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PREFACE

In the real world, uncertainty or vagueness is prevalent in engineering and management
computations. Commonly, such uncertainties are included in the design process by
introducing simplified hypothesis and safety or design factors. In case of structural and
pavement design, several design methods are available to optimize objectives. But all such
methods follow numerous monographs, tables and charts to find effective thickness of
pavement design or optimum weight and deflection of structure calculating certain loop of
algorithm in the cited iteration process. Most of the time, designers either only take help of a
software or stop the cited procedure even after two or three iterations. As for example, the
finite element method and genetic algorithm type of crisp optimization method had been
applied on the cited topic, where the values of the input parameters were obtained from
experimental data in laboratory scale. But practically, above cited standards have already
ranged the magnitude of those parameters in between maximum to the minimum values. As
such, the designer becomes puzzled to select those input parameters from such ranges which
actually yield imprecise parameters or goals with three key governing factors i.e. degrees of
acceptance, rejection and hesitancy, requiring fuzzy, intuitionistic fuzzy, and neutrosophic
optimization.

Therefore, the problem of structural designs, pavement designs, welded beam designs
are firstly classified into single objective and multi-objective problems of structural systems.
Then, a mathematical algorithm - e.g. Neutrosophic Geometric Programming, Neutrosophic
Linear Programming Problem, Single Objective Neutrosophic Optimization, Multi-objective
Neutrosophic Optimization, Parameterized Neutrosophic Optimization, Neutrosophic Goal
Programming Technique - has been provided to solve the problem according to the nature of
impreciseness that exists in the problem.

Thus, we provide in this book a solution which is hardly presented in the scientific
literature regarding structural optimum design, pavement optimum design, welded beam

optimum design, that works in imprecise environment i.e. in neutrosophic environment.
The objective of the book is not only to study the concept of neutrosophic set, single valued

neutrosophic set, complement of neutrosophic set, union of neutrosophic set, intersection of

neutrosophic set, generalized fuzzy number, triangular fuzzy number, normal neutrosophic
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set, convex neutrosophic set, single valued neutrosophic number, generalized triangular
neutrosophic number and their properties, but also to fulfil the criteria of specification of such
concepts from a technical point of view. The second objective of the book is the
identification of impreciseness that is involved in real life engineering design problems, such
as in various structural design problems, welded beam designs and pavement designs
problems. For example, they are often exhibit in the form of applied load, stresses, deflection
in the test problem, therefore we employ ultimate development of mathematical algorithm
using neutrosophic set theory to optimize various truss, welded beam, pavement design

problems in neutrosophic environment.

In the following chapters, some mathematical optimization methods on neutrosophic set
theory have been studied and the results have been compared agaist Fuzzy and Intuitionistic
Fuzzy Optimization methods. Some structural models like two-bar, three bar truss, welded
beam design, jointed plain concrete pavement are formulated and solved in fuzzy,
intuitionistic fuzzy or neutrosophic environments. The proposed thesis has been divided into

following chapters:

In the First chapter, the basic concepts and definitions of Neutrosophic set, Single Valued
Neutrosophic Set (SVNS), complement of Neutrosophic Set, union of Neutrosophic Set,
intersection of Neutrosophic Set, Normal Neutrosophic Set, Convex Neutrosophic Set, Single
Valued Neutrosophic Number (SVNN), Generalized Triangular Neutrosophic Number
(GTNN) are given. Also, in this chapter, some basic methodologies - such as neutrosophic
linear programming, neutrosophic geometric programming, neutrosophic optimization
technique to solve minimization type single objective nonlinear programming problem,
neutrosophic optimization technique to solve minimization type nonlinear programming
problem, solution of multi-objective welded beam optimization problem by generalized
neutrosophic goal programming technique, neutrosophic non-linear programming
optimization to solve parameterized multi-objective nonlinear programming problem,
neutrosophic optimization technique to solve parametric single objective nonlinear
programming problem - have been discussed to solve several trusses, welded beam optimum

and jointed plain concrete pavement designs.
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In the Second chapter, an introduction of structural design optimization, conversion between
U.S customary units and S.I units, S.I. unit prefixes, formulation of truss design, some welded

beam designs and pavement designs are presented.

In the Third Chapter, we take into consideration a neutrosophic optimization (NSO) approach

for optimizing the design of truss with single objective, subject to a specified set of constraints.

In the Fourth chapter, a multi-objective non-linear neutrosophic optimization (NSO) approach
for optimizing the design of plane truss structure with multiple objectives subject to a specified

set of constraints is explained.

In the Fifth chapter, a Neutrosophic Optimization (NSO) approach is investigated to optimize
the cost of welding of a welded steel beam, where the maximum shear stress in the weld group,
maximum bending stress in the beam, maximum deflection at the tip and buckling load of the

beam are considered as flexible constraints.

In the Sixth chapter, a multi—objective Neutrosophic Optimization (NSO) approach is studied

to optimize the cost of welding and deflection at the tip of a welded steel beam.

In the Seventh chapter, a multi—objective Neutrosophic Goal Optimization (NSGO) approach
with different aggregation method is explored to optimize the cost of welding and deflection
at the tip of a welded steel beam, while the maximum shear stress in the weld group, maximum

bending stress in the beam, and buckling load of the beam are considered as constraints.

In the Eighth Chapter, we employ a neutrosophic mathematical programming to solve a multi-
objective structural optimization problem with imprecise parameters. Generalized Single
Valued Triangular Neutrosophic Numbers (GSVNNs) are assumed imprecise loads and stresses

in a test problem.

In the Ninth chapter, a solution procedure of Neutrosophic Optimization (NSO) is examined
to solve optimum welded beam design with inexact co-efficient and resources. Interval
approximation method is used here to convert the imprecise co-efficient, which is a triangular

neutrosophic number, to an interval number.

In the Tenth chapter, the optimization of thickness of Jointed Plain Concrete Pavement (JPCP)
by following the guidelines of Indian Roads Congress (IRC:58-2002) in imprecise environment

is studied and solved by neutrosophic optimization technique.

In the Eleventh Chapter, we analyze a multi-objective Neutrosophic Goal Optimization
(NSGO) technique for optimizing the design of three bar truss structure with multiple

objectives, subject to a specified set of constraints.
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In the Twelfth Chapter, we search upon a Neutrosophic Optimization (NSO) approach for
optimizing the thickness and sag of skin plate of vertical lift gate with multi- objective, subject

to a specified constraint.

The Authors
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CHAPTER 1

Basic Notions and Neutrosophic Optimization

1.10ver view

The concept of fuzzy set was introduced by Zadeh in 1965.Since the fuzzy sets and fuzzy

logic have been applied in many real applications to handle uncertainty. The traditional fuzzy

set uses only real value s (x)e[0,1] to represent the grade of membership of fuzzy set A
defined on universe X .Sometimes . (x) itself is uncertain and hard to be defined by a

crisp value. So the concept of interval valued fuzzy sets was proposed to capture the

uncertainty of grade of membership. Interval valued fuzzy sets uses an interval value

[ s (x), 18 (x)] with0 < 24 (x) < 4% (x) <1 to represent the grade of membership of fuzzy

set A . In some applications such as expert system, belief system and information fusion, we
should consider not only the truth membership supported by the evident but also the falsity
membership against by the evident. That is beyond the scope of fuzzy sets and interval valued
fuzzy sets. In 1986 Atanassov introduced the Intuitionistic fuzzy sets which is a

generalization of fuzzy sets and probably equivalent to interval valued fuzzy sets.The

intuitionistic fuzzy sets consider both truth membership T, (x) and falsity membership

F

i

(x) with TA;,- (x) F (x) E[O,l] and OST;’,. (x)+FA7i (x)Sl. Intuitionistic fuzzy sets

9 /:11’
can only handle incomplete information not the indeterminate information and inconsistent

information which exists commonly belief in system. In intuitionistic fuzzy sets,

indeterminacy is 1-T pt (x)—F (x ) by default. For example when we ask the opinion of

7
expert about certain statement, he or she may be in the position of the possibility that the
statement is true is 0.5 and the statement is false is 0.6 and the degree that he or she is not
sure is 0.2.

In neutrosophic set indeterminacy is quantified explicitly and truth membership,
indeterminacy membership and falsity membership are independent. This assumption is very
important in a lot of situations such as information fusion when we try to combine the data

from different sensors. Neutrosophy was introduced by Smarandache in 1995.”1t is a branch

of philosophy which studies the origin, nature and scope of nutralities, as well as their
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interactions with different ideational spectra”.Neutrosophic Set is a power general framework

which generalizes the concept of the classic set, fuzzy set ,interval valued fuzzy set,

intuitionistic fuzzy set e.t.c. A neutrosophic set A" defined on universe U.

x=x(T,I,F)e A" with T,I,F being real standard or nonstandard subset of ]O’,l*[. 7

is the degree truth membership function in the set A", is the degree indeterminacy

membership function in the set 4”and F is the degree falsity membership function in the set
A

The neutrosophic set generalizes the above mensioned sets from philosophical point of view.
From scientific or engineering point of view the neutrosophic set and set theoretic operators
need to be specified. Otherwise, it will be difficult to apply in the real applications. In this
paper, we define neutrosophic set (the set theoretic operators on an instance of neutrosophic

set called SVNS).

1.2Neutrosophic Set (NS)

Let X be a space of points (objects) with a generic element in X denoted by x ie. xe X .
A neutrosophic set A" inX is characterized by truth-membership function T,

indeterminacy- membership function [;1" and falsity-membership function FA,, , Where

T,.1,,F,are the functions from U to ] 0, 1+[ 1.e. T,.1,,F,:X> ] 0, 1+[ ,that
means 7,1, F., are the real standard or non-standard subset of ] 0, 1 I Neutrosophic set

can be expressed as A" = {(x,(T;!,l Ao F )) :Vx e X}. Since 7.,,1.,,F,, are the subset of ]

0,17 [ , there the sum

(T/.ln,l- F;w) lies between “0and 37, where "0=0-:and 37 =3+ ¢, ¢>0.

An’

The set /. may represent not only indeterminacy, but also vagueness, uncertainty,

imprecision, error, contradiction, undefined, unknown, incompleteness, redundancy, etc. In
order to catch up vague information, an indeterminacy-membership degree can be split into
subcomponents, such as ,,,contradiction,”* ,,,uncertainty**

eee

, and ,,,unknown""".

Example 1.

Suppose that X = {xl,xz,x3, ........ }.be the universal set. Let ;ll be any neutrosophic set in X.

Then 4, expressed as A = {(x1 :(.6,.3,4):x, € X}_
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1.3Single Valued Neutrosophic Set (SVNS)

Let a set X be the universe of discourse. A single valued neutrosophic set 4" over X is an

object having the form A" ={< x, T, (x) I (x),FAn (x)>|xeX} where 7, :X —[0,1],

oA
[,:X—> [O,l]and Fo:X— [0,1] are truth, indeterminacy and falsity membership functions
with 0T, (x)+1,, (x)+F,, (x)<3 forall xe X .

Example 1: Assume that X = [xl,xz,x3]. x,1s capability, x,1s trustworthiness and x, is price.
The values of x;,x,,x; are in [0,1].They are obtained from questionnaire of some domain experts,
their option could be a degree of “good service”, a degree of indeterminacy and degree of “poor
service”. A is a single valued neutrosophic set of X  defined by
k =(0.3,0.4,0.5)/ x, +¢0.5,0.2,0.3) / x, +(0.7,0.2,0.2) / x;. B" is a single valued neutrosophic
set of X defined by B" = (0.6,0.1,0.2) / x, +¢0.3,0.2,0.6) / x, +{0.4,0.1,0.5) / x;.

1.4Complement of Neutrosophic Set

Complement of a single valued neutrosophic set A4"is denoted by C (A")and its truth,

indeterminacy and falsity membership functions are denoted by

Tc(;r) :X_)[O’l]’]c(/i") :X—)[O,l]and FC(/]”) :X—)[O,l] where

T (x)=F, (x), (1.2)
IC(A,,)(X):I—Ign (x), (1.3)
Fo (x)=T, (x) . (1.4)

Example 2: Let A"be a single valued neutrosophic set in Example 1.Then

C(4")=(0.5,0.6,03)/x,+(0.3,0.8,0.5)/x, +(0.2,0.8,0.7)/ x,

1.5Containment
A single valued neutrosophic set A" is contained in other single valued neutrosophic set B,
A" < B" if and only if
7, (x)=1, (+)
1 ()51, (5
Fo (1)<, (+)

Forall x in X.

Page 3



Note that by definition of containment, X is partial order but not linear order. For example let A"and
B" be the single valued neutrosophic sets defined in example 1.Then A" is not contained in B" and

B" is not contained in A"

1.6 Equality of Two Neutrosophic Sets
Two single valued neutrosophic sets 4" and B" are said to be equal and written as 4" = B" if
and only if 4" ¢ B" and A" > B

1.7Union of Neutrosophic Sets
The union of two single valued neutrosophic sets A4”and B"is a single valued neutrosophic
setU”, written as U" = 4" UB",whose truth membership, indeterminacy-membership and

falsity-membership functions are given by

Type-I
0 T, (x)= (7, (.7, ().
(if) 1., (x)=max (I;ﬂ (x),Ién (x))

(ifi) £, (x)=min(F

in

(x),F~ (x))for all xe X

o
Type-II1
(i) T, (x)= max(TAn (x).T, (x)),
(ii) 1, (x)=min(Z,, (x)1;, (x))
(iii) F, (x)=min(F,, (x),F, (x))forall xeXx
Example 3:
Let 4" =< 0.3,0.4,0.5>/x+<0.5,0.2,0.3 >/ x,+<0.7,0.2,0.2 >/ x, and

B" =<0.6,0.1,0.2 >/x+<0.3,0.2,0.6 >/ x,+<0.4,0.1,0.5>/x; be two neutrosophic

sets. Then the union of 4"and B"is a single valued neutrosophic set
Type -1

A"UB" =<0.6,0.4,0.2 >/ x,+<0.5,0.2,0.3 >/ x,+ <0.7,0.2,0.2 > / x,
Type -11

A"UB" =< 0.6,0.1,0.2>/x+<0.5,0.2,0.3 >/ x,+<0.7,0.1,0.2 > / x,

1.8 Intersection of Neutrosophic Sets
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The intersection of two single valued neutrosophic sets A”and B"is a single valued

neutrosophic set £”, written as E"=A"(B",whose truth membership, indeterminacy-
membership and falsity-membership functions are given by

Type-I
() T, (x)= min(TA,, (x),T,

(i) 2. (x)= min(lm (x).1,,

(iii) F, (x)=max(F,, (x),F, (x))forall xeXx

B"

Type-11
(i) 7. (x) =min(T%, (x).7;, (x)).
(ii) £, (x)=max (Ign (x),lén (x))

(iii) F}, (x)=max(F,, (x),F, (x))forall xeX

Example 4:
Let 4" =<0.3,0.4,0.5>/x,+<0.5,0.2,0.3 >/ x,+<0.7,0.2,0.2 > / x, and

B" =<0.6,0.1,0.2>/x,+<0.3,0.2,0.6 >/ x,+ <0.4,0.1,0.5>/x, be two neutrosophic

sets. Then the union of 4"and B"is a single valued neutrosophic set
Type -1
A"NB" =<0.3,0.1,0.5>/x,+<0.3,0.2,0.6 >/ x,+<0.4,0.1,0.5 > / x,
Type -11
A"NB" =<0.3,0.4,0.5>/x+<0.3,02,0.6>/x,+<0.4,02,0.5>/ x,
1.9Difference of Two Single Valued Neutrosophic set
The difference of two single valued neutrosophic set D", written as D" = 4" / B", whose
truth-membership,indeterminacy membership and falsity membership functions are related to

those of 4" and B" can be defined by
(i) Ty, (x) =min(T;. (x), ;. (x),
(ii) Ijjn (x) = min(]f.ln (x),l—IB” (x))

(iii) F}, (x) =max(F, (x),F,, (x))forall xe X

B"
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Example 5: Let 4"and B"bea single valued neutrosophic set in Example 1.Then
D" =(0.2,0.4,0.6)/ x, +{0.5,0.2,0.3)/ x, +(0.5,0.2,0.4) / x,
1.10 Normal Neutrosophic Set
A single valued neutrosophic set A" = {< x,T, (x),IAn (x),FAn (x) >|xeX } is called
neutrosophic normal if there exists at least three points x;,x,,x, € X such that T, (xo) =1
1;1" (xl) =1 F;I,I (xz)zl.

1.11 Convex Neutrosophic Set

A single valued neutrosophic set A" = {< X, T/]n (x)’IA" (x),FA,, (x) > |x S X} is a subset of the

real line called neut-convex if for all x,x, € Rand /16[0,1] the following conditions are

satisfied.

3 I;‘n{ﬂ,xl+(1—/1)x2}£max{ljn(xl)I (xz)}

9 A’ZIZ
3. F, {ﬂxl +(1 —/I)xz} < max{F;l,, (). F, (x, )}

i.e A"is neut-convex if its truth membership function is fuzzy convex, indeterminacy

membership function is fuzzy concave and falsity membership function is fuzzy concave.

1.12 Single Valued Neutrosophic Number(SVNN)

A single valued neutrosophic set A" = {< X, T;I,, (x),lin (x),F/]n (x) > |x € X} ,subset of a real

line ,is called generalised neutrosophic number if

1. A" 1is neut- normal.

2. A"is neut- convex.
3. T, (X) is upper semi-continuous, /., (x)is lower semi continuous and £, (x) is lower

semi continuous ,and

4. the support of 4" ,i.e.

S(;I"):{xeX:TAH >0,1,, <LF, <1} (1.5)
is bounded.

Thus for any Single Valued Triangular Neutrosophic Number (TNN)there exists nine

numbers q ,a,,a, ,b/,b,,b;,c ,c,,c; eRsuch that ¢ <p' <al <c,<b,<a,<aj <b <cj
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and six functions T;fn (x),IAf” (x),F;fn (x),T; (x),lg,, (x),F/fi (x):‘.R—)[O,l]represent truth,
indeterminacy and falsity membership degree of A" The three non-decreasing functions
T ;fn (x),lg‘n (x),F ;n (x) represent the left side of truth, indeterminacy and falsity membership
functions of SVNN A"respectively. Similarly the three non-increasing functions
T; (x),lf,l (x),F;ﬁ (x) represent the right side of truth ,indeterminacy and falsity

membership functions of SVNN 4"respectively. The truth, indeterminacy and falsity

membership functions of SVNN 4" can be defined in the following way

(x) if a <x<a,
*(x) if a,<x<aj; (1.6)

0 otherwise

H
=
Il

1%, (x) if b <x<b,

12,,(x): Ifn(x) if by<x<b] (1.7)

0 otherwise

“(x) if ¢f <x<c,
(x) z'fczﬁxﬁcéF (1.8)

0 otherwise

R
=

Il
SIS

The sum of three independent membership degree of SVNN A4"lie between the interval

[0,3] i.e OST; (x)+]§, (x)-i—F/.ﬁ (x)£3 xed" . (1.9
1.13 Generalized Triangular Neutrosophic Number(GTNN)

A generalized single valued triangular neutrosophic number 4" with the set of parameters

¢ <bl <al <c¢,<b,<a,<a; <b; <c; denoted as

A" = ((af,az,af;wa ),(bf,bz,b;;na )(cf,cz,cf;ra )) is the set of real numbers R .The truth

membership, indeterminacy membership and falsity membership functions of 4" can be

defined as follows

T
x—a
w,

a T
a, —a,

for al <x<a,

w for x=a,

T, = “ (1.10)

T

a, —x

3 T

" for a, <x<aj
a; —a,

0 otherwise
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x—b/
bz - bll

n,  for x=b,
A" 1

77(1;[ - for b, <x<b]

n, for bl <x<b,

0 otherwise

F
xX—c
T

a F
¢ —q

for ¢f <x<c,

T, for x=c,
F
xX—c

a F
G — G

T

for e, <x<cl

0 otherwise

1.14 (. B.7)— Cut of Single Valued Triangular Neutrosophic

Number(SVTNN)

Let A" :((a1 Ly, Qs 3 W ) (b[ b, b[,m)(c1 ,CyCa 3T )) be generalized single valued

triangular neutrosophic number. Then it is a crisp subset of R and is defined by

/)
p () ()]

Ay, =X ()2 a1, (x) < B Fy (x) <
:{[L“(Z”),R“(2”)},[Lﬁ(;1”),Rﬂ(2”)],_

a a
T T T T
a, +;(a2—a1 ),a3 ——(a3 —aZ)J,

L a a

- _b{+nii(bz—b{),b;+nii(b;—bz)}

F, 7 F\ F, YV (F
4L (= )l + L (e _cz)}

L a a

1.15 Ranking of Triangular Neutrosophic Number

A triangular neutrosophic number A4” =((011 Ly, Qs 3 W ) (b’ b,,b};n )(ClF ,CysCh 3T, ))is

completely defined by
T
L.(x)=w, al alT for al <x<a,
a,—a,
and
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a, —x
R (x)=w,— for a,<x<al;
a; —a,
_bl’ s
,(x):nab x for by <x<b,
274
and
x_b:\’l I
R, (x)=n,— Jor b, <x<b;;
by —b,
x—c
L.(x)=z, L for ¢ <x<c,
GG
x—c F
and R, (x)=7,— Jor ¢, <x<c

G —G

.The inverse functions can be analytically expressed as

L' (h)=af +i(a2—af);

R (h)=a! -2 (al - a,);

And

R (W)=l +2(cl =)

a

Now left integral value of truth membership ,indeterminacy membership and falsity

membership functions of 4" are

2w, —l)alT +a,

v, ()=t (h):(

0 2w,
and
“N (2n,-1)b; +b
v, (4 =] (n)= D

0 a

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

(1.22)

(1.23)

(1.24)

(1.25)

(1.26)

(1.27)




~ . 2t —1)c +c
VLF(A")=IL11(’Z)=( : 22 — (1.28)
0 a
respectively

and right integral value of truth, indeterminacy and falsity membership functions are

(2wa - 1)a3T +a,

v, (4")=|R:'(h)= 1.29
W ()= R )= P (1.29)
Nk 2n +1)bl —b
Ve (A")=IRZ1(h)=( e 2) 22 (1.30)
0 770
and
~ ! 27 +1)cf -
VRF(A"):JREI(hF( : 2303 = (1.31)
0 a
respectively.

The total integral value of the truth membership functions is

pe (1:1")= (2w, -1)a; +a, a+(1—a)(2W” -1)a) +a, _ a, +(2w, —1){aa§+(1—a)a{}. 01

2w, 2w, 2w, e
(1.32)
The total integral value of indeterminacy membership functions is
vs (;1”)= (27, +2173ab3’ —b, (1= ) (27, —2173571“ +b, _ (1-2.)b, +l;3’77§2ﬂ+277“ -1) pefo]
(1.33)
The total integral value of falsity membership functions is
v (;1) _(2r, +213::3F -, y(1=7) (22, —212;1“ +e, _(1-27)e, +c;’rl(12;/+21a -1) efol]
(1.34)
Let A" =((alay.al3w, ). (B by, bism, ) (e sennels2,)) and

B" = ((elT,ez,ef;wb),(fl],fz,f;;nb)(gf,gz,gf;rb ))be two  generalized  triangular
neutrosophic number then the following conditions hold good
) It VTa(;ln)<VTa(§n)’ V;ﬂ(2n)<V]ﬂ(l}n)’and I;(Zl”)<1;([gn)for

a, B,y €[0,1]then 4" < B"
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1) I S 72 (21") > Ve (B"), v’ (21”) >V’ (é" ) and I’ (21") > 17 (B") for
a, B,y €[0,1]then 4" > B"
iy I Vra(gn)zVTa(én), Vlﬂ(;ln):V[ﬂ(gn),and I;(,Zn)zjg(f;n)for

a, b,y e [O,I]then A" =B"

1.16 Nearest Interval Approximation for Neutrosophic Number
Here we want to approximate an neutrosophic number

A" :((alr,az,af;wa),(bll,bz,b;;na)(cf,cz,cf;/la)) by a crisp model.

Let 4"and B"be two neutrosophic numbers. Then the distance between them can be

measured according to Euclidean matric as

1

c?é = %I(TAL (a)—TBL (a))2 da+%':[(TAU (a')—TBU (a))2 da

+%.:[(FAL (@)~ F, () dec+ L [(E, (@) Fy (@)) da (1.35)

Now we find a closed interval C i, (2”) =[C,,C, |which is nearest to A" with respect to the

matric d,.Again it is obvious that each real interval can also be considered as an

neutrosophic number with constant a—cut [C,,C,]|for all «[0,1].Now we have to

minimize d,(A4",C, (A" with respect to C,and C,,that is to minimize
E d p L U

E

(TAL (a)-C, )2 da+':[(TAU (a)-C, )2 da

+j(FAL (06)—CL)2 da+j(FAU (a)-Cy )2 da (1.36)
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With respect to C, and C, . We define partial derivatives

%&Q):_zi(g (a)+1, (a)+F, (a))da+6CL (1.37)
R (C.Cy) _ _zj(TAU (@)+1, (a)+F, (a)da+6C, (1.38)

oc,

0

And then we solve the system

hlCLG) (aCé’CU) =0, (1.39)
L

R (C.G) =0 . (1.40)
oC,

The solution is

a; (1.41)

1
C, =J’ e a (1.42)
0

0°F(C,.C,) &F(C,.C,)

i oC; 0C,0C, 6 0
Since det = =36>0 (1.43)
O’F(C,,C,) 0°F(C,,C,) | \0 6
0C,0C, oC;

then C; C, mentioned above minimize F, (C,,C, ). The nearest interval of the neutrosophic

number A with respect to the matric d,is
- (T, (a)+1, (a)+F, () T, (a)+1, (a)+F, (a)
C,(4)= { ! 3 da, ! 3 da (1.44)

T I F T I F T 1 F T I F
a +b +c a,—a b —-b ¢, —c a,+b, +c a,—a, b,—-b ¢, —c
=|:l 1 l+ 2 l+2 1+2 1 3 3 3+ 2 3+3 2+3 2

9

3 6w, 6n3, 64, 3 6w, 6m, 64

a a

1.17 Decision Making in Neutrosophic Environment

Decision making is a process of solving the problem in involving pursuing the goals under

constraints. The outcome is a decision which should in an action. Decision making plays an
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important role in an economic and business, management sciences, engineering and
manufacturing, social and political science, biology and medicine, military, computer science
etc. It is difficult process due to factors like incomplete information which tend to be
presented in real life situations. In the decision making process our main target is to find the
value from the selected set with highest degree of membership in the decision set and these
values support the goals under constraints only. But there may arise situations where some
values selected from the set cannot support i.e such values strongly against the goals under
constraints which are non-admissible. In this case we find such values from the selected set
with least degree of non-membership in the decision sets. Intuitionistic fuzzy sets only can
handle incomplete information not the indeterminate information and inconsistent
information which exists commonly belief in system. In neutrosophic set, indeterminacy is
quantified explicitly and truth membership, indeterminacy membership and falsity
membership are independent. So it is natural to adopt for that purpose the value from
selected set with highest degree of truth membership ,indeterminacy membership and least
degree of falsity membership in the decision set. These factors indicate that a decision

making process takes place in neutrosophic environment.

1.18 Single-Objective Neutrosophic Geometric Programming

Let us consider a Neutrosophic Geometric Programming Problem as

(P1.1)

Mz'nnfo (x) (1.45)

Subject to

f,(x)<" b, j=12,..m (1.46)
x>0 (1.47)

Here the symbol “<"” denotes the neutrosophic version of “<”.Now for Neutrosophic

geometric programming linear truth,falsity and indeterminacy membership functions can be
represented as follows

N SAOE

L)y ppeg =g (148

0 ()2

H; (f/ (x)) =
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j=0,1,2,....m

1 sz,(x)s(f,—f,)

v, (f,(x))= fi(x)_(ﬁ_ﬂ') if (f,-f)<f(x)<f, (1.49)

f;
0 i ()21
j=0,1,2,....m
L s
0,(7,(x)= (ffff))f D s w=(r-1) (1:50)
o jiffj(X)Z(ﬂ—f}")

Now a Neutrosophic Geometric programming problem(P1.1) with truth ,falsity and
indeterminacy membership function can be written as

(P1.2)

Maximize y1;( f,(x)) (1.51)
Minimize v, ( f;(x)) (1.52)
Maximize o ( f,(x)) (1.53)
j=0,1,2,..,m

Considering equal importance of all truth,falsity and indeterminacy membership functions
and using weighted sum method the above optimization problem reduces to

(P1.3)

Maximize V, = i{ﬂj (fj (x))—uj (fj (x))+0'j (fj (x))} (1.54)
Subject to
x>0 (1.55)

The above problem is equivalent to

(P1. 4)
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Minimize V :i{[ﬁ+%+ﬁjﬁ(;¢)_(ﬁ;ﬁ +f]]—3f10 +fjjjj]:]]:jfjo ]} (1.56)

j=0

Subject to
N; n
fi(x)=2C. ] [x" <1 j=12,...m (1.57)
k=1 i=1
(1.58)

x,20i=12,..,n

T
Where C, >0anda,, areall real. x=(x,x,,..,x,) .

The posynomial Geometric Programming problem can be solved by usual geometric

programming technique.

1.19 Numerical Example of Neutrosophic Geometric Programming

Consider an Intuitionistic Fuzzy Nonlinear Programing Problem as

(P1. 5)
Minimize fo (xl,x2 ) =2x,"x," (target value 57.87 with tolerance 2.91) (1.59)
Subject to

£, (x,x,) =x"'x,' <6.75( with tolerance 2.91) (1.60)
(1.61)

fo(x,x,)=x +x, <1

x,%, >0
Here linear truth ,falsity and indeterminacy membership functions for fuzzy objectives and

constraints goals are

1 if 2x°x; <57.87
AL2.-3
1y (fo (x1.3,)) = 60'782 921’61 Y2 if 57.87<2xx;> <60.78 (1.62)

0  if 2x°x," >60.78

1 if x'x;> <6.75

S )

w(f(x.x,)) = 6'940% if 6.75<x x> <6.94 (1.63)
0 if x'x;°>6.94
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1 if 2x°x,> £59.03

2. 3
2%, xi 755 903 1 59.03<2x7x <60.78

0  if 2x°x,° >60.78

Uy (fo (x15x2 )) =

1 if x'x;> <6.83
T —6.83
o (f (x.%,)) = “T if 6.83<x'x,” <6.94
0 if x'x;>>6.94
1 if 2x°x,> <57.87
59.50—2x°x;"
oy (f (%.3,)) = 2 1 63X1 Y2 57.87<2x7x; £59.50
0  if 2x°x;° 259.50
1 if x'x;> <6.75
-l
& (£ (%.x,)) = 08870 X 6 75<xx? <6.88

0.13
0 if x'x;”>6.88

Based on max-additive operator FGP (P1.5) reduces to
(P1. 6)

1 1

111
Mevimize Vs (x"XZ):[O 1970110 13)361_1)61 {

Subject to

fz(xl,xz)le +x, <1

x,%x, >0

+ +
291 1.75 1.63

(1.64)

(1.65)

(1.66)

(1.67)

(1.68)

(1.69)

Neglecting the constant term in the following model we have following crisp geometric

programming problem as

P1.7)
Maximize V(x1 X, ) =22.046x;'x;' +3.057132x,°x;’
Subject to

)’z(xl,xz):x1 +x, <1

Page
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x,%, >0 (1.72)

Here DD=4-(2+1)=1

The dual problem of this GP is

Max d () =(22.046ij (3.057132]‘”‘” [ 1 ]W” ( 1 ] (1, ) 173)

Wor W W W,

Such that

Wy, +w,, =1 (1.74)

~Wy, —2W,, + W, =0 (1.75)

—2Wy, = 3wy, + Wy, =0 (1.76)

So Wy, =1=wy;; W, =2—=wy;; W, =3—W,,; (1.77)

. . [22.046]%1 [3.057132]“”’“’[ I ](”‘")[ ](”“) .
Maximize d (w,,) = (5-2wy,) (1.78)
Wy, 1-w,, 2-w, 3-w,

Subject to

0<w, <1 (1.79)

For optimality, M =0 (1.80)

WO]

22.046(1—wy, ) (2= wy, ) (3—wy ) =3.057132w,, (5-2w, )’ (1.81)

wy, = 0.6260958, wy, =0.3739042, w;, =1.3739042, w;, =2.3739042, (1.82)

x; =0.366588, x; = 0.633411, (1.83)

fy (x.x,)=58.56211,  f'(x,x;)=6.799086, (1.84)
1.20 Application of Neutrosophic Geometric Programming in

Gravel Box Design Problem

Gravel Box Problem: A total of 800 cubic meters of gravel is to be ferried across a river on a
barrage. A box (with an open top) is to be built for this purpose. After the entire gravel has
been ferried, the box is to be discarded. The transport cost of round trip of barrage of box is
Rs 1 and the cost of materials of the ends of the box are Rs 20/m?and cost of the material of

Page

17



other two sides and bottom are Rs 10/m? and Rs 80/m” respectively.Find the dimension of the
gravel box that is to be built for this purpose and the total optimal cost. Let length ,width and
height of the box be x, m,x, m,x; m respectively. The area of the end of the gravel box is

x,x,m”. The area of the sides and bottom of the gravel box are xx,m’ and  xx,m’

Material

respectively. The volume of the gravel box is x,x,x, m’. Transport cost is Rs
X,X,X,

cost is 40x,x;.

So the gravel box problem can be formulated as multi-objective geometric programming
problem as

(P1. 8)

Minimize f,(x,,x,,x,)= 80 +40x,x,

X, X, X, (1.85)
Minimize f,(x,x,,%,)= xli—i@ (1.86)
Such that
XX, +2xx, <4 (1.87)
X;5 Xy, X, >0 (1.88)

Here objective goal is 90(with truth tolerance 8, falsity tolerance 5 and indeterminacy
tolerance 5)

And constraint goal

f, (%, x,,x,) <4 (with truth tolerance 0.9,falsity tolerance 0.5 and indeterminacy tolerance

0.6)

X, =2.4775, x, =0.1271, x, =0.5635, (1.89)

fy (x.%,)=76237, £ (x.x;)=4.5856,

1.21 Multi-Objective  Neutrosophic Geometric Programming
Problem

A multi-objective geometric programming problem can be defined as

(P1.9)
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Find X =(x,%,.X, ) (1.90)

So as to
Tko n
Minimize f,, (x):ZCkOtij“” k=12,.,p (1.91)
t=1 j=1
Such that
T; n
fi(x)=>.CJ]x" <1 i=1,2,.,m j=12,..,n (1.92)
t=1 =

x, >0,

Where C,,,C, >0 forall k and t. a,,,a,, are real for all i,t.k,]

itj
Computational Algorithm

Step-I: Solve the MONLP problem (P1.9)as a single objective non-linear problem p
times for each problem by taking one of the objectives at a time and ignoring the others.

These solutions are known as ideal solutions. Let x, be the respective optimal solution

for the k th different objective and evaluate each objective values for all these k th
optimal solution.

Step-11: From the result of step-1, determine the corresponding values for every objective
for each derived solution. With the values of all objectives at each ideal solution, pay-off
matrix can be formulated as follows

NI RRACO I AC
S RACIRACH I ACY
LAY AW e ),

Step-III: For each objective f, (x), find lower bound Z{ and upper bound U}
Ut =max{f, (x")} (1.93)

and [/ :min{fk (x )} (1.94)

where 1<r <k for truth membership of objectives.
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Step-IV: We represent upper and lower bounds for indeterminacy and falsity
membership of objective as follows

U’ =U* (1.95)
and L) = I +1(Uf' - L) (1.96)
L=I (1.97)
andUy =L +s (U} - 14 ) (1.98)

Step-V: Define Truth membership, indeterminacy membership and falsity membership as
follows

1 if fsL
Ur -
;Mﬁu»=ﬁ;%§)#mSﬁsw (1.99)
0 i f,2Uf

1

Then v, (£, (x))zl—l—_t,uk (£ (x)) (1.100)
and o, ( f, (x))=§,uk(fk(x))—l_TS (1.101)
for k=1,2,..., p
It is obvious that

1 i fsL
o (£ (x))= l@;—i? if [C<f, <U? (1.102)

0 if f,2Uf

1 if f,<L
v (f (x))= % if I'<f, <U’ (1.103)
0 if f, 2U{

and 0< z1, (/; (x))+0, (/3 (x))+0, (fi (x))<3 for k=1,2,...p
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Step-VI: Now a neutrosophic geometric programming technique for multi-objective non-
linear programming problem with truth membership, falsity membership and
indeterminacy membership function can be written as

(P1. 10)
Maximize (11, f;(x))s o (5 (%)), (£, (%)) (1.104)
Minimize (0;(£,(x)),0, (5 (x))s-0, (f, (%)) (1.105)
Maximize (0, (f; (%)), (/s (%)), (1, (¥))) (1.106)
Such that

f,.(x):icﬁ ] X <1 i=1,2,.,mj=12,..n (1.107)

Where C, >0 foralliandt. a,, arereal forall i,t,j

Using weighted sum method the multi-objective nonlinear programming problem (P1.10)
reduces to

(P1. 11)

p

Minimize V,,, (x) = Zwk (Uk (fk (x))—,uk (fk (x))—ak (fk (x))) (1.108)

k=1

1 1\ 2 U 1
Minimize V,, (x)=|1+—+— | w, ——= 1+—+ w k_1—=% (1.109
() [ 1t s]; Cur-r 1t j,; kU,f—L;j] s}( )
Such that
T; n
fi(x)=>.CJ[x" <1 i=1,2,.,m j=12,..n (1.110)
=1 j=1

x, >0,

Where C, >0 foralliandt. a,, arereal forall i,t,j

Excluding the constant term, the problem (P1.11) reduces to the following geometric
programming problem
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(P1. 12)

! n
1 1 p ;thijkv
Minimize V,,, (x) =(1+—+—jz = =

W (1.111)
S ur-rI
Such that

i=L2,..mj=12,..,n (1.112)
t=1 Jj=1

x, >0,
Where C, >0 foralliandt. a,, arereal forall i,t,j

Here 1,5 €(0,1)are predetermined real numbers.

Where 7,,,(f; (x)) =V (£, (x)) - {(1+r+sjf: W, U”Lﬂ}_l} (1.113)

k=1 §

Here (P1.12) is a posynomial geometric programming problem with

D m
pD=NT,+3T-n-1 1.114)
kO i
k=1 i=1

It can be solved by usual geometric programming technique

1.22 Definition:

Neutrosophic Pareto (or NS Pareto)
Solution

Optimal

A decision variable x € X is said to be a NS Pareto optimal solution to the Neutrosophic

GPP (PI1.11) if there does not exist another xeX such that yk(fk(x))sluk(fk( ))
v, (i ()20 (fk (x*)) ando, (f,(x))<o, (fk (x*)) for all k=12,.,p and

yj(ﬁ(x))iyj(ﬁ(x*)),Q,(J‘j(x))igj(ﬂ(x*)) andqj(ﬂ(x))ioj(fj(x*)) for at least

j=12,.,p
1.23 Theorem 1

The solution of (P1.9) based on weighted sum method Neutrosophic GP Problem (P1.10) is
weakly NS Pareto optimal.

Proof:
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Let x € X be the solution of Neutrosophic GP Problem.Let us suppose that it is not weakly
M-N pareto optimal.In this case there exist another xe X such that g, ( £ (x))< i ( 1 (x*)),

v (/i (x))> 0 (fk (x)) andak(fk(x))<ak(fk (x)) for all k=1,2,..., p.Observe that yk(fk(x))is

strictly monotone decreasing function with respect to fk(x) .This  implies

#(£,(2))> a1, (£ (x7))and v, (£, (x

) is monotone increasing function with respect to £, (x), .
This implies v, fk <Uk( filx ))and o, ﬁ 1s strictly monotone decreasing function

with respect to f, (x),s0 o, ( fi(x))>0, ( fi (x*)) .Thus we have

S (£ (3)> 2o (£ (3)). 2o (4 (1) < oo (4, (3 and

k=

Zwkak ( JAE: ) Zwkak ( fk( )) This is a contradiction to the assumption that x  is a
solution of Neutrosophic GP Problem (P1.9).Thus x"is a weakly NS Pareto Optimal.
1.24 Theorem 2

The unique solution of Neutrosophic GP Problem (P1.10) based on weighted sum method is
weakly NS Pareto optimal.

Proof:

Let x € X be the solution of Neutrosophic GP Problem.Let us suppose that it is not weakly
NS pareto optimal. In this case there exist another xe X such that g, ( £ (x))S i ( 1 (x*)),

v, (fk(x))ZUk(fk(x*)) andak(fk(x))ﬁak(fk (x)) forall k=1,2,..,p

and (£, (x))<n, (fl (x*)), v (f(x)>y (f, (x)) for at least one [ Observe that (fk (x)) is

strictly monotone decreasing function with respect to f, (x), this  implies
(o (x)> ( fi (x*))and v, ( f, (x)) is monotone increasing function with respect to £, (x), .
This implies o, ( 1 (x)) <, ( i (x)) and o, ( i (x)) is strictly monotone decreasing function

with  respect to  f,(x),this  implieso,(f,(x))>o, ( fk(x*)). Thus we  have
Zwkﬂk(fk ) szﬂk(fk( )) szUk(fk ) ZWkUk(fk( ))and

Zwkak( fi(x ) ZWka( ( )) . On the other hand uniqueness of x" means that

p

> o (£, (5) < S (1 (¢))- e (1 0) > L (1 )

k=1 k=

Page

23



4 4
Yowo (i (%)< Ywo, ( fi (x)) . The two sets inequalities above are contradictory and thus
k=1 k=1
x  is weakly pareto optimal.
1.25 Ilustrated Numerical Example

A multi-objective nonlinear programming problem can be written as
(P1.13)
Minimize f,(x,x,)=x"x,’ (1.115)
Minimize f,(x,x,)=2x"x;"
(1.116)

Such thatx, +x, <1 (1.117)
Here the pay-off matrix is

filxnx) fi(x.x,)
xl[ 6.75 60.78}

x,| 694 5787

The truth membership,falsity membership and indeterminacy membership can be defined as

follows
1 if x'x,> <6.75
-1 -2
w(fi(x))= 6'940_% if 6.75<x'x;> <6.94 (1.118)
0 if x'x,°>6.94
1 if 2x7°x;> <57.87
2.3
(£, (x))= 60'782_ 921"1 Y if 57.87<2x7x, <60.78 (1.119)
0 if 2x7°x;° > 60.78
1
v (A (X))=1—1—_tﬂ1 (£ (x)), (1.120)
1
Vz(fz(x))zl_:ﬂz(ﬂ(x)) (1.121)
1 1-
and o, (f,(x))=—4 (£ (X))—TS, (1.122)




02 (£ (x)) = aa (£ (1) =

S

(1.123)

Table 1.1 Optimal values of primal, dual variables and objective functions from

Neutrosophic Geometric Programming Problem for different weights

Weights Optimal Optimal Optimal Sum of the Optimal
W, W, Dual Primal Objectives Objectives
V?riab*les * Vftria;bles £ ( XX ) , £ ( X% ) + £ ( XX )
nga Wozo Wiis | X5 X2 fz*(xr,x;)
WIZ >
0.5,0.5 0.6491609 0.3649261 6.794329 65.32803
0.3508391 0.6491609 58.53371
1.3508391
2.3508391
0.9,0.1 0.9415706 0.3395821 6.751768 66.96388
0.0584294 0.6604179 60.21212
1.0584294
2.0584294
0.1,0.9 0.1745920 0.3924920 6.903434 64.80794
0.8254080 0.6075080 57.90451
1.8254080
2.8254080

Table 1.2 Comparison of optimal solutions by IFGP and NSGP technique

Optimization | Optimal Optimal Sum of the Optimal
Techniques Primal Objectives Objectives

Variables | £ (x),x), | £ (x,5)+ £ (x,x1)

X ’ X B * * *

v f (x1 ’xz)
Intuitionistic 0.36611 6.797678 65.37980
Fuzzy 0.63389 58.58212
Geometric
Programming
(IFGP)
Proposed 0.3649261 6.794329 65.32803
Neutrosophic 0.6491609 58.53371
Geometric
Programming
Technique
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In Table 1.2,It has been seen that NSGP technique gives better optimal result than IFGP
technique

1.26 Application of Neutrosophic Optimization in Gravel Box
Design Problem

Gravel Box Problem: A total of 800 cubic meters of gravel is to be ferried across a river on a
barrage. A box (with an open top) is to be built for this purpose.After the entire gravel has
been ferried, the box is to be discarded.The transport cost of round trip of barrage of box is
Rs 1 and the cost of materials of other two sides and bottom are Rs 10/m? Find the dimension
of the gravel box that is to be built for this purpose and the total optimal cost.Let length width

and height of the box be x, m, x, m, x; m respectively. The area of the end of the gravel box is

x,x,m”. The area of the sides and bottom of the gravel box are xx,m’ and  x.x,m’

respectively. The volume of the gravel box is x,x,x, m’. Transport cost is Rs .Material

XXy X3

cost is 40x,x; .

So the gravel box problem can be formulated as multi-objective geometric programming

problem as
(P1.14)

Minimize f, (xl,xz,x3) = +40x,x, (1.124)

Xy Xy X
I 80

Minimize fz(xl,xz,x3)=— (1.125)
Xy Xy X3

Such thatx,x, +2x,x, <4 (1.126)

X;, Xy, %5 >0

Solution: Here pay off matrix is

A=) fi(x)
x'[9524 63.78
| 120 40

Table 1.3 Comparison of optimal solutions of gravel box problem between IFGP

and NSGP Method
Optimization | Optimal Optimal Sum of the Optimal
Techniques Primal Objectives Objectives
Variables | f(x,), | £ (xa0)+ £ (%.40)
Xp5 Xy5 X35
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;5 (x.x))
Intuitionistic 1.2513842 101.1421624 | 151.1975294
Fuzzy 1.5982302 50.0553670
Geometric 0.7991151
Programming
(IFGP)
Proposed 1.2513843 101.1421582 | 151.1975237
Neutrosophic | 1-5982300 | 50.0553655
Geometric 0.7991150
Programming
Technique

1.27 Multi-Objective Neutrosophic Linear Programming Problem (MOLPP)

A general multi-objective linear programming problem with p objectives ,q constraints and n

decision variables may be taken in the following form

(P1.15)
Maximize f,(X)=CX
Maximize f,(X)=C,X

Maximize f, (X) =C X

Subjectto 4AX <b

Where C, =(c,,¢, c,) fori=12,.,p

i19Cinoeeeeeee sCin

Consider the multi-objective linear programming problem as

(P1.16)
Maximize {f1 (x),f2 (x),....,fp (x)}

Subject to

AX <b

Page

(1.127)

(1.128)

(1.129)

(1.130)

(1.131)

(1.132)

(1.133)

(1.134)

(1.135)
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Where 4=(a,) . X =(x.%x, ) s b=(Bbysst,) (1.136)

q,n

Now the decision set D" , conjunction of neutrosophic objectives and constraints are defined

as D" :(kﬁl ijm[ﬁ J :{(x,TD,, (x).1,, (x).F,, (x))} (1.137)

J=1

Here

Ty () =(Toy (9T (8)sves Ty (03T (), T ()s0s Ty () forall xe X (1138)

q

1o (0) = (T (8): Ty (s T (%) (3T (%) () forall xe X (1139)

P q

Fyp (x) = F (6): Fyg (¥) s Fy (%): Fpy (), Py (), Fy () forall xeX. (1.140)

2 q

Here Tbn (x),]b,, (x),FD,, (x) are Truth membership function, Indeterminacy membership

function, Falsity membership Functions of Neutrosophic Decision set respectively. Now
using the definition of Smarandache™s intersection of neutrosophic sets and criteria of

decision making ,the optimum linear programming problem can be formulated as

Model-I-AL,BL

(P1.17)
Max o (1.141)
Min B (1.142)
Max y (1.143)
Such that
T (x)>a (1.144)

(x)>a (1.145)
(x)=y (1.146)

I, (x)=y (1.147)
(x)<p (1.148)
(x)<p

(1.149)
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k=12,...p

a+p+y<3 (1.150)
a> (1.151)
azy;
(1.152)
a, B,y €[0,1] (1.153)

In this algorithm we have considered the indeterminacy membership function as of
decreasing sense and increasing sense respectively in Model-I-AL and Model-BL
respectively

But in real world situation a decision maker needs to minimize indeterminacy or hesitancy
So using the another definition of Smarandache®s intersection of neutrosophic sets and

criteria of decision making the optimum linear programming problem is formulated as

Model-1I-AL,BL

(P1.18)
Max a (1.154)
Min B (1.155)
Min y (1.156)
Such that
TG" (x)za (1.157)
T@ x)>«a (1.158)

<y (1.159)

(x)
(x)
I (x)<y (1.160)
(x)
(x)

TG; x)<p (1.161)
Té; x)<p (1.162)
k=12,..,p

a+pf+y<3 (1.163)
a>p; (1.164)
azy; (1.165)
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a, B,y €[0,1] (1.166)
In this algorithm we have considered the indeterminacy membership function as per

decreasing sense and increasing sense respectively in Model-II-AL and Model-1I-BL.

Computational Algorithm 1 (Linear Membership Function)
Step-I: Pick the objective function and solve it as a single objective subjected to the
constraints. Continue the process k-times for k different objective functions. Find value of
objective functions and decision variables.
Step-11: To build membership functions, goals and tolerances should be determined at first.
Using ideal solutions, obtained in step-I we find the values of all the objective functions at

each ideal solution and construct pay-off matrix as follows

fl*(xl) fz(xl) ........ fp(xl)
fz(xz) fz*(xz) ........ fz(xz)
f](xp) fz(xp) ....... f;(xp)

Step-111: From step-1I we find the upper and lower bounds of each objective functions
U/! = max { fi (xj )} and L, =min { fi (x, )} where 1<r <k for truth membership functions

of objectives.
Step-1V: We represent upper and lower bounds for indeterminacy and falsity membership of
objectives as follows for

Model-LII-AL,AN

L, =1L and U] = I - A(U] - L} ) (1.167)
Ly =1, —t(U] - L) (1.168)
Uf =U!

for Model-I,II-BL,BN
Uf =UT =U!

L =L, -t(U] - L)
L =1, -A(U] - L})

Here A and ¢ are two predominant real numbers in (O,l)
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Step-V: Define Truth membership, Indeterminacy membership, Falsity membership
functions (For Model-III-AL,BL) as follows
N AR

L)AL i s g (1169

0 i fi(x)2U]
For Model-I,II-AL
0 if f(x)=L
if L < f,(x)<U{ (1.170)

N B ACIRLY

For Model-III-BL

U AR
L(f(x)= % if L < f,(x)<U| (1.171)

1L if fi(x)2U]

0 if fi(x)<L;

F (/i (x)= % if L < f,(x)<U; (1.172)

L f(x)2Uf
Step-VI: Now neutrosophic optimization method for MOLP problem gives an equivalent
linear programming problem as Model-I-AL and Model-1-BL as
Model-I-AL,BL

(P1.19)
Maximize o~ fi+y (1.173)
T.(f(x)za (1.174)
L/ (x)zy (1.175)
F(f(x))<pB for k=1,23,.,p (1.176)
a+p+y<3, (1.177)
azp, (1.178)
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azy, (1.179)

a, B,y €[0,1] (1.180)
Ax<b, (1.181)
x>0 (1.182)

Where in case of Model-I-AL we have considered Indeterminacy membership function as of
decreasing sense and in Model-I-BL we have considered Indeterminacy membership function

as of inceasing sense.
Again Model-II-AL and Model-II-BL can be formulated as

Model-1I-AL,BL

(P1. 20)
Maximize a— B~y (1.183)
T.(f(x)za (1.184)
L(f.(x)<y (1.185)
F(fi(x))<p for k=123,.p (1.186)
a+p+y<3, (1.187)
azp, (1.188)
azy, (1.189)
a, B,y €[0,1] (1.190)
Ax <b, (1.191)
x20 (1.192)

n

Where A:[aﬁ]qn; X:(xl,xz, ..... ,X );bz(bl,bz, ..... ,bq)T for j=12,..,p;i=1,2,.....,nHere

Here Model-1I-AL,and Model-II-BL stand for neutrosophic algorithm with decreasing
indeterminacy membership function and increasing indeterminacy membership function
respectively. The above problems can be reduced to equivalent linear  programming

problem as

Model-I-AL
(P1.21)
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Maximize oc — +y
Such that

£ (x)+ (U - L)a<U]
£ () +(U; -~ L)y <U;
AOR AV

a+pf+y<3,
azp,
azy,
a,ﬂ,ye[O,l]
Ax<b,

x>0

Where A:[aﬂ} ; X:(xl,xz, ,xn);bz(bl,

q,n

And

Model-I-BL
(P1.22)
Maximize x— +y
Such that
£ (x)+ (U - L})a<U]

fi(x)- (Ul -L)y = I

AOR A AVENA

a+pf+y<3,

(1.193)

(1.194)
(1.195)

(1.196)

(1.197)
(1.198)
(1.199)

(1.200)

(1.201)
(1.202)

(1.203)

(1.204)
(1.205)

(1.206)

(1.207)
(1.208)
(1.209)
(1.210)
(1.211)
(1.212)




And
Model-IT-AL
(P1. 23)

Maximize a— f—y

Such that

azy,

a, B,y €[0,1]
Ax <b,

x>0

And
Model-I1-BL

(P1. 24)
Maximize . — -y
Such that

£ (x)+ (U - L})a<U]

f(x)-(Ui -y <L

()~ (UL £ B

a+f+y<3,

(1.213)

(1.214)
(1.215)

(1.216)

(1.217)
(1.218)
(1.219)

(1.220)

(1.221)
(1.222)

(1.223)

(1.224)
(1.225)

(1.226)

(1.227)




a>p, (1.228)

a>y, (1.229)
a, B,y €[0,1] (1.230)
Ax <b, (1.231)
x>0 (1.232)

Computational Algorithm 2 (Non Linear Membership Function)
Repeat step 1 to 4 as same as computational algorithm 1 and construct pay off matrix.
Step-V: Assumes that solutions so far computed by algorithm follow exponential function for
Truth membership, hyperbolic membership function for Falsity membership and exponential

function for Indeterminacy membership function (Model-I-AN,Model-I-BN) given as

0 i fi(x)<L
T, (f (x))= l—eXp{—l/fw} if Ly <f(x)<U/ (1.233)

1 if f,(x)=2U,

For Model-I,II-AN as

0 if fi(x)< L
I(fi(x)= exp{(];];—f"[f;)} if L <f(x)<U, (1.234)
I if fi(x)2U;
For Model-I,II-BN as
0 if f,(x)<L
I (£ (%)= ew{%} if L <f(x)<U] (1.235)
1 i 1, ()2
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0 if fi(x)< L
11 Ur+L .
Fk(fk(x)): E+5tanh{5k(fk(x)—%} if L, < f,(x)<U/ (1.236)
1 if fi(x)2U;
Step-VI: Now neutrosophic optimization method for MOLP problem with exponential Truth

membership, Hyperbolic falsity membership and exponential indeterminacy membership

functions give the equivalent linear programming problem as

Model-I-AN,
(P1. 25)
Maximize 0+ & —n (1.237)
Such that
ur-1r)e
fk(X)Jr—( : 2 ) <U; (1.238)
fi (x)- (U} L} )k <U] (1.239)
_n U+ 1.240

f}c(x) 5k - 2 ( . )
O+E+n<3, (1.241)
0=¢, (1.242)
0>n, (1.243)
0,&,m€[0,1] (1.244)
Ax <b, (1.245)
x>0 (1.246)

0=—log(1-a), (1.247)

¢ =logy, (1.248)

n=tanh™ (248-1), (1.249)

v =4, (1.250)
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6

O =——F (1.251)
Cul-rf
And
Model-I-BN

(P1. 26)
Maximize 0+ & —n (1.252)
Such that

u'-r'\)e
fk(X)+—( - 2 ) <U{ (1.253)
fi(x)-(Ul-L)x 2 I (1.254)
1 Uik 1.255

filx)=5== (1.255)
O+5+n<3, (1.256)
0=¢, (1.257)
0=n, (1.258)
0,¢,n€[0,1] (1.259)
Ax <b, (1.260)
x>0 (1.261)

0=—log(1-a), (1.262)

¢ =logy, (1.263)

n=tanh™ (25 -1), (1.264)

w =4, (1.265)

o, = % (1.266)
Ul -1

Model-TI-AN,
(P1.27)
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Maximize 0 —& —n
Such that
(Ul -1;)6

2 <U/

fi(x)+

£ (x)+ (U} - L )k 2 U]

o)L=t
0+&E+n<3,

0=>¢,

0=,

0,&,m€[0,1]
Ax<b,

x>0

0=—log(l-a),

&=logy,

n=tanh (28-1),

v =4,

6
0, =——F
U
Model-II-BN,

(P1. 28)

Maximize 0 —& —n
Such that

ur-rr)e
ﬁ(x)+£—ijzj)——Sde

fi(x)-(Ui - L )x <L
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(1.268)

(1.269)

(1.270)

(1.271)
(1.272)
(1.273)
(1.274)
(1.275)
(1.276)

(1.277)

(1.278)

(1.279)

(1.280)

(1.281)

(1.282)

(1.283)

(1.284)




fk(X)—%SU"F;L: (1.285)
O+Ern<3, (1.286)
0> ¢, (1.287)
0>n, (1.288)
0,&,m€[0,1] (1.289)
Ax<b, (1.290)
x>0 (1.291)

Where d=[a,] ;X =(%,%p00%,); b=(b.bysoe b,) for j=1,2, p3i =12,

0=—log(1-a), (1.292)

¢ =logy, (1.293)

n=tanh™ (25 -1), (1.294)

y =4, (1.295)

O =% (1.296)
Ul -1t

The above crisp linear programming problems can be solved by LINGO Tool Box.

