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I.1. Overview 

Neutrosophy means the study of ideas and notions that 

are not true, nor false, but in between (i.e. neutral, 

indeterminate, unclear, vague, ambiguous, incomplete, 

contradictory, etc.). 

Each field has a neutrosophic part, i.e. that part that has 

indeterminacy. Thus, there were born the neutrosophic 

logic, neutrosophic set, neutrosophic probability, 

neutrosophic statistics, neutrosophic measure, 

neutrosophic precalculus, neutrosophic calculus, etc. 

There exist many types of indeterminacies – that is why 

neutrosophy can be developed in many different ways.
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I.2. Preliminary 

The first part of this book focuses on Neutrosophic 

Precalculus, which studies the neutrosophic functions. A 

Neutrosophic Function 𝑓: 𝐴 → 𝐵  is a function which has 

some indeterminacy, with respect to its domain of 

definition, to its range, or to its relationship that associates 

elements in 𝐴 with elements in 𝐵. 

As particular cases, we present the neutrosophic 

exponential function and neutrosophic logarithmic 

function. The neutrosophic inverse function is the inverse 

of a neutrosophic function. 

A Neutrosophic Model is, in the same way, a model with 

some indeterminacy (vagueness, un sureness, ambiguity, 

incompleteness, contradiction, etc.). 

* 

The second part of the book focuses on Neutrosophic 

Calculus, which studies the neutrosophic limits, 

neutrosophic derivatives, and neutrosophic integrals. 

* 

We introduce for the first time the notions of 

neutrosophic mereo-limit, mereo-continuity, mereo-

derivative, and mereo-integral, 1  besides the classical 

1 From the Greek μερος, ‘part’. It is also used to define the theory of the 

relations of part to whole and the relations of part to part within a whole 

(mereology), started by Leśniewski, in “Foundations of the General Theory of 

Sets” (1916) and “Foundations of Mathematics” (1927–1931), continued by 

Leonard and Goodman's “The Calculus of Individuals” (1940).
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definitions of limit, continuity, derivative, and integral 

respectively.  

* 

The last part of this book deals with the new version of 

binomial factorial theorem containing the literal 

indeterminacy (I), this theorem owns three corollaries. 

However, more than one new theorem had been presented 

and proved with their corollaries. New ten forms of 

(indeterminate forms) had been derived, this ten 

indeterminate forms take an important role in limits. 

The Neutrosophic Precalculus and Neutrosophic 

Calculus can be developed in many ways, depending on 

the types of indeterminacy one has and on the method 

used to deal with such indeterminacy. 

In this book, we present a few examples of 

indeterminacies and several methods to deal with these 

specific indeterminacies, but many other indeterminacies 

there exist in our everyday life, and they have to be studied 

and resolved using similar of different methods. Therefore, 

more research has to be done in the field of neutrosophics. 
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I.3. Distinctions among Interval 
Analysis, Set Analysis, and 
Neutrosophic Analysis 

I.3.1. Notation 
In this book we consider that an interval [a, b] = [b, a] 

in the case when we do not know which one between a and 

b is bigger, or for the case when the interval has varying 

left and right limits of the form [f(x), g(x)], where for 

certain x’s one has f(x) < g(x) and for other x’s one has f(x) 

> g(x). 

I.3.2. Interval Analysis 
In Interval Analysis (or Interval Arithmetic) one 

works with intervals instead of crisp numbers. Interval 

analysis is intended for rounding up and down errors of 

calculations. So an error is bounding by a closed interval. 

I.3.3. Set Analysis 
If one replaces the closed intervals (from interval 

analysis) by a set, one get a Set Analysis (or Set 

Arithmetic). 

For example, the set-argument set-value function: 

h: P (R)  P(R),     (1) 

where P(R) is the power set of R (the set of all real 

numbers), 

h({1, 2, 3}) = {7, 9}, h([0, 1]) = (6, 8), h(-3) =  

= {-1, -2} (2.5, 8], h([x, x2] [-x2, x]) = 0.  (2) 

Set analysis is a generalization of the interval analysis. 
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I.3.4. Distinctions among Interval Analysis, 
Set Analysis, and Neutrosophic Analysis 

Neutrosophic Analysis (or Neutrosophic Arithmetic) 

is a generalization of both the interval analysis and set 

analysis, because neutrosophic analysis deals with all kind 

of sets (not only with intervals), and also considers the 

case when there is some indeterminacy (with respect to 

the sets, or with respect to the functions or other notions 

defined on those sets). 

If one uses sets and there is no indeterminacy, then 

neutrosophic analysis coincides with the set analysis. 

If instead of sets, one uses only intervals and there is no 

indeterminacy, then neutrosophic analysis coincides with 

interval analysis. 

If there is some indeterminacy, no matter if using only 

intervals, or using sets, one has neutrosophic analysis. 

I.3.5. Examples of Neutrosophic Analysis 
Neutrosophic precalculus and neutrosophic calculus 

are also different from set analysis, since they use 

indeterminacy. 

As examples, let’s consider the neutrosophic functions: 

f1(0 or 1) = 7 (indeterminacy with respect to the 

argument of the function),  

i.e. we are not sure if f1(0) = 7 or f1(1) = 7.  (3) 

Or 

f2(2) = 5 or 6 (indeterminacy with respect to the value 

of the function), 

so we are not sure if f2(2) = 5 or f2(2) = 6.  (4) 
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Or even more complex: 

f3(-2 or -1) = -5 or 9 (indeterminacy with respect with 

both the argument and the value of the function), 

i.e. f3(-2) = -5, or f3(-2) = 9, or f3(-1) = 

= -5, or f3(-1) = 9.     (5) 

And in general: 

fm,n(a1 or a2 or … or am) = b1 or b2 or … or bn. (6) 

These functions, containing such indeterminacies, are 

different from set- argument, set vector functions. 

I.3.6. Examples in Set Analysis 
For example f1: R  R is different from the set-argument 

function: 

g1: R2  R, where g1({0, 1}) = 7.   (7) 

Also, f2: R  R is different from the set-value function  

g2: R  R2, where g2(2) = {5, 6}.   (8) 

Similarly, f3: R  R is different from the set-argument 

set-value function 

g3: R2  R2, where g3({-2, -1}) = {-5, 9}.  (9) 

And in the general case, fm,n: R  R is different from the 

set-argument set-value function    

gm,n : Rm  Rn,  

where gm,n({a1, a2, …,am}) = {b1, b2, …, bn}.  (10) 

It is true that any set can be enclosed into a closed 

interval, yet by working with larger intervals than narrow 

sets, the result is rougher, coarser, and more inaccurate.  

Neutrosophic approach, by using smaller sets included 

into intervals, is more refined than interval analysis.  
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Neutrosophic approach also uses, as particular cases, 

open intervals, and half-open half-closed intervals. 

I.3.7. Examples in Interval Analysis 
Also, neutrosophic analysis deals with sets that have 

some indeterminacy: for example we know that an 

element x(t,i,f) only partially belongs to a set S, and 

partially it does not belong to the set, while another part 

regarding the appurtenance to the set is indeterminate. 

Or we have no idea if an element y(0,1,0) belongs or not 

to the set (complete indeterminacy). 

Or there is an element that belongs to the set, but we 

do not know it. 

Interval analysis and set analysis do not handle these. 

Let’s consider an interval L = [0, 5(0.6, 0.1, 0.3) [, where the 

number 5(0.6, 0.1, 0.3) only partially (0.6) belongs to the 

interval L, partially doesn’t belong (0.3), and its 

appurtenance is indeterminate (0.1). We should observe 

that L ≠ [0, 5] and L ≠ [0, 5). Actually, L is in between them: 

[0, 5) ⊂ L ⊂ [0, 5],     (11) 

since the element 5 does not belong to [0, 5), partially 

belong to [0, 5(0.6, 0.1, 0.3)[, and certainly belongs to [0, 5]. So, 

the interval L is part of neutrosophic analysis, not of 

interval analysis. 

Now, if one considers the functions: 

k1( [0, 5] ) = [-4, 6], or k2( [-2, -4] ) = [0, 5],   (12) 

then k1 and k2 belong to the interval analysis. 

But if we take  

k3([0, 5(0.6, 0.1, 0.3)[)=[-4, 6], or k4([-2, -4])=[0, 5(0.6,0.1,0.3)[,  
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then k3 and k4 belong to neutrosophic analysis. (13) 

A Neutrosophic Function 𝑓: 𝐴 → 𝐵 is a function, which 

has some indeterminacy, with respect to its domain of 

definition, to its range, to its relationship that associates 

elements in 𝐴 with elements in 𝐵 -- or to two or three of 

the above situations. 

Interval Analysis studies only functions defined on 

intervals, whose values are also intervals, but have no 

indeterminacy. 

Therefore, neutrosophic analysis is more general than 

interval analysis. Also, neutrosophic analysis deals with 

indeterminacy with respect to a function argument, a 

function value, or both. 

For example, the neutrosophic functions: 

𝑒: ℝ ∪ {𝐼} → ℝ ∪ {𝐼}, 𝑒(2 + 3𝐼) = 7 − 6𝐼  (14) 

where I = indeterminacy. 

𝑓: ℝ → ℝ, 𝑓(4 or 5) = 7; (15) 

𝑔: ℝ → ℝ, 𝑔(0) = −2 or 3 or 7; (16) 

ℎ: ℝ → ℝ, ℎ(−1 or 1) = 4 or 6 or 8; (17) 

𝑘: ℝ → ℝ, 𝑘(𝑥) = 𝑥 and − 𝑥  (which fails the classical 

vertical line test for a curve to be a classical function); thus 

𝑘(𝑥) is not a function from a classical point of view, but it 

is a neutrosophic function); (18) 

𝑙: ℝ → ℝ, 𝑙(−3) = maybe 9. (19) 

One has:    

Interval Analysis ⊂ Set Analysis ⊂ Neutrosophic Analysis. 
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I.3.8. Inclusion Isotonicity 
Inclusion isotonicity of interval arithmetic also applies 

to set analysis and neutrosophic analysis. Hence, if ʘ 

stands for set addition, set subtraction, set multiplication, 

or set division, and A, B, C, D are four sets such that: A ⊆ 

C and B ⊆ D, then  

A ʘ B ⊆ C ʘ D.      (20) 

The proof is elementary for set analysis: 

Let x ∈ A ʘ B, then there exists a ∈ A and b ∈ B such 

that x = a ʘ b. 

But a ∈ A and A ⊆ C means that a ∈ C as well.  

And similarly, b ∈ B and B ⊆ D means that b ∈ D as well. 

Whence, x = a ʘ b ∈ C ʘ D too. 

The proof for neutrosophic analysis is similar, but one 

has to consider one of the neutrosophic inclusion 

operators; for example as follows for crisp neutrosophic 

components t, i, f:  

a neutrosophic set M is included into a neutrosophic set 

N if, 

for any element x(tM,iM,fM) ∈ M one has x(tn,in,fn) ∈ N, 

with tM ≤ tN, iM ≥ iN, and fM ≥ fN. 

I.3.9. Conclusion 
This research is in the similar style as those on 

neutrosophic probability (2013) and neutrosophic statistics 

(2014) from below. 
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I.4. Indeterminate Elementary 
Geometrical Measurements 

The mathematics of indeterminate change is the 

Neutrosophic Calculus. 

Indeterminacy means imprecise, unclear, vague, 

incomplete, inconsistent, contradictory information. 

While classical calculus characterizes the dynamicity of 

our world, neutrosophic calculus characterizes the 

indeter-minate (neutrosophic) dynamicity. Classical 

calculus deals with notions (such as slope, tangent line, arc 

length, centroid, curvature, area, volume, as well as 

velocity, and acceleration) as exact measurements, but in 

many real-life situations one deals with approximate 

measurements. 

Neutrosophic Precalculus is more static and is referred 

to ambiguous staticity.  

In neutrosophic calculus, we deal with notions that 

have some indeterminacy. Moreover, indeterminacy, 

unfortunately, propagates from one operation to the 

other. 

In an abstract idealist world, there are perfect objects 

and perfect notions that the classical calculus uses. 

For example, the curvature of perfect circle of radius r 

> 0 is a constant number [equals to  1/𝑟 ], but for an 

imperfect circle its curvature may be an interval [included 

in  (1/𝑟 − 𝜀, 1/𝑟 + 𝜀) , which is a neighborhood of the 

number 1/r, with 𝜀 > 0 a tiny number]. 
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A perfect right triangle with legs of 1 cm and 2 cm has 

its hypotenuse equals to √5 cm. However, in our imperfect 

world, we cannot draw a segment of line whose length be 

equal of exactly √5 cm, since √5 is an irrational number 

that has infinitely many decimals, we need to approximate 

it to a few decimals: √5 = 2.23606797 … 

  √5 ? 

 

Figure 1. 

 

The area of a perfect ellipses is 𝐴 = 𝜋𝑎𝑏, where 2𝑎 and 

2𝑏, with 𝑎 > 𝑏, are its major and minor axes respect-ively. 

However, we cannot represent it exactly since 𝜋  is a 

transcendental number (i.e. it is not a solution of any 

polynomial equations with rational coefficients), and it 

has infinitely many decimals. If 𝑎 = 2 𝑐𝑚  and 𝑏 = 1 𝑐𝑚 , 

then the area of the ellipse is 𝐴 = 2𝜋 = 6.2831 … cm2. 

 
Figure 2. 

 

But we can not exactly comprise this area inside of this 

ellipse, since 6.2831 … is not an exact number. We only 
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work with approximations (imprecisions, indeter-

minations). 

Similarly, for the volume of a perfect sphere 𝑉 =
4

3
𝜋𝑟3 

where its radius is 𝑟 . If 𝑟 = 1 cm , then 𝑉 =
4

3
𝜋 =

4.1887 … cm3 which is a transcendental number and has 

infinitely many decimals. Thus, we are not able to exactly 

have the volume of the below sphere, 

 

 
Figure 3. 

 

equals to 4.1887 … 𝑐𝑚3. 
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I.5. Indeterminate Physical Laws 

Neutrosophy has also applications in physics, since 

many physical laws are defined in strictly closed systems, 

i.e. in idealist (perfect) systems2, but such “perfect” system 

do not exist in our world, we deal only with approximately 

closed system, which makes room for using the 

neutrosophic (indeterminate) theory. Therefore, a system 

can be t% closed (in most cases t < 100), i% indeterminate 

with respect to closeness or openness, and f% open.  

Therefore, a theoretical physical law (L) may be true in 

our practical world in less than 100%, hence the law may 

have a small percentage of falsehood, and another small 

percentage of indeterminacy (as in neutrosophic logic). 

Between the validity and invalidity of a theoretical law 

(idea) in practice, there could be included multiple-

middles, i.e. cases where the theoretical law (idea) is 

partially valid and partially invalid. 

2 Fu Yuhua, “Pauli Exclusion Principle and the Law of Included Multiple-

Middle”, in Neutrosophic Sets and Systems, Vol. 6, 2014. 
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II.1. Algebraic Operations with Sets 

Let 𝑆 and 𝑇 be two sets, and 𝛼 ∈ ℝ a scalar. Then: 

𝛼 ∙ 𝑆 = {𝛼 ∙ 𝑠|𝑠 ∈ 𝑆 }; (21) 

𝑆 + 𝑇 = {𝑠 + 𝑡|𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇}; (22) 

𝑆 − 𝑇 = {𝑠 − 𝑡|𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇}; (23) 

𝑆 ∙ 𝑇 = {𝑠 ∙ 𝑡|𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇}; (24) 
𝑆

𝑇
= {

𝑠

𝑡
|𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, 𝑡 ≠ 0}. (25) 
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II.2. Neutrosophic Subset Relation 

A Neutrosophic Subset Relation 𝑟, between two sets 𝐴 

and 𝐵, is a set of ordered pairs of the form (𝑆𝐴, 𝑆𝐵), where 

𝑆𝐴  is a subset of 𝐴 , and 𝑆𝐵  a subset of 𝐵 , with some 

indeterminacy. 

A neutrosophic relation 𝑟 , besides sure ordered pairs 

(𝑆𝐴, 𝑆𝐵) that 100% belong to 𝑟, may also contains potential 

ordered pairs (𝑆𝐶 , 𝑆𝐷), where 𝑆𝐶 is a subset of 𝐴, and 𝑆𝐷 a 

subset of 𝐵, that might be possible to belong to 𝑟, but we 

do not know in what degree, or that partially belong to 𝑟 

with the neutrosophic value (𝑇, 𝐼, 𝐹), where 𝑇 < 1 means 

degree of appurtenance to 𝑟 , 𝐼  means degree of 

indeterminate appurtenance, and 𝐹 means degree of non-

appurtenance. 

