + TL1 + nz)(zmo + 2m1 + 2m2 - 1) = 0 (7)
. . . 1
Equation (5) implies that no = 0 or my =~

If ng #0,my #

-+
=
o
-
—_
o
H
=!

~
—_

N7
g
™

aQ
™
-
3

=
I
o
o
=
3
o
I
[N

4 7

, then form (1), we get ny = % or ny = -1

If n0¢0,m0= >

If ng =0,my ==, we get a contradiction:

N[Rr N|Rr Nk

Equation (6) implies that ny +n; =0 or my + my = %
If ng+ny #0,my+my #=,then mg+m; =0 or my+my = 1.

If ng +ny #0,my +my ==, then n0+n1=%or n0+n1=—%,

N[Rr N|IRr N|R

If ng +ny; =0,my + my ==, we get a contradiction:

Equation (7) implies that ny +n; +n, =0 or my + my + m, = %

If n0+7’11+7’12=0,m0+m1+m2¢%,then m0+m1+m2=0 or m0+m1+

m2=1.

If n0+n1+n2¢0,m0+m1+m2=%,then n0+n1+n2=%or ng+n,+n, =

1

>

Ifng+n,+n,=0my+m; +m, = % , we get a contradiction:
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The possible cases are:

Case 1.

nyg=0mg=0,ny+n, =0,myg+m; =0,ny+n; +n, =0,my + my + my, =0, then
X =0.

Case 2.

ng=0my=0,ny+n, =0mg+m; =1,n5+n; +n, =0,my+my +m, =0, then
X =P —P,.

Case 3.

ng=0myg=0,ny+n, =0my+m; =1,n,+n; +n, =0,my+my + m, =1, then
X =P.

Case 4.

ng=0myg=0,ny+n, =0my+m; =0,ny+n; +n, =0,my + my + my, =1, then
X =P,.

Case 5.

ng=0myg=1n,+n =0myg+my =0,ny+n; +n, =0my+my +m, =0, then
X=1-P.

Case 6.

ng=0myg=1ny+n, =0myg+m; =0,n,+n, +n, =0,my + my + my, =1, then
X=1-P +P,

Case 7.

ng=0my=1ny+n, =0my+m; =1,n,+n, +n, =0,my+m; + my, =0, then
X=1-P,.

Case 8.

ng=0myg=1ny+n, =0myg+m; =1n,+n, +n, =0,my+m; + my, =1, then
X=1

Case 9.

ng =0,my=0,ny+n; = %,mo +my = %,no +ny +n, =0,my+my; +m, =0, then

r=(h-3n) o/ Gr- i)
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Case 10.
nO = O,mo = O,no +n1 = _%,mo +m1 :%,no +n1 +n2 = O,mo +m1 +m2 = 0,
1 1 1 1
then X = (3P =3P,) +J (=3P, +3P;).
Case 11.
Ng = O,mo = O,no +n1 = %,mo +m1 = %,no +n1 +Tl2 = O,mo +m1 +m2 = 1, then
1 1 1 1
X =GP +3P)+) G -3P).
Case 12.
nO = O,mo = O,no +n1 = _%,mo +m1 :%,no +n1 +n2 = O,mo +m1 +m2 = 1,
1 1 1 1
then X = (3P, +3P,) +J (=3P, +3P;).
Case 13.
Ng = O,mo = 1,”0 +n1 = %,mo +m1 = %,no +Tl1 +Tl2 = O,mo +m1 +m2 = 0, then
1 1 1 1
X=(1-2P,—2P,)+] (3P —3P,).
Case 14.
nO = O,mo = 1,n0 +TL1 = _%,mo +m1 :%,no +Tl1 +n2 = O,mo +m1 +m2 = 1,
1 1 1 1
then X = (1—2P, +2P,) + (=1P +1P,).
Case 15.
ng = O,mo = 1,7’10 +Tl1 = %,mo +m1 = %,no +n1 +Tl2 = O,mo +m1 +m2 = 1, then
1 1 1 1
X=(1-2P+P) +] (3P —3P,).
Case 16.
no = O,mo = 1,n0 +n1 = _%,mo +m1 :%,no +n1 +n2 = O,mo +m1 +m2 = 0,
1 1 1 1
then X = (1=3P =3P,) +] (=3P +3P,).
Case 17.
ng=0my=0ny+n,=0,myg+m; =0,ny +n; +n, =%,m0 +my +m, =§, then
1 1

Case 18.
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nO = O,mo = O,no +n1 = O,mo +m1

then X = =P, —=P,].
2 2

Case 19.

nO = O,mo = O,no +n1 = O,mo +m1
1 1

XzPl_EPZ +EP2]

Case 20.

nO = O,mo = O,no +n1 = O,mo +m1

then X = P, — =P, —~PyJ.

Case 21.

nO = O,mo = 1,n0 +TL1 = O,mo +m1

1 1

X=(1=P +3P;) +1P,).

Case 22.

Ng = O,mo = 1,”0 +n1 = O,mo +m1

1 1

then X = (1 — P, +5P2) —>PyJ.

Case 23.

no = O,mo = 1,n0 +n1 == O,mo +m1
1 1

X=(1-3P,)+3Py).

Case 24.

Ng = O,mo = 1,7’10 +Tl1 = O,mo +m1

1 1

then X = (1 —EPZ) ~ 2Py

Case 25.

ng=0my=1ny+n = %,mo +my

1 1
X = (Epl) +2Py.

Case 26.

= 0,n0+n1+n2

= 1,n0+n1+n2

= 1,n0+n1+n2

:0,n0+n1+n2

=0,n0+n1+n2

= 1,n0+n1+n2

= 1,n0+n1+n2

1
:E,n0+n1+n2

1 1
:_E,m0+m1 +m2 :E,

1 1
=E,m0 +m1 +m2 =E, then

1 1
:_E,m0+m1 +m2 :E,

1 1
=2,Mg+my +my =, then

1 1
=_E,m0+m1 +m2 =E,

1 1
=2,Mg+my +my =, then

1 1
=_E,m0+m1 +m2 =E,

1 1
=sMotmy +my = then
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no=0,mg = 1mg 1y =, mg +my =5, mg by + 1y = =5, mg 1y £ 1My =,
1 1

then X = (Epl) + (Epl — Pz)]-

Case 27.

1 1 1 1
ng = O’mO = 1’n0 +n1 = _E)mO +m1 :E)no +n1 +Tl2 :E,mo +m1 +m2 :E,

1 1
Case 28.
1 1 1 1
ng=0,me=1ny+n; = 5 Mo +my =310 +ny+n, = — Mo +my +m, =y
1 1
then X = (3P;) + (—3P.)J.
Case 29.
1 1 1 1
ng=0my=1ny+n = SMotm=-,ng+n+n;=-,mg+my +m; ==, then
1 1
X=(1—5P1)+(5P1)].
Case 30.
1 1 1 1
Ng = O'mO = 1'”0 +n‘1 =E'm0 +m1 =Eln0 +n1 +n2 = _Elmo +m1 +m2 =E/
1 1
then X = (1—-2P,)+ (5P — P,)J.
Case 31.

1 1 1 1
Ng = O,mo = 1,77.0 +Tl1 = —E,mo +m1 :E,no -|-n1 -|—n2 :E,mo +m1 +m2 :E’
then X = (1=2P,) + (=3P +P,)].

Case 32.

1 1 1 1
ng=0mg=1ny+n =-7metm = ,n9+tn +tn;=—-;me+tm+m; =2,
then X = (1—§P1)+(—§P1)].

Case 33.

Ny = %»mo = %:no +Tl1 = O'mo +m1 = O,no +TL1 +Tl2 = O,mo +m1 +m2 = O, then
1 1 1 1

x=(G-3n)+G-3n))

Case 34.
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nO :%,mo zé,no +n1 = O,mo +m1 = O,no +Tl1 +Tl2 = O,mo +m1 +m2 = 1, then
1 1 1 1

X=(3-3n+P)+(5-5R))

Case 35.

1 1
Mg =7,Mg=7,M+t Ny = 0,my+my =1,ny+n, +n, =0,my+my +m, =0, then

| =

v=(rtnn) e (i)

Case 36.

1 1
Ng =E,m0 =E,n0 +n1 = O,mo +m1 = 1,"0 +n1 +Tl2 = O,mo +m1 +m2 = 0, then

1
nO = __,mo ZE,TL0+TL1 = 0,m0+m1 = 0,Tl0+n1 +n2 :0,m0+m1 +m2 :0,

then X = (3—2P ) +(-1+3P))).

1
,mo=E,n0+n1=0,m0+m1=0,n0+n1 +Tl2=0,‘m0+‘m1 +m2=1,

>

<)

|

|
N R

1 1 1 1
then X = (3=2P, +P,) +(=3+2P)J.
Case 39.
no = _%,mo :%,no +n1 == 0,m0+m1 = 1,n0 +n1 +n2 = 0,m0+m1 +m2 = 0,
1 1 1 1
then X = (E+EP1 _PZ) + (_E+EP1)]'
Case 40.
nO = _%,mo =%,Tl0 +Tl1 = 0,m0+m1 = 1,Tl0 +Tl1 +n2 = 0,m0+m1 +m2 = 1,
1 1 1 1
then X = (E_Epl) + (—E+EP1)]
Case 41.
1 1 1 1
Ng =7,Mg=7,Mgt Ny = 0,my+my =0,ny+n; +n, =5 Motmy+mp =7, then
1 1 1 1 1 1
X=(G-3h+3R)+ G-3h+3R))

Case 42.
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Mo =%,m0 :%'no-l_nl =0,my+my =0,np+n;+n; = _%,mo‘f‘ml +m, :%/
1 1 1 1 1 1
then X = (5 =3P +3P) + (5 =3P —3P2)).
Case 43.
1 1 1 1
Ng=—2,Mg=72,Ng+NM =0,mg+my =0,n9+n; +n, =5, my+m +my =3,
1 1 1 11 1
then X = (5_5P1 +EP2)+(_E+EP1 +EP2)]'
Case 44.
1 1 1 1
Me=—7M=3No+m =0mp+m =0ng+n +np=—7,me+m +my; =7

then X = (3=2P,+2P,) + (=2 +3P —1P,)].
Case 45.

1 1 1 1
Mg =7,Mg=7,Mg+t Ny = 0,mg+my =0,ny +ny +n, =5 Mo tmy+my =, then

| =

r=(rinin)+(-tnin)

Case 46.
1 1 1 1
no =E,m0 =E,n0+n1 = O,mo +m1 = 1,n0+n1+n2 = —5,m0+m1 +m2 =E,
1 1 1 1 1 1
then X = (E-I_Epl _EPZ) + (E_Epl _EPZ)]
Case 47.
1 1 1 1
no = _E,mo :E,no +n1 = 0,m0+m1 = 1,n0 +n1 +n2 =5,m0+m1 +m2 :E,
1 1 1 1 1 1
then X = (E+EP1 _EPZ) + (_E+EP1 +EP2)]'
Case 48.
1 1 1 1
nO = _E,mo =E,n0 +Tl1 = O,mo +m1 = 1,Tl0 +Tl1 +n2 = _E,mo +m1 +m2 =E,
1 1 1 1 1 1
then X = (E-I_Epl _EPZ) + (—E+EP1 _EPZ)]
Case 49
Ny =%,m0 =%,n0 ty=o,me+my =2,ng+n +n; = 0,my + my + m, = 0, then
1 1 1 1
X=(G-3P)+(G-3R)
Case 50
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1 1 1 1
Ng zz,mo zz,no +n1 :E,mo +m1 :E,no +Tl1 +Tl2 = O,mo +m1 +m2 = 1, then

v (ein)+G-2m)s
Case 51.

1 1 1
nO = _E,mo =—,n0+n1 :E,mo'i‘ml :E,n0+n1+n2 :O,mo +m1 +m2 = 0,

1 1
Mo =—3,My=2,Ng+Ny =2,My+mMy =2,Np+MNy +1Ny =0,my+my +m; =1,

1 1 1 1
nO :E,mo :E,no‘l‘nl = _E,mo'{‘ml :E,n0+n1+n2 :O,mo +m1 +m2 = 0,

1 1
,Tl0+n1=—5,m0+m1=5,n0+n1+n2=0,m0 +m1 +m2=1,

Case 55.

[uny

1 1 1
no = _E,mo :E,no‘l‘nl = _E,m0+m1 :E,no+n1+n2 :0,m0+m1 +m2 = 0,

then X = (3—=2P,) + (=2 +31P,)J.

Case 56.

1 1 1 1
Nng = _E,mo =E,n0+n1 = _E,mo‘l'ml =E,n0+n1+n2 =0,m0+m1 +m2 = 1,

then X = (§+§P2) + (—§+§P2)].

Case 57.

1 1 1 1 1 1
no :E,mo :E,no +n1 :E,mo +m1 :E,no +n1 +n2 :E,mo +m1 +m2 :E, then
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1 1 1 1 1
nO zz,mo :_,n0+n1 :_,m0+m1 :E,n0+n1+n2 = E,m0+m1+m2 —E,
1 1
then X:E-I_(E_PZ)]
Case 59.
1 1 1 1 1 1
Ng :E,mo :E,n0+n1 = —E,mo'i‘ml :E,n0+n1+n2 :E,m0+m1+m2 :E,
1 1
then X =2+ (=P +P,)J
Case 60.
1 1 1 1 1 1
Mo =3,My =7,Mg +ny = —2 Mo + my =20 +ny+n, = —2 Mo +m; +m, =2
1 1
then X:E-I_(E_Pl)]
Case 61
1 1 1 1 1 1
Ng=—5My=5,Ng+Ny =—7,My+mMy =2,Ng+Ny +Np =2,My+My +M3 =7,
1 1
then X=§+(_§+P1)]
Case 62
1 1 1 1 1 1
Ng = _E,mo =E,n0 +Tl1 —E,mo +m1 =5,n0 +Tl1 +Tl2 = _E,mo +m1 +m2 =E,
1 1
then X =2+ (=2+P, —P;)J
Case 63.
1 1 1 1 1 1
Ng=—5My=75,Ng+Ny =—7,My+mMy =2,Ng+N +Np =2,My+1My +M3 =7,
1 1
then X=5+(—5+P2)]
Case 64.
1 1 1 1 1
Ng = _E,mo :E,no +n1 = _E,m0+m1 :E,no +n1+n2 = _E,m0+m1+m2 =
1 1
=, then X =53
Conclusion

In this paper, we have defined for the first time the ring of split-complex symbolic
2-plithogenic numbers by combining split-complex numbers with symbolic
2-plithogenic numbers.

We have studied many elementary properties of the novel generalized system,

where necessary and sufficient conditions for Invertibility and idempotency of
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symbolic 2-plithogenic split-complex numbers were handled by many related

theorems and valid examples.

In the future, we aim to study matrix systems and functional systems generated by

the novel algebraic structure.
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Abstract:

The objective of this paper is to use dual numbers with symbolic 3-plithogenic and
4-plithogenic numbers in one numerical system called dual symbolic

3-plithogenic/4-plithogenic numbers.

Also, the elementary algebraic properties of the suggested systems will be
discussed in terms of theorems and related examples that explain the validity of

these algebraic number systems.

Keywords: Symbolic 3-plithogenic number, dual number, dual symbolic
3-plithogenic number, Symbolic 4-plithogenic number, dual symbolic

4-plithogenic number.

Introduction and preliminaries.

Dual numbers are considered as a generalization of real numbers, where they are
defined as follows:

D = {a + bt; t?> = 0,a,b € R}[1]. Dual numbers make together a commutative ring
with many interesting properties.

Addition on D is defined as follows:
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(ag + bot) + (a; + byt) = (ag + ay) + (by + by)t

Multiplication on D is defined as follows:

(ao + bot). (ay + byt) = (apay) + (aohy + boay)t

In [2-4], smarandache presented symbolic n-plithogenic sets, then they were used in
generalizing many famous algebraic structures such as rings, matrices, and other
structures [6-11].

We refer to many similar numerical systems that generalize real number, such as
neutrosophic numbers, split-complex number, and weak fuzzy numbers [12-18].
These generalized numbers were applicable in cryptography and matrix
theory[19-24].

Through this paper, we use symbolic 3-plithogenic real numbers and symbolic
4-plithogenic real numbers to build a new generalization of real numbers, and we
present some of its elementary algebraic properties.

Main concepts.

Definition.

The set of symbolic 3-plithogenic dual numbers is defined as follows:

3—=SPp ={(xo +x1t) + (o + ¥1)Py + (2o + z1)P; + (So + 510)P3; X, V1, 21, S; €

R, t? = 0}.

Definition.

Addition of 3 — SPj, is defined:

[(mg + myt) + (ko + k1) Py + (5o + 51:0)P; + (g + 118) Ps] + [(ng + ny8) +

(lo + Lit)P; + (qo + q18) Py + (go + g1t)P3] = (mg +ng) + (my +ny)t + [(ko + [p) +
(ky + 1)t]Py + [(so + qo) + (1 + q)t]P, + [(ro + go) + (1 + g1)t]Ps.

(3 — SPp, +) is an abelian group.

Remark.

A symbolic 3-plithogenic dual number X = (xq+ x1t) + (yo +y1t)P; +
(2o + z1t)Py + (5o + 51t)P3

can be written:

X=(x0+y0P1 +Z0P2+50P3)+t(xl+y1P1+Z1P2+51P3).
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Definition.

Let

X = (%o + x1Py + %3P, + x3P3) + t(%g + X1 Py + X, P, + X3P3) = My + Mj,t,

Y = (yo +y1P1 + y2P; + y3P3) + (Yo + 1Py + Yo P, + Y3P3) = Ny + Not € 3 — SPp,
then:

Multiplication on 3 — SPj, is defined as follows:

X.Y = MyN, + t(M,N, + N;M,)

Example.

Consider X = (1+ P, + P, + P3) +t(2 — P;),Y = P, + t(1 — P3), we have:
X+Y=(1+42P, +P,+P) +t(3—2P;)

XY=A+P +P,+P)P, +t[(1+ P+ P, +P3)(1—P;) +(2—P3)P;] =

2Py + P, +P3) +t[(1—P3+ P, —Ps+P; —P; + P, — P;) + 2P, — P3] =

(2P, + P, +P;) +t(1 + P, + P, — 3P;).

Remark.

(3—=SPp,+,.) Is a commutative ring.

Invertibility:

Theorem.

Let X = (my + myP; + myP, + myP;) + t(ny + n Py + nyP, + n3P;) € 3 —SPy, then
X is invertible if and only if my # 0,my + my # 0,mg + my + my, # 0,my + my +

m, + my # 0 and:

;1 1 1 1 1
PO L N P )
X Imy my+m; my me+my+m, my+my

1 1
+( - )7
mog+my+m,+ms myg+mg+m,
Ng ng + ny ny
-t 2 ( 2 2) Py
(my) (mg +my) (my)
( ng +ny +n, ny +ny )
(mo +my; +my,)? (mo +m,)? 2

( ng+n,+n, +n3 ng+n, +n, > ]
(mg+my +m, + m3)2  (my+my +my,)?/ 3

Proof.
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X isinvertible if and only if % is defined as follows:

1 1

}_(m0+m1P1+m2P2+m3P3)+t(n0+n1P1+n2P2+n3P3)

_ (mo+m1P1+m2P2+m3P3)—t(n0+n1P1+n2P2+n3P3)

- [(mo +m1P1+m2P2 +m3P3)+t(no +n1P1+n2P2 +n3P3)][(m0+m1P1 +m2P2 +m3P3)_t(n0+n1P1+n2P2 +n3P3)]

_(m0+m1P1+m2P2+m3P3)—t(no +n1P1 +n2P2 +n3P3)
(m0+m1P1+m2P2 +m3P3)2

SO that my + m1P1 + m2P2 + m3P3 is invertible in 3 — SPR

ThlS is equivalent to my * 0, my + mq * 0, my + mq + m, * O, my + mq + m, +

ms # 0.

On the other hand, % = L —t (o414 Py +12 Py +sPs)”

m0+m1P1+m2P2+m3P3 (m0+m1P1+m2P2+m3P3)2

puty=[_+(1 S P S U P S S
my mo+mq my Mmo+mq+my mo+mq mo+mq+myo+ms

) ] t[ ( Nno+nq _ Ng ) ( Nno+tni+n, _ Nno+nq ) +
mo+mq+m; (mg)? (mg+my)?  (mo)? 1 2

(mo+my+my)?2  (mo+mq)?
( Nno+tni+ny+ns No+ni+n, ) ]
(mo+m1+m2+m3)2 (m0+m1+m2)2 3

Compute the result of XY to get:

XYy =1

So that, X~ 1 = % =Y

Example.

Take X = (1+ P;) + t(2 + P;) €3 — SPy:

O N Ll S LN IS ISR

t(2-2py).

Natural power.

Theorem.

Let X = (my + myP; + myP, + mgPs3) + t(ng + nyP; + ny,P, + n3P3) € 3 — SPp, then:
"= (me)" + ((my + m™ — (me)™)Py + (Mg + my + my)" — (Mg + my)")P, +

((myg+my + my + m3)™ — (my + my + my)")P; + n(ny + Py + n, P, +

n3P3)[(me)"~t + ((mg + m)" ™ — (M) P, + ((mg + my +my)" ™+ —

(mg + m)™ HP,((my + my + my + mg)"* — (my + my + my)" )P;] for n € N.

Proof.

Let X =A+ Bt;A,B € 3 — SPp, then:

Khadija Ben Othman, Maretta Sarkis, Djamal Lhiani, An Introduction to The Dual Symbolic 3-Plithogenic And
4-Plithogenic Numbers



Neutrosophic Sets and Systems, Vol. 59, 2023 51

A" = A™ + nA"1Bt, we get:
A" = (mo)™ + ((mg + my)™ — (me)™)Py + ((mg + my + my)" — (Mg + my)™)P, +
((my + my + my + m3)"™ — (my + my + my)") P, then the proof holds.
Example.
Take X = (1+ P;) +t(2 — P;) € 3 — SP,
X3=1+(1—-1DP,+(1—-1DP, +(8—=1P; +3t(2—P)[1+ (1 - 1P, +
(1-1)P,+(4—1)P;] =1+ 7P; +3t[(2—P3)(1 +3P;)] =1+ 7P; + t(6 + 6P).
Idempotency.
Definition.
Let X € 3 —SPp, then X is called idempotent if and only if X? = X.
Theorem.
Let X = (mg + myP; + myPy+m3P;) + t(ng + NPy + nyPy4n3P;) € 3 —SP,, then X
is called idempotent if and only if:
1. mg +myP; + my,P,+m3P; isidempotent.
2. (ng+n Py +ny,Py + n3P3)[2my — 14+ 2my Py + 2m,Py+2m3P;] = 0
Proof.
X =M + Nt is idempotent if and only if:

M2=M
2UN=N=NQ2M-1)=0

X?=X= {
For M = my + myP; + myP,+m3P;, N = nyg + n P, + n,P,+n3P; € 3 — SPg.
This implies the proof.

Definition.

The set of symbolic 4-plithogenic dual numbers is defined as follows:

4 —SPy = {(xg + x1t) + (yo + y1OPy + (29 + 2, )P, + (5o + s1.t)P5 + (Iy +
LLt)Py; x;, v, 21, i, |; € R, t2 = 0}.

Definition.

Addition of 4 — SP;, is defined:

[(mg + myt) + (ko + k1t)Py + (S + 518) P + (1 + 11t)P3 + (do + dit)Py] +
[(no + nit) + (Lo + L) Py + (qo + 1) P, + (go + g1t)Ps + (co + 1) Py] =
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(mo + ng) + (my +ny)t + [(ko + o) + (ky + 1)E]Py + [(so + qo) + (51 + q1)t]P; +
[(ro + go) + (1 + g)t]Ps + [(do + o) + (dy + ¢1)t]Py.

(4 — SPp, +) is an abelian group.

Remark.

A symbolic 4-plithogenic dual number X = (x¢+ x1t) + (yo + y1t)P; +
(zg + z1)P, + (5o + 51t)P; + (dy + d1t)P,

can be written:

X = (xg +yoP;y + zoPy + soP3 + dyP,) + t(xy + y1P; + 2. P, + 5, P; + d,P,).
Definition.

Let

X = (xg + x1P; + X3Py + x3P3 + x4 P) + t(Xo + %, Py + %, Py + X3P + %,P,) = M, +
M,t,

Y=o+ y1P1 +YPy +¥3Ps + Y4Ps) + t(Jo + 91 P1 + Y2 Py + Y3Ps + Y4Py) = Ny +
Nyt € 4 — SPp,

then:

Multiplication on 4 — SPj, is defined as follows:

X.Y = M;N, + t(M;N, + N, M,)

Example.

Consider X = (1+P,) +t(2—P;),Y =P, + t(1 — P,), we have:

X+Y=(1+4P, +P)+t(3—P;—P,)
XY=QA+P)P,+t[(1+P)A—-P)+(2—=P)P] =(P,+P)+t[(1—Py)+ 2P, —
P;] = (P, +P,) +t(1+2P, —P; —P,).

Remark.

(4 —SPp,+,.) Is a commutative ring.

Invertibility:

Theorem.

Let

X = (mg + myP; + myP, + myP; + myP,) + t(ng + n Py + nyP, + 3Py + nyP,) € 4 —
SPp,
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then X is invertible if and only if my # 0,my +my # 0,my + my + my, # 0,my +

my+my,+my #0,my+m; +my, +my+my #0 and:

— 1 1 1 1 1 1 1
ST EUY NI P S S T P SR S
X my mo+mq my mo+m,+ms, mo+mq mo+my+my+ms

1 1 1 no Ng+ny no
) s P [ (- )
mo+my+m, Mmo+my+my+mz+m, mo+mq+my,+m; (my) (my+m,) (my)

( Nng+n,+n, ng+ng ) +( Nng+n,+n,+n; nog+n,+n, ) ( no+n,+n,+nz+ny
(mo+mq+my)2  (my+m,)? 2 (mo+my+my+m3)2  (mo+my+m,)2 3 (mo+mq+my+mg+my)?

No+n,+n,+ns ) ]
(mo +myi+m, +m3)2 4

Proof.

X is invertible if and only if % is defined as follows:

1

X
1

(Mg+My Py +My Py +M3P3+myPy)+t(g+n1 Py +N2 Py +N3P3+14Py)

(mg + myP; + myP, + myP; + myP,) — t(ng + n P, + n, P, + ngP; + n,P,)
[(my + myP; + myuP, + myP; + myP,) + t(ng + ny Py + nyP, + ngPy + n, P)][(my + my Py + myP, + myPy + myP,) — t(ng + ny P, + ny P, + ngPy + ny,Py))

(mo +m1P1 +m2P2 +m3P3 +m4P4)—t(n0 +n1P1 +n2P2 +Tl3P3 +Tl4_P4)
(mo +m1P1 +m2P2 +m3P3 +m4P4_)2

So that my + m; P; + myP, + m3P; + m,P, is invertible in 4 — SPg.
This is equivalent to my#0,myg+my #0,my+my+m, #0,my+my +my +mg #

0,my+mqy + my + my +my # 0.

On the other hand,
1 1 (ng+n, Py +n,Py+n3P3+1,P,)?
X  my+mqPi+myPy+msP3+myP, (mg+mqPy+myPy+msP3+myP,)?
Put

1 1 1 1 1 1 1
= ) ) G-
my mo+mq my mo+mq+my, mo+mq mo+my+my+ms mo+mq+m,

1 1 Un no+ng No no+ni+n,

( S ) A P
mo+mq+my+msz+my, mo+mq+my+msg (mo) (m0+m1) (mo) (mo+m1+m2)
ng+ng Nngt+ni+n,+ns nog+n,+n, Ngt+Nni+ny+nz+ny

z) P2t 2 2) 13 2

(mo+my) (mo+my+my+ms) (mo+my+m;) (mo+mq+my+mz+my)
No+n,+ny+ng ) ]

(m0+m1+m2+m3)2 4

Compute the result of XY to get:
XY =1
So that, X! = % =Y

Natural power.
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Theorem.

Let
X = (my+myP; + myP, + mgP; + myP,) + t(ng + ny Py + ny,P, + n3P; + n,P,) €
4 —SPp,
then:
X" = (mo)" + ((mo + m™ — (m)™") Py + ((my + my + my)" — (Mg + my)")P, +
((myg+my +my +my)" — (my +my + my)™")P; + (Mg + my + my + m3 + my)™ —
(mg + my + my, + m3)")Py + n(ng + n Py + 1Py + ngPs + nyP)[(mg)" 1 +
((mg +my)"™t = (M) HPy + (Mg + my +mp)" ™1 — (my + m)" )P, ((my + my +
my +m3)" 1 — (my + my + my)" P; + ((mg + my +my +my +my)* 1 —
(mg + my + my, + m3)""1)P,] for n € N.
Proof.
Let X =A+ Bt;A,B € 4 — SPp, then:
A" = A™ + nA"1Bt, we get:
A" = (mg)"™ + ((mo + my)"™ — (me)™)Py + (Mo + my + my)" — (M + my)™)P; +
((my+my+my+mz)" —(mg+my +my)")P; + (Mg +my + my + mg + my)" —
(mgy + my + my, + m3)™)P,, then the proof holds.
Idempotency.
Definition.
Let X € 4 — SPp, then X is called idempotent if and only if X? = X.
Theorem.
Let X = (my + myP; + myPy+mzPs+myP,) + t(ng + ny Py + nyPy+ngPs+myP,) €
4 — SPp, then X is called idempotent if and only if:
1. mg +myP; + myP,+m3P;+m,P, isidempotent.
2. (ng+n Py +nyPy + n3Py +n,P)[2my — 1+ 2my Py +
2myP,+2myPs+2my, Pyl = 0
Proof.
X =M + Nt is idempotent if and only if:

M?=M

2
X _X:{ZMN=N=>N(2M—1)=O
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For M =my+ mP; + myP,+m3P;+m,Py, N = nyg + nyP; + n,P,+n3P; + nyP, € 4 —
SPg.
This implies the proof.
Conclusion
In this paper, we have studied for the first time the combination of symbolic
3-plithogenic numbers and 4-plithogenic numbers with dual numbers. The novel
algebraic structures generated by them are called dual symbolic 3-plithogenic
numbers and dual symbolic 4-plithogenic numbers.
We have determined the invertibility condition and the formula of the inverse for
dual symbolic 3-plithogenic and 4-plithogenic numbers.
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Abstract: In this paper, we introduce and define for the first time the plithogenic
loss function, plithogenic risk function, plithogenic maximum likelihood function,
and plithogenic posterior risk function, which form a base to easily define the
plithogenic maximum a posteriori estimator (Plithogenic MAP) and its conditions,
algebraic isomorphism was used through equations, and finally, we worked on an
example of a plithogenic random variables sample exponentially distributed with
a gamma prior for the parameter distribution and used the quadratic loss function,
we found the posterior distribution of the parameter which is also a plithogenic
gamma distribution and taken the posterior mean as an estimate of the parameter,
such results are similar to the classical case of MAP taking in consideration the

plithogenic parts which represent generalized indeterminacy.

Keywords: Plithogenic; Loss Function; Risk Function; Plithogenic Probability
Density Function;, Maximum Likelihood Function; Posterior Risk Function;

Maximum a Posteriori Estimator.

1. Introduction

As Uncertainty and Ambiguity are more observed in real life applications,

traditional probability theory methods of studying such applications became less
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effective with capturing all information needed, which led us to define and work
with a new extension of probability theory that deals with the indeterminacy that
we face in life applications to better understand its complexity, this new extension
helps in many real life fields such as psychology, economics, mathematics, data
analysis, artificial intelligence, etc.

Neutrosophic probability theory was first introduced in 1995, which deals with the
probability as a triplet values, which represents the degree of truth, false, and
indeterminacy, F. Smarandache presented neutrosophic sets and its applications in
[1]-[7], M. Abobala and A. Hatip built the concept of Euclidean neutrosophic
geometry which opens the world of many mathematical concepts such as real
analysis and probability theory represented by using an algebraic structure
depending on the indeterminacy element I that satisfies I? = I [8]-[20].
Plithogenic probability theory is also an extension of classical probability theory that
studies the indeterminacy related to the occurrence or non-occurrence of an event,
it is a more generalized than neutrosophic since it deals with indeterminacy as two
parts, F. Smarandache et al also presented symbolic plithogenic algebraic structures
and plithogenic probability and statistics. Also, N. M. Taffach and A. Hatip gave a
review on symbolic 2-plithogenic algebraic structures, as there are lots of papers
related to plithogenic probability in many fields [21]-[37].

This paper deals with symbolic plithogenic numbers that take the form ap = a, +
a.P, + a,P,; P2 =P, P,>=P, P,.P, =P,.P, =P,, we will introduce important
classical definitions in terms of symbolic plithogenic and focus on the definition of
the plithogenic maximum a posteriori estimator (Plithogenic MAP), which can be

considered as a generalization of our work in [38].
2. Preliminaries:

Definition 2.1
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Let  R(P,P,) ={a+DbP,+cPyab,c€R,P’=P, P,” =Py, P,.P, = P,.P; = P,}
be the plithogenic field of reals. The one-dimensional AH-Isometry and its inverse

are defined as following:
T:R(P,P,) = R3;T(a+ bP, +cP,) = (a,a+b,a+b+c)
T Y%:R® — R(P,P,);T *(a,b,c)= a+ (b—a)P,+ (c—b)P,
Definition 2.2

Let f:R(Py,P;) — R(Py,Py); f = f(xp),xp € R(Py,P;), f is called a plithogenic real

function with one plithogenic variable.

Definition 2.3
Plithogenic random variable X, is defined as follows:
Xp:Qp — R(P, P); Qp = Qo X Q1(Py) X Q3(P,)
Xp = Xo + X, P, + X,Py; P,*> = P, P> = P,,P..P, = P,.P, = P,

Where X, X;, X, are classical random variables defined on Q, Q4,Q, respectively.

Definition 2.4

Let ap = Ay + a1P1 + azpz, bp = bO + b1P1 + bZPZ € R(Pl,Pz), we Say that ap Zp bp
if:

aozbo,a0+a12b0+b1,a0+a1+a22b0+b1+b2

3. Plithogenic Density, Plithogenic Conditional Density, Plithogenic

Conditional Expectation, Plithogenic Loss and Risk Functions:

Theorem 3.1

Let Xp be a plithogenic random variable that has a probability density function
f(xP; @p) Wlth @p = (elp, ey ekp); eip = Hio + Hilpl + HiZPZ ; i = 1,2, ey k a vector Of

parameters, then f(xp; ©p) is written in its formal plithogenic form as the following:
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f(xp;0p) = f(x0;00) +[f(xo + %1500 + 01)-f (x0; O9)] Pr+[f (%o +x1 +

X2;00 + 01+ 03)- f(xg+x1;00+ 01)]P,

1

Where: @0 = (910, ey Bko), G)O + @1 = (910 + 911, ...,eko + le), @0 + G)l + @2 =
(610 + 011 + 912' ] GkO + Bkl + 0](2)

Proof:

See [37].

Theorem 3.2

Let Xp,Yp be two plithogenic random variables, and let f(xp|yp;®p) be the
conditional probability density function of Xp given Y, with 0p =

(B1p, e, Op); Bip = B9 + 01 Py + 0P, ;i = 1,2, ..., k avector of parameters, then:

f(xplyp; ©®p) = f(xo0lY0; ©o)
+ [f (xo + x1|y0 + ¥1; 00 + 01) — f(x0|y0; ©0)]Py
+ [f(xo + %1 + x2|Y0 + 1 + V2,09 + 0, + 03)
— fCxo + y1lx0 + ¥1; 00 + 1) 1P,

Proof:

Straightforward using theorem 3.1.

Theorem 3.3

Let Xp,Yp be two plithogenic random variables, and let f(xp|yp) be the conditional
probability density function of Xp given Yp , then plithogenic conditional

expectation is:

E(Xp|Yp) = E(Xo|Yo) + [E(Xy + X1 |Yy + Y1) — E(Xo|Yo) 1Py

)
+[EXo+ X, + XYoo + Y1 + Vo) — E(Xo + X1 Yo + Y1) 1P,

Proof:
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E(Xp|Yp) = fof(xPlyP)-de

= f(xo + x1 Py + x%3P,) f (X0 + x1 Py + x2P|yo + y1P1 + y2P).d(xo

+ x,P; + x,P,)

Let’s take the one-dimensional AH-Isometry:
TEXplYp)) =T (f(xo + X1 Py + X2 P) f (X0 + X1 Py + x5P2|yo + y1P1 + y2P2). d(xo
+x,P; + x2P2)>

= ( f xof Colyo). do, f (o + X0 (o + X1y + ¥1)-d(xo +11), f (o + 31 + x2)f (X

+ %1+ X2|yo + y1 +¥2).-d(xg + x1 + x3))
=(EXolYo), EXg + X1|Yo + V) EXy + X1 + X, Yo + Y1 + Y5))

Now we take T~1:
= E(XplYp) = E(Xo|Yo) + [E(Xo + X1|Yo + Y1) — E(Xo|Y0)]Py
+ [E(XO +X1 +X2|Y0 + Y1 + Yz) - E(Xo +X1|Y0 + Yl) ]PZ

Theorem 3.4

Let 6p = 8, + 6,P; + 6,P, be a plithogenic parameter of a probability distribution,
and let 8p = 0, + 6,P; + 8,P, be an estimation of 6p, we can prove that the loss

function of 6p is:

Loss(0p,8p) = Loss(6y,0,) + [LOSS(HO + 64,8, + 0,) — Loss(6,, éo)]Pl

+ [Loss(Bg + 61 + 05,0, + 0, + 8,) — Loss(0, + 64,6, 4)
+6,)1P,

Proof

Straightforward.

Remark
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Classical loss could take the form: Loss(a, &) = |a — @| or Loss(a,d) = (a — @)%, or

other loss functions.

Theorem 3.5

Let 6p = 6, + 6,P; + 6,P, be a plithogenic parameter of a probability distribution,
and let 8p = 8, + 8, P, + 6,P, be an estimation of @p, the risk function of 6 is:
R(6p,0p) = E(Loss(6p,0p))
= R(60,00) + [R(6p + 61,8, + B1) — R(60,00)|Py + [R(6p + 61 + 62,0, + 6, (5)
+6,) — R(6y + 61,0, + 6))]P;
Proof

Straightforward.

Theorem 3.6

Let 6p = 6, + 6,P; + 6,P, be a plithogenic parameter of a probability distribution,
and let 8 = 0, + 6, P, + 0,P, be an estimation of 65, the posterior risk function of
Op given Xp is:
R(6p,0p1Xp) = E(Loss(6p, 0p)|Xp)
= R(60, 0o1X,) + [R(90 + 61,00 + 0,1X0 + X;) — R(90,§0|Xo)]P1 + [R(6,
+ 01+ 65,00+ 0, +0,|Xo + X1 + X3) — R(6, + 64,6, (6)
+ 011X, + X))]P,
Proof

Straightforward.

Theorem 3.7

Let Xp = (X1p, ..., Xnp) be a sample of independent and identically distributed
plithogenic random variables and ®p = (81p, ..., Op); 0ip = B9 + 01 Py + 0P, 50 =
1,2,...,k a vector of parameters. The plithogenic maximum likelihood function is

given by:
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Lp(®p) = f(Xp;0p) = Hf(xipi 0p)

()
Lp(©p) = L(Op) + [L(Oy + O1) — L(Og)]P; + [L(Oy + O; + O;)

- L(G)O + Ol)]PZ

Where:
L(©p) = f(x0; 09)
L(®g + 01) = f(Xo + X1;09 + 0;)
L(Bg+0;+0;) = f(Xo +X; +Xp;0 + 01 +0;)
And:

09 = (B10) -, 0k0), O+ 01 = (O19 + 611, -, Ok + Ok1), O+ O, +0, =
(610 + 011 + 612, ..., Opo + Og1 + Or2)
Xo = X0, 0, Xp0), Xo+ X; = Xio+ X141, 0, X0 + X,1), Xo+ X, +X, =
(Xq0 + X171 + Xp2, o, Xpo + Xpg + Xp2)
Proof

Taking one-dim AH-Isometry:
n

T(Lp(0p)) = T( f(xio + xi1 Py + x12P5; 09 + 0, P; + @2P2)>

i=1

n
= nf((xioi Op, Xjo + Xi1; O + O, Xj0 + Xi1 + Xi2; 09 + 01 + 03))
i=1

n n n
= (nf(xioi 0o) »l_lf(xio + Xi1; 09 + 0,) 'l_[f(xio + X1 + Xi2; 09 + 01 + 0,))
i=1 i=1 i=1
= (L(0g),L(0g + 0,),L(0¢ + 0; + 0;))
Again, taking T~! yields:
LP(@p) = L(@)o) + [L(@o + @1) - L(Go)]P1 + [L(eo +0;, + @2) - L(@o + @1)]P2
4. Plithogenic Maximum a Posteriori Estimation:

Theorem 4.1
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Let Xp = (X1p, ..., Xnp) be a sample of independent and identically distributed
plithogenic random variables and ©p = (01p, ..., 0kp); Oip = O + 01 Py + 0;,P5 ;i =
1,2,..,k a vector of parameters, suppose Op is a random variable follows a
distribution that has a probability density function of g(©p), which we call it a prior
distribution, and suppose Lp(0p) is the plithogenic maximum likelihood function

of the sample, hence the posterior density function of 0, is given as follows:

f(@p[xp)~L(0g).g(0y) + [L(Bg + 01).g(0y + 1) — L(B).g(0y)] P
+ [L(Oy + 0, +0,).9(0y + 0, +0,) )
— L(0g + 0,).9(0g + 0)]P;

Proof
We write f(0p|xp) by using equation (2) as the following:

f(Oplxp) = f(Oglx0) + [f(Og + O1]% + X;) — f(Og]x%0)]P;
+ [f(0g + 01 + Oz]xg + X1 + X3) — (O + O1|xo + Xx4) P,

_ f(%0100)g(0o) n lf(xo +x4(0p + 0,)g(0, + 6,) _ f(%0100)g(0¢)
f(Xo) f(Xo +x1) f(Xo) !
[f(xo + X1 +x,[00 + 0, +0,)g(0y + 0, + 0;)
+
(X + x4 +%x3)

_ f(Xo + %1109 + 0,)g (00 + 01)
f (X0 +x1)

P,

By taking one-dim AH-Isometry and excluding the denominators due to they don’t
affect the final shape of the distribution then retaking the inverse isometry we get:
f(©plxp)~f(X0100)g(O0) + [f (%o + X109 + 01)g(0y + 01) — f(X0|09)g(O0)]Py
+ [f (X + X1 + X,|09 + 0; + 0,)g(0y + 0; + 0,)
— f(Xo + %4109 + 0,)g (0 + 0,) |7,
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= f(Op|xp)~L(0y).g(0g) + [L(Og + 01). g(0g + ;) — L(B). g(0y)]P;
+ [L(Og + 01 +0;).g(0g + 01 + 0;) — L(0y + 0,).g(0y + 0,)]P,

Theorem 4.2

If ©p is the posterior mean of @, for a plithogenic quadratic loss function, or ©p
the posterior median for a plithogenic absolute loss function, then ©p is the

estimator that minimizes the plithogenic posterior risk function.

Proof
The minimization of R(®p,0p|Xp) occurs when %R(@P, 0p1Xp) = 0, and by the
P

equation (6) we see that this happens when:

d ~
d_G)OR(@O' 0 |X0) =0

— 0,4+ 0,,0,+0,|X,+X,)=0
d(eo_l_@l)( 0 1 0 1| 0 1)

O,+0,+0,,0,+0,+60,|X,+X, +X,) =0
d(@0+®1+@2)( 0 1 2 0 1 2| 0 1 2)

We deal with these three conditions as we do in the classical case, i.e., for a quadratic

loss function, 8, must equal:

@0 = E(04]X,)
0o+0; = E(0y + 04X, + X;) (10)
@0"‘@1"’@2 = E(@O + @1 + @2|X0 + Xl + Xz)

@P = E(0p|Xp)

=

Which is the posterior mean.

And for the absolute loss function, we take the posterior median.

Example

Let Xip, ..., Xnp~Exp(6p), and let 6p be an unknown plithogenic random variable
that we want to estimate which is plithogenically gamma distributed with two

known parameters rp,Ap; 1p = 15 + 11 Py + 1,P5,Ap = Ag + A, P; + A, P,, then:
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rp
Ap

(rp — 1)!

HPrP_le—lpgp

g(@p) =

We write g(6p) using equation (1) as following:

Ao 1
9(0p) = 75607 e
To+T-
((/10 + Al) 0 )1 (90 + 91)r0+r1_1e_(Ao+ll)(90+91)
/101‘0 To—1 _—2A,0
BCREUA
+11+
(Ao + A4 + Ay)T017T2 O + 0. + 0,)0rT1+72=1 = (Ro+A1+12) (8o +61+62)
(ro+r+r,—1)! (B + 61 +62) )
o TN TN :
To+T
B ((Ao + A" )1 (8, + 6,)70*Ti~1e~(ho+A1)(6o+6:)] p,
Also:

n
L(HP) = 1_[91:6_9” Xip
i=1

Which can be written by (7) as:

n n
1_[(30 + gl)e—(90+91)(xio+xi1) — 1_[ 909—90 Xio
i=1 i=1
n

+ [ﬂ(go 0, + 0,)e—Oo+0+0:) Fig+xia +x)
i=1

Py

n
L(6p) = neoe—ﬁ’o Xio 4
i=1

n
_ 1_[(90 + 91)8—(90+91)(xi0+xi1)]})2
i=1

l

Hence by (9):

To
0

ro—1_-21,6
(ro—l)!go e~ oY%

F(Oplxp)~B,y" e 2o
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(A + Aq)0* M

0. 4+ 0 re~(Bo+0) X xjo+xy) X2~ 77
(B +61) (rg+m, — 1!

(00 + 91)T0+T1—le—(Ao+ll)(90+91)

To
Ao

-0 n,—60p Xxjo___Y
0 ¢ (ro — 1!

0,0 te~Aobo]p, +

To+1r1+T
(6o + 6, + B,)ne~(O0+0:+0) Ty v o+ A+ A2) 07

(ro+mr +r,—1)! (6 + 6

+ 92)1‘0+7‘1+7‘2—1e—(lo+ll+/12)(90+91+92)

To+T
—(6, + 91)"e_(9°+91)2(xi0+xi1) M

(r +7 — 1)' (00 + 91)r0+r1—le—(/10+/11)(90+91)]P2
0 1 :

Ap"®
- = ﬁeonﬁ'ro—le_eo(lo.y ¥ Xi0)
T‘O - H

(Ag + A" M

+ [m (90 + 91)"”0'”1_13‘(90+91)(7Lo+ll+2( Xig+xi1))
0 1— 1)
Ao"° )
+79—1 — _
h m@on 01 =0o(Ao+ X xi0)| p,

(AO + 11 + AZ)T0+T1+T2
(ro+m+r,—1)!

(6o + 64
+ 92)n+r0+r1+r2—1e—(90+91+92)(AO+11+/12+Z( Xio+Xi1+Xi2))

(Ao + )"
(ro+mr, — 1)!

(6, + 91)n+7"0+7”1—1e—(90"'91)(10"'7‘1"‘2( xi0+xi1))]P2
Excluding constants after taking suitable isomorphism and then taking its inverse
yields to:

= f(Op|xp)~0," 0t e 00 (Rot X Xi0)

+ [(90 + 91)n+7”0+7”1—1e—(90+91)@0+11+2( Xio+Xi1))
— 90n+r0_1e—90(lo+ ino)]Pl
+ [(60 + 61 + 92)n+r0+r1+r2—1e—(90+91+92)(AO+/11+/12+Z( Xi0+Xi1+Xi2))

— (6, + 91)n+7”0+7”1—1e—(90+91)(10+11+2( xi0+xi1))]p2

Which yields that p~Gamma(n + rp,Ap + X x;p)
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If we use the plithogenic quadratic loss function, then:

T(@p) = (@0, @0 + @1, @0 + @1 + @2) ES T(

n+r1p
Ap+ Txip

n+rp . T(n+m)
Ap + inP>_T(AP+ 2. Xip)
n+ron+rg+r,n+ryg+nr+nr)

@P=

(ot Txio Ao+ A+ T(xio + Xi1) Ao + A+ Ap + T(Xio + Xt + Xi2))

= A

n+r,
Ao + X Xig
n+ry+n
Ao + A1 + X(xi0 + x41)
n+ry+r+n

@0:

n+r,

Ao+ A1+ A5 + X(xi0 + X410 + X;2)

e

n+ry+n n+r, ]
1

+ [ -
Ao+ Xxio Mo+ A+ X(xio +xi1) Ao+ Xxio

n+rgt+r+rn n+ry+n

5. Conclusions and future research directions:

- P.
+ A+ X(xio +xi1 +xi2) Ao+ A+ X(xio + xi1) 2

We found the formal definitions of the plithogenic maximum a posteriori estimator,

posterior density function, and posterior risk function, which we used to find the

estimation of parameter that has a gamma prior with an exponentially distributed

plithogenic random variables, the results were similar to the classical case but takes

into consideration the plithogeny, we also defined the plithogenic maximum

likelihood function and other definitions related to our work, future researches will

focus on studying more cases of conjugate priors and non-informative priors, also

on finding formal definitions that deal with neutrosophic sample and plithogenic

prior or vice versa.
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Abstract:

The concept of unity roots plays a central role in the theory of field extensions and

polynomials roots' computing.

The objective of this paper is to find the algebraic formula for computing the
symbolic 2-plithogenic and 3-plithogenic complex roots of unity, where a general

formula will be provided with many related examples up to the exponent 3.

Keywords: symbolic 2-plithogenic complex number, symbolic 3-plithogenic

complex number, symbolic n-plithogenic roots of unity.
Introduction and preliminaries.

The symbolic n-plithogenic set was supposed by Smarandache in [1-3]. Symbolic
n-plithogenic sets were very helpful in algebra, where this concept has helped with
developing algebraic structures, where we can see easily that for any value of n, we

get a bigger structure.

Symbolic 2-plithogenic structures and 3-plithogenic were defined and handled by

many authors around the globe.

For example, by now we have symbolic 2-plithogenic spaces, modules, matrix [4-7],

and same thing for 3-plithogenic structures, see [8-11].
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In this paper, we are trying to close an important research gap by answering the

following question.

How can we find all the roots of unity in the symbolic 2-plithogenic complex ring,

and in the 3-plithogenic complex ring?

The symbolic 2-plithogenic or 3-plithogenic root of unity is a symbolic plithogenic

number x with the following algebraic property x" =1 .

Definition.

Let C be the complex field, we have:

1). 2—-SP; ={vy+v,P; +v,P; v; €EC} is called the symbolic 2-plithogenic
complex ring.

2). 3—=SP; ={vg+ v1P; + v,P, + v3P3; v; € C} is called the symbolic 3-plithogenic
complex ring.

Algebraic operations on 2 — SP¢,3 — SP; are defined as follows:

(#):2—-SP; %2 —SP; » 2 — SP; such that:

(vo + V1P + v3P;) + (ug + u Py + uyPy) = (v + ug) + (vq + ug )Py + (v + uy)Ps.
(+):3—SP; %3 —SP; » 3 — SP. such that:

(vo + V1P + 3Py + v3P3) + (ug + u Py + Uy Py + usPs3) = (vy + up) + (v + uy)P; +
(v2 + uz)P; + (v3 + uz)Ps.

(.):2—=SP; %2 —SP; » 2 — SP; such that:

(wo + V1P + v,Py) (uy + uy Py + uyPy) = voug + (vouy + viug + viuq) Py +

(vouy + vouy + vou, + vouy + viuy)Ps.

(.):3—=SP; %3 —SP; - 3 —SP; such that:

(vg + V1P + V3P + v3P3). (Ug + u Py + uy Py + u3P3) = voug + (vouy + viug +

ViU )Py + (Wouy + vaouy + vy + VY0 + V1) Py + (Vous + viug + vous + vaug +
VgUy + V3Uy + U3Uy)Ps.

Multiplication is defined with the following property:

PiX P, = Prax(ijy Pi X Pi = P;1<i<31<j<3

Main discussion.
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Definition.

Let 2 — SP; be the symbolic 2-plithogenic complex ring,

then v = v, + v, P; + v,P, € 2 — SP; is called n-th root of unity if and only if v" =
1.

Definition.

Let 3 — SP; be the symbolic 2-plithogenic complex ring,

then v = vy + v, P; + v,P, + v3P; € 3 — SP; is called n-th root of unity if and only if

Definition.
Let v=vy+ v P + v,P, € 2 —SP;,u =ug + u Py + u,P, + u3P; € 3 — SP, then we
define:
T =Ty + V1P, + T3Py, U = Ug + 43 Py + U3 P, + W3Ps.
Remark.
For v = vy + v P; + v,P, € 2 — SP;, we have:
vt =0y + [(vy + v)" — v Py + [(vg + v +v,)" — (vy + V)" ]Py;n EN.
For v = vy + v1 P, + v,P, + v3P; € 3 — SP;, we have:
v =" + [(vo + v)" —vo" Py + [(vo + vy +v2)" = (wo + )P, + [(vo + v, +
vy, +v3)" — (vg + v; + v,)"]P3;n EN.
Theorem.
Let v=vy+ v P; + v,P, €2 —SP;,u =ug + u Py + uy,P, + uzP; € 3 — SP,, then:
L lvll = lvel + [1(vo + vl — [vol]Py + [|(vo + vy + v2)| — [(wg + v1)]P;
2. lull = Tuol + [1(uo + u)| = luellPy + [1(uo + uy + uz)l — [(uo + uy)1P, +
[ICuo + uy +up +uz)| — [(uo + uy +uy)|]Ps
Proof.
L wl*> = v.7 = (vg + v1 Py + v, P,) (T + U1 Py + T5P;) = voUg + (vo¥7 + v17 +
V1 07) Py 4+ (VT + 0,7 4+ VU5 + 1,7 + v105) P, = |v]* + ((Vo + v1) (Vg +
V1) — VOV_O)P1 + ((Vo + v, + 1) (Vo + V1 + V) — (Vo + V) (W + V_1))P2 =
[vol? + [|(o + v)I? = |vol21Py + [|(Wo + vy + v)|? = |(wo + v1)|?]P,

Now, we put
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R = |vo| + [|(wg + v1)| = [vol]Py + [|(vo + vy + v2)| = [(Wo + v1)]P,.
We get
R? = |vo|* + [|(wo + v)I? = v |21y + [|(wo + vy + v)|* = |(wo + v1)[?]P,
+ 2[vo [Py [|(wo + v1)| = lvol] + 2|wol[| (o + vy + v2)| = [(vg + v1)I]P;
+ 2(|(wo + v1)| = v DIl (o + vy + v2)| = [(vo + v1)[]P, P,
= |vo?
+ [|(wo + v I? = |vol? = 2|vollvg + v1| + 2[vglvg + v1| — 2|v|?]P;
+[|(wo + vy + )| = |(Wo + v)I* + 2|vg + v4|[(vy + vy + 1)
+ 2|vol|(vo + vy + v2)| = 2|vgl|vp + v1| + 2|vg + vy || (v + vy + v5)]
— vo + v11? = 2|vol|(wo + vy + vR)| + 2|vpl|vg + v4]]P;
= |vol? + [|(wo + v)I? = |vo|?]P + [[(wo + v1 + )17 = |(vy + v1)|?]P;
This implies that
Ivll = R = lvol + [|(wo + vl — [vol]Py + [[(vo + v1 + v2)| = [(Wo + v1)I]P.
2. lull® =u.iw = (ug + u Py + uy Py + usP) (g + Uy Py + uzPy + Uz Ps) = ugliy +
(uolly + ug Uy + us U Py + (Uolly + Ul + UpUz + Uy + U W) Py +
(U3 + w5 + Up T3 + U3Tho + Uzl + Uslly + UsTi3)Ps = |ug|® + ((uo +
ul)(u_0+u_1)—u0u_0)P1+((u0+u1 + uy) (o + Uy +uy) — (up +uy)(Up +
)Py + ((uo +us +up + u)(Wo + W + T +13) — (uo +us +u,) (W + 70 +
u_z))P3 = |uo|2 + [[(uo + uy)|* - |uo|2]P1 + [ (uo + uy +uy)|? — |(uo +
u) 1P, + [1(uo + uy +up +uz)l? = [(uo + uy +uz)|?]P;
We put
R = [ug| + [1(uo + u)l — luollPy + [1(wo + uy +uz)| — [(uo + u 1Pz + [I(uo +uy +
Uy +uz)| — [(uo +uy +uy)[]Ps
by an easy computing, we get R? = |ul|?, thus |u| = R.
Example.
Take v= Q2 +i)+ (1 —i)P, + 2iP, € 2 — SP;, we have:
vo=2+i,v,=1—-10,v, =20
Vog=2—-1,01=14+1i,v;, =-2i
v=0Q2-D)+A+iP —2iP,

Al {Ivol =5, vy + v1| = 13| =3, vy + v, + v,| = |3 + 2i] =13
’ lvll =5+ (3 —+5)P, + (V13 — 3)P,
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Example.

