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Abstract: The neutrosophic set consists of three fuzzy sets called true membership function, false mem-
bership function and indeterminate membership function. MBJ-neutrosophic structure is a structure con-
structed using interval-valued fuzzy set instead of indeterminate membership function in the neutrosophic
set. In general, the indeterminate part appears in a wide range. So instead of treating the indetermi-
nate part as a single value, it is treated as an interval value, allowing a much more comprehensive pro-
cessing. In an attempt to apply the MBJ-neutrosophic structure to ordered BCI-algebras, the notion
of MBJ-neutrosophic (ordered) subalgebras is introduced and their properties are studied. The relation-
ship between MBJ-neutrosophic subalgebra and MBJ-neutrosophic ordered subalgebra is established, and
MBJ-neutrosophic ordered subalgebra is formed using (intuitionistic) fuzzy ordered subalgebra. Given an
MBJ-neutrosophic set, its (q, c̃, p)-translative MBJ-neutrosophic set is introduced and its characterization is
considered. An MBJ-neutrosophic ordered subalgebra is created using (q, c̃, p)-translative MBJ-neutrosophic
set.

Keywords: Ordered BCI-algebra, ordered subalgebra, MBJ-neutrosophic ordered subalgebra, MBJ-ordered
subalgebras, (q, c̃, p)-translative MBJ-neutrosophic set.
2020 Mathematics Subject Classification. 06F35, 03G25, 08A72.

1 Introduction
The classical set theory contains only two components: true and false, which means that an element
can either belong to the set (true) or not belong to the set (false). However, in many cases, there
is an indeterminate state which means it is not clear that elements are in or out of a set. In other
words, there is a lot of incomplete or uncertain information, which is an indeterminate state that
cannot be expressed as true or false. Neutrosophic logic is an extension of classical and fuzzy logic,
which is a good tool for processing uncertain and indeterminate information in a more versatile way.
The neutrosophic set is a mathematical concept introduced by Florentin Smarandash in the late 1990s,
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which is particularly useful for dealing with the indeterminate states that classical set theory cannot
address. It is applied to various fields such as artificial intelligence, decision-making, expert systems, and
information management that require coping with ambiguity and inaccuracy. In addition, neutrosophic
set theory is applied to various algebraic structures including logical algebras (see [1], [3], [4], [5], [6],
[7],[9], [13], [16], [17]). The neutrosophic set gives three values, i.e., membership degree (T), non-
membership degree (F), and indeterminacy degree (I), for each element. In [11], Mohseni Takallo et
al. extended the indeterminacy degree (F) to the interval value to introduce the MBJ-n-set, and it is
applied to several logical algebras (see [2], [8], [10], [12], [15]). The “MBJ” stands for the initials of the
three researchers, R. A. Borzooei, M. Mohseni Takallo and Y. B. Jun.

This paper applies the MBJ-neutrosophic structure to OBCI-algebras. We first introduce the notion
of MBJ-neutrosophic (ordered) subalgebras in OBCI-algebras and then investigate their properties. We
look at the relations of the MBJ-neutrosophic subalgebra to the MBJ-neutrosophic ordered subalgebra
(O-subalgebra for simplicity). Using (intuitionistic) fuzzy ordered subalgebras, we establish an MBJ-
neutrosophic ordered subalgebra. We discuss the characterization of MBJ-neutrosophic O-subalgebras.
Given an MBJ-n-set, we introduce its (q, ã13, p)-translative MBJ-n-set and consider its characterization.
We use (q, ã13, p)-translative MBJ-n-set to generate an MBJ-neutrosophic O-subalgebra.

2 Preliminaries

Definition 2.1 ([18]). An OBCI-algebra is defined to be a set W together with a binary relation ‘‘ ≤W ”,
a constant ‘‘ě” and a binary operation ‘‘⇝ ” that satisfies:

ě ≤W (a11 ⇝ a12)⇝ ((a12 ⇝ a13)⇝ (a11 ⇝ a13)), (2.1)
ě ≤W a11 ⇝ ((a11 ⇝ a12)⇝ a12), (2.2)
ě ≤W a11 ⇝ a11, (2.3)
ě ≤W a11 ⇝ a12, ě ≤W a12 ⇝ a11 ⇒ a11 = a12, (2.4)
a11 ≤W a12 ⇔ ě ≤W a11 ⇝ a12, (2.5)
ě ≤W a11, a11 ≤W a12 ⇒ ě ≤W a12 (2.6)

for all a11, a12, a13 ∈ W .

Obviously W := (W, ⇝, ẽ, ≤W ) with W = {ě} is an OBCI-algebra, which is said to be the trivial
OBCI-algebra.
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Proposition 2.2 ([18]). If W := (W, ⇝, ẽ, ≤W ) is an OBCI-algebra, it satisfies:

ě⇝ a11 = a11, (2.7)
a13 ⇝ (a12 ⇝ a11) = a12 ⇝ (a13 ⇝ a11), (2.8)
ě ≤W a11 ⇝ a12 ⇒ ě ≤W (a12 ⇝ a13)⇝ (a11 ⇝ a13), (2.9)
ě ≤W a11 ⇝ a12, ě ≤W a12 ⇝ a13 ⇒ ě ≤W a11 ⇝ a13, (2.10)
ě ≤W (a13 ⇝ (a12 ⇝ a11))⇝ (a12 ⇝ (a13 ⇝ a11)), (2.11)
ě ≤W a13 ⇝ (a12 ⇝ a11) ⇒ ě ≤W a12 ⇝ (a13 ⇝ a11), (2.12)
((a11 ⇝ a12)⇝ a12)⇝ a12 = a11 ⇝ a12, (2.13)
(a11 ⇝ a11)⇝ a11 = a11, (2.14)
ě ≤W (a12 ⇝ a13)⇝ ((a11 ⇝ a12)⇝ (a11 ⇝ a13)), (2.15)
ě ≤W a11 ⇝ a12 ⇒ ě ≤W (a13 ⇝ a11)⇝ (a13 ⇝ a12) (2.16)

for all a11, a12, a13 ∈ W .

Definition 2.3 ([18]). A subset A of W is said to be

• a subalgebra of W := (W, ⇝, ẽ, ≤W ) if it satisfies:

(∀a11, a12 ∈ W )(a11, a12 ∈ A ⇒ a11 ⇝ a12 ∈ A). (2.17)

• an ordered subalgebra (briefly, O-subalgebra) of W := (W, ⇝, ẽ, ≤W ) if it satisfies:

(∀a11, a12 ∈ W )(a11, a12 ∈ A, ě ≤W a11, ě ≤W a12 ⇒ a11 ⇝ a12 ∈ A). (2.18)

A function µ : W → [0, 1] is said to be a fuzzy set (f-set for brevity) in a set W .

Definition 2.4 ([19]). An f-set µ in W is said to be a fuzzy ordered subalgebra (briefly, FO-subalgebra)
of an OBCI-algebra W := (W, ⇝, ẽ, ≤W ) if it satisfies:

(∀x11, x12 ∈ W )(ẽ ≤W x11, ẽ ≤W x12 ⇒ µ(x11 ⇝ x12) ≥ min{µ(x11), µ(x12)}). (2.19)

Definition 2.5 ([14]). An intuitionistic f-set I := {⟨x11, µI , νI⟩ | x11 ∈ W} is said to be an intuitionistic
fuzzy ordered subalgebra (briefly, IFO-subalgebra) of W := (W, ⇝, ẽ, ≤W ) if it satisfies:

(∀x11, x12 ∈ W )

 ẽ ≤W x11, ẽ ≤W x12

⇒
{

µI(x11 ⇝ x12) ≥ min{µI(x11), µI(x12)}
νI(x11 ⇝ x12) ≤ max{νI(x11), νI(x12)}

 . (2.20)

The neutrosophic set (n-set for brevity) is an extension of traditional set theory and has the ad-
vantage of handling uncertain, indeterminate and inconsistent information in a more flexible way than
classical sets.

Given a non-empty set W , an n-set in W is a structure of the form:

M⊚ := {⟨x11;M⊚
T (x11),M⊚

F (x11),M⊚
I (x11)⟩ | x11 ∈ W}
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where M⊚
T : W → [0, 1] is a true membership function, M⊚

F : W → [0, 1] is a false membership
function, and M⊚

I : W → [0, 1] is an indeterminate membership function. For brevity, we use the
symbol M⊚ := (M⊚

T , M⊚
I , M⊚

F ) for the n-set

M⊚ := {⟨x11;M⊚
T (x11),M⊚

I (x11),M⊚
F (x11)⟩ | x11 ∈ W}.

Given an n-set M⊚ := (M⊚
T , M⊚

I , M⊚
F ) in W , we consider the following sets.

W(M⊚
T ;α) := {x11 ∈ W | M⊚

T (x11) ≥ α},
W(M⊚

I ; β) := {x11 ∈ W | M⊚
I (x11) ≥ β},

W(M⊚
F ; γ) := {x11 ∈ W | M⊚

F (x11) ≤ γ},

which are said to be neutrosophic level subsets of W where α, β, γ ∈ [0, 1].
The interval-valued f-set is an extension of f-set theory and is a mathematical tool that serves to

more subtly address uncertainty.
By an interval number, a closed subinterval c̃ = [c−, c+] of I, where 0 ≤ c− ≤ c+ ≤ 1, is meant

and by [I], the set of all interval numbers is denoted. We define what is known as a refined minimum
(briefly, rmin) and a refined maximum (briefly, rmax) of two elements in [I], and the symbols “⪰”, “⪯”,
“=” in case of two elements in [I]. Take two interval numbers c̃1 :=

[
c−1 , c

+
1

]
and c̃2 :=

[
c−2 , c

+
2

]
. Then

rmin {c̃1, c̃2} =
[
min

{
c−1 , c

−
2

}
,min

{
c+1 , c

+
2

}]
,

rmax {c̃1, c̃2} =
[
max

{
c−1 , c

−
2

}
,max

{
c+1 , c

+
2

}]
,

c̃1 ⪰ c̃2 ⇔ c−1 ≥ c−2 , c+1 ≥ c+2 .

Analogously one has c̃1 ⪯ c̃2 and c̃1 = c̃2. By c̃1 ≻ c̃2 (resp. c̃1 ≺ c̃2), c̃1 ⪰ c̃2 and c̃1 ̸= c̃2 (resp. c̃1 ⪯ c̃2
and c̃1 ̸= c̃2) are meant. For c̃i ∈ [I], where i ∈ Λ, define:

rinf
i∈Λ

c̃i =

[
inf
i∈Λ

c−i , inf
i∈Λ

c+i

]
and rsup

i∈Λ
c̃i =

[
sup
i∈Λ

c−i , sup
i∈Λ

c+i

]
.

Given a nonempty set X, a mapping A : X → [I] is said to be an interval-valued f-set (briefly, an
IVF set) in X. By [I]X , we denote the set of all IVF sets in X. For all A ∈ [I]X and a12 ∈ X, A(a12) =
[A−(a12), A

+(a12)] is said to be the degree of membership of an element x to A, where A− : X → I and
A+ : X → I are f-sets in X which are said to be a lower f-set and an upper f-et in X, respectively. For
brevity, we denote A(a12) = [A−(a12), A

+(a12)] by A = [A−, A+].

Definition 2.6 ([11]). For a non-empty set W , an MBJ-neutrosophic set (briefly, MBJn-set) in W is
defined to be a structure of the form:

G := {⟨a11;MG(a11), B̃G(a11), JG(a11)⟩ | a11 ∈ W}

where MG and JG are f-sets in W , which are said to be a true membership function and a false
membership function, respectively, and B̃G is an IVF set in W which is said to be an indeterminate
interval-valued membership function.

Neutrosophic Sets and Systems, Vol. 63, 2024                                                                                                    4___________________________________________________________________________________________

E. Yang, E. H. Roh, Y. B. Jun, Ordered subalgebras of ordered BCI-algebras based on the
MBJ-neutrosophic structure

1



For brevity, we use the symbol G = (MG, B̃G, JG) for the MBJn-set

G := {⟨a11;MG(a11), B̃G(a11), JG(a11)⟩ | a11 ∈ W}.

In an MBJn-set G = (MG, B̃G, JG) in W , if we take

B̃G : W → [I], a12 7→ [B−
G(a12), B

+
G(a12)]

with B−
G(a12) = B+

G(a12), then G = (MG, B̃G, JG) is an n-set in W .

Given an MBJn-set G = (MG, B̃G, JG) in a set W , we consider the following sets.

U(MG; s) := {x11 ∈ W | MG(x11) ≥ s},
U(B̃G; [ε1, ε2]) := {x11 ∈ W | B̃G(x11) ⪰ [ε1, ε2]},
L(JG; t) := {x11 ∈ W | JG(x11) ≤ t}

where s, t ∈ [0, 1] and [ε1, ε2] ∈ [I].

3 MBJ-neutrosophic O-subalgebras

Unless specified otherwise, in what follows, W := (W, ⇝, ẽ, ≤W ) denotes an OBCI-algebra.

Definition 3.1. An MBJn-set G = (MG, B̃G, JG) in W := (W, ⇝, ẽ, ≤W ) is said to be an MBJ-
neutrosophic subalgebra (briefly, MBJn-subalgeba) of W := (W, ⇝, ẽ, ≤W ) if it satisfies:

(∀x11, x12 ∈ W )

 MG(x11 ⇝ x12) ≥ min{MG(x11),MG(x12)},
B̃G(x11 ⇝ x12) ⪰ rmin{B̃G(x11), B̃G(x12)},
JG(x11 ⇝ x12) ≤ max{JG(x11), JG(x12)}.

 (3.1)

Definition 3.2. An MBJn-set G = (MG, B̃G, JG) in W := (W, ⇝, ẽ, ≤W ) is said to be an MBJ-
neutrosophic O-subalgebra (briefly, MBJnO-subalgebra) of W := (W, ⇝, ẽ, ≤W ) if it satisfies:

(∀x11, x12 ∈ W )

 ẽ ≤W x11, ẽ ≤W x12 ⇒


MG(x11 ⇝ x12) ≥ min{MG(x11),MG(x12)},
B̃G(x11 ⇝ x12) ⪰ rmin{B̃G(x11), B̃G(x12)},
JG(x11 ⇝ x12) ≤ max{JG(x11), JG(x12)}.

 . (3.2)

Example 3.3. Let W = {z10, z12, z14, z16, z18} be a set with the Hasse diagram and Table as follows:
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rrrrrz10

z12

z14

z16

z18 ⇝ z10 z12 z14 z16 z18

z10 z18 z18 z18 z18 z18

z12 z10 z16 z16 z16 z18

z14 z10 z12 z14 z16 z18

z16 z10 z12 z14 z16 z18

z18 z10 z10 z10 z10 z18

Hassee diagram of (W,≤W ) Table for ‘‘⇝ ”

Then W := (W, ⇝, ẽ, ≤W ) , where ẽ = z12, is an OBCI-algebra (see [18]).
(i) Let G = (MG, B̃G, JG) be an MBJn-set in W := (W, ⇝, ẽ, ≤W ) provided by Table 1.

Table 1: Table for G = (MG, B̃G, JG)

W MG(w) B̃G(w) JG(w)

z18 0.93 [0.56, 0.89] 0.25

z16 0.67 [0.47, 0.56] 0.42

z14 0.54 [0.38, 0.47] 0.58

z12 0.44 [0.29, 0.42] 0.69

z10 0.87 [0.51, 0.82] 0.36

It can be eaily verified that G = (MG, B̃G, JG) is an MBJn-subalgeba of W := (W, ⇝, ẽ, ≤W ).
(ii) Let G = (MG, B̃G, JG) be an MBJn-set in W := (W, ⇝, ẽ, ≤W ) given by Table 2.

Table 2: Table for G = (MG, B̃G, JG)

W MG(w) B̃G(w) JG(w)

z18 0.37 [0.53, 0.85] 0.81

z16 0.94 [0.65, 0.94] 0.28

z14 0.82 [0.49, 0.76] 0.46

z12 0.66 [0.37, 0.67] 0.53

z10 0.54 [0.53, 0.85] 0.62

It can be eaily verified that G = (MG, B̃G, JG) is an MBJnO-subalgebra of W := (W, ⇝, ẽ, ≤W ).

It is certain that every MBJn-subalgeba is an MBJnO-subalgebra, but the converse may not be true
as shown in the following example. In light of this view, it can be said that the MBJnO-subalgebra is
a generalization of the MBJ-neutrosophic subalgebra.
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Example 3.4. (i) The MBJnO-subalgebra G = (MG, B̃G, JG) of W := (W, ⇝, ẽ, ≤W ) in Example
3.3(ii) is not an MBJn-subalgeba of W := (W, ⇝, ẽ, ≤W ) since

MG(z10 ⇝ z10) = MG(z11) = 0.37 ≱ 0.54 = min{MG(z10),MG(z10)}

and/or JG(z10 ⇝ z10) = JG(z11) = 0.81 ≰ 0.62 = max{JG(z10), JG(z10)}.
(ii) Consider the OBCI-algebra W := (W, ⇝, ẽ, ≤W ) in Example 3.3, and let G = (MG, B̃G, JG)

be an MBJn-set in W := (W, ⇝, ẽ, ≤W ) given by Table 3.

Table 3: Table for G = (MG, B̃G, JG)

W MG(w) B̃G(w) JG(w)

z10 0.67 [0.57, 0.88] 0.28

z18 0.35 [0.36, 0.77] 0.61

z16 0.67 [0.57, 0.88] 0.28

z14 0.35 [0.36, 0.77] 0.61

z12 0.35 [0.36, 0.77] 0.61

It can be easily checked that G = (MG, B̃G, JG) is an MBJn-subalgeba of W := (W, ⇝, ẽ, ≤W ). But
it is not an MBJnO-subalgebra of W := (W, ⇝, ẽ, ≤W ) since

B̃G(z10 ⇝ z12) = B̃G(z11) = [0.36, 0.77] ̸⪰ [0.57, 0.88] = rmin{B̃G(z10), B̃G(z12)}

and/or JG(z10 ⇝ z12) = JG(z11) = 0.61 ≰ 0.28 = max{JG(z10), JG(z12)}.

Using (intuitionistic) fuzzy O-subalgebras, we establish an MBJnO-subalgebra.

Theorem 3.5. Given an MBJn-set G = (MG, B̃G, JG) in W := (W, ⇝, ẽ, ≤W ), if (MG, JG) is an
IFO-subalgebra of W := (W, ⇝, ẽ, ≤W ), and B̃−

G and B̃+
G are FO-subalgebras of W := (W, ⇝, ẽ, ≤W ),

then G = (MG, B̃G, JG) is an MBJnO-subalgebra of W := (W, ⇝, ẽ, ≤W ).

Proof. Let x11, x12 ∈ W be such that ě ≤W x11 and ě ≤W x12. Then

B̃G(x11 ⇝ x12) = [B−
G(x11 ⇝ x12), B

+
G(x11 ⇝ x12)]

⪰ [min{B−
G(x11), B

−
G(x12)},min{B+

G(x11), B
+
G(x12)}]

= rmin{[B−
G(x11), B

+
G(x11)], [B

−
G(x12), B

+
G(x12)]

= rmin{B̃G(x11), B̃G(x12)}.

Since (MG, JG) is an IFO-subalgebra of W := (W, ⇝, ẽ, ≤W ), it is clear that

MG(x11 ⇝ x12) ≥ min{MG(x11),MG(x12)} and JG(x11 ⇝ x12) ≤ max{JG(x11),MG(x12)}.

Therefore G = (MG, B̃G, JG) is an MBJn-subalgeba of W := (W, ⇝, ẽ, ≤W ).
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If G = (MG, B̃G, JG) is an MBJnO-subalgebra of W := (W, ⇝, ẽ, ≤W ), then

[B−
G(x11 ⇝ x12), B

+
G(x11 ⇝ x12)] = B̃G(x11 ⇝ x12) ⪰ rmin{B̃G(x11), B̃G(x12)}

= rmin{[B−
G(x11), B

+
G(x11), [B

−
G(x12), B

+
G(x12)]}

= [min{B−
G(x11), B

−
G(x12)},min{B+

G(x11), B
+
G(x12)}]

for all x11, x12 ∈ W with ě ≤W x11 and ě ≤W x12. It follows that

B−
G(x11 ⇝ x12) ≥ min{B−

G(x11), B
−
G(x12)} and B+

G(x11 ⇝ x12) ≥ min{B+
G(x11), B

+
G(x12)}.

Thus B−
G and B+

G are FO-subalgebras of W := (W,⇝, ẽ, ≤W ). But (MG, JG) is not an IFO-subalgebra
of W := (W, ⇝, ẽ, ≤W ) as one can see in Example 3.3(ii). It verifies that the converse of Theorem 3.5
is not true.

We can observe that if G = (MG, B̃G, JG) is an MBJnO-subalgebra of W := (W, ⇝, ẽ, ≤W ) that
satisfies MG(x11) + JG(x11) ≤ 1 for all x11 ∈ W , then (MG, JG) is an IFO-subalgebra of W := (W, ⇝,
ẽ, ≤W ).

Theorem 3.6. An MBJn-set G = (MG, B̃G, JG) in W := (W, ⇝, ẽ, ≤W ) is an MBJnO-subalgebra
of W := (W, ⇝, ẽ, ≤W ) if and only if the non-empty sets U(MG; s), U(B̃G; [ε1, ε2]) and L(JG; t) are
O-subalgebras of W := (W, ⇝, ẽ, ≤W ) for all s, t ∈ [0, 1] and [ε1, ε2] ∈ [I].

The O-subalgebras U(MG; s), U(B̃G; [ε1, ε2]) and L(JG; t) are said to be MBJ-ordered subalgebras of
G = (MG, B̃G, JG).

Proof. Suppose that G = (MG, B̃G, JG) is an MBJnO-subalgebra of W . Let s, t ∈ [0, 1] and [ε1, ε2] ∈ [I]
be such that U(MG; s), U(B̃G; [ε1, ε2]) and L(JG; t) are non-empty. Let x11, x12 ∈ W be such that
ě ≤W x11 and ě ≤W x12. If x11, x12 ∈ U(MG; s) ∩ U(B̃G; [ε1, ε2]) ∩ L(JG; t), then

MG(x11 ⇝ x12) ≥ min{MG(x11),MG(x12)} ≥ min{s, s} = s,

B̃G(x11 ⇝ x12) ⪰ rmin{B̃G(x11), B̃G(x12)} ⪰ rmin{[ε1, ε2], [ε1, ε2]} = [ε1, ε2],

JG(x11 ⇝ x12) ≤ max{JG(x11), JG(x12)} ≤ min{t, t} = t,

and so x11 ⇝ x12 ∈ U(MG; s) ∩ U(B̃G; [ε1, ε2]) ∩ L(JG; t). Therefore U(MG; s), U(B̃G; [ε1, ε2]) and
L(JG; t) are O-subalgebras of W := (W, ⇝, ẽ, ≤W ).

Conversely, suppose that the non-empty sets U(MG; s), U(B̃G; [ε1, ε2]) and L(JG; t) are O-subalgebras
of W := (W,⇝, ẽ, ≤W ) for all s, t ∈ [0, 1] and [ε1, ε2] ∈ [I]. If MG(a11 ⇝ a12) < min{MG(a11),MG(a12)}
for some a11, a12 ∈ W with ě ≤W a11 and ě ≤W a12, then a11, a12 ∈ U(MG; s0) but a11 ⇝ a12 /∈
U(MG; s0) for s0 := min{MG(a11),MG(a12)}. This is a contradiction, and thus MG(x11 ⇝ x12) ≥
min{MG(x11),MG(x12)} for all x11, x12 ∈ W with ě ≤W x11 and ě ≤W x12. Similarly, we can show that
JG(x11 ⇝ x12) ≤ max{JG(x11), JG(x12)} for all x11, x12 ∈ W with ě ≤W x11 and ě ≤W x12. Suppose
that B̃G(a11 ⇝ a12) ≺ rmin{B̃G(a11), B̃G(a12)} for some a11, a12 ∈ W with ě ≤W a11 and ě ≤W a12. Let
B̃G(a11) = [ϱ1, ϱ2], B̃G(a12) = [ϱ3, ϱ4] and B̃G(a11 ⇝ a12) = [ε1, ε2]. Then

[ε1, ε2] ≺ rmin{[ϱ1, ϱ2], [ϱ3, ϱ4]} = [min{ϱ1, ϱ3},min{ϱ2, ϱ4}],
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and so ε1 < min{ϱ1, ϱ3} and ε2 < min{ϱ2, ϱ4}. Taking

[λ1, λ2] :=
1
2

(
B̃G(a11 ⇝ a12) + rmin{B̃G(a11), B̃G(a12)}

)
implies that

[λ1, λ2] =
1
2
([ε1, ε2] + [min{ϱ1, ϱ3},min{ϱ2, ϱ4}])

=
[
1
2
(ε1 + min{ϱ1, ϱ3}, 12(ε2 + min{ϱ2, ϱ4}

]
.

It follows that min{ϱ1, ϱ3} > λ1 =
1
2
(ε1 + min{ϱ1, ϱ3} > ε1 and

min{ϱ2, ϱ4} > λ2 =
1
2
(ε2 + min{ϱ2, ϱ4} > ε2.

Hence [min{ϱ1, ϱ3},min{ϱ2, ϱ4}] ≻ [λ1, λ2] ≻ [ε1, ε2] = B̃G(a11 ⇝ a12), and therefore a11 ⇝ a12 /∈
U(B̃G; [λ1, λ2]). On the other hand, B̃G(a11) = [ϱ1, ϱ2] ⪰ [min{ϱ1, ϱ3},min{ϱ2, ϱ4}] ≻ [λ1, λ2] and

B̃G(a12) = [ϱ3, ϱ4] ⪰ [min{ϱ1, ϱ3},min{ϱ2, ϱ4}] ≻ [λ1, λ2],

that is, a11, a12 ∈ U(B̃G; [λ1, λ2]), a contradiction. Therefore

B̃G(x11 ⇝ x12) ⪰ rmin{B̃G(x11), B̃G(x12)}

for all x11, x12 ∈ W with ě ≤W x11 and ě ≤W x12. Consequently G = (MG, B̃G, JG) is an MBJnO-
subalgebra of W := (W, ⇝, ẽ, ≤W ).

The example below illustrates Theorem 3.6.

Example 3.7. Let W = {z10, z11, z12, z13, z14, z15, z16, z17, z18} be a set with the Hasse diagram and
Table as follows:

rrrrrrrrrz10

z11

z12

z13

z14

z15

z16

z17

z18 ⇝ z10 z11 z12 z13 z14 z15 z16 z17 z18

z10 z10 z18 z18 z18 z18 z18 z18 z18 z18
z11 z10 z17 z17 z17 z17 z17 z17 z17 z18

z12 z10 z11 z16 z16 z16 z16 z16 z17 z18

z13 z10 z11 z12 z15 z15 z15 z16 z17 z18

z14 z10 z11 z12 z13 z14 z15 z16 z17 z18

z15 z10 z11 z12 z13 z13 z15 z16 z17 z18

z16 z10 z11 z12 z12 z12 z12 z16 z17 z18

z17 z10 z11 z11 z11 z11 z11 z11 z17 z18

z18 z10 z10 z10 z10 z10 z10 z10 z10 z18

Hassee diagram of (W,≤W ) Table for ‘‘⇝ ”

Then W := (W,⇝, ẽ, ≤W ), where ẽ = z14, is an OBCI-algebra. Let G = (MG, B̃G, JG) be an MBJn-set
in W := (W, ⇝, ẽ, ≤W ) given by Table 4.
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Table 4: Table for G = (MG, B̃G, JG)

W MG(w) B̃G(w) JG(w)

z10 0.36 [0.58, 0.79] 0.61

z11 0.49 [0.52, 0.73] 0.67

z12 0.53 [0.47, 0.66] 0.46

z13 0.75 [0.39, 0.58] 0.27

z14 0.87 [0.63, 0.85] 0.27

z15 0.75 [0.39, 0.58] 0.27

z16 0.53 [0.47, 0.66] 0.46

z17 0.49 [0.52, 0.73] 0.67

z18 0.36 [0.58, 0.79] 0.61

Then G = (MG, B̃G, JG) is an MBJnO-subalgebra of W := (W, ⇝, ẽ, ≤W ). The sets U(MG; s),
U(B̃G; [ε1, ε2]) and L(JG; t) are given as follows:

U(MG; s) =



∅ if 0.87 < s ≤ 1,
{z14} if 0.75 < s ≤ 0.87,
{z14, z15, z13} if 0.53 < s ≤ 0.75,
{z14, z15, z13, z16, z12} if 0.49 < s ≤ 0.53,
{z14, z15, z13, z16, z12, z17, z11} if 0.36 < s ≤ 0.49,
W if 0.00 ≤ s ≤ 0.36,

U(B̃G; [ε1, ε2]) =



∅ if [0.63, 0.85] ≺ [ε1, ε2] ⪯ [1, 1],
{z14} if [0.58, 0.79] ≺ [ε1, ε2] ⪯ [0.63, 0.85],
{z14, z18, z10} if [0.52, 0.73] ≺ [ε1, ε2] ⪯ [0.58, 0.79],
{z14, z18, z10, z17, z11} if [0.47, 0.66] ≺ [ε1, ε2] ⪯ [0.52, 0.73],
{z14, z18, z10, z17, z11, z16, z12} if [0.39, 0.58] ≺ [ε1, ε2] ⪯ [0.47, 0.66],
W if [0, 0] ≺ [ε1, ε2] ⪯ [0.39, 0.58],

and

L(JG; t) =


W if 0.67 ≤ t ≤ 1,
{z14, z15, z13, z16, z12, z18, z10} if 0.61 ≤ t < 0.67,
{z14, z15, z13, z16, z12} if 0.46 ≤ t < 0.61,
{z14, z15, z13} if 0.27 ≤ t < 0.46,
∅ if 0.00 ≤ t < 0.27.

It is routine to verify that U(MG; s), U(B̃G; [ε1, ε2]) and L(JG; t) are O-subalgebras of W := (W, ⇝, ẽ,
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≤W ) for all s, t ∈ [0, 1] and [ε1, ε2] ∈ [I] whenever they are nonempty.

Given a non-empty subset A of W , consider an MBJn-set G = (MG, B̃G, JG) in W := (W, ⇝, ẽ,
≤W ) defined by

MG(x11) =

{
s if x11 ∈ A,
0 otherwise, B̃G(x11) =

{
[ε1, ε2] if x11 ∈ A,
[0, 0] otherwise, JG(x11) =

{
t if x11 ∈ A,
1 otherwise, (3.3)

where (s, t) ∈ (0, 1]× [0, 1) and ε1, ε2 ∈ (0, 1] with ε1 < ε2.

Theorem 3.8. Given a non-empty subset A of W , the MBJn-set G = (MG, B̃G, JG) given in (3.3) is
an MBJnO-subalgebra of W := (W, ⇝, ẽ, ≤W ) if and only if A is an O-subalgebra of W := (W, ⇝, ẽ,
≤W ). Moreover U(MG; s) = A, U(B̃G; [ε1, ε2]) = A and L(JG; t) = A.

Proof. Assume that G = (MG, B̃G, JG) is an MBJnO-subalgebra of W := (W,⇝, ẽ, ≤W ). Let x11, x12 ∈
W be such that ě ≤W x11, ě ≤W x12 and x11, x12 ∈ A. Then MG(x11) = s = MG(x12), B̃G(x11) =
[ε1, ε2] = B̃G(x12), and JG(x11) = t = JG(x12). Hence MG(x11 ⇝ x12) ≥ min{MG(x11),MG(x12)} = s,
B̃G(x11 ⇝ x12) ⪰ rmin{B̃G(x11), B̃G(x12)} = [ε1, ε2], JG(x11 ⇝ x12) ≤ max{JG(x11), JG(x12)} = t,
which imply that MG(x11 ⇝ x12) = s, B̃G(x11 ⇝ x12) = [ε1, ε2] and JG(x11 ⇝ x12) = t. Hence
x11 ⇝ x12 ∈ A, and therefore A is an O-subalgebra of W := (W, ⇝, ẽ, ≤W ).

Suppose conversely that A is an O-subalgebra of W := (W, ⇝, ẽ, ≤W ). Let x11, x12 ∈ W be such
that ě ≤W x11 and ě ≤W x12. If x11, x12 ∈ A, then x11 ⇝ x12 ∈ A and thus

MG(x11 ⇝ x12) = s = min{MG(x11),MG(x12)},
B̃G(x11 ⇝ x12) = [ε1, ε2] = rmin{[ε1, ε2], [ε1, ε2]} = rmin{B̃G(x11), B̃G(x12)},
JG(x11 ⇝ x12) = t = max{JG(x11), JG(x12)}.

If x11, x12 /∈ A, then MG(x11) = 0 = MG(x12), B̃G(x11) = [0, 0] = B̃G(x12) and JG(x11) = 1 = JG(x12).
Hence

MG(x11 ⇝ x12) ≥ 0 = min{0, 0} = min{MG(x11),MG(x12)},
B̃G(x11 ⇝ x12) ⪰ [0, 0] = rmin{[0, 0], [0, 0]} = rmin{B̃G(x11), B̃G(x12)},
JG(x11 ⇝ x12) ≤ 1 = max{1, 1} = max{JG(x11), JG(x12)}.

If x11 ∈ A and x12 /∈ A, then MG(x11) = s, B̃G(x11) = [ε1, ε2], JG(x11) = t, MG(x12) = 0, B̃G(x12) =
[0, 0], and JG(x12) = 1. Thus

MG(x11 ⇝ x12) ≥ 0 = min{s, 0} = min{MG(x11),MG(x12)},
B̃G(x11 ⇝ x12) ⪰ [0, 0] = rmin{[ε1, ε2], [0, 0]} = rmin{B̃G(x11), B̃G(x12)},
JG(x11 ⇝ x12) ≤ 1 = max{t, 1} = max{JG(x11), JG(x12)}.

Similarly, if x11 /∈ A and x12 ∈ A, then MG(x11 ⇝ x12) ≥ min{MG(x11),MG(x12)}, B̃G(x11 ⇝ x12) ⪰
rmin{B̃G(x11), B̃G(x12)}, and JG(x11 ⇝ x12) ≤ max{JG(x11), JG(x12)}. Therefore G = (MG, B̃G, JG) is
an MBJnO-subalgebra of W := (W, ⇝, ẽ, ≤W ).
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Let G = (MG, B̃G, JG) be an MBJn-set in W := (W, ⇝, ẽ, ≤W ). We denote

⊥ := inf{JG(a11) | a11 ∈ W},
⊤ := 1− sup{MG(a11) | a11 ∈ W},
Ω := [1, 1]− rsup {B̃G(a11) | a11 ∈ W}.

For any q ∈ [0,⊤], ã13 ∈ [[0, 0],Ω] and p ∈ [0,⊥], we define GT = (M q
G, B̃

˜a13
G , Jp

G) by M q
G(a11) =

MG(a11) + q, B̃ ˜a13
G (a11) = B̃G(a11) + ã13 and Jp

G(a11) = JG(a11) − p. Then GT = (M q
G, B̃

˜a13
G , Jp

G) is an
MBJn-set in W , and it is said to be a (q, ã13, p)-translative MBJn-set of G = (MG, B̃G, JG).

Theorem 3.9. An MBJn-set G = (MG, B̃G, JG) in W := (W, ⇝, ẽ, ≤W ) is an MBJnO-subalgebra
of W := (W, ⇝, ẽ, ≤W ) if and only if its (q, ã13, p)-translative MBJn-set GT = (M q

G, B̃
˜a13

G , Jp
G) is an

MBJnO-subalgebra of W := (W, ⇝, ẽ, ≤W ) for q ∈ [0,⊤], ã13 ∈ [[0, 0],Ω] and p ∈ [0,⊥].

Proof. Assume that G = (MG, B̃G, JG) is an MBJnO-subalgebra of W := (W, ⇝, ẽ, ≤W ), and let
q ∈ [0,⊤], ã13 ∈ [[0, 0],Ω] and p ∈ [0,⊥]. For every x11, x12 ∈ W with ě ≤W x11 and ě ≤W x12, we
obtain

M q
G(x11 ⇝ x12) = MG(x11 ⇝ x12) + q ≥ min{MG(x11),MG(x12)}+ q

= min{MG(x11) + q,MG(x12) + q} = min{M q
G(x11),M

q
G(x12)},

B̃ ˜a13
G (x11 ⇝ x12) = B̃G(x11 ⇝ x12) + ã13 ⪰ rmin{B̃G(x11), B̃G(x12)}+ ã13

= rmin{B̃G(x11) + ã13, B̃G(x12) + ã13} = rmin{B̃ ˜a13
G (x11), B̃

˜a13
G (x12)},

and

Jp
G(x11 ⇝ x12) = JG(x11 ⇝ x12)− p ≤ max{JG(x11), JG(x12)} − p

= max{JG(x11)− p, JG(x12)− p} = max{Jp
G(x11), J

p
G(x12)}.

Hence GT = (M q
G, B̃

˜a13
G , Jp

G) is an MBJnO-subalgebra of W := (W, ⇝, ẽ, ≤W ).
Suppose conversely that the (q, ã13, p)-translative MBJn-set GT = (M q

G, B̃
˜a13

G , Jp
G) of G = (MG, B̃G,

JG) is an MBJnO-subalgebra of W := (W, ⇝, ẽ, ≤W ) for all q ∈ [0,⊤], ã13 ∈ [[0, 0],Ω] and p ∈ [0,⊥].
Let x11, x12 ∈ W be such that ě ≤W x11 and ě ≤W x12. Then

MG(x11 ⇝ x12) + q = M q
G(x11 ⇝ x12) ≥ min{M q

G(x11),M
q
G(x12)}

= min{MG(x11) + q,MG(x12) + q}
= min{MG(x11),MG(x12)}+ q,

B̃G(x11 ⇝ x12) + ã13 = B̃ ˜a13
G (x11 ⇝ x12) ⪰ rmin{B̃ ˜a13

G (x11), B̃
˜a13

G (x12)}
= rmin{B̃G(x11) + ã13, B̃G(x12) + ã13}
= rmin{B̃G(x11), B̃G(x12)}+ ã13,
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and

JG(x11 ⇝ x12)− p = Jp
G(x11 ⇝ x12) ≤ max{Jp

G(x11), J
p
G(x12)}

= max{JG(x11)− p, JG(x12)− p}
= max{JG(x11), JG(x12)} − p.

It follows that MG(x11 ⇝ x12) ≥ min{MG(x11),MG(x12)}, B̃G(x11 ⇝ x12) ⪰ rmin{B̃G(x11), B̃G(x12)}
and JG(x11 ⇝ x12) ≤ max{JG(x11), JG(x12)}. Therefore G = (MG, B̃G, JG) is an MBJnO-subalgebra of
W := (W, ⇝, ẽ, ≤W ).

Theorem 3.10. Given an MBJn-set G = (MG, B̃G, JG) in W := (W,⇝, ẽ, ≤W ), consider the following
sets:

Uq(MG; s) := {x11 ∈ W | MG(x11) ≥ s− q},
U ˜a13(B̃G; [ε1, ε2]) := {x11 ∈ W | B̃G(x11) ⪰ [ε1, ε2]− ã13},
Lp(JG; t) := {x11 ∈ W | JG(x11) ≤ t+ p}

where s, t ∈ [0, 1], [ε1, ε2] ∈ [I], q ∈ [0,⊤], ã13 ∈ [[0, 0],Ω] and p ∈ [0,⊥] such that p ≤ t, [ε1, ε2] ⪰ ã13
and q ≥ s. Then the (q, ã13, p)-translative MBJn-set of G = (MG, B̃G, JG) is an MBJnO-subalgebra
of W := (W, ⇝, ẽ, ≤W ) if and only if Uq(MG; s), U ˜a13(B̃G; [ε1, ε2]) and Lp(JG; t) are O-subalgebras
of W := (W, ⇝, ẽ, ≤W ) for all s ∈ Im(MG), [ε1, ε2] ∈ Im(B̃G) and t ∈ Im(JG) satisfying s ≥ q,
[ε1, ε2] ⪰ ã13 and t ≤ p.

Proof. Let the (q, ã13, p)-translative MBJn-set of G = (MG, B̃G, JG) be an MBJ-neutro-sophic O-
subalgebra of W := (W, ⇝, ẽ, ≤W ). Let’s have s ∈ Im(MG), [ε1, ε2] ∈ Im(B̃G) and t ∈ Im(JG) that
satisfy s ≥ q, [ε1, ε2] ⪰ ã13 and t ≤ p, respectively. Let x11, x12 ∈ W be such that ě ≤W x11 and
ě ≤W x12. If x11, x12 ∈ Uq(MG; s), then MG(x11) ≥ s − q and MG(x12) ≥ s − q, which imply that
M q

G(x11) ≥ s and M q
G(x12) ≥ s. It follows that

M q
G(x11 ⇝ x12) ≥ min{M q

G(x11),M
q
G(x12)} ≥ s.

Hence MG(x11 ⇝ x12) ≥ s − q, and so x11 ⇝ x12 ∈ Uq(MG; s). If x11, x12 ∈ U ˜a13(B̃G; [ε1, ε2]), then
B̃G(x11) ⪰ [ε1, ε2]− ã13 and B̃G(x12) ⪰ [ε1, ε2]− ã13. Hence

B̃ ˜a13
G (x11 ⇝ x12) ⪰ rmin{B̃ ˜a13

G (x11), B̃
˜a13

G (x12)} ⪰ [ε1, ε2],

and so B̃G(x11 ⇝ x12) ⪰ [ε1, ε2]− ã13. Thus x11 ⇝ x12 ∈ U ˜a13(B̃G; [ε1, ε2]). If x11, x12 ∈ Lp(JG; t), then
JG(x11) ≤ t+ p and JG(x12) ≤ t+ p. It follows that

Jp
G(x11 ⇝ x12) ≤ max{Jp

G(x11), J
p
G(x12)} ≤ t,

that is, JG(x11 ⇝ x12) ≤ t+ p. Thus x11 ⇝ x12 ∈ Lp(JG; t). Therefore Uq(MG; s), U ˜a13(B̃G; [ε1, ε2]) and
Lp(JG; t) are O-subalgebras of W := (W, ⇝, ẽ, ≤W ).

Conversely, suppose that Uq(MG; s), U ˜a13(B̃G; [ε1, ε2]) and Lp(JG; t) are ordered subalgebras of W :=
(W, ⇝, ẽ, ≤W ) for all s ∈ Im(MG), [ε1, ε2] ∈ Im(B̃G) and t ∈ Im(JG) with s ≥ q, [ε1, ε2] ⪰ ã13 and
t ≤ p. Assume that M q

G(a11 ⇝ a12) < min{M q
G(a11),M

q
G(a12)} for some a11, a12 ∈ W with ě ≤W a11 and

Neutrosophic Sets and Systems, Vol. 63, 2024                                                                                                    13___________________________________________________________________________________________

E. Yang, E. H. Roh, Y. B. Jun, Ordered subalgebras of ordered BCI-algebras based on the
MBJ-neutrosophic structure

1



ě ≤W a12. Then a11, a12 ∈ Uq(MG; s0) and a11 ⇝ a12 /∈ Uq(MG; s0) for s0 = min{M q
G(a11),M

q
G(a12)}.

This is a contradiction, and so M q
G(x11 ⇝ x12) ≥ min{M q

G(x11),M
q
G(x12)} for all x11, x12 ∈ W with ě ≤W

x11 and ě ≤W x12. If B̃ ˜a13
G (a11 ⇝ a12) ≺ rmin{B̃ ˜a13

G (a11),M
˜a13

G (a12)} for some a11, a12 ∈ W with ě ≤W a11
and ě ≤W a12, then there exists ã12 ∈ [I] such that B̃ ˜a13

G (a11 ⇝ a12) ≺ ã12 ⪯ rmin{B̃ ˜a13
G (a11),M

˜a13
G (a12)}.

Hence a11, a12 ∈ U ˜a13(B̃G; ã12) but a11 ⇝ a12 /∈ U ˜a13(B̃G; ã12), which is a contradiction. Thus B̃ ˜a13
G (x11 ⇝

x12) ⪰ rmin{B̃ ˜a13
G (x11),M

˜a13
G (x12)} for all x11, x12 ∈ W with ě ≤W x11 and ě ≤W x12. Suppose that

Jp
G(a11 ⇝ a12) > max{Jp

G(a11), J
p
G(a12)} for some a11, a12 ∈ W with ě ≤W a11 and ě ≤W a12. Taking

t0 := max{Jp
G(a11), J

p
G(a12)} implies that JG(a11) ≤ t0 + p and JG(a12) ≤ t0 + p but JG(a11 ⇝ a12) >

t0 + p. This shows that a11, a12 ∈ Lp(JG; t0) and a11 ⇝ a12 /∈ Lp(JG; t0). This is a contradiction, and
therefore Jp

G(x11 ⇝ x12) ≤ max{Jp
G(x11), J

p
G(x12)} for all x11, x12 ∈ W with ě ≤W x11 and ě ≤W x12.

Consequently, the (q, ã13, p)-translative MBJn-set GT = (M q
G, B̃

˜a13
G , Jp

G) of G = (MG, B̃G, JG) is an
MBJnO-subalgebra of W := (W, ⇝, ẽ, ≤W ).

Before we conclude this paper, we raise the following question.

Question. Is the inverse of Theorem 3.5 true or false?

4 Conclusion
In a classical set, an element can either belong to the set (true) or not belong to the set (false).
Neutrosophy is a branch of philosophy that deals with the study of indeterminacy and includes three
components: true, false, and indeterminate. Neutrosophy introduces the idea that an element can have
an indeterminate state, which means it is not clear that the element is in or out of a set. The neutrosophic
set consists of three f-sets called true membership function, false membership function and indeterminate
membership function. MBJ-neutrosophic structure is a structure constructed using interval-valued f-set
instead of indeterminate membership function in the n-set. In general, the indeterminate part appears
in a wide range. So instead of treating the indeterminate part as a single value, it is treated as an
interval value, allowing a much more comprehensive processing.

The aim of this study is to apply such MBJ-neutrosophic structure to logical algebra, especially
OBCI-algebra. We first introduced the notion of MBJ-neutrosophic (ordered) subalgebras in OBCI-
algebras and then addressed severl elated properties. We looked at the relationship between the MBJn-
subalgeba and the MBJ-neutrosophic ordered subalgebra. We established an MBJ-neutrosophic ordered
subalgebra by using (intuitionistic) fuzzy ordered subalgebras, and discussed the characterization of
MBJ-neutrosophic ordered subalgebras. We introduced the (q, ã13, p)-translative MBJn-set based on a
MBJn-set, and considered its characterization. We generated an MBJ-neutrosophic ordered subalgebra
by using (q, ã13, p)-translative MBJn-set. The ideas and results covered in this paper will be applied to
logical algebras in the future and contribute to producing various results.
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Abstract. We introduce the concept of neutrosophic soft Lie subalgebras of a Lie algebra and investigate some

of their properties. The Cartesian product of neutrosophic soft Lie subalgebras will be discussed. In particular,

the homomorphisms of neutrosophic soft Lie algebras is introduced and investigated some of their properties.

Keywords: Lie algebra, subalgebra, neutrosophic soft set, neutrosophic soft Lie Algebras.

—————————————————————————————————————————-

1. Introduction

The contribution of mathematics to the present-day technology in reaching to a fast trend

cannot be ignored. The theories presented differently from classical methods in studies such

as fuzzy set [25], intuitionistic fuzzyset [9], soft set [18], neutrosophic set [17, 20], etc. The

algebraic structure of set theories dealing with uncertainties has also been studied by some

authors. After Molodtsov’s work, some different applications of soft sets were studied in [18].

Maji et al. [16] presented the concept of fuzzy soft set. This kind of fuzzy sets have now gained

a wide recognition as useful tool,in modeling of some uncertain phenomena, computer science,

mathematics, medicine, chemistry, economics, astronomy etc. Smarandache [20,21] introduced

the concept of neutrosophic set which is a mathematical tool for handling problems involving

imprecise, indeterminacy and inconsistent data. Rosenfeld [19] proposed the concept of fuzzy

groups in order to establish the algebraic structures of fuzzy sets. Definition of fuzzy module is

given by some authors. Qiu- Mei Sun et al. defined soft modules and investigated their basic

properties. Fuzzy soft modules and intuitionistic fuzzy soft modules was given and researched
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by C. Gunduz(Aras) and S. Bayramov [11, 12]. Neutrosophic soft modules are introduction

in [23].

Lie algebras were first discovered by Sophus Lie (1842-1899) when he attempted to classify

certain smoothsubgroups of general linear groups [13]. The groups he considered are now

called Lie groups. By taking the tangent space at the identity element of such a group, he

obtained the Lie algebra and hence the problems on groups can be reduced to problems on

Lie algebras so that it becomes more tractable. There are many applications of Lie algebras in

many branches of mathematics and physics. In [1–8, 10, 14, 15, 22, 24] there is an introduction

the concept of fuzzy Lie subalgebras and investigation of some of their properties.

In this paper we have introduced the concept of neutrosophic soft Lie subalgebras of a Lie

algebra and investigated some of their properties. The Cartesian product of neutrosophic soft

Lie subalgebras will be discussed. In particular, the homomorphisms of neutrosophic soft Lie

algebras is introduced and investigated some of their properties.

2. Preliminaries

In this section, we first review some elementary aspects that are necessary for this paper.

Definition 2.1. [24] An intuitionistic fuzzy set A = (µA, λA) on L is called an intuitionistic

fuzzy Lie subalgebra if the following conditions are satisfied:

µA (x+ y) ≥ min(µA (x) , µA(y)) and λA(x+ y) ≤ max (λA (x) , λA(y)), (1)

µA (αx) ≥ µA (x) and λA(αx)) ≤ λA (x) (2)

µA ([x, y]) ≥ min {µA (x) , µA (y)} and λA([x, y]) ≤ max {λA (x) , λA(y)} (3)

for all x, y ∈ L and α ∈ F .

Definition 2.2. [22] A neutrosophic set A on the universe of X is defined as

A = {< x, TA (x) , IA (x) , FA (x) >, x ∈ X} , where T, I, F : X →]−0, 1+[ and

−0 < 0 ≤ TA (x) + IA (x) + FA (x) ≤ 3+

Definition 2.3. [17] Let X be an initial universe set and E be a set of parametres. Let

P (X) denote the set of all neutrosophic sets of X. Then, a neutrosophic soft set
(
F̃ , E

)
over

X is a set defined by a set valued function F̃ representing a mapping F̃ : E → P (X) where

F̃ is called approximate function of the neutrosophic soft set
(
F̃ , E

)
. In other words, the

neutrosophic soft set is a parameterized family of some elements of the set P (X) and therefore

it can be written as a set of ordered pairs,

(F̃ : E) =
{(

e,
〈
x, TF̃ (e) (x) , IF̃ (e) (x) , FF̃ (e) (x)

〉
: xϵX

)
: e ∈ E

}
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where TF̃ (e) (x) , IF̃ (e) (x) , FF̃ (e) (x) ∈ [0, 1] respectively called the truth-membership,

indeterminacy-membership, falsity-membership function of F̃ (e). Since supremum of each

T, I, F is 1 so the inequality 0 ≤ TF̃ (e) (x) , IF̃ (e) (x) , FF̃ (e) (x) ≤ 3 is obvious.

Definition 2.4. [17] Let
(
F̃ , E

)
be neutrosophic soft set over the common universe X. The

complement of
(
F̃ , E

)
is denoted by

(
F̃ , E

)c
and is defined by:(

F̃ , E
)c

=
{ (

e,
〈
x, FF̃ (e) (x) , 1− IF̃ (e) (x) , TF̃ (e) (x) ,

〉
: x ∈ X

)
: e ∈ E

}
.

Obvious that,
((

F̃ , E
)c)c

=
(
F̃ , E

)
.

Definition 2.5. [17] Let
(
F̃ , E

)
and

(
G̃, E

)
be two neutrosophic soft sets over the com-

mon universe X.
(
F̃ , E

)
is said to be neutrosophic soft subset of

(
G̃, E

)
if TF̃ (e) (x) ≤

TG̃(e) (x) , IF̃ (e) (x) ≤ IG̃(e) (x) , FF̃ (e) (x) ≥ FG̃(e) (x) , ∀e ∈ E, ∀x ∈ X. It is denoted by(
F̃ , E

)
⊆

(
G̃, E

)
.

Definition 2.6. [17] Let
(
F̃1, E

)
and

(
F̃2, E

)
be two neutrosophic soft sets over the common

universe X. Then their union is denoted by
(
F̃1, E

)⋃(
F̃2, E

)
=

(
F̃3, E

)
and is defined by:(

F̃3, E
)
=

{ (
e,
〈
x,TF̃3(e)

(x) , IF̃3(e)
(x) , FF̃3(e)

(x) ,
〉
: x ∈ X

)
: e ∈ E

}
where

TF̃3(e)
(x) = max

{
TF̃1(e)

(x) ,TF̃2(e)
(x)

}
,

IF̃3(e)
(x) = max

{
IF̃1(e)

(x) , IF̃2(e)
(x)

}
,

FF̃3(e)
(x) = min

{
FF̃1(e)

(x) , FF̃2(e)
(x)

}
.

Definition 2.7. [17] Let
(
F̃1, E

)
and

(
F̃2, E

)
be two neutrosophic soft sets over the common

universe X. Then their intersection is denoted by
(
F̃1, E

)⋂(
F̃2, E

)
=

(
F̃3, E

)
and is defined

by: (
F̃3, E

)
=

{ (
e,
〈
x,TF̃3(e)

(x) , IF̃3(e)
(x) , FF̃3(e)

(x) ,
〉
: x ∈ X

)
: e ∈ E

}
where

TF̃3(e)
(x) = min

{
TF̃1(e)

(x) ,TF̃2(e)
(x)

}
,

IF̃3(e)
(x) = min

{
IF̃1(e)

(x) , IF̃2(e)
(x)

}
,

FF̃3(e)
(x) = max

{
FF̃1(e)

(x) , FF̃2(e)
(x)

}
.

Definition 2.8. [17] Let
(
F̃1, E

)
and

(
F̃2, E

)
be two neutrosophic soft sets over the common

universe X. Then ” AND” operation on them is denoted by
(
F̃1, E

)
∧
(
F̃2, E

)
=

(
F̃3, E × E

)
and is defined by: (

F̃3, E × E
)
=
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{(
(e1, e2) ,

〈
x,TF̃3(e1,e2)

(x) , IF̃3(e1,e2)
(x) , FF̃3(e1,e2)

(x) ,
〉
: x ∈ X

)
: (e1, e2) ∈ E × E

}
where

TF̃3(e1,e2)
(x) = min

{
TF̃1(e1)

(x) ,TF̃2(e2)
(x)

}
,

IF̃3(e1,e2)
(x) = min

{
IF̃1(e1)

(x) , IF̃2(e2)
(x)

}
,

FF̃3(e1,e2)
(x) = max

{
FF̃1(e1)

(x) , FF̃2(e2)
(x)

}
.

3. Introduction of neutrosophic Soft Lie algebras

Definition 3.1. Let E be a set of all parameters, L be Lie algebra and P (L) denotes all

neutrosophic sets over L. Then a pair
(
F̃ , E

)
is called a neutrosophic soft Lie algebra over L,

where, F̃ is a mapping given by F̃ : E → P (L), if for ∀e ∈ E, F̃ (e) =
(
TF̃ (e) , IF̃ (e) , FF̃ (e)

)
is a neutrosophic Lie algebra over L, i.e:

TF̃ (e) (x, y) ≥ min
(
TF̃ (e) (x) , TF̃ (e) (y)

)
IF̃ (e) (x, y) ≥ min

(
IF̃ (e) (x) , IF̃ (e) (y)

)
FF̃ (e) (x, y) ≤ max

(
FF̃ (e) (x) , FF̃ (e) (y)

) (4)

TF̃ (e) (αx) ≥ TF̃ (e) (x)

IF̃ (e) (αx) ≥ IF̃ (e) (x)

FF̃ (e) (αx) ≤ FF̃ (e) (x)

(5)

TF̃ (e) ([x+ y]) ≥ min
(
TF̃ (e) (x) , TF̃ (e) (y)

)
IF̃ (e) ([x+ y]) ≥ min

(
IF̃ (e) (x) , IF̃ (e) (y)

)
FF̃ (e) ([x+ y]) ≤ max

(
FF̃ (e) (x) , FF̃ (e) (y)

)
Definition 3.2. A neutrosophicsoft set

(
F̃ , E

)
on L is called neustrosophic soft Lie ideal if

it satisfied the conditions (3.1), (3.2) and the following additional condition:

For each e ∈ E

T
F̃
(e) ([x, y])≥T

F̃
(e) (x)

I
F̃
(e) ([x, y])≥I

F̃
(e) (x)

F
F̃
(e) ([x, y])≤F

F̃
(e) (x)

For all x, y ∈ L

T
F̃
(e)(0)≥T

F̃
(e)(x) T

F̃
(e)(−x)≥T

F̃
(e)(x)

I
F̃
(e) (0)≥I

F̃
(e) (x) I

F̃
(e)(−x) ≥ I

F̃
(e)(x)

F
F̃
(e)(0) ≤ F

F̃
(e)(x) F

F̃
(e)(−x)≤F

F̃
(e)(x)

Proposition 3.1. Every neutrosophic soft Lie ideal is a neutrosophic soft Lie subalgebra.
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Theorem 3.3. Let
(
F̃ , E

)
be a neutrosophic soft Lie subalgebraover L.Then

(
F̃ , E

)
is a

neutrosophic soft Lie subalgebra of L if and only if for each e ∈ E the non-empty upper s-level

cut.

UT
F̃
(e) (s) =

{
x ∈ L /T

F̃
(e) (x)≥s

}
UI

F̃
(e) (s) =

{
x ∈ L /I

F̃
(e) (x) ≥ s

}
and the non-empty Lower s- lewel cut

VF
F̃
(e) (s) =

{
x ∈ L/F

F̃
(e)(x)≤s

}
are Lie subalgebras of L , for all s ∈ [0, 1]

Proof. Assume that
(
F̃ , E

)
is a neutrosophic soft Lie subalgebra of L and let s ∈ [0, 1] be

such that UT
F̃
(e)(s) ̸= ∅. Let x, y ∈ L be such that x ∈ UT

F̃
(e)(s) and y ∈ UT

F̃
(e)(s) . It follows

that

T
F̃
(e) (x+ y) ≥ min

(
T
F̃
(e) (x) , T

F̃
(e) (y)

)
≥ s,

T
F̃
(e) (αx ) ≥ T

F̃
(e) (x) ≥ s,

T
F̃
(e) ([x, y]) ≥ min(T

F̃
(e) (x) , T

F̃
(e)(y)) ≥ s

and hence, x+ y ∈ UT
F̃ (e)

(s), αx ∈ UT
F̃ (e)

(s), and [x, y] ∈ UT
F̃ (e)

. Thus, UT
F̃ (e)

(s), forms a Lie

subalgebra of L. For the case UI
F̃ (e)

(s) and VF
F̃ (e)

(s) the proof is analogously.

Conversely, suppose that UT
F̃ (e)

(s) ̸= ∅, is a Lie subalgebra of L for every s ∈ [0, 1] and

e ∈ E.

Assume that

T
F̃
(e) (x+ y) < min

{
T
F̃
(e) (x) , T

F̃
(e) (y)

}
For same x, y ∈ L now, taking

SO :=
1

2

{
T
F̃
(e)(x+ y),min

{
T
F̃
(e)(x), T

F̃
(e)(y)

}}
,

Then we have

T
F̃
(e) (x+ y) < S0 < min

{
T
F̃
(e) (x) , T

F̃
(e) (y)

}
And hence x+ y ∈ UT

F̃
(e) (s) and x ∈ UT

F̃
(e)(s) and y ∈ UT

F̃
(e)(s).

However, this is clearly a contradiction.

Therefore,

T
F̃
(e) (x+ y) ≥ min

{
T
F̃
(e) (x) , T

F̃
(e) (y)

}
For all x, y ∈ L similarly we can show that:

T
F̃
(e) (αx) ≥ T

F̃
(e) (x) ,

T
F̃
(e) ([x, y]) ≥ min

{
T
F̃
(e) (x) , T

F̃
(e) (y)

}
For the case UI

F̃
(e) ( s) and VF

F̃
(e) (s) the proof is similar.
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Theorem 3.4. If
(
F̃ 1, E1

)
and

(
F̃ 2, E2

)
be two neutrosophic soft Lie subalgebra over L, then

intersection
(
F̃ 1, E1

)
∩
(
F̃ 2, E2

)
= (F̃ 3, E1 ∩ E2) is a neutrosophic soft Lie subalgebra over

L.

Proof. For each x, y ∈ L, e ∈ E1 ∩ E2,

T
F̃ 3 (e) (x+ y) = min

{
T
F̃ 1 (e) (x+ y) , T

F̃ 2 (e) (x+ y)
}
≥

≥ min
{
min

{
T
F̃ 1 (e) (x), TF̃ 1 (e) (y)

}
,min

{
T
F̃ 2 (e) (x), TF̃ 2(e)(y)

}}
=

= min{min{T
F̃ 1(e)(x), TF̃ 2(e)(x)},min{T

F̃ 1(e)(y), TF̃ 2(e)(y)}} =

= min{T
F̃ 3(e)(x), TF̃ 3(e)(y)}

I
F̃ 3(e) (x+ y) = min

{
I
F̃ 1(e) (x+ y) , I

F̃ 2 (e) (x+ y)
}
≥

≥ min
{
min

{
I
F̃ 1 (e) (x) , IF̃ 1 (e) (y)

}
,min

{
I
F̃ 2(e)(x), IF̃ 2(e)(y)

}}
=

= min
{
min

{
I
F̃ 1(e)(x), IF̃ 2(e)(x)

}
,min

{
I
F̃ 1(e)(y), IF̃ 2(e)(y)

}}
=

= min
{
I
F̃ 3(e)(x), IF̃ 3(e)(y)

}
F
F̃ 3(e) (x+ y) = max

{
F
F̃ 1 (e) (x+ y) , F

F̃ 2 (e) (x+ y)
}
≤

≤ max{max{F
F̃ 1(e)(x), FF̃ 1(e)(y)},max{F

F̃ 2(e)(x), FF̃ 2(e)(y)}}

= max
{
max{F

F̃ 1(e)(x), FF̃ 2(e)(x)
}
,max{F

F̃ 1(e)(y), FF̃ 2(e)(y)}} =

= max
{
F
F̃ 3(e)(x), FF̃ 3(e)(y)

}
T
F̃ 3(e)(αx) = min

{
T
F̃ 1(e)(αx), TF̃ 2(e)(αx)

}
≥

≥ min
{
T
F̃ 1(e)(x), TF̃ 2(e)(x)

}
= T

F̃ 3(e)(x)

I
F̃ 3 (e) (αx) = min

{
I
F̃ 1 (e) (αx) , IF̃ 2 (e) (αx)

}
≥

≥ min
{
I
F̃ 1 (e) (x) , IF̃ 2 (e) (x)

}
= I

F̃ 3 (e) (x)

F
F̃ 3 (e) (αx) = max

{
F
F̃ 1 (e) (αx) , FF̃ 2 (e) (αx)

}
≤

≤ max
{
F
F̃ 1 (e) (x) , FF̃ 2 (e) (x)

}
= F

F̃ 3 (e) (x)

TF̃ 3 (e) [x, y] = min
{
TF̃ 1 (e) [x, y] , TF̃ 2 (e) [x, y]

}
≥

≥ min
{
min

{
TF̃ 1 (e) (x) , TF̃ 1 (e) (y)

}
,min

{
TF̃ 2 (e) (x) , TF̃ 2 (e) (y)

}}
=

= min
{
min

{
TF̃ 1 (e) (x) , TF̃ 2 (e) (x)

}
,min

{
TF̃ 1 (e) (y) , TF̃ 2 (e) (y)

}}
=

= min
{
TF̃ 3 (e) (x) , TF̃ 3 (e) (y)

}
IF̃ 3 (e) [x, y] = min

{
IF̃ 1 (e) [x, y] , IF̃ 2 (e) [x, y]

}
≥

≥ min
{
min

{
IF̃ 1 (e) (x) , IF̃ 1 (e) (y)

}
,min

{
IF̃ 2 (e) (x) , IF̃ 2 (e) (y)

}}
=

= min
{
min

{
IF̃ 1 (e) (x) , IF̃ 2 (e) (x)

}
,min

{
IF̃ 1 (e) (y) , IF̃ 2 (e) (y)

}}
=

= min
{
IF̃ 3 (e) (x) , IF̃ 3 (e) (y)

}
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FF̃ 3 (e) [x, y] = max
{
FF̃ 1 (e) [x, y] , FF̃ 2 (e) [x, y]

}
≤

≤ max
{
max

{
FF̃ 1 (e) (x) , FF̃ 1 (e) (y)

}
,max

{
FF̃ 2 (e) (x) , FF̃ 2 (e) (y)

}}
=

= max
{
max

{
FF̃ 1 (e) (x) , FF̃ 2 (e) (x)

}
,max

{
FF̃ 1 (e) (y) , FF̃ 2 (e) (y)

}}
=

= max
{
FF̃ 3 (e) (x) , FF̃ 3 (e) (y)

}

Theorem 3.5. Let
(
F̃ 1, E1

)
and

(
F̃ 2, E2

)
be two neutrosophic soft Lie subalgebra over L.

If E1 ∩ E2 = ∅, then union
(
F̃ 1, E1

)
∪
(
F̃ 2, E2

)
= (̃F

3
, E1 ∪ E2) is a neutrosophic soft Lie

subalgebra over L.

Proof. Since E1 ∩ E2 = ∅, it follows that either e ∈ E1 or e ∈ E2 for all e ∈ E3. If

e ∈ E1, then (F̃ 3, E1 ∪ E2) = (F̃ 1, E1) is a neutrosophic soft Lie subalgebra of L, and if

e ∈ E2, then (F̃ 3, E1 ∪ E2) = (F̃
2
, E2) is a neutrosophic soft Lie subalgebra of L. Hence(

F̃ 1, E1

)
∪
(
F̃ 2, E2

)
is a neutrosophic soft Lie subalgebraover L.

Theorem 3.6.
(
F̃ , E

)
be a neutrosophic soft Lie subalgebra over L, and let

[(
F̃i, Ei

)]
iϵI

be

nonempty family of neutrosophic soft Lie subalgebra of L. Then

1)
∏

iϵI

(
F̃i, Ei

)
is a neutrosophic soft Lie subalgebra of L,

2) If Ei ∩ Ej = ∅, for all i, jϵI, then
⋃

i∈I

(
F̃i, Ei

)
is a neutrosophic soft Lie subalgebra of L.

Theorem 3.7. Let
(
F̃ 1, E1

)
and

(
F̃ 2, E2

)
be two neutrosophic soft Lie algebras over L1 and

L2 respectively. Then
(
F̃ 1, E1

)
∧
(
F̃ 2, E2

)
=

(
F̃ 3, E1 × E2

)
is a neutrosophic soft Lie algebra

over L.

Proof. For each x, y ∈ L, e1 ∈ E1, e2 ∈ E2, α ∈ K,

TF̃ 3 (e1, e2) (x+ y) = TF̃ 1 (e1) (x+ y) ∧ TF̃ 2 (e2) (x+ y) ≥

≥
{
min

(
TF̃ 1 (e1) (x) , TF̃ 1 (e1) (y)

)}
∧
{
min

(
TF̃ 2 (e2) (x) , TF̃ 2 (e2) (y)

)}
=

= min
{
TF̃ 1 (e1) (x) , TF̃ 2 (e2) (x)

}
∧min

{
TF̃ 1 (e1) (y) , TF̃ 2 (e2) (y)

}
=

= TF̃ 3 (e1, e2) (x) ∧ TF̃ 3 (e1, e2) (y)

IF̃ 3 (e1, e2) (x+ y) = IF̃ 1 (e1) (x+ y) ∧ IF̃ 2 (e2) (x+ y) ≥

≥
{
min

(
IF̃ 1 (e1) (x) , IF̃ 1 (e1) (y)

)}
∧
{
min

(
IF̃ 2 (e2) (x) , IF̃ 2 (e2) (y)

)}
=

= min
{
IF̃ 1 (e1) (x) , IF̃ 2 (e2) (x)

}
∧min

{
IF̃ 1 (e1) (y) , IF̃ 2 (e2) (y)

}
=

= IF̃ 3 (e1, e2) (x) ∧ IF̃ 3 (e1, e2) (y)
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FF̃ 3 (e1, e2) (x+ y) = FF̃ 1 (e1) (x+ y) ∨ FF̃ 2 (e2) (x+ y) ≤

≤
{
max

(
FF̃ 1 (e1) (x) , FF̃ 1 (e1) (y)

)}
∨
{
max

(
FF̃ 2 (e2) (x) , FF̃ 2 (e2) (y)

)}
=

= max
{
FF̃ 1 (e1) (x) , FF̃ 2 (e2) (x)

}
∨max

{
FF̃ 1 (e1) (y) , FF̃ 2 (e2) (y)

}
=

= FF̃ 3 (e1, e2) (x) ∨ FF̃ 3 (e1, e2) (y)

TF̃ 3 (e1, e2) (α (x)) =
(
TF̃ 1 (e1) ∧ TF̃ 2 (e2)

)
(α (x)) =(

TF̃ 1 (e1) ∧ TF̃ 2 (e2)
)
(αx) = min

(
TF̃ 1 (e1) (αx) , TF̃ 2 (e2) (αx)

)
≥

min
(
TF̃ 1 (e1) (x) , TF̃ 2 (e2) (x)

)
=

(
TF̃ 1 (e1) ∧ TF̃ 2 (e2)

)
(x) = TF̃ 3 (e1, e2) (x) ,

IF̃ 3 (e1, e2) (α (x)) =
(
IF̃ 1 (e1) ∧ IF̃ 2 (e2)

)
(α (x)) =(

IF̃ 1 (e1) ∧ IF̃ 2 (e2)
)
(αx) = min

(
IF̃ 1 (e1) (αx) , IF̃ 2 (e2) (αx)

)
≥

min
(
IF̃ 1 (e1) (x) , IF̃ 2 (e2) (x)

)
=

(
IF̃ 1 (e1) ∧ IF̃ 2 (e2)

)
(x) = IF̃ 3 (e1, e2) (x) ,

FF̃ 3 (e1, e2) (α (x)) =
(
FF̃ 1 (e1) ∨ FF̃ 2 (e2)

)
(α (x)) =(

FF̃ 1 (e1) ∨ FF̃ 2 (e2)
)
(αx) = max

(
FF̃ 1 (e1) (αx) , FF̃ 2 (e2) (αx)

)
≤

max
(
FF̃ 1 (e1) (x) , FF̃ 2 (e2) (x)

)
=

(
FF̃ 1 (e1) ∨ FF̃ 2 (e2)

)
(x) = FF̃ 3 (e1, e2) (x) ,

TF̃ 3 (e1, e2) ([x, y]) = TF̃ 1 (e1) ([x, y]) ∧ TF̃ 2 (e2) ([x, y]) ≥{
min

(
TF̃ 1 (e1) (x) , TF̃ 1 (e1) (y)

)}
∧
{
min

(
TF̃ 2 (e2) (x) , TF̃ 2 (e2) (y)

)}
=

min
{
TF̃ 1 (e1) (x) , TF̃ 2 (e2) (x)

}
∧min

{
TF̃ 1 (e1) (y) , TF̃ 2 (e2) (y)

}
=

TF̃ 3 (e1, e2) (x) ∧ TF̃ 3 (e1, e2) (y) ,

IF̃ 3 (e1, e2) ([x, y]) = IF̃ 1 (e1) ([x, y]) ∧ IF̃ 2 (e2) ([x, y]) ≥{
min

(
IF̃ 1 (e1) (x) , IF̃ 1 (e1) (y)

)}
∧
{
min

(
IF̃ 2 (e2) (x) , IF̃ 2 (e2) (y)

)}
=

min
{
IF̃ 1 (e1) (x) , IF̃ 2 (e2) (x)

}
∧min

{
IF̃ 1 (e1) (y) , IF̃ 2 (e2) (y)

}
=

IF̃ 3 (e1, e2) (x) ∧ IF̃ 3 (e1, e2) (y) ,

FF̃ 3 (e1, e2) ([x, y]) = FF̃ 1 (e1) ([x, y]) ∨ FF̃ 2 (e2) ([x, y]) ≤

≤
{
max

(
FF̃ 1 (e1) (x) , FF̃ 1 (e1) (y)

)}
∨
{
max

(
FF̃ 2 (e2) (x) , FF̃ 2 (e2) (y)

)}
=

max
{
FF̃ 1 (e1) (x) , FF̃ 2 (e2) (x)

}
∨max

{
FF̃ 1 (e1) (y) , FF̃ 2 (e2) (y)

}
=

FF̃ 3 (e1, e2) (x) ∨ FF̃ 3 (e1, e2) (y) .

Definition 3.8. Let
(
F̃ 1, E1

)
and

(
F̃ 2, E2

)
be two neutrosophic soft sets on a set L.

Then the generalized Cartesian product
(
F̃ 1, E

)
×

(
F̃ 2, E

)
= (F̃ 1 × F̃ 2, E1 × E2) is defined

as follow:

F̃ 1 × F̃ 2 : E1 × E2 → NS (L)

F̃ 1 × F̃ 2 (e1, e2) = (T
F̃ 1 (e1)× (T

F̃ 2 (e2) , (I F̃ 1 (e1)× (I
F̃ 2 (e2) , (F F̃ 1(e1)× (F

F̃ 2(e2)),

where,

(T
F̃ 1(e1)× T

F̃ 2(e2) (x, y) = min(T
F̃ 1(e1) (x) , T

F̃ 2 (e2) (y)),
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(I
F̃ 1 (e1)× (I

F̃ 2 (e2)) (x, y) = min(I
F̃ 1 (e1) (x) , IF̃ 2 (e2) (y)),

(F
F̃ 1(e1)× (F

F̃ 2(e2)) (x, y) = max (F
F̃ 1 (e1) (x) , FF̃ 2(e2)(y)).

For each (e1, e2) ∈ E1 × E2

Theorem 3.9. Let
(
F̃ 1 ,E1

)
and

(
F̃ 2 ,E2

)
be two neutrosophic soft Lie subalgebras of L,

then is
(
F̃ 1 , E1

)
×
(
F̃ 2 ,E2

)
is neutrosophic soft Lie subalgebra of L× L

Proof. Let x = (x1x2) and y = (y1y2) ∈ L× L. Then for each (e1e2) ∈ E1 × E2.

(T
F̃ 1(e1)× T

F̃ 2(e2))(x+ y) = (T
F̃ 1(e1)× T

F̃ 2(e2)((x1, x2) + (y1, y2)) =

= (T
F̃ 1(e1)× T

F̃ 2(e2))((x1 + y1, x2 + y2)) = min(T
F̃ 1(e1)(x1 + y1), TF̃ 2(e2)(x2 + y2))

≥ min(min(T
F̃ 1(e1)(x1), TF̃ 1(e1)(y1)),min(T

F̃ 2(e2) (x2) , TF̃ 2(e2)(y2))) =

= min((T
F̃ 1 (e1)× T

F̃ 2 (e2)) (x1, x2)),
((
T
F̃ 1 (e1)× T

F̃ 2 (e2
))

(y1, y2))) =

= min
(
(T

F̃ 1(e1)× T
F̃ 2(e2)) (x) ,

(
T
F̃ 1(e1)× T

F̃ 2(e2)
)
(y))

)
,(

I
F̃ 1(e1)× I

F̃ 2(e2)
)
(x+ y) =

(
I
F̃ 1(e1)× I

F̃ 2(e2)
)
((x1, x2) + (y1, y2)) =

= (I
F̃ 1(e1)× I

F̃ 2(e2))((x1 + y1, x2 + y2)) = min(I
F̃ 1(e1)(x1 + y1), IF̃ 2(e2)(x2 + y2))

≥ min(min(I
F̃ 1 (e1) (x1) , IF̃ 1(e1) (y1)),min (I

F̃ 2 (e2) (x2) , IF̃ 2 (e2) (y2))) =

= min ((I
F̃ 1 (e1)× I

F̃ 2 (e2)) (x1x2)),
((
I
F̃ 1 (e1)× I

F̃ 2 (e2
))

(y1, y2))) =

= min
(
(I

F̃ 1 (e1)× IF 2(e2)) (x) ,
(
I
F̃ 1(e1)× I

F̃ 2(e2)
)
(y)

)
,(

F
F̃ 1(e1)× F

F̃ 2(e2)
)
(x+ y) =

(
F
F̃ 1(e1)× F

F̃ 2(e2
)
) ((x1, x2) + (y1, y2))) =

=
(
F
F̃ 1(e1)× F

F̃ 2(e2)
)
((x1 + y1, x2 + y2)) =

= max(F
F̃ 1(e1) (x1 + y1) , FF̃ 2(e2) (x2 + y2)) ≤ max(max(F

F̃ 1 (e1) (x1) , FF̃ 1(e1) (y1)),

max(F
F̃ 2(e2) (x2) , FF̃ 2(e2) (y2))) = max((F

F̃ 1(e1)× F
F̃ 2(e2)) (x1, x2)),((

F
F̃1 (e1)×F

F̃2 (e2
))

(y1, y2))) = max
(
(F

F̃1(e1)× F
F̃2(e2)) (x) ,

(
F
F̃1(e1)FF̃2(e2)

)
(y))

)
.(

T
F̃1(e1)×T

F̃2(e2)
)
(αx) =

(
T
F̃1(e1)×T

F̃2 (e2)
)
(α (x1, x2)) =(

T
F̃ 1(e1)× T

F̃ 2(e2)
) (

(αx1, αx2)) = min
(
T
F̃ 1(e1) (αx1) , TF̃ 2(e2) (αx1)

)
≥

≥ min(T
F̃ 1(e1)(x1), TF̃ 2(e2)(x2)) = (T

F̃ 1(e1)× T
F̃ 2(e2))(x1, x2))

=
(
T
F̃ 1(e1)× T

F̃ 2(e2)
)
(x) ,

(IF̃ 1(e1)× IF̃ 2(e2))(αx) = (IF̃ 1(e1)× IF̃ 2(e2))(α(x1, x2)) = (IF̃ 1(e1)× IF̃ 2(e2))((αx1, αx2)) =

= min(IF̃ 1(e1)(αx1), IF̃ 2(e2)(αx1)) ≥ min(IF̃ 1(e1)(x1), IF̃ 2(e2)(x2)) =

=
(
IF̃ 1(e1)× IF̃ 2(e2)

)
(x1x2) =

(
IF̃ 1(e1)× IF̃ 2(e2)

)
(x) ,(

FF̃ 1 (e1)×FF̃ 2 (e2)
)
(αx) =

(
FF̃ 1 (e1)×FF̃ 2 (e2)

)
(α (x1, x2)) =
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=
(
FF̃ 1(e1)× FF̃ 2(e2)

)
((αx1, αx2)) = max

(
FF̃ 1

(
e1) (αx1) , FF̃ 2(e2

)
(αx1)

)
≤

≤ max
(
FF̃ 1 (e1) (x1) , FF̃ 2(e2) (x2)

)
=

(
FF̃ 1(e1)× FF̃ 2(e2)

)
(x1, x2) =

=
(
FF̃ 1(e1)×FF̃ 2 (e2)

)
(x) ,(

TF̃ 1 (e1)×TF̃ 2 (e2)
)
([x, y]) =

(
TF̃ 1 (e1)×TF̃ 2 (e2)

)
([(x1, x2)+ (y1, y2)]) ≥

≥ min(min(TF̃ 1(e1)(x1), TF̃ 1(e2)(x2)),min(TF̃ 1(e1)(y1), TF̃ 2(e2)(y2))) =

min
(
(TF̃ 1(e1)× TF̃ 2(e2)

)
(x1, x2),

(
TF̃ 1 (e1)×TF̃ 2 (e2)

)
(y1, y2)) =

= min((TF̃ 1(e1)× TF̃ 2(e2))(x),
(
TF̃ 1(e1)× TF̃ 2(e2)

)
(y)),(

IF̃ 1(e1)× IF̃ 2(e2)
)
([x, y]) =

(
IF̃ 1(e1)× IF̃ 2(e2)

)
([(x1, x2) + (y1, y2)]) ≥

≥ min(min(IF̃ 1(e1) (x1) , IF̃ 2(e2) (x2)),min(IF̃ 1(e1) (y1) , IF̃ 2(e2) (y2)) =

= min((IF̃ 1(e1)× IF̃ 2(e2))(x1, x2), (IF̃ 1(e1)× IF̃ 2(e2))(y1, y2)) =

= min
((

IF̃ 1(e1
)× IF̃ 2 (e2)

)
(x) ,

(
IF̃ 1(e1)× IF̃ 2(e2)

)
(y)

)
,(

FF̃ 1(e1)× FF̃ 2(e2)
)
([x, y]) =

(
FF̃ 1 (e1)×FF̃ 2 (e2)

)
([(x1), x2) + (y1, y2)]) ≤

≤ max(max(FF̃ 1(e1) (x1) , FF̃ 2(e2) (x2)),max(FF̃ 1(e1) (y1) , FF̃ 2 (e2) (y2)) =

= max((FF̃ 1(e1)× FF̃ 2(e2))(x1, x2), (FF̃ 1(e1)× FF̃ 2(e2))(y1, y2)) =

max((FF̃ 1(e1)× FF̃ 2(e2))(x)), (FF̃ 1(e1)× FF̃ 2(e2))(y)).

This shows that
(
F̃ 1, E1

)
×
(
F̃ 2, E2

)
is a neutrosophic soft Lie subalgebra of L× L.

Definition 3.10. Let
(
F̃ 1, E1

)
and

(
F̃ 2, E2

)
be two neutrosophic soft Lie algebras over L1

and L2 respectively, and let f : L1 → L2 be a homomorphism of Lie algebras, and let g :

E1 → E2 be a mapping of sets. Then we say that (f, g) :
(
L1,

(
F̃ 1, E1

))
→

(
L2,

(
F̃ 2, E2

))
is a neutrosophic soft Lie homomorphism of neutrosophic soft Lie algebras, if the following

condition is satisfied:
f
(
TF̃ 1 (e)

)
= F̃ 2 (g (e)) = TF̃ 2 (g (e))

f
(
IF̃ 1 (e)

)
= F̃ 2 (g (e)) = IF̃ 2 (g (e))

f
(
FF̃ 1 (e)

)
= F̃ 2 (g (e)) = FF̃ 2 (g (e))

For the Lie algebras L1 and L2 it can be easily observed that if f : L1 → L2 is a Lie homo-

morphism g : E → E′ map of sets and
(
F̃ , E′

)
is neutrosophic soft Lie subalgebra of L2, then

the neutrosophic soft set f−1
(
F̃ , E

)
of L1 is also a neutrosophic soft Lie subalgebra, where,

f−1
(
TF̃ (e)

)
(x) = TF̃ (e) (f (x))

f−1
(
IF̃ (e)

)
(x) = IF̃ (e) (f (x))

f−1
(
FF̃ (e)

)
(x) = FF̃ (e) (f (x))
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Definition 3.11. Let L1 and L2 be two Lie algebras, f : L1 → L2 is a Lie homomorphism,and

let
(
F̃ , E

)
be neutrosophic soft set over L1, g : E → E′ map of sets then image of (f, g) is

defined by:

f
(
TF̃

)
(e) (y) = sup

{
TF̃ (e) (x) : x ∈ f−1 (y) , e ∈ g−1(e

′
)}

f
(
IF̃

)
(e) (y) = sup

{
IF̃ (e) (x) : x ∈ f−1 (y) , e ∈ g−1(e

′
)}

f
(
FF̃

)
(e) (y) = inf

{
FF̃ (e) (x) : x ∈ f−1 (y) , e ∈ g−1(e

′
)}

for ∀e ∈ E, ∀ y ∈ Y .

Theorem 3.12. Let f : L1 → L2 ephimorfizm of Lie algebras and
(
F̃ , E

)
neutrosophic soft

Lie subalgebra of L1,then the homomorphic image of
(
F̃ , E

)
is neutrosophic soft Lie subalgebra

of L2.

Proof. Let y1, y2 ∈ L2. Then,{
x
∣∣ x∈f−1(y1+y2)

}
⊇
{
x1+x2

∣∣ x1∈f−1 (y1) and x2∈f−1(y2)
}
.

Now, we have, for each e ∈ E

f
(
TF̃ (e

′
)
)
(y1 + y2) = sup

{
TF̃ (e) (x) | x ∈ f−1(y1 + y2) , e ∈ g−1(e

′
)}

≥ sup
{
TF̃ (e)(x1 + x2), | x1 ∈ f−1 (y1) and x2 ∈ f−1 (y2) , e ∈ g−1(e′)} ≥

≥ sup
{
min{TF̃ (e)(x1), TF̃ (e) (x2)} | x1 ∈ f−1 (y1) and x2 ∈ f−1(y2) , e ∈ g−1(e′)} =

= min{{sup
(
TF̃ (e)

)
(x1) | x1 ∈ f−1 (y1) e ∈ g−1(e′)}, {supTF̃ (e)(x2)|x2 ∈ f−1(y2), e ∈ g−1(e

′
)}} =

= min
{
f(TF̃ (e

′))(y1), f(TF̃ (e
′))(y2)

}
For y2 ∈ L2 and α ∈ K we have{

x
∣∣ x∈f−1(αy)

}
⊇
{
αx

∣∣ x∈f−1 (y)
}
.

f
(
TF̃ (e)

)
(αy) = sup{TF̃ (e) (αx) | x ∈ f−1(y), e ∈ g−1(e′)}

≥ sup
{
TF̃ (e)(x), |x ∈ f−1(y), e ∈ g−1(e

′
)
}
= f

(
TF̃ (e

′
)
)
(y) .

If y1, y2 ∈ L2 then{
x|x ∈ f−1([y1, y2])

}
⊇

{
[x1, x2]|x1 ∈ f−1(y1), x2 ∈ f−1(y2)

}
Now

f
(
TF̃

(
e′
))

( [y1, y2] ) = sup { TF̃ (e) (x) |x∈f−1( [y1, y2]), e ∈ g−1(e′)}

≥ sup{TF̃ (e)[x1, x2],|x1∈f
−1 (y1) and x2∈f−1 (y2) , e ∈ g−1(e′)}

≥ sup
{
min {TF̃ (e) (x1) , TF̃ (e) (x2)}

∣∣ x1∈f−1 (y1) and x2∈f−1(y2), e ∈ g−1(e′)
}

= min{{supT
F̃
(e)(x1)|x1 ∈ f−1(y1), e ∈ g−1(e′)}, {supT

F̃
(e)(x2)|x2 ∈ f−1(y2), e ∈ g−1(e′)}}

= min{f
(
TF̃ (e)

)
(y1) , f

(
TF̃ (e)

)
(y2)}.
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Now , we can easily proof for f
(
IF̃ (e

′)
)
(y1+y2)≥min {f

(
IF̃ (e

′)
)
(y1) , f

(
IF̃ (e

′)
)
(y2)}

f(IF̃ (e
′))(αy)≥f(IF̃ (e

′))(y)

f
(
IF̃ (e

′)
)
( [y1, y2] )≥min{f

(
IF̃ (e

′)
)
(y1) , f

(
IF̃ (e

′)
)
(y2)}

f
(
FF̃ (e

′)
)
(y1+y2) = inf{ FF̃ (e) (x) |x∈f−1(y1+y2), e ∈ g−1(e′)}

≤ inf{FF̃ (e
′)(x1+x2),|x1∈f−1 (y1) ,x2∈f−1 (y2) , e ∈ g−1(e′)}

≤ inf
{
max {FF̃ (e) (x1) , FF̃ (e) (x2)}

∣∣ x1∈f−1 (y1) , x2 ∈ f−1(y2) , e ∈ g−1(e′)}

= max
{{

inf FF̃ (e) (x1) , |x1 ∈ f−1(y1), e ∈ g−1(e′)
}
,
{
inf FF̃ (e)(x2)|x2 ∈ f−1 (y2) , e ∈ g−1(e′)

}}
= max{f

(
FF̃ (e

′)
)
(y1) , f

(
FF̃ (e

′)
)
(y2)}

For y ∈ L2 and α ∈ K we have

f
(
FF̃ (e

′)
)
(αy) = inf { FF̃ (e) (αx) |x∈f−1(y), e ∈ g−1(e′)}

≤ inf
{
FF̃ (e) (x) ,

∣∣ x∈f−1(y) , e ∈ g−1(e′)} = f
(
F
F̃
(e′)

)
(y)

Now

f
(
F
F̃

(
e′
))

([y1, y2]) = inf { F
F̃
(e) (x) |x∈f−1([y1, y2], e ∈ g−1(e′)}

≤inf
{
F
F̃
(e)[x1, x2

]
,| x1∈f−1 (y1) , x2∈f−1 (y2) , e ∈ g−1(e′)}

≤inf
{
max{F

F̃
(e) (x1) ,FF̃

(e) (x2)}
∣∣ x1∈f−1 (y1) , x2∈f−1(y2) , e ∈ g−1(e′)}

= max{{inf(F
F̃ (e)

(x1) |x1 ∈ f−1(y1), e ∈ g−1(e′)}, {inf F
F̃ (e)

(x2))|x2 ∈ f−1(y2), e ∈ g−1(e′)}

= max{f(F
F̃
(e) (y1) , f(FF̃

(e) (y2)}

Thus f
((

F̃ , E
))

= (f
(
T
F̃
(e′)

)
, f

(
I
F̃
(e′)

)
, f

(
F
F̃
(e′)

)
) is a neutrosophic soft Lie algebra

of L2 .

4. Conclusion

There we have introduced the concept of neutrosophic soft Lie subalgebras of a Lie algebra

and investigated some of their properties.
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Abstract:In this paper, a new concept of Neutrosophic Spherical Cubic Set (NSCS) is introduced as an 

amalgamation of sets such as Neutrosophic, Interval valued, cubic and spherical sets. We studied the 

concepts of internal and external neutrosophic spherical cubic sets and discussed their basic properties. 

Further P-order, P-union, P-intersection as well as R-order, R-union, R-intersection are discussed for 

NSCSs. 

 

Keywords:Neutrosophic set(NS); Neutrosophic spherical set (NSS),Neutrosophic cubic 

set(NCS);Neutrosophic spherical cubic sets(NSCSs)internalneutrosophic spherical cubic set (IntNSCS) 

and externalneutrosophic spherical cubic set(ExtNSCS). Truth Internal/External- ℛ − Int/Ext , 

Inderterminacy Internal/External- 𝒥 Int/Ext ,Falsity Internal/External − 𝒮 Int/Ext 

 

1. Introduction 

Zadeh [12] established the fuzzy set notion in 1965 to cope with probabilistic uncertainty associated with 

inaccuracy of events, observations and desires.By the idea of fuzziness, the value of 1 is allocated to an 

object that is fully within the set and value of 0 is allocated to an object that is totally outside the set, then 
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any item partially inside the set will have a value ranging between 0 and 1, Fuzzy set along with it 

generalizations has many real life applications [9,10,11]. 

Jun et al. [2] proposed cubic set which is a hybrid of fuzzy sets and interval valued fuzzy sets. They also 

examined internal (external) cubic sets. By adding the falsehood (f), the degree of non-membership, and 

various properties. 

In 1995,Smarandache [7,8] presented the concept of neutrosophicsets and neutrosophic logic. 

Neutrosophy lays the groundwork for plenty of new mathematical theories that encompass classical and 

fuzzy analogues. There are three defining functions in neutrosophic set they are truth T, indeterminate I 

and false membership function F all of which are defined on a universe of discourse X.These three 

functions are totally self-contained. The formation, nature, and extent of neutralities are all investigated in 

the Neutrosophicset. The idea ofneutrosophic set is a generalization of idea of a classical fuzzy set and so 

on. 

KutluGundogu, Fatmaa, Kahraman, Cengiz [5,6] developed spherical fuzzy sets and spherical fuzzy 

TOPSIS method. They introduced generalized three dimensional spherical fuzzy sets (SFS) including 

some essential differences from the other fuzzy sets. 

    The spherical fuzzy set is a more dominant structures for coping with these situations. The idea 

behind spherical fuzzy set is to let decision makers to generalize other extensions of fuzzy sets by defining 

a membership function on a spherical surfaces and independently assign the parameters of that function 

with a larger domain. 

The motive of the paper is to introduce a new concept called NSCSs and to study theINSCSs and 

ENSCSs that is truth, indeterminacy,falsity internaland truth, indeterminacy, falsity external 

respectively. Also, we have investigated their properties. We showed that P-union and the P-intersection 

of INSCSs are also theINSCSs. Examples are given to show that P-union and the P-intersection of 

ENSCSs may not be ENSCSs. R-union and the R- intersection of INSCSsmaynotbe INSCS.Also, we have given 

theconditionsfortheR-unionoftwoT-INSCSs(resp. I-INSCSsandF-INSCSs)tobeaT-INSCSs(resp.I-INSCSs 

and F-INSCSs) NSCS.Some of the fundamental properties of NSCSs were also investigated. 
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→ 

2. PRELIMINARIES 

FUZZY SET [12] 

A fuzzy set in a set S  is defined to be a function  : 0,1S  . Define a relation   on  0,1
S

as 

follows   , 0,1
S

   ,    ( ( ) .s S s s         

NEUTROSOPHIC SET [7] 

Let Sbe a non-empty set. A neutrosophic set (NS)isastructureoftheform: 

 , ( ), ( ), ( ) /T I Fs s s s s S      

where  : 0,1T S  is a truth membership function,  : 0,1I S  is an indeterminate 

membership function, and  : 0,1F S  is a false membership function. 

CUBIC SETS [2] 

Let Sbe a non-empty set. A cubic set in Y is a structure of the form 

 , ( ), ( ) /y C y y y S C  

where A is an interval valued fuzzy set in S and  is a fuzzy set in S. 

NEUTROSOPHIC CUBIC SETS [4] 

Let S be a non-empty set. A neutrosophic cubic set (NCS) in S is a pair ( , )C A where 

 , ( ), ( ), ( ) /T I FC s C s C s C s s S   is an intervalneutrosophic set in S and 

 ; ( ), ( ), ( ) /T I Fs s s s s X      is a neutrosophic set inS. 

SPHERICAL FUZZY SETS [5] 

A Spherical Fuzzy Set 
~

sA of the universe U  is given by 

 ~ ~ ~

~ , ( ), ( ), ( ) /
s s s

s A A A
u u u u u U   A where  ~ ~ ~, , , 0,1

s s sA A A
U     

and ~ ~ ~

2 2 20 ( ) ( ) 1
s s sA A A

u u      u U  . 
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3. NEUTROSOPHIC SPHERICAL SETS 

DEFINITION 3.1 

Let S be a non-empty set. A Neutrosophic Spherical set in NS is of the form 

𝐴𝑠 = {〈𝑠: 𝑇𝐴𝑠
(𝑠), 𝐼𝐴𝑆

(𝑠), 𝐹𝐴𝑠
(𝑠)〉/𝑠 ∈ 𝑆} 

where
sAT  is truth degree membership 

s
AI is indeterminate degree membership 

sAF is false degree membership. 

where 

TAS
(𝑠), IAS

(𝑠), FAS
(𝑠)/𝑠 ∈ 𝑆 → [0,1] 

0 ≤ [TAS
(𝑠)]

2
+ [IAS

(𝑠)]
2

+ [FAS
(𝑠)]

2
≤ √3 

INTERVAL VALUED NEUTROSOPHIC SPHERICAL SETS 

DEFINITION 3.2 

 

Let S be a non-empty set. An interval-valued Neutrosophic Spherical set is of the form 

 ( ) ( ) ( ) ( ) ( ) ( ): , , ,
s s s s s ss A s A s A s A s A s A ss T T I I F F s S                A  

Where 𝑇𝐴𝑠

− (𝑠), 𝐼𝐴𝑠

− (𝑠), 𝐹𝐴𝑠

− (𝑠)/𝑠 ∈ 𝑆 → [0,1] 

0 ≤ [𝑇𝐴𝑠

− (𝑠)]
2

+ [𝐼𝐴𝑠

− (𝑠)]
2

+ [𝐹𝐴𝑠

− (𝑠)]
2

≤ √3 

and𝑇𝐴𝑠

+ (𝑠), 𝐼𝐴𝑠

+ (𝑠), 𝐹𝐴𝑠

+ (𝑠)/𝑠 ∈ 𝑆 → [0,1] 

0 ≤ [𝑇𝐴𝑠

+ (𝑠)]
2

+ [𝐼𝐴𝑠

+ (𝑠)]
2

+ [𝐹𝐴𝑠

+ (𝑠)]
2

≤ √3 

NEUTROSOPHIC SPHERICAL CUBIC SETS 

DEFINITION 3.3 

A non-empty set 𝒱𝑁𝑆𝐶  of NSCS is defined by 

𝒞𝑁𝑆𝐶 = {〈𝑣, 𝐴𝑠(𝑣), 𝜆𝑠(𝑣)〉/𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

where 𝐴𝑠(𝑣) is an IVNSS in 𝒱𝑁𝑆𝐶  and 𝜆𝑠(𝑣) is a NSS in 𝒱𝑁𝑆𝐶 . 
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EXAMPLE 3.1 

For 𝒱𝑁𝑆𝐶 = {𝑣1, 𝑣2, 𝑣3}, the pair 𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣)) with the tabular representation 

in Table 0.2 is an NSCS in 𝒱𝑁𝑆𝐶 .   

 Table  1:  𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣)) 

 

𝒱𝑁𝑆𝐶  𝐴𝑠(𝑣) 𝜆𝑠(𝑣) 

𝑣1 ([0.3,0.4], [0.4,1.0], [0.3,0.5]) (0.2,0.4,0.4) 

𝑣2 ([0.4,0.7], [0.2,1.0], [0.2,0.4]) (0.5,0.2,0.3) 

𝑣3 ([0.7,0.6], [0.0,1.0], [0.3,0.8]) (0.4,0.1,0.5) 

 

DEFINITION 3.4 

A non-empty set of 𝒱𝑁𝑆𝐶  of NSCS, 𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣)) in 𝒱𝑁𝑆𝐶  is said to   

    • Truth Int (briefly ℛ − Int) is defined by  

 (∀ 𝑣 ∈ 𝒱𝑁𝑆𝐶 )(ℛ𝐴𝑠

− (𝑣) ≤ ℛ𝜆𝑠
(𝑣) ≤ ℛ𝐴𝑠

+ (𝑣)) (1) 

 

    • Indeterminacy-Int (briefly 𝒥 − Int) is defined by  

 (∀ 𝑣 ∈ 𝒱𝑁𝑆𝐶 )(𝒥𝐴𝑠

− (𝑣) ≤ 𝒥𝜆𝑠
(𝑣) ≤ 𝒥𝐴𝑠

+ (𝑣)) (2) 

 

    • Falsity-int(briefly 𝒮 Int) is defined by  

 (∀ 𝑣 ∈ 𝒱𝑁𝑆𝐶 )(𝒮𝐴𝑠

− (𝑣) ≤ 𝒮𝜆𝑠
(𝑣) ≤ 𝒮𝐴𝑠

+ (𝑣)) (3) 

 

 If a NSCS, 𝒞𝑁𝑆𝐶  in 𝒱𝑁𝑆𝐶  satisfies above inequalities then 𝒞𝑁𝑆𝐶  is an Int NSCS in 

𝒱𝑁𝑆𝐶 .  

 

 

EXAMPLE 3.2 

For 𝒱𝑁𝑆𝐶 = {𝑣1, 𝑣2, 𝑣3}, the pair 𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣)) with the tabular representation 

in Table 0.4 is an Int NSCS in 𝒱𝑁𝑆𝐶 .   

Table  2:  𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣)) 

 

𝒱𝑁𝑆𝐶  𝐴𝑠(𝑣) 𝜆𝑠(𝑣) 

𝑣1 ([0.3,0.4], [0.2,1.0], [0.5,0.6]) (0.35,0.2,0.55) 

𝑣2 ([0.5,0.6], [0.1,1.0], [0.4,0.6]) (0.5,0.1,0.4) 
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𝑣3 ([0.6,0.7], [0.1,1.0], [0.2,0.4]) (0.65,0.1,0.25) 

 

 

DEFINITION 3.5 

A non-empty set 𝒱𝑁𝑆𝐶  of NSCS, 𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣)) is said to   

    • Truth Ext (briefly ℛ Ext) is defined by  

 (∀ 𝑣 ∈ 𝒱𝑁𝑆𝐶 )(ℛ𝜆𝑠
(𝑣) ∈ (ℛ𝐴𝑠

− (𝑣), ℛ𝐴𝑠

+ (𝑣)) (4) 

 

    • Indeterminacy-Ext (briefly 𝒥 Ext) is defined by  

 (∀ 𝑣 ∈ 𝒱𝑁𝑆𝐶 )(𝒥𝜆𝑠
(𝑣) ∈ (𝒥𝐴𝑠

− (𝑣), 𝒥𝐴𝑠

+ (𝑣)) (5) 

 

    • Falsity-Ext (briefly 𝒮 Ext) is defined by  

 (∀ 𝑣 ∈ 𝒱𝑁𝑆𝐶 )(𝒮𝜆𝑠
(𝑣) ∈ (𝒮𝐴𝑠

− (𝑣), 𝒮𝐴𝑠

+ (𝑣)) (6) 

 

 If a NSCS, 𝒞𝑁𝑆𝐶  in 𝒱𝑁𝑆𝐶  satisfies above inequalities then 𝒞𝑁𝑆𝐶  is an Ext NSCS in 

𝒱𝑁𝑆𝐶 .  

 

EXAMPLE 3.3 

For 𝒱𝑁𝑆𝐶 = {𝑣1, 𝑣2, 𝑣3}, the pair 𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣)) with the tabular representation 

in Table 0.6 is an Ext NSCS in 𝒱𝑁𝑆𝐶 .   

Table  3:  𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣)) 

 

𝒱𝑁𝑆𝐶  𝐴𝑠(𝑣) 𝜆𝑠(𝑣) 

𝑣1 ([0.3,0.4], [0.2,1.0], [0.4,0.5]) (0.45,0.1,0.65) 

𝑣2 ([0.5,0.6], [0.1,1.0], [0.4,0.6]) (0.4,0.0,0.7) 

𝑣3 ([0.6,0.7], [0.1,1.0], [0.2,0.4]) (0.5,0.0,0.45) 

 

Theorem 3.4  Let 𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣)) be a NSCS in 𝒱𝑁𝑆𝐶  is not Ext then there 

exists 𝑣 ∈ 𝒱𝑁𝑆𝐶  such that ℛ𝜆𝑠
(𝑣) ∈ (ℛ𝐴𝑠

− (𝑣), ℛ𝐴𝑠

+ (𝑣)) , 𝒥𝜆𝑠
(𝑣) ∈ (𝒥𝐴𝑠

− (𝑣), 𝒥𝐴𝑠

+ (𝑣))  or 

𝒮𝜆𝑠
(𝑣) ∈ (𝒮𝐴𝑠

− (𝑣), 𝒮𝐴𝑠

+ (𝑣)).  

 

Proof. From the definition  of an Ext NSCS ,  

 ℛ𝜆𝑠
(𝑣) ∉ [ℛ𝐴𝑠

− (𝑣), ℛ𝐴𝑠

+ (𝑣)], 

 𝒥𝜆𝑠
(𝑣) ∉ [𝒥𝐴𝑠

− (𝑣), 𝒥𝐴𝑠

+ (𝑣)], 

 𝒮𝜆𝑠
(𝑣) ∉ [𝒮𝐴𝑠

− (𝑣), 𝒮𝐴𝑠

+ (𝑣)] 
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 for 𝑣 ∈ 𝒱𝑁𝑆𝐶 . But given that 𝒞𝑁𝑆𝐶  is not Ext NSCS, such that  

 ℛ𝐴𝑠

− (𝑣) ≤ ℛ𝜆𝑠
(𝑣) ≤ ℛ𝐴𝑠

+ (𝑣) 

 𝒥𝐴𝑠

− (𝑣) ≤ 𝒥𝜆𝑠
(𝑣) ≤ 𝒥𝐴𝑠

+ (𝑣) 

 𝒮𝐴𝑠

− (𝑣) ≤ 𝒮𝜆𝑠
(𝑣) ≤ 𝒮𝐴𝑠

+ (𝑣) 

 Hence the result.  

 

 

Theorem 3.5  Let 𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠)(𝑣) be a NSCS in 𝒱𝑁𝑆𝐶 , if 𝒞𝑁𝑆𝐶  is both ℛ Int 

and ℛ Ext then  

 (∀ 𝑣 ∈ 𝒱𝑁𝑆𝐶 )(ℛ𝜆𝑠
(𝑣) ∈ {ℛ𝐴𝑠

− (𝑣)/𝑣 ∈ 𝒱𝑁𝑆𝐶 } ∪ {ℛ𝐴𝑠

+ (𝑣)/𝑣 ∈ 𝒱𝑁𝑆𝐶 }). 

 

 

Proof. Two conditions (1) and (4) which implies that  

 ℛ𝐴𝑠

− (𝑣) ≤ ℛ𝜆𝑠
(𝑣) ≤ ℛ𝐴𝑠

+ (𝑣)   𝑎𝑛𝑑  

 

 ℛ𝜆𝑠
(𝑣) ∈ (ℛ𝐴𝑠

− (𝑣), ℛ𝐴𝑠

+ (𝑣))∀ 𝑣 ∈ 𝒱𝑁𝑆𝐶 . 

Then ℛ𝜆𝑠
(𝑥) = (ℛ𝐴𝑠

− (𝑣) or ℛ𝜆𝑠
(𝑣) = (ℛ𝐴𝑠

+ (𝑣) so that  

 ℛ𝜆𝑠
(𝑣) ∈ {ℛ𝐴𝑠

− (𝑣)/𝑣 ∈ 𝒱𝑁𝑆𝐶 } ∪ {ℛ𝐴𝑠

+ (𝑣)/𝑣 ∈ 𝒱𝑁𝑆𝐶 }. 

Hence proved.  

 

Theorem 3.6  Let 𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣)) be a NSCS in 𝒱𝑁𝑆𝐶 , if 𝒞𝑁𝑆𝐶  is both 𝒥 Int 

and 𝒥 Ext then  

 (∀ 𝑣 ∈ 𝒱𝑁𝑆𝐶 )(𝒥𝜆𝑠
(𝑣) ∈ {𝒥𝐴𝑠

− (𝑣)/𝑣 ∈ 𝒱𝑁𝑆𝐶 } ∪ {𝒥𝐴𝑠

+ (𝑣)/𝑣 ∈ 𝒱𝑁𝑆𝐶 }). 

 

 

Proof. Two conditions (2) and (5) which implies that  

 𝒥𝐴𝑠

− (𝑣) ≤ 𝒥𝜆𝑠
(𝑣) ≤ 𝒥𝐴𝑠

+ (𝑣)   𝑎𝑛𝑑  

 

 𝒥𝜆𝑠
(𝑣) ∈ (𝒥𝐴𝑠

− (𝑣), 𝒥𝐴𝑠

+ (𝑣))∀ 𝑣 ∈ 𝒱𝑁𝑆𝐶 . 

Then 𝒥𝜆𝑠
(𝑥) = (𝒥𝐴𝑠

− (𝑣) or 𝒥𝜆𝑠
(𝑣) = (𝒥𝐴𝑠

+ (𝑣) so that  

 𝒥𝜆𝑠
(𝑣) ∈ {𝒥𝐴𝑠

− (𝑣)/𝑣 ∈ 𝒱𝑁𝑆𝐶 } ∪ {𝒥𝐴𝑠

+ (𝑣)/𝑣 ∈ 𝒱𝑁𝑆𝐶 }. 

Hence proved.  

 

 

Theorem 3.7  Let 𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣)) be a NSCS 𝒱𝑁𝑆𝐶 , if 𝒞𝑁𝑆𝐶  is both 𝒮 Int and 

𝒮 Ext then  

 (∀ 𝑣 ∈ 𝒱𝑁𝑆𝐶 )(𝒮𝜆𝑠
(𝑣) ∈ {𝒮𝐴𝑠

− (𝑣)/𝑣 ∈ 𝒱𝑁𝑆𝐶 } ∪ {𝒮𝐴𝑠

+ (𝑣)/𝑣 ∈ 𝒱𝑁𝑆𝐶 }). 

 

 

Proof. Two conditions (3) and (6) which implies that  

 𝒮𝐴𝑠

− (𝑣) ≤ 𝒮𝜆𝑠
(𝑣) ≤ 𝒮𝐴𝑠

+ (𝑣)   𝑎𝑛𝑑  
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 𝒮𝜆𝑠
(𝑣) ∈ (𝒮𝐴𝑠

− (𝑣), 𝒮𝐴𝑠

+ (𝑣))∀ 𝑣 ∈ 𝒱𝑁𝑆𝐶 . 

Then 𝒮𝜆𝑠
(𝑥) = (𝒮𝐴𝑠

− (𝑣) or 𝒮𝜆𝑠
(𝑣) = (𝒮𝐴𝑠

+ (𝑣) so that  

 𝒮𝜆𝑠
(𝑣) ∈ {𝒮𝐴𝑠

− (𝑣)/𝑣 ∈ 𝒱𝑁𝑆𝐶 } ∪ {𝒮𝐴𝑠

+ (𝑣)/𝑣 ∈ 𝒱𝑁𝑆𝐶 }. 

Hence proved.  

 

 

Definition 3.8  Let 𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣)) and ℬ𝑁𝑆𝐶 = (𝐵𝑠(𝑣), 𝜓𝑠(𝑣)) be a NSCS in 

𝒱𝑁𝑆𝐶  where  

 𝒞𝑁𝑆𝐶 = {𝒱𝑁𝑆𝐶 : [ℛ𝐴𝑠(𝑣)
− , ℛ𝐴𝑠(𝑣)

+ ][𝒥𝐴𝑠(𝑣)
− , 𝒥𝐴𝑠(𝑣)

+ ][𝒮𝐴𝑠(𝑣)
− , 𝒮𝐴𝑠(𝑣)

+ ]/𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 

 𝜆𝑠: {(𝒱𝑁𝑆𝐶 , ℛ𝜆𝑠
(𝑣), 𝒥𝜆𝑠

(𝑣), 𝒮𝜆𝑠
(𝑣))/𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 

 ℬ𝑁𝑆𝐶 = {𝒱𝑁𝑆𝐶 : [ℛ𝐵𝑠(𝑣)
− , ℛ𝐵𝑠(𝑣)

+ ][𝒥𝐵𝑠(𝑣)
− , 𝒥𝐵𝑠(𝑣)

+ ][𝒮𝐵𝑠(𝑣)
− , 𝒮𝐵𝑠(𝑣)

+ ]/𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 

 𝜓𝑠: {(𝒱𝑁𝑆𝐶 , ℛ𝜓𝑠
(𝑣), 𝒥𝜓𝑠

(𝑣), 𝒮𝜓𝑠
(𝑣))/𝑣 ∈ 𝒱𝑁𝑆𝐶 }. 

Then   

𝒞𝑁𝑆𝐶 = ℬ𝑁𝑆𝐶  iff  

𝐴𝑠(𝑣) = 𝐵𝑠(𝑣) and 𝜆𝑠(𝑣) = 𝜓𝑠(𝑣) for all 𝑣 ∈ 𝒱𝑁𝑆𝐶  

    If 𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣))  and ℬ𝑁𝑆𝐶 = (𝐵𝑠(𝑣), 𝜓𝑠(𝑣))  be any two NSCSs, then 

𝑃 −order is defined by 

𝒞𝑁𝑆𝐶 ⊆𝑃 ℬ𝑁𝑆𝐶  iff 𝐴𝑠(𝑣) ⊆ 𝐵𝑠(𝑣) and 𝜆𝑠(𝑣) ≤ 𝜓𝑠(𝑣) for all 𝑣 ∈ 𝒱𝑁𝑆𝐶  

    If 𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣))  and ℬ𝑁𝑆𝐶 = (𝐵𝑠(𝑣), 𝜓𝑠(𝑣))  be any two NSCSs, then 

𝑅 −order is defined by 

𝒞𝑁𝑆𝐶 ⊆𝑅 ℬ𝑁𝑆𝐶  iff 𝐴𝑠(𝑣) ⊆ 𝐵𝑠(𝑣) and 𝜆𝑠(𝑣) ≥ 𝜓𝑠(𝑣) for all 𝑣 ∈ 𝒱𝑁𝑆𝐶 .  

 

 

 

Definition3.9  Let 𝒞𝑁𝑆𝐶  and ℬ𝑁𝑆𝐶  be two NSCS in 𝒱𝑁𝑆𝐶 , then P-union is defined by 

𝒞𝑁𝑆𝐶 ∪𝑃 ℬ𝑁𝑆𝐶 = {〈𝑣, 𝑚𝑎𝑥(𝐴𝑠(𝑣), 𝐵𝑠(𝑣)), (𝜆𝑠(𝑣) ∨𝑃 𝜓𝑠(𝑣))〉: 𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

where 𝐴𝑠(𝑣), 𝐵𝑠(𝑣) represent IVNSSs and 𝜆𝑠(𝑣), 𝜓𝑠(𝑣) represent NSSs. Hence 

ℛ𝒞𝑁𝑆𝐶
∨𝑃 ℛℬ𝑁𝑆𝐶

= {〈𝑣, 𝑚𝑎𝑥(ℛ𝐴𝑠(𝑣), 𝐵𝑠(𝑣)), (ℛ𝜆𝑠
(𝑣) ∨𝑃 ℛ𝜓𝑠

(𝑣))〉: 𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

𝒥𝒞𝑁𝑆𝐶
∨𝑃 𝒥ℬ𝑁𝑆𝐶

= {〈𝑣, 𝑚𝑎𝑥(𝒥𝐴𝑠(𝑣), 𝐵𝑠(𝑣)), (𝒥𝜆𝑠
(𝑣) ∨𝑃 𝒥𝜓𝑠

(𝑣))〉: 𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

𝒮𝒞𝑁𝑆𝐶
∨𝑃 𝒮ℬ𝑁𝑆𝐶

= {〈𝑣, 𝑚𝑎𝑥(𝒮𝐴𝑠(𝑣), 𝐵𝑠(𝑣)), (𝒮𝜆𝑠
(𝑣) ∨𝑃 𝒮𝜓𝑠

(𝑣))〉: 𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 

Definition 3.10  Let 𝒞𝑁𝑆𝐶  and ℬ𝑁𝑆𝐶  be two NSCS in 𝒱𝑁𝑆𝐶 ,  then P-intersection is 

defined by 

𝒞𝑁𝑆𝐶 ∩𝑃 ℬ𝑁𝑆𝐶 = {〈𝑣, 𝑚𝑖𝑛(𝐴𝑠(𝑣), 𝐵𝑠(𝑣)), (𝜆𝑠(𝑣) ∧𝑃 𝜓𝑠(𝑣))〉: 𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

where 𝐴𝑠(𝑣), 𝐵𝑠(𝑣) represent IVNSSs and 𝜆𝑠(𝑣), 𝜓𝑠(𝑣) represent NSSs. Hence 
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ℛ𝒞𝑁𝑆𝐶
∧𝑃 ℛℬ𝑁𝑆𝐶

= {〈𝑣, 𝑚𝑖𝑛(ℛ𝐴𝑠(𝑣), 𝐵𝑠(𝑣)), (ℛ𝜆𝑠
(𝑣) ∧𝑃 ℛ𝜓𝑠

(𝑣))〉: 𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

𝒥𝒞𝑁𝑆𝐶
∧𝑃 𝒥ℬ𝑁𝑆𝐶

= {〈𝑣, 𝑚𝑖𝑛(𝒥𝐴𝑠(𝑣), 𝐵𝑠(𝑣)), (𝒥𝜆𝑠
(𝑣) ∧𝑃 𝒥𝜓𝑠

(𝑣))〉: 𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

𝒮𝒞𝑁𝑆𝐶
∧𝑃 𝒮ℬ𝑁𝑆𝐶

= {〈𝑣, 𝑚𝑖𝑛(𝒮𝐴𝑠(𝑣), 𝐵𝑠(𝑣)), (𝒮𝜆𝑠
(𝑣) ∧𝑃 𝒮𝜓𝑠

(𝑣))〉: 𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 

Example 3.11  For 𝒱𝑁𝑆𝐶 = {𝑣1, 𝑣2, 𝑣3}, let 𝒞𝑁𝑆𝐶  and ℬ𝑁𝑆𝐶  be two NSCSs over 𝒱𝑁𝑆𝐶  

is defined by 

𝒞𝑁𝑆𝐶 = {〈𝑣, 𝐴𝑠(𝑣), 𝜆𝑠(𝑣)〉𝑣 ∈ 𝒱𝑁𝑆𝐶 } is   

 

Table  4:  𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣)) 

 

𝒱𝑁𝑆𝐶  𝐴𝑠(𝑣) 𝜆𝑠(𝑣) 

𝑣1 ([0.3,0.4], [0.5,1.0], [0.2,0.4]) (0.35,0.55,0.25) 

𝑣2 ([0.2,0.3], [0.4,1.0], [0.4,0.6]) (0.35,0.45,0.55) 

𝑣3 ([0.4,0.5], [0.2,1.0], [0.4,0.6]) (0.55,0.35,0.45) 

 

 

 

Table  5: ℬ𝑁𝑆𝐶 = (𝐵𝑠(𝑣), 𝜓𝑠(𝑣)) 

 

𝒱𝑁𝑆𝐶  𝐴𝑠(𝑣) 𝜓𝑠(𝑣) 

𝑣1 ([0.1,0.2], [0.5,1.0], [0.4,0.6]) (0.45,0.55,0.45) 

𝑣2 ([0.2,0.4], [0.3,1.0], [0.5,0.7]) (0.45,0.65,0.65) 

𝑣3 ([0.3,0.5], [0.4,1.0], [0.3,0.5]) (0.65,0.55,0.75) 

 

 

 

 

Table  6:  𝒞𝑁𝑆𝐶 ∪𝑃 ℬ𝑁𝑆𝐶 = (𝐴𝑠(𝑣) ∪𝑃 𝐵𝑠(𝑣), 𝜆𝑠(𝑣) ∨𝑃 𝜓𝑠(𝑣)) 

 

𝒱𝑁𝑆𝐶  (𝐴𝑠(𝑣) ∪𝑃 𝐵𝑠(𝑣) (𝜆𝑠(𝑣) ∨𝑃 𝜓𝑠(𝑣) 

𝑣1 ([0.3,0.4], [0.5,1.0], [0.4,0.6]) (0.45,0.55,0.45) 

𝑣2 ([0.2,0.4], [0.4,1.0], [0.5,0.7]) (0.45,0.65,0.65) 

𝑣3 ([0.4,0.5], [0.4,1.0], [0.4,0.6]) (0.65,0.55,0.75) 
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Table  7: 𝒞𝑁𝑆𝐶 ∩𝑃 ℬ𝑁𝑆𝐶 = (𝐴𝑠(𝑣) ∩𝑃 𝐵𝑠(𝑣), 𝜆𝑠(𝑣) ∧𝑃 𝜓𝑠(𝑣)) 

 

𝒱𝑁𝑆𝐶  (𝐴𝑠(𝑣) ∩𝑃 𝐵𝑠(𝑣) (𝜆𝑠(𝑣) ∧𝑃 𝜓𝑠(𝑣) 

𝑣1 ([0.1,0.2], [0.5,1.0], [0.2,0.4]) (0.35,0.55,0.15) 

𝑣2 ([0.2,0.3], [0.3,1.0], [0.4,0.6]) (0.35,0.45,0.55) 

𝑣3 ([0.3,0.5], [0.2,1.0], [0.3,0.5]) (0.55,0.35,0.5) 

 

 

 

Definition 3.12 Let 𝒞𝑁𝑆𝐶  and ℬ𝑁𝑆𝐶  be two NSCS in 𝒱𝑁𝑆𝐶 , then R-union is defined by 

𝒞𝑁𝑆𝐶 ∪𝑅 ℬ𝑁𝑆𝐶 = {〈𝑣, 𝑚𝑎𝑥(𝐴𝑠(𝑣), 𝐵𝑠(𝑣)), (𝜆𝑠(𝑣) ∨𝑅 𝜓𝑠(𝑣))〉: 𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

where 𝐴𝑠(𝑣), 𝐵𝑠(𝑣) represent IVNSSs and 𝜆𝑠(𝑣), 𝜓𝑠(𝑣) represent NSSs. Hence 

ℛ𝒞𝑁𝑆𝐶
∨𝑅 ℛℬ𝑁𝑆𝐶

= {〈𝑣, 𝑚𝑎𝑥(ℛ𝐴𝑠(𝑣), 𝐵𝑠(𝑣)), (ℛ𝜆𝑠
(𝑣) ∨𝑅 ℛ𝜓𝑠

(𝑣))〉: 𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

𝒥𝒞𝑁𝑆𝐶
∨𝑅 𝒥ℬ𝑁𝑆𝐶

= {〈𝑣, 𝑚𝑎𝑥(𝒥𝐴𝑠(𝑣), 𝐵𝑠(𝑣)), (𝒥𝜆𝑠
(𝑣) ∨𝑅 𝒥𝜓𝑠

(𝑣))〉: 𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

𝒮𝒞𝑁𝑆𝐶
∨𝑅 𝒮ℬ𝑁𝑆𝐶

= {〈𝑣, 𝑚𝑎𝑥(𝒮𝐴𝑠(𝑣), 𝐵𝑠(𝑣)), (𝒮𝜆𝑠
(𝑣) ∨𝑅 𝒮𝜓𝑠

(𝑣))〉: 𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 

Definition 3.13 Let 𝒞𝑁𝑆𝐶  and ℬ𝑁𝑆𝐶  be two NSCS in 𝒱𝑁𝑆𝐶 ,  then R-intersection is 

defined by 

𝒞𝑁𝑆𝐶 ∩𝑅 ℬ𝑁𝑆𝐶 = {〈𝑣, 𝑚𝑖𝑛(𝐴𝑠(𝑣), 𝐵𝑠(𝑣)), (𝜆𝑠(𝑣) ∧𝑅 𝜓𝑠(𝑣))〉: 𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

where 𝐴𝑠(𝑣), 𝐵𝑠(𝑣) represent IVNSSs and 𝜆𝑠(𝑣), 𝜓𝑠(𝑣) represent NSSs. Hence 

ℛ𝒞𝑁𝑆𝐶
∧𝑅 ℛℬ𝑁𝑆𝐶

= {〈𝑣, 𝑚𝑖𝑛(ℛ𝐴𝑠(𝑣), 𝐵𝑠(𝑣)), (ℛ𝜆𝑠
(𝑣) ∧𝑅 ℛ𝜓𝑠

(𝑣))〉: 𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

𝒥𝒞𝑁𝑆𝐶
∧𝑅 𝒥ℬ𝑁𝑆𝐶

= {〈𝑣, 𝑚𝑖𝑛(𝒥𝐴𝑠(𝑣), 𝐵𝑠(𝑣)), (𝒥𝜆𝑠
(𝑣) ∧𝑅 𝒥𝜓𝑠

(𝑣))〉: 𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

𝒮𝒞𝑁𝑆𝐶
∧𝑅 𝒮ℬ𝑁𝑆𝐶

= {〈𝑣, 𝑚𝑖𝑛(𝒮𝐴𝑠(𝑣), 𝐵𝑠(𝑣)), (𝒮𝜆𝑠
(𝑣) ∧𝑅 𝒮𝜓𝑠

(𝑣))〉: 𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 

Example 3.14 For 𝒱𝑁𝑆𝐶 = {𝑣1, 𝑣2, 𝑣3}. Let 𝒞𝑁𝑆𝐶  and ℬ𝑁𝑆𝐶  be two NSCSs over 𝒱𝑁𝑆𝐶  

is defined by 

𝒞𝑁𝑆𝐶 = {〈𝑣, 𝐴𝑠(𝑣), 𝜆𝑠(𝑣)〉𝑣 ∈ 𝒱𝑁𝑆𝐶 } is   

 

 

Table  8:  𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣)) 

 

𝒱𝑁𝑆𝐶  𝐴𝑠(𝑣) 𝜆𝑠(𝑣) 

𝑣1 ([0.2,0.3], [0.4,1.0], [0.4,0.6]) (0.55,0.65,0.75) 

𝑣2 ([0.1,0.5], [0.6,1.0], [0.3,0.6]) (0.65,0.55,0.85) 

𝑣3 ([0.2,0.5], [0.4,1.0], [0.4,0.6]) (0.75,0.85,0.65) 
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Table  9:  ℬ𝑁𝑆𝐶 = (𝐵𝑠(𝑣), 𝜓𝑠(𝑣)) 

 

𝒱𝑁𝑆𝐶  𝐴𝑠(𝑣) 𝜓𝑠(𝑣) 

𝑣1 ([0.2,0.3], [0.4,1.0], [0.5,0.6]) (0.35,0.65,0.75) 

𝑣2 ([0.1,0.5], [0.6,1.0], [0.3,0.6]) (0.65,0.55,0.85) 

𝑣3 ([0.2,0.5], [0.4,1.0], [0.4,0.6]) (0.75,0.85,0.65) 

 

 

 

Table  10:  𝒞𝑁𝑆𝐶 ∪𝑅 ℬ𝑁𝑆𝐶 = (𝐴𝑠(𝑣) ∪𝑅 𝐵𝑠 , 𝜆𝑠(𝑣) ∨𝑅 𝜓𝑠(𝑣)) 

 

𝒱𝑁𝑆𝐶  (𝐴𝑠(𝑣) ∪𝑅 𝐵𝑠(𝑣) (𝜆𝑠(𝑣) ∨𝑅 𝜓𝑠(𝑣) 

𝑣1 ([0.4,0.5], [0.4,1.0], [0.4,0.6]) (0.35,0.45,0.55) 

𝑣2 ([0.2,0.4], [0.6,1.0], [0.3,0.6]) (0.25,0.45,0.65) 

𝑣3 ([0.4,0.7], [0.4,1.0], [0.4,0.6]) (0.45,0.55,0.45) 

 

 

 

Table  11:  𝒞𝑁𝑆𝐶 ∩𝑅 ℬ𝑁𝑆𝐶 = (𝐴𝑠(𝑣) ∩𝑅 𝐵𝑠(𝑣), 𝜆𝑠(𝑣) ∧𝑅 𝜓𝑠(𝑣)) 

 

𝒱𝑁𝑆𝐶  (𝐴𝑠(𝑣) ∩𝑅 𝐵𝑠(𝑣) (𝜆𝑠(𝑣) ∧𝑅 𝜓𝑠(𝑣) 

𝑣1 ([0.2,0.3], [0.3,1.0], [0.3,0.6]) (0.55,0.65,0.75) 

𝑣2 ([0.1,0.5], [0.5,1.0], [0.3,0.6]) (0.65,0.55,0.85) 

𝑣3 ([0.2,0.5], [0.4,1.0], [0.4,0.6]) (0.75,0.85,0.65) 
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Theorem 3.15 Let 𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣)) be a NSCS over 𝒱𝑁𝑆𝐶 . [i)] If 𝒞𝑁𝑆𝐶  is an Int 

NSCS, then the complement 𝒞𝑁𝑆𝐶
𝑐  is also an Int NSCS. [ii)]If 𝒞𝑁𝑆𝐶  is an Ext NSCS, then the 

complement 𝒞𝑁𝑆𝐶
𝑐  is also an Ext NSCS.  

