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Forward 

 

The purpose of this book is to postulate some theories and test them numerically. 
Estimation is often a difficult task and it has wide application in social sciences and 
financial market. In order to obtain the optimum efficiency for some classes of 
estimators, we have devoted this book into three specialized sections: 

 

Part 1.  In this section we have studied a class of shrinkage estimators for shape 
parameter beta in failure censored samples from two-parameter Weibull distribution 
when some 'apriori' or guessed interval containing the parameter beta is available in 
addition to sample information and analyses their properties. Some estimators are 
generated from the proposed class and compared with the minimum mean squared error 
(MMSE) estimator. Numerical computations in terms of percent relative efficiency and 
absolute relative bias indicate that certain of these estimators substantially improve the 
MMSE estimator in some guessed interval of the parameter space of beta, especially for 
censored samples with small sizes. Subsequently, a modified class of shrinkage 
estimators is proposed with its properties.  

 

Part2.  In this section we have analyzed the two classes of estimators for population 
median MY of the study character Y using information on two auxiliary characters X and 
Z in double sampling. In this section we have shown that the suggested classes of 
estimators are more efficient than the one suggested by Singh et al (2001). Estimators 
based on estimated optimum values have been also considered with their properties. The 
optimum values of the first phase and second phase sample sizes are also obtained for the 
fixed cost of survey. 

 
Part3.  In this section, we have investigated the impact of measurement errors on a family 
of estimators of population mean using multiauxiliary information. This error 
minimization is vital in financial modeling whereby the objective function lies upon 
minimizing over-shooting and undershooting.  
 

This book has been designed for graduate students and researchers who are active in the 
area of estimation and data sampling applied in financial survey modeling and applied 
statistics. In our future research, we will address the computational aspects of the 
algorithms developed in this book.  
 
 

The Authors 



 5 

Estimation of Weibull Shape Parameter by Shrinkage Towards An 
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Abstract 
This paper is speculated to propose a class of shrinkage estimators for shape parameter 

β in failure censored samples from two-parameter Weibull distribution when some ‘apriori’ or 
guessed  interval containing the parameter β  is available in addition to sample information and 
analyses their properties. Some estimators are generated from the proposed class and compared 
with the minimum mean squared error (MMSE) estimator. Numerical computations in terms of 
percent relative efficiency and absolute relative bias indicate that certain of these estimators 
substantially improve the MMSE estimator in some guessed interval of the parameter space of β , 
especially for censored samples with small sizes. Subsequently, a modified class of shrinkage 
estimators is proposed with its properties. 
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estimation technique, Absolute relative bias, Relative mean square error, Percent relative 
efficiency. 
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1. INTRODUCTION 

 Identical rudiments subjected to identical environmental conditions will fail at different and 

unpredictable times. The ‘time of failure’ or ‘life length’ of a component, measured from some specified 

time until it fails, is represented by the continuous random variable X. One distribution that has been used 

extensively in recent years to deal with such problems of reliability and life-testing is the Weibull 

distribution introduced by Weibull(1939), who proposed it in connection with his studies on strength of 

material. 

 The Weibull distribution includes the exponential and the Rayleigh distributions as special cases. 

The use of the distribution in reliability and quality control work was advocated by many authors following 

Weibull(1951), Lieblin and Zelen(1956), Kao(1958,1959), Berrettoni(1964) and Mann(1968 A). 

Weibull(1951) showed that the distribution is useful in describing the ‘wear-out’ or fatigue failures. 
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Kao(1959) used it as a model for vacuum tube failures while Lieblin and Zelen(1956) used it as a model for 

ball bearing failures. Mann(1968 A) gives a variety of situations in which the distribution is used for other 

types of failure data. The distribution often becomes suitable where the conditions for “strict randomness” 

of the exponential distribution are not satisfied with the shape parameter β having a characteristic or 

predictable value depending upon the fundamental nature of the problem being considered. 

 

1.1 The Model  

 Let x1, x2, …, xn be a random sample of size n from a two-parameter Weibull distribution, 

probability density function of which is given by : 

  ( ) ( ){ }f x x x x; , exp / ; , ,α β βα α α ββ β β= − > > >− −1 0 0 0               

(1.1) 

where α  being the characteristic life acts as a scale parameter and β  is the shape parameter.  

 The variable Y = ln x  follows an extreme value distribution, sometimes called the       log-Weibull 

distribution [e.g. White(1969)], cumulative distribution function of which is given by : 

( )F y
y u

b
y u b= − −

−













− ∞ < < ∞ − ∞ < < ∞ >1 0exp exp ; , ,              

(1.2) 

where b = 1/β  and  u = ln α  are respectively the scale and location parameters. 

 The inferential procedures of the above model are quite complex. Mann(1967 A,B,   1968 B) 

suggested the generalised least squares estimator using the variances and covariances of the ordered 

observations for which tables are available up to n = 25 only. 

 

1.2 Classical Estimators   

 Suppose x1, x2, …, xm be the m smallest ordered observations in a sample of size n from Weibull 

distribution. Bain(1972) defined an unbiased estimator for b as  

  b
y y

nKu
i m

m ni

m∧

=

−

= −
−











∑

( , )1

1

,                   

(1.3) 

where  ( )K
n

v v
m n i m

i

m

( , )
= −



 −











=

−

∑1
1

1

E ,                 

(1.4) 
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and  v
y u

bi
i=

−
  are ordered  variables  from  the  extreme  value  distribution  with   u = 0   and b = 

1.The estimator bu

∧
 is found to have high relative efficiency for heavily censored cases. Contrary to this, 

the asymptotic relative efficiency of bu

∧
 is zero for complete samples. 

 Engelhardt and Bain(1973) suggested a general form of the estimator as 

  b
y y
nKg

i m

g m ni

m∧

=
= −

−










∑

( , , )1
,                   

(1.5) 

where g is a constant to be chosen so that the variance of b g

∧

is least and K(g,m,n) is an unbiasing constant. 

The statistic 
hb

b
g

∧

has been shown to follow approximately χ2 - distribution with h degrees of freedom, 

where h Var b bg= 





∧
2 . Therefore, we have  

  
[ ]

( )E
h

h jp
h

jp

jp

jp

β
β

∧ −





=
−







+1 2
2

2
2

Γ
Γ

( / )
/

  ;   j = 1,2   

 (1.6) 

where β
∧

=
−h
t

2
 is an unbiased estimator of  β  with  Var ( )

)4(
2ˆ

2

−
β

=β
h

 and t hb g=
∧

 having density 

( ) 0;
2

exp
22/

1)( 1)2/(
2/

>





 β−







 β

Γ
= − ttt

h
tf h

h

.              

 The MMSE estimator of β, among the class of estimators of the form C β
∧

 ; C being a constant for 

which the mean square error (MSE) of  C β
∧

 is minimum, is 

  β
∧

=
−

M

h
t

4
,                      

 (1.7) 

having absolute relative bias and relative mean squared error as  

ARB{ }β
∧

=
−M h
2

2
,                    

(1.8) 

and   RMSE
2

2
−

=






 ∧

hMβ ,                            

(1.9) 
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respectively. 

 

1.3 Shrinkage Technique of Estimation 

 Considerable amount of work dealing with shrinkage estimation methods for the parameters of the 

Weibull distribution has been done since 1970. An experimenter involved in life-testing experiments 

becomes quite familiar with failure data and hence may often develop knowledge about some parameters of 

the distribution. In the case of Weibull distribution, for example, knowledge on the shape parameter β can 

be utilised to develop improved inference for the other parameters. Thompson(1968 A,B) considered the 

problem of shrinking an unbiased estimator ξ  of the parameter ξ  either  towards a natural origin ξ
0

or 

towards an interval ( )ξ ξ
1 2
, and suggested the shrunken estimators h h( )ξ ξ+ −1

0
  and  

h h( )ξ
ξ ξ

+ −
+







1

2
1 2 , where 0 < h < 1 is a constant. The relevance of such type of shrunken 

estimators lies in the fact that, though perhaps they are biased, has smaller MSE than ξ  for  ξ  in some 

interval around ξ
0

 or 
ξ ξ

1 2

2

+







 , as the case may be. This type of shrinkage estimation of the Weibull 

parameters has been discussed by various authors, including Singh and Bhatkulikar(1978), Pandey(1983), 

Pandey and Upadhyay(1985,1986) and Singh and Shukla(2000). For example, Singh and 

Bhatkulikar(1978) suggested performing a significance test of the validity of the prior value of β (which 

they took as 1). Pandey(1983) also suggested a similar preliminary test shrunken estimator for β. 

 

In the present investigation, it is desired to estimate β  in the presence of a prior information 

available in the form of an interval ( )21, ββ  and the sample information contained in β̂ . Consequently, 

this article is an attempt in the direction of obtaining an efficient class of shrunken estimators for the scale 

parameter β . The properties of the suggested class of estimators are also discussed theoretically and 

empirically. The proposed class of shrunken estimators is furthermore modified with its properties. 

 

2. THE PROPOSED CLASS OF SHRINKAGE ESTIMATORS 

 Consider a class of estimators β
∗

( , )p q for β  in model (1.1) defined by 
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



























 +
+






 +

= ∧

∗
p

qp wq
β

ββββ
β

22
2121

),( ,                

(2.1) 

where p and q are real numbers such that p ≠ 0  and  q > 0, w is a stochastic variable which may in 

particular be a scalar, to be chosen such that MSE of β
∗

( , )p q  is minimum. 

