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Preface to the Second Edition

Our WORLD is a multiple one both shown by the natural world and human beings. For
example, the observation enables one knowing that there are inf nite planets in the uni-
verse. Each of them revolves on its own axis and has its own seasons. In the human
society, these rich or poor, big or small countries appear and each of them has its own sys-
tem. All of these show that our WORLD is not in homogenous but in multiple. Besides,
all things that one can acknowledge is determined by his eyes, or ears, or nose, or tongue,
or body or passions, i.e., these six organs, which means the WORLD consists of have and
not have parts for human beings. For thousands years, human being has never stopped his

steps for exploring its behaviors of all kinds.

We are used to the idea that our space has three dimensions: length, breadth and
height with time providing the fourth dimension of spacetime by Einstein. In the string or
superstring theories, we encounter 10 dimensions. However, we do not even know what
the right degree of freedom is, as Witten said. Today, we have known two heartening no-
tions for sciences. One is the Smarandache multi-space came into being by purely logic.
Another is the mathematical combinatorics motivated by a combinatorial speculation, i.e.,
a mathematical science can be reconstructed from or made by combinatorialization. Both
of them contribute sciences for consistency of research with that human progress in 21st

century.

What is a Smarandache multi-space? 1t is nothing but a union of » different spaces
equipped with different structures for an integer n > 2, which can be used both for discrete
or connected spaces, particularly for systems in nature or human beings. We think the
Smarandache multi-space and the mathematical combinatorics are the best candidates for
21st century sciences. This is the reason that the author wrote this book in 2006, published
by HEXIS in USA. Now 5 years have pasted after the frst edition published. More and
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more results on Smarandache multi-spaces appeared. The purpose of this edition is to
survey Smarandache multi-space theory including new published results, also show its
applications to physics, economy and epidemiology.

There are 10 chapters with 71 research problems in this edition. Chapter 1 is a
preparation for the following chapters. The materials, such as those of groups, rings,
commutative rings, vector spaces, metric spaces and Smarandache multi-spaces including

important results are introduced in this chapter.

Chapter 2 concentrates on multi-spaces determined by graphs. Topics, such as those
of the valency sequence, the eccentricity value sequence, the semi-arc automorphism,
the decomposition of graph, operations on graphs, hamiltonian graphs and Smarandache
sequences on symmetric graphs with results are discussed in this chapter, which can be

also viewed as an introduction to graphs and multi-sets underlying structures.

Algebraic multi-spaces are introduced in Chapter 3. Various algebraic multi-spaces,
such as those of multi-systems, multi-groups, multi-rings, vector multi-spaces, multi-

modules are discussed and elementary results are obtained in this chapter.

Chapters 4-5 continue the discussion of graph multi-spaces. Chapter 4 concentrates
on voltage assignments by multi-groups and constructs multi-voltage graphs of type I, 11
with liftings. Chapter 5 introduces the multi-embeddings of graphs in spaces. Topics such
as those of topological surfaces, graph embeddings in spaces, multi-surface embeddings,
2-cell embeddings, and particularly, combinatorial maps, manifold graphs with classif -

cation, graph phase spaces are included in this chapter.

Chapters 6-8 introduce Smarandache geometry, i.e., geometrical multi-spaces. Chap-
ter 6 discusses the map geometry with or without boundary, including a short introduction
on these paradoxist geometry, non-geometry, counter-projective geometry, anti-geometry
with classif cation, constructs these Smarandache geometry by map geometry and f nds
curvature equations in map geometry. Chapter 7 considers these elements of geometry,
such as those of points, lines, polygons, circles and line bundles in planar map geom-
etry and Chapter 8 concentrates on pseudo-Euclidean geometry on R”, including inte-
gral curves, stability of differential equations, pseudo-Euclidean geometry, differential
pseudo-manifolds, - - -, etc..

Chapter 9 discusses spacial combinatorics, which is the combinatorial counterpart
of multi-space, also an approach for constructing Smarandache multi-spaces. Topics in

this chapter includes the inherited graph in multi-space, algebraic multi-systems, such as



Preface to the Second Edition iii

those of multi-groups, multi-rings and vector multi-spaces underlying a graph, combi-
natorial Euclidean spaces, combinatorial manifolds, topological groups and topological
multi-groups and combinatorial metric spaces. It should be noted that the topological
group is a typical example of Smarandache multi-spaces in classical mathematics. The
fnal chapter presents applications of Smarandache multi-spaces, particularly to physics,
economy and epidemiology.

