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PRE//FACE 
 
 

This book is addressed to College honor students, researchers, and professors. 
 It contains 136 original problems published by the author in various scientific journals 
around the world.  
 The problems could be used to preparing for courses, exams, and Olympiads in 
mathematics.  
 Many of these have a generalized form. 
 For each problem we provide a detailed solution. 
 
I was a professeur coopérant between 1982-1984, teaching mathematics in French language at 
Lycée Sidi EL Hassan Lyoussi in Sefrou, Province de Fès, Morocco. 
 
I used many of these problems for selecting and training, together with other Moroccan 
professors, in Rabat city, of the Moroccan student team for the International Olympiad of 
Mathematics in Paris, France, 1983. 
 
 

      The Author 
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1.1.  
Four teams of soccer: , ,A B C  and D  participated in a tournament. The final ranking has 

not been established, the stars will indicate the figures undecided (classification, teams, the 
number of games played. Victories, null games, defeats, points marked, points missed): 

1. A 3 ***  5 - 2  6 
 2. B * **2    3 – 3  * 
 3. C 3 ***  4 - *  * 
 4. D 3 ***  1 – 4  * 
 The teams have been separated by criteria known to the soccer rules and the ranking the 
same. 
 a)  Complete the grid. 
 b) Find the result of all disputed games. 
 
  
 Solution 
 a) The team A  played 3 games, so A  played against B . The same forC  and D . Or B   
B  has to play 3 games. A  has 6 points in 3 games, then A  won all the games, therefore A  has 3 
victories, zero  defeats. B  has 2 defeats, therefore B  is on the second place. It results that the 
third game of B  is a victory, because if it would be a null game, then C  and D  would have 
6x2-(6+1) = 5 points, which will mean that at least one of them would have more points than B. 
Therefore B has 2 points.  

C and D have together 6x2-(6+2) = 4 points.  Then C and D have both 2 points, because 
otherwise it will result that at least one of them, C or D, will have more than B. 
 Therefore C has a victory, zero null games, and two defeats. The same for D. (C and D 
can not get the 2 points from two null games, because A and B did not have any null matches),  
C got (5+3+4+1)-(2+3+4) = 4 goals. The complete ranking is: 
 1.  A 3 3 0 0 5 – 2 6 
 2. B 3 1 0 2 3 – 3 2 
 3. C 3 1 0 2 4 – 4 2 
 4. D 3 1 0 2 1 – 4 2 
 We know that in a ranking, the sum of marked goals by all the teams is equal to the sum 
of the goals received by all the teams. 

b) We determine the scenario of the games. 
A has 3 victories, then A – B = 1, A – C = 1, A – D = 1  

 B and C have the same number of points, the same difference between the goals marked 
and the goals received, the same number of victories, but B has a place superior than C, it results 
that B – C =1, from where B – D = 2, then C – D = 1. 
 D marked only one goal and received 2 goals; the difference is 5 – 2 = 3. Then A took the 
results: 1 – 0, 1 – 0, 3 – 2 or 1 – 0, 2 -1, 2 – 1. Because A – D = 1 and D marked its own goal 
against B, it results that: A – D = 1 – 0, from which it results that C – D = 3 – 0. 
 The situation is:  
 1. A 2 2 0 0 4 – 2 4 
 2. B 2 1 0 1  3 – 2 2 
 3. C 2 0 0 2 1 – 4 0 
with the scenario anterior. 
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 A can have the results: 1 – 0, 3- 2, 2 – 1, 2 – 1. We observe that we cannot have the result 
A – B = 3 – 2, because B marked only 2 goals. Then, it results the alternative  2 – 1, 2 – 1, from 
which A – B = 2 -1, A – C = 2 -1 and we obtain B – C = 2 – 0. The exact results are: 
 A –B = 2 – 1, A – C = 2 – 1, A – D = 1 – 0, B – C = 2 – 0, B – D = 0 -1, C – D = 3 – 0. 
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1.2.  
At the end of a soccer tournament of the teams A, B, C, D, the classment is the following: 

 
 1. A 3 2 0 1 2 – 1 4 
 2. B 3 2 0 1 2 – 1 4 
 3. C 3 1 1 1  4 – 4 3 
 4. D 3 0 1 2  3 – 5 1 
 
 The criteria for the teams rating was: 
 a) the number of accumulated points 
 b) the difference between the marked goals and the received goals 
 c) the number of victories 
 d) the direct victories against a team. 
 Find all the games results, knowing that for a victory a team gains 2 points, for a tight 
game it gets 1 point, and for a defeat 0 (zero) points. 
The first column represents the team order, second column the team, third column the number of 
played games, fourth column the number of victories, fifth column the number of tight games, 
sixth column thenumber of defeats, seventh column the numbers of marked goals, eighth column 
the number of received goals, and last column the number of points. 
 
 
 Solution 

Firstly we determine the exact estimation of the played games. 
The teams A and B have the same number of points, the same difference between the 

marked goals and the goals received, the same number of victories, but A is on the first place 
while B is on the second place.  From here A – B = 1 (that is, A gained a game). B has two 
victories and one defeat, then B – C = 1 and B – D = 1.  Then C – D = X (where X means an 
equal game). A has a defeat, then A – C = 2.  The exact estimations are: 

A – B = 1, A – C = 2, A- D = 1, B – C = 1, B – D = 1, C – D = X 
 Now we determine the results. 
 Because A has 2 victories and marked only 2 goals, then its victories have been obtained 
as 1 – 0, 1 – 0. We have then A – B = 1 – 0 and A – D = 1 – 0 , from where  A – C = 0 – 1.  
 Similarly for B we have A – D = 1 – 0, from which A – C = 0, and therefore C – D = 3 – 
3. The exact results are: 
 A – B = 1 – 0, A – C = 0 – 1, A – D = 1 – 0, B – C = 1 – 0, B – D = 1 – 0, C – D = 3 – 3. 
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1.3.  
In the elaboration of a soccer ranking which follows, were made four errors, the order of 

the teams remaining the same. 
 
 1. A 3 2 1 0 1 – 0 5 
 2. B 2 1 0 1 5 – 4 2 
 3 C 3 1 0 2  6 – 6 2 
 4. D 3 0 2 1 2 – 5 2 
 

a) What are the errors? 
b) Correcting these errors, find the results of all the games played. 
 
 
Solution 

a) Because A, C, D played 3 games its results that B also played 3 games (it is not possible to 
have 2 games played by each team, because it would be more than 4 errors in the ranking). The 
third game played by B cannot be a victory, because it would have in total 5 + 4 + 2 +2 = 13 ≠
12 points. (it is not possible to make other modifications on the points of A, C, or D, because we 
would get more than 4 errors). 
 In the same way, the third game of B cannot be a defeat. Therefore B has a null game ( 
the third error). A has 2 victories and one single marked goal. The number of marked goals is 1 + 
5 + 6 + 2 = 14 ≠ 15 = 0 + 4 + 6 + 5 which is the number of received goals by all the teams. 
From which it results that A has marked 2 goals (the fourth error). (It is not possible to make 
modifications on the received goals for A or for others for the same reason. 
b) The correct ranking is  
 
 1. A 3 2 1 0 2 – 0 5 
 2. B 3 1 1 1 5 – 4 3 
 3 C 3 1 0 2  6 – 6 2 
 4. D 3 0 2 1 2 – 5 2 
 
1) It is necessary to establish the exact forecasts. 
D has 2 null games and A and B each have a null game. 
Then A – D = X, B – D = X. The team A has also  2 victories. Then A – B = 1, A – C = 1. From 
B – D = X and A – B = 1 it results that B – C = 1, because B has one victory. In the same way C 
– D = 1.  
The exact forecasts are: 
A – B = 1, A – C = 1, A – D = X, B – C = 1, B – D = X, C – D = 1. 
2) Now, it is sufficient to establish the exact results. 
A has 2 victories, and 2 marked goals. Then A – B = 1 – 0, A – C = 1 – 0. 
Because A did not receive any goals, we have A – D = 0 – 0. 
Excluding the team A from the ranking ( with all its results), we obtain the following sub-
ranking: 
 
 2. B 2 1 1 0 5 – 3 3 
 3 C 2 1 0 1  6 – 5 2 
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 4. D 2 0 1 1 2 – 5 1 
 
with the known forecasts: B – C = 1, B – D = X, C – D = 1 
B has one victory and no defeats, and the difference of goals is  5 – 3 = 2.  
From which: B – C = 2 -0 or 3 -1, or 4 -2, or 5 – 3. 
C has one victory and the difference of goals 6 – 5 = 1; but because B has won over C by 2 goals, 
C wins therefore by 3 goals against D. From which C – D = 3 – 0 or 4 -1. 
 
If we have C – D = 3 – 0, then we have B – C = 5 – 3, and B – D = 0 – 0. But this means that D 
has zero marked goals. This is a contradiction. Therefore C – D = 4 – 1. And we have : B – C = 4 
– 2, B – D = 1 – 1.  
These last results verify the ranking 
The results are: 
 A – B = 1 – 0, A – C = 1 – 0, A – D = 0 – 0, B – C = 4 – 2, B – D = 1 – 1, C – D = 4 – 1. 
 The problem has been uniquely resolved. 
 The problem is completely proved. 
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1.4.  
For the preliminaries of the world soccer championship are disputed, back and forth, the 

games of a group of 5 teams from which will be qualifies the first 2 teams. 
 Determine the minimum number of points for which a team can qualify, and also the 
results that will enable the qualification. 
 Generalize the problem for the case of a group of n  teams, from which must qualify the 
first m  (1 m n≤ ≤ ). 
 
 

Solution 
 We’ll resolve the exercise, directly, for the general case, the initial case will result as a 
particularization. 
 In the group of n  teams will be played ( ) ( ) ( ) ( )2 1 2 ... 2 1 1n n n n⎡ ⎤− + − + + + = −⎣ ⎦  
games. The total number of points is 2 ( 1)n n− . If 1m = , the minimum number of points will be  
2 ( 1) : 2 2( 1)n n n− = −  points (all teams have the same number of points, but that that will have 
the largest difference between the goals marked and the goals received will qualify. If one team 
has less than 2( 1)n−  points, then there will be another team which will have more that 2( 1)n− , 
because the total number of points is equal to 2 ( 1)n n− . If m n= , obvious, the minimum 
number of points is zero. 
 In the case that 1 m n< < . The qualified team with the minimum number of points will 
be the m th. When it is the minimum of points it means that the 1m−  first teams would have 
obtained the maximum possible points. Then the h th team, 1 1h m≤ ≤ − , would have 4( )n i−  
points. The 1m−  teams would have 4( 1) 4( 2) ... 4( 1) 2( 1)(2 )n n n m m n m− + − + + − + = − −  
points. From the total number of points we remove the points of the first 1m− teams and we find 
2( )( 1)n m n m− − + , which represent the ( 1)n m− +  points of the remaining teams. Then 
2( )( 1) 2( )

1
n m n m n m

n m
− − +

= −
− +

, which is the minimum number of points for a team to qualify. 
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1.5.  
At a forecasting game regarding 13 soccer games, a person plays utilizing m doubles and n  
triples, 0 13m n≤ + ≤ , ,n m N∈ . 
 a) In the case that he’ll obtain a variant with 13 exact results, implicitly how many 
variants of 12 and of 11 exact results he’ll obtain?  
 b) Also, if he gets 12 exact results, implicitly how many variants of 11 and of 10 exact 
results will he obtain? 
 
 
 Solution 
 There are 13 games and for each there are three possibilities: 1, X or 2 ( that is, regarding 
the first team, victory, null match or defeat). There are 12 possible variants (more than 1000000). 
Having m  the doubles and n  the triples, it results that we have 13 m n− −  solitaries, which 
means the games for which we give only one answer. There are 2 2m n⋅  variants in total. 
 a) We obtain  2m n+  variant with 12 exact results.  
If 2m≥  and 2n≥ , we have 2 24 2m nC C mn+ +  variants with 11 exact results; if 2m≥  and 

2n <  we have 2 2mC mn+ ; if 2m < , 2n <  we have 2mn ; if 2m < , 2n≥  we have 24 2nC mn+  
 b) The case: when the solitaries are false. Then it results: 
 2m n+  variants with 11 exact results 
 2 24 2m nC C mn+ +  variants with 10 exact results, or 2m≥ ,  2n≥  
 24 2nC mn+ , if 2m < , 2n≥ , variants have 10 exact results 
 2 2mC mn+ , if 2m≥  and 2n <  variants with 10 exact results 
 2mn , if 2m < , 2n <  variants with 10 exact results. 
 

In the case that the double is false, we have 
( 1) 2m n− +  variants with 10 exact results 

2 21 4 2( 1)m nC C m n− + + −  variants with 10 exact results, if 3m ≥ , 2n≥  
 24 2( 1)nC m n+ −  variants with 10 exact results if 3m < , 2n≥  
 2 1 2( 1)mC m n− + −  variants with 10 exact results if 3m ≥ , 2n <  
 2( 1)m n−  variants with 10 exact results if 3m < , 2n < . 
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1.6.  
At a tour of chess participated 10 players 1 2, 10, ...,A A A   - each chess players played with 

each of the other players one game. For each victory one point is gained, for each null game half 
of a point, and for each defeat zero points. 
 At the end of the tour, the ranking was 
 
 1. 1A  9.5 points 
 2. 2A  9 points 
 3. 3A  6 points 
 4-5 4A  5 points 
 4-5 5A  5 points 
 6. 6A  4 points 
 7-9. 7A  2 points 
 7-9. 8A  2 points 
 7-9. 9A  2 points 
 10. 10A  1 point 
 
 Show that in this ranking there are at least three errors. 
 
 

Solution 
 The first error: 1A  cannot accumulate more than the maximum of 9 points, because only 
9 games were played, therefore there are no 9.5 points. 
 The second error: 2A  , situated on the second place and the ranking, cannot accumulate 
more than 8 points, not 9 points, because he cannot gain more than a maximum of 8 points (the 
9th game, played against 1A  was lost; against 1A  the player 2A  could not have a null match 
because it would result that 2A  should occupy the place 1 – 2, not 2). 
 The third error: in this tour there were played 9 + 8 + 7 +…+ 1 = 45 games, therefore the 
total number of points of the ranking must be 45, because  
 9.5 + 9 + 6 + 2,5 + 4 +3,2 + 1 = 45.5 ≠ 45. 
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 1.7.   
Given a grid of crosswords (of n  lines, m  columns and p  black boxes), such that there 

are not two black cases that have a common side. 
 

A 
 

 

 

 

 

 

 

B 

 

 

 

 

 

 

 

 

 

A 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
B 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B 
 

B         B 

A    B     A 

 
 a) Prove that the number of the total words (horizontal and vertical) – we called word a 
box that contains only one letter. 
 b) Find the difference between the number of horizontal words and the number of vertical 
words. 
 
 Solution 
  

a) We show that 2N n m CNB CNC= + + + , where  
 N  = the number of the total words of the grille 
 CNB  = the number of the black boxes in the B  boxes 
 CNC = the number of the black boxes from the C  boxes 
 We consider the grid divided in 3 zones. 
 10 the four corners of the grid (the A zone) 
 20 the border of the grid minus the four corners 
 30 the interior part of the grid (the C zone). 
 We assume that the grid at the beginning does not have any black boxes. Then, there are 
n m+  words. 

- If we put a black box in the zone A, the number of the total words remains the same. 
(Then the number of the black boxes from the zone A does not present any 
importance) 

- If we put a black box in the zone B, for example on the line 1 and column j , 
1 j m< < , the number of words being a unit, [because on the line 1 are formed now 
two  words (before there was only one word), and on column j there is also only one 
word]. The situation is similar if we put a black box on the column 1 and line i , 
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1 i n< < , ( we can reverse the grid: the horizontal to be the vertical and vice versa). 
Then, for each black box from the zone B we add a word to the total number of the 
words of the grid. 

- If we place a black box in the zone C, for example on the line i , 1 i n< < , and the 
column j , 1 j m< < , then the number of the words formed by two unites: as on the 
line i , and on the column j  are at this time two words, contrary to the previous 
situation where it was a single word in each. Therefore, for each black case from the 
zone C we add two words to the number of the words of the grid. 

b) We divide the zone B in two parts: 
 - the zone  BO  = the horizontal part of B (the lines 1 and n ) 
 - the zone BV  = the vertical part of B (the columns 1 and m ) 
Then: NO NV n m CNBO CNBV− = − + − , where 
 NO = the number of the horizontal words 
 NV = the number of the vertical words 
 CNBO = the number of the black cases of BO  
 CNBV = the number of the black cases of BV  
  
 The proof of this proposition feats the precedent one, and we use the following 
result: 
- If there is no black boxes on the zone A, the difference NO NV−  is equal to n m−  
- If there is a black box on the zone A, the difference remains the same 
- The same for the zone C 
- If there is a black box on the zone BO , then the difference will be 1n m− + , and if 

the black box will be on the zone BV , then the difference will be 1n m− − . 
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2.8.   
Determine the last digit of the numbers of the sequence of Fermat: 

   22 1
n

nF = +  , with n N∈ . 
 
 
 Solution 
 For 0n =  we have 0 3F = , and for 1n =  we find 1 5F = . 

 For 2n≥  it results that 
2 22 4 2 22 1 2 1 16 1 16 1

n n n K
nF

− −⋅= + = + = + = +  which contains as 
last digit,  6+1=7, because the power of 16 ends in 6. 
 
 
 

2.9.  
Let p  the product of the first n  prime numbers. 
Determine the set { }| !F N Mpα α= ∈ = , Mp  being the multiple of p . 

 
 
 Solution 
 Because ! Mpα = , 1 i n≤ ≤ ,  we must have iPα≥ . Therefore { }max i n

i
P Pα≥ = . 

 1 2 3 1! 1 4n n nP P P P P P−= ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅ ⋅⋅⋅ , from where !nP Mp= . 
 nP  is the smallest number which has this property, because if there exists  ' nPα <  then 

'! Mpα ≠ . If nPβ>  then, of course ! Mpβ = . And { }, 1, 2,...n n nF P P P= + + . 
 

2.10.   
Find the smallest natural number such that its factorials are multiples of each of the 

numbers 1970, 1980, 1990, and 2000. 
 
 Solution 
 The greatest prime number which divides one of the numbers from the above is 199. 
 Let Nα∈ the number which we’re seeking. Then ! 1990Mα =  , i.e. multiple of 1990, 
from where 199.Mα= . 
Then 199α≥ . We take 199α = . 199! 10M=  because 10 199< . We also have199! 197M= . 
Because (10,197) 1= , it results that 199! 1970.M= . 
 199! 1990.M=  
 199! 36M=  and 199! 55M= , but (36,55) 1= ; from here 199! 36 55 1980M M= =i . 
 199! 16M=  and 199! 125M=  and (166,125) 1= ; then 199! 2000.M=  
 We suppose by absurd that α  is not the smallest. Then, it exists ' 199α ≤  such that 

'! 199Mα = ; contradiction. 
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2.11. 
Let A and B  natural numbers. We consider 1 2 3,   ,   M A B M A B M A B= + = − = i . 

We note mX  the numbers formed only by the last m digits of X . 
 a) Show that to find the last m  digits of 1M  it is sufficient to find the last m  digits of the 
sum m mA B+ . The same question for 2M  and 3M . 
 b) Generalization. 
 c) What it can be said about the last m digits of BA ? 
  
 
 Solution 
 a) We can write 

10m mA M A= +  and the same 
10m mB M B= + . Then 

 ( )1 10m m mM A B M A B= + = + +  
The same: 
 ( )2 10m m mM A B M A B= − = + −  
 ( )3 10m m mM A B M A B= = +i i  
 b) Generalization: 
 If ( )1 2,, ..., nE A A A  is an arithmetic expression in which we have only the operations +, -, 

and if 1 2,, ..., nA A A  are natural numbers, then 

 ( ) ( )1 2, 1, ,, ..., ,...,m n m n mE A A A E A A=  

where ,i mA  represent the last m  digits of iA . 
 The proof results from a). 
 c) BA  is a repeated multiplication. Therefore  ( )B B

mm
A A= . 

 
 

2.12.  
Knowing what h hour and m minutes, 1 12h≤ ≤ , 0 60m≤ < , find after how long the 

needles on the clock’s face would form an angle α , with 0 360α≤ < ° . 
 
 

Solution 
Firstly we determine the angular speed for each needle on the clock’s face. 
The big needle executes 360o in an hour; therefore 6 / minGV = ° . 
The small needle executes 360o in 12 hours; therefore 0.5 / minSV = ° . 
We compute the angle between the needles on the clock’s face at the h  and m  minutes. 

The big needle would execute 6m o. The small needle would execute 
( )60 0.5 30 0.5h m h m+ ⋅ = + degrees. 
 We note by x  (the minutes) the unknown of the problem. 
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 The angle formed by the needles is 6 30 0.5 5.5 30m h m m h− − = − . (We consider the 
angles positive, because in the problem it is not specified the direction of the angle). 

A) The case in which 5.5 30m h α− ≤ . 
a) 5.5 30 0m h− ≥ ⇔ the big needle executes a distance (in degrees) greater than 
the distance executed by the small needle. We have: 

( ) 30 5.56 0.5 5.5 30
5.5
h mx x m h x α

α
+ −

− = − − ⇒ = . 

b) 5.5 30 0m h− < , the opposite situation. We have 

( ) 30 5.56 0.5 5.5 30
5.5
h mx x m h x α

α
+ −

− = − − ⇒ = . 

 B) The case in which 5.5 30m h α− > . 
a) 5.5 30 0m h− ≥ . We have: 

( ) 360 30 5.56 0.5 360 5.5 30
5.5

h h mx x m h x α
α

+ + −
− = + − − ⇒ = . 

b) 5.5 30 0m h− < . We have: 
30 5.56 0.5 5.5 30 5.5 30

5.5
h mx x m h m h x α

α α
− −

− = − − = − − ⇒ = . 

 
 

2.13.  
Let 1 2 1,..., na a +  integers and 1 2 1,..., nb b +  the same numbers but in a different order. Prove 
that the expression ( ) ( )1 1 2 1 2 1n nE a b a b+ += ± ⋅⋅⋅ ±  is an even number, where the signs + 
and – are arbitrary in each parenthesis. (The generalization of problem A.7, page 105, of 
D. Gerll and G. Gerard, “Les olympiades internationales de mathématiques”, Hachette, 
1976). 
 
 
Solution 
 
We suppose that the expression E is odd. It resuls that each parenthesis is odd, therefore 
each parenthesis contains an even number and the other an odd number. 
We have then 2 1n+  even numbers. But, if in a parenthesis we find an 

0i
a even, then 

there exists another parenthesis where we find a 
0 0j ib a= , then 

0j
b  is even. And the number of 

evens is an odd number, which, obviously is different of 2 1n+ . This is a contradiction. 
 
 

2.14.  
Resolve the equation: ( ) 24X X−Φ = , knowing that ( )XΦ  represents the number of 

positive numbers, smaller than X  and relatively prime in rapport to X . 
 



24 
 

 
Solution 

 Because ( )X NΦ ∈ , It results that 24 ( ) *X X N= +Φ ∈  and 24X ≥ . Let 
1

1
s

sX P Pαα= ⋅⋅⋅ , *i Nα ∈ , iP  different prime numbers, 1,i s= . 
 ( ) ( )1 11

1 1( ) 1 1s
s sX P P P Pαα −−Φ = ⋅⋅⋅ ⋅ − ⋅⋅⋅ − , Φ  being the Euler’s function from the number 

theory. 
 ( ) ( )1 11 3 1

1 1 1( ) 1 1 24 2 3s
s s sX X P P P P P Pαα −− ⎡ ⎤−Φ = ⋅⋅⋅ ⋅ ⋅⋅⋅ − − ⋅⋅⋅ − − = ⋅⎣ ⎦ ; 

then,  evidently, X  has the form: 1 22 3X α α= ⋅ , where 1 2, *Nα α ∈ . Then 2s = . 

 We obtain ( ) ( )1 21 1
1 2 1 1 2( ) 1 1sX X P P P P P Pα α− − ⎡ ⎤−Φ = ⋅ ⋅ ⋅ − − ⋅ −⎣ ⎦ , which means that 

 [ ]1 21 1 3 1( ) 2 3 6 1,2 2 3X X α α− −−Φ = ⋅ ⋅ − = ⋅ , where 1 21 1 1 1( ) 2 3 2 3X X α α− −−Φ = ⋅ = ⋅ , from 

where 1 2 2α α= =  and in conclusion 2 22 3 36X = ⋅ = . 
 
 

2.15.   
Let ( )nΦ  be Euler’s totient function. Prove that: ( )nΦ  is a prime number if and only if 

{ }0, 3, 4, 6n∈ ± ± ± . 
 
 
 Solution 
 The sufficiency: 

(0) ( 3) ( 4) ( 6) 2Φ =Φ ± =Φ ± =Φ ± = , which is a prime number. 
The necessity: 

( 1) ( 2) 1Φ ± =Φ ± =  which is not a prime number. Then { }1, 2n ≠ ± ± . 
Let 1

1
s

sn P Pαα= ⋅⋅⋅  with 1,..., sP P different prime numbers. *i Nα ∈ , { }1,2,...,i s∈ . 
1 11

1 1 2( ) ( 1) ( 1)s
s sn P P P P Mαα −−Φ = − ⋅⋅⋅ − =  for { }1, 2n ∉ ± ±  because 21iP M− =  

 where 1
2

j
jP Mα − = . 

 Because ( )nΦ  is prime number, it results that ( ) 2nΦ = . Then 1 1iP − =  or 1 2iP − = , or 
3. Then 1 2i jP α= ⇒ = , therefore 4,3,6n = . And { }3, 4, 6n ∈ ± ± ± .  
 But (0) 2Φ =  which is prime, then { }0, 3, 4, 6n∈ ± ± ± . 
 
 

 2.16.  
Let m be an integer such that ( ) 4m MΦ = (multiple of 4), where Φ  represents Euler’s 

indicator . Prove that it exists an even number of primitive solutions modulo m  (an integer a  is 
called a primitive solution modulo m , if ( ) 1(mod )ma mΦ ≡  and 1(mod )Ka m≡/  for 
1 ( )K m≤ <Φ ). 
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 Solution 
 1) If there does not exists a primitive solution modulo m , then we have 0 solutions and 0 
is an even number. 
 2) If there exist primitive solutions, let r  one of them. We have: 
 ( , ) 1r m = , ( ) 1(mod )mr mΦ ≡  and 1(mod )Kr m≡/  
For 1 ( )K m≤ <Φ . We’ll show that m r−  is also a primitive solution modulo m . 

A) Firstly, (mod )m r r m− ≠ , because contrarily it would result that 2 0(mod )r m≡ , 
where 2r t m= ⋅ , with t Z∈ . Because  ( ) 4m MΦ = , we have { }0, 1, 2m∈ ± ± . 
 α) 2m h= , { }0, 1h Z∈ − ± . We have | 2 2 | 2 | ( , ) 1m r h r h r r m h⇒ ⇒ ⇒ = ≠± , which 
is absurd. 
 β ) 2 1m h= + , { }1,0h Z∈ − − . We have | 2 | ( , ) 1m r m r r m m⇒ ⇒ = ≠± , which is 
absurd. Therefore (mod )m r r m− ≡/  
 B) ( ), |m m r d d m− = ⇒  and | | ( , ) 1d m r d r d r m− ⇒ ⇒ = = , then ( , ) 1m r m− = . 

 ( ) ( ) 1(mod )mm r mΦ
− ≡ , in accordance with Euler’s theorem. 

We suppose, by absurd, that exists *Nμ∈ ,  ( )mμμ<Φ  with ( ) 1(mod )m r mμ
− ≡ . It results 

( )1 ( ) ( 1) (mod )m r r r mμ μ μ≡ − ≡ − ≡ − . From where μ  is odd (if not it results that 

1(mod )r mμ ≡  and 1 ( )mμ≤ <Φ , in other words r  will not be a primitive solution). Then 
2 1pμ= + , with p N∈  and 1(mod )r pμ ≡− , where 2 1(mod )r pμ ≡ . But ( )mμ<Φ , which 

implies that 2 2 ( )mμ< Φ . Because r  is a primitive solution we have 2 ( )mμ=Φ , where 

( ) 4( ) 2 2 1m p MΦ = + ≠ . Contradiction. And ( ) 1(mod )m r mμ
− ≡/  for 1 ( )mμ≤ <Φ , therefore 

m r−  is also a primitive solution. 
 
 

 2.17.  
Let m  a natural number 3≥ , and 1 ,..., pa a  all the positive numbers smaller than m  and 

different of m . Then 1 2 ... pa a a Mm+ + + = (multiple of m). 
 
 
 Solution 

We prove that 2p M= . We observe that if 0 a m< <  and ( , ) 1a m = , then we also have
0 m a m< − <  and ( ), 1m a m− = ,  because: 

0 0a m m a m m m m a m< < ⇒− < − < − ⇒ < − < , let ( , )d a m m= − , it results |d m , from 
where |d a , therefore d divides ( ), 1a m = , and 1d = . We have that for 

{ } { }1 1,..., ,    ,...,p pa a a m a a a∀ ∈ ∃ − ∈  such that m a a− ≠ ; (in the contrary case, it would 

have resulted that 2m a=  and ( ), 1a m a= ≠  from where 2m = , which is impossible).  (1) 
But ( )a m a m Mm+ − = =  and, because of (1) we obtain the conclusion of the problem. 
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2.18.  
Given three integer numbers , ,a b c , such that 2 2 0a c+ ≠  and 2 2 0b c+ ≠ , prove that  

  
( )
( ) ( )

, ,
, ,
a b c c

Z
a c b c

⋅
∈

⋅
 

(The notation ( )1,..., nx x  represents the largest common divisor of the numbers 1,..., nx x ) 
 
 
 Solution 
 Let ( , , )d a b c= . This implies that ' ,  ' ,  'a a d b b d c c d= = =  and ( )', ', ' 1a b c = . Then 
 ( ) ( ) ( ) 13, ' , ' ', 'a c a d c d d a c d d= = ⋅ = ⋅  
(we note ( ) 23', 'a c d= ); from where 23'c d β= ⋅ , Zβ∈ . 

 But ( ) ( ) ( )( ) ( )13 23, ', ' , ', ' ', ', ' 1d d a c b c a b c= = =  

Because 13 23d dα β⋅ = ⋅ , ( )13 23, 1d d = , and that all numbers are integers, it results that 23d  
divides α , that is 23 'dα α=  with ' Zα ∈ . Then 13 23 'c d d d α= ⋅ ⋅ ⋅ , and that  

 
( )
( ) ( )

13 23

13 23

, , ' '
, ,
a b c c d d d d Z

a c b c d d d d
α

α
⋅ ⋅ ⋅ ⋅ ⋅

= = ∈
⋅ ⋅ ⋅ ⋅

. 

The conditions from the problem ensure the existence of the expression and that the denominator 
is different of zero. 
 
 

2.19.  

Given ,i ia b N∈ , 1,i n= . Prove that: 

  ( ) ( )1 1
1

,..., , ,..., ,
n

n n i i
i

a a b b a b
=

≥∏  

where ( ),α β  represents the greatest common divisor of the numbers α  and β . 
 