Example: 

𝑟: {0, 2, 4, 6} → {1, 3, 5}  

𝑟 = {
({0, 2}, {1, 3}), ({4, 6}, {5}),

({6}, {1, 5})(0.7,0.1,0.1), ({2, 6}, {3, 5})?
} (26) 

where ({0, 2}, {1, 3}) and ({4, 6}, {5}) for sure belong to 

𝑟; 

while ({6}, {1, 5}) partially belongs to 𝑟 in a percentage 

of 70%, 10% is its indeterminate appurtenance, and 10% 

doesn’t belong to 𝑟; 

and ({2, 6}, {3, 5})  is also potential ordered pairs (it 

might belong to 𝑟, but we don’t know in what degree). 
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II.3. Neutrosophic Subset Function 

A Neutrosophic Subset Function 𝑓: 𝒫(𝐴) → 𝒫(𝐵), is a 

neutrosophic subset relation such that if there exists a 

subset 𝑆 ⊆ 𝐴 with 𝑓(𝑠) = 𝑇1, and 𝑓(𝑠) = 𝑇2, then 𝑇1 ≡ 𝑇2. 

(This is the (Neutrosophic) Vertical Line Test extended 

from crisp to set-values.) 

As a particular case, a Neutrosophic Crisp Relation 

between two sets 𝐴 and 𝐵 is a classical (crisp) relation that 

has some indeterminacy.  

A neutrosophic crisp relation may contain, besides the 

classical sure ordered pairs (𝑎, 𝑏), with 𝑎 ∈ 𝐴  and 𝑏 ∈ 𝐵 , 

also potential ordered pairs (𝑐, 𝑑) , with 𝑐 ∈ 𝐴  and 𝑑 ∈ 𝐵 

meaning that we are not sure if there is or there is not a 

relation between 𝑐 and 𝑑, or there is a relation between 𝑐 

and 𝑑, but in a percentage strictly less then 100%. 

For example, the neutrosophic relation: 

𝑟: {1, 2, 3, 4} → {5, 6, 7, 8, 9}   (27) 

defined in set notation as: 

{(1, 5), (2, 6), (3, 7)[0.6,0.1,0.2], (3, 8)?, (4, 9)?} 

where the ordered pairs (1, 5), (2, 6), (3, 7)  for sure 

(100% belong to 𝑟), while (3, 7) only 60% belongs to 𝑟, 10% 

the appurtenance is indeterminate, and 30% it does not 

belong to 𝑟  [as in neutrosophic set], while about the 

ordered pairs (3, 8)  and (4, 9)  we do not know their 

appurtenance to 𝑟 (but it might be possible). 

Another definition, in general, is: 
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A Neutrosophic Relation 𝑟: 𝐴 → 𝐵  is formed by any 

connections between subsets and indeterminacies in 𝐴 

with subsets and indeterminacies in 𝐵.  

It is a double generalization of the classical relation; 

firstly, because instead of connecting elements in 𝐴 with 

elements in 𝐵, one connects subsets in 𝐴 with subsets in 

𝐵; and secondly, because it has some indeterminacies, or 

connects indeterminacies, or some connections are not 

well-known. 

A neutrosophic relation, which is not a neutrosophic 

function, can be restrained to a neutrosophic function in 

several ways. 

For example, if 𝑟(𝑆) = 𝑇1 and 𝑟(𝑆) = 𝑇2, where 𝑇1 ≠ 𝑇2, 

we can combine these to: 

 either 𝑓(𝑆) = 𝑇1 and 𝑇2, 

 or 𝑓(𝑆) = 𝑇1 or 𝑇2, 

 or 𝑓(𝑆) = {𝑇1, 𝑇2}, 

which comply with the definition of a neutrosophic 

function. 
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II.4. Neutrosophic Crisp Function 

A Neutrosophic Crisp Function 𝑓: 𝐴 → 𝐵  is a neutro-

sophic crisp relation, such that if there exists an element 

𝑎 ∈ 𝐴  with 𝑓(𝑎) = 𝑏  and 𝑓(𝑎) = 𝑐 , where 𝑏, 𝑐 ∈ 𝐵 , then 

𝑏 ≡ 𝑐. (This is the classical Vertical Line Test.) 
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II.5. General Neutrosophic Function 

A General Neutrosophic Function is a neutrosophic 

relation where the vertical line test (or the vertical subset-

line test) does not work. But, in this case, the general 

neutrosophic function coincides with the neutrosophic 

relation. 
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II.6. Neutrosophic (Subset or Crisp) 
Function 

A neutrosophic (subset or crisp) function in general is a 

function that has some indeterminacy. 

II.6.1. Examples 

1. 𝑓: {1, 2, 3} → {4, 5, 6, 7}   (28) 

𝑓(1) = 4, 𝑓(2) = 5, but 𝑓(3) = 6 or 7  

  [we are not sure]. 

If we consider a neutrosophic diagram representation of 

this neutrosophic function, we have: 

 

 
Diagram 1. Neutrosophic Diagram Representation. 

 

The dotted arrows mean that we are not sure if the 

element 3 is connected to the element 6, or if 3 is 

connected to 7. 

As we see, this neutrosophic function is not a function 

in the classical way, and it is not even a relationship in a 

classical way. 
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If we make a set representation of this neutrosophic 

function, we have: 

{(1, 4), (2, 5), (3, 6)
?, (3, 7)

?} 

where the dotted borders mean we are not sure if they 

belong or not to this set. Or we can put the pairs (3, 6) and 

(3, 7) in red color (as warning). 

In table representation, we have: 

 

 
Table 1. 

where about the red color numbers we are not sure. 
 

Similarly, for a graph representation: 

 

 
Graph 1. 

 

Or, modifying a little this example, we might know, for 

example, that 3 is connected with 7 only partially, i.e. let’s 

say (3, 7)(0.6, 0.2, 0.5) which means that 60% 3 is connected 
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with 7, 20% it is not clear if connected or non-connected, 

and 50% 3 is not connected with 7. 

The sum of components 0.6 + 0.2 + 0.5 = 1.3 is greater 

than 1 because the three sources providing information 

about connection, indeterminacy, non-connection 

respectively are independent, and use different criteria of 

evaluation. 
2. We modify again this neutrosophic function as 

follows: 

𝑔: {1, 2, 3} → {4, 5, 6, 7},    (29) 

𝑔(1) = 4, 𝑔(2) = 5, but 𝑔(3) = 6 and 7. 

The neutrosophic function 𝑔 is not a function in the 

classical way (since it fails the vertical line test at 𝑥 = 3), 

but it is a relationship in the classical way. 

Its four representations are respectively: 

 

 
Diagram 2. 

 

{(1, 4), (2, 5), (3, 6), (3, 7)} 

 
Table 1. 
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Graph 2. 

 

Yet, if we redesign 𝑔 as 

𝐺: {1, 2, 3} → 𝒫({4, 5, 6, 7}),    (30) 

𝐺(1) = 4, 𝐺(2) = 5, and 𝐺(3) = {6, 7}, 

then 𝐺 becomes a classical set-valued function. 

3. Let’s consider a different style of neutrosophic 

function: 

ℎ: ℝ → ℝ     (31) 

ℎ(𝑥) ∈ [2, 3], for any 𝑥 ∈ ℝ. 

Therefore, we know about this function only the fact 

that it is bounded by the horizontal lines 𝑦 = 2 and 𝑦 = 3: 

 
Graph 3. 
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4. Similarly, we modify ℎ(•)  and get a constant 

neutrosophic function (or thick function): 

𝑙: ℝ → 𝒫(ℝ)      (32) 

𝑙(𝑥) = [2, 3] for any 𝑥 ∈ ℝ, 

where 𝒫(ℝ) is the set of all subsets of ℝ. 

For ex., 𝑙(7) is the vertical segment of line [2, 3]. 

 
Graph 4. 

5. A non-constant neutrosophic thick function: 

𝑘: ℝ → 𝒫(ℝ)      (33) 

𝑘(𝑥) = [2𝑥, 2𝑥 + 1] 

whose graph is: 

 
Graph 5. 
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For example: 

𝑘(2) = [2(2), 2(2) + 1] = [4, 5]. 

6. In general, we may define a neutrosophic thick 

function as: 

𝑚: ℝ → 𝒫(ℝ)     (34) 

𝑚(𝑥) = [𝑚1(𝑥1)𝑚2(𝑥)]  

 
Graph 6. 

 

and, of course, instead of brackets we may have an open 

interval (𝑚1(𝑥), 𝑚2(𝑥)) , or semi-open/semi-close inter-

vals (𝑚1(𝑥), 𝑚2(𝑥)], or [𝑚1(𝑥),  𝑚2(𝑥)] . 

For example, 𝑚(0) = [𝑚1(0), 𝑚2(0)] , the value of 

neutrosophic function 𝑚(𝑥) and a vertical segment of line. 

These examples of thick (neutrosophic) functions are 

actually classical surfaces in ℝ2. 

7. Example of neutrosophic piece-wise function: 

𝑠: ℝ → 𝒫(ℝ)      (35) 

𝑠(𝑥) = {
[𝑠1(𝑥), 𝑠2(𝑥)], for 𝑥 ≤ 3;

(𝑠3(𝑥), 𝑠4(𝑥)), for 𝑥 > 3; 
 

with the neutrosophic graph: 

m2(x) 

m1(x) 
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Graph 7. 

 

For example, 𝑠(3) = [𝑠1(3), 𝑠2(3)], which is the vertical 

closed segment of line [AB]. 

In all above examples the indeterminacy occured into 

the values of function. But it is also possible to have 

indeterminacy into the argument of the function, or into 

both (the argument of the function, and the values of the 

function) as below. 

8. Indeterminacy into the argument of the function: 

𝑟: {1, 2, 3, 4} → {5, 6, 7}     (36) 

𝑟(1) = 5, 𝑟(2) = 6,  

𝑟(3 or 4) = 7 {i. e. we do not know if 𝑟(3)

= 7 or 𝑟(4) = 7}. 

Another such example: 

𝑡: {1, 2, 3, 4} → {5, 6}     (37) 

𝑡(1) = 5, but 𝑡(2 or 3 or 4) = 6. 

9. Indeterminacy into both: 

⊔ : {1, 2, 3, 4} → {5, 6, 7}    (38) 

⊔ (1 or 2) = 5 or 6 or 7, 
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which means that either ⊔ (1) = 5, or ⊔ (1) = 6, or ⊔ (1) 

= 7, or ⊔ (2) = 5, or ⊔ (2) = 6, or ⊔ (2) = 7; 

⊔ (2 or 3 or 4) = 6 or 7. 

Another example:  

𝑣1: ℝ → 𝒫(ℝ), 𝑣1(𝑥 or 2𝑥) = 5𝑥.  (39) 

Yet, this last neutrosophic function with indeter-

minacy into argument can be transformed, because 

𝑣1(2𝑥) = 5𝑥  is equivalent to 𝑣1(𝑥) = 2.5𝑥 , into a 

neutrosophic function with indeterminacy into the values 

of the function only: 

𝑣2(𝑥) = 2.5𝑥 or 5𝑥. 

Nor these last neutrosophic functions are relation-ships 

in a classical way. 
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II.7. Discrete and Non-Discrete 
Indeterminacy 

From another view point, there is a discrete indeter-

minacy, as for examples: 

𝑓(2 or 3) = 4,  

or 𝑓(2) = 5 or 6,  

or 𝑓(2 or 3) = 5 or 6; 

and non-discrete indeterminacy, as for examples: 

𝑓(7𝑥 or 8𝑥) = 63,  

or 𝑓(𝑥) = 10𝑥3  

or 20 sin(𝑥), 

or 𝑓(𝑥2 or 8𝑥) = 16𝑒𝑥  and ln 𝑥. 

Depending on each type of indeterminacy we need to 

determine a specific neutrosophic technic in order to over-

come that indeterminacy. 
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II.8. Neutrosophic Vector-Valued 
Functions of Many Variables 

We have given neutrosophic examples of real-valued 

functions of a real variable. But similar neutrosophic 

vector-valued functions of many variables there exist in 

any scientific space: 

𝑓: 𝐴1 × 𝐴2 × … × 𝐴𝑛 → 𝐵1 × 𝐵2 × … 𝐵𝑚  

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = (

𝑓1(𝑥1, 𝑥2, … , 𝑥𝑛),

𝑓2(𝑥1, 𝑥2, … , 𝑥𝑛), … ,

𝑓𝑚(𝑥1, 𝑥2, … , 𝑥𝑛)
). (40) 

Sure 𝐴1, 𝐴2, … , 𝐴𝑛  and 𝐵1, 𝐵2, … , 𝐵𝑛  may be scientific 

spaces of any types. 

Such neutrosophic vector-valued functions of many 

variables may have indeterminacy into their argument, 

into their values, or into both. And the indeterminacy can 

be discrete or non-discrete. 
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II.9. Neutrosophic Implicit Functions 

Similarly to the classical explicit and implicit function, 

there exist: Neutrosophic Explicit Functions, for example: 

𝑓(𝑥) = 𝑥2 or 𝑥2 + 1,    (41) 

and Neutrosophic Implicit Functions, for example: 

{(𝑥, 𝑦) ∈ ℝ2|𝑒𝑥 + 𝑒𝑦 = 0 or 𝑒𝑥 + 𝑒𝑦 = −1}. (42) 
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II.10. Composition of Neutrosophic 
Functions 

Composition of Neutrosophic Functions is an extension 

of classical composition of functions, but where the 

indeterminacy propagates. 

For example: 

𝑓(𝑥) = [ln(𝑥) , ln (3𝑥)], for 𝑥 > 0,  (43) 

and 𝑔(𝑥) = {
1

𝑥−5
, if 𝑥 ≠ 5;

7 or 9, if 𝑥 = 5;
    (44) 

are both neutrosophic functions. 

What is (𝑓 ∘ 𝑔)(5) =? 

(𝑓 ∘ 𝑔)(5) = 𝑓(𝑔(5)) = 𝑓(7 or 9) =

[ln 7, ln 21] or [ln 9, ln 27].   (45) 

Therefore, the discrete indeterminacy “7 or 9” together 

with the non-discrete (continous) indeterminacy 

“ [ln(𝑥), ln(3𝑥)] ” have propagated into a double non-

discrete (continuous) indeterminacy “ [ln 7, ln 21]  or 

[ln 9, ln 27] ”. 

But what is (𝑔 ∘ 𝑓)(5) =? 

(𝑔 ∘ 𝑓)(5) = 𝑔(𝑓(5)) = 𝑔([ln 5, ln 15]) =

[
1

ln(15)−5
,

1

ln(5)−5
] ≈ [−0.43631, −0.29494]. (46) 

What is in general (𝑓 ∘ 𝑔)(𝑥) =? 

(𝑓 ∘ 𝑔)(𝑥) = 𝑓(𝑔(𝑥)) = {
𝑓 (

1

𝑥 − 5
) , for 𝑥 ≠ 5;

𝑓(7 or 9), for 𝑥 = 5;
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= {
[ln (

1

𝑥−5
) , ln (

3

𝑥−5
)] , for 𝑥 > 5;

[[ln 7, ln 21] or [ln 9, ln 27]], for 𝑥 = 5.
 (47) 

Since the domain of 𝑓(∙) is (0, ∞), one has 
1

𝑥−5
> 0, i.e. 

𝑥 > 5 for the first piecewise of 𝑓 ∘ 𝑔. 

As we said before, a neutrosophic function 𝑦 = 𝑓(𝑥) 

may have indeterminacy into its domain, or into its range, 

or into its relation between x and y (or into any two or 

three of them together). 
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II.11. Inverse Neutrosophic Function 

The inverse of a neutrosophic function is also a 

neutrosophic function, since the indeterminacy of the 

original neutrosophic function is transmitted to its 

inverse. 

II.11.1. Example. 

𝑓(𝑥) = {
2𝑥 + 1 or 6𝑥, for 𝑥 ≠ 0;

[1, 3], for 𝑥 = 0;
   (48) 

or  

0 ≠ x     2x+1 or 6x; 

0     [1, 3]. 

Let’s find the inverse of the neutrosophic function 𝑓(𝑥). 

𝑦 = 2𝑥 + 1 or 6𝑥, for 𝑥 ≠ 0.   (49) 

Therefore 𝑦 = 2𝑥 + 1 or 𝑦 = 6𝑥, for 𝑥 ≠ 0. 

Interchange the variables: 𝑥 = 2𝑦 + 1  or 𝑥 = 6𝑦 , for 

𝑦 ≠ 0. 

Thus 𝑥 = 2𝑦 + 1, whence 𝑦 =
𝑥−1

2
≠ 0, therefore 𝑥 ≠ 1, 

respectively: 𝑥 = 6𝑦, whence 𝑦 =
𝑥

6
≠ 0, therefore 𝑥 ≠ 0. 