In fact, Smarandache multi-spaces underlying graphs are an important systemati-
cally notion for scientif ¢ research in 21st century. As a textbook, this book can be appli-
cable for graduate students in combinatorics, topological graphs, Smarandache geometry,
physics and macro-economy.

This edition was began to prepare in 2010. Many colleagues and friends of mine
have given me enthusiastic support and endless helps in writing. Here I must mention
some of them. On the frst, I would like to give my sincerely thanks to Dr.Perze for
his encourage and endless help. Without his encourage, I would do some else works,
can not investigate Smarandache multi-spaces for years and f nish this edition. Second, I
would like to thank Professors Feng Tian, Yanpei Liu, Mingyao Xu, Jiyi Yan, Fuji Zhang
and Wenpeng Zhang for them interested in my research works. Their encouraging and
warmhearted supports advance this book. Thanks are also given to Professors Han Ren,
Yuanqgiu Huang, Junliang Cai, Rongxia Hao, Wenguang Zai, Goudong Liu, Weili He and
Erling Wei for their kindly helps and often discussing problems in mathematics altogether.
Partially research results of mine were reported at Chinese Academy of Mathematics
& System Sciences, Beijing Jiaotong University, Beijing Normal University, East-China
Normal University and Hunan Normal University in past years. Some of them were also
reported at The 2nd, 3rd and 7th Conference on Graph Theory and Combinatorics of
China in 2006, 2008 and 2011. My sincerely thanks are also give to these audiences
discussing mathematical topics with me in these periods.

Of course, I am responsible for the correctness all of these materials presented here.
Any suggestions for improving this book or solutions for open problems in this book are

welcome.

L.F.Mao

October 20, 2011
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CHAPTER 1.

Preliminaries

What is a Smarandache multi-space? Why is it important to modern Science?
A Smarandache multi-space S is a union of n different spaces S, Sz, S,
equipped with some different structures, such as those of algebraic, topolog-
ical, differential, - - - structures for an integer n > 2, introduced by Smaran-
dache in 1969 [Sma2]. Whence, it is a systematic notion for developing mod-
ern sciences, not isolated but an unif ed way connected with other f elds. To-
day, this notion is widely accepted by the scientif ¢ society. Applying it fur-
ther will develops mathematical sciences in the 21st century, also enhances
the ability of human beings understanding the WORLD. For introducing the
readers knowing this notion, preliminaries, such as those of sets and neutro-
sophic sets, groups, rings, vector spaces and metric spaces were introduced

in this chapter, which are more useful in the following chapters. The reader

familiar with these topics can skips over this chapter.



2 Chap.1 Preliminaries

§1.1 SETS

1.1.1 Set. A set E is a category consisting of parts, i.e., a collection of objects possessing

with a property &2, denoted usually by
= = { x| x possesses the property & }.

If an element x possesses the property &7, we say that x is an element of the set =, denoted
by x € E. On the other hand, if an element y does not possesses the property &, then we
say it is not an element of = and denoted by y ¢ E.

For examples,

4=1{1,2,3,4,5,6,7,8,9, 10},
B = {p| p is a prime number},
C={x ) +y* = 1),
D

= {the cities in the World}

are 4 sets by def nition.
Two sets E; and =, are said to be identical if and only if for Vx € Z;, we have x € 5,

and for Yx € Z,, we also have x € Z,. For example, the following two sets

E={1,2,-2}and F={x|x* = x> —4x+4=0)

3

are identical since we can solve the equation x* — x> — 4x + 4 = 0 and get the solutions

x=1,2o0r-2.
Let S, T be two sets. Def ne binary operations union S U T, intersection S N T and

S minus 7 respectively by
SUT:{xlxeSorxeT}, SﬂT:{xlxeSandxeT}

and
S\T={x|]xeSbutxe¢T}

Calculation shows that

A| JE=11,2,-2,3,4,5,6,7,8,9,10},
AﬂE:{l,z},

A\E =1{3,4,5,6,7,8,9, 10},
E\A={-2}.
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The operations U and N possess the following properties.
Theorem 1.1.1 Let X, T and R be sets. Then
() XUX=X and XN X=X;
(i) XUT=TUX and XN\ T =TNX;
@) XUTUR) = XUT)UR and X(NTNR)=XNT)NR;
() XU NR) =X UT)NXUR),
X(TUR) =ENT)UXNR).

