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Introduction 

Although the neutrosophic statistics has been 

defined since 1996, and published in the 1998 book 

Neutrosophy. / Neutrosophic Probability, Set, 

and Logic, it has not been developed since now. A 

similar fate had the neutrosophic probability that, 

except a few sporadic articles published in the 

meantime, it was barely developed in the 2013 book 

“Introduction to Neutrosophic Measure, 

Neutrosophic Integral, and Neutrosophic 

Probability”. 

Neutrosophic Statistics is an extension of the 

classical statistics,and one deals with set values 

instead of crisp values. 

In most of the classical statistics equations and 

formulas, one simply replaces several numbers by 

sets. And consequently, instead of operations with 

numbers, one uses operations with sets. One 

normally replaces the parameters that are 

indeterminate (imprecise, unsure, and even 

completely unknown). That’s why we made the 

convention that any number a that is replaced by a 

set be noted aN, meaning neutrosophic a, or 

imprecise, indeterminate a. aN can be a neighbour of 

a, can be an interval that includes a, and in general 

it can be any set that approximates a. In the worst 

scenario, aN can be unknown. In the best scenario 



Florentin Smarandache 

 

6 

 

(when there is not indeterminacy related to a), aN = 

a. 

Why this passage from crisp numbers to sets? 

Because in our real life we cannot always compute 

or provide exact values to the statistics 

characteristics, but we need to approximate them. 

This is one way to passing from classical to 

neutrosophic statistics, but other ways could be 

possible, depending on the types of 

indeterminacies, and the reader is kindly invited to 

do such research to be published in the next issues 

of the international journal of “Neutrosophic Sets 

and Systems”, http://fs.gallup.unm.edu/NSS/. 

The author would like to thank Prof. Yoshio 

Hada, the President of Okayama University of 

Science, Prof. Valery Kroumov from Okayama 

University of Science, Prof. Akira Inoue from the 

State University of Okayama, also Prof. Masahiro 

Inuiguchi, Dr.Masayo Tsurumi, and Dr. Yoshifumi 

Kusuroku from the University of Osaka, and Dr. 

Tomoe Entani from the Hyogo University for their 

valuable considerations and opinion during my 

postdoctoral research in Japan in December 2013 

and January 2014 about applications of the 

neutrosophic science in robotics and other fields. 

Any quantity computed with some indeterminacy 

from values in a sample (i.e. not exactly) is a 

neutrosophic statistics. 

A neutrosophic statistic is a random variable and 

as such has a neutrosophic probability distribution. 

http://fs.gallup.unm.edu/NSS/
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The long-run behaviour of a neutrosophic statistic’s 

values is described when one computes this 

statistic for many different samples, each of the 

same size. 

Neutrosophic Statistics is an extension of the 

classical statistics. While in classical statistics the 

data is known, formed by crisp numbers, in 

neutrosophic statistics the data has some 

indeterminacy. 

In the neutrosophic statistics, the data may be 

ambiguous, vague, imprecise, incomplete, even 

unknown. Instead of crisp numbers used in 

classical statistics, one uses sets (that respectively 

approximate these crisp numbers) in neutrosophic 

statistics. 

Also, in neutrosophic statistics the sample size 

may not be exactly known (for example the sample 

size could be between 90 and 100; this may happen 

because, for example, the statistician is not sure 

about 10 sample individuals if they belong or not to 

the population of interest; or because the 10 sample 

individuals only partially belong to the population 

of interest, while partially they don’t belong). 

In this example, the neutrosophic sample size is 

taken as an interval n = [90, 100], instead of a crisp 

number n = 90 (or n = 100) as in classical statistics. 

Another approach would be to only partially 

consider the data provided by the 10 sample 

individuals whose membership to the population of 

interest is only partial. 
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Neutrosophic Statistics 

Neutrosophic Statistics refers to a set of data, 

such that the data or a part of it are indeterminate 

in some degree, and to methods used to analyze the 

data. 
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In Classical Statistics all data are determined; 

this is the distinction between neutrosophic 

statistics and classical statistics. 

In many cases, when indeterminacy is zero, 

neutrosophic statistics coincides with classical 

statistics. 

We can use the neutrosophic measure for 

measuring the indeterminate data. 

The neutrosophic statistical methods will enable 

us to interpret and organize the neutrosophic data 

(data that may have some indeterminacies) in order 

to reveal underlying patterns. 

There are many approaches that can be used in 

neutrosophic statistics. We present several of them 

through examples, and afterwards generalizations 

for classes of examples. Yet, the reader can invent 

new approaches as well in studying the 

neutrosophic statistics. 

We emphasize, as in neutrosophic probability, 

that indeterminacy is different from randomness. 

While classical statistics is referring to randomness 

only, neutrosophic statistics is referring to both 

randomness and especially indeterminacy. 

Neutrosophic Descriptive Statistics is 

comprised of all techniques to summarize and 

describe the neutrosophic numerical data’s 

characteristics. 

Since neutrosophic numerical data contain 

indeterminacies, the neutrosofic line graphs, and 

neutrosophic histograms are represented in 3D-
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spaces, instead of 2D-spaces as in classical 

statistics. The third dimension, in addition of the 

XOY Cartesian System, is that of indeterminacy (I). 

From unclear graphical data displays we can 

extract neutrosophic (unclear) information. 

Neustrosophic Inferential Statistics consists of 

methods that permit the generalization from a 

neutrosophic sampling to a population from which 

it was selected the sample. 

Neutrosophic Data is the data that contains 

some indeterminacy. 

Similarly to the classical statistics it can be 

classified as: 

- discrete neutrosophic data, if the values 

are isolated points;for example:  6 + 𝑖1 , where 𝑖1 ∈

[0, 1], 7, 26 + 𝑖2, where 𝑖2 ∈ [3, 5]; 

- and continuous neutrosophic  data, if the 

values form one or more intervals, for example:  

[0, 0.8] or [0.1, 1.0] (i.e. not sure which one). 

Another classification: 

- quantitative (numerical) neutrosophic 

data; for example: a number in the interval [2, 5] 

(we do not know exactly), 47, 52,  67 or 69 (we do 

not know exactly); 

- and qualitative (categorical) neutrosophic 

data; for example: blue or red (we don’t know 

exactly),  white, black or green or yellow (not 

knowing exactly). 

Also, we may have: 
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- univariate neutrosophic data, i.e. neutro-

sophic data that consists of observations on a 

neutrosophic single attribute; 

- and multivariable neutrosophic data, i.e. 

neutrosophic data that consists of observations on 

two or more attributes. 

As a particular cases we mention the bivariate 

neutrosophic data, and trivariate neutrosophic 

data. 

A Neutrosopical Statistical Number N has the 

form: 

𝑁 = 𝑑 + 𝑖, 

where d is the determinate (sure) part of N, and i is 

the indeterminate (unsure) part of N. 

For example, 𝑎 = 5 + 𝑖, where 

𝑖 ∈ [0, 0.4], is equivalent to𝑎 ∈ [5, 5.4], so for sure 𝑎 ≥ 5 

(meaning that the determinate part of a is 5), while 

the indeterminate part 𝑖 ∈ [0, 0.4]  means the 

possibility for number „a” to be a little bigger than 

5. 

We may consider, similarly to the classical 

statistics, a neutrosophic stem-and-leaf display of 

data. 

For example, let’s have the neutrosophic data 

that follows: 

6 + 𝑖1, with𝑖1 ∈ (0, 0.2); 

7 + 𝑖2with𝑖2 ∈ [2, 3]; 

6 + 𝑖3, with𝑖3 ∈ [0, 1]; 

9 + 𝑖4, 𝑤𝑖𝑡ℎ𝑖4 ∈ [1.1, 1.5); 

9 + 𝑖1. 
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Its neutrosophic stem-and-leaf display is: 

6
7
9
‖

𝑖1 𝑖3
𝑖2

𝑖1 𝑖4

 

or under the form of interval:  

6
7
9
‖

(0, 0.2) [0, 1]
[2, 3]

(0, 0.2) [1.1, 1.5]
 

Obviously a neutrosophic statistic number can 

be written in many ways. 

If you retake:  𝑎 = 5 + 𝑖,with𝑖 ∈ [0, 0.4], then  

𝑎 = 4 + 𝑖1, with 𝑖 ∈ [1, 1.4], or𝑎 = 3 + 𝑖2, with 

𝑖2 ∈ [2, 2.4], and in general 𝑎 = ∝ + 𝑖∝, with  

𝑖∝ ∈ [5−∝, 5.4−∝], and ∝ any real number. 

 Or in opposite way: 

𝑎 = 5.4 − 𝑖3, with 𝑖3 ∈ [0, 0.4], 

and in general 

𝑎 = 𝛽 − 𝑖𝛽 ,  with 𝑖𝛽 ∈ [𝛽 − 5.4, 𝛽 − 5], and𝛽  any real 

number. 

A Neutrosophic Frequency Distribution is a 

table displaying the categories, frequencies, and 

relative frequencies with some indeterminacies. 

Most often, indeterminacies occur due to imprecise, 

incomplete or unknown data related to frequency. 

As a consequence, relative frequency becomes 

imprecise, incomplete, or unknown too. 

An example about the neutrosophic frequency 

distribution concerning the number of accidents by 

car drivers. 
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How to read the previous table, let’s say line #2: 

the number of car drivers with only one accident is 

between 60 and 80 (thus unclear information), and 

corresponding neutrosophic relative frequency 

between 0.2240 and 0.333.  

To compute the total for the neutrosophic 

frequencies, where we have imprecise information, 

we compute the min and max of estimated 

frequencies: 

𝑚𝑖𝑛𝑛𝑓 = 50 + 60 + 70 + 40 = 220, 

and𝑚𝑎𝑥𝑛𝑓   = 50 + 80 + 90 + 50 = 270. 

To compute the neutrosophic relative frequency, 

we also do the min and max of all possibilities. 

For zero accidents: 

𝑚𝑖𝑛𝑛𝑟𝑓 =
50

270
≃ 0.185 

and𝑚𝑎𝑥𝑛𝑟𝑓 =
50

220
≃ 0.227, 

or 50 ÷ [220, 270] ≃ [0.185, 0.227]. 
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For one accident one has: 

𝑚𝑖𝑛𝑛𝑟𝑓 =
60

50 + 60 + 90 + 50
= 0.240 

𝑚𝑎𝑥𝑛𝑟𝑓 =
80

50 + 80 + 70 + 40
≃ 0.333. 

For two accidents one has: 

𝑚𝑖𝑛𝑛𝑟𝑓 =
70

50 + 80 + 70 + 50
= 0.280, 

and𝑚𝑎𝑥𝑛𝑟𝑓 =
90

50 + 60 + 90 + 40
≃ 0.375. 

The interval [0.280, 0.375] is different from: 

[70, 90] ÷ [220, 270] = [
70

270
,
90

220
] ≃ [0,259, 0.409]. 

For three accidents one has: 

𝑚𝑖𝑛𝑛𝑟𝑓 =
40

50 + 80 + 90 + 40
≃ 0.154 

and𝑚𝑎𝑥𝑛𝑟𝑓 =
50

50 + 60 + 70 + 50
≃ 0.217 

and similarly the interval [0.154, 0.217] is 

different from: 

[40, 50] ÷ [220, 270] = [
40

270
,
50

220
] ≃ [0.148, 0.227]. 

We simply cumulated the neutrosophic relative 

frequencies as an addition of intervals: 

[0.185, 0.227] + [0.240, 0.333] + [0.280, 0.375]

+ [0.154, 0.217] = [0.859, 1.152]. 

 

Neutrosophic Statistical Graphsare graphs 

that have indeterminate (unclear, vague, 

ambiguous, unknown) data or curves. 

1.a. Neutrosophic Bar Graph: 
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Table: Time spent by an American daily 
T=watching TV: between [4,5] hours; 

B=reading books: between [1,2] hours; 

D=driving: between [1,3] hours; 

S=sleeping: between [6,9] hours. 

 

2.a. Neutrosophic Circle Graph for the same 

example: 
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3.a. Neutrosophic Double Line Graph for the 

same example: 
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4.a. Neutrosophic Line Plot for the same 

example: 
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5.a. Neutrosophic Pictograph for the same 

example: 

 
Green color rectangle: one hour 

Red color rectangle: one possible hour 

 

6.a. Neutrosophic 2D Histogram is a neutro-

sophic bar graph such that the bars are vertical, 

there is no gap between bars (the bars of height zero 

are also included), and the width of each bar has 

the size of the represented interval. It shows, within 

a certain interval, the approximate number of times 

data occur. 
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where  indicates in the numbering scale a 

distortion. 

The frequencies are not crisp numbers as in 

classical statistics, but between some limits. For 

example, the number of families with income in 

between $10,000 – $29,000 is between 7 and 9 

millions of families. Similarly for other classes of 

income, except for the last class of income in 

between $110,000 – $129,000 that corresponds to 

a crisp number: 1 million of families. 
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We represented all types of neutrosophic 

statistical graphs in a space of dimension two (2D) 

as in classical statistics, but it is also possible to 

make the graphs in a space o dimension three (3D), 

just adding to each of the previous 2D-graphs an 

indeterminate dimension, which measures the 

indeterminacy of the data. 

 

1.b. The Neutrosophic 3D Bar Graph 

 

The deepness axis (i) measures the indeterminacy. 

For the previous example: Time spent by an American daily. 
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2.b. Neutrosophic Cylinder Graph 

 
 

The heights (that represent indeterminacies) of T 

and B are the same, while the height of D is double, 

and the height of S is triple. 

 

3.b. TheNeutrosophic 3D-Line Graph 

 

S

D

T

B

Other

T

D

0

2

4

6

i=1
i=2

i=3
i=4

4-6

2-4

0-2
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for the same example. We plot the points of 

coordinates (T, 4, 1), (B, 1, 1), (D, 1, 2), and (S, 6, 

3), where the second component represents the 

determinate part (y) and the third component the 

maximum indeterminacy (i), and connect them. We 

get a 3D curve. 

 

4.b. Neutrosophic 3D Plot for the same 

example: 
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5.b. Neutrosophic 3D Pictograph for the same 

example: 

 
 

6.b. Neutrosophic 3D Histogram for the same 

example of Neutrosophic distribution of family 

income frequencies: 
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Statistical Deceptions can be expressed in the 

neutrosophic way. For example: 

a) ”Company’s heating bill went up to 10% 

last year.” In a neutrosophic way we can 

write: [0, 10]% (which could be any 

number between 0 and 10, including the 

extremes). 

b) “We guarantee you lose as much as 15 

pounds in a month, or your money back.” 

Actually you lose [0, 15] pounds, so you 

may lose no pound! 

c) “No product is better than Brian’s.” This 

means that other products could be the 

same as Brian’s! 
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Neutrosophic Quartiles 

Let’s consider the set of neutrosophic 

observations of a variable listed in almost ascending 

order (since we deal with sets instead of crisp 

numbers we have a partial order). 

The neutrosophic quartiles are similarly as in 

classical statistics defined: the first (lower quartile) 

is the 
1

4
(𝑛 + 1)𝑡ℎ, the second is the 

2

4
(𝑛 + 1)𝑡ℎ, and 

the third the 
3

4
(𝑛 + 1)𝑡ℎ. 

If (𝑛 + 1) is not divisible by 4, then one takes the 

average of the two neutrosophic observations whose 

ranks the quartile falls in between. Another 

procedure is to take the inferior integer part of 
𝑖

4
(𝑛 + 1), for 𝑖 = 1, 2, 3. 

Let’s compute the midpoint of a set ⊔  in the 

following way: 

midpoint ⊔= 
inf⊔ +sup ⊔

2
. 

We can define a total order on the n neutrosophic 

observation sets in the following way: 

for any sets ⊔  and ∨  we have ⊔<∨  if 

{
either midpoint (⊔) < midpoint(∨),

ormidpoint (⊔) = midpoint(∨)andmin ⊔< min ∨ .
 

If it happens that  

midpoint (⊔) = midpoint(∨) 

and min ⊔= min ∨, 

then automatically max ⊔ = max∨, therefore  

⊔≡∨. 
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An example with n = 12 ascending neutrosophic 

observations: 

1, (2, 3), {4, 6}, 5 , [7, 10], [7, 11], 9 , 12, 14, [14, 15) , 20, 

{21} ∪ (22, 25]. 

First quartile: 

1

4
(𝑛 + 1) =

1

4
(12 + 1) = 3.25, 

then we average the 3rd and the 4th ranked 

observations: 

{4, 6} + 5

2
=
{4 + 5, 6 + 5}

2
=
{9, 11}

2
= {

9

2
,
11

2
} = {4.5, 5.5}. 

Second quartile: 

2

4
(𝑛 + 1) =

2

4
(12 + 1) = 6.50, 

then we average the 6th and 7th ranked 

observations: 

[7, 11] + 9

2
= [

7 + 9

2
,
11 + 9

2
] = [8, 10]. 

Third quartile: 

3

4
(𝑛 + 1) =

3

4
(12 + 1) = 9.75, 

then we average the 9th and 10th ranked 

observations: 

14 + [14, 15]

2
= [

14 + 14

2
,
14 + 15

2
] = [14, 14.5). 
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Neutrosophic Sample 

A Neutrosophic Sample is a chosen subset of a 

population, subset that contains some 

indeterminacy: either with respect to several of its 

individuals (that might not belong to the population 

we study, or they might only partially belong to it), 

or with respect to the subset as a whole. While the 

classical samples provide accurate information, the 

neutrosophic samples provide vague or incomplete 

information. 

By language abuse one can say that any sample 

is a neutrosophic sample, since one may consider 

their determinacy equals to zero. 

Neutrosophic Survey Results are survey results 

that contain some indeterminacy. 

A Neutrosophic Population is a population not 

well determined at the level of membership (i.e. not 

sure if some individuals belong or do not belong to 

the population).  

