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Forward

The purpose of this book is to postulate some theories and test them numerically.
Estimation is often a difficult task and it has wide application in social sciences and
financial market. In order to obtain the optimum efficiency for some classes of
estimators, we have devoted this book into three specialized sections:

Part 1. In this section we have studied a class of shrinkage estimators for shape
parameter beta in failure censored samples from two-parameter Weibull distribution
when some 'apriori' or guessed interval containing the parameter beta is available in
addition to sample information and analyses their properties. Some estimators are
generated from the proposed class and compared with the minimum mean squared error
(MMSE) estimator. Numerical computations in terms of percent relative efficiency and
absolute relative bias indicate that certain of these estimators substantially improve the
MMSE estimator in some guessed interval of the parameter space of beta, especially for
censored samples with small sizes. Subsequently, a modified class of shrinkage
estimators is proposed with its properties.

Part2. In this section we have analyzed the two classes of estimators for population
median My of the study character Y using information on two auxiliary characters X and
Z in double sampling. In this section we have shown that the suggested classes of
estimators are more efficient than the one suggested by Singh ef al (2001). Estimators
based on estimated optimum values have been also considered with their properties. The
optimum values of the first phase and second phase sample sizes are also obtained for the
fixed cost of survey.

Part3. In this section, we have investigated the impact of measurement errors on a family
of estimators of population mean using multiauxiliary information. This error
minimization is vital in financial modeling whereby the objective function lies upon
minimizing over-shooting and undershooting.

This book has been designed for graduate students and researchers who are active in the
area of estimation and data sampling applied in financial survey modeling and applied
statistics. In our future research, we will address the computational aspects of the
algorithms developed in this book.

The Authors
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Abstract

This paper is speculated to propose a class of shrinkage estimators for shape parameter
B in failure censored samples from two-parameter Weibull distribution when some ‘apriori’ or
guessed interval containing the parameter [ is available in addition to sample information and
analyses their properties. Some estimators are generated from the proposed class and compared
with the minimum mean squared error (MMSE) estimator. Numerical computations in terms of
percent relative efficiency and absolute relative bias indicate that certain of these estimators
substantially improve the MMSE estimator in some guessed interval of the parameter space of 3,
especially for censored samples with small sizes. Subsequently, a modified class of shrinkage
estimators is proposed with its properties.
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1. INTRODUCTION

Identical rudiments subjected to identical environmental conditions will fail at different and
unpredictable times. The ‘time of failure’ or ‘life length’ of a component, measured from some specified
time until it fails, is represented by the continuous random variable X. One distribution that has been used
extensively in recent years to deal with such problems of reliability and life-testing is the Weibull
distribution introduced by Weibull(1939), who proposed it in connection with his studies on strength of
material.

The Weibull distribution includes the exponential and the Rayleigh distributions as special cases.
The use of the distribution in reliability and quality control work was advocated by many authors following
Weibull(1951), Lieblin and Zelen(1956), Kao(1958,1959), Berrettoni(1964) and Mann(1968 A).

Weibull(1951) showed that the distribution is useful in describing the ‘wear-out’ or fatigue failures.




Kao(1959) used it as a model for vacuum tube failures while Lieblin and Zelen(1956) used it as a model for
ball bearing failures. Mann(1968 A) gives a variety of situations in which the distribution is used for other
types of failure data. The distribution often becomes suitable where the conditions for “strict randomness”
of the exponential distribution are not satisfied with the shape parameter £ having a characteristic or

predictable value depending upon the fundamental nature of the problem being considered.

1.1 The Model
Let x, x5, ..., x, be a random sample of size n from a two-parameter Weibull distribution,

probability density function of which is given by :
f(x;a,ﬂ) = ﬂa_ﬁxﬂ_l exp{—(x/a)ﬁ}; x>0,>0,>0
(1.1)

where a being the characteristic life acts as a scale parameter and S is the shape parameter.
The variable Y =In x follows an extreme value distribution, sometimes called the log-Weibull

distribution [e.g. White(1969)], cumulative distribution function of which is given by :

y—u
F(y)=l—exp —exp 5 ;—o<y<oo,—o<u<0,b>0

(1.2)
where b =1/ and u =In « are respectively the scale and location parameters.

The inferential procedures of the above model are quite complex. Mann(1967 A,B, 1968 B)
suggested the generalised least squares estimator using the variances and covariances of the ordered

observations for which tables are available up to n =25 only.

1.2 Classical Estimators
Suppose x1, X2, ..., X, be the m smallest ordered observations in a sample of size n from Weibull

distribution. Bain(1972) defined an unbiased estimator for b as

A nlly =y
b, =— i Tmt
; nk
(m,n)
(1.3)
1 m—1
where K(m,n) = —(;) ELZ;‘ (Vi -v )]
(1.4)



b

and v, = are ordered variables from the extreme value distribution with #=0 and b=

A
1.The estimator b, is found to have high relative efficiency for heavily censored cases. Contrary to this,

N
the asymptotic relative efficiency of b, is zero for complete samples.

Engelhardt and Bain(1973) suggested a general form of the estimator as
__$bionll
1 | K gmm

(1.5)
N
where g is a constant to be chosen so that the variance of b is least and K, is an unbiasing constant.

A

The statistic £ has been shown to follow approximately x* - distribution with 4 degrees of freedom,

where /1 = 2/ Var(l; < / b) . Therefore, we have

] 1 (2 VTl +p]
E{ﬁ }_ﬁjp(h 2) r'(h/2) Tl

(1.6)
h-2

A A 2 2 A
where [ = is an unbiased estimator of B with Var ([3) = B and t = hb, having density

1 Bh/z X =Bt 2 .
f@)= (h/2)( j ep( 5 jt >0,

The MMSE estimator of 3, among the class of estimators of the form C /3 ; C being a constant for

which the mean square error (MSE) of C £ is minimum, is

_h-4
t

By
(1.7)

having absolute relative bias and relative mean squared error as

ARB{sM}:m,

(1.8)

and RMSE{%M}:%,

(1.9)



respectively.

1.3 Shrinkage Technique of Estimation

Considerable amount of work dealing with shrinkage estimation methods for the parameters of the
Weibull distribution has been done since 1970. An experimenter involved in life-testing experiments
becomes quite familiar with failure data and hence may often develop knowledge about some parameters of
the distribution. In the case of Weibull distribution, for example, knowledge on the shape parameter S can

be utilised to develop improved inference for the other parameters. Thompson(1968 A,B) considered the

problem of shrinking an unbiased estimator & of the parameter & either towards a natural origin io or

towards an interval (&1 , &2 ) and suggested the shrunken estimators A&+ (1— h)&0 and

. +&
h&—i—(l—h)[%}, where 0 < 7 < 1 is a constant. The relevance of such type of shrunken
estimators lies in the fact that, though perhaps they are biased, has smaller MSE than & for & in some

g€ +
interval around &0 or (ITZ , as the case may be. This type of shrinkage estimation of the Weibull

parameters has been discussed by various authors, including Singh and Bhatkulikar(1978), Pandey(1983),
Pandey and Upadhyay(1985,1986) and Singh and Shukla(2000). For example, Singh and
Bhatkulikar(1978) suggested performing a significance test of the validity of the prior value of £ (which

they took as 1). Pandey(1983) also suggested a similar preliminary test shrunken estimator for £.

In the present investigation, it is desired to estimate [ in the presence of a prior information

available in the form of an interval (ﬂl , ﬂz) and the sample information contained in /3. Consequently,
this article is an attempt in the direction of obtaining an efficient class of shrunken estimators for the scale
parameter /3. The properties of the suggested class of estimators are also discussed theoretically and

empirically. The proposed class of shrunken estimators is furthermore modified with its properties.

2. THE PROPOSED CLASS OF SHRINKAGE ESTIMATORS

s

Consider a class of estimators /3 () for £ in model (1.1) defined by



;M:(ﬁl;ﬂzj VYA ﬂz |
28

@.1)

where p and g are real numbers such that p#0 and ¢ > 0, w is a stochastic variable which may in

particular be a scalar, to be chosen such that MSE of [ () is minimum.

Assuming w a scalar and using result (1.6), the MSE of /3 () is given by

X _ Q2 12 2o 2 2 F[(h/2)+2p]
MSE{B(M)}—B {{qA 1’ + w?A (h—zj F)

+{gA - l}wA(ml)(h f 2jp T[(h/2)+ 217]]

T(h/2)

2.2)

where A= (&J )
2

Minimising (2.2) with respect to w and replacing /3 by its unbiased estimator /3, we get

JICoRs

12/: (p+D) wp).
(Mj
2
(2.3)
(h=2)" T{(h/2)+p]
where W(P)—( ) r[(h/2)+2p]’
(2.4)

lies between 0 and 1, {i.e., 0 <w(p) < 1} provided gamma functions exist, i.e., p > (—=h/2).

Substituting (2.3) in (2.1) yields a class of shrinkage estimators for £ in a more feasible form as

By :(gj“’(}’) +Q(Bl 2B2j {1-w(p)}.

2.5)

2.1 Non-negativity



Clearly, the proposed class of estimators (2.5) is the convex combination of {(h - 2)/ t } and

{q(Bl +B, )/ 2} and hence ,B(M) is always positive as {(h - 2)/2‘} >0 and ¢>0.

2.2 Unbiasedness
If w(p) = 1, the proposed class of shrinkage estimators B( ) turns into the unbiased estimator 3,

otherwise it is biased with

Bias {ﬁ(m)} =B {gA -1} 1-w(p)] (2.6)

and thus the absolute relative bias is given by

ARB {fsw)} = lgA -1} [1-w(p)]|.
(2.7)

The condition for unbiasedness that w(p) = 1, holds iff, censored sample size m is indefinitely
large, i.e., m — oo. Moreover, if the proposed class of estimators [3 (g TUIDS into B then this case does not
deal with the use of prior information.

A more realistic condition for unbiasedness without damaging the basic structure of [3 0 and
utilises prior information intelligibly can be obtained by (2.7). The ARB of B 0 is zero when g = A (or

A=q™.

2.3 Relative Mean Squared Error
The MSE of the suggested class of shrinkage estimators is derived as

MSE {6(,,,q>} =B’ {{qA ~1{1-w(p)}” + % : 2.8)

and relative mean square error is therefore given by

B 2 , 2 2
RMSE{B(pﬂq)}z{‘]A_l} {l—w(p)} +%_

2.9)

It is obvious from (2.9) that RMSE {ﬁ(p’q) } is minimum when g = Alor A= q_l ).

2.4 Selection of the Scalar ‘p’

10



The convex nature of the proposed statistic and the condition that gamma functions contained in
w(p) exist, provides the criterion of choosing the scalar p. Therefore, the acceptable range of value of p is
given by
{pl 0<w(p)<1and p>(=h/2)}. Vnm. (2.10)

2.5 Selection of the Scalar ¢q’

It is pointed out that at g = A , the proposed class of estimators is not only unbiased but renders
maximum gain in efficiency, which is a remarkable property of the proposed class of estimators. Thus
obtaining significant gain in efficiency as well as proportionately small magnitude of bias for fixed A or
for fixed (Bl / B) and (B2 / B), one should choose ¢ in the vicinity of g = A™'. It is interesting to note

that if one selects smaller values of ¢ then higher values of A leads to a large gain in efficiency (along
with appreciable smaller magnitude of bias) and vice-versa. This implies that for smaller values of ¢, the
proposed class of estimators allows to choose the guessed interval much wider, i.e., even if the
experimenter is less experienced the risk of estimation using the proposed class of estimators is not higher.

