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INTRODUCTION TO NEUTROSOPHIC STATISTICS

Introduction

Although the neutrosophic statistics has been
defined since 1996, and published in the 1998 book
Neutrosophy. / Neutrosophic Probability, Set,
and Logic, it has not been developed since now. A
similar fate had the neutrosophic probability that,
except a few sporadic articles published in the
meantime, it was barely developed in the 2013 book

“Introduction to Neutrosophic Measure,
Neutrosophic Integral, and Neutrosophic
Probability”.

Neutrosophic Statistics is an extension of the
classical statistics,and one deals with set values
instead of crisp values.

In most of the classical statistics equations and
formulas, one simply replaces several numbers by
sets. And consequently, instead of operations with
numbers, one uses operations with sets. One
normally replaces the parameters that are
indeterminate (imprecise, unsure, and even
completely unknown). That’s why we made the
convention that any number a that is replaced by a
set be noted an, meaning neutrosophic a, or
imprecise, indeterminate a. ay can be a neighbour of
a, can be an interval that includes a, and in general
it can be any set that approximates a. In the worst
scenario, ay can be unknown. In the best scenario
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(when there is not indeterminacy related to a), av =
a.

Why this passage from crisp numbers to sets?
Because in our real life we cannot always compute
or provide exact values to the statistics
characteristics, but we need to approximate them.
This is one way to passing from classical to
neutrosophic statistics, but other ways could be
possible, depending on the types of
indeterminacies, and the reader is kindly invited to
do such research to be published in the next issues
of the international journal of “Neutrosophic Sets
and Systems”, http://fs.gallup.unm.edu/NSS/.

The author would like to thank Prof. Yoshio
Hada, the President of Okayama University of
Science, Prof. Valery Kroumov from Okayama
University of Science, Prof. Akira Inoue from the
State University of Okayama, also Prof. Masahiro
Inuiguchi, Dr.Masayo Tsurumi, and Dr. Yoshifumi
Kusuroku from the University of Osaka, and Dr.
Tomoe Entani from the Hyogo University for their
valuable considerations and opinion during my
postdoctoral research in Japan in December 2013
and January 2014 about applications of the
neutrosophic science in robotics and other fields.

Any quantity computed with some indeterminacy
from values in a sample (i.e. not exactly) is a
neutrosophic statistics.

A neutrosophic statistic is a random variable and
as such has a neutrosophic probability distribution.
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INTRODUCTION TO NEUTROSOPHIC STATISTICS

The long-run behaviour of a neutrosophic statistic’s
values is described when one computes this
statistic for many different samples, each of the
same size.

Neutrosophic Statistics is an extension of the
classical statistics. While in classical statistics the
data is known, formed by crisp numbers, in
neutrosophic statistics the data has some
indeterminacy.

In the neutrosophic statistics, the data may be
ambiguous, vague, imprecise, incomplete, even
unknown. Instead of crisp numbers used in
classical statistics, one uses sets (that respectively
approximate these crisp numbers) in neutrosophic
statistics.

Also, in neutrosophic statistics the sample size
may not be exactly known (for example the sample
size could be between 90 and 100; this may happen
because, for example, the statistician is not sure
about 10 sample individuals if they belong or not to
the population of interest; or because the 10 sample
individuals only partially belong to the population
of interest, while partially they don’t belong).

In this example, the neutrosophic sample size is
taken as an interval n = [90, 100], instead of a crisp
number n = 90 (or n = 100) as in classical statistics.

Another approach would be to only partially
consider the data provided by the 10 sample
individuals whose membership to the population of
interest is only partial.
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Neutrosophic Statistics

Neutrosophic Statistics refers to a set of data,
such that the data or a part of it are indeterminate
in some degree, and to methods used to analyze the
data.
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In Classical Statistics all data are determined;
this is the distinction between mneutrosophic
statistics and classical statistics.

In many cases, when indeterminacy is zero,
neutrosophic statistics coincides with classical
statistics.

We can use the neutrosophic measure for
measuring the indeterminate data.

The neutrosophic statistical methods will enable
us to interpret and organize the neutrosophic data
(data that may have some indeterminacies) in order
to reveal underlying patterns.

There are many approaches that can be used in
neutrosophic statistics. We present several of them
through examples, and afterwards generalizations
for classes of examples. Yet, the reader can invent
new approaches as well in studying the
neutrosophic statistics.

We emphasize, as in neutrosophic probability,
that indeterminacy is different from randomness.
While classical statistics is referring to randomness
only, neutrosophic statistics is referring to both
randomness and especially indeterminacy.

Neutrosophic Descriptive Statistics is
comprised of all techniques to summarize and
describe the neutrosophic numerical data’s
characteristics.

Since neutrosophic numerical data contain
indeterminacies, the neutrosofic line graphs, and
neutrosophic histograms are represented in 3D-
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spaces, instead of 2D-spaces as in classical
statistics. The third dimension, in addition of the
XOY Cartesian System, is that of indeterminacy (I).
From wunclear graphical data displays we can
extract neutrosophic (unclear) information.

Neustrosophic Inferential Statistics consists of
methods that permit the generalization from a
neutrosophic sampling to a population from which
it was selected the sample.

Neutrosophic Data is the data that contains
some indeterminacy.

Similarly to the classical statistics it can be
classified as:

- discrete neutrosophic data, if the values
are isolated points;for example: 6 +i;, where i; €
[0,1],7, 26 + i,, where i, € [3,5];

- and continuous neutrosophic data, if the
values form one or more intervals, for example:
[0,0.8] or [0.1,1.0] (i.e. not sure which one).

Another classification:

- quantitative (numerical) neutrosophic
data; for example: a number in the interval [2, 5]
(we do not know exactly), 47, 52, 67 or 69 (we do
not know exactly);

- and qualitative (categorical) neutrosophic
data; for example: blue or red (we don’t know
exactly), white, black or green or yellow (not
knowing exactly).

Also, we may have:
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- univariate neutrosophic data, i.e. neutro-
sophic data that consists of observations on a
neutrosophic single attribute;

- and multivariable neutrosophic data, i.e.
neutrosophic data that consists of observations on
two or more attributes.

As a particular cases we mention the bivariate
neutrosophic data, and trivariate neutrosophic
data.

A Neutrosopical Statistical Number N has the
form:

N=d+i,
where d is the determinate (sure) part of N, and iis
the indeterminate (unsure) part of V.

For example, a = 5 + i, where
i € [0,0.4],is equivalent toa € [5,5.4], so for sure a > 5
(meaning that the determinate part of a is 5), while
the indeterminate part i€ [0,0.4] means the
possibility for number ,a” to be a little bigger than
S.

We may consider, similarly to the classical
statistics, a neutrosophic stem-and-leaf display of
data.

For example, let’s have the neutrosophic data
that follows:

6 + i,, withi; € (0,0.2);
7 + ipwithi, € [2,3];
6 + i3, withi; € [0, 1];
9 + iy, withi, € [1.1,1.5);
9+ i;.
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Its neutrosophic stem-and-leaf display is:

6[|i1 I3
71 i,
olli; iy
or under the form of interval:
6]l (0,0.2) [0,1]
7 [2,3]
9l (0,0.2) [1.1,1.5]

Obviously a neutrosophic statistic number can
be written in many ways.

If you retake: a =5+ i, withi € [0,0.4], then
a=4+i;,with i€ [1,1.4],ora = 3 + iy, with
i, € [2,2.4], and in general a = < + iy, with
ix € [5—,5.4—],and o any real number.

Or in opposite way:

a = 5.4 — iy, with i5 € [0,0.4],
and in general

a=f —ig with iz € [ — 54,8 —5],andf any real
number.

A Neutrosophic Frequency Distribution is a
table displaying the categories, frequencies, and
relative frequencies with some indeterminacies.
Most often, indeterminacies occur due to imprecise,
incomplete or unknown data related to frequency.
As a consequence, relative frequency becomes
imprecise, incomplete, or unknown too.

An example about the neutrosophic frequency
distribution concerning the number of accidents by
car drivers.
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Number of scidents Nestusophic freguency Newtrosuphk relative fregueacy
(0185, 0227
|a0, 80| (0240, 0337
2 (70, %0 (0289, 0.375]
1 (40, S0 [0.154,0217]
“oe >3 20 2N 0859, 1.152

How to read the previous table, let’s say line #2:
the number of car drivers with only one accident is
between 60 and 80 (thus unclear information), and
corresponding neutrosophic relative frequency
between 0.2240 and 0.333.

To compute the total for the neutrosophic
frequencies, where we have imprecise information,
we compute the min and max of estimated
frequencies:

min,r = 50+ 60 + 70 + 40 = 220,
andmax,y =50+ 80+ 90+ 50 = 270.

To compute the neutrosophic relative frequency,
we also do the min and max of all possibilities.

For zero accidents:

] 50
MiNy, s = >70 =~ (0.185
andmaxnrf = 520 =~ 0.227,

or 50 + [220,270] = [0.185,0.227].

13
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For one accident one has:

60
3 = = 0.240
et = 560717760 + 90 + 50
= 80 0.333
MAnrf = 50180+ 70 +40 0
For two accidents one has:
) = 70 = (0.280
Mt = 507804+ 70+50 o
90
d = =~ (0.375.
ANAM@nrs = 5071760 + 90 + 40
The interval [0.280, 0.375] is different from:
. —[70 90] .
[70,90] = [220,270] = [270,220] ~ [0,259, 0.409].
For three accidents one has:
) = 40 0.154
Mrf = 50780+ 90 + 40
50
andmaxy,r = =~ 0.217

50+ 60 + 70 + 50
and similarly the interval [0.154, 0.217] is

different from:
40 50
270°220
We simply cumulated the neutrosophic relative
frequencies as an addition of intervals:
[0.185,0.227] + [0.240,0.333] + [0.280,0.375]
+[0.154,0.217] = [0.859,1.152].

[40,50] + [220,270] = [ ~ [0.148,0.227].

Neutrosophic Statistical Graphsare graphs
that have indeterminate (unclear, vague,
ambiguous, unknown) data or curves.

1.a. Neutrosophic Bar Graph:
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o

Table: Time spent by an American daily
T=watching TV: between [4,5] hours;
B=reading books: between [1,2] hours;
D=driving: between [1,3] hours;
S=sleeping: between [6,9] hours.

2.a. Neutrosophic Circle Graph for the same
example:
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3.a. Neutrosophic Double Line Graph for the
same example:

o = 8] w P~ ] L=} ~ s =}
| | \ | L \ | | I

/]

/

/

/
/ /
/

'
N




INTRODUCTION TO NEUTROSOPHIC STATISTICS

4.a. Neutrosophic Line Plot for the same
example:

x

7%
s xs
x s
s xs

¥ = one hour

= one possible hour
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S.a. Neutrosophic Pictograph for the same
example:

| I I I I | l | ‘
5-|-|-------_
D-|--
|

NN
I I | I

0 1 2 3 4 5 6 7 8 9

Green color rectangle: one hour
Red color rectangle: one possible hour

6.a. Neutrosophic 2D Histogram is a neutro-
sophic bar graph such that the bars are vertical,
there is no gap between bars (the bars of height zero
are also included), and the width of each bar has
the size of the represented interval. It shows, within
a certain interval, the approximate number of times
data occur.
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Neutrosophic distribution of
family income frequencies

—_
w

—
o

Frequency of families (in millions)
~J

10-29 30-49 50-69 70-89  90-109 110-129

Income (in thousand §) per year

where ~ - indicates in the numbering scale a
distortion.

The frequencies are not crisp numbers as in
classical statistics, but between some limits. For
example, the number of families with income in
between $10,000 — $29,000 is between 7 and 9
millions of families. Similarly for other classes of
income, except for the last class of income in
between $110,000 — $129,000 that corresponds to
a crisp number: 1 million of families.

19
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We represented all types of neutrosophic
statistical graphs in a space of dimension two (2D)
as in classical statistics, but it is also possible to
make the graphs in a space o dimension three (3D),
just adding to each of the previous 2D-graphs an
indeterminate dimension, which measures the
indeterminacy of the data.

1.b. The Neutrosophic 3D Bar Graph

The deepness axis (i) measures the indeterminacy.
For the previous example: Time spent by an American daily.

20
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2.b. Neutrosophic Cylinder Graph

The heights (that represent indeterminacies) of T
and B are the same, while the height of D is double,
and the height of S is triple.

3.b. TheNeutrosophic 3D-Line Graph

i

'y ////
v // /?/ #
6 (j// /// '
> // /a'
* T L P il
s\L1 . X
| S e
=] 3 y /4 ——,
IEI | = B D s x

21
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for the same example. We plot the points of
coordinates (T, 4, 1), (B, 1, 1), (D, 1, 2), and (S, 6,
3), where the second component represents the
determinate part (y) and the third component the
maximum indeterminacy (i), and connect them. We
get a 3D curve.

4.b. Neutrosophic 3D Plot for the same
example:

' cae hour

one possible hour

22
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S.b. Neutrosophic 3D Pictograph for the same

B scscsaa®

aa

N (&

6.b. Neutrosophic 3D Histogram for the same
example of Neutrosophic distribution of family
income frequencies:

Neutrosophic distribution of family income frequencies

Frequency of families (in millions)

(=T N]

10-29 30-49 50-69 70-89 90-109 110-129
Income (in thousand $) per year

23
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Statistical Deceptions can be expressed in the
neutrosophic way. For example:

a)

b)

"Company’s heating bill went up to 10%
last year.” In a neutrosophic way we can
write: [0, 10]% (which could be any
number between O and 10, including the
extremes).