 Assuming w a scalar and using result (1.6), the MSE of β
∗

( , )p q is given by  

MSE { } [ ]






Γ
+Γ









−
∆+−∆β=







β +

∗

)2/(
2)2/(

2
21

2
)1(2222

),( h
ph

h
wq

p
p

qp  

{ } [ ]






Γ
+Γ









−
∆−∆+ +

)2/(
2)2/(

2
21 )1(

h
ph

h
wq

p
p  

 (2.2) 

where  







β
β+β

=∆
2

21 . 

Minimising (2.2) with respect to w and replacing  β  by its unbiased estimator β
∧

, we get 

  )(

2

2
)1(

21

21

pw
q

w p

p

+

∧∧

∧







 +









−





 +

−
=

ββ

ββββ

.     

 (2.3) 

where  w p( ) =
( )[ ]

[ ]
h h p

h p

p−





+

+
2

2
2

2 2
Γ

Γ

/
( / )

,      

 (2.4) 

lies between 0 and 1, {i.e., 0 < w(p) ≤  1} provided gamma functions exist, i.e., )2/( hp −> . 

Substituting (2.3) in (2.1) yields a class of shrinkage estimators for β  in a more feasible form as  

  { })(1
2

)(2ˆ 21
),( pwqpw

t
h

qp −





 β+β

+





 −

=β .     

(2.5) 

 

2.1 Non-negativity 
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 Clearly, the proposed class of estimators (2.5) is the convex combination of ( ){ }th /2−   and  

( ){ }2/21 β+βq  and hence ),(
ˆ

qpβ  is always positive as ( ){ } 0/2 >− th  and  q > 0. 

 

2.2 Unbiasedness 

If w(p) = 1, the proposed class of shrinkage estimators ),(
ˆ

qpβ  turns into the unbiased estimator β , 

otherwise it is biased with 

  Bias { } [ ])(11),( pwqqp −−∆β=






β

∧

                   (2.6) 

and thus the absolute relative bias is given by 

  ARB { } [ ])(11),( pwqqp −−∆=






β

∧

.       

(2.7) 

 The condition for unbiasedness that  w(p) = 1, holds iff,  censored sample size m is indefinitely 

large, i.e., m → ∞. Moreover, if the proposed class of estimators q)(p,β̂  turns into β̂  then this case does not 

deal with the use of prior information. 

 A more realistic condition for unbiasedness without damaging the basic structure of q)(p,β̂  and 

utilises prior information intelligibly can be obtained by (2.7). The ARB of q)(p,β̂  is zero when 1−∆=q (or 

1−=∆ q ). 

 

2.3 Relative Mean Squared Error 

 The MSE of the suggested class of shrinkage estimators is derived as  

   MSE { } { } { }









−
+−−∆β=







β

∧

)4(
)(2)(11

2
222

),( h
pwpwqqp ,               (2.8)  

and relative mean square error is therefore given by  

  RMSE { } { } { }
)4(

)(2)(11
2

22
),( −

+−−∆=






β

∧

h
pwpwqqp .               

(2.9) 

It is obvious from (2.9) that RMSE{ }),(
ˆ

qpβ  is minimum when 1−∆=q (or 1−=∆ q ). 

 

2.4 Selection of the Scalar ‘p’ 
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The convex nature of the proposed statistic and the condition that gamma functions contained in 

w(p) exist, provides the criterion of choosing the scalar p. Therefore, the acceptable range of value of  p is 

given by  

 { })2/(and1)(0| hppwp −>≤< ,  ∀ n, m.             (2.10) 

 

2.5 Selection of the Scalar ‘q’ 

It is pointed out that at 1−∆=q , the proposed class of estimators is not only unbiased but renders 

maximum gain in efficiency, which is a remarkable property of the proposed class of estimators. Thus 

obtaining significant gain in efficiency as well as proportionately small magnitude of bias for fixed ∆  or 

for fixed ( )ββ1  and ( )ββ2 , one should choose q in the vicinity of  1−∆=q . It is interesting to note 

that if one selects smaller values of  q  then higher values of ∆  leads to a large gain in efficiency (along 

with appreciable smaller magnitude of bias) and vice-versa. This implies that for smaller values of q, the 

proposed class of estimators allows to choose the guessed interval much wider, i.e., even if the 

experimenter is less experienced the risk of estimation using the proposed class of estimators is not higher. 

This is legitimate for all values of  p. 

  

2.3 Estimation of Average Departure: A Practical Way of selecting q 

 The quantity ( ){ }ββ+β=∆ 221 , represents the average 

departure of natural origins 1β  and 2β  from the true value 

β . But in practical situations it is hardly possible to get 

an idea about  ∆ . Consequently, an unbiased estimator of  

∆  is proposed, namely 

  
( )

[ ]1)2/(
)2/(

4
ˆ 21

+Γ
Γ







 β+β

=∆
h

ht
.               

(2.12) 

 In section 2.5 it is investigated that, if  q = −∆ 1, the 

suggested class of estimators yields favourable results. 

Keeping in view of this concept, one may select  q as  

  ( )
[ ]

)2/(
1)2/(4ˆ

21

1

h
h

t
q

Γ
+Γ









β+β
=∆= − .                       (2.13) 

Here this is fit for being quoted that this is the 

criterion of selecting  q  numerically and one should 
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carefully notice that this doesn’t mean q is replaced by 

(2.13) in ),(
ˆ

qpβ .  

  

3.  COMPARISION OF ESTIMATORS AND EMPIRICAL STUDY  

 James and Stein(1961) reported that minimum MSE is a highly desirable property and it is 

therefore used as a criterion to compare different estimators with each other. The condition under which the 

proposed class of estimators is more efficient than the MMSE estimator is given below. 

 MSE{ }β
∧

( , )p q does not exceed the MSE of MMSE estimator M

∧

β  if - 

  ( ) ( ) 11 11 −− +<∆<− qGqG                  

(3.1) 

where  
{ }

{ }
G

w p h
w p
h

=
− −

−
−













2
1

1
2 42

2

( ) ( )
( )

( )
. 

Besides minimum MSE criterion, minimum bias is also important and therefore should be 

incorporated under study. Thus, ARB{ }),(
ˆ

qpβ is less than ARB{ }Mβ̂ if - 

  ( ) ( )
1

)(

1

)( 1)2(
21

1)2(
21 −−













−−
+<∆<













−−
− q

wh
q

wh pp

                          

(3.2) 

 

3.1 The Best Range of Dominance of  ∆ 

 The intersection of the ranges of  ∆ in (3.1) and (3.2) gives the best range of dominance of ∆ 

denoted by Best∆ . In this range, the proposed class of estimators is not only less biased than the MMSE 

estimator but is more efficient than that. The four possible cases in this regard are: 

(i) if  [ ] ( )G
pwh

−<








−−
− 1

)(1)2(
21  and [ ] ( )G

pwh
+<









−−
+ 1

)(1)2(
21  then 

Best∆ = { } [ ] 
















−−
+− −− 11

)(1)2(
21,1 q

pwh
qG  

(ii) if [ ] ( )G
pwh

−<








−−
− 1

)(1)2(
21  and ( ) [ ]








−−
+<+

)(1)2(
211

pwh
G then 

Best∆  is the same as defined in (3.1). 
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(iii) if  ( ) [ ]







−−
−<−

)(1)2(
211

pwh
G  and ( ) [ ]








−−
+<+

)(1)2(
211

pwh
G  then 

Best∆ = [ ] { } 







+









−−
− −− 11 1,

)(1)2(
21 qGq

pwh
 

(iv) if ( ) [ ]







−−
−<−

)(1)2(
211

pwh
G and [ ] ( )G

pwh
+<









−−
+ 1

)(1)2(
21  then  

Best∆  is the same as defined in (3.2). 

 

3.2 Percent Relative Efficiency 

To elucidate the performance of the proposed class of estimators β
∧

( , )p q  with the MMSE 

estimator M

∧

β , the Percent Relative Efficiencies (PREs) of ),( qp

∧

β  with respect to M

∧

β  have been computed 

by the formula: 

  PRE
( ) { } { }[ ] 100

)(2)4()(11)2(
)4(2, 222),( ×

+−−−∆−
−

=






 ∧∧

pwhpwqh
h

Mqp ββ    

(3.5) The PREs of β
∧

( , )p q with respect to β
M

 and ARBs of β
∧

( , )p q for fixed n = 20 and different values 

of p, q, m ( )ββ=∆ 11  and ( )ββ=∆ 22  or ∆  are compiled in Table 3.1 with corresponding values of  h 

[which can be had from Engelhardt(1975)] and w(p). The first column in every m corresponds to PREs and 

the second one corresponds to ARBs of  β
∧

( , )p q . The last two rows of each set of  q includes the range of 

dominance of  ∆  and  Best∆ . The ARBs of β
M

  has also been given at the end of each set of table.  
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Table 3.1 

PREs of proposed estimator β
∧

( , )p q  with respect to MMSE estimator m

∧

β  and ARBs of β
∧

( , )p q  

p  = -2 
m→ 6 8 10 12 

h→ 10.8519 15.6740 20.8442 26.4026 

 
q↓  

∆1↓ 
 

∆2↓  

∆↓  w(p)→ 0.1750 0.3970 0.5369 0.6305 
 0.1 0.2 0.15 35.33 0.7941 40.20 0.5804 45.57 0.4457 50.60 0.3556 
 0.4 0.6 0.50 42.62 0.7219 47.90 0.5276 53.49 0.4052 58.53 0.3233 
 0.4 1.6 1.00 57.66 0.6188 63.18 0.4522 68.54 0.3473 72.99 0.2771 
 1.0 2.0 1.50 82.21 0.5156 86.53 0.3769 89.95 0.2894 92.27 0.2309 
0.25 1.6 2.4 2.00 126.15 0.4125 124.06 0.3015 120.83 0.2315 117.72 0.1847 

