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PRE//FACE

This book is addressed to College honor students, researchers, and professors.

It contains 136 original problems published by the author in various scientific journals
around the world.

The problems could be used to preparing for courses, exams, and Olympiads in
mathematics.

Many of these have a generalized form.

For each problem we provide a detailed solution.

I was a professeur coopérant between 1982-1984, teaching mathematics in French language at
Lycée Sidi EL Hassan Lyoussi in Sefrou, Province de Fés, Morocco.

I used many of these problems for selecting and training, together with other Moroccan

professors, in Rabat city, of the Moroccan student team for the International Olympiad of
Mathematics in Paris, France, 1983.

The Author
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AMUSING PROBLEMS



Four teams of soccer: 4,B,C and D participated in a tournament. The final ranking has
not been established, the stars will indicate the figures undecided (classification, teams, the
number of games played. Victories, null games, defeats, points marked, points missed):

1. A 3 ook 5-2 6
2. B * *E2 3-3 *
3. C 3 ok % 4% *
4. D 3 oAk 1-4 *

The teams have been separated by criteria known to the soccer rules and the ranking the
same.

a) Complete the grid.

b) Find the result of all disputed games.

Solution

a) The team A4 played 3 games, so 4 played against B . The same forC and D.Or B
B has to play 3 games. 4 has 6 points in 3 games, then 4 won all the games, therefore 4 has 3
victories, zero defeats. B has 2 defeats, therefore B is on the second place. It results that the
third game of B is a victory, because if it would be a null game, then C and D would have
6x2-(6+1) = 5 points, which will mean that at least one of them would have more points than B.
Therefore B has 2 points.

C and D have together 6x2-(6+2) = 4 points. Then C and D have both 2 points, because
otherwise it will result that at least one of them, C or D, will have more than B.

Therefore C has a victory, zero null games, and two defeats. The same for D. (C and D
can not get the 2 points from two null games, because A and B did not have any null matches),

C got (5+3+4+1)-(2+3+4) = 4 goals. The complete ranking is:

1. A 3 300 5-2 6

2. B 3 102 3-3 2

3. C 3 102 4-4 2

4. D 3 102 1-4 2

We know that in a ranking, the sum of marked goals by all the teams is equal to the sum
of the goals received by all the teams.

b) We determine the scenario of the games.

A has 3 victories, then A-B=1,A-C=1,A-D=1

B and C have the same number of points, the same difference between the goals marked
and the goals received, the same number of victories, but B has a place superior than C, it results
that B — C =1, from where B—D=2,thenC-D=1.

D marked only one goal and received 2 goals; the difference is 5 — 2 = 3. Then A took the
results: 1 -0,1-0,3-20r1-0,2-1,2-1. Because A — D = 1 and D marked its own goal
against B, it results that: A — D =1 — 0, from which it results that C—D =3 - 0.

The situation is:

1. A 2 200 4-2 4

2. B 2 101 3-2 2

3. C 2 002 1-4 0
with the scenario anterior.
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A can have the results: 1 — 0, 3-2,2 — 1,2 — 1. We observe that we cannot have the result
A —B =3 -2, because B marked only 2 goals. Then, it results the alternative 2 —1, 2 — 1, from
which A-B=2-1,A—C=2 -1 and we obtain B— C =2 — (. The exact results are:

A-B=2-1,A-C=2-1,A-D=1-0,B-C=2-0,B-D=0-1,C-D=3-0.
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At the end of a soccer tournament of the teams A, B, C, D, the classment is the following:

1 A 3 201 2-1 4

2 B 3 201 2-1 4

3 C 3 111 4-4 3

4 D 3 012 3-5 1

The criteria for the teams rating was:

a) the number of accumulated points

b) the difference between the marked goals and the received goals
C) the number of victories

d) the direct victories against a team.

Find all the games results, knowing that for a victory a team gains 2 points, for a tight
game it gets 1 point, and for a defeat 0 (zero) points.
The first column represents the team order, second column the team, third column the number of
played games, fourth column the number of victories, fifth column the number of tight games,
sixth column thenumber of defeats, seventh column the numbers of marked goals, eighth column
the number of received goals, and last column the number of points.

Solution

Firstly we determine the exact estimation of the played games.

The teams A and B have the same number of points, the same difference between the
marked goals and the goals received, the same number of victories, but A is on the first place
while B is on the second place. From here A — B = 1 (that is, A gained a game). B has two
victories and one defeat, then B— C=1and B— D = 1. Then C — D = X (where X means an
equal game). A has a defeat, then A — C =2. The exact estimations are:

A-B=1,A-C=2,A-D=1,B-C=1,B-D=1,C-D=X

Now we determine the results.

Because A has 2 victories and marked only 2 goals, then its victories have been obtained
as1-0,1-0. WehavethenA-B=1-0and A-D=1-0, from where A-C=0-1.

Similarly for B we have A — D =1 — 0, from which A — C =0, and therefore C— D =3 —
3. The exact results are:

A-B=1-0,A-C=0-1,A-D=1-0,B-C=1-0,B-D=1-0,C-D=3-3.

12



In the elaboration of a soccer ranking which follows, were made four errors, the order of
the teams remaining the same.

1. A 3 210 1-0 5
2. B 2 101 5-4 2
3 C 3 102 6-6 2
4. D 3 021 2-5 2

a) What are the errors?
b) Correcting these errors, find the results of all the games played.

Solution
a) Because A, C, D played 3 games its results that B also played 3 games (it is not possible to
have 2 games played by each team, because it would be more than 4 errors in the ranking). The
third game played by B cannot be a victory, because it would have in total 5 +4 +2 +2 =13 =
12 points. (it is not possible to make other modifications on the points of A, C, or D, because we
would get more than 4 errors).

In the same way, the third game of B cannot be a defeat. Therefore B has a null game (
the third error). A has 2 victories and one single marked goal. The number of marked goals is 1 +
546+2=14 =15=0+ 4+ 6 + 5 which is the number of received goals by all the teams.
From which it results that A has marked 2 goals (the fourth error). (It is not possible to make
modifications on the received goals for A or for others for the same reason.
b) The correct ranking is

1. A 3 210 2-0 5
2. B 3 111 5-4 3
3 C 3 102 6-6 2
4. D 3 021 2-5 2

1) It is necessary to establish the exact forecasts.

D has 2 null games and A and B each have a null game.

Then A —D =X, B—D = X. The team A has also 2 victories. Then A—-B=1, A—C = 1. From
B-D=Xand A —B =1 it results that B— C = 1, because B has one victory. In the same way C
-D=1.

The exact forecasts are:

A-B=1,A-C=1,A-D=X,B-C=1,B-D=X,C-D=1.

2) Now, it is sufficient to establish the exact results.

A has 2 victories, and 2 marked goals. Then A-B=1-0,A-C=1-0.

Because A did not receive any goals, we have A—D =0-0.

Excluding the team A from the ranking ( with all its results), we obtain the following sub-
ranking:

2. B 2 110 5
3 C 2 101 6-

13



4. D 2 011 2-5 1

with the known forecasts: B—-C=1,B-D=X,C-D=1

B has one victory and no defeats, and the difference of goalsis 5—3 =2.

From which: B—-C=2-0or3-1,or4-2,0or5-3.

C has one victory and the difference of goals 6 — 5 = 1; but because B has won over C by 2 goals,
C wins therefore by 3 goals against D. From whichC-D=3-0or 4 -1.

If we have C — D =3 -0, then we have B—C =5 -3, and B — D = 0 — 0. But this means that D
has zero marked goals. This is a contradiction. Therefore C—D =4 — 1. And we have : B—C =4
-2,B-D=1-1.
These last results verify the ranking
The results are:
A-B=1-0,A-C=1-0,A-D=0-0,B-C=4-2,B-D=1-1,C-D=4-1.

The problem has been uniquely resolved.

The problem is completely proved.
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For the preliminaries of the world soccer championship are disputed, back and forth, the
games of a group of 5 teams from which will be qualifies the first 2 teams.

Determine the minimum number of points for which a team can qualify, and also the
results that will enable the qualification.

Generalize the problem for the case of a group of n teams, from which must qualify the
first m (1<m<nm).

Solution
We’ll resolve the exercise, directly, for the general case, the initial case will result as a
particularization.

In the group of n teams will be played 2[(;1—1)—1—(71—2)4—...—}—(2—1—1)] =n(n—1)
games. The total number of points is 2n(n—1). If m = 1, the minimum number of points will be

2n(n—1):2=2(n—1) points (all teams have the same number of points, but that that will have
the largest difference between the goals marked and the goals received will qualify. If one team
has less than 2(n —1) points, then there will be another team which will have more that 2(n —1),
because the total number of points is equal to 2n(n—1). If m =n, obvious, the minimum
number of points is zero.

In the case that 1 <m < n . The qualified team with the minimum number of points will
be the m ™. When it is the minimum of points it means that the m —1 first teams would have
obtained the maximum possible points. Then the 4™ team, 1 <h <m—1, would have 4(n—1)
points. The m—1 teams would have 4(n—1)+4(n—2)+...+4(n—m—+1)=2(m—1)(2n—m)
points. From the total number of points we remove the points of the first m — 1 teams and we find
2(n—m)(n—m+1), which represent the (n—m+1) points of the remaining teams. Then
2(n—m)(n—m—+1)

n—m+1

= 2(n— m), which is the minimum number of points for a team to qualify.

15



At a forecasting game regarding 13 soccer games, a person plays utilizingm doubles and »
triples, 0 <m+n <13, n,me N .

a) In the case that he’ll obtain a variant with 13 exact results, implicitly how many
variants of 12 and of 11 exact results he’ll obtain?

b) Also, if he gets 12 exact results, implicitly how many variants of 11 and of 10 exact
results will he obtain?

Solution

There are 13 games and for each there are three possibilities: 1, X or 2 ( that is, regarding
the first team, victory, null match or defeat). There are 12 possible variants (more than 1000000).
Having m the doubles and » the triples, it results that we have 13— m —n solitaries, which

means the games for which we give only one answer. There are 2" -2" variants in total.
a) We obtain m+ 2n variant with 12 exact results.

If m>2 and n>2, we have Cni +4C,f +2mn variants with 11 exact results; if m>2 and

n <2 we have C,i+2mn;ifm<2, n<2 wehave 2mn ;if m <2, n>2 we have 4C,f+2mn

b) The case: when the solitaries are false. Then it results:
m—+2n variants with 11 exact results

C2 +4C; +2mn variants with 10 exact results, or m>2, n>2
4Cf +2mn , if m <2, n>2, variants have 10 exact results

Cfl +2mn , if m>2 and n < 2 variants with 10 exact results
2mn ,if m <2, n <2 variants with 10 exact results.

In the case that the double is false, we have
(m—1)+2n variants with 10 exact results

C: —14+4C? +2(m—1)n variants with 10 exact results, if m >3, n>2
4C? +2(m —1)n variants with 10 exact results if m <3, n>2

C: —1+2(m—1)n variants with 10 exact results if m >3, n <2
2(m —1)n variants with 10 exact results if m <3, n<2.
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At a tour of chess participated 10 players 4,4, ..., 4, - each chess players played with

each of the other players one game. For each victory one point is gained, for each null game half
of a point, and for each defeat zero points.
At the end of the tour, the ranking was

1. 4 9.5 points
2. 4, 9 points
3. 4, 6 points
4-5 4, 5 points
4-5 A 5 points
6. A 4 points
7-9. A4, 2 points
7-9. A4 2 points
7-9. 4, 2 points
10 A, 1 point

Show that in this ranking there are at least three errors.

Solution
The first error: 4, cannot accumulate more than the maximum of 9 points, because only

9 games were played, therefore there are no 9.5 points.
The second error: 4, , situated on the second place and the ranking, cannot accumulate

more than 8 points, not 9 points, because he cannot gain more than a maximum of 8 points (the
9™ game, played against A, was lost; against 4, the player 4, could not have a null match

because it would result that 4, should occupy the place 1 — 2, not 2).

The third error: in this tour there were played 9 + 8 + 7 +...+ 1 = 45 games, therefore the
total number of points of the ranking must be 45, because
95+9+6+25+4+32+1=455 =45.
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Given a grid of crosswords (of »n lines, m columns and p black boxes), such that there
are not two black cases that have a common side.

WAV A ik
Va a /
Y /

7 V7 / 7 7 7 A— /
A / % // / A
a) Prove that the number of the total words (horizontal and vertical) — we called word a
box that contains only one letter.

b) Find the difference between the number of horizontal words and the number of vertical
words.

Solution

a) We show that N =n+m+ CNB+ 2CNC , where

N = the number of the total words of the grille

CNB = the number of the black boxes in the B boxes

CNC = the number of the black boxes from the C boxes

We consider the grid divided in 3 zones.

1° the four corners of the grid (the A zone)

2°the border of the grid minus the four corners

3" the interior part of the grid (the C zone).

We assume that the grid at the beginning does not have any black boxes. Then, there are

n+m words.

- If we put a black box in the zone A, the number of the total words remains the same.
(Then the number of the black boxes from the zone A does not present any
importance)

- If we put a black box in the zone B, for example on the line 1 and column j,
1 < j <m, the number of words being a unit, [because on the line 1 are formed now

two words (before there was only one word), and on column j there is also only one
word]. The situation is similar if we put a black box on the column 1 and line i,

18



1<i<n,(we can reverse the grid: the horizontal to be the vertical and vice versa).
Then, for each black box from the zone B we add a word to the total number of the
words of the grid.

If we place a black box in the zone C, for example on the line i, 1 <i<n, and the
column j, 1< j<m, then the number of the words formed by two unites: as on the
line 7, and on the column ; are at this time two words, contrary to the previous

situation where it was a single word in each. Therefore, for each black case from the
zone C we add two words to the number of the words of the grid.

b) We divide the zone B in two parts:

- the zone BO = the horizontal part of B (the lines 1 and )
- the zone BV = the vertical part of B (the columns 1 and m )

Then: NO— NV =n—m+ CNBO — CNBYV , where

NO = the number of the horizontal words

NV = the number of the vertical words

CNBO = the number of the black cases of BO
CNBYV = the number of the black cases of BV

The proof of this proposition feats the precedent one, and we use the following

result:

If there is no black boxes on the zone A, the difference NO — NV isequalto n—m

If there is a black box on the zone A, the difference remains the same

The same for the zone C

If there is a black box on the zone BO , then the difference will be n —m +1, and if

the black box will be on the zone BV , then the difference willbe n—m —1.
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ARITHMETIC
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Determine the last digit of the numbers of the sequence of Fermat:
F =2"+1,withneN.

Solution
For n =0 we have F{, =3, and for n =1 we find F, =5.

For n>2 itresults that F =2" +1= 242" 1 1=16"" +1=16% 41 which contains as
last digit, 6+1=7, because the power of 16 ends in 6.

Let p the product of the first » prime numbers.

Determine the set F' = {a EN|a!l= Mp}, Mp being the multiple of p .

Solution
Because ao! = Mp, 1<i<n, we must have o > P. Therefore o > maX{Pi} =P.

P!=1.P-P,-4.P,---P

> -+ P, from where P, != Mp.
P, is the smallest number which has this property, because if there exists a'< P, then

a'ls=Mp . If 3> P, then, of course 3!=Mp.And F ={P,,P,+1,P, +2,..}.

Find the smallest natural number such that its factorials are multiples of each of the
numbers 1970, 1980, 1990, and 2000.

Solution

The greatest prime number which divides one of the numbers from the above is 199.

Let o € N the number which we’re seeking. Then a!= M1990 , i.e. multiple of 1990,
from where oo = M199..

Then aa>199. We take o =199 . 199! = M10 because 10 <199 . We also have199! = M197.
Because (10,197) =1, it results that 199!= M1970..
199! = M1990.
199! = M36 and 199! = M55, but (36,55) =1; from here 199! = M 36+55 = M1980.
199!= M16 and 199!= M125 and (166,125) =1; then 199! = M 2000.

We suppose by absurd that « is not the smallest. Then, it exists a' <199 such that
a'l= M199 ; contradiction.
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Let Aand B natural numbers. We consider M, = A+ B, M, =A—B, M, = A+B.
We note X, the numbers formed only by the last m digits of X .

a) Show that to find the last m digits of M, it is sufficient to find the last m digits of the
sum A -+ B, . The same question for M, and M,.

b) Generalization.
c¢) What it can be said about the last m digits of A”?

Solution
a) We can write 4 = M]Om + A, and the same B = Mmm + B, . Then
M, =A+B=M , +(4,+B,)
The same:
M,=A-B=M, +(4, —B,)
M3 = AeB = M[o”’ + <Am.Bm>
b) Generalization:
If E (Al, 4, ..., Aw) is an arithmetic expression in which we have only the operations +, -,

and if 4,4, ..., A, are natural numbers, then

E,(4.,4,..,4)=E(4,,...4,,)
where 4, represent the last m digits of 4,.

The proof results from a).
c) A” is a repeated multiplication. Therefore (AB ) =47,

m

Knowing what h hour and m minutes, 1 <4 <12, 0 <m < 60, find after how long the
needles on the clock’s face would form an angle o, with 0 < <360°.

Solution
Firstly we determine the angular speed for each needle on the clock’s face.

The big needle executes 360° in an hour; thereforeV, = 6°/ min .
The small needle executes 360° in 12 hours; therefore V' = 0.5°/ min .

We compute the angle between the needles on the clock’s face at the # and m minutes.
The big needle would execute 6m °. The small needle would execute

(60/ +m)-0.5=30h+0.5m degrees.
We note by x (the minutes) the unknown of the problem.
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The angle formed by the needles is |6m — 30/ — 0.5m| = |5.5m — 30h|. (We consider the

angles positive, because in the problem it is not specified the direction of the angle).
A) The case in which |5.5m — 30h| <.

a) 5.5m —30h > 0 & the big needle executes a distance (in degrees) greater than
the distance executed by the small needle. We have:

6x —0.5x = a_(5-5m—30h) oy — C¥+305h5—5.5m '
b) 5.5m —30h < 0, the opposite situation. We have

B) The case in which |5.5m —30h|> «.
a) 5.5m—30h > 0. We have:
_ a+360h+30h—5.5m

6x—0.5x:a+360—(5.5m—30h):>x 53

b) 5.5m —30h < 0. We have:

30h—5.5m—«

6x—0.5x =|5.5m —30h| —a =5.5m —30h—a = x = 53

Let a,,...,a,,., integers and b,,...,b,, ., the same numbers but in a different order. Prove
that the expression E = (a, +b,)-- (aZn aEb, +1) is an even number, where the signs +

and — are arbitrary in each parenthesis. (The generalization of problem A.7, page 105, of

D. Gerll and G. Gerard, “Les olympiades internationales de mathématiques”, Hachette,
1976).

Solution

We suppose that the expression E is odd. It resuls that each parenthesis is odd, therefore
each parenthesis contains an even number and the other an odd number.

We have then 2n +1 even numbers. But, if in a parenthesis we find an a, even, then
there exists another parenthesis where we finda b, =aq, , then b, is even. And the number of

evens is an odd number, which, obviously is different of 2n + 1. This is a contradiction.

Resolve the equation: X —P(X) = 24, knowing that (X)) represents the number of
positive numbers, smaller than X and relatively prime in rapport to X .
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Solution
Because ®(X) € N, Itresults that X =24 +P(X)e N* and X > 24 . Let

X=P"---P%, a,€ N*, P different prime numbers, i =1,s.
X)=R""--- P (P —1)---(P.—1), ® being the Euler’s function from the number
theory.
X-d(X)=pP""...p! ‘[P1 P —(B—1)-(P, _1>]_24:23 3"
then, evidently, X has the form: X =2 -3, where o, € N*. Then s =2.
We obtain X —®(X)=P"". p" -[R P —(B—-1)-(P,— l)], which means that
X—®(Xx)=2"".3""[6-1,2]=2°-3", where X —®(X)=2""-3""=2".3", from

where o, = o, =2 and in conclusion X =2°-3* =36.

Let ®(n) be Euler’s totient function. Prove that: ®(n) is a prime number if and only if
ne€{0,43,+4,46}.

Solution
The sufficiency:

®(0) = P(£3) = P(+4) = P(46) = 2, which is a prime number.
The necessity:
®(£1) =P(£2) =1 which is not a prime number. Then n = {j: l,j:Z} .

Let n=R"---P* with P,...,P,different prime numbers. o, € N*, i € {1,2,...,s}.
®(n)y=B""(B—1)-- P~ (P —1)=M, for n¢ {£1,£2} because P, —1= M,
where P = M, .
Because ®(n) is prime number, it results that ®(n) =2. Then P—1=1or P—1=2, or
3. Then B =1= «, =2, therefore n=4,3,6. And n € {iS,i4,i6}.
But ®(0) =2 which is prime, then n € {0,£3,+4,+6}.

Let m be an integer such that ®(m) = M 4 (multiple of 4), where ® represents Euler’s
indicator . Prove that it exists an even number of primitive solutions modulo m (an integer a is
called a primitive solution modulo m , if a*" =1(modm) and a* 2 1(mod m) for
1<K <®(m)).
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Solution

1) If there does not exists a primitive solution modulo m , then we have 0 solutions and 0
is an even number.

2) If there exist primitive solutions, let » one of them. We have:

(r,m)=1, r*" =1(modm) and r* # 1(modm)
For 1<K <®(m). We’ll show that m — r is also a primitive solution modulo .

A) Firstly, m —r = r(modm), because contrarily it would result that 27 = O(mod m),
where 2r =t-m, with t € Z . Because ®(m)= M4, we have m € {O,il, i2}.

o) m=2h, he Z—{0,£1}. We have m |2r = 2h|2r = h|r = (r,m)=h = =%1, which
is absurd.

B) m=2h+1, he Z—{-1,0}. We have m |2r = m|r = (r,m) =m = =+1, which is
absurd. Therefore m —r % r(mod m)

B) (mm—r)=d=d|m and d|m—r=d|r=d=(r,m)=1,then (m—r,m)=1.