1.28 Production Planning Problem

Consider a park of six machine types whose capacities are to be devoted to production of
three products. A current capacity portfolio is available, measured in machine hours for each
machine capacity unit price according to machine type. Necessary data are summarized

below in table 1.4.

Table 1.4 Physical Parameter values

Machine Type Machine hours Unit price Products
($ 100 per hour) X, X, X,
Milling Machine 1400 0.75 12 17 0
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Lathe 1000 0.60 3 9 8

Grinder 1750 0.35 10 13 15

Jig Saw 1325 0.50 6 0 16

Drill Press 900 0.15 0 12 7

Band Saw 1075 0.65 9.5 9.5 4
Total capacity cost $ 4658.75

Let x,,x,,x, denote three products, then the complete mathematical formulation of the above

mentioned problem as Multi-objective linear programming problem can be given as

(P1.29)
Maximize f,(x)=>50x, +100x, +17.5x, (profit) (1.297)
Maximize f, (x) =92x, +75x, + 50x;, (quality) (1.298)
Maximize f, (x) = 25x, +100x, +75x, (worker satisfaction) (1.299)
Subject to
12x, +17x, <1400; (1.300)
3x, +9x, +8x, <1400; (1.301)
10x, +13x, +15x, <1750 (1.302)
6x, +16x, <1325 (1.303)
X, X,,X%, 20 (1.304)
Table 1.5 Positive Ideal Solution
h /5 s
Max f, 8041.14 10020.33 9319.25
Max f, 5452.63 10950.59 5903.00
Max f, 7983.60 10056.99 9355.90
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Table 1.6 Comparison of optimal solutions by IFO and NSO Technique

Optimization Optimal Optimal Sum of
Technique Decision Objective optimal
Variable Function objective
X, 5 Xy, X, s values
Intuitionistic Fuzzy | x' =62.82; £ =7673.2; 26903.51
Optimization(IFO) | x, =38.005; f, =10721.81;
x;, =41.84 f, =8508.5
Proposed x =79.99; " =5452.630; | 12375.96
Neutrosophic x, =7.073; f, =10020.33;
Optimization(NSO) | x; =42.611 £ =5903.0
g,¢& =1294.255
&,,&, =465.13
&,&, =1726.450
Model-I-AL
Model-1-BL x, = 68.89; ;= 6746.855; | 14841.435
x, = 25.09; f, =465.13;
x; =45.30 f, =7629.45
Model-II-AL xl* =68.89; f]* =6746.855; | 14841.435
x, =25.09; f, =465.13;
x; =45.30 f, =7629.45
Model-II-BL xl* =79.99; fl* =5452.63; 21375.96
x, =7.07; f, =10020.33;
x, =42.62 f, =5903.0
Model-1-AN X, =66.58; ;" =6303.59; 23447.15
x, =22.05; £, =9977.03;
x, =43.95 f, =7166.53
Model-I-BN x, =64.088; f; =7090.533; | 25770.732
x, =30.74; f, =10522.56;
X, = 46.422 f, =8157.639
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Model-II-AN xl* =64.088; f]* =7090.533; | 25770.732
x, =30.74; f, =10522.56;
x, = 46.42 f, =8157.639

Model-II-BN X, =66.58; ;" =6303.89; 23448.94
x, =22.06; f, =9977.61;
x, = 43.96 fi =7167.44

Table 1.6 shows that neutrosophic optimization gives better result than intuitioistic fuzzy

optimization.

1.29 Neutrosophic Optimization (NSO)Technique to solve Single-

Objective Minimization Type Nonlinear Programming

(SONLP) Problem
Let us consider a SONLP problem as
(P1. 30)
Minimize [ (x) (1.305)
g, (x)<b,  j=12,...m (1.306)
x>0 (1.307)

Usually constraint goals are considered as fixed quantity .But in real life problem,the

constraint goal cannot be always exact. So we can consider the constraint goal for less than
type constraints at least b ;and it may possible to extend to b]. +b§) .This fact seems to take the

constraint goal as a NS and which will be more realistic descriptions than others. Then the
NLP becomes NSO problem with neutrosophic resources, which can be described as follows

(P1.31)

Minimize f(x) (1.308)
g (x)sb! j=12,m (1.309)
x>0 (1.310)

To solve the NSO (P1.31), following Werners [118] and Angelov [3] we are presenting a
solution procedure for SONSO problem (P1.31) as follows

Step-1: Following Werner's approach solve the single objective non-linear programming

problem without tolerance in constraints (i.e g; (X)Sbj ),with tolerance of acceptance in

constraints (i.e g; (x) < b it b?) by appropriate non-linear programming technique
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Here they are

(P1.32)
Sub-problem-1
Minimize f(x) (1.311)
g, (x)<b,  j=12,...m (1.312)
x>0 (1.313)
(P1. 33)
Sub-problem-2
Minimize f(x) (1.314)
g (x)<b,+b}, j=12,..m (1.315)
x>0 (1.316)

we may get optimal solutions x” =x', f (x*) =f (xl) and x =x, f (x*): f (xz)for sub-problem

1 and 2 respectively.

Step-2: From the result of step 1 we now find the lower bound and upper bound of objective

: : T 1 F
functions [Fig.-1.1]. If U\, U, Uf(x)

1) be the upper bounds of truth, indeterminacy , falsity

(x)°
function for the objective respectively and L:p(x),L;(x),L;(x) be the lower bound of truth,

indeterminacy, falsity membership functions of objective respectively then

U, =max{f(x1),f(x2)}, (1317)
., =min{f(x1),f(x2)}, (1.318)
for Model-LII-AL,AN

Ly =Ly and Ujy =L +s(Ufy =Ly (1.319)
Ul =Uly and Ly, =L +t(Ul, ~L); (1.320)

for Model-I,II-BL,BN
Ur =U’ =U!

Ly =L, -s(Uf - L})
L =1, -t(Ul -L})

Here ¢, s are predetermined real numbers in (O, 1)

Page

43



(T.LE)

T(E=))
) [(@) P.(f(x))
fx)
0 T F T
L i(x)- L :':([x:- U f(x]
. -F
L £(x) U f(x) U (x)

Fig.-1.1  Rough Sketch of Lower and Upper bounds of Truth, Indeterminacy and Falsity
Membership Functions of Objective of (P1.31)

The initial neutrosophic model (Model -I)with aspiration levels of objectives can be

formulated as

(P1. 34)
Find x (1.321)
So as to satisfy

f(x)<" Li,(x) with tolerance (U ;(x) - L;(x) ) for degree of truth membership (1.322)

f (x) < L;,(x) with tolerance (U I - L_’f(x) ) for degree of indeterminacy membership (1.323)

7(x)
f (x) >"U f(x) with tolerance (U f(x) — Lj(x) ) for degree of falsity membership (1.324)
g; (x) <"b . with tolerance bj(.) for degree of truth membership (1.325)
g (x) <! b ; with tolerance (é’g/ ) ) for degree of indeterminacy membership (1.326)

g (x) >" bj + b;) with tolerance ((b} + b? ) — (b i+ E (v )) for degree of falsity membership

(1.327)

for j=1,2,...m,ggj(x) =t(UT —L;(x));te(o,l) and fgj(x) ZS(U;(X) —L;(x));s e(O,l)

g;(x)

and for Mode-II it can be formulated as

(P1. 35)
Find x (1.328)
So as to satisfy
f(x)<" Li,(x) with tolerance (U ;(x) — L;(x) ) for degree of truth membership (1.329)
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f(x)="U ;(x) with tolerance (U o~ Ly )for degree of indeterminacy membership (1.330)

f(x)="U f(x) with tolerance (U o~ L )for degree of falsity membership (1.331)
g (x) <"b . with tolerance bj(? for degree of truth membership (1.332)

g (x)>" (bj +&, (x)) with tolerance (gg/_ ) ) for degree of indeterminacy membership (1.333)

g; (x) >" b_/ + qu with tolerance ((bj + bf ) — (bj +&, (4 )) for degree of falsity membership

(1.334)
For j=12,.m,¢, , =t(U;(x)—L;(x));ze(o,l) (1.335)
and ¢ () =S(U§,<x> ‘LZ,@));S <(0.1) (1.336)

Here '>" 'denotes inequality in neutrosophic sense.
Step-3: In this step we calculate linear membership for truth, indeterminacy and falsity

membership functions of objective as follows
I i f(x)<L,

Uy =)
T' x f X = f;X) T
f(x) ( ( )) { Uf(x) _Lf(x)

0 if f(x)2Uy,

] if Ly, <f(x)<Uj, (1.337)

For Model-LII-AL

1 if f(x)SL,’f(x)
Uj = f (%) ; 1.338
Ly (£ (%)= {WJ if Ly, <f(x)<Uy, ( )
7(x) 7 (x)
0 if f(x)zUj,
For Model-I,II-BL
1 iff(x)ZU;.(x)
S)-Lyy ) .. . 1.339
Lo ()= [U;()_L{jj] i Ly =S (1)U}, (1359
0 if f(x)= Ly
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0 if f(x)SLi(x)
f(x)-L, . .
Ff(x)(f(x))z ﬁ if Ly, <f(x)< (x) (1.340)
Ui f(x)2Ul,

and exponential and hyperbolic membership for truth, indeterminacy and falsity membership

functions as follows

! i f(x)< Ly,
U1 ()
T/ (x))= lexp{w[UfT“—LT if Ly < f(x)<U, (1.341)
S )
0 i (x)2Uy,
For Model-I,II-AN
: if S (x) <Ly
Ui =S (x)
f(x)
Ly (£ (%)= exp{ﬁ if Ly, <f(x)<Uy, (1.342)
fx) )
0 i f(x)ZU}u)
For Model-I,II-BN
1 if f(x)ZUjf.(x)
f(x)_LIf(x)
I/(x)(f(x))=< eXp{U;‘()LI() if LI <f(x)<UI (1.343)
0 if f(x)<
0 i (%) <Ly,
1 Usta+ Loty . (1344)
Ff(x)(f(x)): E+—tanh f(x) ) T L <f(x) :
1 if f(x)2U;,
Step-4: In this step using linear, exponential and hyperbolic function for truth,

indeterminacy and falsity membership functions, we may calculate membership function for

constraints as follows
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1 lfgj(x)ng
b.+b)—g.
i qugf(x)) if b,<g,(x)<b,+b’
J
0 if gj(x)zbj

For Model-I,II-AL

(bj +‘§g,(x))_gj (x)

1 ifgj(x)Sbj

Ig,(x) (gj (x)) -

For Model-I,II-BL

Ig,(X) (gj (x)) =

where

T, (g (%)=

if by<g,(x)<b+ Se,(x)

é:8/()()
0 if g,(x)2b, Sy (v)
1 if g;(x)2b,+b;
g,(x)— b, +¢& (=
j bo—( — )) if bj+§gj(x)ﬁgj(x)£b/+b?
J ggj(x)
0 if gj(x)sbj+cfgj(x)
0 lf gj (x) < b./' +gg,-(x)
g.i(x)_b/ a

&
S by g, (x)<b+b)

for

For Model-I,II-AN

[g_,.(x) (gj (x)) =

1—

()

1 if gj(x)ijvajq

j=L2,...m O<ggj(x),§gj(x) <b;.).
1 if g,(x)<b,
U' —g.(x
exp{—l//( g}(x) ]T( )J if bngj(x)Sbj+qu
g(x) T
0 if gj(x)ij+bj(.)
1 lfgj(x)ébj
(6,+&, )2 (%)
J gj(x) J .
: B} if bngj(x)Sbj+§gl_(x)
g\
0 if gj(x)zbj+§gj(x)

(1.345)

(1.346)

(1.347)

(1.348)

and

(1.349)

(1.350)




For Model-I,II-BN

if b+&, <8 (x)<b,+b] (1.351)

11 2bj+bl?+gg/_(x) . 0
Fyo& ()= 545t &) (¥)-————" ey 0 bive<g,(0)<h+b) (1352)

! if g, (x)2b+b'

where y,7are non-zero parameters prescribed by the decision maker and for

. 0
j=12,m 0<s, ).&  <b).

Step-5: Now using NSO for single objective optimization technique the optimization
problem (P1.34) and (P1.35)can be formulated as

(P1. 36)
Model-I-AN,BN

Maximize (a+y - ) (1.353)
Such that
Ty (x)2a; (1.354)
T, (x)2a (1.355)
L, (x)=7; (1.356)
I, (x)=7; (1.357)
Fy,(x)<p; (1.358)
F, (x)<p; (1.359)
a+p+y<3; (1.360)
a>fa>y; (1.361)
a, B,y €[0,1] (1.362)
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In case of Model-I-AN and Model-I-BN we will consider indeterminacy membership
function in decreasing sense and increasing sense respectively.

(P1.37)
Model-II-AN,BN

Maximize (a—y— ) (1.363)
Subject to
Ty (x)z e (1.364)
T, (x)=e; (1.365)
L, (x)<7; (1.366)
I, (x)<7; (1.367)
Fy(x)<p; (1.368)
F, (x)<p; (1.369)
a+p[+y<3; (1.370)
a>fa>y; (1.371)
a, B,y €[0,1] (1.372)

In case of Model-II-A and Model-1I-B we will consider indeterminacy membership function

in decreasing sense and increasing sense respectively.

Now the above problem (Model-I) (P1.36) can be simplified to following crisp linear

programming problem for linear membership function as

Model-I-AL

(P1. 38)
Maximize (a+y—f) (1.373)
such that f(x)+(U_;(x) —L;.(x)).a < U;(x); (1.374)

I I I

f(x)+(Uf(X) _Lf(X))'7 22Uy (1.375)
a+pf+y<3; (1.377)
o= f; (1.378)
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azy;

a, B,y €[0,1];
gj(x)Sbj’
x>0,

Model-I-BL
(P1. 39)

Maximize (a+y—f)

such that f (x)+(U] ) =L}, )@ <UJ:

£ () (U = L) 7 <L

f(x)—(U;(x) —L_’;(X) ),B < L_';(x); for k=1,2,....p
a+p+y<3;

azf;

azy;

a,ﬁ,}/ E[O’l]’

g (x)< b;,

x>0,

and for nonlinear membership function as

Model-I-AN
(P1. 40)

Maximize (0+Kx—1)
Such that

T T
Uf(x) - Lf(x) )

f(x)+9(' L <Y

1(x)°

f(x)+ KS () < L?(x) + S

Ul +I  +¢
f(x)+ n < f(x) ) f(X);

Tr) 2
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(1.379)

(1.380)

(1.381)
(1.382)

(1.383)

(1.384)
(1.385)

(1.386)

(1.387)
(1.388)
(1.389)

(1.390)

(1.391)
(1.392)

(1.393)

(1.394)

(1.395)

(1.396)




b’
g (x)+0;’£bj +b7;

0 .
g, (X)+#E, () <BI+E,

0
2bj.+bj +ggj(x)
2

S
A

b

O+x+n<3;
02>k,
0=m;
(9,K,77€[0,1]
Where
O=—-In(1-a);

v =4

Model-I-BN
(P1. 41)

Maximize (6?+ K'—?])

Such that

et
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(1.397)

(1.398)

(1.399)

(1.400)
(1.401)
(1.402)

(1.403)

(1.404)

(1.405)

(1.406)

(1.407)

(1.408)

(1.409)

(1.410)

(1.411)

(1.412)

(1.413)




0

B’
g, (x)+60-L<b +b}; (1.414)

74
g, (x)+x&, ( <b)+E, (3 (1.415)
2b. +b° +¢
g (x)+T-< T et (1.416)
T 2
g(x)
O+x+n<3; (1.417)
02>k, (1.418)
0=n; (1.419)
0,x,1 €[0,1] (1.420)
Where
0=-In(1-a); (1.421)
y=4 (1.422)
6
Tf(x) :ﬁ’ (1423)
(U= L)
T 6 for j=12,...m (1.424)
o (bzo _g.i)
k=Iny; (1.425)
n=tanh™ (28-1). (1.426)

Again the problem (Model-II) (P1.37) can be reduced to following crisp linear programming

problem for linear membership function as

Model-II-AL
(P1. 42)
Maximize (a—f-y) (1.427)
such that f(x) + (U_;(x) —Li.(x) ).cx < U_,T.(x); (1.428)
I I I,
/ (x)+(Uf<x) ‘Lf(x>)-7 <Ujs (1.429)
f(x)—(U_f(x) ~Ly, ).,B <L fork=12,...p (1.430)
a+f+y<3; (1.431)
a>pB; (1.432)
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azy;
a,ﬁ,y/e[O,l];
g;(x)<b;,
x>0,

Model-1I-BL

(P1. 43)
Maximize (a—f-y)
such that f(x)+(Uf —L;.(x)).a <U?!

() 1(x)

£ ()~ (Ui =Ly )72 Ly

f(x)—(U;(x) —L_';(X)).,BS L_';(x); for k=12,...p

azy;

a, B,y €[0,1];
g (x)<h,,
x>0,

and for nonlinear membership function as

Model-II-AN
(P1. 44)

Maximize (0—xk—1)
Such that

f(x)+t9 (U;(X) _Li(x))
7

f(x) + chf(x) > Lf,(x) + ff(x);

T,
<UJ s

TE

b

T T
f(x)+ n SUf(X)+Lf
Tr(x)

(x)
2
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(1.433)

(1.434)

(1.435)
(1.436)

(1.437)

(1.438)
(1.439)

(1.440)

(1.441)
(1.442)
(1.443)

(1.444)

(1.445)

(1.446)

(1.447)

(1.448)

(1.449)

(1.450)




b’
g (x)+0;’£bj +b7;

g, (X)+#E, () <BI+E,

0
2bj.+bj +ggj(x)
2

S
A

b

O+x+n<3;
02>k,
0=m;
(9,K,77€[0,1]
Where
O=—-In(1-a);

v =4

Model-II-BN
(P1. 45)

Maximize (0— K—ﬂ)

Such that

T
Uf(x)

f(x)+6’gSUT
7

£+ (UT ) =Ly =& ) S L+

T T
Yot e
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(1.451)

(1.452)

(1.453)

(1.454)
(1.455)
(1.456)

(1.457)

(1.458)

(1.459)

(1.460)

(1.461)

(1.462)

(1.463)

(1.464)

(1.465)

(1.466)

(1.467)




0

B’
g, (x)+60-L<b +b}; (1.468)

7%
g, (x)+x&, ( <b)+E, (3 (1.469)
2b. +b +¢
g, (x)+-L-<— 3 ot (1.470)
e
O+x+n<3; (1.471)
02>k, (1.472)
021; (1.473)
0,x,ne [0,1] (1.474)
Where
6=—In(1-a); (1.475)
y=4 (1.476)
6
Tf(x) = ﬁ’ (1477)
(U -L1n)
=% Jor j=12,...m (1.478)
ot (bzo _gi)
k=Iny; (1.479)
n=tanh™ (28-1). (1.480)

All these crisp nonlinear programming problems (P1.38-P1.45) can be solved by appropriate
mathematical algorithm.
1.30 Neutrosophic Optimization Technique to solve Minimization

Type Multi-Objective Non-linear Programming Problem for Linear
Membership Function

A non-linear multi-objective optimization problem is of the form

(P1. 46)
Minimize {f1 (x),f2 (x),...,fp (x)} (1.481)
g (x)<b;, j=1,2,....q (1.482)
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Now the decision set D", a conjunction of neutrosophic objectives and constraints is defined

q

as D" =@é§jﬂ(ﬂ ,J ={x.T, (x).15 (x). Fy, ()}

J=1

(1.483)

Here

T, (x)zmin{Tﬂ,, (%).T,, (%) T, (x)5 T, (%), T, (%), T, (x)} forall xeX  (1.484)

Cl 2 P

o (X)L (%)5 1 (%) Ly (X)L (x)} for all xe X (1.485)

2 P

Fyp () =min |y, (2),F, (¥)seen Py (x): Py (3) F (3)sv0s P ()] for all xe X (1486)

b 6{1 9 51 "

where len (x),lﬁ,, (x),FIj,I (X) are Truth membership function, Indeterminacy membership
function, Falsity membership function of Neutrosophic decision set respectively. Now using
the definition of Smarandache™s Intersection the problem (P1.46) is transferred to the
nonlinear programming problem as

Model-I-A,B
(P1. 47)

Maximize o (1.487)
Minimize (1.488)
Maximize y (1.489)
Such that

T, (x)2a (1.490)
I, (x)>a (1.491)
Ip, (x)zy (1.492)
Ip (x)27 (1.493)
F, (x)<B (1.494)
F. (x)<B (1.495)
a+p+y<3; (1.496)
az>p, (1.497)
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a, B,y €[0,1] (1.499)

In Model-I-A we will consider indeterminacy function as decreasing sense and in Model-I-B
we will consider indeterminacy membership function as increasing sense.

Again in real world practical problem a decision maker needs to minimize hesitancy
function.So the nonlinear programming problem can be formulated as

Model-I11-A,B

(P1. 48)

Maximize o (1.500)
Minimize B (1.501)
Minimize y (1.502)
Such that

TG; (x)Za (1.503)
T, (x)2a (1.504)
I, (x) <y (1.505)
1@ (x)<y (1.506)
F,(x)<p (1.507)
F.(x)<B (1.508)
a+f+y<3; (1.509)
a>p, (1.510)
axy (1.511)

a, B,y €[0,1]

In Model-II-A we will consider indeterminacy function as decreasing sense and in Model-II-
B we will consider indeterminacy membership function as increasing sense.

Now this non-linear programming problem (P1.47,P1.48) can be easily solved by appropriate
mathematical algorithm to give solution of multi-objective linear programming problem
(P1.46) by neutrosophic optimization approach.
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Computational Algorithm

Step-1 Solve the MONLP(P1.46) as a single objective non-linear problem p times for each
problem by taking one of the objectives at a time and ignoring the others. These solution are
known as ideal solutions. Let x* be the respective optimal solution for the k th different
objective and evaluate each objective values for all these k th optimal solution.

Step-2 From the result of Step-1,determine the corresponding values for every objective for
each derived solution .With the values of all objectives at each ideal solutions, pay-off matrix
can be formulated as follows

fl*(xl) fz(xl) fp(x
fl(xz) f;(xz) fp(xz)

S

A) A - £(e)

Step-3 For each objective fk(X) ,the lower bound L; and upper bound U, as

Ul =max{ f, (x")} (1.512)
and L =min{ £, (")} (1.513)

where r=1,2,...,k for truth membership function of objectives.

Step-4 We represents upper and lower bounds for indeterminacy and falsity membership of
objectives as follows

Model- L,II-AL, AN

U/ =U, and
L =L +t(U} - L}) (1.514)
U/ =U] and
L =L +s(Ul - L) (1.515)

Here ¢ and s are predetermined real number in (0, 1)
Model-LII-BL,BN
UF U =U! and

Ly =L +t(U] - L}
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L =L +s(Ul - L)
Here ¢ and s are predetermined real number in (0,1)

Step-5 Define Truth membership, Indeterminacy membership, Falsity membership functions
as follows

1 i S
T, (/i (x))= Uk—fk(k) if I < f, (x)<UT (1.516)
0 i fi(x)2U]
For Model-LII-AL
1 i f(x)<L
L(f(x)= 4() if L < f,(x)<U{ (1.517)

Ul -
0 if fi(x)2U]

For Model-I,II-BL

M FAOECH
L(f(x)= fk( ) lfLI £ (x)<U] (1.518)
Y if f,(x)<Li

1 if fi(x)<L;
F.(f(x))= ﬁzj(f—)_;];" if L < f,(x)<U{ (1.519)
0 if f,(x)=

Step-6 Now neutrosophic optimization method for MONLP problem gives an equivalent
nonlinear-programing problem as

Model-I-A,B
(P1. 49)
ax (a—f+7) (1.520)

Such that
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T.(f (x))za; (1.521)

L( /()2 (1.522)
F(f(x))<B (1.523)
a+f+y<3; (1.524)
o> f (1.525)
a>y; (1.526)
a, B,y €[0,1]; (1.527)
g (x)<b;x20 (1.528)
k=12.,p; j=12,..q (1.529)

In Model-I-A and Model-I-B we will consider the indeterminacy membership function as
decreasing sense and increasing sense and increasing sense respectively.

Also as a decision maker needs to minimize hesitancy function in decision making problem,
the above problem can be formulated as

Model-II-A,B

(P1. 50)
Max (a—f-y) (1.530)
Such that

T, (£ (x))z e (1.531)
L(fi(x)<y (1.532)
F (£ (x))<p; (1.533)
a+p+y<3; (1.534)
oz p; (1.535)
azy; (1.536)
a,B,y€[0,1]; (1.537)
g, (x)<bsx>0 (1.356)

k=12,..,p; j=1,2,..,q

Which is reduced to equivalent non-linear programming problem as
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Model-I-AL

(P1.51)
Max (a—pB+y)
Such that
fi (x)+ (U] - L})a<U]
fi(x)+(U{ -L,)r <U]
fi(x)-(Uf -L)).p<L;
a+pf+y<3;

azp;

k=12,..,p; j=1,2,..,q
Model-I-BL

(P1.52)
Max (a—pB+y)
Such that
fi (x)+(U] L) a <U]
fi(x)-(Ul-L)r=L
h(x)-(Uf -L) B<L;
a+pf+y<3;

azp;

azy;
a,ﬂ,y/e[(),l];
g, (x)<b;x20

k=]"29"5p; j=]‘,2""q
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(1.538)

(1.539)
(1.540)

(1.541)

(1.542)
(1.543)
(1.544)

(1.545)

(1.546)

(1.547)

(1.548)
(1.549)

(1.550)

(1.551)
(1.552)
(1.553)

(1.554)

(1.555)




And
Model-IT-AL

(P1.53)
Max (a—B-y)
Subject to
fi (x)+(U{ L) a <U]
fi (x)+(U{ - L)y 2 U]
f(x)-(Uf -L)).p<L;
a+pf+y<3;

azf;

azy;

a,B.y€[0,1];

g, (x)<b;x20

k=1,2,..p; j=12,...q
Model-11-B

(P1. 54)
Max (a—pB-y)
Subject to
fi (x)+ (U] - L})a<U]
f(x)-(Ui-L)r<L
()~ (Uf 1) p<

a+f+y<3;
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(1.556)

(1.557)
(1.558)

(1.559)

(1.560)
(1.561)
(1.562)

(1.563)

(1.564)

(1.565)

(1.566)
(1.567)

(1.568)

(1.569)
(1.570)
(1.571)

(1.572)

(1.573)




k=12,...,p; j=1,2,..,q

1.31 Illustrated Numerical Example

(P1. 55)

. I )
Min fl(xl,xz)—x1 X,

(1.574)

Min f, (xl,xz) = 2x1_2)c2_3

Such that

x, +x, <1

x,%, 20

Solution : Here L] =6.75, U/ =6.94 L} =57.87, U] =60.78

Comparison of optimal solution by IFO and NSO Technique

(1.575)

(1.576)

(1.577)

Optimization Optimal Optimal Sum of

Technique Decision Objective Optimal
Variables Functions Objective
X, X, A Values

Intuitionistic 0.3659009 6.797078 65.588178

Fuzzy 0.6356811 58.79110

Optimization(IFO)

Proposed 0.3704475 6.769 64.63

Neutrosophic 0.6315016 57.87

Optimization

(NSO)

g,5 =0.019

&,8,=0.291

Model-I-AL

Model-II-AL 0.3659010 6.797 65.38
0.634099 58.59

Model-I-BL 0.3659016 6.797 65.38
0.6340984 58.59

Model-1I-BL 0.3659016 6.797 65.38
0.6340984 58.59

Table 1.7 shows that neutrosophic optimization technique gives better result than
Intuitionistic Fuzzy Nonlinear Programming Technique.
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1.32 Application of Neutrosophic Optimization in Riser Design Problem

The function of a riser is to supply additional molten metal to a casting to ensure a shrinkage
porosity free casting.Shrinkage porosity occurs because of the increase in density from the
liquid to solid state of metals.To be effective a riser must be solidify after casting and contain
sufficient metal to feed the casting. Casting solidification time is predicted from Chvorinov*s
rule. Chvorinov‘s rule provides guidance on why risers are typically cylindrical. The longest
solidification time for a given volume is the one where the shape of the part has the minimum
surface area. From a practical standpoint cylinder has least surface area for its volume and
easiest to make. Since the riser should solidify a cylinder side riser which consists of a
cylinder of height H and diameter D. The theoretical basis for riser design is Chvorinov‘s rule

which is ¢ = k(V/ SA)2 where ¢ = solidification time (minutes/seconds), K = solidification

. . . .2 2 . .
constant for moulding material(minutes/in” or seconds/cm?), ¥ = riser volume (in’ or cm’),
SA = cooling surface area of the riser.

The objective is to design the smallest riser such that 7, >7. .where ¢, = solidification time

of the riser, 7. = solidification time of the casting,
Ky (Ve ! S4,) > Ko (V! S4.) (1.578)

The riser and casting are assumed to be moulded in the same material so that K, and K, are

equal .So (VR/SAR)Z(VC/SAC) . (1.579)
The casting has a specified volume and surface area, so

V./SA. =Y = constant, (1.580)

which is called the casting modulus.

V./SA.>Y, (1.581)
Ve=nDyH, /4, (1.582)
SA, = wDH , +27D; /4 (1.583)
Therefore

(D4 /4)(ZDpH, +27D, 14) = (DyH, )/ (4H, +2Dy ) 2 Y (1.584)

We take V. =96 cubic inch.

SA, =2(2.8+2.6+6.8)2152 square inch. (1.585)
49 24

Then, — D;' +—H;' <1 1.586

TR (1.586)

Therefore Multi-objective cylindrical riser design problem can be stated as
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Minimize Vy(Dy, Hy )= nDyH, 1 4 (1.587)

Minimize t,(Dy,H,)=(DyHy)/(4H, +2Dy) (1.588)
: 49 24

Subject to — D' +— H,' <1 1.589

upject to 19 'R 19 R ( )

Dy, H,>0 (1.383)

Here pay-off matrix is

Ve T,

R

D, | 42.75642  0.631579
H,|12.510209 0.6315786

Table 1.7 Values of Optimal Decision Variables and Objective Functions by
Neutrosophic Optimization Technique
Optimal Decision | Optimal Objective | Aspiration levels
variables Functions of Truth, Falsity
and
Indeterminacy
Membership
Functions

D, =3.152158 Vo (D}, H;)=24.60870 | & =0.1428574
H,=3.152158 | p (D}, H,) = 0.6315787 ﬁ =0.1428574
" =0.00001

1.33 Neutrosophic Optimization(NSO) Technique to Solve

Minimization Type Multi-Objective Non-linear Programming

Problem(MONLP)
A nonlinear multi-objective optimization problem is of the form
(P1.56)
Minimize {fl (x),f2 (x),...,fp (x)} (1.590)
g (x)<b,  j=12,.¢ (1.591)

Now the decision set D", a conjunction of Neutrosophic objectives and constraints is defined

ok =(ﬁé§jﬂ(ﬁ ”;] ={(0 T ()15, (x), Fy ()] (1.592)
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T., (x)=min
I[),, (x) = min
F., (x)=min

Where T, Y (x)

TG{* (x),TG; (x)’Tc";;' (x),. "TG; (x); f i b% (1 593)
orall x e .
TCI" (x)’Tég (x),T@ (x),. "’TC; (x)
1., (x),l-,, (x),Ln (x), ..... o, (x);
“ - “ K forall xe X (1.594)
]C," (x),lég (x)’léé’ (x), ..... ,IC; (x)
6 (0): Py (3). P () oy ) forall xe X (1.595)
orall x e .
ér (x)’Fé; (x)’Fc”g (x)» """ Len (x)
A5, (x),F 5 (x) are truth-membership function, indeterminacy membership

function, falsity membership function of neutrosophic decision set respectively .Now using

the definition

of Smarandache“s intersection of neutrosophic sets and criteria of decision

making (P1.56) is transformed to the non-linear programming problem as

Model-I-AN,BN

(P1.57)

Max o
Max y
Min B

such that

a, B,y €[0,1]

(1.596)
(1.597)
(1.598)

(1.599)
(1.600)
(1.601)
(1.602)
(1.603)

(1.604)

(1.605)
(1.606)

(1.607)

Here Model-I-AN and Model-1-BN stands for the algorithm with decreasing indeterminacy

nonlinear membership function and increasing indeterminacy nonlinear membership function

respectively.
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But as the decision makers needs to minimize indeterminacy membership function in real
world problem the above problem can be formulated as

Model-II-AN,BN

(P1. 58)

Max o (1.608)
Min y (1.609)
Min B (1.610)
such that

T, (x)z (1.611)
Te, (x)2 a; (1.612)
IG; (x)Sy; (1.613)
Ie (x)<7; (1.614)
Fy ()< B; (1.615)
F (x)<p; (1.616)
a+pP+y<3; (1.617)
azfa>y; (1.618)
a,ﬂ,)/e[O,l]

Here Model-II-AN and Model-II-BN stand for same as Model-I

Now this NLP problem (P1.57) and (P1.58) can be easily solved by an appropriate
mathematical programming to give solution of MONLP problem (P1.56) by NSO approach.
Computational Algorithm

Step-1: Solve the MONLP problem (P1.56) as a single objective non-linear problem p times
for each problem by taking one of the objectives at a time and ignoring the others. These
solution are known as ideal solutions. Let x*be the respective optimal solution for the k"
different objective and evaluate each objective values for all these k" optimal solution.
Step-2: From the result of step-1, determine the corresponding values for every objective for

each derived solution; pay-off matrix can be formulated as follows
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I “(x) A x') ........ S, )]
fl(xz) 1 (xz) ........ Sy (x2
_fl(xp) fz(x”) ....... f;(x”)

Step-3: For each objective f, (x) find lower bound L] and the upper bound U
Ul =max{f, (x")} (1.619)
L, =min {fk (x"* )} where r =1,2,....k

(1.620)
For truth membership of objectives.
Step-4:We represent upper and lower bounds for indeterminacy and falsity membership of

objectives as follows :

Model-LII-AL,AN

ur=u/ (1.621)
L =L +t(U{ - L); (1.622)
L=1Ir (1.623)
Ul =L +s(U] - L) (1.624)

Here ¢, s are predetermined real numbers in (O, 1)

and for Model-I,II-BL,BN
uf =Ur =U!
L =L +t(U{ - L});
L =L +s(Ul - L)
Here ¢, s are predetermined real numbers in (0, 1)

Step-5: Define nonlinear truth membership, indeterminacy membership and falsity

membership functions as follows
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1 if fi(x) <Ly
Ul T )
Ty (i (¥) = 16"1’{"”{(%)—;”}} if Ly < f(x) <UL (1.625)
fi(x) S (%)
0 if f( )>UT )

For Model-I,II-AN

1 if fi(x) )
U[ X _ﬁc X . 1 I
Ly (i (%)) = eXp{Uf;()fy()} i Ly < () <Ug (1.626)
Se(x) Th(x)
0 if fi(x)2Uy,
For Model-I,II-BN
1 if fi(x)2Uy,
Jilx r o ,
I/‘A(x)(fk (x)): exp{U[( ) LIfA()} if L‘/)((x)gf;c(x)SU‘/)((x) (1.627)
fi(x) " ()
0 if fk(x)SL_Iﬁ(X)
0 if f(x)<L]
1 1 UFX +LFx P -
Fro(/(x))= §+Etanh{f(x)_%}f(x)} if Ly </ (x)<Ug, (1.628)
1 if f(x)2Uy,

Step-6:Now neutrosophic optimization method for MONLP problem gives a equivalent
nonlinear programming problem as:

Model-I-AN,BN

(P1. 59)
Maximize (a—f+7) (1.629)
such that
T.(f, (x))z e (1.630)
L(fi ()27 (1.631)
F, (£ (x))< B (1.632)
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a+pP+y<3; (1.633)

a>p; (1.634)
a>y; (1.635)
a, B,y €[0,1]; (1.636)
g, (x)<b, (1.637)
x>0, (1.638)
k=12,..,p; j=12,...q (1.639)
Model-II-AN,BN
(P1. 60)

Maximize (a—f+y) (1.640)

such that

T.(f (x))za; (1.641)
L/ (x)<y (1.642)
F, (/i (x))<B; (1.643)
a+pB+y<3; (1.644)
a>p; (1.645)
a>y; (1.646)
a, B,y €[0,1]; (1.647)
g (x)<b, (1.648)
x>0, (1.649)

k=12,...p; i=L2,...,q
Where Model-LII-AN and Model-LII-BN stands for the optimization algorithm with
decreasing indeterminacy nonlinear membership function and increasing indeterminacy
nonlinear membership function respectively.
which is reduced to equivalent nonlinear programming problem as
Model-I-AN
(P1. 61)
AMﬂmwe(H—n+K) (1.650)

such that
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fi (x)+ <U/;
4
(1.651)
U +L +
fi(x)+ LT T (1.652)
T 2
fi(x)+&&, <L+& 5 fork=12,....p (1.653)
where n=tanh™ (25 -1), (1.654)
0=—log(l-a) (1.655)
x=logy (1.656)
6
f -6 (1.658)
Ji U]f _L:
O+x+n<3; (1.659)
0> (1.660)
0,x,ne [O, 1]; (1.662)
g, (x)<b; (1.663)
x>0, (1.664)
and
Model-I-BN
(P1. 62)
Maximize (0-n+x) (1.665)
such that
o(U! -L;
iy 2G5 - oo,
(1.666)
U +L +¢,
fi(x)+ LT T (1.667)
T, 2
fo(x)—x (U] —L =&, )2 L +&,; fork=12,..p (1.668)
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where 17 =tanh™' (28-1),
0=—log(l-a)

x=logy

v =4,

6
T

O0+x+n<3;
0> k;

0=n;
0,x,n1€[0,1];
g;(x)<by;

x>0,

(1.669)

(1.670)

(1.671)
(1.672)

(1.673)

(1.674)
(1.675)
(1.676)

(1.677)

(1.678)

This crisp nonlinear programming problem can be solved by appropriate mathematical

algorithm. Again according to decision makers choice the above problem also can be

formulated as
Model-II-AN
(P1. 63)

Maximize (9 /b K)
such that
o(U; -Ly)

<U!;
4 k

fk(x)+

(1.680)

f(x)+ <

T, 2

fi(x)+&&, 2L +& 5 fork=12,....p

where 17 = tanh™' (Zﬁ—l),
0= —log(l—a)
k =logy

y =4,

T T
Ug+L +¢;,
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(1.679)

(1.681)

(1.682)

(1.683)

(1.684)

(1.685)
(1.686)




L __ 6
Ji U:—L:

O+x+n<3;
0>k,

0=m;
6,x,1m€[0,1];

g (x)<b;

x>0,

And

Model-11-B
(P1. 64)

Maximize (0—-n—i)

such that

o(U; -Ly)

i)+

<U/;

(1.695)

ﬁ(x)+isU"T+L:+gﬂ;

Ty 2

fo(x)—x (U] —L =&, )<L +&, fork=12,..p

where 17=tanh™ (28-1),
0=—log(l-a)
k=logy

v =4,
;=0
Ful-r

O+x+n<3;
0> k;
0=;
0,x,n1€[0,1];
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(1.687)

(1.688)
(1.689)
(1.690)

(1.691)

(1.692)
(1.693)

(1.694)

(1.696)

(1.697)
(1.698)
(1.699)

(1.700)
(1.701)

(1.702)

(1.703)
(1.704)
(1.705)

(1.706)




g (x)<by; (1.707)
x>0,

All the above crisp problems can be solved by appropriate optimization solver(LINGO).

1.34 Neutrosophic Goal Programming(NGP)

Goal programming can be written as

(P1. 65)
Find
T
x:(xl,xz,...,xn) (1708)
to achieve:
z,=t i=12,..,k (1.709)

subject to xe X where f are scalars and represent the target achievement levels of the
objective functions that the decision maker wishes to attain provided, X is feasible set of
constraints.

The nonlinear goal programming problem can be written as

(P1. 66)

=( )
Find™ ~ 1272t (1.710)
SO as to

Minimize z, with target value ¢, ,acceptance tolerance a,,indeterminacy tolerance d,

rejection tolerance c, (1.711)
xeX (1.712)
g, (x)<b;, j=1,2,.cc,m (1.713)
x,20,i=1,2,....,n (1.714)

with truth-membership, indeterminacy-membership and falsity-membership functions

1 if z, <t,
T'(z)= (”“—_2) if t <z <t+a (1.715)
ai
0 if z,>2t +a,
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0 ifz<¢

z. —t.
[ ld ’J lf t.<z <t +a,

I'(z)= ’

a —d.
0 if z,2t +a,
0 if z, <t
z. —t.
Fl.l(zi): [ L ‘J if t, <z <t +c
ci

1 if z, 2t +c,

t,+a —z )
[;J if t,+d <z, <t +a,

(1.716)

(1.717)

To maximize the degree of acceptance and indeterminacy and to minimize the degree of

rejection of objectives and constraints of nonlinear goal programming (NGP), let us consider

the following formulation,

(P1. 67)
Maximize Tzi (z.), i=12,....k

Maximize ]z,- (Zi), i=12,...,k

Minimize F, (z.), i=L2,...k

1

subject to
OSTZ[ (Zi)+]z,- (Zi)+F;,- (zl.)£3, i=L2,..,k
T, (z 20,1, (ZI)Zost,. (z)>0i=12,..k

(1.725)

x,20,i=1,2,....n

(1.718)
(1.719)

(1.720)

(1.721)
(1.722)
(1.723)
(1.724)

j=L12,....m

(1.726)

where TZ,- (Zi) , IZ,» (Zi) and in (Zi) are truth membership function indeterminacy

membership function ,falsity membership function of neutrosophic decision set respectively.

Now the NGP in model (P1.67) can be represented by crisp programming model using truth

membership, indeterminacy membership, and falsity membership functions as

(P1. 68)
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Maximize o, Maximize y, Minimize [3

TZ,_ (Zl.)Za,i=1,2,...,k

O0<a+p+y<3;
a,y20,B<1

g (x)<b. =12
x,20,i=12,..,n

1.35

(1.727)
(1.728)

(1.729)

(1.730)

(1.731)
(1.732)
(1.733)

(1.734)

(1.735)

Theorem on Generalized Goal Programming

For a generalized neutrosophic goal programming problem (P1.65)

The sum of truth, indeterminacy and falsity membership function will lie between 0 and

W +W, +Ww;

Proof:

Let the truth ,indeterminacy and falsity membership functions be defined as

membership functions

w if z; <y,
t.+a —z
Zwl (Zi): Wl[#j l‘]ftigzigti+ai (1.736)
ai
0 if z,>t +a,
0 if z;<t,
z, —t, .
wz[ p j if t,<z <t +a,
1" (z,)= ! (1.737)
t.+a —z
w(_J fivd<n<ira
0 if z,2t +a,
0 if z, <t
, —t.
o (2) W{Zz ] i<z <ite (1.738)
c[
w, if z,2t +¢
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Tzi(zi): Izi(zi):Pzi(zi)

Tz, (z)

1 Pzi(zi)
Wq
2

W

L, (29)

W,

t; ti‘l;di t; + 8§ ti+cy
Fig.-1.2  Truth Membership, Indeterminacy Membership and Falsity Membership
Function of z,

From Fig. -1.2 and definition of generalized single valued neutrosophic set it is clear that

0<T (z)<w,0<I (z)<w, and 0<F, (z,)<w (1.739)
When (z,)<t¢,

T. (z;)=wand I_(z,)=0and F, (z,)=0 (1.740)
Therefore T, (z,)+1_ (z,)+F, (z,)=w <w +w, +w, (1.741)
and w; >0 implies that 7, (z,)+1_ (z,)+F, (z)=0 (1.742)

when z, €(,,t,+a,)from Fig.-1.2 we see that 7 (z,)and F_ (z ) intersects each other and
the point whose coordinate is (¢, +d,,d.c,).

W

where d, = (1.743)
WM "W
a, ¢
Now in the interval z, €(z,,¢, +d,) we see that
T, (Zi)+1zl- (Zi)+Fz,- (Zi) =W, [Zid_ti j SWy SW Wy Wy (1.744)
Again in the interval z, (1, +d,,t,+a,) (1.745)
t.+a —z
we see that 7, (z,)+1_(z,)+F. (z,)=w, (’—’d’j <w, Sw+w, +wy. (1.746)
l l ' a; —a,
Also for ¢, <z, <t +aq, (1.747)
when z, 2¢,,T, (Zi)+12‘_ (Zi)+F;, (z,)>w, 20 (1.748)
and T, (Zi)-f-lzi (Zi)-l-F;i (z,)>w =0 (1.749)
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and when z, <t,+a,,T, (z,)+1_(z,)+F, (zi)Swlﬂ<w1 <w +w,(as L<1).
‘ ‘ ‘ c

i i

In the interval z, e (¢, +a,,t, +¢,] (1.750)

when z, >4 +a,, T, (z,)+1. (z)+F, (z.)>w Z>w, >0 (as 2 <1) (1.751)
' ‘ ' C C

and when z, <t,+c¢,, T, (zl.)+lz[ (Zl.)-I-F;i (Zl.)Sw1 Sw+w, +wy (1.752)

for z,>1,+c¢,, T, (zl.)+lz[ (Zl.)-I-F'Z[ (Zl.):W3 Sw +w, +wy (1.753)

andas w, >0, T, (z,)+1. (z)+F, (2)=0 (1.754)

Therefore combining all the cases we get
0<T. (z)+1 (z)+F, (z)Sw+w,+w (1.755)
Hence the proof.
1.36 Generalized Neutrosophic Goal Programming(GNGP)

The Generalized Neutrosophic Goal Programming(GNGP) can be formulated as
(P1. 69)

Maximize T, (z,), i=1,2,....k (1.756)
Maximize I (z,), i=1,2,....k (1.757)
Minimize F, (z,), i=1,2,....k (1.758)
subject to

0T (z)+1 (z)+F, (z)Sw+w,+wy, i=12,...k (1.759)
T (2)20,1 (z)20,F (z)>0i=12,..,k (1.760)
T (z)21 (z),i=12,..k (1.761)
T (z)2F. (z),i=12..k (1.762)
0<w +w, +w, <3 (1.763)
W, wy, wy €[0,1] (1.764)

g./' (x)gb,': f:1,2,...,m
(1.765)
x,20,i=1,2,....,n (1.766)

Equivalently
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Maximize o, Maximize y, Minimize [ (1.767)

T (z)2a,i=12,..k (1.768)
I (z)27,i=12,..k (1.769)
F (z)<pi=12,..k (1.770)
2 <t,i=12,...k (1.771)
O<a+pf+y<w+w,+w; (1.772)
ae[0,w],y€[0,w],[0,w]; (1.773)
w, €[0,1],w, €[0,1],w, €[0,1]; (1.774)
O<w +w,+w, <3; (1.775)
g, (x)<b,j=12,.,m (1.776)
x;20, j=12,...,n (1.777)
Equivalently
(P1. 70)
Maximize o, Maximize y, Minimize [} (1.778)
a | .
z, <t +a, Ll——J,z =1,2,..,k (1.779)
W
d .
22+ -y =12,k (1.780)
W,
z<ti+a—"(a,-d),i=1,2,..k (1.781)
W,
2 <t +-LBi=1,2,..k (1.782)
Wy
z <t,i=1,2...k (1.783)
O<a+pf+y<w+w,+w; (1.784)
ae[O,m],ye[O,WZ],ﬂe[O,w3]; (1.485)
w; €[0,1],w, €[0,1],w, €[0,1]; (1.786)
O<w +w,+w, <3; (1.787)

With the help of generalized truth, indeterminacy, falsity membership function the GNGP

based on arithmetic aggregation operator can be formulated as
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(P1.71)

Minimize {(l_a)+f+(l_y)} (1.788)

subjected to same constraints as (P1.70)
With the help of generalized truth, indeterminacy, falsity membership function ,the GNGP
based on geometric aggregation operator can be formulated as

(P1.72)

Minimize %/(1—0(),8(1—7/) (1.789)

subjected to same constraints as (P1.70).
Now this non-linear programming problem (P1.70 or P1.71 or P1.72) can be easily solved by
an appropriate mathematical programming to give solution of multi-objective non-linear

programming problem (P1.65) by GNGP approach.
1.37 Application of Neutrosophic Goal Programming to Bank Three

Investment Problem

Every investor must trade of return versus risk in deciding how to allocate his or her available
funds. The opportunities that promise the greatest profits are almost the ones that present the
most serious risks.Commercial banks must be especially careful in balancing return and risk
because legal and ethical obligations demand that they avoid profit. This dilemma leads
naturally the multi-objective optimization of investment that includes both profit and risk
criteria.Our investment example [44] adopts this multi-objective approach to a fictitious Bank
Three. Bank Three has a modest $20 million capital, with$150 million in demand deposits
and $80 in times deposits(savings accounts and certificates of deposit).Table 1.8 display the
categories among which the bank must divide its capital and deposited funds. Rates of return
are also provided for each category together with other information related to risk.

Table 1.8 Bank Three Investment Opportunities

Investment Return Rate(%) | Liquid Part(%) | Required Risk
Category, j Capital
Asset(%)

Cash 0.0 100.0 0.0 No
Short Term 4.0 99.5 0.5 No
Government:1 to 4.5 96.0 4.0 No
S years
Government:5 to 5.5 90.0 5.0 No
10 years
Government:over 7.0 85.0 7.5 No
10 years
Installment 10.5 0.0 10.0 Yes
Loans
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Mortgage Loans 8.5 0.0 10.0 Yes

Commercial 9.2 0.0 10.0 Yes
Loans

The first goal of any private business is to maximize profit. Using rates of return from table
1,this produces objective functions

Maximize 0.041, +0.0451, +0.0551, +0.0701, +0.1051, +0.0851, +0.0921, (Profit)

It is less clear how to quantify investment risk. We employ two common ratio measures. One
is the capital —adequacy ratio, expressed as the ratio of required capital for bank solvency to
actual capital. A low value indicates minimum risk. The “required capital” rates of table 1
approximate U.S. government formulas used to compute this ratio, and bank Three*s present
capital is $20 million. Thus we will express a second objective

Minimize %(0.00512 +0.0407, +0.0501, +0.0751 +0.1001, +0.1001, +0.100L,)  (1.559)

Another measure of risk focuses on illiquid risk assets. A low risk asset/capital ratio indicates
a financially secure institution. For our example, this third measure of success is expressed as

1
Minimize 2—0(16 +1,+1y) (1.790)

To complete a bank Three®s investment plans, we must describe the relevant constraints
6.Investments must sum to the available capital and deposited funds.
7.Cash reserves must be at least 14% of demand deposits plus 4% of times deposits.

8.The portion of investments considered should be liquid at least 47% of demand deposits
plus 36% of times deposits.

9.At least 30% of funds should be invested in commercial loans, to maintain the bank®s
community status.

Combining the 3 objective functions above with these 5 constraints completes a multi-
objective linear programming model of Bank Three*s Investment Problem.

(P1. 83)

Max PF(I,1,,...,1;)=0.041,+0.0451, +0.0551, +0.0701; +0.105/, +0.085/, +0.092/

(Profit)(1.791)

Max CA(I,1,,..., 1) = 2io (0.0057, +0.0407, +0.0507, +0.0751; +0.100/; +0.100/, +0.100/ )
(Capital-Adequacy)(1.792)
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1
Max RA(I 1, 1) = (1 + 1 +1;) (Risk-Asset)(1.793)

Such that
IA(I,,1,,... 1) 52%(11 + L+ L+ 1+ 1+ 1 +1,+ 1) =(20150+80) (Invest All) (1.794)

CR(I,)=1,>0.14(150)+0.04(80) (Cash Reserve) (1.795)
L(1,,1,,....1,)=1.001, +0.9951, +0.9601, +0.9001, +0.850/; > 0.47(150)+0.36(80)

(Liquidity) (1.796)

CD,(1,)20.05(20+150+80) forall j=1,2,..8 (Diversification) (1.797)

C(1;)>0.30(20+150+80) (Commercial) (1.798)

1.1,,...I, >0 (1.799)
1.38 Numerical Example

Let us consider the input values of membership functions as follows
¢, =12,a,=6.67,t, =3,c. =13, p, =5.67 ¢, =0.58,a, =0.22,1, = 0.20,c, = 0.60, p, = 0.20

¢, =5a,=15t,=1.0,c,=5.5p,=1.0
The optimal Bank Three"s Investment Problem can be tabulated as

Table 1.9 Goal Programming Solution of Bank Three Problem

Weights Optimal Primal Variables | Optima Objectives
w, =0.8 w,=0.1| x, =242, x, =12.5, f, =18.67363,
w, =0.1 x, =12.5, x, =12.5, f, =0.942915, £, =7.096

x; =46.37, x, =53.43,
x, =12.5, x, =24.2

w; =0.05 w, =0.9 | x, =100, x, =12.5, f, =119, 1, =0.60625,
w; =0.05 x, =12.5, x, =12.5, f, =5.00

x, =12.5, x, =12.5,
x, =12.5, x, =75
w, =0.1 w, =0.1 | x, =24.2, x, =88.30, f,=14.932, f, =0.6252,
w;, =0.8 x, =12.5, x, =12.5, f, =5.00

x, =12.5, x, =12.5,
x, =12.5, x, =75
w =1/3 w, =1/3 | x;, =24.2, x, =88.30, f, =14.932, f, =0.6252,
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w, =1/3 x, =125, x, =12.5, f, =5.00
X, =125, x, =12.5,
x, =125 x =75

Table 1.10Lexicographic Goal Programming Solution of Bank Three Problem
Optimal Primal Variables | Optima Objectives
=242, x, =22.51454, 1, =18.43299,

x, =125, x, =12.5, £, =0.9100,
X, =34.64474, f,=7.182036
x, =56.14072, x, =12.5,

=242

1.39 Neutrosophic Non-linear Programming (NNLP) Optimization
to solve Parameterized Multi-objective Non-linear Programming

Problem (PMONLP)

A Multi-Objective Neutrosophic Non-Linear Programming(MONNLP) Problem with imprecise co-
efficient can be formulated as

(P1. 84)

Ty

akoz/
Minimize fk kao Ckotl Ix

/=l for k,=1,2,...., p (1.800)
Such that f." Z‘fn ”Hx o <§b" fori=1,2,.. (1.801)
x, >0 j=12,.,n (1.802)

Here §kot, &,, & are the signum functions used to indicate sign of term in the equation. 5,(01 >0,

c,>0. a,,, a,are real numbers for all 7,7,k,, j.

Here

&, = ((clhocd,cism et el e, ) (€lhoctocits, ) ) (1.803)
& =((eenelsm el enelim ) (el ehasT,)); (1.804)
l;in _ ((bilT’biz’bijT;M}i )(billvbizab;];nf)(bivabizabi}F;Ti)) (1.805)

Using total integral value of truth, indeterminacy and falsity membership functions we transform
above MONNLP with imprecise parameter as

(P1. 85)
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Ty

a
Minimize f1k x;) Z§k, Cir I Ix""”

J=l for ky=1,2,....,p (1.806)
Ty
Minimize ka Zﬁk tCZktHx “ for k,=12,....,p (1.807)
Ty
Minimize f3k Z§k0,c3k,]_[x " for k,=L2,....p (1.808)
Such that £, (x;a) zg‘”cmnx”f <Eh for i=1,2,...m (1.809)
. 4 n -
(6 B) =D &6, [ [ X1 <&byfor i=1,2,...,m (1.810)
=1 j=1
T;
)‘31 ancwnxa” <§b for i=1,2,.. (1.811)
t=1 j=1
x>0, B,7€[0,1] j=12,...,n (1.812)

Here &, ., &, & are the signum functions used to indicate sign of term in the equation. ¢,,, >0

b

¢, > 0; b >0denote the total integral value of truth membership function ie
2 3;1 1u
oy +(2wk0t —1){0{0,” (1—0‘)%,;}
Cikt = o , (1.813)
kot

. 2 _1 3u 1 l,u
G = i+~ +(1-a)ar (1.814)

2w,

b +(2w, 1) {ab* +(1-a)b*}

2w,

1

and b, = (1.815)

and ¢, w05 ¢y > 0; b >0 denote the total integral value of indeterminacy-membership function

anotckt (1 2,3){0,” Chyt }

ie &y, = P , (1.816)
kot

2 1-2 !

Gy = mel H(1-2p){c <l }, (1.817)
2n,

. b +(1-2 — b

and 5, = 20+ 2ﬂ){ 3 (1.818)
7,
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and é3kot >0, ¢y, > 0; b, >0 denote the total integral value of falsity-membership function i.e

20 +(1-27){el, —<lf |

b= 1.819
c3k0z 2Tk0t ’ ( )
20 F +(1=29) {2 —&F
by = Hi-2n)fe e, }, (1.820)
2Tit
o 2eb +(1=20) B =B
wd = 2 =2 (1.821)

A Parametric Multi-Objective Non-Linear Neutrosophic Programming (PMONLNP) Problem can be

formulated as

(P1. 86)

Minimize { £;(550) s £, (5:0) £, (55 B) s fo (55 B)s fopir (537 e S, (7)) (1522

subjectto g, (x;@)<b;  j=12,...,m (1.823)
g (xp)<b;  j=L2,...m (1.824)

g (xy)<bs;  j=12,...m (1.825)

x>0a, B,y €[0,1] (1.826)

Following Zimmermann [140],we have presented a solution algorithm to solve the MONLP Problem
by fuzzy optimization technique.