Take v=(1+i)+ 1 —-30)P;, + (5+i)P, + (4 + 3i)P;, we have:
vo=1+4+i,v;=1-3i,v,=5+1,v; =4+ 3i.
Vo=1—-i,77=1+3i,v,=5—-1i,v3=4—3i
V=1—-i+Q+3DP+G-0)P,+(4—-3i)P;

Also,

{|U0| =\/§,|U0+v1| = |2_Zl| :\/§,|U0+U1+v2| == |7_l| :@,|U0+U1+U2+U3| = |11+2l|

Theorem.

Let v = vy + v P; + v,P, € 2 — SP,, then v is a symbolic 2-plithogenic n-th root of
unity if and only if vy, vy + v4, v + v; + v, are classical n-th roots of unity in the
field C.

Proof.

It is know v™ = 1, which is equivalent to:

V" + [(vo + )™ — v [Py + [(Wo + vy + 1) — (Vo + V)" [P, = 1

Uon =
(UO + Ul)n - Uon = 0 = (170 + Ul)n = Uon = 1
Wo+ v+ )" — (W +v)"=0= Wy +v,+ )" =Wy +v)" =1

So that, vy, vy + v1,v9 + v; + v, are n-th roots of unity.
Example.

Let us find all a symbolic 2-plithogenic roots of unity order 2.
The classical set of the roots of unity of order 2 is E; = {—1,1}.
The corresponding 2-symbolic plithogenic roots of unity of order 2 are:
D.voy=vg+vi=v9+v;+v,=1=R; =1

2). vo=vo+vy=1Lv9+v;+v,=—1=R,=1-2P,

3). v =vy+vi+v,=1vy+v;, =—1=R3=1-2P;, + 2P,
4). vo=Lvg+vy=v9+v,+v,=—1=R,=1-2P;

5. vg=vy+v;+v,=1=v5+v;=—-1= Ry =-1

6). vo=vy+v,=—-1vy+v,+v,5=1= Rg=—-1+ 2P,

7). vo=vy+vi+v,=-1Lvy+v;,=—1= R, =—-1+ 2P, — 2P,

Nabil Khuder Salman, On The Computing of Symbolic 2-Plithogenic And 3-Plithogenic Complex Roots of Unity



Neutrosophic Sets and Systems, Vol. 59, 2023

80

8). 170 = —1,U0+U1+U2 =170+171 == 1:R8:_1+2P1
Example.

Let us find all a symbolic 2-plithogenic roots of unity order 3.

The classical set of the roots of unity of order 3 is E, = {—1, ezgi, e4§i}.
The corresponding 2-symbolic plithogenic roots of unity of order 3 are:
). vo=vo+v,=v9+tv+v,=1=R; =1

.
2). v0=v0+v1=1,v0+v1+v2=e2§l=>R2=1+(e

3). v0=v0+v1+v2=1,v0+v1=e45i=>R3=1+(e

4) v0=v0+v1+v2=1,U0+U1=ez§i=>R4=1+(ez§i—1)P1+(625i—1)P2

5) v0=170+171+v2=1=vo+vl=e4§iﬁR5=1+(e45i—1)P1+(1—e45i)P2

TT. .
6). v0=1,v0+v1=v0+v1+v2=e2§‘=>R6=1+(e?—1)P1
TT.
7). v0=1,v0+vl+v2=v0+v1=e4?l=>R7=1+(
8 _ 4% _ 25 _ 2%
) vo=1lvg+vi+v,=e3,v+v, =3 =>Rg=1+(e"s —1)P; +
(e4§i _ ezgi) P,
9 _ 25 4y _ 4%
) vo=lLvo+vi+v,=e"3,vy+v, =3 > Rg=1+(e3 —1)P; +
(ezgi _ 8421) P,
25 _ _ 25 2%
10). vg =e" 3, vy + v+, =vg+Vv; =1=Rjg=e3 +(1—e"3" P,
25 _ 25 25
11). vg =e" 3", vy + v, + v, =vy+v;, =3 = Ry =e"3
24 _ 45 25 4% 2%
12). vo=e" 3, v+ v +v, =v5+v,=€3 =R, =e"3 +|es —e3 |P;
_ 20 _ 20 _ _ 20 i
13). vo =e" s, vy +v,+v,=e 3, v+ =1=R3=e"3 +(1—e"3"|P; +
270
(e 31—1)P2
_2E 4% _ 25 2%
14). vo =e" s, vy +v,+v,=e s, v+ =1= Ry =e3 +(1—e"3" | P +
4
(e 31—1)P2
2

15). vy = e3, Vo+vi+v,=1Lvg+v; = e’3' = Ris=e 3t 4 (1 - ein) P,
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16 _ 2o _ _ 4% _ 2% 4% 2%
)- Vo =€ 3, vg+v; +v, =1 v,+v;, =e3 > Rjg=e"3 +(es —e"s |P;+
4zi
(1 —e 31) P,
TT. TT. TT. TT. TT. TT.
17). vy = €3 vy + v, + v, = e vy + v, = e’ = Ry, =3 + (64? —e“3 )P2
TT. TT. TT. TT. . .
18). vy =e* 3 vg+v, +v, =e3 vy + v, =e*s = Rg=e’' + (e4§l — 6251) P, +
. .
(8251 _ e4§l) P2
19) 170 = 6451,1]0 +171 +172 = UO +171 = 1 = ng = 8451 + (1 —8451)P1
TT. TT. . TT. TT.
20). vo=e* g+ vy F v, = vy + v, =’ = Ry = e’ + (ez? — 64?) P,
TT. TT.
21). vy = e vy v +v, =g+ v, = =R, = e
79 _ 2o _ 25 _ 4% 4%
). Vo =€ 3, vg+v; +v,=e 3,9+ =1=> Ry, =es +|1—e’s )P +
27i
(e 3t — 1) P,
23 = % — %l — _ A 4%
). Vp=€e 3, vg+v;+v,=e 3,0+ =1=Ry3=e3 +|1—e"3 )P +
4i
(e 3l - 1) P2
TT. TT. TT. .
24). vo=e vt vyt v, = Lvg+ v, =3t => Ry =t 4 (e 3 — e4§L)P1 +
204
(1 —e 3‘) P,
5 _ Ani _ _ 4% _ 4% 4%
). Vo=€e3,vg+Vv;+v, =1 v,4+v;, =3 =>Rys=e€e3 +|1—e3 )P,
4i 27i 27i = i
26). vog=e 3, V5tV +vy,=e3,v+v; =e3 = Rys=¢€3 +(e 3 —e 3)P1+
. .
(8451 _ eZgl) Pz
. TT. TT. . Y3 T,
27). vy = e*3, vp + v+ v, = e’ vy vy = et = Ry, = e+ (ez? — 645‘) P,
Theorem.
Let v = vy + v1P; + v,P; + v3P; € 3 — SP;, then v is an n-th root of unity if and
only if vy, vy + v1, v + v; + v, are n-th root of unity in C.
Proof.
It is know that v"™ = 1, which is equivalent to:

Vo™ + [(vg + v1)™ — vt Py + [(vy + vy + V)" — (Vg + V)P,
+ [(UO + 171 + 7.72 + V3)n - (UO + v1 + vz)n]P3 = 1
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U0n=
(o +v)"—v" =0= (vy + V)" =V, =
(U0+v1+v2)n—(v0+vl)n=0=>(170+U1+172)n=(v0+v1)n=1
Wo+vi+v,+v3)"— (W + v, +v,)"=0= (Vo +v,+v, +13)" = (Vg +v,+1,)" =1

Thus the proof holds.

Example.

Let us find all 0f 2-nd roots of unity in 3 — SP;.

D). vg=v9g+vi=v9+v1+v,=v5+v;+V,+tv3=1=R; =1

2). vg=vy+vi=v9+v+v,=Lvg+vi+v,+v3=—1=R,=1-2P;

3) vO=v0+v1=v0+v1+v2+v3=1,U0+U1+v2=_1=>R3=1_2P2+2P3

4). vo=vg+v+Vv,=vy3+Vv+Vv,+v3=1v,+v;=—-1=R,=1-2P, + 2P,
5. vg=vo+vi=1Lvg+vi+v,=v5+v;+v,+Vv3=-1=R;=1-12P,

6). vo=vy+Vv1+Vv,=1Lv9+Vv, =vy+V; +V,+v3=—1= Ry =1+ 2P, + 2P;
7). vg=vog+v+v,+v3=1v9+v, =vy+v;+v, =—1= R, =1—2P; + 2P;
8). vo=Lvy+ v +v,+v3==vy+V; =Vy+VvV;+v,=—1=Rg=1-2P;

9). Ry=—1=-R;

10). Ry = —R, = -1+ 2P;

11). R4y =

I

[
~
w

Il

—1+ 2P, — 2P;

12). R12 = _R4

—1+4 2P, — 2P,

13). Ry3 = —Rs = —1 + 2P,

14). Ry, = —Rg = —1 — 2P, — 2P,

15). Rys = —R, = —1 + 2P, — 2P,

16). Ryg = —Rg = —1 + 2P,.

The group of unity roots classification

It is known that the set of all n-th roots of unity forms a subgroup of C* denoted by
Uc with respect to the multiplication operation and this group is isomorphic to the
additive group Z, (integers modulo n).

By a similar approach, we can see easily that the set of all symbolic 2-plithogenic

complex n-th roots of unity forms a group with respect to multiplication operation,
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and the set of all symbolic 3-plithogenic complex n-th roots of unity forms a group

with respect to multiplication operation.

The following theorem classifies the symbolic 2-plithogenic and 3-plithogenic
groups of n-th roots of unity.

Theorem:

Let U,_spc be the group of n-th unity roots of symbolic 2-plithogenic complex
numbers, and Us_gpc be the group of n-th unity roots of symbolic 3-plithogenic
complex numbers, then:

1-) Uyp_spe = Zp X Zyy X Z.

2-) Uz_spc = Zy X ZyXZy X Zy.

Proof:

1-) Define the mapping f:U,_spc = Uc X Uz X U such that:

f(eg +e1P; +e,P;) = (eg,e9 + €1,69 + €1 + 7).

The mapping f is well defined:

For M = my + m;P; + myP, = N = ny + n P; + n,P,, we get:

Mmy =Ny, My + My =Ng+ny,mg+my +m, =nyg+n, +n,,

Thus f(M) = f(N).

The mapping f preserves multiplication:

For M =my + myP; + myP,,N = ng + n, P, + n,P,, we get:

f(MN) = f(mgng + [mony + myng + myn,|P; + [moyn, + myn, + myny + myn, +
myn,|P,) = (mgng, mng + meny + myng + myny, mengy + meny + myng + myn, +
MmoN, + MmN, + myng + myny + myn,) = (Mg, my + my, my + my +my). (ng, ng +
ny, N + Ny +ny) = fF(M)F(N).

The mapping f is injective:

Ker(f) ={M =my+mP; + myPy; f(M) = (1,1,1)},

So that, my = 1,my = m, = 0, thus Ker(f) = {1}.

The mapping f is surjective:

Im(f) =U; x Uz X Ug.
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Thus, the mapping f is a group isomorphism, which means that U,_gpc
Uc XU XUz .Since Up =27, ,weget Up_spc EZy XZy XZy .

2-) Define the mapping f:Us_gpc = Uc X Uc X Up X U such that:

f(eg+ e Py +e,P,) = (eg,e9+e1,e9+ e, +e3,60+ 61 + 65+ €3).

The mapping f is well defined:

For M = my + m{P; + myP, + mgP; = N = ny + nyP; + n,P, + n3P;, we get:

My =Ny, My +my =ng+n;,mg+my+my, =nyg+n, +ny,,my+my+m, +ms =
ng +ny +n, +ng,

Thus f(M) = f(N).

The mapping f preserves multiplication:

For M = my + myP; + myP, + mgP3, N = ny + nyP; + n, P, + n3P;, we get:

f(MN) = f(mgng + [mony + myng + myn,|P; + [mon, + myn, + myng + myn, +
myn, Py + [monz + mynz + myns + many + myny + myn, + mynz|P3) =

(mgng, mony + mony + myng + myn,, mony + meny + myny + myny + myn, +
min, + myngy + myny + myn,, mongy + mony + myny + myny + men, + myn, +
myng + myny + myn, + monz + mynz + myns + many + myng + myn, + manz) =
(mgy, my + my, my + my + my, my + my + my + m3). (ny, Ny + ny,ng + 1y +ny,ng +
ny +ny +n3) = f(M)f(N).

The mapping f is injective:

Ker(f) ={M = my + mP; + myP, + myPs; f(M) = (1,1,1)},

So that, my = 1,m; = my, = my = 0, thus Ker(f) = {1}.

The mapping f is surjective:

Im(f) =Uc X Us X Up X Ug.

Thus, the mapping f is a group isomorphism, which means that Us_gp¢
Us XU XU xU; .Since U =2Z, ,weget Us_spc EZ, XZy X Zy X Zy .

Conclusion.

~

In this paper, we presented an algebraic algorithm to compute n-th roots of unity in

symbolic 2-plithogenic/3-plithogenic complex ring respectively.

Also, we have illustrated some examples to clarify the flow of our algorithm.
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In the future, we aim to find n-th roots of unity in symbolic m-plithogenic complex

ring for any value of m.
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Abstract:

Symbolic 2-plithogenic sets as a generalization of classical concept of sets were
applicable to algebraic structures. The symbolic 2-plithogenic rings and fields are

good generalizations of classical corresponding systems.

In this paper, we study the symbolic 2-plithogenic real functions with one variable
by using a special algebraic function called AH-isometry. In addition, we discuss
the symbolic 2-plithogenic simple differential equations and conic sections by
using this isometry. Also, many examples will be presented to explain the novelty

of this work.

Keywords: symbolic 2-plithogenic set, symbolic 2-plithogenic real function,

symbolic 2-plithogenic circle, symbolic 2-plithogenic ellipse.
Introduction and basic definitions

Symbolic n-plithogenic algebraic structures are considered as new generalizations
of classical algebraic structures [1-3], such as symbolic 2-plithogenic integers,

modules, and vector spaces [4-8].
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Symbolic 2-plithogenic structures have a similar structure to the refined
neutrosophic structures and many non classical algebraic structures defined by

many authors in [9-17,20-23, 24-30].

In the literature, many mathematical approaches were carried out on neutrosophic
and refined neutrosophic structures, were a special function called AH-isometry
was used to study the analytical properties and conic sections [11-12, 18-19], and
that occurs by taking the direct image of neutrosophic elements to the classical

Cartesian product of the real field with itself.

In this work, we follow the previous efforts, and we define for the first time a
special AH-isometry on the symbolic 2-plithogenic field of reals, and we use this
isometry to obtain many formulas and properties about the symbolic 2-plithogenic
analytical concepts such as differentiability, continuity, and integrability. Also,

symbolic 2-plithogenic conic sections will find a place in our study.

Definition.
The symbolic 2-plithogenic ring of real numbers is defined as follows:

2—SPg ={to+t;P, + t,Py;t; ER, Py X Py = P, X P, = P,,P,* = P,” = P,}
The addition operation on 2 — SP; is defined as follows:
(to + t1Py + t2Py) + (£ + 4Py + 65P) = (o + to) + (¢4 + 6Py + (£ + £5)P,
The multiplication on 2 — SPy is defined as follows:
(to + 6Py + 6,P,) (o + &4 Py + 5 P,)

= toty + (toty + tity + t1t) Py + (Lot + tyty + toty + tyty + tat1) Py

Remark.

IfT=t0+t1P1+t2P2EZ—SPR,then:

T‘1=1=i+[ L1 P1+[ LI ]Pz, with to# 0,tg +t; £ 0,60+ t; +
Tty @ lto+t; to totti+t,  totty

t, # 0.

Main Results

Definition.
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Let 2 —SPr = {a+ bP; + cP,;a,b,c € R} be the 2-plithogenic field of real numbers,
a function f=f(X):2—-SPs—>2—SP; is called one variable symbolic
2-plithogenic real function, with

X =x9+x,P; +x,P, €2 — SPp.
Definition.
Let 2 — SP, be the symbolic 2-plithogenic field of reals, we define its AH-isometry
as follows:
[:2 —SPgr - R X R X R such that:
I(x+yP;+2zP,) = (x,x+y,x +y+2z).
It is easy to see that I is a ring isomorphism with the inverse:
I"1:R X R X R > 2 — SP; such that:
Iy, 2) =x+ (=P + (- y)P,
Definition.
Let f:2—SPr > 2—SP; be a symbolic 2-plithogenic real function with one
variable, we define the canonical formula as follows:

I"1oI(f):2 — SPy > 2 — SPg
Example.
Considerf (X) = X2 + 2 — P, + P,, its canonical formula is:
I(FC0) =GO +1(2 = Py + Py) = (x0, %0 + X1, %0 + %1 + 22)% + (2,1,2)
= (%02 4+ 2,(xg + x)?+ 1, (xg + x1 +x2)% + 2)

I7HeI(f00) =
X2 + 2+ Py[(xg + x1)% — x0% — 1] 4+ Po[(xg + x1 + x2)? — (%0 + x1)* + 1]
For example:
fA+P)=Q+P)*+2—-P+P,=14+P +2P,+2—-P, +P,=3+2P, +P,.
If we put values xo = 1,x; = 1,x, = 0,

in the canonical formula, then we get:
IProl(f(X) = (D2 + 24P [(2)2 = (1)? = 1] + P,[(2)2 — (2)* + 1] =3+ 2P, + P;.
The canonical formulas of famous functions:

1. The exponent function:
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eX;X = Xy +X1P1 +x2P2,1_1°I(eX) =

["1(e%o, eXo+¥1 gXotX1+x2) =
exo + Pl [ex0+x1 _ exo] + PZ [ex0+x1+x2 _ ex0+x1]

2. The logarithmic function:
In(X); X = xo + x, Py + x,P,,

[71 o I(In(X)) = I" (In(xg) , In(xp + x1) , In(xg + %1 + X)) =

In(xy) + Pi[In(xy + x1) — In(xg)] + P[In(xg + x1 + x3) — In(xo + x4)].

3. Famous trigonometric functions:
sin(X) = sin(xy) + Py [sin(x, + x;) — sin(xy)] + P,[sin(xq + x; + x,) — sin(xy + x;)]
cos(X) = cos(xy) + P;[cos(xg + x1) — cos(xp)]

+ P,[cos(xqy + x; + x5) — cos(xg + x7)]
tan(X) = tan(x,) + P;[taan(x, + x;) — tan(x,)]
+ P,[tan(xq + x; + x,) — tan(xy + x1)]
And so no.
Definition.
A symbolic 2-plithogenic real number T = t, + t;P; + t,P, is called positive if and
only if
to=>0,ty+t; >0ty +t; +t, > 0.

For example 3 + 2P; — P, > 0, that is because, 3 >0, 5> 0,4 > 0.
Definition.
Let f:2—SP; > 2—SP; be a symbolic 2-plithogenic real function with one
variable X = xy + x;P; + x,P,, then:

a. f is differentiable if and only if I(f(X)) is differentiable.

b. f is continuous if and only if I(f(X)) is continuous.

c. f isintegrable if and only if | (f (X)) is integrable.
Example.
Find the derivation of f(X) = X* 4+ X + P, in two different ways.
Solution.
The regular way is f(X) =2X +1.

The canonical way is:
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"o I(f(X)) =
I7 (%02, (g + x1)?, (X0 + X1 + x2)%) + I (%, x0 + X1, X0 + X, + x,) + 172(0,1,1)
= x0% + x¢ + P [(xg + x1)% — x0% + (%0 + x1) — x0 + 1]
+ Py[(xo + %1 +x5)% — (%9 + x1)% + (%0 + x1 + x3) — (% + x1) + 0] =
= x0% + x¢ + P [(xg + x1)% — %% + x;1 + 1]
+ Po[ (g + x1 + x2)% — (%0 + x1)% + x4]

First, we have: (x,% + xX0)' ., = 2%0 + 1.

[(xo +x1)% —x0% +x; + 1+ x5% + x,]

Xo+XxX1 -

[(xo + x1)% + (xg + x1) + 1] =2(xg+x) +1

Xo+Xx1

[(xo + 21 +x)% — (xg + )2+ x5, + (xg + %)% — %% +x; + 1]

Xot+X1+Xo

=[(x0+x1+x2)2+(x0+x1+x2)+1]’ =2(x0+x1+x2)+1

Xot+x1+Xx2
Thus, f(X) = 2xo+ 1+ P[2(xg + %) + 1 —2x5 — 1] + P[2(xp + x; + x,) + 1 —
2(xg +x1) — 1] = (2x9 + 1) + 2x;,P; + 2x,P, = 2X + 1

Example.

Find the value of | 01 e*dX in two different ways.

Solution;

+P1+P; 1+P;+P
eXdX — [eX] 1 2 1+P1+P2

0 — e — eO — 1+P1+P2 — 1'

The regular way: | 01 e

The canonical formula way:
1—1 ° I(f(X)) = eXo 4 pl[exo+x1 _ exo] + pz[exo+x1+x2 _ ex0+x1]

We have:
1

2 3
]e""dx0 =e— 1,] e d(xy + x,) = €% — l,f eXot¥itXad(xo +x; +x,) =e3—1
0 0 0

14Py+P
Thus, [~ ' 7

. eXdX=e—1+Pje?—1—e+1]+Pfed—1—-e?+1]=e—1+

Pi[e? —e] + P,[e3 — e?] = eltP1tP2 — 1

Applications to differential equations.

Example.

Solve the equation Y =C;Y =y, + y,P, + y,P, is a function, and C = cq + c;P; +
c,P, is a constant.

We have y, = fo,y1 = f1,¥2 = f2:R = R.
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Y = (YO)'XO + P [(B’O + 3’1)'x0+x1 - (}’o)'xo] +

P, [(}’0 +y t 3’2)'x0+x1+x2 — (o + J’1)’xo+x1] =co+ 1Py + P,
so that:

o) xo — €0 Yo = CoXo + Mg
(7o + Y1)’x0+x1 = = Yo+ y1=ci(xg +x) +my
Go+ Y1+ Y2 g snian, =€z Yot Yi Y2 =0 +x +x) +my

This implies that:
Y = (coxo + mg) + Pyley (g + x1) + my — (coxo + mp)] +
Plc,(xg + x; + x5) + my — c;(xy + x;) —m4]; x; are real variables, m; are real
constants.
Example.
Solve the differential equation Y = CY, where C = ¢y + ¢, Py + ¢;P5, Y =y + v, P +
V2P;.
Solution.
Y =CY equivalents:

(YO)'xO = Co)Yo
(yo + yl),x0+x1 = (co + 1) o + ¥1)
Vo +y1 + 3’2)’x0+x1+x2 =(co+cr+c)o+y1+y2)

So that:

Yo = koe*o
Yo+ Y1 = kle(C°+Cl)(x°+x1)
yo + y]_ + yz — kze(C0+C1+C2)(xO+X1+xZ)

Thus: Y = koecoxo + P1 [kle(co+c1)(xo+x1) _ koecoxo] + P2 [kze(c0+c1+c2)(xo+x1+x2) _
kle(C°+Cl)(x°+x1)].

Example.

Solve the differential equation Y" = C, where C = ¢y + ¢1P; + ;P Y = yo + y,P; +
Y2Ps.

Solution.

Y" = C equivalents:
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(Yxo)” = Co
Vo + YD xg4x, = C1

(yO + yl + yZ)x0+x1+le = CZ

So that:

f Yo =C2—0x02+m0x0+n0;m0,n0 ER
Yoty = C2_1(x0 +x1)? +my (xo + x1) + ny;my,ny ER

Yot Y1tV = Cz_z(x() +x1 +22)% + my(xg + %1 + %) +np5my,mp €R
And

Y = (CZ—"xOZ + moxo + no) +

C1 Co

P [7 (X0 +x1)% +my(xg +x1) + 1y — 7x02 — MyXy — no] +
P, [%2 (0 + 21 + x5)% + my(x + %1 + %) + 1y — 02_1 (%0 + %)% —my(xo + x1) — nl].
Applications to geometric shapes:
Definition.
1). We define the symbolic 2-plithogenic circle as follows:
X—-4)?%*+ Y —-B)?>=R%,A=ay+a,P, +a,P,,B=Dby+ b P, +b,P,,R =15+
1Py + 1P, Y = yo + y1P1 + 2P, x = xg + x1P; + x, P, with a;, b;, 73, x;,y; € R

2). We define the symbolic 2-plithogenic sphere as follows:
X—-A4)¥*+ Y -B)¥*+(Z—-C)?*=R*X,AB,C,RY,Ze2—-SP
3). We define the symbolic 2-plithogenic ellipse as follows:

—A)2 —_p)2
CA OB = 1;X,A,B,T,S,Y € 2~ SP and T,$ invertible.

4). We define the symbolic 2-plithogenic hyperbola as follows:

(x-4)?% (v-B)?
T2 S2

=1;X,A,B,T,S,Y €2—-SP, and T,S invertible.

Example.

1) X—1—Py+P)*+ (Y —3+2P, —P,)*> = (1+ P,)? is a 2-plithogenic circle.

2). X—10+P)*+ (Y +P)?+ (Z—P,+P)*=(1+P, +13P,)*? is a

2-plithogenic sphere.

) (X—Py)? (Y+P1—P;)?
" (14P;+Py)2  (2—P;+5P,)2

= 1 is a 2-plithogenic ellipse.
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2) (X—2Pp)* _ (Y+1+4Pp)° _ is a 2-plithogenic hyperbola.

* (1+P;+3P;)2  (13-2P;+P;)2

Theorem.
1. Any symbolic 2-plithogenic circle is equivalent to three classical circles.
2. Any symbolic 2-plithogenic sphare is equivalent to three classical spheres.
3. Any symbolic 2-plithogenic ellipse is equivalent to three classical ellipses.
4. Any symbolic 2-plithogenic hyperbola is equivalent to three classical
hyperbolas.
Proof.
1. Consider the symbolic 2-plithogenic circle:
(X — A)? + (Y — B)? = R?, then by using the isomprphism defined before, we get:
I[X — A% = [1(X) — (D]
= (%0 — ag, (xo + x1) — (ag + ay), (xo + x; + x3) — (ag + a4 + az))2
= ((xo — ay)?, ((xo +x;) — (ap + a1))2' ((xo + x; + x3)
—(ap+a; + az))z)
II(Y = B)?] = [1(Y) — I(B)]*
= (()’0 — by)?, ((3’0 +y1) — (by + b1))2, (()’0 +y1+y2)
— (bo + by +by))°)
I(R?) = I(R)]* = (r?, (ro + )%, (g + 11+ 15)%)
Thus, it is equivalent to:
(%0 — ag)? + (¥o — bp)* = 1p”
(Gro+32) = (@ +a1))” + (0 +32) = (bo + b)) = (1o +7)°
((xo +x; +x) —(ap+a; + az))z + (()’0 +y1+y2) —(bg+ by + bz))z = (rp + 1 +12)?
2. Consider the sphere (X —A)2+ (Y —B)*>+ (Z—-C)*>=R?, we use the
isomorphism I, to get:
10X = )21 = (o — ag)? (o + 1) = (a0 + @), (o + 21 +x2)
—(ap+a; + az))z)

I[(Y — B)z] = ((3’0 - bo)z, ((J’o +y1) — (by + b1))2, ((}’0 +y1 +¥2)

= (bo + by + b))
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1z = 0% = (20 — ), (0 + 22) = (co + 1)), (20 + 71 + 22)

—(co+c1 + cz))z)
I(R?®) = [I(R)]* = (1?3, (1 + 11)?, (rp + 11 + 13)?), hence we get:
(xo = ag)? + (¥o — bo)* + (29 — ¢p)* = 1¢°
((xo +x;) — (ap + al))z + ((J’O +y1) — (by + bl))z + ((Zo +2z1) —(co + C1))2 = (
(Cro+x1 4+ x3) — (ag +a; + az))z + (o +y1+y2) — (b + by + bz))2 +((zo+z1+2)—(co+¢

(x-4)% | (v-B)?

— T~ = 1, we use the isomorphism [ to get:

3. Consider the ellipse

(x - 4y
1[ —

te? (to + t1)? ’ (to + t; + t,)?
(Y — B)?
1 —52

_ ((YO — by)? ((J’o +y1) — (b + b1))2 ((3’0 +y1+y2) —(bo + by + bz))2>

_ ((xo —ay)? ((xo +x) — (ap + a1))2 ((xo +x;+x) —(ap+a; + az))z)

So? ’ (so +51)2 ' (So + 51 + 52)?

1(1) = (1,1,1), thus:

( (%o _Zao)z + (Yo — bo)? _q
to So?
) ((xo +x1) — (ap + a1))2 n ((J’o +y1) — (by + b1))2 —1
(to +t1)? (so +51)2 B
((xo +x; +x) —(ap+a; + az))z + (()’0 +y1+y2) — (bo+ by + bz))z _ 1
L (to+ t; + t,)? (5o + 51 + 5,)2 a

X—A)? _ (Y-B)?

4. Consider the hyperbola ( = 1, by a similar discussion, we get

T2 S2

( (xo —ag)®  (¥o — by)?
_ =1
to? %

2 2

) ((xo +x1) — (ap + a1)) _ ((J’o +y1) — (by + b1)) —1
(to + t1)? (so +51)2
2 2
((xo +x; +x) —(ap+a; + az)) B (()’0 +y1+y2) — (bo+ by + bz)) —1

\ (to + t; + t,)? (sg + 51 +55)?
Example.

Consider the symbolic 2-plithogenic circle:

(X —14P)*+ (Y —3+ 2P, +2P,)* = (1 + 4P, + 4P,)?, it is equivalent to:
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(o =1+ (o —3)*=1
(Cxo + xl))2 + (o +y1) — 1)2 = 25

(Gro+x1+52))” + (G0 +31 +32)” =81
The first circle has (1,3) as entre and radius 1.
The second circle has (0,1) as entre and radius 5.
The third circle has (0,—1) as entre and radius 9.
Example:
Consider the symbolic 2-plithogenic sphere:
(X —14P,+3P)?+ (Y —P)* + (Z—4+P,)? = (3— P, + P,)?, itis equivalent to:

(ro = 2)* + (yo)* + (2o —H* =9
((xo +x;) — 1)2 + ((J’O + 3’1))2 + ((Zo +2z) — 1)2 =4

(o+x+x)+4) + (Go+y+y2) — 1) + ((2o + 21 +2,) —3)" =9
The first sphere has (2,0,4) as entre and radius 3.
The second sphere has (1,0,4) as entre and radius 2.
The third sphere has (—4,1,3) as entre and radius 3.
Example:

Consider the symbolic 2-plithogenic ellipse:

(X—1+P;+3P;)? (Y—1-P,)?
(3+P;+P,)2 (4+2P;+3P,)?
( (%) (o —D? _
32 T
2 2

((xo +xp) — 4) ((3’0 +y1) — 1)

42 + 62
2 2

((x0+x1+x2)—3) +(()’0+3’1 +3’2)—2) _
\ 52 92 -

Example:

= 1, it is equivalent to:

1

=1

1

Consider the symbolic 2-plithogenic hyperbola:

(x-1)? (Y-P)? . ... . .
G12P)?  LePiaP? 1, it is equivalent to:
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r (o= 1?0 _,
52 IR
] (Gotx)- )" (Go+yw) -1
72 B 22 =1
(ot +x)=1)° (Go+yi+y)-1) .
L 72 B 32 B

Example.

Let us the parametric representation of the symbolic 2-plithogenic ellipse:

(X_l_Pl_Pz)z (Y_2_3P1)2_

=1
(2 + Py)? (1+2P; — Py)?
The previous ellipse is equivalent to:
( (xo —1)* (¥o—2)°
=t = 1..(1D)
2 2
((xo +x1)—2)"  ((yo+y1)—5)
9 32 + 32 =1..(02)
2 2
((xo +x; + %) — 3) ((3’0 +y1+y,) — 5) _
L 32 + 2 =1..03)

Equation (1) implies XOT_l = cosb, , % = sinf, , hence xy = 2cosfy+1,y, =

sinf, + 2.

(XO+X1)—2
3

(Yo+y1)—5

Equation (2) implies = cosb,, = sinf,, hence x; = 3cosf0; + 2 —

Xo = 3c0s6; — 2cosfy + 1,y, = 2sinb; + 5 — yy, = 2sinf; — sinf, + 3

(xo+x1+x2)-3 (Yo+y1+y2)-5

> = sinf, , hence x, =

Equation (3) implies = cos0, ,
3cos6, — (xy + x1) + 3 = 3cos6, — 3cosO; +1,y, = 2sinf, — (yo +y,) +5 =
2sinf, — 2sinb,

This means that:

X = (2cosBy + 1) + P,[3cosB; — 2cos0, + 1] + P,[3cos6, — 3cosbO; + 1]

Y = (sinfy + 2) + P;[2sinf, — sinf, + 3] + P,[2sinf, — 2sinb,]|.

Example.

Consider the symbolic 2-plithogenic ellipse:

(X—2—4P1+3P2)2+ Y +1+P,)*
(1+ 5P, + 7P,)? (3—P,—P,)2

it is equivalent to:
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( —2)? +1)?
(=27 Qo+ D _
1 32
[(xo +x1) — 6] [(yo+y)+1]°
) 62 + 22 =1
[(xo + %1 + x3) — 3] N [(vo + y1 +y2) +2]° —1
132 1 B
\
Example.

Consider the symbolic 2-plithogenic circle:
(X—2-4P; +3P)*+ (Y +1+P)* =1
It is equivalent to:

(ko —2)+ (o +1)?* =
[(xo +x1) =612+ [(o +y) + 112 =1
(G0 + %1 +22) =31 + [0 +y1 +32) + 22 = 1

Example.

Consider the symbolic 2-plithogenic hyperbola:

(X—-2-4P, +3P)* (Y +1+4P)° _ 1
(14 5P, + 7P,)>2 (3—P,—P,)2

it is equivalent to:

r (o=27_ o+ D?_
1 32
[(xo +x1) — 61> [(yo +y) +1]> "
< 62 - 22 -
[(xo + %1 + x3) — 3] _ [((yo + y1 +¥2) + 2]? _q

132 1
\
Conclusion

In this paper, we defined for the first time a special AH-isometry on the symbolic
2-plithogenic fields of reals, and we used this isometry to obtain many formulas
and properties about the symbolic 2-plithogenic analytical concepts such as
differentiability, continuity, and integrability. Also, symbolic 2-plithogenic conic
sections were handled by using the mentioned isometry. In addition, many related

examples were presented to clarify the novelty of our work.
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Abstract:

This paper is dedicated to study the real inner product defined over symbolic
2-plithogenic vector spaces, where we discuss the concept of inner (scalar) products
over the symbolic 2-plithogenic vector spaces by using the corresponding
Euclidean scalar products to get theorems that describe the conditions of
orthogonality in this class of spaces. Also, we give many examples to explain the

ortho-normed symbolic 2-plithogenic spaces.

Key words: Symbolic 2-plithogenic vector space, inner product, orthogonal basis,
ortho-normed basis.

Introduction

Symbolic 2-plithogenic vector spaces and modules were defined in [1-5] as a new
generalization of classical vector spaces, and with a similar algebraic structure of
refined neutrosophic vector spaces .

Many algebraic properties of these spaces such as basis, and semi homomorphic

images were studied on a wide range.

Ahmed Hatip, Mohammad Alsheikh, lyad Alhamadeh, On The Orthogonality in Real Symbolic 2-Plithogenic and
3-Plithogenic Vector Spaces

zenodo.10031182/10.5281


mailto:kollnaar5@gmail.com

Neutrosophic Sets and Systems, Vol. 59, 2023 104

Also, we can see symbolic 3-plithogenic vector spaces/modules defined over
3-plithogenic rings. Symbolic plithogenic algebraic structures are generally very
rich in their concepts and meta-properties, see [5-8 ,23-28].

In this work, we will study the concept of real inner product over symbolic
2-plithogenic vector spaces, where we use these inner products to study the
orthogonality between symbolic 2-plithogenic vectors and ortho-normed basis.
This work is motivated by the previous published works in [9-22] that study
neutrosophic vector spaces, matrices and their refined neutrosophic extensions.

For basic definitions about symbolic 2-plithogenic vector spaces, check [1].

Main Discussion

Definition:

Let V be a vector space over the field R.

Let 2 — SPp = {ly + 1P, + [,P5; l; € R} be the corresponding symbolic 2-plithogenic
field, 2—SPy ={qo+ q1P1 + q;P;;q; €V} the corresponding  symbolic
2-plithogenic vector space, then:

@:2—SP, x2—SP; - 2 — 5Py is called a symbolic 2-plithogenic real inner product
if and only if:

1. ¢(w,n) = p(n,w) forall n,w € 2 — SP,.

2). o(w,w) =20 for all we 2—SP, (with respect to the corresponding partial
order relation defined on 2 — SPg).

3). p(u+v,w) =pw,w)+ p,w).

4). p(a.w,v) = ap(w,v);w,v €2 —SP,,a € 2 — SP;.

Theorem.

If there exists a classical inner product f:V XV — R such that:

For w =wy + w P, + wyP,,n = ny + nyP; + n,P, € 2 — SP,, we define:

pw,n) = f(wo,ng) + P1lf (Wo + wi,ng +n1) — f(wo, no)] + Po[f (Wo + wy +wa,mg +
ny +ny) — f(wo +wy,np + my)].
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Then, ¢:2—-SP, Xx2—-5SP, >2—5P; is a symbolic 2-plithogenic real inner
product.

Proof.

Assume that f:V XV — R is areal inner product defined on V.

We put ¢:2 —SPy X 2 — SP, - 2 — SP,, where:

pw,n) = f(wo,ng) + Py[f (W + wy,ng + ny) — f(wo,no)] + Po[f (wo + wy + wy,ng +
ny +ny) — f(wo + wy,ng +ny)].

We must prove that ¢ is a symbolic 2-plithogenic real inner product on 2 — SPy.
p(w,n) = f(wo,no) + Pif (wo + wy,ng +ny) — f(wo,no)] + Pof (W + wy + wy,mg +
ny +ny) — f(we + wy,ng +ny)] = f(ng, wo) + Pi[f (ng + ny, wo + wy) — f(ng, wo)l +
Po[f (ng +ny + np, wo + wy +wy) — f(ng + 1y, wo + wy)] = (n,w).

pw,w) = f(wo,wo) + Pi[f (W + wy, wo +wi) — f(wo, wo)] + P2 [f (Wo + wy +

W, Wo + Wy +wy) — f(wo + wy, wo +wy)] = [lwell® + Py[llwg + wyll? — [lwoll?] +
Py[llwg +wy + ws|I? = [lwo + w4 [I?].

And that is because:

lwoll* =0
Iwoll® + [llwg + will* = llwglI?] = llwg + wqll> = 0
Iwoll? + [llwo + will* = llwelI?] + [llwe + wy + woll? = llwg + wyll?] = llwg + wy + wy||> =0

Now, we let u = uy + u; P; + u,P, € 2 — SP,, we have:
e +w,n) = f(ug +wo,ng) + Pyf (uo + uy + wo + wy,ng +ny) — f(ug + wo,no)l
+ P, f (ug + uqy + uy + wo + wy + wy,ng +nq +ny,)
— f(uo + uy + wo + wy,ng +ny)] = p(w,n) + p(w,n)
Let a = ay + a1 P; + a,P, € 2 — SPy, then:
pa.w,n) = f(agwo, 1) + Py [f((ao + ay + az)(ug + uy + wo + wy),ng +ny) —
f(aowo,no)] + P, [f((ao +a)(ug+u; +u, +wy+w; +wy),ng+n, + nz) —
f((ao +a;+ay)(uy+u; +wy+wp),ng+ nl)] = (ay + a,P; + a,P,)p(w,n) =
a.p(w,n).
So that, ¢ is a symbolic 2-plithogenic inner product.

Remark:
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Suppose that ¢:2 —SP, X2 —SP, > 2—SP; is a symbolic 2-plithogenic inner
product.
Put f:VxV =R, with f(wy,ng) =¢@(wy+0.P; +0.P,,ny+0.P; +0.P,), where
W, g E V.
f is a classical real inner product, that is because:
f(wo,ng) = 9wy, ng) = @(ng, wo) = f(ng, wy)
f (Wo, wo) = @(wg, wp) = [lwgll* =0
f(uo +wo, o) = @(ug + wo,ng) = @(ug, o) + @(wo,no) = f(ug,no) + f(Wo, no)
f(aowo, o) = @(agwo, no) = ag@pwo, o) = aof (Wo,ng);wo €V, a0 €ER
Example.
Consider the Euclidean real inner product defined on V = R? with:
fX1,X3) = fl(*,x, "), (g, x5")] = %125 + 2" x5
The corresponding symbolic 2-plithogenic inner product defined on 2 — SPy is:
@:2—SP, X2 —SP, = 2 — SPg;
@[(x0,¥0) + (x1, Y1) Py + (x2,¥2) Py, (20, L) + (21, 81) Py + (22, £2) Py ]
= f((xO»YO), (2o, to))
+ Py [f((xo +x1,¥0 + ¥1), (20 + 21,80 + t1)) - f((xo'YO), (2o, to))]
+ Pz[f((xo +x+x, Y0+ Y1+ Y2, (2o + 21 + 25,00+t + tz))
— (o + x1,¥0 + ¥1), (2o + 21, to + t1))]
= XoZo + Yolo

+ Py [(xo + x1) (2o + 21) + (o + y1) (to + t1) — X0Zo — Yotol
+ Py[(xo + x1 + x2)(29 + 21 + 23) + (Vo + ¥1 + ¥2) (o + 1 + t3)

— (%o + x1) (29 + 21) — (Yo + ¥1) (o + t1)]
For example:
Consider X = (1,1) + (1,2)P; + (0,1)P,,Y = (1,0) + (—1,0)P, + (1,1)P,, we have:

(XOI J’o) = (1)1)) (ZOI tO) = (1'0)
(xO + X1, Yo + yl) = (2,3), (ZO + Zq, tO + tl) = (0,0)
(X0 +x1 + X2, ¥0 +y1 +¥2) = (2,4), (20 + 21 + 2,60 + t; + ;) = (1,1)

And:
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f((xOl 3’0); (ZOr tO)) =1
f((xo +x1, Y0 + Y1), (20 + 21, to + t1)) =0
f((xo +x; +x2,Y0 t V1 +¥2), (20 + 21 + 25,80+t + tz)) =6

This implies that:

o(X,Y) =1+P[0—-1]+P,[6 —0] =1 — P, + 6P,

Remark.

The norm of w = wy + w;P; + w, P, is defined with respect to ¢ as follows:

Iwll = Vow,w) = llwoll + Pi[liwg + will = [lwoll] + PyLlwg + wy + w, | -

lwo + wall].

In the previous example, we can see:

X1 = 1D+ PIE3N = IO+ PN = 12311 = V2 + Py[V13 -
V] + P,[VZ0 — VT3],

Theorem.

Let ¢ be a symbolic 2-plithogenic inner product on 2 — SPy, then:

. lw||=0;,we2—-SP,

2). lla.wll = lal.llwll;a € 2 — SPg

3). llw+nll < llwll +lInl;n € 2 - SPy

4). lpw,n)| < [lwll.[In]]

5). w L n if and only if wy L ng,wg +wy L ng +nq,wo +wy +wy L ng +nq +n,
6).If w L n, then |lw + n||? = ||w||? + ||n]|?

Proof.

1). It holds directly from the definition of norm, and from the partial order relation
defined on 2 — SP;.

2).Let a=ay+a1P, +a,P, €2 —SPs,w=wy+w P, +w,P, € 2—SP,, we have:
la.wl||? = p(a.w,a.w) = a?p(w,w), thus ||la.w| = |a|.|lw]l.

3). llw +nll = [lwy + noll + Py[llwe + wy + ng + nyll = [lwg + noll] + P2 [llwe + wy +
w, + ny +ny + ny|| — |lwg + wy + ng + nyl|], we have:

llwo + noll < [lwell + [Ingll
llwo + wy + 1o + nqll < [lwg + wyll + [Ing + nyl|
lwo + wy +w, +ng +ny + 0yl < [lwo +wy +ws|l + |Ing + 1y + nyll
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So that:

lw + nll < [lwoll + lInoll + Pylllwo + wall + lIng + nyll = llwoll = lInoll] + P[llwo +
wy + woll + [Ing + ny + npll = [lwg + will = [Ing + ny|l] < [lwll + [Inll.

4). We have:

lp(w,n)| = [p(wo,no)| + Pillo(wo + wy, g +ny)| — [@(wo, no)1] + Pello(wo + wy +
w2, Mg + Ny + np)| — o (wp + wy,ne +ny)l].
According to Cauchy-Shwartz inequality, we can write:

|f (wo, no)| < |lwpll + lInoll
|f (Wo +wy,ng +n9)| < [lwo +wyll + [Ing + nyll
If (Wo + wy +wy,ng +nq +n3)| < [lwg +wy +wyl + [Ing +ny + 1y

So that,

lp(w, )| < [lwoll-lInoll + Pilllwog + wall-ling + nqll = llwoll- llnll]
+ Polllwo + wy + wall. lIng + ny + nall — llwg + wall. [Ing + n4ll]
= [lwll[In|]

5). w L n if and only if ¢(w,n) = 0, which is equivalent to:

fwe,ng) =0=wy Lng
fwg+wy,ng+n) =>wy+w; Lnyg+ng
fwog+wy+wy,ng+n,+n) =wy+w;+w, Lng+n;+n,

6). Assume that w L n, then |lw+n|?=¢oWw+nw+n)=ew,w)+e(n,n)+
2¢(w,n) = llwll* + Inll*.

Example.

Consider the Euclidean real inner symbolic 2-plithogenic product defined
previously on 2 — SPg, we have:

w=(1,0)+(0,D)P,u=w=(2,2)+(1,3)P, — (1,1)P,,s = (0,1) + (1,—2)P,, we can
see:

ew,s) =0,lwll=1+(V2-1DP,lIsll=1+(V2—-1)P,w+s=(1,1) + (1,-1P,
w + sl =2+ 2P, = [lwll* + lIs|?

ow,u) =2+ 8—-2)P,+(6—-8)P, =2+ 6P, — 2P,

lew, W = |2] + [I8] — 12]]Py + [I6] — [8]]P, = 2 + 6P, — 2P,

lull = V8 + (V34 — V8)P, + (V20 — V34)P,

Ahmed Hatip, Mohammad Alsheikh, lyad Alhamadeh, On The Orthogonality in Real Symbolic 2-Plithogenic and
3-Plithogenic Vector Spaces



Neutrosophic Sets and Systems, Vol. 59, 2023 109

Iwll. llull = 2v8 + (2v34 — 2v/8 + 4V/8 + 2v/34 — 2V/8)P,
+ (2720 — 2v34 + 2v20 — 2V34)P,
= 2V8 + 4v34P, + (4V20 — 4V34)P,
We have 2<2vV82+6=8<2V8+4v34,2+6—2=8<2V8+4V34 + 4720 -
434 = 2/8 + 4420
Hence |p(w,u)| < [lwl. {[ul].
Symbolic 2-plithogenic orthogonal basis.
Let N = {V;, ..., V,;} be abasis of symbolic 2-plithogenic vector space 2 — SPy,, where
n is the number of elements in the basis of V.
We say that N is the orthogonal if and only if:
p(Vi,V;)=0;i#j,1<i,j<3n

It is called ortho-normed if and only if:

{(p(l 1) ;i#j,1<i,j<3n
eV, V) =1

We will answer the following question:

How can we build a symbolic 2-plithogenic ortho-normed basis of 2 — SP,?
Theorem.

Let A=1{q4,93,..,9»} be an ortho-normed basis of V with respect to the inner
product f:V XV - R.

The set Ap= {mi + (nj - mi)Pl + (sk - nj)Pz; m;,n;, s €EAL<I,j,k < n} is an
ortho-normed basis of 2 — SPy.

Proof.

According to [4], the set Ap is a basis of 2 — SPy,.

Let

My =m; + (ny —my)Py + (s — )P, € A M, =1y + (1 — 1) Py + (S — 7 )P, € A,
we have:

(M1, My) = f(my, ;) + Pi[f(n;, %) — f(my, m)] + Po[f (s i) — f(m )] =0,
thus M; 1L M,.

On the other hand,
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IMy |l = llmgll + Py[[|lmg ]| = lmall] + Pa[llsell = ][] = 1+ A= DR+ (1= DR, =1,

so that Ap is ortho-normed basis.

Example.

Let V = R3 be the Euclidean with three dimensions.

Consider 2 —SPy, = {(xg, Y0, 20) + (X1, y1,21) Py + (X2, V2, 22)P5; x;, Vi, 2 € R} be the

corresponding symbolic 2-plithogenic vector space.

It is known that A= {q; = (1,0,0),q, = (0,1,0), g5 = (0,0,1)} is an ortho-normed of

V =R3.

The corresponding ortho-normed basis of 2 — SPy is:

M; = q, = (1,0,0)

My = g1+ (g1 — q)Pr + (@2 — 1) P, = (1,0,0) + (=1,1,0)P,

M3 =q; + (92 — q1)P1 + (g1 — q2)P; = (1,0,0) + (=1,1,0)P; + (1,1,0)P;
M, = g1+ (G2 — q1)P1 + (g2 — q2)P, = (1,0,0) + (—1,1,0)P,

Ms = g, + (g3 — q1)P1 + (g3 — q3)P, = (=1,0,0) + (=1,0,1)P

Mg = q1 + (95 — )Py + (g1 — q3)P, = (1,0,0) + (=1,0,1)P; + (1,0,—1)P,
M; =q; + (g3 — q)P1 + (2 — q3)P, = (1,0,0) + (=1,0,1)P; + (0,1, -1)P,
Mg =q; + (g1 — q1)P1 + (g3 — 1) P, = (1,0,0) + (=1,0,1)P,

My =q1 + (92 — q1)P1 + (935 — q2)P, = (1,0,0) + (-1,1,0)P, + (0,—1L1)P,

My = q2 = (0,1,0)

M1 =q2+ (g1 —q2)P1 + (@1 — )P,
Mi; = g2 + (g1 — q2)P1 + (g2 — q1)P;
Mis = qz + (g1 — q2)PL + (@3 — 1) P,
My, =gz + (g2 — q2)P1 + (91 — q2)P;
Mis = q; + (92 — q2)P1 + (91 — q2)P;
Mie = g2 + (@3 — q2)P1 + (g1 — 43)P;
M7 = g2 + (g3 — q2)P1 + (92 — q3) P>
Mg = g2 + (g3 — q2)P1 + (93 — q3) P>
Mi9 = q3 = (0,0,1)

My = q3+ (g1 — q3)P1 + (g1 — q1) P,
My = q3+ (g1 — q3)P1 + (42 — q1)P;
My, = q3+ (g1 — q3)P1 + (q3 — q1)P;

=(0,1,0) + (1,-1,0)P;

=(0,1,0) + (1,-1,0)P; + (—1,1,0)P,
=(0,1,0) + (1,-1,0)P; + (—1,0,1)P,
= (0,1,0)P, + (1,—-1,0)P,

= (0,1,0) + (0,—1,1)P,

=(0,1,0) + (0,—1,1)P; + (1,0,—-1)P,
=(0,1,0) + (0,—1,1)P, + (0,1,-1)P,
= (0,1,0) + (0,—-1,1)P;

=(0,0,1) + (1,0,—1)P,
=(0,0,1) + (1,0,—DP, + (-1,1,0)P,
=(0,0,1) + (1,0,—1DP, + (-1,0,1)P,
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M,z = q3 + (q2 — q3)P1 + (1 — q2)P, = (0,0,1) + (0,1, -1 P, + (1,-1,0)P,

My, = q3 + (q2 — q3)P1 + (q2 — q2)P, = (0,0,1) + (0,1,—-1)P,

M,s = q3 + (q2 — q3)P1 + (g3 — q2)P, = (0,0,1) + (0,1,—1)P; + (0,—1,1)P,

Mye = q3 + (q3 — q3)P1 + (1 — q3)P, = (0,0,1) + (1,0,—1)P,
My; = q3 + (q3 — q3)P; + (q2 — q3)P, = (0,0,1) + (0,1,—1)P,

Example.

Consider the ortho-normed basis of V = R?, A= {q, = (1,0),q, = (0,1)}.

We find the corresponding ortho-normed symbolic 2-plithogenic basis of 2 — SPy.

M; =q, +(q1 —q)P; + (g1 — q1)P, = (1,0)
M; = q; + (g1 — q1)P1 + (g2 — q1)P>, = (1,0) + (-1, 1P,
M; = q; + (q2 — )P + (92 — q2)P, = (1,0) + (-1, 1) P,

My =q;+(q2 — q)P1 + (91 — q2)P, = (1,0) + (=1, 1DP,; + (1, -1 P,

Ms = q, + (q2 — q2)P1 + (@2 — q2)P, = (0,1)
Mg =q; +(q2 —q2)P; + (1 — q2)P, = (0,1) + (1, -1 P,
M; =q; +(q1 — q2)P1 + (g1 — q1)P, = (0,1) + (1, -1)P;

Mg =q, +(q1 — q2)P; + (@2 — q1)P, = (0,1) + (1, -1 P; + (-1L,1)P,

Remark.

Let S ={V;,..,V3,} be the ortho-normed basis of 2 —SP,, let X =X, + X,P; +

X2P2 E 2 - Spv, then:

X = AV + AV, + -+ + Az, V3, we can write:

X, V) = A1V, V) + Ay (Vo, Vo) + -+ + A3 (Vap, Vay) = A;lIV;]I%, thus:

(XV1)
A, =L = (X, V), A, = (X, V), ....