This is legitimate for all values of p.

2.3 Estimation of Average Departure: A Practical Way of selecting ¢

The quantity A::«B1+B2VZB}, represents the average
departure of natural origins B, and pB, from the true value
p . But in practical situations it is hardly possible to get
an idea about A . Consequently, an unbiased estimator of
A 1is proposed, namely

; {r (B, +Bz)} T(h/2)
A= :
4 I[(h/2)+1]

(2.12)

In section 2.5 it is investigated that, if q::AA, the
suggested class of estimators vyields favourable results.
Keeping in view of this concept, one may select g as

q:A_l:{ 4 }F[(h/2)+1].
(B +By)) T(h/2)

Here this is fit for being quoted that this is the

(2.13)

criterion of selecting q numerically and one should

11



carefully notice that this doesn’t mean g is replaced by

(2.13) in B, -

3. COMPARISION OF ESTIMATORS AND EMPIRICAL STUDY
James and Stein(1961) reported that minimum MSE is a highly desirable property and it is
therefore used as a criterion to compare different estimators with each other. The condition under which the

proposed class of estimators is more efficient than the MMSE estimator is given below.
A A
MSE { B, } does not exceed the MSE of MMSE estimator f3,, if -
(1-VG)g" <A <(1+G)g"
3.1)

2 1 o))
{1-w(p)}" | (h=2)  (h-4)

Besides minimum MSE criterion, minimum bias is also important and therefore should be

where G=

incorporated under study. Thus, ARB {ﬁ( 2.0) }is less than ARB {,B Y }if -

2 2
1- T <A 1 -
{ (h— 2)(1 W )}q =0 { " (h— 2)(1 W )}q

3.2)

3.1 The Best Range of Dominance of A
The intersection of the ranges of A in (3.1) and (3.2) gives the best range of dominance of A

denoted by A In this range, the proposed class of estimators is not only less biased than the MMSE

Best *

estimator but is more efficient than that. The four possible cases in this regard are:

. . 2 2
() if {1 — =2 [1 - W(p)]} < (l - \/E) and {1 + =2 [1 - W(p)]} < (1 + \/E) then

-1 2 -l
A et —({1 - */5}‘1 ’ {1 " (h—-2)[1- W(p)]}q j

. . 2
(i) lf{l_(h—Z)[l—w(p)]}<(1_\/5) and (1+\/5)<{1

A

+ 2 }then
(h=2)[1-w(p)]

Bes: 18 the same as defined in (3.1).

12



iy if (1—\/5)< {1 2 } and (1+\/5)< {1 2 } then

T - [l-w(p)] - w(p)]

2 -1 n -1
AB“’_Hl_(h—2>[1—w(p)]}q Al J

(iv) if(l—\/5)<{1— 2 }and {H(h—z)[z }<(1+\/5)then

(h—2)[1-w(p)] 1-w(p)]

is the same as defined in (3.2).

A

Best

3.2 Percent Relative Efficiency

AN

To elucidate the performance of the proposed class of estimators [ () with the MMSE

A N A
estimator [3,,, the Percent Relative Efficiencies (PREs) of B( ) with respect to 3,, have been computed

by the formula:
_ 2(h—4)
(h-2)|(gA =17 {L-w(p)} (h—4)+2{w(p)}?

PRE{ﬂ(p,q),ﬂM}z ]><100

A

A AN
(3.5)  The PREs of 3 (p.q With Tespect to B ,, @nd ARBs of B (p.q) for fixed n =20 and different values

of p,g,m A, (= B, /[3) and A, (= B, /B) or A are compiled in Table 3.1 with corresponding values of &

[which can be had from Engelhardt(1975)] and w(p). The first column in every m corresponds to PREs and

A
the second one corresponds to ARBs of [3 ()’ The last two rows of each set of ¢ includes the range of

dominance of A and A

est - The ARBs of B has also been given at the end of each set of table.
: M

13



Table 3.1

N A A
PREs of proposed estimator [3 (p.q) With respect to MMSE estimator [, and ARBsof 3 (00)

p=-2
g > 6 8 10 12
A | Ard I 10.8519 15.6740 20.8442 26.4026
A wp)yo| 01750 0.3970 0.5369 0.6305
0.1]02 0.15 3533 0.7941] 40.20] 0.5804] 45.57] 04457 50.60] 03556
0.4 | 0.6 0.50 42.62| 07219] 47.90| 0527¢] 53.49| 04052 58.53| 03233
04|16 1.00 57.66| 0.6188] 63.18| 04522] 68.54] 03473 72.99| 02771
10 | 2.0 1.50 8221| 0.5156] 86.53| 03769] 89.95| 02894 9227 0.2309
025| 1.6 | 2.4 2.00 126.15| 0.4125| 124.06| 03015 120.83| 02315 117.72| 0.1847
20| 3.0 2.50 215.89] 0.3094] 187.20| 02261] 164.84| 0.1737] 149.86| 0.1386
25|35 3.00 438.90| 02063] 294.12| 0.1507] 222.82| 0.1158] 186.17] 0.0924
35|35 3.50 115445\ 0.1031] 447.47] 0.0754] 282.42| 0.0579] 217.84| 0.0462
38 | 42 400 252852 0.0000] 541.60] 0.0000] 310.07| 0.0000] 230.93] 0.0000
Range of A—> (174, | (290, | (1.70, | (.02, | (1.68, | (3.08, | (1.66, | (.11,
6.25) | 509 | 629) | 497) | 631) | 491) | 633) | 488)
Apes > (2.90, 5.09) (3.02,4.97) (3.08,4.91) (3.11, 4.88)
01102 0.15 38211 0.7632] 43.26] 0.5577] 48.75] 04284 53.81] 03418
04|06 0.50 57.66| 0.6188] 63.18| 04522] 68.54] 03473 72.99| 02771
04 | 1.6 1.00 126.15| 0.4125| 124.06| 03015 120.83| 02315 117.72| 0.1847
10 | 2.0 1.50 438.90] 02063] 294.12| 0.1507] 222.82| 0.1158] 186.17] 0.0924
050] 1.6 | 2.4 200  [2528.52] 0.0000] 541.60| 0.0000] 310.07| 0.0000] 230.93| 0.0000
2.0 | 3.0 2.50 438.90| 02063 294.12| 0.1507] 222.82| 0.1158] 186.17| 0.0924
25|35 3.00 126.15| 0.4125| 124.06| 03015 120.83| 02315 117.72| 0.1847
35|35 3.50 57.66| 0.6188] 63.18| 04522] 68.54] 03473] 72.99| 02771
38 | 42 4.00 32.76| 0.8250] 37.45| 06030 42.68| 04631] 47.65| 03695
Range of Ao (0.87, | (145, | (0.85, | (1.51, | (0.84, | (1.54, | (0.83, | (1.56,
3.13) | 255 | 3.15) | 2.49) | 3.16) | 2.46) | 3.17) | 2.44)
Apes > (145, 2.55) (1,51, 2.49) (1.54, 2.46) (1.56, 2.44)
0.1]02 0.15 41.45] 0.7322] 46.67] 0.5351] 5225] 04110] 57.30] 03279
04 | 06 0.50 8221| 0.5156] 86.53| 03769] 89.95| 02894] 9227 0.2309
04|16 1.00 438.90| 02063] 294.12| 0.1507] 222.82| 0.1158] 186.17] 0.0924
10 | 2.0 150 [1154.45] 0.1031] 447.47] 0.0754] 28242 0.0579| 217.84| 0.0462
075| 1.6 | 2.4 2.00 126.15] 0.4125] 124.06| 03015] 120.83| 0.2315] 117.72| 0.1847
20| 3.0 2.50 42.62| 07219] 4790 0.5276] 53.49| 04052] 58.53] 03233
25| 35 3.00 21.07] 1.0313] 24.58| 0.7537] 28.74| 05789 32.94| 0.4619
35| 3.5 3.50 1251 13407 1482 09798] 17.67| 0.7525| 20.70| 0.6004
38 | 42 4.00 827 1.6501] 9.87| 12059 11.90] 0.9262] 14.09] 0.7390
Range of Ao (058, | (097, | (057, | (1.01, | (0.56, | (1.03, | (0.56, | (1.04,
2.09) | 1.70) | 2.10) | 1.66) | 2.11) | 1.64) | 2.11) | 1.63)
Apes — (0.97, 1.70) (1.01, 1.66) (1.03, 1.64) (1.04, 1.63)
ARB of MMSE Estimator— 0.2259 0.1463 0.1061 0.0820
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Table 3.1 continued ...