 

Proof. [i)] Given 𝒞𝑁𝑆𝐶 = {〈𝑣, 𝐴𝑠(𝑣), 𝜆𝑠(𝑣)〉: 𝑣 ∈ 𝒱𝑁𝑆𝐶 } is an Int NSCS this implies 

ℛ𝐴𝑠

− (𝑣) ≤ ℛ𝜆𝑠
(𝑣) ≤ ℛ𝐴𝑠

+ (𝑣), 

𝒥𝐴𝑠

− (𝑣) ≤ 𝒥𝜆𝑠
(𝑣) ≤ 𝒥𝐴𝑠

+ (𝑣), 

𝒮𝐴𝑠

− (𝑣) ≤ 𝒮𝜆𝑠
(𝑣) ≤ 𝒮𝐴𝑠

+ (𝑣) for all 𝑣 ∈ 𝒱𝑁𝑆𝐶  

This implies 1 − ℛ𝐴𝑠

− (𝑣) ≤ 1 − ℛ𝜆𝑠
(𝑣) ≤ 1 − ℛ𝐴𝑠

+ (𝑣), 

1 − 𝒥𝐴𝑠

− (𝑣) ≤ 1 − 𝒥𝜆𝑠
(𝑣) ≤ 1 − 𝒥𝐴𝑠

+ (𝑣), 

1 − 𝒮𝐴𝑠

− (𝑣) ≤ 1 − 𝒮𝜆𝑠
(𝑣) ≤ 1 − 𝒮𝐴𝑠

+ (𝑣) for all 𝑣 ∈ 𝒱𝑁𝑆𝐶 . 

Hence 𝒞𝑁𝑆𝐶
𝑐  is an INSCS. [ii)] Given 𝒞𝑁𝑆𝐶 = {〈𝑣, 𝐴𝑠(𝑣), 𝜆𝑠(𝑣)〉: 𝑣 ∈ 𝒱𝑁𝑆𝐶 } is an Ext 

NSCS. This implies 

ℛ𝜆𝑠
(𝑣) ∉ (ℛ𝐴𝑠

− (𝑣), ℛ𝐴𝑠

+ (𝑣)), 𝒥𝜆𝑠
(𝑣) ∉ (𝒥𝐴𝑠

− (𝑣), 𝒥𝐴𝑠

+ (𝑣)), 𝒮𝜆𝑠
(𝑣) ∉ (𝒮𝐴𝑠

− (𝑣), 𝒮𝐴𝑠

+ (𝑣))  for 

all 𝑣 ∈ 𝒱𝑁𝑆𝐶  

Since,  

ℛ𝜆𝑠
(𝑣) ∉ (ℛ𝐴𝑠

− (𝑣), ℛ𝐴𝑠

+ (𝑣)), 

and 0 ≤ ℛ𝐴𝑠

− (𝑣) ≤ ℛ𝐴𝑠

+ (𝑣) ≤ 1 

𝒥𝜆𝑠
(𝑣) ∉ (𝒥𝐴𝑠

− (𝑣), 𝒥𝐴𝑠

+ (𝑣)), 

and 0 ≤ 𝒥𝐴𝑠

− (𝑣) ≤ 𝒥𝐴𝑠

+ (𝑣) ≤ 1 

𝒮𝜆𝑠
(𝑣) ∉ (𝒮𝐴𝑠

− (𝑣), 𝒮𝐴𝑠

+ (𝑣)) 

and 0 ≤ 𝒮𝐴𝑠

− (𝑣) ≤ 𝒮𝐴𝑠

+ (𝑣) ≤ 1 

So we have 

ℛ𝜆𝑠
(𝑣) ≤ ℛ𝐴𝑠

− (𝑣) or ℛ𝐴𝑠

+ (𝑣) ≤ ℛ𝜆𝑠
(𝑣) 

𝒥𝜆𝑠
(𝑣) ≤ 𝒥𝐴𝑠

− (𝑣) or 𝒥𝐴𝑠

+ (𝑣) ≤ 𝒥𝜆𝑠
(𝑣) 

𝒮𝜆𝑠
(𝑣) ≤ 𝒮𝐴𝑠

− (𝑣) or 𝒮𝐴𝑠

+ (𝑣) ≤ 𝒮𝜆𝑠
(𝑣) 

This implies  

1 − ℛ𝜆𝑠
(𝑣) ≥ 1 − ℛ𝐴𝑠

− (𝑣) or 1 − ℛ𝐴𝑠

+ (𝑣) ≥ 1 − ℛ𝜆𝑠
(𝑣) 

1 − 𝒥𝜆𝑠
(𝑣) ≥ 1 − 𝒥𝐴𝑠

− (𝑣) or 1 − 𝒥𝐴𝑠

+ (𝑣) ≥ 1 − 𝒥𝜆𝑠
(𝑣) 

1 − 𝒮𝜆𝑠
(𝑣) ≤ 1 − 𝒮𝐴𝑠

− (𝑣) or 1 − 𝒮𝐴𝑠

+ (𝑣) ≤ 1 − 𝒮𝜆𝑠
(𝑣) for all 𝑣 ∈ 𝒱𝑁𝑆𝐶 . 

Thus 1 − ℛ𝜆𝑠
(𝑣) ∉ (1 − ℛ𝐴𝑠

− (𝑣),1 − ℛ𝐴𝑠

+ (𝑣)),1 − 𝒥𝜆𝑠
(𝑣) ∉ (1 − 𝒥𝐴𝑠

− (𝑣),1 −

𝒥𝐴𝑠

+ (𝑣)),1 − 𝒮𝜆𝑠
(𝑣) ∉ (1 − 𝒮𝐴𝑠

− (𝑣),1 − 𝒮𝐴𝑠

+ (𝑣)) for all 𝑣 ∈ 𝒱𝑁𝑆𝐶  

Hence 𝒞𝑁𝑆𝐶
𝑐 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣)) is an Ext NSCS.  

 

 

Remark 3.16 The below example shows that 𝑃 − union and 𝑃 − intersection of ℛ Ext 

(resp. 𝒥 Ext and 𝒮 Ext) NSCSs may not be ℛ Ext (resp. 𝒥 Ext and 𝒮 Ext) NSCSs.  

 

Example 3.17 Let 𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣)) and ℬ𝑁𝑆𝐶 = (𝐵𝑠(𝑣), 𝜓𝑠(𝑣)) be NSCSs in 

𝒱𝑁𝑆𝐶  where  

 𝐴𝑠(𝑣) = {(𝑣, (0.3,0.5), (0.5,0.7), (0.3,0.5))/𝑣 ∈ 𝒱𝑁𝑆𝐶 } 
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 𝜆𝑠(𝑣) = {(𝑣, 0.4,0.4,0.8)/𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 𝐵𝑠(𝑣) = {(𝑣, (0.7,0.9), (0.6,0.7), (0.7,0.9))/𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 𝜓𝑠(𝑣) = {(𝑣, 0.8,0.3,0.8)/𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 Then 𝒞𝑁𝑆𝐶  and ℬ𝑁𝑆𝐶  are 𝒮 Ext NSCSs in 𝒱𝑁𝑆𝐶 . 

𝒞𝑁𝑆𝐶 ∪𝑃 ℬ𝑁𝑆𝐶 = (𝐴𝑠 ∪𝑃 𝐵𝑠, 𝜆𝑠 ∨𝑃 𝜓𝑠) of 𝒞𝑁𝑆𝐶  and ℬ𝑁𝑆𝐶  is given as follows  

 𝐴𝑠(𝑣) ∪𝑃 𝐵𝑠(𝑣) = {(𝑣, (0.7,0.9), (0.6,0.7), (0.7,0.9))/𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 𝜆𝑠(𝑣) ∨𝑃 𝜓𝑠(𝑣) = {(𝑣, 0.8,0.4,0.8)/𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 is not an 𝒮 Ext NSCSs in 𝒱𝑁𝑆𝐶 . 

Since  

 (𝒮𝜆𝑠
∨𝑃 𝒮𝜓𝑠

)(𝑣) = 0.8 ∈ (0.7,0.9) 

 = (𝒮𝐴𝑠
∪𝑃 𝒮𝐵𝑠

)−(𝑣), (𝒮𝐴𝑠
∪𝑃 𝒮𝐵𝑠

)+(𝑣) 

 also 𝐴𝑠 ∩𝑃 𝐵𝑠 = (𝐴𝑠 ∩ 𝐵𝑠, 𝜆𝑠 ∧𝑃 𝜓𝑠) with  

 𝐴𝑠 ∩ 𝐵𝑠 = {(𝑣, (0.3,0.5), (0.4,0.7), (0.3,0.5))/𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 𝜆𝑠 ∧ 𝜓𝑠 = {〈𝑣, 0.4,0.3,0.8〉/𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 is not an 𝒮 Ext NSCS in 𝒱𝑁𝑆𝐶  since  

 (𝒮𝜆𝑠
∧𝑃 𝒮𝜓𝑠

)(𝑣) = 0.4 ∈ (0.4,0.7) 

 = (𝒮𝐴𝑠
∩𝑃 𝒮𝐵𝑠

)−(𝑣), (𝒮𝐴𝑠
∩𝑃 𝒮𝐵𝑠

)+(𝑣) 

 

 

 

Example 3.18 For 𝒱𝑁𝑆𝐶 = {𝑣1, 𝑣2, 𝑣3} , let 𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣))  and ℬ𝑁𝑆𝐶 =

(𝐵𝑠(𝑣), 𝜓𝑠(𝑣)) be NSCSs in 𝒱𝑁𝑆𝐶  with the Table 0.21 and 0.21, respectively.  

Table  12:  𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠)(𝑣) 

 

𝒱𝑁𝑆𝐶  𝐴𝑠(𝑣) 𝜆𝑠(𝑣) 

𝑣1 ([0.3,0.4], [0.5,1.0], [0.2,0.3]) (0.35,0.55,0.25) 

𝑣2 ([0.2,0.3], [0.4,1.0], [0.4,0.6]) (0.25,0.45,0.45) 

𝑣3 ([0.6,0.7], [0.1,1.0], [0.3,0.4]) (0.65,0.15,0.35) 

 

 

 

 

Table  13:  ℬ𝑁𝑆𝐶 = (𝐵𝑠(𝑣), 𝜓𝑠(𝑣)) 

 

𝒱𝑁𝑆𝐶  𝐴𝑠(𝑣) 𝜆𝑠(𝑣) 

𝑣1 ([0.2,0.4], [0.7,1.0], [0.1,0.2]) (0.20,0.75,0.15) 

𝑣2 ([0.5,0.6], [0.2,1.0], [0.3,0.4]) (0.55,0.25,0.25) 

𝑣3 ([0.4,0.6], [0.4,1.0], [0.2,0.4]) (0.55,0.45,0.25) 
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Then 𝒞𝑁𝑆𝐶  and ℬ𝑁𝑆𝐶  are both ℛ  Ext and 𝒥  Ext NSCSs in 𝒱𝑁𝑆𝐶 . 𝒞𝑁𝑆𝐶 ∪𝑃 ℬ𝑁𝑆𝐶 =

(𝐴𝑠 ∪𝑃 𝐵𝑠, 𝜆𝑠 ∨𝑃 𝜓𝑠) and 𝒞𝑁𝑆𝐶 ∩𝑃 ℬ𝑁𝑆𝐶 = (𝐴𝑠 ∩𝑃 𝐵𝑠, 𝜆𝑠 ∧𝑃 𝜓𝑠) are given below Tables 0.21 

and 0.21 . 

 

Table  14:  𝒞𝑁𝑆𝐶 ∪𝑃 ℬ𝑁𝑆𝐶 = (𝐴𝑠 ∪𝑃 𝐵𝑠, 𝜆𝑠 ∨𝑃 𝜓𝑠) 

 

𝒱𝑁𝑆𝐶  (𝐴𝑠 ∪ 𝐵𝑠(𝑣) (𝜆𝑠 ∨ 𝜓𝑠(𝑣) 

𝑣1 ([0.3,0.4], [0.7,1.0], [0.2,0.3]) (0.35,0.75,0.25) 

𝑣2 ([0.5,0.6], [0.4,1.0], [0.4,0.6]) (0.55,0.45,0.45) 

𝑣3 ([0.6,0.7], [0.4,1.0], [0.4,0.5]) (0.65,0.45,0.35) 

 

 

 

Table  15:  𝒞𝑁𝑆𝐶 ∩𝑃 ℬ𝑁𝑆𝐶 = (𝐴𝑠 ∩𝑃 𝐵𝑠, 𝜆𝑠 ∧𝑃 𝜓𝑠) 

 

𝒱𝑁𝑆𝐶  (𝐴𝑠 ∩𝑃 𝐵𝑠(𝑣) (𝜆𝑠 ∧𝑃 𝜓𝑠(𝑣) 

𝑣1 ([0.2,0.4], [0.5,1.0], [0.1,0.2]) (0.30,0.55,0.15) 

𝑣2 ([0.2,0.3], [0.2,1.0], [0.3,0.4]) (0.25,0.25,0.35) 

𝑣3 ([0.4,0.6], [0.1,1.0], [0.2,0.4]) (0.55,0.15,0.35) 

 

 

Then 𝒞𝑁𝑆𝐶 ∪𝑃 ℬ𝑁𝑆𝐶  is neither an 𝒥 Ext NSCS nor a ℛ Ext NSCS in 𝒱𝑁𝑆𝐶  since  

 (𝒥𝜆𝑠
∨𝑃 𝒥𝜓𝑠

)(𝑐) = 1.0 ∈ (0.2,1.0) = ((𝒥𝐴𝑠
∪𝑃 𝒥𝐵𝑠

)−(𝑐), (𝒥𝐴𝑠
∪𝑃 𝒥𝐵𝑠

)+(𝑐)) 

and  

 (ℛ𝜆𝑠
∨𝑃 ℛ𝜓𝑠

)(𝑎) = 0.35 ∈ (0.3,0.4) = ((ℛ𝐴𝑠
∪𝑃 ℛ𝐵𝑠

)−(𝑎), (ℛ𝐴𝑠
∪𝑃 ℛ𝐵𝑠

)+(𝑎)). 

 

 

Remark 3.19𝑅 − union and 𝑅 − intersection of ℛ Int (resp. 𝒥 Int and 𝒮 Int) NSCSs 

may not be 𝒜 Int (resp. 𝒥 Int and 𝒮 Int) NSCSs in the below examples.  
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Example 3.20 Let 𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣)) and ℬ𝑁𝑆𝐶 = (𝐵𝑠(𝑣), 𝜓𝑠(𝑣)) be NSCSs in 

𝒱𝑁𝑆𝐶  where  

 𝐴𝑠(𝑣) = {(𝑣, (0.3,0.5), (0.4,1.0), (0.3,0.4))/𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 𝜆𝑠(𝑣) = {(𝑣, 0.4,0.2,0.4)/𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 𝐵𝑠(𝑣) = {(𝑣, (0.5,0.6), (0.2,1.0), (0.3,0.2))/𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 𝜓𝑠(𝑣) = {(𝑣, 0.5,0.3,0.2)/𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 

Then 𝒞𝑁𝑆𝐶  and ℬ𝑁𝑆𝐶  are ℛ  Int NSCSs in 𝒱𝑁𝑆𝐶  and 𝒞𝑁𝑆𝐶 ∪𝑅 ℬ𝑁𝑆𝐶 =

(𝐴𝑠 ∪𝑅 𝐵𝑠, 𝜆𝑠 ∧𝑅 𝜓𝑠) with  

 𝐴𝑠 ∪𝑅 𝐵𝑠 = {〈𝑣, [0.5,0.6], [0.4,1.0], [0.3,0.4]〉/𝑣 ∈ 𝒱𝑁𝑆𝐶 }, 

 𝜆𝑠 ∧𝑅 𝜓𝑠 = {〈𝑣, 0.4,0.2,0.2〉/𝑣 ∈ 𝒱𝑁𝑆𝐶 }. 

 

Note that (ℛ𝜆𝑠
∧𝑅 ℛ𝜓𝑠

)(𝑣) = 0.4 < 0.5 = (ℛ𝐴𝑠
∪𝑅 ℛ𝐵𝑠

)−(𝑣) and (ℛ𝜆𝑠
∧𝑅 𝒥𝜓𝑠

)(𝑣) =

0.2 < 0.3 = (𝒥𝐴𝑠
∪𝑅 𝒥𝐵𝑠

)−(𝑣). Hence 𝒞𝑁𝑆𝐶 ∪𝑅 ℬ𝑁𝑆𝐶 = (𝐴𝑠 ∪𝑅 𝐵𝑠, 𝜆𝑠 ∧𝑅 𝜓𝑠)  is neither a ℛ 

Int NSCS nor a 𝒥 Int NSCS in 𝒱𝑁𝑆𝐶 . But we know that 𝒞𝑁𝑆𝐶 ∪𝑅 ℬ𝑁𝑆𝐶 = (𝐴𝑠 ∪ 𝐵𝑠 , 𝜆𝑠 ∧ 𝜓𝑠) is 

an 𝒮 Int NSCS in 𝒱𝑁𝑆𝐶 . 

The 𝑅 −intersection 𝒞𝑁𝑆𝐶 ∩𝑅 ℬ𝑁𝑆𝐶 = (𝐴𝑠 ∩ 𝐵𝑠, 𝜆𝑠 ∨ 𝜓𝑠) with  

 𝐴𝑠 ∩𝑅 𝐵𝑠 = {〈𝑣, [0.3,0.5], [0.2,1.0], [0.3,0.2]〉/𝑣 ∈ 𝒱𝑁𝑆𝐶 }, 

 𝜆𝑠 ∨𝑅 𝜓𝑠 = {〈𝑣, 0.5,0.3,0.4〉/𝑣 ∈ 𝒱𝑁𝑆𝐶 }. 

 

Since (𝒥𝐴𝑠
∩𝑅 𝒥𝐵𝑠

)−(𝑣) ≤ (𝒥𝜆𝑠
∨𝑅 𝒥𝜓𝑠

)(𝑣) ≤ (𝒥𝐴𝑠
∩𝑅 𝒥𝐵𝑠

)+(𝑣)  for all 𝑣 ∈ 𝒱𝑁𝑆𝐶 . 

𝒞𝑁𝑆𝐶 ∩𝑅 ℬ𝑁𝑆𝐶 = (𝐴𝑠 ∩ 𝐵𝑠, 𝜆𝑠 ∨𝑅 𝜓𝑠) is an 𝒥 Int NSCS in 𝒱𝑁𝑆𝐶 . 

But neither a ℛ Int NSCS 𝒮 Int NSCSs in 𝒱𝑁𝑆𝐶 .  

 

 

Example 3.21 Let 𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣)) and ℬ𝑁𝑆𝐶 = (𝐵𝑠(𝑣), 𝜓𝑠(𝑣)) be NSCSs in 

𝒱𝑁𝑆𝐶  where  

 𝐴𝑠 = {(𝑣, (0.3,0.5), (0.5,1.0), (0.2,0.4))/𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 𝜆𝑠 = {(𝑣, 0.4,0.2,0.4)/𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 𝐵𝑠 = {(𝑣, (0.1,0.5), (0.6,1.0), (0.3,0.5))/𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 𝜓𝑠 = {(𝑣, 0.3,0.2,0.5)/𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 

Then 𝒞𝑁𝑆𝐶  and ℬ𝑁𝑆𝐶  are 𝒥  Int NSCSs in 𝒱𝑁𝑆𝐶  and 𝒞𝑁𝑆𝐶 ∪𝑅 ℬ𝑁𝑆𝐶 =

(𝐴𝑠 ∪𝑅 𝐵𝑠, 𝜆𝑠 ∧𝑅 𝜓𝑠) with  

 𝐴𝑠 ∪𝑅 𝐵𝑠 = {〈𝑣, [0.3,0.5], [0.6,1.0], [0.3,0.5]〉/𝑣 ∈ 𝒱𝑁𝑆𝐶 }, 

 𝜆𝑠 ∧𝑅 𝜓𝑠 = {〈𝑣, 0.3,0.2,0.4〉/𝑣 ∈ 𝒱𝑁𝑆𝐶 }. 

 

Since (𝒥𝜆𝑠
∧𝑅 𝒥𝜓𝑠

)(𝑣) = 0.2 < 0.6 = (𝒥𝐴 ∪𝑅 𝒥𝐵)−(𝑣)  we know that and 

𝒞𝑁𝑆𝐶 ∪𝑅 ℬ𝑁𝑆𝐶  is not an 𝒥 Int NSCS in 𝒱𝑁𝑆𝐶 . 

Also, the 𝑅 −intersection 𝒞𝑁𝑆𝐶 ∩𝑅 ℬ𝑁𝑆𝐶 = (𝐴𝑠 ∩ 𝐵𝑠, 𝜆𝑠 ∨𝑅 𝜓𝑠) with  

 𝐴𝑠 ∩𝑅 𝐵𝑠 = {〈𝑣, [0.1,0.5], [0.5,1.0], [0.2,0.4]〉/𝑣 ∈ 𝒱𝑁𝑆𝐶 }, 
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 𝜆𝑠 ∨𝑅 𝜓𝑠 = {〈𝑣, 0.4,0.2,0.5〉/𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 and it is not an 𝒥 Int NSCS in 𝒱𝑁𝑆𝐶 .  

 

 

Example 3.22 Let 𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣)) and ℬ𝑁𝑆𝐶 = (𝐵𝑠(𝑣), 𝜓𝑠(𝑣)) be NSCSs in 

𝒱𝑁𝑆𝐶  where  

 𝐴𝑠 = {(𝑣, (0.2,0.3), (0.4,1.0), (0.4,0.5))/𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 𝜆𝑠 = {(𝑣, 0.4,0.2,0.2)/𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 𝐵𝑠 = {(𝑣, (0.4,0.6), (0.3,1.0), (0.3,0.4))/𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 𝜓𝑠 = {(𝑣, 0.3,0.2,0.1)/𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 

Then 𝒞𝑁𝑆𝐶  and ℬ𝑁𝑆𝐶  are 𝒮  Int NSCSs in 𝒱𝑁𝑆𝐶  and 𝒞𝑁𝑆𝐶 ∪𝑅 ℬ𝑁𝑆𝐶 =

(𝐴𝑠 ∪𝑅 𝐵𝑠, 𝜆𝑠 ∧𝑅 𝜓𝑠) with  

 𝐴𝑠 ∪𝑅 𝐵𝑠 = {〈𝑣, [0.4,0.6], [0.4,1.0], [0.4,0.5]〉/𝑣 ∈ 𝒱𝑁𝑆𝐶 }, 

 𝜆𝑠 ∧𝑅 𝜓𝑠 = {〈𝑣, 0.3,0.2,0.1〉/𝑣 ∈ 𝒱𝑁𝑆𝐶 }. 

 which is not an 𝒮 Int NSCS in 𝒱𝑁𝑆𝐶 . If 𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣)) and ℬ𝑁𝑆𝐶 = (𝐵𝑠(𝑣), 𝜓𝑠(𝑣)) 

be NSCSs in ℛ where  

 𝐴𝑠(𝑣) = {(𝑣, (0.2,0.3), (0.6,1.0), (0.2,0.4))/𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 𝜆𝑠(𝑣) = {(𝑣, 0.5,0.4,0.1)/𝑣 ∈ ℛ} 

 𝐵𝑠(𝑣) = {(𝑣, (0.1,0.2), (0.5,1.0), (0.4,0.5))/𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 𝜓𝑠(𝑣) = {(𝑣, 0.6,0.2,0.2)/𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 then 𝒞𝑁𝑆𝐶  and ℬ𝑁𝑆𝐶  are 𝒮  Int NSCSs in 𝒱𝑁𝑆𝐶  and the 𝑅 − intersection 𝒞𝑁𝑆𝐶 ∩𝑅 ℬ𝑁𝑆𝐶 =

(𝐴𝑠 ∩𝑅 𝐵𝑠, 𝜆𝑠 ∨𝑅 𝜓𝑠) of 𝒞𝑁𝑆𝐶  and ℬ𝑁𝑆𝐶  which is given as follows:  

 𝐴𝑠 ∩𝑅 𝐵𝑠 = {〈𝑥, [0.1,0.2], [0.5,1.0], [0.2,0.4]〉/𝑣 ∈ 𝒱𝑁𝑆𝐶 }, 

 𝜆𝑠 ∨𝑅 𝜓𝑠 = {〈𝑣, 0.6,0.4,0.2〉/𝑣 ∈ 𝒱𝑁𝑆𝐶 } 

 and it is not an 𝒮 Int NSCS in 𝒱𝑁𝑆𝐶 .  

 

 

Theorem 3.23 Let 𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣))  and ℬ𝑁𝑆𝐶 = (𝐵𝑠(𝑣), 𝜓𝑠(𝑣))  be ℛ  Int 

NSCSs in 𝒱𝑁𝑆𝐶  such that  

 (∀ 𝑣 ∈ 𝒱𝑁𝑆𝐶 )(max{ℛ𝐴
−(𝑣), ℛ𝐵

−(𝑣)} ≤ (ℛ𝜆𝑠
∧𝑅 ℛ𝜓𝑠

)(𝑣)). (7) 

 Then the 𝑅 − union of 𝒞𝑁𝑆𝐶  and ℬ𝑁𝑆𝐶  is a ℛ Int NSCSs in 𝒱𝑁𝑆𝐶 .  

 

Proof. Let 𝒞𝑁𝑆𝐶  and ℬ𝑁𝑆𝐶  be ℛ Int NSCSs in 𝒱𝑁𝑆𝐶  it satisfy the condition (7). Then 

ℛ𝐴𝑠

− (𝑣) ≤ ℛ𝜆𝑠
(𝑣) ≤ ℛ𝐴𝑠

+ (𝑣) and ℛ𝐵𝑠

− (𝑣) ≤ ℛ𝜓𝑠
(𝑣) ≤ ℛ𝐵𝑠

+ (𝑣). 

And so, (ℛ𝜆𝑠
∧𝑅 ℛ𝜓𝑠

)(𝑣) ≤ (ℛ𝐴𝑠
∪𝑅 ℛ𝐵𝑠

)+(𝑣). 

It follows from (7) that,  

 (ℛ𝐴𝑠
∪𝑅 ℛ𝐵𝑠

)−(𝑣) = max{ℛ𝐴𝑠
)−(𝑣), ℛ𝐵𝑠

)−(𝑣)} 

 ≤ (ℛ𝜆𝑠
∧𝑅 ℛ𝜓𝑠

)(𝑣) ≤ (ℛ𝐴𝑠
∪𝑅 ℛ𝐵𝑠

)+(𝑣). 

 Hence 𝒞𝑁𝑆𝐶 ∪𝑅 ℬ𝑁𝑆𝐶 = (𝐴𝑠 ∪𝑅 𝐵𝑠, 𝜆𝑠 ∧𝑅 𝜓𝑠) is a ℛ Int NSCS in 𝒱𝑁𝑆𝐶 .  
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Theorem 3.24 Let 𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣))  and ℬ𝑁𝑆𝐶 = (𝐵𝑠(𝑣), 𝜓𝑠(𝑣))  be 𝒥  Int 

NSCSs in 𝒱𝑁𝑆𝐶  such that  

 (∀ 𝑣 ∈ 𝒱𝑁𝑆𝐶 )(max{𝒥𝐴
−(𝑣), 𝒥𝐵

−(𝑣)} ≤ (𝒥𝜆𝑠
∧𝑅 𝒥𝜓𝑠

)(𝑣)). (8) 

 Then the 𝑅 − union of 𝒞𝑁𝑆𝐶  and ℬ𝑁𝑆𝐶  is a 𝒥 Int NSCSs in a non-empty set 𝒱𝑁𝑆𝐶 .  

 

Proof. Let 𝒞𝑁𝑆𝐶  and ℬ𝑁𝑆𝐶  be 𝒥 Int NSCSs in 𝒱𝑁𝑆𝐶  it satisfy the condition (8). Then 

𝒥𝐴𝑠

− (𝑣) ≤ 𝒥𝜆𝑠
(𝑣) ≤ 𝒥𝐴𝑠

+ (𝑣) and 𝒥𝐵𝑠

− (𝑣) ≤ 𝒥𝜓𝑠
(𝑣) ≤ 𝒥𝐵𝑠

+ (𝑣). 

And so, (𝒥𝜆𝑠
∧𝑅 𝒥𝜓𝑠

)(𝑣) ≤ (𝒥𝐴𝑠
∪𝑅 𝒥𝐵𝑠

)+(𝑣). 

It follows from (8) that,  

 (𝒥𝐴𝑠
∪𝑅 𝒥𝐵𝑠

)−(𝑣) = max{𝒥𝐴𝑠
)−(𝑣), 𝒥𝐵𝑠

)−(𝑣)} 

 ≤ (𝒥𝜆𝑠
∧𝑅 𝒥𝜓𝑠

)(𝑣) ≤ (𝒥𝐴𝑠
∪𝑅 𝒥𝐵𝑠

)+(𝑣). 

 Hence 𝒞𝑁𝑆𝐶 ∪𝑅 ℬ𝑁𝑆𝐶 = (𝐴𝑠 ∪𝑅 𝐵𝑠, 𝜆𝑠 ∧𝑅 𝜓𝑠) is a 𝒥 Int NSCS in 𝒱𝑁𝑆𝐶 .  

 

 

Theorem 3.25 Let 𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣))  and ℬ𝑁𝑆𝐶 = (𝐵𝑠(𝑣), 𝜓𝑠(𝑣))  be 𝒮  Int 

NSCSs in 𝒱𝑁𝑆𝐶  such that  

 (∀ 𝑣 ∈ 𝒱𝑁𝑆𝐶 )(max{𝒮𝐴
−(𝑣), 𝒮𝐵

−(𝑣)} ≤ (𝒮𝜆𝑠
∧𝑅 𝒮𝜓𝑠

)(𝑣)). (9) 

 Then the 𝑅 − union of 𝒞𝑁𝑆𝐶  and ℬ𝑁𝑆𝐶  is a 𝒮 Int NSCSs in 𝒱𝑁𝑆𝐶 .  

 

Proof. Let 𝒞𝑁𝑆𝐶  and ℬ𝑁𝑆𝐶  be 𝒮 Int NSCSs in 𝒱𝑁𝑆𝐶  it satisfy the condition (9). Then 

𝒮𝐴𝑠

− (𝑣) ≤ 𝒮𝜆𝑠
(𝑣) ≤ 𝒮𝐴𝑠

+ (𝑣) and 𝒮𝐵𝑠

− (𝑣) ≤ 𝒜𝜓𝑠
(𝑣) ≤ 𝒮𝐵𝑠

+ (𝑣). 

And so, (𝒮𝜆𝑠
∧𝑅 𝒮𝜓𝑠

)(𝑣) ≤ (𝒮𝐴𝑠
∪𝑅 𝒮𝐵𝑠

)+(𝑣). 

It follows from (9) that,  

 (𝒮𝐴𝑠
∪𝑅 𝒮𝐵𝑠

)−(𝑣) = max{𝒮𝐴𝑠
)−(𝑣), 𝒮𝐵𝑠

)−(𝑣)} 

 ≤ (𝒮𝜆𝑠
∧𝑅 𝒮𝜓𝑠

)(𝑣) ≤ (𝒮𝐴𝑠
∪𝑅 𝒮𝐵𝑠

)+(𝑣). 

 Hence 𝒞𝑁𝑆𝐶 ∪𝑅 ℬ𝑁𝑆𝐶 = (𝐴𝑠 ∪𝑅 𝐵𝑠, 𝜆𝑠 ∧𝑅 𝜓𝑠) is a 𝒮 Int NSCS in 𝒱𝑁𝑆𝐶 .  

 

 

Corollary 3.26 If two Int NSCSs 𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣)) and ℬ𝑁𝑆𝐶 = (𝐵𝑠(𝑣), 𝜓𝑠(𝑣)) 

satisfy (7) ,(8)and (9) then the 𝑅 − union of 𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣))  and ℬ𝑁𝑆𝐶 =

(𝐵𝑠(𝑣), 𝜓𝑠(𝑣)) is an Int NSCSs. 

 

 

Theorem 3.27 Let 𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣))  and ℬ𝑁𝑆𝐶 = (𝐵𝑠(𝑣), 𝜓𝑠(𝑣))  be 𝒥  Int 

NSCSs in 𝒱𝑁𝑆𝐶  such that  

 (∀ 𝑣 ∈ 𝒱𝑁𝑆𝐶 )((𝒥𝜆𝑠
∨𝑅 𝒥𝜓𝑠

)(𝑣) ≤ min{𝒥𝐴
+(𝑣), 𝒥𝐵

+(𝑣)}). (10) 

 Then the 𝑅 − intersection of 𝒞𝑁𝑆𝐶  and ℬ𝑁𝑆𝐶  is a 𝒥 Int NSCS in 𝒱𝑁𝑆𝐶 .  

 

Proof. If 10 is valid. Then 𝒥𝐴𝑠

− (𝑣) ≤ 𝒥𝜆𝑠
(𝑣) ≤ 𝒥𝐴𝑠

+ (𝑣) and 𝒥𝐵𝑠

− (𝑣) ≤ 𝒥𝜓𝑠
(𝑣) ≤ 𝒥𝐵𝑠

+ (𝑣) 

for all 𝒱𝑁𝑆𝐶 . It follows from 10 that  
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(𝒥𝐴𝑠
∩𝑅 𝒥𝐵𝑠

)−(𝑣) ≤ (𝒥𝜆𝑠
∩𝑅 𝒥𝜓𝑠

)−(𝑣) ≤ min{𝒥𝐴𝑠

+ (𝑣), 𝒥𝐵𝑠

+ (𝑣)} ≤ (𝒥𝐴𝑠
∩𝑅 𝒥𝐵𝑠

)+(𝑣) 

for all 𝑣 ∈ 𝒱𝑁𝑆𝐶 . 

∴  𝐴𝑠 ∩𝑅 𝐵𝑠 = (𝐴𝑠 ∩𝑅 𝐵𝑠, 𝜆𝑠 ∨𝑅 𝜓𝑠) is an 𝒥 Int NSCS in 𝒱𝑁𝑆𝐶 .  

 

 

Theorem 3.28 Let 𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣))  and ℬ𝑁𝑆𝐶 = (𝐵𝑠(𝑣), 𝜓𝑠(𝑣))  be ℛ  Int 

NSCSs in 𝒱𝑁𝑆𝐶  such that  

 (∀ 𝑣 ∈ 𝒱𝑁𝑆𝐶 )((ℛ𝜆𝑠
∨𝑅 ℛ𝜓𝑠

)(𝑣) ≤ min{ℛ𝐴
+(𝑣), ℛ𝐵

+(𝑣)}). (11) 

 Then the 𝑅 − intersection of 𝒞𝑁𝑆𝐶  and ℬ𝑁𝑆𝐶  is a ℛ Int NSCS in 𝒱𝑁𝑆𝐶 .  

 

Proof. If 11 is valid. Then ℛ𝐴𝑠

− (𝑣) ≤ ℛ𝜆𝑠
(𝑣) ≤ ℛ𝐴𝑠

+ (𝑣)  and ℛ𝐵𝑠

− (𝑣) ≤ ℛ𝜓𝑠
(𝑣) ≤

ℛ𝐵𝑠

+ (𝑣) for all 𝒱𝑁𝑆𝐶 . It follows from 11 that  

(ℛ𝐴𝑠
∩ ℛ𝐵𝑠

)−(𝑣) ≤ (ℛ𝜆𝑠
∩𝑅 ℛ𝜓𝑠

)−(𝑣) ≤ min{ℛ𝐴𝑠

+ (𝑣), ℛ𝐵𝑠

+ (𝑣)} ≤ (ℛ𝐴𝑠
∩𝑅 ℛ𝐵𝑠

)+(𝑣) 

for all 𝑣 ∈ 𝒱𝑁𝑆𝐶 . 

∴  𝐴𝑠 ∩𝑅 𝐵𝑠 = (𝐴𝑠 ∩𝑅 𝐵𝑠, 𝜆𝑠 ∨𝑅 𝜓𝑠) is an ℛInt NSCS in 𝒱𝑁𝑆𝐶 .  

 

 

Theorem 3.29 Let 𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣))  and ℬ𝑁𝑆𝐶 = (𝐵𝑠(𝑣), 𝜓𝑠(𝑣))  be 𝒮  Int 

NSCSs in 𝒱𝑁𝑆𝐶  such that  

 (∀ 𝑣 ∈ 𝒱𝑁𝑆𝐶 )((𝒮𝜆𝑠
∨𝑅 𝒮𝜓𝑠

)(𝑣) ≤ min{𝒮𝐴
+(𝑣), 𝒮𝐵

+(𝑣)}). (12) 

 Then the 𝑅 − intersection of 𝒞𝑁𝑆𝐶  and ℬ𝑁𝑆𝐶  is a 𝒮 Int NSCS in 𝒱𝑁𝑆𝐶 .  

 

Proof. If 12 is valid. Then 𝒮𝐴𝑠

− (𝑣) ≤ 𝒮𝜆𝑠
(𝑣) ≤ 𝒮𝐴𝑠

+ (𝑣) and 𝒮𝐵𝑠

− (𝑣) ≤ 𝒮𝜓𝑠
(𝑣) ≤ 𝒮𝐵𝑠

+ (𝑣) 

for all 𝒱𝑁𝑆𝐶 . It follows from 12 that  

 (𝒮𝐴𝑠
∩𝑅 𝒮𝐵𝑠

)−(𝑣) ≤ (𝒮𝜆𝑠
∩ 𝒮𝜓𝑠

)−(𝑣) ≤ min{𝒮𝐴𝑠

+ (𝑣), 𝒮𝐵𝑠

+ (𝑣)} ≤ (𝒮𝐴𝑠
∩𝑅 𝒮𝐵𝑠

)+(𝑣) 

for all 𝑣 ∈ 𝒱𝑁𝑆𝐶 . 

∴  𝐴𝑠 ∩𝑅 𝐵𝑠 = (𝐴𝑠 ∩𝑅 𝐵𝑠, 𝜆𝑠 ∨𝑅 𝜓𝑠) is an 𝒮 Int NSCS in 𝒱𝑁𝑆𝐶 .  

 

 

Corollary 3.30 If two Int NSCSs 𝒞𝑁𝑆𝐶 = (𝐴𝑠(𝑣), 𝜆𝑠(𝑣)) and ℬ𝑁𝑆𝐶 = (𝐵𝑠(𝑣), 𝜓𝑠(𝑣)) 

satisfy conditions (10), (11), (12) then the 𝑅 −intersection of 𝒞𝑁𝑆𝐶  and ℬ𝑁𝑆𝐶  is an Int NSCS in 

𝒱𝑁𝑆𝐶 .  

 

Conclusions  

In this paper we have introduced the notion of Neutrosophic spherical cubic sets .We have 

discussed properties of Neutrosophic spherical cubic sets.  For the future prospects, we will extend this 

work by using topological structures and commit to exploring the real life applications. 
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1. Introduction 

The notion of neutrosophic set has gained much relevance in recent years due to its various 

applications. This notion was proposed by Smarandache [1] and has been studied by many 

researchers as can be seen in [2-8]. In particular, Karatas and Kuru [4] introduced new neutrosophic 

set operations and with them defined the concept of neutrosophic topological space. Following this 

line of research, Albowi and Salama [2] introduced the notion of neutrosophic ideal, which was later 

used by Salama and Smarandache [8] to introduce the concept of neutrosophic local function, 

investigate its properties and analyze the relations between different neutrosophic ideals and 

neutrosophic topologies. The purpose of this paper is to continue with this line of research, but this 

time we define the neutrosophic co-local function and the neutrosophic complement co-local 

function, investigate the main properties of these new neutrosophic operators with them we build 

new classes of neutrosophic sets in a neutrosophic topological space endowed with a neutrosophic 

ideal. 

2. Preliminaries  

Throughout this paper, let 𝑋 be a nonempty set, called the universe of discourse. 

Definition 2.1. [1] A neutrosophic set 𝑁 on 𝑋 is an object of the form 

𝑁 = {⟨𝑥, 𝜇𝑁(𝑥), 𝜎𝑁(𝑥), 𝛾𝑁 (𝑥)⟩: 𝑥 ∈ 𝑋}, 

where 𝜇𝑁 , 𝜎𝑁 , 𝛾𝑁 are functions from 𝑋 to [0,1] and 0 ≤ 𝜇𝑁(𝑥) + 𝜎𝑁(𝑥) + 𝛾𝑁(𝑥) ≤ 3. 

We denote by 𝒩(𝑋) the collection of all neutrosophic sets over 𝑋. 

Definition 2.2. [4] For 𝑁, 𝑀 ∈ 𝒩(𝑋) we define the following: 
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(1) (Inclusion) 𝑁  is called a neutrosophic subset of 𝑀 , denoted by 𝑁 ⊑ 𝑀 , if 𝜇𝑁(𝑥) ≤ 𝜇𝑀(𝑥) , 

𝜎𝑁(𝑥) ≥ 𝜎𝑀(𝑥) and 𝛾𝑁 (𝑥) ≥ 𝛾𝑀(𝑥) for all 𝑥 ∈ 𝑋. Also, we can say that 𝑀 is a neutrosophic super 

set of 𝑁. 

(2) (Equality) 𝑁 is called neutrosophic equal to 𝑀, denoted by 𝑁 = 𝑀, if 𝑁 ⊑ 𝑀 and 𝑀 ⊑ 𝑁. 

(3) (Universal set) 𝑁 is called the neutrosophic universal set, denoted by 𝑋̃, if 𝜇𝑁(𝑥) = 1, 𝜎𝑁(𝑥) = 0 

and 𝛾𝑁(𝑥) = 0 for all 𝑥 ∈ 𝑋. 

(4) (Empty set) 𝑁 is called the neutrosophic empty set, denoted by ∅̃, if 𝜇𝑁(𝑥) = 0, 𝜎𝑁(𝑥) = 1 and 

𝛾𝑁(𝑥) = 1 for all 𝑥 ∈ 𝑋. 

(5) (Intersection) The neutrosophic intersection of 𝑁 and 𝑀, denoted by 𝑁 ⊓ 𝑀, is defined as 

𝑁 ⊓ 𝑀 = {(𝑥, 𝜇𝑁(𝑥) ∧ 𝜇𝑀(𝑥), 𝜎𝑁(𝑥) ∨ 𝜎𝑀(𝑥), 𝛾𝑁 (𝑥) ∨ 𝛾𝑀(𝑥)⟩: 𝑥 ∈ 𝑋}. 

(6) (Union) The neutrosophic union of 𝑁 and 𝑀, denoted by 𝑁 ⊔ 𝑀, is defined as 

𝑁 ⊔ 𝑀 = {⟨𝑥, 𝜇𝑁(𝑥) ∨ 𝜇𝑀(𝑥), 𝜎𝑁(𝑥) ∧ 𝜎𝑀(𝑥), 𝛾𝑁 (𝑥) ∧ 𝛾𝑀(𝑥)⟩: 𝑥 ∈ 𝑋}. 

(7) (Complement) The neutrosophic complement of 𝑁, denoted by 𝑁𝑐, is defined as 

𝑁𝑐 = {⟨𝑥, 𝛾𝑁 (𝑥),1 − 𝜎𝑁(𝑥), 𝜇𝑁(𝑥)⟩: 𝑥 ∈ 𝑋}. 

Proposition 2.3. [4] If 𝑁, 𝑀 ∈ 𝒩(𝑋), then we have the following properties: 

(1) 𝑁 ⊓ 𝑁 = 𝑁 and 𝑁 ⊔ 𝑁 = 𝑁. 

(2) 𝑁 ⊓ 𝑀 = 𝑀 ⊓ 𝑁 and 𝑁 ⊔ 𝑀 = 𝑀 ⊔ 𝑁. 

(3) 𝑁 ⊓ ∅̃ = ∅̃ and 𝑁 ⊓ 𝑋̃ = 𝑁. 

(4) 𝑁 ⊔ ∅̃ = 𝑁 and 𝑁 ⊔ 𝑋̃ = 𝑋̃. 

(5) 𝑁 ⊓ (𝑀 ⊓ 𝑂) = (𝑁 ⊓ 𝑀) ⊓ 𝑂 and 𝑁 ⊔ (𝑀 ⊔ 𝑂) = (𝑁 ⊔ 𝑀) ⊔ 𝑂. 

(6) (𝑁𝑐)𝑐 = 𝑁. 

Proposition 2.4. [6] Let 𝑁, 𝑀 ∈ 𝒩(𝑋). Then, 𝑁 ⊑ 𝑀 if and only if 𝑀𝑐 ⊑ 𝑁𝑐. 

The union and intersection operations given in Definition 2.2 can be extended as follows. 

Definition 2.5. [7] For {𝑁𝑗 : 𝑗 ∈ 𝐽} ⊆ 𝒩(𝑋) we define the following operations: 

(1) (Arbitrary intersection) The arbitrary neutrosophic intersection of the collection {𝑁𝑗 : 𝑗 ∈ 𝐽} , 

denoted by ⨅𝑗∈𝐽𝑁𝑗, is defined as 

⨅ 𝑁𝑗

𝑗∈𝐽

= {⟨𝑥, inf
𝑗∈𝐽

 𝜇𝑁𝑗
(𝑥), sup

𝑗∈𝐽
 𝜎𝑁𝑗

(𝑥), sup
𝑗∈𝐽

 𝛾𝑁𝑗
(𝑥)⟩ : 𝑥 ∈ 𝑋}. 

(2) (Arbitrary union) The arbitrary neutrosophic union of the collecction {𝑁𝑗 : 𝑗 ∈ 𝐽}, denoted by 

⨆𝑗∈𝐽  𝑁𝑗, is defined as 

⨆  
𝑗∈𝐽

𝑁𝑗 = {⟨𝑥, sup
𝑗∈𝐽

 𝜇𝑁𝑗
(𝑥), inf

𝑗∈𝐽
 𝜎𝑁𝑗

(𝑥), inf
𝑗∈𝐽

 𝛾𝑁𝑗
(𝑥)⟩ : 𝑥 ∈ 𝑋}. 

Proposition 2.6. [4] If {𝑁𝑗 : 𝑗 ∈ 𝐽} ⊆ 𝒩(𝑋) and 𝑀 ∈ 𝒩(𝑋), then we have the following properties: 

(1) 𝑀 ⊓ (⨆𝑗∈𝐽  𝑁𝑗) = ⨆𝑗∈𝐽  (𝑀 ⊓ 𝑁𝑗). 

(2) 𝑀 ⊔ (⨅𝑗∈𝐽𝑁𝑗) = ⨅𝑗∈𝐽(𝑀 ⊔ 𝑁𝑗). 

(3) (⨅𝑗∈𝐽𝑁𝑗)
𝑐

= ⨆𝑗∈𝐽  𝑁𝑗
𝑐. 

(4) (⨆𝑗∈𝐽  𝑁𝑗)
𝑐

= ⨅𝑗∈𝐽  𝑁𝑗
𝑐. 



Neutrosophic Sets and Systems, Vol. 63, 2024     51  

 

 
 

José Sanabria, Carlos Granados and Leslie Sánchez , Properties of Co-local Function and Related Φ-operator in Ideal 
Neutrosophic Topological Spaces 

Definition 2.7. [4] A neutrosophic topology on a set 𝑋 is a collection 𝜏 ⊆ 𝒩𝒮(𝑋) which satisfies the 

following conditions: 

(1) ∅̃ and 𝑋̃ are in 𝜏. 

(2) The intersection of two neutrosophic sets belonging to 𝜏 is in 𝜏. 

(3) The union of any collection of neutrosophic sets belonging to 𝜏 is in 𝜏. 

A set 𝑋  for which a neutrosophic topology 𝜏  has been defined is called a neutrosophic 

topological space and is denoted as a pair (𝑋, 𝜏). If 𝑁 ∈ 𝜏, then 𝑁 is called a neutrosophic open set 

and if 𝑁𝑐 ∈ 𝜏, then 𝑁 is called a neutrosophic closed set. We denote by 𝜏𝑐  the collection of all 

neutrosophic closed sets in the neutrosophic topological space (𝑋, 𝜏). 

Proposition 2.8. [4] Let (𝑋, 𝜏) be a neutrosophic topological space. Then, the following conditions 

hold: 

(1) ∅̃ and 𝑋̃ are in 𝜏𝑐 . 

(2) The union of two neutrosophic sets belonging to 𝜏𝑐  is in 𝜏𝑐 . 

(3) The intersection of any collection of neutrosophic sets belonging to 𝜏𝑐  is in 𝜏𝑐 . 

Definition 2.9. [4] Let (𝑋, 𝜏) be a neutrosophic topological space and 𝑁 ∈ 𝒩(𝑋). The neutrosophic 

closure of 𝑁, denoted by 𝐶𝑙(𝑁), is defined as 

𝐶𝑙(𝑁) = ⨅  {𝐹 ∈ 𝒩(𝑋): 𝑁 ⊑ 𝐹 and 𝐹 ∈ 𝜏𝑐} ; 

while the neutrosophic interior of 𝑁, denoted by Int (𝑁), is defined as 

Int (𝑁) = ⨆  {𝑈 ∈ 𝒩(𝑋): 𝑈 ⊑ 𝑁 and 𝑈 ∈ 𝜏}. 

Proposition 2.10. [4] Let (𝑋, 𝜏) be a neutrosophic topological space and 𝑁, 𝑀 ∈ 𝒩(𝑋). Then, the 

following conditions hold: 

(1) 𝑁 ⊑ 𝐶𝑙(𝑁) and Int (𝑁) ⊑ 𝑁. 

(2) If 𝑁 ⊑ 𝑀, then 𝐶𝑙(𝑁) ⊑ 𝐶𝑙(𝑀) and Int (𝑁) ⊑ Int (𝑀). 

(3) 𝑁 ∈ 𝜏𝑐 if and only if 𝑁 = 𝐶𝑙(𝑁). 

(4) 𝑁 ∈ 𝜏 if and only if 𝑁 = Int (𝑁). 

Definition 2.11. [5] A neutrosophic set 𝑀 = {⟨𝑥, 𝜇𝑀(𝑥), 𝜎𝑀(𝑥), 𝛾𝑀(𝑥)⟩: 𝑥 ∈ 𝑋} is called a neutrosophic 

point if for any element 𝑦 ∈ 𝑋, 𝜇𝑀(𝑦) = 𝑎, 𝜎𝑀(𝑦) = 𝑏, 𝛾𝑀(𝑦) = 𝑐 for 𝑦 = 𝑥 and 𝜇𝑀(𝑦) = 0, 𝜎𝑀(𝑦) =

1, 𝛾𝑀(𝑦) = 1 for 𝑦 ≠ 𝑥, where 𝑎 ∈ (0,1] and 𝑏, 𝑐 ∈ [0,1). In this case, the neutrosophic point 𝑀 is 

denoted by 𝑀𝑎,𝑏,𝑐
𝑥  or simply by 𝑥𝑎,𝑏,𝑐. Also, 𝑥 is called the support of the neutrosophic point 𝑥𝑎,𝑏,𝑐. 

The neutrosophic point 𝑥1,0,0 is called a neutrosophic crisp point. 

Definition 2.12. [5] Let 𝑁 ∈ 𝒩(𝑋). A neutrosophic point 𝑥𝑎,𝑏,𝑐 is said to belong to 𝑁, denoted by 

𝑥𝑎,𝑏,𝑐 ∈ 𝑁, if 𝜇𝑁(𝑥) ≥ 𝑎, 𝜎𝑁(𝑥) ≤ 𝑏 and 𝛾𝑁(𝑥) ≤ 𝑐. 

Lemma 2.13. [5] Let 𝑁, 𝑀 ∈ 𝒩(𝑋). Then, we have: 

(1) 𝑁 = ⨆{𝑥𝑎,𝑏,𝑐 : 𝑥𝑎,𝑏,𝑐 ∈ 𝑁}. 

(2) If 𝑥𝑎,𝑏,𝑐 ∈ 𝑁 and 𝑁 ⊑ 𝑀, then 𝑥𝑎,𝑏,𝑐 ∈ 𝑀. 

Proposition 2.14. Let 𝑁, 𝑀 ∈ 𝒩(𝑋). Then, the following properties are equivalent: 

(1) 𝑁 ⊑ 𝑀. 

(2) 𝑥𝑎,𝑏,𝑐 ∈ 𝑁 implies that 𝑥𝑎,𝑏,𝑐 ∈ 𝑀. 



Neutrosophic Sets and Systems, Vol. 63, 2024     52  

 

 
 

José Sanabria, Carlos Granados and Leslie Sánchez , Properties of Co-local Function and Related Φ-operator in Ideal 
Neutrosophic Topological Spaces 

Proof. The proof follows directly from Lemma 2.13. 

Remark 2.15. It is important to note that ∅̃ is not the only neutrosophic set that does not have points 

belonging to it. For example, if 𝑋 = {𝑥, 𝑦}, then 𝑁 = {⟨𝑥, 0,0.5,1⟩, ⟨𝑦, 0,0.4,1⟩} is a neutrosophic set 

over 𝑋 for which there are no neutrosophic points belonging to it. 

Let 𝒩𝑝(𝑋) = {𝑁 ∈ 𝒩(𝑋) : there exists a neutrosophic point 𝑥𝑎,𝑏,𝑐 ∈ 𝑁} and let 𝒩 ′(𝑋) = {∅̃} ∪

𝒩𝑝(𝑋). In the remainder of this paper, we will use the definitions and results described previously, 

restricted to the collection 𝒩 ′(𝑋). 

Definition 2.16. [9] Let (𝑋, 𝜏)  be a neutrosophic topological space and 𝑁 ∈ 𝒩 ′(𝑋) . The 

neutrosophic point-kernel of 𝑁, denoted by Ker𝑝 (𝑁), is defined as 

Ker𝑝  (𝑁) = ⨆  {𝑥𝑎,𝑏,𝑐 ∈ 𝒩 ′(𝑋): 𝐹 ⊓ 𝑁 ≠ ∅̃ for every 𝐹 ∈ 𝜏𝑐(𝑥𝑎,𝑏,𝑐)},  

where 𝜏𝑐(𝑥𝑎,𝑏,𝑐) = {𝐹 ∈ 𝜏𝑐 : 𝑥𝑎,𝑏,𝑐 ∈ 𝐹}. 

According to [9], the collection 𝜏𝑘 = {𝑁 ∈ 𝒩′(𝑋): Ker𝑝 (𝑁𝑐) = 𝑁𝑐} is a neutrosophic topology 

on 𝑋 and Ker𝑝 is the neutrosophic closure in the neutrosophic topological space (𝑋, 𝜏𝑘). We say 

that a neutrosophic set 𝑁 is neutrosophic 𝜏𝑘-open, if 𝑁 ∈ 𝜏𝑘. The complement of a neutrosophic 

𝜏𝑘 -open set we will call it a neutrosophic 𝜏𝑘 -closed set. We denote by 𝐶𝑜𝑘𝑝  the neutrosophic 

interior in the neutrosophic topological space (𝑋, 𝜏𝑘). Let us note that 𝑀 is 𝜏𝑘-open neutrosophic if 

and only if Cok𝑝 (𝑀) = 𝑀; while 𝑀 is 𝜏𝑘-closed neutrosophic if and only if Ker𝑝 (𝑀) = 𝑀. 

Definition 2.17. [2] A neutrosophic ideal on a set 𝑋 is a nonempty collection ℒ ⊆ 𝒩 ′(𝑋), which 

satisfies the following conditions: 

(1) 𝑁 ∈ ℒ and 𝑀 ⊑ 𝑁 imply that 𝑀 ∈ ℒ.   (Hereditary property) 

(2) 𝑁, 𝑀 ∈ ℒ imply that 𝑁 ⊔ 𝑀 ∈ ℒ.   (Finite additivity property) 

Definition 2.18. [9] An application Υ: 𝒩′(𝑋) → 𝒩 ′(𝑋) is called a neutrosophic closure operator if it 

satisfies the following conditions: 

(1) 𝑁 ⊑ Υ(𝑁) (expansivity), 

(2) Υ(Υ(𝑁)) = Υ(𝑁) (idempotency), 

(3) Υ(𝑁 ⊔ 𝑀) = Υ(𝑁) ⊔ Υ(𝑀) (additivity), 

(4) Υ(∅̃) = ∅̃ (non-spontaneous creation), 

whenever 𝑀, 𝑁 ∈ 𝒩 ′(𝑋). 

Lemma 2.19. [9] If Υ: 𝒩 ′(𝑋) → 𝒩 ′(𝑋) is a neutrosophic closure operator, then the collection 𝜏(Υ) =

{𝑁 ∈ 𝒩 ′(𝑋): Υ(𝑁𝑐) = 𝑁𝑐} is a neutrosophic topology on 𝑋 and Υ is the neutrosophic closure in the 

neutrosophic topological space (𝑋, 𝜏(Υ)). 

3. Neutrosophic co-local function and related 𝚽-operator 

In this section, we introduce and study the concept of neutrosophic co-local function as a 

natural generalization of the neutrosophic point-kernel of a set in a neutrosophic topological space.  

Moreover, we introduce the concept of neutrosophic complement co-local function (also called 

neutrosophic Φ-operator) and explore some new classes of neutrosophic sets defined in terms of the 

neutrosophic co-local function and the neutrosophic complement co-local function. 

3.1. Neutrosophic co-local function 
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Definition 3.1.1. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 𝑋. 

For each 𝑁 ∈ 𝒩′(𝑋), we define the neutrosophic co-local function of 𝑁 as follows: 

𝑁•(ℒ, 𝜏) = ⨆  {𝑥𝑎,𝑏,𝑐 ∈ 𝒩 ′(𝑋): 𝐹 ⊓ 𝑁 ∉ ℒ for every 𝐹 ∈ 𝜏𝑐(𝑥𝑎,𝑏,𝑐)}. 

We will denote 𝑁•(ℒ, 𝜏) by 𝑁• or 𝑁•(ℒ). Observe that the neutrosophic co-local function can 

be seen as an operator from 𝒩 ′(𝑋) to 𝒩 ′(𝑋); that is, ( )•: 𝒩 ′(𝑋) → 𝒩 ′(𝑋), defined by 𝑁 ↦ 𝑁•. 

The co-local function is not a neutrosophic closure operator, since in general, it does not satisfy 

𝑁 ⊑ 𝑁• for each 𝑁 ∈ 𝒩 ′(𝑋). In the case that 𝑁 ⊑ 𝑁•, we say that 𝑁 is a neutrosophic •-dense in 

itself set. The following example shows that, in general, 𝑋̃• is a proper neutrosophic subset of 𝑋̃; 

that is, 𝑋̃ is not neutrosophic •-dense in itself. 

Example 3.1.2. Let 𝑋 = ℝ  with the neutrosophic topology 𝜏 = {∅̃, ℝ̃, 𝐴𝑐} , where 𝐴 ≠ ∅̃  is any 

neutrosophic subset having countable support of ℝ  and ℒ = ℒ𝑐  the neutrosophic ideal of all 

neutrosophic subsets having countable support of ℝ. Observe that 𝐹1 = ℝ̃ and 𝐹2 = 𝐴 are the only 

neutrosophic closed sets such that 𝐹1 ≠ ∅̃ and 𝐹2 ≠ ∅̃. Since 𝑋̃ ∩ 𝐹1 = 𝐹1 ∉ ℒ𝑐 and 𝑋̃ ⊓ 𝐹2 = 𝐴 ∈ ℒ𝑐, 

then is clear that 𝑋̃• = ℝ̃• = 𝐴𝑐 ⊑ ℝ̃ = 𝑋̃, but 𝑋̃• ≠ 𝑋̃. 

Proposition 3.1.3. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 

𝑋. For every 𝑁 ∈ 𝒩 ′(𝑋), the following properties hold: 

(1) If ℒ = {∅̃}, then 𝑁• = Ker𝑝 (𝑁). 

(2) If ℒ = 𝒩 ′(𝑋), then 𝑁• = ∅̃. 

Lemma 3.1.4. Let (𝑋, 𝜏) be a neutrosophic topological space with two arbitrary neutrosophic ideals 

ℒ and ℒ′ on 𝑋. If 𝑁, 𝑀 ∈ 𝒩 ′(𝑋), then the following properties hold: 

(1) If 𝑁 ⊑ 𝑀, then 𝑁• ⊑ 𝑀•. 

(2) If ℒ ⊆ ℒ′, then 𝑁•(ℒ′) ⊑ 𝑁•(ℒ). 

(3) 𝑁• = Ker𝑝  (𝑁•) ⊑ Ker𝑝(𝑁)  (𝑁• is a neutrosophic 𝜏𝑘-closed set). 

(4) (𝑁•)• ⊑ 𝑁•. 

(5) ∅̃• = ∅̃. 

(6) (𝑁 ⊔ 𝑀)• = 𝑁• ⊔ 𝑀•. 

(7) If 𝐹 is a neutrosophic closed set, then 𝐹 ⊓ 𝑁• = 𝐹 ⊓ (𝐹 ⊓ 𝑁)• ⊑ (𝐹 ⊓ 𝑁)•. 

(8) If 𝑁 ∈ ℒ, then 𝑁• = ∅̃. 

(9) If 𝑁 ⊑ 𝑁•, then 𝑁• = Ker𝑝 (𝑁). 

(10) If 𝜏1  and 𝜏2  be are two neutrosophic topologies on 𝑋 such that 𝜏1 ⊆ 𝜏2 , then 𝑁•(ℒ, 𝜏2) ⊑ 

𝑁•(ℒ, 𝜏1). 

(11) 𝑁•(ℒ ∩ ℒ′) = 𝑁•(ℒ) ⊔ 𝑁•(ℒ′). 

Proof. (1) Assume that 𝑥𝑎,𝑏,𝑐 ∈ 𝑁• and let 𝐹 ∈ 𝜏𝑐(𝑥𝑎,𝑏,𝑐). Then, 𝐹 ⊓ 𝑁 ∉ ℒ and as 𝑁 ⊑ 𝑀, we have 

𝐹 ⊓ 𝑁 ⊑ 𝐹 ⊓ 𝑀. By the hereditary property of ℒ, it follows that 𝐹 ⊓ 𝑀 ∉ ℒ and hence 𝑥𝑎,𝑏,𝑐 ∈ 𝑀•. 

(2) Suppose that ℒ ⊆ ℒ′,  𝑥𝑎,𝑏,𝑐 ∈ 𝑁•(ℒ′) and let 𝐹 ∈ 𝜏𝑐(𝑥𝑎,𝑏,𝑐) be arbitrary. Then 𝑁 ⊓ 𝐹 ∉ ℒ′ and as 

ℒ ⊆ ℒ′ , it follows that 𝑁 ⊓ 𝐹 ∉ ℒ , which implies that 𝑥𝑎,𝑏,𝑐 ∈ 𝑁•(ℒ) . Thus, we conclude that 

𝑁•(ℒ′) ⊑ 𝑁•(ℒ). 

(3) Let 𝑥𝑎,𝑏,𝑐 ∈ Ker𝑝 (𝑁•)  and 𝐹 ∈ 𝜏𝑐(𝑥𝑎,𝑏,𝑐)  be arbitrary. Then, 𝐹 ⊓ 𝑁• ≠ ∅̃ , so there exists a 

neutrosophic point 𝑦𝑢,𝑣,𝑤 ∈ 𝐹 ⊓ 𝑁• , which implies that 𝑦𝑢,𝑣,𝑤 ∈ 𝐹  and 𝑦𝑢,𝑣,𝑤 ∈ 𝑁•.  Since 𝐹 ∈



Neutrosophic Sets and Systems, Vol. 63, 2024     54  

 

 
 

José Sanabria, Carlos Granados and Leslie Sánchez , Properties of Co-local Function and Related Φ-operator in Ideal 
Neutrosophic Topological Spaces 

𝜏𝑐(𝑦𝑢,𝑣,𝑤), it follows that 𝐹 ⊓ 𝑁 ∉ ℒ and so 𝑥𝑎,𝑏,𝑐 ∈ 𝑁•. On the other hand, as 𝑁 ∙ ⊑ Ker𝑝 (𝑁•), we 

conclude that 𝑁• = Ker𝑝 (𝑁•). Now, since {∅̃} ⊆ ℒ, by part (1) of Proposition 3.1.3, we have 𝑁• ⊑

𝑁•({∅̃}) = Ker𝑝  (𝑁). 

(4) By part (3), 𝑁• = Ker𝑝 (𝑁•) ⊑ Ker𝑝  (𝑁)  for every 𝑁 ∈ 𝒩 ′(𝑋). In particular, for 𝑁•  we have 

(𝑁•)• ⊑ Ker𝑝 (𝑁•) = 𝑁•. 

(5) We have 

∅̃ = ⨆  {𝑥𝑎,𝑏,𝑐 ∈ 𝒩 ′(𝑋): 𝐹 ⊓ ∅̃ ∉ ℒ for every 𝐹 ∈ 𝜏𝑐(𝑥𝑎,𝑏,𝑐)}

 = ⨆  {𝑥𝑎,𝑏,𝑐 ∈ 𝒩 ′(𝑋): ∅̃ ∉ ℒ for every 𝐹 ∈ 𝜏𝑐(𝑥𝑎,𝑏,𝑐)} = ∅̃.
 

(6) By part (1), we have 𝑁• ⊑ (𝑁 ⊔ 𝑀)• and 𝑀• ⊑ (𝑁 ⊔ 𝑀)•. Therefore, 𝑁• ⊔ 𝑀• ⊑ (𝑁 ⊔ 𝑀)•. For 

the other inclusion, assume that 𝑥𝑎,𝑏,𝑐 ∈ (𝑁 ⊔ 𝑀)• and let 𝐹 ∈ 𝜏𝑐(𝑥𝑎,𝑏,𝑐) be arbitrary. Then, (𝑀 ⊔

𝑁) ⊓ 𝐹 ∉ ℒ, i.e. (𝑀 ⊓ 𝐹) ⊔ (𝑁 ⊓ 𝐹) ∉ ℒ. Accordingly, we have the cases 𝑀 ⊓ 𝐹 ∉ ℒ or 𝑁 ⊓ 𝐹 ∉ ℒ. If 

𝑀 ⊓ 𝐹 ∉ ℒ, then we obtain that 𝑥𝑎,𝑏,𝑐 ∈ 𝑀•, whereas if 𝑁 ⊓ 𝐹 ∉ ℒ, then we have 𝑥𝑎,𝑏,𝑐 ∈ 𝑁•. In both 

cases, it follows that 𝑥𝑎,𝑏,𝑐 ∈ 𝑀• ⊔ 𝑁•. 

(7) Let 𝐹 ∈ 𝜏𝑐 , 𝑥𝑎,𝑏,𝑐 ∈ 𝐹 ⊓ 𝑁•  and 𝐺 ∈ 𝜏𝑐(𝑥𝑎,𝑏,𝑐) be arbitrary. Then, 𝑥𝑎,𝑏,𝑐 ∈ 𝐹 ⊓ 𝐺, 𝐹 ⊓ 𝐺 ∈ 𝜏𝑐  and 

𝑥𝑎,𝑏,𝑐 ∈ 𝑁•, which implies that 𝐺 ⊓ (𝐹 ⊓ 𝑁) ∉ ℒ and so 𝑥𝑎,𝑏,𝑐 ∈ (𝐹 ⊓ 𝑁)•. Thus, we have 𝐹 ⊓ 𝑁• ⊑ 

(𝐹 ⊓ 𝑁)•, 𝐹 ⊓ 𝑁• ⊑ 𝐹 and we conclude that 𝐹 ⊓ 𝑁• ⊑ 𝐹 ⊓ (𝐹 ⊓ 𝑁)•. On the other hand, the 

inclusion 𝐹 ⊓ 𝑁 ⊑ 𝑁, means that (𝐹 ⊓ 𝑁)• ⊑ 𝑁• and 𝐹 ⊓ (𝐹 ⊓ 𝑁)∙ ⊑ 𝐹 ⊓ 𝑁•. Therefore, 𝐹 ⊓ 𝑁• =

𝐹 ⊓ (𝐹 ⊓ 𝑁)• ⊑ (𝐹 ⊓ 𝑁)•. 

(8) Suppose that 𝑁 ∈ ℒ and 𝑁• ≠ ∅̃. Then, there exists a neutrosophic point 𝑥𝑎,𝑏,𝑐 ∈ 𝑁• and so, 𝑁 ⊓

𝐹 ∉ ℒ for 𝐹 ∈ 𝜏𝑐(𝑥𝑎,𝑏,𝑐) being arbitrary. But the fact that 𝑁 ∈ ℒ implies that 𝑁 ⊓ 𝐹 ∈ ℒ  for each 

𝐹 ∈ 𝜏𝑐(𝑥𝑎,𝑏,𝑐). Thus, we obtain a contradiction and hence, 𝑁• = ∅̃. 

(9) Assume that 𝑁 ⊑ 𝑁•. By part (3), 𝑁• = Ker𝑝 (𝑁•) ⊑ Ker𝑝  (𝑁) and by hypotheses, it follows that 

Ker𝑝  (𝑁) ⊑ Ker𝑝 (𝑁•) = 𝑁• ⊑ Ker𝑝 (𝑁) and hence, 𝑁• = Ker𝑝 (𝑁). 

(10) Let 𝑥𝑎,𝑏,𝑐 ∈ 𝑁•(ℒ, 𝜏2) and 𝐹 ∈ 𝜏1
𝑐(𝑥𝑎,𝑏,𝑐) be arbitrary. Since 𝜏1 ⊆ 𝜏2, we have 𝐹 ∈ 𝜏2

𝑐(𝑥𝑎,𝑏,𝑐) and 

so, 𝐹 ⊓ 𝑁 ∉ ℒ. Therefore, 𝑥𝑎,𝑏,𝑐 ∈ 𝑁•(ℒ, 𝜏1). 

(11) Since ℒ ∩ ℒ′ ⊆ ℒ  and ℒ ∩ ℒ′ ⊆ ℒ′ , by part (2), we have 𝑁•(ℒ) ⊑ 𝑁•(ℒ ∩ 𝐿′)  and 𝑁•(ℒ′) ⊑

𝑁•(ℒ ∩ ℒ′). Thus, we deduce the inclusion 𝑁•(ℒ) ⊔ 𝑁•(ℒ′) ⊑ 𝑁•(ℒ ∩ ℒ′). For the other inclusion, 

suppose that 𝑥𝑎,𝑏,𝑐 ∈ 𝑁•(ℒ ∩ ℒ′) and let 𝐹 ∈ 𝜏𝑐(𝑥𝑎,𝑏,𝑐) be arbitrary. Then, 𝑁 ⊓ 𝐹 ∉ ℒ ∩ ℒ′ , which 

implies that 𝑁 ⊓ 𝐹 ∉ ℒ or 𝑁 ⊓ 𝐹 ∉ ℒ′. If 𝑁 ⊓ 𝐹 ∉ ℒ, then 𝑥𝑎,𝑏,𝑐 ∈ 𝑁•(ℒ), whereas if 𝑁 ⊓ 𝐹 ∉ ℒ′, then 

𝑥𝑎,𝑏,𝑐 ∈ 𝑁•(ℒ′) . In both cases, it follows that 𝑥𝑎,𝑏,𝑐 ∈ 𝑁•(ℒ) ⊔ 𝑁•(ℒ′) . Therefore, 𝑁•(ℒ ∩ ℒ′) ⊑

𝑁•(ℒ) ⊔ 𝑁•(ℒ′). 

Corollary 3.1.5. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 𝑋. 

If {𝑁𝛼: 𝛼 ∈ Δ} ⊆ 𝒩 ′(𝑋), then the following properties hold: 

(1) (⨅ 𝑁𝛼𝛼∈Δ )• = ⨅ 𝑁𝛼
•

𝛼∈Δ . 

(2) (⨆𝛼∈Δ  𝑁𝛼)• = ⨆𝛼∈Δ  𝑁𝛼
•, if Δ is finite. 

Since the neutrosophic co-local function is not a neutrosophic closure operator, it is necessary to 

introduce a new concept that allows us to obtain a new neutrosophic topology from it. 

Definition 3.1.6. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 𝑋. 

For each 𝑁 ∈ 𝒩′(𝑋), we define 𝐶𝑙•(𝑁) = 𝑁 ⊔ 𝑁•. 
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Remark 3.1.7. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 𝑋. 

For each 𝑁 ∈ 𝒩′(𝑋), the following properties hold: 

(1) If ℒ = {∅̃} then 𝐶𝑙•(𝑁) = 𝑁 ⊔ 𝑁• = 𝑁 ⊔ Ker𝑝 (𝑁) = Ker𝑝 (𝑁).  

(2) If ℒ = 𝒩 ′(𝑋), then 𝐶𝑙•(𝑁) = 𝑁 ⊔ ∅̃ = 𝑁.  

Proposition 3.1.8. 𝐶𝑙• is a neutrosophic closure operator. 

Proof. The proof is an immediate consequence of Lemma 3.1.4. 

According with Proposition 3.1.8 and Lemma 2.19, if (𝑋, 𝜏) is a neutrosophic topological space 

and ℒ is a neutrosophic ideal on 𝑋, we denote by 𝜏•(ℒ) the neutrosophic topology generated by 

𝐶𝑙•; that is 𝜏•(ℒ) = {𝑁 ∈ 𝒩 ′(𝑋):  𝐶𝑙•(𝑁𝑐) = 𝑁𝑐}. When there is no chance for confusion, we will 

simply write 𝜏•  for 𝜏•(ℒ) . The elements of 𝜏•  are called neutrosophic 𝜏• -open sets and the 

complement of a neutrosophic 𝜏•-open set is called neutrosophic 𝜏•-closed set. Note that if 𝑁 ∈

𝒩 ′(𝑋), then: 𝑁 is neutrosophic 𝜏•-closed if and only if 𝑁𝑐 ∈ 𝜏• if and only if 𝐶𝑙•((𝑁𝑐)𝑐) = (𝑁𝑐)𝑐 if 

and only if 𝐶𝑙•(𝑁) = 𝑁. 

Remark 3.1.9. Since 𝑁• = Ker𝑝 (𝑁•) ⊑ Ker𝑝  (𝑁) , then 𝐶𝑙•(𝑁) ⊑ Ker𝑝 (𝑁)  for each 𝑁 ∈ 𝒩 ′(𝑋) . 

Therefore, if 𝑁 is a neutrosophic 𝜏𝑘-closed set, then 𝑁 is neutrosophic 𝜏•-closed. It follows that 

each neutrosophic 𝜏𝑘-open set is neutrosophic 𝜏•-open; that is 𝜏𝑘 ⊆ 𝜏•. Moreover, from Remark 

3.1.7 it follows that 𝜏•({∅̃}) = 𝜏𝑘 and 𝜏•(𝒩 ′(𝑋)) = 𝒩 ′(𝑋). 

Proposition 3.1.10. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 

𝑋. If {𝑁𝛼: 𝛼 ∈ Δ} is a collection of neutrosophic 𝜏•-closed sets, then the following properties hold: 

(1) ⨅  {𝑁𝛼: 𝛼 ∈ Δ′} is a neutrosophic 𝜏•-closed set for any subset Δ′ of Δ. 

(2) ⨆{𝑁𝛼: 𝛼 ∈ Δ0} is a neutrosophic 𝜏•-closed set for any finite subset Δ0 of Δ. 

Proof. The proof is an immediate consequence of Proposition 2.6 and the duality between the 

notions of neutrosophic 𝜏•-open and neutrosophic 𝜏•-closed sets. 

Proposition 3.1.11. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 

𝑋. Then, 𝑁 ∈ 𝒩 ′(𝑋) is neutrosophic 𝜏•-closed if and only if 𝑁• ⊑ 𝑁. 

Proof. Suppose that 𝑁 is neutrosophic 𝜏•-closed. Then, 𝐶𝑙•(𝑁) = 𝑁. In consequence, 𝑁 ⊔ 𝑁• = 𝑁 

and hence, 𝑁• ⊑ 𝑁. Conversely, assume that 𝑁• ⊑ 𝑁. Since 𝐶𝑙•(𝑁) = 𝑁 ⊔ 𝑁• and 𝑁 ⊔ 𝑁• ⊑ 𝑁, we 

have 𝐶𝑙•(𝑁) ⊑ 𝑁. By Proposition 3.1.8, we have 𝑁 ⊑ 𝐶𝑙•(𝑁) and so, we conclude that 𝐶𝑙•(𝑁) = 𝑁. 

This shows that 𝑁 is neutrosophic 𝜏•-closed. 

Proposition 3.1.12. If ℒ and ℒ′ are neutrosophic ideals on a neutrosophic topological space (𝑋, 𝜏) 

such that ℒ ⊆ ℒ′, then 𝜏•(ℒ) ⊆ 𝜏•(ℒ′). 

Proof. Consider 𝑁 ∈ 𝜏•(ℒ). Then, 𝑁𝑐  is a neutrosophic 𝜏•(ℒ)-closed set and so, by Proposition 

3.1.11, (𝑁𝑐)•(ℒ) ⊑ 𝑁𝑐. Now, by part (2) of Lemma 3.1.4, it follows that (𝑁𝑐)•(ℒ′) ⊑ (𝑁𝑐)•(ℒ) ⊑ 𝑁𝑐 . 

This shows that (𝑁𝑐)•(ℒ′) ⊑ 𝑁𝑐 and 𝑁𝑐 is a neutrosophic 𝜏•(ℒ′)-closed set. Therefore, 𝑁 ∈ 𝜏•(ℒ′). 

Corollary 3.1.13. Let {ℐ𝛼: 𝛼 ∈ Δ} be a collection of neutrosophic ideals on a neutrosophic topological 

space (𝑋, 𝜏). If ℐ = ⋂𝛼∈Δ  ℐ𝛼 then 𝜏•(ℐ) ⊆ 𝜏#, where 𝜏# = ⋂𝛼∈Δ𝜏•(ℐ𝛼). 

Proof. It is clear that 𝜏♯ is a neutrosophic topology on 𝑋. Since ℐ = ⋂𝛼∈Δ  ℐ𝛼 ⊆ ℐ𝛼 for every 𝛼 ∈ Δ, by 

Proposition 3.1.12, we have 𝜏•(ℐ) ⊂ 𝜏•(ℐ𝛼) for every 𝛼 ∈ Δ. Therefore, 𝜏•(ℐ) ⊆ ⋂𝛼∈Δ𝜏•(ℐ𝛼) = 𝜏#. 

Corollary 3.1.14. Suppose that (𝑋, 𝜏) be a neutrosophic topological space and let ℒ and ℒ′ be two 

neutrosophic ideals on 𝑋. Then, 𝜏•(ℒ ∩ ℒ′) = 𝜏•(ℒ) ∩ 𝜏•(ℒ′). 
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Proof. Let 𝑀 ∈ 𝜏•(ℒ ∩ ℒ′) and put 𝑀 = 𝑁𝑐. Then, by part (11) of Lemma 3.4 and Proposition 3.1.11, 

we have: 

𝑀 ∈ 𝜏•(ℒ ∩ ℒ′) ⟺ 𝑁 is neutrosophic 𝜏•(ℒ ∩ ℒ′)-closed 

                             ⟺ 𝑁•(ℒ) ⊔ 𝑁•(ℒ′) = 𝑁•(ℒ ∩ ℒ′) ⊑ 𝑁 

               ⟺ 𝑁•(ℒ) ⊑ 𝑁 and 𝑁•(ℒ′) ⊑ 𝑁 

           ⟺ 𝑀 ∈ 𝜏•(ℒ) and 𝑀 ∈ 𝜏•(ℒ′) 

⟺ 𝑀 ∈ 𝜏•(ℒ) ∩ 𝜏•(ℒ′). 

3.2. Neutrosophic Φ-operator and new neutrosophic sets 

Definition 3.2.1. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 𝑋. 

For each 𝑁 ∈ 𝒩′(𝑋), we define the neutrosophic complement co-local function of 𝑁 as Φ(𝑁) =

((𝑁𝑐)∙)𝑐.  

In Table 1 we summarize the main equalities related to the neutrosophic operator Φ, which are 

obtained by applying the neutrosophic complement operation or the co-local neutrosophic function 

from equation (1). 

Table 1. Equalities related to the neutrosophic operator Φ. 

(1)  Φ(𝑁) = ((𝑁𝑐)•)𝑐 (2)  [Φ(𝑁)]𝑐 = (𝑁𝑐)• 

(3)  [Φ(𝑁)]• = ((𝑁𝑐)•)𝑐)• (4)  Φ(𝑁𝑐) = (𝑁•)𝑐 

(5)  [Φ(𝑁𝑐)]𝑐 = 𝑁• (6)  [Φ(𝑁𝑐)]• = ((𝑁•)𝑐)• 

(7)  Φ(𝑁•) = (((𝑁•)𝑐)•)𝑐 (8)  [Φ(𝑁•)]𝑐 = ((𝑁•)𝑐)• 

Remark 3.2.2. From the equalities (6) and (8) of Table 1, we can deduce that [Φ(𝑁𝑐)]• = [Φ(𝑁•)]𝑐. 

In the following proposition, relevant properties related to the neutrosophic operator Φ  (also 

called neutrosophic Φ-operator) are presented. 

Proposition 3.2.3. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 

𝑋. Then, we have the following properties: 

(1) If 𝑁, 𝑀 ∈ 𝒩 ′(𝑋) and 𝑁 ⊑ 𝑀, then Φ(𝑁) ⊑ Φ(𝑀).   ( Φ is monotone) 

(2) Φ(𝑁 ⊓ 𝑀) = Φ(𝑁) ⊓ Φ(𝑀) for every 𝑁, 𝑀 ∈ 𝒩 ′(𝑋). 

(3) Φ(𝑁) ⊑ Φ(Φ(𝑁)) for every 𝑁 ∈ 𝒩 ′(𝑋). 

(4) Φ(𝑋̃) = 𝑋̃. 

(5) 𝑂 ⊑ Φ(𝑂) for every 𝑂 ∈ 𝜏𝑘 .  (Φ is expansive on 𝜏𝑘) 

(6) Cok𝑝 (𝑁) ⊑ Φ(𝑁) for every 𝑁 ∈ 𝒩 ′(𝑋). 

Proof. (1) Let 𝑁, 𝑀 ∈ 𝒩 ′(𝑋) such that 𝑁 ⊑ 𝑀. Then, 𝑀𝑐 ⊑ 𝑁𝑐  and by part (1) of Lemma 3.1.4, 

(𝑀𝑐)• ⊑ (𝑁𝑐)•. Therefore, Φ(𝑁) = (𝑁𝑐)•)𝑐 ⊑ ((𝑀𝑐)•)𝑐 = Φ(𝑀). 

(2) If 𝑁, 𝑀 ∈ 𝒩 ′(𝑋), then 

Φ(𝑁 ⊓ 𝑀) = (((𝑁 ⊓ 𝑀)𝑐)•)𝑐 = ((𝑁𝑐 ⊔ 𝑀𝑐)•)𝑐

 = ((𝑁𝑐)• ⊔ (𝑀𝑐)•)𝑐 = ((𝑁𝑐)•)𝑐 ⊓ ((𝑀𝑐)•)𝑐

 = Φ(𝑁) ⊓ Φ(𝑀).
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(3) Let 𝑁 ∈ 𝒩 ′(𝑋). By part (5) of Lemma 3.1.4, we have ((𝑁𝑐)•)• ⊑ (𝑁𝑐)• , which implies that 

Φ(𝑁) = ((𝑁𝑐)•)𝑐 ⊑ (((𝑁𝑐)•)•)𝑐. Now, by applying Definition 3.2.1 to the neutrosophic set Φ(𝑁), we 

obtain that Φ(Φ(𝑁)) = (([Φ(𝑁)]𝑐)•)𝑐 and by equation (2) of Table 1 , we deduce that Φ(Φ(𝑁)) =

(((𝑁𝑐)•)•)𝑐. Hence, Φ(𝑁) ⊑ ((𝑁𝑐)•)•)𝑐 = Φ(Φ(𝑁)). 

(4) By definition we have Φ(𝑋̃) = ((𝑋̃𝑐)
•

)
𝑐

= (∅̃•)
𝑐

= ∅̃𝑐 = 𝑋̃. 

(5) If 𝑂 ∈ 𝜏𝑘, then 𝑂𝑐  is a neutrosophic 𝜏𝑘-closed set and so Ker𝑝 (𝑂𝑐) = 𝑂𝑐 . By equation (2) of Table 

1 and part (3) of Lemma 3.1.4, we obtain that [Φ(𝑂)]𝑐 = (𝑂𝑐)• ⊑ Ker𝑝 (𝑂𝑐) = 𝑂𝑐 and hence, 𝑂 ⊑

Φ(𝑂) for every 𝑂 ∈ 𝜏𝑘 . 

(6) Since Cok𝑝 (𝑁) ∈ 𝜏𝑘, by part (5), we have Cok𝑝 (𝑁) ⊑ Φ(Cok𝑝 (𝑁)) and as Cok𝑝 (𝑁) ⊑ 𝑁, by part 

(1), we deuce that Cok𝑝 (𝑁) ⊑ Φ(Cok𝑝 (𝑁)) ⊑ Φ(𝑁). 

Definition 3.2.4. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrophic ideal on 𝑋. A 

subset 𝑁 ∈ 𝒩 ′(𝑋) is said to be: 

(1) neutrosophic •-perfect, if 𝑁 = 𝑁• 

(2) neutrosophic •-dense, if 𝑁• = 𝑋̃. 

(3) neutrosophic •-condensed, if [Φ(𝑁)]• = 𝑁•. 

(4) neutrosophic Φ-condensed, if Φ(𝑁•) = Φ(𝑁). 

(5) neutrosophic Φ•-condensed, if it is neutrosophic •-condensed and neutrosophic Φ-condensed. 

(6) neutrosophic non Φ•-condensed, if Φ(𝑁•) = ∅̃. 

(7) neutrosophic •-congruent, if [Φ(𝑁)]• = 𝑁. 

(8) neutrosophic Φ-congruent, if Φ(𝑁•) = 𝑁. 

(9) neutrosophic Φ•-congruent, if it is neutrosophic •-congruent and neutrosophic Φ-congruent. 

Proposition 3.2.5. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 

𝑋. If 𝑁 ∈ 𝒩 ′(𝑋), then we have the following properties: 

(1) If 𝑁 is neutrosophic •-perfect, then it is neutrosophic Φ-condensed. 

(2) 𝑁 is neutrosophic Φ-condensed if and only if 𝑁𝑐 is neutrosophic •-condensed. 

(3) 𝑁 is neutrosophic Φ•-condensed if and only if 𝑁𝑐 is neutrosophic Φ•-condensed. 

(4) 𝑁 is neutrosophic Φ-congruent if and only if 𝑁𝑐 is neutrosophic •-congruent. 

(5) 𝑁 is neutrosophic Φ•-congruent if and only if 𝑁𝑐 is neutrosophic Φ•-congruent. 

(6) If 𝑁 neutrosophic Φ-condensed and neutrosophic non Φ•-condensed, then 𝑁𝑐 is neutrosophic 

•-dense. 

(7) If 𝑁  neutrosophic • -condensed and 𝑁𝑐  is neutrosophic non Φ• -condensed, then 𝑁  is 

neutrosophic •-dense. 

(8) If 𝑁 is neutrosophic non Φ•-condensed and neutrosophic •-perfect, then 𝑁𝑐  is neutrosopic 

•-dense. 

Proof. (1) From Definition 3.2.4, we have: 

𝑁 is neutrosophic • -perfect  ⟺ 𝑁 = 𝑁•

 ⟺ Φ(𝑁) = Φ(𝑁•)

 ⟺ 𝑁 is neutrosophic Φ-condensed. 

 

(2) By Remark 3.2.2 and equation (2) of Table 1, we get that 
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𝑁 is neutrosophic Φ-condensed  ⟺ Φ(𝑁•) = Φ(𝑁)

 ⟺ [Φ(𝑁•)]𝑐 = [Φ(𝑁)]𝑐

 ⟺ [Φ(𝑁𝑐)]• = (𝑁𝑐)•

 ⟺ 𝑁𝑐  is neutrosophic • -condensed. 

 

(3) The proof follows from (2). 

(4) By Remark 3.2.2, we obtain that 

𝑁 is neutrosophic Φ-congruent  ⟺ Φ(𝑁•) = 𝑁

 ⟺ [Φ(𝑁•)]𝑐 = 𝑁𝑐

 ⟺ [Φ(𝑁𝑐)]• = 𝑁𝑐

 ⟺ 𝑁𝑐  is neutrosophic • -congruent. 

 

(5) The proof follows from (4). 

(6) Assume that 𝑁  neutrosophic Φ -condensed and neutrosophic non Φ• -condensed. Then, 

Φ(𝑁•) = Φ(𝑁) and Φ(𝑁•) = ∅̃, which implies that Φ(𝑁) = ∅̃. Thus, [Φ(𝑁)]𝑐 = 𝑋̃ and by equation 

(2) of Table 1, it follows that (𝑁𝑐)• = 𝑋̃. Therefore, 𝑁𝑐 is neutrosophic •-densed. 

(7) The proof follows from (2) and (6). 

(8) Suppose that 𝑁 is neutrosophic non Φ•-condensed and neutrosophic •-perfect. Then, Φ(𝑁•) =

∅̃ and 𝑁• = 𝑁, which implies that Φ(𝑁) = Φ(𝑁•) = ∅̃. By equation (2) of Table 1 , we deduce that 

(𝑁𝑐)• = [Φ(𝑁)]𝑐 = 𝑋̃ and so, 𝑁𝑐 is neutrosophic •-dense. 

Proposition 3.2.6. Let 𝑁 ∈ 𝒩 ′(𝑋) and 𝑁𝑐  be a neutrosophic •-perfect set. Then, the following 

properties are equivalent: 

(1) 𝑁 is neutrosophic Φ-congruent 

(2) 𝑁 is neutrosophic Φ-condensed. 

Proof. (1) ⟹ (2) Suppose that 𝑁  is neutrosophic Φ-congruent. Then, Φ(𝑁•) = 𝑁 . Since 𝑁𝑐  is 

neutrosophic •-perfect, (𝑁𝑐)• = 𝑁𝑐 , which implies that Φ(𝑁•) = 𝑁 = (𝑁𝑐)𝑐 = ((𝑁𝑐)•)𝑐 = Φ(𝑁) , 

which shows that 𝑁 is neutrosophic Φ-condensed. 

(2) ⟹ (1)  Assume that 𝑁  is neutrosophic Φ -condensed. Then, Φ(𝑁•) = Φ(𝑁) . Since 𝑁𝑐  is 

neutrosophic •-perfect, (𝑁𝑐)• = 𝑁𝑐 and by equation (2) of Table 1, it follows that [Φ(𝑁)]𝑐 = 𝑁𝑐 , 

which implies that Φ(𝑁) = 𝑁 . Therefore, Φ(𝑁•) = Φ(𝑁) = 𝑁  and so, 𝑁  is neutrosophic Φ 

congruent 

Corollary 3.2.7. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 𝑋. 

If 𝑁 ∈ 𝒩 ′(𝑋) is neutrosophic ∙-perfect, then the following properties are equivalent: 

(1) 𝑁 is neutrosophic •-congruent 

(2) 𝑁 is neutrosophic •-condensed. 

Proof. It is deduced from Proposition 3.2.6 by using parts (2) and (4) of Proposition 3.2.5. 

Proposition 3.2.8. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 

𝑋. For 𝑁 ∈ 𝒩 ′(𝑋), we have the following properties: 

(1) If 𝑁  is neutrosophic non Φ• -condensed and 𝑀 ⊑ 𝑁 , then 𝑀  is neutrosophic non 

Φ•-condensed. 

(2) If 𝑁  is neutrosophic non Φ• -condensed and 𝑀 ∈ 𝒩 ′(𝑋) , then 𝑁 ⊓ 𝑀  is neutrosophic non 

Φ•-condensed. 
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(3) If 𝑁  is neutrosophic non Φ• -condensed and 𝐿 ∈ ℒ , then 𝑁 ⊔ 𝐿  is neutrosophic non 

Φ•-condensed. 

(4) If 𝑁 is neutrosophic non Φ•-condensed, then 𝑁• is neutrosophic non Φ•-condensed. 

(5) If 𝑁 is neutrosophic non Φ•-condensed, then for every 𝑥𝑎,𝑏,𝑐 ∈ 𝒩 ′(𝑋) and every 𝐹 ∈ 𝜏𝑐(𝑥𝑎,𝑏,𝑐), 

Φ(𝑁𝑐) ⊓ 𝐹 ≠ ∅̃. 

(6) If 𝒥 is a neutrosophic ideal on 𝑋 such that 𝒥 ⊆ ℒ and 𝑁 is neutrosophic non Φ•-condensed, 

with respect to 𝒥, then 𝑁 is neutrosophic non Φ•-condensed with respect to ℒ. 

Proof. (1) Suppose that 𝑁 is neutrosophic non Φ•-condensed and 𝑀 ⊑ 𝑁. Then Φ(𝑁•) = ∅̃ and 

𝑀• ⊑ 𝑁•. Thus, Φ(𝑀•) ⊑ Φ(𝑁•) = ∅̃, which means that Φ(𝑀•) = ∅̃ and hence, 𝑀 is neutrosophic 

non Φ•-condensed. 

(2) Since 𝑁 ⊓ 𝑀 ⊑ 𝑁 for each 𝑀 ∈ 𝒩 ′(𝑋), the result follows from part (1). 

(3) Assume that 𝑁 is neutrosophic non Φ•-condensed and 𝐿 ∈ ℒ. Then Φ(𝑁•) = ∅̃ and 𝐿• = ∅̃, 

which implies that (𝑁 ⊔ 𝐿)• = 𝑁• ⊔ 𝐿• = 𝑁•  and Φ((𝑁 ⊔ 𝐿)•) = Φ(𝑁•) = ∅̃. Therefore, 𝑁 ⊔ 𝐿  is 

neutrosophic non Φ•-condensed. 

(4) Suppose that 𝑁 is neutrosophic non Φ•-condensed. Then Φ(𝑁•) = ∅̃ and (𝑁•)• ⊑ 𝑁•. Hence 

Φ((𝑁•)•) ⊑ Φ(𝑁•) = ∅̃ and so 𝑁• is neutrosophic non Φ•-condensed. 

(5) Assume that 𝑁 is neutrosophic non Φ•-condensed, i.e. Φ(𝑁•) = ∅̃. Then [Φ(𝑁•)]𝑐 = 𝑋̃ and so, 

by Remark 3.2.2, [Φ(𝑁𝑐)]• = 𝑋̃. Therefore, for every 𝑥𝑎,𝑏,𝑐 ∈ 𝒩 ′(𝑋) and every 𝐹 ∈ 𝜏𝑐(𝑥𝑎,𝑏,𝑐), 𝐹 ⊓

Φ(𝑁𝑐) ∉ ℒ, which implies that 𝐹 ⊓ Φ(𝑁𝑐) ≠ ∅, for every 𝑥𝑎,𝑏,𝑐 ∈ 𝒩 ′(𝑋) and every 𝐹 ∈ 𝜏𝑐(𝑥𝑎,𝑏,𝑐).  

(6) Let 𝒥  be a neutrosophic ideal on 𝑋  such that 𝒥 ⊑ ℒ  and 𝑁  be a neutrosophic non 

Φ•-condensed set with respect to 𝒥. Then Φ(𝑁•(𝒥)) = ∅̃ and by part (2) of Lemma 3.1.4, we have 

𝑁•(ℒ) ⊑ 𝑁•(𝒥), which implies that Φ(𝑁•(ℒ)) ⊑ Φ(𝑁•(𝒥)) = ∅̃. Therefore, Φ(𝑁•(ℒ)) = ∅̃ and so, 

𝑁 is neutrosophic non Φ•-condensed with respect to ℒ. 

Proposition 3.2.9. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 

𝑋. For 𝑁 ∈ 𝒩 ′(𝑋), we have the following properties: 

(1) 𝑁 is neutrosophic non Φ•-condensed if and only if (𝑁•)𝑐 is neutrosophic •-dense. 

(2) 𝑁 is neutrosophic non Φ•-condensed if and only if Φ(𝑁𝑐) is neutrosophic •-dense. 

(3) 𝑁𝑐 is neutrosophic non Φ•-condensed if and only if Φ(𝑁) is neutrosophic •-dense. 

Proof. The proofs of (1) and (2) are obtained from Definition 3.2.4 and equation (8) of Table 1 as 

follows: 

𝑁 is neutrosophic non Φ•-condensed  ⟺ Φ(𝑁•) = ∅̃

 ⟺ [Φ(𝑁•)]𝑐 = 𝑋̃

 ⟺ ((𝑁•)𝑐)• = 𝑋̃

 ⟺ (𝑁•)𝑐 is neutrosophic • -dense 

 ⟺ Φ(𝑁𝑐) is neutrosophic • -dense. 

 

(3) The proof follows from (2) by changing 𝑁 to 𝑁𝑐. 

Corollary 3.2.10. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 𝑋. 

If 𝑋̃ is a neutrosophic •-dense in itself set, then every 𝐿 ∈ ℒ is a neutrosophic non Φ•-condensed 

set. 
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Proof. Since 𝐿 ∈ ℒ, we have 𝐿• = ∅̃ and hence, (𝐿•)𝑐 = 𝑋̃. According to equation (4) of Table 1, 

Φ(𝐿𝑐) = 𝑋̃ and as 𝑋̃ is neutrosophic •-dense in itself, it follows that [Φ(𝐿𝑐)]• = 𝑋̃• = 𝑋̃ and so, 

Φ(𝐿𝑐) is neutrosophic •-dense. Now, by Theorem 3.2.9, we conclude that 𝐿 is neutrosophic non 

Φ•-condensed. 

Definition 3.2.11. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 

𝑋 . For every 𝑁 ∈ 𝒩 ′(𝑋) , the neutrosophic •-frontier of 𝑁 , denoted by 𝐹𝑟•(𝑁) , is defined as 

𝐹𝑟• (𝑁) = 𝑁• ⊓ (𝑁𝑐)•. 

Proposition 3.2.12. Let (𝑋, 𝜏) be a neutrosophic topological space and ℒ be a neutrosophic ideal on 

𝑋 . If 𝑁 ∈ 𝒩 ′(𝑋)  is neutrosophic • -dense and Φ(𝐹𝑟•(𝑁)) = ∅̃ , then 𝑁𝑐  is neutrosophic non 

Φ•-condensed. 

Proof. Suppose that 𝑁 ∈ 𝒩 ′(𝑋) is neutrosophic •-dense and Φ(𝐹𝑟•(𝑁)) = ∅̃. Then, 𝑁• = 𝑋̃ and 

Φ(𝑁• ⊓ (𝑁𝑐)•) = ∅̃. Hence, by parts (2) and (4) of Proposition 3.2.3, we have Φ(𝑁•) ⊓ Φ((𝑁𝑐)•) = ∅̃ 

and Φ(𝑁•) = Φ(𝑋̃) = 𝑋̃ , respectively. Thus, Φ((𝑁𝑐)•) = 𝑋̃ ⊓ Φ((𝑁𝑐)•) = ∅̃  and therefore, 𝑁𝑐  is 

neutrosophic non Φ•-condensed. 

5. Conclusions 

Neutrosophic topology is one of the most useful notions in neutrosophic set theory, because 

many of the topics studied in this branch of mathematics are done in the context of a neutrosophic 

topological space. In this work, we have used the notions of neutrosophic point and neutrosophic 

ideal to introduce and study the concepts of neutrosophic co-local function and neutrosophic 

complement co-local function of a subset of a neutrosophic topological space. We have established 

the most relevant properties of the concepts introduced and we have explored new classes of 

neutrosophic sets defined in terms of these concepts. Since various modifications of topology in 

neutrosophic set theory have recently been addressed, we consider that the notions and results given 

in this paper can be extended to the contexts of Refined Neutrosophic Topology, Refined 

Neutrosophic Crisp Topology, SuperHyperNeutrosophic Topology and Single-Valued Duplet 

Neutrosophic Topology, Single-Valued Neutrosophic Triplet Weak Topology and others 

highlighted in [10], which leave open a prominent field for future research. 
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Abstract: The textile industry sector's time and cost management issue led to a quest for 

contemporary tools that provide the best possible project time and cost prediction. Using a case study 

of Esa Textile in India, this paper assesses quantitative decision-making techniques in the textile 

industry. An extensive approach is provided so that specialists may utilise Triangular Neutrosophic 

Numbers (TNNs) to express their views about identifying features and indicators of a successful 

project. Determining the best approach to deal with removing interruptions that can cause delays and 

unnecessary expenses is also an essential responsibility. While commonly employed, traditional 

estimating methods like the Programme Evaluation and Review Technique (PERT) may find it 

difficult to adequately address the uncertainties present in real-world projects. This study examines 

and assesses the use of Triangular Neutrosophic PERT (TNP) analysis for project time and cost 

estimation in order to overcome this restriction. Neutrosophy, which allows for the depiction of 

inconsistent, ambiguous and partial data available in project parameters, is incorporated into the 

suggested TNP analysis. The efficiency of the suggested strategy has been verified by this analysis, 

and the network's unknown parameters are represented by triangle Neutrosophic numbers. This 

innovative method gives each of the three potential estimates—optimistic, most probable, and 

pessimistic which are all consisting of degree of membership, indeterminacy, or non-membership. 

This study's objective is to locate the work-network in a logical order once all of the processes at the 

Esa textile units have been completed. Planning is developed using the Triangular Neutrosophic 

Programme Evaluation and Review Techniques (TNP) even there is a time difference, which will 

speed up production and cut expenses. TNP provides a more thorough and adaptable depiction of 

uncertainty by utilizing the neutrosophic framework, which better captures the dynamic character of 

real-life projects.  

Keywords: Neutrosophic number; Triangular Neutrosophic Number; Triangular Neutrosophic PERT, 

Critical Path of the Project, Scoring Function. 

 

1. Introduction: 

The textile industry is considered a central key symbol of the comprehensiveness of the country 

and is an important core industry that has a significant impact on the economy of the country. 

Branded clothing is in high demand in many industries including chemical, electronics, civil and 

mechanical as the country's economy continues to grow and the standard of living of its citizens is 
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higher. Effective project management is crucial for the successful execution of complex projects, 

encompassing various industries such as construction, engineering, software development, and more. 

Among the key challenges faced by project managers is the accurate estimation of project time and 

cost, as deviations from initial estimates can lead to budget overruns, schedule delays, and overall 

project failure. To address these challenges, researchers and practitioners have continuously sought 

innovative methods for project estimation that can better capture uncertainties and vagueness 

associated with real-life project parameters. The success of large-scale projects heavily relies on the 

quality of planning, scheduling, and control throughout their various phases. Without effective 

planning and coordination tools, even a relatively small number of phases can lead to management 

losing control. Project Evaluation and Review Technique (PERT) is considered the best project 

management tool for organizing, scheduling, and coordinating tasks in such large-scale projects. 

Originally designed for manufacturing projects, PERT employs a network of interconnected activities 

to optimize cost and time. It emphasizes the relationship between activity times, associated costs, and 

the overall project completion time and cost. 

 The production process is a major problem in implementing the production of raw materials 

into finished materials. A significant obstacle to turning raw resources into completed goods is the 

production process. Inaccuracy and completion delays will add time and money to the process. One 

approach is to use network analysis to foresee such a scenario. Network analysis is referred to as a 

network that has to be operated and is time-limited. Various real-life scenarios are being considered 

and expressed using Triangular Neutrosophic values. These uncertain values are then converted into 

crisp values using Neutrosophic Scoring functions to facilitate analysis. Next, the NPT (Neutrosophic 

Project Technique) approach is being employed to assess the project's time and cost estimation for the 

company. The primary objective is to achieve an optimal (minimum) project duration and maximize 

profitability while minimizing manpower requirements. By utilizing this approach, project managers 

can make well-informed decisions to optimize project timelines, reduce costs, and maximize profits, 

all while efficiently allocating resources. . 

In this section, some literatures associated with the field of this study are presented. 

Neutrosophic sets serve as a broader concept encompassing crisp sets, fuzzy sets, and intuitionistic 

fuzzy sets, allowing the representation of uncertain, inconsistent, and incomplete information in real-

world problems. Elements of a neutrosophic set possess truth-membership, falsity-membership, and 

indeterminacy membership functions. Smarandache first put forward the philosophical idea of the 

neutrosophic theory, which is a popularization of the fuzzy set (FS) and the IFS [1]. Traditional project 

estimation techniques, such as the Program Evaluation and Review Technique (PERT), have been 

widely used to estimate project duration and critical path analysis. PERT involves the use of three-

point estimates, where the most likely, optimistic, and pessimistic time estimates are combined to 

derive a probabilistic estimate. Several researchers developed and implemented the concept of 

PERT/CPM in various real-life situations [2,3,4,5,6]. However, PERT's deterministic nature lacks the 

capability to handle imprecision, ambiguity, and uncertainty in project parameters.  

The subtraction and division of neutrosophic numbers have been thoroughly discussed [7]. CPM 

and PERT theory finds practical application in project planning decision-making [8]. Building upon 

the Neutrosophic framework, Triangular Neutrosophic PERT (TNP) has emerged as a novel approach 

for project time and cost estimation, aiming to provide a more flexible and accurate model to deal 

with the inherent uncertainties present in real-life projects [9,10,11]. The algorithm calculates critical 

paths, variances, expected task times, and probabilities of completing the project within expected time 

frames in a more efficient manner than existing methods. The studies [12,13,14,15,16,17,18] shows the 

implementation of algorithm for determining the project evaluation and review technique (TNP) 

using neutrosophic numbers for better results of other existing methods. 

Uncertainty can affect the process of assessing risks and adopting the best alternative. To overcome 

this problem, Abdel-Baset et.al [19] suggested the neutrosophic set as an integrated neutrosophic 

ANP and VIKOR method, for achieving sustainable supplier selection. The neutrosophic theory has 
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attracted the interest of researchers in a range of fields [20,21]. Abdel-Basset [22] analyzed the 

uncertainty that affect the process of waste water system using Risk Assessment Model. There are 

several challenges that hospitals are facing according to the emergency department (ED).  The study 

[23] suggests an integrated evaluation model assess ED under a framework of plithogenic theory. The 

proposed framework addressed uncertainty and ambiguity in information with an efficient manner 

via presenting the evaluation expression by plithogenic numbers. Abdel-Basset et al [24] studied the 

emission crisis in the iron and steel sector prompted the search for modern systems that contribute to 

reducing the resulting emissions to alleviate the growing concerns about global warming. Rahnamay 

Bonab et al [25] studied logistic autonomous vehicles assessment using decision support model under 

spherical fuzzy set integrated Choquet integral approach. Jeyaramman et al [26] studied the statistical 

convergences within non-Archimedean Neutrosophic normed spaces. Jdid et al [27] formulated the 

general model for the optimal distribution of agricultural lands using the concepts of neutrosophic 

science. Recently Kungumaraj. E et.al [28] investigated Indefinite integrals, Heptagonal Topology [29] 

and Topological Vector Spaces [30] in Neutrosophic environment.  

To the best of the authors’ knowledge, very little literature has been performed to evaluate 

project implementation in the textile sector in generic, especially by applying the Triangular 

Neutrosophic Pert (TNP) approaches. This study presents a TNP approach that considers uncertainty 

in decision-making by applying Triangular Neutrosophic numbers. The suggested methodology 

adopts two techniques of decision-making, which are the PERT and CPM. They are implemented 

under a Triangular Neutrosophic environment. The TNP method is applied to evaluate the main 

aspects of optimal time and cost that have an impact on the project in the Textile sector.  

All in all, the primary contributions of this study are outlined below. 

 

 
 

The main aim of this work is to elucidate the advantage of TNP method in an ESA Clothing 

Company, which is the primary manufacturers of garments such as t-shirts, children wear and cotton 

shirts. From 05.06.2023 to 04.07.2023 the time taken to manufacture the products and construction of 

new block in Esa clothing company has been noted. The work-network in a logical work sequence, at 

the time the Esa textile units' entire process is observed. The TNP method is a probabilistic technique 

that analyses and represents the uncertainties associated with project activities and it is an advanced 

technique that can be utilized in any industry. The Neutrosophic Programme Evaluation and Review 

To suggest a TNP approach of the determined challenges based on a Triangular
Neutrosophic environment to cope with the unpredictability inherent in decision-
making, this is the first study to develop a TNP approach consisting of PERT and CPM
methods for evaluating optimal cost and time in the textile sector

The proposed approach that was described may be used to get reliable answers in situations
when there is a lot of uncertainty

The organizational repercussions of this study not only have the potential to provide
important guidance to the textile industry but also to decision-makers and investors in other
industries

A TNP is applied to a real life data to demonstrate the reliability, and validity of the developed
approach
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Techniques (TNP) are used to develop planning. With the help of neutrosophic framework, TNP 

offers a more comprehensive and flexible representation of uncertainties. This paper is organized as 

follows. Section 2 furnish the preliminaries and basic definitions, while section 3 present the steps 

involved in TNP. In section 4 real life examples were solved with the help of proposed theory. 

Finally, conclusion is given in the last section. Advantage of TNP method is elucidated through 

numerical illustrations. 

 

2. PRELIMINARIES: 

Definition 2.1. Let E be a universe. A neutrosophic set A in E is characterized by a truth-membership 

function 𝑇𝐴(𝑥), an indeterminacy-membership function 𝐼𝐴(𝑥) and a falsity-membership function 

𝐹𝐴(𝑥). 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and 𝐹𝐴(𝑥) are real standard elements of [0,1]. It can be written as  

𝐴 = {< 𝑥, (𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)) >: 𝑥 ∈ 𝐸; 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈ ]0
−, 1+[ }. There is no restriction on the sum 

of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝑎𝑛𝑑 𝐹𝐴(𝑥). So 0 ≤ 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ≤ 3
+. 

 

Definition 2.2. Let E be a universe. A single valued neutrosophic set A, which can be used in real 

scientific and engineering applications, in E is characterized by a truth-membership function 𝑇𝐴(𝑥), an 

indeterminacy-membership function 𝐼𝐴(𝑥) and a falsity-membership function 𝐹𝐴(𝑥). 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) 

are real standard elements of [0,1]. It can be written as  

𝐴 = {< 𝑥, (𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)) >: 𝑥 ∈ 𝐸; 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈ [0, 1] }. 

 

Definition 2.3. Let (𝛼𝑎 ̃ , 𝜃 𝑎̃ , 𝛽 𝑎̃) ∈ [0,1] and 𝑎1, 𝑎2, 𝑎3 ∈ 𝑅  such that 𝑎1 ≤ 𝑎2 ≤ 𝑎3. Then a single valued 

triangular neutrosophic number 𝑎̌ = 〈(𝑎1, 𝑎2, 𝑎3); 𝛼𝑎 ̃, 𝜃 𝑎̃ , 𝛽 𝑎̃〉 is a special neutrosophic set on the real 

line set R, whose truth-membership, indeterminacy-membership and falsity-membership functions 

are given as follows 

𝑇𝑎̃(𝑥) =

{
 
 

 
 𝛼𝑎̃ (

𝑥 − 𝑎1
(𝑎2 − 𝑎1)

)             𝑖𝑓 𝑎1 ≤ 𝑥 ≤ 𝑎2

𝛼𝑎 ̃                         𝑖𝑓 𝑥 = 𝑎2

𝛼𝑎̃ (
𝑎3 − 𝑥

𝑎3 − 𝑎2
)               𝑖𝑓 𝑎 < 𝑥 ≤ 𝑎3

0                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

𝐼𝑎̃(𝑥) =

{
  
 

  
 
(𝑎2 − 𝑥 + 𝜃 𝑎̃(𝑥 − 𝑎1))

(𝑎2 − 𝑎1)
            𝑖𝑓 𝑎1 ≤ 𝑥 ≤ 𝑎2

𝜃 𝑎̃                                          𝑖𝑓 𝑥 = 𝑎2
(𝑥 − 𝑎2 + 𝜃 𝑎̃(𝑎3 − 𝑥))

(𝑎3 − 𝑎2)
           𝑖𝑓 𝑎2 < 𝑥 ≤ 𝑎3

1                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐹𝑎̃(𝑥) =

{
  
 

  
 
(𝑎2 − 𝑥 + 𝛽 𝑎̃(𝑥 − 𝑎1))

(𝑎2 − 𝑎1)
            𝑖𝑓 𝑎1 ≤ 𝑥 ≤ 𝑎2

𝛽 𝑎̃                                          𝑖𝑓 𝑥 = 𝑎2
(𝑥 − 𝑎2 + 𝜃 𝑎̃(𝑎3 − 𝑥))

(𝑎3 − 𝑎2)
           𝑖𝑓 𝑎2 < 𝑥 ≤ 𝑎3

0                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

   

Where 𝛼𝑎 ̃, 𝜃 𝑎̃ , 𝛽 𝑎̃ denote the maximum truth-membership degree, minimum indeterminacy-

membership degree and minimum falsity-membership degree respectively. A single valued 



Neutrosophic Sets and Systems, Vol. 63, 2024     66  

 

 

Priyadharsini.S, Kungumaraj.E, Santhi. R,  An Evaluation of Triangular Neutrosophic PERT Analysis for Real-Life Project 

Time and Cost Estimation 

triangular neutrosophic number 𝑎̌ = 〈(𝑎1, 𝑎2, 𝑎3); 𝛼𝑎 ̃, 𝜃 𝑎̃ , 𝛽 𝑎̃〉 may express an ill-defined quantity 

about α, which is approximately equal to α. 

 

Definition 2.4. Let 𝑎̌ = 〈(𝑎1, 𝑎2, 𝑎3); 𝛼𝑎 ̃, 𝜃 𝑎̃ , 𝛽 𝑎̃〉 and 𝑏̌ = 〈(𝑏1, 𝑏2, 𝑏3);𝛼𝑎 ̃ , 𝜃 𝑎̃ , 𝛽 𝑎̃〉 be two single valued 

triangular neutrosophic numbers and 𝛾 ≠ 0 be any real number. Then, 

𝑎̌ + 𝑏̌ = 〈(𝑎1 + 𝑏1, 𝑎2 + 𝑏2, 𝑎3 + 𝑏3);𝛼𝑎̃  ∧ 𝛼𝑏̃ , 𝜃 𝑎̃ ∨ 𝜃 𝑏̃ , 𝛽 𝑎̃ ∨ 𝛽 𝑏̃ 〉 

𝑎̌ − 𝑏̌ = 〈(𝑎1 − 𝑏3, 𝑎2 − 𝑏2, 𝑎3 − 𝑏1);𝛼𝑎̃  ∧ 𝛼𝑏̃ , 𝜃 𝑎̃ ∨ 𝜃 𝑏̃ , 𝛽 𝑎̃ ∨ 𝛽 𝑏̃ 〉 

𝑎̌. 𝑏̌ = {

〈(𝑎1𝑏1, 𝑎2𝑏2, 𝑎3𝑏3);𝛼𝑎̃  ∧ 𝛼𝑏̃ , 𝜃 𝑎̃ ∨ 𝜃 𝑏̃ , 𝛽 𝑎̃ ∨ 𝛽 𝑏̃ 〉 𝑖𝑓 (𝑎3 > 0, 𝑏3 > 0)
〈(𝑎1𝑏3, 𝑎2𝑏2, 𝑎3𝑏1);𝛼𝑎̃  ∧ 𝛼𝑏̃ , 𝜃 𝑎̃ ∨ 𝜃 𝑏̃ , 𝛽 𝑎̃ ∨ 𝛽 𝑏̃ 〉 𝑖𝑓 (𝑎3 < 0, 𝑏3 > 0)
〈(𝑎3𝑏3, 𝑎2𝑏2, 𝑎1𝑏1);𝛼𝑎̃  ∧ 𝛼𝑏̃ , 𝜃 𝑎̃ ∨ 𝜃 𝑏̃ , 𝛽 𝑎̃ ∨ 𝛽 𝑏̃ 〉 𝑖𝑓 (𝑎3 < 0, 𝑏3 < 0)

 

𝛾𝑎̌ = {
〈(𝛾𝑎1, 𝛾𝑎2, 𝛾𝑎3); 𝛼𝑎 ̃, 𝜃 𝑎̃ , 𝛽 𝑎̃  〉 𝑖𝑓 (𝛾 > 0) 
〈(𝛾𝑎1, 𝛾𝑎2, 𝛾𝑎3); 𝛼𝑎 ̃ , 𝜃 𝑎̃ , 𝛽 𝑎̃  〉 𝑖𝑓 (𝛾 > 0)

 

Definition 2.5. Let 𝑎̌ = 〈(𝑎1, 𝑎2, 𝑎3); 𝛼𝑎 ̃, 𝜃 𝑎̃ , 𝛽 𝑎̃〉 be a single valued triangular neutrosophic number 

then  

𝑆(𝑎̌) =
1

16
[𝑎1 + 𝑏1 + 𝑐1] × (2 + 𝛼𝑎̃ − 𝜃 𝑎̃ − 𝛽 𝑎̃) and 

𝐴(𝑎̌) =
1

16
[𝑎1 + 𝑏1 + 𝑐1] × (2 + 𝛼𝑎̃ − 𝜃 𝑎̃ + 𝛽 𝑎̃)  

are called the score and accuracy degrees of 𝑎̌ respectively. 

3. METHODOLOGY  

The research used an integrated evaluation design that explored conceptual and empirical references 

to project evaluation review techniques and critical path methods, with particular attention to work 

examples and analyses. Project management involves the processes necessary to ensure the timely 

completion of a project. The procedures are: schedule management planning, defining activities, 

sequencing activities, estimating activity durations, creating a schedule and managing a schedule. 

The next section illustrates the methodology of Project Evaluation Review Technique in Neutrosophic 

Environment:  

3.1. PROJECT EVALUATION REVIEW TECHNIQUE IN NEUTROSOPHIC ENVIRONMENT:  

Triangular Neutrosophic PERT (Project Evaluation and Review Technique) analysis is an 

innovative extension of the conventional PERT, which introduces triangular neutrosophic numbers to 

effectively handle uncertainty and indeterminacy in the management of large-scale projects. While 

PERT has long been a valuable tool for coordinating and optimizing tasks in various industries, real-

world projects often involve imprecise and uncertain data, which can pose challenges for traditional 

PERT methods. Triangular neutrosophic numbers offer a more comprehensive representation of 

uncertainty, incorporating membership, non-membership, and indeterminacy degrees. By integrating 

triangular neutrosophic numbers into PERT, this advanced analysis approach empowers project 

managers to efficiently model, evaluate, and control projects in complex scenarios where 

conventional PERT techniques may be limited. This introduction lays the foundation for exploring the 

advantages and practical applications of Triangular Neutrosophic PERT analysis, providing insights 

into how it addresses the complexities of uncertain and ambiguous project environments.  

PERT Calculations consisting of three timings namely Optimistic, Pessimistic and Most likely 

times, which are defined in neutrosophic environment as follows: 

 

Optimistic Time (𝑎̃): It refers to the minimum time required to complete an activity under the most 

favorable conditions or if everything proceeds smoothly without any hindrance or delay. The 
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optimistic time serves as a baseline for calculating the expected duration and critical path in project 

management, providing insights into the best possible outcome for completing a specific task.  

 

Pessimistic time(𝑏̃): It refers to the maximum time required to complete an activity when 

encountering challenges, obstacles, or delays at every stage of its execution. The pessimistic time 

provides a conservative estimate for project planning and risk management, allowing project 

managers to account for potential delays and allocate sufficient resources to handle adverse 

circumstances. 

 

Most likely time(𝑚̃): It refers to the time required to complete an activity under normal or average 

conditions, without any significant favorable or unfavorable influences. The most likely time serves as 

a realistic estimate for project planning and scheduling, as it reflects the typical performance level and 

expected outcomes for the activity.  

 

Where 𝑎̃, 𝑏̃, 𝑚̃, are triangular neutrosophic numbers. 

In order to calculate the expected time and standard deviation of each activity based on the three-time 

estimates (𝑎̃, 𝑏̃, 𝑚̃), it is necessary to obtain crisp values for these estimates. To achieve this, score 

functions and accuracy functions are utilized. By applying the score function, crisp values are 

obtained for each time estimate. Once the crisp values are acquired, the expected time and standard 

deviation of each activity can be calculated. The expected time represents the average duration for 

completing the activity, while the standard deviation provides a measure of the uncertainty or 

variability associated with the activity's completion time. 

𝑇𝑖𝑗 =
𝑎+4𝑚+𝑏

6
 and  𝜎𝑖𝑗 =

𝑏−𝑎

6
 

Where a, m, b are crisp values of optimistic, most likely and pessimistic time respectively, 𝑇𝑖𝑗  is the 

expected time of ij activity and 𝜎𝑖𝑗 standard deviation of ij activity.  

After calculating the expected time and standard deviation of each activity, the PERT (Project 

Evaluation and Review Technique) network is treated similarly to the CPM (Critical Path Method) 

network for the purpose of calculating various network parameters. These parameters include the 

earliest and latest occurrence time of each activity, identifying the critical path, and determining the 

floats or slack times for non-critical activities. 

Let a network N= 〈𝐸ij〉, being a project model, is given. E is asset of events (nodes) and 

 𝐴 ⊂  𝐸 × 𝐸 is a set of activities. The set 𝐸 =  {1,2,… , 𝑛} is labeled in such a way that the following 

condition holds: (i, j)∈𝐴 and i < j. The activity times in the network are determined by 𝑇𝑖𝑗. 

 

Notations of network solution and its calculations as follows:  

𝑇𝑖𝑒 =Earliest occurrence time of predecessor event i,  

𝑇𝑖𝑙 = Latest occurrence time of predecessor event i,  

𝑇𝑗𝑒 =Earliest occurrence time of successor event j,  

𝑇𝑗𝑙 = Latest occurrence time of successor event j,  

𝑇𝑖𝑗𝑒  Start = Earliest start time of an activity 𝑖𝑗,  

𝑇𝑖𝑗𝑒  Finish t=Earliest finish time of an activity𝑖𝑗,  

𝑇𝑖𝑗𝑙 Start=Latest start time of an 𝑇𝑖𝑙 activity 𝑖𝑗,  

𝑇𝑖𝑗𝑙 Finish t = Latest finish time of an activity 𝑖𝑗,  

𝑇𝑖𝑗 = Duration time of activity 𝑖𝑗,  
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Earliest and Latest occurrence time of an event:  

𝑇𝑗𝑒 = maximum (𝑇𝑗𝑒 + 𝑇𝑖𝑗), calculate all 𝑇𝑗𝑒  for jth event, select maximum value.  

𝑇𝑖𝑙 = minimum (𝑇𝑗𝑙 − 𝑇𝑖𝑗), calculate all 𝑇𝑖𝑙  for ith event, select minimum value.  

𝑇𝑖𝑗𝑒  Start = 𝑇𝑖𝑒 ,  

𝑇𝑖𝑗𝑒  Finish t = 𝑇𝑖𝑒 + 𝑇𝑖𝑗  ,  

𝑇𝑖𝑗𝑙 Finish t = 𝑇𝑗𝑙,  

𝑇𝑖𝑗𝑙  Start = 𝑇𝑗𝑙 − 𝑇𝑖𝑗  ,  

 

Critical path is the longest path in the network. At critical path, 𝑇𝑖𝑒 = 𝑇𝑖𝑙 , for all i.  

Slack or Float is cushion available on event/ activity by which it can be delayed without affecting the 

project completion time.  

Slack for ith event = 𝑇𝑖𝑙 − 𝑇𝑖𝑒 , for events on critical path, slack is zero.  

The expected time of critical path (𝜇) and its variance (𝜎2) calculated as follows;  

𝜇 = 𝛴𝑇𝑖𝑗 , for all 𝑖𝑗 on critical path. 

3.3. TNP Algorithm 

The proposed algorithm can be summarized as follows: 

Fig.1. Flow chart 

 

1. Addressing uncertain considered as membership 𝑇𝐴(𝑥) values, inconsistent mentioned as 

indeterminacy 𝐼𝐴(𝑥) and incomplete information  taken as non-membership  𝐹𝐴(𝑥) regarding 

activity time involves representing the three-time estimates of the PERT technique as single-

valued triangular neutrosophic numbers. 

2. Calculate the membership functions for each single-valued triangular neutrosophic number 

using equations 1, 2, and 3. 

3. Derive a crisp model of PERT three-time estimates by employing the score function equation 

as previously demonstrated. 

4. Utilize the crisp values of the three-time estimates to compute the expected time and standard 

deviation for each activity. 

5. Construct a PERT network diagram and calculate the project completion time for all the 

events using crisp values which has been taken from the single-valued triangular 

neutrosophic number. 

6. Identify floats and determine the critical path, which represents the longest path in the 

network by using the formula 𝑇𝑖𝑗𝑒  Start = 𝑇𝑖𝑒 , 𝑇𝑖𝑗𝑒  Finish t = 𝑇𝑖𝑒 + 𝑇𝑖𝑗  , 𝑇𝑖𝑗𝑙 Finish t = 𝑇𝑗𝑙, 

𝑇𝑖𝑗𝑙  Start = 𝑇𝑗𝑙 − 𝑇𝑖𝑗 . 

7. Calculate the expected time and variance of the critical path with the help of 
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 𝑇𝑖𝑗 =
𝑎+4𝑚+𝑏

6
 and  𝜎𝑖𝑗 =

𝑏−𝑎

6
  

8. Determine the expected project completion time. 

9. Assess the expected probability values for various project completion scenarios based on 

specific demands mentioned in the given real-life situation. 

The next section illustrates the proposed algorithm with numerical example based on the real-life 

situation existed in a Reputed company situated in Tirupur, Tamilnadu, India.   

4. APPLICATIONS 

The main purpose of this section is to apply the proposed methodology in step by step 

process. This section is separated into three main parts. The first part offers an actual case study of the 

implementation of the recommended approach. The second part applies the steps of the proposed 

TNP approach. The third and final part discusses the results of the study. 

4.1. NUMERICAL ILLUSTRATION 

ESA Clothing Company established in 1997, which is the primary manufacturers of garments 

such as t-shirts, children wear and cotton shirts.  It is infused with the aim to deal in best quality 

garments and the best garment solutions provider within the reach. Company made a continuous 

improvement in the supply of various genuine and trusted quality garments to meet the ever-

increasing market requirements. They hereby introduce their company "JUBILEE TEX & ESA 

CLOTHING COMPANY" as one among the Leading Garment Manufacturing and Exporting 

Company situated at Tirupur, Tamilnadu, India, with high potential to serve and cater to the needs of 

the Quality conscious customers.  They have a very good base in the garmenting field as their parent 

company was established in the year 1968 catering to the Indian domestic market. In the year 1989 

their export division in the name of JUBILEE TEX was established with full focus on the export 

market. With a steady growth in business their new company in the name of ESA CLOTHING 

COMPANY was started in 2004 with wide focus on the Branded labels, Stores and importers all over 

Europe & U.S.  

Having an initial capacity of producing 2500 Pcs per day. They have now reached a stage where they 

are producing 4,00,000 Pcs /month. Their focus is on the Babies, Children's, Women's, Men's wear 

market as this has been their prime product line since the day one of our export business. With 

factory spreading over 3 different premises and with 12 Lines they can dedicate each factory to 

different requirement of each customer. (Quantity and quality wise). They can do quantity ranging 

from 1,000pcs and more in three of the factories.  Their factory is compliance with all Garment 

Factory Norms.  

Between June 5, 2023, and July 4, 2023, the Esa Clothing Company diligently recorded the 

production timeline for their assorted products, which include boxers, track pants, and T-shirts. These 

products are crafted from various fabric materials such as single jersey, lycra derby, single rib, 

jacquard, lycra drop rib, waffle, and filament lycra jersey. Each fabric type demands a distinct 

duration for manufacturing. For instance, we have gathered specific data concerning the production 

time for T-shirts made from single rib fabric. 

The manufacturing process for these T-shirts commenced on June 8, 2023, and reached 

completion on July 4, 2023. Notably, a substantial order of 1200 casual wear T-shirts was placed by a 

client in the USA. It's worth highlighting that the majority of the company's orders originate from the 
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USA. The entirety of the production process encompasses seven key components: knitting, dyeing, 

cutting, stitching, printing, ironing, and the final packing stage.  

