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Abstract

The main goal of this paper is to study the representation of the symbolic
n-plithogenic differential operator for many different values of n by classical
algebraic matrices and plithogenic matrices. We present many examples about the
representation of symbolic n-plithogenic differential operators by matrices. As
well as, we compute the symbolic 2-plithogenic, 3-plithogenic, and 4-plithogenic
Wronsckian, and anti-Wronsckian.
Keywords: Differential operator, Wronsckian, anti-Wronsckian, symbolic
n-plithogenic matrix

Introduction

Symbolic n-plithogenic structures and sets are defined for the first time by
Smarandache [4], as extensions of classical algebraic structures. Where they were
used widely by many researchers to generalize famous algebraic structures. For
example, we can see symbolic n-plithogenic rings, probability, spaces, and matrices

[1-3, 5-8, 14-19].

The main results about symbolic n-plithogenic structures are the similarity between

them and refined neutrosophic structures, see [9-13].

In this work, we concentrate on the analytical side of symbolic n-plithogenic
algebraic structures, where we provide many examples about the applications of
matrices in representing symbolic n-plithogenic differential operators. Also, we

present the concept of symbolic n-plithogenic Wronsckian, and anti-Wronsckian,
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with many computable examples. For the definitions of symbolic n-plithogenic

rings and structures, check [1,6,8,19].

Main Discussion

Definition:

Let f:2 —SPR —» 2 — SP, be a symbolic 2-plithogenic real function, we define the
symbolic 2-plithogenic differential operator as: D,(f) = f.

Definition.

Let f:3 — SPr = 3 — SPz be a symbolic 3-plithogenic real function, we define the
symbolic 2-plithogenic differential operator as: D3(f) = f.

Definition.

Let f:4 — SPR —» 4 — SP; be a symbolic 4-plithogenic real function, we define the
symbolic 2-plithogenic differential operator as: D,(f) = f.

Definition.

Let f:5—SPr = 5 — SPz be a symbolic 5-plithogenic real function, we define the
symbolic 2-plithogenic differential operator as: Ds(f) = f.

Example.

Consider f:2—SPy > 2—SPg;f(X) =X?+ (P, +P,)X—P;, ,where X =ux,+
X1P; + x,P, € 2 — SPg, then D,(f) = 2X + (P; + P,).

Consider g:3 —SPg > 3 — SPg; g(X) = X?> + P;X + P; + P, ,where X = x, + x,P; +
XoPy + x3P; € 3 — SPg, then D3(g) = 2X + P;.

Consider h:4 —SPg > 4 — SPp; h(X) = X3 + (P, + P,)X — 1,where X = x, + x,P; +
x,P, + x3P3 + x4P, € 4 — SPg, then D3(h) = 3X? + P, + P,.

Example.

Consider D, the symbolic 2-plithogenic differential operator on the space of
symbolic 2-plithogenic quadratic polynomials {aX? + bX + c;a,b,c,X € 2 — SPg},
then:

Dz(XZ) == ZX = sz + 2x1P1 + 2x2P2 == OXZ + 2X+01
D,(X)=1=0X2+0.X+1.1
D,(1) =0=0X2+0.X+0.1
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0 0 O
Hence [D,]=(2 0 0.

1 10

Example.

Consider D3, D4, D5 be the symbolic 3-plithogenic, 4-plithogenic, 5-plithogenic
differential operators on the spaces of cubic symbolic 30plithogenic, 4-plithogenic,
and 5-plithogenic spaces.

L, ={aX3®+bX?>+bX +d;a,b,c,d, X €3 —SPg}

L, ={aX3+bX2+bX +d;a b,c,d X € 4—SPy}

Ly = {aX3®+bX?>+bX +d;a,b,c,d, X €5 — SPp}

Then D, (X3) = 3X2 = 0.X3 +3X2 + 0.X + 0.1.
D,(X*)=2X=0.X3+0.X?+2.X+0.1.

D,(X)=1=0.X3+0.X2+0.X + 1.1.

D,(1)=0=0.X34+0.X24+0.X+0.1

For all 3 <n <5, hence:

=~

)

3

e

Il
Sowo
oNnOo o
==
mr oo o

Example.
For sinX = sin(xy + x1P; + x,P;), cosX = cos(xy + x1P; + x,P,).
We have:

D,(sinX) = cosX = 0.sinX + 1.cosX + 0.1
D,(cosX) = —sinX = —1.sinX + 0..cosX + 0.1
D,(1) =0=0.sinX + 0.cosX + 0.1

0 -1 0
Hence [D,]=|1 0 0]
0 0 O
For sinX = sin(xo + x1P; + x,P, + x3P3),cosX = cos(xy + x1 Py + x,P, + x3P3).