p=-1
b m— 6 8 10 12
A | Ard I 10.8519 15.6740 20.8442 26.4026
AN wp)yo| 07739 0.8537 0.8939 0.9180
0.1] 02 0.15 101.69] 02176] 101.09] 0.1408] 100.79] 0.1022] 100.61] 0.0789
04|06 0.50 105.60| 0.1978] 103.55| 0.1280] 102.55| 0.0929] 101.96| 0.0718
04|16 1.00 110.98] 0.1696] 106.84| 0.1097] 104.87| 0.0796] 103.73] 0.0615
10 | 2.0 1.50 115.99] 0.1413] 109.79] 0.0914] 106.91| 0.0663] 105.27| 0.0513
025| 1.6 | 2.4 2.00 12043 0.1130| 112.32] 0.0731] 108.65 0.0531] 106.56| 0.0410
20| 3.0 2.50 124.13] 0.0848] 11438 0.0549] 110.04| 0.0398] 107.59| 0.0308
25|35 3.00 126.91] 0.0565| 115.89 0.0366] 111.05| 0.0265] 108.34| 0.0205
35| 3.5 3.50 128.65| 0.0283] 116.82| 0.0183] 111.67] 0.0133] 108.79] 0.0103
3.8 | 42 4.00 12923| 0.0000] 117.13] 0.0000] 111.87| 0.0000] 108.94] 0.0000
Range of Ao (0.00, | (0.00, | (0.00, | (0.00, | (0.00, | (0.00, | (0.00, | (0.00,
8.00) | 8.00) | 8.00) | 8.00) | 8.00) | 8.00) | 8.00) | 8.00)
Ape — (0.00, 8.00) (0.00, 8.00) (0.00, 8.00) (0.00, 8.00)
01102 0.15 103.38] 02091] 102.16] 0.1353] 101.56] 0.0982] 101.20] 0.0759
0.4 | 0.6 0.50 110.98] 0.1696] 106.84| 0.1097] 104.87| 0.0796] 103.73] 0.0615
04 | 1.6 1.00 12043 0.1130| 112.32] 0.0731] 108.65 0.0531] 106.56| 0.0410
10 | 2.0 1.50 126.91] 0.0565| 115.89 0.0366] 111.05| 0.0265] 108.34] 0.0205
050] 1.6 | 2.4 2.00 129.23| 0.0000] 117.13| 0.0000] 111.87| 0.0000] 108.94] 0.0000
20| 3.0 2.50 126.91| 0.0565| 115.89] 0.0366] 111.05| 00265 108.34] 0.0205
25| 35 3.00 12043 0.1130] 112.32] 0.0731] 108.65| 0.0531] 106.56| 0.0410
35|35 3.50 110.98] 0.1696] 106.84| 0.1097] 104.87| 0.0796| 103.73| 0.0615
38 | 42 4.00 100.00| 0.2261] 100.00| 0.1463] 100.00] 0.1061] 100.00| 0.0820
Range of Ao (0.00, | (0.00, | (0.00, | (0.00, | (0.00, | (0.00, | (0.00, | (0.00,
4.00) | 4.00) | 4.00) | 4.00) | 400) | 4.00) | 4.00) | 4.00)
Apes > (0.00, 4.00) (0.00, 4.00) (0.00, 4.00) (0.00, 4.00)
0.1]02 0.15 105.05] 0.2006] 103.21] 0.1298] 10231] 00942 101.77] 0.0728
04 | 06 0.50 115.99] 0.1413] 109.79] 0.0914] 106.91| 0.0663] 105.27| 0.0513
04 | 1.6 1.00 126.91| 0.0565| 115.89| 00366 111.05 0.0265] 108.34] 0.0205
10 | 2.0 1.50 128.65| 0.0283| 116.82 00183 111.67] 00133] 108.79| 0.0103
075| 1.6 | 2.4 2.00 12043 0.1130] 112.32] 0.0731] 108.65| 0.0531] 106.56| 0.0410
20| 3.0 2.50 105.60] 0.1978] 103.55| 0.1280] 102.55| 0.0929] 101.96| 0.0718
25| 35 3.00 88.71| 02826 92.40| 0.1828] 94.37] 0.1327] 9559 0.1025
35|35 3.50 72.93| 03674 80.65| 023771 85.17| 0.1725| 88.13| 0.1333
38 | 42 4.00 59.57| 04521] 69.50 02925| 75.85| 02123 80.24| 0.1640
Range of A—> (0.00, | (0.00, | (0.00, | (0.00, | (0.00, | (0.00, | (0.00, | (0.00,
267) | 2.67) | 2.67) | 267) | 2.67) | 267) | 2.67) | 2.67)
Apes — (0.00, 2.67) (0.00, 2.67) (0.00, 2.67) (0.00, 2.67)
ARB of MMSE Estimator— 0.2259 0.1463 0.1061 0.0820
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Table 3.1 continued ...

p =1
b m— 6 8 10 12
A | Ard PR 10.8519 15.6740 20.8442 26.4026
AL w(p)> 0.6888 0.7737 0.8251 0.8779
01102 015 99.00] 02996] 97.51] 02178 97.21] 0.1684] 99.20] 0.1175
04]06| 050 10626 0.2723| 103.17| 0.1980] 101.80| 0.1531] 102.17| 0.1069
04|16 1.00 117.09] 02334 11134 0.1697] 10825 0.1312] 106.18] 0.0916
10 | 2.0 1.50 128.15| 0.1945| 119.34| 0.1415] 114.39| 0.1093] 109.82| 0.0763
025| 1.6 | 24| 200 138.88| 0.1556| 126.79] 0.1132] 119.95| 00875 113.00] 0.0611
2030 250 148.56| 0.1167] 13327 0.0849] 124.67| 0.0656] 115.60| 0.0458
25 35| 300 156.33| 0.0778] 13831| 0.0566| 128.27| 0.0437] 117.53] 0.0305
35035 3.0 161.41) 00389 141.52| 0.0283] 130.54| 0.0219] 118.72] 0.0153
38 | 42| 400 163.17] 0.0000| 142.63] 0.0000] 131.31] 0.0000] 119.12| 0.0000
Range of Ao 020, | (0.00, | (0.30, | (0.00, | (0.36, | (0.00, | (0.24, | (0.00,
7.80) | 8.00) | 7.70) | 8.00) | 7.64) | 8.00) | 7.76) | 8.00)
(0.20, 7.80) (0.30, 7.70) (0.36, 7.64) (0.24,7.76)
01]02] 015 102.07] 02879 99.92] 02093] 99.18] 0.1618] 10049 0.1130
04 06| 050 117.09] 02334 11134 0.1697] 108.25| 0.1312] 106.18] 0.0916
04|16 1.00 138.88] 0.1556| 12679 0.1132] 119.95| 0.0875] 113.00] 0.0611
1.0 | 2.0 1.50 156.33] 0.0778] 138.31| 00566 128.27| 0.0437] 117.53] 0.0305
050| 16 | 24| 200 163.17| 0.0000| 142.63| 0.0000] 131.31] 0.0000] 119.12| 0.0000
2030 250 156.33| 0.0778] 13831| 0.0566] 128.27| 0.0437] 117.53] 0.0305
25035  3.00 138.88| 0.1556] 126.79| 0.1132] 119.95] 0.0875] 113.00] 0.0611
35035 350 117.09] 0.2334] 111.34] 01697 10825 0.1312] 106.18| 0.0916
38 42| 400 96.01| 03112] 95.12] 02263] 9525/ 0.1749] 97.90 0.1221
Range of Ao ©.10, | (055, | (©0.15, | 0.71, | (0.18, | (0.79, | (0.12, | (0.66,
3.90) | 345 | 3.85) | 3.29) | 3.82) | 321) | 3.88) | 3.34)
Apes — (0.55, 3.45) (0.71, 3.29) (0.79,3.21) (0.66, 3.34)
01]02] 015 10520] 02762] 102.36] 0.2009] 101.15] 0.1553] 101.75] 0.1084
04 06| 050 128.15| 0.1945] 119.34| 0.1415] 114.39] 0.1093] 109.82| 0.0763
04|16 1.00 156.33| 0.0778] 13831| 0.0566] 128.27| 0.0437] 117.53] 0.0305
10 | 2.0 1.50 16141 0.0389] 141.52| 0.0283] 130.54| 0.0219] 118.72| 0.0153
075 16 | 24| 200 138.88| 0.1556] 126.79] 0.1132] 119.95| 00875 113.00] 0.0611
2030 250 10626 02723 103.17| 0.1980] 101.80| 0.1531] 102.17| 0.1069
2535|300 77.96| 0.3891] 80.11| 028209 82.50| 02187] 88.98] 0.1526
3535|350 5731| 0.5058] 61.51| 03678| 65.66| 02843 75.76| 0.1984
38 | 42| 400 4296 0.6225| 47.58| 04526] 52.22| 03499 63.80| 02442
Range of A—> 007, | 037, | ©.10, | 047, | (0.12, | (0.52, | (0.08, | (0.44,
2.60) | 230) | 2.57) | 220y | 255 | 2.14) | 2.59) | 2.23)
Ape —> (0.37, 2.30) (0.47, 2.20) (0.52,2.14) (0.44,2.23)
ARB of MMSE Estimator—> 0.2259 0.1463 0.1061 0.0820
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Table 3.1 continued ...

p =2
b m— 6 8 10 12
A | Ard PR 10.8519 15.6740 20.8442 26.4026
AL w(p)—> 03131 0.4385 0.5392 0.6816
01102 015 4351] 0.6612] 45.00] 0.5405| 4590] 04435| 60.53] 0.3065
04 06| 050 57.95| 0.6011] 53.31| 04913] 53.85| 04032] 68.81] 02786
04|16 1.00 76.84| 05152] 69.55| 0.4211] 68.94] 03456] 8320 02388
10 | 2.0 1.50 106.11] 04293 93.70| 0.3509] 90.35| 0.2880] 101.08] 0.1990
025| 16 24| 200 154.14| 03435 130.87| 0.2808] 121.15| 02304 122.65 0.1592
2030 250 237.92 02576 189.27| 02106 164.85| 0.1728] 147.06] 0.1194
25 35| 3.00 388.87| 0.1717] 277.82| 0.1404] 222.08] 0.1152] 171.43| 0.0796
3535|350 627.92| 0.0859] 386.26| 0.0702] 28049 0.0576] 19036 0.0398
38 | 42|  4.00 789.74| 0.0000] 444.03| 0.0000] 307.45| 0.0000] 197.63| 0.0000
Range of A—> (141, | 268, | (1.60, | 296, | (1.68, | 3.08, | (147, | 2.97,
659 | 532) | 6.40) | 5.04) | 632) | 492) | 6.53) | 5.03)
Apes — (2.68, 5.32) (2.96, 5.04) (3.08, 4.92) (2.97, 5.03)
01102 015 52.06] 0.6354] 4832] 0.5194] 49.00] 04262] 63.91] 0.2946
04 06| 050 76.84| 0.5152] 69.55 04211] 68.94] 03456] 8320 02388
04 | 1.6 1.00 154.14| 0.3435] 130.87| 02808] 121.15| 02304] 122.65] 0.1592
10 | 2.0 1.50 388.87| 0.1717] 277.82| 0.1404] 222.08] 0.1152] 171.43| 0.0796
050 1.6 24| 200 789.74| 0.0000] 444.03| 0.0000] 307.45| 0.0000] 197.63| 0.0000
20030 250 388.87| 0.1717] 277.82| 0.1404] 222.08] 0.1152] 17143 0.0796
25135 3.00 154.14| 03435 130.87| 02808] 121.15| 02304] 122.65 0.1592
3535|350 76.84| 0.5152] 69.55| 04211] 68.94] 03456] 8320 0.2388
38 | 42|  4.00 45.14| 0.6869] 42.00 05615 42.99| 04608 57.36| 03184
Range of A—> 071, | (134, | (080, | (148, | (0.84, | (154, | (0.74, | (1.49,
329) | 2.66) | 3200 | 2.52) | 3.16) | 2.46) | 326) | 251
Apet — (1.34, 2.66) (148, 2.52) (1.54, 2.46) (1.49,2.51)
01]02] 015 56.45] 0.6096] 52.00] 04983] 52.60] 04090| 67.54] 02826
04 06| 050 106.11] 04293 93.70| 0.3509] 90.35| 0.2880] 101.08| 0.1990
04|16 1.00 388.87| 0.1717] 277.82| 0.1404] 222.08] 0.1152] 171.43| 0.0796
10 | 2.0 1.50 627.92] 00859 386.26| 0.0702] 28049 0.0576] 19036 0.0398
075 16| 24| 200 154.14] 03435 130.87| 0.2808] 121.15| 0.2304] 122.65] 0.1592
2030 250 57.95| 0.6011| 53.31| 04913] 53.85| 04032] 68.81] 02786
2535|300 2950] 0.8587] 27.83| 0.7019 28.97| 05760| 41.00] 0.3980
35035 350 1773 1.1163] 1690 0.9125| 17.83 0.7488] 26.50| 05175
38 | 42| 400 11790 13739 1130 1.1230] 12.01] 0.9216] 18.33] 0.6369
Range of Ao 047, | (089, | (0.53, | (0.99, | (0.56, | (1.03, | (0.49, | (0.99,
2200 | 177) | 213) | 1.68) | 2.11) | 1.64) | 2.18) | 1.68)
Apes — (0.89, 1.77) (0.99, 1.68) (1.03, 1.64) (0.99, 1.68)
ARB of MMSE Estimator— 0.2259 0.1463 0.1061 0.0820
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It has been observed from Table 3.1, that on keeping m, p, g fixed, the relative efficiencies of the
proposed class of shrinkage estimators increases up to A = ¢, attains its maximum at this point and then
decreases symmetrically in magnitude, as A increases in its range of dominance for all n, p and ¢. On the
other hand, the ARBs of the proposed class of estimators decreases up to A = ¢~', the estimator becomes
unbiased at this point and then ARBs increases symmetrically in magnitude, as A increases in its range of
dominance. Thus it is interesting to note that, at ¢ = A", the proposed class of estimators is unbiased with
largest efficiency and hence in the vicinity of ¢ = A™" also, the proposed class not only renders the massive
gain in efficiency but also it is marginally biased in comparison of MMSE estimator. This implies that ¢

plays an important role in the proposed class of estimators. The following figure illustrates the discussion.