Hence, the inverse of the neutrosophic function 𝑓(𝑥) 

is: 

𝑓−1(𝑥) = {
𝑥−1

2
 or 

𝑥

6
, for 𝑥 ≠ 0 and 𝑥 ≠ 1;

0,   for 𝑥 = [1, 3].
 (50) 

Again, the inverse of a neutrosophic function: 

𝑓: ℝ → ℝ2 

𝑓(𝑥) = [2𝑥 + 1, 6𝑥], for 𝑥 ∈ ℝ,  

or 𝑥 → [2𝑥 + 1, 6𝑥]. 

Simply, the inverse is: 
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𝑓−1: ℝ2 → ℝ 

𝑓−1([2𝑥 + 1, 6𝑥]) = 𝑥, for all 𝑥 ∈ ℝ, 

or [2𝑥 + 1, 6𝑥] → 𝑥.     (51) 

The inverse of the neutrosophic exponential function 

𝑘(𝑥) = 2𝑥 or 2𝑥+1 

is 𝑘−1(𝑥) = log2(𝑥)  or log2(𝑥 + 1).  (52) 

Similarly, the inverse of the neutrosophic logarithmic 

function 

ℎ(𝑥) = log(0.09,0.11) 𝑥  

is ℎ−1(𝑥) = (0.09, 0.11)𝑥 .   (53) 

A classical function is invertible if and only if it is one-

to-one (verifies the Horizontal Line Test). 

Let’s consider the classical function: 

𝑓: {1, 2, 3} → {4, 5}    (54) 

𝑓(1) = 4, 𝑓(2) = 5, 𝑓(3) = 5. 

This function is not one-to-one since it fails the 

horizontal line test at 𝑦 = 5, since 𝑓(2) = 𝑓(3). Therefore, 

this function is not classically invertible. 

However, neutrosophically we can consider the 

neutrosophic inverse function 

𝑓−1(4) = 1, 𝑓−1(5) = {2, 3}, 

𝑓−1: {4, 5} → 𝒫({1, 2, 3}).   (55) 

For the graph of a neutrosophic inverse function 

𝑓−1(𝑥)  we only need to reflect with respect to the 

symmetry axis 𝑦 =  𝑥  the graph of the neutrosophic 

function 𝑓(𝑥). 

The indeterminacy of a neutrosophic function is 

transmitted to its neutrosophic inverse function. 
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II.11.2. Proposition 
Any neutrosophic function is invertible. 

Proof. If 𝑓(𝑥)  fails the horizontal line test 𝑓: 𝐴 → 𝐵 , 

𝑎𝑡 𝑦 =  𝑏, from the domain of definition of the neutro-

sophic function, we define the neutrosophic inverse 

function 

𝑓−1(𝑏) = {𝑎 ∈ 𝐴, 𝑓(𝑎) = 𝑏}, 𝑓−1: 𝐵 → 𝐴.  (56) 

Let 𝑓: 𝐴 → 𝐵  be a neutrosophic function. If the 

neutrosophic graph of 𝑓 contains the neutrosophic point 

(𝐶, 𝐷) , where 𝐶 ⊆ 𝐴  and 𝐷 ⊆ 𝐵 , then the graph of the 

neutrosophic inverse function 𝑓−1  contains the neutro-

sophic point (𝐷, 𝐶). 

A neutrosophic point is a generalization of the clas-sical 

point (𝑐, 𝑑) , where 𝑐 ∈ 𝐴  an 𝑑 ∈ 𝐵 , whose dimension is 

zero. A neutrosophic point is in general a thick point, 

which may have the dimension 0, 1, 2 or more (depending 

on the space we work in). 

As examples, 𝛼([1, 2], [4, 6]) has dimension 2: 

 
Graph 8. 
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or 𝛽(3, (−1, 1)) has the dimension 1: 

Graph 9. 

or 𝛾(−2, {−4, −3, −2}) has the dimension zero: 

Graph 10. 

while 𝛿([2, 3], [4, 5], [0, 4]) has the dimension 3: 
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Graph 11. 
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II.12. Zero of a Neutrosophic Function 

Let 𝑓: 𝐴 → 𝐵 . The zero of a neutrosophic function 𝑓 

may be in general a set 𝑆 ⊆ 𝐴 such 𝑓(𝑆) = 0. 

For example: 

𝑓: ℝ → ℝ 

𝑓(𝑥) = {
𝑥 − 4, 𝑥 ∉ [1, 3]

0,   𝑥 = [1, 3]
 .    (57) 

This function has a crisp zero, 𝑥 =  4, since 𝑓(4) = 4 −

4 = 0, and an interval-zero 𝑥 = [1, 3] since 𝑓([1, 3]) = 0. 
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II.13. Indeterminacies of a Function 

By language abuse, one can say that any classical 

function is a neutrosophic function, if one considers that 

the classical function has a null indeterminacy. 
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II.14. Neutrosophic Even Function 

A Neutrosophic Even Function: 

𝑓: 𝐴 → 𝐵 

has a similar definition to the classical even function: 

𝑓(−𝑥) = 𝑓(𝑥), for all 𝑥 in 𝐴,   (58) 

with the extension that 𝑓(−𝐼) = 𝑓(𝐼) , where 𝐼 = 

indeter-minacy. 

For example: 

𝑓(𝑥) = {
𝑥2, for 𝑥 ∉ {−1, 1};

[0, 2], for 𝑥 = −1 or 1.
(59) 

Of course, for determinate 

𝑥 ∈ ℝ ∖ {−1, 1}, 𝑓(−𝑥) = (−𝑥)2 = 𝑥2 = 𝑓(𝑥). (60) 

While for the indeterminate 𝐼 = −1 or 1 one has  

−𝐼 = −(−1 or 1) = 1 or − 1 = −1 or 1 

whence 𝑓(−𝐼) = 𝑓(−1 or 1) = [0, 2] 

and 𝑓(𝐼) = 𝑓(−1 or 1) = [0, 2], 

hence 𝑓 is a neutrosophic even function. 

Graph 12. 
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As for classical even functions, the graph of a 

neutrosophic even function is symmetric, in a 

neutrosophic way, with respect to the y-axis, i.e. for a 

neutrosophic point P situated in the right side of the y-axis 

there exists a neutrosophic point P’ situated in the left side 

of the y-axis which is symmetric with P, and reciprocally.  

We recall that the graph of a neutrosophic function is 

formed by neutrosophic points, and a neutrosophic point 

may have not only the dimension 0 (zero), but also 

dimension 1, 2 and so on depending on the spaces the 

neutrosophic function is defined on and takes values in, 

and depending on the neutrosophic function itself. 
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II.15. Neutrosophic Odd Function 

Similarly, a Neutrosophic Odd Function 𝑓: 𝐴 → 𝐵 has a 

similar definition to the classical odd function: 

𝑓(−𝑥) = −𝑓(𝑥), for all 𝑥 in 𝐴, with the extension that 

𝑓(−𝐼) = −𝑓(𝐼), where 𝐼 = indeterminacy. 

For example: 

𝑓: ℝ → ℝ 

𝑓(𝑥) = {
𝑥 and 𝑥3, for 𝑥 ≠ 0;
−5 or 5, for 𝑥 = 0.

   (61) 

The first piece of the function is actually formed by 

putting together two distinct functions. 

Of course, for 𝑥 ≠ 0 , 𝑓(−𝑥) = − 𝑥 , and (−𝑥)3 =

 −𝑥, and − 𝑥3 =  −(𝑥 and 𝑥3) = –  𝑓(𝑥). 

While for 𝑥 =  0, one has: 

𝑓(−0) =  𝑓(0) = −5 or 5; 

−𝑓(0) = −(−5 or 5) = 5 or − 5 =  −5 or 5. 

So, 𝑓(−0) = −𝑓(0) , hence 𝑓  is a neutrosophic odd 

function. 

Graph 13. 
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Same thing: a neutrosophic odd function is neutro-

sophically symmetric with respect to the origin of the 

Cartesian system of coordinates. 
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II.16. Neutrosophic Model 

A model which has some indeterminacy is a neutro-

sophic model. When gathered data that describe the 

physical world is incomplete, ambiguous, contradictory, 

unclear, we are not able to construct an accurate classical 

model. We need to build an approximate (thick) model. 

Using neutrosophic statistics, we plot the data and then 

design a neutrosophic regression method. The most 

common used such methods are the neutrosophic linear 

regression and the neutrosophic least squares regression. 

For two neutrosophic variables, 𝑥 and 𝑦, representing 

the plotted data, one designs the best-fitting neutrosophic 

curve of the regression method. Instead of crisp data, as in 

classical regression, for example: 

(𝑥, 𝑦) {
(1, 2), (3, 5), (4, 8),

 (−2, −4), (0, 0), (−5, −11), …
},  (62) 

one works with set (approximate) data in neutrosophic 

regression: 

(𝑥, 𝑦) ∈ 

{

(1, [2, 2.2]), ([2.5, 3], 5), ([3.9, 4), (8, 8.1)),

(−2, −4), ((0.0, 0.1], (−0.1, 0.0)),

(−5, (−10, −11)), …

} (63) 

and instead of obtaining, for example, a crisp linear 

regression as in classical statistics: 

𝑦 = 2𝑥 − 1,     (64) 

one gets a set-linear regression, for example: 

𝑦 = [1.9, 2]𝑥 − [0.9, 1.1]    (65) 

as in neutrosophic statistics.
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II.17. Neutrosophic Correlation 
Coefficient 

The classical correlation coefficient 𝑟 is a crisp number 

between [-1, 1]. The neutrosophic correlation coefficient is 

a subset of the interval [-1, 1]. 

Similarly, if the subset of the neutrosophic correlation 

coefficient is more in the positive side of the interval [-1, 1], 

the neutrosophic variables 𝑥  and 𝑦  have a neutrosophic 

positive correlation, otherwise they have a neutrosphic 

negative correlation. 

Of course, there is not a unique neutrosophic model to 

real world problems. And thus, there are no exact 

neutrosophic rules to be employed in neutrosophic 

modelling. Each neutrosophic model is an approximation, 

and the approximations may be done from different points 

of view. A model might be considered better than others if 

it predicts better than others. But in most situations, a 

model could be better from a standpoint, and worse from 

another standpoint – since a real world problem normally 

depends on many (known and unknown) parameters. 

Yet, a neutrosophic modelling of reality is needed in 

order to fastly analyse the alternatives and to find 

approximate optimal solutions. 
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II.18. Neutrosophic Exponential 
Function 

A Neutrosophic Exponential Function is an exponen-tial 

function which has some indeterminacy [with respect to 

one or more of: its formula (base or exponent), or domain, 

or range]. 

If one has a classical exponential function 

𝑔(𝑥) = 𝑎𝑥 , with 𝑎 > 0 and 𝑎 ≠ 1,  (66) 

then an indeterminacy with respect to the base can be, 

for example: 

𝑓(𝑥) = [0.9, 1.1]𝑥 ,    (67) 

where “a” is an interval which even includes 1, and we 

get a thick function: 

 
Graph 14. 

 

or one may have indeterminacy with respect to the 

exponent: 

𝑘(𝑥) = 2𝑥 or 𝑥+1.     (68) 
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Graph 15. 

 

For example: 𝑘(1) = 21 or 1+1 = 21 or 22 = 2 or 4  (we 

are not sure if it’s 2 or 4).    (69) 

A third neutrosophic exponential function: 

𝑙(𝑥) = 2(𝑥,𝑥+1)     (70) 

is different from 𝑘(𝑥) and has the graph: 

 

 
Graph 16. 

which is a thick function. For example: 𝑙(1) =

2(1,1+1) = 2(1,2) = (21, 22) = (2, 4), an open interval. (71) 
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II.19. Neutrosophic Logarithmic 
Function 

Similarly, a Neutrosophic Logarithmic Function is a 

logarithmic function that has some indeterminacy (with 

respect to one or more of: its formula, or domain, or 

range). 

For examples: 

𝑓(𝑥) = log[2,3] 𝑥 = [log3 𝑥 , log2 𝑥].  (72) 

 
Graph 17. 

 

or 𝑔(𝑥) = ln(𝑥, 2𝑥) = (ln(𝑥) , ln(2𝑥))  (73) 
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Graph 18. 

 

or ℎ(𝑥) = log(0.09,1.1) 𝑥    (74) 

 

 
Graph 19. 
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II.20. Indeterminacy of the 
Composition of Neutrosophic 
Functions 

In general, by composing two neutrosophic functions, 

the indeterminacy increases. 

Example: 

𝑓1(𝑥) = 𝑥3 𝑜𝑟 𝑥4 

𝑓2(𝑥) = [2.1, 2.5]𝑥 

then 

(𝑓1 ∘ 𝑓2)(𝑥) = 𝑓1(𝑓2(𝑥)) = [2.1, 2.5]3𝑥 or [2.1, 2.5]4𝑥 . (75) 

 

 

 

 

 

 

 

 

 



62 

III. Neutrosophic Calculus



Florentin Smarandache & Huda E. Khalid 
Neutrosophic Precalculus and Neutrosophic Calculus 

(second enlarged edition) 

63 

III.1. Neutrosophic Limit 

Neutrosophic Limit means the limit of a neutrosophic 

function. 

We extend the classical limit. 

Let consider a neutrosophic function 𝑓: ℝ → 𝒫(ℝ) 

whose neutrosophic graph is below: 

Graph 20. 

𝑓(𝑥) = {
[𝑓1(𝑥), 𝑓2(𝑥)], for 𝑥 ≤ 5;

[𝑓3(𝑥), 𝑓4(𝑥)], for 𝑥 > 5,
(76) 

is a neutrosophic piecewise-function. 

Using the Neutrosophic Graphic Method, we get: 

The Neutrosophic Left Limit is 

lim
𝑥→5
𝑥<5

𝑓(𝑥) = [8, 11]; (77) 

The Neutrosophic Right Limit is 

lim
𝑥→5
𝑥>5

𝑓(𝑥) = [6, 9]. (78) 
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We introduce for the first time the notion of neutro-

sophic mereo-limit. Because the neutrosophic mereo-limit 

is the intersection of the neutrosophic left limit and the 

neutrosophic right limit [similarly as in the classical limit, 

where the left limit has to be equal to the right limit – 

which is equivalent to the fact that the intersection 

between the left limit (i.e. the set formed by a single finite 

number, or by +∞, or by − ∞) and the right limit (i.e. also 

the set formed by a single finite number, or by +∞, or by −

∞) is not empty], one has: 

lim
𝑥→5

𝑓(𝑥) = [8, 11] ∩ [6,9] =]8,9].  (79) 

If the intersection between the neutrosophic left limit 

and the neutrosophic right limit is empty, then the 

neutrosophic mereo-limit does not exist. 

Neutrosophic Limit of a function 𝑓(𝑥) does exist if the 

neutrosophic left limit coincides with the neutrosophic 

right limit. (We recall that in general the neutrosophic left 

and right limits are sets, rather than numbers.) For 

example, the previous function does not have a 

neutrosophic limit since [8, 11] ≢ [6, 9]. 

III.1.1. Norm 

We define a norm. 

Let 𝜇: 𝒫(ℝ) → ℝ+ , where 𝒫(ℝ)  is the power set of 

ℝ, while ℝ is the set of real numbers.   (80) 

For any set 𝒮 ∈ 𝒫(ℝ), 

𝜇(𝒮) = max {|𝑥|}, 𝑥 ∈ 𝒮 ∪ 𝐹𝑟(𝒮)},  (81) 

where |𝑥| is the absolute value of 𝑥 , and 𝐹𝑟(𝒮) is the 

frontier of 𝒮,  
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or: 

𝜇(𝒮) = max{|𝑖𝑛𝑓𝒮|, |𝑠𝑢𝑝𝒮|}   (82) 

where 𝑖𝑛𝑓𝒮 means the infimum of 𝒮, and 𝑠𝑢𝑝𝒮 means 

the supremum of 𝒮. 

Then: 

𝜇(𝒮1 + 𝒮2) = max{|𝑖𝑛𝑓𝒮1 + 𝑖𝑛𝑓𝒮2|, |𝑠𝑢𝑝𝒮1 + 𝑠𝑢𝑝𝒮2|}, 

𝜇(𝛼 ∙ 𝒮) = max{|𝛼| ∙ |𝑖𝑛𝑓𝒮|, |𝛼| ∙ |𝑠𝑢𝑝𝒮| }, (83) 

where 𝛼 ∈ ℝ is a scalar. 

If the cardinality of the set 𝒮  is 1, i.e. 𝒮 = {𝑎}, 𝑎 ∈ ℝ, 

then 𝜇(𝒮) = 𝜇(𝑎) = |𝑎|.    (84) 

We prove that 𝜇(∙) is a norm. 