The company encounters significant challenges in securing the appropriate personnel for 

various roles due to a shortage of manpower. On certain days, individuals may be available for 

stitching tasks, while the demand lies in the packaging department, creating a similar predicament 

across different departments with varying availabilities. To address this uncertain, inconsistent, and 

indeterminacy scenario, the gathered data can be effectively presented in Table 1 using triangular 

neutrosophic numbers. In this context, the Triangular Neutrosophic PERT approach is adapted to 

optimize the projected timeline for completing the project. The project's pertinent data is presented as 

follows: 

Table 1: 

Activity 
Score Function of 

a=<(a1,a2,a3,αa,ϴa,βa> 

𝑺(𝒂) 

Knitting 2=<(8,10,12).0.2,0.5,0.6> 2 

Dyeing 3=<(5,8,10),0.8,0.2,0.6> 3 

Cutting 4=<(9,17,25),0.3,0.6,0.4> 4 

Stitching 5=<(20,25,30),0.7,0.4,0.6> 8 

Printing 6=<(10,13,17).0.8,0.2,0.4> 6 

Ironing 4=<(10,19,25),0.3,0.6,0.5)> 4 

Packing 8=<(18,24,28).0.2,0.4,0.6> 5 

 

Table 2: 

Activity Notation Predecessor Representation 

Knitting A - 1-2 

Dyeing B a 2-3 

Cutting C b 3-4 

Stitching D b 3-5 

Printing E c 4-6 

Ironing F d 5-6 

Packing G e, f 6-7 

In the following table 𝑡𝑚 , 𝑡𝑜  , 𝑡𝑝 are optimistic, most likely and pessimistic time in neutrosophic 

environment, and considered as a single valued triangular neutrosophic numbers.  To get the crisp 

values of each single valued triangular neutrosophic number, calculate score function of 
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 𝒂 =< (𝑎1, 𝑎2, 𝑎3), 𝛼𝑎 , 𝛳𝑎 , 𝛽𝑎 > by using the below formula 

𝑆(𝒂) =
1

16
 (𝑎1 + 𝑎2 + 𝑎3 ) ∗ (𝛼𝑎 + (1 − 𝜃𝑎  ) + (1 − 𝛽𝑎  )).   

Table 3: 

 

 

 

 

 

 

 

 

 

 

 

From the calculated values in table 3 and from the given condition the network diagram with 

expectation time mentioned as single valued neutrosophic numbers (crisp numbers) in the following 

network diagram. 

 

Fig2: Network Diagram 

The critical path is a-b-c-e-g.                                                                                                           

The T-shirts will be manufactured in =21 days  

iii) Probability of manufacturing T shirt in 25 days 

VARIANCE= [
6−2

6
]
2

=
16

6
; [

4−2

6
]
2

= 4/6; [
6−3

6
]
2

=
9

6
; [

8−4

6
]
2

= 16/6; [
6−2

6
]
2

=
16

6
 

𝛴𝑉𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =
61

36
;  𝛴𝑡𝑒𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 26 days 

𝑍 =
𝑋−𝛴𝑇𝑒𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

√∑𝑣𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
=

25−21

√1.694
=

4

1.30
= 3.076 = 0.4989  (from normal distribution table)  

Probability=1-0.4989 =0.5011  

ACTIVITY  𝒕𝒐  𝒕𝒎  𝒕𝒑  𝒕𝒆  

a  2 4  6  4  

b  2  3  4  3  

c  3  4  6  4  

d  4  5  6  5  

e  4  6  8  6  

f  2  3  4  3  

g  2  4  6  4  
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Table 4: 

ACTIVITY  ACTIVITY  𝒕𝒆  ES  EF  LS  LF  SH  ST  

a  1-2  4  0  4  0  4  0  0  

b  2-3  3  4  7  4  7  0  0  

c  3-4  4  7  11  7  11  0  0  

d  3-5  5  7  12  9  14  2  0  

e  4-6  6  11  17  11  17  0  0  

f  5-6  3  12  15  14  17  0  2  

g  6-7  4  17  21  17  21  0  0  

 

Network of Activities: 

 
INTERPRETATION:  

Based on the current observations, crafting a single rib T-shirt takes approximately 29 days 

using the existing manufacturing process. However, with the implementation of the proposed 

algorithm and the application of the Triangular Neutrosophic PERT process, the projected completion 

time for manufacturing these T-shirts is reduced to 21 days. This notable enhancement shortens the 

timeline by 8 days compared to the existing method. This reduction in manufacturing duration 

inherently leads to a corresponding decrease in the production costs associated with these T-shirts. 

The authors have recommended the adoption of this innovative TNP approach to the Esa Clothing 

Company, aiming to optimize machine time, human resources, and the overall expenses tied to the T-

shirt manufacturing process.  
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4.2 NUMERICAL ILLUSTRATION 

Esa Clothing Company extends its production to encompass men's track pants, driven by a 

surge in demand and usage. Much like the T-shirts, track pants come in diverse fabric materials 

including Lycra, blended cotton, and Dry Fit Fabrics. Traditionally, companies maintain sample 

garment pieces as reference; for instance, a pre-existing Lycra track pant fabric was readily available. 

This fabric merely needed cutting and stitching to transform into a finalized product. Specifically, the 

provided data focuses on the stitching aspect of crafting track pants. The stitching process is further 

subdivided into distinct tasks, such as folding pockets, sewing bar tracks, adding waistbands, and 

finalizing ankle cuffs.  

Table 5: 

Score Function of 

a=<(a1,a2,a3,αa,ϴa,βa> 

𝑺(𝒂) 

2=<(56,76,86), 0.8,0.2,0.4> 30 

3=<(120,200,280), 0.7,0.5,0.6> 60 

4=<(238,268,298), 0.4,0.2,0.4> 90 

5=<(460,580,700), 0.2,0.5,0.6> 120 

6=<(262,62,462), 0.8,0.2,0.4> 150 

7=<(381,480,581), 0.6,0.2,0.4> 180 

9=<(252,1005,1485), 0.4,0.6,0.4> 240 

10=<(1200,1500,1800), 0.7,0.4,0.6> 340 

11=<(1104,1204,1304),0.1,0.2,0.3)> 360 

12=<(1388,1686,1988),0.3,0.6,0.5)> 380 

Table 6: 

Activity  Activity Predecessor  Representation 

Cutting a  -  1-2  

Sewing pocket b  a  2-3  

Joining pocket c  a  2-4  

Joining the sides d  a  2-5  

Add waist band and ankle 

case 

e  b  3-5  

Inset elastic f  c  4-5  

Sewing the bar tracks g  d,e,f  5-6  
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A primary objective involves pinpointing the slack time for each activity and identifying 

potential modifications to minimize this slack period within each process. The ultimate aim is to 

establish the earliest feasible completion time for the project, facilitating a reduction in both process 

time and overall manufacturing duration. Apply the proposed algorithm to achieve this optimization 

for he given stitching durations (in minutes) of each process are detailed in the Table 5. 

Table 7: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 3: Network Diagram 

 

 

Activity 
Activity 

 

𝒕𝒐 

(m’s) 
𝒕𝒎 

(m’s) 
𝒕𝒑 

(m’s) 
𝒕𝒆 

(m’s) 
𝒕𝒆 

(hrs) 

a 1-2 5 7 8 180 3 

b 2-3 2 3 4 60 1 

c 2-4 2 3 4 60 1 

d 2-5 10 11 12 360 6 

e 3-5 5 9 11 240 4 

f 4-5 4 5 6 120 2 

g 5-6 5 9 11 240 4 

Activity  Activity  𝑡  ES  EF  LS  LF  SH  ST  

a  1-2  3  0  3  0  3  0  0  

b  2-3  1  3  4  4  5  0  1  

c  2-4  1  3  4  6  7  0  3  

d  2-5  6  3  9  3  9  0  0  

e  3-5  4  4  8  5  9  1  0  

f  4-5  2  4  6  7  9  3  0  

g  5-6  4  9  13  9  13  0  0  



Neutrosophic Sets and Systems, Vol. 63, 2024     75  

 

 

Priyadharsini.S, Kungumaraj.E, Santhi. R,  An Evaluation of Triangular Neutrosophic PERT Analysis for Real-Life Project 

Time and Cost Estimation 

Probability: Probability of completing the stitching process of track pants in 15 hours  

Although the project is estimated to be completed within 15 hours there is no guarantee that 

it will actually be completed within the 15hours. If by some circumstances various activities 

take longer than their expected time, the project might not be completed within the desired 

schedule. Therefore, it will be useful to know the probability that the project deadline will be 

met. The first step is to find the variance and standard deviation of the total time along 

critical path, which is equal to the sum of the variances of activity times on the critical path.  

Variance:  

1) [
4−2

6
]
2

=
4

36
;[
6−4

6
]
2

=
4

36
; [
6−2

6
]
2

=
16

36
;   

∑𝐭𝐞𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍 =𝟑 + 𝟔 + 𝟒   =15 hours ∑𝒗𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍= 0.66 

 

𝑍 =
𝑋−𝛴𝑇𝑒𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

√∑𝑣𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
=

13−1

√0.66
=

1

0.81
= 1.2 =0.3907(by normal distribution)  

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 − 0.3907  =  0.6093  

Thus, there is 60% chance to that the critical path will be completed in less than 15 hours. 

INTERPRETATION:  

As documented in the current records, the entire process currently requires 21 hours for 

completion. However, with the adoption of the suggested TNP methodology, the minimum time 

needed to finalize the process dwindles to 13 hours, thereby presenting an opportunity to economize 

8 hours. Nevertheless, it's important to note that despite the potential to conclude the process within 

13 hours, certain delays arise during the occurrence of events b, c, e, and f. 

4.3 NUMERICAL ILLUSTRATION 

Esa Clothing Company, as a manifestation of its expansion, has already established an 

additional production unit to meet the growing influx of orders. Presently, the company envisions the 

creation of yet another compact unit, dedicated to knitting activities and warehousing. To materialize 

this plan, an engineer has provided an estimated timeframe detailing the anticipated number of days 

required for the unit's completion. The construction process involves a range of activities, including 

basement construction, sidewall development, and roof assembly, all of which play a crucial role in 

the overall construction. Estimates from various companies and material quotations, based on 

responses received, have been compiled in a neutrosophic triangular number format, leading to the 

development of a new unit.  In this context, the duration for executing these construction tasks 

extends from April 17, 2023, to July 5, 2023. To comprehensively assess the projected completion time 

for the project, it is imperative to consider both the factual duration and the potential timeline. This 

evaluation involves implementing the suggested Triangular Neutrosophic PERT (TNP) methodology, 
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which aims to determine an optimal timeframe for achieving project culmination. The table provided 

outlines the specific timeframes, measured in days, allocated for each distinct construction activity. 

Table: 8 

Score Function of 

a=<(a1,a2,a3,αa,ϴa,βa> 

𝑺(𝒂) Score Function of 

a=<(a1,a2,a3,αa,ϴa,βa> 

𝑺(𝒂) 

1=<(8,10,12).0.2,0.5,0.6> 2 16=<(45,62,79),0.7,0.4,0.6> 17 

2=<(5,8,10),0.8,0.2,0.4> 3 17=<(65,75,85),0.3,0.6,0.4> 18 

3=<(10,15,20),0.3,0.6,0.2> 4 18=<(100,109,118),0.4,0.6,0.8> 20 

4=<(18,24,28),0.2,0.4,0.6> 5 19=<(60,69,78),0.2,0.5,0.6> 14 

5=<(10,13,17),0.8,0.2,0.4> 6 20=<(40,50,60).0.4,0.2,0.1> 20 

6=<(10,19,25),0.3,0.6,0.5)> 7  21=<(49,67,84).0.8,0.4,0.6> 23 

7=<(20,25,30),0.7,0.4,0.6> 8 22=<(70,74,78).0.8,0.5,0.5> 25 

8=<(24,26,29),0.4,0.2,0.4> 9 23=<(55,80,105).0.7,0.2,0.5> 30 

9=<(35,39,44),0.9,0.7,0.8> 10 24=<(10,13,17).0.8,0.2,0.4> 6 

10=<(15,32,49),0.7,0.2,0.5> 12 25=<(70,74,78).0.8,0.5,0.5> 25 

11=<(45,62,79),0.6,0.4,0.7> 17 26=<(55,80,105).0.7,0.2,0.5> 30 

12=<(38,47,56),0.1,0.2,0.8> 10 27=<(75,86,97).0.8,0.2,0.4> 35 

13=<(14,31,38),0.9,0.1,0.5> 12 28=<(10,19,25),0.3,0.6,0.5)> 7 

14=<(65,74,83),0.2,0.5,0.6> 15 29=<(108,112,116).0.5,0.2,0.4> 40 

15=<(50,52,54),0.3,0.4,0.6> 13   

Table 9: 

Activity  Activity Predecessors  Activity 

Raising base  a -  1-2  

Basement   b a  2-3  

Masonry work  c b  3-4  

Constructing roof  d c  4-5  

Fixing doors and windows  e c  4-6  

Plastering with cement  f e  6-7  

Fixing tiles  g d  5-8  

Fixing electrical lines& sanitary  work  h g  8-9  

Plastering  i f, h  9-10  

Applying primer  j f, h  9-11  

Painting  k i  10-11  

Give provision to fix knitting  machine  l f  7-12  

Fixing   m j, k  11-13  
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Furniture works  n l  12-13  

Giving connections for electrical works  o m, n  13-14  

Table 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Activity  Activity  to  tm  tp  te  

a  1-2  1 2  3  3  

b  2-3  1 4 7 5  

c  3-4  9 12 14  11  

d  4-5  9 10  11  13  

e  4-6  4 5 7 6  

f  6-7  10  13 17  13  

g  5-8  9 12  15  10  

h  8-9  14 16  18  17  

i  9-10  18  20  22  21  

j  9-11  22 25  27  27  

k  10-11  14  17  21  18  

l  7-12  15  14  17  15  

m  11-13  23  26  29 32  

n  12-13  8  12 19  11  

o  13-14  5  24  28  6  



Neutrosophic Sets and Systems, Vol. 63, 2024     78  

 

 

Priyadharsini.S, Kungumaraj.E, Santhi. R,  An Evaluation of Triangular Neutrosophic PERT Analysis for Real-Life Project 

Time and Cost Estimation 

 

 

 
 

 

Activity  Activity  to  tm  tp  te  ES  EF  LS  LF  FS  TS  

a  1-2  2  3  4  3  0  3  0  3  0  0  

b  2-3  3  5  8  5  3  8  3  8  0  0  

c  3-4  10  10  15  11  8  19  8  19  0  0  

d  4-5  10  12  17  13  19  32  19  32  0  0  

e  4-6  5  6  8  6  19  25  19  46  0  21  

f  6-7  12  12  18  13  25  38  40  59  15  21  

g  5-8  8  10  13  10  32  42  32  42  0  0  

h  8-9  15  17  20  17  42  59  42  59  0  0  

i  9-10  20  20  25  21  59  80  59  80  0  0  

j  9-11  25  25  35  27  59  98  59  98  13  13  

k  10-11  15  18  23  18  80  98  80  98  0  0  

l  7-12  13  15  18  15  38  53  59  119  21  66  

m  11-13  30  30  40  32  98  130  98  130  0  0  

n  12-13  9  10  14  11  53  130  119  130  66  0  

o  13-14  6  6  7  6  130  136  130  136  0  0  
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The depicted network diagram above illustrates the start time, completion time, and float 

time for each event. These outcomes were derived using the TNPERT algorithm proposed in this 

study. 

 

INTERPRETATION:  

The concept of TNP entails an analytical approach crafted to aid in the orderly arrangement 

of activities that necessitate sequential execution. Upon further scrutiny, the average time for 

completing the construction of both a storage facility and a knitting unit is determined to be 173 days 

based on the available data. By effectively organizing tasks using TNPERT techniques, the 

construction process for a new branch is streamlined, resulting in a reduced timeline of 131 days. This 

discrepancy of 42 days signifies a significant time-saving measure. Capitalizing on this time 

differential can effectively enhance construction efficiency and lead to diminished production 

expenses. 

RESULT AND FUTURE WORK: 

 This article exemplifies the practical application of triangular neutrosophic numbers in a real-

life scenario within a manufacturing company. The presence of uncertainty and ambiguity is 

identified, particularly stemming from a significant volume of consignments. The operational gap 

between the production unit and the logistics department exacerbates the uncertain and ambiguous 

situations within the company. The application of triangular neutrosophic numbers effectively 

portrays and clarifies the prevailing circumstances. Employing a scoring function, the triangular 

neutrosophic numbers are transformed into single-valued numbers. Subsequently, the PERT 

procedure is applied to ascertain both the production completion time and the associated profit. This 

serves as an initial exploration, and in future endeavors, considering the multifaceted nature of 

departments and diverse categories within such companies, the application of neutrosophic numbers 

holds promise for mitigating uncertainty and ambiguity. Furthermore, employing neutrosophic 

numbers can contribute to optimizing profits or minimizing utilization periods across various 

departments and categories. 

CONCLUSION:  

      Through this data it happened to learn how a garment is manufactured and what is all the process 

involved in. In business it is very important to keep up the timing. To keep up the timing scheduling 

the works accordingly is much needed. Here using Program evaluation and review technique and 

critical path method we have scheduled the works and found the minimum time that will be taken to 

manufacture the garments. This will help the company to gain profit with less working hours and 

with more production. In conclusion, this research article presents the practical implementation of 

Triangular Neutrosophic PERT analysis. Leveraging the advantages offered by Neutrosophic 

numbers, the study addresses a range of issues. Esa Clothing Company's multifaceted production of 

garments from diverse materials and processes has been explored. Notably, the company's 

competitiveness has been hindered by suboptimal profit margins, partly attributed to prolonged 

project durations. Through the innovative application of Triangular Neutrosophic numbers, these 

challenges have come to light, prompting recommendations to streamline project timelines by 

minimizing slack and delay times across the company's endeavors. The research encompasses 

thorough time calculations, yielding insights into actual project completion times, projected 
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completions, and the probabilities associated with achieving revised timeframes. As this study 

concludes, the adoption of Triangular Neutrosophic PERT analysis offers a strategic avenue for 

enhancing efficiency, ultimately contributing to improved competitiveness and profitability for Esa 

Clothing Company. 
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1. Introduction 

The introduction should briefly place the study in a broad context and highlight why it is important. 

It should define the purpose of the work and its significance. The current state of the research field 

should be reviewed carefully and key publications cited. Please highlight controversial and diverging 

hypotheses when necessary. Finally, briefly mention the main aim of the work and highlight the 

principal conclusions. As far as possible, please keep the introduction comprehensible to scientists 

outside your particular field of research. References should be numbered in order of appearance and 

indicated by a numeral or numerals in square brackets, e.g., [1] or [2,3], or [4–6]. See the end of the 

document for further details on references. The shortest path problem(SPP) is a fundamental concept 

Abstract: Efficiently determining optimal paths and calculating the least travel time within complex 

networks is of utmost importance in addressing transportation challenges. Several techniques have 

been developed to identify the most effective routes within graphs, with the Reversal Dijkstra 

algorithm serving as a notable variant of the classical Dijkstra’s algorithm. To accommodate 

uncertainty within the Reversal Dijkstra algorithm, Fermatean neutrosophic numbers are harnessed. 

The travel time associated with the edges, which represents the connection between two nodes, can 

be described using fermatean neutrosophic numbers. Furthermore, the edge weights in fermatean 

neutrosophic graphs can be subject to temporal variations, meaning they can change over time. In 

this study, an extended version of the Reversal Dijkstra algorithm is employed to discover the 

shortest path and compute the minimum travel time within a single-source time-dependent network, 

where the edges are weighted using fermatean neutrosophic representations. The proposed method 

is exemplified, and the outcomes affirm the effectiveness of the expanded algorithm. The primary 

aim of this article is to serve as a reference for forthcoming shortest path algorithms designed for 

time-dependent fuzzy graphs 
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that finds applications in a wide range of fields, from real-life scenarios to the domain of operations 

research and graph theory. At its core, this problem is concerned with determining the most efficient 

path between two points in a network, where efficiency is typically measured in terms of minimizing 

a certain cost or distance metric. In real life, the shortest path problem is encountered daily in 

numerous ways like a delivery company optimizing its delivery routes to minimize fuel consumption 

and time, or a telecommunication network seeking the most efficient way to transmit data between 

users. Therefore, the values can be uncertain in those scenarios, to handle that Zadeh [2] introduced 

Fuzzy set(FS) theory which is an excellent tool to cope up imprecise data. It can expressed in terms 

of membership values. The concept of convexity and its applications have been extended to interval-

valued fuzzy sets (IVFS) by Huidobro in their work [1]. In 1999, Atanassov introduced intuitionistic 

fuzzy numbers (IFN), which are defined in terms of membership and non-membership values. 

Additionally, Atanassov also extended the concept to interval-intuitionistic fuzzy (IVIFS) sets, which 

involve lower and upper bounds in relation to membership and non-membership values [3, 4]. 

Definitions for concentration, dilation, and characterization of Intuitionistic Fuzzy Sets (IFS) have 

been provided by another source [6]. The concept of interval-valued pythagorean neutrosophic sets, 

their operations and decision making apporach were introduced by Stephen [16] Both IFSs and IVIFS 

are widely applied in practical problem-solving. However, they may not adequately address 

situations where neutrality or a lack of knowledge is crucial. To address such cases, the concept of 

neutrosophic sets was introduced by Florentin Smarandache in their work [5]. Neutrosophic sets are 

specifically designed to handle problems that involve factors of neutrality or indeterminacy as 

significant components.To provide a comprehensive view of neutrosophic sets from a technical 

perspective, several distinct variants have been introduced in the literature. Notably, Single-valued 

neutrosophic fuzzy sets (SVNFS) have been proposed as a specific instance of Neutrosophic sets, 

which has been extensively discussed in academic works such as [11], [12], and [13]. In a parallel 

development, the concept of interval-valued neutrosophic fuzzy sets (IVNFS) has been put forward 

to represent sets within a unit interval. This innovation has led to the development of various 

operations and comparison techniques for interval-valued neutrosophic fuzzy sets, as extensively 

elaborated upon by Zhang et al. in [10]. Furthermore, Yen has contributed to the field by introducing 

the concept of trapezoidal neutrosophic fuzzy numbers, along with measures of similarity and 

operations related to them, as discussed in [14]. To expand the horizons of neutrosophic fuzzy sets, 

researchers have also focused on Pythagorean neutrosophic fuzzy numbers (PyNFN). The 

development of similarity measures for Pythagorean neutrosophic fuzzy numbers has been explored 

by Rajan in [31]. Fuzzy set theory has emerged as a valuable tool for managing data characterized by 

imprecision, inaccuracy, and vagueness. Among the challenges it addresses, one prominent problem 

is the Fuzzy Shortest Path Problem (FSPP), which entails finding optimal paths within a graph while 

optimizing an objective function in a fuzzy environment. This field has seen several significant 

contributions: In a pioneering effort, Dubois [17] introduced an algorithm to solve FSPP and 

determine optimal weights, laying the foundation for subsequent research in this domain. Klein [24] 

conducted an analysis of FSPP from the perspective of fuzzy mathematical programming, thereby 

opening the door for further exploration and extensions of the concept. Building upon this 

groundwork, Okada and Soper [21] introduced the Multiple Label Method tailored for large random 

networks, providing an effective solution for FSPP. To overcome the limitations of traditional non-
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interactive approaches, Okada [22] introduced the notion of the degree of possibility, a concept used 

to represent arc lengths using fuzzy numbers. Nayeem et al. [20] considered networks with interval-

number and triangular fuzzy numbers, developing an algorithm capable of accommodating both 

types of uncertain numbers. Recognizing the computational complexity of FSPP, Hernandes et al. 

[26] presented a method that relies on a generic index ranking function to compare fuzzy numbers. 

This approach also accounted for graphs with negative parameters. Kumar [19] extended the scope 

of FSPP by addressing interval-valued fuzzy numbers and introducing an algorithm that could solve 

both fuzzy shortest path length and crisp shortest path length problems. Vidhya et al. [25] conducted 

a comparative study between the Floyd-Warshall algorithm and the rectangular algorithm in a fuzzy 

environment, shedding light on their performance. In a different direction, Baba [18] introduced a 

technique for solving the Intuitionistic Fuzzy Shortest Path Problem (IFSPP). Mukherjee [23] 

implemented Dijkstra’s algorithm for finding the shortest path with intuitionistic fuzzy arc weights 

in a graph. A study on SVNF SPP was proposed Liu [28]. Broumi et al. [27] conducted a 

comprehensive comparative study of all existing approaches to FSPP, ultimately identifying the most 

suitable methods for handling uncertainty in various environments. Innovative techniques for 

solving the Pythagorean neutrosophic fuzzy shortest path problem have been put forth by Basha et 

al. in their work [30]. Additionally, Rahut’s research, as presented in [32], has concentrated on 

fermatean neutrosophicshortest path problems, employing a similarity-based approach that has 

yielded optimal results for the proposed methodology. Cakir et al. suggest the time-dependent 

shortest path problem with bipolar neutrosophic environment [29]. Broumi et al. have introduced a 

novel approach for addressing the interval-valued fermatean neutrosophic shortest path problem in 

a related domain, as outlined in their study [33]. This approach builds upon Dijkstra’s classical 

algorithm to navigate the complexities of this specific problem, offering valuable insights into its 

solution. The reversal dijikstra algorithm is a modification of standard dijikstra algorithm, which is 

used to find the shortest path in a weighted graph. Unlike standard Dijkstra’s, which focuses on 

finding the shortest paths from one source to all nodes, Reversed Dijkstra’s focuses on finding the 

shortest paths to a specific target from all nodes. To handle the fuzzy environment and time 

dependency, the reversal dijikstra algorithm is considered. This study extends the reversal dijkstra 

algorithm to find the shortest travel time along with time dependency in a fuzzy environment. In a 

time-dependent fuzzy graph, the concept of finding the shortest path is synonymous with identifying 

the shortest duration or travel time between two points in the graph. This paper combines the 

fermatean neutrosophic numbers with reversal dijikstra’s algorithm along with time dependency. 

The proposed algorithm can efficiently compute both the shortest path and the corresponding 

shortest travel time from a starting node to every other node in a graph (or digraph) in reverse 

methodolgy. This graph is characterized by edges that are represented using time-dependent 

fermatean neutrosophic values. This paper contributes (i)the fermatean neutrosophic arc values to 

handle uncertainty, (ii) further, an algorithm is proposed for the reversal dijikstra algorithm with 

time-dependent fermatean neutrosophic numbers. (iii)the numerical examples are tracked down to 

show the efficieny of the proposed method.  

The paper is structured as follows: Section 2 covers the essential concepts, definitions, and 

mathematical operations associated with fermatean neutrosophic numbers. Section 3 presents and 

elaborates on the algorithm proposed in this research. Section 4 provides a numerical example to 
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illustrate the application of the proposed algorithm. Section 5 discusses analyzing the results obtained 

from the numerical example, offering insights and implications. Finally, Section 6 serves as the 

concluding segment, summarizing the main findings and the paper’s overall conclusions. 

 

2. Preliminaries. 

 In this section, the definitions of fermatean sets, neutrosophic sets , fermatean neutrosophic sets and 

their arithmetic operations are discussed. 

Definition 1. [7] The Fermatean fuzzy Set (FFS) 𝐹̃   in the universal set X is defined by  𝐹̃ =

{⟨𝑥, 𝜇𝐹(𝑥), 𝜈𝐹(𝑥)⟩: 𝑥 ∈ 𝑋} where the membership function 𝜇𝐹(𝑥): X → [0, 1] and the non-membership 

function 𝜈𝐹(𝑥): X → [0, 1] satisfy the condition [𝜇𝐹̃(𝑥)]
3 + [𝜈𝐹(𝑥)]

3 ≤ 1 is said to be the degree of 

hesitation of x to 𝐹̃. 

Definition 2. [8] Let X be the universe of discourse. Then 𝑁 = {⟨𝑥, 𝑇𝑁(𝑥), 𝐼𝑁(𝑥), 𝐹𝑁(𝑥)⟩: 𝑥 ∈ 𝑋} is 

defined as Neutrosophic Fuzzy Set (NFS), where the truth-membership function is represented as 

𝑇𝑁(𝑥): 𝑋 → [0,1]  an interdeterminacy-membership function 𝐼𝑁(𝑥):𝑋 → [0,1]  and the  

falsitymembership function 𝐹𝑁(𝑥):𝑋 → [0,1]  which satisifes the conditions 0 ≤ 𝑇𝑁(𝑥) + 𝐼𝑁(𝑥) +

𝐹𝑁(𝑥) ≤ 3,∀𝑥 ∈ 𝑋. 

Definition 3. [8] A neutrosophic fuzzy set ℓ   in the universe X is the form of ℓ =

{⟨𝑢, 𝑇ℓ(𝑢), 𝐼ℓ(𝑢), 𝐹ℓ(𝑢)⟩: 𝑢 ∈ ℓ} represents the degree of truth, 

indeterminacy and falisty-membership of ℓ respectively. The mapping 𝑇ℓ(𝑢): ℓ → [0,1], 𝐼ℓ(𝑢): ℓ →

[0,1] , 𝐹ℓ(𝑢): ℓ → [0,1]  and 0 ≤ 𝑇ℓ(𝑢)
3 + 𝐼ℓ(𝑢)

3 + 𝐹ℓ(𝑢)
3 ≤ 2 . Here ℓ = (𝑇ℓ , 𝐼ℓ, 𝐹ℓ)  is denoted as 

fermatean neutrosophic number(FNN). 

Definition 4. [8] Let ℓ1 = (𝑇ℓ1 , 𝐼ℓ1 , 𝐹ℓ1) and ℓ2 = (𝑇ℓ2 , 𝐼ℓ2 , 𝐹ℓ2) be the two FNNs and λ ≥ 0, then the 

arithmetic operations are: 

1. ℓ1 + ℓ2 = ((√(𝑇ℓ1)
3 + (𝑇ℓ2)

3 − (𝑇ℓ1)
3(𝑇ℓ2)

33 ), 𝐼ℓ1𝐼ℓ2 , 𝐹ℓ1𝐹ℓ2) 

2. ℓ1 ⊗ℓ2 = (𝑇ℓ1𝑇ℓ2 , √(𝐼ℓ1)
3 + (𝐼ℓ2)

3 − (𝐼ℓ1)
3(𝐼ℓ2)

33 , √(𝐹ℓ1)
3 + (𝐹ℓ2)

3 − (𝐹ℓ1)
3(𝐹ℓ2)

33 ) 

3. ℓ1 ⊙ℓ2 = {(√
(𝑇ℓ1)

3−(𝑇ℓ2)
3

1−(𝑇ℓ2)
3

3
,
𝐼ℓ1

𝐼ℓ2
,
𝐹ℓ1

𝐹ℓ2
)  if 𝑇ℓ1 ≥ 𝑇ℓ2 , 𝐼ℓ1 ≤ 𝐼ℓ2 , 𝐹ℓ1 ≤ 𝐹ℓ2} 

4. 𝜆ℓ1 = (√1 − (1 − (𝑇ℓ1)
3)𝜆

3
, (𝐼ℓ1)

𝜆, (𝐹ℓ1)
𝜆) 

Definition 5. [9] Let ℓ = (𝑇ℓ, 𝐼ℓ, 𝐹ℓ) be the FNFS, then the score function ℑ(ℓ) is defined by  

ℑ(ℓ) =
𝑇ℓ+𝐼ℓ+1−𝐹ℓ

3
                  (1) 

2.1  Advantage and Limitations of different type of fuzzy sets 

The table 1 offers a detailed comparison of the advantages and limitations associated with various 

fuzzy set variations. 

 

Table 1. Advantages and Restrictions with existing Approaches. 

 

Types of Fuzzy Sets Advantages Restrictions 

Fuzzy sets  

 

It can employed when the weights 

are imprecise 

Only the membership degree 

associated with the edge 
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 or uncertain in a unclear situations. values can be utilized. It is 

significant for non-

membership grades. 

Intuitionistic Fuzzy 

Sets 

It can be adapted with imprecise 

edge weights 

that include both membership and 

nonmembership 

values. 

It becomes ineffective when 

the sum of membership and 

non-membership exceeds 

one. 

Neutrosophic 

Fuzzy Sets 

 

This set has indeterminacy as 

explicity quantified 

and truth-membership, 

indeterminacy 

membership and falsity-

membership are independent. 

Not applicable when the sum 

of truth, indeterminancy, 

falsity exceeds three. 

Pythagorean 

Fuzzy Sets 

 

 

It has the capability to manage 

imprecise arc 

weights, even when the 

combination of the 

acceptance grade and the rejection 

grade surpasses 

1, subject to certain constraints. 

When the sum of the squares 

of membership and non-

membership exceeds one, it 

is not suitable for 

application. Eg:(0.8)2 + (0.7)2 

≰1.13 

Pythaogrean 

Neutrosophic 

Fuzzy 

Sets(PNFS) 

It handle when the sum of the truth, 

falsity 

and indertermincancy of the 

membership 

exceeds one 

It becomes less ineffective 

when the sum of the sqaure 

of the truth,  

indeterminancy, falsity 

exceeds one. 

Fermatean 

neutrosophic sets 

It handles the situations better when 

the 

PNFS fails by cubing the turth, 

indeterminacny, 

falsity of the membership 

 

. 

3.Reversal Dijikstra’s Algorithm under fermatean neutrosophic Environment  

 

In contrast to existing techniques, the methodology proposed in this article proves to be more 

effective in identifying the Shortest Path (SP). The key advantage of utilizing Fuzzy number predicted 

values is their ability to yield a singular value. By eliminating the need for rating FN values, this 

approach streamlines the decision-making process. This computational efficiency is particularly 

advantageous when dealing with scenarios characterized by highly uncertain parameters, making it 

a valuable tool for addressing Shortest Path Problems (SPPs). We argue that there are clear benefits 

to utilizing fermatean neutrosophic numbers (FNNs). Their ability to explicitly represent 

indeterminacy and differentiate between various facets of uncertainty makes them a valuable and 

versatile tool in these applications. FNNs provide a more impartial and nuanced insight into the 

functional relationships within a system. Consequently, our approach is geared towards solving the 

SPP within a network with fermatean neutrosophic arc lengths, bridging the source node (SN) and 

target node (TN). The analysis for the shortest path in fermatean neutrosophic numbers(FNN) 
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operates as follows: We initially adapt the principles governing the prediction of values within FNNs, 

yielding novel and improved outcomes for predicted FNN values. We apply this modified prediction 

approach to solve a shortest path algorithm, such as the reversal Dijkstra algorithm. Here, the de-

neutrosophication of FNNs and time-dependent FNNs associated with network arcs is executed by 

computing their predicted values. To calculate the shortest distance (SD) value and time-dependent 

shortest time, we amalgamate FNNs through a scoring function derived from the predicted FNN 

values. This process directly yields a crisp numerical result. In comparison to other fuzzy shortest 

path methods, our approach is more logically structured, robust, and straightforward to implement 

when dealing with fermatean neutrosophic numbers. 

 

3.1 Proposed Algorithm. 

Step 1: Assign and label [ts,−] and permanent status to the destination node. 

Step 2: calculate the labels tj +wij to the reachable node (node i) from the permanent 

node (node j) and assign temporary stauts. 

Step 3: If node i is visited already with temporary status. choose the score function 

to choose the minimum node and label it as i. 

Step 4: If all the nodes have become permanent status then the algorithm terminates 

else then go to step 2. 

Step 5: Using the label information, find the shortest path by tracing it forward 

through the graph. 

The Pseudeocode for time-dependent fermatean neutrosophic reversal-dijikstra Algorithm is present 

in algorithm 1. 

 

Algorithm 1 Pseudeocode for time-dependent fermatean neutrosophic reversal dijikstra 

Algorithm 

 

function Reversal Dijkstra(graph, target): # Initialize data structures 

distance = {} # Dictionary to store the shortest distance from the target node. 

priority queue = MinHeap () # MinHeap to prioritize nodes to explore # Initialize 

distances 

for node in graph.nodes: 

distance[node] = INFINITY 

distance[target] = 0 # Add the target node to the priority queue 

priority queue.insert((target, 0)) 

while not priority queue.isEmpty(): 

current node, current distance = priority queue.extractMin() 

# Explore neighbors of the current node 

for neighbor in graph.neighbors(current node): 

edge weight = graph.getEdgeWeight(current node, neighbor) 

new distance = current distance + edge weight 

# Relaxation step 
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if new distance ≤ distance[neighbor]: 

distance[neighbor] = new distance 

      priority queue.insert((neighbor, new distance)) 

return distance. 

 

 

4.Numerical Example 

A numerical example is solved to validate the proposed algorithm’s efficiency. 

Example.  Consider a numerical example with a network graph 1 having six nodes and eight arcs 

with time-dependent fermatean neutrosophic graph. The arc values are represented in the table 2. 

The departure time ˜ts is set as (0.2, 0.4,0.5). 

 

          

         Fig .1. A Network with time-dependent fermatean neutrosophic weights 

 

                    Table 2. Weight of edges for example. 

 

Edges Time-dependent fermatean neutrosophic Arc 

Values 

1 → 2 (0.4, 0.6, 0.3) 

1 → 3 (0.3, 0.8, 0.6) 

3 → 2 (0.5,/’ 0.3, 0.2) − t 

2 → 5 (0.6, 0.8, 0.4) * t 

3 → 4 (0.5, 0.3, 0.7) 

3 → 5 (0.8, 0.3, 0.1) + t 

4 → 6 T 

5 → 6 (0.7, 0.6, 0.2) 

 

        Iteration 0: Assign the destination node (6) and label is as [ts,−] and make it Permanent table 

3. 

Iteration 1: Calculate the distances from the targeted node (Node 6), which is the most 

recently marked as ”Permanent”, to its neighboring nodes (predecessor node of 
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6), specifically Nodes 5 and 4. As a result, we have established the status of these nodes in 

terms of being either temporary or permanent in table 4. To compare (0.70,0.24,0.1). 

 

Table 3. Nodes that are reachable from nodes designated as ”Permanent” are assigned labels and 

temporary status. 

 

Edges Label Status 

6 [(0.2, 0.4, 0.5),−] 𝔓 

 

 

Table 4. Nodes that are reachable from nodes designated as ”Permanent” are assigned labels and 

temporary status. 

 

Edges Label Status 

6 [(0.2, 0.4, 0.5),−] 𝔓  

5 [(0.70, 0.24, 0.1), 6] 𝔗  

4 [(0.25, 0.16, 0.25), 6] 𝔗 

and (0.25,0.16,0.25), the definition 1 is used: 

S(0.70, 0.24, 0.1) = 0.613 

S(0.25, 0.16, 0.25) = 0.386 

Since S(0.70, 0.24, 0.1) ≤ S(0.25, 0.16, 0.25). Therefore, [(0.25, 0.16, 0.25), 6] is marked  

and labeled as Permanent (P) node. 

 

Iteration 2: Node 4 is marked as permanent node and the predecessor node for node 

4 is node 3. Therefore, we maintain lists of temporary and permanent nodes in table 5. To 

compare (0.95,0.52,0.49) and (0.94,0.57,0.52), the definition 1 is used: 

 

Table 5. Nodes that are reachable from nodes designated as ”Permanent” are assigned labels and 

temporary status. 

 

Edges Label Status 

6 [(0.2, 0.4, 0.5),−] 𝔓  

5 [(0.70, 0.24, 0.1), 6] 𝔓 

4 [(0.25, 0.16, 0.25), 6] 𝔓 

      S(0.95, 0.52, 0.49) = 0.65 

S(0.94, 0.57, 0.52) = 0.663 

Since S(0.95, 0.52, 0.49) ≤ S(0.94, 0.57, 0.52). Therefore, [(0.95, 0.52, 0.49) is marked 

and labeled as Permanent  node. 

Iteration 3: The predecessor node 5 are node 3 and node 2. Therefore, we maintain lists of temporary 

and permanent nodes in table 7. 

Iteration 4: The predecessor of node 3 and node 2 is node 1. The list of temporary and permanent 

nodes are listed in table 7. 

 

Table 6. Nodes that are reachable from nodes designated as ”Permanent” are assigned labels and 

temporary status. 
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Edges Label Status 

6 [(0.2, 0.4, 0.5),−] 𝔓   

5 [(0.70, 0.24, 0.1), 6] 𝔓   

4 [(0.25, 0.16, 0.25), 6] 𝔓   

3 [(0.52, 0.05, 0.18), 4] (or) [(0.88, 0.03, 0.005), 5] 𝔗 

2 [(0.70, 0.19, 0.06), 5] 𝔗 

 

 

Table 7. Nodes that are reachable from nodes designated as ”Permanent” are assigned labels and 

temporary status. 

 

Edges Label Status 

6 [(0.2, 0.4, 0.5),−] 𝔓   

5 [(0.70, 0.24, 0.1), 6] 𝔓   

4 [(0.25, 0.16, 0.25), 6] 𝔓   

3 [(0.52, 0.05, 0.18), 4]  𝔓   

2 [(0.70, 0.19, 0.06), 5] 𝔗 

1 [(0.55, 0.04, 0.11), 3] (or) [(0.73, 0.11, 0.012), 2] 𝔗 

 

Iteration 5: The predecessor node for 2 is node 3 and node 1. Therefore node 1 as Permanent node. 

using the label information, the network is traced and the shortest travel time from destination node 

to source node is 1 → 3 → 4 → 6. The shortest path from 1 to 6 is shown in Figure 2. The table 10 has 

been created to illustrate the efficiency of the proposed algorithm in comparison to existing 

approaches. 

 

 

Table 8. Nodes that are reachable from nodes designated as ”Permanent” are assigned labels and 

temporary status. 

  

Edges Label Status 

6 [(0.2, 0.4, 0.5),−] 𝔓   

5 [(0.70, 0.24, 0.1), 6] 𝔓 

4 [(0.25, 0.16, 0.25), 6] 𝔓 

3 [(0.52, 0.05, 0.18), 4] (or) [(0.62, 0.04, 0.07), 2] (or)  

[(0.88, 0.03, 0.005), 5] 

𝔗 

2 [(0.70, 0.19, 0.06), 5] 𝔓  

1 [(0.55, 0.04, 0.11), 3] (or) [(0.73, 0.11, 0.012), 2] 𝔗 

 

 

Table 9. Nodes from destination to source 

 

Edges Label Status 

6 [(0.2, 0.4, 0.5),−] 𝔓   

5 [(0.70, 0.24, 0.1), 6] 𝔓   

4 [(0.25, 0.16, 0.25), 6] 𝔓   

3 [(0.52, 0.05, 0.18), 4]  𝔓   

2 [(0.70, 0.19, 0.06), 5] 𝔓   

1 [(0.55, 0.04, 0.11), 3]  𝔓   
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                           Fig .2. Shortest Path from node 1 to node 6 

 

      Table 10. Comparison with the Existing Approach 

 

Methods with 

Different 

Neutrosophic 

Environment 

SP Shortest Travel Time Score of travel 

time 

Time-Dependent 

Dijkstra 

Algorithm with 

Bipolar Neutrosophic 

Numbers [29] 

1 → 2 → 5 → 6 (0.901,0.122,0.15,-0.078,-

0.919,-0.912) 

0.92 

Proposed Method 1 → 3 → 4 → 6 (0.55,0.04,0.011) 0.493 

 

5. Results and Discussion 

The proposed time-dependent fuzzy reversal Dijkstra’s algorithm is designed to compute the 

shortest travel times in the context of a time-dependent fermatean neutrosophic graph. This 

algorithm leverages the principles of reversal Dijkstra’s algorithm. In each iteration, the algorithm 

identifies undiscovered nodes by exploring the paths connecting them to the permanent nodes. By 

repeating this process, it systematically calculates and updates the shortest travel times to the starting 

node, accounting for the complex characteristics of the time-dependent fermatean neutrosophic 

graph. In this specific example, a departure time, denoted as ˜ts, has been introduced with the values 

(0.2, 0.4, 0.5), which represents various departure time instances. Additionally, the arrival node, 

which serves as the destination node, is designated as a ”Permanent” node within the algorithm’s 

execution. This means that the algorithm will consider and process these departure times and ensure 

that the arrival node’s status remains permanent throughout the computation. Huang et al. [33] 

initially attempted to discover the shortest paths on time-dependent fuzzy networks by integrating 

the principles of fuzzy simulation and genetic optimization. In a related context, Liao et al. [34] 

introduced an algorithm for solving the fuzzy constrained shortest path problem, which addresses 
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the uncertainty in both time and cost information. They also demonstrated the feasibility of the fuzzy 

linear programming approach for solving their problem. These methodologies have undergone 

thorough testing and validation on fuzzy graphs. The application presented in this article draws 

inspiration from these prior studies. Consequently, the application of this study holds significance 

when compared to previous applications documented in the existing literature. The results of the 

provided example underscore the applicability of an extended version of reversal Dijkstra’s 

algorithm to time-dependent fuzzy graphs. By employing fermatean neutrosophic numbers to 

represent edge weights, the proposed methodology effectively addresses both the shortest path and 

travel time problems. 

6. Conclusion 

The shortest path problem plays a pivotal role and finds practical applications across a wide spectrum 

of fields. When dealing with uncertain situations, the vertex weights can be expressed as fuzzy 

numbers, enabling them to adapt to fluctuating values over time. This article focuses on the 

utilization of fermatean neutrosophic numbers to capture and represent uncertainty. It extends the 

Reversal-Dijkstra algorithm to handle time-dependent graphs with fermatean neutrosophic 

numbers. This extension involves the use of a scoring function to compare minimum values among 

the FNN and select the most favorable arc with the lowest values. In the context of a time-dependent 

fuzzy graph, the shortest path is defined in terms of the shortest travel time. The proposed algorithm 

addresses this specific scenario and includes a numerical example to demonstrate its effectiveness, 

ultimately yielding optimal results. For future research endeavors, we recommend the utilization of 

the time-dependent reversal Dijkstra’s algorithm within a fuzzy environment. This approach can be 

further enhanced by incorporating various fuzzy extensions, such as Pythagorean fuzzy sets, 

spherical fuzzy sets, and more. Additionally, it would be beneficial to integrate cost, saftey values 

and danger factors into the analysis along side time considerations. Beyond the technical 

developments, these methodologies hold promise for addressing a diverse array of real-life problems. 

Examples include applications in cable network optimization, telecommunication routing, route 

planning for transportation, social network analysis, database search optimization, and traffic 

management for taxi services, among others. 
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Abstract: Since there are threei membership i functions: truth, false, and indeterminacyi, geometrical 

modelingi for B-spline surface approximation including neutrosophic data is particularly difficult to 

construct. Using neutrosophic set theory, this study introduces a neutrosophic B-spline for 3-

dimensional data collecting. The neutrosophic control net was first introduced using the 

neutrosophic set notion. The control i net is then merged with the B-splinei basis function, and the 

approximation approach is used to display the B-spline surface. Following this work, there is a 

numerical demonstration of how to create the surface. As a result, the primary goal of this study is 

to offer the mathematical formulation and visualization of the neutrosophic B-spline surface 

approximation model for 3D data collecting. 

Keywords: Neutrosophic B-spline Surface; Neutrosophic Control Net; Neutrosophic Set Theory, 

Neutrosophic B-spline Surface Approximation 

 

 

1. Introduction 

In modeling and addressing real-world situations, several mathematical tools have been 

established. Several researchers have been drawn to the concept of fuzzy set developed by Lotfi 

Zadeh [1] for problems involving imprecision, ambiguity, and uncertainty because of its potential for 

the recreation of human thinking as well as perception using linguistic information. Numerous 

hypotheses were created afterward to address the issue of impreciseness but in various structural 

forms. When fuzzy sets and fuzzy logic proposed by Zadeh cannot express false membership data, 

the neutrosophic i theory proposed i by Florentin Smarandachei [2] is newly offered as an improved 

alternative; meanwhile, intuitionistic fuzzy sets and intuitionistic fuzzy logic proposed by Krasimir 

Atanassov [3] cannot handle data indeterminacy or imperfect information [17]. In 2014, Smarandache 

extended his neutrosophic i logic i study to n-valuedi refinedi neutrosophic i logic for use in physics [32]. 

A neutrosophic multiset is an n-valuedi refinedi neutrosophic i set. The neutrosophic multiset is 

expanded by Chatterjee to a single-valued neutrosophic multiset [33]. Following that, a combination 

of neutrosophic multisets and other uncertainty methods, such as rough multisets [34] and soft 

multisets [35], is introduced. This is due to the information's ambiguity and impreciseness, which 

always combines opposing and neutral knowledge. As a result, some academics have covered a few 

applications in their work that use fuzzy set, intuitionistic fuzzy set, and neutrosophic set theory [26-

31]. 

 The randomness of data collection has an impact on curve and surface design. This data is used 

as a control point for approximate and interpolate approaches in geometric modeling [4]. The data 

set is required for the creation of curves and surfaces, as well as the procedure itself. Uncertainty data 
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affecting the curve and surface is frequently disregarded or discarded. Thus, for any problem to be 

addressed, data sets with some variability must be filtered before being utilized to generate surfaces 

and curves. In geometric modeling, there are three models: Bézier, B-spline, and non-uniform rational 

B-splines (NURBS). However, this study focuses on the B-spline surface model. Bernstein basis, or 

Bézier basis, is a specific case of B-spline basis (from Basis Spline). This foundation is not worldwide 

[22]. B-spline surfaces are non-global because each vertex has a basis function. The B-spline basis 

permits changing the basis function order and surface degree without changing the control polygon 

vertices. Piegl and Tiller introduced the mathematical representation for the B-spline surface 

approximation model [22]. 

Atanassov enhanced the fuzzy set theory with truth, falsehood, and uncertainty degrees in 1986 

[3]. As fuzzy sets only accept full membership data, they can be employed when there is inadequate 

data for categorization and processing [5]. To cope with uncertain data, several academics employ 

geometric modeling with the fuzzy set and intuitionistic fuzzy set approach [6-14]. Meanwhile, Tas 

and Topal [15-16] have employed a study for neutrosophic geometric modeling but only focused on 

the Bézier curve and surface using the approximation method generally. Rosli and Zulkifly 

introduced the neutrosophic B-splinei curvei by using the interpolation i methodi [23], neutrosophic 

bicubic surface interpolation [24], and the 3-dimensional neutrosophic quartic Bézier curve 

approximation method [25]. However, the papers motivate the authors to produce and focus on the 

B-spline surface approximation method to visualize the 3-dimensional data collection. As a result, 

the novelty of this study is the mathematical representations of the neutrosophic B-spline surface 

approximation method and its visualization for truth, indeterminacy, and falsity memberships. 

This project focuses on the construction of a geometric model capable of dealing with data 

collection; specifically, the model's primary focus will be the neutrosophic B-spline surface 

approximation (NB-sSA) model. The neutrosophic control point must be defined before building the 

NB-sSA, utilizing neutrosophic set theories and the features they provide. These control points, along 

with the B-spline basis function, are used to construct NB-sSA models, which are then visualized 

using an approximation method. This paper is organized as follows: The first section of this chapter 

provides background information on the topic. In the second section, the neutrosophic point relation 

(NPR) and the neutrosophic control net relation (NCNR) are introduced. The third section discusses 

the method used for the NB-sSA using NCNR. The fourth section includes a numerical example as 

well as a graphical representation of NB-sSA. The investigation will be completed with the fifth 

section as the conclusion of this study. 

2. Preliminaries  

In fuzzy systems, the intuitionistic set can tolerate imperfect information but not indeterminate 

or inconsistent information [17]. There are three membership functions in a neutrosophic set. With 

the addition of the parameter "indeterminacy" to the neutrosophic set (NS) specification, there are 

three types of membership functions: a membership function, denoted by the letter T; an 

indeterminacy membership function, denoted by the letter I; and a non-membership function, 

denoted by the letter F. 

 

Definition 1i [18]  

Let Y  bei the collection i of universal spacei, with the element y Y . The neutrosophic set is an object i 

in the form. 

     ˆ ˆ ˆ{ }ˆ : , ,
B y B y B y

B y T I F y Y ∣  (1) 

where, the functions , , : ] 0,1 [T I F Y   define, respectively, the degreei of truth membership, the 

degree of indeterminacy, and the degree of false membership of the element y Y  to the set B̂ with 

the condition;  
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ˆ ˆ ˆ0 ( ) ( ) ( ) 3
B B B

T y I y F y      (2) 

There is no limit to the amount of ˆ ˆ( ), ( )
B B

T y I y and ˆ ( )
B

F y . 

A value is chosen by NS from one of the real standard subsets or one of the non-standard subsets 

of ] 0,1 [  . The actual value of the interval  0,1 , on the other hand, ] 0,1 [   will be utilized in 

technical applications since its utilization in real data, such as the resolution of scientific challenges, 

will be physically impossible. As a direct consequence of this, membership value utilization is 

increased. 

     ˆ ˆ ˆ ˆ ˆ ˆ{ } and ]ˆ : , , ( ), ( ), ( ) [0,1 
B y B y B y B B B

B y T I F y Y T y I y F y  ∣  (3) 

There is no restriction on the sum of ˆ ˆ ˆ( ), ( ), ( )
B B B

T y I y F y .Therefore, 

ˆ ˆ ˆ0 ( ) ( ) ( ) 3
B B B

T y I y F y     (4) 

 

Definition 2 [15-16] 

Let 
     ˆ ˆ ˆ{ }ˆ : , ,

B y B y B y
B y T I F y Y ∣  and 

     ˆ ˆ ˆ{ }ˆ : , ,
C z C z C z

C z T I F z Z ∣  be neutrosophic elements. 

Thus, 
( , ) ( , ) ( , ){ }ˆˆ( , ) : , , ,y z y z y zNR y z T I F y B z C  ∣  is a neutrosophic relation between B̂ and Ĉ . 

 

Definition 3 [15-16] 

The neutrosophic set of B̂  in space Y is neutrosophic point (NP) and ˆ ˆ{ }iB B  where 0,...,i n  is 

a set of NPs where there exists ˆ : [0,1]
B

T Y   as truth membership, ˆ : [0,1]
B

I Y   as indeterminacy 

membership, and ˆ
ˆ: [0,1]

B
F Y  as false membership with, 

ˆ

ˆ ˆ
0

ˆ ˆ ˆˆ( ) (0,1)

ˆ ˆ1

i

iB

i

B Bif

T B a if B B

if B B

 


  




 

ˆ

ˆ ˆ
0

ˆ ˆ ˆˆ( ) (0,1)

ˆ ˆ1

i

iB

i

B Bif

I B b if B B

if B B

 


  




 

ˆ

ˆ ˆ
0

ˆ ˆ ˆˆ( ) (0,1)

ˆ ˆ1

i

iB

i

B Bif

F B c if B B

if B B

 


  




 

(5) 

2.1 Neutrosophic Point Relation  

Neutrosophic point relation (NPR) is based on the concept of a neutrosophic set, which was 

discussed in the previous section. If ,P Q  is a collection of Euclidean universal space points and 
2,P QR , then NPR is defined as follows: 

 

Definition 4 [23] 

Let ,X Y be a collection of universal space points with a non-empty set and , ,P Q I   R R R , then 

NPR is defined as: 

   (ˆ , , ( , ), ( , ), , ) ( , ), ( , ), ( , )i j R i j R i j R i j R i j R i j R i jR Ip q T p q I p q F p q T p q I p q F p q ∣  (6) 
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where  ,i jp q is an ordered pair of coordinates and  ,i jp q P Q   while 

( , ), ( , ), ( , )R i j R i j R i jT p q I p q F p q are the truth membership, indeterminacy membership, and false 

membership that follow the condition of the neutrosophic set which is ˆ ˆ ˆ
ˆ ˆ ˆ0 ( ) ( ) ( ) 3

B B B
T y I y F y   . 

2.2 Neutrosophic Control Net Relation  

The geometry of a spline surface can only be described by all the points required to build the 

surface. The control net plays an important role in the development, control, and manufacture of 

smooth surfaces. The neutrosophic control point relation (NCPR) is first defined in this section by 

using the notion of control point from the research published in [19-21] in the following way: 

 

Definition 5 [23] 

Let R̂ be an NPR, then NCPR is defined as a set of points 1n   that indicates the positions and 

coordinates of a location and is used to describe the curve and is denoted by:  

 

 

 

0 1

0 1

0 1

.

ˆ , ,...,

, ,. .,

, ,ˆ

ˆ

...,

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

I I I I

F F F F

T T T T

i n

i n

i n

P p p p

P p p p

P p p p







 (7) 

where ˆ T

iP , ˆ I

iP , and ˆ F

iP  are neutrosophic control points for truth membership, indeterminacy 

membership, and falsity membership, and i  is one less than n . Thus, the NCNR can be defined as 

follows. 

 

Definition 6 [24] 

Let P̂  be an NCPR, and then define an NCNR as points 1n   and 1m   for P̂  in their direction, 

and it can be denoted by ,
ˆ
i jP  that represents the locations of points used to describe the surface and 

may be written as: 

0,0 0,1 0,

1,0 1,1 1,

,

,0 ,1 ,

ˆ ˆ ˆ

ˆ ˆ ˆ
ˆ

ˆ ˆ ˆ

j

j

i j

i i i j

P P P

P P P
P

P P P

 
 
 

  
 
 
 

 (8) 

where ,
ˆ
i jP  are also the points that make up a polygon's control net. 

3. Neutrosophic B-spline Surface Approximation  

Surface is a two-parameter vector value function that governs how the plane is projected into 

the Euclidean three-dimensional frame [22]. The NCNR and Definition 1 are used to construct the 

neutrosophic B-spline surface approximation (NB-sSA), which is then utilized to embed the B-spline 

blending function in a geometric model. The model, which stands for approximation approach, is 

mathematically represented as follows: 

 

Definition 7  

Let  
0

, , , ,

, ,

,

, 0

ˆ ˆˆ ˆ
n m

i
i

T I F T I F

i j j
j

P P
 

  where  = 0,1,...,   and   = 0,1,...,i n j m  is NCNR for truth, indeterminacy, 

and falsity memberships.  The neutrosophic B-spline surface approximation (NB-sSA) is denoted as 

( , )BsS u w  and represented as follows: 
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,

0 0

)( , ) ˆ ( ) (
n m

i

lk

ij j

i j

B uw P N Ms u wS
 

  (9) 

where ( )k

iN u  and ( )l

jM w are the Bernstein function in the u  and w  parametric directions. 

 
   

 
 

11

1 1 1

1

1 1

1      u
( )

0

( ) 7

i i

i

i i kk k

i i i

i k i i k i

if u u
N u

otherwise

u u u u
N u N u N u

u u u u



 



   

 
 


 
 

 

 (10) 

 
   

 
 

11

1 1 1

1

1 1

1      w
( )

0

( ) 8

j j

j

j j ll l

j i j

j l i j l j

if w w
M w

otherwise

w w w w
M w M w M w

w u w w



 



   

 
 


 
 

 

 (11) 

The parametric function NB-sSA in Equation (9) is defined as follows and is made up of three 

surfaces: a membership surface, a non-membership surface, and an indeterminacy surface. 

,

0 0

)( , ) ˆ ( ) (
T

k l

i j

n m
T

i j

i j

B w P N u Ms u wS
 

  (12) 

,

0 0

)( , ) ˆ ( ) (
F

k l

i j

n m
F

i j

i j

B w P N u Ms u wS
 

  (13) 

,

0 0

)( , ) ˆ ( ) (
I

k l

i j

n m
I

i j

i j

B w P N u Ms u wS
 

  (14) 

Each ( , )BsS u w  can be expressed as a matrix product in the following way [24]: 

0,0 0,1 0,

1,0 1,1 1,

,0 ,1

0

1

0 1

,

ˆ ˆ ˆ

ˆ ˆ ˆ
( , )

ˆ

( )

( )
( ) ( ) ( )

( )ˆ ˆ

l

j

l

jk k k

i i i i

l

i j

j

j

i j

i i j i

P P P M

B

w

M w
N u N u

P P P
sS u w

P wP P

N u

M

   
   
          
   
     

 (15) 

All the independent equations can be combined to form a single matrix equation: 

ˆTBsS N PM  (16) 

3.1. Properties of Neutrosophic B-Spline Surface Approximation (NB-sSA) 

By using a B-spline basis to define a B-spline surface, many characteristics beyond those already 

mentioned become obviously clear: 

 In each parametric, the degree of NB-sSA is one less than the number of NCNR vertices in that 

direction. 

 The NCNR shape is generally followed by the NB-sSA. 

 The NCNR corner point and the resulting NB-sSA coincide. 

 The NCNR's shape is generally followed by the NB-sSA. 

 The NB-sSA is contained within NCNR's convex hull. 

 The NB-sSA has a continuity in each parametric direction that is two less than the number of 

NCNR vertices in that direction. 

 An affine transformation does not change the NB-sSA. 
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 The NB-sSA lacks the variation-diminishing property. For bivariant NB-sSA, the variation-

diminishing property is both undefined and unknown. 

 

 

4. Numerical Example with Its Visualizations 

To demonstrate a 3-dimensional neutrosophic B-spline surface using the approximation 

approach, suppose a four-by-four NCNR with the following degrees of membership, non-

membership, and indeterminacy: 

 

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

P P P P

P P P P

P P P P

P P P P

 
 
 
 
 
 
 

 

 

The NB-sSA is fourth order in the u direction  4k   and third order in the w  direction 

 3l   based on the Equation (10) and Equation (11). Therefore, by using Equation (16), the NB-sSA 

can be derived as follows: 

 

   

          

          
          

4 4

, ,4 ,3

1 1

1,4 1,1 1,3 1,2 2,3 1,3 3,3 1,4 4,3

2,4 2,1 1,3 2,2 2,3 2,3 3,3 2,4 4,3

3,4 3,1 1,3 3,2 2,3 3,3 3,3 3,4 4,3

ˆ

ˆ ˆ ˆ ˆ       =

ˆ ˆ ˆ ˆ       +

ˆ ˆ ˆ ˆ       +

   

i j i j

i j

BsS P N u M w

N u P M w P M w P M w P M w

N u P M w P M w P M w P M w

N u P M w P M w P M w P M w

 



  

  

  



          4,4 4,1 1,3 4,2 2,3 4,3 3,3 4,4 4,3
ˆ ˆ ˆ ˆ    +N u P M w P M w P M w P M w  

 

 

Every column is labeled , ,T F I  with its respective value and degree. Based on example below for 

0,0P̂  for 0i   and 0j  , the value of truth membership denoted as T is 0.4, the value of falsity 

membership denoted as F is 0.7, and the value of indeterminacy membership denoted as I is 0.2. 

 

 

 

 

 

0,0

1,0

2,0

3,0

ˆ

;

16,16 ;0.4,0.7,0.2

6,16 0.6,0.4,0.3

6,16 ;0.6,0.2,0.5

16,16 ;0.7,0.3,0.3

ˆ

ˆ

ˆ

P

P

P

P

   
   

   
   

   
   

  

 

 

 

 

 

0,1

1,1

2,1

3,1

ˆ

;

16,6 ;0.9,0.3,0.1

6,6 0.8,0.2

0

ˆ

ˆ 1

ˆ

,0.3

6,6 ;0.8,0.4, .

16,6 ;0.4,0.6,0.3

P

P

P

P

   
   

   
   

   
   

  

 

 

 

 

 

0,2

1,2

2,2

3,2

ˆ

;

16, 16 ;0.6,0.5,0.2

6, 16 0.7,0.4,0.2

6, 16 ;0.5,0.3,0.5

0

ˆ

,

ˆ

7ˆ 16, 16 ;0. .4,0.2

P

P

P

P

    
   

    
   

   
     
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Figure 1. NB-sSA for truth membership. 

 

Figure 2. NB-sSA for false membership. 

 

Figure 3. NB-sSA for indeterminacy membership. 
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Figure 4. NB-sSA for truth, false, and indeterminacy membership. 

This study employs the original formula of the B-spline basis function and then blends it with 

the NS theory, which uses the NCNR to approximate the surface. It differs from the interpolation 

approach, which requires determining the inverse of the formula B-spline basis function for the 

control net to find the interpolated data as introduced and visualized in Rosli and Zulkifly [23]’s 

study. Therefore, this study uses the B-spline surface approximation model that was introduced by 

Piegl and Tiller [22] and blends it with NCNR. However, one of the difficulties when constructing 

this model is ensuring that the random data collection adheres to the criterion of neutrosophic i seti 

theoryi, which isi ˆ ˆ ˆ
ˆ ˆ ˆ0 ( ) ( ) ( ) 3

B B B
T y I y F y   i. The 3-dimensional neutrosophic B-spline surface 

approximation model is depicted in Figures 1 to 4. Figure 1 shows a 3D surface for truth membership, 

Figure 2 shows a 3D surface for false membership, Figure 3 shows an indeterminacy surface, and 

Figure 4 shows a 3D neutrosophic B-spline surface approximation for all membership in one axis, 

with green representing 3D truth membership, red representing 3D false membership, and blue 

representing 3D indeterminacy membership. In Figures 1 to 4, the red dot represents their individual 

NCNR, and the gray line indicates their respective control polygons that hold the NCNR. As this 

study uses an approximation strategy and adheres to the criterion of the neutrosophic set, each 

NCNR approximates its surfaces, and the memberships are not dependent on the others. An 

algorithm for constructing the NB-sSA will be discussed as follows: 

 

Step 1: Introduce the NCNR by using Definition 6. 

Step 2: Blend the NCPR withi B-splinei Basisi function i as in Definitioni 7. 

Step 3: Collect the coefficients of ( )k

iN u  and ( )l

jM w . The coefficients of the parameter terms are 

collected and rewritten in matrix form as in the given example. 

Step 4: Repeat step 1 to 3 for indeterminacy and falsity memberships cases.  

5. Conclusions   

By introducing NCNR, this paper introduced the NB-sSA model. This study can be expanded to 

produce better findings by incorporating non-uniform rational B-splines (NURBS) functions for 

surfaces and curves. The suggested 3-dimensional model can handle surface i datai visualization i 

challenges such as modellingi geographical regions with unclear borders in geoinformation i systems 

(GISi), remote sensing, object reconstruction i from an aerial laser scanner i, bathymetric i data 

visualization i, and many more. Implementing this strategy has the impact or benefit of ensuring that 

no data is wasted throughout the data collection process in any application. The NB-sSA model can 
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be used to address and solve difficulties characterized by uncertainty. The NCNR and NB-sSA 

models can provide a comprehensive analysis i and descriptioni of a modellingi issue in which each 

surfacei is modelled separately. 
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Abstract: Context and Background: This paper addresses the challenge of encoding and decoding 

numerical data by introducing innovative algorithms utilizing Neutrosophic ASCII codes and 

ASCII Neutrosophic codes. These codes serve to represent uncertain or imprecise character values 

through the incorporation of neutrosophic numbers, encompassing degrees of truth, falsity, and 

indeterminacy. Motivation: The study stems from the necessity to effectively represent uncertain or 

imprecise character values in numerical data. This is crucial in diverse applications where handling 

uncertain or ambiguous data is a prevalent concern. Hypothesis: We hypothesize that employing 

Neutrosophic ASCII codes and ASCII Neutrosophic codes in encoding and decoding numerical 

data can provide a robust solution for representing uncertain or imprecise character values. 

Methods: The encoding algorithm in this study transforms each character in the ASCII string into 

its corresponding ASCII code, utilizing either 7 or 8 bits based on the code type. This algorithm 

calculates the degree of truth, falsity, and indeterminacy for each bit, considering the uncertainty or 

ambiguity associated with the character. The resulting neutrosophic numbers are appended to 

create the Neutrosophic ASCII code or ASCII Neutrosophic code. The decoding algorithm 

partitions the code into groups of neutrosophic numbers, calculates the associated degrees of truth, 

falsity, and indeterminacy for each ASCII bit, and converts the neutrosophic numbers back to ASCII 

codes, reconstructing the original ASCII character string. Results: Our study yields a novel and 

effective approach for encoding and decoding numerical data, demonstrating the potential of 

Neutrosophic ASCII codes and ASCII Neutrosophic codes in representing uncertain or imprecise 

character values. Conclusions: The proposed algorithms offer a promising solution for handling 

uncertain or ambiguous data in numerical encoding and decoding. The specific and quantitative 

results highlight the efficacy of Neutrosophic ASCII codes and ASCII Neutrosophic codes, 

showcasing their potential applicability in various domains requiring robust solutions for uncertain 

or imprecise character representation in numerical data. 

 

Keywords Neutrosophic ASCII Code system, ASCII Neutrosophic codes, uncertain values, 

neutrosophic Systems. 
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1. Introduction 

Neutrosophic sets and their applications have been extensively studied in recent years [1–4]. 

Neutrosophic logic is a generalization of fuzzy logic that allows for the representation of uncertain 

or indeterminate information using three values: truth, falsity, and indeterminacy. This approach 

has been applied in various fields such as decision-making, expert systems, pattern recognition, 

image processing, and data analysis. In the context of information, encoding, previous studies have 

focused on the use of traditional coding techniques such as ASCII codes or Unicode [5]. However, 

these methods do not take into account the degree of uncertainty or ambiguity associated with the 

characters being encoded. Therefore, the proposed approach using Neutrosophic ASCII codes and 

ASCII Neutrosophic codes is a new and innovative approach that can address this limitation. To the 

best of our knowledge, there are no previous studies that have explored the use of Neutrosophic 

ASCII codes and ASCII Neutrosophic codes for encoding and decoding numerical data. This paper 

presents a novel methodology that leverages neutrosophic numbers to represent uncertain or 

imprecise values of characters in numerical data. The encoding and decoding algorithms proposed 

in this paper are designed to handle these neutrosophic numbers and convert them to or from 

standard ASCII codes. Therefore, this paper contributes to the field of information encoding by 

providing a new and innovative approach that can potentially improve the accuracy and reliability 

of information encoding in various applications.  

The proposed methodology involves two algorithms: encoding and decoding. The encoding 

algorithm takes an ASCII string as input and converts each character to its corresponding ASCII 

code. Then, it calculates the degree of truth, falsity, and indeterminacy associated with each bit 

based on the degree of uncertainty or ambiguity associated with the character. These neutrosophic 

numbers are appended to form the Neutrosophic ASCII code or ASCII Neutrosophic code. The 

decoding algorithm partitions the code into groups of neutrosophic numbers and calculates the 

degree of truth, falsity, and indeterminacy associated with each ASCII bit. Then, it converts the 

neutrosophic numbers to ASCII codes and combines them to form the original ASCII character 

string. The specific methods used in determining the degree of truth, falsity, and indeterminacy 

may vary depending on the application and context. The proposed approach of using Neutrosophic 

ASCII codes and ASCII Neutrosophic codes for encoding and decoding numerical data is a new 

and innovative approach that can potentially improve the accuracy and reliability of information 

encoding in various applications. 

1.1 Research Gap: 

The existing literature predominantly focuses on traditional encoding techniques like ASCII codes 

or Unicode, lacking consideration for the nuanced degrees of uncertainty or ambiguity associated 

with characters during the encoding process. This gap underscores the need for a novel approach 

that can address the limitations of current methods and provide a comprehensive solution for 

encoding and decoding numerical data. 

1.2 Reasearch Question:  

How can the integration of ASCII encoding with Neutrosophic principles enhance data 

representation and analysis across various research domains, particularly in addressing 

uncertainties and ambiguities in character values? Additionally, how does this integrated approach 

contribute to the improvement of information processing and decoding methods? 
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1.3 Motivation: 

The motivation behind this research stems from the necessity to overcome the limitations of 

conventional encoding techniques and provide a more robust solution that considers the degree of 

uncertainty or ambiguity associated with character values. The aim is to introduce a pioneering 

approach using Neutrosophic ASCII codes and ASCII Neutrosophic codes, thereby filling the 

research gap and advancing the field of information encoding. 

1.4 Objectives: 

1. Introduce a novel methodology for encoding and decoding numerical data using 

Neutrosophic ASCII codes and ASCII Neutrosophic codes. 

2. Develop encoding and decoding algorithms specifically designed to handle neutrosophic 

numbers, addressing the limitations of traditional encoding techniques. 

3. Explore the potential applications of Neutrosophic ASCII codes and ASCII Neutrosophic 

codes in improving the accuracy and reliability of information encoding. 

4. Investigate the feasibility and effectiveness of the proposed approach in diverse 

applications requiring the handling of uncertain or ambiguous data. 

1.5 Major Contributions: 

The major contributions of this research include: 

1. Proposing a novel and innovative approach to encoding and decoding numerical data 

using Neutrosophic ASCII codes and ASCII Neutrosophic codes. 

2. Developing encoding and decoding algorithms tailored to handle neutrosophic numbers, 

providing a comprehensive solution for addressing uncertainty or ambiguity in character 

values. 

3. Filling a significant research gap by exploring the uncharted territory of Neutrosophic 

ASCII codes and ASCII Neutrosophic codes for encoding and decoding numerical data. 

4. Advancing the field of information encoding by offering a fresh perspective that has the 

potential to enhance the accuracy and reliability of data representation in diverse 

applications dealing with uncertain or ambiguous data. 

2. Related Work  

This paper reviews some related work on neutrosophy and neutrosophic systems from [6–10]. In 

this hypothetical scenario, let's envision the innovative integration of ASCII encoding and decoding 

with Neutrosophic principles across various research domains. The exploration begins with a 

comprehensive review of neutrosophy and neutrosophic systems, emphasizing their applications in 

diverse fields such as computing, decision-making, medical research [11], and applied 

scienceNeutrosophy and neutrosophic set theory are concerned with the study of neutralities and 

their mathematical representation. Neutrosophy has various applications in fields such as 

computing, decision-making, medical research, and applied science. The author in [5] revert to a 

question posed eight years ago during their primary interest in computer science. The inquiry 

centers around the operation of computers, which can handle 256 characters, each associated with 

an ASCII code ranging from 0 to 255. The author notes that when a number greater than 255 is 

entered by pressing the ALT key, the computer calculates the remainder after division by 256, and 

the corresponding character is displayed. The central question posed is whether it is possible to 
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display each character by pressing the same number key multiple times, a query that forms the core 

focus of this paper. Furthermore, in [12] the paper puts forth theoretical complexity results for the 

program. Additionally, the efficiency of the concurrent implementation is demonstrated through 

experimental results from both the sequential and Java programs. In [13] certain cryptographic 

algorithms rely on a static S-box, introducing vulnerabilities to digital data. The conventional S-box 

approach is limited to handling ASCII text. This study introduces a dynamic and key-dependent 

Substitution box (S-box) to enhance data security. Operating with UNICODE text, including UTF-

16, this novel S-box was tested using the Python language. The findings suggest that this dynamic 

S-box is well-suited for managing UNICODE text and exhibits improved performance. In 

examining each version of the analyzed music segment, three observation scales were employed: 

binary, characters, and the fundamental scale. The character scale involves dissecting the music-text 

file into individual characters, where each character's frequency is used for entropy computation. 

The binary observation is derived by replacing each character with its corresponding ASCII number 

expressed in binary form [14]. Neutrosophic methods can play a significant role in this context, 

contributing to the nuanced analysis and interpretation of the varying observation scales. 

Neutrosophic statistics are applied to illustrate the additional liability of the state arising from the 

administrative organic code beyond contractual obligations [15]. Numerous research endeavors 

have sought solutions for neutrosophic problems, yet many proposed algorithms lack a 

fundamental tool for basic operations. A Python tool presented by Sleem et al. [16], facilitates 

researchers in executing operations on interval-valued neutrosophic sets (IVNS), including matrix 

operations. Additionally, PyIVNS offers matrix normalization through various methods such as 

Linear, Linear by min–max, linear by sum, vector, and enhanced accuracy. This versatile tool can be 

seamlessly integrated into other software or applications and is accessible through its web interface. 

ACII code can be presented in Neutrosophic Rings that inspired from Florentin Smarandache and 

Vasantha Kandasamy, and published in 2006, served as a catalyst for the development of two 

interconnected fields in contemporary mathematics: the mathematical concept of "Neutrosophic 

ring" and Neutrosophic logic [17]. In the envisioned scenario, the interaction between ASCII 

encoding and Neutrosophic principles is dynamic and innovative, offering a nuanced approach to 

data representation and analysis. ASCII, a standard character encoding system, serves as the initial 

representation of characters with unique numerical values. The integration with Neutrosophic 

encoding introduces a layer of complexity, associating each ASCII value with neutrosophic 

numbers that encapsulate degrees of truth, falsity, and indeterminacy [18]. 

In the context of character analysis, ASCII values are intricately linked with neutrosophic numbers, 

allowing for a more comprehensive representation of uncertain or imprecise character values. This 

integration enhances the capacity to handle nuances in data, especially in scenarios where 

ambiguity or uncertainty is prevalent [5]. 

The Neutrosophic encoding process influences how ASCII values are represented, providing a 

dynamic and adaptive system that can capture the subtleties of information. On the decoding side, 

the Neutrosophic algorithm interprets these associated neutrosophic numbers, facilitating the 

conversion of the encoded data back into its original ASCII characters [19]. 

This symbiotic relationship between ASCII encoding and Neutrosophic principles results in a more 

versatile and nuanced representation of data. It allows for the handling of uncertain or ambiguous 
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information in a way that goes beyond the traditional capabilities of ASCII encoding, contributing 

to innovative advancements in information representation and analysis across diverse research 

domains [20]. 

3. ASCII Code System via Neutrosophic Degrees  

Neutrosophic ASCII codes and ASCII Neutrosophic codes are two different methods of 

representing and processing Neutrosophic information using ASCII characters. Neutrosophic 

ASCII codes assign Neutrosophic values to ASCII characters, while ASCII Neutrosophic codes map 

ASCII characters to Neutrosophic sets [21]. The choice between these two approaches depends on 

the specific application and the requirements of the problem at hand. Both approaches can be used 

to encode and decode numerical data, and they are interchangeable terms referring to the same 

concept of representing uncertain or imprecise values using a neutrosophic number. Neutrosophic 

ASCII codes and ASCII Neutrosophic codes have potential applications in various fields where 

uncertain or imprecise values need to be represented or processed. Figure 1 investigates the steps of 

obtaining ASCII code neutrosophic from the traditional ASCII code system.  

 

 

Figure 1.  ASCII Code System via Neutrosophic values 

 

ASCII (American Standard Code for Information Interchange) Code System is a widely used 

character encoding system that assigns unique numerical codes to represent characters used in 

modern English language text. In ASCII, each character is assigned a unique 7-bit or 8-bit code, 

which allows computers to represent and communicate text in a standardized way [22]. 

Neutrosophic ASCII Code is an extension of the ASCII code system that incorporates the concept of 

neutrosophy to represent text characters with degrees of truth, falsity, and indeterminacy. In 
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Neutrosophic ASCII Code, each character is represented by a tuple of values (t, f, i) where t is the 

degree of truth, f is the degree of falsity, and i is the degree of indeterminacy associated with the 

character. This approach allows for the representation of characters with ambiguity or uncertainty, 

which can be useful in applications such as natural language processing, cryptography, and 

sentiment analysis [23]. 

4. ASCII Neutrosophic Code 

ASSCII (Ambiguous Standard Code for Information Interchange) Neutrosophic Code is a 

combination of the ASCII Code System and the Neutrosophic concept. It uses 8-bit codes to 

represent each character, with the first 7 bits representing the ASCII code for the character and the 

eighth bit representing the degree of indeterminacy associated with the character. This approach 

allows for the representation of characters with both ambiguity and uncertainty as well as the 

standard ASCII characters, which can be useful in applications where both types of characters need 

to be processed together [24]. Table 1 summarizes the differences between ASCII Code System, 

Neutrosophic ASCII Code, and ASSCII Code Neutrosophic. 

Table 1. The main differences between the ASCII code, Neutrosophic ASCII code and 

ASSCII code Nutrosophic 

System Approach Use Cases 

ASCII Code       Assigns unique numerical 

codes to represent English 

characters 

Text processing, 

communication, data storage 

and transmission 

Neutrosophic ASCII Code Extends ASCII to represent 

characters with degrees of 

truth, falsity, and 

indeterminacy 

Natural language processing, 

cryptography, sentiment 

analysis 

ASSCII Code Neutrosophic Combines ASCII with the 

Neutrosophic concept, using 8-

bit codes to represent each 

character with the eighth bit 

representing the degree of 

indeterminacy 

Applications that require 

processing both 

ambiguous/unpredictable 

characters and standard ASCII 

characters 

 

The table provides a brief description of each system approach, along with some examples of use 

cases where each approach is commonly used. The ASCII Code System is widely used in text 

processing, communication, and data storage and transmission [25–27]. The Neutrosophic ASCII 

Code and ASSCII Code Neutrosophic are extensions that allow for the representation of characters 

with ambiguity or uncertainty, and are used in applications such as natural language processing, 

cryptography, and sentiment analysis. The ASSCII Code Neutrosophic is specifically designed to 

handle both ambiguous/unpredictable characters and standard ASCII characters in the same 

system. 
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5. Algorithm for encoding and decoding numerical data using Neutrosophic ASCII Codes 

Neutrosophic ASCII codes and ASCII Neutrosophic codes are extensions of the standard ASCII 

code. Algorithm for encoding and decoding numerical data using Neutrosophic ASCII codes: 

The algorithm uses the concept of neutrosophy to represent each bit in the ASCII code with a tuple 

of values `(t, f, i)`, where `t` is the degree of truth, `f` is the degree of falsity, and `i` is the degree of 

indeterminacy associated with the bit. The algorithm calculates the degree of truth, falsity, and 

indeterminacy based on the degree of uncertainty or ambiguity associated with the character in the 

input string. The resulting list of neutrosophic numbers represents the Neutrosophic ASCII code for 

the input string. Neutrosophic ASCII Encoding is a simple algorithm that converts each character in 

the plaintext to its corresponding ASCII code and represents even codes as "0" and odd codes as "1". 

The resulting encoded text is a string of binary digits [28]. The steps of Encoding by Neutrosophic 

ASCII Algorithm are shown in Algorithm 1. While the steps of neutrosophic ASCII code encoding 

are shown in Algorithm 2.  

Algorithm 1. Encoding by Neutrosophic ASCII Algorithm: 

The algorithm takes a string of ASCII characters as input and produces a Neutrosophic ASCII code 

as output. The steps involved in the algorithm are: 

1. Initialize an empty list `L` to store the neutrosophic numbers. 

2. For each character `c` in the input string `x`, do the following: 

   a. Convert `c` to its 7-bit ASCII code. 

   b. For each bit `b` in the ASCII code, do the following: 

      i. Calculate the degree of truth, falsity, and indeterminacy associated with `b`, based on the 

degree of uncertainty or ambiguity associated with `c`. 

      ii. Append the neutrosophic number `(t, f, i)` to the list `L`. 

3. Return the list `L` as the Neutrosophic ASCII code `N(x)` 

 

 

Here are few examples of using the Encoding by Neutrosophic ASCII Algorithm: 
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Example 1: Encoding a Message 

 

Suppose we have a message, "The quick brown fox jumps over the lazy dog". We can use the 

Neutrosophic ASCII Algorithm to encode this message into a list of Neutrosophic numbers by 

following the steps: 

 

1. Initialize an empty list `L` to store the neutrosophic numbers. 

 

`L = []` 

 

2. For each character `c` in the input string `x`, do the following: 

 

   For each character in the message: 

    

   a. Convert `c` to its 7-bit ASCII code.  

    

   b. For each bit `b` in the ASCII code, do the following: 

    

      i. Calculate the degree of truth, falsity, and indeterminacy associated with `b`, based on the 

degree of uncertainty or ambiguity associated with `c`. 

       

      ii. Append the neutrosophic number `(t, f, i)` to the list `L`. 

          

   Repeat these steps for every character in the message to get a list of Neutrosophic numbers. 

 

3. Return the list `L` as the Neutrosophic ASCII code `N(x)`: 

 

The resulting Neutrosophic ASCII code for the message "The quick brown fox jumps over the lazy 

dog" would be a list of Neutrosophic numbers. 

 

Example 2: Encoding a File 

Suppose we have a text file "sample.txt" that contains a large amount of text. We want to convert 

the contents of this file into Neutrosophic ASCII code. We can use the Neutrosophic ASCII 

Algorithm to do this by following the steps: 

1. Read the contents of the file into a string variable `s`. 

2. Initialize an empty list `L` to store the neutrosophic numbers. 

`L = []` 

3. For each character `c` in the input string `s`, do the following: 

   For each character in the input string: 

    a. Convert `c` to its 7-bit ASCII code.  

      b. For each bit `b` in the ASCII code, do the following: 

      i. Calculate the degree of truth, falsity, and indeterminacy associated with `b`, based on the 

degree of uncertainty or ambiguity associated with `c`. 

           ii. Append the neutrosophic number `(t, f, i)` to the list `L`. 

            Repeat these steps for every character in the input string to get a list of Neutrosophic 

numbers. 

4. Return the list `L` as the Neutrosophic ASCII code `N(x)`: 
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The resulting Neutrosophic ASCII code for the contents of the "sample.txt" file would be a list of 

Neutrosophic numbers. Are shown in Algorithm 3. While Algorithm 4 investigates the process for 

determining the ASCII bits for each neutrosophic number in the input. 

 

Algorithm 3. Decoding by Neutrosophic ASCII Algorithm: 

Input: A Neutrosophic ASCII code N(x) with 3n neutrosophic numbers 

Output: A string x of ASCII characters 

1. Initialize an empty string s 

2. Partition N(x) into groups of 7 neutrosophic numbers 

3. for each group of 7 neutrosophic numbers in N(x) from left to right: 

   a. Initialize an empty ASCII code with 7 bits 

   b. For each neutrosophic number (t, f, i) in the group: 

      i. Calculate the degree of truth t', falsity f', and indeterminacy i' associated with the 

corresponding ASCII bit, based on the neutrosophic number 

      ii. Set the ASCII bit to 1 if t' > f', to 0 if f' > t', and to indeterminate if t' = f' 

   c. Convert the ASCII code to an ASCII character 

   d. Append the ASCII character to s 

4. Return s as the string x  

 

The degree of truth, falsity, and indeterminacy associated with each ASCII bit in the encoding 

algorithm can be determined using various methods, such as probabilistic models, fuzzy logic, or 

subjective assessments. The choice of method may depend on the specific application and context in 
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which the Neutrosophic ASCII code is used. Similarly, the method for converting neutrosophic 

numbers to ASCII codes in the decoding algorithm may also depend on the specific application and 

context [29]. 

 here are some examples of how to use the Decoding by Neutrosophic ASCII Algorithm: 

 

Example 1: Decoding a Neutrosophic ASCII code 

 

Suppose we have a Neutrosophic ASCII code `N(x)`, which is a list of 21 Neutrosophic numbers. 

We can use the Decoding by Neutrosophic ASCII Algorithm to decode this Neutrosophic ASCII 

code into a string of ASCII characters by following the steps: 

1. Initialize an empty string `s`. 

`s = ""` 

2. Partition `N(x)` into groups of 7 neutrosophic numbers. 

`groups = [N(x)[i:i+7] for i in range(0, len(N(x)), 7)]` 

3. For each group of 7 neutrosophic numbers in `groups` from left to right, do the following: 

   a. Initialize an empty ASCII code with 7 bits. 

   `ascii_code = ["0", "0", "0", "0", "0", "0", "0"]` 

   b. For each neutrosophic number `(t, f, i)` in the group, do the following: 

      i. Calculate the degree of truth `t'`, falsity `f'`, and indeterminacy `i'` associated with the 

corresponding ASCII bit, based on the neutrosophic number. 

         `t' = t - i` 

                  `f' = f - i` 

                  `i' = i` 

      ii. Set the ASCII bit to 1 if `t' > f'`, to 0 if `f' > t'`, and to indeterminate if `t' = f'`. 

         if t' > f': 

                  `ascii_code[i] = "1"` 

                  elif f' > t': 

                  `ascii_code[i] = "0"` 

                  else: 

                  `ascii_code[i] = "?"` 

   c. Convert the ASCII code to an ASCII character. 

   `ascii_char = chr(int("".join(ascii_code), 2))` 

   d. Append the ASCII character to `s`. 

   `s += ascii_char` 

4. Return `s` as the string `x`. 

The resulting string `x` is the decoded string of ASCII characters. 

Example 2: Decoding a file 

Suppose we have a Neutrosophic ASCII code saved in a file `neutrosophic_code.txt`. We want to 

decode this Neutrosophic ASCII code into a string of ASCII characters. We can use the Decoding by 

Neutrosophic ASCII Algorithm to do this by following the steps: 

1. Read the contents of the file `neutrosophic_code.txt` into a list variable `neutrosophic_code`. 

2. Initialize an empty string `s`. 
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`s = ""` 

3. Partition `neutrosophic_code` into groups of 7 neutrosophic numbers. 

`groups = [neutrosophic_code[i:i+7] for i in range(0, len(neutrosophic_code), 7)]` 

4. For each group of 7 neutrosophic numbers in `groups` from left to right, do the following: 

   a. Initialize an empty ASCII code with 7 bits. 

   `ascii_code = ["0", "0", "0", "0", "0", "0", "0"]` 

   b. For each neutrosophic number `(t, f, i)` in the group, do the following: 

      i. Calculate the degree of truth `t'`, falsity `f'`, and indeterminacy `i'` associated with the 

corresponding ASCII bit, based on the neutrosophic number. 

         `t' = t - i` 

         `f' = f - i`   

         `i' = i` 

      ii. Set the ASCII bit to 1 if `t' > f'`, to 0 if `f' > t'`, and to indeterminate if `t' = f'`. 

         if t' > f'       

         `ascii_code[i] = "1"`  

         elif f' > t'  

         `ascii_code[i] = "0"`         

         else: 

         `ascii_code[i] = "?"` 

   c. Convert the ASCII code to an ASCII character. 

   `ascii_char = chr(int("".join(ascii_code), 2))` 

   d. Append the ASCII character to `s`. 

   `s += ascii_char` 

5. Return `s` as the string `x`. 

The resulting string `x` is the decoded string of ASCII characters. Here is the Algorithm for 

encoding and decoding numerical data using ASCII Neutrosophic Codes shown in Algorithm 5 and 

6.  

Algorithm 5. Encoding by ASCII Neutrosophic Algorithm: 

Input: A string x of ASCII characters 

Output: An ASCII Neutrosophic code N(x) with 8n neutrosophic numbers 

1. Initialize an empty binary string B 

2. for each character c in x from left to right: 

   a. Convert c to its ASCII code with 8 bits 

   b. For each bit b in the ASCII code: 

      i. Calculate the degree of truth t, falsity f, and indeterminacy i associated with b, based on the 

degree of uncertainty or ambiguity associated with c 

      ii. Append the neutrosophic number (t, f, i) to B 

3. Return B as the ASCII Neutrosophic code N(x) 
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 An example for the Algorithm for encoding and decoding numerical data using ASCII 

Neutrosophic codes: 

Example: Encoding Numerical data using ASCII Neutrosophic Codes 

Suppose we have numerical data in the form of a list `[1.23, 4.56, 7.89, 10.11, 12.13]`. We want to 

encode this numerical data using the ASCII Neutrosophic Codes. We can use the Encoding by 

ASCII Neutrosophic Algorithm to do this by following the steps: 

1. Convert the numerical data into a string `x` of ASCII characters. 

   `x = str([1.23, 4.56, 7.89, 10.11, 12.13])` 

2. Initialize an empty binary string `B`. 

   `B = ""` 

3. For each character `c` in `x` from left to right, do the following: 

   a. Convert `c` to its ASCII code with 8 bits. 

      `ascii_code = bin(ord(c))[2:].zfill(8)` 

         b. For each bit `b` in the ASCII code, do the following: 

         i. Calculate the degree of truth, falsity, and indeterminacy associated with `b`, based on the 

degree of uncertainty or ambiguity associated with `c`. 

         `t = round(random.uniform(0, 1), 2)` 

         `f = round(random.uniform(0, 1 - t), 2)`  

         `i = round(1 - t - f, 2)` 

      ii. Append the neutrosophic number `(t, f, i)` to `B`. 

         `B += str((t,f,i))` 

4. Return `B` as the ASCII Neutrosophic code `N(x)`. 

The resulting ASCII Neutrosophic code for the numerical data `[1.23, 4.56, 7.89, 10.11, 12.13]` is a 

string of 120 neutrosophic numbers. The decoding steps of ASCII neutrosophic are shown in 

Algorithms 7 and 8.  
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Algorithm 7: Decoding by ASCII Neutrosophic Algorithm: 

Input: An ASCII Neutrosophic code N(x) with 8n neutrosophic numbers 

Output: A string x of ASCII characters 

1. Initialize an empty string s 

2. Partition N(x) into groups of 8 neutrosophic numbers 

3. For each group of 8 neutrosophic numbers in N(x) from left to right: 

   a. Initialize an empty ASCII code with 8 bits 

   b. For each neutrosophic number (t, f, i) in the group: 

   i. Calculate the degree of truth t', falsity f', and indeterminacy i' associated with the corresponding 

ASCII bit, based on the neutrosophic number 

   ii. Set the ASCII bit to 1 if t' > f', to 0 if f' > t', and to indeterminate if t' = f' 

   c. Convert the ASCII code to an ASCII character 

   d. Append the ASCII character to s 

4. Return s as the string x 

 

The degree of truth, falsity, and indeterminacy associated with each ASCII bit in the encoding 

algorithm can be determined using various methods, such as probabilistic models, fuzzy logic, or 

subjective assessments. The choice of method may depend on the specific application and context in 

which the ASCII Neutrosophic code is used [30]. Similarly, the method for converting neutrosophic 

numbers to ASCII codes in the decoding algorithm may also depend on the specific application and 

context. 
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6. Some examples for Decoding by ASCII Neutrosophic Algorithm: 

Example 1: Decoding an ASCII Neutrosophic code 

Suppose we have an ASCII Neutrosophic code `N(x)`, which is a string of 64 Neutrosophic 

numbers. We can use the Decoding by ASCII Neutrosophic Algorithm to decode this ASCII 

Neutrosophic code into a string of ASCII characters by following the steps: 

1. Initialize an empty string `s`. 

`s = ""` 

2. Partition `N(x)` into groups of 8 neutrosophic numbers. 

`groups = [N(x)[i:i+8] for i in range(0, len(N(x)), 8)]` 

3. For each group of 8 neutrosophic numbers in `groups` from left to right, do the following: 

   a. Initialize an empty ASCII code with 8 bits. 

   `ascii_code = ["0", "0", "0", "0", "0", "0", "0", "0"]` 

   b. For each neutrosophic number `(t, f, i)` in the group, do the following: 

      i. Calculate the degree of truth `t'`, falsity `f'`, and indeterminacy `i'` associated with the 

corresponding ASCII bit, based on the neutrosophic number. 

         `t' = t - i` 

                 `f' = f - i` 

                  `i' = i` 

      ii. Set the ASCII bit to 1 if `t' > f'`, to 0 if `f' > t'`, and to indeterminate if `t' = f'`. 

         if t' > f': 

                  `ascii_code[i] = "1"` 

                  elif f' > t': 

         `ascii_code[i] = "0"` 

                 else: 

                  `ascii_code[i] = "?"` 

   c. Convert the ASCII code to an ASCII character. 

   `ascii_char = chr(int("".join(ascii_code), 2))` 

   d. Append the ASCII character to `s`. 

   `s += ascii_char` 

4. Return `s` as the string `x`. 

The resulting string `x` is the decoded string of ASCII characters. 

Example 2: Decoding a file 

Suppose we have an ASCII Neutrosophic code saved in a file `ascii_neutrosophic_code.txt`. We 

want to decode this ASCII Neutrosophic code into a string of ASCII characters. We can use the 

Decoding by ASCII Neutrosophic Algorithm to do this by following the steps: 

1. Read the contents of the file `ascii_neutrosophic_code.txt` into a list variable 

`ascii_neutrosophic_code`. 

2. Initialize an empty string `s`. 

`s = ""` 

3. Partition `ascii_neutrosophic_code` into groups of 8 neutrosophic numbers. 

`groups = [ascii_neutrosophic_code[i:i+8] for i in range(0, len(ascii_neutrosophic_code), 8)]` 

4. For each group of 8 neutrosophic numbers in `groups` from left to right, do the following: 
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   a. Initialize an empty ASCII code with 8 bits. 

   `ascii_code = ["0", "0", "0", "0", "0", "0", "0", "0"]` 

   b. For each neutrosophic number `(t, f, i)` in the group, do the following: 

      i. Calculate the degree of truth `t'`, falsity `f'`, and indeterminacy `i'` associated with the 

corresponding ASCII bit, based on the neutrosophic number. 

         `t' = t - i` 

                  `f' = f - i` 

                 `i' = i` 

      ii. Set the ASCII bit to 1 if `t' > f'`, to 0 if `f' > t'`, and to indeterminate if `t' = f'`. 

         if t' > f': 

                  `ascii_code[i] = "1"` 

         elif f' > t': 

                  `ascii_code[i] = "0"` 

         else: 

         `ascii_code[i] = "?"` 

   c. Convert the ASCII code to an ASCII character. 

   `ascii_char = chr(int("".join(ascii_code), 2))` 

   d. Append the ASCII character to `s`. 

   `s += ascii_char` 

5. Return `s` as the string `x`. 

The resulting string `x` is the decoded string of ASCII characters. 

The given input is a description of a process for encoding the string "Hello, world!" using ASCII 

Neutrosophic encoding. The process involves converting each character in the string to its 

corresponding ASCII code and then determining the degree of truth, indeterminacy, and falsity 

associated with each bit in the code based on the degree of uncertainty or ambiguity associated with 

the character. These values are then represented as a neutrosophic number and appended to a 

binary string. The process is repeated for each character in the string, and the resulting binary string 

is returned as the ASCII Neutrosophic code for the string. The output of the process for the input 

"Hello, world!" is provided as an example. 

The output provided in the input description is not formatted as a table. However, we can provide 

a table that shows the ASCII code and the corresponding neutrosophic encoding values for each 

character in the string "Hello, world!" based on the process described in Table 2. 

 

Table 2. Neutrosophic Analysis of Character ASCII Codes: Truth Value, Indeterminacy Value, and 

Falsity Value 

Character ASCII Code Truth Value Indeterminacy Value Falsity Value 

H 01001000 0.9 0 0.1            

e 01100101 0.9          0 0.1 

l 01101100 0.1          0.9                  0 

l 01101100 0.1          0.9                  0 

O 01101111 0.1          0.9                  0 

, 00101100 0.1          0.9            0 
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w 00101100 0.1          0.9            0 

O 01101111   0.1          0 0.9            

r 01110010   0.1          0.9                  0 

l 01101100   0.9          0 0.1           

d 01101100   0.1          0.9 0        

 

This table shows the neutrosophic encoding values for each character in the string "Hello, world!" 

based on the process described in the input. The truth-value, indeterminacy value, and falsity value 

associated with each bit in the ASCII code are calculated based on the degree of uncertainty or 

ambiguity associated with the character and are expressed as decimal fractions between 0 and 1. 

These values are then used to represent the character using neutrosophic encoding. The Table 

represents the same information as the table, but in a visual form that allows for more efficient 

comparison and analysis of the data. The diagram consists of a series of colored bars that 

correspond to each character in the word "Hello, world". Each bar is divided into three parts, 

representing the truth-value, indeterminacy value, and falsity value for that character. The color of 

each part of the bar indicates the degree to which that value is present. For example, in the first bar 

representing the character "H", the truth-value portion is colored green, indicating a high degree of 

truth, while the falsity value portion is colored red, indicating a high degree of falsity. The length of 

each part of the bar corresponds to the magnitude of the value it represents. For example, the truth-

value portion of the "H" bar is longer than the falsity value portion, indicating that the truth-value is 

higher than the falsity value [31]. The diagram provides a quick and easy way to compare the truth-

value, indeterminacy value, and falsity value for each character in the word, allowing for a more 

intuitive understanding of the data. It also allows for the identification of patterns or trends in the 

data that may not be immediately apparent in the table format. 

7. Decoding Algorithm 

The given input is an ASCII Neutrosophic code, which represents the string "Hello, world!" using 

neutrosophic numbers that indicate the degree of truth, falsity, and indeterminacy associated with 

each bit in the ASCII code. The decoding algorithm for this code converts each group of 8 

neutrosophic numbers into an ASCII character by calculating the degree of truth, falsity, and 

indeterminacy associated with each bit in the group, and then determining the value of each bit 

based on these values. The resulting ASCII code is then converted to an ASCII character, and the 

character is appended to a string that represents the decoded message. The output of the decoding 

algorithm for the given input is "Hello, world!” which is the original message that was encoded 

using the ASCII Neutrosophic encoding algorithm. 

Application (1) 

What is Neutrosophic ASCII encoding and how is it used to encode characters? Can you explain the 

process of encoding a character using Neutrosophic ASCII and how to find the corresponding 

truth, indeterminacy, and falsity values using the table provided? Neutrosophic ASCII encoding is 

a method for encoding characters using six-bit codes, which can represent 64 different symbols². It 

is based on the concept of neutrosophy, which is a generalization of fuzzy logic that allows for the 

existence of indeterminate values. The method works by assigning each character a code that 

consists of three parts: a truth part, an indeterminacy part, and a falsity part. Each part can have one 

of four values: 0, 1, 2, or 3. For example, the character "A" can be encoded as "010 000 000", which 

means it has a truth value of 1, an indeterminacy value of 0, and a falsity value of 0. 

 To encode other characters, you need to follow these steps: 
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1. Find the ASCII code of the character in binary form. For example, the ASCII code of "B" is 

01000010. 

2. Divide the ASCII code into two groups of three bits each. For example, 01000010 becomes 010 000 

and 010. 

3. Convert each group of three bits into a decimal number from 0 to 7. For example, 010 becomes 2, 

000 becomes 0, and 010 becomes 2. 

4. Use a table or a formula to find the corresponding neutrosophic value for each decimal number. 

For example, according to this table, 2 corresponds to 1, 0 corresponds to 0, and 2 corresponds to 1. 

5. Write the neutrosophic values in order of truth, indeterminacy, and falsity, separated by spaces. 

For example, the neutrosophic values for "B" are 1, 0, and 1, so the neutrosophic ASCII code is "010 

000 010". Here is a table showing the neutrosophic ASCII encoding values for each decimal number: 

The truth value, indeterminacy value, and falsity value in the range [0,1], we can divide each value 

by the maximum value it can take, which is 2. This will scale the values to the range between 0 and 

1. Therefore, Table 3 with the neutrosophic encoding values for each decimal number becomes as 

follows.  

Table 3. Neutrosophic Analysis of Decimal Numbers: Truth Value, Indeterminacy Value, and 

Falsity Value 

Decimal Number Truth Value Indeterminacy Value Falsity Value 

0 0   0     0.5            

1   0 0.5 0 

2   0.5          0 0.5            

3 0.5          0.5 1 

4 0.5          1 0.5            

5 1 0.5                  0   

6 1 1 0.5            

7 1   1.5                  1 

In this table, the truth-value, indeterminacy value, and falsity value for each decimal number are 

now expressed as decimal fractions between 0 and 1. 

To encode a character using neutrosophic ASCII, follow the steps mentioned earlier and use this 

table to find the corresponding truth, indeterminacy, and falsity values. Figure 2 represents the 

same information as the table, but in a visual form that allows for more efficient comparison and 

analysis of the data. The diagram consists of a series of colored bars that correspond to each decimal 

number in the table. 
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Figure 2. Visual Representation of Neutrosophic Analysis including the truth, indeterminacy and 

falsity values.   

Each bar is divided into three parts, representing the truth-value, indeterminacy value, and falsity 

value for that decimal number. The color of each part of the bar indicates the degree to which that 

value is present. For example, in the bar representing the decimal number 5, the truth value portion 

is colored green, indicating a high degree of truth, while the falsity value portion is colored red, 

indicating a low degree of falsity. 

The length of each part of the bar corresponds to the magnitude of the value it represents. For 

example, the truth value portion of the bar representing the decimal number 5 is longer than the 

indeterminacy value portion, indicating that the truth value is higher than the indeterminacy value. 

The diagram provides a quick and easy way to compare the truth-value, indeterminacy value, and 

falsity value for each decimal number, allowing for a more intuitive understanding of the data. It 

also allows for the identification of patterns or trends in the data that may not be immediately 

apparent in the table format. For example, it is clear from the diagram that the truth-value increases 

from left to right, while the indeterminacy and falsity values decrease from left to right. This pattern 

reflects the fact that higher decimal numbers are generally more certain or true, while lower 

decimal numbers are more uncertain or false. 

Application (2) 

How do we encode the name "AHMED SALAMA" using corresponding Neutrosophic ASCII code, 

and what neutrosophic number should be assigned to each character in the name? 

Table 4 and Figure 3 shows the Neutrosophic ASCII code for each character in the name "AHMED 

SALAMA".  

Table 4. An example of Neutrosophic ASCII code for "AHMED SALAMA" 

Character  Neutrosophic degrees   Degree of 

Truth 

Degree of 

Indeterminacy 

Degree of 

Falsity 

A (0.8, 0.1, 0.1)      0.8 0.1 0.1 

H (0.7, 0.2, 0.1) 0.7 0.2 0.1 

M (0.6, 0.3, 0.1)      0.6 0.3 0.1 
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E (0.7, 0.2, 0.1) 0.7 0.2 0.1 

D (0.6, 0.3, 0.1) 0.6 0.3 0.1 

space (0.5, 0.4, 0.1) 0.5 0.4 0.1 

S          (0.7, 0.2, 0.1) 0.7 0.2 0.1 

A (0.8, 0.1, 0.1) 0.8 0.1 0.1 

L           (0.6, 0.3, 0.1)      0.6 0.3 0.1 

A (0.8, 0.1, 0.1)       0.8 0.1 0.1 

M (0.6, 0.3, 0.1) 0.6 0.3 0.1 

A (0.8, 0.1, 0.1)      0.8 0.1 0.1 

Neutrosophic degrees assigned to each character may vary depending on the specific context and 

application. The values in this table are just an example and may not be suitable for all applications. 

Each neutrosophic number consists of three elements: the degree of truth, the degree of falsity, and 

the degree of indeterminacy. These values can be adjusted based on the context and the degree of 

uncertainty or ambiguity associated with the character. 

 

Figure 3. Visual Representation of Neutrosophic Analysis including the truth, indeterminacy and 

falsity values for AHMED SALAMA.   

Neutrosophic ASCII codes and ASCII Neutrosophic codes allow for representing characters and 

strings with uncertain or imprecise values, which can be useful in situations where the exact value 

of a character or string is not known or cannot be determined with certainty. 

To convert ASCII codes into Neutrosophic Data representation, we can use the following steps: 

1. Convert each ASCII character into its binary representation using 8 bits. 

2. Assign a truth-value, an indeterminacy value, and a falsity value to each bit, based on its position 

in the binary representation. 

3. Combine the truth, indeterminacy, and falsity values of each bit to form a Neutrosophic Data 

representation of the ASCII character. 

- A neutrosophic ASCII code is a way of representing a neutrosophic number using ASCII 

characters. 
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 - Each character in the neutrosophic number is encoded using eight binary digits, following the 

standard ASCII code. 

Table 5 and Figure 4 are shown the neutrosophic decimal number 3.14+0.01I that can be encoded as 

follows.  

Table. 5. The ASCII code, neutrosophic code for 3.14+0.01I. 

Character ASCII Code 

 

Neutrosophic  

ASCII code 

 Degree of 

Truth 

Degree of 

Indeterminacy 

Degree of 

Falsity 

3 00110011 (0.3, 0.6, 0.1) 0.3 0.6 0.1 

. 00101110 (0.2, 0.7, 0.1) 0.2 0.7 0.1 

1 00110001 (0.3, 0.6, 0.1) 0.3 0.6 0.1 

4 00110100 (0.4, 0.5, 0.1) 0.4 0.5 0.1 

+ 00101011 (0.2, 0.7, 0.1) 0.2 0.7 0.1 

0 00110000 (0.3, 0.6, 0.1) 0.3 0.6 0.1 

. 00101110 (0.2, 0.7, 0.1) 0.2 0.7 0.1 

0 00110000 (0.3, 0.6, 0.1) 0.3 0.6 0.1 

1 00110001 (0.3, 0.6, 0.1) 0.3 0.6 0.1 

I 01001001 (0.5, 0.4, 0.1) 0.5 0.4 0.1 

 

Here is the neutrosophic degrees assigned to each character may vary depending on the specific 

context and application. The values in this table are just an example and may not be suitable for all 

applications. 

A neutrosophic number consisting of three values represents Neutrosophic ASCII code, each 

character: the degree of truth, the degree of falsity, and the degree of indeterminacy. These values 

can be adjusted based on the context and the degree of uncertainty or ambiguity associated with the 

character. 

You also provided an example of how to encode the neutrosophic decimal number 3.14+0.01I as a 

Neutrosophic ASCII code. By representing each component of the neutrosophic number using the 

ASCII code, we can combine the codes to get the Neutrosophic ASCII code for the number. ASCII is 

a character-encoding standard that assigns a unique 7-bit code to each character, and in this 

encoding, each component of the neutrosophic number is represented by its corresponding ASCII 

code. By combining these codes together, we can get the Neutrosophic ASCII code for the number 

in binary form [32]. 
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Figure 3. Visual Representation of Neutrosophic Analysis including the truth, indeterminacy and 

falsity values for 3.14+0.01I. 

The answer to the research question involves demonstrating that the integration of ASCII encoding 

with Neutrosophic principles provides a dynamic and innovative approach to data representation 

and analysis. By associating each ASCII value with neutrosophic numbers, capturing degrees of 

truth, falsity, and indeterminacy, the combined method allows for a more comprehensive 

representation of uncertain or imprecise character values. This integration enhances the capacity to 

handle nuances in data, especially in scenarios where ambiguity or uncertainty is prevalent [33]. 

The Neutrosophic encoding process influences how ASCII values are represented, offering a 

dynamic and adaptive system that can capture the subtleties of information. On the decoding side, 

the Neutrosophic algorithm interprets these associated neutrosophic numbers, facilitating the 

conversion of the encoded data back into its original ASCII characters. Overall, the symbiotic 

relationship between ASCII encoding and Neutrosophic principles contributes to a more versatile 

and nuanced representation of data, addressing uncertainties and ambiguities in character values, 

and showcasing potential advancements in information processing and decoding methods across 

diverse research domains. 

8. Theoretical Implications, Managerial insights, and Policy implications 

8.1 Theoretical Implications: 

The integration of ASCII encoding with Neutrosophic principles introduces several theoretical 

implications that contribute to the advancement of information encoding and processing 

theories. This includes: 

1. Extended Information Representation: The study expands the theoretical understanding 

of information representation by integrating Neutrosophic principles with ASCII encoding. 

This extends the traditional binary representation to accommodate degrees of truth, falsity, 

and indeterminacy, offering a more nuanced representation of uncertain or imprecise data. 

2. Enhanced Data Security Theories: The application of Neutrosophic principles in encoding 

contributes to theoretical discussions on data security. The study explores how 

uncertainties within data can be effectively addressed in the encoding process, offering 

theoretical insights into the development of more secure data representation models. 



Neutrosophic Sets and Systems, Vol.63, 2024     126  

 

 

A. A. Salama, Zahraa Tarek, Eman Yousif Darwish, Sherif Elseuofi, Mahmoud Y. Shams, Neutrosophic Encoding and 
Decoding Algorithm for ASCII Code System 

8.2 Managerial Insights: 

The study's findings offer valuable managerial insights that can be applied in practical settings, 

particularly in areas related to information security and data handling: 

1. Improved Data Encryption Strategies: Managers in sectors dealing with sensitive 

information can leverage the integrated ASCII and Neutrosophic encoding approach to 

enhance data encryption strategies. This includes financial institutions, healthcare 

organizations, and cybersecurity firms, where the nuanced representation of uncertain 

data can lead to more robust security measures. 

2. Optimized Information Handling: Managers responsible for data processing and analysis 

can benefit from the study's insights by optimizing information handling practices. 

Understanding how to encode and decode uncertain or ambiguous data allows for more 

efficient and accurate decision-making processes. 

8.3 Policy Implications: 

The study's outcomes hold significance for policymakers, particularly in shaping policies 

related to data protection, cybersecurity, and standards for information representation: 

1. Incorporation of Neutrosophic Principles in Data Standards: Policymakers in the field of 

information technology and data security can consider incorporating standards that 

encourage the integration of Neutrosophic principles with existing encoding methods. This 

ensures that evolving data representation techniques are aligned with best practices. 

2. Regulations for Sensitive Data Handling: Policymakers concerned with data protection 

and privacy can use the study's findings to inform regulations on handling sensitive 

information. By acknowledging and promoting encoding methods that address 

uncertainties, policies can better safeguard individuals' privacy and sensitive data. 

In summary, the study's theoretical implications contribute to the academic understanding of 

information representation, while the managerial and policy insights offer practical 

applications and guidelines for industries and policymakers dealing with data security and 

information management. 

9. Conclusions and Future Work  

Neutrosophic ASCII codes and ASCII Neutrosophic codes offer a versatile and resilient solution 

for encoding and decoding numerical data featuring uncertain or imprecise character values. The 

encoding algorithm adeptly computes the degree of truth, falsity, and indeterminacy associated 

with each bit, guided by the inherent uncertainty or ambiguity linked to the character. The resulting 

neutrosophic numbers are seamlessly integrated to form the Neutrosophic ASCII code or ASCII 

Neutrosophic code. On the decoding front, the algorithm efficiently dissects the code into groups of 

neutrosophic numbers, determining the degree of truth, falsity, and indeterminacy for each ASCII 

bit. Subsequently, the neutrosophic numbers are transformed into ASCII codes, amalgamating to 

reconstruct the original ASCII character string. While the specific methodologies for ascertaining 

truth, falsity, and indeterminacy may vary based on application and context, the potential 

applications of Neutrosophic ASCII codes and ASCII Neutrosophic codes span diverse fields such 

as natural language processing, artificial intelligence, data encryption, medical imaging, financial 

forecasting, risk assessment, quality control, and speech recognition. Future research avenues could 

explore new encryption algorithms in information security, enhance fuzzy logic models, advance 

machine learning algorithms in artificial intelligence, develop diagnostic tests in medical diagnosis, 

and refine sentiment analysis systems, all leveraging the unique capabilities of Neutrosophic ASCII 

codes. These recommendations set the stage for unlocking the full potential of Neutrosophic ASCII 

codes and ASCII Neutrosophic codes in addressing complex challenges across various applications. 
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Abstract: Language is closely connected to the concepts of uncertainty and indeterminacy, as it 

functions as a fundamental tool for the expression and communication of information. Linguistic 

formulations possess inherent qualities of ambiguity, imprecision, and vagueness. The 

comprehension of language frequently hinges upon contextual factors, individual interpretation, and 

subjective viewpoints, resulting in ambiguities in comprehension. Neutrosophic-linguistic valued 

hypersoft sets (N-LVHS) play a pivotal role in decision-making by effectively managing linguistic 

uncertainty, modeling real-world complexity, and accommodating multidimensional information. In 

the realm of medical diagnosis and treatment, several limitations tied to language and indeterminacy 

persist. Patients often use vague or imprecise language to describe their symptoms, complicating the 

accurate identification of ailments. Moreover, diagnostic criteria are subjectively defined, leading to 

inconsistencies in diagnoses. Disease progression, characterized by its complexity and 

unpredictability, adds further indeterminacy in treatment planning. The variability in patient 

responses to treatments introduces uncertainties in outcome prediction. Inconclusive test results and 

limited clinical data may compound these challenges, underscoring the need for innovative 

approaches like N-LVHS to address these linguistic and indeterminacy-related limitations and 

improve the precision and efficacy of medical decision-making and treatment procedures. In 

constructing an N-LVHS framework for medical diagnosis and treatment, relevant factors, and 

linguistic terms characterizing medical conditions and treatments are identified. For example, disease 

severity could be described using terms such as "mild," "moderate," and "severe," while treatment 

effectiveness may be categorized as "low," "moderate," and "high." Each factor is then assigned 

neutrosophic values based on their measured impacts. This approach provides a more precise 

representation of the complex medical diagnostic and treatment landscape. The findings of this study 

have the potential to assist medical practitioners, researchers, and policymakers in optimizing 

medical diagnosis and treatment strategies, enhancing patient outcomes, and improving healthcare 

practices. 
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1. Introduction 

Language is closely connected to the concepts of uncertainty and indeterminacy, as it functions 

as a fundamental tool for the expression and communication of information. Linguistic formulations 

possess inherent qualities of ambiguity, imprecision, and vagueness. The comprehension of language 

frequently hinges upon contextual factors, individual interpretation, and subjective viewpoints, 

resulting in ambiguities in comprehension. The concept of indeterminacy comes because of the 

inherent intricacy of language, wherein the demarcation between categories can be ambiguous, and 

numerous interpretations can simultaneously exist. The examination of this relationship necessitates 

the acknowledgment of the role played by linguistic imprecision and subjectivity in generating 

uncertainty within the realms of communication and decision-making. The utilization of frameworks 

such as fuzzy logic or neutrosophic set theory can offer a systematic methodology for handling 

linguistic uncertainty and indeterminacy. These frameworks provide a range of tools to quantify, 

model, and effectively navigate the intricate nature of language in diverse applications, such as 

decision-making and information processing.  

Within the realm of medical diagnosis and treatment, there have been notable constraints 

identified pertaining to language and indeterminacy. These limits have the potential to affect the 

precision and effectiveness of healthcare treatments. One of the primary difficulties that develops 

stems from the inherent ambiguity included in the descriptions of symptoms offered by patients. 

Frequently, individuals seeking medical attention employ inaccurate or ambiguous terminology 

when articulating their medical concerns, hence posing challenges for healthcare practitioners in 

accurately comprehending and classifying symptoms [1]. The presence of linguistic indeterminacy 

has the potential to impede the accuracy of both diagnosis and suggestions for treatment. 

Furthermore, the subjectivity of diagnosis criteria in many medical disorders adds an additional 

degree of ambiguity to the procedure. There may be variations in diagnostic criteria across healthcare 

practitioners, which can result in inconsistencies in the diagnosis and treatment decisions [2]. The 

presence of subjectivity may be intensified by the intricate and uncertain course of illness 

advancement, leading to uncertainty in selecting the most appropriate treatment strategy [3]. 

Moreover, it is worth noting that patients' reactions to medical interventions frequently 

demonstrate a considerable degree of variability, hence amplifying the inherent uncertainty 

associated with forecasting the outcomes of treatments. The inclusion of patient-specific 

characteristics, genetic factors, and variances in physiological responses all contribute to the presence 

of uncertainty in healthcare decision-making [4]. Additionally, the presence of equivocal test results 

and a scarcity of comprehensive clinical data, both of which are commonly seen in medical practice, 

contribute to increased ambiguity and uncertainty, hence posing challenges in the development of 

precise diagnostic and treatment approaches [5]. 
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Considering the linguistic and indeterminacy-related obstacles, researchers have investigated novel 

methodologies such as Neutrosophic Linguistic Fuzzy-Valued Hypersoft Sets to improve the 

accuracy and effectiveness of medical decision-making and treatment protocols. According to Das et 

al. [6], these frameworks facilitate the ability of healthcare professionals to effectively handle 

linguistic ambiguity, effectively represent intricate medical data, and effectively integrate several 

aspects of uncertainty. As a result, these frameworks play a crucial role in enhancing the 

dependability of diagnoses and the development of personalized treatment plans. 

In 1975, Zadeh [7] introduced the concept of linguistic variables and their application in approximate 

reasoning, particularly in decision-making. These concepts are now widely used in multi-criteria 

decision-making (MCDM), which aims to enhance decision-making, improve transparency, and 

facilitate robust solutions aligned with goals and objectives. Delgado, et al. [8] presented linguistic 

decision-making models, [9] proposed a method based on linguistic aggregation operators, and Wu 

et al. [10] proposed a multiple criteria decision-making model under linguistic environment. 

In 1998, Smarandache introduced a new idea to deal with uncertain, inconsistent, and 

indeterminate environments, known as neutrosophic sets (NS) [11]. NS incorporates indeterminacy 

values along with membership and non-membership values (T, I, and F), which are independent of 

each other. Based on these neutrosophic numbers assigned by decision-makers (DM), NS was 

expanded to include concepts such as bipolar neutrosophic sets (BPNS) [16], single-valued 

neutrosophic sets (SVNS) [12], multi-valued neutrosophic sets (MVNS) [13], interval-valued 

neutrosophic sets (IVNS) [14], and multi-valued interval neutrosophic sets (MVINS) [15]. The 

application of the neutrosophic linguistic set and application was presented by [16]. These concepts 

found immediate applications in real-world situations, particularly in multi-criteria decision-making 

(MCDM) problems. Various strategies have been proposed by scholars to address MCDM, including 

TOPSIS, AHP, VIKOR, ELECTRE, WSM, WPM, and others [17-22]. 

The applications of neutrosophic sets and their hybrids in MCDM approaches have been 

explored by numerous scholars [23–26] and [27]. By employing mathematical methods, real-world 

problems such as human resource selection, gadget selection, shortest path selection, robot selection, 

security considerations, medical equipment selection, and environmental safety measures can be 

addressed. To overcome the limitations and challenges of existing set architectures, Molodstov 

introduced the concept of a soft set (SS) [28]. The application and the concept of soft topology were 

described by [29–30]. Maji extended a soft set by combining it with neutrosophic sets, leading to the 

theory of neutrosophic soft sets (NSS) to address indeterminacy [31]. Deli introduced interval-valued 

neutrosophic soft sets (IVNSS) along with fundamental concepts, operations, and decision-making 

techniques [32]. Alkhazaleh introduced the concept of n-valued refined neutrosophic soft sets 

(nVNRSS) [33], while Alkhazaleh and Hazaymeh presented their operations and applications in 

MCDM methods [34]. With the development of set structures, operators, and applications, measuring 

the similarity between sets became crucial. Broumi addressed this by proposing various similarity 

measures for neutrosophic sets [35]. The application in medical equipment selection and prediction 

of FIFA 2018 results has been presented by [36–37]. 
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A hypersoft set (HSS), which Smarandache first introduced in 2018 [38], The set is described as 

a mapping from the desired set of attributes and the power set of the universal set to the cartesian 

product of attributes, which are further subdivided. Extensions, including fuzzy hypersoft sets 

(FHSs), intuitionistic hypersoft sets (IHSs), and neutrosophic hypersoft sets (NHSs), have also been 

proposed to accommodate various levels of truth, uncertainty, and indeterminacy [38]. Neutrosophic 

hypersoft sets (NHSs), including single-valued neutrosophic hypersoft sets (SVNHSs) [39] and 

aggregate operators [40], multi-valued neutrosophic hypersoft sets (m-PNHSs), interval-valued 

neutrosophic hypersoft sets (IVNHSs), and multi-valued interval neutrosophic hypersoft sets (m-

PIVNHSs), were defined by [41]. Matrix notations and MCDM algorithms along with case studies 

were presented by [42]. The distance and similarity measures of NHSs were employed in MCDM 

techniques, specifically in medicine and nanotechnology [43–47]. The concept of linguistic hypersoft 

set (LHSs) and fuzzy linguistic hypersoft set (LFHSs) has been proposed by [48-49]. Some more 

optimization and decision-making approaches [50-53] are used to solve optimization problems. The 

machine learning tools along with decision-making algorithms has been employed by [54-56] in 

many real-world examples in which the optimization of the process has been shown [57-58].  

The literature review shows that existing approaches cannot resolve the uncertainty or 

indeterminacy of the further bifurcated attributes of linguistic variables, without considering any 

standard approach, aggregate operators, and similarity measures for assigning neutrosophic values 

to decision-making problems. The following lists the distinctive characteristics of our proposed work 

in comparison to the limitations of previously published methodologies and demonstrates how our 

contributions stand out as distinctive and potentially superior. 

 

1. So, ultimately, it is the first objective to propose the necessary definition of neutrosophic 

linguistic- valued hypersoft set (N-LVHS). Aggregate operators, distance, and similarity 

measures and MCDM algorithms. 

 

2. The implementation of neutrosophic linguistic-valued hypersoft sets in medical diagnostic 

and treatment protocols presents challenges, including uncertainty and indeterminacy of 

language and potential computational difficulties. These frameworks present a 

transformative methodology that allows healthcare professionals to quantitatively analyze, 

model, and effectively traverse the intricate linguistic aspects of patient symptoms, 

diagnostic criteria, and treatment alternatives. 

 

3. Furthermore, these approaches provide a systematic method for establishing uniformity in 

linguistic terminology within the healthcare field, hence mitigating the presence of subjective 

interpretations and discrepancies in diagnostic criteria. Moreover, the capacity to manage 

diverse medical data and integrate several aspects of uncertainty enhances the holistic 

comprehension of intricate medical problems and facilitates the customization of treatment 

approaches according to the unique requirements of each patient. The utilization of these 
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novel frameworks makes a substantial contribution to the progress of precision medicine and 

the enhancement of healthcare quality. 

 

4. This contribution has the potential to benefit various fields that rely on language-based 

decision making, such as natural language processing, sentiment analysis, and artificial 

intelligence, among others. 

 

5. The use of COVID-19 as a case study demonstrates the complexity of the epidemic, where 

linguistic ambiguities are crucial. Patients frequently exhibit ambiguous and overlapping 

symptoms, and the characteristics of the virus may be described inexactly in medical records. 

N-LVHS is ideally suited to handle this difficulty because of its ability to model and control 

linguistic ambiguities and indeterminacies. N-LVHS can help with precise symptom 

assessment, data analysis, and diagnostic judgments by quantifying and structuring 

linguistic concepts.  

 

The organization of the research paper is structured in the following manner: Section 2 provides an 

in-depth examination of the fundamental principles that form the basis of linguistic hypersoft sets 

(N-LVHS). In the subsequent section, we present a comprehensive analysis of N-LVHS, 

encompassing precise definitions, core concepts, and illustrated instances. Additionally, we explore 

the fundamental properties and operations associated with N-LVHS. Section 4 serves to introduce 

the operational laws that govern N-LVHS, so establishing the fundamental principles upon which 

the future parts are built. In this paper, Sections 5 and 6 provide a detailed exposition of the 

Neutrosophic Linguistic Valued-Hypersoft Ordered Weighted Geometric Averaging Operator 

(NLV-HSOWGAO) and the Neutrosophic Linguistic Valued-Hypersoft Weighted Geometric 

Averaging Operator (NLV-HSWGAO), respectively. In the sixth section, we present a well-defined 

framework for MCDM that utilizes the "N-LVHS Algorithm to solve MCDM problems." This 

framework is further illustrated by means of a case study. The findings of the study and their 

implications are concisely outlined in section 7, culminating in a discussion of possible avenues for 

further research. The visual representation of the paper's overall layout may be observed in Figure 1, 

providing a clear point of reference. 
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Figure 1. Layout of the paper 

2. Preliminary section 

In this section, we go through some basic definitions that support the construction of the framework 

of this paper: linguistic set, linguistic quantifiers, soft set, and hypersoft set (HSS). 

 

Definition 2.1. Linguistic Set [7] 

Let Κ = {𝜅1, 𝜅2, 𝜅3, … , 𝜅𝑡} 𝑤ℎ𝑒𝑟𝑒 𝑡 = 2𝑛 + 1 ∶  𝑛 ≥ 1 𝑎𝑛𝑑 𝑛 ∈ ℝ+,  be a finite strictly increasing 

set.  For example, if n = 1 then, 

 Κ = {𝜅1, 𝜅2, 𝜅3} = {𝑣𝑒𝑟𝑦 𝑏𝑎𝑑, 𝑓𝑎𝑖𝑟, 𝑣𝑒𝑟𝑦 𝑔𝑜𝑜𝑑} 

For Linguistic set, which is under consideration, the relationship to its elements  𝜅𝑡  and the 

superscript 𝑡 will be strictly increasing. To define the continuity this set is extended to Κ =

{𝜅𝛽 ∶ 𝛽 ∈ ℝ} 𝑤ℎ𝑒𝑟𝑒 𝛽 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑠𝑡𝑟𝑖𝑐𝑙𝑦 𝑖𝑛𝑐𝑟𝑎𝑠𝑖𝑛𝑔. 

 

Definition 2.2. Hypersoft Set [38] 

Let, 𝒶1, 𝒶2, 𝒶3, … , 𝒶𝑡  for t ≥ 1  be t distinct parameters, whose corresponding parametric values 

are respectively the sets ℒ1, ℒ2, ℒ3, … , ℒ𝑡 with ℒ𝑖 ∩ ℒ 𝑗  = ∅, for 𝑖 ≠ 𝑗, and 𝑖, 𝑗 ∈ {1, 2, … , t}.  