Figure 3.1

The effect of change in censored sample size m is also a matter of great interest. For fixed p, ¢ and
A, the gain in relative efficiency diminishes, and ARB also decreases, with increment in m. Moreover, it
appears that to get better estimators in the class, the value of w(p) should be as small as possible in the
interval (0,1]. Thus, to choose p one should not consider the smaller values of w(p) in isolation, but also the

wider length of the interval of A.

18



4. MODIFIED CLASS OF SHRINKAGE ESTIMATORS AND ITS PROPERTIES
The proposed class of estimators 6( 20) is not uniformly better than B . It will be better if 3, and
B3, are in the vicinity of true value 3 . Thus, the centre of the guessed interval (B1 +B, )/ 2 is of much

importance in this case. If we partially violate this, i.e., only the centre of the guessed interval is not of

much importance, but the end points of the interval Bl and [3 , are itself equally important then we can

propose a new class of shrinkage estimators for the shape parameter [} by using the suggested class

[‘);(p,q) as
B, . if t>[(h-2)/B,]

n h-2 B1+Bz .

Biro = (Tj w(p>+q[—2 j{l—w(m} ,if [(h=2)/B,]<t <[(h-2)/B,]
B, , if ¢ <[(h-2)/B,]

4.1)

which has

Bias{,, | = B{AI {1 _ 1(111 9} - p){[(nl g _ 1} _ I(nz,% _ 1)}
+qA{1—w(p)}{1[m,§j—I[nz,gj}mzI(m,@—l}

42)
and
MSE{E(p,q)}z l32|:(Al _1)2 _AI(AI _2) 1(ﬂ1,§j+Az(Az _2) 1(112,@
+{W(p)}2(%j{l(npg—2j—1[n2,§—2j}
+qA{1—w<p>}{1(m,§j—I(nz,@}{w{l—w(p)}—z}
h h
+2w(p>{1(m,5—lj—f(nz,g—lj}{w{l—w(p)}—l}}
(4.3)
h -1 _ ﬁ_ -1 an. — f —u, o-1
where 1M, :(E_lel . M, —(2 lez d I(T],(,O) F((o)-([e u® du.
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This modified class of shrinkage estimators is proposed in accordance with Rao(1973) and it
seems to be more realistic than the previous one as it deals with the case where the whole interval is taken

as apriori information.

5. NUMERICAL ILLUSTRATIONS

The percent relative efficiency of the proposed estimator B(p, 2 with respect to MMSE

A
estimator 3, has been defined as

(5.1)
and it is obtained for n = 20 and different values of p, ¢, m, A; and A, (or A). The findings are

summarised in Table 5.1 with corresponding values of % and w(p).

Table 5.1

PREs of proposed estimator E( ) with respect to MMSE estimator [3

m

n=20
p— -1 1
gt m— 6 8 10 12 6 8 10 12
Ak |l h—  |10.8519]15.6740(20.8442|26.4026[10.8519|15.6740|20.8442|26.4026
AL w(p)—| 0.7739 | 0.8537 | 0.8939 | 0.9180 | 0.6888 | 0.7737 | 0.8251 | 0.8779

02| 03 0.25 50.80| 41.39] 34.91| 30.59] 49.84| 40.10| 34.66| 31.15
04 | 0.6 0.50 117.60{ 81.01| 67.45| 63.17) 113.90| 79.57| 65.63| 61.55
06 | 09 0.75 261.72| 227.42| 203.08| 172.06| 227.59| 191.97| 172.31| 156.69
025108 | 1.2 1.00 548.60| 426.98| 342.54| 286.06] 454.93| 355.31| 293.42| 262.79
1.0 | 1.5 1.25 649.95| 470.44| 375.91| 314.98| 636.21| 504.49| 427.74| 353.74
1.2 | 1.8 1.50 268.31| 189.82| 150.17| 125.21| 286.06| 210.91| 168.38| 135.01
1.5 ] 20 1.75 80.46| 53.66| 39.90| 31.38] 82.35| 55.10f 40.79| 31.74
02| 03 0.25 50.84| 41.32] 34.76| 30.39] 49.90| 40.03] 34.45| 30.87
04 | 0.6 0.50 120.81] 82.01| 67.97| 63.49] 118.31| &81.13| 66.48| 62.03
06 | 09 0.75 298.17| 253.12| 221.74| 184.38| 271.73| 225.47| 198.40| 173.57
0501 0.8 | 1.2 1.00 642.86| 473.19| 368.65| 303.15| 583.65| 433.16| 344.05| 292.64
1.0 | 1.5 1.25 626.09| 435.87| 345.16| 289.53| 658.77| 481.87| 390.95| 317.87
1.2 | 1.8 1.50 24790 175.97| 140.57| 118.43] 264.16| 191.09| 152.66| 124.73
1.5 ] 20 1.75 78.41| 52.66] 39.39| 3I1.11] 79.96| 53.72| 40.02| 31.36
0203 0.25 50.89| 41.24] 34.60| 30.19] 49.97| 39.95| 34.23] 30.59
04 | 0.6 0.50 124.02] 83.01| 68.50| 63.81| 122.74| 82.68| 67.32| 62.50
06 | 09 0.75 339.92] 282.24| 242.46| 197.73| 325.66| 266.36| 229.58| 192.68
0751 08 | 1.2 1.00 723.50| 510.42| 389.34| 316.87| 710.96| 504.67| 388.35| 317.53
1.0 | 1.5 1.25 566.19| 392.47| 312.16| 263.77] 597.64| 421.61| 337.17| 278.26

20



1.2 | 1.8 1.50 224.67| 161.95| 131.14| 111.81| 233.41| 169.19| 136.65| 114.63
1.5 ] 20 1.75 76.05| 51.59| 38.85 30.83] 76.93] 52.14] 39.17| 30.95
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Table 5.1 continued ...

p— -2 2

gt m—> 6 8 10 12 6 8 10 12
A | Ak h— 10.8519]15.6740|20.8442|26.4026]10.8519{15.6740(20.8442|26.4026
Al w(p)—| 0.7739 | 0.8537 | 0.8939 | 0.9180 | 0.6888 | 0.7737 | 0.8251 | 0.8779

02|03 0.25 46.04| 34.18| 30.92| 30.53] 46.77| 34.81| 30.96| 31.23
04 | 0.6 0.50 92.48| 72.59| 59.44| 53.42] 98.00| 73.36] 59.48| 54.88
06 | 09 0.75 106.83| 95.44| 92.75| 90.11| 128.68| 102.24| 93.16| 100.45
025108 | 1.2 1.00 145.02] 131.16] 126.15| 122.15| 191.47| 145.23| 126.97| 144.22
1.0 | 1.5 1.25 220.29| 243.10| 282.54| 320.74| 305.32| 273.81| 284.60| 368.42
1.2 | 1.8 1.50 208.14| 211.32| 202.36| 179.81| 250.20| 220.57| 202.56| 175.49
1.5 ] 2.0 1.75 82.08| 57.89| 43.07| 33.36] 84.21| 57.95] 43.06| 33.12
02 ] 03 0.25 46.28| 34.31| 30.86| 30.24] 46.95| 34.91| 30.90, 30.87
04 | 0.6 0.50 103.18] 76.82| 61.54| 54.80] 107.21| 77.31| 61.57| 56.08
06 | 09 0.75 157.81] 135.64| 127.02| 118.59| 181.60| 142.94| 127.44| 128.23
0501 0.8 | 1.2 1.00 267.16] 228.67| 207.62| 190.69] 331.58| 246.71| 208.58| 212.20
1.0 | 1.5 1.25 445.44| 443.06| 448.55| 438.38| 541.60| 467.49| 449.42| 432.21
1.2 | 1.8 1.50 289.70| 240.03| 198.56| 163.98] 298.93| 238.16| 198.30| 156.40
1.5 ] 2.0 1.75 84.92| 57.28| 42.13] 32.67| 84.44| 57.03| 42.12| 3244
02| 03 0.25 46.50f 34.43| 30.78| 29.92| 47.13] 34.99| 30.82| 30.50
04 | 0.6 0.50 114.64| 81.04| 63.59| 56.13] 116.87| 81.23| 63.61| 57.24
06 | 09 0.75 247.11] 202.90| 181.31| 160.85| 266.60| 209.00| 181.65| 167.34
0751 0.8 | 1.2 1.00 543.26| 418.40| 345.15| 293.90] 596.79| 430.93| 345.67| 302.22
1.0 | 1.5 1.25 704.42] 541.77| 447.06| 381.03] 696.36| 532.12| 446.25| 358.48
1.2 | 1.8 1.50 280.39| 203.46| 160.74| 132.95] 269.47| 199.82| 160.55| 129.07
1.5 ] 20 1.75 81.39] 54.49| 40.40| 31.66] 80.35| 54.26] 40.39| 31.52

A

It has been observed from Table 5.1 that likewise 3,  the PRE of 3, , with respect to B

m
decreases as censoring fraction (m/n) increases. For fixed m, p and ¢ the relative efficiency increases up to
a certain point of A, procures its maximum at this point and then starts decreasing as A increases. It
seems from the expression in (4.3) that the point of maximum efficiency may be a point where either any

one of the following holds or any two of the following holds or all the following three holds-

(1) the lower end point of the guessed interval, i.e., 3, coincides exactly with the true value 3, i.e.,
A =1

(i1) the upper end point of the guessed interval, i.e., 3, departs exactly two times from the true value
B,ie, A,=2.

(i) A=gq"

This leads to say that on contrary to 3, , there is much importance of A, and A, in addition to A.

The discussion is also supported by the illustrations in Table 5.1. As well, the range of dominance of
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average departure A is smaller than that is obtained for [3 (p0) but this does not humiliate the merit of

B( ) because still the range of dominance of A is enough wider.