Proof These laws (i)-(iii) can be verif ed immediately by def nition. For the law (iv),
letx e XUTNR) = XUT)NX UR). Thenx € Xorx € TR, ie.,, x € T and
x € R. Now if x € X, we know that x € XU T and x € X U R. Whence, we get that
x e XUT)NKXUJR). Otherwise, x € T (R, i.e., x € T and x € R. We also get that
xe XUT)NXUR).

Conversely, for Vx € (XU T)NXUR), we know that x € X(J T and x € X{JR,
e, x € Xorx e Tandx € R. If x € X, we getthat x € X J(TR). If x € T and
x € R, we also get that x € X | J(T (" R). Therefore, X | J(T YR) =X UT) X UJR) by
def nition.

Similarly, we can also get the law X N7 = X U T. U

Let E; and E, be two sets. If for Vx € E,, there must be x € E,, then we say that =,
is a subset of Z,, denoted by E; C E,. A subset E; of &, is proper, denoted by E, C &, if
there exists an element y € =, with y ¢ =, hold. It should be noted that the void (empty)
set 0 is a subset of all sets by def nition. All subsets of a set = naturally form a set Z(E),
called the power set of =.

For a set X € Z(Z), its complement X is defned by X = { y| y € Zbut y ¢ X}. Then

we know the following result.

Theorem 1.1.2 Let ZE beaset, S,T C =. Then
() XNnX=0and XU X =Z;
(2) X=X;
B3) XUT=XNTandXNT =XUT.
Proof The laws (1) and (2) can be immediately verif ed by defnition. For (3), let
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x€XUT. Thenx e Ebutx ¢ XUT,ie.,x ¢ Xandx ¢ T. Whence, x € X and x € T.
Therefore, x € XN T. Now for Vx € XN T, there mustbe x € Xand x € T, i.e., x € E
but x ¢ X and x ¢ 7. Hence, x ¢ X U T. This fact implies that x € X U T. By def nition,
we fnd that YUT = X N T. Similarly, we can also get the law XN T = X U T. This
completes the proof. O

For a set Z and H C E, the set E \ H is said the complement of H in E, denoted
by H(Z). We also abbreviate it to H if each set considered in the situation is a subset of
=2 = Q, i.e., the universal set.

These operations on sets in &?(E) observe the following laws.

L1 Itempotent law. For VS C Q,

Al Ja=a(a=a

L2 Commutative law. For VU, V C Q,

ul Jy=v{Juu(yr=ru
L3 Associative law. For YU, V, W C Q,

U Um=wUnUr: sNenm =N e

L4 Absorption law. For VU,V C Q,

v =vlUn=v
L5 Distributive law. For YU, V, W C Q,
vUrOm=UnNeUm)s v U =enU ).
L6 Universal bound law. For YU C Q,

mﬂU:(/),(/)UU:U; QﬂU:U,QUU:Q.

L7 Unary complement law. For VU C Q,

UﬂU:@; UUﬁ:Q.

A set with two operations “()” and “|J” satisfying the laws L1 ~ L7 is said to be a

Boolean algebra. Whence, we get the following result.
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Theorem 1.1.3 For any set U, all its subsets form a Boolean algebra under the operations
“m” and (‘U” .

1.1.2 Partially Order Set. Let E be a set. The Cartesian product E X Z is def ned by
EXE={(xy)Vx,y €&}

and a subset R C = X E is called a binary relation on Z. We usually write xRy to denote
that V(x,y) € R. A partially order set is a set E with a binary relation < such that the

following laws hold.
O1 Refective Law. For x € E, xRx.
O2 Antisymmetry Law. For x,y € E, xRy and yRx = x = ).
O3 Transitive Law. For x,y,z € E, xRy and yRz = xRz.

Denote by (E, <) a partially order set = with a binary relation <. A partially ordered
set with f'nite number of elements can be conveniently represented by a diagram in such
a way that each element in the set Z is represented by a point so placed on the plane that
point a is above another point b if and only if » < a. This kind of diagram is essentially
a directed graph. In fact, a directed graph is correspondent with a partially set and vice

versa. For example, a few partially order sets are shown in Fig.1.1 where each diagram

\/

represents a f nite partially order set.