𝜇: 𝒫(ℝ) → ℝ+, 

∀𝒮 ∈  𝒫(ℝ), 𝜇(𝒮) = max{|𝑥|, 𝑥 ∈ 𝒮 ∪ 𝐹𝑟(𝒮)} = 

max{|𝑖𝑛𝑓𝒮|, |𝑠𝑢𝑝𝒮|}.    (85) 

𝜇(−𝒮) = 𝜇(−1 ∙ 𝒮) = max{|−1| ∙ |𝑖𝑛𝑓𝒮|, |−1| ∙

|𝑠𝑢𝑝𝒮| } = max{|𝑖𝑛𝑓𝒮|, |𝑠𝑢𝑝𝒮|} = 𝜇(𝒮).  (86) 

For a scalar 𝑡,  

𝜇(𝑡 ∙ 𝒮) = max{|𝑡| ∙ |𝑖𝑛𝑓𝒮|, |𝑡| ∙ |𝑠𝑢𝑝𝒮| } = |𝑡| ∙

max{|𝑖𝑛𝑓𝒮|, |𝑠𝑢𝑝𝒮|} = |𝑡| ∙ 𝜇(𝒮).    (87) 

𝜇(𝑆1 + 𝑆2) = 𝑚𝑎𝑥{|𝑖𝑛𝑓𝑆1 + 𝑖𝑛𝑓𝑆2|, |𝑠𝑢𝑝𝑆1 +

𝑠𝑢𝑝𝑆2|} ≤ 𝑚𝑎𝑥{|𝑖𝑛𝑓𝑆1| + |𝑖𝑛𝑓𝑆2|, |𝑠𝑢𝑝𝑆1| + |𝑠𝑢𝑝𝑆2|} ≤

𝑚𝑎𝑥{|𝑖𝑛𝑓𝑆1|, |𝑠𝑢𝑝𝑆1|} + 𝑚𝑎𝑥{|𝑖𝑛𝑓𝑆2|, |𝑠𝑢𝑝𝑆2|} = 𝜇(𝑆1) +

𝜇(𝑆2).       (88) 

𝜇(𝑆1 − 𝑆2) = 𝜇(𝑆1 + (−𝑆2)) ≤  𝜇(𝑆1) + 𝜇(−𝑆2) =

𝜇(𝑆1) + 𝜇(𝑆2).      (89) 
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III.2. Appropriateness Partial-Distance 
(Partial-Metric) 

Let A and B be two sets included in ℝ, such that infA, 

supA, infB, and supB are finite numbers. 

Then the appropriate partial-distance (partial-metric) 

between A and B is defined as: 

η : ℝ2   ℝ+ 

η(A, B) = max{|infA-infB|, |supA-supB|}.) (90) 

In other words, the appropriateness partial-distance 

measures how close the inf’s and sup’s of two sets (i.e. the 

two sets corresponding extremities) are to each other. 
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III.3. Properties of the Appropriateness 
Partial-Distance 

For any A, B, C ⊂ ℝ, 

such that 𝑖𝑛𝑓𝐴, 𝑠𝑢𝑝𝐴, 𝑖𝑛𝑓𝐵, 𝑠𝑢𝑝𝐵, 𝑖𝑛𝑓𝐶, and 𝑠𝑢𝑝𝐶 are finite 

numbers, one has: 

a) η(A, B) ≥ 0.     (91) 

b) η(A, A) = 0.      (92) 

But if η(A, B) = 0 it does not result that A ≡ B, it results 

that infA = infB and supA = supB. 

For example, if A = {3, 4, 5, 7} and B = (3, 7], then infA = 

infB = 3 and supA = supB = 7, whence η(A, B) = 0, but A ≢ 

B.       (93) 

Therefore, this distance axiom is verified only partially 

by η. 

c) η(A, B) = η(B, A).    (94) 

d) η(A, B) ≤ η(B, C)+ η(C, A).   (95) 

Proof of d): 

η(A, B) = max{|infA-infB|, |supA-supB|}  

= max{|infA-infC + infC -infB|, |supA-supC+supC-

supB|}.      (96) 

But |infA-infC + infC -infB| ≤ |infA-infC| + |infC -infB| 

= |infB-infC| + |infC -infA|    (97) 

and similarly 

 |supA-supC+supC-supB| ≤ |supA-supC|+|supC-supB| 

= |supB-supC|+|supC-supA|   (98) 

whence 
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max{|infA-infC + infC-infB|, |supA-supC+supC-supB|} 

≤ max{|infB-infC|, |supB-supC|} + max{|infC-infA|, 

|supC-supA|} = η(B, C)+ η(C, A).   (99) 

e) If A = {a} and B = {b}, with a, b ∈ ℝ, i.e. A and B 

contain only one element each, then:  

η(A, B) = |a-b|.     (100) 

f) If A and B are real (open, closed, or semi-

open/semi-closed) intervals, A = [a1, a2] and B = [b1, 

b2], with a1 < a2 and b1 < b2, then η(A, B) = max{|a1-

b1|, |a2-b2|}.     (101) 
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III.4. Partial-Metric Space 

Let’s have in general: 

𝜂: ℳ → 𝑅+, where ℳ is a non-empty set. 

The function 𝜂 is a partial-metric (partial-distance) on 

ℳ, 

𝜂(𝐴, 𝐵) = 𝑚𝑎𝑥{|𝑖𝑛𝑓𝐴 − 𝑖𝑛𝑓𝐵|, |𝑠𝑢𝑝𝐴 − 𝑠𝑢𝑝𝐵|} (102) 

and the space ℳ  endowed with 𝜂  is called a partial-

metric space. 

This partial-metric space 𝜂  is a generalization of the 

metric 𝑑, defined in interval analysis: 

𝑑: 𝑆 → 𝑆, where 𝑆 is any real set, and 

𝑑([𝑎, 𝑏], [𝑐, 𝑑]) = 𝑚𝑎𝑥{|𝑎 − 𝑐|, |𝑏 − 𝑑|},  (103) 

with 𝑎 ≤ 𝑏 and 𝑐 ≤ 𝑑, because 𝜂 deals with all kinds of 

sets, not only with intervals as in integer analysis. 

Remarkably, 

𝜂(𝐴, 0) = 𝑚𝑎𝑥{|𝑖𝑛𝑓𝐴 − 0|, 𝑠𝑢𝑝|𝐴 − 0|} =

𝑚𝑎𝑥{|𝑖𝑛𝑓𝐴|, |𝑠𝑢𝑝𝐴|} = 𝜇(𝐴),    (104) 

which is the norm of 𝐴. 
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III.5. ε − δ Definition of the 
Neutrosophic Limit 

Let f be a neutrosophic function, f: P(ℝ) ⟶ P(ℝ). 

The 𝜀 − 𝛿 definition of the Neutrosophic Left Limit is an 

extension of the classical left limit definition, where the 

absolute value |∙|  is replace by 𝜂(∙ ). Also, instead of 

working with scalars only, we work with sets (where a “set” 

is view as an approximation of a “scalar”). 

Therefore, 

lim
𝑥→𝑐
𝑥<𝑐

𝑓(𝑥) = 𝐿     (105) 

is equivalent to ∀𝜀 > 0 , ∃𝛿 = 𝛿(𝜀) > 0 , such that if 

𝜂(𝑥, 𝑐)𝑥<𝑐 < 𝛿, then 𝜂(𝑓(𝑥), 𝐿)𝑥<𝑐 < 𝜀.  (106) 

The 𝜀 − 𝛿 definition of the Neutrosophic Right Limit. 

lim
𝑥→𝑐
𝑥>𝑐

𝑓(𝑥) = 𝐿     (107) 

is equivalent to ∀𝜀 > 0 , ∃𝛿 = 𝛿(𝜀) > 0 , such that if 

𝜂(𝑥, 𝑐)𝑥>𝑐 < 𝛿, then 𝜂(𝑓(𝑥), 𝐿)𝑥>𝑐 < 𝜀.   (108) 

And, in general, the 𝜀 − 𝛿 definition of the Neutrosophic 

Limit. 

lim
𝑥→𝑐

𝑓(𝑥) = 𝐿 

is equivalent to ∀𝜀 > 0 , ∃𝛿 = 𝛿(𝜀) > 0 , such that if 

𝜂(𝑥, 𝑐) < 𝛿, then 𝜂(𝑓(𝑥), 𝐿) < 𝜀.   (109) 
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III.6. Example of Calculating the 
Neutrosophic Limit 

In our previous example, with 𝑐 = 5, let 𝜀 > 0,  

then  

𝜂([𝑓1(𝑥), 𝑓2(𝑥)], [8, 11]) =

max
𝜂(𝑥−5)<𝛿

𝑥<5

{|𝑖𝑛𝑓[𝑓1(𝑥), 𝑓2(𝑥)] −

𝑖𝑛𝑓[8, 11]|, |𝑠𝑢𝑝[𝑓1(𝑥), 𝑓2(𝑥)] − 𝑠𝑢𝑝[8, 11]|} =

max
𝜂(𝑥−5)<𝛿

𝑥<5

{|𝑓1(𝑥) − 8|, |𝑓2(𝑥) − 11|} < 𝜀.    (110) 

𝜂(𝑥, 5) < 𝛿 means |𝑥 − 5| < 𝛿 as in classical calculus. 

max
𝜂(𝑥−5)<𝛿

𝑥<5

{|𝑓1(𝑥) − 8|, |𝑓2(𝑥) − 11|} < 𝜀  

means |𝑓1(𝑥) − 8| < 𝜀, and |𝑓2(𝑥) − 11| < 𝜀, when |𝑥 −

5| < 𝛿 and 𝑥 ≤ 5.      (111) 
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III.7. Particular Case of Calculating the 
Neutrosophic Limit 

Suppose, as a particular case of the previous example, 

that 𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), 𝑓4(𝑥) are piecewise functions, such 

that in a left or right neighborhood of 𝑥 = 5 they are: 

𝑓1(𝑥) = −𝑥2 + 6𝑥 + 3, for 𝑥 ∈ [4, 5];      (112) 

𝑓2(𝑥) = 𝑥3 − 114, for 𝑥 ∈ [4, 5];   (113) 

𝑓3(𝑥) = 𝑥 + 1, for 𝑥 ∈ [5, 6];   (114) 

𝑓4(𝑥) = 3𝑥 − 6, for 𝑥 ∈ [5, 6].   (115) 

Therefore, 

|𝑓1(𝑥) − 8| = |−𝑥2 + 6𝑥 + 3 − 8| = |−(𝑥 − 5)(𝑥 −

1)| = |(𝑥 − 5)(𝑥 − 1)| <
𝜀

4
(4) = 𝜀; we take 𝛿 =

𝜀

4
, because 

𝑥 − 1 ≤ 4, since 𝑥 ∈ [4, 5].    (116) 

And 

 |𝑓2(𝑥) − 11| = |𝑥3 − 114 − 11| = |(𝑥 − 5)(𝑥2 +

5𝑥 + 25)| <
𝜀

75
(75) = 𝜀 ; we take 𝛿 =

𝜀

75
, because 𝑥2 +

5𝑥 + 25 ≤ (5)2 + 5(5) + 25 = 75, since 𝑥 ∈ [4, 5].  (117) 

We got that for any 𝜀 > 0 , there exists 𝛿 =

𝑚𝑖𝑛 {
𝜀

4
,

𝜀

75
} =

𝜀

75
 . Whence it results the neutrosophic left 

limit. 

Similarly for the neutrosophic right limit in this 

example. 

Let 𝜀 > 0. Then 
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𝜂([𝑓3(𝑥), 𝑓4(𝑥)], [6, 9]]) =

max
𝜂(𝑥−5)<𝛿

𝑥>5

{|𝑖𝑛𝑓[𝑓3(𝑥), 𝑓4(𝑥)] − inf [6, 9]|, |𝑠𝑢𝑝[𝑓3(𝑥), 𝑓4(𝑥)] −

sup [6, 9]|} = max
𝜂(𝑥−5)<𝛿

𝑥>5

{|𝑓3(𝑥) − 6|, |𝑓4(𝑥) − 9|} < 𝜀,  (118) 

which means 

|𝑓3(𝑥) − 6| < 𝜀, and |𝑓4(𝑥) − 9| < 𝜀,  

when |𝑥 − 5| < 𝛿 and 𝑥 > 5. 

Therefore: 

 |𝑓3(𝑥) − 6| = |𝑥 + 1 − 6| = |𝑥 − 5| <
𝜀

1
(1) = 𝜀;  

we take 𝛿 =
𝜀

1
= 𝜀.        (119) 

And: 

|𝑓4(𝑥) − 9| = |3𝑥 − 6 − 9| = |3(𝑥 − 5)| <
𝜀

3
∙ (3) = 𝜀;  

we take 𝛿 =
𝜀

3
.          (120) 

We got that for any 𝜀 > 0, there exists 

𝛿 = 𝑚𝑖𝑛 {𝜀,
𝜀

3
} =

𝜀

3
,           (121) 

whence it results the neutrosophic right limit. 

Then we intersect the neutrosophic left and right limits 

to get the neutrosophic mereo-limit. We observe that the 

neutrosophic limit does not exist of this function, since if 

we take 𝜀 = 0.1 > 0, there exist no 𝛿 = 𝛿(𝜀) > 0 such that 

if |𝑥 − 5| < 𝛿 to get  

𝜂([𝑓1(𝑥), 𝑓2(𝑥)], [8, 9]) < 0.1      (122) 

not even 

𝜂([𝑓3(𝑥), 𝑓4(𝑥)], [8, 9]) < 0.1         (123) 

since in tiny neighborhood of 5 the absolute values of 

differences |𝑓2(𝑥) − 9| and |𝑓3(𝑥) − 8| are greater than 1. 
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III.8. Computing a Neutrosophic Limit 
Analytically 

Let’s consider the below limit: 

lim
𝑥→−3

𝑥2+3𝑥−[1,2]𝑥−[3,6]

𝑥+3
    (124) 

We substitute 𝑥 for -3, and we get: 

lim
𝑥→−3

(−3)2+3∙(−3)−[1,2]∙(−3)−[3,6]

−3+3
=

9−9−[1∙(−3),2∙(−3)]−[3,6]

0
=

0−[−6,−3]−[3,6]

0
=

[3,6]−[3,6]

0
=

[3−6,6−3]

0
=

[−3,3]

0
,                  (125) 

which has an undefined operation 
0

0
, since 0 ∈ [−3, 3].     

Then we factor out the numerator, and simplify: 

lim
𝑥→−3

𝑥2+3𝑥−[1,2]𝑥−[3,6]

𝑥+3
= lim

𝑥→−3

(𝑥−[1,2])∙(𝑥+3)

(𝑥+3)
=

lim
𝑥→−3

(𝑥 − [1,2]) = −3 − [1,2] = [−3, −3] − [1,2] =

 −([3,3] + [1,2]) = [−5, −4].          (126) 

We can check the result considering classical crisp 

coefficients instead of interval-valued coefficients.  

For examples: 

a. Taking the infimum of the intervals [1,2] and 

respectively [3,6], i.e. 1 and respectively 3, we have: 

lim
𝑥→−3

𝑥2+3𝑥−1𝑥−3

𝑥+3
=

lim
𝑥→−3

𝑥2+2𝑥−3

𝑥+3
= lim

𝑥→−3

(𝑥+3)(𝑥−1)

𝑥+3
= lim

𝑥→−3
(𝑥 − 1) = -3-1 

= -4 ∈[−5, −4]            (127) 

 

b. Taking the supremum of the intervals [1,2] and 

respectively [3,6], i.e. 2 and respectively 6, we have: 
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lim
𝑥→−3

𝑥2+3𝑥−2𝑥−6

𝑥+3
=

lim
𝑥→−3

𝑥2+𝑥−6

𝑥+3
= lim

𝑥→−3

(𝑥+3)(𝑥−2)

𝑥+3
= lim

𝑥→−3
(𝑥 − 2) =-3-2 = 

-5 ∈[−5, −4].         (128) 

 

c. Taking the midpoints of the intervals [1,2] and 

respectively [3,6], i.e. 1.5 and respectively 4.5, we 

have: 

lim
𝑥→−3

𝑥2+3𝑥−1.5𝑥−4.5

𝑥+3
=

lim
𝑥→−3

𝑥2+1.5𝑥−4.5

𝑥+3
= lim

𝑥→−3

(𝑥+3)(𝑥−1.5)

𝑥+3
= lim

𝑥→−3
(𝑥 −

1.5) = -3-1.5 = -4.5 ∈[−5, −4].       (129) 

 

d. In general, taking α ∈ [1,2] and respectively 3α ∈ 

[3,6], one has: 

lim
𝑥→−3

𝑥2+3𝑥−α𝑥−3α

𝑥+3
=

lim
𝑥→−3

𝑥2+(3−α)𝑥−3α

𝑥+3
= lim

𝑥→−3

(𝑥+3)(𝑥−α)

𝑥+3
= lim

𝑥→−3
(𝑥 −

α) = -3- α ∈ [-3,-3]-[1,2] { since α ∈ [1,2] } 

= [-3-2, -3-1] = [-5, -4].    (130) 

So, we got the same result. 
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III.9. Calculating a Neutrosophic Limit 
Using the Rationalizing Technique 

 

lim
𝑥→0

√(4, 5) ∙ 𝑥 + 1 − 1

𝑥
=

√(4, 5) ∙ 0 + 1 − 1

0

=
√[4 ∙ 0, 5 ∙ 0] + 1 − 1

0

=
√[0, 0] + 1 − 1

0
=

√0 + 1 − 1

0
=

0

0
 

= undefined.       (131) 

Multiply with the conjugate of the numerator:  

lim
𝑥→0

√[4, 5]𝑥 + 1 − 1

𝑥
∙

√[4, 5]𝑥 + 1 + 1

√[4, 5]𝑥 + 1 + 1

= lim
𝑥→0

(√[4, 5]𝑥 + 1)
2

− (1)2

𝑥 (√[4, 5]𝑥 + 1 + 1)

= lim
𝑥→0

[4, 5] ∙ 𝑥 + 1 − 1

𝑥 ∙ (√[4, 5]𝑥 + 1 + 1)

= lim
𝑥→0

[4, 5] ∙ 𝑥

𝑥 ∙ (√[4, 5]𝑥 + 1 + 1)

= lim
𝑥→0

[4, 5]

(√[4, 5]𝑥 + 1 + 1)

=
[4, 5]

(√[4, 5] ∙ 0 + 1 + 1)
=

[4, 5]

√1 + 1

=
[4, 5]

2
= [

4

2
,
5

2
] = [2, 2.5]. 