Step-1: Solve the MONLP (P1.84) as a single objective non-linear programming problem p times by

taking one of the objectives at a time and ignoring the others .These solutions are known as ideal
solutions. Let x'be the respective optimal solution for the i" different objectives with same

constraints and evaluate each objective values for all these I 4 optimal solutions.
Step-2: From the result of step -1 determine the corresponding values for every objective for each

derived solutions. With the values of all objectives at each ideal solutions ,pay-off matrix can be

formulated as follows
hxwa) v f(wa)  fu(sB) o S, (5B) L) o £, (x7)
S () ) £(58) Ful) | ()

x’ fl*(xz;a) f;(xz;a) f;l(xz;ﬂ) f;p(xz;ﬂ) ]‘;p+l(x2;y) f;p(xz;;/)

3p

K (x7a) o (7)) fra(X75B) e Loy (X7 B) foyu (X757) s (x757)
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Here X, X ... ,x°7 are the ideal solutions of the objectives

fi(xa). fy(5:0) s £, (552), £ (5 8) s fya (65 B) s Fop (55 B)s Fop (557 )5 fopea (357 )5 i, (557)

respectively.

Step-3: For each objective fk (X;OC ), fk (x; ﬂ), fk (x; 4 ) find lower bound Lﬁ and the upper bound

U/,
Ul =max{f,(x";p") (1.827)
and
Iy =min{f, (x";p')| where p’ =a, 7k =1,2,...3p (1.828)

for truth membership of objectives.
Step-4:We represent upper and lower bounds for indeterminacy and falsity membership of objectives

as follows :

for k=1,2,....3p
Ul =U] and L =L +t(U] - L}); (1.829)
L=L and Ul =L +s(U{ -L;) (1.830)

Here ¢, s are predetermined real numbers in (O, 1)

Step-5: Define truth membership, indeterminacy membership and falsity membership functions as
follows

for k=1,2,..3p

! if fi(x) <Ly
U’ 2= felx
Ty (£ (x)) = lexp{wt%}} i L < (x)<Uf (1.831)
filx) T
0 if f(x )>UT )
1 if £ (x)< Ly,
Ui o~ fi(x) .
IfA(X)(fk (x)): exp{ U/I( : 7 if L{/}((x) ka(X)SU;.k(x) (1.832)
5i(x) T
0 if fi(x)2Uy,
Page

86



0 if f(x)SL’;(x)
11 Uso + Ly .
(/£ (%)= 5+§tanh{[f (x)_%]fm)} if Ly <f(x)<Up,y  (1833)
1 if f(x)ZUjIj(x)
Where 0, =— 0 (1.834)
Cul-r '
=4 (1.835)

Step-6:Now NSO method for MONLP problem with probabilistic operator gives an equivalent

nonlinear programming problem as:

(P1. 87)

Maximize E[(Z (fl (x;a)))[Hl(Z (fl (x; ))),=21_I+1(Tl (f, (x;;/))) (1.836)
Minimize lj[(l—li (f (x;a)))fll(l—ll. (£ (x; ﬁ)))_zljl(l—ll. (£ (7)) (1.837)
Minimize ﬂ(l—@ (f (x;a)))ﬁ](l—ﬁ; (£ (x )))-2p+1(1_E (£ (7)) (1.838)
subject to

0<T(f(x:))+ 1 (f () + F(f(xa))<3 (1.839)
0<T(f(x:8))+L(f(x:8))+F(f,(x:8))<3 (1.840)
0<T(f,(x:7))+ 1 (/i (x:7))+F (£ (x:7)) <3 (1.841)
g (xa)<b; g (x;8)<b; g (x7)<b; (1.842)
x>0 a,p,y €[0,1] (1.843)

i=L2,..,p; j=12,...m
This crisp nonlinear programming problem can be solved by appropriate mathematical algorithm.

1.40 Neutrosophic Optimization Technique(NSO) to solve
Parametric Single-Objective Non-linear Programming Problem

(PSONLP)

A single-objective neutrosophic NLP problem with imprecise co-efficient can be formulated

as
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(P1. 88)

- T n
Minimize f(x)= th@” X (1.844)

t=1 j=1
Such that f; (x Z ncltHx v < Eh" for i= (1.845)
X, >0 j=12,..,n (1.846)

Here &, &, & are the signum functions used to indicate sign of term in the equation. ¢, >0,

¢, >0.a,, a,arereal numbers for all 7,¢, j.

Herec” :((C;T,ch,cfr;wct),(ct” e ,7761)( NN )) (1.847)
¢, :((c;tr,cjr,cér;wq ) (c” ool s )(c:tF,cith,c;F;rcﬁ )) (1.848)
B =((B7. 6767 5w, ), (B 676 5 ) (B 6205, ) (1.849)

for neutrosophic number coefficient. Using nearest interval approximation method ,we

transform all the triangular neutrosophic number into interval number i.e [c ] [ c;,C ]
and [bf,bi"]

Now the Single-Objective Neutrosophic Programming(SONSP) with imprecise parameter is

of the following form

(P1.89)
Minimize f kaotctnx (1.850)
Such that f;(x 2;, ,tij"f <obfori=12,...m (1.851)
=1

x; >0 j=12,..,n (1.852)
Here &, ¢&,, & are the signum function used to indicate sign of term in the equation. ¢, >0,
. >0; b > () denote the interval component i.e ¢, —[ ¢ ,c ] ¢, —[c”,c ] and b:. =[bf,bl.U]

and a,, a, are real numbers for all i,z, j.

T
Using parametric interval valued function the above problem transform into

(P1. 90)

Minimize f(x;s) :ié( ) (cf])sﬁxj” (1.853)
=1 =1
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Such that f,(x;5)= ig () (/) TTx <& (bE) ™ (BY) for i=1,2,om (1.854)
t=1 j=1
X, >0 j=1,2,...,n5€[0,1] (1.855)

Here &, &,, & are the signum functions used to indicate sign of term in the equation.

Let us consider a Single-Objective Nonlinear Optimization Problem(SONLOP) as

(P1.91)
Minimize f(x;s) (1.856)
g (x;s)ébj (s) j=12,.....m (1.857)
x>0 s€e[0,1] (1.858)

Usually constraint goals are considered as fixed quantity .But in real life problem ,the

constraint goal cannot be always exact. So we can consider the constraint goal for less than
type constraints at least bj (S) and it may possible to extend to bj (s)+b? (S) .This fact seems

to take the constraint goal as a NS and which will be more realistic descriptions than others.

Then the NLP becomes NSO problem with neutrosophic resources, which can be described

as follows

(P1. 92)
Minimize f(x;s) (1.859)
g (xs)<b/(s)  j=12um (1.860)
x>0 s€[0,1] (1.861)

To solve the NSO (P1.92), following Werners [118] and Angelov [3] we are presenting a
solution procedure for SONSO problem as follows

Step-1: Following Werner's approach solve the single objective non-linear programming

problem without tolerance in constraints (i.€ g; (x;s) < bj (S) ),with tolerance of acceptance in

constraints (i.e g, (x;s ) < bj (s) + b? (S )) by appropriate non-linear programming technique

Here they are
(P1.93)
Sub-problem-1

Minimize f(x;s) (1.862)

Page

89



g (xs)<b.(s) j=12,...m (1.863)

x>0 (1.864)
(P1.94)

Sub-problem-2

Minimize f(x;s) (1.865)

g (x5)<b,(s)+b(s), j=12,...m (1.866)

x>0 (1.867)

we may get optimal solutions x” = x', f (x*) =f (x‘) and x =x, f (x*) =f (xz)for sub-problem

1 and 2 respectively.

Step-2: From the result of step 1 we now find the lower bound and upper bound of objective

functions. If U’

f(x;s),U;.(x;s),UZx;s)be the upper bounds of truth, indeterminacy , falsity

function for the objective respectively and LZ.(X;S),L ,L’;( ) be the lower bounds of truth,

f(x;s) f(x

indeterminacy, falsity membership functions of objective for particular values of

respectively thenU, =max{f (x's5), £ (x5} L.,y =min{f ('55). 7 (x735)},
U}{:(X;S) - U;(X;S)’ L;(x;S) = L;(x;S) + (U;(xs) - L;(x;s) ) (1 888)
L) = Ly Uty = Ly +4 (U_ 7o)~ L) ) (1.889)

Here t,q are predetermined real numbers in (0,1)
Step-3: In this step we calculate linear membership for truth, indeterminacy and falsity

membership functions of objective as follows

1 iff(xQS)SL;(x;s)
UTX,S —f(x;s) ‘
Ty (f (15)) = [Uf(f) o ] if Ly < f(x%5)<UJ (1.890)
S(x38) f(x39)
0 lf‘ f(x’S)ZU?(x,S)
1 lJr f(x;S)SL;(x;s)
U’ - —f(x;s) ‘
Lo (S (x:5)) = [U”P 7 if Ly < f(x5)<Up ., (1.891)
S(x38) f(x38)
0 if f(x;s)ZU;(x;S)
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Ff(m)

(/ (x:5))

Step-4:

0 if f(xs)<L (”)
S(%58) =Ly
Vo - HELif 1 < f (ws) <UL (1.892)
S(x39) f(x39)
1 iff(x;s)ZUf(x;s)

In this step using linear function for truth, indeterminacy and falsity membership

functions, we may calculate membership function for constraints as follows

];j(X;s)(gj (X;S))z

Igf(x;s) (g/ (X;S))

£l (5]

where and for j

1 ifgj(x;s)ﬁbj
{bj(s)+bf(;o)—gj(x;s)} i b (s)<g, (1:5)<B, (5)+ 8 () (1.893)
0 if g (xs)20)(s)
1 lfgj(x§s)3bj(s)
b e (x
(](S)-I-éz(x’”) s if bj(s)ggj(XQS)Sbj(S)"'é:g,(x;s) (1.894)
g;(xs) |
0 if g,(x5)2b,(s)+&, (o)
0 if g, (xs)<b(s)+e, .
b
ol bo)(S)j:)(vs) =1 b )48, S8, (1)< (s) 405 (s) (1.895)
Lo if g (xs)2b(s)+b;(s)
=1,2,om £,q€(0,1).

Step-5: Now using NSO for single objective optimization technique the optimization

problem (P1.92) can be formulated as

(P1. 95)

Maximize (a+y - )

such that

T

) (X58) 2 @5

T

" (x;8)>a;

!

flx.s)

/

(x38)=7;

(1.896)

(1.897)

(1.898)

(1.899)

(1.900)
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F, (x;5)<f; (1.901)

a+f+y<3; (1.902)
a>fia>y; (1.903)
a, B,y €[0,1] s€[0,1] (1.904)

Now the above problem (P1.95) can be simplified to following crisp linear programming

problem for linear membership function as

(P1. 96)
Maximize (a +y —ﬂ) (1.905)

such that f(x;s)+(UT—LT).aSUT; (1.906)
£(658) (U ) = L ) 7 2 U (1.907)
£(x:8) =V = i) B Ly (1.908)
a+pf+y<3; (1.909)
azpfazy; (1.910)
g, (xs)+(U" -L")a <U”; (1.911)
&, (0:9)+ (UL (o) =Ly )7 2 UL (1.912)
g; (X;S)—(Ug(x;s) —Lf;,(x;s))-ﬂ <Ly () (1.913)
a,B.7€[0,1] s€[0,1] j=1,2,....m (1.914)
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CHAPTER 2

Structural Design Optimization

Optimization or in other word mathematical programming is the collection of mathematical
principles and methods that have been used for solving several problems in many disciplines,
including physics, biology, engineering, economics etc. Engineering is a branch of science
where engineers are engaged in formulating different designs with useful objectives. As for
examples civil engineers Designs Bridge, pavement and building, mechanical engineers
design welded beam design, an electrical engineer designs computer, a chemical engineers
design a chemical process. To deal with competitive market place an engineer might not only
be interested in design which works at some sort of nominal level but is the best design in
some way. The process of determining the best design is called optimization.

In mechanics a structure is defined by J.E.Gordon as “any assemblage of materials which is
intended to sustain loads”. The structural optimization is the subject of making an assemblage
of materials sustains loads in the best way. As for example, let us consider the situation where
load is to be transmitted from a region in space to a fixed support in best possible way .Then
first specification that comes to our mind to make the structure as light as possible, i.e to
minimize weight, secondly stiff as possible and another idea that could be to make it as
insensitive to buckling or instability as possible. In case of welded beam design the welding
is process of joining metallic parts with the application of heat or pressure or the both, with or
without added material. This efficient method for obtaining permanent joints in metallic parts
are generally used as a substitute for riveted joint or can be used as an alternative method for
casting and forging. Above all, the design of welded beam should be economical (i.e the
welding cost is to minimize) and durable one. Similarly Highway construction agencies
throughout the globe chasing accelerating demands on durable un dowelled jointed plain
concrete pavement (JPCP) due to scanty of rehabilitation of the same. Since decades,
different design methods had been developed by various organizations which suit their locale
and fix the depth criteria of the JPCP along with other parameters by satisfying the standard
code of practice but few of them tries to optimize the design thickness of the same. Moreover
few approaches designed such thickness of cited pavement by considering traffic overloading

condition, its fatigue life and the fluctuation of ambient temperature effect individually. So
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during service life of such pavement, the traffic loads and adverse environmental effect
would deteriorate its joints and ultimately its foundation. Therefore optimization of such rigid
pavement become essential considering multiple decision making criteria as stated above to
make it more durable.

Now such structural optimization and pavement design optimization i.e maximization or
minimization cannot be performed without any constraints. For example if there is no
limitation of the amount of the material that can be used, the structure can be made stiff
without limit and we have an optimization problem without a well-defined solution. So
constraints are necessary. Quantities that are usually constrained in structural optimization
problem and welded beam design problem are stresses, deflection, buckling load, and or the
geometry. The factors governing of JPCP constraints such as fatigue analysis, stresses and
deflections , axel loads, pavement thickness, modulus of elasticity of cement concrete,
subgrade modulus, Poisson®s ratio, load contact area, annual rate of growth of commercial
traffic, number of axel per day, radius of relative stiffness , design period and so on.

Thus we can formulate a optimization problem by picking one of the measures on structural
performances as weight, stiffness, critical load, stress, displacement, deflection, geometry or
cost of welding or thickness of JPCP as an objective function that should be maximized or
minimized and some other measures as constraints. This type of optimization problem is
called single objective optimization problem. But there is some optimization problem where
multiple and conflicting objectives frequently exists .The accomplishment of this task is due
to the methodology known as multi-objective optimization.

But in the real world, uncertainty or vagueness is prevalent in Engineering Computations. In
the context of structural engineering and mechanical engineering design the uncertainty is
connected with lack of accurate data of design factors. In case of pavement design several
design methods e.g. American Association of State Highway and Transportation
Officials(AASHTO), Portland Cement Association (PCA) Method Crop of Engineers of the
US army iteration method etc. are available to determine the thickness of JPCP. However all
such methods follow numerous monographs, tables and charts to do the same and abiding by
certain loop of algorithm in the cited iteration process to find an effective thickness of such
pavement. But most of the time, designers stop the cited procedure even after two or three
trials which yield safe but unnecessarily less economical thick rigid pavement.

So lots of efforts had been made to get rid of from such problem. As for example finite
element method and genetic Algorithm type of crisp optimization method had been applied

on the cited subject, where the values of the input parameters were obtained from
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experimental data in laboratory scale. Sometimes the above cited standards have already
ranged the magnitude of those parameters in between maximum to the minimum value.
Therefore, designer get confused to select those input parameters from such ranges which
yield imprecise parameters with three key governing factors i.e. degree of acceptance,
rejection and hesitancy that attributes the necessity of Fuzzy Set (FS)theory, Intuitionistic
Fuzzy Set (IFS) theory and Neutrosophic Set (NS) theory For this purpose we will optimize

captioned optimum design in imprecise environment.

2.1S.I Unit Prefixes
Prefix Symbol Multiplication Factor
Tera T 10"
Giga G 10°
Mega M 10°
Kilo K 10°
Hector h 10°
Deka da 10'
Deci D 107
Centi c 107
Milli m 107
Micro M 10°6
Nano n 107
Pico p 10712

2.2 Conversion of U.S Customary Units to S.I Units

Quantity Conversion of U.S Conversion of S.1. Units
Customary Unit to S.I. to U.S Customary Units
Units
Length lin.=25.4mm =0.0254m 1mm =0.039370in
1 f#.=304.8mm = 0.3048m 1m=39.370in =3.281 ft
Area lin®.=645.16 mm’ 1mm® =0.001550in
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1 /.= 0.09290304 m’ 1m? =1550in> =10.764 f#*

Volume lin’.=16387.064 mm’ Lmm® =0.000061024 in’
1/£.=0.028317 m’ 1m’ =35.315 f
Force 1lb=445N 1IN =0.22481b
Stress

1Pa=0.000145 psi
lpsi:689OPa,(1Pa:1ﬁ2j a DSi

m

N
Conversion of 5x10° Lz to GPa [lPa = 1—2j

mm m
5%10° [iﬁg}
5x10° — = —= =500 Gpa
mm m
{1000} @.1)
Conversion of 7—— to Mpa
mm
7{Aﬂv}
6
7 N2= 10 2:7M]2V=7Mpa
mm m m
[1000} 2.2)

A tensile bar stretches an amount 6 = %, where is the applied force, Lis the length of

the bar , Ais the cross sectional area, and Eis the Young’s Modulus. The bar has a
circular cross section. Given a load of 60 KN, a length of 70cm,a diameter of , Smm and a

Young’s Modulus of 207 Gpa, calculate the deflection in mm
PL_ PL _ 4PL _ 4x60KNx70cm _4x(60x10°N)x(70x10mm)

AE > ad’E ’ - °
ﬁ(dj E " ﬂ(Smm) 207Gpa 7z(5mm)2 (207x10 NJ

2 m’

4x(60x10° N ) x(70x10mm)
- =11.81mm

10°N
2

mm
{1000}

2.3Design Studies

H(Smm)2 x| 207 x (2.3)

In this book we have considered Two-bar truss design, three bar truss design, Jointed plain
concrete pavement design and Welded Beam design as structural optimization models. Their

formulation have been generated in the following way
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2.3.1 Two-Bar Truss(Model-I)

A well-known two-bar [Fig.-2.1] planar truss structure is considered. The design objective is

to minimize weight of the structural WT(4,,4,,y;)of a statistically loaded two-bar planar

truss subjected to stress o; (4, 4,,y; ) constraints on each of the truss membersi=1,2.

L Xz L
“ 1
A A
SR N
[
%
N — N

C
Fig.-2.1 Two-Bar Planar Truss(Model-I1I)

Optimization model of two-bar truss shown in Fig.-1.1 is designed to support the loading

condition. The weight of the structure is

WT =(AL +A4L,), 2.4)
where p is the material density of the bar 4, 4, are the cross sectional area and L, L, are the
length of bar land bar 2 respectively. Length AC =/,Perpendicular distance from AC to

point load point Bis x,,Nodal load= P .Using simple Pythagorean®s theorem we may find

the length of the each bars

L=yx,+(I-y,) . 2.5)
L=y (2:6)

Therefore weight of the structure is

WT:p(Aﬂ/x;w_yB)z +A2«/x§+y§). @.7)

Let Band P, be the reaction forces along the bar land bar 2 respectively .Considering the

equilibrium condition at loading point, the following equations are obtained

P cos@ +P,cosb, =P, (2.8)
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Psing —PF,sin6, =0.
Solving these two equations we get the axial force on bar 1 as
Pﬂ;xé +(l—y§)
B= ;
/
the axial force on bar 2 as
p_ PGty
2 )
[
the stress of bar 1 as

P, B P,fxé +(l—y§)
44

1.e tensile stress. the stress of bar 2 as

1

_ B _P{xz+y;
P4
i.e compressive stress. As

/—
COSHl =¢,
2 2
1,x3+(l—y3)
sin@ = ——8
2 2
1’xBJr(l—yB)
cosﬁzz%,
Xpt Vg
X
sin6) = —= £ =,
Xp+ Vg

The single-objective optimization problem can be stated as follows

(P2.1)

Minimize WT (4, 4,,y5) =p(AM/x§ +(I=y,) +A\x +y32)

Such that

P,’x123+(l—J/B)2 <[GT }
= Oy |>

GAB(A13A2>yB) A
|

[ 2 2
O-BC(AI’A29yB)Ew£[O-gC].

14, ’
05<y,<154 >0,4,>0;

2.3.2 Three-Bar Truss(Model-1I)

(1.6)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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A well-known three bar planer truss is considered in Fig2.2 to minimize weight of the

structure  WT'(4,,A,)and minimize the deflection &(A4,,4,) at a loading point of a

statistically loaded three bar planer truss subject to stress constraints on each of the truss

members

Fig.-2.2 Three-Bar Planar Truss(Model-I)

Consider the three-bar truss shown in Fig-2.2. The bars have Young™s modulus E and the

lengths are [, =1, =1, = L .The design variables are cross-sectional areas 4,,4,and 4, .But we
assume that 4, = 4,.Weight of the structure is
WT = pl 4+ ply A, + pl A = pL(2N24,+ 4,) (2.20)

where p is the material density of each bar. The equilibrium equations in the direction x- and

y- directions become in matrix form

1 iy
P 0 '
SRR Y @21
PlIl1 1 1

NI e

i.e F=B"N.Where F represents the column matrix of external load, N represents the
column matrix of member's forces, B’ and represents the diagonal matrix of member of
stiffness. We cannot obtain bar forces from equilibrium equations alone since the number of
bars exceeds the number of degree-of-freedom. In order to find the bar forces, or, rather, that
appear in the constraints, we need to make use of Hook"s law and geometry conditions. The
extension of each bar corresponding to length and force are given in Table 2.1.

Table 2.1 Extension of Bars of Fig.-2.2

Bar Length Force Extension
Barl l -\2L N, .- NlﬁL
' AE
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Bar2 L=L N, N,L
e, =
AE
Bar3 I, -\2L N, . NJEL
P AE
Ede.
we have N, = lle, i=1,2,3 (2.22)
B [ed]
M jl;s E V2
N, |= esz =7l | (2.23)
N. e, A
3 e AE =
| L V2 |
4 i}
-+ 0 0
Nl E \/5 el
N, =7 0 4, 0 ||e (2.24)
Ny 0o o Al
! V2
We write these equations for all three bars in matrix form as N =De, where
4 -
—= 0 0
2| V2
D:z 0 4, 0 |, (2.25)
A
0o 0 =
I V2|
Nl
N=|N, |, (2.26)
N3
el
e=|e, (2.27)
€

The compatibility equations relate the member displacement eto the nodal displacement r by

e = Br, the bar forces are obtained as N = DBr,s, .The equilibrium equation

N =% i=1,2,3 (2.28)
becomes
F=B"N=B"DBr=Kr (2.29)
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where K = B" DBis global stiffness matrix of the truss, which is

4 11 1]

-——= 2 2 2

o G |e| " N
L

A

5]

0
1 1
- A]
R I VAN

(e

e~ | by

Thus we obtain the displacement of free node as » = K'F
2LP,

szEAI(AIJr\EAz) 0 =

i.e the horizontal deflection of loaded joint is

7= ﬁLR‘
' E4,
The vertical deflection of loaded joint is
J2Lp
r =
E(4+\24,)
So stresses may be written as
o= AN = ADBr
o i,
— 0 0
Al
1
Where A= 0 — O
AZ
0 0 1
L 4]

Page

(2.30)

2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)
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S |-

N|[—= T N

The tensile stress of bar 1 is

R
! 1] \/5 4 (A1+ﬁA2)
—n+=r
2 2 \Epy
r = —
11 (4 +24,)
—Eﬁ+56
R O O O R T
V2 4 (4,4424,)

_ 1A L
" ZJF(A1 24,
The tensile stress of bar 2 is

_ \p
7" (4+24,)
The compressive stress of bar 3 is
ool n, 7

V2| 4 (4+424,)

Considering
P =Pcosf

and Py = Psin@

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)
(2.42)

Assuming € = 45° multi-objective structural design problem, the diagram of which is

presented by Fig.-2.2 can be formulated as

(P2.2)

Minimize WT (A, 4,)= ,oL(2«/5A1 +A2);

PL

Minimize 5(/11, Az) =

such that

0,

E(4+24,)

P(N24,+ 4,) S
(V242 +24.4,) " o7 )

(A1’A2)=

P 1.
O'z(AloAz):m—[ 7 ;

Page

(2.43)

(2.44)

(2.45)

(2.46)
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PA,

(V24> +24.4
A" <4 <A™ i=1,2

233 Design Criteria for Thickness Optimization

oy (4, 4)=

) <[of |; (2.47)

The design method of JPCP, presented by Westergaards Analysis, is the background of
current design method of PCA. This method has taken into consideration of fatigue analysis,

deflection analysis for subgrade, corner stress analysis in the following way.

/

Fatigue Analysis

S0
§
jl
-~ Ik
I3
$ é(e
4

8
§ ¢
] \.r-,?
| HO
' LTS
E_-h..
J: oéf

3
Critical Stress for
Edge Loading

i
Fe Ly,

I'}n e

Fig.-2.3  Typical schematic diagram for fatigue analysis of JPCP
Fatigue analysis of JPCP is well described in Report 1-26 (NCHRP, 1990)[88], where
Damage Ratio (DR ) have been derived considering curling stress (k) ,sub grade support ( j )

and loading group (i) affixed in Eq.(2.48). However, combined effect of all such factor

initiates crack in the slab (Fig.- 2.3) while the cited ratio is greater than unity.

DR = ZZZ Mik.j (2.48)

Jj=1 k=1 i=1 ,kj

Where, m is the total number of load groups, p is the number of period in year, n,, ;is the
predicted number of load repetitions for the ith load group, & th curling condition and ; th
period whereas N, , .is the allowable number of load repetitions for the same condition . By

neglecting the combined effect of warping and curling due to temperature, (2.48) had been
transformed into Eq.(2.49).

DR:Z% (1.49)

Where (DR) has been measured by the arithmetic sum of ratio of predicted number of load

repetitions for (i )th load group (ni)to the allowable number of load repetitions for the (z' )th
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load group (M)in between total number of load groups (i.e. m ).However such ratio at the

end of the design period (n) should be smaller than unity,(IRC;58-2002)
ie

DR=Y"" <1 (2.50)

p\'f
and(nl.) of the above equation has been assumed in this study is cumulative number of axels

(C,) during the design period defined by

. 365x4 {(1+r) =1}

1

2.51)

r

withn,r and (147) as design period in years ,annual rate of growth of commercial traffic and
initial number of axle per day respectively. However in this study N; is replaced by the
fatigue life ( N, ) of JPCP that attributed by the allowable number of load repetitions for the i
th load group (M)

So the Eq.(2.48)has been rearranged in the form as furnished in Eq.(2.52). In this
formulation, only two load group (one single axle load and other tandem axle load) i.e. m=2

has been considered,

6.6 (2.52)
Nl N2

Where N, and N, are fatigue life of the JPCP due to allowable number of load repetitions

for single axel as well as tandem axel load respectively. Now fatigue behaviour of cement
concrete states that due to repeated application of flexural stresses initiated by the stated
loads, progressive fatigue damage takes place in JPCP. However such gradual damage
develops akin of micro-cracks especially when the flexural strength of used concrete is high.

The ratio between the flexural stress due to load and the flexural strength of concrete is

termed as stress ratio (SRi,i =1, 2) .Now such ratio is majorly influenced by the i th load group

(i.e. single and tandem axel load).

The expression of (SRi,l' = 1,2) ,stress ratio for single axle load (i = 1) and tandem axle load

(i = 2) have been illustrated assuming its contact radius as circle —
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3
(B (ER ) 4y 1w 118(1+2v)a
7(3+v)rt |\ 100ka 3 I |
SR, (h) = fori=1,2 (2.53)
1 Sf

Where(v) and(E) denote Poisson®s ratio and modulus of elasticity of cement concrete
respectively. /,a,h and S, denote radius of relative stiffness, radius of load contact areas

thickness of the slab and flexural strength of concrete respectively. The relation between
(N,)and (SR,) for single axle load (i=1)and tandem axle (i =2)is expressed as per IRC

58-2002 below-

N, = if SR (h)<0.45 (2.54)
3.268
4.2577
= f 0.45<SR (h)<0.55 2.55
’ l:SR,.(h)—O.4325:| v <SR (h)< (2:53)
[0.9718—5R,-(h)J
N =10" "% if SR, (h)>0.55 (2.56)

Therefore three cases will come up for consideration to demonstrate the stress ratio in terms
of fatigue life and axel load.

Case I : When Eq.(2.54) is influenced over the Eq.(2.52), the DRremain unchanged as
Eq.(2.54) as the relation is trivially true

Case II:  When Eq.(2.55) is influenced over the Eq.(2.52) the DRis transforms into

6536 -
P

F(Lhk, 4. 4,)= [365 x{(1+r)’ —1}}2 [(SR, (h)-0.4325)(SR, (n)-0.4325) | ™ 4.4, <(0.5) (4.2577)

(2.57)
Case 3: When Eq.(2.56) is influenced over the equation Eq.(2.52), the DRis expressed as

F, (l,h,k,Al,Az) =2Log

365%{(1+7)" ~1{x0.25 J{SRI (h)+SR, (h)

~2347< Log( 4,4
Fx0.25 0.0828 ] g(4)

(2.58)
In the above expression 4 is initial number of axle per day in year which is not greater than

the sum of initial number of axle per day due to single axle 4, and initial number of axle per

day due to tandem axle 4, .

Deflection Analysis for Subgrade
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Subgrade strength is expressed in terms of modulus of subgrade (k) that has been measured

as pressure per unit deflection of the cited subgrade. However if the sustained deflection ( i.e.

Dy, (k,l) and D, (k,l)) are known for different type of vehicular load at JPCP, such

modulus can be represented by Eq.2.59 and Eq.2.60 respectively (Huang, 2004)[50]

Dy, (k1)=2PH ) 080[ 4] |<4, (2.59)
ki !
and
D, (k)= 0'422”)2 {1 ~0.82 (%ﬂ <d, (2.60)

where d,,d, are the limiting value of deflection of concrete due to single axle load (Pl)and

tandem axle load (P2 )respectively.

Corner Stress Analysis

In the corner region, the temperature stress is negligible but the load stress is maximum at
night when the slab corners have a tendency to lift up, due to warping and lose partly its
foundation support as the diagram affixed in Fig.- a, Fig.-b, Fig.-c.

Tig. a
W e TR
Effect on JECOCF at
Critical Aloment

Fig. b
Tcmprrﬂlurr
Effect on JPUCP at

Dav Time

——7

Fig.c
T e mprarature
Eflecton JFPCEF at
Papgghhe 1 awwsa

Fig.-2.4 Temperature Effect of JPCP in Different Time

Therefore, load stresses (corner stress for single axle, S,, (h); tandem axle load, Sy, (h)) at
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corner region may be obtained as per modified Westergaard®s analysis for different types of
load groups as per Eq.(2.61), and Eq.(2.62), respectively.

1.2
3R 2
Siu(h)="3 1-["fj <S, (2.61)
3P 2 1.2
St ()= 1-(”1 J <s, (2.62)

Formulation for Optimization of Thickness of Rigid Pavement

The first step of formulation of JPCP is to formulate the pavement optimization problem by
defining objective function (minimum thickness) and the constraints (fatigue life consumed,

deflection and corner stress due to single and tandem axle) that control the solution.

Design input parameters

The input parameters that influence the design are Poisson ratio (v) , Load due to single axle
(Pl), Load due to tandem axle (P2 ), Modulus of elasticity of concrete(E ), Modulus of
subgrade reaction(k) , Radius of load contact areas assumed circular(a), Initial number of
axles per day in the year(A) , Design period in year(n) , Annual rate of growth of commercial
trafﬁc(r) , Limiting value of deflection due to single axle(dl ) , Limiting value of deflection

due to tandem axle( d, ), Flexural strength of concrete (S. /») ,

Design method

For determining optimum thickness of JPCP, a crisp mathematical model has been
formulated. Here Thickness of Slab (TS) has been minimized subjected to a specified set of
constraints Eq.(2.62-2.71) .Here the optimum design is

(P2.3)

Minimize TS (h)=h (2.63)
Subject to

2

F(Lhk, 4. 4,)= [365><{(1+r)” —1}} [(SR (h)-0.4325)(SR, (n)-0.4325) "™ 4,4, <(0.5) (4.2577)
(2.64)

6536 -
r
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365><{(1+r)2—1}><0.25_ SR(h)+SR (h)
F(Lhk A, 4,)=2L 1 22 |-23.47< Log(4 2.65
2 (1 4, 4;)=2Log %025 +[ 0.0828 j 347< Log (444 (2.69)
Dy, (k1) = 2B {1—0.82(3 }sdl (2.66)
ki !
D, (k1)=2215 {1 —o.sz(ﬁﬂ <d, (2.67)
ki !
B 127]
SSiL(h)z% 1-{"?} <s, (2.68)
r 1.2:
3P 2
Spu ()= 2 1-(“1} <S, (2.69)
Ay (A, A)= A+ 4, < 4 (2.70)
Lh A, 4 >0;1 <k<u, (2.71)
Where
3
38+V))§z {ln(l(g]lc 4J+1.84—4V+1;V+1'18(1;2v)a}
SR (h) =" ‘ fori=12  (272)

S,
234 Welded Beam Design Formulation
The optimum welded beam design(Fig.-2.5) can be formulated considering some design
criteria such as cost of welding i.e cost function, shear stress, bending stress and deflection
,derived as follows
Cost Function Formulation
The performance index appropriate to this design is the cost of weld assembly. The major
cost components of such an assembly are (i) set up labour cost, (ii) welding labour cost, (iii)
material cost,i.e
C(X)=C,+C +C, (2.73)
where, C(X ) = cost function; C, = set up cost; C, = welding labour cost; C, = material cost.

Now
Set Up Cost C,

The company has chosen to make this component a weldment, because of the existence of a

welding assembly line. Furthermore, assume that fixtures for set up and holding of the bar
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during welding are readily available. The cost C, can therefore be ignored in this particular
total cost model.
Welding Labour CostC,

Assume that the welding will be done by machine at a total cost of $10/hr (including
operating and maintenance expense). Furthermore suppose that the machine can lay down a

cubic inch of weld in 6 min. The labour cost is then

C = [1o§j[iiﬂj(6 @:‘ij - 1(%) v, (2.74)
hr )\ 60 min in in

Where V, = weld volume,in®

Material Cost C,

C,=CV +CJl,

Where C; = cost per volume per weld material,$/in’ = (0.37)(0.283) ; C, = cost per volume
of bar stock,$/in’ = (0.37)(0.283) ; V, = volume of bar,in’.

From geometry ¥ =#? ;volume of the weld ma‘[erial,in3 Vg =xtx, and 7, =tb(L+Z)

-volume of bar ,in’ v,

ar

= X3X, (L+x2) .
Therefore cost function become
C(X)=r1+Ch*l+Cytb(L+1)=1.10471x;x, +0.0481 Lx,x, (14.0+x,) (2.75)

Constraints Derivation from Engineering Relationship

ha da

Fig.-2.5  Shear Stresses in the Weld Group.
Maximum shear stress in weld group
To complete the model it is necessary to define important stress states
Direct or primary shear stress i.e

. Load P P P
' Throat area A 2hi \/Exlxz

(2.76)

Since the shear stress produced due to turning moment M = P.e at any section, is

proportional to its radial distance from centre of gravity of the joint ,,G*, therefore stress due
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toAs is proportional to R and is in a direction at right angles to R . In other words

L_T_ constant (2.77)
R r

2 2 2 2
Therefore R= [ij +(Mj :\/x_2+(xl+—x3) (2.78)
2 2 4 4

Where, 7, is the shear stress at the maximum distance R and 7 is the shear stress at any

distance 7 . Consider a small section of the weld having area dA at a distance r from ,,G".
Therefore shear force on this small section =7xdA4 and turning moment of the shear force

about centre of gravity is

dM:rdixr:%dixrz (2.79)

Therefore total turning moment over the whole weld area

M=2[daxr? =22, (2.80)
R R

where J = polar moment of inertia of the weld group about centre of gravity.
Therefore shear stress due to the turning moment i.e.

MR
Secondary shear stress, 7, = a (2.81)

In order to find the resultant stress, the primary and secondary shear stresses are combined

vectorially. Therefore the maximum resultant shear stress that will be produced at the weld

group, 7 = \/112 +7; +21,7,cos 6 , (2.82)

where, € = angle between 7, and 7, .

/2
As cosé’z/—zi; (2.83)
R 2R
— 220 X2 2.84
T \/rl 7, +21,7, 7R (2.84)

Now the polar moment of inertia of the throat area (A) about the centre of gravity is obtained

by parallel axis theorem,

2 2 2 2
+
=21, +4+x] =2{A1X21 +A><x2} =2A[ll—2+x2]= 24\2xx, tc—?M} (2.85)

2

Where, 4 = throat arca= «/Ex]xz , [ =Length of the weld,

h_%+%

t
x =Perpendicular distance between two parallel axes = B + 2 3 (2.86)
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Maximum bending stress in beam

T
Now Maximum bending moment = P~ , Maximum bending stress = E ,where T = PL;

: I .. b :
Z = section modulus=—; 7 =moment of inertia= —; ,, = distance of extreme fibre from
y

. . t 2
centre of gravity of cross section= E; Therefore Z = b% .

T 6PL 6PL

So bar bending stress o (x)= = . 2.87
8 ( ) Z bt xx (287)

Maximum deflection in beam

P P 4PL 4PD
Maximum deflection at cantilever tip & (x) = = = T = > (2.88)

3EI 3E bt™  Ebt"  Ex,x;

12
Buckling load of beam
Buckling load can be approximated by P. (x) = 40131—2EIC[1 —% \ /EEIJ (2.89)
b’
4.013,|E 6.6
f 4.013, / EG. /36 f
:—23 1_L £ = 2x3x4 -5 £ (2.90)
L 2L\ 4G L 2LN4G
bt 1

t
where, 7 =moment of inertia= E; torsional rigidity C =GJ = Etb3 G;l=La= 5>

Crisp Formulation of Welded Beam Design

In design formulation a welded beam (Fig. -2.6) has to be designed at minimum cost whose
constraints are shear stress in weld (7) ,bending stress in the beam (o) ,buckling load on the
X, h
bar (P),and deflection of the beam (&).The design variables are T2 i where # is the
X3
X, b
weld size, 1 is the length of the weld , ¢is the depth of the welded beam, 5 is the width of the
welded beam.
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L, /
Fig.-2.6  Design of the welded beam

The single-objective crisp welded beam optimization problem can be formulated as follows
(P2.4)

Minimize C(X)=1.10471x;x, +0.04811(14+x, ) x;x, (2.91)
such that
g (x)=7(x)—7,, <0 (2.92)
g, (x)=0(x)=0,,, <0 (2.93)
g (x)=x-x,<0 (2.94)
g,(x)=0.10471x/x, +0.0481 Lx,x, (14+x,)-5<0 (2.95)
gs(x)=0.125-x,<0 (2.96)
g (x)=5(x)—6,,, <0 (2.97)
g, (x)=P-F.(x)<0 (2.98)
X;5 Xy, X3, X, € [0,1] (2.99)
MR
Where Z'(x):\/z'lz_{_zz'lz'zi_pz'zz ; Tl:L,‘[Z:—,M:P(L'F&],
2R J2x,x, J 2
2 2 3
R= x—2+(—xl+x3j 5 2 O'(x):ilzl;é‘(X):—A‘PLz;
4\ 2 ), lay x_z+(x1+xsj . X% Ex,x;
’ 2|12 2 ’
6_6
P.(x)= 4.013y ELij3x4 /36 [1 —;—Z f%} as derived as Eq.(2.82), Eq.(2.76), Eq.(2.81),

Eq.(2.80), Eq. (2.78), Eq. (2.85), Eq. (2.87), Eq. (2.88), Eq. (2.90), respectively. Again P =
Force on beam ; Z =Beam length beyond weld; x, = Height of the welded beam; x, = Length

of the welded beam; x, = Depth of the welded beam; x, = Width of the welded beam;

7(x) =Design shear stress; o (x) =Design normal stress for beam material; A = Moment of
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P about the centre of gravity of the weld , J =Polar moment of inertia of weld group; G =

Shearing modulus of Beam Material; £= Young modulus; 7w = Design Stress of the weld;

O = Design normal stress for the beam material; Oy = Maximum deflection; 7=

max

Primary stress on weld throat. 7, = Secondary torsional stress on weld.

Page

114



CHAPTER 3

Truss Design Optimization using Neutrosophic Optimization

Technique: A Comparative Study

The research area of optimal structural design has been receiving increasing attention from
both academia and industry over the past four decades in order to improve structural
performance and to reduce design costs. However, in the real world, uncertainty or vagueness
is prevalent in the Engineering Computations. In the context of structural design the
uncertainty is connected with lack of accurate data of design factors. This problem has been
solving by use of fuzzy mathematical algorithm for dealing with this class of problems.
Fuzzy set (FS) theory has long been introduced to deal with inexact and imprecise resources
by Zadeh [133], as an application, Bellman and Zadeh [10] used the FS theory to the decision
making problem. In such extension, Atanassov [1] introduced Intuitionistic Fuzzy set (IFS)
which is one of the generalizations of FS theory and is characterized by a membership
function, a non membership function and a hesitancy function. In FS the degree of acceptance
is only considered but IFS is characterized by a degree of acceptance and degree of rejection
so that their sum is less than one. As a generalization of FS and IFS, F. Smrandache [94]
introduced a new notion which is known as neutrosophic set (NS in short) in 1995.NS is
characterized by degree of truth membership, degree of indeterminacy membership and
degree of falsity membership. The concept of NS generates the theory of neutrosophic sets by
expressing indeterminacy of imprecise information. This theory is considered as complete
representation of structural design problems like other decision making problems. Therefore,
if uncertainty is involved in a structural model, we use fuzzy theory while dealing
indeterminacy, we need neutrosophic theory .This is the first time NSO technique is applied
in structural design. Several researchers like Wang et al. [119] first applied a-cut method to
structural designs where the non-linear problems were solved with various design levels a,
and then a sequence of solutions were obtained by setting different level-cut value of a. To
design a four—bar mechanism for function generating problem, Rao [89] used the same a-cut

method.
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Structural optimization with fuzzy parameters was developed by Yeh et al. [131]. Xu [13]
used two-phase method for Fuzzy Optimization (FO) of structures. A level-cut of the first and
second kind approach used by Shih et al. [95] for structural design optimization problems
with fuzzy resources. Shih et al. [96] developed alternative a-level-cuts methods for optimum
structural design with fuzzy resources. Dey et al. [32] used generalized fuzzy number in
context of a structural design. Dey et al. [33] developed parameterized t-norm based FO
method for optimum structural design. Also, a parametric geometric programming is
introduced by Dey et.al [34] to Optimize shape design of structural model with imprecise
coefficient. A transportation model was solved by Jana et al.[57] using multi-objective
intuitionistic fuzzy linear programming. Dey et al. [35] solved two bar truss non linear
problem by using Intuitionistic Fuzzy Optimization (IFO) problem. Dey et al. [36] used IFO
technique for multi objective optimum structural design. R-x Liang et al.[66] applied
interdependent inputs of single valued trapezoidal neutrosophic information on Multi-criteria
group decision making problem. P Ji et al. [58], S Yu et al. [132] did so many research study
on application based neutosophic sets and intuitionistic linguistic number . Z-p Tian et
al.[115] Simplified neutrosophic linguistic multi-criteria group decision-making approach to
green product development. Again J-j Peng et al.[81] introduced multi-valued neutrosophic
qualitative flexible approach based on likelihood for multi-criteria decision-making
problems.Also H Zhang et al [135] investigates a case study on a novel decision support
model for satisfactory restaurants utilizing social information. P Ji et al. [58] developed a
projection-based TODIM method under multi-valued neutrosophic environments and its
application in personnel selection.

The present study investigates computational algorithm for solving single-objective structural
problem by single valued Neutrosophic Optimization (NSO) approach. The impact of linear
and nonlinear truth, indeterminacy and falsity membership functions in such optimization
process also has been studied here. A comparison is made numerically among FO, IFO and
NSO technique. From our numerical result, it is clear that NSO technique provides better

results than FO as well as IFO.

3.1 General Formulation of Single-objective Structural Model

In sizing optimization problems, the aim is to minimize single objective function, usually the
weight of the structure under certain behavioural constraints which are displacement or

stresses. The design variables are most frequently chosen to be dimensions of the cross
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sectional areas of the members of the structures. Due to fabrications limitations the design
variables are not continuous but discrete for belongingness of cross-sections to a certain set.

A discrete structural optimization problem can be formulated in the following form

(P3.1)
Minimize WT (A) (3.1
subject to o;(A)S[o;(A)],i =12,....m (3.2)
4, €R’, j=12,..n (3.3)

where WT(A)represents objective function, 0, (A) is the behavioural constraints and
[al. (A)] denotes the maximum allowable value , m and n are the number of constraints and

design variables respectively. A given set of discrete value is expressed by R”and in this

paper objective function is taken as
WT(A) = ZpiliAi (3.4)
i=1
and constraint are chosen to be stress of structures as follows
o (A) < 0, with allowable tolerance o fori=1,2,....,m (3.5)
Where p,and [ are weight of unit volume and length of i" element respectively, m is the

number of structural element, o, and ¢’ are the i” stress , allowable stress respectively

3.2 Neutrosophic Optimization Technique to Solve Single-objective

Structural Optimization Problem (SOSOP)

To solve the SOSOP (P3.1), step 1 of 1.29 is used and we will get optimum solutions of two
sub problem as 4' and A4”.After that according to step 2 we find upper and lower bound of

membership function of objective function as U;,T( A),U;,T( A),U;T( jand L;,T( A),L;,T( A)’LIV;T( 4
where Uy, =max {WT (4'),WT(4°)}, (3.6)
Ly =min{WT (4'),WT(4°)}, (3.7)

for Model-III-AL,AN
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Uprty =UnrtaLuni = Lurtay * gy Where 0 <2y < (Ui = Lyrg

(4) (4)>

L{/VT(A) = L;/T(A)’UV[VT(A) = L]V;/T(A) + é:WT(A) where 0 < §WT(A) < (U;/T(A) _LZV;/T(A))

for Model-I,II-BL,BN

Unray = Unr(ay = Uy

Ly = Lt~ S Where0< ey <(Upri =Ly )

(4)

L{/VT(A) = L]V;/T(A) —&yr(a) Where 0< &, ) < (UVZI;T(A) _LZV;/T(A))

Let the linear membership function for objective be

1 if WI(A)< Ly,
Uy —WT (4
TWT(A)(WT(A)) = [ (;V;(A) 17 ( )J if L]I:VT(A) < WT(A) SUVZI;T(A)
wr(4) ~ “wr(4)
0 if WI(A4)2Uy,,
For Model-I,II-AL
1 if WT(A)SL;,T(A)
Lo+ & |-WT(4)
(4) (4) .
IWT(A)(WT(A)): ( - ;VT - ) if LJV-VT(A) SWT(A)SL;,T(A) +§WT(A)
WT(4)
0 lf WT(A)ZL;/T(A) +§WT(A)
For Model-I,II-BL
1 if WI(A)2Upy,
WT (A)=(Lyz g+ Epria)
Ly (T (4)) = | =7 (LTWT o) i Ly * i ST (4) S U
wr(4) ~ wr(4) _é:WT(A)
0 if WT(A)SLiVT(A)-I_gWT(A)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
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if WT(4)< LiVT(A) * Eyr(a)

Wr(4)-(L, 4) )
Fyri (T (4)) = { o _(LT _SW“) i Ly + e SHT(A)<Up G13)
WT(4) WT(A) WT(4)
1 lf WT( ) UI:/T(A)
and constraints be
1 if o,(4)<L]
Ul —o,(4)) |
T, (o:(4))= ( i j if L, <o,(4)<U] (3.14)
0 if 0,(4)=U.
For Model-LII-AL
I if o,(4)
(sz +§a,-(x)) ! (A) T
Ly (0:(4))= c if L, <o, (A)<L, +&, ., (3.15)
0 if o,(A)=L, +¢
For Model-I,II-BL
1 if 0,(4)2U,
O; (A) _(Li, + éo',-(x) ) ; ,
L0 (4))= 0TI &, if L, +¢ (4)<U (3.16)
0 if o(4)<L, + o)
0 if o,(4)<L +€,
O'i(A) LT ~&,(x)
ool ()= ( Ul —Li,—e ) if L, +,,<0,(4)<U, (3.17)
1 if a( )>UT

where for j=1,2,....m 0<5J[(x),§ai(A)<o;

and if non-linear membership function be considered for objective function W7 (4) then
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! i WT(A)< L,
Upriy =WT(A))| .
Tyrin (WT (4)) = {1=expi o[ if Ly SWT(A)<Up,,  (3.18)
wr(4) ~ “wr(4)
0 lf WT(A) 2 UZI;T(A)
For Model-LII-AN
I if WT(A)<L,,
Lo +&r | -WT(A)
Ly 4y (WT(A)) = eXp{( e ;VT) } if LZV-VT(A) < WT(A) = L]V;/T(A) +8yr (3.19)
wT

0 lf WT(A) = LI!/;/T(A) +§WT

For Model-I,II-BN
1 lf WT(A) 2 UVZI;T(A)
WT(A)= L0 +4
Ly (WT(4)) = {expi— ( Lt Wr) if Ly + & SWT(A)<Ugy (3.20)
UWT(A) - LWT(A) —Syr
0 if WT(A)SL;/T(A)_i—gWT
0 if WT(A)SLZVT(A) +&y;
U +L o |+e
Fyo (VT (4) = %+%tanh WT(A)—( ) 2’”(’”) WT}WT if Lyt er SWT(A)UL, (B21)
! 7 T(4)20},

where 0< &,,,,&,, < (U;,T —L;,T) and if nonlinear truth, indeterminacy and falsity

membership functions be considered for constraints then

1
TJ[(A) (O‘i (A)) =ql-exp {1//(
0

For Model-LII-AN

i o ()<L

Ul -6(4
U—é)} if L, <0,(4)<U, (322)

if O'[(A)ZU;
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(Lréa)o )| T
IG<A)(G,(A))= exp{ 3 } if L, <o,(A)<L, +&, (3.23)
0 if o,(A)>L, +¢&,
For Model-LII-BN
! if o,(4)2U"
I, (0:(4))= exp{o-il(;;):l(é;_;fa’)} if L +& <o,(4)<U! (3.24)
0 if o,(A)<L, +¢&,
0 if o,(4)<L +¢,
11 (U;+L;)+gg’ o )
E,y(o(4))= E+Etanh{[o](z4)f}ro} if L, +¢, <o,(4)<U. (3.25)
1 if 0,(4)2U,

where  y,rare non-zero parameters prescribed by the decision maker.
T T
where 0<¢_,& <(UU> —Lg.)

then according to Smarandache’s definition of intersection of Neutrosophic sets and

decision making criteria the neutrosophic optimization problem can be formulated as
(P3.2)

Model-I- AL, BL, AN, BN

Maximize (a+y— ) (3.26)
such that
Ty (WT(4))2 a; (3.27)
T, . (0:,(4))2e; (3.28)
- (W (4))=y; (3.29)
Ly (0,(4))2 7 (3.30)
F (WT(4))< p; (3.31)
F, ) (0,(4))<p (3.32)
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o,(x)<[a]; (3.33)

a+p+y<3,a=pfa>y; (3.34)
a, B,y €[0,1] (3.35)
Where Model-I-AL,AN and Model-I-BL,BN stand for the neutrosophic optimization

algorithm with indeterminacy membership function as of decreasing sense and as of

increasing sense respectively.
But in real life problem decision maker needs to minimize indeterminacy membership

function. So nutrosophic optimization problem also can be formulated as

(P3.3)

Model-II-AL,AN,BL,BN
Maximize (a—pB—-7) (3.36)
such that

Ty (T (4))2 a; (3.37)
T, (0:(4))2 e (3.38)

L ()< 639
L y(o:(4) <7 (3.40)
F (W (4))< B (3.41)
E, ) (0,(4))<p (3.42)
o,(x)<[o]; (3.43)
a+fry<3a>pfiazy; (3:44)
a. B,y €[0.1]

Where Model-II-AL,AN and Model-1I-BL,BN stand for the neutrosophic optimization
algorithm with indeterminacy membership function considered as of decreasing sense and as
of increasing sense respectively.
Now the above problem can be simplified to following crisp linear programming problem,
whenever linear membership are considered, as

(P3.4)
Model-I-AL

Page 122



Maximize (a—f+7)

Such that

WT(4)+ a(U;/T(A) _L;T(A)) <Upriap

WT(A)+ Yowr(a) < L;/T(A) +Cr(a)>
WT(A4)=B(Usz = Lot = Erc ) < Liri + e
o (A)+a(UL ,~L, ) <UL
or (4)+ Vo) = L;(A) + G ()5
o7 ()= BUL = Lo =) S Loy i

o, (A)+a(U; —LZC(A)) <U,; (45

(4)
o, (A) + 7’5(,6(@ < U;C(A) + é:O'C(A);
a+p+y<3;
azpazy,
a. B,y €[0.1]

(P3.5)
Model-I-BL

Maximize (a -p+ 7/)
Such that
WT(A)+ a(UVTVT(A) —Lﬁm)) <UL

W (4)- V(UVTVT(A) _L]I;/T(A) - §WT(A)) = LgVT(A) + Cr( >

WT(A4) _IB(UVTVT(A) - L;/r(,q) - gWT(A)) < L;/T(A) T Epr(a)>

(3.45)

(3.46)
(3.47)

(3.48)

(3.49)
(3.50)

(3.51)

(3.52)

(3.53)

(3.54)
(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)
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O'c(A)JFO‘(U;(A) _LZC(A))SU;(A); (3.64)
0 (A)=7(Us iy~ Lhiy = Soni) 2 Loty + iy (3.65)
a+pf+y<3; (3.66)
azpazy; (3.67)
a,p,y €[0,1] (3.68)

and crisp linear programming problem like Model-I-A whenever non-linear membership

function is considered as

(P3.6)
Model-I-AN
Maximize (0+ Kk —1n) (3.69)
such that

Upoon — L,
Wr(4)+0 (Uirg =) <UL s (3.70)
7
ul o +L +e
WT(A)+ n < WT(4) wr(4) " Cwr(4) ; 3.71)
TWT(A) 2
WT (A)+ K&y < Liynay + Sy (3.72)
(vl -17)
o,(4)+0——"2<U’; (3.73)
W ;
Oi (A)JFKSEJI(A) <Ly +&, 4 (3.74)
U'+L +¢&
o (A)+ T <00 Tolh), (3.75)
Ty () 2

O+x—n<3; (3.76)
0>x;0=>n; (3.77)
0,x,1€[0,1] (3.78)
Where 6 =—In(1-a); (3.79)
w =4 (3.80)
Tr(a) = ° ; (3.81)
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xk=Iny;
n=—tanh™ (2ﬂ—1).
6

and T :—(U:(A) —L’;(A));

)
(P3.7)

Model-I-BN

Maximize (9 +K— 77)
such that

(Unri ‘Liwm)
v

WT(A4)+6

T T
W ()41 < 2 Toria o,

Tyr(a) 2

WT(A4)- K(UZI;T(A) - LTWT(A) ~ Sr(a) ) = LTWT(A) + Syr(ay>

T qT
a,.(A)+9—(U"" L"")SU;;

L' +U! +¢
O'l.(A)+ 77 < O g; Ui(A)’
T‘Ti(A) 2
O+Kxk—n<3;
0>x;0=>n;
0,x,ne [0,1]

Where 6 =—1n(1—a);

w=4
6
Twr(a) =
(U =Ly
xk=Iny;
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(3.83)

(3.84)

(3.85)

(3.86)

(3.87)

(3.88)

(3.89)

(3.90)

(3.91)

(3.92)
(3.93)

(3.94)

(3.95)
(3.96)

(3.97)

(3.98)

(3.99)




6

)

4)

(3.100)

Using linear and nonlinear truth, indeterminacy, and falsity membership function Model-1I

can be simplified as

(P3.8)
Model-TI-AL

Maximize (05 -f- 7/)

Such that

WT(A)m(UfVT(A) —L;T(A)) <UL

WT (A)+7 Swr(a) = L]V;/T(A) + Cr(a);

or (4)+a(U] \~L ) <UL
07 (A)+7S0,0) 2 Loy 4y F Sy

07 (A)=B(UZ =Ly =) S Loy F
o (A)+a(U =L ) SUL

O (A) 78,14 2 Us (o + S

a+p+y<3;

azpazy;
a,p,y €[0,1]

(P3.9)
Model-11-BL
Maximize (05 o 7)

Such that

WT (A)+a(Uyr) =Ly ) <Us

Wr(4)

(3.101)

(3.102)
(3.103)
(3.104)
(3.105)
(3.106)
(3.107)
(3.108)

(3.109)

(3.110)
(3.111)

(3.112)

(3.113)

(3.114)
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a+f+y<3;

azpa>y;
a, B,y €[0,1]

(P3.10)

Model-1I-AN
Maximize (6 —k—1)
Such that

(U%w‘gﬁw)
%

WT(A)+6

7 Yt * Ly Ewia
B 2

WT(A4)+ ;
TWT(A)

WqTA)+K§wu)ZL%LQ+;wuf

T T

omA)+9£1L—ﬁjscg;
v
(3.129)

0 (A) K, ) 2 Lo + S, 005

Uy +L; +e¢,

4)

Q
S
T
=
A

b

(3.115)
(3.116)
(3.117)
(3.118)
(3.119)
(3.120)

(3.121)

(3.122)
(3.123)

(3.124)

(3.125)

(3.126)

(3.127)

(3.128)

(3.130)

(3.131)
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O+Kx—n<3;
0>x,0>n;
(9,K,77€[0,1]
Where =—In(1-a);

v =4

(P3.11)

Model-1I-BN
Maximize (9— K—n)
such that

(U;/T(A) - LZV;/T(A))

WT(A)+6
(a)+01T

T T
T ()41 < 2 Loria o,

Tyr(a) 2

WT(A)- K(UZI;T(A) - LTWT(A) ~ Sr(a) ) < LTWT(A) + Syr(ay>

T T

a,.(A)+e—( l/: -) <U7;
(3.145)

o, (A)=w(UL L], =&, ) S L +&, 0

T T
L, +U, + Eq(a)

>

q
S
T
S
A
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(3.132)
(3.133)

(3.134)

(3.135)

(3.136)

(3.137)

(3.138)

(3.139)

(3.140)

(3.141)

(3.142)

(3.143)

(3.144)

(3.146)

(3.147)

(3.148)
(3.149)




0,x,1 €[0,1] (3.150)

Where 6 =—In(1-a); (3.151)
v =4 (3.152)
Tor(a) =7 ° - ) (3.153)
(U = Lyas)
Kk=Iny; (3.154)
n=—tanh™ (28-1). (3.155)
6
and 7, =7———; (3.156)

F F i
(Vs =)
All these crisp nonlinear programming problem can be solved by appropriate mathematical

algorithm.