)tI)(m)

(m —r = 1(modm) , in accordance with Euler’s theorem.

We suppose, by absurd, that exists € N *, p<® (m) with (m — r)”' = 1(modm) . It results
1=(m—r)" =(—r)=(=1)"r"(modm) . From where f is odd (if not it results that
r" =1(modm) and 1< < P(m), in other words » will not be a primitive solution). Then

uw=2p+1,with p€ N and " = —1(mod p), where ** = 1(mod p) . But p < ®(m), which
implies that 2p <2®(m). Because r is a primitive solution we have 2u = ®(m), where

®(m)=2(2p+1)= M,. Contradiction. And (m—r)" % 1(modm) for 1<y < ®(m), therefore

m —r 1s also a primitive solution.

Let m anatural number >3, and a,,...,a » all the positive numbers smaller than m and

different of m . Then a,+a,+...4+a ,= Mm (multiple of m).

Solution
We prove that p = M2 . We observe that if 0 <a <m and (a,m)=1, then we also have

0<m—a<m and (m—a,m)=1, because:
O<a<m=-m<a-m<m-m=0<m—a<m,letd=(a—m,m),itresults d|m, from
where d |a, therefore d divides (a,m) =1, and d =1. We have that for
Va e {al ,...,ap}, dm—ac€ {al ,...,ap} such that m — a = a ; (in the contrary case, it would
have resulted that m = 2a and (a,m) =a =1 from where m = 2, which is impossible). (1)

But a 4+ (m — a) = m = Mm and, because of (1) we obtain the conclusion of the problem.
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Given three integer numbers a,b,c, such that a* 4+ ¢* = 0 and b° + ¢* = 0, prove that
(a,b,c) -

(a.c)-(b:0)

(The notation (x,,..., xn) represents the largest common divisor of the numbers x,...,x, )

cZ

Solution
Let d = (a,b,c). This implies that a =a'd, b=b'd, c=c'd and (a',b',c')=1. Then

(a,c) = (a'd,c'd) =d -(a',c') =d-d,
(we note (a',c')=d,,); from where ¢'=d,,-3, BEZ.
But <d13,d23) =<(a',c'),<b',c')) =(a',b',c') =1
Because d;-a=d,,- 3, (d,;,d,;) =1, and that all numbers are integers, it results that d,,
divides a, thatis o =d,;a' with a'€ Z. Then c=d -d,,-d,, o', and that
(a’b’c>'c _ d-d-d-d,-o —a'cZ.
(a,c)-(b,c) d-d,-d-dy

The conditions from the problem ensure the existence of the expression and that the denominator
is different of zero.

Given a,,b, € N , i = 1,n. Prove that:

(a,0may by b, > [(a,.0))
i=1

where («,3) represents the greatest common divisor of the numbers a and 3.

Solution
We’ll apply the recurrence reasoning.
It is evident for i = 1. We have to show that for i = 2 we have

(a,a,,b,b))>(a,,b,)-(a,,b,). Having a \=a,d, ,, b,=b,d,, with (a, ,b,/)=1 and
having a ,=a,d,, , b,=b,d, , with (a,,b,)=1, then

<a1a2 >b1b2) = da,b, 'da2b2 '(anazl >b11b21> = dalbl 'dazhz = (a] ’bl)'(az >b2) .
We suppose that the inequality is true for the values of i which are smaller than # . It results
that:

(al...anan+1 ,bl...bnbnﬂ) >(a,..a, ,bl...bn)-(an+1 ,an) >

n

H(ai’bi)}(anﬂ’bnﬂ):H(a;ab;)-

i=1 i=1
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If (a,,b,)e N*, i€{1,2,...,n} and [a, 3] represent the smallest common multiple of the

n

numbers « and (3, then [al a,a,. b, .b ]<H

Solution
We’ll apply the recurrence reasoning.
It is evident for i = 1. We have to show that for i = 2 we have

la,a,,bb,]<[a,,b,]-[a,,b,]. Having @ ,=a,d,,, b ,=b,d,, with (a,,b,)=1and
having a ,=a,d,, , b,=b,d, , with (a,,b,)=1, then

[alaz’b b ] dalbl'dazb2 [ 14 21’b11b21]<da b dab ayayhy by = [a b ] [azabzl'
We suppose that the property is true for the values of i < n . It results that it is true also for

i =n-+1 because:

n

l_I[ai,bl.]]-[an+l ,b,,.1|. Then the

i=1

[al n n+]’b bnbn-H] [ 1"'an’b1"'bn].[an+l9bn+l]§

problem is proved.

Let m be a natural number, and 1 <n <5. Prove thatif 9" =a,---a,, , then

9---9"=9---94,0---0a,9---9---a, , where there are n digits of 9 in the left-hand side of this
— — ——

n—l1 n—1 n—1

equation, with n € N *.

Solution
When m =1, we have 9' =9, 9...9'=9...99
—— —

n n—1

When m =2, we have:

2
9* =81, 9---9° :[100--~0—1] =10--0-20---0+1=10---00---01-20---0=9---980---01
[ —_— ~—— — —_—— —— ~— — ~——

n n

2n n n n—l n n—l n—l

When m = 3, we have:

3
9°=729, 9...9° = 100---0—1} =10---0—30---0+30---0—1=
n n 3n 2n n
—— —— —— —— —— —— —\ ) ~——

n n—1 n n n n—1 n—1 n—1

When m = 4, we have:
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4
9* = 6561, 9---9* :[100---0—1} =10--0—40--0+60--0—40--0+1=
[} —— —— —— —— ——

n n 4n 3n 2n n

—10---00---060---00---01—40---00---040---0=9---960---059---960---01 .
—_—— —— ~—— — —_—— ——  — —_—— —— Y ~—

n n n n n n n n—1 n—l1 n—1 n—1

When m =5, we have:

5
9° =59049, 9---9° :[100---0—1] =10--0—50---0+100--0—100---0+50---0—1 =
— —— —— —— —— —— ——

5n 4n 3n 2n n

=9..-950---099---900---049---99 .
—_—— ~—\— Y~ ~— ——

n—1 n—1 n—1 n—1 n—1

n n

Observation: For m > 6 the formula is not true.

We consider the set A:{9---9-m/m€N*} and n € N *, constant .
——

a) Compute the greatest number of 2n digits from the set 4, which does not
contain the digit 9

b) Compute the smallest number 2n + K digits which does not contain the digit 9.

Discussion.

Solution
a) We’ll try to find the greatest m € N*, m = b,---b, , which multiplied by 9---9

n

gives us a product of 2n digits with all its digits different of 9.

9---9-m:[10---0—1]-m:m0---0—m.
9::-9 0-:-0 0-:-0

n n n

We compute the difference : m =b,---b,0---0—b---b, =?

If there exist bj =9,j¢ {1,2,...,11 — 1}, then: it there is at least a non zero digit at the end
of b, , by subtraction it will result b, =9 in the solution, if all the b, =0 with & € { j+ 1,...,n}

by subtraction in the solution it will exist at least one digit equal to 9 in one of the places
j+1..,n.
The next case is 8:--89. By doing the difference (that is a multiplication 9---98---89)
—— e ——

n n n

we will obtain the greatest number of 2n digits of the set 4 which does not contain the digit 9,
whichis 8---81---1.
—_— ——

n n

b) The number m would be n+ K digits.
1) The case 1< K <n.We prove that m =10---01---12 is the smallest number

K—1 n—1

of n+ K digits which will have the required property.
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We cannot have any zero among the last digits of the number m because it would result,
by multiplication, at least one digit 9 in the product; the last digit non zero of m is different of 1
(for the same reason); the other digits of m can be equal to zero, only the first would have the
value of minimum 1 because K <n,then K—1<n-—1.

9---9-10---01---12=1---1]---18---8

n Kl nl nK+1K1 n

(here we wrote directly that 9:--9-1---12=1---18---8)

n nl n n

(We utilize the property that the smallest number of 2n digits of 4, which does not contain the
digit9is |---18---8, and that the correspondent m is -1---12).

n n n— 1

2) The case K > n+1. Momentarily, we cannot write m =10---01---12 because
——

K-1 n—1
K —1>n—1 and the result of the multiplication contains digits 9:
9:--9-10---01---12=1---18---8 (1)
n Kl nl n n
9:-9=9-:-90---0]-:-18---8
n Kl n n

We re looking to find the smallest m € N *, of n+ K digits, which will have the
requested property. The last n digits of m will be also 1---12. The first will be also 1.

n— l

Among the unknown digits we cannot have more than n —1 consecutive zeros because of
(1). Because n is also small it is possible to attach n —1 consecutive zeros after the first digit,
then a digit 1 (the minimum not null), other » —1 consecutive zeros and again a digit 1, etc.
Therefore: m=10---010---0---10---010---01---12
—— ——

n—1 n—1 n—1 p nfl

K digits

Then, thenumberw111be9 -9-m=10---01---10]--- 18- 8w1thp K —n-|—|—1, where

n Klnpl p n n

[X | represents the integer part of X .

This is the multiplication:

9--9-10-:-010---0--10--010---01---12 = |.--10]---18---89---99---99.--9-..9...
— —— S—\— [ R ) R N — —

n n—1 n—l1 ,,, p ,,,,1 nfp V4 n P n—p n n

=10---0---0---00---01---10]---18---8
—— ——
rl n p npl P n

K

If x,y € N, then there exist z&€ N such that @@ =10z.

Generalize this result for the case of any number of zeros between 1 and x and between
land y.
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Solution

Let’s consider x=a,..a,, 0<a,<9,i€{l,2,...n},n€N* and y=b,.b,,
0<h <9, je{l,2,...m},meN*.

We do the multiplication:

10a,..a, X

106,..0,,
n+ 2 digits - - the multiplication by b,
n+ 2 digits Y the multiplication by b,
n+2 digits 1 0 - . the multiplication by 1

-1 . . )

We noted by “-” a natural digit between 0 and 9.
Then, the first digit of the product is 1.

Generalization: if x,y € N, then thereisa z&€ N such that 10---0x-10---0y=10---0z,
—— —— ——

s digits t digits u digits

Where we have u = inf(s,7)—1.
The proof of this generalization follows the proof of the first part of this problem.

We consider a numeric base b, and p a simple divisor such that [ p,é] =1. Then

Vne N*, 34 =a,..a, writteninbase b which is divisible by p", with
a; € {1,2,..., p },1 <i<nm.

Solution
We will apply the recurrence reasoning for n € N *.

For n =1 we have 3 4, =|p| which is divisible by p'. (We observe that, because p|b,
itresultsthat b=Kp, K€ Z ;1= [p,é] = (p,K) , also, all the digits of the numbers in the base
p

b belong to the set M, = {0, L,2,...,

p p| +1,....n— 1} , and these are represented by one single
symbol (for example, if » > 10, then the digits 10,11,... are noted by 4, B,...). Then
lpleM, ={1,2,..,

2

p|} and it is formed by a digit in base b ; (p |b = |p| < |b| =b).
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We suppose that the property is true for n , thatis 3 4 =a,...a, , written in the base b,
which is divisible by p”, where a, € Mp, 1<i<n.We’ll show that it is true for n+1.

Let 4,,, = xa,..a, with x€ M  written in base b . We determine a x for which 4, is

n+l

divisible by p"" (it is sufficient to prove that there is such an x).

A, =x-b"+a,.a,=x-K"-p"+A4 =p"(K"-x+1t), where 4, =", t € Z (from
the recurrence hypothesis).
dx €M, such that K"x +¢ = 0(mod p) & K" - x = —t(mod p) .

Because [ p,ﬁ] =1= ( p.K ) we have( p.K ") =1. Then there exists the inverse of the element
p

—1
K" in rapport to the module p . The above congruence becomes: x = —t(K ”) (mod p) and we
chose the smallest x not null, thatis: x € M .

(There exists x € M, because M, constitute a complete systems of residues modulo p.)

m -

Let n,me N* . Wenote a"” =m" with n digits m , and b = m..m—~" . For each
———
n

(m)

n

n and m compare @™ with 5™ . Discussion. (All numbers are written in base 10.)

Solution

In the precedent conditions, we have:

Lemma 1. V€ N*, Ym>2 m" >m..m
—

n

Proof: We use the recurrence method for n € N *.

The case n =1 implies m* > m which is true. We assume that the property is true for »
and we’ll prove it for n+1:
mAoHh

4 4 4
m"-m>m.m-m" >m.m-16 =m.m0+m..m-6>m..m0+m—m..mm .
n n n+ n n+ n

Lemma 2. Vn>3,Yme N*, b\ > 4" m..m
—_———

n+l1

2
Proof: m..m =m..m-m...m >m..mm because n>3.
~—— —— —

n n n n+l

m..m>n—+1>4 because n>3.
—

n

m...m

4 Ny ———
B =m.m i >m.m >4"" m mm.
—_——— —_——— f
n n n+
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Lemma 3: If there exists n, € N*, n, >3, such that aﬁ(’]’” > b;g") then Vm >2,Yn > n, we
have a' > b .
Proof: use the recurrence method for n > n, .

The case n = n, is true by hypothesis. We assume that the property is true for » , and
we’ll prove it for n+1:

al™ =m > m > mt N > mem S = B
n+l1 n+l
To prove these inequalities we will use the hypothesis from the recurrence from Lemma
2, respectively Lemma 1.
Lemma 4: Vm >6, a{” > b .
Proof. Because m > 6 and because of the results from the Lemmas 1 and 2, it results that:
m"=m’-m"’>43-m"?>4.3-6">4-3-mmm

43-mmm 4.3 \mmm
=(m")

mmm

a™ =m" >m >mmm = b{".

m
(m) m m...m

" —=m"  with n digits of m , B =m..m .
——

n

We have: a

Case m=1.a" =1=h".
1..1:5 =b" Vn>2
— _11 n

n+

" =1<

Case m=2. a\" =2 <22 =p?

ai? =2" <2227 = b

aé(‘Z) — 216 < 22222222 — biZ)

aéZ) — 265536 < 23-22222 < 2222222222 — b5(2)
Using Lemma 1, we obtain

205536 5 2524 5 4.7.222222
Then

aéz) _ 226553" > 24~7~222222 _ (24»7 > 222222222222 _ béz)
From the Lemma 3 it results that a”) > 5>, ¥n >6.
Case m=3 a” =3<3 =p"

al =3'<33” =p”

ay) =3 <333 =p

Using Lemma 1 we obtain 3”7 > 3*-3**216-3333
Then

>222222

27 3333
af) — 33 > 3163333 _ (344) > 33333333 _ bf)
From Lemma 3 it results a'” > b5, vn > 4

Case m=4.aV =4<4* =p"
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alV =4" <44% =p¥

alh = 4% = 47 < 444% = p©
From Lemma 1 it results 47° > 4>.4* > 4.4.4444 |
Then a4(14) gt g (44.4 )4444 S 444444 — bi4) .

From Lemma 3 it results:
Vn>4,a" > pY
Case m=5. a” =5<5 =p"
(5) __ &5 55 _ 1.(9)
a,’ =5 <557 =b,
5 625
a§5) _ 55 _ 53125 _ (55> _ 3125625 > 555555 _ b§5).
From Lemma 3 we have Vn >3,a"” > 5" .
Case m=6.a" =m<m" =h"
0 = m" < = B

From Lemma 4 it results: a." > b{"

And from Lemma 3 we have '™ > b, ¥n >3 and the problem is solved
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MATHEMATICAL LOGIC
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Consider P,Q, 1<i<n, logical propositions. Prove that the logical proposition

n

"V(PAQ)= A(PVO)”

i=1

is always true

Solution
A logical proposition "4 = B" is false only when 4 =1 (true) and B =0 (false). We’ll
prove that this situation does not exist.

If "\ (PAQ,)" =1, then 3i (& {1,...,n} such that PAQ, =1, thatis P=1 and O, = 1.
i=1

Then:

PVQ, =1 Vie{l,.,n} since P=1,
Then

"A(P\/Qj>:1"¢0

i=1

(A means “and”, V means “or”).
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3.27.

Show that if the logical propositions "4, = 4," and "B, = B," are true, then the logical
propositions "4, AB, = A4, AB," and "4 V B, = 4,V B," are also true.

Solution
A |4 | B | B, | A=A4| B =B, | ANB | A,ANB,| ANB, | AVB, | A4, VB, | 4V B,
= =
A, NB, A,V B,

0O |0 [0 |O 1 1 0 0 1 0 0 1

0O |0 [0 |1 0 1 0 0 1 0 1 1

0 |0 1 |0 1 0 0 0 1 1 0 0

1 {0 (0 |O 1 0 0 1 1 1 0 0

0 |0 1 1 1 1 0 0 1 1 1 1

0 |1 1 |0 1 0 0 0 1 1 1 1

1 1 0 |0 1 1 0 0 1 1 1 1

0 |1 0 |1 1 1 0 1 1 0 1 1

1 |0 1 |0 |O 0 1 0 0 1 0 0

1 |0 [0 |1 0 1 0 0 1 1 1 1

0 |1 1 1 1 1 0 1 1 1 1 1

1 1 1 |0 1 0 1 0 0 1 1 1

1 1 0 |1 1 1 0 1 1 1 1 1

1 |0 1 1 0 1 1 0 0 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1

1 |2 |3 |4 |5 6 7 8 9 10 11 12

We note with “1” the true and with “0” the false. Immediately we observe that
"4 = A," and "B, = B," are true in the same time, it results that " 4 A B, = 4, A B," and

"A VB, = A,V B," are true in the same time.
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TRIGONOMETRY
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Prove the following formulae of transformation of the products of functions in sums:

1
1) cosa,cosa,--cosay, = E E cos(g,q, +...+¢,0,)

€l peerEn €Ty
2)
p
) sinay, ---sina _C) (—l)kcos g0y +...+¢e,
a » 2p = TA2p 10 T T &0,
61,...,62p672p
p
b)sina, ---sina _ = > (—1) cos(g +..+ &5,
2 2p+l T 2217 11 2p+1-"2p+1
€12 p41€T2 p
where
5
2
7, =U(eme, )/ e =6 =..=¢, =—1and ¢, =1 for

Jé {il,...,ik}—{(el,...,em) /(=€se—E, ) € 7',”}.

Solution
The set 7, contains all the m -lepts (e,....,¢, ) which have the components ¢, = £1

arranged in all possible orders, but such that (¢,...,e, )€ T

m 2

then (—e,....,—¢, ) € T, . Therefore
7, has in total (C,?, +C, .t C;”) :2=2"" elements, by C', 0 <k <m we represent the

numbers of m-lepts such that the £ components are equal to -1, and the rest of m — k£ are equal
to +1.
1) We’ll make the prove using the recurrence method on 7 .

The case n =1 is evident. We suppose that the equality is true for » , and then prove it
for n+1:

(cosa, —cosa, Jcosay,,, =

> cos(gqy +...+€,q,)cosa, =

n—1

(&1 JETH
= % Z cos[(aloz1 +...+te,a,+ an+1)+ cos(aloz1 +..teq, €., —q,, )] =
(&1 s0ensn JET,
= Ln Z cos(aloz1 +...+ 5,1“04,1“)
A i
2)

a) We apply the recurrence rational for p € N *.
(=1)
2

We suppose that the equality is true for p, we we’ll prove for p+1:

If p=1 we have sinq,;sina, =

[cos(a, + @) — cos(—ay + av,)| which is true.

(sinqy....sina, ,)sina, , , sina, ., =
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k : _
Z (=D cos(slozl+...—kszpozzp)smozzp+1 COSQy, , =

El, €Ty

= Z (=1 c0s<51a1 +...+ 52[7(Jz2p)[cos(oz2p+1 +a,,,)—cos(—a,,,, + azﬁz)] =

€12 T2

<_1)p+l
k
— Z (-1 [cos(elal+...—|—52poz2p+a2p+1—|—a2p+2)+
El,.“,szp)esz
+cos<51041—|—...—|—€2pa2p—a2p+1—0z2p+2>—

—cos(g,a; + ... + €3,0h, T 0y, — a2p+2)_cos(€]a] Tt &0, oy, —0, )] =

B
=2 Yo (=Dfcos(ey + ot 6y ,,,) -

g ,.“,521,+2)672p+2

(We can prove easily the relations:
Tl = {(51,...,sm,—l),(sl,...,em,1) |(€)5--e€,,) € Tm} and
T = {(el,...,em,—1,—1),(51,...,5m,—1,1),(51,...,5m,1,—1),(51,...,5,”,1,1) such that (¢,...,¢,) € Tm}
(We can also generalize).
b) The first method: by recurrence for p € N* (similarly with above reasoning.
The second method:

(=)

. . . _ k . _
(sinq...sinq, )sina, .| = -5 Z (-1 cos(slal+...+52pa2p)sma2p+1—

(=1

E1€2p )ETZP
2p
27

Z (=D* [sin(elal +..te,0,, +a2p+1>+sin(5la1 +..+6,0,, —a2p+l) ]:

S 52,,)67'2,,

-1 )
= ( ) Z (=D* sm(gla1 +...+€2p+1a2p+1>.

E]enrEy pﬂ)erzpﬂ

Let P(x)=2x"—1. Prove that for n > 2 we have:
n—l

sin2"x =2""2x =] [ p(...p(p(cosx))...)

i=l i times

Solution
a) We will prove by recurrence for n € N * we have:
sin2"x = 2" sinxcos xcos2' xcos 2’ x...cos 2" ' x (1)
In the case n =1 the property is evident
We suppose the equality true for n , and we prove that it is true also for n+1.
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sin2-2"...=2sin2"xcos2"x...2" "' sin x cos x...cos 2" ' x cos 2" x
(we used the hypothesis of the recurrence)
b) We’ll prove by recurrence that for i € N * we have:

cos2' x = p(...p)(p(cosx))...) (2)
In the case i = 1 we have cos2x =2cos’ x —1 = p(cosx).
If we suppose the equality true for i we’ll prove that it is true also for i +1:
c0s2-2'x =2co0s’2'x —1 = p(cos2'x) = p2xcos2'x = p(p(...p)(pcosx))...)