(132) 
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Similarly we can check this limit in a classical way 

considering a parameter α ∈ [4,5] and computing the limit 

by multiplying with the conjugate of the numerator: 

lim
𝑥→0

√𝛼∙𝑥+1−1

𝑥
=

𝛼

2
 ∈ [4,5]/2 = [2, 2.5].      (133) 
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III.10. Neutrosophic Mereo-Continuity 

We now introduce for the first time the notion of 

neutrosophic mereo-continuity. A neutrosophic function 

𝑓(𝑥) is mereo-continuous at a given point 𝑥 =  𝑐, where  

𝑓: 𝐴 → 𝐵 

if the intersection of the neutrosophic left limit, 

neutrosophic right limit, and 𝑓(𝑐) is nonempty: 

{lim
𝑥→𝑐
𝑥<𝑐

𝑓(𝑥)} ∩ {lim
𝑥→𝑐
𝑥>𝑐

𝑓(𝑥)} ∩ {𝑓(𝑐)} ≠ ∅.      (134) 

A neutrosophic function 𝑓(𝑥) is mereo-continuous on a 

given interval [𝑎, 𝑏], if there exist the classical points 𝐴 ∈

{𝑓(𝑎)}  and 𝐵 ∈ {𝑓(𝑏)}  that can be connected by a 

continuous classical curve which is inside of 𝑓(𝑥). 

Also, the classical definition can be extended in the 

following way: A neutrosophic function 𝑓(𝑥)  is mereo-

continuous on a given interval [𝑎, 𝑏] , if 𝑓(𝑥)  is neutro-

sophically continuous at each point of [𝑎, 𝑏]. 

A neutrosophic function 𝑓(𝑥) is continuous at a given 

point 𝑥 =  𝑐 if: 

lim
𝑥→𝑐
𝑥>𝑐

𝑓(𝑥) ≡ lim
𝑥→𝑐
𝑥<𝑐

𝑓(𝑥) ≡ 𝑓(𝑐).       (135) 

We see that the neutrosophic function stated in section 

(3.1) graph (20) eq.(76) is mereo-continuous at 𝑥 = 5 

because: 

{lim
𝑥→5
𝑥<5

𝑓(𝑥)} ∩ {lim
𝑥→5
𝑥>5

𝑓(𝑥)} ∩ {𝑓(5)} = [8, 11] ∩

[6, 9] ∩ [8, 11] = [8, 9] ≠ 𝜙.       (136)    
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III.11. Neutrosophic Continuous 
Function  

 

A neutrosophic function 𝑓: ℳ1 → ℳ2 is continuous at 

a neutrosophic point 𝑥 = 𝑐 if: 

∀𝜀 > 0, ∃ 𝛿 = 𝛿(𝜀) > 0,         (137) 

such that for any 𝑥 ∈ ℳ1 such that 𝜂(𝑥, 𝑐) < 𝛿 one has 

𝜂(𝑓(𝑥), 𝑓(𝑐)) < 𝜀.         (138) 

(We recall that a “neutrosophic point” 𝑥 = 𝑐  is in 

general a set 𝑐 ∈ ℳ1, while ℳ1 and ℳ2 are sets of sets.) 
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III.12. Neutrosophic Intermediate Value 
Theorem 

Let 𝑓: 𝐴 → 𝑃(𝐴) , 𝑓(𝑥) = [𝑎𝑥 , 𝑏𝑥] ⊆ 𝐴 , where [𝑎𝑥 , 𝑏𝑥]  is 

an interval.          (139) 

Let 

𝑖𝑛𝑓{𝑓(𝑎)} = 𝑎1; 

𝑠𝑢𝑝{𝑓(𝑎)} = 𝑎2; 

𝑖𝑛𝑓{𝑓(𝑏)} = 𝑏1; 

𝑠𝑢𝑝{𝑓(𝑏)} = 𝑏2. 

Suppose 𝑚𝑖𝑛{𝑎1, 𝑎2, 𝑏1, 𝑏2} = 𝑚,  

and 𝑚𝑎𝑥{𝑎1, 𝑎2, 𝑏1, 𝑏2} = 𝑀. 

If 𝑓(𝑥)  is a neutrosophic mereo-continuous function 

on the closed interval [𝑎, 𝑏], and 𝑘 is a number between 𝑚 

and 𝑀, with 𝑚 ≠ 𝑀, then there exists a number 𝑐 ∈ [𝑎, 𝑏] 

such that: {𝑓(𝑐)} ∋ 𝑘 (i.e. the set {𝑓(𝑐)} contains 𝑘), or 𝑘 ∈

{𝑓(𝑐)}. 

An extended version of this theorem is the following: 

If 𝑓(𝑥) is a neutrosophic mereo-continuous function of 

the closed interval [a, b], and 〈𝑘1, 𝑘2〉  is an interval 

included in the interval [𝑚, 𝑀], with 𝑚 ≠ 𝑀, then there 

exist 𝑐1, 𝑐2, … , 𝑐𝑚  in [𝑎, 𝑏] , where 𝑚 ≥ 1 , such that 

〈𝑘1, 𝑘2〉 ⊆ 𝑓(𝑐1) ∪ 𝑓(𝑐2) ∪ … ∪ 𝑓(𝑐𝑚). 

Where by 〈𝛼, 𝛽〉 we mean any kind of closed, open or 

half-closed and half-open intervals: [𝛼, 𝛽] , or (𝛼, 𝛽) , or 

[𝛼, 𝛽), or (𝛼, 𝛽]. 
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III.13. Example for the Neutrosophic 
Intermediate Value Theorem 

Let 𝑔(𝑥) = [𝑔1(𝑥), 𝑔2(𝑥)] , where 𝑔: ℝ → ℝ2 , and 

𝑔1, 𝑔2: ℝ → ℝ. 

 
Graph 21. 

 

𝑔 is neutrosophically continuous on the interval [2, 8]. 

Let 𝑚 = 𝑚𝑖𝑛{4, 5, 6, 7} = 4,  

and 𝑀 = 𝑚𝑎𝑥{4, 5, 6, 7} = 7, and let 𝑘 ∈ [4, 7].  

Then there exist many values of 𝑐 ∈ [2, 8]  such that 

{𝑔(𝑐)} ∋ 𝑘 . See the green vertical line above, 𝑥 = 𝑐 . For 

example 𝑐 = 4 ∈ [2, 8]. The idea is that if 𝑘 ∈ [4, 7] and we 

draw a horizontal red line 𝑔 = 𝑘, this horizontal red line 

will intersect the shaded blue area which actually 

represents the neutrosophic graph of the function 𝑔  on 

the interval [2, 8]. 
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III.14. Example for the Extended 
Intermediate Value Theorem 

Let  ℎ(𝑥) = [ℎ1(𝑥), ℎ2(𝑥)] , where ℎ: ℝ → ℝ2 , and 

ℎ1, ℎ2: ℝ → ℝ.  ℎ  is neutrosophically continuous on the 

interval [3, 12].  

Let 𝑚 = 𝑚𝑖𝑛{6, 8, 10, 12.5} = 6,  

and 𝑀 = 𝑚𝑎𝑥{6, 8, 10, 12.5} = 12.5,  

and let [𝑘1, 𝑘2] ∈ [6.5, 12] ⊂ [6, 12.5]. 

Then there exist 𝑐1 = 8 ∈ [3, 12] and 𝑐2 = 10 ∈ [3, 12] 

such that 

ℎ(𝑐1) ∪ ℎ(𝑐2) = ℎ(8) ∪ ℎ(10) = [6.5, 11] ∪

[9.5, 12] = [6.5, 12] = [𝑘1, 𝑘2].   (140) 

 
Graph 22. 

III.14.1. Remark 

The more complicated (indeterminate) is a neutro-

sophic function, the more complex the neutrosophic 

intermediate value theorem becomes. 
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Actually, for each class of neutrosophic function, the 

neutrosophic intermediate value theorem has a special 

form. 

As a General Remark, we have: 

For each class of neutrosophic functions a theorem will 

have a special form. 
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III.15. Properties of Neutrosophic 
Mereo-Continuity 

1. A neutrosophic 𝑓(𝑥)  is mereo-continuous on 

the interval [𝑎, 𝑏], if it’s possible to connect a point of the 

set {𝑓(𝑎)} with a point of the set {𝑓(𝑏)} by a continuous 

classical curve ℂ  which is included in the (thick) 

neutrosophic function 𝑓(𝑥) on the interval [𝑎, 𝑏]. 

2. If 𝛼 ≠ 0 is a real number, and 𝑓  is a neutrosophic 

mereo-continuous function at 𝑥 = 𝑐 , then 𝛼 ∙ 𝑓  is also a 

neutrosophic mereo-continuous function at 𝑥 = 𝑐. 

Proof 

lim
𝑥→𝑐
𝑥<𝑐

[𝛼 ∙ 𝑓(𝑥)] ∩ lim
𝑥→𝑐
𝑥>𝑐

[𝑎 ∙ 𝑓(𝑥)] ∩ {𝛼 ∙ 𝑓(𝑐)} = 

{𝛼 ∙ lim
𝑥→𝑐
𝑥<𝑐

[𝑓(𝑥)]} ∩ {𝛼 ∙ lim
𝑥→𝑐
𝑥>𝑐

[𝑓(𝑥)]} ∩ {𝛼 ∙ 𝑓(𝑐)} = 𝛼 ∙

({lim
𝑥→𝑐

[𝑓(𝑥)]} ∩ {lim
𝑥→𝑐
𝑥>𝑐

[𝑓(𝑥)]} ∩ {𝑓(𝑐)}) ≠ ∅,  (141) 

because 𝛼 ≠ 0, and {lim
𝑥→𝑐
𝑥<𝑐

[𝑓(𝑥)]} ∩ lim
𝑥→𝑐
𝑥>𝑐

[𝑓(𝑥)] ∩ {𝑓(𝑐)} ≠ ∅, 

(142) 

since 𝑓 is a neutrosophic mereo- continuous function.  

3. Let 𝑓(𝑥)  and 𝑔(𝑥) be two neutrosophic mereo-

continuous functions at 𝑥 = 𝑐, where 𝑓, 𝑔: 𝐴 → 𝐵. Then, 

(𝑓 + 𝑔)(𝑥), (𝑓 − 𝑔)(𝑥), (𝑓 ∙ 𝑔)(𝑥), (
𝑓

𝑔
) (𝑥)   (143) 

are all neutrosophic mereo-continuous functions at 

𝑥 = 𝑐. 
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Proofs 

𝑓(𝑥) is mereo-continuous at 𝑥 = 𝑐 it means that 

{lim
𝑥→𝑐
𝑥<𝑐

𝑓(𝑥)} ∩ {lim
𝑥→𝑐
𝑥>𝑐

𝑓(𝑥)} ∩ {𝑓(𝑐)} ≠ ∅   (144) 

therefore 

{lim
𝑥→𝑐
𝑥<𝑐

𝑓(𝑥)} = 𝑀1 ∪ 𝐿1        (145) 

{lim
𝑥→𝑐
𝑥>𝑐

𝑓(𝑥)} = 𝑀1 ∪ 𝑅1        (146) 

and  

{𝑓(𝑐)} = 𝑀1 ∪ 𝑉1    (147) 

where all 𝑀1, 𝐿1, 𝑅1, 𝑉1  are subsets of 𝐵 , and 𝑀1 ≠ ∅ , 

while 𝐿1 ∩ 𝑅1 ∩ 𝑉1 = ∅. 

Similarly, 𝑔(𝑥)  is mereo-continuous at 𝑥 = 𝑐  means 

that 

{lim
𝑥→𝑐
𝑥<𝑐

𝑔(𝑥)} ∩ {lim
𝑥→𝑐
𝑥>𝑐

𝑔(𝑥)} ∩ {𝑔(𝑐)} ≠ ∅,  (148) 

therefore 

{lim
𝑥→𝑐
𝑥<𝑐

𝑔(𝑥)} = 𝑀2 ∪ 𝐿2           (149) 

{lim
𝑥→𝑐
𝑥>𝑐

𝑔(𝑥)} = 𝑀2 ∪ 𝑅2    (150) 

and  

{𝑔(𝑐)} = 𝑀2 ∪ 𝑉2    (151) 

where all 𝑀2, 𝐿2, 𝑅2, 𝑉2  are subsets of 𝐵 , and 𝑀2 ≠ ∅ , 

while 𝐿2 ∩ 𝑅2 ∩ 𝑉2 = ∅. 
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Now,  

𝑓 + 𝑔: 𝐴 → 𝐵 

(𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥)   (152) 

and (𝑓 + 𝑔)(𝑥) is mereo-continuous at 𝑥 = 𝑐 if 

{lim
𝑥→𝑐
𝑥<𝑐

(𝑓 + 𝑔)} ∩ {lim
𝑥→𝑐
𝑥>𝑐

(𝑓 + 𝑔)(𝑥)} ∩ {(𝑓 + 𝑔)(𝑐)} ≠ ∅ 

(153) 

or 

{lim
𝑥→𝑐
𝑥<𝑐

[𝑓(𝑥) + 𝑔(𝑥)]} ∩ {lim
𝑥→𝑐
𝑥>𝑐

[𝑓(𝑥) + 𝑔(𝑥)]} ∩

{𝑓(𝑐) + 𝑔(𝑐)} ≠ ∅      (154) 

or 

({lim
𝑥→𝑐
𝑥<𝑐

𝑓(𝑥)} + {lim
𝑥→𝑐
𝑥<𝑐

𝑔(𝑥)}) ∩ ({lim
𝑥→𝑐
𝑥>𝑐

𝑓(𝑥)} +

{lim
𝑥→𝑐
𝑥>𝑐

𝑔(𝑥)}) ∩ ({𝑓(𝑐)} + {𝑔(𝑐)}) ≠ ∅     (155) 

or 

(𝑀1 ∪ 𝐿1 + 𝑀2 ∪ 𝐿2) ∩ (𝑀1 ∪ 𝑅1 + 𝑀2 ∪ 𝑅2) ∩

(𝑀1 ∪ 𝑉1 + 𝑀2 ∪ 𝑉2) ≠ ∅.   (156) 

But this intersection is non-empty, because:  

if 𝑚1 ∈ 𝑀1 ≠ ∅ and 𝑚2 ∈ 𝑀2 ≠ ∅,  

then 𝑚1 ∈ 𝑀1 ∪ 𝐿1, and 𝑚1 ∈ 𝑀1 ∪ 𝑅1, and 

 𝑚1 ∈ 𝑀1 ∪ 𝑉1                        (*) 

and 𝑚2 ∈ 𝑀2 ∪ 𝐿2, and 𝑚2 ∈ 𝑀2 ∪ 𝑅2, and 

 𝑚2 ∈ 𝑀2 ∪ 𝑉2                   (**) 

whence 𝑚1 + 𝑚2 ∈ 𝑀1 ∪ 𝐿1 + 𝑀2 ∪ 𝐿2, 

and 𝑚1 + 𝑚2 ∈ 𝑀1 ∪ 𝑅1 + 𝑀2 ∪ 𝑅2, 
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and 𝑚1 + 𝑚2 ∈ 𝑀1 ∪ 𝑉1 + 𝑀2 ∪ 𝑉2. 

Therefore (𝑓 + 𝑔)(𝑥)  is also mereo- continuity 

neutrosophic function at 𝑥 = 𝑐. 

Analogously, one can prove that 𝑓 − 𝑔, 𝑓 · 𝑔 and 
𝑓

𝑔
 are 

neutrosophic mereo-continuous functions at 𝑥 = 𝑐. 