3.3 Numerical Solution of Two Bar Truss Design using Single
Objective NSO Technique

A well-known two-bar planar truss structure (Fig.-3.1)is considered and the detail

formulation is given in appendix. The design objective is to minimize weight of the structural

WT(A,A4,,yz)of a statistically loaded two-bar truss subjected to stress o;(4,4,,y5)

constraints on each of the truss membersi=1,2.

Fig.-3.1 Design of the Two-Bar Truss(http://www.sciencedirect.com,accessed on 17June

2017)

The single-objective optimization problem can be stated as follows
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(P3.12)

Minimize WT(AI,Az,yB)zp(An/xé +(1=y,) + A, +y32)

Such that

OB (Al’A29yB)

Il
N
IA
—
Eéq"
L

P»\fx; +y32 < [Ugc:';

O-BC(AI’AzﬂyB) A
2

05<y,<15

4>0,4,>0;

(3.157)

(3.158)

(3.159)

(3.160)
(3.161)

where P = nodal load ; p=volume density ;/=Ilength of AC ;x, = perpendicular distance

from AC to point B. A =Cross section of bar- 4B ; A, = Cross section of bar- BC.. [O‘T] =

maximum allowable tensile stress, [O‘C]=maximum allowable compressive stress and

yp = ¥y -co-ordinate of node B .Input data are given in Table 3.1.

Table 3.1 Input Data for Crisp Model (P3.8)
Maximum | Maximum )
Distance of
Applied Volume | [ength | allowable allowable
load p | density o 1 tensile compressive X from
(KN) (KN/ m3) (m) stress o7 | stress| ¢ | AC
(Mpa ) (Mpa) (m)
130 90
with fuzzy | with fuzzy
100 7.7 2 region region 1
20 10

Solution: According to step 2 of 1.29,we find upper and lower bound of membership

function of objective function as U;,T( A),UV[VT( A),UW’iT( A)and U;T( A),UV[VT( A),UV%( 4) where

Unria)

=14.23932=U,,

T
() Lr(a)

=12.57667 =1L

W (4)

F
s Ly

(4)

=12.57667+ &, , with

0< Er(a) < 1.66265; and UVIVT(A) = L;,T(A) +&yr(4) Where 0< fWT(A) <1.66265
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Now using the bounds we calculate the membership functions for objective as follows

TWT(AI,AZ,yE)(WT(ADAZ’yB)) = [

For Model-LILLAL

1 if WT(4,4,,y,)<12.57667
14.23932-WT (4, 4,.y,) ) .
if 12.57667<WT (4, 4,,y,)<1423932  (3.162)
1.66265
0 if WT(A,4,y,)>1423932
I if WI(4, 4, ,)<12.57667

(1257667 &y |- T (4,4,3,)

IWT(Al,Al.,yB)(WT(Al’AQ’yB)):

For Model-I,II,BL

T (4, Ay 3, )-{1257667+ £, |

g if 1257667 <WT (4, 4,,3,) 1257667+,
WT(4)

0 if WT(4,4,7,)212.57667+6,,

1 if WT(4,4,,y,) 21423932

]WT(Al,Az,yB)(WT(ApAg;yB)):

WT(4,4,7,)-125766-s,,

L6265-¢,.,,

i 1057667+, I (4, Ay, ) <1423932

0 if T (4, 4yy,)<I25T667 46,

0 if DT (43, ) 125767 6,1,

FWT(AI,Az,yB)(WT(APAP}}B)): [

) ST (4, 4,7,) 1423932

166265z,
1 if WT(4,4,7,)2142393

(’”] if 12.57667+¢

Similarly the membership functions for tensile stress are

TO'T(AI,AZ,yE) (O-T (AI’AZ’yB )) =

For Model-I,IILAL

|

1 ifO'T(AvAPyB)SBO
ISO_UngI’AZ’yB)j if 130<0, (4, 4,,y,) <150
0 if O-T(Al’AZ’yB)leo

(3.163)

(3.164)

(3.165)

(3.166)
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IGT(AI,AZ,yB) (UT (Al’Azayb’)) =

(3.167)

For Model-I,II,BL

IUT(AI,AZ,yB) (UT (AlaAz’yb’)) =

FGT(AI,AZ,yB) (UT (A1’A2’yB )) =

|

1 ifUT(AvAz’yB)SBO
(1304, )-0; (4. 4,.5)

] if 130<0, (4, 4,,7,)S130+&,

Cor
0 if 0, (4,4y,y,)21304&,
1 l.fO'T(AvAzayB)ZISO
A, 4,y,)-(130+&,
[UT( 154 J’B) ( 57)] if 1304&, gO-T(AI,AQ,yB)SISO
20-¢, ’
0 if UT(AI’AZ’yB)SI:;O-I_éTT
0 lfo'r(ApAz’yB)SBO"'gar
A,4,,y,)-130-
[UT( 15 27yB) 507] lf 130‘}'6‘0 SO-T(ApAz’yB)SlSO
20-¢, '
1 if O—T(Al,Az,yB)ZISO

where 0<¢, &, <20

and the membership functions for compressive stress constraint are

TGC(AI,AZ,yB) (GC (AI’AZ’yB )) =

For Model-LII,AL

IoC(Al,AZ,yB) (UC (AlvApyB )) =

For Model-III,BL

|

1 if 0c(4,4,,y5)<90
[100—0052)41,4%)] if 90<0. (4,4, y,)<100
0 if 00 (4,4,,5,)>100
1 if 0. (4,4,,)<90
(90+§%)_§C(A"A2’y3)J if 90<00(4,4),7,)<90+&,
0 C if 0. (4,4,7,)290+¢,

(3.168)

(3.169)

(3.170)

(3.171)
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1 ifO'C(Al,AZ,yB)ZlOO
0c (4, 4,7,)-(90+¢, )

R CAC VRIS if 90+&, <oc(A,4y,y,)<100

10—50(
0 if Oc(4dy,ys) <90+E,
0 ifUC(AlaAbyB)Sgo-l_gac
oc(4,4,,y,)-90~¢, .
FUC(AI,AZ,,VB)(O-C<A1’A2’y3)): [ C< 1 10_8) C] if 90+60CSUC(A15A27)}B)£100
1 if O’C(A],Az,yB)ZlOO

where 0<¢, ,&, <10

(3.172)

(3.173)

Again the nonlinear truth, indeterminacy and falsity membership functions for objectives and

constraints can be formulated as

| if WT(4,4,,y,)<12.57667

14.23932-T (4, 4
Ty T (44 3,)) = 1—exp[—4[ 9 1.6626(51, z%)]}if12.57667SWT(AI,AZ,yB)£14.23932

0 if WT(A4,4,,y,)>1423932
For Model-LII,AN
| if WT(4,4,,y,)<12.57667
12.57667+&,, )-WT (4, 4,,
Lyt s T (44,7, )) = exp{( 5’”2 (4dy B)}if 12.57667<WT (4, 4,,7,)<1257667+£,,
Wr
0 if WT(4,4,,y,)>12.57667+¢,,
For Model-L,II,BN
| if WT(4,4,,7,)>14.23932
WT(4,4,,7,)-(1257667+
L) 7T (440 73)) = exp{ 4 zlﬁzlég_ : 5‘”)}0‘ 12.57667+ ¢, ST (4, 4,,y,) 1423932
‘ Wwr
0 if WT(4,4,,y,)<12.57667+¢,;
0 if WT(4,4,7,)<1257667+¢,,
|1 (20815%9+¢,,)] 6 |
o T (Ao = 2+2tanhk[WT(A],Az,)’3) T J1.66265—8,,7}1f 1257667+ 57 <IT (4, 4, < 1423932
1 if WT(4,4,,)21423932

Similarly the membership functions for tensile stress are

(3.174)

(3.175)

(3.176)

(3.177)
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1 if o;(4,4,,,)<130

150-0,(4,4
TUT(AI,AZ,yB)(GT(Al’AZ’yB))z 1-6Xp{_4[ 50 GT( 19 27%3)]} lf 1305%(1‘11,442,)/3)950

20
0 if 0,(4,4,,y,)2150
For Model-LII,LAN
1 if UT<A1,A2,yB)Sl3O
130+¢, )-o (A,Ay ) .
[UT(A]’AZLVB)(UT (Al’Az’yB)): CXP{( )5 - - lf 130SGT(AI’A29)}B)SI3O+€<W
0 if 0y (4, 4yy5)2130+&,
For Model-LII,BN
1 if O'T(AI,AZ,yB)ZISO
o (A,Ay )— 130+¢, )| .
L s (07 (41 4,74)) = exp{ o 225_5( )}zf 130+¢, <0, (4, 4,y,)<150
0 if O-T(A17A27y13)§130+§ur
0 if 0, (4, 4y,y,) <130+,
11 B0+, 6 |
FUT(AM)(aT(Al,AZ,yB)): E+Etanh o, (4,4,7,)- el if 130+¢, <o, (4,4,y;)<150
1 if O'T(Al,Az,yB)ZlSO

where 0<¢, & <20
and the membership functions for compressive stress constraint are

1 if o0 (Ay4,y,)<90
T o (0 (Ao 3,))= 1—exp{—4[100_00iOA“AZ’yB)]}zf 90< 0 (A4, 4y, ,)<100
0 if o.(4,4,y,)=100
For Model-LII,AN
1 if 0(A4,4,,)<90
[cC(A,,Az,m(Gc(AnAzayB))= exp{(90+5“c);C(A"Az’yl*)}if 90<0.(4,4,y;)<90+&,
0 C if o (A, Ay y,)290+E,

(3.178)

(3.179)

(3.180)

(3.181)

(3.182)

(3.183)
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For Model-LII,BN

1 ifO'C(Al,AZ,yB)ZIOO

oc (4,4, y5)-(90+€, )|

IUC(AI,AM)(JC(AI,Az,yB)): exP{ c\4 zloié( )}zf 90+§J(‘30C(A1,A2,y3)$100 (3.184)
0 if O-C(Al’Az!yB)SQO-I-éo-L-
0 ifaC(Al,Az,yB)£90+£0C
11 190+e, 6 |

FUC(AM)(oC(A],Az,yB)): E+Etanh 0. (4, 4y,)- e if W0+e, <oc(d,4,p,)<100  (3.185)

1 if (4,4, ,)2100

where 0<¢, ,&, <10

Now , using above mentioned truth, indeterminacy and falsity linear and nonlinear

membership function NLP (P3.12) can be solved for Model-I-AL,AN, Model-I-BL,BN,
Model-II-AL,AN, Model-II-BL,BN by NSO technique for different values of ¢,,,&_ ,¢&

or?~oc

and &,;,&, ,&, . The optimum solution of SOSOP(P3.12) is given in Table 3.2and Table 3.3

and the solution is compared with fuzzy and intuitionistic fuzzy problem.

Table 3.2 Comparison of Optimal Solution of SOSOP (P3.12) for Model I based on

Different Methods
4 4, WT (4, 4,)
4 Vg
Methods P 2 v
m m- KN
Model (m) | ()] (&™) (m)
I-AL .5883491 7183381 14.23932 1.013955
Fuzzy single-
st I-AN
ObJef.twe non- 5883491 | 7183381 14.23932 | 1.013955
mear
programming
(FSONLP)
Intuitionistic I-AL
i - _ 0.5482919 | 0.6692795 13.19429 0.8067448
Fuzzy single ey =0.33253, &g, = 4,
objective non- SUC =2
linear -AN
programming epr =08, &5 =16, & =8 0.6064095 | 0.6053373 13.59182 | 0.5211994
oc
(FSONLP)
I-AL
Neutosophic
ey =0.33253,6,, :4,866 =2 | 5954331 7178116 13.07546 818181
optimization(NSO) _ B _
Ewr —.498795,§0T = 6,5@ =3
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I-BL

Syr = 49879555 =65 =3 NO FEASIBLE | SOLUTION | FOUND
ey =0.33253,6, =46 =2
-AN
epr =08,65, =16,6 =8 0.5451860 | 0.677883 13.24173 | 0.7900455
Swr =0.66506,&, =8,& =4
oc
-BN
eyr =0.8,6, =16, =8 NO FEASIBLE | SOLUTION | FOUND

oc

&y =0.66506,&, =8, =4
o

Table 3.3 Comparison of Optimal Solution of SOSOP (P3.12) for Model II based on

Different Method
4, 4| wr(4,4,)
> Vs
Methods v
(m*) | () | (&N) (m)
Model
I-AL 5954331 | .7178116 14.23932 0.81818
Fuzzy single-
objective non- II-AN
i 1317107 | 0.7174615 | 13.82366 1399050
mear
programming
(FSONLP)
Intuitionistic II-AL
Fuzzy single- Gy =033253, 2, =4, 0.5954331 | 0.7178116 | 13.50036 | 0.8181818
objective non- EJC =2
linear I-AN
programming eyr =08, &, =16, e, =8 1.107847 | 0.2557545 | 13.78028 0.5
(IFSONLP)
II-AL
ewr =0.33253,65, =4 =2 | 05954331 | 07178116 |  13.13089 8181817
Sy =498795,8, =65 =3
II-BL
Neutosophi !
cutosophic 3.603750 | 3.603750 12.90920
optimization(NS0) | WT = 49879365, =65 =3
ey =033253,6, =4,e =2
I-AN
=08,¢, =16 =8
Ewr =S80, =108, 0.6494508 | 0.8336701 | 13.78028 | 0.5004718
& =0.66506,&, =8, =4
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1I-BN

—08,s. =166 =8
épr =0-880, =108, 3.603750 | 4.043915 | 13.07546 05

&y =0.66506,&, =8.& =4

Here we get best solutions for the different tolerance &,;.&, and £ for indeterminacy

membership function of objective functions whenever indeterminacy is tried to be minimized
(i.e in Model II) for this structural optimization problem. From Table 3.2andTable 3.3, it is
shown that NSO technique gives better optimal result in the perspective of Structural

Optimization.

3.4 Conclusion

This work is done for illustration of NSO technique that using linear and nonlinear
membership function how it can be utilized to solve a single objective-nonlinear structural
problem. The concept of NSO technique allows one to define a degree of truth membership,
which is not a complement of degree of falsity; rather, they are independent with degree of
indeterminacy. The numerical illustration shows the superiority of NSO over FO and IFO.
The results of this study may lead to the development of effective neutrosophic technique for
solving other models in form of single objective nonlinear programming problem in other

field of engineering .
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CHAPTER 4

Multi-objective Neutrosophic Optimization Technique and its
Application to Structural Design

In the field of civil engineering nonlinear structural design optimizations are of great of
importance. So the description of structural geometry and mechanical properties like stiffness
are required for a structural system. However the system description and system inputs may
not be exact due to human errors or some unexpected situations. At this juncture fuzzy set
theory provides a method which deal with ambiguous situations like vague parameters, non-
exact objective and constraint. In structural engineering design problems, the input data and
parameters are often fuzzy/imprecise with nonlinear characteristics that necessitate the
development of fuzzy optimum structural design method. Fuzzy set (FS) theory has long been
introduced to handle inexact and imprecise data by Zadeh [133], Later on Bellman and Zadeh
[10] used the FS theory to the decision making problem. The FS theory also found
application in structural design. Several researchers like Wang et al. [121] first applied a-cut
method to structural designs where the non-linear problems were solved with various design
levels a, and then a sequence of solutions were obtained by setting different level-cut value of
a. Rao [89] applied the same a-cut method to design a four—bar mechanism for function
generating problem. Structural optimization with fuzzy parameters was developed by Yeh et
al. [131]. Xu [13] used two-phase method for fuzzy optimization of structures. Shih et al. [96]
used level-cut approach of the first and second kind for structural design optimization
problems with fuzzy resources. Shih et al. [95] developed alternative a-level-cuts methods for
optimum structural design with fuzzy resources. Dey et al. [35] used generalized fuzzy
number in context of a structural design. Dey et al.[33]used basic t-norm based fuzzy
optimization technique for optimization of structure.

In such extension, Atanassov [1] introduced Intuitionistic Fuzzy Set (IFS) which is one of the
generalizations of fuzzy set theory and is characterized by a membership function, a non-
membership function and a hesitancy function. In FS the degree of acceptance is only
considered but IFS is characterized by a membership function and a non-membership
function so that the sum of both values is less than one. A transportation model was solved
by Jana et al.[57]using multi-objective intuitionistic fuzzy linear programming. Dey et al.

[35] solved two bar truss non-linear problem by using Intuitionistic Fuzzy Optimization
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problem. Dey et al. [36] used IFO technique for multi objective optimum structural design.
IFS consider both truth membership and falsity membership. IFS can only handle incomplete
information not the indeterminate information and inconsistent information.

In neutrosophic sets indeterminacy is quantified explicitly and truth membership,
indeterminacy membership and falsity membership which are independent. Neutrosophic
theory was introduced by Smarandache [94]. The motivation of the present study of this
chapter is to give computational algorithm for solving multi-objective structural problem by
single valued Neutrosophic Optimization(NSO) approach. NSO technique is very rare in
application to structural optimization. We also aim to study the impact of truth exponential
membership, indeterminacy exponential membership and falsity hyperbolic membership
function in such optimization process. The results are compared numerically linear and
nonlinear NSO technique. From our numerical result, it has been seen that there is no change
between the result of linear and non-linear neutrosophic optimization technique in the

perspective of structural optimization technique.

4.1General form of Multi-objective Truss Design Model

In the design problem of the structure i.e. lightest weight of the structure and minimum
deflection of the loaded joint that satisfies all stress constraints in members of the structure.
In truss structure system ,the basic parameters (including allowable stress ,etc) are known
and the optimization’s target is to identify the optimal bar truss cross-section area so that the
structure is of the smallest total weight with minimum nodes displacement in a given load

conditions .

The multi-objective structural model can be expressed as

(P4.1)
Minimize WT (A) (4.1
Minimize 5(A) (4.2)
subject to o(A)<[o] (4.3)
A™ <A< A™ (4.4)

where A:[AI,AQ,....,An]T are the design variables for the cross section, n is the group

number of design variables for the cross section bar ,
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WT(A4)= 21 pPAL (4.5)
is the total weight of the structure , §(4) is the deflection of the loaded joint ,where L, 4,and
p,are the bar length, cross section area and density of the i” group bars respectively. o-(A) is
the stress constraint and [o-] is allowable stress of the group bars under various conditions,

A™and 4™ are the lower and upper bounds of cross section area A respectively.

4.2 Solution of Multi-objective Structural Optimization Problem

(MOSOP) by Neutrosophic Optimization Technique
To solve the MOSOP (P4.1), step 1 of 1.33 is used .After that pay off matrix is formulated.

WT(4) 6(4)
AT (4") 5(4)
L£\wr(4) 5(4)
According to step-2 the bound of weight objective U,,,L,,; Uy, L, and U, L, for truth,
indeterminacy and falsity membership function have been calculated respectively so that
Ly, SWT(A)<Uyy; Ly <WT(A)<SUyps Ly SWT(A)<Uy, . Similarly the bound of
deflection objective are UL, L} ;UL L, and UL, L respectively for truth, indeterminacy and

falsity membership function. Then L; <5(A4)<Uj; Ly <5(A)<Uy L; <5(A)<U; .Where

for Model-LII-AL, AN

vy, =U,,, (4.6)
L, =L, +&,; (4.7)
Ly =Ly, (4.8)
Uhy =L, +&r (4.9)

Such that 0 < &,,,&,, <(Uy, — L)

for Model-LII-BL,BN

Uty =Uly =Upy
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L, =L, —¢&, where0<g,, <(U§T—L;T)

Liyy = Ly — &7 where 0< &, <(Uyy =Ly )
And for Model-L1I-AL,AL

such that

0<&5.& <(Uf —Lf).

for Model-LII-BL,BN

Ut =U" =U!

L =L, —&; where0< &g <(U§ —Lg)

L =L} &, where 0< &, <(UJ — L)

Therefore the truth, indeterminacy and falsity membership functions for objectives are

UVZI;T(A) - L]V;/T(A)

for Model-III-AN

z —WT (4
WT(A4))=1exp (Bor +6n) T (4) if I, <WT

Eor i

I

WT(A) (

for Model-I,II-BN

1 if WI(4)<L,

WT(A)(WT(A))= 1—exp{—w[UVTVT(A)_WT(A)J} if LZV"VT(A)SWT(A)_

0 if WI'(4)=U,

1 if WT(A)<L,

0 if WI(A)2 L, +&,

(4.10)
(4.11)

(4.12)

(4.13)

(4.14)

(4.15)
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IWT(A) (WT(A)) =

11
Fyri (W7 (4))= S+ anh

1

WT(A) - (L;/T(A) +Cyr )

if WT(4)2U,

WI(4)

UVZI;T(A) - LIV;/T(A) —Swr

0

(UI;T( P +Lfm A))+5WT

} lf LZI:VT(A) + ‘fWT < WT(A) < U;’T(A)

if WT(A)SL]V;/T(A) + Sy

if WT(4)S L+

Wr(4)-

1

where 0< &,,,,&, < (U;T —LJV},T)

1

i (8(4))= I‘CXP{“/’[

0

for Model-LII-AN

Ly (5(A)) = exp{

for Model-I,II-BN

Ly (5(/1)) = exp{

and

1

(L§+§5)—5(A)

0

Ss

1

5(A)_(L§ +§5)

0

U; _Lg _55

U; —6(A)
Ul -L;

|
|

2

]rw} if L;,T(A) + 6y SWT(4)< U;T(A)

if 6(4)<L;

j} if Ly<&(A)<U;

if 6(4)2U;

if 5(4)<L;
if Ly<6(A)<Li+¢&;

if 6(4)2L;+&;

if 6(4)2U;
if Ly+&<6(A)<U;

if o(A)<L;+¢&;
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0 if (A)< L +e,
Fy . (0(4))= L Lo [5(A)MJT if L+e,<8(4)<U] (4.21)
5(4) 29 7 s 5T O = ) :
1 if 5(4)2U"

where y,rare non-zero parameters prescribed by the decision maker and for

where 0<&5,&; <(U§r —Lg)

According to Smarandach’s definition of intersection and decision making criteria,
considering truth, indeterminacy and falsity membership function for MOSOP (P4.1), crisp

NLP problem can be formulated as

Model-I-AN,BN

(P4.2)

Maximize (a+y— ) (4.22)
Subject to

T (WT (4)) 2 a; (4.23)
7,(5(4))> a; (4.24)
L (WT(A4))=y; (4.25)
1;(5(4))=zy; (4.26)
Fyy (WT (A4)) < p; (4.27)
Fy(5(4))< p; (4.28)
o(4)<[o]; (4.29)
a+pf+y<3; (4.30)
o> f; (4.31)
a>y; (4.32)
a, B,y €[0,1], (4.33)
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A™ <A< A™ (4.34)

Where Model-I-AN, Model-I-BN stands for the neutrosophic optimization algorithm with
decreasing indeterminacy membership function and increasing indeterminacy membership

function.

which is reduced to equivalent NLP problem as

Model-I-AN
(P4.3)
Maximize (t9+ K'—?]) (4.35)
Such that
WT(A)+9( WT(4) WT(A)) SUV]I;T(A)’ (4.36)
7
ul o +L +e
WT (4)+ —1— < 20T 4.37)
TWT(A) 2
W(A)+K§W(A) SLzVT( ) Y owrays (4.38)
Ui - L
5(A)+6>M <Ul; (4.39)
7
S(A)+xE; < Ly+&; (4.40)
T T
5(A) iSUWT+LWT+55;
Ts 2
(4.41)
o(4)<[o]; (4.42)
O+x—-n<3; (4.43)
02xK;,0>n; (4.44)
n
0,x,m € [0,1] (4.45)
where 6 =—In(1-a); (4.46)
y=4 (4.47)

Page 144



6

(U -Lr)
6

(i)

TWT

75:

k=Iny;
n=—tanh™' (248-1).
And

Model-I-BN
(P4.4)

Maximize (9 +K— 77)
Such that

Upria)~ Lﬁm))
v

WT(A)+6?(

n_ UVZI;T(A) +LZI/;/T(A) T Eyra)
T, 2 ’

WT(4)

WT(A4)+

WT(4)- K(U;/T(A) - LII/;/T(A) ~ Sr(a) ) = LZI/;/T(A) + Syr(ay>

(vi-1)

5(A4)+6 ”

<Ul;

S(A)—x(Uj ~L;=&)2 L5 +&;;

5(A)+1SUVTVT +L, +es
Ts 2 ’

where =—In(1-a);

y=4
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(4.50)
4.51)

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)
(4.60)
4.61)

(4.62)

(4.63)

(4.64)




6

L (4.15)
. (UVIF/T _LII;/T)
6
T,=——; 4.66
k=Iny; (4.67)
n=—tanh™' (248-1). (4.68)

But as the decision maker needs to minimize indeterminacy membership function in an

optimization problem another form of NSO algorithm can be formulated as

Model-I1-AN
(P4.5)
Maximize (6 —ik—1) (4.69)
Such that
Upron — L
WT(A4)+ 0( WT“)W ) <UD (4.70)
ul . +L +&
WT(4)+—1— < 100 4.71)
Ty 2 ’
WT (A)+ K&, 2 Liyray + Sura (4.72)
U; — L
5(A)+9MSUT; (4.73)
w s
S(A)+xE, = I+ &, (4.74)
5(/1) n U;,T +L€VT+55 .
T, 2 ’
(4.75)
O'(A) < [0]; (4.76)
O+x—-n<3; 4.77)
0>k;,0>n; (4.78)
0,x,n<€[0,1] (4.79)
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where =—In(1-a);

w=4
6 .
(UVI;T _LfVT)’
6

Tyr

k=Iny;
n=—tanh™' (248-1).
And

Model-II-BN

(P4.6)
Maximize (6 —ik—1)
Such that

WT(A)+9(

WT(4)+—1—<

TWT(A)

WT(A) - K(UVTVT(A) _LTWT(A) - §WT(A) ) < LTWT(A) + §WT(A);

U; - Lj)

5(A)+e( U

S(A)=w(Us =Ly =& ) S Ly +&;:

T T
+£<UWT+LWT+55.
- 9

5(4)

Ts 2
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(4.80)

(4.81)

(4.82)

(4.83)

(4.84)
(4.85)

(4.86)

(4.87)

(4.89)

(4.90)

(4.91)

(4.92)

(4.93)

(4.94)
(4.95)
(4.96)

(4.97)




where =—In(1-a); (4.98)

v =4 (4.99)
6
Typ =7} (4.100)
(UVI;T _LfVT)
6
Ty="—""7; (4.101)
" (ur-5)
k=Iny; (4.102)
n=—tanh™ (25-1). (4.103)

Solving the above crisp model (P4.3),(P4.4),(P4.5),(P4.6) we get optimal solution and hence
objective functions i.e structural weight and deflection of the loaded joint will attain its

optimum value

4.3Numerical Solution of Multi-objective Structural Optimization

Problem (MOSOP) by Neutrosophic Optimization Technique

A well-known three bar planer truss [Fig.-4.1]is considered to minimize weight of the

structure  WT (A, A,)and minimize the deflection &§(4,,4,) at a loading point of a

statistically loaded three bar planer truss, subject to stress constraints on each of the truss

members

Fig.-4.1 Design of the Three-Bar Planar Truss(Pratt Truss Bridge,

http://www.atlaso.com.accessed on 17 June 2017)

The multi-objective optimization problem can be stated as follows

(P4.7)
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Minimize  WT (4, 4,)=pL(224,+ 4, ) (4.104)

PL

Minimize 5(141 , AZ) = m (4 105)
1 2
Subject to
P(\24 + 4,
o, (4,4,)= (2(Az+2AA; ik (4.106)
0'2(A1,A2)=<Al+—f:/5Az)S[o{]; (4.107)
___ P 1o
o (44) = (247 +24,4,) <) I
A™ <4 <A™ i=1,2 (4.109)

where P= applied load ; p=material density ; L=Ilength ; £=Young’s modulus ; 4, =
Cross section of bar-1 and bar-3; 4, =Cross section of bar-2; J is deflection of loaded joint.
[O'IT ] and ':O'ZT ] are maximum allowable tensile stress for bar 1 and bar 2 respectively, o is
maximum allowable compressive stress for bar 3.

Table 4.1 Input Data for Crisp Model (P4.4)

. Aimin
N{fmm];llm Maximum and
. Volume atlowable | - allowable | Young’s
Applied density Length | tensile compressive | modulus 4
load P o L stress c E of cross
(KN) (KN/m3) (m) [oﬂ stress [03 ] (KN /mr?) section
(&N /m?) (kN /m?) of bars
(107 m*)
4™ =0.1
AT =5
20 100 1 20 15 2x107 i
AR 0.1
AP =5

Solution : According to step 2 of 1.33, pay-off matrix is formulated as follows
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WT(A4,4,) 6(4.4,)
A[ 2.638958 14.64102]

A*| 19.14214  1.656854
Here
Uy, =U,, =19.14214, (4.110)
L, =L, +&=2.638958+¢; (4.111)
L, =L, =2.638958, (4.112)
Upp =L, +& =2.638958+¢&, (4.113)

such that 0 < &,,& <(19.14214—2.638958);

UL =UT =14.64102,

(4.114)

L5 =1"+&, =1.656854+¢,; (4.115)
L = I% =1.656854, (4.116)
Ul =11 +& =1.656854+¢, (4.117)
such that 0 < &,,&, < (14.64102-1.656854) (4.118)

Here truth, indeterminacy, and falsity membership function for objective functions

WT (A, 4,),5(A,A,)are defined as follows

I if WT(4,4,)<2.638958
19.14214-WT(4,4,))| .

Ty (T (4, 4,))=11-expi 4 I if 2.638958<WT(4,4,)<19.14214  (4.119)

0 if WT(4,4,)>19.14214

1 if WT(4,4,)<2.638958
2 ~WT (4,4
o (7T (4,4)= lexp {( 638958+ 51; WT(4, 2)} if 2.638958<WT(4,4,)<2.638958+¢  (4.120)
1
0 if WT(4,4,)>2.638958+¢,
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0 if WT (4, 4,)<2.638958
et 21781098 +¢, 6 _ (4.121)
Py T (4,4))= 2+2tanh{(WT(AI,A2) ; j (16.503182—51)} if 2638958 <WT(A4,4,)<19.14214
I if WT(4,4,)219.14214
0<¢g,& <16.503182
and
1 if 6(4,4,)<1.656854
T S(4,4))=11 4 14.64102-5(4. 4) | 1.656854<5(A4,4,)<14.64102 4.122
5(A1,A)( ( 1’ 2))_ —eXp - 12.984166 U[ ' - ( 1’ 2)_ : ( : )
0 if §(A4,4,)214.64102
For Model-I,II-AN
1 if 5(4,4,)<1.656854
1.656854+ &) -0, (4, A
zﬁ(A]’Az)((s(Al,@)): exp{( i) or (4 2)} if 130<8(4,4,)<1.656854+¢,  (4.123)
2

0

For Model-I,II-BN
|

if 5(4,4,)>1.656854+¢,

if 5(A1,A2)214.64102

~ o (4, 4,)-(1.656854+¢,) |
]J(A],Az)(5(A1’A2))_ exp{ 129841662, if 1.656854+&, <5(4,,4,)<14.64102(4.124)
0 if §(4,4,)<1.656854+¢,
if (4, 4,)<1636854+¢,
11 16.297874+ ¢, 6 , 4.125
Fyp(6(4,4))= 2+2tanh{(5(Al,A2)— 5 )12.984166—52} if 1.656854+¢,<5(4,4,)<14.64102 ( )
1 if 8(4,4,)214.64102
0<e,,é, <12.9842
According to NSO the MOSOP (P4.7) can be formulated as
Model-I-AN
(P4.8)
Maximize (60+x—-1) (4.126)

(2424, +4,)+4.12570 <19.14214;

(4.127)
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16.503182~¢,) _(21.781
(2J5A1+A2)+ﬂ( 6.503182-¢,) _(21.781098+¢,)

(2v24, + 4, )+ x5, <(2.638958+ &);

(4.129)
20

——+3.246041560 <14.64102;

(A1+«/§A2)

20 77(12.984166—82) (16.297874+6‘2)

6

2

(A1+J5A2)+

20

—————+k&, <(1.656854+ &, );

(4+Ji@)
20(N24,+ 4,)

(247 +24,4,)

(4 +24,)
204 s
(247 +244,)
O+x+n<3;
0>Kk;0>n
0.1<4,4 <5

Model-I-BN
(P4.9)

Maximize (49+ K—77)

(2424 +A2)+4.12576? <19.14214;

(4.140)

<20;

6

<

<

2

(25A1+A2)+f7(16.503182—31) (21.781098 + &, )

(2v24,+ 4,) -5 (16.503182 - £ ) > (2.638958+ &, );

20

——— +3.246041560 <14.64102;

(4+Ji@)

6

2
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(4.128)

(4.130)

(4.131)

(4.132)

(4.133)

(4.134)

(4.135)

(4.136)
(4.137)
(4.138)

(4.139)

(4.141)

(4.142)

(4.143)




20 7](12.984166—82)

IN

(16297874 +¢,)

(4=2a)”

20

T~k (12.984166 - &,) > (1.656854+ &, );

(4 +24,)
20(N24,+ 4,)

(24 +24,4,)

<20;

(Al +\/5A2)

204, <15
(247 +24,4,)
O+x+n<3;
0>K,0>2n
0.1<4,4 <5

Model-IT-AN
(P4.10)

Maximize (49— K'—?])

6

2

(2424, +4,)+4.12570 <19.14214;

(4.153)

<

2

(25A1+A2)+f7(16.503182—31) (21.781098 +,)

6

2

(2424 + 4, )+ 5, > (2.638958+ &);

(4.155)
L+3.24604159£14.64102;
Lﬁ+v5AJ

20 n(12984166-¢,) (16297874+¢,)
(4 +24,) 6 2

20
——+x&, 2(1.656854+ ¢, );
(A1+1\/§A2) 52 ( 52)
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(4.144)

(4.145)

(4.146)

(4.147)

(4.148)

(4.149)
(4.150)
(4.151)

(4.152)

(4.154)

(4.156)

(4.157)

(4.158)




20(\24,+ 4,) .
(247 +24,4,)

(AIJM/EAQ)

B ST
(247 +244,)
O+x+n<3;
0>k;02>2n
0.1<4,4 <5

Model-II-BN
(P4.11)

Maximize (0+k—1)

(2424, +4,)+4.12570 <19.14214;

(4.166)

(2424, + 4 )+’7(16-503182—81) (21.781098 +¢,)
1 2

(2924, + 4,) - x(16.503182 - £) < (2.638958+ &, )

20

——— +3.246041560 <14.64102;

Lﬁ+v5AJ

20 17(12.984166-¢,)

IN

2

(16297874 +¢,)

(4 +J§A2)+

20

T k(12.984166 - &, ) < (1656854 + &, );

(4+24)

20(\24,+ 4,) .
(247 +24,4,)

@ﬁ+Ji@)
204,

(;E:EZZ;SIi

2
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(4.159)

(4.160)

(4.161)

(4.162)
(4.163)
(4.164)

(4.165)

(4.167)

(4.168)

(4.169)

(4.170)

4.171)

(4.172)

(4.173)

(4.174)




O+x+n<3; (4.175)
0>K,0>n (4.176)
0.1<4,4 <5

2
So , using above mentioned truth, indeterminacy and falsity membership function NLP
(P4.7) can be solved by NSO technique for different values of &,¢,and &,&, . The optimum
solution of MOSOP(P4.7) is given in Table 4.2.
Table 4.2 Comparison of Optimal solution of MOSOP (P4.7) based on Different

Method
Methods A; , 4, WTEA"AZ) 5(/1]7’ )
x10"m 10 x10* KN x107" m
Neutosophic optimization
(NSO) with linear
membership function 5777658 | 2.655110 | 4.289278 | 2.955334
& =3.30064, 5, =2.59696
& =1.65032,&, =1.29848
Neutosophic optimization
(NSO) with nonlinear
membership function
& =3.30064, £, =2.59696 5777658 | 2.655110 | 4.289278 | 2.955334
& =1.65032,&, =1.29848
Model-I-AN
Model-I-BN 1.234568 | 1.234568 | 4.062995 | 6.710259
Model-TI-AN 1481133 | 1.10275 | 3.931177 | 6.577532
Model-1I-BN 0.5777307 | 3.752957 | 6.581384 | 3.398347

Here we get same solutions for the different tolerance&,&, and &, for indeterminacy

membership function of objective functions. From the Table 4.2, it shows that NSO technique
gives same result for linear and non-linear membership functions in the perspective of
Structural Optimization.

4.4Conclusion

Here we have considered a non-linear three bar truss design problem .In this test problem, we
find out minimum weight of the structure as well as minimum deflection of loaded joint. The
comparisons of results obtained for the undertaken problem clearly show the superiority of
neutrosophic optimization over fuzzy optimization. The results of this study may lead to the
development of effective neutrosophic technique for solving other model of nonlinear

programming problem in different field.
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CHAPTER 5

Optimization of Welded Beam Structure using Neutrosophic

Optimization Technique: A Comparative Study

In today’s highly competitive market, the pressure on a construction agency is to find better
ways to attain the optimal solution. In conventional optimization problems, it is assumed that
the decision maker is sure about the precise values of data involved in the model. But in real
world applications all the parameters of the optimization problems may not be known
precisely due to uncontrollable factors. Such type of imprecise data is well represented by
fuzzy number introduced by Zadeh [133].In reality, a decision maker may assume that an
object belongs to a set to a certain degree, but it is probable that he is not sure about it. In
other words, there may be uncertainty about the membership degree. The main premise is that
the parameters’ demand across the problem is uncertain. So, they are known to fall within a
prescribed uncertainty set with some attributed degree. In Fuzzy Set (FS) theory, there is no
means to incorporate this hesitation in the membership degree. To incorporate the uncertainty
in the membership degree, Intuitionistic Fuzzy Sets (IFSs) proposed by Atanassov [1] is an
extension of FS theory. In IFS theory along with degree of membership a degree of non-
membership is usually considered to express ill-know quantity. This degree of membership
and non-membership functions are so defined as they are independent to each other and sum
of them is less or equal to one. So IFS is playing an important role in decision making under
uncertainty and has gained popularity in recent years. However an application of the IFSs to
optimization problems introduced by Angelov [4] .His technique is based on maximizing the
degree of membership, minimizing the degree of non-membership and the crisp model is
formulated using the IF aggregation operator. Now the fact is that in IFS indeterminate
information is partially lost, as hesitant information is taken in consideration by default. So
indeterminate information should be considered in decision making process. Smarandache
[94] defined neutrosophic set that could handle indeterminate and inconsistent information .
In neutrosophic sets indeterminacy is quantified explicitly as indeterminacy membership is
considered along with truth membership, and falsity membership function independently
Wang et.al [120] define single valued neutrosophic set which represents imprecise,

incomplete, indeterminate, inconsistent information. Thus taking the universe as a real line
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we can develop the concept of single valued neutrosophic set as special case of neutrosophic
sets. This set is able to express ill-known quantity with uncertain numerical value in decision
making problem. It helps more adequately to represent situations where decision makers
abstain from expressing their assessments. In this way neutrosophic set provides a richer tool
to grasp impression and ambiguity than the conventional FS as well as IFSs. Although
exactly known, partially unknown and uncertain information handled by fully utilising the
properties of transition rate matrices, together with the convexification of uncertain domains
[121-123] ,NSO is more realistic in application of optimum design. These characteristics of
neutrosophic set led to the extension of optimization methods in Neutrosophic environment
(NSE).Besides It has been seen that the current research on fuzzy mathematical programming
is limited to the range of linear programming introduced by Ziemmermann[136] . It has been
shown that the solutions of Fuzzy Linear Programming Problems (FLPPs) are always
efficient. The most common approach for solving fuzzy linear programming problem is to
change it into corresponding crisp linear programming problem. But practically there exist so
many nonlinear structural designs such as welded beam design problem in various fields of
engineering. So development of nonlinear programming is also essential. Recently a robust
and reliable static output feedback (SOF) control for nonlinear systems [124] and for
continuous-time nonlinear stochastic systems [128] with actuator fault in a descriptor system
framework have been studied. However welding can be defined as a process of joining
metallic parts by heating to a suitable temperature with or without the application of pressure.
This cost of welding should be economical and welded beam should be durable one.

Since decades, deterministic optimization has been widely used in practice for optimizing
welded connection design. These include mathematical traditional optimization algorithms
such as David-Fletcher-Powell with a penalty function (DAVID)[95],Griffith and Stewart’s
Successive Linear Approximation(APPROX) [95],Simplex Method with Penalty Function
(SIMPLEX)[95],Recherdson’s Random  Method(RANDOM)[95],Harmony Search
Method[67],GA based Method [37,16],Improved Harmony Search Algorithm [72],Simple
Constrained Particle Swarm Optimizer(SiC-PSO)[25],Mezura [73],Constrained Optimization
via PSO Algorithm(COPSO)[5],GA based on a co-evolution model(GA1)[14],GA through
the use of dominance based tournament selection (GA2)[15],Evolutionary Programming with
a cultural algorithm(EP)[16],Co-evolutionary Particle Swarm
Optimization(CPSO)[51],Hybrid Particle swarm optimization (HPSO)with a feasibility based
rule[52],Hybrid Nelder-Mead Simplex search method and particle swarm optimization(NM-
PSO)[137],Particle Swarm Optimization(PSO)[38],Simulate Anneling(SA)[38],Goldlike
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(GL)[38],Cuckoo Search(Cuckoo)[38],Firefly Algorithm(FF),Flower Pollination(FP)[38],Ant
Lion Optimizer(ALO)[38],Gravitational Search Algorithm(GSA)[38],Multi-Verse
Optimizer(MVO)[38]etc. All these deterministic optimizations aim to search the optimum
solution under given constraints without consideration of uncertainties.

So these traditional techniques cannot be applicable in optimizing welded beam design when
impreciseness is involved in information. Thus the research on optimization for nonlinear
programming under fuzzy, IF and neutrosophic environment are not only necessary in the
fuzzy optimization theory but also has great and wide value in application to welded beam
design problem of conflicting and imprecise nature. This is the motivation of our present
investigation. In this regard it can be cited that Das et al. [39] developed neutrosophic
nonlinear programming with numerical example and application of real life problem recently.
A single objective plane truss structure[97] and a multi-objective plane truss structure[98]
have been optimized in IF environment. A multi-objective structural model has been
optimized by IF mathematical programming with IF number for truss structure [99] ,welded
beam structure[102] and neutrosophic number for truss design [101] as coefficient of
objective by Sarkaret.al. With the help of linear membership[ 100]and nonlinear membership
[103,104]for single objective truss design and multi-objective truss design[107] have been
optimized in neutrosophic environment. A multi-objective goal programming technique[105]
and T-norm , T-co-norm based IF optimization technique[107] have been developed to
optimize cost of welding in neutrosophic and IF environment respectively.

The aim of this chapter is to show the efficiency of single objective NSO technique in finding
optimum cost of welding of welded beam in imprecise environment and to make a

comparison of results obtained in different deterministic methods.

5.1Welded Beam Design (WBD)and its Optimization in Neutrosophic

Environment

Welding, a process of joining metallic parts with the application of heat or pressure or the
both, with or without added material, is an economical and efficient method for obtaining
permanent joints in the metallic parts. These welded joints are generally used as a substitute
for riveted joint or can be used as an alternative method for casting or forging. The welding
processes can broadly be classified into following two groups, the welding process that uses

heat alone to join two metallic parts and the welding process that uses a combination of heat
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and pressure for joining (Bhandari. V. B). However, above all the design of welded beam

should preferably be economical and durable one.

5.1.1 Crisp Formulation of WBD

In design formulation a welded beam ([90],Fig.- 5.1) has to be designed at minimum cost

whose constraints are shear stress in weld (7) ,bending stress in the beam (o) ,buckling load

X h
. . . ) .
on the bar (P),and deflection of the beam (&) .The design variables are Y2l ) where 72 is
X3
X, b

the weld size, | is the length of the weld , ¢is the depth of the welded beam, & is the width of
the welded beam.

T

Fig.-5.1 Design of the Welded Beam

(http://www.foundationrepairduluth.com.accessed on 18 June 2017)

The single-objective crisp welded beam optimization problem can be formulated as follows

(P5.1)
Minimize C(X)=1.10471x%x, +0.04811(14+ x, ) x,x, (5.1)
such that
g (x)=7(x)—7,, <0 (5.2)
2:(x)=0(x) =0, <0 (5.3)
g, (x)=x,—x, <0 (5.4)
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g, (x)=0.10471x/x, +0.0481 1x;x, (14 +x,)-5<0

s ()C)EO.IZS—)C1 <0
g (x)=6(x)—6,,, <0
g,(x)=P-P.(x)<0

Xp5 Xy, X5, X, 6[0,1]

X.
where 7(x)= \/2'12 +200, = +1, ;
2R

P

x/ixl X,

Tl:

(5.16)

_4P0

— =5
Ex,x;

5(x)

P.(x)= 4.0134fEGx36x§/36 1_% E |
‘ 4G

I 2L

(5.5)

(5.6)
(5.7)
(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.17)

(5.18)

Again P=Force on beam ;L =Beam length beyond weld; x, = Height of the welded beam;

x, = Length of the welded beam; x, = Depth of the welded beam; x, = Width of the welded

beam; 7(x)=Design shear stress; o (x)=Design normal stress for beam material; M =
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Moment of P about the centre of gravity of the weld , J =Polar moment of inertia of weld
group; G = Shearing modulus of Beam Material; £ = Young modulus; Zmx = Design Stress

of the weld; O = Design normal stress for the beam material; O = Maximum deflection;

7, = Primary stress on weld throat. 7, =Secondary torsional stress on weld.

5.1.2 WBD Formulation in Neutrosophic Environment

Sometimes slight change of stress or deflection enhances the weight of structures and
indirectly cost of processing. In such situation when Decision Maker (DM) is in doubt to
decide the stress constraint goal, the DM can induce the idea of acceptance boundary,
hesitancy response or negative response margin of constraints goal. This fact seems to take
the constraint goal as a NS instead of FS and IFS. It may be more realistic description than
FS and IFS. When the sheer stress, normal stress and deflection constraint goals are NS in

nature the above crisp welded beam design (P5.1) can be formulated as

(P5.2)
Minimize C(X)=1.10471x?x, +0.04811(14+ x, ) x,x, (5.19)
Such that

g (x)=7(x)<" 7, (5.20)
g (x)=0(x)<" 0, (5.21)
g, (x)=x,—x, <0 (5.22)
2,(x)=0.10471x2x, +0.0481 1x,x, (14+x,) ~5<0 (5.23)
2:(x)=0.125-x,<0 (5.24)
2o(x)=5(x) <" S (5.25)
g,(x)=P-PF.(x)<0 (5.26)
X%y, €[0,1] (5.27)

Where all the parameters have their usual meaning as stated in sect.5.1.2 .Here constraint

goals are characterized by Neutrosophic Sets

7”::13)( = (Tmax ('xl ’x2)’7;r'rl‘ax (Tmax ('xl ’x2 ))712:” (Tmax (xl ’x2 ))’F;?r’r‘m (Tmax (xl ,X2 ))) (528)

max

Page 161



with T, (Ta (X15%5)). 1, (Toan (%1:%,))> Fl, (Zoue (%.x,)) a@s the degree of truth,

max

indeterminacy and falsity membership function of Neutrosophic set 7|

max ’

&::lax = (Gmax (x3’x4)’ Tc},’;‘ax (Gmax (x3’x4 ))’Ic}l’;m (Gmax (x39x4 ))’F&r':m ( max (x39x4 ))) (5'29)

with Trﬂa ( O ax (x3,x4 ))

1, (O'max (x3,x4)),

max

F, ( O (x3,x4)) as the degree of truth,

‘max

indeterminacy and falsity membership function of Neutrosophic set &7 ; and
5:13;( = <5max (x3 > x4 ) H T;;.nmx (5max (x39 x4 )) ,[ngx (5max (x3 ’x4 )) ’F:i':m ( max (x3 > x4 ))) (530)
with 7, ( e (%55X4)). ( e (X35%4))5 F, (O (x3.x,)) as the degree of truth,

indeterminacy and falsity membership function of Neutrosophic set 5"

5.1.3  Optimization of WBD in Neutrosophic Environment

To solve the WBD (P5.2) step 1 of sect.1.29 is used and we will get optimum solutions of

two sub problem as X' and X°. After that according to step 2 we find upper and lower

bound of  membership function of objective function as U g( U, é( U, CF( X) and
LZ( ) L’C( ) Lg( y) Where

Ul —max{C(Xl),C(Xz)}, (5.31)
Ly =min{c(X1),c(X2 )}, (5.32)
Therefore

Uiy = Uy Ly = L + ey Where 0 < &) < (U = L ) (5.33)
Iy = L Ul = Loy + oy Where 0< & < (UL~ L) (5.34)

for Model-I,II-BL,BN
Uty Uty =Ujy
L, =L, —&,, where0<g,, <(UV€T —LZV;,T)

L, =1, -¢&, where 0<&,, <(U§T—L;T)
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Let the linear membership functions for objective be,

1 if C(Xx)<L.

(¥)
Ul —C(X)
TC(X)(C(X)): [UCT(X) o ] if LQ(X)gc(X)SUg(X) (5.35)
c(x) ~ e
0 if C(X)2Ufy,
Model-LII-AL
! i (X)L,
Lioo + ¢y |- C(X)
(X) (X) .
Lo (C(X)) = [( - ;X) if Loy SC(X) S Ly + ey (5.36)
c(x)
0 if WT(A)2 L+ &)
Model-LII-BL
! lf C(X)ZUVII;T(A)
C(X)- LT( ) o)
IC(X)(C(X)): [UT _(L;X _;X ) if LZ(X)+§c(X) SC(X)SUVYI;T(A) (5.37)
WT(4) Wwr(4) — ©C(X)
0 if WT(A)< Ly +Eey)
0 U(C(X)<L€(x)+5c(x)
C(X)- LT( V)
Fe (C(X)) = { U’ _(LTCX_SCX) i Lepyy * éci) < C(X) Uy (5.38)
c(x) ~ Fe(x) T Ce(x)
1 if C(X)2Uy,
and constraints be,
1 if o,(X)<L,
U -0 (X
T (0 (X)) = ( U _’(r )} if L <o,(X)<U; (5.39)
0 if o,(X)2U,

Model-LII-AL
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]G(X)(O_i(X)): £ if L <o, (X)<L; +&, (5.40)
oi(xY)
0 if o (X)2L, +&,
Model-I,1I-BL
1 if o,(X)2U,
o, (X)-(L] +&, 0
IGI(X)(Gi(X))= T —L(T, iy (X)X) if Ly +&, <o, (X)<U, (5.41)
0 if o,(X)<L, +&, )
0 if o,(X)<L) +e, 4
o (X)-L, —¢,
FU(X)(O'I(X)): [ Ty (:)X)J if L +e& ) <0, (X)<U; (5.42)

for j=1,2,...,m 0<go‘,(X)’§0'i(X) <Gi0

Using Smarandache’s definition of intersection of neutrosophic sets and decision making

criteria NSO problem (P5.2), can be formulated as the following crisp linear programming

problem by considering linear membership as follows,
Model-I-AL

(P5.3)
Maximize (a - [+ 7/)
Such that
C(X)+a(Ugny = Ly ) < Ul
C(Xx)+ Yoc(x) < Legyy + Se(x);

C(x)- ﬂ(Ug(x) _LZ(X) ~Eqx) ) s LZ(X) TEc(x)

0, (X)+a(U] )~ L)) <UL

i a,(x)?

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)
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o; (X)+7§a,.(x) < U;(x) + S0 (x)> (5.48)

o (X)-p (Ui-(X) —L x) ‘%(x)) <L )+ Ea )5

(5.49)
a+f+y<3; (5.50)
a>pa>y; (5.51)
a, B,y €[0,1] (5.52)
Model-I-BL
(P5.4)

Maximize (a—f+y) (5.53)
Such that

C(X )+ (U )= L) <UL (5.54)
C(X) _7/(U£(X) _L](;(X) _fC(X)) = LTC(X) + §C(X); (5'55)
C(x)- ﬂ(Ug(X) ~ Ly - '9c(x)) < Loy + €y (5.56)
0. (X)+a(Ul () =L ) <UL (5.57)
O; (X)_j/(U;(X) _Lf;,.()() _éo'i(X)) < L;(X) +§0,-(X); (5.46)
O; (X) _IB(UJT,.(X) _Lii(x) _gg,(x)) < L;(X) + 80,.()(); (5.58)
a+f+y<3; (5.59)
a>pazy; (5.60)

a, B,y €[0,1]

Here Model-I-AL and Model-I-BL stand for the Neutrosophic Optimization algorithm with

indeterminacy membership function of decreasing sense and increasing sense respectively.

(P5.5)

Page 165



Model-II-AL
Maximize (a o y)

Subject to

C(X)+a(Uf =L ) UL

c(x)’

C(X)+r Sern) 2 L];‘(X) + ()

C(x)- ﬂ(Ug(X) _L];‘(X) - 5c(x)) = L];‘(X) T Ec(x)
0, (X)+a (Ul =L ) S UL

0, (X) =78, 2 Loy T 6001

6,(X)=B(US ) =Ly )= 0 1)) S Ly o) * €2
(5.67)

a+f+y<3;

azpazy,

a, B,y €[0,1]

Model-1I-BL
(P5.6)
Maximize (a—f3—y)

Subject to
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(5.61)

(5.62)

(5.63)

(5.64)

(5.65)

(5.66)

(5.68)
(5.69)

(5.70)

(5.71)

(5.72)

(5.73)

(5.74)

(5.75)

(5.76)




o, (X)-p (U a0~ Loyx) ‘%(X)) <Ly )+ Ea )5
a+f+y<3;
azfiazy;

a,B,7 €[0,1]

(5.77)

(5.78)

(5.79)

Here Model-II-AL and Model-II-BL stand for the Neutrosophic Optimization algorithm with

indeterminacy membership function of decreasing sense and increasing sense respectively.

All these crisp nonlinear programming problem can be solved by appropriate mathematical

algorithm.