“We guarantee you lose as much as 15
pounds in a month, or your money back.”
Actually you lose [0, 15] pounds, so you
may lose no pound!

“No product is better than Brian’s.” This
means that other products could be the
same as Brian’s!

24
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Neutrosophic Quartiles

Let’s consider the set of neutrosophic
observations of a variable listed in almost ascending
order (since we deal with sets instead of crisp
numbers we have a partial order).

The neutrosophic quartiles are similarly as in
classical statistics defined: the first (lower quartile)

is the %(n + 1)th, the second is the %(n + 1)th, and

the third the %(n + Dth.

If (n + 1) is not divisible by 4, then one takes the
average of the two neutrosophic observations whose
ranks the quartile falls in between. Another
procedure is to take the inferior integer part of

S(n+ 1), fori=123.

Let’s compute the midpoint of a set U in the
following way:
infU +sup U
2
We can define a total order on the n neutrosophic

midpoint L=

observation sets in the following way:
for any sets U and V we have U<V if
either midpoint (U) < midpoint(Vv),
{ormidpoint (1) = midpoint(V)and min U< min V..
If it happens that
midpoint (U) = midpoint(V)
and min U= min V,
then automatically max U = maxV, therefore
L=V.

25
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An example with n = 12 ascending neutrosophic
observations:

Lo [EAI

First quartile:

Al

{21} U (22, 25].

1 1
Z( 1) =7012+1) =325

then we average the 3r and the 4th ranked

observations:

(4,6} +5 {4+56+5} {9,11} (9 11
2 2 T2 {__}_{4555}

2°2
Second quartile:

2 2
- 1) =-(12+1) = 6.50,
T+ =7(12+1)

then we average the 6th and 7t ranked
observations:
[7,11]+9 [74+9 1149
2 _[ 2 2
Third quartile:

= [8,10].

3 3
- 1)=-(12+1)=9.75
S+ 1) =2012+1) =975

then we average the 9th and 10t ranked

observations:
14 + [14,15] 14 + 14 14 + 15
5 = [ R ] = [14, 14.5).

26
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Neutrosophic Sample

A Neutrosophic Sample is a chosen subset of a
population, subset that contains some
indeterminacy: either with respect to several of its
individuals (that might not belong to the population
we study, or they might only partially belong to it),
or with respect to the subset as a whole. While the
classical samples provide accurate information, the
neutrosophic samples provide vague or incomplete
information.

By language abuse one can say that any sample
is a neutrosophic sample, since one may consider
their determinacy equals to zero.

Neutrosophic Survey Results are survey results
that contain some indeterminacy.

A Neutrosophic Population is a population not
well determined at the level of membership (i.e. not
sure if some individuals belong or do not belong to
the population).

For example, as in the neutrosophic set, a
generic element x belongs to the neutrosophic
population M in the following way, x(t,i,f) €M,
which means: x is t % in the population M, f %x is
not in the population M, while i % the appurtenance
of x to M is indeterminate (unknown, unclear,
neutral: neither in the population nor outside).

Example. Let’s consider the population of a
country C;. Most people in this country have only

27
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the citizenship of the country, therefore they belong
100% to C;. But there are people that have double
citizenships, of countries C; and C,. Those people
belong 50% to Ci;, and 50% to C,. While citizens
with triple citizenships of countries C;, Co, and Cs
belong only 33.33% to each country. Of course,
considering various criteria these percentages may
differ. Also, there are countries with autonomous
zones, whose citizens in these zones may not
entirely consider themselves as belonging to those
countries.

But there is another category of people that have
been stripped from their C; citizenship for political
reasons and they have other citizenship, while still
living (temporarily) in C,.They are called paria, and
they do not belong to C; (not having citizenship), but
still belong to C; (because they still living in Ci).
They form the indeterminate part of neutrosophic
population of country C;.

A simple random neutrosophic sample of size
n from a classical or neutrosophic population is a
sample of n individuals such that at least one of
them has some indeterminacy.

Example. One considers a random sample of
1,000 homes, in a city of over one million
inhabitants, in order to investigate how many
houses have at least a laptop. One finds out that
600 houses have at least one laptop, 300 houses
don’t have any laptop, while 100 houses have each
of them a single laptop, but not working.

28
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Some of these 100 house owners tried to have
their laptop fixed, others said their laptops’ hard
drives have crashed and it is little chance to fix
them. Therefore indeterminacy. We have a simple
random neutrosophic sample of size 100.

Similarly as in classical statistics, in a stratified
random neutrosophic sampling the pollster
groups the (classical or neutrosophic) population by
a strata according to a classification; afterwards the
pollster takes a random sample (of appropriate size
according to a criterion) from each group. If there is
some indeterminacy, we deal with neutrosophic
sampling.

Example. One considers two strata: men and
women in the city of Gallup, New Mexico. But, since
women represent 51% of the population and men
49%, one takes a random sample of 51 women and
a random sample of 49 men.

But later learn that ,one” man and two “women”
are actually transgender. Therefore 3 individuals
are indeterminate. Whence one has stratified
random neutrosophic sampling.

If the (classical or neutrosophic) population is
divided into subgroups, such that each subgroup is
representative of the population, and then one
collects from these subgroups a random sample
and there is some indeterminacy, then one has a
neutrosophic cluster sampling.

Example. Suppose 5 professors conduct PhD
dissertations in neutrosophic statistics. Each

29
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professor has a number of graduate students, but
some students are undecided whether to pursue
their dissertations in classical or neutrosophic
statistics. The professors represent the clusters.
One randomly selects 2 professors to interview their
students about research in neutrosophic statistics.
But, because some students are undecided
(indeterminate) with respect to their research topic,
we have a neutrosophic cluster sampling.

A convenience sample is likely to be inaccurate
since the pollster selects a sample of individuals
that are readily available, who might answer
randomly to the questions in order to finish faster.
The less the individuals are interested in the survey
results, the more likely inaccurate are the survey
results. While a voluntary-response sample is
more likely to be biased, since the sample
individuals may volunteer in purpose to influence
the survey results.

Besides these two categories of sample
individuals there is another one of malicious people
that might oppositely answer to the questions in
order to produce false results.

That’s why data of some sample individuals has
to be removed, but often we don’t know which ones.
Therefore, we have indeterminacy related to the
sample size: how many sample people were from the
above three categories, and how to depict their data
in order to remove them from the survey results?
Again, neutrosophic statistics.

30
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Neutrosophic Numerical
Measures

Example with Neutrosophic Numbers a + bl ,
where a, b are real numbers, and Iis indeterminacy,
such that [?=1and 0-1 = 0.

Let’s have the neutrosophic numbers:

—2—41,-1+0-1,3+5I,6+7I.
Compute their mean:

31
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(—2—4D+(-14+0-D+B+5D+6+7) _
7 -

_—2—-1+3+6 —44+0+4+5+7
B 4 * 4
Compute their median:
(-1+0-D+@B+5) -1+3 0+5
2 ~ T2 T2
Compute the deviation of each neutrosophic
number with respect to the mean:
(-2 —41) — (1.5 +2]) = —3.5— 61,
(-1+0-1)—(15+2])=—-25-2I,
(3+5I)— (1.5+2I) = 1.5+ 31,
(6 +71)— (1.5 + 2I) = 4.5 + 5I.
Square the deviations:
(=3.5—61)% = (=3.5)%2 + 2(=3.5)(=6)I + (—6)?I?
=12.25+ 421 + 3612 = 12.25 + 421 + 361
= 12.25+ 78I
(=2.5-21)% = 6.25 + 141
(1.5+ 31)% = 2.25 + 18I
(4.5 + 51)% = 20.25 + 701.
We are following the formula:
(a + b)? = a? + 2abl + b?I?
= a? + 2abl + b?I

-1 =15+2L

I =1+ 25I.

or
(a + bD)? = a? + (2ab + b?)I.

Compute the standard deviation:

32
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S =

4
=10.25 + 451.

To compute the square root of a neutrosophic
number we denote the result as x+yl and
determine x and y:

V10.25 + 451 = x + yl.

Raise both sides to the second power:

10.25 + 451 = x2 + (2xy + y?)I.
Therefore:

_ J(lz.zs +780) + (6.25 + 141) + (2.25 + 181) + (20.25 + 70I)

{ 10.25 = x?2

45 = 2xy + y?

Since standard deviation is positive, we take
x = +v10.25 =~ 3.20

and replace it into the second equation:
45 = 2(3.20)y + y?

and solve for positive y:
y2+64y—45=0

whence

—6.4 + ,/6.4% — 4(1)(—45)
2(1)

Therefore, the neutrosophic standard deviation

of the previous four neutrosophic numbers is
3.20 + 0.641.

We observe that 3.20 is the classical standard
deviation of the determinate parts of the previous
neutrosophic numbers: —2,—1,3,6; but 0.64 is not

=~ (0.64.

y:
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the classical standard deviation of the
indeterminate parts of the previous neutrosophic
numbers: —4,0,5,7.

The classical standard deviation of the numbers
-4, 0, 5, 7, whose mean is 2, is:

](—4—2)2+ (0 —2)2 + (5 — 2)2 + (7 — 2)?

= 4.30.
4

Indeterminacy has propagated when squaring
the deviations.

Classical Neutrosophic
Numbers

A classical Neutrosophic Number has the
standard form:
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a+ bl,
where a, b are real or complex coefficients, and I
= indeterminacy, such 0-1 =0 and 12 =I.
It results that ["™ = I for all positive integer n.
If the coefficients a and b are real, then a + bl is
called Neutrosophic Real Number.

Examples: 2+ 31,5+ %I, etc.

But if the coefficients a and b be are complex,
then a+bl is called Neutrosophic Complex
Number.

Examples: (5+2i)+ (2 —-8i)I,I+i+91—il, etc.
where i = V—1.

A neutrosophic complex number can be better
written as:

a + bi + cl + dil, where a, b, ¢, and d are reals.

Of course, any real number can be considered,
by language abuse, a neutrosophic number.

For example:

5=5+0-],

or

5=54+0-i+0-1+0-i-1.

We call it a degenerated neutrosophic number.

A true neutrosophic number contains the
indeterminacy [ with a non-zero coefficient.

Division of classical neutrosophic real numbers.

(a1 + bll) - (az + bzI) = 7
We denote the result by:
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a; + byl
a, + byl
then multiply and identify the coefficients:
a; + byl = (x +yI)(a, + byI)
= xa, + xb,I + ya,I + yb,I?
= (azx) + (byx + ayy + byy)l.
Whence we form an algebraic system of
equations, by identifying the coefficients:

=x+yl,

a,x = a,
byx +a,y + b,y = by
or
ax = a,
b,x + (ay + by)y = by
One obtains unique solution only when the
a, 0
b, a,+ b,
or a,(a, + b,) # 0. Hence a, + 0 and a, # —b, are
that conditions for the division of neutrosophic real

numbers

determinant of second order =0

a; + byl
a, + byl
to exist.
Then
a
X =—
a;
and
azb, — a1 b,
y=—"7T"—""T73
a(a; + by)
or
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a; +byl a; ayb;—ayb,
a, + b, a, ay(a,+by)
As consequences, we have:
a+bl _ a+bl 1
ak+bkl ~ k(a+bl) Kk

number, and for a # 0 and a # —b.
1 a

for k a non-zero real

1
a+b1_a(a—+b)-1—m-l,forathandaqt—b.

3. Divisions by I, -I, and in general by kI, for k
a real, are undefined.

aZIbI = undefined, for any real k, and any realsa
and b.
In particular:
I
= undefined;
71
T undefined;
107 defined
o, = undefined;
a+ bl
T undefined;
a+ bl _
—— = undefined.
4. a+bI:E+E'I;fOFC¢O;
c C C
¢ c bc
ST ;——a(a+b)-1, for a # 0 and a # —b.
6. X —2 for h#0 (the classical division of
b+0-1 b
reals).
7. a+bI:g+2'I:a+b1_
1 1 1
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0 0 a0—0'b
a+b-1_E+a(a+b)-1_0+0.1_0' for

0and a # —b.

kI
a+bl a+b

—b.

Let’s fo a concrete example by calculation.
Whatis 2+30) -1 +1) =7
Denote:

2+3I

1+1

=x+yl
One has:
A+Dx+yD=x+vyl+xI+yl?=2+3I
x+ (x+2y)I =2+ 3l

x=2

Whence{x +2y=3
orx=2,y=0.5.
There

2+3 _

T 2+ 0.51
Let’s check:

2+ 31

24051 X
Then

2+05DN(x+yl)=2+3I,
2x + (2y + 0,5x + 0.5y) = 2 + 3I.
Whence

{ 2x=2
0.5x + 2.5y =3
hence

x =1, y=1,
or

38
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2+31 =14+1-I1=1+1
2+051 a '
Perfect.
Another example.
2+ 31 = vl
s+121 Y
Whence
{ 8x =
12x + 12y +8y =3
and we get
_ 2 _ 1
T8
and

1
12(Z)+20y=3, ory =0.

Therefore

2+31 1 01—
8+121 4. vy

which is a neutrosophic simplification since:
2+31 1-(2+31)_1

8+121 4-(2+30) 4

Now an example which is undefined:

2 +3I
=7
1—1
2431_
1—7 *7Y

A-Dx+yl)=2+3I

x+yl —xl—yl>=2+3I
or

x+(y—x—y)I=2+3I
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or
x—xI =2+ 3],

therefore
x=2 and —x =3,

which is impossible.