(a) (b) (c) (d)

Fig.1.1

An element a in a partially order set (5, <) is called maximal (or minimal) if for
Vx €eE,a<x=x=a(orx <a= x = a). The following result is obtained by the

def nition of partially order sets and the induction principle.
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Theorem 1.1.4 Any fnite non-empty partially order set (2, <) has maximal and minimal

elements.

A partially order set (E, <) is an order set if for any Vx,y € =, there mustbe x < y
or y < x. For example, (b) in Fig.1.1 is such a ordered set. Obviously, any partially order
set contains an order subset, which is easily fnd in Fig.1.1.

An equivalence relation R C E X E on a set Z is def ned by

R1 Refective Law. Forx € &, xRx.

R2 Symmetry Law. For x,y € 2, xRy = yRx

R3 Transitive Law. For x,y,z € E, xRy and yRz = xRz.

Let R be an equivalence relation on set Z. We classify elements in Z by R with
R(x) ={y|y € E and yRx }.

Then we get a useful result for the combinatorial enumeration following.

Theorem 1.1.5 Let R be an equivalence relation on set Z. For Vx,y € E, if there is an
bijection ¢ between R(x) and R(y), then the number of equivalence classes under R is
1=l
IR(x)I”

where x is a chosen element in Z.

Proof Notice that there is an bijection ¢ between R(x) and R(y) for Vx,y € E.
Whence, |[R(x)| = |R(y)|. By def nition, for Vx,y € E, R(x) (\R(y) = @ or R(x) = R(y). Let
T be a representation set of equivalence classes, i.e., choice one element in each class.

Then we get that

[1]

Bl = ) IR = ITIRE)L

xeT

Whence, we know that

—
bt
—

= RO -

v

1.1.3 Neutrosophic Set. Let [0, 1] be a closed interval. For three subsets 7, I, F C [0, 1]
and § C Q, defne a relation of element x € Q with the subset S to be x(7, 1, F), i,e.,
the conf dence set T, the indef nite set I and the fail set F for x € S. A set S with three
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subsets 7, I, F' is said to be a neutrosophic set. We clarify the conception of neutrosophic
set by set theory following.

Let = be a set and 4y, 45,--+, 4, € E. Defne 3k functions ff, f5,---, f by f* :
A; = [0,1], 1 <i <k, where x = T,1, F. Denoted by (4;; /7, 1!, fF') the subset 4; with
three functions £, 1/, /F, 1 <i < k. Then

k
g (Ai; iT’ il, le)

is a union of neutrosophic sets. Some extremal cases for this union is in the following,

which convince us that neutrosophic sets are a generalization of classical sets.
Casel fT=1, fl=fF=0fori=1,2,-,k

In this case,

Jss s =4

k k
i=1 i=1

Case 2 f;T:fi[:O, ff:lfori:l,z,...’k'

In this case,

k k
mewwﬂ{uﬁ.
i=1

i=1
Case 3 There is an integer s such that /" = 1 f/ = f7 =0, 1 <i<sbut f] = f] =
0,ij:1fors+lSjSk.

In this case,
k s k
L) = UAiu[U A]
i=1 i=1 i=s+1
Case 4 There is an integer / such that /7 # 1 or f # 1.
In this case, the union is a general neutrosophic set. It can not be represented by

abstract sets. If 4B = 0, defne the function value of a function f on the union set
A|JBtobe

74l )B) =1+ 1(B)

and

7(4()B) = 1B,
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Then if 4 () B # 0, we get that

/(4| )B) = 1)+ £B) - f(4)f(B).

Generally, we get the following formulae.

/ !
f(ﬂAl) =| [ra.

i=1

k k J
f(_U A,-) =)0 [ran.

by applying the inclusion-exclusion principle to a union of sets.

§1.2 GROUPS

1.2.1 Group. A set G with a binary operation o, denoted by (G; o), is called a group if
x oy e G for Vx,y € G with conditions following hold:

(1) (xoy)oz=xo0(yoz)forVx,y,z e G;

(2) There is an element 15, 15 € G such that xo 15 = x;

(3) For Vx € G, there is an element y,y € G, such that x o y = 1.