5.2Numerical Solution of WBD by Single Objective Neutrosophic

Optimization Technique

Input data of welded beam design problem (P5.1) are given in Table 5.1as follows

Table 5.1 Input Data for Neutrosophic Model (P5.2)

Beam Value of Maximum | Maximum Maximum
length Y
Applied e oung G allowable | allowable allowable
beyond | Modulus . .
load P ( pSl) shear normal deflection
weld E
( Ib) SIress Ty, | Stress o,y 51 -
L (psi)
(in) (psi) | (psi) (in)
0.25
13600 30000
with
with with 1 bl
6 allowable
12x10 allowable allowable
6000 14 3x10° tolerance
tolerance tolerance
0.05
50 50

Solution: According to step 2 of sect. 1.29, we find upper and lower bound of membership

b : : : T 7 F T 1 F
function of objective function as UC( X),UC( X),UC( x) and LC( ),LC( X),LC( x)
Ulivy =1.861642 =U ), Li, ) =1.858613 =L, L[, =1.858613+5,,,,with
0 < &) <-003029; andUé(X C(X) + & With0 <& ) <.003029
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Now using the bounds we calculate the membership functions for objective as follows

1 if C(X)<1.858613
1.861642-C (X)) .
T (C(X))= 003029 if 1.858613<C(X)<1.861642 (5.80)
0 if C(X)21.861642
For Model-I-AL
1 if C(X)<1.858613
1.858613+¢&, . |- g(x
I (C(X))= ( : i)=& if 1858613<C(X)<1858613+¢,, (5.81)
o)
0 if C(X)>1858613+¢&,,,
For Model-I-BL
1 if C(X)21.861642
g(x)-(1.858613+&. )|
Leon (€)=l =5 00309 o if 1.858613+&,,, < C(X)<1.861642 (5.82)
0 if C(X)<1.858613+¢,,,
0 if C(X)<1.858613+¢
C(X)-1.858613 -5y, | .
Fo (C(X))= 00309z, if 1.858613+4&,, < C(X)<1.861642 (5.83)
1 if C(X)21.861642

Similarly the membership functions for shear stress constraint are,
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Tgl(x)(gl (x))=

For Model-I-AL

Ly (gl (x)) - {

For Model-I-BL

[gl(x)(gl (x)) - [

Fuwla(x)= ( 50— ¢

where 0<¢g_, .,
gl(x)

1 if g, (x)<13600

1 —
(M] if 13600 < g, (x) <13650

50
0 if g,(x)>13650
: if g (x)<13600
13600+ ¢, )-g (x
( al )) /(x) if 13600< g, (x)<13600+¢,
é:gl(x)
0 if g (x)>13600+¢,
: i g (x)>13650
g (x) —(13600+ ggl(x)) |
50—5&()() if 13600+§g1(x)ﬁg1(x)313650
0 if g (x)<13600+&,
0 if g (x)<13600+¢, ,

—-13600-¢
8 (x) gl(x)] if 13600+8g1(x) <g (x)S 13650

| if g (x)>13650

£, <-003209

and the membership functions for normal stress constraint are,

T, (gz (x)) =

. if g, (x)<30000
O —
[%ng(x)] if’ 30000 < g, (x) <30050
0 if 2, (x)>30050

(5.84)

(5.85)

(5.86)

(5.87)

(5.88)
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For Model-I-AL

1

(x) (gz (x)) =

For Model-I-BL

Loy (gz (x)) =

Fo(&: (%)=

where 0< &,
& (x)

The membership

T, (8 (x))=

For Model-I-AL

: if 2,(x)<30000
30000+, )-g,(x
( gz(,)) 2 (%) if 30000 < g, (x)<30000+¢,
C‘é’:«gz(x)
0 if g, (x)230000+¢,
: i 2,(x)>30050
2 (x)=(30000+&, )|
[ 50-¢, if 30000+¢ . <g, (x)<30050
0 if g, (x)<30000+¢,
’ if g,(x)<30000+¢,
g,(x)-30000-¢, |
[ 50-¢, if 30000+¢, < g,(x)<30050
: i g,(x)=30050
Eonfr) <50
functions for deflection constraint are,
: if g,(x)<0.25
025-g.(x))
(Tosé()] if 025<g,(x)<0.3

0 if g,(x)203

(5.89)

(5.90)

(5.91)

(5.92)
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1 if g (x) <0.25

I, (g(x)= i if 025<g,(x)<025+¢&, (5.93)
el X
0 if gs(x)=0.25+ Soulv)
For Model-I-BL
1 if g, (x) >0.3
g (x)-(025+¢, )] .
Igs(x)(gé (x))z O~05_§g6(x) if 0.25+é"g6(x) <g (x)go.?,
0 if g (x) <0.25+ .ng(X)
(5.94)
0 if g,(x)<0.25+ Eei(v)
Jo (x)—0.25—5 () _
F, . (8(x))= { 005z, g if 0.25+¢, ,<g(x)<03 (5.95)
1 if g, (x)>03

where 0 < ‘9g6(x)’§g ) < .05

Now, using above mentioned truth, indeterminacy and falsity linear membership function
NLP (P5.1) can be solved for Model —I-AL,BL, Model-II-AL,BL, by fuzzy, I[F and NSO

technique with different values of Ec(x)> €0 () Eanlv) and éc( X),§gl(x),§g2(x),§g6(x). The

optimum height, length, depth, width and cost of welding of welded beam design (P5.1) are
given in Table 5.2 and the solutions are compared with other deterministic optimization

methods.

Table 5.2 Comparison of Optimal Solution of Welded Beam Design(P5.1) based on
Fuzzy and IF and NSO Technique( Model - I and Model- II) with Different Methods

Methods Height Length Depth 'xg Width | Welding
(inch)
X X Xy cost
inch inch inch
(inch) (inch) (inch) ()
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DAVID[6] 0.2434 6.2552 8.2915 0.2444 2.3841
APPROX]6] 0.2444 6.2189 8.2915 0.2444 2.3815
SIMPLEX]6] 0.2792 5.6256 7.7512 0.2796 2.5307
RANDOM]6] 0.4575 47313 5.0853 0.66 4.1185

Harmony Search 0.2442 6.2231 8.2915 0.2443 2.3807
Algorithm[10]
GA Based Method[9] 0.2489 6.173 8.1789 0.2533 2.4328
GA Based Method[11] 0.2088 3.4205 8.9975 0.21 1.7483
Improved Harmony Search | 0.20573 3.47049 9.03662 0.20573 1.72485
Algorithm[18]
SiC-PSO[13] 0.205729 3.470488 9.036624 0.205729 | 1.724852
Mezura [18] 0.244438 6.237967 8.288576 0.244566 238119
COPSO[18] 0.205730 3.470489 9.036624 0.205730 | 1.724852
GAI[18] 0.208800 3.420500 8.997500 0.210000 | 1.748309
GA2[19] 0.205986 3.471328 9.020224 0.206480 | 1.728226
EP[20] 0.205700 3.470500 9.036600 0.205700 | 1.724852

CPSO[21] 0.202369 3.544214 9.048210 0.205723 | 1.728024

HPSO[15] 0.205730 3.470489 9.036624 0.205730 | 1.724852
NM-PSO[16] 0.205830 | 0.3.468338 9.036624 0.205730 | 1.724717

PSO[24] 0.206412 3.528353 8.988437 0.208052 | 1.742326
SA[24] 0.165306 5.294754 8.872164 0.217625 | 1.939196

GL[24] 0.204164 3.565391 9.05924 0.206216 1.7428
Cuckoo [24] 0.20573 3.519497 9.036624 0.20573 1.731527
FF[24] 0.214698 3.655292 8.507188 0.234477 | 1.864164
FP[24] 0.205729 3.519502 9.036628 0.20573 1.731528
ALO[24] 0.177859 4.393466 9.065462 0.20559 1.796793
GSA[24] 0.219556 4.728342 8.50097 0.271548 | 2.295076
MVO[24] 0.199033 3.652944 9.114448 0.205478 | 1.749834
Fuzzy single-objective non- | 2444216 3.028584 8.283678 0.2444216 | 1.858613

linear programming [28]

Page 172




Intuitionistic Fuzzy single- | .2443950 3.034430 8.287578 0.2443950 | 1.860125
objective non-linear
programming (FSONLP)
[28]
Ec(x) =015, &, =25,
€g2(x) =25, ggf)()_) =.025,
Proposed Model-T- | 443950 3.034430 8.287578 0.2443950 | 1.860125
Neutosophic AL
optimization(NSO)
o) _ 0015, M";zl‘l‘ NO FEASIBLE | SOLUTION | FOUND
sgl(x) =25, ggz(x) =25,
Ceg ~ 025 Model-Il- |~ 5443950 3.034430 8.287578 0.2443950 | 1.860125
Ee(x) =-0024, AL
Say =40 &g =40,
Son =04 Model-Il- | 7308867 1.840784 2.0 5078827 | 1.860419
BL

A detailed comparison has been made among several deterministic optimization methods for
optimizing welding cost with imprecise optimization methods such as fuzzy, IF and NSO
methods in Table 5.2. It has been observed that fuzzy nonlinear optimization provides better
result in comparison with IF and NSO methods. Although it has been seen that cost of
welding is minimum other than the method studied in this paper, as far as non-deterministic
optimization methods concern ,fuzzy, IF and NSO are providing a valuable result in
imprecise environment in this chapter and literature. It has been seen that Improved Harmony
Search Algorithm[17],COPSO[17],EP[20],HPSOJ[15] are providing minimum most cost of
welding where all the parameters have been considered as exact in nature . However, it may
also be noted that the efficiency of the proposed method depends on the model chosen to a
greater extent because it is not always expected that NSO will provide better results over
fuzzy and IF optimization . So overall NSO is an efficient method in finding best optimal
solution in imprecise environment. It has been studied that same results have been obtained
while indeterminant membership tried to be maximize (Model- I) or minimize (Model-II) in

NSO for this particular problem.

Page 173




5.3Conclusion

In this paper, a single objective NSO algorithm has been developed by defining truth,
indeterminacy and falsity membership function which are independent to each other. Using
this method firstly optimum height length depth, width and cost of welding have been
calculated and finally the results are compared with different deterministic methods. So
illustrated example of welded beam design has been provided to illustrate the optimization
procedure, effectiveness and advantages of the proposed NSO method. The comparison of
NSO technique with other optimization techniques has enhanced the acceptability of
proposed method .The proposed procedures has not only validated by the existing methods
but also it develops a new direction of optimization theory in imprecise environment which is

more realistic.
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CHAPTER 6

Multi-Objective Welded Beam Optimization using Neutrosophic
Optimization Technique: A Comparative Study

Structural optimization, such as welded beam design optimization is an important notion in
civil engineering. Traditionally structural optimization is a well-known concept and in many
situations it is treated as single objective form, where the objective is known cost function .
The extension of this can be defined as optimization where one or more constraints are
simultaneously satisfied next to the minimization of the cost function. This does not always
hold well in real world problems where multiple and conflicting objectives frequently exist.
In this consequence a methodology known as Multi-Objective Structural Optimization
(MOSO) is introduced. Welding, a process of joining metallic parts with the application of
heat or pressure or the both, with or without added material, is an economical and efficient
method for obtaining permanent joints in the metallic parts. Most important the design of
welded beam should preferably be economical and durable one. Since decades, deterministic
optimization has been widely used in practice for optimizing welded connection design.
These include mathematical optimization algorithms (Ragsdell & Phillips [90]) such as
APPROX (Griffith & Stewart’s) successive linear approximation, DAVID (Davidon Fletcher
Powell with a penalty function), SIMPLEX (Simplex method with a penalty function), and
RANDOM (Richardson’s random method) algorithms, GA-based methods (Deb [40], Deb
[37], Coello [14], Coello [39]), particle swarm optimization (Reddy [59]), harmony search
method (Lee & Geem [67]), and Big-Bang Big-Crunch (BB-BC) (O. Hasangebi, [65])
algorithm. SOPT (O. Hasangebi, [55]), subset simulation (Li [69]), improved harmony search
algorithm (Mahadavi [72]), etc. All these deterministic optimizations aim to search the
optimum solution under given constraints without consideration of uncertainties. So, while a
deterministic optimization approach is unable to handle structural performances such as
imprecise stresses and deflection etc. due to the presence of uncertainties, to get rid of such
problem Fuzzy Set (FS)(Zadeh, [133]), Intuitionistic Fuzzy Set(IFS) (Atanassov,[1]),
Neutrosophic Set (NS)(Smarandache,[94]) play great roles. So to deal with different
impreciseness such as stresses and deflection with multiple objective ,we have been

motivated to incorporate the concept of NS in this problem, and have developed Multi-

Page 175



Objective Neutrosophic Optimization(MONSO) algorithm to optimize the optimum design.
Usually IFS, which is the generalization of FS, considers both truth membership and falsity
membership that can handle incomplete information excluding the indeterminate and
inconsistent information while NS can quantify indeterminacy explicitly by defining truth,
indeterminacy and falsity membership function independently. Therefore in 2010 Wang et.al
presented such set as Single Valued Neutrosophic set (SVNS) as it comprised of generalized
classic set, FS, interval valued FS, IFS and Para-consistent set.

As application of SVNS optimization method is rare in welded beam design, hence it is used
to minimize the cost of welding by considering shear stress, bending stress in the beam, the
buckling load on the bar, the deflection of the beam as constraints. Therefore the result has
been compared among three cited methods in each of which impreciseness has been
considered completely in different way.Moreover using above cited concept, a MONSO
algorithm has been developed to optimize three bar truss design (Sarkar et.al [107]), and to
optimize riser design problem (Das et.al [25]).However, the factors governing of former
constraints are height and length of the welded beam, forces on the beam, moment of load
about the centre of gravity of the weld group, polar moment of inertia of the weld group
respectively. The second constraint considers forces on the beam, length and size of the weld,
depth and width of the welded beam respectively. Third constraint includes height and width
of the welded beam. Fourth constraints consist of height, length, depth and width of the
welded beam. Lastly fifth constraint includes height of the welded beam. Besides, flexibility
has been given in shear stress, bending stress and deflection only, hence all these parameters
become imprecise in nature so that it can be considered as NS to form truth, indeterminacy
and falsity membership functions Ultimately, NSO technique has been applied on the basis of
the cited membership functions and outcome of such process provides the minimum cost of
welding, minimum deflection for nonlinear welded beam design. The comparison of results
shows difference between the optimum value when partially unknown information is fully

considered or not.

6.1General Form of Multi-Objective Welded Beam Design(MOWBD)

In sizing optimization problems, the aim is to minimize multi objective function, usually the
cost of the structure, deflection under certain behavioural constraints which are displacement
or stresses. The design variables are most frequently chosen to be dimensions of the height,

length, depth and width of the structures. Due to fabrications limitations the design variables
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are not continuous but discrete for belongingness of cross-sections to a certain set. A discrete

structural optimization problem can be formulated in the following form

(P6.1)
Minimize C(X) (6.1)
Minimize 5(X) (6.2)
subject to o, (X) < I:O'l. (X)],i =1,2,...,m (6.3)
d .
X, eR", j =12,...,n (6.4)

where C(X), (X ) and Gi(X ) as represent cost function, deflection and the behavioural
constraints respectively whereas [q (X )] denotes the maximum allowable value , ‘m’ and

‘n’ are the number of constraints and design variables respectively. A given set of discrete

value is expressed by R” and in this paper objective functions are taken as
T
C(X)=>¢]]x and 5(X) (6.5)

The constraints are chosen to be stress of structures as follows

o, (A) <o, With allowable tolerance o fori=1,2,....,m (6.6)

Where c, is the cost coefficient of t" side and x,is the " design variable respectively, m is

the number of structural element, o, and o are the i"” stress , allowable stress respectively.

6.2Solution of Multi-Objective Welded Beam Design (MOWBD)
Problem by Neutrosophic Optimization(NSO) Technique

To solve the MOSOP (P6.1), step 1 of 1.33 is used .After that according to step to pay off

matrix is formulated.

According to step-2 the bound of weight objective U’ L' ; U/

c(x)>Tex)?

LI(X)and U’ ) )

C(x)> ¢l C(x)>~c(x)

for truth, indeterminacy and falsity membership function respectively. Then
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Ly SC(X)SUE 5 (6.7)
Ly SC(X)SUE 5 (6.8)
Ly SC(X) <ULy (6.9)

Similarly the bound of deflection objective are U’ I U’ I’ and U: . L-  are

s(x)> Lo(x) Ys(x) Fs(x) s(x)> Hs(x)
respectively for truth, indeterminacy and falsity membership function. Then
Li <6(X)SUg s (6.10)
Ly S6(X)SUj s (6.11)
Ly SS(X)SUS - (6.12)
Where ,for Model-LII-AL, AN
Ulixy =Ulix)s (6.13)
L‘;(X) = LZ;‘(X) TEc(x)> (6.14)
L’C(X) = LZ(X), (6.15)
Ulixy = Loy T ¢ (6.16)
0< £y ern < (Ul ~Leon)
for Model-I,II-BL,BN
Uy =Uetn =Uern
T T
L‘;(X) = LZ(X) — &) Where 0 < < (UC(X) —LC(X))
Ly = Ly = oy Where 0< & < (Ul =L
And for Model-LII-AL,AN
Uf;(X)zU;(X), (6.17)
Lg(x) = Lg(x) T E50x) (6.18)
Ly vy =Ly ) (6.19)
Ué(x) =L§(x) T S5(x) (6.20)
such that
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0 < &50x) o) < (U o)~ Lsx) ) :

for Model-1,II-BL,BN

Ustr) =Usry = Usiay
T T
Ly =Ly = €5y WhereO <z, < (UW) L, )
T T
Ly =Ly = &yyy Where 0< &y < (Ug(X) L, )

Therefore the truth, indeterminacy and falsity membership functions for objectives are

For Model-I,II-AN

Loy, (C(X))=1exp

For Model-I,II-BN

1

LT

clx) )

(€)= 1p{l,,£ré<>_c(x)

0

(LQ(X) + gc(x) ) - C(X)

if C(X) < LZ‘(X)

} if LZ(X) <C(X)< UcT(x)

i C(X)2Ugy

if C(X) S LTC(X)

if LE(X) <C(X)< LE(X) + &)

éC(X)

if C(X) 2 LTC(X) + éc(x)

[C(X)(C(X)): exp

6.21)

(6.22)

(6.23)
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11
FC(X) (C(X)) = 2+2tanh[

0 if C(X)< Loy teqy

Ul +L e
C(X)—( C(x) Cz(X}) C(x)

1 if C(X)2U]

where 0 < Ec(x)> fC(X) < (UCT(X) - Lg(x))

Model-LII-AN

I&(X) (5(X)) =

Model-LII-AN
Model-LII-BN

and
1 if (X)L,
Uj o —0(X
I=exp -y J;X)—g) if Lg(x) <o(X)< U5T(X)
U&(X) _La(x)
0 if 5(X)2Uj,
1 if 5(X)<L’
L+ &0 )-8 (X)
(x) " =2e(x) .
exp{( P ) if L(Ts(x) < 5(X) < L<T5(X) + 655()()
s(x)
0 if 5(X)= Lg(X) +&5x)
1 if 6(X)2U;

0 if §(X)< L(T5(X) +S50x)
0 if §(X) <Ly +éy
(Vi *Lon 2
—tanh{| §(X)- ) ) Ty [ Lin) & SO(X) S Uy,
1 if 8(X)2Uy,,

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)
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where ,rare non-zero parameters prescribed by the decision maker and for
T
where O<£ fb ( x) L( ))

According to Smarandache’s definition of intersection of neutrosophic sets and decision

making criteria NSO algorithm for MOSOP (P6.1) can be formulated as

Model-I-AN,BN

(P6.2)

Maximize (a+y—f3) (6.29)
Subject to

T (C(X)) 2 e (6.30)
Ty (6(X))z e (6.31)
I (C(X))2 7 (6.32)
Lo (8(X))27 (6.33)
Fon (C(X))< 5 (6.34)
Fy (8(X))< B (6.35)
o, (X)<[o,(X)]; (6.36)
a+pf+y<3; (6.37)
a>pfazy; (6.38)
a,B.y[0.1], (6.39)
XMt < X< X (6.40)

But in realworld decision making problem a decision maker needs to minimize indeterminacy

membership function.So the optimization algorithm problem can be formulated as

Model-II-AN,BN

(P6.3)
Maximize (a—y—f3) (6.41)
Subject to
Ty (C(X))za (6.42)
Ty (8(X))za (6.43)
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I (C(X)) =¥ (6.44)

(
(5(

Lo (8(X))<r (6.45)

Fon (C(X))< 5 (6.46)
Fy (8(X))< B (6.47)
o, (X)<[o,(X)]; (6.48)
a+PB+y<3; (6.49)
azpa>y; (6.50)
a, B,y €[0,1], (6.51)

XM <X < X
Here Model-IAN andModel-IBN stands for neutrosophic algorithm with indeterminacy
membership function as decreasing sense and increasing sense respectively, which is
reduced to equivalent non linear programming problem as
Model-I-AN

(P6.4)

Maximize (0+x—1)

Such that
Ul —L
c(x)+9( C(X)w ) <UL (6.52)
T T
C(x)+—2 Ycp + Lo Hea 653)
Tei) 2 ’
C(X)+ Koeixy < Lg(x) +Se(x)> (6.54)
(Vs ~Lic)
5(X)+6 ” <Ujiwys (6.55)
5(X) + Ké&(){) < Lg(x) + 55()(); (6.56)
T T
S(x)+— < sty + Loy T s | 657
Tsx) 2 ’ :
<o (X)]; (6.58)
O+x—-n<3; (6.59)
0>k;0>nm; (6.60)
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0,x,m€[0,1]

XM <X <X
where =—In(1-a);
y=4
%m:_T*EﬁT_;
(U~ L)
S —
Uk~ L)
xk=Iny;
n=—tanh™ (25-1).
Model-I-BN
(P6.5)
Maximize (0+x—1)
Such that
(Ug(x) — Ly )

C(X)+0 ”

SUg(X);

Ut M e e
< : :

C(X)- K(Ug(x) - LZ(X) —Se(x) ) = LZ(X) +Sc(x)

5(X)+0(U§(X) _Lg‘(X))
74

§(X)- K(Ug(x) — L = &5 ) 2 L )+ &y

s(x)+— < Uy * Loy * &1 ;
Ts0x) 2

o, (X)=[e,(X)]:

0+x—n<3;

0> 10> 1;

0,x,n€[0,1]

(6.61)

(6.62)
(6.63)

(6.64)

(6.65)

(6.66)

(6.67)

(6.68)

(6.69)

(6.70)

(6.71)

(6.72)

(6.73)

(6.74)

(6.75)

(6.76)
(6.77)

(6.78)
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X< X < X

where =—In(1-a);
y=4

T =—6 ;
(Ul L)

(x)
T. =

6 .
(Ul L)

xk=Iny;
n=—tanh™ (25-1).
Model-I1-AN

(P6.6)
Maximize (60— —1)
Such that

Uy~ Loy )
W

C(X)+¢9( <U/,

(x)°

< Ucr(x) + LY;‘(X) T Ee(x)

8 (X)+ 85 ) = Ly + S5

< Ug(x) + Lg(x) tE5x)

2

O'l.(X)S[crl. (X)];
0+x—n<3;
0>k;0>n;

0,x,n€[0,1]

X< X < Xy
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(6.80)

(6.81)

(6.82)

(6.83)

(6.84)
(6.85)

(6.86)

(6.87)

(6.88)

(6.89)

(6.90)

(6.91)

(6.92)

(6.93)

(6.94)
(6.95)

(6.96)

(6.97)




where 0 =—In(1-a);
y=4
%m:_TJLT_;

(U =L
Ty = 6
U L)
k=Iny;
n=—tanh™ (25-1).
Model-1I-BN

(P6.7)

Maximize (0—x—1)
Such that
(Ug(x) - LZ(X) )

C(X)+0 ”

SUg(X);

Ut P e e
< : :

C(X)- K(Ug(x) - LZ(X) —Se(x) ) S LZ(X) +Sc(x)

5(X)+0(U§(X) _Lg‘(X))
74

§(X)- K(Ug(x) _Lg()() —Ss(x) ) < L(Ts(x) +C50x)5

< Usty T Lo + o) |
< 5 :
o (X)<[a (X)];

O0+x—n<3;

0>kK;,0>nm;

0,x,n€[0,1]

XM <X <X

where §=-In(1-a);

(6.98)
(6.99)

(6.100)

(6.101)

(6.102)

(6.103)

(6.104)

(6.105)

(6.106)

(6.107)

(6.108)

(6.109)

(6.110)

(6.111)
(6.112)
(6.113)
(6.114)

(6.115)
(6.116)

Page 185



v =4 (6.117)

6

Te) =T (6.118)
(U~ L)
5 6.119
Tsx) = - FERE (6.119)
( s(x) a(x))
k=Iny; (6.120)
n=—tanh™ (25-1). (6.121)

Solving the above crisp model (P6.4),(P6.5),(P6.6),(P6.7) by an appropriate mathematical

programming algorithm we get optimal solution and hence objective functions i.e minimum

cost and deflection of the beam will attain optimal solution.

6.3Numerical Solution of Welded Beam Design using Multi-Objective
Neutrosophic Optimization Technique

A welded beam (Ragsdell and Philips 1976,Fig.-6.1) has to be designed at minimum cost

whose constraints are shear stress in weld (z) ,bending stress in the beam (o) ,buckling

X, h

. . . /

load on the bar (P),and deflection of the beam (&).The design variables are Y )
X3

Xy b

where A 1s the weld size, | is the length of the weld , tis the depth of the welded beam, 5 is
the width of the welded beam.

. e -
\ \ o |
N g > St
1 s , st 1
: =, P
I < 4 l§
h | Bt e
R 7 il g | [
2 3

AT,

e

Fig.-6.1 Design of the Welded Beam(Cracked Beam Onsite Welding,

http://www.allmetalweldingservices.co.uk,accessed on 19 June 2017)
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The multi-objective optimization problem can be stated as follows

(P6.8)
Minimize g(x)=1.10471x}x, +0.04811(14+x, ) x;x, (6.122)
3
Minimize &(x)= 4PL ; (6.123)
Ex,x;
Such that
g (x)=7(x)—7, <0; (6.124)
g, (x)=0(x)—0,, <0; (6.125)
g5 (x) =x,—x, <0; (6.126)
g, (x)=0.10471xx, +0.0481 1x,x, (14+x,) -5 < 0; (6.127)
gs(x)=0.125—x, <0; (6.128)
g (x)=6(x)— 8, <O; (6.129)
g, (x)=P—-P.(x)<0; (6.130)
0.1<x,x,,x,,x,<2.0
where 7(x)= \/1'12 +207, 22422 (6.131)
2R
P
- ; (6.132)
1T o,
MR
7, = 7 , (6 133)
M=P(L+%j; (6.134)
X (X +x ’
R= %24 ; (6.135)
4 2
S _lxx x_§+(x1+x3j2 . (6.136)
2|12 2 ’ '
6PL
_ ) 6.137
o= (6.137)
4pr’
o(x)=——; 6.138
( ) Ex4 2 ( )
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P. (x) =

L2

4.013,EGx®x$ /36 (1

&/i.
2L \N4G

(6.139)

P =Force on beam ;L =Beam length beyond weld; x, = Height of the welded beam; x, =

Length of the welded beam; x, =

Depth of the welded beam; x, = Width of the welded

beam; 7(x)=Design shear stress; o (x)=Design normal stress for beam material; M =

Moment of P about the centre of gravity of the weld , J =Polar moment of inertia of weld

group; G = Shearing modulus of Beam Material; £ = Young modulus; Zmx = Design Stress

of the weld; Om. = Design normal stress for the beam material; Opax = Maximum deflection;

7, = Primary stress on weld throat. 7, =Secondary torsional stress on weld. Input data are

given in Table 6.1.

Table 6.1 Input Data for Crisp Model (P6.4)
Beam Value of
Maximum | Maximum
length Young G
Applied allowable allowable
beyond Modulus ( Si)
load P p shear normal
weld E
b StIess T,y | SUess Oy
() L ( psi )
(in) (psi) (psi)
13600 30000
6000 14 3x10°
12x10°

Solution: According to step 2 of 1.33, pay-off matrix is formulated as follows

Here

UF

a(x)

LF

C

L

(x)

(X)

=U/,

(x

Xl
X2

| =11.91672,

cx)  o(x)
7700387 02451363 |-
1191672 0.1372000

=Ly +& =7.700387 + &;;

=T

c(x)

=7.700387,
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Ul oy = Loy +& =7.700387 + ¢,
such that 0<&,,& < (11.91672—7.700387);

Uj o =UJ , =0.2451363,

LF :LT +¢, :1372000“‘52:

a(x) = Fo(x)
L ) =Ly, =0.1372000,
Ul vy = Loy +& =0.1372000+ &,

such that 0<¢,,¢&, < (0.2451363 -0. 1372000)

(6.143)

(6.144)

(6.145)
(6.146)
(6.147)

(6.148)

Here truth, indeterminacy, and falsity membership function for objective functions

C (X ) ,0 (X ) are defined as follows

1 if C(X)<7.700387

1191672-C(X))|
T (C(X))= 1—exp{—4[T6333]} if 7.700387<C(X)<11.91672

0 if C(X)21191672

For Model-I,II-AN

1 if C(X)<7.700387
I (C(X))= exp{(7'700387 ;;)—c(x)} if 7700387 < C(X)<7.700387+¢,
0 | if C(X)27.700387+¢
For Model-I,II-BN
1 if C(X)=11.91672

oo (C(X)) = exp {C(Xz;(lz-;;’;)ii?é)} if 7700387+ & < C(X)<11.91672

0 if C(X)<7.700387+¢
0 if C(X)<7.700387
11 19617107 +¢ 6 .
Fy(C(X))= S tnh [0()()_ : 1)(4'216333_61)} if 7.700387<C(X)<11.91672
1 if C(X)21191672

0<é&,& <4.216333

and

(6.149)

(6.150)

(6.151)

(6.152)
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1 if 8(X)<0.1372000

T (6(X))- l_exp{_4[0.2451363_5()()

]} if 0.1372000 < 5(X) <0.2451363

0.1079363
if 6(X)>02451363

For Model-LII-AN

1 if §(X)<0.1372000
L (6(X))= exp{(o'wnooogé)_é()()} if 0.1372000<5(X)<0.1372000+ ¢,

0 | if 6(X)>0.1372000+¢,

For Model-1,II-BN

1 if §(X)>02451363

§(X)~(0.1372000+¢,)
01079363 ¢,

0 if §(X)<0.1372000+¢,

[5(;()(5()()): exp{

} if 0.1372000+¢&, < 5()() <0.2451363

0 if 8(X)<0.1079363+¢,

11 0.3823363+¢ 6
Fy (6(X))=4=+-tanhq| §(X)- L if 01079363+, < 5(X)<0.2451363
n (91X) 22" {(( ) 2 )0.1079363—32} / ra <o)

1 if 6(X)>0.2451363
0<é&,,& <0.1079363

According to NSO technique the MOSOP (P6.4) can be formulated as
Model-I-AN

(P6.9)
Maximize (49+K—77)

1.10471x7x, +0.04811(14 +x, ) xx, +@9 <11.91672;

17(4.216333-¢)) B (19.617107+&,)
6 B 2 ’
1.10471xx, +0.04811(14 + x, ) x,x, + k& <(7.700387+&,);

1.10471x7x, +0.04811(14 +x, ) x;x, +

4pr’ N 0.1079363
Ex,x;

0<0.2451363;

Apr . 17(0.1079363-¢,) . (03823363 +¢, )
Ex4x32 6 2

M

(6.153)

(6.154)

(6.155)

(6.156)

(6.157)

(6.158)

(6.159)

(6.160)

(6.161)

(6.162)
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4pr’

+x&, <(0.1372000+¢, ); 6.163
EX4X32 §2 ( §2) ( )
g (x)=7(x) =7 <0; (6.164)
g, (x)=0(x)—0,, <0; (6.165)
g5 (x) =x,—x, <0; (6.166)
g ()C)EO.125—xl <0; (6.167)
g (x)=6(x)— 8, <O; (6.168)
g, (x)=P—-P.(x)<0; (6.169)
0.1<x,x,,x,,x,<2.0 (6.170)
O+x+n<3,0>K,0>n (6.171)
49=—1n(1—a); (6.172)
v =4 (6.173)
S 6 : (6.174)
CX) " (pF g\’ :
(U~ L)
T = 6 (6.175)
S(X) " (r,F oy ’
(Ui~ L)
k=Iny; (6.176)
n:—tanh_1(2ﬁ—l). (6.177)
X
7(x)= \/712 +21,7, §+ 7 (6.178)
P
= ; (6.179)
T o,
MR
7, = 7 , (6180)
X
M=P(L+?2j; (6.181)
2 (x4 )
R=,2%+ 1= ; (6.182)
4 2

) x_22 X+ X ’ .
-] (a2 6153
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6PL

o(x)=—5; (6.184)
x4x3
4pr’
§(x)=——5; (6.185)
Ex,x;
6_6
P (x) = 4.013«/E(2;x3x4 /36 _x [E ; 6156)
I 2L \/ 4G
Model-I-BN
(P6.10)
Maximize (0+x—1) (6.187)
1.10471x;x, +0.04811(14 + x, ) x,x, +@9 <11.91672; (6.188)

7(4216333—¢) _(19.617107+5,)

1.10471x7x, +0.04811(14+x, ) x,x, + - < 5 ; (6.189)
1.10471xx, +0.04811(14 +x, ) x,x, + &(4.216333—& ) >(7.700387 + ¢, ); (6.190)
;ZZZ +O'10793639£0.2451363; (6.191)
gziz N 77(0.10796363—52) . (0.3823263+52); 6.192
4Pr

o +x(0.1079363-¢,) >(0.1372000+ &, ); (6.193)
g (x)=7(x)=7,, <0; (6.194)
8, (x)=0(x) =0, <0; (6.195)
g (x)=x-x, <0 (6.196)
gs(x)=0.125-x, <0; (6.197)
86 (%)= (x) =6, <0; (6.198)
g, (x)=P—F.(x)<0; (6.199)
0.1<x,x,,x,,x,<2.0 (6.200)
O+x+n<3,0=2K;0=2n (6.201)
O=-In(1-a); (6.202)
y =4 (6.203)
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N (6.204)

WU o)

6
To) = T (6.205)
(Ul ~Li)
xk=Iny; (6.206)
n=—tanh™ (28-1). (6.207)
r(x)= \/le +217,7, ;—; +75 5 (6.208)
P
_ , (6.209)
N
7, = ? : (6.210)
M=P(L+%j; 6.211)

R

EREA

Jj{ ) j (6.212)
XX, x_z2 X X ’ .

J:{ﬁ{12+(—2 ”} (6.213)

o(x)=2LL. (6.214)

X4 X5

4PL
5(x)=—; (6.215)

Ex,x;

6_6
Pc(x)=4.013«/E(2?x3x4/36 N [E ; 6.216)
L 2L\ 4G
Model-II-AN
(P6.11)
Maximize (0—x—1n) (6.217)
1.10471x12x2+0.04811(14+x2)x3x4+#f3339£11.91672; (6.218)
4.216333— 19.617107 +

1.10471x12x2+0.O4811(14+x2)x3x4+77( : a) . a). (6.219)
1.10471x;x, +0.04811(14+x, ) x,x, + && >(7.700387 +&,); (6.220)
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4PL N 0.1079363

> 0<0.2451363;
Ex,x;

3

4PL’ N 17(0.1079363—¢,) < (0.3823363+¢,)
Ex,x; 6 2

4pr’

2
Ex,x;

+ K&, >(0.1372000+ &, );

g (x)=7(x)—7,,, <0

0.1<x,x,,x,,x,<2.0

O+x+n<3,0>2kKk,0>n

6?=—ln(1—a);

v =4

Ferx) =%;
(U~ L)

T :—6 ;

(U L)

xk=Iny;

n=—tanh™ (25-1).

2 X, 2 .
T(x)=.z" +2t,7, —=+7; ;
( ) \/1 122R 2

P

\/Exlxz

T, =
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(6.223)

(6.224)
(6.225)
(6.226)
(6.227)
(6.228)
(6.229)

(6.230)
(6.231)
(6.232)
(6.233)

(6.234)

(6.235)

(6.236)

(6.237)

(6.238)

(6.239)

(6.240)

(6.241)




2 2
R= J"_u(Mj , (6.242)

XX, x_; X X ’ .

o(x)= 6PL2; (6.244)
X, X5
4pPr
S(x)=—; (6.245)
Ex,x;
6_6
Pc(x)=4.013«/E(2?x3x4/36 NS [E ; (6.246)
L 2L\ 4G
Model-II-BN
(P6.12)
Maximize (0—Kk—1n) (6.247)
1.10471xx, +0.04811(14+ x, ) x,x, +4'2+63’339 <11.91672; (6.248)

7(4.216333—¢,) _(19.617107+¢,)

1.10471x;x, +0.04811(14 +x, ) x;x, + . < 5 ; (6.249)
1.10471x7x, +0.04811(14+x, ) x;x, + &(4.216333—& ) <(7.700387 + &, ); (6.250)
3
4PL ~+ 0.1079363 245 1363; (6.251)
Ex,x;
3 0.1079363 — 0.3823363
4PL2 .\ 1(0.1079 &) 3 ( +52); 6.252)
Ex,x; 6 2
4PL
~+x(0.1079363—-¢&,) <(0.1372000+ &, ); (6.253)
Ex,x;
8 (%) =7(x) =7, <0; (6.254)
8, (x)=0(x) =0, <0; (6.255)
g (x)=x—x, <0; (6.256)
gs(x)=0.125-x, <0; (6.257)
g (x) = 5(x) -0, <0; (6.258)
g, (x) =P-PF. (x) <0; (6.259)
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0.1<x,x,,x,,x,<2.0
O+x+n<3,0>2K,0>n
49=—ln(1—a);

y=4

c(x) -~ Fe(x)

s(x)  e(x)

2 2

Ro |2, X +x )
4 2 ’

J= XXy x_§+ X X ’ .
2|12 2 ’

6PL

o=
473

_4rr

— =
Ex,x;

5(x)

L2

4.013JEGx%xS /36
P.(x)= s (1—

7)

(6.260)
(6.261)
(6.262)

(6.263)

(6.264)

(6.265)

(6.266)

(6.267)

(6.268)

(6.269)

(6.270)

(6.271)

(6.272)

(6.273)

(6.274)

(6.275)

(6.276)

Now , using above mentioned truth, indeterminacy and falsity membership function NLP
(P6.9) ,(P6.10),(P6.11),(P6.12)can be solved by NSO technique for different values of

€y Es() and §g(x),§5(x). The optimum solution of MOSOP(P6.8) is given in Table 6.2 .
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Table 6.2 Comparison of Optimal Solution of MOSOP (P6.7) based on

Different Methods
Methods x X, X X, c(x) 5(X)
(inch) (inch) (inch) (inch)
Fuzzy single-objective non-linear 1.298580 | 0.9727729 1.692776 | 1.298580 | 3.395620| 0.2456363
programming (FSONLP)

Intuitionistic Fuzzy single-objective non- 1.298580 | 0.9727730 1.692776 1.298580 3.395620| 0.2352203
linear programming (IFSONLP)

gg(x) = 0.42, Sa(x) = 0.01,

Neutosophic optimization(NSO) 1.957009 | 1.240976 ) 1.957009 | 8.120387| 0.1402140
gg(x) = 042, ég(x) = 042,

6’5(){) = 0.01, é&(x) =0.01,

Model-I-AN
Neutosophic optimization(NSO) NO FEASI SOLUT | FOUND
Fg(x) =042 () =042 BLE ION
£5(x) = 0-0L, &5,y =001,
Model-I-BN
Neutosophic optimization(NSO) 2 1.588365 2 ) 10.01855| 0.1961680

Sg(x) = 042, gg(x) = 042,
gﬁ(x) =0.01, 55(x) = 001,
Model-1I-AN

Neutosophic optimization(NSO) 1.940309 | 1.246993 2 2 8.120387 0.1472
Sg(x) = 042, fg(x) =042,

g&(x) = 0.01, é&(x) = 0.01,
Model-II-BN

A detailed comparison has been made among the minimum length, depth, height and width of
the weld, welding cost and deflection while they have been compared among fuzzy,
intuitionistic, NSO technique in perspective of welded beam design in Table 6.2. It has been
observed that IF nonlinear optimization provides better result in comparison with other
mentioned method in this study. However, it may also be noted that the efficiency of the
proposed method depends on the model chosen to a greater extent. In the present study it has
also been investigated that that cost of welding is maximum and deflection is minimum in

NSO technique compared to the other method investigated.

6.4Conclusion

In this chapter, a multi objective NSO algorithm has been developed by defining truth,
indeterminacy and falsity membership function which are independent to each other. It has
been shown that the developed algorithm can be applied to optimize a multi objective
nonlinear structural design. Simulation example, i.e. welded beam design has been provided

to illustrate the optimization procedure, effectiveness and advantages of the proposed NSO
method. The extension of the proposed optimization can be NSO by using ranking method of

neutrosophic numbers , considered for height, length, depth and width of weld and applied

load as further topics of interest.
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CHAPTER 7

Multi-Objective Welded Beam Optimization using Neutrosophic

Goal Programming Technique

With ever increasing demand for both high production rates and high precision, fully
mechanized or automated welding processes have taken a prominent place in the welding
field. Welding is the process of joining together two pieces of metal so that bonding takes
place at their original boundary surfaces. When two parts are to be joined with or without
added metal for formation of metallic bond, they are melted together by heat or pressure or
by both. The welding process is divided into two major categories: Plastic Welding or
Pressure Welding and Fusion Welding or Non-Pressure Welding. However, above all the
design of welded beam should preferably be economical and durable one. Since decades,
deterministic optimization has been widely used in practice for optimizing welded connection
design. These include mathematical optimization algorithms (Ragsdell & Phillips [90]) such
as APPROX (Griffith & Stewart’s) successive linear approximation, DAVID (Davidon
Fletcher Powell with a penalty function), SIMPLEX (Simplex method with a penalty
function), and RANDOM (Richardson’s random method) algorithms, GA-based methods
(Deb [40], Deb [37], Coello [14], Coello [39]), particle swarm optimization (Reddy [59]),
harmony search method (Lee & Geem [67]), and Big-Bang Big-Crunch (BB-BC) (O.
Hasangebi, [65]) algorithm. SOPT (O. Hasangebi, [55]), subset simulation (Li [73]),
improved harmony search algorithm (Mahadavi [72]), were other methods used to solve this
problem. Recently a robust and reliable Hoo static output feedback (SOF) control for
nonlinear systems (Yanling Wei 2016[128]) and for continuous-time nonlinear stochastic
systems (Yanling Wei [29]) with actuator fault in a descriptor system framework have been
studied. All these deterministic optimizations aim to search the optimum solution under given
constraints without consideration of uncertainties. So, while a deterministic optimization
approach is unable to handle structural performances such as imprecise stresses and
deflection etc. due to the presence of uncertainties, to get rid of such problem Fuzzy Set
(FS)(Zadeh, [133]), Intuitionistic Fuzzy Set (IFS)(Atanassov,[1]), Neutrosophic Set (NS)
(Smarandache,[94]) play great roles. Traditionally structural design optimization is a well-

known concept and in many situations it is treated as single objective form, where the

Page 198



objective is known the weight or cost function. The extension of this is the optimization
where one or more constraints are simultaneously satisfied next to the minimization of the
weight or cost function. This does not always hold good in real world problems where
multiple and conflicting objectives frequently exist. In this consequence a methodology
known as multi-objective optimization is introduced. So to deal with different impreciseness
such as stresses and deflection with multiple objective , we have been motivated to
incorporate the concept of NS in this problem, and have developed Multi-Objective
Neutrosophic Optimization(MONSO) algorithm to optimize the optimum design. Usually
IFS, which is the generalization of FS, considers both truth membership and falsity
membership that can handle incomplete information excluding the indeterminate and
inconsistent information while NS can quantify indeterminacy explicitly by defining truth,
indeterminacy and falsity membership function independently. Therefore, in 2010 Wang et.al
presented such set as Single Valued Neutrosophic Set (SVNS) as it comprised of generalized
classic set, FS, interval valued FS, IFS and Para-consistent set. As application of SVNS
optimization method, it is rare in welded beam design; hence it is used to minimize the cost
of welding by considering shear stress, bending stress in the beam, the buckling load on the
bar, the deflection of the beam as constraints. Moreover using above cited concept, a
MONSO algorithm has been developed to optimize three bar truss design (Sarkar [107]), and
to optimize riser design problem (Das [25]). In early 1961 Charnes and Cooper[24] first
introduced Goal programming problem for a linear model. Usually conflicting goal are
presented in a multi-objective goal programming problem. Actually objective goals of
existing structural model are considered to be deterministic and a fixed quantity. In a
situation ,the decision maker can be doubtful with regard to accomplishment of the goal .The
DM may include the idea of truth, indeterminacy and falsity bound on objectives goal.The
goal may have a target value with degree of truth, indeterminacy as well as degree of falsity.
Precisely, we can say a human being can express degree of truth membership of a given
element in a FS, truth and falsity membership in a IFS, but very often does not express the
corresponding degree of indeterminacy membership as complement to truth and falsity
membership which are independent. This fact seems to take the objective goal as a NS. Dey
et al[41]. used intuitionistic goal programming on nonlinear structural model.

This is the first time Neutrosophic Goal Programming (NGP) technique is in application to
multi-objective welded beam design. The present study investigates computational algorithm
for solving multi-objective welded beam problem by single valued generalized NGP

technique. The results are compared numerically for different aggregation method of NGP
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technique. From our numerical result, it has been seen that the best result obtained for
geometric aggregation method for NGP technique in the perspective of structural

optimization technique.

7.1General Formulation of Multi-objective Welded Beam Design

In sizing optimization problems, the aim is to minimize multi objective function, usually the
cost of the structure, deflection under certain behavioural constraints which are displacement
or stresses. The design variables are most frequently chosen to be dimensions of the height,
length, depth and width of the structures. Due to fabrications limitations the design variables
are not continuous but discrete for belongingness of cross-sections to a certain set. A discrete

structural optimization problem can be formulated in the following form

(P7.1)
Minimize C(X) (7.1)
Minimize 5(X) (7.2)
subject to o, (X) < I:O'i (X)J,i =12,..,m (7.3)
X, eR', j=12,.,n (7.4)

where C(X), & (X ) andGi(X ) as represent cost function, deflection and the behavioural
constraints respectively whereas [(7,- (X )J denotes the maximum allowable value , ‘m’ and

‘n’ are the number of constraints and design variables respectively. A given set of discrete

value is expressed by R and in this chapter objective functions are taken as

C(X):ictﬁx;" and 5(X) (7.5)

t=1 n=1
and constraint are chosen to be stress of structures as follows
o,(A) < o, with allowable tolerance & fori =1,2,....,m
(7.6)
Where ¢, is the cost coefficient of t" side and x,1s the n" design variable respectively, m is

the number of structural element, o, and &’ are the i" stress , allowable stress respectively.
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7.2 Generalized Neutrosophic Goal Optimization Technique to Solve

Multi-objective Welded Beam Optimization Problem (MOWBP)

The multi-objective neutrosophic structural model can be expressed as

(P7.2)

Minimize C(X) with target value C, truth tolerance a. ,indeterminacy tolerance d.and

rejection tolerance ¢, (7.7)

Minimize §(X) with target value J; ,truth tolerance « s, -indeterminacy tolerance o, and

rejection tolerance ¢, (7.8)
subject to O'(X) < [G] (7.9)
XM < x, < x™ (7.10)

where X = [xl,xz,....,xn]T are the design variables, n is the group number of design variables

for the welded beam design.
To solve this problem we first calculate truth ,indeterminacy and falsity membership function

of objective as follows

w, if C(X)SC0
T (C(X))= WI[COWCQ_C(X)j if C,<C(X)<C,+a, (7.11)
c
0 if C(X)=C,+a,
0 if C(X)<C,
X)-
WZ[%] if C,<C(X)<C+a,
13 (C(X))= ‘ (7.12)
()
- w69 =CI) oy <o(x)<,va
2 ac_dc 0 C 0 C
0 if C(X)>C,+a,
W,
here d. =— 7.13
where d. T, ( )
ac ¢
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0 if C(X)<C,
Fin (C(X))= 1w, (C(Xc—i_coj if C,<C(X)<C,y+c, (7.14)
W, ifC(X)ZCO+CC
And
w, if 6(X)<8,
T (o(0) - 2 25026, 15
0 if 6(X)>6,+a,
0 if 6(X)<8,
WZ(W] if 6,<8(X)<6,+ay
I (5(x))= ’ 7.16
5()()( ( )) [504'615—5()()] . ( )
w, if §,+d;<6(X)<6,+a,
as—ds
0 if 6(X)=6,+a,
d, = " W1W (7.17)
as g
0 if §(X)<86,
1, (5(x)) = W(m] i 5,<5(X)<5,+e, (718)
w, if 6(X)=6,+cs

According to Generalized Neutrosophic Goal Programming(GNGP) technique using truth,
indeterminacy and falsity membership function ,MOSOP (P7.1) can be formulated as

(P7.3)
Model -1
Maximize ¢, Maximize y, Minimize [ (7.19)
a
C(X)<C,+a, [1 ——J, (7.20)
W
de
C(X)=C,+—~<7, (7.21)
W,
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C(X)<C,+a.—L(a.—d.), (7.22)

W,
C(X)<C,+<p, (7.23)
W
c(X)<C, (7.24)
a
5(X)<68,+a, Ll——J, (7.25)
w
d5
S(X)=6,+—2y, (7.26)
W
5(X)<6,+a;—L(a;—d,), (7.27)
W,
5(X)<8,+=2 B, (7.28)
W,
5(X)<s, (7.29)
O<a+pf+y<w+w,+w; (7.30)
aE[O,wl],ye[O,wZ],ﬁe[O,%]; (7.31)
w, €[0,1],w, €[0,1],w, €[0,1]; (7.32)
O<w +w,+w, <3 (7.33)
G,.(X)S[O'],izl,2,...,m (7.34)
x;,20, j=1,2,...,n (7.35)

With the help of generalized truth, indeterminacy, falsity membership function the GNGP
based on arithmetic aggregation operator (P7.1)can be formulated as

P7.4)
Model -I1

Minimize {(1—0{)+,§+(1—7)} (7.36)

Subjected to same constraint as Model I
With the help of generalized truth, indeterminacy, falsity membership function the GNGP
based on geometric aggregation operator(P7.1) can be formulated as
(P7.5)
Model -I11
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Minimize {j(l—a)ﬂ(l—y) (7.37)
Subjected to same constraint as Model I

Now these non-linear programming Model-LILIII can be easily solved through an
appropriate mathematical programming to give solution of MONLPP (P7.1) by GNGP
approach.

7.3 Numerical Solution of welded Beam Design by GNGP, based on
Different Operator
A welded beam (Ragsdell and Philips 1976,Fig.- 7.1) has to be designed at minimum cost

whose constraints are shear stress in weld (7) ,bending stress in the beam (o) ,buckling load

X, h
. . . [ .
on the bar (P),and deflection of the beam (§).The design variables are Y2 t where £ is
X3
X, b

the weld size, [ is the length of the weld , tis the depth of the welded beam, 5 is the width of
the welded beam.

N -

Y _

~ geltyimages-

DNY59:

Fig.-7.1  Design of the Welded Beam(Welded Beam on High Rise Building

http://www.gettyimages.in,accessed on 18 June 2017)

The multi-objective optimization problem can be stated as follows

(P7.6)
Minimize C(X)=1.10471x;x, +0.04811(14 +x, ) x;x, (7.38)
3
Minimize 5(x) = 4PL2 ; (7.39)
Ex,x;

Such that
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g (x)=x-x,<0;

2, (x)=0.10471x7x, +0.0481 Lx,x, (14+x,) =5 < 0;
g5(x)=0.125-x, <0;

g6 (x)=6(x) =6, <O;

g;(x)=P—P.(x)<0;

01 le,x4,x2,x3 S20

X
where 7(x)= JT12 +27,7, §+T22 ;

T, = Ll N
1 »\/Exlxz ]
MR

e

6PL
s=
423
4PL
o0 e
443
6_6
Pc(x)=4‘013 EL(jx3x4/36 [1_;_2 {—%);
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(7.43)

(7.44)

(7.45)

(7.46)

(7.47)

(7.48)

(7.49)

(7.50)

(7.51)

(7.52)

(7.53)

(7.54)

(7.55)

(7.56)




P =Force on beam ;L =Beam length beyond weld; x;, = Height of the welded beam; x, =
Length of the welded beam; x, = Depth of the welded beam; x, = Width of the welded
beam; 7(x)=Design shear stress; o (x)=Design normal stress for beam material; M =
Moment of P about the centre of gravity of the weld , J =Polar moment of inertia of weld
group; G = Shearing modulus of Beam Material; £= Young modulus; Zmx = Design Stress

of the weld; On = Design normal stress for the beam material, Opx = Maximum

deﬂection; T, = Primary stress on weld throat. 7, = Secondary torsional stress on weld. Input

data are given in Table 7.1.

Table 7.1 Input Data for Crisp Model (P7.6)
Value of | Maximum | Maximum | Maximum
Beam Young
Applied | length G allowable | allowable | allowable
b d Modulus _ .
load P :3:;3 : ( pSl) shear normal deflection
(ib) L Stress 7, | Stress o, 0
(i) | (psi) _ . _
(psz) (psz) (m)
13600 0.25
30000
with with fuzzy
i with fuzzy .
6 7z region
6000 14 3x10° 12x10 Y region
region 0.05
50
50

This multi objective structural model can be expressed as neutrosophic model as

(P7.7)

Minimize C(X)=1.10471x;x, +0.04811(14 + x, ) x;x, with target value 3.39 ,truth tolerance

5 ,indeterminacy tolerance W and rejection tolerance 7 (7.57)
0.2w, +0.14w,
o aPL . . .
Minimize 6 (x) = ﬁ ;with target value 0.20 ,truth tolerance(0.23  ,indeterminacy
X5
tolerance ! and rejection tolerance 0.24 (7.58)
4.34w, +4.16w,

Subject to
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g (x) = r(x) <05

gz<x>zo-<x) O <0
g, (x)=x —x, <0;

g, (x)=0.10471xx, + 0.0481 Lx,x, (14 +x,) - 5<0;
gs(x)=0.125-x, <0;

& (x)=0(x) =6, <0;

g (x)=P-F (x)<0;

0.1<x,x,,x,,x,<2.0

x
where 7(x)= \/le +217,7, ﬁ +75 ]

P

«/Exlxz ’

Tl=

6PL
o(x) =2
473
4PL
5(x) - Ex,x; ;
43
6_6
P (x) = 4.013«/EL(;}x3x4/36 (1_;_2 /%}

(7.59)
(7.60)
(7.61)
(7.62)
(7.63)
(7.64)
(7.65)

(7.66)

(7.67)

(7.68)

(7.69)

(7.70)

(7.71)

(7.72)

(7.73)

(7.74)

(7.75)

According to GNGP technique using truth, indeterminacy and falsity membership function,

MOWRBP (P7.7) can be formulated as
(P7.8)
Model -1
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Maximize o, Maximize y, Minimize [
1.10471x x, +0.0481 1(14+x2 )x3x4 < 3.39+5L1 —KJ,
w

W

1.10471xx, +0.04811(14 4 x, ) x,x, >3.39+ :
H (145, ) x W, (02w, +0.14w,)

1.10471x12x2+O.04811(14+x2)x3x4S3.39+5—l 2— M ,
w, (().2w1 + 0.14w2)

1.10471x/x, +0.04811(14 + x, ) x,x, < 3.39+lﬁ,

w;
1.10471x;x, +0.04811(14 + x, ) x,x, <3.39,
3
APL so.zo+o.23(1—ﬁ),
Ex,x; w
3
L 020+ ad 7,
Ex,x; w, (4.3w1 +4.1w, )
3
L 020+023- L [023- M :
Ex,x; w, (4.3w1 +4.lw2)
3
4PL23020+93iﬁ,
Ex,x; W,
4pr
o7 <020,
4743

O<a+p+y<w+w,+w;
ae[0,w],y €[0,w,], B8 €[0,w,];
w €[0,1],w, €[0,1],w, €[0,1];
0<w +w,+w, <3

g (x)=7(x)—7,, <0;

g5 (x) =x—-x,<0;

2, (x) =0.10471x"x, +0.04811x,x, (l4+x2 ) -5<0;

(7.76)

(7.77)

(7.78)

(7.79)

(7.80)

(7.81)

(7.82)

(7.83)

(7.84)

(7.85)

(7.86)

(7.87)
(7.88)
(7.89)
(7.90)
(7.91)

(7.92)

(7.93)

(7.94)
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g5 (x) =0.125-x,<0; (7.95)

86 (x)=3(x) =0, <0; (7.96)
g, (x)=P—F.(x)<0; (7.97)
0.1<x,x,,x,x,<2.0 (7.98)
where r(x):\/r,2 +2rlr2;—;+r§ ; (7.99)
.= ﬁp , (7.100)
XX
MR
7, 27, (7101)
xZ .
M=P L+? ; (7.102)
2 (x+x Y
R= —2+(¥j ; (7.103)
4 2
xx, | ¥ (x4x )
J= 172 _2_|_ 73 ; 7104
Al o
a(x):%; (7.105)
43
4PL
5(x)=—2; (7.106)
Ex,x;
4013JEGxS /36 ( x, [E
PC(X): LZ 1—Z E ) (7107)

With the help of generalized truth, indeterminacy, falsity membership function the GNGP
problem (P7.7)based on arithmetic aggregation operator can be formulated as

(P7.9)
Model -I1

Minimize {(1_“)+ﬂ+(1_7)} (7.108)

3

subjected to same constraints as (P7.8)
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With the help of generalized truth, indeterminacy, falsity membership function the GNGP
problem (P7.7) based on geometric aggregation operator can be formulated as

(P7.10)
Model -I11

Minimize {j(l—a)ﬂ(l—)/) (7.109)

subjected to same constraints as (P7.8)

Now these non-linear programming problem Model-LILIII can be easily solved by an
appropriate mathematical programming to give solution of multi-objective non-linear
programming problem (P7.7) by GNGP approach and the results are shown in Table 7.2.
Table 7.2 Comparison of GNGP Solution of MOWBP (P8.12) based on
Different Aggregation

X, in X, in Cc(Xx)

Methods X, in x; in 5(X)

Generalized Fuzzy Goal

programming(GFGP) 1297612 | 0.9717430 | 1.693082 | 1.297612 | 3.39 0.20
w =0.15

Generalized Intuitionistic
Fuzzy Goal 1297612 | 3.39
" 1297612 | 0.9717430 | 1.693082 0.20
programming(GIFGP)
w =0.15 w3 =0.8
Generalized Neutrosophic

Goal programming 1347503 | 0.7374240 2 2
(GNGP) ' ' 1.347503 | 3.39

w =0.4,w, =0.3,13 =0.7
Generalized Intuitionistic
Fuzzy optimization

(GIFGP) based on 1.297612 | 0.9717430 | 1.693082 | 1.297612 | 3.39 0.20

Arithmetic Aggregation
w =0.15,w3 =0.8

Generalized Neutosophic
optimization (GNGP) 1.347503 | 0.7374240 2 0.20
based on Arithmetic ' ’ 1347503 | 3.39 '

Aggregation
w =04,w, =0.3,w3 =0.7

Generalized Intuitionistic
Fuzzy optimization
(GIFGP) based on 1372 0.697176 2 1.37200 3.39 0.2
Geometric Aggregation
w =0.15,w3 =0.8

Generalized Neutosophic |37 06971 0
optimization (GNGP) ' ' 2 1372 3.39 '
based on Geometric
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Aggregation
w =0.4,w, =0.3,w3 =0.7

Here we have got almost same solutions for the different value of w,w,,w; in different

aggregation method for objective functions. From Table7.2 it is clear that the cost of welding
and deflection are almost same in fuzzy and intuitionistic fuzzy as well as NSO technique.
Moreover it has been seen that desired value obtained in different aggregation method have

not affected by variation of methods in perspective of welded beam design optimization.