6. CONCLUSION AND RECOMMENDATIONS

It has been seen that the suggested classes of shrunken estimators have considerable gain in
efficiency for a number of choices of scalars comprehend in it, particularly for heavily censored samples,
i.e., for small m. Even for buoyantly censored samples, i.e., for large m, so far as the proper selection of
scalars is concerned, some of the estimators from the suggested classes of shrinkage estimators are more
efficient than the MMSE estimators subject to certain conditions. Accordingly, even if the experimenter has

less confidence in the guessed interval (B1 , Bz) of B, the efficiency of the suggested classes of shrinkage

estimators can be increased considerably by choosing the scalars p and ¢ appropriately.
While dealing with the suggested class of shrunken estimators [3 (p.q) 1t is recommended that one

should not consider the substantial gain in efficiency in isolation, but also the wider range of dominance of

A, because enough flexible range of dominance of A will leads to increase the possibility of getting
better estimators from the proposed class. Thus it is recommended to use the proposed class of shrunken

estimators in practice.
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Abstract:
In this paper we have suggested two classes of estimators for population median My of the study character
Y using information on two auxiliary characters X and Z in double sampling. It has been shown that the
suggested classes of estimators are more efficient than the one suggested by Singh ez a/ (2001). Estimators
based on estimated optimum values have been also considered with their properties. The optimum values
of the first phase and second phase sample sizes are also obtained for the fixed cost of survey.
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1. INTRODUCTION

In survey sampling, statisticians often come across the study of variables which have highly skewed
distributions, such as income, expenditure etc. In such situations, the estimation of median deserves special
attention. Kuk and Mak (1989) are the first to introduce the estimation of population median of the study
variate Y using auxiliary information in survey sampling. Francisco and Fuller (1991) have also
considered the problem of estimation of the median as part of the estimation of a finite population
distribution function. Later Singh ez al (2001) have dealt extensively with the problem of estimation of
median using auxiliary information on an auxiliary variate in two phase sampling.

Consider a finite population U={1,2,...,i,...,N}. Let Y and X be the variable for study and auxiliary
variable, taking values Y; and X; respectively for the i-th unit. When the two variables are strongly related
but no information is available on the population median My of X, we seek to estimate the population
median My of Y from a sample S,,, obtained through a two-phase selection. Permitting simple random
sampling without replacement (SRSWOR) design in each phase, the two-phase sampling scheme will be as
follows:

(1) The first phase sample S,(S,cU) of fixed size n is drawn to observe only X in order to
furnish an estimate of Mx.

(i1) Given S,, the second phase sample S,(S,c=S,) of fixed size m is drawn to observe Y
only.

Assuming that the median My of the variable X is known, Kuk and Mak (1989) suggested a ratio estimator
for the population median My of Y as
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(1.1)

where M y and M  are the sample estimators of My and Mx respectively based on a sample S,, of size

m. Suppose that yy, o), ..., Ym) are the y values of sample units in ascending order. Further, let t be an
integer such that Y, < My <Y ) and let p=t/m be the proportion of Y, values in the sample that are less
than or equal to the median value My, an unknown population parameter. If f) is a predictor of p, the

sample median M y can be written in terms of quantities as QY ( ﬁ) where p =0.5. Kuk and Mak
(1989) define a matrix of proportions (Pj(x,y)) as

Y <My Y > My Total
X < My Pu(xy) Pyi(x,y) P,(xy)
X > Mx Pia(x,y) Par(x,y) Pa(x,y)
Total Pl'(xny) P2'(X=y) 1
and a position estimator of My given by
MY(p) :QY(f’Y) (1.2)
A 1 p s - p s
where p, = _( mpu(6,y) | (m=m)py(x y)j
m\  py(x,y) Pa(x,)
~ Z[mxﬁll(x’ y)+(m—m)p,(x, y)j
m

with ﬁij (x, ) being the sample analogues of the P;(x,y) obtained from the population and my the number

of units in S, with X < Mx.

Let F, v4(») and F v3 () denote the proportion of units in the sample S, with X < My, and X>Mx,

respectively that have Y values less than or equal to y. Then for estimating My, Kuk and Mak (1989)
suggested the 'stratification estimator' as

M, = inf{y EY > 0.5} (1.3)
where ﬁ'Y (y) = % ﬁYA(J’) 4 ﬁYB(y)]

It is to be noted that the estimators defined in (1.1), (1.2) and (1.3) are based on prior knowledge of the
median My of the auxiliary character X. In many situations of practical importance the population median
My of X may not be known. This led Singh ef a/ (2001) to discuss the problem of estimating the
population median My in double sampling and suggested an analogous ratio estimator as

. ~ M
M, =M,—* (1.4)
M

X
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where M )1( is sample median based on first phase sample S,

Sometimes even if My is unknown, information on a second auxiliary variable Z, closely related to X but
compared X remotely related to Y, is available on all units of the population. This type of situation has
been briefly discussed by, among others, Chand (1975), Kiregyera (1980, 84), Srivenkataramana and Tracy
(1989), Sahoo and Sahoo (1993) and Singh (1993). Let Mz be the known population median of Z.
Defining

M M M, M M,
e, :[My —lj,e1 :[M_X_ J,ez :[MX —1],63[1\4—Z—l}mde4 :(MZ —1]
Y X X zZ Z

such that E(e)=0 and | o | <1 for k=0,1,2,3; where M , and M é are the sample median estimators based
on second phase sample S, and first phase sample S,. Let us define the following two new matrices as

Z <My, Z>My Total
X < My P(x,2) P11(x,2) P.(x,2)
X > MX Plz(X,Z) P22(X,Z) P,z(X,Z)

Total P-(x,2) P,-(x,2) 1

and

Z <My, Z>M;y Total
Y <My Pii(y,2) Py1(y,2) P.(y,2)
Y > My Pix(y,z) Py(y,2) Pa(y,z)

Total P-(y,z) Py(y,2) 1

Using results given in the Appendix-1, to the first order of approximation, we have

Ee) = (50 Gmy (B (M)}
Ee) = (5 (my (MM}
E(e) = () @n (Mt (M)

E(e) = () (4m)" {Mzf(M2)} .

Be) = () ny ),

E(eoen) = (TR (4my” (4P (5.y)-1} MMy E (M (M)
E(even) = () G (4P, ()1} MMy ()R M)}
E(ere) = (5 (4my” (4P (5,21} (M MAMYEM)}
E(ere = () G0 (4P, (5,21} (MM MYEM)}
E(eren = () ény” (M (M)

E(eie3) = ?m) (4m)" {4P},(x,2)-1} {MxMfx(Mx)f(My)} ™,
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E(eren = () @n (4P, (.21} (MM MOEM)}
E(ese) = () G (4P, (5,21} (MM MEM)}
E(ese = () @0 (4P, (.21} (MM MEM)}
Eesen = () @0 (MM,

where it is assumed that as N—oo the distribution of the trivariate variable (X,Y,Z) approaches a continuous
distribution with marginal densities fx(x), fy(y) and fz(z) for X, Y and Z respectively. This assumption
holds in particular under a superpopulation model framework, treating the values of (X, Y, Z) in the
population as a realization of N independent observations from a continuous distribution. We also assume
that fy(My), fx(Mx) and fz(My) are positive.

Under these conditions, the sample median M is consistent and asymptotically normal (Gross, 1980) with
mean My and variance

S a7 00,

In this paper we have suggested a class of estimators for My using information on two auxiliary variables X
and Z in double sampling and analyzes its properties.

2. SUGGESTED CLASS OF ESTIMATORS

Motivated by Srivastava (1971), we suggest a class of estimators of My of Y as
@y e gy ( )
g=wWM," M, =M,g\u,v 2.1

M, M,

where u = — V== and g(u,v) is a function of u and v such that g(1,1)=1 and such that it satisfies

X z
the following conditions.

1. Whatever be the samples (S, and S,,) chosen, let (u,v) assume values in a closed convex sub-
space, P, of the two dimensional real space containing the point (1,1).

2. The function g(u,v) is continuous in P, such that g(1,1)=1.
3. The first and second order partial derivatives of g(u,v) exist and are also continuous in P.

Expanding g(u,v) about the point (1,1) in a second order Taylor's series and taking expectations, it is found
that

E(, %)=y +0(n™)
so the bias is of order n”".

Using a first order Taylor's series expansion around the point (1,1) and noting that g(1,1)=1, we have
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M, = M [1+e,+(e, —e,)g, (11) + e,g,(1,1) + O(”fl)]
or
(M)(/g) -M, ) =M, [eo + (el & )gl (1’1)"' €48 (1’1)] 2.2)

where g;(1,1) and g,(1,1) denote first order partial derivatives of g(u,v) with respect to u and v respectively
around the point (1,1).

Squaring both sides in (2.2) and then taking expectations, we get the variance of M Y(g)

Va,,<My<g>):m[&_%}&_gmg%y} 2

MYfY(MY) MYfY(MY)

A= [mjg (LDKWJ& (L) +2(4P, (x,»)- l)} 2.4)

to the first degree
of approximation, as

where

B= (%j g, (1,1){(%%2 (L1)+2(4B,(y,2)- 1)} 2.5)

The variance of M Y(g) in (2.3) is minimized for

gi(Lh) = —[%]@Rl (x,»)-1)

(2.6)

g, (L) = _(%j(“ﬁ 1 (J’a Z) - 1)

(2)

Thus the resulting (minimum) variance of M y'°’ is given by

: g 1 1) (1 1 (it _

min. Var(MY )— TAUD); Km N) (m nj(4P11(x,y) 1) (n N)(4Pu(y,2) 1)}
2.7

Now, we proved the following theorem.

Theorem 2.1 - Up to terms of order n™',

Varlty ¢ )2 m[(i—%}(i—5)<4al<x,y>—1>2 (Lo JemiGna) -1

with equality holding if
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&@Dz[?%%}—%}ﬂh&y)w

gﬂmﬁ=(2%%%—%}ﬂhu,)l)

" (2)

It is interesting to note that the lower bound of the variance of M , at (2.1) is the variance of the linear

regression estimator

A

M, = w1y d (W -6y )+ dy (v, - 1) 2.8)

with p,, (x,y) and p,, (y, Z) being the sample analogues of the p,, (x,y) and p, (y, Z) respectively
and fy (My lfx (Mx ) and fz (MZ ) can be obtained by following Silverman (1986).

Any parametric function g(u,v) satisfying the conditions (1), (2) and (3) can generate an asymptotically
acceptable estimator. The class of such estimators are large. The following simple functions g(u,v) give
even estimators of the class

2@ (u,v) = T+a(u-1)
1-B(v-1)°
=tralu=1)+plr-1),g"wv)={i-al-1)-p-1)}"

g% (u,v)=1
g(s)(u,v):wu +w2vB w, +w2 =1
gu,v)=

o+ (1—a pp® g (u,v)= explo(u—1)+ B (v—1)}

Let the seven estimators generated by g”(u,v) be denoted by M ©) — a1 v g( )( ) (i =1 t07). Itis

easily seen that the optimum values of the parameters oc,B,wi(l—l,Z) are given by the right hand sides of
(2.6).