 2.0 3.0 2.50 215.89 0.3094 187.20 0.2261 164.84 0.1737 149.86 0.1386 
 2.5 3.5 3.00 438.90 0.2063 294.12 0.1507 222.82 0.1158 186.17 0.0924 
 3.5 3.5 3.50 1154.45 0.1031 447.47 0.0754 282.42 0.0579 217.84 0.0462 
 3.8 4.2 4.00 2528.52 0.0000 541.60 0.0000 310.07 0.0000 230.93 0.0000 

 Range of ∆→ (1.74, 
6.25) 

(2.90, 
5.09) 

(1.70, 
6.29) 

(3.02, 
4.97) 

(1.68, 
6.31) 

(3.08, 
4.91) 

(1.66, 
6.33) 

(3.11, 
4.88) 

 ∆Best → (2.90, 5.09) (3.02, 4.97) (3.08, 4.91) (3.11, 4.88) 
 0.1 0.2 0.15 38.21 0.7632 43.26 0.5577 48.75 0.4284 53.81 0.3418 
 0.4 0.6 0.50 57.66 0.6188 63.18 0.4522 68.54 0.3473 72.99 0.2771 
 0.4 1.6 1.00 126.15 0.4125 124.06 0.3015 120.83 0.2315 117.72 0.1847 
 1.0 2.0 1.50 438.90 0.2063 294.12 0.1507 222.82 0.1158 186.17 0.0924 
0.50 1.6 2.4 2.00 2528.52 0.0000 541.60 0.0000 310.07 0.0000 230.93 0.0000 

 2.0 3.0 2.50 438.90 0.2063 294.12 0.1507 222.82 0.1158 186.17 0.0924 
 2.5 3.5 3.00 126.15 0.4125 124.06 0.3015 120.83 0.2315 117.72 0.1847 
 3.5 3.5 3.50 57.66 0.6188 63.18 0.4522 68.54 0.3473 72.99 0.2771 
 3.8 4.2 4.00 32.76 0.8250 37.45 0.6030 42.68 0.4631 47.65 0.3695 

 Range of ∆→ (0.87, 
3.13) 

(1.45, 
2.55) 

(0.85, 
3.15) 

(1.51, 
2.49) 

(0.84, 
3.16) 

(1.54, 
2.46) 

(0.83, 
3.17) 

(1.56, 
2.44) 

 ∆Best → (1.45, 2.55) (1.51, 2.49) (1.54, 2.46) (1.56, 2.44) 
 0.1 0.2 0.15 41.45 0.7322 46.67 0.5351 52.25 0.4110 57.30 0.3279 
 0.4 0.6 0.50 82.21 0.5156 86.53 0.3769 89.95 0.2894 92.27 0.2309 
 0.4 1.6 1.00 438.90 0.2063 294.12 0.1507 222.82 0.1158 186.17 0.0924 
 1.0 2.0 1.50 1154.45 0.1031 447.47 0.0754 282.42 0.0579 217.84 0.0462 
0.75 1.6 2.4 2.00 126.15 0.4125 124.06 0.3015 120.83 0.2315 117.72 0.1847 

 2.0 3.0 2.50 42.62 0.7219 47.90 0.5276 53.49 0.4052 58.53 0.3233 
 2.5 3.5 3.00 21.07 1.0313 24.58 0.7537 28.74 0.5789 32.94 0.4619 
 3.5 3.5 3.50 12.51 1.3407 14.82 0.9798 17.67 0.7525 20.70 0.6004 
 3.8 4.2 4.00 8.27 1.6501 9.87 1.2059 11.90 0.9262 14.09 0.7390 

 Range of ∆→ (0.58, 
2.09) 

(0.97, 
1.70) 

(0.57, 
2.10) 

(1.01, 
1.66) 

(0.56, 
2.11) 

(1.03, 
1.64) 

(0.56, 
2.11) 

(1.04, 
1.63) 

 ∆Best → (0.97, 1.70) (1.01, 1.66) (1.03, 1.64) (1.04, 1.63) 
ARB of MMSE Estimator→ 0.2259 0.1463 0.1061 0.0820 
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Table 3.1 continued … 

p  = -1 
m→ 6 8 10 12 

h→ 10.8519 15.6740 20.8442 26.4026 

 
q↓  

∆1↓ 
 

∆2↓  

∆↓  w(p)→ 0.7739 0.8537 0.8939 0.9180 
 0.1 0.2 0.15 101.69 0.2176 101.09 0.1408 100.79 0.1022 100.61 0.0789 
 0.4 0.6 0.50 105.60 0.1978 103.55 0.1280 102.55 0.0929 101.96 0.0718 
 0.4 1.6 1.00 110.98 0.1696 106.84 0.1097 104.87 0.0796 103.73 0.0615 
 1.0 2.0 1.50 115.99 0.1413 109.79 0.0914 106.91 0.0663 105.27 0.0513 
0.25 1.6 2.4 2.00 120.43 0.1130 112.32 0.0731 108.65 0.0531 106.56 0.0410 

 2.0 3.0 2.50 124.13 0.0848 114.38 0.0549 110.04 0.0398 107.59 0.0308 
 2.5 3.5 3.00 126.91 0.0565 115.89 0.0366 111.05 0.0265 108.34 0.0205 
 3.5 3.5 3.50 128.65 0.0283 116.82 0.0183 111.67 0.0133 108.79 0.0103 
 3.8 4.2 4.00 129.23 0.0000 117.13 0.0000 111.87 0.0000 108.94 0.0000 

 Range of ∆→ (0.00, 
8.00) 

(0.00, 
8.00) 

(0.00, 
8.00) 

(0.00, 
8.00) 

(0.00, 
8.00) 

(0.00, 
8.00) 

(0.00, 
8.00) 

(0.00, 
8.00) 

 ∆Best → (0.00, 8.00) (0.00, 8.00) (0.00, 8.00) (0.00, 8.00) 
 0.1 0.2 0.15 103.38 0.2091 102.16 0.1353 101.56 0.0982 101.20 0.0759 
 0.4 0.6 0.50 110.98 0.1696 106.84 0.1097 104.87 0.0796 103.73 0.0615 
 0.4 1.6 1.00 120.43 0.1130 112.32 0.0731 108.65 0.0531 106.56 0.0410 
 1.0 2.0 1.50 126.91 0.0565 115.89 0.0366 111.05 0.0265 108.34 0.0205 
0.50 1.6 2.4 2.00 129.23 0.0000 117.13 0.0000 111.87 0.0000 108.94 0.0000 

 2.0 3.0 2.50 126.91 0.0565 115.89 0.0366 111.05 0.0265 108.34 0.0205 
 2.5 3.5 3.00 120.43 0.1130 112.32 0.0731 108.65 0.0531 106.56 0.0410 
 3.5 3.5 3.50 110.98 0.1696 106.84 0.1097 104.87 0.0796 103.73 0.0615 
 3.8 4.2 4.00 100.00 0.2261 100.00 0.1463 100.00 0.1061 100.00 0.0820 

 Range of ∆→ (0.00, 
4.00) 

(0.00, 
4.00) 

(0.00, 
4.00) 

(0.00, 
4.00) 

(0.00, 
4.00) 

(0.00, 
4.00) 

(0.00, 
4.00) 

(0.00, 
4.00) 

 ∆Best → (0.00, 4.00) (0.00, 4.00) (0.00, 4.00) (0.00, 4.00) 
 0.1 0.2 0.15 105.05 0.2006 103.21 0.1298 102.31 0.0942 101.77 0.0728 
 0.4 0.6 0.50 115.99 0.1413 109.79 0.0914 106.91 0.0663 105.27 0.0513 
 0.4 1.6 1.00 126.91 0.0565 115.89 0.0366 111.05 0.0265 108.34 0.0205 
 1.0 2.0 1.50 128.65 0.0283 116.82 0.0183 111.67 0.0133 108.79 0.0103 
0.75 1.6 2.4 2.00 120.43 0.1130 112.32 0.0731 108.65 0.0531 106.56 0.0410 

 2.0 3.0 2.50 105.60 0.1978 103.55 0.1280 102.55 0.0929 101.96 0.0718 
 2.5 3.5 3.00 88.71 0.2826 92.40 0.1828 94.37 0.1327 95.59 0.1025 
 3.5 3.5 3.50 72.93 0.3674 80.65 0.2377 85.17 0.1725 88.13 0.1333 
 3.8 4.2 4.00 59.57 0.4521 69.50 0.2925 75.85 0.2123 80.24 0.1640 

 Range of ∆→ (0.00, 
2.67) 

(0.00, 
2.67) 

(0.00, 
2.67) 

(0.00, 
2.67) 

(0.00, 
2.67) 

(0.00, 
2.67) 

(0.00, 
2.67) 

(0.00, 
2.67) 

 ∆Best → (0.00, 2.67) (0.00, 2.67) (0.00, 2.67) (0.00, 2.67) 
ARB of MMSE Estimator→ 0.2259 0.1463 0.1061 0.0820 
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Table 3.1 continued … 

p  = 1 
m→ 6 8 10 12 

h→ 10.8519 15.6740 20.8442 26.4026 

 
q↓  

∆1↓ 
 

∆2↓  

∆↓  w(p)→ 0.6888 0.7737 0.8251 0.8779 
 0.1 0.2 0.15 99.00 0.2996 97.51 0.2178 97.21 0.1684 99.20 0.1175 
 0.4 0.6 0.50 106.26 0.2723 103.17 0.1980 101.80 0.1531 102.17 0.1069 
 0.4 1.6 1.00 117.09 0.2334 111.34 0.1697 108.25 0.1312 106.18 0.0916 
 1.0 2.0 1.50 128.15 0.1945 119.34 0.1415 114.39 0.1093 109.82 0.0763 
0.25 1.6 2.4 2.00 138.88 0.1556 126.79 0.1132 119.95 0.0875 113.00 0.0611 