For example, as in the neutrosophic set, a 

generic element x belongs to the neutrosophic 

population M in the following way, 𝑥(𝑡, 𝑖, 𝑓) ∈ 𝑀 , 

which means: x is t % in the population M, f %x is 

not in the population M, while i % the appurtenance 

of x to M is indeterminate (unknown, unclear, 

neutral: neither in the population nor outside). 

Example. Let’s consider the population of a 

country C1. Most people in this country have only 
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the citizenship of the country, therefore they belong 

100% to C1. But there are people that have double 

citizenships, of countries C1 and C2. Those people 

belong 50% to C1, and 50% to C2. While citizens 

with triple citizenships of countries C1, C2, and C3 

belong only 33.33% to each country. Of course, 

considering various criteria these percentages may 

differ. Also, there are countries with autonomous 

zones, whose citizens in these zones may not 

entirely consider themselves as belonging to those 

countries. 

But there is another category of people that have 

been stripped from their C1 citizenship for political 

reasons and they have other citizenship, while still 

living (temporarily) in C1.They are called paria, and 

they do not belong to C1 (not having citizenship), but 

still belong to C1 (because they still living in C1). 

They form the indeterminate part of neutrosophic 

population of country C1.  

A simple random neutrosophic sample of size 

n from a classical or neutrosophic population is a 

sample of n individuals such that at least one of 

them has some indeterminacy.  

Example. One considers a random sample of 

1,000 homes, in a city of over one million 

inhabitants, in order to investigate how many 

houses have at least a laptop. One finds out that 

600 houses have at least one laptop, 300 houses 

don’t have any laptop, while 100 houses have each 

of them a single laptop, but not working.  
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Some of these 100 house owners tried to have 

their laptop fixed, others said their laptops’ hard 

drives have crashed and it is little chance to fix 

them. Therefore indeterminacy. We have a simple 

random neutrosophic sample of size 100. 

Similarly as in classical statistics, in a stratified 

random neutrosophic sampling the pollster 

groups the (classical or neutrosophic) population by 

a strata according to a classification; afterwards the 

pollster takes a random sample (of appropriate size 

according to a criterion) from each group. If there is 

some indeterminacy, we deal with neutrosophic 

sampling. 

Example. One considers two strata: men and 

women in the city of Gallup, New Mexico. But, since 

women represent 51% of the population and men 

49%, one takes a random sample of 51 women and 

a random sample of 49 men. 

But later learn that „one” man and two “women” 

are actually transgender. Therefore 3 individuals 

are indeterminate. Whence one has stratified 

random neutrosophic sampling. 

If the (classical or neutrosophic) population is 

divided into subgroups, such that each subgroup is 

representative of the population, and then one 

collects from these subgroups a random sample 

and there is some indeterminacy, then one has a 

neutrosophic cluster sampling. 

Example. Suppose 5 professors conduct PhD 

dissertations in neutrosophic statistics. Each 
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professor has a number of graduate students, but 

some students are undecided whether to pursue 

their dissertations in classical or neutrosophic 

statistics. The professors represent the clusters. 

One randomly selects 2 professors to interview their 

students about research in neutrosophic statistics. 

But, because some students are undecided 

(indeterminate) with respect to their research topic, 

we have a neutrosophic cluster sampling. 

A convenience sample is likely to be inaccurate 

since the pollster selects a sample of individuals 

that are readily available, who might answer 

randomly to the questions in order to finish faster. 

The less the individuals are interested in the survey 

results, the more likely inaccurate are the survey 

results. While a voluntary-response sample is 

more likely to be biased, since the sample 

individuals may volunteer in purpose to influence 

the survey results. 

Besides these two categories of sample 

individuals there is another one of malicious people 

that might oppositely answer to the questions in 

order to produce false results. 

That’s why data of some sample individuals has 

to be removed, but often we don’t know which ones. 

Therefore, we have indeterminacy related to the 

sample size: how many sample people were from the 

above three categories, and how to depict their data 

in order to remove them from the survey results? 

Again, neutrosophic statistics. 
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Neutrosophic Numerical 

Measures 

Example with Neutrosophic Numbers 𝑎 + 𝑏𝐼 , 

where a, b are real numbers, and I is indeterminacy, 

such that 𝐼2 = 𝐼 and 0 ∙ 𝐼 = 0. 

Let’s have the neutrosophic numbers: 

−2 − 4𝐼, −1+ 0 ∙ 𝐼, 3 + 5𝐼, 6 + 7𝐼. 

Compute their mean: 
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(−2 − 4𝐼) + (−1 + 0 ∙ 𝐼) + (3 + 5𝐼) + (6 + 7𝐼)

4
= 

 

=
−2 − 1 + 3 + 6

4
+
−4 + 0 + 5 + 7

4
∙ 𝐼 = 1.5 + 2𝐼. 

Compute their median: 

(−1 + 0 ∙ 𝐼) + (3 + 5𝐼)

2
=
−1 + 3

2
+
0 + 5

2
𝐼 = 1 + 2.5𝐼. 

Compute the deviation of each neutrosophic 

number with respect to the mean: 

(−2 − 4𝐼) − (1.5 + 2𝐼) = −3.5 − 6𝐼, 

(−1 + 0 ∙ 𝐼) − (1.5 + 2𝐼) = −2.5 − 2𝐼, 

(3 + 5𝐼) − (1.5 + 2𝐼) = 1.5 + 3𝐼, 

(6 + 7𝐼) − (1.5 + 2𝐼) = 4.5 + 5𝐼. 

Square the deviations: 

(−3.5 − 6𝐼)2 = (−3.5)2 + 2(−3.5)(−6)𝐼 + (−6)2𝐼2 

= 12.25 + 42𝐼 + 36𝐼2 = 12.25 + 42𝐼 + 36𝐼  

= 12.25 + 78𝐼 

(−2.5 − 2𝐼)2 = 6.25 + 14𝐼 

(1.5 + 3𝐼)2 = 2.25 + 18𝐼 

(4.5 + 5𝐼)2 = 20.25 + 70𝐼. 

We are following the formula: 

(𝑎 + 𝑏𝐼)2 = 𝑎2 + 2𝑎𝑏𝐼 + 𝑏2𝐼2 

= 𝑎2 + 2𝑎𝑏𝐼 + 𝑏2𝐼 

or 

(𝑎 + 𝑏𝐼)2 = 𝑎2 + (2𝑎𝑏 + 𝑏2)𝐼. 

 

Compute the standard deviation: 
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𝑠 =

= √
(12.25 + 78𝐼) + (6.25 + 14𝐼) + (2.25 + 18𝐼) + (20.25 + 70𝐼)

4
 

= √10.25 + 45𝐼. 

To compute the square root of a neutrosophic 

number we denote the result as 𝑥 + 𝑦𝐼  and 

determine 𝑥 and 𝑦: 

√10.25 + 45𝐼 = 𝑥 + 𝑦𝐼. 

Raise both sides to the second power: 

10.25 + 45𝐼 = 𝑥2 + (2𝑥𝑦 + 𝑦2)𝐼. 

Therefore: 

 

{
10.25 = 𝑥2

45 = 2𝑥𝑦 + 𝑦2
 

Since standard deviation is positive, we take 

𝑥 = +√10.25 ≃ 3.20 

and replace it into the second equation: 

45 = 2(3.20)𝑦 + 𝑦2 

and solve for positive y: 

𝑦2 + 6.4𝑦 − 45 = 0 

whence 

𝑦 =
−6.4 + √6.42 − 4(1)(−45)

2(1)
≃ 0.64. 

Therefore, the neutrosophic standard deviation 

of the previous four neutrosophic numbers is 

3.20 + 0.64𝐼. 

We observe that 3.20 is the classical standard 

deviation of the determinate parts of the previous 

neutrosophic numbers: −2,−1, 3, 6; but 0.64 is not 
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the classical standard deviation of the 

indeterminate parts of the previous neutrosophic 

numbers: −4, 0, 5, 7.  

The classical standard deviation of the numbers 

-4, 0, 5, 7, whose mean is 2, is: 

√
(−4 − 2)2 + (0 − 2)2 + (5 − 2)2 + (7 − 2)2

4
≃ 4.30. 

Indeterminacy has propagated when squaring 

the deviations. 

 

 

 

 

 

 

 

 

 

 

 

Classical Neutrosophic 

Numbers 

A classical Neutrosophic Number has the 

standard form: 
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𝑎 + 𝑏𝐼, 

where a, b are real or complex coefficients, and I 

= indeterminacy, such 0 ∙ 𝐼 = 0 and 𝐼2 = 𝐼. 

It results that 𝐼𝑛 = 𝐼 for all positive integer n. 

If the coefficients a and b are real, then 𝑎 + 𝑏𝐼 is 

called Neutrosophic Real Number. 

Examples: 2 + 3𝐼, −5 +
7

3
𝐼, etc. 

But if the coefficients a and b be are complex, 

then 𝑎 + 𝑏𝐼  is called Neutrosophic Complex 

Number. 

Examples: (5 + 2𝑖) + (2 − 8𝑖)𝐼, 𝐼 + 𝑖 + 9𝐼 − 𝑖𝐼,  etc. 

where 𝑖 = √−1. 

A neutrosophic complex number can be better 

written as: 

𝑎 + 𝑏𝑖 + 𝑐𝐼 + 𝑑𝑖𝐼, where a, b, c, and d are reals. 

Of course, any real number can be considered, 

by language abuse, a neutrosophic number. 

For example: 

5 = 5 + 0 ∙ 𝐼, 

or 

5 = 5 + 0 ∙ 𝑖 + 0 ∙ 𝐼 + 0 ∙ 𝑖 ∙ 𝐼. 

We call it a degenerated neutrosophic number. 

A true neutrosophic number contains the 

indeterminacy I with a non-zero coefficient. 

 

Division of classical neutrosophic real numbers. 

(𝑎1 + 𝑏1𝐼) ÷ (𝑎2 + 𝑏2𝐼) = ? 

We denote the result by: 
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𝑎1 + 𝑏1𝐼

𝑎2 + 𝑏2𝐼
= 𝑥 + 𝑦𝐼, 

then multiply and identify the coefficients: 

𝑎1 + 𝑏1𝐼 ≡ (𝑥 + 𝑦𝐼)(𝑎2 + 𝑏2𝐼)

≡ 𝑥𝑎2 + 𝑥𝑏2𝐼 + 𝑦𝑎2𝐼 + 𝑦𝑏2𝐼
2

≡ (𝑎2𝑥) + (𝑏2𝑥 + 𝑎2𝑦 + 𝑏2𝑦)𝐼. 

Whence we form an algebraic system of 

equations, by identifying the coefficients: 

 
𝑎2𝑥 = 𝑎1

𝑏2𝑥 + 𝑎2𝑦 + 𝑏2𝑦 = 𝑏1
 

or 
𝑎2𝑥 = 𝑎1

𝑏2𝑥 + (𝑎2 + 𝑏2)𝑦 = 𝑏1
. 

One obtains unique solution only when the 

determinant of second order |
𝑎2 0

𝑏2 𝑎2 + 𝑏2
| ≠ 0 

or 𝑎2(𝑎2 + 𝑏2) ≠ 0. Hence 𝑎2 ≠ 0 and 𝑎2 ≠ −𝑏2  are 

that conditions for the division of neutrosophic real 

numbers 

𝑎1 + 𝑏1𝐼

𝑎2 + 𝑏2𝐼
 

to exist. 

Then  

𝑥 =
𝑎1
𝑎2

 

and 

𝑦 =
𝑎2𝑏1 − 𝑎1𝑏2
𝑎2(𝑎2 + 𝑏2)

 

or  
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𝑎1 + 𝑏1𝐼

𝑎2 + 𝑏2𝐼
=
𝑎1
𝑎2
+
𝑎2𝑏1 − 𝑎1𝑏2
𝑎2(𝑎2 + 𝑏2)

∙ 𝐼. 

As consequences, we have: 

1. 𝑎+𝑏𝐼

𝑎𝑘+𝑏𝑘𝐼
=

𝑎+𝑏𝐼

𝑘(𝑎+𝑏𝐼)
=

1

𝑘
,  for k a non-zero real 

number, and for 𝑎 ≠ 0 and 𝑎 ≠ −𝑏. 

2. 𝐼

𝑎+𝑏𝐼
=

𝑎

𝑎(𝑎+𝑏)
∙ 𝐼 =

1

𝑎+𝑏
∙ 𝐼, for 𝑎 ≠ 0 and 𝑎 ≠ −𝑏. 

3. Divisions by I, -I, and in general by 𝑘𝐼, for k 

a real, are undefined. 
𝑎+𝑏𝐼

𝑘𝐼
= undefined, for any real k, and any realsa 

and b. 

In particular: 

𝐼

𝐼
= undefined; 

7𝐼

𝐼
= undefined; 

10𝐼

5𝐼
= undefined; 

𝑎 + 𝑏𝐼

𝐼
= undefined; 

𝑎 + 𝑏𝐼

−𝐼
= undefined. 

4. 𝑎+𝑏𝐼

𝑐
=

a

c
+
b

c
∙ I, for 𝑐 ≠ 0; 

5. 𝑐

𝑎+𝑏𝐼
=

𝑐

𝑎
−

𝑏𝑐

𝑎(𝑎+𝑏)
∙ 𝐼, for 𝑎 ≠ 0 and 𝑎 ≠ −𝑏. 

6. 𝑎+0∙𝐼

𝑏+0∙𝐼
=

𝑎

𝑏
,  for 𝑏 ≠ 0  (the classical division of 

reals). 

7. 𝑎+𝑏𝐼

1
=

𝑎

1
+
𝑏

1
∙ 𝐼 = 𝑎 + 𝑏𝐼. 
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8. 0

𝑎+𝑏∙𝐼
=

0

𝑎
+
𝑎∙0−0∙𝑏

𝑎(𝑎+𝑏)
∙ 𝐼 = 0 + 0 ∙ 𝐼 = 0,  for 𝑎 ≠

0 and 𝑎 ≠ −𝑏. 

9. 𝑘𝐼

𝑎+𝑏𝐼
=

𝑘

𝑎+𝑏
∙ 𝐼, for any real k, and 𝑎 ≠ 0 and 𝑎 ≠

−𝑏. 

Let’s fo a concrete example by calculation. 

What is (2 + 3𝐼) ÷ (1 + 𝐼) = ? 

Denote: 

2 + 3𝐼

1 + 𝐼
= 𝑥 + 𝑦𝐼. 

One has: 

(1 + 𝐼)(𝑥 + 𝑦𝐼) = 𝑥 + 𝑦𝐼 + 𝑥𝐼 + 𝑦𝐼2 ≡ 2 + 3𝐼 

𝑥 + (𝑥 + 2𝑦)𝐼 ≡ 2 + 3𝐼. 

Whence{
𝑥 = 2

𝑥 + 2𝑦 = 3
 

or 𝑥 = 2, 𝑦 = 0.5. 

There 

2 + 3𝐼

1 + 𝐼
= 2 + 0.5𝐼. 

Let’s check: 

2 + 3𝐼

2 + 0.5𝐼
= 𝑥 + 𝑦𝐼. 

Then 

(2 + 0.5𝐼)(𝑥 + 𝑦𝐼) ≡ 2 + 3𝐼, 

2𝑥 + (2𝑦 + 0,5𝑥 + 0.5𝑦) ≡ 2 + 3𝐼. 

Whence 

{
2𝑥 = 2

  0.5𝑥 + 2.5𝑦 = 3
, 

hence 

𝑥 = 1, 𝑦 = 1, 

or 
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2 + 3𝐼

2 + 0.5𝐼
= 1 + 1 ∙ 𝐼 = 1 + 𝐼. 

Perfect. 

 

Another example. 

2 + 3𝐼

8 + 12𝐼
= 𝑥 + 𝑦𝐼. 

Whence 

{
8𝑥 = 2

12𝑥 + 12𝑦 + 8𝑦 = 3
 

and we get 

𝑥 =
2

8
=
1

4
, 

and 

12 (
1

4
) + 20𝑦 = 3,      or 𝑦 = 0. 

Therefore 

2 + 3𝐼

8 + 12𝐼
=
1

4
+ 0 ∙ 𝐼 =

1

4
, 

which is a neutrosophic simplification since: 

2 + 3𝐼

8 + 12𝐼
=
1 ∙ (2 + 3𝐼)

4 ∙ (2 + 3𝐼)
=
1

4
. 

 

Now an example which is undefined: 

2 + 3𝐼

1 − 𝐼
=? 

2 + 3𝐼

1 − 𝐼
= 𝑥 + 𝑦𝐼 

(1 − 𝐼)(𝑥 + 𝑦𝐼) ≡ 2 + 3𝐼 

𝑥 + 𝑦𝐼 − 𝑥𝐼 − 𝑦𝐼2 ≡ 2 + 3𝐼 

or 

𝑥 + (𝑦 − 𝑥 − 𝑦)𝐼 ≡ 2 + 3𝐼 
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or 

𝑥 − 𝑥𝐼 ≡ 2 + 3𝐼, 

therefore 

𝑥 = 2   and  − 𝑥 = 3, 

which is impossible. 

Therefore 

2 + 3𝐼

1 − 𝐼
= undefined. 

And an example where it results infinitely 

solutions: 

𝐼

𝐼
= ? 

Denote 

𝐼

𝐼
= 𝑥 + 𝑦𝐼, 

so 

𝐼(𝑥 + 𝑦𝐼) ≡ 𝐼, 

or 

𝑥𝐼 + 𝑦𝐼2 ≡ 𝐼, 

or 

(𝑥 + 𝑦)𝐼 ≡ 1 ∙ 𝐼, 

whence 𝑥 + 𝑦 = 1,  where x and y are unknown 

reals. 