 
 Solution 
 We’ll apply the recurrence reasoning. 
 It is evident for 1i = . We have to show that for 2i =  we have 
( ) ( ) ( )1 2 1 2 1 1 2 2, , ,a a b b a b a b≥ ⋅ . Having 

1 11 11 a ba a d= , 
1 11 11 a bb b d=  with ( )11 11, 1a b =  and 

having 
2 22 21 a ba a d= , 

2 22 21 a bb b d=  with ( )21 21, 1a b = , then  
 ( ) ( ) ( ) ( )

1 1 2 2 1 1 2 21 2 1 2 11 21 11 21 1 1 2 2, , , ,a b a b a b a ba a b b d d a a b b d d a b a b= ⋅ ⋅ ≥ ⋅ = ⋅ . 
We suppose that the inequality is true for the values of i  which are smaller than n . It results 
that: 

( ) ( ) ( ) ( ) ( ) ( )
1

1 1 1 1 1 1 1 1 1 1
1 1

... , ... ... , ... , , , ,
n n

n n n n n n n n i i n n i i
i i

a a a b b b a a b b a b a b a b a b
+

+ + + + + +
= =

⎛ ⎞⎟⎜≥ ⋅ ≥ ⋅ =⎟⎜ ⎟⎟⎜⎝ ⎠∏ ∏ . 
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2.20  
If ( ) 2,i ia b N∈ , { }1,2,...,i n∈  and [ ],α β  represent the smallest common multiple of the 

numbers α  and β , then [ ]1 1 1
1

... , ... ,
n

n n n i i
i

a a a b b a b+
=

⎡ ⎤ ≤⎣ ⎦ ∏  

 
 
 Solution 
 We’ll apply the recurrence reasoning. 
 It is evident for 1i = . We have to show that for 2i =  we have 
[ ] [ ] [ ]1 2 1 2 1 1 2 2, , ,a a b b a b a b≤ ⋅ . Having 

1 11 11 a ba a d= , 
1 11 11 a bb b d=  with ( )11 11, 1a b =  and 

having 
2 22 21 a ba a d= , 

2 22 21 a bb b d=  with ( )21 21, 1a b = , then  
 [ ] [ ] [ ] [ ]

1 1 2 2 1 1 2 21 2 1 2 11 21 11 21 11 21 11 21 1 1 2 2, , , ,a b a b a b a ba a b b d d a a b b d d a a b b a b a b= ⋅ ⋅ ≤ ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ . 
We suppose that the property is true for the values of i n≤ . It results that it is true also for 

1i n= +  because: 

[ ] [ ]1 1 1 1 1 1 1 1 1 1
1

... , ... ... , ... , , ,
n

n n n n n n n n i i n n
i

a a a b b b a a b b a b a b a b+ + + + + +
=

⎛ ⎞⎟⎜⎡ ⎤ ⎡ ⎤ ⎡ ⎤≤ ⋅ ≤ ⋅⎟⎜⎣ ⎦ ⎣ ⎦ ⎟ ⎣ ⎦⎟⎜⎝ ⎠∏ . Then the 

problem is proved. 
 
 

2.21.  
Let m  be a natural number, and 1 5n≤ ≤ . Prove that if 19m

ma a= ⋅⋅⋅ , then 

N N N1 2
1 1 1

9 9 9 9 0 0 9 9m
n

n n n

a a a
− − −

⋅⋅⋅ = ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ , where there are n digits of 9 in the left-hand side of this 

equation, with *n N∈ . 
 
 
 Solution 
 When 1m = , we have N N

1 1

1

9 9,   9 9 9 99
n n−

= ⋅⋅⋅ = ⋅⋅⋅ . 

 When 2m = , we have: 

N N NN N N N
2

2 2

2 1 1 1
9 81,   9 9 100 0 1 10 0 20 0 1 10 00 01 20 0 9 980 01

n n n n n n n n n− − −

⎛ ⎞⎟⎜= ⋅⋅⋅ = ⋅⋅⋅ − = ⋅⋅⋅ − ⋅⋅⋅ + = ⋅⋅⋅ ⋅⋅⋅ − ⋅⋅⋅ = ⋅⋅⋅ ⋅⋅⋅⎟⎜ ⎟⎟⎜⎝ ⎠���	��
 ���	��


 
 When 3m = , we have: 

N N N
3

3 3

3 2

9 729,  9 9 100 0 1 10 0 30 0 30 0 1
n n nn n

⎛ ⎞⎟⎜= ⋅⋅⋅ = ⋅⋅⋅ − = ⋅⋅⋅ − ⋅⋅⋅ + ⋅⋅⋅ − =⎟⎜ ⎟⎟⎜⎝ ⎠���	��
 ���	��
  

NN N NN N N N
1 1 1 1

10 00 030 0 30 00 01 9 970 029 99
n n n n n n n n− − − −

= ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ − ⋅⋅⋅ ⋅⋅⋅ = ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ . 

 When 4m = , we have: 
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 N N N N
4

4 4

4 3 2

9 6561,  9 9 100 0 1 10 0 40 0 60 0 40 0 1
n n n nn n

⎛ ⎞⎟⎜= ⋅⋅⋅ = ⋅⋅⋅ − = ⋅⋅⋅ − ⋅⋅⋅ + ⋅⋅⋅ − ⋅⋅⋅ + =⎟⎜ ⎟⎟⎜⎝ ⎠���	��
 ���	��
  

NN NN NN N N N N N
1 1 1 1

10 00 060 00 01 4 0 00 040 0 9 960 059 960 01
n n n n n n n n n n n− − − −

= ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ − ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ = ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ . 

 When 5m= , we have: 

N N N N N
5

5 5

5 4 3 2

9 59049,  9 9 100 0 1 10 0 50 0 100 0 100 0 50 0 1
n n n n nn n

⎛ ⎞⎟⎜= ⋅⋅⋅ = ⋅⋅⋅ − = ⋅⋅⋅ − ⋅⋅⋅ + ⋅⋅⋅ − ⋅⋅⋅ + ⋅⋅⋅ − =⎟⎜ ⎟⎟⎜⎝ ⎠���	��
 ���	��
  

N N N N N
1 1 1 1 1

9 950 099 900 049 99
n n n n n− − − − −

= ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ . 

Observation: For 6m≥  the formula is not true. 
 
 

2.22.  

We consider  the set N9 9 / *
n

A m m N
⎧ ⎫⎪ ⎪⎪ ⎪= ⋅⋅⋅ ⋅ ∈⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

 and *n N∈ , constant . 

a) Compute the greatest number of 2n  digits from the set A , which does not 
contain the digit 9 

b) Compute the smallest number 2n K+  digits which does not contain the digit 9. 
Discussion. 
 
 
Solution 
a) We’ll try to find the greatest *m N∈ , 1 nm b b= ⋅⋅⋅ , which multiplied by N9 9

n

⋅⋅⋅  

gives us a product of 2n  digits with all its digits different of 9. 

N N N9 9 10 0 1 0 0
n n n

m m m m
⎛ ⎞⎟⎜⋅⋅⋅ ⋅ = ⋅⋅⋅ − ⋅ = ⋅⋅⋅ −⎟⎜ ⎟⎟⎜⎝ ⎠

.  

We compute the difference : N1 10 0 ?n n
n

m b b b b= ⋅⋅⋅ ⋅⋅⋅ − ⋅⋅⋅ =  

If there exist { }9, 1,2,..., 1jb j n= ∈ − , then: it there is at least a non zero digit at the end 
of jb , by subtraction it will result jb = 9 in the solution, if all the 0hb =  with { }1,...,h j n∈ +

by subtraction in the solution it will exist at least one digit equal to 9 in one of the places 
1,...,j n+ . 

The next case is N8 89
n

⋅⋅⋅ . By doing the difference (that is a multiplication  NN9 98 89
n n

⋅⋅⋅ ⋅⋅⋅ ) 

we will obtain the greatest number of 2n  digits of the set A  which does not contain the digit 9, 
which is NN8 81 1

nn

⋅⋅⋅ ⋅⋅⋅ . 

b) The number m  would be n K+  digits. 
 1) The case 1 K n≤ ≤ . We prove that NN

11

10 01 12
nK

m
−−

= ⋅⋅⋅ ⋅⋅⋅  is the smallest number 

of n K+  digits which will have the required property. 
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We cannot have any zero among the last digits of the number m  because it would result, 
by multiplication, at least one digit 9 in the product; the last digit non zero of m  is different of 1 
(for the same reason); the other digits of m  can be equal to zero, only the first would have the 
value of minimum 1 because K n≤ , then 1 1K n− ≤ − . 
N NN NNN

1 1 11

9 9 10 01 12 1 11 18 8
n n K Kn K n− − + −−

⋅⋅⋅ ⋅ ⋅⋅⋅ ⋅⋅⋅ = ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅  

(here we wrote directly that NN NN
1

9 9 1 12 1 18 8
n nn n−

⋅⋅⋅ ⋅ ⋅⋅⋅ = ⋅⋅⋅ ⋅⋅⋅ ) 

(We utilize the property that the smallest number of 2n  digits of A , which does not contain the 
digit 9 is NN1 18 8

n n

⋅⋅⋅ ⋅⋅⋅ , and that the correspondent m  is N
1

1 12
n−

⋅ ⋅⋅⋅ ). 

  2) The case 1K n≥ + . Momentarily, we cannot write NN
11

10 01 12
nK

m
−−

= ⋅⋅⋅ ⋅⋅⋅  because 

1 1K n− > −  and the result of the multiplication contains digits 9: 
  N NN NN

11

9 9 10 01 12 1 18 8
n nn K n−−

⋅⋅⋅ ⋅ ⋅⋅⋅ ⋅⋅⋅ = ⋅⋅⋅ ⋅⋅⋅     (1) 

 N NNNN
1

9 9 9 90 01 18 8
nn n K n−

⋅⋅⋅ = ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅  

 We’re looking to find the smallest *m N∈ , of n K+  digits, which will have the 
requested property. The last n  digits of m  will be also N

1

1 12
n−

⋅⋅⋅ . The first will be also 1. 

 Among the unknown digits we cannot have more than 1n−  consecutive zeros because of 
(1). Because n is also small it is possible to attach 1n−  consecutive zeros after the first digit,  
then a digit 1 (the minimum not null), other 1n−  consecutive zeros and again a digit 1, etc. 
Therefore: N N N NN

11 1 1

 

10 010 0 10 010 01 12
nn n n p

K digits

m
−− − −

= ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
�������������	������������


 

Then, the number will be N NN NN
11

9 9 10 01 101 18 8
n p pn K n

m
− −−

⋅⋅⋅ ⋅ = ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅  with 1Kp K n
n
⎡ ⎤
⎢ ⎥= − ⋅ −
⎢ ⎥⎣ ⎦

, where 

[ ]X  represents the integer part of X . 
This is the multiplication: 
N N N N NN N NNNNN N

11 1 1

 

9 9 10 010 0 10 010 01 12 1 101 18 89 99 99 9 9 9
n n p pn n n n p n p n p n n

K

− −− − − −

⋅⋅⋅ ⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ = ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ =
�������������	������������


 

N NNN NN
1

 

10 0 0 00 01 101 18 8
n p pn n p n

K

− −

= ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
���������	��������


 

 
 

 2.23.  

If ,x y N∈ , then there exist z N∈  such that 10 10 10x y z⋅ = . 
 Generalize this result for the case of any number of zeros between 1 and x  and between 
1 and y . 
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 Solution 
 Let’s consider 1... nx a a= , 0 9ia≤ ≤ , { }1,2,..., , *i n n N∈ ∈  and 1... my b b= , 
0 9jb≤ ≤ , { }1,2,..., , *j m m N∈ ∈ . 
 We do the multiplication: 
 

  1

1

10 ...   

10 ...  
n

m

a a

b b

×
 

 
2 digits                           the multiplication by 

..................................................................................
2 digits                          the multiplic

mn b

n

+ ⋅ ⋅⋅⋅

+ ⋅ ⋅⋅⋅ 1ation by 
2 digits   1  0                   the multiplication by 1

b
n+ ⋅ ⋅

 

 
1                      = ⋅ ⋅ ⋅ 

We noted by “ ⋅ ” a natural digit between 0 and 9. 
 Then, the first digit of the product is 1. 
 Generalization: if ,x y N∈ , then there is a z N∈  such that N N N

   

10 0 10 0 10 0
s digits t digits u digits

x y z⋅⋅⋅ ⋅ ⋅⋅⋅ = ⋅⋅⋅ , 

Where we have inf( , ) 1u s t= − . 
The proof of this generalization follows the proof of the first part of this problem. 
 
 

 2.24.   

We consider a numeric base b , and p  a simple divisor such that , 1bp
p

⎛ ⎞⎟⎜ =⎟⎜ ⎟⎜ ⎟⎝ ⎠
. Then 

1*,   ...  n nn N A a a∀ ∈ ∃ =  written in base b  which is divisible by np , with  

{ }1,2,..., ,1ia p i n∈ ≤ ≤ . 
 
 
 Solution 

We will apply the recurrence reasoning for  *n N∈ . 
 For 1n =  we have 1 A p∃ =  which is divisible by 1p . (We observe that, because |p b , 

it results that ,  b Kp K Z= ∈ ; ( )1 , ,bp p K
p

⎛ ⎞⎟⎜= =⎟⎜ ⎟⎜ ⎟⎝ ⎠
, also, all the digits of the numbers in the base 

b  belong to the set { }0,1,2,..., ,  1,...., 1bM p p n= + − , and these are represented by one single 
symbol (for example, if 10b > , then the digits 10,11,… are noted by , ,...A B ). Then 

{ }1,2,...,pp M p∈ =  and it is formed by a digit in base b ; ( |p b p b b⇒ ≤ = ). 
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 We suppose that the property is true for n , that is 1...n nA a a∃ = , written in the base b , 
which is divisible by np , where i pa M∈ , 1 i n≤ ≤ . We’ll show that it is true for 1n+ .  

 Let 1 1...n nA xa a+ =  with px M∈  written in base b . We determine a x  for which 1nA +  is 

divisible by 1np +  (it is sufficient to prove that there is such an x ). 
 1 1... ( )n n n n n

n n nA x b a a x K p A p K x t+ = ⋅ + = ⋅ ⋅ + = ⋅ + , where n
nA tp= , t Z∈  (from 

the recurrence hypothesis). 
  px M∃ ∈  such that 0(mod ) (mod )n nK x t p K x t p+ ≡ ⇔ ⋅ ≡− . 

Because ( ), 1 ,bp p K
p

⎛ ⎞⎟⎜ = =⎟⎜ ⎟⎜ ⎟⎝ ⎠
 we have( ), 1np K = . Then there exists the inverse of the element 

nK  in rapport to the module p . The above congruence  becomes: ( ) 1
(mod )nx t K p

−
≡−  and we 

chose the smallest x  not null, that is: px M∈ . 
(There exists px M∈ , because pM  constitute a complete systems of residues modulo p.) 
 
 

 2.25.  

Let , *  n m N∈ . We note ( )
m

m m
na m

⋅⋅

=  with n  digits m , and N
N...( ) ... n
m mm

n
n

b m m= . For each 

n  and m  compare ( )m
na  with ( )m

nb . Discussion. (All numbers are written in base 10.) 
 
 
Solution 
In the precedent conditions, we have: 
Lemma 1. N

4*,  2  ...n

n

n N m m m m∀ ∈ ∀ ≥ >  

Proof: We use the recurrence method for *n N∈ . 
The case 1n =  implies 4m m>  which is true. We assume that the property is true for n  

and we’ll prove it for 1n+ : 

N N N
4( 1) 4 4 4

1 1 1

... ... 16 ... 0 ... 6 ... 0 ...n n

n n nn n n

m m m m m m m m m m m m m m m m mm+

+ + +

= ⋅ > ⋅ ≥ ⋅ = + ⋅ > + =���	��
 ���	��
 ���	��
 . 

Lemma 2. N
( ) ( 1)

1

3, *,  4 ...m n
n

n

n m N b m m+

+

∀ ≥ ∀ ∈ >  

Proof: N NN
2

1

... ... ... ...
n n n n

m m m m m m m mm
+

= ⋅ > ���	��
  because 3n≥ . 

N... 1 4
n

m m n> + ≥  because 3n≥ . 

N
N
N

... 4( ) ( 1)

1

... ... 4 ...n
m mm n

n
n n n

b m m m m m mm+

+

= > > ⋅ ���	��
 . 
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Lemma 3: If there exists 0 0*,  3n N n∈ ≥ , such that 
0 0

( ) ( )m m
n na b>  then 02,m n n∀ ≥ ∀ ≥  we 

have ( ) ( )m m
n na b> . 
Proof: use the recurrence method for 0n n≥ . 
The case 0n n=  is true by hypothesis. We assume that the property is true for n , and 

we’ll prove it for 1n+ : 

N N
N( ) ( )

1
...( ) 4( 1) ( )

1
1 1

... ...
m m

n n
n

m ma bm n m
n n

n n

a m m m m m m m b+
+

+
+ +

= > > ⋅ > = . 

To prove these inequalities we will use the hypothesis from the recurrence from Lemma 
2, respectively Lemma 1. 

Lemma 4: ( ) ( )
3 36,    m mm a b∀ ≥ > . 

Proof. Because 6m≥  and because of the results from the Lemmas 1 and 2, it results that: 
2 2 2 44 3 4 3 6 4 3m m mm m m m mmm− −= ⋅ > ⋅ ⋅ > ⋅ ⋅ > ⋅ ⋅  

( )( ) 4 3 4 3 ( )
3 3  

m mmm mmmm m mmm ma m m m mmm b⋅ ⋅ ⋅= > = > = . 

We have: ( )
m

m m
na m

⋅⋅

=  with n  digits of m , N
N...( ) ... n
m mm

n
n

b m m= . 

Case 1m = . (1) (1)
1 11a b= = . 

 N
N

1
1...1(1) (1)

1

1 1...1 , 2nn n
n

a b n+

+

= < = ∀ ≥  

Case 2m = . (2) 2 22 (2)
2 22 22a b= < =  

  (2) 4 222 (2)
3 32 222a b= < =  

  (2) 16 2222 (2)
4 42 2222a b= < =  

  (2) 65536 3 22222 22222 (2)
5 52 2 22222a b⋅= < < =  

Using Lemma 1, we obtain 
  65536 5 4 62 2 2 4 7 222222⋅> ⋅ > ⋅ ⋅  
Then 

  ( )65536 222222(2) 2 4 7 222222 4 7 222222 (2)
6 62 2 2 222222a b⋅ ⋅ ⋅= > = > =  

From the Lemma 3 it results that (2) (2) , 6n na b n> ∀ ≥ . 
Case 3m =  (3) 3 (3)

1 13 3a b= < =  
  (3) 3 33 (3)

2 23 33a b= < =  
  (3) 27 333 (3)

3 33 333a b= < =  
Using Lemma 1 we obtain 27 3 4 43 3 3 ?16 3333⋅> ⋅ ⋅  
Then 

 ( )27 3333(3) 3 16 3333 4 4 3333 (3)
4 43 3 3 3333a b⋅ ⋅= > = > =  

From Lemma 3 it results (3) (3) , 4n na b n> ∀ ≥  
Case 4m = . (4) 4 (4)

1 14 4a b= < =  
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  (4) 4 44 (4)
2 24 44a b= < =  

  
4(4) 4 256 444 (4)

3 34 4 444a b= = < =  
From Lemma 1 it results 256 2 4 44 4 4 4 4 4444⋅> ⋅ > ⋅ ⋅ . 

Then ( )256 4444(4) 4 4 4 4444 4 4 4444 (4)
4 44 4 4 4444a b⋅ ⋅ ⋅= > = > = . 

From Lemma 3 it results:  
 (4) (4)4, n nn a b∀ ≥ >  
Case 5m= . (5) 5 (5)

1 15 5a b= < =  
  (5) 5 55 (5)

2 25 55a b= < =  

  ( )5 625(5) 5 3125 5 625 555 (5)
3 35 5 5 3125 555a b= = = = > = . 

From Lemma 3 we have (5) (5)3, n nn a b∀ ≥ > . 
Case 6m = . ( ) ( )

1 1
m m ma m m b= < =  

  ( ) ( )
2 2

mmm m ma m mm b= < =  
From Lemma 4 it results: ( ) ( )

3 3
m ma b>  

And from Lemma 3 we have ( ) ( )m m
n na b> , 3n∀ ≥  and the problem is solved 
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 3.26. 
Consider , iP Q  1 i n≤ ≤ , logical propositions. Prove that the logical proposition   

 ( ) ( )
11

" "V
n n

i i
ii

P Q P Q
==

∧ ⇒ ∨Λ  

is always true  
 
 
Solution  
A logical proposition " "A B⇒   is false only when 1A=  (true) and 0B =  (false). We’ll 

prove that this situation does not exist. 

If ( )
1

" " 1V
n

i
i

P Q
=

∧ = , then { }0 1,...,i n∃ ∈  such that 1iP Q∧ = , that is 1P =  and 
0

1iQ = . 

Then: 
 { }1,  1,...,iP Q i n∨ = ∀ ∈  since 1P = ,  
Then  

( )
1

" 1" 0
n

i
i

P Q
=

∨ = ≠Λ  

(∧  means “and”, ∨  means “or”). 
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 3.27. 
 Show that if the logical propositions 1 2" "A A⇒  and 1 2" "B B⇒  are true, then the logical 
propositions 1 1 2 2" "A B A B∧ ⇒ ∧  and 1 1 2 2" "A B A B∨ ⇒ ∨  are also true. 
 
 
 Solution  
 

1A
 

2A
 

1B
 

2B
 

1A A⇒
 

1 2B B⇒
 

1 1A B∧
 

2 2A B∧
 

1 1A B∧
⇒  

2 2A B∧
 

1 1A B∨
 

2 2A B∨
 

1 1A B∨
⇒  

2 2A B∨
 

0 0 0 0 1 1 0 0 1 0 0 1 
0 0 0 1 0 1 0 0 1 0 1 1 
0 0 1 0 1 0 0 0 1 1 0 0 
1 0 0 0 1 0 0 1 1 1 0 0 
0 0 1 1 1 1 0 0 1 1 1 1 
0 1 1 0 1 0 0 0 1 1 1 1 
1 1 0 0 1 1 0 0 1 1 1 1 
0 1 0 1 1 1 0 1 1 0 1 1 
1 0 1 0 0 0 1 0 0 1 0 0 
1 0 0 1 0 1 0 0 1 1 1 1 
0 1 1 1 1 1 0 1 1 1 1 1 
1 1 1 0 1 0 1 0 0 1 1 1 
1 1 0 1 1 1 0 1 1 1 1 1 
1 0 1 1 0 1 1 0 0 1 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 
1 2 3 4 5 6 7 8 9 10 11 12 

 
We note with “1” the true and with “0” the false. Immediately we observe that 

1 2" "A A⇒  and 1 2" "B B⇒  are true in the same time, it results that 1 1 2 2" "A B A B∧ ⇒ ∧  and 

1 1 2 2" "A B A B∨ ⇒ ∨  are true in the same time. 
 

  



37 
 

 

 

 

 

 

TRIGONOMETRY 
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 4.28. 
Prove the following formulae of transformation of the products of functions in sums: 

 1)  ( )
1

1 2 1 11
,...,

1cos cos cos cos ...
2

n n

n n nn
ε ε τ

α α α ε α ε α−
∈

⋅⋅⋅ = + +∑  

 2)   

a) 
( ) ( ) ( )

1 2 2

2 2 1 1 2 22 1
,...,

1
sin sin 1 cos ...

2
p p

p
k

p p pp
ε ε τ

α α ε α ε α−
∈

−
⋅⋅⋅ = − + +∑  

  b)
( ) ( ) ( )

1 2 1 2 1

2 2 1 1 1 2 1 2 12
,...,

1
sin sin 1 cos ...

2
p p

p
k

p p pp
ε ε τ

α α ε α ε α
+ +

+ + +
∈

−
⋅⋅⋅ = − + +∑  

where 

 ( )
1 2

2

1
0

,..., / ... 1
k

m

m m i i i
k

τ ε ε ε ε ε

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

=

= = = = =−∪  and 1jε =  for 

{ } ( ) ( ){ }1 1 1,..., ,..., / ,...,k m m mj i i ε ε ε ε τ∉ − − − ∈ . 
 
 
 Solution 

The set mτ  contains all the m -lepts ( )1,..., mε ε  which have the components  1iε =±  
arranged in all possible orders, but such that ( )1,..., m mε ε τ∈ , then ( )1,..., m mε ε τ− − ∈ . Therefore 

mτ  has in total  ( )0 1 1... : 2 2m m
m m mC C C −+ + + =  elements, by k

mC , 0 k m≤ ≤  we represent the 
numbers of m-lepts such that the k  components are equal to -1, and the rest of m k−  are equal 
to +1. 
 1) We’ll make the prove using the recurrence method on n . 
 The case 1n =  is evident. We suppose that the equality is true for n , and then prove it 
for 1n+ : 

( )
( )

( )
1

1 1 1 1 11
,...,

1cos cos cos cos ... cos
2

n n

n n n n nn
ε ε τ

α α α ε α ε α α+ +−
∈

− = + + =∑  

( )
( ) ( )

1

1 1 1 1 1 1 1
,...,

1 cos ... cos ...
2

n n

n n n n n n nn
ε ε τ

ε α ε α α ε α ε α ε α+ + +
∈

⎡ ⎤= + + + + + + + − =⎢ ⎥⎣ ⎦∑  

( )
( )

1

1 1 1 1
,...,

1 cos ...
2

n n

n nn
ε ε τ

ε α ε α+ +
∈

= + +∑  

 2) 
 a) We apply the recurrence rational for *p N∈ . 

 If p=1 we have ( ) [ ]
1

1 2 1 2 1 2

1
sin sin cos( ) cos( )

2
α α α α α α

−
= + − − +  which is true. 

 We suppose that the equality is true for p , we we’ll prove for 1p+ : 
 1 2 2 1 2 2(sin ....sin )sin sinp p pα α α α+ + =  
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( )

( )
( )

1 2

1 1 2 2 2 1 2 22 1
,...,

1
( 1) cos ... sin cos

2
j pp

p
k

p p p pp
ε ε τ

ε α ε α α α+ +−
∈

−
= − + + =∑  

( )
( )

( )
1 2 2

1

1 1 2 2 2 1 2 2 2 1 2 22
,...,

1
( 1) cos ... cos( ) cos( )

2
p p

p
k

p p p p p pp
ε ε τ

ε α ε α α α α α
−

+ + + +
∈

− ⎡ ⎤= − + + + − − + =⎣ ⎦∑  

( ) [
( )

( )
1 2 2

1

1 1 2 2 2 1 2 22 1
,...,

1
( 1) cos ...

2
p p

p
k

p p p pp
ε ε τ

ε α ε α α α
+

+ ++
∈

−
− + + + + +∑  

( )1 1 2 2 2 1 2 2cos ... p p p pε α ε α α α+ ++ + + − − −

]1 1 2 2 2 1 2 2 1 1 2 2 2 1 2 2cos( ... ) cos( ... )p p p p p p p pε α ε α α α ε α ε α α α+ + + +− + + + − − + + + − =  

( )
( )1 2 2 2 2

1

1 1 2 2 2 22 1
,...,

1
( 1) cos( ... )

2
p p

p
k

p pp
ε ε τ

ε α ε α
+ +

+

+ ++
∈

−
= − + +∑ . 

(We can prove easily the relations: 
{ }1 1 1 1( ,..., , 1),( ,..., ,1) | ( ,..., )m m m m mτ ε ε ε ε ε ε τ+ = − ∈  and 
{ }2 1 1 1 1 1( ,..., , 1, 1),( ,..., , 1,1), ( ,..., ,1, 1),( ,..., ,1,1)  such that ( ,..., )m m m m m m mτ ε ε ε ε ε ε ε ε ε ε τ+ = − − − − ∈

(We can also generalize). 
 b) The first method: by recurrence for *p N∈  (similarly with above reasoning. 
 The second method: 

( )
( )

( )
1 2 2

1 2 2 1 1 1 2 2 2 12 1
,...,

1
(sin ....sin )sin ( 1) cos ... sin

2
p p

p
k

p p p p pp
ε ε τ

α α α ε α ε α α+ +−
∈

−
= − + + =∑  

( ) [
( )

( ) ( ) ]
1 2 2

1 1 2 2 2 1 1 1 2 2 2 12
,...,

1
( 1) sin ... sin ...

2
p p

p
k

p p p p p pp
ε ε τ

ε α ε α α ε α ε α α+ +
∈

−
= − + + + + + + − =∑  

( )
( )

( )
1 2 1 2 1

1 1 2 1 2 12
,...,

1
( 1) sin ...

2
p p

p
k

p pp
ε ε τ

ε α ε α
+ +

+ +
∈

−
= − + +∑ . 

 
 

 4.29. 
Let 2( ) 2 1P x x= − . Prove that for 2n >  we have: 

1
1

1  

sin 2 2 2 (... ( (cos ))...)
n

n n

i i times

x x p p p x
−

−

=

= =∏����	���
  

  
 

Solution 
a) We will prove by recurrence for *n N∈  we have:  

1 2 1sin 2 2 sin cos cos2 cos2 ...cos2n n nx x x x x x−=   (1) 
 In the case 1n =  the property is evident 
 We suppose the equality true for n , and we prove that it is true also for 1n+ . 
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1 1sin2 2 ... 2sin2 cos2 ...2 sin cos ...cos2 cos2n n n n n nx x x x x x+ −⋅ =  
 (we used the hypothesis of the recurrence) 
b) We’ll prove by recurrence that for *i N∈  we have: 

  cos2 (... )( (cos ))...)i x p p p x=      (2) 
In the case 1i =  we have 2cos2 2cos 1 (cos )x x p x= − = . 
If we suppose the equality true for i  we’ll prove that it is true also for 1i+ : 

2

 

cos2 2 2cos 2 1 (cos2 ) 2 cos2 ( (... )( cos ))...)i i i i

i times

x x p x p x x p p p p x⋅ = − = = = ����	���
  

Substituting (2) in (1) for all cos2i x , it will result the equality that we need. 
 
 

 4.30. 
 Let , *s n N∈ , ,i iK P  rational with 1 i n≤ ≤ , and the continuous functions , : s

i if g R R→  
for 1 i n≤ ≤ . 
 a) Find a method for solving the equation: 

1 1
1 1 1 1 1 1sin ( ,..., )cos ( ,..., ) ... sin ( ,..., )...cos ( ,..., )n nK PK P

s s n s n sf x x g x x f x x g x x n+ + =  
b) Find the necessary and sufficient condition that the equation from a) is equivalent to 

the following system of equations: 
1

1

1 1 1

1 1 1

sin ( ,..., ) ... sin ( ,..., )

cos ( ,..., ) ... cos ( ,..., )

n

n

KK
s n s

PP
s n s

f x x f x x n

g x x g x x n

⎧⎪ + + =⎪⎨⎪ + + =⎪⎩
 

 
 

Solution 
a) The right side of the equation is a sum of n  terms, each belonging to [ ]1,1− . Then 

each term must be equal to 1, because if not  we have s n< . Then the equation is equivalent to 
the system: 

1 1sin ( ,..., )cos ( ,..., ) 1i iK P
i s i sf x x g x x = , 

which is equivalent to  

1

1

sin ( ,..., ) 1

cos ( ,..., ) 1

i

i

K
i s

P
i s

f x x

g x x

⎧⎪ =⎪⎨⎪ =⎪⎩
      (1’) 

or 

   1

1

sin ( ,..., ) 1

cos ( ,..., ) 1

i

i

K
i s

P
i s

f x x

g x x

⎧⎪ =−⎪⎨⎪ =−⎪⎩
     (1”) 

with { }1,...,i n∈ ; 
which are resolved normally, we obtain then an algebraic system 
 b) The system from b) is also equivalent with the system from (1’). Because the equations 
from a) are equivalent to the system from b), therefore with (1’), we must eliminate the case (1”). 
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Then, if i
i

i

rK
t

= , i
i

i

uP
v

= , ir , it , iu , iv  are integers, 1 i n≤ ≤ , then  for { }1,...,i n∀ ∈ , there exist 

at least one integer in { }, , ,i i i ir t u v which is even. 
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 5.31. 
 We design the projections iM  of a point M  on the sides 1i iA A+  of a polygon 1... nA A . 

Show that 2 2 2 2 2
1 1 1 2 1 1... ...n n n n nM A M A M A M A M A−+ + = + + + . 

 
 
 Solution 
 For all i  we have: 

2 22 2
1 1i i i i i iM A M A MA MA+ +− = − . From which: 

 2 22 2
1 1( ) ( ) 0i i i i i i

i i

M A M A MA MA+ +− = − =∑ ∑ . 

 
 

 5.32. 
On a line we have the following points 1 2, ,..., nA A A  in this order.  

 Let 1 2
nn
⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

 and 2
1

2
nn
⎡ ⎤+
⎢ ⎥=
⎢ ⎥⎣ ⎦

. Prove that  

  
2 1

1 1
1 1

n n

i n j n j
i j

A A A A+ + −
= =

=∑ ∑  

 
 
 Solution 
 a) 1 22n K n n K= ⇒ = =  
We make the notation: 1i i iA A x+ = , 1 1i n≤ ≤ −    (1) 
Our relation becomes: 

 1 2 1
1 1

k k

i k i k i
i i

A A A A+ + −
= =

=∑ ∑  

From (1) we have: 

 1 1 2 1
1 1

( ... ) ( ... )
k k

i i i k i i k
i i

x x x x x x+ + + −
= =

+ + + = + + +∑ ∑  

The left side is equal to: 

 

1 2 3

2 3 1

1 2 1

...
       ...
.............................................
                              ...

k

k k

k k k

x x x x
x x x x

x x x

+

+ −

+ + + + +

+ + + +

+ + +

 

which is equal to  
1 2 3 1 2 2 12 3 ... ( 1) ( 2) ...k k k kx x x kx k x k x x+ + −+ + + + + − + − + +   (2) 

The side from the right is equal to  
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1 2 3 1 2 2 2 1

2 3 1 2 2

...
       ... ...
..................................................................

k k k k

k k k

x x x x x x x
x x x x x

+ − −

+ −

+ + + + + + + +

+ + + + + + +  

Which  ia also equal to (2) 
 b)  

1

2

2 1
1

n k n k
n k
= + ⇒ =

+ +
 

The proof is the same. 
 