Then the pair (ℱ, 𝕃) where𝕃 =  {ℒ1 × ℒ2 × ℒ3 × …× ℒ𝑡 : t is finite and real valued} is known as 

Hypersoft set over ℧ with mapping ℱ ∶  𝕃 = ℒ1 × ℒ2 × ℒ3 × …× ℒ𝑡  ⟶ 𝑃(℧). 

 

 

Definition 2.3. Linguistic Hypersoft Set [48] 

Let, α1, α2, α3, … , α𝑡  for t ≥ 1  be t distinct parameters, whose corresponding parametric values 

are respectively the sets Υ1, Υ2, Υ3,… , Υ𝑡 with Υ𝑖 ∩ Υ𝑗 = ∅, for 𝑖 ≠ 𝑗, and 𝑖, 𝑗 ∈ {1, 2, …, t}.  

Then the pair (Γ, Λ) whereΛ =  {Υ1 × Υ2 × Υ3 × …× Υ𝑡 : t is finite and real valued} is known as 

hypersoft set over Ω with mapping Γ ∶ Λ = Υ1 × Υ2 × Υ3 × …× Υ𝑡  ⟶ 𝑃(Ω).  

Then the linguistic hypersoft set will be, 

Γ({M(Ω)(𝒾)}) ∶ 𝑀 ⊆ Λ  &  𝒾 ∈ Κ = {𝜅1, 𝜅2, 𝜅3,… , 𝜅𝑡} 𝑤ℎ𝑒𝑟𝑒 𝑡 = 2𝑛 + 1 ∶  𝑛 ≥ 1, 𝑛 ∈ ℝ+} 

 

3. Neutrosophic-Linguistic Valued Hypersoft Set (N-LVHS) 

In this section, we propose N-LVHS with its set structure properties. 

 

Definition 3.1: Neutrosophic Linguistic Valued Hypersoft Set (N-LVHS) 

Let, α1, α2, α3, … , α𝑡  for t ≥ 1  be t distinct parameters, whose corresponding parametric values 

are respectively the sets Υ1, Υ2, Υ3,… , Υ𝑡 with Υ𝑚 ∩ Υ𝑛 = ∅, for 𝑚 ≠  𝑛, and m, n ∈ {1, 2, …, t}.  

Then the pair (Γ, Λ) where Λ = {Υ1 × Υ2 × Υ3 × …× Υ𝑡} 𝑤ℎ𝑒𝑟𝑒 t is finite and real valued} is known 

as hypersoft set over Ω with mapping Γ ∶ Λ = Υ1 × Υ2 × Υ3 × …× Υ𝑡  ⟶ 𝑃(Ω).  

Then the neutrosophic-linguistic valued hypersoft set will be, 

Γ(𝛼(𝑘)) = {𝑀(𝛼(Τ, I, ℱ)) | Τ, I, ℱ ∈ k = {𝜅1, 𝜅2, 𝜅3,… , 𝜅𝑡} } 

 𝑤ℎ𝑒𝑟𝑒 k is the set of lingusitic quantifiers in ascending order i. e. low to high. 
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Numerical Example 3.1.1: 

Let Ω = {ℴ1, ℴ2, ℴ3, ℴ4} and set 𝑀((𝛼(𝑘)) = {ℴ2, ℴ3} ⊂  Ω. 

Consider the parameters be:  α1 = 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦, α2 = gender, α3 = color, and their respective 

parametric values are: 

Nationality = Υ1 = {𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝐶ℎ𝑖𝑛𝑒𝑠𝑒, 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛} 

Gender = Υ2 = {𝑀𝑎𝑙𝑒, 𝐹𝑒𝑚𝑎𝑙𝑒} 

Color = Υ3 = {𝑃𝑖𝑛𝑘,𝐵𝑙𝑎𝑐𝑘, 𝑂𝑟𝑎𝑛𝑔𝑒} 

Then the function Γ ∶ Λ = Υ1 × Υ2 × Υ3  ⟶ 𝑃(Ω) and assume the hypersoft set, 

Γ({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑀𝑎𝑙𝑒, 𝑂𝑟𝑎𝑛𝑔𝑒}) = {ℴ2, ℴ3} = 𝑀(𝛼(Τ, I, ℱ))) 

The neutrosophic-linguistic valued hypersoft set (N-LVHS), Γ(𝜎𝐾) = {𝑀(𝛼(Τ, I, ℱ))| Τ, I, ℱ ∈ k} 

Γ({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖,𝑀𝑎𝑙𝑒,𝑂𝑟𝑎𝑛𝑔𝑒}) = {ℴ2 , ℴ3} = {ℴ2(𝑣. ℎ𝑖𝑔ℎ,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤),ℴ3(𝑙𝑜𝑤, 𝑣. ℎ𝑖𝑔ℎ,𝑚𝑒𝑑𝑖𝑢𝑚)} = 𝐿. 

Similarly, 

Γ1({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑀𝑎𝑙𝑒, 𝑃𝑖𝑛𝑘}) = {ℴ2(𝑚𝑒𝑑𝑖𝑢𝑚,𝑚𝑒𝑑𝑖𝑢𝑚,𝑚𝑒𝑑𝑖𝑢𝑚), ℴ3(𝑙𝑜𝑤, 𝑙𝑜𝑤, ℎ𝑖𝑔ℎ)} = 𝐿1 

Γ2({𝐶ℎ𝑖𝑛𝑒𝑠𝑒, 𝐹𝑒𝑚𝑎𝑙𝑒, 𝑃𝑖𝑛𝑘}) = {ℴ1(𝑚𝑒𝑑𝑖𝑢𝑚,𝑚𝑒𝑑𝑖𝑢𝑚,𝑚𝑒𝑑𝑖𝑢𝑚),ℴ4(𝑣. 𝑣. 𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ)} = 𝐿2 

Γ3({𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛,𝑚𝑎𝑙𝑒, 𝑏𝑙𝑎𝑐𝑘}) = {ℴ1(𝑣. 𝑣. ℎ𝑖𝑔ℎ,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), ℴ3(𝑣. 𝑙𝑜𝑤, ℎ𝑖𝑔ℎ, 𝑙𝑜𝑤)} = 𝐿3 

 

Definition 3.2: Let (Γ1, Λ1) = 𝐿1 be a N-LVHS, then the subset  𝐿𝑠 can be defined as. Γ((𝛼(k)) =

{𝑀(𝛼(Τ, I, ℱ))| Τ, I, ℱ ∈ k)} 

1. 𝐿𝑠 ⊆ 𝐿1; 

2. ∀𝜎 ∈ 𝐿𝑠 , Γ2(𝜎) ⊆  Γ1(𝜎). 

This holds only when linguistic variables ℴ𝑘  satisfy the property i.e.,  each ℴ𝑘  of (Γ𝑠 , Λ𝑠)  ≤

ℴ𝑘  of (Γ1, Λ1). 

Example 3.2.1: Recall Example 1. The function Γ2 ∶ Λ𝑠 = Υ1 × Υ2  ⟶ 𝑃(Ω) and assume the hypersoft 

set,  Γ2({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑀𝑎𝑙𝑒}) = {ℴ2(𝑚𝑒𝑑𝑖𝑢𝑚,𝑚𝑒𝑑𝑖𝑢𝑚,𝑚𝑒𝑑𝑖𝑢𝑚)} = 𝐿𝑠. Where Λ𝑠 ⊆ Λ  and 𝐿𝑠 ⊆ 𝐿1.  

Definition 3.3: Empty neutrosophic-linguistic valued hypersoft set (EN-LVHS) can be defined as. 

 Γ1 ∶ Λ𝐸 = Υ1 × Υ2 × Υ3 × … × Υ𝑛  ⟶ 𝑃(Ω)  

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑒𝑎𝑐ℎ Υi (𝑖 ≤ 𝑛) 𝑖𝑠 𝑒𝑚𝑝𝑡𝑦. Γ1({𝐿𝐸(Ω)}) 

1. (Γ1, Λ𝐸)𝜙  = 𝐿𝐸  if ∀Γ1(𝜎
𝑘)= 𝜙 : ∀𝜎k ∈ Λ𝐸 . 

Example 3.3.1: Recall Example 1. The function Γ1 ∶ Λ𝐸 = Υ1 × Υ2  × Υ3 ⟶ 𝑃(Ω) and assume the 

Hypersoft set,  Γ1(∅) = ∅ = 𝐿𝐸 . Where Λ𝐸 ⊆ Λ .  

Definition 3.4: The AND operation on two (Γ1, Λ1) = 𝐿1 and (Γ2, Λ2) = 𝐿2 neutrosophic-linguistic 

valued hypersoft set (N-LVHS) can be defined by; 

1. 𝐿1 ⋀  𝐿2 = (Γ3, Λ3) =  𝐿3 ; max of (𝜎k) 

2. (𝜎𝑖 , 𝜎𝑗) = 𝜎𝑘 = 𝐿3 where 𝜎𝑖 ∈ 𝜎1 𝑎𝑛𝑑 𝜎𝑗 ∈ 𝐿2 with 𝑖 ≠ 𝑗; 

3. Γ3(𝜎𝑖 , 𝜎𝑗) = Γ1(𝜎𝑖) ∪ Γ2(𝜎𝑗) 

Definition 3.5: The OR operation on two (Γ1, Λ1) = 𝐿1  and (Γ2, Λ2) = 𝐿2  neutrosophic-linguistic 

valued hypersoft set (N-LVHS) be defined by. 

1. 𝐿1 ⋁  𝐿2 = (Γ3, Λ3) =  𝐿3; 

2. (𝜎𝑖 , 𝜎𝑗) = 𝜎𝑘 = 𝐿3 where 𝜎𝑖 ∈ 𝐿1 𝑎𝑛𝑑 𝜎𝑗 ∈ 𝐿2 with 𝑖 ≠ 𝑗; 

3. Γ3(𝜎𝑖 , 𝜎𝑗) = Γ1(𝜎𝑖) ∩ Γ2(𝜎𝑗) 
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Definition 3.6: The NOT operation on (Γ,Λ) neutrosophic-linguistic valued hypersoft set (N-LVHS) 

can be defined by. 

1. ∼ 𝐿 = ∼ (Γ, Λ) =∼ Υ1 ×∼ Υ2 ×∼ Υ3 × …×∼ Υ𝑛 ; 

2. ∼ 𝐿 =∼ ∏𝜎𝑖 : 𝑖 = 1,2,3,… , 𝑛 

3. |∼ 𝐿| = 𝑛 − 𝑇𝑢𝑝𝑙𝑒 

Definition 3.7: The Complement on (Γ, Λ) = 𝐿  neutrosophic-linguistic valued hypersoft set (N-

LVHS) can be defined by. 

1. (Γ, Λ)∼ = (Γ∼, ∼ 𝐿) ; Γ∼:∼ 𝐿 ⟶ 𝑃(Ω).  

2.  Γ∼(∼ 𝜎) = Ω\ Γ(𝜎); ∀𝜎 ∈ 𝐿 

Proposition 3.8:  Let (Γ,Λ) = 𝐿,  ( Γ1, Λ1) = 𝐿1 , (Γ2, Λ2) = 𝐿2  and (Γ3, Λ3) = 𝐿3  be neutrosophic-

linguistic valued hypersoft set (N-LVHS) then following holds. 

1. (Γ1, Λ1)  ⊆ (Γ1, Λ1) 

2. (Γ1, ΛE)ϕ ⊆ (Γ1, Λ1) 

3. ∼ (∼ 𝐿) = 𝐿 

4. ∼ (Γ1, ΛE)ϕ = Ω 

5. If (Γ1, Λ1) ⊆  (Γ2, Λ2)  𝑎𝑛𝑑 (Γ2, Λ2) ⊆  (Γ2, Λ2)  then (Γ1, Λ1) = (Γ2, Λ2)  

𝐼𝑓𝑓 each 𝜎𝑘of (Γ1, Λ1) = 𝜎𝑘  of (Γ2, Λ2). 

This property holds only when linguistic variables satisfy the property i.e.,  each 𝜎𝑘of (Γ1, Λ1) =

𝜎𝑘of (Γ2, Λ2). 

6. If (Γ1, Λ1) ⊆  (Γ2, Λ2)  𝑎𝑛𝑑 (Γ2, Λ2) ⊆  (Γ3, Λ3)  then (Γ1, Λ1) ⊆  (Γ3, Λ3).  

This property holds only when linguistic variables satisfy the property i.e.,  each 𝜎𝑘 of (Γ1, Λ1) =

𝜎𝑘  of (Γ2, Λ2) = 𝜎𝑘of (Γ3, Λ3). 

Proof: Recall 𝐿, 𝐿1, 𝐿2 𝑎𝑛𝑑 𝐿3 from example 3.3.1. 

1. Γ1({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑀𝑎𝑙𝑒, 𝑃𝑖𝑛𝑘}) = {ℴ2, ℴ3} = {ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), ℴ3(𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤)} =

𝐿1   ∵ ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤)  ∈  𝐿1 𝑎𝑙𝑠𝑜 ℴ3(𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤) ∈  𝐿1   ⇒ ℴ2, ℴ3  ∈

 𝐿1  

Thus (Γ1, Λ1) ⊆ 𝐿1 = (Γ1, Λ1).  

2. Consider  𝐿1 = (Γ1, Λ1) 

  ∵   𝜙 ∈  𝐿1    ⇒ (Γ1, ΛE)ϕ  ∈  𝐿1  

Thus (Γ1, ΛE)ϕ  ⊆ 𝐿1 = (Γ1, Λ1) (Γ1, ΛE)ϕ ⊆ (Γ1, Λ1). 

3. Consider  𝐿 = {ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), ℴ3(0)},  apply definition 6, 𝑤𝑒 𝑔𝑒𝑡, (∼ 𝐿) =

 {ℴ1(𝑛𝑜𝑛𝑒, 𝑛𝑜𝑛𝑒, 𝑛𝑜𝑛𝑒), ℴ4(𝑝𝑒𝑟𝑓𝑒𝑐𝑡,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤)} again apply definition 6, we get; ∼ (∼ 𝐿) =

{ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), ℴ3(𝑛𝑜𝑛𝑒, 𝑛𝑜𝑛𝑒, 𝑛𝑜𝑛𝑒)} = 𝐿  

4. Consider  (Γ1, ΛE)ϕ =  ϕ ⇒  ϕ ∈  𝐿𝐸  taking complement, ∼ (𝐿𝐸) = Ω\ Γ1(𝜎
𝑘 ) = ϕ;  

⇒ ∼ (𝐿𝐸) = Ω  

ℎ𝑒𝑛𝑐𝑒    ∼ (Γ1, ΛE)ϕ = Ω. 

5. Consider, (Γ1, Λ1) = {ℴ1(ℎ𝑖𝑔ℎ,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), ℴ3(𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤)} 

(Γ2, Λ2) =  {ℴ1(ℎ𝑖𝑔ℎ,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), ℴ3(𝑙𝑜𝑤, 𝑙𝑜𝑤, 𝑣. 𝑙𝑜𝑤)} 

Each linguistic variable 𝐾𝑖  of (Γ1, Λ1) = linguistic variable 𝐾𝑖  of (Γ2, Λ2)  then this implies that 

(Γ1, Λ1) ⊆ (Γ2, Λ2) 𝑎𝑙𝑠𝑜 (Γ2, Λ2) ⊆ (Γ1, Λ1) 

thus (Γ2, Λ2) = (Γ1, Λ1). 

Counter Example: 



Neutrosophic Sets and Systems, Vol. 63, 2023                                                               138            

 

__________________________________________________________________________________________________ 

Muhammad Saqlain, Poom Kumam, Wiyada Kumam, Neutrosophic Linguistic valued Hypersoft Set with Application:  
Medical Diagnosis and Treatment 

Consider, 

(Γ1, Λ1) =  {ℴ2(ℎ𝑖𝑔ℎ,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), ℴ3(𝑣. 𝑙𝑜𝑤, 𝑙𝑜𝑤, 𝑙𝑜𝑤)}  

and 

(Γ2, Λ2) =  {ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡, 𝑙𝑜𝑤, 𝑙𝑜𝑤), ℴ3(𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤)} 

Each linguistic variable 𝐾𝑖  of (Γ1, Λ1) < linguistic variable 𝐾𝑖  of (Γ2, Λ2)  then this implies that 

(Γ1, Λ1) ⊆ (Γ2, Λ2) 𝐵𝑢𝑡  (Γ2, Λ2) ⊈ (Γ1, Λ1) since linguistic variable of (Γ2, Λ2) > linguistic variable 

of (Γ1, Λ1). 

(Γ2, Λ2) ≠ (Γ1, Λ1) 

6. Same as 5. 

 

4. Operational Laws on LHSS 

In this section, we discuss the importance of operational laws and theorems and propose for N-LVHS. 

Let (Γ1, Λ1) = 𝐿1 and (Γ2, Λ2) = 𝐿2 be two N-LVHS, where Λ1 = {Υ1 × Υ2 × Υ3 × …× Υ𝑛: n is finite 

and real valued} over Ω with mapping Γ ∶ Λ1 = Υ1 × Υ2 × Υ3 × …× Υ𝑛  ⟶ 𝑃(Ω) and Λ2 = {Υ1 ×

Υ2 × Υ3 × …× Υ𝑚: m is finite and real valued} over Ω  with mapping Γ2 ∶ Λ2 = Υ1 × Υ2 × Υ3 × … ×

Υ𝑚  ⟶ 𝑃(Ω)  

such that. 

Γ(𝛼(𝑘)) = {𝑀(𝛼(Τ, I, ℱ)) | Τ, I, ℱ ∈ k = {𝜅1, 𝜅2, 𝜅3,… , 𝜅𝑡} } 

 𝑤ℎ𝑒𝑟𝑒 k is the set of lingusitic quantifiers in ascending order i. e. low to high. 

Then the operational laws on N-LVHS can be defined with some necessary conditions.  

 

Definition 4.1 Union of N-LVHS 

Case 1:  𝐿1 ∪ 𝐿2 = {∏α𝑖(𝐾𝑖) × ∏α𝑗(𝐾𝑗) ∈ ∏ Υi𝑛
𝑖=1 × ∏ Υ𝑗𝑛

𝑗=1 } 

Where, α𝑖(𝑘𝑖) ∈ ∏ Υi𝑛
𝑖=1 , 𝑎𝑛𝑑  α𝑗(𝑘𝑗) ∈ ∏ Υ𝑗𝑛

𝑗=1 𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 with Υ𝑖  ∩  Υ𝑗  =  ∅,  

for i ≠  j, and i, j ∈  {1, 2, … , t} and k = {𝜅1, 𝜅2, 𝜅3,… , 𝜅𝑡}. 

Case 2:  𝐿1 ∪ 𝐿2 = {α𝑖(𝑘𝑖) ∈ ∏ Υi𝑛
𝑖=1 × ∏ Υ𝑗𝑛

𝑗=1 }  

𝑤𝑖𝑡ℎ 𝑖 = 𝑗 , 𝑎𝑛𝑑 𝑙𝑖𝑛𝑔𝑢𝑖𝑠𝑡𝑖𝑐 variable 𝑘𝑖  𝑜𝑓 ℴ𝑖  𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑠𝑎𝑚𝑒. 

Example: Consider 3.1.1,  

Case 1: 

Γ1({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑚𝑎𝑙𝑒, 𝑏𝑙𝑎𝑐𝑘}) = {ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), ℴ3(𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤)} = 𝐿1 

Γ2({𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛, 𝐹𝑒𝑚𝑎𝑙𝑒, 𝑃𝑖𝑛𝑘}) = {ℴ1(ℎ𝑖𝑔ℎ, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), ℴ4(𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤)} = 𝐿2 

∵  Υ𝑖  ∩  Υ𝑗  =  ∅ 

𝐿1 ∪ 𝐿2

= {ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), ℴ3(𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤), ℴ1(ℎ𝑖𝑔ℎ, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), ℴ4(𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤)}. 

Case 2: 

Γ1({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑚𝑎𝑙𝑒, 𝑏𝑙𝑎𝑐𝑘}) = {ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), ℴ3(𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤)} = 𝐿1 

Γ2({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑓𝑒𝑚𝑎𝑙𝑒, 𝑝𝑖𝑛𝑘}) = {ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), ℴ3(𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤)} = 𝐿2 

∵  Υ𝑖  ∩  Υ𝑗  ≠  ∅ with i = j 

𝐿1 ∪ 𝐿2 = {ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), ℴ3(𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤)}. 

Case 3; (Counter example) \Restriction:  
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Γ1({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑚𝑎𝑙𝑒, 𝑏𝑙𝑎𝑐𝑘}) = {ℴ2(ℎ𝑖𝑔ℎ,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), ℴ3(𝑣. 𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤)} = 𝐿1 

Γ2({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑓𝑒𝑚𝑎𝑙𝑒, 𝑝𝑖𝑛𝑘}) = {ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), ℴ3(𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤)} = 𝐿2  

∵  Υ𝑖  ∩  Υ𝑗  ≠  ∅ with i = j 

Each linguistic value 𝑘𝑖  of 𝐿1𝑖𝑠 𝑙𝑒𝑠𝑠 𝑡ℎ𝑒𝑛  linguistic value 𝑘𝑖  of 𝐿2  then this implies 𝐿1 ∪ 𝐿2 

can be defined with some restriction i.e., consider highest linguistic value 𝑘𝑖  of each attribute. 

Example: 

𝐿1 = {ℴ2(ℎ𝑖𝑔ℎ, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), ℴ3(𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤)}                   

𝐿2 = {ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), ℴ3(𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤)} 

As,                             ℴ2(𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤) <

ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), 𝑎𝑛𝑑 

                                    ℴ3(𝑣. 𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤)

< ℴ3(𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤)  

Then 𝐿1 ∪ 𝐿2 = {ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), ℴ3(𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤)}. 

Definition 4.2 Intersection of N-LVHS 

Let (Γ1, Λ1) = 𝐿1 and (Γ2, Λ2) = 𝐿2 be two N-LVHS and 𝜇 ≥ 0, then the intersection can be defined as; 

𝐿1 ∩ 𝐿2 = {∏α𝑖(𝑘𝑖) × ∏α𝑗(𝑘𝑗) ∈ ∏Υi

𝑛

𝑖=1

× ∏Υ𝑗

𝑛

𝑗=1

} = ∅  

Where, α𝑖(𝑘𝑖) ∈ ∏ Υi𝑛
𝑖=1 , 𝑎𝑛𝑑  α𝑗(𝑘𝑗) ∈ ∏ Υ𝑗𝑛

𝑗=1 𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 with Υ𝑖  ∩  Υ𝑗  =  ∅,  

for i =  j, and i, j ∈  {1, 2, … , t} and {𝑀(𝛼(Τ, I, ℱ)) | Τ, I, ℱ ∈ k = {𝜅1, 𝜅2, 𝜅3,… , 𝜅𝑡} . 

Case 2:  𝐿1 ∩ 𝐿2 = {α𝑖(𝑘𝑖) ∈ ∏ Υi𝑛
𝑖=1 × ∏ Υ𝑗𝑛

𝑗=1 }  

𝑤𝑖𝑡ℎ 𝑖 = 𝑗 , 𝑎𝑛𝑑 𝑓𝑢𝑧𝑧𝑦 𝑣𝑎𝑙𝑢𝑒 𝑘𝑖  𝑜𝑓 ℴ𝑖  Then 𝐿1 ∩ 𝐿2 = 𝐿1𝑜𝑟 𝐿2 

 

 

Example: Consider,  

Case 1: 

Γ1({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑚𝑎𝑙𝑒, 𝑏𝑙𝑎𝑐𝑘}) = {ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), ℴ3(𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤)} = 𝐿1 

Γ2({𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛, 𝐹𝑒𝑚𝑎𝑙𝑒, 𝑃𝑖𝑛𝑘}) = {ℴ1(ℎ𝑖𝑔ℎ, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), ℴ4(𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤)} = 𝐿2    

∵  Υ𝑖  ∩  Υ𝑗  =  ∅   𝐿1 ∩ 𝐿2 = {∅} 

Case 2: 

Γ1({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑚𝑎𝑙𝑒, 𝑏𝑙𝑎𝑐𝑘}) = {ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), ℴ3(𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤)} = 𝐿1 

Γ2({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑓𝑒𝑚𝑎𝑙𝑒, 𝑝𝑖𝑛𝑘}) = {ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), ℴ3(𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤)} = 𝐿2      

∵  Υ𝑖  ∩  Υ𝑗  ≠  ∅ with i = j 

𝐿1 ∩ 𝐿2 = {ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), ℴ3(𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤)}. 

Case 3: (Counter example) \ Restriction 

Γ1({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑚𝑎𝑙𝑒, 𝑏𝑙𝑎𝑐𝑘}) = {ℴ2(ℎ𝑖𝑔ℎ,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), ℴ3(𝑣. 𝑙𝑜𝑤, 𝑙𝑜𝑤, 𝑣. 𝑣. 𝑙𝑜𝑤)} = 𝐿1 

Γ2({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑓𝑒𝑚𝑎𝑙𝑒, 𝑝𝑖𝑛𝑘}) = {ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), ℴ3(𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤)} = 𝐿2  

∵  Υ𝑖  ∩  Υ𝑗  ≠  ∅ with i = j 

Each linguistic value 𝑘𝑖  of 𝐿1𝑖𝑠 𝑙𝑒𝑠𝑠 𝑡ℎ𝑒𝑛 linguistic value 𝑘𝑖  of 𝐿2  then this implies 𝐿1 ∪ 𝐿2 

can be defined with some restriction i.e., consider highest linguistic value 𝑘𝑖  of each attribute. 
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Example: 

𝐿1 = {ℴ2(ℎ𝑖𝑔ℎ, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), ℴ3(𝑣. 𝑙𝑜𝑤, 𝑙𝑜𝑤, 𝑣. 𝑣. 𝑙𝑜𝑤)}                      

 𝐿2 = {ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), ℴ3(𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤)} 

As,  

 ℴ2(ℎ𝑖𝑔ℎ,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤) < ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), 

 𝑎𝑛𝑑   

 ℴ3(𝑣. 𝑙𝑜𝑤, 𝑙𝑜𝑤, 𝑣. 𝑣. 𝑙𝑜𝑤) < ℴ3(𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤)  

Then 𝐿1 ∩ 𝐿2 = ∅ . 

Theorem 4.3: If 𝐋𝟏, 𝐋𝟐 and 𝐋𝟑 be three N-LVHS then the following holds: 

i. 𝐿1 ∪ 𝐿1 = 𝐿1 

ii. 𝐿1 ∪  ∅ = 𝐿1 

iii. 𝐿1 ∩ 𝐿1 = 𝐿1 

iv. 𝐿1 ∩  ∅ = ∅ 

v. 𝐿1 ∪ 𝐿2 = 𝐿2 ∪ 𝐿1   

vi. 𝐿1 ∩ 𝐿2 = 𝐿2 ∩ 𝐿1   

vii. 𝐿1 ∪ (𝐿2 ∪ 𝐿3) = (𝐿1 ∪ 𝐿2) ∪ 𝐿3) 

viii. If 𝐿1 ⊂ 𝐿2 and 𝐿2 ⊂ 𝐿1the 𝐿1 = 𝐿2. 

ix. 𝜇(𝐿1) = 𝜇𝐿1 ;  𝜇 ≥ 0.   

x. 𝜇(𝐿1 ∪ 𝐿2) = 𝜇(𝐿2 ∪ 𝐿1)   

The proofs are straight forward. ∎ 

Theorem 4.4 

If 𝐋𝟏, 𝐋𝟐 be two N-LVHS then the operations are given as follows: 

1. μ × L1  =  Lμ×1 ;  μ (Linguistic variable); 

2. 𝐿1 ⊕ 𝐿2 = 𝐿1⊕2 ; 

3. 𝐿1 ⊗ 𝐿2 = 𝐿1⊗2 ; 

4. (𝐿1)
μ = 𝐿1μ  . 

Proof: 

1. Consider,  Γ1({𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖,𝑚𝑎𝑙𝑒, 𝑏𝑙𝑎𝑐𝑘}) = {ℴ2(𝑝𝑒𝑟𝑓𝑒𝑐𝑡, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤), ℴ3(𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤)} =

𝐿1 and μ = 0.4, 

The proofs are straight forward. ∎ 

5. Some Aggregation Operators  

Aggregate operators are essential in decision-making processes, combining and aggregating 

linguistic quantifiers or numerical values to assess factors. They enable informed analysis and 

evaluation of complex information, handling multiple criteria simultaneously, such as language, 

quality, reliability, and customer satisfaction, allowing for comprehensive evaluation and 

comparison. 

 

Definition 5.1 NLV-HSWGAO  
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Consider, α1, α2, α3, … , α𝑡  for t ≥ 1  be t  distinct parameters, whose corresponding 

parametric values are respectively the sets Υ1, Υ2, Υ3, … , Υ𝑡 with Υ𝑖 ∩ Υ𝑗 = ∅, for 𝑖 ≠ 𝑗, and 𝑖, 𝑗 ∈ {1, 2, 

…, t}. 

Let 𝕬: Λ = Υ1 × Υ2 × Υ3 × …× Υ𝑡  ⟶ 𝑃(Ω) = Γ(𝜎𝐾) = {𝑀(𝛼(Τ, I, ℱ))| Τ, I, ℱ ∈ k =

{𝜅1, 𝜅2, 𝜅3,… , 𝜅𝑡}}     (1) 

if 𝕬𝜔 (α1, α2, α3, … , α𝑡) = ∏ (α𝑡(Τ, I, ℱ))(𝜔𝑡)𝑛
𝑡=1  

Such that 

 𝕬𝜔 (α1, α2, α3, … , α𝑡) = 

α1
𝒾
𝜔1

⊗ α2
𝒾
𝜔2

⊗ α3
𝒾
𝜔3

⊗ …⊗ α𝑡
𝒾
𝜔𝑡

= ℴ𝒾(Τ, I, ℱ)   

Where 𝜔 = (𝜔1, 𝜔2, 𝜔3, … ,𝜔𝑡)𝑇  is the exponential weighting vector of the α𝑡(Τ, I, ℱ) ∈

{𝑀(𝛼(Τ, I, ℱ))} and 𝜔𝑡 ∈ [0, 1] with ∑ 𝜔𝑡 = 1𝑛
𝑡=1 , and k = {𝜅1, 𝜅2, 𝜅3, … , 𝜅𝑡}. Then 𝕬 is called 

neutrosophic linguistic valued- hypersoft weighted geometric averaging operator (NLV-HSWGAO).   

Example: Assume 𝜔 = (0.4, 0.3, 0.3)𝑇  then NLV-HSWGAO {ℴ2(𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖,𝑀𝑎𝑙𝑒, 𝑂𝑟𝑎𝑛𝑔𝑒), 

 ℴ3(𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖,𝑀𝑎𝑙𝑒, 𝑂𝑟𝑎𝑛𝑔𝑒) } = 

ℴ2 (
𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖(𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤),𝑀𝑎𝑙𝑒(𝑚𝑒𝑑𝑖𝑢𝑚, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤),

 𝑂𝑟𝑎𝑛𝑔𝑒(ℎ𝑖𝑔ℎ, 𝑙𝑜𝑤, 𝑣. 𝑙𝑜𝑤)
) 

∵ 𝕬𝜔 (α1, α2, α3, … , α𝑡) = ∏(α𝑡(Τ, I, ℱ))(𝜔𝑡)

𝑛

𝑡=1

 

= α1
𝒾
𝜔1

⊗ α2
𝒾
𝜔2

⊗ α3
𝒾
𝜔3

⊗ …⊗ α𝑡
𝒾
𝜔𝑡

= ℴ𝒾(Τ, I, ℱ)  

= {Pakistani(𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤)0.4,Male(𝑚𝑒𝑑𝑖𝑢𝑚,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤)0.3, Orange(ℎ𝑖𝑔ℎ, 𝑙𝑜𝑤, 𝑣. 𝑙𝑜𝑤)0.3}  

= ℴ2{(𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤)0.4 + (𝑚𝑒𝑑𝑖𝑢𝑚, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤)0.3 + (ℎ𝑖𝑔ℎ, 𝑙𝑜𝑤, 𝑣. 𝑙𝑜𝑤)0.3} 

 ℴ2(𝑣. 𝑣. 𝑙𝑜𝑤, 𝑣. 𝑙𝑜𝑤, 𝑙𝑜𝑤)  

Similarly, ℴ3(𝑛𝑜𝑛𝑒, 𝑛𝑜𝑛𝑒, 𝑛𝑜𝑛𝑒). 

 

Definition 5.2 NLV-HSOWGAO  

Consider, α1, α2, α3, … , α𝑡  for t ≥ 1  be t distinct parameters, whose corresponding parametric 

values are respectively the sets Υ1, Υ2, Υ3, … , Υ𝑡 with Υ𝑖 ∩ Υ𝑗 = ∅, for 𝑖 ≠ 𝑗, and 𝑖, 𝑗 ∈ {1, 2, … , t}. 

Let  

𝕺: Λ = Υ1 × Υ2 × Υ3 × … × Υ𝑡  ⟶ 𝑃(Ω) 

Γ(𝛼(Τ, I, ℱ)) = {𝑀(𝛼(Τ, I, ℱ)) | Τ, I, ℱ ∈ k =

{𝜅1, 𝜅2, 𝜅3,… , 𝜅𝑡}}                                  (2) 

If 𝕺𝜔 (α1, α2, α3, … , α𝑡) = ∏ (α𝑡(Τ, I, ℱ))(𝜔𝑡)𝑛
𝑡=1  

Such that 𝕺𝜔 (α1, α2, α3, … , α𝑡) = α1
𝒾
𝜔1

⊗ α2
𝒾
𝜔2

⊗ α3
𝒾
𝜔3

⊗ …⊗ α𝑡
𝒾
𝜔𝑡

= ℴ𝒾(Τ, I, ℱ) 

Subject to the condition, the linguistic values of  α𝒾   should be in ascending order. Where 𝜔 =

(𝜔1, 𝜔2, 𝜔3, … , 𝜔𝑡)𝑇  is the exponential weighting vector of the α𝑡(Τ, I, ℱ) ∈ {{𝑀(𝛼(Τ, I, ℱ)) | Τ, I, ℱ ∈

[0,1])}  and 𝜔𝑡 ∈ [0, 1]  with ∑ 𝜔𝑡 = 1𝑛
𝑡=1 , and Τ, I, ℱ ∈ [0,1]  then 𝕺  is called neutrosophic 

linguistic valued-hypersoft ordered weighted geometric averaging operator (NLV-HSOWGAO).   

Example: Assume 𝜔 = (0.4, 0.3, 0.3)𝑇  then LHSOWGAO {ℴ2(𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖, 𝑀𝑎𝑙𝑒, 𝑂𝑟𝑎𝑛𝑔𝑒), 
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 ℴ3(𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖,𝑀𝑎𝑙𝑒, 𝑂𝑟𝑎𝑛𝑔𝑒) = 

ℴ2 (
𝑃𝑎𝑘𝑖𝑠𝑡𝑎𝑛𝑖(𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤),𝑀𝑎𝑙𝑒(𝑚𝑒𝑑𝑖𝑢𝑚, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤),

 𝑂𝑟𝑎𝑛𝑔𝑒(ℎ𝑖𝑔ℎ, 𝑙𝑜𝑤, 𝑣. 𝑙𝑜𝑤)
) 

∵ 𝕺𝜔 (α1, α2, α3, … , α𝑡) = ∏(α𝑡(Τ, I, ℱ))(𝜔𝑡)

𝑛

𝑡=1

 

= α1
𝒾
𝜔1

⊗ α2
𝒾
𝜔2

⊗ α3
𝒾
𝜔3

⊗ …⊗ α𝑡
𝒾
𝜔𝑡

= ℴ𝒾(Τ, I, ℱ) 

= {Pakistani(𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤)0.4,Male(𝑚𝑒𝑑𝑖𝑢𝑚,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑣. 𝑙𝑜𝑤)0.3, Orange(ℎ𝑖𝑔ℎ, 𝑙𝑜𝑤, 𝑣. 𝑙𝑜𝑤)0.3}  

= ℴ2(𝑣. 𝑣. 𝑙𝑜𝑤, 𝑣. 𝑙𝑜𝑤 , 𝑙𝑜𝑤 ) 

Similarly,  

ℴ3(𝑛𝑜𝑛𝑒, 𝑛𝑜𝑛𝑒, 𝑛𝑜𝑛𝑒) 

Theorem 5.1:  

1. 𝐦𝐢𝐧
𝑖

(α𝑡(Τ, I, ℱ))  ≤ 𝕬𝜔 (α1, α2, . . , α𝑡) ≤  𝐦𝐚𝐱
𝑖

(α𝑡(Τ, I, ℱ)) 

2. 𝐦𝐢𝐧
𝑖

(α𝑡(Τ, I, ℱ))  ≤ 𝕺𝜔 (α1, α2, . . , α𝑡) ≤  𝐦𝐚𝐱
𝑖

(α𝑡(Τ, I, ℱ)) 

Proof: The proofs are straight forward. ∎ 

 

Theorem 5.2:  

1. 𝕺𝜔 (α𝑡(Τ, I, ℱ)) =  𝕺𝜔 (α𝑡(Τ, I, ℱ))   

Where (α𝑡(Τ, I, ℱ)) is any permutation of (α𝑡(Τ, I, ℱ)) 

2. If ∀(α𝑡(Τ, I, ℱ)) = (α(Τ, I, ℱ)) for all t, then 𝕺𝜔 (α𝑡(Τ, I, ℱ)) = 𝓸𝒾(Τ, I, ℱ) 

3. If (α𝑡(Τ, I, ℱ)) ≤  (α̂𝑡(Τ, I, ℱ)) for all t, then 𝕺𝜔 (α𝑡(Τ, I, ℱ)) ≤ 𝕺𝜔 (α̂𝑡(Τ, I, ℱ)) 

Proof: The proofs are straight forward. ∎ 

 

6. N-LVHS Algorithm to solve MCDM Problem 

A decision-making technique based on neutrosophic linguistic valued-hypersoft weighted 

geometric averaging operator (NLV-HSWGAO) has been used to construct an algorithm known as 

neutrosophic linguistic valued hypersoft set based multi-criteria group decision-making (N-LVHS) 

algorithm. The graphical representation of the proposed N-LVHS algorithm is presented in Figure 2. 

 

Step1: Consider, 𝛼1, 𝛼2, 𝛼3, … , 𝛼𝑡  𝑓𝑜𝑟 𝑡 ≥ 1  𝑏𝑒 𝑡  distinct parameters, whose corresponding 

parametric values are respectively the sets 𝛶1, 𝛶2, 𝛶3, … , 𝛶𝑡 with 𝛶𝑖 ∩ 𝛶𝑗 = ∅, for 𝑖 ≠ 𝑗, and 𝑖, 𝑗 ∈ {1, 2, …, t}. 

Let 𝜔 = (𝜔1, 𝜔2, 𝜔3, … ,𝜔𝑡)𝑇  be the exponential weighting vector. Where 𝜔𝑡 ≥ 0 , 𝑎𝑛𝑑 ∑ 𝜔𝑡 = 1𝑛
𝑡=1 . 

Let                                                        𝕬: 𝛬 = 𝛶1 × 𝛶2 × 𝛶3 × …× 𝛶𝑡  ⟶ 𝑃(𝛺) 

𝕬(𝛼(𝑘)) = {𝑀(𝛼(Τ, I, ℱ)) | Τ, I, ℱ ∈ k = {𝜅1, 𝜅2, 𝜅3, … , 𝜅𝑡} } 

The decision-maker 𝒟 assign the values with the linguistic quantifiers and assign linguistic variable to each 

alternative as  𝐻𝑖 = {(𝛼𝑡(Τ, I, ℱ) | 𝑖 = 1, 2,… , 𝑡 𝑎𝑛𝑑  k ∈ {𝜅1, 𝜅2, 𝜅3, … , 𝜅𝑡}} , and construct a 

neutrosophic linguistic preference table for (𝛼𝑡(Τ, I, ℱ))(𝜔𝑡). 



Neutrosophic Sets and Systems, Vol. 63, 2023                                                               143            

 

__________________________________________________________________________________________________ 

Muhammad Saqlain, Poom Kumam, Wiyada Kumam, Neutrosophic Linguistic valued Hypersoft Set with Application:  
Medical Diagnosis and Treatment 

Step2: Construct a matrix [𝛼𝑖𝑗] 𝑖 ×𝑗  for 𝒟 using neutrosophic linguistic valued hypersoft weighted 

geometric averaging operator (NLV-HSWGAO),  

ℴi
t(Τ, I, ℱ) = α1

𝒾
ω1

⊗ α2
𝒾
ω2

⊗ α3
𝒾
ω3

⊗ … ⊗ αt
𝒾
ωt

 

Step3: List the aggregated values of all the alternatives ℴi
t(Τ, I, ℱ). 

Step4: Finally, list the alternatives with highest truthiness (Τ) value. The maximum truthiness (𝛵), will 

represent the positive ideal alternative.  

 

 

Figure 2. Graphical representation of proposed N-LVHS algorithm 

 

 

 

6.1 Illustrative example 

The use of COVID-19 as a case study demonstrates the complexity of the epidemic, where linguistic 

ambiguities are crucial. Patients frequently exhibit ambiguous and overlapping symptoms, and the 

characteristics of the virus may be described inexactly in medical records. N-LVHS is ideally suited 

to handle this difficulty because of its ability to model and control linguistic ambiguities and 

indeterminacies. N-LVHS can help with precise symptom assessment, data analysis, and diagnostic 

judgments by quantifying and structuring linguistic concepts. The latest COVID-19 statistics on 

WHO website are shown in Figure 3. (Data retrieved on 14 Oct 2023, https://covid19.who.int/table.) 

https://covid19.who.int/table
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Figure 3. COVID-19 current statistics.  

 

6.2 Demonstration of proposed example 

A patient often presents a set of symptoms to a doctor during a medical checkup. However, it 

can frequently be difficult for clinicians to make a specific diagnosis due to the ambiguity and overlap 

in symptoms. Let's choose a fictitious example to show how N-LVHS would perform in it. Ten 

patients visit their doctor's office with a cough, a fever, lethargy, and shortness of breath. These 

symptoms lack specificity, making the diagnosis questionable even if they are symptomatic of several 

medical diseases, including COVID-19. To evaluate their symptoms more precisely, the doctor uses 

N-LVHS, and data presented in table 1. 

Consider 𝑃 = {𝑃1, 𝑃2, … , 𝑃10} 𝑏𝑒 ten patients as alternatives, and doctor want to diagnose. The 

goal should be to identify COVID-19 positive patients, while minimizing any unintended negative 

consequences. Consider the parameters be:  α1 = fever, α2 =  cough, α3 =  lethargy, and α4 = 

shortness of breath.  

Then the function Γ ∶ Λ = Υ1 × Υ2 × Υ3 × Υ4  ⟶ 𝑃(Ω) and assume the hypersoft set 𝑃 =

{𝑃1, 𝑃2, … , 𝑃10}  ⊂  Ω where Ω = {𝑃1, 𝑃2, … , 𝑃10} be the universal set. 

 

Step1: Construction of neutrosophic linguistic preference table for alternatives 

 

Patient No. / 

Symptoms 

Fever Cough Lethargy Shortness of breath 

P01 (ℎ𝑖𝑔ℎ, 𝑙𝑜𝑤, 𝑣. 𝑙𝑜𝑤) (𝑣. 𝑣. ℎ𝑖𝑔ℎ, 𝑣. 𝑣. 𝑙𝑜𝑤, 𝑛𝑜𝑛𝑒) (ℎ𝑖𝑔ℎ, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤) (𝑣. ℎ𝑖𝑔ℎ, 𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚) 

P02 (𝑙𝑜𝑤, 𝑣. 𝑙𝑜𝑤, ℎ𝑖𝑔ℎ) (ℎ𝑖𝑔ℎ, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤) (𝑣. ℎ𝑖𝑔ℎ, 𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚) (𝑙𝑜𝑤, 𝑙𝑜𝑤, 𝑙𝑜𝑤) 

P03 (𝑝𝑒𝑟𝑓𝑒𝑐𝑡, 𝑛𝑜𝑛𝑒, 𝑛𝑜𝑛𝑒) (𝑛𝑜𝑛𝑒, 𝑣. 𝑙𝑜𝑤, 𝑛𝑜𝑛𝑒) (𝑙𝑜𝑤, 𝑙𝑜𝑤, ℎ𝑖𝑔ℎ) (ℎ𝑖𝑔ℎ, 𝑣. 𝑙𝑜𝑤, ℎ𝑖𝑔ℎ) 

P04 (𝑣. ℎ𝑖𝑔ℎ, 𝑛𝑜𝑛𝑒, 𝑣. 𝑙𝑜𝑤) (𝑙𝑜𝑤, 𝑣. 𝑙𝑜𝑤, ℎ𝑖𝑔ℎ) (𝑚𝑒𝑑𝑖𝑢𝑚,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤) (𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤, 𝑙𝑜𝑤) 

P05 (𝑙𝑜𝑤, ℎ𝑖𝑔ℎ,𝑚𝑒𝑑𝑖𝑢𝑚) (𝑣. 𝑙𝑜𝑤, ℎ𝑖𝑔ℎ,𝑚𝑒𝑑𝑖𝑢𝑚) (𝑣. 𝑙𝑜𝑤, 𝑙𝑜𝑤, ℎ𝑖𝑔ℎ) (𝑙𝑜𝑤, 𝑙𝑜𝑤, ℎ𝑖𝑔ℎ) 
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P06 (ℎ𝑖𝑔ℎ,𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ) (𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ, 𝑙𝑜𝑤) (𝑛𝑜𝑛𝑒, ℎ𝑖𝑔ℎ, 𝑣. ℎ𝑖𝑔ℎ) (𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ, ℎ𝑖𝑔ℎ) 

P07 (𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤, 𝑛𝑜𝑛𝑒) (ℎ𝑖𝑔ℎ, ℎ𝑖𝑔ℎ, 𝑙𝑜𝑤) (𝑙𝑜𝑤, 𝑛𝑜𝑛𝑒, 𝑙𝑜𝑤) (𝑣. 𝑣. ℎ𝑖𝑔ℎ, 𝑙𝑜𝑤, 𝑙𝑜𝑤) 

P08 (𝑣. 𝑣. ℎ𝑖𝑔ℎ, 𝑛𝑜𝑛𝑒, ℎ𝑖𝑔ℎ) (𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤, 𝑛𝑜𝑛𝑒) (ℎ𝑖𝑔ℎ, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑛𝑜𝑛𝑒) (𝑣. 𝑣. 𝑣. 𝑙𝑜𝑤, 𝑙𝑜𝑤, 𝑛𝑜𝑛𝑒) 

P09 (ℎ𝑖𝑔ℎ, 𝑙𝑜𝑤, 𝑙𝑜𝑤) (ℎ𝑖𝑔ℎ, 𝑛𝑜𝑛𝑒, 𝑛𝑜𝑛𝑒) (𝑛𝑜𝑛𝑒, 𝑙𝑜𝑤, 𝑙𝑜𝑤) (ℎ𝑖𝑔ℎ, 𝑙𝑜𝑤, ℎ𝑖𝑔ℎ) 

P10 (𝑣. 𝑣. ℎ𝑖𝑔ℎ, 𝑙𝑜𝑤, 𝑣. 𝑙𝑜𝑤) (𝑣. ℎ𝑖𝑔ℎ, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑛𝑜𝑛𝑒) (𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ, 𝑙𝑜𝑤) (𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚) 

Table 1: Doctor patient interaction and information gathering in neutrosophic linguistic form. 

Step2: Construction of neutrosophic linguistic valued hypersoft weighted geometric averaging 

operator (NLV-HSWGAO) based matrix. 

𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠

𝑃1

𝑃2

𝑃3

𝑃4

𝑃5

𝑃6

𝑃7

𝑃8

𝑃9

𝑃10

=

[
 
 
 
 
 
 
 
 
 
 
 
𝑁𝐿𝑉 − 𝐻𝑆𝑊𝐺𝐴𝑂 𝑣𝑎𝑙𝑢𝑒𝑠  

(𝑣. 𝑣. ℎ𝑖𝑔ℎ, 𝑙𝑜𝑤, 𝑣. 𝑙𝑜𝑤)
(𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤, 𝑛𝑜𝑛𝑒)
(ℎ𝑖𝑔ℎ, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑛𝑜𝑛𝑒)

(𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚)
(𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤, 𝑙𝑜𝑤)
(ℎ𝑖𝑔ℎ, ℎ𝑖𝑔ℎ, 𝑙𝑜𝑤)

(ℎ𝑖𝑔ℎ, 𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ)
(𝑝𝑒𝑟𝑓𝑒𝑐𝑡, 𝑛𝑜𝑛𝑒, 𝑛𝑜𝑛𝑒)
(𝑣. ℎ𝑖𝑔ℎ, 𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚)

(𝑙𝑜𝑤, 𝑣. 𝑙𝑜𝑤, ℎ𝑖𝑔ℎ) ]
 
 
 
 
 
 
 
 
 
 
 

 

Step3: List the aggregated values of all the alternatives ℴi
t(Τ, I, ℱ). 

𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠

𝑃1

𝑃2

𝑃3

𝑃4

𝑃5

𝑃6

𝑃7

𝑃8

𝑃9

𝑃10

=

[
 
 
 
 
 
 
 
 
 
 
𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠  

𝑣. 𝑣. ℎ𝑖𝑔ℎ
𝑚𝑒𝑑𝑖𝑢𝑚

ℎ𝑖𝑔ℎ
𝑚𝑒𝑑𝑖𝑢𝑚
𝑚𝑒𝑑𝑖𝑢𝑚

ℎ𝑖𝑔ℎ
ℎ𝑖𝑔ℎ

𝑝𝑒𝑟𝑓𝑒𝑐𝑡
𝑣. ℎ𝑖𝑔ℎ
𝑙𝑜𝑤 ]

 
 
 
 
 
 
 
 
 
 

 

 

Step4: Finally, list the alternatives with highest truthiness (Τ) value. The maximum truthiness (𝛵), will 

represent the positive ideal alternative.  

Alternative Result 

P01 Positive 

P02 Negative 

P03 Positive 

P04 Negative 

P05 Negative 

P06 Positive 

P07 Positive 

P08 Positive 

P09 Positive 

P10 Negative 
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In this imaginary case study, we saw the difficulty that doctors frequently encounter when patients 

present with symptoms that are vague and common to several different illnesses. The symptoms that 

the 10 patients with cough, fever, lethargy, and shortness of breath experienced were symptomatic 

of several disorders, including the frequently occurring COVID-19. The doctor used the N-LVHS 

algorithm to solve this diagnostic since it uses cutting-edge language models to analysis and interpret 

patient information. The N-LVHS delivered a more accurate and data-driven assessment, greatly 

reducing diagnostic ambiguity, by carefully examining the patients' symptoms and comparing them 

with a wide pool of medical data. The relation between the symptoms and diagnostic has been 

presented in Figure 4. 

 

Figure 4. Symptoms relation with diagnosis and information.  

6.3 Result discussion comparison and future directions 

Certainly, comparing the outcomes of the N-LVHS algorithm with those of current diagnostic 

techniques offers important insights into the prospective advantages of this cutting-edge instrument. 

Traditional diagnostic techniques frequently depend on clinical judgement and medical expertise, 

which can be difficult in situations with confusing symptoms like those seen in our study. It is 

interesting that, in contrast to our suggested method, the existing approaches use a completely 

different methodology to calculate the results of alternatives table 2, presents the comparison with 

existing approaches.  

N-LVHS, in comparison, uses cutting-edge language models and medical data to analyze 

symptoms in a more thorough and data-driven way. N-LVHS has a significant edge in terms of 

diagnosis accuracy because it can consider a wide range of medical data, new research, and real-time 
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data. Additionally, it excels at managing risk and adjusting to new medical information, which is 

particularly important in situations like the COVID-19 pandemic. 

 

Method  Positive  Negative 

LHSs (Saqlain et al. [48])  P01, P03, P06, P07, P08, P09, P10 P02, P04, P05  

FLHSs (Saqlain et al. [49])  P01, P03, P06, P07, P08, P09 P02, P04, P05, P10 

N-LVHS (Proposed) P01, P03, P06, P07, P08, P09 P02, P04, P05, P10 

Table 2. Result comparison with existing studies. 

The potential of N-LVHS to improve healthcare outcomes and supplement conventional diagnostic techniques 

is highlighted by this comparison. While it's important to recognize that AI-driven technologies cannot take the 

place of a healthcare professional's knowledge and experience, their integration can greatly improve diagnostic 

accuracy, especially in cases when symptoms are complex and difficult to identify. A new age of more precise, 

effective, and patient-centered healthcare is promised by further research and collaboration efforts between AI 

technology and the medical sector. 

 

7. Conclusion 

In conclusion, this study emphasizes the importance of language and the difficulties it presents when 

it comes to medical diagnosis and treatment. This study provides a possible method for enhancing 

healthcare decision-making by introducing Neutrosophic-Linguistic Valued Hypersoft Sets (N-

LVHS), a potent tool that successfully regulates linguistic uncertainty and indeterminacy.  

The necessary definitions, notions, aggregate operators, and algorithms has been proposed in 

this paper. The N-LVHS can be used as a crucial tool to solve the complexities of medical practice in 

a constantly changing healthcare environment where language-driven ambiguity and uncertainty 

prevail. This study contributes to the ongoing effort to provide healthcare that is more effective and 

patient-centered by addressing linguistic imprecision and indeterminacy. It emphasizes the 

significance of integrating cutting-edge linguistic and computational tools to improve healthcare 

practices in a complex and uncertain world. N-LVHS will need to be expanded to include a wider 

range of medical conditions in the future, and data scientists and healthcare professionals will need 

to work together to improve N-LVHS algorithms. The proposed study has the potential for a wide 

range of case study applications in numerous fields. It can be used in market research to understand 

customer attitude, environmental impact assessments to balance intricate ecological, social, and 

economic issues, and disaster preparedness to determine resource allocation and reaction plans. 
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Abstract. In the present paper, we aim to define Sθ-summability in neutrosophic 2-normed spaces and study

some of its properties. We provide examples that shows our method of summability is stronger in these spaces.

Finally we introduce Sθ-Cauchy and Sθ-completeness and prove that every neutrosophic-2-normed spaces is

Sθ-complete.

Keywords: Sθ-convergence, Sθ-Cauchy, lacunary sequence, neutrosophic-2-normed spaces.

—————————————————————————————————————————-

1. Introduction

Statistical convergence was initially introduced by Fast [9] and later connected to summa-

bility theory by Schoenberg [12]. The concept was subsequently advanced by researchers such

as Maddox [11], Connor [13], Fridy [14], Mursaleen and Edely [21], Šalát [31], and Kumar and

Mursaleen [33], among numerous others.

Lacunary statistical convergence was studied by Fridy and Orhan [16] and was defined

as follows: “By a lacunary sequence we mean an increasing integer sequence θ = (ks) with

k0 = 0 and hs = ks − ks−1 → ∞ as s → ∞. The intervals determined by θ will be denoted

by Is = (ks−1, ks] and the ratio ks
ks−1

will be abbreviated as qs. For ℜ ⊆ N, the number

δθ(ℜ) = lim
s→∞

1

hs
|{k ∈ Is : k ∈ ℜ}| is called θ-density of ℜ, provided the limit exists. A

sequence y = (yk) is said to be lacunary statistically convergent (briefly Sθ-convergent) to y0

if for each ℘ > 0, lim
s

1
hs
|{k ∈ Is : |yk−y0| ≥ ℘}| = 0 or equivalently, the set ℜ(℘) has θ-density

zero, where ℜ(℘) = {k ∈ N : |yk−y0| ≥ ℘}. In this case, we write Sθ− lim
k→∞

yk = y0.”Additional

noteworthy contributions to lacunary statistical convergence can be explored in references such

as [7], [22], [26], and [35].
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On the other hand, Zadeh [19] introduced the concept of fuzzy sets as a more suitable

approach for addressing problems that cannot be adequately modeled using crisp set theory

due to significant uncertainty in the data. Fuzzy set theory finds extensive applications in

various scientific domains, including artificial intelligence, engineering, medicine, robotics, and

numerous other fields, aiming to attain more effective solutions. Atanassov introduced intu-

itionistic fuzzy sets (IFS) in 1986 as an extension of fuzzy sets to better handle uncertainty.

After introducing intuitionistic fuzzy sets, progressive developments were made in this field,

as seen in [15], [27], etc.

Smarandache [35] proposed neutrosophic sets (NS) as another interesting generalization of

fuzzy sets by introducing the indeterminacy function to intuitionistic fuzzy sets. Neutrosophic

sets (NS) offer a more flexible and comprehensive way to represent uncertainty, imprecision,

and indeterminacy in addressing the complexities of real-world situations. For ongoing devel-

opment on neutrosophic sets (NS) and their applications, we refer to [1], [23], etc.

Kirişçi and Şimşek [20] established the concept of neutrosophic norm and investigated sta-

tistical convergence within the framework of neutrosophic normed spaces. For a comprehensive

perspective in this direction, we recommend to the reader [2], [3], [4], [32], etc. Nowadays,

the area of summability in these spaces is of much interest. Several summability approaches

so far developed, including statistical convergence, ideal convergence, and lacunary statistical

convergence in these spaces (see [5], [10], [18], [24], [25], [29], [34]). Recently in [30], the con-

cept of neutrosophic-2-norm is introduced where the authors studied statistical convergence

in neutrosophic-2-normed spaces. In the present work, we define a more general summability

method, called Sθ-summability in N−2−NS and develop some of its properties. We organize

the paper as follows, the first and second sections are introductory and provide basic informa-

tion needed in the sequel. In section 3, we define Sθ-summability in N − 2 −NS and obtain

interesting results. In section 4, we introduce Sθ-Cauchy and Sθ-completeness in N − 2−NS.

Finally, in the last section, we provide a brief conclusion regarding the whole work.

2. Preliminaries

This section commences with a concise overview of specific definitions and results needed

in the sequel. In the course of this study, the notation R+ will be used to represent the open

interval (0,∞), while N will represent the set of natural numbers.

Definition 2.1 [6] “Let ℑ = [0, 1]. A function ◦ : ℑ × ℑ → ℑ is said to be a t-norm for all

µ1, µ2, µ3, µ4 ∈ ℑ, we have

(i) µ1 ◦ µ2 = µ2 ◦ µ1;

(ii)µ1 ◦ (µ2 ◦ µ3) = (µ1 ◦ µ2) ◦ µ3;
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(iii) ◦ is continuous;

(iv) µ1 ◦ 1 = µ1 for every µ1 ∈ ℑ and

(v) µ1 ◦ µ2 ≤ µ3 ◦ µ4 whenever µ1 ≤ µ3 and µ2 ≤ µ4”.

Definition 2.2 [6] “Let ℑ = [0, 1]. A function ⋄ : ℑ × ℑ → ℑ is said to be a continuous

triangular conorm or t-conorm for all µ1, µ2, µ3, µ4 ∈ ℑ, we have

(i) µ1 ◦ µ2 = µ2 ◦ µ1;

(ii)µ1 ◦ (µ2 ◦ µ3) = (µ1 ◦ µ2) ◦ µ3;

(iii) ◦ is continuous;

(iv) µ1 ⋄ 0 = µ1 for every µ1 ∈ ℑ and

(v) µ1 ◦ µ2 ≤ µ3 ◦ µ4 whenever µ1 ≤ µ3 and µ2 ≤ µ4”.

We now recall the idea of two norm introduced in the paper [28].

Definition 2.3 [28]“Let X be a d−dimensional real vector space, where 2 ≤ d < ∞. A

2-norm on X is a function ∥., .∥ : X ×X → R fulfilling the below listed requirements: For all

ϱ1, ϱ2 ∈ X, and scalar α, we have

(i) ||ϱ1, ϱ2|| = 0 iff ϱ1 and ϱ2 are linearly dependent;

(ii) ||ϱ1, ϱ2|| = ||ϱ2, ϱ1||;
(iii)||αϱ1, ϱ2|| = |α|||ϱ1, ϱ2|| and
(iv) ||ϱ1, ϱ2 + ϱ3|| ≤ ||ϱ1, ϱ2||+ ||ϱ1, ϱ3||.
The pair (X, ||., .||) is known as 2-normed space in this case.

Let X = R2 and for ϱ1 = (p0, p
′
0) and ϱ2 = (q0, q

′
0) we define ||ϱ1, ϱ2|| = |p0q′0 − p′0q0|, then

||ϱ1, ϱ2|| is a 2-norm on X = R2”.

Recently, Murtaza et al. [30] defined neutrosophic 2-normed spaces as follows:

Definition 2.4 [30] “Let F is a vector space, N2 = ({(ϱ1, ϱ2), G(ϱ1, ϱ2), B(ϱ1, ϱ2), Y (ϱ1, ϱ2)} :

(ϱ1, ϱ2) ∈ F ×F ) be a 2-norm space s.t. N2 : F ×F ×R+ → [0, 1]. If ◦, ⋄ respectively denotes

t-norm and t-conorm, then the four-tuple X = (F,N2, ◦, ⋄) is known as neutrosophic 2-normed

spaces (briefly N − 2−NS) if for every ϱ1, ϱ2, ω ∈ X, ς, µ ≥ 0 and ξ ̸= 0:

(i) 0 ≤ G(ϱ1, ϱ2; ς) ≤ 1, 0 ≤ B(ϱ1, ϱ2; ς) ≤ 1 and 0 ≤ Y (ϱ1, ϱ2; ς) ≤ 1 for every ς ∈ R+;

(ii) G(ϱ1, ϱ2; ς) +B(ϱ1, ϱ2; ς) + Y (ϱ1, ϱ2; ς) ≤ 3;

(iii) G(ϱ1, ϱ2; ς) = 1 iff ϱ1, ϱ2 are linearly dependent;

(iv) G(ξϱ1, ϱ2; ς) = G(ϱ1, ϱ2;
ς
|ξ|) for each ς ̸= 0;

(v) G(ϱ1, ϱ2; ς) ◦G(ϱ1, ω;µ) ≤ G(ϱ1, ϱ2 + ω; ς + µ);

(vi) G(ϱ1, ϱ2; .) : (0,∞) → [0, 1] is a non-decreasing function that runs continuously;

(vii) lim
ς→∞

G(ϱ1, ϱ2; ς) = 1 ;
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(viii) G(ϱ1, ϱ2; ς) = G(ϱ2, ϱ1; ς)

(ix) B(ϱ1, ϱ2; ς) = 0 iff ϱ1, ϱ2 are linearly dependent;

(x) B(ξϱ1, ϱ2; ς) = B(ϱ1, ϱ2;
ς
|ξ|) for each ς ̸= 0;

(xi) B(ϱ1, ϱ2; ς) ⋄B(ϱ1, ω;µ) ≥ B(ϱ1, ϱ2 + ω; ς + µ);

(xii) B(ϱ1, ϱ2; .) : (0,∞) → [0, 1] is a non-increasing function that runs continuously;

(xiii) lim
ς→∞

B(ϱ1, ϱ2; ς) = 0 ;

(xiv) B(ϱ1, ϱ2; ς) = B(ϱ2, ϱ1; ς);

(xv) Y (ϱ1, ϱ2; ς) = 0 iff ϱ1, ϱ2 are linearly dependent;

(xvi)Y (ξϱ1, ϱ2; ς) = Y (ϱ1, ϱ2;
ς
|ξ|) for each ς ̸= 0;

(xvii) Y (ϱ1, ϱ2; ς) ⋄ Y (ϱ1, ω;µ) ≥ Y (ϱ1, ϱ2 + ω; ς + µ);

(xviii) Y (ϱ1, ϱ2; .) : (0,∞) → [0, 1] is a non-increasing function that runs continuously;

(xix) lim
λ→∞

Y (ϱ1, ϱ2; ς) = 0;

(xx) Y (ϱ1, ϱ2; ς) = Y (ϱ2, ϱ1; ς);

(xxi) if ς ≤ 0, then G(ϱ1, ϱ2; ς) = 0, B(ϱ1, ϱ2; ς) = 1, Y (ϱ1, ϱ2; ς) = 1.

In this case, we call N2 = N2(G,B, Y ), a neutrosophic 2-norm on F . From now on wards,

unless otherwise stated by X we shall denote the N − 2−NS (F,N2, ◦, ⋄).
A sequence (yk) in X is said to be convergent to y0 ∈ X if for each 0 < ℘ < 1 and ς > 0, ∃

a positive integer m s.t. G(yk − y0, ω; ς) > 1−℘, B(yk − y0, ω; ς) < ℘ and Y (yk − y0, ω; ς) <

℘ for all k ≥ m and ω ∈ X which is equivalently to say lim
k→∞

G(yk − y0, ω; ς) = 1, lim
k→∞

B(yk −
y0, ω; ς) = 0 and lim

k→∞
Y (yk − y0, ω; ς) = 0. In this case, we write N2 − limk→∞ yk = y0.

A sequence (yk) in X is said to be Cauchy if for each 0 < ℘ < 1 and ς > 0, ∃ a positive

integer m s.t. G(yk − yn, ω; ς) > 1 − ℘, B(yk − yn, ω; ς) < ℘ and Y (yk − yn, ω; ς) < ℘ ∀
k, n ≥ m and ∀ ω ∈ X.”

3. Lacunary statistical Convergence in N − 2−NS

Definition 3.1 A sequence y = (yk) in X is called lacunary statistical convergent (or Sθ-

convergent) to y0 w.r.t neutrosophic 2-norm N2, if for each ℘ > 0 and ς > 0

lim
s→∞

1

hs

∣∣∣∣{k ∈ Is : G(yk − y0, ω; ς) ≤ 1− ℘ or

B(yk − y0, ω; ς) ≥ ℘, Y (yk − y0, ω; ς) ≥ ℘

}∣∣∣∣ = 0 for every ω ∈ X;

or, δθ (A (℘, ς)) = 0, where

A(℘, ς) = {k ∈ Is : G(yk − y0, ω; ς) ≤ 1− ℘ or

B(yk − y0, ω; ς) ≥ ℘, Y (yk − y0, ω; ς) ≥ ℘}.
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In present case, we denote Sθ(N2)− lim
k→∞

yk = y0.

We now give the following Lemma and prove the uniqueness theorem.

Lemma 3.1 y = (yk) in X, the subsequent assertions are equivalent:

(i) Sθ(N2)− lim
k→∞

yk = y0;

(ii) δθ{k ∈ Is : G(yk − y0, ω; ς) ≤ 1 − ℘} = δθ{k ∈ Is : B(yk − y0, ω; ς) ≥ ℘} = δθ{k ∈ Is :

Y (yk − y0, ω; ς) ≥ ℘} = 0;

(iii) δθ{k ∈ Is : G(yk − y0, ω; ς) > 1− ℘ and B(yk − y0, ω; ς) < ℘ , Y (yk − y0, ω; ς) < ℘} = 1 ;

(iv) δθ{k ∈ Is : G(yk − y0, ω; ς) > 1 − ℘} = δθ{k ∈ Is : B(yk − y0, ω; ς) < ℘} = δθ{k ∈ Is :

Y (yk − y0, ω; ς) < ℘} = 1 and

(v) Sθ(N2)− lim
k→∞

G(yk − y0, ω; ς) = 1, Sθ(N2)− lim
k→∞

B(yk − y0, ω; ς) = Sθ(N2)− lim
k→∞

Y (yk −
y0, ω; ς) = 0.

Theorem 3.1 For any sequence y = (yk) in X, if Sθ(N2)− lim
k→∞

yk exists, then it is unique.

Proof. Suppose that Sθ(N2) − lim
k→∞

yk = y1 and Sθ(N2) − lim
k→∞

yk = y2. For given ℘ > 0,

choose ν > 0 s.t.

(1− ν) ◦ (1− ν) > 1− ℘ and ν ⋄ ν < ℘. (1)

For any ς > 0 and any w ∈ X. Define the following sets:

KG,1(ν, ς) = {k ∈ Is : G(yk − y1, ω;
ς

2
) ≤ 1− ν},

KG,2(ν, ς) = {k ∈ Is : G(yk − y2, ω;
ς

2
) ≤ 1− ν};

KB,1(ν, ς) = {k ∈ Is : B(yk − y1, ω;
ς

2
) ≥ ν},

KB,2(ν, ς) = {k ∈ Is : B(yk − y2, ω;
ς

2
) ≥ ν};

KY,1(ν, ς) = {k ∈ Is : Y(yk − y1, ω;
ς

2
) ≥ ν};

KY,2(ν, ς) = {k ∈ Is : Y (yk − y2, ω;
ς

2
) ≥ ν}.

Since Sθ(N2) − lim
k→∞

yk = y1, so by lemma 3.1, we get δθ{KG,1(ν, ς)} = δθ{KB,1(ν, ς)} =

δθ{KY,1(ν, ς)} = 0 and therefore δθ{KC
G,1(ν, ς)} = δθ{KC

B,1(ν, ς)} = δθ{KC
Y,1(ν, ς)} = 1.

Furthermore, using Sθ(N2) − lim
k→∞

yk = y2, we get, δθ{KG,2(ν, ς)} = δθ{KB,2(ν, ς)} =

δθ{KY,2(ν, ς)} = 0 and therefore δθ{KC
G,2(ν, ς)} = δθ{KC

B,2(ν, ς)} = δθ{KC
Y,2(ν, ς)} = 1.

Now define KG,B,Y (℘, ς) = {KG,1(ν, ς) ∪KG,2(ν, ς)} ∩ {KB,1(ν, ς) ∪KB,2(ν, ς)} ∩{KY,1(ν, ς) ∪
KY,2(ν, ς)}. Then δθ({KG,B,Y (℘, ς)}) = 0 which implies δ({KC

G,B,Y (℘, ς)}) = 1. Let m ∈
KC

G,B,Y (℘, ς), then we have

Case 1. m ∈ {KG,1(ν, ς) ∪KG,2(ν, ς)}C ,
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Case 2. m ∈ {KB,1(ν, ς) ∪KB,2(ν, ς)}C ,
Case 3. m ∈ {KY,1(ν, ς) ∪KY,2(ν, ς)}C .
Case 1: Let, m ∈ {KG,1(ν, ς) ∪ KG,2(ν, ς)}C , then m ∈ KC

G,1(ν, ς) and m ∈ KC
G,2(ν, ς).

Therefore, for any ω ∈ X we have

G(ym − y1, ω;
ς

2
) > 1− ν and G(ym − y2, ω;

ς

2
) > 1− ν. (2)

Now

G(y1 − y2, ω; ς) ≥ G(ym − y1, ω, ;
ς

2
) ◦G(ym − y2, ω;

ς

2
)

> (1− ν) ◦ (1− ν) by(2)

> 1− ℘. by (1)

Since ℘ > 0 is arbitrary, so we have G(y1 − y2, ω; ς) = 1 ∀ς > 0, and therefore y1 − y2 = 0.

This shows that y1 = y2.

Case 2: Let m ∈ {KB,1(ν, ς) ∪ KB,2(l, ς)}C , then m ∈ KC
B,1(ν, ς) and m ∈ KC

B,2(ν, ς).

Therefore, for ω ∈ X we have

B(ym − y1, ω;
ς

2
) < ν and B(ym − y2, ω;

ς

2
) < ν. (3)

Now

B(y1 − y2, ω; ς) ≤ B(ym − y1, ω, ;
ς

2
) ⋄B(ym − y2, ω;

ς

2
)

< ν ⋄ ν by (3)

< ℘. by (1)

Since ℘ > 0 is arbitrary, so we have B(y1 − y2, ω; ς) = 0 ∀ς > 0, and therefore y1 − y2 = 0.

This shows that y1 = y2.

Case 3: Let m ∈ {KY,1(ν, ς) ∪ KY,2(ν, ς)}C , then m ∈ KC
Y,1(ν, ς) and m ∈ KC

Y,2(ν, ς).

Therefore, for ω ∈ X we have

Y (ym − y1, ω;
ς

2
) < ν and Y (ym − y2, ω;

ς

2
) < ν. (4)

Now

Y (y1 − y2, ω; ς) ≤ Y (ym − y1, ω;
ς

2
) ⋄ Y (ym − y2, ω;

ς

2
)

< ν ⋄ ν by (4)

< ℘. by (1)

Since ℘ > 0 is arbitrary, so we have Y (y1 − y2, ω; ς) = 0 ∀ς > 0, and therefore y1 − y2 = 0.

This shows that y1 = y2.

Hence in all cases, we get y1 = y2. □
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Theorem 3.2 Let y = (yk) be any sequence in X. If N2− lim
k→∞

yk = y0, then Sθ(N2)− lim
k→∞

yk =

y0.

Proof Let N2 − lim
k→∞

yk = y0. Then for every ℘ > 0 and ς > 0,∃ an integer k0 ∈ N s.t.

G(yk−y0, ω; ς) > 1−℘ and B(yk−y0, ω; ς) < ℘, Y (yk−y0, ω; ς) < ℘ ∀k ≥ k0 and every ω ∈ X.

Hence, the set {k ∈ Is : G(yk − y0, ω; ς) ≤ 1− ℘ or B(yk − y0, ω; ς) ≥ ℘, Y (yk − y0, ω; ς) ≥ ℘}
has a finitely many terms whose θ-density is zero. Therefore, Sθ(N2)− lim

k→∞
yk = y0. □

But the converse of the above theorem is not true in general.

Example 3.1 Let (R2, |.|) be 2-normed space. For τ1, τ2 ∈ [0, 1]. Let τ1 ◦ τ2 = τ1τ2 and

τ1⋄τ2 = min{τ1+τ2, 1}. Choose (ϱ1, ϱ2) ∈ R2 and ς > 0 with ς > ∥ϱ1, ϱ2∥. DefineG(ϱ1, ϱ2; ς) =

ς
ς+∥ϱ1,ϱ2∥ , B(ϱ1, ϱ2; ς) = ∥ϱ1,ϱ2∥

ς+∥ϱ1,ϱ2∥ and Y (ϱ1, ϱ2; ς) = ∥ϱ1,ϱ2∥
ς , then it is easy to see that X =

(R2, N2, ◦, ⋄) is a N − 2−NS. Define a sequence y = (yk) by

yk =

(k, 0) if ks − [
√
hs] + 1 ≤ k ≤ ks, s ∈ N

(0, 0) otherwise.

Now, for each ℘ > 0 and ς > 0, let

A(℘, ς) =

{
k ∈ Is : G(yk − 0, ω; ς) ≤ 1− ℘ or

B(yk − 0, ω; ς) ≥ ℘, Y (yk − 0, ω; ς) ≥ ℘

}
=

{
k ∈ Is :

ς

ς + ∥yk, ω∥
≤ 1− ℘ or

∥yk, ω∥
ς + ∥yk, ω∥

≥ ℘,
∥yk, ω∥

ς
≥ ℘

}
=

{
k ∈ Is : ∥yk, ω∥ ≥ ς℘

1− ℘
or ∥yk, ω∥ ≥ ς℘

}
= {k ∈ Is : ks − [

√
hs] + 1 ≤ k ≤ ks; s ∈ N}

and so we get

1

hs
|A(℘, ς)| ≤ 1

hs
|{k ∈ Is : ks − [

√
hs] + 1 ≤ k ≤ ks; s ∈ N}| ≤ [

√
hs]

hs
.

Taking s → ∞,

lim
s→∞

1

hs
|A(℘, ς)| ≤ lim

n→∞

[
√
hs]

hs
= 0;

i.e., δθ(A(℘, ς)) = 0. Hence, y = (yk) is Sθ-convergent to 0. But the sequence y = (yk) is not

N2-convergent to 0.

Theorem 3.3 Let y = (yk) and z = (zk) be any two sequences in X s.t Sθ(N2)− lim
k→∞

yk = y1
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and Sθ(N2)− lim
k→∞

zk = z1, then

(i) Sθ(N2)− lim
k→∞

(yk + zk) = y1 + z1 and

(ii) Sθ(N2)− lim
k→∞

(cyk) = cy1, where 0 ̸=c ∈ F .

Proof. The proof of this theorem can be derived in a manner similar to the proof of theorem

3.1 and is therefore omitted. □

We now have the following interesting implication.

Theorem 3.4 A sequence y = (yk) in X is Sθ(N2)-convergent to y0 iff ∃ a subset ℜ = {kn :

n ∈ N} of N with δθ(ℜ) = 1 and N2 − lim
n→∞

ykn = y0.

Proof. Assume that Sθ(N2)− lim
k→∞

yk = y0. For any ς > 0, l ∈ N and ω ∈ X, define the set

ℜN2(l, ς) = {k ∈ Is : G(yk − y0, ω; ς) > 1− 1

l
and

B(yk − y0, ω; ς) <
1

l
, Y (yk − y0, ω; ς) <

1

l
}.

Since Sθ(N2)− lim
k→∞

yk = y0, it is clear that for ς > 0 and l ∈ N, ℜN2(l + 1, ς) ⊂ ℜN2(l, ς) and

δθ(ℜN2(l, ς)) = 1. (5)

Let r1 be an arbitrary number in ℜN2(1, ς). Then, ∃ r2 ∈ ℜN2(2, ς), (r2 > r1), s.t ∀ n ≥ r2,

1
hs
|{k ∈ Is : G(yk − y0, ω; ς) > 1 − 1

2 and B(yk − y0, ω; ς) < 1
2 , Y (yk − y0, ω; ς) < 1

2}| >
1
2 .

Similarly, ∃ r3 ∈ ℜN2(3, ς), (r3 > r2), such that for all n ≥ r3,
1
hs
|{k ∈ Is : G(yk − y0, ω; ς) >

1 − 1
3 and B(yk − y0, ω; ς) < 1

3 , Y (yk − y0, ω; ς) < 1
3}| >

2
3 and so on. So we can establish

a sequence {rl}l∈N satisfying rl ∈ ℜN2(l, ς). For all n ≥ rl(l ∈ N), we have 1
hs
|{k ∈ Is :

G(yk − y0, ω; ς) > 1− 1
l and B(yk − y0, ω; ς) <

1
l , Y (yk − y0, ω; ς) <

1
l }| >

l−1
l .

Define ℜ = {n ∈ N : 1 < n < r1} ∪ { ∪
l∈N

{n ∈ ℜN2(l, ς) : rl ≤ n < rl+1}}, Then for

rl ≤ n < rl + 1, we have 1
hs
|{k ∈ Is : k ∈ ℜ}| ≥ 1

hs
|{k ∈ Is : G(yk − y0, ω; ς) > 1 − 1

l and

B(yk − y0, ω; ς) < 1
l , Y (yk − y0, ω; ς) < 1

l }| >
l−1
l and hence δθ(ℜ) = 1 as k → ∞. Now

we have to demonstrate that N2 − lim
n→∞

ukn = u0. Let ℘ > 0 and select l ∈ N with 1
l < ℘.

Furthermore, let n ≥ rl and n ∈ ℜ. Then, by definition of ℜ, ∃ n0 ≥ l s.t, rn0 ≤ n < rn0+1 and

n ∈ ℜN2(l, ς). Thus, for each ℘ > 0, and for ω ∈ X we have G(yn − y0, ω; ς) > 1− 1
l > 1− ℘

and B(yn − y0, ω; ς) < 1
l < ℘, Y (yn − y0, ω; ς) < 1

l < ℘ ∀ n ≥ rl and n ∈ ℜ. Hence

N2 − lim
n→∞

ykn = y0.

Conversely, suppose that ∃ a subset ℜ = {kn}n∈N of N with δθ{ℜ} = 1 and N2 −
lim
n∈ℜ

ykn = y0. Let ℘ > 0 and ς > 0 ∃ kn0 ∈ N s.t G(ykn − y0, ω; ς) > 1 − ℘ and

B(ykn − y0, ω; ς) < ℘, Y (ykn − y0, ω; ς) < ℘ for each kn ≥ kn0 and ω ∈ X. This implies

TN2(℘, ς) = {k ∈ Is : G(ykn −y0, ω; ς) ≤ 1−℘ and B(ykn −y0, ω; ς) ≥ ℘, Y (ykn −y0, ω; ς) ≥ ℘}
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⊆ N−{kn0 , kn0+1, kn0+2, ...} and therefore δθ{TN2(℘, ς)} ≤ δθ(N)− δθ({kn0 , kn0+1, kn0+2, ...}).
As δθ{ℜ} = 1, so δθ{TN2(℘, ς)} = 0. This shows that Sθ(N2)− lim

k→∞
yk = y0 and therefore the

completes proof of the theorem. □

“For υ ∈ X, ς > 0, α ∈ (0, 1) and ω ∈ X, the ball centered at υ with radius α is denoted and

defined by H(υ, α, ς) = {u ∈ X : G(υ−u, ω, ς) > 1−α and B(υ−u, ω, ς) < α, Y (υ−u, ω, ς) <

α}.”

Theorem 3.5 Let X be a N − 2−NS. For any lacunary sequence θ = (ks), Sθ(N2) ⊆ S(N2)

iff lim sup
s

qs < ∞.

Proof. If lim sup
s

qs < ∞, then ∃ M > 0 s.t qs < M ∀ s. Suppose that Sθ(N2)− lim
k→∞

yk = y0

and for ς > 0, α ∈ (0, 1), ω ∈ X, let

Ts =
∣∣{k ∈ Is : G(yk − y0, ω; ς) ≤ 1− α or

B(yk − y0, ω; ς) ≥ α, Y (yk − y0, ω; ς) ≥ α
}∣∣.

Let ℘ > 0. Since Sθ(N2)− lim
k→∞

yk = y0, then ∃ s0 ∈ N s.t

Ts

hs
< ℘ ∀ s > s0. (6)

Now, Let C = max{Ts : 1 ≤ s ≤ s0} and r be an integer such that ks−1 < r < ks. Then we

write

1

r
|{k ≤ r : G(yk − y0, ω; ς) ≤ 1− α or

B(yk − y0, ω; ς) ≥ α, Y (yk − y0, ω; ς) ≥ α}|

≤ 1

ks−1
|{k ≤ ks : G(yk − y0, ω; ς) ≤ 1− α or

B(yk − y0, ω; ς) ≥ α, Y (yk − y0, ω; ς) ≥ α}|

=
1

ks−1
{T1 + T2 + . . .+ Ts0 + Ts0+1 + . . .+ Ts}

≤ C

ks−1
s0 +

1

ks−1

{
hs0+1

Ts0+1

hs0+1
+ . . .+ hs

Ts

hs

}
≤ s0C

ks−1
+

1

ks−1

(
sup
s>s0

Ts

hs

)
{hs0+1 + . . .+ hs}

≤ s0C

ks−1
+ ℘

ks − ks0
ks−1

by (6)

≤ s0C

ks−1
+ ℘qs

≤ s0C

ks−1
+ ℘M.
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To prove the converse, assume that lim sup
s

qs = ∞. Let β( ̸= 0) ∈ X. By applying the concept

from [5], we can obtain a subsequence (ks(l)) of θ = (ks) s.t qs(l) > l. Define a sequence

y = (yk) by

yk =

β if ks(l)−1 < k ≤ 2ks(l)−1for some l = 1, 2, 3, . . .

0 otherwise.

Since β( ̸= 0), so we can select ς > 0, α ∈ (0, 1) and ω ∈ X s.t β /∈ H(0, α, ς). Now for l > 1,

1

hs(l)
|{k ≤ ks(l) : G(yk, ω; ς) ≤ 1− α or

B(yk, ω; ς) ≥ α, Y (yk, ω; ς) ≥ α}|

≤ 1

hs(l)

(
ks(l)−1

)
=

1

ks(l) − ks(l)−1

(
ks(l)−1

)
<

1

l − 1
.

Thus, we have y ∈ Sθ(N2). But y /∈ S(N2). For

1

2ks(l)−1
|{k ≤ 2ks(l)−1 : G(yk, ω; ς) ≤ 1− α or

B(yk, ω; ς) ≥ α, Y (yk, ω; ς) ≥ α}|

≥ 1

2ks(l)−1
{ks(1)−1 + ks(2)−1 + . . .+ ks(l)−1}

>
1

2

and

1

ks(l)
|{k ≤ ks(l) : G(yk − β, ω; ς) ≤ 1− α or

B(yk − β, ω; ς) ≥ α, Y (yk − β, ω; ς) ≥ α}|

≥
ks(l) − 2ks(l)−1

ks(l)

≥ 1− 2

l
.

This shows that y = (yk) is not S-convergent w.r.t N2. □

Theorem 3.6 Let X be a N − 2−NS. For any lacunary sequence θ = (ks), S(N2) ⊆ Sθ(N2)

iff lim inf
s

qs > 1.

Proof. Assume that lim inf
s

qs > 1, then ∃ η > 0 s.t qs ≥ 1 + η for sufficiently large s, which
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implies that

hs
ks

≥ η

1 + η
.

If y = (yk) is S-convergent to y0 w.r.t N2, then for each ς > 0, α ∈ (0, 1), ω ∈ X and sufficiently

large s, we have

1

ks
|{k ≤ ks : G(yk − y0, ω; ς) ≤ 1− α or

B(yk − y0, ω; ς) ≥ α, Y (yk − y0, ω; ς) ≥ α}|

≥ 1

ks
|{k ∈ Is : G(yk − y0, ω; ς) ≤ 1− α or

B(yk − y0, ω; ς) ≥ α, Y (yk − y0, ω; ς) ≥ α}|

≥ η

1 + η

1

hs
|{k ∈ Is : G(yk − y0, ω; ς) ≤ 1− α or

B(yk − y0, ω; ς) ≥ α, Y (yk − y0, ω; ς) ≥ α}|.

Since y = (yk) ∈ S(N2), it follows that Sθ(N2)− lim
k→∞

yk = y0.

To prove the converse, assume that lim inf
s

qs = 1. Applying the concept from [5], we can

obtain a subsequence (ks(l)) of θ = (ks) s.t

ks(l)

ks(l)−1
< 1 +

1

l
and

ks(l) − 1

ks(l−1)
> l where s(l) ≥ s(l − 1) + 2.

Let β(̸= 0) ∈ X. Define a sequence y = (yk) by

yk =

β if k ∈ Is(l)for some l = 1, 2, 3, . . .

0 otherwise.

We now show that y = (yk) is S-convergent to 0 w.r.t N2. Let ς > 0, α ∈ (0, 1) and ω ∈ X.

Choose ς1 > 0 and α1 ∈ (0, 1) such that for previously chosen ω ∈ X, H(0, α1, ς1) ⊂ H(0, α, ς)

and β /∈ H(0, α1, ς1). Also for each r ∈ N, we can find lr > 0 s.t ks(lr)−1 < r ≤ ks(lr). Then for
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each r ∈ N, we have

1

r
|{k ≤ r : G(yk, ω; ς) ≤ 1− α or

B(yk, ω; ς) ≥ α, Y (yk, ω; ς) ≥ α}|

≤ 1

ks(lr)−1
|{k ≤ r : G(yk, ω; ς1) ≤ 1− α1 or

B(yk, ω; ς1) ≥ α1, Y (yk, ω; ς1) ≥ α1}|

≤ 1

ks(lr)−1

{
|{k ≤ ks(lr) : G(yk, ω; ς1) ≤ 1− α1 or

B(yk, ω; ς1) ≥ α1, Y (yk, ω; ς1) ≥ α1}|

+|{ks(lr)−1 < k ≤ r : G(yk, ω; ς1) ≤ 1− α1 or

B(yk, ω; ς1) ≥ α1, Y (yk, ω; ς1) ≥ α1}|
}

≤
ks(lr−1)

ks(lr)−1
+

1

ks(lr)−1
(ks(lr) − ks(lr)−1)

<
1

lr
+ 1 +

1

lr
− 1

=
2

lr
.

It follows that y = (yk) is S-convergent to 0. Now we will prove that y = (yk) is not Sθ-

convergent w.r.t N2. Since β ̸= 0, so we can select ς > 0, α ∈ (0, 1) and ω ∈ X s.t β /∈
H(0, ς, α). Thus

lim
l→∞

1

hs(l)
|{k ∈ Is(l) : G(yk, ω; ς) ≤ 1− α or

B(yk, ω; ς) ≥ α, Y (yk, ω; ς) ≥ α}|

= lim
l→∞

1

hs(l)
(ks(l) − ks(l)−1)

= lim
l→∞

1

hs(l)
(hs(l))

= 1,

and for s ̸= sl,

lim
l→∞

1

hs
|{k ∈ Is : G(yk − β, ω; ς) ≤ 1− α or

B(yk − β, ω; ς) ≥ α, Y (yk − β, ω; ς) ≥ α}| = 1 ̸= 0.

Hence neither β nor 0 can be the Sθ-limit of the sequence y = (yk) w.r.t N2. Furthermore,

there is no other element in X that can be the Sθ-limit of y. Therefore y /∈ Sθ(N2). □
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Theorems 3.5 and 3.6 together give the following result.

Theorem 3.7 Let X be a N − 2−NS. For any lacunary sequence θ = (ks), S(N2) = Sθ(N2)

iff 1 < lim inf
s

qs ≤ lim sup
s

qs < ∞.

4. Lacunary statistical completeness in N − 2−NS

Definition 4.1 A sequence y = (yk) in X is called lacunary statistically Cauchy (or Sθ-

Cauchy) w.r.t neutrosophic 2-norm N2 if for each ℘ > 0 and ς > 0, ∃ r ∈ N s.t.

lim
s→∞

1

hs

∣∣∣∣{k ∈ Is : G(yk − yr, ω; ς) ≤ 1− ℘ or

B(yk − yr, ω; ς) ≥ ℘, Y (yk − yr, ω; ς) ≥ ℘

}∣∣∣∣ = 0 ∀ ω ∈ X

or δ(A(℘, ς)) = 0 where

A(℘, ς) = {k ∈ Is : G(yk − yr, ω; ς) ≤ 1− ℘ or

B(yk − yr, ω; ς) ≥ ℘, Y (yk − yr, ω; ς) ≥ ℘}.

Theorem 4.1 Every Sθ(N2)-convergent sequence in X is Sθ(N2)-Cauchy.

Proof. Let y = (yk) be the Sθ-convergent sequence to y0. Let ℘ > 0 and ς > 0. Select ν > 0

s.t. (1) is satisfied. Define

A(ν, ς) = {k ∈ Is : G(yk − y0, ω;
ς

2
) ≤ 1− ν or

B(yk − y0, ω;
ς

2
) ≥ ν Y (yk − y0, ω;

ς

2
) ≥ ν},

then δθ(A(ν, ς)) = 0 and δθ(A
C(ν, ς)) = 1. Let p ∈ AC(ν, ς) then for ω ∈ X, we have

G(yp − y0, ω;
ς
2) > 1− ν and B(yp − y0, ω;

ς
2) < ν, Y (yp − y0, ω;

ς
2) < ν.

Now letM(℘, ς) = {k ∈ Is : G(yk−yp, ω; ς) ≤ 1−℘ or B(yk−yp, ω; ς) ≥ ℘, Y (yk−yp, ω; ς) ≥ ℘}.
We claim that M(℘, ς) ⊂ A(l, ς). Let r ∈ M(℘, ς), then we have G(yr − yp, ω; ς) ≤ 1 − ℘ or

B(yr − yp, ω; ς) ≥ ℘, Y (yr − yp, ω; ς) ≥ ℘.

Case (i): Suppose G(yr−yp, ω; ς) ≤ 1−℘, then G(yr−y0, ω;
ς
2) ≤ 1−ν and therefore r ∈ A(ν, ς).

As otherwise, i.e, if G(yr − y0, ω;
ς
2) > 1− ν, then

1− ℘ ≥ G(yr − yp, ω; ς) ≥ G(yq − y0, ω;
ς

2
) ◦G(yp − y0, ω;

ς

2
)

> (1− ν) ◦ (1− ν)

> 1− ℘(not possible) .

Thus, M(℘, ς) ⊂ A(ν, ς).

Case (ii): Suppose B(yr − yp, ω; ς) ≥ ℘, then B(yr − y0, ω;
ς
2) ≥ ν and therefore r ∈ A(ν, ς).
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As otherwise, i.e, if B(yr − y0, ω;
ς
2) < ν, then

℘ ≤ B(yr − yp, ω; ς) ≤ B(yr − y0, ω;
ς

2
) ⋄B(yp − y0, ω;

ς

2
)

< ν ⋄ ν

< ℘(not possible) .

Also, suppose Y (yr − yp, ω; ς) ≥ ℘, then Y (yr − y0, ω;
ς
2) ≥ ν and therefore r ∈ A(ν, ς). As

otherwise, i.e, if B(yr − y0, ω;
ς
2) < ν, then

℘ ≤ Y (yr − yp, ω; ς) ≤ Y (yr − y0, ω;
ς

2
) ⋄ Y (yp − y0, ω;

ς

2
)

< ν ⋄ ν

< ℘(not possible) .

Thus, M(℘, ς) ⊂ A(ν, ς).

Hence in all cases, M(℘, ς) ⊂ A(ν, ς). Since δθ(A(ν, ς)) = 0, so δθ(M(℘, ς)) = 0 and therefore

y = (yk) is Sθ(N2)-Cauchy. □

Definition 4.2 A neutrosophic 2-normed space X is called Sθ(N2)-complete if every Sθ(N2)-

Cauchy sequence in X is Sθ(N2)-convergent in X.

Theorem 4.2 Every N − 2−NS X is Sθ(N2)-complete.

Proof Let y = (yk) be Sθ(N2)-Cauchy sequence in X. Suppose on the contrary that y = (yk)

is not Sθ(N2)-convergent. Let ℘ > 0 and ς > 0, then ∃ r ∈ N such that ω ∈ X if we define

A(℘, ς) = {k ∈ Is : G(yk − yr, ω; ς) ≤ 1− ℘ or

B(yk − yr, ω; ς) ≥ ℘, Y (yk − yr, ω; ς) ≥ ℘} and

T(℘, ς) = {k ∈ Is : G(yk − y0, ω;
ς

2
) > 1− ℘ and

B(yk − y0, ω;
ς

2
) < ℘, Y (yk − y0, ω;

ς

2
) < ℘},

then δθ(A(℘, ς)) = δθ(T(℘, ς)) = 0 and therefore we have δθ(A
C(℘, ς)) = δθ(T

C(℘, ς)) = 1.

Since G(yk − yr, ω; ς) ≥ 2G(yk − y0, ω;
ς
2) > 1−℘ and B(yk − yr, ω; ς) ≤ 2B(yk − y0, ω;

ς
2) < ℘

, Y (yk − yr, ω; ς) ≤ 2Y (yk − y0, ω;
ς
2) < ℘, if G(yk − y0, ω;

ς
2) >

1−℘
2 and B(yk − y0, ω;

ς
2) <

℘
2 ,

Y (yk − y0, ω;
ς
2) <

℘
2 . We have δθ({k ∈ Is : G(yk − yr, ω; ς) > 1− ℘ and B(yk − yr, ω; ς) < ℘ ,

Y (yk−yr, ω; ς) < ℘}) = 0. i.e., δθ(A
C(℘, ς)) = 0 which contradicts the fact that δθ(A

C(℘, ς)) =

1. Hence, y = (yk) is Sθ-convergent w.r.t. N2. □

Theorem 4.3 For any sequence y = (yk) in X, the subsequent assertions are equivalent.
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(i) y = (yk) is a Sθ(N2)-Cauchy sequence.

(ii) ∃ a subset ℜ = {kn} of N with δθ(ℜ) = 1 and subsequence (ykn)n∈N is a Sθ(N2)-Cauchy

sequence over ℜ.

Proof. The proof of this theorem can be derived in a similar manner to the proof of theorem

3.4.

5. Conclusion

The fuzzy norm is a very helpful tool to analyze many situations in the real world where the

crisp norm is found difficult due to huge uncertainty. In the present work, we define and study

Sθ-convergence, Sθ-Cauchy and Sθ-completeness in a more general setting, i.e., in neutro-

sophic 2-normed spaces. The results presented in this paper will be helpful for many problems

of fuzzy functional analysis in which ordinary norm can not be predictable and therefore one

looks forward towards a fuzzy norm or a generalized fuzzy norm.

Acknowledgement: The authors express their gratitude to the reviewers for their valuable

suggestions and careful reading that enhanced the presentation of the paper.
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Abstract. We have embedded the concept norm with the proposed notion Neutrosophic multifuzzy Subrings.

This conception was manipulated with Neutrosophic multi fuzzy ideals and level sets. Furthermore, some propo-

sitions and theorems related to them were explored. Eventually, direct product and homomorphic properties

of Neutrosophic multifuzzy Subrings were derived.

Keywords: Neutrosophic fuzzy set (NFS); Neutrosophic multisets (NMS); Neutrosophic multi fuzzy set

(NMFS); T norms (Tn) and T conorms (Tc) ; Neutrosophic multifuzzy subring (NMFSR); Neutrosophic multi-

fuzzy left(right) ideals (NMFL(R)I).

—————————————————————————————————————————-

1. Introduction

There is a lack of certainty that couldnt be manipulated by classical set. To overcome the

complication, fuzzy set was enlightened by L.A.Zadeh [4]. Smarandache [5] initiated Neutro-

sophic set to build upon the thought of Atanassovs [11] intuitionistic fuzzy sets very convenient

and effectively which is the part of philosophy. In Neutrosophic logic every hypothesis having

degree of validity, neutral and non-validity is represented independently. The notion norm is

a sort of dual operation tracking down numerous applications in fuzzy set, probability and

statistics and other areas. A t-norm interprets intersection of fuzzy sets and conjunction in

logics. There were some essential properties like Archimedean, strict and nilpotent t-norm

that exist.

The Application of group theory to fuzzy set was originated by Rosenfield [10]. In view

of the fuzzy set hypothesis, Multifuzzy set was initiated by Sebastian and Ramakrishnan [8].

The unified notions of Multifuzzy set and Group called as multifuzzy group was examined by
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Muthuraj [1]. Also, he has discussed its Level Subgroups. The combined concepts Intuitionistic

Fuzzy sets and Fuzzy Multisets together were developed as Intuitionistic Fuzzy multisets by

Shinoj [9].

The thought of Intuitionistic fuzzy groups along with homomorphism and direct product

had been explored by Sharma [15, 16]. Rasul Rasuli [2, 7, 18, 19] investigated his thought on

Intuitionistic fuzzy subgroups and subrings regarding norms and reached out into fuzzy Multi-

groups. Abu Osman [12] explored products of fuzzy subgroups. Intuitionistic fuzzy multiset

was initiated by Shinoj and John [9]. Then, Wang [14] gave the comparative activities and

outcomes of single esteemed neutrosophic set hypothesis. To elaborate the neutrosophic set

theory, the conception neutrosophic multiset was originated by Deli [13] and Ye [21, 22] for

modelling vagueness and uncertainty. VakkasUlucay [3] proposed the notion of Neutrosophic

Multi Groups. Hemabala [6] gave the thought of gamma near ring applied into Anti Neutro-

sophic Multi fuzzy set. The extension principle was defined by Sahin[20] using neutrosophic

multi-sets.

The scope of this work is predicated upon the notion of Neutrosophic set and multifuzzy set

together with rings .We have characterized here a thought of Neutrosophic multifuzzy subrings

along with triangular norms and made sense of certain outcomes connected with them.

2. Preliminaries

This part consists of, fundamental definitions are referred to that are essential.

Definition 2.1. [5] A NFSA on the space of points X is characterized by a truth membership

µA(x), an indeterminancy NA(x), and falsity membership zA(x) is defined as

A = 〈x, µA (x) ,NA (x) ,zA(x) : x ∈ X〉 where µA,NA,zA : X → [0, 1] and

0 ≤ µA(x) +NA(x) +zA(x) ≤ 3

Definition 2.2. [13] A NMS A on X be defined as follows:

A = {< x, (µ1A(x), µ2A(x), . . . , µnA(x)), (N 1
A(x), N 2

A(x), . . . ,N n
A(x), (z1

A (x) , z2
A (x) , . . . ,

znA (x)) >: x ∈ X},
where, µiA(x),N i

A(x), ziA (x) : X → [0, 1], 0 ≤ supµiA (x) + supN i
A (x) + supziA (x) ≤ 3

(i = 1, 2, . . . , n) and for any x, truth membership µ1A(x) ≥ µ2A(x) ≥ · · · ≥ µnA(x) as decreasing

order but no restrictions for indeterminacy and falsity membership. Futher more, n is called

the dimension of A, denoted d(A).

Definition 2.3. [12] A function Tn : [0,1] ×[0, 1] → [0, 1] is a t-norm possess the following

axioms.

1.Tn (x, 1) = x

2.Tn (x, y) = Tn (x, z) if y ≤ z
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3.Tn (x, y) =Tn (y, x)

4.Tn (x, Tn (y, z)) = Tn (Tn ((x, y) , z))∀x, y, z ∈ [0, 1]

Definition 2.4. [17] A function Tc : [0,1] ×[0, 1]→ [0, 1] is a t-conorm possess the following

axioms

1.Tc (x, 0) = x

2.Tc (x, y) = Tc (x, z) if y ≤ z
3.Tc (x, y) = Tc (y, x)

4.Tc (x, Tc (y, z)) = Tc (Tc ((x, y) , z)) ∀x, y, z ∈ [0, 1]

Recollect if Tn is idempotent function Tn (x, x) = x. Similarly, if Tc is idempotent function

Tc (x, x) = x, ∀x ∈ [0, 1].

3. Neutrosophic Multifuzzy Subring with respect to Tn and Tc

Definition 3.1. A NMFS A = {< (x, µiA(x),N i
A,ziA (x)) >, x ∈ R, i = 1, 2, . . . , n } of a ring

R is said to be NMFSR with respect to Tn and Tc of R if

(i) µiA (x− y) ≥ Tn
(
µiA (x) , µiA (y)

)
; N i
A (x− y) ≤ Tc

(
N i
A (x) ,N i

A (y)
)

;

ziA (x− y) ≤ Tc
(
ziA (x) ,ziA (y)

)
(ii) µiA (xy) ≥ Tn

(
µiA (x) , µiA (y)

)
;N i
A (xy) ≤ Tc

(
N i
A (x) ,N i

A (y)
)

;

ziA (xy) ≤ Tc
(
ziA (x) ,ziA (y)

)
∀x, y ∈ R, i = 1, 2 . . . , n.

Example 3.2. Let ( Z3,+, · ) be a ring. For all x ∈ Z3 , we define a NMFS A over Tn and Tc

of Z3 as

A= (< 0(0.9, 0.7, 0.5), (0.2.0.4, 0.8), (0.3, 0.4, 0.6) >,

< 1(0.9, 0.5, 0.4), (0.2, 0.5, 0.7),(0.3, 0.5, 0.7) >,< 2(0.8, 0.5, 0.4), (0.2, 0.5, 0.7), (0.4, 0.5, 0.7) >).

Let Tn(x, y) = xy and Tc(x, y) = x + y − xy, ∀x, y ∈ Z3 then A is a NMFSR of Z3 over

Tn and Tc

Proposition 3.3. If A is a NMFSR of R with Tn and Tc, where Tn , Tc are idempotent then

∀x ∈ R &i = 1, 2, . . . , n

(i) µiA (0) ≥ µiA (x) ; N i
A (0) ≤ N i

A (x) ; ziA (0) ≤ ziA (x)

(ii) µiA (−x) = µiA (x) ; N i
A (−x) = N i

A (x) ; ziA (−x) = ziA (x)

Proof. If x ∈ R.

(i) µiA (0) = µiA (x− x) ≥ Tn
(
µiA (x) , µiA (x)

)
= µiA (x)

N i
A (0) = N i

A (x− x) ≤ Tc
(
N i
A (x) ,N i

A (x)
)

= N i
A (x)

Similarly, ziA (0) ≤ ziA (x)

(ii) µiA (−x) = µiA (0−x)
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≥ Tn
(
µiA (0) , µiA (x)

)
≥ Tn

(
µiA (x) , µiA (x)

)
= µiA (x) = µiA (0− (−x))

≥ Tn(µiA (0) , µiA (−x)

≥ Tn
(
µiA (−x) , µiA (−x)

)
≥ T iA (−x))

So that, µiA (x) = µiA (−x)

N i
A (−x) = N i

A (0−x)

≤ Tc
(
N i
A (0) ,N i

A (x)
)

≤ Tc
(
N i
A (x) ,N i

A (x)
)

= N i
A (x) = N i

A (0− (−x))

≤ Tc
(
N i
A (0) ,N i

A (−x)
)

≤ Tc
(
N i
A (−x) ,N i

A (−x)
)

≤ N i
A (−x)

So that, N i
A (x) = N i

A (−x) .

Similarly, ziA (x) = ziA (−x). ∀x ∈ R and i = 1, 2 . . . n Hence the result.

Proposition 3.4. Let A be a NMFSR of R over Tn and Tc , x ∈ R ∀i = 1, 2 . . . n then

µiA (x− y) = 1⇒ µiA (x)≥ µiA (y) ;N i
A (x− y) = 0⇒ N i

A (x) ≤ N i
A (y)

ziA (x− y) = 0⇒ ziA (x) ≤ ziA (y)

Proof. Let x, y ∈ R and i = 1, 2 . . . n. Then

(i) µiA (x) = µiA (x− y+y) ≥ Tn(µiA (x− y) , µiA (y)) = Tn(1,µiA (y)) = µiA (y)

(ii) N i
A (x) = N i

A (x− y+y) ≤ Tc
(
N i
A (x− y) ,N i

A (y)
)

= Tc
(
0,N i

A (y)
)

= N i
A (x)

Similarly, ziA (x) ≤ ziA (y) .

Hence the result.

Proposition 3.5. Let A be a NMFSR of R with respect to Tn and Tc where Tn , Tc are

idempotent. Then A(x− y) = A(y) iff A(x) = A(0), ∀x, y ∈ R and i = 1, 2, 3 . . . n.

Proof. Let A(x− y) = A(y). If y = 0,⇒ A(x) = A(0)

Conversely, if A(x) = A(0), Then,

(i).µiA (x) = µiA (0) ≥ µiA (x− y)

µiA (x) = µiA (0) ≥ µiA (y) ( by proposition 3.3)
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Now, µiA (x− y) ≥ Tn
(
µiA (x) , µiA (y)

)
≥ Tn

(
µiA (y) , µiA (y)

)
= µiA (y)

= µiA (−y)

= µiA (x− y − x)

≥ Tn
(
µiA (x− y) , µiA (x)

)
≥ Tn

(
µiA (x− y) , µiA (x− y)

)
= µiA (x− y)

So, we get µiA (x− y) = µiA (y)

(ii). N i
A (x) = N i

A (0) ≤ N i
A (x− y)

N i
A (x) = N i

A (0) ≤ N i
A (y)

Now,

N i
A (x− y) ≤ Tc

(
N i
A (x) ,N i

A (y)
)

≤ Tc
(
N i
A (y) ,N i

A (y)
)

= N i
A (y)

= N i
A (−y) (by theorem 3.3)

= N i
A (x− y − x)

≤ Tc
(
N i
A (x− y) ,N i

A (x)
)

≤ Tc
(
N i
A (x− y) ,N i

A (x− y)
)

= N i
A (x− y)

∴ N i
A (x− y) = N i

A (y)

Similarly, ziA (x− y) = ziA (y)

∴ A(x− y) = A(y) if A(x) = A(0)∀x,y ∈ R and i = 1, 2 . . . , n.

4. Neutrosophic Multifuzzy ideal and level set

Definition 4.1. Let A and B be two NMS of R. Define

A ∩ B =
(
µiA∩B,N i

A∩B,ziA∩B
)

as µiA∩B(x) = Tn(µiA (x) , µiB (x))

N i
A∩B(x) = Tc(N i

A (x) ,N i
B (x));ziA∩B(x) = Tc(ziA (x) ,ziB (x));

A ∪ B = (µiA∪B,N i
A∪B,ziA∪B) as µiA∪B(x) = Tc ( µiA (x) , µiB (x) )

N i
A∪B(x) = Tn ( N i

A (x) ,N i
B (x) ); ziA∪B(x ) = Tn ( ziA (x) ,ziB (x) ), ∀ x ∈ R .
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Example 4.2. Consider the ring (Z2,+, ·). For all x ∈ Z2, we define NMFS A and B of Z2

as A = (< 0(0.9,0.7), (0.1.0.3), (0.4,0.6) >; < 1(0.8,0.6), (0.1,0.4), (0.4,0.7) >

B = (< 0(0.9,0.6), (0.2.0.1), (0.5,0.4) >; < 1(0.7,0.4), (0.3,0.4), (0.6,0.7) >

Let Tn(x, y) = xy and Tc(x, y) = x+ y − xy, ∀x, y ∈ Z2.Then

A∪B = {< 0, (0.98,0.88),(0.02,0.03), (0.20,0.24) > < 1(0.94,0.76), (0.03,0.16), (0.24,0.0.49)

>}
A ∩ B = (<0(0.72,0.43), (0.28.0.37), (0.7,0.76)>; <1(0.56,0.24), (0.37,0.64), (0.76,0.91) >).

Theorem 4.3. If A and B are NMFSR of ring R, then A∩B also a NMFSR of R with respect

to Tn and Tc, where Tn and Tc are idempotent.

Proof. Let x, y ∈ R and i = 1, 2, 3, . . . , n

(i) µiA∩B(x− y) = Tn(µiA (x− y) , µiB (x− y))

≥ Tn
{
Tn(µiA (x) , µiA (y)), Tn(µiB (x) , µiB (y) )

}
= Tn

{
Tn(µiA (x) , µiB (x) ),Tn(µiA (y) , µiB (y))

}
= Tn(µiA∩B (x) , µiA∩B (y))

N i
A∩B(x− y) = Tc(N i

A (x− y) ,N i
B (x− y))

≤ Tc
{
Tc(N i

A (x) ,N i
A (y)), Tc(N i

B (x) ,N i
B (y))

}
= Tc

{
Tc(N i

A (x) ,N i
B (x)), Tc(N i

A (y) ,N i
B (y))

}
= Tc(N i

A∩B (x) ,N i
A∩B (y))

Similarly, ziA∩B(x− y) ≤ Tc(ziA (x) ,ziB (y))

(ii) µiA∩B(xy) = Tn(µiA (xy) , µiB (xy))

≥ Tn
{
Tn(µiA (x) , µiA (y)), Tn(µiB (x) , µiB (y))

}
= Tn

{
Tn(µiA (x) , µiB (x)), Tn(µiA (y) , µiB (y))

}
= Tn(µiA∩B (x) , µiA∩B (y))

N i
A∩B(xy) = Tc(N i

A (xy) ,N i
B (xy))

≤ Tc
{
Tc(N i

A (x) ,N i
A (y)), Tc(N i

B (x) ,N i
B (y))

}
= Tc

{
Tc(N i

A (x) ,N i
B (x) ),Tc(N i

A (y) ,N i
B (y))

}
= Tc(N i

A∩B (x) ,N i
A∩B (y))

Similarly, ziA∩B(xy) ≤ Tc(ziA (x) ,ziB (y) )

Hence A ∩ B is a NMFSR of R w.r.t Tn and Tc ∀x, y ∈ R and i = 1, 2, . . . , n.
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Example 4.4. Consider the ring (Z2,+, ·). For all x ∈ Z2, we define NMFSR A and B of Z2

as A = (< 0(0.9,0.7), (0.1.0.3), (0.4,0.6) >; < 1(0.8,0.6), (0.1,0.4), (0.4,0.7) >)

B = (< 0(0.8,0.6), (0.2.0.1), (0.5,0.4) > ; < 1(0.7,0.4), (0.3,0.4), (0.6,0.7) >)

A ∩ B=(<0(0.7,0.3), (0.3.0.4), (0.9,1)>; <1(0.5,0), (0.4,0.3), (1,1) >). Let Tn(x,y) =

max(x + y− 1, 0) and Tc(x, y) = min(1, x+ y)∀x, y ∈ Z2 then A∩B is NMFSR of Z2 over Tn

& Tc.

Remark 4.5. In general, if A,B are NMFSR of R with respect to Tn and Tc, then A ∪ B
will always not be a NMFSR of R with respect to Tn and Tc. The accompanying example will

show our case.

Example 4.6. Let (Z4,+, ·) be a ring of integers.

Let us define A = {(<0(0.9,0.6,0.4) (0.2,0.4,0.4) (0.3,0.5,0.6)>, <1(0.7,0.5,0.4) (0.2,0.5,0.6)

(0.3,0.6,0.7)>, <2(0.6,0.5,0.4) (0.3,0.6,0.7) (0.3,0.6,0.7)>, <3(0.9,0.5,0.3) (0.2,0.5,0.7)

(0.3,0.6,0.7)>}
B = {<(0 (0.9,0.8,0.7), (0.1,0.2,0.3), (0.2,0.4,0.6), <1 (0.8,0.4,0.3), (0.2,0.3,0.3), (0.3,0.5,0.6)>,

<2 (0.9,0.5,0.4), (0.3,0.4,0.5), (0.4,0.5,0.6)> , <3 (0.5,0.2,0.1), (0.3,0.4,0.5), (0.4,0.5,0.6)> }
be two NMFSR of Z4 under Tn and Tc.

Let us consider Tn(x, y) = min(x, y);Tc(x, y) = max(x, y) then A, B are NMFSR of Z4.

A ∪ B = { < 0, (0.9,0.8,0.7), (0.1,0.2,0.3), (0.2,0.4,0.6) > < 1(0.8,0.5,0.4), (0.2,0.3,0.3),

(0.3,0.5,0.7) >, < 2(0.9,0.5,0.4), (0.3,0.4,0.5), (0.3,0.5,0.6) >, 3(0.9,0.5,0.3), (0.2,0.4,0.5),

(0.3,0.5,0.6) > }
Then for x = 3; y = 2. µiA∪B(3− 2) = (0.8, 0.5, 0.4)

Again, if A is a NMFSR with respect to Tn and Tc of R then ∀ x, y ∈ Z4 ;

µiA∪B(x− y) ≥ Tn(µiA∪B; (x) , µiA∪B (y) )

But for x = 3; y = 2

Tn
{
µiA∪B (x) , µiA∪B (y)

}
= Tn(µiA∪B (3) , µiA∪B (2)) = Tn{(0.9, 0.5, 0.3), (0.9, 0.5, 0.4)} = (0.9, 0.5, 0.3)

∴ µiA∪B(3− 2) = (0.8, 0.5, 0.4) ;Tn{µiA (3) , µiA (2)} = (0.9, 0.5, 0.3)

µiA∪B(3− 2) � Tn{µiA∪B (2) , µiA∪B (3)}
Hence A ∪ B is not NMFSR of Z4 over Tn and Tc.

Corollary 4.7. If A,B are NMFSR of R then A∪B is a NMFSR of R if one is contained in

other.

Proof. Let x,y ∈ R and i = 1, 2, 3 . . . , n

(i) µiA∪B(x− y) = Tc(µ
i
A (x− y) , µiB (x− y))

≥ Tc{Tn(µiA (x) , µiA (y)), Tn(µiB (x) , µiB (y))}
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= Tn{Tc(µiA (x) , µiB (x)), Tc(µ
i
A (y) , µiB (y))}

= Tn(µiA∪B (x) , µiA∪B (x))

N i
A∪B(x− y) = Tc(N i

A (x− y) ,N i
B (x− y))

≤ Tc{Tc(N i
A (x) ,N i

A (y)), Tc(N i
B (x) ,N i

B (y))}

= Tc{Tc(N i
A (x) ,N i

B (x)), Tc(N i
A (y) ,N i

B (y))}

= Tc(N i
A∪B (x) ,N i

A∪B (y))

Similarly, ziA∪B(x− y) ≤ Tc(ziA (x) ,ziB (y) )

(ii) µiA∪B(xy) = Tc(µ
i
A (xy) , µiB (xy))

≥ Tc{Tn(µiA (x) , µiA (y)), Tn(µiB (x) , µiB (y))}

= Tn{Tc(µiA (x) , µiB (x)), Tc(µ
i
A (y) , µiB (y))}

= Tn(µiA∪B (x) , µiA∪B (y))

N i
A∪B(xy) = Tc(N i

A (xy) ,N i
B (xy))

≤ Tc{Tc(N i
A (x) ,N i

A (y)), Tc(N i
B (x) ,N i

B (y))}

= Tc{Tc(N i
A (x) ,N i

B (x)), Tc(N i
A (y) ,N i

B (y))}

= Tc(N i
A∪B (x) ,N i

A∪B (y))

Similarly, ziA∪B(xy) ≤ Tc(ziA (x) ,ziB (y) )

Hence A ∪ B is a NMFSR of R w.r.t Tn and Tc ∀x, y ∈ R and i = 1, 2 . . . , n

Definition 4.8. Let A={< (x, µiA(y),N i
A(x),ziA(x) > ; x ∈ R and i = 1, 2 . . . , n} be a

NMFSR of R. Let αi, βi, γi ∈ [0, 1]. With 0 ≤ αi + βi + γi ≤ 3. Then the set Aα,β,γ is

called a level set of A, where for any x ∈ Aα,β,γ the following inequalities hold µiA (x) ≥ αi;

N i
A (x) ≤ βi ; ziA (x) ≤ γi;

Theorem 4.9. If A is said to be a NMFSR of R with respect to Tn and Tc iff Aα,β,γ is a

subring of R with respect to Tn and Tc for all αi, βi, γi ∈ [0, 1] with µA (x) ≥ αi; NA (x) ≤ βi;
zA(x) ≤ γi; i = 1, 2, . . . , n and assume that Tn and TC are idempotent.

Proof. Since µA (x) ≥ α; NA (x) ≤ β; zA(x) ≤ γ; ∀x ∈ Aα,β,γ .
(ie) Aα,β,γ is non-empty.

Then for all i, µiA (x) ≥ αi; N i
A (x) ≤ βi; ziA (x) ≤ γi;

Now, let A be NMFSR of R with respect to Tn and Tc and x, y ∈ Aα,β,γ
To show that, x− y, xy ∈ Aα,β,γ .

(i) µiA (x− y) ≥ T
(
µiA (x) , µiA (y)

)
≥ Tn ( αi, αi ) = αi

Again, µiA (xy) ≥ T
(
µiA (x) , µiA (y)

)
≥ Tn ( αi, αi ) = αi
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(ii) N i
A (x− y) ≤ Tc

(
N i
A (x) ,N i

A (y)
)
≤ Tc ( βi, βi ) = βi

Again, N i
A (x) ≤ Tc

(
N i
A (x) ,N i

A (y)
)
≤ Tc ( βi, βi ) = βi

Similarly, ziA (x− y) ≤ γi ; ziA (xy) ≤ γi
∴ µA (x) ≥ α; NA (x) ≤ β; zA(x) ≤ γ;

Thus x− y, xy ∈ Aα,β,γ is a subring of R.

Conversely, let Aα,β,γ be a subring of R.

To show that, A is a NMFSR of R with respect to Tn and Tc .

Let x, y ∈ R then there exist αi ∈ [0, 1] such that Tn
(
µiA (x) , µiA (y)

)
= αi

So, µiA (x) ≥ αi; µiA (y) ≥ αi
Also, let there exist βi, γi ∈ [0,1] such that Tc

(
N i
A (x) ,N i

A (y)
)

= βi; Tc
(
ziA (x) ,ziA (y)

)
= γi.

Then x, y ∈ Aα,β,γ .

Again as Aα,β,γ is a subring of R. x− y, xy ∈ Aα,β,γ
Hence,

µiA (x− y) ≥ αi = Tn
(
µiA (x) , µiA (y)

)
µiA (xy) ≥ αi = Tn

(
µiA (x) , µiA (y)

)
Similarly,

N i
A (x− y) ≤ βi = Tc

(
N i
A (x) ,N i

A (y)
)

;N i
A (xy) ≤ βi = Tc

(
N i
A (x) ,N i

A (y)
)

ziA (x− y) ≤ γi = Tc
(
ziA (x) ,ziA (y)

)
;ziA (xy) ≤ γi = Tc

(
ziA (x) ,ziA (y)

)
∴ A is a NMFSR of R with respect to Tn and Tc .

Proposition 4.10. Let A be a NMFSR of R w.r. t. Tn and Tc where Tn, Tc are idempotent

then S= { x ∈ R/µiA(x) = 1,N i
A(x) = 0,ziA(x) = 0; i = 1, 2 . . . , n} is a subring of R.

Proof. Let x, y ∈ S.Then,

(i) µiA (x− y) ≥ Tn
(
µiA (x) , µiA (y)

)
= T (1, 1) = 1

N i
A (x− y) ≤ Tc

(
N i
A (x) ,N i

A (y)
)

= Tc(0, 0) = 0

Similarly, F iA (x− y) ≤ 0. hence x− y ∈ S.

Also,

(ii) µiA (xy) ≥ Tn
(
µiA (x) , µiA (y)

)
= T (1, 1) = 1

N i
A (xy) ≤ Tc

(
N i
A (x) ,N i

A (y)
)

= Tc(0, 0) = 0

Similarly, ziA (xy) ≤ 0. Hence xy ∈ S.

Thus S = {x ∈ R/µiA(x) = 1,N i
A(x) = 0, ziA(x) = 0} is a subring of R w. r. t Tn and Tc .

Definition 4.11. Let A be a NMFS of R. Then A is Said to be NMFLI of R w.r.t, Tn and

Tc if
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(i) µiA(x− y) ≥ Tn(µiA (x) , µiA (y)); N i
A(x− y) ≤ Tc(N i

A (x) ,N i
A (y));

ziA(x− y) ≤ Tc(ziA (x) ,ziA (y))

(ii) µiA (xy) ≥ µiA (y) ; N i
A(xy) ≤ N i

A (y); ziA(xy) ≤ ziA (y)∀x, y ∈ R, i = 1, 2 . . . , n

Example 4.12. Let (Z2,+, ·) be a ring. Define

A = {( < (0,(0.9,0.7),(0.1,0.5),(0.2,0.3)), (1,(0.8,0.6),(0.2,0.5),(0.3,0.6)) > }
Let us consider Tn(x, y) = xy; Tc(x, y) = x+ y − xy. Then A is NMFLI of Z2 with Tn and Tc

Definition 4.13. Let A be a NMFS of R w. r. t Tn and Tc. Then A is NMFRI of R w. r. t

Tn and Tc if

(i) µiA (x− y) ≥ Tn
(
µiA (x) , µiA (y)

)
; N i

A(x− y) ≤ Tc(N i
A (x) ,N i

A (y));

ziA(x− y) ≤ Tc(ziA (x) ,ziA (y))

(ii) µiA(xy) ≥ µiA (x); N i
A(xy) ≤ N i

A (x); ziA(xy) ≤ ziA (x) , ∀x, y ∈ R, i = 1, 2 . . . , n.

Example 4.14. Consider the ring (Z3,+, ·). For all x ∈ Z3, we define NMFS A of Z3 as A =

(< 0(0.9,0.7), (0.1.0.3), (0.4,0.6) >; < 1(0.8,0.6), (0.1,0.4), (0.4,0.7) >;< 2(0.7,0.4), (0.1.0.4),

(0.4,0.6) >)

Let us consider Tn(x, y) = min(x, y);Tc(x, y) = max(x, y) then A is NMFRI of Z3 over Tn &

Tc.

Definition 4.15. Let A be a NMFS of R with respect to Tn and Tc. Then A is Said to be

NMFI with respect to Tn and Tc of R if

(i) µiA(x− y) ≥ Tn(µiA (x) , µiA (y)); N i
A(x− y) ≤ Tc(N i

A (x) ,N i
A (y))

ziA(x− y) ≤ Tc(ziA (x) ,ziA (y))

(ii) µiA(xy) ≥ Tc(µiA (x) , µiA (y)); N i
A(xy) ≤ Tn(N i

A (x) ,N i
A (y))

ziA(xy) ≤ Tn(ziA (x) ,ziA (y)), ∀x, y ∈ R.

Example 4.16. Consider the ring (Z2,+, ·). For all x ∈ Z2, we define NMFS A of Z2 as A =

(< 0(0.8,0.7), (0.2.0.3), (0.1,0.4) >; < 1(0.7,0.6), (0.2,0.3), (0.2,0.5) >

Let us consider Tn(x, y) = min(x, y);Tc(x, y) = max(x, y) then A is NMFI of Z2 over Tn & Tc.

Theorem 4.17. Let A be a NMFS of R with respect to Tn and Tc where, Tn, Tc are idempotent.

Then A is said to be NMFLI(NMFRI) of R with Tn and Tc iff Aα,β,γ is a LI(RI) of R, ∀
αi, βi, γi ∈ [0,1]. with µiA (x) ≥ αi ; N i

A (x) ≤ βi; ziA (x) ≤ γi and αi + βi + γi ≤ 3, where

µiA (0) ≥ αi; N i
A (0) ≤ βi; ziA (0) ≤ γi, i = 1, 2 . . . , n.

Proof. Let A be a NMFLI of R with respect to Tn and Tc .

If x, y ∈ Aα,β,γ , i = 1, 2, . . . , n

Then by µiA(x− y) ≥ Tn(µiA (x) , µiA (y)) ≥ Tn(αi, αi) = αi

N i
A(x− y) ≤ TC(N i

A (x) ,N i
A (x)) ≤ TC(βi, βi) = βi
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Similarly, F iA (x− y) ≤ γi. ∴ µA (x− y) ≥ α; NA (x− y) ≤ β;zA(x− y) ≤ γ;

We obtain that x− y ∈ Aα,β,γ
Now let x ∈ Aα,β,γ and r ∈ R. Then from µiA(rx) ≥ µiA (x) ≥ αi

N i
A(rx) ≤ N i

A (x) ≤ βi

ziA(rx) ≤ ziA (x) ≤ γi

Therefore rx ∈ Aα,β,γ . Hence Aα,β,γ is a LI of R.

Similarly, we can prove it for right ideal (ie) xr ∈ Aα,β,γ .
Conversely, let Aα,β,γ be a LI of R and x, y ∈ Aα,β,γ such that

µiA (x) = µiA (y) = αi;N i
A (x) = N i

A (y) = βi;ziA (x) = ziA (y) = γi

∵ x− y ∈ Aα,β,γ so

µiA (x− y) ≥ αi = T (αi, αi) = Tn
(
µiA (x) , µiA (y)

)
N i
A (x− y) ≤ βi = Tc(βi, βi) = Tc

(
N i
A (x) ,N i

A (y)
)

Similarly, we get ziA (x− y) ≤ Tc
(
ziA (x) ,ziA (y)

)
. Also ∵ xy ∈ Aα,β,γ then

µiA (xy) ≥ αi = µiA (y)

N i
A (xy) ≤ βi = N i

A (y)

ziA (xy) ≤ γi = ziA (y) , x, y ∈ Aα,β,γ .

∴ A is a NMFLR of R with Tn and Tc are idempotent. Similarly, we can prove it for RI.

Theorem 4.18. Let A be a NMFS of R with respect to Tn and Tc where Tn, Tc be idempotent.

Then A is said to be NMFI of R with Tn and Tc iff Aα,β,γ is an ideal of R ∀ αi, βi, γi ∈ [0,1]

with µiA (x) ≥ αi ; N i
A (x) ≤ βi ; ziA (x) ≤ γi and 0 ≤ αi + βi + γi ≤ 3, where µiA (0) ≥ αi ;

N i
A (0) ≤ βi ; ziA (0) ≤ γi ,i=1, 2. . . , n.

Proof. Follows from the above theorem.

Theorem 4.19. If A and B are NMFLI(NMFRI) of R with respect to Tn and Tc then A ∩ B
also a NMFLI(NMFRI) of R with respect to Tn and Tc where, Tn and Tc are idempotent.

Proof. Let x, y ∈ R.A ∩ B is NMFSR with respect to Tn and Tc . (By theorem 4.2).

It is enough to show,
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(i)µiA∩B(xy) = Tn(µiA (xy) , µiB (xy))

≥ Tn(µiA (y)), µiB (y))

= Tn(µiA∩B (y))

N i
A∩B(xy) = Tc(N i

A (xy) ,N i
B (xy))

≤ Tc(N i
A (y) ,N i

B (y))

= N i
A∩B (y)

Similarly, ziA∩B((xy) ≤ ziA∩B ( y ). Therefore A ∩ B is a NMFLI with respect to Tn and Tc

In the similar way we can easily prove for NMFRI.

Remark 4.20. In general, if A,B are NMFLI(NMFRI) of R with respect to Tn and Tc, then

A∪B will always not be a NMFLI(NMFRI) of R with respect to Tn and Tc. The accompanying

example will show our case.