We get infinitely many solutions: 

𝑥 ∈ ℛ and 𝑦 = 1 − 𝑥, 

where ℛ  is the set of real numbers. Among 

solutions there are:  

1, I, 2-I, etc. 

But since the division’s result should be unique, 

we say that 
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𝐼

𝐼
= undefined. 

 

Root index 𝒏 ≥ 𝟐 of a neutrosophic real number. 

First let’s compute the square root: 

√𝑎 + 𝑏𝐼, where a, b are reals. 

Let’s denote: 

√𝑎 + 𝑏𝐼 = 𝑥 + 𝑦𝐼, 

where x and y are real unknowns, and raise both 

sides to the second power. One gets: 

𝑎 + 𝑏𝐼 ≡ (𝑥 + 𝑦𝐼)2 = 𝑥2 + 2𝑥𝑦𝐼 + 𝑦2𝐼2 = 𝑥2 + 2𝑥𝑦𝐼 + 𝑦2𝐼

= 𝑥2 + (2𝑥𝑦 + 𝑦2)𝐼. 

Whence    {
𝑥2 = 𝑎

 2𝑥𝑦 + 𝑦2 = 𝑏.
 

Hence    {
𝑥 = ± √𝑎

𝑦2 ± 2√𝑎 ∙ 𝑦 − 𝑏 = 0
 

and we solve the second equation for y: 

𝑦 =
∓2√𝑎 ± √4𝑎 + 4𝑏

2(1)
=
∓2√𝑎 ± 2√𝑎 + 𝑏

2

= ∓√𝑎 ± √𝑎 + 𝑏, 

and the four solution are: 

(𝑥, 𝑦) = (√𝑎,−√𝑎 + √𝑎 + 𝑏), (√𝑎,−√𝑎 − √𝑎 + 𝑏),  

(−√𝑎, √𝑎 + √𝑎 + 𝑏), or(−√𝑎,√𝑎 − √𝑎 + 𝑏). 

Thus: 

√𝑎 + 𝑏𝐼 = √𝑎 + (−√𝑎 + √𝑎 + 𝑏)𝐼, 

or 

√𝑎 − (√𝑎 + √𝑎 + 𝑏)𝐼, 

or 
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−√𝑎 + (√𝑎 + √𝑎 + 𝑏)𝐼,  

      or 

−√𝑎 + (√𝑎 − √𝑎 + 𝑏)𝐼. 

 

Let’s consider an example done through all 

calculations: 

√9 + 7𝐼 = ? 

Let’s denote: 

√9 + 7𝐼 = 𝑥 + 𝑦𝐼. 

Then: 

9 + 7𝐼 = 𝑥2 + 2𝑥𝑦𝐼 + 𝑦2𝐼2 = 𝑥2 + (2𝑥𝑦 + 𝑦2)𝐼. 

Whence 

{
 𝑥2 = 9, or 𝑥 = ±3

 2𝑥𝑦 + 𝑦2 = 7
 . 

Let’s find y: 

𝑥 = 3      𝑥 = −3 

6𝑦 + 𝑦2 = 7      −6 + 𝑦2 = 7 

𝑦2 + 6𝑦 − 7 = 0 𝑦2 − 6𝑦 − 7 = 0 

(𝑦 + 7)(𝑦 − 1) = 0 (𝑦 − 7)(𝑦 + 1) = 0 

𝑦 = −7 𝑦 = 1⁄ 𝑦 = 7 𝑦 = −1⁄  

(3, −7), (3, 1) (−3, 7), (−3,−1). 

Therefore, √9 + 7𝐼 = ±3 ± 𝐼 (four solutions). 

As a particular case we can compute √𝐼. 

Let’s consider √𝐼 = 𝑥 + 𝑦𝐼, then 

0 + 1 ∙ 𝐼 = 𝑥2 + (2𝑥𝑦 + 𝑦2) ∙ 𝐼 

and we need to find 𝑥 and 𝑦. 

Whence 𝑥2 = 0, or 𝑥 = 0,  

and 2𝑥𝑦 + 𝑦2 = 1, or 𝑦2 = 1, or 𝑦 = ±1. 

Hence √𝐼 = ±𝐼. 
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Similarly for √𝐼
𝑛
. 

Let’s consider √𝐼
𝑛

= 𝑥 + 𝑦𝐼, 

or 0 + 1 ∙ 𝐼 = 𝑥𝑛 + (∑ ∁𝑛
𝑘𝑦𝑛−𝑘𝑥𝑘𝑛−1

𝑘=0 ) ∙ 𝐼, 

where𝑥𝑛 = 0, or 𝑥 = 0, 

and 

∑∁𝑛
𝑘𝑦𝑛−𝑘𝑥𝑘 = 1,

𝑛−1

𝑘=0

 

or 𝑦𝑛 = 1, whence 𝑦 = √1
𝑛

 and we get n solutions: 

a real solution 𝑦 = 1 and 𝑛 − 1 complex solutions in 

the case we are interested in neutrosophic complex 

solutions as roots index n of 1. 

In the same way, we can compute root index 𝑛 ≥

2 of any neutrosophic number: 

√𝑎 − 𝑏𝐼
𝑛

= 𝑥 + 𝑦𝐼 

or 

𝑎 + 𝑏𝐼 = (𝑥 + 𝑦𝐼)𝑛 

= 𝑥𝑛 + (𝑦2 +∑∁𝑛
𝑘𝑦𝑛−𝑘𝑥𝑘

𝑛−1

𝑘=0

) ∙ 𝐼 = 

= 𝑥𝑛 + (∑∁𝑛
𝑘𝑦𝑛−𝑘𝑥𝑘

𝑛−1

𝑘=0

) ∙ 𝐼, 

where ∁𝑛
𝑘 means combination of n elements taken 

by groups of k elements. 

Whence 𝑥 = √𝑎
𝑛

 if n is odd, or 𝑥 = ±√𝑎
𝑛

 if n is 

even,  

and  

(∑∁𝑛
𝑘𝑦𝑛−𝑘𝑎

𝑘

𝑛

𝑛−1

𝑘=0

) = 𝑏, 
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and solve it for y. 

When the x and y solutions are real, we get 

neutrosophic real solutions, and when x and y 

solutions are complex, we get neutrosophic complex 

solutions. 

Let 𝑎 + 𝑏𝑖 + 𝑐𝐼 + 𝑑𝑖𝐼 be a neutrosophic complex 

number, where a, b, c, d are reals. Let’s compute 

square root of it: 

(√𝑎 + 𝑏𝑖 + 𝑐𝐼 + 𝑑𝑖𝐼)
2
= (𝑥 + 𝑦𝑖 + 𝑧𝐼 + 𝑤𝑖𝐼)2 

𝑎 + 𝑏𝑖 + 𝑐𝐼 + 𝑑𝑖𝐼

= 𝑥2 − 𝑦2 + 𝑧2𝐼2 +𝑤2𝑖2𝐼2 + 2𝑥𝑦𝑖 + 2𝑥𝑧𝐼

+ 2𝑥𝑤𝑖𝐼 + 2𝑦𝑧𝑖𝐼 + 2𝑦𝑤𝑖2𝐼 + 2𝑧𝑤𝑖𝐼2

= 𝑥2 − 𝑦2 + 𝑧2𝐼 − 𝑤2𝐼 + 2𝑥𝑦𝑖 + 2𝑥𝑧𝐼

+ 2𝑥𝑤𝑖𝐼 + 2𝑦𝑧𝑖𝐼 − 2𝑦𝑤𝐼 + 2𝑧𝑤𝑖𝐼

= (𝑥2 − 𝑦2) + 2𝑥𝑦𝑖

+ (𝑧2 −𝑤2 + 2𝑥𝑧 − 2𝑦𝑤)𝐼

+ (2𝑥𝑤 + 2𝑦𝑧 + 2𝑧𝑤)𝑖𝐼. 

Then we get a non-linear algebraic system in four 

variables (x, y, z, w) and four equations: 

{
 

 
𝑥2 − 𝑦2 = 𝑎
2𝑥𝑦 = 𝑏

𝑧2 −𝑤2 + 2𝑥𝑧 − 2𝑦𝑤 = 𝑐
2𝑥𝑤 + 2𝑦𝑧 + 2𝑧𝑤 = 𝑑.

 

In a more general way, we can compute root 

indexn of a neutrosophic complex number: 

(𝑎 + 𝑏𝑖 + 𝑐𝐼 + 𝑑𝑖𝐼)
1

𝑛 = 𝑥 + 𝑦𝑖 + 𝑧𝐼 + 𝑤𝑖𝐼, 

where x, y, z, w are variables in the set of real 

numbers. 

Raising to the power n in both sides, one gets: 
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𝑎 + 𝑏𝑖 + 𝑐𝐼 + 𝑑𝑖𝐼 = (𝑥 + 𝑦𝑖 + 𝑧𝐼 + 𝑤𝑖𝐼)𝑛

= 𝑓1(𝑥, 𝑦) + 𝑓2(𝑥, 𝑦)𝑖 + 𝑓3(𝑥, 𝑦, 𝑤, 𝑧)𝐼

+ 𝑓4(𝑥, 𝑦, 𝑤, 𝑧)𝑖𝐼, 

where 𝑓1, 𝑓2, 𝑓3, 𝑓4 are real functions. 

Whence we get a non-linear algebraic system in 

four variables (x, y, w, z) and four equations: 

{
 

 
𝑓1(𝑥, 𝑦) = 𝑎

𝑓2(𝑥, 𝑦) = 𝑏

𝑓3(𝑥, 𝑦, 𝑤, 𝑧) = 𝑐

𝑓4(𝑥, 𝑦, 𝑤, 𝑧) = 𝑑,

 

that we need to solve. 

Similarly, one can compute square root of a 

complex number. 

Let 𝑎 + 𝑏𝑖, where 𝑖 = √−1, and a, b are reals, be a 

complex number. 

√𝑎 + 𝑏𝑖 = 𝑥 + 𝑦𝑖  such that (𝑥 + 𝑦𝑖)2 ≡ 𝑎 + 𝑏𝑖, 

where x and y are real numbers; 

or 𝑥2 + 2𝑥𝑦𝑖 + 𝑦2𝑖2 ≡ 𝑎 + 𝑏𝑖, 

or (𝑥2 − 𝑦2) + (2𝑥𝑦)𝑖 ≡ 𝑎 + 𝑏𝑖, 

whence {
𝑥2 − 𝑦2 = 𝑎
2𝑥𝑦 = 𝑏.

 

From the first equation 𝑥 = ±√𝑦2 + 𝑎is replaced 

into the second equation: 

±2𝑦√𝑦2 + 𝑎 = 𝑏. (RE) 

Raising both sides to the second power one gets: 

4𝑦2(𝑦2 + 𝑎) = 𝑏2, 

or 

4𝑦4 + 4𝑎𝑦2 − 𝑏2 = 0. 

Let 𝑧 = 𝑦2. Then 4𝑧2 + 4𝑎𝑧 − 𝑏2 = 0, then 
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𝑧 =
−4𝑎 ± √16𝑎2 − 4 ∙ 4(−𝑏2)

2(4)
=
−4𝑎 ± √16𝑎2 + 16𝑏2

8

=
−4𝑎 ± 4√𝑎2 + 𝑏2

8
=
−𝑎 ± √𝑎2 + 𝑏2

2
. 

Then 

𝑦 = ±√
−𝑎 ± √𝑎2 + 𝑏2

2
, 

and 

𝑥 =
𝑏

2𝑦
=

𝑏

±2√
−𝑎±√𝑎2+𝑏2

2
∙
2

2

=
±𝑏

√2𝑎 ± 2√𝑎2 + 𝑏2
, 

for 𝑦 ≠ 0. 

Since (RE) is a radical equation, we need to check 

each solution of unknown y to make sure the 

solution is not extraneous. 

Because√𝑎2 + 𝑏2 ≥ ±𝑎, the expression 
–𝑎+√𝑎2+𝑏2

2
≥

0, therefore there are at least two real values for y,  

𝑦 = ±√
−𝑎 + √𝑎2 + 𝑏2

2
, 

while – 𝑎 − √𝑎2 + 𝑏2 ≤ 0 and one has equality only 

when b = 0, resulting in y = 0. 

As a particular case, √𝑖 =
√2

2
+
√2

2
∙ 𝑖, or - 

√2

2
−
√2

2
𝑖, 

since we write: 

𝑖 = 0 + 1 ∙ 𝑖, whence a = 0, b = 1, 

and we replace both of them into the x and y of 

previous formulas.   

We can check the results: 
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(
√2

2
+
√2

2
∙ 𝑖)

2

=
2

4
+ 2 ∙

2

4
𝑖 +

2

4
𝑖2 =

1

2
+ 𝑖 −

1

2
= 𝑖, 

and similarly (−
√2

2
−
√2

2
𝑖)
2

= 𝑖. 

Let’s have another example, doing all 

calculations: 

√3 − 4𝑖 = ? 

Denote √3 − 4𝑖 = 𝑥 + 𝑦𝑖. 

Then   

3 − 4𝑖 ≡ (𝑥 + 𝑦𝑖)2 = (𝑥2 − 𝑦2) + (2𝑥𝑦)𝑖. 

Whence 

{
𝑥2 − 𝑦2 = 3
2𝑥𝑦 = −4.

 

Solve this system. 

From the second equation, 𝑦 =
−2

𝑥
, and replace y 

into the first: 

𝑥2 − (
−2

𝑥
)
2

= 3, 

or 

𝑥2 −
4

𝑥2
− 3 = 0, 

or 

𝑥4 − 3𝑥2 − 4 = 0, 

or 

(𝑥2 − 4)(𝑥2 + 1) = 0, 

whence 

𝑥2 − 4 = 0, 

or 

𝑥 = ±2. 
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Then 

𝑦 =
−2

𝑥
=
−2

±2
= ∓1. 

Solutions: 

√3 − 4𝑖 = ±(2 − 𝑖). 

Checking the result: 

[±(2 − 1)]2 = 4 − 4𝑖 + 𝑖2 = 3 − 4𝑖. 

Remarkably, we’ll get the same solutions if we 

take the complex values of x and y, because: 

𝑥2 + 1 = 0 gives 𝑥 = ±√−1 = ±𝑖, 

and replacing them into the substitution 𝑦 =
−2

𝑥
, 

we get: 

𝑦 =
−2

±𝑖
=
−2

±𝑖
∙
𝑖

𝑖
=
−2𝑖

±𝑖2
=
−2𝑖

∓𝑖
= ±2𝑖. 

Then 

√3 − 4𝑖 = 𝑥 + 𝑦𝑖 = ±𝑖 ± 2𝑖 ∙ 𝑖 = ±𝑖 ± 2(−1) = ∓2 ± 𝑖

= ±(2 − 𝑖). 

One generalizes this procedure and one 

computes root index n of any complex number: 

√𝑎 + 𝑏𝑖
𝑛

= ? 

Similarly denote: 

√𝑎 + 𝑏𝑖
𝑛

= 𝑥 + 𝑦𝑖, 

then 
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𝑎 + 𝑏𝑖 ≡ (𝑥 + 𝑦𝑖)𝑛 = (𝑦𝑖 + 𝑥)𝑛

=∑∁𝑛
2𝑘𝑦2𝑘𝑖2𝑘𝑥𝑛−2𝑘

[
𝑛

2
]

𝑘=0

+ ∑ 𝐶𝑛
2𝑘+1𝑦2𝑘+1𝑖2𝑘+1𝑥𝑛−2𝑘−1,

[
𝑛−1

2
]

𝑘=0

 

and one obtains a non-linear algebraic system of 

degree n, in two variables x and y, and two 

equations: 

{
 
 
 

 
 
 

∑∁𝑛
2𝑘𝑦2𝑘(−1)𝑘𝑥𝑛−2𝑘 = 𝑎

[
𝑛

2
]

𝑘=0

∑ ∁𝑛
2𝑘+1𝑦2𝑘+1(−1)𝑘𝑥𝑛−2𝑘−1 = 𝑏

[
𝑛−1

2
]

𝑘=0

 

that one solves with a computer program. 

As a particular case, let’s compute the cubic root 

of a complex number: 

√𝑎 + 𝑏𝑖
3

= ? 

Then: 

√𝑎 + 𝑏𝑖
3

= 𝑥 + 𝑦𝑖, 

or 

𝑎 + 𝑏𝑖 ≡ (𝑥 + 𝑦𝑖)3 = 𝑥3 + 3𝑥2𝑦𝑖 + 3𝑥𝑦2𝑖2 + 𝑦3𝑖3

= (𝑥3 − 3𝑥𝑦2) + (3𝑥2𝑦 − 𝑦3)𝑖, 

whence 

{
𝑥3 − 3𝑥𝑦2 = 𝑎

3𝑥2𝑦 − 𝑦3 = 𝑏
 

and solve for x and y. 
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From the first equation: 

𝑦 = ±√
𝑥3 − 𝑎

3𝑥
. 

Replace this substitution into the second 

equation: 

±3𝑥2√
𝑥3 − 𝑎

3𝑥
∓ (√

𝑥3 − 𝑎

3𝑎
)

3

− 𝑏 = 0 

and solve this independent equation for x with a 

calculator, and then find y from the above 

substitution. 

For example: 

√𝑖
3
= −𝑖. 

 

Neutrosophic Real or Complex Polynomial. 

A polynomial whose coefficients (at least one of 

them containing I) are neutrosophic numbers is 

called Neutrosophic Polynomials. 

Similarly we may have Neutrosophic Real 

Polynomials if its coefficients are neutrosophic real 

numbers, and Neutrosophic Complex 

Polynomials if its coefficients are neutrosophic 

complex numbers. 