A group G is Abelian if the following additional condition holds.

(4) ForVx,ye G,xoy=youx.
A set G with a binary operation o satisfying the condition (1) is called to be a semi-
group. Similarly, if it satisfes the conditions (1) and (4), then it is called an Abelian

semigroup.

Example 1.2.1 The following sets with operations are groups:

(1) (R; +) and (R; -), where R is the set of real numbers.

(2) (Uy;-), where U, = {1,—1} and generally, (U,;-), where U, = {e"Q_Zk, =1,2,
. n.

(3) For a fnite set X, the set SymX of all permutations on X with respect to permu-

tation composition.

Clearly, the groups (1) and (2) are Abelian, but (3) is not in general.
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Example 1.2.2 Let GL(n, R) be the set of all invertible n X n matrixes with coeflicients

in R and +, - the ordinary matrix addition and multiplication. Then

(1) (GL(n,R); +) is an Abelian inf nite group with identity 0,,,, the nXn zero matrix
and inverse —A4 for A € GL(n, R), where —4 is the matrix replacing each entry a by —a in
matrix 4.

(2) (GL(n, R); ) is a non-Abelian inf nite group if n > 2 with identity 1,,, the n X n
unit matrix and inverse A~! for 4 € GL(n,R), where 4 - A" = 1,,,,. For its non-Abelian,

let n = 2 for simplicity and

Calculations show that

IR RN

Whence, A - B # B - A.

1.2.2 Group Property. A few properties of groups are listed in the following.
P1. There is only one unit 14 in a group (¢; o).

In fact, if there are two units 14 and 17, in (¢;0), then we get 1y = 1y 0 1), = 1/, a

contradiction.
P2. There is only one inverse a™' for a € 4 in a group (4; o).

If a;', a;' both are the inverses of a € ¢, then we get that a;' = a;' caoa;' = a;',

a contradiction.
P3. @)y '=a,ac¥9.
P4. Ifaob=aocorboa=coa, wherea,b,c €9, then b = c.

Ifaob=aoc,thena'o(aob)=a"'o(aoc). According to the associative law, we
getthathb=1yob=(a'oca)ob=a'o(aoc)=(a'oa)oc=1yoc=c. Similarly, if

boa=coa,wecanalso geth = c.

PS. There is a unique solution for equations aox = b andyoa = b in a group (¢; o)
fora,be 9.
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Denote by a” = agoao---oa. Then the following property is obvious.
—_—

P6. For any integers n,m and a,b € 4, a" o a™ = a"*™, (a")" = a™. Particularly, if
(¥ 0) is Abelian, then (a o b)" = a" o b".

1.2.3 Subgroup. A subset H of a group G is a subgroup if H is also a group under the

same operation in G, denoted by H < G. The following results are well-known.

Theorem 1.2.1 Let H be a subset of a group (G; o). Then (H; o) is a subgroup of (G; o)
ifand only if H # O and a o b™' € H for Va,b € H.

Proof By def nition if (H; o) is a group itself, then H # 0, there isb™! € Hand aob™!
is closed in H, i.e.,ao b € H for Va,b € H.
Now if H # 0 and a o b~' € H for Va, b € H, then,

(1) there existsan s € Hand 15 = ho h™! € H;

(2) ifx,ye H,theny™! = 1g0y™! € Hand hence xo (7)™ = xo0y € H;

(3) the associative law x o (yoz) = (xoy) oz for x,y,z € H is hold in (G; o). By (2),
it is also hold in AH. Thus, combining (1)-(3) enables us to know that (H; o) is a group. [J

Corollary 1.2.1 Let Hy < Gand Hy < G. Then H N H, < G.

Pl’OOf ObViOllSly, lG = 1H1 = 1H2 € H N H,. So H NH, # 0. Let X,y € H, N H,.
Applying Theorem 1.2.2, we get that

xoy'eH, xoy'leH,.

Whence,

X Oy_l € H NH,.
Thus, (H, N Hy; o) is a subgroup of (G; o). O
Theorem 1.2.2 (Lagrange) Let H < G. Then |G| = |H||G : H|.