Therefore
2+3I _
171~ undefined.
And an example where it results infinitely
solutions:
I
-=7?
I
Denote
I
Y =x+ yI,
so
I(x+yD) =1,
or
xl +yI? =1,
or
x+yIl=1-1,

whence x +y =1, where x and y are unknown

reals.
We get infinitely many solutions:

xERandy=1-—x,
where R is the set of real numbers. Among

solutions there are:

1, I, 2-1, etc.
But since the division’s result should be unique,

we say that
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I
7 = undefined.

Root index n > 2 of a neutrosophic real number.

First let’s compute the square root:

Va + bI, where a, b are reals.

Let’s denote:

va+ bl =x+yl,

where x and y are real unknowns, and raise both
sides to the second power. One gets:
a+ bl = (x +yN? = x? + 2xyl + y?I1? = x? + 2xyl + y?I

=x% + 2xy + y?)I

x’=a
Whence {2xy+y2 _ b
x=++a
Hence )
y2+2Ja-y—b=0

and we solve the second equation for y:
F2Vatvda+4b F2Vat2Ja+b
- 2(1) - 2
=FVatvVa+b,

and the four solution are:
(x,y) = (Va,—Va+Va+b),(Va,—Va —Va +b),
(—Va,va+Va+b),or(—Va,va—va+b).
Thus:

y

VaF bl = va + (—Va+Vatb)l,
or
Ja - (Va +Va ¥ o),

or

41



Florentin Smarandache

—va+ (Va++Va+b)l,

or

—Va+ (Va-+Va+b)L

Let’s consider an example done through all
calculations:

O+ 71 =2
Let’s denote:
VO+ 7] =x+yl.

Then:
9+ 71 =x?+2xyl + y?I1? = x? + (2xy + y?)L.
Whence
x?2=9,0orx =43
{ 2xy+y?=7
Let’s find y:
x =3 x=-3
6y +y*=7 —6+y*=7
y2+6y—7=0 y>’—6y—7=0
+Dy-D=0 G-Ny+D=0
y=-7/y=1 y=7/y=-1
(3,-7),3,1) (=3,7),(=3,—-1).

Therefore, /9 + 71 = 43 + I (four solutions).
As a particular case we can compute V1.
Let’s consider VI = x + yI, then

0+1-1=x?+Qxy+y?-I
and we need to find x and y.
Whence x% = 0,orx = 0,
and 2xy + y?> = 1,ory? = 1,ory = +1.
Hence VI = +I.
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Similarly for VI.

Let’s consider VI = x + yI,

or 0+ 1-1=x"+ (Tpzg Chy"kxk) -1,
wherex™ =0, or x = 0,

and
n-1
Z Cﬁyn_kxk — 1’
k=0

or y" = 1, whence y = V/1 and we get n solutions:
a real solution y = 1 and n — 1 complex solutions in
the case we are interested in neutrosophic complex
solutions as roots index n of 1.
In the same way, we can compute root index n >
2 of any neutrosophic number:
Na—bl =x+yl
or
a+bl=x+yD"

n-1
— +(y +ch n—k k> [ =
— +<chynkk>

where (X means combination of n elements taken
by groups of k elements.

Whence x = Va if n is odd, or x = +Va if n is
even,

and

n—1 .
(Z Cﬁy""‘ﬁ) =b
k=0
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and solve it for y.

When the x and y solutions are real, we get
neutrosophic real solutions, and when x and y
solutions are complex, we get neutrosophic complex
solutions.

Let a + bi + cI + dil be a neutrosophic complex
number, where a, b, ¢, d are reals. Let’s compute
square root of it:

(\/a + bi+cl + diI)2 = (x + yi + zI + wil)?
a+ bi+cl+dil
=x2 —y? + z21? + w?i%1% + 2xyi + 2xzI
+ 2xwil + 2yzil + 2ywi?l + 2zwil?
=x2 —y2 + 221 — w?I + 2xyi + 2xzl
+ 2xwil + 2yzil — 2ywl + 2zwil
= (x2 —y2) + 2xyi
+ (2% — w? + 2xz — 2yw)I
+ (2xw + 2yz + 2zw)il.
Then we get a non-linear algebraic system in four
variables (x, y, z, w) and four equations:
x(—y?=a
2xy=b
z2 —w?+2xz—-2yw=c
2xw + 2yz + 2zw = d.
In a more general way, we can compute root
indexn of a neutrosophic complex number:

(a+bi+cl+dil)%=x+yi+zI+wiI,
where x, y, z, w are variables in the set of real
numbers.
Raising to the power n in both sides, one gets:
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a+bi+cl+dil =(x+yi+zl +wi)"
=f1(0y) + 00 9)i+ f3(x,y,w,2)]
+ fa(x,y,w, 2)il,
where fi, f5, f3, f4 are real functions.
Whence we get a non-linear algebraic system in
four variables (x, y, w, 2) and four equations:
fitt,y)=a
f2(,y) =b
if3(x'y'W'Z) =cC
falx,y,w,z) =d,
that we need to solve.
Similarly, one can compute square root of a
complex number.
Let a + bi, where i =+/—1, and a, b are reals, be a
complex number.
Va + bi = x + yi such that (x + yi)? = a + bi,
where x and y are real numbers;
or x? + 2xyi + y%i® = a + bi,
or (x2 —y?) + (2xy)i = a + bi,
x2—y2=a
2xy = b.
From the first equation x = +,/y? + ais replaced
into the second equation:
+2y,/y? + a = b. (RE)
Raising both sides to the second power one gets:
4y*(y* + a) = b?,

whence {

or
4y* + 4ay? — b? = 0.
Let z = y2. Then 4z2 + 4az — b? = 0, then
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—4a +,/16a% — 4-4(—b?) —4a +V16a? + 16b?

Z= 2(4) 8
_ —4at+4Va?+b?  —atVa®+b?
B 8 B 2 '
Then
\]—ai\/m
y=+ |—————,
2
and
b b +b
X =—= =
2y +2J—arm.z V2a t 2VaZ + b2
- 2 2
for y # 0.

Since (RE) is a radical equation, we need to check
each solution of unknown y to make sure the

solution is not extraneous.

. -a+va?+b?
Becauseva? + b? > ta, the expression — 2

0, therefore there are at least two real values for y,
\/ —a+Va? + b?
y=t |———
2
while -a —Va? + b? < 0 and one has equality only

when b = 0, resulting in y = 0.
V2 V2 V2 V2,

—+—-ior-———i,
2 2 2 2

As a particular case, \i =

since we write:

i=0+1-i,whencea=0,b=1,

and we replace both of them into the x and y of
previous formulas.

We can check the results:
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2
VE+JZ_ 2,22, 1 1
2 T2t Ty ettt Tt
2
and similarly (—72 — \/?El) =1

Let’s have another example, doing all
calculations:

3—4i=?
Denote 3 —4i = x + yi.
Then

3—4i=(x+yi)?=(x?-y%+ (2xy)i.
Whence
{xz —-y2=3

2xy = —4.
Solve this system.
From the second equation, y = _72, and replace y

into the first:

or

x*——-3=0,
or

x*—3x2—-4=0,
or

x?2—-4)(x*+1) =0,
whence
x?—4=0,
or
x =+2.
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Then
_ 224
= X +2
Solutions:
Vv3—4i=+(2 -

Checking the result:
[+2-1D])?=4—-4i+i?=3—4i.
Remarkably, we’ll get the same solutions if we
take the complex values of x and y, because:
x2 41 =0gives x = +V—1 = i,

and replacing them into the substitution y = =2
we get:

2_-20_-2_ -2 _
S Y

Then

V3—4i=x+yi

=+i+2i-i=4i+2(-1)=F2+i
=+(2-1).

One generalizes this procedure and one

computes root index n of any complex number:

Va+bi=2?

Similarly denote:

n\/a+bi=x+yi,
then
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a+biE(x+yi)”—(yi+x)"

ZCZk 2k; 2k XM= 2k

[
+ Z CTZlk+1y2k+1i2k+1xn_2k_1’
k=0
and one obtains a non-linear algebraic system of
degree n, in two variables x and y, and two
equations:
B

Z C,Z,lkka(—l)an_Zk =a
k=0
n—1
=
z C%k+1y2k+1(_1)kxn—2k—1 =h
\ k=0
that one solves with a computer program.

As a particular case, let’s compute the cubic root
of a complex number:

A

Va+bi=?
Then:
3\/a+bi=x+yi,
or

a+ bi = (x+yi)® = x3 + 3x%yi + 3xy?%i? + y3i3
= (% = 3xy?) + Bx%y —y?),
whence
x3 — 3xy?
{3x2y —y3=bh
and solve for x and y.
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From the first equation:

4 x3—a
y== 3x

Replace this substitution into the second
equation:
3

3 [0 )
- 3x 3a B

and solve this independent equation for x with a
calculator, and then find y from the above
substitution.

For example:

Vi=—i.
Neutrosophic Real or Complex Polynomial.

A polynomial whose coefficients (at least one of
them containing J]) are neutrosophic numbers is
called Neutrosophic Polynomials.

Similarly we may have Neutrosophic Real
Polynomials if its coefficients are neutrosophic real
numbers, and Neutrosophic Complex
Polynomials if its coefficients are neutrosophic
complex numbers.

Examples:

P(x)=x*+R2-Dx—-5+3I
is a neutrosophic real polynomial, while
Q(x) = 3x3 + (1 + 6i)x? + 5Ix — 4il
is a neutrosophic complex polynomial.
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From these polynomials we proceed to solving
Neutrosophic Real or Complex Polynomial
Equations.

Let’s consider the following neutrosophic real
polynomial equation:

6x% + (10 — Dx + 31 = 0,
and solve it just using the quadratic fromula:
—(10—1) /(10 — )2 — 4(6)(3])
X =
2(6)
—10+1£+v100 — 201 + 12 — 72]
12
—10+1++100—201 +1—721
12
—10 + 1 +v100 - 91/
12

Now, we need to compute v/100 — 911.

Let’s denote: V100 — 911 = a + BI,

where a,  are reals.

Raise both sides to the second power:

100 — 911 = a? + 2afBl + B2I? = a® + 2aPI + 21
=a?+ (2ap + B2,

whence
{ a? =100
2aB + p% = —91.
Hence a = +v/100 = +10.
1. If a=10, then 2(10)8 + % =-91, or B?+
208 + 91 = 0. Using the quadratic formula, one gets:
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_ —204,/202—4(1)91 _ —20 + V400 — 364

2 2
—20+6
—20+6 5 =7
=—=(
2 —-20-6
2

2. Ifa=-10, then g2 —208+91 =0,
g = 20 +,/(—20)2 —4(1)91 _ 20 + V400 — 364

2 2
20 + 6
_20%6 T, T
2 _<20—6_7
2 _— /.

The four solutions are:

(a,B) = (10,—-7),(10,—13),(—10,13),(—10, 7).
We go back now and find x:
_—10+1£+V100-9+1

12 '

X

Therefore, we previously found out that
v100—-911=10-7I, or =10+ 7I, or 10-—13], or

—-10+ 131.

Since one has + in front of the radical, 10 — 7i
and —10 + 7] get the same values for x. Similarly,

10 — 137 and —10 + 131.
—10 41+ (10 — 71)

X1,2 = 12
~10+1+10-71 —6I 1
iy 12 VIR
~10+1-10+7] —20+8 5 2
12 =T 1z 373"
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—10 +1 + (10 — 131)

X12 =

12
—10+1+10—-13] —12I _
= 12 12 ’
—10+1—10+13]  —20+14] _ 10+71
12 T 12 6 6

We got four neutrosophic solutions
(-31-3+21-1,-2+ 11} for

2 3 3 6 6
a neutrosophic real polynomial of degree 2.
First neutrosophic factoring:

P(x) =6x2+ (10 —Dx + 31 = 6[x—(—%1)] : [x—

5,2 1 10 7
(=5+30)]=6(x+31) (x+5-30)
Second neutrosophic factoring:
P(x) = 6x% + (10 — Dx + 31

o=t p-(-242)

—6( +11)( LU 71)
o)\ T T

Differently from the classical polynomial with
real or complex coefficients, the neutrosophic
polynomials do not have a unique factoring!

If we check each solution, we get:

P(x1) = P(xz) = P(x3) = P(x4) = 0.

Let’s compute:
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P( —P<_1O+71)
Xa) = 6 6
=6 (_1O+71>2+(10 1)(_10+71)+31
B 6 6 6 6
6 (100 1401 N 4912> N (—100) N 701
~\36 36 36 6 6
+101 712+31
6 6
100 140-1 49-1 100 70-1 10-I
T 6 6 6 6 6 6
7I+181
6 6
_ —1401 + 491 + 701 + 10/ — 71 + 18] _0-1
B 6 T 6
=z=0.

Another procedure of factoring a neutrosophic

real polynomial equation is the following.

Let’s have

PxX)=(A+B-Dx*+(C+D-Dx+(E+F-1)=0.

Suppose x; = a; + by and x, = a, + b,I are two

neutrosophic real solutions of P(x) = 0.

Then:

P(x) =(A+B-D[x—(ay + b D] [x — (az + by1)]
=(A+B-Dx*+(C+D-Dx
+(E+F-D.