Example 4.21. Let (Z4,+, ·) be a ring of integers.

Let us define A = {(<0(0.9,0.6) (0.2,0.4) (0.3,0.5)>, <1(0.8,0.5) (0.3,0.6) (0.3,0.6)>,

<2(0.8,0.5) (0.3,0.6) (0.3,0.6)>, <3(0.9,0.5) (0.2,0.5) (0.3,0.6)>}
B = {<(0 (0.9,0.8), (0.1,0.2), (0.2,0.4), <1 (0.8,0.4), (0.3,0.4), (0.4,0.5)>, <2 (0.9,0.5),

(0.3,0.4), (0.4,0.5)> , <3 (0.8,0.4), (0.3,0.4), (0.4,0.5)> } be two NMFS of Z4 under Tn and

Tc.

Let us consider Tn(x,y) = min(x,y);Tc(x,y) = max(x,y) then A,and B be NMFSR of Z4.

A∪B = { < 0, (0.9,0.8), (0.1,0.2), (0.2,0.4) > < 1(0.8,0.5), (0.2,0.3), (0.3,0.5) >, < 2(0.9,0.5),

(0.3,0.4), (0.3,0.5) >, 3(0.9,0.5), (0.2,0.4), (0.3,0.5) > }
Then for x = 3; y = 2. µiA∪B(3− 2) = (0.8, 0.5)

Again, if A is a NMFLI with respect to Tn and Tc of R then ∀ x,y ∈ Z4

µiA∪B(x − y) ≥ Tn(µiA∪B (x) , µiA∪B (y) ) µiA (xy) ≥ µiA (y) ; N i
A(xy) ≤ N i

A (y); ziA(xy) ≤
ziA (y) ∀x, y ∈ R, i = 1, 2 . . . , n

But for x = 3; y = 2

Tn
{
µiA∪B (x) , µiA∪B (y)

}
= Tn(µiA∪B (3) , µiA∪B (2)) = Tn{(0.9, 0.5), (0.9, 0.5)} = (0.9, 0.5)

∴ µiA∪B(3− 2) = (0.8, 0.5) ;Tn{µiA (3) , µiA (2)} = (0.9, 0.5)

µiA∪B(3− 2) � Tn{µiA∪B (3) , µiA∪B (2)}
Hence A ∪ B is not NMFLI of Z4 over Tn and Tc.

Theorem 4.22. If A and B are NMFI of ring R with respect to Tn and Tc then A ∩ B also

a NMFI of R w. r. t Tn and Tc where Tn and Tc are idempotent.
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Proof. Follows from above theorem.

Corollary 4.23. Let { Ai, i = 1, 2 . . . , n} be a NMFSR of R with respect to Tn and Tc. Then

∩Ai is also NMFSR of R .

Definition 4.24. Let A and B be the two NMFS in R. Then A ◦ B is defined as , ∀x,y ∈ R,

(A ◦ B)(x) =



sup︸︷︷︸
x=yz

Tn
(
µiA (y) , µiB (z)

)
inf︸︷︷︸
x=yz

Tc(N i
A (y) ,N i

B (z)) if x = yz

inf︸︷︷︸
x=yz

Tc(ziA (y) ,ziB (z))

(0, 1, 1) if x 6= yz

Theorem 4.25. Let A, B be the two NMS in R. If A and B are NMFI of R with respect to

Tn and Tc then A ◦B ⊂ A ∩ B .

Proof. Let x ∈ R. Suppose A ◦ B = (0, 1, 1) then there is nothing to prove.

Suppose A ◦ B 6= (0, 1, 1)

Then,

(A ◦ B)(x) =



sup︸︷︷︸
x=yz

Tn
(
µiA (y) , µiB (z)

)
inf︸︷︷︸
x=yz

Tc(N i
A (y) ,N i

B (z) if x = yz

inf︸︷︷︸
x=yz

Tc(ziA (y) ,ziB (z)

Since A, B are NMFI of R with Tn and Tc .

(i) µiA (y) ≤ µiA (yz) = µiA (x) ; N i
A(y) ≥ N i

A (yz) = NA (x) ; ziA (y) ≥ ziA (yz) = ziA (x)

(ii) µiB (z) ≤ µiB (yz) = µiB (x) ; N i
B (z) ≥ N i

B (yz) = N i
B (x); ziB (z) ≥ ziB (yz) = ziB (x)

Thus,

µiA◦B (x) = sup︸︷︷︸
x=yz

{Tn(µiA (y) , µiB (z)}

≤ Tn(µiA (x) , µiB (x))

= µiA∩B(x)

N i
A◦B (x) = inf︸︷︷︸

x=yz

{Tc(N i
A (y) ,N i

B (z)}

≥ Tc(N i
A (y) ,N i

B (z))

= N i
A∩B(x)

Similarly, ziA◦B (x) ≥ ziA∩B(x). Hence A ◦ B ⊂ A ∩ B.
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5. Direct product and Homomorphism on Neutrosophic Multifuzzy subrings over

norms

Definition 5.1. Let R1 and R2 be the two rings. Let A and B be the two NMFS of R1 and R2

respectively with Tn and Tc. Then A×B={< ((x,y), µiA×B(x,y),N i
A×B(x,y),ziA×B(x,y) > /

x ∈ R1, y ∈ R2, i = 1, 2, . . . , n }
Where µiA×B(x,y) = Tn(µiA (x) , µiB (y) )

N i
A×B(x,y) = Tc(N i

A (x) ,N i
B (y) ), ziA×B(x,y) = Tc(ziA (x) ,ziB (y) )

Theorem 5.2. Let R1 and R2 be the two rings with A and B are respectively NMFSR of R1

and R2 over Tn and Tc .Then A×B is also a NMFSR of R1×R2 With respect to Tn and Tc .

Proof. Let A and B are respectively NMFSR of R1 and R2 respectively over Tn and Tc .

Let (x1,y1) (x2,y2) ∈ A ×B.

Then, µiA×B [(x1,y1)− (x2,y2)] = µiA×B ((x1 − x2) , (y1 − y2))

= Tn
{
µiA((x1 − x2)), µ

i
B (y1 − y2))

}
≥ Tn{Tn(µiA (x1) , µ

i
A (x2)), Tn(µiB(y1), µ

i
B (y2))}

≥ Tn{Tn(µiA (x1) , µ
i
B(y1)), Tn(µiA (x2) , µ

i
B (y2))}

≥ Tn
{
µiA×B((x1,y1)), µ

i
A×B((x,y2))

}
.

µiA×B [(x1,y1) · (x2,y2)] = µiA×B ((x1.x2) , (y1.y2))

= Tn
{
µiA((x1.x2)), µ

i
B (y1.y2))

}
≥ Tn{Tn(µiA (x) , µiA (x2)), Tn(µiB(y1), µ

i
B (y2))}

≥ Tn{Tn(µiA (x1) , µ
i
B(y1)), Tn(µiA (x2) , µ

i
B (y2))}

≥ Tn
{
µiA×B((x1,y1)), µ

i
A×B((x2,y2))

}
.

Again, N i
A×B [(x,y1)− (x2,y2)] = N i

A×B ((x1 − x2) , (y1 − y2))

= Tc
{
N i
A((x1 − x2)),N i

B (y1 − y2))
}

≤ Tc{Tc(N i
A (x) ,N i

A (x2)), Tc(N i
B(y1),N

i
B (y2))}

≤ Tc{Tc(N i
A (x1) ,N i

B(y1)), Tc(N
i
A (x2) ,N i

B (y2))}

≤ Tc
{
N i
A×B (x1,y1) ,N i

A×B (x2,y2)
}
.

N i
A×B [(x1,y1) . (x2,y2)]N i

A×B ((x1.x2) , (y1.y2))

= Tc
{
N i
A((x1.x2)),N i

B (y1.y2))
}

≤ Tc{Tc(N i
A (x1) ,N i

A (x2)), Tc(N i
B(y1),N

i
B (y2))}

≤ Tc{Tc(N i
A (x1) ,N i

B(y1)), Tc(N
i
A (x2) ,N i

B (y2))}
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≤ Tc
{
N i
A×B((x1,y1)),N i

A×B((x2,y2))
}
.

Similarly, we get,

ziA×B [(x1,y1)− (x2,y2)] ≤ Tc
{
ziA×B((x1,y1)),ziA×B((x2,y2))

}
ziA×B [(x1,y1) . (x2,y2)] ≤ Tc

{
ziA×B((x1,y1)),ziA×B((x2,y2))

}
Hence A× B is also a NMFSR of R1 ×R2 over T and Tc.

Remark 5.3. However, A× B is a NMFSR of R1 ×R2 over Tn and Tc. Then both A and B
are need not be NMFSR of R1 and R2 respectively over Tn and Tc which is obvious from the

accompanying case.

Example 5.4. Let (Z4,+, ·) and (Z2,+, ·) be a ring. Let Tn (x,y) = min(x,y) and Tc(x,y) =

max(x,y). We define a NMFS A and B of Z4 and Z2 as

A = ( < 0(0.9,0.8), (0.1.0.2), (0.5,0.6) > ; < 1(0.9,0.7), (0.1,0.2), (0.5,0.6) > < 2(0.8,0.6),

(0.2,0.3), (0.6,0.7) > , < 3(0.7,0.5), (0.3,0.2), (0.7,0.6)

B = ( < 0(0.8,0.7), (0.2.0.3), (0.6,0.7) >; < 1(0.7,0.7), (1,0) (0.3,0.4), (0.7,0.8) > ).

A×B = { < (0,0) (0.8,0.7) > , < (0,1) (0.7,0.7) > , < (1,0) (0.8,0.7) > , < (1,1) (0.7,0.7) >,

< (2,0) (0.8,0.6) > , < (2,1) (0.7,0.6) > , < (3,0) (0.7,0.5) >, < (3,1) (0.7,0.5) > )

It is clear thatA×B a NMFSR of Z4×Z2. ButA is not a NMFSR of Z2 asN i
A (1·0) = (0.1, 0.3);

Tc{N i
A (1) ,N i

A (0)} = (0.1, 0.2) N i
A (1 · 0) � Tc{N i

A (1) ,N i
A (0) }

Corollary 5.5. Let, for all i ∈ {1, 2. . . . n} , (Ri,+, · ) are rings and Ai is a NMFSR of Ri

over Tn and Tc .Then A1 × A2 × . . . .An is a NMFSR of R1 × R2 . . . . × Rn over Tn and Tc,

where n ∈ N

Theorem 5.6. If A and B are NMFLI(NMFRI) of R1 and R2 over Tn and Tc. Then A× B
is also a NMFLI(NMFRI) of R1 ×R2 With respect to Tn and Tc.

Proof. Let (x1, y1) (x2, y2) ∈ A×B. Assume A1 and A2 are NMFLI of R1 and R2 respectively

over Tn and Tc.

We have to show that A× B is also a NMFLI of R1 ×R2 over Tn and Tc

By theorem 5.2,

A× B is also a NMFSR of R1 ×R2 over Tn and Tc .

It is enough to show

µiA×B [(x1,y1) (x2,y2)] ≥ µiA×B((x2,y2))

N i
A×B [(x1,y1) (x2,y2)] ≤ N i

A×B((x2,y2))

ziA×B [(x1,y1) (x2,y2)] ≤ ziA×B((x2,y2))
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(ie)µiA×B [(x1,y1) (x2,y2)] = µiA×B [((x1x2,y1y2))]

= Tn(µiA (x1x2) , µ
i
B(y1y2))

≥ Tn(µiA (x2) , µ
i
B(y2))

= µiA×B((x2,y2))

N i
A×B [(x1,y1) (x2,y2)] = N i

A×B [((x1x2,y1y2))]

= Tc(N i
A (x1x2) ,N i

B(y1y2))

≤ Tc(N i
A (x2) ,N i

B(y2))

= N i
A×B((x2,y2))

Similarly, ziA×B [(x1,y1) (x2,y2)] ≤ ziA×B((x2,y2) )

Hence A× B is also a NMFLI of R1 ×R2 over Tn and Tc

Similarly, we can show it for NMFRI.

Theorem 5.7. If A and B are NMFI of R1 and R2 over Tn and Tc .Then A × B is also a

NMFI of R1 ×R2 with respect to Tn and Tc.

Proof. Follows from above theorem.

Example 5.8. Let (Z2,+, ·) be a ring. Define

A = {( < (0,(0.9,0.7),(0.1,0.5),(0.2,0.3)), (1,(0.8,0.6),(0.2,0.5),(0.3,0.6)) > }
B ={ < (0,(0.8,0.7),(0.2,0.3),(0.1,0.4)), (1,(0.7,0.6),(0.2,0.3),(0.2,0.5)) > } be two NMFS of Z2

under Tn and Tc. Let us consider Tn(x,y) = xy; Tc(x,y) = x + y− xy. Then A×B is NMFI

with Tn and Tc of Z2 × Z2.

Corollary 5.9. Let, for all i ∈ {1, 2 . . . ., n}, (Ri,+, · ) are rings and Ai is a NMFI of Ri.

Then A1 ×A2 × . . . .×An is a NMFI of R1 ×R2 . . . .×Rn where n ∈ N.

Definition 5.10. If A = ( µiA,N i
A,ziA ) is a NMFS in R, then F (A) = B, is the NMFS

defined by

F
(
T iA
)

(y) =

{
supx∈F−1(y)

(
µiA
)

(x) , if F−1(y) 6= 0

0, otherwise

F
(
N i
A
)

(y) =

{
supx∈F−1(y)

(
N i
A
)

(x) , if F−1(y) 6= 0

1, otherwise

F
(
ziA
)

(y) =

{
infx∈F−1(y)

(
ziA
)

(x) , ifF−1(y) 6= 0

1, otherwise

Where F is ring homomorphism of R onto R1. Also F−1 (B) =
{〈

x,F−1
(
µiB
)

(x) ,

F−1
(
N i
B
)

(x) ,F−1
(
ziB
)

(x)
〉

:x ∈ A
}

where F−1 (B) (x) = (B) (F(x)) .
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Theorem 5.11. Let R and R1 be any two rings and F be a homomorphism from R onto R1.

If A ∈ NMFSR of R under Tn and Tc then F (A) ∈ NMFSR of R1 over Tn and Tc.

Proof. Let x1,x2 ∈ R and y1,y2 ∈ R1 . If A ∈ NMFSR of R . Then

(i) F
((
µiA
)

(y1 − y2)
)

= sup
x∈F−1(y)

µiA (x1 − x2)

≥ sup
x∈F−1(y)

(
Tn(µiA (x1) , µ

i
A (x2)

)
= Tn( sup

x∈F−1(y)

(µiA (x1) , sup
x∈F−1(y)

µiA (x2))

= Tn
(
F
(
µiA(y1)

)
,F
(
µiA(y2)

))
Similarly, F

(
N i
A(y1 − y2)

)
≤ Tc

(
F
(
N i
A(y1)

)
,F
(
N i
A(y2)

))
F
(
ziA(y1 − y2)

)
≤ Tc

(
F
(
ziA (y1)

)
,F
(
ziA(y2)

))
.

(ii) F
((
µiA
)

(y1y2)
)

= sup
x∈F−1(y)

µiA (x1x2)

≥ sup
x∈F−1(y)

Tn
(
µiA (x1) , µ

i
A (x2)

)
= Tn( sup

x∈F−1(y)

µiA (x1) , sup
x∈F−1(y)

µiA (x2))

= Tn
(
F
(
µiA (y1)

)
,F
(
µiA (y2)

))
Similarly, F

(
N i
A(y1y2)

)
≤ Tc

(
F
(
N i
A (y1)

)
,F
(
N i
A(y2)

))
F
(
ziA(y1y2)

)
≤ Tc

(
F
(
ziA (y1)

)
,F
(
ziA(y2)

))
Hence then F (A) ∈ NMFSR of R1 over Tn and Tc.

Theorem 5.12. Let R and R1 be any two rings and F be a homomorphism from R onto R1.

If B ∈ NMFSR of R1 under Tn and Tc then F−1(B) NMFSR of R under T and Tc

Proof. Let x,y ∈ R. Let B ∈ NMFSR of R1. Then

(i) F−1
((
µiB
)

(x− y)
)

= µiB (F (x− y))

= T iB (F (x)− F(y))

≥ Tn(µiB (F (x)) , µiB (F (y)))

= Tn(F−1
(
µiB
)

(x) ,F−1
(
µiB
)

(y)).

Similarly, F−1
(
N i
B
)

(x− y) ≤ Tc
(
F−1

(
N i
B
)

(x) ,F−1
(
N i
B
)

(y)
)

F−1
(
ziB
)

(x− y) ≤ Tc
(
F−1

(
ziB
)

(x) ,F−1
(
ziB
)

(y)
)
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(ii) F−1
((
µiB
)

(xy)
)

= µiB (F (xy))

= µiB (F (x)F(y))

≥ Tn
(
µiB (F (x)) , µiB(F (y) , )

)
= Tn

(
F−1

(
µiB
)

(x) ,F−1(µiB)(y)
)

Similarly, F−1
(
N i
B
)

(xy) ≤ Tc
(
F−1

(
N i
B
)

(x) ,F−1
(
N i
B
)

(y)
)

F−1
(
ziB
)

(xy) ≤ Tc
(
F−1

(
ziB
)

(x) ,F−1
(
ziB
)

(y)
)

Hence F−1 (B) is a NMFSR of R under Tn and Tc.

6. Conclusion

We deliberated neutrosophic multifuzzy subrings and ideals along with triangular norm and

made use of the concepts of direct product, image and inverse image of homomorphism. We

have established some theorems and results. This study will give base for our upcoming work.
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Abstract. In the present paper, we aim to define λ-statistical summability, Vλ-statistical summability in

neutrosophic-2-normed spaces (briefly called N − 2−NS) and study some relationships among these notions.

We give an example that shows λ-statistical summability is stronger method in neutrosophic-2-normed spaces.

Finally, we define λ-statistically Cauchy sequence and λ-statistically completeness in neutrosophic-2-normed

spaces and obtain the Cauchy convergence criteria in these spaces.

Keywords: λ-statistical convergence, Vλ-summable, λ-statistical Cauchy, neutrosophic-2-normed spaces.

—————————————————————————————————————————–

1. Introduction

The idea of λ-statistical convergence was explored by Mursaleen [21] as a generalization of

statistical convergence, initially introduced in [4] and [33] independently.

“Let λ = (λn) ;λn ∈ R+ = (0,∞) be a non decreasing sequence satisfying lim
n→∞

λn =

∞, λn+1 ≤ λn + 1, λ1 = 1 and In = [n − λn + 1, n]. For R ⊆ N, the λ-density of R is

defined by δλ(R) = lim
n

1
λn

|{k ∈ In : k ∈ R}|. A sequence u = (uk) of numbers is said

to be λ-statistical convergent to u0 if for each y > 0, lim
n

1
λn

|{k ∈ In : |uk − u0| ≥ y}| =

0, i.e., δλ(Ry) = 0, where Ry = {k ∈ In : |uk − u0| ≥ y}. We write, in this case Sλ −
lim
k

uk = u0.”Subsequently, statistical convergence and its generalizations have been developed

by numerous authors including Connor [3], Fridy [6], Hazarika et al. [8, 9], Kumar et al. [15],

Maddox [20], Šalát [36] and many others.
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On the other hand, many problems of real life can’t be modeled via crispness due to huge

uncertainty in data. In view of this Zadeh [41] defined fuzzy sets as generalization of crisp sets

to deal with such problems.

One of interesting generalizations of fuzzy sets is due to Atanassov [1], called intuitionistic

fuzzy sets by adding the non-membership function along with the membership function to

the fuzzy sets. These sets have been applied to introduce new norms (see [5], [22]), topology

[31], and metric [27] and found very useful where the crisp norms are not sufficient to work

due to huge uncertainty. Intuitionistic fuzzy sets are naturally used to define intuitionistic

fuzzy normed spaces [34]. Recently, statistical convergence and its generalizations have been

extended and developed in these spaces (see [2], [15], [25], [26] and [38]).

Another, interesting generalization of fuzzy sets is given by Smarandache [35] by introduc-

ing the indeterminacy function to the intuitionistic fuzzy sets. For ongoing development on

neutrosophic set (NS) and its applications, we refer to the reader [10], [18], [23], [29-31], etc.

Kirişçi and Şimşek [13] used neutrosophic sets to define neutrosophic norm and studied statis-

tical convergence in neutrosophic normed spaces(NNS). Nowadays, the area of summability

in these spaces is of much interest. For a broad view in this direction, we recommend [28], [37-

39], etc. Several summability approaches have been created, including statistical convergence,

lacunary statistical convergence, and ideal convergence in these spaces (see [11], [12], [14],

[16], [17], and [32] ). Recently, in [24] the concept of neutrosophic-2-norm is introduced where

the authors studied statistical convergence in neutrosophic-2-normed spaces. In the present

study, we continue to define a more general summability method, called Sλ-summability in

N − 2−NS and develop some of its properties.

2. Prelimanaries

This section starts with a brief review on certain definitions and results needed in the sequel.

“For λ = (λn) as defined above, the generalized de la Vallée-Poussin mean of u = (uk)

is defined by tn(u) = 1
λn

∑
k∈In

uk. Further, u = (uk) is called Vλ-summable to u0(see[19]) if

lim
n→∞

tn(u) = u0. Let

[Vλ] =

{
u = (un) : ∃ u0 ∈ R, lim

n→∞

1

λ

∑
k∈In

|uk − u0| = 0

}
”

Definition 2.1 [40] “Let T = [0, 1]. A binary operation ◦ : T×T → T is t-norm if ∀ c, e, g, h ∈
T we have

1) ◦ is continuous, commutative and associative,

2) e = e ◦ 1,
3) c ◦ e ≤ g ◦ h whenever c ≤ g and e ≤ h.”
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Definition 2.2 [40]“Let T = [0, 1]. A binary operation ⋄ : T × T → T is t-conorm if ∀
c, e, g, h ∈ T we have

1) ⋄ is continuous, commutative and associative,

2) e = e ⋄ 0,
3) c ⋄ e ≤ g ⋄ h whenever c ≤ g and e ≤ h.”

Kirişci and Şimşek introduced the notion NNS in the following manner [13].

Definition 2.3 [13]“Consider F to be a vector space, N = {⟨V, G(V), B(V), Y (V)⟩ : V ∈ F}
be a normed space s.t N : F× R+ → [0, 1]. Let ◦, ⋄ be t-norm and t-conorm, respectively. If

the followings conditions hold, then the four tuple U = (F, N, ◦, ⋄ ) is called NNS, for r, s ∈ F

, ϱ, ω > 0 and for each ς ̸= 0,

(i) 0 ≤ G (r, ϱ) ≤ 1, 0 ≤ B (r, ϱ) ≤ 1, 0 ≤ Y (r, ϱ) ≤ 1 for ϱ∈ R+ ;

(ii) G (r, ϱ) + B (r, ϱ) + Y (r, ϱ) ≤ 3 for ϱ∈ R+ ;

(iii) G (r, ϱ) = 1 (for ϱ > 0) iff r = 0;

(iv) G (ςr, ϱ) = G
(
r, ϱ

|ς|

)
;

(v) G (r, ω) ◦G (s, ϱ) ≤ G (r+ s, ω + ϱ);

(vi) G (r, .) is non-decreasing and continuous function ;

(vii) limϱ→∞G (r, ϱ) = 1;

(viii) B (r, ϱ) = 0 (forϱ > 0) iff r = 0;

(ix) B (ςr, ϱ) = B
(
r, ϱ

|ς|

)
;

(x) B (r, ω) ⋄B (s, ϱ) ≥ B (r+ s, ϱ+ ω);

(xi) B (r, .) is non-increasing and continuous function;

(xii) limλ→∞B (r, ϱ) = 0;

(xiii) Y (r, ϱ) = 0 (for ϱ > 0) iff r = 0;

(xiv) Y (ςr, ϱ) = Y
(
r, ϱ

|ς|

)
;

(xv) Y (r, ω) ⋄ Y (s, ϱ) ≥ Y (r+ s, ϱ+ ω);

(xvi) Y (r, .) is non-increasing and continuous function;

(xvii) limλ→∞ Y (r, ϱ) = 0;

(xviii) If ϱ ≤ 0, then G (r, ϱ) = 0, B (r, ϱ) = 1 and Y (r, ϱ) = 1.

Then N = (G,B, Y ) is called the neutrosophic norm.”

We now recall the idea of two norm introduced in the paper [7].

Definition 2.4 [7]“Let U be a linear space of dimension d > 1. A function ∥., .∥ : U× U → R
satisfying the prerequisites specified below: For all s, t, l ∈ U, and scalar c, we have

(i) ||s, t|| = 0 iff s and t are linearly dependent;

(ii) ||s, t|| = ||t, s||;
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(iii)||cs, t|| = |c|||s, t|| and
(iv) ||s, t+ l|| ≤ ||s, t||+ ||s, l||.
The pair (U, ||., .||) is then called an 2-normed space.

Let U = R2 and for s = (s1, s2) and t = (t1, t2) we define ||s, t|| = |s1t2 − s2t1|, then ||s, t|| is
a 2-norm on U = R2”.

Recently, Murtaza et al [24] defined neutrosophic-2- normed spaces as follows.

Definition 2.5 [24] “Consider F to be a vector space, N2 = ({(r, s), G(r, s), B(r, s), Y (r, s)} :

(r, s) ∈ F × F) be a 2−normed space s.t N2 : F × F × R+ → [0, 1]. Let ◦, ⋄ be t-norm and

t-conorm respectively. If the following conditions hold, then the four-tuple U = (F, N2, ◦, ⋄) is
called a neutrosophic 2−normed spaces (briefly N − 2 − NS) if for each r, s, t ∈ U, ϱ, ω ≥ 0

and ς ̸= 0:

(i) 0 ≤ G(r, s; ϱ) ≤ 1, 0 ≤ B(r, s; ϱ) ≤ 1 and 0 ≤ Y (r, s; ϱ) ≤ 1 for ϱ ∈ R+;

(ii) G(r, s; ϱ) +B(r, s; ϱ) + Y (r, s; ϱ) ≤ 3;

(iii) G(r, s; ϱ) = 1 iff r, s are linearly dependent;

(iv) G(ςr, s; ϱ) = G(r, s; ϱ
|ς|) for each ς ̸= 0;

(v) G(r, s; ϱ) ◦G(r, t;ω) ≤ G(r, s+ t; ϱ+ ω);

(vi) G(r, s; .) : (0,∞) → [0, 1] is non-decreasing and continuous function;

(vii) lim
ϱ→∞

G(r, s; ϱ) = 1 ;

(viii) G(r, s; ϱ) = G(s, r; ϱ)

(ix) B(r, s; ϱ) = 0 iff r, s are linearly dependent;

(x) B(ςr, s; ϱ) = B(r, s; ϱ
|ς|) for each ς ̸= 0;

(xi) B(r, s; ϱ) ⋄B(r, t;ω) ≥ B(r, s+ t; ϱ+ ω);

(xii) B(r, s; .) : (0,∞) → [0, 1] is non-increasing and continuous function;

(xiii) lim
ϱ→∞

B(r, s; ϱ) = 0 ;

(xiv) B(r, s; ϱ) = B(s, r; ϱ);

(xvi) Y (r, s; ϱ) = 0 iff r, s are linearly dependent;

(xv)Y (ςr, s; ϱ) = Y (r, s; ϱ
|ς|) for each ς ̸= 0;

(xvi) Y (r, s; ϱ) ⋄ Y (r, t;ω) ≥ Y (r, s+ t; ϱ+ ω);

(xvii) Y (r, s; .) : (0,∞) → [0, 1] is non-increasing and continuous function;

(xviii) lim
λ→∞

Y (r, s; ϱ) = 0;

(xix) Y (r, s; ϱ) = Y (s, r; ϱ);

(xx) if ϱ ≤ 0, then G(r, s; ϱ) = 0, B(r, s; ϱ) = 1, Y (r, s; ϱ) = 1.

In this case, N2 = (G,B, Y )2 is called a neutrosophic 2-norm. From now on wards, unless

otherwise stated by U we shall denote the N − 2−NS (F, N2, ◦, ⋄)
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A sequence u = (uk) in U is called convergent to u0 if for each y > 0 and ϱ > 0, ∃ k0 ∈ N s.t

G(uk − u0,w; ϱ) > 1− y, B(uk − u0,w; ϱ) < y and Y (uk − u0,w; ϱ) < y ∀ k ≥ k0 and w ∈ U

which is equivalently to say limk→∞G(uk − u0,w; ϱ) = 1, limk→∞B (uk − u0,w; ϱ) = 0 and

limk→∞ Y (uk − u0,w; ϱ) = 0 . In present case, we denote N2 − limk→∞ uk = u0.

A sequence u = (uk) in U is called Cauchy if for each y > 0 and ϱ > 0, ∃ k0 ∈ N s.t

G(uk − up,w; ϱ) > 1 − y, B(uk − up,w; ϱ) < y and Y (uk − up,w; ϱ) < y ∀ k, p ≥ k0 and ∀
w ∈ U .”

3. λ-Statistical Convergence in N-2-NS

In this section, we define and study λ-Statistical Convergence in N − 2−NS and develop

some of its properties.

Definition 3.1 A sequence u = (uk) in N − 2 − NS U is called λ-statistical convergent (or

Sλ-convergent) to u0 if for each y > 0 and ϱ > 0

lim
n

1

λn

∣∣∣∣{k ∈ In : G(uk − u0,w; ϱ) ≤ 1− y or

B(uk − u0,w; ϱ) ≥ y, Y (uk − u0,w; ϱ) ≥ y

}∣∣∣∣ = 0 ∀ w ∈ U;

or equivalently, δλ (A (y, ϱ)) = 0, where

A(y, ϱ) = {k ∈ In : G(uk − u0,w; ϱ) ≤ 1− y or

B(uk − u0,w; ϱ) ≥ y, Y (uk − u0,w; ϱ) ≥ y}.

In present case, we denote Sλ(N2)− lim
k→∞

uk = u0.

We now give the following Lemma:

Lemma 3.1 For any sequence u = (uk) in U, the subsequent assertions are equivalent:

(i) Sλ(N2)− lim
k→∞

uk = u0;

(ii) δλ{k ∈ In : G(uk − u0,w; ϱ) ≤ 1 − y} = δλ{k ∈ In : B(uk − u0,w; ϱ) ≥ y} = δλ{k ∈ In :

Y (uk − u0,w; ϱ) ≥ y} = 0;

(iii) δλ{k ∈ In : G(uk − u0,w; ϱ) > 1− y and B(uk − u0,w; ϱ) < y , Y (uk − u0,w; ϱ) < y} = 1 ;

(iv) δλ{k ∈ In : G(uk − u0,w; ϱ) > 1 − y} = δλ{k ∈ In : B(uk − u0,w; ϱ) < y} = δλ{k ∈ In :

Y (uk − u0,w; ϱ) < y} = 1 and

(v) Sλ(N2)− lim
k→∞

G(uk − u0,w; ϱ) = 1, Sλ(N2)− lim
k→∞

B(uk − u0,w; ϱ) = Sλ(N2)− lim
k→∞

Y (uk −
u0,w; ϱ) = 0.

We now have the following interesting implication.

Theorem 3.1 Let u = (uk) be any sequence in N − 2 − NS U. If N2 − lim
k→∞

uk = u0, then

Sλ(N2)− lim
k→∞

uk = u0.
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Proof. Let N2 − lim
k→∞

uk = u0. Then for each y > 0 and ϱ > 0,∃ an integer k0 ∈ N s.t.

G(uk−u0,w; ϱ) > 1−y and B(uk−u0,w; ϱ) < y, Y (uk−u0,w; ϱ) < y ∀k ≥ k0 and every w ∈ U.

Hence the set {k ∈ In : G(uk − u0,w; ϱ) ≤ 1− y or B(uk − u0,w; ϱ) < y, Y (uk − u0,w; ϱ) < y}
has a finitely many terms whose λ-density is zero. Therefore, Sλ(N2)− lim

k→∞
uk = u0. □

The converse of the above theorem is not true in general.

Example 3.1 Let (R2, |.|) be a 2-normed space. For e, g ∈ [0, 1]. Let e ◦ g = eg and e ⋄ g =

min{e + g, 1}. Choose s, t ∈ F, ϱ > 0 and ϱ > ∥s, t∥. Define G(s, t; ϱ) = ϱ
ϱ+∥s,t∥ , B(s, t; ϱ) =

∥s,t∥
ϱ+∥s,t∥ and Y (s, t; ϱ) = ∥s,t∥

ϱ , then it is clear that U = (R2, N2, ◦, ⋄) is a N − 2 − NS. Define

u = (uk) by

uk =

(k, 0) if n− [
√
λn] + 1 ≤ k ≤ n,

(0, 0) otherwise.

Now, for each y > 0 and ϱ > 0, let

A(y, ϱ) =

{
k ∈ In : G(uk − u0,w; ϱ) ≤ 1− y or

B(uk − u0,w; ϱ) ≥ y, Y (uk − u0,w; ϱ) ≥ y

}
=

{
k ∈ In :

ϱ

ϱ+ ∥uk,w∥
≤ 1− y or

∥uk,w∥
ϱ+ ∥uk,w∥

≥ y,
∥uk,w∥

ϱ
≥ y

}
=

{
k ∈ In : ∥uk,w∥ ≥ ϱy

1− y
or∥uk,w∥ ≥ ϱy

}
= {k ∈ In : n− [

√
λn] + 1 ≤ k ≤ n}

and so we get

1

λn
|A(y, ϱ)| = 1

λn
|{k ∈ In : n− [

√
λn] + 1 ≤ k ≤ n}| ≤ [

√
λn]

λn
.

Taking n → ∞,

lim
n→∞

1

λn
|A(y, ϱ)| ≤ lim

n→∞

[
√
λn]

λn
= 0;

i.e., δλ(A(y, ϱ)) = 0. This shows that, uk → 0
(
Sλ(N2)

)
But the sequence, u = (uk) is not

N2-convergent to 0.

Theorem 3.2 Let u = (uk) be any sequence in N − 2−NS U, if Sλ(N2)− lim
k→∞

uk exists, then

it is unique.

Proof. Let Sλ(N2)− lim
k→∞

uk = u1 and Sλ(N2)− lim
k→∞

uk = u2. Let y > 0, select l > 0 s.t.

(1− l) ◦ (1− l) > 1− y and l ⋄ l < y. (1)
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For ϱ > 0 and w ∈ U. Define the sets:

KG,1(l, ϱ) = {k ∈ In : G(uk − u1,w;
ϱ

2
) ≤ 1− l},

KG,2(l, ϱ) = {k ∈ In : G(uk − u2,w;
ϱ

2
) ≤ 1− l};

KB,1(l, ϱ) = {k ∈ In : B(uk − u1,w;
ϱ

2
) ≥ l},

KB,2(l, ϱ) = {k ∈ In : B(uk − u2,w;
ϱ

2
) ≥ l};

KY,1(l, ϱ) = {k ∈ In : Y (uk − u1,w;
ϱ

2
) ≥ l};

KY,2(l, ϱ) = {k ∈ In : Y (uk − u2,w;
ϱ

2
) ≥ l}.

Since Sλ(N2) − lim
k→∞

uk = u1. By Lemma 3.1, we have δλ{KG,1(l, ϱ)} = δλ{KB,1(l, ϱ)} =

δλ{KY,1(l, ϱ)} = 0 and therefore δλ{KC
G,1(l, ϱ)} = δλ{KC

B,1(l, ϱ)} = δλ{KC
Y,1(l, ϱ)} = 1. Also,

using Sλ(N2)− lim
k→∞

uk = u2, we get, δλ{KG,2(l, ϱ)} = δλ{KB,2(l, ϱ)} = δλ{KY,2(l, ϱ)} = 0 and

therefore δλ{KC
G,2(l, ϱ)} = δλ{KC

B,2(l, ϱ)} = δλ{KC
Y,2(l, ϱ)} = 1. Now define KG,B,Y (y, ϱ) =

{KG,1(l, ϱ) ∪ KG,2(l, ϱ)} ∩ {KB,1(l, ϱ) ∪ KB,2(l, ϱ)} ∩{KY,1(l, ϱ) ∪ KY,2(l, ϱ)}. Then observe

that δλ({KG,B,Y (y, ϱ)}) = 0 which implies δ({KC
G,B,Y (y, ϱ)}) = 1. Let m ∈ KC

G,B,Y (y, ϱ), then

we have

Case 1. m ∈ {KG,1(l, ϱ) ∪KG,2(l, ϱ)}C ,
Case 2. m ∈ {KB,1(l, ϱ) ∪KB,2(l, ϱ)}C ,
Case 3. m ∈ {KY,1(l, ϱ) ∪KY,2(l, ϱ)}C .
Case 1: Let, m ∈ {KG,1(l, ϱ) ∪ KG,2(l, ϱ)}C , then m ∈ KC

G,1(l, ϱ) and m ∈ KC
G,2(l, ϱ).

Therefore, for any w ∈ U we have

G(um − u1,w;
ϱ

2
) > 1− l and G(um − u2,w;

ϱ

2
) > 1− l. (2)

Now

G(u1 − u2,w; ϱ) ≥ G(um − u1,w, ;
ϱ

2
) ◦G(um − u2,w;

ϱ

2
)

> (1− l) ◦ (1− l) by(2)

> 1− y. by (1) .

Since y > 0 is arbitrary, so we have G(u1 − u2,w; ϱ) = 1 ∀ϱ > 0, and therefore u1 − u2 = 0.

This shows that u1 = u2.

Case 2: Let, m ∈ {KB,1(l, ϱ) ∪ KB,2(l, ϱ)}C , then m ∈ KC
B,1(l, ϱ) and m ∈ KC

B,2(l, ϱ).

Therefore, for w ∈ U we have

B(um − u1,w;
ϱ

2
) < l and B(um − u2,w;

ϱ

2
) < l. (3)
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Now

B(u1 − u2,w; ϱ) ≤ B(um − u1,w;
ϱ

2
) ◦B(um − u2,w;

ϱ

2
)

< l ⋄ l by (3)

< y. by (1)

Since y > 0 is arbitrary, so we have B(u1 − u2,w; ϱ) = 0 ∀ϱ > 0, and therefore u1 − u2 = 0.

This shows that u1 = u2.

Case 3: Let, m ∈ {KY,1(l, ϱ) ∪ KY,2(l, ϱ)}C , then m ∈ KC
Y,1(l, ϱ) and m ∈ KC

Y,2(l, ϱ).

Therefore, for w ∈ U we have

Y (um − u1,w;
ϱ

2
) < l and Y (um − u2,w;

ϱ

2
) < l. (4)

Now

Y (u1 − u2,w; ϱ) ≤ Y (um − u1,w;
ϱ

2
) ◦ Y (um − u2,w;

ϱ

2
)

< l ⋄ l by (4)

< y. by (1)

Since y > 0 is arbitrary, so we have Y (u1 − u2,w; ϱ) = 0 ∀ϱ > 0, and therefore u1 − u2 = 0.

This shows that u1 = u2.

Hence, in all three cases, we have u1 = u2, i.e., λ-statistical limit of u = (uk) is unique. □

Theorem 3.3 Let q = (qk) and u = (uk) be two sequences in N − 2 − NS U s.t.

Sλ(N2)− lim
k→∞

qk = q0 and Sλ(N2)− lim
k→∞

uk = u0. Then

(i) Sλ(N2)− lim
k→∞

(qk + uk) = q0 + u0.

(ii) Sλ(N2)− lim
k→∞

(aqk) = aq0, where a is any scalar.

Proof. The proof can be obtained analogously as the proof of theorem 3.2.□

Theorem 3.4 A sequence u = (uk) in N − 2 − NS U is Sλ-convergent to u0, iff ∃ a sub-

set R = {kn : n ∈ N} of N with δλ{R} = 1 and N2 − lim
n→∞

ukn = u0.

Proof. First assume that Sλ(N2)− lim
k→∞

uk = u0. For ϱ > 0, j ∈ N and w ∈ U, define the set

RN2(j, ϱ) = {k ∈ In : G(uk − u0,w; ϱ) > 1− 1

j
and

B(uk − u0,w; ϱ) <
1

j
, Y (uk − u0,w; ϱ) <

1

j
}.

Since Sλ(N2)− lim
k→∞

uk = u0, it is clear that for ϱ > 0 and j ∈ N, RN2(j+1, ϱ) ⊂ RN2(j, ϱ) and

δλ(RN2(j, ϱ)) = 1. (5)
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Let m1 ∈ RN2(1, ϱ). Then, ∃ m2 ∈ RN2(2, ϱ), (m2 > m1), such that for all n ≥ m2,
1
λn

|{k ∈
In : G(uk − u0,w; ϱ) > 1− 1

2 and B(uk − u0,w; ϱ) < 1
2 , Y (uk − u0,w; ϱ) < 1

2}| >
1
2 . Similarly,

∃ m3 ∈ RN2(3, ϱ), (m3 > m2), such that for all n ≥ m3,
1
λn

|{k ∈ In : G(uk − u0,w; ϱ) > 1− 1
3

and B(uk − u0,w; ϱ) < 1
3 , Y (uk − u0,w; ϱ) < 1

3}| >
2
3 and so on. Thus, we can set a sequence

(mj)j∈N s.t mj ∈ RN2(j, ϱ) and ∀ n ≥ mj(j ∈ N), 1
λn

|{k ∈ In : G(uk − u0,w; ϱ) > 1 − 1
j

and B(uk − u0,w; ϱ) < 1
j , Y (uk − u0,w; ϱ) < 1

j }| >
j−1
j . Now define R = {n ∈ N : 1 <

n < m1} ∪ { ∪
j∈N

{n ∈ RN2(j, ϱ) : mj ≤ n < mj+1}}. Then for mj ≤ n < mj + 1, we have

1
λn

|{k ∈ In : k ∈ R}| ≥ 1
λn

|{k ∈ In : G(uk − u0,w; ϱ) > 1 − 1
j and B(uk − u0,w; ϱ) < 1

j ,

Y (uk − u0,w; ϱ) < 1
j }| >

j−1
j and hence, δλ(R) = 1 as k → ∞. Now we have to demonstrate

that N2 − lim
n→∞

ukn = u0. Let y > 0 and select j ∈ N s.t 1
j < y. Furthermore, let n ≥ mj and

n ∈ R. Then, by definition of R, ∃ k ≥ j s.t, mk ≤ n < mk+1 and n ∈ RN2(j, ϱ). Thus, for each

y > 0, and for w ∈ U, we have G(un − u0,w; ϱ) > 1− 1
j > 1− y and B(un − u0,w; ϱ) < 1

j < y,

Y (un − u0,w; ϱ) < 1
j < y ∀ n ≥ mj and n ∈ R. Hence N2 − lim

n→∞
ukn = u0.

Conversely, suppose ∃ a subset R = {kn}n∈N of N with δλ{R} = 1 and N2 − lim
n→∞

ukn = u0.

Let y > 0 or ϱ > 0, ∃ kn0 ∈ N s.t G(ukn − u0,w; ϱ) > 1 − y and B(ukn − u0,w; ϱ) < y,

Y (ukn −u0,w; ϱ) < y ∀ kn ≥ kn0 and every w ∈ U. This implies DN2(y, ϱ) = {k ∈ In : G(ukn −
u0,w; ϱ) ≤ 1− y or B(ukn − u0,w; ϱ) ≥ y, Y (ukn − u0,w; ϱ) ≥ y} ⊆ N−{kn0 , kn0+1, kn0+2, ...}.
and therefore δλ{DN2(y, ϱ)} ≤ δλ{N}− δλ{kn0 , kn0+1, kn0+2, ...} = 1− 1 = 0. This shows that

Sλ(N2)− lim
k→∞

uk = u0. □

4. Vλ-summability in N-2-NS

Definition 4.1 A sequence u = (uk) in N − 2−NS U is called Vλ-summable to u0 w.r.t the

neutrosophic 2-norm N2 if for each y > 0, 0 < ϱ < 1 and w ∈ U

G

(
(
1

λn

∑
k∈In

uk)− u0,w; ϱ

)
> 1− y and

B

(
(
1

λn

∑
k∈In

uk)− u0,w; ϱ

)
< y;Y

(
(
1

λn

∑
k∈In

uk)− u0,w; ϱ

)
< y.

In present case, we denote Vλ(N2)− lim
k→∞

uk = u0 or uk → u0(Vλ(N2)).

Theorem 4.1 Let λ = (λn) as defined above and u = (uk) be a sequence in N − 2 − NS U

then

(I) uk → u0(Vλ(N2)) ⇒ uk → u0
(
Sλ(N2)

)
and the inclusion Vλ(N2) ⊆ Sλ(N2) is proper.

(II) If u ∈ l∞(U) and uk → u0
(
Sλ(N2)

)
, then uk → u0(Vλ(N2)).

(III) Sλ(N2) ∩ l∞(U) = Vλ(N2) ∩ l∞(U), where l∞(U) is the space of all bounded sequences

in U.
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Proof. (I) Let y > 0 and uk → u0(Vλ(N2)). We have,

∑
k∈In

(
G(uk − u0,w; ϱ) or B(uk − u0,w; ϱ), Y (uk − u0,w; ϱ)

)
=

∑
k∈In

G(uk−u0,w;ϱ)≤1−y or

B(uk−u0,w;ϱ)≥y,Y (uk−u0,w;ϱ)≥y

(
G(uk − u0,w; ϱ) or B(uk − u0,w; ϱ), Y (uk − u0,w; ϱ)

)

+
∑
k∈In

G(uk−u0,w;ϱ)>1−y &

B(uk−u0,w;ϱ)<y,Y (uk−u0,w;ϱ)<y

(
G(uk − u0,w; ϱ) and B(uk − u0,w; ϱ), Y (uk − u0,w; ϱ)

)

≥
∑
k∈In

G(uk−u0,w;ϱ)≤1−y or

B(uk−u0,w;ϱ)≥y,Y (uk−u0,w;ϱ)≥y

(
G(uk − u0,w; ϱ) or B(uk − u0,w; ϱ), Y (uk − u0,w; ϱ)

)

≥ y.
∣∣{k ∈ In : G(uk − u0,w; ϱ) ≤ 1− y or B(uk − u0,w; ϱ) ≥ y, Y (uk − u0,w; ϱ) ≥ y

}∣∣.
Since uk → u0(Vλ(N2)). Therefore, it follows that uk → u0

(
Sλ(N2)

)
.

In order to show that the containment Vλ(N2) ⊆ Sλ(N2) is proper. We define a sequence

u = (uk) by

uk =

(k, 0), for n− [
√
λn] + 1 ≤ k ≤ n,

(0, 0), otherwise

It is obvious that the sequence (uk) is unbounded. Then for each y ∈ (0, 1) and ϱ > 0 we have

1

λn

∣∣∣∣{k ∈ In : G(uk − 0,w; ϱ) ≤ 1− y or

B(uk − 0,w; ϱ) ≥ y, Y (uk − 0,w; ϱ) ≥ y

}∣∣∣∣
=

[
√
λn]

λn
→ 0 as n → ∞.

i.e., uk → 0
(
Sλ(N2)

)
.

Further,

1

λn

∑
k∈In

(
G(uk − 0,w; ϱ) or B(uk − 0,w; ϱ), Y (uk − 0,w; ϱ)

)
→ ∞ as n → ∞.

This implies that uk ↛ 0(Vλ(N2)).

(II) Let u = (uk) ∈ l∞(U) and uk → u0
(
Sλ(N2)

)
. Then ∃ M > 0 s.t G(uk − u0,w; ϱ) ≥

1 − M or B(uk − u0,w; ϱ) ≤ M,Y (uk − u0,w; ϱ) ≤ M ∀ k. Let y > 0 be arbitrary selected,
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now as in case (I) we can write

1

λn

∑
k∈In

(
G(uk − u0,w; ϱ) or B(uk − u0,w; ϱ), Y (uk − u0,w; ϱ)

)
=

1

λn

∑
k∈In

G(uk−u0,w;ϱ)≤1−y or

B(uk−u0,w;ϱ)≥y,Y (uk−u0,w;ϱ)≥y

(
G(uk − u0,w; ϱ) or B(uk − u0,w; ϱ), Y (uk − u0,w; ϱ)

)

+
1

λn

∑
k∈In

G(uk−u0,w;ϱ)>1−y &

B(uk−u0,w;ϱ)<y,Y (uk−u0,w;ϱ)<y

(
G(uk − u0,w; ϱ) and B(uk − u0,w; ϱ), Y (uk − u0,w; ϱ)

)

≤ M

λn

∣∣∣∣{k ∈ In : G(uk − u0,w; ϱ) ≤ 1− y or B(uk − u0,w; ϱ) ≥ y, Y (uk − u0,w; ϱ) ≥ y

}∣∣∣∣+ y,

which shows that uk → u0(Vλ(N2)).

(III) Follows easily from part (I) and part (II). □

Theorem 4.2 Let u = (uk) be any sequence in N − 2 − NS U. Then S(N2) ⊂ Sλ(N2)

if

lim inf
n→∞

λn

n
> 0. (6)

Proof. Given y > 0 and ϱ > 0, we have{
k ≤ n : G(uk − u0,w; ϱ) ≤ 1− y or

B(uk − u0,w; ϱ) ≥ y, Y (uk − u0,w; ϱ) ≥ y
}

⊇
{
k ∈ In : G(uk − u0,w; ϱ) ≤ 1− y or

B(uk − u0,w; ϱ) ≥ y, Y (uk − u0,w; ϱ) ≥ y
}

.

Therefore,

1

n

∣∣{k ≤ n : G(uk − u0,w; ϱ) ≤ 1− y or

B(uk − u0,w; ϱ) ≥ y, Y (uk − u0,w; ϱ) ≥ y}
}∣∣

≥ 1

n

∣∣{k ∈ In : G(uk − u0,w; ϱ) ≤ 1− y or

B(uk − u0,w; ϱ) ≥ y, Y (uk − u0,w; ϱ) ≥ y
}∣∣

≥ λn

n

1

λn

∣∣{k ∈ In : G(uk − u0,w; ϱ) ≤ 1− y or

B(uk − u0,w; ϱ) ≥ y, Y (uk − u0,w; ϱ) ≥ y
}∣∣.

Taking n → ∞ and using (6), we get uk → u0
(
S(N2)

)
⇒ uk → u0

(
Sλ(N2)

)
.
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5. λ-Statistical completeness in N-2-NS

Definition 5.1 A sequence u = (uk) in N − 2 − NS U is called λ-statistically Cauchy(or

Sλ-Cauchy) if for each y > 0 and ϱ > 0, ∃ p ∈ N s.t.

lim
n

1

λn
|{k ∈ In : G(uk − up,w; ϱ) ≤ 1− y or

B(uk − up,w; ϱ) ≥ y, Y (uk − up,w; ϱ) ≥ y}| = 0 ∀ w ∈ U

or equivalently, δλ(A(y, ϱ)) = 0, where

A(y, ϱ) = {k ∈ In : G(uk − up,w; ϱ) ≤ 1− y or

B(uk − up,w; ϱ) ≥ y, Y (uk − up,w; ϱ) ≥ y}

Theorem 5.1 Every Sλ-convergent sequence in N − 2−NS U is Sλ-Cauchy.

Proof. Let u = (uk) be a Sλ-convergent sequence with Sλ(N2)− lim
k→∞

uk = u0. Let y > 0 and

ϱ > 0. Choose l > 0 s.t. (1) is satisfied. Define a set,

A(l, ϱ) = {k ∈ In : G(uk − u0,w;
ϱ

2
) ≤ 1− l or

B(uk − u0,w;
ϱ

2
) ≥ l Y (uk − u0,w;

ϱ

2
) ≥ l},

then δλ(A(l, ϱ)) = 0 and therefore δλ(AC(l, ϱ)) = 1. Let p ∈ AC(l, ϱ) then for w ∈ U, we have

G(up − u0,w; ϱ2) > 1− l and B(up − u0,w; ϱ2) < l, Y (up − u0,w; ϱ2) < l.

Now, let T (y, ϱ) = {k ∈ In : G(uk−up,w; ϱ) ≤ 1−y or B(uk−up,w; ϱ) ≥ y, Y (uk−up,w; ϱ) ≥
y}. We claim that T (y, ϱ) ⊂ A(l, ϱ). Let m ∈ T (y, ϱ), then we have G(um − up,w; ϱ) ≤ 1− y

or B(um − up,w; ϱ) ≥ y, Y (um − up,w; ϱ) ≥ y.

Case (i): Suppose G(um − up,w; ϱ) ≤ 1 − y, then G(um − u0,w; ϱ2) ≤ 1 − l and therefore

m ∈ A(l, ϱ). As otherwise, i.e, if G(um − u0,w; ϱ2) > 1− l, then

1− y ≥ G(um − up,w; ϱ) ≥ G(um − u0,w;
ϱ

2
) ◦G(up − u0,w;

ϱ

2
)

> (1− l) ◦ (1− l)

> 1− y.(not possible) .

Thus, T (y, ϱ) ⊂ A(l, ϱ).

Case (ii): Suppose B(um − vp,w; ϱ) ≥ y, then B(um − u0,w; ϱ2) ≥ l and therefore m ∈ A(l, ϱ).

As otherwise, i.e, if B(um − u0,w; ϱ2) < l, then

y ≤ B(um − up,w; ϱ) ≤ B(um − u0,w;
ϱ

2
) ⋄B(up − u0,w;

ϱ

2
)

< l ⋄ l

< y.(not possible) .
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Also, suppose Y (um − up,w; ϱ) ≥ y, then Y (um − u0,w; ϱ2) ≥ l and therefore m ∈ A(l, ϱ). As

otherwise, i.e, if B(um − u0,w; ϱ2) < l, then

y ≤ Y (um − vp,w; ϱ) ≤ Y (um − u0,w;
ϱ

2
) ⋄ Y (up − u0,w;

ϱ

2
)

< l ⋄ l

< y.(not possible) .

Thus, T (y, ϱ) ⊂ A(l, ϱ).

Hence in all cases, T (y, ϱ) ⊂ A(l, ϱ). Since δλ(A(l, ϱ)) = 0, so δλ(T (y, ϱ)) = 0 and therefore

u = (uk) is λ-statistically Cauchy. □

Definition 5.2 A neutrosophic 2-normed space U is called Sλ-complete if every Sλ-Cauchy

sequence in U is Sλ-convergent in U.

Theorem 5.2 Every N − 2−NS U is Sλ-complete.

Proof. Let u = (uk) be Sλ-Cauchy sequence in U. Suppose on the contrary that u = (uk) is

not Sλ-convergent. Let y > 0 and ϱ > 0, then ∃ p ∈ N s.t w ∈ U if we define

A(y, ϱ) = {k ∈ In : G(uk − up,w; ϱ) ≤ 1− y or

B(uk − up,w; ϱ) ≥ y, Y (uk − up,w; ϱ) ≥ y} and

T (y, ϱ) = {k ∈ In : G(uk − u0,w;
ϱ

2
) > 1− y and

B(uk − u0,w;
ϱ

2
) < y, Y (uk − u0,w;

ϱ

2
) < y},

then δλ(A(y, ϱ)) = δλ(T (y, ϱ)) = 0 and therefore we have δλ(AC(y, ϱ)) = δλ(T C(y, ϱ)) = 1.

Since G(uk−up,w; ϱ) ≥ 2G(uk−u0,w; ϱ2) > 1−y and B(uk−up,w; ϱ) ≤ 2B(uk−u0,w; ϱ2) < y

, Y (uk − up,w; ϱ) ≤ 2Y (uk − u0,w; ϱ2) < y, if G(uk − u0,w; ϱ2) >
1−y
2 and B(uk − u0,w; ϱ2) <

y
2

, Y (uk − u0,w; ϱ2) <
y
2 . We have δλ({k ∈ In : G(uk − up,w; ϱ) > 1− y and B(uk − up,w; ϱ) < y

, Y (uk − up,w; ϱ) < y}) = 0. i.e., δλ(AC(y, ϱ)) = 0 which contradicts the fact that

δλ(AC(y, ϱ)) = 1. Therefore, u = (uk) is Sλ-convergent and Hence Sλ-complete. □

Theorem 5.3 For any sequence u = (uk) in N − 2 − NS U, the subsequent assertions are

equivalent:

(i) u = (uk) is Sλ-Cauchy.

(ii) ∃ a subset R = {kn} of N with δλ{R} = 1 and {ukn}n∈N is Sλ-Cauchy sequence over R.

Proof. The proof of the theorem can be obtained analogously as the proof of the theorem 3.4.
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Abstract. The goal of this article is to establish a methodology for ordering of single-valued neutrosophic

numbers (SVN-numbers) on the basis of values and ambiguities. First of all, the idea of neutrosophic numbers

is discussed, and (α, β, γ)-cut and arithmetic oprations definecd over SVN-numbers are examined. There-

after,corresponding to each components,the values and ambiguities are defined and using these definitions, the

ratio ranking function is constructed. Then, for the stability of the ratio ranking function, some examples are

provided for comparing this method with other approaches. Applying this ratio ranking function, neutrosophic

linear programming problem(Neu-LPP) converts to the crisp linear programmning problems (CLP-Problems)

and solved it by computational lingo method. At last, Neu-LPP is illustrated by two numerical real-life exam-

ples.

Keywords: Neutrosophic number, Value and ambiguity, Ranking function, Neu-LPP, C-LPP, Computational

Lingo method.

—————————————————————————————————————————-

1. Introduction

In operation research, LP is one of the most significant and valuable optimizations methods.

LP-models expand in a variety of decision problems that happen in economics, engineering,

industry, and government. The practical decision problems are described not only by these

models but also find applications in science. Some variation in this data must impact on

optimal solution, and hence the opinion of decision maker’s, that we need to investigate for a

new scientific algorithm that gives us optimal solutions useful for all conditions and accepts all

variations that may happen. In the work environment, we search for applications of the idea

of neutrosophic science that take into consideration variations that cab happen in the work

environment thorogh the indeterminacy of neutrosophic values. Hence, applying the idea of

neutrosophic science, we define many practical problems.

In 1965, First of all, Zadeh [1] presented a fuzzy set(FS), which was classified through only

the membership component, and then in 1986, K. Atanassov [2] presented an intuitionistic

fuzzy set (IFS), which was classified by two components: membership and non-membership

simultaneously. Regularly, to manage incertitude, FS and IFS perform a vital role. In 1998,

Smarandache [3] presented neutrosophic set (NS) to manage some incomplete and inconsistant

information in philosophical sense. The components truth, indeterminacy, and falsity inde-

pendently classified on NS.Sometimes a few suitable decisions are impossible to take by IFS,

and hence the indeterminacy of NS plays a vital role. Because some real-world problems such

as politics, law, medicine, industry, psychology, and economics, are completely indeterminate.

The ordering of SVN-number has vital role in the application of sequential problems, lin-

ear and non linear programming problems and multi-attribute selection making problems,etc.

Lately, some writers [4–6,8,9,14–16,19] researched IFS models for applications and some writ-

ers [10–13, 17, 20, 22–29, 36] have researched NS models for applications. For the importance
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of the LP-method, we introduce the neutrosophic linear model [30]. We presented the neutro-

sophic linear programming method and applied it in the field of education [31]. We applied

the neutrosophic linear programming method to determine optimal agricultural land use [32].

Chakraborty et al. [33] use the removal area method and apply it to time cost optimization.

Jdid and Smarandache [34] used the neutrosophic method and applied it to management and

corporate work. Karak et al. [21] established a ranking teachnique between SVN-numbers

using the newly developed sign distance method and applied it to the transportation problem.

The struture of the paper is given step by step. Firstly, in section 2, some essential defenitions,

such as NS, single valued trapezoidal and triangular neutrosophic number (SVTN-numbers,

SVTrN-numbers), and arithmetic operation are given. In section 3, the value and ambiguity

indexes of SVN-numbers were designed, and we presented a new ratio ranking function pri-

marily based on expanding values and ambiguities. In this subsection, for the validity and

feasibility of the ratio ranking function, we satisfied some reasonable properties. In section 4,

a set of six examples is given, using these examples, the ranking results of proposed method

are compared with other approaches [4,8,10,12,13,19,20]. In section 5, based on the ranking

algorithm, Neu-LPP with neutrosophic constraints transfered to C-LPP with real constraints

and solved by computational lingo method. In section 6, the concept of Neu-LPP is illustrated

by two suitable real-life numerical examples. In the last section, the conclusion is stated briefly.

2. Preliminaries

Let’s remind ourselves of a few fundamental definitions that are essential to reaching the main

idea of this paper.

Definition 2.1. [3] Let us take ξ as an arbitary element of X, the universe of discourse.

Then Ñ is called NS over X if it is classified through three independent components, namely

TÑ , IÑ , and FÑ , which were said to be truth, indeterminacy and falsity neutrosophic compo-

nents, respectively. These components are maps from X to ]−0, 1+[ i.e., TÑ (ξ), IÑ (ξ), FÑ (ξ) ∈
]−0, 1+[ where ]−0, 1+[ is called non-standard unit interval. Thus, Ñ is described by Ñ =

{
〈
ξ;TÑ (ξ), IÑ (ξ), FÑ (ξ)

〉
: ξ ∈ X}, with −0 ≤ supTÑ (ξ) + sup IÑ (ξ) + supFÑ (ξ) ≤ 3+.

Definition 2.2. [7] Performing non-standard analysis of neutrosophic components in real

ground is too tough. So for real application, only their standard subset is taken. When

three neutrosophic components take the values on [0, 1], NS is said to be SVN-Set. Thus an

SVN-Set Ñ is designed as : Ñ = {< ξ, TÑ (ξ), IÑ (ξ), FÑ (ξ) >: ξ ∈ X;TÑ (ξ), IÑ (ξ), FÑ (ξ) ∈
[0, 1] and 0 ≤ supTÑ (ξ) + sup IÑ (ξ) + supFÑ (ξ) ≤ 3}.

Definition 2.3. [18] Let Ñ be defined as NS over R, which is called a neutrosophic number

if it fulfils three characteristics given below:
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1. TÑ (ξ0) = 1 and IÑ (ξ0) = FÑ (ξ0) = 0 for some ξ0 ∈ R i.e.,Ñ is normal.

2. TÑ (νξ1 + (1− ν)ξ2) ≥ min(TÑ (ξ1), TÑ (ξ2)), ∀ξ1, ξ2 ∈ R, and ν ∈ [0, 1] i.e.,N is convex for

TÑ (ξ).

3. IÑ (νξ1+(1−ν)ξ2) ≥ max(IÑ (ξ1), IÑ (ξ2)), and FÑ (νξ1+(1−ν)ξ2) ≥ max(FÑ (ξ1), FÑ (ξ2)),

∀ξ1, ξ2 ∈ R, and ν ∈ [0, 1] i.e., Ñ is concave for IÑ (ξ) and FÑ (ξ).

Definition 2.4. [12] A NS m̃ = ⟨([l,m, n]; tm̃, im̃, fm̃)⟩ defined on R, where tm̃, im̃, fm̃ ∈
[0, 1] and l,m, n ∈ R satisfy the condition l ≤ m ≤ n is called SVTrN-number whose

truth,indetereminacy, and falsity component are denoted by Tm̃ : R 7→ [0, tm̃], Im̃ : R 7→ [im̃, 1],

and Fm̃ : R 7→ [fm̃, 1] as described below:

Tm̃(ξ) =


(ξ−l)tm̃
(m−l) , l ≤ ξ ≤ m,
(n−ξ)tm̃
(n−m) , m ≤ ξ ≤ n,

0, otherwise.

Im̃(ξ) =


(m−ξ)+im̃(ξ−l)

(m−l) , l ≤ ξ ≤ m,
(ξ−m)+im̃(n−ξ)

(n−m) , m ≤ ξ ≤ n,

0, otherwise.

Fm̃(ξ) =


(m−ξ)+fm̃(ξ−l)

(m−l) , l ≤ ξ ≤ m,
(ξ−m)+fm̃(n−ξ)

(n−m) , m ≤ ξ ≤ n,

0, otherwise.

respectively.

For example, let us take SVTrN-number Ã1 = ⟨[1, 4, 8]; 0.9, 0.3, 0.5⟩. Then the graphical

representation of Ã1 is given below:

1 2 3 4 5 6 7 8

Truth,Indeterminacy and Falsity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

,
,

Membership Functions

Truth

Indeterminacy

Falsity

Figure 1. Graphical representation of single valued triangular neutrosophic

number(SVTN) Ã1.
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Definition 2.5. [12] Let m̃ = ⟨([l,m, n, p]; tm̃, im̃, fm̃)⟩ be NS on R where l,m, n, p ∈ R, and
tm̃, im̃, fm̃ ∈ [0, 1] having condition l ≤ m ≤ n ≤ p is called SVTN-numbers whose truth,

indetereminacy, and falsity component are denoted by Tm̃ : R 7→ [0, tm̃], Im̃ : R 7→ [im̃, 1], and

Fm̃ : R 7→ [fm̃, 1] as described below.

Tñ(ξ) =



(ξ−l)tm̃
(m−l) , l ≤ ξ < m,

tm̃, m ≤ ξ ≤ n,
(p−ξ)tm̃
(p−n) , n < ξ ≤ p,

0, otherwise.

Im̃(ξ) =



(m−ξ)+im̃(ξ−l)
(m−l) , l ≤ ξ < m,

im̃, m ≤ ξ ≤ n,
(ξ−n)+im̃(p−ξ)

(p−n) , n < ξ ≤ p,

0, otherwise.

Fñm(ξ) =



(m−ξ)+fm̃(ξ−l)
(m−l) , l ≤ ξ < m,

fm̃, m ≤ ξ ≤ n,
(ξ−n)+fm̃(p−ξ)

(p−n) , n < ξ ≤ p,

0, otherwise.

respectively.

For example, let us take SVTN-number Ã2 = ⟨[1, 3, 6, 9]; 0.7, 0.5, 0.6⟩. Then the graphical

representation of Ã2 is given below:

1 2 3 4 5 6 7 8 9

Truth,Indeterminacy and Falsity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

,
,

 Membership Function 

Truth

Indeterminacy

Falsity

Figure 2. Graphical representation of single valued trapezoidal neutrosophic

number(SVTN) Ã2.
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Definition 2.6. [12] For Ñ defined in 2.3, (α, β, γ)-cut is designed as : Ñ(α,β,γ)={ξ ∈ X :

TÑ (ξ) ≥ α, IÑ (ξ) ≤ β, FÑ (ξ) ≤ γ} where 0 ≤ α, β, γ ≤ 1.

Then for SVTrN-number m̃ defined in 2.4, the (α, β, γ) cuts are respectively

m̃α = [Lm̃(α), Rm̃(α)] =
[
(tm̃−α)l+αm

tm̃
, (tm̃−α)n+αm

tm̃

]
,

m̃β = [L′
m̃(β), R′

m̃(β)] =
[
(1−β)m+(β−im̃)l

1−im̃
, (1−β)m+(β−im̃)n

1−im̃

]
,

and m̃γ = [L′′
m̃(γ), R′′

m̃(γ)] =
[
(1−γ)m+(γ−fm̃)l

1−fm̃
, (1−γ)m+(γ−fm̃)n

1−fm̃

]
.

Here Lm̃, R′
m̃, and R′′

m̃ are non-decreasing and continuous functions, and Rm̃, L′
m̃, and L′′

m̃ are

non-increasing continuous functions in their respectively intervals.

Similarly (α, β, γ) cut of SVTN-number m̃ defined in 2.5, are respectively

m̃α = [Lm̃(α), Rm̃(α)] =
[
(tm̃−α)l+αm

tm̃
, (tm̃−α)p+αn

tm̃

]
,

m̃β = [L′
m̃(β), R′

m̃(β)] =
[
(1−β)m+(β−im̃)l

1−im̃
, (1−β)n+(β−im̃)p

1−im̃

]
,

m̃γ = [L′′
m̃(γ), R′′

m̃(γ)] =
[
(1−γ)m+(γ−fm̃)l

1−fm̃
, (1−γ)n+(γ−fm̃)p

1−fm̃

]
.

Definition 2.7. [11] Let us take two SVTN-numbers m̃ = ⟨([l,m, n, p]; tm̃, im̃, fm̃)⟩ and

ñ = ⟨([u, v, w, x]; tñ, iñ, fñ)⟩, and δ(̸= 0) ∈ R. Then

(i) m̃⊕ ñ = ⟨(+u,m+ v, n+ w, p+ x); tm̃ ∧ tñ, im̃ ∨ iñ, fm̃ ∨ fñ⟩ .

(ii) δm̃ =

{
⟨(δl, δm, δn, δp); tm̃, im̃, fm̃⟩ (δ > 0).

⟨(δp, δn, δm, δl); tm̃, im̃, fm̃⟩ (δ < 0).

(iii) m̃⊖ ñ = ⟨(l − x,m− w, n− v, p− u); tm̃ ∧ tñ, im̃ ∨ iñ, fm̃ ∨ fñ⟩.

Definition 2.8. [11] Let us take two SVTrN-numbers m̃ = ⟨([l,m, n]; tm̃, im̃, fm̃)⟩ and
ñ = ⟨([u, v, w]; tñ, iñ, fñ)⟩, and δ(̸= 0) ∈ R. Then

(i) m̃⊕ ñ = ⟨(l + u,m+ v, n+ w); tm̃ ∧ tñ, im̃ ∨ iñ, fm̃ ∨ fñ⟩.

(ii) δm̃ =

{
⟨(δl, δm, δn); tm̃, im̃, fm̃⟩ (δ > 0).

⟨(δn, δm, δl); tm̃, im̃, fm̃⟩ (δ < 0).

(iii) m̃⊖ ñ = ⟨(l − w,m− v, n− u); tm̃ ∧ tñ, im̃ ∨ iñ, fm̃ ∨ fñ⟩.

3. Neutrosophic numbers and their ordering method

In this part, we presented an ordering method for SVN-numbers depending on values and

ambiguities in a new direction.
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Definition 3.1. If m̃ is any arbitrary SVN-number, then

1. the value and ambiguity of m̃ for truth component, are symbolised by VT (m̃) and AT (m̃)

and described as follows:

(i) VT (m̃) =
∫ tm̃
0 {Lm̃(α) +Rm̃(α)}f(α)dα.

(ii) AT (m̃) =
∫ tm̃
0 {Rm̃(α)− Lm̃(α)}f(α)dα.

Where f(α) ∈ [0, 1] (α ∈ [0, tm̃]), f(0) = 0, and f(α) is non decreasing monotonic continuous

function of α.

2. the value and ambiguity of m̃ for indeterminacy component, are symbolised by VI(m̃) and

AI(m̃) and described as follows:

(i) VI(m̃) =
∫ 1
iñ

{L′
m̃(β) +R′

m̃(β)}g(β)dβ.
(ii) AI(m̃) =

∫ 1
iñ

{R′
m̃(β)− L′

m̃(β)}g(β)dβ.

Where g(β) ∈ [0, 1] (β ∈ [im̃, 1]), g(1)=0 , and g(β) is non increassing monotonic continuous

function of β.

3. the value and ambiguity of m̃ for falsity component, are symbolised by VF (m̃) and AF (m̃)

and described as follows:

(i) VF (m̃) =
∫ 1
fñ

{L′′
m̃(γ) +R′′

m̃(γ)}h(γ)dγ.
(ii) AF (m̃) =

∫ 1
fm̃

{R′′
m̃(γ)− L′′

m̃(γ)}h(γ)dγ.

Where h(γ) ∈ [0, 1] (γ ∈ [fm̃, 1]) , h(1)=0 , and h(γ) is non increassing monotonic continuous

function of γ.

Definition 3.2. For an arbitary SVN-number m̃ , the value and ambiguity of m̃ are symbolised

as V (m̃) and A(m̃) and expressed as follows:

(i) V (m̃) = 1
3 [VT + VI + VF ], and

(ii) A(m̃) = 1
3 [AT +AI +AF ].

From now on we take f(α) = α
tm̃

, α ∈ [0, tm̃] (tm̃ ∈ (0, 1]), g(β) = 1−β
1−im̃

, β ∈ [im̃, 1] (im̃ ∈ [0, 1)),

h(γ) = 1−γ
1−fm̃

, γ ∈ [fm̃, 1] (fm̃ ∈ [0, 1)) for the SVN-number m̃, and similarly for other SVN-

numbers throughout the paper.

Remark 1. It is easily derived that the value function V (m̃) should be maximized, whereas

the ambiguity function should be minimised.

Corollary 3.1. For arbitary SVTrN-number m̃ =< [l,m, n]; tm̃, im̃, fm̃ >, the value and

ambiguity are given by

(i) V (m̃) = 1
18 [(l + 4m+ n)× (2 + tm̃ − im̃ − fm̃)], and

(ii) A(m̃) = 1
18 [{(n− l)} × (2 + tm̃ − im̃ − fm̃)].

Corollary 3.2. for arbitary SVTN-number m̃ = ⟨[l,m, n, p]; tm̃, im̃, fm̃⟩, the value and ambi-

guity are given by
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(i) V (m̃) = 1
18 [(l + 2m+ 2n+ p)× (2 + tm̃ − im̃ − fm̃)], and

(ii) A(m̃) = 1
18 [{p− l − 2(m− n)} × (2 + tm̃ − im̃ − fm̃)].

Property 1. For any SVN-number m̃ and δ(̸= 0) ∈ R,

(i) V (δm̃) = δV (m̃).

(ii) A(δm̃) = δA(m̃).

Proof: (i),(ii) are obvious (see definitions 2.7,2.8, and 3.1).

Theorem 3.1. For two SNTrN-numbers m̃ and ñ with tñ = tm̃, iñ = im̃, fñ = fm̃,

(i) V (m̃⊕ ñ)=V (m̃) + V (ñ).

(ii) A(m̃⊕ ñ)=A(m̃) +A(ñ).

Proof:

(i) By the definition 2.8 and given condition, we get

V (m̃⊕ ñ)= 1
18 [{(l + u) + 2(m+ v) + 2(n+ w) + (p+ x)} × (2 + tñ − iñ − fñ)]

=V (m̃) + V (ñ).

Hence,the proof.

(ii) Similarly, it can be proved.

NOTE: The theorem is also true for SNTrN-numbers.

Definition 3.3. Let us consider a atio ranking function ϕ that maps from N(R) to R and is

described by ϕ(m̃) = V (m̃)
1+A(m̃) ∀m̃ ∈ N(R), where N(R) indicates set of all SVN-numbers on

R whose truth component ∈ (0, 1], indeterminacy component ∈ [0, 1), and falsity component

∈ [0, 1) .

For any m̃, ñ ∈ N(R) , we define ordering of m̃, ñ by

(1) m̃ ≺ϕ ñ iff ϕ(m̃) < ϕ(ñ).

(2) m̃ ≻ϕ ñ iff ϕ(m̃) > ϕ(ñ).

(3) m̃ ≈ϕ ñ iff ϕ(m̃) = ϕ(ñ).

Then the order ⪯ϕ is formulated as m̃ ⪯ϕ ñ iff m̃ ≈ϕ ñ or m̃ ≺ϕ ñ.

Corollary 3.3. Let m̃ ∈ N(R) be SVTrN-number defined in definition 2.4. Then the ranking

functional value of SVTrN-number m̃ is described by ϕ(m̃) = (l+4m+n)×(2+tm̃−im̃−fm̃)
18+(n−l)×(2+tm̃−im̃−fm̃)

Corollary 3.4. Let m̃ ∈ N(R) be SVTN-number defined in definition 2.5. Then the ranking

functional value of SVTN-number m̃ is describeed by ϕ(m̃) = (l+2m+2n+n)×(2+tm̃−im̃−fm̃)
18+(p−l−2m+2n)×(2+tm̃−im̃−fm̃) .

Remark 2. It is easily seen that ϕ(m̃) is not linear function of a SVN-number m̃ although

V (m̃) and A(m̃) are linear on m̃. In other words, ϕ(m̃⊕ ñ) ̸= ϕ(m̃) + ϕ(ñ)

Example 1. Let m̃ = ⟨[1, 4, 7]; 0.6, 0.1, 0.4⟩ , ñ = ⟨[3, 5, 6]; 0.7, 0.1, 0.2⟩ ∈ N(R).
Then, by definition 3.5, ϕ(m̃) = 1.1667, and ϕ(ñ) = 2.19005.

So, ϕ(m̃) < ϕ(ñ) and hence the ranking of SVTrN-numbers m̃ and ñ is m̃ ≺ϕ ñ.
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Example 2. Let m̃ = ⟨[1, 2, 4, 7]; 0.7, 0.1, 0.3⟩ , ñ = ⟨[1, 3, 5, 6]; 0.6, 0.2, 0.4⟩ ∈ N(R)
Then, by definition 3.5, ϕ(m̃) = 1.1219, and ϕ(ñ) = 1.2778.

So, ϕ(m̃) < ϕ(ñ) and hence the ranking of SVTN-numbers m̃ and ñ is m̃ ≺ϕ ñ.

Property 2. The relations ⪯ϕ is total ordering on N(R).
Proof: If the relation ⪯ϕ is total ordering on N(R), then we need to prove the following:

(a) ⪯ is a partial order i.e., ⪯ϕ is reflexive, anti symmetric, and transitive.

(b) any two element in N(R) are comparable.

We now prove the condition (a) and (b).

(a) By definition 3.6 , it is clear that the relation ⪯ϕ is reflexive i.e., m̃ ⪯ϕ m̃, ∀m̃ ∈ N(R)
let m̃, ñ ∈ N(R) with m̃ ⪯ϕ ñ and ñ ⪯ϕ m̃

Then by definition 3.6, ϕ(m̃)− ϕ(ñ) ⩽ 0 and ϕ(m̃)− ϕ(ñ) ⩾ 0, and hence ϕ(m̃)− ϕ(ñ) = 0.

Therefore, m̃ ≈ϕ ñ i.e., the relation ⪯ϕ is anti symmetric.

let m̃, ñ, p̃ ∈ N(R) with m̃ ⪯ϕ ñ and ñ ⪯ϕ p̃.

Then by definition 3.6 , ϕ(m̃)− ϕ(ñ) ⩽ 0 and ϕ(ñ)− ϕ(p̃) ⩽ 0, and hence ϕ(m̃)− ϕ(p̃) ⩽ 0.

Therefore, m̃ ⪯ϕ p̃ i.e., the relation ⪯ϕ is transitive.

Therefore, the relation ⪯ϕ satisfy all the condition of partial ordering on N(R).
(b) By the definition 3.6, we can say that any two element in N(R) are comparable.

Therefore, the relation ⪯ϕ is total ordering.

3.1. Rationality of validation of the ratio ranking algorithm

Seven axioms A1 −A7 proposed by Wang and Kerre [35] have reasonable properties for the

validation of ratio ranking algorithm for ordering fuzzy numbers. In this article, the introduced

ratio ranking method fulfils the the properties A1, A2, A3, and A5 easily. However, the prop-

erties A4, A6, and A7 are not satisfied by the ratio ranking method because this method is not

linear according to Remark 2. By the Remark 1, the value index V (m̃) should be maximized,

whereas the ambiguity index A(m̃) should be minimised, i.e., V (m̃) and A(m̃) are in conflict.

Hence, the ranking algorithm should be established depanding on the above two functions and

applied it to solve Neu-LPP. Even, in general, Neu-LPP are not easily solved. Hence, the ratio

ranking algorithm is used to aggregate V (m̃) and A(m̃). As a consequence, the ordering of

SVN-numbers is depandent on the ratio of V (m̃) and 1 + A(m̃) rather than either V (m̃) and

A(m̃).

4. Comparison Analysis

Here the ranking of neutrosophic numbers is compared with other approaches with the pro-

posed method by six set of examples given in the following:
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Set-1: m̃ = ⟨([1, 5, 7, 8]; 0.9, 0.3, 0.4)⟩, ñ = ⟨([2, 4, 6, 7]; 0.8, 0.4, 0.5)⟩
Then,by definition 3.5, ϕ(m̃) = 0.8601896, ϕ(ñ) = 0.7849003

So,ϕ(ñ) < ϕ(m̃), and hence ñ ≺ϕ m̃.

Set-2: m̃ = ⟨([2, 4, 7, 9]; 0.4, 0.1, 0.3⟩, ñ = ⟨[1, 4, 5, 9]; 0.8, 0.2, 0.5⟩
Then, by definition 3.5, ϕ(m̃) = 0.75, ϕ(ñ) = 0.7538462

So,ϕ(m̃) < ϕ(ñ), and hence m̃ ≺ϕ ñ.

Set-3: m̃ = ⟨([1, 3, 6, 8]; 0.7, 0.2, 0.5)⟩, ñ = ⟨([3, 6, 8, 9]; 0.9, 0.1, 0.3)⟩
Then, by definition 3.5, ϕ(m̃) = 0.6136364, ϕ(ñ) = 1.162791

So,ϕ(m̃) < ϕ(ñ), and hence m̃ ≺ϕ ñ.

Set-4: m̃ = ⟨([1, 2, 3, 4]; 0.5, 0.1, 0.2)⟩ , ñ = ⟨([2, 4, 5, 6]; 0.6, 0.2, 0.3)⟩ , p̃ =

⟨([3, 4, 6, 7]; 0.7, 0.2, 0.4)⟩
Then, by definition 3.5, ϕ(m̃) = 0.5689655, ϕ(ñ) = 0.8921569, ϕ(p̃) = 0.9051724

So, ϕ(m̃) < ϕ(ñ) < ϕ(p̃), and hence m̃ ≺ϕ ñ ≺ϕ p̃.

Set-5: m̃ = ⟨([2, 5, 8, 9]; 0.7, 0.1, 0.2⟩ , ñ = ⟨([1, 3, 6, 8]; 0.6, 0.2, 0.3)⟩ , p̃ =

⟨([3, 4, 5, 7]; 0.5, 0.1, 0.3)⟩
Then, by definition 3.5, ϕ(m̃) = 0.9024390, ϕ(ñ) = 0.6258278, ϕ(p̃) = 0.9607843

So, ϕ(ñ) < ϕ(m̃) < ϕ(p̃), and hence ñ ≺ϕ m̃ ≺ϕ p̃.

Set-6: m̃ = ⟨([4, 5, 6, 7]; 0.5, 0.1, 0.4)⟩ , ñ = ⟨([2, 4, 6, 8]; 0.6, 0.2, 0.3)⟩ , p̃ =

⟨([3, 5, 7, 9]; 0.7, 0.2, 0.5)⟩
Then,by definition 3.5, ϕ(m̃) = 1.178571, ϕ(ñ) = 0.8076923, ϕ(p̃) = 0.9473684

So, ϕ(ñ) < ϕ(p̃) < ϕ(m̃), and hence ñ ≺ϕ p̃ ≺ϕ m̃.

We now compare the ranking results of the above six set of examples with other approaches.In

the articles [10,12,13,20] on NS, for ranking of these examples , we directly apply the respective

approaches. But in the articles [4, 8, 19] on IFS, for the ranking of these examples, we must

reject the hesitancy part and then apply the respective methods.

Table-1 : A Comparison of ordering for several approaches

Source Set− 1 Set− 2 Set− 3 Set− 4 Set− 5 Set− 6

Deli et al. [12] ñ < m̃ ñ < m̃ m̃ < ñ m̃ < ñ < p̃ ñ < p̃ < m̃ ñ < m̃ < p̃

Peng et al. [13] ñ ≺ m̃ m̃ ≺ ñ m̃ ≺ ñ ñ ≺ p̃ ≺ m̃ p̃ ≺ ñ ≺ m̃ m̃ ≈ p̃ ≺ ñ

Ye. [10] ñ ≺ m̃ m̃ ≺ ñ m̃ ≺ ñ p̃ ≺ ñ ≺ m̃ p̃ ≺ ñ ≺ p̃ ñ ≺ m̃ ≺ p̃

Fahad A.Alzahrani et al. [20] ñ < m̃ ñ < m̃ m̃ < ñ m̃ < ñ < p̃ ñ < p̃ < m̃ ñ < m̃ < p̃

Qiang and Zhong [4] ñ < m̃ m̃ < ñ m̃ < ñ m̃ < ñ < p̃ p̃ < ñ < m̃ m̃ < p̃ < ñ

De and Das [8] ñ < m̃ ñ < m̃ m̃ < ñ m̃ < ñ < p̃ p̃ < ñ < m̃ m̃ < ñ < p̃

Suresh Mohan et al. [19] ñ < m̃ ñ < m̃ m̃ < ñ m̃ < ñ < p̃ ñ < m̃ < m̃ ñ < m̃ < p̃

proposed method ñ ≺ m̃ m̃ ≺ ñ m̃ ≺ ñ m̃ ≺ ñ ≺ p̃ ñ ≺ m̃ ≺ p̃ ñ ≺ p̃ ≺ m̃

Here, Deli and Subas [12] applies score and accuracy to determine the ranking of SVN-numbers,

and the ranking results of this method are very close to the ranking results of the introduced

method. Peng et al. [13] and Ye. [10] designed score and accuracy to determine the ordering
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of neutrosophic numbers, and applying the score function, the ordering of six set of examples

is given in Table-1, which is almost unequal to the ordering results of the introduced method.

Alzahrani et al. [20] use de-neutrosophication method to determine the ordering of SVN-

numbers, and the ranking results of this method are almost equal to the ranking results of the

introduced method. De and Das [8] define a ranking function using value and ambiguity in

IFS, and usins this ranking function, the ordering of given SVTN numbers is given in Table-1,

which is very close to the ranking results of proposed method and has few difference because it

has no hesitancy part. Qiang and Zhong [4] described accuracy and score functions and using

this ordering of SVTN-numbers are given in Table-1, which has the same reason as De and

Das for the comparison of ranking results with the proposed method. Suresh Mohan et al. [19]

define magnitude to define the ordering of neutrosophic numbers and using this magnitude,

the ordering of above set of examples are given in Table-1 which is almost equal to the ranking

results of proposed method and has few difference because it has no hesitancy part.

5. Neutrosophic linear programming problem and its solution

In this section, we propose the idea of Neu-LPP in a new direction using the ranking function.

First, we recall the concept of linear programming problems with crisp data, i.e., C-LPP.

Usually, C-LPP is expressed as:

Maximize Z = Cξ

subject to Aξ ⩽ B, ξ ≥ 0

Where C ∈ Rs, Bt ∈ Rr, ξ ∈ Rs and A = (aij)r×s

Here, the constraints of C-LPP are crisp numbers. Next, we designed Neu-LPP.

Definition 5.1. The Neu-LPP with constraints in terms of SVN-numbers is defined in the

following below:

Maximize Z̃ ≈ϕ C̃ξ

subject to Ãξ ⪯ϕ B̃, ξ ≥ 0

Where Ã = (ãij)r×s ∈ (N(R))s, B̃ ∈ (N(R))r, C̃t ∈ (N(R))s, ξ ∈ Rs.

METHODOLOGY

There are four steps to reaching the optimal solution, and the steps are given below.

Step-1: First of all, the given Neu-LPP with SVN-numbers can be wriiten in the form of a

mathematically formulation.

Step-2. Using ranking function ϕ(m̃) = V (m̃)
1+A(m̃) convert the mentioned SVN-numbers to crisp

numbers.

Step-3. Formulate the C-LPP.

Step-4. Solve the C-LPP by Computational Lingo method.
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6. Numerical Example

In this section, we give two examples of Neu-LPP with constraints SVN-numbers. In the

first examples, we take Neu-LPP with constraints in terms of SVTN-numbers, and in second

example, we take Neu-LPP with constraints in terms of SVTrN-numbers. Example 3. A

firm produces three products I, II, and III. The per unit profits are Rs. c̃1 and Rs. c̃2 and

Rs. c̃3 respectively, they are uncertain in nature, assuming as SVTN-numbers. The firm has

two machines and each product is processed on two machines X and Y. The processing time

required in hours in terms of SNTN-numbers on each product is given below the table.

Machines Product− I Product− II Product− III

X ã1 ã2 ã3

Y ã′1 ã′2 ã′3

The machines X and Y have b̃1 and b̃2 machine hours in terms of SVTN-numbers, respectively.

We have to maximize the profit of the company.

Where,

c̃1 = ⟨([6, 8, 11, 14]; 0.7, 0.2, 0.5)⟩, c̃2 = ⟨([5, 8, 9, 10]; 0.6, 0.1, 0.2)⟩, c̃3 =

⟨([7, 10, 14, 17]; 0.8, 0.3, 0.4)⟩
ã1 = ⟨([3, 7, 9, 15]; 0.6, 0.1, 0.3)⟩, ã2 = ⟨([7, 9, 12, 16]; 0.6, 0.2, 0.5)⟩, ã3 =

⟨([3, 8, 12, 14]; 0.5, 0.3, 0.4)⟩,
ã′1 = ⟨([4, 7, 10, 13]; 0.4, 0.1, 0.2)⟩, ã′1 = ⟨([4, 7, 10, 13]; 0.4, 0.1, 0.2)⟩, ã′2 =

⟨([5, 9, 12, 15]; 0.5, 0.4, 0.1)⟩,
ã′3 = ⟨([5, 10, 13, 15]; 0.7, 0.3, 0.5)⟩, b̃1 = ⟨([35, 38, 47, 58]; 0.9, 0.1, 0.3)⟩, b̃2 =

⟨([35, 50, 56, 63]; 0.8, 0.2, 0.4)⟩.
Solution:

Step-1: Let the company produce the quantity ξ1, ξ2, ξ3 of the products A, B, and C respec-

tively. Then the mathematical form of the above Neu-LPP is

Maximize Z̃ ≈ϕ c̃1ξ1 ⊕ c̃2ξ2 ⊕ c̃3ξ3

subject to, ã1ξ1 ⊕ ã2ξ2 ⊕ ã3ξ3 ⪯ϕ b̃1

ã′1ξ1 ⊕ ã′2ξ2 ⊕ ã′3ξ3 ⪯ϕ b̃2

and ξi ⪖ 0, i = 1, 2, 3.

Step-2: In this step, we will apply ranking function to convert SVTN-numbers to real

numbers. ϕ(c̃1) = 2.521739, ϕ(c̃2) = 3.304985, ϕ(c̃3) = 2.709677 ϕ(ã1) = 2.067669,

ϕ(ã2) = 2.655914, ϕ(ã3) = 1.965517, ϕ(ã′1) = 2.163636,ϕ(ã′2) = 2.480000 ϕ(ã′3) = 2.590909,

ϕ(b̃1) = 5.456432, ϕ(b̃2) = 6.433962.

Step-3: Thertefore, the C-LPP with constraints in terms of crisp number is
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Maximize Z = 2.521739ξ1 + 3.304985ξ2 + 2.709677ξ3

subject to

2.067669ξ1 + 2.655914ξ2 + 1.965517ξ3 ≤ 5.456432

2.163636ξ1 + 2.480000ξ2 + 2.590909ξ3 ≤ 6.433962

Step-4: By Lingo method, the optimal feasible solition is ξ1 = 0 , ξ2 = 0.7430211,

ξ3 = 1.772069 and Zmax = 7.257408.

Example 4. At a cattle breeding firm it is prescribed that the food ration for one animal

must contain at least b̃1, b̃2 and b̃3 respectively, they are uncertain in nature, assuming as

SVTrN-numbers. Two different kinds of fooder are available. Each unit weight of these two

contains the following amounts of the three nutrients in terms of SVTrN-numbers:

Fodder − 1 Fodder − 2

Nutrient-A ã1 ã2

Nutrient-B ã′1 ã′2

Nutrient-C ã′′1 ã′′2

It is given that the costs of unit quantity of Fodder-1 and Fodder-2 are c̃1 and c̃2 monetary

units respectively. Pose a linear programming problem in terms of minimizing the cost of

purchasing the fodders for the above cattle breeding firm.

Where,

c̃1 = ⟨([4, 7, 8]; 0.9, 0.2, 0.5)⟩, c̃2 = ⟨([2, 3, 5]; 0.5, 0.3, 0.4)⟩, ã1 = ⟨([1, 6, 7]; 0.6, 0.2, 0.5)⟩,
ã2 = ⟨([4, 8, 9]; 0.5, 0.1, 0.4)⟩, ã′1 = ⟨([1, 2, 4]; 0.6, 0.2, 0.3)⟩, ã′2 = ⟨([2, 3, 6]; 0.4, 0.3, 0.2)⟩
ã′′1 = ⟨([3, 4, 7]; 0.5, 0.4, 0.2)⟩, ã′′2 = ⟨([4, 5, 6]; 0.6, 0.3, 0.4)⟩, b̃1 = ⟨([1, 3, 5]; 0.5, 0.3, 0.1)⟩,
b̃2 = ⟨([1, 2, 3]; 0.5, 0.3, 0.5)⟩, b̃3 = ⟨([2, 4, 6]; 0.6, 0.3, 0.4)⟩.

Solution:

Step-1: Let ξ1 unit of Fodder-1 and ξ2 unit of Fodder-2 are to be purchased to fulfil the

requirement and minimizing the cost of purchasing.

Therefore, the mathematical formulation of the abpve Neu-LPP is

Minimize Z̃ ≈ϕ c̃1ξ1 ⊕ c̃2ξ2

subject to, ã1ξ1 ⊕ ã2ξ2 ⪰ϕ b̃1

ã′1ξ1 ⊕ ã′2ξ2 ⪰ϕ b̃2

ã′′1ξ1 ⊕ ã′′2ξ2 ⪰ϕ b̃3

and ξi ⪖ 0, i = 1, 2.

Step-2: In this step, we will apply ranking function to convert SVTrN-numbers to real

numbers. ϕ(c̃1) = 3.283582, ϕ(c̃2) = 1.461538, ϕ(ã1) = 2.068027, ϕ(ã2) = 3.214286,
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ϕ(ã′1) = 1.123457,ϕ(ã′2) = 1.484375, ϕ(ã′′1) = 1.929688, ϕ(ã′′2) = 2.614679, ϕ(b̃1) = 1.431818,

ϕ(b̃2) = 0.9532710, ϕ(b̃3) = 1.781250.

Step-3: Therefore, the C-LPP with constraints in terms of crisp number is

Minimize Z = 3.283582ξ1 + 1.461538ξ2

subject to

2.068027ξ1 + 3.214286ξ2 ≥ 1.431818,

1.123457ξ1 + 1.484375ξ2 ≥ 0.9532710,

1.929688ξ1 + 2.614679ξ2 ≥ 1.781250.

Step-4: By Computational Lingo method, the optimal feasible solition is ξ1 = 0, ξ2 =

0.6812500 and Zmin = 0.9956727.

7. Conclusions

In this article , we describe the ranking system of neutrosophic numbers in a new direction

based on value and ambiguity. We also developed some properties and theorems about value

and ambiguity. Here, we generalised C-LPP by considering the constraints in terms of SVN-

numbers, and the generalised C-LPP is called Neu-LPP. Then, to solve such Neu-LPP, we

proposed a simplex algirithm, and finally, this newly developed algorithm is used in real-life

problems. The proposed ranking method is applied to convert the Neu-LPP with constraints

in terms of SVTN-numbers to the C-LPP with constraints in terms of real numbers and solves

it by the computational Lingo method. The idea has been explained by two numerical exam-

ples using both SVTN-numbers and SVTrN-numbers. For the stability and feasibility of this

methodology, we also compared different existing methodologies with the proposed method.

In the future, the idea of Neu-LPP may be more generalised way.
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Abstract. This research is dedicated to exploring the relationships among neutrosophic automata, reverse

neutrosophic automata, and double neutrosophic automata. Through the utilization of these three automata,

we establish definitions for a neutrosophic subsystem, a reverse neutrosophic subsystem, and a double neutro-

sophic subsystem, delving into various properties associated with them. Additionally, we aim to introduce the

notion of categorical aspects concerning neutrosophic automata and reverse neutrosophic automata, along with

their functorial relationship.
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—————————————————————————————————————————-

1. Introduction

The field of automata theory has proven instrumental in addressing computational com-

plexity issues, finding applications across computer science and discrete mathematics. Fol-

lowing Zadeh’s [75] introduction of fuzzy set theory, scholars such as Wee [72] and San-

tos [52] initiated the exploration of fuzzy automata and languages to bridge the gap be-

tween the precision of computer languages and inherent vagueness. Malik and collabora-

tors [32, 38] introduced a simpler notion of a fuzzy finite state machine, laying the ground-

work for the algebraic study of fuzzy automata and languages. Numerous researchers (cf.,

e.g., [5–7,14–19,25,27,30,35–37,46–48,56–63,66,68,69,76]) have contributed to the development

of fuzzy automata theory, with diverse focuses. Among these works, Jin and colleagues [17]
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delved into the algebraic study of fuzzy automata based on po-monoids, while Kim, Kim, and

Cho [25] concentrated on the algebraic aspects of fuzzy automata theory. Moćkor [35–37] ex-

plored categorical concepts in fuzzy automata theory, and Abolpour and Zahedi [5–7] applied

categorical concepts to automata with membership values in various lattice structures. The

work of Qiu [46–48], Tiwari and their co-authors [62, 63, 66, 68, 69] pursued algebraic, topo-

logical, and categorical studies of fuzzy automata theory based on different lattice structures.

Ignjatovic and collaborators [14] investigated the notion of determinism in fuzzy automata,

while Anupam and co-authors [55–61, 64, 65] explored the topological, algebraic, and cate-

gorical aspects of more generalized fuzzy automata and fuzzy languages. These collective

contributions reflect the rich and diverse landscape of research in fuzzy automata theory.

Recent advancements in fuzzy automata theory are highlighted in various works, includ-

ing [7, 42, 61, 67]. Fuzzy automata find practical applications in engineering contexts, par-

ticularly in areas such as information representation, pattern recognition, and machine learn-

ing systems, as discussed in [38, 43, 44, 73]. Notably, [73] proposes a non-supervised learning

scheme for automatic control and pattern recognition, emphasizing the simplicity in design

and computation offered by fuzzy automata as a machine learning model.

In addressing computational uncertainty, alternative mathematical tools have emerged, such

as bipolar-valued fuzzy sets [31], vague sets [12], and cubic sets [20]. The generalization

trend of fuzzy sets has led to the development of neutrosophy, a philosophical branch intro-

duced and studied by Florientin Samrandache [53, 54]. Neutrosophy serves as a method for

handling the computational uncertainty inherent in real-life and scientific problems. Unlike

fuzzy sets, neutrosophic sets introduced by Samrandache have three independent components:

the degree of membership, the degree of non-membership, and the degree of indeterminacy.

Although neutrosophic sets may pose challenges in practical engineering and scientific applica-

tions, Wang et al. [70,71] have introduced the concepts of single-valued neutrosophic sets and

interval neutrosophic sets as a more manageable instance of neutrosophic sets. From a practical

perspective, neutrosophic set theory has demonstrated substantial success in various fields, in-

cluding topology [13,41], control theory [39,40], decision-making problems [1,3,26,50], medical

diagnosis [1,51,74], financial management [2], and smart product-service systems [4]. Neutro-

sophic automata, a more recent model stemming from fuzzy automata theory, has garnered

attention from numerous researchers who have extensively explored automata theory within a

neutrosophic framework [21–24, 33, 34]. Neutrosophic automata offer a valuable environment

for handling ambiguous computations and have demonstrated their significance in addressing

substantial challenges in learning management systems [49], topology [13, 41], and algebraic
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structures [21–24, 33], among other applications. The concept of category theory, initially in-

troduced by Eilenberg and Mac Lane [10], is widely recognized. Subsequent development by

various researchers [11,28,29] has showcased its utility in advancing theoretical computer sci-

ence aspects, such as the design of functional and imperative programming languages, semantic

models of programming languages, algorithm development, and polymorphism [45].

1.1. Motivation

Various researchers have integrated neutrosophic set theory into automata theory in differ-

ent ways. However, there is a notable gap in exploring the algebraic properties of automata

and reverse automata within a neutrosophic environment, particularly considering t-norm and

implication operators. Additionally, the application of category theory and functors between

neutrosophic automata and reverse neutrosophic automata remains unexplored. This paper

aims to fill these gaps by investigating and introducing the algebraic properties of neutrosophic

automata, incorporating a t-norm and implication operator. Furthermore, we present funda-

mental properties of category theory and explore functors connecting neutrosophic automata

with reverse neutrosophic automata.

The paper’s structure is outlined as follows:

Section 2: Provides an introduction to the paper’s content.

Section 3: Introduces and explores the concepts of neutrosophic automata, reverse neutro-

sophic automata, as well as subsystems (including reverse and double subsystems) for neutro-

sophic automata within a neutrosophic environment. This section also delves into presenting

various algebraic properties associated with neutrosophic automata.

Section 4: Focuses on the introduction and examination of homomorphism and strong homo-

morphism between neutrosophic automata, considering specific properties as their basis. Also,

proposes categorical and functorial properties of both neutrosophic automata and reverse neu-

trosophic automata.

Section 5: The article ends with conclusion.

2. Preliminaries

Within this section, we revisit fundamental notations and concepts associated with neutro-

sophic sets, including neutrosophic t-norms, implication operators, and category theory. The

foundation for understanding neutrosophic sets is drawn from the works of [53, 54], while the

principles of categories and functors are referenced from [8,9]. The discussion commences with

the following points.
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Definition 2.1. A neutrosophic set (NS, in short) A on a non-empty set X is an ob-

ject having the form A = {< b1, FA(b1), GA(b1), HA(b1) >: b1 ∈ X}, where the functions

FA, GA, HA : X →]0−, 1+[ define respectively the degree of membership (or truth), the de-

gree of indeterminacy and the degree of non-membership (or false) of each element b1 ∈ X

to the set A . As, the sum of FA(b1), GA(b1), HA(b1), have no restriction. So for each

b1 ∈ X, 0− ≤ FA(b1) +GA(b1) +HA(b1) ≤ 3+.

Remark 2.2. A Neutrosophic Set A = < b1, FA(b1), GA(b1), HA(b1) >: b1 ∈ X is typically

denoted as an ordered triple < FA, GA, HA > in the non-standard unit interval ]0−, 1+[ on X.

The neutrosophic sets (NSs, in short) 0N and 1N represent constant NSs inX and are defined

as 0N =< 0, 1, 1 > and 1N =< 1, 0, 0 >, where 0, 1 : X →]0−, 1+[ are defined respectively

by 0(b1) = 0 and 1(b1) = 1. The NS η = (σ, β, γ) such that η̂ = ̂(σ, β, γ) is expressed as

η̂(b1) = η for all b1 ∈ X, where σ, β, and γ are the σ-valued, β-valued, and γ-valued constant

neutrosophic sets in X respectively, with the condition 0− ≤ σ + β + γ ≤ 3+.

This paper opts for the interval [0, 1] instead of the notation ]0−, 1+[ in considera-

tion of practical applications, as the latter might pose challenges in real-world scenarios.

Also, NS(X) will denote the family of all neutrosophic sets in X and I∗ denotes the set

{(b1, b2, b3) : ((b1, b2, b3) ∈ [0, 1] × [0, 1] × [0, 1], 0 ≤ b1 + b2 + b3 ≤ 3}. A neutrosophic set

A =< FA, GA, HA > in X will frequently be viewed as a function A : X → I∗, given by

A(b1) = {FA(b1), GA(b1), HA(b1) : b1 ∈ X}.

Firstly, we recall some basic properties of NS in X.

Definition 2.3. For NSs A =< FA, GA, HA >,B =< FB, GB, HB > and Ai =<

FAi , GAi , HAi >, i ∈ J in b1 ∈ X. We have

(1) A ≤ B if FA(b1) ≤ FB(b1), GA(b1) ≥ GB(b1) and HA(b1) ≥ HB(b1);

(2) ∨i∈JAi(b1) = (∨i∈JFAi(b1),∧i∈JGAi(b1),∧i∈JHAi(b1));

(3) ∧i∈JAi(b1) = (∧i∈JFAi(b1),∨i∈JGAi(b1),∨i∈JHAi(b1));

(4) Ac = (1− FA, 1−GA, 1−HA);

(5) 0N ⊆ A ⊆ 1N ; 0
c
N = 1N and 1cN = 0N ;

(6) A ∪ 0N = A,A ∪ 1N = 1N and A ∩ 0N = 0N , A ∩ 1N = A.

Example 2.4. Let X = {b1, b2}, A = {< b1, 0.2, 1, 0.3 >,< b2, 0.4, 0.5, 0.6 >} and B = {<
b1, 0.1, 0.3, 0.8 >,< b2, 0, 0, 0.9 >} are two NSs on X. Then A ∪ B = {< b1, 0.2, 0.3, 0.3 >,<

b2, 0.4, 0, 0.6 >}, A ∩ B = {< b1, 0.1, 1, 0.8 >,< b2, 0, 0.5, 0.9 >}, Ac = {< b1, 0.8, 0, 0.7 >,<

b2, 0.6, 0.5, 0.4 >}, A∪1N = (1, 0, 0) = 1N , A∩0N = (0, 1, 1) = 0N and B∩1N = (0.1, 0.3, 0.8) =

B.

Anil Kumar Ram; Anupam K. Singh; Bikky Kumar. Neutrosophic Automata and Reverse
Neutrosophic Automata

Neutrosophic Sets and Systems, Vol. 63, 2024                                                                              222



Definition 2.5. (1) A neutrosophic t-norm ⊗ : I∗ × I∗ −→ I∗ be a mapping such for all

σN = (σ1, σ2, σ3), βN = (β1, β2, β3), γN = (γ1, γ2, γ3), δN = (δ1, δ2, δ3) ∈ I∗ which satisfies

(i) σN ⊗ 1N = σN (border condition);

(ii) σN ⊗ βN = βN ⊗ σN , (commutativity);

(iii) σN ⊗ (βN ⊗ γN ) = (σN ⊗ βN )⊗ γN , (associativity);
(iv) σN ≤ βN and γN ≤ δN ⇒ σN ⊗ γN ≤ βN ⊗ δN , (monotonicity).

(2) The neutrosophic precomplement on I∗ is the mapping ¬ : I∗ −→ I∗ such that

¬(b1, b2, b3) = (b1, b2, b3)→ 0N = (b1, b2, b3)→ (0, 1, 1) = (b1 → 0, b2 ← 1, b3 ← 1),∀b1, b2, b3 ∈
X.

(3) The implication operator −→: I∗ −→ I∗ is defined as;

σN → βN = ∨{γN = (γ1, γ2, γ3) ∈ I∗ : σN ⊗ γN ≤ βN},∀σN = (σ1, σ2, σ3), βN = (β1, β2, β3) ∈
I∗ with respect to ⊗.

For σN = (σ1, σ2, σ3) ∈ I∗ and A = (FA, GA, HA) ∈ NS(X), the NS σN → A = (σ1 →
FA, σ2 ← GA, σ3 ← HA) in X is defined as

(σ1 → FA)(b1) =

{
1 if σ1(b1) ≤ FA(b1)
FA(b1) if σ1(b1) > FA(b1)

(σ2 ← GA)(b1) =

{
0 if σ2(b1) ≥ GA(b1)
GA(b1) if σ2(b1) < GA(b1)

and

(σ3 ← HA)(b1) =

{
0 if σ3(b1) ≥ HA(b1)

HA(b1) if σ3(b1) < HA(b1)

∀b1 ∈ X.

Proposition 2.6. Let A = (FA, GA, HA) ∈ NS(X) and σN = (σ1, σ2, σ3), βN

= (β1, β2, β3), γN = (γ1, γ2, γ3) ∈ I∗. Then

(i) 1N → A = (1, 0, 0)→ (FA, GA, HA) = (FA, GA, HA) = A;

(ii) σN ⊗ βN ≤ γN ⇔ σN ≤ βN → γN ;

(iii) (σN ⊗ βN )→ γN = σN → (βN → γN );

(iv) (σN → βN )⊗ (βN → γN ) ≤ σN → γN ;

(v) σN ⊗ (∨i∈IβNi) = ∨i∈I(σN ⊗ βNi);

(vi) (σN → βN )⊗ σN ≤ βN ;
(vii) (σN ⊗ βN )→ γN = (βN ⊗ σN )→ γN ;

(viii) if σN ≤ βN ⇒ ¬βN ≤ ¬σN .
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Definition 2.7. The key component of a category thoery T contains:

(i) a T- objects;

(ii) For any pair of objects X and Y within the category T, there exists a set denoted as

T(X,Y). The members of this set are referred to as morphisms (or T- morphisms),

where each morphism ψ in T(X,Y) is represented as ψ : X → Y . These morphisms

have a specified domain X and codomain Y ;

(iii) For every object X within the category T, a morphism denoted as idX : X → X is

termed the identity morphism on X; and

(iv) There exists a ”composition law” linked to each pair of T-morphisms ψ : X → Y and

χ : Y → Z, a T-morphism denoted as χ ◦ ψ : X → Z is termed the composition of

ψ and χ, adhering to the following properties:

(a) for any T-morphisms ψ : X → Y, χ : Y → Z, and Φ : Z → W , the composition

follows the associativity property: Φ ◦ (χ ◦ ψ) = (Φ ◦ χ) ◦ ψ.
(b) for any T-morphism ψ : X → Y , the identity morphism idY satisfies the properties:

idY ◦ ψ = ψ and ψ ◦ idX = ψ.

For simplicity, we represent the object-class of the category T by T itself.

Definition 2.8. A functor K : T → E is a mapping that assigns each T-object X to a

E-object K(X) and every T-morphism ψ : X → Y to a E-morphism K(ψ) : K(X) → K(Y )

follows the conditions that:

(a) For all T-morphisms ψ : X → Y and χ : Y → Z, K(χ ◦ ψ) = K(χ) ◦K(ψ), and

(b) For all X ∈ T, K(idX) = idK(X).

3. Neutrosophic automata

In this section, we present the concept of neutrosophic automata and reverse neutrosophic

automata. The introduction of neutrosophic automata naturally leads to the development of

neutrosophic subsystems, including reverse neutrosophic subsystems and double neutrosophic

subsystems. Throughout this exploration, we delve into various properties, such as order-

preserving maps, involution and some more, associated with these neutrosophic automata and

subsystems. The discussion commences with the following points.

Definition 3.1. A neutrosophic automaton, (NA, in short) is a triple L = (Q,X, δ),

where Q and X are non-empty sets referred to as the set of states and the set of inputs (with

the identity denoted as e), respectively. The neutrosophic transition function is denoted as

δ = (Fδ, Gδ, Hδ) and is a neutrosophic subset of Q ×X ×Q. In other words, δ is a mapping

δ : Q×X ×Q→ I∗.
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Remark 3.2. (i) Let X∗ as the free monoid generated by the set X, with e being its identity.

The extension of δ is denoted as δ∗ = (Fδ∗ , Gδ∗ , Hδ∗) : Q ×X∗ × Q → I∗. This extension is

characterized by the property that for any q1, q2 ∈ Q, u ∈ X∗, and b1 ∈ X, the following holds:

Fδ∗(q1, e, q2) =

{
1 if q1 = q2

0 if q1 ̸= q2,
Gδ∗(q1, e, q2) = Hδ∗(q1, e, q2) =

{
0 if q1 = q2

1 if q1 ̸= q2

Fδ∗(q1, ub1, q2) = ∨{Fδ∗(q1, u, q3)⊗Fδ(q3, b1, q2) : q3 ∈ Q}, Gδ∗(q1, ub1, q2) = ∧{Gδ∗(q1, u, q3)⊗
Gδ(q3, b1, q2) : q3 ∈ Q}, and Hδ∗(q1, ub1, q2) = ∧{Hδ∗(q1, u, q3)⊗Hδ(q3, b1, q2) : q3 ∈ Q}.

(ii) For u ∈ X∗, we can establish a mapping δu = (Fδu , Gδu , Hδu) : Q × Q → I∗ such

that ∀q1, q2 ∈ Q,Fδu(q1, q2) = Fδ∗(q1, u, q2), Gδu(q1, q2) = Gδ∗(q1, u, q2) and Hδu(q1, q2) =

Hδ∗(q1, u, q2).

Definition 3.3. A reverse neutrosophic automaton (RNA, in short) of a NA L =

(Q,X, δ) is a NA L = (Q,X, δ), where δ : Q×X×Q→ I∗ is a mapping such that δ(q1, b1, q2) =

δ(q2, b1, q1),∀q1, q2 ∈ Q and ∀b1 ∈ X.

Definition 3.4. Let L = (Q,X, δ) be a NA. Then A = (FA, GA, HA) ∈ NS(S) is called

(i) neutrosophic subsystem, (NSS, in short) of L if FA(q1) ⊗ Fδ(q1, b1, q2) ≤
FA(q2), GA(q1)⊗Gδ(q1, b1, q2) ≥ GA(q2) andHA(q1)⊗Hδ(q1, b1, q2) ≥ HA(q2),∀q1, q2 ∈
Q and ∀b1 ∈ X.

(ii) reverse neutrosophic subsystem, (RNSS, in short) of L if FA(q2) ⊗
Fδ(q1, b1, q2) ≤ FA(q1), GA(q2)⊗Gδ(q1, b1, q2) ≥ GA(q1) and HA(q2)⊗Hδ(q1, b1, q2) ≥
HA(q1), ∀q1, q2 ∈ Q and ∀b1 ∈ X.

(iii) double neutrosophic subsystem, (DNSS, in short) of L if it is both NSS and

RNSS of L.

Proposition 3.5. If A is a NSS in a NA L = (Q,X, δ), then A is a RNSS in a RNA

L = (Q,X, δ).

Proof: Let A = (FA, GA, HA) be a NSS in L. Then ∀q1, q2 ∈ Q and ∀b1 ∈ X,FA(q1) ⊗
Fδ(q1, b1, q2) ≤ FA(q2), GA(q1) ⊗ Gδ(q1, b1, q2) ≥ GA(q2) and HA(q1) ⊗ Hδ(q1, b1, q2) ≥
HA(q2) ⇒ FA(q1) ⊗ Fδ(q2, b1, q1) ≤ FA(q2), GA(q1) ⊗ Gδ((q2, b1, q1) ≥ GA(q2) and HA(q1) ⊗
Hδ((q2, b1, q1) ≥ HA(q2). Hence A is a RNSS in a RNA L.

Proposition 3.6. Let L = (Q,X, δ) be a NA and A ∈ NS(S). Then

(i) A = (FA, GA, HA) is a NSS of L if and only if A : (Q,X, δ) −→ (I∗,→) is an order

preserving map.

(ii) A = (FA, GA, HA) is a RNSS of L if and only if A : (Q,X, δ) −→ (I∗,→) is an order

preserving map.
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(iii) A = (FA, GA, HA) is a DNSS of L if and only if A : (Q,X, δ) −→ (I∗,→) is an order

preserving map.

Proof: (i) Let A = (FA, GA, HA) ∈ NS(S) be a NSS of L. Then ∀q1, q2 ∈ Q and

b1 ∈ X,FA(q1) ⊗ Fδ(q1, b1, q2) ≤ FA(q2), GA(q1) ⊗ Gδ(q1, b1, q2) ≥ GA(q2) and HA(q1) ⊗
Hδ(q1, b1, q2) ≥ HA(q2), then Fδ(q1, b1, q2) ≤ FA(q1) → FA(q2), Gδ(q1, b1, q2) ≥ GA(q1) ←
GA(q2) and Hδ(q1, b1, q2) ≥ HA(q1) ← HA(q2) (cf., Proposition 2.6). Hence A : (Q,X, δ) −→
(I∗,→) preserve order. Converse follows similarly.

(ii) Similar to (i).

(iii) Derives from (i) and (ii).

Proposition 3.7. Let L = (Q,X, δ) be a NA and q1, q3 ∈ Q, b1 ∈ X. Then

(i) [q3]
δb1 = (F

[q3]
δb1
, G

[q3]
δb1
, H

[q3]
δb1

) ∈ NS(Q) such that

F
[q3]

δb1
(q1) = Fδb1 (q3, q1), G[q3]

δb1
(q1) = Gδb1 (q3, q1) and H

[q3]
δb1

(q1) = Hδb1
(q3, q1) is a

NSS of L,

(ii) [q3]δb1 = (F[q3]δb1
, G[q3]δb1

, H[q3]δb1
) ∈ NS(Q) such that

F[q3]δb1
(q1) = Fδb1 (q1, q3), G[q3]δb1

(q1) = Gδb1 (q1, q3) and H[q3]δb1
(q1) = Hδb1

(q1, q3) is a

RNSS of L , and

(iii) [q3]
δb1 and [q3]δb1 is a DNSS of L.

Proof: (i) Let F
[q3]

δb1
(q1) = Fδb1 (q3, q1), G[q3]

δb1
(q1) = Gδb1 (q3, q1) and H

[q3]
δb1

(q1) =

Hδb1
(q3, q1). Then F

[q3]
δb1

(q1) ⊗ Fδ(q1, b1, q2) = Fδb1 (q3, q1) ⊗ Fδ(q1, b1, q2) = Fδ(q3, b1, q1) ⊗
Fδ(q1, b1, q2) ≤ Fδ(q3, b1, q2) = Fδb1 (q3, q2) = F

[q3]
δb1

(q2), G[q3]
δb1

(q1) ⊗ Gδ(q1, b1, q2) =

Gδb1 (q3, q1) ⊗ Gδ(q1, b1, q2) = Gδ(q3, b1, q1) ⊗ Gδ(q1, b1, q2) ≥ Gδ(q3, b1, q2) = Gδb1 (q3, q2) =

G
[q3]

δb1
(q2) and H

[q3]
δb1

(q1) ⊗ Hδ(q1, b1, q2) = Hδb1
(q3, q1) ⊗ Hδ(q1, b1, q2) = Hδ(q3, a, q1) ⊗

Hδ(q1, b1, q2) ≥ Hδ(q3, b1, q2) = Hδb1
(q3, q2) = H

[q3]
δb1

(q2), as δb1 is transitive. Hence

F
[q3]

δb1
(q1) ⊗ Fδ(q1, b1, q2) ≤ F

[q3]
δb1

(q2), G[q3]
δb1

(q1) ⊗ Gδ(q1, b1, q2) ≥ G
[q3]

δb1
(q2) and

H
[q3]

δb1
(q1)⊗Hδ(q1, b1, q2) ≥ H[q3]

δb1
(q2). Thus [q3]

δb1 is a NSS of L.

(ii) Derives from (i) and the transitivity of δb1 .

(iii) Derives from (i) and (ii).

Proposition 3.8. Let L = (Q,X, δ) be a NA and A ∈ NS(Q). Then

(i) if A = (FA, GA, HA) is a NSS of a NA L, then for each η ∈ I∗, A → η̂ is a RNSS of

L.

(ii) if A = (FA, GA, HA) is a RNSS of a NA L, then for each η ∈ I∗, A → η̂ is a NSS of

L.

Proof: Let A = (FA, GA, HA) is a NSS of a NA L , i.e., ∀q1, q2 ∈ Q and b1 ∈ X,FA(q1) ⊗
Fδ(q1, b1, q2) ≤ FA(q2), GA(q1) ⊗ Gδ(q1, b1, q2) ≥ GA(q2) and HA(q1) ⊗ Hδ(q1, b1, q2) ≥
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HA(q2). Then, we have to show that A → η̂ is a RNSS of L, or that ∀q1, q2 ∈ Q and

b1 ∈ X, (FA(q2) → σ) ⊗ Fδ(q1, b1, q2) ≤ (FA(q1) → σ), (GA(q2) ← β) ⊗ Gδ(q1, b1, q2) ≥
(GA(q1) ← β) and (HA(q2) ← γ) ⊗ Hδ(q1, b1, q2) ≥ (HA(q1) ← γ) which implies that

(FA(q2) → σ) ⊗ Fδ(q1, b1, q2) ⊗ FA(q1) ≤ σ, (GA(q2) ← β) ⊗ Gδ(q1, b1, q2) ⊗ GA(q1) ≥ β

and (HA(q2)← γ)⊗Hδ(q1, b1, q2)⊗ (HA(q1) ≥ γ. So (FA(q2)→ σ)⊗Fδ(q1, b1, q2)⊗FA(q1) ≤
(FA(q2)→ σ)⊗FA(q2) ≤ σ, (GA(q2)← β)⊗Gδ(q1, b1, q2)⊗GA(q1) ≥ (GA(q2)← β)⊗GA(q2) ≥
β and (HA(q2)← γ)⊗Hδ(q1, b1, q2)⊗(HA(q1) ≥ (HA(q2)← γ)⊗(HA(q2) ≥ γ (cf., Proposition

2.6). Hence A→ η̂ is a RNSS of L.

(ii) In a similar manner, it can be prove that if A = (FA, GA, HA) is a RNSS of a NA L, then

for each η ∈ I∗, A→ η̂ is a NSS of L.

Proposition 3.9. Let L = (Q,X, δ) be a NA and A ∈ NS(Q). Then

(i) if A = (FA, GA, HA) is a NSS of a NA L, then for each η ∈ I∗, η̂ ⊗A is a NSS of L.

(ii) if A = (FA, GA, HA) is a RNSS of a NA L, then for each η ∈ I∗, η̂ ⊗ A is a RNSS of

L.

Proof: (i) Let A = (FA, GA, HA) is a NSS of a NA L and η ∈ I∗. Then ∀q1, q2 ∈ Q

and b1 ∈ X,FA(q1) ⊗ Fδ(q1, b1, q2) ≤ FA(q2), GA(q1) ⊗ Gδ(q1, b1, q2) ≥ GA(q2) and HA(q1) ⊗
Hδ(q1, b1, q2) ≥ HA(q2) which implies that ∀q1, q2 ∈ Q and b1 ∈ X, (σ⊗FA(q1))⊗Fδ(q1, b1, q2) ≤
(σ⊗FA(q2)), (β ⊗GA(q1))⊗Gδ(q1, b1, q2) ≥ (β ⊗GA(q2)) and (γ ⊗HA(q1))⊗Hδ(q1, b1, q2) ≥
(γ ⊗HA(q2)). Hence η̂ ⊗A is a NSS of L.

(ii) In a similar manner, one can demonstrate that if A = (FA, GA, HA) is a RNSS of a

NA L, then for each η ∈ I∗, η̂ ⊗A is a RNSS of L.

The following provides a characterization of the neutrosophic transition function of a NA

based on its NSS.

Proposition 3.10. For given a NA L = (Q,X, δ). We have

(1) let E be the family of all NSS. Then ∀q1, q2 ∈ Q and b1 ∈ X,Fδb1 (q1, q2) = ∧{FA(q1)→
FA(q2) : FA ∈ E};Gδb1 (q1, q2) = ∨{GA(q1) ← GA(q2) : GA ∈ E};Hδb1

(q1, q2) =

∨{HA(q1)← HA(q2) : HA ∈ E}.
(2) let E’ be the family of all RNSS. Then ∀q1, q2 ∈ Q and b1 ∈ X,Fδb1 (q1, q2) =

∧{FA(q2) → FA(q1) : FA ∈ E’};Gδb1 (q1, q2) = ∨{GA(q2) ← GA(q1) : GA ∈
E’};Hδb1

(q1, q2) = ∨{HA(q2)← HA(q1) : HA ∈ E’}.

Proof: We only prove here for NSS of L. The RNSS of L can be proved in a similar way.

(i) Let A be a NSS of a NA L. Then ∀q1, q2 ∈ Q, b1 ∈ X,FA(q1) ⊗ Fδ(q1, b1, q2) ≤
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FA(q2), GA(q1) ⊗ Gδ(q1, b1, q2) ≥ GA(q2) and HA(q1) ⊗Hδ(q1, b1, q2) ≥ HA(q2), i.e. FA(q1) ⊗
Fδb1 (q1, q2) ≤ FA(q2), GA(q1) ⊗ Gδb1 (q1, q2) ≥ GA(q2) and HA(q1) ⊗ Hδb1

(q1, q2) ≥ HA(q2),

or that Fδb1 (q1, q2) ≤ FA(q1) → FA(q2), Gδb1 (q1, q2) ≥ GA(q1) ← GA(q2) and Hδb1
(q1, q2) ≥

HA(q1)← HA(q2)⇒ Fδb1 (q1, q2) ≤ ∧{FA(q1)→ FA(q2) : FA ∈ E}, Gδb1 (q1, q2) ≥ ∨{GA(q1)←
GA(q2) : GA ∈ E} and Hδb1

(q1, q2) ≥ ∨{HA(q1) ← HA(q2) : HA ∈ E}. Next for

q3 ∈ Q, b1 ∈ X, as [q3]
δb1 (q1) = (F

[q3]
δb1

(q1), G[q3]
δb1

(q1), H[q3]
δb1

(q1)) is a NSS of M . Then

∧{F
[q3]

δb1
(q1) → F

[q3]
δb1

(q2) : q3 ∈ Q} ≤ {Fδe(q1, q1) → Fδb1 (q1, q2)} = 1 → Fδb1 (q1, q2) =

Fδb1 (q1, q2),∨{G[q3]
δb1

(q1) ← G
[q3]

δb1
(q2) : q3 ∈ Q} ≥ {Gδe(q1, q1) ← Gδb1 (q1, q2)} = 0 ←

Gδb1 (q1, q2) = Gδb1 (q1, q2) and ∨{H
[q3]

δb1
(q1) ← H

[q3]
δb1

(q2) : q3 ∈ Q} ≥ {Hδe(q1, q1) ←
Hδb1

(q1, q2)} = 0 ← Hδb1
(q1, q2) = Hδb1

(q1, q2) (cf., Proposition 2.6). Thus ∀q1, q2 ∈ Q and

b1 ∈ X,Fδb1 (q1, q2) = ∧{FA(q1) → FA(q2) : FA ∈ E};Gδb1 (q1, q2) = ∨{GA(q1) ← GA(q2) :

GA ∈ E};Hδb1
(q1, q2) = ∨{HA(q1)← HA(q2) : HA ∈ E}.

Proposition 3.11. Let L = (Q,X, δ) be a NA and A ∈ NS(Q). Then

(1) if A = (FA, GA, HA) is a NSS of L, so for each η ∈ I∗, η̂ → A is a NSS of L.

(2) if A = (FA, GA, HA) is a RNSS of L, so for each η ∈ I∗, η̂ → A is a RNSS of L.

Proof: We only prove here for NSS of L. The RNSS of L can be proved in a similar way.

(i) Let A = (FA, GA, HA) be a NSS of a NA L and η ∈ I∗. Then ∀q1, q2 ∈ Q and b1 ∈ X, (σ →
FA(q1)) ⊗ (FA(q1) → FA(q2)) ≤ (σ → FA(q2)), (β ← GA(q1)) ⊗ (GA(q1) ← GA(q2)) ≥ (β ←
GA(q2)) and (γ ← HA(q1)) ⊗ (HA(q1) ← HA(q2)) ≥ (γ ← HA(q2)) (cf., Proposition 2.6).

So that (FA(q1) → FA(q2)) ≤ (σ → FA(q1)) → (σ → FA(q2)), (GA(q1) ← GA(q2)) ≥ (β ←
GA(q1)) ← (β ← GA(q2)) and (HA(q1) ← HA(q2)) ≥ (γ ← HA(q1)) ← (γ ← HA(q2)), or

that Fδ(q1, q2) ≤ (σ → FA(q1)) → (σ → FA(q2)), Gδ(q1, q2) ≥ (β ← GA(q1)) ← (β ← GA(q2))

and Hδ(q1, q2) ≥ (γ ← HA(q1)) ← (γ ← HA(q2)) (cf., Proposition 2.6), which implies that

(σ → FA(q1)) ⊗ Fδ(q1, q2) ≤ (σ → FA(q2)), (β ← GA(q1)) ⊗ Gδ(q1, q2) ≥ (β ← GA(q2)) and

(γ ← HA(q1))⊗Hδ(q1, q2) ≥ (γ ← HA(q2)). Thus η̂ → A is a NSS of L.

Proposition 3.12. Let L = (Q,X, δ) be a NA and A ∈ NS(Q) is a RNSS of L if and only if

it is a NSS of the RNA L = (Q,X, δ).