Ivall?

And so on:

So that, we get the following result:

X =X, V)V + (X, V)Vy + -+ (X, V3 Vs = X325 0 (X, V)V,
Symbolic 3-plithogenic inner product

Definition:

Let V be a vector space over the field R.
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Let 3 —SPg ={ly+ 1P +1,P, + 13P5;1; €ER} be the corresponding symbolic
3-plithogenic field, 3 —SP, = {qo + q1P1 + q2P; + q3P3;q; € V} the corresponding
symbolic 3-plithogenic vector space, then:

@:3 —SP, x 3 —SP;, - 3 — SPy is called a symbolic 3-plithogenic real inner product
if and only if:

1). ¢(w,n) = p(n,w) forall n,w € 3 —SP,.

2). o(w,w) 20 for all w € 3 —SP, (with respect to the corresponding partial
order relation defined on 3 — SPg).

3). p(u+v,w) = pu,w)+ p,w).

4). p(a.w,v) = ap(w,v);w,v € 2 —SPy,a € 3 — SP;.

Theorem.

If there exists a classical inner product f:V XV — R such that:

For w=wy+w;P; + wy,P, + w3P3,n =ny +n,P; + n,P, + n3P; €3 —-SP, , we
define:

p(w,n) = f(wo,no) + Pi[f (Wo + wy,ng + 1) — fF(wo, no)] + Po[f (W + wy + wy,ng +
ny +ny) — f(wy +wy,ng +ny)] + Ps[f(wo + wy +w, +wsz,ng +nq +n, +n3) —
fwo +wy +wy,ng +nq +ny)].

Then, ¢:3—-SPy x3—5SP, >3 —5SP; is a symbolic 3-plithogenic real inner
product.

Proof.

Assume that f:V XV — R is a real inner product defined on V.

We put ¢:3 — SPy X 3 — SP, » 3 — SPg, where:

p(w,n) = f(wo,no) + Pi[f (Wo + wy,ng + 1) — f(wo, no)] + Po[f (W + wy + wy,ng +
ny +ny) — f(wyg +wy,ng + ny)l + Ps[f(wg + wy +wy, + w3, ng +ny +n, +n3) —
f(wo +wy +wy,ng +nq +ny)].

We must prove that ¢ is a symbolic 2-plithogenic real inner product on 3 — SP,.
p(w,n) = f(wo,no) + Pi[f (Wo + wy,ng + 1) — f(wo,no)] + Po[f (W + wy + wy,ng +
ny +ny) — f(wy +wy,ng +ny)] + P3[f(wyg +wy +wy +wy,ng +nqy +n, +n3) —
fwo +wy +wy,ng + 1y +ny)] = f(ng,wo) + Pilf (ng + ny, wo +wy) — f(ng, wo)l +
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Plf(ng +ny +nywy +wy +wy) — f(ng +ny,wy +wy)l + Ps[f(ng +ny +ny +

Ny, Wo +wy +wy +ws3) — f(ng + ny +ny,wy +wy +wy)] = @(n,w).

o(w,w) = f(wo,wo) + Pi[f (wg + wy, wg + wy) — f(wo, wo)] + P [f (wo +wy +

Wo, Wy + Wy +wy) — f(wg + wy,wg +wy)] + Ps[f(wg + wy +wy +ws,wy +wy +

wy +w3) — f(Wo +wy + Wy, wo +wy +wy)] = [[woll? + Py[llwg + wyll? = [lwoll?] +
P;[llwg + wy + wyI? = llwg + wyl1?] + Ps[llwo + wy + wy + ws|* — [lwg + wy + w,l|?].
And that is because:

( Iwoll2 = 0
lIwoll? + [llwo + wyll* = llwoll?] = llwg + wylI* = 0
||Wo||2 + [llwo + W1||2 - ”Wo”Z] + [llwo +wy + Wz”2 — [lwo + W1||2] = [lwo +wy + W2||2 =0
lwo + wy +wy + ws|> >0

Now, we let u = ug + uy P; + u,P, + u3P; € 3 — SPy, we have:

pu+w,n) =en)+ewn)

Let a = ay + a1 P; + a,P, + azP; € 3 — SPg, then:

p(a.w,n) = a.p(w,n).

So that, ¢ is a symbolic 3-plithogenic inner product.

Remark.

The norm of w = wy + wyP; + w, P, + w3 P; is defined with respect to ¢ as follows:
Iwll = Vow,w) = lwoll + Pilllwo + w1l = llwoll] + Plllwo + wy + w,|l —

llwo + wal[J+Ps[llwo + w1 + wy + ws|| = llwg + wy + wyl[].

Theorem.

Let ¢ be a symbolic 3-plithogenic inner product on 3 — SPy, then:

1. |lw||=0;we3—-SP,

2). lla.wll = lal.llwll;a € 3 — SPg

3). llw +nll < lwll + lInll;n € 3 - SPy

4). low,n)| < [lwll.[In]]

5. wln if and only if wyLlngwy+w; Lng+n,wy+wy+w, Lng+ng+
Ny, Wo +wqy +wy +wz L ng+ny +n, +n;

6). If w L n, then [[w + n||? = [[w]|? + ||n||?
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Proof.

1). It holds directly from the definition of norm, and from the partial order relation
defined on 3 — SPg.

2). Let a=ag+ a1P; + a,P, +azP; € 3—SPp,w =wy+w;P; + wy,P, + w3P3; € 3 —
SP,, we have:

la.wl||? = p(a.w,a.w) = a?p(w,w), thus ||la.w| = |al.|lw]l.

3). llw +nll = [lwo + noll + Py[llwg + wy +ng + nyll — llwg + noll] + Po[llwg + wy +

w, +ng +ny +nyll — |lwe + wy +ng +nql|] + Pslllwo +wy +wy, + ws +ny +ny +
n, + nsl| — [lwg + wy + wy, + ng + ny + n,||], we have:
( llwo + noll < [lwoll + [Inoll

lwo + wy + 1o + 14|l < [lwg +wyll + lIng + nyll
lwo + wy +w, +ng +ny +n,ll < lwo +wy +wall + |Ing + 1y + 0yl
lwo + wy +wy + ws +ny +ny +n, + 13|l < |lwyg +wy +w, +wsl|| + |Ing +ny +n, + ns|

So that:

lw +nll < llwll + linl|.

4). We have:

lp(w, )| = oW, no)| + Pi[lo(wo + wy,ng +ny)| — |@(wo, no) ] + Po[lp(wo + wy +
wa, g + Ny + 1)l — [@(wo + wy,ng + )] + Psllo(wo + wy + wy +ws,ng + 1y +
ny + n3)| — lo(we + wy + wy, ng + 1y + n3)l].

According to Cauchy-Shwartz inequality, we can write:

|f (Wo, no)| < |lwoll + |l
|f (Wo + wy,ng + )| < [lwo + wyll + [Ing + nyll
|f (wo + wy +wy,n + 11 +1,5)| < lwg +wy +wyll + [Ing + 1y + 15|
lf(Wg +wy +wy + w3, ng +ny +ny +n3)| < llwg +wy +wy +ws|| + [Ing +ny +ny, + ns|

So that,
lp(w,n)| < lwll. [In]|
5). w L n if and only if ¢(w,n) = 0, which is equivalent to:

f(Wo,no) =0$W0J_n0
fwog+wy,ng+n) =wog+w; Lnyg+nyg
f(W0+W1+W2,n0+n1+n2)$W0+W1+W2ln0+n1+n2
f(W0+W1+W2+W3,n0+n1+n2+n3):W0+W1+W2+W3_Ln0+n1+n2 +Tl3

6). Assume that w L n, then |w+n|?=¢oWwW+nw+n)=¢ww)+enn)+

2¢(w,n) = llwll* + Inll*.
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Conclusion

In This paper we have studied the real inner product defined over symbolic
2-plithogenic vector spaces, where we discussed the concept of inner (scalar)
products over the symbolic 2-plithogenic vector spaces by using the corresponding
Euclidean scalar products to get theorems that describe the conditions of
orthogonality in this class of spaces. Also, we illustrated many examples to explain
the ortho-normed symbolic 2-plithogenic spaces.
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Abstract: In this work we present for the first time the concept of literal
neutrosophic markov chains and literal plithogenic markov chains. Also, we
presented many theorems related to the properties of transition matrix. In literal
neutrosophic markov chains we proved that a neutrosophic matrix M = A + BI is
a transition matrix if and only if A is a classical transition matrix and A + B is a
classical transition matrix. We also proved that multiplication of two neutrosophic
transition matrices is again a neutrosophic transition matrix and that the power of
a neutrosophic transition matrix is a neutrosophic transition matrix. Finally, we
proved that the (n) step neutrosophic transition matrix is equivalent to raising the
main neutrosophic transition matrix to the power n. In literal plithogenic markov
chains which is a generalization of the previous case we proved that M = A4 +
BP; + CP, is a plithogenic transition matrix if and only if all of the matrices 4,4 +
B,A+ B + C are transition matrices in classical concept. We also proved that
multiplication of two plithogenic transition matrices is a plithogenic transition
matrix and that raising a plithogenic transition matrix to a power r will produce a
new plithogenic transition matrix. Also, as in neutrosophic case, the (n) step

plithogenic transition matrix is equivalent to the main plithogenic matrix raised to
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the power n. Theorems were provided with suitable solved examples and

problems.

Keywords: Neutrosophic; Plithogenic; Markov Chains; Transition Matrix;

Chapman-Kolmogorov.

1. Introduction

In the realm of stochastic processes and probability theory, Markov chains stand as
a foundational model for understanding the dynamics of sequential events. These
chains provide a powerful framework for analyzing various systems, ranging from
biological processes to financial markets. However, traditional Markov chains often
struggle to capture the inherent uncertainties and ambiguities present in many real-

world scenarios. [1]-[5]

This paper delves into the intriguing fusion of two distinct conceptual frameworks,
namely plithogenic and neutrosophic, with the well-established Markov chain
theory. Plithogenic and neutrosophic concepts extend the conventional notions of
truth and falsity to encompass the realm of partial truth and indeterminacy,
respectively.[6]-[21] This unique blend of theories offers a promising avenue to
model complex systems where inherent vagueness and uncertainty play a

significant role.

Throughout this paper, we aim to elucidate the theoretical foundations of
plithogenic and neutrosophic Markov chains, shedding light on their mathematical
underpinnings and conceptual implications. We will explore how these novel

extensions can be seamlessly integrated into traditional Markov chain models which
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have many practical applications across diverse domains such as decision-making,

risk assessment, and artificial intelligence.

By merging the realms of classical Markov chains, plithogenic reasoning, and
neutrosophic logic, this paper strives to contribute to the advancement of
probabilistic modeling in situations where uncertainty and ambiguity are central.
Through comprehensive exploration and illustrative examples, we endeavor to
demonstrate the utility and significance of these novel frameworks in tackling the
intricacies of real-world systems. In doing so, we aim to provide researchers and
practitioners with a deeper understanding of the capabilities and limitations of
plithogenic and neutrosophic Markov chains, paving the way for more nuanced and

accurate modeling in complex and uncertain scenarios.

This work can be considered as a complement to previous works in probability
theory and stochastic processes built under symbolic neutrosophic structures and
can be also considered as an introduction to related fields such as queueing theory,

reliability theory, dynamic systems, etc.[11], [17], [22]-[41]

2. Preliminaries
Definition 2.1
Let R(I) = {a+ bI; I* = I}, we call R(I) the neutrosophic field of reals.
Definition 2.2
Let R(I) be the neutrosophic field of reals, and let ay = a; + a,I,by = b; +
b,I € R(I). We can say that ay >y by if:a; = by and a, + a, = b, + b,
Definition 2.3
One-dimensional isometry between R(I) and RxR and its inverse are defined as
follows:
T:R(I) > RXR;T(a+ bl) =(a,a+ b).
T-:RxR - R(I;T (a,b)=a+ (b-a)l.
Definition 2.4
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Let R(Py,P;) ={ag+ ayP1 + ayP,; P = Py, P5 = P, PP, = P,P1 = P,}, we
call R(P4,P;) Plithogenic field of reals.
Definition 2.5

Let R(P;,P,) be the Plithogenic field of reals, and let ap = ag+ a;P; +
a,P,,bp = by + b1 P; + b, P, € R(Py, P;). We say that ap >p bp if:
ay = bg,ag +a4 =2 by+by anday+a, +a, = by + by + b,
Definition 2.6

One-dimensional isometry between R(P;,P;) and the space RXRXR is
defined as follows:
T:R(P{,P;) > RXRXR;T(ap+aPq+ aP;) = (ag, a9 +aq,ay +aq +a,)
T"L:RXRXR - R(P,P,);T Y (ag,ay,a,) = ay + (a, — ap)P; + (a, — ay)P,

3. Literal Neutrosophic Markov chains

Definition 3.1

A set of random variables Xy, X;,X,, ... satisfying:
PriXni1 = lppalXn = i Xno1 =ln-1, -, Xo = b0} = Pr{Xpsr = lnnalXy = i}
is called a literal or symbolic neutrosophic markov chain if the last probability

takes the form Pr{X,;1 = in41|Xn = in}=a+bl;0<a<10<a+b<1,I?=1
Definition 3.2

We call pg""“)N = Pr(X,+1 = j|X;, = i) € R(I) literal or symbolic neutrosophic
one-step transition probability.

Definition 3.3

A squared neutrosophic matrix
My = A+ BI = [a;; + bI]

Is called a neutrosophic markov transition matrix if its elements satisfy:

1. z al-j + bl]I =1 ; i = 1,2,3,...,11
j

2. 0 SN al-j + bl]I SN 1 ; l,] = 1,2,3,...,7’1
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Example 3.1

0.31 1-0.3I
0.4+0.2I 0.6—0.21

let’s take: My = [
Then My is a neutrosophic transition matrix because:
031+1-03I=1 and 04+02[1+0.6-021=1

Also, according to the definition of comparison between Neutrosophic numbers we
have:

04+03I<y1+0Ibecause0 <1 & 03<1

1—-03I<y1+0Ibecausel1 <1 & 0.7<1

0.4+0.2] <y 1+ 0Ibecause 0.4 <1 & 0.6=<1

0.6 —0.2] <y 1+ 0] because 0.6 <1 & 04 <1

0+ 0/ <y 0+ 0.3] because0 <0 & 0<0.3

0+ 0] <y1-0.3] because0 <1 & 0=<0.7

0+ 0l <y 0.4+ 0.2] because0 < 0.4 & 0<0.6

040l <y 0.6 —0.2] because 0 < 0.6 & 0 < 0.4
Theorem 3.1

The matrix My = A + BI is a neutrosophic transition matrix if and only if A is
a crisp transition matrix and A + B is a crisp transition matrix.
Proof

Let's assume that My is a neutrosophic transition matrix and prove that

A and A + B are two transition matrices:

we have 0+0/ <ya;;+bl<y1+0/ so a;<1 , aj+bh;<1 , 0<
a;j and 0 < a;; + b;; which means that:
0<gj<land 0<gq;;+b;<1
Also, we have z_(ai]- + bijl) =1 =1+ 0l which means thatz_bi]- =
j j

Oandz ai]- =1
j

So, we can conclude that:
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0<g;<=<1 andz a;j =1= A isa transition matrix.
j

0<a;+bj=<1 andz (aij + bij) = 1= A+ B is a transition matrix.
J

Now, let's assume that both A and A+B are transition matrices and prove that My =

A + BI is a neutrosophic transition matrix:

since A,A+ B are transition matrices then 0 <a;; <1, 0 <aj;+b; <1 which
means that 0 < a;; + b;;l <1

Also, we have Z a;; = 1and Z (a;j + b;j) =1 that yields to the fact
j J

]
J

Then we conclude that Z (aij + bijl) =1 and this proves the theorem.
j

Example 3.2

Let's take the matrix:

[ 03I 1-03]
My = [0.4 +02] 06— 0.21]

that is:
MN=[0(.)4 0?6]-'_[8:; :83]’

A=lo4 o6l @@ 4+B=[e oy

0.6 04

we note that A and A+B are two transition matrices fulfill conditions
Zaij=1;i=1,2 0<a;<1;ij=12

J

Zaij+bij=1;i=1,2 0<a;+b;<1;i,j=1.2

J
Theorem 3.2

If M; and M,are two neutrosophic transition matrices, then their multiplication is a
neutrosophic transition matrix.

Proof
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Let M, = [a21 + byl az; + by,l M = Co1 T dpl  Cpp +dyyl

M,. M,

_ [(an + b111) (11 + di1l) + (12 + bial) (21 + dpgl)  (agq + bi1l) (12 + dip]) + (12 + bial)(Co3 -
(az1 + by1) (11 + daql) + (azp + bpal)(Cpq + dopl)  (azq + bygI)(c12 + dipl) + (azz + baal)(c2z -

Let's check the first condition:

(a11 + b11D)(c11 + diaD) + (a2 + biaD) (€21 + daql) + (@11 + b1sl) (12 + di2]) + (as;
+ bipD)(c22 +dy2l) =

(a11 + b1aD)[(c11 + dy1D) + (c12 + d12D)] + (a2 + b1aD)[ (€21 + doa]) + (c22 + d22])]=

(a11 + by1l) + (a2 + bipl) =1

Similarly, we find that sum of elements of the second row of matrix (M;.M,) is1

Also, since all elements of the matrices M; and M, are positive and since that sum

of each row of the matrix M;.M, is 1 then we conclude that each element lays

between 0 and 1

Example 3.3
Let My = [0.304}6(1).11 0?7 —Oclfil] Mz = [O.ZOTZ?BI 0i8— 0(.)25;1
M. M, = [ 0.61 1—-0.61 . [0.2 + 0.3 0.8-0.31
03+0.1/ 0.7-0.11] 0.21 1—-0.21
_ 0.32I + 0.061? 1-0.32] — 0,061 ]
0.6 +0.25I + 0,01/> 0.94 — 0.25] — 0,01/?
0.381 1—0.38/

~l0.6+0.26] 0.31—0.26]

Note that the matrix M;. M, Itis a neutrosophic transition matrix because it satisfies
the assumed conditions.
Definition 3.4
Let My = A + BI be a neutrosophic matrix and let r € N, then:
My =A"+ I[(A+B)" — A"]
Theorem 3.3
If My neutrosophic transition matrix, then My is a neutrosophic transition matrix.
Proof

Straight forward by mathematical induction according to theorem 3.2.
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Example 3.4:
1 0.6l 1—0.6]
Let My = [0.3 +01] 0.7—0.1]
2 [ 0.6l 1—0.6] 0.61 1—0.6]
My = My My = [0.3 +0.11 0.7-0.111" [0.3 +0.11 0.7 -=0.11

_ [ 0.3 —0.08] + 0.312 0.7 + 0.081 — 0.312 ]
0.21 + 0.221 + 0.051> 0.79 — 0.22] — 0.05/?

[ 0.3—-0.38/ 0.7+ 0.38]
0.21+0.271 0.79 - 0.271

Notice that MI%I is a neutrosophic transition matrix, also:

0.3—-0.381 0.7+ 0.381 ] [ 0.61 1-0.6]
0.21+0.271 0.79-0.27711"10.34+ 0.1/ 0.7 —0.1/

_ [ 0.21 + 0.3641 — 0.190/>  0.79 — 0.3641 + 0.190/? ]
0.237 + 0.1241 + 0.135I? 0.763 — 0.1241 — 0.135]2

_ [ 0.21+0.1741 0.79 — 0.1741 ]
0.237 + 0.2591 0.763 — 0.259]

M3 = M:2. My =

We note that My is also a neutrosophic transition matrix.

Theorem 3.4
Let My = A + BI be a neutrosophic transition matrix and let M ,E,n) be the (n) steps
transition matrix then:
My = M
Proof
By takin the isometric image we have:
T(M{”) = A™, (A + B)™)
Since both A™, (A + B)™ are transition matrices in classical scene then by the well-known
Chapman-Kolmogorov theorem we have:
AW = A" (A+B)™ = (4 +B)"

Which means that:
(M) = (4" (4 + B)™)
Now, taking inverse isometry yields to:

T (T(M,E,”))) = A"+ [(A+B)" — A" = M"
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4. Literal Plithogenic Markov chains

Definition 4.1

A set of random variables X,, X1, X, ... satisfying;:

PriXpi1 = ing1lXn = i Xnq =iy, 0 Xo = b0} = Pripng = bnpilXn = i}

is called a literal or symbolic neutrosophic markov chain if the last probability takes
the form Pr{X,,; = ip41lXp = ip}=a+bPi+cP0<a<10<a+b<10<a+
b+c<1;Pf =P,P; =P,

PP, =P,P, =P,
Definition 4.2

We call pg""“)P = Pr(X,+1 = jlX,, = i) € R(P4, P,) literal or symbolic plithogenic

one-step transition probability.

Definition 4.3

A squared plithogenic matrix
MN =A+ BP1 + CP2 = [aij + bijpl + Cijpz]nxn
Is called a plithogenic markov transition matrix if its elements satisfy:

1. Z ai]- + bi]'Pl + Ci]'PZ =1 ;i=1,23,....,n
j

2. 0 Sp aij + bijpl + CijPZ Sp 1 ; l,] = 1,2,3,....,n

Example 4.1

0.3P, + 0.1P, 1—0.3P, — 0.1P,

let'stake: Mp =104 4 0.2P, — 0.6P, 0.6—0.2P, +0.6P,

Then Mp is a plithogenic transition matrix because:
0.3P, + 0.1P, + 1 — 0.3P, — 0.1P,

=1 and 0.4+ 0.2P, — 0.6P, + 0.6 — 0.2P, + 0.6P, = 1
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Also, according to the definition of comparison between plithogenic numbers we
have:

0.3P; + 0.1P, <p 1 + 0P, + 0P, because 0<1 & 0.3 <1

1—-0.3P, —0.1P, <p 1+ 0P, + OP, because 1 <1 & 0.7<1

0.4+ 0.2P, — 0.6P, <p 1+ OP; + OP, because 0.4 <1 & 0.6 <1

0.6 — 0.2P; + 0.6P, <p 1+ OP; + OP, because 0.6 <1 & 0.4 <1

0+ 0P; + 0P, <p 0.3P; + 0.1P, because 0 <0 & 0<0.3

0+ 0P, +0P, <p1—0.3P, —0.1P, because 0 <1 & 0<0.7

0+ OP; + 0P, <p 0.4 + 0.2P, — 0.6P, because 0<0.4 & 0<0.6

0+ OP; + 0P, <p 0.6 — 0.2P; + 0.6P, because 0 < 0.6 & 0<0.4
Theorem4.1

The matrix Mp = A+ BP; + CP, is a plithogenic transition matrix if and only
if A is a crisp transition matrix, A + B is a crisp transition matrix and A+ B + C is
a crisp transition matrix.
Proof
Let's assume that Mp is a plithogenic transition matrix and prove that 4,4 +

B and A + B + C are transition matrices:
we have 0+ 0P, + OP, <p aj; + bjjP; + ¢;jP, <p 1+ 0P, + 0P, so a;; <1 , a;j+b;; <
land a;; + bjj + ¢ < 1
0<a; ,0=<a;+b;jjand 0 < a;; + b;; + ¢c;; which means that:
0<gj<land 0<gq;;+b;<1
Also, we have Z _(aij + b;jP; + cijPZ) =1=1+ 0P; + 0P, which means
j

thatz Cij =0 Z bl] =0 andz ai]- =1
j j j

So, we can conclude that:

0<g;<1 andz a;; =1 = A is a transition matrix.
j

0<a;+bj=<1 andz_(aij + bij) = 1= A+ B is a transition matrix.
j
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0<aj+bj+c; =1 andZ(aii + by; + ci]-) = 1= A+ B+ Ctransition matrix.
j

Now, let's assume that both A, A+B and A+B+C are transition matrices and prove
that Mp = A+ BP; + CP, is a plithogenic transition matrix:
since A,A + B,A + B + C are transition matrices then 0 <a;; <1, 0 <a;;+b;<1,0<
aj + by + ¢;; < 1 which means that 0 <p a;; + b;jP; + ¢;;P, <p 1
Also, we have Z aj =1 ,Z_(ai]- + b;j;) = land Z (aij + bj +¢;j) =1 thatyields

j j j
to the fact thatz 'bjj =0 and Z_cij =0

J j

Then we conclude that Z (aij + b P, + cijPZ) =1 and this proves the theorem.
j

Example 4.2

Let's take the matrix:

M _ O.3P1 + 0.1P2 1 - O.3P1 - 0.1P2 ]
P710.4 +0.2P, — 0.6P, 0.6 —0.2P, + 0.6P,
that is:
10 1 0.3 —-0.3 01 -0.1
Mp = [0.4 0.6] + [0.2 —0.2] Py + [—0.6 0.6 | P2
0.3 0.7

A=[0(.)4 0?6] and A+B=| | and A+B+C=[0(')4 Oﬂ =

0.6 04

we note that 4,4+ B and A + B + C are transition matrices fulfill conditions
Zaij=1;i=1,2 0<a;<1;ij=12

J

Zaij+bij=1;i=1,2 0<a;+b;<1;i,j=1.2

j
zaij+bij+cij =1 ;i=12 O0<a;+b;+c;<1 ;ij=12

J
Theorem 4.2
If M; and M,are two plithogenic transition matrices, then their multiplication is a
plithogenic transition matrix.

Proof
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Let
a;; + by P +c4P, ag; +bypP + C12P2] M
azy + by Py + 1Py az; +byyPy + 0P 2

_ [dn +e1P + 1P, dyp; +epP + lePZ]
dyq + e3Py + 1P, dyy + e3P +15,P,

|

Where
x = (ag; +by1Py 4+ ¢11P)(dyg + €44 Py + f11P)
+ (a12 + byoPy + ¢5P) (dq + €21 Py + £51P)
y = (a11 + b11Py + ¢11P)(d1z + €1oPy + £15P) + (212 + b1oPy + ¢15P5) (daz +e2,P
+ 2,P)
z = (az1 + by Py + 21 P)(dy1 + €11y +£11P) + (azs + 2P + 20P) (day + €21 Py
+ 51 P)
W = (az1 + b1 Py + 21 P2)(dyz + €12Py +£15P,) + (az2 + b2aPr + €22P,) (daz + €22P
+ f22P2)
Let's check the condition:
(@11 +by1 Py +¢11P)(d1y + e Py + £13P) + (a2 + bioPy + €1oP)(dog +€29P1 +
f21P;) + (@11 + b11 Py + €11 P)(dyz + €12P; + £15P,) + (ag2 + byoPy + ¢12Pp) (daz +
2Py + £2,P2)
= (ay; + by1 Py + ¢11P)[(d1g + €11 Py + f11P) + (dyz + €12P; + £15P,)]
+ (212 + b12Py + ¢42P2)
[(d21 + €21 P + f51P2) + (dzz + €22Py + £55P5)]
= (a11 + by1 Py +¢1P) + (@12 + by +cpP) =1
Similarly, we find that sum of elements of the second row of matrix (M;.M;) is1
Also, since all elements of the matrices M; and M, are positive and since that sum
of each row of the matrix M;.M, is 1 then we conclude that each element lays

between 0 and 1

Example 4.3
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[ 0.6P, + 0.2P, 1—0.6P, — 0.2P, ] o —
~ 0.3+40.1P, —0.5P, 0.7 —0.1P, + 0.5P,| *"'2 =

0.2+ 0.3P, —0.1P, 0.8—0.3P, + 0.1132]

Let M,

0.2P; + 0.3P, 1—0.2P, — 0.3P,
M,. M,
[ 0.6P, +0.2P, 1— 0.6P, — 0.2P, ] 0.2+ 03P, —0.1P, 0.8—0.3P, + 0.1P2]
0.3+ 0.1P, —0.5P, 0.7 —0.1P, + 0.5P,|'| 0.2P, + 0.3P, 1—0.2P, — 0.3P,
[ 0.06PZ + (0.32 — 0.22P,)P; + 0.34P, — 0.08P? —0.06P% + (—0.32 + 0.22P,)P, — 0.34P, -
~ [0.01PZ + (0.25 — 0.09P,)P; + 0.06 + 0.08P, + 0.20PZ —0.01P2 + (—0.25 + 0.09P,)P; + 0.94 — 0.
0.06P; + (0.32P, — 0.22P,) + 0.34P, — 0.08P, —0.06P, + (—0.32P, + 0.22P,) — 0.34P, +
~ 10.01P, + (0.25P; — 0.09P,) + 0.06 + 0.08P, + 0.20P, —0.01P, + (—0.25P; + 0.09P,) + 0.94 — 0.0
_ [ 0.38P; + 0.04P, —0.38P, — 0.04P, + 1
0.26P, + 0.06 + 0.19P, —0.26P, + 0.94 — 0.19P,

Note that the matrix M;. M, It is a plithogenic transition matrix because it satisfies
the assumed conditions.
Definition 4.4
Let Mp = A+ BP; + CP, be a plithogenic matrix and let r € N, then:
Mp=A"+ P[(A+B)" — A"|+P,[(A+B+C)"—(A+B)" ]
Theorem 4.3
If Mp plithogenic transition matrix, then My is a plithogenic transition matrix.
Proof

Straight forward by mathematical induction according to theorem 4.2.

Example 4.4
Lot M. — 0.6P; + 0.2P, 1—0.6P, — 0.2P, ]
¢ P~10.3+0.1Pp, — 0.5P, 0.7 —0.1P; + 0.5P,
M2 = Mp. Mp
[ 0.6P, + 0.2P, 1 —0.6P, — 0.2P, ] 0.6P; + 0.2P, 1 —0.6P, — 0.2P,
~10.3+0.1P, — 0.5P, 0.7 —0.1P, + 0.5P,] |10.3 + 0.1P, — 0.5P, 0.7 — 0.1P, + 0.5P,
_ [ 0.30P7 + (0.52P, — 0.08)P; + 0.14P} + 0.3 — 0.56P, —0.30PZ + (0.08 — 0.52 P,)P; + 0.56P, -
[0.05P2 + (0.22 — 0.18 P,)P; — 0.14P, — 0.35P7 + 0.21 —0.05PZ + (—0.22 + 0.18P,)P; + 0.79 + (
_ [ 0.30P; + (0.52P, — 0.08P;) + 0.14P, + 0.3 — 0.56P, —0.30P; + (0.08P; — 0.52 P,) + 0.56P, —
~ 10.05P; + (0.22P, — 0.18 P,) — 0.14P, — 0.35P, + 0.21 —0.05 P, + (—0.22P; + 0.18P,) + 0.79 + 0.
_ [ 0.22P; + 0.1P, + 0.3 —0.22P; + 0.P, + 0.7
~ 10.27P, — 0.67P, + 0.21 —0.27 P, + 0.79 + 0.67P,

Notice that Mg is a plithogenic transition matrix.
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Theorem 4.4

Let Mp = A + BP; + CP, be a plithogenic transition matrix and let M ,S”) be the (n)

steps transition matrix then:

M = M}
Proof

By takin the isometric image we have:
T(MV) = (A™, (A +B)™, (A + B+ C)™)

Since A™, (A4 B)™, (A4 B+ C)™ are transition matrices in classical scene then by the
well-known Chapman-Kolmogorov theorem we have:
AMW = A" (A+B)™ =(A+B)"A+B+0)™=(A+B+0)"

Which means that:

T(M{”) = (4™ (4 + B)", (A + B + C)")

Now, taking inverse isometry yields to:

T-1 (T(M,S”))) = A" + [(A+ B)" — A"]P, + [(A+ B + C)" — (A + B)"|P, = M"

5. Conclusion

In conclusion, this paper pioneers the integration of symbolic neutrosophic and
plithogenic concepts into the well-established framework of Markov chains,
yielding a profound extension that encapsulates the nuances of uncertainty and
ambiguity. Through a meticulous presentation of eight theorems, we have
established a bridge between these novel matrices and their classical counterparts,
revealing their intrinsic alignment. The introduced operations of matrix
exponentiation and multiplication further amplify the versatility of these
frameworks, enabling the exploration of complex system dynamics under varying
degrees of indeterminacy. Moreover, the adaptation of Chapman-Kolmogorov
theorem to the symbolic neutrosophic and plithogenic domains augments our

ability to analyze state transitions in environments laden with partial truth. This
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study not only advances the theoretical frontiers of probabilistic modeling but also
lays a fertile ground for practical applications across disciplines such as decision
analysis, risk assessment, and artificial intelligence. As the confluence of traditional
and innovative theories continues to shape the landscape of uncertainty modeling,
symbolic neutrosophic and plithogenic Markov chains stand poised to offer

invaluable insights into the intricate fabric of real-world systems.
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Abstract:

Symbolic 3-plithogenic sets as a generalization of classical concept of sets were
applicable to algebraic structures. The symbolic 3-plithogenic rings and fields are

good generalizations of classical corresponding systems.

In this paper, we study the symbolic 3-plithogenic real functions with one variable
by using a special algebraic function called AH-isometry. In addition, we discuss
the symbolic 3-plithogenic simple differential equations and conic sections by
using this isometry. Also, many examples will be presented to explain the novelty

of this work.

Keywords: symbolic 3-plithogenic set, symbolic 3-plithogenic real function,

symbolic 3-plithogenic circle, symbolic 3-plithogenic ellipse.
Introduction and basic definitions

Symbolic n-plithogenic algebraic structures are considered as new generalizations
of classical algebraic structures [1-3], such as symbolic 2-plithogenic integers,

modules, and vector spaces [4-8].
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Symbolic 2-plithogenic structures have a similar structure to the refined
neutrosophic structures and many non-classical algebraic structures defined by

many authors in [9-17,20-23, 24-30].

In the literature, many mathematical approaches were carried out on neutrosophic
and refined neutrosophic structures, were a special function called AH-isometry
was used to study the analytical properties and conic sections [11-12, 18-19], and
that occurs by taking the direct image of neutrosophic elements to the classical

Cartesian product of the real field with itself.

In this work, we follow the previous efforts, and we define for the first time a
special AH-isometry on the symbolic 3-plithogenic field of reals, and we use this
isometry to obtain many formulas and properties about the symbolic 3-plithogenic
analytical concepts such as differentiability, continuity, and integrability. Also,

symbolic 3-plithogenic conic sections will find a place in our study.

Main Results

Definition.
Let 3 —SP; ={a+ bP; + cP, +dP;;a,b,c,d € R} be the 3-plithogenic field of real
numbers, a function f = f(X):3 — SPr —» 3 — SPy is called one variable symbolic
3-plithogenic real function, with

X =x9+x1P; +x,P, + x3P; €3 — SPg.
Definition.
Let 3 — SP; be the symbolic 3-plithogenic field of reals, we define its AH-isometry
as follows:
[:3—SP; > R XRXR XR such that:
I(x+yP+2zP,+tP;))=(x,x+y,x+y+zx+y+z+1t).
It is easy to see that I is a ring isomorphism with the inverse:
I"™':RXR X R X R - 3 — SP; such that:

I, y,z,t) =x+ (y—x)P, + (z—y)P, + (t — z)P;
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Definition.
Let f:3—SP; >3 —SP; be a symbolic 3-plithogenic real function with one
variable, we define the canonical formula as follows:
I"1oI(f):3 — SP, > 3 — SPg
Example.
Considerf (X) = X% — P; + P;, its canonical formula is:
I(f(0)) = OO +I(=Py + Ps)
= (X, X0 + X1, Xg + X1 + X2, X0 + X1 + x5 + x3)? + (0,—1,—1,0)
= (x0% (xo +x1)% = 1, (xg + %1 + %)% — 1, (%0 + x1 + 22 + x3)%)
"o I(f(X)) =
xo? + Py[(xg + x1)% — x0* — 1] + Pp[(x0 + x4 + x2)% — (29 + x1)?]
+ P3[(xo + x1 + x5 + x3)% — (xo + x4 + x2)% + 1]
For example:
f(A+P) =1 +P)>— P, +P;=1—P, +4P;.
If we put values xg = 1,x; =0,x, =0,x, =1
in the canonical formula, then we get:
I7 e I(f(X) = ()2 + P (D% = (D = 1] + P,[(1D* = (D] + P3[(2)* = (1)* + 1] =
1— P, +4P,.
The canonical formulas of famous functions:
1. The exponent function:
eX; X = xg+ x,P; + x,P5 + x3P5, 171 o I(eX) =
I_l(ex(’, eXotX1 gXotX1tXy oXotX1+XatXs) =
exo + Pl [ex0+x1 _ exo] + PZ [ex0+x1+x2 _ ex0+x1] + Ps[ex0+x1+x2+x3 _ ex0+x1+x2]
2. The logarithmic function:
In(X); X = xq + x, Py + x,P, + x3P5,

"o I(In(X)) = I"1(In(xy) , In(xy + x1), In(xy + x; + x3), In(xy + x1 + x5 + x3)) =
In(xy) + Py[In(xy + x1) — In(xg)] + Py[In(xg + x; + x5) — In(xg + x1)] + Ps[In(xq +
X1+ x5 + x3) — In(xy + x1 + x5)].

3. Famous trigonometric functions:
sin(X) = sin(xy) + P, [sin(xy + x;) — sin(xg)] + P,[sin(xy + x; + x5) — sin(xy + x1)]
+ P5[sin(xg + x1 + x, + x3) — sin(xy + x; + x3)]
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cos(X) = cos(xy) + P;[cos(xy + x1) — cos(xy)]
+ P,[cos(xqy + x; + x5) — cos(xg + x4)]
+ P3[cos(xg + x1 + x5 + x3) — cos(xg + x1 + x;)]
tan(X) = tan(x,) + P;[taan(x, + x;) — tan(x,)]
+ P,[tan(xy + x1 + x,) — tan(xy + x1)]
+ Py[tan(xy + x1 + x, + x3) — tan(xy + x1 + x;)]
And so no.
Definition.
A symbolic 3-plithogenic real number T = t, + t;P; + t,P, + t3P; is called positive
if and only if
to=0,tg+t; =0,tg+t; +t, > 0,tg+t; +t, +t3=0.
For example 3 + 2P; — P; > 0, that is because, 3 >0, 5>0,5>03+2-1=4>
0.
Definition.
Let f:3—SPr >3 —SP; be a symbolic 3-plithogenic real function with one
variable X = xy + x;P; + x, P, + x3P;, then:
a. f is differentiable if and only if I(f(X)) is differentiable.
b. f is continuous if and only if I(f(X)) is continuous.
c. f isintegrable if and only if I(f(X)) is integrable.
Example.
Find the derivation of f(X) = X% + P; in two different ways.
Solution.
The regular way is f(X) = 2X.
The canonical way is:
[Tt I(f(X)) =
I71(x02, (g + x1)?, (xg + %1 + x2)2%, (%9 + x1 + x5 + x3)%) +171(0,0,0,1) = x4 +
Pi[(xo + x1)% = x0%] + P[(xg + x1 + x2)% — (xp + x1)?] + P3[(xp + x1 + x5 + x3)% —
(xo + x1 + x3)% +1].

First, we have: (xy2)'. = 2x,.

X0

[Cxo + 951)2]',%”1 = 2(xo + x1),

Nabil Khuder Salman, On The Symbolic 3-Plithogenic Real Functions by Using Special AH-Isometry



Neutrosophic Sets and Systems, Vol. 59, 2023 143

[(x0 + %1 + x2)?%] = 2(xo + x1 + x3),

Xo+Xx1+Xxy

[(xO + x1 + xZ + x3)2]’ = Z(XO + xl + xZ + X3),

Xo+X1+Xz+X3
Thus,

FX) = 2x + Pi[2(xo + x1) — 2x0] + Po[2(x + %1 + x3) — 2(xo + x1)] +
P3[2(xg + x1 + %32 + x3) — 2(xg + x1 + x3)] = (2x¢) + 2x,P; + 2x,P, + 2x3P; = 2X.
Example.

Find the value of [+

o e*dX in two different ways.

Solution;

1+P; +Py+P; 14P; +P,+P.
eXdX — [eX] 1782 3 1+P1+Py+P3 __

The  regular  way: [ o =e

el+P1+P2+P3 _— 1.

The canonical formula way:

1o I(f(X)) = e¥0 4 P [e¥ot¥1 — g¥X0] 4 P,[eXotX1tXs _ oXot¥1]

+ P3 [ex0+x1+x2+x3 — ex0+x1+x2]

We have:
1 2 3
jexodxo =e— 1,] e d(xy + x,) = €% — 1,j eXot*¥1itxad (xo + x; + x3)
0 0

0
3

=e3 - 1,f eXot it X (g + 21 + x5 +x3) =e* — 1
0

Thus, o

eXdX=e—1+Pe*—1—e+1]+Pe —1—-e?+1]+

Psle* —1—e®+ 1] =e— 1+ Pi[e? —e] + P,[e3 — e?] + P3[e* — €3] = et *PtPetPs
1

Applications to differential equations.

Example.

Solve the equation Y = C;Y =y, + y,P; + ¥,P, + y3P; is a function, and C = ¢, +
c1P; + c; P, + ¢c3P5 is a constant.

Wehave yo = fo,y1 = f1,¥2 = fo¥3 = f3tR > R.

V= 00) 5, + P[00+ 91) 4, — D00, |+
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P, [()’0 +y t YZ)’x0+x1+x2 — (o + Y1)’x0+x1] + P3 [(3’0 tyity2 + 3’3)'x0+x1+x2+x3 -

o+ + )’2)’x0+x1+x2] =Co+ 1Py + 2Py +c3bs,
so that:
(J’o)’xo =Co
(Vo + 3’1)’xo+x1 =0
oty + J’Z)’x0+x1+x2 =0C2
oty +ty + J’3)'xo+x1+x2+x3 =C3

Yo = CoXg + My
Yo+ y1=ci(xg +x) +my
Yot yity2=c(xg +x;+x3) + my
Yo+ Y1ty +ys=c3(xo+x1+x,+x3) +my

This implies that:
Y = (coxo + mo) + Pilcy(xo + x1) + my — (coxo + mo)] +
Pylcy(xg + x1 + x3) + my — ¢ (%o + x1) + my] +
P3[c3(xg + x1 + x5 + x3) + M3 — c2(x + %1 + x3) —my];
x; are real variables, m; are real constants.
Example.
Solve the differential equation Y = CY, where C = cq + c;P; + P, + 3P, Y = yo +
y1P1 +y2P, +y3Ps .
Solution.
Y = CY equivalents:

(}’o)'xo = Co)o
(vo + 3’1)’x0+x1 = (co + c)(o +¥1)
Yo +y1+ 3’2)'x0+xl+x2 =(cot+c1+ ) +y1+y2)
Vo+y1+y. + )’3)’x0+x1+x2+x3 =(cotert+c+e3)o+y1+y2, +y3)

So that:
Yo = koe0¥o
yo + y1 — kle(CO+C1)(x0+x1)
y() + y]_ + yz — kze(C0+C1+C2)(x0+X1+x2)
Yo + V1 + ¥, + ys = k3e(c0+c1+c2+63)(x0+x1+x2+x3)
Thus:
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Y = koecoxo + P1 [kle(C°+C1)(x°+x1) _ koecoxo] + Pz [kze(c0+c1+c2)(xo+x1+x2) _
kle(c0+c1)(x0+x1)] + P, [kge(CO+Cl+cz+c3)(x0+x1+x2+x3) — kze(CO+61+CZ)(x0+x1+x2)].
Applications to geometric shapes:
Definition.
1). We define the symbolic 3-plithogenic circle as follows:
(X—A4)>+ (Y -B)?*=R%A=a,+a,P, +a,P, +a3P;,B =by+ b,P; + b,P, +
b3P3,R =19+ 1Py + 5P, + 13P3,Y = yo +y1P; + y,P, + y3P3,x = x5 + x,P; +
X, P, + x3P3, with a;, by, 13, %;,¥; €ER

2). We define the symbolic 3-plithogenic sphere as follows:
X—-A4)¥*+ Y -B)¥*+(Z—-C)?*=R*X,AB,CRY,Ze3—-SP
3). We define the symbolic 3-plithogenic ellipse as follows:

—A)2 _np)2
CA B = 1;X,A,B,T,S,Y €3~ SP and T,$ invertible.

4). We define the symbolic 3-plithogenic hyperbola as follows:

(x-4)% (Y-B)?
L

=1,X,A,B,T,S,Y €3—-SP, and T,S invertible.

Example.

1). X—14P,)%>+ (Y —3+2P, — P, — P;)> = (1 + 2P;)? is a 3-plithogenic circle.
2. X—104+P +P)?+ (Y +P)?>+(Z—P+P;)2=(1+P, +5P;)% isa
3-plithogenic sphere.

) (X—P,—P3)? (Y+P;—P;)?
© (1+P1+P3)2  (2—P1+5P;3)2

= 1 is a 3-plithogenic ellipse.

4) (X=2Pp)? _ _(r+1+arp)? 4 is a 3-plithogenic hyperbola.

" (14+P;+3P,)2  (13-2P;+P;)?

Theorem.
1. Any symbolic 3-plithogenic circle is equivalent to four classical circles.
2. Any symbolic 3-plithogenic sphare is equivalent to four classical spheres.
3. Any symbolic 3-plithogenic ellipse is equivalent to four classical ellipses.
4. Any symbolic 3-plithogenic hyperbola is equivalent to four classical
hyperbolas.
Proof.

1. Consider the symbolic 3-plithogenic circle:
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(X — A)? + (Y — B)? = R?, then by using the isomorphism defined before, we get:
I[(X — A)?] = [1(X) — (D]
= (xo —ag, (xg + x1) — (ag + ay), (xg + x1 + x3)
—(apg+a;,+ay),(xog+x;+x, +x3)—(ap+a, +a, + a3))2
= ((xo —ag)?, ((xo + x1) — (ap + al))z, ((xo + x1 + x3)
—(ag +a; +a3))% ((xg + %1 + x5, + x3) — (ag + a; +a, + ag))z)
I(Y = B)?] = [1(Y) — I(B)]?
= (o = bo)% (o + ¥1) = (o +b1)), (o + y1 +¥2)
— (Bo + by +b5))", (Vo + Y1 + Y2 +¥3) — (bo + by + by + b))?)

I(R?) = [I(R)]* = (ro%, (ro + 12, (ro + 1y + 12)%, (g + 1y + 12 +13)?)

Thus, it is equivalent to:

((to +x1) — (ag + a)” + (G + y1) — (bo + by))” = (ry +1)?

( (o — ag)® + (o — by)? = 1p?
2 2
((xo +x;+x)—(ap+a; + az)) + ((J’O +y+y,) —(by + by + bz)) =@p+mn+ )2

2 2
\((x0+x1 + X3 +x3)—(a0+a1+a2+a3)) +((}’0+3’1+3’2 +}’3)_(b0+b1+b2+b3)) = +r +r,+13)?

2. Consider the sphere (X —A)?+ (Y —B)*+ (Z—C)*>=R?, we use the
isomorphism I, to get:

10X — 4)2] = (o — 0)?, (o + 1) = (a0 + @), (o + 21 + 25)

—(ap +a; + )% ((xo + x4 + x5 + x3) — (ag + a; + a, + a3))2)
1Y = BY?1 = (0 = bo)%, (o + 1) = (B + b)) (o + y1 + 2)

— (bo + by +b2))", (Vo + Y1 + Y2 +¥3) — (bo + by + by + b3))?)
11z = €)%1 = ((z0 = €)% (20 + 21) = (co + 1)), (20 + 21 + 22)

—(co+ ¢+ cz))z, ((ZO +z1+ 2,4+ 23) —(co+cy+c, + 63))2)
IR®) =[I(R))> = (r?, (g + 1% (ro + 1y +15)%, (g + 1y + 15 +13)%),
hence we get:

(o — @)? + (o — bo)? + (2 — €)% = 1

{ ((xo +x) — (ap + a1))2 + ((J/O +y1) — (by + b1))2 + ((Zo +2z)— (¢ + 01))2 = (rp+1)?
((xo +x; +x,) —(ag +a; + az))z + ((YO +y1+y2) = (by + by + bz))z + ((Zo +z1+2)—(co+ ¢y + Cz))z =+ +1)?
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And
2
((xo+x1+x2+x3)—(a0+a1+a2+a3)) +((}’0+}’1+}’2+}’3)_(b0+b1+

2 2
b, + b3)) + ((zo +zy+2,+23)—(cp+cg+cp + c3)) =y +r +r,+13)2

(X A)2 (v-B)?

S2

+

3. Consider the ellipse
! [(X — A)? ]

= 1, we use the isomorphism I to get:

TZ

2 2 2
_ (xo — ap)? ((xo +x1) —(ap + a1)) ((xo +x;+x) —(ap+a; + az)) ((xo +x;+x, +x3) —(ap+a; +a; + a3))
to? (to + t1)? ’ (to + t1 + t3)? ’ (to +tg + ty + t3)?

v - By
’[ =]

(Yo — bo)? ((YO +y1) — (bo + b1)) ((YO +y1 +y2) — (bo + by + bz)) (()’o +y1+y2 +y3) — (b + by + by + b3))
502 ’ (SQ + 51)2 ’ (SO + S1 + 52)2 (SO + S1 + Sy + 53)2

I1(1) = (1,1,1,1), thus:
( (xo —ag)® (¥ — by)?
2 + 2
to So
2 2
((xo +x1) — (ap + a1)) " ((J’o +y1) — (by + b1))
(to +t1)? (so +51)2

2 2
((xo +x; +x) —(ap+a; + az)) + ((J’O +y1+y2) —(bo+ by + bz)) _
\ (to +t1 +t5)? (o + 51 + 53)?

And,

=1

2
((xo +x;+x,+x3)—(ap+a; +a, + a3))
(to+t; +t, +t3)?

(()’0 +y1+y2+y3) —(bg+ by + by + bs))
(so + 51+ 55 + 53)?

X-A)%2 (Y-B)?
2 52

( (xo — ao)? - bo)? 1
to? Se2
((xo +x;) — (ap + a1))2 _ ((J’o +y1) — (by + b1))2
(to +t1)? (so +51)2
((xo +x; +x) —(ap+a; + az))z B (()’0 +y1+y2) — (bo+ by + bz))2 _
\ (to + t; +t,)? (so + 51 + 5)2 B

4. Consider the hyperbola ( = 1, by a similar discussion, we get

and
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2
((xo + x1 + xz + x3) - (ao + al + a2 + a3))
(to + t1 + tp + t3)?

2
_((3’0+3’1+3’2+}’3)—(bo+b1+b2+b3)) _1

(sg + 51+ 55 + 53)?
Example.

Consider the symbolic 3-plithogenic ellipse:

(X—2-4P +3P, +P;)* (Y +1+P,+11P;)%
(1+ 5P, + 7P, — P5)? (3—P,— P, +4P;)2

it is equivalent to:

( —2)? +1)2
(0= Got1?_
1 32
[(o +x1) — 61> [(yo+y) +1] 1
) 62 + 22 -
[(xo + %1 + x3) — 3] + [(vo +y1 + y2) +2]° _1
132 1
[(xo + %1 + 3, +2x3) = 21> [(yo +y1+ ¥, +y3) +13]> 1
\ 122 " 52 -
Example.

Consider the symbolic 3-plithogenic circle:
(X—2-4P,+3P, +P3)*+ (Y +1+ P, +11P3)* =1
It is equivalent to:

(X —2) %+ +1*=1
[(xo +x1) — 6] +[(yo +y1) + 1] =1
[(xo + 21 +22) =32+ [(vo +y1 +y2) +2]° =1
[(xo + 21+ 22 +x3) =22 + [(yo +y1 + ¥ +y3) +13]° =1

Example.

Consider the symbolic 3-plithogenic hyperbola:

(X—2—4P1+3P2+P3)2_(Y+1+P2+11P3)2 B
(1+5P, + 7P, — P;)? (3—P, — P, +4P;)2

it is equivalent to:

Nabil Khuder Salman, On The Symbolic 3-Plithogenic Real Functions by Using Special AH-Isometry



Neutrosophic Sets and Systems, Vol. 59, 2023 149

r (o=2% o+ D?
1 32
[(xo +x1) —6]> [(yo+y)+1]* "
< 62 B 22 B
[(xo +x1 +x3) — 3]? _ (Yo +y1 +y2) + 2]? —1
132 1
[(xo + 21 + 32 +2x3) =212 [(yo+y1+y, +y3) +13]> 1
\ 122 B 52 B
Conclusion

In this paper, we defined for the first time a special AH-isometry on the symbolic

3-plithogenic fields of reals, and we used this isometry to obtain many formulas

and properties about the symbolic 3-plithogenic analytical concepts such as

differentiability, continuity, and integrability. Also, symbolic 2 3-plithogenic conic

sections were handled by using the mentioned isometry. In addition, many related

examples were presented to clarify the novelty of our work.
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Abstract: The objective of this paper is to find the necessary and sufficient

conditions for a symbolic 3-plithogenic quadruple

l,P, + I3P3) to be a Pythagoras quadruple, i.e. to be a solution for the non-linear

Diophantine equation in four variables X% +Y? + Z% = T2.

Also, many examples will be illustrated and presented to explain how the

theorems work.

Keywords: symbolic 3-plithogenic ring, Pythagoras quadruple, Pythagoras

Diophantine equation

Introduction and Preliminaries.

Symbolic n-plithogenic sets were defined by Smarandache in [1-3], where these
sets were used in generalizing classical algebraic structures such as symbolic
2-plithogenic and symbolic 3-plithogenic structures [4-9], with many applications in
other fields [10-12].

It is useful to refer that symbolic n-plithogenic algebraic structures are very similar

to neutrosophic and refined neutrosophic structures, see [13-22].
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In this paper, we continue other efforts to study Pythagoras triples in many
different rings [23-26].

We present the concept of Pythagoras triple in a symbolic 3-plithogenic
commutative ring with many clear examples that clarify the validity of our work.
Definition.

Let R be aring, the symbolic 3-plithogenic ring is defined as follows:

3 —SPg = {ag + a;P; + a,P, + a3Ps; a; € R, P> = P, Py X P = Proas(i ) -
Smarandache has defined algebraic operations on 3 — SPy as follows:

Addition:

[ag + a1 Py + ayP, + asP3] + [bg + by Py + byP, + b3Ps] = (ag + by) + (ay + by)P; +
(az + b)P; + (az + b3)Ps.

Multiplication:

[aop + aiPy + ayP, + azPs].[bg + by Py + by P, + b3P3] = agby + agh, Py + agh, P, +
aobsP; + a;boPy? + ab, PP, + ayboP; + ayby PP, + ayb,Py* + agbs P3Py +

ayb3P,P3 + azbs(P3)* + azbgPs + azby P3Py + azb,PoPs + a;bi PPy = agby +

(aphy + a;by + a1b;)P; + (agh, + ai1b, + azby + aby + azby)P, + (aghbs + aibs +
a;bs + azbs + azby + azb; + azb;)Ps.

Definition.

Let T =ty + t,Py +t,P, +t3P3,S = 5o+ 51P; + S,P, + 53P3, K = ko + k Py + kP, +
k3Ps;,L = ly + 11 P; + [P, + I3P; be four symbolic 3-plithogenic elements of a
symbolic 3-plithogenic commutative ring 3 — SP, then (T,S,K,L) is called a
symbolic 3-plithogenic Pythagoras quadruple if and only if T% + $% + K2 = L%
Theorem.