 2.0 3.0 2.50 148.56 0.1167 133.27 0.0849 124.67 0.0656 115.60 0.0458 
 2.5 3.5 3.00 156.33 0.0778 138.31 0.0566 128.27 0.0437 117.53 0.0305 
 3.5 3.5 3.50 161.41 0.0389 141.52 0.0283 130.54 0.0219 118.72 0.0153 
 3.8 4.2 4.00 163.17 0.0000 142.63 0.0000 131.31 0.0000 119.12 0.0000 

 Range of ∆→ (0.20, 
7.80) 

(0.00, 
8.00) 

(0.30, 
7.70) 

(0.00, 
8.00) 

(0.36, 
7.64) 

(0.00, 
8.00) 

(0.24, 
7.76) 

(0.00, 
8.00) 

  (0.20, 7.80) (0.30, 7.70) (0.36, 7.64) (0.24, 7.76) 
 0.1 0.2 0.15 102.07 0.2879 99.92 0.2093 99.18 0.1618 100.49 0.1130 
 0.4 0.6 0.50 117.09 0.2334 111.34 0.1697 108.25 0.1312 106.18 0.0916 
 0.4 1.6 1.00 138.88 0.1556 126.79 0.1132 119.95 0.0875 113.00 0.0611 
 1.0 2.0 1.50 156.33 0.0778 138.31 0.0566 128.27 0.0437 117.53 0.0305 
0.50 1.6 2.4 2.00 163.17 0.0000 142.63 0.0000 131.31 0.0000 119.12 0.0000 

 2.0 3.0 2.50 156.33 0.0778 138.31 0.0566 128.27 0.0437 117.53 0.0305 
 2.5 3.5 3.00 138.88 0.1556 126.79 0.1132 119.95 0.0875 113.00 0.0611 
 3.5 3.5 3.50 117.09 0.2334 111.34 0.1697 108.25 0.1312 106.18 0.0916 
 3.8 4.2 4.00 96.01 0.3112 95.12 0.2263 95.25 0.1749 97.90 0.1221 

 Range of ∆→ (0.10, 
3.90) 

(0.55, 
3.45) 

(0.15, 
3.85) 

(0.71, 
3.29) 

(0.18, 
3.82) 

(0.79, 
3.21) 

(0.12, 
3.88) 

(0.66, 
3.34) 

 ∆Best → (0.55, 3.45) (0.71, 3.29) (0.79, 3.21) (0.66, 3.34) 
 0.1 0.2 0.15 105.20 0.2762 102.36 0.2009 101.15 0.1553 101.75 0.1084 
 0.4 0.6 0.50 128.15 0.1945 119.34 0.1415 114.39 0.1093 109.82 0.0763 
 0.4 1.6 1.00 156.33 0.0778 138.31 0.0566 128.27 0.0437 117.53 0.0305 
 1.0 2.0 1.50 161.41 0.0389 141.52 0.0283 130.54 0.0219 118.72 0.0153 
0.75 1.6 2.4 2.00 138.88 0.1556 126.79 0.1132 119.95 0.0875 113.00 0.0611 

 2.0 3.0 2.50 106.26 0.2723 103.17 0.1980 101.80 0.1531 102.17 0.1069 
 2.5 3.5 3.00 77.96 0.3891 80.11 0.2829 82.50 0.2187 88.98 0.1526 
 3.5 3.5 3.50 57.31 0.5058 61.51 0.3678 65.66 0.2843 75.76 0.1984 
 3.8 4.2 4.00 42.96 0.6225 47.58 0.4526 52.22 0.3499 63.80 0.2442 

 Range of ∆→ (0.07, 
2.60) 

(0.37, 
2.30) 

(0.10, 
2.57) 

(0.47, 
2.20) 

(0.12, 
2.55) 

(0.52, 
2.14) 

(0.08, 
2.59) 

(0.44, 
2.23) 

 ∆Best → (0.37, 2.30) (0.47, 2.20) (0.52, 2.14) (0.44, 2.23) 
ARB of MMSE Estimator→ 0.2259 0.1463 0.1061 0.0820 
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Table 3.1 continued … 

p  = 2 
m→ 6 8 10 12 

h→ 10.8519 15.6740 20.8442 26.4026 

 
q↓  

∆1↓ 
 

∆2↓  

∆↓  w(p)→ 0.3131 0.4385 0.5392 0.6816 
 0.1 0.2 0.15 48.51 0.6612 45.00 0.5405 45.90 0.4435 60.53 0.3065 
 0.4 0.6 0.50 57.95 0.6011 53.31 0.4913 53.85 0.4032 68.81 0.2786 
 0.4 1.6 1.00 76.84 0.5152 69.55 0.4211 68.94 0.3456 83.20 0.2388 
 1.0 2.0 1.50 106.11 0.4293 93.70 0.3509 90.35 0.2880 101.08 0.1990 
0.25 1.6 2.4 2.00 154.14 0.3435 130.87 0.2808 121.15 0.2304 122.65 0.1592 

 2.0 3.0 2.50 237.92 0.2576 189.27 0.2106 164.85 0.1728 147.06 0.1194 
 2.5 3.5 3.00 388.87 0.1717 277.82 0.1404 222.08 0.1152 171.43 0.0796 
 3.5 3.5 3.50 627.92 0.0859 386.26 0.0702 280.49 0.0576 190.36 0.0398 
 3.8 4.2 4.00 789.74 0.0000 444.03 0.0000 307.45 0.0000 197.63 0.0000 

 Range of ∆→ (1.41, 
6.59) 

(2.68, 
5.32) 

(1.60, 
6.40) 

(2.96, 
5.04) 

(1.68, 
6.32) 

(3.08, 
4.92) 

(1.47, 
6.53) 

(2.97, 
5.03) 

 ∆Best → (2.68, 5.32) (2.96, 5.04) (3.08, 4.92) (2.97, 5.03) 
 0.1 0.2 0.15 52.26 0.6354 48.32 0.5194 49.09 0.4262 63.91 0.2946 
 0.4 0.6 0.50 76.84 0.5152 69.55 0.4211 68.94 0.3456 83.20 0.2388 
 0.4 1.6 1.00 154.14 0.3435 130.87 0.2808 121.15 0.2304 122.65 0.1592 
 1.0 2.0 1.50 388.87 0.1717 277.82 0.1404 222.08 0.1152 171.43 0.0796 
0.50 1.6 2.4 2.00 789.74 0.0000 444.03 0.0000 307.45 0.0000 197.63 0.0000 

 2.0 3.0 2.50 388.87 0.1717 277.82 0.1404 222.08 0.1152 171.43 0.0796 
 2.5 3.5 3.00 154.14 0.3435 130.87 0.2808 121.15 0.2304 122.65 0.1592 
 3.5 3.5 3.50 76.84 0.5152 69.55 0.4211 68.94 0.3456 83.20 0.2388 
 3.8 4.2 4.00 45.14 0.6869 42.00 0.5615 42.99 0.4608 57.36 0.3184 

 Range of ∆→ (0.71, 
3.29) 

(1.34, 
2.66) 

(0.80, 
3.20) 

(1.48, 
2.52) 

(0.84, 
3.16) 

(1.54, 
2.46) 

(0.74, 
3.26) 

(1.49, 
2.51) 

 ∆Best → (1.34, 2.66) (1.48, 2.52) (1.54, 2.46) (1.49, 2.51) 
 0.1 0.2 0.15 56.45 0.6096 52.00 0.4983 52.60 0.4090 67.54 0.2826 
 0.4 0.6 0.50 106.11 0.4293 93.70 0.3509 90.35 0.2880 101.08 0.1990 
 0.4 1.6 1.00 388.87 0.1717 277.82 0.1404 222.08 0.1152 171.43 0.0796 
 1.0 2.0 1.50 627.92 0.0859 386.26 0.0702 280.49 0.0576 190.36 0.0398 
0.75 1.6 2.4 2.00 154.14 0.3435 130.87 0.2808 121.15 0.2304 122.65 0.1592 

 2.0 3.0 2.50 57.95 0.6011 53.31 0.4913 53.85 0.4032 68.81 0.2786 
 2.5 3.5 3.00 29.50 0.8587 27.83 0.7019 28.97 0.5760 41.00 0.3980 
 3.5 3.5 3.50 17.73 1.1163 16.90 0.9125 17.83 0.7488 26.50 0.5175 
 3.8 4.2 4.00 11.79 1.3739 11.30 1.1230 12.01 0.9216 18.33 0.6369 

 Range of ∆→ (0.47, 
2.20) 

(0.89, 
1.77) 

(0.53, 
2.13) 

(0.99, 
1.68) 

(0.56, 
2.11) 

(1.03, 
1.64) 

(0.49, 
2.18) 

(0.99, 
1.68) 

 ∆Best → (0.89, 1.77) (0.99, 1.68) (1.03, 1.64) (0.99, 1.68) 
ARB of MMSE Estimator→ 0.2259 0.1463 0.1061 0.0820 
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 It has been observed from Table 3.1, that on keeping m, p, q fixed, the relative efficiencies of the 

proposed class of shrinkage estimators increases up to ∆ = q−1, attains its maximum at this point and then 

decreases symmetrically in magnitude, as ∆ increases in its range of dominance for all n, p and q. On the 

other hand, the ARBs of the proposed class of estimators decreases up to ∆ = q−1, the estimator becomes 

unbiased at this point and then ARBs  increases symmetrically in magnitude, as ∆ increases in its range of 

dominance. Thus it is interesting to note that, at q = ∆−1 , the proposed class of estimators is unbiased with 

largest efficiency and hence in the vicinity of  q = ∆−1 also, the proposed class not only renders the massive 

gain in efficiency but also it is marginally biased in comparison of MMSE estimator. This implies that  q  

plays an important role in the proposed class of estimators. The following figure illustrates the discussion. 