Substituting (2) in (1) for all cos2'x , it will result the equality that we need.

Let s,n e N*, K,, P, rational with 1 <i <n, and the continuous functions f,g,: R’ — R
for 1<i<nm.

a) Find a method for solving the equation:

sin® £, (x,,...,x,)cos™ g (x,,.c0, X,) ... 85I £ (X500, %,)..CO8™ g (X,,.0nX,) =1

b) Find the necessary and sufficient condition that the equation from a) is equivalent to
the following system of equations:

sin® £ (x;,.00,x,) 4 ... +sin® £ (x,,..,x ) =n

cos” g,(x,,...,x,) +...+cos" g (x,,...x,)=n

Solution
a) The right side of the equation is a sum of » terms, each belonging to [— 1 1]. Then

each term must be equal to 1, because if not we have s <n . Then the equation is equivalent to
the system:

sin® £.(x,,...,x,)cos” g.(x,,...,x,) =1,

which is equivalent to

sin® £(x,,...,x) =1 ,
P (17)
cos” g.(x,,...,x,) =1
or
sin® f(x,,...,x,) =—1 1)
cos” g.(x;5.yx,) =—1

with i € {1,...,n};

which are resolved normally, we obtain then an algebraic system
b) The system from b) is also equivalent with the system from (1’). Because the equations
from a) are equivalent to the system from b), therefore with (1), we must eliminate the case (17).
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, T, &, u,, v, are integers, 1 <i <n, then for Vi€ {l,...,n}, there exist

1 1

Then, if K, :tr—l, P=

at least one integer in {r,#,u,,v,} which is even.
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We design the projections M, of a point M on the sides 4 A4
2 +|

Show that M, A +...+]| =M ]

Mn A”l

MnflAn

Solution

of apolygon 4,...4, .

|2

i+1

MnAl

For all i we have: ||M1Ai||2 _HMiAiH H2 = ||MAi||2 — HMAi+1 H2 From which:

Z(”MfAf”2 — M4 = Z(||MAi||2 —||m4,. ) =o0.

On a line we have the following points 4, 4,,..., 4, in this order.

n
Let n, = > . Prove that

1, n
Z”AiAnH” - ZHAJAHI*/‘H
i—1 =

and n, = [nTH

Solution

a)n=2K=n=n=K
We make the notation: ||AiAM|| =x,,1<i<n-1
Our relation becomes:

k k
ZI:”AiAkH ” = Z:;”AiAZkH—i”

From (1) we have:

k k
Z(xi X et X)) = Z(xi + X et Xy)

i=1 i=1
The left side is equal to:
X +x,+x+...+x +

X, X+ X+ X,

which is equal to
X +2x, +3x,+ .k, H(k—Dx, (k= 2)x,, + o+ X,
The side from the right is equal to
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X+ X+ Xt X T X T Xy, T Xy
X, +X+ X X, X+

Which ia also equal to (2)
b)
n=2k+1=n==k
n,+k+1
The proof is the same.

Let ABC an arbitrary triangle and O the center of its inscribed triangle. On one of the
sides, BC, we take n points 4,,..., 4 , in this order, such that the lines A4,,..., A4, divide the
angle BAC in n—+1 equal parts. In a similar mode we proceed for the sides CA and 4B on
which we take the points B,,..., B, respectively C,,...,C, .

Prove that the point O belongs to the geometrical figure determined by the intersection
of the lines A4,, BB,,and CC,, i €{1,2,..,n}.

1

Solution

n+1 |n+1

2
and C because these divide the angles into two equal parts. Then O is thir intersections.

b)Ifn—i-l

a) If =i then A4, BB, ,and CC, are the bisectrics of the angles 4, B,

=1,then A44;, BB,,and CC, are not anymore bisectrics. These intersect each

other in pairs forming a triangle that is in the interior of the triangle 4BC . We obtain the small
triangle from the figure (1).
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Let AD,BE,CF be the bisectrics of the angles A, B,C . These can be on the left side of
the lines A4, , BB, , and CC, ( as we look at the sides starting from 4 to 4,) or to the right. In
figure (1) we have the case where the lines are on the left side. We will have the same proof for

other cases).
Because ADis on the left side of 44, and O € AD , it results that O €AA4,C . Because

BE is on the left side of BB, and that O € BE we have that O €ABB,A . The same, O €ACC,B..
Then O €eAA4,CNABB,ANACCB .

Given n lines that intersect two by two and are not on the same plane three by three,
prove that these lines pass through the same point.

Solution
We’ll consider the case n = 3.
The lines d, and d, intersectin M ; d, intersects d, in M' and d, in M" . If M'= M

and M" = M , then the three lines are on the same plane, which is absurd. Therefore
M'=M"=M.

The case n > 3 is reduced to the previous case.

Among the n lines we choose arbitrary three, that satisfy the conclusion. Among these
three lines we take two arbitrary ones and one among the n — 3 left lines. We obtain three lines
that pass through the same point, which is also M .

The rational continues the same until we finish with all the lines.

Let n points 4,,..., A, inaplane, n > m >3, such that m of these points form a regular
polygon. Prove that n =m .

Solution
1) Case m > 3. Let m —1 points in this plane. We add a new point and we construct a

regular polygon with m sides.
A

Ay
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Each regular polygon can be inscribed in a circle. We consider for beginning that the m —1
points are placed on the circumference of a circle. Evidently, the other point (which has been
added) belongs to the same circle, and it is well determined, because the circle is divided in equal
arcs. But, through m —1 > 3 points passes only one circle. Then to m —1 points we can add one
single point to form a regular polygon (of m sides).

More, the number of points that have the property from above cannot be larger than m ;
but, also, it cannot be less than m either because we cannot form a regular polygon with m
sides. From here we have that n = m

2) The case m = 3. Then m —1 = 2. Taking two distinct points, to form an equilateral
triangle, we can find: let one point in a semi-plane, let one point on another semi-plane (the
semi-planes determined by the line that unite the two points and divide the plane in two parts).

If A4 4,4, and AA A, A, are equilateral, then AA4 4,4, will not be equilateral.

The proof, now becomes similar to the case 1.

We consider a polygon (which has at least 4 sides) circumscribed to a circle, and D the
set of the diagonals and of the lines that connect the contact points of two non adjacent sides.
Then D contains at least three concurrent lines.

Solution

Let n be the number of sides. If » = 4, then the two diagonals and the two lines that
connect the points of contact of the two non adjoined sides are concurrent (in conformity to the
Newton’s theorem)

The case n > 4 will resume to anterior case: we consider the arbitrary polygon 4,...4,
(see the figure) circumscribed to a circle and we select two segments 4,,4,, i = j, such that
AA NAA, =P, A4 (NA4A =R

Jil i JjHl
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Let B,, he {1,2, 3,4} be the contact points of the quadrilateral PA,R4, with the circle in

the center O.
Due to Newton’s theorem, the lines 4.4, B,B;, B,B, are concurrent.

In a triangle ABC let AA',BB',CC"' be the ceviene that intersect in the point P .

Compute the minimum value of the expressions:
[47] . [87] . |cP|

E (P) = 1 \J 1
|4 [[PBY] - lPC|
and
pmy a7l 1221 Icrl
|4 [[PB] [PC
where

A'€[BC], B'e[CA], C'€[4B].

Solution
We apply the Van Aubel theorem three times for triangle 4BC , and we have:

[47] _4c | 48]

( 1 ) ' - ' —I— '
[P41 " [ca] - |B'C]
|87] _ 241 | B

(2) ' 1 '
[PB| - farc] 4]
lcpl _ llea] | |cB]

(3) |l ' '
[Pct 48] |84

If we add these three relations and if we make the following notations

R TR .1 P
B B'C| A'C|

then we obtain:
1 1 1
EP)=|X+—=|(+|Y+=|+|Z+—=
X Y Z
The minimum value will be obtained when X=Y=Z7=1, that is when P will be the center

of gravity of the triangle.
Multiplying the three relations will find that
1 1 1) Y27 X
FP)=|X+— |+ Y +=|+|Z+=|+—+—=2=8
X Y zZ) X YZ

>2+2+2=6.
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If the points A4, B,,C, divide the sides BC,CA, respectively AB of a triangle in the
rapport k, determine the minimum of the following expressions:

a4 + BB +|ccl

Solution
We suppose that k£ > 0, because we work with distances.
|B4,| = k||BC|; |CB,|=k|CA|; ||AC,|=k|4B].

We apply three times the Stewart theorem in the triangle 4BC , with the segments
AA,, BB, respectively CC,:

|4B] -|BC|(1— k) +[AC[ - AC] - k=] 44 -|BC[ =|BC 1=Kk
where:

(1) 44 = —k) |4B[" +k4c] ——kk|BC|

@) |BB| =1—k) |BC| +k|BA| —(1—k)k|aC|

@) |lcc|’ =a—k) |cA] +k|cB|’ —a—kk| 4B
By adding these three equalities we find:

|44 + (BB +|cc| = (k* =k +1)(|4B] +|BC| +[c4

')
Which take the minimum value when k = % , that is the case when the three lines from

the problem hypothesis are the medians of the triangle.

The minimum is %(”AB”2 + ||BC||2 + ||CA||2) .

In the triangle ABC we construct the concurrent lines 44,, BB,,CC, such that
AB’ 4+ B,C*+C,A4*> = AB} + BC. 4+ C,4* and one of them is the median
Prove that the other two lines are the same medians when the triangle ABC is isosceles.

Solution
Suppose that A4, is the median, without diminishing the problem’s generality, then

A,B = 4,C, and the relation from the hypothesis becomes:
B,C* +C,A> = AB} + BC! (1)

From the concurrency of the lines A4, BB,,CC, and from the Menelaus’ theorem it results that
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ABl — & (2)
BlC ClB

We make the notation: 4B, =k, k>0, from which we have:
1

BC*+k°CB* =k*BC} + BC;.

Consequently (k2 — 1>Cle —BC} =0, and from here we find k =1, or C,B = B,C.
If k=1 then 4B, = B,C and AC, = C,B then consequently BB,,CC, are medians .

If C\B = B,C from (2) it results that 4B, = AC,, consequently 4B = AC, and the

triangle ABC 1is isosceles.

In a triangle we construct the ceviane A4,, BB,,CC, that intersect in a point P . Prove

that
P4 PB PC  AB-BC-C4
P4 PB, PC, AB-BC-CA
Solution
A
B
(O]
C
B A,
In the triangle 4BC we apply the Ceva theorem
AC,-BA,-CB, =—AB,-CA, - BC, (1)
In the triangle 44 B cut by the transversal 44, , we apply also the Menelaus’ theorem:
AC,-BC-AP=AP-AC-BC, (2)
In the triangle BB,C cut by the transversal 44, , we apply also the Menelaus’ theorem:
BA -CA-B,P=BP-B/A-C4 3)
We apply one more time the Menelaus’ theorem in the triangle CC, 4 cut by the transversal BB, :
AB-C\P-CB, = AB,-CP-C,B (4)

We divide each relation (2), (3) and (4) by the relation (1), and we obtain:
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PA _BC BA

= (5)
P4 BA BC
PB _ CA CB ©)
PB, CB CA
PC _ 4B AC o
PC,  AC, AB

We’ll multiply (5) by (*) and by (7), and we obtain
P4 PB PC  AB-BC-CA AB,-BC, -C4,
PA PB, PC, AB-BC-CA AB-BC-CA’
but the last fraction is equal to 1 in conformity to the Ceva’s theorem.

5.41.

Let the triangle ABC which has all the angles acute and we consider 4'B'C" the
triangle formed by the legs of its heights.
In which conditions the following expression is maximum?

[4°8-|8'C’|=|B"C-|c 4|+ [c 4|45

Solution
We have

AABC ~ANA'B'C'~AAB'C'~AA'BC' (1)
We note:

|B41]= xJcB | = y.Jact| ==
It results that:

A
b-y
Z
Yy

c-Z
B X A’ a-x C
|4'Cll=a—x,|B' 4|=b—y,|C'B|=c~-z
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<IBAC =<B'A'C=<BA'C'

<IABC =<A4B'C'=<4'B'C

IBCA=<BC'A'=<B'C'4
Qualities it results relation (1).

8O ~napieACl_ )
a—x ||A'B'||

sa B ~napc 14l —— 3)
= |gcy

st mparge— Bl i @)
v |48

From the relations(2), (3) and (4) we conclude that the sum of the products from the
hypothesis is equal to:

1 a b c
x(@—x)+ y(b—y)+2e—2) = (@ +5 + ) —(x = Lf —(y=2) = (=)

4 2 2 2
b
—.z
2
middle of the sides, therefore the AABC is equilateral. The maximum of the expression is

which reaches its maximum when x = ﬁ, y= = g that is when the heights’ legs fall in the

%(af + b’ —l—cz).

5.42.
Let’s consider 4,,..., 4, n distinct points on the circumference of a circle with the center
O and radius R.

o

—_— — 1
Sow that there exist two points 4, and 4; such that HOA:’ +0A fH >2Rcos 80 .
‘ n

Solution
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A,
Because
S = <404, + <4,04; + ...+ <4, 04, + <t4,04, = 360° and

Vie{l,2,...n},<404,,, > 0°,

i+1
o

) 360° . .
It results that there exist at least one angle <404, < (if not it results that )

360°
n

@ﬁ@:@:»”@ﬁ@”:”@”.

S>

1 =360°).

The quadrilateral O4M + 4; is a thomb.

While « is very small,

W” is very big.

o

Because o < , it results that

n

HO_MH =2R cos% >2Rcos 180 .
n

Determine the maximum number of points which can be found on the circumference of a
circle, such that the distance between two arbitrary points is greater or equal to the circle’s
radius.

Solution

The side of a regular hexagon inscribed in a circle has the same dimension as the radius
of the respective circle. Therefore there are at least 7 points on a circle that have the property
from the hypothesis, one point in the center of the circle and 6 points on the circumference such
that the six points constitute the vertexes of the regular hexagon inscribed in the circle.

The selected 7 points are taken in an optimal way. For example, if we want to construct
the set of point that have the property from the problem’s hypothesis it would not be at all
optimal of taking the first point different from the center of the circle, and not on the
circumference.
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Therefore in the geometric figure included here, taking C, in the interior of the circle and

different from the center, then in the shaded portion (which is a circle of the same radius like the
initial circle and with the center in C,, intersects the other one) it is not possible to take any other

point. Therefore the best is to have the shaded portion as small as possible. It will result that C,

must be on the circumference. From this will result that the other points will be: 5 on the
circumference such that the 6 points will constitute a regular hexagon and the other in the center
of the circle. Therefore we have constructed 7 points.

How many points we can find in a sphere (and on its surface), such that the distance
between any two of them to be greater or equal with the radius.

Solution
We consider the large circles of the sphere, determined by the plane 4,04, , where O is

the center of the sphere.

On its circumference we take the points 4, 4,,..., 4, such that we get a regular hexagon
- therefore, the distance HA[A ]H > than the ray of the sphere, for which i = j . We construct a

plane 4, A;MNO perpendicular on the plane 4,04, which cuts the sphere by the circle 4, A,MN .
On its circumference we take also 6 points which constitute a regular hexagon. Then, we
construct the third big circle of the sphere, determined by A4,,4,,M,N . The same, on the
circumference of this last circle we take 6 points, which are the vertexes of a regular hexagon,
among which are the points 4,, 4. Etc.

We have in total 6+4+0=10 points, and if we add the center of the sphere we obtain 11
points which keep the property from the hypothesis.

This method of constructing the points is the optimal one. If we start the construction of
the points, for example taking a point 4 which does not belong to surface of the sphere, then the
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sphere of center 4 and having the same ray will intersect a large zone of the initial sphere, but
with the condition is that this zone is the smallest possible. Then A4 belongs to the surface. And
the demonstration continues in the same way.

Given n distinct points in a plane, connected two by two through a line:
a) What is the maximum number of lines which we can construct with these points?
b) If only m points 1 <m <n, are collinear, how many distinct lines are there?

(n—2)(n+1)

c¢) Prove that we cannot have lines, regardless of how we arrange the n

distinct points.

Solution
Let A4,,..., A4, the n distinct points.

a) If they are three to three non-collineart, then we can form all possible lines
—1
AA; with i < j and (i, j) € {l,...,n}, therefore % lines.

b) If 4,...,4, are collinear, then the lines 4,4, with h# <k and (h,k) € {1,...,71}2 are the
same, and constitute a single line. Then it remains:
n(n—1) mm—1) — w*—m’—n+m+2

— +1
2 2 2

distinct lines.
(n—2)(n+1) n(n—l)

C = —1.
) 2 2
. . n(n—1) .

If the n points are three to three non-collinear, we saw that we have: 5 distinct
: : . m(m—1) ,
lines. If m points are collinear, we have T_l lines less. But

—1 —1

M -1& % —1—m —4 =0 which does not have a natural solution.

For example, if we have 3 collinear points, we eliminate 2 lines from the total of

n(n—l)
2

, but not a line as it should.

Given n distinct points in a plane, three to three non collinear 4,,..., 4, , find the locus of

the points M = A,, 1 <i <n, such that it doesn’t matter which line that passes through M and
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which doesn’t contain any point 4, (1<i<n) divides the plane in two semi-planes that contain

n n+1

the and the other

points.

Solution
We note II the plane that contains the points 4,,..., 4, and let « be the locus we are

looking for.

1)If n =1, then obvious a =11—{4}.

2)Ifn=2, a=[4,4,]—{A4.4,}, where |4, 4,] represents the segment of line which
unite the points 4, 4, .

3y n>2.

a) n=2k . Let d, the line that passes through 4, and through a point 4 ,

2 <s, <n, such that on a side and the other side of the line d, we find to be k¥ —1 points
B_fzn

Az""’Avl—l’Avl+l"' e D)

A, . We have = k. Obviously « is included in [AI,AS] ] We

proceed the same for all the points 4,, 1<i <n, and we find that o = ﬂ[Ai, A, ] Then, if all
i=1

these segments intersect in one point, then that point would be a1 if not a =®.

n n+1

b) n=2k+1. We have 5 =k and

] =k+1.For 4 we construct the

triangle 44, 4, , where 4, is such that the line 4,4, divides the plane in two semi-planes, one
containing k —1, the other k£ points among the points 4, ; in the same time that 4, is such that
the line 4,4, divides also the plane in two semi-planes, one containing & and the other £ —1
points among the points 4,. Evidently o =CA4 4, 4, . We continue the rational for all the points
4., 1<i<n,and we find that o = ﬂAA,.Au]AVI :

i=l1

Prove that a sphere cannot be included in the union of two spheres whose rays are strictly
smaller than that of the sphere itself.

Solution
Let’s S be the sphere, C the big circle, r the ray of the sphere (implicitly 7 is the ray
of the circle C).

By reduction ad absurdum, let S, and S, the spheres that comprise this sphere and such
that they are strictly inferior to S .
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We note C, (respectively C,) the ray of the sphere S, (respectively S, ), [implicitly #
(respectively r,), is the ray of circle C, (respectively C,)].
We intersect S with .
a) SNS, ={P} (one common point)
Let O the center of the sphere S. We construct a plane II that contains the ray OP .
IINS=C, CNS, ={P}, then S, >C—{P}, that means r, > r. Contradiction.

b) SNS, = Cl, (acircle). It results that its ray 7, < min{r,r}=rn<r.

Then there will exist a big circle C of the sphere S which has the property that
CNS, =®.Then S, D C,and r, > r, which is absurd.

c) The case S, C C and the surface of S, does not intersect the surface of S, then it will
exist a big circle C of the sphere S such that C(1S, =®. Then S, D C, and then , > r, which

is also absurd.
d) The same prove when S(1S,=® and S, ¢ S.
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Let’s consider the numbers kl,...,kp that form an arithmetic sequence. Prove that if

a,,...,a, form an arithmetic sequence (respectively geometric) then g, ,...,a, constitute an
arithmetic sequence (respectively geometric).

Solution
k, =k +({—1)r, 1<i<p and 7 is the ratio of this arithmetic sequence.
a) When aq,,...,a, form an arithmetic sequence, then

a, =4 +<ki _k1>”1 =a, + rr(i—1),
where 1 <i < p and r is the ratio of the sequence a,,...,a,. Then g, ,...,a, constitute also an

arithmetic sequence of ratio 77.

b) When a,,...,a, constitute a geometric sequence, with the ratio g, then

1y 171 . . .
a, = ak]q"f*"l =a, (q") , where 1 <i< p.Then q,,...,a, constitute a geometric
sequence with the ratio ¢" .

Let x, and y, natural sequences such that x, =ay,, Vn € N *,and a = 1. From the

arithmetic progression b,,b,,... we will eliminate the terms of rank x,, n € N *. Prove that

among the remaining terms there exists an arithmetic sub-progression.

Solution

We observe that if the naturals numbers 7,,...,i, constitute an arithmetic progression then
b[1 ,....b, has the same property, since

2b, = 2[by + (i, = Dr| = 2b, + (26, = 2)r =28, + (i, + iy = 2)r = (B + (i, = )7 )+ (B + (i —1)r) = b, +b
2b, =2[b +(i; = Dr|=2b,+(2i, —2)r =

= 2b,+ (i, i = 2)r = (b + (i, —1)r)+ (b + (i —1)r) =5, +b,
(Weused 2i;, =i, ,+1i,,,). Then we can replace b,,b,,... by 1,2,....

We must construct an arithmetic progression a,,a,,..such that a,,, = x,, V(i,n)€ NxN*.
A) The case a =0 is trivial

B)Let a =0.
a,., = a,+ir, where r is the ratio. Then a, = ?, r = ? such that
a,+ir=ay, ,V(i,n)e NxN* (1)
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a —a . o, 1
D 7% Because i €N , we put the condition: (ay, —a,)-€Z.
" r

We take r =a > 2 (because a =0, a =1 and x, and y, are the natural sequences, then a € N

From here we have i =

—a+1 1
or a, =a—1. It results that i = e v, —14+—€ N and the relation (1) is verified.
a a

Prove that ( f, 0....0ﬁ1)':ﬁfi'ofi+lo...0ﬁ.
i=l1

Solution
For i =1 we have an immediate result.
We suppose that the equality is true for i =n—1. Then

(fl o,_,_ofn)':<fl o(f2 o...ofn))':(fl'o(fzO...Ofn)>-(f2 O...Ofn)':
=(fo frowo f)TLL 0 funowo fy =110 fromo .