 

 5.33. 
 Let ABC  an arbitrary triangle and O  the center of its inscribed triangle. On one of the 
sides, BC , we take n  points 1,..., nA A , in this order, such that the lines 1,..., nAA AA  divide the 
angle BAC  in 1n+  equal parts. In a similar mode we proceed for the sides CA  and AB  on 
which we take the points 1,..., nB B  respectively 1,..., nC C . 
 Prove that the point O  belongs to the geometrical figure determined by the intersection 
of the lines iAA , iBB , and iCC , { }1,2,...,i n∈ . 
 
 
 Solution 
  

a) If  1 1
2 2

n n i
⎡ ⎤+ +
⎢ ⎥= =
⎢ ⎥⎣ ⎦

 then iAA , iBB , and iCC  are the bisectrics of the angles  , ,A B  

and C  because these divide the angles into two equal parts. Then O  is thir intersections. 

 b) If 1
2

n i+
≠ , then iAA , iBB , and iCC  are not anymore bisectrics. These intersect each 

other in pairs forming a triangle that is in the interior of the triangle ABC . We obtain the small 
triangle from the figure (1). 
 
          A 
 
    Ci 
        F 
              E 
         O  Bi 
      B 
        Ai 
          D 
               C 
 
     Fig. (1) 
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Let , ,AD BE CF  be the bisectrics of the angles , ,A B C . These can be on the left side of 
the lines iAA , iBB , and iCC  ( as we look at the sides starting from A  to iA ) or to the right. In 
figure (1) we have the case where the lines are on the left side. We will have the same proof for 
other cases). 
 Because AD is on the left side of iAA  and O AD∈ , it results that iO AAC∈+ . Because 
BE  is on the left side of iBB  and that O BE∈  we have that iO BB A∈+ . The same, iO CC B∈+ . 
Then i i iO AAC BB A CC B∈+ ∩+ ∩+ . 
 

 5.34. 
 Given n  lines that intersect two by two and are not on the same plane three by three, 
prove that these lines pass through the same point. 
 
 Solution  

We’ll consider the case 3n = . 
 The lines 1d  and 2d  intersect in M ; 3d  intersects 1d  in 'M  and 2d  in "M . If 'M M≠  
and "M M≠ , then the three lines are on the same plane, which is absurd. Therefore 

' "M M M≡ ≡ . 
 The case 3n >  is reduced to the previous case. 
 Among the n lines we choose arbitrary three, that satisfy the conclusion. Among these 
three lines we take two arbitrary ones and one among the 3n−  left lines.  We obtain three lines 
that pass through the same point, which is also M . 
 The rational continues the same until we finish with all the lines. 
 

 5.35. 
 Let n  points 1,..., nA A  in a plane, 3n m≥ ≥ , such that m  of these points form a regular 
polygon. Prove that n m= . 
 
 Solution 
 1) Case 3m > . Let 1m−  points in this plane. We add a new point and we construct a 
regular polygon with m  sides. 
         A3 
 
 
 
 
 
    A1   A2 
 
 
 
          A4 
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Each regular polygon can be inscribed in a circle.  We consider for beginning that the 1m−  
points are placed on the circumference of a circle. Evidently, the other point (which has been 
added) belongs to the same circle, and it is well determined, because the circle is divided in equal 
arcs. But, through 1 3m− ≥  points passes only one circle. Then to 1m−  points we can add one 
single point to form a regular polygon (of m  sides).   

More, the number of points that have the property from above cannot be larger than m ; 
but, also, it cannot be less than m  either because we cannot form a regular polygon with m  
sides. From here we have that n m=  
 2) The case 3m = . Then 1 2m− = . Taking two distinct points, to form an equilateral 
triangle, we can find: let one point in a semi-plane, let one point on another semi-plane (the 
semi-planes determined by the line that unite the two points and divide the plane in two parts). 
 If 1 2 3A A A+  and 1 2 4A A A+  are equilateral, then 1 3 4A A A+  will not be equilateral.  
 The proof, now becomes similar to the case 1. 
 

 5.36. 
 We consider a polygon (which has at least 4 sides) circumscribed to a circle, and D  the 
set of the diagonals and of the lines that connect the contact points of two non adjacent sides. 
Then D  contains at least three concurrent lines. 
 
 
 Solution 
 Let n  be the number of sides. If 4n = , then the two diagonals and the two lines that 
connect the points of contact of the two non adjoined sides are concurrent (in conformity to the 
Newton’s theorem) 
 
        P           Aj+1 
               
        Aj-1               B1 
        Ai 
 
 
          B2 
    ```  O 
          B4                   Ai-1 
             R,  
      B3      Aj+1 
 
       Aj 
 

The case 4n >  will resume to anterior case: we consider the arbitrary polygon 1... nA A  
(see the figure) circumscribed to a circle and we select two segments ,i jA A , i j≠ , such that  

1 1j j i iA A A A P− + =∩ , 1 1j j i iA A A A R+ − =∩   
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Let { },   1,2,3,4hB h∈  be the contact points of the quadrilateral j iPA RA  with the circle in 
the center O . 

Due to Newton’s theorem, the lines 1 3 2 4, ,i jA A B B B B  are concurrent. 
 
 

 5.37. 
 In a triangle ABC  let ', ', 'AA BB CC  be the ceviene that intersect in the point P . 
Compute the minimum value of the expressions: 

 ( )
' ' '

AP BP CP
E P

PA PB PC
= + +  

and 

 ( )
' ' '

AP BP CP
F P

PA PB PC
= ⋅ ⋅  

where  
 [ ] [ ] [ ]' ,  ' ,  'A BC B CA C AB∈ ∈ ∈ . 
 
 
 Solution 
 We apply the Van Aubel theorem three times for triangle ABC , and we have: 

 (1) 
' '

' ' '
AP AC AB
PA CB B C

= +  

 (2) 
' '

' ' '
BP BA BC
PB A C C A

= +  

 (3) 
' '

' ' '
CP CA CB
PC A B B A

= +
 

If we add these three relations and if we make the following notations 
' ' '

0  , 0,   0
' ' '

AC AB BA
X Y Z

CB B C A C
= > = > = >  

then we obtain: 

 1 1 1( ) 2 2 2 6E P X Y Z
X Y Z

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟⎜ ⎜ ⎜= + + + + + ≥ + + =⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠
. 

The minimum value will be obtained when  X=Y=Z=1, that is when P  will be the center 
of gravity of the triangle. 
 Multiplying the three relations will find that  

  1 1 1( ) 8YZ XF P X Y Z
X Y Z X YZ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟⎜ ⎜ ⎜= + + + + + + + ≥⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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 5.38. 
 If the points 1 1 1, ,A B C  divide  the sides ,BC CA , respectively AB  of a triangle in the 
rapport k, determine the minimum of the following expressions: 
   2 2 2

1 1 1AA BB CC+ +  
 
 
 Solution 

We suppose that 0k > , because we work with distances. 
  1 1 1;  ;  BA k BC CB k CA AC k AB= = = . 
 We apply three times the Stewart theorem in the triangle ABC , with the segments 

1 1,AA BB  respectively 1CC : 

 2 2 2 2 2 3
1(1 ) (1 )AB BC k AC AC k AA BC BC k k⋅ − + ⋅ ⋅ − ⋅ = −  

where: 
 (1) 2 2 2 2

1 (1 ) (1 )AA k AB k AC k k BC= − + − −  

 (2) 2 2 2 2
1 (1 ) (1 )BB k BC k BA k k AC= − + − −  

 (3) 2 2 2 2
1 (1 ) (1 )CC k CA k CB k k AB= − + − −  

By adding these three equalities we find: 
 ( )( )2 2 2 2 2 22

1 1 1 1AA BB CC k k AB BC CA+ + = − + + + , 

Which take the minimum value when 1
2

k = , that is the case when the three lines from 

the problem hypothesis are the medians of the triangle. 

 The minimum is ( )2 2 23
4

AB BC CA+ + . 

 
 

 5.39. 
 In the triangle ABC  we construct the concurrent lines 1 1 1, ,AA BB CC  such that  
 2 2 2 2 2 2

1 1 1 1 1 1AB B C C A AB BC C A+ + = + +  and one of them is the median 
 Prove that the other two lines are the same medians when the triangle ABC  is isosceles. 
  
 
 Solution 
 Suppose that 1AA  is the median, without diminishing the problem’s generality, then 

1 1A B A C= , and the relation from the hypothesis becomes: 
  2 2 2 2

1 1 1 1B C C A AB BC+ = +     (1) 
From the concurrency of the lines 1 1 1, ,AA BB CC  and from the Menelaus’ theorem it results that 
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  1 1

1 1

AB AC
B C C B

=       (2) 

We make the notation: 1

1

,   0AB k k
B C

= > , from which we have: 

 2 2 2 2 2 2
1 1 1 1B C k C B k BC BC+ = + . 

 Consequently  ( )2 2 2
1 11 0k C B BC− − = , and from here we find 1k = , or 1 1C B B C= . 

 If k=1 then 1 1AB B C=  and 1 1AC C B=  then consequently 1 1,BB CC  are medians . 
 If 1 1C B B C=  from (2) it results that 1 1AB AC= , consequently AB AC= , and the 
triangle ABC  is isosceles. 
 
 

 5.40. 
 In a triangle we construct the ceviane 1 1 1, ,AA BB CC  that intersect in a point P . Prove 
that  

 
1 1 1 1 1 1

PA PB PC AB BC CA
PA PB PC A B B C C A

⋅ ⋅
⋅ ⋅ =

⋅ ⋅
 

 
 
 Solution 
 
 
      A 
           B1 
        C1 
 
 
 
             C 
       B      A1 
 
 In the triangle ABC  we apply the Ceva theorem 
 1 1 1 1 1 1AC BA CB AB CA BC⋅ ⋅ =− ⋅ ⋅      (1) 
In the triangle 1AA B  cut by the transversal 1AA , we apply also the Menelaus’ theorem: 
 1 1 1 1AC BC A P AP AC BC⋅ ⋅ = ⋅ ⋅      (2) 
In the triangle 1BB C  cut by the transversal 1AA , we apply also the Menelaus’ theorem: 
 1 1 1 1BA CA B P BP B A CA⋅ ⋅ = ⋅ ⋅       (3) 
We apply one more time the Menelaus’ theorem in the triangle 1CC A  cut by the transversal 1BB : 
 1 1 1 1AB C P CB AB CP C B⋅ ⋅ = ⋅ ⋅      (4) 
We divide each relation (2), (3) and (4)  by the relation (1), and we obtain: 
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 1

1 1 1

PA BC B A
PA BA B C

= ⋅        (5) 

 1

1 1 1

PB CA C B
PB CB C A

= ⋅        (6) 

 1

1 1 1

PC AB AC
PC AC A B

= ⋅        (7) 

 We’ll multiply (5) by (^) and by (7), and we obtain 

 1 1 1

1 1 1 1 1 1 1 1 1

PA PB PC AB BC CA AB BC CA
PA PB PC A B B C C A A B B C C A

⋅ ⋅ ⋅ ⋅
⋅ ⋅ = ⋅

⋅ ⋅ ⋅ ⋅
, 

but the last fraction is equal to 1 in conformity to the Ceva’s theorem. 
 
 

 5.41. 
 Let the triangle ABC  which has all the angles acute and we consider ' ' 'A B C  the 
triangle formed by the legs of its heights. 
 In which conditions the following expression is maximum? 
 ' ' ' ' ' ' ' ' ' ' ' 'A B B C B C C A C A A B⋅ = ⋅ + ⋅  
 
 
 Solution 
 We have  
  ' ' ' ' ' ' 'ABC A B C AB C A BC+ ∼+ ∼+ ∼+      (1) 
 We note: 
  ' , ' , 'BA x CB y AC z= = =  
 It results that: 
  
    A 
             b-y 
        z        B 
      C 
 
      y 
  c-z 
 
 
 
 
 
 B  x A’  a-x   C 
 
 ' , ' , 'A C a x B A b y C B c z= − = − = −  
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' ' ' '

' ' ' '
' ' ' '

BAC B A C BA C
ABC AB C A B C
BCA BC A B C A

= =
= =
= =

) ) )
) ) )
) ) )

 

Qualities it results relation (1). 

 
' '

' ' ' '
' '

A C xA BC A B C
a x A B

⇒ =
−

+ ∼+     (2) 

 
' '

' ' ' '
' '

A C c zA BC AB C
z B C

−
⇒ =+ ∼+     (3) 

 
' '

' ' ' '
' '

B C b yAB C A B C
y A B

−
⇒ =+ ∼+     (4) 

 From the relations(2), (3) and (4) we conclude that the sum of the products from the 
hypothesis is equal to: 

 2 2 2 2 2 21( ) ( ) ( ) ( ) ( ) ( ) ( )
4 2 2 2

a b cx a x y b y z c z a b c x y z− + − + − = + + − − − − − −  

which reaches its maximum when , ,
2 2 2
a b cx y z= = =  that is when the heights’ legs fall in the 

middle of the sides, therefore the ABC+  is equilateral. The maximum of the expression is 

( )2 2 21
4

a b c+ + . 

 
 

 5.42. 
 Let’s consider 1,..., nA A n  distinct points on the circumference of a circle with the center 
O  and radius R . 

 Sow that there exist two points iA  and jA  such that 1802 cosi jOA OA R
n
°

+ ≥
JJG JJJG

. 

 
 
 Solution 
 
   An-1 
 
       Aj 
   An   R 
 
      O      α    M 
 
 
        R 
  A1   Ai 
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   A2 
Because  

1 2 2 3 1 1... 360n n nS AOA A OA A OA A OA−= + + + + = °) ) ) )  and 
 { } 11,2,..., , 0i ii n AOA+∀ ∈ > °) , 

It results that there exist at least one angle 360
i jAOA

n
°

≤)  (if not it results that )

360 360S n
n
°

> ⋅ = ° ). 

i ij jOA OA OM OA OA OM+ = ⇒ + =
JJG JJJG JJJG JJG JJJG JJJG

. 

 The quadrilateral i jOAM A+  is a rhomb. 

While α  is very small, OM
JJJG

 is very big. 

Because 360
n

α
°

≤ , it results that 

1802 cos 2 cos
2

OM R R
n

α °
= ≥

JJJG
. 

 
 

 5.43. 
 Determine the maximum number of points which can be found on the circumference of a 
circle, such that the distance between two arbitrary points is greater or equal to the circle’s 
radius. 
  
 
 Solution 
 The side of a regular hexagon inscribed in a circle has the same dimension as the radius 
of the respective circle. Therefore there are at least 7 points on a circle that have the property 
from the hypothesis, one point in the center of the circle and 6 points on the circumference such 
that the six points constitute the vertexes of the regular hexagon inscribed in the circle. 
 The selected 7 points are taken in an optimal way. For example, if we want to construct 
the set of point that have the property from the problem’s hypothesis it would not be at all 
optimal of taking the first point different from the center of the circle, and not on the 
circumference.  
 
 
     C 
 
 
     O 
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Therefore in the geometric figure included here, taking  1C  in the interior of the circle and 
different from the center, then in the shaded portion (which is a circle of the same radius like the 
initial circle and with the center in 1C , intersects the other one) it is not possible to take any other 
point. Therefore the best is to have the shaded portion as small as possible. It will result that 1C  
must be on the circumference. From this will result that the other points will be: 5 on the 
circumference such that the 6 points will constitute a regular hexagon and the other in the center 
of the circle. Therefore we have constructed 7 points.  
 

 5.44. 
 How many points we can find in a sphere (and on its surface), such that the distance 
between any two of them to be greater or equal with the radius.  
  
 
 Solution 
 We consider the large circles of the sphere, determined by the plane 1 4AOA , where O  is 
the center of the sphere. 
 
 
 
     M  
 
     A5      A4 
 
   A6 
       O            A3 
     A2 
 
   A1    N 
 
 
 On its circumference  we take the points 1 2 6, ,...,A A A  such that we get a regular hexagon  

- therefore, the distance i jA A ≥ than the ray of the sphere, for which i j≠ . We construct a 

plane 2 5A A MNO perpendicular on the plane 1 4AOA which cuts the sphere by the circle 2 5A A MN . 
On its circumference we take also 6 points which constitute a regular hexagon. Then, we 
construct the third big circle of the sphere, determined by 3 6, , ,A A M N . The same, on the 
circumference of this last circle we take 6 points, which are the vertexes of a regular hexagon, 
among which are the points 3 6,A A . Etc. 
 We have in total 6+4+0=10 points, and if we add the center of the sphere we obtain 11 
points which keep the property from the hypothesis. 
 This method of constructing the points is the optimal one. If we start the construction of 
the points, for example taking a point A  which does not belong to surface of the sphere, then the 
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sphere of center A  and having the same ray will intersect a large zone of the initial sphere, but 
with the condition  is that this zone is the smallest possible. Then A  belongs to the surface. And 
the demonstration continues in the same way. 
 

 5.45. 
 Given n  distinct points in a plane, connected two by two through a line: 
 a) What is the maximum number of lines which we can construct with these points? 
 b) If only m  points 1 m n≤ ≤ , are collinear, how many distinct lines are there? 

 c) Prove that we cannot have ( )( )2 1
2

n n− +
 lines, regardless of how we arrange the n

distinct points. 
 
 

Solution  
 Let 1,..., nA A  the n  distinct points. 
 a) If they are three to three non-collineart, then we can form all possible lines 

i jA A  with i j<  and ( ) { }, 1,...,i j n∈ , therefore ( )1
2

n n−
 lines. 

 b) If 1,..., mA A  are collinear, then the lines h kA A  with h k<  and ( ) { }2, 1,...,h k n∈  are the 
same, and constitute a single line. Then it remains: 

  ( ) ( ) 2 21 1 21
2 2 2

n n m m n m n m− − − − + +
− + =  

distinct lines. 

 c) ( )( ) ( )2 1 1
1

2 2
n n n n− + −

= − . 

 If the n  points are three to three non-collinear, we saw that we have: ( )1
2

n n−
 distinct 

lines. If m  points are collinear, we have ( )1
1

2
m m−

−  lines less. But 

( ) ( )1 1
1 1 4 0

2 2
m m m m

m
− −

− ⇔ − − − =  which does not have a natural solution.   

 For example, if we have 3 collinear points, we eliminate 2 lines from the total of 
( )1

2
n n−

, but not a line as it should. 

 

 5.46. 
 Given n  distinct points in a plane, three to three non collinear 1,..., nA A , find the locus of 
the points iM A≠ , 1 i n≤ ≤ , such that it doesn’t matter which line that passes through M  and 
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which doesn’t contain any point iA  (1 i n≤ ≤ ) divides the plane in two semi-planes that contain 

the 
2
n⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 and the other 1
2

n⎡ ⎤+
⎢ ⎥
⎢ ⎥⎣ ⎦

 points. 

 
 Solution 
 We note Π  the plane that contains the points 1,..., nA A  and let α  be the locus we are 
looking for. 
 1) If 1n = , then obvious { }1Aα=Π− . 
 2) If 2n = , [ ] { }1 2 1 2, ,A A A Aα= − , where [ ]1 2,A A  represents the segment of line which 
unite the points 1 2,A A . 
 3) 2n > . 
  a) 2n k= . Let 1d  the line that passes through 1A  and through a point 

1s
A , 

12 s n≤ ≤ , such that on a side and the other side of the line 1d  we find to be 1k −  points 

1 12 1 1,..., , ,...,s s nA A A A− + . We have 2 2 1
2 2
k k k

⎡ ⎤ ⎡ ⎤+
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. Obviously α  is included in 
11, sA A⎡ ⎤⎢ ⎥⎣ ⎦ . We 

proceed the same for all the points iA , 1 i n≤ ≤ , and we find that 
1

1
,

n

i s
i

A Aα
=

⎡ ⎤= ⎢ ⎥⎣ ⎦∩ . Then, if all 

these segments intersect in one point, then that point would be αl if  not α=Φ . 

  b) 2 1n k= + . We have 
2
n k
⎡ ⎤
⎢ ⎥ =
⎢ ⎥⎣ ⎦

 and 1 1
2

n k
⎡ ⎤+
⎢ ⎥ = +
⎢ ⎥⎣ ⎦

. For 1A  we construct the 

triangle 
1 11 u vA A A , where 

1uA  is such that the line 
11 uA A  divides the plane in two semi-planes, one 

containing  1k − , the other k  points among the points iA ; in the same time that 
1v

A  is such that 
the line 

11 vA A  divides also the plane in two semi-planes, one containing k  and the other 1k −  
points among the points iA . Evidently

1 11 u vA A Aα=⊆+ . We continue the rational for all the points 

iA , 1 i n≤ ≤ , and we find that 
1 1

1

n

i u v
i

A A Aα
=

= +∩ . 

 

 5.47. 
 Prove that a sphere cannot be included in the union of two spheres whose rays are strictly 
smaller than that of the sphere itself. 
  
 
 Solution 
 Let’s S  be the sphere, C  the big circle, r  the ray of the sphere (implicitly  r  is the ray 
of the circle C ). 
 By reduction ad absurdum, let 1S  and 2S  the spheres that comprise this sphere and such 
that they are strictly inferior to S . 
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 We note 1C  (respectively 2C ) the ray of the sphere 1S  (respectively 2S ), [implicitly 1r  
(respectively 2r ), is the ray of circle 1C  (respectively 2C )]. 
 We intersect S  with 1S . 
 a) { }1S S P=∩  (one common point) 
Let O  the center of the sphere S . We construct a plane Π  that contains the ray OP . 
 S CΠ =∩ , { }1C S P=∩ , then { }2S C P⊃ − , that means 2r r≥ . Contradiction. 
 b) 

11 SSS S C=∩  (a circle). It results that its ray { }
1 1 1min ,

SSCr r r r r≤ = < . 

 Then there will exist a big circle C  of the sphere S  which has the property that 
1C S =Φ∩ . Then 2S C⊃ , and 2r r≥ , which is absurd. 

 c) The case 1S C⊂  and the surface of 1S  does not intersect the surface of S , then it will 
exist a big circle C  of the sphere S  such that 1C S =Φ∩ . Then 2S C⊃ , and then 2r r≥ , which 
is also absurd. 
 d) The same prove when 1S S =Φ∩  and 1S S⊄ . 
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 6.48. 
 Let’s consider the numbers 1,..., pk k  that form an arithmetic sequence. Prove that if 

1,..., na a  form an arithmetic sequence (respectively geometric) then 
1
,...,

mk ka a constitute an 
arithmetic sequence (respectively geometric). 
 
 
 Solution 
  1 1( 1)ik k i r= + − , 1 i p≤ ≤  and 1r  is the ratio of this arithmetic sequence. 

a) When 1,..., na a  form an arithmetic sequence, then  
 

( )
1 11 1 1( 1)

ik k i ka a k k r a rr i= + − = + − , 
where 1 i p≤ ≤  and r  is the ratio of the sequence 1,..., na a . Then 

1
,...,

pk ka a  constitute also an 

arithmetic sequence of ratio 1rr . 
b)  When 1,..., na a  constitute a geometric sequence, with the ratio q , then 

( )1 1

1 1

1
i

i

ik k r
k k ka a q a q

−−= = , where 1 i p≤ ≤ . Then 
1
,...,

pk ka a  constitute a geometric 

sequence with the ratio 1rq . 
 
 

 6.49. 
 Let nx  and ny   natural sequences such that n nx ay= , *n N∀ ∈ , and 1a ≠ . From the 
arithmetic progression 1 2, ,...b b  we will eliminate the terms of rank nx , *n N∈ . Prove that 
among the remaining terms there exists an arithmetic sub-progression. 
 
 
 Solution 
 We observe that if the naturals  numbers 1,..., si i  constitute an arithmetic progression then 

1
,...,

si ib b  has the same property, since 

( ) ( ) ( )( ) ( )( ) 11 1 1 1 1 1 1 1 12 2 ( 1) 2 2 2 2 2 1 1
j ji j j j j j j i ib b i r b i r b i i r b i r b i r b b

−− + − +
⎡ ⎤= + − = + − = + + − = + − + + − = +⎣ ⎦

 ( )1 12 2 ( 1) 2 2 2
ji j jb b i r b i r⎡ ⎤= + − = + − =⎣ ⎦  

( ) ( )( ) ( )( ) 1 11 1 1 1 1 1 12 2 1 1
j jj j j j i ib i i r b i r b i r b b
− +− + − += + + − = + − + + − = +  

(We used 1 12 j j ji i i− += + ).  Then we can replace 1 2, ,...b b  by 1,2,....  
We must construct an arithmetic progression 1 2, ,..a a such that ( )1 ,   , *i na x i n N N+ ≠ ∀ ∈ × . 
 A) The case 0a =  is trivial 
 B) Let 0a ≠ . 
 1 1ia a ir+ = + , where r  is the ratio. Then 1 ?,  ?a r= =  such that  
 1  na ir ay+ ≠ , ( ), *i n N N∀ ∈ ×     (1) 
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From here we have 1 nay ai
r
−

≠ . Because i N∈ , we put the condition: ( )1
1

nay a Z
r

− ∈ . 

We take 2r a= ≥  (because 0,  1a a≠ ≠  and nx  and ny  are the natural sequences, then a N∈  

or 1 1a a= − . It results that 1 11n
n

ay ai y N
a a
− +

≠ = − + ∈  and the relation (1) is verified. 

 

 6.50. 

 Prove that ( ) '
1 1

1

.... ' ...
n

n i i n
i

f f f f f+
=

=∏D D D D D . 

 
 
 Solution 
 For 1i =  we have an immediate result. 
 We suppose that the equality is true for 1i n= − . Then 

( ) ( )( ) ( )( ) ( )1 1 2 1 2 2.... ' ... ' ' ... ... 'n n n nf f f f f f f f f f= = ⋅ =D D D D D D D D D D  

( ) ' '
1 2 1 1

2 1

' ... ... ...
n n

n i i n i i n
i i

f f f f f f f f f+ +
= =

= ⋅ =∏ ∏D D D D D D D D D . 

 
 

 6.51. 
 Given the sets 1 2A M MΦ≠ ⊂ ⊂ , where 1M  is everywhere dense in 2M , and inf A≅  in 

2M .  Then there exist an inf A  in 1M  if and only if 1Mα≤ . The same question for sup A. 
 
 
 Solution 
 The sufficiency. 
 If inf A α=  in 2M  and 1 2M Mα∈ ⊂ , then evidently inf A α=  in 1M . 
 The necessity: 
 Let ' inf Aα =  in 1M . Then 1' Mα ∈ . We know that inf A α=  in 2M  by hypothesis. 
 1) If 'α α> , then inf 'A α α= ≠  in 2M . Contradiction. 

2) If 'α α< , because 1M  is everywhere dense in 2M , it results that there exists 1Mγ ∈  
such that 'α γ α< < . If Aγ ∈ , then α  is not equal to inf A  in 2M  (contradiction); then Aγ ∈ . 
If there exist ( )' ',γ α γ∈  such that ' Aγ ∈ , then ' inf Aα ≠  in 1M . Contradiction. 

Therefore: 
3) 'α α= , that is 1Mα∈ . 

The proof for sup A is done the same way. 
 



60 
 

 6.52. 
 Show that, given a natural number 0n >  and a natural number 0T > , there exists a 

function :f R R→  with a period T  and such that f  has the period T
n

. In this case, if f  is 

continue prove that f  is null in at least 1n−  points in the interval of length T . 
 
 
 Solution 
 Let’s consider  **,   n N T R+∈ ∈  and the function :f R R→ , of a period T , which has 
the following graphic representation.: 
 
 x 
 
 

            2 T
n

          3T
n

……………. ( 1) Tn
n

−  

(1)            

 O                T
n

                           T 

 
where all n  semi-circles of (1) are equal among them. 
 The function :f R R→  will have the following representation: 
 
 
 
 
 
 
 x 
 
 
                      ………………………….   
(2)            

 O                T
n

               2 T
n

  3T
n

………… ( 1) Tn
n

−   T     x 

 

Then its period is T
n

 

 Evidently, there exist an infinity of such functions, because we can replace the semi-
circles of (1) by other curves as long as the property from the hypothesis will be satisfied. 
 We must prove the second point: 
 The case 1n =  is banal. Let’s consider 1n > . Let k  the number of points for which f  
is null in the interval of length T . But k  is non-null, because otherwise it would result that 
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f f=  or f f=−  on R , that  means that f  has the period T . Therefore 1k ≥ . 
( ) 0 ( ) 0f x f x= ⇔ = . 

(3)  Because ( )f x  is null more than one times (we have 1k ≥ ), it results that f  is null in an 

interval of length T
n

 or in the interior of that interval or at one extremity of the interval. But in 

an interval of length T  there are n  intervals of length T
n

. Therefore f  will be zero on at least 

1n−  times in an interval of length T , and therefore knowing (3) it results the last question of 
the problem.   
 
 

 6.53. 
 Let’s consider the positive functions 1,..., nf f  on an interval I  such that they vary  on the 
same direction on this interval. 
 Then 1 ... nf f⋅ ⋅  varies on the same direction on the interval I . 
 
 
 Solution 
 We consider that all functions if  are increasing. (Analog prove if all if  are decreasing) 
We will use the recurrence rational. 
 For 2i = . Let 1 2x x< . 

 ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2 1 2 1 2 2 2 1 1 2 1 1
1 1 2 2

2 1 2 1 2 1

0
f f x f f x f x f x f x f x

f x f x
x x x x x x
− − −

= + ≥
− − −

 

Therefore, 1 2f f  is a an increasing function on I . 
 We suppose that 1 1... nf f −⋅ ⋅  is increasing, then 1 1... n nf f f−⋅ ⋅ ⋅  is increasing, because we 
can note 1 1... nf f g−⋅ ⋅ =  which is positive and increasing by the recurrence’s hypothesis, and 

1 1... n n nf f f gf−⋅ ⋅ ⋅ =  which is increasing concludes the proof for 2i = . 
 
 

 6.54. 
 
 Let n  a natural number and not null. 
 a) Determine the functions :f R R→ , odd, derivable 2n  times, such that the derivative 
order 2n  are non negative. 
 2)Determine the functions :g R R→ , even, derivable 2 1n−  times, such that the 
derivative of the order 2 1n−  are not negative. 
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 Solution 
 a) ( ) ( ),  f x f x x R=− − ∀ ∈ . It results that ( ) ( ) ( )2 12 2( ) 1 ( )nn nf x f x+

= − − . 

But ( )2 ( ) 0nf x ≥  and ( )2 ( ) 0nf x− ≤ , which implies that  ( )2 ( ) 0nf x =  on R . 
By integration 2n  times, we obtain: 

2 1 2 2
2 1 2 2 1 0( ) ...n n

n nf x a x a x a x a− −
− −= + + + +  

with ia R∈ , 0 2 1i n≤ ≤ − . 
Since f  is odd, it results: 
 

2 1 2 2 2 1 2 2 1 1
2 1 2 2 1 0 2 1 2 2 1 0... ... ( 1)n n n n i i

n n n n ia x a x a x a a x a x a x a x a− − − − +
− − − −+ + + + = − + + − + − . 

We obtain: 2 2 2 4 0...n na a a− −= = = . Therefore 2 1 2 3
2 1 2 3 1( ) ...n n

n nf x a x a x a x− −
− −= + + +  

 b) ( ) ( )g x g x= − , x R∀ ∈ . It results that (2 1) (2 1) (2 1)( ) ( 1) ( )n n ng x g x− − −= − − , which 
implies that (2 1) ( ) 0ng x− =  on R . 
By integrating 2n  times, we have 2 2 2 3

2 2 2 3 1 0( ) ...n n
n ng x b x b x b x b− −
− −= + + + +  with 

,   0 2 2ib R i n∈ ≤ ≤ − . 
Because g  is even, it results that: 

2 2 2 3
2 2 2 3 1 0( ) ...n n

n ng x b x b x b x b− −
− −= + + + + =  

2 2 2 3
2 2 2 3 1 0... ( 1) ... ( 1)n n i i

n n ib x b x b x b x b− −
− −= − + + − + + − − . 

We obtain: 2 3 2 5 1... 0n nb b b− −= = = = , then 2 2 2 4 2
2 2 2 4 2 0( ) ...n n

n ng x b x b x b x b− −
− −= + + + + . 

 
 

 6.55. 
A function :f R R→  admits a symmetry center if and only if it exist two real constants 

,a b  such that the function ( ) ( )g x f x a b= + −  is odd. 
 In these conditions, the symmetry center is for coordinates ( ),a b . 
 