From above, one has: 

𝑚1 − 𝑚2 ∈ 𝑀1 ∪ 𝐿1 − 𝑀2 ∪ 𝐿2;   (157) 

𝑚1 − 𝑚2 ∈ 𝑀1 ∪ 𝑅1 − 𝑀2 ∪ 𝑅2;    (158) 

𝑚1 − 𝑚2 ∈ 𝑀1 ∪ 𝑉1 − 𝑀2 ∪ 𝑉2.    (159) 

therefore (𝑓 − 𝑔)(𝑥)  is a neutrosophic mereo-

continuous function at 𝑥 = 𝑐. 

Again, from above one has: 

𝑚1 ∙ 𝑚2 ∈ (𝑀1 ∪ 𝐿1) ∙ (𝑀2 ∪ 𝐿2); .   (160) 

𝑚1 ∙ 𝑚2 ∈ (𝑀1 ∪ 𝑅1) ∙ (𝑀2 ∪ 𝑅2); .   (161) 

𝑚1 ∙ 𝑚2 ∈ (𝑀1 ∪ 𝑉1) ∙ (𝑀2 ∪ 𝑉2).   (162) 

therefore (𝑓 ∙ 𝑔)(𝑥)  is a neutrosophic mereo-

continuous function at 𝑥 = 𝑐. 

And, from (*) and (**) one has: 
𝑚1

𝑚2
∈

𝑀1∪𝐿1

𝑀2∪𝐿2
;        (163) 

𝑚1

𝑚2
∈

𝑀1∪𝑅1

𝑀2∪𝑅2
; .      (164) 

𝑚1

𝑚2
∈

𝑀1∪𝑉1

𝑀2∪𝑉2
 . .         (165) 

therefore (
𝑓

𝑔
) (𝑥) is a neutrosophic mereo-continuous 

function at 𝑥 = 𝑐. 
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III.16. Properties of Neutrosophic 
Continuity 

Similarly to the classical calculus, if 𝑓(𝑥), 𝑔(𝑥)  are 

neutrosophic continuous functions at 𝑥 = 𝑐, and 𝛼 ∈ ℝ is 

a scalar, then 𝛼 ∙ 𝑓(𝑥), (𝑓 + 𝑔)(𝑥), (𝑓 − 𝑔)(𝑥), (𝑓𝑔)𝑥 , and 

(
𝑓

𝑔
) 𝑥 for 𝑔(𝑥) ≠ 𝑐 are neutrosophic continuous functions 

at 𝑥 = 𝑐. 

The proofs are straightforward as in classical calculus. 

Since 𝑓(𝑥)  and 𝑔(𝑥)  are neutrosophic continuous 

functions, one has: 

lim
𝑥→𝑐
𝑥<𝑐

𝑓(𝑥) ≡ lim
𝑥→𝑐
𝑥>𝑐

𝑓(𝑥) ≡ 𝑓(𝑐)   (166) 

and  lim
𝑥→𝑐
𝑥<𝑐

𝑔(𝑥) ≡ lim
𝑥→𝑐
𝑥>𝑐

𝑔(𝑥) ≡ 𝑔(𝑐)   (167) 

1. If we multiply the relation (166) by 𝛼 we get: 

𝛼 ∙ lim
𝑥→𝑐
𝑥<𝑐

𝑓(𝑥) ≡ 𝛼 ∙ lim
𝑥→𝑐
𝑥>𝑐

𝑓(𝑥) ≡ 𝛼 ∙ 𝑓(𝑐)    (168) 

or 

lim
𝑥→𝑐
𝑥<𝑐

[𝛼 ∙ 𝑓(𝑥)] ≡ lim
𝑥→𝑐
𝑥>𝑐

[𝛼 ∙ 𝑓(𝑥)] ≡ 𝛼 ∙ 𝑓(𝑐)  (169) 

or 𝛼 ∙ 𝑓(𝑥)  is a neutrosophic continuous function at 

𝑥 = 𝑐. 

2. If we add relations (166) and (167) term by term, we 

get: 

lim
𝑥→𝑐
𝑥<𝑐

𝑓(𝑥) + lim
𝑥→𝑐
𝑥<𝑐

𝑔(𝑥) ≡ lim
𝑥→𝑐
𝑥>𝑐

𝑓(𝑥) +

lim
𝑥→𝑐
𝑥>𝑐

𝑔(𝑥) ≡ 𝑓(𝑐) + 𝑔(𝑐)      (170) 

or 
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lim
𝑥→𝑐
𝑥<𝑐

[𝑓(𝑥) + 𝑔(𝑥)] ≡ lim
𝑥→𝑐
𝑥>𝑐

[𝑓(𝑥) + 𝑔(𝑥)] ≡ 𝑓(𝑐) + 𝑔(𝑐) 

(171) 

or (𝑓 + 𝑔)(𝑥) is a neutrosophic continuous function at 

𝑥 = 𝑐. 

3. Similarly, if we subtract relations (166) and (167) term 

by term, we get: 

lim
𝑥→𝑐
𝑥<𝑐

𝑓(𝑥) − lim
𝑥→𝑐
𝑥<𝑐

𝑔(𝑥) ≡ lim
𝑥→𝑐
𝑥>𝑐

𝑓(𝑥) −

lim
𝑥→𝑐
𝑥>𝑐

𝑔(𝑥) ≡ 𝑓(𝑐) − 𝑔(𝑐)     (172) 

or 

lim
𝑥→𝑐
𝑥<𝑐

[𝑓(𝑥) − 𝑔(𝑥)] ≡ lim
𝑥→𝑐
𝑥>𝑐

[𝑓(𝑥) − 𝑔(𝑥)] ≡ 𝑓(𝑐) − 𝑔(𝑐) 

(173) 

or (𝑓 − 𝑔)(𝑥) is a neutrosophic continuous function at 

𝑥 = 𝑐. 

4. If we multiply relations (166) and (167) term by term, 

we get: 

[lim
𝑥→𝑐
𝑥<𝑐

𝑓(𝑥)] ∙ [lim
𝑥→𝑐
𝑥<𝑐

𝑔(𝑥)] ≡ [lim
𝑥→𝑐
𝑥>𝑐

𝑓(𝑥)] ∙

[lim
𝑥→𝑐
𝑥>𝑐

𝑔(𝑥)] ≡ 𝑓(𝑐) ∙ 𝑔(𝑐)      (174) 

or 

lim
𝑥→𝑐
𝑥<𝑐

[𝑓(𝑥) ∙ 𝑔(𝑥)] ≡ lim
𝑥→𝑐
𝑥>𝑐

[𝑓(𝑥) ∙ 𝑔(𝑥)] ≡ 𝑓(𝑐) ∙ 𝑔(𝑐)  (175) 

or (𝑓 ∙ 𝑔)(𝑥) is a neutrosophic continuous function at 

𝑥 = 𝑐. 
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5. If we divide relations (166) and (167) term by term, 

supposing 𝑔(𝑥) ≠ 0 for all 𝑥, we get: 
lim
𝑥→𝑐
𝑥<𝑐

𝑓(𝑥)

lim
𝑥→𝑐
𝑥<𝑐

𝑔(𝑥)
≡

lim
𝑥→𝑐
𝑥>𝑐

𝑓(𝑥)

lim
𝑥→𝑐
𝑥>𝑐

𝑔(𝑥)
≡

𝑓(𝑐)

𝑔(𝑐)
   (176) 

or 

lim
𝑥→𝑐
𝑥<𝑐

[
𝑓(𝑥)

𝑔(𝑥)
] ≡ lim

𝑥→𝑐
𝑥>𝑐

[
𝑓(𝑥)

𝑔(𝑥)
] ≡

𝑓(𝑐)

𝑔(𝑐)
          (177) 

or (
𝑓

𝑔
) (𝑥) is a neutrosophic continuous function at 𝑥 = 𝑐. 
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III.17. The M-δ Definition of the 
Neutrosophic Infinite Limits 

The 𝑀 − 𝛿  definitions of the neutrosophic infinite 

limits are extensions of the classical infinite limits. 

a. lim
𝑥→𝑐

𝑓(𝑥) = +∞  means that ∀𝑀 > 0 , ∃𝛿 =

𝛿(𝑀) > 0 , such that if 𝜂(𝑥, 𝑐) < 𝛿 , then 

𝑖𝑛𝑓{𝑓(𝑥)} > 𝑀. 

b. lim
𝑥→𝑐

𝑓(𝑥) = −∞  means that ∀𝑁 < 0 , ∃𝛿 =

𝛿(𝑁) > 0 , such that if 𝜂(𝑥, 𝑐) < 𝛿 , then 

𝑠𝑢𝑝{𝑓(𝑥)} < 𝑁. 
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III.18. Examples of Neutrosophic 
Infinite Limits 

1. Let’s have the neutrosophic function 𝑓(𝑥) =
[2,5]

𝑥−1
. 

lim
𝑥→1
𝑥<1

[2,5]

𝑥−1
= −∞    (178) 

and 

 lim
𝑥→1
𝑥>1

[2,5]

𝑥−1
= +∞ .    (179) 

Therefore, 𝑥 =  1 is a vertical asymptote for 𝑓(𝑥). 

Let’s apply the definition for the neutrosophic left limit. 

Let 𝑁 < 0. If, for 𝑥 < 1,  

𝜂(𝑥, 𝑐) = 𝜂(𝑥, 1) = |𝑥 − 1| <
[2,5]

|𝑁|
= 𝛿(𝑁) = 𝛿,  (180) 

which is equivalent to 

−
[2,5]

|𝑁|
< 𝑥 − 1 <

[2,5]

|𝑁|
    (181) 

then 

𝑓(𝑥) =
[2,5]

𝑥−1
<

[2,5]

−
[2,5]

|𝑁|

= −|𝑁| = 𝑁  (182) 

Therefore,  

lim
𝑥→1
𝑥<1

𝑓(𝑥) = −∞    (183) 

 

2. Let 𝑔(𝑥) =
4

(1,3)𝑥2 . 

lim
𝑥→0
𝑥<0

4

(1,3)𝑥2 = +∞     (184) 

and 
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lim
𝑥→0
𝑥>0

4

(1,3)𝑥2 = +∞,     (185) 

hence 

lim
𝑥→0

4

(1,3)𝑥2 = +∞.     (186) 

Therefore 𝑥 = 0  is a vertical asymptote for the 

neutrosophic function 𝑔(𝑥). 

Let’s apply the 𝑀 − 𝛿 definition to compute the same 

limit. 

Let 𝑀 > 0. If 

𝜂(𝑥, 𝑐) = 𝜂(𝑥, 0) = 𝜂(𝑥) = |𝑥| <
1

(√1, √3)√𝑀
 

= 𝛿(𝑚) = 𝛿       (187) 

then 

𝑔(𝑥) =
4

(1,3)𝑥2 >
4

(1,3)∙[
1

(√1,√3) √𝑀
]

2 =
4

(1,3)∙
1

(1,3)𝑀

=

4
(1,3)/(1,3)

𝑀

= 4𝑀/(
1

3
, 3) = 

because (1,3)/(1,3) = (1/3, 3/1) = (1/3, 3)  

= (
4

3
M, 12M) = M(

4

3
, 12), and inf{M(

4

3
, 12)} = 

4

3
𝑀 > 𝑀. 

(188) 

Therefore, 

lim
𝑥→0

𝑔(𝑥) = +∞.         (189) 

 

3. Let ℎ(𝑥) =
𝑥2+7

𝑥−(either 2 or 3)
        (190) 

be a neutrosophic function [meaning that we are not 

sure if it is 𝑥 − 2 or 𝑥 − 3], which is actually equivalent to 
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either the classical function ℎ1(𝑥) =
𝑥2+7

𝑥−2
 or to the 

classical function ℎ2(𝑥) =
𝑥2+7

𝑥−3
.   (191) 

Thus,  

lim
𝑥→either 2 or 3

𝑥<either 2 or 3 respectively

𝑥2 + 7

𝑥 − (either 2 or 3)
= −∞ 

(192) 

and 

lim
𝑥→either 2 or 3

𝑥>either 2 or 3 respectively

𝑥2 + 7

𝑥 − (either 2 or 3)
= +∞ 

(193) 

Therefore, either 𝑥 = 2 or 𝑥 = 3 is a vertical asymptote 

for ℎ(𝑥). 

 

4. Another type of neutrosophic limit: 

lim
𝑥→2+3𝐼

𝑥2 + (1 + 𝐼)𝑥

2𝑥 + 4 − 6𝐼
=

(2 + 3𝐼)2 + (1 + 𝐼)(2 + 3𝐼)

2(2 + 3𝐼) + 4 − 6𝐼

=
4 + 12𝐼 + 9𝐼2 + 2 + 3𝐼 + 2𝐼 + 3𝐼2

4 + 6𝐼 + 4 − 6𝐼

=
6 + 17𝐼 + 12𝐼2

8
=

6 + 17𝐼 + 12𝐼

8

=
6 + 29𝐼

8
=

6

8
+

29

8
𝐼, 

where I = indeterminacy with 0 ∙ 𝐼 = 0 and 𝐼2 = 𝐼.   (194). 
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III.19. Set-Argument Set-Values 
Function 

𝑓: 𝒫(𝑀) → 𝒫(𝑁), 𝑓(𝐴) = 𝐵,   (195) 

where 𝑀  and 𝑁  are sets, 𝐴 ∈ 𝒫(𝑀)  or 𝐴 ⊆ 𝑀 , and 𝐵 ∈

𝒫(𝑁) or 𝐵 ⊆ 𝑁. 

This is a generalization of the interval-argument 

interval-valued function. 

Example: 

𝑓: 𝒫(𝑅) → 𝒫(𝑅)    (196) 

𝑓({1, 3, 5}) = {2, 6}    (197) 

𝑓([1, 4]) = [2, 3]    (198) 

𝑓((1, 0)) = 5     (199) 

𝑓([−2,  3) ∪ {6}) = 𝑥2 = [4, 9) ∪ {36}             (200) 

𝒫(𝑀) is the set of all subsets of M, and 𝒫(𝑁) is the set 

of all subsets of N. 

The partial-metric 𝜂  and the norm 𝜇  are very well 

defined on 𝒫(𝑀)  and 𝒫(𝑁),  and the definitions of 

neutrosophic limit, neutrosophic continuity, neutrosophic 

derivative, and neutrosophic integral are extensions from 

classical calculus definitions by using the partial-metric 𝜂 

and/or the norm 𝜇. 
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III.20. Neutrosophic Derivative 

The general definition of the neutrosophic derivative of 

function fN(x) is: 

𝑓𝑁
′ (𝑋) = lim

𝜇(𝐻)→0

<inf𝑓(𝑋+𝐻)−inf𝑓(𝑋),sup𝑓(𝑋+𝐻)−sup𝑓(𝑋)>

𝐻
.   (201) 

where <a, b> means any kind of open / closed / half 

open-closed interval. 

As particular definitions for the cases when H is an 

interval one has: 

𝑓𝑁
′ (𝑋)

= lim
[inf𝐻,sup𝐻]→[0,0]

[inf𝑓(𝑋 + 𝐻) − inf𝑓(𝑋), sup𝑓(𝑋 + 𝐻) − sup𝑓(𝑋)]

[inf𝐻, sup𝐻]
 

(202) 

is the neutrosophic derivative of 𝑓(𝑋). 

In a simplified way, one has: 

𝑓𝑁
′ (𝑋) = lim

ℎ→0

[inf𝑓(𝑋 + ℎ) − inf𝑓(𝑋), sup𝑓(𝑋 + ℎ) − sup𝑓(𝑋)]

ℎ
. 

(203) 

Both definitions above are generalizations of the 

classical derivative definition, since for crisp functions and 

crisp variables one has: 

[inf𝐻, sup𝐻] ≡ ℎ                (204) 

and  

inf𝑓(𝑋 + 𝐻) ≡ sup𝑓(𝑥 + 𝐻) ≡ 𝑓(𝑥 + ℎ)              (205) 

inf𝑓(𝑋) ≡ sup𝑓(𝑋) ≡ 𝑓(𝑥).             (206) 

 

Let’s see some examples: 
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1) 𝑓(𝑋) = [2𝑥3 + 7𝑥, 𝑥5].                (207) 

𝑓𝑁
′ (𝑋)

= lim
ℎ→0

[2(𝑥 + ℎ)3 + 7(𝑥 + ℎ) − 2𝑥3 − 7𝑥, (𝑥 + ℎ)5 − 𝑥5]

ℎ

= [lim
ℎ→0

2(𝑥 + ℎ)3 + 7(𝑥 + ℎ − 2𝑥3 − 7𝑥

ℎ
, lim

ℎ→0

(𝑥 + ℎ)5 − 𝑥5

ℎ
]

= [
𝑑

𝑑𝑥
(2𝑥3 + 7𝑥),

𝑑

𝑑𝑥
(𝑥5)] = [6𝑥2 + 7, 5𝑥4]. 