We multiply on the second right hand side, and

then we identify the neutrosophic coefficients, and
solve for a4, by, ayandb,.

54



INTRODUCTION TO NEUTROSOPHIC STATISTICS

Research Problems.

1. In general, how many neutrosophic solutions
has a neutrosophic real polynomial equation of
degreen =17

So far, we know that such equation of degree 1
has none (in the case the neutrosophic division is
undefined) or one solution (in the case the
neutrosophic division is well defined).

2. How many different factorings, with factors
of first degree, are possible for a neutrosophic real
polynomial of degree n? We got two different
factorings for aparticular polynomial of degree 2.

3. - 4. Similar problems for neutrosophic
complex polynomial equations and neutrosophic
complex polynomials of degree n > 1.
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Neutrosophic Random
Numbers

Neutrosophic Random Numbers can also be
generated using, instead of only crisp numbers, a
pool of sets. For example, let’s suppose one has 100
balls and on each ball is written an interval [a, b]
where a,b € {1,2,3,...,100}and a < b.

When a=b we get a crisp number [a,a] =a,
while for a < b we get a set/a, b].

Then randomly one extracts a ball, one registers
its interval, then one returns it back to the pool.
And so on. Instead of a random sequence of crisp
numbers, we get a random sequence of intervals.
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Example with
Neutrosophic Data

Let’s have the following four observations:

6,[2,5],30,[18,24].

The second and fourth observations are unclear,
i.e. [2,5] means a number in this interval, but we
don’t know which one; similarly for [18, 24].
Therefore we have two indeterminacies.

In order to uniformize let’s rewrite all
observations as intervals:

[6,6],[2,5],[30,30],[18, 24].

Each observations can be a subset, not
necessarily a crisp number a (closed, open, half
closed — half open) interval.

Compute the median:
[2,5] +[30,30] [2+30,5+30] [32,35] [32 35]

2 - 2 2
= [16,17.5].
Therefore the medium is a number between 16
and 17.5.
One computes their mean:
[6,6] + [2,5] + [30,30] + [18, 24]

22

4
_[64+2+30+18,6+5+ 30+ 24]
- 4

_ [56,65] [56 651 (14, 16.25]
I AV
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Therefore the average is a number between 14
and 16.25.
Compute the deviations and square them:

a.

[6,6] — [14,16.2] = [6 —

16.2,6 — 14] = [10.2,—-8];

[2 —16.25,5 — 14] = [—14,25,—9];

b

[10.2,—8]%? = [-10.2,—8] - [-10.2,—8]
= [(—8)(—8),(—10.2) - (—=10.2)]
= [64,104.04].

[2,5] — [14,16.25] =

[—14.25,—-9]% = [(—9)?, (—14.25)?] = [81,203.0625];

C.

[30,30] — [14,16.2] =

[30 — 16.2,30 — 14] = [13.8, 16];

[18 — 16.2,24 — 14] = [1.8,10];

d

[13.8,16]? = [13.82%,16%] = [190.44, 256];
[18,24] — [14,16.2] =

[1.2,10]2 = [1.82,102] = [3.24, 100].

Compute the standard deviation:

|

[64,104.04] + [81,203.0625] + [190.44, 256] + [3.24,100]

4

I

64 + 81+ 190.44 + 3.24 104.04 + 203.0625 + 256 + 100

4 ’ 4
=,/[84.67,165.775625 =
[V84.67,V165.775625] ~ [9.20163, 12.8754].
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Indeterminacy related to
the sample size

Suppose one has the following five observations:

17,12,5,8,9,
but one of them is certainly wrong, yet we don’t
know which one.

What to do to approximate the calculations?
Let’s first increasable reorder the observations:
5,8,9,12,17,

and then study all possibilities.

Sample Wrang Correct Median Mean Devigtions Squared Standard
Number Observations Observations Deviations Deviation
i 3 —35 12.25
9 —i5 6.25
12 0.5 0.23
17 5.5 30.25
5 105 115 3.5
F]
5 —5.75 33.0625
El ] 3.0625
12 1.25 15625
17 6,25 39.0625
B 10.5 10.75 4.38035
3
5 —5.5 30.25
] —25 6.25
12 15 2.2%
17 6,5 42.25
9 100 105 4.5
4
5 22,5625
8 3.0625
9 A 0.5625
17 25 52,5625
12 85 9.75 443706
5
5 —35 12.25
2 —05 0.25
kl 0,5 0.25
12 1.5 12.25
17 85 8.5 2.5
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Now we combine the five results.
a. Interval style:
the median belongs to the interval [8.5,10.5];
the mean belongs to the interval [8.5,11.5];
the standard deviation belongs to the interval [2.5,4.43706].
b. Average Style:
10.5+10.5+10.0+ 85+ 8.5 _

themedian = z 9.6;
11.5+10.75+10.5+9.75 + 8.5
themean = z =10.2;
andstandarddeviation

_ 3.5+ 4.38035 + 4.5 + 4.43706 + 2.5
B 5

=~ 3.86348.
c. Weight Average Style:

One assigns a weight to each sample. The sample
weight may represent the chance that the respective
sample could be the right sample, after discarding
the wrong observations.

In general, the weights wy,w,,...,w, € [0,1] such
that

wytwy, +--+w, =1

In the case when the sample weights are
determined from criteria different from each other
and therefore the sum of weights is not 1, and the
observations are a;+a,+--+a, the weight

average is:
wiay +wpay + -+ wypay,

W1+W2+"'+Wn
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In our example, if w; = 0.4,w, =0.1,w3 = 0.3,w, =
0.2,ws = 0.7, then:
theweightedaveragemedian
_0.4(10.5) +0.1(10.5) + 0.3(10.0) + 0.2(8.5) + 0.7(8.5)
B 0.4+0.1+03+0.2+0.7

=~ 9.35294;
theweightedaveragemean
_ 0.4(11.5) + 0.1(10.75) + 0.3(10.5) + 0.2(9.75) + 0.7(8.5)

04+0.1+0.3+0.2+0.7

=~ 9.83824

and theweightedaveragedeviation
_ 0.4(3.5) + 0.1(4.38035) + 0.3(4.5) + 0.2(4.43706) + 0.7(2.5)

04+01+03+02+0.7

~ 3.42673.

According to the sample weights, it’s a larger
chance that the right sample is the fifth one.
Therefore, the combined statistical metrics of all
samples would be inclined to approach the fifth
sample’s statistical metrics.

This example can be generalized for n
observations, such that k observations among them
are wrong, wheren>2and 1<k <n-—1.

With a computer program, one studies each of
the (*~* samples resulted after discarding k wrong
observations, where ("% means combinations of n
elements taken in groups of n-k elements. Each
sample has the size n-k. For each sample one
calculates its median, mean, deviations, standard
deviations, and of course other statistical metrics
required by the neutrosophic problem to solve.
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Then we combine (7% results using either
interval style, the average style, the weighted
average style, or other procedures that the reader
may design depending on the problem.
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Neutrosophic Binomial
Distribution

The classical Binomial Distribution is extended
neutrosophically. That means that there is some
indeterminacy related to the probabilistic
experiment.

Suppose each trial can result in an outcome
labeled success (S), or its mutually exclusive
outcome labeled failure (F), or some indeterminacy
(2.

For example: tossing a coin on an irregular
surface which has cracks, the coin can fall inside a
crack on its edge, and thus one gets neither head,
nor tale, but indeterminacy.

We conduct a fixed number of small experiments
(that we call trials). The outcomes of the trials are
independent. For each trial, the chance of getting S
is the same; similarly for the chance of getting F, or
of getting L

The neutrosophic binomial random variable
xis then defined as the number of successes when
we perform the experiment n > 1 times.

The neutrosophic probability distribution of x
is also called neutrosophic binomial probability
distribution.

For n trials it is important the way one defines
the indeterminacy.
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First, it is clear that getting indeterminacy in
each trial means indeterminacy for the whole set of
n trials. Secondly, getting indeterminacy in no trial
means no indeterminacy for the whole set of n trials.

But what about getting indeterminacy in some
trials, and determinacy (i.e. success or failure) in
other trials?

This partially indeterminate and partially
determinate set of n trials depends on the problem
one needs to solve and on the expert’s point of view.

One can define an indeterminacy threshold:

th = number of trials whose outcome is indeterminate,
whereth € {0,1, 2, ...,n}.

The cases with a threshold > th will belong to the
indeterminate part, while for a threshold < th they
will belong to the determinate part.

Let P(S) = the chance a particular trial results in
a success,

and P(F)=the chance a particular trial results in
a failure, for both S and F different from
indeterminacy.

Let P(I) = the chance a particular trial results in
an indeterminacy.

For x€{0,1,2,..,n}, NP (exactly x successes
among n trials) = (T, I, F,), with
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- P)T Zc < P(D¥P(FY™F

I ~ (n
x' (n x)! RAC
(n —x)! e
-;7@ i PP
th
nl e PFP(F)TE
=;-P(S) ' K(n—x—-k)!"
k=0
Similarly:
R P(D)* - P(F)n—Y~k
FX_Z =25 PO [Z K (n—y— k) ]’and
y=0 y—O
V#EX V#EX

n!
L= ) e PO
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where (), means combinations of u elements

taken by groups of v elements:
v u!
= vI(u—v)!

and u! is u factorial, u!=1-2-3-...-u.

Also:

T, = chance of x successes, and n —x failures
and indeterminacies but such that the number of
indeterminacies is less than or equal to
indeterminacy threshold;

F, = chance of y successes, with y # x and n —
yfailures and indeterminacies but such that the
number of indeterminacies is less than or equal to
the indeterminacy threshold,;
and I, = chance of z indeterminacies, where z is
strictly greater than the indeterminacy threshold.

Ty + 1, + E = (P(S)+PU)+P(F)™

In most applications,

P(S)+P()+P(F) =1,

and this case is called complete probability.

But for incomplete probability (where there is
missing information):

0<PS)+P()+P(F)<L1

While in the paraconsistent probability (which

has contradictory information):
1< P(S)+P(U)+P(F)<3.

An Example.

Among the watches sold by a store 80% had a
digital display and 10% an analog display. There is
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a number of watches sold for which the storeowner
has no evidence about their type of display, and he
asks his manager assistant about them. Not
knowing the manager’s previous estimations, the
assistant estimates the unknown type of watches to
be 20%.

Let’s consider a neutrosophic random variable

x = the number of watches among the next 5
buyers that have an analog display.

Therefore:

P(F) = P(digitaldisplay) = 0.8,
P(S) = P(analogdisplay) = 0.1,
P(I) = P(indeterminacy) = 0.2.

We got a paraconsistent neutrosophic probability
since the information comes from the different
sources that estimate independently. We have
contradiction between the estimations of the
manager and his assistant, because

08+01+02=11>1.

We have a neutrosophic binomial distribution.

Let’s say the indeterminacy threshold is 2.

We define the random variable X as follows:

x = number of watches that have an analog
display among the next 5 watches to be bought;

S (0.2)4(0.8)5x*
i k'(5—x—k)!
where x =0,1,2,3,4,5.
The chance that exactly 2 watches are analog, i.e.

5!
_ X .
T, == (01)

x = 21is:
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7, = ; 0.2 (0.2)00!-3(!0.8)3 (o.zit(z?.s)z
% = 0.0992.
b= ) S [5 OO
ST =
Ry
. [ 2 %‘ (forz =3)
+2(02)" [ 1 %‘ (forz =4) +
%(0.2)5 : L;%] (forz = 5)
20 (02)°- (0.12)‘!’(2(!).8)2 (0.111(1(?.8)1 (0.153(!).8)0
+5-(0.2)*- (0-1(); (1(!)-8)1 (0.1112(;.8)0
+1-(0.2)°- [W] = 0.07232.

F> can easier be computed (instead of using its
combinatorial formula) as :
F,=PS)+P()+PF) -T,—1I,
= (0.1+ 0.2 + 0.8)° — 0.0992 — 0.07232
= 1.43899.
If we normalize the vector
(Ty, I, Fy) = (0.0992,0.07232,1.43899)
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by dividing each vector component by their total
sum

0.0992 + 0.07232 + 1.43899 = 1.61051,

we get (T, 15, F,) = (0.061595,0.044905, 0.893500).

For incomplete and paraconsistent probabilities
it doesn’t matter if we normalize at the beginning or
at the end, we’ll get the same result.

Remark.

Since a third component (the chance of
indeterminacy) was added to the binomial
distribution, the neutrosophic binomial distribution
actually resembles a summation of classical
trinomial distribution:

(pr +i+p)"

where p; and p, are the probabilities that the two
mutually exclusive events ( E; and E, ) occur
respectively, while «» is the chance of getting
indeterminacy.

Let’s denote by A(a,B,y) the probability of
obtaining a events E;, p indeterminate events, and
y events FE,, where of course 0 < a,f,y <n,and a +
B + v =n, as results of nindependent trials.

Of course, as in classical trinomial distribution,
one has

A(a,By) = piifp)

withn=a+p+y.

lﬁl
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We need to define what indeterminacy means
within n trials. Let th be the indeterminacy
threshold. For th + 1 or more indeterminacies, we
consider them as indeterminacy, otherwise we have
determinacy.