Examples: 

𝑃(𝑥) = 𝑥2 + (2 − 𝐼)𝑥 − 5 + 3𝐼 

is a neutrosophic real polynomial, while 

𝑄(𝑥) = 3𝑥3 + (1 + 6𝑖)𝑥2 + 5𝐼𝑥 − 4𝑖𝐼 

is a neutrosophic complex polynomial. 
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From these polynomials we proceed to solving 

Neutrosophic Real or Complex Polynomial 

Equations. 

Let’s consider the following neutrosophic real 

polynomial equation: 

6𝑥2 + (10 − 𝐼)𝑥 + 3𝐼 = 0, 

and solve it just using the quadratic fromula: 

𝑥 =
−(10 − 𝐼) ± √(10 − 𝐼)2 − 4(6)(3𝐼)

2(6)

=
−10 + 𝐼 ± √100 − 20𝐼 + 𝐼2 − 72𝐼

12

=
−10 + 𝐼 ± √100 − 20𝐼 + 𝐼 − 72𝐼

12

=
−10 + 𝐼 ± √100 − 91𝐼

12
 

Now, we need to compute √100 − 91𝐼. 

Let’s denote: √100 − 91𝐼 = 𝛼 + 𝛽𝐼, 

where α, β are reals. 

Raise both sides to the second power: 

100 − 91𝐼 = 𝛼2 + 2𝛼𝛽𝐼 + 𝛽2𝐼2 = 𝛼2 + 2𝛼𝛽𝐼 + 𝛽2𝐼

= 𝛼2 + (2𝛼𝛽 + 𝛽2)𝐼, 

whence 

{
𝛼2 = 100

2𝛼𝛽 + 𝛽2 = −91.
 

Hence 𝛼 = ±√100 = ±10. 

1. If 𝛼 = 10,  then 2(10)𝛽 + 𝛽2 = −91,  or 𝛽2 +

20𝛽 + 91 = 0. Using the quadratic formula, one gets: 
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𝛽 =
−20 ±√202 − 4(1)91

2
=
−20 ± √400 − 364

2

=
−20 ± 6

2
= 〈

−20 + 6

2
= −7;

−20 − 6

2
= −13.

 

2. If 𝛼 = −10, then 𝛽2 − 20𝛽 + 91 = 0, 

𝛽 =
20 ± √(−20)2 − 4(1)91

2
=
20 ± √400 − 364

2

=
20 ± 6

2
= 〈

20 + 6

2
= 13;

20 − 6

2
= 7.

 

The four solutions are: 

(𝛼, 𝛽) = (10,−7), (10,−13), (−10, 13), (−10, 7). 

We go back now and find x: 

𝑥 =
−10 + 𝐼 ± √100 − 9 + 𝐼

12
. 

Therefore, we previously found out that 

√100 − 91𝐼 = 10 − 7𝐼,  or −10 + 7𝐼,  or 10 − 13𝐼,  or 

−10 + 13𝐼. 

Since one has ± in front of the radical, 10 − 7𝑖 

and −10 + 7𝐼 get the same values for x. Similarly, 

10 − 13𝐼 and −10 + 13𝐼. 

𝑥1,2 =
−10 + 𝐼 ± (10 − 7𝐼)

12

= 〈

−10 + 𝐼 + 10 − 7𝐼

12
=
−6𝐼

12
= −

1

2
𝐼;

−10 + 𝐼 − 10 + 7𝐼

12
=
−20 + 8𝐼

12
= −

5

3
+
2

3
𝐼;
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𝑥1,2 =
−10 + 𝐼 ± (10 − 13𝐼)

12

= 〈

−10 + 𝐼 + 10 − 13𝐼

12
=
−12𝐼

12
= −𝐼;

−10 + 𝐼 − 10 + 13𝐼

12
=
−20 + 14𝐼

12
= −

10

6
+
7

6
𝐼.

 

We got four neutrosophic solutions 

{−
1

2
𝐼, −

5

3
+
2

3
𝐼, −𝐼, −

10

6
+
7

6
𝐼} for 

a neutrosophic real polynomial of degree 2. 

First neutrosophic factoring: 

𝑃(𝑥) = 6𝑥2 + (10 − 𝐼)𝑥 + 3𝐼 = 6 [𝑥 − (−
1

2
𝐼)] ∙ [𝑥 −

(−
5

3
+
2

3
𝐼)] = 6 (𝑥 +

1

2
𝐼) (𝑥 +

10

6
−
7

5
𝐼). 

Second neutrosophic factoring: 

𝑃(𝑥) = 6𝑥2 + (10 − 𝐼)𝑥 + 3𝐼

= 6[𝑥 − (−𝐼)] ∙ [𝑥 − (−
10

6
+
7

6
𝐼)]

= 6 (𝑥 +
1

2
𝐼) (𝑥 +

10

6
−
7

5
𝐼). 

Differently from the classical polynomial with 

real or complex coefficients, the neutrosophic 

polynomials do not have a unique factoring! 

If we check each solution, we get: 

𝑃(𝑥1) = 𝑃(𝑥2) = 𝑃(𝑥3) = 𝑃(𝑥4) = 0. 

Let’s compute: 
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𝑃(𝑥4) = 𝑃 (
−10

6
+
7

6
𝐼)

= 6 ∙ (
−10

6
+
7

6
𝐼)
2

+ (10 − 𝐼) (
−10

6
+
7

6
𝐼) + 3𝐼

= 6 (
100

36
−
140

36
𝐼 +

49

36
𝐼2) + (

−100

6
) +

70

6
𝐼

+
10𝐼

6
−
7

6
𝐼2 + 3𝐼

=
100

6
−
140 ∙ 𝐼

6
+
49 ∙ 𝐼

6
−
100

6
+
70 ∙ 𝐼

6
+
10 ∙ 𝐼

6

−
7 ∙ 𝐼

6
+
18𝐼

6

=
−140𝐼 + 49𝐼 + 70𝐼 + 10𝐼 − 7𝐼 + 18𝐼

6
=
0 ∙ 𝐼

6

=
0

6
= 0. 

Another procedure of factoring a neutrosophic 

real polynomial equation is the following. 

Let’s have 

𝑃(𝑥) = (𝐴 + 𝐵 ∙ 𝐼)𝑥2 + (𝐶 + 𝐷 ∙ 𝐼)𝑥 + (𝐸 + 𝐹 ∙ 𝐼) = 0. 

Suppose 𝑥1 = 𝑎1 + 𝑏1𝐼  and  𝑥2 = 𝑎2 + 𝑏2𝐼  are two 

neutrosophic real solutions of 𝑃(𝑥) = 0. 

Then: 

𝑃(𝑥) = (𝐴 + 𝐵 ∙ 𝐼)[𝑥 − (𝑎1 + 𝑏1𝐼)] ∙ [𝑥 − (𝑎2 + 𝑏2𝐼)]

≡ (𝐴 + 𝐵 ∙ 𝐼)𝑥2 + (𝐶 + 𝐷 ∙ 𝐼)𝑥

+ (𝐸 + 𝐹 ∙ 𝐼). 

We multiply on the second right hand side, and 

then we identify the neutrosophic coefficients, and 

solve for 𝑎1, 𝑏1, 𝑎2and𝑏2. 
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 Research Problems. 

1. In general, how many neutrosophic solutions 

has a neutrosophic real polynomial equation of 

degree 𝑛 ≥ 1 ? 

So far, we know that such equation of degree 1 

has none (in the case the neutrosophic division is 

undefined) or one solution (in the case the 

neutrosophic division is well defined). 

2. How many different factorings, with factors 

of first degree, are possible for a neutrosophic real 

polynomial of degree n? We got two different 

factorings for aparticular polynomial of degree 2. 

3. – 4. Similar problems for neutrosophic 

complex polynomial equations and neutrosophic 

complex polynomials of degree 𝑛 ≥ 1. 
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Neutrosophic Random 

Numbers 

Neutrosophic Random Numbers can also be 

generated using, instead of only crisp numbers, a 

pool of sets. For example, let’s suppose one has 100 

balls and on each ball is written an interval [𝑎, 𝑏] 

where 𝑎, 𝑏 ∈ {1, 2, 3, … , 100}and 𝑎 ≤ 𝑏. 

When 𝑎 = 𝑏  we get a crisp number [𝑎, 𝑎] = 𝑎, 

while for 𝑎 < 𝑏 we get a set[a, b]. 

Then randomly one extracts a ball, one registers 

its interval, then one returns it back to the pool. 

And so on. Instead of a random sequence of crisp 

numbers, we get a random sequence of intervals.  
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Example with 

Neutrosophic Data 

Let’s have the following four observations: 

6, [2, 5], 30, [18, 24]. 

The second and fourth observations are unclear, 

i.e. [2,5] means a number in this interval, but we 

don’t know which one; similarly for [18, 24]. 

Therefore we have two indeterminacies. 

In order to uniformize let’s rewrite all 

observations as intervals: 

[6, 6], [2, 5], [30, 30], [18, 24].  

Each observations can be a subset, not 

necessarily a crisp number a (closed, open, half 

closed – half open) interval. 

Compute the median: 

[2, 5] + [30, 30]

2
=
[2 + 30, 5 + 30]

2
=
[32, 35]

2
= [

32

2
,
35

2
]

= [16, 17.5]. 

Therefore the medium is a number between 16 

and 17.5. 

One computes their mean: 

[6, 6] + [2, 5] + [30, 30] + [18, 24]

4

=
[6 + 2 + 30 + 18, 6 + 5 + 30 + 24]

4

=
[56, 65]

4
= [

56

4
,
65

4
] = [14, 16.25]. 
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Therefore the average is a number between 14 

and 16.25. 

Compute the deviations and square them: 

a. [6, 6] − [14, 16.2] = [6 −

16.2, 6 − 14] = [10.2,−8]; 

[10.2,−8]2 = [−10.2,−8] ∙ [−10.2,−8]

= [(−8)(−8), (−10.2) ∙ (−10.2)]

= [64, 104.04]. 

b. [2, 5] − [14, 16.25] =

[2 − 16.25, 5 − 14] = [−14,25,−9]; 

[−14.25,−9]2 = [(−9)2, (−14.25)2] = [81, 203.0625]; 

c. [30, 30] − [14, 16.2] =

[30 − 16.2, 30 − 14] = [13.8, 16]; 

[13.8, 16]2 = [13.82, 162] = [190.44, 256]; 

d. [18, 24] − [14, 16.2] =

[18 − 16.2, 24 − 14] = [1.8, 10]; 

[1.2, 10]2 = [1.82, 102] = [3.24, 100]. 

 

Compute the standard deviation: 

√
[64, 104.04] + [81, 203.0625] + [190.44, 256] + [3.24, 100]

4

= 

= √[
64 + 81 + 190.44 + 3.24

4
,
104.04 + 203.0625 + 256 + 100

4
] = 

= √[84.67, 165.775625 = 

[√84.67, √165.775625] ≃ [9.20163, 12.8754]. 
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Indeterminacy related to 

the sample size 

Suppose one has the following five observations: 

17, 12, 5, 8, 9, 

but one of them is certainly wrong, yet we don’t 

know which one. 

What to do to approximate the calculations? 

Let’s first increasable reorder the observations: 

5, 8, 9, 12, 17, 

and then study all possibilities. 
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Now we combine the five results. 

a. Interval style: 

{

the median belongs to the interval [8.5, 10.5];

the mean belongs to the interval [8.5, 11.5];

the standard deviation belongs to the interval [2.5, 4.43706].

 

b. Average Style: 

𝑡ℎ𝑒𝑚𝑒𝑑𝑖𝑎𝑛 =
10.5 + 10.5 + 10.0 + 8.5 + 8.5

5
= 9.6; 

𝑡ℎ𝑒𝑚𝑒𝑎𝑛 =
11.5 + 10.75 + 10.5 + 9.75 + 8.5

5
= 10.2; 

and𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

=
3.5 + 4.38035 + 4.5 + 4.43706 + 2.5

5
≃ 3.86348. 

c. Weight Average Style: 

One assigns a weight to each sample. The sample 

weight may represent the chance that the respective 

sample could be the right sample, after discarding 

the wrong observations. 

In general, the weights 𝑤1, 𝑤2, … , 𝑤𝑛 ∈ [0, 1] such 

that 

𝑤1 +𝑤2 +⋯+𝑤𝑛 = 1. 

In the case when the sample weights are 

determined from criteria different from each other 

and therefore the sum of weights is not 1, and the 

observations are 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛 ,  the weight 

average is: 
𝑤1𝑎1 +𝑤2𝑎2 +⋯+𝑤𝑛𝑎𝑛

𝑤1 +𝑤2 +⋯+𝑤𝑛
. 
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In our example, if 𝑤1 = 0.4,𝑤2 = 0.1,𝑤3 = 0.3,𝑤4 =

0.2,𝑤5 = 0.7, then:  

𝑡ℎ𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑚𝑒𝑑𝑖𝑎𝑛

=
0.4(10.5) + 0.1(10.5) + 0.3(10.0) + 0.2(8.5) + 0.7(8.5)

0.4 + 0.1 + 0.3 + 0.2 + 0.7
≃ 9.35294; 

𝑡ℎ𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑚𝑒𝑎𝑛

=
0.4(11.5) + 0.1(10.75) + 0.3(10.5) + 0.2(9.75) + 0.7(8.5)

0.4 + 0.1 + 0.3 + 0.2 + 0.7
≃ 9.83824 

and 𝑡ℎ𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

=
0.4(3.5) + 0.1(4.38035) + 0.3(4.5) + 0.2(4.43706) + 0.7(2.5)

0.4 + 0.1 + 0.3 + 0.2 + 0.7
≃ 3.42673. 

According to the sample weights, it’s a larger 

chance that the right sample is the fifth one. 

Therefore, the combined statistical metrics of all 

samples would be inclined to approach the fifth 

sample’s statistical metrics. 

This example can be generalized for n 

observations, such that k observations among them 

are wrong, where 𝑛 ≥ 2 and 1 ≤ 𝑘 ≤ 𝑛 − 1. 

With a computer program, one studies each of 

the ∁𝑛
𝑛−𝑘 samples resulted after discarding k wrong 

observations, where ∁𝑛
𝑛−𝑘 means combinations of n 

elements taken in groups of n-k elements. Each 

sample has the size n-k. For each sample one 

calculates its median, mean, deviations, standard 

deviations, and of course other statistical metrics 

required by the neutrosophic problem to solve. 
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Then we combine ∁𝑛
𝑛−𝑘  results using either 

interval style, the average style, the weighted 

average style, or other procedures that the reader 

may design depending on the problem. 
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Neutrosophic Binomial 

Distribution 

The classical Binomial Distribution is extended 

neutrosophically. That means that there is some 

indeterminacy related to the probabilistic 

experiment.  

Suppose each trial can result in an outcome 

labeled success (S), or its mutually exclusive 

outcome labeled failure (F), or some indeterminacy 

(I). 

For example: tossing a coin on an irregular 

surface which has cracks, the coin can fall inside a 

crack on its edge, and thus one gets neither head, 

nor tale, but indeterminacy.  

We conduct a fixed number of small experiments 

(that we call trials). The outcomes of the trials are 

independent. For each trial, the chance of getting S 

is the same; similarly for the chance of getting F, or 

of getting I. 

The neutrosophic binomial random variable 

xis then defined as the number of successes when 

we perform the experiment 𝑛 ≥ 1 times. 

The neutrosophic probability distribution of x 

is also called neutrosophic binomial probability 

distribution. 

For n trials it is important the way one defines 

the indeterminacy. 
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First, it is clear that getting indeterminacy in 

each trial means indeterminacy for the whole set of 

n trials. Secondly, getting indeterminacy in no trial 

means no indeterminacy for the whole set of n trials.  

But what about getting indeterminacy in some 

trials, and determinacy (i.e. success or failure) in 

other trials?  

This partially indeterminate and partially 

determinate set of n trials depends on the problem 

one needs to solve and on the expert’s point of view. 

One can define an indeterminacy threshold:  

𝑡ℎ = number of trials whose outcome is indeterminate,  

where𝑡ℎ ∈ {0, 1, 2, … , 𝑛}. 

The cases with a 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 > 𝑡ℎ will belong to the 

indeterminate part, while for a 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ 𝑡ℎ they 

will belong to the determinate part. 

Let P(S) = the chance a particular trial results in 

a success, 

and  P(F) = the chance a particular trial results in 

a failure, for both S and F different from 

indeterminacy. 

Let P(I) = the chance a particular trial results in 

an indeterminacy. 

For 𝑥 ∈ {0, 1, 2, … , 𝑛}, NP (exactly x successes 

among n trials) = (𝑇𝑥 , 𝐼𝑥 , 𝐹𝑥), with 
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𝑇𝑥 =
𝑛!

𝑥! (𝑛 − 𝑥)!
∙ 𝑃(𝑆)𝑥 ∙∑ ∁𝑛−𝑥

𝑘

𝑡ℎ

𝑘=0

𝑃(𝐼)𝑘𝑃(𝐹)𝑛−𝑥−𝑘

=
𝑛!

𝑥! (𝑛 − 𝑥)!
∙ 𝑃(𝑆)𝑥

∙∑
(𝑛 − 𝑥)!

(𝑛 − 𝑥 − 𝑘)!
𝑃(𝐼)𝑘𝑃(𝐹)𝑛−𝑥−𝑘

𝑡ℎ

𝑘=0

=
𝑛!

𝑥!
∙ 𝑃(𝑆)𝑥 ∙∑

𝑃(𝐼)𝑘𝑃(𝐹)𝑛−𝑥−𝑘

𝑘! (𝑛 − 𝑥 − 𝑘)!
.

𝑡ℎ

𝑘=0

 

 

Similarly: 

𝐹𝑥 = ∑𝑇𝑦 =

𝑛

𝑦=0
𝑦≠𝑥

∑
𝑛!