7.4Conclusion

The research study investigates that NGP can be utilized to optimize a nonlinear welded
beam design problem. The results obtained for different aggregation method of the
undertaken problem show that the best result is achieved using geometric aggregation
method. The concept of NSO technique allows one to define a degree of truth membership,
which is not a complement of degree of falsity; rather, they are independent with degree of
indeterminacy. As we have considered a non-linear welded beam design problem and find out
minimum cost of welding of the structure as well as minimum deflection, the results of this
study may lead to the development of effective neutrosophic technique for solving other

model of nonlinear programming problem in different field.
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CHAPTER &

Truss Design Optimization with Imprecise Load and Stress in

Neutrosophic Environment

Optimization techniques for structural optimal design, consisting of deterministic optimization and
non-deterministic optimization methods, have been widely used in practice. The former i.e
deterministic optimization aims to search the optimum solution under given constraints without
consideration of uncertainties. However, in so many engineering structures, deterministic optimization
approaches are unable to handle structural performances exhibit variations such as the fluctuation of
external loads, the variation of material properties, e.t.c due to the presence of uncertainties, the so-
called optimum solution obtained may lie in the infeasible region. Thus, so many realistic design-
approaches must be able to deal with the imprecise nature of structures. This type of optimum solution
has been obtained under given reliability constraints, while the later one aims to minimize the
variation of the objective function. Such several non-deterministic structural design optimization
approaches which are reliability-based design optimization (RBDO), solved by D.M Frangopol
et.al[47]and M. Papadrakakis [83], considering structural impreciseness, have been reported in the
literature. Moreover in the practical optimization problems usually more than one objective is
required to be optimized. Generally they are minimum cost, maximum stiffness, minimum
displacement at specific structural nodes, maximum natural frequency of free vibration and optimum
structural strain energy e.t.c. These make it necessary to formulate a multi-objective optimization
problem. The applications of different optimization techniques to structural design have attracted
interest of many researchers. For example Ray Optimization (Kaveh. Et.al [60]), artificial bee colony
algorithm (Sonmez, M.[108]),Particle Swarm Optimization (Perez et. al [84],Kaveh et.al [61] and
Luh,et.al.[70]),genetic ~ Algorithm (Kaveh,et.al[62],Ali.et.al[7],Dede,et.al[42]), meta heuristic
algorithm (Kaveh,A. Motie ,S.Mohammed ,A.,Moslehi,M.[63]),others (Shih, C,j. and
Chang,C.J.[109],Hajela,P. and Shih,C.J.[54]Wang ,D.,Zhang,W.H.and Jiang,J.S.[126],Wang
,D.,Zhang,W H. and Jiang ,J.S.[127];Kripakaran,P.,Gupta,A. and Baugh Jr,J.W.[64]).Fuzzy as well as
intuitionistic fuzzy optimization, not only help the engineers, especially in structural engineering, to
design and to analyse the systems but also leads to discover fuzzy optimization theory and techniques.
This Fuzzy Set(FS) theory was first introduced by Zadeh[133]. As an extension Intuitionistic Fuzzy
Set(IFS) theory was first introduced by Atanassov[1] .When an imprecise information can not be
expressed by means of conventional FS, IFS plays an important role. In IFS we usually consider
degree of acceptance, and degree of rejection where as we consider only membership function in FS.

A few research work has been done on Intuitionistic Fuzzy Optimization(IFO) in the field of
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structural optimization. Dey and Roy [35] used IF technique to optimize single objective two bar truss
structural model. A Multi-Objective Intuitionistic Fuzzy Optimization(MOIFO) technique is applied
to optimize three bar truss structural model by Dey and Roy [36] in their paper. When an ill-known
information are represented by IF number which is generalization of fuzzy number expresses the
available information in flexible way considering non-membership functions. Shu [110] applied
Triangular Intuitionistic Fuzzy Number(TIFN) to fault tree analysis on printed board circuit
assembly.P.Grzegorzewski et.al [48], H.B.Mitchell et.al [75],G.Nayagam et.al [78],H.M.Nehi et.al
[79],S.Rezvani et.al [92] used concept of Intuitionistic Fuzzy Number(IFN) in multi-attribute decision
making(MADM) problem. Li[69] proposed a ranking method for TIFN with definition of ratio of
value index to ambiguity index of TIFN in MADM problem as an application. In IFN indeterminate
information is partially lost, as hesitant information is taken in consideration by default. So
indeterminate information should be considered in decision making process. Smarandache
[94]defined Neutrosophic Set(NS) that could handle indeterminate and inconsistent information. In
NS indeterminacy is quantified explicitly with truth membership, indeterminacy membership and
falsity membership function which are independent .Wang et.al [120] define single valued NS which
represents imprecise, incomplete, indeterminate, inconsistent information. Thus taking the universe as
a real line we can develop the concept of single valued neutrosophic number as special case of NS.
These numbers are able to express ill-known quantity with uncertain numerical value in decision
making problem. In this present study, we define generalized single valued triangular neutrosophic
number and total integral value of this number and using a ranking method of single valued
generalized triangular neutrosophic number we solve a multi-objective structural design problem in
neutrosophic environment. In this chapter we have considered three-bar planer truss subjected to a
single load condition .Here the objective functions are weight of the truss and deflection of loaded
joint in test problem and the design variables are the cross-sections of bars with the constraints as
stresses in members. In this chapter we have developed an approach to solve multi-objective structural
design using probabilistic operator in neutrosophic environment. Here total integral values of
Generalized Single Valued Triangular Neutrosophic Numbers(GSVTNN) have been considered for
applied load and stress.

8.1 Multi-Objective Structural Design Formulation

A structural design problem may be considered as a minimization type Multi-Objective Nonlinear
Programming Problem(MONLPP) where weight and deflection of the loaded joint are to be
minimized as objectives and subject to a specified set of stress constraints. The design variables are
cross sectional area of bars. The target of optimization is the identification of the optimum cross-
sectional area of bar so that the structure can achieve its smallest total weight with minimum nodal

displacement, in a given load conditions.
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The multi-objective structural model can be expressed as

(P8.1)
Minimize WT (A) (8.1)
Minimize 5(A) (8.2)
subject to o,(A)<[o;] (8.3)
A™ <A< 4™ (8.4)

T . . . :
where A= [AI,AZ,...AH] are the design variables for the cross section, n is the group number of

design variables for the cross section of bars,
WT(A4)=> pAL (8.5)
i=l1

is the total weight of the structure , o (A) is the deflection of the loaded joint ,where L , 4, and p,are
the length of bar, cross section area and density of the i" group bars respectively. o, (A) is the stress

constraints and [Ji]is allowable stress of the group bars under various conditions, A™"and A™" are

the lower and upper bounds of cross section area A respectively.

8.2 Parametric Neutrosophic Optimization Technique to Solve Multi-

Objective Structural Optimization Problem

The multi-objective structural model (P8.1)can be expressed as parametric neutrosophic form as

(P8.2)

Minimize WT (A;a); Minimize WT (4; B); Minimize WT (A;y) (8.6)
Minimize 5(A4;a);Minimize 5(4;B); Minimize 5(4;y) (8.7)
subject to

o(4a)<([o];a); (8.8)
o(48)<([c]:B): (8.9)
o(4y)<([c]:r) (8.10)
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A" <A< A™ a, B,y €[0,1] (8.11)

Where A4 =(A1,A2, ..... A, )7

To solve the MOSOP (P8.1) step 1 of 1.39is used. After that according to step 2 pay-off matrix is

formulated
WT(4a)  WT(4B)  WI(4y) S(4a)  S(4p8)  5(4y)
AI_WT*(Al;a) WT*(Al;ﬁ) WT*(AI;;/) 5(/11;05) 5(Al;,8) 5*(/11,7/)
VW (4a) WI'(4:8) W' (437) & (45a) & (4:5) 5(437)
TNt (4:a) wr'(£:8) WT(£y) 5 (£:a) 5 (4:p) 5" (457)
A\ W (A550) W (455 5) WT'(455) & (45a) & (4%p) 8 (4%)

Here A A%, ..., A are the ideal solution of the objectives
WT (A;0),WT (4; ), WT (4;7),6(A;x),6(A4; 8),5( A7) respectively.
For each objective WT(A;a),WT(A;,B),WT(A;y),5(A;a),5(A;,B),5(A;7/) find lower

bound L; and the upper bound U, as

U;T(A:;p) :max{WT(A:;p)} 0<r<é6;p=a,pB,y (8.12)
L;T(A:;p)zmin{WT(A:;p)}0£r£6;p:a,ﬂ,7 (8.13)

for truth membership of weight functions and

Ug(A:;p):max{é(A:;p)} 0<r<6;p=a,pB,y (8.14)
LZ(A:;p) =min{5(A:;p)} 0<r<6;p=a,p,y (8.15)

for truth membership of deflection functions

Similarly the upper and lower bounds for indeterminacy and falsity membership of weight objective

function as

Utim =Vt (8.16)

Bt = ot Vst~ o &17
L () = L () (8.18)
Uprtt) = i)+ LUVTVT(A:;],) I (A:;,,)J;O <r<Gp=a,pBy (8.19)
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And deflection objective function as

Ul ) = Ul (8.20)

By =i e~ Hie ) 520
L) = Lo (8.22)
Ul =Ly +5 LUa(A:;p) L ) 0<r<6p=a,fB,y (8.23)

Here ¢, s are predetermined real numbers in (0, 1)

Define truth membership, indeterminacy membership and falsity membership functions for weight

and deflection as follows

1 if WT(4;p)< L;T(A:;p)
Ul . =W (4;p)
Tyrtap (P (45 p)) = 1= exp{ - i) I <WT(4p)<UT (8.24)
u . .-L .. (47:p) (4:0)
wr(4p)  wr(475p)
0 if WT(A;p)ZUVTVT(AT-,,)
1 FITAR)
Ui “#TAP)| , (8.25)
Lyrap (WT (4:)) = exp U’ I I L) SHT(AP)<UL
wr(4:p)  wr(4p) ' -
0 i WT(A;p)ZUvIVT(A‘;p)
0 if WI(4;p)<L, i)
ur o+ L
1 1 WT(A:;p) WT(A:;p)
—+—tanhq| WT (4; p)- 0 . (8.26)
FWT(A,p)(WT(A’p))= 2 2 [ 2 J WT(Ay,p)
I Ly SWT(A2)S Uy
1 if WT(4:p)>Uy .
1 if 5(A;p)SL§(A:;p)
Ul . —6(4p)
i ' 8.27
T(;(A;p)(é‘(A;p))z I—expq—y (T 7 T if LtTi(Af;P)S5(A§p)SU;(Af;p) ( )
o(4sp) T8(4p)
0 if §(A;p)2U§(A:;p)
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. . I
1 if 5(A,p)SL5(A:;p)
U’ 5(/1 p)
| o) O | |
L (345 p)) ={exp T if Ly, <0(4p)<UL (8.28)
5(/1:;/7) 5(Aj;p)
0 if 5(A;p)2U;(A:;p)
. . F
0 if 5(4;p)< L&(A:;P)
ut .o +Lf
%+%tanh 5(4p)- 4 5 o) ‘95(1‘-,,)
Fyin (6 (4:p)) = ’ (8.29)
. F . F
if LE(A:;,’) <5(4;p)< Ug(A:;p)
. ) F
1 if 5(4; p)ZUs(A:;p)
6
Where QWT(A:;p) = G —F ; (8.30)
WT(A:;p) WT(A:;p)
6
J(A:;p) - UF . _LF . ’ (831)
b(A,.,p) 5(A,,,p)
w=4 0<r<6;p=a,fB,y (8.32)

Now NSO method for MONLP problem with probabilistic operator gives a equivalent nonlinear
programming problem as

(P8.3)

Maximize {
T5(A;ﬁ)(5(A;ﬁ))T5(A;7)(5(‘4;7/))

Tty T (40)) Do) (WT (45 8)) Ty i) (WT (457)) Ty (8 (4 a))}

(8.33)
|:1IWT(A;a)(WT(A;a))}[lIWT(A;ﬂ)(WT(A;'B))}[IIWT(A;}/)(WT(A;y))}}
|:1 _15(A;a) (5(‘4;0{))][1 _IE(A;ﬁ) (5(A;ﬁ))]|:l _IE(A;;/) (5(A;7)):|

Miniimize 5

(8.34)
Ll - FWT(Asa) (WT(A; a))JLl B FWT(A;ﬂ) (WT(A’ﬂ))J Ll B FWT(A;V) (WT(A; 7/))J}
1= Fiay (3(4:0)) || 1= Fy ) (5 (45 8)) || 1= Fy ) (3 (4:7))

Miniimize {

(8.35)

subject to
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OSTWT(A;p)(WT(A;p))+IWT(A;p)(WT(A;p))+FWT(A;p)(WT(A;p))S?); (8'36)

0= ]:S(A;p) (5(A;p)) +]5(A;p) (5(A;p))+F;3(A;p) (5(A;p)) =3 (8.37)
o(4)<[o]; (8.38)
Ami“SASA““"O£r£6;p=a,ﬂ,7/;a,ﬂ,ye[O,l] (8.39)

This crisp nonlinear programming problem can be solved by appropriate mathematical algorithm.

8.3Numerical Solution of Three Bar Truss Design using Parametric

Neutrosophic Optimization Technique
A well known three bar planer truss( Fig. -8.1) is considered to minimize weight of the
structure WT(AI,AQ)and minimize the deflection o (Al,AQ) at a loading point of a

statistically loaded three bar planer truss subject to stress constraints on each of the truss

members

Fig.-8.1 Design of the Three-Bar Planar Truss(Shenzhen Stock

Exchange, https://www.e-architect.co.uk,accessed on 18 June 2017)

The multi-objective optimization problem can be stated as follows

(P8.4)

Minimize WT (4, 4,) = pL (2424, + 4,) (8.40)
Minimize 6, (4, 4,)= % (8.41)
Minimize 5,(4,,4,) = m (8.42)

such that
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P(24,+24,)

_ T
o, (4,4,)= (Af N \/EAIAZ) <[of ] (8.43)
___F r 8.44
O'z(AlaAz) <A1+«/§A2)S[O-2] (8.44)
oy (4,4,)= (\/EAI:TI;AIAZ) <[of] (8.45)
A <A <A™ i=1,2. (8.46)
Where applied load
Pr =20 =((19,20,21;w, )(18,20,22:7, )(17,20,23;7, ) ): (8.47)

material density p=100KN/m’; length L =1m ; Young’s modulus £ =2x10%; A, =Cross

section of bar-1 and bar-3; 4, =Cross section of bar-2; 0, and 0, are the deflection of loaded joint

along » and v axes respectively.

(6" ]=20" = ((19.5, 20,205, )(18, 20,2177, )(17.5, 20,2157, )) (8.48)

and [ 677] =20 = ((18.5,20,21; w, )(18, 20,21.5;77,, )(17.5, 20,22;7, )) (8.49)
are maximum allowable tensile stress for bar 1 and bar 2 respectively,

[6]=15"=((1415.16w, ) (13,1517, ) (13.5,15.17 537, )| (8.50)

is maximum allowable compressive stress for bar 3 where w, = 0.8, W, = 0.7, W, = 0.6, W= 0.9
1 2 3

are degree of aspiration level of applied load, tensile stresses and compressive stress respectively and

n,= 04, Ny = 0.5,7702, =0.3, Mo = 0.4; T, = 0.2, Ty = 0.2, Ty = 0.2, T = 0.1 are degree of

hesitancy and desperation level of applied load, tensile stresses and compressive stress respectively.

Now total integral value of membership and non-membership function are

P =2243+0.75a; (8.51)
P,=19.5+58; B, =15.5+15y; (8.52)
6/,=19.57+0.57a; (8.53)
63, =20+2p; (8.54)
61, =17.75+1.5y; (8.55)
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6}, =19.75+ 42a;
65, =20.25+3.755;
61, =17+10y;

61, =14.55+0.89¢;
Gy =14.5+5p;

6, =5+25y;

Using total integral values of coefficients, problem (P8.4) can be transformed into

(P8.5)
Minimize WT (4, 4,)=100(224, + 4, )

o (22.43+0.75a)
Minimize 6, (4, 4,;a) = 8
2x10°4,
Minimize 8, (4, 4; ) = %
1
o (15.5+15y)
Minimize 9, (AI,AZ;?/) :m
1
Minimize 8. (4, 4 (22.43+0.75c)
inimize s 4y, ) =
AT (2x10°)(4, +24,)
o (19.5+5p)
Minimize 6,(A,,A,; B)=
V(l Zﬂ) (2X108)(A1+\EA2)
Minimize 8. (4, A7) (15.5+15y)
inimize s Ay Y )=
v A Ay Y (2X108)(A1+\/5A2)
such that
L _(22.43+0.75a)(2,41+J5Az)<1957 0570
o, (4,4,;0)= (A%ﬁAAz) <19.57+0.57a;
1 1
(19.5+55)(24,+\24,)
A.A:8)= <20+2p;
0-21( 1A2ﬁ) (A12+\/6A1A2) P

(8.56)
(8.57)
(8.58)

(8.59)
(8.60)

(8.61)

(8.62)

(8.63)

(8.64)

(8.65)

(8.66)

(8.67)

(8.68)

(8.69)

(8.70)
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(15.5+157)(24,+24, )

oy (4, 437)= = <15.5+15;
1 1
e =(22.43+o.7505)<19 25+ 0420
0-12( loAzaa)— (A +,\/§A) S1Y./0+0.4a;
1 2
19.5+5
Jzz(Al,Az,ﬂ)EﬁS2025+375ﬂ,
1
15.5+15y
0_32(141:142;7)5W317+107/;
1 2
(4, 4sa) (22.43+0.75a)A2<19 5740570
fo3 LA = S Y. . 5
s (V247 +24.4,)
(19.5+50) 4,
0, (4, 4 B) = <20+2p;
s (4 4:F) (V247 +24.4,)
15.5+15y) 4
oy (A4, 457)= (15.5+157) 4, <15.5+15y;

(V247 +24,4,)

A™ <4 <A™ i=1,2.a,B,7 €[0,1]

According to step 2 pay-off matrix can be formulated as follows

WT(A,4,) 6,(4.4;0a) 6,(4,4;8) 6,(4,4s7) 6,(4,4sa) 6,(4,4:8) 6,(4,4,:7)

(8.71)

(8.72)

(8.73)

(8.74)

(8.75)

(8.76)

(8.77)

(8.88)

A'75.994110 12.52100 12.23464 12.15401  7.229002 7.063671 7.07121
411716237 4.486000 4128718 4.051560  2.419306 2.226623 2.185012
4’| 15.95051 4.519218 3.90 4051560  3.048520 2.580241 2.680513
4'19.14214 4519218 4.135986 3.10 1.908612 1.713182 1.284062
A’119.14214 4.48600 4.128718 4.051560 1.858162 1.710171 1.678211
4°119.14214 4519218 3.90 4.051560 1.908612  1.615433 1.678211
A7119.14214 4.519218 4.135986 3.10 1.908612 1.713182 1.284062
Here U;T(ADAZ) = UV]I;T(ADAZ) = 19.14214,L5VT(A1,A2) = L]V;/T(ADAZ) +Epriaa) = 5.994110+ Epr(a,a)>
L:’VT(Al’Az) - L;T(AlaAz) =5.994110, UV[VT(AI’AZ) - L;T(AlsAz) + é:WT(Al,Az) =35994110+ §WT(A1’A2)

such that 0< &, &, <(19.14214-5.994110);

6

6 —_—

‘//=4>9WT(A],A2) = UF F > Wr (4, 4) F
wT

(4.4) LWT(AlyAz) WT(4,4,)
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Us iy =Un gy =12.52100,L5 =L ey o = 448600048,
Ly o) = Lo 4oy =4A86000,U7 =L E = 448600048,

such that 0< &, , , .& . <(12.52100-4.48600)

6 6
!//:4’&‘5 1,430 ’6 1,4
ki) = Us oy~ Ly oy 9U s (i) ~ L, (4ia)
U; U; 12.23464, 1" L +& 3.90+¢,
o) = Yo amp = sLs (im) = Lo T € (amip) = 5, (ArAsp)>
Ly (48 = Loy (i) =390U (4 ) = Lo (4 * Sntnip) =390+ &5 (ap)

such that 0 < & 5. 12.23464—3.90)

A.4:8)° gﬁAAﬂ) (

6 6

Ly nain) Fatnn =07

W:4’05M(A1,A2;ﬂ) UF

F
3, (4, 438) 8, (4, 43P) L§ (4, 435)

UF(AI o) —UT(A ) =12 15401,L§<A o) =L 5. () T () = 3L E5 (4 4
L 5,(Auo:7) =L, 5,4 y) = 3105 U, 8, (Auio:y) _L;(AI,AZ;;/) s () =310+ G5 4y
such that 0< &, , & . <(12.15401-3.10)

y =4, 06u(A],A2;y) UF ° F ’eﬁu(A],Az;y) UF ° F

(Al Ay 7) Lsu(Al’Az§7) (Al A 7) L@,(AlyAz;V)

UF(A] b )—UT(A ) =7.229002, L (o) =L i) T Es (4t = 1858162+ 8,

L . )—Lgv(Al,Az; ) =1.858162 U’(A ) =L ) TS5 (o) = 1-858162+ &,

such that 0< &, , , .& . <(7.229002-1.858162)

6 6
W:4’0~ 1,425 ’9 1,425
5V(A ! ) UF(Al Aya ) Lg(AlaAz;“) 5V(A ’ ) UF(AI s a) _Lgv(Al,Azﬂ)
UF(AI " ﬁ)—UT(A . ﬂ)—7063671,L§(A . ﬂ)—LT(A o) FEs oy ap =1:615433+ ¢, o
L’ 5, (o) = LT(AAﬂ)—1615433 U[(AA 5= LT(A]AZﬂ +§5 (4o 35) —1615433+§5 Aodoif)

such that 0< &, , , &, <(7.063671-1.615433)

6 6
‘// = 4’ 05,,(/11 ,Azéﬁ) F F ’ 05'(A1’A2;ﬂ) F
U S,(4.4;8) Lﬁv(Al,Az;ﬁ) U

F
(Al 4, ﬂ) Lb (Al Ay ﬂ)
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Ug (i) = U;(Al 4y = 107121, Lg (i) = Lgv o) T () = 128406246,
L;V(AI’AZ 7) - Lgv(Al’Az i7) - 1284062’ Uév(AlaAzW) - Lgv(APAZ;V) + §5v(Al’A2;7) =1.284062+ 55»-(’419’42;7)

such that 0< &, , , & . <(7.07121-1.284062)

oy _ 6 6
=4 S,(A,Ayy) — UF _LF 275, (4, 457) T pF _JF
EV(AI,Az;}/) 5‘,(A1,A2;;/) 5V(A1,A2;y) 5‘,(A1,A2;;/)

Here nonlinear truth, indeterminacy and falsity membership function of objectives WT(A1 4, );

o, (AlaAz;a); o, (AlaAz;:B); o, (Al,Az;j/)and 5V(A15A2;a); o, (Al’Az;ﬂ); o, (Al,Az;j/)are

defined for 7' =2 as follows

1 if WT(4,4,)<5.994110
Tyt (7T (4,4)) =41 4 19.14214-WT (4, 4) if S994110<IT (4, 4,)<19.14214 (8.89)
, =q1-exps- if 3. < 4,119, .
A4\ AT P17\ 1914214599410 v
0 if WT(4,4,)219.14214
1 if WT(4,4,)<5.994110+&,
19.14214-WT (4, 4,)
exp
IWT(ADAZ)(WT(A“AZ)): 19-14214—(5-994110+§WT(A1,A2)) (8.90)
if 5.994110+&,, <WT(4,4,)<19.14214
0 if WI(4,4,)>19.14214
0 if WT(4,4,)<5994110+8,,.,
11 19.14214+ 5994110+, , ,
E+Etanh [WT(AlaAz)_ ) - WI(4y,4y)
Furtaa (7T (4 4,)) = (8.91)
if 599411046, , , <WT(4,4)<19.14214
1 if WT(A,4,)>19.14214
1 if 6, (4, Ay;x) 448600

12521000, (4, 4,; )

T (6. (4,4;0))={1-expl—4 if 448600< 6, (A, 4;a)<12.52100 (8.92
sian (B (4 452) P { [ 12.52100-4.48600 ]} / ((4-430) (8.92)

0 if 6, (4, 4:a)>12.52100
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I 0f 0,(4.Asa) 448600+,

12.52100-6, (4, 4,;a)

exp
Lo (8, (4o ds@)) =4 12.52100-(448600+£, , , )
if 44860048, <5, (4, 4y50)<12.52100
0 if 5u(A1,A2,a)212.52100
0 if (4, @) <448600+5, , ,
12.52100+ 448600+
l+ltanh{(§“(Al’A25“) & a)] m >}
Fi s (0, (4 Ai0)) =2 2 :
if 448600+¢; , <0, (4,4;a)<12:52100
I if @,(Al,Az,a)212.52100
I if 8,(4,4;5)<3.90

T‘%(Aw%;ﬂ) (5u (A1=

T a.nn (9

F‘yu(Al sAziﬁ) (é‘“ (

4.4, 8))=

4,4, p))=

exp

0

12234646, (4, 4y;
4,:4))= l—exp{—4[ ,(4, z,ﬂ)]} if 3.90<6, (4, 4,;8)<12.23464

12.23464-3.90
0 if 6, (4, 4;)>3.90

1 lfé‘(AlaAzaﬁ)<390+§5AAﬂ

12.23464 -5, (4, 4y; )
12.23464~(3.90+&, .|

if 390+&; 1.5 <6, (4,4, 8)<12.23464
0 if 6, (4,4;p)>1223464

if 0,(4.4:8)<390+¢, , ,

12.23464+3.90+ ¢, 5.4 oif)
2tanh 5( 1,A2,ﬂ)_ 2 0@(4%2%)

if 39048, , o5 <0, (4, 4;5)<12.23464
1 if 5,(A4,4,;8)=12.23464

and

(8.93)

(8.94)

(8.95)

(8.96)

(8.97)
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1 if5u(A1,A2;}/)§3.10
12.15401-6, (4,457 .
T@,(Al,Az;y)(gu(AI’A2’7)): 1—exp{—4[ 12.15401;1.102 )j} if 3.IOS§M(AI)A2;}/)S12.15401 (8.98)
0 if ‘SL«(Al’Az;}/)ZMO

1 lf é‘u(Al’AZ; )<3 10"'55 A, 4y37)

12.15401-5, (4, 4y;7)
exp
Lo (0, (A7) =1 |12.15401-(3.00+5, ) (8.99)
if 300+, , ) <6, (A Aiy) 1215401

0 if 6,(4,4,7)>12.15401
0 if 6,(4,Asy)<300+¢; , , )
11 h{[ﬁ (o)~ 12.15401+3.10+¢, “”]9 }
—+—tanh{| 8, (4, 4y - (s 8100
Fy o (0, (AsAyiy)) =12 2 14 5 5, (A7) ( )
if 310+, . <6,(4,4y:y)<12.15401
1 if 8,(4,4,;7)>12.15401
I if 0,(4,4;2)<1858162
7.229002-6, (4, 4;a)
T, . (6 (A4,4;a))=11-expi—4 A if 1.858162<6, (4, 4y;cr)<7.229002 8.101
st (9 (4,430 p{ [ 7.229002-1.858162 ]} f (4oA50) (8.101)
0 if 0,(4,4;)>1858162
1 if 8,(A.Aya) <1858162+&, ,
7.229002 -6, (4, 4,;@)
exp (8.102)
Iy (hony (8, (4 Ay)) = 7.229002—(1.858162+¢, , , )
if 1.858162+¢, , <5, ( 4, A:e)<7.229002
0 if 8,(A,4;a)>7.229002
0 if 0,(4, Ay;er) <1858162+ ¢, ,
| 7.229002+1.858162+¢, , ,
—+—tanh 5V(A],A2;O!)— e 5, (A oic) 8.103
F(Sv(Al,AZ:a)(é‘\r'(Al’AZ;a)): 2 {[ 2 4.4 (8. )
if 1.858162+2, , , . <0, (4 4y@) <7.229002
1 if 6, (4, 4y;a)>7.229002
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T(AIA,B( ( 2’ﬂ))

I‘Z‘(Al A Qﬂ) (5" (

Fﬁr(A],Al;ﬂ) (5v (Al’Az;/)))) =

];L.(A,,Az;y)(é (A A2’7/))

F:i,(Al,Az;y) (5v (A15A2;7)) =

4,4 p))=

5,(A i) (5 (Al’ 4,; 7/)) =

1 if 6,(4,4;8)<1.615433

7.063671-0, ( 4, 4y;
1-exps—4 V( 1 Zﬂ)
7.063671-1.615433

0 if 6,(4.4:8)>

j} if 1.615433<6, (4, 4,,8)<7.063671

1.615433

I i 0,(4.4iB) 1615433+,

7.063671-6, (4, 4,; )
7063671-(1615433 ¢, , |

exp

if 1615433 +¢, . <5,(4,
0 if 6,(4,4;p)27

4,;8)<7.063671
063671

0 if 6,(4,4,8)<1.615433 ¢,

6,(4,4,:P)
7.063671+1.615433+ ¢, (hehif)
(4.4:5)

11
2+2tanh{[5v(r4pAziﬂ)_ 2

if 1.615433+¢, ) <3, (4,4;8)<7.063671
1 if 6,(4,4,;p)>7.063671

1 if 6,(4,4,;7)<1.28406

707121-6, (4. 4:7) )|
1-exp?—4 if 1.284062<6, (4, 4,;7)<7.07121

7.07121-1.284062

0 if 0,(4,4,;7)>1284062

1 (4

7.07121-6, (4, 4y;7)
7.07121-(1.284062+, , )

A7) 1284062485

exp

if 1284062+¢, ,
0 lf‘ 5\1( 1

1S, (4,4,:7)<7.07121
Ay )27.07121

0 if 5,(4,

{1 7.07121+1.284062 + &,
E+Etanh S, (A, Ay7)-

S,( 4. 4y:7)
2 jgfy»(Al’AzW)}

if 1.284062+¢, , , <3, (4,4;7)<7.07121
1 if 5V(A1,A2,y)27.07121

4,37)<1.284062 + £,

5, (4, 4y7)

(8.104)

(8.105)

(8.106)

(8.107)

(8.108)

(8.109)
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Using fuzzy, Intuitionistic, Neutrosophic Probabilistic Operator for truth; truth, falsity and truth,
indeterminacy , falsity membership function respectively the optimal results of model (P8.5) can be

obtained and is given in Table 8.1.

& , =1.3;
Table 8.1 Optimal weight and deflection for ~"7(4-%) (4,1

Eo (i) 90, (i) = 085 € (4.a:)2 S (i) = 0835 8540090, (4,0 = 09

g(?y(Al’Az;a)’ g(sv(Al’Az;a) - 053’ g@,(Al,Az;ﬂ) ? §5v(AlaAz;ﬂ) - 054’ g‘sv(Al’AZW) > é:‘sv(Al’AzW) - 057’
Method A x107%m* | 4 x10%m* | WT'x10°KN | & x10"m 5 x107m
Fuzzy Max- | 2.425445 1.568392 8.428587 0.5830738 0.3045585
Min Operator
Fuzzy 2.299305 4.006269 10.50968 8.698282 2.510978
Probabilistic
operator
Intuitionistic 1.495007 2.604875 6.833394 13.37785 3.861852
Probabilistic
Operator
Neutrosophic | 4.903401 4.807390 18.67630 4.078801 1.709098
Probabilistic
Operator

From the Table 8.1.we may arrive to the conclusion that the weight is minimized when we have
solved the model in intuitionistic optimization technique. As an explanation we can say in [FO we
usually minimize non membership functions and maximize membership functions simultaneously. So
it gives better result compare to FO where we only consider membership function for minimization.
But as degree of acceptance is partially included in hesitancy and we minimize it in NSO it has given

higher value than the result obtained in intuitionistic optimization.

8.4 Conclusion

In this chapter we have proposed a method to solve multi-objective structural model in neutrosophic
environment. Here generalized neutrosophic number has been considered for applied load and stress
parameter. The said model is solved by neutrosophic probabilistic operator and result is compared
with fuzzy as well as intuitionistic probabilistic operator. The weight of the truss is more optimized by

intuitionistic optimization technique. The main advantage of the described method is that it allows us
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to overcome the actual limitations in a problem where impreciseness of supplied data are involved
during the specification of the objectives. This approximation method can be applied to optimize

different models in various fields of engineering and sciences.
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CHAPTER 9

Optimization of Welded Beam with Imprecise Load and Stress by
Parameterized Neutrosophic Optimization Technique

Welding is a process of joining metallic parts by heating to a suitable temperature with or
without the application of pressure. In this chapter we have investigated a problem which is a
simplified example of many complex design issues arising in structural engineering. The
problem is dealing with designing the form of steel beams and with connecting them to form
complex structure like bridges, buildings etc. The problem of designing an optimum welded
beam consists of dimensioning a welded steel beam and the welding length so as to minimize
its cost subject to constraints on sheer stress, bending stress in the beam, buckling load on the
bar, the end the deflection on the beam and the side constraints. Most importantly the design
of welded beam should preferably be economical and durable one. Since decades,
deterministic optimization has been widely used in practice for optimizing welded connection
design. These include mathematical traditional optimization algorithms (Ragsdell & Phillips
[90]) ,GA-based methods (Deb [40], Deb [37], Coello [14], Coello [25]), particle swarm
optimization (Reddy [59]), harmony search method (Lee & Geem [67]), and Big-Bang Big-
Crunch (BB-BC) algorithm (O. Hasangebi, [65]), subset simulation (Li [73]), improved
harmony search algorithm (Mahadavi [72]), as methods used to solve this problem. All these
deterministic optimizations aim to search the optimum solution under given constraints
without consideration of uncertainties. So, while a deterministic optimization approach is
unable to handle structural performances such as imprecise stresses and deflection etc. due to
the presence of impreciseness, to get rid of such problem Fuzzy Set(FS)(Zadeh, [133]),
Intuitionistic Fuzzy Set(IFS) (Atanassov,[1]) Neutrosophic Set(NS)(Smarandache [99]) play
great roles. In IFS theory we usually consider degree of acceptance, and degree of rejection
where as we consider only membership function in FS. Sarkar [104] optimize two bar truss
design with imprecise load and stress in Intuitionistic Fuzzy(IF) environment calculating total
integral values of Triangular Intuitionistic Fuzzy Number(TIFN). Shu [108] applied TIFN to
fault tree analysis on printed board circuit assembly .P.Grzegorzewski et.al [48],H.B.Mitchell
et.al [75],G.Nayagam et.al [78],H.M.Nehi et.al [79],S.Rezvani et.al [92] have been employed

concept of
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Intuitionistic Fuzzy Number (IFN) in Multi-Attribute Decision Making (MADM) problem
.So indeterminate information should be considered in decision making process. A few
research work has been done on Neutrosophic Optimization (NSO) in the field of structural
optimization. So to deal with different impreciseness on load, stresses and deflection, we
have been motivated to incorporate the concept of Neutrosophic Number(NN) in this
problem, and have developed NSO algorithm to optimize the optimum design in imprecise
environment. In IFN indeterminate information is partially lost, as hesitant information is
taken in consideration by default. So indeterminate information should be considered in
decision making process. Smarandache [94] defined neutrosophic set that could handle
indeterminate and inconsistent information. In neutrosophic sets indeterminacy is quantified
explicitly with truth membership, indeterminacy membership and falsity membership
function which are independent. Wang et.al [120] define Single Valued Neutrosophic
Set(SVNS) which represents imprecise, incomplete, indeterminate, inconsistent information.
Thus taking the universe as a real line we can develop the concept of single valued
neutrosophic number as special case of neutrosophic sets. These numbers are able to express
ill-known quantity with uncertain numerical value in decision making problem.We define
generalized triangular neutrosophic number and nearest interval approximation of this
number. Then using parametric interval valued function for approximated interval number of
NN we solve WBD problem in neutrosophic environment .This paper develops optimization
algorithm wusing max-min operator in neutrosophic environment to optimize the cost of
welding, while the maximum shear stress in the weld group, maximum bending stress in the
beam, and buckling load of the beam and deflection at the tip of a welded steel beam have
been considered as constraints. Here parametric interval valued function of Generalized
Triangular Neutrosophic Number(GTNN) have been considered for applied load , stress and
deflection .The present study investigates computational algorithm for solving single-

objective nonlinear programming problem by parametric NSO approach.

9.1General Formulation of Single-Objective Welded Beam Design

In sizing optimization problems, the aim is to minimize single objective function, usually the
cost of the structure under certain behavioural constraints which are displacement or stresses.
The design variables are most frequently chosen to be dimensions of the height, length, depth

and width of the structures. Due to fabrications limitations the design variables are not
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continuous but discrete for belongingness of cross-sections to a certain set. A discrete

structural optimization problem can be formulated in the following form

(P9.1)
Minimize C(X) 9.1)
subject to o, (X)S[q],izl,Z,...,m 9.2)
X, eR', j=1,2,.,n (9.3)

where C(X)represents cost function, o,(X)is the behavioural constraints and [Gl.(X )]

denotes the maximum allowable value , ‘m’ and ‘n’ are the number of constraints and design

variables respectively. A given set of discrete value is expressed by R? and in this chapter

objective function is taken as
T m

C(X)=>c]]x (9.4)
t=1 =1

and constraint are chosen to be stress of structures as follows

o,(X) <o, with allowable tolerance & fori =1,2,....,m 9.5)

The deflection of the structure as follows

5(X) <6, with allowable tolerance 5°, (9.6)

Where ¢ is the cost coefficient of t" side and x,1s the n' design variable respectively, m 1is

th
the number of structural element, o, and &’ ¢° are the i" stress , allowable stress and

allowable deflection respectively.

9.2NSO Technique to Optimize Parametric Single-Objective Welded
Beam Design(SOWBD)

The parametric WBD problem can be formulated as

(P9.2)
Minimize C(X;s) 9.7)
subject to O'[(X;S)S[O'[ (S)],i=l,2,..,m (9.8)
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X eRr’, j=12,....n (9.9)
X>O;se[0,1] (9.10)

where C(X;$)represents cost function, o,(X;s)is the behavioural constraints and
[Ui (X ;s)] denotes the maximum allowable value , ‘m’ and ‘n’ are the number of constraints

and design variables respectively. A given set of discrete value is expressed by R“ and in this

chapter objective function is taken as

T m

C(X;5)=Dc ()~ (9.11)

t=1 n=1

and constraint are chosen to be stress of structures as follows
o,(X;s)<" o,(s) with allowable tolerance o} (s)fori =1,2,....,m (9.12)
The deflection of the structure as follows

5(X;5)<" 8, () with allowable tolerance &, (s) (9.13)

Where c,is the cost coefficient of t™ side and x,1is the n" design variable respectively, m is

the number of structural element, &, and o (s) &2, (s)are the i" stress , allowable stress and

max

allowable deflection respectively.

To solve the SOWBP (P9.2), step 1 of 1.40 is used and let U/,

(X;S),Ué Ug(X;s) be the

(x35)°
upper bounds of truth, indeterminacy , falsity function for the objective respectively and
L

( X;S),LIC( X;s),Lg( xw b€ the lower bound of truth, indeterminacy, falsity membership

functions of objective respectively then

UZ(X;‘Y) =max{C(X1;s),C(X2;s)}, (9.14)
L, =min{C(X";s),C(x7s)}, (9.15)
Ug(X;S) = UZ(X;S), (9.16)
L vy =Lty €y Where 0< £ < (U&X;S) - LZ(X;S)) (9.17)
L’C(X;S) = LZ(X;S), (9.18)
Uty = Loy * Sy Where 0< &y <(Ul —LZ(X;S)) (9.19)
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Let the linear membership function for objective be

1 U‘C(X;S)SLZ(X;S)
Ulivy—C(X;5)
Tox (C(X35)) = ( zj(TX’A) 7 J i Legry SC(X35) SUgpug (9:20)
C(X:s) C(X:s)
0 lf C(X;S)ZU(I;(X;s)
1 ’fC(X”)SLIc(x;s)
Ul —C(X;5)
taealetrio) = S GE 0 g <cln) <o, ©:21)
C(X;s) C(X;s)
0 if C(X;S)ZUé(X;s)
0 if C(X;s)< Lg(m)
C(X58)—Liyy) .
Fon (C(X55)) = Ug(x)_LiEj)) if Lepry < C(X38)<Ugpey) (9.22)
1 if C(X;s)ZUg(X;S)

and constraints be

1 if g (x%s)<b;(s)
b. b (s)-g.(x; .
Tg](x;x)<gj(x;s))= [ o) jbg;l) 5 S)] if b(s)<g;(x:5)<b;(s)+b;(s) (9.23)
: g (65)280)
L e (a)sh ()
b/ (S) é:g x;s g/ (X,S)
Igj(x;s)(gj(x;s)): ( 5/( )) if bj(s)ng(x;s)sbj(s)+§gj(x;s) (9.24)
g(x:s)
0 if g;(x5)2b;(s)+¢, (o,
0 if &; (X;S)Sbj (s)+€gj(x;S)
g (xs —bj S)= €, () . 0
ng(x;_v)(gj(x;s)): ( b9)(s)—g)( )/( ) if bj(s)+5g/(x;s)ng(X;S)Sbj(s)erj (s) (929
L g (0)28,(5)45(5)

Page 233



where and for j=1,2,.....

where and for g, (X;s)=0,(X;s) or 6,(X;s)or z, (X;s),0<gg/_(x;s) <b(s)

then parametric NSO problem can be formulated as [107],1.e

(P9.3)
Maximize (a+y—f3)

such that C(X;s)+ (Ug(x;s) ~ L)@ SUL
C(X;s) +(Ué()(;s) — L.y )-7 2 Ul )
C(X:s) _(UCF(X;s) _Lg(x;s)) B <Ly
g (xas)+(U§,<x;s) - Z,-(m)) a<U, (.
g (X;S)+(U§_,(x;s> - 2,-<x;s>)'7 2U, (e}
g (X;S)—(UgF_,-(x;s> —L . s>) B<Lg (.

a+p+y<3;azpfa>y; a,ﬂ,ye[O,l];

x=>0,s 6[0,1]

where g;(X;s)=0,(X;s)or 6,(X;s)or 7, (X;S),0<6‘gj

<5(s)

(X:5)

(9.26)

(9.27)

(9.28)

(9.29)

(9.30)

(9.31)

(9.32)

(9.33)

(9.34)

All these crisp nonlinear programming problems (P9.3) can be solved by appropriate

mathematical algorithm.

9.3 Numerical Solution of Parametric Welded Beam Design Problem by

NSO Technique

A welded beam (Ragsdell and Philips 1976,Fig.-9.1) has to be designed at minimum cost

whose constraints are shear stress in weld (z) ,bending stress in the beam (o) ,buckling

load on the bar (P),and deflection of the beam (5).The design variables are

X

X3

Xy

Xy

S~
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h1is the weld size, | is the length of the weld , ris the depth of the welded beam, bis the
width of the welded beam.

Fig.-9.1 Design of the Welded Beam(http://www.spantec.com.au,accessed
on 20June 2017)

The single-objective optimization problem can be stated as follows

(P9.4)

Minimize C(X)=1.10471x]x, +0.04811(14+x, ) x;x, (9.35)
Such that
g (x)=7(x) =7, <O; (9.36)

g (x)=0(x)=0,, <0; (9.37)
g (x)=x —x, <0; (9.38)
g, (x)=0.10471x7x, +0.0481 Lx,x, (14+x,) - 5<0; (9.39)
gs(x)=0.125-x, <0; (9.40)
g (x)=6(x) =6, <O; (9.41)

g (x)=P-F.(x)<0; (942)

0.1<x,x,,x,,x,<2.0

where 7(x)= \/z'1 +20,7, 2 R 2tz (9.43)

P
0= ; (9.44)
\2x,x,
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J =40 x—§+
2|12

6PL
)
4pr’

5(x) B Ex,x: ;
4°V3

(

X, +Xx,

2

Ik

6.6
P (x) = 4.013,[EGx%x$ /36 (1_ X, [%J

L2

2L

9

(9.45)

(9.46)

(9.47)

(9.48)

(9.49)

(9.50)

(9.51)

P =Force on beam ; L =Beam length beyond weld; x, = Height of the welded beam; x, =

Length of the welded beam; x, = Depth of the welded beam; x, = Width of the welded

beam; r(x):Design shear stress;a(x):Design normal stress for beam material; M =

Moment of P about the centre of gravity of the weld , J =Polar moment of inertia of weld

group; G = Shearing modulus of Beam Material; £= Young modulus; 7 = Design Stress

of the weld; 0.« = Design normal stress for the beam material; Omax = Maximum deflection;

7, = Primary stress on weld throat. 7, = Secondary torsional stress on weld. Input data are

given in Table 10.1and Table 10.2.
Table 9.1 Input Data for Crisp Model (P9.4)

Applied load »

(1)

Beam
length
beyond
weld
L

(in)

Young
Modulus
E

(psi)

Value

of

(psi)

Page 236




6000
(5580,6000,6100; )
6
| (s575.5590.6110:n,) | | A o8

(5570,5585,6120;, )

Table 9.2 Input Data For Crisp Model (P9.4)

Maximum allowable ) ]
Maximum allowable Maximum allowable
shear '
deflection 0, normal stress o,
Stress 7.
(in) (psi)
(psi)

13550 = 0.25= 3000 =
(13520,13550,13580; w, ) (0.22,0.25,0.26; wy ) (2980,3000,3030;w, )
(13510,13540,13570;7, ) (0.21,0.24,0.27;775) (2975,2990,3020;7,, )
(13500,13530,13560; 4, ) (0.20,0.23,0.28; 45) (2970,2985,3010; 4,,)
Maximum allowable Maximum allowable Maximum allowable

value value value

13600 = 0.26 = 3100 =
(13580,13600,13610;m4) ((123¢1264127;wg) (3070,3100,3130;wé)
(13575,13590,13615:17; ) (022,0.25,0.28:7} ) (3060,3090,3120:77 |
(13570,13585,136120;2;) ((121J1264129;1g) (3050,3080,3110;1;)

1 1 1 . . .
where w,w,_,w,,w, andw, ,w_,w;,w, are degree of truth membership or aspiration level

e

and maximum degree of truth membership or aspiration level; 7 .7, .77, ;77,,,77;»7735777; are

degree of indeterminacy and maximum degree of indeterminacy and A,,4,,4,,4, and

Ay, Ay, A5, A are degree of falsity and maximum degree of falsity or desperation level of

applied load, normal stress ,deflection and allowable shear stress respectively .

Now parameterized value of interval valued function can be calculated as

1-s s
P= (5575+E+£+2J (6110— 1067, 8067, 89'17} ; (9.52)
w, n, T w n, T

a a

a a
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Wa 770 Ta

1-s s
fm“—[[13510+i+i+ij (13570—ﬂ i+3j J; (9.53)

Amax

Allowable value of 7

I-s S
o= [(13575+—3‘33 +£+£J (13615— L7417, 583] J; (9.54)
Wa na 7’-a Wa 77“ Ta
I-s S
G _ {(021 , 0:005 0.005 o.oosj [ 0970001 0.005 0.008} } 9.5%)
w, na 7, We 77‘1 T
Allowable value of 5™
1-s K
s [( 092 0:005  0.005 o.oosj ( 05 0001 0.005 o.oosj ]; (9.56)
Wa 7711 7’-a Wa 77” Ta
™ = [[2975 333,25 2 5] (3ozo—£ i+£] ]; (9.57)
Wa 77(1 Ta Wa na Ta

Allowable value of ™

1-s §
&?“_([3060+i+i+ij (3120—£ i+@J ]; (9.58)

Wll 77(1 Ta Wd 770 Ta

Table 9.3 The Upper and Lower Value of Objective(P9.4) for Different Values of

w Pessimistic Value of &

The pessimistic value of s=0.2

Aspiration level
,uncertainty level and
desperation level w=n=1=03 w=n=1=0.5 w=np=1=0.7
W, =W, =ws =W,
1 1 1

:Wp:WJ:W5:W =W
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Upper and lower value of | £, =0.1419847, L, =0.1387723, L, =0.1374016,

%)
objective UL, =0.1425069 UL, =0.1393634 Uf;,, =0.1380209

Table 9.4 The Upper and Lower Value of Objective (P9.4)for Different Values of

w ,Moderate Value of

The pessimistic value of s=0.5

Aspiration level
,uncertainty level and
desperation level w=n=1=03 w=n=21=0.5 w=n=21=0.7
W, =W, =ws =W,

_ [ S L B
=W, =W, =Ws; =W, =W

7717 :770':775:77‘[
=1, =1, =1, =1]

A, =k =2=4
=l =2=2=2

Upper and lower value of | £, =0.1485833, L) =0.1444032, L) =0.1426218,

objective UT . =0.1491453 UT . =0.1450005 U7 =0.1432331

ax) ax) )

Table 9.5 The Upper and Lower Value of Objective(P9.4) for Different

Values of ,, Optimistic Value of

The pessimistic value of s=0.8

Aspiration level
,uncertainty level and
desperation level w=n=4=0.3 w=n=21=0.5 w=n=21=0.7
W, =W, =Ws =W,
1 1 1

:Wp:WO':W5:WZ':W
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A =2, =25 =2,

_ 91 _ 291 _ 91 _

=4 =A;=4 =4

Upper and lower value of | 17, =0.1555725 L{, = 01503266 L{, ) =0.1480966
objective U{\y) =0.1561771 U{,) =0.1509290 U{\y) =0.1486975

Now using truth, indeterminacy and falsity membership function as mentioned in section 10.4
neutrosophic optimization problem can be formulated as similar as (P9.4) and solving this
optimal for different values of s,w,77,4 ,design variables and objective functions can be
obtained as follows.

Table 9.6 The Optimum Values of Design Variables(P9.4) for Different Values of
w,n,A ands=0.2

.Aspiration level &= & = &=
,uncertainty level and (U[T —L[T)xo.l (U[T —L[T)xo.l (U[T —L[T)xo.l
desperation level
Womw =W =W &= &= & =
=w, =w, =
S (Ul -l )x01 | (Uf 1] )x01 | (U] -L])x0.1
=W, =W, =Wy =W, =W
np - 770' = 77(5 = 771'
1 1
= 770' = 775 = 777 = 77
A=A =4 =1
=l =2=2=2
x,(in) 0.3415895 0.3389869 0.3378618
x, (in) 0.9535080 0.9463785 0.9433100
X3 (in) 2 2 2
x, (in) 1.089426 1.080890 1.077210
C(x) () 0.1420369 0.1388314 0.1374635

Where U; and L; are upper and lower bound of respective objective and The Optimum

1

constraints.
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Table 9.7 The Optimum Values of Design Variables(P9.4) for Different

Values of w,77,4 ands=0.5

Aspiration level & j . B & j .
uncertainty level and (U; —L; )X 0.1 | &= (U; —L )>< 0.1
desperation level (U,.T o ) x0.1
& = &=
Wp =W =Ws = W2 (UF =1l )x01 | &= (UF -1f)=01
=wp=w;:w:5=wr=w (U[T—L[T)xo.l
771) = 770' = 775 - 771'
1 1

= ]70_ = 775 = T]T = 77
A=A =4 =4
=l =2=2=2
x, (in) 0.3422657 0.3396719 0.3385506
x, (in) 0.9552806 0.9481638 0.9451009
X3 (in) 2 2 2
x4(in) 1.091979 1.083465 1.079794
C(X) (%) 0.1486395 0.1444629 0.1426829

Where U, and L; are upper and lower bound of respective objective and constraints.

Table 9.8 The Optimum Values of Design Variables(P9.4) for Different Values of
w,n,A ands=0.8

Value of ¢,,& w=n=1=03 | w=np=4=05 | w=np=1=0.7
. . E; = E: = E. =
Aspiration level ! - ! - ' .
,uncertainty level and (U[ —L; )><0.1 (U[ —L; )><0.1 (U[ —L; )><0.1
desperation level
& = & = & =
Wp =Wo =Ws =We (Ul =i )01 | (U] =1l )x01 | (U] =] )x0.1
=W, =W, =Ws =W, =W
771)_770':775_777
1 1
:770'_775:771:77
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A, =k, = =4,

=l =2=2=2

X (in) 0.3429429 0.3403578 0.3392404
X, (in) 0.9570581 0.9499542 0.9468969
x3(in) 2 2 2

x4 (in) 1.094538 1.086046 1.082384
C(X)(9) 0.1556330 0.1503868 0.1503868

Where U, and L, are upper and lower bound of respective objective and constraints

From the above results it is clear that whenever we chose w=7=4=0.7 ands=0.2

the of cost welding is minimum most. Also it has been observed that cost of welding is
decreased by higher value of aspiration level, uncertainty level and desperation level for a

particular value of parameter ‘s’.
9.4Conclusion

In this chapter we have proposed a method to solve WBD in fully neutrosophic
environment. Here GNN has been considered for deflection and stress parameter. The said
model is solved by Single Objective Parametric Neutrosophic Optimization (SOPNSO)
technique and result is calculated for different parameter. The main advantage of the
described method is that it allows us to overcome the actual limitations in a problem where
impreciseness of supplied data is involved during the specification of the objectives. This
approximation method can be applied to optimize different models in various fields of

engineering and sciences.
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CHAPTER 10

Optimization of Thickness of Jointed Plain Concrete Pavement

Using Neutrosophic Optimization Technique

Highway construction agencies throughout the globe chasing accelerating demands on
durable undowelled Jointed Plain Concrete Pavement (JPCP) due to scanty of rehabilitation
of the same . Since decades, different design methods had been developed by various
organizations which suit their locale and fix the depth criteria of the JPCP along with other
parameters by satisfying the standard code of practice but none of them tries to optimize the
design thickness of the same (Hadi and Arfiadi, [53]). However a few approaches designed
such thickness of cited pavement by considering traffic overloading condition, its fatigue life
and the fluctuation of ambient temperature effect individually (Maser et al., [ 74];Ramsamooj
[91];Levenberg, [68]). But during service life of such pavement, the traffic loads and adverse
environmental effect would deteriorate its joints and ultimately its foundation. Therefore
optimization of such rigid pavement is become essential considering multiple decision
making criteria as stated above to make it more durable.

Several design methods e.g. AASHTO, PCA, Crop of Engineers of the US army iteration
method etc. are available to determine the thickness of JPCP. However all such methods
follow numerous monographs, tables and charts to do the same and abiding by certain loop of
algorithm in the cited iteration process to find an effective thickness of such pavement. But
most of the time, designers stop the cited procedure even after two or three trials which yields
safe but unnecessarily less economical thick rigid pavement (Hadi and Arfiadi, [53]).
However lots of efforts had been made to get rid of from such problem but optimization on
the same subject has rarely found. Moreover, finite element method (Davids, [40]) and
genetic Algorithm (Hadi and Arfiadi, [53]) type of crisp optimization method had been
applied on the cited subject, where the values of the input parameters were obtained from
experimental data in laboratory scale. While the above cited standards has already ranged the
magnitude of those parameters in between maximum to the minimum value. Therefore,
designer get confused to select those input parameters from such ranges which yield three key

governing factors i.e. degree of acceptance, rejection and hesitancy that attributes the
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necessity of neutrosophic fuzzy set (Das et al., [39]; Sarkar et al., [107]). Meanwhile, Wang
et.al [120] presented such set as Single Valued Neutrosophic Set (SVNS) as it comprised of
generalized classic set, Fuzzy set, interval valued fuzzy set, Intuitionistic Fuzzy Set and para
consistent set respectively.