 
 Solution 
 The necessity. 
 Let ( , )C α β  the center of symmetry. We raise ,a bα β= = . We execute a translation of 
axes, by moving the origin in  ( , )C a b . The formulae of the change of the reference system  
CXY  to ' 'CX Y   are  

'
'

x x a
y y b

⎧ = −⎪⎪⎨⎪ = −⎪⎩
 ⇔  

'
'

x x a
y y b

⎧ = +⎪⎪⎨⎪ = +⎪⎩
 

Then ( )y f x=  becomes ' ( ' )y b f x a+ = + m where ' ( )y f x a b= + − . We make the notation 
( ' ( ' ) ,   :g x f x a b g R R= + − → . The function g  admits a center of symmetry, which is the 

same with the axes origin. Then g  is odd. 
 The sufficiency.  
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 g  being odd, it results that g  admits the axes origin as center of symmetry. 
We execute the axes’ translation, moving the origin in "( , )C a b− − .  
The formulae of the change of the reference system  CXY  to " "CX Y   are  

 
"
"

x x a
y y b

⎧ = +⎪⎪⎨⎪ = +⎪⎩
 ⇔  

"
"

x x a
y y b

⎧ = −⎪⎪⎨⎪ = −⎪⎩
 

Then ( ) ( )y g x f x a b= = + −  becomes " ( " )y b f x a a b− = − + − , that is " ( ")y f x= . 
Because g  admits the symmetry center ( , )O o o  in the reference system CXY , this implies then 
that f  admits the symmetry center  ( , )O a b  in the reference system  " " "O X Y . 
 
 

 6.56. 
 In an system of orthogonal axes, the function :f R R→  has an axis of symmetry if and 
only if there exists a real constant such that the function ( ) ( )g x f x a= + , is even. 
 In this condition, the symmetry axis has the equation x a= . 
 
 
 Solution 
 The necessity. 
 Let x α=  be the symmetry axis of function f .  We set x a= . We execute a translation 
of axes, by moving the origin in '( ,0)O a . The equations of change from the ( )OXY  to 
( ' ' ')O X Y  are: 

  
'
'

x x a
y y

⎧ = −⎪⎪⎨⎪ =⎪⎩
 ⇔  

'
'

x x a
y y

⎧ = +⎪⎪⎨⎪ =⎪⎩
 

 Then ( )y f x=  becomes ' ( ' ) ( '),   :y f x a g x g R R= + = → . f  admits as axis of 
symmetry the line x a= . Il results that g  admits as axis of symmetry the line ' 0x =  (in 
( ' ' ')O X Y ), that is the axis ' 'O Y . 
 Therefore g  is even. 
 The sufficiency: 
 Because g  is even, we have that g  admits the axis OY  as axis of symmetry.  
 We’ll execute a translation of axes, by moving the origin in "( ,0)O a− . The movement of 
( )OXY  in ( " " ")O X Y  is done by: 

 
"
'

x x a
y y

⎧ = +⎪⎪⎨⎪ =⎪⎩
 ⇔  

"
"

x x a
y y

⎧ = −⎪⎪⎨⎪ =⎪⎩
 

 Then ( ) ( )y g x f x a= = +  becomes " ( ")y f x= . g  admits as axis of symmetry the line 
0x = , from which it results that f  admits as axis of symmetry  the line "x a= . 
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 6.57. 
 We consider the continuous functions ,  ,  :A B C I R→ , where I  is an interval on R , 
with ( ) ( ) ( )A x C x B x≤ ≤ , x I∀ ∈ . Let’s consider 1 2 1 2, ,  x x I x x∈ <  and 1 1( ) ( )A x f x= , 

2 2( ) ( )B x f x= , where f  is a continuous function on [ ]1 2,x x . 
 Prove that there exist [ ]3 1 2,x x x∈  such that 3 3( ) ( )C x f x= . 
 
 
 Solution 
 We’ll use the absurd method. 
 By reduction ad absurdum we suppose that the conclusion  is not true, then [ ]1 2,x x x∀ ∈  
we have that ( ) ( )C x f x≠ , or ( ) ( ) 0C x f x− ≠ . C  and f  being continuous on [ ]1 2,x x , it results 
that C f−  is continuous on [ ]1 2,x x . Then: [ ]1 2,x x x∀ ∈ , ( ) ( ) 0C x f x− > , or [ ]1 2,x x x∀ ∈ , 

( ) ( ) 0C x f x− < . 
 We consider the first situation (the second will be similar). 
 Because ( ) ( ) ( )A x C x B x≤ ≤  on I , we have: ( ) ( ) ( ) ( ) ( ) ( )A x f x C x f x B x f x− ≤ − ≤ −  
on [ ]1 2,x x . Therefore 2 2 2 2( ) ( ) ( ) ( ) 0C x f x B x f x− ≤ − = , which is a contradiction. 
 Then we have the conclusion tha there exist [ ]3 1 2,x x x∈  such that 3 3( ) ( )C x f x=  is true. 
 
 

 6.58. 
 Find the real numbers , , ,a b c  such that  

 
( ) ( ) ( )
( ) ( ) ( )

3 2 3 2 3 2

4 4 4 2

2 5 1 3
lim 1

5 4 1 2 5x

a x x b x x c x x

a x x b x c x x x→∞

− + + − + −
=

− + − + + + +
 

 
 
 Solution 
 We can write: 

 ( ) ( )
( ) ( )

3 2

4 2

2 3 5
lim 1

5 4 2 5x

a b c x a b c x b
a b c x x a x c→∞

+ − + − + − −
=

− + + + − + +
    (1) 

 If 5 4 0a b c− + ≠  then the limit (1) is equal to 0 1≠ . 
 Then 5 4 0a b c− + = . It results that 2 3 0a b c+ − = , because if not, the limit (1) would 
be equal to 1α± ≠ . Then: 

 ( )
( )

2

2

5
lim 1

2 5x

a b c x b
x a x c→∞

− + − −
=

+ − + +
,  

from where 5 1
2

a b c− + −
= . 

and the real numbers , ,a b c  verify the system: 
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5 4
2 3 0

5 2

a b c
a b c
a b c

⎧ − +⎪⎪⎪⎪ + − =⎨⎪⎪− + − =⎪⎪⎩

 

When resolved we fund the values: 

  2 46 14,   ,   
109 109 109

a b c= = = . 

 
 

 6.59. 
 Given the natural numbers ,i ja b  between 0 and 9, with 9i ma b≠ ≠  and 1 11a x+ = , 

9 i ia y− = ,  2,i n= , and 9 j jb z− = , 1,j m= . Compute: 

 N1
2 0 1 1

lim 0, 0,0...0 0, 0........0
pn m

i jp
i k ji n j k m

x y z
→∞

= = = − + + −

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟− +⎜ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
∑ ∑∑ ���	��
  

 
 
 Solution 
 We note  

N 2
2

0,0...0 0,0 ...
n

i n
i i

y y yα
=

= =∑  

and 

  N 1 1......0 1 1 1

( ) 0, 0........0 0,0....0 .... .... ....
p m

j m m
k j nn j k m p

p z z z z zβ
= = − + + −

= =∑∑ ���	��
 ���	��
 ���	��
  

If we take 1mt b= + , we have: 
  ( ) N NN1 1 1 1 1

1 1

0, ( ) 0, ... ... ... ... ...p n m m m

p p

x p a a b b b b b b tγ α β
−

= − + =   (1) 

We show that ( )1 1 00, ... ...p n mp
a a b bγ γ

→∞
→ = . 

Let 0ε> , 0 ( )p p Nε∃ = ∈ , 0p  being the smallest natural number which has the property : 

 0
lg 10n

p
m
ε ⋅

>− , 

such that  
 lg 10

0 0,  ,  10 10 10
nn pm n

pp p p N εγ γ ε− − − ⋅∀ ≥ ∈ − = < ⋅ = , 
and it results (1). 
 
 

 6.60. 
 We consider the functions 1 2, :f f R R→  such that 1lim ( )

p
f x

→∞
=∞  and 2lim ( )

x
f x a

→∞
= . 
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 Show that 1
2

1lim ( )
( )x

f x
f x→∞

⎛ ⎞⎡ ⎤⎟⎜ ⎢ ⎥⎟⋅⎜ ⎟⎜ ⎢ ⎥⎟⎟⎜⎝ ⎠⎣ ⎦
 exists and compute this limit , where α  represents the 

integer part of α . 
 
 
 Solution 
 Then  
  1lim ( )

x
f x

→∞
=+∞  or   −∞       (1) 

 We note 1
2

1( ) ( )
( )

f x f x
f x

⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦

; 

 Discussion: 
 A) If 0a = , then  

  
2

1lim
( )x f x→∞

=+∞  or −∞  or it doesn’t exist and the same 
2

1lim
( )x f x→∞

⎡ ⎤
⎢ ⎥ =+∞⎢ ⎥⎣ ⎦

 or 

−∞  or it doesn’t exist.. From here lim ( )
x

f x
→∞

=+∞  or −∞  (conform to (1) and A) or we 

cannot conclude anything. 

 B) 1a ≤  and 0a ≠  then 1 0
a
⎡ ⎤
⎢ ⎥ ≠
⎢ ⎥⎣ ⎦

. From where, also, lim ( )
x

f x
→∞

=+∞  or −∞  (conform 

(1) and B), that is conform to (1) and the sign of 1
a
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 C) 11 0a
a
⎡ ⎤
⎢ ⎥> ⇒ =
⎢ ⎥⎣ ⎦

. We have 2( ) 1
x

f x a
→∞
→ > . Then it exists 0α>  such that 1a α= + . 

Let ( ),V a aα α α= − +  a neighborhood of a ; 1 Vα∉ . Let a sequence nx →∞ , then 2( )nf x a→  
(conform to the limit’s definition.). 2 ( )nf x  is a real sequence which tends to a . It results that 
outside of Vα we find at most a limited number of terms of the sequence 2 ( )nf x  if and only if it 
exists at most a limited number of terms that have the property 2( ) 1if x ≤ . Therefore, the 
majority if terms are found in Vα , therefore it exists *n Nα ∈  such that i nα∀ > , 2 ( ) 1if x > . 

 Therefore the sequence 
2 *

1
( )n n N

f x
∈

⎛ ⎞⎡ ⎤⎟⎜⎢ ⎥⎟⎜ ⎟⎜⎢ ⎥⎟⎟⎜⎝ ⎠⎣ ⎦
 is the following: 

 
2 1 2

1 1,..., ,0,0,0,..
( ) ( )nf x f x

α

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

Therefore , with the exception of a limited number of null terms, this sequence is the null 
sequence. 
 It results that the sequence ( )2 *

( )n n N
f x

∈
 is the following: 

 1 1 1
2 1 2

1 1( ) ,..., ( ) ,0,0,0,...
( ) ( )n

n

f x f x
f x f xα

α

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥⋅ ⋅ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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Then, also, with the exception of a limited number of null terms, this new sequence is the 
constant, null sequence. 
 In conclusion: lim ( ) 0

x
f x

→∞
=  

 
 

 6.61. 
 Compute without using l’Hospital theorem) 

  
0

0

1 0

( ) ( )
lim

( ) ( )

i i

i i

r rn
i i

s sx x
i i i

f x f x
f x f x→

=

−

−∏  

with  the conditions that the anterior solutions exist. Generalization. 
  
 
 Solution 
 We multiply each fraction by the conjugate of the numerator and denominator. 
Let 1 i n≤ ≤ , we note: 

 0

0

( )

( )

( )

( )

i

i

i

i

r
i

r
i

s
i

s
i

A f x

B f x

C f x

D f x

=

=

=

=

 

We have: 
( )( )( )
( )( )( )

1 2 2 1 1 2 2 11 1 1 1

1 2 2 1 1 2 2 11 1 1 1

... ...

... ...

i i i i i i i i

i i i i i i i i

r r r r s s s s

r r r r s s s s

A B A A B A B B C A D C D DA B
C D C D A A B A B B C C D C C D

− − − − − − − −

− − − − − − − −

− + + + + + + + +−
= =

− − + + + + + + + +
 

( )
( )

( )
( )

( )
0

1
1 2 11

0
011 2 11

0

( )...
( )

... ( )

i
ii i ii i i i

i i
ii i i i i

i

s
ss s sr r s rii i s r

irs s r r r x x ri ii

f xC C D DA B s s f x
C D r rA A B B f x

−
− − − −

−− − − →

+ + +−
= ⋅ → ⋅ = ⋅

− + + +
 

From where the limit from the hypothesis will be equal to: 

   ( )0
1

( )
i i

i i

n s r
i s r

i
i i

s f x
r

−

=

⋅∏  

 Generalization: 

( )

0

00
0

1 0

0

1 0

( )  ,    ( ) ( )
( ) ( )

lim 0                                
( ) ( )

             
( ) ( )

i i
i i i i

i i

i i

j j

n s r
ir rn s r

ii i
i is s

i i i
r rmx x

i i
s s

j i i

s f x if n mf x f x
r

f x f x
if n m

f x f x
does not exist if n m

f x f x

−

=
=

→

=

⎧⎪⎪ ⋅ =− ⎪⎪⎪⎪− ⎪= >⎨⎪− ⎪ <⎪
−

⎩

∏∏

∏ ⎪⎪⎪⎪

 

in the conditions in which the anterior solutions exist. 
If  n m< the limit does not exist because the denominator is equal to zero, then the numerator is 
not null; from where the two lateral limits are different. 
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 Remark: 
 If there exist at least a constant function 

0i
f , { }01 min ,i m n≤ ≤ , then the limit does not 

exist. 
The same thing for the limit from the problem’s enounce.  
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 7.62. 
 Compare the sets:

( ) ( )1 1 1
1

| ,  with ,.., ,  and ,..., are integer constants such that ,..., 1
n

n
i i n n n

i

A X X a K a K K Z a a a a
=

⎧ ⎫⎪ ⎪⎪ ⎪= = + ∈ =⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∑

( )1 1
1

| ,  with ,.., ,  and ,..., ,  are integer constants
m

m
j j m m

j

B X X b K b K K Z b b b
=

⎧ ⎫⎪ ⎪⎪ ⎪= = + ∈⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∑  

 
 
 Solution 
 First of all we prove that A Z= . 

It is obvious that A Z⊆ , and also Z A⊆  because  

 ( )0 0 0
1

1

, ,..., :
n

n
n i iZ Z K K Z a K a Z∀ ∈ ∃ ∈ + =∑  

Because the greatest common divisor ( )1,..., 1na a =  and 1 divides Z a− . 
We see immediately that B Z⊆ . 
If ( )1,..., =1mb b  then B Z A= = , otherwise B A⊂  and B A≠ . 

 
 

 7.63. 
 Given a prime number p  and M  a set of p  consecutive natural numbers, prove that  
M  cannot be divided in two disjoint subsets 1 2,M M , with 1 2M M M=∪ , as the product of the 
numbers in 1M  are equal to the product of the numbers in 2M . 
 
 
 Solution 
 Because M  contains p  consecutive natural numbers, then M constitute a complete 
system of residues modulo p . Then: 
 { }0 0 0:  ,  p pn M n n M n n∃ ∈ = ∀ ∈ − ≠M M  
 We consider that 0 1n M∈  (the same proof for the contraire cae). 
The product of the numbers in  1M is divisible by p , but the product of numbers from 2M  is not 
divisible by p , because p  is a prime number and because it does not exist any element in 2M  
which is a multiple of p . From here, the product from 1M  cannot be equal to the product from 

2M . 
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 7.64. 
 Let’s consider M  a set which contains m natural numbers, 2m≥ , and *n ∈` , n m< . 

We note: 1 1mK
n

⎡ ⎤−
⎢ ⎥= +
⎢ ⎥⎣ ⎦

, where [ ]X  represents the integer part of X . 

 Prove that there exists a subset 'M  of M , such that: 
 a) 'M contains at least K  elements 
 b) The difference between two random elements of 'M  is a multiple of  n . 
 
 
 Solution 
 The set M  has the form: { }1,..., mM a a= , where all ia ∈` . { }1,..., ,

ii n ri m a +∀ ∈ =M  
with { }0,1,2,..., 1ir n∈ − .  
 Let ,  ,  0 1m q n r q r n= ⋅ + ∈ ≤ ≤ −` . Because n m< , it results that *q∈` . We 
construct the set 'M M⊆ . Because the condition b) are achieved it must that 'M  contains only 
elements from M  which divided by n  will give the same residue. 
The residues obtained from the division by n  are: 0,1,…,n-1. We have n equivalence classes 
modulo n . 
 The problem is reduced to prove that there exists a class which contains at least K
elements.  'M  will be exactly this class. 

 1) The case when 0r = . Then 1 : 11 1m q nK q
n n

⎡ ⎤ ⎡ ⎤− −
⎢ ⎥ ⎢ ⎥= + = + =
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. 

If :m q n=  elements of M are equally distributed in the n  classes, then each class contains q  
elements, and the problem is solved. 
 In the contrary case, there exists at least a class which contains at least q  elements and 
also, in this case the problem is resolved. 

 2) The case when 0r ≠ . Then 1 11 1 1m qn rK q
n n

⎡ ⎤ ⎡ ⎤− + −
⎢ ⎥ ⎢ ⎥= + = + = +
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. 

 The m qn r= +  elements of M  are distributed randomly in the n  classes, it results that 
there exist at least a class which contains at least 1q+  elements (if not it would result that there 
would be a maximum of qn  elements n< ), and the problem is completely solved. 
 
 

 7.65. 
 Let’s consider the homogeneous polynomials  ( , )nP x y  and ( , )nQ x y  of n  degree in ,x y

. If 1 2

1 2

a a
b b

=  then 1 1 2 2

1 1 2 2

( , ) ( , )
( , ) ( , )

n n

n n

P a b P a b
Q a b Q a b

=  

 
 
 Solution 

Let  
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1 1 1
0 1 1( , ) ...n n n n

n n nP x y x x y xy yα α α α− −
−= + + + +   

and  
1 1 1

0 1 1( , ) ...n n n n
n n nQ x y x x y xy yβ β β β− −

−= + + + +  

1 2 1 1 1 1 1 1 1 1
1 1

1 2 2 2 2 2 2 2 2 2

n n n i i n i i
i

n n n i n i
i

a a a b a b a b a b
b b a b a b a b a b

α
α

− −

− −= ⇒ = ⇒ = = =  

0 i n≤ ≤ . 
 Since the sum of the numerators divided by the sum of the denominators is equal with 
each rapport, we have: 

  
1 1

0 1 1 1 1 1 1
1 1

0 2 1 1 2 2 2

...

...

n n n n
n

n n n n
n

a a b b a
a a b b a

α α α
α α α

−

−

+ + +
=

+ + +
 

 The same way, we obtain: 

  
1 1

0 1 1 1 1 1 1
1 1

0 2 1 1 2 2 2

...

...

n n n n
n

n n n n
n

a a b b a
a a b b a

β β β
β β β

−

−

+ + +
=

+ + +
,  

Then: 

  1 1 1 1

2 2 2 2

( , ) ( , )
( , ) ( , )

n n

n n

P a b Q a b
P a b Q a b

=  

Therefore, the conclusion. 
 
 

 7.66. 
 Let’s consider a natural number  
 
 2p≥  and a sequence such that 1 11,  1,   *n na a pa n+= = + ∀ ∈` . Prove that *K∀ ∈` , 
K can be uniquely expressed as follows:

1 11 1...n nK t a t a= + +  with 1 1it p≤ ≤ −  for 
{ }1,2,..., 1i l∈ −  and 1 it p≤ ≤  and 1 1...n n> > . 

 
 
 Solution 

 We deduct immediately that 1
1

n

n
pa
p
−

=
−

 which is a sequence of natural numbers, strictly 

ascending, unlimited. Then: 1 *n∃ ∈`  such that 
1 1 11 1n n na k a pa+≤ < = + . 

 From here k  can be written uniquely as follows: 
 

1 11 1n nk t a r pa= + ≤ , with 
1

0 nr a≤ < . 

If 1 0r = , it results that  
1

1
n

kt
a

=  and 1

1

11 n

n

a p
t p

a

⎡ ⎤
⎢ ⎥≤ ≤ =⎢ ⎥
⎢ ⎥⎣ ⎦

 

If 1 0r ≠ , it results that there exists 2 *n ∈`  such that 
2 2 1 21 1 1 2 21n n n na r a pa r t a r+≤ < = + ⇒ = +  
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2 11 2 1n na r a n n≤ < ⇒ < ; 1

11

1

1
1

1n

nn

n

pak rt paa
a

−−
= ≤ < ; 

Then 11 1t p≤ ≤ − . 
And k  is written uniquely 

1 21 2 2n nk t a t a r= + + , and the process continue. After a limited 
number of steps we reach 1 0r = . We will have the same prove for { }1, 1,...,1 1i in n i+> ∈ −  and 
1 1it p≤ ≤ − , { }1,...,1 1i ∈ −  and 11 t p≤ ≤ , and the problem is solved. 
 
 

 7.67. 
 If 1,..., ,na a b  are positive real numbers with 1 ... nb a a≤ + +  and { }1,..., ,na a bα∉ − − − , 

then 1

1

... n

n

b a a
b a aα α α
≤ + +

+ + +
. 

 
 
 Solution 
 We will use the recurrence rational for *n ∈` . 

 For 1n = , if 1b a≤ , we have 
( )

( )( )
11

1 1

0 0
b ab a

b a b a
α

α α α α
−

− ≤ ⇔ ≤
+ + + +

; which is true, 

and taking into account the hypothesis/ 
 We suppose that the inequality is true for all the values smaller or equal to n .  
 We will prove it for 1n+ : ( )1 1... n nb a a a +≤ + + +  and in conformity to the hypothesis 

of the recurrence we have:
( )
( )
1 1

1 1

...
...

n n

n n

a a ab
b a a aα α α

+

+

+ +
≤ +

+ + + + +
, but 1 1... ...n na a a a+ + ≤ + + , 

then if we apply one more time the hypothesis of the recurrence, we obtain: 

  11 2

1 2 1

... nn

n n

ab a a a
b a a a aα α α α α

+

+

≤ + + + +
+ + + + +

 

 
 

 7.68. 
 Let’s consider the expression: 2 2( , )E x y Ax Bxy Cy Dx Ey F= + + + + + , ( ) 2,x y ∈ \ , 
with , , , , ,A B C D E F  real, and 2 2 0A C+ ≠ . Find a necessary and sufficient condition  for 

( , )E x y to admit an extreme. 
 
 
 Solution 
 Because 2 2 0A C+ ≠ , it results that at least A  or C  is not null, let it be A ; (the result 
will be similar if 0C ≠ ). 
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 We suppose that ( , )E x y  admits an extreme. 

2 2( , ) B DE x y A x xy x Cy Ey F
A A

⎛ ⎞⎟⎜= + + + + + =⎟⎜ ⎟⎜⎝ ⎠
 

2 2 2
2 22

2 2 4 4 4
B D B D BDA x y y y Cy Ey F
A A A A A

⎛ ⎞⎟⎜= + + − − − + + + =⎟⎜ ⎟⎜⎝ ⎠
 

2 2 2
2 24 4 2

2 2 4 4 4
B D AC B AE BD DA x y y y F
A A A A A

⎛ ⎞⎛ ⎞ − − ⎟⎜⎟⎜ ⎟= + + + + + −⎟ ⎜⎜ ⎟⎟⎜ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

24 0
4

AC B
A
−

≠ , because if not ( , )E x y  would not have extreme. 

 We have 
2 22

2
2 2

4 2 2( , ) 2
2 2 4 4 4
B D AC B AE BD AE BDE x y A x y y y
A A A AC B AC B

⎡ ⎤⎛ ⎞ ⎛ ⎞− − −⎢ ⎥⎟ ⎟⎜ ⎜= + + + ⋅ + + −⎟ ⎟⎜ ⎜⎢ ⎥⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠− −⎢ ⎥⎣ ⎦
 

22 2

2
4 2

4 4 4
AC B AE BD DF

A AC B A
⎛ ⎞⎛ ⎞− − ⎟⎜⎟⎜ ⎟− ⋅ + − =⎟ ⎜⎜ ⎟⎟⎜ ⎜ ⎟⎝ ⎠− ⎝ ⎠

 

( )
( )

22 22 2
2

2 2

24 2
2 2 4 4 4 4 4

AE BDB D AC B AE BD DA x y y F
A A A AC B A A AC B

⎛ ⎞ ⎛ ⎞ −− −⎟ ⎟⎜ ⎜= + + + + + − −⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠− −
 (1) 

Evidently  ( , )E x y  admits only one extreme if A  and 
24

4
AC B

A
−  have the same sign, that is if 

24 0
4

AC BA
A
−

> , from where 24 0AC B− > , which constitute a necessary condition for ( , )E x y

to admit un extreme (as long as the two are positive and have a minimum, if not a maximum). 
But 24 0AC B− >  constitute also a sufficient condition, because ( , )E x y  can be written as (1) 

and A  and 
24

4
AC B

A
−  have the same sign. 

 
 

 7.69. 
Let’s consider the integers 1 2 2 1... ...n nA a a a a= +  and 1 1... ...n nB a a a a= −  written in base 
{ }* 1b∈ −` . Show that A  is divisible by 1b+  and B  is divisible by 1b− . 

 
 
 Solution 

We’ll compute the criteria of divisibility by 1b+  and by 1b−  in base b .
( )( 1) mod 1i ib b≡ − +  and ( )1 mod 1 ,  iib b≡ − ∈` . 

Because  
( )2 2 1 2 1... ( 1) ...k

n n kA a a a a a−≡ − + + − + + − +  
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( ) ( )1 2 2 1 2... ( 1) ... 0 mod 1k
k n na a a a a b−+ − + + − + + − ≡ + . 

Similarly: 
 ( ) ( ) ( )1 1 1 2... ... 0 mod 1n n nB a a a a a a b−≡ − + + − + + + ≡ + . 
 

 7.70. 
 Let’s consider a natural number a  and p a non- null integer. Determine the number of 

elements of the set N, ,..., ...
n

M a aa a a
⎧ ⎫⎪ ⎪⎪ ⎪= ⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

 which are divisible by p . Discussion. 

 
 
 Solution 
 Let a  be written in base 10 in the form: 1... sa a a= , with  ia ∈` , 1 ,   *i s s≤ ≤ ∈` .An 

element Mα∈  is N...
n

a aα=  with 1 n m≤ ≤ , n  integer. 

( )( 1) ( 2) 1 ( 1) 10 110 10 ... 10 1 10 ... 10
10 1

sn
n s n s s s n s

sa a a a a aα − − − −
= ⋅ + ⋅ + + ⋅ + = + + + =

−
. 

We must find the n  for which α  divides p . 
 Let ( ),d a p= . Then 1a da=  and 1p dp=  and ( )1 1, 1a p = . Then we must determine n

such that 1 1
10 1 |
10 1

sn

sda dp−
−

. 

 1) If ( ),10 1p = , let’s consider δ  the oreder of the class of residues of 10 in rapport to 

( )1mod 10 1sp − . We have also: ( )( )110 1 0 mod 10 1spδ − ≡ − , then ( )( )10 1 0 mod 10 1sδ − ≡ −  

and it results that ksδ = , *k ∈` . Then it exists exactly m ms
k δ
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 elements in M  which are 

divisible by p . 
 
 

 7.71. 
 Prove that { }* 1k∀ ∈ −`  there exist an infinity of natural numbers whose property is that 
they admit exactly k positive divisors. 
 
 
 Solution 
 Any natural number A  is written in the following form: 
 1

1 ... s
sA p pαα= , (obviously { }0,1A∉ ) where ip  are prime numbers, { }1,...,i s∈  and 

i jp p≠  for i j≠ , *iα ∈`  with { }1,...,i s∈ , *s ∈ ` (which is the canonic form of a number, 
and which is unique). 
  Re note by ( )d A  the number of positive divisors of A . 
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 Then  

( )
1

( ) 1
n

i
i

d A α
=

= +∏        (1) 

 Our problem is reduced to prove that the equation ( )
1

1
n

i
i

kα
=

+ =∏  has solutions in ( )* s`

(the unknown are 1,... sα α and s ). We take 1 *s = ∈ `  and 1 1 *kα = − ∈`  and we obtain 
1 1k k− + = .  From all the numbers 1kn p −= , with a random prime number, has exactly k

positive divisors (we have an infinity of numbers n  because we have an infinity of prime 
numbers p ). 
 We can see that equation (1) has other solutions . For example, if 1,... tk k k=  with all 

{ }* 1ik ∈ −` , we have the infinite solution,  1 1,   1,..., 1t ts t k kα α= = − = −  from where 

1,..., tn p p=  and where all jp  are the different prime numbers. 
 
 

 7.72. 
 Knowing that { },   1,2,...,ia i n∈ , satisfying the conditions of existence for all n  
logarithms, solve the equation: 

1 2
log log ...log

na a a x b=  
 
 

Solution 
 ( )

1 2 3 2 3 1log log log ...log log log ...log
n na a a a a a ax b x a= ⇔ =  

Where  
 ( ) 1

2 3 3 41 2log log ... log log log ... log
b

n n

ab
a a a a a ax a x a= ⇔ =  

Where 
 ( ) 1

1 2

3 4 4 52 3log log ... log log log ... log
bb

n n

aa a
a a a a a ax a x a= ⇔ =  

………………………………………………………………………. 
1

1

.
2log log

n na a n

a b
x a

− −⇔ =  
1.
1log

na n

a b
x a −⇔ =  

1.
n

a b
x a⇔ =  

Which is the solution  of the problem. 
 
 

 7.73. 
 If *,a b +∈\ , 1b ≠ and α∀ ∈_ , a bα≠ , then logb a ∉_ , and reciprocal.  
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 Solution 
 First of all we observe that this problem is the result of several particular problems; for 
example “show that 21log 10  is not a rational number”, etc. 
 The proof will be done using the absurd rational. 

 We suppose that logb
ma
n
∈_ , with least common divisor ( ), 1m n = . 

It results that 
m
nb a= . By raining this equality to the n th power, we have m nb a= , with ,m n∈_

, n na b α≠ , where nα∈_  (because 0a > , 0b> ), 
 Then, if we cannot write it as a rational power of b ,we would not be able to write na any 
more as a rational power of b . 
 And, it results that n ma b≠ , m∀ ∈_ . Contradiction. 
 Therefore loga∈_ . 
Reciprocal: 
 If logb a ∉_ , then obviously a bα≠ , α∀ ∈_ , because if not it will result that 
logb bαα α= ∈_ . 
And the problem is completely proved. 
 
 

 7.74. 
 Let 0s ≠  a natural number. Determine the natural numbers n  that verify the propriety 
s n  divides n . (we note [ ]x  the integer part of x ). 

 
 
 Solution 
 ( ) 1 1 1 1   :  1 ... 1ss s s s

s sn p p n p p C p C p− −∀ ∈ ∃ ∈ ≤ < + = + + + +` ` . 

 From here n  can be written: sn p k= +  with  1 1 1 10 ... 1s s
s sk C p C p− −≤ < + + +  and 

k ∈ ` . It results s n p⎡ ⎤ =⎢ ⎥⎣ ⎦ . Because s n⎡ ⎤
⎢ ⎥⎣ ⎦ divides n , we obtain that p  divides k . Then 

:k pα= , with α∈` , and ( ) ( )0 1 1s sk p p≤ ≤ + − +  from where:  

( ) ( )1 1
0

s sp p
p

α
+ − +

≤ ≤ ∈`  

 Therefore the natural numbers that have the property from the hypothesis are: 

sn p pα= + , with the property α∈`  and 
( ) ( )1 1

0
s sp p

p
α

+ − +
≤ ≤ , *p∈` , and also the 

trivial solution 0n = , because 0 divides 0. 
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 7.75. 
 Let p  a natural number, 2p ≥  and the function:  

 2( ) ...p
x xx
p p

β
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

, x +∈ ] . 

 Show that if ( )1 0...n p
x a a a=  then: 

 ( )0 1
1( ) ...

1p nx x a a a
p

β ⎡ ⎤= − + + +⎣ ⎦−
 

 
 
 Solution 
 ( ) 1

1 0 1 0... ...n
n np

x a a a a p a p a= = + + +  

 1 2 1
1 1 1...n n

n n
x a p a p a p a
p

− −
−

⎡ ⎤
⎢ ⎥ = + + + +⎢ ⎥⎣ ⎦

 because 0 0a
p

⎡ ⎤
⎢ ⎥ =⎢ ⎥⎣ ⎦

 

 2 3
1 22 ...n n

n n
x a p a p a
p

− −
−

⎡ ⎤
⎢ ⎥ = + + +⎢ ⎥⎣ ⎦

 because 1 2
1 00 a p a p≤ + <  

………………………………………………………………………….. 

 nn

x a
p
⎡ ⎤
⎢ ⎥ =⎢ ⎥⎣ ⎦

 

 0m

x
p
⎡ ⎤
⎢ ⎥ =⎢ ⎥⎣ ⎦

 for all m  natural and 1m n≥ + . 