(208) 

 

2) Let 𝑔: 𝑅 → 𝒫(𝑅), by 

𝑔(𝑥) = {
[𝑓1(𝑥), 𝑓2(𝑥)], if 𝑥 ≤ 5;
[𝑓3(𝑥), 𝑓4(𝑥)], if 𝑥 > 5.

               (209) 

 

 

 
Graph 23. 
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Any classical function 𝑓  is differentiable at a given 

point 𝑥 = 𝑐 if: 𝑓 is continuous at 𝑥 = 𝑐, 𝑓 is smooth at 𝑥 =

𝑐, and 𝑓 does not have a vertical tangent at 𝑥 = 𝑐. 

While 𝑔(𝑥)  is neutrosophically differentiable on ℝ ∖

{5} if f1, f2, f3, and f4 are differentiable: 

𝑔′(𝑥) = {
[𝑓′1(𝑥), 𝑓′2(𝑥)], if 𝑥 < 5;

[𝑓′3(𝑥), 𝑓′4(𝑥)], if 𝑥 > 5.
    (210) 

At  𝑥 = 5 , the neutrosophic function 𝑔(𝑥)  is 

differentiable if: 

[𝑓′1(5), 𝑓′2(5)] ≡ [𝑓′3(5), 𝑓′4(5)],  (211) 

otherwise 𝑔(𝑥) has a mereo-derivative at 𝑥 = 5 (as in 

the above figure) if 

[𝑓′1(5), 𝑓′2(5)] ∩ [𝑓′
3

(5), 𝑓′
4

(5)] ≠ ∅, (212) 

or 𝑔(𝑥) is not differentiable at 𝑥 = 5 if 

[𝑓′1(5), 𝑓′2(5)] ∩ [𝑓′
3

(5), 𝑓′
4

(5)] = ∅. (213) 

 

3) Another example of neutrosophic derivative. 

Let 𝑓 ∶ ℝ → ℝ ∪ {𝐼}, where 𝐼 = indeterminacy,  

𝑓(𝑥) = 3𝑥 − 𝑥2𝐼         (214) 

𝑓′(𝑥) = lim
ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ

= lim
ℎ→0

[3(𝑥 + ℎ) − (𝑥 + ℎ)2𝐼] − [3𝑥 − 𝑥2𝐼]

ℎ

= lim
ℎ→0

3𝑥 + 3ℎ − 𝑥2𝐼 − 2𝑥ℎ𝐼 − ℎ2𝐼 − 3𝑥 + 𝑥2𝐼

ℎ

= lim
ℎ→0

ℎ(3 − 2𝑥𝐼 − ℎ𝐼)

ℎ
= 3 − 2𝑥𝐼 − 0 ∙ 𝐼 = 3 − 2𝑥𝐼. 

(215) 

Therefore, directly  
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𝑓’(𝑥) =
𝑑

𝑑𝑥
(3𝑥) −

𝑑

𝑑𝑥
(𝑥2𝐼) = 3 − 𝐼

𝑑

𝑑𝑥
(𝑥2) = 3 − 2𝑥𝐼. 

(216) 

 

4) An example with refined indeterminacy: 

𝐼1 = indeterminacy of first type; 

𝐼2 = indeterminacy of second type. 

Let 𝑔: ℝ → ℝ ∪ {𝐼1} ∪ {𝐼2},      (217) 

𝑔(𝑥) = −𝑥 + 2𝑥𝐼1 + 5𝑥3𝐼2,       (218) 

Then 𝑔′(𝑥) =
𝑑

𝑑𝑥
(−𝑥) +

𝑑

𝑑𝑥
(2𝑥𝐼1) +

𝑑

𝑑𝑥
(5𝑥3𝐼2) =

−1 + 2𝐼1 + 15𝑥2𝐼2.         (219) 
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III.21. Neutrosophic Indefinite Integral 

We just extend the classical definition of anti-

derivative. 

The neutrosophic antiderivative of neutrosophic 

function 𝑓(𝑥) is the neutrosophic function 𝐹(𝑥) such that 

𝐹′(𝑥) = 𝑓(𝑥). 

For example, 

1. Let 𝑓: 𝑅 → 𝑅 ∪ {𝐼}, 𝑓(𝑥) = 5𝑥2 + (3𝑥 + 1)𝐼. 

(220) 

Then, 

𝐹(𝑋) = ∫[5𝑥2 + (3𝑥 + 1)𝐼]𝑑𝑥

= ∫ 5𝑥2𝑑𝑥

+ ∫(3𝑥 + 1)𝐼𝑑𝑥

= 5 ∙
𝑥3

3
+ 𝐼 ∫(3𝑥 + 1)𝑑𝑥 =

5𝑥3

3

+ (
3𝑥2

2
+ 𝑥) 𝐼 + 𝐶, 

(221) 

where C is an indeterminate real constant (i.e. constant 

of the form a+bI, where a, b are real numbers, while I = 

indeterminacy). 

 

2. Refined Indeterminacy. 

Let 𝑔: ℝ → ℝ ∪ {𝐼1} ∪ {𝐼2} ∪ {𝐼3},              (222) 

were 𝐼1, 𝐼2, and 𝐼3 are types of subindeterminacies, 

𝑔(𝑥) = −5 + 2𝐼1 − 𝑥4𝐼2 + 7𝑥𝐼3.               (223) 
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Then, 

∫ 𝑔(𝑥)𝑑𝑥 = ∫[−5 + 2𝐼1 − 𝑥4𝐼2 + 7𝑥𝐼3]𝑑𝑥 =

−5𝑥 + 2𝑥𝐼1 −
𝑥5

5
𝐼2 +

7𝑥2

2
𝐼3 + 𝑎 +

𝑏𝐼, where 𝑎 and 𝑏 are real constants.               (224) 
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III.22. Neutrosophic Definite Integral 

1. Let ℎ: ℝ → 𝒫(ℝ)                (225) 

 

 

Graph 24. 

 

such that 

ℎ(𝑥) = {
[𝑓1(𝑥), 𝑓2(𝑥)], if 𝑥 ≤ 𝑎2

𝑓3(𝑥), if 𝑎 > 𝑎2
.               (226) 

ℎ(𝑥) is a thick neutrosophic function for 𝑥 ∈ (−∞, 𝑎2], 

and a classical function for 𝑥 ∈ (𝑎2, +∞). 

 

We now compute the neutrosophic definite integral: 

𝛼 = ∫ ℎ(𝑥)𝑑𝑥 = ∫ [𝑓1(𝑥), 𝑓2(𝑥)]𝑑𝑥 +
𝑎1

0

𝑎3

0

∫ [𝑓2(𝑥), 𝑓1(𝑥)]𝑑𝑥 +
𝑎2

𝑎1
∫ 𝑓(𝑥)𝑑𝑥 =

𝑎3

𝑎2
[∫ 𝑓1(𝑥)𝑑𝑥, ∫ 𝑓2(𝑥)𝑑𝑥 

𝑎1

0

𝑎1

0
] +

[∫ 𝑓2(𝑥)𝑑𝑥, ∫ 𝑓1(𝑥)𝑑𝑥 
𝑎2

𝑎1

𝑎2

𝑎1
] + ∫ 𝑓3(𝑥)𝑑𝑥

𝑎3

𝑎2
= [𝐴, 𝐵] +

[𝐶, 𝐷] + [𝐸, 𝐸] = [𝐴 + 𝐶 + 𝐸, 𝐵 + 𝐷 + 𝐸],             (227) 
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where, of course, 

𝐴 = ∫ 𝑓1(𝑥)𝑑𝑥
𝑎1

0
, 𝐵 = ∫ 𝑓2(𝑥)𝑑𝑥

𝑎1

0
, 𝐶 = ∫ 𝑓2(𝑥)𝑑𝑥

𝑎2

𝑎1
, 

𝐷 = ∫ 𝑓1(𝑥)𝑑𝑥
𝑎2

𝑎1
, and 𝐸 = ∫ 𝑓3(𝑥)𝑑𝑥

𝑎3

𝑎2
. 

(228) 

Since ℎ(𝑥)  is a thick function between 0 and 𝑎2 , we 

interpret the result 𝛼 of our neutrosophic definite integral 

in general as: 

𝛼 ∈ [𝐴 + 𝐶 + 𝐸, 𝐵 + 𝐷 + 𝐸],                (229) 

since one may take: 𝛼 = 𝐴 + 𝐵 + 𝐸  as in classical 

calculus (i.e. the area are below the lowest curve), or an 

average:  

𝛼 =
(𝐴 + 𝐶 + 𝐸) + (𝐵 + 𝐷 + 𝐸)

2

=
𝐴 + 𝐵 + 𝐶 + 𝐷

2
+ 𝐸 

(230) 

(i.e. the area below a curve passing through the middle 

of the shaded area), or the maximum possible area: 

 𝛼 = 𝐵 + 𝐷 + 𝐸.                  (231) 

Depending on the problem to solve, a neutrosophic 

expert can choose the most appropriate 

 𝛼 ∈ [𝐴 + 𝐶 + 𝐸, 𝐵 + 𝐷 + 𝐸].              (232) 
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III.23. Simple Definition of 
Neutrosophic Definite Integral 

Let 𝑓𝑁 be a neutrosophic function  

𝑓𝑁: ℝ → 𝒫(ℝ)               (233) 
which is continuous or mereo-continous on the interval 

[𝑎, 𝑏]. Then, 

Σ𝑎
𝑏𝑓𝑁(𝑥)𝑑𝑥 = lim

𝑛→∞
Σ𝑖=1

𝑛 𝑓𝑁(𝐶𝑖)
𝑏−𝑎

𝑛
             (234) 

where 𝐶𝑖 ∈ [𝑥𝑖−1, 𝑥𝑖],  for 𝑖 ∈ {1, 2, … , 𝑛} , and 𝑎 ≡ 𝑥0 <

𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛 ≡ 𝑏  are subdivision of the 

interval [𝑎, 𝑏]:  exactly as the definition of the classical 

integral, but 𝑓𝑁(𝐶𝑖) may be a real set (not necessarily a 

crisp real number as in classical calculus), or 𝑓𝑁(𝐶𝑖) may 

have some indeterminacy. 
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III.24. General Definition of 
Neutrosophic Definite Integral 

Let 

𝑓𝑁: 𝒫(𝑀), → 𝒫(𝑁),                 (235) 

where 𝑀, 𝑁 are given sets, and 𝒫(𝑀) and 𝒫(𝑁) are the 

power sets of 𝑀 and 𝑁 respectively. 

𝑓𝑁  is a set-argument set-valued function which, in 

addition, has some indeterminacy. So, 𝑓𝑁 is a neutrosophic 

set-argument set-valued function. 

𝑓𝑁  maps a set in 𝑀  into a set in 𝑁 . Therefore, 𝐴, 𝐵 ∈

𝒫(𝑀). Then: 

∫ 𝑓𝑁(𝑥)𝑑𝑥 = lim
𝑛→∞

∑ 𝑓𝑁(𝐶𝑖) ∙
𝜂(𝐵,𝐴)

𝑛

𝑛
𝑖=1

𝐵

𝐴
,                         (236)  

where 

inf𝐴 ≡ inf𝑥0 < inf𝑥1 < ⋯ < inf𝑥𝑛−1 < inf𝑥𝑛 ≡ inf𝐵
sup𝐴 ≡ sup𝑥0 < sup𝑥1 < ⋯ < sup𝑥𝑛−1 < sup𝑥𝑛 ≡ sup𝐵

 

and (𝐶𝑖) ∈ 𝒫(𝑀) such that: 

inf𝑋𝑖−1 ≤ inf𝐶𝑖 ≤ inf𝑋𝑖   

and  

sup𝑋𝑖−1 ≤ sup𝐶𝑖 ≤ sup𝑋𝑖 , for 𝑖 ∈ {1, 2, … , 𝑛}. 

Therefore, the neutrosophic integral lower and upper 

limits are sets (not necessarily crisp numbers as in classical 

calculus), 𝐶𝑖, for all 𝑖 ∈ {1, 2, … , 𝑛}, and similarly 𝑓𝑁(𝐶𝑖) are 

sets (not crisp numbers as in classical calculus). And, in 

addition, there may be some indeterminacy as well with 

respect to their values. 
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IV. A Neutrosophic Binomial
Factorial Theorem with their 

Refrains  
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IV.1. Abstract 

This chapter like other parts of this book is innovative. 

The form of neutrosophic binomial factorial theorem was 

constructed in addition to its refrains. Two other 

important theorems were proved with their corollaries. 

Also, numerical examples were solved to corroborate the 

presented theorems. As a conjecture, in neutrosophic 

calculus the authors put ten forms of (indeterminate 

forms) which take an important role in limits. To service 

our aim in this chapter some of important questions had 

been answered. 
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IV.2. Important questions  

Q1- What are the types of indeterminacy? 

Answer: 

There exist two types of indeterminacy: 

1. Literal indeterminacy (I), 

as example:  2 + 3I  

2. Numerical indeterminacy,  

as example: x(0.6,0.3,0.4) ∈ A  meaning that the 

indeterminacy membership = 0.3 .     

Other examples for the indeterminacy component can 

be seen in the following functions :  

f(0) = 7 or 9  

f(0 or 1) = 5  

f(x) = [0.2, 0.3] x2 ….. etc.  

 

Q2- What is the values of ( 𝐈 ) to the rational power? 

Answer: 

Let √I = x + y I 

0 + I = x2 + (2xy + y2)I 

 x = 0 , y = ±1  

therefore, in general √I
2k

= ±I  

where k ∈ z+ = {1,2,3, … }. 

Let √I
3

= x + y I 

0 + I = x3 + 3x2y I + 3xy2 I2 + y3I3 

0 + I = x3 + (3x2y + 3xy2  + y3)I 

 x = 0 , y = 1 →  √I
3

= I 

so, in general √I
2k+1

= I where k ∈ z+ = {1,2,3, … } 
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Basic Notes  

1. A component ( I )to the zero power is undefined 

value, (i.e. I0  is undefined ) , since I0 = I1+(−1) =

I1 ∗ I−1 =
I

I
 which is impossible case ( avoid to 

divide by I)  

2. The value of ( I ) to the negative power is undefined 

value (i.e. I−n , n > 0 is undefined ) 

 

Q3- What are the indeterminacy forms in 

neutrosophic calculus ? 

Answer: 

If we return to the classical calculus, it is popular that 

the indeterminate forms are: 
0

0
 ,

∞

∞
, 0 ∙ ∞ , ∞0, 00, 1∞, ∞ − ∞             (237) 

By comparing the notion of indeterminate forms in 

classical calculus and the notion of neutrosophic calculus 

we can discuss the following case: 

the form 0 to the power I (i.e. 0I ) is an indeterminate 

form in Neutrosophic calculus, it is tempting to argue that 

an indeterminate form of type 0I has zero value since "zero 

to any power is zero". However, this is fallacious since 0I 

is not a power of number , but rather a statement about 

limits. 

 

Q4- What about the form 𝟏𝐈 ? 

Answer: 

The base "one" pushes the form 1I  to one while the 

power I pushes the form 1I  to I , so 1I  is an indeterminate 
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form in neutrosophic calculus . Really, the form aI , a ∈ R is 

always indeterminate form. 

 

Q5- Again what is the value of 𝐚𝐈 , 𝐰𝐡𝐞𝐫𝐞 𝐚 ∈ 𝐑 ?  

Answer: 

Let y1 = 2x , x ∈ R , y2 = 2I , it is obvious that lim
x→∞

2x =

∞ , lim
x→−∞

2x = 0 ,  

lim
x→0

2x = 1  , while we cannot determine if 2I →

∞ or 0 or 1  , therefore we can say that y2 = 2I 

indeterminate form in Neutrosophic calculus . The same 

talking for aI , where a ∈ R . 
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IV.3. Indeterminate forms in 
Neutrosophic Calculus 

It is obvious that there are seven types of indeterminate 

forms In classical calculus  
0

0
,

∞

∞
, 0. ∞, 00, ∞0, 1∞, ∞ − ∞  

While as a conjecture, we can say that there are ten 

forms of the indeterminate forms in Neutrosophic calculus  

I0 , 0I,
I

0
, I ∙ ∞,

∞

I
 , ∞I, I∞, II, aI(a ∈ R), ∞ ± a ∙ I .          (238) 

Note that:  

 
I

0
= I ∙

1

0
= I ∙ ∞ = ∞ ∙ I                (239) 
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IV.4. Various Examples  

Numerical examples on neutrosophic limits would be 

necessary to demonstrate the aims of this chapter. 

IV.4.1. Example  
The neutrosophic (numerical indeterminate) values 

can be seen in the following function:-  

Find lim
x→0

f(x), where f(x) = x[2.1,2.5]. 