As application of SVNS optimization method is rare in rigid pavement design; hence it is
used to minimize the thickness of the pavement by considering cumulative fatigue life and
deflection as constraints respectively. However the factors governing of former constraints
are axel loads, pavement thickness, modulus of elasticity of cement concrete, subgrade
modulus, poisson’s ratio, load contact area, annual rate of growth of commercial traffic,
number of axel per day, radius of relative stiffness and design period respectively. While, the
later constraint includes radius of load contact area, subgrade modulus, radius of relative
stiffness and single as well as tandem axel loads respectively. Besides that, in this effort
flexibility has been given in number of axel per day in fatigue life constraint only; hence
cumulative vehicle per day (CVPD) becomes imprecise in nature so that it can be considered
as neutrosophic set to from truth, indeterminacy and falsity membership functions. Ultimately
neutrosophic optimization technique can be applied on the basis of cited membership
functions and outcome of such Nonlinear Optimum Pavement Design (NLOPD) tries to

provide the minimum thickness for varying subgrade modulus of soil.

10.1 Formulation for Optimum JPCP Design

The first step of formulation of JPCP is to formulate the pavement optimization problem by

defining objective function (minimum thickness) and the constraints (fatigue life consumed,

deflection and corner stress due to single and tandem axle) that control the solution.

Fig.-10.1 Construction and Fatigue Failure of JPCP(http://www.escsi.org,
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http://c3sinc.com,accessed on 20 June 2017)

10.1.1 Design input parameters

The input parameters that influence the design are Poisson ratio (v) , Load due to single axle
(R), Load due to tandem axle(P,), Modulus of elasticity of concrete(£), Modulus of
subgrade reaction(k), Radius of load contact areas assumed circular(a), Initial number of
axles per day in the year(A), Design period in year(n) , Annual rate of growth of commercial
traffic (r), Limiting value of deflection due to single axle(d, ), Limiting value of deflection

due to tandem axle(d, ), Flexural strength of concrete (S, ),

10.1.2 Design method

For determining optimum thickness of JPCP ,a crisp mathematical model has been
formulated. Here Thickness of Slab (TS) has been minimized subjected to a specified set of

constraints (P11.1) .Here the optimum design is

(P10.1)

Minimize TS(h)Eh (10.1)
subject to

F(Lhk, 4, 4,)= [365 x{(1+r) —1}}2 [(SR, (n)-0.4325)(SR, (1) ~0.4325)] " 4,4, <(0.5) (42577)"% r*

(10.2)
365x{(1+) <1025 | (R (h)+ S, (h)
F,(Lhk,4,4,)=2Log — s +[ 008 J—23.47SLog(A1A2) (10.3)
0.431R a
Dy, (k,1)= e I{I—O.SZ(YJ}Sdl (10.4)
0.431P, a
D, (k)= e 2{1—0.82(7ﬂ£d2 (10.5)

S;L(h)=%{ _(alzJ ]<Sf (10.6)
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3P a2
s¢, (=25 1-( j <s, (10.7)

h’ /
4, (A1’A2)5A1+A2SA (10.8)
LhA,4,>0;1, <k<u, (10.9)
where

3

3(1+v)132[1n( Eh 4j+1'84_4v+1—v+1.18(1+2v)a
z(3+v)h Oka [

SR.(h)=

s, fori=1,2 (10.10)
The Non-linear Programming Problems (NLPPs) under crisp scenario, the aim is to maximize
or minimize a objective function under constraints. But in many practical situations, the
decision maker may not be in a position to specify the objective and/or constraint functions
precisely bur rather can specify in imprecise sense. In such situation, it is desirable to use
some NNLP type of modelling for providing more flexibility to the decision maker. Since the
impreciseness may appear in a NLP in many ways (e.g. the inequalities may be imprecise, the
goals may be imprecise or the problem parameters like initial number of axle per day in year
and deflection may be flexible in nature)so the definition of NNLP is not unique .Here initial
number of axle per day in year and deflection have been considered imprecise so that the

limiting value of fatigue analysis constraints, sum of initial axle per day in year, deflection

due to single axle load and tandem axle load are assumed as w;q;4;d,;d, with maximum

allowable tolerance p,;p,;p,p,,p, respectively .Thus above problem is formulated as a

nonlinear programming problem with precise and imprecise resources as

(P10.2)
Minimize TS (h)=h (10.11)
such that
F(l,hk,A,4,)< w(wz'th maximum allowabletollerance p, ) (10.12)
F,(I,h,k,4,4,)<q (with maximum allowabletollerance p, ); (10.13)
Dy, (I,k)<d, (with maximum allowabletollerance p, ); (10.14)
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D, (l,k)<d, (with maximum allowabletollerance p, );

Seu(h)<S,;

SC, (h)<S

f7

I

A, (A, A4,) < A (with maximum allowable tollerance p )

Lint, A, 4,>0,

w=

[, <k<u,

Where /, and u, are the lower and upper limit of & respectively

F(Lhk 4,4, )= [365 x {(1 +r) —1} ><0.25T [(SR -0.4325)(SR, ~0.4325)]

6536 -

(0.5)°(4.2577) r

4.4,

Fz(l,h,k,Al,Az)E2L0g

q=Log(AA4,)

3.268

365x!(1+7) =1'x0.25
{( ) } +[SR1+SRQJ_23.47;

rx0.5

0.0828

0.431P a
Dy, (k,1)= LI1-0.82] —
s (K1) ki? { (zﬂ
0.431P, a
D, (k,I)= T 2 {1—0.82(7ﬂ
A (A4, 4)=4+4,
3
3( +v)10,2 [m[ Eh 4]+1.84_4v+l—v+1.18(1+2V)a
V4 3+v)h 100ka 3 l
SR, (h)=

S,

(10.15)

(10.16)

(10.17)

(10.18)

(10.19)

(10.20)

(10.21)

(10.22)

(10.23)

(10.24)

(10.25)

(10.26)
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for 1=1,2 (10.27)

To solve above nonlinear programming problem (P10.2) we have used Neutrosophic

Optimization Technique
10.2 Neutrosophic Optimization

In conventional optimization problems, it is assumed that the decision maker is sure about the
precise values of data involved in the model. But in real world applications all the parameters
and goals (objective goals ,constraint goals etc.) of the optimization problems may not be
known precisely due to uncontrollable factors. Such type of imprecise parameters and goals
are represented by fuzzy set theory (Zadeh [133])

Actually, a decision maker may assume that an object belongs to a set to a certain degree, but
it is possible that he is not sure about it. In other words, there may be uncertainty about the
membership degree. The main premise is that the parameters’ demands across the problem
are uncertain. So, they are known to fall within a prescribed uncertainty set with some
attributed degree. In fuzzy set theory, there is no means to incorporate this hesitation in the
membership degree. To incorporate the uncertainty in the membership degree, intuitionistic
fuzzy sets (IFSs) proposed by Atanassov [1] is an extension of fuzzy set theory.In
intuitionistic fuzzy set theory along with degree of membership a degree of non-menbership
is usually considered to express ill-know quantity. This degree of membership and non-
memship functions are so defined as they are independent to each other and sum of them is
less or equal to one. So IFS is playing an important role in decision making under uncertainty
and has gained popularity in recent years. However an application of the IFSs to optimization
problems introduced by Angelov [4] His technique is based on maximizing the degree of
membership, minimizing the degree of non-membership and the crisp model is formulated
using the IF aggregation operator.

Now the fact is that in [FS indeterminate information is partially lost ,as hesitant information
is taken in consideration by default. So indeterminate information should be considered in
decision making process. Smarandache [94] defined NS that could handle indeterminate and
inconsistent information. In neutrosophic sets indeterminacy is quantified explicitly with
truth membership, indeterminacy membership and falsity membership function which are
independent .Wang et.al [120] define SVNS which represents imprecise, incomplete,
indeterminate, inconsistent information. Thus taking the universe as a real line we can

develop the concept of single valued NS as special case of NS. These set is able to express
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ill-known quantity with uncertain numerical value in decision making problem. It help more
adequately to represent situations where decision makers abstain from expressing their
assessments. In this way NS provide a richer tool to grasp impression and ambiguity than the
conventional fuzzy as well as IFS. These characteristics of neutrosophic set led to the
extension of optimization methods in Neutrosophic Environment (NSE).

Besides It has been seen that the current research on fuzzy mathematical programming is
limited to the range of linear programming introduced by Ziemmermann[136] . He showed
that the solutions of Fuzzy Linear Programming Problems (FLPPs) are always efficient. The
most common approach for solving fuzzy linear programming problem is to change it into
corresponding crisp linear programming problem. But practically there exist many fuzzy and
intuitionistic fuzzy nonlinear structural , pavement design problems in the field of civil
engineering. These problems cannot be modelled as a linear form and solved by traditional
techniques due to presence of imprecise information.

So, the research on modelling and optimization for nonlinear programming under fuzzy
intuitionistic fuzzy and neutrosophic environment are not only necessary in the fuzzy
optimization theory but also has great and wide value in application to structural engineering
problems of conflicting and imprecise nature. So following nonlinear neutrosophic
optimization technique ( Sarkar et.al.[100]) the proposed nonlinear JPCP (P10.1) for the first
time ever being solved with LINGO 11.0 in neutrosophic environment in this chapter and
literature. LINGO 11.0 is a comprehensive tool designed to make building and solving
mathematical optimization models easier and more efficient. LINGO provides a completely
integrated package that includes a powerful language for expressing optimization models,
a full-featured environment for building and editing problems, and a set of fast built-in
solvers capable of efficiently solving most classes of optimization models. However the
outcome of this investigation has been furnished in the following flowchart by incorporating
all the essential parameters associated with the pavement design. In this regard it can be cited
that fuzzy, IF and neutrosophic NLP are rarely involved in literature and Das et.al [25]
developed neutrosophic NLP with numerical example and application of real life problem

recently.
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<Crisp Model Formulation>

Minimization of thickness of Slab 7S (%) = # subject to

LAk AA)<WE(Lhk A, 4) < Dy, (k1) < d;
Dy (k’l) <dy; S.:‘.:ll, (h) < S.f ’ Al + Az <4

Lk A, 4 >0

Model Formulation in
Imprecise Environment

e

Minimization of thickness of Slab 7S (4) = 4 subject
to F(l,hk, A, 4 ) <w(withmaximumn dallowable tolerance p,),

E(Lh.k, 4, 4,) < q(withmeximum allowable tolerance p,);

D, (k,1) < d,(withmaximum allowable tolerance P4 );

D, (k1) < d,(withmaximum allowable tolerance D)

D, (k1)<d,;

A + A, < A (withmaximum allowable tolerance p ),
Solve using NSO Technique (Sarkar et.al [105])

A4

Solve the problem by LINGO-11 Solver

v

Output: Thickness of the slab, radius of
relative stiffness, initial number of axle due
to single axle and initial number of axle due

to tandem axle according to modulus of

subgrade reaction.

Fig.-10.2 Flow Chart for Work Plan of The JPCP Design Study
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10.3 Numerical Illustration of Optimum JPCP Design based on IRC:58-
2002

For designing the thickness of rigid pavement, Indian Roads Congress (IRC: 58-2002)

[17]recommends a guideline for incorporating the input data e.g. Poisson ratio (v) as 0.15,
legal single axle load (B) and legal tandem axle load(PR,) as 10200 kg and 19000 kg
respectively, Modulus of elasticity of concrete (E ) as 3x10° kg/cm?, Modulus of subgrade

reaction (k) ranging from 6 to 22 kg/cm’, design period as 20 years, Annual rate of growth

of commercial traffic (r) as 7.5%, Limiting value of deflection due to single axle (d;) as well
as to tandem axle (dy) as 0.1with maximum allowable tolerance 0.025, Flexural Strength of
Concrete (S¢) as 45 kg/cm2 and Radius of load contact areas (a) assumed as circular. By
flowing such guidelines, a sample calculation was made for National Highway (NH)
considering the trial thickness as 32 cm for subgrade modulus of 8kg/cm3considering peak
vehicular load passing through it. Flexibility to the axles per day in the year with the range of
its value greater than equal to 3000 having 250 tolerance in the unit of Commercial Vehicle
Per Day (CVPD) was considered as per standard guidelines (IRC-58-2002)[14]. Further 25 %
of the total CVPD in the direction of predominant traffic was also taken into consideration
but that trial became unsafe. However by considering thickness of the said pavement as 33
cm become safe.

Now following Neutrosophic Optimization Method (Sarkar et.al [105]) imprecise model

(P10.2) can be reduced to following crisp linear programming problem as

(P10.3)

Maximize (6 +x—17) (10.28)

such that
(32.48638 -31 .97258)

TS (h)+0 <32.48638; (10.29)

%
TS (h)+ 5138 <32.48638; (10.20)
32.48638+31.97258+0.05138

TS(h)+T1S . ; (10.21)

I/

n

250
Ay, (A4, 4)+ 9(.//—) <3250; (10.22)
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N _6250+25
<=

A[A(AI’A2)+

L)

A,(A4, 4)+ K25 <3250;

(0.125-0.1)

D, (1,k)+6 <0.125;

Dy, (Lk)+ n S0.125+0.1+.0025_

b

Tpg,, k) 2
Dy, (1,k)+x.0025 < 0.125;
(0.125-0.1)
D,, (Lk)+0 """ <0125

< 0.125+0.1+.0025

Dy, (k) +—1 : ;

T Dy (1K)

D,,, (I,k)+x.0025<0.125;
O+xk+n<3;0>K,0>n;
H,K,UG[O,I];l,h,AI,A2>O, [, <k<u,

(10.32)
Where

A, (A19A2)=A1 +4;;
9=—ln(l—a);

y=4

T, = 6 ;
(32.48638—-31.97258—-0.05138)

6
"2 (0,025 -.0025)”

6
"ot = (025~ 0025)”

6
That) = ma
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(10.25)

(10.26)

(10.27)

(10.28)

(10.29)

(10.30)

(10.31)

(10.33)

(10.34)

(10.35)

(10.36)

(10.37)

(10.38)

(10.39)




K:]n;/; (1040)

n=—tanh™ (25-1). (10.41)
a+pf+y<3; (10.42)
a,p,y €[0.1] (10.43)

Here impreciseness on flexible constraints is taken as single valued neutrosophic set with
nonlinear truth, indeterminacy and falsity membership functions. It is noted that if proper
nonlinear membership functions are chosen based on past experience, we may get better
results. For example we have chosen exponential and hyperbolic membership functions. The
result have been calculated for k=6-22.For example the numerical expression has been
shown for k=8.The optimum value of Thickness of the slab, radius of relative stiffness,
optimum value of initial number axle per day in year due to single axle load and due to
tandem axle load according to modulus of subgrade reaction have been shown in the
Table.10.1.
Table 10.10ptimum Thickness of JPCP using NSO Technique

Modulus of | Thickness  of | Radius of relative | Initial Initial
subgrade reaction lab (h* cm) stiffness. (1" cm) | number  of | number  of
(k kg/cmB) sia ¢ axle due to|axle due to
single axle | tandem axle
load (4,") load ( 4,)
6 32.84625 102.7743 .0025 2999.997
7 32.51866 95.10986 169.0116 2884.639
8 32.25517 95.10986 1568.750 1568.750
9 31.95554 83.10438 .00258 2999.997
10 31.69637 77.85755 .003095 3053.647
11 31.39012 74.32656 .04876 3053.602
12 31.15804 73.85598 1568.750 1568.750
13 30.89417 67.26979 1568.750 1568.750
14 30.63287 64.51202 1568.750 1568.750
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15 30.37357 62.03011 0258 2999.997
16 30.11578 59.78019 1568.750 1568.750
17 29.85905 57.727759 1568.750 1568.750
18 29.60300 55.84443 0.258 2999.997
19 29.34726 54.10806 1568.750 1568.750
20 29.09102 53.18488 856.2631 2143.737
21 28.83046 51.63307 0258 2999.997
22 28.57874 49.60825 .0025 2999.997

In Table.10.1 the optimum thickness of slab ,radius of relative stiffness, initial number of
axle per day in year due to single axle load and tandem axle load are calculated according to
modulus of subgrade reaction. However as expected ,the thickness (h) ,and radius of relative
stiffness (1)of JPCP has tent to decrease with the increment of modulus of subgrade reaction
(k)and at the value of k=8 the optimum thickness is 32.25517 which supports a safe PCA
experimental value (IRC:58-2002).The optimum thickness obtained by neutrosophic
optimization technique has shown 2.26% lesser value compared to the calculated value as
shown in IRC:58-2002. There is no significant change of optimum thickness with change of
modulus of subgrade reaction and as a whole the model formulation become cost effective. In
the present study the optimum radius of relative stiffness has been calculated as 87.98206 for

k=8 which is 14.99%less value supported by IRC:58-2002 .

10.4 Conclusion
This work investigates how NSO technique can be utilized to solve a JPCP problem. The
concept of NSO technique allows one to define a degree of truth membership, which is not a
complement of degree of falsity; rather, they are independent with degree of indeterminacy.
In this problem actually we investigate the effect of nonlinear truth, indeterminacy and
falsity membership function of NS in perspective of single objective nonlinear JPCP problem
Here we have formulated a non-linear JPCP design .In this test problem, we find out
minimum thickness ,radius of relative stiffness ,initial number of axle due to single and
tandem axle per day in year according to modulus of subgrade reaction. The comparisons of

results obtained for the undertaken problem clearly show the superiority of neutrosophic
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optimization over PCA. The results of this study may lead to the development of effective

neutrosophic technique for solving other model of nonlinear programming problem in

different field.
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CHAPTER 11

Multi-Objective Structural Design Optimization Based on

Neutrosophic Goal Programming Technique

The research area of optimal structural design has been receiving increasing attention from
both academia and industry over the past four decades in order to improve structural
performance and to reduce design costs. In the real world, uncertainty or vagueness is
prevalent in the Engineering Computations. In the context of structural design the uncertainty
is connected with lack of accurate data of design factors. This tendency has been changing
due to the increase in the use of fuzzy mathematical algorithm for dealing with such kind of
problems.

Fuzzy set (FS) theory has long been introduced to deal with inexact and imprecise data by
Zadeh [1], Later on the fuzzy set theory was used by Bellman and Zadeh [58] to the decision
making problem. A few work has been done as an application of fuzzy set theory on
structural design. Several researchers like Wang et al. [119] first applied a-cut method to
structural designs where various design levels o were used to solve the non-linear problems.
In this regard ,a generalized fuzzy number has been used Dey et al. [32] in context of a non-
linear structural design optimization. Dey et al.[34]Jused basic t-norm based fuzzy
optimization technique for optimization of structure and Dey et al. [33] developed
parameterized t-norm based fuzzy optimization method for optimum structural design.

In such extension, Intuitionistic fuzzy set which is one of the generalizations of fuzzy set
theory and was characterized by a membership, a non- membership and a hesitancy function
was first introduced by Atanassov [1] (IFS). In fuzzy set theory the degree of acceptance is
only considered but in case of IFS it is characterized by degree of membership and non-
membership in such a way that their sum 1is less or equal to one. Dey et al. [35]solved two
bar truss non-linear problem by using intuitionistic fuzzy optimization problem.Again Dey et
al. [36] used intuitionistic fuzzy optimization technique to solve multi objective structural
design. R-x Liang et al[66] applied interdependent inputs of single valued trapezoidal
neutrosophic information on Multi-criteria group decision making problem. P Ji et al. [10],S
Yu et al. [132] did so many research study on application based neutosophic sets and

intuitionistic linguistic number . Z-p Tian et al.[115]Simplified neutrosophic linguistic multi-
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criteria group decision-making approach to green product development. Again J-j Peng et
al.[85] introduced multi-valued neutrosophic qualitative flexible approach based on
likelihood for multi-criteria decision-making problems.Also H Zhang et. al [58]investigates a
case study on a novel decision support model for satisfactory restaurants utilizing social
information. P Ji et al. [135] developed a projection-based TODIM method under multi-valued

neutrosophic environments and its application in personnel selection.

Intuitionistic fuzzy sets consider both truth and falsity membership and can only handle
incomplete information but not the information which is connected with indeterminacy or
inconsistency.

In neutrosophic sets indeterminacy or inconsistency is quantified explicitly by indeterminacy
membership function. Neutrosophic Set (NS), introduced by Smarandache [94] was
characterized by truth, falsity and indeterminacy membership so that in case of single valued
NS set their sum is less or equal to three. In early [24] Charnes and Cooper first introduced
Goal programming problem for a linear model. Usually conflicting goal are presented in a
multi-objective goal programming problem. Dey et al[41] used intuitionistic goal
programming on nonlinear structural model. This is the first time NSGO technique is in
application to multi-objective structural design. Usually objective goals of existing structural
model are considered to be deterministic and a fixed quantity.In a situation ,the decision
maker can be doubtful with regard to accomplishment of the goal .The DM may include the
idea of truth,indeterminacy and falsity bound on objectives goal.The goal may have a target
value with degree of truth,indeterminacy as well as degree of falsity.Precisely ,we can say a
human being that express degree of truth membership of a given element in a fuzzy set,truth
and falsity membership in a intuitionistic fuzzy set,very often does not express the
corresponding degree of falsity membership as complement to 3.This fact seems to take the
objective goal as a neutrosophic set. The present study investigates computational algorithm
for solving multi-objective structural problem by single valued generalized NSGO technique.
The results are compared numerically for different aggregation method of NSGO technique.
From our numerical result, it has been seen that the best result obtained for geometric
aggregation method for NSGO technique in the perspective of structural optimization

technique.

11.1 Multi-objective Structural Model

In the design problem of the structure i.e. lightest weight of the structure and minimum

deflection of the loaded joint that satisfies all stress constraints in members of the structure.

Page 257



In truss structure system ,the basic parameters (including allowable stress,etc.) are known
and the optimization’s target is that identify the optimal bar truss cross-section area so that
the structure is of the smallest total weight with minimum nodes displacement in a given load

conditions .

The multi-objective structural model can be expressed as

(P11.1)
Minimize WT (A) (11.1)
minimize &(A) (11.2)
subject to o(4)<[c] (11.3)
A™ <4< 4™ (11.4)

where A=[4,,4,,..., 4, ]7 are the design variables for the cross section, n is the group number
of design variables for the cross section bar ,WT (A4)= Z p, AL, is the total weight of the
i=1

structure ,5(A)is the deflection of the loaded joint ,where L, 4and p,are the bar length,
cross section area and density of the i” group bars respectively. o (A)is the stress constraint
and [o]is allowable stress of the group bars under various conditions, A™and A™ are the

lower and upper bounds of cross section area A respectively.

11.2 Solution of Multi-objective Structural Optimization Problem (MOSOP) by
Generalized Neutrosophic Goal Optimization Technique

The multi-objective neutrosophic fuzzy structural model can be expressed as

(P11.2)

Minimize WT(A) with target value WIT, truth tolerance @, ,indeterminacy tolerance d,,

and rejection tolerance ¢, (11.5)

Minimize 6 (A) with target value 0, ,truth tolerance as ,indeterminacy tolerance ds and

rejection tolerance c, (11.6)

subject to G(A)S[d] (11.7)
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A™ < A< 4™ (11.8)

where A=[A1,A2,....,An]7 are the design variables for the cross section, n is the group

number of design variables for the cross section bar.
To solve this problem we first calculate truth ,indeterminacy and falsity membership function

of objective as follows

w, if WT'(A)<WT,
T (WT(4)) = WI[WTO””Z_WT(A)) if WI, <WT(A)<WT, +ay, (11.9)
wT
0 if WT(A)=WT, +ay,
0 if WT(A)<WT,
WT(A)-WT,\
w| | WT, <WT (A)<SWT, +ay,;
W, _ wr
T (P (4)) = WT, +a,, —WT(A)
wz( e J if WI,+d,,, <WT(A)<WT,+ay,
Ay = dyr
0 if WT(A)=WT,+a,,
(11.10)
__ "
where d,,, = W w,
aWT cWT
0 if WI(A)<WT,
-WT,
Fie (T (4)) = (MJ i WT, ST (A4) ST, (1.
wr
W, if WT'(A)2WT,+c,;
And
w if 6(4)<6,
5 -5(4
e e R P 11
%
0 if 6(A4)26,+a,
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0 if 5(4)<,

WZ(MJ i 6,<5(4)<5,+a,

, dﬁ
I, (6(4))= 5 +a, WT(A) (11.13)
WZ( L ) if 6,+d;<5(A)<6,+a,
a5 —ds
0 if 6(A4)=6,+as
__"
d‘s_wl o (11.14)
as cs
0 if 5(4)<3,
5(A4)-5,
()= o S 2oz 1L15)
W, if5(A)250+05

According to generalized neutrosophic goal optimization technique using truth,

indeterminacy and falsity membership function ,MOSOP (P11.1) can be formulated as

(P11.3)
Model -1
Maximize o, Maximize y,Minimize [ (11.16)
WT(A)SWTOMWTLl—ﬂJ, (11.17)
M
dWT
WT(A)=WT,+—Ly, (11.18)
w,
WT (A)<SWT, +ayy ———(ayr —dyy ), (11.19)
w,
WT(A4)<WT,+L g, (11.20)
Ws
WT (A)<WT,, (11.21)
5(4)<6, +a5L1—ﬁJ, (11.22)
w
dé'
5(A)=8,+—2y, (11.23)
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5(A)< 8, +a;—~(a;-dy), (11.24)

W,
5(4)<8,+2p, (11.25)
W;
5(4)<a,, (11.26)
O<a+pf+y<w+w,+w; (11.27)

ae[0,w],y €[0,w,],B[0,w];

w; €[0,1],w, €[0,1],w, €[0,1];

0<w +w,+w, <3; (11.28)
gj(x)Sbj,j:1,2, ..... ,m (11.29)
x;20, j=12,..,n (11.30)

With the help of generalized truth, indeterminacy, falsity membership function the
generalized neutrosophic goal programming based on arithmetic aggregation operator can be

formulated as

(P11.4)
Model -I1
Minimize {(l—a)+f+(1—y)} (11.31)

Subjected to the same constraint as (P11.3)
With the help of generalized truth, indeterminacy, falsity membership function the
generalized neutrosophic goal programming based on geometric aggregation operator can be
formulated as

(P11.5)
Model -111

Minimize 3|(1-a) B(1-7) (11.32)

Subjected to the same constraint as (P11.3)
Now these non-linear programming Model-LILIII can be easily solved through an
appropriate mathematical programming to give solution of multi-objective non-linear

programming problem (P11.1) by generalized neutrosophic goal optimization approach.

11.3 Numerical Ilustration

Page 261



A well-known three bar planer truss is considered in Fig.-11.1 to minimize weight of the

structure WT (A, A4,)and minimize the deflection 5(4,4,) at a loading point of a

statistically loaded three bar planer truss subject to stress constraints on each of the truss

members

Fig.-11.1 Design of the Three-Bar Planar Truss(Pratt Truss Bridge,

http://www.atlaso.com.accessed on 17 June 2017)

The multi-objective optimization problem can be stated as follows

(P11.6)
Minimize  WT (4, 4,)=pL(224,+ 4, ) (11.33)
Minimize 5(A1,A2)=m (11.34)
Subject to
P(N24,+ 4,) .
O-I(AI,AZ)_(\/EA12+2A1A2)S[O-I i (11.35)
___ P 1.
O'Z(AI,AZ)—(A1+J§A2)S[O'2], (11.37)
_ P4, c.
03(A1,A2)—(ﬁA5+2A1A2)3[03], (11.38)

/limin SA7SA7maX l=l,2
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where P= applied load ; p=material density ; L=length ; £=Young’s modulus ; 4 =
Cross section of bar-1 and bar-3; 4, =Cross section of bar-2; ¢ is deflection of loaded joint.
[GIT ] and I:O'ZT ] are maximum allowable tensile stress for bar 1 and bar 2 respectively, o, is
maximum allowable compressive stress for bar 3.The input data is given in tablel.

Table 11.1Input data for crisp model (P11.6)

Maximum . 4
1l bl Maximum , and
. Volume allowable | 1owable | Young’s o
Applied density Length | tensile ; modulus 4
load p L t compressive ¢
P stress stress| o€ E of cross
(KN) (KN/m3) (m) |:(TT:| [0 ] (KN/mz) section
5 (KN/mz) of bars
(KN/m ) (10%m?)
A =0.1
Almax — 5
20 100 1 20 15 2x107 .
AT =01
AP =5

This multi objective structural model can be expressed as neutrosophic fuzzy model as

(P11.7)

Minimize WT(4,,4,)=pL (2'\/5/11 +4, ) with target value 4x10° KN ,truth tolerance

2x10°KN ,indeterminacy tolerance M x10° KN and rejection tolerance
0.5w, +0.22w,
4.5x10* KN (11.39)
o PL : w
Minimize o (A1 , Az) =—————— with target value 2.5x10"m ,truth tolerance
E(4+24,)
2.5x107"m ,indeterminacy tolerance M 107 mand rejection tolerance
0.4w, +0.22w,
4.5x10"m (11.40)
Subject to
P(N24,+4
o (4,4,)= ( : 2) s[a{]; (11.41)

(V24> +24,4,)
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o, (4,4, R ol |; (11.42)
(4,4,) ( )

_ P4, 7.
0'3(/11, 2)_(«EA12+2A1A2)S[O-3]’

(11.43)
A <4 <A™ =12 (11.44)

According to generalized neutrosophic goal optimization technique using truth,

indeterminacy and falsity membership function ,MOSOP (P11.6) can be formulated as

(P11.8)

Model -1

Maximize o, Maximize y,Minimize [ (11.45)

(2\/§A1+A2)£4+2L1—1J, (11.46)

W

(2v24,+ 4,) >4+ - 7, (11.47)

w, (O.Sw1 + 0.22w2)
Y 4!

224+ 4,)<4+2-L| 2 : 11.48

( V24 2) Wz{ (0.5w1+0.22w2)] (1145)
4.5

(2V24,+ 4,) <4+=2p, (11.49)
W,

(2@4 +A2) <4, (11.50)

L£2.5+2.5(1—ﬁ], (11.51)

(4++24,) W,

20 w,

= >25+4 1 e (11.52)

( A+2 Az) w, (0.4w, +0.22w,)

20 o505 a5 M : (11.53)

(4 +424,) W, (0.4w,+0.22w,)

N 5P (11.54)

(4+424,) W,
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2
2 o, (11.55)

(4 +24,)
O<a+pf+y<w+w,+w; (11.56)
ae[O,wl],ye[O,wz],,Be[O,w3];

w; €[0,1],w, €[0,1],w, €[0,1];

0<w +w,+w, <3; (11.57)
20(N24,+ 4,
<20; (11.58)
(V247 +24,4,)
20 o, (11.59)
(4 +24,)
04, 5, (11.60)
(V247 +24.4,)
0.1<4 <5 i=172 (11.61)

With the help of generalized truth, indeterminacy, falsity membership function the
generalized neutrosophic goal programming problem (P11.6)based on arithmetic aggregation

operator can be formulated as

(P11.9)
Model -1
Minimize {(1—&)+f+(1—7)} (11.62)

Subjected to the same constraint as (P11.8)
With the help of generalized truth, indeterminacy, falsity membership function the
generalized neutrosophic goal programming problem (P11.6) based on geometric aggregation
operator can be formulated as

(P11.10)
Model -I11

Minimize 3|(1-a) B(1-7) (11.63)

Subjected to the same constraint as (P11.8)
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The above problem can be formulated using Model-LILIII and can be easily solved by an
appropriate mathematical programming to give solution of multi-objective non-linear
programming problem (P11.6) by generalized neutrosophic goal optimization approach and
the results are shown in the table 11.2.Again value of membership function in GNGP
technique for MOSOP (P11.6) based on different Aggregation is given in Table 11.3.

Table 11.2Comparison of GNGP solution of MOSOP (P11.6) based on different

Aggregation
Methods A; , 4, WTEA"AZ) 5(Af7’ *)
x10" m x10*KN x107"m
x10™ m’
Generalized Fuzzy Goal
programming(GFGP) W =0.15 0.5392616 | 4.474738 6 2.912270
Generalized Intuitionistic
Fuzzy Goal
programming(GIFGP) W =0.15 0.5392619 | 4.474737 6 2.912270
wy =0.8
Generalized Neutrosophic Goal
programming (GNGP) 5 0.4321463 | 4.904282 | 3.564332
w; =0.4,w, =03,w3=0.7
Generalized Intuitionistic
Fuzzy optimization (GIFGP)
based on Arithmetic 0.5392619 | 4.474737 6 2912270

Aggregation
w =0.15,w3 =0.8

Generalized Neutosophic
optimization (GNGP) based on 5 0.4321468 | 4.904282 | 3.564333
Arithmetic Aggregation
w =0.4,w, =0.3,u3 =0.7
Generalized Intuitionistic
Fuzzy optimization (GIFGP)
based on Geometric 0.5727008 | 2.380158 4 5.077751
Aggregation
w; =0.15,w3 =0.8

Generalized Neutosophic
optimization (GNGP) based on 5 1.109954 | 4.462428 | 3.044273
Geometric Aggregation

w =0.4,w, =0.3,w3 =0.7

Here we get best solutions for the different value of w;,w,,w; in geometric aggregation method
for objective functions. From Table 11.2 it is clear that Neutrosophic Optimization technique
is more fruitful in optimization of weight compare to fuzzy and intuitionistic fuzzy

optimization technique. Moreover it has been seen that more desired value is obtain in
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geometric aggregation method compare to arithmetic aggregation method in intuitionistic as
well as neutrosophic environment in perspective of structural engineering.
Table 11.3Value of membership function in GNGP technique for MOSOP (P11.6)
based on different Aggregation

Methods o Fy Sum of Truth, Indeterminacy and Falsity

Membership Function
i o =.1814422 TWT(WT(ANAZ))”WT(WT(AI’Az))"'FWT(WT(AnAz))
programming £ =2191435 | =.2191435+.1804043+.1406661 =.5402139
(GNGP) s
Wy = 04wy =03,y 0.7 | 7 =6013477 T5(5(/11,Az))+15(5(A1,A2))+F5(5(A1,A2))
= 2297068 +.1804043 +.1655628 = 5756739

Neutrosophic Goal

Generalized

Neutosophic @ =2

optimization * Tyr (WT (A, 4y))+ 1y (WT (A4, 4,))+ Fyy (WT (4, 4,))
(GNGP)basedon | 7 =215 | _ 1191435+ 1804044 +.1406662 = 5402141
Arithmetic 7O T ((4,4)) 1 (5(4,4))+ Fy (5(4,4,))
Aggregation

w1204y = 03,05 0.7 = 2297068 +.1804044 +.1655629 = 5756741
Generalized @ =30p14

Neutosophic * Tyr (WT (A, 4))+ 1 (WT (4, 4,))+ F (WT (4., 4,))
optimization F=303195 1 _ 3075145 +.0922543 +.07193320 = 471702

giﬁrﬁi’t)rﬁmd"“ 7SS | (5 )+ (84, 4))+ Fy (84, 4,))
Aggregation — 3129163 +.09225434 + 08466475 = 48983539

w; =0.4,w, =03,w, =0.7

From the above table it is clear that all the objective functions are attain their goals as well as
restriction of truth,indeterminacy and falsity membership function in neutrosophic goal
programming problem based on different aggregation operator.The sum of
truth,indeterminacy and falsity membership function for each objective is less than sum of
gradiation (w +w, +w,) Hence the criteria of generalized neutrosophic set is satisfied.

11.4 Conclusion

The research study investigates that neutrosophic goal programming can be utilized to
optimize a nonlinear structural problem. . The results obtained for different aggregation
method of the undertaken problem show that the best result is achieved using geometric
aggregation method. The concept of neutrosophic optimization technique allows one to
define a degree of truth membership, which is not a complement of degree of falsity; rather,
they are independent with degree of indeterminacy. As we have considered a non-linear three

bar truss design problem and find out minimum weight of the structure as well as minimum
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deflection of loaded joint, the results of this study may lead to the development of effective
neutrosophic technique for solving other model of nonlinear programming problem in

different field.
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CHAPTER 12

Multi-objective Cylindrical Skin Plate Design Optimization based on

Neutrosophic Optimization Technique

Structural optimization is an important notion in civil engineering. Traditionally structural
optimization is a well known concept and in many situations it is treated as single objective
form, where the objective is known the weight function. The extension of this is the
optimization where one or more constraints are simultaneously satisfied next to the
minimization of the weight function. This does not always hold good in real world problems
where multiple and conflicting objectives frequently exist. In this consequence a
methodology known as multi-objective structural optimization (MOSO) is introduced.In
structural engineering design problems, the input data and parameters are often
fuzzy/imprecise with nonlinear characteristics that necessitate the development of fuzzy
optimum structural design method. Fuzzy set (FS) theory has long been introduced to handle
inexact and imprecise data by Zadeh[133]. Later on Bellman and Zadeh [10] used the fuzzy
set theory to the decision making problem. The fuzzy set theory also found application in
structural design. Several researchers like Wang et al. [119] first applied a-cut method to
structural designs where the non-linear problems were solved with various design levels a,
and then a sequence of solutions were obtained by setting different level-cut value of a. Rao
[89] applied the same a-cut method to design a four—bar mechanism for function generating
problem. Structural optimization with fuzzy parameters was developed by Yeh et al. [132]
Xu [13] used two-phase method for fuzzy optimization of structures. Shih et al. [95] used
level-cut approach of the first and second kind for structural design optimization problems
with fuzzy resources. Shih et al [96] developed an alternative a-level-cuts methods for
optimum structural design with fuzzy resources. Dey et al. [32] used generalized fuzzy
number in context of a structural design. Dey et al. [33] developed parameterized t-norm
based fuzzy optimization method for optimum structural design. Also, Dey et.al[34]
Optimized shape design of structural model with imprecise coefficient by parametric
geometric programming. In such extension, Atanassov [1] introduced Intuitionistic fuzzy set
(IFS) which 1s one of the generalizations of fuzzy set theory and is characterized by a
membership function, a non membership function and a hesitancy function. In fuzzy sets the
degree of acceptance is only considered but IFS is characterized by a membership function
and a non-membership function so that the sum of both values is less than one. A
transportation model was solved by Jana et al[57] using multi-objective intuitionistic fuzzy
linear programming. Dey et al. [35] solved two bar truss non linear problem by using
intuitionistic fuzzy optimization problem. Dey et al. [31] used intuitionistic fuzzy
optimization technique for multi objective optimum structural design. Intuitionistic fuzzy sets
consider both truth membership and falsity membership. Intuitionistic fuzzy sets can only
handle incomplete information not the indeterminate information and inconsistent
information.In neutrosophic sets indeterminacy is quantified explicitly and truth membership,
indeterminacy membership and falsity membership which are independent. Neutrosophic
theory was introduced by Smarandache [94] .The motivation of the present study is to give
computational algorithm for solving multi-objective structural problem by single valued
neutrosophic optimization approach. Neutrosophic optimization technique is very rare in
application to structural optimization. We also aim to study the impact of truth membership,
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indeterminacy membership and falsity membership function in such optimization process.
The results are compared numerically both in fuzzy optimization technique, intuitionistic
fuzzy optimization technique and neutrosophic optimization technique. From our numerical
result, it is clear that neutrosophic optimization technique provides better results than fuzzy
optimization and intuitionistic fuzzy optimization.

12.1 Multi-objective Structural Model Formulation

In the design problem of the structure i.e. lightest thickness of the structure and minimum sag
that satisfies all stress and deflection constraints in members of the structure. In vertical lift
gate structural system ,the basic parameters (including allowable stress ,deflection etc) are
known and the optimization’s target is that identify the optimal thickness and sag so that the
structure is of the smallest total weight with minimum stress and deflection in a given load
conditions .

The multi-objective structural model can be expressed as

(P12.1)
Minimize G (12.1)
Minimize S (12.2)
subject to o <[o] (12.3)
5<[5] (12.4)
G™<G<G™ (12.5)
ST << S™ (12.6)

where G and Sare the design variables for the structural design, & is the deflection of the
vertical lift gate of skin plate due to hydraulic load. o is the stress constraint and [o], [6]are

allowable stress of the vertical lift gate of skin plate under various conditions. G™ and s™" ,
G™ and s™ are the lower and upper bounds of design variables respectively.

12.2 Solution of Multi-objective Structural Optimization Problem (MOSOP)
by Neutrosophic Optimization Technique

To solve the MOSOP (P12.1), step 1 of 1.30 is used .After that according to step to pay off
matrix is formulated.

G S
G'\Gg s
o ]
According to step-2 the bound of weight objective U.,rL.; U.,L.and UL, L. for truth,

indeterminacy and falsity membership function respectively. Then

L. <G<UL; L <G<Uf; L, <G<U/. Similarly the bound of deflection objective are U!,L;
U{,L; and U/, L, are respectively for truth, indeterminacy and falsity membership function.
Then I} <S<U!; If <s<U!; [, <S <UL .Where U. =UL; L = +¢,; L, =L, U. =L, + &,

andU! =U!; I =L, + &;; L, =L}; UL = L} + & such that

0<eg, <(U,§ —Lg)and 0<& <(UST —Lg).
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According to neutrosophic optimization technique considering truth, indeterminacy and
falsity membership function for MOSOP (P12.1), crisp non-linear programming problem can
be formulated as

(P12.2)
Maximize (a+7—,8)
subject to
I,z Tyza F, < B F, < B
1,2y Ig2y; O'S[d]; 53[5];
a+p+y<3azp, a>y,
a,ﬂ,ye[O,l], G™<G<G™ §™ <5< ™

Solving the above crisp model (6) by an appropriate mathematical programming algorithm
we get optimal solution and hence objective functions i.e structural weight and deflection of
the loaded joint will attain Pareto optimal solution.

12.3 Numerical Illustration

A cylindrical skin plate of vertical lift gate (Guha A.L et al [49]) in Fig-12.1 has been
considered. The weight of the skin plate is about 40% of the weight of the vertical lift gate,
thus the minimum weight of the vertical lift gate can be achieved by using minimum
thickness of a skin plate with same number of horizontal girders for the particular hydraulic
load. It is proposed to replace stiffened flat skin plate by unstiffened cylindrical skin plate.
The stress developed in skin plate and its distribution mainly depends on water head, skin
plate thickness, and sag and position of Horizontal girders. Stress and deflection are
expressed in terms of water head, skin plate thickness, and sag based on finite element
analysis.

End Carriage
Cylindrical Shell Skin Plate

S

Horizontal Girder

Fig.-12.1  Vertical lift gate with cylindrical shell type skin plate

The proposed expressions are furnished as stress o(G,S,H)=K,G™"S™H" where, o =stress in
Kg/cm?; H = water Head in ‘m’ G = Thickness in ‘mm’ § = Sag in ‘mm’

K, =constant of variation and n; n, and n, = constants depend on the properties of material
Similarly,deflection 5(G,S,H)=K,G™S™H" where, K, = constant of variation and
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n,; n, and n, = constants depend on the properties of material.

To minimize the weight of Vertical gate by simultaneous minimization of Thickness G and
sag, § of skin plate subject to maximum allowable stress (o, ) and deflection (5,).

So the model is

(P12.3)
Minimize G (12.54)
Minimize S (12.55)
Subject to
o(G,S,H)=KG"S™H" <oy; (12.56)
5(G,S,H)=K,G"S"™H" <3, (12.57)
G,S>0;

Input data of the problem is tabulated in Table.12. 1.
Table 12.1Input data for crisp model (P12.1)

Maximum Maximum
water allowable allowable

constant of C?/Z;t;rll:):l)f constants depend on the head stress o, deflection
variation K, K properties of material H (Mpa) of girder
: (m) 5,
(Mpa)
. . n =0.44; n, =1.58; n, =1.0 137.5 55
3.79x10 87.6x10 n, =0.729; n, =0.895; n, =1.0
Solution : According to step 2 of 1.30, pay-off matrix is formulated as follows
G S
G'0.59%x107°  37.61824
§*| 3528.536  0.10256x10
Here UL =U! =3528.536, IF, = I, + &, =0.59x107 +&,; I = I/, =0.59x10°,

Ul =L;+&; =0.59%x107 + &,
Such that 0<z,&; <(3528.536-0.59x107);

Ui =U; =37.61824, L = L + &, =0.10256x107> + &5 L, = Ly =0.10256x1072,
Ul =L +& =0.10256x107 + &

such that 0<&;,& <(37.61824-0.10256x10" )

Here truth, indeterminacy, and falsity membership function for objective functions are G and
S are defined as follows
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if G<0.59x107
3528.536-G

3528.536—0.59x10"
0 if G>3528536

if 0.59x107° <G <3528.536 (12.58)

~(0.59x10° +gG)
3528.536—0.59%107° —
1 sz23528.536

if 0.59x10° +&, <G <3528.536; (12.59)

{ i G<059%x10° +¢,

1 if  G<0.59x107°
(0.59x10° +§
I, = G) if 0.59x10° <G <0.59x107 +&, (12.60)
if G=0.59x107 +¢&,
if §<0.10256x107
T, = 37.61824-5 — if 0.10256x107 < § <37.61824; (12.61)
37.61824 0. 10256><10
if §>37.61824
i §<0.10256x107 + &,
~(0.10256x10° +gs)
F, = S i 0.10256x107 +5 <5 <37.61824; (12.62)
37. 61824 0.10256x10"
1 if §>37.61824
1 if  §<0.10256x107
(0.10256x107 + &) -
I = : i 0.10256x107 < § <0.10256x 107 + & (12.63)
N
0 if §>0.10256x107 + &

Now using neutrosophic optimization technique with truth, indeterminacy and falsity
membership functions we get

(P12.4)

Maximize (a+y—f) (12.64)

subject to G +(3528.536-0.59x10" ) < 3528.536; (12.65)

S+(37.61824-0.10256x107 ) < 37.61824; (12.66)
~(1-8)(0.59x107 +5, ) <3528.5363; (12.67)

S—(1-8)(0.10256 %107 + &, ) < 37.618243; (12.68)
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G+&7<(059x10° +&,); (12.69)

S+&r<(0.10256x107 + & ); (12.70)
(3.79%107 x25)G 57 <137.5; (12.71)
(87.6x10° x25)G ™5 <5.5; (12.72)
as B (12.73)
azy; (12.74)
a+pB+y<3; (12.75)
a, B,y €[0,1] (12.76)
Table 12.2  Comparison of Optimal solution of MOSOP (P12.1) based on
different method
G T

Methods

Fuzzy multi-objective nonlinear
programming (FMONLP)
Intuitionistic fuzzy multi-objective
nonlinear programming (IFMONLP)  52.88329  0.5648065
&, =1764.268,5, =2.57033
Neutosophic optimization (NSO)
&g =&, =1764.268, &5 = & =22.57033

52.88329  0.5648067

44.28802  0.5676034

Here we get best solutions for the different tolerance &,,&, for indeterminacy membership

function of objective functions. From the Table 12.2, it shows that NSO technique gives
better Pareto optimal result in the perspective of Structural Optimization.

12.4 Conclusion

The main objective of this work is to illustrate how much neutrosophic optimization
technique reduce thickness and sag of nonlinear vertical lift gate in comparison of fuzzy and
intuitionistic fuzzy optimization technique. The concept of neutrosophic optimization
technique allows one to define a degree of truth membership, which is not a complement of
degree of falsity; rather, they are independent with degree of indeterminacy. Here we have
considered a non-linear skin plate of vertical lift gate problem .In this problem, we find out
minimum thickness of the structure as well as minimum sag of cylindrical skin plate. The
comparisons of results obtained for the undertaken problem clearly show the superiority of
neutrosophic optimization over fuzzy optimization and intuitionistic fuzzy optimization. The
results of this study may lead to the development of effective neutrosophic technique for
solving other model of nonlinear programming problem in different field.
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APPENDIX-A
13.1 Cirisp Set

A set (crisp set) can be defined as the collection of well-defined distinct objects. For example

if the set of odd positive real numbers in between 0 and 20 be denoted by A ,then in
tabular form it will be A={x:x=2n,0<n<10} and in set builder form it will be
A={2,4,6,8,10,12,14,16,18}

13.2 Fuzzy Set

A fuzzy set is an extension of the notion of crisp set such that their elements are
characterized by their grade of membership and non-membership.

Fuzzy Sets are Introduced by Zadeh [133] as means of modelling problems and
manipulating data that are not precise, in which the source of imprecisions is the absence of
sharply defined criteria of class membership. Fuzzy set is an extension of crisp set i.c a

classical set. Specially a fuzzy set on a classical set X is defined as follows
Z:{(x,,ug(x)):xe)(} (13.1)
where 1, (x)is termed as the grade of membership of x in Aand the function

i (x) X > [0,1] while assign the value 0 ,the member is not included in the given set and

while it assign 1 ,the member is fully included. The value strictly lies between 0 and 1

characterized by the fuzzy numbers.

— classical (crisp) set A
w(x) —— fuzzy set A

membership
function u{x)

Fig.-13.1 Rough Sketch of Crisp Set and Membership Function of Fuzzy Set

In case of crisp set members are in the set with membership value 1 or out of the set the

membership value 0.Thus crisp set C fuzzy set. In other word crisp set is the special case of
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fuzzy set. For example if “tall women” is considered as a member in fuzzy set then it will be

considered as a member in crisp set when it ranged with >6 f¢ . Similarly a point near 10
in fuzzy while be ranged with [9.8,10.3] then it will be considered as an member in crisp set.

13.3 Height of a Fuzzy Set

The height of a fuzzy set 4 on X ,denoted by hgt(fl) is the least upper bound of (x)i.e

hgt(zzl) =sup i, (x)

(13.2)
13.4 Normal Fuzzy Set

A fuzzy set 4is said to be normal if there exist at least one x € X attaining the maximum

membership grade 1 (i.e hgt(?l) =1 ),otherwise it is subnormal .For optimized fuzzy set A4

Max p (x) =1 (13.3)

xeX
13.5 & — Cut of Fuzzy Set

The & —cut of the fuzzy set 4on X is crisp set that contains all the element of X that

have membership values in 4 greater than or equal to «. i.e
A, ={x:u,(x)2za,xe X,ael0,1]} (13.4)
13.6 Union of Two Fuzzy Sets

The union of two fuzzy sets 4 and B is a fuzzy set of X ,denoted by AUB and is defined

by the membership function

s (x) = p; (x)v,ug (x) foreach xe X (13.5)
so that 4B ={(x,,ugué (x)):,ugué (x) =max{,u;1 (x), 15 (x)},‘v’x € X} (13.6)
or AUB= j max{,uA7 (x), 5 (x)}/X (13.7)

xeX
for any continuous fuzzy set ;1, B .
13.7 Intersection of Two Fuzzy Sets

The intersection of two fuzzy sets 4 and B is a fuzzy set of X ,denoted by ANB and is

defined by the membership function
0z (%) = 145 (x) A 1 (x) for each x e X (13.8)

so that
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AN Bz{(x IUAOB(X)) ,uAﬂB( )=min{y;1(x),yg(x)},VxeX} (13.9)

é:j min { z1; (x), 15 (x)}/ X (13.10)

for any continuous fuzzy set ;1, B .
13.8 Convex Fuzzy Set

A fuzzy set  Aof universe of Xis convex if and only if for all x,x,in X
15 (Ax, +(1=2)x, ) 2 min{ gz, (x,), 415 (x,)} when 0<A<1 (13.11)

13.9 Interval Number
Interval analysis is a new and growing branch of applied mathematics. It provides necessary
calculus called interval arithmetic for interval numbers. An interval number can be thought as
an extension of the concept of a real number and also as a subset of real numbers. An interval

number A4 is defined by an ordered pair of real numbers as follows

Az[aL,aR]z{x:aLSxSaR,xeR} (13.12)

where a, and a,the left and right bounds of interval 4 respectively The interval A is also

defined by centre (ac ) and half width (aw) as follows

A=<a,a,>={x:a,—a,<x<a, +a,,xeR} (13.14)
ap+a . ap—4, . .

where 4. =—"——"is the centre and 4, =~ is the half width of 4.

The addition of two interval numbers 4= [aL’aR ] and B= [bpbg]is defined as
A+B=[a,,a,|+[b,.b;|=[a, +b,,a, +b;] (13.15)
or A+B=<a_ +a,>+<b +b >=<a. +b.,a, +b, > (13.16)
Similarly the multiplication of an interval number by a scalar can be defined by

kA:[kaL,kaR] if k=0

(13.17)
:[kaR,kaR] if k<0

or kA=k<a,a, >=<ka_lk|a, > (13.18)

13.10 Fuzzy Number

A fuzzy number is a special case of a fuzzy set. Different definitions and properties of fuzzy
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numbers are encountered in the literature but they all agree on that fuzzy numbers represents
the conception of a set of ,yeal numbers choose to a™ ,where ,a” is the number of fuzzy field. A

fuzzy number is a fuzzy set in the universe of discourse X i.e both convex and normal.
A Fuzzy number Aisa fuzzy set defined on real line ¥ whose membership function #; (x)

has the following characteristic with — %<&, <@, <a; <a, <«

1, (x) for a, <x<a,
1 for a, <x<a,
iy (x) for a;<x<a,

0  for otherwise

1y (x)= (13.19)

where 4, (x) : [alaa2] - [O,l] is continuous and strictly increasing; Az 3[613,614] — [0,1] is

continuous and strictly decreasing. The general shape of fuzzy number following the above

definition is shown below.

>
¥ >

a X

[
|
|
|
I
I
I
I
|
P
a

o e

0] &

Fig.-13.2 Fuzzy Number
Fig.-13.2 Triangular Fuzzy number(TFN)

Let F (ER) be a set of all triangular fuzzy number in real line R . A triangular fuzzy number

AeF (m)is fuzzy number with membership function #; 3m—>[0a1]parameterized by a

triplet (01,02,613 )TFN and defined by

x—a
( 1) fora <x<a,

a, —q
1 for x=a
;i (x) = ) ? (13.20)
(% x]for a, <x<a,
a;—a,

0 otherwise

where a, and a, denote the lower and upper limits of support of a fuzzy number 4
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pa(x)

Fig.-13.3 Triangular Fuzzy Number
2.10.1 Trapezoidal Fuzzy Number(TrFN)

Let F (9?) be a set of all trapezoidal fuzzy number in real line R. A trapezoidal fuzzy
number A€ F (m)is fuzzy number with membership function #; 'R —>[091] parameterized

by a quadruple (al’aza a,,a, )TrFN and defined by

x—a
{ lj for a,<x<a,

a, —q

1 for a,<x<a,

1 (x) = ( (13.21)

a,—x
4 jfor a,<x<a,

a,—a,

0  otherwise

where a,and a,denote the lower and upper limits of support of a fuzzy number A4

s

Ha(X)

s

>
,

[
|
|
|
1
I
I
I
I
Py
a Z,l4 -}

o e

0] &

Fig.-13.4 Trapezoidal Fuzzy Number

13.11 & — Cut of Fuzzy Number

The « —level of a fuzzy number A4 is defined as a crisp set
Aa={x:,u;1(x)2a,xeX,ae[O,l]} (13.22)

. 4,is nonempty bounded closed interval contained in X and it can be denoted by
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4,=[4,(a), 4 (a)], (13.23)
A, (a) and A4, (a) are the lower and upper bound of the closed interval.

13.12 Generalized Fuzzy Number (GFN)
Generalized fuzzy number can be defined as 4 as 4= (a,b,c,d;w) where 0<w<1 and
a,b,c,d are real numbers .The generalized fuzzy numbers 4 is a fuzzy subset of real line

R whose membership function (x) satisfies the following conditions
1) 4 (x) is continuous mapping from R to the closed interval [0,1]

2) u-(x)=0where —o<x<a;
A

3) u.(x)is strictly increasing with constant rate on [a,b]

A

5) u;(x) is strictly decreasing with constant rate on[c,d ]

3

i)
()
4) g1, (x)=w where b<x<c
()
i

6) u x)=0where d<x<oo

Note: A is a convex fuzzy set and it is non normalized fuzzy number till w=1.It will be
normalized for w=1

If a=b=c=dand w=1,then A is called a real number «

1)
~ lif x=a
H A=x,u-(x ith bership functi x)=
ere ( ,uA( ))w1 membership function ,uA( ) {Oifx;ta
i1) Ifa=b and c=d ,then A is called a crisp interval [a,b] )

{lifaéxﬁd

Here A = (x, My (x)) with membership function (x) = 0if otherni
if otherwise

iii)  If b=c then A is called Generalized Triangular Fuzzy Number(GTFN) as (a,b,a’ ; W)

iv)  If b=c,w=1 then Fis called Triangular Fuzzy Number (TFN) as 4=(a,b,d)

W(x—aj fora<x<b
b-a

Here A= (X, U (x)) with membership function 4;(x)= W(j—_;j Jor b<x<d

0 otherwise
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V) If b+ c then A is called Generalized Trapezoidal Fuzzy Number (GTrFN) and
denoted by A= (a,b,c,d;w)

vi)  If b=c,w=1 then 7 is called Trapezoidal Fuzzy Number(TtFN) as A=(a,b,c,d)

Here A = (x, K (x)) with membership function

W(Z;aj fora<x<b

—da

w for b<x<c
s (x)= (13.24)

w(d_xj for c<x<d

d-c

0 otherwise

Traditional fuzzy arithmetic operations can deal with only normalized fuzzy numbers and
the type of membership function of fuzzy number are not changeable after arithmetic
operations. Thus Chen [31] proposed the function principle by which these fuzzy arithmetic
operations on fuzzy numbers does not only change the type of membership function after
arithmetic operation ,but they can also reduce the troublesomeness and tediousness of
arithmetical operations. Thus in this chapter ,we have introduced Chen‘s[31] fuzzy number
arithmetical operators to deal with the fuzzy number arithmetical operation of generalized
fuzzy numbers.The difference between the arithmetic operations on generalized fuzzy
numbers and the traditional fuzzy numbers is that the later can deal with only normalized

fuzzy number.
13.13 Nearest Interval Approximation of Fuzzy Number

Here we want to approximate an fuzzy number A= (a1 ,a,, 055 w) by a crisp model.

