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Preface 

( Many Relativities ) 

 

In the first chapter of this book we discuss 
Einstein’s thought experiment with atomic 
clocks:  

A rocket travels at a constant speed v with 
respect to the earth. In the rocket, a light pulse is 
emitted by a source from A to a mirror B that 
reflects it back to A where it is detected. The 
rocket’s movement and the light pulse’s 
movement are orthogonal. There is an observer 
in the rocket (the astronaut) and an observer on 
the earth. The trajectory of light pulse (and 
implicitly the distance traveled by the light 
pulse), the elapsed time it needs to travel this 
distance, and the speed of the light pulse at 
which is travels are perceived differently by the 
two observers {depending on the theories used 
in this book}. 
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                                B 
                                                                      d 

                                
A 

 
                                     Fig. (p1) 

The Special Theory of Relativity (STR) works 
fine in a spacetime Sc where the speed of light c 
is the ultimate speed and the relativistic addition 
of velocities applies:  

1 2
1 2

1 2
21

c
v vv v v v

c

+⊕ =
+

                        (p1) 

 Several counter-intuitive examples of 
formula (p1) are presented. Also, in our opinion 
there is neither a real time dilation nor a length 
contraction, but an apparent time dilation and an 
apparent length contraction. 
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Yet, we extend this formula, by induction, 
using a recurrent proof, for the relativistic 
addition of n  ≥ 2 velocities at once. 

We show that formula (p1) and its 
extension can be straightforwardly extended to a 
spacetime SK where the ultimate speed is K>0, 
which can be smaller or greater than c. 
Therefore, the relativistic addition of two 
velocities in SK becomes: 

1 2
1 2

1 2
21

K
v vv v v v

K

=
+⊕

+
                          (p2) 

and correspondingly all related formulas from 
STR get translated into the SK spacetime by 
simply substituting c with K: whence we obtain 
the Generalized Lorentz Factor, Generalized 
Minkowski Norm, Generalized Time Dilation, 
Generalized Length Contraction,  Generalized 
Relativistic Momentum, Generalized Energy, 
Generalized Total Energy, and Generalized 
Kinetic Energy.  
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In the second chapter we present our hypothesis 
that there is no speed barrier in the universe and 
one can construct arbitrary speeds from zero to 
infinity (Smarandache -1972), thus refuting the 
speed of light postulate. We consider that the 
superluminal phenomena do not violate the 
causality principle, do not produce time 
traveling, and do not necessitate infinite energy 
for particles traveling at speeds greater than the 
speed of light. 

While Einstein considered a relative space 
and relative time but ultimate speed of light, we 
do the opposite in the third chapter: we redo 
Einstein’s experiment with atomic clocks by 
considering an absolute time and absolute space 
but no ultimate speed (according to our previous 
hypothesis). That’s why we call our theory 
Absolute Theory of Relativity (ATR). 

According to this theory, the speed of photon in 
the rocket, with respect to the observer on earth, 
is: 

 2 2x v c= +                                   (p3)              
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which corresponds to the magnitude of the 

vectorial addition, i.e. ,cvx  += since c  and 
v  are orthogonal: 
 

                               v 
        c                            c 

    x          or              x 
 
   v 
               Fig. (p2) 
 

and thus x > c. 
 
Therefore in the ATR we replace Einstein’s 
Relativistic Addition of Velocities (p1) with 
(p3), allowing for superluminal speeds. 
Since in Absolute Theory of Relativity there is 
no time dilation, in consequence there is no 
length contraction, and no relative simultaneity. 
Lorentz Factor becomes equal to 1, so it is 
useless. 
As a consequence, many relativistic paradoxes 
are discarded: such as Ehrenfest Paradox (1909), 
the Twin Paradox (1911), Bell’s Spaceship 
Paradox (1959), W. Rindler’s Paradox about a 
man falling into a grate (1961), etc.  
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The famous physics formula E0 = mc2 is 
questionable: why should it depend on the light 
speed? 
Similarly:  

a) the Michelson-Morley Experiment (1881, 
1883-1887) of not having detected the 
ether, which implied the STR, might have 
been erroneous due to imprecise 
measurement instruments or construction. 
Maybe the ether is very little dense and its 
flow hardly perceptible;  

b) and the constancy of the speed of light in 
vacuum could be flaw, since the speed of 
light might depend on the emitting source 
– the stronger the emitting source the 
faster its light pulse;  

because if an inconsistent theory resulted from 
some ideas, those ideas must have been 
inconsistent too. 
 

Not all physics laws might be the same in 
all inertial systems. 
As a counter-example let’s consider as physics 
law the Addition of Velocities in a given inertial 
system Si. Let’s take the collinear and in the 
same direction velocities v1 = 0.8c and  
v2 = 0.9c. In STR we get v1+v2 = 0.988372c 
while in ATR we get a different result:  
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v1+v2 = 1.7c.  
 
ATR generalizes the relativistic addition of 
velocities in the following way: instead of a 
photon we consider any particle traveling from 
A to B with a speed w > 0 such that the angle 
between the particle’s direction vector w and the 
rocket’s direction vector v is θ, with 0 θ π≤ ≤ :

             
                             Fig. (p3) 

              w        B                      B’                         

            θ 

A         v 

 

 
2 2 2 cosx v w vw θ= + + ⋅

or 

x v w
→ →

= +
                                                 (p4) 
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which is a generalization of (p3). 

A computer simulation would better describe 
the resultant curve AB’ [from Fig. (p3)] as seen 
by the observer on earth. Herein we 
approximate it by a line. 

 In Chapter 4, we study the general case of 
Einstein’s thought experiment with atomic 
clocks, when we suppose nothing is known 
about if the space and time are relative or 
absolute or if the speed of light is ultimate speed 
or not. 

Therefore, we obtain the Parameterized Special 
Theory of Relativity (PSTR). Its equation is: 

2
2 2 'tx v c

t
Δ = +  Δ                                 (p5)

 

where x is the speed of the photon as measured 
by the observer on earth, 'tΔ is the elapsed time 

as measured by the astronaut, and tΔ the 
elapsed time as measured by the observer on 
earth. 
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And the PSTR’s parameter is  

't
t

τ Δ=
Δ                                                         (p6)

 

where τ  ϵ (0, +∞). 

Our PSTR generalizes not only Einstein’s STR, 
but also the previous ATR, and three other 
possible Relativities [3,4, and 5 from below] 
that readers can study, as follows: 

1. If 2

2

1
c
v−=τ we get the Special Theory of 

Relativity. 
2. If τ=1, we get our Absolute Theory of 

Relativity in the particular case when the 
two trajectory vectors are perpendicular.  

3. If 2

2

10
c
v−<< τ , the time dilation is 

increased with respect to that of the STR, 
therefore the speed x as seen by the observer 
on earth is decreased (becomes subluminal) 
while in STR it is c. 
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4. If 11 2

2

<<− τ
c
v

there is still time 

dilation, but less than the time dilation of the 
STR, but the speed x as seen by the observer 
on earth becomes superluminal (yet less than 
in our Absolute Theory of Relativity). 

5. If τ>1, we get an opposite time dilation (i.e. 
tt Δ>Δ ' ) with respect to the STR (instead 

of 't tΔ < Δ ), and the speed x as seen by the 
observer on earth increases even more than 
in our ATR. 