We have:

D;(sinX) = cosX
Ds(cosX) = —sinX

0 -1 0
Hence [D3]=<1 0 0).

0 0 O
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For sinX = sin(xy + x,P; + x,P5 + x3P5 + x,P,), cosX = cos(xy + x1P; + x,P5 +

X3P + x4 P,).

We have:
c
0 -1 0
Hence [D,]J=|1 0 0]
0 0 O
Example.

For {1,X,X% X3,X*}; X = xq + x;P; + x,P,,we have:
(Dy(X*) = 4X3

| D,(X3) = 3X2

D,(X?) = 2X
D,(X) =1
D,(1) =0

/ 0
4
Hence [D,] = 0

0

0

S O WwWo o
OoON OO O

0

0
0 0
OO)
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For X = xy + Y7_, x;P;, we have:

Ds(X*%) = 4X3
Ds(X3) = 3X2
D (X?) = 2X
Ds(X) =1
Ds(1) =0
0 0 0 0O
4 0 0 0 O
Hence [Dg]=[0 3 0 0 O
0 0 2 0 O
0 0 01 0
Example.

Consider A = {1,e%,e?*}, where X = xy + x;P; + x,P,, B = {1,e",e?'}, where Y =
Yo + Y1P1 + y2P2 + y3P3, C = {1, eZ,ezz}, Where Z = Zy + lel + ZZPZ + Z3P3 + Z4_P4_,
D ={1,e",e?"}, where T = t, + + Y;_, t;P;, then:

D,(e*) = e*
D,(e?*) = 2e%X
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0 0 O
Hence [D;] = <0 1 0).
0 0 2
D;(1) =0
D;(e¥) = €Y

D;(e?Y) = 2e?Y

0 0 O
Hence [Ds]=(0 1 0.
0 0 2
D,(1) =0
D,(e?) =e?

D,(e??) = 2e%

0 0 O
Hence [D,]J=(0 1 0.
0 0 2
Ds(e™) = e

Ds(e?T) = 2e?T

0 0 O
Hence [Ds]=(0 1 0.

0 0 2

Another possible representation.

We have shown that symbolic n-plithogenic differential operators can be
represented by classical real matrices, now we will try to explain how they can be
represented by plithogenic matrices.

Example.

Consider {1,X,X?}; X = xq + x,P; + x,P, , with D, the symbolic 2-plithogenic
differential operator, then:

Dz(l) = 0 = O.xo + O.X1P1 + O.xzpz
D,(X) =1
D,(X?) = 2X

The basis {1,X,X?} can be represented as follows:
B, = {1,x0,x02}, B, = {1, (xo + x1), (xo + x1)%}, B3
= {1, (xo + x1 + x2), (¢ + %1 + x2)%}

Any quadratic polynomial P(X) = aX 2+ bX +c;a,b,c,X € 2 — SPg, with:
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a=ayg+aP;+a,P,
b = by + by P; + b,P,
¢ =c¢y+ciPy+ P,
X =xy+x1P; +x,P,

P(X) =aX?*+bX+c
= (agxo? + boxo + o)
+ Pi[(ao + a)(xo + x1)? — agxo® + (bo + by) (xo + x1) — boxo + 4]
+ Py[(ao + a;y + az)(xo + 21 +x2)% = (@g + a1) (%o + x1)?
+ (bo + by + by)(xg + X1 + x3) — (b + by) (x + x1) + 2]
= q1(x0) + P1[q2(xo + x1) — q1(x0)]
+ Po[qs(xo + x5 + x2) — q2(x0 + x1)]
Hence, D, (P(X)) = D,(q1) + P1[D,(q2) — D2(q1)] + P2[D,(q3) — D2(qz)], hence:

000 00 0 00 0
[D2]=<O 0 2>+P1 (o 0 2) +P, (o 0 2)]
010 010 010
0 0 0
=(0 0 2+2P1+2P2)
0 1+P,+P, 0

The symbolic plithogenic Wronsckian.
Consider the following functions independent set:

E ={fi, ..., fn}, their wronsckian is defined as follows:

fi e
wey=| i h
RO LD

We show some examples for finding the symbolic n-plithogenic Wronsckian.
Example.