3. A WIDER CLASS OF ESTIMATORS

The class of estimators (2.1) does not include the estimator
MYd :MY +d1( A;( _Mx)+d2(Mz _Mlzl(dladz)

being constants.
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However, it is easily shown that if we consider a class of estimators wider than (2.1), defined by
M(G)—G(A?I uv) 3.1)
Y - M1 Yo .

of My, where G(-) is a function of MY ,uand v such that G(MY ,1,1) =M, and G, (MY ,1,1) =1.
G, (M v ,1,1) denoting the first partial derivative of G(-) with respect to M v

Proceeding as in Section 2 it is easily seen that the bias of M Y(G) is of the order n™' and up to this order of

. ~(G) ..
terms, the variance of M Y( ) is given by

Var(¥1, @ )= m [(i B %j i (% - %j[%j

G,(M, ,1,1){&”)};2 (M, 101)+2(48R, (x,y)- 1)}

M fr (M,
N G _ %j fj ;\yj);& : {( Mi v (j(lﬁyl)z )]G3 (M, 1)+ 24P, (y,2)- 1)}]

(3.2)

where G,(Myl,1) and G3(My1,1) denote the first partial derivatives of u and v respectively around the point
(My,(1,1).

. 6
The variance of M y( ) is minimized for

wmm>@%%QM@wn

G, (MY ’1’1) = _[%J@Pn (y> Z) - 1)

(3.3)

Substitution of (3.3) in (3.2) yields the minimum variance of M Y(G) as

. oo@) | 1oy (11 oo b 2)-1)
i Varit, )= <l ar )1 (- far (27
= min.Var(MY(g ) )
(3.4)

Thus we established the following theorem. Theorem 3.1 - Up to terms of order n™",
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varlit, )z ol L) (LD )y (2 Lar, 017

A(fy () \m - N Kmn

with equality holding if

Gz<My,u>=—[%}wx,w—l)

G, (MY ’1’1) = _(WJ(‘I'PM (y> Z) - 1)

fy(My)

. . . . . . ~ (G
If the information on second auxiliary variable z is not used, then the class of estimators M Y( ) reduces to
the class of estimators of My as

M, =H(My,u) (3.5)

where H(My,u) is a function of (My,u) such that H(My,l) =M, and H, (MY ,1) =1,
H, (My ,1) = 61_{()} . The estimator MY(H) is reported by Singh ez al (2001).
Yd(my 1)

.. . ~ (H S
The minimum variance of M Y( ) to the first degree of approximation is given by

min.Var(MY<H>):ﬁ{(i_ij_(l_lj(wl(x, y)—l)z} 66

fyg,)f m NJ Amn
From (3.4) and (3.6) we have

minVar(MY(H) )— min.Var(MY(G) ) = (l _ ij

1
by ~(4P,(v,2)-1) (3.7)

4(fy (M)

L . . ~ (G) . . .
which is always positive. Thus the proposed class of estimators M Y( ) is more efficient than the estimator

M Y(H) considered by Singh et al (2001).

4. ESTIMATOR BASED ON ESTIMATED OPTIMUM VALUES

We denote
_MXfX(MX) 4P 1
* Myfy(My)( iy)=) wn
=MZfZ(MZ) 4P z 1 .
2 Mny(MY)( 11()/,) )
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In practice the optimum values of g;(1,1)(=-a,;) and g,(1,1)(=-a,) are not known. Then we use to find out
their sample estimates from the data at hand. Estimators of optimum value of g;(1,1) and g,(1,1) are given
as

(4.2)

where

(4.3)

Now following the procedure discussed in Singh and Singh (19xx) and Srivastava and Jhajj (1983), we
define the following class of estimators of My (based on estimated optimum) as

M, =M, g *(uv,d,.d,) (4.4)

where g*(+) is a function of (u, V,dl ,(iz) such that
g* (1,1,0(1(12 ) =1

g:(l’ljal’%): agaz(.) (RN s

R

gl (LLa,,0,)= ‘3‘2;(')( | =0
L

gi(LLa,,0,)= 6?;2(')( | =0
Lot

and such that it satisfies the following conditions:

1. Whatever be the samples (S, and S;,) chosen, let ©, v,dldz assume values in a closed convex sub-
space, S, of the four dimensional real space containing the point (1,1,0.1,0,).

2. The function g*(u,v, a4, o) continuous in S.

3. The first and second order partial derivatives of g * (u va,,d, ) exst. and are also continuous in
S.

Under the above conditions, it can be shown that

EWr, )= M, +0(n)
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and to the first degree of approximation, the variance of M Y(g*) is given by
Var(M Y(g*) ) = min.Var(M v )

where min.Var(M Y(g)) is given in (2.7).

A wider class of estimators of My based on estimated optimum values is defined by
MY(G*) =G* (MY ,u,v,oil*,oi;)

where

are the estimates of

(X; :MZfZ(MZ
fy (M

and G*(-) is a function of (My U, v,ocl* ,(i; ) such that

G*(My,l,l,al*,a;)=My

Gl* (MY alalaa’l*’a;): aG:k() 1
aMy (My,l,l,lll*»u;)
(M 1,1, 15 2)=6G* :_al*
(My,l,l,(xl*,(l;)
* . . aG* . *
G3(MY1,1,al,a2)= av()( . ‘):_Ocz
My1,1,87a)
G:(MYI,I,OLI*,O‘;): 8?1() -0
(Xl (My,l,l,al (Xz)
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* * * 8G*(-)
G. M 1,1,0( O, )= ——=— =0
5( Y 1 2) 6(12 (

My ,1,1,a1*,a;‘)

Under these conditions it can be easily shown that

A

EWr,' )=, +0(n")
and to the first degree of approximation, the variance of M Y(G*) is given by
~ G* : ~ (G
Var(M ¥ ): mm.Var(M Y( ) ) (4.9)
where min.Var(MYG) is given in (3.4).

~ *
It is to be mentioned that a large number of estimators can be generated from the classes M Y(g ) and

~ (G . .
M Y( ) based on estimated optimum values.

5. EFFICIENCY OF THE SUGGESTED CLASS OF ESTIMATORS FOR FIXED COST

The appropriate estimator based on on single-phase sampling without using any auxiliary variable is M,
whose variance is given by

~ I 1 1
Var(MY):(;_ﬁ]m (5.1

In case when we do not use any auxiliary character then the cost function is of the form Cy-mC;, where C,
and C, are total cost and cost per unit of collecting information on the character Y.

The optimum value of the variance for the fixed cost Cy is given by

opt| Var(st, )=, (C% - %J (5.2)
where
V, B (5.3)
4(fy (M)
When we use one auxiliary character X then the cost function is given by
C,=Gm+C,n, (5.4)

where C, is the cost per unit of collecting information on the auxiliary character Z.

()

The optimum sample sizes under (5.4) for which the minimum variance of M, is optimum, are
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Co (Vo _Vl)/Cl

N

n _ Co VI/CZ .
w |_\/(V0_V1)C1+\/V1C2J

(5.5)

mopt =

where V,=V(4P;(x,y)-1)

(H

Putting these optimum values of m and n in the minimum variance expression of M, ) in (3.6), we get

the optimum min.Var(M Y(H)) as

Opt.[min.Var(M Y(H) )] = ( ¥, =1 )C, + m)z o

(5.7
C, N
Similarly, when we use an additional character Z then the cost function is given by
C, =Cm+(C, +C,)n (5.8)

where C; is the cost per unit of collecting information on character Z.

It is assumed that C;>C,>C;. The optimum values of m and n for fixed cost Co which minimizes the
(&) (OrM Y(G)) (2.7) (or (3.4)) are given by

CO\/(VO _Vl)/cl

Mo SV TG, 4G, + O, 7)) °

_ CO\/(Vl_Vz)/Cz"'C3 .
[\/(Vo _VI)CI +\/(C2 +C3)(V1 _VZ)J

minimum variance of M,

(5.10)

n opt

where V,=V(4P(y,2)-1)*.

The optimum variance of M Y(g) (OI‘M Y(G) ) corresponding to optimal two-phase sampling strategy is

_ [\/(VO_VI)CI+\/(C2+C3)(V1_V2)]2 _&
= C, ;
(5.11)

Opt[min.Var(M 9 )or min.Var(M @) )]

Assuming large N, the proposed two phase sampling strategy would be profitable over single phase
sampling so long as

lOpt.Var(M y )J > Opt.lmin.Var(M Y(g ) )or min.Var(M Y(G) )J
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i.e.CﬂLC3 < \/70_ i
Cl \lVl_Vz

When N is large, the proposed two phase sampling is more efficient than that Singh et a/ (2001) strategy if

(5.12)

Optlmin.Var(M Y(g ) )or min.Var(M Y(G) )J < Optlmin.Var(M Y(H) )J

. C,+C, Vi
1.€. < (5.13)
Cl Vl - Vz
6. GENERALIZED CLASS OF ESTIMATORS
We suggest a class of estimators of My as
I = {A?[Y(F) a1, :F(My,u,v,w)} 6.1)

where u =M, /M',,v=M /M, w=M, /M, and the function F(-) assumes a value in a
bounded closed convex subset Wc®R,, which contains the point (My,1,1,1)=T and is such that

F(T)=My=F(T)=1, F{(T) denoting the first order partial derivative of F(-) with respect to M y around the
point T=(My,1,1,1). Using a first order Taylor's series expansion around the point T, we get

M, = F(T)+(MY =My)F](T)+(u—1)F2(T)+(v—1)F3(T)+(W—1)F4(T)+O(n71)
(6.2)

where Fy(T), F3(T) and F4(T) denote the first order partial derivatives of (M /AZ W) with respect to u,

v and w around the point T respectively. Under the assumption that F(T)=My and F(T)=1, we have the
following theorem.

Theorem 6.1. Any estimator in J is asymptotically unbiased and normal.

Proof: Following Kuk and Mak (1989), let Py, Px and Pz denote the proportion of Y, X and Z values
respectively for which Y<My, X<My and Z<My; then we have

Wy =My =y 1-2B)40, (177
My My = 1-2R) 0, (7 )
M=M= 2fX(1MX)(1_2P)‘)+°P(”%)
MZ_Mzzzfz(l z)(l_zpz)mp(”%]
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M, -M !

Z:

m(l—sz)+ Op(n_%j

Using these expressions in (6.2), we get the required results.