Then the above definitions and classification of 
Relativities are extended in the SK space (space 
where the ultimate speed if K) to K-Relativities. 

In Chapter 5, we repeat Einstein’s thought 
experiment introducing the acceleration. We 
consider the particle in the rocket moving at 
constant acceleration, while the rocket moving 
either at constant velocity or at a constant 
acceleration. The trajectory vectors of the 
particle and the rocket are either orthogonal or 
oblique to each other. 
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We used only linear trajectories for both 
observers, but at the end we propose, as research 
problems, the nonlinear arbitrary 3D-curves 
with nonconstant accelerations. 

Chapter 6 is the most general, yet to be 
investigated. 

Noninertial Multirelativity means that the 
particle P0 in the reference frame F1 travels on 
an arbitrary 3D-curve C0 with a non-constant 
acceleration a0 with initial velocity v0. Then the 
reference frame F1 moves with respect to 
another reference frame F2 on an arbitrary 3D-
curve C1 with a non-constant acceleration a1 
with initial velocity v1.  And so on, the reference 
frame Fn-1 moves with respect to another 
reference frame Fn (for n ≥ 2) on an arbitrary 
3D-curve Cn-1 with a non-constant acceleration 
an-1 with initial velocity vn-1. 

The following research problems are 
proposed with respect to the Noninertial 
Multirelativity: 
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1. How would the particle’s trajectory curve 
C0 be seen by an observer in the reference 
frame Fn ? 

2. What would be the particle’s speed 
(acceleration) as measured by the 
observer from the reference frame Fn ? 

3. What would be the elapsed time of the 
particle as seen by the observer in the 
reference frame Fn ? 

4. What are the transformation equations 
from a reference frame to another? 

5. Similar questions for rotating reference 
systems.

 
 

 
 

The author
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Chapter 1. 
On Einstein’s Thought Experiment 

with the Light Clocks 
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1.1. Einstein’s Thought Experiment with 
the Light Clocks. 

 
 Let’s consider the Einstein’s thought 
experiment with the light clocks. 
 There are two identical clocks, one is 
placed aboard of a rocket, which travels at a 
constant speed v  relative to the earth, and the 
second one is on earth. In the rocket, a light 
pulse is emitted by a source from A to a mirror B 
that reflects it back to A where it is detected. 
The rocket’s movement and the light pulse’s 
movement are orthogonal. There is an observer 
in the rocket (the astronaut) and an observer on 
the earth. The trajectory of light pulse (and 
implicitly the distance traveled by the light 
pulse), the elapsed time it needs to travel this 
distance, and the speed of the light pulse at 
which is travels are perceived differently by the 
two observers {depending on the theories used – 
see below in this book}. 
         According to the astronaut:  
 
                                           Fig. 1 
 
                                         B 
                                                                                       d 
                                         A 
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2' dt
c

Δ =
                                (1)

 

where: 
'tΔ  = time interval, as measured by the 

astronaut, for the light to follow the path 
of distance 2d ; 
d = distance; 
c = speed of light. 

 
 According to the observer on earth: 
 
                                       Fig. 2 
 
                                               B              
            A              s                                                A’ 
                                               B’ 

 
 
                             l                             l 
    

 2l v t= ⋅ Δ  
  s = |AB| = |BA’| 

                               d = |BB’|                           (2) 
     l = |AB’| = |B’A’| 
 
where tΔ  = time interval as measured by the 
observer on earth.  
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And using the Pythagoras’ Theorem in the right 
triangle ΔABB’, one has  
 

 
2

2 2 22 2 2
2

v ts d l d ⋅ Δ = + = +  
      (3)

 

 
but 2s c t= ⋅Δ , whence 
 

  
2

22
2

v tc t d ⋅ Δ ⋅ Δ = +  
               (4)

 

 
Squaring and computing for tΔ  one gets: 
 

  2

2

2 1

1

dt
c v

c

Δ = ⋅

−
.                     (5) 

 
Whence Einstein gets the following time 
dilation: 
 

  2

2

'

1

tt
v
c

ΔΔ =

−
                           (6)
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where 't tΔ > Δ . 
 
 

1.2. Relativistic Addition of Velocities. 
 
 According to the Relativistic Addition of 
velocities: 

  
1 2

1 2
21

v vv v v
c

+=
+

                                   (7)

 

 
where: 
 1v = velocity of the particle inside the 
rocket as measured by the astronaut; 
 2v = velocity of the rocket as measured by 
the observer on earth; 

v = velocity of the particle as measured by 
the observer on earth. 
 

1.3. Counter-Intuitive Results of the 
Relativistic Addition of Velocities. 

 
Some curious additions, in our opinion: 
 
  0.999c c c− = ;                           (8) 
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0
0

c c− = = undefined.              (9) 

 
 1.4. Contradictory Results of the 
Relativistic Addition of Velocities. 
 

One has not only c v c+ =  (for v c< ), but  
also c-v = c, or c+v=c-v, so v=-v ?     (10) 
 
Also c c c+ = , and in general 

....
n  times

c c c c+ + + = ; therefore n c c⋅ =  

for any integer 1n ≥ .                                   (11) 
 More general, r c c⋅ =  for any real 
number 1r ≥ ,                                            (12) 
 
since if  
         r n a= +  
where 
 [ ]n r= , integer part of r , 
and 
 { }a r= , the fractional part of r  
then 
 ( )r c n a c nc ac c ac c⋅ = + = + = + = . 
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but, having r c c⋅ =  for any real number 1r ≥  
looks unrealistic. 
 If we compute  

  ( )lim
n

n c c
→∞

⋅ = ∞⋅ = ∞ ,            (13) 

but on the other side, because n c c⋅ = , we have  
 
  ( ) ( )lim lim

n n
n c c c

→∞ →∞
⋅ = = ,             (14) 

 
which is a contradiction. 
 
 Similarly, if 0 v c< < , then 
 

( )
1

... ...
n times n  times

c n v c v v v c v v v
−

+ ⋅ = + + + + = + + + + =   

 
1

... ...
n  times

c v v c
−

= + + + = = .                    (15) 

 
Then  

  ( )lim
n

c n v c v
→∞

+ ⋅ = + ∞⋅ = ∞
(16)

 

but, also 

  ( )lim
n

c n v c c
→ ∞

+ ⋅ = = ,        (17) 
 
therefore, again, a contradiction. 
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 1.5. Relativistic Addition of 
Superluminal Velocities. 
 
 Of course, for superluminal velocities 
Einstein’s Relativistic Addition of velocities 
does not work. See the following counter-
example: 
 If 1 2v c= and 2 3v c= , then: 

 

( )( )1 2

2

2 3 5 5
2 3 1 6 71

c c cv v c c
c c
c

+⊕ = = = <
++

         

            

(18) 
 
but it does not make sense to adding 
superluminal speeds (in the same linear 
direction) and the result be subluminal. 
 Actually, the Relativistic Addition of 
Velocities for any 1 2,v v c> gives: 
 

  
1 2

1 2
21

v v cv v
c

+ <
+

                               (19)
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while for 1 20 v c v< < <  gives 
 

  
1 2

2
1 2

21

v v vv v
c

+ <
+

                             (20)

 

 
which doesn’t make sense either. 
  