𝑦!
∙ 𝑃(𝑆)𝑦 ∙ [∑

𝑃(𝐼)𝑘 ∙ 𝑃(𝐹)𝑛−𝑦−𝑘

𝑘! (𝑛 − 𝑦 − 𝑘)!

𝑡ℎ

𝑘=0

] ,

𝑛

𝑦=0
𝑦≠𝑥

and 

𝐼𝑥 = ∑
𝑛!

𝑧! (𝑛 − 𝑧)!

𝑛

𝑧=𝑡ℎ+1

∙ 𝑃(𝐼)𝑧

∙ [∑∁𝑛−𝑧
𝑘 𝑃(𝑆)𝑘 ∙ 𝑃(𝐹)𝑛−𝑧−𝑘

𝑛−𝑧

𝑘=0

]

=  ∑
𝑛!

𝑧! (𝑛 − 𝑧)!

𝑛

𝑧=𝑡ℎ+1

∙ 𝑃(𝐼)𝑧

∙ [∑
(𝑛 − 𝑧)!

𝑘! (𝑛 − 𝑧 − 𝑘)!
𝑃(𝑆)𝑘 ∙ 𝑃(𝐹)𝑛−𝑧−𝑘

𝑛−𝑧

𝑘=0

]

= ∑
𝑛!

𝑧!

𝑛

𝑧=𝑡ℎ+1

∙ 𝑃(𝐼)𝑧

∙ [∑
𝑃(𝑆)𝑘 ∙ 𝑃(𝐹)𝑛−𝑧−𝑘

𝑘! (𝑛 − 𝑧 − 𝑘)!

𝑛−𝑧

𝑘=0

], 



Florentin Smarandache 

 

66 

 

where ∁𝑢
𝜈  means combinations of 𝑢 elements 

taken by groups of  𝑣 elements: 

∁𝑢
𝜈=

𝑢!

𝜈! (𝑢 − 𝑣)!
 

and 𝑢! is 𝑢 factorial, 𝑢! = 1 ∙ 2 ∙ 3 ∙ … ∙ 𝑢. 

Also: 

𝑇𝑥 =  chance of x successes, and 𝑛 − 𝑥  failures 

and indeterminacies but such that the number of 

indeterminacies is less than or equal to 

indeterminacy threshold; 

𝐹𝑥 = chance of y successes, with 𝑦 ≠ 𝑥  and 𝑛 −

𝑦 failures and indeterminacies but such that the 

number of indeterminacies is less than or equal to 

the indeterminacy threshold; 

and 𝐼𝑥 = chance of z indeterminacies, where z is 

strictly greater than the indeterminacy threshold. 

𝑇𝑥 + 𝐼𝑥 + 𝐹𝑥 = (𝑃(𝑆) + 𝑃(𝐼) + 𝑃(𝐹))
𝑛. 

In most applications,  

𝑃(𝑆) + 𝑃(𝐼) + 𝑃(𝐹) = 1, 

and this case is called complete probability. 

But for incomplete probability (where there is 

missing information):  

0 ≤ 𝑃(𝑆) + 𝑃(𝐼) + 𝑃(𝐹) < 1. 

While in the paraconsistent probability (which 

has contradictory information): 

1 < 𝑃(𝑆) + 𝑃(𝐼) + 𝑃(𝐹) ≤ 3. 

 

An Example. 

Among the watches sold by a store 80% had a 

digital display and 10% an analog display. There is 
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a number of watches sold for which the storeowner 

has no evidence about their type of display, and he 

asks his manager assistant about them. Not 

knowing the manager’s previous estimations, the 

assistant estimates the unknown type of watches to 

be 20%. 

Let’s consider a neutrosophic random variable  

x = the number of watches among the next 5 

buyers that have an analog display. 

Therefore: 

𝑃(𝐹) = 𝑃(𝑑𝑖𝑔𝑖𝑡𝑎𝑙𝑑𝑖𝑠𝑝𝑙𝑎𝑦) = 0.8, 

𝑃(𝑆) = 𝑃(𝑎𝑛𝑎𝑙𝑜𝑔𝑑𝑖𝑠𝑝𝑙𝑎𝑦) = 0.1, 

𝑃(𝐼) = 𝑃(𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦) = 0.2. 

We got a paraconsistent neutrosophic probability 

since the information comes from the different 

sources that estimate independently. We have 

contradiction between the estimations of the 

manager and his assistant, because  

0.8 + 0.1 + 0.2 = 1.1 > 1. 

We have a neutrosophic binomial distribution.  

Let’s say the indeterminacy threshold is 2. 

We define the random variable X as follows: 

x = number of watches that have an analog 

display among the next 5 watches to be bought; 

𝑇𝑥 =
5!

𝑥!
(0.1)𝑥 ∙ ∑

(0.2)𝑘(0.8)5−𝑥−𝑘

𝑘! (5 − 𝑥 − 𝑘)!
,

2

𝑘=0

 

where  𝑥 = 0, 1, 2, 3, 4, 5. 

The chance that exactly 2 watches are analog, i.e. 

𝑥 =  2 is: 
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𝑇2 =
5!

2!
(0.1)2 ∙ [

(0.2)0 ∙ (0.8)3

0! 3!
+
(0.2)1(0.8)2

1! 2!

+
(0.2)2(0.8)1

2! 1!
] = 0.0992. 

𝐼2 = ∑
5!

𝑧!
∙ (0.2)𝑧 ∙

5

𝑧=2+1

[∑
(0.1)𝑘(0.8)5−𝑧−𝑘

𝑘! (5 − 𝑧 − 𝑘)!

5−𝑧

𝑘=0

]

=
5!

3!
(0.2)3

∙ [∑
(0.1)𝑘(0.8)2−𝑘

𝑘! (2 − 𝑘)!

2

𝑘=0

] (𝑓𝑜𝑟𝑧 = 3) 

+
5!

4!
(0.2)4 ∙ [∑

(0.1)𝑘(0.8)1−𝑘

𝑘! (1 − 𝑘)!

1

𝑘=0

] (𝑓𝑜𝑟𝑧 = 4) + 

5!

5!
(0.2)5 ∙ [∑

(0.1)𝑘(0.8)1−𝑘

𝑘! (−𝑘)!

0

𝑘=0

] (𝑓𝑜𝑟𝑧 = 5) 

= 20 ∙ (0.2)3 ∙ [
(0.1)0(0.8)2

0! 2!
+
(0.1)1(0.8)1

1! 1!
+
(0.1)2(0.8)0

2! 0!
]

+ 5 ∙ (0.2)4 ∙ [
(0.1)0(0.8)1

0! 1!
+
(0.1)1(0.8)0

1! 0!
]

+ 1 ∙ (0.2)5 ∙ [
(0.1)0(0.8)0

0! 0!
] = 0.07232. 

F2 can easier be computed (instead of using its 

combinatorial formula) as : 

𝐹2 = (𝑃(𝑆) + 𝑃(𝐼) + 𝑃(𝐹))
5 − 𝑇2 − 𝐼2

= (0.1 + 0.2 + 0.8)5 − 0.0992 − 0.07232

= 1.43899. 

If we normalize the vector  

(𝑇2, 𝐼2, 𝐹2) = (0.0992, 0.07232, 1.43899) 
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by dividing each vector component by their total 

sum 

0.0992 + 0.07232 + 1.43899 = 1.61051,  

we get (𝑇2, 𝐼2, 𝐹2) = (0.061595, 0.044905, 0.893500). 

For incomplete and paraconsistent probabilities 

it doesn’t matter if we normalize at the beginning or 

at the end, we’ll get the same result. 

 

* 

Remark. 

Since a third component (the chance of 

indeterminacy) was added to the binomial 

distribution, the neutrosophic binomial distribution 

actually resembles a summation of classical 

trinomial distribution: 

(𝑝1 + 𝑖 + 𝑝2)
𝑛 

where 𝑝1 and 𝑝2 are the probabilities that the two 

mutually exclusive events ( 𝐸1  and 𝐸2 ) occur 

respectively, while «i» is the chance of getting 

indeterminacy. 

Let’s denote by 𝐴(𝛼, 𝛽, 𝛾)  the probability of 

obtaining α events 𝐸1, β indeterminate events, and 

γ events 𝐸2, where of course 0 ≤ 𝛼, 𝛽, 𝛾 ≤ 𝑛, and 𝛼 +

𝛽 + 𝛾 = 𝑛, as results of n independent trials. 

Of course, as in classical trinomial distribution, 

one has  

𝐴(𝛼, 𝛽, 𝛾) =
𝑛!

𝛼! 𝛽! 𝛾!
∙ 𝑝1

𝛼𝑖𝛽𝑝2
𝛾
 

with n = 𝛼 + 𝛽 + 𝛾. 
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We need to define what indeterminacy means 

within n trials. Let th be the indeterminacy 

threshold. For 𝑡ℎ + 1 or more indeterminacies, we 

consider them as indeterminacy, otherwise we have 

determinacy. 

Then for 𝑥 ∈ {0,1,2, … , 𝑛}, 

NP(exactly x events E, among n trials) = (𝑇𝑥 , 𝐼𝑥 , 𝐹𝑥), 

where : 

𝑇𝑥 = ∑ 𝐴(𝑥, 𝛽, 𝑛 − 𝑥 − 𝛽)

0≤𝛽≤𝑡ℎ

 

𝐼𝑥 = ∑ 𝐴(𝛼, 𝛽, 𝑛 − 𝛼 − 𝛽)
𝑡ℎ+1≤𝛽≤𝑛
0≤𝛼≤𝑛−𝑡ℎ

 

𝐹𝑥 = ∑ 𝐴(𝛼, 𝛽, 𝑛 − 𝛼 − 𝛽)
0≤𝛼≤𝑛,   𝛼≠𝑥
0≤𝛽≤𝑡ℎ
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Neutrosophic Multinomial 

Distribution 

The previous neutrosophic binomial distribution 

is generalized for the case when at each trial there 

are 𝑟 (≥ 2)  possible outcomes and some 

indeterminacy. 

Suppose all possible outcomes are 

𝐸1, 𝐸2, … , 𝐸𝑟 

with corresponding chances to occur 

𝑃1, 𝑃2, … , 𝑃𝑟 

and some indeterminacy I with corresponding 

chance to occur i.  

Then we have the multinomial expansion: 

(𝑃1 + 𝑃2 +⋯+ 𝑃𝑟 + 𝑖)
𝑛 

for n trials. 

Let’s denote similarly by 𝐴(𝛼1, 𝛼2, … , 𝛼𝑟,𝛽)  the 

probability of obtaining: exactly 𝛼1  events 𝐸1 , 𝛼2 

events 𝐸2 , ... , 𝛼𝑟  events 𝐸𝑟 , and β indeterminate 

events,  

where  0 ≤ 𝛼1,  𝛼2, … , 𝛼𝑟, 𝛽 ≤ 𝑛  

and 𝛼1 +  𝛼2 +⋯+ 𝛼𝑟 + 𝛽 = 𝑛, 

as results of n independent trials, then  

𝐴(𝛼1,  𝛼2, … , 𝛼𝑟, 𝛽)

=
𝑛!

𝛼1!  𝛼2! …  𝛼𝑟!  𝛽
∙ 𝑃1

𝛼1 ∙ 𝑃2
𝛼2 ∙ … ∙ 𝑃𝑟

𝛼𝑟 ∙ 𝑖𝛽 . 

Consider the same 𝑡ℎ as indeterminacy treshold. 
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Let the random variable 𝑋𝑗 denotes the number 

of times events 𝐸𝑗 occurs, for any 𝑗 ∈ {1, 2,… , 𝑟}, in n 

independent trials. 

So we have a multivariate distribution. 

Then the neutrosophic probability of obtaining 

exactly 𝑥1 events 𝐸1 , 𝑥2 events 𝐸2 , ..., 𝑥𝑟  events 𝐸𝑟 , 

in n trials is 

(𝑇𝑥1, 𝑥2,…,𝑥𝑟 ,  𝐼𝑥1, 𝑥2,…,𝑥𝑟 , 𝐹𝑥1, 𝑥2,…,𝑥𝑟), where 

 

𝑇𝑥1, 𝑥2,…,𝑥𝑟 = ∑ 𝐴(𝑥1,  𝑥2,… , 𝑥𝑟, 𝛽)

0≤𝛽≤𝑡ℎ

 

 

𝐼𝑥1, 𝑥2,…,𝑥𝑟 = ∑ 𝐴(𝛼1, 𝛼2,… , 𝛼𝑟, 𝛽)
𝑡ℎ+1≤𝛽≤𝑛

0≤𝛼𝑗≤𝑛−𝑡ℎ,   for 𝑗∈{1,2,…,𝑟}

 

 

𝐹𝑥1, 𝑥2,…,𝑥𝑟 =

∑ 𝐴(𝛼1, 𝛼2,… , 𝛼𝑟, 𝛽)0≤𝛽≤𝑡ℎ
(𝛼1,𝛼2,…,𝛼𝑟)∈{1,2,…,𝑛}

𝑟∖(𝑥1,𝑥2,…,𝑥𝑟)

. 
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Neutrosophic Scatter Plot 

ANeutrosophic Scatter Plot is a picture of 

points (x, y), such that at least a point is not well 

defined. 

For example the point (3, 5) is well defined, while 

the points ([2, 4), 7) or (-6, [0, 1]) or ({−2,−4}, 3) or 

([1, 2], [5, 7]) are imprecise. 

As an example, let’s consider a sample of size  

n = 4 yielding the accompanying data: 

 

 
2D NEUTROSOPHIC SCATTER PLOT 
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The bivariate neutrosophic scatter plot has, 

besides points as in classical scatter plot, also 

segment of lines or parts of segments of lines, or 

surfaces, or parts of surfaces (geometrical objects of 

dimensions 1 or 2). 

In general, an n-variate neutrosophic scatter 

plot formed by n – 1 independent variables and one 

dependent variable, is composed of geometrical 

objects of dimensions 0, 1, 2, ..., or n. 

A neutrosophic dependent or response 

variable is a dependent variable that has some 

indeterminacy.  

Similarly, a neutrosophic independent or 

predictor variable is a variable that has some 

indeterminacy. 

A neutrosophic function 

𝑓𝑁(𝑥1, 𝑥2, … , 𝑥𝑛) = 0 

is a function depending on variables 𝑥1, 𝑥2, … , 𝑥𝑛 

such that the function has at least one 

indeterminate coefficient, or at least one of its 

independent variables 𝑥1, 𝑥2, … , 𝑥𝑛  has some 

indeterminate value or is unknown. 

Indeterminate coefficient or indeterminate value 

can be a subset with two or more elements. 

The graph of a neutrosophic function in general 

has a higher dimension than the graph of a 

corresponding classical function (whose indeter-

minacies have been removed). 
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For examples, the classical function 𝑓(𝑥, 𝑦) = 0 

represents a curve in the 2D-space, while the 

neutrosophic function 𝑓𝑁(𝑥, 𝑦) = 0 can be a surface.  

The classical function 𝑓(𝑥, 𝑦, 𝑧) = 0 represents a 

surface in 3D-space, while the neutrosophic 

function 𝑓𝑁(𝑥, 𝑦, 𝑧) = 0  can represent a bigger 

surface or a solid. 

And in general while a classical function 

f(x1, x2, …, xn) = 0 

is a geometrical object of dimension d in the n-

dimensional space, a neutrosophic function 

fN(x1, x2, …, xn) = 0 

is a bigger (as volume) geometrical object of 

dimension d, or a geometrical object of dimension > 

d. 

The study of a neutrosophic function becomes 

more difficult when, for example, a function’s 

coefficient or a value of one of its independent 

variables is completely unknown. 

More classical statistical formulas can be 

neutrosophically extended by replacing the 

operations on crisp numbers with operations on 

sets, that we present below. 

 

Let’s 𝑆1 and 𝑆2 be two sets of numbers. 

Then: 

𝑆1 + 𝑆2 = {𝑥1 + 𝑥2|𝑥1 ∈ 𝑆1and𝑥2 ∈ 𝑆2}(set addition) 

𝑆1 − 𝑆2 = {𝑥1 − 𝑥2|𝑥1 ∈ 𝑆1and𝑥2 ∈ 𝑆2}(set substraction) 

𝑆1 ∙ 𝑆2 = {𝑥1 ∙ 𝑥2|𝑥1 ∈ 𝑆1and𝑥2 ∈ 𝑆2}(set multiplication) 

𝑎 ∙ 𝑆1 = 𝑆1 ∙ 𝑎 = {𝑎 ∙ 𝑥1|𝑥1 ∈ 𝑆1}(scalar multiplication) 
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𝑎 + 𝑆1 = 𝑆1 + 𝑎 = {𝑎 + 𝑥1|𝑥1 ∈ 𝑆1}(scalar set addition) 

𝑎 − 𝑆1 = {𝑎 − 𝑥1|𝑥1 ∈ 𝑆1}(scalar set substraction) 

𝑆1 − 𝑎 = {𝑥1 − 𝑎|𝑥1 ∈ 𝑆1}(scalar set substraction) 
𝑆1
𝑆2
= {

𝑥1

𝑥2
|𝑥1 ∈ 𝑆1, 𝑥2 ∈ 𝑆2, 𝑥2 ≠ 0 } (set division) 

𝑆1
𝑛 = {𝑥1

𝑛|𝑥1 ∈ 𝑆1}(set power) 
𝑆1
𝑎
= {

𝑥1

𝑎
|𝑥1 ∈ 𝑆1, 𝑎 ≠ 0} (set scalar division) 

𝑎

𝑆1
= {

𝑎

𝑥1
|𝑥1 ∈ 𝑆1, 𝑥1 ≠ 0} (set scalar division) 

√𝑆1
𝑛 = {√𝑥1

𝑛 |𝑥1 ∈ 𝑆1}  (root index𝑛of a set) 

 

As generalizations wehave: 

∑ 𝑆𝑖
𝑚

𝑖=1
= {∑ 𝑥𝑖

𝑚
𝑖=1 |𝑥𝑖 ∈ 𝑆𝑖for all𝑖 = 1, 2,… ,𝑚}. 