Let T =ty + t,P; +t,P, +t3P3,S = 5o+ 51P; + S,P, +53P3, K = ko + k Py + k, Py +
ksP3;,L =1y + 14P; + [,P, + I3P3 € 3 — SPg, then (T,S,K,L) is a Pythagoras
quadruple if and only if:

(to, S0, ko, lo), (tg + 1,50 + 51, kg + kq, lg + 11), (tg + t1 + t5, 50 + 51 + S5, kg + kq +
ko lo+ 1+ 1), (tg+t,+t, +t3,50+S1+5S,+53,kg+ky +ky + k3, g+ + 1, +
l3) are four Pythagoras quadruples in R.

Proof.

Abuobida Mohammed A. Alfahal, Yaser Anmad Alhasan, Raja Abdullah Abdulfatah, Sara Sawalmeh, On The Conditions for
Symbolic 3-Plithogenic Pythagoras Quadruples



Neutrosophic Sets and Systems, Vol. 59, 2023 155

We have:
T? = to® + [(to + t1)* — to%]Py + [(to + t1 + t2)* — (to + t1)?]P,
+ [(to 4+ t5 +ty +t3)% — (to + t1 + t5)*]Ps
5% =502+ [(so +51)% — 50%]P; + [(sg + 51 + 52)% — (5o + 51)?]P,
+ [(so + 51+ 55 + 53)% — (5o + 51 + 52)%]P3
K% = ko® + [(ko + k1) — ko”|Py + [(ko + ky + k3)? — (ko + k1)?]P,
+ [(ko + ky + ky + k3)* — (ko + ky + k3)?]Ps
L2 =1o" +[(lo + 1% = Lo°|Py + [Uo + L + 1)% = (o + L)*1P;
+ U+ UL+ L+ )=+ 1+ 1L)*]Ps
The equation T% + S? + K* = L* I equivalent to:
to? + 502 + ko’ =1o° (1)
(to + t1)% + (So + 51)% + (ko + k1)? = (ly + 11)? (2)
(to+ts +t)* +(So+s1+52)2+ (ko +ky +h)*> =+ 1L + L)% (3)
(to+ 1ty +ty +t3)% + (5o + 51+ 5, +53)2 + (ko + ky + ky + k3)?
=+ L+ +13)* (4)
Thus, the proof holds.
Theorem.
Let  (to,So, ko, lo), (t1,51, k1, 11), (t2, 52, ko, 1), (t3,53,k3,13)  be four Pythagoras
quadruples in R, then the corresponding pythagoras quadruple in 3 —SPy is
(T,S,K, L), where:
T =ty + [ty — to] Py + [ty — t1]1P; + [t3 — t5]P3
S =50+ [s1—So]P1 + [53 — 51]P, + [53 — 5,]P3
K =ky+ [ky — ko]Py + [ky — k1]Py + [k3 — k,]P;
L=1y+ [l = ]P + [, = L]P, + [I5 = 1,]Ps
Proof.

We must compute T? + S? + K?,
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T? + 8%+ K* = to* + (t;° — tg®)P; + (t;* — t;°)P, + (t3* — t,*)P3 + 507
+ (517 = S0P + (522 = 5:2)P + (532 = 5,)Ps + ko” + (k12 - koz)P1
+ (ky? = k)P, + (k3® — k%) Ps
= (to? + 502 + ko*) + (622 + 512 + ky” — to% — 50% — ko” )P,

+ (62 + 5,2 +ky* —t,2 — 5,2 — k%) P,
+ (ts2 + 532 + k3® — 6,2 — 5,2 — k,°)Ps
= 1o’ + (1.* = 10°)Py + (I,° = L*)P, + (1% — [,*)Py = 12

O that, the proof is complete.

Example:

We have L,=@1,-1,i,1),L, = (i,1,-1,-1),L; = (—i,—1,1,-1),L, =

(1,—i,—1,—1) are four Pythagoras quadruplesin C.

The corresponding 3-plithogenic Pythagoras quadruple is (T, S, K, L), where:

T=1+4 (=14 )P, —2iP, + (1 + )P,

S=—1+2P, — 2P, + (1 —i)P;

K=i+(—1—i)P, +2P, — 2P,

L=1-2P, +2P, — 2P,

On the other hand, we have:

T2 =1 — 2iP, — 4P, + 2iP; + 2(—1 + i)P; — 4iP, + 2(1 + {)P; — 4iP,
+2(=1+ (1 +)P; — 4i(1 + i)P;
=14 (=2i — 2+ 20)P, + (—4 — 4i + 4i + 4)P,
+(Qi+2+2i—4—4i+4)P; =1—2P, + 2P,

SZ =1+ 4P, + 4P, — 2iP; — 4P, + 4P, + 2(—1 + )P; — 8P, + 4(1 — i) P,
—4(1—i)Ps
=1+(@A—4)P,+(4+4—8)P,+(—2i—2+2i+4—4i — 4+ 4P,
=1-2P,

K2 =—-1+2P,

[?=1=T%+S*+K?

Example.

Consider the following four Pythagoras quadruples in Z,:

Ll = (0,0,0,0), LZ = (1111111)1L3 = (1111010)1L4 = (0101111)
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For every quadruple (Li,Lj,LS,Lk); 1<i,j,,k<4, we can get a symbolic
3-plithogenic pythagoras quadruple.
We will find some symbolic 3-plithogenic Pythagoras quadruple in 3 — SPy,.

Let us discuss the following cases:

case (1).
Y1:0
Y, =0
L{,L{,L{,Lq): "
(L1, Ly, Ly, Ly) v,” =0
Y1,”:0
case (2).
Y2=P3
Y,2:P3
L,L,L,L . "
(L1, Ly, Ly, Ly) Y,” = P,
YZIII:P3
case (3).
(Ys—Ps
Y,'3=P3
Ly,Ly, Ly, L3): "
(Ly L Ly L) iyg s
Y3III_O
case (4).
Y,=0
Y,=0
(L’LIL’L): !
1Ly, L, Ly Y4'=P3
Y4_”,=P3
case (5).
Y5:P2+P3
Y,5=P2+P3
L., L{,L,,L;): )
(1’ 1, &2, 1) Y5,=P2+P3
Y5”,=P2+P3
case (6).
Y6=P2+P3
Y6:P2+P3
(Ly, Ly, L3, Ly): "
1 1 3 1 Y6 :P2+P3
Y6”,:P2+P3
case (7).
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( Y7 == 0
Y,7 = 0
Li,Lq, Ly, Lq): "
(1141) Y7 =P2+P3
Y7,” = P2 + P3
case (8).
( Yo =P, +P,
Yo=P, +P,
Ly, Ly, Ly, L "
(L Lo L L) iys i
Y8,” = Pl + PZ
case (9)
Yg = Pl + PZ
Yo=P +P
(Ly,L3, Ly, Ly): [ ? " ! 2
Yg =
Yg’” — 0
case (10).
Yio=0
Yo =0
Li,Ls L, L "
( 1' 4-) 1' 1) [Ylo — [)1 + PZ
YlOI” =P1+P2
case (11).
Y11 1+P;
(LZI Lll Llr ) i =1 +P1
"' =14+P
case (12).
Yi,=1+4+P;
Y, = 1 + P
(Ls, Ly, Ly, Ly): { A
case (13).
Yi3=0
Y.=0
(Lzl-le; Llr 1) { 1113_ 1+P1
"' =1+P

case (14).
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Vi, =1
Y, =1
(L !L ;L ;L ): "
2oL, Ly, Ly v, =1
Y14’” — 1
case (15).
{ Y15 = 1 + P3
) Yis=1+P;
(Lz, Lo, Lz, Ly): 1Y15” =1+P;
Y15,” = 1 + P3
case (16).
( Ylﬁ = 1
Yie =1
L, L, L, L "
(Lo Loy Ly L) in6 ap
Y16”, - 1 + P3
case (17).
Yi,=1+4+P;
Y, =1+P
(La, Ly, Ly, Ly): { 117/17” =1 ’
Y17III — 1
case (18).
Y18 = 1 + Pz + P3
Yig=1+P,+P;
(L2 Lz, Ly, L): {Y =1+P,+P;
Y. I”—1+P2+P3
case (19).
Yio =1
Y19 =1
(Ly, Ly, Ls, Ly): {Y "= 14P,
Y. no_ =14+ P3
case (20).
Yoo =1+ P, +P;
Yoo=1+P,+P
(Ly Ly, Ly, Ly): {20 7772703
Yzo = 1
YZOHI — 1
case (21).
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Y21=1+P1+P2
Y21 =1+P +P,
Y21”:1+P1+P2
Y21”’:1+P1+P2

;=1

Y, =1
Y, =1+P, +P,
Y,,' =1+P, +P,

Y23=1+P1+P2
Y£3=1+P1+P2

(LZ»LL Lz»Lz)i
case (22).
(LZ»Ls»Lz»Lz)i
case (23).
(Lz, Ly, Ly, Ly): Y23" _
Y23IH — 1
Permutation (24).
{ Yo, = Py
. Y£4 =P
(LlrLZJLZJLZ)' Y24” — P1
Y24”I — Pl
case (25).
{ Y25 = 1
) Ys=1
(L3,L2,L2,L2). iYZSH — Pl
Y25III — P1
case (26).
Y6 = Py
Yéa =P
(Ly, Ly, Ly, Ly): "
4, Ly, Lo,y Ly Y, =1
Y26III — 1
case (27).
Yo, =1
) Yy =1
(L3'L31L3:L3)- Y27/r — O
Y27III — 0
case (28).
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Y33=1+P2+P3
Y?:3=1+P2+P3

L,L,L,L : "
(3 3,4 3) Y33 :P2+P3
Y33,”:P2+P3
case (34).

Y34=1+P2+P3

Ys=14+P, +P

(Ly, Ly, Ly, L) 4727 "
34
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Y28 = 1 + P3
Yoo =1+P.
(arLas Lo, L) 3%y w
Y28III - O
case (29).
( Y29 = 1
. Yo =1
(L3, Ly, La, L): ingn = P;
Y29HI - P3
case (30).
Y30 = 1 + P3
Y0 =1+ P;
(L IL JL JL ): "
3, L3, L3, Ly Yo' = P
Y30 =P
case (31).
Y31 = 1 + P3
Y?,)l = 1 + P3
(L ,L ,L ,L ): "
3, L3, L, L3 Yy, = P
Y31HI — P3
case (32).
Y3 =1
Ys =1
(L3!L31L21L3)' {YSZH — PZ + P3
Y32”’ :P2+P3
case (33).

case (35).
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{ Y35 - 1
(L, Ly, Lg, Ls): 1Y35” = P, + P,
Y35”’ :P1+P2
case (36).
Y36 = 1 + Pl + Pz
|Yee=1+P +P,
(L3, Ly, Lg, L3): { Y36” — P, +P,
Y36,” =P1+P2
case (37).
Y3 =P
. YC::7 =P
(Ly,Ls, L3, L3): Y37u —0
Y37III — 0
case (38).
Y3 =1
. Y?,)g = 1
(Ly, L3, Lg, Ls): {Y38” —1+P,
Y38/H =14+ P1
case (39).
Y30 = P;
. Y;9 =P
(L4; L3; L3'L3)' Y39” — 1 + P1
Y39,” = 1 + P1
case (40).
. Y0 =0
(Lgs Lgy Ly, Ly): {Y40” =1
Y40”’ — 1
case (41).
. Y‘;l == O
(Lg Ly, La, Ly): {Y41” =1+0P;
Yy =14 P;
case (42).
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(L) Ly, Ly, Ly):

case (43).

(Lgy Ly, Ly, L3):

case (44).

(L4' Ly Ly, L4)3

case (45).

(L4' Ly, Ly, L4)3

case (46).

(L4-r L4-1 L31 L4-):

case (47).

(Lay Ly, Ly, Ly):

case (48).

(L4; Ly, Ly, L4)3

case (49).

{Y42=P3
Yyo = P;

i

Y4-2
12z

Y4-2

=1
=1

Y47:0
Y;-7=0
:1+P1+P2

:1+P1+P2
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{ Y49 = Pl + P2
Y49 =P, +P
(L4,L3,L4, L4) i — 1 +P1 +P2
”_1+ﬂ+5
case (50).
( Y50 =0
. Y&,;o =0
(Ll’ L4' L4' L4)‘ YSOH — Pl
YSOIII — P1
case (51).
{Y51 = 1 + Pl
Ye,=1+P
(Lz, Ly, Ly, Ly): 5;51,, -1 !
Y51III — 1
case (52).

Yo, =1+ P,

Yoo =1+ P
(La, Ly Ly Ly): {22 !

case (53).

(Llr LZ' LS' L4)

case (54).

Yoo =P, + P, + Py
Yo, =P, + P,
Yo' =P+ P,

(Llr LZJ L4-1 L3)

{
{Y54 =P, +P,+P;

case (55).
Yec =P, + Pg
Yis = Py + P
(Llr L3J L2, L4) 5; " i PZ 3
Y III P
— 12
case (56).
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{Y56=P1+P2+P3
Yoo = P, + P, + P;

Li,L3, Ly, Ly): '
(1 3 4 2) Y56 =P2
Y56I”_P2
case (57).
( Ys7 =P,
Y57 = P,
L,L ,L ,L . 17
(142 3) Y57 =P1+P3
Y57”’=P1+P3
case (58).
Ysg = P,
Ysg = P,

(Ly, La, La, Ly): Yo =P, + P, + P,

Y”—ﬂ+5+&
case (59).

{Y59=1+P1+P2+P3
Yeo=1+P; + P, + P;
Y59”:1+P1+P3
Y59”,:1+P1+P3

(Ly, Ly, L3, Ly):

case (60).
{Y60—1+P1+P3
Y60—1+P1+P3
Lo, Ly,Ls4, L "
(2143>i A
”’:P2+P3
case (61).
Yoo=1+P +P,+ Py
Y61—1+P1+P2+P3
Ly, Ly,L,, L "
(L, L, Ly 4){ v p,
Y61HI:P2
case (62).
Yoo =1+ P; +P3
Y,=1+P,+P
(L3, Ly, Ly, Ly): {62 v, ,,21132 :
Y III=P2
case (63).
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{ Y5 = P,
Yé3=P2
L,L,L,L . 17
(4 1 2 3) iYGZ‘; =1+P2+P3
Y63”I=1+P2+P3
case (64).
( You = P,
Yé4=P2
L,L,L,L . 17
(Lo Lo Loy L2) iyﬁ“ o
Y64”I=1+P3
case (65).
{Y65—1+P2
Yos =1+ P,
L,L,L,L . "
(Lo Lo Ly L) iyﬁ o
Y65,”:1+P3

case (66).
Y66 - 1 + Pz

( ;
. Y66 =14+ Pz
(L2, Ly Lay Ly ): iY%” =1+P +P,+P;

Y66,” = 1+P1+P2+P3
case (67).

Y67=1+P2
Yé7=1+P2
Y67”:P1+P2+P3

nr

Y67 :P1+P2+P3

{
Y68=1+P2
.{Y;81+P2

(L3; LZ' Ll! L4)
case (68).

(L3' LZ'L4'L1) Y68” — 1 + P3

Y68”’ = 1 +P3

case (64).
Yoo = P,
Ye's4 =P,
Ls,Li, Lo, L 7
Y64”’ :P1+P3
case (69).
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(L3»L4»L1»L2)3

case (70).

Y;o=1+P + P, +P;
Y70”=P1+P3
Y70,”=P1+P3

(L3, Ly, Ly, Ly):

case (71).

Y,y =P, + P, +P;
Yoy =P, +P,+P;
Y,," =1+ P;
Y., =1+ P;

(L4 L3, Ly, Ly):

{
{Y701+P1+P2+P3

case (72).
Y72:P1+P3
Y., =P, +P;
L, Ly, Lz, L,): "
(4’ b3 2) Y72 =1+P1+P2+P3
Y72”I=1+P1+P2+P3
case (73).

Y,3 =P, +P, +P;
Yo =P, +P,+P;
Y3 =1+ P,
Y,3"" =1+P,

(L4r LZ' Ll! LS):

|
|
|

case (74).
Yo, =P, +P;
Li Li, L2, Ly): ,
( 4y 41,23, 2) Y74 ! — 1 + PZ
Y74_I” =1+ PZ
case (75).
Y75 = 1 + P1 + P3
Yo =1+4+P, +P;
Lo, Ls, Ly, L2):
( 20 ~4, 41 3) Y75” — 1+P2
Y75,” = 1 + P2
case (76).
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(
Ye=1+P, +P,+ P
(L2!L41L31L1) 176 ! 2 3

V6" =1+ P,
V6" =14+ P,
case (77).
{ Y77 = 1
. Y;7 = 1
(L, Lz, L3, Ly): iYW” =1+P
Y77”, = 1 + PZ
case (78).
( Y78 —_ 1 + PZ
Y78 =1+4+P
(L21L2:L1! ) i n_ =1+ P2
" = 1 + PZ
case (79).
Y79 — 1 + Pz
Yoo=14+P
(Lz, L21L41L4) { 7;79” = 1 ’
Y79/II — 1
case (80).
Yg0 = P,
. Yg0 = P,
(L1, Ly, Ly, Lo): Ygo' =P,
Y80III — PZ

Conclusion.

In this paper, we have studied Pythagoras quadruples in symbolic 3-plithogenic
commutative rings, where necessary and sufficient conditions for a symbolic
3-plithogenic quadruple (x,y,z,t) to be a Pythagoras quadruple.

Also, we have presented some related examples that explain how to find

3-plithogenic quadruples from classical triples.
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Abstract:

The objective of this paper is to combine dual numbers with symbolic
2-plithogenic numbers in one algebraic structure called dual symbolic

2-plithogenic real numbers.

Also, many elementary properties of the suggested system such as inverses and

idempotents will be handled by many related theorems and examples.

Keywords: Symbolic 2-plithogenic number, dual number, dual symbolic

2-plithogenic number.

Introduction and preliminaries.

Dual numbers are considered as a generalization of real numbers, where they are
defined as follows:

D ={a + bt; t?> = 0,a, b € R}[1]. Dual numbers make together a commutative ring
with many interesting properties.

Addition on D is defined as follows:

(ag + bot) + (aq + bit) = (ag + ay) + (by + by)t

Multiplication on D is defined as follows:

(ag + bot). (a; + byt) = (agay) + (aghy + bpay)t
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In [2-4], Smarandache presented symbolic n-plithogenic sets, then they were used
in generalizing many famous algebraic structures such as rings, matrices, and other
structures [6-11].
We refer to many similar numerical systems that generalize real number, such as
neutrosophic numbers, split-complex number, and weak fuzzy numbers [12-18].
We refer to some applications of these generalized number systems in matrix theory
and cryptography [19-24].
Through this paper, we use symbolic 2-plithogenic real numbers to build a new
generalization of real numbers, and we present some of its elementary algebraic
properties.
Main concepts.
Definition.
The set of symbolic 2-plithogenic dual numbers I defined as follows:
2 —SPp = {(xo + x1t) + (Vo + y1)P1 + (2o + 2:)Py; X, ¥i, Z; € R, t* = 0}
Definition.
Addition of 2 — SPp is defined:
[(mg + myt) + (ko + k1t)P; + (5o + 51t)P, ]

+ [(no + nyt) + (Lo + LOIPy + (qo + q1t) P, ]

= (Mg +no) + (my + nyt + [(ko + 1) + (ks + 1)t]Py

+[(so + o) + (51 + q1)t] P2

(2 = SPp,+) is an abelian group.

Remark.

A symbolic 2-plithogenic dual number X = (xq + x1t) + (yo + y1t)P; + (2o + z,t)P,
can be written:

X = (xo + yoP1 + zoP;) + t(xy + ¥, Py + 7, P;)

Definition.

Let X = (xg + x1P; + x,P,) + t(%y + %, P; + %,P;) = M; + M,t,

Y = (yo +y1P1 + ¥2P2) + t(Jo + 1Py + Y2 P2) = Ny + Nyt € 2 — SPp,

then:

Multiplication on 2 — SP;, is defined as follows:
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X.Y = MyN, + t(M;N, + N;M,)

Example.

Consider X =(1+ P, +P,) +t(2—P,),Y =P, + t(1 — P,), we have:
X+Y=Q0Q+2P+P)+t(3—P,—P,)

XY=0+P +P)P +t[(1+P +P,)(1—P)+(2—P)P] =(2P, +P,) +
t[(1 =P+ P, — Py +P,—P,)+ 2P, — Pi] = 2P, + P,) + t(1 + P, — P;).
Remark.

(2—-SPp,+,.) Is a commutative ring.

Invertibility:

Theorem.

Let X = (mg + myP; + myP,) + t(ng + nyP; + n,P,) € 2 — SPp, then X is invertible

if and only if my # 0,my +my # 0,my + my + m, # 0 and:

, 1 1 1 1 1
PR Y € WA S | PO )
X Im, mo+m; my mo+my+m, my+my

Ny nyg +ny (n

-t 2 ( 2 Z)Pl
(my) (mo +my) (my)

( ng +ny +n, nyg +nyq > ]

(mo +my +my)?  (mg+my)?/) 2

Proof.

X isinvertible if and only if % is defined as follows:

1 1
X (mg + myP; + myP,) + t(ng + ny Py + nyP,)
(mg + myP; + myP,) — t(ng + ny Py + n,P,)
[(mg + my Py + myP,) + t(ng + 1y Py + nyPy)][(mg + my Py + myP,) — t(ng + ny Py + nyPy)]
(mg + myP; + myP,) — t(ng + ny Py + n,P,)
B (mg + myP; + m;,P,)?

So that my + myP; + m,P, isinvertible in 2 — SP;.

This is equivalent to my # 0,my + my; # 0,my + my + m, # 0.

1 1 (ng+n,P1+n,P,)?
On the other hand, == - AL L e L
X motmyPi+myP; (mgo+mq Py +m,P,)?
L 1 1 1 1 n ng+n
mo metm; My mo+mi+m,;  me+my (mg)? (mo+m4)?

Ng No+ni+n, _ Nno+nq
(mo)z) P+ ((mo+m1+m2)2 (m0+m1)2) Pz]
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Compute the result of XY as follows:

1 1 1
XY =(my+mP; + m,P. [—+(———)P
(mo 1 2P2) my mo+m; my 1

1 1
i “r)
my+m;+m, my+my

+t|—(mo + my Py + P)[n0 +< Mo ¥4 it )P
—(m m m —
0 v 2h2 (mg)? (mg +my)?  (mg)? !
( ng +ny +n, ng +ny ) ]
(mo +my +my)?  (my +my)? 2

1 1 1
+ (ng + ny Py + n,P. [—+(———)P
(0 1 22) my m0+m1 my 1

1 1
i “er) ]
my+m;+m, my+my

=1
—MNy Mo +ny) mny myny, myng+ny) mng

+t| =+ —mp e 2~ 2 - 22
mg mog+my  my (M) (mg +my) (my)

(ng +ny +ny) mo(ny +ny) (ng +ny +ny)
+1| Mo 2 2z M 2
(mg +my + my) (mo +my) (my + my + my)
mi(ng +ny) myny my(ng+ny) mpng " (ng + ny +ny)
- - —m;
(mg+my)?  (my)? (mo+my)?  (my)? (my + my +my)?
ma(no + n1) &+<L_ﬂ ™ L_&>p
(my + my)? 2 m my+m; my, my, my+m; m 1
( Ng UN) + nq nq n,
my+m;+m, my+m; my+my+m, my+m; m,
n, Ny n, _ n, >P 1
me+my+m, my, my+my+m, my+my) >

So that, X! = % =Y
Example.

Take X = (1+ P, + P,) + t(2+ P, — P,) € 2 — SPy:

X‘1—1+(1 1)P +(1 1)P t[2+(3 Z)P +(2 3)P]
1 \2 17\3 2/°%2 "l1 \4 1/t \9 4)°?

=1 1P 1P t(Z 5P 21P>
o2t 67 471 3677
Natural power.

Theorem.
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Let X = (my + myP; + myP,) + t(ng + ny Py + n,P,) € 2 — SPp, then:
X" = (mo)" + ((mg + my)"™ — (me)™)P; + (Mo + my +my)" — (Mg + my)")P; +
n(ny +ny Py +n,P)[(me)™ ™ + ((mo + m)"™ ! = (me)" Py + ((mg + my +
my)" 1 — (mg + my)"" 1)P,] for n € N.
Proof.
Let X =A+ Bt;A,B € 2 — SPp, then:
A" = A™ + nA""'Bt, we get:
A" = (mo)™ + ((mg + my)™ — (me)™)Py + ((mg + my + my)" — (my + my)")P,, then
the proof holds.
Example.
Take X = (1+ P, +P,) +t(2— P, + P,) € 2 — SP,
X3=1+0B-1P,+(1-8)P,+3t2—P,+P)[1+(4—-1)P,+(1—-4)P,] =1+
7P, — 7P, + 3t[(2 = P, + P,)(1 + 3P, — 3P,)] = 1 + 7P, — 7P, + t(6 + 6P, — 6P,).
Idempotency.
Definition.
Let X € 2 — SPp, then X is called idempotent if and only if X? = X.
Theorem.
Let X = (my+ mP; + myP,) +t(nyg + Py + nyP,) € 2—-SP,, then X is called
idempotent if and only if:

1. mg +myP; + myP, isidempotent.

2. (ng +nP; +n,P)[2my —1+2myP; +2m,P,] =0
Proof.
X = M + Nt is idempotent if and only if:

M?=M

2

X _X:>{2MN=N:>N(2M—1)=O

For M=m0+m1P1+m2P2,N=n0+n1P1+n2P2 EZ—SPR
This implies the proof.

Remark.
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The idempotency of M is equivalent to my* =mg, (mg+my)? = (my+
my), (mg + my + my)? = (my + my +my,) , hence my,my+my,my+m; +m,e€
{o,1}.

The equation N(2M — 1) = 0 means that N,2M — 1 are zero divisors in 2 — SPg,
so they should not invertible in 2 — SPy.

Now, let's compute the result of N(2M — 1) = 0.

N(2M — 1) = (ng + n Py + n,P,)(2my — 1+ myP; + myP,) = 0, thus:

ny(2mg—1) =0 (1)
(ng +n)@2my—1+2my) =0 (2)
(ng+n; +ny,)(2my—1+2m; +2my,) =0 (3)

Since m, € {0,1}, then 2my —1 # 0 and ny = 0.
Equation (2) has two possible cases:
TL1 = 0
{ or
2mg +2m; =1

Equation (3) has two possible cases:

TL1 + TL1 = 0
{ or

2my+2mq +2m, =1

We discuss all possible cases.
Casel.
my=0myg+m; =0myg+my+my, =0, thus my =m, =0, n=0, n, =0,n, =
0, thus X = 0.
Case2.

mo = 0
{ m0+m1:1 ,then m1=1,m2=_1,n0=0,n1=n2=0
mog+m;+m, =1
thus X = Pl - PZ
Case3.

mo = 0
{ my+my =0 ,then m;y=0m,=1,n,=0n, =n,=0
my + mq + my, = 1
thus X =P,

Cased.
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m0:0
{ m0+m1:1 ,then m1=1,m2=0,n0=0,n1=n2=0
m0+m1+m2:1

thus X = P;
Caseb.
mo = 1
{ m0+m1=0 ,then m1=—1,m2=0,n0=0,n1=n2=0
mo + m1 + mZ = 0
thus X =1-P;
Caseb.
mo = 1
{ mog+my =1 ,then m; =0m,=-1,n,=0,n, =n,=0
mo + m1 + m2 = 0
thus X =1-P,
Case?.
mo = 1
{ m0+m1=0 ,then m1=—1,m2=1,n0=0,n1=n2=0
my + mq + my, = 1
thus X:1_P1+P2
CaseS8.
mo = 1
{ m0+m1:1 ,then m1=0,m2=0,n0=0,n1=n2=0
mog+m;+m, =1
thus X =1
remark.
The idempotent in 2 — SPp are:
{01111_P1+P2’1_P2I1_P1lP11P2lP1_PZ}
Definition.
Let X =M + Nt € 2 — SP,, we say that X is 3-potent element if and only if X3 = X.
Remark.
X is 3-potent if and only if X* = X which is equivalent to:

{ M3 =M
3M2N =N = N(3M2—1) =0

M3 = M implies:
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my® =mg
(mo + m1)3 =my + mq
(m0+m1+m2)3=m0+m1+m2

So that mgy, my + my, my + my + m, € {0,1 — 1}.
N(3M? — 1) = 0 implies:

no(3my—1) =0 (1)
(ng+ny)Bmy—1+3my) =0 (2)
(ng+ny; +n,)(3my—1+3m; +3m,) =0 (3)

Equation (1) means that ny, = 0, that is because m, # g

Equation (2) means that:

no + nl = 0

{ or , since my + m; is integer, then n; = 0.
3m0 + 3m1 - 1

Equation (3) means that:

no + TL1 + nz = 0
{ or , since my + my + m, is integer, then n, = 0.
3my+3m; +3m, =1
This implies that:

Casel.

m0=0
{ mog+m; =0 ,then X =0.
mog+m;+m, =0

Case2.

m0:0
{ m0+m1=1 ,thenX=P1—P2
m0+m1+m2=0

Case3.

m0:0
{ mo+my; =—1 ,then X =-P, + P,
m0+m1+m2=0

Cased.

m0:0
{ my+m; =0 ,then X =P,
m0+m1+m2=1

Case5.
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m():O
{ m0+m1:0 ,thenX:_Pz
m0+m1+m2:_1

Case6.

m0=0
{ m0+m1:1 ,thenX=P1
m0+m1+m2:1

Case?.

m():O
{ m0+m1:1 ,thenX=P1—2P2
mg+m; +m, =—1

CaseS.

m0=0
{ m0+m1:_1 ,thenX=—P1+2P2
m0+m1+m2:1

Case9.

m0=0
{ m0+m1:_1 ,thenX=—P1
m0+m1+m2:_1

Casel0.

m0=1
{ m0+m1:0 ,thenX=1—P1
mog+m;+m, =0

Casell.

m0=1
{ m0+m1:1 ,thenX=1—P2
mog+m;+m, =0

Casel2.

m0=1
{ m0+m1:_1 ,thenX=1—2P1+P2

mog+m;+m, =0

Casel3.

m0=1
{ m0+m1:0 ,thenle_P1+P2
mog+m;+m, =1

Caseld.
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m():l
{ m0+m1:0 ,theanl_Pl_Pz
m0+m1+m2:_1

Casel5.

m0=1
{ m0+m1:1 ,theanl
m0+m1+m2:1

Casels6.

m0=1
{ m0+m1:1 ,theanl_ZPZ
m0+m1+m2:_1

Casel?.

m0=1
{ m0+m1:_1 ,thenX=1—2P1—2P2
m0+m1+m2:1

CaselS.

m0=1
{ m0+m1:_1 ,thenX=1—2P1
m0+m1+m2:_1

Casel9.

m0=—1
{ m0+m1:0 ,thenX=—1+P1
mog+m;+m, =0

Case20.

m0=—1
{ m0+m1:1 ,’[henX=—1+2P1—P2
mog+m;+m, =0

Case21.

m0=—1
{ m0+m1:_1 ,’[henX=—1+P2
mog+m;+m, =0

Case22.

m0=_1
{ m0+m1:0 ,thenX=—1+P1+P2
mog+m;+m, =1

Case23.
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m0:_1
{ m0+m1:0 ,thenX=—1+P1—P2
m0+m1+m2:_1

Case24.
mgy = -1
{ m0+m1:1 ,thenX=—1+2P1
my + mq + m, = 1
Case25.
mgy = -1
{ m0+m1:_1 ,thenX:_l
my + mq + m, = -1
Case26.
my = -1
{ m0+m1:1 ,thenX=—1+2P1—2P2
my + mq + m, = -1
Case27.
my = -1
{ m0+m1:_1 ,thenX=—1+2P2
my + mq + m, = 1
Conclusion
In this paper, we have studied for the first time the combination of symbolic
2-plithogenic numbers with dual numbers. The novel algebraic structure generated
by them is called dual symbolic 2-plithogenic numbers.
We have determined the invertibility condition and the formula of the inverse for
dual symbolic 2-plithogenic numbers. Also, all idempotent elements in the ring of
dual symbolic 2-plithogenic numbers were presented and computed.
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Abstract:

The objective of this paper is to find necessary and sufficient conditions for a

symbolic 3-plithogenic triple

Pythagoras triple, i.e. to be a solution for the non-linear Diophantine equation

X% +Y? = Z2. Also, many examples will be illustrated and presented to explain

how the theorems work.

Keywords: symbolic 3-plithogenic ring, Pythagoras triple, Pythagoras Diophantine

equation

Introduction and Preliminaries.

Symbolic n-plithogenic sets were defined by Smarandache in [1-3], where these sets
were used in generalizing classical algebraic structures such as symbolic
2-plithogenic and symbolic 3-plithogenic structures [4-9], with many applications in

other fields [10-12].
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It is useful to refer that symbolic n-plithogenic algebraic structures are very similar
to neutrosophic and refined neutrosophic structures, see [13-21].

In this paper, we continue other efforts to study Pythagoras triples in many
different rings [22-25].

We present the concept of Pythagoras triple in a symbolic 3-plithogenic
commutative ring with many clear examples that clarify the validity of our work.
Definition.

Let R be aring, the symbolic 3-plithogenic ring is defined as follows:

3 —SPg ={ao + a;P; + ayP, + azPs; a; € R, P> = P, P; X P; = Praniijy}-
Smarandache has defined algebraic operations on 3 — SPy as follows:

Addition:

laop + a1Py + ayP, + azPs] + [bg + by Py + by P, + b3Ps] = (ap + by) + (a; + by)P; +
(az + b)P; + (az + b3)Ps.

Multiplication:

[aop + aiPy + ayP, + azPs].[bg + by Py + by P, + b3P3] = agby + agh, P + agh, P, +
aobsP; + a;boPy? + ab, PP, + ayboP; + ayby Py P, + ayb,Py* + agbs P3Py +

a;b3P,Ps + asbs(P3)? + azbgPs + azby P3Py + azb,P,Ps + a,b, PPy = agby +

(agby + aybg + a;1b1)P; + (agb, + a1b, + azby + ayby + ayb,)P, + (aghs + aybz +
a,bs + azbs + azby + azb; + azb;)Ps.

Main Discussion

Definition.

Let R be aring, then (t,s,k) is called a Pythagoras triple if and only if

t> + s =k%t,s,k €R.

Theorem.

Let T =ty+t;P; +t,Py +t3P3,S = 5o+ S1Py + 5,P5 + 53P5, K = ko + ky Py + kP, +
ksP;are three arbitrary symbolic 3-plithogenic elements T,S,K € 3 — 5Py, then

(T, S, K)are Pythagoras triple in 3 — SPgif and only if:

{ (to, So, ko), (to + t1, So + 51, ko + k1) are pythagoras triples in R
(to+ 1ty +ty,50+51+55,kg+ky +ky), (tg + 1ty + 1ty +1t5,50+ 51+ 5, +53,kog + ky + ky + k3) are pythagoras triples in R

Proof.
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According to [ ], we have:
T? = to® + [(to + t1)* — to%]Py + [(to + t1 + t2)* — (to + t1)?]P,
+[(to +ty +tp +t3)% — (to + t1 + t2)?]Ps
5% =502+ [(so +51)% — 50%]P; + [(sg + 51 + 52)% — (5o + 51)?]P,
+ [(so + 51+ 55 + 53)% — (5o + 51 + 52)%]P3
T? = ko” + [(ko + k1)? — ko®|Py + [(ko + kg + k)% — (ko + k1)?]P;
+ [(ko + kq + ky + k3)? — (ko + k1 + k3)?]Ps
The equation T? + S? = K? is equivalent to:
to? + 502 = ko® (equation 1),
(to + t1)% + (sg + 51)% = (ko + k1)? (equation 2),
(to + ty + t2)% + (So + 51 + 53)% = (ko + k1 + k;)? (equation 3),
(to+ 1ty +t, +t3)% + (5o + 51+ 5, +53)% = (ko + ky + ky + k3)? (equation 4)
Equation (1) implies that (o, So, ko) is a Pythagoras triple in R.
Equation (2) implies that (to + tq, Sy + 51, ko + k1) is a Pythagoras triple in R.
Equation (3) implies that (ty, + t; + t;, 5o + 51 + S5, ko + k1 + k) is a Pythagoras
triple in R.
Equation (4) implies that (t, + t; + t; + t3, 50 + 51 + S5 + 53, kg + ky + ky + k3) is
a Pythagoras triple in R.
Thus, the proof is complete.
Theorem.
Let (to, S0, ko), (t1, 51, k1), (t2, 52, k3), (t3, 53, k3) be four Pythagoras triples in the ring
R, then (T,S,K) Pythagoras triple in 3 — SP;, where:
T =ty+ [ty — to]Py + [ty — t1]P, + [t3 — t;]Ps
S =50+ [s1 —So]P1 + [52 — 51]P, + [53 — 5,]P3
K =ky+ [ky — ko]Py + [ky — k1]Py + [k3 — k,]P;
Proof.
We have: to+ (t; —tg) =ty to+ (t; —ty) + (t, — ) =ty to + (t1 — to) +
(t;—t)+ (s —t2) =t3
So + (51— 50) = 51,50 + (51 —Sg) + (52 — 51)

= S3,50 + (51 — Sg) + (5 — 51) + (53 — 53) = 53
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ko + (kg — ko) = ky, ko + (kg — ko) + (ky — ky)
=ky, ko + (kg — ko) + (ky —ky) + (k3 —ky) = k3
This implies that (T,S,K) Pythagoras triple in 3 — SP; according to the theorem.
Examples.
We have:

(to,So, kO) = (31415)

(tll Sl’ kl) = (6,8,10)
(tZJ SZJ kZ) = (4J3J5)
(t3,53, k3) = (5,12,13)

Are four Pythagoras triples in Z.

The corresponding symbolic 3-plithogenic Pythagoras triple is (T, S, K), where:
T=3+[6-3]P,+[4—6]P,+[5—4]P; =3+3P, —2P, +P;
S=4+[8—4]P; +[3—8]P, +[12—3]P; =4+ 4P, — 5P, + 9P;
K=5+[10~-5]P, +[5—10]P, + [13 = 5]P; =5+ 5P, — 5P, + 8P;

Example.

Find all Pythagoras triples in 3 — SP;,, where Z, I the ring of integers module 2.
First, we find all Pythagoras triples in Z.

L, =(0,0,0),L, = (1,0,1),L3 = (0,1,1),L, = (1,1,0)

Remark that for every permutation of the set {Li,L;, L3, Ly}, we get a different
symbolic 3-plithogenic Pythagoras triple.

We discuss all possible cases:

Permutation (1).
Y1:P1_P2+P3:P1+P2+P3
(L11L2iL3iL4): Yl =P2
Y1”=P1_P3=P1+P3
Permutation (2).
Y, =P,
(Ly, Ly Ly, Ly): {Yo =P, =P, +P3 =P, + P, + P;
Y2”:P1_P3:P1+P3

Permutation (3).

Y3 = P]_ + P3
(Ly,Ly, L3, Ly): {Y3 =P, +P,+P;
Y3Il — PZ
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Permutation (4).
Y4 == P1 + Pz + P3
(Ly,Ly, L3, Ly): Yo=P +P;
Y4” — PZ
Permutation (5).
Y5 - Pl + P3
(L1; Ly, L3, L4)3 Ys =P,
Y5” =P1+P2+P3
Permutation (6).
Y6 = Pz
(Ly,L,, L3, Ly): Yo = P, + P;
Y6”:P1+P2+P3
Permutation (7).
Y7 = 1 + P2 + P3
(L1»L2: L, L4)3 Y7 =P
Y, =1+P, +P,+Ps

Permutation (8).

Y8 :PZ
(Ll,Lz,L3,L4): YS =1 +P1 +P2
YSH = 1+P1

Permutation (9).

Y9:1+P1+P3

(Ll,Lz,L3,L4): Y9=P1+P2+P3
Y9” = 1+P2

Permutation (10).
Y10=P1+P2+P3
(Ly,Ly, L3, Ly): { Yio=1+P, + P;
Y10” = 1 + PZ
Permutation (11).
Y11 = 1 + PZ

(LlrL21L3JL4): Yil =1 +P1 +P3
Y11” :P1+P2+P3

Permutation (12).
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Y12 = 1+P1+P2+P3
(Ly,Ly, L3, Ly): Y;, =1+P, +P;
Y12” =P,
Permutation (13).
Y13 = 1+P1+P2+P3
(L1' Ly, L, L4)3 Yi3 =1+P
V13" = P + P;
Permutation (14).
Y14_ = 1 + Pl + P3
(Ly, Ly, L3, Ly): Yia=1+P,
Y14” =P1+P2+P3
Permutation (15).
Y15 =1 + P1 + P3
(Ll,Lz,L3,L4): Y15:1+P1+P2+P3
Y15” =P,
Permutation (16).
Y16 == 1 + Pz
(Ly,Ly, L3, Ly): {Yig=1+P, +P,+P;
Y16” = P1 + P3
Permutation (17).
Y17 = 1 + Pz
(LlrL21L31L4-): Y17:P1+P2+P3
Y17” = 1+P1+P3
Permutation (18).
Y18 == 1 + P2
(L1, Ly, L3, Ly): Yig=P +Ps
Y18” = 1+P1+P2+P3

Permutation (19).

Y19 = Pl + P3
(Ly, Ly, L, Ly): {Yig=1+P, + P, +P;

Y19” - 1 + P2
Permutation (20).

YZO = P1 + P3
(Ly,Ly, L3, Ly): Y50 =1+P, +P,+ P,

YZOH = 1 + P2
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Permutation (21).
Y21 =P1+P2+P3
(Ll'Lz;L3;L4)3 Yél =1+P,+P;
Y21” =1+ Pl
Permutation (22).

YZZ = 1+P1+P3
(Ll,Lz,L3,L4): Yéz = P1+P2 +P3

YZZH == 1 + Pz
Permutation (23).
Y23 = Pl + P3
(Ly,L,, L3, Ly): Y3=1+P,

Y23” = 1+P1+P2+P3
Permutation (24).

Y24:P1+P2+P3
(Li,Ly L, Ly): { You =1+ Py + Py
Y24” = 1+P2

Also, other quadraples (Li,Lj,Lk,LS); 1<1i,j,k s <4 give Pythagoras triples with
i,j,k,s are not distinct at all.
We continuo our discussions.

Permutation (25).

YZS = (0,0,0)
(Llr Lll Llr Ll): YéS = (01010)
Y, = (0,0,0)

Permutation (26).

Yo6 = P
(L1:L1'L1»L2)3 Y56 =0
Y26” =P

(Llr Lll Llr L3): Y;7 = P3
Y27” = P3

Permutation (28).

Yo = Ps
(L1:L1; L1:L4)3 Yo = Ps
Y28,, = 0
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Permutation (29).
Y29 = Pl + PZ
(Ll'Lz;L1.L1)3 Y50=0
Y29” = P1 + Pz
Permutation (30).
Y30 =0
(Ly, L3, Ly, Ly): { Yoo =P+ P,
Y30” = P1 + PZ

Permutation (31).

Y31 =P1+P2
(L1, Lay Ly, Ly): {Ya1 =P + P
Y31” = 0

Permutation (32).

Y32 = Pz + P3
(L11L1!L2!L1): YéZ =0
Y32” = P2 + P3
Permutation (33).
Y33=0
(Ll'LlJ L3'L1): Yl;)3 = PZ + P3
Y33” = P2 + P3

Permutation (34).

Y34 = P2 + P3
(Ly, Ly, Ly Ly): {Yaq =Py + Py

Permutation (35).

Y35 == 1
(LZILZ'LZ'LZ): Y?:S =0
Y35” = 1

Permutation (36).

Y36 = 1 + P3
(L2, Ly, Ly, Ly): Y36 =0
Y36” = 1 + P3

Permutation (37).
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Y37 = 1 + P3
(Lg, Ly, Ly, Ly): Y;,7 =P
Y37” - 1

Permutation (38).

Y38 = 1
(Lz, Ly, Ly, Ly): Yés = P;
Y38” = 1 + P3

Permutation (39).
Y39 = 1 + Pz + P3
(Ly, Ly, Ly, Ly): Y9 =0
Y39” = 1+P2+P3
Permutation (40).
Y40 = 1 + P2 + P3
(Ly, Ly, Ls, Ly): Yoo =P, + P
Y40” = 1
Permutation (41).
Yy =1
(Lz;Lz, Ly, L2)1 Yz,n =P, + P
Y41” = 1+P2+P3

Permutation (42).

Y42 == 1 + Pl
(Ly, Ly, Ly, Ly): Yz’Lz =0
Y4_2” = 1 + P1

Permutation (43).
Yiz =1
(Ly, Ly, Ly, Ly): Yy =P +P,
Y43” = 1+P2+P1
Permutation (44).
Y44_ =1 + PZ + P3
(Lz, L3, Ly, Ly): YZM =P+ P,
Y4_4” == 1+P1+P3

Permutation (45).

Y5 =0
(L3, L3, L3, L3): Y;LS =1
Y45” =1
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Permutation (46).

(L3'L3; L, L1)3 Yz’ts =P
Y46” =P

Permutation (47).

Yy7 =P
(L3, L3, L3, Ly): {Ya7 =1+ P5
Y47” = 1
Permutation (48).
Yy = Ps
(L3,L3,L3,L4)Z Y4-8 = 1
Y4-8” = 1 + P3
Permutation (49).
Y49 = 0

(L3, L3, Ly,L3): { Yao =1+ P, + Pg
Y49” = 1+P2+P3

Permutation (50).

Y50 == P2 + P3
(L3,L3,L2,L3): Y;O = 1+P2+P3
Y50” =1
Permutation (51).
Y51 = PZ + P3
(Lz:L3'L4'L3)3 Yél =1

Y51”=1+P2+P3

Permutation (52).

YSZZO

(L3 Ly, L3, L3): { Yo =1+ P, + P,
Y52” = 1+P1+P2

Permutation (53).

Y53:P1+P2

(Ls Ly La,L3): {Ys3=1+P; +P,

Y53” == 1

Permutation (54).

Abuobida Mohammed A. Alfahal, Yaser Ahmad Alhasan, Raja Abdullah Abdulfatah, Noor Edin Rabeh, On Pythagoras

Triples in Symbolic 3-Plithogenic Rings



Neutrosophic Sets and Systems, Vol. 59, 2023 196

Y54:P1+P2
(L31L4-1 L31L3): Y;4, =1
Y54” = 1+P1+P2

Permutation (55).

Y55 = 1
(LayLg, Ly, Ly): Y;5 =1
Y55” = 0

Permutation (56).

Y56 =1+ P3
(Ly Ly, Ly, Ly): Y56 = 1+ Py
Y56” = 0

Permutation (57).

Y57 = 1
(L4' Ly, Ly, Lz)l Y5,;7 =1+P5;
Y57” =P

Permutation (58).

Y58 = 1 + P3
(L4»L4: L4:L3)3 Yog =1
Ysg = P3

Permutation (59).
Y59 = 1 + Pz + P3
(L4;L4: L1,L4)3 Y;9 =1+P,+P;
Y59” == 0
Permutation (60).
Yoo =1
(Lyy Ly Ly Ly): {Yeo=1+P, + P,
Y60” = PZ + P3
Permutation (61).
Y61 = 1 + PZ + P3
(L4-r L4-1 L3l L4-): Y61 = 1
Y61” - PZ + P3
Permutation (62).
Y62 - 1 + Pl + P2

(L4,L1,L4,L4): Yéz = 1+P1+P2
Y62” =0
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Permutation (63).

Y63=1
(L, Ly, Ly, Ly): Yés =1+P +P
Y3 = Py + P,

Permutation (64).

Y64 =1 +P1 +P2
(L41L31L41 L4): Yé4, = 1
Y64” = P1 +P2

By continuing this argument, we can get all Pythagoras triples in 3 — SP,
Conclusion.

In this paper, we have studied Pythagoras triples in symbolic 3-plithogenic
commutative rings, where necessary and sufficient conditions for a symbolic
3-plithogenic triple (x,y,z) to be a Pythagoras triple.

Also, we have presented some related examples that explain how to find

3-plithogenic triples from classical triples.
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Abstract:

The equation AX + BY = C is called symbolic 2-plithogenic linear Diophantine
equation with two variables if A,B,X,Y,C are symbolic 2-plithogenic

split-complex integers.

This paper aims to find an algebraic formula for solving the symbolic 2-plithogenic
split-complex linear Diophantine equation with two variables with necessary and
sufficient conditions for the solvability of this class. Also, some related examples

will be illustrated.
Keywords: Split-complex, symbolic 2-plithogenic, linear Diophantine equation.

Introduction.

Diophantine equation is very interesting concept in Number theory, where they are
considered as algebraic equations with integer solutions [1].

In the literature, we find many generalized kinds of Diophantine equations handled
by many authors, see [2-5].

A classical linear Diophantine equation an equation with the following formula:
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AX + BY = C, where A,B,C,X,Y are integers.
Split-complex numbers were built over real numbers a generalization of them with
a similar structure to the complex numbers, where a split-complex number is
defined as follows:

a+bJ; a,b €R,J* =1,] # {—1,1}, and they are studied by many authors in [6-10].
If a,b € Z, then a + bJ is called a split-complex integer.
The concept of symbolic 2-plithogenic split-complex numbers was defined as an
extension of symbolic 2-plithogenic numbers [12]. The generalizations of real
numbers, especially the plithogenic numbers have many applications in many
scientific fields, see [13-20].
In this work, we present an effective algorithm to find all solutions of the symbolic
2-plithogenic split-complex linear Diophantine equation with two variables.
Preliminaries
Main discussion.
Definition.
Let AX + BY = C with:
A= (ag+ asP; + ayP,) + J(dy + d; Py + d,P;)
B = (bo + by Py + byP;) + ] (bo + by Py + b, P;)
C = (co+ 1Py + c3P;) +](Cp + €1 Py + &, P)
X = (%9 + x1P; +x,P,) + J(%y + X1 Py + X, P;)
Y = (o +y1Pr +¥2P2) +] (Yo + 1P + ¥, P2)

,

Where x;,y;, a;, b;, ¢;, X, ¥,,d, b, ¢, € Z.

The previous equation is called symbolic 2-plithogenic split-complex Diophantine
equation with two variables X and Y.

Example

[Q4+P,+P)+]J(1+P)IX+[(1—P,+3P,)+]J(4—5P, +P,)]Y =P, + P,

Is a symbolic 2-plithogenic split-complex Diophantine equation with two variables.
How can we find the solutions?

First, we must transform the equation to classical Diophantine equations.
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For this goal, we must compute the products AX,BY.
AX = (ag + a1 Py + ayPy)(xg + x1P; + x,P;) + (dg + d Py + dpPy) (Xg + X1 Py +
X,Py) +J[(ag + a1 Py + ayPy)(Xy + X1 Py + X, Py) + (do + dy Py + dyPy)(xg + x1 Py +
x2P2)].
We have:
(ap + arPy + ayPy) (xg + x1Py + x,P2) = agxo + Pi[(ao + a1)(xo + x1) — agxo] +
Py[(ag + ay + az) (xo + x1 + x2) — (ag + a1) (xo + x1)],
(do + dy Py + daPy) (Xy + X1 Py + X5 Py) = doXo + Py[(do + dy) (X + %) — doXo] +
Py[(do + dy + dp) (X + %1 + %2) — (do + d1) (%o + %1)],
(ag + a1 Py + ayPy) (Xy + X%, Py + X5 P;) = apXo + Pi[(ag + a1) (X + %1) — apXo] +
Py[(ap + a; + az)(¥g + %1 + x5) — (ap + a,) (X + X1)],
(do + dy Py + daPy) (Xg + X%, Py + X5 P;) = doxo + Py[(do + dy) (xg + x1) — doxo] +
Py[(do + dy + d3)(xg + x1 + x3) — (dp + d1)(xp + x1)],
So that.
AX = (agxo + doXo) + Pi[(ag + ay)(xo + x1) + (do + d1) (¥p + %1) — agxo — do¥Xo]
+ Py[(ag + a1 + ay)(xg + x1 + x5) + (dy + dy + dy) (X + %, + X5)
— (ap + ay)(xg + x1) — (dp + d1) (X + %1)]
+][(aox'o + doxo)
+ Pi[(ag + ar)(¥o + 1) + (do + d1) (%o + x1) — apXp — doXo]
+ Py[(ag + a1 +ay)(Xy + X1 + xX,) + (dy + dy + dy)(xg + x1 + x3)
— (ap + ay)(Xp + 1) — (dp + dy)(xo + x1)]]
By a similar argument, we can write:
BY = (boJ’O + 503"0) + P1[(bo +b)(o +y1) + (50 + 51)(3;0 + 1) — boyo — 60};0]
+ Pz[(bo + by + b)) (Yo +y1 +y2) + (50 + b, + b,z)(y'o + 1 +2)
—(bo+ b)Y +y1) — (50 + 51)(3;0 + )"1)]
+] [(bOyIO + 503’0)
+ P1[(b0 + b)) + V1) + (50 + 51)(3’0 +y1) — boYo — Bo}’o]
+ Pz[(bo + by + b)) (Vo + V1 + ) + (50 + b, + 52)()’0 +y1 +¥2)

— (by + b)) Yo + 1) — (50 + 51)(3’0 + }’1)]]
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The equation AX + BY = C is equivalent to the following system of Diophantine

equations:

Equation (1):

agXo + doXy + boYo + boYo = ¢o

Equation (2):

(ap + ay)(xo + x1) + (dp + dy)(Xg + %) + (bo + b)) (Yo + 1) + (50 + 51)(}"0 + 1) —

aoXxo — doXy — boyo — boYo = ¢y, thus:

(ao + a1)(xo + x1) + (do + d1) (%o + %1) + (bo + b)) (Yo + ¥1) + (bo + b1) O + ¥1)
=co+ ¢

Equation (3):

(ag +as +az)(xg +x1 +x3) + (do + dy +dy)(Xp + X1 +x5) + (bg + by + by)(yo +

yit+y2)+ (60 + 51 + 52)(3;0 + 91+ 2) — (ag + a)(xo + x1) — (do + d) (X + %1) —

(bo + b)) (Yo +y1) — (50 + 19’1)(3"0 + ¥1) = ¢, thus:

(ap+ ay +az)(xg + x1 + x3) + (dy + dy + dy)(%y + X1 + X3)
+ (bg + by + b)) (Yo +y1 +y2) + (50 +b; + b,z)(ylo + 1 +2)
=co+c+0y

Equation (4):

agXo + doXo + boYo + boyo = €

Equation (5):

(ap + ay) Xy + %) + (do + dy) (%9 + x1) + (b + b)) (Yo + Y1) + (50 + 51)(3’0 +y1)
=y + ¢

Equation (6):

(ap+ay +ay) (X + X + X,) + (dy + dy + dy)(xg + x1 + x3)
+ (bg + by + b)) Vo + Y1 +¥2) + (50 +b; + 52)()’0 +y1 +y2)
=+ + 6

By now, we have six linear Diophantine equation with four variables.

We will transform them into easier forms.