For example: 
 

( )( )
2

0.2 3 3.20.2 3 2 3
0.2 3 1 0.61

c c cc c c c
c c
c

+⊕ = = = <
++

         

(21)

 

  
Therefore a new formula is needed for 

addition of superluminal velocities. 
 
 1.6. Extension of Relativistic Formula 
for the Addition of Many Subluminal 
Velocities. 
 

Let’s use the notation 1 2v v⊕  in order to 
denote the relativistic addition of the speeds, 
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and 1 2v v+  in order to denote the Newtonian 
(classical) addition of speeds. According to 
Einstein, we have: 

 

2
1
0

1 2
1 2 2

1 2 2 2
2 0 2

1

s
v v cv v v v ssc c

+⊕ = =
+ +

           (22)

 where 
 

2
1S  = v1 + v2                             (23) 
2
2S  = v1v2                                                      (24) 
2
0S  = 1                                           (25) 

 
 (where the superscript means the 
number of speeds, i.e. n=2). 

 
We extend the relativistic addition of 

speeds for three or more speeds following 
Einstein’s formula. 

 
Therefore, for n=3, we get: 
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33
31

0 2

1 2 3 3 3
0 2
0 2

ss
c cv v v
s s
c c

+
⊕ ⊕ =

+
                    (26) 

 
 Let’s prove it by simple algebraic 
calculation: 
 

1 2 3v v v⊕ ⊕ = 1 2 3( )v v v⊕ ⊕ =  

( )

( )

1 2 23 1 21 2
322

1 2
2

1 2 1 2 3
3 21 2 1 2

2 2
2

1

1 1
1

1

v v v c v vv v v
c v vc

v v c v v vvv v c v v
c c
c

+ + +
++ += =+ + ⋅⋅

++ +
+

 
 

( ) ( )

( ) ( ) ( )

2
21 2 3 1 2 3

1 22
1 2

2 21 2 3
1 2 1 22

1 2

c v v v v v v
c v v

c v v
v v v

c v v c v v
c v v

+ + +
⋅ +

+= =
+

+ + ⋅ +
+  
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( )
( )

2
1 2 3 1 2 3

2
1 2 1 2 3

c v v v v v v
c v v v v v

+ + +
=

+ + +  
 

( )2
1 2 3 1 2 3

2
1 2 2 3 1 3

c v v v v v v
c v v v v v v

+ + +
=

+ + +  
 

33
1 2 3 31

1 2 3 2 0 2

3 3
1 2 2 3 1 3 0 2

2 0 2
1

v v v ssv v v
c c c

v v v v v v s s
c c c

+ + + +
= =+ ++ +

                (27)

 

  
Similarly, we get: 

 

44
31

0 2

1 2 3 4 4 4 4
0 2 4
0 2 4

ss
c cv v v v

s s s
c c c

+
⊕ ⊕ ⊕ =

+ +
           (28) 

 
and 
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5 55
3 51

0 2 4

1 2 3 4 5 5 5 5
0 2 4
0 2 4

s ss
c c cv v v v v
s s s
c c c

+ +
⊕ ⊕ ⊕ ⊕ =

+ +
                        

(29) 
 

Let 0
nS  

def
= 1, for all integers  2n ≥ , then 

 

 

1
2

2 1
2

0
1 2

2
2
2

0

...

n
n
i

i
i

n n
n
i
i

i

s
cv v v
s
c

− 
  

+

=
 
  

=

⊕ ⊕ ⊕ =



(30)

 

 
where for 0 j n≤ ≤ we have 
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( )
1 2

1 2

1 2
1 2

, ,...,

1 ...

...

...

j
j

j n

j
j

n
j m m m

m m m

m m m
m m m n

s v v v

v v v

∈

≤ < < < ≤

= ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅




C

(31) 
 
with j

nC  being all the combinations of the 

elements { }1, 2,..., n  taken by groups of j  
elements. 
 We note, for easier computation: 
 

 

1
2

2 1
2

0

n
n
i

i
i

s
c

α

− 
  

+

=

=  and

2
2
2

0

n
n
i
i

i

s
c

β

 
  

=

=
(32) 

 
 We prove it by induction upon 2n ≥ . 
 For 2n =  we get Einstein’s relativistic 
addition formula. 
 Let’s suppose that this general addition 
formula is true for all h , 2 h n≤ ≤ . We need to 
prove it for n+1. 
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1 11 2 1 2

1
1

1
1

1

2 2

... ( ... )

1 1

1

n nn n

n
n

n
n

n

v v v v v v v v
vv

v vv

c c

α βα
α β β

α αβ
β β

+ +

+
+

+
+

+

⊕ ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕ ⊕
+ ⋅+

= ⊕ = = =⋅⋅
+ +

 

 

1

1

1 1
2 2

1
1

n

n

n n

v
v

v v
c c

α β β
α ββ

α αβ β β
β

+

+

+ +

+ ⋅ ⋅
+ ⋅= =⋅ ⋅+ ⋅ +

.         (33) 

 
Now, the numerator: 
 

1
2 2

2 1 2
1 12 2

0 0

n n
n n
i i

n ni i
i i

s sv v
c c

α β

−   
      

+
+ +

= =

+ ⋅ = + ⋅ =   

3 5 01 2 4
1 1 10 2 4 0 2 4... ...

n n nn n n

n n n
s s ss s sv v v
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     

= + ⋅ + + ⋅ + + ⋅ + =     
     

 

1 1 11 2
3 5 2 11

0 2 4 2
0

...

n
n n nn

i
i

i

s s ss
c c c c

 
 + + ++  

+

=

= + + + = .             (34) 

 
 For the denominator 
 

1
2 2

1 2 2 1 1
2 2 2 2

0 0

n n
n n

n i i n
i i

i i

v s s v
c c c c

αβ

−   
      

+ + +

= =

⋅+ = + ⋅ = 
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n n nn n n

n n ns v s v s vs s s
c c c c c c c c c

+ + +   
= + + + + ⋅ + ⋅ + ⋅ + =   
   
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c c c c c c c

+ +    
= + + ⋅ + + ⋅ + =    

    
1

11 1 1 2
21 2 4

0 2 4 2
0

...

n
nn n n
i
i

i

ss s s
c c c c

+ 
  ++ + +  

=

= + + + = 
            (35) 
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and the formula is proved. 
 

1.7. Generalization of Einstein’s 
Thought Experiment with the Light 
Clocks for Arbitrary Ultimate Velocity 
K. 

 
           We change Einstein’s thought experiment 
since c can be replaced by another speed, K, 
which can be smaller or greater than c, but 
consider the ultimate speed in a given space SK, 
and repeat Einstein’s experiment. Therefore: 
 

2 'd t
K

= Δ                                          (36) 

 
which is the proper time interval. 
 
 For the non-proper time interval we have 
the same calculations as in the Theory of 
Relativity: 
 

 
2

2 2 2 .2 2 2
2

v ts d l d Δ = + = +  
 

  (37) 

 
But ,.2 tKs Δ= therefore: 
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2 2

2 ( ). 2
4

v tK t d ΔΔ = + .                    (38) 

 
Raise to the second power both sides: 
 

2 2 2 2 2.( ) 4 .( )K t d v tΔ = + Δ                  (39) 
( ) ,4)( 2222 DvKt =−Δ whence K >v.      (40) 

 
Or: 

 2 2 2

2

2 2 ,
1

d dt
K v vK

K

Δ = =
− −

            (41) 

 
where K should be strictly greater than v.  
 