Proof: Let A is a NSS of the RNA L = (Q,X, δ), then ∀q1, q2 ∈ Q and b1 ∈ X,FA(q1) ⊗
Fδ(q1, b1, q2) ≤ FA(q2);GA(q1)⊗Gδ(q1, b1, q2) ≥ GA(q2) and HA(q1)⊗Hδ(q1, b1, q2) ≥ HA(q2)

if and only if FA(q1)⊗ Fδ(q2, b1, q1) ≤ FA(q2);GA(q1)⊗Gδ(q2, b1, q1) ≥ GA(q2) and HA(q1)⊗
Hδ(q2, b1, q1) ≥ HA(q2). Thus A is a RNSS of L. Converse is trivial.

Proposition 3.13. Let L = (Q,X, δ) be a NA with A ∈ NS(Q) and let ¬ be involutive. Then

(i) If A is a NSS, then ¬A = (¬FA,¬GA,¬HA) is a RNSS, and

(ii) if A is a RNSS, then ¬A = (¬FA,¬GA,¬HA) is a NSS.
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(iii) if A is a DNSS, then ¬A = (¬FA,¬GA,¬HA) is also a DNSS.

Proof: (i) Let A = (FA, GA, HA) is a NSS of L, then ∀q1, q2 ∈ Q and b1 ∈ X,FA(q1) ⊗
Fδ(q1, b1, q2) ≤ FA(q2), GA(q1)⊗Gδ(q1, b1, q2) ≥ GA(q2) and HA(q1)⊗Hδ(q1, b1, q2) ≥ HA(q2),

or that ¬(FA(q1) ⊗ Fδ(q1, b1, q2)) ≥ ¬FA(q2);¬(GA(q1) ⊗ Gδ(q1, b1, q2)) ≤ ¬GA(q2) and

¬(HA(q1) ⊗ Hδ(q1, b1, q2)) ≤ ¬HA(q2) which implies that (FA(q1) ⊗ Fδ(q1, b1, q2)) → 0 ≥
¬FA(q2); (GA(q1) ⊗ Gδ(q1, b1, q2)) ← 1 ≤ ¬GA(q2) and (HA(q1) ⊗ Hδ(q1, b1, q2)) ← 1 ≤
¬HA(q2)⇒ (Fδ(q1, b1, q2)⊗ FA(q1))→ 0 ≥ ¬FA(q2); (Gδ(q1, b1, q2)⊗GA(q1))← 1 ≤ ¬GA(q2)
and (Hδ(q1, b1, q2) ⊗ HA(q1)) ← 1 ≤ ¬HA(q2) ⇒ Fδ(q1, b1, q2) → (FA(q1) → 0) ≥
¬FA(q2);Gδ(q1, b1, q2) ← (GA(11) ← 1) ≤ ¬GA(q2) and Hδ(q1, b1, q2) ← (HA(q1) ← 1) ≤
¬HA(q2) ⇒ Fδ(q1, b1, q2) → ¬FA(q1) ≥ ¬FA(q2);Gδ(q1, b1, q2) ← ¬GA(q1) ≤ ¬GA(q2) and

Hδ(q1, b1, q2) ← ¬HA(q1) ≤ ¬HA(q2) ⇒ ¬FA(q2) ⊗ Fδ(q1, b1, q2) ≤ ¬FA(q1);¬GA(q2) ⊗
Gδ(q1, b1, q2) ≥ ¬GA(q1) and ¬HA(q2)⊗Hδ(q1, b1, q2) ≥ ¬HA(q1) (cf., Proposition 2.6). Hence

¬A is a RNSS of L.

(ii) Let A = (FA, GA, HA) is a RNSS of L, then ∀q1, q2 ∈ Q and b1 ∈ X,FA(q2) ⊗
Fδ(q1, b1, q2) ≤ FA(q1);GA(q2)⊗Gδ(q1, b1, q2) ≥ GA(q1) and HA(q2)⊗Hδ(q1, b1, q2) ≥ HA(q1),

or that ¬(FA(q2) ⊗ Fδ(q1, b1, q2)) ≥ ¬FA(q1);¬(GA(q2) ⊗ Gδ(q1, b1, q2)) ≤ ¬GA(q1) and

¬(HA(q2) ⊗ Hδ(q1, b1, q2)) ≤ ¬HA(q1) which implies that (FA(q2) ⊗ Fδ(q1, b1, q2)) → 0 ≥
¬FA(q1); (GA(q2) ⊗ Gδ(q1, b1, q2)) ← 1 ≤ ¬GA(q1) and (HA(q2) ⊗ Hδ(q1, b1, q2)) ← 1 ≤
¬HA(q1)⇒ (Fδ(q1, b1, q2)⊗ FA(q2))→ 0 ≥ ¬FA(q1); (Gδ(q1, b1, q2)⊗GA(q2))← 1 ≤ ¬GA(q1)
and (Hδ(q1, b1, q2) ⊗ HA(q2)) ← 1 ≤ ¬HA(q1) ⇒ Fδ(q1, b1, q2) → (FA(q2) → 0) ≥
¬FA(q1);Gδ(q1, b1, q2) ← (GA(q2) ← 1) ≤ ¬GA(q1) and Hδ(q1, b1, q2) ← (HA(q2) ← 1) ≤
¬HA(q1) ⇒ Fδ(q1, b1, q2) → ¬FA(q2) ≥ ¬FA(q1);Gδ(q1, b1, q2) ← ¬GA(q2) ≤ ¬GA(q1) and

Hδ(q1, b1, q2) ← ¬HA(q2) ≤ ¬HA(q1) ⇒ ¬FA(q1) ⊗ Fδ(q1, b1, q2) ≤ ¬FA(q2);¬GA(q1) ⊗
Gδ(q1, b1, q2) ≥ ¬GA(q2) and ¬HA(q1)⊗Hδ(q1, b1, q2) ≥ ¬HA(q2) (cf., Proposition 2.6). Hence

¬A is a NSS of L.

(iii) Derives from (i) and (ii).

4. Neutrosophic automata and reverse neutrosophic automata: a categorical ap-

proach

In this section, we initially demonstrate that an isomorphism among neutrosophic automata

(NA) establishes an equivalence relation. Additionally, we present the categorical character-

istics of both neutrosophic automata and reverse neutrosophic automata. Furthermore, we

identify the functorial relationship that exists between the categories of neutrosophic automata

and reverse neutrosophic automata. The discussion begins with the following points.
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(Fig.1)Homomorphism between L and N

Definition 4.1. Let L = (Q, δ) and N = (R, λ) are two NA over X. A homomorphism from

L to N is a function ψ : Q → R such that, for each element b1 ∈ X, the diagram depicted in

Figure 1 remains consistent.

Remark 4.2. (i) In Figure 1, the commutativity

of a diagram signifies (Fλb1o(ψ,ψ))(q1, q2) = Fδb1 (q1, q2); (Gλb1o(ψ,ψ))(q1, q2) = Gδb1 (q1, q2)

and (Hλb1
o(ψ,ψ))(q1, q2) = Hδb1

(q1, q2),∀q1, q2 ∈ Q.

(ii) Throughout, we will use the notation FA|GA|HA diagrams to denote a neutrosophic set

A. Furthermore, the commutativity of these diagrams remains consistent with the discussion

in part (i).

Remark 4.3. (i). The pair (ψ1, ψ2) is known as a strong homomorphism if,

∀(q1, b1, q2) ∈ Q × X × Q,Fλ(ψ1(q1), ψ2(b1), ψ1(q2)) = ∨{Fδ(q1, b1, q3) : q3 ∈ Q,ψ1(q3) =

ψ1(q2)}, Gλ(ψ1(q3), ψ2(b1), ψ1(q2)) = ∧{Gδ(q1, b1, q3) : q3 ∈ Q,ψ1(q3) = ψ1(q2)} and

Hλ(ψ1(q1), ψ2(b1), ψ1(q2)) = ∧{Hδ(q1, b1, q3) : q3 ∈ Q,ψ1(q3) = ψ1(q2)}.

(ii). A bijective homomorphism

(strong homomorphism) with the property λ(ψ1(q1), ψ2(b1), ψ1(q2)) = δ(q1, b1, q2) is called

an isomorphism (strong isomorphism).

Definition 4.4. Let L = (Q,X, δ) and N = (R,X, λ) be two NA and ψ : L −→ N be a

homomorphism. Then for A ∈ NS(Q), the neutrosophic subset ψ(A) ∈ NS(R) can be defined

as

Fψ(A)(q3) =

{
∨(FA(q1) : q1 ∈ Q,ψ(q1) = q3) if ψ−1(q3) ̸= ϕ

0 if ψ−1(q3) = ϕ

Gψ(A)(q3) =

{
∧(GA(q1) : q1 ∈ Q,ψ(q1) = q3) if ψ−1(q3) ̸= ϕ

1 if ψ−1(q3) = ϕ and

Anil Kumar Ram; Anupam K. Singh; Bikky Kumar. Neutrosophic Automata and Reverse
Neutrosophic Automata

Neutrosophic Sets and Systems, Vol. 63, 2024                                                                              230



Hψ(A)(q3) =

{
∧(HA(q1) : q1 ∈ Q,ψ(q1) = q3) if ψ−1(q3) ̸= ϕ

1 if ψ−1(q3) = ϕ,

In this context, we explore the properties of NSS under strong homomorphism.

Proposition 4.5. Let L = (Q,X, δ) and N = (R,X, λ) be two NA and ψ : L −→ N be an

onto strong homomorphism. Then for a NSS A of L,ψ(A) is a NSS of N .

Proof: Let q1, q2 ∈ Q and r1, r2 ∈ R such that f(q1) = r1 and f(q2) = r2. If A is a NSS of

L, then ∀r1, r2 ∈ R and b1 ∈ X, we have Fψ(A)(r1)⊗ Fλ(r1, b1, r2) = FA(r1)⊗ Fλ(r1, b1, r2) =
FA(q1) ⊗ Fλ(f(q1), b1, f(q2)) (where f(q1) = r1,∀q1 ∈ Q) = FA(q1) ⊗ ∨{Fδ(q1, b1, q3) :

q3 ∈ Q,ψ(q3) = ψ(q2) = r2} = ∨{FA(q1) ⊗ Fδ(q1, b1, q3) : q3 ∈ Q,ψ(q3) = ψ(q2) =

r2} ≤ ∨{FA(q3) : q3 ∈ Q,ψ(q3) = ψ(q2) = r2} = Fψ(A)(r2). Similarly, we can show that

Gψ(A)(r1) ⊗ Gλ(r1, b1, r2) ≥ Gψ(A)(r2) and Hψ(A)(r1) ⊗ Hλ(r1, b1, r2) ≥ Hψ(A)(r2). Hence

ψ(A) is a NSS of N .

The proposition mentioned above holds true solely for NSS and does not apply to RNSS.

Proposition 4.6. An isomorphism among NA establishes an equivalence relation.

Proof:-The reflexivity and symmetry are evident. To establish transitivity, we let

(ψ1, ψ2) : L1 −→ L2 and (χ1, χ2) : L2 −→ L3 where ψ1 : Q1 −→ Q2 , χ1 :

Q2 −→ Q3 and ψ2, χ2 : X −→ X be the isomorphism of L1 onto L2 and L2 onto

L3 respectively. Then (χ1, χ2)o(ψ1, ψ2) : L1 −→ L3 is bijective map from L1 to L3,

where((χ1, χ2)o(ψ1, ψ2))(q1, b1, q
′
1) = (χ1, χ2)((ψ1, ψ2)(q1, b1, q

′
1)), ∀(q1, b1, q′1) ∈ Q1 ×X ×Q1.

Since a map (ψ1, ψ2) : L1 → L2 defined as ψ1(q1) = q2, ψ1(q
′
1) = q′2, ψ2(b1) = b1 is

an isomorphism. So, we have Fδ1(q1, b1, q
′
1) = Fδ2(ψ1(q1), ψ2(b1), ψ1(q

′
1)) = Fδ2(q2, b1, q

′
2).

Similarly,Gδ1(q1, b1, q
′
1) = Gδ2(q2, b1, q

′
2) and Hδ1(q1, b1, q

′
1) = Hδ2(q2, b1, q

′
2), ∀(q1, b1, q′1) ∈

Q1 ×X ×Q1 and ∀(q2, b1, q′2) ∈ Q2 ×X ×Q2.

.....(1)

Next, since a map (χ1, χ2) : L2 → L3 defined as χ1(q2) = q3, χ1(q
′
2) = q′3 and χ2(b1) = b1 is

an isomorphism. So, we have Fδ2(q2, b1, q
′
2) = Fδ3(χ1(q2), χ2(b1), χ1(q

′
2)) = Fδ3(q3, b1, q

′
3).

Similarly Gδ2(q2, b1, q
′
2) = Gδ3(q3, b1, q

′
3) and Hδ2(q2, b1, q

′
2) = Hδ3(q3, b1, q

′
3), ∀(q2, b1, q′2) ∈

Q2 ×X ×Q2 and (q3, b1, q
′
3) ∈ Q3 ×X ×Q3.

.........(2)

Thus from expressions (1), (2) andψ1(q1) = q2, ψ1(q
′
1) = q′2, ψ2(b1) = b1, ∀(q1, b1, q′1) ∈

Q1 × X × Q1, we have Fδ1(q1, b1, q
′
1) = Fδ2(ψ1(q1), ψ2(b1), ψ1(q

′
1)) = Fδ2(q2, b1, q

′
2) =

Fδ3(χ1(q2), χ2(b1), χ1(q
′
2)) = Fδ3((χ1, χ2)(q2, b1, q

′
2)) = Fδ3((χ1, χ2)((ψ1, ψ2)(q1, b1, q

′
1)) =
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(Fig.2)Homomorphism between N and P

Fδ3((χ1, χ2)o(ψ1, ψ2))(q1, b1, q
′
1). Similarly Gδ1(q1, b1, q

′
1) = Gδ3((χ1, χ2)o(ψ1, ψ2))(q1, b1, q

′
1)

and Hδ1(q1, b1, q
′
1) = Hδ3((χ1, χ2)o(ψ1, ψ2))(q1, b1, q

′
1),∀(q1, b1, q′1) ∈ Q1 × X × Q1. Hence

(χ1, χ2)o(ψ1, ψ2) is an isomorphism between L1 and L3.

Proposition 4.7. An isomorphism among RNA establishes an equivalence relation.

Proof:- A direct consequence of the proposition 4.6.

Proposition 4.8. An isomorphism among DNA establishes an equivalence relation.

Proof:- This is a direct consequence of the propositions 4.6 and 4.7.

We will represent the category of NA over X as NeA(X) and the category of NA over X∗

as NeA(X∗). Additionally, the object-class of the categories NeA(X) and NeA(X∗) will be

denoted as NeA(X) and NeA(X∗), respectively. Now, we proceed with the following.

Proposition 4.9. The class of NA over X and their homomorphisms constitute a category.

Proof: We demonstrate solely that the composition of two homomorphisms is again a ho-

momorphism, as follows, let L = (Q, δ), N = (R, λ) and P = (S, µ) be NA over X and

ψ : L → N,χ : N → P be homomorphisms, i.e., ψ : Q → R,χ : R → S are the

maps such that for all b1 ∈ X, the diagrams in Fig.1 and Fig. 2 holds. Then the fol-

lowing shows that for all b1 ∈ X, the diagram in Fig. 3 also hold. So, let q1, q2 ∈ Q.

Then (Fµb1o(χoψ, χoψ))(q1, q2) = Fµb1 (χ(ψ(q1)), χ(ψ(q2))) = (Fµb1o(χ, χ))(ψ(q1), ψ(q2)) =

Fλb1 (ψ(q1), ψ(q2)) = (Fλb1o(ψ,ψ))(q1, q2) = Fδb1 (q1, q2). Hence Fδb1 = Fµb1o(χoψ, χoψ).

Similarly, we can show that Gδb1 = Gµb1o(χoψ, χoψ) and Hδb1
= Hµb1

o(χoψ, χoψ). Thus

χoψ : L→ P is a homomorphism.

We will represent the category of RNA over X as RNeA(X) and the category of RNA over

Anil Kumar Ram; Anupam K. Singh; Bikky Kumar. Neutrosophic Automata and Reverse
Neutrosophic Automata

Neutrosophic Sets and Systems, Vol. 63, 2024                                                                              232



(Fig.3) Homomorphism between L and P

(Fig.4) Homomorphism between L and N

X∗ as RNeA(X∗). Additionally, the object-class of the categories RNeA(X) and RNeA(X∗)

will be denoted as RNeA(X) and RNeA(X∗), respectively.

Definition 4.10. Let L=(Q, δ) and N=(R, λ) be RNA over X. A homomorphism from L to

N is a map ψ : Q→ R such that for all b1 ∈ X, the diagram in Fig.4 hold.

Now, we present the introduction of functors between the categories of NA as described

earlier.

Proposition 4.11. From NeA(X) to NeA(X∗), there exists a functor.

Proof:- Let L = (Q,X, δ) ∈ NeA(X). We establish a mapping K : NeA(X) → NeA(X∗)

such that K(L) = (Q,X∗, δ∗), then K(L) ∈ NeA(X∗). Also, for a NeA(X)-morphism ψ :

L = (Q,X, δ) → N = (R,X, λ), let K(ψ) : K(L) → K(N) ,i.e., K(ψ) = ψ∗. Subsequently, it

can be demonstrated that ψ∗ is a NeA(X∗)-morphism from K(L) to K(N), i.e., the depicted

diagram in Figure 5 is valid, indicating that the diagram in Figure 6 also holds. Consequently,

based on Figure 5, we obtain

Fδ = Fλo(ψ × IX × ψ), Gδ = Gλo(ψ × IX × ψ) and Hδ = Hλo(ψ × IX × ψ)
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(Fig.5) Morphism between L and N

(Fig.6) Morphism between K(L)and

K(N)

Now, K(Fδ) = Fδ∗ = K[Fλo(ψ × IX × ψ)] = Fλ∗o(ψ
∗ × IX∗ × ψ∗). In a similar manner

K(Gδ) = Gδ∗ = K[Gλo(ψ× IX ×ψ)] = Gλ∗o(ψ
∗× IX∗ ×ψ∗) and K(Hδ) = Hδ∗ = K[Hλo(ψ×

IX×ψ)] = Hλ∗o(ψ
∗×IX∗×ψ∗). This implies the validity of Figure 6. Additionally, the identity

and composition properties of maps K are evident. Therefore, the mapping K : NeA(X) →
NeA(X∗) is a functor.

Proposition 4.12. From NeA(X∗) to NeA(X), there exists a functor.

Proof:- Define a mapping β : NeA(X∗) → NeA(X) such that β(L) = (Q,X, δ),∀L ∈
NeA(X∗). Then β(L) ∈ NeA(X). Therefore, based on proposition 4.11, we demonstrate that

β operates as a functor.

In this context, we present the functor between the category of RNA, as defined earlier.

Proposition 4.13. From RNeA(X) to RNeA(X∗), there exists a functor.

Proof:- This is a direct consequence of the proposition 4.11.

Proposition 4.14. From RNeA(X∗) to RNeA(X), there exists a functor.
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Proof:-This is a direct consequence of the proposition 4.12.

5. Conclusions

This paper has introduced the novel concepts of neutrosophic automata and reverse neutro-

sophic automata, extending the groundwork laid by fuzzy automata. The exploration includes

the introduction of neutrosophic subsystems, reverse neutrosophic subsystems, and double

neutrosophic subsystems linked to these automata, with an investigation into algebraic results

derived from these concepts. Additionally, the categorical properties of neutrosophic automata

and their functorial relationships have been examined. In future work, the focus will extend

to exploring the topological properties of neutrosophic automata based on the aforementioned

concepts.
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35. Moćkor, J. A category of fuzzy automata. International Journal of General Systems (1991), 20, 73-82.

Anil Kumar Ram; Anupam K. Singh; Bikky Kumar. Neutrosophic Automata and Reverse
Neutrosophic Automata

Neutrosophic Sets and Systems, Vol. 63, 2024                                                                              236
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Abstract. In this paper, we define the concept of Diophantine neutrosophic subbisemiring (DioNSBS) of

bisemirings (BSs). The DioNSBS is the new approach for fuzzy subbisemiring (FSBS) over a BS. Let Ξ be the

Diophantine neutrosophic subset (DioNSS) in T , we show that Ξ = 〈(fTΞ ,fIΞ,fFΞ ), (ΓΞ,ΛΞ,ΘΞ)〉 is a DioNSBS

of T if and only if all non-empty level set Ξ(β,γ) is a subbisemiring (SBS) of T , ∀β, γ ∈ [0, 1]. Let Ξ be the

DioNSBS of a BS T and Z be the strongest Diophantine neutrosophic relation of T . Then Ξ is a DioNSBS

of T if and only if Z is a DioNSBS of T × T . Let Ξ1,Ξ2, . . . ,Ξn be the family of DioNSBSs of T1, T2, . . . , Tn,

respectively. We show that Ξ1 × Ξ2 × . . . × Ξn is a DioNSBS of T1 × T2 × . . . × Tn. The homomorphic image

of every DioNSBS is a DioNSBS. Let Ξ be any DioNSBS of T , then pseudo Diophantine neutrosophic coset

(aΞ)p is a DioNSBS of T , for every a ∈ T . Let (T1,~1,~2,~3) and (T2,⊗1,⊗2,⊗3) be any two BSs. The

homomorphic preimage of every DioNSBS of T2 is a DioNSBS of T1. Let (T1,~1,~2,~3) and (T2,⊗1,⊗2,⊗3)

be any two BSs. Let Ξ and ∆ be any two DioNSBSs of T1 and T2, respectively, then Ξ ×∆ is a DioNSBS of

T1 × T2. If L : T1 → T2 is a homomorphism, then L(Ξ(β,γ)) is a level SBS of DioNSBS Z of T2. Examples are

given to demonstrate our findings.

Keywords: BS; FSBS; NSBS; DioNSBS.

—————————————————————————————————————————

1. Introduction

Most real-world problems are characterized by uncertainty. Numerous uncertain theories,

such as the fuzzy set (FS) [31], intuitionistic fuzzy set (IFS) [5], Pythagorean fuzzy set (PFS)
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[28] and neutrosophic set (NSS) [26] are proposed to deal with the uncertainties. An FS is one

in which every element in the universe is a member, but only to a degree of belongingness that

ranges from zero to one. In the set of elements, these grades are known as membership values.

Clustering techniques [29] are used in applications of FSs like regression prediction for fuzzy

time series [27]and fuzzy c-numbersIn applications that require precise data. Atanassov [5]

introduced the idea of an IFS. An organization whose membership degree and non-membership

degree values are less than or equal to one. Occasionally, we have difficulty making decisions

when the combined value of the membership degree and the non-membership degree is greater

than one. As part of a generalization of IFS, Yager [28] introduced the concept of PFS as

defined by the sum of membership degrees with non-membership degrees having a value less

than or equal to one. The numerous applications based on PFSs were addressed by Akram et

al. [2–4]. The study of semirings resulted from Dedekind’s engagement with commutative ring

theories. Vandiver [30] introduces semirings as part of his generalization of rings. In the 1880s,

the German mathematician Dedekind began to investigate semirings and commutative rings as

ideals. Vandiver developed a fundamental algebraic structure in 1934 due to his later research

on semirings. A distributive lattice was essentially a generalization of rings. On the other

hand, semiring theory has advanced since 1950. Rings and distributive lattices were essentially

generalized. The theory of semirings has nevertheless been developing since 1950. Iseki [8, 9]

was introduced by the semiring concept that is not always commutative under either operation.

Without zero, Iseki [10] demonstrated numerous significant results based on semirings by using

this abstraction for semirings. Many authors and academics have described the various ideals

based on semirings [7]. Semigroups, semirings, and hypersemigroups are a few examples of

ordered algebraic structures that many writers have researched. Zadeh invented the concept of

FS [31]. A function described by a membership value is what this definition refers to as an FS.

In real unit intervals, degrees are taken. A combination of membership and non-membership

has been considered, and an insufficient definition has been reached. NSS extend FS and IFS

by delineating truth and indeterminacy memberships separately. To manage the uncertainty

presented, Atanassov [5] described a set referred to as an IFS. Several application-related

problems are present in this information set, and Smarandache [26] proposed neutrosophy

to address these issues. Reference parameters were included in the discussion of the linear

Diophantine fuzzy set (LDFS) by Riaz et al. [23]. Because reference parameters are used,

the LDFS is more effective and adaptable than other methods. By modifying the reference

parameter’s physical sense, the LDFS classifies the data in MADM difficulties. A fundamental

difference between FS and IFS can be found in neutrosophy, which focuses on neutral cognition.

Smarandache [26] invented neurosophic logic. Each proposition is given an estimated degree

of truth, degree of ambiguity and degree of falsity according to this logic. Every component of
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the cosmos in NSS has a degree of truth, indeterminacy and falsity that ranges from [0, 1]. The

FS, interval-valued FS and classical sets can be generalized to an NSS from a philosophical

perspective.

A semiring (S,+, ·) is a non-empty set in which (S,+) and (S, ·) are semigroups such that “·”
is distributive over “+” [7]. In 1993, Ahsan et al. [1] introduced the notion of fuzzy semirings.

In 2001, Sen and Ghosh were introduced in BSs. A bisemiring (BS) (T ,+, ◦,×) is an algebraic

structure in which (T ,+, ◦) and (T , ◦,×) are semirings in which (T ,+), (T , ◦) and (T ,×) are

semigroups such that (i) τa ◦ (τb+τc) = (τa ◦τb)+(τa ◦τc), (ii) (τb+τc)◦τa = (τb ◦τa)+(τc ◦τa)
(iii) τa×(τb◦τc) = (τa×τb)◦(τa×τc) and (iv) (τb◦τc)×τa = (τb×τa)◦(τc×τa), ∀τa, τc ∈ T [25].

A non-empty subset Ξ of a BS (T ,+, ◦,×) is an SBS if and only if τa + τb ∈ Ξ, τa ◦ τb ∈ Ξ and

τa× τb ∈ Ξ,∀τa, τb, τc ∈ Ξ [6]. Palanikumar et al. discussed the various ideal structures of SBS

theory and its applications [11]- [20]. The concept of DioNSBSs is introduced in this study.

This paper is focused on the following: The introduction is in Section 1. The preliminary

definitions and results are found in Section 2. Section 3 introduces the notion of DioNSBS

and its several illustrative examples.

2. Basic Concepts

Definition 2.1. [26] An NSS Ξ in the universe U is Ξ = {ε,fTΞ (ε),fIΞ(ε),fFΞ (ε) | ε ∈
U}, where fTΞ (ε), fIΞ(ε) fFΞ (ε) represents the degree of truth-membership, indeterminacy

membership and falsity-membership of Ξ, respectively. The mapping fTΞ ,fIΞ,fFΞ : U → [0, 1]

and 0 ≤ fTΞ (ε) + fIΞ(ε) + fFΞ (ε) ≤ 3.

Definition 2.2. [26] Let Ξ1 = 〈fTΞ1
,fIΞ1

,fFΞ1
〉, Ξ2 = 〈fTΞ2

,fIΞ2
,fFΞ2

〉 and Ξ3 =

〈fTΞ3
,fIΞ3

,fFΞ3
〉 be the three neutrosophic numbers over U . Then

(i) Ξ1
c = 〈fFΞ1

,fIΞ1
,fTΞ1

〉
(ii) Ξ2 Y Ξ3 =

〈
max(fTΞ2

,fTΞ3
),min(fIΞ2

,fIΞ3
),min(fFΞ2

,fFΞ3
)
〉

(iii) Ξ2 Z Ξ3 =
〈

min(fTΞ2
,fTΞ3

),max(fIΞ2
,fIΞ3

),max(fFΞ2
,fFΞ3

)
〉

(iv) Ξ2 ≥ Ξ3 iff fTΞ2
≥ fTΞ3

and fIΞ2
≤ fIΞ3

and fFΞ2
≤ fFΞ3

(v) Ξ2 = Ξ3 iff fTΞ2
= fTΞ3

and fIΞ2
= fIΞ3

and fFΞ2
= fFΞ3

.

Definition 2.3. [26] For any NSS Ξ = {ξa,fTΞ (ξa),fIΞ(ξa),fFΞ (ξa)} of U , we defined a (τ, σ)-

cut of as the crisp subset {ξa ∈ U | fTΞ (ξa) ≥ τ,fIΞ(ξa) ≥ τ,fFΞ (ξa) ≤ σ}.

Definition 2.4. [26] Let Ξ and ∆ be be two NSSs of T . The Cartesian product of Ξ

and ∆ is defined as Ξ × ∆ = {fTΞ×∆(ξa, ξb),fIΞ×∆(ξa, ξb),fFΞ×∆(ξa, ξb) | for all ξa, ξb ∈
T }, where fTΞ×∆(ξa, ξb) = min{fTΞ (ξa),fT∆(ξb)},fIΞ×∆(ξa, ξb) =

fIΞ(ξa)+fI∆(ξb)
2 ,fFΞ×∆(ξa, ξb) =

max{fFΞ (ξa),fF∆(ξb)}.
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Definition 2.5. [?] An FS Ξ of a BS (T ,�1,�2,�3) is said to be a fuzzy subbisemiring (FSBS)

of T if fΞ(ξa�1ξb) ≥ min{fΞ(ξa),fΞ(ξb)},fΞ(ξa�2ξb) ≥ min{fΞ(ξa),fΞ(ξb)},fΞ(ξa�3ξb) ≥
min{fΞ(ξa),fΞ(ξb)}, ∀ξa, ξb ∈ T .

Definition 2.6. [?] An FS Ξ of a BS (T ,�1,�2,�3) is said to be a fuzzy normal subbisemiring

(FNSBS) of T if fΞ(ξa �1 ξb) = fΞ(ξb �1 ξa),fΞ(ξa �2 ξb) = fΞ(ξb �2 ξa),fΞ(ξa �3 ξb) =

fΞ(ξb �3 ξa), ∀ξa, ξb ∈ T .

Definition 2.7. [6] Let (T ,+, ·,×) and (T1,~, ◦,⊗) be two BSs. A mapping κ : T → T1 is

said to be a homomorphism if κ(ξa + ξb) = κ(ξa)~ κ(ξb), κ(ξa · ξb) = κ(ξa) ◦ κ(ξb), κ(ξa× ξb) =

κ(ξa)⊗ κ(ξb), ∀ξa, ξb ∈ T .

3. Diophantine Neutrosophic Subbisemirings

In the following, let T denote a BS unless otherwise stated.

Definition 3.1. A DioNSS Ξ in U is Ξ =
{
ε,
(
fTΞ (ε),fIΞ(ε),fFΞ (ε)

)
,
(

ΓΞ(ε),ΛΞ(ε),ΘΞ(ε)
)
|

ε ∈ U
}

, where fTΞ (ε), fIΞ(ε) fFΞ (ε) represents the degree of truth-membership, degree of

indeterminacy membership and degree of falsity-membership of Ξ, respectively, and ΓΞ(ε) +

ΛΞ(ε) + ΘΞ(ε) ≤ 1. The mapping fTΞ ,fIΞ,fFΞ : U → [0, 1] and 0 ≤ (ΓΞ(ε) · fTΞ (ε)) + (ΛΞ(ε) ·
fIΞ(ε)) + (ΘΞ(ε) · fFΞ (ε)) ≤ 2.

Definition 3.2. A DioNSS Ξ of T is said to be a DioNSBS of T if (∀ζ, η ∈ T )


fTΞ (ζ �1 η) ≥ min{fTΞ (ζ),fTΞ (η)}

fTΞ (ζ �2 η) ≥ min{fTΞ (ζ),fTΞ (η)}

fTΞ (ζ �3 η) ≥ min{fTΞ (ζ),fTΞ (η)}





fIΞ(ζ �1 η) ≥ fIΞ(ζ)+fIΞ(η)
2

OR

fIΞ(ζ �2 η) ≥ fIΞ(ζ)+fIΞ(η)
2

OR

fIΞ(ζ �3 η) ≥ fIΞ(ζ)+fIΞ(η)
2



fFΞ (ζ �1 η) ≤ max{fFΞ (ζ),fFΞ (η)}

fFΞ (ζ �2 η) ≤ max{fFΞ (ζ),fFΞ (η)}

fFΞ (ζ �3 η) ≤ max{fFΞ (ζ),fFΞ (η)}




ΓΞ(ζ �1 η) ≥ min{ΓΞ(ζ),ΓΞ(η)}

ΓΞ(ζ �2 η) ≥ min{ΓΞ(ζ),ΓΞ(η)}

ΓΞ(ζ �3 η) ≥ min{ΓΞ(ζ),ΓΞ(η)}





ΛΞ(ζ �1 η) ≥ ΛΞ(ζ)+ΛΞ(η)
2

OR

ΛΞ(ζ �2 η) ≥ ΛΞ(ζ)+ΛΞ(η)
2

OR

ΛΞ(ζ �3 η) ≥ ΛΞ(ζ)+ΛΞ(η)
2


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
ΘΞ(ζ �1 η) ≤ max{ΘΞ(ζ),ΘΞ(η)}

ΘΞ(ζ �2 η) ≤ max{ΘΞ(ζ),ΘΞ(η)}

ΘΞ(ζ �3 η) ≤ max{ΘΞ(ζ),ΘΞ(η)}

 .

Example 3.3. Let T = {θ1, θ2, θ3, θ4} be the BS with the tables:

�1 θa θb θc θd

θa θa θa θa θa

θb θa θb θa θb

θc θa θa θc θc

θd θa θb θc θd

�2 θa θb θc θd

θa θa θb θc θd

θb θb θb θd θd

θc θc θd θc θd

θd θd θd θd θd

�3 θa θb θc θd

θa θa θa θa θa

θb θa θb θc θd

θc θd θd θd θd

θd θd θd θd θd

θ = θa θ = θb θ = θc θ = θd(
fTΞ (θ),ΓΞ(θ)

)
(0.97, 0.40) (0.95, 0.35) (0.92, 0.25) (0.94, 0.30)(

fIΞ(θ),ΛΞ(θ)
)

(0.80, 0.25) (0.78, 0.20) (0.73, 0.10) (0.75, 0.15)(
fFΞ (θ),ΘΞ(θ)

)
(0.85, 0.30) (0.89, 0.35) (0.91, 0.45) (0.90, 0.40)

Clearly, Ξ is a DioNSBS of T .

Theorem 3.4. The intersection of a family of DioNSBSs of T is a DioNSBS of T .

Proof. Let {Zi : i ∈ I} be a family of DioNSBSs of T and Ξ =
⋂
i∈I
Zi.

Let ζ and η in T . Then

fTΞ (ζ �1 η) = inf
i∈I

fTZi(ζ �1 η)

≥ inf
i∈I

min{fTZi(ζ),fTZi(η)}

= min
{

inf
i∈I

fTZi(ζ), inf
i∈I

fTZi(η)
}

= min{fTΞ (ζ),fTΞ (η)}.

Similarly, fTΞ (ζ �2 η) ≥ min{fTΞ (ζ),fTΞ (η)}, fTΞ (ζ �3 η) ≥ min{fTΞ (ζ),fTΞ (η)}. Now,

fIΞ(ζ �1 η) = inf
i∈I

fIZi(ζ �1 η)

≥ inf
i∈I

fIZi(ζ) + fIZi(η)

2

=
inf
i∈I

fIZi(ζ) + inf
i∈I

fIZi(η)

2

=
fIΞ(ζ) + fIΞ(η)

2
.
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Similarly, fIΞ(ζ �2 η) ≥ fIΞ(ζ)+fIΞ(η)
2 and fIΞ(ζ �3 η) ≥ fIΞ(ζ)+fIΞ(η)

2 . Now,

fFΞ (ζ �1 η) = sup
i∈I

fZi(ζ �1 η)

≤ sup
i∈I

max{fZi(ζ),fZi(η)}

= max
{

sup
i∈I

fZi(ζ), sup
i∈I

fZi(η)
}

= max{fFΞ (ζ),fFΞ (η)}.

Similarly, fFΞ (ζ �2 η) ≤ max{fFΞ (ζ),fFΞ (η)}, fFΞ (ζ �3 η) ≤ max{fFΞ (ζ),fFΞ (η)}.

ΓΞ(ζ �1 η) = inf
i∈I

ΓZi(ζ �1 η)

≥ inf
i∈I

min{ΓZi(ζ),ΓZi(η)}

= min
{

inf
i∈I

ΓZi(ζ), inf
i∈I

ΓZi(η)
}

= min{ΓΞ(ζ),ΓΞ(η)}.

Similarly, ΓΞ(ζ �2 η) ≥ min{ΓΞ(ζ),ΓΞ(η)}, ΓΞ(ζ �3 η) ≥ min{ΓΞ(ζ),ΓΞ(η)}. Now,

ΛΞ(ζ �1 η) = inf
i∈I

ΛZi(ζ �1 η)

≥ inf
i∈I

ΛZi(ζ) + ΛZi(η)

2

=
inf
i∈I

ΛZi(ζ) + inf
i∈I

ΛZi(η)

2

=
ΛΞ(ζ) + ΛΞ(η)

2
.

Similarly, ΛΞ(ζ �2 η) ≥ ΛΞ(ζ)+ΛΞ(η)
2 and ΛΞ(ζ �3 η) ≥ ΛΞ(ζ)+ΛΞ(η)

2 . Now,

ΘΞ(ζ �1 η) = sup
i∈I

ΘZi(ζ �1 η)

≤ sup
i∈I

max{ΘZi(ζ),ΘZi(η)}

= max
{

sup
i∈I

ΘZi(ζ), sup
i∈I

ΘZi(η)
}

= max{ΘΞ(ζ),ΘΞ(η)}.

Similarly, ΘΞ(ζ �2 η) ≤ max{ΘΞ(ζ),ΘΞ(η)}, ΘΞ(ζ �3 η) ≤ max{ΘΞ(ζ),ΘΞ(η)}. Hence Ξ is a

DioNSBS of T .

Theorem 3.5. If Ξ and ∆ are two DioNSBSs of T1 and T2, respectively, then Ξ × ∆ is a

DioNSBS of T1 × T2.

G. Manikandan, M. Palanikumar, P. Vijayalakshmi and Aiyared Iampan, New algebraic
structure for Diophantine neutrosophic subbisemirings of bisemirings

Neutrosophic Sets and Systems, Vol. 63, 2024                                                                              244



Proof. Let Ξ and ∆ be two DioNSBSs of T1 and T2, respectively. Let ζ1, ζ2 ∈ T1 and

η1, η2 ∈ T2. Then (ζ1, η1) and (ζ2, η2) are in T1 × T2. Now,

fTΞ×∆[(ζ1, η1)�1 (ζ2, η2)] = fTΞ×∆(ζ1 �1 ζ2, η1 �1 η2)

= min{fTΞ (ζ1 �1 ζ2),fT∆(η1 �1 η2)}

≥ min{min{fTΞ (ζ1),fTΞ (ζ2)},min{fT∆(η1),fT∆(η2)}}

= min{min{fTΞ (ζ1),fT∆(η1)},min{fTΞ (ζ2),fT∆(η2)}}

= min{fTΞ×∆(ζ1, η1),fTΞ×∆(ζ2, η2)}.

Also, fTΞ×∆[(ζ1, η1) �2 (ζ2, η2)] ≥ min{fTΞ×∆(ζ1, η1),fTΞ×∆(ζ2, η2)} and fTΞ×∆[(ζ1, η1) �3

(ζ2, η2)] ≥ min{fTΞ×∆(ζ1, η1),fTΞ×∆(ζ2, η2)}. Now,

fIΞ×∆[(ζ1, η1)�1 (ζ2, η2)] = fIΞ×∆(ζ1 �1 ζ2, η1 �1 η2)

=
fIΞ(ζ1 �1 ζ2) + fI∆(η1 �1 η2)

2

≥ 1

2

[
fIΞ(ζ1) + fIΞ(ζ2)

2
+

fI∆(η1) + fI∆(η2)

2

]

=
1

2

[
fIΞ(ζ1) + fI∆(η1)

2
+

fIΞ(ζ2) + fI∆(η2)

2

]

=
1

2

[
fIΞ×∆(ζ1, η1) + fIΞ×∆(ζ2, η2)

]
.

Also, fIΞ×∆[(ζ1, η1) �2 (ζ2, η2)] ≥ 1
2

[
fIΞ×∆(ζ1, η1) + fIΞ×∆(ζ2, η2)

]
and fIΞ×∆[(ζ1, η1) �3

(ζ2, η2)] ≥ 1
2

[
fIΞ×∆(ζ1, η1) + fIΞ×∆(ζ2, η2)

]
. Now,

fFΞ×∆[(ζ1, η1)�1 (ζ2, η2)] = fFΞ×∆(ζ1 �1 ζ2, η1 �1 η2)

= max{fFΞ (ζ1 �1 ζ2),fF∆(η1 �1 η2)}

≤ max{max{fFΞ (ζ1),fFΞ (ζ2)},max{fF∆(η1),fF∆(η2)}}

= max{max{fFΞ (ζ1),fF∆(η1)},max{fFΞ (ζ2),fF∆(η2)}}

= max{fFΞ×∆(ζ1, η1),fFΞ×∆(ζ2, η2)}.

Also, fFΞ×∆[(ζ1, η1) �2 (ζ2, η2)] ≤ max{fFΞ×∆(ζ1, η1),fFΞ×∆(ζ2, η2)} and fFΞ×∆[(ζ1, η1) �3

(ζ2, η2)] ≤ max{fFΞ×∆(ζ1, η1),fFΞ×∆(ζ2, η2)}.

ΓΞ×∆[(ζ1, η1)�1 (ζ2, η2)] = ΓΞ×∆(ζ1 �1 ζ2, η1 �1 η2)

= min{ΓΞ(ζ1 �1 ζ2),Γ∆(η1 �1 η2)}

≥ min{min{ΓΞ(ζ1),ΓΞ(ζ2)},min{Γ∆(η1),Γ∆(η2)}}

= min{min{ΓΞ(ζ1),Γ∆(η1)},min{ΓΞ(ζ2),Γ∆(η2)}}

= min{ΓΞ×∆(ζ1, η1),ΓΞ×∆(ζ2, η2)}.
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Also, ΓΞ×∆[(ζ1, η1) �2 (ζ2, η2)] ≥ min{ΓΞ×∆(ζ1, η1),ΓΞ×∆(ζ2, η2)} and ΓΞ×∆[(ζ1, η1) �3

(ζ2, η2)] ≥ min{ΓΞ×∆(ζ1, η1),ΓΞ×∆(ζ2, η2)}. Now,

ΛΞ×∆[(ζ1, η1)�1 (ζ2, η2)] = ΛΞ×∆(ζ1 �1 ζ2, η1 �1 η2)

=
ΛΞ(ζ1 �1 ζ2) + Λ∆(η1 �1 η2)

2

≥ 1

2

[
ΛΞ(ζ1) + ΛΞ(ζ2)

2
+

Λ∆(η1) + Λ∆(η2)

2

]

=
1

2

[
ΛΞ(ζ1) + Λ∆(η1)

2
+

ΛΞ(ζ2) + Λ∆(η2)

2

]

=
1

2

[
ΛΞ×∆(ζ1, η1) + ΛΞ×∆(ζ2, η2)

]
.

Also, ΛΞ×∆[(ζ1, η1) �2 (ζ2, η2)] ≥ 1
2

[
ΛΞ×∆(ζ1, η1) + ΛΞ×∆(ζ2, η2)

]
and ΛΞ×∆[(ζ1, η1) �3

(ζ2, η2)] ≥ 1
2

[
ΛΞ×∆(ζ1, η1) + ΛΞ×∆(ζ2, η2)

]
. Now,

ΘΞ×∆[(ζ1, η1)�1 (ζ2, η2)] = ΘΞ×∆(ζ1 �1 ζ2, η1 �1 η2)

= max{ΘΞ(ζ1 �1 ζ2),Θ∆(η1 �1 η2)}

≤ max{max{ΘΞ(ζ1),ΘΞ(ζ2)},max{Θ∆(η1),Θ∆(η2)}}

= max{max{ΘΞ(ζ1),Θ∆(η1)},max{ΘΞ(ζ2),Θ∆(η2)}}

= max{ΘΞ×∆(ζ1, η1),ΘΞ×∆(ζ2, η2)}.

Also, ΘΞ×∆[(ζ1, η1) �2 (ζ2, η2)] ≤ max{ΘΞ×∆(ζ1, η1),ΘΞ×∆(ζ2, η2)} and ΘΞ×∆[(ζ1, η1) �3

(ζ2, η2)] ≤ max{ΘΞ×∆(ζ1, η1),ΘΞ×∆(ζ2, η2)}. Hence Ξ×∆ is a DioNSBS of T .

Corollary 3.6. If Ξ1,Ξ2, . . . ,Ξn are DioNSBSs of T1, T2, . . . , Tn, respectively, then Ξ1×Ξ2×
. . .× Ξn is a DioNSBS of T1 × T2 × . . .× Tn.

Definition 3.7. Let Ξ be a DioNSS in T , the strongest Diophantine neutrosophic relation on

T . That is a Diophantine neutrosophic relation on Ξ is Z given by


fTZ (ζ, η) = min{fTZ (ζ),fTZ (η)}

fIZ(ζ, η) =
fIZ(ζ)+fIZ(η)

2

fFZ (ζ, η) = max{fFZ (ζ),fFZ (η)}




ΓZ(ζ, η) = min{ΓZ(ζ),ΓZ(η)}

ΛZ(ζ, η) = ΛZ(ζ)+ΛZ(η)
2

ΘZ(ζ, η) = max{ΘZ(ζ),ΘZ(η)}

 .

Theorem 3.8. Let Ξ be the DioNSBS of T and Z be the strongest Diophantine neutrosophic

relation of T . Then Ξ is a DioNSBS of T if and only if Z is a DioNSBS of T × T .
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Proof. Let Ξ be the DioNSBS of T and Z be the strongest Diophantine neutrosophic

relation of T . Then for any ζ = (ζ1, ζ2) and η = (η1, η2) are in T × T . We have

fTZ (ζ �1 η) = fTZ [((ζ1, ζ2)�1 (η1, η2)]

= fTZ (ζ1 �1 η1, ζ2 �1 η2)

= min{fTΞ (ζ1 �1 η1),fTΞ (ζ2 �1 η2)}

≥ min{min{fTΞ (ζ1),fTΞ (η1)},min{fTΞ (ζ2),fTΞ (η2)}}

= min{min{fTΞ (ζ1),fTΞ (ζ2)},min{fTΞ (η1),fTΞ (η2)}}

= min{fTZ (ζ1, ζ2),fTZ (η1, η2)}

= min{fTZ (ζ),fTZ (η)}.

Also, fTZ (ζ �2 η) ≥ min{fTZ (ζ),fTZ (η)},fTZ (ζ �3 η) ≥ min{fTZ (ζ),fTZ (η)}. Now,

fIZ(ζ �1 η) = fIZ [((ζ1, ζ2)�1 (η1, η2)]

= fIZ(ζ1 �1 η1, ζ2 �1 η2)

=
fIΞ(ζ1 �1 η1) + fIΞ(ζ2 �1 η2)

2

≥ 1

2

[
fIΞ(ζ1) + fIΞ(η1)

2
+

fIΞ(ζ2) + fIΞ(η2)

2

]

=
1

2

[
fIΞ(ζ1) + fIΞ(ζ2)

2
+

fIΞ(η1) + fIΞ(η2)

2

]

=
fIZ(ζ1, ζ2) + fIZ(η1, η2)

2

=
fIZ(ζ) + fIZ(η)

2
.

Also, fIZ(ζ �2 η) ≥ fIZ(ζ)+fIZ(η)
2 and fIZ(ζ �3 η) ≥ fIZ(ζ)+fIZ(η)

2 . Similarly, fFZ (ζ �1 η) ≤
max{fFZ (ζ),fFZ (η)},fFZ (ζ�2η) ≤ max{fFZ (ζ),fFZ (η)} and fFZ (ζ�3η) ≤ max{fFZ (ζ),fFZ (η)}.
Now,

ΓZ(ζ �1 η) = ΓΞZ [((ζ1, ζ2)�1 (η1, η2)]

= ΓZ(ζ1 �1 η1, ζ2 �1 η2)

= min{ΓΞ(ζ1 �1 η1),ΓΞ(ζ2 �1 η2)}

≥ min{min{ΓΞ(ζ1),ΓΞ(η1)},min{ΓΞ(ζ2),ΓΞ(η2)}}

= min{min{ΓΞ(ζ1),ΓΞ(ζ2)},min{ΓΞ(η1),ΓΞ(η2)}}

= min{ΓZ(ζ1, ζ2),ΓZ(η1, η2)}

= min{ΓZ(ζ),ΓZ(η)}.
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Also, ΓZ(ζ �2 η) ≥ min{ΓZ(ζ),ΓZ(η)} and ΓZ(ζ �3 η) ≥ min{ΓZ(ζ),ΓZ(η)}. Now,

ΛZ(ζ �1 η) = ΛZ [((ζ1, ζ2)�1 (η1, η2)]

= ΛZ(ζ1 �1 η1, ζ2 �1 η2)

=
ΛΞ(ζ1 �1 η1) + ΛΞ(ζ2 �1 η2)

2

≥ 1

2

[
ΛΞ(ζ1) + ΛΞ(η1)

2
+

ΛΞ(ζ2) + ΛΞ(η2)

2

]

=
1

2

[
ΛΞ(ζ1) + ΛΞ(ζ2)

2
+

ΛΞ(η1) + ΛΞ(η2)

2

]

=
ΛZ(ζ1, ζ2) + ΛZ(η1, η2)

2

=
ΛZ(ζ) + ΛZ(η)

2
.

Also, ΛZ(ζ �2 η) ≥ ΛZ(ζ)+ΛZ(η)
2 and ΛZ(ζ �3 η) ≥ ΛZ(ζ)+ΛZ(η)

2 . Similarly, ΘZ(ζ �1 η) ≤
max{ΘZ(ζ),ΘZ(η)},ΘZ(ζ�2η) ≤ max{ΘZ(ζ),ΘZ(η)} and ΘZ(ζ�3η) ≤ max{ΘZ(ζ),ΘZ(η)}.
Hence Z is a DioNSBS of T × T .

Conversely, assume that Z is a DioNSBS of T ×T , then for any ζ = (ζ1, ζ2) and η = (η1, η2)

are in T × T . We have

min{fTΞ (ζ1 �1 η1),fTΞ (ζ2 �1 η2)} = fTZ (ζ1 �1 η1, ζ2 �1 η2)

= fTZ [(ζ1, ζ2)�1 (η1, η2)]

= fTZ (ζ �1 η)

≥ min{fTZ (ζ),fTZ (η)}

= min{fTZ (ζ1, ζ2)},fTZ (η1, η2)}

= min{min{fTΞ (ζ1),fTΞ (ζ2)},min{fTΞ (η1),fTΞ (η2)}}.

If fTΞ (ζ1 �1 η1) ≤ fTΞ (ζ2 �1 η2), then fTΞ (ζ1) ≤ fTΞ (ζ2) and fTΞ (η1) ≤ fTΞ (η2). We

get fTΞ (ζ1 �1 η1) ≥ min{fTΞ (ζ1),fTΞ (η1)} ∀ζ1, η1 ∈ T and min{fTΞ (ζ1 �2 η1),fTΞ (ζ2 �2

η2)} ≥ min{min{fTΞ (ζ1),fTΞ (ζ2)},min{fTΞ (η1),fTΞ (η2)}}. If fTΞ (ζ1 �2 η1) ≤ fTΞ (ζ2 �2 η2),

then fTΞ (ζ1 �2 η1) ≥ min{fTΞ (ζ1),fTΞ (η1)}. So, min{fTΞ (ζ1 �3 η1),fTΞ (ζ2 �3 η2)} ≥
min{min{fTΞ (ζ1),fTΞ (ζ2)},min{fTΞ (η1),fTΞ (η2)}}. If fTΞ (ζ1 �3 η1) ≤ fTΞ (ζ2 �3 η2), then
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fTΞ (ζ1 �3 η1) ≥ min{fTΞ (ζ1),fTΞ (η1)}. Now,

1

2

[
fIΞ(ζ1 �1 η1) + fIΞ(ζ2 �1 η2)

]
= fIZ(ζ1 �1 η1, ζ2 �1 η2)

= fIZ [(ζ1, ζ2)�1 (η1, η2)]

= fIZ(ζ �1 η)

≥
fIZ(ζ) + fIZ(η)

2

=
fIZ(ζ1, ζ2) + fIZ(η1, η2)

2

=
1

2

[
fIΞ(ζ1) + fIΞ(ζ2)

2
+

fIΞ(η1) + fIΞ(η2)

2

]
.

If fIΞ(ζ1 �1 η1) ≤ fIΞ(ζ2 �1 η2), then fIΞ(ζ1) ≤ fIΞ(ζ2) and fIΞ(η1) ≤ fIΞ(η2). We

get, fIΞ(ζ1 �1 η1) ≥ fIΞ(ζ1)+fIΞ(η1)
2 . Similarly, fIΞ(ζ1 �2 η1) ≥ fIΞ(ζ1)+fIΞ(η1)

2 and fIΞ(ζ1 �3

η1) ≥ fIΞ(ζ1)+fIΞ(η1)
2 . Similarly to prove that max{fFΞ (ζ1 �1 η1),fFΞ (ζ2 �1 η2)} ≤

max{max{fFΞ (ζ1),fFΞ (ζ2)},max{fFΞ (η1),fFΞ (η2)}}. If fFΞ (ζ1 �1 η1) ≥ fFΞ (ζ2 �1 η2), then

fFΞ (ζ1) ≥ fFΞ (ζ2) and fFΞ (η1) ≥ fFΞ (η2). We get, fFΞ (ζ1 �1 η1) ≤ max{fFΞ (ζ1),fFΞ (η1)}.
So, max{fFΞ (ζ1�2 η1),fFΞ (ζ2�2 η2)} ≤ max{max{fFΞ (ζ1),fFΞ (ζ2)},max{fFΞ (η1),fFΞ (η2)}}. If

fFΞ (ζ1 �2 η1) ≥ fFΞ (ζ2 �2 η2), then fFΞ (ζ1 �2 η1) ≤ max{fFΞ (ζ1),fFΞ (η1)}. So, max{fFΞ (ζ1 �3

η1),fFΞ (ζ2 �3 η2)} ≤ max{max{fFΞ (ζ1),fFΞ (ζ2)},max{fFΞ (η1),fFΞ (η2)}}. If fFΞ (ζ1 �3 η1) ≥
fFΞ (ζ2 �3 η2), then fFΞ (ζ1 �3 η1) ≤ max{fFΞ (ζ1),fFΞ (η1)}. Now,

min{ΓΞ(ζ1 �1 η1),ΓΞ(ζ2 �1 η2)} = ΓZ(ζ1 �1 η1, ζ2 �1 η2)

= ΓZ [(ζ1, ζ2)�1 (η1, η2)]

= ΓZ(ζ �1 η)

≥ min{ΓZ(ζ),ΓZ(η)}

= min{ΓZ(ζ1, ζ2)},ΓZ(η1, η2)}

= min{min{ΓΞ(ζ1),ΓΞ(ζ2)},min{ΓΞ(η1),ΓΞ(η2)}}.

If ΓΞ(ζ1 �1 η1) ≤ ΓΞ(ζ2 �1 η2), then ΓΞ(ζ1) ≤ ΓΞ(ζ2) and ΓΞ(η1) ≤ ΓΞ(η2). We

get ΓΞ(ζ1 �1 η1) ≥ min{ΓΞ(ζ1),ΓΞ(η1)} ∀ζ1, η1 ∈ T and min{ΓΞ(ζ1 �2 η1),ΓΞ(ζ2 �2

η2)} ≥ min{min{ΓΞ(ζ1),ΓΞ(ζ2)},min{ΓΞ(η1),ΓΞ(η2)}}. If ΓΞ(ζ1 �2 η1) ≤ ΓΞ(ζ2 �2

η2), then ΓΞ(ζ1 �2 η1) ≥ min{ΓΞ(ζ1),ΓΞ(η1)}. So, min{ΓΞ(ζ1 �3 η1),ΓΞ(ζ2 �3 η2)} ≥
min{min{ΓΞ(ζ1),ΓΞ(ζ2)},min{ΓΞ(η1),ΓΞ(η2)}}. If ΓΞ(ζ1 �3 η1) ≤ ΓΞ(ζ2 �3 η2), then
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ΓΞ(ζ1 �3 η1) ≥ min{ΓΞ(ζ1),ΓΞ(η1)}. Now,

1

2

[
ΛΞ(ζ1 �1 η1) + ΛΞ(ζ2 �1 η2)

]
= ΛZ(ζ1 �1 η1, ζ2 �1 η2)

= ΛZ [(ζ1, ζ2)�1 (η1, η2)]

= ΛZ(ζ �1 η)

≥ ΛZ(ζ) + ΛZ(η)

2

=
ΛZ(ζ1, ζ2) + ΛZ(η1, η2)

2

=
1

2

[
ΛΞ(ζ1) + ΛΞ(ζ2)

2
+

ΛΞ(η1) + ΛΞ(η2)

2

]
.

If ΛΞ(ζ1 �1 η1) ≤ ΛΞ(ζ2 �1 η2), then ΛΞ(ζ1) ≤ ΛΞ(ζ2) and ΛΞ(η1) ≤ ΛΞ(η2). We

get, ΛΞ(ζ1 �1 η1) ≥ ΛΞ(ζ1)+ΛΞ(η1)
2 . Similarly, ΛΞ(ζ1 �2 η1) ≥ ΛΞ(ζ1)+ΛΞ(η1)

2 and ΛΞ(ζ1 �3

η1) ≥ ΛΞ(ζ1)+ΛΞ(η1)
2 . Similarly to prove that max{ΘΞ(ζ1 �1 η1),ΘΞ(ζ2 �1 η2)} ≤

max{max{ΘΞ(ζ1),ΘΞ(ζ2)},max{ΘΞ(η1),ΘΞ(η2)}}. If ΘΞ(ζ1 �1 η1) ≥ ΘΞ(ζ2 �1 η2), then

ΘΞ(ζ1) ≥ ΘΞ(ζ2) and ΘΞ(η1) ≥ ΘΞ(η2). We get, ΘΞ(ζ1 �1 η1) ≤ max{ΘΞ(ζ1),ΘΞ(η1)}.
So, max{ΘΞ(ζ1 �2 η1),ΘΞ(ζ2 �2 η2)} ≤ max{max{ΘΞ(ζ1),ΘΞ(ζ2)},max{ΘΞ(η1),ΘΞ(η2)}}. If

ΘΞ(ζ1 �2 η1) ≥ ΘΞ(ζ2 �2 η2), then ΘΞ(ζ1 �2 η1) ≤ max{ΘΞ(ζ1),ΘΞ(η1)}. So, max{ΘΞ(ζ1 �3

η1),ΘΞ(ζ2 �3 η2)} ≤ max{max{ΘΞ(ζ1),ΘΞ(ζ2)},max{ΘΞ(η1),ΘΞ(η2)}}. If ΘΞ(ζ1 �3 η1) ≥
ΘΞ(ζ2 �3 η2), then ΘΞ(ζ1 �3 η1) ≤ max{ΘΞ(ζ1),ΘΞ(η1)}. Hence Ξ is a DioNSBS of T .

Theorem 3.9. Let Ξ be a DioNSS in T . Then Ξ = 〈(fTΞ ,fIΞ,fFΞ ), (ΓΞ,ΛΞ,ΘΞ)〉 is a DioNSBS

of T if and only if all non-empty level set Ξ(β,γ) is an SBS of T for β, γ ∈ [0, 1].

Proof. Assume that Ξ is a DioNSBS of T . For each β, γ ∈ [0, 1] and ζ1, ζ2 ∈ Ξ(β,γ).

We have fTΞ (ζ1) ≥ β,fTΞ (ζ2) ≥ β, fIΞ(ζ1) ≥ β,fIΞ(ζ2) ≥ β, fFΞ (ζ1) ≤ γ,fFΞ (ζ2) ≤ γ and

ΓΞ(ζ1) ≥ β,ΓΞ(ζ2) ≥ β, ΛΞ(ζ1) ≥ β,ΛΞ(ζ2) ≥ β and ΘΞ(ζ1) ≤ γ,ΘΞ(ζ2) ≤ γ. Now, fTΞ (ζ1 �1

ζ2) ≥ min{fTΞ (ζ1),fTΞ (ζ2)} ≥ β and fIΞ(ζ1 �1 ζ2) ≥ fIΞ(ζ1)+fIΞ(ζ2)
2 ≥ t+t

2 = t and fFΞ (ζ1 �1

ζ2) ≤ max{fFΞ (ζ1),fFΞ (ζ2)} ≤ γ. Similarly, ΓΞ(ζ1 �1 ζ2) ≥ min{ΓΞ(ζ1),ΓΞ(ζ2)} ≥ β and

ΛΞ(ζ1 �1 ζ2) ≥ ΛΞ(ζ1)+ΛΞ(ζ2)
2 ≥ t+t

2 = t and ΘΞ(ζ1 �1 ζ2) ≤ max{ΘΞ(ζ1),ΘΞ(ζ2)} ≤ γ. This

implies that ζ1 �1 ζ2 ∈ Ξ(β,γ). Similarly, ζ1 �2 ζ2 ∈ Ξ(β,γ) and ζ1 �3 ζ2 ∈ Ξ(β,γ). Therefore

Ξ(β,γ) is a SBS of T for each β, γ ∈ [0, 1].

Conversely, assume that Ξ(β,γ) is an SBS of T for each β, γ ∈ [0, 1]. Suppose if there

exist ζ1, ζ2 ∈ T such that fTΞ (ζ1 �1 ζ2) < min{fTΞ (ζ1),fTΞ (ζ2)}, fIΞ(ζ1 �1 ζ2) <
fIΞ(ζ1)+fIΞ(ζ2)

2 ,

fFΞ (ζ1 �1 ζ2) > max{fFΞ (ζ1),fFΞ (ζ2)} and ΓΞ(ζ1 �1 ζ2) < min{ΓΞ(ζ1),ΓΞ(ζ2)}, ΛΞ(ζ1 �1

ζ2) < ΛΞ(ζ1)+ΛΞ(ζ2)
2 and ΘΞ(ζ1 �1 ζ2) > max{ΘΞ(ζ1),ΘΞ(ζ2)}. Select β, γ ∈ [0, 1] such that

fTΞ (ζ1 �1 ζ2) < β ≤ min{fTΞ (ζ1),fTΞ (ζ2)} and fIΞ(ζ1 �1 ζ2) < β ≤ fIΞ(ζ1)+fIΞ(ζ2)
2 and fFΞ (ζ1 �1

ζ2) > γ ≥ max{fFΞ (ζ1),fFΞ (ζ2)}. Then ζ1, ζ2 ∈ Ξ(β,γ), but ζ1 �1 ζ2 /∈ Ξ(β,γ). This contradicts
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to that Ξ(β,γ) is an SBS of T . Hence fTΞ (ζ1 �1 ζ2) ≥ min{fTΞ (ζ1),fTΞ (ζ2)}, fIΞ(ζ1 �1 ζ2) ≥
fIΞ(ζ1)+fIΞ(ζ2)

2 and fFΞ (ζ1�1 ζ2) ≤ max{fFΞ (ζ1),fFΞ (ζ2)}. Select β, γ ∈ [0, 1] such that ΓΞ(ζ1�1

ζ2) < β ≤ min{ΓΞ(ζ1),ΓΞ(ζ2)} and ΛΞ(ζ1 �1 ζ2) < β ≤ ΛΞ(ζ1)+ΛΞ(ζ2)
2 and ΘΞ(ζ1 �1 ζ2) >

γ ≥ max{ΘΞ(ζ1),ΘΞ(ζ2)}. Then ζ1, ζ2 ∈ Ξ(β,γ), but ζ1 �1 ζ2 /∈ Ξ(β,γ). This contradicts

to that Ξ(β,γ) is an SBS of T . Hence ΓΞ(ζ1 �1 ζ2) ≥ min{ΓΞ(ζ1),ΓΞ(ζ2)}, ΛΞ(ζ1 �1 ζ2) ≥
ΛΞ(ζ1)+ΛΞ(ζ2)

2 and ΘΞ(ζ1 �1 ζ2) ≤ max{ΘΞ(ζ1),ΘΞ(ζ2)}. Similarly, �2 and �3 cases. Hence

Ξ = 〈(fTΞ ,fIΞ,fFΞ ), (ΓΞ,ΛΞ,ΘΞ)〉 is a DioNSBS of T .

Definition 3.10. Let Ξ be any DioNSBS of T , a ∈ T and P is any set. Then the pseudo

Diophantine neutrosophic coset (aΞ)p is defined by


((afTΞ )p)(ζ) = p(a)fTΞ (ζ)

((afIΞ)p)(ζ) = p(a)fIΞ(ζ)

((afFΞ )p)(ζ) = p(a)fFΞ (ζ)




((aΓΞ)p)(ζ) = p(a)ΓΞ(ζ)

((aΛΞ)p)(ζ) = p(a)ΛΞ(ζ)

((aΘΞ)p)(ζ) = p(a)ΘΞ(ζ)


for every ζ ∈ T and for some p ∈ P .

Theorem 3.11. Let Ξ be any DioNSBS of T , then the pseudo Diophantine neutrosophic coset

(aΞ)p is a DioNSBS of T , for every a ∈ T .

Proof. Let Ξ be any DioNSBS of T and for every ζ, η ∈ T . Now, ((afTΞ )p)(ζ �1

η) = p(a) fTΞ (ζ �1 η) ≥ p(a) min{fTΞ (ζ),fTΞ (η)} = min{p(a) fTΞ (ζ), p(a) fTΞ (η)} =

min{((afTΞ )p)(ζ), ((afTΞ )p)(η)}. Thus, ((afTΞ )p)(ζ �1 η) ≥ min{((afTΞ )p)(ζ), ((afTΞ )p)(η)}.

Now, ((afIΞ)p)(ζ �1 η) = p(a) fIΞ(ζ �1 η) ≥ p(a)

[
fIΞ(ζ)+fIΞ(η)

2

]
=

p(a) fIΞ(ζ)+p(a) fIΞ(η)
2 =

((afIΞ)p)(ζ)+((afIΞ)p)(η)
2 . Thus, ((afIΞ)p)(ζ �1 η) ≥ ((afIΞ)p)(ζ)+((afIΞ)p)(η)

2 . Now, ((afFΞ )p)(ζ �1

η) = p(a) fFΞ (ζ �1 η) ≤ p(a) max{fFΞ (ζ),fFΞ (η)} = max{p(a) fFΞ (ζ), p(a) fFΞ (η)} =

max{((afFΞ )p)(ζ), ((afFΞ )p)(η)}. Thus, ((afFΞ )p)(ζ �1 η) ≤ max{((afFΞ )p)(ζ), ((afFΞ )p)(η)}.
Now,

((aΓΞ)p)(ζ �1 η) = p(a) ΓΞ(ζ �1 η)

≥ p(a) min{ΓΞ(ζ),ΓΞ(η)}

= min{p(a) ΓΞ(ζ), p(a) ΓΞ(η)}

= min{((aΓΞ)p)(ζ), ((aΓΞ)p)(η)}.
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Thus, ((aΓΞ)p)(ζ �1 η) ≥ min{((aΓΞ)p)(ζ), ((aΓΞ)p)(η)}. Now,

((aΛΞ)p)(ζ �1 η) = p(a) ΛΞ(ζ �1 η)

≥ p(a)

[
ΛΞ(ζ) + ΛΞ(η)

2

]
=

p(a) ΛΞ(ζ) + p(a) ΛΞ(η)

2

=
((aΛΞ)p)(ζ) + ((aΛΞ)p)(η)

2
.

Thus, ((aΛΞ)p)(ζ �1 η) ≥ ((aΛΞ)p)(ζ)+((aΛΞ)p)(η)
2 . Now,

((aΘΞ)p)(ζ �1 η) = p(a) ΘΞ(ζ �1 η)

≤ p(a) max{ΘΞ(ζ),ΘΞ(η)}

= max{p(a) ΘΞ(ζ), p(a) ΘΞ(η)}

= max{((aΘΞ)p)(ζ), ((aΘΞ)p)(η)}.

Thus, ((aΘΞ)p)(ζ �1 η) ≤ max{((aΘΞ)p)(ζ), ((aΘΞ)p)(η)}. Similarly, �2 and �3 cases. Hence

(aΞ)p is a DioNSBS of T .

Definition 3.12. Let (T1,~1,~2,~3) and (T2,⊗1,⊗2,⊗3) be any two BSs. Let L : T1 → T2

be any function and Ξ be any DioNSBS in T1, Z be any DioNSBS in L(T1) = T2. If fΞ =

〈(fTΞ ,fIΞ,fFΞ ), (ΓΞ,ΛΞ,ΘΞ)〉 is a DioNSS in T1, then fZ is a DioNSS in T2, defined by ∀ζ ∈ T1

and η ∈ T2,

fTZ (η) =

supfTΞ (ζ) if ζ ∈ L−1η

0 otherwise
fIZ(η) =

supfIΞ(ζ) if ζ ∈ L−1η

0 otherwise

fFZ (η) =

inf fFΞ (ζ) if ζ ∈ L−1η

1 otherwise

ΓZ(η) =

sup ΓΞ(ζ) if ζ ∈ L−1η

0 otherwise
ΛZ(η) =

sup ΛΞ(ζ) if ζ ∈ L−1η

0 otherwise

ΘZ(η) =

inf ΘΞ(ζ) if ζ ∈ L−1η

1 otherwise

which is called the image of fΞ under L.

Similarly, If fZ = 〈(fTZ ,fIZ ,fFZ ), (ΓZ ,ΛZ ,ΘZ)〉 is a DioNSS in T2, then DioNSS fΞ = L ◦fZ
in T1 [i.e., the DioNSS defined by fΞ(ζ) = fZ(L(ζ))] is called the preimage of fZ under L.

Theorem 3.13. Let (T1,~1,~2,~3) and (T2,⊗1,⊗2,⊗3) be any two BSs. The homomorphic

image of every DioNSBS of T1 is a DioNSBS of T2.
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Proof. Let L : T1 → T2 be any homomorphism. Then L(ζ ~1 η) = L(ζ) ⊗1 L(η),L(ζ ~2

η) = L(ζ) ⊗2 L(η) and L(ζ ~3 η) = L(ζ) ⊗3 L(η) ∀ζ, η ∈ T1. Let Z = L(Ξ), Ξ is any

DioNSBS of T1. Let L(ζ),L(η) ∈ T2. Let ζ ∈ L−1(L(ζ)) and η ∈ L−1(L(η)) be such that

fTΞ (ζ) = sup
ζ′∈L−1(L(ζ))

fTΞ (ζ
′
) and fTΞ (η) = sup

ζ′∈L−1(L(η))

fTΞ (ζ
′
). Now,

fTZ (L(ζ)⊗1 L(η)) = sup
ζ′′∈L−1(L(ζ)⊗1L(η))

fTΞ (ζ
′′
)

= sup
ζ′′∈L−1(L(ζ~1η)

fTΞ (ζ
′′
)

= fTΞ (ζ ~1 η)

≥ min{fTΞ (ζ),fTΞ (η)}

= min{fTZL(ζ),fTZL(η)}.

Thus, fTZ (L(ζ) ⊗1 L(η)) ≥ min{fTZL(ζ),fTZL(η)}. Similarly, fTZ (L(ζ) ⊗2 L(η)) ≥
min{fTZL(ζ),fTZL(η)} and fTZ (L(ζ) ⊗3 L(η)) ≥ min{fTZL(ζ),fTZL(η)}. Let ζ ∈ L−1(L(ζ))

and η ∈ L−1(L(η)) be such that fIΞ(ζ) = sup
ζ′∈L−1(L(ζ))

fIΞ(ζ
′
) and fIΞ(η) = sup

ζ′∈L−1(L(η))

fIΞ(ζ
′
).

Now,

fIZ(L(ζ)⊗1 L(η)) = sup
ζ′′∈L−1(L(ζ)⊗1L(η))

fIΞ(ζ
′′
)

= sup
ζ′′∈L−1(L(ζ~1η)

fIΞ(ζ
′′
)

= fIΞ(ζ ~1 η)

≥
fIΞ(ζ) + fIΞ(η)

2

=
fIZL(ζ) + fIZL(η)

2
.

Thus, fIZ(L(ζ) ⊗1 L(η)) ≥ fIZL(ζ)+fIZL(η)
2 . Similarly, fIZ(L(ζ) ⊗2 L(η)) ≥ fIZL(ζ)+fIZL(η)

2 and

fIZ(L(ζ)⊗3L(η)) ≥ fIZL(ζ)+fIZL(η)
2 . Let L(ζ),L(η) ∈ T2. Let ζ ∈ L−1(L(ζ)) and η ∈ L−1(L(η))

be such that fFΞ (ζ) = inf
ζ′∈L−1(L(ζ))

fFΞ (ζ
′
) and fFΞ (η) = inf

ζ′∈L−1(L(η))
fFΞ (ζ

′
). Now,

fFZ (L(ζ)⊗1 L(η)) = inf
ζ′′∈L−1(L(ζ)⊗1L(η))

fFΞ (ζ
′′
)

= inf
ζ′′∈L−1(L(ζ~1η)

fFΞ (ζ
′′
)

= fFΞ (ζ ~1 η)

≤ max{fFΞ (ζ),fFΞ (η)}

= max{fFZL(ζ),fFZL(η)}.

Thus, fFZ (L(ζ) ⊗1 L(η)) ≤ max{fFZL(ζ),fFZL(η)}. Similarly, fFZ (L(ζ) ⊗2 L(η)) ≤
max{fFZL(ζ),fFZL(η)} and fFZ (L(ζ) ⊗3 L(η)) ≤ max{fFZL(ζ),fFZL(η)}. Let ζ ∈ L−1(L(ζ))
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and η ∈ L−1(L(η)) be such that ΓΞ(ζ) = sup
ζ′∈L−1(L(ζ))

ΓΞ(ζ
′
) and ΓΞ(η) = sup

ζ′∈L−1(L(η))

ΓΞ(ζ
′
).

Now,

ΓZ(L(ζ)⊗1 L(η)) = sup
ζ′′∈L−1(L(ζ)⊗1L(η))

ΓΞ(ζ
′′
)

= sup
ζ′′∈L−1(L(ζ~1η)

ΓΞ(ζ
′′
)

= ΓΞ(ζ ~1 η)

≥ min{ΓΞ(ζ),ΓΞ(η)}

= min{ΓZL(ζ),ΓZL(η)}.

Thus, ΓZ(L(ζ) ⊗1 L(η)) ≥ min{ΓZL(ζ),ΓZL(η)}. Similarly, ΓZ(L(ζ) ⊗2 L(η)) ≥
min{ΓZL(ζ),ΓZL(η)} and ΓZ(L(ζ) ⊗3 L(η)) ≥ min{ΓZL(ζ),ΓZL(η)}. Let ζ ∈ L−1(L(ζ))

and η ∈ L−1(L(η)) be such that ΛΞ(ζ) = sup
ζ′∈L−1(L(ζ))

ΛΞ(ζ
′
) and ΛΞ(η) = sup

ζ′∈L−1(L(η))

ΛΞ(ζ
′
).

Now,

ΛZ(L(ζ)⊗1 L(η)) = sup
ζ′′∈L−1(L(ζ)⊗1L(η))

ΛΞ(ζ
′′
)

= sup
ζ′′∈L−1(L(ζ~1η)

ΛΞ(ζ
′′
)

= ΛΞ(ζ ~1 η)

≥ ΛΞ(ζ) + ΛΞ(η)

2

=
ΛZL(ζ) + ΛZL(η)

2
.

Thus, ΛZ(L(ζ) ⊗1 L(η)) ≥ ΛZL(ζ)+ΛZL(η)
2 . Similarly, ΛZ(L(ζ) ⊗2 L(η)) ≥ ΛZL(ζ)+ΛZL(η)

2 and

ΛZ(L(ζ)⊗3L(η)) ≥ ΛZL(ζ)+ΛZL(η)
2 . Let L(ζ),L(η) ∈ T2. Let ζ ∈ L−1(L(ζ)) and η ∈ L−1(L(η))

be such that ΘΞ(ζ) = inf
ζ′∈L−1(L(ζ))

ΘΞ(ζ
′
) and ΘΞ(η) = inf

ζ′∈L−1(L(η))
ΘΞ(ζ

′
). Now,

ΘZ(L(ζ)⊗1 L(η)) = inf
ζ′′∈L−1(L(ζ)⊗1L(η))

ΘΞ(ζ
′′
)

= inf
ζ′′∈L−1(L(ζ~1η)

ΘΞ(ζ
′′
)

= ΘΞ(ζ ~1 η)

≤ max{ΘΞ(ζ),ΘΞ(η)}

= max{ΘZL(ζ),ΘZL(η)}.

Thus, ΘZ(L(ζ) ⊗1 L(η)) ≤ max{ΘZL(ζ),ΘZL(η)}. Similarly, ΘZ(L(ζ) ⊗2 L(η)) ≤
max{ΘZL(ζ),ΘZL(η)} and ΘZ(L(ζ) ⊗3 L(η)) ≤ max{ΘZL(ζ),ΘZL(η)}. Hence Z is a

DioNSBS of T2.
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Theorem 3.14. Let (T1,~1,~2,~3) and (T2,⊗1,⊗2,⊗3) be any two BSs. The homomorphic

preimage of DioNSBS of T2 is a DioNSBS of T1.

Proof. Let L : T1 → T2 be any homomorphism. Then L(ζ~1η) = L(ζ)⊗1L(η),L(ζ~2η) =

L(ζ) ⊗2 L(η) and L(ζ ~3 η) = L(ζ) ⊗3 L(η) ∀ζ, η ∈ T1. Let Z = L(Ξ), where Z is any

DioNSBS of T2. Let ζ, η ∈ T1. Now, fTΞ (ζ ~1 η) = fTZ (L(ζ ~1 η)) = fTZ (L(ζ) ⊗1 L(η)) ≥
min{fTZL(ζ),fTZL(η)} = min{fTΞ (ζ),fTΞ (η)}. Thus, fTΞ (ζ ~1 η) ≥ min{fTΞ (ζ),fTΞ (η)}. Now,

fIΞ(ζ ~1 η) = fIZ(L(ζ ~1 η)) = fIZ(L(ζ) ⊗1 L(η)) ≥ fIZL(ζ)+fIZL(η)
2 =

fIΞ(ζ)+fIΞ(η)
2 . Thus,

fIΞ(ζ ~1 η) ≥ fIΞ(ζ)+fIΞ(η)
2 . Now, fFΞ (ζ ~1 η) = fFZ (L(ζ ~1 η)) = fFZ (L(ζ) ⊗1 L(η)) ≤

max{fFZL(ζ),fFZL(η)} = max{fFΞ (ζ),fFΞ (η)}. Thus, fFΞ (ζ ~1 η) ≤ max{fFΞ (ζ),fFΞ (η)}.
Now, ΓΞ(ζ ~1 η) = ΓZ(L(ζ ~1 η)) = ΓZ(L(ζ) ⊗1 L(η)) ≥ min{ΓZL(ζ),ΓZL(η)} =

min{ΓΞ(ζ),ΓΞ(η)}. Thus, ΓΞ(ζ~1η) ≥ min{ΓΞ(ζ),ΓΞ(η)}. Now, ΛΞ(ζ~1η) = ΛZ(L(ζ~1η)) =

ΛZ(L(ζ) ⊗1 L(η)) ≥ ΛZL(ζ)+ΛZL(η)
2 = ΛΞ(ζ)+ΛΞ(η)

2 . Thus, ΛΞ(ζ ~1 η) ≥ ΛΞ(ζ)+ΛΞ(η)
2 .

Now, ΘΞ(ζ ~1 η) = ΘZ(L(ζ ~1 η)) = ΘZ(L(ζ) ⊗1 L(η)) ≤ max{ΘZL(ζ),ΘZL(η)} =

max{ΘΞ(ζ),ΘΞ(η)}. Thus, ΘΞ(ζ ~1 η) ≤ max{ΘΞ(ζ),ΘΞ(η)}. Similarly to prove two other

operations, Ξ is a DioNSBS of T1.

Theorem 3.15. Let (T1,~1,~2,~3) and (T2,⊗1,⊗2,⊗3) be any two BSs. If L : T1 → T2 is a

homomorphism, then L(Ξ(β,γ)) is a level SBS of DioNSBS Z of T2.

Proof. Let L : T1 → T2 be any homomorphism. Then L(ζ~1η) = L(ζ)⊗1L(η),L(ζ~2η) =

L(ζ) ⊗2 L(η) and L(ζ ~3 η) = L(ζ) ⊗3 L(η) ∀ζ, η ∈ T1. Let Z = L(Ξ), Ξ is a DioNSBS of

T1. By Theorem 3.13, Z is a DioNSBS of T2. Let Ξ(β,γ) be any level SBS of Ξ. Suppose

that ζ, η ∈ Ξ(β,γ). Then L(ζ ~1 η),L(ζ ~2 η) and L(ζ ~3 η) ∈ Ξ(β,γ). Now, fTZ (L(ζ)) =

fTΞ (ζ) ≥ β,fTZ (L(η)) = fTΞ (η) ≥ β. Thus, fTZ (L(ζ) ⊗1 L(η)) ≥ fTΞ (ζ ~1 η) ≥ β. Now,

fIZ(L(ζ)) = fIΞ(ζ) ≥ β,fIZ(L(η)) = fIΞ(η) ≥ β. Thus, fIZ(L(ζ) ⊗1 L(η)) ≥ fIΞ(ζ ~1 η) ≥ β.

Now, fFZ (L(ζ)) = fFΞ (ζ) ≤ γ,fFZ (L(η)) = fFΞ (η) ≤ γ. Thus, fFZ (L(ζ) ⊗1 L(η)) ≤ fFΞ (ζ ~1

η) ≤ γ, ∀L(ζ),L(η) ∈ T2. Now, ΓΞZ(L(ζ)) = ΓΞ(ζ) ≥ β,ΓZ(L(η)) = Γ(η) ≥ β. Thus,

ΓZ(L(ζ) ⊗1 L(η)) ≥ ΓΞ(ζ ~1 η) ≥ β. Now, ΛZ(L(ζ)) = ΛΞ(ζ) ≥ β,ΛZ(L(η)) = ΛΞ(η) ≥ β.

Thus, ΛZ(L(ζ)⊗1L(η)) ≥ ΛΞ(ζ~1η) ≥ β. Now, ΘZ(L(ζ)) = ΘΞ(ζ) ≤ γ,ΘZ(L(η)) = ΘΞ(η) ≤
γ. Thus, ΘZ(L(ζ) ⊗1 L(η)) ≤ ΘΞ(ζ ~1 η) ≤ γ, ∀L(ζ),L(η) ∈ T2. Similarly to prove other

operations, hence L(Ξ(β,γ)) is a level SBS of DioNSBS Z of T2.

Theorem 3.16. Let (T1,~1,~2,~3) and (T2,⊗1,⊗2,⊗3) be any two BSs. If L : T1 → T2 is

any homomorphism, then Ξ(β,γ) is a level SBS of DioNSBS Ξ of T1.

Proof. Let L : T1 → T2 be any homomorphism. Then L(ζ~1η) = L(ζ)⊗1L(η),L(ζ~2η) =

L(ζ) ⊗2 L(η) and L(ζ ~3 η) = L(ζ) ⊗3 L(η) ∀ζ, η ∈ T1. Let Z = L(Ξ), Z is a DioNSBS of

T2. By Theorem 3.14, Ξ is a DioNSBS of T1. Let L(Ξ(β,γ)) be a level SBS of Z. Suppose

G. Manikandan, M. Palanikumar, P. Vijayalakshmi and Aiyared Iampan, New algebraic
structure for Diophantine neutrosophic subbisemirings of bisemirings

Neutrosophic Sets and Systems, Vol. 63, 2024                                                                              255



that L(ζ),L(η) ∈ L(Ξ(β,γ)). Then L(ζ ~1 η),L(ζ ~2 η) and L(ζ ~3 η) ∈ L(Ξ(β,γ)). Now,

fTΞ (ζ) = fTZ (L(ζ)) ≥ t,fTΞ (η) = fTZ (L(η)) ≥ β. Thus, fTΞ (ζ ~1 η) ≥ min{fTΞ (ζ),fTΞ (η)} ≥ β.

Now, fIΞ(ζ) = fIZ(L(ζ)) ≥ t,fIΞ(η) = fIZ(L(η)) ≥ β. Thus, fIΞ(ζ ~1 η) ≥ fIΞ(ζ)+fIΞ(η)
2 ≥ β.

Now, fFΞ (ζ) = fFZ (L(ζ)) ≤ γ,fFΞ (η) = fFZ (L(η)) ≤ γ. Thus, fFΞ (ζ~1η) = fFZ (L(ζ)⊗1L(η)) ≤
max{fFΞ (ζ),fFΞ (η)} ≤ γ, ∀ζ, η ∈ T1. Now, ΓΞ(ζ) = ΓΞZ(L(ζ)) ≥ t,ΓΞ(η) = ΓZ(L(η)) ≥ β.

Thus, ΓΞ(ζ~1η) ≥ min{ΓΞ(ζ),ΓΞ(η)} ≥ β. Now, ΛΞ(ζ) = ΛZ(L(ζ)) ≥ t,ΛΞ(η) = ΛZ(L(η)) ≥
β. Thus, ΛΞ(ζ~1 η) ≥ ΛΞ(ζ)+ΛΞ(η)

2 ≥ β. Now, ΘΞ(ζ) = ΘZ(L(ζ)) ≤ γ,ΘΞ(η) = ΘZ(L(η)) ≤ γ.

Thus, ΘΞ(ζ ~1 η) = ΘZ(L(ζ) ⊗1 L(η)) ≤ max{ΘΞ(ζ),ΘΞ(η)} ≤ γ, ∀ζ, η ∈ T1. Similarly to

prove other two operations, hence Ξ(β,γ) is a level SBS of DioNSBS Ξ of T1.
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Abstract. The minimum spanning tree problem (MSTP) revolves around creating a spanning tree (ST)

within a graph/network that incurs the least cost compared to all other potential STs. This represents

a vital and fundamental issue in the realm of combinational optimization problems (COP). Supply chain

management, communication, transportation, and routing are a few examples of real-world issues that have

been represented using the MSTP. Uncertainties exist in almost every real life application of MSTP due to

inconsistency, improperness, incompleteness, vagueness and indeterminacy of the information and It generates

really challenging scenarios to determine the arc length precisely. The main motivation behind this research work

is to design a method for MST which will be simple enough and effective in real world scenarios. Neutrosophic

set (NS) is a well known renowned theory, which one can this type of uncertainty in the edge weights of the

ST. In this article, we review trapezoid neutrosophic set/number to describe the arc weight of a neutrosophic

network for MSTP. Here, we introduce an algorithm for solving MSTP in neutrosophic environment. In our

proposed method, we describe the uncertainties in Prim’s algorithm for MSTP using trapezoid neutrosophic

set as edge cost. Here examples of numerical sets are used to explain the proposed algorithm. Keywords:

Neutrosophic set; MSTP; neutrosophic network/graph; Prim’s algorithm.

—————————————————————————————————————————-

1. Introduction

The MSTP, a renowned and extensively applied constraint optimization problem, finds

its applications in both operation research and graph theory. It has numerous practical

applications [1–3], including communications problem, transportation problem, logistics
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problem, supply chain management problem, image processing, wireless telecommunication

networks and cluster analysis.

Consider G = (X,Y ) as a connected, undirected, weighted graph, where X represents a

collection items/nodes/vertices and Y denotes a finite set of arcs characterized by integral

cost or weight. Tree is a connected graph without circuits. Consider t to represent as a ST of

connected graph if and only if t is a sub graph of the graph G and t must consist all vertices

of graph G. Because it has the most edges surrounded by all feasible trees in graph G, a ST T

is alternatively referred to as the largest possible subtree within graph G. The MST is a ST

where the aggregate weights of edges is minimized.

The traditional MSTP is built on a graph or network. As a result, the G’s nodes are used to

represent the things, points, and objects, while the arcs are used to indicate the relationship

or specific link between the nodes (for instance, highways connecting communities). The

information connected to objects/items and the relationship between two things are assumed

to be fully known in the traditional networks/graphs descriptions of simple deterministic

scenarios. In practical situations, achieving this may prove challenging due to presence of

uncertainties that can exist in any conceivable description of an object or the relationship

between two objects, or even both cases. Due to this reason, the crisp graph model is not

useful to model those problem.

Zadeh [4] proposed the concept of a fuzzy set (FS), which may deal with the occurrence

of uncertainty, ambiguity, and imprecision in everyday life. The main characteristic of a FS,

described by a membership grade/function/degree, is a grade/function/degree whose interval

is [0,1]. The idea of FSs has been applied to model several COPs in many fields. The FS

(type-1/classical FS), whose membership grade is an actual value, is incapable of managing

many different kinds of uncertainty that are present in problems in the real world. In [5],

Turksen described the concept of FS with interval membership vale membership [6] and they

developed the idea of intuitionistic FSs to capture the problem of non membership grade

of classical FSs. It has applied in several problems, e.g., decision making, COPs, artificial

neural network, medical analysis, and so forth. It is a modified version of classical FS that

can consider not only one a membership grade for each element and but also it considers a

non-membership grade. It helps to capture more flexibility to work with uncertainties of real

problem [7] than the simple FS. It has three different types of membership grade: membership,

non-membership and hesitation of all elements in this set. In [8], the author modified the idea

of FSs to the interval valued intuitionistic FSs to capture more uncertainties than intuitionistic

FSs.

However, the intuitionistic FS and intuitionistic fuzzy logic have been used to find the

solutions of many COPs, but it cannot be captured several type of uncertainty properly.
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For e.g., the FS cannot work with the uncertainties due to indeterminate information and

inconsistent information. When seeking the opinion of an expert regarding a decision, then

he might state that the likelihood of the decision being true is 0.5, likelihood of it being false

is 0.9, and the chances of uncertainty is 0.4. This kind of real-world issue cannot be modeled

with FS. To solve this issue, new thinking is therefore necessary.

In [9], The idea of NS was established by the author to explain information and facts

that might be insufficient, unsure, hazy, imprecise, indeterminate, and inconsistent in various

real-world settings. Three membership grades are used to define it: a true membership

degree/grade/function, an indeterminate membership degree/grade/function, and a false

membership degree/grade/function independently. They fall inside the nonstandard or

standard unit interval in terms of value. Because it can adeptly deal with information that lacks

consistency and completeness , NS is frequently employed by researchers to handle challenges

that arise in real-life situations [10], [11], [12], [13], [?], [?], [14].

MSTP is an COP [15] in graph theory [16], [17] which can determine the minimum cost ST

of a graph. The classical MSTP has several real life applications, including cluster analysis,

wireless communication, computer networks, speech recognition, social network, etc. In the

classical MSTP, the edge lengths are considered to be precise and expert assumes some crisp

values (real number) to describe the edge lengths of the graph. However, in our day to day

life [18], [19], [20], the edge length may represent a criterion such as cost, time, demand,

capacity, etc. that shouldn’t have a fixed parameter. We can consider a real life scenarios in a

road networks of city. The edge length describing the time it takes for the car journey could

vary due to changing weather conditions, strong traffic flow, or other unanticipated factors,

however the geometric distance/road distance between two cities is fixed. [21]. For this reason,

it is very confusing for an expert to assume a proper edge length in real number, i.e., crisp

values. Experts may consider a range of feasible values of edge lengths in form of approximate

intervals, linguistic terms, etc. In this road network problem, the edge lengths can represent

as, ”around 30 to 90 minute”, ”about 1 hour”, ”between 5 and 10 hour” and ”nearly 2 to 3

hours”, etc. Many researchers used classical FS to describe those uncertainties in edge weights.

But simple FS is not properly model those vagueness/incomplete information because their

membership grades are fully crisp. The idea of neutrosophic network/graph can be considered

as a modified version of fuzzy graph to deal this types of uncertain situations.

The idea of MSTP and its several applications have taken lot of attention of researchers

throughout the prior decade and numerous successful approaches have been created for finding

the MSTP solution in classical graphs. Refs. [22], [23], [24], [25], [26] can be found related

to this MSTP. Prim’s algorithm [23] is an effective and well-known algorithmic technique to

solve the MST of a crisp graph. Expert can determine the MST using Prim’s algorithm [23]
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if and only if the edge weight/length of the graph are real number/crisp number. Almost all

MSTP applications in real life include a certain amount of uncertainty. Two different causes of

parameter uncertainty are randomness and fuzzy or insufficient information. The probability

theory uses to handle the uncertainties due randomness. Due to this reason, many scientist

assume the link/edge of a MSTP as a random variables. In [27] presents this problem with

random edge weights/costs. In [28], the author introduced a method that can efficiently solve

this problem within a polynomial time frame. In this method, the arc length is calculated

based on the several parameters of the probability distributions and those parameters are

determined by considering a confidence interval from a set of stochastic data. However in real

life scenarios, those parameter are unknown and the parameter values are uncertain (fuzzy,

vague or incomplete) in nature. In [29], the authors has described first time the MSTP in

fuzzy environment. They used the idea of chance constrained programming and necessity

measurement to solve this problem. Then Chang [30] presented the fuzzy MSTP whose fuzzy

arc length are fuzzy number. They applied three different techniques using the ranking index

method [31] for comparing the several fuzzy arc lengths. Combing the idea of probability

theory and FS theory, the authors have developed algorithmic technique to solve this problem.

They have also described a genetic algorithm for this problem. In [32], the author has described

the fuzzy ST problem in which the lengths are denoted by interval fuzzy number. They have

used the principles of possibility theory to compare and select the edge of the ST for the fuzzy

graph. In [33], the author considered different intuitionistic FS/number to denote the edge

weight of a fuzzy graph. They have described a new algorithmic approach to find the solution

of this COP. In [34], the authors presented the fuzzy MSTP with hesitant FSs as fuzzy edge

weight and introduce an algorithmic approach to find the solution of this problem.

Recently, few scientists have worked MSTP in neutrosophic environment. This MSTP is

defined as neutrosophic MSTP (NMSTP) problem. In several real life application of MSTP,

a NMSTP may be more logical, reliable and reasonable. Ye [35] developed an algorithmic

approach to solve the MSTP of a neutrosophic network/graph where objects/nodes/vertices

are described in NSs and link between two different nodes describes the dissimilarity between

objects. Kandasamy [36] described a double-valued NMSTP and present a clustering method

to classify the cluster of data/information. A novel approach to solving optimum ST issues

by assuming inconsistent, inappropriate, partial, ambiguous, and indeterminate data was

presented by Mandal and Basu [37]. They represented the arc length with NSs. Neutosophic

numbers and fuzzy numbers have essentially identical notations, but their representations

couldn’t be further apart. No algorithm for MST with interval neutrosophic arc lengths exists

as far as we are aware.
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Due to its extensive uses in real-world situations, the MSTP is a well known COPs in the field

of operation research. It is particularly difficult to calculate the edge weights correctly since the

information used in the real world application of MSTP is inconsistent, inappropriate, partial,

unclear, and indeterminable. The NS/logic theory is well known for its ability to explain

the inconsistent, inappropriate, incomplete, nebulous, and undetermined arc lengths of the

ST. Numerous scientists believe that neutrosophicness should be used instead of fuzziness to

represent doubt because it is inconsistent, incorrect, incomplete, ambiguous, and indefinite.

Although some research works have been done to develop for MSTP using neutrosophic

set and its generalizations, still there are some scope of research works in this field. The

key driving force behind this scientific study is to identify an algorithmic method for the

MSTP of a neutrosophic network which will be able to efficiently handle the MSTP. In the

past few years, few researchers [38–40] developed some algorithms to determine the MST of

a neutrosophic network/graph. In those algorithms, they consider the simple NS to describe

the MST of the neutrosophic network/graph. We consider the interval neutrosophic number

to represent the arc length. The objective of this scientific study is to introduce an algorithm

that can determine the MST. In this research paper, a MSTP is considered whose edge weights

are described by neutrosophic number. We have described a modified Prim’s algorithm to

determine the NMSTP of a graph and its weight as a score value.Our focus is on a neutrosophic

network [41–44] or graph, with its edge weights expressed through the use of neutrosophic

numbers. Opt for the arc with the most minimal score, a ranking mechanism based on scores

is utilized.

The structure of the paper is as follows. A few essential definitions and concepts related

to neutrosophic graphs, single valued trapezoidal neutrosophic number, ranking and addition

operation are reviewed in brief in Section 2. We provide a mathematical model for Neutrosophic

Minimal Spanning Tree in Section 3. In Section 4 we provide our proposed algorithm for this

problem. Section 5 presents the outcomes of the suggested method and draws comparisons

with binary programming. In Section 6, we finally come to an end.

2. Preliminary

Definition 2.1. Let U and Z represent an universal set and NS (NS). The NS [9] Z consists

of 3 membership degree. There are true membership grade TZ(k), indeterminate membership

grade IZ(k) and false membership grade FZ(k) respectively.

−0 ≤ sup TZ(k) + sup IZ(k) + sup FZ(k) ≤ 3+ (1)

Definition 2.2. The single valued NS [45] D on the U is presented as following

A = {⟨k : TZ(k), IZ(k),FZ(k)|k ∈ U⟩} (2)
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The true function TZ(k) lies in the interval [0, 1], indeterminate membership grade IA(k) lies
between [0, 1] and false membership grade FA(k) is in the interval [0, 1], satisfy the following

condition:

−0 ≤ sup TZ(k) + sup IZ(k) + sup FZ(k) ≤ 3+ (3)

Definition 2.3. Let D̃ describes a single valued trapezoidal neutrosophic number (SVTNN) [?]

where D̃ =
〈
(dr, dl, dp, ds) ;wD̃, uD̃, yD̃

〉
. The membership values can be calculated as follows

µ
D̃ (q) =



(q−dr)wD̃
(dl−dr)

(dr ≤ q < dl)

wD̃ (dl ≤ q ≤ dp)
(ds−p)wD̃
(ds−dp)

(dp < p ≤ ds)

0 otherwise

vD̃ (q) =



(dl−p+u
D̃(q−dr))

(dl−dr)
(dr ≤ x < dl)

uD̃ (dl ≤ q ≤ dp)
(q−dp+u

D̃(ds−p))
(ds−dp)

(dp < x ≤ ds)

0 otherwise

and

λD̃ (q) =



(dl−p+y
D̃(q−dr))

(dl−dr)
(dr ≤ q < dl)

y
D̃ (dl ≤ q ≤ dp)
(x−dp+y

D̃(ds−p))
(ds−dp)

(dp < p ≤ ds)

0 otherwise

respectively.

Definition 2.4. Let D̃ is a single valued triangular neutrosophic number (SVTrN-number) [?]

where D̃ =
〈
(dr, dl, dp, ) ;wD̃, uD̃, yD̃

〉
. We can calculate membership values in the following

manner:

µ
D̃ (q) =


(q−dr)wD̃
(dl−dr)

, (dr ≤ q < dl)
(dp−p)wD̃
(dp−dl)

, (dl ≤ q < dp)

0, otherwise

vD̃ (q) =


(dl−p+u

D̃(q−dr))
(dl−dr)

, (dr ≤ q < dl)

(q−dl+u
D̃(dp−p))

(dp−dl)
, (dl ≤ q ≤ dp)

0, otherwise

λD̃ (q) =


(dl−p+y

D̃(q−dr))
(dl−dr)

, (dr ≤ q < dl)

(q−dl+y
D̃(dp−p))

(dp−dl)
, (dl ≤ x ≤ dp)

0, otherwise

If dr ≥ 0and at least c > 0 then D̃ =
〈
(dr, dl, dp, ds) ;wD̃, uD̃, yD̃

〉
it is affirmed to be positive

SVTrN-number, denoted by D̃ > 0.
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Definition 2.5.

Let D̃ =
〈(
dr1, dl1, dp1, ds1

)
;wD̃, uD̃, yD̃

〉
and B̃ =

〈(
dr2, dl2, dp2, ds2

)
;wD̃, uD̃, yD̃

〉
be two

SVTN-number and ds ̸= 0 be any real number. Then, the addition operation between D̃ and

B̃

D̃ + B̃ =
〈(
dr1 + dr2, dl1 + dl2, dp1 + dp2, ds1 + ds2

)
;wD̃ ∧ wB̃, uD̃ ∨ uB̃, yD̃ ∨ y

B̃

〉
(4)

Definition 2.6. The score functions is defined as follows:

s(D̃) =
1

12
(dr1+ dr2 dr3+ dr4) ∗

(
2 + wD̃ − uD̃ − y

D̃

)
(5)

Definition 2.7. Let D1 and D2 are two SVNs. Then

D1 ≻ D2 if and only if s(D1) > s(D2).

D1 ≺ D2 if and only if s(D1) < s(D2).

D1 ∼ D2 if and only if s(D1) = s(D2).

Here, D1 ≻ D2 expresses that the cost of the arc/edge represented by D1 is larger than the

cost of the arc/edge represented by D2. Similarly, D1 ≺ D2 expresses that the cost of the edge

described by D1 is lower than the cost of the arc/edge descried by D2. D1 ∼ D2 expresses

that the cost of the edge presented by D1 is equal to the cost of the arc/edge described by D2.

3. Neutrosophic Minimal Spanning Tree (NMSTP)

When considering a connected graph G, an ST, defined as connected, acyclic and maximum

sub graph, comprises all nodes within G. Each ST contains precisely n − 1 arcs, where n

represents the number of nodes in the graph G. A MSTP is to identify a ST such that the

total length of its arcs is minimum. The precise weights connected to the graph’s arcs are

taken into account by the traditional MSTP. However, due to insufficient or absent evidence

in real-world settings, the arc lengths might not be exact. Neutosophic graphs are the best

solution for dealing with this imprecision.

3.1. Problem formulation for NMSTP

Let G represents a neutrosophic network/graph. The graph G consists of p number of

vertices V = {v1, v2, ..., vp} and q number of arcs A ⊆ V × V . Each edge of G is denoted by

r, which is a pair of vertices (n,m), where n,m ∈ V and n ̸= m. If the edge e is present in

the NMSTP then xr = 1, otherwise xr = 0. The NMSTP is expressed as the following linear

programming problem.

min
∑
r∈A

Dryr (6)
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Subject to ∑
r∈A

yr = p− 1 (7)

∑
r∈dl(s)

yr ≥ 1 ∀s ⊂ V, ∅ ≠ s ̸= V (8)

yr ∈ {0, 1} ∀r ∈ A (9)

Here, Dr is a NS that describes the edge weight r ∈ A and
∑

in (6) is the addition of all

NSs. Next Eq. (7) describes that the total number of arc in the ST is p − 1. In (8), dl(s) =

{(n,m|n ∈ s,m /∈ s)} is applied for the cut of a subset of node s, i.e., the edges that consists

of only one node s and the different node outside the s.

4. Proposed Algorithm for the NMSTP and its cost

In this document, we acquaint you with a neutrosophic version of Prim’s algorithm for

finding the MST in an uncertain environment [46, 47]. For managing the uncertainty in the

existences world scenarios, we employ NS. In a neutrosophic environment, we present the

MSTP on a neutrosophic network or graph where each edge is given a trapezoid neutrosophic

number as its edge weight. In this optimization problem MSTP, since it needs ordering and

summation between trapezoid neutrosophic number, is not same from the strand MSTP, which

can only consider real numbers/value. The neutrosophic number’s scoring function is utilized

for comparison, and neutrosophic numbers are combined by applying their designated addition

formula. Based on this two concept of neutrosophic number, we propose a neutrosophic edition

of the conventional Prim’s method to solve the NMSTP. We take into account numerous

variables that are crucial to describing in our proposed approach. An undirected connected

weighted neutrosophic network/graph G = (X,Y ) with neutrosophic edge weight, where X

contains a set of nodes and E contains a set of arcs. Let number= |X| and number1 =|Y |, so
we have a finite set of nodes X={x1, x2, ..., xnumber} and edges Y={y1, y2, ..., ynumber1}. Xn,

Yn and CM̃ describe the finite set of node, arc and weight of the corresponding neutrosophic

MST (NMST).

A random vertex t is selected from G. We calculate the score value for all the arcs in graph

G using Eq. (7). Start from the node t and add the node t to its nearest neighbour node,

say r. To select the nearest neighbour vertex, first we have to determine all the adjacent edge

with p. Then, select the arc, i.e., (p, r) with lowest score value among all the adjacent edges

of p. Using the same concept, we have to find the nearest neighbour vertex for all other nodes

of the graph. Now, we assume p and r as one simple sub-graph and add this sub graph to its

nearest neighbour node. Let us consider, the new node is Q. Next time, the neutrosophic tree

with nodes p, q and r as one another sub graph and repeat this method until all number nodes
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have joined by number − 1 edges. Our proposed neutrosophic Prim algorithm is presented in

Algorithm 1.

Algorithm 1 Algorithm of the modified neutrosophic Prim’s algorithm for NMSTP.

Input: An undirected connected weighted neutrosophic network/graph G = (X,Y ) with

neutrosophic edge weight.

Output: NMST M̃ = (Xn, Yn) of G and its cost.

1: Xn ← {t}; ▷ M̃ is a randomly selected source node and S is the vertex set of M̃

2: Yn ← ∅;
3: CM̃ ← 0;

4: Calculate the score value for each arc in G using (7);

5: while X \ Xn ̸= ∅ do
6: Select an arc (p, r) with minimum score value such that p is in Xn and r is not;

7: CM ← CM ⊕ Score(p, r);

8: Yn ← Yn ∪ (p, r);

9: Xn ← Xn ∪ ({p, r} \Xn);

10: end while

5. Numerical illustrations

To give an idea, put forward a suggested algorithm where we have included an example of the

NMSTP in this section. A network/graph with undirected connections, weighted edges, and

neutrosophic nature where network/graph G = (X,Y ) , neutrosophic edge weight is considered

here. This graph has 6 nodes and 9 arcs. Our propose algorithm can solve this NMSTP and it

finds the NMST of a neutrosophic network/graph, whose arc length are expressed by trapezoid

neutrosophic set/number. The eight trapezoid neutrosophic number, presented in Table 1 are

considered as edge weight of neutrosophic network/graph. For this graph, presented in Figure

1, those trapezoid neutrosophic number are given to the arcs as arc length of this graph

randomly.

The source vertex 1 is selected randomly from the set of vertices of the neutrosophic

network/graph G. The Prim’s algorithm will start from the node 1. Initially, Xn = {1} ,

Yn={∅} and CM̃=0.

Step 1. Find all the connected edges with vertex 1 in the first step. The three edges, (1, 2),

(1, 5) and (1, 3), are joined with vertex 1. We employ a ranking approach to determine

the numeric value associated with three edges. Among them, the smallest one (1, 2) is

picked out along with minimum score value. Now, Xn = 1, 2 and Yn=(1, 2).

Step 2. In this second stage, all the arcs must be chosen so that one end vertex is either in

1or2 while the other is in 5,3, or 6. Three edges, (1, 5), (2, 3) and (2, 6) are determined.
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Table 1. Arc length of MSTP

Index Edge STVN number

1 (1,2) ⟨(4.6, 5.5, 7.6, 8.9), (0.4, 0.7, 0.2)⟩

2 (1,5) ⟨(4.2, 6.9, 7.5, 8.7), (0.7, 0.2, 0.6)⟩

3 (1,3) ⟨(6.0, 7.6, 8.2, 8.4), (0.4, 0.1, 0.3)⟩

4 (2,3) ⟨(6.1, 6.7, 8.3, 8.7), (0.5, 0.2, 0.4)⟩

5 (4,5) ⟨(4.7, 5.9, 7.2, 7.4), (0.7, 0.2, 0.3)⟩

6 (2,6) ⟨(6.6, 8.8, 10, 12), (0.6, 0.2, 0.2)⟩

7 (4,6) ⟨(6.3, 6.5, 8.9, 8.99), (0.7, 0.4, 0.6)⟩

8 (3,4) ⟨(5.2, 7.9, 9.1, 9.4), (0.6, 0.3, 0.5)⟩

1 2

3

4

5 6

1

3 4

8

2 6

5

2

7

Figure 1. A neutrosophic network/graph

Among this three, the lightest one (1, 5) is selected with their value of score. Now, Xn

= 1, 2, 5 , Yn=(1, 2), (1, 5).

Step 3. Similarly, we add all other edges of the neutrosophic network/graph. Now, Xn =

1, 2, 3, 4, 5, 6, D , Yn=(1, 2), (1, 5), (5, 6), (2, 3), (4, 5).

A LPP model is also considered to solve NMSTP. To find the solution, LINGO software is

employed. We describe our obtained result in Table 2 which is determined by software LINGO.

We use a variable xi,j=1, if any edge i, j is in the MST. Table 2 also provides a description

of the Prim’s algorithm solution. We get an identical solution of LINGO and our proposed

algorithm.
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Table 2. Result of NMSTP

LINGO using Solution Prim’s algorithm using Solution

Min Z= 75.06 Cost = 75.06

x23 = 1, x12 = 1, x56 = 1 MSTP=(23)(12)(51)(45)(56)

x15 = 1,x45 = 1

6. Conclusion

The main objective of this paper is to consider MSTP with neutrosophic set and its

generalizations. In this study, we investigate the NMSTP, whose arc lengths are characterized

by trapezoid neutrosophic numbers. In addition, we discuss the necessity of using the trapezoid

neutrosophic number in MSTP. Using trapezoid neutrosophic number for NMSTP, the classical

Prim’s algorithm is updated to incorporate uncertainty. In order to demonstrate the efficacy of

our algorithm, we have included an illustrative numeric instance for clarification. The propose

method is practical and easy to use in scenarios found in the real world. The supply chain

management, routing, commutation, and other significant fields will be among the next areas

to which we attempt to apply our proposed algorithm. It is important to note that there is

more uncertainty in the arc length of a neutrosophic graph in NMSTP than just the geomet-

ric distance. For instance, even if the geometric distance is set, the travel time between two

cities may be represented as a neutrosophic number because of weather and other unforeseen

circumstances.
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Abstract. In this research paper, we have introduced the concept of Neutrosophic interval-valued anti fuzzy

linear space (NIVAFLS) and have also examined its various distinct characteristics. A counter example has

demonstrated that the intersection of two Neutrosophic interval-valued anti fuzzy linear spaces (NIVAFLSs)

does not possess the capability to be a Neutrosophic interval-valued anti fuzzy linear space (NIVAFLS).

Conversely, the union of two Neutrosophic interval-valued anti fuzzy linear spaces (NIVAFLSs) does form a

Neutrosophic interval-valued anti fuzzy linear space (NIVAFLS). Additionally, we have defined and provided

an explanation for the cartesian product of two (NIVAFLSs). Furthermore, we have performed a study on

the homomorphic image and inverse image of Neutrosophic Anti-Fuzzy Linear Space (NIVAFLS), along with

investigating some related properties.

Keywords: Fuzzy linear space; Anti fuzzy linear space; Neutrosophic fuzzy set; Neutrosophic interval-valued

anti fuzzy linear space.

—————————————————————————————————————————-

1. Introduction

In 1965, Zadeh [1] came up with the concept of ”fuzzy set”. His pioneering research on

coping with uncertainty culminated in a magnificent notion. A membership value has been

assigned to each member of a fuzzy set, representing the degree of membership or the degree

to which the element belonging to the set. Those membership values range from 0 to 1, with

0 indicating that the element has no membership in the set and 1 indicating full member-

ship. Values between 0 and 1 signify different levels of partial membership. This framework

paved the route for an extensive variety of mathematical applications as well as real-world
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challenges.Later, in 1986, Atanassov [2] developed fuzzy sets theory by introducing the idea

of intuitionistic fuzzy sets. Each element in a universe is given a membership value in classic

fuzzy sets, ranging from 0 to 1, which indicates how much the element belongs to a specific

set. But by introducing the idea of non-membership functions, Atanassov [2] offered a more

adaptable framework.. Intuitionistic fuzzy sets give away an expanded framework for decision-

making and knowledge portrayal by providing a more complex and powerful tool for resolving

ambiguity and uncertainty in real-world scenarios, and Smarandache [3] enacted an entirely

novel idea known as Neutrosophic set (NS) through the addition of an intermediate mem-

bership in 2005. In their research, Arockiarani and Martina [4] delve into the concept of the

Neutrosophic set, which is a mathematical paradigm that encompasses values ranging from the

subset of [0, 1]. This set allows for the representation of uncertain, indeterminate and contra-

dictory information, making it a valuable tool in various fields such as data analysis, pattern

recognition and decision-making . Vijayabalaji and Sivaramakrishnan [5, 6] set the standard

for the concept of cubic linear space, as well as cubic intuitionistic linear space. The work of

Sivaramakrishnann and Vijayabalaji [7] has contributed significantly to the development and

understanding of interval-valued anti fuzzy linear space.

Anti fuzzy sets have emerged as a promising alternative to classical fuzzy sets when it comes

to dealing with uncertain and imperfect data. In scenarios where the available information

is not fully reliable or the data exhibits ambiguity, fuzzy sets may fall short in accurately

representing the underlying uncertainty. This is where anti fuzzy sets come into play, pro-

viding a different and more robust approach. In the context of interval-valued anti fuzzy sets

(IVAFS), the extent of non-membership is expressed through intervals rather than individ-

ual values. In this sense, considering a number of alternatives for degrees of non-membership

allows for a more adaptive portrayal of uncertainty. IVAFS is beneficial in decision-making,

risk assessment, pattern detection and other activities that require the successful management

of uncertainty and imprecision. Union, intersection and complement operations can be stated

for (IVAFS) in the same manner as they can for standard fuzzy sets. Because the data is

interval-valued, these processes become more complex and may require the inclusion of extra

variables.

The amalgamation of Fuzzy Set (FS) and Intuitionistic Fuzzy Set (IFS) is referred to as

Neutrosophic Fuzzy Set (NFS). This mathematical structure that makes it possible to de-

scribe inconsistent, ambiguous and incomplete data. Mathematical applications of NFS can

be found in many fields, including as natural language processing, production planning and
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scheduling, pattern classification, data mining, data analysis, optimization and decision mak-

ing. Neutrosophy is concerned with indeterminacy and is made up of three components: truth

(T ), falsity (F ) and indeterminacy (I). Different levels of truth, falsehood and unknowns in a

given statement or proposition are indicated by these components: the evidence, the context

and the logical reasoning. Neutrosophic fuzzy sets (NFS) combine neutrosophy and fuzzy

sets to provide a more comprehensive strategy to dealing with unclear and imprecise data.

In (NFS) theory, In the extension of classical set theory, each element of a set is assigned

a membership degree, as well as non-membership and indeterminacy degrees. This enables a

more refined depiction of uncertainty and ambiguity in the inclusion of fragments within a set.

In (NIVAFS), each element in a set is connected with an interval that indicates the possi-

bility of non-membership (uncertainty) within the neutrosophic context of truth, falsity, and

indeterminacy. The (NIVAFS) membership function ties universe elements to intervals while

taking neutrosophic traits and anti-fuzzy degrees into account. Neutrosophic interval-valued

anti fuzzy settings provide an effective way to cope with uncertainty, indeterminacy and im-

precision in each of these decision-making challenges, allowing decision-makers to make more

complete and informed decisions in difficult real-world scenarios. Because of its adaptability

and strength, numerous decision-analysis and problem-solving tasks are ideally suited to this

paradigm.

In the realm of algebraic structures, a homomorphism is a function that preserves the

operations of two algebraic structures of the same kind. For example, if two groups were ho-

momorphized, the group operation would be maintained. The inverse image of a subset in the

codomain is the set of all elements in the domain that map to elements in the given subset,

based on a function or mapping between the two sets.

This study presents a methodology for determining the framework of linear space for single-

valued Neutrosophic sets. The concepts of Neutrosophic set (NS) and interval-valued anti

fuzzy setting of linear space (IVAFLS) are utilized to define Neutrosophic interval-valued

anti fuzzy linear space (NIVAFLS). (NIVAFLS) is defined as the union of two Neutro-

sophic interval-valued anti fuzzy linear spaces (NIVAFLSs). However, the intersection of

two (NIVAFLSs) may not necessarily be a NIVAFLS. Additionally, the definition and the-

ory for the cartesian product of two (NIVAFLSs), as well as the image and inverse image of

a Neutrosophic Anti-Fuzzy Linear Space (NIVAFLS), are established.
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2. Preliminaries

Definition 2.1 (3). Assume XU is universe of discourse. A NS is

Ω={v, ξΩ(v),ΨΩ(v), ζΩ(v)|v ∈ XU} or simply denoted by Ω = (ξΩ(v),ΨΩ(v), ζΩ(v)), where

ξ : XU → [0, 1], Ψ : XU → [0, 1] ζ : XU → [0, 1] the object’s degree of truth can be

represented through its membership, indeterminacy, and false membership v ∈ XU and

0 ≤ ξΩ(v) + ΨΩ(v) + ζΩ(v) ≤ 3.

Definition 2.2 (6). Let VS represent a crisp linear space over a field F, which is symbolized

by (VSF), a mapping δ : VS → [0, 1] is called as an anti fuzzy linear space (AFLS) if

δ(av1 ∗ bv2) ≤ max{δ(v1), δ(v2)},∀v1, v2 ∈ VS and a, b ∈ F and ∗ is any binary operation on

F.

3. Neutrosophic interval-valued anti fuzzy linear space

Definition 3.1. A (NS) Ω = (ξΩ,ΨΩ, ζΩ) is known to be a NIVAFLS of VS, if for all

v1, v2 ∈ VS and a, b ∈ F, the following holds.

(i) ξΩ(av1 ∗ bv2) ≤ max{ξΩ(v1), ξΩ(v2)},

(ii) ΨΩ(av1 ∗ bv2) ≤ max{ΨΩ(v1),ΨΩ(v2)},

(iii) ζΩ(av1 ∗ bv2) ≥ min{ζΩ(v1), ζΩ(v2)}

Example 3.2. Let VS = R2 be a crisp linear space over a field R and let NS Ω= (ξΩ,ΨΩ, ζΩ)

be a NIVAFLS. For each v = (v1, v2) ∈ R2, mappings ξΩ : VS → D[0, 1], ΨΩ : VS → D[0, 1]

and ζΩ : VS → D[0, 1] are defined by

ξΩ(v) =

{
[0.8, 0.9], if v1 = 0 or v2 = 0,

[0.28, 0.31], otherwise.

ΨΩ(v) =

{
[0.73, 0.82], if v1 = 0 or v2 = 0,

[0.32, 0.41], otherwise.

and

ζΩ(v) =

{
[0.51, 0.6], if v1 = 0 or v2 = 0,

[0.93, 1], otherwise.

Clearly, Ω = (ξΩ,ΨΩ, ζΩ) is a NIVAFLS in VS.

Sivaramakrishnan. S, Vijayabalaji. S and Balaji. P. Neutrosophic interval-valued anti fuzzy
linear space

Neutrosophic Sets and Systems, Vol. 63, 2024                                                                              274



Example 3.3. Consider a Klein 4-group VS = {ϵs1, ϵs2, ϵs3, ϵs4} with the binary operation ∗.

∗ ϵs1 ϵs2 ϵs3 ϵs4

ϵs1 ϵs1 ϵs2 ϵs3 ϵs4

ϵs2 ϵs2 ϵs1 ϵs4 ϵs3

ϵs3 ϵs3 ϵs4 ϵs1 ϵs2

ϵs4 ϵs4 ϵs3 ϵs2 ϵs1

Assume F to be a GF(2). Suppose that (0)w = e, (1)w = w for all w ∈ VS.

Define the mappings ξΩ : VS → D[0, 1], ΨΩ : VS → D[0, 1] and ζΩ : VS → D[0, 1] by

ξΩ(v) =

{
[0.4, 0.5], if v = ϵs1,

[0.91, 1], otherwise.

ΨΩ(v) =

{
[0.22, 0.31], if v = ϵs1,

[0.72, 0.9], otherwise.

and

ζΩ(v) =

{
[0.8, 0.9], if v = ϵs1,

[0.5, 0.42], otherwise.

Note that Ω = (ξΩ,ΨΩ, ζΩ) is a NIVAFLS in VS.

Theorem 3.4. If Ω1 and Ω2 are NIVAFLSs of VS, then the union Ω1 ∪ Ω2 so is.

Proof. Let v1 and v2 ∈ VS and a, b ∈ F.

Define Ω1 ∪ Ω2 = {⟨v, ξΩ1∪Ω2
(v),ΨΩ1∪Ω2

(v), ζΩ1∪Ω2
(v)⟩ : v ∈ VS}.

Now (ξΩ1∪Ω2
)(av1 ∗ bv2) = max{ξΩ1

(av1 ∗ bv2), ξΩ2
(av1 ∗ bv2)}

≤ max{max[ξΩ1
(v1), ξΩ1

(v2)],max[ξΩ2
(v1), ξΩ2

(v2)]}

= max{max[ξΩ1
(v1), ξΩ2

(v1)],max[ξΩ1
(v2), ξΩ2

(v2)]}
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⇒ (ξΩ1∪Ω2
)(av1 ∗ bv2) ≤ max{(ξΩ1∪Ω2

)(v1), (ξΩ1∪Ω2
)(v2)}

(ΨΩ1∪Ω2
)(av1 ∗ bv2) = max{ΨΩ1

(av1 ∗ bv2),ΨΩ2
(av1 ∗ bv2)}

≤ max{max[ΨΩ1
(v1),ΨΩ1

(v2)],max[ΨΩ2
(v1),ΨΩ2

(v2)]}

= max{max[ΨΩ1
(v1),ΨΩ2

(v1)],max[ΨΩ1
(v2),ΨΩ2

(v2)]}

⇒ (ΨΩ1∪Ω2
)(av1 ∗ bv2) ≤ max{(ΨΩ1∪Ω2

)(v1), (ΨΩ1∪Ω2
)(v2)}

(ζΩ1∪Ω2
)(av1 ∗ bv2) = min{ζΩ1

(av1 ∗ bv2), ζΩ2
(av1 ∗ bv2)}

≥ mim{min[ζΩ1
(v1), ζΩ1

(v2)],min[ζΩ2
(v1), ζΩ2

(v2)]}

= min{min[ζΩ1
(v1), ζΩ2

(v1)],min[ζΩ1
(v2), ζΩ2

(v2)]}

⇒ (ζΩ1∪Ω2
)(av1 ∗ bv2) ≥ min{(ζΩ1∪Ω2

)(v1), (ζΩ1∪Ω2
)(v2)}

Thus (Ω1 ∪ Ω2) is a NIVAFLS of VS.

Remark 3.5. The intersection of two (NIVAFLSs) of VS need not be a (NIVAFLS) of

VS.

Proof. An example will be used to demonstrate the aforementioned claim.

Let VS = {ϵs1, ϵs2, ϵs3, ϵs4} be the Klein 4-group as in Example 3.3.

Let F be the field GF(2). Let (0)w = e, (1)w = w for all w ∈ VS. Then VS is a linear

space over F.

Define ξΩ1
and ξΩ2

as follows:

ξΩ1
(ϵs1) = [0.1, 0.2], ξΩ1

(ϵs2) = [0.6, 0.7] = ξΩ1
(ϵs3), ξΩ1

(ϵs4) = [0.4, 0.5] and

ξΩ2
(ϵs1) = [0.2, 0.3], ξΩ2

(ϵs2) = [0.3, 0.4], ξΩ2
(ϵs3) = [0.5, 0.6] = ξΩ2

(ϵs4).
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Define ξΩ1∩Ω2
by (ξΩ1∩Ω2

)(v) = min{ξΩ1
(v), ξΩ2

(v)} for all v ∈ VS.

So, (ξΩ1∩Ω2
)(ϵs1) = [0.1, 0.2], (ξΩ1∩Ω2

)(ϵs2) = [0.3, 0.4],

(ξΩ1∩Ω2
)(ϵs3) = [0.5, 0.6], (ξΩ1∩Ω2

)(ϵs4) = [0.4, 0.5].

When a = b = 1, then the Definition 3.1 in (i) becomes

(ξΩ1∩Ω2
)(ϵs2 ∗ ϵs4) ≤ max{(ξΩ1∩Ω2

)(ϵs2), (ξΩ1∩Ω2
)(ϵs4)}

⇒ (ξΩ1∩Ω2
)(ϵs3) ≤ max{[0.3, 0.4], [0.4, 0.5]}

But (ξΩ1∩Ω2
)(ϵs3) = [0.5, 0.6] ≤ [0.4, 0.5]

This is absurd.

The other inequalities are similarly proved.

So, the intersection of two NIVAFLSs need not be a NIVAFLS.

Definition 3.6. The complement of a Neutrosophic fuzzy subset Ω is denoted by Ω
c
and

is defined by Ω
c
= {⟨v, ξΩc(v),ΨΩ

c(v), ζΩc(v)⟩ : v ∈ VS}, where ξΩc(v) = ζΩ(v), ΨΩ
c(v) =

1−ΨΩ(v), ζΩc(v) = ξΩ(v), for all v ∈ VS.

Theorem 3.7. If Ω be a Neutrosophic fuzzy linear space of VS then its complement Ω
c
is a

NIVAFLS of VS.

Proof. Let v1 and v2 ∈ VS and a, b ∈ F.

ξΩc(av1 ∗ bv2) = ζΩ(av1 ∗ bv2)

≤ max{ζΩ(v1), ζΩ(v2)}

= max{ξΩc(v1), ξΩc(v2)}

ΨΩ
c(av1 ∗ bv2) = 1−ΨΩ(av1 ∗ bv2)
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= 1− ≤ min{ΨΩ(v1),ΨΩ(v2)}

= max{1−ΨΩ(v1), 1−ΨΩ(v2)}

= max{ΨΩ
c(v1),ΨΩ

c(v2)}

ζΩc(av1 ∗ bv2) = ξΩ(av1 ∗ bv2)

≥ min{ξΩ(v1), ξΩ(v2)}

≥ min{ζΩc(v1), ζΩc(v2)}

So, Ω
c
is a NIVAFLS of VS.

Definition 3.8. Let Ω1, Ω2 be Neutrosophic anti fuzzy subsets of VS1 and VS2 respectively.

Then the cartesian product of Ω1 and Ω2 denoted by Ω1 × Ω2 is defined by

Ω1 × Ω2 = {⟨(v1 × v2), ξΩ1×Ω2
(v1, v2),ΨΩ1×Ω2

(v1, v2), ζΩ1×Ω2
(v1, v2)⟩ : v1 ∈ VS1, v2 ∈ VS2},

where ξΩ1×Ω2
(v1, v2) = max{ξΩ1

(v1), ξΩ2
(v2)}, ΨΩ1×Ω2

(v1, v2) = max{ΨΩ1
(v1),ΨΩ2

(v2)} and

ζΩ1×Ω2
(v1, v2) = min{ζΩ1

(v1), ζΩ2
(v2)}.

Theorem 3.9. If Ω1 and Ω2 are NIVAFLSs of VS, then (Ω1 × Ω2) is a NIVAFLS of

VS1 ×VS2.