Therefore  
 ( ) ( ) ( )1 2

1 2 1( ) 1 ... 1 ... ... 1n n
p n nx a p a p a p aβ − −

−= + + + + + + + + + =  

( ) ( ) ( )1 2
1 2 11 ... 1 ... ... 1n n

n na p a p a p a− −
−= + + + + + + + + + =  

2 1
1 1 1...
1 1 1

n

n
p p pa a a
p p p
− − −

= + + + =
− − −

 

( ) ( )1
1 1 0 1

1 1... ... ...
1 1

n
n n na p a p a a x a a a

p p
⎡ ⎤= + + − − − = − + + +⎣ ⎦− −

. 

 
 

 7.76. 
 Prove the inequality: 

2 2 2 2 2 2
1 2 2 3 1
2 2 2 2 2 2
2 1 3 2 1

... n

n

a a a a a a
a a a a a a

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎟ ⎟⎟ ⎜ ⎜⎜ ⎟ ⎟⎟+ + + + + + ≥⎜ ⎜⎜ ⎟ ⎟⎟ ⎜ ⎜⎜ ⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

   
2 22

1 2 2 3 1

2 1 3 2 1

... n

n

a a a a a a
a a a a a a

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎟ ⎟⎟ ⎜ ⎜⎜ ⎟ ⎟⎟≥ + + + + + +⎜ ⎜⎜ ⎟ ⎟⎟ ⎜ ⎜⎜ ⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

where 
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 { }1,..., \ 0 ,   2na a n∈ ≥\  
 
 Solution 

 It is sufficient to prove that:
22 2

1 2
2 2
2 1

a a a b
a a b a

⎛ ⎞ ⎛ ⎞⎟⎜ ⎟⎜⎟+ ≥ +⎜ ⎟⎜⎟ ⎟⎜⎜ ⎟⎜ ⎝ ⎠⎝ ⎠
, where { }, \ 0a b∈\ . 

 After computing the powers, passing all the terms to the right side and executing all the 
reductions of all similar terms it results that: 

  
4 4 2 2

4 4 2 2 0a b a b
b a b a

+ − − ≥  

We note 
2

2

a u
b

= .  We have  

2
2

1 1 0u u
u u

+ − − ≥ .  
21 1 2 0u u

u u
⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜+ − + − ≥⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

, 
2

2 0au
b

= >  

 We note 1 2t u
u

= + ≥ ; we have 2 2 0t t− − ≥ , that is ( )( )1 2 0t t+ − ≥ , inequality which 

is true for 2t ≥ . 
 Therefore each parenthesis from the right side, squared, is greater or equal to the 
correspondent parenthesis in the left side squared. 
 
 

 7.77. 
 Show that if { }( )1 2 1... ... ,   0,  1,2,...,n n ia a a a a a i n+ + + = ≠ ∈ , then 

1 2
2 3 3 1 1 2 1

1 1 1 1 1 1 1 1 1 1... ... ... ...n
n n n n

a a a n
a a a a a a a a a a −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟+ + + + + + + + + + + + + + =⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

1 1 1
1

... ...
n

i i n
i

a a a a− +
=

=∑ . 

 
 
 Solution 
 The left side of the equality can be written: 

1 1 1 2 2 2 2

2 3 3 1 1 2 1

... ... ... ...n n n

n n n n

a a a a a a a a a a n
a a a a a a a a a a −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟+ + + + + + + + + + + + + +⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠
= 

2 3 1 3 1 2 1

1 1 1 2 2 2

... ... ... ...n n n

n n n

a a a a a a a a a n
a a a a a a a a a

−
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎟⎟ ⎟ ⎜⎜ ⎜ ⎟⎟ ⎟= + + + + + + + + + + + + + =⎜⎜ ⎜ ⎟⎟ ⎟ ⎜⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

1 1 1 2 1

1 2

... ... ......n n n n

n

a a a a a a a a a n
a a a
− − −

= + + + + =  
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1 1 1 1 1 1
1 1

... ... ... ...
n n

i i n i i n
i i

a a a a n n a a a a− + − +
= =

= − + =∑ ∑ . 

 

 7.78. 
 Let the integer numbers , , ,i ja b a b  with { }1,2,...,i n∈  and { }1,2,...,j m∈ . Show that if 

,i jx y  (with { }1,2,...,i n∈ and { }1,2,...,j m∈ ) are integer numbers, the expression: 

( ) 1
1 1

1

,..., , ,...,

n

i i
i

n m m

j j
j

a x a
E x x y y

b y b

=

=

+
=

+

∑

∑
 

has integer values if and only if the greatest common divisor of the numbers 1 1,..., , ,...,  n na a b b , b  
divides a . 
  
 
 Solution 
 The expression ( )1 1,..., , ,...,n mE x x y y  will have integer values if and only if the equality 

( )1 1,..., , ,...,n mE x x y y t=  admits integer solutions, where the unknown are 1 1,..., , ,..., ,n mx x y y t . 
This equation is equivalent to: 

 
1 1

n m

i i j j
i j

a x b y t bt a
= =

− − =−∑ ∑        (1) 

 
1 1

n m

i i j j
i j

a x b t bt a
= =

⇔ − − =−∑ ∑   

with  
{ }, , 1,...,j jt y t j m= ∈ .      (2) 

 Necessity 
 If this equation admits solutions in ] , then it results that the greatest common divisor of 
the numbers 1 1,..., , ,..., ,n ma a b b b  divide a . 
 Sufficiency 
 1) The case 0b ≠ . Because the greatest common divisor of 1 1,..., , ,..., ,n ma a b b b  divide b , 
it results that the equation (2) admits solutions in ] , then it exist t ∈ ]  such that 
( )1 1,..., , ,...,n mE x x y y t= . 

 2) The case 0b = . We note ( )1 1,..., nd a a=  and ( )2 1,..., md b b= . From which  

( ) ( )1 1 1 2,..., , ,..., , ,n mD a a b b b d d= =  divides a . The equation (1) becomes: 

2
1 1

'
n m

i i j j
i j

a x d b y t a
= =

⎛ ⎞⎟⎜ ⎟− ⋅ =−⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑ ∑     (3) 

where 2 'j jb d b= , 1 j m≤ ≤ . 

 Because ( )1' ,..., ' 1mb b = , it results that there exist ( )0 0
1 ,..., m

my y ∈]  such that  
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 0

1

' 1
m

j j
j

b y
=

=∑ . From here we have: 

2
1

n

i i
i

a x d t a
=

− =−∑          (4) 

Because ( ) ( )1 2 1 2, ,..., ,nD d d a a d= =  divides a , it results that exists t  in ]  such that 

( )1 1,..., , ,...,n mE x x y y t= . 
 
 

 7.79. 
Let { },   1,2,...,ia i n∈ ∈\  and the function :f →\ \  defined  by 

( )
11 .. 1

( )
k

k

j
i i n j

f x x ax
≤ ≤ ≤ ≤ =

= −∑ ∏ , k natural odd number. 

Show that whatever are the values 1,..., na a  the function does not have the same sign on 
the whole real axis. 

 
 
Solution 
Let { }min ii

m a=  and { }max ii
M a= . We have m M≤  (the sign + does not bother us). 

For ( ),x m∈ −∞  we have { }0,   0,   1,2,...,i ix a x a i n− < − < ∀ ∈  and ( )
1

0
j

k

i
j

x a
=

− <∏  

because k  is odd and all factors of the product are negative. 
Then ( )( ) 0,  ,f x x m< ∀ ∈ −∞  
 The same: ( )( ) 0,  ,f x x M> ∈ ∞ . 
And the signs are different and 1,..., na a∀  in \ the function is both negative and positive. 
 
 

 7.80. 
If 1,..., nα α  are natural numbers not null, show that 

( )
1

11 1 .. 1

1 ... 1
k

k

nn

i i h
k i i n h

n α α α
= ≤ ≤ ≤ ≤ =

+ = +∑ ∑ ∏  

 
 
Solution 

 Let’s consider the natural number 1
1 ... n

na p pαα= , where 1,..., np p  are distinct numbers 
two by two. 
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 We’ll determine the number of positive divisors D . We know that: ( )
1

1
n

h
h

D α
=

= +∏ . 

Then, we apply another method to compute D : we write all the divisors ( k represents the 
number of different prime factors, of divisor d ): 

1k = . We have 1 ... nα α+ +  are the divisors of 11 1 1
1 ,..., ,..., ,..., ,..., n

n n n np p p p pα ; 
2k = . We have 

1 2

1 21
i i

i i n

α α
≤ ≤ ≤
∑  divisors: 

2

1 1 2

1
1 2 1 2

1
1 2 1 2

,...,
...................

,...,

p p p p

p p p p

α

α α α

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

  (are 1 2α α  divisors) 

  ………………………………………………….. 

  
1 1

1
1 1

1
1 1

,...,
...................

,...,

n

n n n

n n n n

n n n n

p p p p

p p p p

α

α α α− −

− −

− −

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

  (are 1n nα α−  divisors) 

  …………………………………………………. 
k l= . We follow the same process, we have 

1 2

11 ..

...
l

l

i i i
i i n

α α α
≤ ≤ ≤ ≤
∑  divisors. 

Because k  can take the l  values until n , it results that 
1 2

11 1 ..

1 ...
k

k

n

i i i
k i i n

D α α α
= ≤ ≤ ≤ ≤

= +∑ ∑  ( we 

added 1 because, if 0k =  we have the divisor 1 for a ). 
 
 

 7.81. 
 Determine the natural number of n  digits such that the following expression  

1

1
1

1 2
0

...

...
h h h

n
m

i i i
h

x x

x x x
+

−

+ +
=
∑

 is maximum,  knowing that 0 1 2 10, ,..., ,m mi i i i n− −= =  are fixed, and 

that all the numbers are written in base b . 
 
 
 Solution 
 

11 2 1...
h h hi i i hx x x a

++ + += , 0 1h m≤ ≤ − . In this case the rapport becomes: 
1 1 2

1 2

1 2

...
...

n i n i i
m

m

a b a b aR
a a a

− − −+ + +
=

+ + +
 

We note 
1

j
n

j h
h

c b i
=

= −∑ , 0 j m≤ ≤ . Then 
( )

1

1 1

1 1

1
1

m m

j j j j

m m

j j

a c a c
R

a a

−

−
= = +
∑ ∑

∑ ∑
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Which is maximum when 0ma =  (because 1mc = ). 

Then 
( )

( )
( )

1 1

1
1 1

max 11 1

1 1

1 1 1
1 1 1

m m

j j j j m

mm m

j j

a c a c c
R c

a a

− −

−

−− −

− − − +
= + = + − + =

∑ ∑

∑ ∑
 

( )
2

1
1

1 1

1

m

j j m

m m

j

a c c
c

a

−

−

− −

−
= +

∑

∑
, 

which is  maximum when 1 0ma − = . Then 
( )

2

1
1

max 1 1

1

m

j j m

m m

j

a c c
R c

a

−

−

− −

−
= +

∑

∑
 and the process 

continues. 
After a limited number of steps, we have: 

( ) ( ) ( ) ( )1 1 3 2 2 3 1 1 2
max 3 3 2 3

1 2 1 2

a c c a c c a c c
R c c c c

a a a a
− + − −

= + = + − +
+ +

 

Which is maxim when 2 0a = . Therefore, 
( )

11 1 2
max 2 1

1

n ia c c
R c c b

a
−−

= + = = . 

And the numbers we 
Re a looking for are: N1

1

1 2... 0...0i
n i

x x x
−

 written in base b . 

 
 

 7.82. 
We consider all residue modulo m classes 1 2, ,..., kC C C , prime with m , and 
,  1i ia C i k∈ ≤ ≤ . Prove that 

1

11 ..

| ...
s

s

i i
i i k

m a a
≤ < < ≤
∑  

 
 
Solution 

 It is obvious ( )k mϕ= , where ϕ  is the Euler’s indicator 
 1)  0 ( ) 2 1m m sϕ= ⇒ = ⇒ =  
  { } { }1 21 ; 1C C= − = +  and then 1 21, 1a a=− =+ , the sum 1 1S =− +  and 0 
divides 0. 
 2)  1 ( ) 1m mϕ=± ⇒ =  and 1 | s± , for any S ∈ ] . 
 3) 2m ≥ . We note 

1

11 ..

... ,   1
j

j

j i i
i i k

S a a j k
≤ < < ≤

= ≤ ≤∑  

(A) We construct ( ) ( )
01

( ) 1
k k

k j k j
i j

ji

f x x a x s− −

==

= − = −∑∏  taking 0 1s = . 
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Propriety 1: If ( , ) 1a m = , then ( ), 1m a m− = . 
Property 2: If 1m ≠± , then 2( ) Mmϕ =  (Their proof is banal) 

Then 12k k= ,   1k ∈] , and the set { } { }
1 1 1 1 11 1 2 1 1, ,...,  ,..., , ,...,  - ,...,k k k k ka a a a a a a a+ ≡ −  and 

 (B) ( )( )( )
1

1

( ) (mod )
k

i i
i

f x x a x a m
=

= − +∏  

 If we compare (A) and (B), we observe that for s  odd, 0 s k< ≤ , we have 

( )1 0(mod )k s
sS m−

− ≡ , which is equivalent to | sm S . 

(We used the property 3: If 
0i

a C∈ , then 
0j

a C− ∈ , 0 0i j≠ . Then the set { }
1 11 1, ,...,  - ,...,k ka a a a−  

contains exactly an element of each of the 12k  classes  of prime residues of m  modulo m . 
 
 

 7.83. 

 Let ϕ  a permutation on the set { }1,2,...,n . Then 
1

1 1 1( )
2 2

n

h

n nh h
n n

ϕ
=

⎡ ⎤−
⎢ ⎥⋅ − ≤ +
⎢ ⎥⎣ ⎦

∑ . 

 
 
 Solution 

 For the permutation 
1     2    ...   1   

 1  ...     2      1
n n

n n
ω

⎛ ⎞− ⎟⎜ ⎟=⎜ ⎟⎜ ⎟−⎝ ⎠
 we have: 

( ) ( ) ( )
1

( ) 2 1 3 5 ...
n

h

h h n n nω
=

⎡ ⎤− = − + − + − + =⎣ ⎦∑

 ( ) ( )2

1

1
2 2 1 .... 2

2 2 2 2

n

k

n nn n nn k n

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

=

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤−⎟⎜⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − + = − = +⎟⎜ ⎟⎟⎜⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦
∑ . 

We prove now using the recurrence method for ,   2n n∈ ≥` , that the sum: 

1 2

n

h

nS n
=

⎛ ⎞⎡ ⎤⎟⎜ ⎢ ⎥= − ⎟⎜ ⎟⎟⎜ ⎢ ⎥⎝ ⎠⎣ ⎦
∑  gets the maximum value when ϕ ω= . 

For 2n =  and 3 we can verify it  very easy . 
We suppose  that the property is true for the values less than 2n+ . We’ll prove that it is 

true for 2n+ : 
1          2    ...   1   2

2 1  ...     2      1
n n

n n
ω

⎛ ⎞+ + ⎟⎜ ⎟=⎜ ⎟⎜ ⎟+ +⎝ ⎠
. 

Knowing that 
   2    ...   1

'
1  ...     2   

n
n

ω
⎛ ⎞+ ⎟⎜ ⎟=⎜ ⎟⎜ ⎟+⎝ ⎠

 is a permutation of n  elements and for which S  will have 

the same value as for the permutation  
  1    ...   

"
     ...   1   

n
n

ω
⎛ ⎞⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎝ ⎠

, in other words the maximum ( "ω  
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was obtained from 'ω  by reducing each element by one unit) in conformity to the hypothesis of 
the recurrence. 

The permutation of two elements 
  1      ...   2

2   ...     1   
n

n
η

⎛ ⎞+ ⎟⎜ ⎟=⎜ ⎟⎜ ⎟+⎝ ⎠
gives the maximum value for S  (in 

conformity with the hypothesis of the recurrence). But ω  is obtained starting with 'ω  and η : 
{ }'( ),  if  1, 2

( )
( ),    otherwise

h h n
h

h
ω

ω
η

⎧ ∉ +⎪⎪= ⎨⎪⎪⎩
 

 
 

 7.84. 
Let p  an integer number 2p ≥  and ( )k

ia ∈\ , where { }1,2,...,i n∈ , { }1,2,...,k m∈ . 

Then ( )
1 12

2( ) ( )

1 1 1 1

pn m m n p
k k

i i
i k k i

a a
= = = =

⎛ ⎞⎛ ⎞ ⎛ ⎞⎟⎜ ⎟ ⎟⎜ ⎜⎟⎜ ≤⎟ ⎟⎟⎜ ⎜⎜ ⎟ ⎟⎟⎟ ⎟⎜ ⎜⎜ ⎝ ⎠ ⎝ ⎠⎟⎜⎝ ⎠
∑ ∑ ∑ ∑ . 

 
 
Solution 
First of all we prove that  

( ) ( ) ( )
1 1 1

2 2 2(1) (2) (1) (2)

1 1 1

n n np p p

i i i i
i i i

a a a a
= = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟⎜ ⎜ ⎜+ ≤ +⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠∑ ∑ ∑     (1) 

We can compute the power of p  of this inequality because both sides are positive. 
We have: 

( ) ( ) ( ) ( )
12 2 2 2(1) (2) (1) (2) (1) (2)

1 1 1 1 1 1

2
n n n n n n

k p k p k
i i i i i i p

i i i i i k

a a a a a a c α β
−

= =

= = = = = =

+ + ≤ + +∑ ∑ ∑ ∑ ∑ ∑  

where ( )
1

2(1)

1

n p

i
i

aα
=

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎟⎜⎝ ⎠∑  and ( )
1

2(2)

1

n p

i
i

aβ
=

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎟⎜⎝ ⎠∑ . 

(A) If 2p k= , then 

( ) ( ) ( )

2
1 1

2 2(1) (2) (1) (2)

1 1 1

2 2 2
p

kk
n n np pkk k k

p i i i i
i i i

C a a a aα β αβ
= = =

⎛ ⎞⎛ ⎞ ⎟⎜⎟ ⎟⎜ ⎜⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟⎜≥ = ≥ ≥⎜⎟ ⎟ ⎟⎟ ⎟⎜ ⎜ ⎜⎜ ⎟ ⎟ ⎟⎜⎟ ⎟⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎟⎜⎟⎜ ⎟⎜⎝ ⎠ ⎟⎜⎝ ⎠

∑ ∑ ∑  

(1) (2)

1

2
n

i i
i

a a
=

≥ ∑  

We used the inequality Cauchy-Buniakouski-Schwarts. 
(B) Let 2 1p k= + . 
 a) α β≤ . It results: 

 ( )
1 1
2 2

1 1 1
1 1 1 1 12 2 2

k k kk k k k k k k k
p p p pC C C Cα β α β β β β α αβ

+ + ++ + + + += ≥ = ≥  
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2
1
2

(1) (2) (1) (2)

1 1

2 2
p

k

n n

i i i i
i i

a a a a

+

= =

⎛ ⎞⎟⎜ ⎟⎜⎛ ⎞ ⎟⎜ ⎟⎜ ⎟≥ ≥⎜ ⎟ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

∑ ∑  

 b) α β> . It results that  

( )
1 1 1 1

1 (1) (2)2 2 2 2

1
2 2

nk k k kk k k k k
p p p i i

i
C C C a aα β α α β αβ

+ + + ++

=

= > > ≥ ∑ . 

 Now, from (1),  using the absurd reasoning, we obtain what we’re looking for. 
 The case 2m =  is verified. 
  We suppose that the property is true for the values smaller than m . 

We prove for m . 

( ) ( )
1 1 11 12 2 2

2 2( ) (1) ( ) (1) ( ) ( )

1 1 1 1 1 1 2 1 1

p p pn m n n n n m m np p
k k k k

i i i i i i
i k i i i i k k i

a a a a a a
= = = = = = = = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜= + ≤ + ≤⎟ ⎟ ⎟ ⎟ ⎟⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜ ⎜⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟ ⎟⎟ ⎟ ⎟⎟ ⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜ ⎜⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑  

 
 

 7.86. 

Prove the inequality: 1 1! 2 ! !
2 2

n n nn − ⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥>
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
 
Solution 

 a) 2n k=  
( ) ( ) [ ] ( )! 2 4 6 2 1 3 5 2 1 2 1 3 5 1 3 5 2 1kn k k k k⎡ ⎤ ⎡ ⎤= ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅⋅ − = ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅⋅ − =⎣ ⎦ ⎣ ⎦  

( ) ( ) ( )1 2 12 ! 1 3 5 2 1 2 !2 1 ! 2 1 ! !k k kk k k k k k− −⎡ ⎤= ⋅ ⋅ ⋅ ⋅⋅ − > ⋅ ⋅ − = ⋅ − ⋅⎣ ⎦  
b) 2 1n k= +  

 ( ) ( ) ( )! 2 4 6 2 1 3 5 2 1 2 1 2 ! 1 3 5 2 1kn k k k k k= ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅⋅ − ⋅ + = ⋅ ⋅ ⋅ ⋅ ⋅⋅ + >  

 22 !2 4 2 2 ! 2 ! 2 ! !k k kk k k k k k k> ⋅ ⋅ ⋅⋅ = ⋅ ⋅ ⋅ = ⋅  

 From these two results we conclude that: 1 1! 2 ! !
2 2

n n nn − ⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥> ⋅
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
 

 7.87. 
 Prove the inequality: 

 
12 12 1

1
0 0 0

1 ! ! 2
2 2

mim

i m
i j h

n j n h n
+ −−

+
= = =

⎛ ⎞⎡ ⎤ ⎡ ⎤− −⎟⎜⎢ ⎥ ⎢ ⎥− ⋅ >⎟⎜ ⎟⎟⎜⎢ ⎥ ⎢ ⎥⎝ ⎠⎣ ⎦ ⎣ ⎦
∑∑ ∏  

 
 
 Solution 
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 (1) ! 1 1! 2 ! !
2 2

n n nn − ⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥> ⋅ ⋅
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦   

(See the anterior problems) 
 We can easily prove that  

(2) 1
2
2 2

p

p

n a
n a

+

⎡ ⎤⎡ ⎤−⎢ ⎥⎢ ⎥ ⎡ ⎤⎢ ⎥ −⎢ ⎥⎣ ⎦ ⎢ ⎥=⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥

⎢ ⎥⎣ ⎦

 

with 0 2 pa≤ <  

(3) 1

1
22

2 2

pp

p

n a
n a

+

⎡ ⎤⎡ ⎤−⎢ ⎥−⎢ ⎥ ⎡ ⎤⎢ ⎥ − −⎢ ⎥⎣ ⎦ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

 

 with 0 2 pa≤ < ,  
(For this we put 12 pn k α+= ⋅ +  and 10 2 pα +≤ < . 
Then we use the recurrence method to prove the inequality from enounce. We consider this 
inequality as a mathematical proposition which depends of m , then ( )P m . We apply the 
recurrence on m . 
 For 0m =  we obtain the inequality (1) which is true. We suppose that ( )P m  is true. We 
must prove that ( 1)P m+  is true. 
 From (1), (2), and (3) it results  

(4)  if 10 2mh −≤ <  then 1
11

2
1 2 2

2! 2 ! !
2 2 2

m
n h m

m m m

n h n h n h+

⎡ ⎤− +⎢ ⎥−
⎢ ⎥⎣ ⎦

+ + +

⎡ ⎤⎡ ⎤ ⎡ ⎤− − − −⎢ ⎥⎢ ⎥ ⎢ ⎥> ⋅ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

For each h  natural, 10 2nh −≤ <  we rapport (4) in ( )P m , and then we execute all computations. 
 We’ll find exactly  ( 1)P m+ . 
Remark: To generalize this inequality we replace 2 by a random natural p , 2 p n≤ < , and we 
follow a similar method. We’ll find that the writing is more complicated  and the inequality will 
be less fine. 
 
 

 7.88. 
 Having [ ]0,1ija ∈ , 0,   1 ,   1 ; , *ijp i n j m n m> ≤ ≤ ≤ ≤ ∈` . Prove that  

( )
1 1 11 1

2ij ij ij
n nm m m

np p p n
ij ij ij

j j j ki i

a a a m k m
= = = += =

⎛ ⎞⎟⎜ ⎟+ − ≤ + −⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑ ∑ ∑∏ ∏  

 Where k is a natural number 
 
 

Solution: 
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We note 

( ) ( ) ( )1 2 1 1 211 12
1 1 2 11 12 1 1 2

11 1

... ... ... ...ij i i im m n n nm

n nm
p p p p p p p pp p
ij i i im m n n nm

ji i

P a a a a a a a a a a
== =

= = + + + = + + + + + +∑∏ ∏  

If all the multiplications are done, one can see 1P  is an algebraic sum which contains nm  
terms and each of them has the sign +. 

It is noted  

( )11
2 1 1

1 11 1

... ...ij ij iki ik im

n nk m
p p pp p p
ij ij i ik ik im

j j ki i

P a a a a a a+
+

= = += =

⎛ ⎞⎟⎜ ⎟= − = + + − − − =⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑ ∑∏ ∏  

( ) ( )1 1 11 1 111
11 1 1 1 1 1 1... ... ... ... ...k nkk m n nk nmp pp p p p pp

k k m n nk nk nma a a a a a a a+ +
+ += + + − − − + + − − −  

Also, when all the multiplications are done it is obtained an algebraic sum which contains 
nm  terms, some have the sign +, others -. The terms of 2P are equal two by two to the terms of 

1P  in absolute value. We note 1 2P P P= +  
 In P all the negative terms of p will be reduced, because each has a positive 
corresponding. (The null terms of 2P  which have the sign – will be reduced with the null terms 
of 1P  which have the sign + and which have the same absolute value. 
 Therefore, without affecting the generality, it is considered that the null terms of 1P  and 

2P  are positive or negative, in function of the sign + or – which are found in front of them.) 
 Thus, P  will be equal to two times the sum of all the positive terms of 2P . A positive 

term of 2P  has the following form:  [ ]1 1

1 1
.... 0,1i ji j m m

m m

pp
i j i ja a ∈ . 

It results that P P is inferior or equal to two times the number of positive terms of 2P  (the 
equality will be true when all 1ija = ). 

Let’s consider the sequence 

 ( ) ( )1 1, 2 n
n nb k b k m b m k m+= = − + −  

By the recurrence method it is possible to prove that nb  will be calculated exactly the 
number of positive terms of 2P . 
 Because we are only interested in the sign of the terms, we convine to designate by  + a 
positive term, and by – a negative term. 
 The case 1n = implies N

1
2 .... . ...

m kk

P
−

=+ + − −���	��
 , therefore the number of the positive terms is  

k  and 1b k= . It is supposed that the property is true for n , and we have to prove it for 1n+ . 
For n , we have 

 ( )
N2 .... . ...

n
n n

n

b m b

P
−

⎛ ⎞⎟⎜ ⎟⎜= + + − −⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
���	��
  

where nb  represents the number of positive terms of ( )
2

nP . For 1n+  we have  

 ( )
N N

1
2 .... . ... .... . ...

n
n n

n

m kb km b

P +

−−

⎛ ⎞ ⎛ ⎞⎟⎜ ⎟⎜⎟⎜ ⎟= + + − − ⋅ + + − −⎜⎟ ⎟⎜ ⎟ ⎜ ⎟⎜⎜ ⎟⎜ ⎝ ⎠⎝ ⎠
���	��
 ���	��
  

 The number of positive terms, in this case, will be: 
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( )( ) ( ) ( ) ( ) ( ) 12n n n
n n n n nk b m k m b k m k b m k bm k m b m k m b +⋅ + − − = − + + − = − + − =  

But nb  is a linear recurrent and homogenous sequence. 

From which it results that ( )( )1 2
2

nn
nb m k m= + −

−
, therefore ( )2 nnP m k m≤ + − . 

 
 

 7.89. 
Let’s consider a polynomial ( )P x  of 1r n< −  degree which for the distinct numbers 

1,..., nx x  takes the values 1,..., ny y . For 1 i n≤ ≤  we consider the equations 
 1 2 3

,1 ,2 , 1... ( 1) 0n n n
i i i nx s x s x s− − −

−− + + + − =  
which have the solutions 1 1 1,..., , ,...,i i nx x x x− +  
Then  

 ,
1 1

1 0
nn

i i h
i j i j

j i

y s
x x= =

≠

=
−∑ ∏  

with 0 2h n r≤ ≤ − − , where by convention is noted ,0 1is = . 
 
 
 Solution 
 The polynomial which, for the distinct numbers 1,..., nx x  takes the values, respectively, 

1,..., ny y  is  
( )( ) ( )
( )( ) ( )

( )( ) ( )
( )( ) ( )

2 3 2 3
1 2

1 2 1 3 1 2 2 2 3 2

... ...
( ) ...

... ...
n n

n n

x x x x x x x x x x x x
P x y y

x x x x x x x x x x x x
− − − − − −

= + + +
− − − − − −

 

( )( ) ( )
( )( ) ( )

1 2 1
2

1 2 1

...
...

n

n n n n

x x x x x x
y

x x x x x x
−

−

− − −
+

− − −
, 

and this is the one with the smallest degree having this property (according to Lagrange). 
The degree of ( ) 1P x r n= < − , this implies that the coefficients of 1 2 1, ,...,n n rx x x− − +  are 

null. But the coefficients of kx , with 1 1r k n+ ≤ ≤ − , are exactly the expressions: 

 1
, 1

1 1

1( 1)
nn

n k
i n k

i j i j
j i

s
x x

− −
− −

= =
≠

−
−∑ ∏  

When 1 1r k n+ ≤ ≤ − , we have 0 1 2n k n r≤ − − ≤ − −  and it is noted 1h n k= − − . 
,i hs  is the sum of all the products of h  factors ( 0h ≠ ), which it is formed with the numbers 

1 1 1,..., , ,...,i i nx x x n− +  (that is the h -th sum of the relation of Viète, applied to the equation from the 
problem). 
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 7.90. 

Let’s consider the polynomial with integer coefficients 
0

( )
n

i
i

i

P x a x
=

=∑ . Prove that for 

,p q∈] , if 0pP
q

⎛ ⎞⎟⎜ ≠⎟⎜ ⎟⎜ ⎟⎝ ⎠
, then 

1
m

pP
q q

⎛ ⎞⎟⎜ >⎟⎜ ⎟⎜ ⎟⎝ ⎠
, *,   m m n∈ ≥` . 

 
 
Solution 

 1 1 1 1
1 1 0

1...n n n n
n n n

pP a p a p q a p q a q
q q

− −
−

⎛ ⎞⎟⎜ = + + + + ≥⎟⎜ ⎟⎜ ⎟⎝ ⎠
 

1 1 1
1 1 0

1 1...n n n n
n nm ma p a p q a p q a q

q q
− −

−≥ + + + + ≥  

because: m n≥  implies that 
1 1

n mq q
≥  

and { }1 1 1
1 1 0... 0n n n n

n na p a p q a p q a q− −
−+ + + + ∈ −]  and its absolute value is 1≥ . 

 

 7.91. 

 Prove that 1 2

1 2 1

1

...
...

.... p

p p

p

ss s k
n n n n n

s s k

C C C C +
+ + =

=∑  

 
Solution 
We have 

 ( ) ( ) ( ) ( )1 2 1 ...1 1 ... 1 1p pn n n n nx x x x +
+ + + = +  

The coefficient kx  from the right side is 
1 ... p

k
n nC + . 

The coefficient kx  from the left side is 1 2

1 2

1 ...

.... p

p

p

ss s
n n n

s s k

C C C
+ + =
∑  

From this observation it results the equality. 
 

 7.92. 

Let’s consider , , *k m n ∈` and ,   ,ja j i m∈ =^ . If ( )2 12 .... 1 0k nkn n
j j ja a a−+ + + + =  for ,j i m= , 

compute: 

 ( ) ( )
( ) ( )

1

1 1

1 1
1 1 ,..., C1

...1,..., ,...,
...,...,

h

h
j m h m

pn

pn i i
m m pn

h m i i i im

a a
E a a a a

a aa a
+≤ ≤ − ∈

⎛ ⎞⎟⎜ ⎟⎜= + + ⎟⎜ ⎟⎜ ⎟⎝ ⎠
∑ ∑  

knowing that: 
 ( ) { }{ }1C ,..., 1,2,..., /   hh

m p s ti i m i i for s t= ∈ ≠ ≠
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 Solution 
 We’ll note ,   1,n

j ja y j m= = . Because 1jy ≠ , by multiplying eache equality from the 
enounce, respectively by 1jy −  we obtain: 

 ( )( )2 2 1 2 10 1 ... 1 1k k k
j j j j jy y y y y− += − + + + + = − . 