We add equation (1) to (4), we get:

(ag + do)(xo + X)) + (bo + 50)(}’0 + o) =co+ o ()

We add equation (2) to (5), we get:
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(ao + as + do + di) (%o + X1 + %o + %1) + (bo + by + by + b1) o + y1 + Yo + ¥1)
=cog+cg+ o+ UI)

We add equation (3) to (6), we get:

(ag+a;+a, +dy+d; +dy)(xg +x1 + x5 + Xy + X1 + X5)
+(b0+b1+b2 +50+51+52)()’0+}’1+3’2+y’0+y’1+y,2)
=co+ci+c, +¢++ ¢ ()

We subtract equation (3) from (1), we get:

(ag — do)(xg — %o) + (bo — bo) o — ¥o) = co — ¢y (IV)

We subtract equation (5) to (2), we get:

(ao + ay — do — dy) (g + x1 — %o — %1) + (bo + by — by — by) Yo + y1 — Yo — Y1)
=co+cy—Ccy—¢ UIV)

We subtract equation (6) from (3), we get:

(ap+a,+a;, —dy—dy —dy)(xg+x1 + x5 — Xy — X1 — %)
+ (bo + by + by — by — by — by) (Yo + Y1 + Y2 — Yo — Y1 — ¥2)
=co+ci+c,—C¢y—¢—¢ (V)

We change the variables by the following:

( Xo + Xy = tg, Xg — X =t
Xo+ X, +Xg+ X =t,x0+x, —X% —% =t
<%+M+@+%+@+ﬁ=@%+@+@—%—@—@=Q
Yo+ Yo =50,YotYo=So
Yot yi+Yot+tyi=suYo+Y1—Yo—Y1=51
Yo+ Y1+ Yo+ Yo+t Vit Yo=Y+ V1 +Yo—YVo—V1— V2 =5

The equation can be written as follows:

(ao + do)(to) + (bo + 60)(50) =co+c (D)

(ap+ay +do+d)(t) + (bg+ by +bo+by)(s)) =co+cy+ 6+ D

(ao + ay + ay + do + dy + d3)(t;) + (bo + by + by + by + by + b,)(s2)
=co+ci+c,+C+ ¢+ (I

(ag — do)(ty) + (bo - 50)(5'0) =cy— ¢ UV)

(ap + ay — dy — dy)(t)) + (bo + by — by — 51)(5'1) =cotc—co—¢ UIV)

(ap + a1 + a; — dy — dy — dy)(t7) + (bo + by + by, — by — by — 52)(512)
=cotci+c,—¢y—¢—¢ V)

Rama Asad Nadweh, Oliver Von Shtawzen, Ahmad Khaldi, Rozina Ali, A Study of Symbolic 2-Plithogenic Split-Complex
Linear Diophantine Equations in Two Variables



Neutrosophic Sets and Systems, Vol. 59, 2023 206

According to the previous argument, we can see that the symbolic 2-plithogenic
split-complex Diophantine equation AX + BY = C is solvable if and only if the
equations (I,I1,111,1V,1IV,I1IV) are solvable, which is equivalent to:

( ged(ag + do, by + bo) \ co + €
gcd(ao—do,bo—lfo)\co+c'0
ged(ag+ ay +dy +dy, by + by + by + by) \ co+c1 + o+ &
ged(ag + ay —do — dy,bg+ by — by — by) \ co+ ¢1 — o — ¢4
ged(ag+ay +ay +do+dy +dy by + by +by+by+ by +by)\coteg e, +é+¢E+6
kgcd(a0+a1+a2—a’O—a’l—a'z,bo+b1+b2—50—51—52)\co+cl+cz—c'0—c’1—c'2

The algorithm for solution:

To solve AX+BY =C; A, X,B,Y,C are symbolic 2-plithogenic split-complex
integers, we follow these steps:

Step (1).

We transform AX + BY = C to the equivalent system of classical Diophantine
equations (I) - (I11V).

Step (2).

We check if equations (I) = (I/IV) are solvable in Z.

If there exists one equation which is not solvable, then AX + BY = C Inot solvable.
Step (3).

We solve the system (I) — (I11V).

Step (4).

1 , 1 N oo L ,

*o =7 (b + 10,70 = 5 (S0 +50), Xo = 5 (Fo = t0), Yo = 5 (50 = 50)
1 , 1 , 1 , 1 ,

X1 =E(tl + t1) —E(t0+to),3’1 =§(51 +59) _5(50-"50)

7 1 ’ 1 ’ e 1 7 1 4
X1 =E(t1 —t1) —E(to_to)lh =§(51 —51) —5(50_50)

1 , 1 3 1 ; 1 ,
Xy = E(tz +t3) _E(tl +t1), Y = 5(52 + 55) —5(51 +51)

1 Lo 1 L, 1 1 .
E(tz—tz)_z(tl_ﬁ);}’z=§(52_52)_§(51—51)

Remark.

.X{Zz

The available solutions are under the conditions
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to+ to, to —to, ty +t,t; —ty,ty +t,t, —t, € 2Z
So + S0, S0 — Sp, 51+ 51,51 — 1,5, + 55,5, — S, € 27
Example.

Take the symbolic 2-plithogenic split-complex Diophantine equation with two

variable:

[(A+P, —P,)+]J(2+ 2P, +3P,)|X+[(3+P,+2P,)+]J(1—3P, +P,)]Y
We have:

(Ag = 1,a1 = 1,a2 =-1

do = 2,d1 =2,d2 == 3

bo = 3,b1 = 1,b3 = 2

< b,O = 1,61 = _3,b,2 = 1

Co = 11,C1 = 7,C3 =8

\ C,O :6,C,1 :6,b,2 :6

The equivalent system is:

( 3to+4s,=17 ()
6t; +2s; =30 (II)
8t, + 55, = 44 (III)
—to+25,=5 (V)
—2t;+ 65, =6 (IIV)
\—6t, + 75, =8s (II1IV)

All equation (I) — (IIIV) are solvable, that is because:

gcd(3,4) =1\ 17,gcd(6,2) =2\ 30,gcd(8,5) =1\ 44,gcd(—1,2) =1\
5,gcd(—2,6) =2\ 6,gcd(—6,7) =1\8

We will take one solution for each equation:

to = 3,59 = 2 is a solution of (I).

ty = —1,5, = 2 isa solution of (IV).

t; = 5,s; = 0 is a solution of (II).

t; = —3,5, = 2 is a solution of (IIV).

t, = 3,s, =4 is a solution of (III).

t, = 1,5, = 2 is a solution of (IIIV).

1 , 1 ) 1 , , 1 ,
Xo =§(t0+t0) =1,y =§(So+50) = 2,% =§(to_to) = 2,% 25(50_50) =0
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1 , 1 , 1 , 1 ,
Xy =§(t1+t1)_§(to+to) =0,y =§(51+51)_§(50+50) =2

1 ,
=(t; —t) —

x1:2

1 , ., 1 , 1 ,
E(to—to) =2, 25(31—51)—2(50—50) =0

1 o1 , 1 1 ;
Xp=5(ttt) -t +t) =Ly, =c(s;+52) =5 (51 +51) =3

b= (b~ ) 5 (6~ ) = =33 =5 (52— 5) 5 (51 ) = 1

Thus X =1 +P,) +J(2+ 2P, —3P,),Y = (2 — 2P, + 3P,) + J(8P,) is a solution of
the original equation.

Conclusion

In this paper, we have presented an effective algorithm to solve a symbolic
2-plithogenic split-complex linear Diophantine equation with two variables. Also,
we have illustrated a related example to clarify the strength of the presented
algorithm.

In the future, we aim to study other Diophantine equations with symbolic
2-plithogenic and 3-plithogenic split-complex linear and non-linear Diophantine
equations.
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Abstract:

The objective of this paper is to study for the first time the concept of square real
matrices with symbolic 2-plithogenic split-complex entries. Many of their
algebraic properties will be discussed and handled, where we find the formula of
computing inverses, exponents, and powers of these matrices by building a ring
isomorphism between the ring of split-complex symbolic 2-plithogenic matrices
and the direct product of the symbolic 2-plithogenic matrices with itself. Also, we
give the interested reader many related examples to clarify the validity of our

work.

Keywords: split-complex number, symbolic 2-plithogenic number, split-complex

2-plithogenic matrix.

Introduction

The concept of symbolic 2-plithogenic rings is considered as a generalization of
algebraic rings [1], and these rings were used by many authors to generalize
classical algebraic structures such as vector space, modules, and functions into

novel symbolic 2-plithogenic and 3-plithogenic versions, see [2-9].
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Symbolic 2-plithogenic matrices and other types have been studied in [10], where
many results were obtained such as diagonalizations, and eigenvalues.

Symbolic 2-plithogenic split-complex numbers were defined as a combination
between split-complex numbers, and symbolic 2-plithogenic numbers, for more
details about split-complex structures and their applications, see [11-13]. For similar
results about neutrosophic matrices and n-plithogenic matrices check [14-19].

In this paper, we define symbolic 2-plithogenic split-complex matrices, and we
present many elementary properties of these matrices, especially those are related
to classical matrix theory and applications.

Main Discussion

Definition.

Let A = (a;;) be a matrix, it is called symbolic 2-plithogenic split-complex if and
only if:

a;; = (a;;9 + a;; VP, + a;;PP,) + (bij(o) + bl-j(l)Pl + bl-j(z)Pz)] , where
a;;®,b; % € RJ? =1, P, X P, = Ppyaxijy, P2 = P..

Example.

142P,+P, +J(1—-P,) (P, + P)J

The matrix 4 = <(2 —P)+J(3+P +P,) 5—(P,+4P,)]

) is a 2 X2 symbolic

2-plithogenic split-complex matrix.

- 2—-P, 5 J 3+P+P, —(P,+4P,)

Remark.

Any symbolic 2-plithogenic split-complex matrix can be written as follows A =T +
KJ; T,K are two symbolic 2-plithogenic real matrices.

Also, it can be written as follows:

A= (Ay+ APy + A;P,) + J(By + B1Py + B,P,); A;,B; are classical square real
matrices.

The matrix presented in the previous example can be written as:

G 986 J*rCy )G )@ Z)+n( L)
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Remark.

We denote the ring of all symbolic 2-plithogenic split-complex matrices by 2 —
SPys-

(2 —SPys,+,.) isaring.

Definition.

Let X = My + NoJ,Y = My + NyJ; My, Ny, My, N; € 2 — Py, then:

X+Y =My + M)+ (Ny+ Nyp)J.

X.Y = (MyM; + NgN;) + (MyN; + NoM,)]J.

Example.

Take:

_(1+P P, 24P —P, 3P1)_

x=("n "t Cnar) I htn 2p) =Mt

_ 1+P1_P2 2_P2 2_P2 Pl_PZ)_

Y‘( 1+ P, 1+P1) ](1+P1 p, )=M+NJ
_(2+42P,—P, 2—P1+P2) (4+P1—2P2 4P1—P2>

X+Y_<1+P1+P2 1+p, )T \142p,—p, 3P,

0 1= Pl _P1+P2 1+P2 1+P1 o P1 _P1+2P2

NN_(2+P1—P2 3P1)(2—P2 P1—P2>_<4+8P1—4P2 3P1>
ot =\ p—p, 2p)\14+P, P, )T\ 2P, +2P, P, +P,

. _(1+P1 P, )(2—192 P1—P2)_<2+2P1 2P1—P2)

01 — Pl _P1+P2 1+P1 PZ - PZ Pl_PZ

N _(2+P1—P2 3P1)(1+P1—P2 2—P2)_<1+7P1—P2 4+5P1—P2)
o1 =\ p —p, 2P, 1+P, 1+P) "\ 2P, +2P, P, + 2P,
So that:

Xy_<5+11P1—4P2 2+3P1+2P2) <4+9P1—P2 2+3P1+2P2)

© =\ 3P, +2P, 3P, 2P, + 3P, 2P, + P,
Theorem.

Let 2—SPys be the ring of all nXxn symbolic 2-plithogenic split-complex
matrices, let 2 — Py be the ring of all n X n square symbolic 2-plithogenic real
matrices, then:

fi12—SPys > 2—Py X2 — Py
Such that:
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f(M+NJ) =M+ N,M—N); M,N € 2 — Py is aring isomorphism.

Proof.

For My + NyJ = M; + N;J, we have:

M, = M;,N, = N;, thus (M, + Ny, My — Ny) = (M; + N;,M; — N,),

hence f(My + NoJ) = f(M; + N.J).

For X = My + NoJ,Y = M, + NyJ € 2 — SPys,

we have:

fX+Y)=(My+ Ny +M; +N;,My+M; —Ny—N;) = f(X) + f(Y).

fX.Y) = f[(MgMy 4+ NoN,) + (MoNy + NoMy)J] = [(Mg + No)(My + Ny), (M, —

No)(M,; — N1)] = f(X)-f(Y)-
My+ Ny =0

f(X):O@{MO_N():O(:)MO:NO:O

Thus, ker(f) = {0}.

For any arbitrary element (M,N) € 2 — Py, X 2 — Py, there exists X = %(M +N) +
%(M — N)J € 2 — Py, such that f(X) = (M, N), so that f is a ring isomorphism.
Remark.

The inverse isomorphism is:

f7h2= Py X 2= Py > 2 = SPygs; fX(M,N) =2 (M + N) +5 (M — N)].

Example.

Consider:

1+P1+P2 3_P2 1+P1 1+P1_P2 1 1
X=< Pl_PZ 5+P1 PZ >+]<4‘+2P1_P2 Pl 2P2>=M+N],

P1+P2 2P1 _PZ 2P1_P2 Pl 5P1
then:
2+2P1 4‘_P2 1+P1 2P2 Z_PZ _1+P1
2P1 3P1 5P1_P2 _P1+2P2 P1 _SPI_PZ

Results from the isomorphism.
Let X=M+N]eZ_SPM;M=M0+M1P1+M2P2,N=N0+N1P1+N2P2 EZ_PM,

then:
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1). X isinvertible if and only if M + N,M — N are invertible, which is equivalent to:
My + No, My — No, (Mg + My) + (Ng + Ny), (Mo + M;) — (No + Ny),

(Mg + My + M) + (Ng + Ny + Ny), (Mg + My + M) + (Ng + N; — N,),

Are invertible matrices.

2).If X isinverible, then:
1 1
Xt= E[(M +N) T+ M -N)+ E[(M +N)t—-M-N)1Y)

Where:
(M+N)™t =My + Ny)™t + [(My + My + Ny + Ny)™t — (Mg + No) 1P,

+ [(My + My + My + Ny + Ny + N,)™t — (Mg + M; + Ny + N;) 1P,
(M —=N)™t = (Mo — No)™" + [(Mg + My — Ny — N;)™" — (Mo — No)~']P; +
[(Mo + My + My — Ng — Ny — Np)™' — (Mo + My — No — N;) 7P,
3). detX =—[det(M + N) + det(M — N)] + 3 [det(M + N) — det(M — N)J
det(M + N) = det(My + Ny) + [det(My + M; + Ny + N;) — det(M, + Ny)|P; +
[det(My + M; + M, + Ny + N; + N,) — det(My, + M; + Ny + N,)|P,.
det(M — N) = det(My — Ny) + [det(My + M; — N, — N,) — det(M, — Ny)]P; +
[det(My + M; + M, — Ny — N; — N,) — det(My, + M; — N, — N,)|P,.

4). X" =

N R

[(M +N)™ + (M — N)"] + 2 [(M + N)" = (M — N)"]]

(M + N)* = (My+ No)™ + [(My + My + Ny + N))™ — (Mg + No)" 1P, + [(My + M, +
M, + Ny + N; + Ny)" — (Mg + M; + Ny + N |P,.

(M —-N)" = (Mo - No)n + [(Mo +M; — Ny — N)™ — (Mo - No)n]P1 + [(Mo + M, +
M, — Ny — Ny — Np)™ — (Mo + My — Ny — Ny P;.

Example.

Consider the following 2 X 2 symbolic 2-plithogenic split-complex matrix:

243P +4p, E 1-Ip+2P, 1-pP +P,
X = 2 2 +]J 2 2 =M+
3 3 1 1 3 1 3 1
EPl E+EP1+EP2 EP1_3P2 E_Epl_gpz
NJ, where:
3 1 7 1
2+EP1+4’P2 E 1_§P1+2P2 E_P1+P2
" 3P 3+1P +1P e 3P 3P ! 3P 1P
21 2 271272 21 22 27t 272
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_ (3— P, +6P, 1—a+5)
M+N‘(3a—35 2-P,

_ 1+2P1+2P2 Pl_PZ )
M N‘( 3P, 1+2P, +P,
We write:

M+N:K0+K1P1+K2P2,M_N:L0+L1P1+L2P2,Where:

o= Nok=(T Nk=(8 Hokorki=(F O

0 2 3

=5 1)

1 -3 0 3

1

) Ko+ Ky + K,

= Nota=C D= Dotor1a=C Dototia+i=(}

det(M + N) = det(Ko) + [det(Ko + Kl) - det(Ko)]Pl + [det(KO + K1 + Kz) -

det(M - N) = det(Lo) + [det(LO + Ll) - det(Lo)]Pl + [det(Lo + L1 + Lz) -

detX = 1[det(M + N) +det(M — N)] + 1 [det(M + N) — det(M — N)]J

2 2

1 1
=5 (7 +17P;) +5](5 ~ 16P; = 5P,)

_(7 17P> (5 ap SP)
BAVEE RO ARA VI i

now, let's find the inverse of X:

S Wk

114 1 1 1

-1 _ _ - S —_—

(Ko + K1 + K3) —4(0 4) <6L 14
1 1
1_(1 0 4 13 —1y_ (3 9
Lo _(O 1).(L0+L1) —9(0 3)— . 1
3

1 0

1,4 o0 5
-1 _ —
(Lo + Ly + L) _20L3 5) R
20 4

1
i f(Ko+K1)_1:_%<1 0):
2
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M+ N = (Kp)™ + [(Kp + K) ™ = (Kp)~HPy
+[(Ko + Ky + K)™' = (Ko + K1) 7P,

1 1 -5 1 3 1
_[3 6 6 6 4 4
|, 2 3 1|/t 3 . P,
2 2 2 2
1 5P +3P 1+1P 1P
_[3 61" 4% 6 6" 47
3 3 1 1
~p,—=P —+ZP
2°1 272 ;toh
(M - N)_l = (Lo)_l + [(Lo + L1)_1 - (Lo)_l]P1 + [(Lo + L1 + Lz)_l - (Lo + Ll)_l]Pz
-2 -1 2 1
(1 0 3 9 15 9
_(0 1)+ , 2 Pt{ 73 1 | P2
3 20 12
1—=P 2P 1P +1P
_ 3’1 1572 9"t 972
3 2 1
——P 1—=p, ——P
20 2 3’1 1272
1 1
X1= E[(M +N) 1+ M -N)+ E[(M +N) =M -N)1
4 3P+37P 1+1P 5P
_1(3 277602 6 18°' 367
2 3P 33 3 1 1P
2°1 202 2 61 12°°
-3 11D 53 1+51D 13
+1]261602 6 18 ' 36 2
2 3P 27 1+7P+1P
21 202 2 617127
23P+371D 1+1P 5P
_[3 4 1'71200% 12 36" 727
3 33 3 1 1
~p,—=—P ~__—_p ——P
41 407 4 1271 2477
-1 1P+531D 1+5P 13P
+]31211202 12 36 1 722
3P 271D 1+7P+1P
471 402 4 1271 2472

As an additional application of the matrix ring isomorphism between 2 — SPy,, and
2—Pyx2—Py is to find all possible eigenvalues/vectors for the symbolic

2-plithogenic split-complex matrix.
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To find the eigenvalue for a symbolic 2-plithogenic split-complex matrix, we must
find all symbolic 2-plithogenic eigen values of M + N,M — N.

For the matrix defined in the previous example, we can see:

The eigenvalues of K, are {3,2} = Q.

The eigenvalues of Ky + K; are {—2,1} = Q;.

The eigenvalues of Ky + K; + K, are {4,1} = Q,.

The eigenvalues of M + N are:

Q ={ag + (a; —ag)P; + (a; —ay)Py;a; € Q;} = {3 —5P; + 6P;,3 —5P; +3P,,3 —
2P, + 3Py, 3 — 2P;,2 — 4P, + 6P,,2 — 4P, + 3P, 2 — P, + 3P,,2 — P,}.

The eigenvalue of L, is {1} = s,.

The eigenvalue of L, + L, is {3} = S;.

The eigenvalues of Ly + Ly + L, are {54} = S,.

The eigenvalues of M — N are:

S ={bg + (by — bp)P; + (b, — b1)P,; b; € 5;} = {1+ 2P, + 2P,,1 + 2P; + P,}

The eigen values of the duplet (M + N,M — N) are:

{(3=5P, 4+ 6P,, 1+ 2P, + 2P,), (3 — 5P, + 6P,, 1+ 2P, + P,), (3 — 5P, + 3P,, 1 +
2P, + P,),(3 — 5P, + 3P, 1+ 2P, + 2P,), (3 — 2P, + 3P,, 1 + 2P, + 2P,),(3 — 2P, +
3P, 14 2P, + P,), (2= P, 1+ 2P, + 2P,), (2 — P, 1+ 2P, + P,), (2 — 4P, + 6P,, 1 +
2P, + 2P,), (2 — 4P, + 6P,, 1+ 2P, + P,), (2 — 4P, + 3P,, 1+ 2P, + 2P,),(2 — P, +
3P,,1+ 2P, + 2P,),(2 — P, +3P,,1+ 2P, + P,),(3 —2P;,1 4+ 2P, + 2P,),(3 —

2P;, 1+ 2P, + P,)}.

We put:

T, = (3 — 5P, + 6P, 1 + 2P, + 2P,)

fAT) =24 =3P, +8P) +2(2— 7P, +4Py)) = (2- 2P, +4P,) + (1-2P +

2P,)J.
T2=(3_5P1+6P2,1+2P1+P2)

— 1 1 3 7 7
fAT) =54 =3P +7P) +2(2— 7P, +5P)] = (2= 3P +2P,) + (1 - 2P, +
5
2P,)J.

T3:(3_2P1+3P2,1+2P1+2P2)
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fAT) =2(4+5P) +2(2— 4P, + P)] = (2+42P,) + (1 - 2P, +3P, ).
T, = (3— 2P, + 3P, 1+ 2P, + P,)

fTUTL) = S (4 +4P,) + (2 — 4Py + 2P)] = (2 + 2P;) + (1 — 2P, + Py)).

Ts = (3 — 5P, + 3P, 1+ 2P, + 2P,)

[T =34 =3P, +5P) +2(2 = 7P+ P)] = (2 =3P +2P,) + (1- 2P +
“P,)J.

Ts = (3 — 5P, + 3P, 1+ 2P, + P,)

[ Te) =3(4 =3P, +4P) +2(2— 7P, +2P)) = (2= 2P, +2P,) + (1= 1P +
Py)J.

T, = (2= P, 1+ 2P, + 2P,)

fAT) =3B +P+2P) +5(1 =3P = 2P)] = (3435P + Py) + (5-2P = P,) ).
Ty = (2 — P, 1+ 2P, + P,)

AT =3@+P+P)+5(1 =3P, —P)] = (3+2P +3P) + (5-2P = 3Py) .
Ty = (2 — 4P, + 6P,, 1 + 2P, + 2P,)

fTH(Ts) =3(3 2P, +8P,) +2(1— 6P, +4P)] = (3= P+ 4P;) + (- 3P, +
2P,)J.

Tio = (2 — 4Py + 6P, 1+ 2P, + P,)

[ (Ty0) =3B = 2P, +7P) +5(1— 6P +5P)] = (3= P +2P,) + (5-3P, +
)

Ty = (2 — 4Py + 6P,, 1 + 2P, + 2P,)

fTn) =23 —2P, +5P) +3(1—6P + P)] = (- P +2P) + (- 3P +
0]

Tiz = (2 — 4P, + 3P, 1+ 2P, + P,)

fTHT) =5 (3= 2P, +4P) +5 (1= 6P, +2P)] = (5= Py +2P,) + (5 — 3P, +
Pz)].

T13:(2_P1+3P2,1+2P1+2P2)
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- 1 1 301 5 1 3

[ T) =3B+ P +5P) +2(1=3P, +P)] = (43P +2P) + (5-2P +
1

EPZ)].

T14=(2_P1+3P2,1+2P1+P2)

- 1 1 3 1 1 3
fHT1) =58+ Py +4Py) + (1 - 3P +2Py)] = (5+5P1 +2P2) + (E—Ep1 +

P,)J.
T15 = (3_2P1,1+2P1+2P2)
fTU(Tis) =5 (4+2P) +5(2 — 4P, = 2P,)] = 2+ Pp) + (1 — 2P, — P,)].
T16 = (3_2P1,1+2P1+P2)
— 1 1 1 1
[N (Te) =5 (4+P) +5(2— 4P, — Py)] = (2 +5P2) + (1 —2p, —EPZ)].

Conclusion

In this paper, we studied for the first time the concept of square real matrices with
symbolic 2-plithogenic split-complex entries, where we find the formula of
computing inverses, exponents, and powers of these matrices by building a ring
isomorphism between the ring of split-complex symbolic 2-plithogenic matrices
and the direct product of the symbolic 2-plithogenic matrices with itself. Also, we
give the interested reader many related examples to clarify the validity of our
work.
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Abstract:

This paper is dedicated to finding a general algorithm for generating different
solutions for Pythagoras' non-linear Diophantine equation in four variables x* +

y* = z* in symbolic 2-plithogenic rings, which are known as Pythagoras triples.
Also, we present some examples of those triples in some finite symbolic
2-plithogenic rings.

Keywords: symbolic 2-plithogenic ring, Pythagoras triples, Diophantine equations

Introduction and Preliminaries

Symbolic n-plithogenic algebraic structures are a new generalization of classical

algebraic structures, as they have serious algebraic properties to study.

In the previous literature, we can clearly note several algebraic studies that were
interested in discovering the properties of these algebraic structures, for example,
we can find some applications of plithogenic structures in probability, ring theory,

linear spaces, matrices, and equations [1-10].
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Researchers have studied Pythagorean triples in the ring of ordinary algebraic
numbers [11-14]. Several efficient algorithms for calculating these quadruples have

been presented, as solutions to the corresponding Diophantine equation.

This has motivated us to study Pythagoras triples in the symbolic 2-plithogenic
commutative case, where we find a general algorithm for generating different
solutions for Pythagoras non-linear Diophantine equation in four variables x* +

y* = z? in symbolic 2-plithogenic rings.

Definition.
The symbolic 2-plithogenic ring of real numbers is defined as follows:
2—SPg ={to+ t;P, + t,Py;t; €ER Py X Py = P, X P, = P,,P,* = P,” = P,}
The addition operation on 2 — SPy is defined as follows:
(to + t1Py + t,P,) + (t + t. Py + £5P,) = (to + to) + (¢t + )Py + (t; + £5)P,
The multiplication on 2 — SPy is defined as follows:
(to + t1Py + t,P,) (o + t4 Py + £5P,)
= toty + (toty + tyty + t1t) Py + (toly + tity + tyty + tyty + tot1) Py
Main Discussion
Definition.
Let R be aring, then (t,s,k) is called a Pythagoras triple if and only if
t> +s? =k%t,s,k €R.
Theorem.
Let T=ty+t;P,+t,P,S =50+ 5Py +5,P,,K=ky+ kP +k,P, are three
arbitrary symbolic 3-plithogenic elements T,S,K € 2 —SPz, then (T,S,K) are
Pythagoras triple in 2 — SPy if and only if:

{ (to,So, ko), (to + t1, 50 + S1, ko + kq) are pythagoras triples in R
(to +t1 +ty,50 +5; +55,ky + ky + ky) is pythagoras triple in R

Proof.

According to [ ], we have:

T? = to? + [(to + t1)* — 1Py + [(to + t1 + £2)* — (&0 + t1)?]P;
5% =502 + [(s0 + 51)% = 50°1P1 + [(Sg + 51 + 52)* = (50 + 51)?]P;
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T2 = ko® + [(ko + k1)? — ko?|Py + [(ko + Ky + k3)? — (ko + kq)?]P,

The equation T? + S = K? is equivalent to:

to? + 502 = ko® (equation 1),

(to + )% + (5o + 51)? = (ko + k1)? (equation 2),

(to +t1 +t5)% + (So + 51+ 55)% = (ko + kg + ky)? (equation 3),

Equation (1) implies that (to, So, ko) is a Pythagoras triple in R.

Equation (2) implies that (to + t1,S¢ + S1, ko + k1) is a Pythagoras triple in R.
Equation (3) implies that (ty, +t; + t;, 5o + 51 + 53, ko + k1 + k) is a Pythagoras
triple in R.

Thus the proof is complete.

Theorem.

Let (to, S0, ko), (t1, 51, k1), (t2, 52, ky)be three Pythagoras triples in the ring R, then
(T,S,K) Pythagoras triple in 3 — SPg, where:

T =ty+ [t; — to]Py + [ty — t1]Ps.

S =59+ [s1 — So]P1 + [52 — 51]P.

K = ko + [ky — kolPy + [k2 — k1]P.

Proof.

We have: to+ (t; —to) = ty, to + (t; — to) + (t; — t1) = t,.

So + (51— 50) = 51,50 + (51 — Sp) + (52 — 51) = 53,

ko + (ky — ko) = kq, ko + (ky — ko) + (ky — k1) = k.

This implies that (T,S,K) Pythagoras triple in 2 — SP; according to the theorem.
Examples.

We have:

(to, So. ko) = (3/4,5)
(t1,s1, k1) = (6,8,10)
(tz, S0, k) = (4,3,5)

Are three Pythagoras triples in Z.
The corresponding symbolic 2-plithogenic Pythagoras triple is (T, S, K), where:
T =3+[6—3]P, +[4—6]P, =3+ 3P, — 2P,

Abuobida Mohammed A. Alfahal, Yaser Anmad Alhasan, Raja Abdullah Abdulfatah, Ahmad Abd Al-Aziz, The Computing Of
Pythagoras Triples In Symbolic 2-Plithogenic Rings



Neutrosophic Sets and Systems, Vol. 59, 2023 226

Example.

Find all Pythagoras triples in 2 — SP;,, where Z, I the ring of integers module 2.
First, we find all Pythagoras triples in Z.

L, = (0,0,0), L, = (1,0,1), Ly = (0,1,1), L, = (1,1,0)

Remark that for every permutation of the set {Li,L,, L3 L}, we get a different
symbolic 2-plithogenic Pythagoras triple.

We discuss all possible cases:

Permutation (1).
Y1:P1_P2:P1+P2
Y,1:P2
Y1”:P1:P1

Permutation (2).

Y2:P2
Y,2:P1_P2:P1+P2
Y2”:P1:P1

Permutation (3).

Y3 =P
Y,3:P1+P2
Y3”:P2

Permutation (4).

Y4:P1+P2
Y’4:P1
Y4,’:P2

Permutation (5).

Y5:P1
Y’5:P2
Y5”:P1+P2

Permutation (6).

Y6:P2
Y6:P1
Y6”:P1+P2

Permutation (7).
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Y7=1+P2
Y,7=P1
Y7”:1+P1+P2
Permutation (8).
Yo =P,
Y8=1+P1+P2
Y8”=1+P1+P2

Permutation (9).

Y9:1+P1
Y9=P1+P2
Y9”=1+P2

Permutation (10).

Y10:P1+P2
Yio=1+P,
Y10”:1+P2

Permutation (11).

Y11:1+P2
Yi1=1+P1
Y11”:P1+P2

Permutation (12).

Y12:1+P1+P2

Permutation (13).
Y13 =1 + P1 + PZ
Yi3 = 1 + PZ
Y13” =P
Permutation (14).
Y14_ = 1 + Pl
Yi4_ = 1 + PZ
Y14_” = Pl + PZ
Permutation (15).
Y15 = 1 + Pl
Yis=1+P + P,
Y15” =P,

Permutation (16).
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Y16:1+P2
Yie=1+P +P,
Y16”:P1

Permutation (17).

Y17=1+P2
Yi, =P +P,
Y17”=1+P1

Permutation (18).
Y18 = 1 + PZ
Yis =P
Y18” == 1+P1+P2

Permutation (19).

Yio=P;
Yio=1+4+P +P,
Y19”:1+P2

Permutation (20).

Y0 =P
Yoo=1+P +P,
Y20”:1+P2

Permutation (21).

Y21=P1+P2
Y;1=1+P2
Y21”=1+P1

Permutation (22).

Y22=1+P1
Y;2:P1+P2
Y22”=1+P2

Permutation (23).

Yo3 =P
Y23=1+P2
Y23”=1+P1+P2

Permutation (24).

Y24=P1+P2
Yé4=1+P1
Y24”=1+P2
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Also, other quadraples (Li,Lj,Lk,Ls); 1<1i,j,k,s <4 give Pythagoras triples with
i,j,k,s are not distinct at all.
We continuo our discussions.

Permutation (25).

Y25 = (0!0!0)
YéS = (0,0,0)
Y25” = (O)O)O)
Permutation (26).
Y26 = Pl + P2
Yo6 =0
Y26” = P1 + P2
Permutation (27).
Y7 =0
Y, =P, + P,
Y27” = P1 + P2

Permutation (28).

Y28:P1+P2
Yé8:P1+P2
Y28”:0

Permutation (29).

Y0 =P,
Yp9 = 0
Y29” =P,

Permutation (30).

Yéo =P,
Y30” =P,

Permutation (31).

Y50 =P,
Y31 =P,
Y31”:O

Permutation (32).

Y32 =1
Y50 =0
Y32” =1
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Permutation (33).

Y33=1+P2
Y33 =0
Y33”:1+P2

Permutation (34).

Y34=1+P2
Y3, =P,
Y34”:1

Permutation (35).

Y35=1
Y35 = P,
Y35”:1+P2

Permutation (36).

Y36=1+P1
Y;,6=0
Y36”:1+P1

Permutation (37).

Y37=1
Y5, = Py + P,
Y37”:1+P2+P1

Permutation (38).

Y38=1+P2
Yig =P, + P,
Y38”:1+P1

Permutation (39).

Y30 =0
Yoo = 1
Yz =1

Permutation (40).

Yoo = P,
Y;0:1+P2
Y4_0”:1

Permutation (41).

Ypu =P,
Y:n:l
Y41”:1+P2
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Permutation (42).
Yy =0
Yi=1+P +P,
Y42” = 1+P1+P2
Permutation (43).
Yys=P + P,
Y;_3 - 1 + Pl + P2
Y43” = 1
Permutation (44).
Y44_ = Pl + P2
Y‘;‘l— = 1
Y4_4_” = 1+P1+P2

Permutation (45).

Yis =1
Vs =1
Y4_5” = O

Permutation (46).

Y46:1+P2
Y;_6=1+P2
Y46”=0

Permutation (47).

Y47=1
Y,y =1+P,
Y47” =P,

Permutation (48).

Y48:1+P2
Yig =1
Y4-8”=P2

Permutation (49).
Y4_9 = 1 + P1 + P2
Yoio=1+P, +P,

Y49” = O

Permutation (50).

YSO = 1
Yeo=1+P, +P,
Y50” = Pl + Pz
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Permutation (51).

Y51:1+P1+P2
Yglzl
Y51”=P1+P2

By continuing this argument, we can get all Pythagoras triples in 2 — SPz,
Conclusion.

In this paper, we have studied Pythagoras triples in symbolic 2-plithogenic
commutative rings, where necessary and sufficient conditions for a symbolic
2-plithogenic triple (x,y,z) to be a Pythagoras triple.

Also, we have presented some related examples that explain how to find

2-plithogenic triples from classical triples.
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Abstract: In this paper we present the symbolic neutrosophic and plithogenic Marshall-Olkin
type I class of distributions. We derive the formal form of the cumulative distribution function and
probability density function of neutrosophic and plithogenic Marshall-Olkin Type I class of
distributions. As a special case of the mentioned class of distributions we study the generalized
uniform distribution in both neutrosophic and plithogenic forms, we derive its PDF and CDF then
present an algorithm of random numbers generation according to it, then we estimate its parameters
using maximum likelihood estimation and support the results with a simulation study to show the
efficiency of the calculated parameters and study its asymptotic properties including unbiasedness
and consistency.

Keywords: Marshall-Olkin Type I Class of Distributions; Neutrosophic; Plithogenic; AH Isometry;
Maximum Likelihood Estimation; Random Numbers Generation.

1. Introduction

Neutrosophic Probability Theory and Plithogenic Probability Theory are both intriguing
extensions of traditional probability theory that deal with uncertainty and ambiguity in a more
nuanced and comprehensive manner. These theories were developed to address situations where
classical probability theory falls short in capturing the complexity of real-world uncertainties.

Neutrosophic Probability Theory is an extension of classical probability theory that introduces
the concept of "Neutrosophy." Neutrosophy deals with indeterminacy, ambiguity, and imprecision
that arise in various fields such as philosophy, mathematics, and decision-making[1]-[31].

Plithogenic Probability Theory is another extension of classical probability theory that aims to
address the limitations of traditional probability theory in handling complex uncertainties. It
introduces the concept of "Plithogeny," which deals with the multitude of conditions that contribute
to the occurrence or non-occurrence of an event. Unlike classical probability theory, where events are
often treated as independent and isolated, plithogenic probability theory recognizes that events are
influenced by a multitude of interconnected factors. It also focuses on understanding how various
conditions interact and contribute to the overall probability of an event. This theory is particularly
useful in scenarios involving interdependent events, network analysis, and systems with intricate
dependencies.[32]-[47]
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In this paper we will deal with symbolic neutrosophic sets and symbolic plithogenic sets where the
elements of these sets take the form N =a+ bl;I1?> =1 for neutrosophic sets and S =a + bP; +
cP,; Pf = P,,P? = P,,P, - P, = P, P, = P, for plithogenic sets and we will generalize the well know
Marshall Olkin class of distributions [48]-[55] to both neutrosophic and plithogenic class.

2. Preliminaries

Definition 2.1

Let R(I) = {a + bl ;a,b € R} be the neutrosophic field of reals where I% = I. One-dimensional
AH-isometry between R(I) and R? and its inverse are given by:
T:R(I) > R?; T(a+bl) = (a,a+b) )
T L:R?>>R(); T X a,b) =a+ (b—a)l 2)
Note:
T is an algebraic isomorphism and it preserves distances.

Definition 2.2

A neutrosophic random variable Xy is defined as follows:
XN =X1 +X21;12 =1
Where X;,X, are classical random variables.

Definition 2.3
Let f:R(I) > R(D; f = f(xy), xy € R(I) then f is called a neutrosophic real function with one
neutrosophic variable.
Definition 2.4
Let ay = a; + a,l, by = by + b,I € R(I) be neutrosophic numbers. We say that ay =y by if:
a; =2by,ay+a, =b;+b,
Definition 2.5

Let R(P,,P,) = {ag + a;P; + a,P; ;a9,0;,a, ER, P2 =P,, P2 =P,, P,-P, =P, P, = P,} be the
Plithogenic field of reals. One-dimensional isometry between R(P;,P;) and R® and its inverse are
defined as follows:

T:R(P,,P,) » R®; T(ap + a, P, + a,P,) = (ag,ay + a;,ay + a; + a,) 3)
T~%:R® = R(Py, Py); T7'(ag, a1,a) = ag + (ay — ag)Py + (a, — a;)P, (4)

Definition 2.6

A Plithogenic random variable Xp is defined as follows:
Xp =X, + X,P, + X,P,;P? =P,,P? =P,,P,-P, =P, P, = P, where Xy, X;,X, are classical random
variables.

Definition 2.7
Let f:R(P,P,) » R(P,,P,); f = f(xp) ,xp € R(P,P,) then f is called a Plithogenic real
function with one plithogenic variable.

Definition 2.8

Let ap = ag + a,Py + a,P,,bp = by + b, Py + b,P, € R(P;, P,) be two plithogenic numbers. We say
that ap >p bp if:
ag=by,a9+a, =by+by,a0+a,+a, =by+ b, +b,
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3. Neutrosophic Marshall-Olkin Type I Class of Distributions:

In this section we are going to derive the neutrosophic form of Marshall-Olkin Type I class of
distributions depending on its cumulative probability distribution function and probability

distribution function and some generalized distributions according to it.

Definition 3.1

Neutrosophic Marshall Olkin Type I cumulative distribution function is classical Marshall-Olkin
Type I cumulative distribution function but defined on R(I), taking values in R(/) and with
parameters from R(I), that is its CDF is:

F(xy)
F(xy)(1 —py) + py

G(xy; py) = ; Xy ER(D &0 <y py <y 1 5)

Theorem 3.1

The neutrosophic formal form of (5) is:
F(x;) ' F(x; + x3) _ F(x,)
F(x))(1 = p1) +p1 FOx +x,)(1 = (py +p2)) + (pr + p2)  Flx)(X —p1) +py

G(xy; py) = (6)

Proof

T[F (xy)]
T[G(xy; p0)] = T[F(xy)IT[1 — py] + Tlpn]

_ (F(x1):F(x1 + xz))
(F(x1):F(x1 + xz))(l —pu1—(p1 + Pz)) + (p1, p1 + P2)

(F(x1), F(x; + x3))
(F(x1)(1 —p1) +p1, (F(x1 + xz))(l —(p + Pz)) + (py + Pz))

~ ( F(x,) F(xy + x3) >
S \FGe)@ = py) +p1 Flry +x)(1 = (py +p2)) + (o1 + py)

So:

Gly; py) = T~ < F(xy) F(xy + x3) >
N PN FCe)(X = p1) + p1 " Floxg +x2)(1 = (p1 + p2)) + (o1 + p2)

_ F(xq) +] F(x; +x3) i F(x,)
Fe)@ =p)+pr [ FOa+x2)(1= (o1 +p2)) + (pr+p2)  Fd(A=p1) + 1

Note:

Neutrosophic probability distribution function of Marshall-Olkin Type I class of distributions can be

derived by direct derivation of equation (5).

pnf (xy) )
pwIF (xy) + pyl?

g(xNipN)=[(1_ xy ER(D &0 <y py <yl (7

Theorem 3.2
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The neutrosophic formal form of (7) is:

(s pr) = paf (x1) Iy (o1 + p2)f (g + x2) _ p1f(xq) ®)
g3 Py [(1 - pl)F(xl) + p1]2 [(1 — (pl —+ pz))F(xl —+ xz) —+ P1 + p2]2 [(1 - pl)F(xl) + p1]2

Proof

) _ T[pn]TI[f (xn)] _ (p1,p1 + Pz)(f(x1)'f(x1 + xz))
T[g(xn; pa)] = 7= 2
[T[(l = pIT[F (xp)] + T[,DN]] [(1 —pu1—(p1 + pz))(F(xl),F(xl + xz)) + (p1,p1 + Pz)]
_ (Plf(xﬂ. (o1 +p2)f (21 + xz))
2
[((1 = p1)F(x1) + py, (1 —(py + Pz))F(x1 +x2) +py + Pz)]

_ < puf (1) (1 + p2)f O +2%2) )
[(X = pOF (1) + p ]’ [(1= (o1 + p))F(x1 +x3) +py + ,02]2

So:
g Cini o) = T_1< prf (r) (p1 + p2)f (1 +x3) )
e [ = p)F Q) +pu]? [(1= (o1 + p2))F(xs +x2) + py + Pz]2
p1f (x1) (p1 + p2)f (x1 + x3) p1f(x1)

[(1 - pl)F(xl) + ,01]2 [(1 — (p1 + pz))F(xl + xz) +p t+ p2]2 B [(1 - pl)F(xl) + p1]2

Theorem 3.3

Equation (8) represents probability density function in classical sense.

Proof
e L e
J|, otipot = f__w [ = poFGr) + pu2
+oo (p1 + p2)f (x1 + x3) +eo paf (x1)
+1 d(x, + x,) — d
_L,, [(1= (o1 + p2))F (s +x3) + py + pa]” (x1 +22) L,, [(1 = p)F(x;) + p1)? xl]

B
—oo0 F(x)(A—py) +p1

+oo F(x; + x3) +eo F(xy) _
! _f—oo 4 <F(x1 + xz)(l —(p1 + Pz)) +(p1 + Pz)> f—oo d <F(X1)(1 —p)+ p1>] -1

Also, it is easy to see that T[g(xy; py)] presents two continuous and positive functions. Depending
on [3], [25] we conclude that the given neutrosophic function is a neutrosophic probability density
function in classical sense.

4. Neutrosophic Marshall-Olkin Type I Uniform distribution:

Definition 4.1

The neutrosophic cumulative distribution function of the neutrosophic Marshall-Olkin Type I
uniform distribution is defined as follows:

Xy — Ay
xy(1 = pn) + pyby —ay

G(xy; pn, an, by) = say <y Xy <y by,0<ypy <yl 9

Theorem 4.1

The neutrosophic formal form of (9) is:
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X1-a1 +1 (x1+x2)—(as +az) _ X1-a1
x1(1-p1)+p1bi—aq (x1+x2)(1=(p1+p2))+(p1+p2) (b1 +bz)—(a1+az)  x1(1-p1)+p1bi—ay

G(xy; py,ay, by) = (10)

Proof

Tlxy] — Tlay]
xy]T[1 = pn] + Tlpn] - T[by] — Tlay]

_ (e, %1 +x2) — (aq, 044 + az)
(21, %1 + xz)(l —p,1—(p + Pz)) + (p1,p1 + p2) - (by, by + by) — (ag,a;, + a3)

T[G(xy; pn, an, by)] = T

(x1 —ay, (% +x3) — (a; + az))
(x1(1 —p1) +p1by —aqg, (xg + xz)(l —(p1 + Pz)) + (p1 +p2)(by + by) — (a + az))

_ ( X —aq (x1 +x3) — (a; +ay) )
x1(1=p1) + piby —ar " (21 + %) (1 = (p1 + p2)) + (p1 + p2) (b1 + b)) — (a3 + a3)

X1 —a (1 +x3) — (ag + a3) >

G (xy; ,a,b)=T‘1< ,
i P G DN x1 (1= p1) +piby —ar " (x; + %) (1 = (p1 + p2)) + (1 + p2) (b1 + by) — (a; + az)

_ X1 —
x1(1=p) +piby —ay

+1[ (1 +x2) — (ag +ay) _ X1 — g ]
O+ x2)(1 = (p1 +p2) + (o1 +p2)(by + b)) — (a3 +a)  x1(L—p1) +pihy —ay

Definition 4.2

The neutrosophic probability distribution function of neutrosophic Marshall-Olkin Type I uniform

distribution is defined as follows:
(by — an)pn

g(xn; Py, ay, by) = ;ay <y Xy <y by,0<ypy <yl 11
[xy (1 — pn) + pyby — ay]?
Theorem 4.2
The neutrosophic formal form of (11) is:
(b1—-a1)p1 ((b1+b2)—(a;+az))(p1+p2) (b1—a1)p1 ]
; PNy Ay, by) = [ - 12
9Cxn; P, aw, by) [x1(1=p1)+p1b1—as1]? (1 +22)(1=(p1+p2))+(p1+p2) (b +b2)~(as+az)]”  [Xa(1=p1)+p1bi-as]? (12)

Proof

(T[by] — TlayT[pw]
[Tlen]TI(L = pa)] + Tlow] - Tlby] = Tlan)]”
_ ((bp by + by) — (ay,a; + az))(Pl:Pl + p2)
[(x1;x1 + xz)(l -pu1—(p1 + Pz)) + (p1,p1 + p2) - (b1, by + by) — (ag, aq + az)]2

T[g(xn; pn, an, by)] =

((b1 —ay)py, ((b1 +b;) — (a; + az))(P1 + Pz))

[(x1(1 = p1) + p1by —aq, (X1 + xz)(l —(p + Pz)) + (p1 + p2)(by + by) — (ag + ‘12))]2

_ < (by — ay)py ((b1 +by) —(a; + az))(P1 +p2) )
ber (1= o) + prby — g ] [Ce1 +x2) (1= (o1 + p2)) + (o1 + p2) (by + bp) — (a; + ‘12)]2
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So:
GG pros @ b) = T_1< (by — ay)py ((b1 +by) — (a; + az))(P1 +p2) )
e Ba (L= p1) + piby = 1[Gy 4+ 2,)(1 = (py +p2)) + (o1 + p2) By + by) = (a + )]
_ (by —ay)py
[x1(1 = p1) + p1by — a4]?
((b1 +by) — (a; + az))(P1 +pz) _ (by —ay)ps ]
[Cer +22)(1 = (o1 + p2)) + (p1 + p2)(by + bp) — (ay + az)]2 [x1(1 = p1) + p1by — a1]?

4.1 Parameters’ estimation using neutrosophic maximum likelihood estimation method:

Let Xy a neutrosophic random sample drawn from neutrosophic Marshall-Olkin Type I uniform

distribution with PDF defined in (11) then the neutrosophic likelihood function will be:

n n
(by — an)py
L =L(X;®)=H(X-:a,b, )=n
N N i=1f iNi ON» DN2 PN i1 [xin(1 — pn) + pyby — ay]?

_ (by — ay)"py (13)
[T [xin(1 = py) + pyby — ay]?

By taking log of (13), we get the loglikelihood function as follows:

n
Ly =InL(Xy;0) = nln(by — ay) + nlnpy =2 Y Inlxiw (1 = py) + pyby —ax]  (14)

i=1

Taking partial derivatives of previous equation according to ay, by, py yields to:

n
I = z ! (15)
day by —ay P [xin (1 — pn) + pyby — ayl
0 n N PN
mLN B by —ay - 2; [xiv(1 — py) + pyby — ay] (16)
n . X;n — by
ELN B E * 2; [xiv(1 — py) + pyby — ay] a7

Using the AH-Isometry we get:

d I = -n +2§: 1
da, ! by —a, izl[xil(l_p1)+p1b1_a1]

(18)
1

(by + by) — (ay + a;) " 2; [(xu + xiz)(l —(p1 + ,02)) + (p1 + pz)(by + by) — (a; + az)]

La(al + az) ([‘1 +[’2) =

n
d n
= Z P1
db, by —a, — [xi1 (1 = p1) + p1by — a4]
< (19)
n (p1 + p2)

ot £2) = (b1 +by) = (a1 + az) - 2; [(xi1 + xiz)(1 —(pr + Pz)) + (p1 + p2)(by + by) — (ag + az)]

(b, + b,)
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_ % +L)—L+zz
dpr+p) " T (pr+p2) [

0

i=1

n
L, = n +ZZ
pq ! P1 p [x;; (1
n

Xin — by

—p1) + pib; — ;]

(xi1 + xi2) — (by + by)

(i1 + xiz)(l —(py + Pz)) + (p1 +p2)(by + by) — (a; + az)]

Solving equations (18-20) numerically yields to the desired estimators.

4.2 Simulation and random numbers generation:

Solving equation (9) with respect to x yields to:

_ YnPnby —anyy +ay

= 21
N 1—yn(1—pn) @)
Where yy = Fy(xy) is neutrosophic uniformly distributed on [0,1]
By taking AH-isometry to (21) we get:
= Yy1ip1by —ay + a4 22)

1-y:(1—py)

_ 1+ v2)(py + p2)(by + by) — (a1 +a2) vy + y2) + (a3 +a,)
X1+ x; =
1-(y + YZ)(l —(p1 + Pz))

Using equations (22-23), we can generate classical random numbers following classical Marshall-

(23)

Olkin type I uniform distribution with chosen parameters, then using T~! we will get neutrosophic
Marshall-Olkin type I uniform numbers.

Monte Carlo simulation is done using Maple software with total replication of N = 1000 times and
with sample sizes of 15,50,100,150 and fixed parameters ay = 1+ 2I,by = 2 + 51,py = 0.5 + 0.11.

We can check goodness of our estimations based on bias of the estimators and mean square error of

it using the following equations:

Table 1. Simulation results of neutrosophic Marshall-Olkin type I uniform distribution.

0w —6
Bias = 2=l — Ou] (24)
n
~ 2
m(6y—6
MSE:W (25)

ay=1+2I
n ay Bias dy MSE dy
15 1.03255 +2.121691 0.03255 + 0.121691  0.00214 + 0.045281
50 1.00994 + 2.03760/ 0.00994 + 0.03760/ 0.00020 + 0.00431/
100 1.00500 + 2.018941 0.00500 + 0.01894/ 0.00005 + 0.00446]
150 1.00339 +2.01285] 0.00339 + 0.01285/  0.00002 + 0.00049]
by =2 +5I
n by Bias by MSE by,
15 1.88284 +4.712241 0.11716 + 0.287761 0.02464 + 0.277181
50 1.96282 +4.911731 0.03718 + 0.08827I 0.00267 + 0.028101
100 1.98031 + 4.95365] 0.01969 + 0.04635/ 0.00072 + 0.00740]
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150 1.98730 + 4.97020I 0.01270 + 0.02980/ 0.00032 + 0.00323
py=0.5+0.11

n PN Bias py MSE py
15 0.61207 4+ 0.102361 0.23605 + 0.03591/ 0.11861 + 0.03663!

50 0.53516 +0.10201/ 0.10746 + 0.01942] 0.01990 + 0.00782/
100 0.51818 + 0.100961/ 0.07376 + 0.014141 0.00945 + 0.00391/
150 0.51377 4+ 0.10103/ 0.06017 + 0.011641 0.00591 + 0.00249/

Table (1) shows that as sample size n increases, bias of the estimators and mean square error of it

decrease which means that our estimators are asymptotically unbiased and consistent.

5. Plithogenic Marshall-Olkin Type I Class of Distributions

In this section we are going to construct plithogenic form of Marshall-Olkin Type I class of
distributions, cumulative probability distribution function, probability distribution function and

uniform generalized distribution according to it.

Definition 5.1

The plithogenic form of cumulative distribution function of the first type of Marshall-Olkin Type I
class of distributions is defined as follows:
F(xp)

G(xp; = ;xp ER(P,P,),0< <pl1 26
(xp; pp) FGop)(L—pp) + pp P (P, P) P Pp <p (26)
Where P2 =P, P2=P,, P,-P, =P, P, = P,.
Theorem 5.1
The plithogenic formal form of (26) is:
G Cxp; pp) = F(xo) P [ F(xo + x1) _ F(xo)
Pree F(x0)(1 = po) + po ! F(xo + x1)(1 —(po + P1)) + (po+p1) Fxo)(—po) +po

F(xg + x1 + x3)

+P,
F(xo +x, + xz)(l —(po +p1 + Pz)) + (po + p1 + p2)
F(xo +x1)

N F(xo + x1)(1 —(po + P1)) + (po + P1)]

27

Proof

T[F (xp)]
F(xp)IT[1 = pp] + T[pp]

_ (F(x0), F(xxg + x1), F (xg + %1 + x3))
(F(x0), F(xg + x1), F(xg + x1 + x3)) (1 —po, 1= (po +p1), (1= (o + p1 + Pz))) + (o, (po + 1), (po + p1 + p2))

T[G(xp; pp)] = T

(F(xo),F(xO + xl),F(xo + X1 + xZ))
(F(xo)(l —po) + po, F(xg + x1)(1 = (po + p1)) + (po + p1), F (xo + x1 + x3) (1 — (po + p1 + p2)) + (po + p1 + Pz))

_ ( F(xo) F(xg +x1) F(xo + %1 + x3) >
F(xo)(1 = po) + po "F(xg + x1)(1 — (po + p1)) + (po + p1) Fxo + x1 +x2)(1 = (po + p1 + p2)) + (o + p1 + p2)

So:
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G(xp; pp)

) < F(xo) F(xo + x1) F(xo +x1 +x3) )
F(xo)(1 = po) +po "F(xo + x1)(1 —(po + P1)) + (po + P1)'F(xo +x; + xz)(l —(potp1+ Pz)) + (po + p1 + P2)

_ F(xo) +P F(xo + x1) _ F(xo) ]
F(x)(A—po) +po | Flxg +x)(1 = (po +p1)) + (o + p1)  Fxo)(d = po) + po

P [ F(xo + x1 + x3) 3 F(xo + ) ]
z F(xg +x, + xz)(l —(po +p1 + Pz)) +(potp1+p2) Flxo+ x1)(1 —(po + P1)) + (po + p1)

Note:

Plithogenic probability distribution function of Marshall-Olkin Type I class of distributions can be
derived by direct derivation of equation (26).
prf (xp) )
pp)F (xp) + ppl*
Where P2=P,, P2=P, P,-P,=P, P, =P,.