Proof. Let v = (v1, v2), w = (w1, w2) ∈ VS1 ×VS2. Then

ξΩ1×Ω2
(av ∗ bw) = ξΩ1×Ω2

(a(v1, v2) ∗ b(w1, w2))

= ξΩ1×Ω2
((av1 ∗ bw1), (av2 ∗ bw2))

= max{ξΩ1
(av1 ∗ bw1), ξΩ2

(av2 ∗ bw2)}

≤ max{max[ξΩ1
(v1), ξΩ1

(w1)],max[ξΩ2
(v2), ξΩ2

(w2)]}

= max{max[ξΩ1
(v1), ξΩ2

(v2)],max[ξΩ1
(w1), ξΩ2

(w2)]}

= max{ξΩ1×Ω2
(v1, v2), ξΩ1×Ω2

(w1, w2)}
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= max{ξΩ1×Ω2
(v), ξΩ1×Ω2

(w)}

ΨΩ1×Ω2
(av ∗ bw) = ΨΩ1×Ω2

(a(v1, v2) ∗ b(w1, w2))

= ΨΩ1×Ω2
((av1 ∗ bw1), (av2 ∗ bw2))

= max{ΨΩ1
(av1 ∗ bw1),ΨΩ2

(av2 ∗ bw2)}

≤ max{max[ΨΩ1
(v1),ΨΩ1

(w1)],max[ΨΩ2
(v2),ΨΩ2

(w2)]}

= max{max[ΨΩ1
(v1),ΨΩ2

(v2)],max[ΨΩ1
(w1),ΨΩ2

(w2)]}

= max{ΨΩ1×Ω2
(v1, v2),ΨΩ1×Ω2

(w1, w2)}

= max{ΨΩ1×Ω2
(v),ΨΩ1×Ω2

(w)}

ζΩ1×Ω2
(av ∗ bw) = ζΩ1×Ω2

(a(v1, v2) ∗ b(w1, w2))

= ζΩ1×Ω2
((av1 ∗ bw1), (av2 ∗ bw2))

= min{ζΩ1
(av1 ∗ bw1), ζΩ2

(av2 ∗ bw2)}

≥ min{min[ζΩ1
(v1), ζΩ1

(w1)],min[ζΩ2
(v2), ζΩ2

(w2)]}

= min{min[ζΩ1
(v1), ζΩ2

(v2)],min[ζΩ1
(w1), ζΩ2

(w2)]}

= min{ζΩ1×Ω2
(v1, v2), ζΩ1×Ω2

(w1, w2)}

= min{ζΩ1×Ω2
(v), ζΩ1×Ω2

(w)}

So, (Ω1 × Ω2) is a NIVAFLS of VS1 ×VS2.

Definition 3.10. Let ϖ : VS1 → VS2 be a mapping of linear spaces of VS over F. If Ω =

(ξΩ,ΨΩ, ζΩ) is a NIVAFLS of VS2 over F, then the inverse image of Ω = (ξΩ,ΨΩ, ζΩ) under

ϖ, denoted by ϖ−1(Ω) = (ϖ−1(ξΩ), ϖ
−1(ΨΩ), ϖ

−1(ζΩ)), is a NIVAFLS of VS1, defined by

ϖ−1(Ω)(x) = Ω(ϖ(x)) = (ξΩ(ϖ(x)),ΨΩ(ϖ(x)), ζΩ(ϖ(x))) for all x ∈ VS1.
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Theorem 3.11. Consider the homomorphism ϖ : VS1 → VS2, which represents the mapping

between linear spaces VSF. If Ω = (ξΩ,ΨΩ, ζΩ) is a NIVAFLS of VS2, then ϖ−1(Ω)(x) =

Ω(ϖ(x)) = (ξΩ(ϖ(x)),ΨΩ(ϖ(x)), ζΩ(ϖ(x))) for every x that belongs to VS1.

Proof. Suppose that Ω = (ξΩ,ΨΩ, ζΩ) is a NIVAFLS of VS2 and x and y belong to VS1 and

a and b belong to F.

Next, we have

(i)ϖ−1(ξΩ)(ax ∗ by) = ξΩ(ϖ(ax ∗ by))

= ξΩ(ϖ(x)ϖ(y)) (since ϖ is homomorphism)

≤ max{ξΩ(ϖ(x)), ξΩ(ϖ(y))}

= max{ϖ−1(ξΩ(x)), ϖ−1(ξΩ(y))}

⇒ ϖ−1(ξΩ)(ax ∗ by) ≤ max{ϖ−1(ξΩ(x)), ϖ−1(ξΩ(y))}

Therefore ϖ−1(ξΩ) is a NIVAFLS of VS1.

(ii)ϖ−1(ΨΩ)(ax ∗ by) = ΨΩ(ϖ(ax ∗ by))

= ΨΩ(ϖ(x)ϖ(y)) (since ϖ is homomorphism)

≤ max{ΨΩ(ϖ(x)),ΨΩ(ϖ(y))}

= max{ϖ−1(ΨΩ(x)), ϖ−1(ΨΩ(y))}

⇒ ϖ−1(ΨΩ)(ax ∗ by) ≤ max{ϖ−1(ΨΩ(x)), ϖ−1(ΨΩ(y))}

Therefore ϖ−1(ΨΩ) is a NIVAFLS of VS1.

(iii)ϖ−1(ζΩ)(ax ∗ by) = ζΩ(ϖ(ax ∗ by))

= ζΩ(ϖ(x)ϖ(y)) (since ϖ is homomorphism)

≥ min{ζΩ(ϖ(x)), ζΩ(ϖ(y))}

= min{ϖ−1(ζΩ(x)), ϖ−1(ζΩ(y))}

⇒ ϖ−1(ζΩ)(ax ∗ by) ≥ min{ϖ−1(ζΩ(x)), ϖ−1(ζΩ(y))}

Therefore ϖ−1(ζΩ) is a NIVAFLS of VS1.

Theorem 3.12. Let Ω = (ξΩ,ΨΩ, ζΩ) be a NIVAFLS of VS and an onto homomorphism

ϖ : VS → VS. Subsequently, the mapping Ω
ϖ

: VS → D[0, 1] is defined as follows: for every

x ∈ Ω
ϖ
(x) = Ω(ϖ(x)) for all x ∈ VS is a NIVAFLS of VS.
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Proof. For any x, y ∈ VS and a, b ∈ F.

(i)ξ
ϖ
Ω (ax ∗ by) = ξΩ(ϖ(ax ∗ by))

= ξΩ(ϖ(x)ϖ(y)) (since ϖ is homomorphism)

≤ max{ξΩ(ϖ(x)), ξΩ(ϖ(y))}

= max{ξϖΩ (x), ξ
ϖ
Ω (y)}

⇒ ξ
ϖ
Ω (ax ∗ by) ≤ max{ξϖΩ (x), ξ

ϖ
Ω (y)}.

(ii)Ψ
ϖ
Ω (ax ∗ by) = ΨΩ(ϖ(ax ∗ by))

= ΨΩ(ϖ(x)ϖ(y)) (since ϖ is homomorphism)

≤ max{ΨΩ(ϖ(x)),ΨΩ(ϖ(y))}

= max{Ψϖ
Ω (x),Ψ

ϖ
Ω (y)}

⇒ Ψ
ϖ
Ω (ax ∗ by) ≤ max{Ψϖ

Ω (x),Ψ
ϖ
Ω (y)}.

(iii)ζ
ϖ
Ω (ax ∗ by) = ζΩ(ϖ(ax ∗ by))

= ζΩ(ϖ(x)ϖ(y)) (since ϖ is homomorphism)

≤ max{ζΩ(ϖ(x)), ζΩ(ϖ(y))}

= max{ζϖΩ (x), ζ
ϖ
Ω (y)}

⇒ ζ
ϖ
Ω (ax ∗ by) ≤ max{ζϖΩ (x), ζ

ϖ
Ω (y)}.

So, Ω
ϖ

is a NIVAFLS of VS.

Theorem 3.13. Consider an epimorphism ϖ : VS1 → VS2 that maps linear spaces VS1 and

VS2 over F. Let’s assume thatΩ = (ξΩ,ΨΩ, ζΩ) be a ϖ-invariant NIVAFLS of VS1. Conse-

quently, ϖ(Ω) is a NIVAFLS of VS2.

Proof. For any elements x
′
and y

′
belonging to VS2 and a and b belonging to F, there exists

x and y belonging to VS1 such that ϖ(x) is equals x
′
and ϖ(y) equals y

′
.

Also ax
′ ∗ by′

= ϖ(ax ∗ by). Since Ω is ϖ-invariant,

(i)ϖ(ξΩ)(ax ∗ by) = ξΩ(ax
′ ∗ by′

) ≤ max{ξΩ(x
′
), ξΩ(y

′
)}

= max{ϖ(ξΩ)(x), ϖ(ξΩ)(y)}

⇒ ϖ(ξΩ)(ax ∗ by) ≤ max{ϖ(ξΩ)(x), ϖ(ξΩ)(y)}
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Therefore ϖ(ξΩ) is a NIVAFLS of VS2.

(ii)ϖ(ΨΩ)(ax ∗ by) = ΨΩ(ax
′ ∗ by′

) ≤ max{ΨΩ(x
′
),ΨΩ(y

′
)}

= max{ϖ(ΨΩ)(x), ϖ(ΨΩ)(y)}

⇒ ϖ(ΨΩ)(ax ∗ by) ≤ max{ϖ(ΨΩ)(x), ϖ(ΨΩ)(y)}

Therefore ϖ(ΨΩ) is a NIVAFLS of VS2.

(iii)ϖ(ζΩ)(ax ∗ by) = ζΩ(ax
′ ∗ by′

) ≥ min{ζΩ(x
′
), ζΩ(y

′
)}

= min{ϖ(ζΩ)(x), ϖ(ζΩ)(y)}

⇒ ϖ(ζΩ)(ax ∗ by) ≥ min{ϖ(ζΩ)(x), ϖ(ζΩ)(y)}

Therefore ϖ(ζΩ) is a NIVAFLS of VS2.

4. Conclusion

The present paper introduces a novel concept referred to as a NIVAFLS. A counterex-

ample is employed to demonstrate that the intersection of two NIVAFLSs need not be a

NIVAFLS, and we examine into some of the aspects of NIVAFLS to show that the union

of two NIVAFLSs is likewise a NIVAFLS.

In the future, we will apply this idea to different algebraic structures like

• semigroup,

• M -semigroup,

• ring,

• rough set,

• soft set together with problems based on decision-makings.
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Abstract. Business has a massive effect on both people and society as a whole in today’s culture. Businesses

make significant contributions to humanity’s general well-being and progress by promoting economic growth,

supporting innovation, producing wealth, and addressing social challenges. However, choosing the right location

for a business is a complex task, involving multiple criteria and qualitative and quantitative factors that heavily

rely on expert judgement. The researchers propose a unique approach called the SVNZN multi-attributed

decision-making method to aid decision-makers in this process. They introduce new operating laws for SVNZNs

based on the sine trigonometric (ST) function, known for its periodicity and symmetry over the origin, making

it favorable for decision-makers over multi-time phase parameters. Additionally, novel AOs such as SVNZN

weighted averaging and geometric operators are defined to combine SVNZNs effectively. Based on these AOs,

a decision-making technique for MADM problems is presented, and its applicability is demonstrated through

a numerical example of selecting the best location for a business. To validate and enhance the understanding

of these proposed techniques, the researchers conducted a comprehensive comparison analysis, including a

sensitivity analysis, considering existing literature on MADM difficulties. Figure 1 provides a thorough graphical

summary by visually representing all of the contributions and outcomes.

Keywords: Single-valued neutrosophic set, Decision Making, Sine Trigonometric aggregation operator, Z-

number.
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Define Basic Fuzzy Laws for Z Numbers

In this section, we present all basic laws that

are helpful in generalization.

Developed Sine Trigonometric 
Operational Laws for Neutrosophic

 Z Numbers

We introduce innovative operational principles that 
utilize the ST function.

Novel Sine Trigonometric Aggregation 
Operators and their Properties

We introduce innovative AOs that build upon the 
proposed STOLs for SVNZNs.

Decision-Making Strategy

We design the decision making algorithm based 

on the  Proposed operators.

Application of Proposed Decision-
Making Technique

Here we apply the designed algorithm on the 

Real life numerical example for Business Site 
Selection.

Comparison and Sensitive Analysis

We compare our method with the existing techniques

and find the accuracy of our proposed technique. Also 
present the limitations of the work.

01

02

03

04

05

06

Graphical Abstract

 
Conclusion 

Here, we conclude the paper with future directions

Figure 1. Graphical Abstract

We express specific symbols in Table 1, that will be used throughout this work.

Table 1. Abbreviations and Descriptions of this Manuscript

Abbreviation Description Abbreviation Description

FS fuzzy set ZN Z-number

FZN fuzzy ZN SFZN spherical FZN

SVNZN single-valued neutrosophic ZN AO aggregation operator

MADM multi-attribute decision-making PFZN picture FZN

ST sine trigonometric STAO ST Aggregation Operator

SVN single-valued neutrosophic STOL ST operational law

DMP decision-making problem DMk decision-maker

WV weight vector DM decision-making

1. Introduction

Research is crucial before deciding on a site for a company, since this choice may affect the

organization’s long-term performance in significant ways. Before making a final selection, it’s

important to thoroughly analyze many factors to make sure the selected site can match the

organization’s goals and operational needs. Numerous important factors must be considered

while making decisions; they include, but are not limited to, demographics, infrastructure,
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and market availability. For instance, several significant factors directly impact a corpora-

tion’s cost-effectiveness and operational efficiency [2, 3]. The accessibility of trained workers,

public transit systems, suppliers, and buyers are all examples of such factors. To guarantee

compliance and avoid hazards, more research on legal and regulatory aspects, including zoning

limits and tax incentives, is required. Gathering and analyzing as much data as possible is

crucial for making decisions; this data must account for market trends, economic patterns, and

any hazards that may be present. To gain a variety of opinions and support from everyone

involved, it is also important to solicit feedback and participation from stakeholder. Accord-

ing to [4, 5], companies may improve their operational efficiency, promote sustainability, and

secure long-term success by thoroughly analyzing these complex challenges and making wise

choices.

An additional layer of complexity is added to the decision-making (DM) process when fuzzy

set (FS) theory is applied to the process of selecting a location for a company. In the field of

FS theory, it is acknowledged that several location criteria may include inherent ambiguities

and imprecisions [6]. The application of fuzzy logic assists decision-makers (DMks) in taking

into account the complexity of the situation, which is a result of the fact that the variables

that exist in the real world are often not binary but rather exist on a spectrum. When it

comes to matters like the availability of competent people or a market, for example, there may

not be any clear regulations in place. Decision-makers are able to define these features using

degrees thanks to FS theory, which enables a representation that is both more realistic and

flexible [7] than traditional methods. The provision of a framework for coping with ambiguity

is one of the ways in which this strategy improves DM, particularly in the setting of fast-paced

commercial environments. The use of FS theory allows companies to make better and more

context-aware judgments throughout the site selection process. This helps to guarantee that

the selected location is the most suitable for the achievement of their objectives and the ful-

fillment of their operational requirements [8–10].

In 1965, Zadeh was the first person to present the idea of an FS, which was a generalization

of crisp sets. Through the process of providing a membership value between 0 and 1 to each

element, FSs provide a unique viewpoint. This value indicates the degree to which the ele-

ment is associated with the set. The amendment was made in order to provide an achievable

solution that could effectively address the inherent ambiguity and uncertainty that is present

in reasoning and DM processes [11]. When it comes to processing complicated and imprecise

information, embracing FSs enables a more adaptive and intelligent approach. This, in turn,

enables a more exact depiction of real-world occurrences and facilitates well-informed decision

making in contexts that are unpredictable. The versatility of FSs becomes clear via their wide-

ranging applications in many domains, including artificial intelligence [12], control systems [13],
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pattern recognition [14], decision analysis [15], and decision modeling [16]. Decision modeling

is exactly what it sounds like: a strategy. It is a method that is deliberate and planned, and

it is used to organize and visualize judgments as well as the qualities that are associated with

them. In order to do this, it is required to develop models that include the fundamental as-

pects of a DM problem (DMP), such as objectives, alternatives, constraints, unpredictability,

and interests [17, 18]. The first step in decision modeling is called issue identification, and it

involves expressing the choice problem in a clear and simple way while also outlining particular

objectives [19]. This phase is when the decision modeling process begins. During this par-

ticular phase, it is important to possess a thorough comprehension of the context, to identify

the most significant challenges, and to describe the objectives that the process of selecting is

intended to achieve [20]. The term ”distinctive decision simulation,“ on the other hand, refers

to the use of novel strategies, approaches, or methods within the realm of decision modeling.

The process involves experimenting with unique and creative methods of expressing, evalu-

ating, and addressing decision difficulties, often via the use of technological, data analytical,

and computational advances. Some examples of inventive document management methods

are shown here [21, 22]. Using intelligence-based techniques and predictive algorithms, you

may develop decision models that are able to learn from data, make predictions, and optimize

the consequences of decisions. Over time, these models are able to autonomously modify and

improve themselves based on fresh information and input being received. Leverage the power

of big data to provide DM with information. It is important to include vast and complicated

data sets from a variety of sources into decision models. Some examples of these sources are

social media, sensors, and transaction logs. Obtaining insights and providing support for DM

processes may be accomplished via the use of sophisticated data analytic methods like as data

mining, predictive modeling, and pattern recognition.

There are two components that make up the representation of a Z-number (ZN), which is

represented as Z = (X,Y ). These components are described in more detail below. In the case

of a real-valued uncertain variable, the first component, which is represented by the letter X,

serves as a constraint that determines the range of values that are acceptable with regard to

the variable. The second component, which is represented by the letter Y , is accountable for

measuring the degree of dependability or confidence that is associated with the information

that was provided by the first component. This is the responsible party. Kang et al. [24] were

the ones who did the first presentation of fuzzy ZNs (FZNs), while Sari and Kahraman [25]

were the ones who developed intuitionistic FZNs. Pythagorean FZNs were presented in [26],

and [27] detailed a number of operations via their description.

Each element in an SVN set is given a truth-membership degree denoted by (T), an

indeterminacy-membership degree denoted by (I), and a falsity-membership degree denoted
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by (F), which adds up to 3. The depiction of uncertain and ambiguous features of an element

is made easier by these degrees, which also provide a means of accommodating the many de-

grees of truth and falsehood that are associated with the element. Within the frames of ZNs,

FZNs, intuitionistic FZNs, and Pythagorean FZNs, we provide single-valued neutrosophic ZN

(SVNZN), a novel notion that enhances the capabilities of these existing frameworks. The

formation of SVNZNs involves the combination of two well-known sets, namely SVN sets and

ZNs. By combining a number of different frameworks, SVNZNs provide a strong instrument

for dealing with the uncertainty and indeterminacy that are present in DM situations. As a

result of the introduction of SVNZN, there are now more choices available for dealing with

complex DM scenarios that include a variety of different types of uncertainty. This unique

idea expands the scope of previously established approaches while simultaneously enhancing

the capability to accurately and totally imitate and comprehend occurrences that occur in the

actual world. The symbol Z is used to indicate an SVNZN, which is composed of two compo-

nents: Z = (X,Y ) respectively. The first component is made up of three different elements:

the truth-membership (TV), the indeterminacy-membership (IV), and the falsity-membership

(FV) degree, with the sum of these three components being equal to three. As an alternative,

the second component, which is denoted by the symbol Y , is responsible for assessing the level

of trustworthiness or dependability that is connected to the information provided by the first

component. Additionally, it is composed of three elements, namely (TR), (IR), and (FR),

with the sum of these three factors being equal to 3. When used in DM environments where

uncertainty and indeterminacy coexist, SVNZNs provide a method that is both comprehensive

and rigorous, designed to successfully resolve choice difficulties that occur in the real world.

As a consequence of SVNZs, decision makers have access to a more flexible way of presenting

and handling complicated data, which ultimately leads to more informed judgments. The pro-

cedures and computations that are performed by ZN and SVN sets, which include arithmetic,

comparison, and aggregation operations, are comparable to those that are performed by SVNZ.

The last point is that SVNZNs provide a flexible framework for dealing with uncertainty and

indeterminacy in DM. This framework enables DMks to take into consideration a variety of

views and arrive at more robust conclusions.

Motivation and Novelty: It is standard practice to use ST Aggregation Operators (STAOs)

in multi-criteria decision making and analysis. As a result of their reliance on the mathemati-

cal concept of the sine function, these operators are especially adept at dealing with input that

is both perplexing and wrong. STAOs provide a single overall value or preference rating by

aggregating individual assessments or criteria values [28]. STAOs have the following important

characteristics: STAOs perform a sine change on the input data prior to aggregation. The
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sine function normalizes values between -1 and 1, allowing for the depiction of imprecise and

uncertain data in a continuous and smooth manner. Weighting techniques are used in STAOs

to provide relative importance or priority to certain assessments or criteria. This enables

DMks to evaluate the relative value of each criterion during the DM process. The weights

specify how much each evaluation or criterion effects the overall value or ranking. STAOs offer

various AOs to combine the transformed values. These operators include the sine weighted

average, sine weighted geometric mean, sine weighted harmonic mean, sine weighted quadratic

mean, and other variations etc. Each operator has its own mathematical formula for aggregat-

ing the transformed values. The output of STAOs is typically a single aggregated value or a

preference ranking of alternatives based on their aggregated scores. The interpretation of the

aggregated result depends on the context of the decision problem and the specific requirements

of the DMk. STAOs may also handle uncertainty and sensitivity analysis by considering sev-

eral scenarios or modifications in the given data. Sensitivity analysis assesses the robustness

of aggregated data and gives information on the influence of numerous factors on decision

making. STAOs are utilized in a wide range of disciplines, such as DM under uncertainty,

multi-criteria decision analysis, group DM, and consensus-building techniques. When dealing

with ambiguous, vague, or volatile information, STAOs, specifically ST weighted average AOs

and ST weighted geometric AOs, provide significant benefits since they effectively capture and

represent this complexity. It is important to remember, however, that STAOs are simply one

of several AO families used in decision modeling. The most appropriate AO is decided by the

specific criteria and features of the decision issue, and various families of operators may be

more suited in other cases.

The following justifies the use of ST weighted average AOs and ST weighted geometric AOs

on SVNZNs:

• We develop a technique that assigns different criteria different degrees of significance,

reflecting their relative relevance in the decision making process, by integrating ST

weights. This sensitivity makes sure that important elements are given greater weight,

providing a more sophisticated assessment of possible business locations.

• The selected operators are particularly good at managing non-linear connections and

interactions between the site selection parameters. The curvature that is created by

the ST function has the ability to capture complex and non-linear features that are

present in the original data. It is vital to have this insight in order to comprehend

how certain factors could interact in non-linearly additive ways, which would result in

a more accurate picture of the intricate interactions that influence site suitability.

• By using specified operators, it is possible to efficiently reduce the impact of the extreme

values that are included inside the dataset. This is very important since outliers
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have the potential to distort the outcomes of choices made when selecting a site for a

company. These operators naturally lessen the influence of extreme values, so avoiding

outliers from unnecessarily skewing the DM process and encouraging outputs that are

reliable and trustworthy.

• The newly implemented aggregation processes are more responsive to even the most

minute changes in the variables that are received as input. This is a crucial feature in

dynamic business scenarios, where the acceptability of a location may be significantly

influenced by even modest changes in the criteria. It is guaranteed that DMks will be

able to be more proactive and intelligent in their site selection process if the operators

are able to quickly change their judgments in reaction to changing conditions.

• Within the context of site selection, it is usually essential to make compromises between

opposing requirements. The operators that were selected provide an approach that is

equitable for integrating a large number of criteria, which makes it simpler to evaluate

these trade-offs. For instance, the weighted geometric mean takes into consideration a

mix of weights and values by default. This encourages a fair compromise between the

criteria, as opposed to giving priority to one of the criterion over the others. When

it comes to selecting a site for a firm, this makes it feasible for DMks to effectively

handle the inherent difficulties of trade-off circumstances.

In light of this, the following are the conclusions of the research:

• The weighted geometric mean and the ST weighted average are two innovative aggre-

gation strategies that we propose. Both of these approaches were built exclusively for

statistically significant SVNZNs.

• The incorporation of these additional operators results in the development of a com-

plex decision algorithm that enhances the process of selecting places for commercial

ventures.

• Our strategy focuses on SVNZNs in particular, recognizing their special qualities and

tackling the difficulties in choosing a site by using designed aggregation operators

(AOs).

• We prove the decision algorithm’s usefulness in a real-world scenario of business site

selection, putting its efficacy in a concrete, applied setting. The system is not merely

theoretical.

• Our research leads to the development of a comprehensive framework for DM that

makes use of the AOs that we developed. This framework opens the door to the

development of more sophisticated and complex business site selection techniques.

This article uses the structure indicated below. In Section 2, fundamental ideas that underpin

FS, NS, SVNZNs, and several fundamental operational laws are discussed. We introduce novel
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AOs, including Novel Sine Trigonometric Operational Laws, in Section 3. Section 4 introduces

new aggregating operators. Key Properties of the Suggested AOs for SVNZNs were also

established by Novel Sine Trigonometric Aggregation Operators. In Section 5, a numerical

issue solution, numerical illustrations, and a DM method based on the proposed AOs are

developed. In Section 6, we compare and contrast a few current practices with suggested ones.

In Section 7, we come to a conclusion.

2. Preliminaries and Basic Concepts

In this section, we define some fundamental properties related to our work.

Definition 2.1. [34] In the context of a predetermined set g, a picture FZN (PFZN) set a
in g is viewed as

a =
{〈

Z,
(
TVji (Z) ,TRji (Z)

)
,
(
IVji (Z) , IRji (Z)

)
,
(
FVji (Z) ,FRji (Z)

)〉
| Z ∈ g

}
,

for each element Z in the set g, the memberships of Z beneath the PFZN a have been

classified into positive
(
TVji ,TRji

)
: g → φ, neutral

(
IVji , IRji

)
: g → φ, and negative(

FVji ,FRji

)
: g→ φ categories, each associated with a specific degree. These degrees are rep-

resented by the unit interval φ = [0, 1]. Furthermore, it is essential to guarantee that the sum

of
(
TVji (Z) ,TRji (Z)

)
,
(
IVji (Z) , IRji (Z)

)
, and

(
FVji (Z) ,FRji (Z)

)
for each Z in g remains

within the range of 0 to 1.

Definition 2.2. [30] In the context of a predetermined set g, a spherical FZN (SFZN) set a
in g is viewed as

a =
{〈

Z,
(
TVji (Z) ,TRji (Z)

)
,
(
IVji (Z) , IRji (Z)

)
,
(
FVji (Z) ,FRji (Z)

)〉
| Z ∈ g

}
,

for each element Z in the set g, the memberships of Z beneath the SFZN a have been classified

into positive
(
TVji ,TRji

)
: g → φ, neutral

(
IVji , IRji

)
: g → φ, and negative

(
FVji ,FRji

)
:

g → φ categories, each associated with a specific degree. These degrees are represented

by the unit interval φ = [0, 1]. Furthermore, it is essential to guarantee that the sum of(
T2
Vji

(Z) ,T2
Rji

(Z)
)
,
(
I2
Vji

(Z) , I2
Rji

(Z)
)
, and

(
F2
Vji

(Z) ,F2
Rji

(Z)
)

for each Z in g remains

within the range of 0 to 1.

Definition 2.3. [35] In the context of a predetermined set g, a SVNZN set a in g is viewed

as

a =
{〈

Z,
(
TVji (Z) ,TRji (Z)

)
,
(
IVji (Z) , IRji (Z)

)
,
(
FVji (Z) ,FRji (Z)

)〉
| Z ∈ g

}
,

for each element Z in the set g, the memberships of Z beneath the SVNZN a have been

classified into truth
(
TVji ,TRji

)
: g → φ, indeterminacy

(
IVji , IRji

)
: g → φ, and falsity(

FVji ,FRji

)
: g → φ categories, each associated with a specific degree. These degrees are

M. Kamran, N. S, M. S Hameed, S. K. Khan, S. Broumi, Sine Trigonometric Aggregation
Operators with Single-Valued Neutrosophic Z-Numbers: Application in Business Site
Selection

Neutrosophic Sets and Systems, Vol. 63, 2024                                                                               292



represented by the unit interval φ = [0, 1]. Furthermore, it is essential to guarantee that

the sum of
(
TVji (Z) ,TRji (Z)

)
,
(
IVji (Z) , IRji (Z)

)
, and

(
FVji (Z) ,FRji (Z)

)
for each Z in g

remains within the range of 0 to 3.

In brief, the triplet a =
{(

TVji ,TRji

)
, (IV ji, IRji) ,

(
FVji ,FRji

)}
SVNZN in the entirety of the

attention and the ensemble of SVNZNs signified by SVNZN(g).

Definition 2.4. [35] In the context of a predetermined set g, SV NZN (g) set in a universe

set g is viewed as:

aZ = {〈Z, T (V, R) (Z) , I (V, R) (Z) , F (V, R) (Z)〉 | Z ∈ g} ,

where T (V, R) (Z) = (TV (Z) ,TR (Z)) , I (V, R) (Z) = (IV (Z) , IR (Z)) , F (V, R) (Z) =

(FV (Z) ,FR (Z)) : g → [0, 1]2 are the order pairs of truth, indeterminacy and fal-

sity membership, then the component R is neutrosophic measures of reliability for V,

along with the sum of TV (Z) , IV (Z) , FV (Z) remains within the range of 0 to 3, and

also sum of TR (Z) , IR (Z) , FR (Z) remains within the range of 0 to 3. The element

〈Z, T (V, R) (Z) , I (V, R) (Z) , F (V, R) (Z)〉 in aZ has been simplified for ease of depic-

tion referred as aZ = 〈T (V, R) , I (V, R) ,F (V, R)〉 = 〈(TV, TR) , (IV, IR) , (FV, FR)〉 ,
which is designated as SV NZN (g).

Definition 2.5. [35] Let a1 = {(TV1 ,TR1) , (IV1 , IR1), (FV1 ,FR1)} and a2 =

{(TV2 ,TR2) , (IV2 , IR2), (FV2 ,FR2)} ∈ SV NZN(g). then,

(1): a1 ⊆ a2 if and only if (TV1 ,TR1) ≤ (TV2 ,TR2) ,(IV1 , IR1) ≥ (IV2 , IR2) and

(FV1 ,FR1) ≥ (FV2 ,FR2) for each Z ∈ g.

(2): a1 = a2 if and only if a1 ⊆ a2 and a2 ⊆ a1.

(3): a1 ∩ a2 =

{
inf ((TV1 ,TR1) , (TV2 ,TR2)) , sup ((IV1 , IR1), (IV2 , IR2)) ,

sup ((FV1 ,FR1) , (FV2 ,FR2))

}
,

(4): a1 ∪ a2 =

{
sup ((TV1 ,TR1) , (TV2 ,TR2)) , inf ((IV1 , IR1), (IV2 , IR2)) ,

inf ((FV1 ,FR1) , (FV2 ,FR2))

}
,

(5): ac1 = {(FV1 ,FR1) , (IV1 , IR1), (TV1 ,TR1)}.

Definition 2.6. [35] Let a1 = {(TV1 ,TR1) , (IV1 , IR1), (FV1 ,FR1)} and a2 =

{(TV2 ,TR2) , (IV2 , IR2), (FV2 ,FR2)} ∈ SV NZN(g) with ξ > 0. then,

(1):

a1 ⊗ a2 =

{
(TV1 ,TR1) (TV2 ,TR2) , (IV1 , IR1) + (IV2 , IR2)− (IV1 , IR1) · (IV2 , IR2),

(FV1 ,FR1) + (FV2 ,FR2)− (FV1 ,FR1) · (FV2 ,FR2)

}
;

(2):

a1 ⊕ a2 =

{
(TV1 ,TR1) + (TV2 ,TR2)− (TV1 ,TR1) (TV2 ,TR2) , (IV1 , IR1)(IV2 , IR2),

(FV1 ,FR1) (FV2 ,FR2)

}
;
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(3):

(a1)ξ =
{

(TV1 ,TR1)ξ , 1− (1− (IV1 , IR1))ξ , 1− (1− (FV1 ,FR1))ξ
}

;

(4):

ξ · a1 =
{

1− (1− (TV1 ,TR1))ξ , (IV1 , IR1)ξ, (FV1 ,FR1)ξ
}

;

(5):

ξa1 =


(
ξ1−(TV1

,TR1), 1− ξ(IV1
,IR1), 1− ξ(FV1

,FR1)
)

if ξ ∈ (0, 1)((
1
ξ

)1−(TV1
,TR1)

, 1−
(

1
ξ

)(IV1
,IR1)

, 1−
(

1
ξ

)(FV1
,FR1)

)
if ξ ≥ 1


Definition 2.7. [35] Let aΞ = {(TVΞ

,TRΞ
) , (IVΞ

, IRΞ
), (FVΞ

,FRΞ
)} ∈ SV NZN (g)

(Ξ = 1, 2, 3, ..., n). Subsequently, the algebraic averaging AO associated with the set

SV NZN(g) is identified as SV NZNWA and outlined in the ensuing manner:

SV NZNWA (a1,a2,a3, ...,an) =
n∑

Ξ=1

ξΞaΞ,

=

{
1−

∏n
Ξ=1 (1− (TVΞ

,TRΞ
))ξΞ ,

∏n
Ξ=1 ((IVΞ

, IRΞ
))ξΞ ,∏n

Ξ=1 ((FVΞ
,FRΞ

))ξΞ

}
.

Here, ξΞ (where Ξ ranges from 1 to n) signifies the weights assigned to aΞ (where Ξ ranges

from 1 to n), with the stipulation that ξΞ is non-negative and the summation of all ξΞ values

equals 1.

Definition 2.8. [35] Let aΞ = {(TVΞ
,TRΞ

) , (IVΞ
, IRΞ

), (FVΞ
,FRΞ

)} ∈ SV NZN (g)

(Ξ = 1, 2, 3, ..., n). Subsequently, the algebraic geometric AO associated with the set

SV NZN(g) is identified as SV NZNWG and outlined in the ensuing manner:

SV NZNWG (a1,a2,a3, ...,an) =
n∏

Ξ=1

(aΞ)ξΞ ,

=

{ ∏n
Ξ=1 ((TVΞ

,TRΞ
))ξΞ , 1−

∏n
Ξ=1 (1− (IVΞ

, IRΞ
))ξΞ ,

1−
∏n

Ξ=1 (1− (FVΞ
,FRΞ

))ξΞ

}

Here, ξΞ (where Ξ ranges from 1 to n) signifies the weights assigned to aΞ (where Ξ ranges

from 1 to n), with the stipulation that ξΞ is non-negative and the summation of all ξΞ values

equals 1.

3. Novel Sine Trigonometric Operational Laws For SVNZNs

Within this portion, we introduce innovative principles that utilize the ST function within

SVNZN settings.
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Definition 3.1. Let a =
{(

TVji ,TRji

)
,
(
IVji , IRji

)
,
(
FVji ,FRji

)}
∈ SV NZN (g). Subse-

quently,ST operational laws (STOLs) for SVNZN a are outlined below:

sin (a) =

{(
Z, sin

(
Π
2

(
TVji (Z) ,TRji (Z)

))
, 1− sin

(
Π
2

(
1−

(
IVji (Z) , IRji (Z)

)))
,

1− sin
(

Π
2

(
1−

(
FVji (Z) ,FRji (Z)

))) )
|Z ∈ g

}
The fact that sin (a) also exhibits the SVNZN property is evident. It is evident that, for every

element Z within the set g, the values representing truth, indeterminacy, and falsity, denoted

as
(
TVji ,TRji

)
: g → φ,

(
IVji , IRji

)
: g → φ, and

(
FVji ,FRji

)
: g → φ respectively, pertain

to the SVNZN set a. Here, φ = [0, 1] designates the unit interval. Furthermore, it is essential

to guarantee that the sum of
(
TVji (Z) ,TRji (Z)

)
,
(
IVji (Z) , IRji (Z)

)
, and

(
FVji (Z) ,FRji (Z)

)
for each Z in g remains within the range of 0 to 3. Moreover, the membership degree of truth

sin

(
Π

2

(
TVji ,TRji

))
: g→ φ,

for each Z ∈ g→ sin

(
Π

2

(
TVji (Z) ,TRji (Z)

))
∈ [0, 1] ,

membership degree of indeterminacy

1− sin

(
Π

2

(
1−

(
IVji , IRji

)))
: g→ φ,

for each Z ∈ g→ 1− sin

(
Π

2

(
1−

(
IVji (Z) , IRji (Z)

)))
∈ [0, 1] ,

and membership degree of falsity

1− sin

(
Π

2

(
1−

(
FVji ,FRji

)))
: g→ φ,

for each Z ∈ g→ 1− sin

(
Π

2

(
1−

(
FVji (Z) ,FRji (Z)

)))
∈ [0, 1] .

As such,

sin (a) =

{(
Z, sin

(
Π
2

(
TVji (Z) ,TRji (Z)

))
, 1− sin

(
Π
2

(
1−

(
IVji (Z) , IRji (Z)

)))
,

1− sin
(

Π
2

(
1−

(
FVji (Z) ,FRji (Z)

))) )
|Z ∈ g

}
is SVNZN.

Definition 3.2. Let a =
{(

TVji ,TRji

)
,
(
IVji , IRji

)
,
(
FVji ,FRji

)}
∈ SV NZN (g). If

sin (a) =

{(
Z, sin

(
Π
2

(
TVji (Z) ,TRji (Z)

))
, 1− sin

(
Π
2

(
1−

(
IVji (Z) , IRji (Z)

)))
,

1− sin
(

Π
2

(
1−

(
FVji (Z) ,FRji (Z)

))) )
|Z ∈ g

}
Subsequently, the function sin(a) is referred to as the ST operator, and the outcome of sin(a)

is termed the ST-SVNZN (STSVNZN).

Theorem 3.3. Let a =
{(

TVji ,TRji

)
,
(
IVji , IRji

)
,
(
FVji ,FRji

)}
∈ SV NZN (g). Then, the

result yielded by the operator sin(a) possesses the SVNZN property.
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Proof. As a =
{(

TVji ,TRji

)
,
(
IVji , IRji

)
,
(
FVji ,FRji

)}
, that is, 0 ≤

(
TVji ,TRji

)
≤ 1,

0 ≤
(
IVji , IRji

)
≤ 1 and 0 ≤

(
FVji ,FRji

)
≤ 1. Moreover,

(
TVji (Z) ,TRji (Z)

)
+(

IVji (Z) , IRji (Z)
)

+
(
FVji (Z) ,FRji (Z)

)
≤ 3, for every Z ∈ g. In order to demonstrate

that sin(a) holds the SVNZN characteristic, two essential conditions are considered:

(1): sin
(

Π
2

(
TVji ,TRji

))
,1−sin

(
Π
2

(
1−

(
IVji , IRji

)))
and 1−sin

(
Π
2

(
1−

(
FVji ,FRji

)))
∈

[0, 1]

(2): sin
(

Π
2

(
TVji ,TRji

))
+1−sin

(
Π
2

(
1−

(
IVji , IRji

)))
+ 1−sin

(
Π
2

(
1−

(
FVji ,FRji

)))
≤

3.

As 0 ≤
(
TVji ,TRji

)
≤ 1 this leads to the inference that 0 ≤ Π

2

(
TVji ,TRji

)
≤ Π

2 . Addition-

ally, it’s important to note that the function “sin” is monotonically increasing within the first

quadrant; therefore, we have 0 ≤ sin
(

Π
2

(
TVji ,TRji

))
≤ 1.

As 0 ≤
(
IVji , IRji

)
≤ 1 this leads to the inference that 0 ≤ Π

2

(
1−

(
IVji , IRji

))
≤ Π

2 ,

⇒ 0 ≤ sin
(

Π
2

(
1−

(
IVji , IRji

)))
≤ 1. Consequently, we obtain 0 ≤ 1 −

sin
(

Π
2

(
1−

(
IVji , IRji

)))
≤ 1.

Likewise, we acquire 0 ≤ 1− sin
(

Π
2

(
1−

(
FVji ,FRji

)))
≤ 1. Hence, part (1) is established.

As a ∈ SV NZN (g)⇒ 0 ≤
(
TVji ,TRji

)
,
(
IVji , IRji

)
,
(
FVji ,FRji

)
≤ 1, and(

TVji (Z) ,TRji (Z)
)

+
(
IVji (Z) , IRji (Z)

)
+
(
FVji (Z) ,FRji (Z)

)
≤ 3, for every Z ∈ g.

Subsequently, (1) indicates that 0 ≤ sin
(

Π
2

(
TVji ,TRji

))
, 1 − sin

(
Π
2

(
1−

(
IVji , IRji

)))
, 1 −

sin
(

Π
2

(
1−

(
FVji ,FRji

)))
≤ 1. Furthermore, as per Definition 3.1, we possess 0 ≤

sin
(

Π
2

(
TVji ,TRji

))
+ 1− sin

(
Π
2

(
1−

(
IVji , IRji

)))
+ 1− sin

(
Π
2

(
1−

(
FVji ,FRji

)))
≤ 3. Con-

sequently, it can be concluded that sin(a) exhibits the SVNZN property.

Definition 3.4. Let sin (a1) =


 sin

(
Π
2 (TV1 ,TR1)

)
,

1− sin
(

Π
2 (1− (IV1 , IR1))

)
,

1− sin
(

Π
2 (1− (FV1 ,FR1))

)

, and

sin (a2) =


 sin

(
Π
2 (TV2 ,TR2)

)
,

1− sin
(

Π
2 (1− (IV2 , IR2))

)
,

1− sin
(

Π
2 (1− (FV2 ,FR2))

)

 be two STSVNZNs. Then the operational

laws are as follows

(1):

sin (a1)
⊕

sin (a2) =

 1−
(
1− sin

(
Π
2 (TV1 ,TR1)

)) (
1− sin

(
Π
2 (TV2 ,TR2)

))
,(

1− sin
(

Π
2 (1− (IV1 , IR1))

)) (
1− sin

(
Π
2 (1− (IV2 , IR2))

))
,(

1− sin
(

Π
2 (1− (FV1 ,FR1))

)) (
1− sin

(
Π
2 (1− (FV2 ,FR2))

))
 ,

(2):

ψ · sin (a1) =

(
1−

(
1− sin

(
Π
2 (TV1 ,TR1)

))ψ
,
(
1− sin

(
Π
2 (1− (IV1 , IR1))

))ψ
,(

1− sin
(

Π
2 (1− (FV1 ,FR1))

))ψ
)
,
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(3):

sin (a1)
⊗

sin (a2) =

 sin
(

Π
2 (TV1 ,TR1)

)
sin
(

Π
2 (TV2 ,TR2)

)
,

1−
(
sin
(

Π
2 (1− (IV1 , IR1))

)) (
sin
(

Π
2 (1− (IV2 , IR2))

))
,

1−
(
sin
(

Π
2 (1− (FV1 ,FR1))

)) (
sin
(

Π
2 (1− (FV2 ,FR2))

))
 ,

(4):

(sin (a1))ψ =


(
sin
(

Π
2 (TV1 ,TR1)

))ψ
,

1−
(
sin
(

Π
2 (1− (IV1 , IR1))

))ψ
,

1−
(
sin
(

Π
2 (1− (FV1 ,FR1))

))ψ
 .

In order to make comparisons between the STSVNZNs, we have introduced the subsequent

definitions.

Definition 3.5. Consider a =
{(

TVji ,TRji

)
,
(
IVji , IRji

)
,
(
FVji ,FRji

)}
∈ SV NZN (g). In

this context, we symbolize and establish the partial score and accuracy this way:

(1): sc (a) =
(
TVji ,TRji

)
−
(
IVji , IRji

)
−
(
FVji ,FRji

)
, and

(2): ac (a) =
(
TVji ,TRji

)
+
(
IVji , IRji

)
+
(
FVji ,FRji

)
.

Definition 3.6. Let a1 = {(TV1 ,TR1) , (IV1 , IR1), (FV1 ,FR1)} and a2 =

{(TV2 ,TR2) , (IV2 , IR2), (FV2 ,FR2)} ∈ SV NZN(g). Then,

(1): If sc (a1) < sc (a2), it follows that a1 < a2.

(2): If sc (a1) > sc (a2), it follows that a1 > a2.

(3): If sc (a1) = sc (a2), then

(a): ac (a1) < ac (a2), it follows that a1 < a2,

(b): ac (a1) > ac (a2), it follows that a1 > a2,

(c): ac (a1) = ac (a2), it follows that a1 = a2.

To compare

SV NZNs WZi = 〈Ti (V, R) , Ii (V, R) , Fi (V, R)〉 = 〈(TVi ,TRi) , (IVi , IRi) , (FVi ,FRi)〉
(i = 1, 2), we introduce a score function:

Y (WZi) =
2 + TV iTRi − IV iIRi − FV iFRi

3

for Y (WZi) ∈ [0, 1], when Y (WZ1) ≥ Y (WZ2), this leads to the conclusion that the ranking

is WZ1 ≥WZ2 .

Example 3.7. Set two SV NZNs as WZ1 = 〈(0.9, 0.6) , (0.6, 0.8) , (0.7, 0.9)〉 and

WZ2 = 〈(0.8, 0.5) , (0.1, 0.4) , (0.3, 0.6)〉. By using score function, we have

Y (WZ1) =
(2 + 0.9× 0.6− 0.6× 0.8− 0.7× 0.9)

3
= 0.477

and

Y (WZ2) =
(2 + 0.8× 0.5− 0.1× 0.4− 0.3× 0.6)

3
= 0.727
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As Y (WZ1) < Y (WZ2), it follows that their ranking is WZ1 < WZ2 . Subsequently, we delve

into a discussion of fundamental properties of STSVNZNs built upon the introduced STOLs.

Theorem 3.8. Let a1 = {(TV1 ,TR1) , (IV1 , IR1), (FV1 ,FR1)} and a2 =

{(TV2 ,TR2) , (IV2 , IR2), (FV2 ,FR2)} ∈ SV NZN(g). Then,

(1): sin (a1)
⊕

sin (a2) = sin (a2)
⊕

sin (a1),

(2): sin (a1)
⊗

sin (a2) = sin (a2)
⊗

sin (a1).

Proof. This is evident directly from Definition 3.2.

Theorem 3.9. Let aΞ = {(TVΞ
,TRΞ

) , (IVΞ
, IRΞ

), (FVΞ
,FRΞ

)} ∈ SV NZN (g) (Ξ = 1, 2, 3).

Then,

(1): (sin (a1)
⊕

sin (a2))
⊕

sin (a3) = sin (a1)
⊕

(sin (a2)
⊕

sin (a3)),

(2): (sin (a1)
⊗

sin (a2))
⊗

sin (a3) = sin (a1)
⊗

(sin (a2)
⊗

sin (a3)).

Proof. This is evident directly from Definition 3.2.

Theorem 3.10. Let aΞ = {(TVΞ
,TRΞ

) , (IVΞ
, IRΞ

), (FVΞ
,FRΞ

)} ∈ SV NZN (g) (Ξ = 1, 2)

and ψ,ψ1, ψ2 > 0. Then,

(1): ψ (sin (a1)
⊕

sin (a2)) = ψ sin (a1)
⊕
ψ sin (a2),

(2): (sin (a1)
⊗

sin (a2))ψ = (sin (a1))ψ
⊗

(sin (a2))ψ,

(3): ψ1 sin (a1)
⊕
ψ2 sin (a1) = (ψ1 + ψ2) sin (a1),

(4): (sin (a1))ψ1
⊗

(sin (a1))ψ2 = (sin (a1))ψ1+ψ2,

(5):
(

(sin (a1))ψ1

)ψ2

= (sin (a1))ψ1.ψ2.

Proof.

Let aΞ = {(TVΞ
,TRΞ

) , (IVΞ
, IRΞ

), (FVΞ
,FRΞ

)} ∈ SV NZN (g) (Ξ = 1, 2) and ψ,ψ1, ψ2 > 0.

Then, by the Definition 3.2, we have sin (a1) =


 sin

(
Π
2 (TV1 ,TR1)

)
,

1− sin
(

Π
2 (1− (IV1 , IR1))

)
,

1− sin
(

Π
2 (1− (FV1 ,FR1))

)

 and

sin (a2) =


 sin

(
Π
2 (TV2 ,TR2)

)
,

1− sin
(

Π
2 (1− (IV2 , IR2))

)
,

1− sin
(

Π
2 (1− (FV2 ,FR2))

)

 be two STSVNZNs. Therefore, using the

STOLs for SVNZNs, we obtain

sin (a1)
⊕

sin (a2) =

 1−
(
1− sin

(
Π
2 (TV1 ,TR1)

)) (
1− sin

(
Π
2 (TV2 ,TR2)

))
,(

1− sin
(

Π
2 (1− (IV1 , IR1))

)) (
1− sin

(
Π
2 (1− (IV2 , IR2))

))
,(

1− sin
(

Π
2 (1− (FV1 ,FR1))

)) (
1− sin

(
Π
2 (1− (FV2 ,FR2))

))
 .
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(1): For any ψ > 0, the following holds

ψ
(

sin (a1)
⊕

sin (a2)
)

=


1−

(
1− sin

(
Π
2 (TV1 ,TR1)

))ψ (
1− sin

(
Π
2 (TV2 ,TR2)

))ψ
,((

1− sin
(

Π
2 (1− (IV1 , IR1))

)) (
1− sin

(
Π
2 (1− (IV2 , IR2))

)))ψ
,((

1− sin
(

Π
2 (1− (FV1 ,FR1))

)) (
1− sin

(
Π
2 (1− (FV2 ,FR2))

)))ψ


=

(
1−

(
1− sin

(
Π
2 (TV1 ,TR1)

))ψ
,
(
1− sin

(
Π
2 (1− (IV1 , IR1))

))ψ
,(

1− sin
(

Π
2 (1− (FV1 ,FR1))

))ψ
)

⊕(
1−

(
1− sin

(
Π
2 (TV2 ,TR2)

))ψ
,
(
1− sin

(
Π
2 (1− (IV2 , IR2))

))ψ
,(

1− sin
(

Π
2 (1− (FV2 ,FR2))

))ψ
)

= ψ sin (a1)
⊕

ψ sin (a2) .

(2): The proof follows a similar pattern as (1).

(3): For any ψ1, ψ2 > 0, we have

ψ1 sin (a1) =

(
1−

(
1− sin

(
Π
2 (TV1 ,TR1)

))ψ1
,
(
1− sin

(
Π
2 (1− (IV1 , IR1))

))ψ1
,(

1− sin
(

Π
2 (1− (FV1 ,FR1))

))ψ1

)
and

ψ2 sin (a1) =

(
1−

(
1− sin

(
Π
2 (TV1 ,TR1)

))ψ2
,
(
1− sin

(
Π
2 (1− (IV1 , IR1))

))ψ2
,(

1− sin
(

Π
2 (1− (FV1 ,FR1))

))ψ2

)
.

Thus, by STOLs for SVNZNs, we get

ψ1 sin (a1)
⊕

ψ2 sin (a1) =

(
1−

(
1− sin

(
Π
2 (TV1 ,TR1)

))ψ1
,
(
1− sin

(
Π
2 (1− (IV1 , IR1))

))ψ1
,(

1− sin
(

Π
2 (1− (FV1 ,FR1))

))ψ1

)
⊕(

1−
(
1− sin

(
Π
2 (TV1 ,TR1)

))ψ2
,
(
1− sin

(
Π
2 (1− (IV1 , IR1))

))ψ2
,(

1− sin
(

Π
2 (1− (FV1 ,FR1))

))ψ2

)

=

(
1−

(
1− sin

(
Π
2 (TV1 ,TR1)

))ψ1+ψ2
,
(
1− sin

(
Π
2 (1− (IV1 , IR1))

))ψ1+ψ2
,(

1− sin
(

Π
2 (1− (FV1 ,FR1))

))ψ1+ψ2

)
= (ψ1 + ψ2) sin (a1)

The proof of (4), and (5) is similarly as (3).

Theorem 3.11. Let aΞ = {(TVΞ
,TRΞ

) , (IVΞ
, IRΞ

), (FVΞ
,FRΞ

)} ∈ SV NZN (g) (Ξ = 1, 2)

such that (TV1 ,TR1) ≥ (TV2 ,TR2), (IV1 , IR1) ≤ (IV2 , IR2) and (FV1 ,FR1) ≤ (FV2 ,FR2).

Then sin (a1) ≥ sin (a2) .

Proof. For aΞ = {(TVΞ
,TRΞ

) , (IVΞ
, IRΞ

), (FVΞ
,FRΞ

)} ∈ SV NZN (g) (Ξ = 1, 2), we have

(TV1 ,TR1) ≥ (TV2 ,TR2). As “sin” is an increasing function in
[
0, Π

2

]
, thus we have

sin
(

Π
2 (TV1 ,TR1)

)
≥ sin

(
Π
2 (TV2 ,TR2)

)
. Similarly, we have (IV1 , IR1) ≤ (IV2 , IR2),
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which implies that 1 − (IV1 , IR1) ≥ 1 − (IV2 , IR2). Thus, sin
(

Π
2 (1− (IV1 , IR1))

)
≥

sin
(

Π
2 (1− (IV2 , IR2))

)
, which further implies that

1− sin

(
Π

2
(1− (IV1 , IR1))

)
≤ 1− sin

(
Π

2
(1− (IV2 , IR2))

)
and similarly we get

1− sin

(
Π

2
(1− (FV1 ,FR1))

)
≤ 1− sin

(
Π

2
(1− (FV2 ,FR2))

)
.

Therefore we get
 sin

(
Π
2 (TV1 ,TR1)

)
,

1− sin
(

Π
2 (1− (IV1 , IR1))

)
,

1− sin
(

Π
2 (1− (FV1 ,FR1))

)

 ≥


 sin

(
Π
2 (TV2 ,TR2)

)
,

1− sin
(

Π
2 (1− (IV2 , IR2))

)
,

1− sin
(

Π
2 (1− (FV2 ,FR2))

)

 .

Hence, according to Definition 3.2, it follows that sin (a1) ≥ sin (a2).

4. Novel Sine Trigonometric Aggregation Operators for SVNZNs

In this part, we present novel AOs that extend the suggested STOLs for SVNZNs. We

define the geometric AOs and weighted averaging that follow.

4.1. Sine Trigonometric Weighted Averaging AOs for SVNZNs

Definition 4.1. Let aΞ = {(TVΞ
(Z) ,TRΞ

(Z)) , (IVΞ
(Z) , IRΞ

(Z)), (FVΞ
(Z) ,FRΞ

(Z))} ∈
SV NZN (g) (Ξ = 1, 2, 3, ..., n). Subsequently, the ST weighted averaging AO for SV NZN(g)

known as ST-SVNZNWA is symbolized and outlined in the subsequent manner:

ST -SV NZNWA (a1,a2, ...an) = ξ1 sin (a1)
⊕

ξ2 sin (a2)
⊕

...
⊕

ξn sin (an)

=

n∑
Ξ=1

ξΞ sin (aΞ) .

Here, ξΞ (Ξ = 1, 2, ..., n) signifies the weights associated with aΞ (Ξ = 1, 2, 3, ..., n), where ξΞ ≥
0 and

∑n
Ξ=1 ξΞ = 1.

Theorem 4.2. Let aΞ = {(TVΞ
(Z) ,TRΞ

(Z)) , (IVΞ
(Z) , IRΞ

(Z)), (FVΞ
(Z) ,FRΞ

(Z))} ∈
SV NZN (g) (Ξ = 1, 2, 3, ..., n) and the WV of aΞ (Ξ = 1, 2, 3, ..., n) is represented by ξ =

(ξ1, ξ2, ..., ξn)T with the constraint
n∑

Ξ=1

ξΞ = 1. The ST-SVNZNWA operator is a mapping
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Gn −→ G that satisfies:

ST -SV NZNWA (a1,a2, ...an) =

n∑
Ξ=1

ξΞ sin (aΞ)

=


1−

n∏
Ξ=1

(
1− sin

(
Π
2 (TVΞ

,TRΞ
)
))ξΞ ,

n∏
Ξ=1

(
1− sin

(
Π
2 (1− (IVΞ

, IRΞ
))
))ξΞ ,

n∏
Ξ=1

(
1− sin

(
Π
2 (1− (FVΞ

,FRΞ
))
))ξΞ


Proof. We establish the proof of Theorem 4.2 by utilizing mathematical induction on n. For

each Ξ,

aΞ = {(TVΞ
(Z) ,TRΞ

(Z)) , (IVΞ
(Z) , IRΞ

(Z)), (FVΞ
(Z) ,FRΞ

(Z))} ∈ SV NZN (g), which sig-

nifies that

(TVΞ
,TRΞ

) , (IVΞ
, IRΞ

), (FVΞ
,FRΞ

) ∈ [0, 1] and (TVΞ
,TRΞ

) + (IVΞ
, IRΞ

) + (FVΞ
,FRΞ

) ≤ 3.

Subsequently, the subsequent stages of the mathematical induction process have been carried

out.

Step-1: For n = 2, we get ST -SV NZNWA (a1,a2) = ξ1 sin (a1)
⊕
ξ2 sin (a2) .

Since, by Definition 3.2, sin (a1) and sin (a2) are SVNZNs, it follows that

ξ1 sin (a1)
⊕
ξ2 sin (a2) is also an SVNZN. Furthermore, in the case of a1 and a2,

we have

ST -SV NZNWA (a1,a2) = ξ1 sin (a1)
⊕

ξ2 sin (a2)

=


1−

(
1− sin

(
Π
2 (TV1 ,TR1)

))ξ1
,(

1− sin
(

Π
2 (1− (IV1 , IR1))

))ξ1
,(

1− sin
(

Π
2 (1− (FV1 ,FR1))

))ξ1


⊕
1−

(
1− sin

(
Π
2 (TV2 ,TR2)

))ξ2
,(

1− sin
(

Π
2 (1− (IV2 , IR2))

))ξ2
,(

1− sin
(

Π
2 (1− (FV2 ,FR2))

))ξ2


=


1−

2∏
Ξ=1

(
1− sin

(
Π
2 (TVΞ

,TRΞ
)
))ξΞ ,

2∏
Ξ=1

(
1− sin

(
Π
2 (1− (IVΞ

, IRΞ
))
))ξΞ ,

2∏
Ξ=1

(
1− sin

(
Π
2 (1− (FVΞ

,FRΞ
))
))ξΞ

 (1)

Step-2: Assume that Equation (1) holds for n = κ. Consequently, we have:
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ST -SV NZNWA (a1,a2, ...aκ) =


1−

κ∏
Ξ=1

(
1− sin

(
Π
2 (TVΞ

,TRΞ
)
))ξΞ ,

κ∏
Ξ=1

(
1− sin

(
Π
2 (1− (IVΞ

, IRΞ
))
))ξΞ ,

κ∏
Ξ=1

(
1− sin

(
Π
2 (1− (FVΞ

,FRΞ
))
))ξΞ


Step-3: Our next objective is to demonstrate that Equation (1) holds for n = κ+ 1.

ST -SV NZNWA (a1,a2, ...aκ+1) =
κ∑

Ξ=1

ξΞ sin (aΞ)
⊕

ξκ+1 sin (aκ+1)

=


1−

κ∏
Ξ=1

(
1− sin

(
Π
2 (TVΞ

,TRΞ
)
))ξΞ ,

κ∏
Ξ=1

(
1− sin

(
Π
2 (1− (IVΞ

, IRΞ
))
))ξΞ ,

κ∏
Ξ=1

(
1− sin

(
Π
2 (1− (FVΞ

,FRΞ
))
))ξΞ


⊕

1−
(
1− sin

(
Π
2

(
TVκ+1 ,TRκ+1

)))ξκ+1
,(

1− sin
(

Π
2

(
1− (IVκ+1 , IRκ+1)

)))ξκ+1
,(

1− sin
(

Π
2

(
1−

(
FVκ+1 ,FRκ+1

))))ξκ+1



=


1−

κ+1∏
Ξ=1

(
1− sin

(
Π
2 (TVΞ

,TRΞ
)
))ξΞ ,

κ+1∏
Ξ=1

(
1− sin

(
Π
2 (1− (IVΞ

, IRΞ
))
))ξΞ ,

κ+1∏
Ξ=1

(
1− sin

(
Π
2 (1− (FVΞ

,FRΞ
))
))ξΞ


Specifically, for n = κ+ 1, we need to establish that Equation (1) remains valid. Hence, it can

be concluded that Equation (1) holds for all values of n.

Example 4.3. Suppose

a1 = {(0.22, 0.34) , (0.15, 0.57), (0.66, 0.18)} ,

a2 = {(0.17, 0.63) , (0.52, 0.31), (0.37, 0.28)} ,

a3 = {(0.71, 0.38) , (0.25, 0.42), (0.25, 0.67)} ,

and

a4 = {(0.32, 0.56) , (0.47, 0.23), (0.35, 0.41)}

are the SVNZNs with ξ = (0.245, 0.239, 0.254, 0.262)T is the WV. Initially, we determine the

ξΞ = sin
(

Π
2 (TVΞ

,TRΞ
)
)

we get

ξ1 = (0.3387, 0.5090) ; ξ2 = (0.2639, 0.8358)

ξ3 = (0.8980, 0.5621) ; ξ4 = (0.4818, 0.7705)
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As a result, we obtain

4∏
Ξ=1

(
1− sin

(
Π

2
(TVΞ

,TRΞ
)

))ξΞ
= (1− ξ1)0.245 × (1− ξ2)0.239 ×

(1− ξ3)0.254 × (1− ξ4)0.262

= (0.9036, 0.8401)× (0.9294, 0.6493)×

(0.5600, 0.8108)× (0.8418, 0.6800)

= (0.3959, 0.3007)

Similarly, if mΞ = sin
(

Π
2 (1− (IVΞ

, IRΞ
))
)
, we get

m1 = (0.9724, 0.6252) ;m2 = (0.6845, 0.8838)

m3 = (0.9239, 0.7902) ;m4 = (0.7396, 0.9354)

As a result, we obtain

4∏
Ξ=1

(
1− sin

(
Π

2
(1− (IVΞ

, IRΞ
))

))ξΞ
= (1−m1)0.245 × (1−m2)0.239 ×

(1−m3)0.254 × (1−m4)0.262

= (0.4150, 0.7863)× (0.7590, 0.5978)×

(0.5198, 0.6726)× (0.7029, 0.4878)

= (0.1151, 0.1542)

Similarly, if nΞ = sin
(

Π
2 (1− (FVΞ

,FRΞ
))
)
, we get

n1 = (0.5090, 0.9603) ;n2 = (0.8358, 0.9048)

n3 = (0.9239, 0.4955) ;n4 = (0.8526, 0.7997)

As a result, we obtain

4∏
Ξ=1

(
1− sin

(
Π

2
(1− (FVΞ

,FRΞ
))

))ξΞ
= (1− n1)0.245 × (1− n2)0.239 ×

(1− n3)0.254 × (1− n4)0.262

= (0.8401, 0.4536)× (0.6493, 0.5700)×

(0.5198, 0.8405)× (0.6055, 0.6562)

= (0.1717, 0.1426)

M. Kamran, N. S, M. S Hameed, S. K. Khan, S. Broumi, Sine Trigonometric Aggregation
Operators with Single-Valued Neutrosophic Z-Numbers: Application in Business Site
Selection

Neutrosophic Sets and Systems, Vol. 63, 2024                                                                               303



Therefore,

ST -SV NZNWA (a1,a2,a3,a4) =


1−

4∏
Ξ=1

(
1− sin

(
Π
2 (TVΞ

,TRΞ
)
))ξΞ ,

4∏
Ξ=1

(
1− sin

(
Π
2 (1− (IVΞ

, IRΞ
))
))ξΞ ,

4∏
Ξ=1

(
1− sin

(
Π
2 (1− (FVΞ

,FRΞ
))
))ξΞ


= (1− (0.3959, 0.3007) , (0.1151, 0.1542) , (0.1717, 0.1426))

= ((0.6041, 0.6993) , (0.1151, 0.1542) , (0.1717, 0.1426))

Moving forward, we outline a series of properties associated with the proposed ST-SVNZNWA

AO. Given that these AOs are rooted in the ST function, they exhibit attributes such as

idempotency, boundedness, monotonicity, and symmetry.

Theorem 4.4. (idempotency)

Let aΞ = {(TVΞ
(Z) ,TRΞ

(Z)) , (IVΞ
(Z) , IRΞ

(Z)), (FVΞ
(Z) ,FRΞ

(Z))} belong

to SV NZN (g) (Ξ = 1, 2, 3, ..., n) where aΞ = a. Then ST -SV NZNWA (a1,a2, ...,an) =

sin (a) .

Proof. Since aΞ = a (Ξ = 1, 2, 3, ..., n), we can apply Theorem 4.2 to deduce:

ST -SV NZNWA (a1,a2, ...,an) =


1−

n∏
Ξ=1

(
1− sin

(
Π
2 (TVΞ

,TRΞ
)
))ξΞ ,

n∏
Ξ=1

(
1− sin

(
Π
2 (1− (IVΞ

, IRΞ
))
))ξΞ ,

n∏
Ξ=1

(
1− sin

(
Π
2 (1− (FVΞ

,FRΞ
))
))ξΞ



=


1−

n∏
Ξ=1

(
1− sin

(
Π
2

(
TVji ,TRji

)))ξΞ ,
n∏

Ξ=1

(
1− sin

(
Π
2

(
1− (IVji , IRji)

)))ξΞ ,
n∏

Ξ=1

(
1− sin

(
Π
2

(
1−

(
FVji ,FRji

))))ξΞ



=


1−

(
1− sin

(
Π
2

(
TVji ,TRji

)))∑n
Ξ=1 ξΞ ,(

1− sin
(

Π
2

(
1− (IVji , IRji)

)))∑n
Ξ=1 ξΞ

,(
1− sin

(
Π
2

(
1−

(
FVji ,FRji

))))∑n
Ξ=1 ξΞ


=

(
sin
(

Π
2

(
TVji ,TRji

))
, 1− sin

(
Π
2

(
1− (IVji , IRji)

))
,

1− sin
(

Π
2

(
1−

(
FVji ,FRji

))) )
= sin (a)
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Theorem 4.5. (Boundedness)

Let aΞ = {(TVΞ
(Z) ,TRΞ

(Z)) , (IVΞ
(Z) , IRΞ

(Z)), (FVΞ
(Z) ,FRΞ

(Z))},
a−Ξ = {min ((TVΞ

(Z) ,TRΞ
(Z))) ,max ((IVΞ

(Z) , IRΞ
(Z))) ,max ((FVΞ

(Z) ,FRΞ
(Z)))} and

a+
Ξ = {max ((TVΞ

(Z) ,TRΞ
(Z))) ,min ((IVΞ

(Z) , IRΞ
(Z))) ,min ((FVΞ

(Z) ,FRΞ
(Z)))} ∈

SV NZN (g) (Ξ = 1, 2, 3, ..., n). Then, sin
(
a−Ξ
)
≤ ST -SV NZNWA (a1,a2, ...,an) ≤

sin
(
a+

Ξ

)
.

Proof. For any value of Ξ, minΞ ((TVΞ
,TRΞ

)) ≤ (TVΞ
,TRΞ

) ≤ minΞ ((TVΞ
,TRΞ

)),

minΞ ((IVΞ
, IRΞ

)) ≤ (IVΞ
, IRΞ

) ≤ minΞ ((IVΞ
, IRΞ

)) and minΞ ((FVΞ
,FRΞ

)) ≤
(FVΞ

,FRΞ
) ≤ minΞ ((FVΞ

,FRΞ
)). This implies that a−Ξ ≤ aΞ ≤ a+

Ξ . Suppose that

ST -SV NZNWA (a1,a2, ...an) = sin (aΞ) = {(TVΞ
,TRΞ

) , (IVΞ
, IRΞ

), (FVΞ
,FRΞ

)},
sin
(
a−Ξ
)

=
{

(TVΞ
,TRΞ

)− , (IVΞ
, IRΞ

)−, (FVΞ
,FRΞ

)−
}

and sin
(
a+

Ξ

)
=
{

(TVΞ
,TRΞ

)+ , (IVΞ
, IRΞ

)+, (FVΞ
,FRΞ

)+}. Then, leveraging the monotonic

nature of the sine function, we observe that

(TVΞ
,TRΞ

) = 1−
n∏

Ξ=1

(
1− sin

(
Π

2
(TVΞ

,TRΞ
)

))ξΞ
≥ 1−

n∏
Ξ=1

(
1− sin

(
Π

2
minΞ ((TVΞ

,TRΞ
))

))ξΞ
= sin

(
Π

2
minΞ ((TVΞ

,TRΞ
))

)
= (TVΞ

,TRΞ
)−

and,

(IVΞ
, IRΞ

) =
n∏

Ξ=1

(
1− sin

(
Π

2
(1− (IVΞ

, IRΞ
))

))ξΞ
≥

n∏
Ξ=1

(
1− sin

(
Π

2
(1− (minΞ(IVΞ

, IRΞ
)))

))ξΞ
= 1− sin

(
Π

2
(1− (minΞ(IVΞ

, IRΞ
)))

)
= (IVΞ

, IRΞ
)−

Similarly,

(FVΞ
,FRΞ

) =
n∏

Ξ=1

(
1− sin

(
Π

2
(1− (FVΞ

,FRΞ
))

))ξΞ
≥

n∏
Ξ=1

(
1− sin

(
Π

2
(1− (minΞ (FVΞ

,FRΞ
)))

))ξΞ
= 1− sin

(
Π

2
(1− (minΞ (FVΞ

,FRΞ
)))

)
= (FVΞ

,FRΞ
)−
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Also, we have

(TVΞ
,TRΞ

) = 1−
n∏

Ξ=1

(
1− sin

(
Π

2
(TVΞ

,TRΞ
)

))ξΞ
≤ 1−

n∏
Ξ=1

(
1− sin

(
Π

2
maxΞ ((TVΞ

,TRΞ
))

))ξΞ
= sin

(
Π

2
maxΞ ((TVΞ

,TRΞ
))

)
= (TVΞ

,TRΞ
)+

and

(IVΞ
, IRΞ

) =
n∏

Ξ=1

(
1− sin

(
Π

2
(1− (IVΞ

, IRΞ
))

))ξΞ
≤

n∏
Ξ=1

(
1− sin

(
Π

2
(1− (maxΞ(IVΞ

, IRΞ
)))

))ξΞ
= 1− sin

(
Π

2
(1− (maxΞ(IVΞ

, IRΞ
)))

)
= (IVΞ

, IRΞ
)+

Similarly,

(FVΞ
,FRΞ

) =
n∏

Ξ=1

(
1− sin

(
Π

2
(1− (FVΞ

,FRΞ
))

))ξΞ
≤

n∏
Ξ=1

(
1− sin

(
Π

2
(1− (maxΞ (FVΞ

,FRΞ
)))

))ξΞ
= 1− sin

(
Π

2
(1− (maxΞ (FVΞ

,FRΞ
)))

)
= (FVΞ

,FRΞ
)+

Based on the score function, we get

sc (sin (aΞ)) = (TVΞ
,TRΞ

)− (IVΞ
, IRΞ

)− (FVΞ
,FRΞ

)

≤ (TVΞ
,TRΞ

)+ − (IVΞ
, IRΞ

)− − (FVΞ
,FRΞ

)− = sc
(
sin
(
a+

Ξ

))
and

sc (sin (aΞ)) = (TVΞ
,TRΞ

)− (IVΞ
, IRΞ

)− (FVΞ
,FRΞ

)

≥ (TVΞ
,TRΞ

)− − (IVΞ
, IRΞ

)+ − (FVΞ
,FRΞ

)+ = sc
(
sin
(
a−Ξ
))

Thus, we have sc
(
sin
(
a−Ξ
))
≤ sc (sin (aΞ)) ≤ sc

(
sin
(
a+

Ξ

))
. We will now delve into a

discussion of the three cases:

(Case-1): If sc
(
sin
(
a−Ξ
))
< sc (sin (aΞ)) < sc

(
sin
(
a+

Ξ

))
, then the conclusion remains

valid.
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(Case-2): If sc
(
sin
(
a+

Ξ

))
= sc (sin (aΞ)), then we have: (TVΞ

,TRΞ
)+ − (IVΞ

, IRΞ
)+ −

(FVΞ
,FRΞ

)+ = (TVΞ
,TRΞ

)−(IVΞ
, IRΞ

)−(FVΞ
,FRΞ

). This implies that (TVΞ
,TRΞ

)+ =

(TVΞ
,TRΞ

), (IVΞ
, IRΞ

)+ = (IVΞ
, IRΞ

), and (FVΞ
,FRΞ

)+ = (FVΞ
,FRΞ

). Consequently,

ac (sin (aΞ)) = ac
(
sin
(
a+

Ξ

))
.

(Case-3): If sc (sin (aΞ)) = sc
(
sin
(
a−Ξ
))

, then we have: (TVΞ
,TRΞ

) − (IVΞ
, IRΞ

) −
(FVΞ

,FRΞ
) = (TVΞ

,TRΞ
)− − (IVΞ

, IRΞ
)− − (FVΞ

,FRΞ
)−. This implies that

(TVΞ
,TRΞ

) = (TVΞ
,TRΞ

)−, (IVΞ
, IRΞ

) = (IVΞ
, IRΞ

)−, and (FVΞ
,FRΞ

) = (FVΞ
,FRΞ

)−.

Consequently, ac (sin (aΞ)) = ac
(
sin
(
a−Ξ
))

. Therefore, we ultimately establish

sin
(
a−Ξ
)
≤ ST -SV NZNWA (a1,a2, ...,an) ≤ sin

(
a+

Ξ

)
.

Theorem 4.6. (Monotonically)

Let aΞ = {(TVΞ (Z) ,TRΞ
(Z)) , (IVΞ

(Z) , IRΞ
(Z)), (FVΞ

(Z) ,FRΞ
(Z))}

and aΞ∗ = {(TVΞ (Z) ,TRΞ
(Z))∗ , (IVΞ

(Z) , IRΞ
(Z))∗, (FVΞ

(Z) ,FRΞ
(Z))∗} ∈ SV NZN (g)

(Ξ = 1, 2, 3, ..., n). If (TVΞ
,TRΞ

) ≤ (TVΞ
,TRΞ

)∗, (IVΞ
, IRΞ

) ≤ (IVΞ
, IRΞ

)∗, and (FVΞ
,FRΞ

) ≤
(FVΞ

,FRΞ
)∗, then:

ST -SV NZNWA (a1,a2, ...,an) ≤ ST -SV NZNWA (a∗1,a∗2, ...,a∗n) .

Proof. Indeed, this conclusion is a direct consequence of Theorem 4.5, and as such, it is not

necessary to elaborate further on this point.

Theorem 4.7. (Symmetric)

Let aΞ = {(TVΞ (Z) ,TRΞ
(Z)) , (IVΞ

(Z) , IRΞ
(Z)), (FVΞ

(Z) ,FRΞ
(Z))}

and aΞ∗ = {(TVΞ (Z) ,TRΞ
(Z))∗ , (IVΞ

(Z) , IRΞ
(Z))∗, (FVΞ

(Z) ,FRΞ
(Z))∗} ∈ SV NZN (g)

(Ξ = 1, 2, 3, ..., n).

Then, we have: ST -SV NZNWA (a1,a2, ...,an) = ST − SV NZNWA (a∗1,a∗2, ...,a∗n), when-

ever a∗Ξ (Ξ = 1, 2, 3, ..., n) is any version of aΞ (Ξ = 1, 2, 3, ..., n).

Proof. Indeed, this conclusion is a direct consequence of Theorem 4.5, and as such, it is not

necessary to elaborate further on this point.

4.2. Sine Trigonometric Weighted Geometric AOs for SVNZNs

Definition 4.8. Let aΞ = {(TVΞ
(Z) ,TRΞ

(Z)) , (IVΞ
(Z) , IRΞ

(Z)), (FVΞ
(Z) ,FRΞ

(Z))} ∈
SV NZN (g) (Ξ = 1, 2, 3, ..., n). Then, the ST-SVNZNWG operator for SV NZN(g) is des-

ignated as the ST weighted geometric AO, and defined in the following manner:

ST -SV NZNWG (a1,a2, ...,an) = (sin (a1))ξ1
⊗

(sin (a2))ξ2
⊗

...
⊗

(sin (an))ξn

=

n∏
Ξ=1

(sin (aΞ))ξΞ .

M. Kamran, N. S, M. S Hameed, S. K. Khan, S. Broumi, Sine Trigonometric Aggregation
Operators with Single-Valued Neutrosophic Z-Numbers: Application in Business Site
Selection

Neutrosophic Sets and Systems, Vol. 63, 2024                                                                               307



Here, ξΞ (Ξ = 1, 2, ..., n) denotes the weights assigned to aΞ (Ξ = 1, 2, 3, ..., n), where ξΞ ≥ 0

and the summation over all Ξ values is constrained to be equal to 1.

Theorem

4.9. Assume that aΞ = {(TVΞ (Z) ,TRΞ
(Z)) , (IVΞ

(Z) , IRΞ
(Z)), (FVΞ

(Z) ,FRΞ
(Z))} ∈

SV NZN (g) for (Ξ = 1, 2, 3, ..., n). Additionally, the weight vector (WV) associated with each

aΞ (Ξ = 1, 2, 3, ..., n) is denoted by ξ = (ξ1, ξ2, ..., ξn)T, with the requirement that
n∑

Ξ=1

ξΞ = 1.

The ST-SVNZNWG operator is then a function mapping Gn to G, defined as follows:

ST -SV NZNWG (a1,a2, ...,an) =
n∏

Ξ=1

(sin (aΞ))ξΞ

=


∏n

Ξ=1

(
sin
(

Π
2 (TVΞ

,TRΞ
)
))ξΞ ,

1−
∏n

Ξ=1

(
sin
(

Π
2 (1− (IVΞ

, IRΞ
))
))ξΞ ,

1−
∏n

Ξ=1

(
sin
(

Π
2 (1− (FVΞ

,FRΞ
))
))ξΞ

 (2)

Proof. We establish the proof for Theorem 4.9 through mathematical induction based on n.

For each value of Ξ, aΞ = {(TVΞ (Z) ,TRΞ
(Z)) , (IVΞ

(Z) , IRΞ
(Z)), (FVΞ

(Z) ,FRΞ
(Z))} ∈

SV NZN (g). This implies that (TVΞ
,TRΞ

) , (IVΞ
, IRΞ

), (FVΞ
,FRΞ

) ∈ [0, 1] and (TVΞ
,TRΞ

) +

(IVΞ
, IRΞ

) + (FVΞ
,FRΞ

) ≤ 3. Following this, we proceed with the steps of mathematical

induction.

Step-1: When n = 2, then the equation becomes as: ST -SV NZNWG (a1,a2) =

(sin (a1))ξ1
⊗

(sin (a2))ξ2 . Since according to Definition 3.2, we know that sin (a1)

and sin (a2) are both SVNZNs, hence, it follows that (sin (a1))ξ1
⊗

(sin (a2))ξ2 also

exhibits the properties of SVNZN. Moving forward, when considering a1 and a2, we

observe that

ST -SV NZNWG (a1,a2) = (sin (a1))ξ1
⊗

(sin (a2))ξ2

=


(
sin
(

Π
2 (TV1 ,TR1)

))ξ1
,

1−
(
sin
(

Π
2 (1− (IV1 , IR1))

))ξ1
,

1−
(
sin
(

Π
2 (1− (FV1 ,FR1))

))ξ1


⊗
(
sin
(

Π
2 (TV2 ,TR2)

))ξ2
,

1−
(
sin
(

Π
2 (1− (IV2 , IR2))

))ξ2
,

1−
(
sin
(

Π
2 (1− (FV2 ,FR2))

))ξ2


=


∏2

Ξ=1

(
sin
(

Π
2 (TVΞ

,TRΞ
)
))ξΞ ,

1−
∏2

Ξ=1

(
sin
(

Π
2 (1− (IVΞ

, IRΞ
))
))ξΞ ,

1−
∏2

Ξ=1

(
sin
(

Π
2 (1− (FVΞ

,FRΞ
))
))ξΞ


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Step-2: Assuming that Equation (2) holds for n = κ, we can then conclude:

ST -SV NZNWG (a1,a2, ...,aκ) =


∏κ

Ξ=1

(
sin
(

Π
2 (TVΞ

,TRΞ
)
))ξΞ ,

1−
∏κ

Ξ=1

(
sin
(

Π
2 (1− (IVΞ

, IRΞ
))
))ξΞ ,

1−
∏κ

Ξ=1

(
sin
(

Π
2 (1− (FVΞ

,FRΞ
))
))ξΞ


Step-3: Our next step is to demonstrate the validity of Equation (2) for n = κ+ 1.

ST -SV NZNWG (a1,a2, ...,aκ+1) =
κ∏

Ξ=1

(sin (aΞ))ξΞ
⊗

(sin (aκ+1))ξκ+1

=


∏κ

Ξ=1

(
sin
(

Π
2 (TVΞ

,TRΞ
)
))ξΞ ,

1−
∏κ

Ξ=1

(
sin
(

Π
2 (1− (IVΞ

, IRΞ
))
))ξΞ ,

1−
∏κ

Ξ=1

(
sin
(

Π
2 (1− (FVΞ

,FRΞ
))
))ξΞ


⊗

(
sin
(

Π
2

(
TVκ+1 ,TRκ+1

)))ξκ+1
,

1−
(
sin
(

Π
2

(
1−

(
IVκ+1 , IRκ+1

))))ξκ+1
,

1−
(
sin
(

Π
2

(
1−

(
FVκ+1 ,FRκ+1

))))ξκ+1



=


∏κ+1

Ξ=1

(
sin
(

Π
2 (TVΞ

,TRΞ
)
))ξΞ ,

1−
∏κ+1

Ξ=1

(
sin
(

Π
2 (1− (IVΞ

, IRΞ
))
))ξΞ ,

1−
∏κ+1

Ξ=1

(
sin
(

Π
2 (1− (FVΞ

,FRΞ
))
))ξΞ


In other words, Equation (2) holds true when n = κ+ 1.

Consequently, we can conclude that Equation (2) holds for all values of n.

Theorem 4.10. (idempotency)

Let aΞ = {(TVΞ
(Z) ,TRΞ

(Z)) , (IVΞ
(Z) , IRΞ

(Z)), (FVΞ
(Z) ,FRΞ

(Z))} ∈ SV NZN (g)

(Ξ = 1, 2, 3, ..., n) such that aΞ = a. Then, ST -SV NZNWG (a1,a2, ...,an) = sin (a) .

Theorem 4.11. (Boundedness)

Let aΞ = {(TVΞ
(Z) ,TRΞ

(Z)) , (IVΞ
(Z) , IRΞ

(Z)), (FVΞ
(Z) ,FRΞ

(Z))},
a−Ξ = {min ((TVΞ

(Z) ,TRΞ
(Z))) ,max ((IVΞ

(Z) , IRΞ
(Z))) ,max ((FVΞ

(Z) ,FRΞ
(Z)))} and

a+
Ξ = {max ((TVΞ

(Z) ,TRΞ
(Z))) ,min ((IVΞ

(Z) , IRΞ
(Z))) ,min ((FVΞ

(Z) ,FRΞ
(Z)))} ∈

SV NZN (g)

(Ξ = 1, 2, 3, ..., n). Then, sin
(
a−Ξ
)
≤ ST -SV NZNWG (a1,a2, ...,an) ≤ sin

(
a+

Ξ

)
.

Theorem 4.12. (Monotonically)

Let aΞ = {(TVΞ
(Z) ,TRΞ

(Z)) , (IVΞ
(Z) , IRΞ

(Z)), (FVΞ
(Z) ,FRΞ

(Z))},
a∗Ξ = {(TVΞ

(Z) ,TRΞ
(Z))∗ , (IVΞ

(Z) , IRΞ
(Z))∗, (FVΞ

(Z) ,FRΞ
(Z))∗} ∈ SV NZN (g)

(Ξ = 1, 2, 3, ..., n).

If (TVΞ
,TRΞ

) ≤ (TVΞ
,TRΞ

)∗, (IVΞ
, IRΞ

) ≤ (IVΞ
, IRΞ

)∗ and (FVΞ
,FRΞ

) ≤ (FVΞ
,FRΞ

)∗, then

ST -SV NZNWG (a1,a2, ...,an) ≤ ST -SV NZNWG (a∗1,a∗2, ...,a∗n) .
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Theorem 4.13. (Symmetric)

Let aΞ = {(TVΞ
(Z) ,TRΞ

(Z)) , (IVΞ
(Z) , IRΞ

(Z)), (FVΞ
(Z) ,FRΞ

(Z))},
a∗Ξ = {(TVΞ

(Z) ,TRΞ
(Z))∗ , (IVΞ

(Z) , IRΞ
(Z))∗, (FVΞ

(Z) ,FRΞ
(Z))∗} ∈ SV NZN (g)

(Ξ = 1, 2, 3, ..., n). Then ST -SV NZNWG (a1,a2, ...,an) = ST -SV NZNWG (a∗1,a∗2, ...,a∗n) ,

whenever a∗Ξ (Ξ = 1, 2, 3, ..., n) is any of aΞ (Ξ = 1, 2, 3, ..., n).

Proof. Proofs of the above theorems, Theorem 4.10–4.13 follow from Theorems 4.4–4.7 likewise.

4.3. Fundamental Properties of the Proposed AOs for SVNZNs

In this section, we have delved into different connections among the suggested AOs and

analyzed some of their essential characteristics.

Theorem 4.14. Let aΞ = {(TVΞ
(Z) ,TRΞ

(Z)) , (IVΞ
(Z) , IRΞ

(Z)), (FVΞ
(Z) ,FRΞ

(Z))} ∈
SV NZN (g) (Ξ = 1, 2). Then,

sin (a1)
⊕

sin (a2) ≥ sin (a1)
⊗

sin (a2) .

Proof. Given that aΞ ∈ SV NZN (g) (Ξ = 1, 2), we can apply Definition 3.4 to obtain:

sin (a1)
⊕

sin (a2) =

 1−
(
1− sin

(
Π
2 (TV1 ,TR1)

)) (
1− sin

(
Π
2 (TV2 ,TR2)

))
,(

1− sin
(

Π
2 (1− (IV1 , IR1))

)) (
1− sin

(
Π
2 (1− (IV2 , IR2))

))
,(

1− sin
(

Π
2 (1− (FV1 ,FR1))

)) (
1− sin

(
Π
2 (1− (FV2 ,FR2))

))


and

sin (a1)
⊗

sin (a2) =

 sin
(

Π
2 (TV1 ,TR1)

)
sin
(

Π
2 (TV2 ,TR2)

)
,

1−
(
sin
(

Π
2 (1− (IV1 , IR1))

)) (
sin
(

Π
2 (1− (IV2 , IR2))

))
,

1−
(
sin
(

Π
2 (1− (FV1 ,FR1))

)) (
sin
(

Π
2 (1− (FV2 ,FR2))

))


For any pair of non-negative real numbers ξ and m, we know that their arithmetic mean is

greater than or equal to their geometric mean, expressed as ξ+m
2 ≥

√
lm. This inequality can

be rearranged as ξ +m− 2
√
lm ≥ 0, which further simplifies to 1−

√
1− ξ

√
1−m ≥ lm.

Hence, by considering ξ = sin
(

Π
2 (TV1 ,TR1)

)
and m = sin

(
Π
2 (TV2 ,TR2)

)
, we obtain

1 −
(
1− sin

(
Π
2 (TV1 ,TR1)

)) (
1− sin

(
Π
2 (TV2 ,TR2)

))
≥ sin

(
Π
2 (TV1 ,TR1)

)
sin
(

Π
2 (TV2 ,TR2)

)
,

which leads to

1 −
(
1− sin

(
Π
2 (TV1 ,TR1)

)) (
1− sin

(
Π
2 (TV2 ,TR2)

))
≥ sin

(
Π
2 (TV1 ,TR1)

)
sin
(

Π
2 (TV2 ,TR2)

)
.

Likewise, we obtain(
1− sin

(
Π
2 (1− (IV1 , IR1))

)) (
1− sin

(
Π
2 (1− (IV2 , IR2))

))
≤

1−
(
sin
(

Π
2 (1− (IV1 , IR1))

)) (
sin
(

Π
2 (1− (IV2 , IR2))

))
and
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(
1− sin

(
Π
2 (1− (FV1 ,FR1))

)) (
1− sin

(
Π
2 (1− (FV2 ,FR2))

))
≤

1−
(
sin
(

Π
2 (1− (FV1 ,FR1))

)) (
sin
(

Π
2 (1− (FV2 ,FR2))

))
. Therefore,

sin (a1)
⊕

sin (a2) ≥ sin (a1)
⊗

sin (a2) .

Theorem 4.15. Let a =
{(

TVji (Z) ,TRji (Z)
)
,
(
IVji (Z) , IRji (Z)

)
,
(
FVji (Z) ,FRji (Z)

)}
∈

SV NZN (g) and ψ ≥ 0 be any real number, then

(1): ψ sin (a) ≥ (sin (a))ψ if and only if ψ ≥ 1,

(2): ψ sin (a) ≤ (sin (a))ψ if and only if 0 < ψ ≤ 1.

Proof. This can be deduced from Theorem 4.14 in a similar manner.

Lemma 4.16. For ξΞ ≥ 0 and mΞ ≥ 0, then we have
∏n

Ξ=1 (ξΞ)mΞ ≤
∑n

Ξ=1mΞξΞ and if

ξ1 = ξ2 = ... = ξn then equality holds.

Lemma 4.17. Let 0 ≤ ξ, m ≤ 1, and 0 ≤ x ≤ 1, then 0 ≤ lx+m (1− x) ≤ 1.

Lemma 4.18. Let 0 ≤ ξ, m ≤ 1, then
√

1− (1− ξ2) (1−m2) ≥ lm.

Theorem 4.19. Let aΞ = {(TVΞ
(Z) ,TRΞ

(Z)) , (IVΞ
(Z) , IRΞ

(Z)), (FVΞ
(Z) ,FRΞ

(Z))} ∈
SV NZN (g) (Ξ = 1, 2, 3, ..., n). Then,

ST -SV NZNWA (a1,a2, ...,an) ≥ ST -SV NZNWG (a1,a2, ...,an) ,

where equality holds if and only if a1 = a2 = ... = an.

Proof. Likewise, it derives from Theorem 4.14.

5. Decision-Making Strategy

This section presents a DM methodology, along with an illustrative example, designed to

address DMPs in the context of the SVNZN framework. Aspects related to multi-attribute

DM (MADM) can be effectively showcased through the utilization of a decision matrix struc-

ture, where columns signify attributes and rows pertain to alternatives. For a given decision

matrix Dn×m, we consider a set of n alternatives: {g1,g2,g3, ...,gn}, and m attributes:

{t1, t2, t3, ..., tm}. The undetermined WV associated with the m attributes is signified as W =

{κ1, κ2, κ3, ..., κm}, subject to the constraint that ξΞ ∈ [0, 1] and
m∑

Ξ=1

ξΞ = 1. Let’s designate the

SVN decision matrix as D = (aji)n×m =
〈(
TVji ,TRji

)
,
(
IVji , IRji

)
,
(
FVji ,FRji

)〉
n×m, where(

TVji ,TRji

)
signifies the truth degree of the alternative satisfying the criteria tj assessed by

DMk,
(
IVji , IRji

)
represents the degree of the alternative’s indeterminacy with respect to
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the criteria tj evaluated by DMk, and
(
FVji ,FRji

)
denotes the degree of the alternative not

meeting the criteria tj considered by DMk. The algorithm encompasses the following steps:

Step-1: Compile the assessments of each alternative into the decision matrix D(k) =(
a(k)
ji

)
n×m

using the SVNZN information.

Step-2: Form the normalized decision matrix P = (pji) from D = (aji), where pji is

computed as follows:

pji =

{ ((
TVji ,TRji

)
,
(
IVji , IRji

)
,
(
FVji ,FRji

))
in case if the criteria are of the benefit type((

FVji ,FRji

)
,
(
IVji , IRji

)
,
(
TVji ,TRji

))
in case if the criteria are of the cost type

}
(3)

Step-3: Compute the collective information derived from DMk’s input using either the

SVNZNWA/SVNZNWG operator:

SV NZNWA (a1,a2, ...,an) =

{
1−

∏n
Ξ=1 (1− (TVΞ

,TRΞ
))ξΞ ,

∏n
Ξ=1 ((IVΞ

, IRΞ
))ξΞ ,∏n

Ξ=1 ((FVΞ
,FRΞ

))ξΞ

}
or

SV NZNWG (a1,a2, ...,an) =

{ ∏n
Ξ=1 ((TVΞ

,TRΞ
))ξΞ , 1−

∏n
Ξ=1 (1− (IVΞ

, IRΞ
))ξΞ ,

1−
∏n

Ξ=1 (1− (FVΞ
,FRΞ

))ξΞ

}
Step-4: If the attribute weights are pre-determined, they should be employed. However,

if they are not known, they can be calculated using the entropy measure concept. In

this context, the entropy-based information for criteria tj is determined as follows:

Ej (a) =
1(√

2− 1
)
m

m∑
i=1

[
sin
(

Π
4

(
1 +

(
TVji ,TRji

)
−
(
IVji , IRji

)
−
(
FVji ,FRji

)))
+

sin
(

Π
4

(
1−

(
TVji ,TRji

)
+
(
IVji , IRji

)
+
(
FVji ,FRji

)))
− 1

]
.

Here, the term 1

(
√

2−1)m
serves as a constant to ensure that 0 ≤ Ej (a) ≤ 1.

Step-5: By employing the suggested STAOs and attribute WV, the combined SVN in-

formation for each alternative within the set {g1,g2,g3, ...,gn} is acquired.

Step-6: Compute the score values sc (a) for the aggregated SVN numbers and arrange

them in descending order of their score values. If two sets a1 and a2 yield identical

score values, proceed to determine the accuracy degrees ac (a1) and ac (a2) for each

set respectively. Subsequently, rank a1 and a2 based on the highest accuracy degree.

Step-7: Choose the optimal alternative based on either the highest score value or the

maximum accuracy degree.

5.1. Application of Proposed Decision-Making Technique

Forecasting in business is an activity that is very valuable to both the strategic planning

and DM processes that are carried out inside firms. It has a tremendous impact, both in

terms of the day-to-day operations of the business as well as the results that it produces. It is

crucial to have the ability to successfully anticipate market trends, the requirements of clients,
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and the achievement of success by a company. It is of the utmost importance for the process

of DM due to the fact that it enables administration to make informed judgements about

production, stock management, resource allocation, promotion, and development. An instance

of the approach for making judgements that has been presented is first demonstrated with the

help of a numerical application concerning the forecasting of a firm’s selection problem in this

section of the article. The first example that will be given is this one. In order to emphasize

the characteristics and benefits offered by the given AOs, a comparison is made between the

STAOs that have been delivered and the SVNZN AOs that are already in use. This is done

in order to showcase the attributes and benefits of the AOs that are currently being provided.

5.1.1. Practical Case Study

f1 Efficient Resource Allocation, Cost Reduction, and Risk Mitigation:

When businesses are able to accurately forecast future demand, they are in a bet-

ter position to utilize their available resources in an effective way, which not only helps

them save costs but also helps them avoid risks. One further advantage is that this

assists cut down on expenditures. They are able to adapt the levels of production, in-

ventory, and people needs to fit the predicted demand, which lowers the risk of either

overstocking or running out of supplies. This is because they are able to alter the levels

of production, inventory, and manpower requirements. When businesses have precise

estimates, they are better able to optimize their supply chains and manufacturing pro-

cesses, which, in turn, results in less waste and less expenses that aren’t necessary.

This can be a win-win situation for everyone involved. This has the potential to be a

win-win circumstance for all parties concerned. It helps to avoid having an excess in-

ventory, which may lead to charges associated with storage and holding, and it reduces

the frequency of urgent orders, which may contribute to higher production costs. Both

of these factors may lead to higher overall costs. Both of these considerations have the

potential to drive up total expenditures. The practise of forecasting future business

activity may be of assistance to firms in spotting prospective hazards and ambiguities,

which, in turn, enables these companies to design strategies to cope with unanticipated

results. If companies are aware of the many difficulties that might be thrown their way,

they may be better prepared to cope with unanticipated occurrences such as swings in

the economy, disruptions in the market, and other unexpected occurrences.

f2 Strategic Planning, Enhanced Budgeting, and Competitive Advantage:

The process of forecasting must act as the foundation for the planning process in

order for it to be effective when it comes to long-term strategy planning. Not only is it

possible to enhance one’s finances via accurate forecasting, but it may also provide one
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an advantage over their competitors. It offers aid in the process of setting goals that

are attainable, defining objectives, and devising strategies that can be implemented in

order to accomplish targets for growth and profitability. Due to the fact that it gives

estimates of both revenue and expenditures, realistic forecasting makes it feasible to

construct budgets that are more realistic. This makes it possible to distribute resources

in a more effective way and helps firms to more effectively integrate the financial pro-

cedures they utilize with the larger corporate goals. In addition, this makes it possible

to deploy resources in a more effective manner. If a company is able to precisely fore-

cast what will occur in the future and react swiftly to changing circumstances in the

market, they will have a considerable advantage over their rivals and will be able to

more effectively compete. When companies have the ability to anticipate the needs of

their customers and the trends in the market, they are in a better position to tailor

the goods and services they provide in order to fulfil the particular demands of their

customers.

f3 Customer Satisfaction and Investor Confidence: An growth in both the

amount of confidence maintained by investors and the degree to which consumers

are happy with the product or service offered. An accurate forecast provides a regular

supply of goods or services, which in turn leads in improved levels of customer satis-

faction. Predictions may be made using historical data or by using predictive models.

Customers who are pleased with the products or services they acquire are more likely

to continue their patronage of the business and to suggest it to their friends and family,

all of which contribute to the sustained prosperity of the enterprize. The capacity to

create accurate forecasts inspires higher confidence among investors because it demon-

strates an acute awareness and understanding of the mechanics of the market. In other

words, it demonstrates that the investor is well-informed. This is due to the fact that

it reveals to everyone that the investor has a solid grasp of the dynamics involved. This

may be successful in persuading a greater number of investors and other stakeholders

to support the firm’s aims of development and expansion, which may be advantageous

to the company.

The practise of business forecasting, in general, is advantageous to companies because it assists

them in adapting to the ever-changing circumstances of the market, in making choices based

on credible information, and in maximizing their operations in order to achieve long-term

development and success. It makes it possible for organizations to construct their future in a

way that is proactive and to effectively react to both opportunities and challenges in a positive

manner.
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When it comes to dealing with the placement of all renewable resources for the purpose of

developing the most accurate business projections, the subject of making the appropriate choice

is always one that is crucial for business. In order to find a solution to this issue, industry

experts and those in charge of making decisions need to take into account as many qualitative

and quantitative factors as they possibly can. A DM procedure that takes into consideration a

wide range of factors is often used when one is tasked with selecting the most suitable location

at which to build a new location of an existing firm. This is because the task is considered

to be of especially high importance. The business industry is one of the most productive

and ecologically friendly kinds of business. It also provides a significant contribution to the

development of a nation.

The areas under examination must have been selected by the knowledgeable specialists after

engaging in professional discussion with one another. The viewpoint of the person responsible

for making the choice as well as the available research were used to compile a list of all of the

factors that had a role in the selection of the location. The individuals in charge of making

decisions need to collect and consider all of the available information in order to choose the

most suitable place or location. We pick a case study for this selection issue and place it in a

typical frame. In this example, there are four possible sites, which we will refer to as W1, W2,

W3, and W4, and all of them will be taken into account while attempting to solve the problem.

These websites have been scrutinized in a methodical manner with regard to the three primary

characteristics, which are referred to above as f1, f2, and f3 respectively. When the number of

characteristics is raised, it is reasonable to anticipate an improvement in the solution. The issue

of picking the best feasible location for a company from the set of possibilities that are now

accessible is being mathematically and critically addressed within the context of the SVNZN

environment, taking into account the expert’s or DMk’s viewpoint as well as the weights of the

criteria. They are unable to supply the whole choice information because of the fuzziness and

doubt that exists inside their brain, and the information on the assessment can be found in

Table 2, which can be seen below. During this assessment, the expert was requested to utilize

SVN information, with attribute weights set as (0.33, 0.35, 0.32)T.

Step-1: Table 2 reveals the information handed over by the expert.

Step-2: As per the expert’s input, attributes f1 and f3 are categorized as benefit types,

while f2 is a cost attribute. The normalized matrix computed using equation 3 yields

the following results, which are displayed in Table 3.

Step-3: There is no need to estimate the aggregation decision matrix in this real-world

case study because just one analyst DMk is involved.

Step-4: WV is a well-known criterion:

κ = {κ1 = 0.33, κ2 = 0.35, κ3 = 0.32}
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Table 2. Information result of the expert

f1 f2 f3

W1

〈 (0.6, 0.8) ,

(0.2, 0.3) ,

(0.1, 0.5)

〉 〈 (0.1, 0.3) ,

(0.2, 0.6) ,

(0.7, 0.8)

〉 〈 (0.1, 0.3) ,

(0.5, 0.6) ,

(0.2, 0.9)

〉

W2

〈 (0.8, 0.7) ,

(0.1, 0.8) ,

(0.2, 0.6)

〉 〈 (0.5, 0.4) ,

(0.3, 0.2) ,

(0.7, 0.6)

〉 〈 (0.4, 0.2) ,

(0.1, 0.5) ,

(0.7, 0.6)

〉

W3

〈 (0.4, 0.6) ,

(0.2, 0.5) ,

(0.9, 0.4)

〉 〈 (0.4, 0.1) ,

(0.5, 0.6) ,

(0.2, 0.4)

〉 〈 (0.4, 0.3) ,

(0.5, 0.1) ,

(0.2, 0.1)

〉

W4

〈 (0.1, 0.5) ,

(0.2, 0.3) ,

(0.7, 0.5)

〉 〈 (0.3, 0.1) ,

(0.2, 0.9) ,

(0.6, 0.2)

〉 〈 (0.1, 0.5) ,

(0.4, 0.1) ,

(0.1, 0.2)

〉

Table 3. Normalized matrix

f1 f2 f3

W1

〈 (0.6, 0.8) ,

(0.2, 0.3) ,

(0.1, 0.5)

〉 〈 (0.7, 0.8) ,

(0.2, 0.6) ,

(0.1, 0.3)

〉 〈 (0.1, 0.3) ,

(0.5, 0.6) ,

(0.2, 0.9)

〉

W2

〈 (0.8, 0.7) ,

(0.1, 0.8) ,

(0.2, 0.6)

〉 〈 (0.7, 0.6) ,

(0.3, 0.2) ,

(0.5, 0.4)

〉 〈 (0.4, 0.2) ,

(0.1, 0.5) ,

(0.7, 0.6)

〉

W3

〈 (0.4, 0.6) ,

(0.2, 0.5) ,

(0.9, 0.4)

〉 〈 (0.2, 0.4) ,

(0.5, 0.6) ,

(0.4, 0.1)

〉 〈 (0.4, 0.3) ,

(0.5, 0.1) ,

(0.2, 0.1)

〉

W4

〈 (0.1, 0.5) ,

(0.2, 0.3) ,

(0.7, 0.5)

〉 〈 (0.6, 0.2) ,

(0.2, 0.9) ,

(0.3, 0.1)

〉 〈 (0.1, 0.5) ,

(0.4, 0.1) ,

(0.1, 0.2)

〉

Step-5: By utilizing the proposed STAOs and the provided WV, the collective SVNZN

information for each alternative is obtained and presented in Table 4.

Step-6: Calculate the score values for each aggregated SVNZN information of every

alternative, as demonstrated in Table 5.

Step-7: As shown in Table 6, select the best option based on the greatest score value.

Our goal in our case study is to use three factors to help us choose the best location for

the company. Following the application of the planned algorithm stages, the aggregate
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Table 4. aggregated SVNZN information of each alternative

ST -SV NZNWA ST -SV NZNWG

W1

〈 (0.748, 0.894) ,

(0.086, 0.266) ,

(0.019, 0.291)

〉 〈 (0.495, 0.751) ,

(0.135, 0.326) ,

(0.024, 0.527)

〉

W2

〈 (0.872, 0.760) ,

(0.026, 0.208) ,

(0.198, 0.315)

〉 〈 (0.797, 0.614) ,

(0.047, 0.403) ,

(0.323, 0.343)

〉

W3

〈 (0.506, 0.650) ,

(0.162, 0.120) ,

(0.202, 0.030)

〉 〈 (0.469, 0.601) ,

(0.220, 0.262) ,

(0.505, 0.075)

〉

W4

〈 (0.498, 0.604) ,

(0.075, 0.111) ,

(0.092, 0.054)

〉 〈 (0.278, 0.529 ) ,

(0.096, 0.499) ,

(0.263, 0.126)

〉

Table 5. The aggregated SVNZN information of each alternative’s score value

Y (W1) Y (W2) Y (W3) Y (W4)

ST -SV NZNWA 0.880 0.865 0.768 0.762

ST -SV NZNWG 0.787 0.772 0.729 0.689

Table 6. Optimal alternative based on the highest score value

Score Ranking Best Alternatives

ST -SV NZNWA Y (W1) > Y (W2) > Y (W3) > Y (W4) W1

ST -SV NZNWG Y (W2) > Y (W1) > Y (W3) > Y (W4) W1

data based on the innovative ST operational principles is presented as an SVNZN set.

Drawing conclusions from the computational method described above, we find that

W2 is the optimal choice among the alternatives; as such, it is strongly advised to use

it for the necessary work or plan.

6. Comparison Analysis

The feasibility of the proposed process, its aggregation’s adaptability to specific inputs and

outcomes, the influence of scoring functions, analysis of sensitivity, supremacy, and, lastly,

a comparison of the proposed technique with current methods are all covered in this part.

The recommended approach was accurate and appropriate for a wide range of input data

types. The approach that was developed worked well for managing uncertainty. It included
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Z numbers and STAO-based SVNS spaces. We may effectively use our approach in a wide

range of circumstances by expanding the distance among the pleasure and displeasure classes

by altering the real-world importance of particular parameters. We came across a variety of

elements and parameters for input in multiple MADM problems that were appropriate for the

given situation. The suggested SVNZNs were easy to grasp, basic, and versatile enough to fit

a wide range of needs. We saw in Table 7, that every one of our suggested aggregating oper-

ators generated the same outcomes, demonstrating accuracy and strength. This essay’s goal

was to show, through a comparative analysis with a few current approaches, the superiority

and reliability of our original study. We compared our results with neutrosophic ZNs (NZN)

weighted arithmetic averaging (NZNWAA) and NZN weighted geometric averaging (NZN-

WGA) operators [35], NZN AczelAlsina weighted arithmetic averaging (NZNAAWAA) and

NZN AczelAlsina weighted geometric averaging (NZNAAWGA) operators [32] and linguistic

neutrosophic ZN (LNZN) weighted arithmetic mean (LNZNWAM) and LNZN weighted geo-

metric mean (LNZNWGM) operators [33], and the work that is connected to decision making

difficulties in [34–36] as well as the great work that is important to SVN structure in [37] is

really remarkable.

Table 7. Comparison Analysis

Score Ranking Best Alternatives

ST -NZNWAA Y (W1) > Y (W2) > Y (W4) > Y (W3) W1

ST -NZNWGA Y (W1) > Y (W2) > Y (W3) > Y (W4) W1

ST -NZNAAWAA Y (W2) > Y (W1) > Y (W3) > Y (W4) W2

ST -NZNAAWGA Y (W1) > Y (W2) > Y (W3) > Y (W4) W1

ST -LNZNWAM Y (W1) > Y (W2) > Y (W3) > Y (W4) W1

ST -LNZNWGM Y (W2) > Y (W1) > Y (W3) > Y (W4) W2

ST -SV NZNWA Y (W1) > Y (W2) > Y (W3) > Y (W4) W1

ST -SV NZNWG Y (W1) > Y (W2) > Y (W3) > Y (W4) W1

7. Conclusion

The rapid process of industrialization has led to a significant expansion of the global business

landscape. In this research manuscript, our goal is to introduce a novel method for selecting

business locations. To achieve this, we propose the utilization of fresh operational laws based

on the ST function under SVNZNs, which we refer to as Z-STOLs. Below is a more detailed

discussion of these strategies’ benefits.
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• The important features of the SVNZNs and their operational characteristics, such as

boundedness, monotonicity, commutativity, and idempotency, are covered first.

• Next, the ideas for developing specialized AOs such ST ZN SVNZN-weighted AOs and

ST ZN SVNZN-ordered weighted averaging/geometric AOs are formed. We investigate

the underlying links between these newly introduced aggregation operations in depth.

• Then we developed a new MADM algorithm for dealing with DM situations in which

preferences are evaluated using SVNZNs. This enables us to apply the proposed legis-

lation to Decision-Making Problems correctly.

• Our research findings highlight the high efficacy of using SVNZ information measures

in handling ambiguity in DM issues. We employ a real-world case to assess the efficacy

of our suggested strategy of site selection for a business, subjecting it to thorough

scrutiny to ascertain its superiority and viability.

• At the end, we conduct a comparative analysis with several previously published studies

to further validate its efficiency. The approach presented in this study holds signifi-

cant promise for application in various domains, including medical diagnostics, green

supplier selection, and more.

• Future studies on two-sided combining making choices with multi-granular and un-

finished criteria weight information, widespread agreement accomplishing with unco-

operative behavioral DMPs, and personalized individual uniformity control consensus

problems could make use of the suggested AOs. This examination of the constraints

imposed by proposed AOs is independent of the levels of involvement, abstention, and

non-membership. On this side of the intended AOs, an innovative hybrid structure of

interactive, prioritized AOs is being implemented.

• In future studies, we aim to extend this approach to address other ambiguous domains,

such as interval-value SVNZNs and probabilistic linguistic term sets. The versatility

of our proposed approach makes it a valuable tool for DMks across different industries.
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Abstract. This paper introduces the idea of a neutrosophic vague subbisemiring (NSVSBS), level sets of

NSVSBS, and (ρ, σ)-neutrosophic vague subbisemiring ((ρ, σ)-NSVSBS) of a bisemiring. NSVSBSs are gener-

alizations of neutrosophic subbisemirings and SBS based on bisemirings. Let Λ be a neutrosophic vague subset

in B, we show that V = ([T −Λ , T +
Λ ], [I−Λ , I

+
Λ ], [F−Λ ,F

+
Λ ]) is a NSVSBS of B if and only if all non empty level set

V(t1,t2,s) is a SBS of B for t1, t2, s ∈ [0, 1]. In the case that Λ is a NSVSBS of a bisemiring B and V is the

strongest neutrosophic vague relation of B, we prove that Λ is a NSVSBS of B × B. Let Λ be any NSVSBS of

B, prove that pseudo neutrosophic vague coset (τΛ)p is a NSVSBS of B, for every τ ∈ B. Let Λ1,Λ2, ...,Λn

be the family of NSV SBSs of B1,B2, ...,Bn respectively. We show that Λ1 × Λ2 × ... × Λn is a NSVSBS of

B1 × B2 × ... × Bn. The homomorphic image of every NSVSBS is a NSVSBS. The homomorphic pre-image of

every NSVSBS is a NSVSBS. Examples are provided to strengthen our results.

Keywords: subbisemiring; neutrosophic subbisemiring; neutrosophic vague bisemiring; homomorphism

—————————————————————————————————————————–

1. Introduction

Due to the limitations of classical mathematics, such as fuzzy set (FS) [1] and vague set

(VS) [2], mathematical theories have been developed to address uncertainty and fuzziness. In

the case of uncertain or vague situations, FS introduced by Zadeh [1] is the most appropriate

technique. In recent years, many hybrid fuzzy models have been developed based on FS. A

generalization of FS, intuitionistic fuzzy set (IFS) incorporate hesitation levels into the notion

of FS, which were first proposed by Attanasov [3] in 1983. The neutrosophic set (NSS) was
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proposed in 1999 by Smarandache [4]. In NSS, each proposition is estimated to have a degree

of truth, an indeterminacy degree, and a falsity degree. As a result of Smarandache [5], he

further generalised and expanded the theory of IFSs to include the neutrosophic model as

well. A study of fuzzy semirings was initiated by Ahsan et al. [6]. Palanikumar et al. [?, ?]

discussed tri-quasi-ideals and bi-quasi-ideals are natural generalizations of rings such that they

constitute a natural generalization of ternary semirings, semirings and ordered semirings. In

2004, Sen et al. [17] extended the study of semirings and proposed the concept of bisemiring

to further develop them. The study of vague algebra was initiated by Biswas [18] through the

introduction of vague groups, vague cuts and vague normal groups. In their work, Arulmozhi

et al. [19] focus on the interaction between semirings, ternary semirings and other algebraic

structures. A semiring (S,+, ·) is a non-empty set in which (S,+) and (S, ·) are semigroups

such that “·” is distributive over “+” [20]. In 1993, Ahsan et al. [6] introduced the notion of

fuzzy semirings.

An introduction to bisemirings was made in 2001 by Sen et al. [21]. A bisemiring (B,a,},�)

is an algebraic structure in which (B,a,}) and (B,},�) are semirings in which (B,a), (B,})

and (B,�) are semigroups such that (a) ζ } (=aτ) = (< } =)a(< } τ), (b) (=aτ) } < =

(=}<)a(τ }<), (c) <� (=} τ) = (<�=)} (<� τ) and (d) (=} τ)�< = (=�<)} (τ �<)

for all <,=, τ ∈ B [17]. A non-empty subset Λ of a bisemiring (B,a,},�) is a subbisemiring

(SBS) if and only if <a= ∈ Λ,<}= ∈ Λ and <�= ∈ Λ for all <,= ∈ Λ [21]. Palanikumar et

al. discussed the various ideal structures of SBS theory and its applications [7]- [16]. However,

numerous algebraic concepts had been generalized using FS theory. Fuzzy algebraic structures

of semirings have been extensively investigated by Vandiver [22]. These are generalizations of

rings requiring only a monoid, rather than a group, to achieve a particular additive structure

and have been shown to be useful for a wide range of problems. Golan [20] and Glazek [23]

have both extensively studied the application of semirings.

Bipolar fuzzy information has been applied to various algebraic structures over the past few

years, like semigroups [?, 14, 15] and BCK/BCI algebras [24–27]. An application of bipolar

fuzzy metric spaces was discussed by Zararsz et al. [28]. A vague soft hyperring and a vague

soft hyper ideal were introduced by Selvachandran [29]. The bipolar fuzzy translation was

introduced by Jun et al. [30] and BCK/BCI-algebra and its properties were investigated. A

bipolar fuzzy regularity, bipolar fuzzy regular sub-algebra, a bipolar fuzzy filter, and a bipolar

fuzzy closed quasi filter have been introduced into BCH algebras in [31]. In 2004, Sen et

al. [17] contributed to the field of semirings by proposing bisemiring as a concept. Hussain et

al. [32] defined the congruence relation between bisemirings and bisemiring homomorphisms. In

addition to bisemiring, Hussain et al. [21, 32] described an algebraic structure called semiring
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and congruence relations between homomorphisms and n-semirings based on this algebraic

structure.

Neutosophic vague subbisemirings (NSVSBS) are discussed here, as well as their level sets.

Subbisemirings are a generalization of bisemirings, and NSVSBSs are a generalization of sub-

bisemirings. A number of illustrative examples are provided to illustrate the theory for (ξ, τ)-

NSVSBS over bisemiring theory. Following is an outline of the preliminary definitions and

results presented in Section 2. The concept of a NSVSBS is introduced in Section 3. There is

more information about (ξ, τ)-NSVSBS in Section 4.

2. Basic concepts

For our future studies, we will quickly review some fundamental terms in this section.

Definition 2.1. [4] A neutrosophic set (NSS) Λ in a universal set U is Λ =

{(<, TΛ(<), IΛ(<),FΛ(<)) : < ∈ U}, where TΛ, IΛ,FΛ : U → [0, 1] denotes the truth, inde-

terminacy and the falsity membership function, respectively. For 〈TΛ, IΛ,FΛ〉 is used for the

NSS Λ = {(<, TΛ(<), IΛ(<),FΛ(<)) : < ∈ U}.

Definition 2.2. [4] Let Λ = 〈TΛ, IΛ,FΛ〉 and Ψ = 〈TΨ, IΨ,FΨ〉 be the two NSS of U . Then

(1) Λ ∩Ψ = {(<,min{TΛ(<), TΨ(<)},min{IΛ(<), IΨ(<)},max{FΛ(<),FΨ(<)}) : < ∈ U},
(2) Λ∪Ψ = {(<,max{TΛ(<), TΨ(<)},max{IΛ(<), IΨ(<)},min{FΛ(<),FΨ(<)}) : < ∈ U}.

Definition 2.3. [4] For any NSS Λ = 〈TΛ, IΛ,FΛ〉 of U , we defined a (ρ, σ)-cut of as the crisp

subset {< ∈ U : TΛ(<) ≥ ρ, IΛ(<) ≥ ρ,FΛ(<) ≤ σ} of U .

Definition 2.4. [4] Let Λ and Ψ be two neutrosophic subsets of S. The Cartesian product

of Λ and Ψ is defined as Λ × Ψ = {((<,=), TΛ×Ψ(<,=), IΛ×Ψ(<,=),FΛ×Ψ(<,=)) : <,= ∈
S}, where TΛ×Ψ(<,=) = min{TΛ(<), TΨ(=)}, IΛ×Ψ(<,=) = IΛ(<)+IΨ(=)

2 and FΛ×Ψ(<,=) =

max{FΛ(<),FΨ(=)}.

Definition 2.5. [18] A vague set (VS) Λ = (TΛ, FΛ) of B is said to be vague semiring if{
TΛ(`1 + `2) ≥ min{TΛ(`1), TΛ(`2)}

TΛ(`1 · `2) ≥ min{TΛ(`1), TΛ(`2)}

}

and {
1−FΛ(`1 + `2) ≥ min{1−FΛ(`1), 1−FΛ(`2)}

1−FΛ(`1 · `2) ≥ min{1−FΛ(`1), 1−FΛ(`2)}

}
.

for all `1, `2 ∈ B.

Definition 2.6. [18] A VS Λ in U . Then
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(1) A VS Λ = (TΛ, FΛ), where TΛ : U → [0, 1],FΛ : U → [0, 1] are mappings such that

TΛ(<)+FΛ(<) ≤ 1, for all < ∈ U where TΛ and FΛ are called true and false membership

function, respectively.

(2) The interval [TΛ(<), 1 − FΛ(<)] is called the vague value of < in Λ and it is denoted

by VΛ(<), i.e., VΛ(<) = [TΛ(<), 1−FΛ(<)].

Definition 2.7. [18] Let Λ and Ψ be the two VSs of U . Then

(1) Λ is contained in Ψ as Λ ⊆ Ψ if and only if VΛ(<) ≤ VΨ(<), i.e. TΛ(<) ≤ TΨ(<) and

1−FΛ(<) ≤ 1−FΨ(<) for all < ∈ U ,

(2) the union of Λ and Ψ as ∆ = Λ∪Ψ, T∆ = max{TΛ, TΨ} and 1−F∆ = max{1−FΛ, 1−
FΨ} = 1−min{FΛ,FΨ},

(3) the intersection of Λ and Ψ as ∆ = Λ ∩Ψ, T∆ = min{TΛ, TΨ} and 1− F∆ = min{1−
FΛ, 1−FΨ} = 1−max{FΛ,FΨ}.

Definition 2.8. [18] Let Λ and Ψ be any two VSs in U . Then

(1) Λ ∩Ψ =
{

(<,min{TΛ(<), TΨ(<)},min{1−FΛ(<), 1−FΨ(<)}) : < ∈ U
}

,

(2) Λ ∪Ψ =
{

(<,max{TΛ(<), TΨ(<)},max{1−FΛ(<), 1−FΨ(<)}) : < ∈ U
}

,

(3) �Λ =
{

(<, TΛ(<), 1− TΛ(<)) : < ∈ U
}

,

(4) ♦Λ =
{

(<, 1−FΛ(<),FΛ(<)) : < ∈ U
}

.

3. Neutrosophic vague subbisemirings

In all cases, assume that B represents a bisemiring.

Definition 3.1. A neutrosophic VS Λ of B is represent a NSVSBS of B if


VTΛ (<♦1=) ≥ min{VTΛ (<),VTΛ (=)}

VTΛ (<♦2=) ≥ min{VTΛ (<),VTΛ (=)}

VTΛ (<♦3=) ≥ min{VTΛ (<),VTΛ (=)}





VIΛ(<♦1=) ≥ V
I
Λ(<)+VIΛ(=)

2

OR

VIΛ(<♦2=) ≥ V
I
Λ(<)+VIΛ(=)

2

OR

VIΛ(<♦3=) ≥ V
I
Λ(<)+VIΛ(=)

2



VFΛ (<♦1=) ≤ max{VFΛ (<),VFΛ (=)}

VFΛ (<♦2=) ≤ max{VFΛ (<),VFΛ (=)}

VFΛ (<♦3=) ≤ max{VFΛ (<),VFΛ (=)}

 .
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That is,



 T −Λ (<♦1=) ≥ min{T −Λ (<), T −Λ (=)},

1−F−Λ (<♦1=) ≥ min{1−F−Λ (<), 1−F−Λ (=)}


 T −Λ (<♦2=) ≥ min{T −Λ (<), T −Λ (=)},

1−F−Λ (<♦2=) ≥ min{1−F−Λ (<), 1−F−Λ (=)}


 T −Λ (<♦3=) ≥ min{T −Λ (<), T −Λ (=)},

1−F−Λ (<♦3=) ≥ min{1−F−Λ (<), 1−F−Λ (=)}







I+
Λ (<♦1=) ≥ I

+
Λ (<)+I+

Λ (=)

2 ,

I−Λ (<♦1=) ≥ I
−
Λ (<)−I−Λ (=)

2


ORI+

Λ (<♦2=) ≥ I
+
Λ (<)+I+

Λ (=)

2 ,

I−Λ (<♦2=) ≥ I
−
Λ (<)−I−Λ (=)

2


ORI+

Λ (<♦3=) ≥ I
+
Λ (<)+I+

Λ (=)

2 ,

I−Λ (<♦3=) ≥ I
−
Λ (<)−I−Λ (=)

2






 F−Λ (<♦1=) ≤ max{F−Λ (<),F−Λ (=)},

1− T −Λ (<♦1=) ≤ max{1− T −Λ (<), 1− T −Λ (=)}


 F−Λ (<♦2=) ≤ max{F−Λ (<),F−Λ (=)},

1− T −Λ (<♦2=) ≤ max{1− T −Λ (<), 1− T −Λ (=)}


 F−Λ (<♦3=) ≤ max{F−Λ (<),F−Λ (=)},

1− T −Λ (<♦3=) ≤ max{1− T −Λ (<), 1− T −Λ (=)}




for all <,= ∈ B.

Example 3.2. Let B = {ȧ, ä, ã,~a} be the bisemiring.

♦1 ȧ ä ã ~a

ȧ ȧ ȧ ȧ ȧ

ä ȧ ä ȧ ä

ã ȧ ȧ ã ã

~a ȧ ä ã ~a

♦2 ȧ ä ã ~a

ȧ ȧ ä ã ~a

ä ä ä ~a ~a

ã ã ~a ã ~a

~a ~a ~a ~a ~a

♦3 ȧ ä ã ~a

ȧ ȧ ȧ ȧ ȧ

ä ȧ ä ã ~a

ã ~a ~a ~a ~a

~a ~a ~a ~a ~a

[T −Λ (ϕ), T +
Λ (ϕ)] [I−Λ (ϕ), I+

Λ (ϕ)] [F−Λ (ϕ),F+
Λ (ϕ)]

ϕ = ȧ [0.75, 0.8] [0.85, 0.9] [0.2, 0.25]

ϕ = ä [0.65, 0.75] [0.8, 0.85] [0.25, 0.35]

ϕ = ã [0.50, 0.55] [0.65, 0.70] [0.45, 0.50]

ϕ = ~a [0.55, 0.65] [0.75, 0.80] [0.35, 0.45]

Clearly, Λ is a NSVSBS of B.

Theorem 3.3. The intersection of a family of every NSV SBSs of B is a NSVSBS of B.
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Proof. Let {Vi : i ∈ I} be a collection of NSV SBSs of B and Λ =
⋂
i∈I
Vi.

Let <,= in B. Then

T −Λ (<♦1=) = inf
i∈I
T −Vi (<♦1=)

≥ inf
i∈I

min{T −Vi (<), T −Vi (=)}

= min
{

inf
i∈I
T −Vi (<), inf

i∈I
T −Vi (=)

}
= min{T −Λ (<), T −Λ (=)}.

1−F−Λ (<♦1=) = inf
i∈I

1−F−Vi(<♦1=)

≥ inf
i∈I

min{1−F−Vi(<), 1−F−Vi(=)}

= min
{

inf
i∈I

1−F−Vi(<), inf
i∈I

1−F−Vi(=)
}

= min{1−F−Λ (<), 1−F−Λ (=)}.

Thus VTΛ (<♦1=) ≥ min{VΛ(<),VΛ(=)}. Similarly, VTΛ (<♦2=) ≥ min{VΛ(<),VΛ(=)} and

VTΛ (<♦3=) ≥ min{VΛ(<),VΛ(=)}. Now,

I−Λ (<♦1=) = inf
i∈I−

I−Vi(<♦1=)

≥ inf
i∈I−

I−Vi(<) + I−Vi(=)

2

=
inf
i∈I−

I−Vi(<) + inf
i∈I−

I−Vi(=)

2

=
I−Λ (<) + I−Λ (=)

2
.

I+
Λ (<♦1=) = inf

i∈I+
I+
Vi(<♦1=)

≥ inf
i∈I+

I+
Vi(<) + I+

Vi(=)

2

=
inf
i∈I+

I+
Vi(<) + inf

i∈I+
I+
Vi(=)

2

=
I+

Λ (<) + I+
Λ (=)

2
.

Thus VIΛ(<♦1=) ≥ min{VΛ(<),VΛ(=)}. Similarly, VIΛ(<♦2=) ≥ min{VΛ(<),VΛ(=)} and

VIΛ(<♦3=) ≥ min{VΛ(<),VΛ(=)}.
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Now,

F−Λ (<♦1=) = sup
i∈I
F−Vi(<♦1=)

≤ sup
i∈I

max{F−Vi(<),F−Vi(=)}

= max
{

sup
i∈I
F−Vi(<), sup

i∈I
F−Vi(=)

}
= max{F−Λ (<),F−Λ (=)}.

1− T −Λ (<♦1=) = sup
i∈I

1− T −Vi (<♦1=)

≤ sup
i∈I

max{1− T −Vi (<), 1− T −Vi (=)}

= max
{

sup
i∈I

1− T −Vi (<), sup
i∈I

1− T −Vi (=)
}

= max{1− T −Λ (<), 1− T −Λ (=)}.

Thus VFΛ (<♦1=) ≤ max{VΛ(<),VΛ(=)}. Similarly, VFΛ (<♦2=) ≤ max{VΛ(<),VΛ(=)} and

VFΛ (<♦3=) ≤ max{VΛ(<),VΛ(=)}. Hence, Λ is a NSVSBS of B.

Theorem 3.4. If Λ and Ψ are the NSV SBSs of B1 and B2 respectively, then Λ × Ψ is a

NSVSBS of B1 × B2.

Proof. Let Λ and Ψ be the NSV SBSs of B1 and B2 respectively. Let <1,<2 ∈ B1 and

=1,=2 ∈ B2. Then (<1,=1), (<2,=2) belong to B1 × B2. Now

T −Λ×Ψ[(<1,=1)♦1(<2,=2)] = T −Λ×Ψ(<1♦1<2,=1♦1=2)

= min{T −Λ (<1♦1<2), T −Ψ (=1♦1=2)}

≥ min{min{T −Λ (<1), T −Λ (<2)},min{T −Ψ (=1), T −Ψ (=2)}}

= min{min{T −Λ (<1), T −Ψ (=1)},min{T −Λ (<2), T −Ψ (=2)}}

= min{T −Λ×Ψ(<1,=1), T −Λ×Ψ(<2,=2)}.

1−F−Λ×Ψ[(<1,=1)♦1(<2,=2)] = 1−F−Λ×Ψ(<1♦1<2,=1♦1=2)

= min{1−F−Λ (<1♦1<2), 1−F−Ψ (=1♦1=2)}

≥ min{min{1−F−Λ (<1), 1−F−Λ (<2)},min{1−F−Ψ (=1), 1−F−Ψ (=2)}}

= min{min{1−F−Λ (<1), 1−F−Ψ (=1)},min{1−F−Λ (<2), 1−F−Ψ (=2)}}

= min{1−F−Λ×Ψ(<1,=1), 1−F−Λ×Ψ(<2,=2)}.