Whence: 

2

2

'

1

tt
v
K

ΔΔ =

−
                (42) 

 
where K > v. 
 



37 
 

Therefore now the relativistic factor which 
makes the so-called time dilation depends on v 
and K.  
 
 1.8. Generalization of the Relativistic 
Addition Formula for Arbitrary Ultimate 
Velocity K. 
 

Actually, we can generalize Einstein’s 
formula of relativistic addition of velocities in 
the following way: 
 Let’s consider a constant 0 K< < ∞ and a 
physical imaginary space SK, where the ultimate 
speed is .K  
Postulating, similarly to Einstein, that no 
velocity overpass K  in a space denoted SK, we 
define just by substituting " "c  by" "K  the 
addition velocities for an observer on Earth: 
 

 
1 2

1 2
21

v vv
v v
K

+
=

+
                                         (43) 

 
Then, same properties occur: 
 
 K v K+ = forv K≤ ;                             (44) 
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{ }1 2 1 2max , kv v v v K< ⊕ ≤  

for any 1 2,v v K≤ , with equality in the case 

when at least one of 1v  or 2v  is equal to K . 
 In this imaginary space SK, the ultimate 
velocity K can be subluminal, for example the 
speed of sound, or superluminal speed (for 
example ten times the speed of light). 
 Multiple addition formula of speeds in SK 
will have a similar formula: 
 

 

1
2

2 1
2

0
1 2

2
2
2

0

...

n
n
i

i
i

k k k n n
n
i
i

i

s
Kv v v
S
K

− 
  

+

=
 
  

=

⊕ ⊕ ⊕ =



(45) 

 
 We prove it by induction upon 2n ≥ as 
we did before, simply substituting " "c (the 
speed of light) by " "K  in the previous proof. 
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 1.9. Generalized Lorentz Factor. 
 

Lorentz factor will also be generalized to 
 

2

2

1 [1, )
1 v

K

∈ +∞
−

.                        (46) 

 
1.10. Generalized Minkowski Norm. 

The norm of  (x, y, z, t) in the Minkowski 
spacetime also becomes: 

 
2 2 2 2 2x y z K t+ + −

.                                         (47) 

1.11. Generalized Time Dilation 
becomes: 

2

2

'

1
K
v

tt
−

Δ=Δ

.                                (48)
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          1.12. Generalized Length Contraction 
becomes: 

           2

2

1'.
K
v−=  .                             (49) 

           1.13. Generalized Relativistic 
Momentum of an object of mass m, moving 
with speed v, becomes: 

           
2

2

1
K
v

mvp
−

= .                                   (50) 

           1.14. Generalized Energy of an object at 
rest, with rest mass m, is E0=mK2.            (51) 

           1.15. The Generalized Total Energy of 
an object of mass m, moving at speed v, 
becomes: 

           
2

2

21

mKE
v
K

=
−

.                                    (52) 
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             1.16. Generalized Kinetic Energy of 
an object of mass m, moving at speed v, 
becomes: 

            


















−

−

= 1
1

1

2

2

2

K
v

mKEk .              (53) 
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Chapter 2. 
A Hypothesis:  

There is No Speed Barrier in the Universe 
and 

One Can Construct Arbitrary Speeds 
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 2.1. Introduction. 

In this short chapter, as an extension and 
consequence of Einstein-Podolski-Rosen 
paradox and Bell’s inequality, one 
promotes the hypothesis that: There is no 
speed barrier in the universe and one can 
construct any speed, from zero to infinite 
speed (instantaneous transmission). 

Future research: to study the composition 
of faster-than-light velocities and what 
happens with the laws of physics at faster-
than-light velocities? 

2.2. Entangled Particles. 

We recall the following: 

-    photon is a bit of light, the quantum of 
electromagnetic radiation (quantum is the 
smallest amount of energy that a system can 
gain or lose);  

-    polarization refers to the direction and 
characteristics of the light wave vibration;  
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- if one uses the entanglement phenomenon, in  
order to transfer the polarization between two 
photons, then: whatever happens to one is the 
opposite of what happens to the other; hence, 
their polarizations are opposite of each other;  

-    in quantum mechanics, objects such as 
subatomic particles do not have specific, 
fixed characteristic at any given instant in 
time until they are measured; 

-    suppose a certain physical process produces 
a pair of entangled particles A and B (having 
opposite or complementary characteristics), 
which fly off into space in the opposite 
direction and, when they are billions of miles 
apart, one measures particle A; because B is 
the opposite, the act of measuring A 
instantaneously tells B what to be; therefore 
those instructions would somehow have to 
travel between A and B faster than the speed 
of light; hence, one can extend the Einstein-
Podolsky-Rosen paradox and Bell's 
inequality and assert that the light speed is 
not a speed barrier in the universe; 



45 
 

- even more, one can construct any speed, even 
greater than the speed of light (c), by 
measuring particle A at various intervals; 

- also, the information from particle A and B is 
transmitted instantaneously (thus, there is no 
speed barrier in the universe). 

2.3. Scientific Hypothesis.  

We promote the hypothesis that: there is no 
speed barrier in the universe and one can 
construct any speed even infinite (instantaneous 
transmission), which would be theoretically 
proven by increasing, in the previous example, 
the distance between particles A and B as much 
as the universe allows it, and then measuring 
particle A. 

We consider that the superluminal phenomena 
do not violate the causality principle, do not 
produce time traveling, and do not necessitate 
infinite energy for particles traveling at speeds 
greater than the speed of light. 
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2.4. Open Question. 

Wouldn’t it be possible to accelerate a photon 
(or another particle traveling at, let’s say, 
0.999c) and thus to get a speed greater than c 
(where c is the speed of light)? We don’t think it 
is needed an infinite energy for this. 

2.5. Future Possible Research. 

It would be interesting to study the composition 
of two velocities v and w in the cases when: 

v < c and w = c.                                           (54) 

v = c and w = c.                                           (55) 

v > c and w = c.                                           (56) 

v > c and w > c.                                           (57) 

v < c and w = ∞.                                          (58) 

v = c and w = ∞.                                          (59) 

v > c and w = ∞.                                          (60) 
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v = ∞ and w = ∞.                                         (61) 

What happens with the laws of physics in each 
of these cases? 
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Chapter 3. 
Absolute Theory of Relativity (ATR) 
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3.1. Refuting Einstein’s Speed of Light 
Postulate. 
 

Again, we do the opposite of what 
Einstein did. Instead of considering the speeds 
of the clock light the same for both observers, 
while the time intervals different, we consider 
the time intervals are the same for both 
observers, while the speeds c and respectively 
v+c not equal. We refute Einstein’s speed of 
light postulate according to our hypothesis that 
there is no speed limit in the universe and one 
can construct arbitrary speeds. 
  