Expression (6.2) can be rewritten as

M, M,

or

A

M

Squaring both sides of (6.3) and then taking expectation, we get the variance of M Y(F)

oot

of approximation, as

where

MM, =M ey + (e, -

M, f,(

;(MY —MY)+(u

1y,

1

)
XfX(MX

+2(4P,(x,z) - 1(

(M)

Z

fy(M

1

i) szl

n

—J F (1) +2(4B,(y,2)- 1)(%

JF“(T)}

)

—fY(MY JF TF,(T
szz(Mz) 2( VE,( )_

)ij(T)+2<4RI<y, z)=D)F(T)

)

At

The Var(M Y(F)) at (6.4) is minimized for

M,f,(M,)
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e, )F,(T) +e,F,(T) +e,F,(T)

)

zfz(Mz

)JFJ (T)+2(4P, (x,y) 1) F,(T)

)F (T)F,(T)

—DF,(T)+ (v =DF(T) +(w=1)F,(T)

(6.3)

to the first degree

(6.4)




(47, (x.y)=1) = (45, (x.2) - 4R, (9. 2) = 1)) My fs(M )

F,(T)=- >
v [1-(4R, (x.2)- 1 £,0,)
= —a, (say)
6.5)
ey 2N 5) 1)~ 47, 0.2) - R 2. 2) 1) 0, 1, 01,)
3 [1_(4P11(X’Z)_1)2] fY(MY)
= —a, (say)
F (T):_[(4})11(yaz)_l)_(4})11(x’y)_1)(4])11(x’z)_1)]_szz(Mz).
) [1_(41011(3592)_1)2] fY(MY)
= —a;(say)

Thus the resulting (minimum) variance of M Y(F) is given by

minVar(it, )= ) ‘%j{l-(mf():,z)-l)z +<4P”(x,y)-1)}2
¥ 4ty (M) _(1 1

n N
1 1

i @) (L_1 1 D’
_m1n.Var(My ) (m nj4(fY(MY))2 1_l4pn x,z)—12J

(6.6)

where
D=[(4R,(y,2)-1)- (4P, (x,y)-1)4PR, (xz)-1)] (6.7)
and min.Var(M Y(G) ) is given in (3.4)

Expression (6.6) clearly indicates that the proposed class of estimators M Y(F) is more efficient than the
class of estimator M Y(G) or (M Y(g)) and hence the class of estimators M Y(H) suggested by Singh et al

(2001) and the estimator A, at its optimum conditions.

The estimator based on estimated optimum values is defined by
% _ A (F*) . M F* _ F * M N A N
pr=wWM," "M, = U, v,w,a,,a,,d, (6.8)

where
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a [(413”(x,y)—1)—(4]3”()6,2)—1)(413”()/,2)—1)] Mf]}x Mx)

1 [1_(41311()@2)_1)2] fY(MY)

4. = (4ﬁ11(xaz)_1)[(4ﬁ11(_an’)_1)_(41511(%_2)_1)(4ﬁ11(xaz)_1)] MZiZ (Mz)
2 1 @py(x.2)-1)] AU

a. = [(4;3“()/,2)—1)—(4;3“(x,y)—1)(4_1;3”()6,2)—1)] szz (Mz)
’ - @py,(x,2)-1)"| 7,,)

(6.9)

are the sample estimates of a;, a, and a; given in (6.5) respectively, F*(-) is a function of

(My,u,v, w,al,az,a3) such that

F*(T*=M,
:>F1*(T*)=aFA () -1
oMy |,.
Fz*(T*):aF*(.) =-4q
ou s
Fs*(T*):éF*(.) =-a,
ov |
F *(T*)—aF *0) = —a,
oW |
rran =20
a1 T
Foran =2 g
2 g
F7*(T*):8F:"(-) -0
aa3 T*

where T* = (My,1,1,1,a;,a,,a3)

Under these conditions it can easily be shown that

EWr,™)=m, +0(n™")
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and to the first degree of approximation, the variance of M Y(F*) is given by
Var(M S ) = min.Var(M S ) (6.10)
where min.Var(M Y(F)) is given in (6.6).

Under the cost function (5.8), the optimum values of m and n which minimizes the minimum variance of
MY(F) is (6.6) are given by

- CllV, =7 =7)IG o
[\/(Vo _Vl _V3)C1 +\/(V1 _Vz _V3)(C2 +C3)]

Coy\V =V, _V3)/C2
[\/(Vo _Vl _V3)C1 +\/(V1 _Vz +V3)(Cz +C3)]

nopt =

where
DV,
V,=1 0 1 6.12
i@ s 7] o
for large N, the optimum value of min.Var(M Y(F)) is given by
Opt.[min.Var(MY(F))] _ I_\/(Vo —V, =V, )Cl + \/(V1 -V, +7 )(Cz +C, )J 6.13)

C10

The proposed two-phase sampling strategy would be profitable over single phase-sampling so long as

Opt.[Var(M v )] > Opt.[min.Var(MY(F) )]

Cz +C3 < \/V_O_‘\IVO_VI_VB ’
¢ Vi =V, + 7,

1.€.

(6.14)

It follows from (5.7) and (6.13) that

Opt.lmin.Var(M Y(F) )J < Opt.lmin.Var(M YH )J

o JVo =V, =V, =V, =V, o GG 4 G (6.15)
m C1 (Vl _Vz +V3 )Cl Cl

for large N.

Further we note from (5.11) and (6.13) that
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Opt.lmin.Var(M ) )J < Opt.lmin.Var(M Sor,© )J

¢, +¢ _[JU=r) - =v-r)|

if
Cl \/(V1_V2+V3)_\/V1_V2

(6.16)
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1. INTRODUCTION

The discrepancies between the values exactly obtained on the variables under consideration for sampled
units and the corresponding true values are termed as measurement errors. In general, standard theory of
survey sampling assumes that data collected through surveys are often assumed to be free of measurement
or response errors. In reality such a supposition does not hold true and the data may be contaminated with
measurement errors due to various reasons; see, €.g., Cochran (1963) and Sukhatme ef a/ (1984).

One of the major sources of measurement errors in survey is the nature of variables. This may happen in
case of qualitative variables. Simple examples of such variables are intelligence, preference, specific
abilities, utility, aggressiveness, tastes, etc. In many sample surveys it is recognized that errors of
measurement can also arise from the person being interviewed, from the interviewer, from the supervisor or
leader of a team of interviewers, and from the processor who transmits the information from the recorded
interview on to the punched cards or tapes that will be analyzed, for instance, see Cochran (1968). Another
source of measurement error is when the variable is conceptually well defined but observations can be

obtained on some closely related substitutes termed as proxies or surrogates. Such a situation is
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encountered when one needs to measure the economic status or the level of education of individuals, see
Salabh (1997) and Sud and Srivastava (2000). In presence of measurement errors, inferences may be
misleading, see Biemer et al (1991), Fuller (1995) and Manisha and Singh (2001).

There is today a great deal of research on measurement errors in surveys. An attempt has been made to
study the impact of measurement errors on a family of estimators of population mean using multiauxiliary

information.

2. THE SUGGESTED FAMILY OF ESTIMATORS

Let Y be the study variate and its population mean L, to be estimated using information on p(>1) auxiliary

variates X, Xy, ...,Xp. Further, let the population mean row vector H' = (},ll sHays s 1, ) of the vector

X "= (X X, X » ) Assume that a simple random sample of size n is drawn from a population, on the

study character Y and auxiliary characters X;, X», ...,X,,. For the sake of simplicity we assume that the

population is infinite. The recorded fallible measurements are given by

y; =Y, +E,
x; =X, +n,, =12, p;
j=12,n.

where Y; and Xj; are correct values of the characteristics Y and X; (i=1,2,..., p; j=1,2,..., n).
For the sake of simplicity in exposition, we assume that the error Ej's are stochastic with mean 'zero' and
variance (5(0)2 and uncorrelated with Yj's. The errors m;; in x;; are distributed independently of each other
and of the X;; with mean 'zero' and variance G(i)z (i=1,2,...,p). Also Ej's and nj's are uncorrelated although
Y's and Xjj's are correlated.

Define
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With this background we suggest a family of estimators of i, as

g, =g(y.u’)

where g()_/,uT) is a function of y,u ,u,," *, U, such that

g(uo,er) = Uy
_asl)
D o)

and such that it satisfies the following conditions:

1. The function g()_/, u’ ) is continuous and bounded in Q.

’ .’l)lxp

2.1)

2. The first and second order partial derivatives of the function g(f, u’ ) exist and are continuous and

bounded in Q.

To obtain the mean squared error of [ g> We expand the function g(}, u’ ) about the point (uee") in a

second order Taylor's series. We get

A, =g(uo,eT)+(i—uo)ag—_(')

oy

(“o’er)
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where
yE=1, +9(f—u0), u* = e+9(u—e), 0<0 <1; g(l)(-)
denote the p element column vector of first partial derivatives of g(-) and g?(-) denotes a pxp matrix of

second partial derivatives of g(-) with respect to u.

Noting that g(uo,e’)= po, it can be shown that

E(ii, )=, + O™

(2.3)
which follows that the bias of |1 ¢ 1s of the order of n”', and hence its contribution to the mean squared
error of [1, will be of the order of n”,

From (2.2), we have to terms of order n™',

A _ 2
MSE(g, )= E{7 — 1)+ (- ) g%)]

= E[5 =1, +2(7 - o Nu—e) g"e')

T
(g1 =) (g )]
1 7
=i (€5 + € b 20" g (g V) Alg)

2.4)

where b'=(b},b,,...,by), bi,=psiCoCi(i=1,2, ....p);
Ci=oi/i, Ciy= o/, (i=1,2, ...,p) and Co-G¢/Lo,

C12 +C(21) pCC,  pCGC o py,CC,

PG G, sz + C(zz) P»C,C - p,, G0,

A=|p,CC  pyCGC C32+C(23) p3pC3Cp
L PLGE, PG, Py, GC, C; + C(zp)_pxp
The MSE (ﬁ . ) at (2.4) is minimized for
W = -1
8 (Hoﬁ ) - _MOA b
(2.5)
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Thus the resulting minimum MSE of ;1 2 is given by

minMSE(g, )= (u2 /n)C2 +C2) ~b"47'b]

(2.6)
Now we have established the following theorem.
Theorem 2.1 = Up to terms of order n”',
A 2 2 2 T 4-1
MSE(R, )= (2 /n)C2 +C3) b 47'b]
2.7

with equality holding if
(1) N o— A—l b
g (uo,e ) =—H,

It is to be mentioned that the family of estimators 1 g at (2.1) is very large. The following estimators:

= [Olkin (1958)]

i=1 i
P _ P
a,” =?Z®i(ﬁ} Y, ~1, [Singh (1967)]
i=1 W, i=1
p
z(’oi“l P
g, = y——, Y o, =1, [Shukla(1966) and John (1969)]
Zwi—i i=1
i=1
P
@ 200
A,V =y=——; > o, =1, [Sahaieral (1980)]
i=1

S

-1
)4 ¥ )4
ﬁg(ﬁ) = y( > m—] , Y., =1, [Mohanty and Pattanaik (1984)]
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H p+l
®,,+ T’ Zwi =1.
x .

q J4 X
( j_,_ Z (x_j} (Z@ + Z(D ] [Srivastava (1965) and Rao
i=1 i=q+1

i=q+1

and Mudhalkar (1967)]

p @i
H[ ((1 ;'s are suitably constants) [Srivastava (1967)]

[Srivastava (1971)]

49



etc. may be identified as particular members of the suggested family of estimators ;1 g The MSE of these

estimators can be obtained from (2.4).