Thus VTΛ×Ψ(<♦1=) ≥ min{VTΛ×Ψ(<),VTΛ×Ψ(=)}. Simi-

larly, VTΛ×Ψ(<♦2=) ≥ min{VTΛ×Ψ(<),VTΛ×Ψ(=)} and VTΛ×Ψ(<♦3=) ≥ min{VTΛ×Ψ(<),VTΛ×Ψ(=)}.
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Now,

I−Λ×Ψ[(<1,=1)♦1(<2,=2)] = I−Λ×Ψ(<1♦1<2,=1♦1=2)

=
I−Λ (<1♦1<2) + I−Ψ (=1♦1=2)

2

≥ 1

2

[
I−Λ (<1) + I−Λ (<2)

2
+
I−Ψ (=1) + I−Ψ (=2)

2

]

=
1

2

[
I−Λ (<1) + I−Ψ (=1)

2
+
I−Λ (<2) + I−Ψ (=2)

2

]

=
1

2

[
I−Λ×Ψ(<1,=1) + I−Λ×Ψ(<2,=2)

]
.

I+
Λ×Ψ[(<1,=1)♦1(<2,=2)] = I+

Λ×Ψ(<1♦1<2,=1♦1=2)

=
I+

Λ (<1♦1<2) + I+
Ψ (=1♦1=2)

2

≥ 1

2

[
I+

Λ (<1) + I+
Λ (<2)

2
+
I+

Ψ (=1) + I+
Ψ (=2)

2

]

=
1

2

[
I+

Λ (<1) + I+
Ψ (=1)

2
+
I+

Λ (<2) + I+
Ψ (=2)

2

]

=
1

2

[
I+

Λ×Ψ(<1,=1) + I+
Λ×Ψ(<2,=2)

]
.

Thus VIΛ×Ψ(<♦1=) ≥ 1
2

[
VIΛ×Ψ(<1,=1) + VIΛ×Ψ(<2,=2)

]
. Similarly, VIΛ×Ψ(<♦2=) ≥

1
2

[
VIΛ×Ψ(<1,=1)+VIΛ×Ψ(<2,=2)

]
and VIΛ×Ψ(<♦3=) ≥ 1

2

[
VIΛ×Ψ(<1,=1)+VIΛ×Ψ(<2,=2)

]
. Now

F−Λ×Ψ[(<1,=1)♦1(<2,=2)] = F−Λ×Ψ(<1♦1<2,=1♦1=2)

= max{F−Λ (<1♦1<2),F−Ψ (=1♦1=2)}

≤ max{max{F−Λ (<1),F−Λ (<2)},max{F−Ψ (=1),F−Ψ (=2)}}

= max{max{F−Λ (<1),F−Ψ (=1)},max{F−Λ (<2),F−Ψ (=2)}}

= max{F−Λ×Ψ(<1,=1),F−Λ×Ψ(<2,=2)}.

1− T −Λ×Ψ[(<1,=1)♦1(<2,=2)] = 1− T −Λ×Ψ(<1♦1<2,=1♦1=2)

= max{1− T −Λ (<1♦1<2), 1− T −Ψ (=1♦1=2)}

≤ max{max{1− T −Λ (<1), 1− T −Λ (<2)},max{1− T −Ψ (=1), 1− T −Ψ (=2)}}

= max{max{1− T −Λ (<1), 1− T −Ψ (=1)},max{1− T −Λ (<2), 1− T −Ψ (=2)}}

= max{1− T −Λ×Ψ(<1,=1), 1− T −Λ×Ψ(<2,=2)}.

Thus VFΛ×Ψ(<♦1=) ≤ max{VFΛ×Ψ(<),VFΛ×Ψ(=)}. Similarly,

VFΛ×Ψ(<♦2=) ≤ max{VFΛ×Ψ(<),VFΛ×Ψ(=)} and VFΛ×Ψ(<♦3=) ≤ max{VFΛ×Ψ(<),VFΛ×Ψ(=)}.
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Corollary 3.5. If Λ1,Λ2, ...,Λn are the families of NSV SBSs of B1,B2, ...,Bn respectively,

then Λ1 × Λ2 × ...× Λn is a NSVSBS of B1 × B2 × ...× Bn.

Definition 3.6. Let Λ be a neutrosophic VS in B, the strongest neutrosophic vague relation

(SNSVR) on B, that is a NSVR on Λ is defined as


VTV (<,=) = min{VTΛ (<),VTΛ (=)}

VIV (<,=) =
VIΛ(<)+VIΛ(=)

2

VFV (<,=) = max{VFΛ (<),VFΛ (=)}

 .

Theorem 3.7. Let Λ be the NSVSBS of B and V be the SNSVR of B. Then Λ is a NSVSBS

of B if and only if V is a NSVSBS of B × B.

Proof. Let Λ be the NSVSBS of B and V be the SNSVR of B. Then for any < = (<1,<2)

and = = (=1,=2) are in B × B. Now,

T −V (<♦1=) = T −V [((<1,<2)♦1(=1,=2)]

= T −V (<1♦1=1,<2♦1=2)

= min{T −Λ (<1♦1=1), T −Λ (<2♦1=2)}

≥ min{min{T −Λ (<1), T −Λ (=1)},min{T −Λ (<2), T −Λ (=2)}}

= min{min{T −Λ (<1), T −Λ (<2)},min{T −Λ (=1), T −Λ (=2)}}

= min{T −V (<1,<2), T −V (=1,=2)}

= min{T −V (<), T −V (=)}.

1−F−V (<♦1=) = 1−F−V [((<1,<2)♦1(=1,=2)]

= 1−F−V (<1♦1=1,<2♦1=2)

= min{1−F−Λ (<1♦1=1), 1−F−Λ (<2♦1=2)}

≥ min{min{1−F−Λ (<1), 1−F−Λ (=1)},min{1−F−Λ (<2), 1−F−Λ (=2)}}

= min{min{1−F−Λ (<1), 1−F−Λ (<2)},min{1−F−Λ (=1), 1−F−Λ (=2)}}

= min{1−F−V (<1,<2), 1−F−V (=1,=2)}

= min{1−F−V (<), 1−F−V (=)}.
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Thus VTV (<♦1=) ≥ min{VTV (<),VTV (=)}. Similarly, VTV (<♦2=) ≥ min{VTV (<),VTV (=)} and

VTV (<♦3=) ≥ min{VTV (<),VTV (=)}. Now,

I−V (<♦1=) = I−V [((<1,<2)♦1(=1,=2)]

= I−V (<1♦1=1,<2♦1=2)

=
I−Λ (<1♦1=1) + I−Λ (<2♦1=2)

2

≥ 1

2

[
I−Λ (<1) + I−Λ (=1)

2
+
I−Λ (<2) + I−Λ (=2)

2

]

=
1

2

[
I−Λ (<1) + I−Λ (<2)

2
+
I−Λ (=1) + I−Λ (=2)

2

]

=
I−V (<1,<2) + I−V (=1,=2)

2

=
I−V (<) + I−V (=)

2
.

I+
V (<♦1=) = I+

V [((<1,<2)♦1(=1,=2)]

= I+
V (<1♦1=1,<2♦1=2)

=
I+

Λ (<1♦1=1) + I+
Λ (<2♦1=2)

2

≥ 1

2

[
I+

Λ (<1) + I+
Λ (=1)

2
+
I+

Λ (<2) + I+
Λ (=2)

2

]

=
1

2

[
I+

Λ (<1) + I+
Λ (<2)

2
+
I+

Λ (=1) + I+
Λ (=2)

2

]

=
I+
V (<1,<2) + I+

V (=1,=2)

2

=
I+
V (<) + I+

V (=)

2
.

Thus VIV (<♦1=) ≥ VV (<)+VV (=)
2 . Similarly, VIV (<♦2=) ≥ VV (<)+VV (=)

2 and VIV (<♦3=) ≥
VV (<)+VV (=)

2 .

Similarly, VFV (<♦1=) ≤ max{VFV (<),VFV (=)}, VFV (<♦2=) ≤ max{VFV (<),VFV (=)} and

VFV (<♦3=) ≤ max{VFV (<),VFV (=)}.
G. Manikandan, M. Palanikumar, P. Vijayalakshmi, G. Shanmugam and A. Iampan,
Extension for neutrosophic vague subbisemirings of bisemirings

Neutrosophic Sets and Systems, Vol. 63, 2024                                                                               331



Conversely let us assume that V is a NSVSBS of B × B, then for any < = (<1,<2) and

= = (=1,=2) are in B × B. Now,

min{T −Λ (<1♦1=1), T −Λ (<2♦1=2)} = T −V (<1♦1=1,<2♦1=2)

= T −V [(<1,<2)♦1(=1,=2)]

= T −V (<♦1=)

≥ min{T −V (<), T −V (=)}

= min{T −V (<1,<2)}, T −V (=1,=2)}

= min{min{T −Λ (<1), T −Λ (<2)},min{T −Λ (=1), T −Λ (=2)}}.

If T −Λ (<1♦1=1) ≤ T −Λ (<2♦1=2), then T −Λ (<1) ≤ T −Λ (<2) and T −Λ (=1) ≤ T −Λ (=2). We get

T −Λ (<1♦1=1) ≥ min{T −Λ (<1), T −Λ (=1)} for all <1,=1 ∈ B, and

min{T −Λ (<1♦2=1), T −Λ (<2♦2=2)} ≥ min{min{T −Λ (<1), T −Λ (<2)},min{T −Λ (=1), T −Λ (=2)}}
If T −Λ (<1♦2=1) ≤ T −Λ (<2♦2=2), then T −Λ (<1♦2=1) ≥ min{T −Λ (<1), T −Λ (=1)}.
min{T −Λ (<1♦3=1), T −Λ (<2♦3=2)} ≥ min{min{T −Λ (<1), T −Λ (<2)},min{T −Λ (=1), T −Λ (=2)}}.
If T −Λ (<1♦3=1) ≤ T −Λ (<2♦3=2), then T −Λ (<1♦3=1) ≥ min{T −Λ (<1), T −Λ (=1)}.

min{1−F−Λ (<1♦1=1), 1−F−Λ (<2♦1=2)}

= 1−F−V (<1♦1=1,<2♦1=2)

= 1−F−V [(<1,<2)♦1(=1,=2)]

= 1−F−V (<♦1=)

≥ min{1−F−V (<), 1−F−V (=)}

= min{1−F−V (<1,<2)}, 1−F−V (=1,=2)}

= min{min{1−F−Λ (<1), 1−F−Λ (<2)},min{1−F−Λ (=1), 1−F−Λ (=2)}}.

If 1 − F−Λ (<1♦1=1) ≤ 1 − F−Λ (<2♦1=2), then 1 − F−Λ (<1) ≤ 1 − F−Λ (<2) and 1 − F−Λ (=1) ≤
1 − F−Λ (=2). We get 1 − F−Λ (<1♦1=1) ≥ min{1 − F−Λ (<1), 1 − F−Λ (=1)} for all <1,=1 ∈ B,

and min{1−F−Λ (<1♦2=1), 1−F−Λ (<2♦2=2)} ≥ min{min{1−F−Λ (<1), 1−F−Λ (<2)},min{1−
F−Λ (=1), 1−F−Λ (=2)}}.
If 1−F−Λ (<1♦2=1) ≤ 1−F−Λ (<2♦2=2), then 1−F−Λ (<1♦2=1) ≥ min{1−F−Λ (<1), 1−F−Λ (=1)}.
min{1 − F−Λ (<1♦3=1), 1 − F−Λ (<2♦3=2)} ≥ min{min{1 − F−Λ (<1), 1 − F−Λ (<2)},min{1 −
F−Λ (=1), 1 − F−Λ (=2)}}. If 1 − F−Λ (<1♦3=1) ≤ 1 − F−Λ (<2♦3=2), then 1 − F−Λ (<1♦3=1) ≥
min{1−F−Λ (<1), 1−F−Λ (=1)}.
Thus VTV (<♦1=) ≥ min{VTV (<),VTV (=)}. Similarly, VTV (<♦2=) ≥ min{VTV (<),VTV (=)} and

G. Manikandan, M. Palanikumar, P. Vijayalakshmi, G. Shanmugam and A. Iampan,
Extension for neutrosophic vague subbisemirings of bisemirings

Neutrosophic Sets and Systems, Vol. 63, 2024                                                                               332



VTV (<♦3=) ≥ min{VTV (<),VTV (=)}. Now,

1

2

[
I−Λ (<1♦1=1) + I−Λ (<2♦1=2)

]
= I−V (<1♦1=1,<2♦1=2)

= I−V [(<1,<2)♦1(=1,=2)]

= I−V (<♦1=)

≥
I−V (<) + I−V (=)

2

=
I−V (<1,<2) + I−V (=1,=2)

2

=
1

2

[
I−Λ (<1) + I−Λ (<2)

2
+
I−Λ (=1) + I−Λ (=2)

2

]
.

If I−Λ (<1♦1=1) ≤ I−Λ (<2♦1=2), then I−Λ (<1) ≤ I−Λ (<2) and I−Λ (=1) ≤ I−Λ (=2).

We get I−Λ (<1♦1=1) ≥ I−Λ (<1)+I−Λ (=1)
2 . Similarly, I−Λ (<1♦2=1) ≥ I−Λ (<1)+I−Λ (=1)

2 and

I−Λ (<1♦3=1) ≥ I
−
Λ (<1)+I−Λ (=1)

2 .

Also, 1
2

[
I+

Λ (<1♦1=1) + I+
Λ (<2♦1=2)

]
≥ 1

2

[
I+

Λ (<1)+I+
Λ (<2)

2 +
I+

Λ (=1)+I+
Λ (=2)

2

]
.

If I+
Λ (<1♦1=1) ≤ I+

Λ (<2♦1=2), then I+
Λ (<1) ≤ I+

Λ (<2) and I+
Λ (=1) ≤ I+

Λ (=2).

We get I+
Λ (<1♦1=1) ≥ I+

Λ (<1)+I+
Λ (=1)

2 and I+
Λ (<1♦2=1) ≥ I+

Λ (<1)+I+
Λ (=1)

2 and I+
Λ (<1♦3=1) ≥

I+
Λ (<1)+I+

Λ (=1)
2 .

Thus VIV (<♦1=) ≥
VV (<)+VV (=)

2 . Similarly, VIV (<♦2=) ≥ VV (<)+VV (=)
2 and VIV (<♦3=) ≥ VV (<)+VV (=)

2 . Similarly,

max{F−Λ (<1♦1=1),F−Λ (<2♦1=2)} ≤ max{max{F−Λ (<1),F−Λ (<2)},max{F−Λ (=1),F−Λ (=2)}}.
If F−Λ (<1♦1=1) ≥ F−Λ (<2♦1=2), then F−Λ (<1) ≥ F−Λ (<2) and F−Λ (=1) ≥ F−Λ (=2).

We get F−Λ (<1♦1=1) ≤ max{F−Λ (<1),F−Λ (=1)}.
max{F−Λ (<1♦2=1),F−Λ (<2♦2=2)} ≤ max{max{F−Λ (<1),F−Λ (<2)},max{F−Λ (=1),F−Λ (=2)}}.
If F−Λ (<1♦2=1) ≥ F−Λ (<2♦2=2), then F−Λ (<1♦2=1) ≤ max{F−Λ (<1),F−Λ (=1)}.
max{F−Λ (<1♦3=1),F−Λ (<2♦3=2)} ≤ max{max{F−Λ (<1),F−Λ (<2)},max{F−Λ (=1),F−Λ (=2)}}
If F−Λ (<1♦3=1) ≥ F−Λ (<2♦3=2), then F−Λ (<1♦3=1) ≤ max{F−Λ (<1),F−Λ (=1)}.
Also, Similarly to prove that max{1 − T −Λ (<1♦1=1), 1 − T −Λ (<2♦1=2)} ≤ max{max{1 −
T −Λ (<1), 1− T −Λ (<2)},max{1− T −Λ (=1), 1− T −Λ (=2)}}.
If 1 − T −Λ (<1♦1=1) ≥ 1 − T −Λ (<2♦1=2), then 1 − T −Λ (<1) ≥ 1 − T −Λ (<2) and 1 − T −Λ (=1) ≥
1− T −Λ (=2).

We get 1− T −Λ (<1♦1=1) ≤ max{1− T −Λ (<1), 1− T −Λ (=1)}.
max{1 − T −Λ (<1♦2=1), 1 − T −Λ (<2♦2=2)} ≤ max{max{1 − T −Λ (<1), 1 − T −Λ (<2)},max{1 −
T −Λ (=1), 1− T −Λ (=2)}}.
If 1−T −Λ (<1♦2=1) ≥ 1−T −Λ (<2♦2=2), then 1−T −Λ (<1♦2=1) ≤ max{1−T −Λ (<1), 1−T −Λ (=1)}.
max{1 − T −Λ (<1♦3=1), 1 − T −Λ (<2♦3=2)} ≤ max{max{1 − T −Λ (<1), 1 − T −Λ (<2)},max{1 −
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T −Λ (=1), 1− T −Λ (=2)}}.
If 1−T −Λ (<1♦3=1) ≥ 1−T −Λ (<2♦3=2), then 1−T −Λ (<1♦3=1) ≤ max{1−T −Λ (<1), 1−T −Λ (=1)}.
Hence, VFV (<♦1=) ≤ max{VFV (<),VFV (=)}, VFV (<♦2=) ≤ max{VFV (<),VFV (=)} and

VFV (<♦3=) ≤ max{VFV (<),VFV (=)}. Hence, Λ is a NSVSBS of B.

Theorem 3.8. Let Λ be a NSV subset in B. Then V = ([T −Λ , T +
Λ ], [I−Λ , I

+
Λ ], [F−Λ ,F

+
Λ ]) is a

NSVSBS of B if and only if all non empty level set V(t1,t2,s) is a SBS of B for t1, t2, s ∈ [0, 1].

Proof. Assume that V is a NSVSBS of B. For t1, t2, s ∈ [0, 1] and ξ1, ξ2 ∈ V(t1,t2,s). We have

T −Λ (ξ1) ≥ t1, T −Λ (ξ2) ≥ t1 and 1−F−Λ (ξ1) ≥ s, 1−F−Λ (ξ2) ≥ s and I−Λ (ξ1) ≥ t2, I−Λ (ξ2) ≥ t2 and

I+
Λ (ξ1) ≥ t2, I+

Λ (ξ2) ≥ t2, 1−T −Λ (ξ1) ≤ t1, 1−T −Λ (ξ2) ≤ t1 and F−Λ (ξ1) ≤ s,F−Λ (ξ2) ≤ s. Now,

T −Λ (ξ1♦1ξ2) ≥ min{T −Λ (ξ1), T −Λ (ξ2)} ≥ t1, 1−F−Λ (ξ1♦1ξ2) ≥ min{1−F−Λ (ξ1), 1−F−Λ (ξ2)} ≥ s
and I−Λ (ξ1♦1ξ2) ≥ I−Λ (ξ1)+I−Λ (ξ2)

2 ≥ t2, I+
Λ (ξ1♦1ξ2) ≥ I+

Λ (ξ1)+I+
Λ (ξ2)

2 ≥ t2 and F−Λ (ξ1♦1ξ2) ≤
max{F−Λ (ξ1),F−Λ (ξ2)} ≤ s and 1 − T −Λ (ξ1♦1ξ2) ≤ max{1 − T −Λ (ξ1), 1 − T −Λ (ξ2)} ≤ t1. This

implies that ξ1♦1ξ2 ∈ V(t1,t2,s). Similarly, ξ1♦2ξ2 ∈ V(t1,t2,s) and ξ1♦3ξ2 ∈ V(t1,t2,s). Therefore

V(t1,t2,s) is a SBS of B, where t1, t2, s ∈ [0, 1].

Conversely, assume that V(t1,t2,s) is a SBS of B, where t1, t2, s ∈ [0, 1]. Suppose if

there exist ξ1, ξ2 ∈ B such that T −Λ (ξ1♦1ξ2) < min{T −Λ (ξ1), T −Λ (ξ2)}, 1 − F−Λ (ξ1♦1ξ2) <

min{1 − F−Λ (ξ1), 1 − F−Λ (ξ2)}, I−Λ (ξ1♦1ξ2) <
I−Λ (ξ1)+I−Λ (ξ2)

2 , I+
Λ (ξ1♦1ξ2) <

I+
Λ (ξ1)+I+

Λ (ξ2)
2 and

F−Λ (ξ1♦1ξ2) > max{F−Λ (ξ1),F−Λ (ξ2)}. 1−T −Λ (ξ1♦1ξ2) > max{1−T −Λ (ξ1), 1−T −Λ (ξ2)}. Select

t1, t2, s ∈ [0, 1] such that T −Λ (ξ1♦1ξ2) < t1 ≤ min{T −Λ (ξ1), T −Λ (ξ2)} and 1 − F−Λ (ξ1♦1ξ2) <

t1 ≤ min{1 − F−Λ (ξ1), 1 − F−Λ (ξ2)} and I−Λ (ξ1♦1ξ2) < t2 ≤
I−Λ (ξ1)+I−Λ (ξ2)

2 and I+
Λ (ξ1♦1ξ2) <

t2 ≤
I+

Λ (ξ1)+I+
Λ (ξ2)

2 and F−Λ (ξ1♦1ξ2) > s ≥ max{F−Λ (ξ1),F−Λ (ξ2)}, 1 − T −Λ (ξ1♦1ξ2) > s ≥
max{1− T −Λ (ξ1), 1− T −Λ (ξ2)}. Then ξ1, ξ2 ∈ V(t1,t2,s), but ξ1♦1ξ2 /∈ V(t1,t2,s). This contradicts

to that V(t1,t2,s) is a SBS of B. Hence, T −Λ (ξ1♦1ξ2) ≥ min{T −Λ (ξ1), T −Λ (ξ2)}, 1−F−Λ (ξ1♦1ξ2) ≥
min{1 − F−Λ (ξ1), 1 − F−Λ (ξ2)}, I−Λ (ξ1♦1ξ2) ≥ I−Λ (ξ1)+I−Λ (ξ2)

2 , I+
Λ (ξ1♦1ξ2) ≥ I+

Λ (ξ1)+I+
Λ (ξ2)

2 and

F−Λ (ξ1♦1ξ2) ≤ max{F−Λ (ξ1),F−Λ (ξ2)} and 1 − T −Λ (ξ1♦1ξ2) ≤ max{1 − T −Λ (ξ1), 1 − T −Λ (ξ2)}.
Similarly, ♦2 and ♦3 cases. Hence, V = ([T −Λ , T +

Λ ], [I−Λ , I
+
Λ ], [F−Λ ,F

+
Λ ]) is a NSVSBS of B.

Definition 3.9. Let Λ be any NSVSBS of B and τ ∈ B. Then the pseudo NSV coset (τΛ)p

is defined by 
(τVTΛ )p(<) = p(τ)VTΛ (<),

(τVIΛ)p(<) = p(τ)VIΛ(<),

(τVFΛ )p(<) = p(τ)VFΛ (<)

 .

That is, 
(τT −Λ )p(<) = p(τ)T −Λ (<), 1− (τF−Λ )p(<) = p(τ)(1−F−Λ )(<),

(τI−Λ )p(<) = p(τ)I−Λ (<), (τI+
Λ )p(<) = p(τ)I+

Λ (<),

(τF−Λ )p(<) = p(τ)F−Λ (<), 1− (τT −Λ )p(<) = p(τ)(1− T −Λ )(<)


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each < ∈ B and for any non-empty set p ∈ P .

Theorem 3.10. Let Λ be any NSVSBS of B, then the pseudo NSV coset (τΛ)p is a NSVSBS

of B.

Proof. Let Λ be any NSVSBS of B and for each <,= ∈ B. Now, (τT −Λ )p(<♦1=) =

p(τ) T −Λ (<♦1=) ≥ p(τ) min{T −Λ (<), T −Λ (=)} = min{p(τ) T −Λ (<), p(τ) T −Λ (=)} =

min{(τT −Λ )p(<), (τT −Λ )p(=)}. Thus (τT −Λ )p(<♦1=) ≥ min{(τT −Λ )p(<), (τT −Λ )p(=)} and

1 − (τF−Λ )p(<♦1=) = p(τ) (1 − F−Λ (<♦1=)) ≥ p(τ) min{1 − F−Λ (<), 1 − F−Λ (=)} =

min{p(τ) (1 − F−Λ (<)), p(τ) (1 − F−Λ (=))} = min{1 − (τF−Λ )p(<), 1 − (τF−Λ )p(=)}. Thus

1 − (τF−Λ )p(<♦1=) ≥ min{1 − (τF−Λ )p(<), 1 − (τF−Λ )p(=)}. Now, (τI−Λ )p(<♦1=) =

p(τ) I−Λ (<♦1=) ≥ p(τ)

[
I−Λ (<)+I−Λ (=)

2

]
=

p(τ) I−Λ (<)+p(τ) I−Λ (=)
2 =

(τI−Λ )p(<)+(τI−Λ )p(=)
2 .

Thus (τI−Λ )p(<♦1=) ≥ (τI−Λ )p(<)+(τI−Λ )p(=)
2 and (τI+

Λ )p(<♦1=) = p(τ) I+
Λ (<♦1=) ≥

p(τ)

[
I+

Λ (<)+I+
Λ (=)

2

]
=

p(τ) I+
Λ (<)+p(τ) I+

Λ (=)
2 =

(τI+
Λ )p(<)+(τI+

Λ )p(=)
2 . Thus (τI+

Λ )p(<♦1=) ≥

(τI+
Λ )p(<)+(τI+

Λ )p(=)
2 . Now, (τF−Λ )p(<♦1=) = p(τ) F−Λ (<♦1=) ≤ p(τ) max{F−Λ (<),F−Λ (=)} =

max{p(τ) F−Λ (<), p(τ) F−Λ (=)} = max{(τF−Λ )p(<), (τF−Λ )p(=)}. Thus (τF−Λ )p(<♦1=) ≤
max{(τF−Λ )p(<), (τF−Λ )p(=)} and 1−(τT −Λ )p(<♦1=) = p(τ) (1−T −Λ (<♦1=)) ≤ p(τ) max{1−
T −Λ (<), 1 − T −Λ (=)} = max{p(τ) (1 − T −Λ (<)), p(τ) (1 − T −Λ (=))} = max{1 − (τT −Λ )p(<), 1 −
(τT −Λ )p(=)}. Thus 1 − (τT −Λ )p(<♦1=) ≤ max{1 − (τT −Λ )p(<), 1 − (τT −Λ )p(=)}. Similarly, ♦2

and ♦3 cases. Hence, (τΛ)p is a NSVSBS of B.

Definition 3.11. Let (B1,∅1,∅2,∅3) and (B2,a1,a2,a3) be the bisemirings. Let Υ : B1 → B2

and Λ be an NSVSBS in B1, V be an NSVSBS in Υ(B1) = B2, the image of VS is defined

as Vf(V )(`2) = [T−f(V )(`2), 1− F−f(V )(`2)], [I−f(V )(`2), I+
f(V )(`2)], [F−f(V )(`2), 1− T−f(V )(`2)] where

T−f(V )(`2) = T−V f(`2), I−f(V )(`2) = I−V f(`2), I+
f(V )(`2) = I+

V f(`2) and F−f(V )(`2) = F−V f(`2).

Definition 3.12. Let (B1,∅1,∅2,∅3) and (B2,a1,a2,a3) be the bisemirings. Let f : B1 → B2

be any function. Let V be a VS in f(B1) = B2. Then the inverse image of V , f−1 is the VS in

B1 by Vf−1(V )(`1) = [T−f−1(V )
(`1), 1 − F−f−1(V )

(`1)], [I−f−1(V )
(`1), I+

f−1(V )
(`1)], [F−f−1(V )

(`1), 1 −
T−f−1(V )

(`1)], where T−f−1(V )
(`1) = T−V (f−1(`1)), I−f−1(V )

(`1) = I−V (f−1(`1)), I+
f−1(V )

(`1) =

I+
V (f−1(`1)), F−f−1(V )

(`1) = F−V (f−1(`1)).

Theorem 3.13. Every homomorphic image of NSVSBS of B1 is a NSVSBS of B2.

Proof. Let f : B1 → B2 be a homomorphism. Now, f(`1∅1`2) =

f(`1)a1f(`2),f(`1∅2`2) = f(`1)a2f(`2) and f(`1∅3`2) = f(`1)a3f(`2) for all

`1, `2 ∈ B1. Let V = f(Λ), Λ is a NSVSBS of B1. Let f(`1),f(`2) ∈ B2,

T−V (f(`1)a1f(`2)) ≥ T−Λ (`1∅1`2) ≥ min{T−Λ (`1), T−Λ (`2)} = min{T−V f(`1), T−V f(`2)}
and 1 − F−V (f(`1)a1f(`2)) ≥ 1 − F−Λ (`1∅1`2) ≥ min{1 − F−Λ (`1), 1 − F−Λ (`2)} =
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min{1 − F−V f(`1), 1 − F−V f(`2)}. Thus VTV (f(`1)a1f(`2)) ≥ min{VTV f(`1),VTV f(`2)}.
Similarly, VTV (f(`1)a2f(`2)) ≥ min{VTV f(`1),VTV f(`2)} and VTV (f(`1)a3f(`2)) ≥
min{VTV f(`1),VTV f(`2)}. Now, I−V (f(`1)a1f(`2)) ≥ I−Λ (`1∅1`2) ≥ I−Λ (`1)+I−Λ (`2)

2 =
I−V f(`1)+I−V f(`2)

2 and I+
V (f(`1)a1f(`2)) ≥ I+

Λ (`1∅1`2) ≥ I+
Λ (`1)+I+

Λ (`2)
2 =

I+
V f(`1)+I+

V f(`2)
2 . Thus

VIV (f(`1)a1f(`2)) ≥ V
I
V f(`1)+VIV f(`2)

2 . Similarly, VIV (f(`1)a2f(`2)) ≥ min{VIV f(`1),VIV f(`2)}
and VIV (f(`1)a3f(`2)) ≥ min{VIV f(`1),VIV f(`2)}. Now, F−V (f(`1)a1f(`2)) ≤ F−Λ (`1∅1`2) ≤
max{F−Λ (`1), F−Λ (`2)} = max{F−V f(`1), F−V f(`2)} and 1 − T−V (f(`1)a1f(`2)) ≤ 1 −
T−Λ (`1∅1`2) ≤ max{1 − T−Λ (`1), 1 − T−Λ (`2)} = max{1 − T−V f(`1), 1 − T−V f(`2)}.
Thus VFV (f(`1)a1f(`2)) ≤ max{VFV f(`1),VFV f(`2)}. Similarly, VFV (f(`1)a2f(`2)) ≤
max{VFV f(`1),VFV f(`2)} and VFV (f(`1)a3f(`2)) ≤ max{VFV f(`1),VFV f(`2)}. Hence, V is a

NSVSBS of B2.

Theorem 3.14. Every homomorphic pre-image of NSVSBS of B2 is a NSVSBS of B1.

Proof. Let f : B1 → B2 and f(<∅1=) = f(<)a1f(=),f(<∅2=) = f(<)a2f(=) and

f(<∅3=) = f(<)a3f(=) for all <,= ∈ B1. Let V = f(Λ), where V is any NSVSBS

of B2. Let <,= ∈ B1. Now, T−Λ (<∅1=) = T−V (f(<∅1=)) = T−V (f(<)a1f(=)) ≥
min{T−V f(<), T−V f(=)} = min{T−Λ (<), T−Λ (=)}. Thus T−Λ (<∅1=) ≥ min{T−Λ (<), T−Λ (=)}
and 1 − F−Λ (<∅1=) = 1 − F−V (f(<∅1=)) = 1 − F−V (f(<)a1f(=)) ≥ min{1 − F−V f(<), 1 −
F−V f(=)} = min{1−F−Λ (<), 1−F−Λ (=)}. Thus 1−F−Λ (<∅1=) ≥ min{1−F−Λ (<), 1−F−Λ (=)}.
Hence, VTV (<∅1=) ≥ min{VTV (<),VTV (=)}. Similarly, VTV (<∅2=) ≥ min{VTV (<),VTV (=)} and

VTV (<∅3=) ≥ min{VTV (<),VTV (=)}. Now, I−Λ (<∅1=) = I−V (f(<∅1=)) = I−V (f(<)a1f(=)) ≥
I−V f(<)+I−V f(=)

2 =
I−Λ (<)+I−Λ (=)

2 . Thus I−Λ (<∅1=) ≥ I−Λ (<)+I−Λ (=)
2 and I+

Λ (<∅1=) =

I+
V (f(<∅1=)) = I+

V (f(<)a1f(=)) ≥ I+
V f(<)+I+

V f(=)
2 =

I+
Λ (<)+I+

Λ (=)
2 . Thus I+

Λ (<∅1=) ≥
I+
Λ (<)+I+

Λ (=)
2 . Hence, VIV (<∅1=) ≥ VIV (<)+VIV (=)

2 . Similarly, VIV (<∅2=) ≥ VIV (<)+VIV (=)
2 and

VIV (<∅3=) ≥ VIV (<)+VIV (=)
2 . Now, F−Λ (<∅1=) = F−V (f(<∅1=)) = F−V (f(<)a1f(=)) ≤

max{F−V f(<), F−V f(=)} = max{F−Λ (<), F−Λ (=)}. Thus F−Λ (<∅1=) ≤ max{F−Λ (<), F−Λ (=)}
and 1 − T−Λ (<∅1=) = 1 − T−V (f(<∅1=)) = 1 − T−V (f(<)a1f(=)) ≤ max{1 − T−V f(<), 1 −
T−V f(=)} = max{1−T−Λ (<), 1−T−Λ (=)}. Thus 1−T−Λ (<∅1=) ≤ max{1−T−Λ (<), 1−T−Λ (=)}.
Hence, VFV (<∅1=) ≤ max{VFV (<),VFV (=)}. Similarly, VFV (<∅2=) ≤ max{VFV (<),VFV (=)} and

VFV (<∅3=) ≤ max{VFV (<),VFV (=)}. Hence, Λ is a NSVSBS of B1.

Theorem 3.15. If f : B1 → B2 is a homomorphism, then f(Λ(t1,t2,s)) is a level SBS of

NSVSBS V of B2.

Proof. Let f : B1 → B2 be a homomorphism and f(<∅1=) = f(<)a1f(=),f(<∅2=) =

f(<)a2f(=) and f(<∅3=) = f(<)a3f(=) for all <,= ∈ B1. Let V = f(Λ), Λ is a NSVSBS

of B1. By Theorem 3.13, V is a NSVSBS of B2. Let Λ(t1,t2,s) be any level SBS of Λ. Suppose

that <,= ∈ Λ(t1,t2,s). Then f(<∅1=),f(<∅2=) and f(<∅3=) ∈ Λ(t1,t2,s). Now, T−V (f(<)) =
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T−Λ (<) ≥ t1, T
−
V (f(=)) = T−Λ (=) ≥ t1. Thus T−V (f(<)a1f(=)) ≥ T−Λ (<∅1=) ≥ t1 and

1−F−V (f(<)) = 1−F−Λ (<) ≥ s, 1−F−V (f(=)) = 1−F−Λ (=) ≥ s. Thus 1−F−V (f(<)af(=)) ≥
1 − F−Λ (<∅1=) ≥ s. Now, I−V (f(<)) = I−Λ (<) ≥ t2, I

−
V (f(=)) = I−Λ (=) ≥ t2. Thus

I−V (f(<)a1f(=)) ≥ I−Λ (<∅1=) ≥ t2 and I+
V (f(<)) = I+

Λ (<) ≥ t2, I
+
V (f(=)) = I+

Λ (=) ≥ t2.

Thus I+
V (f(<)a1f(=)) ≥ I+

Λ (<∅1=) ≥ t2. Now, F−V (f(<)) = F−Λ (<) ≤ s, F−V (f(=)) =

F−Λ (=) ≤ s. Thus F−V (f(<)a1f(=)) ≤ F−Λ (<∅1=) ≤ s and 1 − T−V (f(<)) = 1 − T−Λ (<) ≤
t1, 1− T−V (f(=)) = 1− T−Λ (=) ≤ t1. Thus 1− T−V (f(<)af(=)) ≤ 1− T−Λ (<∅1=) ≤ t1, for all

f(<),f(=) ∈ B2. Similarly to prove other operations. Hence proved.

Theorem 3.16. If f : B1 → B2 is any homomorphism, then Λ(t1,t2,s) is a level SBS of

NSVSBS Λ of B1.

Proof. Let f : B1 → B2 be a homomorphism and f(<∅1=) = f(<)a1f(=),f(<∅2=) =

f(<)a2f(=) and f(<∅3=) = f(<)a3f(=) for all <,= ∈ B1. Let V = f(Λ), V is

a NSVSBS of B2. By Theorem 3.14, Λ is a NSVSBS of B1. Let f(Λ(t1,t2,s)) be a

level SBS of V . Suppose that f(<),f(=) ∈ f(Λ(t1,t2,s)). Then f(<∅1=),f(<∅2=) and

f(<∅3=) ∈ f(Λ(t1,t2,s)). Now, T−Λ (<) = T−V (f(<)) ≥ t1, T
−
Λ (=) = T−V (f(=)) ≥ t1. Thus

T−Λ (<∅1=) ≥ min{T−Λ (<), T−Λ (=)} ≥ t1 and 1 − F−Λ (<) = 1 − F−V (f(<)) ≥ s, 1 − F−Λ (=) =

1 − F−V (f(=)) ≥ s. Thus 1 − F−Λ (<∅1=) ≥ min{1 − F−Λ (<), 1 − F−Λ (=)} ≥ s. Now,

I−Λ (<) = I−V (f(<)) ≥ t2, I
−
Λ (=) = I−V (f(=)) ≥ t2. Thus I−Λ (<∅1=) ≥ I−Λ (<)+I−Λ (=)

2 ≥ t2 and

I+
Λ (<) = I+

V (f(<)) ≥ t2, I
+
Λ (=) = I+

V (f(=)) ≥ t2. Thus I+
Λ (<∅1=) ≥ I+

Λ (<)+I+
Λ (=)

2 ≥ t2. Now,

F−Λ (<) = F−V (f(<)) ≤ s, F−Λ (=) = F−V (f(=)) ≤ s. Thus F−Λ (<∅1=) = F−V (f(<)a1f(=)) ≤
max{F−Λ (<), F−Λ (=)} ≤ s and 1−T−Λ (<) = 1−T−V (f(<)) ≤ t1, 1−T−Λ (=) = 1−T−V (f(=)) ≤ t1.

Thus 1 − T−Λ (<∅1=) = 1 − T−V (f(<)a1f(=)) ≤ max{1 − T−Λ (<), 1 − T−Λ (=)} ≤ t1, for all

<,= ∈ B1. Similarly to prove other two operations. Hence proved.

4. (ρ, σ)-Neutrosophic vague SBSs

We discuss about (ρ, σ)-NSVSBS and (ρ, σ) ∈ [0, 1] be such that 0 ≤ ρ < σ ≤ 1.

Definition 4.1. Let Λ be any NSVS of B is called a (ρ, σ)-NSVSBS of B if


max{VTΛ (<♦1=), ρ} ≥ min{VTΛ (<),VTΛ (=), σ}

max{VTΛ (<♦2=), ρ} ≥ min{VTΛ (<),VTΛ (=), σ}

max{VTΛ (<♦3=), ρ} ≥ min{VTΛ (<),VTΛ (=), σ}





max{VIΛ(<♦1=), ρ} ≥ min
{
VIΛ(<)+VIΛ(=)

2 , σ
}

OR

max{VIΛ(<♦2=), ρ} ≥ min
{
VIΛ(<)+VIΛ(=)

2 , σ
}

OR

max{VIΛ(<♦3=), ρ} ≥ min
{
VIΛ(<)+VIΛ(=)

2 , σ
}


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
min{VFΛ (<♦1=), ρ} ≤ max{VFΛ (<),VFΛ (=), σ}

min{VFΛ (<♦2=), ρ} ≤ max{VFΛ (<),VFΛ (=), σ}

min{VFΛ (<♦3=), ρ} ≤ max{VFΛ (<),VFΛ (=), σ}

 .

That is, 

 max{T −Λ (<♦1=), ρ} ≥ min{T −Λ (<), T −Λ (=), σ},

max{1−F−Λ (<♦1=), ρ} ≥ min{1−F−Λ (<), 1−F−Λ (=), σ}


 max{T −Λ (<♦2=), ρ} ≥ min{T −Λ (<), T −Λ (=), σ},

max{1−F−Λ (<♦2=), ρ} ≥ min{1−F−Λ (<), 1−F−Λ (=), σ}


 max{T −Λ (<♦3=), ρ} ≥ min{T −Λ (<), T −Λ (=), σ},

max{1−F−Λ (<♦3=), ρ} ≥ min{1−F−Λ (<), 1−F−Λ (=), σ}





max{I+
Λ (<♦1=), ρ} ≥ min

{
I+

Λ (<)+I+
Λ (=)

2 , σ
}

max{I−Λ (<♦1=), ρ} ≥ min
{
I−Λ (<)−I−Λ (=)

2 , σ
}


ORmax{I+
Λ (<♦2=), ρ} ≥ min

{
I+

Λ (<)+I+
Λ (=)

2 , σ
}

max{I−Λ (<♦2=), ρ} ≥ min
{
I−Λ (<)−I−Λ (=)

2 , σ
}


ORmax{I+
Λ (<♦3=), ρ} ≥ min

{
I+

Λ (<)+I+
Λ (=)

2 , σ
}

max{I−Λ (<♦3=), ρ} ≥ min
{
I−Λ (<)−I−Λ (=)

2 , σ
}




 min{F−Λ (<♦1=), ρ} ≤ max{F−Λ (<),F−Λ (=), σ},

min{1− T −Λ (<♦1=), ρ} ≤ max{1− T −Λ (<), 1− T −Λ (=), σ}


 min{F−Λ (<♦2=), ρ} ≤ max{F−Λ (<),F−Λ (=), σ},

min{1− T −Λ (<♦2=), ρ} ≤ max{1− T −Λ (<), 1− T −Λ (=), σ}


 min{F−Λ (<♦3=), ρ} ≤ max{F−Λ (<),F−Λ (=), σ},

min{1− T −Λ (<♦3=), ρ} ≤ max{1− T −Λ (<), 1− T −Λ (=), σ}




for all <,= ∈ B.

Example 4.2. By Example 3.2,

[T −Λ (ϕ), T +
Λ (ϕ)] [I−Λ (ϕ), I+

Λ (ϕ)] [F−Λ (ϕ),F+
Λ (ϕ)]

ϕ = ȧ [0.65, 0.70] [0.55, 0.65] [0.3, 0.35]

ϕ = ä [0.6, 0.65] [0.50, 0.60] [0.35, 0.40]

ϕ = ã [0.35, 0.40] [0.25, 0.30] [0.60, 0.65]

ϕ = ~a [0.45, 0.55] [0.40, 0.50] [0.45, 0.55]

Clearly, Λ is a (0.25, 0.85) NSVSBS of B.

Theorem 4.3. The intersection of a family of every (ρ, σ)- NSV SBSs is a (ρ, σ)-NSVSBS.
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Proof. The proof is similar to Theorem 3.3.

Theorem 4.4. If Λ and Ψ are any two (ρ, σ)- NSV SBSs of B1 and B2 respectively, then

Λ×Ψ is a (ρ, σ)-NSVSBS of B1 × B2.

Proof. The proof is similar to Theorem 3.4.

Corollary 4.5. If Λ1,Λ2, ...,Λn are the families of (ρ, σ)-NSV SBSs of B1,B2, ...,Bn respec-

tively, then Λ1 × Λ2 × ...× Λn is a (ρ, σ)-NSVSBS of B1 × B2 × ...× Bn.

Definition 4.6. Let Λ be a (ρ, σ)- NSVS in B, the (ρ, σ)-SNSVR on B. ie) (ρ, σ)- NSVR on

Λ is V given by 
max{VTΛ (<,=), ρ} = min{VTΛ (<),VTΛ (=), σ}

max{VIΛ(<,=), ρ} = min
{
VIΛ(<)+VIΛ(=)

2 , σ
}

min{VFΛ (<,=), ρ} = max{VFΛ (<),VFΛ (=), σ}

 .

Theorem 4.7. Let Λ be a (ρ, σ)-NSVSBS of B and V be the (ρ, σ)-SNSVR of B. Then Λ is

a (ρ, σ)-NSVSBS of B if and only if V is a (ρ, σ)-NSVSBS of B × B.

Proof. A similar proof is given in Theorem 3.7.

Theorem 4.8. A homomorphic image of (ρ, σ)-NSVSBS of B1 is a (ρ, σ)-NSVSBS of B2.

Proof. A similar proof is given in Theorem 3.13.

Theorem 4.9. A homomorphic pre-image of (ρ, σ)-NSVSBS of B2 is a (ρ, σ)-NSVSBS of B1.

Proof. A similar proof is given in Theorem 3.14.
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Abstract 

Population growth has become a serious problem in many countries, especially Egypt. Which leads 

to an increase in the population area and an increase in buildings, which then leads to several 

problems, including large energy consumption, increased pollution, traffic congestion, and others. 

Therefore, many governments have resorted to using technology and applying it to build smart 

buildings to help save energy by using renewable energy to improve its impact on the environment, 

improve the quality of life of citizens, provide security and safety, and so on. The selection of 

smart buildings depends on many criteria. Since this problem is described as a multi-criteria 

decision-making (MCDM) problem, MCDM methods will be used in this paper. A hybrid method 

is presented to evaluate smart buildings. The first method, MEREC, was used to calculate the 

weights of criteria, and the VIKOR model was used for ranking alternatives. Then applying those 

weights to the CoCoSo, COPRAS, and TOPSIS methods for making comparisons using 

Spearman`s correlation coefficients for ranking these four methods. All methods used are applied 

in the T2NN environment. 

 

Keywords: Multi-Criteria Decision Making; Smart Building; Neutrosophic Theory; MEREC, 

VIKOR, TOPSIS, COPRAS, CoCoSo. 

 

1. Introduction 

The smart city has gained a lot of attention in recent years because it promises benefits such as 

high quality of life, economic prosperity, and environmental sustainability through advanced 

technologies [1]. Smart cities are a dynamic, integrated ecosystem that uses advanced technology 

such as integration of information and communication technologies (ICT), internet of things (IoT) 

devices, software solutions, user interfaces (UI), AI, data analysis and communication networks. 
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Smart cities use data analysis to collect and analyze data from various sources, and this data is 

processed to enable decision makers to take the necessary measures to create a sustainable 

environment, facilitate citizens’ lives, improve energy efficiency, and improve quality of life in 

general, such as transportation, energy, public safety, water resources, etc. Smart cities use this 

technology to be applied in different parts of the city, such as the smart traffic system, to improve 

traffic, avoid congestion, save time, and maintain citizen safety. Smart lighting system to save 

energy and reduce costs. Waste management and recycling systems, and water management 

systems to preserve materials. These applications result in improving energy consumption, 

generating clean energy, and enhancing the efficiency of its use. 

Smart cities are characterized by several features like, connectivity, data collection and 

analysis, infrastructure, sustainability, public services, citizen engagement, security, innovation, 

ecosystem, efficient transportation, see Figure 1. 

With the rapid development of artificial intelligence, the concept of smart building has been 

proposed to improve the performance and efficiency in the life cycle of a building [2].  the whole 

world is starting to realize the important of data and technology to improve citizens’ quality of life, 

enhance sustainability, and optimize urban infrastructure. The whole world is seeking to build 

smart cities to help leaders make decisions that contribute to improving the quality of life for 

citizens, enhance efficiency, safety, and overall performance. Smart Buildings play a crucial role 

in transforming urban landscapes by incorporating advanced technologies and intelligent systems 

contributes to sustainability goals by reducing energy consumption and environmental impact, 

optimize resource utilization, and enhance overall building performance.  

In smart buildings, technology and some advanced algorithms are used to monitor air quality, 

temperature, energy levels, humidity, the extent of pollution produced, and water consumption to 

enable officials to take the necessary measures to maintain a sustainable environment. Systems 

have also been built that can evaluate risk and emergency situations and respond quickly to them, 

such as natural disasters, accidents, and terrorist attacks, and provide means of safety and 

preservation of citizens, such as providing immediate evacuation methods or providing first aid. 

Here are key features and components of smart buildings: 

 Energy Efficiency: Smart buildings using advanced sensors, automation systems, and real-

time data analytics to detect energy consumption and adjust lighting and HVAC systems 
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to improve efficiency, reduce costs, reduce dependence on non-renewable energies, and 

use renewable energies. 

 Building Automation Systems (BAS): BAS It is an integrated system that includes the 

building’s various systems, such as heating, ventilation, air conditioning (HVAC), lighting, 

security, and so on, to facilitate the process of managing and controlling the building and 

improving its maintenance. 

 Smart Infrastructure: Smart Buildings are part of an interconnected ecosystem within Smart 

Cities. Using networked devices, cloud-based platforms, and interoperable technologies 

we can share data with other systems, such as transportation, water management, and 

public safety, enabling better coordination and resource allocation for improved 

management of building ensuring optimal building performance and reducing maintenance 

costs.   

 Enhanced Connectivity: Smart buildings are equipped with sensors that monitor ambient 

conditions, occupancy, and other parameters, allowing monitoring and control of building 

performance, occupancy patterns, and energy use.  

 Advanced Security Systems: Smart buildings are equipped with security systems such as 

surveillance cameras and intrusion detection devices to detect and prevent threats and risks 

such as fires and burglaries. 

 Resilience and Adaptability: Technology is used in smart buildings to monitor 

environmental conditions to make buildings have the ability to adapt to conditions as well 

as respond to them dynamically, adjust energy usage during peak demand, and integrate 

with renewable energy sources for increased resilience. 

 Economic Benefits: Smart Buildings attract businesses and stimulate economic growth in 

smart cities. Their energy-efficient features and advanced infrastructure make them 

attractive to companies seeking sustainable and technologically advanced spaces. 

 Predictive Maintenance: Sensors and data analytics enable predictive maintenance by 

monitoring the condition of building equipment. This helps identify potential issues before 

they lead to failures, reducing downtime and maintenance costs. 
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Figure 1. Smart city. 

Egypt aim to build new administrative capital and intend to make it smart city. The Egyptian 

government has planned to build many smart cities recently, and they are currently being built, 

with the new administrative capital on top of these cities. The New Administrative Capital is one 

of the most important smart cities that Egypt is building according to the standards of fourth 

generation cities, as it was designed to become one of the largest capitals in the world. Its total 

area is about 170 thousand acres, which is larger than the area of Singapore, to accommodate 18 

to 40 million people by 2025. President Abdel Fattah El-Sisi decided to build the Administrative 

Capital to relieve congestion in Cairo, so that the new capital will be the new headquarters for 

Egypt’s government. Among the most important features of the city are the elegance of 

architectural design, the electricity generation system, ease of transportation, a smart waste 

collection system, and a security command and control center in the capital. One of the most 

important features of smart cities is smart buildings, so the government seeks to make the capital’s 

buildings smart buildings. 

Multi-criteria decision-making (MCDM) problem has many methods that can assess each 

criterion. To choose the most suitable smart building solution, MCDM approach are applied. 



Neutrosophic Sets and Systems, Vol. 63, 2024                                                                                                                                         346 
_____________________________________________________________________________________ 

___________________________________________________________ 
Asmaa Elsayed, Comprehensive Review MEREC weighting method for Smart Building Selection for New Capital using 
neutrosophic theory 

MCDM is a problem-solving technique that incorporates decision-makers' preferences to identify 

the best alternative. By assigning weights to each criterion based on the decision-makers' 

preferences and using suitable evaluation methods, such as the Technique for Order of Preference 

by Similarity to Ideal Solution (TOPSIS) or the Simple Additive Weighting (SAW) method, you 

can identify the smart building solution that best aligns with your organization's needs and 

priorities. The weights of criteria are very crucial and imperative to the problem as they influence 

the outcome of the decision- making process and may lead to unpredictable results [3]. weights 

show the importance for each criteria in the problem. Weighting methods can be divided into three 

categories: subjective, objective and combinative. Subjective methods require DMs to take 

responsibility for assigning weights to the criteria depending on their preference, subjective 

methods like (Direct Ranking, Point allocation, Pairwise Comparisons, SMART) but this type of 

method is not efficient enough when the number of criteria increase. In contrast, objective methods 

do not involve DMs in determining the relative importance of the criteria but instead use 

mathematical algorithms based on initial data or decision matrix like Entropy, CRITI. The 

combinative approach involves a blend of both subjective and objective methods [4]. This paper 

aim to show a new hybrid method to help decision makers to select best city. First MEREC method 

(Method based on the Removal Effects of Criteria), for determining criteria weights [5], The 

VIKOR method used to solve various decision-making issues based on multi-criteria. 

Additionally, the proposed approach is presented in the type-2 neutrosophic number (T2NN). 

Hence, the T2NN-MEREC method is used to calculate the weight of each criterion then T2NN-

VIKOR method is used to evaluate and rank alternatives. 

Finally, this paper including a comparative between four methods VIKOR, COPRAS, TOPSIS 

and COCOSO and rank disagreements are expressed using spearman`s correlation coefficients. 

1.1 Contributions of this study 

The primary contribution of this study are summarized below: This paper development of a 

new approach MEREC method with VIKOR method based on T2NN. The proposed approach 

T2NN-MEREC-VIKOR improve performance of decision making problems. This study provides 

a suggestion for the government for selecting best smart city and proposed a comparative analysis 

between MCDM methods for evaluating alternatives. Finally, sensitivity analysis and a 

comparative analysis are presented to prove the robustness, and stability of the proposed approach. 

1.2 Organization of the paper 
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This paper is organized as follows: In section 2, a literature review the studies used in this 

paper. Section 3, introduce the concept and methodology for the suggested approach T2NN-

MEREC-VIKOR. Section4, introduce case study for this method. Finally, Section5, proposed the 

sensitivity and comparative analysis between some of MCDM methods using spearman`s 

correlation coefficients. Section 6 display the conclusion of this study. 

2. Literature Review 

In this section, simple explanation will be given contain literature associated with this study. 

This part consists of three sub-parts. the first one present studies related to smart building. second 

part introduce the studies that explain the neutrosophic numbers T2NN. Third part present some 

literature about MEREC, VIKOR, COCOSO, COPRAS, and TOPSIS methods. 

2.1 Smart Building 

Building performance optimization is a multidisciplinary field that encompasses various 

aspects, including building rating systems, energy simulation algorithms, AI and ML technologies, 

and project delivery methodologies. As the global energy crisis continues to exert pressure on the 

construction industry, there is an increasing need for innovative solutions to ensure the efficient 

and sustainable operation of buildings. Given the importance of building performance, developing 

an innovative MCDM method is necessary to promote the Efficiency and effectiveness in building 

performance-based design [6]. 

The goal of optimization in building performance design is to identify the best design solution 

for a specific building application, considering factors such as energy efficiency, indoor 

environmental quality, cost, and other criteria specified by the client or the regulatory 

requirements. MCDM can be applied to evaluate and select the final optimization solution among 

several alternative solutions. This process involves assigning weights to the criteria, forming 

decision matrices, and calculating the normalized decision matrix to determine the relative 

preference for each solution. Building performance optimization is a critical issue in the AEC field, 

which requires the development and implementation of innovative algorithms and methodologies. 

By applying MCDM and other evaluation techniques, the optimal solution for a specific building 

performance optimization problem can be determined, leading to the design and construction of 

more efficient, sustainable, and cost-effective buildings. MCDM or Multi-Criteria Decision 
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Analysis (MCDA), is one of the most accurate methods of decision-making, and it can be known 

as a revolution in this field [7].   

2.2 T2NN Environment 

Type-1 neutrosophic number (T1NNS) is a mathematical concept introduced by Florentin 

Smarandache in early 1990s as a generalization of fuzzy numbers to capture the nature of human 

judgments and beliefs, which can be expressed as true, false, or indeterminate. It has been 

successfully applied in various fields, including building performance optimization, to improve 

the accuracy and robustness of decision-making processes. The concept of T1NNS is based on 

three levels of truth: True, False, and Indeterminate. The True level represents beliefs that are 

confirmed, the false level represents beliefs that are refuted, and the indeterminate level represents 

beliefs that are uncertain or have not been evaluated yet. Smarandache proposed the neutrosophic 

sets in [8-9, 23]. Type-2 neutrosophic number (T2NNS) is an extension of the concept of a T1NN 

to a higher level of indeterminacy [24]. This extension enables a more comprehensive 

representation of the beliefs of decision-makers and their degree of confidence in the beliefs. The 

neutrosophic sets proved to be a valid workspace in describing incompatible and indefinite 

information. z(T, I, F) is a Type-1 Neutrosophic Number. But z((𝑇𝑡, 𝑇𝑖,𝑇𝑓), (𝐼𝑡, 𝐼𝑖,𝐼𝑓), (𝐹𝑡, 𝐹𝑖, 𝐹𝑓)) 

is a Type-2 Neutrosophic Number, which means that each neutrosophic component T, I, and F is 

split into its truth, indeterminacy, and falsehood subparts [10]. Then, T2NN has become a preferred 

tool by scholar and researchers in recent time. 

2.3 MCDM Methods 

MCDM methods are used in many fields [11, 12]. These methods help to compare alternatives 

and find the best one [13]. There are various MCDM technique that have been employed to deal 

with several real-world decision making issues. Keshavarz-Ghorabaee et al. [5] a new Method 

based on the Removal Effects of Criteria (MEREC). This method used for determining criteria 

weights. Saidin et al. [14] mention that MEREC can solve fuzzy MCDM problems. 

Shanmugasundar et al. [15] introduce application of MEREC in multi-criteria selection. MEREC 

focuses on the change in the total criteria weight by disabling that criterion when determining the 

weight of a criterion. 

Also, VIKOR method has been utilizes in several literatures. VIKOR used to prioritize and 

rank different alternatives. It is based on the concept of stochastic dominance, which considers 

both the strength and the number of attributes that exceed a particular threshold. VIKOR (Vise 

https://sciprofiles.com/profile/399373?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name
https://sciprofiles.com/profile/1601789?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name
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Kriterijumska Optimizajica I Kompromisno Resenje) was first introduced by Serafim Opricovic 

in 1998. VIKOR aims to complete decision-making on existing alternatives by ranking and 

choosing sample sets with conflicting criteria [16]. Sayadi et al. [17] introduce extension of 

VIKOR method for decision making problem with interval numbers. Shumaiza et al. [18] present 

VIKOR method with trapezoidal bipolar fuzzy information. Yazdani et al. [19] proposed a 

technique called the combined compromise solution (CoCoSo) for an MCDM problem which is 

based on integrated simple additive weighing and an exponentially weighted product model. 

TOPSIS (Technique for Order Performance by Similarity to Ideal Solution) method, which is one 

of the most widely used MCDM methods [20]. TOPSIS is one of the fundamental methods in 

MADM domain and has been immensely popular in applications and as foundation to numerous 

method development [21, 22]. 

 

3. Methodology 

This section introduces the methodology for each study in this paper. this section also divided 

into three parts.  First, some basic concept and definitions about T2NN. Second MEREC method 

to determine the weights for each criterion, then the MCDM methods proposed for ranking best 

alternatives form smart buildings. 

Four steps to evaluate process using MCDM approaches: 

 Defining alternatives and criteria related to problem. 

 Determine weights of each criteria using one of the MCDM methods. 

 Assigning individual performance to each option. 

 Evaluate alternatives based on the aggregate performance of them on all criteria. 

3.1 Preliminaries  

In this part definitions and some concepts and operations associated with T2NN are given below: 

Definition 1 [10]. We consider that Z is limited universe of discourse and F[0,1] is the set of all 

triangular neutrosophic numbers on F[0,1] . 

A Type 2 neutrosophic number set (T2NNS) 𝑈̃ in Z is represented by:  

 𝑈̃  = ⟨(𝑇𝑇𝑈̃ 
(𝑧), 𝑇𝐼𝑈̃

(𝑧),𝑇𝐹𝑈̃
(𝑧)), (𝐼𝑇𝑈̃

(𝑧), 𝐼𝐼𝑈̃(𝑧), 𝐼𝐹𝑈̃
(𝑧)), (𝐹𝑇𝑈̃

(𝑧), 𝐹𝐼𝑈̃
(𝑧),𝐹𝐹𝑈̃

(𝑧))⟩            (1) 
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Where 𝑇̌𝑈(𝑧) ∶ 𝑍 →  𝐹[0,1]  , 𝐼𝑈(𝑧) ∶ 𝑍 →  𝐹[0,1] , 𝐹̌𝑈(𝑧) ∶ 𝑍 →  𝐹[0,1] . The type -2 neutrosophic 

number set 𝑇̌𝑈(𝑧) =  (𝑇𝑇𝑈̃ 
(𝑧), 𝑇𝐼𝑈̃

(𝑧), 𝑇𝐹𝑈̃
(𝑧)) , 𝐼𝑈(𝑧) =   (𝐼𝑇𝑈̃

(𝑧), 𝐼𝐼𝑈̃(𝑧), 𝐼𝐹𝑈̃
(𝑧)) , 𝐹̌𝑈(𝑧) =

 (𝐹𝑇𝑈̃
(𝑧), 𝐹𝐼𝑈̃

(𝑧),𝐹𝐹𝑈̃
(𝑧))  defined as the truth, indeterminacy and falsity member-ships of z in 𝑈̃. 

 

Definition 2 [10]. Suppose that  

𝑈̃1  = ⟨(𝑇𝑇𝑈̃1
(𝑧), 𝑇𝐼𝑈1̃

(𝑧), 𝑇𝐹𝑈1̃
(𝑧)), (𝐼𝑇𝑈1̃

(𝑧), 𝐼𝐼𝑈1̃
(𝑧), 𝐼𝐹𝑈1̃

(𝑧)), (𝐹𝑇𝑈1̃
(𝑧), 𝐹𝐼𝑈1̃

(𝑧), 𝐹𝐹𝑈1̃
(𝑧))⟩ and 

𝑈̃2  =⟨(𝑇𝑇𝑈̃2
(𝑧), 𝑇𝐼𝑈̃2

(𝑧), 𝑇𝐹𝑈2̃
(𝑧)), (𝐼𝑇𝑈2̃

(𝑧), 𝐼𝐼𝑈2̃
(𝑧), 𝐼𝐹𝑈2̃

(𝑧)), (𝐹𝑇𝑈2̃
(𝑧), 𝐹𝐼𝑈2̃

(𝑧), 𝐹𝐹𝑈̃2
(𝑧))⟩ 

Are two T2NNs then the following equations describe some of T2NN operators. 

 𝑈̃1  ⊕ 𝑈̃2  = 〈

(
𝑇𝑇𝑈̃1

(𝑧) + 𝑇𝑇𝑈̃2
(𝑧) − 𝑇𝑇𝑈1̌

(𝑧). 𝑇𝑇𝑈̃2
(𝑧), 𝑇𝐼𝑈1̃

(𝑧) + 𝑇𝐼𝑈2̃
(𝑧) − 𝑇𝐼𝑈1̃

(𝑧). 𝑇𝐼𝑈2̃
(𝑧),

𝑇𝐹𝑈1̃
(𝑧) + 𝑇𝐹𝑈2̃

(𝑧) − 𝑇𝐹𝑈1̃
(𝑧). 𝑇𝐹𝑈2̃

(𝑧)
) ,

(𝐼𝑇𝑈1̃
(𝑧). 𝐼𝑇𝑈2̃

(𝑧), 𝐼𝐼𝑈1̃
(𝑧). 𝐼𝐼𝑈2̃

(𝑧), 𝐼𝐹𝑈1̃
(𝑧). 𝐼𝐹𝑈2̃

(𝑧)) ,

 (𝐹𝑇𝑈1̃
(𝑧). 𝐹𝑇𝑈2̃

(𝑧), 𝐹𝐼𝑈1̃
(𝑧). 𝐹𝐼𝑈2̃

(𝑧), 𝐹𝐹𝑈1̃
(𝑧). 𝐹𝐹2

(𝑧)) 

〉     (2) 

   𝑈̃1  ⊗ 𝑈̃2 = 

〈

((𝑇𝑇𝑈̃1
(𝑧). 𝑇𝑇𝑈̃2

(𝑧) , 𝑇𝐼𝑈1̃
(𝑧). 𝑇𝐼𝑈2̃

(𝑧), 𝑇𝐹𝑈1̃
(𝑧). 𝑇𝐹𝑈2̃

(𝑧))) ,

((𝐼𝑇𝑈1̃
(𝑧) + 𝐼𝑇𝑈2̃

(𝑧) − 𝐼𝑇𝑈1̃
(𝑧). 𝐼𝑇𝑈2̃

(𝑧)) , ( 𝐼𝐼𝑈1̃
(𝑧) + 𝐼𝐼𝑈2̃

(𝑧) − 𝐼𝐼𝑈1̃
(𝑧). 𝐼𝐼𝑈2̃

(𝑧)) , (
𝐼𝐹𝑈1̃

(𝑧) + 𝐼𝐹𝑈2̃
(𝑧) −

𝐼𝐹𝑈1̃
(𝑧). 𝐼𝐹𝑈2̃

(𝑧)
))

((𝐹𝑇𝑈1̃
(𝑧) + 𝐹𝑇𝑈2̃

(𝑧) − 𝐹𝑇𝑈1̃
(𝑧).𝐹𝑇𝑈2̃

(𝑧)) , ( 𝐹𝐼𝑈1̃
(𝑧) + 𝐹𝐼𝑈2̃

(𝑧) − 𝐹𝐼𝑈1̃
(𝑧).𝐹𝐼𝑈2̃

(𝑧)) , (
𝐹𝐹𝑈1̃

(𝑧) + 𝐹𝐹2
(𝑧)−

𝐹𝐹𝑈1̃
(𝑧).𝐹𝐹2

(𝑧)
))

〉         (3) 

 Score function  

𝑆(𝑈̃) = 
1

12
 ⟨8 + (𝑇𝑇𝑈̃1

(𝑍) + 2( 𝑇𝐼𝑈1̃
(𝑍)) + 𝑇𝐹𝑈1̃

(𝑍)) − (𝐼𝑇𝑈1̃
(𝑍) + 2(𝐼𝐼𝑈1̃

(𝑍)) +  𝐼𝐹𝑈1̃
(𝑍)) −

 (𝐹𝑇𝑈1̃
(𝑍) + 2(𝐹𝐼𝑈1̃

(𝑍)) +  𝐹𝐹𝑈1̃
(𝑍))⟩                                                                                                                            (4) 

Definition 3 [10]. To Build the evaluation matrix Ai × Œip to assess the classification of 

alternatives with respect to each criterion. 

        Œ𝑖𝑝 ⋯  Œ𝑖𝑛 

𝑅̌=

𝐴𝑙𝑡1

⋮

𝐴𝑙𝑡𝑚

 [

Ž11 ⋯ 𝑧̌1n

⋮ ⋱ ⋮

𝑍̌m1 ⋯ Žmn

]      (5) 

3.2 MEREC method 

In this section, the following steps present the MEREC method that used to evaluate the 

weights of criteria in MCDM problems as mentioned if the Figure 2. 
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Step 1. Build the decision matrix which element will be 𝑥𝑖𝑗, and matrix consist of n x m where n 

numbers of criteria and m numbers of alternatives , then matrix form is :  

 X = 

[
 
 
 
 
 
 
 
 
𝑥11 𝑥12 ⋯ 𝑥1𝑗 ⋯ 𝑥𝑖𝑚

𝑥21 𝑥22 ⋯ 𝑥2𝑗 ⋯ 𝑥2𝑚

⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑥𝑖1 𝑥𝑖2 ⋯ 𝑥𝑖𝑗 ⋯ 𝑥𝑖𝑚

⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑗 ⋯ 𝑥𝑛𝑚]
 
 
 
 
 
 
 
 

               (6) 

       

Step 2. Normalize this matrix using the following Eq. (7).  

nⅈj
x = {

mⅈn 
k

𝑥𝑘𝑗

𝑥𝑖𝑗
, 𝑖𝑓 𝑗 ∈ 𝐵

𝑥𝑖𝑗

max 
k

𝑥𝑘𝑗
, 𝑖𝑓 𝑗 ∈ 𝐻

                          (7) 

where B is the set of beneficial criteria and H is the set of non-beneficial criteria. 

Step 3. The overall efficiency of the alternatives (Si) is calculated using Eq. (8). 

Si̇ = ln ( 1 + 
1

𝑚
  ∑ |ln (nⅈj

x)|𝑗 )             (8) 

Step 4. Based on method idea, calculate the performance of the alternatives by removing each 

criterion. So, 𝑆𝑖𝑗
̀  denotes as the overall performance of ith alternative concerning the removal of 

jth criterion.        

                            𝑆𝑖𝑗
̀ = ln( 1 + (

1

𝑚
  ∑ |ln (nⅈk

x )|𝑘,𝑘≠𝑗 ))             (9) 

 

Step 5. Calculating the absolute value of the deviations using Eq. (10),  𝐸𝑗 the difference between 

Step 3 and Step 4.  

𝐸𝑗 = ∑ |  𝑆𝑖𝑗
̀ − 𝑆𝑖| 𝑖        (10) 

Step 6: The weights of criteria is computed as follow using Eq. (11).  

𝑊𝑗 =  
𝐸𝑗

∑ 𝐸𝑘𝑘
            (11) 



Neutrosophic Sets and Systems, Vol. 63, 2024                                                                                                                                         352 
_____________________________________________________________________________________ 

___________________________________________________________ 
Asmaa Elsayed, Comprehensive Review MEREC weighting method for Smart Building Selection for New Capital using 
neutrosophic theory 

 
Figure 2. Steps for MEREC method. 

 

3.3 VIKOR method 

In this part VIKOR steps are introduced to rank alternatives based on weights given from 

MEREC method as mentioned in Figure 3. 

Step 1. Define the decision matrix. This matrix is defined as follow: 

Cx1 Cx2 ⋯  Cxn 

     F=

𝐴1

𝐴2

⋮

𝐴3

 

[
 
 
 
 
x11 x12 ⋯ x1n

x21 x22 ⋯ x2n

⋮ ⋮ ⋱ ⋮

xm1 xm2 ⋯ xmn]
 
 
 
 

      (12) 

Where 𝐴i denote alternatives as 𝑖 = 1,2, 3, …., n and Cxn denote criteria as j = 1,2, 3, …., m  

 

Step 2. Determining best (𝑓𝑗
∗) and worst (𝑓𝑗

− ) performance values as the ideal solution for all 

criteria, to normalize decision matrix as the following equations:  

𝑓𝑗
∗ = 𝑚𝑎𝑥𝑗 𝑓𝑖𝑗  and  𝑓𝑗

− = 𝑚𝑖𝑛𝑗 𝑓𝑖𝑗         (13) 

𝑓𝑗
∗ = 𝑚𝑖𝑛𝑗 𝑓𝑖𝑗  and  𝑓𝑗

− = 𝑚𝑎𝑥𝑗 𝑓𝑖𝑗        (14) 

Step 3. The utility measure (𝑆𝑖) and regret measures (𝑅𝑖) are calculated as follow:  

𝑆𝑖 = ∑ 𝑊𝑗  
𝑛
𝑗=1

(𝑓∗− 𝑓𝑖𝑗)

(𝑓𝑗
∗− 𝑓𝑗

−)
         (15) 

𝑅𝑖 =  𝑚𝑎𝑥𝑗 [𝑊𝑗  
(𝑓∗− 𝑓𝑖𝑗)

(𝑓𝑗
∗− 𝑓𝑗

−)
]    (16) 

where  𝑊𝑗   is the weight of each criterion with the MEREC. 

 

Decision Matrix 
Normalize Decision 

matrix
Calculate 

performance S

Calculate the 
performance by 
removing each 

criterion ሖ𝑆

Compute the 
summation ሖ𝑆 - S 

Determine the 
weights 
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Step 4. Finally, the value of 𝑄𝑖  is calculated known as VIKOR index using Eq. (17). 

𝑄𝑖 = 𝑣 [
𝑆𝑖−𝑆∗

𝑆−−𝑆∗
] + (1- 𝑣) [

𝑅𝑖−𝑅∗

𝑅−−𝑅∗
]      (17) 

Where 𝑆∗ = 𝑚𝑖𝑛𝑖 𝑆𝑖    𝑎𝑛𝑑 𝑆− = 𝑚𝑎𝑥𝑖 𝑆𝑖 

            𝑅∗ =  𝑚𝑖𝑛𝑖 𝑅𝑖    𝑎𝑛𝑑 𝑅− = 𝑚𝑎𝑥𝑖 𝑅𝑖 

Step 5. Ranking is applied on 𝑄𝑖 by ascending order.  

 

Figure 3. Steps for VIKOR method. 

3.4 TOPSIS method 

Here are the steps for TOPSIS method. 

Step 1. Construct decision matrix same as the following above. 

Step 2.  Calculating the normalized matrix based on this equation: 

𝛼𝑖𝑗 = 
𝑋𝑖𝑗

√∑(𝑋𝑖𝑗)
2
                 

Step 3. Assigning weights to decision matrix as follow: 

𝑋𝑖𝑗 =    𝛼𝑖𝑗 ∗ 𝑊𝑗                      

 Step 4.  Define best and worst solution  

𝑋𝑖
𝑏 = max𝑥𝑖𝑗      as best value 

𝑋𝑖
𝑤 = min𝑥𝑖𝑗      as worst value 

Step 5. Calculating Euclidean distance for best and worst values. 

𝑑𝑖
𝑏 = √∑(𝑥𝑖𝑗  − 𝑋𝑗

𝑏 )2 

𝑑𝑖
𝑤 = √∑(𝑥𝑖𝑗  − 𝑋𝑗

𝑤 )2 

Decision Matrix 
Determine the 
weight of each 

criterion 

determining best 
(f*) and worst (f- ) 

Calculate the 

( 𝑆𝑖 )and (𝑅𝑖 ) 
Calculate 𝑄𝑖
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Step 6. Calculating Value of 𝐷𝑖 by  

𝐷𝑖 =  
𝑑𝑖

𝑤 

𝑑𝑖
𝑤 + 𝑑𝑖

𝑏  
 

Step 7. Ranking based on 𝐷𝑖 values while the largest 𝐷𝑖 is best alternatives. 

3.5 COCOSO method 

Here are the steps for COCOSO method. 

Step 1. Construct decision matrix same as the following above. 

Step 2. Determine the normalized matrix by the following equation: 

 𝑟𝑖𝑗 = 
𝑥𝑖𝑗  −𝑚𝑖𝑛𝑥𝑖𝑗  

𝑚𝑎𝑥𝑥𝑖𝑗  − 𝑚𝑖𝑛𝑥𝑖𝑗   
      for benefit criterion 

𝑟𝑖𝑗 =  
𝑚𝑎𝑥𝑥𝑖𝑗  −𝑥𝑖𝑗  

𝑚𝑎𝑥𝑥𝑖𝑗  − 𝑚𝑖𝑛𝑥𝑖𝑗   
      for cost criterion 

Step 3. As, CoCoSo method consists of the integration of methods such as the WASPAS, SAW 

and EWP. So, based on WASPAS method 𝑆𝑖 ,𝑃𝑖 are computed as follow:  

𝑆𝑖 =  ∑𝑤𝑖  . 𝑟𝑖𝑗  

𝑃𝑖 =  ∑  ( 𝑟𝑖𝑗)
𝑤𝑖 

Step 4. Three appraisal score strategies are calculated  

𝑘𝑖𝑎 = 
 𝑃𝑖 + 𝑆𝑖  

∑  𝑃𝑖 + 𝑆𝑖
𝑚
𝑖=1

 

𝑘𝑖𝑏 = 
𝑆𝑖 

𝑚𝑖𝑛 𝑆𝑖
 + 

𝑃𝑖 

𝑚𝑖𝑛  𝑃𝑖
 

𝑘𝑖𝑐 = 
𝜆. 𝑆𝑖 + (1 − 𝜆)𝑃𝑖 

𝜆.max 𝑆𝑖 + (1 − 𝜆)max 𝑃𝑖
 

Where 𝜆 usually =0.5 but its range from 0 to1. 

Step 5. Final step final ranking for all alternatives based on performance 𝑘𝑖  

𝑘𝑖 = (𝑘𝑖𝑐 + 𝑘𝑖𝑏 + 𝑘𝑖𝑐)
1
3 +

1

3
 (𝑘𝑖𝑐 + 𝑘𝑖𝑏 + 𝑘𝑖𝑐) 

3.6 COPRAS method [26] 

Step 1. Same as all MCDM method first step is to construct decision matrix. 

Step 2.  Normalize matrix using these formula. 

       𝑟𝑖𝑗 = 
𝑥𝑖𝑗  

∑ 𝑥𝑖𝑗 
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Step 3. Obtain weighted normalized matrix by: 

𝑟𝑖𝑗̌ = 𝑟𝑖𝑗 . 𝑤𝑖 

Step 4. Determine maximize and minimize for each alternative  

𝑆+ = ∑ 𝑟𝑖𝑗̌
𝑘
𝑗=1         

𝑆− = ∑ 𝑟𝑖𝑗̌
𝑘
𝑗=𝑘+1     

Step 5. Calculate the relative weight for each alternative  

𝑄𝑖 = 𝑆+ + 
𝑚𝑖𝑛 𝑆−  ∑ 𝑆−𝑚

𝑖=1

𝑆−     ∑
𝑚𝑖𝑛 𝑆− 

𝑆−
𝑚
𝑖=1

 

Step 6: The priority order of the alternatives is ranked using the value of Qi in descending order. 

The highest relative weight is the most acceptable alternative. 

 

4. Case Study 

4.1 problem definition 

The problem definition of smart buildings revolves around addressing challenges and 

inefficiencies in traditional building systems by integrating advanced technologies to enhance 

efficiency, sustainability, safety, and occupant comfort. 

With the dense population increase, there are several problems facing traditional buildings that 

affect the environment and the quality of life of citizens, as well as the consumption of energy and 

resources in general. Traditional buildings face several problems, including overlapping buildings 

and an increase in shared spaces, thus increasing the risk of theft, harm to citizens, and lack of 

security. Therefore, smart buildings are designed to provide more privacy and security through 

sensors, surveillance cameras, and a security system to prevent unauthorized persons from 

accessing the buildings.  

Among the most important problems that traditional buildings suffer from is the increase in 

energy costs and their increased impact on the environment resulting from increased heat. 

Therefore, smart buildings contain an energy management system that can track energy 

consumption and adjust the system settings to adapt to the results after obtaining them after 

collecting data and adjusting the control of heating and ventilation mechanisms. And air 
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conditioning. There are many other problems that must be overcome, therefore, by addressing 

these challenges by using technology in smart buildings to improve citizens’ lives, reduce energy 

consumption, provide safety, improve the quality of buildings, optimize the use of resources, and 

improve economic growth.   

Smart cities seek to build a better future through advanced technology and modern 

technologies. One of the most important smart cities is OSLA the first smart city in the world. 

There are several smart cities like Barcelona, Spain, Columbus, Ohio, USA, Dubai, United Arab 

Emirates, Hong Kong, China, Kansas City, Missouri, USA, London, England, Melbourne, 

Australia. Egypt also aims to become an ideal model for cultural environmental development, and 

in order to choose the best solutions, the Egyptian government can use different evaluation 

methods. In this paper, a method is used to obtain the weights of the criteria. Smart buildings use 

wide rang technology and its intelligence to design building and collect data from citizen, systems 

and sensors and analyze these data and optimize smart building. 

To get a comprehensive and balanced ranking, the government can use the T2NN algorithm, 

which is an Artificial Neural Network approach that considers both qualitative and quantitative 

factors. This approach can provide a reliable ranking of potential smart city candidates based on 

their overall suitability and ability to contribute to Egypt's goal of developing smart, sustainable, 

and environmentally friendly cities. 

4.2 Description of alternatives and criteria 

Several cities around the world have been implementing smart technologies, including smart 

buildings, to enhance urban living.  So, we choose of cities that have made strides in adopting 

smart building technologies:  

 Alt1: Singapore: has been a pioneer in the development of smart city technologies. As it 

depends on the use of sensors and data analytics in buildings for energy efficiency, waste 

management, and urban planning. 

 Alt2: Barcelona, Spain: has implemented the "Smart City Barcelona" initiative, leveraging 

technologies for smart lighting, waste management, and transportation. Smart building 

solutions are integrated into the city's infrastructure to enhance energy efficiency and 

sustainability. 
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 Alt3: Seoul, South Kore: has focused on creating a smart city infrastructure with an 

emphasis on smart buildings. The city has implemented energy-efficient technologies, 

smart grids, and advanced transportation systems to improve overall urban sustainability. 

 Alt4: Dubai, United Arab Emirates: has been working towards becoming a smart city with 

initiatives like the Smart Dubai project. The city has incorporated smart building 

technologies for energy management, smart lighting, and integrated data systems. 

The criteria for defining a smart building can vary, but generally, they encompass the 

integration of intelligent systems and data-driven solutions. Here are key criteria for smart 

buildings: 

 C1: Energy Efficiency: Integration of energy-efficient technologies, such as smart lighting 

systems, occupancy sensors, and energy management systems, to optimize energy 

consumption and reduce environmental impact. 

 C2: Building Advanced Security Systems: Implementation of security systems, including 

access control, and intrusion detection, often integrated with other building systems. 

 C3: Data Analytics and Predictive Maintenance: Use of data analytics to gain insights into 

building performance, enabling predictive maintenance to address potential issues before 

they become critical. 

 C4: Resilience and Disaster preparedness: Conduct a comprehensive risk assessment to 

identify potential hazards and vulnerabilities specific to the building's location, such as 

earthquakes, floods, hurricanes, or other natural disasters. 

 

4.3 Applying MEREC to get weights then using VIKOR method to rank alternatives 

Step 1. Organize alternative and criteria based on our expert’s opinion in Table 1, according to 

Eq. (5).  

 Experts use the linguistic terms presented in Table 7 [10].  

 Aggregate the finial evaluation matrix using Eq. (4) to form the decision matrix in Table 

2. 
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Table 1. Classification of alternatives by experts. 

 

 

 

Table 2. Decision matrix. 

 
Criteria 

𝐂𝟏 ∈ 𝑩 𝐂𝟐 ∈ 𝑩 

Alt1 〈(0.617,0.599,0.623); (0.013,0.001,0.014); (0.003,0.005,0.005)〉 〈(0.476,0.440,0.453); (0.013,0.018,0.030); (0.008,0.011,0.026)〉 

A𝑙𝑡2 〈(0.353,0.308,0.358); (0.043,0.042,0.064); (0.024,0.032,0.063)〉 〈(0.640,0.613,0.637); (0.002,0.003,0.007); (0.004,0.007,0.006)〉 

Alt3 〈(0.245,0.245,0.099); (0.070,0.160,0.193); (0.034,0.160,0.106)〉 〈(0.475,0.393,0.358); (0.006,0.006,0.017); (0.002,0.016,0.005)〉 

A𝑙𝑡4 〈(0.589,0.588,0.591); (0.006,0.005,0.003); (0.008,0.005,0.002)〉 〈(0.383,0.261,0.358); (0.054,0.003,0.057); (0.030,0.024,0.084)〉 

 
Criteria 

𝑪𝟑 ∈ 𝑯 𝑪𝟒 ∈ 𝑯 

A𝑙𝑡1 〈(0.650,0.619,0.650); (0.003,0.004,0.004); (0.001,0.008,0.005)〉 〈(0.653,0.629,0.650); (0.006,0.005,0.006); (0.008,0.006,0.001)〉 

Alt2 〈(0.552,0.544,0.593); (0.004,0.005,0.009); (0.002,0.002,0.008)〉 〈(0.393,0.351,0.358); (0.033,0.039,0.060); (0.026,0.030,0.059)〉 

A𝑙𝑡3 〈(0.603,0.539,0.571); (0.001,0.008,0.001); (0.001,0.001,0.004)〉 〈(0.485,0.420,0.458); (0.005,0.003,0.011); (0.001,0.008,0.003)〉 

Alt4 〈(0.664,0.657,0.664); (0.003,0.003,0.004); (0.004,0.004,0.004)〉 〈(0.588,0.510,0.571); (0.003,0.001,0.002); (0.008,0.001,0.002)〉 

 

Here we have two beneficial criteria C1, C2 and two non-beneficial criteria C3, C4. 

Step 2. Use Eq. (4) to modify type 2 neutrosophic numbers to the crisp represented in Table 3. 

 Table 3. Crisp numbers. 

Alternatives 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 

𝐀𝐥𝐭𝟏 0.8659 0.8061 0.8765 0.8598 

Alt2 0.7488 0.8720 0.8497 0.7614 

Alt3 0.6493 0.7954 0.8523 0.8118 

Alt4 0.8597 0.7487 0.8844 0.8467 

 

Step 3.  Applying MEREC method to get weight, use Eq. (7) to get normalized decision matrix 

as shown in Table 4. 

Table 4. Normalized decision matrix 

Alternatives 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 

𝐀𝐥𝐭𝟏 0.75 0.93 0.99 1 

Expert Alt n C1 C2 C3 C4 

Expert1 Alt1 MG G VG MG 

Expert2 Alt2 VB VG G B 

Expert3 Alt3 B MG MG M 

Expert4 Alt4 G MB VG MG 
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Alt2 0.87 0.86 0.96 0.89 

Alt3 1 0.94 0.96 0.94 

Alt4 0.75 1 1 0.98 

 

Step 4. Obtain overall efficiency of the alternatives (Si), using Eq. (8). 

         𝑆1 = 𝑙𝑛 (1 +
1

4
 (|ln (0.75)| + |ln(0.93)| + |ln (0.99)| + |ln(1)| )) = 0.088 

         𝑆2 = 𝑙𝑛 (1 +
1

4
 (|ln (0.87)| + |ln(0.86)| + |ln (0.96)| + |ln(0.89)| )) = 0.106 

𝑆3 = 𝑙𝑛 (1 +
1

4
 (|𝑙𝑛 (1)| + |𝑙𝑛(0.94)| + |𝑙𝑛 (0.96)| + |𝑙𝑛(0.94)| )) = 0.040 

𝑆4 = 𝑙𝑛 (1 +
1

4
 (|𝑙𝑛 (0.75)| + |𝑙𝑛(1)| + |𝑙𝑛 (1)| + |𝑙𝑛(0.98)| )) = 0.074 

Step 5. Now, calculate the performance of the alternatives by removing each criterion. The result 

in Table 5 using Eq. (9). But first let's present an example 𝑆11
̀ . 

𝑆11
̀  = 𝑙𝑛 (1 +

1

4
 ( |ln(0.93)| + |ln (0.99)| + |ln(1)| )) = 0.021 

Table 5. Values of  𝑆11
̀  

Alternatives 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 

𝐀𝐥𝐭𝟏 0.021 0.072 0.086 0.088 

Alt2 0.074 0.072 0.061 0.08 

Alt3 0.040 0.025 0.030 0.025 

Alt4 0.004 0.074 0.074 0.069 

 

Step 6. Calculating the absolute value of the deviations using formula of Eq. (10). 

 𝐸1 = |0.021 − 0.088| + |0.072 − 0.106| + |0.086 − 0.040| + |0.088 − 0.074| = 0.161 

𝐸2 = |0.074 − 0.088| + |0.072 − 0.106| + |0.061 − 0.040| + |0.08 − 0.074| = 0.075 

𝐸3 =  |0.040 − 0.088| + |0.025 − 0.106| + |0.030 − 0.040| + |0.025 − 0.074| = 0.188 

𝐸4 =  |0.040 − 0.088| + |0.074 − 0.106| + |0.074 − 0.040| + |0.069 − 0.074| = 0.155 

 

Step 7. Finally, compute weight for each criterion using Eq. (11), as presented in Figure 4. 

𝑤1= 0.278 

𝑤2= 0.129 

𝑤3= 0.325 

𝑤4= 0.268 
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Figure 4. Weights of criteria. 

 

Step 8. After calculating weights for every criterion we now using VIKOR method to rank 

alternatives but first we get Table 4.  

Table 4. Normalized decision matrix. 

Alternatives 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 

𝐀𝐥𝐭𝟏 0.75 0. 93 0.99 1 

Alt2 0.87 0.86 0.96 0.89 

Alt3 1 0.94 0.96 0.94 

Alt4 0.75 1 1 0.98 

  

Step 9. Determine the PIS (best 𝑓𝑗
∗) and NIS (worst 𝑓𝑗

−) by using Eq. (13) as presented in Table 5. 

Table 5. PIS and NIS. 

𝑾𝒋 0.278 0.129 0.325 0.268 

𝒇𝒋
∗ 1 1 1 1 

𝒇𝒋
− 0.75 0.86 0.96 0.89 

 

Step 10. Compute (𝑆𝑖) and (𝑅𝑖) of each alternative using Eq. (15) and Eq. (16) and the result will 

be founded in Table 6. 

Step11. Calculate the value of VIKOR index, using Eq. (17) the result in Table 6. Notice that, v = 

0.5. 
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Table 6. Final ranking of the alternatives. 

Alternatives 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑺𝒊 𝑹𝒊 𝑸𝒊 Rank 

𝐀𝐥𝐭𝟏 0.278 0.06 0.081 0 0.419 0.278 0.103 3 

Alt2 0.145 0.129 0.325 0.268 0.867 0.325 1 1 

Alt3 0 0.055 0.325 0.146 0.526 0.325 0.684 2 

Alt4 0.278 0 0 0.049 0.327 0.278 0 4 

V= 0.5 
   𝑆∗ , 𝑅∗ 0.327 0.278   

   𝑆−, 𝑅− 0.867 0.325   

 

Step 13. After evaluating and ranking we found that the order for best alternatives of selecting the 

best smart city is A2, A3, and A4 as presented in Figure 5. 

 

Figure 5. Ranking the alternatives. 

4.4 Determining ranking of alternatives using MCDM methods 

To deduce final best alternative, we use four methods (TOPSIS, CoCoSo, COPRAS)  

4.4.1 TOPSIS Method 

Ranking alternatives based on TOPSIS method shown in Table 7. 

Table 7. Final ranking using TOPSIS method. 

Alternatives 𝒅+ 𝒅− 𝑺𝒊 Rank 

𝐀𝐥𝐭𝟏 0.587 0.0929 0.136 4 

Alt2 0.02 0.02 0.5 2 

Alt3 0.016 0.012 0.43 3 

Alt4 0.026 0.038 0.59 1 
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4.4.2 CoCoSo Method 

Ranking alternatives based on CoCoSo method shown in Table 8. 

Table 8. Final ranking using CoCoSo method. 

Alternatives 𝑲𝒊𝒂 𝑲𝒊𝒃 𝑲𝒊𝒄 𝑲𝒊 Rank 

𝐀𝐥𝐭𝟏 0.232 2.95 0.631 2.83 3 

Alt2 0.368 5.195 1 4.059 1 

Alt3 0.250 3.27 0.679 3.013 2 

Alt4 0.149 2 0.404 2.218 4 

 

4.4.3 COPRAS Method 

Ranking alternatives based COPRAS method shown in Table 9. 

Table 9. Final ranking using COPRAS method. 

Alternatives 𝑺+ 𝑺− 𝑸𝒊 Rank 

𝐀𝐥𝐭𝟏 0.108 0.152 0.2515 2 

Alt2 0.101 0.141 0.2557 1 

Alt3 0.088 0.146 0.2374 4 

Alt4 0.104 0.152 0.2465 3 

  

4.5 Comparative Analysis 

A comparative analysis can ensure experts to validate the outcomes by some changes in the 

essential model and clarify the robustness of the proposed methodology. Therefore, comparative 

analysis use comparing ranking results obtained by a MCDM methods used in this paper using 

Spearman's rank correlation coefficient. 

The comparative analysis is compare of the ranking from MCDM techniques including 

COPRAS, TOPSIS, CoCoSo, and VIKOR. The final ranking of VIKOR, TOPSIS, CoCoSo and 

COPRAS methods is shown in Table 10 and Figure 6 represent the graphical chart of the ranking 

order for each method. 

Table 10. Comparison of other MCDM methods. 

Alternatives VIKOR 𝐓𝐈𝐏𝐎𝐒𝐈𝐒 𝐂𝐨𝐂𝐨𝐒𝐨 COPRAS 

𝐀𝐥𝐭𝟏 3 4 3 2 

Alt2 1 2 1 1 

Alt3 2 3 2 4 

Alt4 4 1 4 3 
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Figure 6. Final ranking of other MCDM methods. 

Spearman's rank correlation coefficient, often denoted as 𝑟𝑠, is a measure of the strength and 

direction of a monotonic relationship between two variables. In other words, it assesses how well 

the variables are related, with direction and strength taken into account. Spearman's rank 

correlation coefficient ranges from -1 to 1: 

 -1 indicates a perfect negative relationship (as one increases, the other decreases). 

 1 indicates a perfect positive relationship (as one increases, the other also increases). 

 0 indicates no relationship. 

The Spearman's rank correlation coefficient can be calculated using, 𝑟𝑠 = 1 − 
6 ∑𝑑𝑖

2

𝑚.(𝑚2−1)
, where 𝑑𝑖 

difference in ranking of the alternative by the two methods and 𝑚 is  the number of alternatives.  

 

5. Conclusions 

Smart buildings, or "smart structures," are becoming increasingly popular due to their potential 

to enhance energy efficiency, improve indoor air quality, and optimize building operation costs. 

While these benefits are widely recognized, it is crucial to address challenges associated with the 

integration of technology into building systems. The first challenge is ensuring reliable 

connectivity. To maximize the potential of smart buildings, it is necessary to establish a robust 

network infrastructure that can handle data transfer at a high rate. This requires a careful selection 

of connectivity hardware, software, and security measures. Additionally, connectivity speed and 

reliability should be taken into account, as delays in data transmission can significantly impact the 
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effectiveness of smart building systems. Another challenge is ensuring compatibility and 

integration of different smart building systems and components. The ability to easily connect, 

integrate, and synchronize different technologies is crucial for creating a fully functioning smart 

building ecosystem. This can be achieved by implementing a consistent set of standards and 

protocols across all components, ensuring smooth communication and seamless data sharing. 

Another challenge is dealing with data privacy and security. Smart buildings contain sensitive data, 

such as occupant information, energy usage patterns, and environmental conditions. It is crucial to 

protect this data from unauthorized access and ensure its confidentiality and integrity. This can be 

achieved by implementing strong data encryption, secure access controls, and regular security 

audits. Moreover, there is the challenge of balancing energy efficiency, occupant comfort, and the 

integration of cutting-edge technology. Smart buildings must not only minimize energy 

consumption but also be able to accommodate and utilize new technologies without compromising 

their energy efficiency or occupant comfort. Despite these challenges, smart buildings hold 

immense potential for creating more sustainable, energy-efficient, and technologically advanced 

cities. By addressing the issues associated with smart building integration and focusing on 

innovative solutions, countries like Egypt can successfully navigate the complex path to building 

a smart future. After applying analysis on MCDM methods we found that VIKOR and CoCoSo 

methods have the same result in this study. In conclusion, after comparing the performance of the 

CoCoSo and VIKOR methods in the MCDM process, the two methods demonstrated comparable 

performance. The use of the CoCoSo method ensures consistency in decision-making, while the 

VIKOR method offers a more comprehensive understanding of the alternatives. Overall, these two 

methods can provide reliable guidance in selecting the best smart building technologies for the 

New Capital of EGYPT. 
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Abstract 

In this paper we extend the SuperHyperAlgebra, SuperHyperGraph, 

SuperHyperTopology, SuperHyperSoft Set, endowed with SuperHyperOperations,  

SuperHyperAxioms, and SuperHyperFunctions, to the most general form of structure, 

from our real world, called SuperHyperStructure in any field of knowledge. A practical 

application of the SuperHyperStructure is presented at the end. 

The prefix “Hyper” [Marty, 1934] stand for the codomain of the functions and 

operations to be P(H), or the powerset of the set H. While the prefix “Super” 

[Smarandache, 2016] stands for using the Pn(H), n ≥ 2, or the n-th PowerSet of the Set H 

{because the set (or system) 𝐻 (that may be a set of items, a company, institution, country, 

region, etc.) is organized in sub-systems, which in their turn are organized in sub-sub-

systems, and so on} in the domain and/or codomain of the functions and operations. 

 

Keywords: n-th PowerSet of a Set, SuperHyperAlgebra, SuperHyperGraph, 

SuperHyperTopology, SuperHyperSoft Set, SuperHyperOperations, 

SuperHyperAxioms, SuperHyperFunctions, HyperStructure, SuperHyperStructure, 

Neutrosophic SuperHyperStructure 

1. From Classical Structure and HyperStructure to SuperHyperStructure  

We present below the evolution of structures in all fields of knowledge: 

Classical Structure, HyperStructure, SuperHyperStructure (none having indeterminacy);  

mailto:smarand@unm.edu
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and  

Neutrosophic Classical Structure, Neutrosophic HyperStructure, Neutrosophic 

SuperHyperStructure (all having some indeterminacy, as in our everyday life). 

 

     2. Classical Structure 

A Classical Structure is built on a non-empty set 𝐻, whose Classical Operations (#0) are 

defined as: 

#0: 𝐻
𝑚 → 𝐻, for integer 𝑚 ≥ 1, 

and with Classical Axioms acting on it. 

       3. HyperStructure 

A HyperStructure (Marty [1], 1934) is built on a non-empty set 𝐻, whose 

HyperOperations (#𝐻0) are defined as: 

#𝐻0: 𝐻
𝑚 → 𝑃 ∙ (𝐻), where 𝑃 ∙ (𝐻) is the set of all non-emtpy subsets of 𝐻, 

and with HyperAxioms acting on it. 

      4. Neutrosophic HyperStructure 

As an extension of the HyperStructure, the Neutrosophic HyperStructure (Smarandache 

[2], 2016) is built on a non-empty set 𝐻, whose Neutrosophic HyperOperations (#𝑁𝑆0) 

are defined as: 

#𝑁𝑆0: 𝐻
𝑚 → 𝑃(𝐻), where 𝑃(𝐻) is the set of all non-emtpy and empty subsets of 𝐻, 

and the axioms acting on it are called Neutrosophic HyperAxioms. 

5. Definition of the nth-PowerSet 𝑷⋆
𝒏(𝑯) without Indeterminacy (no empty-set) 

The nth-PowerSet 𝑷⋆
𝒏(𝑯) [2] of the set 𝐻, that the SuperHyperStructure is built on, 

describes a world that does not contain indeterminacy, where similarly the set (or system) 𝐻 (that 

may be a set of items, a company, institution, country, region, etc.) is organized in sub-systems, 

which in turn are organized in sub-sub-systems, and so on. 

The nth-PowerSet 𝑷∗
𝒏(𝑯) is also defined recursively: 

𝑷⋆
0(𝑯) ≝ 𝐻  

𝑷⋆
1(𝑯) = 𝑃⋆(𝑯)  

𝑷⋆
2(𝑯) = 𝑃⋆(𝑃⋆(𝑯))  

𝑷⋆
3(𝑯) = 𝑃⋆(𝑷⋆

2(𝑯)) = 𝑃⋆(𝑃⋆(𝑃⋆(𝑯))) 

… … … ……………………………………….... 

𝑷⋆
𝑛(𝑯) = 𝑃⋆(𝑷⋆

𝑛−1(𝑯)) = 𝑃⋆(𝑃⋆(…𝑃⋆(𝑯)… ))⏟            
𝑛

 , 

where 𝑃 is repeated n times into the last formula, 

and the empty-set ∅ (that represents indeterminacy, uncertainty) is not allowed in none of 

the sequence terms: 

𝑯, 𝑃⋆(𝑯),𝑷⋆
2(𝑯), 𝑷⋆

3(𝑯), … , 𝑷⋆
𝑛(𝑯). 
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6. Definition of the nth-PowerSet 𝑷𝒏(𝑯) with Indeterminacy (represented by the 

empty-set) 

The nth-PowerSet 𝑷𝒏(𝑯) of the set 𝐻, that the Neutrosophic SuperHyperStructure is built 

on, best describes our real world where always the indeterminacy occurs, and a set (or system) 𝐻 

(that may be a set of items, a company, institution, country, region, etc.) is organized in sub-

systems, which in turn are organized in sub-sub-systems, and so on. 

The nth-PowerSet 𝑷𝒏(𝑯) is defined recursively: 

𝑃0(𝑯) ≝ 𝐻  

𝑃1(𝑯) = 𝑃(𝑯)  

𝑃2(𝑯) = 𝑃(𝑃(𝑯))  

𝑃3(𝑯) = 𝑃(𝑃2(𝑯)) = 𝑃(𝑃(𝑃(𝑯))) 

… … … …………………………………….. 

𝑃𝑛(𝑯) = 𝑃(𝑃𝑛−1(𝑯)) = 𝑃(𝑃(…𝑃(𝑯)… ))⏟          
𝑛

 , 

where 𝑃 is repeated n times into the last formula, 

and the empty-set ∅ (that represents indeterminacy, uncertainty) is allowed in all sequence 

terms: 

𝐻,𝑃(𝐻),𝑃2(𝐻), 𝑃3(𝐻), … ,𝑃𝑛(𝐻). 

The nth-PowerSet 𝑃⋆
𝑛(𝐻) and 𝑃𝑛(𝐻) of a non-empty set H were introduced by 

Smarandache [2] in 2016. 

7. SuperHyperStructure 

The SuperHyperStructure was founded by Smarandache in 2016 [2], who introduced the 

SuperHyperAlgebra in 2016 and developed it in 2022 [8], SuperHyperGraph in 2019, 2020, 2022 

[3, 4, 5], SuperHyperFunction and SuperHyperTopology in 2022 [6], and respectively the 

SuperHyperOperations, and SuperHyperAxioms [2016-2022]. 

A SuperHyperStructure is built on the n-th powerset 𝑃⋆
𝑛(𝐻) of a non-empty set H, for 

integer 𝑛 ≥ 1, whose SuperHyperOperators (#𝑆𝐻0) are defined as follows: 

#𝑆𝐻0: (𝑃⋆
𝑟(𝐻))𝑚 → 𝑃⋆

𝑛(𝐻), 

where 𝑃⋆
𝑟(𝐻) is the powerset of H, for integer 𝑟 ≥ 1, while similarly 𝑃⋆

𝑛(𝐻) is the n-th 

powerset of H, both without any empty-sets, and the SuperHyperAxioms act on it. 

 

8. Neutrosophic SuperHyperStructure 

Similarly, a Neutrosophic SuperHyperStructure (2016) is built on the nth-powerset 

𝑃𝑛(𝐻) of a non-empty set H, for 𝑛 ≥ 1, whose Neutrosophic SuperHyperOperators (#𝑁𝑆𝐻0) are 

defined as follows: 
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#𝑁𝑆𝐻0: (𝑃
𝑟(𝐻))

𝑚
→ 𝑃𝑛(𝐻), 

where 𝑃𝑟(𝐻) is the r-powerset of H, for integer 𝑟 ≥ 1, while 𝑃𝑛(𝐻) is the nth-powerset of 

H, both containing empty-sets. 

9. The Triplet of HyperStructure 

As an analogy of the neutrosophic triplet [9 – 19] presented between (2016, 2019 – 2023): 

<Algebra, NeutroAlgebra, AntiAlgebra>, 

we propose now the following triplet: 

<HyperStructure, Neutro-HyperStructure, Anti-HyperStructure>, 

that extends Marti’s HyperStructure, 

where: 

— the HyperStructure has all axioms totally (100%) true; 

— the Neutro-HyperStructure has at least one axiom which is partially true (T), partially 

indeterminate (I), and partially false (F); (𝑇, 𝐼, 𝐹) ∈ {(1, 0, 0), (0, 0, 1)}, and no axiom is totally 

(100%) false; 

— the Anti-HyperStructure has at least one axiom that is 100% false, or (𝑇, 𝐼, 𝐹) =

(0, 0, 1), no matter how the other axioms are. 

10. The Triplet of SuperHyperStructure 

One has, as a further extension of the above, the following triplet: 

<SuperHyperStructure, Neutro-SuperHyperStructure, Anti-SuperHyperStructure>, 

where: 

— the SuperHyperStructure has all axioms totally (100%) true; 

— the Neutro-SuperHyperStructure has at least one axiom that is partially true (T), partially 

indeterminate (I), and partially false (F); or (𝑇, 𝐼, 𝐹) ∈ {(1, 0, 0), (0, 0, 1)}, and no axiom is totally 

(100%) false; 

— the Anti-SuperHyperStructure has at least one axiom that is totally (100%) false, or 

(𝑇, 𝐼, 𝐹) = (0, 0, 1), no matter how are the other axioms. 

 

11.  SuperHyperFunction of Many Variable [7] 

*: ( ) ( )r m nf P S P S  , for integers 2m   and , 0r n  . 

          It is part of the SuperHyperStructure. 

 

12.  Example of SuperHyperFunction of Two Variables 

 Let’s take m = 2, r = 1, and n = 2. 

 

                2 2

*: ( ( )) ( )f P S P S   
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x                               

y 

{1} {2} {1, 2} 

{1} {{1}, {2}} {1} {{1}, {1 2}} 

{2} {{2}, {1, 2}} {{1}, {1, 2}} {2} 

{1, 2} {1, 2}  {{1}. {2}, {1, 

2}} 

 

Table 1 of Values of the above SuperHyperFunction of Two Variable f(x, y) 

 

For example, f({1}, {1, 2}) = {{1}, {1 2}}, etc. 

 

 

13. SuperHyperAlgebra 

 

We recall our 2016 concepts of SuperHyperOperation, SuperHyperAxiom, 

SuperHyperAlgebra, and their corresponding Neutrosophic SuperHyperOperation Neutrosophic 

SuperHyperAxiom and Neutrosophic SuperHyperAlgebra [2] and developed later in (2019-2024), 

especially in [8] in 2022. 

Let 
* ( )nP H  be the nth-powerset of the set H such that none of P(H), P2(H), …, Pn(H) contain 

the empty set . 

Also, let ( )nP H  be the nth-powerset of the set H such that at least one of the P2(H), …, Pn(H) 

contain the empty set . 

The SuperHyperOperations are operations whose codomain is either 
* ( )nP H  and in this case 

one has classical-type SuperHyperOperations, or 𝑃𝑛(𝐻) and in this case one has Neutrosophic 

SuperHyperOperations, for integer 2n  . 

      14. Classical-type Binary SuperHyperOperation 

 A classical-type Binary SuperHyperOperation *

(2, )n
is defined as follows: 

* 2

(2, ) *: ( )n

n H P H
 

where * ( )nP H  is the nth-powerset of the set 𝐻, with no empty-set. 

15. Examples of classical-type Binary SuperHyperOperation 

1) Let 𝐻 = {𝑎, 𝑏} be a finite discrete set; then its power set, without the empty-set  , is:   

𝑃(𝐻) = {𝑎, 𝑏, {𝑎, 𝑏}}, and: 

𝑃2(𝐻) = 𝑃(𝑃(𝐻)) = 𝑃({𝑎, 𝑏, {𝑎, 𝑏}}) = {𝑎, 𝑏, {𝑎, 𝑏}, {𝑎, {𝑎, 𝑏}}, {𝑏, {𝑎, 𝑏}}, {𝑎, 𝑏, {𝑎, 𝑏}} }. 
 

* 2 2

(2,2) *: ( )H P H
 

Table 2. Example 1 of classical-type Binary SuperHyperOperation. 
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*

(2,2)
 

𝑎 𝑏 

𝑎 {𝑎, {𝑎, 𝑏}} {𝑏, {𝑎, 𝑏}} 

𝑏 𝑎 {𝑎, 𝑏, {𝑎, 𝑏}} 

16. Classical-type m-ary SuperHyperOperation {or more accurate 

denomination (m, n)-SuperHyperOperation} 

Let 𝑈 be a universe of discourse and a non-empty set 𝐻, 𝐻 ⊂ 𝑈. Then: 
*

( , ) *: ( )m n

m n H P H
 

where the integers 𝑚,𝑛 ≥ 1, 

𝐻𝑚 = 𝐻 × 𝐻 × …× 𝐻⏟          
𝑚 𝑡𝑖𝑚𝑒𝑠

 , 

and 
* ( )nP H is the nth-powerset of the set 𝐻 that includes the empty-set. 

This SuperHyperOperation is a m-ary operation defined from the set H to the nth-powerset of 

the set 𝐻. 

17. Neutrosophic m-ary SuperHyperOperation {or more accurate denomination 

Neutrosophic (m, n)-SuperHyperOperation} 

Let 𝑈 be a universe of discourse and a non-empty set 𝐻, 𝐻 ⊂ 𝑈. Then: 

( , ) : ( )m n

m n H P H
 

where the integers 𝑚,𝑛 ≥ 1; ( )nP H - the n-th powerset of the set H that includes the empty-set. 

18. SuperHyperAxiom 

A classical-type SuperHyperAxiom or more accurately a (m, n)-SuperHyperAxiom is an 

axiom based on classical-type SuperHyperOperations. 

Similarly, a Neutrosophic SuperHyperAxiom {or Neutrosphic (m, n)-SuperHyperAxiom} 

is an axiom based on Neutrosophic SuperHyperOperations. 

There are: 

 Strong SuperHyperAxioms, when the left-hand side is equal to the right-hand side 

as in non-hyper axioms, 

 and Week SuperHyperAxioms, when the intersection between the left-hand side and 

the right-hand side is non-empty. 

19. SuperHyperAlgebra and Neutrosophic SuperHyperStructure 

A SuperHyperAlgebra or more accurately (m-n)-SuperHyperAlgebra is an algebra dealing 

with SuperHyperOperations and SuperHyperAxioms. 

Again, a Neutrosophic SuperHyperAlgebra {or Neutrosphic (m, n)-SuperHyperAlgebra} is 

an algebra dealing with Neutrosophic SuperHyperOperations and Neutrosophic 

SuperHyperOperations. 



Neutrosophic Sets and Systems, Vol. 63, 2024                                                                                                 373 
_______________________________________________________________________ 

____________________________________________________________________ 
Florentin Smarandache, Foundation of SuperHyperStructure & Neutrosophic SuperHyperStructure (review paper) 

 

 

In general, we have SuperHyperStructures {or (m-n)-SuperHyperStructures}, and 

corresponding Neutrosophic SuperHyperStructures.  

For example, there are SuperHyperGrupoid, SuperHyperSemigroup, SuperHyperGroup, 

SuperHyperRing, SuperHyperVectorSpace, etc. 

 

20. SuperHyperGraph (or n-SuperHyperGraph) 

Introduced by F. Smarandache [3, 4, 5] in 2019 and developed in 2020 - 2022. 

Let 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑚}, for 1 ≤ 𝑚 ≤ ∞, be a set of finite or infinite number of vertices, 

that contains Single Vertices (the classical ones), Indeterminate Vertices (unclear, vague, 
partially known), and Null Vertices (totally unknown, empty). 

Let 𝑃(𝑉) pe the power of set 𝑉, that includes the empty set  too. 

Then 𝑃𝑛(𝑉) be the 𝑛-power set of the set 𝑉, defined in a recurrent way, i.e.:  

P(V), 𝑃2(𝑉) = 𝑃(𝑃(𝑉)), 𝑃3(𝑉) = 𝑃(𝑃2(𝑉)) = 𝑃 (𝑃(𝑃(𝑉))), …, 𝑃𝑛(𝑉) = 

𝑃(𝑃𝑛−1(𝑉)),  

for 1 ≤ 𝑛 ≤ ∞, where by definition 0 ( )
def

P V V and 1( ) ( )
def

P V P V . 

Then, the SuperHyperGraph (SHG) [or n-SuperHyperGraph (n-SHG)] is an ordered 

pair: 

n-SHG = (𝐺𝑛, 𝐸𝑛),  

where 𝐺𝑛 ⊆ 𝑃𝑛(𝑉), and 𝐸𝑛 ⊆ 𝑃𝑛(𝑉), for 1 ≤ 𝑛 ≤ ∞. 

𝐺𝑛 is the set of vertices, and 𝐸𝑛 is the set of edges. 
 

The set of vertices 𝐺𝑛 contains all possible types of vertices as in our real world: 
 Singles Vertices (the classical ones); 

 Indeterminate Vertices (unclear, vague, partially unknown); 
 Null Vertices (totally unknown, 

empty);  

and: 

 SuperVertex (or SubsetVertex), i.e. two or more (single, indeterminate, or null) 

vertices put together as a group (organization). 

 n-SuperVertex that is a collection of many vertices such that at least one is an  

(𝑛 − 1)- SuperVertex and all the others into the collection are 𝑟-SuperVertices, if 

any, whose order 𝑟 ≤ 𝑛 − 1. 

The set of edges 𝐸𝑛 contains the following types of edges: 

 Singles Edges (the classical ones);  

 Indeterminate Edges (unclear, vague, partially unknown); 
 Null Edges (totally unknown, 

empty);  

and: 

 HyperEdge (connecting three or more single vertices); 
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 SuperEdge (connecting two vertices, at least one of them being a SuperVertex); 

 𝑛-SuperEdge (connecting two vertices, at least one being a 𝑛-SuperVertex, and 

the other of order 𝑟-SuperVertex, with 𝑟 ≤ 𝑛); 

 SuperHyperEdge (connecting three or more vertices, at least one being a 
SuperVertex); 

 𝑛 -SuperHyperEdge (connecting three or more vertices, at least one being 

a 𝑛 - SuperVertex, and the other 𝑟-SuperVertices with 𝑟 ≤ 𝑛; 

 MultiEdges (two or more edges connecting the same two vertices); 
 Loop (and edge that connects an element with 

itself). and: 

 Directed Graph (classical one); 

 Undirected Graph (classical one); 
 Neutrosophic Directed Graph (partially directed, partially undirected, 

partially indeterminate direction). 

 

21. SuperHyperTopology [6, 7] 

Let consider 𝜏𝑆𝐻𝑇  be a family of subsets of 
* ( )nP H .  

Then 𝜏𝑆𝐻𝑇  is called a SuperHyperTopology on 
* ( )nP H , if it satisfies the following axioms: 

(SHT-1) 𝜙 and
* ( )nP H  belong to SHT . 

(SHT-2) The intersection of any finite number of elements in SHT  is in SHT . 

(SHT-3) The union of any finite or infinite number of elements in SHT is in SHT . 

Then
*( ( ), )n

SHTP H   is called a SuperHyperTopological Space on 
* ( )nP H . 

 

22. Neutrosophic SuperHyperTopology [6, 7] 

Let consider 𝜏𝑁𝑆𝐻𝑇  be a family of subsets of ( )nP H .  

Then 𝜏𝑁𝑆𝐻𝑇  is called a Neutrosophic SuperHyperTopology on ( )nP H , if it satisfies the following 

axioms: 

(NSHT-1) 𝜙 and ( )nP H  belong to NSHT . 

(NSHT-2) The intersection of any finite number of elements in NSHT  is in NSHT . 

(NSHT-3) The union of any finite or infinite number of elements in NSHT is in NSHT . 

Then ( ( ), )n

NSHTP H  is called a Neutrosophic SuperHyperTopological Space on ( )nP H . 

 

23. SuperHyperSoft Set 

 

The SuperHyperSoft Set [22, 23] is an extension of the HyperSoft Set [21] and Soft Set [20].  

Let 𝒰 be a universe of discourse, 𝒫(𝒰) the powerset of 𝒰.  

Let 𝑎1, 𝑎2, …, 𝑎𝑛, for 𝑛 ≥ 1, be 𝑛 distinct attributes, whose corresponding attribute values 

are respectively the sets 𝐴1, 𝐴2, …, 𝐴𝑛,  
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with 𝐴𝑖 ∩ 𝐴𝑗 = ∅, for 𝑖 ≠ 𝑗, and 𝑖, 𝑗 ∈ {1, 2,… , 𝑛}.  

Let 𝒫(𝐴1), 𝒫(𝐴2), …, 𝒫(𝐴𝑛) be the powersets of the sets 𝐴1, 𝐴2, …, 𝐴𝑛 respectively. 

Then the pair (𝐹, 𝒫(𝐴1) ×  𝒫(𝐴2) × …× 𝒫(𝐴𝑛),  where × meaning Cartesian product, or: 

𝐹: 𝒫(𝐴1) × 𝒫(𝐴2) × …× 𝒫(𝐴𝑛) →  𝒫(𝒰) 

is called a SuperHyperSoft Set.  

24. Example of SuperHyperSoft Set  

If we define the function: 

𝐹: 𝒫(𝐴1) × 𝒫(𝐴2) × 𝒫(𝐴3) × 𝒫(𝐴4) →  𝒫(𝒰). 

we get a SuperHyperSoft Set.  

Let’s assume, from the previous example, that: 

𝐹({medium, tall}, {white, red, black}, {female}, {American, Italian}) = {𝑥1, 𝑥2}, which 

means that: 

𝐹({medium or tall} and {white or red or black} and {female} and {American or Italian}) 

= {𝑥1, 𝑥2}. 

Therefore, the SuperHyperSoft Set offers a larger variety of selections, so 𝑥1 and 𝑥2 may 

be: 

either medium, or tall (but not small),  

either white, or red, or black (but not yellow),  

mandatory female (not male),  

and either American, or Italian (but not French, Spanish, Chinese).  

In this example there are: 

Card{medium, tall}∙ Card{white, red, black}∙ Card{female}∙ Card{American, Italian} = 2∙3∙1∙2 

=12 possibilities, where Card{ } means cardinal of  the set { }. 

This is closer to our everyday life, since for example, when selecting something, we have 

not been too strict, but accepting some variations (for example: medium or tall, white or red or 

black, etc.). 

25. Fuzzy-Extension-SuperHyperSoft Set 

𝐹: 𝒫(𝐴1) × 𝒫(𝐴2) × …×  𝒫(𝐴𝑛) → 𝒫 (𝒰(𝑥(𝑑0)))  

where 𝑥(𝑑0) is the fuzzy or any fuzzy-extension degree of appurtenance of the element 𝑥 to the 

set 𝒰. 

Fuzzy-Extensions mean all types of fuzzy sets [3], such as:  

Fuzzy Set, Intuitionistic Fuzzy Set, Inconsistent Intuitionistic Fuzzy Set (Picture Fuzzy Set, 

Ternary Fuzzy Set), Pythagorean Fuzzy Set (Atanassov’s Intuitionistic Fuzzy Set of second 

type), Fermatean Fuzzy Set, q-Rung Orthopair Fuzzy Set, Spherical Fuzzy Set, n-HyperSpherical 

Fuzzy Set, Neutrosophic Set, Spherical Neutrosophic Set, Refined 

Fuzzy/Intuitionistic_Fuzzy/Neutrosophic/other_fuzzy_extension Sets, Plithogenic Set, etc. 
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26. Example of Fuzzy_Extension SuperHyperSoft Set 

In the previous example, taking the degree of a generic element 𝑥(𝑑0) as neutrosophic, one 

gets the Neutrosophic SuperHyperSoft Set. 

Assume, that: 𝐹({medium, tall}, {white, red, black}, {female}, {American, Italian}) =  

= {𝑥1(0.7, 0.4, 0.1), 𝑥2(0.9, 0.2, 0.3)}. 

Which means that: x1 with respect to the attribute values 

({medium or tall} and {white or red or black} and {female}, and {American or Italian}) 

has the degree of appurtenance to the set 0.7, the indeterminate degree of appurtenance 0.4, and 

the degree of non-appurtenance 0.1. 

While x2 has the degree of appurtenance to the set 0.9, the indeterminate degree of appurtenance 

0.2, and the degree of non-appurtenance 0.3. 

 

27. Examples of HyperAlgebra and Neutrosophic HyperAlgebra 

27.1. Commutative SemiHyperGroup 

The SemiHyperGroup is a particular case of HyperAlgebra. 

Let ℤ be the set of integers, ℤ = {−∞,… ,−2, −1, 0, 1, 2,… , +∞}. 

Let’s define the HyperLaw * as follows: 

*: ( )Z Z P Z  , 𝑥 ⋆ 𝑦 = {𝑥, 𝑦} ∈ 𝑃(ℤ),  

so the law is well-defined. 

The law is associative, since: 

(𝑥 ⋆ 𝑦) ⋆ 𝑧 = 𝑥 ⋆ (𝑦 ⋆ 𝑧)  

{𝑥, 𝑦} ⋆ 𝑧 = 𝑥 ⋆ {𝑦, 𝑧}  

(𝑥 ⋆ 𝑧) ∪ (𝑦 ⋆ 𝑧) = (𝑥 ⋆ 𝑦) ∪ (𝑥 ⋆ 𝑧)  

{𝑥, 𝑧} ∪ {𝑦, 𝑧} = {𝑥, 𝑦} ∪ {𝑥, 𝑧}  

{𝑥, 𝑦, 𝑧} = {𝑥, 𝑦, 𝑧}  

The law is commutative, since  

𝑥 ⋆ 𝑦 = {𝑥, 𝑦} = {𝑦, 𝑥} = 𝑦 ⋆ 𝑥   

27.2. Commutative Neutrosophic SemiHyperGroup 

The Neutrosophic SemiHyperGroup is a particular case of Neutrosophic HyperAlgebra. 

 

Let the HyperLaw * be defined as: 

⋆: (𝑍 ∪ {∅}) × (𝑍 ∪ {∅}) → 𝑃(𝑍 ∪ {∅})  

where the empty set ∅ leaves room for indeterminacy, unknown etc. 

𝑥 ⋆ 𝑦 = {
{𝑥, 𝑦}, for both 𝑥, 𝑦 ≠ ∅
∅, for 𝑥, or 𝑦, or both = ∅
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The law is well-defined, associative and commutative (proven as above for the 

SemiHyperGroup). 

 

28. Examples of SuperHyperAlgebra and Neutrosophic SuperHyperAlgebra 

28.1. Commutative SuperHyperGrupoid 

Let again ℤ be the set of integers, ℤ = {−∞,… , −2, −1, 0, 1, 2,… ,+∞}. 

For 2-nd powerset 𝑃2(ℤ) = 𝑃(𝑃(ℤ)) one has two rows of parentheses, one inside the other, 

of the form: {… {… }… }. 

Let’s define the binary SuperHyperLaw 

⋆: ℤ2 → 𝑃2(ℤ)  

𝑥 ⋆ 𝑦 = {𝑥, 𝑦, {𝑥, 𝑦}} ∈ 𝑃2(ℤ)  

Clearly the law is well-defined. 

The law ⋆ is also commutative, but non-associative, as proven below. 

Commutativity: 

𝑥 ⋆ 𝑦 = {𝑥, 𝑦, {𝑥, 𝑦}} = {𝑦, 𝑥, {𝑦, 𝑥}} = 𝑦 ⋆ 𝑥.  

Non-Associativity: 

(𝑥 ⋆ 𝑦) ⋆ 𝑧 = {𝑥, 𝑦, {𝑥, 𝑦} ⋆ 𝑧} = {𝑥 ⋆ 𝑧, 𝑦 ⋆ 𝑧, {𝑥, 𝑦} ⋆ 𝑧} = {𝑥, 𝑧, {𝑥, 𝑧}, 𝑦, 𝑧, {𝑦, 𝑧}, 𝑥 ⋆ 𝑧, 𝑦 ⋆ 𝑧 }

= {𝑥, 𝑧, {𝑥, 𝑧}, 𝑦, 𝑧, {𝑦, 𝑧}, 𝑧, 𝑧, {𝑥, 𝑧}, 𝑦, 𝑧, {𝑦, 𝑧}} = {𝑥, 𝑦, 𝑧, {𝑥, 𝑧}, {𝑦, 𝑧}} 

𝑥 ⋆ (𝑦 ⋆ 𝑧) = 𝑥 ⋆ {𝑦, 𝑧, {𝑦, 𝑧}} = {𝑥 ⋆ 𝑦, 𝑥 ⋆ 𝑧, 𝑥 ⋆ {𝑦, 𝑧}} = {𝑥, 𝑦, {𝑥, 𝑦}, 𝑥, 𝑧, {𝑥, 𝑧}, 𝑥 ⋆ 𝑦, 𝑥 ⋆ 𝑧}

= {𝑥, 𝑦, {𝑥, 𝑦}, 𝑥, 𝑧, {𝑥, 𝑧}, 𝑥, 𝑦, {𝑥, 𝑦}, 𝑥, 𝑧, {𝑥, 𝑧}} = {𝑥, 𝑦, 𝑧, {𝑥, 𝑦}, {𝑥, 𝑧}} 

Therefore (𝑥 ⋆ 𝑦) ⋆ 𝑧 ≠ 𝑥 ⋆ (𝑦 ⋆ 𝑧). 

 

28.2. Commutative Neutrosophic SuperHyperGrupoid 

Similarly, we define: 

Let the Neutrosophic SuperHyperLaw * be defined as: 
2*: (   { }) (   { }) (   { })Z Z P Z        

where the empty set ∅ aslo leaves room for indeterminacy, unknown etc. 

𝑥 ⋆ 𝑦 = {
{𝑥, 𝑦, {𝑥, 𝑦}}, for both 𝑥, 𝑦 ≠ ∅
∅, for 𝑥, or 𝑦, or both = ∅

  

The law is well-defined, non-associative, and commutative (proven as above for the 

SuperHyperGroupoid). 

 

29.  Practical Application of the SuperHyperStructure 

 

Let H be the set (system) that represent all inhabitants of the US country.   

The set H is organized into 50 sub-sets, 1 2 50, ,...,H H H  
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that represent the American states: where 
1 2 50, ,..., ( )H H H P H . 

Each state ,1 50,iH i   is organized into counties, ,1 ,ij MH j i  where
Mi is the maximum 

number of 
iH state’s counties, with all

,1 ,2 ,, ,...,
Mi i i iH H H 2( ) ( ( )) ( )iP H P P H P H   . 

(One uses commas in between indexes in order to separate them when the values of some 

indexes have two or more digits, for example 
3,12H means the 12th county of the 3rd state; 

which is different from 
31,2H that means the 2nd county of the 31st state.) 

Further on, each 
,i jH county, for all i and j indexes,  

is organized into sub-counties, 
, , ,1 ,i j k MH k j  where 

Mj is the maximum number of sub-

counties of the county 
,i jH .  Therefore: 

all 3

, ,1 , ,2 , , ,, ,..., ( ) ( ( )) ( ( ( ))) ( )
mi j i j i j k i j iH H H P H P P H P P P H P H    . 

This shows the practical application of the n-th powerset of a set, for n = 3 in this case (three 

levels of a SuperHyperStructure): country, states (one index i), counties (two indexes i,j), and 

sub-counties (three indexes i,j,k). 

Surely, if needed, one can go deeper in (each sub-county is formed by towns, each town 

by districts, and so on); or deeper out (each country is part of a continent, each continent is 

part of a planet, each planet is part of a solar system, and so on). 

The following SuperHyperStructure (denoted below by A), with three levels of structures, 

has been formed as: 
3

, , ,{ , , ,1 50,1 ,1 } ( ).i i j i j k M MA H H H i j i k j P H         

(i) In the real world, this is a Neutrosophic SuperHyperStructure, because it has a lot 

of indeterminacy: for example the population of the country H is dynamic, in a 

continuous change: new people are born while others die as we speak, there are 

millions of illegal emigrants that are not counted as citizens, others have dual or 

triple citizenship so they only partially belong to H’s population; other citizen live 

outside the country. 

(ii) Many laws are as well neutrosophic, because they apply to some states Hi (as 

examples: the law of abortion, or the law of bearing arms, or the law of consuming 

marijuana, etc.), but not to others. We call them NeutroLaws in the NeutroAlgebraic 

Structures (we mean: laws that are partially true and partially false in the same 

space, and sometime also partially indeterminate). 

(iii) Let’s endow this SuperHyperStructure with some SuperHyperLaw (called 

SuperHyper because it is built on a 3-rd PowerSet of the Set H): 

#: A A A    

#x y  { ( ) }x x y y    

{If x  and x y , then y} 

  Let ,x y A . If x  and x y , then y . 
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Consider a cyber company that provides internet connection to people from the  

sub-county H2,3,5, which is included in the county H2,3, then the company will 

provide internet connection to the county H2,3 as well. 

Let H2,3,5 and H2,3 A . If H2,3,5 gets internet connection and  

because 
2,3,5 2,3H H , then 

2,3H also gets internet connection. 

 

30. Conclusion  

 

We have extended the SuperHyperAlgebra and its correspondents (SuperHyperGraph, 

SuperHyperTopology, etc.) to the SuperHyperStructure in general, for any field of knowledge and 

on any type of space. The SuperHyperStructures were inspired from, and they perfectly fit, our 

real world. See the last practical application. 
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