The classical formula   
 
       Distance = Speed ×  Time                       (62) 
 
was distorted in the Special Theory of Relativity 
in the following way: Time was increased 
(dilated), while Distance was decreased 
(contracted). 
 In order to still keep the validity of this 
formula as Einstein did, the Speed had to be 
extremely decreased in order to compensate 
both the increment of Time and the decrement of 
Distance. The Speed was automatically 
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decreased by the fact that it was not allowed to 
overpass the speed of light – this was the flaw of 
Relativity.  
 In our opinion v+c should be strictly 
greater than c for the observer on earth, since to 
the speed of light it is added the speed of the 
rocket.     
                                      Fig. 3 
 
 
                                                                                       d 
 
 
  
We think the time intervals are the same for 
both observers in accordance with the common 
experience: an event, which occurs in an inertial 
reference frame (in this case: the observer in the 
rocket) and has a time interval tΔ , lasts the same 
time interval tΔ  if it is regarded from another 
inertial reference frame (in this case: the 
observed on earth); we use the real (absolute) 
time interval, not the apparent time interval.   

We agree with Einstein that the 
trajectories of the clock light are different for 
the observers, i.e.  

 
                           Fig. 4 
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for the observer in the rocket, 
and  
                              Fig. 5 

 
 
 
for the observer on earth, and we also 

agree with the mathematics used in the Special 
Theory of Relativity to compute their length. 

In our opinion there is neither a real time 
dilation nor a real length contraction, but an 
apparent time dilation and an apparent length 
contraction. Surely, we can consider in a 
metaphoric way that: time passes faster when 
we enjoy it, and slower when we endure it (for 
example in prison). 

Or, under certain environmental 
conditions our biological or psychological 
processes could run faster or slower. We have 
moments when we can age more or less than 
normal. Therefore, our interior clock does not 
run constantly. Biologically, it is a chance that 
the more active you are (i.e. moving fast), the 
less you age (because the brain is more active) – 
so “time dilation,” but with respect to the 
absolute time you have the same age as 
somebody less active but simultaneously born 
with you. 
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However, time dilation could produce 
nice science fiction stories, but it is not fact.    

 
Einstein did not prove that the speed of 

light cannot be surpassed, he only postulated it. 
Therefore we have the right to question this. He 
did a thought not lab experiment. We mean we 
don’t believe that v+c=c for the observer on 
earth as Einstein asserted, but we think that 
v+c>c for 0<v<c. We prove below that there is 
no anomaly alike “time dilation”, but the speeds 
are different: for the observer in the rocket the 
speed of the clock light is c, while for the 
observer on earth the speed of the clock light is 
c+v, which should be greater than c in order to 
avoid time dilation anomaly.  

Let’s note by x the speed of the clock 
light as seen by the observer on earth. We 
compute it mathematically: 

 
2l v t= Δ ,                                          (63) 

and: 

  
2

2 2 22 2 2 .
2

v ts d l d x tΔ = + = + = Δ 
 

. 

(64) 
 
We need to solve for x the last equality: 
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2

2 2
2 2 ( )( ) 2

4
v tx t d

 ΔΔ = + 
  

            (65)                 

2 2 2 2 2( ) 4 ( )x t d v tΔ = + Δ .          (66) 
 
Dividing both sides with 2)( tΔ , we get: 
 

 
2 2 22( )dx v

t
= +

Δ .                               (67) 

 
We know for the observer in the rocket, that 
2 ,d t
c

= Δ and thus 
2 .d c

t
=

Δ Therefore: 

 

 
222 vcx += .                                 (68) 

Whence the speed of photon in the rocket, with 
respect to the observer on earth, is: 
 

 ,22 ccvx >+=                            (69) 
 



54 
 

which corresponds to the magnitude of the 

vectorial addition, i.e. ,cvx  += since c  and 
v  are orthogonal: 

                               v 
        c                            c 

    x          or              x 
 
   v 
               Fig. 6 
 
3.2. About Inconsistent Theories. 
 
When a theory is based on a set of axioms 

(or propositions) and one or more axioms are 
inconsistent, the theory produces as 
consequences new inconsistencies, and so on…    
Therefore, an anomaly gives birth to other 
anomalies… 

Reciprocally, if an inconsistent theory 
results from some assumptions or propositions, 
then those propositions on the whole must be 
inconsistent too.  

a) Therefore, the Michelson-Morley 
Experiment (1881, 1883-1887) of not 
having detected the ether, which implied 
the STR, might have been erroneous due 
to imprecise measurement instruments or 
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construction. Maybe the ether is very little 
dense and its flow hardly perceptible.  

b) Similarly the constancy of the speed of 
light in vacuum could be flaw, since the 
speed of light might depend on the 
emitting source – the stronger the 
emitting source the faster its light pulse.  
 
3.3. No Relativistic Paradoxes in ATR. 
 
Since in Absolute Theory of Relativity 

there is no time dilation, in consequence there is 
no length contraction, and no relative 
simultaneity. 

Therefore, many relativistic paradoxes are 
discarded: 

a) Ehrenfest Paradox (1909) – since there 
is no length contraction. 

b) Twin Paradox (1911) – since there is 
no time dilation and no gravitational 
time dilation. 

c) Bell’s Spaceship Paradox (1959) – 
since there is no length contraction. 

d) W. Rindler’s Paradox about a man 
falling into a grate (1961) – since there 
is no length contraction. 

Etc. 
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3.4. Removing Lorentz Factor in ATR. 
 
Lorentz Factor  

2

2

1

1 v
c

−
                                                    (70) 

becomes equal to 1 in ATR, because in the 
equality  

'

2

21

tt
v
c

ΔΔ =
−

                                             (71) 

we replace   
't tΔ = Δ

    
Therefore Lorentz Factor has no effect in our 
ATR.  
As a consequence in ATR we get: 
- No time dilation, since '

1
tt ΔΔ =                 (72) 

- No Lorentz-FitzGerald Length Contraction, 
since l = l’·1                                               (73) 
- The Relativistic Momentum of an object of 
mass m, moving with speed v, becomes 
classical: 



57 
 

           
1

mvp = .                                          (74)                          

- The Total Energy (upon Einstein) of an object 
of mass m, moving at speed v, becomes: 

           
2

1
mcE =                                         (75)                          

- The Rest Energy (upon Einstein) of an abject 
of mass m is  

             E0 = mc2                                      (76) 

- Whence we obtain the Kinetic Energy of an 
object of mass m, moving at speed v, becoming: 

            
2 1 1 0

1kE mc  = − = 
 

                    (77)

 

which doesn’t make sense. 
 
Therefore, in our opinion, the famous physics 
formula E0 = mc2 is questionable. We 
understand that light is electromagnetic energy, 
but we don’t understand why the energy of an 
object should depend on the light speed? We 
mean why on the speed? 
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 3.5. Physics Laws might not be the 
same in all Inertial Systems. 
 
 If there exist superluminal velocities, 
there might be possible that not all physics laws 
are the same in all inertial systems. 
As a counter example let’s consider as physics 
law the Addition of Velocities in a given inertial 
system Si. Let’s take the collinear and in the 
same direction velocities v1 = 0.8c and  
v2 = 0.9c.  
If we add them in STR we get: 
 

v1+ v2 = 
2

0.8 0.9 1.70 0.9883720.8 0.9 1.721

c c c cc c
c

+ =⋅+
  

(78) 
 
while in ART we simply get  
 
v1+ v2 = 0.8c + 0.9c = 1.7c.                         (79) 
 
The results are different. 
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3.6. Linear Trajectories for Both 
Observers. 

 
We consider the case when the 

trajectories seen by both observers are linear. 
 
3.6.1. Orthogonal Trajectory Vectors 

and Arbitrary Velocity K. 
 