Then for x € {0, 1,2, ...,n},

NP(exactly x events E, among n trials) = (Ty, I, Fy),
where :

To= ). A@wpm—x=p)
L= ) A@pn-a—p

th+1<f=<n
O<asn-th

E, = 2 A(a,f,n—a—p)
0sasn, a#x
0<f<th
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Neutrosophic Multinomial
Distribution

The previous neutrosophic binomial distribution
is generalized for the case when at each trial there
are r(=2) possible outcomes and some
indeterminacy.

Suppose all possible outcomes are

EE,, .., E,
with corresponding chances to occur
P,P,, .. P.

and some indeterminacy I with corresponding
chance to occur i.

Then we have the multinomial expansion:

Py +Py+-+ B +0D)"

for n trials.

Let’s denote similarly by A(a, ay,..,a,.B) the
probability of obtaining: exactly a; events E;, a,
events E, , ... , a, events E,, and B indeterminate
events,

where 0 < aq, ay,... ,a, B <n

and a; + a, +-+a,+B =n,

as results of n independent trials, then

Alay, ag, ..., B)

n!
a a a .
= — PP L PP
al ay! ooa! B

Consider the same th as indeterminacy treshold.
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Let the random variable X; denotes the number
of times events E; occurs, for any j € {1,2,...,7},in n
independent trials.

So we have a multivariate distribution.

Then the neutrosophic probability of obtaining
exactly x; events E;, x, events E,, ..., x,, events E,,
in n trials is

(Txl, X, e Xy? Ly, X, X! E, xzr...,xr)’ where

Tx1' XXy Z A(xq, X2, s Xy B)

0<ps<th

le, X2, Xy = Z A(ahaz, ey Ay ﬁ)
th+1<f<n
0sajsn—th, for je{1,2,..,1}

Fxl, X, Xy

% 0<ps<th Aay, ay, ..., ar, B).

(a1,@2,..r)E{1,2,.., NI\ (X1,X2, s Xs)

72



INTRODUCTION TO NEUTROSOPHIC STATISTICS

Neutrosophic Scatter Plot

ANeutrosophic Scatter Plot is a picture of
points (x, y), such that at least a point is not well
defined.

For example the point (3, 5) is well defined, while
the points (|2, 4), 7) or (-6, [0, 1]) or ({—2,—4},3) or
([1, 2], [5, 7]) are imprecise.

As an example, let’s consider a sample of size

n = 4 yielding the accompanying data:

Neutrosophic Observation

_yn
5 + °
a1
. B
2
N
I I I I I I —>
0 1 2 3 4 5 &6 X

2D NEUTROSOPHIC SCATTER PLOT
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The bivariate neutrosophic scatter plot has,
besides points as in classical scatter plot, also
segment of lines or parts of segments of lines, or
surfaces, or parts of surfaces (geometrical objects of
dimensions 1 or 2).

In general, an n-variate neutrosophic scatter
plot formed by n — 1 independent variables and one
dependent variable, is composed of geometrical
objects of dimensions O, 1, 2, ..., or n.

A neutrosophic dependent or response
variable is a dependent variable that has some
indeterminacy.

Similarly, a neutrosophic independent or
predictor variable is a variable that has some
indeterminacy.

A neutrosophic function

fn(xy, %z, 00, %) = 0
is a function depending on variables xi,x,,...,x,
such that the function has at least one
indeterminate coefficient, or at least one of its
independent variables x4,x,,..,x, has some
indeterminate value or is unknown.

Indeterminate coefficient or indeterminate value
can be a subset with two or more elements.

The graph of a neutrosophic function in general
has a higher dimension than the graph of a
corresponding classical function (whose indeter-
minacies have been removed).
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For examples, the classical function f(x,y) =0
represents a curve in the 2D-space, while the
neutrosophic function fy(x,y) = 0 can be a surface.

The classical function f(x,y,z) = 0 represents a
surface in 3D-space, while the mneutrosophic
function fy(x,y,z) =0 can represent a bigger
surface or a solid.

And in general while a classical function

f(x1, X2, ..., Xn) = 0
is a geometrical object of dimension d in the n-
dimensional space, a neutrosophic function
fN(Xl, X2, vuuy Xn) =0
is a bigger (as volume) geometrical object of
dimension d, or a geometrical object of dimension >
d.

The study of a neutrosophic function becomes
more difficult when, for example, a function’s
coefficient or a value of one of its independent
variables is completely unknown.

More classical statistical formulas can be
neutrosophically extended by replacing the
operations on crisp numbers with operations on
sets, that we present below.

Let’s S; and S, be two sets of numbers.

Then:

S+ S, = {x; + x3]x; € S;andx, € S,}(set addition)
S, — S, ={x; — x,|x; € S;andx, € S,}(set substraction)
S1-8, = {x1 " x3|x; € S;andx, € S,}(set multiplication)

a-S; =58, a={a-x;|x; € S;}(scalar multiplication)

75



Florentin Smarandache

a+S; =8, +a={a+ x;|x; € S;}(scalar set addition)
a—S; ={a— x4|x; € S;}(scalar set substraction)
Sy —a = {x; — a|x; € S;}(scalar set substraction)

51 {x1

X2

X1 € S1,X5 €85, # 0 } (set division)

St = {x]'|x, € S;}(set power)

51 — {x1

a la
a {a
Sl B X1

’{/S_l = {Vx1|x; € S;} (rootindexnof a set)

X1 €Sy,a # 0} (set scalar division)

X1 € 81,% # 0} (set scalar division)

As generalizations wehave:
m
z Si = {Z:’;l X |xl- € Sl-for alli = 1, 2, ,m}
i=1

Similarly :

m
HSl- = {I12, x; |x; € Siforalli = 1, 2,...,m}.
i=1
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Neutrosophic Regression

Neutrosophic Regression is the analysis of the
association between one or more independent
variables and a dependent variable that are
expressed by neutrosophic values. This association
is usually formulated as a neutrosophic equation or
formula, which enables prediction of future values
of the dependent variable.

The graph of this association is, instead of a
curve in classical statistics, for example:

a neutrosophic curve (we can call it a ,thick curve”,
or ,strip curve”), like:
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~

since in neutrosophic theory one deals with
indeterminacy and approximations.

As in classical statistics, the neutrosophic
regression may be linear (if the association between
independent, and dependent variables is linear), or
non-linear (if the association is non-linear). Among
the neutrosophic non-linear regressions of second
degree one mentions the parabolic, elliptic, and
hyperbolic regressions.
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Neutrosophic Least-
Squares Lines

The Neutrosophic Least-Squares Lines that
approximates the neutrosophic bivariate data
(1, ¥1), (2, ¥2), o, (X, Yn)
has the same formula as in classical statistics
y=a+ by
where the slope
Xxy —[Ex)Xy)/n]
Xx? = [(Zx)?*/n]
and the y - intercept
a =y—bx
with x the neutrosophic average of x,
and ythe neutrosophic average of y.
One uses the circumflex accent  above yin order
to emphasize that y is a prediction of y.
The only distinction from classical least-square

b=

line is that in neutrosophic theory we work with sets
instead of numbers.

Therefore, into the data, some x’s or y’s are
imprecise, expressed by sets. The consequence is
that « a » or « b » could result in being sets instead
of numbers.

Let’s see an example.
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Neutrosophic x ¥ xf xy v Neutrosophic Neutrosophic
Observation Predicted Value 1 Residual yi, #ii
Number
1 2 [1.3] 4 [2, 6] [1L9] (-21.3587, 18.7955) | (-17.7985, 24.3587)
2 [4.5] 6 [16, 25] [24.30] 36 (-20.5014. 38.5603) | (-32.5603, 26.5014)
3 1 2 1 2 4 (-21.7871,12.2073) | (-10.2073, 23.7871)
4 (6. 7) (10,13) (36, 49) (60,91) (100.169) | (-19.6443, 51.7367) | (-41.7367, 32.6443)
3 8 {14, 15} 64 {112,120} {196,225} | (-1B.7871, 58.325) | (-44.325,33.7871)
6 3 3 9 15 25 (-20.93, 25.3838) (-20.3838, 25.93)
Sum (24, 26) (38, 44) (130, 152) [215,264) (362, 468)
1 T T 1 1
2" 2 2. 2.0y 27

TABLE OF A NEUTROSOPHIC SAMPLE

An example of calculation with sets:

Zyz [1,3] + 6 + 2 + (10,13) + 5 + {14, 15}

=(14+6+2+10+534+6+2+13+5)

+ {14,15} = (24,29) + {14,15}
= {(24,29) + 14,(24,29) + 15}
= {(38,43),(39,44)} = (38,44).
Whence:
(38,44)

(215,264) — [(24,26) - ——]
b= 6

(130,152) — [@]
B (215,264) — [912,1144.]
(130,152) — [576,676]

(215,264) — (152,191) _ (24,112)
~ (130,152) — (96,113)  (17,56)

= (24 112) (0.42857,6.58824)
~\56" 17/ T :

Since
(24,26)

%= ~ (4,4.33333)
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and

_ (38,44) (38 44
- & _(?,?):(6.33333,7.33333)

we get

a = (6.33333,7.33333) — (0.42857,6.58824) -
(4,4.33333) = (6.33333,7.33333) — (1.71428,28.549) =
(—22.2157,5.61905).

Thus, the neutrosophic least-squares line is :

$ = (—22.2157,5.61905) + (0.42857, 6.58824)x.

Let’s graph this «line», which actually is a
geometrical surface between two lines.

If x =0,9 = (—22.2157, 5.61905).

If x=1,9=(—-22.2157 + 0.42857, 5.61905 +
6.58824) = (—21.7871, 12.2073).

We plot these neutrosophic points, which are
actually segments of line.
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f
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12.2073
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| .
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-21.7871

Neutrosophic Predicted Values are computed as
$i = (—22.2157,5.61905) + (0.42857, 6.58824)x;,
fori=1,2,..,6.

Hence:
y1 = (—22.2157,5.61905) + (0.42857,6.58824) - 2
= (—22.2157 + 0.4285- 2,5.61905
+ 6.58824 - 2) = (—21.3587,18.7955).
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v, = (—22.2157,5.61905) + (0.42857,6.58824) - [4, 5]
= (—22.2157 4+ 0.42857 - 4,
5.61905 + 6.58824 - 5)
= (—20.5014,38.5603).
y3 = (—22.2157,5.61905) + (0.42857,6.58824) - 1
= (—22.2157 + 0.42857,5.61905
+ 6.58824-1) = (—21.7871,12.2073).
vs = (—22.2157,5.61905) + (0.42857,6.58824) - (6,7)
= (—22.2157 + 0.42857 - 6,5.61905
+ 6.58824 - 7) = (—19.6443,51.7367).
¥s = (—22.2157,5.61905) + (0.42857,6.58824) - (8)
= (—22.2157 + 0.42857 - 8,5.61905
+ 6.58824 - 8) = (—18.7871,58.325).
Ye = (—22.2157,5.61905) + (0.42857,6.58824) - 3
= (—22.2157 4+ 0.42857 - 3,5.61905
+ 6.58824 - 3) = (—20.93, 25.3838).
The Neutrosophic Residuals are computed in
the same way as in classical statistics:
Y1=Y0Y2 =Yz Y0~ Vn
where y; are the real values of variable y,
and y, are respectively their predicted values.
The neutrosophic residuals are:
y1 —y1 = [1,3]—[(22.2157,5.61905)
+ (0.42857,6.58824) - 2 |
=[1,3] — (21.3587,18.7955)
= (1 —18.7955,3 — (—21.3587))
= (—17.7955, 24.3587).
Y2 — ¥, = 6 —[(—22.2157,5.61905) + (0.42857,6.58824)
- [4,5]) = 6 — (—20.5014, 38.5603)
= (—32.5603,26.5014)
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ys —y3 = 2— [(—22.2157,5.61905) + (0.42857, 6.58824)
1] =2—(-21.7871,12.2073)
= (~10.2073,23.7871).

ys — V2 = (10,13) — [(—22.2157,5.61905) +
(0.42857, 6.58824) - (6,7)] = (10,13) —
(—19.6443,51.7367) = (—41.7367,32.6443).

ys —ye = {14, 15} — [(—22.2157,5.61905) +
(0.42857,6.58824) - 8] = {14, 15} — (18.7871,58.325) =
(—44.325,33.7871).

Ve — Ve = 5 — [(—22.2157,5.61905) + (0.42857, 6.58824)
-3] = 5 —(=20.93,25.3838)
= (—20.3838,25.93).

It is remarkable to observe that each real value
of belongs to or it is included in the predicted value
interval:

y, = [1,3] € (—21.3587,18.3955);

y, = 6 € (—20.5014,38.5603);

ys = 2 € (—21.7871,12.2073);

v, = (10,13) c (—19.6643,51.7367);

ys = {14,15} c (—18.7871,58.325);
Ve = 5 € (—20.93,25.3838).

Deneutrosofications.

a. Another idea of solving this problem would
be to transform the neutrosophic data in classical
data, either taking the midpoint of each set, or the
average of a discrete set of the form {...}. Or taking
small neighborhoods centered in the midpoints of
each set. Or taking the minimum values of the sets
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and thus constructing multiple classical data. Then
one computes the least-squares line for each data.
Afterwards one makes the average of the results, or
one considers the min/max interval of the results.

b. Or one transforms the neutrosophic least-
squares line into a classical least-square line by
replacing the set representations of the coefficients
«a» and «b» by their corresponding midpoint, or
(depending on the application) by other interior
points of the two sets. In our previous example,

y = (—22.2157,5.61905) + (0.42857,6.58824) - x
becomes

y = -8+ 3.5,
where —8 is close to the mipoint of
(—22.2157,5.61905),
and 3.5 is close to the midpoint of

(0.42857,6.58824).

c. One could take the midpoints of the
neutrosophic predicted values neutrosophic
residuals, or initial neutrosphic data; or smaller
neighborhoods centered in the midpoints; or min
values and max values separately and obtaining
multiple classical data and calculating the needed
statistical characteristic for each of them, then
averaging the results.