Given the sets ® = A C M, C M,, where M| is everywhere dense in M, , and inf 4~ in
M, . Then there exist an inf 4 in M, if and only if o < M. The same question for sup 4.

Solution
The sufficiency.
IfinfA=o in M, and a€ M, C M,, then evidently inf 4 =a in M,.

The necessity:
Let a'=inf 4 in M,. Then '€ M,. We know that inf 4=« in M, by hypothesis.

D If a'> «,then inf A=a'=a in M, . Contradiction.

2)If a'< «, because M, is everywhere dense in M, , it results that there exists v € M,
such that o' <y <a.If y€ 4, then « is not equal to inf 4 in M, (contradiction); then v € 4.
If there exist '€ (a',) such that '€ 4, then ' =inf 4 in M. Contradiction.

Therefore:
3) a'=«,thatis a e M, .
The proof for sup 4 is done the same way.
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6.52.
Show that, given a natural number » > 0 and a natural number 7 > 0, there exists a

T
function f: R — R with a period 7 and such that | f | has the period —. In this case, if [ is
n

continue prove that f is null in at least n — 1 points in the interval of length T .

Solution
Let’s consider n€ N*, T € Ri and the function f: R — R, of a period T , which has
the following graphic representation.:

XA

(D '
0 r
n

—
\4

where all n semi-circles of (1) are equal among them.
The function | f | : R — R will have the following representation:

(2) m .................... /_\
T (T LT T
n n

. .. T
Then its period is —
n

Evidently, there exist an infinity of such functions, because we can replace the semi-
circles of (1) by other curves as long as the property from the hypothesis will be satisfied.

We must prove the second point:

The case n =1 is banal. Let’s consider n > 1. Let k£ the number of points for which f

is null in the interval of length 7. But & is non-null, because otherwise it would result that
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|f|:f or |f|:—f on R, that means that |f| has the period 7 . Therefore k >1.
f(x)=0&|f|(x)=0.

(3) Because | f|(x) is null more than one times (we have k >1), it results that | /| is null in an

interval of length — or in the interior of that interval or at one extremity of the interval. But in
n

: : T .
an interval of length 7 there are n intervals of length —. Therefore | f | will be zero on at least
n

n—1 times in an interval of length 7', and therefore knowing (3) it results the last question of
the problem.

Let’s consider the positive functions f,..., f, on an interval / such that they vary on the

same direction on this interval.
Then f,-...- f, varies on the same direction on the interval I .

Solution
We consider that all functions f; are increasing. (Analog prove if all f; are decreasing)

We will use the recurrence rational.

Fori=2.Let x, <x,.
(/o) (%) = (o) (x) :fl(xl)ﬁ(xz)_fz(x])—l—fz(xz)ﬁ(x2>_ﬁ<xl>20

Xy =X Xy =X Xy =X

Therefore, f,f, is a an increasing function on / .
We suppose that f,-...- f, | is increasing, then f,-...- f, - f, 1s increasing, because we
cannote f, -...- f, , = g which is positive and increasing by the recurrence’s hypothesis, and

i f, - f, = gf, which is increasing concludes the proof for i = 2.

n

Let n a natural number and not null.
a) Determine the functions f: R — R, odd, derivable 2n times, such that the derivative

order 2n are non negative.
2)Determine the functions g : R — R, even, derivable 2n —1 times, such that the

derivative of the order 2n —1 are not negative.
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Solution
a) f(x)=—f(—x), Vx € R Itresults that £ (x)=(-1)" f"(~x).
But /?(x)>0 and f*(—x)<0, which implies that f*”(x)=0 on R.
By integration 2n times, we obtain:
f(x)=a, X" "' +a, X" +..+ax+a,
with g, € R, 0<i<2n—1.
Since f is odd, it results:

2n—1

2n—2
Ay, X Ty, X

1 2n-2 i+1 i 1
—a,, X"+ A+ (=) ax tax —a,.

+a,, x7 " +..tax
b) g(x) = g(—x), Vx € R . It results that g " (x) = (—1)*" " g® " (—x), which
implies that g "(x)=0 on R.

_ 2n—
+..+ax+a,=a,, x

s _ _ _ _ 2n—1
We obtain: a,, , =a,, , =...=a,. Therefore f(x)=a,, x

2n-3

By integrating 2n times, we have g(x) =b,, ,x" > +b, x*"7 +..+bx+b, with
beR, 0<i<2n-2.
Because g is even, it results that:
g(x)=b,, X" +b, X"+ +bx+b =
=b,, X" =b,, X"+ (=)bx 4.+ (—Dbx—b,.
We obtain: b, ,=b, .=..=b =0,then g(x)=b,, ,x" " +b, X" 4. +bx’+b,.

A function f: R — R admits a symmetry center if and only if it exist two real constants
a,b such that the function g(x)= f(x+a)—b is odd.
In these conditions, the symmetry center is for coordinates (a,b).

Solution
The necessity.
Let C(a, 3) the center of symmetry. We raise a = a,b = 3. We execute a translation of

axes, by moving the origin in C(a,b). The formulae of the change of the reference system
CXY to CX'Y' are

{x':x—a {x:x'—f—a

=
y'=y—b y=y'+b

Then y = f(x) becomes y'+b= f(x'+a)m where y'= f(x+a)—b. We make the notation
gx'=f(x'+a)—b, g:R— R.The function g admits a center of symmetry, which is the
same with the axes origin. Then g is odd.

The sufficiency.
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g being odd, it results that g admits the axes origin as center of symmetry.
We execute the axes’ translation, moving the origin in C"(—a,—b).
The formulae of the change of the reference system CXY to CX"Y" are

{x":x+a {x:x"—a

=
y'=y+b y=y"=b

Then y =g(x)= f(x+a)—b becomes y"—-b= f(x"—a-+a)—b,thatis y"= f(x").
Because g admits the symmetry center O(0,0) in the reference system CXY , this implies then
that f admits the symmetry center O(a,b) in the reference system O"X"Y".

In an system of orthogonal axes, the function f: R — R has an axis of symmetry if and
only if there exists a real constant such that the function g(x)= f(x-+a), is even.
In this condition, the symmetry axis has the equation x = a .

Solution
The necessity.

Let x = a be the symmetry axis of function f. We set x = a . We execute a translation
of axes, by moving the origin in O'(a,0). The equations of change from the (OXY) to
(0'X'Y") are:

{x':x—a {x:x'-l—a
1 <:> 1
y =y y=y

Then y = f(x) becomes y'= f(x'+a)=g(x"), g:R— R. f admits as axis of
symmetry the line x = a . Il results that g admits as axis of symmetry the line x'=0 (in
(O'X'Y")), that is the axis O'Y '.

Therefore g is even.

The sufficiency:
Because g is even, we have that g admits the axis OY as axis of symmetry.

We’ll execute a translation of axes, by moving the origin in O"(—a,0). The movement of
(OXY) in (O"X"Y") is done by:
{x":x—ka {x:x"—a
' <:> n
y =7y y=Yy
Then y = g(x) = f(x+a) becomes y" = f(x"). g admits as axis of symmetry the line
x = 0, from which it results that f* admits as axis of symmetry the line x"=a.
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We consider the continuous functions 4, B, C:I — R, where [ is aninterval on R,
with A(x) <C(x)<B(x), Vx € I.Let’s consider x,,x, € [, x, <x, and A(x,) = f(x,),
B(x,) = f(x,), where f isa continuous function on [x,,x,].

Prove that there exist x, € [x,,x,| such that C(x;) = f(x;).

Solution
We’ll use the absurd method.

By reduction ad absurdum we suppose that the conclusion is not true, then Vx € [xl , xz]
we have that C(x) = f(x), or C(x)— f(x)=0. C and f being continuous on [x,,x,], it results
that C — f* is continuous on [x,,x,]. Then: Vx €[x,,x,], C(x)— f(x) >0, or Vx €[x,,x,],
C(x)— f(x)<O0.

We consider the first situation (the second will be similar).

Because A(x) <C(x)<B(x) on I,we have: A(x)— f(x) <C(x)— f(x) < B(x)— f(x)
on [x,,x,]. Therefore C(x,)— f(x,) < B(x,)— f(x,) =0, which is a contradiction.

Then we have the conclusion tha there exist x, € [x,,x,| such that C(x;) = f(x;) is true.

Find the real numbers a,b,c, such that

) a(2x3 —x2>—|—b(x3 +5x7 —1)—#0(3x3 —x2)
lim =
=00 a(Sx4 —x>+b(—x4>+ c(4x4 + 1)+2x2 +5x

Solution
We can write:

(2a+b—3c)x* +(—a+5b—c)x* —b
im =
x—*%(Sa—b—l—4c>x4—|—2x2—|—(—a—|—5)x—|—c
If 5a —b+ 4c =0 then the limit (1) is equal to 0= 1.

Then 5a —b+4c =0. It results that 2a + b —3c =0, because if not, the limit (1) would
be equal to +av=1. Then:

(—a+5b—c)x2—b B

(1)

lim =1,
x—o0 2 x° —i—(—a—l—S)x—l—c
from where LSb_C =1.

and the real numbers a,b,c verify the system:
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5a—b+4c

2a+b—-3c=0
—a+5h—c=2
When resolved we fund the values:
2 46 14
a—=—-, b:—, C=——.
109 109 109

Given the natural numbers a,,b; between 0 and 9, with @, =9 = b, and a, +1=x

9—a =y, i=2,n,and 9-b,=z,, j=1,m. Compute:

0.x, - [ZO 0.07,+5.3.0,0...0 zj]

k=0 j=1 nl+j+km

11m

Solution
We note

o= ;O,Myi =0,0y,...y,

1

and
B(p)= 0,0........ z;=0,0...0z wZjenZ,
;; n— 1+]+k m n LI'_J """ ;;7_/
If we take t =5, +1, we have:
v, =0,x,—(a+B(p))=0,a,..a,b..b,..b..b,b.b,t (1)
1 p—1 P

We show that v, — 0,4,...q, (bl...bm) =,
p—0

Let e >0, dp, = p(¢) € N, p, being the smallest natural number which has the property :

lge-10"
Py~ — g >
m
such that
Vp > py, Yo~ ’Yo‘ =107 <107 101 = ¢,

and it results (1).

We consider the functions f,, f, : R — R such that lim |f1(x)| =00 and lim |f2(x)| =a.
p—00 X—00
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Show that lim [ S,(x)- exists and compute this limit , where |a| represents the

S(x
integer part of «.

Solution

Then

lim f,(x) =400 or —00 (1)
1
We note f(x)= f,(x) ] ;
RPAC)

Discussion:
A)If a =0, then

lim = +00 or —oo or it doesn’t exist and the same lim
X—00 ﬁ(x) X—00

=400 Oor

1>(x)
—o0 or it doesn’t exist.. From here lim f(x) =400 or —oo (conform to (1) and A) or we

cannot conclude anything.

a

B) a <1 and a = 0 then |—|= 0. From where, also, lim f(x) =-+oc or —oo (conform

(1) and B), that is conform to (1) and the sign of

a

C) a>1=|—|=0.Wehave f,(x) — a>1.Thenitexists « >0 suchthat a=1+«.

Let ¥, = (a —a,a+ a) aneighborhood of a ; 1€V, . Let a sequence x, — oo, then f,(x,) —a
(conform to the limit’s definition.). f,(x,) is a real sequence which tends to « . It results that
outside of ¥, we find at most a limited number of terms of the sequence f,(x,) if and only if it
exists at most a limited number of terms that have the property f,(x,) <1. Therefore, the

majority if terms are found in V_, therefore it exists n, € N * such that Vi >n_, f,(x,)>1.

Therefore the sequence

] is the following:
fz(x") neN*

1 1
VACH) IR NACHY

Therefore , with the exception of a limited number of null terms, this sequence is the null
sequence.
It results that the sequence ( f,(x,))

,0,0,0,..

geeey

is the following:
neN*

1
fr(x)

},...,fl(xnﬂ)-l#

,0,0,0,...
fZ(xnu)

Si(x)-
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Then, also, with the exception of a limited number of null terms, this new sequence is the
constant, null sequence.
In conclusion: lim f(x)=0

Compute without using 1’Hospital theorem)
hm - Q/ﬁ(X) - Q/-f;(xo)
T b\/f, (x) — bx/fl (%)

with the conditions that the anterior solutions exist. Generalization.

Solution
We multiply each fraction by the conjugate of the numerator and denominator.
Let 1 <i<n, we note:

Ji(x)
(%)
(x)

(X,

ol

I
=~

Sl

S A % »
[
=~

S;

I
=~

We have:
A-B (4— B)(A”f’1 T AT 4+ ABT B!
cC-D (C—D)(A’f’l +A7B ..+ A'B7+ B

M(Csi—l_i_Csi—ZDl_i_.'._i_D.s-,—l) s, (si](l"(xo))sifl | -
== — = it
' I

C7 4 47D 4.+ C'D 4 DY)
Csi71 + Cs,-fZDl + + Clcsi*Z _}_Dsi71>

~ | —
—]

From where the limit from the hypothesis will be equal to:

ﬁ%(fz(xo))?:

=l 7

Generalization:

T -G () irn=m
N R Gk A
= 100 =4 £i(x,)
RN ERIAED)
in the conditions in which the anterior solutions exist.

If n <m the limit does not exist because the denominator is equal to zero, then the numerator is
not null; from where the two lateral limits are different.
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Remark:
If there exist at least a constant function fl.o , 1<i, <min {m,n} , then the limit does not

exist.
The same thing for the limit from the problem’s enounce.
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Compare the sets:

A= {X | X =) aK,+a, with(K,,..,K,)€Z", anda,,...,a,are integer constants such that(a,,...,a, )= 1}

i=1

B

{X|X = ijKj +b, with(K,,..,K,, )€ Z", andb,,...,b, b are integer constants}

J=1

Solution
First of all we prove that A=Z7.
It is obvious that 4 C Z, and also Z C A because

VZeZ3(K)...K)eZ": iaiKiO ta=27
1

Because the greatest common divisor (a,,...,a,)=1 and 1 divides Z —a.

We see immediately that B C Z .
If (b,,....b,)=1 then B=Z = A, otherwise BC 4 and B= A4.

Given a prime number p and M aset of p consecutive natural numbers, prove that
M cannot be divided in two disjoint subsets M, M,, with M, UM, = M , as the product of the

numbers in M, are equal to the product of the numbers in M, .

Solution
Because M contains p consecutive natural numbers, then M constitute a complete

system of residues modulo p . Then:

dny €M :ny =1 vne M —{n,}, n =it

We consider that n, € M, (the same proof for the contraire cae).
The product of the numbers in M, is divisible by p, but the product of numbers from A, is not
divisible by p, because p is a prime number and because it does not exist any element in M,
which is a multiple of p . From here, the product from M, cannot be equal to the product from

M,.
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Let’s consider M a set which contains m natural numbers, m>2,and n € N*, n<m.

—1
We note: K = m

+1, where [X| represents the integer part of X .
n

Prove that there exists a subset M' of M , such that:
a) M 'contains at least K elements
b) The difference between two random elements of M ' is a multiple of 7 .

Solution

The set M has the form: M ={a,,...,a, } , where all ¢, e N. Vi €{l,...,m},a, =¥,
with 7, € {0,1,2,...,11 — 1}.

Let m=qg-n+r,geN, 0<r<n-—1.Because n <m, it results that g € N*. We
construct the set M 'C M . Because the condition b) are achieved it must that M ' contains only
elements from M which divided by » will give the same residue.

The residues obtained from the division by » are: 0,1,...,n-1. We have n equivalence classes
modulo 7 .

The problem is reduced to prove that there exists a class which contains at least K

elements. M ' will be exactly this class.

m—1 qg:n—1

1) The case when » =0. Then K = +1=

+1=gq.

n
If m=gq:n elements of M are equally distributed in the n classes, then each class contains ¢

elements, and the problem is solved.
In the contrary case, there exists at least a class which contains at least g elements and

also, in this case the problem is resolved.

n

m—1 gn+r—1

n

+1=

2) The case when 7 = 0. Then K =

+1=qg+1.
n

The m = gn + r elements of M are distributed randomly in the n classes, it results that
there exist at least a class which contains at least ¢ +1 elements (if not it would result that there
would be a maximum of gn elements < n ), and the problem is completely solved.

Let’s consider the homogeneous polynomials P, (x,y) and Q, (x,y) of n degree in x,y
i _% gen b (a,,b) _ L (a,,b,)
b b, 0,(a,b)  Q,(a,b,)

Solution
Let
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n—1_1

P(x,) = apx" +ax" Y+ 4o, 0"+,

and
0,(x,3) = Bx" + Bx" Y +.. 4 B, 0"+ 5,y
G_8 o _b o b _a”h_aah
b, b, a, b, a4 b a'B aa)'b
0<i<n.
Since the sum of the numerators divided by the sum of the denominators is equal with
each rapport, we have:
aa +oa b 4.+ a b’ al
Q@ +a,al by + ...+ a, bl B a,
The same way, we obtain:
B +Ba b +..+Bb al
Byt +Bal b+ ..+ B b al’

Then:
P (a;,b) _ 0,(a;,b)
P(ay,b) 0O,a,,b,)
Therefore, the conclusion.

Let’s consider a natural number

p =2 and a sequence such that a, =1, a,,, = pa, +1, Vn &€ N*. Prove that VK € N*,
K can be uniquely expressed as follows: K =ta, +...+fa, with 1<z, <p—1 for
i€{l,2,..,/—-1} and 1<¢, < p and n,>..>n,.

Solution

We deduct immediately that a, = p _11 which is a sequence of natural numbers, strictly
p JR—
ascending, unlimited. Then: 3n, € N* such that a, <k <a, ,, = pa, +1.
From here & can be written uniquely as follows:
k=ta, +1<pa,,with 0<r<a,.

a,p

If , =0, it results that tlziandlﬁflﬁ =P

a

n

If 7, = 0, it results that there existsn, € N* such that a, <r <a, ., =pa, +1=r="ta, +r,
2 2 1 2

n
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k—r a, —1
a, <rn<a, =n,<n;t = ‘Sp ‘ <p;
2 1 a a

I'Il

n

Then 1<t, <p—1.
And k is written uniquely k& =ta, +ta, +1,, and the process continue. After a limited
number of steps we reach r, = 0. We will have the same prove for n, >n,,,,i € {1,...,1 — 1} and

1<t,<p-1,i€{l,.,1-1} and 1 <¢ < p, and the problem is solved.

i+1°

If a,....,a,,b are positive real numbers with b <a, +...+a, and o & {—a,,...,—a,,—b},

a,

n

then b < et )
a+b oa+a a+ta,

Solution
We will use the recurrence rational for n € N * .

YR a(b—a)
a+b a+a, (a+b)(a+a)
and taking into account the hypothesis/

We suppose that the inequality is true for all the values smaller or equal to # .
We will prove it for n41: b <(a, +...4+a,)+a,., and in conformity to the hypothesis

a,+..+a
< ( 1 n) 4y ,but a1+...+an§al+...+a
a+b a—|—(al—|—...—|—an) ata,,

then if we apply one more time the hypothesis of the recurrence, we obtain:
b a, a, a a

< + o — e —
a+b a+ta a+ta, ata, oa+a

< 0; which is true,

For n =1, 1if b<a,, we have

of the recurrence we have:

no

n n+1

Let’s consider the expression: E(x,y)= Ax" +Bxy+Cy* +Dx+ Ey+F, (x,y) €ER’,

with 4,B,C,D,E,F real,and A+ C*> = 0. Find a necessary and sufficient condition for
E(x,y)to admit an extreme.

Solution
Because 4° + C* = 0, it results that at least 4 or C is not null, let it be A ; (the result
will be similar if C =0).
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We suppose that E(x,y) admits an extreme.
E(x,y)= A{x2 +%xy +%x]+ CY' +Ey+F=

X+—y+— P —— y+ O+ Ey+F =

_A[ B D]z_B_z D> 2BD
- 247 " 24) a4’ T a4 a4

B DY 44C—-B*> , 4A4AE-2BD , D?
= A\ x oyt y o+ Y 4| F -2
247 24 44 44 v
2
—4Ai p 5 =0, because if not £(x,y) would not have extreme.
We have
2 2 5
B DY 44C-B’ |, _24E-BD  (24E—BD
E X, :A x+_ +_ _}_—' +2 _
(x,») [ 1 2A] YR AR VT [4Ac—32]
_44C-B" 2AE—BD]2 s D)
44 44C— B 44
B DY 44C—B*(  24E—BDY D*  (24E—BDY
247 24 44 44C—B 44 44(44C-B)
44C—B?

Evidently E(x,y) admits only one extreme if 4 and a4l have the same sign, that is if

2
A% >0, from where 44C — B> >0, which constitute a necessary condition for E(x,y)

to admit un extreme (as long as the two are positive and have a minimum, if not a maximum).
But 44C — B* >0 constitute also a sufficient condition, because E(x, ) can be written as (1)

2
and A and % have the same sign.

Let’s consider the integers 4 = a,...a,, +a,,...a, and B = a,...a, — a,...a, written in base
beN* —{1}. Show that A is divisible by b+ 1 and B is divisible by b—1.

Solution
We’ll compute the criteria of divisibility by 5+1 and by »—1 in base 5 .

b'=(—1)'(modb+1) and b' =1(modb—1), ieN.
Because
A=(a,, —ay, ot (D +.ta,—a )+
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—1—((11 —a, (Dt tay,, _a2n> = O(mOdb+1)'
Similarly:
B=(a,—a, +..+a)—(a +a,+..4+a,)=0(modb+1).