Then, because  ,j i m∈  we have 

    cos sin2 1 1 2 1...
2 1 2 1

j j
j

p p
y ik k

k k

π π
= +

+ ++ +
+ +

, 1,2,...2jp k= . 

We will prove by recurrence in function of *m ∈ ` , that: 

 ( )1 1
1

1 1,..., ...pn pn
m mpn pn

m

E a a a a
a a

⎛ ⎞⎛ ⎞ ⎟⎟ ⎜⎜ ⎟⎟= + +⎜⎜ ⎟⎟ ⎜⎜ ⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
. 

For 1m =  we have ( )1 1
1

1pn
pnE a a

a
= + . We assume the property true for m , we must prove for 

1m+ , that ( ) ( )1 1 1 1
1

1,..., , ,..., .pn
m m m m pn

m

E a a a E a a a
a+ +

+

⎛ ⎞⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎜⎝ ⎠
. 

Then  

 ( ) 1
1 1,..., , 2 cos ...cos

2 1 2 1
m m

m m
p pE a a a p p
k k
π π

+ =
+ +

, 

( ) { }1,...., 1,2,...2 m
mp p k=  

 
 

 7.93. 
 In a plane we consider the set of points whose coordinates are integers. Having the natural 
numbers  with . Prove that there exists a polygon with p sides which has  points 
on its border and points in the interior. 
Generalize in the space. 
 
 

Solution: 
 
…………………………………………………… 
…………………………………………………… 
A   ………………………………………………..B’ 
C….……..………………………………………D 
……………………………………………………. 
……………A………………………B……………. 
…………………………………………………….. 

The proof is done by construction. 

, ,n m p 4p ≥ n
m
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We draw the segment   which contains exactly  points. On the line located above of 'A

and , we draw the segment  which contains exactly points. 

It is possible to designate the segments  and  (see the figure nearby) such that 
they do not pass through any point, and also  are between the line of  and the line 
situated above this; and the segment  (that is the m points) is located in the interior of the 
quadrilateral . 

. Because the polygon has p sides, by uniting the points ', 'A B with a line 
polygonal which contains 3p−  sides and which is situated between the line of  and the line 
above this, without touching any point. 
 
Generalization. 
 In the Euclidean space , one considers the set of points whose coordinates are 
integers. If are natural numbers, , then there exists a polyhedral with p faces which 
contains n points on its border and m points in the interior. 
 The proof is also done by construction: one considers the segments  and  with 

their previous properties, but  and [ ]'BB  are replaced by planes which keep the same 
properties. Then one constructs two planes which pass through the previous planes, keeping of 
course the required conditions. 
At the end, the polygonal line  will be replaced by a series of planes which will be 
constructed in a similar way. 
 
 

 7.94. 
Determine the set A  defined by: 

a)  
b) if  then 1 2 A× ∈  
c) the elements of  are only obtained by the utilization of the rules a) and b) for a limited 
number of times. 
 
 

Solution:  
 We show that   
where  

  

First of all, we show that  
One utilizes the reasoning by recurrence for , to show that . For  

one has  according to the rule a).  One assumes that the property is true for , then  
 and it will result that also  according to the rule b) 

[ ]AB n

AB [ ]CD m

[ ]'AA [ ]'BB
',  'A B CD

CD
' 'AA B B

4 3 1p p≥ ⇒ − ≥
CD

3\
, ,n m p 5p ≥

[ ]AB [ ]CD

[ ]'AA

' 'A B 4p−

102 A∈
x A∈

A

A M=

N N1...1 2...2 / *
n n

M n
⎧ ⎫⎪ ⎪⎪ ⎪= ∈⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

D `

A M⊃
*n ∈` N N1...1 2...2

n n

A∈D 1n =

102 A∈ n

N N1...1 2...2
n n

A∈D N N11...1 2...22
n n

A∈D
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We show that . 
Let’s consider . If one only applies the rule a) it will result that . One cannot 
apply the rule a) but one time. Now the rule b) cannot be applied if the rule a was applied. If one 
applies b) one time, one obtains . By recurrence one proves that if one applies the rule 
b)  times, then 

 
but 

  
Therefore , from which . 
 
 

 7.95. 
One constructs the set B  such that  
a) the elements 0, 9 and 1 belong to  
b) if ,x y B∈  then  and x y xy B− ∈  
c) all the elements of are obtained by the utilization of the rules a) and b) for a limited number 
of times. 
 
Find B. 
 
 

Solution: 
We prove that , where 

 
“ ” 
First of all, we show that  

 

 

 

 
…………………………………….. 

 

If  then  

because one obtains by the utilization of the rules a) and b). 
Let’s consider ; if  one has  by the rule a); if  one has  

if  one has . It remains therefore the case  with 
;  

A M⊂
x A∈ 102x M= ∈

11022x =
n

N N
1 1

1...1 2...2
n n

x A
+ +

= ∈D

N N
1 1

1...1 2...2
n n

M
+ +

∈D

A M⊂ A M=

B

B

B M=

{ }{ } { }10, ... | 0 9,   1,... ,   *,  1p iM x x x i p p p= ≤ ≤ ∈ ∈ <+∞` ∪

⊃
{ }0;0,1;0,2; 0,9;1 B… ⊂

0,9 et 0,9 0,9 0,9 0B B∈ ⇒ − = ∈

0,9 et 1 0,9 1 0,1B B∈ ⇒ − = ∈

0,9 et 0,1 0,9 0,1 0,8B B∈ ⇒ − = ∈

0,8 et 0,1 0,8 0,1 0,7B B∈ ⇒ − = ∈

0,3 et 0,1 0,3 0,1 0,2B B∈ ⇒ − = ∈

{ }0,1,2,....,9y ∈ N
 times

0,0....0 0,1...0,10,
i i

y y B= ∈���	��


x M∈ 1x = 1 B∈ 1x ≠ 0 1x≤ <
0x = 0 B∈ 10, ... px x x=

{ }0 9,  1,..., ,   *,    and 0ix i p p p x≤ ≤ ∈ ∈ <+∞ ≠`
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without diminishing the generality one assumes . 

 If  then  

with  
 
Of course 11 9w≤ ≤  since 10 8x≤ ≤ ; one has 0 9jy≤ ≤ , 2 1j p≤ ≤ − since 
0 9,  2 1;  1 9j px j p z≤ ≤ ≤ ≤ − ≤ ≤          1 9pz≤ ≤  since . 

One has:  

Performing the subtraction: 
 

because  and  

 and  

 and  

but the last absolute value is equal to  
 By recurrence it results that x B∈ , since 

 

 

which is obtained by the utilization of the rules a) and b) a limited number of times. 

)β   If , one has ,  

 

where  since  for  

To show that  

it is sufficient to see that the first decimal digit of t is zero, therefore different of 9, therefore 
we’ll use the case  
      

 
 . The operations of the rule b) applied a limited 
number of times on the elements 0, 9 and 1 will also give elements of , because: if  
it results that  and since and  and  having a 

limited number of decimals, then also  and  will have a limited number of decimals.  
 

0px ≠

)α 9ix ≠ N1 1 2 1
12

0, ... 0, 0,0 ... 0,0...0 0,0...0p p p
pp

x x w y y z−
−

−

= − − − ����	���


1 1 1,  9 ,  2 1 and 10j j p pw x y x j p z x= + = − − ≤ ≤ − = −

1 9px≤ ≤

N N1 2 3 1 1 2 1
2 1

0, 0,0 0,00 0,0...0 0,0...0 0, 0,0 ...p p p p
p p

w y y y z w y y z− −
− −

− + + + = −

1 2 1 1 2 10, 0...00 0,0 ... 0, ...p p p pw y y z x x x x− −− =

1 110 ,   1p pz x w x− = − = 9 ,  2 1j jy x j p− = ≤ ≤ −

10, w 2 1 20,0 0, 0,0y B w y B∈ ⇒ − ∈

1 20, 0,0w y− 3 1 2 30,0 0, 0,0 0,0y B w y y B∈ ⇒ − − ∈

1 2 30, 0,0 0,00w y y− −

N N1 2 1
2 1

0, 0,0 ... 0,0...00 0,0...00p p
p p

x w y y z−
− −

= − − − − =

N N N1 2 3 1
1 2 1

1...1.,0, 0,0 0,00 .... 0,0...0 0,0...0p p
p p p

w y y y z−
− − −

= − − − − −

1 9x = N N
1

0,9...9 1 0,0...01
n n

B
−

= − ∈ *n∀ ∈`

N2 20,9 ... 0,9...9 0,0 ...p p
p

x x x t t= = −

9 ,  2 ; 0 9j j jt x j p t= − ≤ ≤ ≤ ≤ 0 9jx≤ ≤  2 j p≤ ≤

20,0 ... ;   0 9,  2p jt t t B t j p= ∈ ≤ ≤ ≤ <

)α
t B x B∈ ⇒ ∈

" "⊂
[ ] { }0,9 and 1 0,1 ;  0;0,1;0,2;...0,9;1M M∈ ⊂ ⊂

M , Mα β ∈
Mαβ ∈ Mα β− ∈ 0 1α β≤ − ≤ 0 1αβ≤ ≤ ,α β

αβ α β−
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 7.96. 

Let’s consider the set  which is called the ring of m-integers, 

, fix. 
It is said that  in , with of , if and only if there exists  such that 

. 
 We consider the element  of I ; find its class of equivalence modulo  in I . 
 
 

Solution. 1)  
The case   

a)  
We note with   the class we are looking for,  the set , and 
 

 
We show that  
First of all we show that  
Let’s consider x M∈ . Then there exist  with the properties written above. 
1) , that is is a m-integer, because from and   it results that

. 

2)  in I, since there exists , ,  

because  and  (therefore  is a m-integer because , 

such that: . Therefore .  

We prove that  

Let’s consider . Therefore  and  as well as  such that  

in . But  can be written  and the same 

 with  . 

 in I , implies that   in I , therefore implies that there exists  

such that  and . 

| , ,  0,  ( , ) 1aI a b b b m
b

⎧ ⎫⎪ ⎪⎪ ⎪= ∈ ≠ =⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
]

m ∈]
( )modx y m≡ I ,x y I z I∈

z I∈
r m

r ∈]
{ }1,0,1m∉ −

r
mM m]

1
1 2

2

 |  , , , ,  0 ,  1 / ,6( , ) 1 and m
mk hM k k h p h p m m p h pr M
mk p

⎧ ⎫⎪ ⎪+⎪ ⎪= ∈ ≤ < = − =⎨ ⎬⎪ ⎪+⎪ ⎪⎩ ⎭
]

r̂ M=
r̂ M⊃

1 2, , ,k k h p ∈]
x I∈ x ( ), 1m p = 2k ∈]

( )2 1mk pm+ =

(mod )x r m≡ 1

2

Iγ
γ

∈ 1 1 2 mk rk h rpγ = − + − 1γ ∈]

mh rp M− + 2 2mk pγ = + 1

2

γ
γ

( )2 , 1mγ =

1 1 2

2 2

mk h mk r rpm x r
mk p

γ
γ

+ − −
= = −

+
ˆx r∈

r̂ M⊂

ˆx r∈
ax
b

= 0b ≠ ( , ) 1b m = ( )modx r m≡

I b ( )2 ,  0 ,  , 1b mk p p m p m= + ≤ < =

1 ,  0a mk h h m= + ≤ < 1 2, , ,k k h p ∈]

( )modx r m≡ |m x r− 1

2

Iγ
γ

γ
= ∈

m x rγ = − ( )2 , 1mγ =
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We consider  irreducible. It results . Because  and 

 it results:  from which   that is . 
Remark 1.  

For  we have  and for  we have . 
b) . Each class of equivalence contains only an element therefore  
c) . It exists only one class of equivalence, therefore . 
2) The case :  a)  
Property 1. 

We have  , I  the ring of m-integers and . Then  such that 

 in . 

Proof.  
1

2

r I
r
∈  then . 

Let’s consider the Diophantine equation  (the unknowns being  and ) which 
admits integer solutions, since  and . Let’s consider  and  a 

particular solution. Taking  and . We have  since  

because there exists  such that . Therefore . 

Remark 2.  

It exists an infinite number of integers  such that in I , with  

These numbers are, for example, particular solutions of the previous Diophantine equation. 
Therefore, for  such that  in I and  which can be 
determinate as in the case 1 a). 
 b) The sub-case does not exist because it would result  and therefore . 

c) .  One has . 
 
 

 7.97. 
Let’s consider the equation  with  for  and 

. Show that the equation has a limited number of natural numbers solutions. 
 
Solution: 

)α  . We note all . The initial equation becomes 

γ
( )

( )
1 21

2 2

m k k r h rp
m mk p

γ
γ

− + −
=

+
( )1 2, 1γ γ =

( )2 , 1mγ = ( )1 2|m m k k r h rp− + − | -m h rp/ x M∈

0m = I =] 1m =± I =_
0m = { }r̂ r=

1m =± r̂ I= =_
r̂ I= −] { }1,0,1m∉ −

m ∈] 1

2

r I
r
∈ a∃ ∈]

( )1
2

2

, 1r I r m
r
∈ ⇒ = I

( )2 , 1r m = 1 2,r r ∈ ]

2xr ym r+ = x y
( )2 , 1r m = 11 | r 0x x= ∈] 0y y= ∈]

0a x= 1 0yγ = ( )1
0

2

modr x m
r
≡ 1

0
2

| rm x
r

⎛ ⎞⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎜⎝ ⎠

1 0

2 2

y I
r

γ
γ

γ
= = ∈ 0 1

0
2 2

y rm x
r r

= − 0 2 0 1x r y m r+ =

Iα∈ ( )1

2

modr m
r

α= 0m ≠

,  r I a∪ − ∃ ∈] ] ( )modrr a m≡ ˆ ˆrr a=

0m = I =] r ∈]
1m =± p I= =_

1
1 1 ... nmm

m ia x a x b+ + = *,i ia m ∈` { }1,...,i n∈
b∈]

0b> im
i ix y=
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         (1) 
One can see that: 

 
(otherwise one has: ) 

……………… 

   (same explanation) 

                              ___________________________ 
It results that:    the number of natural solutions of the equation  (1) 

 = finite number. 

       (2) 
Thus, if the number of solutions of the equation (1) is limited, then also, from (2) will result that 
there exists a limited number of values for each ix . 

. Then, the only natural solution is the banal solution. 
. The equation does not admit any natural solution. 

 
 

 7.98. 
Let’s consider  for  . Then, the equation  

admits in addition a solution in the set of real numbers. 
 

Solution: 
The equation can have no solution, or it can have at least one solution. 

 If the equation admits at least one solution, let it be  one of those. Therefore 
. 

1) . Let’s consider . It results that  with . 
Let’s consider  

 

If . From which . Thus . 
Let’s consider , It results that  with  

  

Since . Thus ,  from which  is the only solution of 
the equation. 

2) . One has:  where , 

1 1 ... n na y a y b+ + =

1
1

0 by
a
⎡ ⎤
⎢ ⎥≤ ≤ ⎢ ⎥⎣ ⎦

1 1a y b>

0 n
n

by
a

⎡ ⎤
⎢ ⎥≤ ≤ ⎢ ⎥⎣ ⎦

0≤

1

(1) 1
n

i i

b M
a=

⎛ ⎞⎡ ⎤⎟⎜ ⎢ ⎥⎟≤ + =⎜ ⎟⎜ ⎢ ⎥⎟⎟⎜⎝ ⎠⎣ ⎦
∏

{ },   1,...,im
i ix y i n= ∈

) 0bβ =
)  0bγ <

1, 0a b> { }1,...,i n∈ 1 ... ,  2x x x
na a b n+ + = ≥

0x ∈\
0 0 0

1 ...x x x
na a b+ + =

0 0x > 0x x> 0x x t= + 0t >
{ }1max ,..., nz a a=

( )0 0 0 0 0
1 1 1 1... ... ...x x x x xx x t t t t

n n n na a a a a a z a a z b+ + = + + ≤ + + =
0 0 0 0 0

1 ...x x x x x
nz b z b a a b≥ ⇒ ≥ ⇒ + + > z b< 1 0... ,  x x x

na a b x x+ + < ∀ >

0x x< 0x x t= − 0t >

( )0 0 0 0 0
1 1 1 1... ... ...x x x x xx x t t t t

n n n na a a a a a z a a z b− − − −+ + = + + > + + =
t tz b z b− −< ⇒ > 1 ...x x x

na a b+ + > 0x x∀ < 0x

0 0x < 0 0 0
1 ...x x x

na a b+ + =
00 0

1

1 1 1...
xx x

na a b

−− −⎛ ⎞⎛ ⎞ ⎛ ⎞⎟⎟ ⎜⎜ ⎟⎜⎟⎟ + + =⎜⎜ ⎟⎜⎟⎟ ⎟⎜⎜⎜ ⎟ ⎟⎜ ⎜ ⎝ ⎠⎝ ⎠ ⎝ ⎠
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with , therefore one has reduced this case to the first case. 
3) The case  is not possible, because it would result  0 0 0

1 ... na a b+ + = where , but 
by hypotheses . Contradiction. 
 
 

 7.99. 
 Show that a congruence ,  which contains unknowns, admits a limited 
number of distinct solutions (two by two non-congruent) 
 
 

Solution: 
Each unknown cannot take but the values: , that is at maximum  

values (a complete system of remainders modulo m ). If the equation – a congruence containing 

n  unknowns, then the maximum number of solutions will be . 
 
Observation:  
When , the congruence becomes an equality (an equation) which can have an infinite 
number of solutions, for example .   
 
 

 7.100. 
Solve the linear congruence  
 
 
Solution: 

 The congruence can be written: . From which  
with  From where  
(Remark: one cannot divide the congruence by 2 at beginning (one would obtain 

), because solutions will be lost). 
The module of the congruence gives the rest 4. One has:  
where . 

One takes , therefore all the possibilities. 
 But it is sufficient to give to the values 0 and 1, since: for 
and for . 
 If one successively gives the values  to the 
couple  one obtains for , respectively the values . But we are not 
interested in . Therefore 

 

0 0x− >

0 0x = 1n =
1n ≥

mod m 0m ≠

0,1,2,..., 1m − m

nm <∞

0m =
( )0 0 mod 0x ≡

2 1 1 6 (mod 4)x y− ≡ −

2 6 2 0(mod 4)x y+ − ≡ 2 6 2 4x y k+ − =
k ∈] 3 2 1 0x y k+ − − =

3 0(mod 2)x y+ ≡
3 2 1x y k=− + +

2 1(mod 4)x y k≡ + +

( ) { }2, 0,1,2,3y k ∈

k 3 2 2 1(mod 4)k k= ⇒ ≡ ⋅
2 2 2 6(mod 4)k k= ⇒ ≡ ⋅

(0,0),(1,0),(2,0),(3,0),(0,1),(1,1),(2,1),(3,1)
( , )y k x 1,2,3,0,3,0,1,2

k
1(mod 4)(2)(3)(0)(3)(0)(1)(2)
1(mod 4)(1)(2)(3)(0)(1)(2)(3)

x
y

⎧ ≡⎪⎪⎨⎪ ≡⎪⎩
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This shows that the number of solutions of this congruence is equal to . 
 
 

 7.101. 
Let’s consider ,  and . Show that the equation 

 admits an infinite number of solutions in the set of natural numbers if and only if 

 divides b and if there exists ( ) { }2
0 0, 1,...,i j n∈  such that 

0 0
0i ja a⋅ < . 

(One notes  the greatest common divisor of 1,..., na a ). 
 

Solution: 
 If we put the coefficients of the equation with the same denominator we can eliminate the 
denominators and therefore we can say that all the  and  are integers. 
Necessity. 
 Since the equation has solutions in , then it would also have in  because . 
It results that divides , according to a known theorem. 
 Let’s suppose by absurd that all the terms of the equation have the same sign, for 
example positive (in the opposite case one multiplies the equation by -1): 

- If  then the equation does not have any natural solution: contradiction. 

- If , each unknown  cannot take values which are between 0 and  (natural 

values), therefore a finite number of solutions; also contradiction. From which the 
supposition is false, therefore it is not true that the terms of the equation have the same 
sign. 

Sufficiency. 
Because divides  it results that the equation has solutions in . By hypothesis, the 
equation has l has terms positives non nulls  and  terms negatives non nulls.  
One has . Then one writes: 

,  

 
 
(One has supposed the first  terms positives and the following negatives. In the other cases 
one reorders the terms and (implicitly) one re-numerates them.) 
Let’s consider  the smallest common multiple of . One notes 

 and  

If one notes  the smallest common multiple of l and k. 
We note  and . If we note: 

(2,6)4 8=

ia ∈_ { }1,2,..., ,  2i n n∈ ≥ b∈_

1

n

i i
i

a x b
=

=∑

( )1,..., na a

1,..., na a

ia b

n` n] n n⊂` ]
( )1,..., na a b

0b<

0b≥ ix
i

b
a

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

( )1,..., na a b n]
1 l n≤ < k n l= −

1 1k n n≤ ≤ − <

'

1 1

l n

h h j j
h j l

a x a x b
= = +

− =∑ ∑ '0 j ja a< =−

{ }1,...,j l n∈ +

l k

[ ]10 ,..., nM a a< = 1,..., na a

/i ic M a= { }1,...,i n∈

[ ]0 ,p l k< =

1 /l p l= 1 /k p k=
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with  

 
where  represents the integer part of , and  is a particular solution of the equation 
(it was shown at the beginning of this proof that there exist integer solutions), then one obtains 
an infinite number of natural solutions for our equation. 
 

 7.102. 
Let’s consider the linear equation with integer coefficients 

   

 
a) If there exists  such that   
then the equation admits solutions in the set of integer numbers. 
b) In this case, solve it. 
 

Solution: 
a) Let’s consider . It results that 

, therefore , then , from where . 

Because ( )
0 0
, 1i ja a ∼  one has , but . Therefore the equation admits integer 

solutions. 

b)

  

 

 where . It results: 

0
1

0
1

,       1

,       1
h h h

j j j

x l c t x h l

x k c t x l j n

⎧⎪ = + ≤ ≤⎪⎨⎪ = + + ≤ ≤⎪⎩
00

, 1 1

,   ,   1max jh

h j h j

xxt t
l c k c

⎧ ⎫⎡ ⎤⎪ ⎪⎡ ⎤ −−⎪ ⎪⎢ ⎥⎢ ⎥∈ ≥ +⎨ ⎬⎢ ⎥⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
`

[ ]x x ( )0 0
1 ,..., nx x

1

n

i i
i

a x b
=

=∑

{ }2
0 0( , ) 1,...,i j n∈

0 0
1(mod )i ja a≡±

0 0 00 01(mod ) :   1i j ia a h a h≡± ⇔∃ ∈ − =±]

( )
0 0
,i jd a a∼

0 00| i jd a h a−/ | 1d ± 1d ∼

( )1,..., 1na a ∼ 1| b

( ) ( )
0 0 0 0 0 0 0 0

0 0
0 0

0 0
1

1
n

i i i i j i j j i i j j i i
i i i i i

i j i j

a x a x h a x a x a x a x h x x
= ≠ ≠

≠ ≠

= + ± + = + + ± =∑ ∑ ∑

0 0

0
0

i i j i
i i
i j

a x a t x b
≠
≠

= + ± =∑

0 00j it x h x= +
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(parameters). 
 
 

 7.103. 
 

It is given the system: 
  

where  are linear functions which have their coefficients in  and represent 
respectively the integer part and the fractional part of . 
Find a method for solving this system. 
 
 

Solution: 
(1) Writing  with ,  one obtains (after the 
elimination of denominators) the equivalent system: 
(2)  

where the  are now linear functions which have their coefficients in  
 One solves this system considering that  are the unknowns. Since: 

 

and because    it results: 

 ,  

 One applies the method of the substitution. One calculates  of an equation  

, and replaces it in the other equations. It will remain a linear system of n-1 equations 
with n-1 unknowns. 

( )

{ }

0 0

0
0

0 0 0 0

0
0

0 0 0 0

0 0

1

with ,  , ,  and 

i i i j
i i
i j

j i i i j i
i i
i j

i

x a x a t b

x t h x h a x a h x t h b

x i i j t

≠
≠

≠
≠

⎧ ⎛ ⎞⎪ ⎟⎪ ⎜ ⎟⎜⎪ ⎟⎜⎪ =± + − ⎟⎜⎪ ⎟⎜ ⎟⎪ ⎟⎜⎪ ⎟⎜⎝ ⎠⎪⎪⎪⎪ ⎛ ⎞⎪ ⎟⎜⎪ ⎟⎜⎪ ⎟⎜= − =± + ± − ⎟⎨ ⎜ ⎟⎪ ⎜ ⎟⎟⎪ ⎜ ⎟⎜⎝ ⎠⎪⎪⎪⎪ ∈ ∉ ∈⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

∑

] ]

[ ] [ ] { } { }( )1 1 1,..., , ,..., , ,..., ,  1,j n n n jf x x x x x x b j n= ∈ =_

jf _ [ ] { },x x
x

[ ] { }i i ix x x= + [ ] { },  0 1i ix x∈ ≤ <] 1,i n=

[ ] [ ] { } { }( )1 1,..., , ,..., ,  1,j n n jg x x x x c j n= ∈ =]

jg ]
{ } { }1 ,..., nx x

[ ] { }
1 1

,   1,
n n

ij i ij j i
i j

x x c i nα β
= =

+ = =∑ ∑
[ ],   ,  , 1,ij i ix c i j nα ∈ =]

{ }
1

n

ij j
j

xβ
=

∈∑ ] 1,i n∀ ∈

{ }
1j

x

11 j n≤ ≤
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 We proceed in the same way with this new system. (If one obtains during this procedure 
an impossible equation then the system (2) does not admit solutions. Stop.). At the end one 
obtains: 
 { } [ ] [ ]( )1 ,...,

nj nx h x x kδ = + ∈] , then . It results:  where 

 but such that . 

These two cases can be written as a single case: 

  and  

Let  be the number of solutions for { }
nj

x . Now one will follow the inverse procedure until 

the determination of all the . One replaces the value(s) of  in the previous 

system of 2 equations with 2 unknowns. One obtains the values of . 

Let  be the number of these. 

The inverse procedure continues until when one determines  which has  solutions: 

 

One remarks that . If the system has solutions it results that these are in 
. 

 Until now one has obtained  solutions. 

(3) Reporting all the values of  in  (2) on obtains a linear system of n equations with 
n unknowns:  which will be solved in integer numbers. One normally solves in , 

and if the solution belongs to  then this solution is correct (one then performs the relation (1) 
to obtain ); otherwise, it is not convenient. 

One will execute the paragraph (3) for all the values of . 

Thus, the system is well solved. The number of solutions of this is . 

 
 

 7.104. 
Solve in  the equation:  
 
 

Solution: 
 The general solution in  is the following:  
with:  

{ }
nj

xδ ∈] { } 0
nj

x =

{ } ,   *
nj

px p
ε

= ∈` 0 1;   ,p kδ
δ

≤ < ∈]

{ } ,
nj

px p
δ

= ∈` 0 1p
δ

≤ <

nj
s

{ }
nj

x { },   1,jx j n=

{ }
1nj

x
−

1nj
s

−

{ }
1j

x
1j

s

{ } { }( )1 1,..., 1,2,..j j n=

{ } ,  1,ix i n∈ =_
_

1

n

i
i

s
=
∏

{ } { }1 ,..., nx x
[ ] [ ]1 ,..., nx x n\

n]
1,..., nx x

{ } { }1 ,..., nx x

1

0 and 
n

i
i

s
=

≥ ≤∏

` 3 7 2 18x y z− + =−

] 1 1 2 1 2,  2 ,  2 7 9x k y k k z k k= = + = + −

1 2,k k ∈]
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Because  it results that  and also that  and 

, that is one has . From which, the general solution in  will 

be: with  in  and  

 
 

7.105. 
Solve in  the equation:  

 
 

Solution: 

One has . 

A)  

a)  

b)  

c)  
d)  
e) 4 4z x= ⇒ =  
B) 1 2 9 29 0 3y x z z= ⇒ + = ⇒ ≤ ≤  
a) 1 10z x= ⇒ =  
b) 3 1z x= ⇒ =  
c) { }0,2z x∈ ⇒ ∉ `  
C) 2 2 9 14 0 1y x z z= ⇒ + = ⇒ ≤ ≤  
a) 0 7z x= ⇒ =  
b) 1z x= ⇒ ∉`  
 All the solutions are: 
  

( ) ( ) ( )22,0,0 ;  10,1,1 ;  7,2,0  

 ( ) ( )13,0,2 ;  1,1,3  
 ( )4,0,4  
 Therefore there is a limited number of solutions. 
 
 
 

0,  0,  0x y z≥ ≥ ≥ 1 0k ≥ 1
2 1

2
kk

⎡ ⎤
⎢ ⎥≥ − +
⎢ ⎥⎣ ⎦

1
2

9 2 1
7

kk
⎡ ⎤−
⎢ ⎥≥ +
⎢ ⎥⎣ ⎦

1
2

2 2 2
7

kk
⎡ ⎤−
⎢ ⎥≥ +
⎢ ⎥⎣ ⎦

`

1 1 2 1 2,  2 ,  2 7 9x k y k k z k k= = + = + − 1 2,  k k ` 1
2

2 2 2
7

kk
⎡ ⎤−
⎢ ⎥≥ +
⎢ ⎥⎣ ⎦

` 2 15 9 44x y z+ + =

440 2
15

y
⎡ ⎤
⎢ ⎥≤ ≤ =
⎢ ⎥⎣ ⎦

440 2 9 44 0 4
9

y x z z
⎡ ⎤
⎢ ⎥= ⇒ + = ⇒ ≤ ≤ =
⎢ ⎥⎣ ⎦

0 22z x= ⇒ =
351
2

z x= ⇒ = ∉ `

2 13z x= ⇒ =
3z x= ⇒ ∉ `
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 7.106. 
Solve in ]  the equation: 

 1 2 317 20 18 34x x x+ − =−  
 
Solution: 
 One writes the equation thus: 

( )2 3 120 18 17 2 0x x x− + + =  
One notes 1 2x t+ = ∈] . It results: ( )2 3 320 17 0x x t x− − − =  
That is: 2 320 17 0x h x− − =  
One notes 3x t h− = ∈]   
 It results: 

( )1
1 3 2 2

3

2
2 2 2 20 17 20 18 2

x t
x t x h h x h x h

x t h
⎧ + =⎪⎪ ⇒ = − = − − =− − + − = − −⎨⎪ − =⎪⎩

 

The general solution is: 

 ( )

1 1 2

2 1
2

3 1 2 1 2

20 18 2

20 17 ,  ,

x k k
x k

x k k k k

⎧⎪ = − −⎪⎪⎪ =⎨⎪⎪⎪ = − ∈⎪⎩ ]  
 
 

 7.107. 
Solve in the set of integer numbers the equation: 
15 17 9x y z α− + =  

Where α  is an integer parameter. 
 
 

Solution: 
 The equation can be written: 

15 9( 2 )x z y y α+ − + =  
Or again: 

15 9x t y α+ + =          (1) 
where  2t z y= −          (2) 
It results from (1) that:       (3) 
It results from (2) that: 2z t y= +  
It results from (3) that:  
 The integer general solution is: 

 

15 9y x t α=− − +

30 17 2z x t α=− − +

( )
1

2
1 2 1 2

1 2

15 9     ,
30 17 2

x k
y k k k k
z k k

α
α

⎧ =⎪⎪⎪⎪ =− − + ∈⎨⎪⎪ =− − +⎪⎪⎩

]
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(one has noted and  ) 
 
 

 7.108. 
Solve in  the equation . 

 
 

Solution: 
The equation can be written: 

 

 With these notation one has: , equation which admits the general solution: 

 with  

Therefore  from where  with           (1) 
In a similar way , where

 (one has used (1)). 
Thus  
 The general solution of the equation in  will be: 

 

 
 

 7.109. 
Solve the equation  in the set of integer numbers. 

 
 

Solution: 
 one can write:  with  and   (1) 

, one can also write: , with  and   (2) 
Using (1) and (2) in the initial equation, one has  

 

It results that 5 divides . Therefore    (3) 
From where, the general solution will be: 

1x k= 2t k=

] 3 70 35 6 76x y z+ − + =

N
21

3 23 12 2 25 1
tt

x y z w y z
⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜+ − + − + + =⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎟⎟ ⎜⎜ ⎝ ⎠⎝ ⎠
�����������	����������


1 23 1t t+ =

1

2 3 1
t k
t k

⎧ =⎪⎪⎨⎪ =− +⎪⎩
k ∈]

2 3 1y z t k+ = =− + 3 1y z k=− − + z ∈]

123 12 2 25x y z w t k+ − + − = =
23 69 23 12 2 25x z k z w k− − + − + − =

35 2 70 2x z w k= − + +
4]

35 2 70 2
      , ,

3
x z w k

z w k
y z k

⎧ = − + +⎪⎪ ∈⎨⎪ =− −⎪⎩
]

5 2 0xy z+ − =

x∀ ∈] 1 15x k r= + 1k ∈] { }1 0,1,2,3,4r ∈
y∀ ∈] 2 25y k r= + 2k ∈] { }2 0,1,2,3,4r ∈

( )2 2 1 2 2 1 1 25 5 2 0k k k r k r z r r+ + + + − =

( )1 2 2r r − ( ) ( ) ( ) ( ) ( ){ }1 2, 1,2 , 2,1 , 3,4 , 4,3r r ∈
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 With (arbitrary parameters), and . 
 The unknown  has been obtained by starting from the initial equation because there 
were known the values of  and . 
 