Let’s compute the midpoints of neutrosophic
predicted values and neutrosophic residuals:
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Neutrosophic Neutrosophic
Predicted Value Residual Midpoint
Midpoint
-1.2816 3.2801
9.0295 -3.0295
-4.7899 6.7899
16.0467 -4.5462
19.7690 -5.2690
2.2269 2.7731
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Neutrosophic Coefficient
of Determination

We compute the Neutrosophic Residual Sum of
Squares, denoted by NSSResid, given by:

NSSResid = Z(y—f/)z = Zyz — aZy— bey

and the Neutrosophic Total Sum of Squares,
denoted by

NSSTo = Z(y —-y)? = Zyz - M.

n

The Neutrosophic Coefficient of
Determination, denoted by r7, is :
NSSResid

2 _
e Tk
and represents the proportion of variation in y,

when considering a linear relationship between

variablesx and y.

NSSResid = 3.2801% + (3.0295)? + 6.78992
+ (—4.5462)% 4+ (—5.2690)% + (2.7731)?
= 122.16;

(38,44)?

2
NSSTo = Zyz - % = (362,468) — g

= (362,468) 387 447
B ’ 6 6

= (362,468) — (40.1111,53.7778)
= (362 — 53.7778,468 — 40.1111)
= (308.222,427.889).
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Whence

e=1-

122-16 122-16 122.16
(308.222,327.889) '_<327889’308222)
=1—-(0.3726,0.3963)
= (1-0.3963,1— 0.3726)
= (0.6037,0.6274).

So between 60.37% and 62.74% of the sample
variation is explained by the neutrosophic
approximate linear relationship between x and y.

The Neutrosophic Correlation Coefficient or the
product moment neutrosophic coefficient Ty
(extension of Pearson’s correlation coefficient from
crisp data to neutrosophic data), has the same
formula as in classical statistics, but we work with
sets instead of numbers:

nyxy—xxxy

N e - Gy - )2
or
_ Sxy
WSS

where S,, is the neutrosophic covariance of x —
and y — values, and S,,S, are the neutrosophic
sample standard deviations.

Let’s consider the example from the previous
Table of Neutrosophic Sample of size 6.
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N
6 - (215,264) — (24,26) - (38,44)

B J6 - (130,152) — (24,26)% - [6 - (362,368) — (38,44)?]
(6-215,6-264) — (24 - 38,26 - 44)
JI(6-130,6- 152) — (242,26%)] - [(6 - 362, 6 - 468) — (382, 442)]
(1290, 1584) — (912, 1144)

JI(780,912) — (576,676)] - [(2172,2808) — (1444, 1936)]
(1290 — 1144, 1584 — 912)

B \/(780 — 676,912 —576) - (2172 — 1936,2808 — 1444)

B (146,672) B (146,672)
J(104,336) - (236,1364) /(104 - 336,336 - 1364
(146,672) (146,672)

~ (V34944,7/458304) (186.933,676.982)
~ ( 146 672

676.982°186.933
In general ry is a subset of the interval [-1,1]. If

ry is a subset of [0, 1] then the points (x;,y;) for i =
1,2,...,n, lie approximatively near a straight line of
positive slope, while when ryis a subset centered
or almost centered at O (or ry is nearly half in [0, 1]
and nearly half in [—1, 0] then their is virtually no
linear approximation but their may be a non-linear
association between the points.

) ~ (0.2157,3.5949) = (0.2157, 1].

Neutrosophic Random Numbers is a sequence
of numbers and indeterminacies occurring at
random with equal probability.

The occurrence of a number or indeterminacy is
not a guide to the numbers or indeterminacies
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that follow it, nor is it predicted from the numbers
or indeterminacies that precede it.

Using eleven balls numbered O to 9 and another
one ball that has its number erased (which one
cannot read, that we note by J), then repeatedly
withdrawing a ball and putting it back to the
container.

We randomly generate the sequence:

2,9,910,7,6,2,1,1,1,8..,,

where I = indeterminacy.

The computers can be enabled to generate
neutrosophic random numbers using the same
classical algorithms as for classical random
numbers, but adding one or more states of
indeterminacies with an equal chance of occurring
each of them.

As a generalization we proposed the
Neutrosophic Weighted Random Numbers,
where each number x; has a different chance p; to
occur, and each indeterminacy /; has a different
chance 7; to occur.

There are also cases when the numbers have to
be in a given set; for example, each number should
have k digits.
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A Neutrosophic Normal
Distribution

A Neutrosophic Normal Distribution of a
continuous variable X is a classical normal
distribution of x, but such that its mean 1 or its
standard deviation o (or variancec?), or both, are
imprecise.

For example, 1, or o, or both can be set(s) with
two or more elements. The most common such
distributions are when 11, o, or both are intervals.

The neutrosophic frequency function formula is
the same, except, as explained in the introduction,
replacing p by pv and o by on:

1 x — uy)?
XMy 04) = — e (- S 20
where X, actually means that variable X may be

neutrosophic (i.e. having some indeterminacy), and
similarly Ny (.,.) meaning that the normal
distribution N(. .) may be neutrosophic (i.e. having
some indeterminacy).

Instead of one bell-shaped curve, we may have
two or more bell-shaped curves that have common
and uncommon regions between them and are
above the x-axis. Each one is symmetric with
respect to the vertical line passing through the
mean (X = p).
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As a first neutrosophic example for normal
distribution, let’s consider a normal distribution
with p = 15 and o = [2, 3]|. Thus the standard
deviation is indeterminate.

=

Within one standard deviation of the mean
translates in this first example by:
p+o=15+[2,3]=[15-3,15+ 3] = [12,18],
or approximately 68% of values lie between
x € [12,18].
Within two standard deviations of the mean
translates by:
nt20=15+2-[2,3] =15+ [4,6] = [15— 6,15+ 6]
= [9,21],
or approximately 95,4% of values lie between
x € [9,21].
We could also compute the last interval as:
[12,18] + o = [12,18] +[2,3] = [12 — 3,18 + 3]
=[9,21].

92



Meutrosophic Probability Density

INTRODUCTION TO NEUTROSOPHIC STATISTICS

For three standard deviations:
n+30=15+3-[2,3] =15+ [6,9] = [15—9,15 + 9]
= [6,24],
or we could compute it as
[9,21] £ [2,3] = [9 — 3,21 + 3] = [6, 24],
and approximately 97,7% of values lie between
x € [6,24].

The area between the lowest and the highest
curve for each portion represents the burden
(indeterminacy) of the graph.

The neutrosophic normal distribution can be
regarded as a bell-shape curve with heavy margins.

A random variable X that has a neutrosophic
normal distribution is called a neutrosophic
normalvariable.

A second neutrosophic examplefor normal
distributionwhere yu = [15,17] and o = 2, hence now
B is indeterminate.

i _'-._.-.. 16, 2

) 1

(=]

e e ey —————— e
EN |

¥ P I} } }
T T T T T

|
i0 11 12 13 14 15 16 17 18 1% 20 11 12

Similar discussion for the second example:
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Within one standard deviation, i.e.
pt+o=[1517]+2=[15-2,17 + 2] = [13,19],
approximately 68% of values lie between x €
[13,19].

Within two standard deviations, i.e.
p+20=[1517]+2-2=[1517] + 4 = [15— 4,17 + 4]

=[11,21],

or computed as

[13,19] + o = [13,19] + 2 = [13 — 2,19 + 2] = [11, 21].
And within three standard deviations, i.e.
ut+30=[1517]+3-2=[1517]+ 6 =[15—-6,17 + 6]
= [9,23],
or computed as
[11,21]+2 =[11—-2,21+ 2] + 2 =[9, 23],
approximately 97.7% of values lie between
x € [9,23].

A third neutrosophic example of normal
distribution with u =[15,17] and ¢ = [2,3], hence
double indeterminacy, combines the previous
second graph with the first one.

Of course, the vagueness becomes wider!

With u = [15,17] and o = [2, 3], we get:

Within one standard deviation of the mean, i.e.

p+o=[1517] +[2,3] = [15 - 3,17 + 3] = [12,20],
approximately 68% of values lie between
x € [12,20].
Within two standard deviations of the mean, i.e.
i+ 20 =[15171+2-[2,3] = [15,17] + [4, 6]
=[15-6,17 + 6] = [9,23],
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or computed as [12, 20]+[2,3]=[12-3,20+
3]1=1[9,23],

approximately 95.4% of values lie between x €
[9,23].

And within three standard deviations of the
mean, i.e.

©w+36=[1517]+3-[2,3] = [15,17] + [6,9]
=[15-9,17 + 9] = [6, 26],
or computed as [9,23]+[2,3]=[9-3,23+3]=
[6,26],
approximately 97.7% of values lie between
x € [6,26].

Neutrosophication of Other Distributions.

In the same way, replacing one or more
distribution parameters by a set, we can extend the
classical distributions, such as: standard normal
distribution, bivariate normal distribution, uniform
distribution, sampling distribution, geometric
distribution, hypergeometric distribution, Poisson
distribution, chi-squared distribution, exponential
distribution, frequency distribution, Pareto
distribution, t-distribution, etc. to their
corresponding neutrosophic versions.

The set replacing a crisp parameter may have two
or more elements, or may be empty (the last case
meaning that the parameter is unknown).
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A Neutrosophic
Hypothesis

A Neutrosophic Hypothesis is a statement about
the neutrosophic values of a single or several
population characteristics.

The distinction between the classical (statistics)
hypothesis and neutrosophic hypothesis is that in
the neutrosophic statistics the variables that
describe the population characteristics are
neutrosophic (i.e. they have some indeterminate
values, or several unknown values, or an inexact
number of terms if the variable is discrete), or for
the values that we compare at least one of the
population characteristics is neutrosophic (i.e.
indeterminate or unclear or vague value).

Similarly to the classical statistics, a
Neutrosophic Null Hypothesis, denoted by NHo, is
the statement that is initially assumed to be true.
While the Neutrosophic Alternative Hypothesis,
denoted by NH,, is the other hypothesis.

In carrying out a test of NHp versus NH, there are
two possible conclusions: reject NH, (if sample
evidence suggest strongly that NHy is false), or fail
to reject NHy (if the sample does not support string
evidence against NHoy).

Examples:

NHy:11 € [90,100]
NH,:11 < 90
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NH,:p > 100
NH,:1 € [90,100],
where 11 represents the classical average 1Q of all
children born since 1st January 2001.

NHy:m=0.20r0.3
NH 1< 0.2
NHg:t> 0.3
NH,: 7 € (0.2,0.3)
NHg:n € {0.2,0.3},
where 11 represents the classical proportion of all
Ford cars that need repair while under first year of
warranty.

NHy:p <0.1orp >09
NH,:p =0.1
NH,:p =09
NHy:p>0.1andp < 0.9
NH,:p € [0.1,0.9],
where p represents the classical proportion of
outliers in a human population with respect to their
height, i.e. percentage of people whose height is less
than 150 cm, or percentage of people whose height
is greater than 190 cm.
Neutrosophic Outliers are noticeably unusual
values in the neutrosophic data; they can be crisp
values or neutrosophic values.

NHy: [p
which is equivalent to

1> [0.45,0.55],

min’ umax
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P > 045
and
Py > 0.55
where 1 represents a neutrosophic percentage
average of all electronic devices that get morally
depreciated after three years from their fabrication;
[N Pmax] 18 @ mneutrosophic value (rough
approximation).
NHg:p ;= 045
NHg:p . = 0.55
NHg:p ;< 0.45
NHg:p . < 0.55
NHg:p;, <0450rp . < 0.45.

NHy:u=7.0
NH,:n<7.0
NH,:u>7.0
NHy: % 7.0
A manufacturing plant made an approximate
survey of its selling, survey done by two
independent observes on different samples of same
size. Their findings are close, yet different. The
owner of the manufacturing plant decided to put
both results together, taking for each period the
[min, max] or [inf, sup] interval, in order to see the
fluctuation of sales. The variable x that describes
the survey is thus a neutrosophic one:
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Period Sold Quantity (in thousands)
[4, 6]

2001

2002 [7, 8]

2003 5.5 or 6.0

2004 (8.0, 8.8)

2005 7.5

The null hypothesis that the average annual
selling p = 7.0 is in the classical style, but the
variable x that p is referring to is neutrosophic.

So we still have a neutrosophic hypothesis.

Neutrosophic Hypothesis Testing Errors.

A census of a large population is hard or even
impossible to due. That’s why we have to use
samples. The inference we are making from a
neutrosophic sample characteristic to a population
characteristic is subject to error.

Similarly to classical statistics, there are two
types of errors:

1. Neutrosophic Type I Error, which is the error
of rejecting NHo when NHp is true.

2. Neutrosophic Type II Error, which is the
opposite of the previous error, i.e. the error of not
rejecting NHo when NHp is false.
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No matter what test we do, there is some chance
that a neutrosophic type I error will be made, and
there is some chance that a neutrosophic type II
error will be made too.