Let’s consider a natural number a and p a non- null integer. Determine the number of

elements of the set M = {a,%,...,a...a} which are divisible by p . Discussion.

n

Solution
Let a be written in base 10 in the form: ¢ =q,...a, , with a, e N, 1<i<s, s€ N*. An

element €M is a=ga...a with 1 <n<m, n integer.
——

10" —1

a=a-10"" +a-10" + . +a-10" +a=a(1+10°'+..+10" ) =a =

We must find the » for which « divides p .
Let d =(a,p). Then a =da, and p =dp, and (a,, p,)=1. Then we must determine n

10" —1
such that .
u ?él 10° —1 |ﬁ71

D If (p,lO) =1, let’s consider ¢ the oreder of the class of residues of 10 in rapport to
mod p, (10s — 1>. We have also: 10° —1= O(modpl (103 —1)) , then 10° —1= 0(m0d(IOS - 1))

g

and it results that 6 = ks, k € N*. Then it exists exactly elements in M which are

divisible by p .

Prove that Vk e N*— {1} there exist an infinity of natural numbers whose property is that
they admit exactly & positive divisors.

Solution
Any natural number A is written in the following form:

A= p"..p}*, (obviously 4 ¢ {0,1})where p, are prime numbers, i € {l,...,s} and
p,=p, fori=j, o,eN* with ie{l,..,s}, s € N*(which is the canonic form of a number,

and which is unique).
Re note by d(A4) the number of positive divisors of 4.
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Then

n

d(A)=]](a,+1) (D

i=1

Our problem is reduced to prove that the equation H(ai + 1) =k has solutions in (N *)S
i=1

(the unknown are ¢,...c,and s). We take s =1€ N* and oy, =k —1€ N* and we obtain

k—1+1=k . From all the numbers n = p*', with a random prime number, has exactly &

positive divisors (we have an infinity of numbers n because we have an infinity of prime
numbers p ).

We can see that equation (1) has other solutions . For example, if k£ = k,,...k, with all
k. e N* —{1} , we have the infinite solution, s=+¢, o, =k —1,...,a, =k, —1 from where

n=p,..,p, and where all p, are the different prime numbers.

Knowing that a,, i€ {1,2,...,n} , satisfying the conditions of existence for all »

logarithms, solve the equation:
log, log, ...log, x=10

Solution

log, <10ga2 log,, ...log, x) =b<log, log, ...log, x=a,
Where

log,, (loga3 ...log, x) =a & log, log, ...log, x = a;’Ib
Where

log,, (loga4 ...log, x) = a;"b < log, log, ...log, x= a;‘f"

b

_alb
- logan x=a,,

aib

n—1

Slog, x=a

ab
= XxX=a,

Which is the solution of the problem.

If a,be R’; ,b=1land Ya€Q, a=5", then log, a ¢ Q, and reciprocal.
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Solution
First of all we observe that this problem is the result of several particular problems; for
example “show that log , 10 is not a rational number”, etc.

The proof will be done using the absurd rational.

We suppose that log, alc Q, with least common divisor (m,n)=1.
n

m

It results that " = a . By raining this equality to the n ™ power, we have b” =a", with m,n € Q
, a"=b"", where na € Q (because a >0, b>0),

Then, if we cannot write it as a rational power of 5 ,we would not be able to write a"any
more as a rational power of b .

And, it results that " = b", Vm € Q. Contradiction.

Therefore loga € Q.
Reciprocal:

If log, a ¢ Q, then obviously a = b", Va € Q, because if not it will result that
log, b" =€ Q.
And the problem is completely proved.

Let s = 0 a natural number. Determine the natural numbers » that verify the propriety
n divides n . (we note [x] the integer part of x).

Solution

VneN dpeN: p’ §n<<p+l)s =p +Cp +..+C'p' +1.

From here n can be written: n = p* +k with 0<k<C.p"'+..+C'p'+1 and
k € N . It results [{/; } = p . Because [i/; ] divides n , we obtain that p divides & . Then
k=«:p,with a €N, and ngg(p—i—l)s—(p"—i—l) from where:

(p—H)S—(pS —H)

p
Therefore the natural numbers that have the property from the hypothesis are:

(p—H)S—(pS —H)
p

0<a< eN

n = p’ +ap, with the property « € N and 0 < <

, p € N* and also the

trivial solutionn = 0, because 0 divides 0.
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7.75.
Let p anatural number, p > 2 and the function:

X

2

X

B,(x)=|—=|+
p

+..,X€EZ,.

Show that if x = (an...alao) then:
p

B,(x)=

pl_l[x—(ao—i—al—l—...—l—an)]

Solution
x= (an...alao)p =a,p"+..+ap +a,

X=ap+a_p">+..+ap +a, because ﬂ] =0
p p
X | n—-2 n—3 1 2
—|=a,p" +a, ,p" +..+a, because 0<ap +a,<p
p
X
n :an
p
im =0 forall m naturaland m>n—+1.
p
Therefore

B,()=a,(1+..+p")+a, (1447 )+ +a, (14 p)+a =
:an(l—{—...—l—p”*l)jtanfl(1—I—...—I—p”*z)—{—...—i—az(l—l—p)jtal =

:anﬁ—l—...—l—azp_l—i-alp_l:
p—1 p—1 p—1
:(a p'+..+ap —a —...—a) L1 [x—(a +a,+..+a )]
n 1 n 1 p—l p—l 0 1 n
7.76.

Prove the inequality:

2 2 2 2 2 2
a a a a a a
—;+—22]+[—22+—32 + +[—';+—‘2 >
a, q a; a, a; a
2 2 2
a a a a a a
> —+—= +[ Sl (S "+—‘]
a, q a 4a, a, a,

where
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a,...,a, € ]R\{O}, n>?2

Solution

2 2
a, 4
T3
a, q

2
It is sufficient to prove that: > [% + é] , where a,be R\{0}.
a

After computing the powers, passing all the terms to the right side and executing all the
reductions of all similar terms it results that:

a
We note ? =u. We have

1 1
u2+—2—u——20.
u u

1) 1 a*
u+—| —lu+—|-220,u=—5>0
u u b

1 . . . .
We note ¢ =u-+—2>2; we have 1> —1—2>0, thatis (s+1)(z—2)> 0, inequality which
u

is true for t > 2.

Therefore each parenthesis from the right side, squared, is greater or equal to the
correspondent parenthesis in the left side squared.

Show that if a, +a, +...+a, =a,..a,, (a,=0, i€{1,2,..,n}), then

1 1 1 1 1 1 1 1 1 1
a|—+—+.t—|t+a|—+—+.t—F+—|+ta|—+—+.t—|+tn=
a, 4 a, a aq, a, a a.  a, a,_
= Zal...ai_lam...an .
i=1
Solution
The left side of the equality can be written:
LI T S A e LN L
a, a a, a, a, a, a a a, a,_
a, 4 a, a, | 4 a, a, 4 a,_
=24+ 2 A B | A R e =
al al al a2 aZ aZ an an an
a,..a,—a, a..a,—a, a,..a,—a,
= + +...+ +n=
a, a, a,
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n n
= g a,..a,_\a,,.a,—n+n= E a,...a,_,a, ,...4a, .
i=1 i=1

Let the integer numbers a,b,a,,b, with i € {1,2,...,n} and j€ {1,2,...,m}. Show that if
x,,y; (with i€ {1,2,...,n}and j€{l,2,..,m}) are integer numbers, the expression:

E (Xt ooy, ) =

D by +b
J=1
has integer values if and only if the greatest common divisor of the numbers a,,...,a,,b,,....,b, ,b
divides a .
Solution

The expression E(x,,...,X,, ..., ¥, ) Will have integer values if and only if the equality
E(xl,...,xn,yl,...,ym) =t admits integer solutions, where the unknown are x,,...,x,,¥,,..., V, .t .

This equation is equivalent to:

iaix,. —Zm:bjyjt—bt:—a (1)
i=I =1

& Za[x[ —ijtj —bt=—a
i=1 j=1
with
t; =yt je{l,..m}. 2)
Necessity

If this equation admits solutions in Z, then it results that the greatest common divisor of
the numbers aq,,...,a,,b,,...,b, b divide a .

Sufficiency
1) The case b = 0 . Because the greatest common divisor of a,,...,a,,b,,....b,,b divide b,

it results that the equation (2) admits solutions in Z, then it exist € Z such that
E(xl,...,xn,yl,...,ym) =t1.

2) The case b= 0. We note d, =(a,,...,a,) and d, = (b,,...,b, ). From which
D =(ay,...a,.b,,...b,,b)=(d,,d,) divides a . The equation (1) becomes:

D _ax,—d, [Eb'j Vi
p =1

‘t=—a 3)

where bj :dzb'j, 1<j<m.
Because (b',...,b", ) =1, it results that there exist (ylo,...,y,(;) € Z" such that

'
m
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m

> b', ») =1. From here we have:

J=1

Zaixi —d,t=—a
i=1
Because D =(d,,d,)=(a,,....a,.d,) divides a, it results that exists ¢ in Z such that

(4)

E(x],...,xn,yl,...,ym) =t.

Let a, € R, i€{1,2,...,n} and the function f:R — R defined by

f(x)= Z ﬁ(x — axj>, k natural odd number.
1<i\ <.<iy<n j=I

Show that whatever are the values a,,...,a, the function does not have the same sign on

the whole real axis.

Solution
Let m =min{a,} and M = max{a,}. We have m < M (the sign + does not bother us).

k
For x € (—oo,m) we have x—a, <0, x—a, <0, Vie{l,2,..,n} and H(x—ai/)<0
j=1 '

because k is odd and all factors of the product are negative.
Then f(x)<0, Vxe (—oo,m)

The same: f(x)>0, x € (M,0).
And the signs are different and Va,,...,a, in R the function is both negative and positive.

If ,...,, are natural numbers not null, show that

l—i-ni Z ozl.]...ozl.k:ll[(ozh—l—l)

k=1 1<ii<.<i,<n h=1

Solution
Let’s consider the natural number a = p;"...p," , where p,,..., p, are distinct numbers

two by two.
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We’ll determine the number of positive divisors D . We know that: D = H(% + 1) .
h=1
Then, we apply another method to compute D : we write all the divisors ( £ represents the
number of different prime factors, of divisor d ):

k=1.Wehave q, +...+a, are the divisors of p|,..., P ,.c., Dhseres Darees D3
k=2.Wehave Y o, a, divisors:

1<i<ip<n

1 «
DiPys-s PPy’
 TOU (are oo, divisors)

k = 1. We follow the same process, we have " a,q, ..« divisors,

1<i <.<iy<n

Because & can take the / values until #, it results that D =1 —1—2 Z o o (We

it
k=1 1<i,<.<i, <n

added 1 because, if £ =0 we have the divisor 1 for a ).

Determine the natural number of » digits such that the following expression

X;...X ) . . . . .
1 s is maximum, knowing that i, =0,i,,...,7, ,,i

m—1
E :xih+1xi,,+2"'xih+1
=0

that all the numbers are written in base b .

=n are fixed, and

m—1

Solution
X, 1%, 0o, =a,,,, 0<h <m—1.1Inthis case the rapport becomes:

1

ab"™" +ab"" " +. . +a,

R=
a+a,+..+a,
m m—1
J Zajcj Za/‘ (Cj - 1)
Wenotecj:b”—Zih,0§j§m.ThenR: lm =1+- —

h=1
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Which is maximum when a, =0 (because ¢ ,=1).

m—1
Zaj(cj—1> Zaj(cj—l—cmfl%—l)
+ 1

Then Rmax = 1+1—: 1+<Cm—1_1) m—1

Zl:aj >4,

1

cm—l + m—1 )
>4,
1
m—2
Z a; (Cj - an)
which is maximum when @, , =0.Then R =c, ,+——— and the process
a;
1
continues.
After a limited number of steps, we have:
alc,—c)+a,lc,—c alc, —c
Rmax:C3+ 1(1 3) 2(2 3):C3+<C’2—C3>+ l(l 2)
a, +a, a, +a,
. ) a(c,—c o
Which is maxim when a, = 0. Therefore, R, =c, +M =c =b"".
a,

And the numbers we
Re a looking for are: x,x,...x; 0...0 written in base b .

n—i

We consider all residue modulo m classes C,,C,,...,C, , prime with m , and
a,€C, 1<i<k.Prove that m | Z a;...q,

1<) <..<i <k

Solution
It is obvious k = p(m), where ¢ is the Euler’s indicator
1) m=0=¢p(m)=2=s=1
C,={-1};C, ={+1} and then @, =—1,a, =+1, the sum S=—1+1 and 0
divides 0.
2) m=+1=¢(m)=1 and *1]|s, forany SeZ.
3)|m|>2.Wenote S, = > a..a,1<j<k
1< <.<i <k !
k

k .
(A) We construct f(x)=[](x—a,)=> (- l)kﬁ x/s, taking s, =1.
i=1

J=0
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Propriety 1: If (a,m)=1, then (m—a,m)=1.
Property 2: If m = £1, then ¢(m) = M, (Their proof is banal)
Then k =2k,, k €Z,and the set {al,,...,akl akl+1,...,a2k1}z {al,,...,akl -akl,...,—al} and

K
B) f(x)= H((x — ai)(x + ai))(mod m)
i=l
If we compare (A) and (B), we observe that for s odd, 0 <s <k, we have
(1) S, = 0(modm) , which is equivalent to m |, .
(We used the property 3: If a € QO ,then —a € C_I.0 , iy = J,. Then the set {al,,...,akl -akl,...,—al}

contains exactly an element of each of the 2k, classes of prime residues of m modulo m .

-1 1
+—|—.
2 nl2

n n

Let ¢ a permutation on the set {1,2,...,11} . Then l~Zn:|<,0(h) —h| <
nop=

Solution

) 1 2 ... n—1 n
For the permutation w = we have:
nn—1 .. 2 1

;|w(h)—h|:2[(n—1)+(n—3)+(n—5)+...]:

2 n n (n — 1)
—l|n—|=||= —|.
2 2 2 2
We prove now using the recurrence method for n € N, n > 2, that the sum:

=2 (n—2k+1)...=2
S:;[n— 5

k=1
For n =2 and 3 we can verify it very easy .
We suppose that the property is true for the values less than n+ 2. We’ll prove that it is
true for n+2:

[1 2 ... n+l n—i—2]
w= .

n

] gets the maximum value when p =w.

n+2n+1 ... 2 1
2 ... n+l1
n+1 .. 2

Knowing that w'= [ } is a permutation of n elements and for which S will have

1 ... n

the same value as for the permutation w" = [
n

], in other words the maximum (w"
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was obtained from w' by reducing each element by one unit) in conformity to the hypothesis of
the recurrence.

I ... n42
n—+2
conformity with the hypothesis of the recurrence). But w is obtained starting with w' and 7:

'(h), it h¢{l,n+2
oy — | @O0 {Ln -2}
n(h), otherwise

The permutation of two elements 7 = [ gives the maximum value for S (in

Let p an integer number p>2 and a/ € R, where i € {1,2,...,n}, k€ {1,2,...,m}.

S| <5
i=1 \ k=1

1

S

Then

Solution
First of all we prove that

Zn?(af”)z]; + [Z"I(af”)z]; ()

i=1 i=l

]

i=l

<

We can compute the power of p of this inequality because both sides are positive.
We have:

S S S <)+ S+ S
i=1 =1 i=1

Zj;(ai“)z]; and 3 :[z(a;%)z]j’.

(A) If p =2k, then

where a =

k
1

et 200 S Sy

i=1

1) i
p
E :a(l) (2) 2

> 22 aa®

We used the inequality Cauchy-Buniakouski-Schwarts.
(B) Let p=2k+1.

a) a <. It results:

1
+

I\)\»—-

C/;+1ak/6k+l —_ Cl;+lakﬂk6%ﬁ% 2 C§+1/6k+ Ck+l (OC/B)
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1
K+
2 2

»
n n

M (2) @ (2
g a;a ] ZZE a;’a
i=l i

>2

b) a> 3. It results that

1
Clljakﬂﬂk _ CII;OJHE > Ck 25 2 > 2<056 2 >2Za(1) @

Now, from (1), using the absurd reasoning, we obtain what we’re looking for.

The case m = 2 is verified.

We suppose that the property is true for the values smaller than m .
We prove for m .

n m 2 ; n n 2
O =[S 45 g™
S| [ -[Sare e

» o (wn , an
<[ty +

i=l

i=1 \ k=2

n—1 1

Prove the inequality: n!>2"" "

2

Solution
a) n =2k

<

n!=(2-4-6-2k)-[1-3-5--(2k —1)| = 2" -[1-3-5-k]-|1-3-5--(2k - 1)| =

=2-kI[1-3-5-+(2k —1)|> 2 k12" (k= 1)1 = 2" (K —1)V-k!

b) n=2k+1

n'=2-4-6-2k-1-3-5--(2k —=1)-(2k +1)=2" -k11-3-5--(2k +1) >
>28 k12-4- 2k =2" k1 2k k! =27 -k k!

n—1

2

n

2

From these two results we conclude that: n!>2"". "=

Prove the inequality:

DRI

i=0 j=0 h=

!n!>2

m+1

Solution
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n—1
2

(See the anterior problems)
We can easily prove that

n

(1) n!'>2"". - !

n—a
27 n—a
(2) 2 = 2p+1
with 0<a < 2*
n—aj
2° n—a—2"
(3) 2 - 2p+1

with 0 <a <27,
(For thiswe put n =2"" -k +a and 0 < a < 27",
Then we use the recurrence method to prove the inequality from enounce. We consider this
inequality as a mathematical proposition which depends of m , then P(m). We apply the

recurrence on m .
For m = 0 we obtain the inequality (1) which is true. We suppose that P(m) is true. We

must prove that P(m+1) is true.
From (1), (2), and (3) it results

n—h
h ! > 2 2m+l .

n —_
m+1

n_h_2m+1

2m+2

n—nh

2m+2

|

(4) if 0<h<2"" then !

For each h natural, 0 </ < 2" we rapport (4) in P(m), and then we execute all computations.
We’ll find exactly P(m+1).
Remark: To generalize this inequality we replace 2 by a random natural p, 2 < p <n, and we

follow a similar method. We’ll find that the writing is more complicated and the inequality will
be less fine.

Having a, €[0,1], p, >0, 1<i<n, 1<j<m;n,mecN*. Prove that

n m n m m
Dij P Pij
H Z a;" + H Z a; Z a;
i=1 | j=1

i=1 j=I j=k+1

<m" +(2k—m)"

Where £ is a natural number

Solution:
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We note
Hzap/ _H( +a12 + +atm >:(a11”+ap12+ +alpnl1 ) ( o +ai12 + +anm )
i=1 j=I
If all the multiplications are done, one can see B, is an algebraic sum which contains m"
terms and each of them has the sign +.

It is noted
n k
_ Py | __ P Pik+1 Pim |
Pz_H Zai E :a _H<a:1 +. +a - tk+1_"'_aim)_
i=1 | j=1 J=k+1
— P Pk _ Pk — 4 Pim _ l’nk+1 _ — 4P
_(all totayt —ayl — e, )( ay' o tagt —ayi — ... anm)

Also, when all the multiplications are done it is obtained an algebraic sum which contains
m" terms, some have the sign +, others -. The terms of P, are equal two by two to the terms of
P, in absolute value. We note P =P, + P,

In Pall the negative terms of pwill be reduced, because each has a positive
corresponding. (The null terms of P, which have the sign — will be reduced with the null terms
of P, which have the sign + and which have the same absolute value.

Therefore, without affecting the generality, it is considered that the null terms of A and
P, are positive or negative, in function of the sign + or — which are found in front of them.)

Thus, P will be equal to two times the sum of all the positive terms of P,. A positive

term of P, has the following form: ap o ai s [O,l].

It results that P P is inferior or equal to two times the number of positive terms of P, (the
equality will be true when all a; =1).

Let’s consider the sequence

b =kb, = 2k—m)b,+(m—k)m

By the recurrence method it is possible to prove that b, will be calculated exactly the
number of positive terms of P, .

Because we are only interested in the sign of the terms, we convine to designate by + a
positive term, and by — a negative term.

The case n = limplies P' = +....+.—...—, therefore the number of the positive terms is
—— H,k—/
k m—

k and b, =k . It is supposed that the property is true for » , and we have to prove it for n+1.
For n, we have

A B

——
b, m"—b,

where b, represents the number of positive terms of Pz<") . For n+1 we have
(1 _ _ _
A R e [+..];.+. ]

——
b, m"—b, m—k

The number of positive terms, in this case, will be:
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kb, +(m—k)(m" —b,) = (k—m+k)b, +(m—k)bm" = (2k —m)b, +(m—k)m" = b

n+1
But b, is a linear recurrent and homogenous sequence.

From which it results that b, = Lz(m" + (2k — m)n ) , therefore P <m" + (2k — m)" )

Let’s consider a polynomial P(x) of »r<n—1 degree which for the distinct numbers
x,,...,x, takes the values y,,...,y . For 1<i <n we consider the equations

X' X" s, x4+ (= )s,,, =0
which have the solutions x,,...,x, |, x
Then

in—1

P19 Xy

with 0 <h <n—r—2, where by convention is noted s,, =1.

Solution
The polynomial which, for the distinct numbers x,,...,x, takes the values, respectively,

Visews ¥, 18
PO =y, (x—x,)(x—x;)...(x—x,) , (x—x)(x—x;)..(x—2x,)
(5 —x) (5 —x) (=) 22— (% — ) (5 )
(x—x)(x—x,)(x—x, )
(x, —x)(x, —x;).ee(x, = x, )
and this is the one with the smallest degree having this property (according to Lagrange).
The degree of P(x)=r <n—1, this implies that the coefficients of x"',x"*,...,x""" are

b

+.+

+,

2

null. But the coefficients of x*, with r +1<k <n—1, are exactly the expressions:

n n 1
n—k—1
D sl ]
i=1 j=1 % —X;

J=i
When r+1<k<n—-1,wehave 0<n—k—1<pn—r—2 anditisnoted h=n—k—1.
s;, 1s the sum of all the products of % factors (% = 0), which it is formed with the numbers

Xyees X; 5 X, 1501, (that is the & -" sum of the relation of Viete, applied to the equation from the
problem).
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Let’s consider the polynomial with integer coefficients P(x) = Zal.xi . Prove that for
i=0

) 1
p,qEZ,lfP[E]zo,then P v >—, meN*, m>n.
q q) g
Solution
_ o A1
P[ﬁ] =la,p"+a, p"q' +..+ap'q” +aq" >
q q
1 _ . \ 1
>—la,p" +a,,p"'q +..+ap'q +aq"|>—
a"] q
because: m > n implies that
T2
¢ o

and a,p" +a, \p"'q+..+ap'q"" +a,q" € Z—{0} and its absolute value is > 1.