 

Figure 3.1 
 
 The effect of change in censored sample size m is also a matter of great interest. For fixed p, q and 

∆ , the gain in relative efficiency diminishes, and ARB also decreases, with increment in m. Moreover, it 

appears that to get better estimators in the class, the value of  w(p) should be as small as possible in the 

interval (0,1]. Thus, to choose p one should not consider the smaller values of w(p) in isolation, but also the 

wider length of the interval of  ∆.  
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4. MODIFIED CLASS OF SHRINKAGE ESTIMATORS AND ITS PROPERTIES  

The proposed class of estimators ),(
ˆ

qpβ  is not uniformly better than β̂ . It will be better if 1β  and 

2β  are in the vicinity of true value β . Thus, the centre of the guessed interval ( ) 2/21 β+β  is of much 

importance in this case. If we partially violate this, i.e., only the centre of the guessed interval is not of 

much importance, but the end points of the interval 1β  and 2β  are itself equally important then we can 

propose a new class of shrinkage estimators for the shape parameter β  by using the suggested class 

),(
ˆ

qpβ  as  
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 This modified class of shrinkage estimators is proposed in accordance with Rao(1973) and it 

seems to be more realistic than the previous one as it deals with the case where the whole interval is taken 

as apriori information.  

 

5. NUMERICAL ILLUSTRATIONS  

 The percent relative efficiency of the proposed estimator ),(
~

qpβ  with respect to MMSE 

estimator m

∧

β  has been defined as  

  PRE { } { }
{ } 100~MSE

ˆMSEˆ,~

),(
),( ×

β
β

=ββ
qp

m
mqp                  

(5.1) 

and it is obtained for n = 20 and different values of  p, q, m, 1∆  and 2∆  (or ∆ ). The findings are 

summarised in Table 5.1 with corresponding values of  h  and w(p). 

 

 
Table 5.1 

PREs of proposed estimator ),(
~

qpβ  with respect to MMSE estimator m

∧

β  

n = 20 
 p → -1  1 

m → 6 8 10 12 6 8 10 12 

 h → 10.8519 15.6740 20.8442 26.4026 10.8519 15.6740 20.8442 26.4026 
q↓  

∆1↓ 
 

∆2↓  

∆↓  w(p)→ 0.7739 0.8537 0.8939 0.9180 0.6888 0.7737 0.8251 0.8779 

 0.2 0.3 0.25 50.80 41.39 34.91 30.59 49.84 40.10 34.66 31.15 
 0.4 0.6 0.50 117.60 81.01 67.45 63.17 113.90 79.57 65.63 61.55 
 0.6 0.9 0.75 261.72 227.42 203.08 172.06 227.59 191.97 172.31 156.69 
0.25 0.8 1.2 1.00 548.60 426.98 342.54 286.06 454.93 355.31 293.42 262.79 
 1.0 1.5 1.25 649.95 470.44 375.91 314.98 636.21 504.49 427.74 353.74 
 1.2 1.8 1.50 268.31 189.82 150.17 125.21 286.06 210.91 168.38 135.01 

 1.5 2.0 1.75 80.46 53.66 39.90 31.38 82.35 55.10 40.79 31.74 
 0.2 0.3 0.25 50.84 41.32 34.76 30.39 49.90 40.03 34.45 30.87 
 0.4 0.6 0.50 120.81 82.01 67.97 63.49 118.31 81.13 66.48 62.03 
 0.6 0.9 0.75 298.17 253.12 221.74 184.38 271.73 225.47 198.40 173.57 
0.50 0.8 1.2 1.00 642.86 473.19 368.65 303.15 583.65 433.16 344.05 292.64 
 1.0 1.5 1.25 626.09 435.87 345.16 289.53 658.77 481.87 390.95 317.87 
 1.2 1.8 1.50 247.90 175.97 140.57 118.43 264.16 191.09 152.66 124.73 

 1.5 2.0 1.75 78.41 52.66 39.39 31.11 79.96 53.72 40.02 31.36 
 0.2 0.3 0.25 50.89 41.24 34.60 30.19 49.97 39.95 34.23 30.59 
 0.4 0.6 0.50 124.02 83.01 68.50 63.81 122.74 82.68 67.32 62.50 
 0.6 0.9 0.75 339.92 282.24 242.46 197.73 325.66 266.36 229.58 192.68 
0.75 0.8 1.2 1.00 723.50 510.42 389.34 316.87 710.96 504.67 388.35 317.53 
 1.0 1.5 1.25 566.19 392.47 312.16 263.77 597.64 421.61 337.17 278.26 
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 1.2 1.8 1.50 224.67 161.95 131.14 111.81 233.41 169.19 136.65 114.63 
 1.5 2.0 1.75 76.05 51.59 38.85 30.83 76.93 52.14 39.17 30.95 
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Table 5.1 continued … 

 p → -2  2 
m → 6 8 10 12 6 8 10 12 

 h → 10.8519 15.6740 20.8442 26.4026 10.8519 15.6740 20.8442 26.4026 
q↓  

∆1↓ 
 

∆2↓  

∆↓  w(p)→ 0.7739 0.8537 0.8939 0.9180 0.6888 0.7737 0.8251 0.8779 

 0.2 0.3 0.25 46.04 34.18 30.92 30.53 46.77 34.81 30.96 31.23 
 0.4 0.6 0.50 92.48 72.59 59.44 53.42 98.00 73.36 59.48 54.88 
 0.6 0.9 0.75 106.83 95.44 92.75 90.11 128.68 102.24 93.16 100.45 
0.25 0.8 1.2 1.00 145.02 131.16 126.15 122.15 191.47 145.23 126.97 144.22 
 1.0 1.5 1.25 220.29 243.10 282.54 320.74 305.32 273.81 284.60 368.42 
 1.2 1.8 1.50 208.14 211.32 202.36 179.81 250.20 220.57 202.56 175.49 

 1.5 2.0 1.75 82.08 57.89 43.07 33.36 84.21 57.95 43.06 33.12 
 0.2 0.3 0.25 46.28 34.31 30.86 30.24 46.95 34.91 30.90 30.87 
 0.4 0.6 0.50 103.18 76.82 61.54 54.80 107.21 77.31 61.57 56.08 
 0.6 0.9 0.75 157.81 135.64 127.02 118.59 181.60 142.94 127.44 128.23 
0.50 0.8 1.2 1.00 267.16 228.67 207.62 190.69 331.58 246.71 208.58 212.20 
 1.0 1.5 1.25 445.44 443.06 448.55 438.38 541.60 467.49 449.42 432.21 
 1.2 1.8 1.50 289.70 240.03 198.56 163.98 298.93 238.16 198.30 156.40 

 1.5 2.0 1.75 84.92 57.28 42.13 32.67 84.44 57.03 42.12 32.44 
 0.2 0.3 0.25 46.50 34.43 30.78 29.92 47.13 34.99 30.82 30.50 
 0.4 0.6 0.50 114.64 81.04 63.59 56.13 116.87 81.23 63.61 57.24 
 0.6 0.9 0.75 247.11 202.90 181.31 160.85 266.60 209.00 181.65 167.34 
0.75 0.8 1.2 1.00 543.26 418.40 345.15 293.90 596.79 430.93 345.67 302.22 
 1.0 1.5 1.25 704.42 541.77 447.06 381.03 696.36 532.12 446.25 358.48 
 1.2 1.8 1.50 280.39 203.46 160.74 132.95 269.47 199.82 160.55 129.07 

 1.5 2.0 1.75 81.39 54.49 40.40 31.66 80.35 54.26 40.39 31.52 
 

 It has been observed from Table 5.1 that likewise ),(
ˆ

qpβ  the PRE of ),(
~

qpβ  with respect to mβ̂  

decreases as censoring fraction (m/n) increases. For fixed m, p and q the relative efficiency increases up to 

a certain point of  ∆ , procures its maximum at this point and then starts decreasing as ∆  increases. It 

seems from the expression in (4.3) that the point of maximum efficiency may be a point where either any 

one of the following holds or any two of the following holds or all the following three holds- 

(i) the lower end point of the guessed interval, i.e., 1β  coincides exactly with the true value β , i.e., 

1∆ = 1. 

(ii) the upper end point of the guessed interval, i.e., 2β  departs exactly two times from the true value 

β , i.e., 2∆ = 2.  

(iii) 1−=∆ q  

This leads to say that on contrary to ),(
ˆ

qpβ , there is much importance of 1∆  and 2∆  in addition to ∆ . 

The discussion is also supported by the illustrations in Table 5.1. As well, the range of dominance of 
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average departure ∆  is smaller than that is obtained for ),(
ˆ

qpβ  but this does not humiliate the merit of  

),(
~

qpβ  because still the range of dominance of  ∆  is enough wider. 

 

6. CONCLUSION AND RECOMMENDATIONS 

 It has been seen that the suggested classes of shrunken estimators have considerable gain in 

efficiency for a number of choices of scalars comprehend in it, particularly for heavily censored samples, 

i.e., for small m. Even for buoyantly censored samples, i.e., for large m, so far as the proper selection of 

scalars is concerned, some of the estimators from the suggested classes of shrinkage estimators are more 

efficient than the MMSE estimators subject to certain conditions. Accordingly, even if the experimenter has 

less confidence in the guessed interval ( )21 , ββ  of β, the efficiency of the suggested classes of shrinkage 

estimators can be increased considerably by choosing the scalars p and q appropriately.  