9(xp; pp) = [(1- xp € R(Py,P,),0 <p pp <p 1 (28)

Theorem 5.2

The Plithogenic formal form of (28) is:

pof (xo) P (po + p1)f (xo + x1) _ pof (xo)
(1—po)F(xg) +pol? " * [(1= (o + p1))F (xo + x1) + (po + pl)]z [(1 = po)F (x0) + pol?
(po + p1 + p2)f (xo + X1 + X2)

[(1 = (po + p1 + p2))F(xg + x1 + x2) + (po + p1 + Pz)]z
(po + p)f (x0 + x1)

- [(1 —(po + P1))F(x0 +x1) + (oo + P1)]2

g(xp; pp) = [

+ P,

(29)

Proof

Tlpp]TI[f (xp)]
[T1C1 = pITIF Geo)] + Tlpp 1]
(Do, Po + p1, po + p1 + p2)(f (x0), f (x0 + x1), f (g + X1 + X3))
[(1—po, 1= (po + p1), 1= (po + p1 + p2))(F(x0), F(xg + x1), F(xg + x1 + x2)) + (o, po + p1, o + p1 + pz)]z
(pof (x0), (po + p1)f (X0 + x1), (po + p1 + p2)f (xo + x1 + x2))

[((1 — po)F(x0) + po, (1 — (po + p1))F (xo + x1) + (po + p1), (1 — (po + p1 + p2))F (xo + x1 + x3) + (po + p1 + Pz))]z

_ ( pof (xo) (po + p1)f (xo + 1) (po + p1 + p2)f (o + 21+ 23) )
[(1 = po)F (xo0) + pol?’ [(1 —(po + P1))F(xo +x1) + (po + P1)]2’ [(1 —(potp + Pz))F(xo +x1 +x3) +(po +p1 + Pz)]2

T[g(xp; pp)] =

So:
gQxn; pn)
— -1 < pof (xo) (po + p1)f (xo + x1) (po + p1+ p2)f (xo + %1 + x3) )
[(1 = po)F (x0) + ol [(1 —(po + P1))F(xo +2x1) + (po + P1)]2 [(1 —(potp + Pz))F(xo +x1 +x3) + (po+p1 + Pz)]z
pof (xo) (po + p1)f (x0 + x1) pof (xo)

[(1 = po)F (x0) + pol? ! [(1 —(po + P1))F(xo +x1) + (po + P1)]2 - [(1 = po)F(x0) + pol?

+p, [ (po + p1 + p2)f (X0 + X1 + X3) _ (po + p1)f (x0 + x1)
[(1 —(po +p1 + Pz))F(xo +x +x) + (oo +p1 + Pz)]z [(1 = (po + P1))F(xo +x1) + (po + P1)]2
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Theorem 5.3

Equation (29) represents probability density function in classical sense.

Proof
T [ | :og(xp; pp)dxp]
f+°° pof (xo) :
—oo [(1=pg)F (o) + 1]
‘P f+°° (o + £ )f Ceo + x1)
e [(1 —(p, + pl)) F(xo +x1) + (p, + pl)]
B f+°° pof (x0) :
—o [(1=py)F(x0) + 1]
‘P, f+°° (Po + p1+ P2)f (X + %1 + x3)
[(1- (po +p1+ p2))F(xo + %1 + %) + (po + p1 + p2)]
f+°° P+ P )f(x0+x1)
- [ 1-(p, + pl)) F(xo + %) + (p, + pl)]

f d( F(xo) )
F(xo)(1 — po) + po

+oo F(xo) oo F(xo + x1)
th U- <F(x0)(1 —po) + pO) J‘—oo ¢ <F(Xo + x1)(1 = (po + .01)) + (po + ,01))]

+PU+°°d< F(xg+ x, +x3) )
1w F(x0+x1+x2)(1—(p0+p1 +P2))+(Po+,01+.02)

Xo

2 d(xO + xl)

5 d(xo + x1 + x3)

5 d(xo + x1)

f+°°d< F(xo + x1) )] 3

—o \F(xo+x:)(1 = (po + p1)) + (po + p1)

Also, it is easy to see that T[g(xp; pp)] presents three continuous and positive functions. Depending
on this we can see that the given plithogenic function is a plithogenic probability density function in
classical sense.

6. Plithogenic Marshall-Olkin Type I Uniform distribution:

Definition 6.1

Plithogenic cumulative distribution function of the Marshall-Olkin Type I uniform distribution is
defined as follows:

Xp — ap
xp(1—pp) + ppbp — ap
Where P2 = P,,P{ = P,,P,-P, =P, P, = P,.

G(xp; pp,ap, bp) = ;ap <p Xp <p bp,0 <ppp <p1 (30)

Theorem 6.1

The plithogenic formal form of (30) is:
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Xo — Qo
xo(1 = po) + pobg — ao

G(xp; pp,ap, bp) =

4P [ (xo +x1) — (ap + ay) _ Xo — Qg
e + x1)(1 = (po + p1)) + (po + p1)(bo + by) — (g + a;)  xo(1 = po) + pPoby — ao

+P[ (XO+x1+x2)_(a0+a1+a2)
2
(o + 21 + x2)(1 = (po + p1 + p2)) + (po + p1 + p2) (b + by + by) — (ag + a; + az)

_ (%0 +x1) — (ap +ay)
(xo + x1)(1 —(po + P1)) + (po + p1)(bg + by) — (ap + a4)

B

Proof

Tlxp] — Tlap]
xp]T[1 = ppl + Tlpp] - T[bp] — Tlap]

T[G(xp; pp,ap, bp)] = T[

_ (g, %0 + X1, %9 + X, + x,) — (g, a9 + ay,a9 + a; + a,)
(%0, X0 + X1, X + 2, + xz)(l —po1=(po+p)1=(po+ps + Pz)) + (po, Po + P1, Po + p1 + p2) * (bg, by + by, by + by + by) — (ag,ay + ay, a0 + a; + ay)

_ < (xo —ay, (%o + x1) — (ag + ay), (xg + x; +x,) — (ag + a;, + ‘12))

%o(1 = po) + pobo — ag, (%o + xl)(l = (po + P1)) + (po + p)(by + by) — (ag + ay), (xg + x, + xz)(l —(po+ps + pz)) + (po + p1 + p2)(by + by +by) — (ag +a; + az))

_ < Xo — Qo (xo +x1) — (ap + a5)
x%0(1 = po) + pobo — a0 " (xo + x1)(1 = (po + p1)) + (o + p1) (b + by) — (ag + a1)’

(xo +x1 +x5) — (ap + a; +ay) )
(xo + x4 +x2)(1 —(po +p1 +P2)) + (po + p1 + p2)(bg + by + by) — (ap + a; + ay)

Xo — Qo (xo +x1) — (ao + ay)
%o(1 = po) + pobo — ao ’ (xo + x1)(1 —(po + Pl)) + (po + p1) (b + by) — (ao + ay) '

G(xp; pp,ap, bp) =T7* (

(xg +x; +x,) —(ag + a; +ay) >
(xo + %1 + x2)(1 = (po + p1 + p2)) + (o + p1 + p2)(bo + by + by) — (ag + a; + a)

Xo — Qo

_ Iy [ (xo +x1) — (ag + ay) _ Xo — Qo ]
%(1—=po) + pobo —ag [ (xg +x)(1 = (po + p1)) + (po + p1) (bo + by) — (ag +ar)  Xo(1 = po) + pobo — aq

(xg +x1 +x3) — (ag + a; + ay)
+ P,
(o + 1+ x)(1 = (po + p1 + p2)) + (po + p1 + p2) (b + by + by) — (ao + a; + a3)

_ (xo +x1) — (ag + ay)
(xo + x1)(1 —(po + P1)) + (po + p1) (b + by) — (ao + ay)

Definition 6.2

Plithogenic probability distribution function of Marshall-Olkin Type I uniform distribution is defined

as follows:

(bp — ap)p
9(xp; pp,ap, bp) = Lt 75ap <p Xp <p bp,0 <p pp <p1 (32)

[xP(l —pp) + ppby — aP]
Where P2 = P,,P? =P,,P,-P, =P, P, = P,.
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Theorem 6.2

Plithogenic formal form of (32) is:

(bo — ao)po
%o(1 = po) + poby — agl?
((bo + by) — (ao + a1))(po + p1)
[(xo +x1)(1 = (po + p1)) + (po + p1)(bo + by) — (ap + a1)]2

(bo — ag)po
[x0(1 = po) + pobo — ao]?

9(xp; pp, ap, bp) = [

+ Py

((bo + by + by) — (ag + as + a3))(po + p1 + p2)

[(xo +x + xz)(l —(potp1 + Pz)) + (po + p1 + p2 )by + by + by) — (ap +a; + az)]z
_ ((bo +by) — (ap + a1))(P0 +p1)

[(xo + x1)(1 —(po + P1)) + (po + p1)(bo + by) — (ap + ‘11)]2

+ P,

(33)
Proof

(T[bp] — TlapDTlpp]
[TLxpITI(1 — pp)] + Tlop] - Tlbp] — Tlap]]”

T[g(xp; pp, ap, bp)] =

((bOI by + by, by + by + by) — (ag, a9 + ay,a0 + a; + az))(POrPo + p1,Po + p1+ P2)
2
[(xo,xo +X,X0 + X1 + xz)(l =P, 1= (pog+p1),1—(po+p; + Pz)) + (pos Po + P1,Po + p1 + p2) - (bo, bo + by, by + by + by) — (ag, a9 + ay,a0 +a; + az)]

((bo — ag)pos ((bo +by)—(ap + al))(Po +p1), ((bo + by +by)—(ag+a; + az))(po +p1+ Pz))

B [(xo(l = po) + poby — ag, (xo + xl)(l = (po + .01)) + (po + p1) (b + by) — (ag + a;), (xo + x; + xz)(l —(po+p1 + Pz)) + (po + p1 + p) (b + by + by) — (ag +a; + az)ﬂz

_ < (by — ap)po ((bo +by) — (ap + a1))(Po +p1)
[xo(1 = po) + poby = ao]?’ [(xo + x1)(1 —(po + P1)) + (po + p1)(by + by) — (ag + a1)]2 ’

((bo +b; +by) —(ag+a; + az))(po +p; +p;) )
[(xo +x + xz)(l —(po+py + .02)) + (po + py + pz)(bo + by + by) — (ag +a; + az)]z
So:
9Cii pprap bp) = T4 ( (bo — ag)po ((bo +by) —(ap + a1))(.00 +p1)
pene [xo(1 = po) + pobo — ao*’ [(xo + x1)(1 —(po + P1)) + (po + p1)(bo + by) — (ap + a1)]2'
((bo +b; +by) — (ap +a; + az))(Po +p1+pz) )
[(xo + 21 +x)(1— (o + p1 + p2)) + (po + p1 + p2)(by + by + by) — (ag + a; + az)]z
_ (bo — ag)po
[x0(1 = po) + poby — a,)?
+P ((bo +b;) — (ap + ‘11))(P0 +p1) _ (by — ag)po ]
' [Ceo +x:)(1 = (po + p1)) + (po + p1) (bo + by) — (ap + (11)]2 [xo(1 = po) + pobo — aol?
P ((bo +b; +by) — (ag +a; + az))(Po +p; +p;)
’ [(xo +x + xz)(l —(po+p1+ Pz)) + (po + p1 + pz)(bo + by + by) — (ag +a, + az)]z

_ ((bo +by) = (ap + a1))(l]o +p1)
[(xo + x1)(1 —(po + P1)) + (po + p1)(bo + by) — (ao + a1)]2

6.1 Parameters’ estimation of plithogenic Marshall-Olkin Type I Uniform distribution:
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Let X, a plithogenic random sample drawn from plithogenic Marshall-Olkin Type I uniform
distribution with PDF defined in (32) then the plithogenic likelihood function will be:

n

n
(bp — ap)pp
Lp = L(X ;G)):l_[f(X- ;ap,bp, )=H
P P | | ipy p, Dp, Pp L [x;p(1 — pp) + ppbp — ap]?

_ (bp — ap)"pp (34)
[Tz [xip (1 — pp) + ppbp — ap]?

By taking log of (34), we get the loglikelihood function as follows:

Lp =InL(Xp;0) =nln(bp —ap) + nlnpp — ZZ In[x;p(1 = pp) + ppbp — ap] (35)

i=1
Taking partial derivatives of previous equation according to ap, bp, pp yields to:

n

a
2 = Z 36

dap P bp— bp —ap — [xip (1 — PP) + ppbp — ap] (36)

a n

n Pp

—Lpy=—"—2 Z 37
0bp F bp — ap P [xip(1 — pp) + ppbp — ap] (37)

a Xip - bp
—Lp = + ZZ 38
dap F Pp P [xip(1 — pp) + ppbp — ap] (38)

Using the AH-Isometry equations (36-38) become:

n

d o= -n +Zz 1
day ° " by —ag L.:l[xio(l_Po)‘FPobo_ao]

o 1
(bo + b1) - (ao +a;) 2 ; [(xio + %) (1 = (po + p1)) + (po + p1)(by + by) — (ag + ay)]

—a(ao . Lo +Ly) =
d

a(ao + a, + az) (‘CO + Ll + LZ)

—-n
B (b0+b1+b2)_(a0+a1+a2)

1
2y
~ [(xio + xi1 +x2)(1 = (po + p1 + p2)) + (po + p1 + p2) (bo + by + by) = (ao + ay + a5)]

n
0
— L, = _"* Po
db, by — ay = [x:0(1 = po) + pobo — ay]
Lo+ L1) = n _22 (po +p1)
d(bo +by) " ° Y7 (bo + by) — (a0 + ay) ~ [(xi0 + x:1) (1 = (po + p1)) + (po + p1)(bo + b1) — (ag + ay)]
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5]

mm+m+mﬁ%+g+g)

n
_(b0+b1+b2)—(a0+a1+a2)

n

_ZZ (po +p1+p2)
[(xio + xi1 + x:2) (1 = (po + p1 + p2)) + (Po + p1 + p2) (b + by + by) — (ag + ay + a3)]

i=1
n

a n xio - bo
—Ly=—+2 Z
apo Po [xi0(1 — po) + poby — o]

i=1

(Lo +Ly) =

i (xi0 + x31) — (bo + by)

9(po + p1) (Po + p1) e [(xio + xil)(l — (po + Pl)) + (po + p1)(bg + by) — (ap + a1)]

i=1
9 Lo+ L+ Ly)
a(p,+p, +p,) 0T

L
(py+p,+0,)

n
+2 Z (xio + xi1 + xi2) — (po + p1 + p2)
~ [(xio + X4 + xiz)(l —(pot+p1+ Pz)) + (po + p1 + p2)(bo + by + by) — (ag + a; + az)]

Solving previous equations numerically give us the desired estimations.

6.2 Simulation and random numbers generating:

Random numbers generating can be done using the following equation:

_ YpPpbp — apyp + ap
F 1-yp(1—pp)

By taking AH-isometry to (39) we get:

(39)

= YoPobo — apyo + ay
° 1—yo(1—po)
_ (o +¥y1)(po + p1)(by + by) — (ag+ay)(yo +¥1) + (ap+ay)

(40)

Xo +x; = (41)
0 ! 1—(y + J’1)(1 —(po + P1))
o +y1+¥2)(po + p1 + p2)(by + by + by) — (ag + a;+ax) (Vo + y1 +¥2) + (a0 + as+a,) (42)

1= Ootyr +¥2)(1 = (oo + p1 + p2))
By using equations (40-42), we can generate random numbers following classical Marshall-Olkin type
I uniform distribution, then using T~' we will get plithogenic Marshall-Olkin type I uniform
distribution generated numbers.
performance of maximum likelihood estimators based on Monte Carlo simulation using Maple
software with total replication of N = 1000 times and with sample size of 15,50,100,150 with fixed
parameters ap = 1.5+ 0.3P; + 0.5P,,bp = 2 + 0.5P; + 1.2P,,pp = 1 + 0.7P; — 0.4P,is checked based
on bias of the estimators and mean square error of it using the following equations:
Yii|6ir — 65

n

Bias = (43)
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MSE

_ Z?zl(éiP - ep)z
= SRR (44)

Table 2. Simulation results of plithogenic Marshall-Olkin type I uniform distribution.

n dap Bias ap MSE ap
15 1.53060 + 0.33686P; + 0.54019P, 0.03060 + 0.03686P; + 0.04025P, 0.00179 + 0.00643P; + 0.01337P,
50 1.50975+ 0.31286P; + 0.51248P, 0.00975 + 0.01286P; + 0.01248P, 0.00019 + 0.00079P; + 0.00142P,
100 1.50495 + 0.30667P; + 0.50629P, 0.00495 + 0.00667P; + 0.00629P, 0.00005 + 0.00021P; + 0.00036P,
150 1.50337 4+ 0.30457P; + 0.50427P, 0.00337 + 0.00457P; + 0.00427P, 0.00002 + 0.00010P; + 0.00017P,
bp=2+0.5P, +1.2P,
n bp Bias bp MSE bp
15  1.96711 + 0.50424P; + 1.15560P, 0.03289 — 0.00424P; + 0.04441P, 0.00212 — 0.00043P, + 0.00904P,
50 1.99035+ 0.50158P; + 1.18710P, 0.00965 — 0.00157P; + 0.01289P, 0.00019 — 0.00006P; + 0.00076P,
100 1.99499 + 0.50085P; + 1.19331P, 0.00501 — 0.00085P; + 0.00668P, 0.00005 — 0.00002P; + 0.00019P,
150 1.99679 + 0.50055P; + 1.19572P, 0.00321 — 0.00055P; + 0.00428P, 0.00002 — 0.00001P; + 0.00009P,
pp=1+0.7P; — 0.4P,
n Pr Bias pp MSE pp
15 1.11156 + 0.65361P; — 0.36750P, 0.41604 + 0.25464P; — 0.14580P, 0.34855 + 0.50312P; — 0.31230P,
50 1.04020 + 0.69063P; — 0.39240P, 0.20518 + 0.13733P; — 0.07870P, 0.07171 4 0.12394P, — 0.07800P,
100 1.02096 + 0.69566P; — 0.39636P, 0.14470 4+ 0.09968P; — 0.05702P, 0.03574 + 0.06449P; — 0.04076P,
150 1.01753 +0.69967P; — 0.39901P, 0.11841 4+ 0.08157P; — 0.04664P, 0.02270 + 0.04158P; — 0.02633P,

Table (2) shows that as sample size n increases, bias of the estimators and mean square error of it

decrease which means that our estimators are asymptotically unbiased and consistent.

7. Conclusions

We have studied and derived neutrosophic Marshall Olkin (I) class of distributions and
plithogenic Marshall Olkin (I) class of distribution and found its cumulative distribution functions
and probability distribution functions. Also, we studied a special case of these new classes that is
uniformly generalized distribution and estimated its parameters using maximum likelihood
estimation method and made a simulation study to show the power and efficiency of our estimators
and the simulation results show that our estimators are unbiased and consistent. In future researches
we are looking forward to study more special distributions generalized by Marshall Olkin class and
study its applications in reliability theory and queueing theory.
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Abstract: This paper is dedicated to study the properties of symbolic 6-plithogenic
integers and number theory, where we present many numbers theoretical concepts
such as symbolic 6-plithogenic congruencies, symbolic 6-plithogenic Diophantine
equations, and symbolic 6-plithogenic Euler's function with Euclidean division.
Also, we present many examples to explain the validity and the scientific

contribution of our work.
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Introduction

Symbolic n-plithogenic sets were defined for the first time by Smarandache in [4,
24-25], with many interesting algebraic properties.

In [1-3], the symbolic 2-plithogenic rings were defined as an extension of classical
rings. Many results were obtained with respect to their ideals and homomorphisms.
The symbolic 2-plithogenic rings and fields have many applications in generalizing
other algebraic structures such as symbolic 2-plithogenic vector spaces, symbolic

2-plithogenic modules, and symbolic 2-plithogenic equations [5-7].
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Laterally, many authors defined and studied symbolic 3-plithogenic algebraic
structures, such as symbolic 3-plithogenic spaces and modules, see [8, 21-23].

In the literature, the extended integer systems were used in number theory, for
example neutrosophic numbers have helped with neutrosophic number theory,
refined neutrosophic numbers generated refined number theory and split-complex
numbers generated split-complex number theory [9-20].

This has motivated many authors to study symbolic 2-plithogenic and symbolic
3-plithogenic number theoretical concepts such as congruencies, and Diophantine
equations [26-36]. The generalized versions of number theoretical concepts are very
applicable in other mathematical studies, especially in cryptography.

In this paper, we study the symbolic 6-plithogenic number theoretical concepts for
the first time, and we illustrated many examples to clarify the novel approach.
Main discussion

Definition:

The rung of symbolic 6-plithogenic integer is defined as follows:

6 — SP; = {xo + X_1 x; Pi; x; € Z}, where P; X P; = Dpax(ijy Pi> = P

Definition.

Let X =x0+ X5 %P, Y =yo+ Yo, vi P, Z = 7y + X5, 2; P; € 6 — SP,, we say that:
1). X\ Y if there exists Z € 6 — SP; such that X.Z =Y.

2. X=Y(mod Z) if Z\ X —Y.

3). Z=gcd(X,Y) if Z\X,Z\Y andif T\ X, T\Y,then T\ Z.

4). X,Y are realtively prime if gcd(X,Y) = 1.

Theorem1.

Let X =x0+ X5 1% P,Y =yo+ X5 1ViP,Z =2zy+ Y5 2 P; € 6 — SP;, then:

1). Z = gcd(X,Y) if and only if:

Zy = gcd(xg, Vo)
j , )

j j
Ezi = gcd Exi,Zyi ;1<j<6
i=o i=0

i=0
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2). X = Y(mod Z) if and only if Z{:o X; = Z{zoyi (mod Z{:o z;), where 0 <j < 6.
3).1f X\ Y then ¥/_ x,\¥/_,y;0<j<6.

Theorem?2.

LetX =xo+ X1 % P,Y =yo + X1 yi P Z = 20 + X0z PLbA=ag + X, a; P, B =
by + X5 1b; P;,C =co+ X5, c; P, € 6 — SPy, then:

1).1f Z\ X,Z\ Y, then Z \ AX + BY.

2).If Z = gcd(X,Y), then there exists A,B € 6 — SP; such that AX + BY = Z.

3).If X =Y(mod Z), then:

X+C=Y+C@mod2) (I
X—C=Y—-C(modZ) (I
X.C=Y.C(modZ) (I

4). X is invertible modulo Z if and only if Z{: o, Xi is invertible moduloZ{= 0Zi; 0=
Jj <6, and:

X Y(mod Z) = xo"Y(mod zy) + Py[(xg + x1) "1 (mod zy + ;) — xo"(mod zy)] +
Py[(xo + x; + x3) " Y(mod zy + z1 + z3) — (%9 + x1) " 2(mod z + z;)] + P3[(xo + x; +
Xy + x3) " Y(mod zy + zy + 2, + z3) — (xg + X1 + x3) " 1(mod zy + z, + 2,)] +
Pl(xg+x1 +x+x3+x4) Y(mod zy + 2z + 2, + 23 +24) — (X9 +x1 + x5 +

x3) Y(mod zy + zy + 2y + z3)] + Ps[(xg + X1 + x5 + X3 + x4 + x5) "1 (mod z5 + 2, +
Zytz3+2zy+2z5) — (Xg+ X + X3 + x5+ x4) H(mod zg + 2, + 25 + 23 + 2,)] +
Pol(xg +x1 + x5 +x3 + x4 + x5 +xg) Y(mod zg + 2y + 2y + 23 + 24 + 25 + 2¢) —

(o +x1 +x, + x5+ x4 +x5) (mod zy + 2, + 2, + 23 + 24 + z5)].

Theorem3.

Let AX + BY = C be symbolic 6-plithogenic Diophantine equation in two variables,
A,B,C,X,Y € 6 — SPz, hence it is solvable if and only if:

{=o a; Zg:o x; + Zg:o b; Zg:o yi=21_,c;0<j<6 are solvable, ie.
ged(X)_pai, X b))\ X _,ci;0<j<6.
Theorem4.

Let X = xy + X5_, x; p; € 6 — SP,, then:
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- <Zo xi) _<;xi> ) B <Z°x> _<Z° xi) :
) ) -

Theoremb.

(X,Y,Z) is a symbolic 6-plithogenic Pythagoras triple i.e. it is a solution of the non
linear  Diophantine  equation X?4+Y?*=2Z* , if and only if
(Z{zo xi,Zgzoyi, {=0 7;);0 < j < 6 is a Pythagoras triple in Z.

Theoremé.

(X,Y,Z,T) is a symbolic 6-plithogenic Pythagoras quadruple i.e. it is a solution of
the non linear Diophantine equation X? + Y% + Z? = T?, if and only if

(2{=0 X; ,Z{=0yi, {=0 z;, {=0 ti); 0 <j < 6 isaPythagoras quadruple in Z.

Proof of theorem1.

1). We put
6 1 1 1 2
Z:ZO+ZZiPirZO :ng(xO:YO)’ZZi =ng< Xi, )’i>'zzi
=1 =1 =1 i1 =1
2 2
-1 i=1
3 3 3 4 4 4 5
> = ged (Y Y)Y = et (Yxi Y)Y s
i=1 i=1 i=1 i=1 i=1 i=1 i=1
5 5 6 6 6
= gcd (Z xi,Zyi>,ZZi = ng <Z xi,Zyi>
=1 i=1 =1 =1 i=1

Assume that T =ty + Y5, t; P; with T\ X,T \ Y, hence:
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J J J J
IAYILH WIS FALEIEE
i=0 i=0 i=0

Jj J Jj

i=0
j
t\ ) xi, ) t\ ) yi;0<j<6

=0 i=0 i=0

~

\i=0
So that Zg:o t; \Z{zozi;O <j<6,hence T\Z and Z = gcd(X,Y).
2). X =Y(mod Z) if and only if Z \ X — Y, which is equivalent to

J_ z\Y)_(x;—y1);0<j<6hence ¥_,x; =¥)_ y;(mod ¥)_,z);0<j<6.
3). Assume that X \ Y, hence:

( XoZo = Yo (1)
XoZ1 + X129 + X121 = y; (2)
XoZy + X1Z5 + XpZy + XyZg + X321 =V, (3)
XoZ3 + X123 + X235 + X323 + X325 + X321 + X32, = Y3 (4)
XoZy + X124 + X024 + X3Zy + X474 + X420 + X471 + X425 + X473 =V, (5)
XoZs + X1Zs + XyZs + X3Zs + X4Zs + XsZg + XsZo + X5Zy + XsZy + X525 + X2, = Vs (6)
XoZg + X1Zg + XpZg + X3Zg + X4Zg + XsZg + XeZg + XoZo + XgZ1 + XgZy + XgZ3 + XeZy + XeZs = Yo (7)

By adding (D+@2),(DH+2)+B),M+2)+B)+@W DL+@+B)+@+
GLM+@D+R+B+B+6), M+@+B+@B+B)+(6)+(7) we

get:
( Xo0Zo = Yo
1 1 1
E X Zi = E Yi
i=1 i=1 i=1
2 2 2
Xi Zy = E Yi
3 3 3
Xi Zy = E Yi
{i=1 =1 i=1
4 4 4
Xi Zy = E Yi
i=1 =1 i=1
5 5 5
Xi Zy = E Yi
i=1 =1 i=1
6 6 6
X Zy = Yi
\i=1  i=1 i=1

Which means that Z{:O X; \Z{zo yi;0<j<6

Proof of theorem 2.
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1). Assume that Z \ X,Z \ Y, then we get:
{=Ozi \ Z{=0 x;, and Z{=0 z; \ Z{=0yi ;0<j<5.
So that Z{zozi \ (Z{zo a; Z{:o x; + Z{:o b; Z{:o y;) for 0<j <5 and Z\ AX + BY.
2). Assume that Z = gcd(X,Y), then Z{=O z; = gcd(2{=0 xi,ZLO y;) forall 0 <j <
5.
According to Bezout's theorem, we can write:
There exists a;, b; € Z such that Z{=0 Zi = q {=0 x; + b; Z{=0yi
by putting
A=ag+ (a; —ag)P; + (a; —ay)P, + (a3 — ay)P; + (ay, — az)Py + (as — a,)Ps,
B = by + (by — by)P; + (by — by)P, + (b3 — by)P3 + (by — b3) Py + (bs — b,)P5, we
get:
Z =AX+BY.
3). Assume that X = Y(mod Z), then:

{:ozi \ Z{zo(xi —y;) forall 0 <j < 6, hence:

rJ J
Zzi \Z(xi —citc—y)
< i=0 i=0
Jj j
Zzi \Z(xi +ci—ct+y)
\i=0 i=0

Hence X + C =Y + C(mod Z), also:
Loz \ X oG —y) T i e X oz \ Xy X e — Ty vi Ty
Hence X.C =Y.C(mod Z).
4). X is invertible modulo Z If and only if there exists Y =y, + Z{zlyi p; €6 —
SP, such that X.Y = 1(mod 2).
This equivalent to:
{zoxi .Z{:Oyi = 1(mod Z) for 0 < j < 6, hence:

{zoxi is invertible modulo Z{:o z; and:
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[/ 2 2 1 - 1
+ P, <Z xl> (mod Z Zl-) — (Z xl-> <m0d Z Z;
| \i=0 i=0 i=0 i=0
[/ 3 1 3 2 -1 2
+ P; <Z xl> (mod Z Zl-) — (Z xl-> <m0d Z Z;
| \i=0 i=0 i=0 i=0
[/ 4 -1 4 3 -1 3
+ P, le> mod22i> — le model
i=0 i=0 i=0 i=0
[/ 5 -1 5 4 -1 4
+ Ps z xi> mod z Zi> — Z X; mod z Z;
| \i=0 i=0 i=0 i=0
G -1 6 5 -1 5
+ Pg <z xi> <mod z Zi> — <Z xi> (mod z Z;
| \i=0 =0 i=0 i=0

Proof of theorem3.
It is easy to check that AX + BY = C is equivalent to:

J J
zai xi+ bi yl=zcl'0S]S6
i=0

J J J

i=0 =0 i=0 =0 i

The previous six Diophantine equations are solvable if and only if:
J

J
ged ai,Zbi \ZC"‘O <j<6

J
i=0  i=0 i=0
proof on theorem4.
For n = 1, it holds directly.

We assume that it I true for k, we prove it for k + 1.
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6 1 k
Xkl = xxk = <x0 + Z X; pi> xo% + Py ( xi> — xo"
i=0 i=0
2 k 1 k 3 k 2 k
P (z ) _ (z ) h, (z ) _ (Z )
i=0 i=0 i=0 i=0
4 k 3 k 5 k 4 k
+P4 (z Xl'> - (z xi> + P5 (z xi> - (2 xi)
i=0 i=0 i=0 i=0
6 k 5 k
(g2
i=0 i=0
1 k 1 k
= xo" 1 + Py |xo* <Z xl-> — x0T + xyx0" + x4 <Z xi> — x1%o%
i=0 i=0
2 k 1 k 2 k 1 k
+ P | xo <Z xi> — X (Z xl-) + x1 (Z xi> — X1 (Z xl-) + X%
i=0 i=0 i=0 i=0
1 k 2 k 1 k
+ x1 z xl> - xeO + xz <Z Xi> - x2 (2 xl'>
i=0 i=0 i=0
[ 3 k 2 k 3 k 2 k
+P3 XO <Z xl> _Xo (Z Xl> +x1 (Z xl> —X1 (Z Xi>
i i=0 i=0 i=0 i=0
3 k 2 k 1 k
+ xz Z xi> - XZ (Z Xi> + xzxok + X3 (z Xl-) - X3XO
i=0 i=0 i=0
2 k 1 k 3 k 2 k
b z) (z) +x3(zxi (z) -
i=0 i=0 i=0 i=0
1 k+1 [ 2 k+1 1 k+1
= xo**1 + +P; <Z xi> — xo*t| + P (Z xl> — (Z xi)
i=0 | i=0 i=0
+ .
And the proof holds.

Proof of theoremb5.

X% +Y? = 7% implies that:
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( Xo? + yo? = 2p°
1 2 1 2 1 2
i=0 i=0 i=0
2 2 2 2 2 2
x| + Yi| = Zzi
i=0 i=0 i=0
3 2 3 2 3 2
Sa) +(30) -3
< i=0 i=0 i=0
4 2 4 2 4 2
D) (2] =2,
i=0 i=0 i=0
5 2 5 2 5 2
D) () =2,
i=0 i=0 i=0
6 2 6 2 6 2
Sa) +(50) -3
\\i=0 i=0 i=0
Which implies the proof.

Theorem 6 can be proved by the same argument.

Definition.

Let X = xy+ X5, x;P; € 6 —SP,;, hence we say that X >0 if and only if x, >

0, ox;,>0;1<k<6

For example: X =3 + P; — P, + 2P; — P, — P5 > 0, that is because:

3>04>03>05>04>03>0.

If Y =y,+ X8 ,y:Pi €6 —SP;, we ay that X > Y if and only if x5 > Vo, Tk x; =
k oyiil<k<é6.

For X =2+ P, +2P, +5P; + P, +6P;,Y =1+ P, + P, + P3 + 3P, + Ps,X =Y, that

is because:

2>213>225>2310>411>7,17>8

Definition.

Let X =x, + Z?zoxl-Pi , Y=Y + Z?:o y; P; = 0, hence:
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1 Zil=o3’i 2 Ziz=03’i 1 Zi1=0yi
XY =x,Y0+ P, (z xi> —x07°| + P, (Z xl-) - (2 xl-)

i=0 =0 1=0
[ 3 Z?:Oyl 2 Z?:oyl
55
i=0 i=0
[ 4 E?:oJ’i 3 Z?:oyl'-
+P4 ( Xl'> —( Xl'>
i=0 i=0
[ 5 Ziszoyl 4 Z?:oyl
‘P, (z ) _ (z)
i=0 i=0
[ 6 i6=0yi 5 Zi5=o3’1
P, (z ) _ (z )
i=0 i=0

Definition.

Let X = xo + X5 x; P, > 0, then:

s p(§)-ofonp(5e) -+ (5]
A
+ P _(p (; xi> - <; xi>_ + Ps _(p (; xl-) - (; xi).

Where ¢ is Euler's function on Z.

Theorem.

Let X =x0+ Yo% P, Y =yo + X0V Pi €6 —SP;,gcd(X,Y) =1 and X,Y >0,
hence:

X?) = 1(mod Y)

Proof.

gcd(x,vo) = 1, hence x,??° = 1(mod y,).

ged(Xloox:, Yioy)) = 1, hence (XL, x;)?Ci=o¥) = 1(mod Y1, y:)
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By a similar argument, we get:

2\ P(ZEoyi) 2 3\ P20y 3
(; xi> =1 (mod ; yl-) , (; xl> =1 (mod ; yl>
4 o(Zizovi) 4 5 o(ZFo1)
(; xi> = 1<mod ;yl),(; xl-)
5 6 P(Z-0 1) 6
=1 <m0d ; yi> , (; xi> =1 (mod ; yl>
This implies

XM =14+1-DP,+(1-DP,+(1-1DP;+(1—1)P,+ (1 —1)Ps +
(1-1P;=1(modY).

Remark.

We call previous result by symbolic 6-plithogenic Euler's theorem.

Conclusion

In this work, we have studied the properties of symbolic 6-plithogenic integers for
the first time, where concepts such as symbolic 6-plithogenic divisors,
congruencies, and linear Diophantine equations were handled by many theorems
and examples.

Also, we have presented the conditions of symbolic 6-plithogenic Pythagoras triples
and quadruples in the corresponding symbolic 6-plithogenic ring of integers.
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Abstract: This paper is dedicated to study the properties of symbolic 5-plithogenic
integers and number theory, where we present many number theoretical concepts
such as symbolic 5-plithogenic Diophantine equations, symbolic 5-plithogenic
congruencies, and symbolic 5-plithogenic Euler's function. Also, we present many

examples to explain the validity and the scientific contribution of our work.

Keywords: symbolic 5-plithogenic integer, symbolic 5-plithogenic Euler's function,

symbolic 5-plithogenic Pythagoras triple

Introduction

Symbolic n-plithogenic sets were defined for the first time by Smarandache in [4,
24-25], with many interesting algebraic properties.

In [1-3], the symbolic 2-plithogenic rings were defined as an extension of classical
rings. Many results were obtained with respect to their ideals and homomorphisms.
The symbolic 2-plithogenic rings and fields have many applications in generalizing
other algebraic structures such as symbolic 2-plithogenic vector spaces, symbolic
2-plithogenic modules, and symbolic 2-plithogenic equations [5-7].

Laterally, many authors defined and studied symbolic 3-plithogenic algebraic

structures, such as symbolic 3-plithogenic spaces and modules, see [8, 21-23].
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In the literature, the extended integer systems were used in number theory, for
example neutrosophic numbers have helped with neutrosophic number theory,
refined neutrosophic numbers generated refined number theory and split-complex
numbers generated split-complex number theory [9-20].

This has motivated many authors to study symbolic 2-plithogenic and symbolic
3-plithogenic number theoretical concepts such as congruencies, and Diophantine
equations [26-36]. The generalized versions of number theoretical concepts are very
applicable in other mathematical studies, especially in cryptography.

In this paper, we study the symbolic 5-plithogenic number theoretical concepts for
the first time, and we illustrated many examples to clarify the novel approach.
Main discussion

Definition:

The ring of symbolic 5-plithogenic integers is defined as follows:

5 —SP; ={xo + X1 x; P; x; € Z}, where P; X P; = Paxqijy, Pi° = P;.
Definition.

Let X =xo+ X 1% P,Y =vo+ X1y P, Z = 2y + Y=, 2; P; € 5 — SP;, we say that:
1). X\ Y if there exists Z € 5 — SP; suchthat X.Z =Y.

2). X=Y(mod Z) ifZ\X Y.

3). Z=gcd(X,Y) if Z\X,Z\Y andif T\ X, T\Y,then T\ Z.

4). X,Y are relatively prime if gcd(X,Y) = 1.

Theorem1.

Let X =xo+ Y01 % P,Y =yo+ Y1V P,Z =2y + Y;.,2 P, €5 — SP;, then:
1). Z = gcd(X,Y) if and only if:

zy = gcd(xg,Yo)
J J J
Zzizgcd in,Zyi ;1<j<5
i=0 i=o0 i=0

2). X =Y(mod Z) ifand only if ¥/_ox; = ¥/_y; (mod ¥)_,z), 0 <j <5.

3).If X\ Y then ¥/_ x;\¥/_,y:;;0<j <5.

Mohamed Soueycatt, Barbara Charchekhandra, Rashel Abu Hakmeh, On The Foundations of Symbolic 5-Plithogenic
Number Theory



Neutrosophic Sets and Systems, Vol. 59, 2023 270

Theorem?2.

LetX =xo + X1 % P,Y =yo + X1 Vi P Z =20 + Xi 2 PLA=ag + X7, a; P, B =
bo+ Y:_1 b P;,C =co+ Yi,ci P, €5— SP;, then:

1).If Z\ X,Z\Y, then Z \ AX + BY.

2).If Z = gcd(X,Y), then there exists A,B € 5 — SP; such that AX + BY = Z.

3).If X =Y(mod Z), then:

X+C=Y+C(modZ) (I)
X—C=Y—-C(modZ) (I
X.C=Y.C(modZ) (III)

4). X is invertible modulo Z if and only if Z{: o, Xi is invertible moduloZ{= 0Zi; 0=
j <5, and:

X Y(mod Z) = xo " (mod zy) + P;[(xg + x1) " (mod zy + ;) — x," 1 (mod zy)] +
Py[(xg + x4 + x3) Y (mod zy + z; + z,) — (%o + x1) " (mod zy + z;)] + P3[(xg + x; +
Xy + x3) " Y(mod zy + zy + 2, + z3) — (xg + X1 + x3) " Y(mod zy + z, + 2,)] +
Pl(xg+x1 +x+x3+x4) Y(modzy + 2z, + 2, + 23 +24) — (xg +x1 + x5 +
x3)"t(mod zy + z; + 2, + z3)] + Ps[(xg + X1 + x5 + x3 + x4 + x5) " 1(mod zy + z; +
Zy+2Z3+ z4+25) — (Xg + X1 + X, + X3 + x4) T(mod 2y + 2, + 2, + 23 + 24)].
Theorem3.

Let AX + BY = C be symbolic 5-plithogenic Diophantine equation in two variables,
A,B,C,X,Y € 5 — SPz, hence it is solvable if and only if:

{=0 a; {=o x; + Z{ZO b; Z{zo yi = Z{zo ¢i;0<j<5 are solvable, ie.
Theorem4.

Let X =xo + Y7, X;p; €5 — SP,, then:

Mohamed Soueycatt, Barbara Charchekhandra, Rashel Abu Hakmeh, On The Foundations of Symbolic 5-Plithogenic
Number Theory



Neutrosophic Sets and Systems, Vol. 59, 2023 271

ol § G {8 -5

Theoremb.

(X,Y,Z) is a symbolic 5-plithogenic Pythagoras triple i.e. it is a solution of the non
linear  Diophantine  equation X?4+Y?*=2Z* , if and only if
(Z{zo xi,Zgzoyi, {=0 7;);0 < j <5 is a Pythagoras triple in Z.

Theoremé.

(X,Y,Z,T) is a symbolic 5-plithogenic Pythagoras quadruple i.e. it is a solution of
the non linear Diophantine equation X? + Y% + Z? = T?, if and only if

(2{=0 X; ,Z{=0yi, {=0 Zi, {=0 t;);0 <j <5 is a Pythagoras quadruple in Z.

Proof of theorem1.

1). We put
5 1 1 1 2
Z=1zy+ ZZL' Py, zo = ng(xo»J’o),ZZi = ng( X yi>'zzi
i=1 i=1 i=1 i=1 i=1
2 2
i=1 i=1
3 3 3 4 4 4 5 5 5
> = ocd( Y Y)Y a=ged (Y Y)Y = et (YY)
i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1

So that Zg:o t; \Z{zozi;o <j<5hence T\Z and Z = gcd(X,Y).
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2). X =Y(mod Z) if and only if Z \ X — Y, which is equivalent to
{=0 Z; \ Z{=0(xi —v;);0 <j <5, hence Z{=O X; = Z{=0 Y (mod Z{=0 Zl-); 0<j<5.
3). Assume that X \ Y, hence:

( XoZg = Yo (1)
XoZy + X120 + X121, = y; (2)
XoZy + X125 + X0Zy + X329 + X221 =V, (3)
XoZ3 + X123 + X373 + X323 + X329 + X321 + X32, = V3 (4)
XoZa + X124 + XpZy + X3Z4 + X4Zy + X4Zg + X421 + X4Zy + X423 = V4 (5)
\XoZs + X125 + X3Z5 + X325 + X4Z5 + X525 + XsZy + X5Z1 + XsZy + X523 + X524, = Vs (6)

By adding (D)+2),(D+@+B),M+@+B)+@,(D+@)+@B)+#) +
G), M+ @)+ @3)+ @)+ (5) + (6), we get:

( XoZo = Yo

1 1 1
E Xi Zy = E Yi
i=1 i=1 i=1
2 2 2
xXi /) Zi = E Vi
i=1 i=1 i=1
3 3 3
X Zp = E Yi
i=1 i=1 i=1
4 4 4
X Zp = E Yi
i=1 i=1 i=1
5 5 5
X Zi = E Yi
LL=1 i=1 i=1

Which means that Zg:o X \Z{zo yi;0<j<5
Example on theorem]1.
Take X=3+2P1+2P2+P3—P4+4‘P5,Y=6+P1+P2—P3—P4+2P5
( ged(xg,y0) = ged(3,6) =3
ged(xg + x1,¥0 + y1) = ged(5,7) = 1
ged(xg +x; +x3,¥0 +y1 +y2) = ged(7,7) =7
ng(xO + X1 + Xo + X3,Yo + V1 + V2 + y3) = ng(8,7) =1
ged(xg+x; + %3+ X3+ %4,V + Y1 + Y2 +¥3 +ys) = gcd(7,6) = 1
\gcd(xg+x1 +x, + X3+ x4+ X5, Y0+ V1 + Y2 + V3 + Vs +ys) = gcd(11,8) =1
Thus

z9=3,21=1-3=-2,2,=7—-1=6,23=1-7=-6,2,=1—-1=0,z; =1 —

1 = 0, hence:
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For L =1+ P; — P, + 2P5, we can see:
L\ X —Y, that is because:
{1\—3

2\ -2

1\ -1, thus X =Y(mod L).

1\1

3\3

Proof of theorem 2.
1). Assume that Z \ X,Z \ 'Y, then we get:
0z \ X _ox,and X_ 2\ Y _ y;0<j<5.
So that Y/_,z; \ (X _ga; X _oxi + 2o b; Y, ¥;) for 0<j <5 and Z\ AX + BY.
2). Assume that Z = gcd(X,Y), then Z{=Ozi = gcd(2{=0 xi,2{=0 yi) forall 0 <j <
5.
According to Bezout's theorem, we can write:
There exists a;,b; € Z such that X)_ z; = a; ¥/_ x; + b; X1_, v,
by putting
A =ag+ (ay —ag)Py + (az —ay)P; + (a3 — az)Ps + (ay — az)Py + (as — ay)Ps,
B = by + (by — by)Py + (by — by)P, + (b3 — by)P3 + (by — b3)P, + (bs — by)Ps, we
get:
Z = AX + BY.
3). Assume that X = Y(mod Z), then:

—0Zi \Zl o(xi — ;) forall 0 <j <5, hence:

rJ

ZZL\Z(xl_Cl-l_Cl yl)
i=0

\ Jj
zzi\Z(xi'l'Ci_Ci‘l'yi)
\i=0 i=0

Hence X + C =Y + C(mod Z), also:

i= oZl\Zl o(xl Yi)Z{zoci ie. i= 021\21 Oxl l Ocl Zl Oyl l Ocl
Hence X.C =Y.C(mod Z).
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4). X is invertible modulo Z If and only if there exists ¥ =y, + Z{=1yi pi €5—
SP, such that X.Y = 1(mod Z).
This equivalent to:

{=0xl- .Z{=0yi = 1(mod Z) for 0 <j <5, hence:

I i j .
Yi—oXi isinvertible modulo };_,z; and:

X1 =x,"1(mod zy5) + P, (Zl: xl-)l (modzl:zi> — x0 " Y(mod z,)
+ P, <i xi>_1 (modizl) — (i xi> (modizi |
+P3- ixl> modei - in modzz:zi |

[ 4
+P4_ zxi

[/ 5
. p (Z

Example on theorem 2.

Take:

X=4+2P,—P,+5P; —P,+P;,Y=2+4+P, —P,+P;—P,+4P;,Z
=2—P, +P,—P;+P,+P,,A=1+P,,B=2—P, + 3P,

we have Z \ X, thatis because 2\ 4,1\ 6,2\ 4,1\9,2\8,3\09.

Z\Y,thatIbecause 2\ 2,1\3,2\2,1\3,2\23\6.

On the other hand,

AX+BY =(1+P)4+2P, — P, +5P; — P, + Ps)
+2—-P,+3P,)(2+P,—P,+P;—P,+4P;)
=4+ 4P, + 2P, + 2P, — 2P, — 2P, + 5P; + 5P, — P, — P, + Ps + Ps + 4
+ 2P, — 2P, + 2P, — 2P, + 8P — 2P, — P, + P, — P; + P, — 4P; + 6P,
+ 3P, — 3P, + 12P; =8 + 7P, + P, + 14P; — 6P, + 18P;

Z \ AX + BY, thatis because 2\ 8,1\ 15,2\ 16,1\ 30,2\ 24,3\ 42.
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For T =3 + 2P, — 2P, — P; — P,, we can see:

gcd(X,T) = gcd(4,3) + P;[gcd(5,6) — gcd(4,3)] + P,[gcd(3,4) — gcd(5,6)] +

P3[gcd(9,2) — gcd(3,4)] + P,[gcd(8,1) — gcd(9,2)] + Ps[gcd(8,1) — gcd(9,1)] ,

hence X is invertible modulo T.

47 1(mod 3) = 1,6 1 (mod 5) = 1,97 (mod 2) = 5,8 1 (mod 1) = 1,9 (mod 1)
=1,4"1(mod3) =1

X t(modT)=1+P[1—-1]+P,[1—1]+P;[5—1]+P,[1 —-5]+P[1—-1] =1+

AP, — 4P,

Proof of theorem3.

It is easy to check that AX + BY = C is equivalent to:

j j j

J J
zaini+ZbiZyi=2q;0 S]SS
i=0

i=0 =0 i=0 =0
The previous six Diophantine equations are solvable if and only if:

J

j
ged ai,Zbi \Zci;ogss

J
i=0 =0 i=0
Example on theorem3.
Consider the following 5-plithogenic linear Diophantine equation in two variables:
(1+P,—3P; +5P,+Ps)X+ (1 =P, +P,)Y =P, + P, —3P; + 6P, + 2Ps
The equivalent system is:

( XO+y0=O (1)
1

in=1 )

i=0

xi+ ) yi=2 (3)

~.
w”MN
o
-
w”MN
o

) x+ ) yi=-1(4)

_.
I
=}
-
I
=}

yi=5 (5

NN
NGB
Ra
+
NgE

~
o
~

o

o |l
o |l

5)xi+ ) yi=7 (6)

f
-

Il
=}
-

Il
=}
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Equation (1) has a solution x, =y, = 0.

Equation (2) has a solution x4 + x; = 1, hence x; = 1,y; = 0.

Equation (3) has a solution xy +x; +x, = 1,¥9 +y1 + ¥, = 1, hence x, =0,y, =
0.

Equation (4) has a solution xy+x; +x, +x3 =1,y +y; +y, +y3 =0, hence
x3=0,y3 =0.

Equation (5) has a solution xg +x; +x; + X3+ x4, = Lyo+y; +y, +ys +y, =1,
hence x, =0,y, = 1.

Equation (6) has a solution xo+x; +x; +x3+x,+x5 =1,y +y; +y, +ys +
Vs +ys =1, hence xg =0,y; = 1.

This means that X = P;,Y = P, + P5 is a solution.

proof on theorem4.

For n = 1, it holds directly.

We assume that it is true for k, we prove it for k+1.X*t = XXk = (x, +
P=0 Xi Di) [xok + P (izo x)* = x0") + Po(Ehoo x)* — Bizo x)) + Pa(Biox)* -

(520 20%) + Pa((Bo %) — (BLo 1)) + Ps (Bho 1) — (o x)¥)] = 1ok +
Py[x0* (Bizo %)™ = %™ + 210" + 20 (Bimo X% — x1%0*] + Pa[xo (X x:)* —

X0 (im0 X)* + 200 (Biog 2% — 21 (Bizo )% + x2%0" + 21 (Tizo )" — 222" +

2o (oo )" — 22 (Tizo X1 + Palxo (Bl x)* — 20 (B x:)* + 2, (Big )" —

x1 (im0 x)" + 22 (Ui x)* — 22 (T %)™ + x2x0" + x3(Biog X" — x3x0" +

x3 (B0 %) — 22 (Bizo x)* + x3(Biio x)* — 2 (Tioo x)*] + o = x™* ! +

+Py (B0 ¥ — xo* ] + P (B0 ) = Bizo ) 1] + -+

And the proof holds.

Proof of theoremb5.

X% +Y? =Z? implies that:
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( Xo? + yo? = 2p°
1 2 1 2 1 2
i=0 i=0 i=0
2 2 2 2 2 2
x| + Yi| = Z Zj
i=0 i=0 i=0
< 3 2 3 2 3 2
5o +(3) ~(35
i=0 i=0 i=0
4 2 4 2 4 2
S +(350) -3
i=0 i=0 i=0
5 2 5 2 5 2
Z x| + Yi| = Z
\\i=0 i=0 i=0
Which implies the proof.

Theorem 6 can be proved by the same argument.
Example on theoremb5.

Consider X =3+ P;,Y =4 — P;,Z =5, we have:

X% +Y? =72 hence (X,Y,Z) is a Pythagoras triple.

We can see clearly that:

( Xo=3,y%=4,2,=5
1 1
in = 3»2)’1’ =4
i=0 i=0
2 2
Z X; = 3»23’1 =4
i=0 i=0
3 3
< z X = 3'2% =4
i=0 i=0
4 4
Z X; = 3»23’1 =4
i=0 i=0
5 5 k
and in =3,Zyl- =4,Zzi =4;1<k<5
\ i=0 i=0 i=0
Definition.

Let X =xo + Yi ,x;P; €5—SP;, hence we say that X >0 if and only if x, >

0,¥F ox;>0;1<k<5
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For example: X =3 + P; — P, + 2P; — P, — P5 > 0, that is because:

3>04>03>05>04>03>0.

If Y =y,+X_0yiPi €5—SP;, we ay that X > Y if and only if x, > Vor 2 o x; =
Koyi;1<k<S5.

For X =2+P, 4+ 2P, +5P;+ P, +6P,Y =1+ P, + P, + Py + 3P, + Ps,X > Y, that

is because:

2>213>225>2310>411>7,17=>8

Definition.

Let X =xo + X2 oXP;,y = Vo + 2o Vi P; = 0, hence:

1 TizoVi 2 Tiovi 1 TizoVi
XY =xy70+ P, (Z xi> —xo¥° |+ P, (Z xl-) - (Z xl-)

=0 i=0 i=0
[ 3 Z?:oyi 2 Z?:oyi-
(S5
i=0 i=0
[ 4 o Vi 3 Yiovi]
+P4_ ( xl-) —< xl-)
i=0 i=0
[ 5 Ei5=oyi 4 ?:ow_
oS5
i=0 i=0

Example.

LetX=2+3P1_P2—P3—P4+P5,Y=1+P1—P2+P3—P4+P5,Wehave:
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( x0=2,y0=1,x0y°=2

23P, — 21P, + 5P; — 7P, + 7Ps

Definition.

Let X = xo + Y7, x; P; > 0, then:

@ <Zl: xi) — ¢ (x0)

P(X) = p(xp) + P,

i=0

3

Example.

oS8
() ol

Where ¢ is Euler's function on Z.