For example, rejecting the hypothesis Ho: 1 = 7.0
when it is true in one of the previous examples,
would determine the owner of the manufacturing
plant to take additional adjustments and spending
money when not really needed.

While accepting Ho: p = 7.0 when it is false, will
damage the future selling.

Probabilities of neutrosophic type I error and type
IT error are denoted by an (level of significance) and
respectively Bn.

Dealing with neutrosophic probabilities, anx and
Bxcan be subsets of the interval [0, 1]. The ideal test
procedure would havean = Bnv= 0, or ayand PByas tiny
intervals near zero.

For example, ifay= [0.07,0.10]in a test procedure,
done with different samples, over and over, a true
hypothesis Hp is rejected about 7, 8, 9, or 10 times
in a hundred.

If By =[0.07,0.10],then a false hypothesis Ho is
accepted about 7-10 times in a hundred.

Example.

A car manufacturer pretends that between 80%
and 90% of its car need no repair during the first 2
years of driving. In order to check the claim, a
consumer agency obtains a random sample of 50

100



INTRODUCTION TO NEUTROSOPHIC STATISTICS

purchasers and investigate them whether or not
their cars needed repair during the first 2 years of
driving. Let p denote the sample proportion of
responses that indicate no repair, and let it denote
the true proportion of no repairs (called successes).
The appropriate neutrosophic hypotheses are:
NHy:m € [0.8,0.9] versus NH,:m < 0.8

in order to check if the sample evidence suggests
that m < 0.9.

Neutrosophic Type I Error is to consider the car
manufacturer’s claim fallacious (i.e. # < 0.8) while
in fact it is correct.

And Neutrosophic Type II Error if the consumer
agency fails to detect the manufacturer’s incorrect
claim.

For avoiding serious consequences the consumer
agency decides a type [ error probability of
[0.01,0.05] but no larger can be tolerated. So

a =[0.01,0.05] is used for developing a test
procedure.

We recall, from classical statistics, that a
classical standard normal distribution of a random
variable z, is a normal distribution with the mean
value

u=0
and standard deviation
o=1.

Its corresponding curve is called standard
normal curve or z curve.
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A z critical value captures the lower-tail or
upper-tail area, or the central area under the z

curve.
The table of the most used z critical values in

classical statistics:

Critical Area to the Area to the Area
value, z right of z left of -z between -z
and z
1.28 .10 .10 .80
1.645 .05 .05 .90
1.96 .025 .025 .95
2.33 .01 .01 .98
2.58 .005 .005 .99
3.09 .001 .001 .998
3.29 .0005 .0005 .999

A normally distributed random variable x can
bestandardized as

where yu = x's mean value,
and ¢ = x's standard distribution.
If the neutrosophic null hypothesis about
variable xis:
NHy:u € [a, b],
where [a,b], with a<b, is the hypothesized
interval, then the neutrosophic test statistic is:
, X — [a.b]

s/\Vn
102



INTRODUCTION TO NEUTROSOPHIC STATISTICS

where X is the sample mean,
s is the sample standard deviation,
and n is the sample size, with n > 30.

Variable z has approximately a neutrosophic
standard normal distribution.

In neutrosophic statitics, X, s and even n can be
sets (not necessarily crisp numbers).

Alternative Hypotheses.

H,:u>b; Reject H, if minz > z critical value
(upper-tailed test);

H,:u < a; Reject Hy if maxz < —z critical value
(lower-tailed test);

H,:u € [a,b]; Reject H, if: either minz > z critical
value, or maxz < —zcritical value (two-tailed test).

Example.

Let’s consider the exam-anxiety scores for a
sample of an American College students were the
following:

n = 64,x = [48.0,50.0], and s = 25.

Then p = true mean exam-anxiety.

Hy: pt € [40.0,41.0]
Hy:p > 41.0.
The neutrosophic test statistics is:
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_ [48.0,50.0] — [40.0,41.0] _ [48.0 — 41.0,50.0 — 40.0]

25/\64 25/8
[7.0,10.0] 8:[7.0,10.0] [56.0,80.0]
- 25/8 25 - 25
560 80.0
[ = [2.24,3.20].

For a =0.10 the corresponding one-tailed z
critical value from the previous table is 1.28. Hence
H, is rejected because z = [2.24,3.20] > 1.28.

In conclusion, the mean exam-anxiety score is
higher than 41.0.
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The Neutrosophic Level of
Significance

The Neutrosophic Level of Significance a may
be a set, not necessarily a crisp number as in
classical statistics.

For example, a, = [0.01,0.10]is a neutrosophic
level of significance a, where a varies in the interval
[0.01,0.10].

A Neutrosophic P-Value is defined in the same
way as in classical statistics: the smallest level of
significance at which a null hypothesis H, can be
rejected.

The distinction between classical P-value and
neutrosophic P-value is that the neutrosophic P-
value is not a crisp number as in classical statistics,
but a set (in many applications it is an interval).

Neutrosophic P-Value = P(z > zcritical value,
whenH, is true), where P() means classical
probability calculated assuming that H, is true,
probability of observing a test statistic value being
more extreme than is was actually obtained.

Suppose one has calculated the neutrosophic P-
value at the particular level of significance a, where
a is a crisp positive number.

1. If max{neutrosophicP — value} < a, then reject
H, at level a.

2. If min{neutrosophicP — value} > a, then do not
reject Hy at level a.
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3. If min{neutrosophicP — value} < a <
max{neutrosophicP — value} then there is an
indeterminacy. Thus

a — min{neutrosophicP — value}

max{neutrosophicP — value} — min{neutrosophicP — value}
is the chance of rejecting Hy at level a,
and
max{neutrosophicP — value} — a
max{neutrosophicP — value} — min{neutrosophicP — value}

is the chance of not rejecting H, at level a.

Let ay be a set.

4. If max{neutrosophicP — value} < min{ay}, then
reject Hy at level ay.

5. If min{neutrosophicP — value} > max{ay}, then
do not reject Hy at level ay.

6. If the two sets, those of the neutrosophic P-
value and of the neutrosophic level of significance
ay intersect, one has indeterminacy. And one can
compute the chance of rejecting Hj at level ay, and
the chance of not rejecting H, at level ay.

In classical statistics, the P-value is computed
considering theTable of Standard Normal
Probabilities.

a. P-value is the area under the z curve to the
right of computed z, for Upper-tailed z test.

b. P-value is the area under the z-curve to the
left of computed z, forLower-tailed z test.

c. P-value is twice the area captured in the tail
corresponding to the computed z, for Two-tailed z
test.
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Let’s insert from the classical statistics the
Standard Normal Cumulative Probability Table [for
positive z-values only, since this is needed in our
below example]:

Standard Normal Cumulative Probability Table

Cumulative probabilities for POSITIVE z-values are shown in the following table: e, -

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 05000 05040 05080 05120 05160 05199 05239 05279 05319 05359
0.1 05398 05438 05478 05517 05557 05506 05636 05675 05714 05753
0.2 05793 05832 05871 05910 05948 05987 06026 06064 06103 06141
03 06179 06217 06255 06293 06331 06368 06406 06443 06480 06517
04 06554 06591 06628 06664 06700 06736 06772 06808 06844 06879

0.5 06915 06950 06985 07019 07054 07088 071283 07157 07190 07224
0.6 07257 07201 07324 07357 07389 07422 07454 07486 07517 07549
0.7 07580 07611 07642 07673 07704 07734 07764 07794 07823 07852
0.8 07881 07910 07939 07967 07995 08023 08051 08078 08106 08133
0.9 08159 08186 08212 08238 08264 08289 08315 08340 08365 08389

1.0 08413 08438 08461 08485 08508 08531 08554 08577 08599  0.8621
11 08643 08665 08686 08708 08729 08749 08770 08790 08810  0.8830
1.2 08849 08869 08888 08907 08925 08944 08962 08980 08997 09015
13 09032 09049 009066 09082 009009 09115 09131 09147 09162 09177
14 09192 09207 09222 09236 09251 09265 09279 09202 09306 09319

15 00332 09345 09357 09370 09382 09394 09406 09418 09429 09441
1.6 09452 09463 009474 09484 00495 09505 09515 09525 09535 09545
1.7 09554 09564 09573 09582 09591 09599 09608 09616 09625 0.9633
1.8 09641 09649 09656 09664 09671 09678 09686 09693 09699  0.9706
1.9 09713 09719 09726 09732 09738 09744 09750 09756 09761 09767

20 09772 09778 09783 09788 09793 09798 09803 09808 09812 09817
21 09821 09826 09830 09834 00838 09842 09846 009850 09854  0.9857
2.2 09861 09864 09868 09871 09875 09878 09881 009884 09887  0.9890
23 09893 09896 09898 09001 09904 09906 09909 09911 09913 09916
24 09918 09920 09922 09925 09927 09929 09931 09932 09934 09936

25 09938 09940 09941 09943 09945 09946 09948 09949 09951 09952
26 09953 09955 09956 09957 09959 09960 09961 09962 09963 0.9964
27 09965 09966 09967 09968 09969 09970 09971 09972 09973 09974
28 09974 09975 09976 09977 09977 09978 09979 09979 09980 09981
29 09981 09982 09982 09083 09984 09984 09985 09985 09986 09986

3.0 00087 09987 09987 09988 09988 09989 09989 0.9989 09990  0.9990
31 09990 09991 09991 09991 09992 09992 09992 09992 09993  0.9993
32 0.9993 09993 09994 09994 09994 09994 09994 09995 09995  0.9995
33 09995 09995 09995 09996 09996 09996 09996 09996 09996  0.9997
34 09997 09997 009997 09997 09997 09997 09997 09997 09997 0.9998

In the previous example,
H, - u €[40.0,41.0] versus H,:pu > 41.0,
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we found the neutrosophic z = [2.24,3.20]. We have
an Upper-tailed z test.

From the above Table of Standard Normal
Probabilities, the area under the z curve to the right
ofz; = 2.24is 1 —0.9875 = 0.0125

while for

z, = 3.20is 1 —0.9993 = 0.0007.

Thus, the neutrosophic

P — value = [0.0007,0.0125].

At the level of significance a; = 0.10, reject H,

since
max[0.0007,0.0125] = 0.0125 < 0.10.

At the level of significance a, = 0.0005, do not

reject Hy since
max[0.0007,0.0125] = 0.0125 > 0.0005.

At the level of significance a; = 0.01, one has
indeterminacy since

0.01 € [0.0007,0.0125]; therefore:

chance of rejecting H, at level a3 = 0.01 is

0.01 —0.0007  0.0093

0.0125 — 0.0007  0.0118
and chance of not rejecting H, at level a; = 0.01

= 79%

is
0.0125-0.01 _ 0.0025
0.0125 —0.07 0.0118

= 21%.
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The Neutrosophic
Confidence Interval

The Neutrosophic Confidence Interval for a
population characteristics is defined, similarly to
the classical statistics, as an interval of plausible
neutrosophic values of the characteristic.

The neutrosophic value of the characteristic is
captured inside the interval with a chosen degree of
confidence.

A confidence level is associated with each
neutrosophic confidence interval, as in classical
statistics. It tells us how much confidence we have
in procedure used in constructing the neutrosophic
confidence interval.

The classical formulas for the confidence interval
are extended from crisp variables to neutrosophic
variables (i.e. variables whose values are sets):

1. When the neutrosophic value of the
population standard deviation o is known, the
Large-Sample Neutrosophic Confidence Interval
for the Population Mean p is:

o
X + (zcritical value) - —

Vn

where X is the large-sample neutrosophic mean,
and n is the neutrosophic size of the large-sample.

Thereforex, o, and/or n may be sets instead of
crisp numbers.

109



Florentin Smarandache

2. When the neutrosophic value of the
population standard deviation o is unknown (as in
most practical applications), and the sample size
exceeds 30, one uses the sample standard deviation
s instead of o for computing the Neutrosophic
Confidence Interval for the Population Mean p:

X + (zcritical value) %

For both formulas, the z critical value 1.645
corresponds to the confidence level of 90%, the z
critical value 1.96 corresponds to the confidence
level of 95%, and the 2z critical value 2,58
corresponds to the confidence level of 99%,
similarly as in classical statistics.

The confidence level of, for example, 90% does
not refer to the chance that the population mean
is captured in an interval, but to the percentage of
all possible successful samples (i.e. samples for
which p is included in the confidence interval).

An Example.

Many individuals partially loose vision because
of exposure to dust.

On a study involving 60 people (a sample), that
were constantly exposed to dust to their
construction work places, in average they lost
18%-20% of their vision accuracy, with a sample
standard deviation of 4%-5%.

The study investigator wishes a 90% confidence
interval for 1. Hence:

x = [18,20]
zcritical value = 1.645
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s =[4,5]
n = 60.

Therefore, the neutrosophic confidence interval
for the population mean 1 is:

[18,20] + (1.645) 1451

V60

_ [(18.20] 4 1.645(4) 1.645(5)

V60 /60
= [18,20] + [0.85, 1.06].
Let’s split into two parts:
[18,20] + [0.85,1.06] = [18 + 0.85,20 + 1.06]
= [18.85,21.06],

and
[18,20] —[0.85,1.06] = [18 — 1.06,20 — 0.85]
= [16.94,19.15].
Combining these two cases we get the
neutrosophic confidence interval:
[16.94,21.06].
The Neutrosophic Sample Size to estimate,
within the amount B, with ¢% confidence, of the
population mean 1 is:

__ [(zcritical value)-o
Ny = )

B
where z critical value should correspond to the

% confidence,

o is the population standard variation,

and ny is the resulting neutrosophic sample size,
hence ny may be a set (especially an interval).