While dealing with the suggested class of shrunken estimators ),(
ˆ

qpβ  it is recommended that one 

should not consider the substantial gain in efficiency in isolation, but also the wider range of dominance of  

∆ , because enough flexible range of dominance of  ∆  will leads to increase the possibility of getting 

better estimators from the proposed class. Thus it is recommended to use the proposed class of shrunken 

estimators in practice.  
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Abstract: 
In this paper we have suggested two classes of estimators for population median MY of the study character 
Y using information on two auxiliary characters X and Z in double sampling.  It has been shown that the 
suggested classes of estimators are more efficient than the one suggested by Singh et al (2001).  Estimators 
based on estimated optimum values have been also considered with their properties.  The optimum values 
of the first phase and second phase sample sizes are also obtained for the fixed cost of survey. 
 
Keywords:  Median estimation, Chain ratio and regression estimators, Study variate, Auxiliary variate, 
Classes of estimators, Mean squared errors, Cost, Double sampling. 
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1. INTRODUCTION 
 
In survey sampling, statisticians often come across the study of variables which have highly skewed 
distributions, such as income, expenditure etc.  In such situations, the estimation of median deserves special 
attention.  Kuk and Mak (1989) are the first to introduce the estimation of population median of the study 
variate Y using auxiliary information in survey sampling.  Francisco and Fuller (1991) have also 
considered the problem of estimation of the median as part of the estimation of a finite population 
distribution function.  Later Singh et al (2001) have dealt extensively with the problem of estimation of 
median using auxiliary information on an auxiliary variate in two phase sampling. 
 
Consider a finite population U={1,2,…,i,...,N}.  Let Y and X be the variable for study and auxiliary 
variable, taking values Yi and Xi respectively for the i-th unit.  When the two variables are strongly related 
but no information is available on the population median MX of X, we seek to estimate the population 
median MY of Y from a sample Sm, obtained through a two-phase selection.  Permitting simple random 
sampling without replacement (SRSWOR) design in each phase, the two-phase sampling scheme will be as 
follows: 
 
 (i) The first phase sample Sn(Sn⊂U) of fixed size n is drawn to observe only X in order to 

furnish an estimate of MX. 
 
 (ii) Given Sn, the second phase sample Sm(Sm⊂Sn) of fixed size m is drawn to observe Y 

only. 
 
Assuming that the median MX of the variable X is known, Kuk and Mak (1989) suggested a ratio estimator 
for the population median MY of Y as 
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X

X
Y M

MMM ˆ
ˆˆ

1 =       (1.1) 

 
where YM̂  and XM̂  are the sample estimators of MY and MX respectively based on a sample Sm of size 
m.  Suppose that y(1), y(2), …, y(m) are the y values of sample units in ascending order.  Further, let t be an 
integer such that Y(t) ≤ MY ≤Y(t+1) and let p=t/m be the proportion of Y, values in the sample that are less 
than or equal to the median value MY, an unknown population parameter.  If p̂  is a predictor of p, the 

sample median YM̂ can be written in terms of quantities as ( )pQY ˆˆ  where 5.0ˆ =p .  Kuk and Mak 
(1989) define a matrix of proportions (Pij(x,y)) as 
 

 Y ≤ MY Y > MY Total 
X ≤ MX P11(x,y) P21(x,y) P⋅1(x,y) 
X > MX P12(x,y) P22(x,y) P⋅2(x,y) 

Total P1⋅(x,y) P2⋅(x,y) 1 
 
and a position estimator of My given by 
 
 

( ) ( )YY
p

Y pQM ˆˆˆ =      (1.2) 
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with ),(ˆ yxpij  being the sample analogues of the Pij(x,y) obtained from the population and mx the number 

of units in Sm with X ≤ MX. 
 
Let )(~ yFYA  and )(~ yFYB  denote the proportion of units in the sample Sm with X ≤ MX, and X>MX, 
respectively that have Y values less than or equal to y. Then for estimating MY, Kuk and Mak (1989) 
suggested the 'stratification estimator' as 
 

( ) { }5.0~:infˆ )( ≥= y
Y

St
Y FyM      (1.3) 

 

where [ ])()( ~~
2
1)(ˆ y

YB
y

YAY FFyF +≅  

 
It is to be noted that the estimators defined in (1.1), (1.2) and (1.3) are based on prior knowledge of the 
median MX of the auxiliary character X.  In many situations of practical importance the population median 
MX of X may not be known.  This led Singh et al (2001) to discuss the problem of estimating the 
population median MY in double sampling and suggested an analogous ratio estimator as 
 

X

X
Yd M

MMM ˆ
ˆˆˆ

1

1 =      (1.4) 
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where 1ˆ
XM  is sample median based on first phase sample Sn. 

 
Sometimes even if MX is unknown, information on a second auxiliary variable Z, closely related to X but 
compared X remotely related to Y, is available on all units of the population.  This type of situation has 
been briefly discussed by, among others, Chand (1975), Kiregyera (1980, 84), Srivenkataramana and Tracy 
(1989), Sahoo and Sahoo (1993) and Singh (1993).  Let MZ be the known population median of Z.  
Defining 
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such that E(ek)≅0 and ek<1 for k=0,1,2,3; where 2M̂  and 1

2M̂  are the sample median estimators based 
on second phase sample Sm and first phase sample Sn.  Let us define the following two new matrices as 
 

 Z ≤ MZ Z > MZ Total 
X ≤ MX P11(x,z) P21(x,z) P⋅1(x,z) 
X > MX P12(x,z) P22(x,z) P⋅2(x,z) 

Total P1⋅(x,z) P2⋅(x,z) 1 
 
and 
 

 Z ≤ MZ Z > MZ Total 
Y ≤ MY P11(y,z) P21(y,z) P⋅1(y,z) 
Y > MY P12(y,z) P22(y,z) P⋅2(y,z) 

Total P1⋅(y,z) P2⋅(y,z) 1 
 
Using results given in the Appendix-1, to the first order of approximation, we have 
 

E(e0
2) = 



N-m

N  (4m)-1{MYfY(MY)}-2, 

E(e1
2) = 



N-m

N  (4m)-1{MXfX(MX)}-2, 

E(e2
2) = 



N-n

N  (4n)-1{MXfX(MX)}-2, 

E(e3
2) = 



N-m

N  (4m)-1{MZfZ(MZ)}-2, 

E(e4
2) = 



N-n

N  (4n)-1{MZfZ(MZ)}-2, 

E(e0e1) = 



N-m

N  (4m)-1{4P11(x,y)-1}{MXMYfX(MX)fY(MY)}-1, 

E(e0e2) = 



N-n

N  (4n)-1{4P11(x,y)-1}{MXMYfX(MX)fY(MY)}-1, 

E(e0e3) = 



N-m

N  (4m)-1{4P11(y,z)-1}{MYMZfY(MY)fZ(MZ)}-1, 

E(e0e4) = 



N-n

N  (4n)-1{4P11(y,z)-1}{MYMZfY(MY)fZ(MZ)}-1, 

E(e1e2) = 



N-n

N  (4n)-1{MXfX(MX)}-2, 

E(e1e3) = 



N-m

N  (4m)-1{4P11(x,z)-1}{MXMZfX(MX)fZ(MZ)}-1, 
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E(e1e4) = 



N-n

N  (4n)-1{4P11(x,z)-1}{MXMZfX(MX)fZ(MZ)}-1, 

E(e2e3) = 



N-n

N  (4n)-1{4P11(x,z)-1}{MXMZfX(MX)fZ(MZ)}-1, 

E(e2e4) = 



N-n

N  (4n)-1{4P11(x,z)-1}{MXMZfX(MX)fZ(MZ)}-1, 

E(e3e4) = 



N-n

N  (4n)-1(fZ(MZ)MZ)-2 

 
where it is assumed that as N→∞ the distribution of the trivariate variable (X,Y,Z) approaches a continuous 
distribution with marginal densities fX(x), fY(y) and fZ(z) for X, Y and Z respectively.  This assumption 
holds in particular under a superpopulation model framework, treating the values of (X, Y, Z) in the 
population as a realization of N independent observations from a continuous distribution.  We also assume 
that fY(MY), fX(MX) and fZ(MZ) are positive. 
 
Under these conditions, the sample median YM̂ is consistent and asymptotically normal (Gross, 1980) with 
mean MY and variance 
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In this paper we have suggested a class of estimators for MY using information on two auxiliary variables X 
and Z in double sampling and analyzes its properties. 
 
2. SUGGESTED CLASS OF ESTIMATORS 
 
Motivated by Srivastava (1971), we suggest a class of estimators of MY of Y as 
 

( ) ( ) ( ){ }vugMMMg Y
g

Y
g

Y ,ˆ:ˆ ==     (2.1) 
 

where 
Z

Z

X

X

M
Mv

M
Mu ˆ

ˆ
,ˆ

ˆ 1

1
==  and g(u,v) is a function of  u and v such that g(1,1)=1 and such that it satisfies 

the following conditions. 
 
1. Whatever be the samples (Sn and Sm) chosen, let (u,v) assume values in a closed convex sub-

space, P, of the two dimensional real space containing the point (1,1). 
 
2. The function g(u,v) is continuous in P, such that g(1,1)=1. 
 
3. The first and second order partial derivatives of g(u,v) exist and are also continuous in P. 
 
Expanding g(u,v) about the point (1,1) in a second order Taylor's series and taking expectations, it is found 
that  
 

( )( ) )(0ˆ 1−+= nMME Y
g

Y  
 
so the bias is of order n−1. 
 