Consider E; = {e*,e?*; X = xy + x, P, + x,P,}, E;, = {1,sinX,cosX; X = xo + x,P; +
X,Py + x3P3}, E5 = {1, tanX; X = xo + X, Py + X3P + x3P5 + x,P,}E4 =

{1,X, X%, X3, X = xo + Xi_, x;P;}, we have:

W(E ) D2 (0) (eX) DZ(O) (eZX) |ex0+x1P1+x2P2 62x0+2x1P1+2x2P2
1) — D2 (eX) DZ(BZX) - ex0+x1P1+x2P2 262x0+2x1P1+2x2P2
— 63x0+3x1P1+3x2P2
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NGB

3
1 sin <x0 + Z xl-Pi> cos (xo + xipi>

3
—sin (xo + xiPl-> = —cos*? <x0 + Z xl-Pl->
i=1
3
0 —sin <x0 + Z xiPl-> —cos (xo + Z )

i=

3
W(E,) =10 cos <x0 + ) xP;
i

=~ Il
w Nl W
Juy

1 tan <x0 + Z xl-Pl-> 4
W(E3) = =1 4 =1+ tan? (xo + z xiPl-)
0 1+ tan? <x0+2xl

i=1

i=1

o
N~

i=1
5 5
W(E4_) — 0 1 2<x0+2xiPi> 3<x0+2xiPi> =12
i i=1
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o O
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Example.
Consider E; = {lnX, eX; X =xy+ Y7, xl-Pi}, E, = {lnX, VX; X = xo + Z‘i*zlxiPi}, E; =

{eX,sinX; X = xo + Yi_, x;P;}, then:

InX eX 53 1
W(E)=|1 = e¥otli=1*iPi|In x+zxp S
1 ¥ eX 0 £ x0+2i3=1xl-Pi

W(E)_”ix */f X 1 InX-2
S R N, S N

2vX
ln<xo+ZxP> 2]

1
\/x0+24 x;P;

5 5
X .
W(E;) = |eX SIX| _ pxo+IaxiPi | cos Xo + Z x;P; | —sin| xo + Z x; P;
e cosX e =
1= 1=

Symbolic n-plithogenic anti-Wronsckian.

Let E = {f1, ..., [} be a set of n functions, then:
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fn

Now, we will clarify how (AW) can be computed.

Example.

Consider E; = {1,X,X%,X = xy + Y2, x; P}, E, = {eX,e?; X = xo + X3, x;P;}, E5

{sinX, cosX; X = xo + Xi— x;P;}, then:

1 X X2
X 1X2 1)(3
AW (E,) = 2 3
1 1 1
_XZ _X3 _X4
2 6 12
1 1 1 1
—xz —x3 X =x3 X =X?
—Xx3 ix‘* X2 iX4 — X2 lX3
6 12 2 12 6
1 1 1 1 1 1
=——-— X6—X(———>X5 X2<———>X4
(24 18) 12 6 + 6 4
—X6<1 1 1+1+1 1)—)(6(1 8 6 2
B 24 18 12 6 6 4/ 24 24 24 24
—X6<1 1)_ 1 _l_i ,
—4\24 7 18) T T\ P T LN
=1
eX  e2X 1 1 1 .
AW (E,) = 1 = —Xp2X _ pXp2X — _ Z 03X — _ _ p(x0+¥i, xiPy)
eX Eezx 2
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sinX cosX 1
—cosX —sinX X

AW (E3) = 1
—sinX —cosX EXZ
sinX X —cosX X .
= sinX. 1 _,|—cosx| . 1, |TeosX sinX
—cosX EX —sinX EX —sinX —cosX
(1o, 1 _
= sinX (EXZSlnX + XcosX) — cosX (—EXZCOSX + XSLTlX)
+ (cos?*X + sin?X)
1 . . 1 .
= EXzssz + XcosXsinX + EXZCOSZX — XcosXsinX + 1
4
1, 1
:EX (1)+1:§ x0+inPl- +1
i=1
Conclusion

In this paper, we have studied the representation of the symbolic n-plithogenic
differential operator for many different values of n by classical algebraic matrices
and plithogenic matrices. We presented many examples about the representation
of symbolic n-plithogenic differential operators by matrices. As well as, we
computed the symbolic 2-plithogenic, 3-plithogenic, and 4-plithogenic
Wronsckian, and anti-Wronsckian.
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