For surety, we can take the sample size as
[max{ny}], where [ | means superior integer part.

Let’s see an Example.
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The business department wishes to estimate the
annual cost of office supplies for faculty at the
University of New Mexico to be within $40 of the
true population mean. The business department
wants a 95% confidence in their result accuracy.

How large should the sample be?

Because o is not known, it can be approximated

as
__range
75T

as in classical statistics.

Range is the difference between the highest and
lowest costs.

The amount spent on office supplies varied
between $500-$550 to $100-$150. Then

[500,550] — [100,150] [500 — 150,550 — 100]

~ —
= =

4 4
B [350,450] _ [350 450
4 B [ 4 4 ]
= [87.50,137.50].
Further, B = 40, z critical value is 1.96, and:
1.96[87.50,137.50]]*  1.96(87.50) 1.96(137.50)12
40 ] B [ 40 40 ]
= [4.2875,6.7375]% = [4.28752,6.7375%]
~ [18.38, 45.39].

ny =

Now
[max[18.38,45.39]] = [45.39] = 46.
Therefore the sample size should be 46.

112



INTRODUCTION TO NEUTROSOPHIC STATISTICS

Large-Sample
Neutrosophic Confidence
Interval for the
Population Proportion

Using the classical statistics one can define (in
the same way) the Large-Sample Neutrosophic
Confidence Interval for the Population
Proportion m:

1-—
p % (zcritical value) - ’w

for the case when min{np} >5 and min{n- (1 —
p)} =5,

where

p = sample proportion = number of sample
individuals that possess the property of interest
divided by sample’s size;

n = sample’s size;

ini = population proportion =
number of population individuals that possess the property of interest

total number of population individuals ’

with the distinction from the classical statistics

that in neutrosophic statistics the parameters p and
n may be setsinstead of crisp numbers, and the z
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critical value may be a set as well(for example it may
be [1.645, 1.96], i.e. confidence level of [90, 95]%).
The neutrosophic sample statistics p, for min{n}
large enough, has a neutrosophic sampling
distribution (normal curve) that approximates the
population mean nt and its standard deviation

n(1-m)

n

Let’s see an Example.

A survey on a sample of 200 — 220 consumers is
done at a car dealer asking the following question:
“Would you be willing to trade in your old car when
buying a new car?” The number of yes’s was 150.
The confidence level should be 99%. If it denotes the
proportion of all consumers who would trade in
their old cars, one may consider p a point estimate
for 1

150 150 150

P =100, 201,..,220} [220'200

The sample’s size {200,201,...,220} means that
the surveyer was not sure about 20 people if they
were or not custumers of this car dealer. So, the
sample’s size is indeterminate (approximated by the
set {200,201, ...,220}),

z critical value = 2.58.

min{np} = min{{200, 201, ..., 220} - [0.68,0.75]}
= 200(0.68) = 136 > 5;

] - [0.68,0.75].
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min{n(1 — p)} = min{{200, 201, ... 220}
-(1-10.68,0.75])}
=200 - min([1 — 0.75,1 — 0.68])
=200 - min([0.25,0.32]) = 200(0.25)
=50 >5.
The large-sample neutrosophic confidence
interval for 1t is:

[0.68,0.75] - (1 — [0.68,0.75])
{200,201, ..., 220}

= [0.68,0.75] + 2.58

[0.68,0.75] - [0.25,0.32]
{200,201, ..., 220}

= [0.68,0.75] £+ 2.58
_\/[0.68(0.25) 0.75(0.32)

[0.68,0.75] + 2.58 J

220 " 200

= [0.68,0.75] £+ 2.58

-4/[0.000773,0.001200]
= [0.68,0.75] + 2.58
-4/0.000773,+/0.001200
= [0.68,0.75] + 2.58
-[0.027803,0.034641]
= [0.68,0.75] + [0.071732,0.089374].
Split it into two parts:
[0.68,0.75] + [0.71732,0.089374]
= [0.751732,0.839374],

and
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[0.68,0.75] — [0.071732,0.089374]
= [0.68 — 0.089374,0.75 — 0.071732]
= [0.590626,0.678268].
Combining both results in a conservative mode,
we get:
[0.590626,0.839374].
The formula for choosing the neutrosophic
sample size is the same as in classical statistics, but
using sets instead of crisp numbers:

s 2
zcritical Value]

B
where B = the specific error bound.

If t cannot be estimated using prior neutrosophic
information, one uses nt = 0.5 which gives a
conservatively large sample value (i.e. a larger n
than any other value of t would do).

nzn(l—n)-[
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The Neutrosophic Central
Limit Theorem

The Neutrosophic Central Limit Theorem, which
is an extension of the classical Central Limit
Theorem, can be safely applied if min{n} exceeds 30,
where n is the neutrosophic sample size (i.e. n may
be a set).

The Neutrosophic Central Limit Theorem states
that the neutrosophic sampling distribution of x si
approximated by a neutrosophic normal curve
when min{n} is sufficiently large, no matter how is
the population distribution.

Of course, if the population distribution is
normal, then min{n} may be smaller than 30, and
the neutrosophic sampling distribution of X is
normal too for any neutrosophic sample size n. But,
if the population distribution is not normal, then
min{n} should be greater than 30, and the
neutrosophic sampling distribution of x is only an
approximation to the normal curve: the larger is
min{n}, the better approach.

The last result has enabled the neutrosophic
statisticians in order to infer a population mean, to
develop large sample neutrosophic procedures even
when one deals with an unknown shape of the
population distribution.
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Using similar notations:

n = random neutrosophic sample size;

X = neutrosophic mean of the sample size;

u = population mean;

o = population standard deviation,;

Uz = neutrosophic mean of the ¥ distribution;

and

oz = neutrosophic standard deviation of the x
distribution;

one has, as in classical statistics:

Hx = W,

g
and oz = N

The neutrosophic central limit theorem does not
apply, as in classical statistics, when min{n} is
small and the shape of the population distribution
is unknown.

Let’s introduce the Small-Sample Neutrosophic
t Confidence Interval for the Mean of the Normal
Population, which is just a neutrosophication of
the classical one-sample t confidence interval for
the population mean p:

s
X * (tcritical values) - —

Vn

where similarly:
X = neutrosophic sample mean,;
s =neutrosophic sample standard deviation;
n = neutrosophic sample size;
and
tcritical value is based on
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min{n} — 1 degrees of freedom (df).
X,s,andn may be sets instead of crisp numbers.
For small min{n}, the neutrosophic t confidence
interval for the population mean p is appropriate
when the population distribution is normal or
approximately normal. Otherwise, another method
should be employed.

The neutrosophic t distribution is more spread
out, of course, than the neutrosophic standard
normal (z) curve, because the use of s, instead of
population deviation o, produces extra variability.

The neutrosophic t distributions are
distinguished from one another by the degree of
freedom, which can be a positive integer greater
than or equal to
1, or a set of positive integers greater than or equal to 1,
for example:

nn+1,.,n+m}

The higher is min{n}, the closer the neutrosophic
t distribution is to the neutrosophic z curve. For
min{n} > 120 one may use the z critical values. The
neutrosophic tcurve, for a fixed number of degrees
of freedom, is in general bell-shaped and centered
at zero in neutrosophic style way.

An Example.

119



Florentin Smarandache

A small random sample of 18 workers, at the Rail
Road, was investigated regarding the weights these
workers are able to lift in their work place. The
neutrosophic sample average found was x between
8 kg and 10 kg, with a standard deviation s between
3-4 kg.

Let’s say a confidence level of 95% is required for
capturing the population mean p.Thus:

X = [8,10](an interval)
s = [3,4](an interval)
n = 18,
hence a small sample size, which requires a
neutrosophic ¢t critical value based on 18—-1=
17 df .

From the below classical statisticsTable of t
Critical Values,we find out that for 95% confidence
level and 17 df, the corresponding

tcritical value = 2.11.
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t Table

cumprobl  fy  fx  fy  ly gy fy  fm oty fe  fw g
onedall 050 025 020 045 010 005 0025 001 0005 0001 00005
twotals] 100 050 040 030 020 010 005 002 001 0002 0001

0000 1000 1376 1963 3078 6314 12711 318 6366 31831 63682
0000 086 1061 1386 1886 2920 4303 6965 995 2237 3159
0000 0765 0978 1250 1638 2363 3182 4541 5841 10215 1294
0000 0741 0941 1190 158 2132 2776 3747 4604 7413 8610
0000 0727 0920 1156 1476 2015 2511 33 4032 588 6869
0000 0718 0906 1134 1440 1943 2447 33 3707 528 5959
0000 0711 08% 119 1415 1895 2365 2988 3499 4785 5408
0000 0706 0889 1108 1367 1860 2306 28% 335 4501 04
0000 0703 0883 1100 1383 1833 2262 28 3H/0 427 478
0000 0700 0879 1093 1372 1812 228 2764 3169 414 458
0000 0697 0876 1088 1383 17% 2201 2718 3106 405 443
0000 06% 0873 1083 136 1782 2179 2681 3035 3930 4318
0000 0694 0870 1079 1360 1771 2160 2630 3012 382 4
0000 06% 0868 1076 134 1761 245 264 2977 37T 440
0631 0866 1074 1341 178 2131 2602 2047 378 401
0000 06%0 0865 1071 137 1746 210 2983 2021 36%6 4016
0000 0689 0863 1069 1333 1740 2110 257 2898 3646 3965
0000 0688 0862 1067 1330 1734 2101 2582 2878 3610 392
0000 0688 0861 1066 138 1729 208 2539 2861 3519 3888
0687 0860 1064 135 175 2086 258 2845 352 380
0000 0636 0869 10683 138 1721 2080 2518 2831 357 3819
0000 068 0858 1061 1321 1717 2074 2508 2819 3506 3792
0000 068 0858 1060 1319 1714 2069 2500 2807 3485 3768
0000 0685 0857 1089 1318 1711 2064 242 2797 3467 3746
0000 0684 08% 1088 1316 1708 2060 2485 2787 3450 3706
0000 0684 0856 1088 1315 1706 2066 2479 279 348 3707
0000 0684 08% 1057 1344 1703 202 2413 271 34M 360
0000 0683 085 1096 1313 1701 2048 2467 2763 3408 3614
0000 0683 084 1055 1311 16% 2046 2402 2796 33% 3689
0000 0683 0854 1056 1310 1697 202 247 2750 3385 3646
0000 068t 0851 1080 1303 1684 2001 248 2704 3307 3554
0000 0679 0848 1045 126 1671 2000 230 2660 3232 3480
0000 0678 0846 1043 122 1664 1990 2374 2639 315 3416
100 0000 0677 0845 1042 1200 1660 1984 2364 2626 3174 330
1000 0000 0675 0842 1037 1282 1646 1962 230 2881 3098 330

Z) 000 0674 0882 10% 1282 165 1960 236 2676 300 3291

€O O ~—4 o cn e oo o s Sk

prel e

FREREREESS DS o
= =

SIS E 8

0% 50% 60% 70% 60% 90% 95% 96% 99% 99.8% 999%
Confidence Level
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Apply the previous formula:

¥ + (teritical val )-i—[810]+211[3’4]
X T (tcriacal value \/ﬁ_ ) T <. \/ﬁ
B 2.11(3) 2.11(4)
B I m]

= [8,10] + [1.492,1.989].
Split the calculation into two possibilities:
[8,10] + [1.492,1.989] = [8 + 1.492,10 + 1.989]
= [9.492,11.989],
and
[8,10] — [1.492,1.989] = [8 — 1.989,10 — 1.492]
=[6.011,8.508].

Now we combine both results in a conservative
way, and we get the neutrosophic t confidence
interval for the population average of weight lifting:
[6.011,11.989] kg.

122



INTRODUCTION TO NEUTROSOPHIC STATISTICS

References

1. Florentin Smarandache, Introduction to
Neutrosophic Measure, Neutrosophic Integral,
and Neutrosophic Probability, Sitech-Education
Publisher, Craiova — Columbus, 2013.

2. Neutrosophy. / Neutrosophic Probability, Set,
and Logic, by F. Smarandache, Amer. Res. Press,
Rehoboth, USA, 105 p., 1998;

3. David Nelson, The Penguin Dictionary of
Statistics, Penguin Books, London, 2004.

4. Graham Upton & lan Cook, Oxford Dictionary of
Statistics, Oxford University Press Inc., New York,
2006.

123



Frequency of families (in millions)

Neutrosophic distribution of family income frequencies

=

©o
>
>

[y
()]

©o

~

&~

o =k N

v

10-29 30-49 50-69 70-89 90-109 110-129

Income (in thousand $) per year

Neutrosophic Statistics means statistical analysis of
population or sample that has indeterminate (imprecise,
ambiguous, vague, incomplete, unknown) data. For
example, the population or sample size might not be exactly
determinate because of some individuals that partially
belong to the population or sample, and partially they do
not belong, or individuals whose appurtenance is
completely unknown. Also, there are population or sample
individuals whose data could be indeterminate.

In this book, we develop the 1995 notion of
neutrosophic statistics. We present various practical
examples. It is possible to define the neutrosophic statistics
in many ways, because there are various types of
indeterminacies, depending on the problem to solve.
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