Using a first order Taylor's series expansion around the point (1,1) and noting that g(1,1)=1, we have 
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( ) ( ) ( ) ( ) ( )]01,11,11[ˆ 1
241210

−++−++≅ ngegeeeMM Y
g

Y  
 
or 
 

( )( ) ( ) ( ) ( )[ ]1,11,1 241210 gegeeeMMM YY
g

Y +−+≅−     (2.2) 
 
where g1(1,1) and g2(1,1) denote first order partial derivatives of g(u,v) with respect to u and v respectively 
around the point (1,1). 
 

Squaring both sides in (2.2) and then taking expectations, we get the variance of )(ˆ g
YM  to the first degree 

of approximation, as 
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The variance of ( )g
YM̂  in (2.3) is minimized for 

 
( )
( ) ( )( )

( )
( ) ( )( )1,4)1,1(

1,4)1,1(

112

111

−





−=

−





−=

zyP
MfM
MfMg

yxP
MfM
MfMg

YYY

ZZZ

YYY

XXX

   (2.6) 

 

Thus the resulting (minimum) variance of ( )g
YM  is given by 
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Now, we proved the following theorem. 
 
Theorem 2.1 - Up to terms of order n-1, 
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with equality holding if 
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It is interesting to note that the lower bound of the variance of ( )g

yM̂  at (2.1) is the variance of the linear 
regression estimator 
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with ( )yxp ,ˆ11  and ( )zyp ,ˆ11  being the sample analogues of the ( )yxp ,11  and ( )zyp ,11  respectively 

and ( ) ( )XXYY MfMf ˆ,ˆˆ  and ( )ZZ Mf̂  can be obtained by following Silverman (1986). 
 
Any parametric function g(u,v) satisfying the conditions (1), (2) and (3) can generate an asymptotically 
acceptable estimator.  The class of such estimators are large.  The following simple functions g(u,v) give 
even estimators of the class 
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Let the seven estimators generated by g(i)(u,v) be denoted by ( ) ( ) ( ) ( )7 to1,,ˆˆ == ivugMM i

Y
g

Yi .  It is 
easily seen that the optimum values of the parameters α,β,wi(i-1,2) are given by the right hand sides of 
(2.6). 
 
3. A WIDER CLASS OF ESTIMATORS 
 
The class of estimators (2.1) does not include the estimator 
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being constants. 
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However, it is easily shown that if we consider a class of estimators wider than (2.1), defined by 
 

( ) ( )vuMGM Y
G
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of MY, where G(⋅) is a function of YM̂ , u and v such that ( ) YY MMG =1,1,  and ( ) 11,1,1 =YMG .  

( )1,1,1 YMG  denoting the first partial derivative of G(⋅) with respect to YM̂ . 
 
Proceeding as in Section 2 it is easily seen that the bias of ( )G

YM̂  is of the order n−1 and up to this order of 

terms, the variance of ( )G
YM̂  is given by 
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 (3.2) 
 
where G2(MY1,1) and G3(MY1,1) denote the first partial derivatives of u and v respectively around the point 
(MY,(1,1). 
 
The variance of ( )G

YM̂  is minimized for 
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Substitution of (3.3) in (3.2) yields the minimum variance of ( )G

YM̂  as 
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Thus we established the following theorem.  Theorem 3.1 - Up to terms of order n-1, 
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with equality holding if 
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If the information on second auxiliary variable z is not used, then the class of estimators ( )G

YM̂  reduces to 
the class of estimators of MY as 
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= .  The estimator ( )H
YM̂  is reported by Singh et al (2001). 

 
The minimum variance of ( )H

YM̂  to the first degree of approximation is given by 
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From (3.4) and (3.6) we have 
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which is always positive.  Thus the proposed class of estimators ( )G

YM̂  is more efficient than the estimator 
( )H

YM̂  considered by Singh et al (2001). 
 
4. ESTIMATOR BASED ON ESTIMATED OPTIMUM VALUES 
 
We denote 
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In practice the optimum values of g1(1,1)(=-α1) and g2(1,1)(=-α2) are not known.  Then we use to find out 
their sample estimates from the data at hand.  Estimators of optimum value of g1(1,1) and g2(1,1) are given 
as 
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Now following the procedure discussed in Singh and Singh (19xx) and Srivastava and Jhajj (1983), we 
define the following class of estimators of MY (based on estimated optimum) as 
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where g*(⋅) is a function of 21 ˆ,ˆ,,( ααvu ) such that 
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and such that it satisfies the following conditions: 
 
1. Whatever be the samples (Sn and Sm) chosen, let 21 ˆˆ,, ααvu  assume values in a closed convex sub-

space, S, of the four dimensional real space containing the point (1,1,α1,α2). 
 
2. The function g*(u,v, α1, α2) continuous in S. 
 
3. The first and second order partial derivatives of ( )21 ˆ,ˆ,,* ααvug  exst. and are also continuous in 

S. 
 
Under the above conditions, it can be shown that 
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and to the first degree of approximation, the variance of ( )*ˆ g

YM  is given by 
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where ( )( )g

YM̂min.Var  is given in (2.7). 
 
A wider class of estimators of MY based on estimated optimum values is defined by 
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are the estimates of 
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Under these conditions it can be easily shown that 
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and to the first degree of approximation, the variance of ( )*ˆ G

YM  is given by 
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where ( )G

YM̂min.Var  is given in (3.4). 
 
It is to be mentioned that a large number of estimators can be generated from the classes ( )*ˆ g

YM  and 
( )*ˆ G

YM  based on estimated optimum values. 
 
5. EFFICIENCY OF THE SUGGESTED CLASS OF ESTIMATORS FOR FIXED COST 
 
The appropriate estimator based on on single-phase sampling without using any auxiliary variable is YM̂ , 
whose variance is given by 
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In case when we do not use any auxiliary character then the cost function is of the form C0-mC1, where C0 
and C1 are total cost and cost per unit of collecting information on the character Y. 
 
The optimum value of the variance for the fixed cost C0 is given by  
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When we use one auxiliary character X then the cost function is given by 
 

,20 nCGmC +=       (5.4) 
 
where C2 is the cost per unit of collecting information on the auxiliary character Z. 
 
The optimum sample sizes under (5.4) for which the minimum variance of ( )H

YM̂  is optimum, are 
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where V1=V0(4P11(x,y)-1)2. 
 
Putting these optimum values of m and n in the minimum variance expression of ( )H

YM̂  in (3.6), we get 

the optimum ( )( )H
YM̂min.Var  as 
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Similarly, when we use an additional character Z then the cost function is given by 
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where C3 is the cost per unit of collecting information on character Z. 
 
It is assumed that C1>C2>C3.  The optimum values of m and n for fixed cost C0 which minimizes the 
minimum variance of ( ) ( ))(ˆorˆ G
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where V2=V0(4P11(y,z)-1)2. 
 
The optimum variance of ( ) ( )( )G

Y
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Y MM ˆorˆ  corresponding to optimal two-phase sampling strategy is 
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Assuming large N, the proposed two phase sampling strategy would be profitable over single phase 
sampling so long as  
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When N is large, the proposed two phase sampling is more efficient than that Singh et al (2001) strategy if 
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6. GENERALIZED CLASS OF ESTIMATORS 
 
We suggest a class of estimators of MY as  
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bounded closed convex subset W⊂ℜ4, which contains the point (MY,1,1,1)=T and is such that 
F(T)=MY⇒F1(T)=1, F1(T) denoting the first order partial derivative of F(⋅) with respect to YM̂   around the 
point T=(MY,1,1,1).  Using a first order Taylor's series expansion around the point T, we get 
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where F2(T), F3(T) and F4(T) denote the first order partial derivatives of ( )wvuMF Y ,,,ˆ  with respect to u, 
v and w around the point T respectively.  Under the assumption that F(T)=MY and F1(T)=1, we have the 
following theorem. 
 
Theorem 6.1.  Any estimator in ℑ is asymptotically unbiased and normal. 
 
Proof:  Following Kuk and Mak (1989), let PY, PX and PZ denote the proportion of Y, X and Z values 
respectively for which Y≤MY, X≤MX and Z≤MZ; then we have 
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and 
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Using these expressions in (6.2), we get the required results. 
 
Expression (6.2) can be rewritten as 
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Squaring both sides of (6.3) and then taking expectation, we get the variance of ( )F

YM̂  to the first degree 
of approximation, as 
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The ( )( )F

YM̂Var  at (6.4) is minimized for 
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Thus the resulting (minimum) variance of ( )F

YM̂  is given by  
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where 
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and ( )( )G

YM̂min.Var  is given in (3.4) 
 
Expression (6.6) clearly indicates that the proposed class of estimators ( )F

YM̂  is more efficient than the 

class of estimator ( ) ( )( )g
Y

G
Y MM ˆor  ˆ  and hence the class of estimators ( )H

YM̂  suggested by Singh et al 

(2001) and the estimator YM̂  at its optimum conditions. 
 
The estimator based on estimated optimum values is defined by 
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are the sample estimates of a1, a2 and a3 given in (6.5) respectively, F*(⋅) is a function of 
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Under these conditions it can easily be shown that 
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and to the first degree of approximation, the variance of ( )*ˆ F
YM  is given by 
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for large N, the optimum value of ( )( )F
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The proposed two-phase sampling strategy would be profitable over single phase-sampling so long as 

( )[ ] ( )( )[ ]F
YM YM̂min.VarOpt.ˆVarOpt. >  

 
2

321

3100

1

32i.e.












+−

−−−
<

+

VVV
VVVV

c
CC

    (6.14) 

 
It follows from (5.7) and (6.13) that 
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for large N. 
 