It is well known that
V(y)= (Mé /nXC(f + C(zo))
(2.8)
It follows from (2.6) and (2.8) that the minimum variance of [ ¢ is no longer than conventional unbiased
estimator y .
On substituting 6,"=0, 63°=0 Vi=1,2,...,p in the equation (2.4), we obtain the no-measurement error case.

In that case, the MSE of [ J is given by

MSE(j, )= %[Cé uZ +2p,b" g ¥, o) g V() ) 4% (g *“)(uo,ef))]
— MSE(g, *)
(2.9)
where
ﬁg —g* Y,i’é’ .’&
My My K,
=g*(r.u”)

(2.10)

and Y and ii (i =12,---, p) are the sample means of the characteristics Y and X; based on true
measurements. (Y, Xy, i=1,2,...,p; j=1,2,...,n). The family of estimators ﬁ < * at (2.10) is a generalized

version of Srivastava (1971, 80).

The MSE of [i < * is minimized for

g* ) = =A% b,
(2.11)

Thus the resulting minimum MSE of }1 < * is given by

50



min MSE(, *)= Mo [c2 b7 4% b]
n

2
_% (1)
n
(2.12)
where A*=[a*;] be a pxp matrix with a*;; = p;;CiC; and R stands for the multiple correlation coefficient of
Y on X, X5,..., X,

From (2.6) and (2.12) the increase in minimum MSE (}1 g ) due to measurement errors is

obtained as

2
: A . A | Yo 2 T 4 x-l T 4-1
mln.MSE(pg )— m1n.MSE(pg *)— £7J[C(O) +b"A* b-b" A4 b]
>0
This is due to the fact that the measurement errors introduce the variances fallible measurements of study

variate Y and auxiliary variates X;. Hence there is a need to take the contribution of measurement errors

into account.

3. BIASES AND MEAN SQUARE ERRORS OF SOME PARTICULAR ESTIMATORS IN THE

PRESENCE OF MEASUREMENT ERRORS.

To obtain the bias of the estimator | o » We further assume that the third partial derivatives of g(f, u’ )

also exist and are continuous and bounded. Then expanding g(y, u' ) about the point

(y, u’ ) = (uo el ) in a third-order Taylor's series we obtain

l:lg :g(po,er)—k()_/—uo)%_(') (l)(

HOaET)

+(M—€)Tg

(PMT)

+1{(?‘H0)2Lg()

2 5" +2(5 - o Nu—e) gWe)

(Ho’“T)

+—e) (g Jur =)

51



w2 -0 2] el

6 oy ou
3.1
where g"?(up,e") denotes the matrix of second partial derivatives of g(y, u’ ) at the point
(y’uT): (MO:QT)
Noting that
g (”06 ' ) =H
og () =1
D luer)
0 2g () =0
—2 -
D o)
and taking expectation we obtain the bias of the family of estimators [1 ¢ to the first degree of
approximation,
~ 1 T H
B(ug>=5{E{(u—e) (g“)(uo,ef))(u—e>}+2(7°ijgm)(“"’”)}
(3.2)

where b'=(by,b,,.. ..bp) with bi=piCoC;; (i=1,2,..., p). Thus we see that the bias of }fl < depends also upon

the second order partial derivatives of the function on g (f, u’ ) at the point (up,e"), and hence will be
different for different optimum estimators of the family.
().

The biases and mean square errors of the estimators [1 < Yii=1to18 up to terms of order n”' along with

the values of g"(1,e”), g®(1o,e") and g2 (po,e") are given in the Table 3.1.
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Table 3.1 Biases and mean squared errors of various estimators of i,

ESTIMATOR g(l)(uo,eT) g(z)(uo,eT) g(lz)(uo,eT) BIAS MSE
— Uy @ 2u,W - ?
0 0% p (&J(CTW _pT wj Ho [C02+C(20)—2bT a)+a)TAa)]
/:‘l (1) n pXp ~ n ~ ~ ~
g
T
where W, =dig(®1,0,...,00) where € = (C12 + C(zl)’CZ2 + Cé)""’ci + C(zp))
My @ 0] w 2
. 0 o Z (%jbf 2 (“_OJ [cg +Ciyy +2b" w0+ 0" 4 cg]
a, (null matrix) "
Ho@* 241y 0¥ 0¥' * u\ @A b ox W\, L, et o ek
N ol T T L | — Do+l -———t———
a," o' | o'uple ot (njco’mﬁw o i n )T et eTupe
where @ *" =
(o1, *ap,*...,0,*) with
(o3, *=; i)
(i=1,2,...,p)
- =
o © o 0 (&Jb 0 gl oo [0 @740
- Fo
/}g(“) @ U (null matrix) @ H n Cj’Tlf RO o "o "up'w
— w — Q) 2
Ho ﬂo(@’cf’T"‘prp) N (ﬂj [a)TAw+CTW —2brw} Ho [C§+C(20)—2bTa)+a)TAa)
ﬂ (5) 2n ~ ~ Pxp ~ n -~ -
4




~ T _ r . .
#g(é) — py @ 20" @ @ (ﬂj o Ao—b" a)] Ho_lle2 +C -2b" o+ Aw
nj)t- - - n |t - -

— 2 r b

o pXp 2n |~ N pxp ~ n A (0) - - ~

~ (8) y7N0) T @ 0 [ 7 T T H il 2 2 T T -

u, 0 2| 0" =W N —l|lo Ao-C"W +b o —||Co +C, +2b" 0+ Aw
~ o~ n )L~ ~ pxp ~ n - ~ o~ ~
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Table 3.1 Biases and mean squared errors of various estimators of i,

ESTIMATOR g(l)(uo,eT) g(z)(uo,eT) g(lz)(uo,eT) BIAS MSE
y O ) 20, W - 2
a, My MW ! (ﬁj(c'f w o —b" a)j ('U—OJ [C(f +Cipy+2b" 0o+ o0’ 4 a)]
n pxp ~ n ~ ~ ~
~ (10) ) 0] [0 ;
a, Hy & - - [ﬂj]f @ ['U_OJ [C(f + C(ZO) +2b" v+’ A a)]
n - n ~ ~ ~
@) My W o
- = (1)p><p -
7 v Hy T T yzi ?
g L7 * — 0 2 2 T T
WHER @ ()01 0 (e)erw oo, [7][‘70 rCh-w o roludo |
(0o, 0 0 -~ 0 0 ]
0O o, 0 -~ 0 0 -~ 0
0 0 o, -~ 0 0
W | : : - : ,
O I T T R ®, 0 - 0
0 0 0 0 0 0
: C*'=(C/+Cyys...,
0 0 0 0 0 0]

- pxp C+Cq’s--.0)
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(&Mgua—c% +2bTa}
2n)l- - P=p -

2
[ﬂ_oJ [cg +C,+2b" a+a’ 4 a]
p e Aa

T
A (12) -0 - e )
g
where o T:((xl,(xz,...,(xp)np oc =diag(o1,0,...,0p)
~ (13) —au, T -a y7i :
. . —ﬂo(of? —oNcpxp) . Ho [CTOC —a TAa—2bTa} Ho [CerC2 —2bTa+aTAa]
2n pp - ~ n ’ © - ~
~ (1) e 2u,aa —a 2
. X [ 0 xa . (ﬂJ [aTAa—CT—bTa] ['U—OJ C§+C(2>—2bTa+aTAa]
n )t ~ - n ’ ~ - ~
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Table 3.1 Biases and mean squared errors of various estimators of i,

ESTIMATOR g(l)(uo,eT) g(z)(uo,eT) g(lz)(uo,eT) BIAS MSE
TN uO(GQT—@ § j, o
» (13) . o e vo- p >
¢ (—‘)j[@TAH—CT@ +2bT0} ik [cg +C(20)+2bT<9+0TA0]
where @ =diag{6,,0,,... 6,} 2n )L~ - Pxp - n ~ o~ -
~ pxp
~ (16) ) 007 0 2
< ILION ILIONN g (%j[@TAg_i_szg] (ﬂ—oj[cg+c(20)+2bre+9TA9]
n - ~ ~ n ~ ~ ~
p 17 Z O* pp 1y, 0 2
Hg Ho ¥ D" pep My 4 o [CT@* +2bT9] o [C2+C2 +2bT0+9TA9]
n pxp ~ n 0 (0) Z L -
where ©@%*  =diag {6, ﬁ—l cen0p 9—”— }
- o, w,
* Unbiased
a = pxp = pxp (lj{cj +C(20) +2,uObT0£*+0£*T Aa*}
~ (18) n ~ ~ ~
¢ where @ * T =(0ty4,000,...,0+) With @ *, =(c,p;, i=1.2,....p)
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4. ESTIMATORS BASED ON ESTIMATED OPTIMUM

It may be noted that the minimum MSE (2.6) is obtained only when the optimum values of constants
involved in the estimator, which are functions of the unknown population parameters i, b and A, are
known quite accurately.

To use such estimators in practice, one has to use some guessed values of the parameters i, b and A, either
through past experience or through a pilot sample survey. Das and Tripathi (1978, sec.3) have illustrated
that even if the values of the parameters used in the estimator are not exactly equal to their optimum values
as given by (2.5) but are close enough, the resulting estimator will be better than the conventional unbiased
estimator ) . For further discussion on this issue, the reader is referred to Murthy (1967), Reddy (1973),
Srivenkataramana and Tracy (1984) and Sahai and Sahai (1985).

On the other hand if the experimenter is unable to guess the values of population parameters due to lack of

experience, it is advisable to replace the unknown population parameters by their consistent estimators. Let
@ be a consistent estimator of ¢&=A""b. We then replace ¢ by @ and also py by ¥ if necessary, in the
optimum {1 < resulting in the estimator o

est)» Sy, Which will now be a function of ), uand ¢. Thus we

define a family of estimators (based on estimated optimum values) of 1 as

l[lg(est) =8 **()_/vuT:éT)
4.1)

where g**(-) is a function of (f, u’ ,¢?T ) such that

g**(ﬂoaeT:¢T)::uo forall p,,

— og *_*() =1
ay (,uo,eT ’¢T)
og**() :ag_(') =—1,A7'b = —p,p
Ou (Ho elgt ) Ou (1g.e)

4.2)



and

og**() o

P N )
With these conditions and following Srivastava and Jhajj (1983), it can be shown to the first degree of
approximation that

MSE(z,/.,, )= min.MSE(z, )

2
—| £ ez +cpy b7 4D
n

Thus if the optimum values of constants involved in the estimator are replaced by their consistent

estimators and conditions (4.2) hold true, the resulting estimator /Al glest) will have the same asymptotic

mean square error, as that of optimum - Our work needs to be extended and future research will explore

the computational aspects of the proposed algorithm.
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The purpose of this book is to postulate some theories and test them

numerically. Estimation is often a difficult task and it has wide application in

social sciences and financial market. In order fo obtain the optimum efficiency for

some classes of estimators, we have devoted this book into three specialized

sections.
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