Prove that Z C:: CZ,,,_C":K’ =C*

m+..n,
sptts, =k

Solution
We have

(I+x)" (1+x)" .. (14+x)" =(1+ x)n‘+"'n”

The coefficient x* from the right side is Cfl o

The coefficient x* from the left side is Z ccr Cji

L
sptts, =k

From this observation it results the equality.

Let’s consider k,m,n € N*and a,€C, j = i,m.If al” —|—a5.2k_l)" +.tal+1=0 for j=im,
compute:
pn
1 a. ..a,
pn i i,
E(a,....a,)=(a,...a,) ot Z —
(al,...,am) 1<h<m=1 (i eCh | Dy oo,
knowing that:

Cfn = {(il ,...,ip)e {1,2,...,m}h i, =i, for s = t}
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Solution

We’llnote a’ = y,, j=1,m.Because y, =1, by multiplying eache equality from the

enounce, respectively by y, —1 we obtain:

0=(yj—1)(yj?k —|-y2k—1+,,.+yj+]):y2.k+l_1.

J J

Then, because j €i,m we have

— b oo PiT =1.2..2k
yj—cos2k+1 1 —|—lsm2k+1,p_, s Lyl .

+...
2k+1 2k +1
We will prove by recurrence in function of m € N * that:

w1 w1
al +alan...[aﬁ —I—a’zn].

1
For m =1 we have E (al) =a” +—, - We assume the property true for m , we must prove for
a,

E(al,...,am) =

Lt E (0t ) = E () f +
m+1
Then
m p17T pmﬂ-
E(a,,...,a,a,, |=2" cos——p..cos—"—p,
(+:0.) w17 ?

(Prss p,) ={1,2,..2k}"

In a plane we consider the set of points whose coordinates are integers. Having the natural
numbers n,m, p with p >4 . Prove that there exists a polygon with p sides which has » points
on its border and m points in the interior.

Generalize in the space.

Solution:
C \ //6
............... A B,

The proof is done by construction.
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We draw the segment [AB } which contains exactly » points. On the line located above of 4’
and AB, we draw the segment [CD] which contains exactly m points.

It is possible to designate the segments [4A'] and [BB'| (see the figure nearby) such that

they do not pass through any point, and also A4', B' are between the line of CD and the line
situated above this; and the segment CD (that is the m points) is located in the interior of the
quadrilateral 44'B'B.

p>4= p—3>1. Because the polygon has p sides, by uniting the points A', B'with a line
polygonal which contains p —3 sides and which is situated between the line of CD and the line
above this, without touching any point.

Generalization.

In the Euclidean space R’, one considers the set of points whose coordinates are
integers. If n,m, p are natural numbers, p > 5, then there exists a polyhedral with p faces which

contains n points on its border and m points in the interior.
The proof is also done by construction: one considers the segments [4B| and [CD] with

their previous properties, but [AA'} and [BB '] are replaced by planes which keep the same

properties. Then one constructs two planes which pass through the previous planes, keeping of
course the required conditions.
At the end, the polygonal line A4'B' will be replaced by a series of p —4 planes which will be

constructed in a similar way.

Determine the set 4 defined by:
a)102€ 4
b)if x€ A4 then 1x2€ 4
c) the elements of A are only obtained by the utilization of the rules a) and b) for a limited
number of times.

Solution:
We show that A= M
where

M:{l...102...2/n€N*}
[ ek

n n

First of all, we show that 4 D M
One utilizes the reasoning by recurrence for n € N*, to show that 1...102..2€ 4. For n=1

n n

one has 102 € 4 according to the rule a). One assumes that the property is true for », then
1...102..2 € 4 and it will result that also 1]1...102...22 € 4 according to the rule b)
—_— == —_—— ==

n n n n
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We show that A C M .

Let’s consider x € 4. If one only applies the rule a) it will result that x =102 € M . One cannot
apply the rule a) but one time. Now the rule b) cannot be applied if the rule a was applied. If one
applies b) one time, one obtains x = 11022 . By recurrence one proves that if one applies the rule
b) n times, then

x=1..102.2€ 4
N~
n+1 n+l1

but
1..102..2eM
—— ——

n+l n+1

Therefore 4 C M , from which 4A=M .

One constructs the set B such that
a) the elements 0, 9 and 1 belong to B

b) if x,y € B then |x—y| and xy € B
c) all the elements of B are obtained by the utilization of the rules a) and b) for a limited number
of times.

Find B.

Solution:
We prove that B =M  where

M:{O,xl...xp 10<x, <9, ie{l,..p}, peN*, p<—|—oo}U{1}

(13 D 2
First of all, we show that {O;O, 1;0,2;.. .0,9;1} CB

0,9t 0,9€ B=0,9-0,9|=0€ B
0,9etle B=[0,9-1|=0,1¢€B

0,9 et0,1€ B=+10,9—-0,1|=0,8€ B
0,8 ¢t0,1€ B=0,8—0,1|=0,7€ B

0,3et0,1€¢ B=10,3—-0,11=0,2¢ B
If y€{0,1,2,....,9} then 0,0..'..0y:0,1...0,10,y€B

i times

because one obtains by the utilization of the rules a) and b).
Let’s consider x € M ;if x =1 one has 1€ B by the rule a); if x =1 one has 0 <x <1

if x=0 one has 0 € B. It remains therefore the case x =0,x,...x, with

0<x, <9, ie{l,...,p}, peN* p<+ooandx=0;
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without diminishing the generality one assumes x, = 0.

a) If x; =9 then 0,x,..x, = 0,w, — 0,0y, —...—0,0...prflo,wzp
p—2

with w, = x, +1, Yy, =9—xj, —-2<j<p—1 andzp =10—xp

p—1

Of course 1 <w, <9 since O§x1§8;0neha50§yj§9, 2<j< p—1lsince
0<x,<9,2<j<p-L1<z,<9 1<z,<9 since 1<x,<9.

One has: 0,w, —0,0y, +0,00y, +0,0..0y, , +0,0..0z, =0,w, —0,0y,...y,_,z,
p—2 p—1
Performing the subtraction:

0,w,0..00—0,0y,...y, ,z, = 0,x,x,...x

X
p=17p
because 10—z, =x,, w—1=x and 9—y, =x,2<;<p-1

0,w,—0,0,|€ B

0,w, and 0,0y, € B =

0,w, —0,0y, and 0,0y, € B =

0, —0,07,~0,0;| € B

but the last absolute value is equal to 0,w, — 0,0y, — 0,00y,
By recurrence it results that x € B, since

x=0,w,—0,0y, —...— 0,0...00yp71 —O,O...OOZP =
p—2 p—1
=1...1,,0,w, = 0,0y, — 0,00y, —....— 0,0...0yp71 —0,0...Ozp
p—1 p—2 p—1

which is obtained by the utilization of the rules a) and b) a limited number of times.

B) If x, =9, one has 0,9...9 = €B, VneN
N

n

1-0,0...01
——

n—1

x=0,9%,...x, =|0,9..9—0,01,..,

P
where tj:9—xj, 2§j§p;0§t‘i§9 since ngj§9 for 2<j<p

To show that 1 =0,0z,..1, € B, 0<¢,<9,2<)<p

it is sufficient to see that the first decimal digit of t is zero, therefore different of 9, therefore
we’ll use the case «)

teB=xeB
"o
0,9 and 1€ M C[0,1]; {0:0,1;0,2;...0,9;1} C M . The operations of the rule b) applied a limited
number of times on the elements 0, 9 and 1 will also give elements of M , because: if o, € M
it results that o€ M and |a — Bl€ M since 0< |a - 6| <land 0<af<1 anda, having a

limited number of decimals, then also a3 and |a — ﬁ| will have a limited number of decimals.
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Let’s consider the set 1 = {% la,beZ, b=0, (bym)= 1} which is called the ring of m-integers,

me 7, fix.
It is said that x = y(modm) in 7, with x,yof I, if and only if there exists z & I such that

zel.
We consider the element » of ; find its class of equivalence modulo m in 7 .

Solution. 1)
The case r€Z

a) m¢{-1,0,1}

We note with 7 the class we are looking for, M the set mZ, and

M mk, +h
mk, + p

We show that 7 =M

First of all we show that 7 > M

Let’s consider x € M . Then there exist k,,k,,h, p € Z with the properties written above.

| kj,ky,h,peZ, 0<h, p<l/m,6(m,p)=1landh—pr=M,

1) xe,thatis xis a m-integer, because from (m, p) =1land k, € Z itresults that

(mk, + pm)=1.

2) x = r(modm) in I, since there exists Deg s, W=k —rk,+h, —1p, v, €L
7>

because h—rp+ M, and vy, =mk, + p (therefore N s a m-integer because (v,,m)=1,
Y2

such that: lm = mhy + h—mhkyr —rp = x—r. Therefore xc 7.

72 mk, + p
We prove that r C M

Let’s consider x € 7. Therefore x :% and b= 0 as well as(b,m) =1 such that x = r(modm)

in /.But b can be written b= mk, + p, 0§p<|m
a=mk,+h, 0<h<|m| with k,ky,h,peZ.

, (p,m)=1 and the same

X= r(modm) in I, implies that m |x —r in I, therefore implies that there exists v = Dieg
Y2

such that my=x—r and (v,,m)=1.
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k,—k h—
We consider ~ irreducible. It results 1L = m{k — k) +h—rp
" m(mk, + p)

(v,,m)=1 itresults: m|m(k, —k,r)+h—rp from which m [h-rp thatis xe M .

. Because (7,,7,)=1 and

Remark 1.
For m =0 wehave [ =7 and for m =+1 we have/ =Q.

b) m = 0. Each class of equivalence contains only an element therefore 7 = {r}
c) m ==+1. It exists only one class of equivalence, therefore 7 =1 =Q.

2) Thecase 7 =1—7Z: a) m¢ {—1,0,1}

Property 1.

We have meZ , I the ring of m-integers and Lel. Then JacZ such that
h

iGI:>(r2,m):1 in /.
h

Proof.

K
Ll then (r,,m)=1r,n€Z.
h

Let’s consider the Diophantine equation xr, + ym =r (the unknowns being x and y) which

admits integer solutions, since (rz,m) =1 and 1|7.Let’sconsider x=x,€Z and y=y,€Z a

. . . i . 7
particular solution. Taking a =x, and v, = y,. We have 715 x,(modm) since m | f—xo]
2 2
. K
because there exists v = N — o e such that m2e =11 — x, . Therefore x,r, +y,m=r.
T2 h L h

Remark 2.

. s . r . .
It exists an infinite number of integers « € I such that -+ = a(mod m) in I, with m=0
h

These numbers are, for example, particular solutions of the previous Diophantine equation.
Therefore, for rUl—7Z, 3a€Z such that r=a,(modm) in Iand 7=d, which can be

determinate as in the case 1 a).
b) The sub-case m = 0 does not exist because it would result / =7 and therefore r € Z .
c) m=+1. Onehas p=1=0Q.

Let’s consider the equation ax" +...+a,x/" =b witha,,m,eN" fori€{l,..,n} and
b € Z . Show that the equation has a limited number of natural numbers solutions.

Solution:
a) b>0.Wenote all x" = y,. The initial equation becomes
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a1y1+"'+anyn:b (1)
One can see that:

—| (otherwise one has: a,y, > b)

—| (same explanation)

It results that: 0 < the number of natural solutions of the equation (1)
5 b

O <]]|t+|—

i=1 a;

x = i€ {lmun) @)

Thus, if the number of solutions of the equation (1) is limited, then also, from (2) will result that
there exists a limited number of values for eachx;, .

1+ = M = finite number.

1

() b= 0. Then, the only natural solution is the banal solution.
v) b < 0. The equation does not admit any natural solution.

Let’s consider a,,b>0 for ie{l,...,n}. Then, the equation a; +...4+a, =b", n>2
admits in addition a solution in the set of real numbers.

Solution:
The equation can have no solution, or it can have at least one solution.

If the equation admits at least one solution, let it be x, € R one of those. Therefore
a’+..+a’=>b".
1) x, > 0. Let’s consider x > x,. It results that x = x, +¢ with >0.
Let’s consider z = max{a,,...,a,}

a’+..+a =aa” +..+aa’ <z (af‘] +..+ aj") =z'b®
If z>2b=z">b"=a"+...4a >b". From which z<b.Thus a;+...4+a, <b", Vx>x,.
Let’s consider x < x,, It results that x = x, —¢ withz >0

a +..+a =a'a’®+..+a'a >z" (af‘” +...+ a;‘(’) =z 'b"
Since z<b=-z'>b"'.Thus a +...+a, >b", Vx < x, from which x, is the only solution of
the equation.

—Xp

2) x,<0.One has: a," +...+a," =b™ where [i +..+

a,
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with —x, > 0, therefore one has reduced this case to the first case.

3) The case x, =0 is not possible, because it would result @ +...+a, =b"where n =1, but
by hypotheses n > 1. Contradiction.

Show that a congruence modm, m = 0 which contains unknowns, admits a limited
number of distinct solutions (two by two non-congruent)

Solution:
Each unknown cannot take but the values: 0,1,2,...,

m|—1, that is at maximum |m|

values (a complete system of remainders modulo |m| ). If the equation — a congruence containing

n unknowns, then the maximum number of solutions will be |m|n <00.

Observation:
When m =0, the congruence becomes an equality (an equation) which can have an infinite
number of solutions, for example 0x = 0(mod0).

Solve the linear congruence 2x —1 =1—6y(mod4)

Solution:
The congruence can be written: 2x+4 6y —2 = 0(mod4). From which 2x+4 6y —2 =4k
with k& € Z From wherex+3y—2k—1=0

(Remark: one cannot divide the congruence by 2 at beginning (one would obtain
x+ 3y =0(mod2) ), because solutions will be lost).

The module of the congruence gives the rest 4. One has: x =—3y +2k+1

where x = y + 2k +1(mod4).
One takes ( y,k) S {0, 1,2,3}2 , therefore all the possibilities.

But it is sufficient to give to k the values 0 and 1, since: for k£ =3 = 2k =2-1(mod4)
and for k =2 =2k =2-6(mod4).

If one successively gives the values (0,0),(1,0),(2,0),(3,0),(0,1),(1,1),(2,1),(3,1) to the
couple (y,k) one obtains for x, respectively the values 1,2,3,0,3,0,1,2. But we are not
interested in k& . Therefore

{x = 1(mod 4)(2)(3)(0)(3)(0)(1)(2)
y = l(mod H)(D(2)(3)(0)1(2)(3)
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This shows that the number of solutions of this congruence is equal to (2,6)4 =8.

Let’s consider a,€Q, i€{l,2,..,n},n>2 and beQ. Show that the equation

Za[xi = b admits an infinite number of solutions in the set of natural numbers if and only if
i=1

(y,--va,) divides b and if there exists (iy, /,) € {L..,n}" such that @, -a, <0.

(One notes a,,...,a, the greatest common divisor of a,,...,a, ).

Solution:

If we put the coefficients of the equation with the same denominator we can eliminate the
denominators and therefore we can say that all the a, and b are integers.
Necessity.

Since the equation has solutions in N", then it would also have in Z" because N" C Z".
It results that (a,,...,a, )divides b, according to a known theorem.

Let’s suppose by absurd that all the terms of the equation have the same sign, for

example positive (in the opposite case one multiplies the equation by -1):
- If <0 then the equation does not have any natural solution: contradiction.

a

- If >0, each unknown x, cannot take values which are between 0 and (natural

values), therefore a finite number of solutions; also contradiction. From which the

supposition is false, therefore it is not true that the terms of the equation have the same

sign.
Sufficiency.
Because (a,...,a, )divides b it results that the equation has solutions in Z" . By hypothesis, the
equation has /has terms positives non nulls 1</ <n and k =n—1 terms negatives non nulls.
One has 1<k <n—1<n. Then one writes:

! n
Zahxh — Z a'jxj =b, O<a'j =—a,
h=1

j=I+1

jE{l—l—l,...,n}

(One has supposed the first / terms positives and the following k negatives. In the other cases
one reorders the terms and (implicitly) one re-numerates them.)

Let’s consider 0<M =[a,,...,a,| the smallest common multiple of g,,...,a,. One notes
¢,=|M/a| andi€{l,..,n}
If one notes 0 < p = [l ,k] the smallest common multiple of | and k.

Wenote [, = p/! and k, = p/k . If we note:
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0
h

lc,

j
ki,

with t€ N, > max
h,j

b

where [x} represents the integer part of x, and (xlo eees X ) is a particular solution of the equation

(it was shown at the beginning of this proof that there exist integer solutions), then one obtains
an infinite number of natural solutions for our equation.

Let’s consider the linear equation with integer coefficients

n
g ax,=b
i=1

a) If there exists (iy, j,) € {I,...,n}" such that a, =+Il(moda, )

then the equation admits solutions in the set of integer numbers.
b) In this case, solve it.

Solution:
a) Let’s consider a, ==+l(moda;)<3h€Z: a —hy==x1. It results that

d~ (aio,aj0 ) , therefored [ a, —hoaj0 ,then d|=£1, from where d ~1.
Because (al.n,a J.O)Nl one has (al,...,an)wl, but 1|b. Therefore the equation admits integer
solutions.

b) Xn:al.x[ = Zaixl. +(h0aj0 j:l))cl.0 ta,x, = Zaixl. +a, (xjo +hox,-0>ix,-0 =
i=l1

iy iy
i=jo = jo

= E ax,+a ttx =b
Jo Iy
iy
i jo

where ¢ = x, +hyx, . It results:
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X, =+ Zax +a t—
l¢10
lijn

X, =t—hx, == hZax +a, (hoxiozlzl)t—hob

lilo
i# J

withx, € Z, i € {i,, j,}, and t € Z

(parameters).

It is given the system:
f;(-xl’ n:[xl] [xn]’{xl}""’{an:bjG@,j:l,n

where f, are linear functions which have their coefficients in Q and [x],{x}represent

respectively the integer part and the fractional part of x .
Find a method for solving this system.

Solution:
(1) Writing x, =[x,]+{x} with [x]€Z, 0<{x}<1, i= Ln one obtains (after the
elimination of denominators) the equivalent system:
(2) g; ([xl],...,[xn],{xl},...,{xn}) =c, € Z,j= I,_n
where the g, are now linear functions which have their coefficients in Z

One solves this system considering that {x, },....{x, } are the unknowns. Since:

i:aii [xl.]—l— i:ﬁi/ {xj} =¢, i=1n
i=1 j=1

and because a;[x,], ¢, €Z, i,j= Ln itresults:

iﬁ,j{xj}ez, Vieln
=

One applies the method of the substitution. One calculates {x jl} of an equation

1< j, <n, and replaces it in the other equations. It will remain a linear system of n-1 equations
with n-1 unknowns.
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We proceed in the same way with this new system. (If one obtains during this procedure
an impossible equation then the system (2) does not admit solutions. Stop.). At the end one
obtains:

6{xjﬂ}:k<[xl],...,[xn])+k€Z, then 6{xjn}€Z. It results: {x_,.n}zo where

{xj }:£, p € N* but such that 0§§<1; 0,kel.
" €
These two cases can be written as a single case:

{xj"}zg,peN and 0§§<1

Let s, be the number of solutions for {x J } Now one will follow the inverse procedure until

the determination of all the {x j} One replaces the value(s) of {x j}, j= L in the previous

system of 2 equations with 2 unknowns. One obtains the values of {XJM} .

Let s, be the number of these.

The inverse procedure continues until when one determines {x jl} which has s, solutions:

(Uit} = (12,0}

One remarks that {x,} € Q, i = Ln . If the system has solutions it results that these are in

Q.

Until now one has obtained Hsi solutions.
i=1

(3) Reporting all the values of {x] },..., {xn} in (2) on obtains a linear system of n equations with
n unknowns: [x,],...,[x,] which will be solved in integer numbers. One normally solves in R”,

and if the solution belongs to Z" then this solution is correct (one then performs the relation (1)
to obtain x,,...,x, ); otherwise, it is not convenient.

One will execute the paragraph (3) for all the values of {x, },....{x,}.

Thus, the system is well solved. The number of solutions of this is > 0 and < Hsl, .
i=l1

Solve in N the equation: 3x —7y+2z=—18

Solution:
The general solution in Z is the following: x =k, y =k, +2k,, z=2k + 7k, —9

with: k,.k, € Z
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Because x >0, y >0, z> 0 it results that k&, > 0 and also that &, >

9—2k, 22k,

k, >

]+1,thatis one has k, 2\

be: x =k, y =k +2k,, z=2k + 7k, —9with k, k, in N and kZZ[

Solve in N the equation: 2x+15y +9z =44

One has Ogyg‘ﬁlzl
15
44
A)y=0=2x+9z=44=0<z< ?]:4

a) z=0=>x=22
35
b) z=1:>x:7§zN
c) z=2=x=13
d) z=3=x¢N
e)z=4=>x=4
B) y=1=2x49z=29=0<z<3

a)z=1=x=10
b) z=3=x=1
) z€{0.2} = x¢N
C) y=2=2x4+9z=14=0<z<1
a)z=0=>x=7
b) z=1=x¢N
All the solutions are:

(22,0,0); (10,1,1); (7,2,0)
(13,0,2); (1,1,3)
(4,0,4)

Therefore there is a limited number of solutions.
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+1 and

]+ 2 . From which, the general solution in N will
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Solve in Z the equation:
17x, 4+ 20x, —18x, =34

Solution:
One writes the equation thus:

20x, —18x, +17(x, +2)=0
One notes x, +2 =t Z. It results: 20x, —17(x; — 1) —x, = 0
That is: 20x, —17h—x, =0
One notes x,—t=heZ
It results:
X +2=t
i
The general solution is:
x, =20k, — 18k, —2
X, =k
x, =20k, —17k,, (k. ,k,)€Z’

Solve in the set of integer numbers the equation:
I5x—17y+9z=«
Where « is an integer parameter.