Similarly : 

∏𝑆𝑖

𝑚

𝑖=1

= {∏ 𝑥𝑖
𝑚
𝑖=1 |𝑥𝑖 ∈ 𝑆𝑖for all𝑖 = 1, 2, … ,𝑚}. 
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Neutrosophic Regression 

Neutrosophic Regression is the analysis of the 

association between one or more independent 

variables and a dependent variable that are 

expressed by neutrosophic values. This association 

is usually formulated as a neutrosophic equation or 

formula, which enables prediction of future values 

of the dependent variable. 

The graph of this association is, instead of a 

curve in classical statistics, for example: 

 
 

a neutrosophic curve (we can call it a „thick curve”, 

or „strip curve”), like: 
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since in neutrosophic theory one deals with 

indeterminacy and approximations. 

As in classical statistics, the neutrosophic 

regression may be linear (if the association between 

independent, and dependent variables is linear), or 

non-linear (if the association is non-linear). Among 

the neutrosophic non-linear regressions of second 

degree one mentions the parabolic, elliptic, and 

hyperbolic regressions. 
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Neutrosophic Least-

Squares Lines 

The Neutrosophic Least-Squares Lines that 

approximates the neutrosophic bivariate data 

(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛) 

has  the same formula as in classical statistics 

𝑦̂ = 𝑎 + 𝑏𝑦 

where the slope 

𝑏 =
∑𝑥𝑦 − [(∑𝑥)(∑𝑦)/𝑛]

∑𝑥2 − [(∑𝑥)2/𝑛]
 

and the y – intercept 

𝑎 = 𝑦̅ − 𝑏𝑥̅ 

with 𝑥̅ the neutrosophic average of x, 

and 𝑦̅the neutrosophic average of y.  

One uses the circumflex accent ̂  above y in order 

to emphasize that 𝑦̂ is a prediction of y. 

The only distinction from classical least-square 

line is that in neutrosophic theory we work with sets 

instead of numbers. 

Therefore, into the data, some x’s or y’s are 

imprecise, expressed by sets. The consequence is 

that « a » or « b » could result in being sets instead 

of numbers. 

Let’s see an example. 
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TABLE OF A NEUTROSOPHIC SAMPLE 

 

An example of calculation with sets: 

∑𝑦 = [1, 3] + 6 + 2 + (10, 13) + 5 + {14, 15}

= (1 + 6 + 2 + 10 + 5, 3 + 6 + 2 + 13 + 5)

+ {14, 15} = (24, 29) + {14, 15}

= {(24, 29) + 14, (24, 29) + 15}

= {(38, 43), (39, 44)} = (38, 44). 

Whence: 

𝑏 =
(215, 264) − [(24, 26) ∙

(38,44)

6
]

(130, 152) − [
(24,26)2

6
]

=
(215, 264) − [

912,1144

6
]

(130, 152) − [
576,676

6
]

≃
(215, 264) − (152, 191)

(130, 152) − (96, 113)
=
(24, 112)

(17, 56)

= (
24

56
,
112

17
) ≃ (0.42857, 6.58824). 

Since 

𝑥̅ =
(24, 26)

6
≃ (4, 4.33333) 
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and  

𝑦̅ =
(38, 44)

6
= (

38

6
,
44

6
) ≃ (6.33333, 7.33333) 

we get 

𝑎 = (6.33333, 7.33333) − (0.42857, 6.58824) ∙

(4, 4.33333) = (6.33333, 7.33333) − (1.71428, 28.549) =

(−22.2157, 5.61905). 

Thus, the neutrosophic least-squares line is : 

𝑦̂ = (−22.2157, 5.61905) + (0.42857, 6.58824)𝑥. 

Let’s graph this «line», which actually is a 

geometrical surface between two lines.  

If 𝑥 = 0, 𝑦̂ = (−22.2157, 5.61905). 

If 𝑥 = 1, 𝑦̂ = (−22.2157 + 0.42857, 5.61905 +

6.58824) = (−21.7871, 12.2073). 

We plot these neutrosophic points, which are 

actually segments of line. 
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Neutrosophic Predicted Values are computed as 

𝑦̂𝑖 = (−22.2157, 5.61905) + (0.42857, 6.58824)𝑥𝑖,  

for𝑖 = 1, 2, … , 6. 

Hence: 

𝑦1̂ = (−22.2157, 5.61905) + (0.42857, 6.58824) ∙ 2

= (−22.2157 + 0.4285 ∙ 2, 5.61905

+ 6.58824 ∙ 2) = (−21.3587, 18.7955). 
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𝑦2̂ = (−22.2157, 5.61905) + (0.42857, 6.58824) ∙ [4, 5]

= (−22.2157 + 0.42857 ∙ 4,

5.61905 + 6.58824 ∙ 5)

= (−20.5014, 38.5603). 

𝑦3̂ = (−22.2157, 5.61905) + (0.42857, 6.58824) ∙ 1

= (−22.2157 + 0.42857, 5.61905

+ 6.58824 ∙ 1) = (−21.7871, 12.2073). 

𝑦4̂ = (−22.2157, 5.61905) + (0.42857, 6.58824) ∙ (6, 7)

= (−22.2157 + 0.42857 ∙ 6, 5.61905

+ 6.58824 ∙ 7) = (−19.6443, 51.7367). 

𝑦5̂ = (−22.2157, 5.61905) + (0.42857, 6.58824) ∙ (8)

= (−22.2157 + 0.42857 ∙ 8, 5.61905

+ 6.58824 ∙ 8) = (−18.7871, 58.325). 

𝑦6̂ = (−22.2157, 5.61905) + (0.42857, 6.58824) ∙ 3

= (−22.2157 + 0.42857 ∙ 3, 5.61905

+ 6.58824 ∙ 3) = (−20.93, 25.3838). 

The Neutrosophic Residuals are computed in 

the same way as in classical statistics: 

𝑦1 − 𝑦1̂, 𝑦2 − 𝑦2̂, … , 𝑦𝑛 − 𝑦𝑛̂ 

where 𝑦𝑖 are the real values of variable y, 

and 𝑦𝑖̂ are respectively their predicted values. 

The neutrosophic residuals are: 

𝑦1 − 𝑦1̂ = [1, 3]— [(22.2157, 5.61905)

+ (0.42857, 6.58824) ∙ 2 ]

= [1, 3] − (21.3587, 18.7955)

= (1 − 18.7955, 3 − (−21.3587))

= (−17.7955, 24.3587). 

𝑦2 − 𝑦2̂ = 6 − [(−22.2157, 5.61905) + (0.42857, 6.58824)

∙ [4, 5]) = 6 − (−20.5014, 38.5603)

= (−32.5603, 26.5014) 
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𝑦3 − 𝑦3̂ = 2—[(−22.2157, 5.61905) + (0.42857, 6.58824)

∙ 1]  = 2—(−21.7871, 12.2073)

= (−10.2073, 23.7871). 

𝑦4 − 𝑦4̂ = (10, 13) − [(−22.2157, 5.61905) +

(0.42857, 6.58824) ∙ (6, 7)] = (10, 13) −

(−19.6443, 51.7367) = (−41.7367, 32.6443). 

𝑦5 − 𝑦5̂ = {14, 15} − [(−22.2157, 5.61905) +

(0.42857, 6.58824) ∙ 8] = {14, 15} − (18.7871, 58.325) =

(−44.325, 33.7871). 

𝑦6 − 𝑦6̂ = 5 − [(−22.2157, 5.61905) + (0.42857, 6.58824)

∙ 3] = 5 − (−20.93, 25.3838)

= (−20.3838, 25.93). 

It is remarkable to observe that each real value 

of belongs to or it is included in the predicted value 

interval: 

          𝑦1 = [1, 3] ⊂ (−21.3587, 18.3955); 

𝑦2 = 6 ∈ (−20.5014, 38.5603); 

𝑦3 = 2 ∈ (−21.7871, 12.2073); 

                    𝑦4 = (10, 13) ⊂ (−19.6643, 51.7367); 

         𝑦5 = {14, 15} ⊂ (−18.7871, 58.325); 

𝑦6 = 5 ∈ (−20.93, 25.3838). 

 

Deneutrosofications. 

a. Another idea of solving this problem would 

be to transform the neutrosophic data in classical 

data, either taking the midpoint of each set, or the 

average of a discrete set of the form {… }. Or taking 

small neighborhoods centered in the midpoints of 

each set. Or taking the minimum values of the sets 
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and thus constructing multiple classical data. Then 

one computes the least-squares line for each data. 

Afterwards one makes the average of the results, or 

one considers the min/max interval of the results. 

b. Or one transforms the neutrosophic least-

squares line into a classical least-square line by 

replacing the set representations of the coefficients 

«a» and «b» by their corresponding midpoint, or 

(depending on the application) by other interior 

points of the two sets. In our previous example, 

𝑦̂ = (−22.2157, 5.61905) + (0.42857, 6.58824) ∙ 𝑥 

becomes  

𝑦̂ = −8 + 3.5𝑥, 

where −8  is close to the mipoint of 

(−22.2157, 5.61905),  

and   3.5 is close to the midpoint of 

(0.42857, 6.58824). 

c. One could take the midpoints of the 

neutrosophic predicted values neutrosophic 

residuals, or initial neutrosphic data; or smaller 

neighborhoods centered in the midpoints; or min 

values and max values separately and obtaining 

multiple classical data and calculating the needed 

statistical characteristic for each of them, then 

averaging the results. 

Let’s compute the midpoints of neutrosophic 

predicted values and neutrosophic residuals: 
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Neutrosophic 

Predicted Value 

Midpoint 

Neutrosophic 

Residual Midpoint 

-1.2816 3.2801 

9.0295 -3.0295 

-4.7899 6.7899 

16.0467 -4.5462 

19.7690 -5.2690 

2.2269 2.7731 
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Neutrosophic Coefficient 

of Determination 

We compute the Neutrosophic Residual Sum of 

Squares, denoted by NSSResid, given by: 

𝑁𝑆𝑆𝑅𝑒𝑠𝑖𝑑 =∑(𝑦 − 𝑦̂)2 =∑𝑦2 − 𝑎∑𝑦 − 𝑏∑𝑥𝑦 

and the Neutrosophic Total Sum of Squares, 

denoted by 

𝑁𝑆𝑆𝑇𝑜 =∑(𝑦 − 𝑦̅)2 =∑𝑦2 −
(∑𝑦)2

𝑛
. 

The Neutrosophic Coefficient of 

Determination, denoted by 𝑟𝑁
2, is : 

𝑟𝑁
2 = 1 −

𝑁𝑆𝑆𝑅𝑒𝑠𝑖𝑑

𝑁𝑆𝑆𝑇𝑜
, 

and represents the proportion of variation in y, 

when considering a linear relationship between 

variablesx and y. 

𝑁𝑆𝑆𝑅𝑒𝑠𝑖𝑑 = 3.28012 + (3.0295)2 + 6.78992

+ (−4.5462)2 + (−5.2690)2 + (2.7731)2

= 122.16; 

𝑁𝑆𝑆𝑇𝑜 =∑𝑦2 −
(∑𝑦)2

𝑛
= (362, 468) −

(38, 44)2

6

= (362, 468) − (
382

6
,
442

6
)

= (362, 468) − (40.1111, 53.7778)

= (362 − 53.7778, 468 − 40.1111)

= (308.222, 427.889). 
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Whence 

𝑟𝑁
2 = 1 −

122 ∙ 16

(308.222, 327.889)
= 1 − (

122 ∙ 16

327.889
,
122.16

308.222
)

= 1 − (0.3726, 0.3963)

= (1 − 0.3963, 1 − 0.3726)

= (0.6037, 0.6274). 

So between 60.37% and 62.74% of the sample 

variation is explained by the neutrosophic 

approximate linear relationship between x and y. 

The Neutrosophic Correlation Coefficient or the 

product moment neutrosophic coefficient  𝑟𝑁 

(extension of Pearson’s correlation coefficient from 

crisp data to neutrosophic data), has the same 

formula as in classical statistics, but we work with 

sets instead of numbers: 

𝑟𝑁 =
𝑛∑𝑥𝑦 − ∑𝑥∑𝑦

√[𝑛∑𝑥2 − (∑𝑥)2][𝑛 ∑𝑦2 − (∑𝑦)2]
 

or 

𝑟𝑁 =
𝑆𝑥𝑦

𝑆𝑥𝑆𝑦
, 

where  𝑆𝑥𝑦 is the neutrosophic covariance of 𝑥 − 

and 𝑦 − values, and 𝑆𝑥 , 𝑆𝑦  are the neutrosophic 

sample standard deviations. 

Let’s consider the example from the previous 

Table of Neutrosophic Sample of size 6. 
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𝑟𝑁

=
6 ∙ (215, 264) − (24, 26) ∙ (38, 44)

√6 ∙ (130, 152) − (24, 26)2 ∙ [6 ∙ (362, 368) − (38, 44)2]

=
(6 ∙ 215, 6 ∙ 264) − (24 ∙ 38, 26 ∙ 44)

√[(6 ∙ 130, 6 ∙ 152) − (242, 262)] ∙ [(6 ∙ 362, 6 ∙ 468) − (382, 442)]

=
(1290, 1584) − (912, 1144)

√[(780, 912) − (576, 676)] ∙ [(2172, 2808) − (1444, 1936)]

=
(1290 − 1144, 1584 − 912)

√(780 − 676, 912 − 576) ∙ (2172 − 1936, 2808 − 1444)

=
(146, 672)

√(104, 336) ∙ (236, 1364)
=

(146, 672)

√(104 ∙ 336, 336 ∙ 1364

=
(146, 672)

(√34944,√458304)
≃

(146, 672)

(186.933, 676.982)

= (
146

676.982
,
672

186.933
) ≃ (0.2157, 3.5949) ≡ (0.2157, 1]. 

In general 𝑟𝑁 is a subset of the interval [−1, 1]. If 

𝑟𝑁 is a subset of [0, 1] then the points (𝑥𝑖 , 𝑦𝑖) for 𝑖 =

1, 2, … , 𝑛, lie approximatively near a straight line of 

positive slope, while when 𝑟𝑁is a subset centered 

or almost centered at 0 (or 𝑟𝑁 is nearly half in [0, 1] 

and nearly half in [−1, 0] then their is virtually no 

linear approximation but their may be a non-linear 

association between the points. 

 

Neutrosophic Random Numbers is a sequence 

of numbers and indeterminacies occurring at 

random with equal probability. 

The occurrence of a number or indeterminacy is 

not a guide to the numbers or indeterminacies 
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that follow it, nor is it predicted from the numbers 

or indeterminacies that precede it. 

Using eleven balls numbered 0 to 9 and another 

one ball that has its number erased (which one 

cannot read, that we note by I), then repeatedly 

withdrawing a ball and putting it back to the 

container. 

We randomly generate the sequence: 

2, 9, 9, 𝐼, 0, 7, 6, 2, 1, 1, 𝐼, 8 . . ., 

where I = indeterminacy. 

The computers can be enabled to generate 

neutrosophic random numbers using the same 

classical algorithms as for classical random 

numbers, but adding one or more states of 

indeterminacies with an equal chance of occurring 

each of them. 

As a generalization we proposed the 

Neutrosophic Weighted Random Numbers, 

where each number 𝑥𝑗 has a different chance 𝑝𝑗 to 

occur, and each indeterminacy 𝐼𝑗 has a different 

chance 𝑟𝑗 to occur. 

There are also cases when the numbers have to 

be in a given set; for example, each number should 

have k digits. 
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A Neutrosophic Normal 

Distribution 

A Neutrosophic Normal Distribution of a 

continuous variable X is a classical normal 

distribution of x, but such that its mean μ or its 

standard deviation σ (or varianceσ2), or both, are 

imprecise. 

For example, μ, or σ, or both can be set(s) with 

two or more elements. The most common such 

distributions are when μ, σ, or both are intervals. 

The neutrosophic frequency function formula is 

the same, except, as explained in the introduction, 

replacing μ by μN and σ by σN: 

𝑋𝑁~𝑁𝑁(μ𝑁,σ𝑁
2 ) =

1

σ𝑁√2π
𝑒𝑥𝑝 (−

(𝑥 − 𝜇𝑁)
2

2σ𝑁
2 ), 

where 𝑋𝑁 actually means that variable X may be 

neutrosophic (i.e. having some indeterminacy), and 

similarly 𝑁𝑁 (⦁ ,⦁ ) meaning that the normal 

distribution 𝑁(⦁ ,⦁ ) may be neutrosophic (i.e. having 

some indeterminacy). 

Instead of one bell-shaped curve, we may have 

two or more bell-shaped curves that have common 

and uncommon regions between them and are 

above the x-axis. Each one is symmetric with 

respect to the vertical line passing through the 

mean (x = μ). 
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As a first neutrosophic example for normal 

distribution, let’s consider a normal distribution 

with μ = 15 and σ = [2, 3]. Thus the standard 

deviation is indeterminate. 

 
 

Within one standard deviation of the mean 

translates in this first example by: 

μ± 𝜎 = 15 ± [2, 3] = [15 − 3, 15 + 3] = [12, 18], 

or approximately 68% of values lie between  

𝑥 ∈ [12, 18]. 

Within two standard deviations of the mean 

translates by: 

μ± 2𝜎 = 15 ± 2 ∙ [2, 3] = 15 ± [4, 6] = [15 − 6, 15 + 6]

= [9, 21], 

or approximately 95,4% of values lie between  

𝑥 ∈ [9, 21]. 