Solution: 

Let y = x[2.1,2.5]  → ln y = [2.1, 2.5] ln x 

∴ lim
x→0

ln y = lim
x→0

[2.1, 2.5]

1
ln x

= lim
x→0

[2.1, 2.5]

1
ln 0

=
[2.1, 2.5]

1
−∞

=
[2.1, 2.5]

−0
= [

2.1

−0
,
2.5

−0
] = (−∞, −∞)

= −∞ 

Hence y = e−∞ = 0 

OR it can be solved briefly by  

y = x[2.1,2.5] = [02.1, 02.5] = [0,0] = 0 

IV.4.2. Example  

lim
x→[9,11]

[3.5,5.9]x[1,2] =  [3.5,5.9] [9,11][1,2]

= [3.5,5.9] [91, 112]

=  [(3.5)(9), (5.9)(121)] =  [31.5,713.9]  

IV.4.3. Example  

lim
x→∞

[3.5,5.9] x[1,2] = [3.5,5.9] ∞[1,2] = [3.5,5.9] [∞1, ∞2]

=  [3.5 ∙ (∞) ,5.9 ∙ (∞)] = (∞, ∞) = ∞. 
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IV.4.4. Example  
Find the following limit using more than one technique 

lim
x→0

√[4,5]∙x+1−1

x
 . 

Solution:  

The above limit will be solved firstly by using 

rationalizing technique and secondly by using L'Hôpital's 

Rule rationalizing technique  

lim
x→0

√[4,5] ∙ x + 1 − 1

x
=

√[4,5] ∙ 0 + 1 − 1

0
 

=
√[4 ∙ 0, 5 ∙ 0] + 1 − 1

0
=

√[0, 0] + 1 − 1

0
=

√0 + 1 − 1

0

=
0

0
= undefined. 

Multiply with the conjugate of the numerator:  

lim
x→0

√[4, 5]x + 1 − 1

x
∙

√[4, 5]x + 1 + 1

√[4, 5]x + 1 + 1

= lim
x→0

(√[4, 5]x + 1)
2

− (1)2

x (√[4, 5]x + 1 + 1)

= lim
x→0

[4, 5] ∙ x + 1 − 1

x ∙ (√[4, 5]x + 1 + 1)

= lim
x→0

[4, 5] ∙ x

x ∙ (√[4, 5]x + 1 + 1)

= lim
x→0

[4, 5]

(√[4, 5]x + 1 + 1)

=
[4, 5]

(√[4, 5] ∙ 0 + 1 + 1)
=

[4, 5]

√1 + 1
=

[4, 5]

2

= [
4

2
,
5

2
] = [2, 2.5]. 
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Second way using L'Hôpital's rule 

lim
x→0

1

2
([4, 5] ∙ x + 1)

−1
2⁄  [4,5] = lim

x→0

 [4,5]

2√([4,5]∙x+1)
=

 [4,5]

2
=

 [
4

2
,

5

2
] =  [2,2.5] identical results. 

IV.4.5. Example  
Find the value of the following neutrosophic limit 

lim
x→−3

x2+3x−[1,2]x−[3,6]

x+3
 using more than on technique.  

IV.4.6. Analytical technique  

lim
x→−3

x2+3x−[1,2]x−[3,6]

x+3
  

By substituting x= -3 , 

lim
x→−3

(−3)2 + 3 ∙ (−3) − [1, 2] ∙ (−3) − [3, 6]

−3 + 3
 

=
9 − 9 − [1 ∙ (−3), 2 ∙ (−3)] − [3, 6]

0
 

=
0 − [−6, −3] − [3, 6]

0
=

[3, 6] − [3,6]

0
 

=
[3 − 6, 6 − 3]

0
=

[−3, 3]

0
, 

which has undefined operation 
0

0
, since 0 ∈ [−3, 3]. 

Then we factor out the numerator, and simplify: 

lim
x→−3

x2 + 3x − [1, 2]x − [3, 6]

x + 3
= 

lim
x→−3

(x − [1, 2]) ∙ (x + 3)

(x + 3)
= lim

x→−3
(x − [1,2]) 

= −3 − [1,2] = [−3, −3] − [1,2] 

=  −([3,3] + [1,2]) = [−5, −4]. 
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Again Solving by using L'Hôpital's rule  

lim
x→−3

x2 + 3x − [1, 2]x − [3, 6]

x + 3

= lim
x→−3

2 x + 3 − [1, 2]

1

= lim
x→−3

2 (−3) + 3 − [1, 2]

1
= −6 + 3 − [1, 2] = −3 − [1, 2]

= [−3 − 1, −3 − 2] = [−5, −4] 

The above two methods are identical in results. 
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IV.5. New Theorems in Neutrosophic 
Limits 

Theorem 4.1 (Binomial Factorial Theorem ) 

lim
x→∞

(I +
1

x
)x = Ie                (240) 

where I is the literal indeterminacy, e = 2.7182828. 

Proof. 

(I +
1

x
)

x

= (
x
0

) IX (
1

x
)

0

+ (
x
1

) IX−1 (
1

x
)

1

 

+ (
x
2

) IX−2 (
1

x
)

2

+ (
x
3

) IX−3 (
1

x
)

3

+ (
x
4

) IX−4 (
1

x
)

4

+ ⋯ 

= I + x. I.
1

x
+

I

2!
(1 −

1

x
) 

+
I

3!
(1 −

1

x
) (1 −

2

x
) +

I

4!
(1 −

1

x
) (1 −

2

x
) 

(1 −
3

x
) + ⋯ 

It is clear that 
1

x
→ 0 as x → ∞ 

∴ lim
x→∞

(I −
1

x
)x = I + I +

I

2!
+

I

3!
+

I

4!
+ ⋯ = I + ∑

In

n!
∞
n=1       

∴ lim
x→∞

(I +
1

x
)x = Ie , where 𝑒 = 1 + ∑

1

n!
∞
n=1  , I is the literal 

indeterminacy. 

Corollary 4.1 

lim
x→0

(I + x)
1

x = Ie                     (241) 

Proof. 

Put y =
1

x
  

It is obvious that y → ∞ , as x → 0  
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∴ lim
x→0

(I + x)
1

x = lim
y→∞

(I +
1

y
)y = Ie  

(using Th. 4.1 ) 

Corollary 4.2 

lim
x→∞

(I +
k

x
)x = Iek                  (242) 

where k > 0 & k ≠ 0 , I is the literal indeterminacy. 

Proof. 

lim
x→∞

(I +
k

x
)x = lim

x→∞
[(I +

k

x
)

x
k]

k

 

Put y =
k

x
→ xy = k → x =

k

y
  

Note that  y → 0 as x → ∞  

 ∴  lim
x→∞

(I +
k

x
)

x
= lim

y→0
[(I + y)

1

y]
k

 

(using Corollary 4.1 ). 

= [lim
y→0

(I + y)
1

y]
k

= (Ie)k = Ikek = Iek  

Corollary 4.3 

lim
x→0

(I +
x

k
)

1

x = (Ie)
1

k = √Ie
k

              (243) 

where k ≠ 0 & k > 0. 

Proof. 

The immediate substitution of the value of x  in the 

above limit gives indeterminate form I∞, 

 i.e. lim
x→0

(I +
x

k
)

1

x = lim
x→0

(I +
0

k
)

1

0 = I∞ 

So we need to treat this value as follow: 



Florentin Smarandache & Huda E. Khalid 
Neutrosophic Precalculus and Neutrosophic Calculus 
(second enlarged edition) 

118 

lim
x→0

(I +
x

k
)

1
x = lim

x→0
[(I +

x

k
)

k
x]

1
k

= [lim
x→0

(I +
x

k
)

k
x]

1
k

 

put y =
x

k
→ x = ky →

1

x
=

1

ky
  

As x → 0 , y → 0  

lim
x→0

(I +
x

k
)

1
x

= lim
y→0

[(I + y)
1
y]

1
k

= [lim
y→0

(I + y)
1
y]

1
k

 

Using Corollary 4.1 

= (Ie)
I
k = √Ie

k
 

Theorem 4.2 

 lim
x→0

(lna)[Iax−I]

xlna+lnI
=

lna

1+lnI
                (244) 

where  a > 0, a ≠ 0  

Note that   lim
x→0

(lna)[Iax−I]

xlna+lnI
= lim

x→0

Iax−I

x+
lnI

lna

  

Proof. 
Let y = Iax − I → y + I = Iax  →  ln(y + I) = ln I + ln ax 

→ ln(y + I) = ln I + xlna → 

x =  
ln(y + I) − lnI

lna
 

(ln a)(Iax − I)

xlna + lnI
=

Iax − I)

x +
lnI
lna

=
y

ln(y + I) − lnI
lna

+
lnI
lna

 

= lna.
y

ln(y + I)
= lna.

1

1
y

ln(y + I)
= lna.

1

ln(y + I)
1
y

 

∴ lim
x→0

 
(ln a)(Iax−I)

xlna+lnI
= lna 

1

lim
y→0

ln(y+I)
1
y

= lna .
1

ln lim
y→0

(y+I)
1
y

=

lna 
1

ln(Ie)
 using Corollary 4.1 
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=  
lna

ln I +  lne
=

lna

lnI + 1
 

Corollary 4.4 

lim
x→0

Iakx−I

x+
lnI

lnak

=
k lna

1+lnI
                   (245) 

Proof. 

Put y = kx → x =
y

k
 

y → 0 as x → 0 

lim
x→0

Iakx − I

x +
lnI

lnak

= lim
y→0

Iay − I

y
k

+
lnI

k lna

= k. lim
y→0

Iay − I

y +
lnI
 lna

 

Using Th. 4.2 

= k. (
lna

1 + lnI
) 

Corollary 4.5 

lim
x→0

Iex−I

x+lnI
=

1

1+lnI
                 (246) 

Proof. 

Let y =  Iex − I , y → 0 as x → 0 

y + I =  Iex → ln(y + I) = lnI + x lne 

x = ln(y + I) − lnI 

∴  
Iex − I 

x +  lnI
=

y

ln(y + I) − lnI + lnI
 

=
1

1
y

ln(y + I)
 

=
1

ln(y + I)
1
y
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∴ lim
x→0

Iex − I

x + lnI
= lim

y→0

1

ln(y + I)
1
y

=
1

ln lim
y→0

(y + I)
1
y

 

Using corollary 4.1, 

1

ln (Ie)
=

1

lnI + lne
=

1

lnI + 1
 

Corollary 4.6 

lim
x→0

Iekx−I

x+
lnI

k

=
k 

1+lnI
                   (247) 

Proof. 

Let y = kx → x =
y

k
 

y → 0 as x → 0 

lim
x→0

Iekx−I

x+
lnI

k

= lim
y→0

Iey−I
y

k
+

lnI

k 

= k. lim
y→0

Iey−I

y+lnI
  

using Corollary 4.5 to get  

= k. (
1

1 + lnI
) =

k

1 + lnI
 

Theorem 4.3 

lim
x→0

ln (I+kx)

x
= k(1 + lnI)               (248) 

Proof. 

lim
x→0

ln (I + kx)

x
= lim

x→0

ln(I + kx) − lnI + lnI

x
 

Let y = ln(I + kx) − lnI → y + lnI = ln(I + kx) 

ey+lnI = I + kx → x =
eyelnI − I

k
=

I ey − I

k
 

y → 0 as x → 0 

lim
x→0

ln(I + kx) − lnI + lnI

x
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= lim
y→0

y + lnI

I ey − I
k

 

lim
y→0

k

y + lnI
I ey − I

=
k

lim
y→0

(
y + lnI
I ey − I

)
 

using Corollary 4.5 to get the result  

=
k

1
1 + lnI

= k(1 + lnI) 

Theorem 4.4 
Prove that, for any two real numbers a, b  

lim
x→0

Iax−I

Iax−I
= 1                     (249) 

where a, b > 0 & a, b ≠ 1. 

Proof. 

The direct substitution of the value x in the above limit 

conclude that 
0

0
 ,so we need to treat it as follow: 

lim
x→0

Iax − I

Ibx − I
= lim

x→0

lna[Iax − I]
xlna + lnI

∗
xlna + lnI

lna
lnb[Ibx − I]
xlnb + lnI

∗
xlnb + lnI

lnb

 

=
lim
x→x

lna[Iax − I]
xlna + lnI

lim
x→x

lnb[Ibx − I]
xlnb + lnI

∗
lim
x→0

( xlna + lnI)

lim (
x→0

xlnb + lnI)
∗

lnb

lna
 

(using Th.4.2 twice - first in numerator, second in 

denominator)  

=
lna

1+lnI
lnb

1+lnI

∗
lnI

lnI
∗

lnb

lna
 = 1 
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IV.6. Numerical Examples  

IV.6.1. Example  
Evaluate the limit 

lim
x→0

I54x − I

x +
lnI

ln54

 

Solution. 

lim
x→0

I54x − I

x +
lnI

ln54

=
4ln5

1 + lnI
 

(using Corollary 4.4) 

IV.6.2. Example 

Evaluate the limit lim
x→0

Ie4x−I

I32x−I
 

Solution. 

lim
x→0

Ie4x − I

I32x − I
= lim

x→0

ln3[Ie4x − I]

(x +
lnI
4

)
∗ (x +

lnI
4

)

ln3[I32x − I]

(x +
lnI

ln32)
∗ (x +

lnI
ln32)

 

=

lim
x→0

ln3[Ie4x − I]

(x +
lnI
4

)

lim
x→0

ln3[I32x − I]

(x +
lnI

ln32)

∗
lim
x→0

(x +
lnI
4

)

lim
x→0

(x +
lnI

ln32)
 

(using Corollary 4.6 on numerator Corollary 4.4 on 

denominator) 
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=

4
1 + lnI

2ln3
1 + lnI

∗

lnI
4

lnI
ln32

= 1 
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IV.7. Conclusion 

This chapter is worthy to read and it includes many 

innovative notions. We introduced for the first time the 

new version of binomial factorial theorem containing the 

literal indeterminacy (I). This theorem owns three 

corollaries. However, more than one new theorem had 

been presented and proved with its corollaries. The 

authors derived ten forms of (indeterminate forms) which 

take an important role in limits. Finally, various examples 

had been solved. 
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V. Conclusion 



Florentin Smarandache & Huda E. Khalid 
Neutrosophic Precalculus and Neutrosophic Calculus 
(second enlarged edition) 

126 

Neutrosophic Analysis is a generalization of Set 

Analysis, which in its turn is a generalization of Interval 

Analysis. 

Neutrosophic Precalculus is referred to indeterminate 

statistic-ity, while Neutrosophic Calculus is the 

mathematics of indeterminate change. 

The Neutrosophic Precalculus and Neutrosophic 

Calculus can be developed in many ways, depending on 

the types of indeterminacy one has and on the methods 

used to deal with such indeterminacy. 

We introduce for the first time the notions of 

neutrosophic mereo-limit, neutrosophic mereo-continuity 

(in a different way from the classical semi-continuity), 

neutrosophic mereo-derivative and neutrosophic mereo-

integral (both in different ways from the fractional 

calculus), besides the classical definitions of limit, 

continuity, derivative, and integral respectively.  

Chapter four includes many innovative notions, for the 

first time, the new version of binomial factorial theorem 

containing the literal indeterminacy (I) had been 

introduced, this theorem owns three corollaries. However, 

more than one new theorem had been presented and 

proved with their corollaries. The authors derived ten 

forms of (indeterminate forms) which take an important 

role in limits.  

Future research can be done in neutrosophic 

fractional calculus. 
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In this book, we present a few examples of 

indeterminacies and several methods to deal with these 

specific indeterminacies, but many other indeterminacies 

there exist in our everyday life, and they have to be studied 

and resolved using similar of different methods. Therefore, 

more research should to be done in the field of 

neutrosophics. 
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Neutrosophic Analysis is a generalization of Set Analysis, 

which in its turn is a generalization of Interval Analysis. 
Neutrosophic Precalculus is referred to indeterminate 

staticity, while Neutrosophic Calculus is the mathematics of 
indeterminate change. 

The Neutrosophic Precalculus and Neutrosophic Calculus 
can be developed in many ways, depending on the types of 
indeterminacy one has and on the methods used to deal with 
such indeterminacy. 

In this book, the authors present a few examples of 
indeterminacies and several methods to deal with these 
specific indeterminacies, but many other indeterminacies 
there exist in our everyday life, and they have to be studied 
and resolved using similar of different methods. Therefore, 
more research should to be done in the field of neutrosophic. 

The authors introduce for the first time the notions of 
neutrosophic mereo-limit, neutrosophic mereo-continuity (in 
a different way from the classical semi-continuity), 
neutrosophic mereo-derivative and neutrosophic mereo-
integral (both in different ways from the fractional calculus), 
besides the classical definitions of limit, continuity, derivative 
and integral respectively, a new version of binomial factorial 
theorem and their refrains, ten forms of indeterminate form. 
Future research may be done in the neutrosophic fractional 
calculus. 

 

 