We can generalize this relationship, 

replacing “c” by any speed K>0 such that v  
and K


are orthogonal. Then: 

 

 .22 KvKvx
 +=+=                    (80) 

 
3.6.2. Non-orthogonal Trajectory 

Vectors and c as Ultimate Velocity. 
 
Let’s change Einstein’s theoretical experi-

ment, and consider d making an angle θ, 
,0 πθ ≤≤ with the motion direction (rocket’s). 

Similarly, as before:  

  
2d t
c

= Δ  whence 
2d c

t
=

Δ                     

(81) 
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                         Fig. 7       C                
                                           
 
        s1                                                                     s2 

                                             θ 
     A                     l       O       l                    B 
 
 In the triangle ΔAOC we apply the 
Theorem of Cosine (which is a generalization of 
Pythagorean Theorem used in the Special 
Theory of Relativity): 
 

 
2 2 2
1 2 .cos( ),s l d ld π θ= + − −

               

      
2

2 2 ( cos( ),
2 2

v t v td d θΔ Δ = + − − 
 

     

  

      
( )2

2 2 cos
4
t

v d v t D θ
Δ

= + + Δ ⋅ ⋅ .              

(82) 
 
Similarly, in the triangle ΔOBC we apply the 
Theorem of Cosine, and we get: 
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2 2 2
2 2 cos ,s l d ld θ= + − ⋅                        

       
( )2

2 2 os( )
4
t

v d v d t c θ
Δ

= + − ⋅ ⋅ Δ ⋅ .                  

(83) 

But 1 2x t s s⋅ Δ = + , then: 
 

( )

( )

2
2 2

2
2 2

. . .cos
4

. . .cos
4

t
x t v d v t d

t
v d v t d

θ

θ

Δ
Δ = + + Δ +

Δ
+ − Δ

   

(84) 
 

Divide by tΔ : 
 

22

22

. .cos
4

. .cos
4

v d dx v
t t

v d d v
t t

θ

θ

 = + + + Δ Δ 

 + − Δ Δ 

                

(85) 
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2 2

2 2

. .cos
4 4 2

. .cos
4 4 2

v c cx v

v c c v

θ

θ

= + + +

+ −
                      

(86) 
2 2

2 2

1 2 . os
2

1 2 cos
2

x v c vc c

v c vc

θ

θ

= + + +

+ − ⋅
                    

(87) 
 

Distance s1 is traveled with the speed 
2 2 2 cosv c vc θ+ + ⋅ , while the distance s2 is 

traveled with the speed 2 2 2 cosv c vc θ+ − ⋅ , 

each of them in the same time interval 2
tΔ

. 

If 
2
πθ = when v and c  are perpendicular, 

then 2 2 ,x v c= + therefore we get the same 
result as in our previous work [section 2.1]. 

If  0=θ , then cvcvx −++=
2
1

2
1

which 

means that v and c  are collinear. For s1 the 
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speed is v+c since v and c  are in the same 
direction, while for s2 the speed is v-c since v

and c  are in opposite directions (like in 
Galilean Relativity).  

If πθ = , then cvcvx ++−=
2
1

2
1 since 

v and c  are collinear, with opposite directions 
on s1 and with the same direction on s2 (again 
similarly as in Galilean Relativity). 

 
 3.6.3. Non-Orthogonal Trajectory 
Vectors and Arbitrary Ultimate Velocity. 

 
We can extend this thought experiment by 

substituting “c” for any speed K (negative, 
positive, or zero, which can be smaller or 
greater than c). Then the speed as measured by 
the observer on earth is: 

 
2 2

2 2

1 2 cos
2

1 2 cos
2

x v K vK

v K vK

θ

θ

= + + ⋅ +

+ − ⋅
                  

(88) 
 

3.6.4. Non-Orthogonal Trajectory 
Vectors and Arbitrary Velocities. 
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We can again generalize the previous 

thought experiment by substituting “c” for any 
speed w (negative, zero, or positive smaller or 
greater than c). Then, the speed as measured by 
the observer on earth is: 

 
2 2

2 2

1 2 cos
2

1 2 cos
2

x v w vw

v w vw

θ

θ

= + + ⋅ +

+ − ⋅
 

(89) 
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Chapter 4. 
Parameterized Special Theory of Relativity 

(PSTR) 
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4.1. PSTR Equation. 
 
In a more general case when we don’t 

know the speed x nor the relationship between 
'tΔ and tΔ , we get: 

 

 

2
22

2
v tx t d Δ Δ = +  

  .                 (90) 

But 
'

2
c td Δ= , therefore: 

2 2'2
2 2

c t v tx t Δ Δ   Δ = +   
    .         (91) 

Or:  ( ) ( )2 22 2'x t c t v tΔ = Δ + Δ .        (92) 
Dividing the whole equality by tΔ we obtain: 
 

 
2

2 2 'tx v c
t

Δ = +  Δ 
                          (93) 

 
which is the PSTR Equation.  
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4.2. PSTR Elapsed Time Ratio τ
(Parameter). 

We now substitute in a general case 

            
' (0, )t

t
τΔ = ∈ +∞

Δ  ,                      (94) 

where τ is the PSTR Elapsed Time Ratio. 

therefore we get another extension of the 
Special Theory of Relativity (STR), i.e.: 

4.3. PSTR Extends STR, ATR, and 
Introduces Three More Relativities. 

1. If 2

2

1
c
v−=τ we get the STR, since  

replacing x by c, one has  
2

2 2 2 'tc v c
t

Δ = +  Δ 
,                                 

22 2

2 2

'tc v
c c t

Δ − =  Δ  ,                                   

or 
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2

2

' 1 [0,1]t v
t c

Δ = − ∈
Δ as in the STR. 

 
2. If τ=1, we get our Absolute Theory of 

Relativity [see Chapter 3] in the particular 
case when the two trajectory vectors are 
perpendicular, i.e.  

2 2x v c= + = | |v c
→ →

+ . 

3. If 2

2

10
c
v−<< τ , the time dilation is 

increased with respect to that of the STR, 
therefore the speed x as seen by the observer 
on earth is decreased (becomes subluminal) 
while in STR it is c. 

4. If 11 2

2

<<− τ
c
v

there is still time 

dilation, but less than the time dilation of the 
STR, but the speed x as seen by the observer 
on earth becomes superluminal (yet less than 
in our Absolute Theory of Relativity). 

5. If τ>1, we get an opposite time dilation (i.e. 
tt Δ>Δ ' ) with respect to the STR (instead 
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of 't tΔ < Δ ), and the speed x as seen by the 
observer on earth increases even more than 
in our ATR. 

The reader might be interested in studying 
these new Relativities mathematically 
resulted from the above 3, 4, and 5 cases. 

4.4. PSTRK Equation and Elapsed Time 
Ratio (Parameter) in SK Space 
 
The PSTRK Equation becomes be a simple 
substitution of c with K: 
 

2
2 2 'tx v K

t
Δ = +  Δ                                   (95)

 

 
while the PSTRK Elapsed Time Ratio  
(Parameter) is the sameτ : 
 

' (0, )t
t

τΔ = ∈ +∞
Δ .                                     (96) 
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4.5. PSTRK Extends STRK, ATRK, and 
Introduces Three More K-Relativities 
 

6. If 
2

21 v
K

τ = − we get the STRK (Special 

Theory of Relativity with K as Ultimate 
Speed). 