The equation can be written:
I5x4+9(z—-2y)+y=«
Or again:
I5x+9%+y=a
where t=z—-2y
It results from (1) that: y =—15x—9t+ «
It results from (2) that: z =¢+42y
It results from (3) that: z=—-30x—17¢+4 2«
The integer general solution is:
x =k,
y =—15k,— 9%k, + « (k.k,)eZ?
z=—-30k, =17k, + 2
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(one has noted x =k, and t=k,)

Solve in 7Z the equation 3x+ 70y —35z4+6=76.

Solution:
The equation can be written:

3| x+23y—12z+2w—-25

4

With these notation one has: 3¢, 4, =1, equation which admits the general solution:

+ly+z|=1

—
o)

t, =k ,
with k€ Z
t, =—3k+1
Therefore y+z=1t, =—3k+1 from where y=—z—-3k+1 withzeZ (1)

In a similar way x+23y —12z42w—25=1 =k, where

Xx—23z—69k +23—12z+42w—25=k (one has used (1)).
Thus x =35z —2w+ 70k +2

The general solution of the equation in Z* will be:
{x =35z—2w+70k+2

3k z,wkE€Z
y=-z—

Solve the equation xy +5z—2 =0 in the set of integer numbers.

Solution:
Vx € Z one can write: x = 5k, + 1, with k, € Z and 7, €{0,1,2,3,4} (1)
Vy € Z, one can also write: y =5k, +r,, with k, € Z and r, €{0,1,2,3,4} (2)

Using (1) and (2) in the initial equation, one has
5(5k,k, + kiry + kyry +2)+ 1, —2=0

It results that 5 divides (7, —2). Therefore (r;,r,) € {(1,2),(2,1),(3,4),(4, 3)} 3)

From where, the general solution will be:
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x =5k +r,
y =5k, +r,

2—nn

z =—5kk, —kyr,—k,r, +

With (kl,kz) € 77 (arbitrary parameters), and (rl,rz) € {(1,2),(2,1),(3,4),(4,3)} .

The unknown z has been obtained by starting from the initial equation because there
were known the values of x and y.

It is given the equation x’ + 3k, +2 = (3k, +1)" . Show that the equation does not admit

a natural solution, for any (k1 ,kz) € Z*. Generalize.

Solution:

One has: 3k, +2 = 2(mod3) and 3k, +1 = 1(mod3) therefore (3k, +1)" =1(mod3)
where x* =1—2 = 2(mod 3)
a)if x=M,+1=x"=1%#2(mod3).
b)if x=M,+2= x> =1%2(mod3)
¢)if x =M, +2 = x> =0 2(mod3)

From which Vx € N, x* # 2(mod3), Thus the equation does not admit a natural solution.
Generalization:

The equation x* +3y +2 = (32 + l)w does not admit an integer solution.

The proof is the same. First of all one shows that if k, = 0 then y >0, because if y <0

it would result that an integer number (the left member of the equation) is equal to a non-integer
number (the right member).

Solve the equation xy +4¢—7w+14 =0 in the set of integer numbers.

Solution:
One writes: xy +4t—8w+12+w+2=0 we note t—2w+3=v which will be a new
unknown.

106



The equation becomes: xy+4v—w+2=0 where w=—-xy—4v—2. And
t=v+2w—3=v+2(—xy—4v—2)—3—2xy—7Tv—7. If one changes the notations (for the
sake of mathematical esthetic) one has the integer general solution:
x=k
Y= kz
t=—2kk,—Tk,—7
w=—kk,—4k, -2
with (k,,k,,k, ) € Z* (parameters).

Show that the equation:
2x% 4 5xy—12y* —2x+3y—1=0
does not have a solution in the set of integer numbers.

Solution:
The equation can be written:

2x* +8xy—3xy—12y> —2x+3y =1
Oragain x(2x—3y)+4y(2x—3y)—1(2x-3y)=1
Therefore (2x—3y)(x+4y—1)=1
As x,y € Z it results that one has the following possibilities:

a) either
(2x—3y)=1 (1)
x+4y—1=1 (2)

(2) implies x = —4y+ 2, and substituting in (1) it comes
—lly:—3:>y:%¢Z

b) or
2x—3y=—1 3)
x+4y—1=-1 4
(4) = x =—4y and substituting in (3) it comes

—8y—3y:—1:>y:%€Z

Therefore the equation does not have a solution in Z .
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Prove that the equation: 5x”> +50y> —26xy —8x —46y +15=0
does not admit a solution in the set of natural numbers.

Solution I:
The equation can be written:

(457 +49y” +9—28xy +12x — 42y )+ (¥ + " + 4+ 2xp —4x—4y)+2=0
Or
(2x—7y+3) +(x+y—2)+2=0
But this equation does not admit a solution in R, because
(2x —T7y+ 3)2 + (x +y— 2)2 +2 > 0. Therefore it does not admit even more a solution in N .

Solution II:
The equation can be written:

5x7 +2(—13y+4)x+(50y” 46y +15) =0
A=b"—ac=169y> +16—104y —250y° +23oy—75=—[(9y—7)2 +1o}<o

It results that the equation does not admit a solution in R . Therefore it does not admit
even more a solutionin N .

Solve in the set of integer numbers the equation:
X' —3y=2

Solution:
The equation can be written: x° —2 =3y .

Therefore x° —2 is divisible by 3, that is
X' =M, +2
x=3k+r, r=012,keZ
x=3k=x"=M,=M,+2
x=3k+1l=x=M,+1=M,+2
x=3k+2=>x"=M,+8=M,+2

Let’s consider x =3k +2, k€ Z

-2 (3k+2) -2

3 3
The solution of the equation is:

y= =9k> +18k* + 12k +2
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y =9k +18k* + 12k +2
ke

{x:3k+2

Prove that the equation x* —7y,...y, =14z+10, n>1 does not admit any integer
solution.

Solution:
One can write: x* —7(y,...y, —2z—1)=3,0r x*=3=7(y,..y, —2z—1)

From which 7 divides x* —3, thatis x* =M, +3.
Let’s consider x = M, +7 with 7€ {0,4:1,42,43} . Then x* =M, +r*; but * €{0%,1*,2*,3}

But one can see that 7* = 3(mod7), therefore x* = M, + 3. It results that the equation does not
admit any integer solution.

Solve in the set of integer numbers the equation:
5x* —6y =20

Solution:
Sx*—6y =206y =>5(x*—4)
Therefore y is divisible by 5.
Let’s consider y =5z, z€Z
The equation becomes:

x*—4

5x'=30z=20x"—6z=4 =z = cZ

Therefore x* = 4(mod 6)

It results:
XxX=6k+2,x=6k+4, kecZ
The integer solutions of the equation are:

(x =6k +2
(6k +2)'
=517
Y 6
kecZ
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x=06k+4
4
y:5(6k+2) o
6
keZ

Solve in the set of integer numbers the equation:
4x" —=T7z=5

Solution:

4x" =7z+5;since z€ Z one has 4x” € Z.

1 1 —
Therefore x” = a € Z where x* € {iz,iz} but z = 4x - > , from where x” :% or

x’ =«a€Z Asolutionis: x=-2, y=—1, z=—1, since x’ =— admits the solution in integer

numbers x =—2,y =—1.

If x¥ =ae€Z, the initial equation becomes 4a—7z—5=0 which admits the integer
general solution.

a=Tk+3
z=4k+1
with k € Z (parameter).

y_
Therefore x” —7k—3=0, with x,y,z of Z. It results k = ¥ -3

.But x=M,+r,

with »€{0,1,2,..,6}.

(7s + r)y -3

One writes x =7s+r, s € Z, and then €Z ifandonlyif r=3 or5

x=7s4+3=y=6t+1, teN
x=T7s+5=y=6t+5, teN
Therefore the integer solutions of the equation are:

x=-2
y=-1
z=-—1
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x=Ts+3, sEZ

\wy=6t+1, teN

Z_4Us+$““—5
7

x=Ts+5, sE€Z

{y=6t+5, teN

Z_4(7s+5)6’“—5
7

Solve in 7Z the equation:
x'4+5z-2=0

Solution:

The equation can be written: x” +5z—2 =10
x has the form 5k +r, k €Z, r€{0,1,2,3,4}and it must have x’=2(mod5) or
(Sk,+7) =1 =2(mod5)
Thus =0, =1, n=4
For 7, =2 one has 2"**' = 2(mod 5)and
For r, =3 one has 3"+"* =2(mod5)

Therefore

Xx=5k+2: k €Z
y=4k +1: k, €N 1)
B 2_(5k1+2)4k2+1
5

and
x =5k, + 3,k €EZ;

y = 4k,+3, k, € Z; (2)

z={2 - (5k; + 3)***3} / 5.

One can observe that z € Z in (1) and also in (2). It results that:
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2% =2(mod5) and 3**" =2(mod5)
The integer general solution is obtained by bringing together (1) and (2).

Solve in N the equation: x!= y*

Solution:

y=landzeN
x=0= .
y€eN and z=0

y=landzeN
x=1= .

y€eN and z=0
x>a=y=x!andz=1

We prove the last affirmation, because the first two are banal. One supposes (by absurd)
that z=k > 2. One has x!= y". One excludes the case x =2 which implies y=2 and z=1.

Therefore x > 3. From which x! contains at least two prime divisors (2 and 3). Therefore "

also admits at least two prime divisors (2 and 3), from which y admits at least two prime divisors

(2 and 3).
Let’s consider x,,...,x, to be all the prime numbers inferior or equal to x (one has

proved that p>2) x!:xf“‘...xZ", Q, €N, 1<i<p. Thus xf“‘...x;” = y*. From which it
results that o, 1 z,0, 1 z..cr, 1 2

One considers x, , the greatest prime number inferior or equal to x . In accordance to the

X ) )
theorem of Chebyshev, forzgxp <Xx there exists at least a prime number. Therefore

*p

+|—=|+...=1. It results that z=1. Thus (s)represents all the

X
—<x <x.Then o =
2 p 14

X
2
Y

solutions of the equation.
Determine the general form of the solution in the set of integer numbers of the equation:
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where m,n, p;,r; € N, m< n,r, <p;,J€ {1,...,m} , where all the p, are even numbers and all

the », are odd numbers.

Solution:
One has
Zx =< =20
j=1 Jj=1 j=1
and
Z|x| _Z‘ 2.1‘1
From which Z|x| —Z‘ j , it results:

Z‘xj‘ T
=1

p; . .
)17 >0, Vie{l,..,n} one has x,=0 for je{m+1,.. ,n}and

Since

b |”
Xj

—‘x/rj =0 for je{l,...m}. Therefore x, € {0,1,—1}for je{l,...m}.

The general form of the solution in integer numbers of the equation is:

X| =€y X, =&, %, = .. =X, =0; withe, =0or 1
m

ZE/ =0
"

X, =& X, =&,,%,, =..=x,=0; with§, =0or1
m

D& =0

L 1

The number of solutions is 2(C,i7 +C+...+ C:j) = 2(2’" — C,g) =2"" -2

Determine the linear equation which admits the following solution in the set of integer numbers:
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x, =3k =Tk, +5
x, =k, + 2k,
x, =4k, + 13k, =71

where &, and k, are parameters in Z .

Solution:
The equation has three unknowns x,,x,,x; .
@ 4 b
Its general form is: a,x, +a,x, +a;x; =b, with a,,b, € Q, i=1,2,3.Or x, +—=x, +—=x; = —
al al al
By differently noting the coefficients, we obtain: x, +a,x, +a,x; = b with a,,a,,b € Q
One can write for k,k, arbitraries in Z:

3k, — Tk, +5+a,k, + 2a,k, + 4a,k, +13a,k, —Tla, = b

For k, =k, =0=5-"7la,=b (1)
For k, =0,k, =1=—-7+2a,+13a, =0 (2) @))
For k, =0,k, =1=—~7+2a, +13a, =0 (3)

(One has used (1) to obtain (2) and (3).)

But (4) is a system of three equations with three unknowns which will be normally
solved.

From (3) it results a, = —4a, —3. From (2) it results now —7+13a,—8a,—6=0. Or
a, = E, therefore a, = 6—7

From (1) it results b = 25 _5923 =— 828 .

Therefore the equation is:
5x, —67x,+13x, =—898

One considers a natural n» >3 and a € R. Solve the inequality:
X+a
n

X—a

+ > [x]; Discussion.

n

Solution:
Let’s consider x =ng+r, 0<r<n,reR, geZ

114



I) If a=ngq,, q,€Z, then the inequality of the problem becomes: 2[£ Z[x] (1) which is
n

equivalent to (2—n)q20.
ThereforexGMI:{y|y:nq+r: 0<r<n,reR, ¢<0, qEZ}
) If a=ng,: q, €Z,then a can be written

a=ng,+r,: 0<r,<n r,eR,q,€Z (2)

One can suppose 0<a<n, since, with (2), the inequality of the problem becomes
equivalent to

R AR U LT
n n
One has |~ %[ X4 > [x] (3)
n
which is equivalent to (2—n)q+ E(r) >[r] 4)
—1ifr <min{a,n—a}
where E(r) = ra + L P ) BT min{a,n—a}§r<max{a,n—a}

+1 ifrzmax{a,n—a}
1) 0§r<min{a,n—a} then (4)@(2—n)q—12[r].
where g <—1.
a)(q:—1)$(4)(:>(n—3§[r]>:>x€M2z{y|y:qn+r,0§r<min{a,n—a},[r]§n—3}
ﬁ)(q:—2):>(4)<:><2n—52[rD:>x6M3:{y|y:qn+r,0§r<min{a,n—a},[r]§2n—5}
'y)(q < —3) = (4) is true
:>xEM4:{y|y:qn+r,0§r<min{a,n—a},q§—3,q€Z}
2)min{a,n—a}§r<max{a,n—a}.Then (4)(:)(2—n)q2[r]
a)(q:—1)=>x€M5:{y|y:—n+r:min{a,n—a}§r<max{a,n—a},[r]§n—2}
6)(—q§—2):>x€M6:{y|y:qn+r,min{a,n—a}§r<,max{a,n—a},q§—2,q€Z}
3)max{a,n—a}§r<n:>(4)<:)((2—n)q_12[r])=>x€M7:

:{y|y :qn+r,max{a,n—a}§ r<mnqg<-—l,ge Z}
And we analyzed all the cases.

Find a method for solving in natural numbers the equation:
le. +a :b-p/c-Hyj
i=1 Jj=1
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with a,b,c€N, peN".

Solution:
The equation will have an infinity of natural solutions when b-c¢ = 0.

Vhe{l,...,n—1}one takes y, €N arbitrary. We construct y, such that cy,...y, =k’ with
keN.(1)
Let’s consider y, the smallest natural number which has the property (1). (There exists a

such y because, if one writes each y, = H p" with o, €N and p, being the i-th prime

(positive) number k€ {l,..,n—1}, one takes y, =]]p/, with B,€N and the 3, are

n—1
selected such that ~, + Zaih +8,, = M ,, where one has written ¢ = H p)" with v, €N, and

h=1
B3, (for each i) is the smallest natural number which verifies this property.)

We construct y,_y -t”, with t€N", t being a parameter. The equation becomes
le. -+ a = bkt where the unknowns are x,,...x,, . One has: Zx,. +a = ot , where we noted

i=1 i=1

bk=aeN.

A) If bc =0, then the equation le. + ¢ =0 does not admit a solution in natural numbers.

i=1
B) If bc=0, then «=0. The equation admits an infinity of natural solutions:
Vse{l,...m—1}, x =aw, +r, where bc=0<r <a—1, ar,eNand w, is a natural

parameter, and x,, = aw, +7,, where 0 <r <a—1 but 7, is chosen such that ZI; +a=M,
i=l1

(one has noted M, a multiple of «) and also , € N, w_= natural parameter.

It is given the equation P(x,,..,x,)=0 with P(x,..x,) a second degree polynomial in
x,,..,x, with real coefficients. Show that A is perfect square if and only if A is a perfect
square. (By A~ one has noted the determinant of the initial second degree equation relative to

the unknown x, .)

Solution:

Necessity.
(The reciprocal proof will be similar.)
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The equation can be written: 4.x7 + Bx,+C, =0 (1)

Where A is a constant and B; a first degree linear function in x,,..,x, , X, ,....X,. (4 1s a

constant, because otherwise it would result that P has a degree strictly superior to 2.)
A, being a perfect square, it implies that A =k’ (xl,..,xl.fl,xi +1,...,x”> with £, a first degree

linear function in x,,..,X,_,X,,,..., X, .
(1) becomes A xi—B" +k X, _B-k =0, where A2Axi+B"_k" 24% + B+ k =0 (2)
24 24 24 24

Since 2A4x, + B, +k, are first degree functions in x,,..,x, one can compute x; in function of

Xppeor X, 1, X X

J=1 Nt Ay

X; —f2(xl,..,xj_l,xm,...,xn>
24

x; = f (x],..,x]._l,x].H,...,xn>

(2) becomes A
24

by notation.

By notation B(xj—g1<x1,..,x X x))-(xj—g2<x1,..,x X ,xn)>:0

A R A8 ERE R PR ESERLE

where g, g, are also linear functions in x,,..,x, ,x X, . Therefore A is a perfect square.

X )

Having a,, x" +...+a,,x +a =0 all the equations obtained by circular permutations

of coefficients, on the set {a,,....,a,,a,}, a,€R", 0<i<n, n even.

a) Show that these equations admit a real common root if and only if a, +....+a, +a, =0
b) Let x, be the real common root, S the sum of all the roots of the equations, P the product of

all the roots of the equations. Then:

n—2
S—x0+(n+l)x£:_ Z;L_Faao _|_%
0 1= n—i—2 n—1 n

Solution:
In total one has n+1 equations.

a)Onehason a, ,,x; +..+a, X, +a,,=0, 0<k<n.

Therefore let x, be the real common root. One does the sum of all the relations (1), and it comes:
S, (%0 +x0 " X +1)=0

Itresults S, =0 or x{ +x, ' +..+x; +1=0, but it does not exists a x, € R which annulets

the equation x” +...+x' +1=0, with n even. From which S, =0;but S, =a, +...+a, +a,

Reciprocal: S, = 0. This implies that a, 1" +..+a, ,1+a, =0, 0<k<n.

Therefore all the equations admit the real common root x, =1.
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b) S—xp =1 || -2 || T [ | -2
n Ay a,, a,
P 4 4 @
an an—l an—2 Clo
n—2
Therefore S—xo+(n+1)£:_ G 4 i |
Xo a,_ a, i—0 Ay o

Solvein R the equation (x+1) +(x+2) =(x+3)
(Amer. Math. Monthly, 1985)

Solution:
Obviously x > —1, since the bases of the powers must be non-negative, and that for
x = —1 the operation 0" does not have sense.

If one has (x+3)" = 0, we divide the equation by this. It results that
[x—l—l] +[x+2] 4
x+3 x+3
Let’s consider g,(x) = [X—H] and g,(x) = [iz] and f(x)=g,(x)+ g,(x) which have

x+3 x+3
the same domain of definition ]— 1,—|—oo[

We show that g, and g, are strictly declining, from which it results that £ is also strictly

decreasing.

On constructs the graphic representations of g, and g,.
For
The line with the equation is a horizontal asymptote when x tends toward
The line with the equation is a vertical asymptote when x tends toward
The graph of is found in the figure (1).
For g,

2
) ’%3 x+3 1 1
ime o= im 175 T == feeg

x=0=g,(0)=1
From which the line with the equation y = Lz is a horizontal asymptote when x tends toward
e

+00.
The graph of g, is found in the figure (2).
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For g,:x=0=g,0)=Lx=-1=g,(-1)=2

1+;1.
3 s

XLI?ng _XLI?O X—|—3 N _e 2

: : 1. .
From where the line from equation y = —- is a horizontal asymptote when x tends toward +oo
e

The graphic of g, can be seen in figure (2)
From (1) and (2) it results that g, and g, are strictly declining on ]— 1,—|—oo[ , therefore one has

the same property for f . Because sf(2) =1 it results that x =2 is the only real solution of the
equation.

(1 )

S

[S—
s

1

+

1

1

1

1

I

—
()]

S

7.127.

Knowing that b° —4ac is a perfect square, find a method for solving in the set of integer
numbers the equation ax’ +bxy +cy> +dx+ fy+e=0, with a,b,c,d, f,e integers.

Solution:
We try to write the equation using the form

ax® +bxy+cy’ +dx+ fy+e=(cx+ By +7,)(x + B,y +7,)+6
where «,,0,,7,,6 €Q, i €{1,2}. One has

0%+, B,xy + v, X 4 Bianxy + 35,37 + By + nanx + 1,58y + 1, +6 =

119



ax’ +bxy +cy’ +dx+ fy+e.
By identification it results:

a0, =a

(1) B8, =c

o0, + B, =b
and
'71042 +aoy,=d

() Brt=enb=f

N2 =€

which is a second degree system of 6 equations with 7 unknowns «,,c,,5,,5,,7,,7,,0 . From (1)

. a c c  a
one obtains o, =—,3, =— and oy —+—0, =b
& 1 Y

a Q : .
It results that cz+—=>b where z=—-c Q. From which cz* —bz+ a = 0; but it is necessary
Z 1

that A, to be a perfect square, that is b> —4ac = k’,k € Z, what it is satisfied by hypothesis.