Further we note from (5.11) and (6.13) that 
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1. INTRODUCTION 

The discrepancies between the values exactly obtained on the variables under consideration for sampled 

units and the corresponding true values are termed as measurement errors.  In general, standard theory of 

survey sampling assumes that data collected through surveys are often assumed to be free of measurement 

or response errors.  In reality such a supposition does not hold true and the data may be contaminated with 

measurement errors due to various reasons; see, e.g., Cochran (1963) and Sukhatme et al (1984). 

One of the major sources of measurement errors in survey is the nature of variables.  This may happen in 

case of qualitative variables.  Simple examples of such variables are intelligence, preference, specific 

abilities, utility, aggressiveness, tastes, etc.  In many sample surveys it is recognized that errors of 

measurement can also arise from the person being interviewed, from the interviewer, from the supervisor or 

leader of a team of interviewers, and from the processor who transmits the information from the recorded 

interview on to the punched cards or tapes that will be analyzed, for instance, see Cochran (1968).  Another 

source of measurement error is when the variable is conceptually well defined but observations can be 

obtained on some closely related substitutes termed as proxies or surrogates.  Such a situation is 
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encountered when one needs to measure the economic status or the level of education of individuals, see 

Salabh (1997) and Sud and Srivastava (2000).  In presence of measurement errors, inferences may be 

misleading, see Biemer et al (1991), Fuller (1995) and Manisha and Singh (2001). 

There is today a great deal of research on measurement errors in surveys.  An attempt has been made to 

study the impact of measurement errors on a family of estimators of population mean using multiauxiliary 

information. 

 

2. THE SUGGESTED FAMILY OF ESTIMATORS 

Let Y be the study variate and its population mean µ0 to be estimated using information on p(>1) auxiliary 

variates X1, X2, ...,Xp.  Further, let the population mean row vector ( )pµµµµ ,,, 21~
=′  of the vector 

( )pXXXX ,, 21~ =′ .  Assume that a simple random sample of size n is drawn from a population, on the 

study character Y and auxiliary characters X1, X2, ...,Xp.  For the sake of simplicity we assume that the 

population is infinite.  The recorded fallible measurements are given by 

 

.,,2,1

;,,2,1,

nj

piXx
EYy

ijijij

jjj

=

=+=

+=

η  

where Yj and Xij are correct values of the characteristics Y and Xi (i=1,2,..., p; j=1,2,..., n). 

For the sake of simplicity in exposition, we assume that the error Ej's are stochastic with mean 'zero' and 

variance σ(0)
2 and uncorrelated with Yj's.  The errors ηij in xij are distributed independently of each other 

and of the Xij with mean 'zero' and variance σ(i)
2 (i=1,2,...,p).  Also Ej's and ηij's are uncorrelated although 

Yj's and Xij's are correlated. 

Define  
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With this background we suggest a family of estimators of µ0 as 
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and such that it satisfies the following conditions: 

1. The function ( )Tuyg ,  is continuous and bounded in Q.  

2. The first and second order partial derivatives of the function ( )Tuyg ,  exist and are continuous and 

bounded in Q. 

To obtain the mean squared error of gµ̂ , we expand the function ( )Tuyg ,  about the point (µ0,eT) in a 

second order Taylor's series.  We get 
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where 

( ) ( ) ( ) ( )⋅<<−+=−+= 1
00 ;10,*,* geueuyy θθµθµ  

denote the p element column vector of first partial derivatives of g(⋅) and g(2)(⋅) denotes a p×p matrix of 

second partial derivatives of g(⋅) with respect to u. 

Noting that g(µ0,eT)= µ0, it can be shown that  

( ) )(ˆ 1
0

−+= nOE g µµ
 

(2.3) 

which follows that the bias of gµ̂  is of the order of n-1, and hence its contribution to the mean squared 

error of gµ̂  will be of the order of n-2. 

From (2.2), we have to terms of order n-1,  
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where bT=(b1,b2,…,bp), bi,=ρ0iC0Ci,(i=1,2, …,p); 

Ci=σi/µi, C(i)= σi/µi, (i=1,2, …,p) and C0=σ0/µ0, 
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The ( )gˆMSE µ  at (2.4) is minimized for  
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(2.5) 
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Thus the resulting minimum MSE of gµ̂  is given by 
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Now we have established the following theorem. 

Theorem 2.1 = Up to terms of order n-1, 
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with equality holding if  
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It is to be mentioned that the family of estimators gµ̂  at (2.1) is very large.  The following estimators: 
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etc. may be identified as particular members of the suggested family of estimators gµ̂ .  The MSE of these 

estimators can be obtained from (2.4). 

It is well known that 

( ) ( ) ( )( )2
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2
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2
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(2.8) 

It follows from (2.6) and (2.8) that the minimum variance of gµ̂  is no longer than conventional unbiased 

estimator y . 

On substituting σ(0)
2=0, σ(i)

2=0 ∀i=1,2,…,p in the equation (2.4), we obtain the no-measurement error case.  

In that case, the MSE of gµ̂ , is given by  
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(2.10) 

and ( )pi ,,2,1X and Y i =  are the sample means of the characteristics Y and Xi based on true 

measurements.  (Yj,Xij, i=1,2,…,p; j=1,2,…,n).  The family of estimators *ˆ gµ  at (2.10) is a generalized 

version of Srivastava (1971, 80). 

The MSE of *ˆ gµ  is minimized for 
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1

,
1 ** 0 µµ bAg Te
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(2.11) 

Thus the resulting minimum MSE of *ˆ gµ  is given by  
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where A*=[a*ij] be a p×p matrix with a*ij = ρijCiCj and R stands for the multiple correlation coefficient of 

Y on X1,X2,…,Xp. 

From (2.6) and (2.12) the increase in minimum MSE ( )gµ̂  due to measurement errors is  

obtained as 
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This is due to the fact that the measurement errors introduce the variances fallible measurements of study 

variate Y and auxiliary variates Xi.  Hence there is a need to take the contribution of measurement errors 

into account. 

 

3.  BIASES AND MEAN SQUARE ERRORS OF SOME PARTICULAR ESTIMATORS IN THE 

PRESENCE OF MEASUREMENT ERRORS. 

To obtain the bias of the estimator gµ̂ , we further assume that the third partial derivatives of ( )Tuyg ,  

also exist and are continuous and bounded.  Then expanding ( )Tuyg ,  about the point 

( ) ( )TT euy ,, 0µ=  in a third-order Taylor's series we obtain 
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where g(12)(µ0,eT) denotes the matrix of second partial derivatives of ( )Tuyg ,  at the point 
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and taking expectation we obtain the bias of the family of estimators gµ̂  to the first degree of 

approximation, 
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where bT=(b1,b2,…,bp) with bi=ρoiC0Ci; (i=1,2,…, p).  Thus we see that the bias of gµ̂  depends also upon 

the second order partial derivatives of the function on ( )Tuyg ,  at the point (µ0,eT), and hence will be 

different for different optimum estimators of the family. 

The biases and mean square errors of the estimators ( ) 18  to1;ˆ =ii
gµ  up to terms of order n-1 along with 

the values of g(1)(µ0,eT), g(2)(µ0,eT) and g(12)(µ0,eT) are given in the Table 3.1. 



Table 3.1 Biases and mean squared errors of various estimators of µ0 
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Table 3.1 Biases and mean squared errors of various estimators of µ0 

ESTIMATOR g(1)(µ0,eT) g(2)(µ0,eT) g(12)(µ0,eT) BIAS MSE 
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Table 3.1 Biases and mean squared errors of various estimators of µ0 

ESTIMATOR g(1)(µ0,eT) g(2)(µ0,eT) g(12)(µ0,eT) BIAS MSE 
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4. ESTIMATORS BASED ON ESTIMATED OPTIMUM 

It may be noted that the minimum MSE (2.6) is obtained only when the optimum values of constants 

involved in the estimator, which are functions of the unknown population parameters µ0, b and A, are 

known quite accurately. 

To use such estimators in practice, one has to use some guessed values of the parameters µ0, b and A, either 

through past experience or through a pilot sample survey.  Das and Tripathi (1978, sec.3) have illustrated 

that even if the values of the parameters used in the estimator are not exactly equal to their optimum values 

as given by  (2.5) but are close enough, the resulting estimator will be better than the conventional unbiased 

estimator y .  For further discussion on this issue, the reader is referred to Murthy (1967),  Reddy (1973), 

Srivenkataramana and Tracy (1984) and Sahai and Sahai (1985). 

On the other hand if the experimenter is unable to guess the values of population parameters due to lack of 

experience, it is advisable to replace the unknown population parameters by their consistent estimators.  Let 

φ̂  be a consistent estimator of φ=A-1b.  We then replace φ by φ̂  and also µ0 by y  if necessary, in the 

optimum gµ̂  resulting in the estimator ( )estgµ̂ , say, which will now be a function of y , u and φ.  Thus we 

define a family of estimators (based on estimated optimum values) of µ0 as 
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and 
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With these conditions and following Srivastava and Jhajj (1983), it can be shown to the first degree of 

approximation that 
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Thus if the optimum values of constants involved in the estimator are replaced by their consistent 

estimators and conditions (4.2) hold true, the resulting estimator ( )estgµ̂  will have the same asymptotic 

mean square error, as that of optimum gµ̂ . Our work needs to be extended and future research will explore 

the computational aspects of the proposed algorithm. 
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The purpose of this book is to postulate some theories and test them 
numerically. Estimation is often a difficult task and it has wide application in 
social sciences and financial market. In order to obtain the optimum efficiency for 
some classes of estimators, we have devoted this book into three specialized 
sections. 
 
 
 
 
 
 
 
 

 Y ≤ MY Y > MY Total 
X ≤ MX P11(x,y) P21(x,y) P⋅1(x,y) 
X > MX P12(x,y) P22(x,y) P⋅2(x,y) 

Total P1⋅(x,y) P2⋅(x,y) 1 
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