7. If τ=1, we get the ASTRK (Absolute Special 
Theory of Relativity as derived from STRK, 
although there is no distinction between 
ASTR and ASTRK) in the particular case 
when the two trajectory vectors are 
perpendicular, i.e.  

2 2x v K= + = | |v K
→ →

+ .                (97) 

8. If 
2

20 1 v
K

τ< < − , the time dilation is 

increased with respect to that of the STRK, 
therefore the speed x as seen by the observer 
on earth is decreased (becomes subluminal) 
while in STRK it is c. 
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9. If 
2

21 1v
K

τ− < < there is still time 

dilation, but less than the time dilation of the 
STRK, but the speed x as seen by the 
observer on earth becomes superluminal (yet 
less than in our Absolute Theory of 
Relativity). 

10. If τ>1, we get an opposite time dilation (i.e. 
tt Δ>Δ ' ) with respect to the STRK (instead 

of 't tΔ < Δ ), and the speed x as seen by the 
observer on earth increases even more than 
in our ATRK. 

The reader might be interested in studying 
these new K-Relativities mathematically 
resulted from the above 8, 9, and 10 cases 
(relativities in the SK space, where the 
ultimate speed is K). 
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Chapter 5. 
Accelerated Reference Frames. 
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 5.1. Formulas of Kinematics for 
Constant Acceleration. 
 

We use the following Formulas of 
Kinematics for Constant Acceleration: 

 
 atvv += 0              (98)

 tvvs )(
2
1

0 +=                                     (99) 

 
2

0
1
2

s v t at= +                                   (100) 

 asvv 22
0

2 +=                                   (101) 
where: 
 a = constant acceleration; 
 v0 = initial velocity at time t0 = 0; 
 v = final velocity at time t; 
 t = time elapsed since t0 = 0; 
 s = distance (displacement). 
 
5.2. Gravitation and Constant Velocity of the 
Rocket. 
 
Let’s modify again Einstein’s thought 
experiment. In the rocket let’s consider a rock in 
a free fall on a distance d: 
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                   Fig. 8            A 
 
                                       d 
 
 
                                        B 
 
Under the earth’s acceleration: 
 
 a = g 
 v0 = 0 

Then 
2

0
1
2

s v t at= + becomes: 

 ( )210 ( ') '
2

d t g t= ⋅ Δ + Δ , 

or ( )21 '
2

d g t= Δ  .         (102) 

The rocket is moving at a constant speed v. 
 
For the observer on earth, the trajectory of the 
rock is AB’ (not AB as seen by the astronaut). 
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                    A 
                                              Fig. 9 
 
                    d 

 

                     B            l                B’ 

( )21 '
2

AB d g t= = Δ
                    

       (103) 

But the distance BB’ , traveled by the rocket in 
the elapsed time tΔ ,is: 

        'BB l v t= = Δ .                                (104)  

Using the Pythagorean Theorem in the triangle 
ΔABB’ we get: 

        
2 2'AB d l= +  

               ( ) ( )
2

2 21 '
2

g t v t = Δ + Δ  
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               ( )
2

4 2 2' ( )
4
g t v t= Δ + Δ              (105) 

But ( )
2

4 2 2 21' ( ) 0 ( ) ,
4 2 a
g t v t t x tΔ + Δ = ⋅ Δ + Δ        

(92)   

where ax  = constant acceleration as seen by the 
observer on earth. 

We get: 

        ( )
2

4 2 2 21' ( ) ( )
4 2 a
g t v t x tΔ + Δ = Δ

       (106)
 

        If we consider an absolute time as in our 
ATR, then we take ,' tt Δ=Δ and it results: 

        ( )
2

4 2 2 2 41( ) ( ) .
4 4 a
g t v t x tΔ + Δ = Δ                 (107) 

Divide by 4)( tΔ : 

        
44

222
ax

t
vg =







Δ
+   
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or 

         
2

2
2 4 ax

t
vg =







Δ
+ ,                           (108) 

whence: 

         .2 2
2 g

t
vgxa >







Δ
+=                       

(109) 

The observer on earth perceives a greater 
constant acceleration of the rock than the 
astronaut does. 

        It is remarkable to know that t
v

Δ
2

is equal to 

the constant acceleration of a rocket that would 
start to move in the same moment when the rock 
starts to freely fall and whose final velocity at 
time Δt (when the rock reaches the rocket floor) 
is 2v.   

       5.3. Gravitation with Constant 
Acceleration of the Rocket. 
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      We consider the previous thought 
experiment: a rock in fall free in the rocket, but 
the rocket having an initial speed v, and at the 
moment when the rock begins to fall the rocket 
starts to accelerate with constant acceleration a. 

Similarly: ( )21 '
2

AB d g t= = Δ  

                    A 
                                                    Fig. 10 
                   
                    d 

 

                     B            l               B’’ 

The new trajectory AB” is greater than the 
previous trajectory AB’. 

The distance BB” is: 

           ( )2"
2
aBB l v t t= = Δ + Δ .                  (110) 

           2 2"AB d l= +  
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( ) ( )
2 2

2 21 '
2 2

ag t v t t   = Δ + Δ + Δ      
(111) 

But supposing that ax  is the constant accelera-
tion of the rock travelling on the trajectory AB”, 
as seen by the observer on earth, and using the 
distance formula with respect to the accelera-
tion, we also have: 

       
21" 0 ( )

2 aAB t x t= ⋅ Δ + Δ ,                        (112) 

whence: 

        

( ) ( )
2

42 2 21 1' ( ) ( )
4 2 2 a

ag t v t t x t Δ + + Δ Δ = Δ  
(113)

 

Multiplying with 2)(
2
tΔ  

we get: 
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        ,2 2
2 ga

t
vgxa >






 +

Δ
+=                  (114) 

and also .axa >  

The observer on earth sees the rock falling with 
a constant acceleration greater than both the 
gravitation g and the rocket’s constant accelera-
tion a. 

       Instead of a rocket, let’s suppose a train 
with initial velocity v=0. Then  

            
22 agxa += .                        (115) 

5.4. Constant Accelerations and Oblique 
Direction Vectors. 

In the rocket a particle travels from A to B 
with a constant acceleration a1 starting at initial 
speed v1 in the elapsed time Δt1 with respect to 
the observer in the rocket. 
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                            A 

                     d 

                   

                          θ 

          B                                                B’’’ 

                                 Fig. 11 

         
2

1 1 1 1
1( ) ( )
2

d v t a t= Δ + Δ                     (116) 

The rocket travels with a constant acceleration 
a2 starting at initial speed v2 in the elapsed time 
Δt2 with respect to the observer on earth. The 
angle between the two direction vectors is θ, 

πθ ≤≤0 .  

            
2

2222 ).(
2
1).('" tatvBB Δ+Δ=    (117) 

Using the Cosine Theorem in the triangle 
ΔABB”’ we get:
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θcos.'".2'"'" 222 BBABBBABAB −+=
(118) 

           

( )

( )

( )( ) θcos
2
.

2
..2

2
.

2
.