 

 7.110. 

It is given the equation . Show that the equation does not admit 

a natural solution, for any . Generalize. 
 
 

Solution: 
One has: and 23 1 1(mod 3)k + ≡  therefore ( )23 1 1(mod3)yk + ≡

where  
a) if . 
b) if  
c) if  
 From which , Thus the equation does not admit a natural solution. 
Generalization: 
 The equation  does not admit an integer solution. 
 The proof is the same. First of all one shows that if  then , because if  
it would result that an integer number (the left member of the equation) is equal to a non-integer 
number (the right member). 
 
 

 7.111. 
Solve the equation  in the set of integer numbers. 
 
 
Solution: 

 One writes: 4 8 12 2 0xy t w w+ − + + + =  we note  which will be a new 
unknown. 

1 1

2 2

1 2
1 2 1 2 2 1

5
5

25
5

x k r
y k r

r rz k k k r k r

⎧⎪⎪⎪ = +⎪⎪⎪ = +⎨⎪⎪ −⎪⎪ =− − − +⎪⎪⎩

( ) 2
1 2,k k ∈] ( ) ( ) ( ) ( ) ( ){ }1 2, 1,2 , 2,1 , 3,4 , 4,3r r ∈

z
x y

( )2
1 23 2 3 1 yx k k+ + = +

( ) 2
1 2,k k ∈]

13 2 2(mod 3)k + ≡
2 1 2 2(mod 3)x ≡ − ≡

2
3 1 1 2(mod 3)x M x= + ⇒ ≡ ≡/

2
3 2 1 2(mod3)x M x= + ⇒ ≡ ≡/

2
3 2 0 2(mod 3)x M x= + ⇒ ≡ ≡/

2,  2(mod 3)x x∀ ∈ ≡/`

( )2 3 2 3 1 wx y z+ + = +

2 0k ≠ 0y ≥ 0y <

4 7 14 0xy t w+ − + =

2 3t w v− + =
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 The equation becomes: 4 2 0xy v w+ − + =  where . And 
. If one changes the notations (for the 

sake of mathematical esthetic) one has the integer general solution: 

 

with (parameters). 
 
 

 7.112. 
Show that the equation: 

  
does not have a solution in the set of integer numbers. 
 
 

Solution: 
 The equation can be written: 
  
Or again  

Therefore  
As it results that one has the following possibilities: 
a) either  
           (1) 
           (2) 
(2) implies , and substituting in (1) it comes 

  

b) or    
 2 3 1x y− =−           (3) 
 4 1 1x y+ − =−          (4) 
 (4) 4x y⇒ =−  and substituting in (3) it comes 

18 3 1
11

y y y− − =− ⇒ = ∉ ]  

 Therefore the equation does not have a solution in . 
 
 
 
 

4 2w xy v=− − −

( )2 3 2 4 2 3 2 7 7t v w v xy v xy v= + − = + − − − − − − −

1

2

1 2 3

1 2 3

2 7 7
4 2

x k
y k
t k k k
w k k k

⎧ =⎪⎪⎪⎪ =⎪⎪⎨⎪ =− − −⎪⎪⎪ =− − −⎪⎪⎩
( ) 3

1 2 3, ,k k k ∈]

2 22 5 12 2 3 1 0x xy y x y+ − − + − =

2 22 8 3 12 2 3 1x xy xy y x y+ − − − + =

( ) ( ) ( )2 3 4 2 3 1 2 3 1x x y y x y x y− + − − − =

( )( )2 3 4 1 1x y x y− + − =

,x y ∈]

( )2 3 1x y− =

4 1 1x y+ − =
4 2x y=− +

311 3
11

y y− =− ⇒ = ∉ ]

]
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 7.113. 
Prove that the equation:  
does not admit a solution in the set of natural numbers. 
 
 

Solution I: 
 The equation can be written: 

 
Or 
  
 But this equation does not admit a solution in , because 

. Therefore it does not admit even more a solution in . 

 
 

Solution II: 
 The equation can be written: 

 

  

It results that the equation does not admit a solution in . Therefore it does not admit 
even more a solution in  . 
 
 

 7.114. 
Solve in the set of integer numbers the equation: 

   
 
 

Solution: 
The equation can be written: . 

 Therefore  is divisible by 3, that is 
 

 
 

 
 

 Let’s consider  

 

The solution of the equation is: 

2 25 50 26 8 46 15 0x y xy x y+ − − − + =

( ) ( )2 2 2 24 49 9 28 12 42 4 2 4 4 2 0x y xy x y x y xy x y+ + − + − + + + + − − + =

( ) ( )2 22 7 3 2 2 0x y x y− + + + − + =

\
( ) ( )2 22 7 3 2 2 0x y x y− + + + − + > `

( ) ( )2 25 2 13 4 50 46 15 0x y x y y+ − + + − + =

( )212 2 2169 16 104 250 230 75 9 7 10 0b ac y y y y y⎡ ⎤Δ = − = + − − + − =− − + <⎢ ⎥⎣ ⎦
\

`

3 3 2x y− =

3 2 3x y− =
3 2x −

3
3 2x M= +

3 ,   0,1,2,  x k r r k= + = ∈]
3

3 33 2x k x M M= ⇒ = ≠ +
3

3 33 1 1 2x k x M M= + ⇒ = + ≠ +
3

3 33 2 8 2x k x M M= + ⇒ = + = +
3 2,  x k k= + ∈]

( )33
3 23 2 22 9 18 12 2

3 3
kxy k k k
+ −−

= = = + + +
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 7.115. 
Prove that the equation 4

17 ... 14 10,  1nx y y z n− = + ≥  does not admit any integer 
solution. 

 
 
Solution: 

 One can write: , or  

 From which 7 divides , that is . 

Let’s consider  with . Then ; but 

But one can see that , therefore . It results that the equation does not 
admit any integer solution. 
 
 

 7.116. 
Solve in the set of integer numbers the equation: 

  
 
 

Solution: 
 

Therefore  is divisible by 5. 
Let’s consider ,  
The equation becomes: 

  

Therefore  
It results: 

 , ,  
The integer solutions of the equation are: 

  

3 2

3 2
9 18 12 2

x k
y k k k

⎧ = +⎪⎪⎨⎪ = + + +⎪⎩
k ∈]

( )4
17 ... 2 1 3nx y y z− − − = ( )4

13 7 ... 2 1nx y y z− = − −
4 3x − 4

7 3x M= +

7x M r= + { }0, 1, 2, 3r ∈ ± ± ± 4 4
7x M r= + { }4 4 4 4 40 ,1 ,2 ,3r ∈

4 3(mod 7)r ≠ 4
7 3x M≠ +

45 6 20x y− =

( )4 45 6 20 6 5 4x y y x− = ⇔ = −

y
5y z= z ∈]

4
4 4 45 30 20 6 4

6
xx z x z z −

− = ⇔ − = ⇔ = ∈]

4 4(mod 6)x ≡

6 2x k= + 6 4x k= + k ∈]

( )4

6 2

6 2
5

6

x k

k
y

k

⎧ = +⎪⎪⎪⎪ +⎪⎪ =⎨⎪⎪⎪⎪ ∈⎪⎪⎩
]
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( )4

6 4

6 2 4
5

6

x k

k
y

k

⎧ = +⎪⎪⎪⎪ + −⎪⎪ =⎨⎪⎪⎪⎪ ∈⎪⎪⎩
]

 

 
 

 7.117. 
Solve in the set of integer numbers the equation: 

   
 
 

Solution: 

; since  one has . 

 Therefore  where 1 1,
2 4

yx
⎧ ⎫⎪ ⎪⎪ ⎪∈ ± ±⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

 but 4 5
7

yxz −
= , from where  or

 A solution is: , since  admits the solution in integer 

numbers 2, 1x y=− =− . 
If , the initial equation becomes  which admits the integer 

general solution. 

  

with  (parameter). 

Therefore , with  of . It results . But , 

with . 

One writes , and then  if and only if  or 5 

 
  
 Therefore the integer solutions of the equation are: 

  

4 7 5yx z− =

4 7 5yx z= + z ∈] 4 yx ∈]

yx α= ∈] 1
2

yx =

yx α= ∈] 2,  1,  1x y z=− =− =−
1
2

yx =

yx α= ∈] 4 7 5 0zα− − =

7 3
4 1

k
z k
α⎧ = +⎪⎪⎨⎪ = +⎪⎩

k ∈]

7 3 0yx k− − = , ,x y z ] 3
7

yxk −
= 7x M r= +

{ }0,1,2,..,6r ∈

7 ,  x s r s= + ∈] ( )7 3
7

ys r+ −
∈] 3r =

7 3 6 1,   x s y t t= + ⇒ = + ∈`
7 5 6 5,   x s y t t= + ⇒ = + ∈`

2
1
1

x
y
z

⎧ =−⎪⎪⎪⎪ =−⎨⎪⎪ =−⎪⎪⎩
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6 1

7 3,   
6 1,   
4(7 3) 5

7

t

x s s
y t t

sz
+

⎧⎪⎪⎪ = + ∈⎪⎪⎪⎪ = + ∈⎨⎪⎪⎪ + −⎪ =⎪⎪⎪⎩

]
`  

 

6 1

7 5,   
6 5,   
4(7 5) 5

7

t

x s s
y t t

sz
+

⎧⎪⎪⎪ = + ∈⎪⎪⎪⎪ = + ∈⎨⎪⎪⎪ + −⎪ =⎪⎪⎪⎩

]
`  

 
 

 7.118. 
  Solve in  the equation: 
   
 

Solution: 

 The equation can be written:  
 has the form and it must have  or 

 
 Thus 1 1 10,  1,  4r r r≠ ≠ ≠   
For 1 2r =  one has 4 12 2(mod5)M + ≡ and 
For  one has  
Therefore 

       (1) 

and 
                  x = 5k1 + 3, k1 Є Z; 

                  y = 4k2+3, k2 Є Z;                                                                                                                 (2)                            

                  z = {2 – (5k1 + 3)4k2+3} / 5. 

        

One can observe that  in (1) and also in (2). It results that: 

]
5 2 0yx z+ − =

5 2 0yx z+ − =
x { }1 1 1 15 ,  ,  0,1,2,3,4k r k r+ ∈ ∈] ( )2 mod5yx ≡

( ) ( )1 1 15 2 mod5y yk r r+ ≡ ≡

1 3r = ( )4 33 2 mod5M + ≡

( ) 2

1 1

2 2
4 1

1

5 2 :   
4 1:  

2 5 2
 

5

k

x k k
y k k

k
z

+

⎧⎪⎪⎪⎪ = + ∈⎪⎪⎪ = + ∈⎨⎪⎪⎪ − +⎪⎪ =⎪⎪⎩

]
`

z ∈]
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  and  
 The integer general solution is obtained by bringing together (1) and (2). 
 
 

 7.119. 
Solve in  the equation:  
 
 
Solution: 

   

 
 We prove the last affirmation, because the first two are banal. One supposes (by absurd) 
that . One has . One excludes the case  which implies  and . 
Therefore . From which  contains at least two prime divisors (2 and 3). Therefore 
also admits at least two prime divisors (2 and 3), from which y admits at least two prime divisors 
(2 and 3). 
 Let’s consider  to be all the prime numbers inferior or equal to  (one has 

proved that ) . Thus . From which it 
results that  

One considers , the greatest prime number inferior or equal to . In accordance to the 

theorem of Chebyshev, for  there exists at least a prime number. Therefore 

2 p
x x x< ≤ . Then . It results that . Thus represents all the 

solutions of the equation. 
 
 

 7.120. 
Determine the general form of the solution in the set of integer numbers of the equation: 

( )24 12 2 mod5k + ≡ ( )24 33 2 mod5k + ≡

` ! zx y=

*

*

1 and 
0

 and z=0

1 and 
1

 and z=0
! and 1

y z
x

y

y z
x

y
x a y x z

⎧ ⎧ = ∈⎪ ⎪⎪⎪ = ⇒⎪ ⎨⎪ ⎪ ∈⎪ ⎪⎩⎪⎪⎪ ⎧ = ∈⎪⎪⎪ ⎪= ⇒⎨ ⎨⎪ ⎪ ∈⎪ ⎪⎩⎪⎪⎪ ≥ ⇒ = =⎪⎪⎪⎪⎪⎩

`

`

`

`

2z k= ≥ ! kx y= 2x = 2y = 1z =
3x ≥ !x ky

1,..., px x x

2p ≥ 1 *
1! ... ,  ,  1p

p px x x i pαα α= ∈ ≤ ≤` 1
1 ... p z

px x yαα =

1 2: , : .... :pz z zα α α

px x

2 p
x x x≤ ≤

2 ... 1p
p p

x x
x x

α
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + + =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

1z = ( )s
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where , , where all the  are even numbers and all 

the  are odd numbers. 

 
 

Solution: 

One has 

  

and 

 
1

jrm

j
j

x
=

≥∑  

From which  
1 1

i jp rm m

i j
i j

x x
= =

=∑ ∑ , it results: 

 

Since   and ,  one has  for  and 

 for . Therefore for . 
 The general form of the solution in integer numbers of the equation is: 

 

 The number of solutions is  
 
 

 7.121. 
Determine the linear equation which admits the following solution in the set of integer numbers: 

1

1

1
i

j

n
p
i

i
m

r
j

j

x

x

=

=

=
∑

∑

*, , ,i jm n p r ∈` { }, , 1,...,j im n r p j m≤ < ∈ ip

sr

1 1 1 1

j
j ji

rn m m m
r rp

i j j j
i j j j

x x x x
= = = =

= ≤ =∑ ∑ ∑ ∑

1 1

i jp rn m

i j
i j

x x
= =

=∑ ∑

1 1

0
j j

j
p pm nr

j j j
j j m

x x x
= = +

− + =∑ ∑

0j jp r

j jx x ≥ 0jp

jx ≥ { }1,...,j n∀ ∈ 0jx = { }1,...,j m n∈ +

0j jp r

j jx x− = { }1,...,j m∈ { }0,1, 1jx ∈ − { }1,...,j m∈

1 1 1

1

1 1 1

1

,..., , ... 0;  with 0 or 1

0

,..., , ... 0;  with 0 or 1

0

m m m n j

m

j

m m m n j

m

j

x x x x

x x x x

ε ε ε

ε

ξ ξ ξ

ξ

+

+

⎧ = = = = = =⎪⎪⎪⎪⎪⎪ ≠⎪⎪⎪⎨⎪ = = = = = =⎪⎪⎪⎪⎪ ≠⎪⎪⎪⎩

∑

∑

( ) ( )1 2 0 12 ... 2 2 2 2m m m
m m m mC C C C ++ + + = − = −



114 
 

 

where  are parameters in . 
 
 

Solution:  
The equation has three unknowns . 

Its general form is: , with . Or  

By differently noting the coefficients, we obtain: . 

One can write for  arbitraries in : 
  
 
For  (1) 
For   (2)  (4) 
For  (3) 
 (One has used (1) to obtain (2) and (3).) 
 But (4) is a system of three equations with three unknowns which will be normally 
solved. 
 From (3) it results . From (2) it results now . Or 

, therefore . 

From (1) it results . 

 Therefore the equation is: 
  
 
 

 7.122. 
One considers a natural  and . Solve the inequality: 

; Discussion. 

 
  

Solution: 
Let’s consider  

1 1 2

2 1 2

3 1 2

3 7 5
2

4 13 71

x k k
x k k
x k k

⎧ = − +⎪⎪⎪⎪ = +⎨⎪⎪ = + −⎪⎪⎩
1 2 and k k ]

1 2 3, ,x x x

' ' '
1 1 2 2 3 3a x a x a x b+ + = ' ', ,  1,2,3i ia b i∈ =_

' '
2 3

1 2 3' ' '
1 1 1

'a a bx x x
a a a

+ + =

1 2 2 3 3 2 3 with , ,x a x a x b a a b+ + = ∈_

1 2,k k ]

1 2 2 1 2 2 3 1 3 2 33 7 5 2 4 13 71k k a k a k a k a k a b− + + + + + − =

1 2 30 5 71k k a b= = ⇒ − =

1 2 2 30, 1 7 2 13 0k k a a= = ⇒− + + =

1 2 2 30, 1 7 2 13 0k k a a= = ⇒− + + =

2 34 3a a=− − 3 37 13 8 6 0a a− + − − =

3
13
5

a = 2
67
5

a =

25 923 898
5 5

b −
= =−

1 2 35 67 13 898x x x− + =−

3n≥ a ∈\

[ ]x a x a x
n n

⎡ ⎤ ⎡ ⎤+ −
⎢ ⎥ ⎢ ⎥+ ≥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

,  0 ,  ,  x ng r r n r q= + ≤ < ∈ ∈\ ]



115 
 

I) If , then the inequality of the problem becomes:  (1) which is 

equivalent to . 
Therefore  
II) If , then a can be written 
  (2) 
 One can suppose , since, with (2), the inequality of the problem becomes 
equivalent to  

  

 One has   (3) 

which is equivalent to   (4) 

where  

1)  then (4) . 
where . 

 

 

 

 

.Then  

 

 

 

 
And we analyzed all the cases. 
 
 

 7.123. 
Find a method for solving in natural numbers the equation: 

  

,  a aa nq q= ∈] [ ]2 x x
n
⎡ ⎤
⎢ ⎥ ≥
⎢ ⎥⎣ ⎦

( )2 0n q− ≥

{ }1 |  :  0 ,  ,  0,  x M y y nq r r n r q q∈ = = + ≤ < ∈ ≤ ∈\ ]
:  a aa nq q≠ ∈]

:  0 ,  ,  a a a a aa nq r r n r q≠ + < < ∈ ∈\ ]
0 a n< <

[ ] a a
a a

x r x rq r x
n n

⎡ ⎤ ⎡ ⎤+ −
⎢ ⎥ ⎢ ⎥+ − + ≥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

[ ]x a x a x
n n

⎡ ⎤ ⎡ ⎤+ −
⎢ ⎥ ⎢ ⎥+ ≥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

( ) [ ]2 ( )n q E r r− + ≥

{ }
{ } { }

{ }

1 if min ,

( ) 0   if min , max ,

1   if max ,

r a n a
r a r aE r a n a r a n a

n n
r a n a

⎧− < −⎪⎪⎪⎡ ⎤ ⎡ ⎤+ − ⎪⎢ ⎥ ⎢ ⎥= + = − ≤ < −⎨⎪⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎪⎪+ ≥ −⎪⎩
{ }0 min ,r a n a≤ < − ( ) [ ]2 1n q r⇔ − − ≥

1q≤−

( ) [ ]( ) { } [ ]{ }2) 1 (4) 3 | ,0 min , , 3q n r x M y y qn r r a n a r nα =− ⇒ ⇔ − ≤ ⇒ ∈ = = + ≤ < − ≤ −

( ) [ ]( ) { } [ ]{ }3) 2 (4) 2 5 | ,0 min , , 2 5q n r x M y y qn r r a n a r nβ =− ⇒ ⇔ − ≥ ⇒ ∈ = = + ≤ < − ≤ −

( )) 3 (4) is trueqγ ≤− ⇒

{ }{ }4 | ,0 min , , 3,x M y y qn r r a n a q q⇒ ∈ = = + ≤ < − ≤− ∈]

{ } { }2)min , max ,a n a r a n a− ≤ < − ( ) [ ](4) 2 n q r⇔ − ≥

( ) { } { } [ ]{ }5) 1 | : min , max , , 2q x M y y n r a n a r a n a r nα =− ⇒ ∈ = =− + − ≤ < − ≤ −

( ) { } { }{ }6) 2 | ,min , ,max , , 2,q x M y y qn r a n a r a n a q qβ − ≤− ⇒ ∈ = = + − ≤ < − ≤− ∈]

{ } ( ) [ ]( ) 73)max , (4) 2 _1a n a r n n q r x M− ≤ < ⇒ ⇔ − ≥ ⇒ ∈ =

{ }{ }| ,max , , 1,y y qn r a n a r n q q= = + − ≤ < ≤− ∈]

1 1

nm
p

i j
i j

x a b c y
= =

+ = ⋅ ⋅∑ ∏
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with .  
 
 

Solution: 
 The equation will have an infinity of natural solutions when .  

one takes  arbitrary. We construct  such that  with 
. (1) 

 Let’s consider  the smallest natural number which has the property (1). (There exists a 
such  because, if one writes each  with  and  being the i-th prime 

(positive) number , one takes , with  and the  are 

selected such that , where one has written  with , and 

 (for each i) is the smallest natural number which verifies this property.) 
 We construct , with , t being a parameter. The equation becomes 

 where the unknowns are .  One has: , where we  noted 

. 
 

A) If , then the equation  does not admit a solution in natural numbers. 

B) If , then . The equation admits an infinity of natural solutions: 
,  where 0 1sbc r α≠ ≤ ≤ − , a sr ∈` and sw  is a natural 

parameter, and m m mx w rα= + , where 0 1mr α≤ ≤ −  but mr  is chosen such that 
1

m

i
i

r a Mα
=

+ =∑  

(one has noted Mα  a multiple of α) and also mr ∈` , mw = natural parameter. 
 
 

7.124. 
It is given the equation ( )1,.., 0nP x x =  with  ( )1,.., nP x x  a second degree polynomial in 

1,.., nx x  with real coefficients. Show that 
ixΔ  is perfect square if and only if 

jxΔ  is a perfect 

square. (By  one has noted the determinant of the initial second degree equation relative to 
the unknown .) 

 
 
Solution: 
Necessity. 

(The reciprocal proof will be similar.)  

*, , ,  a b c p∈ ∈` `

0b c⋅ ≠
{ }1,..., 1h n∀ ∈ − hy ∈` ny 1...

p
ncy y k=

k ∈`
'
ny

'
ny ih

h i
i

y pα=∏ ihα ∈` ip

{ }1,..., 1h n∈ − ' in
n i

i

y pβ=∏ inβ ∈` inβ

1

1

n

i ih im p
h

Mγ α β
−

=

+ + =∑ i
i

i

c pγ=∏ iγ ∈`

inβ
' p

n ny y t= ⋅ *t ∈`

1

m

i
i

x a bkt
=

+ =∑ 1,... ,  nx x t
1

m

i
i

x a tα
=

+ =∑
bk α= ∈`

0bc =
1

0
m

i
i

x ε
=

+ =∑
0bc ≠ 0α≠

{ }1,..., 1s m∀ ∈ − s s sx w rα= +

hxΔ

hx
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The equation can be written:      (1) 
Where  is a constant and  a first degree linear function in . (  is a 
constant, because otherwise it would result that  has a degree strictly superior  to 2.) 

ixΔ being a perfect square, it implies that  with  a first degree 
linear function in . 

(1) becomes , where   (2) 

Since  are first degree functions in  one can compute jx  in function of 
. 

 (2) becomes by notation. 

By notation  

where  are also linear functions in . Therefore  is a perfect square. 
 
 

 7.125. 
Having  all the equations obtained by circular permutations 

of coefficients, on the set  even. 
a) Show that these equations admit a real common root if and only if  
b) Let  be the real common root,  the sum of all the roots of the equations,  the product of 
all the roots of the equations. Then: 

 

 
 
Solution: 
In total one has n+1 equations. 

a) One has on .  
Therefore let  be the real common root. One does the sum of all the relations (1), and it comes: 

 

It results  or , but it does not exists a  which annulets 

the equation , with  even. From which ; but   
Reciprocal: . This implies that . 
Therefore all the equations admit the real common root . 

2 0
ii i i i xA x B x C+ + =

A iB 1 1 1,.., , ,...,i i nx x x x− + A
P

( )2
1 1 1,.., , ,...,

ix i i i nk x x x x− +Δ = ik

1 1 1,.., , ,...,i i nx x x x− +

0
2 2
i i i i

i i
B k B kA x x

A A
⎛ ⎞⎛ ⎞+ −⎟ ⎟⎜ ⎜− − =⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠⎝ ⎠

2 2 0
2 2

i i i i i iAx B k Ax B kA
A A

+ − + +
=

2 i i iAx B k+ + 1,.., nx x

1 1 1,.., , ,...,j j nx x x x− +

( ) ( )1 1 1 1 2 1 1 1,.., , ,..., ,.., , ,...,
2 2

j j j n j j j nx f x x x x x f x x x x
A

A A
− + − +

⎛ ⎞ ⎛ ⎞− −⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⋅⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

( )( ) ( )( )1 1 1 1 2 1 1 1,.., , ,..., ,.., , ,..., 0j j j n j j j nB x g x x x x x g x x x x− + − +− ⋅ − =

1 2,g g 1 1 1,.., , ,...,j j nx x x x− + jxΔ

( ) (1)... 0n
na x a x aσ σ+ + + =

{ } *
1 0,...., , ,   ,  0 ,  n ia a a a i n n∈ ≤ ≤\

1 0.... 0na a a+ + + =

0x S P

( )
2

0 1
0

00 2 1

1
n

n i

i n i n n

P a a aS x n
x a a a

−
−

= −− −

⎛ ⎞⎟⎜ ⎟− + + =− + +⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑

0( ) (1) 0 (0)... 0,   0
k k k

n
na x a x a k nσ σ σ+ + + = ≤ ≤

0x

( )0 0 0
1 1

1 ... 1 0n nS x x x−+ + + + =

1 0S = 0 0 0
1 1... 1 0n nx x x−+ + + + = 0x ∈\

1... 1 0nx x+ + + = n 1 0S = 1 1 0...nS a a a= + + +

1 0S = ( ) (1) (0)1 ... 1 0,   0
k k k

n
na a a k nσ σ σ+ + + = ≤ ≤

0 1x =
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b)  

 

Therefore . 

 
 

 7.126. 

Solve in  the equation  
(Amer. Math. Monthly, 1985) 
 
 

Solution: 
Obviously 1x >− , since the bases of the powers must be non-negative, and that for 
 the operation  does not have sense. 

If one has , we divide the equation by this.  It results that 

 

Let’s consider  and  and  which have 

the same domain of definition  
We show that  and  are strictly declining, from which it results that  is also strictly 
decreasing. 
 On constructs the graphic representations of  and . 
For  
The line with the equation         is a horizontal asymptote when x tends toward 
The line with the equation         is a vertical asymptote when x tends toward 
The graph of   is found in the figure (1). 
For 1g  

 

 

From which the line with the equation  is a horizontal asymptote when  tends toward 

. 
The graph of  is found in the figure (2). 

1 0 2
0

1 2 0

1 1 1 ... 1n

n n n

a a a aS x
a a a a− −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟− = − − + − − + − − + + − −⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

0 1 1

1 2 0

1n n

n n n

a a a aP
a a a a

−

− −

= ⋅⋅⋅ =

( )
2

0 1
0

00 1 2

1
n

n i

in n n i

P a a aS x n
x a a a

−
−

=− −−

⎛ ⎞⎟⎜ ⎟− + + =− + +⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑

\ ( ) ( ) ( )1 2 3x x xx x x+ + + = +

1x =− 10−

( )3 0xx+ ≠

1 2 1
3 3

x xx x
x x

⎛ ⎞ ⎛ ⎞+ +⎟ ⎟⎜ ⎜+ =⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠+ +

1
1( )
3

xxg x
x

⎛ ⎞+ ⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠+ 2
2( )
3

xxg x
x

⎛ ⎞+ ⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠+ 1 2( ) ( ) ( )f x g x g x= +

] [1,− +∞

1g 2g f

1g 2g

2
3 3

2 2
1 2

2 1 1( ) 1lim lim 3 4

xx x

x x
g x x

x x

−
+ +
− −

→∞ →∞

⎡ ⎤
⎛ ⎞⎢ ⎥− ⎟⎜= + = = <⎢ ⎥⎟⎜ ⎟⎜⎝ ⎠⎢ + ⎥
⎢ ⎥⎣ ⎦

10 (0) 1x g= ⇒ =

2

1y
e

= x

+∞

1g
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For  

 

From where the line from equation  is a horizontal asymptote when  tends toward  

The graphic of  can be seen in figure (2)  
From (1) and (2) it results that   and  are strictly declining on  , therefore one has 
the same property for . Because  it results that  is the only real solution of the 
equation. 
 
 
      Y     y 
 
                                                                                2 
 
    (1)       (2)  
 
 
           1 
        1 
           g1       g2  

            2

1
e

           1
e

 

             
            -1                O                               x       -1            O                                               x 
 
 
 
 
 

 7.127. 
Knowing that  is a perfect square, find a method for solving in the set of integer 
numbers the equation , with  integers. 
 
 

Solution:  
We try to write the equation using the form 

  
where . One has 

 

2 2 2: 0 (0) 1;  1 ( 1) 2g x g x g= ⇒ = =− ⇒ − =
113 3

1 1
2

1 1 1( ) 1lim lim 3 2

xx x

x x
g x e

x e

−
+ ⋅+ +

− −

→∞ →∞

⎡ ⎤
⎛ ⎞⎢ ⎥− ⎟⎜= + = = <⎢ ⎥⎟⎜ ⎟⎜⎝ ⎠⎢ + ⎥
⎢ ⎥⎣ ⎦

2

1y
e

= x +∞

2g

1g 2g ] [1,− +∞

f (2) 1sf = 2x =

2 4b ac−
2 2 0ax bxy cy dx fy e+ + + + + = , , , , ,a b c d f e

( )( )2 2
1 1 1 2 2 2ax bxy cy dx fy e x y x yα β γ α β γ δ+ + + + + = + + + + +

{ }1 1 1, , , ,  1,2iα β γ δ ∈ ∈_
2 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2x xy x xy y y x yαα α β α γ β α β β β γ γ α γ β γ γ δ+ + + + + + + + + =
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. 
By identification it results: 

 (1)  

and  

 (2)  

which is a second degree system of 6 equations with 7 unknowns . From (1) 

one obtains  and  

It results that  where . From which 0; but it is necessary 

that  to be a perfect square, that is , what it is satisfied by hypothesis. 

Therefore . Then  and   

One replaces in (2), and one obtains: 

;  from which one finds 1

1

γ
α

 and 1 2α γ  as 

rationales. (3) since one has a linear system of 2 equations with two unknowns 

 
From (3) it results that one can express  and  in function of . From the equation 

 one can take  in function of . One gives a convenient value to  and one thus 
determinates all the unknowns. One has: . One puts 
the coefficients to have the same denominator and one eliminates this. Then one finds 

. 
Now one decomposes 'δ  an integer factors and one tries all the possibilities, which will give a 
system of Diophantine equations: ' ' '

i i i ix y dα β γ+ + =  with 1 2 'd d δ=−  and { }1,2i ∈  
 
 

 7.128.  

One considers the equation  with all the real coefficients 0na ≠ .and 0n≥

natural.  Show that if ( ) 2
1 21 2 0n n nn a na a− −− − <  then the equation does not have all its roots in 

. 