2

Y

i=0

+ P,

)

LetX=3+2P1+P2+P3—P4+P5,then:

p(x0) =93 =2,¢ (Z xi> =¢(5) = 4,(

=0

=0

Y

+P,

=0

o]

) o

=0

4
@ ( Xi) -
i=0

%)

i=0

P

>=(6)=2.<p<

=0

=6,¢ (i xl-> = @(8) = 2#’(25:951’) =¢(7) =

6

(2

l

pX)=2+@-2)L+2—-4)P,+(6—-2)P;+(2—6)P,+ (6 —2)Ps
:2+2P1_2P2+4'P3_4P4+4P5

xi) = ¢(7)
i=0
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Theorem.

Let X =xo+ X7 0% Pi,Y =yo+ Yoy P, €5—SP;,gcd(X,Y) =1 and X,Y >0,
hence:

X?W) = 1(mod Y)

Proof.

gcd(xe,v0) = 1, hence x,??° = 1(mod y,).

ged(Tloxi, oy = 1, hence (B, x)?Ci=0¥) = 1(mod Y1, :)

By a similar argument, we get:

2 e(Xovi) 2 3 @(Zi=ovi) 3
(; xi> = (mod ; yl> (Z xl> =1 (mod ; yi>

4 o(Ziovi) 4 5 o(Z i) 5
(; xl-> = ( od ;yl> (; xl> = 1<m0d ;yl)
This implies

XN =14+40-DP,+1-1DP,+(1-1DP;+(1-1)P, + (1 —1)P; = 1(mod Y).
Example.
Consider X =5+ 2P, + 4P, + 2P; — 2P, + 2P;,Y = 7 + 4P, — 4P, + P; + P, + Px.
gcd(X,Y) = gcd(5,7) + +P;[gcd(7,11) — gcd(5,7)] + P,[gcd(11,7) — gcd(7,11)]

+ P3[gcd(13,9) — gcd(11,7)] + P,[gcd(11,9) — gcd(13,9)]

+ Pg[gcd(13,10) — gcd(11,9)] =1
Also, we have:

Xo = 5,50 = 7,0(yo) = 6,%,?0% = 5¢ = 1(mod 7)

1(mod 11)

=0 0
2 2 2
zxi = 11,2% = 7,(P<Z)’i> =6,11° = 1(mod 7)
i=0 i i
3 3 3
le. = 13,2% =81,¢ (Z yi> = 4,13* = 1(mod 8)

1(mod 9)

1~
=
Il
N
M-
=
Il
[E
l—‘
BS)
e
1~
=
N———
I
—_
(=}
s
(=)
Il

1=
Ral
I
Uy
=
]
<
I
O
=
S
N
1=
=
N——
Il
()}
-
—_
)}
1]
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v

5 5
xX; = 13,Zyi = 10,(p<z yi> = 4,13* = 1(mod 10)
i=0

=0 i=0

Hence X*™) = 1(mod Y)

Remark.

We call the previous result by symbolic 5-plithogenic Euler's theorem.

Conclusion

In this work, we have studied the properties of symbolic 5-plithogenic integers for

the first time, where concepts such as symbolic 5-plithogenic divisors,

congruencies, and linear Diophantine equations were handled by many theorems

and examples.

Also, we have presented the conditions of symbolic 5-plithogenic Pythagoras triples

and quadruples in the corresponding symbolic 5-plithogenic ring of integers.
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Abstract:

The goal of this paper is to define for the first time the concept of symbolic
2-plithogenic weak fuzzy complex number as new generalization generated by

combining real numbers with symbolic 2-plithogenic numbers.

We study the elementary properties of this new class such as Invertibility and

nilpotency, with many related examples that explain its novelty.

Keywords: symbolic 2-plithogenic number, weak fuzzy complex number, real

number.

Introduction and preliminaries.

The concept of weak fuzzy complex numbers was defined firstly in [7] by the
following form: C,, = f{a+bJ; J> =t €]0,1[,a, b € R}.

It is clear that C,, contains the real field R.

Weak fuzzy complex numbers were used to study vector space theory in [10], and
programmed with Python [3].

Weak fuzzy complex numbers and their similar real extensions [8-9,15] are very
useful in algebraic studies and computer science, especially split-complex numbers.
The concept of symbolic 2-plithogenic numbers was presented in [4] as a direct

application of symbolic n-plithogenic sets in algebraic structures [1-3]. Also, many
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generalizations of symbolic 2-plithogenic algebraic structures and 3-plithogenic

structures were defined by many authors, see [5-6,11-14].

In this paper, we combine symbolic 2-plithogenic real ring 2 — SP; with weak

fuzzy complex ring C,,, to get a novel generalization of real numbers.

We discuss some of their elementary algebraic properties in terms of theorems with

many easy and clear illustrated examples.

Main concepts.

Definition.

We define the set of symbolic 2-plithogenic weak complex numbers as follow:

2 =SB, ={(xo + x1Py + x,P;) +J(¥o + y1P1 + ¥2P2); x;, yi, E R, J> =t € ]0,1[}
Addition on 2 — SPB, is defined as follows:

For X = (ay + a;P; + a,P,) + J(by + b1 P; + b, P,),

Y = (co + 1Py + cPy) + ]J(dy + dy Py + dyPy).

X+Y =[(ag+co) + (ay +c1)Py + (ay + c3)P,] +J[(bg + dg) + (by +d1)P; +

(by + dy)P,].

Multiplication on 2 — SP,, is defined as follows:

X.Y =(ag+ a1Py +a,P;)(co + ¢1Py + ¢, P,) + t(by + by Py + b,P,)(dy + d1 P, +
d,P,) + J[(ag + a;P; + a,P,)(dy + d,P; + dyP,) + (by + by Py + b,P,)(co + 1Py +
c2P;)] = (agco + thody) + Py(agcy + ajcy + ascy + thydy + thdy + thydy) +
P,(agc, + a;c, + aycy + a,cqy + aycy, + thyd, + thyd, + th,dy + thyd, + thyd,) +
J[(agdy + bocy) + Pi(apdy + a1dy + a,dy + bocy + bicy + bicy) + Py(apd, + a;d, +
a,dy + a,d, + a;d, + a,d, + byc, + bicy, + bycy + bycy + bycy)].

Example.

Take X = (P —P) +J (3 —Pp),Y = (1+P) +J(P);J2 =t =,
X+Y=QA+P)+]JB)=@0+P)+3].

XY =P +P —P,—Py+5(3P,—P) +][P,— P, +3+3P,— P, — P,] =
(2P, — 2P, + P,) +J(3 —P,) = (2P, — P,) +J(3 + ).

Remark.
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(2-SP,,+,.) Is a commutative ring.

Invertibility

It is known that A + BJ is invertible if and only if A+ BVt,A— Bt;J> =t €]0,1]
are invertible.

This means that X = (ag + a;P; + a,P,) + J(by + b1 P; + b,P,) is invertible if and
only if

A+ BVt = (ag + byVt) + (ay + biVt)Py + (az + boVE)P,

A =BVt = (ag — byVt) + (a; — byVt)Py + (a; — bVE)P,

Are invertible in 2 — SPg.

It is known from the invertibility of symbolic 2-plithogenic real numbers that:

A + B+t is invertible if and only if:

ag + boVt # 0, (ay + a;) + (by + bVt # 0,(ag + a; + ay) + (by + by + b))Vt # 0
which is equivalent to:

If Vt#—=2 or

] Ve (a"*“” OT for by, by + by, by + by + by # 0.

L Vi (a0+a1+a2)

by # 0
Or { bo + b1 *0
by + by + b, #0
A — B+t isinvertible if and only if:
ao_bo\/f;t O,(a0+a1)_(b0+b1)\/?¢ O,(a0+a1+a2)_(b0+b1+b2)\/?¢ 0
which is equivalent to:

by # 0,by + by # 0,by + by + by # 0.

Vt # @ or
0
(a0+a1)
Or {Vt#—">=*% Doths or
(ap+a;+ay)
vt # bo+b1+b
Example.

We try to find all non-invertible elements in 2 — SP,,.

Casel.
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For by =0, X = (ag + a;P; + ayP,) + J(by + b1 P; + b,P,); a;, b; € R.

Case2.

For by # 0,by + by = 0,X = (ag + a; P, + ayP,) + J(by — b1 P; + b,P,); a;, b; € R.
Case3.

For by # 0,by + by # 0,by + by + b, = 0,X = (ag + a P, + a,P,) + J(by + b Py +
(=bo — b1)P,); a;, b; € R.

Cased.

V= Z—O or \Vt = —‘;—z,x = (Vtby + a,Py + ayP;) + J(by + by Py + byP,); a;, b; € R.

Caseb.

\/E — (a0+a1) \/— — (a0+a1) then
bo+ +by ’

X:a0+P1(\/E(b0+b1)_a0)+a2P2 +](b0+b1P1+b2P2), al',bl' € R.
Case6.

(a0+a1+a2) (a0+a1+a2)
t=——= or vVt = —————= then:
Vi bo+by+b, Vi bo+by+b, ’

X =ag + a,Py + P,(—Vt(by + by + by) —ag — a;) + J(by + by Py + b,P,); a;, b; €R
Example.

For J2=t= % take X = (2 4+ P, — 5P,) + J(5 + 6P, + 12P,), X is invertible that is
because:

b0¢0,b0+b1¢0,b0+b1+b2¢O,and

( _ a0_2
V= b0 5
1 Qo 2
ﬁ_§¢_b_0__§
1 (ag+a) 3
) VE= 3 * S o T
1 (ap +ay) 3
V=t S, Tl
Ji= 1 (a0+a1+a2)_ 2
37 bo+b,+b, 23
\/__1 (a0+a1+a2) 2
=37 bo+b, +b, 23
Theorem.

Let X=A+BJj€2-SP,, A B €2—SPg, thenif X isinvertible, we get:
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Xt =@+ (A=) [ - (-5

Proof.

Put ¥ =2[(A+BVE) " +(4—BVE) | +5=/[(A+BVD) - (4—BVE) ]

X =3[a(a+ VD) +a(a—BVD) |+ FB(a+ BV - TB(A-BVD)
L[B(a+BVE) " +1B(A-BVD) +-A(A+BVD) - -A(A-BVD) | =
S(A+BVD(A+BVD) +2(A-BVD(A-BVD) +J[3(B+%)(A+BVD) T +
(B -0 =14 [ (B4R v D" () (-5 ] -

1+J(0)=1,thus X =Y.

Remark.
A+ B\/E = (ao + bo\/z) + (a1 + bl\/?)Pl + (az + bz\/?)Pz
-1 1 1 1
A+BVt) = + - P
( ) ao + boVt l(ao +a;) + (bo + bVt ag+ bo\/zl !

1 1
+[ _
(ag+ay +ay) + (by + by + b))Vt  (apg+ay) + (by + bVt

A — BVt = (ag — byV't) + (a; — biVt)Py + (a; — b\t)P;.
(A+BVD) =

P,

1 1 1 1
ap—boVt + [(a0+a1)—(bo+b1)\/f B ao—bo\/f] P+ [(a0+a1+a2)—(b0+b1+b2)\/f B

1
(a0+a1)—(b0+b1)\/f] P,

On the other hand, we have:

1 1 ao - bo\/f + aO + bo\/? Zao
+ = > = 5 e (1)
ap + bo\/f ag — bo\/z CLOZ — bo t aOZ - bO t
1 1 _ag— bVt —ag— bVt —2byVt D
ag + bo\/E ag — bo\/z B a02 - bozt B aoz — bozt
1 N 1 _ 2(ag+aq) @
(ap +ay) + (b + b1)\/? (ag +ay) — (by + b1)\/z (ap + ap)? — (by + b))%t ™
1 1 —2(by + b))Vt ,
(bo + bVt e

(g + ay) + (by + bOVE  (ag + ay) — (bg + bOVE  (@o + a1)? — (b + b))%t
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1 1
(ag +a; +ay) + (by + by + bz)\/?Jr (ag+ ay + a,) — (by + by + b))Vt
_ 2(ag + a; + a,) 3)
(ap+ ay + ay)? — (by + by + by)%t ™~
1 1
(ag + ay + ay) + (by + by + b)VE  (ag + ag + a,) — (b + by + b)VT

2(by + by + b))Vt

- . (3
(agp +a, +az)? — (by + by + by)?t 3

This implies that:

-1 __ 21 a0+a1 _ 1)) a0+a1+a2
X - aoz—bozt + ((a0+a1)2—(b0+b1)2t aoz—bozt) P1 + ((a0+a1+a2)2—(b0+b1+b2)2t

Go+a, ___bg —(bo+b1) bg )

(a0+a1)2—(b0+b1)2t) P2 +] [ aoz—bozt ((a0+a1)2—(b0+b1)2t aoz—bozt P1 +
( —(bo+by+by) (bo+by) )P ]

(ap+ai+az)?2—(bg+by+by)%t = (ap+as)?—(bo+by)?t 2

Examples.

Take ]2=t=ﬁ X=(1+P,+P)+J(5—P, +P,), then ﬁ=1io,a0=a1=a2=

1,b0 = S,bl = _1,b2 = 1

— —4 5 -5 4
+J 1_§+ 4_3+1_2_5 P, + 1_2_5+4_E
10 10 10 10 10
_TL0 (20,19 4 (22,
15 24 ' 15)°1 " \65 24/)°%
50 —40 50 —-50 40
+J 1_5+(7_1_5>P1+<E+ﬁ>’32]
-2 5 2 6 5
=?+(3+§>P1+(1—3‘5>P2
+] E+<_—5—E>P +<_—10+E)P]
3 3 3)1 3 ' 3)°%

_(—24_31D 29P)+ [(10 5P+35P>]
_321792]31392

Natural power.

Let X =A+ BJ;A,B € 2 — SPy, then:
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X" = %[(A +BVE)" + (4- BVD)"| + i?] |(4+BvD)" — (4= BVD)"|
The previous result can be proven easily by induction.
We have:
A+ BVt = (ag + boVt) + (ay + biVt)Py + (a; + byVE)P,
(A+BVE)" = (ap + bovE)" + [(ao +ay + (bo + b)VE)" — (ao + box/?)"] P,
+ [(a0 +ay + ap + (bo + by + b)VE)" — (ao + ay + (bo + bl)\/f)n] P,
A =BVt = (ag — byVt) + (a; — biVt)Py + (a; — boVE)P,
(A+BVD)" = (a0 — bovD)" + [ (a0 + @ — (bo + bVT)" — (a0 — boVT)"| Py

+](Cao + a1 + az) = (b + by + bVE) — (ag + a3 — (bo + bVD)"| P,
This implies that:
X" =2 [(ao +bovt)" + (2o — bovE)" + ((ao + ay + (b + bVE)" + (ao + oy -
(bo + bVE)" = (a0 + bovt)" — (2o = bovE)") Py + (((ao + a1 + @) + (b + by +
bz)\/f)n + ((ao +a; +ay) — (b + by + bz)\/f)n — (ag + ay + (by + bVE)" —
(a0 + @z — (bo + b)VE)") Po| + =73 (a0 + bovE)" + (a0 — bovE)" + (a0 + oy +

(bo + bVE)" = (ao + ay — (bo + b)VE)" — (a0 + bovD)" + (2 — boVE)") Py +

(((a0 +ay +ay) + (bo + by + bz)\/f)n + ((a0 +ay +ay) — (bo + by + bz)\/f)
(a0 + ay + (bo + bVE)" + (a0 + a; = (b + bVE)") Py |

Definition.

Let X=A+BJ€2~-SP,;A B € 2—S5Pg, we say that:

1). X is 2-nilpotent if and only if X? = 0.

2). X is 3-nilpotent if and only if X3 = 0.

The equation X2 = 0 is equivalent to:

{AZ +B?t=0..(1)
2AB=0..(2)

We multiply (1) by A toget A*=0=4=0.
We multiply (2) by B toget B>=0=B=0

So that the only 2-nilpotent element in 2 — SP,, is 0.
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By a similar discussion, we get that only m-nilpotent element in 2 — SB,, is 0.
Conclusion:

In this paper, we have defined for the first time the class of symbolic 2-plithogenic
weak fuzzy complex numbers by combining two algebraic classes (symbolic
2-plithogenic numbers and weak fuzzy complex numbers). Also, we have studied
some of their elementary properties such as Invertibility and nilpotency, where a
formula to compute the invers of a symbolic 2-plithogenic weak fuzzy complex
number is obtained.

In the future, we encourage other researchers to study matrices with symbolic
2-plithogenic weak fuzzy complex numbers.
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Abstract. A ring is said to be clean if every element of the ring can be written as a sum of an idempotent
element and a unit element of the ring and a ring is said to be nil-clean if every element of the ring can be
written as a sum of an idempotent element and a nilpotent element of the ring. In this paper, we generalize
these arguments to symbolic 2-plithogenic structure. We introduce the structure of clean and nil-clean symbolic
2-plithogenic rings and some of its elementary properties are presented. Also, we have found the equivalence

between classical clean(nil-clean) ring R and the corresponding symbolic 2-plithogenic ring 2 — SPkg.

Keywords: Clean ring; nil-clean ring; symbolic 2-plithogenic ring; clean symbolic 2-plithogenic ring; nil-

clean symbolic 2-plithogenic ring.

1. Introduction

The concept of refined neutrosophic structure was studied by many authors in [1-5|. Sym-
bolic plithogenic algebraic structures are introduced by Smarandache, that are very similar
to refined neutrosophic structures with some differences in the definition of the multiplication

operation [17].

In [14], the algebraic properties of symbolic 2-plithogenic rings generated from the fusion of
symbolic plithogenic sets with algebraic rings, and some of the elementary properties and sub-
structures of symbolic 2-plithogenic rings such as AH-ideals, AH-homomorphisms, and AHS-

isomorphisms are studied. In [7], some more algebraic properties of symbolic 2-plithogenic
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rings are studied. Further, Taffach |15.|16] studied the concepts of symbolic 2-plithogenic vec-

tor spaces and modules.

In [8], the concept of symbolic 2-plithogenic matrices with symbolic 2-plithogenic entries,
determinants, eigen values and vectors, exponents, and diagonalization are studied. Hamiyet
Merkepci et.al [12], studied the the symbolic 2-plithogenic number theory and integers. Ah-
mad Khaldi et.al [11], studied the different types of algebraic symbolic 2-plithogenic equations

and its solutions.

In [18], H. Suryoto and T. Uidjiani studied the concept of neutrosophic clean ring with many
elementary interesting properties. Recently, M. Abobala [6], proved that a neutrosophic ring
R(I) is clean if and only if R is clean. Motivated by this works, in this paper we have introduced
and studied the notion of clean and nil-clean symbolic 2-plithogenic rings. Also, we proved

that a symbolic 2-plithogenic 2 — S Pg is clean(nil-clean) if and only if R is clean(nil-clean).

2. Preliminaries

Definition 2.1. [14] Let R be a ring, the symbolic 2-plithogenic ring is defined as follows:
9 SPp = {ao +arPi + asPs;a; € R, P? = Py, Py X Py = Prgy(19) = PQ}

Smarandache has defined algebraic operations on 2 — S Pg as follows:

Addition:

[ag + a1 Py + aa P] + [bo + b1 P1 + baPo] = (ag + bo) + (a1 + b1)P1 + (a2 + b2) P>

Multiplication:

[ao + a1 Py + ag Py].[bo + b1 P + ba Po] = agby + agby Py + agba Py + a1bg P2 + a1ba Py Py + asbo Py +

agb1 PL Py + agbo Py + a1by PPy = (agbg) + (aoby + a1bo + a1b1) Py + (agba + a1ba + azbo + azby +

agb2) Py.

It is clear that 2 — SPp is a ring. If R is a field, then 2 — S Ppg is called a symbolic 2-plithogenic

field. Also, if R is commutative, then 2 — SPg is commutative, and if R has a unity (1), than

2 — SPp has the same unity (1).

Example 2.2. |[14] Consider the ring R = Z, = {0, 1,2, 3,4}, the corresponding 2 — SPp, is:
2—SPr={a+bP, + cPy;a,b,c € Zy}.

IfX =142P+3P.,Y =P +2P; then, X +Y =143P+ P, X-Y =1+ P, + P,

XY =3P, + 3P;.

Theorem 2.3. [1j] Let 2 — SPr be a 2-plithogenic symbolic ring, with unity (1). Let X =

xo + 1P + 2o Py be an arbitrary element, then:

(1) X is invertible if and only if xg, o + x1,x0 + x1 + T2 are invertible.
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(2) X' =2yt + [(xo +21) 7" — 2y Py + [(mo + 21 + 22) 7 — (20 + 1) TP

Definition 2.4. [14] Let X = a+ bP; + c¢P» € 2 — SPg, then X is idempotent if and only if
X?=X.

Theorem 2.5. [1j] Let X = a+ bP, 4+ cPy € 2 — SPg, then X is idempotent if and only if
a,a+ b,a+ b+ c are idempotent.

Theorem 2.6. [1j] Let 2 — SPr be a commutative symbolic 2-plithogenic ring, hence if
X =a+bP+cPy, then X" =a" + [(a+b)" —a"|P1 + [(a+ b+ )" — (a+ b)"| Py for every
nezt.

Definition 2.7. |[14] X is called nilpotent if there exists n € Z* such that X" = 0.

Theorem 2.8. [14] Let X = a+bP; + cP, € 2— SPg, where R is commutative ring, then X
is nilpotent if and only if a,a + b,a + b+ ¢ are nilpotent.

3. Clean Symbolic 2-Plithogenic Rings
We begin with the following definition.

Definition 3.1. Let R be any ring, 2 — SPg be its corresponding symbolic 2-plithogenic ring.
An element z € 2 — SPg is said to be clean if x = e 4+ u, where e is an idempotent and u is a
unit element of 2 — SPg. If, in addition, the existing idempotent e and the unit u are unique,

then z is called uniquely clean element.

In this section, we use the notation U(2 — SPgr) to the set of all units in 2 — SPr and
Id(2 — SRR) to the set of all idempotent elements in 2 — S Pg.

Example 3.2. Consider the symbolic 2-plithogenic ring
2—SP;, = {a+bP+cPya,b,cc Zy}
= {O,I,Pl,PQ,Pl+P2,1—|—P1,1+P2,1—|—P1+P2}.

Here, U(2*SPZQ) =1 and Id(Q* SRZQ) = {O, 1L,P,Po, P+ P, 1+ P, 1+ P, 1+ P + PQ}
We can easily verify that every element of 2— 5Pz, can be expressed as a sum of an idempotent
and a unit in 2 — SPz,. Hence, all the elements in 2 — SPz, are clean elements. Since 1 is the

only unit element in 2 — SPz,, so all the elements in 2 — S Pz, are uniquely clean elements.

Definition 3.3. A symbolic 2-plithogenic ring in which all elements are clean, then the ring
is called a clean symbolic 2-plithogenic ring. Furthermore, if each element of the symbolic 2-
plithogenic ring is uniquely clean, then the ring is called a uniquely clean symbolic 2-plithogenic

ring.
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Example 3.4. By the Example[3.2] the ring 2—S P, is a uniquely clean symbolic 2-plithogenic

ring.
Example 3.5. Consider the symbolic 2-plithogenic ring

2—-SPz, = {a+bP+cPy;a,bce Z3}
0,1,2, P, P5,2P,2P5, Py + P5,2P, + 2P, P, + 2P, 2P, + P>, 1 + Py,
14+ Py, 1+ P+ Py, 1+2P,1+2P,,1+2P, +2Ps, 14 P, + 2P,
14 2P, + Py,2+ P24+ Py, 24+ P, + Py, 2+ 2P,,2 4+ 2Py, 2 + 2P| + 2P,
24 P +2P,24+2P, + P

Here, U(2 — SPz,) = {1,2,14 P1,1+ P»,2+2P;,2+ 2P, 1+ P +2P»,2+ 2P, + P»} and
Id(2 — SRz,) = {0,1, P, P, P, +2P5,1+2P;,1+2P,,1+4 2P, + P,}. All the elements of
2 — SPy, are clean elements. Hence 2 — SPyz, is a clean symbolic 2-plithogenic ring. Take
24+2P 4+ P, € 2— SPy, clearly 2+ 2P, + P, = (14 2P; + P>) + 1 and also we have
24 2P+ P, =0+ (2+ 2P, + P5). Therefore 2 + 2P, + P, is not a uniquely clean element in

2 — SPyz, and hence 2 — SPyz, is not a uniquely clean.

Lemma 3.6. Let R be a ring. Then the class of clean symbolic 2-plithogenic rings is closed

under homomorphic images.

Proof. 1t is clear since the homomorphic image of an idempotent element in a symbolic 2-

plithogenic ring is again an idempotent.

Theorem 3.7. Let R be any ring, 2 — SPr be its corresponding symbolic 2-plithogenic ring.
2 — SPgr is clean if and only if R is clean.

Proof. Assume that 2 — SPpg is clean. Since R is a homomorphic image of 2 — SPpg, so R is
clean by Lemma |3.6
Conversely, assume that R is clean, we must prove that 2—.S5Pg is clean. Let © = a+bP;+cP; €
2—SPg then a,a+b,a+b+c € R. Since R is clean we have a = e1+uq,a+b = ea+us, a+b+c =
e3 + ug, where e; are idempotent elements and u; are unit elements of R. Now,
r = a+bP+chP

= a+[(a+b)—alPL+[(a+b+c)—(a+D)]Pe

= (61 + ’LL1) + [(62 + 'LLQ) —(e1 + ul)]Pl + [(63 + ’LL3) — (62 + ug)]Pg

= (e1+ur)+[(e2 —e1) + (ug —u1)|Pr + [(e3 — e2) + (uz — u2)| P

= ler +(e2 —e1)Pr + (e3 — e2) o] + [u1 + (ug — w1) Pr + (uz — uz) P2

= X1+ x2.
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where, 1 = e1+ (e2—e1) P14+ (e3—e2) Py and 29 = ug + (ug —u1) Py + (u3 —u2) Po. By Theorem
er,e1+ (e2 —ep) =eg,e1 + (ea — e1) + (e3 — e2) = e3 are idempotents in R. Therefore, x;
is a idempotent element of R. Also, x2 is a unit element of R by a similar discussion. Hence

2 — SPg is clean.

Definition 3.8. Let 2 — SPgr be a symbolic 2-plithogenic ring. An idempotent element e €
2 — SPpg is called a central idempotent if e.x = z.e for every x € 2— SPg. The set of all central
idempotents of 2 — SPp is denoted by C(2 — SPg).

Example 3.9. In the symbolic 2-plithogenic ring 2 — SPz,, we have
Id(Q — SPZ3) = {0, 1,P,Py, P, +2P5,1+2P;,14+2P,,1+ 2P, + P2}
As 2 — SPz, is commutative so all the idempotents of 2 — SPz, are central. Hence

0(2 — SPZ3) = {0, 1,P,Py, P, +2P5,14+2P;,1+2P;,1+2P; +P2} = Id(2 — SPZg)'

Lemma 3.10. If z is an idempotent element of 2 — SPg, then 1 — x is also an idempotent

element of 2 — SPr, where 1 is the unit element of 2 — SPg.

Proof. If x an idempotent element of 2 — SPg then 22 = 2. But then, (1—2)2 =12z —22 =

1 — 2 and so 1 — x an idempotent element of 2 — SPr.

Lemma 3.11. Let 2 — SPgr be a symbolic 2-plithogenic ring with the identity 1. If e €
C(2— SPgR) then 1 —e € C(2 — SPg), where 1 is the unit element of 2 — SPg.

Proof. Assume that e € C(2—SPg). For any © € 2—SPg, we have (1 —e).x = (1.z) — (e.x) =
(x.1) — (x.e) =x(1 —e). Hence, 1 —e € C(2—SPR).

Theorem 3.12. In any symbolic 2-plithogenic ring 2 — SPgr, every central idempotent is a

uniquely clean element.

Proof. Let © € C(2 — SPg). Then we have, 22 = z and x = (1 — ) + (22 — 1) = e + u, where
e =1 — z is an idempotent by Lemma [3.10] and v = 2z — 1 is a unit element by Lemma [3.11
Hence z is a clean element. Also, if 2.y = y.x we obtain e +u = (e + u)? = e + 2eu + u?, so

u =1—2e. Hence e =1 — 2. Thus z is a uniquely clean element.

Theorem 3.13. FEvery idempotent element in a uniquely clean 2-plithogenic ring is a central

idempotent.
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Proof. Assume that 2 — SPp is a uniquely clean 2-plithogenic ring. Let e € 2 — SPr be an
idempotent element and x be any element of 2 — SPr. Now, the element e + (ex — exe) is an
idempotent and 1+ (ex — exe) is a unit and [e + (ex — exe)] + 1 = e+ [1 + (ex — exe)]. Since,
2 — SPg is a uniquely clean 2-plithogenic ring we have e + (ex — exe) = e. Hence ex = exe

and ze = exe, so ex = ex as required.

Definition 3.14. A symbolic 2-plithogenic ring 2 — SPpg is called a boolean symbolic 2-
plithogenic ring if 22 = z for all x € 2 — SPxg.

Example 3.15. In the symbolic 2-plithogenic ring 2 — SRz,, all the elements are idempotent

so 2 — SRz, is a boolean symbolic 2-plithogenic ring
For any boolean symbolic 2-plithogenic ring, we have the following result.
Theorem 3.16. Every boolean symbolic 2-plithogenic ring is uniquely clean.

Proof. If 2 — SPgr is a boolean symbolic 2-plithogenic ring, then 2 — SPr = Id(2 — SPg).
Since boolean rings are abelian, we have Id(2 — SPgr) = C(2 — SPg). This implies that,
2 — SPr = C(2 — SPg). By Theorem every element of the ring 2 — SPg are uniquely

clean. Hence 2 — SPp is uniquely clean ring.

4. Nil-clean Symbolic 2-Plithogenic Rings

We begin with the following definition.

Definition 4.1. Let R be any ring, 2 — SPg be its corresponding symbolic 2-plithogenic ring.
An element x € 2— S Ppg is said to be nil-clean if z = e+n, where e is an idempotent and n is a
nil-potent element of 2 — S Pg. If, in addition, the existing idempotent element and nil-potent

elements are unique, then x is called uniquely nil-clean element.

Example 4.2. Consider the symbolic 2-plithogenic ring

2—-SP;, = {a+bP+cPy;a,bce Z3}
0,1,2, P, P5,2P,2P5, Py + P5,2P; + 2P, P, + 2P, 2P, + P>, 1 + Py,
14+ P, 1+ P+ P, 14+2P,142P,,14+2P1 + 2P, 1+ P + 2Py,
142P1 4+ P2,24+ P1,2+ P,24 P14+ P5,2+2P,24+2P,24 2P, + 2P,
24P 4+2P,2+2P + P,

Since 0 is a nil-potent element in 2— S Pz, , so the idempotent elements 0, 1, P, P>, Pi+2P, 1+
2P;,1+2P,,1+ 2P, + P, are nil-clean elements of 2 — SPz,. The only nilpotent elements of
2—-5Pz, is 0,50 0,1, P, P, Pi + 2P5,1 +2P;,1 4+ 2P»,1 + 2P, + P> are uniquely nil-clean

elements of 2 — SPz,.
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Definition 4.3. A symbolic 2-plithogenic ring in which all elements are nil-clean, then the ring
is called a nil-clean symbolic 2-plithogenic ring. Furthermore, if each element of the symbolic
2-plithogenic ring is uniquely nil-clean, then the ring is called a uniquely nil-clean symbolic

2-plithogenic ring.

Example 4.4. 2 — SP;, = {0,1,P1, P, P+ P»,1+ P;,1+ P,,1+ P, + P} is a nil-clean
symbolic 2-plithogenic ring, that is because all the elements in 2 — SPy, are idempotents and

0 is a nilpotent element in 2 — SP,.
Lemma 4.5. If x is a nilpotent element of 2 — SPg, then 1 + x is a unit in 2 — SPgR.

Proof. If = is a nilpotent element of 2 — SPr then z* = 0 for some k > 0. But then,
14+2)(1—2+22—22+ ...+ (=) 12¥"1) =1 and so 1 + = is unit in 2 — SPr.

Theorem 4.6. Every nil-clean symbolic 2-plithogenic ring is clean symbolic 2-plithogenic ring.

Proof. Suppose that 2 — SPpg is a nil-clean symbolic 2-plithogenic ring, and let z € 2 — SPg.
Then z —1 is an element of 2 — S Pgk and hence x — 1 = e+n, where e is an idempotent element
and n is a nilpotent element of 2 — SPg.

This implies that, z = e + (1 + n) is a nil-clean element of 2 — SPr because 1 + n is a unit

element of 2 — SPr by Lemma O

The converse of the Theorem is not true. See the following example.

Example 4.7. Consider, the clean symbolic 2-plithogenic ring 2 — SPz,. All the elements of
2 — SPz, are clean elements. The only nilpotent element of 2 — SPz, is 0 and P; + P is not
an idempotent element in 2 — SPz, so it is not nil-clean. Hence 2 — SPyz, is not a nil-clean

ring.

Lemma 4.8. Let R be a ring. Then the class of nil-clean symbolic 2-plithogenic rings is closed

under homomorphic images.

Proof. Tt is clear since the homomorphic image of a nil-potent element of a symbolic 2-

plithogenic rings is again a nil-potent.

Theorem 4.9. Let R be any ring, 2 — SPr be its corresponding symbolic 2-plithogenic ring.

2 — SPgr is nil-clean if and only if R is nil-clean.
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Proof. Assume that 2 — S Pp is nil-clean. Since R is a homomorphic image of 2 — SPg, so R
is nil-clean by Lemma

Conversely, assume that R is nil-clean, we must prove that 2 — SPg is nil-clean. Let z =
a+bP +cP, € 2 — SPgr then a,a + b,a +b+ c € R. Since R is nil-clean we have a =
e1 +ni,a+b=ey+ng9,a+ b+ c = e3+ ng, where e; are idempotent elements and n; are

nilpotent elements of R. Now,
r = a+bP+ch

= a+[(a+b)—alP+[(a+b+c)— (a+b)]P

= (e1+mn1)+ [(e2 +n2) — (e1 +n1)|P1L + [(e3 +n3) — (e2 + n2)|

= (er+m1)+[(e2 —e1) + (n2 — n1)|P1 + [(e3 — e2) + (ng — n2)| P

= [e1+ (e2 —e1)P1 + (e3 — e2) P2 + [n1 + (n2 — n1) P1 + (ng — n2) Po]

= x1 + Zo.
where, 1 = e1 + (e2 — e1)P1 + (e3 — e2) Py and z9 = ny + (n2 — n1)Py + (n3 — ny)Pa. By
Theorem e1,e1 + (e2 —e1) = ez e1 + (ea — e1) + (e3 — e2) = es are idempotents in R.

Therefore, x1 is a idempotent element of R. Also, x9 is a nilpotent element of R by a similar

discussion and by Theoerem Hence 2 — SPp is nil-clean.

Theorem 4.10. If 2 — SPg is a symbolic 2-plithogenic ring, then every central idempotent of

2 — SPgr is uniquely nil-clean element.

Proof. We know that, every idempotent element of 2 — SPp are nil-clean. Let x be a central
idempotent element of 2 — SPr. Then z = (1 — x) + (2 — 1). Suppose that x = e + n,
where e is an idempotent and n is a nilpotent element of 2 — SPg. Since nx = xn, we obtain

e+n=(e+n)?=e+2en+n> So, we have n = 1 — 2e and hence e = 1 — x, as reuired.

Lemma 4.11. Let 2 — SPgr be uniquely nil-clean symbolic 2-plithogenic ring. Then all idem-
potents of 2 — SPr are central.

Proof. Let e € 2 — SPgr be an idempotent element and z be any element of 2 — SPr. Now,
the element e 4 ex — exe can be written as e + (ex — exe) or (e + (ex — exe)) + 0 each time as
the sum of an idempotent and a nilpotent element of 2 — SPg. Since 2 — S Pg is uniquely nil
clean, we have e = e + (ex — exe). This implies that ex — exe = 0 and so ex = exe. In the

similar way, we can show that xe = exe. Hence ex = ze as required.

Theorem 4.12. Every boolean symbolic 2-plithogenic ring is uniquely nil-clean.
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Proof. If 2 — SPg is a boolean symbolic 2-plithogenic ring, then 2 — SPr = Id(2 — SPg).
Since boolean rings are abelian, we have [d(2 — SPr) = C(2 — SPg). This implies that,
2 — SPr = C(2 — SPgr). By Theorem every element of the ring 2 — SPg are uniquely

nil-clean. Hence 2 — SPg is uniquely nil-clean ring.

5. Conclusion

In this article, we have introduced the the new classes of rings called, clean symbolic 2-
plithogenic rings and nil-clean symbolic 2-plithogenic rings and we have studied various prop-
erties of clean and nil-clean symbolic 2-plithogenic rings with proper examples. Also, we have
determined necessary and sufficient condition for a symbolic 2-plithogenic ring to be clean and

nil-clean.
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Abstract. In this article, the concept of system of symbolic 2-plithogenic linear equations and its solutions
are introduced and studied. The Cramer’s rule was applied to solve the system of symbolic 2-plithogenic linear

equations. Also, provided enough examples for each case to enhance understanding.

Keywords: Symbolic 2-plithogenic linear equations; Cramer’s rule; solution of the symbolic 2-plithogenic linear

equations.

1. Introduction

The concept of refined neutrosophic structure was studied by many authors in [1H5]. Sym-
bolic plithogenic algebraic structures are introduced by Smarandache, that are very similar
to refined neutrosophic structures with some differences in the definition of the multiplication

operation [10].

In [7], the algebraic properties of symbolic 2-plithogenic rings generated from the fusion of
symbolic plithogenic sets with algebraic rings, and some of the elementary properties and sub-
structures of symbolic 2-plithogenic rings such as AH-ideals, AH-homomorphisms, and AHS-
isomorphisms are studied. In [11], some more algebraic properties of symbolic 2-plithogenic
rings are studied. Further, Taffach [8]|9] studied the concepts of symbolic 2-plithogenic vector

spaces and modules.
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In [14], the concept of symbolic 2-plithogenic matrices with symbolic 2-plithogenic entries,
determinants, eigen values and vectors, exponents, and diagonalization are studied. Hamiyet
Merkepci et.al [13], studied the the symbolic 2-plithogenic number theory and integers. Ah-
mad Khaldi et.al [12], studied the different types of algebraic symbolic 2-plithogenic equations

and its solutions.

In [6], Yaser Ahmad Alhasan studied the types of the nuetrosophic linear equations and
Cramer’s rule to solve the system of nuetrosophic linear equations. Motivated by this work,
in this article the symbolic 2-plithogenic linear equations and its solutions are introduced and

studied. Also, enough examples are given for all the cases to enhance understanding.

2. Preliminaries

Definition 2.1. [7] Let R be a ring, the symbolic 2-plithogenic ring is defined as follows:
2 SPp = {ao +arPi +asPs;a; € R, P} = P, Py X Py = Prga(19) = P2}

Smarandache has defined algebraic operations on 2 — S Pg as follows:

Addition:

[ap + a1 Py + aaPs] + [bo + b1 Py + ba Po] = (ag + bo) + (a1 + b1) Py + (ag + ba) Py

Multiplication:

[ag + a1 Py + aa Py).[bo + b1 P + ba Py] = agbg + aogby Py + agba Pa + a1bg P2 + a1ba Py Py + asbo Po +

azby PLPy + agby P§ + a1b1 PL Py = (agbo) + (agby + a1bo + a1b1) Py + (agbz + a1bs + asby + azby +

a2b2) Py.

It is clear that 2 — SPpg is a ring. If R is a field, then 2 — S Pg is called a symbolic 2-plithogenic

field. Also, if R is commutative, then 2 — SPg is commutative, and if R has a unity (1), than

2 — SPg has the same unity (1).

Theorem 2.2. [7] Let 2 — SPg be a 2-plithogenic symbolic ring, with unity (1). Let X =
xo + x1P1 + xoPo be an arbitrary element, then:

(1) X is invertible if and only if xg,xo + x1,x0 + 1 + T2 are invertible.

(2) X' =2yt + [(xo+21) 7" — 2y Py + [(wo + 21+ 22) 7 — (20 + 1) TP
Definition 2.3. [14] A symbolic 2-plithogenic square real matrix is a matrix with symbolic
2-plithogenic real entries.
Theorem 2.4. [14] Let S = S+ S1P1 + S2 Py be a symbolic 2-plithogenic square real matriz,
then

(1) S is invertible if and only if Sy, So + S1, S0 + S1 + Sa2 are invertible.

(2) If S is invertible then

S~ = SO_I + [(S() + Sl)_l — So_l]Pl + [(S() + 51+ SQ)_l — (S() + Sl)_l]
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3. The Symbolic 2-Plithogenic Linear Equations

We begin this section with the following definition.

Definition 3.1. The symbolic 2-plithogenic linear equation of n variables x1, xs, T3, ..., Ty, is
each equation that takes the form:
(a1 + a1 Py + a1 Po)x1 + (ap2 + a12 Py + a2 Po)xs + (a3 + a3 Py + agPag)x3 + - - - + (aon +
a1nP1 + agn Po)xy, = by 4+ b1 P1 + bo Py
where ap;, a1i,a92;, i = 1,2,...,n are real coefficients. We call (ap1 + a11 P + a21 P2), (ag2 +
a12P1 + a29Ps), (aps + a13P1 + agsPe) symbolic 2-plithogenic coefficients of the borders of the
equation, and by + b1 P, + ba P> constant symbolic 2-plithogenic border of the equation.

Remark 3.2.
(1) We call each equation of the form:
(ap + a1 Py + aaPo)x + (bo + b1 Py + baPo)y = co + 1 P1 + c2 P

the two-variable symbolic 2-plithogenic linear equation, where, ag, a1, as, bg, b1, b2, and
o, 1, C2 are real coeflicients.

(2) We call each equation of the form:
(a0 + a1 P + a2 Po)x + (ba + b1 Py + baPo)y + (co + c1 P1 + caP2)z = do + d1 Py + da P
the three-variable symbolic 2-plithogenic linear equation, where, ag, a1, as,bg, b1, ba,

o, 1, C2, and dy, dq, do are real coefficients.

Example 3.3.
(1) A+P)z+@B-Py+(1+P—P)z=5
(2) Pox + Piy+ (PL — P2)z = 2P + 2P,
B) A+P—P)x+ 4+ P —P)y=11+4P,

Definition 3.4. Solution of the symbolic 2-plithogenic linear equation,

(ap1 + a11P1 + a21 Pa)xy + (ao2 + a12P1 + agaPo)xa + (ap3 + a13 Py + aaPos)as + - - - + (aon +
ainP1 + a2, Po)xy, = bo + b1 P1 + bo Po
is finding the values of the variables zi,zs,zs3,...,x, that satisfies the equation, where

api, a1i, a2, 1 = 1,2,....,n are real coefficients.

Example 3.5. Consider the following the two-variable symbolic 2-plithogenic linear equation:

11 15
(1+P1—P2)$+(4+P1—P2)y:4+?131—?Pz

The solution of this equation is

1
r=24+ P + 2P, yZE—PQ.
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Definition 3.6. For the two variable symbolic 2-plithogenic linear equation
(ap + a1 Py + aaPa)x + (bg + b1 Py + baPo)y = co + c1 P1 + c2 P

the infinite number of solutions defined by

_ao+a1P1+a2P2x co+c1PL+coPs
bo + b1 Py + bo Py bo + b1 P + bo Py
where, ag, a1, as, by, b1, ba, cg, c1, o are real coefficients, by # 0,bg + b1 # 0 and by + by + ba £ 0

by given a value for one of the two variables, we obtain a value for the other variable.

Example 3.7. Consider the two variable symbolic 2-plithogenic linear equation

(1—|—P1—P2)$—|—(4—|—P1—Pg)y:1+P1—2P2.

1+P— P 1+ P 2P
y:— e — l"f‘ - - =
44+ P — P 44+ P — P
Then the set of solution is:

This implies that,

4+ P — P 44+ P — P
, 1 3 3 1 3 2
z.e.,S—{x,yEQ—SPR:y— <—4—20P1+20P2>x+ <4—20P1—5P2>}

By given any value for the variable z, we obtain a value of the variable y.

Definition 3.8. For the n-variable symbolic 2-plithogenic linear equation

(ap1 + a1 Pr + a21 Pa)xy + (ao2 + a12P1 + aga Po)xa + (ap3 + a13P1 + aaPos)as + - - - + (aon +
ainP1 + a2, Po)x, = bg + b1 P1 + bo Po

where ag;, a1, a0, © = 1,2, ...,n are real coefficients, the infinite number of solutions are the

unknown values x1, o, ...., T, that satisfies the equation.

Definition 3.9. A non-homogeneous system of n-variable symbolic 2-plithogenic linear equa-

tions is given by the form:

(agy + ajy Pr+ aby Po)at + (agy + ajp P+ asy Po)as + (agy + ajz Py + s Po)as + -+ + (ap, +
a%nPl + a%nPg)a;n = b(l) + b%Pl + b%PQ

(apy + afy Pi + a3 Pa)a1 + (afy + ajoPrL + a3 Po)xa + (ags + af3 Pi + a3z Pa)as + -+ + (ag, +
a%npl + a%nPQ)SUn = b% + b%Pl + b%PQ

(alt + ay Py + ay Po)zy + (af + afs Py + a3y Po)xg + (afy + a3 Py + aby Po)zs + -+ + (afl, +
al? Py + a3l Py)x, = b + 0" Py + by’ Py

where, agi,a{i,agi,bé,b{,bg are real coefficients, i1 = 1,2,....,n, j=1,2,...,m.

Definition 3.10. The solution of non-homogeneous system of n-variable symbolic 2-

plithogenic linear equations:
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(agy + a1 P1 + agy Po)ay + (agy + ajoPr + asy Po)xa + (agy + aj3Pr + aga Pa)as + - - + (ag,, +
al, P+ a3, Py)x, = b} + bl Py + biP,

(a3, + a2 Py + a3, P2)x1 + (ay + a9 P + a3 Po)xo + (ad3 + a2 Py + a3 Py)ws + - + (a3, +
a3, PL+ a3, Py)x, = b3+ biP + b3 P,

(afi + a1 Py + a5y Po)xy + (agy + a7 P1 + ajs Po)xo + (agh + a5 Py + abyPo)xs + - - - + (af), +
alt P1 + a3l Po)xy, = b + 0" Py + by Ps
where, aéi,a{i,agi,bj,bj,b% are real coefficients, 1 = 1,2,...,n, 7 = 1,2,...,m, is the values of

the variables z1, xo, x3, ..., x,, that satisfies the system of equations.

Remark 3.11. We distinguish three cases to solve the system given in Definition [3.10]
(1) The system is consistent, it has unique solution.

(2) The system is consistent, it has infinite number of solutions.

(3) The system is inconsistent, it has no solution.

4. Solving System of Symbolic 2-Plithogenic Linear Equations using Cramer’s Rule

Consider the non-homogeneous system of n symbolic 2-plithogenic linear equations with
n-variables:
(agy +a11 Py + agy o)y + (agy + aloP1 + ago Po)wa + (ags + arg Py + aggPa)as + -+ + (ag, +
al, P+ ad, Py)w, = b + bl P, + biP,
(agy + aiy P+ a3, Pa)a1 + (agy + aja P+ a3oPo)as + (ag + af3 Py + asPo)as + -+ + (ap, +
a%nPl + a%nPg)xn = b% + b%Pl + b%PQ

(agy + a1 Pr + a3 Po)xr + (agy + afo P + ago Po) e + (agy + afs P+ ajsPo)as + -+ + (ag, +
at, P1 + a3, Py)xy, = by + b} P1 + b3 P
Let AX = B be the matrix form of this system and let, A = det(A) = ag + a1 P1 + aaP>. We

distinguish the following cases:

(1) If ap#0, ap+a1 #0 and ap+ a1+ az # 0 then the system is consistent and the

system has unique solution given by the formula:

Ay,
A Y

T = i=1,2,3,...,n

where Ay, is the determinant of the matrix A where the ith column is replaced by the
column matrix B.
(2) If ap=0, or ag+a;1 =0 or ap+ a;+az =0. Then the system is inconsistent or

it have infinite number of solutions.
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Remark 4.1. Consider a system of 2 linear symbolic 2-plithogenic equations with 2 unknowns
x and y with
A =det(A) = ap + a1 Py + a2 Py
A, = det(Az) = af + a7 P + a3 Ps
Ay =det(Ay) = a + a{ Py + a3 P,
We distinguish the following cases:

(1) If ag#0, ap+a1 #0 and ag+ aj + az # 0 then the system is consistent and the

system has unique solution given by the formula:
A, Ay
TSA YT A
(2) If the determinants satisfies any one of the following conditions, then the system is
inconsistent and it has no solutions.
(i). ap = 0 and af, af are not all zero.

(ii). ap+ a1 =0 and af + af, af + a¥ are not all zero.
(iii). ap + a1 + a3 = 0 and af + af + a3, af + af + af are not all zero.

(3) In all other cases the system is consistent with infinite number of solutions.

Example 4.2. Consider the system of equations:

(2+P1+3P2)(E+(1—P1—Pg)y:5+P1+11P2
B+ 4P)x+ (1+ Py =7+ 3P, + 13Ps.

24+P+3P, 1-P —P.
The coefficient matrix is, A = TS ! 2.
3+4P 1+ P
24+P+3P, 1-P— P
3+4P, 1+ P

Here, ay # 0,a0 + a1 # 0 and ag 4+ a1 + a2 # 0, the system is consistent and its has unique

A = det(A) = = —1+7P +13P,

solution.
5+P+11P 1—-—P — P
A, = det(Ay) = ! 2 D02 - 0 14P + 45D,
74+ 3P+ 13P; 1+ P
24+P+3P 54+ P+ 11P
A, = det(A,) = Pl o l=-1+413P + 7P,
3+ 4P, 7+ 3P + 135,

So the solution of the given system is,

A, -2+ 14P, +45P,
YTA T T147P 1 13P, T

Ay —1+13P+ 7P,
V=A Ty tasp, T

P. Prabakaran and Florentin Smarandache, Solution of System of Symbolic 2-Plithogenic
Linear Equations using Cramer’s Rule



Neutrosophic Sets and Systems, Vol. 59, 2023 312 D

Example 4.3. Consider the system of equations:

(1+P1+P2)37+(3—P1+2P2)y:5+3P1+5P2
Pix+ (Pl + Pg)y =4P + Ps.

1+P+P, 3—P +2P
The coefficient matrix is,Az( RN 1+ 2).

Py P+ P

1+P +P, 3—P +2P
A =det(a)=| T LR o4 op 4 2P,
Py P+ P
5+3P +5P 3— P +2P
A = det(Ay) = |° T TR LA 0 0P 46
4P + P P+ P
1+Pi+P, 5+3P +5P
A=det(A) = | TR 2TESRASR L o0p 4 op,
P 4P + Py

Hence, by condition (3) of Remark the system is consistent with infinite number of solutions
and the solutions are given by:

For all z = ag + a1 P, + as Py € 2 — SPr with ag + a1 + as = 3,

1+P+ P 54+ 3P+ 5P,
= — - €T - - @@=
3— P +2P 3— P +2P,

That is, for all x = ag + a1 P + ao P> € 2 — SPr with ag + a1 + as = 3,

1 2 1 5 7 3
=|—--—-= —P -+ -P—-P
Y < 3 31+42>$+<3+31 42>

Example 4.4. Consider the system of equations:

2+ P +3R)z+ 1+ P+ PR)y=5+P +112,
(442P +6P)x+ (24 2P +2P)y = 10+ 2P, + 22P,

2+ P+ 3P 1+P + P
The coefficient matrix is,Az( R EREREE )

4+2P1+6P2 2+2P1—|—2P2

24+ P +3 1+P+ P

A =det(A) =
4+2P1+6P2 2+2P1—|—2P2

=0+4+0P +0P

Also,

5+ P 11 P 1+P + P
A, =det(Ay) = | 2R AFRERA L 0p 4op,
104+ 2P +22P, 24 2P +2P

94+ P, +3P, 5+ P +11P
A, = det(A,) = RN TR oL 0p ton,
A4 2P, + 6P, 10+ 2P, +22P,
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Hence, by condition (3) of Remark [4.1]the system is consistent with infinite number of solutions
and the solutions are given by:

24+ P+ 3P 5+ P 11P
S:{x,yeg_ng:y:_<+1+2>x <+1+2>}

1+P+ P 1+P+ P

1 1 8
1.€, S:{x,yEQ—SPR:y: (—2—|—2P1—2P2)1'+<5—2P1+3P2>}

Example 4.5. Consider the system of equations:

(1+P1+P2){E—|—(1—P1+P2)y:1—|—P1
(2—1—2P1+2P2)$—|—(2—2P1+2P2)y=3—|—P2

1+ P+ P, 1-P+ P,
The coefficient matrix is, A = R Rk )
242P +2P, 2-—-2P+2P

1+P +P, 1-P +P
A = det(A) = P P2 =04 0P 40P,
242P +2P, 2-2P +2P
Also,
1+P, 1-P+P
Ay = det(Ay) = | T URRE N PSS
3+P 2—-2P +2P
1+P+P 1+P
A, = det(A,) = P "'—1-3p 2P,
242P, +2P, 3+ P

Here, ap = 0 and af # 0, hence the system is inconsistent.

Remark 4.6. Consider a system of 3 linear symbolic 2-plithogenic equations with 3 unknowns

x,y and z with

A =det(A) = ap + a1 Py + a2 Py

Ay = det(Az) = af + a7 P + a3 Ps
Ay =det(Ay) = af + a{ Py + a3 P,
A, =det(A,) = af+aiP + a3

We distinguish the following cases:
(1) If ag#0, ap+a1 #0 and ag+ aj + az # 0 then the system is consistent and the

system has unique solution given by the formula:

A, A B
S U Al N N

Y

(2) If the determinants satisfies any one of the following conditions, then the system is
inconsistent and it has no solutions.
(i). ap =0 and af, af, af are not all zero.
(ii). ap + a1 =0 and af + af,af + a¥,af + af are not all zero.

(iii). agp + a1 + a3 = 0 and af + af + af, af + a¥ + a3, af + af + a5 are not all zero.
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(3) FA=0+0P+0P, Ay =0+0P+02, Ay=0+0P+0P;and A, =0+0P; +0P;
then by solving two equations of the system we will obtain the equation 0 = a. If @ = 0,

then the system is consistent with infinite number of solutions and if o # 0, then the

system is inconsistent.

Example 4.7. Consider the system of equations:
(1+P1).I'—|—<1—P1)3/—|—(1—|—P1 —PQ)Z: 1+5P — Py
1+ P+ (-1+Pi+P)y+ 2+ P1)z=1+4P, + 3P,
(1 - P+ PQ)CE + (*1 + Pg)y + (1 + Pl)z =14+ P +25.