22
2

11
121

2
22

2
2

2

2
11

1
2

1





 Δ

+



 Δ

+ΔΔ

−



 Δ

+Δ

+



 Δ

+Δ=

tavtavtt

tavt

tavt

 

            ( ) ( )
2

2
22 33 2

1




 Δ+Δ= txtx av                      

(119) 

where 
3vx  is the initial speed and 

3ax  is the 
constant acceleration of the particle on 
trajectory AB”’ as seen by the observer on earth 
(gravitation not included). 

This is the general equation, without any 
assumption about the relationships between the 
elapsed times Δt1 and Δt2, nor about the 
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acceleration 
3ax (with initial velocity 

3vx ) as 
seen by the observer on earth. 

Now, in particular case when we consider the 
absolute time (therefore Δt1=Δt2) we get, after 

dividing by ( ) ( ) ( )2
2

2
1

2 ttt Δ=Δ=Δ :  

( )
2

2
2

1
1

2
2

2

2
1

1

33 2
1cos

2
.

2
..2

2
.

2
.





 Δ+=



 Δ

+



 Δ

+

−



 Δ

++



 Δ

+

txxtavtav

tavtav

avθ

 Divide again by ( ) :2tΔ  

2

2211
2

22
2

11

3

3

2
1

cos
22

.2
22









+

Δ
=





 +
Δ



 +
Δ

−



 +
Δ

+



 +
Δ

a
v x
t

x

a
t

va
t

va
t

va
t

v θ

(120)

 

       5.5. Constant Accelerations with Zero 
Initial Velocity and Oblique Direction 
Vectors. 
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       In the previous case, we set: 

        0
321 === vxvv . 

Therefore: 

        4
cos

4
2

44

2
21

2
2

2
1 3axaaaa

=−+ θ ; 

whence the constant acceleration of the particle 
as seen by the observer on earth on the path 
AB”’ is: 

         θcos.2 21
2
2

2
13

aaaaxa −+= .  
(121) 
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Chapter 6. 
Noninertial Multirelativity 
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6.1. Multirelativity with Nonconstant 
Acceleration and 3D-Curves. 

       In a 3D-Euclidean space for location and in 
an 1D-oriented Euclidean space for time we 
consider a reference frame F1 with respect to 
which a particle P0 travels with a nonconstant 
acceleration a0 on a 3D curve C0 in an elapsed 
time Δt0.  

Then  we suppose the reference frame F1 is 
moving with nonconstant acceleration a1 on a 
3D curve C1 with respect to another reference 
frame F2. Similarly, the reference frame F2 is 
moving with a nonconstant acceleration a2 on a 
3D curve C2 with respect to another reference 
frame F3. 

And so on: the reference frame Fn-1 is moving 
with a nonconstant acceleration an-1 on a 3D 
curve Cn-1 with respect to another reference 
frame Fn (where n>2). 

We call this a Noninertial Multirelativity, i.e. 
the most general case. 
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6.2. Research Problems. 
 

1. How would the particle’s trajectory curve 
C0 be seen by an observer in the reference 
frame Fn ? 

2. What would be the particle’s speed 
(acceleration) as measured by the 
observer from the reference frame Fn ? 

3. What would be the elapsed time of the 
particle as seen by the observer in the 
reference frame Fn ? 

4. What are the transformation equations 
from a reference frame to another? 

5. Similar questions for rotating reference 
systems. 

      Particular cases would be helpful in 
starting such research, for example studying 
particles or reference frames travelling on 
linear curves, or on special curves, with 
constant speeds or constant accelerations, in 
reference frames that have one, two, or three 
parallel coordinate axes. Then later trying to 
generalize the results. 
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6.3. Example of Nonlinear 3D-Trajectories of 
Particle and Reference Frames. 

    Since each constant speed v can be considered 
a constant zero-acceleration with initial velocity 
v, we treat the general case (i.e. the constant 
acceleration). 

Let’s consider in the reference frame F1 a 
particle P0 traveling on a curve C0 from A to B: 

                         Fig. 12 

                          B                  B’ 

                             

          C0 

                         

             A 

with a constant acceleration a0 and initial 
velocity v0. Let’s take into consideration the 
earth’s gravity g too that influences the 
trajectory.  
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F1 (which has the Cartesian system X1Y1Z1) is moving 
with a constant acceleration a1 with initial velocity v1 in 
the positive direction of the X1-axis (the OY1- and OZ1-
axes are parallel respectively with OY2 and OZ2) with 
respect to the frame F2 (whose Cartesian system is 
X2Y2Z2).   

The arclength of AB is noted by d. 

From an observer in F2 the trajectory AB
→

 of the particle 

P0 in F1 is seen as a 2D- or 3D-curve 'AB
→

.  

The curve AB’ is described in F2 by a function  

( )0 1 0 2 2 20 1( , , , , , , , , ) ( ), ( ), ( )f a v a v g C A B x t y t z tθ =  

(122) 

i.e. 

[ ] [ ] [ ]
2 2 2

2 2 2

0

( ') '( ) '( ) '( ) ( ', )
t

ArcLength AB x t y t z t dt L t t
Δ

= + + ≡ Δ Δ
 

(123) 
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where x2’(t), y2’(t), z2’(t) are respectively the 
derivatives of  x2(t), y2(t), z2(t) with respect to t, 
and L(Δt’,Δt)  is a notation to mean that the 
arclength L, from A to B’, depends on Δt and 
also on d, but d depends on Δt’. 

The distance traveled by the reference frame F1 
in Δt elapsed time is 

( ) ( )2
111 2

1 tatvs Δ+Δ=
                       (124)

 

Supposing that particle’s traveling is seen as a 
constant acceleration by the observer in F2, then 
we have:  

           ( ) ( )2
00 2

1),'( txtxttL av Δ+Δ=ΔΔ   (125) 

where 
0vx = the initial particle’s velocity as seen 

by the observer in F2,  

and 
0ax = the particle’s constant acceleration as 

seen by the observer in F2.  
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We know that in F1: 

( ) ( )2
00 '

2
1' tatvdAB Δ+Δ== .                     (126) 

      Depending on the suppositions regarding he 
connections between Δt’ and Δt (in an absolute 
time reference frame they are equal), or on the 
supposition about the acceleration of the particle 

0ax and 
0vx we get particular cases in formula 

(125). 

The reader can repeat this thought 
experiment for the case when the accelerations 
a0 and a1 are not constant, and the reference 
frame F1 is moving with respect to the reference 
frame F2 on an arbitrary 3D-curve. 
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In this book we present the hypothesis 
that there is no speed barrier in the universe - 
thus refuting the speed of light postulate.  

While Einstein considered a relative 
space and relative time but the ultimate speed 
of light, we do the opposite: we consider an 
absolute time and absolute space but no 
ultimate speed, and we call it the Absolute 
Theory of Relativity (ATR). 

We then parameterize Einstein’s 
thought experiment with atomic clocks, 
supposing that we know neither if the space 
and time are relative or absolute, nor if the 
speed of light is ultimate speed or not.  We 
obtain a Parameterized Special Theory of 
Relativity (PSTR). Our PSTR generalizes not 
only Einstein’s Special Theory of Relativity, 
but also our ATR, and introduces three more 
possible Relativities to be studied in the 
future. 
 Afterwards, we extend our research 
considering not only constant velocities but 
constant accelerations too. 
 Eventually we propose a Noninertial 
Multirelativity for the same thought 
experiment, i.e. considering non-constant 
accelerations and arbitrary 3D-curves.  