We could also compute the last interval as: 

[12, 18] ± 𝜎 = [12, 18] ± [2, 3] = [12 − 3, 18 + 3]

= [9, 21]. 
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For three standard deviations: 

μ± 3𝜎 = 15 ± 3 ∙ [2, 3] = 15 ± [6, 9] = [15 − 9, 15 + 9]

= [6, 24], 

or we could compute it as 

[9, 21] ± [2, 3] = [9 − 3, 21 + 3] = [6, 24], 

and approximately 97,7% of values lie between 

𝑥 ∈ [6, 24]. 

The area between the lowest and the highest 

curve for each portion represents the burden 

(indeterminacy) of the graph. 

The neutrosophic normal distribution can be 

regarded as a bell-shape curve with heavy margins. 

A random variable X that has a neutrosophic 

normal distribution is called a neutrosophic 

normalvariable. 

A second neutrosophic examplefor normal 

distributionwhere 𝜇 = [15, 17] and σ = 2, hence now 

μ is indeterminate. 

 
Similar discussion for the second example: 
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Within one standard deviation, i.e. 

𝜇 ± 𝜎 = [15, 17] ± 2 = [15 − 2, 17 + 2] = [13, 19], 

approximately 68% of values lie between 𝑥 ∈

[13, 19]. 

Within two standard deviations, i.e. 

𝜇 ± 2𝜎 = [15, 17] ± 2 ∙ 2 = [15, 17] ± 4 = [15 − 4, 17 + 4]

= [11, 21], 

or computed as 

[13, 19] ± 𝜎 = [13, 19] ± 2 = [13 − 2, 19 + 2] = [11, 21]. 

And within three standard deviations, i.e. 

𝜇 ± 3𝜎 = [15, 17] ± 3 ∙ 2 = [15, 17] ± 6 = [15 − 6, 17 + 6]

= [9, 23], 

or computed as 

[11, 21] ± 2 = [11 − 2, 21 + 2] ± 2 = [9, 23], 

approximately 97.7% of values lie between  

𝑥 ∈ [9, 23]. 

A third neutrosophic example of normal 

distribution with 𝜇 = [15, 17]  and 𝜎 = [2, 3],  hence 

double indeterminacy, combines the previous 

second graph with the first one. 

Of course, the vagueness becomes wider! 

With 𝜇 = [15, 17] and 𝜎 = [2, 3], we get: 

Within one standard deviation of the mean, i.e. 

𝜇 ± 𝜎 = [15, 17] ± [2, 3] = [15 − 3, 17 + 3] = [12, 20], 

approximately 68% of values lie between  

𝑥 ∈ [12, 20]. 

Within two standard deviations of the mean, i.e. 

𝜇 ± 2𝜎 = [15, 17] ± 2 ∙ [2, 3] = [15, 17] ± [4, 6]

= [15 − 6, 17 + 6] = [9, 23], 
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or computed as [12, 20] ± [2, 3] = [12 − 3, 20 +

3] = [9, 23], 

approximately 95.4% of values lie between 𝑥 ∈

[9, 23]. 

And within three standard deviations of the 

mean, i.e. 

𝜇 ± 36 = [15, 17] ± 3 ∙ [2, 3] = [15, 17] ± [6, 9]

= [15 − 9, 17 + 9] = [6, 26], 

or computed as [9, 23] ± [2, 3] = [9 − 3, 23 + 3] =

[6, 26], 

approximately 97.7% of values lie between  

𝑥 ∈ [6, 26]. 

 

Neutrosophication of Other Distributions. 

In the same way, replacing one or more 

distribution parameters by a set, we can extend the 

classical distributions, such as: standard normal 

distribution, bivariate normal distribution, uniform 

distribution, sampling distribution, geometric 

distribution, hypergeometric distribution, Poisson 

distribution, chi-squared distribution, exponential 

distribution, frequency distribution, Pareto 

distribution, t-distribution, etc. to their 

corresponding neutrosophic versions. 

The set replacing a crisp parameter may have two 

or more elements, or may be empty (the last case 

meaning that the parameter is unknown). 
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A Neutrosophic 

Hypothesis 

A Neutrosophic Hypothesis is a statement about 

the neutrosophic values of a single or several 

population characteristics. 

The distinction between the classical (statistics) 

hypothesis and neutrosophic hypothesis is that in 

the neutrosophic statistics the variables that 

describe the population characteristics are 

neutrosophic (i.e. they have some indeterminate 

values, or several unknown values, or an inexact 

number of terms if the variable is discrete), or for 

the values that we compare at least one of the 

population characteristics is neutrosophic (i.e. 

indeterminate or unclear or vague value). 

Similarly to the classical statistics, a 

Neutrosophic Null Hypothesis, denoted by NH0, is 

the statement that is initially assumed to be true. 

While the Neutrosophic Alternative Hypothesis, 

denoted by NHa, is the other hypothesis. 

In carrying out a test of NH0 versus NHa there are 

two possible conclusions: reject NH0 (if sample 

evidence suggest strongly that NH0 is false), or fail 

to reject NH0 (if the sample does not support string 

evidence against NH0). 

Examples: 

𝑁𝐻0:μ ∈ [90, 100] 

𝑁𝐻𝑎:μ < 90 
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𝑁𝐻𝑎:μ > 100 

𝑁𝐻𝑎:μ ∉ [90, 100], 

where μ represents the classical average IQ of all 

children born since 1st January 2001. 

 

𝑁𝐻0: 𝜋 = 0.2 or 0.3 

𝑁𝐻𝑎:π < 0.2 

𝑁𝐻𝑎:π > 0.3 

𝑁𝐻𝑎: 𝜋 ∈ (0.2, 0.3) 

𝑁𝐻𝑎:μ ∉ {0.2, 0.3}, 

where π represents the classical proportion of all 

Ford cars that need repair while under first year of 

warranty. 

 

𝑁𝐻0: 𝑝 < 0.1 or𝑝 > 0.9 

𝑁𝐻𝑎: 𝑝 = 0.1 

𝑁𝐻𝑎: 𝑝 = 0.9 

𝑁𝐻0: 𝑝 > 0.1 and 𝑝 < 0.9 

𝑁𝐻𝑎: 𝑝 ∈ [0.1, 0.9], 

where p represents the classical proportion of 

outliers in a human population with respect to their 

height, i.e. percentage of people whose height is less 

than 150 cm, or percentage of people whose height 

is greater than 190 cm. 

Neutrosophic Outliers are noticeably unusual 

values in the neutrosophic data; they can be crisp 

values or neutrosophic values. 

 

𝑁𝐻0: [μmin,μmax] > [0.45, 0.55], 

which is equivalent to 
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μ
min

> 0.45 

and 

μ
max

> 0.55 

where μ represents a neutrosophic percentage 

average of all electronic devices that get morally 

depreciated after three years from their fabrication; 

[μ
min

,μ
max

]  is a neutrosophic value (rough 

approximation). 

𝑁𝐻𝑎: μmin = 0.45 

𝑁𝐻𝑎: μmax = 0.55 

𝑁𝐻𝑎: μmin < 0.45 

𝑁𝐻𝑎: μmax < 0.55 

𝑁𝐻𝑎: μmin < 0.45 orμmax < 0.45. 

 

𝑁𝐻0: 𝜇 = 7.0 

𝑁𝐻𝑎: 𝜇 < 7.0 

𝑁𝐻𝑎: 𝜇 > 7.0 

𝑁𝐻𝑎: 𝜇 ≠ 7.0 

A manufacturing plant made an approximate 

survey of its selling, survey done by two 

independent observes on different samples of same 

size. Their findings are close, yet different. The 

owner of the manufacturing plant decided to put 

both results together, taking for each period the 

[min, max] or [inf, sup] interval, in order to see the 

fluctuation of sales. The variable x that describes 

the survey is thus a neutrosophic one: 
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The null hypothesis that the average annual 

selling μ = 7.0 is in the classical style, but the 

variable x that μ is referring to is neutrosophic. 

So we still have a neutrosophic hypothesis. 

 

Neutrosophic Hypothesis Testing Errors. 

A census of a large population is hard or even 

impossible to due. That’s why we have to use 

samples. The inference we are making from a 

neutrosophic sample characteristic to a population 

characteristic is subject to error. 

Similarly to classical statistics, there are two 

types of errors: 

1. Neutrosophic Type I Error, which is the error 

of rejecting NH0 when NH0 is true. 

2. Neutrosophic Type II Error, which is the 

opposite of the previous error, i.e. the error of not 

rejecting NH0 when NH0 is false. 

Period Sold Quantity (in thousands) 

2001 

[4, 6] 

2002 [7, 8] 

2003 5.5 or 6.0 

2004 (8.0, 8.8) 

2005 7.5 
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No matter what test we do, there is some chance 

that a neutrosophic type I error will be made, and 

there is some chance that a neutrosophic type II 

error will be made too. 

For example, rejecting the hypothesis H0: μ = 7.0 

when it is true in one of the previous examples, 

would determine the owner of the manufacturing 

plant to take additional adjustments and spending 

money when not really needed. 

While accepting H0: μ = 7.0 when it is false, will 

damage the future selling. 

Probabilities of neutrosophic type I error and type 

II error are denoted by αN (level of significance) and 

respectively βN. 

Dealing with neutrosophic probabilities, αN and 

βN can be subsets of the interval [0, 1]. The ideal test 

procedure would haveαN = βN≡ 0, or αN and βN as tiny 

intervals near zero. 

For example, ifαN= [0.07, 0.10]in a test procedure, 

done with different samples, over and over, a true 

hypothesis H0 is rejected about 7, 8, 9, or 10 times 

in a hundred. 

If 𝛽𝑁 = [0.07,0.10],then a false hypothesis H0 is 

accepted about 7-10 times in a hundred. 

 

Example. 

A car manufacturer pretends that between 80% 

and 90% of its car need no repair during the first 2 

years of driving. In order to check the claim, a 

consumer agency obtains a random sample of 50 
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purchasers and investigate them whether or not 

their cars needed repair during the first 2 years of 

driving. Let p denote the sample proportion of 

responses that indicate no repair, and let π denote 

the true proportion of no repairs (called successes). 

The appropriate neutrosophic hypotheses are: 

𝑁𝐻0: 𝜋 ∈ [0.8, 0.9] versus 𝑁𝐻𝑎: 𝜋 < 0.8 

in order to check if the sample evidence suggests 

that 𝜋 < 0.9. 

Neutrosophic Type I Error is to consider the car 

manufacturer’s claim fallacious (i.e. 𝜋 < 0.8) while 

in fact it is correct. 

And Neutrosophic Type II Error if the consumer 

agency fails to detect the manufacturer’s incorrect 

claim. 

For avoiding serious consequences the consumer 

agency decides a type I error probability of 

[0.01, 0.05] but no larger can be tolerated. So  

𝛼 = [0.01, 0.05]  is used for developing a test 

procedure. 

We recall, from classical statistics, that a 

classical standard normal distribution of a random 

variable z, is a normal distribution with the mean 

value 

𝜇 = 0 

and standard deviation 

𝜎 = 1. 

Its corresponding curve is called standard 

normal curve or z curve. 
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A z critical value captures the lower-tail or 

upper-tail area, or the central area under the z 

curve. 

The table of the most used z critical values in 

classical statistics: 

 

Critical 

value, z 

Area to the 

right of z 

Area to the 

left of –z 

Area 

between –z 

and z 

1.28 .10 .10 .80 

1.645 .05 .05 .90 

1.96 .025 .025 .95 

2.33 .01 .01 .98 

2.58 .005 .005 .99 

3.09 .001 .001 .998 

3.29 .0005 .0005 .999 

 

A normally distributed random variable x can 

bestandardized as 

𝑧 =
𝑥 − 𝜇

𝜎
 , 

where 𝜇 = 𝑥′𝑠 mean value, 

and 𝜎 = 𝑥′𝑠 standard distribution. 

If the neutrosophic null hypothesis about 

variable x is: 

𝑁𝐻0: 𝜇 ∈ [𝑎, 𝑏], 

where [𝑎, 𝑏],  with 𝑎 ≤ 𝑏 , is the hypothesized 

interval, then the neutrosophic test statistic is: 

𝑧 =
𝑥̅ − [𝑎. 𝑏]

𝑠/√𝑛
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where 𝑥̅ is the sample mean, 

  s is the sample standard deviation, 

and  n is the sample size, with 𝑛 > 30. 

Variable z has approximately a neutrosophic 

standard normal distribution. 

In neutrosophic statitics, 𝑥̅, s and even n can be 

sets (not necessarily crisp numbers). 

 

Alternative Hypotheses. 

𝐻𝑎: 𝜇 > 𝑏;  Reject 𝐻0  if min𝑧 > 𝑧 critical value 

(upper-tailed test); 

𝐻𝑎: 𝜇 < 𝑎;  Reject 𝐻0  if max 𝑧 < −𝑧 critical value 

(lower-tailed test); 

𝐻𝑎: 𝜇 ∉ [𝑎, 𝑏];  Reject 𝐻0  if: either min 𝑧 > 𝑧 critical 

value, or max 𝑧 < −𝑧critical value (two-tailed test). 

 

Example. 

Let’s consider the exam-anxiety scores for a 

sample of an American College students were the 

following: 

𝑛 = 64, 𝑥̅ = [48.0, 50.0], and 𝑠 = 25. 

Then 𝜇 = true mean exam-anxiety. 

𝐻0: 𝜇 ∈ [40.0, 41.0] 

𝐻𝑎: 𝜇 > 41.0. 

The neutrosophic test statistics is: 
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𝑧 =
[48.0, 50.0] − [40.0, 41.0]

25/√64
=
[48.0 − 41.0, 50.0 − 40.0]

25/8

=
[7.0, 10.0]

25/8
=
8 ∙ [7.0, 10.0]

25
=
[56.0, 80.0]

25

= [
56.0

25
,
80.0

25
] = [2.24, 3.20]. 

For 𝛼 = 0.10  the corresponding one-tailed z 

critical value from the previous table is 1.28. Hence 

𝐻0 is rejected because 𝑧 = [2.24, 3.20] > 1.28. 

In conclusion, the mean exam-anxiety score is 

higher than 41.0. 
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The Neutrosophic Level of 

Significance 

The Neutrosophic Level of Significance α may 

be a set, not necessarily a crisp number as in 

classical statistics. 

For example, 𝛼4 = [0.01, 0.10] is a neutrosophic 

level of significance α, where α varies in the interval 

[0.01, 0.10]. 

A Neutrosophic P-Value is defined in the same 

way as in classical statistics: the smallest level of 

significance at which a null hypothesis 𝐻0 can be 

rejected. 

The distinction between classical P-value and 

neutrosophic P-value is that the neutrosophic P-

value is not a crisp number as in classical statistics, 

but a set (in many applications it is an interval). 

Neutrosophic P-Value =  𝑃(𝑧 > 𝑧critical value,

when𝐻0 is true),  where 𝑃(∙)  means classical 

probability calculated assuming that 𝐻0 is true, 

probability of observing a test statistic value being 

more extreme than is was actually obtained. 

Suppose one has calculated the neutrosophic P-

value at the particular level of significance α, where 

α is a crisp positive number. 

1. If 𝑚𝑎𝑥{𝑛𝑒𝑢𝑡𝑟𝑜𝑠𝑜𝑝ℎ𝑖𝑐𝑃 − 𝑣𝑎𝑙𝑢𝑒} ≤ 𝛼, then reject 

𝐻0  at level α. 

2. If 𝑚𝑖𝑛{𝑛𝑒𝑢𝑡𝑟𝑜𝑠𝑜𝑝ℎ𝑖𝑐𝑃 − 𝑣𝑎𝑙𝑢𝑒} > 𝛼, then do not 

reject 𝐻0 at level α. 
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3. If 𝑚𝑖𝑛{𝑛𝑒𝑢𝑡𝑟𝑜𝑠𝑜𝑝ℎ𝑖𝑐𝑃 − 𝑣𝑎𝑙𝑢𝑒} < 𝛼 <

𝑚𝑎𝑥{𝑛𝑒𝑢𝑡𝑟𝑜𝑠𝑜𝑝ℎ𝑖𝑐𝑃 − 𝑣𝑎𝑙𝑢𝑒}  then there is an 

indeterminacy. Thus 

𝛼 −𝑚𝑖𝑛{𝑛𝑒𝑢𝑡𝑟𝑜𝑠𝑜𝑝ℎ𝑖𝑐𝑃 − 𝑣𝑎𝑙𝑢𝑒}

𝑚𝑎𝑥{𝑛𝑒𝑢𝑡𝑟𝑜𝑠𝑜𝑝ℎ𝑖𝑐𝑃 − 𝑣𝑎𝑙𝑢𝑒} − 𝑚𝑖𝑛{𝑛𝑒𝑢𝑡𝑟𝑜𝑠𝑜𝑝ℎ𝑖𝑐𝑃 − 𝑣𝑎𝑙𝑢𝑒}
 

is the chance of rejecting 𝐻0 at level α, 

and 

𝑚𝑎𝑥{𝑛𝑒𝑢𝑡𝑟𝑜𝑠𝑜𝑝ℎ𝑖𝑐𝑃 − 𝑣𝑎𝑙𝑢𝑒} − 𝛼

𝑚𝑎𝑥{𝑛𝑒𝑢𝑡𝑟𝑜𝑠𝑜𝑝ℎ𝑖𝑐𝑃 − 𝑣𝑎𝑙𝑢𝑒} − 𝑚𝑖𝑛{𝑛𝑒𝑢𝑡𝑟𝑜𝑠𝑜𝑝ℎ𝑖𝑐𝑃 − 𝑣𝑎𝑙𝑢𝑒}
 

is the chance of not rejecting 𝐻0 at level α. 

Let 𝛼𝑁 be a set. 