Let 4and B be two fuzzy number with «— cuts [AL (a),AU(a)] and [BL (a),BU (0{)}

respectively. Then the distance between them can be measured according to Euclidean matric

1

as d; = [ (4, (ct) - B, (a)) a’a+_j).(AU (a)-B, (@) da (13.25)

0

Now we find a closed interval C, (;1) =[C,.,C, | which is nearest to 4 with respect to the

matric d,.Again it is obvious that each real interval can also be considered as an fuzzy
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number with constant o —cut (édE (;1))05 =[CL,CU]for all a E[O,l] .Now we have to
1

minimize ; (4,C,, (4))=[(4, da+j @)-C,) de (13.26)
0

with respect to C,and C, .In order to minimize d, ( A,C, (Z))it is sufficient to minimize

the functions D(CL,CU)(zcE. (Z,C’dE (;1))) The first partial derivatives are

oD(C,,C !
%z—ZJAL(a)da+2CL (13.27)

0

oD(C,,C 1
%:—2{@ (a)da+2C, (13.28)

And then we solve the system
aD(C,,C,)
oC,

0, (13.29)

aD(C,,C,)

=0 13.30
o (13.30)

The solution is

1

C,=[4,(a)e; (13.31)
0
1

Cy =[ 4, (a)a (13.32)
0

Since

2d(C,.C,) @*D(C,.C,)

oC? ac,oC, 2 0
t = =450 (13.33)
o*p(c,,c,) &F(c,,c,)| 0 2
oC,oC, oC?

then C, C, mentioned above minimize D(C L,CU). The nearest interval of the intuitionistic

fuzzy number 4 with respect to the matric d 18

2w 2w

C, (2) = '(i;AL (a)da,j).AU (a)da} :{(2w—l)al bl , (2w-l)a; +a, (13.34)

13.14 Intuitionistic Fuzzy Set
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Fuzzy set theory was first introduced by L.A.Zadeh [134] in 1965.Let X be the universe of
discourse defined by X = {xl,xz,...,xn} .The grade of membership of an element x, € X in a
fuzzy set is represented by real value in[O,l] It does indicate the evidence of x, € X but does
not indicate the evidence against x, € X .Attanassov [1] presented the concept of IFS.An IFS
A" in X is characterized by a membership function My (x) and a nonmembership function

vy (x) .Here My (x) and v (x) are associated with each point in X ,a real number in[O,l]
with the values of 1, (x) and v, (x) at X representing the grade of membership and non-

membership of x in 4" .When 4'is an ordinary (crisp) set its membership function (non-

membership functions) can only take two values zero and one.An IFS becomes a fuzzy set
A when Uy (x) =0 but My (x) IS [O,I]Vx e A Let aset X be fixed .An intuitionistic fuzzy
set 4" in X is and object having the form

A= {(x, i, (x)0,(x):xe X}

where 1 ’ (x) X —>[O,1] and U y (x) X > [O,l] define the degree of membership and
degree of nonmembership respectively of the element x € X to the set 4’ ,which is a subset
of X .for every element of x € X ,0< My (x)+u/3,. (x) <1. (13.35)

13.15 (a,8)- Level Or (a,3)— Cuts

A set of (a, Jij ) —cut, generated by an IFS 4’ where (oc, ) ) € [0, 1] are fixed number such that

a+ <1 is defined as

:{ <x,yA,.(x),uA,(x)>/xeX } (13.36)

Aan =1, (x)z a0, (x)= o pe[0,]

(@.5)

.We define (a, [)’)—level or (a, [)’)—cut ,denoted by A{a’ﬂ) ,as the crisp set of elements x

which belong to A’ at least to the degree o and which belong to 4’ at most to the degree 2.

13.16 Convex Intuitionistic Fuzzy Set

An intuitionistic fuzzy set

A ={<x,u;1,. (x),0, (x)):xeX} (13.37)
is convex intuitionistic fuzzy set if
1y (Ax +(1-2)x, ) 2 max{/,t;l‘. ()4 (x, )} (13.38)
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and v, (Ax,+(1-2)x,) = min{v, (x,),0; (%)} Vx,.x, € Xand0< A<1| (13.39)
13.17 Union Of Two Intuitionistic Fuzzy Sets

Let A = {(x, py (x),05 (x):xe X} and B = {(x, Hy (x),0, (x)):xe X} be two

intuitionistic fuzzy sets, then union of two intuitionistic fuzzy set will be defined by

AUB ={Cx,max (g (x), 15 (x)} min{o, (x),0, (x)}:x e x| (13.40)
13.18 Intersection of Two Intuitionistic Fuzzy Sets

Let A" ={(x,u, (x).0, (x)):xe X} and B ={(x,p (x).0; (x):xe X} be two

intuitionistic fuzzy sets, then intersection of two intuitionistic fuzzy sets will be defined by

ANE ={Cemin{ gy (x), 15 (x)}, max vy, (x),0; ()] :x € X (13.41)
13.19 Generalized Intuitionistic Fuzzy Number(GIFN)

A generalised intuitionistic fuzzy number 4’ can be defined with the following properties

1)It is an intuitionistic fuzzy subset of real line.

i))It is normal i.e there exists x, € Rsuch that My (xo) = w(e R)and Ly (xo) = l//(e R) for
w+y <1;

i)t is a convex set for membership function 2, (x) e

1y (lxl +(1—/1)x2)2 min(y;l,. (x)s 25 (x2)) for all x,,x, € R,A€[0,w].

iv) It is a concave set for non membership function v, (x) 1.e

My (/Ix1+(1—i)x2)2max(yj, (x,)s 25 (xz)) forall x,,x, € R,Ae[y.1].

V) My is continuous mapping from Rto the closed interval [O, w] and v, is continuous

mapping from R to the closed interval [l// ,1] and for x, € R the relation £, +v; <1 holds
13.20 Generalized Triangular Intuitionistic Fuzzy Number(GTIFN)
A generalized triangular intuitionistic fuzzy number 4’ = ((a{‘,az,ag’;wa)(af’ ,a,,a5;7, )) is a

intuitionistic fuzzy number in R and can be defined with the following membership function

and non-membership function as follows
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x—al

a ,u
a, —q

for al' <x<a,

w or x=a
", = .S 2 (13.42)

u
al —x
2 Jor a, <x<al

a
a; —a,

0 otherwise

1%
x—a
1 v
T, ~  fora <x<a,

a, —q

o=l G Jorx=a (13.43)
, X4

1%
. for a, <x<aj
a; — 4,

1 otherwise
Where g <a{' <a,<a) <a;.

13.21 & —Level Set or & — Cut of Intuitionistic Fuzzy Number
Let 4' = ((a{‘,az,ag’;wa )(al“ ,0,,055T, )) be a triangular intuitionistic fuzzy number then o —

cut of this intuitionistic fuzzy number is defined by the closed interval

| u, (@)1, (@) |- (0,1]and v, ()0, ()].a<[0,1) where
u, (@)=inflxeR:u, (x)>af (13.44)
u, (a@)=suplxeR:p, (x)>al, (13.45)
v, (@)=inf{xeR:v, (x)<af (13.46)
v, (@)=sup{xeR:v, (¥)<al, (13.47)

13.22 Arithmetic Operation of Triangular Intuitionistic Fuzzy

Number (TIFN)
Let 4 =((af\aaf;w,)(afsa,,a07,)) and B =((b",by,b¢5w, ) (B by by37, ) be  two

triangular intuitionistic fuzzy number then the arithmetic operations on these numbers can be

defined as follows

()4 +B :((al" +b",a, +b,,a" +b3”;min(wa,wh))(a1“ +b’,a,+b,,a} +b3“;max(2'a,rh)))

(i) A’ — B’ :((a{’ —b",a,—b,,a —b;‘;min(wa,wb))(al” —b’,a,—b,,a’ —b;;max(ra,rb)))
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_ ((ka" kaz,kag‘;wa)(kal“,kaz,kag;ra )) fork >0
(111) k4" =
((ka3 Jka,, kal';w )(ka3 Jka,,ka;t )) Jork <0
( al'bl',a,b,,a bf;min(wa,wb))(a{)b,“,azbz,a;’b;;max(ra,rb))) for 4'>0,B">0
(iv) 4B = ( by a,b,,a;'bl;min (w,, w, ))(al b;,a,b,,a;b’;max(z,, ))) for 4 >0,B' <0

azbz,al”b]”;min(wa,wb))(agbf,azbz,a,“b,“;max(z‘a,rb))) forA'<0,B" <0

(e 15¢,a, 1b,,at /bt min (w,,w,)) (@ /B0, /b4 113max (o, 0,))) for 4'>0,5'>0

V) 418 = ((a;f/b;,a2/bz,a('/bf;min(wa,wb))(a;/b;,az/b2,af/bf;max(aa,ob))) for 4 <0,B'>0
(et 18¢,a, /b,,ai' 1 bsmin () (@ /B 0, /b, 1533max (0,0, ))) for ' <0,B' <0
13.23 Nearest Interval Approximation for Intuitionistic Fuzzy
Number
Here we want to approximate an intuitionistic fuzzy number

A = ((a{’,az,ag‘;wa)(a1 ,a,,053T )) by a crisp model.

Let A'and B'be two intuitionistic fuzzy number.Then the distance between them can be

measured according to Euclidean matric as

1

d = 2}(/%( )- ﬂBL(O!))zd“JF%O(ﬂAU(“)_”BU(a))zda

(UAL (a)—UBL (a))2 da+% (UAU (a)—UBU (a))2 da (13.48)

0

+

N | —
S — —

Now we find a closed interval C, (1:11' ) =[C,,C, ] which is nearest to A'with respect to the

matric d,.Again it is obvious that each real interval can also be considered as an intuitionistic

fuzzy number with constant o —cut [CL,CU]for all ae[O,l] .Now we have to minimize

d, (;li ,C s (;1" )) with  respect to C,and  C,,that is to  minimize

E(CL’CU)z

S S———

(uAL (0()—CL)2 da+J:(uAU (05)—CU)2 do

+ (v, (@)-C,) da+l(% (@)-C,) da (13.49)

0

With respect to C, and C;,. We define partial derivatives
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oF, (C,.C,)

1
o ! (1, () +v,, (@)Ma+4C, (13.50)
oF, (C,,C, 0
— (Gé v) =—2J.(yAU (a)+v, (a))da+4CU
v 0 (13.51)
and then we solve the system
M =0, (13.52)
oC,
oF(CG) (13.53)
oC,

The solution is

c - Jl. u, (a)+o, (a)da

g 2 (13.54)
c =jﬂAb (@)+o, (@),
T 2 (13.55)

Since

’F(C,.C,) 0°F(C,.C,)

oC; oC,0C, 4 0
det = =4>0 (13.56)
’F(C,.C,) O°F(C,.C,) | \0 4
9C,0C, ac;,

then C; C, mentioned above minimize F,(C,,C, ). The nearest interval of the intuitionistic

fuzzy number A4’ with respect to the matric d,is
1 1
¢, (;li) :[I ty (@)+v, (a)da,J. py (@)+o, (“)da} (13.57)
: 0 2 0 2

5

u U v u u v

a+a, a,—a’' a,—a a +ai a'—-a, a,—a

_| 4 2 BT (HTh GHTE BTG 5T
2 4w 47 2 4w 47

13.24 Parametric Interval Valued Function

If [m, n] be an interval with m,n >0 we can express an interval number by a function. The

parametric interval-valued function for the interval [m, n] can be taken as

g(s)=m"n’" for s €[0,1] (13.58)
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which is strictly monotone continuous function and its inverse exists .Let y be the inverse of

logy —logm

g(s)then s = logn_logm

13.25 Ranking of Triangular Intuitionistic Fuzzy Number

(13.59)

A triangular intuitionistic fuzzy number A4’ = ((a{‘, a,,ay;w, )(al“ ,a,,05;7, )) is completely

defined by
u
x—a
_ 1 u
L#(x)—wa — for a' <x<a,
4~ 4
and
a/l
— 3 u.
Ru(x)— " for a, <x<ay,;
4G —a,
L - % V<x<
,(x)=1, ~ for a <x<a,
a,—4q
and
x—a, v
R, (x)=7,— for a,<x<aj.
a; —a,

The inverse functions can be analytically express as

L (h)=af +Wi(a2—a{‘);

(13.67)

Now left integral value of membership and non-membership functions of A4’ are

1 ()= [ (=2

and

~\ 27 —l)a“-l-a
I A’:L’lh—( e
L( ) .(I;U() 2
respectively
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and right integral value of membership and non-membership functions are

2w, —1)a} +a,

AT B _(
I,(4 )_QL” (k)= T (13.40)
and

- (2z,-1)a; +a

i\ _ -1 _ a 3 2
I,(4 )—lLU (k) ’r (13.41)
respectively.
The total integral value of the membership functions is

, ~1)a” ~1)a* 2w~ aa +(1-a)a”
Iz (A"): (2wa 1)a3 +a, a+(1—a)(2W“ l)a1 ta, a2+( w, ){aa3 +( oz)a1 } (13.42)

2w, 2w, 2w,

The total integral value of the non membership functions is

3 “1)a “1)a 2 - Ba’ +(1- B)a’
Iﬁ(Ai): (27, -1)a; +a, ﬂ+(1_ﬂ)(ZTa Da' +a, _4 +(2z, ){ﬂa3 +( ﬁ)al} (13.43)

2, 2r, 2,
Now if ' =((af',a,,at;w,)(a}>a,,a37,)) and B =((bf.b,, 65w, )(B,b,,by37,)) be two
triangular intuitionistic fuzzy number then the following relations hold good

) I Ip(4) <7 (B) and 1f (4')<1f(B')for a,f[0,1]then 4 < B

i) I 77 (4)> 17 (B') and 1/ (4')> 1] (B')for &, f€[0,1]then 4’ > B’

iy If 77 (4)=17 (B') and 1/ (4')=1f (B')for &, f€[0,1]then 7' =B’
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APPENDIX-B
14.1 Geometric Programming(GP) Method

A Geometric Programming (GP) is a type of mathematical optimization problem
characterized by objective and constraint functions that have a special form. GP is a
methodology for solving algebraic non-linear optimization problems. Also linear
programming is a subset of a GP .The theory of GP was initially developed about three
decades ago and culminated in the publication of the seminal text in this area by Duffin,
Peterson, and Zener [134]

The general constrained Primal GP problem can be stated as follows

(P14.1)
Ty n
Minimize fy(x)=>c, [ [x" (14.1)
t=1 =1
subject to
T, n
fl.(x)zzllcitl_llxj”’ <b; i=1,23,.,m (14.2)
==
x, >0, j=12,..,n (14.3)

Here ¢, >0 and q,, be any real number. The objective function contains 7 terms and
inequality constraints contain T terms. Here the coefficient of each term is positive. So it is a

constrained posynomial GP problem. Let 7'=T +17 +......... +1; be the total number of

terms in the primal programme. The degree of difficulty (DD) is defined as DD = Total no. of

terms — (Total no. of variables -1) =7 —(n+1) .The dual problem (with the objective function
d(w) ,where WE{w(wit),Vi =0,L2......m;t =1,2,..... 7:} is the decision vector) of the GP

problem (P14.1) for the general posynomial case is as follows

(P14.2)

T, Wor T, . ' Wit

Maximize d(w)= H So HH c"zwlt (14.4)
t=1 0¢ i=1 t=1 biM)il

subject to

T

Z W, =1, (Normality condition) (14.5)

t=1
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]:.
Z%Wn =0 forj=12,.,n  (Othogonality conditions) (14.6)

t=l1

-

Il
(=}

1

w,>0 Vi=0,1,..m;t=12,.T. (14.7)
For a primal problem with m variables, 7, +7; +......... +17; terms and n constraints, the dual
problem consists of 7, +7; +......... +1; variables and m+ 1 constraints. The relation between

these problems, the optimality has been shown to satisfy

oo [ [x =d" W)xw, 1=1,2,3,...T, (14.8)
J=1
a5 =2 i=1,2,3,m; £=1,2,3,..,T, (14.9)

= .
D W

=

Taking logarithms in (14.8) and (14.9) and putting ¢, =logx; for j=1,2,...,n. we shall get a
system of linear equations of ¢, (j=1,2,...,n.).We can easily find primal variables from the

system of linear equations.

Case I: For T>n+1 ,the dual programme presents a system of linear equations for the dual
variables where the number of linear equations is either less than or equal to the number of
dual variables. A solution vector exists for the dual variable (Beightler and Philips [9]).

Case II: For T <n+1 ,the dual programme presents a system of linear equations for the dual
variables where the number of linear equation is greater than the number of dual variables. In
this case, generally, no solution vector exists for the dual variables. However, one can get an
approximate solution vector for this system using either the least squares or the linear

programming method.

14.2 Posynomial Geometric Programming Problem

Let us consider the primal Geometric Problem as

(P14.3)
Minimize f, (x) (14.10)
Subject to
N, n
f(x)=>C,J[x" <1i=12...m (14.11)
k=1 i=1
X >0i=12,.,n (14.12)
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T
Where C,, >0anda,, are all real. x=(x,,x,,..,x,) .

The dual problem of (P14.3) can be written as

m Nj C'kW'O "
Maximize d(w)=Y_ [ ]| (14.13)
=0 k=1 Wi
Subject to
N.f
D wy, =1 (Normality Condition) (14.14)
m Nj
Z Z a,,wy = 0(Orthogonality Condition) (14.15)
j=0 k=1
N;
Wiy =D W, 20, (14.16)
k=1
w, 20, (14.17)

i=12,..nm k=12,.N;
Wy =1. (14.18)

14.3 Signomial Geometric Programming Problem

Let us consider the primal Geometric Problem as

(P14.4)
Minimize fo(x) (14.19)
Subject to
Zém ka“ <6, j=12,. (14.20)
x,>0i=12,.,n (14.21)

Where 5},{=il,j=0,1,2,..,m;k=1,2,...,Njand5j=i1 a,,are all real numbers.

X = (xl,xz,...,xn )7

The dual problem of (P14.4) can be written as
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%

m N ‘)/AWA
Maximize d(w)=0, ( & ’0] (14.22)

-

Jj=0 k=l j

Subject to

D Sy =6, (Normality Condition) (14.23)
m N,

Z 25 @y, = 0 (Orthogonality Condition) (14.24)
j=0 k=l

Where o6, =%£1,j=0,1,2,..,mk=12,.,N,and5, =+1 a, are all real numbers.

X = (xl,xz,...,xn )7

W, = 5}25 w20, (14.25)

=0 (14.26)
j:1927-'7m; k=1,2,Nj,

Wy =1. (14.27)
14.4 Fuzzy Geometric Programming(FGP)

A fuzzy geometric programming problem can be defined as

(P14.5)
Minimize f, (x) (14.28)
Subject to
fj(x)gbj i=12,..m (14.29)

x,20i=12,..,n

Here the symbol " Minimize" denotes a relaxed version of “Minimize”.Similarly the symbol *
<”denotes a fuzzy version of “<”.These fuzy requrements may be quantified by taking

membership function K, ( S (x)), j=0,1,2,....,m from the decision maker for all functions

fj (x), j=0,1,2,....,mby taking account of the rate of increased membership functions .It is

in general strictly monotone decreasing linear or non-linear function with respect to
f,(x),j=0,1,2,...,m.Here for simplicity linear membership functions are considered. The

linear membership function can be represented by
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1 if fi(x)< /7
w ()L <z
0 if fi(x)2,
i=0,1,2,...m

(14.30)

The problem (P14.5) reduces to the FGP when f(z)and f,(x) are signomial and

posignomial functions.Based on fuzzy decision making of Bellmann and Zadeh(1972),we

may write

) sy (") = max min (s, (7 ()

Subject to
N SAOEY
(£ (%)) = %fx) i 1< (x)< S,
if f;(x)2 f;

i=012,..m x:(xl,xz,...,xn)T x>0

i) g1y (") = mex [gﬂg,ﬂj (4 (x))j

Subject to
1 if f(x)<f)
L e e A AC
0 i f;(x)2],

j=0,12,...m x:(xl,xz,...,xn)T x>0
i) (x*) _ max(lﬂ[(luj (fj (x)))llj

Jj=0

Subject to
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(Max-Additive Operator) (14.33)

(14.34)

(Max-Product Operator) (14.35)




1 if f(x)<f)
f—_f,ox) if o< f(x)<f, (14.36)

0 i f,(x)2f

H; (f/ (x)) =

\k

j=0,L2,...m x=(xl,x2,...,x )T x>0

n

Here for j=0,1,2,...,m;4; are considered numerical weights of decision making unit. For

normalized weight Z A; =1. For equal importance of objective and constraint goals, A, =1
j=0

And 4, €[0,1], j=0,1,2,...,m;

14.5 Numerical example Of Fuzzy Geometric Programming

Let us consider a fuzzy geometric programming problem as

(P14. 6)

Minimize f,(x,,x,)=2x"x;" (target value 57.87 with tolerance 2.91) (14.37)
Subject to
f,(x,x,)=x"x;' <6.75( with tolerance 2.91) (14.38)
fo(x,%,)=x+x,<1 (14.39)
x,%, >0

Here linear membership functions for fuzzy objectives and constraints goals are

1 if 2x°x,> <57.87
I8 —=2x7x,"
Hy (fo (xl,xz)) _J%0 782 91x' Y2 if5787< 2x;°x,” <60.78 (14.40)
0  if 2x°x;" >60.78
1 if x'x> <6.75
94— x'x}?
i (f (x.x,)) = 690# if 6.75<x"x; <6.94 (14.41)

0 if x'x,;">6.94

Based on max-additive operator FGP (P14.6) reduces to

(P14.7)
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6.94—x 'x;' N 60.78—2x,°x;"

Maximize V, (xl,xz) = 019 o1 (14.42)
Subject to

fo(x,%,)=x+x,<1 (14.43)
X, %, >0

Neglecting the constant term in the following model we have following crisp geometric
programming problem as

(P14.8)
Maximize V (x,,x,)=5.263x"'x;' +0.687x,x;’ (14.44)
Subject to
fo(x,%,)=x+x, <1 (14.45)
5%, >0 (14.46)

Here DD=4-(2+1)=1

The dual problem of this GP is

(P14.9)
Max d(w) =(5.263JW°1 [0.687Jw°2 [ij (LJW (o, 4, )0 (14.47)
W, Wy, Wy, W,
Such that
Wy + W, =1 (14.48)
—Wy; —2W,, + W, =0 (14.49)
—2Wy, — 3wy, +w;, =0 (14.50)
So wy, =1=wy;; W, =2=w,;; W, =3—w,,; (14.51)
. ) [5.263}”"” [0.687 J(”"”)( I J(“’“)( 1 J(”‘“) s
Maximize d (wy, )= (5-2w,) (14.52)
Wy, 1-w,, 2—wy, 3-w,,
Subject to
0<w, <1 (14.53)
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d(d(wy))

Woi

For optimality, =0

5.263(1—wy, )(2— Wy, ) (3w, ) = 0.687wy, (5—2wy, )

wy, = 0.7035507, w,, =0.2964493, w;, =1.296449, w,, = 2.296449,
X, =0.360836, x, = 0.6391634,

fy (x7.x;) = 58.82652, £, (/. x;) = 6.783684,

14.6 Intuitionistic Fuzzy Geometric Programming

Consider an Intuitionistic Fuzzy Geometric Programming Problem as

(P14.10)

Minif0 (x)

Subject to

x>0
(14.60)

i99

Here the symbol “<

(14.54)

(14.55)
(14.56)

(14.57)

(14.58)

(14.59)

denotes the intuitionistic fuzzy version of “<” Now for intuitionistic

fuzzy geometric programming linear membership and non-membership can be represented as

follows
I SASEY
(%)= %fx) if < (x)< S,
0 ()2
j=0,L2,...m

L L=(-1)

o (1 )= 2O E) o g s g

/i
0 if f,(x)=f,

j=0,L2,...m

(14.61)

(14.62)
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Now an Intuitionistic Fuzzy Geometric programming problem(P14.10) with membership and
non-membership function can be written as

(P14.11)
Maximize u;( f,(x)) (14.63)
Minimize v, ( f, (x)) (14.64)
j=0,12,....m

Considering equal importance of all membership and non-membership functions and using
weighted sum method the above optimization problem reduces to

(P14.12)
Maximize V, :i{,uj (fj (x))—uj (f] (x))} (14.65)
Subject to
x>0
(14.66)

The above problem is equivalent to

Minimize V :z , ! 5 +L,, fj(x)— /s _f’ + f] 5 (14.67)
=\ A
Subject to
N, n
f(x)=>C,J[x" <1i=12..m (14.68)
k=1 i=1
x,20i=12,..,n (14.69)

T
Where C, >0anda,, are all real. x=(x,x,,..,x,) .

The posynomial Geometric Programming problem can be solved by usual geometric
programming technique.

Numerical example
Consider an Intuitionistic Fuzzy Nonlinear Programing Problem as

(P14.13)
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Minimize f, (x,,x,)=2x"x," (target value 57.87 with tolerance 2.91) (14.70)

Subject to
(14.71)

f,(x,x,)=x"x;' <6.75( with tolerance 2.91)
fo(x,%,)=x+x, <1 (14.72)

x,x, >0

Here linear membership and non-membership functions for fuzzy objectives and constraints

goals are
1 if 2x7°x;> <57.87
2.3
ty (fo(x3,)) = 60'782 921"1 Y2 if 57.87<2x7x° <60.78 (14.73)
0  if 2x°x;° >60.78
1 if x'x> <6.75
94—x"x?
i (f (xx,)) = 690# if 6.75<x"x;> <6.94 (14.74)

0 if x'x;°>6.94

1 if 2x7°x; <59.03
2 -2 -3 _ .
Vo (fo (xl,xz)) - =5 xi 7559 03 if 59.03<2x,°x,> <60.78 (14.75)
0  if 2x°x,° >60.78
1 if x'x,> <6.83
-1_-2
o (f(xx,)) = %11683 if 6.83<x'x,> <6.94 (14.76)
0 if x'x;>>6.94
Based on max-additive operator FGP (14.13) reduces to
(P14.14)
Maximize V, (xl,xz): L+L X x + L+L 2x°x;,° (14.77)
0.19 0.11 291 1.75
Subject to
(14.78)

o (x,%,)=x +x, <1
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x,x, >0

Neglecting the constant term in the following model we have following crisp geometric
programming problem as

(P14.15)
Maximize V (x,,x,)=14.35x'x;' +1.828x,°x;’ (14.79)
Subject to
o (x,%,)=x+x, <1 (14.80)
X%, >0 (14.81)

Here DD=4-(2+1)=1

The dual problem of this GP is

Maxd(w):(14.354j (1.828} (Lj (Lj (o, w1y (14.82)

W, Wy, wy, W,

Such that

Wy + W, =1 (14.83)
—Wy; —2W, + W, =0 (14.84)
—2W,, —3w, +w, =0 (14.85)
So wy, =1=wy;; Wy =2—wy; W, =3—w,; (14.86)
Maximize d(wm) = [14'354]%] [ 1.828 j(l_w(")( 1 ](Z_WO‘)( ! j(3_w°1) (5—2w01 )(5_2%1) (14.87)

Wy, 1-w,, 2-w, 3-w,,

Subject to

0<w, <1 (14.88)
For optimality, M =0 (14.89)

WO]

14.354(1—wy, ) (2—wy, ) (3—wy; ) =1.828wy, (5—2wy, )2 (14.90)
w,, = 0.6454384, w,, =0.3545616, w;, =1.3545616, w;, =2.3545616, (14.91)
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x| =0.365197, x, = 0.63348027, (14.92)
fy (x.x;) =58.62182, £, (x;.x; ) =6.795091,

14.7 Fuzzy Decision Making

In this real world ,most of the decision making problems take place in a fuzzy environment.
The objective goal, constraints and consequences of possible actions are not known precisely.
Under this observation, Bellman et al. [10] introduced three basic concepts. They are fuzzy
objective goal, fuzzy constraint and fuzzy decision based on fuzzy goal and constraint. We
introduce the conceptual framework for decision making in a fuzzy environment .Let X be a
given set of possible alternatives which contains the solution of a decision making problem in
fuzzy environment. The problem based on fuzzy decision making may be considered as

follows
Optimize fuzzy goal G
Subject to constraint C

A Fuzzy goal G= {(x, e (x))|x € X} and a fuzzy constraint C= {(x, M (x))|x € X} is a

fuzzy set characterised by its membership function £ (x) X > [O,l] and /- (x) X > [O,l]

respectively. Both the fuzzy goal and fuzzy constraints are desired to be satisfied
simultaneously, So Bellman et al. [10] defined fuzzy decision through fuzzy goal and fuzzy

constraint.
14.8 Additive Fuzzy Decision

Fuzzy decision based on additive operator is a fuzzy set

Da 2{(x,,u[) (x))|xeX} (14.93)
such that
D, = pu; (x)+ s (x)forall xe X . (14.94)

14.9 Intuitionistic Fuzzy Optimization(IFO) Technique to solve
Minimization Type Single Objective Non-linear Programming
(SONLP) Problem

Let us consider a SONLP problem as
(P14.16)
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Minimize f(x) (14.95)

g (x)<b,  j=12m (14.96)
x>0 (14.97)
Usually constraints goals are considered as fixed quantity .But in real life problem,the
constraint goal cannot be always exact. So we can consider the constraint goal for less than

type constraints at least b, and it may possible to extend to bj +bj(.) .This fact seems to take the

constraint goal as a IFS and which will be more realistic descriptions than others. Then the
NLP becomes IFO problem with intuitionistic resources, which can be described as follows

(P14.17)

Minimize f (x) (14.98)
g (x)<b  j=12m (14.99)
x>0 (14.100)

To solve the IFO (P14.16), following warner’s [118] and Angelov [3] we are presenting a
solution procedure for Single Objective Intuitionistic Fuzzy Optimization (SOIFO) problem
as follows

Step-1: Following Werner’s approach solve the single objective non-linear programming
problem without tolerance in constraints (i.e g; (x)Sbj ),with tolerance of acceptance in
constraints (i.e g, (x) < b i +b_/0.) by appropriate non-linear programming technique

Here they are

(P14.18)
Sub-problem-1
Minimize f(x) (14.101)
g (x)Sbj j=12,..m (14.102)
x>0 (14.103)
(P14.19)

Sub-problem-2

Minimize f(x) (14.104)

g (x)<b,+b;, j=12,..,m (14.105)
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x>0 (14.106)
we may get optimal solutionsx = xl,f(x*) = f(xl) and x = xz,f(x*) = f(xz)for sub-

problem 1 and 2 respectively.

Step-2: From the result of step 1 we now find the lower bound and upper bound of objective

functions. If U#

f(x),U ;(x)be the upper bounds of membership and non-membership functions

for the objective respectively and L’;.(x),L;.(x) be the lower bound of membership and non-

membership functions of objective respectively then

U, =max { £, (x )} (14.107)
., :min{f(xl),f(xz)}, (14.108)
Ujy = Ul Ly = Ly +6 where 0<e,, < (U = L) (14.109)

Step-3: In this step we calculate linear membership for membership and non -membership

functions of objective as follows

1 if f(x)SL_’;(x)
Uty £ ()
Hyo (£ (%)= et B4 L, < f(x)<Uy, (14.110)
Ul =Lty
0 if f(x )>Uﬂ
0 if fi(x )<L“ .
f(x)-Ly
Uf(x)(f(x)): UU—LUlf L, < f(x)<UY, (14.111)
S(x) )
Ui f(x)2Uy,
and exponential and hyperbolic membership for membership and non-membership functions
as follows
1 if f(x)<L]
Ui =)
i (£ (x)) = 1=expy o | T Bwst (x)=<Uy, (14.112)
S )
0 I f(x)2Uf,
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0 if f(x)SL?(x)
11 Uity * Ly oo v (14.113)
u,(x)(f(x))= E+Etanh f(x)—T Tt I Ly <f()<UY, .
1 if f(x)ZUﬁ(x)

Step-4: In this step using linear, exponential and hyperbolic function for membership and

non-membership functions, we may calculate membership function for constraints as follows

1 if g;(x)<b,
#y (g, (x))= (b’+b?b_9g’(x)] if b <g (x)<b +b’ (14.114)
jo if g (x)=b
0 ifgj(x)sbj+ggj(x)
”g,(x>(gj(x))= gj(zz:[:_gg/(x) if b+e,,<g,(x)<b +b] (14.115)
] gl(? if g,(x)2b,+b'

where and for j=1,2,....,m 0<&, (1S <b?. and
! if g;(x)<b,
Uﬂ- x —&; (x)
(&) () ={1=expi | 25— i by g (x) b +b) e
' g(x) Tl
0 if gj(x)2b1+qu
0 lf &j (x) Sb.f +gg,(x)
11 2bj+b?+€gj(X) . 0
Ugj(x)(gj(x)): E+Etanh gj(x)—f Tl bj”g,(x)ggj(x)Sij’bj (14.117)
I i g (x)2b, 48"

where y,7are non-zero parameters prescribed by the decision maker and for
. 0
j=1L2,....m 0<8gj(x)’§gj(x) <b;.

Step-5: Now using IFO for single objective optimization technique the optimization problem
(P14.17) can be formulated as

(P14.20)
Model-1
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Maximize (o — ) (14.118)

such that
o (X)2 a5 p, (x)2 e (14.119)
O,y (X) <85 0, (x)< B (14.120)
a+p<l a=p (14.121)

a,Be[0,1] (14.122)

Now the above problem (P14.20)can be simplified to following crisp linear programming

problem for linear membership function as

(P14.21)
Maximize (a—p) (14.123)
such that
f(x)+(U" - L) a<U*; (14.124)
£ )+ (Usy =L ) B Ly (14.125)
a+p<Lazpfa,fe[01]; (14.126)
g (x)<b, x20, (14.127)

and for non linear membership function as

(P14.22)
Maximize (6—1) (14.128)
such that

vk~ L
f(x)+9MSU;’(X); (14.129)
v .
us  +L  +e
f(x)+ n_ 2/ f(f); (14.130)
Frx) 2
b
gj(x)+9;’£bj+bf; (14.131)
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0
2bj +bj +5gj

n (%)

g (x)+——x< ; (14.132)

/ Ty 2

0+n<1,0>n;0,n<€[0,1] (14.133)

where @ =—In(1-a); (14.134)

=4 (14.135)

6

T — (14.136)
(Us~L)

r =% ricl2.m (14.137)

/(x)_—, _’,..-, .

) (bf(')_g/)

n=—tanh™ (28-1). (14.138)

All these crisp nonlinear programming problems i.e (P14.21),(P14.22) can be solved by

appropriate mathematical algorithm.

14.10  Fuzzy Non-linear Programming (FNLP) Technique to Solve
Multi-Objective Non-Linear Programming (MONLP)problem

A Multi-Objective Non-Linear Programming (MONLP)problem may be considered in the

following form

(P14.23)
Minimize { f;(x), £, (21w £, (%)} (14.139)
Subject to g, (x)<b, Jj=12,..,m (14.140)
x>0 (14.141)

Following Zimmermann [136] ,we have presented a solution algorithm to solve the MONLP
Problem by fuzzy optimization technique.
Step-1: Solve the MONLP (P14.23) as a single objective non-linear programming problem

p times by taking one of the objectives at a time and ignoring the others .These solutions are

known as ideal solutions. Let x'be the respective optimal solution for the i” different

objectives with same constraints and evaluate each objective values for all these i* optimal

solutions.
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Step-2: From the result of step -1 determine the corresponding values for every objective for
each derived solutions. With the values of all objectives at each ideal solutions ,pay-off

matrix can be formulated as follows
fl(x) fz(x) fp (x)
o 1 (xl) A (xl) ...... f, (xl)

Here x',x?,.,x"are the ideal solutions of the objectives f(x),/,(x),.... 1, (x)

respectively.

Step-3: From the result of step-2,now we find lower bound (minimum) Z. and upper bound

(maximum) U, by using the following rules
U, =max{f(x,)}, (14.142)
L, =min{f;(x, )} (14.143)

where 1<i< p Itis obvious L, :f;*(xi), 1<i<p.

Step-4: Using aspiration level of each objective, the MONLP (P14.23) may be written as

follows

(P14.24)
Find x so as to satisfy (14.144)
(0L, (i=1,2,0p) (14.145)
g,/ (x)<b, j=12,.,m (14.146)
x>0 (14.147)

Here objective function of (P14.23) are consider as fuzzy constraints. This type of fuzzy

constraint can be quantified by eliciting a corresponding membership function

1 (f(x),i=12p
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1 if f;(x)< L

[f,-(X)—L‘{‘“' ]
P I G s B
o yAcc_picc e

(£ (x))= — if L' < f(x)<U/c (14.148)

0 if f,(x)=U""

Under the concept of mean operator , the feasible solution set is defined by intersection of

the fuzzy objective set .The feasible set is then characterized by its membership , (x) which

is 1, (x) = rnin{,ul (f1 (x)),,u2 (f2 (x)),...,,up (fp (x))} (14.149)

The decision solution can be obtained by solving the problem of

maximize (minimize y7 (x)) subject to the given constraints i.e

(P14.25)
Maximize( Minimize
Yrs 0 [ vi ,ul.(x)] (14.150)
such that gj(x)ﬁbj, (14.151)
x>0, j=12,.mi=1L2,...p (14.152)

Now if suppose o = Minimize y, (x) be the overall satisfactory level of compromise, then we

obtain the following equivalent model

(P14.26)

Maximize o (14.153)
such that p, (x)Za, i=12,..,p (14.154)
g (x)<b;,  j=12,...m (14.155)
x>0, ae01] (14.156)

Step-5: Solve (P14.26) to get optimal solution.

14.11 An Intuitionistic Fuzzy(IF) Approach for Solving Multi-
Objective Non-Linear Programming(MONLP) Problem with Non-
linear membership and Non-linear Non-membership Function

Following Zimmermann [140] and Angelov [3],we have presented a solution algorithm to

solve MONLP (P14.23) by Intuitionistic fuzzy optimization (IFO). Here Step 1 and Step 2

are same as shown in 14.10
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Step-3: From the result of step 2 now we find lower bound (minimum) Z;“

and upper bound (maximum) U,"““ by using following rules
U7 = max { £, (")}, (14.157)

L =min{ £, (" )} where 1<i< p. (14.158)
But in IFO the degree of non-membership (rejection) and the degree of membership
(acceptance) are considered so that the sum of both value is less than one. To define the non -
membership of NLP problem let U/ and L'*/ be the upper bound and lower bound of
objective function £;(x) where L'“ <L/ <U™ <U/“ For objective function of

minimization problem ,the upper bound for non-membership function (rejection) is always
equals to that the upper bound of membership function (acceptance).One can take lower

bound for non-membership function as follows

LY =L +¢ (14.159)
where 0< ¢, < (U e —Lf“)

based on the decision maker choice.

The initial IF model with aspiration level of objectives becomes Find {xl.,i =12,..., p}

so as to satisfy

f,(x)<' L}with tolerance P =(Ul.A“—Lf“) for the degree of acceptance for

(14.160)

f,(x) > U/ with tolerance P = (U Ace —Lf"c) for degree of rejection for i =1,2,...., p

1 1

(14.161)
Define the membership (acceptance) and non-membership (rejection) functions of above

uncertain objectives as follows. For the ;”,i=1,2,...., p objectives functions the linear

membership function ( /i (x)) and linear non-membership v, ( /i (x)) is defined as follows
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1 i f(x)< L
~ [f;(x)—Lf“‘]
o U _e_w
#(f(x)= o if L < f(x)<U/ (14.162)
O lf fl‘ Z UiAcc
0 i f(x)<L
f (x)_LRej 2
0, (f(x))= (W] if L < f,(x)<UM (14.163)
1 lf fz (x) 2 UiRej

Step-4: Now an IFO problem for above problem with membership and non-membership

functions can be written as

(P14.27)
Ma’;i'??ize (%)) (14.164)
l
Mm;",me (v0.(%(x))) (14.165)
1
subject to 1, (f( )) (f (x)) <1 (14.166)
(”z i ) ( ) (14.167)
(v (£(x)))=0; (14.168)
g, (x)<0; (14.169)
x>0 (14.170)

i=L2,..,p;j=12,...,m
Find an equivalent crisp model by using membership and non-membership functions of

objectives by IF decision making as follows

(P14.28)

Max (Min( 4, - 1, )| = Min( Max(v,,0,,...,0, )) (14.171)
subject to 11,( f;(x))+v,(f(x))<1 (14.172)
(14 (£:()> (0 (£ () (14.173)
(ui ( (x))) > (); (14.174)
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g, (x)<0;
x>0
i=12,.,p;j=12,....m

If we consider
a :Mnimize(ul,uz,....,yp);

p= Maximize(ul,uz,...., up)

accordingly the Angelov [4], the above can be written as

(P14.29)
Maximize (a— p )
subject to u, (fl (x)) za;
g, (x)<0;
x>0,a+ <1
ael0,1],5e[0,1]; i=12,..,p

j=1L2,....m

which on substitution of £, (fl (x)) and v, (fl (x)) for i=1,2,...,p becomes

(P14.30)
Maximize (a— f3)
subject to
()2
fi(x) _@(U:‘e]’ _Lfe-’) <L,
g (x)=0;
a+ <Ll

a€[0,1],8€[0,1]

i=12,.,p; j=12,..m

N U[Acc _ L/flcc

d ln{(l—e’w)a+e’w} <L

(14.175)

(14.176)

(14.177)

(14.178)

(14.179)

(14.180)
(14.181)
(14.182)

(14.183)

(14.184)

(14.185)

(14.186)

(14.187)
(14.188)
(14.189)
(14.190)

Step-5:  Solve the above crisp model (P14.30) by using appropriate mathematical

programming algorithm to get optimal solution of objective function.

Step-6: Stop.
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14.12  Intuitionistic Fuzzy Non-linear Programming (IFNLP)
Optimization to solve Parametric Multi-Objective Non-linear
Programming Problem (PMONLP)

A multi-objective IFNLP problem with imprecise co-efficient can be formulated as

(P14.31)

Tig
Minimize fk kao thHx v for k,=1,2,....,p (14.191)
Such that f; (x Z;t I,ij"f < &b for i=1,2,...,m (14.192)
=1
x,>0 j=12,..n (14.193)

Here &, ¢, & are the signum function used to indicate sign of term in the equation.

. >0,¢,>0. Q> Gy AIC real numbers for all i,2,k,, j.

> it

~ lu 2 3u. v 2  3v. .
Here ¢, , = ((ckot,ckot,ckot ,wkot)(ckot,ckot,ckot,rkot)), (14.194)

¢, :<<cl.1[‘,c§,ci3t";w )(Cn ,ChyCo ,r”));

(14.195)

b = ((b}ﬂ,bf,bfﬂ;m)(b}”,bﬁ,bf“;q)) (14.196)
Using total integral value of membership and non-membership functions, we transform above

multi-objective intuitionistic programming with imprecise parameter as

(P14.32)

Tig
Minimize f1k x;a) ka,cmnx v for k,=1,2,...,p (14.197)
Tig
Minimize f2k x; B) Zﬁkotcz,”Hx v for ky,=1,2,...,p (14.198)
Such that £, (x;a) ancmnx v < Ep for i=1,2,...,m (14.199)
T;
fo (38 =Z ,tcz,tl‘[x“'f < &b, for i=1,2,.. (14.200)
t=1
x,>0a,€[01] j=12,...n (14.201)
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Here ¢, ¢,, & are the signum functions used to indicate sign of term in the equation.

A

Cyy >0, ¢, >0; b, >0denote the total integral value of membership function i

2 3u 1u
Gy +(2Wk0z —1){0‘%[ + (l—a)ckot}

ot — 5 (14.202)
1k, 2Wk0;
s cl.zt +(2wl., —1){0{03“ +(1—a)c},"} (14.203)
lit 214}”
. b +(2w -1)jab* +(1—-a)b*
and b, = — +( " ){a’ +( a) : } (14.204)

2w,

1

A

and ¢, , >0, ¢, >0; b, >0 denote the total integral value of non-membership function ie

E = (25 _1)ifci°u’ H1=p)ey} : (14.205)
[

. cizt+(ZT”—1){ﬂc§”+(l—ﬁ)ci]ﬁ}

&y = o (14.206)
and

.~ b+ (2r.-1){ B +(1-B)b"

b, =" (27 ){ir (1-p)0") (14.207)

A Parametric  Multi-Objective  Intuitionistic =~ Fuzzy  Non-Linear = Programming
(PMOIFNLP)Problem can be formulated as
(P14.33)
Minimize {f1 (), f(x:0),s [, (32), £, (5 8), o (5 B) s S, (x;ﬂ)}

T

(14.208)
Subject to g; (x;a)sbj; j=12,...m (14.209)
g (xp)<b;  j=12,..m (14.210)
x>0a,pe[0,1] (14.211)

Following Zimmermann [140]we have presented a solution algorithm to solve the
PMOIFNLP Problem by fuzzy optimization technique.

Step-1: Solve the PMOIFNLP (P14.33) as a SONLPP p times by taking one of the objectives
at a time and ignoring the others .These solutions are known as ideal solutions. Let x'be the
respective optimal solution for the i” different objectives with same constraints and evaluate

each objective values for all these i optimal solutions.
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Step-2: From the result of step -1 determine the corresponding values for every objective for
each derived solutions. With the values of all objectives at each ideal solutions ,pay-off

matrix can be formulated as follows

fhxwa) . fi(sa) f(sp) o f,(xph)

o Fa) o f(ha) £(x8) g (s)
x’ fl*(xz;a) f;(xz;a) fl*(xz;ﬂ) f;(xz;ﬂ)
X fl*(xz”;a) f;(xz”;a) fl*(xzp;ﬂ) f;(xzp;ﬂ)_

Here x',x%, ..., xP s the ideal solutions of the objectives
fi(xa), fo(xa),... [, (xsa), 1(x:8), f,(x:B),.... f, (x; B) respectively.
Step-3: From the result of step 2 now we find lower bound (minimum) Z;“

and upper bound (maximum) U, ““ by using following rules
U/ = max{f,(x";a). £, (x; B)} (14.212)
Lfccznﬁn{ﬁ<xp;a),fi(xp;,8>} (14.213)

where 1<i< p.But in IFO The degree of non-membership (rejection) and the degree of

membership (acceptance) are considered so that the sum of both value is less than one. To

define the non -membership of NLP problem let U**/ and L/ be the upper bound and lower
bound of objective function f(x,@),f (x,) where L' <L* <U}/ <U/ For

objective function of minimization problem ,the upper bound for non-membership function
(rejection) is always equal to that the upper bound of membership function (acceptance).One

can take lower bound for non-membership function as follows

[ =" tg (14.214)
where 0<¢, < (Uf'cc L )based on the decision maker choice.

The initial IF model with aspiration level of objectives becomes
Find

{xi,i=1,2,..,p} (14.215)
so as to satisfy f;(x)<' L with tolerance B = (UiACC —Lf“) for the degree of acceptance

1

fori=1,2,...,p. (14.216)
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£, (x;5) > U/ with tolerance P = (UiACC —Lf“) for degree of rejection for i =1,2,..., p

(14.217)
Define the membership (acceptance) and non-membership (rejection) functions of above

uncertain objectives as follows. For the i”,i=1,2,...., pobjective functions the linear

membership functions £ ( f; (x; a)) and 4, ( f (x; B )) and linear non-membership functions

v, (fl (x:@))and v,(f, (x;ﬂ)) are defined as follows

1 if f(xa)<L
A i
w(f (na))= : ll_l_T < L < fi(xa) UM (14.218)
0 if  fi(xa)zU'
1 if fi(xpB)< L
| A
(£ (x:8))= : o i Lo f(xp) U (14.219)
0 lf fi(x;ﬂ)ZUiAcc
0 if fi(xa)<Ly
Uz-(fl-(x;“))Z [%] if L' < f(xa)<U (14.220)
1 if fi(xa)2U'
0 if f(xp)< L
(6B - Re s
Ui(fi(x;ﬂ))z [%J if LY < f(xB)<U (14.221)
1 if fi(xB)zU

Step-4: Now using IF probabilistic operator above problem can be written as
(P14.34)
p
Maximize H(/‘[ (/:(x: a)))(,ui (/; (x;ﬂ)))
i=1

(14.222)
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Maximize lﬂ[(l—ul. (£ (@) (1-0, (£ (x:8))) (14.223)

i=1

subject to

0<p(f(xa))<l (14.224)
0<v,(fi(xa))<k; (14.225)
0<u(f(xa))+o(f(xa))<l; (14.226)
0<p,(f(x:8))<L; (14.227)
0<v,(f(x:8))<L (14.228)
0<u,(f(x:8))+u,(f;(x:8))<1; (14.229)
g (xa)<b; (14.230)
g (x:p)<by; (14.231)
x>0 a,Be[0,1] (14.232)
i=1,2,.,p;j=1,2,..,m (14.233)

Step-5:  Solve the above crisp model (P14.34) by using appropriate mathematical
programming algorithm to get optimal solution of objective function.
Step-6: Stop.
14.13 Fuzzy and Intuitionistic Fuzzy Non-linear Programming
(IFNLP) Optimization to solve Parametric Single-Objective Non-
linear Programming (PSONLP) Problem

A multi-objective IFNLP with imprecise co-efficient can be formulated as

(P14.35)

n

Minimize f(x)=> &&[]x" (14.234)
t=1 Jj=1
5 7 n 3
Such that f,(x)=>.&¢&[[x" <&bfor i=12,....m (14.235)
=1 Jj=1
X, >0 j=12,..,n (14.236)

Here &, &, & are the signum functions used to indicate sign of term in the equation. ¢, >0,

9

w>0.a,, a,arereal numbers for all iz, j.
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Here (ctl”,cf,cf”;wt); (14.237)

&, =(cl.ch.csm,): (14.238)
b, =(b".b7 .5 w,) (14.239)
for fuzzy number as coefficients and

& =((c" ctem ) el esm)); (14.240)
g, =((c;*‘,c§,c;”;w )(ck.ck e, )) (14.241)
b =((BM,2.675w ) (B,87,5757,)) (14.242)

for IF coefficient.

Using nearest interval approximation method for both fuzzy and IFN ,we transform all the

TIFN into interval number i.e [ ] [ Cr\C ] and [bL bU]

Now the MOIFNLP with imprecise parameter is of the following form
(P14.36)

Minimize f ng tctHx (14.243)
Such that f; (x Z;, ,,Hx v <o b for i=1,2,. (14.244)
x,>0 j=12,..n (14.245)

Here ¢, &, & are the signum functions used to indicate sign of term in the equation. ¢, >0,

¢, > 0; b, > 0 denote the interval component i.e

[ 7] (14.246)

&, =[ct.cl . (14.247)
and b, =| b/,b! | (14.248)
and a,, a,are real numbers for all i,7, j.

Using parametric interval valued function the above problem transforms into

(P14.37)

n

Minimize f(x;s) =ZT:§,( ) ( )ij”

= (14.249)
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such that £, (x;s) :iét( ) ( n) Hxa” (bL) (bl.U)sfor i=12,..,m (14.250)
t=1

x>0 j=12,..,n5€[0,1] (14.251)
Here ¢, ¢&,, & are the signum functions used to indicate sign of term in the equation.

This is a parametric single objective non-linear programming problem and can be solved by
IFO technique.

Let us consider a Single-Objective Parametric Nonlinear Programming Problem(SOPNLPP)

as

(P14.38)
Minimize f(x;s) (14.252)
g, (xs)<b,(s) j=12,..,m (14.253)
x=0;5€[0,1] (14.254)

Usually constraint goals are considered as fixed quantity .But in real life problem ,the

constraint goal cannot be always exact. So we can consider the constraint goal for less than

type constraints at least bj (S) and it may possible to extend to bf (s) so that the maximum

allowable tolerance is b} (S) with bj(.) (s) =b, (s) +b} (s) .This fact seems to take the constraint

goal as a IFS and which will be more realistic descriptions than others. Then the NLP
becomes IFO problem with IF resources, which can be described as follows

(P14.39)

Minimize f(x;s) (14.255)
g (x5)<bi(s)  j=L2.um (14.256)
x>0;5€[0,1] (14.257)

To solve the IFO (P14.39) following Werner’s [118] and Angelov [3] we are presenting a
solution procedure for Single Objective Neutrosophic Optimization (SONSO) problem as
follows

Step-1: Following Warner’s approach solve the SONLP without tolerance in constraints (i.e

g, (x;5)<b,(s)),with tolerance of acceptance in constraints (i.e g, (x;5)<b}(s)) by

appropriate non-linear programming technique.
Here they are
(P14.40)
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Sub-problem-1
Minimize f(x; S) (14.258)

g; (x;s)Sbj (s) j=L2,...m

(14.259)
x=>0;s € [0, 1] (14.260)
(P14.41)
Sub-problem-2
Minimize f(x;s) (14.261)
g, (x;s)Sb?(s), j=L2,....m (14.262)
x>0;5€[0,1] (14.263)

we may get optimal solutions x = x],f(x*;s) :f(x';s) and x° =x2,f<x*;s) =f(x2;s)f0r sub-
problem 1 and 2 respectively.

Step-2: From the result of step 1 we now find the lower bound and upper bound of objective

functions. If U /‘,‘(x;s),U_ ;(m) be the upper bounds membership and non-membership functions

for the objective respectively and L?’.(X;S),L‘}(X;S) be the lower bounds of membership and non-

membership functions of objective respectively then

Ut =max{ £(x'5s), f(x2;s)}, (14.264)
T =min{ ('), f(xz;s)}, (14.265)
Uen) = Uy L) = L) T €y Where 0<g ) < (U;(x;s) - Lf;(m)) (14.266)

Step-3: In this step we calculate linear membership for membership and non-membership

functions of objective as follows

1 if f(x;s)SLf;.(x;S)
Ul =S (58) )
Hyen (f (35)) = {Uf%’))_ z )] i L < S (1) SUf (14.267)
fxss f(xss
0 1(e9)2U,
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0 iff(x;s)sLl}(x;s)

f(X;S) _LU' x;s) . v v
Uf(x;s) (f(x,s)) = U? Luf( & lf Lf(x;s) < f(X,S) < Uf(x;s) (14268)
Flwss) TS (xis)

1 if fxs)= U )

Step-4: In this step using linear function for membership and non-membership functions, we

may calculate membership and non-membership function for constraints as follows
1 if g;(x5)<b,(s)

b?(S)_ j(x;S) ] < )< B
[ b}i) ] if b;(s) =g, (x5)<b;(s) (14.269)

0 i g, (x:5) 25 (s)

Mg, () (g./ (X;S)) -

if g;(x:5)<b, (S)+8gj(x;s)

A x; , &y (xs)
o (85 (35)) = S by (s) 48, 0 S8, (xis) SB)(s)  (14270)

L g(ws)2by(s)

x>0;5 €[0,1] (14.271)

Step-5: Now using Fuzzy and IFO for single objective optimization technique(Singh .et.al
[93]) the optimization problem (P14.39) can be formulated as

(P14.42)
Such that
Hy(xs) (X;S) 2a; Hy, (X;S) za; (14.273)

ac [0,1] x>0;5 € [0,1] (14.274)

and

(P14.43)
Maximize (a —ﬂ) (14.275)
Such that
iy (x)>a; H, (x;8) = ex; (14.276)
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. (x)< B v, (x:5)< s (14.277)
a+B<l a>p (14.278)
a,ﬂe[O,l] xZO;se[O,l] (14.279)

In fuzzy and IF environment respectively. Now the above problem (P14.42),(P14.43) can be

Solved by appropriate mathematical programming
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In the real world, uncertainty or vagueness is prevalent in
engineering and management computations. Commonly, such
uncertainties are included in the design process by introducing
simplified hypothesis and safety or design factors. In case of
structural and pavement design, several design methods are
available to optimize objectives. But all such methods follow
numerous monographs, tables and charts to find effective thickness
of pavement design or optimum weight and deflection of structure
calculating certain loop of algorithm in the cited iteration process.
Most of the time, designers either only take help of a software or
stop the cited procedure even after two or three iterations. As for
example, the finite element method and genetic algorithm type of
crisp optimization method had been applied on the cited topic,
where the values of the input parameters were obtained from
experimental data in laboratory scale. But practically, above cited
standards have already ranged the magnitude of those parameters
in between maximum to the minimum values. As such, the designer
becomes puzzled to select those input parameters from such ranges
which actually yield imprecise parameters or goals with three key
governing factors i.e. degrees of acceptance, rejection and

hesitancy, requiring fuzzy, intuitionistic fuzzy, and neutrosophic
optimization.

Therefore, the problem of structural designs, pavement designs,
welded beam designs are firstly classified into single objective and
multi-objective problems of structural systems. Then, a mathem-
atical algorithm - e.g. Neutrosophic Geometric Programming,
Neutrosophic Linear Programming Problem, Single Objective Neut-
rosophic Optimization, Multi-objective Neutrosophic Optimization,
Parameterized Neutrosophic Optimization, Neutrosophic Goal
Programming Technique - has been provided to solve the problem
according to the nature of impreciseness that exists in the problem.

Thus, we provide in this book a solution which is hardly presented
in the scientific literature regarding structural optimum design,
pavement optimum design, welded beam optimum design, that
works in imprecise environment i.e. in neutrosophic environment.
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