1+ P 1-P 1+P - P
The coefficient matrix is, A = 1+ P -1+P+ 5 2+ P
1-P+ P 1+ P 1+ P
1+ P 1-P 1+P - P
A =det(A) = 1+ P —1+P+ D5 24+ P =242P - P
1-P+ P -1+ P 1+ P
14+5P — P 1-P 1+P— P
A;E:det(Ax): 1+4P, +3P, —-14+P+ P 2+ P =24+6P — 2P,
1+P1—|—2P2 —1+P2 1—|—P1

1+ P 1+5P—-P, 1+P — P
Ay =det(Ay) =] 1+ P 1+4P + 3P, 2+ P | =3P
1-P+P 14+ P +2P 14+ P

1+ P 1-P, 14+5P — P
AZZdet(Az): 1+ P —14+P+P 14+4P +3P|=4P — P,
1-P+ P -1+ P 1+ P +2P

Here, ag #0, ag+a1 #0, & ag+ ay + a2 # 0. Hence, the system is consistent with unique

solution given by:
Ay  2+6P 2P

v A 242P — Py T
A 3P,
y:J:—ZZP%
A 242P — P
A 4P, — P,
5= z 1 2 Pl-

AT 242P - P,
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Example 4.8. Consider the system of equations:
1+P)r+B-Ply+(1+P—P)z=5
Py + Piy+ (Py+ P2)z = 2P, + 2P
2+P—P)x+(4+3P —P)y+ (5+2P)z=11+4P.

1+ P 3— P 1+P— P
The coefficient matrix is, A = Py P P+ P
24P — P, 443P — P 5425
1+ P 3— P 1+P— P
A= det(A) = Py P P+ P =0-2P — 10~

24P —P 4+43P— P 5+2P

5 3— P 1+P— P
A, = det(Ax) = 2P + 2P P P+ B =0—-2P —10P,
11+4P, 4+ 3P — P 5+ 2P,

14+ P 5 1+P— P
Ay:det(Ay)z P2 2P1+2P2 P1+P2 :0_2P1_10P2
2+P1_P2 11—|—4P1 5+2P2

1+ P 3—P 5
A, =det(A,) = Py P 2P + 2P| =0—2P; — 10P
2+P—P 443P—P+2 11+4+4P
Here, ap =0, af =0, aj =0 & af = 0. Hence, the system is consistent with infinite number
of solutions and the solutions are given by:
1 3 3

13
Sz{m,y,zEQ—SPR:a:: <—2+2P1+5P2>z+<2—2P1—5P2>,

3 1 5 1 1 5
=(-—zP— P ——+-P+ ;P
(2 511 22)Z+< 2+21+22>,Z}

Example 4.9. Consider the system of equations:
1+P)z+(1-P)y+(1+P—P)z=2+P,

(242P)z+ (2—-2P)y+ (24 2P, —2P)z =4+ 2P,

B34+3P)z+ (3—-3P)y+ (3+3P —3P)z=6+3P;
Here, A =0+0P1 +0P, Ay =04+0P +0P, Ay=0+0P+0F, A,=0+0P,+0F;. By
solving first two equations of the given system we will get 0 = 0. Hence the system consistent
with infinite number of solutions. In this case the system is reduced to a single equation. To
solve we can assign arbitrary values to any two variables and can determine the value of the

third variable.
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Example 4.10. Consider the system of equations:
1+P)z+(1-P)y+(1+P—P)z=2+P,
242P)z+ (2-2P)y+ (24+2P, —2P)z=1—- P,
B3+3P )z +(3—-3P)y+ (3+3PL—3P)z=3+ P,
Here, A=0+0P + 0P, Ay =0+0P +0P, Ay=0+0P +0R, A, =0+0P; +0Fs.
By solving first two equations of the given system we will get 0 = 3 + 2P, + P». Hence the

system inconsistent and it has no solution.

Other than the above mentioned cases there are some special cases in which the system of

linear symbolic 2-plithogenic equations is inconsistent.

Remark 4.11. If all coefficients of a the system of n linear symbolic 2-plithogenic equations
with n variables are non invertible the the system is inconsistent. For example,
1-Pi+P)x+(2+2P —4P)y+(1—-P)z=3+ P,
(1= Py)z+ Py + paz = 3P
2—-P—-1-P)e+Py+(1—-—P)z2=24+P+ P

5. System of Homogeneous Symbolic 2-Plithogenic Linear Equations

Definition 5.1. Consider the homogeneous system of n-variable symbolic 2-plithogenic linear
equations:
(agy + aiy Py + a3y Po)ar + (agy + ajp Py + aby Po)wa + (agg + ajzPr + ags Po)xs + ... + (ag, +
al, Pi+al P)x, =0+ 0P + 0P,
(a1 + afy Py + a3, Po)wy + (agy + afoPr + a3y Po)wa + (afy + aty Py + a3a Pa)as + ..+ (ag, +
a3, P1 + a3, Ps)xy, =0+ 0P + 0P,

(afy + aty Py + aby Po)x + (afy + als P14 a5y Po)xo + (afs + afs Py + abs Po)xs + ... + (af, +
al, Py +al, Py)x, =0+ 0P + 0P,

Remark 5.2. Let AX = B be the coefficient matrix of this system and let A = det(A) =
ao + a1 Py + ao P>. We distinguish the following cases:
(1) If ag#0 and ap+a1 #0 and ag+ a; + az # 0 then the system is consistent
and the system has unique solution x; =0, i=1,2,...,n.
(2) If ap=0 or ap+a; =0 or ag+a;+ az =0, then the system is consistent with

infinite number of solutions.

Example 5.3. Consider the system of equations:
(2+P1—|—3P2)$—|-<1—P1 —Pg)y:()
(3+4Py)x+ (1 + P1)y = 0.
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2+ P +3P, 1—-P—P,
The coefficient matrix is, A = R ! 2.
3+ 4P, 1+ P

2+ P +3P, 1—P — P,
A= det(A) = |7 TR LT 147 4 18P
3+ 4P2 1+ P1
Here, ag # 0,a9 + a1 # 0 and ag + a1 + a2 # 0, the system is consistent with unique solution.

0 1-P—P

A, = det(Ay) = R
0 14+ P
24+ P +3P, 0

A, =det(A) =|" T Yy

3+4P 0

So the solution of the given system is,

Ar _ 0 _
A —147P +13P,

€Tr =

0,

_ Ay 0 _ 0
Y=°A T 157 +13P,

Example 5.4. Consider the system of equations:
(1+P)z+B—-P)y+(2+P)z=0
P+ Py + (Pl — %PQ)Z =0
2+P—P)x+(4+43P — P)y+ (34+4P, +2P)z=0.

14+ P 3— P 2+ P
The coefficient matrix is, A = Py P P - %Pz
24P — P, 443PL— P, 3+4+4P; +2P
14+ P 3— P 2+ P
A =det(A) = P P P — %PQ =0+40P + 8P,

24+ P —P, 443PL— P, 3+4+4P; +2P,
Here, ag = 0, the system is consistent with infinite number of solutions and the solutions are

given by:

1 1 1 1 1
= 2—SPr:zx=—=4+=P, =(—=—-—=P— =P
S {:U,y,ze SPr:x < 2+2 1>z, Y ( 5 3175 2)2, z}

6. Conclusion

In this article, the solutions of symbolic 2-plithogenic linear equations are studied using
Cramer’s rule. The conditions are given for a system of symbolic 2-plithogenic linear equa-
tions to be consistent with unique solution, consistent with infinite solutions, and inconsitent.
Further, many examples are given for the case of system of two symbolic 2-plithogenic linear

equations with two variables and for the case of system of three symbolic 2-plithogenic linear
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equations with three variables.
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Abstract. In this article, the adjoint of symbolic 2-plithogenic square matrices are defined and the inverse of
symbolic 2-plithogenic square matrices are studied in terms of symbolic 2-plithogenic determinant and symbolic
2-plithogenic adjoint. We have introduced the concept of symbolic 2-plithogenic characteristic polynomial of
symbolic 2-plithogenic square matrices and the symbolic 2-plithogenic version of Cayley-Hamilton theorem.

Also, provided enough examples to enhance understanding.

Keywords: Symbolic 2-plithogenic matrix; symbolic 2-plithogenic adjoint; symbolic 2-plithogenic determi-

nant; symbolic 2-plithogenic inverse.

1. Introduction

The concept of refined neutrosophic structure was studied by many authors in [1-4]. Sym-
bolic plithogenic algebraic structures are introduced by Smarandache, that are very similar
to refined neutrosophic structures with some differences in the definition of the multiplication

operation [15].

In [12], the algebraic properties of symbolic 2-plithogenic rings generated from the fusion of
symbolic plithogenic sets with algebraic rings are studied. In [8], some more algebraic proper-

ties of symbolic 2-plithogenic rings are studied. Further, Taffach [17,(18] studied the concepts
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of symbolic 2-plithogenic vector spaces and modules.

Recently, in [7], the concept of symbolic 2-plithogenic matrices with symbolic 2-plithogenic
entries, determinants, eigen values and vectors, exponents, and diagonalization are studied.
Hamiyet Merkepci et.al [13], studied the the symbolic 2-plithogenic number theory and inte-
gers. Ahmad Khaldi et.al [11], studied the different types of algebraic symbolic 2-plithogenic

equations and its solutions.

As a continuation of the previous study of symbolic 2-plithogenic matrices, this work dis-
cusses the symbolic 2-plithogenic adjoint, where the inverse of symbolic 2-plithogenic matri-
ces will be defined in terms of the symbolic 2-plithogenic adjoint. We present the symbolic
2-plithogenic characteristic polynomials and the symbolic 2-plithogenic version of the Cayley-

Hamilton theorem. Also, we illustrate many examples to clarify the validity of our work.

2. Preliminaries

Definition 2.1. [12] Let R be a ring, the symbolic 2-plithogenic ring is defined as follows:
2 SPp = {ao +a1Pi +asPs;a; € R, P} = P, Py % Py = Prga(12) = PQ}

Smarandache has defined algebraic operations on 2 — S Pg as follows:

Addition:

[ag + a1 P1 + aa Py] + [bo + b1 P1 + baPo] = (ag + bo) + (a1 + b1)P1 + (a2 + b2) P>

Multiplication:

[ao + a1 Py + aaPy).[bo + b1 P + ba Po] = agbg + agby Py + agba Py + a1bg P2 + a1ba Py Py + asbo Py +

agb1 P1 Py + agbo P3 + ai1by Py Py = (agbg) + (aoby + a1bo + a1b1) Py + (agba + a1ba + azbo + azby +

agba) Py.

It is clear that 2 — SPp is a ring. If R is a field, then 2 — S Ppg is called a symbolic 2-plithogenic

field. Also, if R is commutative, then 2 — SPg is commutative, and if R has a unity (1), than

2 — SPg has the same unity (1).

Theorem 2.2. [12] Let 2 — SPgr be a 2-plithogenic symbolic ring, with unity (1). Let X =

xo + 1P + 2o Py be an arbitrary element, then:

(1) X is invertible if and only if xg, o + 1, To + x1 + 2 are invertible.
(2) X1 = xal + [(SL‘O + :L‘l)_l — l‘al]Pl + [(.To +x1 + 132)_1 — (SCQ + l‘l)_l]PQ

Definition 2.3. [7] A symbolic 2-plithogenic real square matrix is a matrix with symbolic

2-plithogenic real entries.

Theorem 2.4. |7/ Let S = Sy + S1Py + S2 P2 be a symbolic 2-plithogenic real square matriz,
then
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(1) S s invertible if and only if Sy, So + S1, S0 + S1 + So are invertible.
(2) If S is invertible then

S =871+ [(So+S1) ™t — Sy P+ [(So+ S1 +S2) ™t — (S0 + 51) 7]
(3) S™ =S5+ [(So + S1)™ — S§'|P1 + [(So + S1 + S2)™ — (So + S1)™] for m € N.
Definition 2.5. [7] Let L = Lo + L1 P, + LoPy € 2 — SP)yy, we define:
detL = det(Lg) + [det(Lo + L1) — detLo) Py + [det(Lo + L1 + L) — det(Lo + L1)] Pa.
3. Adjoint of Symbolic 2-Plithogenic Square Matrices
We begin this section with the following definition.

Definition 3.1. Let L = Lo+ L1 P, 4+ La P> be a symbolic 2-plithogenic square matrix with

real entries. The adjoint matrix of L is defined as
adjL = adjLy + [adj(Lo + L1) — adjLo| Py + [adj(Lo + L1 + La) — adj(Lo + L1)] Pe.

Example 3.2. Consider the following symbolic 2-plithogenic 2 x 2 matrix:

I - 24+ P +3P, 1—-P—P
3+4P1 1—|—P2

L——21 L+L——30 dL+L+L——6_1

, an )
° 3 1 ‘ ' 71 0 ! ? 7 2
Then,

) 1 -1 . 1 0 . 2 1
adjLy = P , adj(Lo+ Ly) = S and adj(Lo+ L1 + Lo) = 6/

Therefore,

Here,

adjL. = adjLo+ [adj(Lo+ L1) — adjLo] P + [adj(Lo + L1 + L2) — adj(Lo + L1)| P

B 1+ P —1+P+ 5
—3—4P, 2+ P +3P

Example 3.3. Consider the following symbolic 2-plithogenic 3 x 3 matrix:

3+P-P 1+P 5
L= P+ P 3P 4P,
—14+2P—-P 5+2P 7T+P+10R
Here,
-3 1 5 -2 2 5 -3 2
Lo=10 0 0|, Lo+L1=1]1-1 3 0 and Lo+Li+La=| 0 3 4|,
-1 5 7 -1 5 8 0 7 18
Then,
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0 18 O 24 9 —15
adjLo=10 —-16 0], adj(Lo+ L) = 8 21 -5 and
0 14 0 -8 12 4
26 —1 -7
adj(Lo+ L1+ La)= | 0 —54 12
0 21 9

Therefore,

adjL = adjLo+ [adj(Lo + L1) — adjLo| Py + [adj(Lo + L1 + La) — adj(Lo + L1)] P»
24P + 2P, 18—-9P; —10P, —15P; 4+ 8P,
= 8P —8P, —16+4+5P +33P, —-5P+17h
—8P1+8Py, 14-2P1+9FP —4P, +13P

Using the definition of adjoint of symbolic 2-plithogenic matrix we can modify the Theorem

2.4 as follows:

Theorem 3.4. Let L = Ly + L1 Py + Lo P> be a symbolic 2-plithogenic square matriz, then L
is invertible if and only if detLo # 0,det(Lo + L1) # 0 and det(Lo + L1 + La) # 0 and
1
detL
Proof. By Theorem L is invertible if and only if detLy # 0, det(Lo+ L1) # 0 and
det(Lo + L1 + Lo) # 0.

(adjL).

1

(detLo + [det(Lo + L1) — det(Lo)]) Py +

[det(Lo 4 L1 + La) — det(Lo + Ll)]Pz)

(adng + [adj(Lo + Ll) — adjLO]P1 + [adj(Lo + L+ Lz) — adj(L() + Ll)]PQ)

. adj Ly adj(Lo + Ll) B adj Lg p adj(Lo + L1+ LQ) B adj(Lg + Ll)
detLy det(Lo + L) det Ly det(Lo+ L1 + Lo) det(Lo + L)

= Ly'+[(Lo+ L)' =Ly | Pi+ [(Lo+ L1 + Lo) ' — (Lo + L1) '] P»
= L7}

Hence the result holds by Theorem 0

Example 3.5. Consider the symbolic 2-plithogenic 2 x 2 matrix

I 1+P+P —-1+P
1-P 1

| 7
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1 1-P
Here, det. = 2 + P,, and adjL = ! .
*1+P2 1+P1+P2

Hence,

_ 1 )
Lt = detL(adjL)

1 1 1-P
2+ \-1+P 1+P+P

<1 1 > 1 1-P
- (=-Zp,
2 6 —1+P 1+P+ P

1 IP 1 1P
( 2 6 2 2 2 1)
1 1 1 1 1

Example 3.6. Consider the symbolic 2-plithogenic 3 x 3 matrix

1+ P 1-P 1+ P — P,
L= 1+ P —-1+P+ P 24+ P
1-P+ P -1+ 5 1+P

Here, detL. =2+ 2P, — P5, and

142P — P, —2+42P 3—3P — P,

adj(L): 1-3P+P 4P — P —-1-3P
-P 2—-2P, —2+42P+2P
1
Lt = djL
detL(a iL)
1 1+2P— P, —-2+42P 3—-3P — P,
= m 1-3P+P 4P — P, —-1-3P
—-P 2—-2P, —2+42P+2P
1 1 1 14+2P — P, —2+2P 3—3P — P,
- (2—4P1+12P2> 1—3P1+P2 4P1—P2 —1—3P1
—P 2—-2P, —-2+4+2P +2P
s+iP - 5P ~1+ Py 5_3p-1ip
= %—Pl—i-%Pg P1+%P2 —%—%Pl—%Pg

—ip-ip 1-ip-lp, —1+P+2iP

Remark 3.7. If X is a invertible symbolic 2-plithogenic square matrix and X ~! is its inverse,
then adj X = detX - X1,

Theorem 3.8. Let X = A+ BP1+CPy andY = M+ NP1+ SP, be two symbolic 2-plithogenic

invertible square matrices. Then XY is also invertible and (XY)™ ! =Y -1X~1

P. Prabakaran and S. Kalaiselvan, On Some Algebraic Properties of Symbolic 2-Plithogenic
Square Matrices



Neutrosophic Sets and Systems, Vol. 59, 2023 324 D

Proof. By Theorem if X is invertible then

det(A) # 0, det(A + B) # 0 and det(A+ B+ C) # 0.
Similarly, if Y is invertible then

detM # 0, det(M + N) # 0 and det(M + N + S) # 0.
This implies that,

det(AM) = detA detM # 0
det[(A+ B)(M + N)] = det(A+ B) det(M + N) # 0
det[(A+ B+ C)(M + N+ S5)] =det(A+ B+ C) det(M + N + S) # 0.

Now,
det(XY) = det(AM) + [det((A+ B)(M + N))]P, + [det((A+ B+ C)(M + N + S))| P, # 0
and hence XY is invertible. Also by associativity of matrix multiplication, we have
(XYY X H=XYY HX 1= XX =U,up
YIXHXY) =Y X X)Y =YY = Upxn.

Thus,(MN)t = N"1M~t 4

Theorem 3.9. Let X and Y be two m x m symbolic 2-plithogenic invertible matrices. Then
the following properties holds.

(1) det(adjX) = (detX)™ L.
(2) adj(XY) = adjX adjY.
(3) adj(X*) = (adj
(4) adj(XT) = (adjX)".
(5) adj(adjX) = (detX)™2X

adj X))k for any positive integer k.

Proof. We can prove this results based on the properties adjoint of classical matrices.

4. Characteristic Polynomial of Symbolic 2-Plithogenic Square Matrices

We begin this section with the following definition.

Definition 4.1. Let L = Lo+ L1 P, + Lo P> be a symbolic 2-plithogenic n X n square matrix

with real entries. The characteristic polynomial of L is defined as

P(A) = a(A) + [B(A) —aN)] P+ [v(A) = B(N)] P2
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where,

a(N) = det(Lo— AUpxn)
B(N) = det(Lo+ L1 — AUpxn) — det(Lo — NUpxn)
Y(A) = det(Lo+ L1 + Lo — AUpxn) — det(Lo + L1 — AUpxn)-

Example 4.2. Consider the following symbolic 2-plithogenic 2 x 2 matrix:

I— 24+ P +3P 1—-P—P
3+4P; 1+ P

L 21L+L 3 0 d Lo+ L1+ L 6 -1
f s = an = .
0 31 0 1 71 0 1 2 7 9

2\ 1
a(N) = det(Lo — ANUpxpn) = =\ -3)\-1.
() (0 x) ( 3 1_)\>

B(A) = det(Lo+ L1 — AUpxn) — det(Lo — AUpxn)

3-X 0
= =A% — 4\ +3.
7T 1=\

Y(A) = det(Lo+ L1+ Lo — NUpxn) — det(Lo + L1 — NUpxn)

6-X\ —1
= = A2 — 8\ —19.
72—\

Hence the characteristic polynomial of L is

with

Here,

dN) = A =3A =14+ [N —4X+3) = (A2 =3X = D]P + [(A\2 = 8X — 19) — (A% — 4\ + 3)| %
= M =3\—1+(-A+4)P + (—4\ + 16) P,.

Example 4.3. Consider the symbolic 2-plithogenic 3 x 3 matrix

1+ P 1-P 1+P - P
L= 1+ —-1+P+ P 2+ P
1-P+ P -1+ P 1+ P,
with
1 1 1 2 2 01
Lo=11 -1 2|,Lo+Li=|1 0 3|, and Lo+L1+Ls=|2 1 3
1 -1 1 0 -1 2 1 0 2
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Here,
1-x 1 1
a(\) = det(Lo—MNnxn)=| 1 —1-X 2 | ==X+ +1+2
1 -1 1-A

B(A) = det(Lo+ L1 — AUpxn) — det(Lo — AUpxy)

2-X 0 2

= 1 =X 3

0 -1 2—2A

= N 4+4N -7\ +4.
Y(\) = det(Lo+ Ly + Ly — NUpnxp) — det(Lo + L1 — AUpxn)

2-X 0 1
= 2 1-X 3

1 0 2-X
= A 4+5\ TN+ 3.

Hence the characteristic polynomial of L is
d(N) = N AEANEAF2H [N AN —TA+4) — (=N N+ A+ 2)]P
F(=N X2 = TA+3) — (=X + 402 —TA+4)| P,
= N HEXN A2+ BN =8N+ 2P+ (N - 1P,

Theorem 4.4 (Symbolic 2-plithogenic Cayely-Hamilton Theorem). Every symbolic

2-plithogenic square matriz satisfies its characteristic polynomial.

Proof. We can prove this result based on the Cayely-Hamilton theorem for classical matrices.

O

Example 4.5. Consider the symbolic 2-plithogenic 2 x 2 matrix given in Example

I— 1+P+P —-14+P
1-P 1

The characteristic polynomial of L is ¢(A) = A% — 3\ — 1+ (—=A +4)P; + (—4\ + 16) P,. This
implies that,

¢(L) = L*>—3L—1+4 (—L+4)P;+ (4L + 16)Ps.
. —P+ 115 —5P, " P - 3P Py n —8P, 4P,
TP, +28Py, 3P, —TP, —7P 3P, — Py —28P; 8P,

(oo
oo
Hence, ¢(L) = 0.
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Remark 4.6. If L is a invertible symbolic 2-plithogenic matrix, then using Cayely-Hamilton

theorem we can compute the inverse of L. See the following example.

Example 4.7. Consider the symbolic 2-plithogenic 2 x 2 matrix
. (1+P1+P2 —1+P1>

1- P, 1
with
Lo = (1 _1>,L0+L1: (2 0), and Lo+ Ly + Ly = (3 0).
11 11 0 1
Here,
a(N) = det(Lo— AUpxyp) = <1IA 1__1A> =222\ +2.

B(A) = det(Lo+ L1 — AUpnxn) — det(Lo — AUpxn)

2-\ 0
= =\ —3)\+2.
1 1-2)

’)/(/\) = det(Lo + Ly + Ly — AUan) — det(Lo + L — )\Uan)

3-2 0
= =\ — 4\ +3.
0 1-2X

Hence the characteristic polynomial of L is

p(A) = aA)+[BA) —aN)] P+ [y(A) = BO)] P,
= M 20X+ 2-AP 4+ (-A+1)P,.

Now, by Cayely-Hamilton theorem we have ¢(\) = 0, we have,

L*—2L+2—LP +(-L+1)P, =0
(24 P)LL ™' = —L? + 2L + LP, + LP;.

This implies that,

B 1
-l — 2+P2[_L+(2+P1+P2)Unxn]

1 1 1- P
2+P2 —1—|—P2 1—|—P1—|—P2

<1 1 > 1 1-P,
2 6 —14+P 1+P+ P

1 1 1 1
_ <2_6P2 2—2P1>
1 1 1 1
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5. Conclusion

In this work, the adjoint of symbolic 2-plithogenic square matrices was defined and the
inverse of invertible symbolic 2-plithogenic square matrices was studied in terms of symbolic
2-plithogenic adjoint and symbolic 2-plithogenic determinant. Also, we have presented the
concept of the characteristic polynomial of symbolic 2-plithogenic matrices and we have proved
the symbolic 2-plithogenic version of of Cayley-Hamilton theorem with many examples that
clarify the validity of this work.

Funding: This research received no external funding.
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Abstract: In this work, we present a generalized isomorphism between field of symbolic n-
plithogenic set and R™*?, use it to study the most general form of symbolic plithogenic random
variables and study its probabilistic properties including expectation, variance and moments
generating function. We also use this isomorphism to study symbolic n-plithogenic probability
density function and present many theorems related to it. As an application to this new theory, we
study exponential distribution in its symbolic n-plithogenic form and derive its properties, like
expected value and variance. Many examples were presented and solved successfully. This paper
closes the grand gap in-plithogenic probability theory and paves the way to study many related
theories like stochastic modeling and its applications.

Keywords: Plithogenic; Exponential Distribution; Expected Value; Variance; Isomorphism.

1. Introduction

Professor Florentin Smarandache presented a new set of numbers called neutrosophic numbers
similar to hypercomplex numbers presented by Kantor, L.L. and Solodovnikov, A.S. [1] where this
new set is defined by R(I) ={a+bl;I*=1,a,b € R} [2]-[6]. This theory built new algebraic
structures and new geometry. Hence, new theories in algebra, real analysis, probability, etc.

In neutrosophic probability theory, or as it is called by researchers “literal neutrosophic probability
theory”, many continuous probability distributions have been studied well, estimation theory was
rebuilt under indeterminacy and many methods of estimation were well-defined including:
maximum likelihood, moments and bayes. Researchers developed strong theories and many
applications in real-life. From our point of view, the most important applications of this theory are in
stochastic processes and stochastic modelling. [7]-[17].

Another extension to this set was then developed by professor Smarandache to what is known by
plithogenic sets and it is said to be the most general form of a set until this moment. Plithogenic set
is defined by R(P,P,,..,B) ={ag+a;Pi + ayPy + -+ ayPy; Ao, ay, ..., ay € R}; P7 = P, PP, =
PiP; = Ppaxqjyand i =1,2,..,n,j = 1,2,..,,n. This last set was studied in many fields of mathematics
but with n = 2. [18]-[34].

This paper can be considered a generalization of our work in [22] where we first presented the
symbolic 2 plithogenic probability theory and studied its properties. This paper will close the gap in
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symbolic n-plithogenic probability theory and pave the way for many researches related to it
including statistical inference, stochastic modelling, sampling theory, queueing theory, distributions
theory, stable distributions, reliability theory, etc.

2. Preliminaries
Definition 2.1

Let R(I) = {a + bI; I* = I}, we call R(I) the neutrosophic field of reals.
Definition 2.2

Set of symbolic n-plithogenic real numbers is defined as follows:
R(P) = R(P,,P,, ..., B) ={ayg + a, P, + a,P, + -+ a,,B;; ay, ay, ..., a, € R}
Where:
P? =P, PP = PP, = Praxiijy; i = 1,2, .,n,j =1,2,..,n
Definition 2.3
Symbolic 2 plithogenic random variable is defined as follows:
Xop: Qop > R(Py, Pp); Qpp = Qo X Q1 (Py) X Q,(P2);

Xop = Xo + X, P, + X,P,; P2 = P, P} = P,,P,P, = P,P, = P,

Where random variables X, X;, X, are classical random variables defined on €, Q,, Q, respectively.

3. Symbolic n-plithogenic random variables

Definition 3.1

Let R(P) be the symbolic n-plithogenic set of reals, we define B isomorphism and its inverse B~*
between R(P) and R™*! as follows:
B:R(P) » R™;
B(ay, + a,P; + a,P, + -+ a,P,) = (ag, ay + ay, ...,ay + a; + -+ a,)
B~ LR 5 R(P);
B~ (ag, ay, ..., 0y) = ag + (a; — ap)Py + (a, — a))P, + - + (a, — a,,)P,
Theorem 3.1
Isomorphism presented in definition 3.1 is an algebraic isomorphism.
Proof
Let ag + a, P, + a,P, + -+ a, B, by + b1 Py + b,P, +---+ b, P, € R(P).
B(a, + a;P; + ayP, + - + a,P, + by + b;P; + b,P, + -+ b,P,)
= B([ay + bo] + [a; + b,]P;+.. +[a, + b,]P,)
= (ag + bg,ag + by + a; + by,...,ap+ by +a; + by + - +a, +b,)
= (ag ag + ay, ., a9 + ay + -+ a,) + (b, by + by, .., by + by + -+ b,)
= B(ay + a;P; + a,P, + -+ a,P,) + B(by + byP; + b,P, + -+ b,P,).
We also have:
B([ay + a;P; + ayP, + -+ a,P,] - [by + by Py + byP, + -+ b,P,])
= B(ayby + [agh; + a;b; + a;by|P; + [agh, + a;b, + ayb, + ayby + ayb, Py + -
+ [agh, + a;b, + - + a,b, + a,b,_; + ayb,_, + -+ a,by|P,)
= (aobo,aobO + aygby + a;by + a,by, agby + ayb, + a1by + a;by + agb, + a;b,
+ ayb, + a,by + ayby, ..., a9by + agby + a;by + a1by + ayb,, + a1b, + -+ a,b,
+ ayb,_q + ayb,_, + -+ + a,by)
= B(ay + a,P, + ay,P, + -+ a,P,)B(by + byP; + b,P, + -+ b,P,).
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Also, B is correspondence one-to-one because Ker(B) = {0} and for every (ao, a,...,a,) € R**!
exists aq + (a; —ag)P; + (a, —a)P, + -+ (a, —ay,_1)P, € R(P) that satisfies B(ay+ (a; —
ag)P, + (a; — a)P, + -+ (a, — a,_1)B) = (ag, a4, ..., a,) € R™?* so B is an algebraic isomorphism.
Definition 3.2

We say that ay + a,P; + ayP; + -+ a,P,, =p by + by Py + byP; + .-+ b, P, if ay = by, ay + a; =
by + by,..,ap +a; +--+a, =2by+by+--+b,.

Theorem 3.2

Relation defined in definition 3.2 is a partial order relation.

Proof

Straightforward.

Definition 3.3
Symbolic n-plithogenic random variable is defined by:
Xp:Qp = R(P); Qp = Qp X Qy(Py) X Q3(P;) ... X O (B);

Xp = Xo + X1 Py + XoPy + -+ XpPy; P? = P, PP, = PP, = Proayiijyii = 1,2, j = 1,2,.,m
Where X,, X, X5, ..., X, are classical random variables defined on g, Q4,Q,, ..., Q, respectively.
Theorem 3.3
Let X, be a symbolic n-plithogenic random variable then the following equations hold:

1. EXp) = E(Xp) + Xiz1 EX)P;.

2. Var(Xy) + Xy [Var(Xio X;) — Var (X2t x;)|P..

3. 0(Xo) + Xi[o ()0 X;) — o(Z70 X)) P

Proof

Without loss of generality, we can prove the theorem assuming that X,, is a discrete random variable.
1. EXp) = pr xpf (xp) =pr(x0 + 3Py 3Py + o+ xny B)f (0 + X1 Py + X, Py o+ X By)

The isomorphic expectation of last equation is:

B[E(Xp)] =B Z(XO +X1P1 +x2P2 + "‘+ann)f(x0 +x1P1 +x2P2 + "'+ann)

xp

= ZB[(XO + x1P1 + xzpz + -+ ann)f(xo + xlpl + xzpz + -+ ann)]

xp

D xf G0, ) o+ x)fGot ), D (ot b x)f G0+ 1

X0 Xo+Xx1 Xo+x1++xn

—+

ot 1) | = (EXo), EXo + X1), oo, EXo + Xy + -+ + X))

(E(Xo), E(Xo) + E(Xy), .., E(Xo) + E(Xy) + -+ E(X,)

Taking B~1:

E(Xp) = B"HE(Xo), E(Xo) + E(Xy), ., E(Xo) + E(Xy) + -+ + E(Xy))
= E(Xo) + [E(Xo) + E(X1) - E(Xo)]P1 +
+[EXo) + E(Xy) + -+ E(Xp) —E(Xo) —E(Xy) — = E(Xn_1)]P,
=EXy) + EX))P, + -+ E(X,,)P,
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2. E(Xg) = E(XO +X1P1 + .- +XnPn)2 = pr(xo + xlpl + -+ ann)Zf(xO + x1P1 + -+ ann)

Taking B:

B[E(Xg)] =B Z(.xo + x1P1 + .- +ann)2f(X0 + X1P1 + -+ ann)

xp

Z B[(XO + X1P1 + °ee + ann)zf(xo + xlpl + A + ann)] =

xp

Z x3f(xo), Z (xo +x1)%f (%o + x1), ..e, Z (xo + 21 + -+ x,)%f (xo

Xo Xo+X1 Xo+xXq1++xn

+x 4+ x,) | = (EXE),EXo +X1)?, o, EXo + Xy + 4+ X,)?)

Now by taking the inverse isometry we get:
E(X3) =B Y EWX3),EXy + X)? ... EXog + X, + -+ X)?)
=EX§) + [E(Xo + X1)? — EXD]P, + -
+[EXo+ X1+ +X)? —EXo+ X1 + -+ Xp_1)?]P,
Also, we can prove in similar way that:
[E(XP)]Z = [E(Xo)]z + [[E(Xo + X1)]2 - [E(Xo)]z]P1 +
+[[EXo + Xy + -+ X2 = [EKo + Xy + -+ + X)) P] Py
Hence, we have:
Var(Xp) = E(X3) — [E(Xp)]?
=EX§) + [E(Xo + X1)? — EXD]Py + -
+[EKo+ X1 + -+ X)* —EXo+ X1 + -+ X,1)?]P,
—{[EX)]? + [[E(Xo + X1 — [E(X)]?1Py + -+
+[EXo + X1+ + X2 = [EKo + Xy + - + X121}
=Var(Xy) + [Var(X, + X;) — Var(Xy)1P, + -+
+[Var(Xg+ X, + -+ X)) —Var(Xo + X, + -+ X,,_1)]B,

n i i-1
i=

= Var(Xo) + X] Pi

Var ij —Var

1 j=0 Jj=0

3. Straightforward.

Theorem 3.4
A symbolic n-plithogenic function f(xp) = f(x¢ + x;P; + -+ x,B,) is a probability density function
in classical scene if and only if it satisfies the following conditions:
1. f(xo), f(xg +x1), ..., f(xo + x1 + -+ x3,) are all continuous nonnegative functions.
2. fxo fxo)dxy =1, fx0+x1 flxo +x)d(x + x1) = 1, ---'fxo+x1+4..+xnf(xo +2xp + 4 x)d (g +
X+ +x,) =1

Proof

The isometric image of f(xp) is:
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B(f(xp)) = (f(xo)vf(xo +x1) e fxg 3+ + xn))
According to theorem 3.2 we can see that if f(xq),f(xg + xq), ..., f(xg +x; + -+ x,) are all
nonnegative then f(xp) is a nonnegative function and vice-versa.
Also, according to the properties of the isomorphism B we can conclude that f(xp) will be a
continuous function if and only if f(xq), f(xg + x1), ..., f(xg + %1 + -+ x,,) are all continuous
functions.

Finally, let us assume that:

f fo)dxo = 1, f £ (o + x)d(xo + x1)

Xo+Xx1

=1,.., f flxg+xy + 4+ x)d(xe +x, + -+ x,) = 1.

Xo+X1++Xp
Then taking B! yields to:

Bt ff(xo)dxo, f flxo +x)d(xg + %), o) f flxog+xg+ -+ x,)d(xg + 21 + -

Xo+x1 Xo+x1++xp
+x) | =B (1L, .., ) =1+(1-1DP + -+ (1 -1P, =1

And this completes the proof.

Example

Let f(xp) = 2xq + (6™ — 2x)P; + (1 — e *1)P,; x5 € [0,1], %9 + x4 > 0,x5 + x; + x, € [0,1]
1. prove that f(xp) is a probability density function.

2. Calculate the probability P (X p < % + P - ;PZ).

Solution

1. B(f(xp)) = B(2x0 + (e=®0**1) — 2x )P, + (1 — e~ *o**))p)) = (2x0,2x0 +
(e—(xo+x1) _ ZXO), 2xy + (e—(xo+x1) _ 2x0) + (1 _ e—(xo+x1))) = (Zxo,e—(xo‘*'xﬂ' 1)

We conclude that:

f(xo) = 2x9;x0 € [0,1]

flxo +x,) = e Co+ ;x5 4+, > 0

flxo+x + %) = Lx + %, + x, €[0,1]

All previous functions are continuous nonnegative functions and integrate to one on their defined

domain.
2. Calculating P (X p < % + P, — ZPZ) is equivalent to calculating the following three

probabilities:
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1 1 1., 3

2 - P s 2tz 3
1 3 3

J‘Zxodx0 = x%l(zJ = Z'f e~ Cotx)d (x, + x,) = [1 - e‘("(’”l)]g =1-e72 f d(xg +x, +x3) = 2

0 0 0

So P(x, <%+P1—ZP2)=B‘1G,1—e_§,%)=i+(1—e_§—i)P1+G—1+e_§)P2 =2+(3-

e_é) P + (e_% - i) P,.
Theorem 3.5

Let Xp be a symbolic n-plithogenic random variable then its moments generating function is:

n
My () = My @)+ ) Myt ©) = My, 0] P
i=1

Proof
+00 +o0o
MXP(t) =E(e"P) = f e"Pf(xp)dxp = B™'B l J e P f(xp)dxp
+00 +00 o
=B71 f et o f(xy)dx,, f etGotxD) £ (xo 4+ x,)d (xp + X1) , oor, j etGotxatxn) £y 4 x4 o

+x,)d (g + 21 + -+ xp)

=B71! (MX() (t)l MX()+X1 (t)' e MX0+X1+"'+X‘"~(t))

= My, (t) + [MX0+X1 ) - Mxo(t)]P1 +t [MX0+X1+---+Xn(t) - MX0+X1+---+Xn_1(t)]Pn = My, (t)
n

= M)+ ) Mg O = My 0]
i=1

Theorem 3.6
Let Xp be a symbolic n-plithogenic random variable and let its moments generating function be My, (¢) then:

dk
WMXP (O)le=0 = E(XF)
Proof

We have
n
My () = My 0 + ) Myt (0 = My, (0] P
i=1

By taking k™" derivative of the last equation and substituting t = 0 we get:
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k

k d n
LMy, (Olimo = 2 (Mxo(t) ' Z My 3 © = Myis 0] Pi>
i=

t=0

k

k = [ dk d
ﬁMXom)*Z[WMzﬁzox,-(") ar Mz “”]t
=1

. k . k
n i i-1
=E(X{;)+Z E ZXJ. —E ZX,. P, = EXK
i=1 j=0 j=0

4. Application to symbolic n-plithogenic exponential distribution

Definition 4.1
A symbolic n-plithogenic random variable is said to follow exponential distribution with parameter 1y = 1, +
APy + -+ A, B, if its probability density function is given by:

n i i-1
T yiml gy wie1
f(xp) = Age Ho%o + Z Z/lj e~ Zj=04jZj=0%j _ z/lj e Zi=0%Zj=0% | P, s xp, Ap >p 0
| & =

Theorem 4.1
If Xp is a symbolic n-plithogenic exponential random variable with parameter Ay = 45 + ;P; + - +
A, P, then:

L Fxp) = 1—Age 0% + S0, [e B4 ZE — o~ Zimo 2 Zj=0%1| P, xp, Ap >p 0
2. E(Xp)z [2 y lll]PL
3. Var(Xy) = 1_13 +yn, [(zi 1/1‘)2 _ (Zi‘:}u)z] P,
j=04j j=04j
Proof
1 Fxp) = 37 fGepddcp = [0 50 2 e hoo 4y [ 2y e Zimo s Bimo®s —

it A e_z;;%’lfz;;%’xf] P, ] d(xg + x, Py + -+ x,B,) = B‘l[f AogeHo%odx, fx°+x1(lo

2 )e—(/10+/11)(x0+x1)d(x0 +x1) fx0+x1+ +xn(/10 F A+ e+ A )e—(lo+11+ HAn) (xg+x1++ +x")d(x +x;, +
- xn)] - —1(1 _ e—ﬂoxo’ 1— e—(/10+11)(xo+x1)’ 1= e~ (Got+Ar++An) (xo+x1+- +xn)) =1- Aoe—loxo +

n [gﬁ%%ﬁ‘:ﬁ Xj _ o= Zjmodj 23‘:0"1'] P,

2. E(Xp) = [ xpf (p)dxp = [ (g + 1Py + oo x,Py) [Age 0% + B, [5 2; e Dm0 B0 —
1 © ©

Zl 1 A e Z] OA Z] Ox]] L]d(xo + xlpl + b + ann) = B_l[fo xol’loe_loxodxo ,fo (xo + xl)(/’lo +

A)e Rt Aot 2 d (o + x), ..o, [ o + 21 + o+ 1) (Ao + Ay + -+
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~(AgH+Ag++An) (Ko +X1 +-+%Xn) —p1(Ll _1 1 -1
Ap)e~ Vot Xotxit ) d(xg + x; + -+ + x,)| = B </10'10+/11'""/10+/11+'"+1n>_/10+

n ([t 1 )

= [zj-zoa,- z;-;%)ﬂ,] i
3. Var(Xp) = BB([, [xp — E(Xp)]?Ape~*r *Pdxp) = B~ <f0°° (x0 —
1) -2 © 1 )2 —(Ao+21)(xg+x1)
_) /106 oxode ,f (XO + X1 - ) (AO + /11)8 ( 0 1) XotX1 d(xo +

1

o 2
xl))---;fo (X0+x1+---+xn— ) (AO+/’{1++

Ao+Ai++2p

An)e—(/10"'11+"'+/1n)(xo+x1+"’+xn)d(xo +x;+ o+ xn)> =

—1(1 1 1 1 1 1

B (E (Ao+2)2" "’ (Ao+ll+"‘+in)2) % T2 [(2;’-0/1].)2 - (2}3‘%)zj)2] Fi

5. Conclusion

We have presented an important introduction to symbolic n-plithogenic probability theory and
studied random variables related to it. Many theorems were demonstrated and proved successfully.
As an application to this new theory, exponential distribution was defined and its properties were
studied. Many examples have been solved successfully. In future researches, we are going to study
symbolic n-plithogenic stochastic processes and its real-life applications in communication using

queueing theory.
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Abstract

The main goal of this paper is to study the representation of the symbolic
n-plithogenic differential operator for many different values of n by classical
algebraic matrices and plithogenic matrices. We present many examples about the
representation of symbolic n-plithogenic differential operators by matrices. As
well as, we compute the symbolic 2-plithogenic, 3-plithogenic, and 4-plithogenic
Wronsckian, and anti-Wronsckian.
Keywords: Differential operator, Wronsckian, anti-Wronsckian, symbolic
n-plithogenic matrix

Introduction

Symbolic n-plithogenic structures and sets are defined for the first time by
Smarandache [4], as extensions of classical algebraic structures. Where they were
used widely by many researchers to generalize famous algebraic structures. For
example, we can see symbolic n-plithogenic rings, probability, spaces, and matrices

[1-3, 5-8, 14-19].

The main results about symbolic n-plithogenic structures are the similarity between

them and refined neutrosophic structures, see [9-13].

In this work, we concentrate on the analytical side of symbolic n-plithogenic
algebraic structures, where we provide many examples about the applications of
matrices in representing symbolic n-plithogenic differential operators. Also, we

present the concept of symbolic n-plithogenic Wronsckian, and anti-Wronsckian,
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with many computable examples. For the definitions of symbolic n-plithogenic

rings and structures, check [1,6,8,19].

Main Discussion

Definition:

Let f:2 —SPR —» 2 — SP, be a symbolic 2-plithogenic real function, we define the
symbolic 2-plithogenic differential operator as: D,(f) = f.

Definition.

Let f:3 — SPr = 3 — SPz be a symbolic 3-plithogenic real function, we define the
symbolic 2-plithogenic differential operator as: D3(f) = f.

Definition.

Let f:4 — SPR —» 4 — SP; be a symbolic 4-plithogenic real function, we define the
symbolic 2-plithogenic differential operator as: D,(f) = f.

Definition.

Let f:5—SPr = 5 — SPz be a symbolic 5-plithogenic real function, we define the
symbolic 2-plithogenic differential operator as: Ds(f) = f.

Example.

Consider f:2—SPy > 2—SPg;f(X) =X?+ (P, +P,)X—P;, ,where X =ux,+
X1P; + x,P, € 2 — SPg, then D,(f) = 2X + (P; + P,).

Consider g:3 —SPg > 3 — SPg; g(X) = X?> + P;X + P; + P, ,where X = x, + x,P; +
XoPy + x3P; € 3 — SPg, then D3(g) = 2X + P;.

Consider h:4 —SPg > 4 — SPp; h(X) = X3 + (P, + P,)X — 1,where X = x, + x,P; +
x,P, + x3P3 + x4P, € 4 — SPg, then D3(h) = 3X? + P, + P,.

Example.

Consider D, the symbolic 2-plithogenic differential operator on the space of
symbolic 2-plithogenic quadratic polynomials {aX? + bX + c;a,b,c,X € 2 — SPg},
then:

Dz(XZ) == ZX = sz + 2x1P1 + 2x2P2 == OXZ + 2X+01
D,(X)=1=0X2+0.X+1.1
D,(1) =0=0X2+0.X+0.1

Basheer Abd Al Rida Sadig, On The Representation of Some n-Plithogenic Differential Operators by Matrices



Neutrosophic Sets and Systems, Vol. 59, 2023 342

0 0 O
Hence [D,]=(2 0 0.

1 10

Example.

Consider D3, D4, D5 be the symbolic 3-plithogenic, 4-plithogenic, 5-plithogenic
differential operators on the spaces of cubic symbolic 30plithogenic, 4-plithogenic,
and 5-plithogenic spaces.

L, ={aX3®+bX?>+bX +d;a,b,c,d, X €3 —SPg}

L, ={aX3+bX2+bX +d;a b,c,d X € 4—SPy}

Ly = {aX3®+bX?>+bX +d;a,b,c,d, X €5 — SPp}

Then D, (X3) = 3X2 = 0.X3 +3X2 + 0.X + 0.1.
D,(X*)=2X=0.X3+0.X?+2.X+0.1.

D,(X)=1=0.X3+0.X2+0.X + 1.1.

D,(1)=0=0.X34+0.X24+0.X+0.1

For all 3 <n <5, hence:

=~

)

3

e

Il
Sowo
oNnOo o
==
mr oo o

Example.
For sinX = sin(xy + x1P; + x,P;), cosX = cos(xy + x1P; + x,P,).
We have:

D,(sinX) = cosX = 0.sinX + 1.cosX + 0.1
D,(cosX) = —sinX = —1.sinX + 0..cosX + 0.1
D,(1) =0=0.sinX + 0.cosX + 0.1

0 -1 0
Hence [D,]=|1 0 0]
0 0 O
For sinX = sin(xo + x1P; + x,P, + x3P3),cosX = cos(xy + x1 Py + x,P, + x3P3).

We have:

D;(sinX) = cosX
Ds(cosX) = —sinX

0 -1 0
Hence [D3]=<1 0 0).

0 0 O

Basheer Abd Al Rida Sadig, On The Representation of Some n-Plithogenic Differential Operators by Matrices



Neutrosophic Sets and Systems, Vol. 59, 2023 343

For sinX = sin(xy + x,P; + x,P5 + x3P5 + x,P,), cosX = cos(xy + x1P; + x,P5 +

X3P + x4 P,).

We have:
c
0 -1 0
Hence [D,]J=|1 0 0]
0 0 O
Example.

For {1,X,X% X3,X*}; X = xq + x;P; + x,P,,we have:
(Dy(X*) = 4X3

| D,(X3) = 3X2

D,(X?) = 2X
D,(X) =1
D,(1) =0

/ 0
4
Hence [D,] = 0

0

0

S O WwWo o
OoON OO O

0

0
0 0
OO)
1 0
h

For X = xy + Y7_, x;P;, we have:

Ds(X*%) = 4X3
Ds(X3) = 3X2
D (X?) = 2X
Ds(X) =1
Ds(1) =0
0 0 0 0O
4 0 0 0 O
Hence [Dg]=[0 3 0 0 O
0 0 2 0 O
0 0 01 0
Example.

Consider A = {1,e%,e?*}, where X = xy + x;P; + x,P,, B = {1,e",e?'}, where Y =
Yo + Y1P1 + y2P2 + y3P3, C = {1, eZ,ezz}, Where Z = Zy + lel + ZZPZ + Z3P3 + Z4_P4_,
D ={1,e",e?"}, where T = t, + + Y;_, t;P;, then:

D,(e*) = e*
D,(e?*) = 2e%X
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0 0 O
Hence [D;] = <0 1 0).
0 0 2
D;(1) =0
D;(e¥) = €Y

D;(e?Y) = 2e?Y

0 0 O
Hence [Ds]=(0 1 0.
0 0 2
D,(1) =0
D,(e?) =e?

D,(e??) = 2e%

0 0 O
Hence [D,]J=(0 1 0.
0 0 2
Ds(e™) = e

Ds(e?T) = 2e?T

0 0 O
Hence [Ds]=(0 1 0.

0 0 2

Another possible representation.

We have shown that symbolic n-plithogenic differential operators can be
represented by classical real matrices, now we will try to explain how they can be
represented by plithogenic matrices.

Example.

Consider {1,X,X?}; X = xq + x,P; + x,P, , with D, the symbolic 2-plithogenic
differential operator, then:

Dz(l) = 0 = O.xo + O.X1P1 + O.xzpz
D,(X) =1
D,(X?) = 2X

The basis {1,X,X?} can be represented as follows:
B, = {1,x0,x02}, B, = {1, (xo + x1), (xo + x1)%}, B3
= {1, (xo + x1 + x2), (¢ + %1 + x2)%}

Any quadratic polynomial P(X) = aX 2+ bX +c;a,b,c,X € 2 — SPg, with:
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a=ayg+aP;+a,P,
b = by + by P; + b,P,
¢ =c¢y+ciPy+ P,
X =xy+x1P; +x,P,

P(X) =aX?*+bX+c
= (agxo? + boxo + o)
+ Pi[(ao + a)(xo + x1)? — agxo® + (bo + by) (xo + x1) — boxo + 4]
+ Py[(ao + a;y + az)(xo + 21 +x2)% = (@g + a1) (%o + x1)?
+ (bo + by + by)(xg + X1 + x3) — (b + by) (x + x1) + 2]
= q1(x0) + P1[q2(xo + x1) — q1(x0)]
+ Po[qs(xo + x5 + x2) — q2(x0 + x1)]
Hence, D, (P(X)) = D,(q1) + P1[D,(q2) — D2(q1)] + P2[D,(q3) — D2(qz)], hence:

000 00 0 00 0
[D2]=<O 0 2>+P1 (o 0 2) +P, (o 0 2)]
010 010 010
0 0 0
=(0 0 2+2P1+2P2)
0 1+P,+P, 0

The symbolic plithogenic Wronsckian.
Consider the following functions independent set:

E ={fi, ..., fn}, their wronsckian is defined as follows:

fi e
wey=| i h
RO LD

We show some examples for finding the symbolic n-plithogenic Wronsckian.
Example.

Consider E; = {e*,e?*; X = xy + x, P, + x,P,}, E;, = {1,sinX,cosX; X = xo + x,P; +
X,Py + x3P3}, E5 = {1, tanX; X = xo + X, Py + X3P + x3P5 + x,P,}E4 =

{1,X, X%, X3, X = xo + Xi_, x;P;}, we have:

W(E ) D2 (0) (eX) DZ(O) (eZX) |ex0+x1P1+x2P2 62x0+2x1P1+2x2P2
1) — D2 (eX) DZ(BZX) - ex0+x1P1+x2P2 262x0+2x1P1+2x2P2
— 63x0+3x1P1+3x2P2
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NGB

3
1 sin <x0 + Z xl-Pi> cos (xo + xipi>

3
—sin (xo + xiPl-> = —cos*? <x0 + Z xl-Pl->
i=1
3
0 —sin <x0 + Z xiPl-> —cos (xo + Z )

i=

3
W(E,) =10 cos <x0 + ) xP;
i

=~ Il
w Nl W
Juy

1 tan <x0 + Z xl-Pl-> 4
W(E3) = =1 4 =1+ tan? (xo + z xiPl-)
0 1+ tan? <x0+2xl

i=1

i=1

o
N~

i=1
5 5
W(E4_) — 0 1 2<x0+2xiPi> 3<x0+2xiPi> =12
i i=1

o O
o O
ON

(@)
VY

x

o

+
gl

R

~u
~_—

Example.
Consider E; = {lnX, eX; X =xy+ Y7, xl-Pi}, E, = {lnX, VX; X = xo + Z‘i*zlxiPi}, E; =

{eX,sinX; X = xo + Yi_, x;P;}, then:

InX eX 53 1
W(E)=|1 = e¥otli=1*iPi|In x+zxp S
1 ¥ eX 0 £ x0+2i3=1xl-Pi

W(E)_”ix */f X 1 InX-2
S R N, S N

2vX
ln<xo+ZxP> 2]

1
\/x0+24 x;P;

5 5
X .
W(E;) = |eX SIX| _ pxo+IaxiPi | cos Xo + Z x;P; | —sin| xo + Z x; P;
e cosX e =
1= 1=

Symbolic n-plithogenic anti-Wronsckian.

Let E = {f1, ..., [} be a set of n functions, then:
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=\ J(7) |
Ifi [ 7 &

N——r N——r
n—1times n-—1times n—1times

fn

Now, we will clarify how (AW) can be computed.

Example.

Consider E; = {1,X,X%,X = xy + Y2, x; P}, E, = {eX,e?; X = xo + X3, x;P;}, E5

{sinX, cosX; X = xo + Xi— x;P;}, then:

1 X X2
X 1X2 1)(3
AW (E,) = 2 3
1 1 1
_XZ _X3 _X4
2 6 12
1 1 1 1
—xz —x3 X =x3 X =X?
—Xx3 ix‘* X2 iX4 — X2 lX3
6 12 2 12 6
1 1 1 1 1 1
=——-— X6—X(———>X5 X2<———>X4
(24 18) 12 6 + 6 4
—X6<1 1 1+1+1 1)—)(6(1 8 6 2
B 24 18 12 6 6 4/ 24 24 24 24
—X6<1 1)_ 1 _l_i ,
—4\24 7 18) T T\ P T LN
=1
eX  e2X 1 1 1 .
AW (E,) = 1 = —Xp2X _ pXp2X — _ Z 03X — _ _ p(x0+¥i, xiPy)
eX Eezx 2
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sinX cosX 1
—cosX —sinX X

AW (E3) = 1
—sinX —cosX EXZ
sinX X —cosX X .
= sinX. 1 _,|—cosx| . 1, |TeosX sinX
—cosX EX —sinX EX —sinX —cosX
(1o, 1 _
= sinX (EXZSlnX + XcosX) — cosX (—EXZCOSX + XSLTlX)
+ (cos?*X + sin?X)
1 . . 1 .
= EXzssz + XcosXsinX + EXZCOSZX — XcosXsinX + 1
4
1, 1
:EX (1)+1:§ x0+inPl- +1
i=1
Conclusion

In this paper, we have studied the representation of the symbolic n-plithogenic
differential operator for many different values of n by classical algebraic matrices
and plithogenic matrices. We presented many examples about the representation
of symbolic n-plithogenic differential operators by matrices. As well as, we
computed the symbolic 2-plithogenic, 3-plithogenic, and 4-plithogenic
Wronsckian, and anti-Wronsckian.
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