4. If 𝑚𝑎𝑥{𝑛𝑒𝑢𝑡𝑟𝑜𝑠𝑜𝑝ℎ𝑖𝑐𝑃 − 𝑣𝑎𝑙𝑢𝑒} ≤ 𝑚𝑖𝑛{𝛼𝑁}, then 

reject 𝐻0 at level 𝛼𝑁 . 

5. If 𝑚𝑖𝑛{𝑛𝑒𝑢𝑡𝑟𝑜𝑠𝑜𝑝ℎ𝑖𝑐𝑃 − 𝑣𝑎𝑙𝑢𝑒} > 𝑚𝑎𝑥{𝛼𝑁}, then 

do not reject 𝐻0 at level 𝛼𝑁 . 

6. If the two sets, those of the neutrosophic P-

value and of the neutrosophic level of significance 

𝛼𝑁 intersect, one has indeterminacy. And one can 

compute the chance of rejecting 𝐻0 at level 𝛼𝑁 , and 

the chance of not rejecting 𝐻0 at level 𝛼𝑁 . 

In classical statistics, the P-value is computed 

considering theTable of Standard Normal 

Probabilities. 

a. P-value is the area under the z curve to the 

right of computed z, for Upper-tailed z test. 

b. P-value is the area under the z-curve to the 

left of computed z, forLower-tailed z test. 

c. P-value is twice the area captured in the tail 

corresponding to the computed z, for Two-tailed z 

test. 
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Let’s insert from the classical statistics the 

Standard Normal Cumulative Probability Table [for 

positive z-values only, since this is needed in our 

below example]: 

 
In the previous example,  

𝐻0 ∙ 𝜇 𝜖[40.0, 41.0] versus 𝐻𝑎: 𝜇 > 41.0, 
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we found the neutrosophic 𝑧 = [2.24, 3.20]. We have 

an Upper-tailed z test. 

From the above Table of Standard Normal 

Probabilities, the area under the z curve to the right 

of𝑧1 = 2.24 is 1 − 0.9875 = 0.0125 

while for 

𝑧2 = 3.20 is 1 − 0.9993 = 0.0007. 

Thus, the neutrosophic  

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = [0.0007, 0.0125]. 

At the level of significance 𝛼1 = 0.10, reject 𝐻0 

since 

𝑚𝑎𝑥[0.0007, 0.0125] = 0.0125 < 0.10. 

At the level of significance 𝛼2 = 0.0005, do not 

reject 𝐻0 since 

𝑚𝑎𝑥[0.0007, 0.0125] = 0.0125 > 0.0005. 

At the level of significance 𝛼3 = 0.01, one has 

indeterminacy since 

0.01 ∈ [0.0007, 0.0125]; therefore: 

chance of rejecting 𝐻0 at level 𝛼3 = 0.01 is 

0.01 − 0.0007

0.0125 − 0.0007
=
0.0093

0.0118
⋍ 79% 

and chance of not rejecting 𝐻0 at level 𝛼3 = 0.01 

is 

0.0125 − 0.01

0.0125 − 0.07
=
0.0025

0.0118
⋍ 21%. 
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The Neutrosophic 

Confidence Interval 

The Neutrosophic Confidence Interval for a 

population characteristics is defined, similarly to 

the classical statistics, as an interval of plausible 

neutrosophic values of the characteristic. 

The neutrosophic value of the characteristic is 

captured inside the interval with a chosen degree of 

confidence. 

A confidence level is associated with each 

neutrosophic confidence interval, as in classical 

statistics. It tells us how much confidence we have 

in procedure used in constructing the neutrosophic 

confidence interval. 

The classical formulas for the confidence interval 

are extended from crisp variables to neutrosophic 

variables (i.e. variables whose values are sets): 

1. When the neutrosophic value of the 

population standard deviation σ is known, the 

Large-Sample Neutrosophic Confidence Interval 

for the Population Mean μ is: 

𝑥̅ ± (𝑧critical value) ∙
𝜎

√𝑛
 

where 𝑥̅ is the large-sample neutrosophic mean, 

and 𝑛 is the neutrosophic size of the large-sample. 

Therefore𝑥̅, σ, and/or 𝑛 may be sets instead of 

crisp numbers. 
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2. When the neutrosophic value of the 

population standard deviation σ is unknown (as in 

most practical applications), and the sample size 

exceeds 30, one uses the sample standard deviation 

s instead of σ for computing the Neutrosophic 

Confidence Interval for the Population Mean μ: 

𝑥̅ ± (𝑧critical value) ∙
𝑠

√𝑛
. 

For both formulas, the z critical value 1.645 

corresponds to the confidence level of 90%, the z 

critical value 1.96 corresponds to the confidence 

level of 95%, and the z critical value 2,58 

corresponds to the confidence level of 99%, 

similarly as in classical statistics. 

The confidence level of, for example, 90% does 

not refer to the chance that the population mean μ 

is captured in an interval, but to the percentage of 

all possible successful samples (i.e. samples for 

which μ is included in the confidence interval). 

An Example. 

Many individuals partially loose vision because 

of exposure to dust. 

On a study involving 60 people (a sample), that 

were constantly exposed to dust to their 

construction work places, in average they lost  

18%-20% of their vision accuracy, with a sample 

standard deviation of 4%-5%. 

The study investigator wishes a 90% confidence 

interval for μ. Hence: 

𝑥̅ = [18, 20] 

𝑧critical value = 1.645 
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𝑠 = [4, 5] 

𝑛 = 60. 

Therefore, the neutrosophic confidence interval 

for the population mean μ is: 

[18, 20] ± (1.645) ∙
[4, 5]

√60

= [18, 20] ± [
1.645(4)

√60
,
1.645(5)

√60
]

⋍ [18, 20] ± [0.85, 1.06]. 

Let’s split into two parts: 

[18, 20] + [0.85, 1.06] = [18 + 0.85, 20 + 1.06]

= [18.85, 21.06], 

and 

[18, 20] − [0.85, 1.06] = [18 − 1.06, 20 − 0.85]

= [16.94, 19.15]. 

Combining these two cases we get the 

neutrosophic confidence interval: 

[16.94, 21.06]. 

The Neutrosophic Sample Size to estimate, 

within the amount B, with c% confidence, of the 

population mean μ is: 

𝑛𝑁 = [
(𝑧critical value)∙𝜎

𝐵
], 

where z critical value should correspond to the 

c% confidence,  

σ is the population standard variation,  

and 𝑛𝑁 is the resulting neutrosophic sample size, 

hence 𝑛𝑁 may be a set (especially an interval). 

For surety, we can take the sample size as 

⌈𝑚𝑎𝑥{𝑛𝑁}⌉, where ⌈0⌉ means superior integer part. 

Let’s see an Example. 
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The business department wishes to estimate the 

annual cost of office supplies for faculty at the 

University of New Mexico to be within $40 of the 

true population mean. The business department 

wants a 95% confidence in their result accuracy. 

How large should the sample be? 

Because σ is not known, it can be approximated 

as  

𝜎 ≈
range

4
 

as in classical statistics. 

Range is the difference between the highest and 

lowest costs. 

The amount spent on office supplies varied 

between $500-$550 to $100-$150. Then 

𝜎 ≈
[500, 550] − [100, 150]

4
=
[500 − 150, 550 − 100]

4

=
[350, 450]

4
= [

350

4
,
450

4
]

= [87.50, 137.50]. 

Further, 𝐵 = 40, z critical value is 1.96, and: 

𝑛𝑁 = [
1.96[87.50, 137.50]

40
]

2

= [
1.96(87.50)

40
,
1.96(137.50)

40
]

2

= [4.2875, 6.7375]2 = [4.28752, 6.73752]

≃ [18.38, 45.39]. 

Now 

⌈max [18.38, 45.39]⌉ = ⌈45.39⌉ = 46. 

Therefore the sample size should be 46. 
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Large-Sample 

Neutrosophic Confidence 

Interval for the 

Population Proportion 

Using the classical statistics one can define (in 

the same way) the Large-Sample Neutrosophic 

Confidence Interval for the Population 

Proportion π: 

𝑝 ± (𝑧critical value) ∙ √
𝑝(1 − 𝑝)

𝑛
 

for the case when min{𝑛𝑝} ≥ 5  and min{𝑛 ∙ (1 −

𝑝)} ≥ 5, 

where  

p = sample proportion = number of sample 

individuals that possess the property of interest 

divided by sample’s size; 

n = sample’s size; 

 

π = population proportion = 
number of population individuals that possess the property of interest

total number of population individuals
, 

 

with the distinction from the classical statistics 

that in neutrosophic statistics the parameters p and 

n may be setsinstead of crisp numbers, and the z 
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critical value may be a set as well(for example it may 

be [1.645, 1.96], i.e. confidence level of [90, 95]%). 

The neutrosophic sample statistics p, for 𝑚𝑖𝑛{𝑛} 

large enough, has a neutrosophic sampling 

distribution (normal curve) that approximates the 

population mean π and its standard deviation 

√
𝜋(1−𝜋)

𝑛
. 

 

Let’s see an Example. 

A survey on a sample of 200 – 220 consumers is 

done at a car dealer asking the following question: 

“Would you be willing to trade in your old car when 

buying a new car?” The number of yes’s was 150. 

The confidence level should be 99%. If π denotes the 

proportion of all consumers who would trade in 

their old cars, one may consider p a point estimate 

for π: 

𝑝 =
150

{200, 201,… , 220}
⋍ [
150

220
,
150

200
] ⋍ [0.68, 0.75]. 

The sample’s size {200, 201,… , 220}  means that 

the surveyer was not sure about 20 people if they 

were or not custumers of this car dealer. So, the 

sample’s size is indeterminate (approximated by the 

set {200, 201,… , 220}), 

z critical value = 2.58. 

𝑚𝑖𝑛{𝑛𝑝} = 𝑚𝑖𝑛{{200, 201,… , 220} ∙ [0.68, 0.75]}

= 200(0.68) = 136 > 5; 
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𝑚𝑖𝑛{𝑛(1 − 𝑝)} = 𝑚𝑖𝑛{{200, 201,… 220}

∙ (1 − [0.68, 0.75])}

= 200 ∙ 𝑚𝑖𝑛([1 − 0.75, 1 − 0.68])

= 200 ∙ 𝑚𝑖𝑛([0.25, 0.32]) = 200(0.25)

= 50 > 5. 

The large-sample neutrosophic confidence 

interval for π is: 

[0.68, 0.75] ± 2.58 ∙ √
[0.68, 0.75] ∙ (1 − [0.68, 0.75])

{200, 201,… , 220}

= [0.68, 0.75] ± 2.58

∙ √
[0.68, 0.75] ∙ [0.25, 0.32]

{200, 201,… , 220}

= [0.68, 0.75] ± 2.58

∙ √[
0.68(0.25)

220
,
0.75(0.32)

200
]

= [0.68, 0.75] ± 2.58

∙ √[0.000773, 0.001200]

= [0.68, 0.75] ± 2.58

∙ √0.000773,√0.001200

=  [0.68, 0.75] ± 2.58

∙ [0.027803, 0.034641]

= [0.68, 0.75] ± [0.071732, 0.089374]. 

Split it into two parts: 

[0.68, 0.75] + [0.71732, 0.089374]

= [0.751732, 0.839374], 

and  
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[0.68, 0.75] − [0.071732, 0.089374]

= [0.68 − 0.089374, 0.75 − 0.071732]

= [0.590626, 0.678268]. 

Combining both results in a conservative mode, 

we get: 

[0.590626, 0.839374]. 

The formula for choosing the neutrosophic 

sample size is the same as in classical statistics, but 

using sets instead of crisp numbers: 

𝑛 = 𝜋(1 − 𝜋) ∙ [
𝑧critical value

𝐵
]
2

 

where B = the specific error bound. 

If π cannot be estimated using prior neutrosophic 

information, one uses π = 0.5 which gives a 

conservatively large sample value (i.e. a larger n 

than any other value of π would do). 

 
 

 

 

 

 

 

 

 

 

 



INTRODUCTION TO NEUTROSOPHIC STATISTICS 

 

117 

 

The Neutrosophic Central 

Limit Theorem 

The Neutrosophic Central Limit Theorem, which 

is an extension of the classical Central Limit 

Theorem, can be safely applied if 𝑚𝑖𝑛{𝑛} exceeds 30, 

where 𝑛 is the neutrosophic sample size (i.e. 𝑛 may 

be a set). 

The Neutrosophic Central Limit Theorem states 

that the neutrosophic sampling distribution of 𝑥̅ si 

approximated by a neutrosophic normal curve 

when 𝑚𝑖𝑛{𝑛} is sufficiently large, no matter how is 

the population distribution. 

Of course, if the population distribution is 

normal, then 𝑚𝑖𝑛{𝑛} may be smaller than 30, and 

the neutrosophic sampling distribution of 𝑥̅  is 

normal too for any neutrosophic sample size 𝑛. But, 

if the population distribution is not normal, then 

𝑚𝑖𝑛{𝑛}  should be greater than 30, and the 

neutrosophic sampling distribution of 𝑥̅ is only an 

approximation to the normal curve: the larger is 

𝑚𝑖𝑛{𝑛}, the better approach.  

 

The last result has enabled the neutrosophic 

statisticians in order to infer a population mean, to 

develop large sample neutrosophic procedures even 

when one deals with an unknown shape of the 

population distribution. 
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Using similar notations: 

𝑛 = random neutrosophic sample size; 

𝑥̅ = neutrosophic mean of the sample size; 

𝜇 = population mean; 

𝜎 = population standard deviation; 

𝜇𝑥̅ = neutrosophic mean of the 𝑥̅ distribution; 

and  

𝜎𝑥̅  = neutrosophic standard deviation of the 𝑥̅ 

distribution; 

one has, as in classical statistics:  

𝜇𝑥̅ =  𝜇, 

and 𝜎𝑥̅ =
𝜎

√𝑛
.. 

The neutrosophic central limit theorem does not 

apply, as in classical statistics, when 𝑚𝑖𝑛{𝑛}  is 

small and the shape of the population distribution 

is unknown. 

 

Let’s introduce the Small-Sample Neutrosophic 

t Confidence Interval for the Mean of the Normal 

Population, which is just a neutrosophication of 

the classical one-sample t confidence interval for 

the population mean μ: 

𝑥̅ ± (𝑡critical values) ∙
𝑠

√𝑛
 

where similarly: 

𝑥̅ = neutrosophic sample mean; 

𝑠 =neutrosophic sample standard deviation; 

𝑛 = neutrosophic sample size; 

and 

𝑡critical value is based on  
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𝑚𝑖𝑛{𝑛} −  1 degrees of freedom (𝑑𝑓). 

𝑥,̅ 𝑠, and𝑛 may be sets instead of crisp numbers. 

For small 𝑚𝑖𝑛{𝑛}, the neutrosophic t confidence 

interval for the population mean μ is appropriate 

when the population distribution is normal or 

approximately normal. Otherwise, another method 

should be employed. 

 

The neutrosophic t distribution is more spread 

out, of course, than the neutrosophic standard 

normal (𝑧) curve, because the use of 𝑠, instead of 

population deviation σ, produces extra variability. 

 

The neutrosophic 𝑡 distributions are 

distinguished from one another by the degree of 

freedom, which can be a positive integer greater 

than or equal to 

1, or a set of positive integers greater than or equal to 1,  

for example: 

{𝑛, 𝑛 + 1,… , 𝑛 + 𝑚}. 

The higher is 𝑚𝑖𝑛{𝑛}, the closer the neutrosophic 

𝑡  distribution is to the neutrosophic 𝑧  curve. For 

𝑚𝑖𝑛{𝑛} > 120 one may use the  𝑧 critical values. The 

neutrosophic 𝑡curve, for a fixed number of degrees 

of freedom, is in general bell-shaped and centered 

at zero in neutrosophic style way. 

 

 

An Example. 
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A small random sample of 18 workers, at the Rail 

Road, was investigated regarding the weights these 

workers are able to lift in their work place. The 

neutrosophic sample average found was 𝑥̅ between 

8 kg and 10 kg, with a standard deviation 𝑠 between 

3-4 kg.  

Let’s say a confidence level of 95% is required for 

capturing the population mean μ.Thus: 

𝑥̅ = [8, 10](an interval) 

𝑠 = [3,4](an interval) 

𝑛 = 18, 

hence a small sample size, which requires a 

neutrosophic 𝑡 critical value based on 18 − 1 =

17 𝑑𝑓. 

From the below classical statisticsTable of t 

Critical Values,we find out that for 95% confidence 

level and 17 df, the corresponding  

𝑡critical value =  2.11. 
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Apply the previous formula: 

𝑥̅ ± (𝑡critical value) ∙
𝑠

√𝑛
= [8, 10] ± 2.11

[3, 4]

√18

= [8, 10] ± [
2.11(3)

√18
,
2.11(4)

√18
]

⋍ [8, 10] ± [1.492, 1.989]. 

Split the calculation into two possibilities: 

[8, 10] + [1.492, 1.989] = [8 + 1.492, 10 + 1.989]

= [9.492, 11.989], 

and 

[8, 10] − [1.492, 1.989] = [8 − 1.989, 10 − 1.492]

= [6.011, 8.508]. 

Now we combine both results in a conservative 

way, and we get the neutrosophic t confidence 

interval for the population average of weight lifting: 

[6.011, 11.989] kg. 
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Neutrosophic Statistics means statistical analysis of 
population or sample that has indeterminate (imprecise, 
ambiguous, vague, incomplete, unknown) data. For 
example, the population or sample size might not be exactly 
determinate because of some individuals that partially 
belong to the population or sample, and partially they do 
not belong, or individuals whose appurtenance is 
completely unknown. Also, there are population or sample 
individuals whose data could be indeterminate. 

In this book, we develop the 1995 notion of 
neutrosophic statistics. We present various practical 
examples. It is possible to define the neutrosophic statistics 
in many ways, because there are various types of 
indeterminacies, depending on the problem to solve.  
 