2 2ax bxy cy dx fy e+ + + + +

1 2

1 2

1 2 1 2

a
c

b

α α
β β
α β β α

⎧ =⎪⎪⎪⎪ =⎨⎪⎪ + =⎪⎪⎩

1 2 1 2

1 2 1 2

1 2

d
e f

e

γ α α γ
β γ γ β
γ γ

⎧ + =⎪⎪⎪⎪ += =⎨⎪⎪ =⎪⎪⎩
1 2 1 2 1 2, , , , , ,α α β β γ γ δ

2 2
1 1

,a c
α β

α β
= = 1 1

1 1

c a bα β
β α

+ =

acz b
z

+ = 1

1

z α
β

= ∈_ 2cz bz a− + =

zΔ 2 24 ,b ac k k− = ∈]

1

1 2
b kz

c
α
β

±
= = 1 1

2c
b k

β α= ⋅
± 2

12
b k

β
α
±

=

1 1 2
1

a dγ α γ
α

+ − 1 2 1
1

2 1
2

c b k f
b k

α γ α
α

±
+ =

±

1
1 2

1

,   w tγ
α γ

α

⎛ ⎞⎟⎜ ⎟= =⎜ ⎟⎜ ⎟⎜⎝ ⎠

1γ 2γ 1α

1 2 eγ γ δ+ = δ 1α 1α

( )( )1 1 1 2 2 2' ' ' ' ' ' 'x y x yα β γ α β γ δ+ + + + =

1 2 1 2 1 2' , ' , ' , ' , ' , ' , 'α α β β γ γ δ ∈]

0

0
n

i
i

i

a x
=

=∑

\
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Solution: 
 

 

 

 

(One has noted  the roots of the equation.) 
It results that the given equation does not have all its roots in , since otherwise it would result 
that . 

Remark: for n=2 one obtains the well-known result that if the determinant of a second 
degree equation, , then the equation has complex roots. 
 
 

 7.129. 
Solve the following system: 

1

,   1
n

i i
i
i j

x j nα
=
≠

= ≤ ≤∑  with 2n≥  

 
 

Solution: 
One explicitly writes the system: 

 

 
One does the subtraction between the first equation and each other equation. One has: 

,  
One replaces   1k kx α α= − ,  in the first equation and one obtains: 

 

From which ( )1 1 2
1 2 ...

1 nx n
n

α α α⎡ ⎤= − − + + +⎣ ⎦−
 

One determines in a similar way the unknowns  . The solution of the system is: 

, . 

 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2
1 2 1 3 1 2 3 2 1... ... ...n n n nS x x x x x x x x x x x x−= − + − + + − + − + + − + + − =

( ) [ ]2 2
1 1 2 1 3 1 2 3 2 11 ... 2 ... ... ...n n n n nn x x x x x x x x x x x x x x−

⎡ ⎤= − + + − + + + + + + + + =⎢ ⎥⎣ ⎦
( )[ ] ( ) [ ]2

1 2 1 2 1 2 3 2 11 ... 2 2 1 ... ... ...n n n nn x x n x x x x x x x x x x−
⎡ ⎤= − + + + − − − + + + + + + + =⎣ ⎦

( ) ( ) ( ) 21 2
1 22 2

11 2 1 2 0n n
n n n

n n n

a an n n a na a
a a a
− −

− −
⎡ ⎤= − + − = − − <⎢ ⎥⎣ ⎦

1 2, ,..., nx x x
\

0S ≥

0Δ<

2 3 1 1

1 3 1 2

1 2 3 1

       ...
       ....  =

...................................................
....         =

n n

n n

n n

x x x x
x x x x

x x x x

α
α

α

−

−

−

⎧ + + + + =⎪⎪⎪⎪ + + + +⎪⎪⎨⎪⎪⎪⎪ + + + +⎪⎪⎩

1 1k kx x α α− + = − 2 k n≤ ≤
2 k n≤ ≤

( ) ( )1 1 1 21 1 ... nn x n α α α α− + − = + + +

2 ,..., nx x

( )1 1 1
1 ... 2 ...

1i i i i nx n
n

α α α α α− +
⎡ ⎤= + + − − + + +⎣ ⎦−

1 i n≤ ≤
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 7.130. 
Solve in the set of integer numbers the system: 

 

 
 

Solution:  
We solve in integer numbers the first equation of the system, which is a Diophantine 

equation, and its general solution will be: 
 

   , with . 

By replacing the values of  and  in the second equation, one has: 
(2) 1361 26 832t z+ =  

with  
 One solves this equation in integer numbers; its general solution will be 

, with  

 
This is used in (1): 

,  with  

 
Therefore, the general solution of the initial system is: 

 , with  

 
Observation: The method which was used is the normal substitution, which is also utilized to 
solve in real numbers. 
 
 

 7.131. 
Let’s consider a linear homogeneous system having as associated matrix 

, which admits the rank . (The rank of a matrix is the order of the greatest non-null 
determinant which can be extracted from this matrix.) Show that the system admits non-banal 
integer solutions  

 
 
Solution:  

17 52 130
35 27 26 84

x y
x y z

⎧− + =⎪⎪⎨⎪ − + =⎪⎩

52 26
(1)

17 6
x t
y t

⎧ = −⎪⎪⎨⎪ = −⎪⎩
t ∈]

x y

( ) 2,t z ∈]

26
1361 32

t k
z k

⎧ =⎪⎪⎨⎪ =− +⎪⎩
k ∈]

52 26 26
17 26 6

x k
y k

⎧ = ⋅ −⎪⎪⎨⎪ = ⋅ −⎪⎩
k ∈]

1352 26
442 6

1361 32

x k
y k
z k

⎧ = −⎪⎪⎪⎪ = −⎨⎪⎪ =− +⎪⎪⎩

k ∈]

( ), ,A M m n∈ _
( )r A n<
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One considers the initial system , , with all the . One 

brings the coefficients to the same denominator and eliminates it. One obtains a system which 
has all the coefficients integers. One notes  (according to the hypothesis). If one 

eliminates the secondary equations then r principal equations remain. We normally solve in , 
applying the method of Cramer. Without diminishing the generality one supposes that            
are the principal variables. 
Thus  will be the secondary variables. Because , there exists at least a secondary 
variable. The real solutions of the system are: 

1

1 ,  1
n

h ht t
t r

x b x h r
= +

= ≤ ≤
Δ ∑ , with all the  integers, where  is the determinant which 

contains the columns  and the lines . 
If one notes , with  (parameters) from which  

1

,  1
n

h ht t
t r

x b k h r
= +

= ≤ ≤∑  

 
It results an integer solution r  undetermined for our system. If we give non null values to parameters 

1,...,r nk k+ we obtain a particular integer solution non trivial . 
 
 

 7.132. 
 Determine the matrices  and  of order such that: 
  and 

  
for any x real. 
a) Compute  and , for . 
b) Show that  and   . 

c) Show that if  then , where  is the unitary matrix of order ; 

and . 
 
 

Solution: 
  Let’s consider the matrix  

  

1

0
n

ij j
j

a x
=

=∑ 1 i m≤ ≤ ija ∈_

( )r r nΔ = <
n\

1,..., rx x

1,...,r nx x+ r n<

,htb Δ Δ

1,..., r 1,..., r
,   1t tx k r t n=Δ + ≤ < tk ∈]

A B n
( ) ( )2 1 2 11  ... 1 1+  1+ ... 1+n nx x x A x x x− −⋅ =

( ) ( )2 1 2 11 1+  1+ ... 1+ 1  ... n nx x x B x x x− −⋅ =

mA mB *m N∈
k e e kA B B A= ( ) ( )p pAB BA= *, ,p e k N∀ ∈

1 1

s s

i i
i i

k e
= =

=∑ ∑
1

i i

s
k e

n
i

A B I
=

=∏ nI n

*,i ik e N∈

11 1 1

21 2 2

1

... ...

... ...
....................

... ....

j n

j n

n nj nn

a a a

a a a
A

a a a

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠



124 
 

We note  and . 
 Multiplying  by the first column of  we obtain: 

, . One does  and it results , therefore  
, ; that is this is the null polynomial because it has more than 

 roots; from which . 
 One multiplies  by the column of  ( ) and one obtains: 

2 1 1 1 1
1 2 1... ... 1 ... 0j j n j n

j j j j jj nj nja a a x a x a x x a x− − − − −
−+ + + + + + = + + + =  . 

For  one finds 1 1ja = . Therefore 

( )1 1 1
2 2 1... 1 ... 0j j n

j j j j jj nja a a x a x a x− − −
−+ + + + − + + = . This polynomial, also, is null, 

thus  and , or , with . It results that  

  

Let’s consider . One multiplies u by the first column of , and one finds: 

1
11 21 1 21 1... ... 1n

n nb b b b x b x −+ + + + + + = , . 
For , that implies . One has also , x∀ ∈ \   
From which 21 1.... 0nb b= = =  
 Multiplying u by the column  of , we obtain:  

, , . If , 
one finds . Therefore, 

( )1 1 2 1 1
2 2 1... ... ... 1 ... 0j n j j j n

j jj nj j j j jj njb x b x b x x b x b x b x b x− − − − −
−+ + + + = ⇔ + + + − + + =  

x∀ ∈ \ . 
The same thing:  and , or . Because 

. From which  

  

a) One shows by recurrence that  
  

( )2 11  ... nv x x x −= ( )2 11 1+  1+ ... 1+ nu x x x −=

v A
1

11 21 1... 1n
na a x a x −+ + + = x∀ ∈\ 0x = 11 1a =

1
21 1... 0n

na x a x −+ + = x∀ ∈\
1n− 21 1... 0na a= = =

v j A 2 j n≤ ≤
x∀ ∈\

0x =

x∀ ∈\

2 1, ... 0j j j nja a a−= = = = 1 0jja − = 1jja = 2 j n≤ ≤

1   1   1  ... 1
0   1  0  ... 0
.................0
0 ........0   1

A

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

11 1 1

21 2 2

1

... ...

... ...
....................

... ....

j n

j n

n nj nn

b b b

b b b
B

b b b

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

B

x∀ ∈\

0x = 11 21 1... 1nb b b+ + + = 1
21 1... 0n

nb x b x −+ + =

j B
1 1

1 2 2... ... ...j n j
j j nj j jj njb b b b x b x b x x− −+ + + + + + + + = x∀ ∈\ 2 j n≤ ≤ 0x =

1 2 ... 0j j njb b b+ + + =

2 1 1... ... 0j j j j j njb x b b b− += = = = = = 1 0jjb − = 1jjb =

1 2 1 1... 1 0 1j j nj j jb b b b b+ + + = + = ⇒ =−

1 1...   1
0  1  0 ...   0
.................0
.................0
0.............01

B

⎛ ⎞− − ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
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The case  is obvious. 
One supposes the property true for , it must be shown for : 

`  

In a similar mode one proves that  

 

1   .....
0    1   ....0.    0
........................
0    0   ....0.    1

m

m m

B

⎛ ⎞− − ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

 

b) One sees that . 
 

( ) ( )2 p pe kB A AB BA AB BA= ⇒ = ⇒ = . 

c) ( )1 1 2 2 1 2 1 2.... ...s s s s
tk e k ek e k e k k e e t t t

n nA B A B A B A A B B A B A B AB I I= = = = = , 

where one has noted t =  

 
 

 7.133. 

 Let’s consider the matrix:  with . 

1) Compute the matrix . 
2) Discuss the limit:  

 
( )

1

1

det
lim

det

n
k

k
nn k

k

A

A

=

→∞

=

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

∑

∑
 

 Solution 
 I) One will prove by the recurrence method that  

1    ......   
0  1  0 ...   0
.................0
.................0
0.............01

m

m m

A

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
1m =

m 1m+

1

1  1 ......   1
0    1    0 ......   0
.........................0
.........................0
0....................0.1

m m

m m

A A A+

⎛ ⎞+ + ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

nAB BA I= −

NN N N
1

1 1

... ... ... ... ... ...k e k e

k e k e

A B A AB B A ABAB B BA B −

− −

= = = = =

1 1

s s

i i
i i

k e
= =

=∑ ∑

ab
A

ba
⎛ ⎞⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎝ ⎠

,a b∈\

*,  nA n ∈`
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 , with     (1) 

and  

       (2) 

where  represents the integer part of . 
The case =1 is evident. We suppose the property true for , it must be proved that the 
property is also true for  

, 

it must be proved that  

    (3) 

if . 

i) If , then , then the second sum from (3) is equal to zero, and  

it results that the expression of  from (1). 

ii) If , then  and the second sum of (3) is equal to , from 

where it results the expression of  from (1) because the first sum from (3) will have the same 

terms of 0i =  until . 

Also, it must be shown that  

 
2 1

2 2
2 2 2 2 2 1 2 1 2 2 2 1

1 1

n n

i n i i i n i i
n n

i i

C a b C a b

⎡ ⎤ ⎡ ⎤+ +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

− − + − − − + −

= =

= + =∑ ∑  

 

( ) ( )
1

2
2 2 2 1 1 2 1 2 1 2 2 2 2 2 1

21
2
2

2

n

i i n i i i n i i
n n n

ni i
nif

C C a b C a b

⎡ ⎤+⎢ ⎥
⎢ ⎥⎣ ⎦

− − + − + − − − + −

+= =

+
∈

+ +∑ ∑
]

;   (4) 

n nn

n n

A
α β
β α

⎛ ⎞⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎜⎝ ⎠

2
2 2 2

0

n

i n i i
n n

i

C a bα

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

−

=

=∑

1
2

2 1 2 1 2 1

0

n

i n i i
n n

i

C a bβ

⎡ ⎤+⎢ ⎥
⎢ ⎥⎣ ⎦

− − + −

=

=∑
[ ]x x

n n
1n+

1 11

1 1

....  
  ....

n nn n n n n nn n

n n n n n n n n

a b b aab
A A A

ba b a a b
α βα β α β α β

β α α β α β β α
+ ++

+ +

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ + + ⎟⎟ ⎟⎟ ⎜⎜ ⎜⎜ ⎟⎟ ⎟⎟= ⋅ = = =⎜⎜ ⎜⎜ ⎟⎟ ⎟⎟ ⎜⎜ ⎜⎜ ⎟⎟ ⎟⎜ ⎜ ⎟⎜+ +⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
1

2 2
2 1 2 2 2 1 2 1 2

1
0 1

n n

i n i i i n i i
n n n n n

i i

a b C a b C a bα α β

⎡ ⎤ ⎡ ⎤+⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

+ − − − +
+

= =

= + = + =∑ ∑

( )
2

1 2 2 1 1 2 2 2 1 1 2 2

11
2

n

n i i n i i i n i i
n n n

ni i

a C C a b C a b

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

+ − + − − + −

+= =

= + + +∑ ∑

1
2

n+
∈]

2n k=
1

2
n+

∉ ] 1
2 2
n n⎡ ⎤ ⎡ ⎤+
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

1nα +

2 1n k= +
1

2
n+

∈] 0 1 1n n n
nC a b b+ +=

1nα +

2
ni
⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

1
2 2

2 2 2 1 2 1 2 2 2 1
1

0 1

n n

i n i i i n i i
n n n n n

i i

b a C a b C a bβ α β

⎡ ⎤ ⎡ ⎤+⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

− + − − + −
+

= =

= + = + =∑ ∑
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if   

i) If , then  and therefore the second sum from (4) is null. Also 

, from which it results the expression of  from (2). 

ii) If 2n k= , then 2
2

n+
∈] , from which the second sum of (4) is equal to  

 
2 2 2 2 2 2 2 1

12 2 2
n n nn

n
nC a b b
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ − − + − + −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ = . 

Similar like in (4), if one does the addition between the two sums, it results that for the first sum 

i  takes the values from 1 until 2 2
2 2

n n⎡ ⎤+ +
⎢ ⎥=
⎢ ⎥⎣ ⎦

, from which it results the expression of 1nβ +  

from (2)/ 

2) det  

  

C1) if  then ; 

 

 

 

C2) If , then ( ) ( )( )
1

1
1

nn
k a b

a b a b
a b
− −

− = −
− −∑  

C3) If 1a b+ ≠ , then ; 

Discussion 
The cases: 
A) The conditions C1, C2, C3 are satisfied. 
B) It exists at least a condition from these which is not satisfied. 

2
2

n+
∈]

2 1n k= +
2

2
n+

∉ ]

1 2
2 2

n n⎡ ⎤ ⎡ ⎤+ +
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

1nβ +

( ) ( ) ( )( )2 2 2 2

1 1 1

det
n n n

k k
k k k k k k k k

k k

A Aα β α β α β α β
= =

= − ⇒ = − = − + =∑ ∑ ∑

( ) ( ) ( )2 2

1 1

n n kk ka b a b a b= − + = −∑ ∑

2 2 1a b− ≠ ( ) ( )( )2 2
2 2 2 2

2 2
1

1
1

n
n k a b

a b a b
a b
− −

− = −
− −∑

2 2
1 1

1 1 1 1

1 1

det

n n
k k

n n n n
k k k k

n n
k k

A A
α β

α β
β α

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟⎜ ⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜⎜= ⇔ = − =⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎜ ⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

∑ ∑
∑ ∑ ∑ ∑

∑ ∑

( ) ( )
1 1 1 1 1 1

n n n n n n
k k k k k k k kα β α β α β α β

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜= − + = − + =⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠∑ ∑ ∑ ∑ ∑ ∑

( ) ( )
1 1

n n
k ka b a b

⎛ ⎞⎛ ⎞⎟ ⎟⎜ ⎜= − +⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠⎝ ⎠∑ ∑

1a b− ≠

( ) ( )
1

1
( )

1

nn
k a b

a b a b
a b
+ −

+ = +
+ −∑
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A)
( ) ( )( ) ( )

( ) ( ) ( )

2 2
1

2 2 2 2

1

det 11 1
lim lim1 1det

n
k n

nn n nn nk

A a ba b a b
L

a b a b a b a bA
→∞ →∞

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ − −⎟ − − + −⎜ ⎟⎜ = ⋅ =⎟⎟⎜ ⎛ ⎞⎟ − −⎜ − − − − + +⎟⎟⎜⎜ ⎟⎟⎜⎜ ⎟⎟⎟⎜ ⎟⎜ ⎝ ⎠⎝ ⎠

∑

∑
 

One has the sub-cases: 
A.I.  

A.II.  

A.III.  because one has C1. 
A.I. It admits the situations: 

A.I.1.  and  

A.I.2.  and  

A.I.3. 1a b− <  and  and , because one has C3. It results that 
the limit does not exist. 
A.I.4.  and  

A.I.5.  and  ( this case is not possible, because it would result , 
which is in contradiction with A.I.) 
A.I.6.  and  (the same this case is not possible). 

A.I.7.  and  and , because one has C2. It results that 
the limit does not exist. 
A.I.8.  and  

A.I.9.  and  these two cases don’t exist because of A.I. 
 
A.II. admits the situations: 
A.II.1.  and  

( )( ) ( )

( ) ( ) ( )

2 2

2 2

2 2

11
1 1

1 lim 1 1 11 1

n

n
n n n

a ba b a b
a b L

a b
a b a b a b

→∞

−
−− − + −

− > ⇒ = ⋅ =
− − − − +

+ − −

 

 

A.II.2.  and  

A.II.3.  and  and , because one has C3. It results 
that the limit does not exist. 
A.II.4.  and  and , because one has C2. It results 
that the limit does not exist. 

2 2 1a b− <
2 2 1a b− >

2 2 2 21 1a b a b− = ⇒ − =−

1a b− <
( )( )

2 2

1 1
1

1
a b a b

a b L
a b

− − + −
+ < ⇒ =−

− −
1a b− < 1 0a b L+ > ⇒ =

1 1a b a b+ = ⇔ − < 1a b+ =−

1a b− > 1 0a b L+ < ⇒ =

1a b− > 1a b+ > 2 2 1a b− >

1a b− > 1a b+ =

1a b− = 1 1a b a b+ < ⇔ − =− 1a b+ <

1a b− = 1a b+ =

1a b− = 1a b+ >

1a b− >

( )( )
2 2

1 1
1

a b a b
a b

− − + −
=

− −
1a b− > 1 0a b L+ < ⇒ =

1a b− > 1 1a b a b+ = ⇔ − > 1a b+ =−

1a b− = 1 1a b a b+ > ⇔ − =− 1a b+ >
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A.II.5.  and  

A.II.6.  and  

A.II.7.  and  These 4 cases don’t exist because of A.I. 

A.II.8.  and  

A.II.9.  and  

A.III. It results:  

But  and , therefore 

( )( ) ( )

( ) ( )
2 2

1 1 1 1
lim1 11 1

n

n
n n n

a b a b
L

a b
a b

a b
→∞

− − + + − −
=

− − ⎛ ⎞⎟⎜− + − − − ⎟⎜ ⎟⎜⎝ ⎠−

 

 because of C2 and because if  it would result 
, that is , contradiction with C3. 

A.III. admits the situations: 

 A.III.1.  

 A.III.2.  

 A.III.3. 1 1a b a b− = ⇔ − =  or , which is not possible. 
B) It exists at least a condition between C1, C2 or C3 which is not satisfied. 

 - if the condition C1 is not satisfied, then  

 - if the condition C2 is not satisfied, then  

 - if the condition C3 is not satisfied, then  

 We analyze all the possibilities for this case. 
B.I.  and . It results ,  and  

  

 

B.II.  and  and  

1a b− = 1a b+ =

1a b− = 1a b+ <

1a b− < 1a b+ =

1a b− < 1a b+ <

1a b− < 1 0a b L+ > ⇒ =

( )( ) ( )
( ) ( ) ( )2 2 2 2

1 1 1 1
lim1 1 1

n

nn nn

a b a b
L

a b a b a b→∞

− − + − − −
=−

− − − + − − − +

0a b− ≠
2 2 1a ba b
a b a b
−

+ = −
− +

{ }1,1a b− ∉ − 1a b− =−

( )( ) ( )2 21 a b a b a b a b− = − = − + =− + 1a b+ =

11 1 0a b L
a b

− < ⇒ − > ⇒ =
+
11 1 0a b L

a b
− > ⇒ − < ⇒ =

−
1a b− =−

( )2 2

1

1 det
n

ka b A n− = ⇒ =∑

( )
1

1
n

ka b a b n− = ⇒ − =∑

( )
1

1
n

ka b a b n+ = ⇒ + =∑

1a b− = 1a b+ ≠ 2 2 1a b− ≠ 1a b= +

( )( )
( ) ( )

2 2 2 2

2 2

1 1 1
lim 1 1

n

nn

a b a b a bL
a b n a b a b→∞

− − − + −
= ⋅ ⋅ =

⎡ ⎤− − + + −⎢ ⎥⎣ ⎦

( )( )
( )( )

( )
( )

2 2

2 2

1 2 1 11 0lim
1 2 1 1

n

n
n

a b a b b
na b a b b→∞

− + − + −
= =

+ − − + −

1a b− = 2 21 1 1a b a b a+ = ⇒ − = ⇒ = 0 0lim :n

nb L
n n→∞

= ⇒ = =



130 
 

B.III.  and , 

( ) ( )
( ) ( )

2 2 2 2

2 2

1 1 11 lim 1 1

n

nn

a b a b a ba b L
a b n a b a b→∞

⎡ ⎤− − −⎢ ⎥ − −⎣ ⎦= − ⇒ = ⋅ ⋅ =
⎡ ⎤− − − − −⎢ ⎥⎣ ⎦

 

( )( )
( )( )

( )
( )

2 2

2 2

1 1 2 11 0lim
1 1 2 1

n

n
n

a b a b b
na b a b b→∞

− − − − −
= ⋅ ⋅ =

− − − − −
 

B.IV.  and  because of B). 

( ) ( ) ( ) ( )
1 1

lim
1 1n nn

a b a bL n
a b a b a b a b→∞

− − + −
⇒ = ⋅ ⋅ =⎡ ⎤ ⎡ ⎤− − − + + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

( )( )

( ) ( ) ( )
2 2 2 2

1 1
lim

1
n n nn

a b a b n
a b a b a b a b→∞

− − + −
= =

− − − − − + +
 

 

B.IV.1.  and . Applying the theorem of Stolz-Césaro, one obtains: 

( )
( )

( )

2 1 0lim
2 1

nn n
n

nL a
a ba b
a ba b

→∞
= − =

⎡ ⎤⎛ ⎞−⎢ ⎥⎟⎜+ − −⎟⎜⎢ ⎥⎟⎜⎝ ⎠++⎢ ⎥⎣ ⎦

 

B.IV.2.  and  and .  

 This case does not exist because it would result , therefore . 
Contradiction with B.IV. 
B.IV.3.  and  

B.IV.4.  and  

B.IV.5.  and   these 5 cases don’t exist because of B). 

B.IV.6.  and  

B.IV.7.  and  

B.IV.8.  and  

B.IV.9.  and  and  and 0b = , implies 
that the limit does not exist. 
 And, look, all the cases are analyzed. 
 The discussion about limit is very long, but it necessitate a good arrangement of cases 
(which depend of the real parameters a and b). 
 
 

 7.134. 
 Let 0 1, ,..., na a a be real numbers, 0,  na n> ∈`  

1a b− ≠ 2 21 1a b a b+ = ⇒ − ≠

1a b− ≠ 2 21 1a b a b+ ≠ ⇒ − =

( )( )
( ) ( )

( )
( ) ( )

1 1 2 1lim lim
2 2n n n n

n n

n na b a b a
a b a b a b a b→∞ →∞

= − − + − = −
− − − + − − − +

1a b− < 1a b+ >

1a b− < 1 1a b a b+ = ⇔ − < 1a b+ =−
2 2 1a b− < 2 2 1a b− ≠

1a b− < 1a b+ <

1a b− = 1a b+ <

1a b− = 1a b+ >

1a b− > 1a b+ >

1a b− > 1a b+ =

1a b− > 1 0a b L− < ⇒ =

1a b− = 1 1a b a b+ = ⇔ − =− 1 1a b a+ =− ⇒ =−
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One considers the polynomial  
 1 0( ) ...n

nP x a x a x a= + + +  
such that: if there exist 0,   1 1ia i n< ≤ ≤ − then the first non null coefficient  

:   1 1i ka k n+ ≤ ≤ − , before ia  verifies i i ka a +≤ . If 1,..., mx x +∈\  determine the minimum of 
the expression: 

 ( )1
1

1,..., ( )
m

m j
j j

E x x P x P
x=

⎛ ⎞⎛ ⎞⎟⎜ ⎟⎜ ⎟⎟⎜ ⎜= + ⎟⎟⎜ ⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎝ ⎠⎝ ⎠
∑  

and the point ( )1,..., nx x where this minimum is obtained. 
 
 
 Solution: 

 If  0x >  and i j>  , then 1 1 2i j
i jx x

x x
+ ≥ + ≥ , the two equalities taking place when 

1x = .  

 ( )1 1 0
1

1 1,..., ... 2
m

n
m n j jn

j j j

E x x a x a x a
x x=

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎟⎜ ⎟ ⎟⎜ ⎜ ⎟⎟ ⎟⎜ ⎜ ⎜= + + + + + ⎟⎟ ⎟⎜ ⎜ ⎜ ⎟⎟ ⎟⎜ ⎟ ⎟⎜ ⎜ ⎟⎜ ⎝ ⎠ ⎝ ⎠⎝ ⎠
∑  

 Let’s consider  

 ( ) ( ) 1 0
1

1 1 1... 2
m

n
j j n j jn

jj j j

F x P x P a x a x a
x x x=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜= + = + + + +⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑  

If 0,   1 1ia i n≥ ≤ ≤ − , then  

    ( ) ( )
* 0 12 ...min

j
j n

x
F x a a a

+∈
= + + +

\
 

and this is only realized  for 1jx =  
If there exist 0,   1 1ia i n< ≤ ≤ − , then the hypothesis of the problem will give 

,   1 1i i ka a k n+≤ ≤ ≤ − , and for the other coefficients one has 1 1... 0i i ka a+ + −= = =  
Therefore: 

( )1 1 1 1 1i k i i k i k i
i k j i j i k i j i j ji k i i k i k i

j j j j j

a x a x a a x a x x
x x x x x

+ + +
+ ++ + +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜+ + + = + + + − − ≥⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

( ) ( )2 0 2i k i i i ka a a a+ +≥ ⋅ + = +
 

the equality taking place only for 1jx = , and the same it results that  

 
( ) ( )

* 0 12 ...min
j

j n
x

F x a a a
+

∈
= + + +

\
 

which it is  only realized for 1jx =  

One finds that 
{ }

( ) ( )
* 1 0 1

1,...,

,..., 2 ...min
j

m n
x
j m

E x x m a a a
+∈

∈

= + + +
\

 

and this is only realized for ( ) ( )1,..., 1,...,1m

m

x x = ���	��
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 7.135. 
 Show that  
 a) The sum of the power of order 2 1p+  of 2 1k +  natural consecutive numbers is 
divisible by 2 1k + . 
 b) The sum of the power of order 2 1p+  of 2k natural consecutive numbers is divisible by 
2k if and only if 1p≥  and k  is divisible by 2. 
 
 
 Solution  
 a) Let 1S  the sum of the powers of order 2 1p+  of 2 1k +  natural consecutive numbers. 
The 2 1k +  natural consecutive numbers constitute a complete system of residues modulo 2 1k +  
That means: 

( ) ( ) ( ) ( )2 1 2 1 2 12 1 2 1 2 1 2 1
1 0 1 2 ... 1 ... 2 1 2 mod 2 1p p pp p p pS k k k k k+ + ++ + + += + + + + + + + + − + +  

( )( )2 1 mod 2 1k i i k− ≡− + +  for 0 1i k≤ ≤ −  

( ) ( )2 1 2 12 1 (mod 2 1)p pk i i k+ +
− ≡− + +  

0 1i k≤ ≤ −  
Therefore: 
( )2 1 2 12 1 (mod 2 1)p pk k+ +≡− +  
( )2 1 2 12 1 (mod 2 1)p pk k k+ +− ≡− +  
……………………………………. 
( ) ( )2 1 2 11 mod 2 1p pk k k+ ++ ≡− +  
⇒

( ) ( ) ( ) ( ) ( )2 1 2 1 2 1 2 12 1 2 1 2 1 2 1
1 0 1 2 ... 1 1 ... 2 2 2 1 mod 2p p p pp p p pS k k k k k k+ + + ++ + + += + + + + − + + + + + − + −  

Therefore  
1 : 2 1S k +  

 b) Similarly, let 2S  the sum of the powers of order 2 1p+  
of 2k consecutive natural numbers. The 2k  natural consecutive numbers constitute a complete 
system of residues modulo 2k . That is: 

( ) ( )2 1 2 12 1 2 1 2 1 2 1
2 0 1 2 ... 1 1 .p pp p p pS k k k+ ++ + + += + + + + − + + + +  

( ) ( ) ( )2 1 2 1.. 2 2 2 1 mod 2p pk k k+ +
+ − + − . But ( )2 mod 2k i i k− ≡−  for1 1i k≤ ≤ −  ⇒  

( )2 1 2 12 (mod2 ) :p pk i i k+ +− ≡−  
for 1 1i k≤ ≤ −  
Then: 
 ( )2 1 2 12 1 1 (mod 2 )p pk k+ +− ≡−  
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( )2 1 2 12 2 2 (mod 2 )p pk k+ +− ≡−  
………………………………… 
( ) ( ) ( )2 1 2 11 1 mod 2p pk k k+ +

+ ≡− −  

( ) ( ) ( )2 1 2 12 1 2 1 2 1 2 1 2 1 2 1
2 0 1 2 ... 1 1 ... 2 1 mod 2p pp p p p p pS k k k k k+ ++ + + + + += + + + + − + − − − − − ≡  

Then  
 ( ) ( ) ( ) ( )2 1 2

2 : 2 : 2 : 2 1 and : 2p pS k k k k p k+⇔ ⇔ ⇔ ≥
 

i.e. k is divisible by 2.
 

 
 

 7.136. 

 Prove that if a  and m  are integers, 0m ≠ , then ( )( )1ma a m− − is divisible by m . 

 
 
 Solution 
 I) m  is prime. 
 a) ma M=  (multiple of m) then m

ma a M− = , and we find the conclusion. 
 b) ma M≠  we have, using the Fermat theorem m

ma a M− =  
 II) m  is not prime, 0m ≠  
  a) |m| = 4. Then  
  ( )( ) ( ) ( )( )1 31 ! 2 1 2 1 mod 4m mE a a m a a a a−= − − ≡ − ≡ −  

If 2a M= (multiple of 2), it results that ( )0 mod 4E ≡  

If 2 1a M= + , it results that 3
21a M− = , from where ( )0 mod 4E ≡  

b) 4m ≠ . Then { }, 0, 1, 1a b∃ ∈ − − +] such that m a b= ⋅  

If a b≠ , because 1a m< − , 1b m< − , it is clear that  and  are among the factors of 

, then ( )1 ! 0(mod )m m− ≡ , from where we have the conclusion. 

If , because and , , we have , therefore  

and are found among the factors of , then , then 

( )0 modE m≡ . 
 
Remark: 
 In II we proved the following assertion: if , then . 
  

a b

( )1 !m −

a b= 4m ≠ ( )1a m< − 1b m< − 2 1b m< − a

2 b ( )1 !m − ( )1 ! 0(mod )m m− ≡

{ }0, 2m∈ − ±] ( )1 ! 0(mod )m m− ≡
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