Therefore z = 1 = bLk . Then 8, =q,- 2¢ and 3, = btk
B, 2c btk 2q
One replaces in (2), and one obtains:
a 2c btk 1 . Y
v —+oqy,—d; —aoqy,+——a,—=f from which one finds — and oy, as
o btk 2 o, o
rationales. (3) since one has a linear system of 2 equations with two unknowns

From (3) it results that one can express <, and <, in function of ¢,. From the equation
v,Y, +6 = e one can take ¢ in function of ¢, . One gives a convenient value to ¢, and one thus
determinates all the unknowns. One has: (o', x+ 3", y+~")(a',x+ 3", y+~',)=46". One puts
the coefficients to have the same denominator and one eliminates this. Then one finds
a',a',, 8,87 .70 €Z.

Now one decomposes ' an integer factors and one tries all the possibilities, which will give a
system of Diophantine equations: a,x + 3,y +7, =d, with dd,=—0"and i€ {1,2}

One considers the equation Zal.xi = 0 with all the real coefficients a, = 0.and n >0
i=0
natural. Show that if (n —1)a’ | —2na,a, , <0 then the equation does not have all its roots in

R.
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Solution:
2

S=(x, —x2)2 +(x, —x3)2 + ..+ (x, —xn)2 +(x, —x3)2 + .t (x, —xn)z 4ot (x,, —x,) =
n— )[xl2 —|—...—|—x,2,]—2[x1x2 + X2+ XX, X0+ XX, —i—...+xn71xn] =

(n—1
(n — 1)[xl +...+x2]2 +[—2—2(n — l)“xlx2 +oFxx, XX XX, xn_lxn] =
(n —1)%—#%(—21@) = %[(n —1)a; —2nanan72] <0

n n

(One has noted x,,x,,...,x, the roots of the equation.)

It results that the given equation does not have all its roots in R, since otherwise it would result
that $>0.

Remark: for n=2 one obtains the well-known result that if the determinant of a second
degree equation, A < 0, then the equation has complex roots.

Solve the following system:

in:ai, 1<j<n withn>2
i=l1

i=j

Solution:
One explicitly writes the system:

X, +x+..+x,,+x, =q
X, + X+ +Xx, , +x, =,

X +x,+x+....+Xx, =q,

One does the subtraction between the first equation and each other equation. One has:
X +x,=0—0oy, 2<k<n
One replaces x, = oy —ay, 2 <k <n in the first equation and one obtains:

(n-Dx,+(n—1a, =a,+a,+...+a,

From which x, = 1 1[—(n—2)041—|—042—|—...+a,,]

n —_—
One determines in a similar way the unknowns x,,...,x, . The solution of the system is:

X, :%[aﬁ—..ﬁ—ail—(n—Z)ai+ai+1+...+an], 1<i<n.
n—
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Solve in the set of integer numbers the system:
{—17x—|— 52y =130

35x—27y + 26z =84

Solution:
We solve in integer numbers the first equation of the system, which is a Diophantine
equation, and its general solution will be:

,with t€ 7.
y=17t—6

By replacing the values of x and y in the second equation, one has:
(2) 1361t +26z =832
with (z,z) € Z*

One solves this equation in integer numbers; its general solution will be

(1 {x =52t—26

t =26k .
, with ke Z
z=—1361k + 32
This is used in (1):
x=52-26k—-26 .
, with k€ Z
y=17-26k—6

Therefore, the general solution of the initial system is:

x=1352k—26
y=442k—6 ,with k€Z
z=—1361k+32

Observation: The method which was used is the normal substitution, which is also utilized to
solve in real numbers.

Let’s consider a linear homogeneous system having as associated matrix 4 € M (m,n,@)

, which admits the rank 7(A4) <n. (The rank of a matrix is the order of the greatest non-null

determinant which can be extracted from this matrix.) Show that the system admits non-banal
integer solutions

Solution:
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One considers the initial system Za..x. =0, 1<i<m, with all the a; €Q. One

gy
J=1

brings the coefficients to the same denominator and eliminates it. One obtains a system which
has all the coefficients integers. One notes r(A) =r <n (according to the hypothesis). If one

eliminates the secondary equations then r principal equations remain. We normally solve in R",
applying the method of Cramer. Without diminishing the generality one supposes that x,,...,x,
are the principal variables.
Thus x,_,,...,x, will be the secondary variables. Because r <n, there exists at least a secondary
variable. The real solutions of the system are:

1 & : . . . .
X, N Z b,x,, 1<h<r, with all the b,,A integers, where A is the determinant which

t=r+1

contains the columns 1,...,7 and the lines 1,...,7.
If one notes x, = Ak,, r+1<t<n,with k, € Z (parameters) from which
X, =Y bk, 1<h<r

t=r+1

It results an integer solution 7 undetermined for our system. If we give non null values to parameters

k,.,,....k, we obtain a particular integer solution non trivial .

Determine the matrices 4 and B of order n such that:
(1 xx... x’H)-A:(l I+x 1+x2... 1+x”71) and
(1 I+x 1+x7... 1+x"_1)-B = (1 x x*... x”‘1>

for any x real.
a) Compute A" and B",for me N".

b) Show that 4*B° = B‘4" and (4B)" =(BA)" Vp,e,ke N".

i=l1

c¢) Show that if Zki = Zei then HAk'Be" =/ ,where [, is the unitary matrix of order »;
i=1 i=l1

*
and k,,e, € N .
Solution:
Let’s consider the matrix
).y oy,
A — a21 'a2] a2n
Ayyeeldyend,,
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We note v:(l x x°... x"‘l> and u :(1 1+x 1+x°... 1+x”_1>.

Multiplying v by the first column of 4 we obtain:
a, +ayx+..+a,x"' =1, Vx € R.One does x =0 and it results a,, =1, therefore
n—1

ayx+..+a,x

n —1 roots; from which a,, =...=a,, =0.

=0, Vx € R; that is this is the null polynomial because it has more than

One multiplies v by the column jof A (2 < j<n) and one obtains:
a,+a,,+..+a, X ta x4 e =145+ 4ax" =0 VxeR.
For x =0 one finds @,, =1. Therefore

ay,+ay,+..+a,  x7 + (aj/ — 1>xjf1 +...4a,x"" =0 Vx € R. This polynomial, also, is null,

thus a,, =a :...:anj:O and ajj—1:0,0r ajjzl,with 2 < j<n.lItresults that

JLJ
11 1.1
~|0010..0
[ PSS 0
0........ 01
1Y+
‘ by,..b, ..b,, o
Let’s consider B = ’ . One multiplies u by the first column of B, and one finds:
b,...b,....b,,

b, +by+..+b, +bx+..+b,x"" =1, VxcR.

nl
For x =0, that implies b, +b,, +...4+b, =1.One has also b, x+...+b,x"" =0, VxeR
From which b, =....=b,=0
Multiplying u by the column j of B, we obtain:
b +by,+.Ab,+bx+. . +bx' +. . +bx"" =x"", VxeR, 2<j<n.If x=0,

nj

one finds b, +b,, +...+b,; = 0. Therefore,

by X+t byx b x" =x" e by x b x4 (b~ 1) b x" T =0
VxeR

The same thing: b, x=...=b, ,,=b,,,,=..=b,=0and b, —1=0,0r b, =1. Because
b,+b,,+..+b,=b,;+1=0= b, =—1. From which
1-1... -1
010..0
B=|e. 0
................. 0
(S 01

a) One shows by recurrence that
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Im ... m
010.. 0
A" =i 0
................. 0
(0 SRS 01

The case m =1 is obvious.
One supposes the property true for m , it must be shown for m +1:

I m+1.... m+1
0 1 O0.... 0
CATN = AT A, 0
......................... 0
| SR 0.1
In a similar mode one proves that
I —m ... —m
B — 0 1 ..0. 0
0 0 ..0. 1

b) One sees that AB=BA—1,.
A*'B°=A..AB..B= A..ABAB..B...= BA*B*' = ... =
TW—/ —— ——

e k—1 e—1
=B*A4" = AB=BA=(4B)" =(BA)".
c)A"B A B ... A"B" = A"4"B“B*..4"B* = A'B'=(4B) =1I' =1,

t
n n

where one has noted ¢ = Zkl. = Zel.
i=1 i=1

b
Let’s consider the matrix: 4 = [Z ] with a,b e R.
a

1) Compute the matrix 4", n € N".
2) Discuss the limit:

S det(4)
lim *=——
Mool S
k=1
Solution

I) One will prove by the recurrence method that
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An — [ nﬁn]’ Wlth Oén _ chzan—bbb (1)

«@ i=0

n n

and

n+l
2

B,, — Z Cfiflai172i+1b2i71 (2)
i=0

where [x| represents the integer part of x .

The case n=1 is evident. We suppose the property true for #, it must be proved that the
property is also true for n+1

a,0,|(ab) (ac, +b8, ba,+aB,| [0, 0,
B \ba| |ba,+aB, ac, +b8,| Bty )

n n+l

2 2
it must be proved that «,,, =acq, +b3,=> Crla""b* + > Cr la" b =

i=0 i=l1

An+1:An'A:[

n

2

— g"! +E(C5i _’_Cji—l)anﬁ—l—Zini + z Cji—lan+1—2ib2i (3)
i=1 ,»:L“
it tleg,
1) If n =2k, then ntl ¢ 7., then the second sum from (3) is equal to zero, and L ;—1]
it results that the expression of ¢, , from (1).

n+1

ii) If n =2k +1, then € 7 and the second sum of (3) is equal to C"a"b""' =b""", from

where it results the expression of ¢, from (1) because the first sum from (3) will have the same

terms of i =0 until i =

Also, it must be shown that
n e+l

2 2
. . 2 n—2iy2i+1 2i-1 _n—2i+272i—1 __
ﬂnﬂ—ban—i-aﬁn—g C'a""'b +§ C'a b =
i=0 i=1
n+2l n+l

2 2
z : 2i-2 n—2i+2732i—1 z : 2i—1 _n—2i+27 2i-1
— Cnl an i+ b i + Cnl an i+ b i —

i=l1 i=l1

il
2
2i-2 2i—1 +1-2i+17.2i—1 2i-2 —2i+27.2i—1).
z :(Cnl +Cnl )an g2 + Z (Cnl an i+2p2i ), (4)
i=l i:n+2
22
ir=e
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Lon+2

if e
. n+2 .
1) If n=2k+1, then ¢ 7. and therefore the second sum from (4) is null. Also
n+1 n+2 D .
5 = , from which it results the expression of 3, , from (2).

n+2

i1) If n =2k , then € Z , from which the second sum of (4) is equal to

n

2

+2-2 nleglufz 2[§1+271 .
_ o n
C, a b =b"".

Similar like in (4), if one does the addition between the two sums, it results that for the first sum

2 2 o :
nEs_|rt , from which it results the expression of 3, _,

i takes the values from 1 until

from (2)/
2) det 4" =) — 3} jidet(Ak): n (ai_ﬁlf):i(ak_ﬁk)(ak +ﬁk>:

= k=1 1
=S (a—b) (a+b) =5 (a> )
1 1
" 2 p2\'
Cl)if a>—b* =1 then Z(az—bz)k:( 2_b2>w;

C2)If a—b=1, then i(a—b)k:(a_b)w
! a—b—1
n L <a+bn_1

C3)Ifa+b =1, then Z(Hb) :(a+b)Tb)—l;

Discussion

The cases:

A) The conditions C1, C2, C3 are satisfied.
B) It exists at least a condition from these which is not satisfied.
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" det( 44 )
A) lim 21: e( ) :(a_b_1>(a+b_l).1im (az_bz) —1 =L
B det[iAk] @bl (@ b ) (0= b) (a ) 41
1

One has the sub-cases:

Al \az —bz\ <1

AL \az — bz\ >1

AT ‘az —bz‘ =1=a’>—b* =—1 because one has C1.

ALl It admits the situations:
(a—b—1)(a+b—1)
a’—b*—1

ALl Ja—b|<land |a+b/<l=L=-

Al2 Ja—b|<1land |a+b/>1=L=0
Al3.|a—b|<1and [a+b|=1<|a—b|<1and a+b=—1,because one has C3. It results that

the limit does not exist.
Al4. la—b/>1and [a+b/<1=L=0

A.LS. |a — b| >1 and |a + b| > 1 ( this case is not possible, because it would result ‘az — bz‘ >1,

which is in contradiction with A.I.)
A.L6. |a — b| >1 and |a + b| =1 (the same this case is not possible).

AL7. |la—b|=1and [a+b/<1< a—b=—1and |a+b|<1, because one has C2. It results that
the limit does not exist.

AlL8. |a—b|=1and |a+b|=1

A.L9. |a — b| =1 and |a + b| >1 these two cases don’t exist because of A.l.

AL.Il. admits the situations:
ALl |a—b|>1 and

(a—b—l)(a+b—l)

|a—b|>1:>L: az—bz—l r111—>n;1c1_ 1 1 N 1

_(a—b—l)(a+b—l)

B a’—b*—1

All2. ja—b|>1and [a+b/<1=L=0

A.IL3. |a—b|>1 and |a+b|:1<:>|a—b|>1 and a+b = —1, because one has C3. It results

that the limit does not exist.
All4. |a—b|=1and [a+b|>1<a—b=—1 and |a+b|> 1, because one has C2. It results

that the limit does not exist.
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AILS. |a—b|=1 and |a+b|=1

AlIL6. |a—b|=1and a+b<1

AIL7. |a — b| <1 and |a + b| =1 These 4 cases don’t exist because of A.L
AILS. |a — b| <1 and |a + b| <1

AIL9. [a—b|<1 and |a+b|>1=L=0

AL Tt results: L:—(a_bz_l)(f+b_l) im - (_1) _nl :
a —b —1 n~>oo(_1) _|_1_(a_b) —(a2+b2>
2 2

But a—b=0and a+b=" _Z - j_b,therefore
a— a

—b—1)(a+b+1
L _fab-a+biy)

a2 —b2 —1 n—oo

=
" . 1Y
) 4 1—(a—b) —
(1) +1-(am0f [
a—b¢ {—1,1} because of C2 and because if a —b=—1 it would result

—1=a’-b*=(a—b)(a+b)=—(a+b), thatis a+b=1, contradiction with C3.
A.III. admits the situations:

>1=L=0

AILL |a—b|<1=

a+b
1
a_

<1l=L=0

A2, [a—b|>1=

A.IL3. |a — b| =1 a—b=1 or a—b=—1, which is not possible.

B) It exists at least a condition between C1, C2 or C3 which is not satisfied.

- if the condition C1 is not satisfied, then a° —b* =1= Zdet(Ak ) =n
1
- if the condition C2 is not satisfied, then a —b=1= Z(a — b)k =n
1

- if the condition C3 is not satisfied, then a+b=1= Z(a + b)k =n
1

We analyze all the possibilities for this case.
Bl a—b=1and a+b=1.1ltresultsa’—b>=1, a=b+1 and
<a2—b2)<a2—b2>n—1 1 a+b—1
L=1im = = .

(@ =b*)(a+b-1)  1(2b41) 1
prm— lm_ " :O
(a+b)(a® =5 —1)i=xn (2b+1)" ~1

BIl. a—b=1and a+b=1=d*—b*=1=a=1 and b:0:>L:11mL:O
n—oo NI N
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BIl. a—b=1and a+b=1=a"—b*=1,

2_p? 2_b2”_1}
a=l—b=>L=]im(a )<a )

n—00 az—bz—l

a—b—1

(a=b)|(a—b) ~1]

1
n

@ p)lazbon) 1 (1261
(@ —1)(a—0) M2y —1

B.IV. a—b=1and a+b=1=a>—b> =1 because of B).

L1 a—b—1 a+b—1 .
= lim : =

= (a=b)|(a—b) ~1] (a+b)|(a+b) ~1]

(a—b—l)(a+b—l) ) n
- a’— b }g?c 212\ B\ " -

(a b > (a=b) —(a+b) +1

=(a—b—1(a+b-1)1i n —2(1—a)jj n

(a )(a )”LI?CZ—(a—b)'1—(a—f—b)’1 ( a)”gglcz—(a—b>n—(a+b),1
B.IV.1. |a—b|<l and a—l—b|>l.Applying the theorem of Stolz-Césaro, one obtains:
L=2(1-a)lim ? =0

n—00

(a + b)n

2 [ a—>b Jn 1
(a +b)” a+b
B.IV.2. |a—b|<1 and |a+b|:l(:>|a—b|<1 and a+b=-1.
This case does not exist because it would result ‘az — bz‘ <1, therefore a* —b* =1.

Contradiction with B.IV.
BIV.3. |a—b|<1 and |a+b| <1

BIV4. |a—b|=1 and |a+ b <1
B.IVS. la—b|=1and |a+b>1 - these 5 cases don’t exist because of B).
B.IV.6. |a—b|>1 and |a+b|>1
BIV.7. |a—b|>1and |a+b|=1 )
BIVS. [a—b|>1and|a—b|<1=L=0

BIVY. |a—b|=1and [a+b|=1<a—b=—1and a+b=—1=a=—1and b =0, implies

that the limit does not exist.

And, look, all the cases are analyzed.

The discussion about limit is very long, but it necessitate a good arrangement of cases
(which depend of the real parameters a and b).

\

Let a,,a,,...,a, be real numbers, a, >0, n€ N
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One considers the polynomial

P(x)=a,x"+..+ax+a,
such that: if there exist a, <0, 1<i <n—1then the first non null coefficient
it 1<k <n—1,before a, verifies |q,|<a
the expression:

E(xl,...,xm) Z

j=1

a f x,,...,x,, € R determine the minimum of

i+k

P(x,)+P|— !

]

and the point (x,,...,x, ) where this minimum is obtained.

Solution:

| Co 1 .. .
If x>0andi>;,then x'+—>x"+—>2, the two equalities taking place when
X

-
x=1
E(x],...,xm):zm: a,|x} +— : +..+a|x, +— ! +2a,
J=1 xj X,
Let’s consider
F(xj)zP(x) Zan x”+ +oa|x, +— ! +2a,
J J

Ifa, >0, 1<i<n-—1,then
minF(xj)=2(ao-i-a1 +..+a,)

ij]Ri
and this is only realized for x, =1

If there exist a, <0, 1<i<mn-—1, then the hypothesis of the problem will give

la,|<a,,, 1<k<n-—1,and for the other coefficients one has a, , =...=a,,, , =0
Therefore:
i+k 1 ) i+k i+ 1 i 1 >
G| X T | T4 x T ( Qivk |a | X+ o +|ai| X Py I
j Y j j j

> <ai+k |ai|>'2 +0= 2(ai +ai+k)
the equality taking place only for x; =1, and the same it results that

mlnF( ) Z(ao—l—al—I—...—I—an)

xE]R

which it is only realized for x; =1

One finds that min E(xl, ) 2m(a0—|—a +..+a )
X; E]R
jG{l,..,m}

and this is only realized for (xl,...,xm) = (1,..., 1)



Show that

a) The sum of the power of order 2p 41 of 2k +1 natural consecutive numbers is
divisible by 2k +1.

b) The sum of the power of order 2p 41 of 2k natural consecutive numbers is divisible by
2kifand only if p >1 and £ is divisible by 2.

Solution
a) Let S, the sum of the powers of order 2p+1 of 2k +1 natural consecutive numbers.

The 2k +1 natural consecutive numbers constitute a complete system of residues modulo 2k + 1
That means:

S =0 2t 2t g g (1) (2 1) (26)7 (mod 2k 4-1)
2k —i=—(i+1)(mod2k +1) for 0<i<k—1

(2k—i)"" = —(i+1)"" (mod 2k +1)

0<i<k-1

Therefore:

(2k)2p+l — —12”+1(m0d2k+1)

(2k—1)"" = —k**(mod 2k + 1)

S =0 12 22t g (1) P (k1) o (2 —2)" 4 (2k— 1) (mod 2k)
Therefore
S, 2k +1

b) Similarly, let S, the sum of the powers of order 2p +1

of 2k consecutive natural numbers. The 2k natural consecutive numbers constitute a complete
system of residues modulo 24 . That is:

8 = O 4 PP 22 (k= 1) R (k1)

(2 =2)"" 4+ (2k 1) (mod 2k). But 2k —i = —i(mod 2k) forl <i<k—1 =
(2 - i)2p+l = —i*"""(mod 2k):

for 1<i<k-—1

Then:
(2k—1)"" = —17*!(mod 2k)
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(k+17"" = —(k—1)"""" (mod 2k)
S =017 422 (1) kT (1) - =22 120 = 127 (mod 2k)
Then

(S, :2k><:>(k2p+1 :2k><:>(k2” :2)@(p21 and k : 2)
1.e. k is divisible by 2.

Prove that if @ and m are integers, m = 0, then (a""‘ —a)<|m|—l)is divisible by m .

Solution
I) m is prime.

|

a) a =M, (multiple of m) then ™ —a = M, and we find the conclusion.

b) a = M, we have, using the Fermat theorem d"—a=M

I) m 1is not prime, m =0
a) |m| = 4. Then

E= (a‘m‘ — a)(m —1)!1=2a (a""‘_1 — 1) =2a (a3 — 1)(mod4)
If @ = M, (multiple of 2), it results that £ = 0(mod4)
If a= M, +1, itresults that @’ —1 = M, , from where E = 0(mod4)
b) |m|= 4. Then Ja,b e Z—{0,—1,+1} such that |m| = |a|-|p|
If |a| =|b

(|m| - 1)! , then <|m| — 1)! = 0(modm) , from where we have the conclusion.

b| < |m| —1, it is clear that |a| and |b| are among the factors of

, because |a| < |m|— 1,

If |a| =|b

, because |m|¢4and |a|<(|m|—1),

b| < |m|— 1, we have 2|b| < |m|—1 , therefore |a|
and 2|b| are found among the factors of (|m| — 1)! , then (|m| — l)! = O0(modm) , then
E =0(modm)

Remark:
In IT we proved the following assertion: if m € Z — {O,j:2} , then (|m| — 1)! = 0(modm) .
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