Proof Let

Notice thatty o HNty o H=0ift; # t, and |t o H| = |H|. We get that

G| = Zon:|H||G:H|. O

teG:H
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Let H < G be a subgroup of G. For Vx € G, denote the sets {xh | Vh € H},
{hx | Vh € H} by xH and Hx, respectively. A subgroup H of a group (G ;o) is called a
normal subgroup if for Vx € G, xH = Hx. Such a subgroup H is denoted by H < G

For two subsets 4, B of group (G; o), the product 4 o B is def ned by

AoB={aoblVYae A, YVbeb}.
Furthermore, if H is normal, i.e., H <1 G, it can be verif ed easily that

(xH) o (yH) = (xoy)H and (Hx)o (Hy) = H(xoy)

for Vx,y € G. Thus the operation ”o” is closed on the set {xH|x € G} = {Hx|x € G}. Such
a set is usually denoted by G/H. Notice that

(xHoyH)ozH =xH o (yH ozH), Vx,y,z€ G

and
(xH) o H = xH, (xH) o (x"'H) = H.

Whence, G/H is also a group by defnition, called a quotient group. Furthermore, we

know the following result.
Theorem 1.2.3 G/H is a group if and only if H is normal.
Proof 1f H is a normal subgroup, then

(aocH)boH)=ao(Hob)oH=ao(boH)oH=(aob)oH

by the def nition of normal subgroup. This equality enables us to check laws of a group

following.

(1) Associative laws in G/H.

[(a o H)(b o H)](c o H)

[(@eob)oc]oH =[ao(boc)]oH
(a o H)[(b o H)(c o H)].

(2) Existence of identity element 15,4 in G/H.
In fact, lgjy =10 H =H.

(3) Inverse element for Vxo H € G/H.
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Because of (x"' o H)(xo H) = (x ' ox)o H = H = 15/, we know the inverse element
of xoHe G/Hisx' o H.
Conversely, if G/H is a group, then fora o H,b o H € G/H, we have

(aocH)YboH)=coH.

Obviously,a o b € (a o H)(b o H). Therefore,
(aoH)Ybo H)=(aob)oH.
Multiply both sides by a~!, we get that
HoboH=boH.
Notice that 15 € H, we know that
boHCHoboH=boH,

i.e., bo Hob ! c H. Consequently, we also fnd ™' o Ho b C H ifreplace bby b7!, i.e.,
H c boHob™'. Whence,
b'oHob=H

for Vb € G. Namely, H is a normal subgroup of G. U

A normal series of a group (G; o) is a sequence of normal subgroups
{16} =Go <G <Gy < --- <Gy =G,

where the G;, 1 < i < s are the terms, the quotient groups G;,1/G;, 1 <i < s — 1 are the
factors of the series and if all G; are distinct, and the integer s is called the length of the
series. Particularly, if the length s = 2, i.e., there are only normal subgroups {15} and G

in (G; o), such a group (G; o) is said to be simple.

1.2.4 Isomorphism Theorem. For two groups G, G’, let o be a mapping from G to G’.
If

a(xoy) =o(x)oo(y)
for Vx,y € G, then o is called a homomorphism from G to G’. Usually, a one to one

homomorphism is called a monomorphism and an onto homomorphism an epimorphism.

A homomorphism is a bijection if it is both one to one and onto. Two groups G, G” are
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said to be isomorphic if there exists a bijective homomorphism o~ between them, denoted
by G ~ G'.

Some properties of homomorphism are listed following. They are easily verif ed by
def nition.

H1. ¢(x") = ¢"(x) for all integers n, x € 4, whence, ¢(14) = 1 and ¢(x~') =
¢~ (%).

H2. o(¢(x))o(x), x € 9.

H3. Ifxoy=yox then ¢(x)- ¢p(y) = ¢(y) - ¢(x).

H4. Im¢ < 57 and Kerp < 4.

Now let ¢ : G — G’ be a homomorphism. Its image Im¢ and kernel Ker¢ are
respectively def ned by
Im¢ = G* = {¢p(x) | Vx € G}

and
Kerg ={x|Vx e G, ¢(x) =1 }.

The following result, usually called the homomorphism theorem is well-known.
Theorem 1.2.4 Let ¢ : G — G’ be a homomorphism of group. Then
(G, 0)/Kerg ~ Img.

Proof Notice that Im¢ < H and Ker¢ <1 G by defnition. So G/Kerg is a group by
Theorem 1.2.3. We only need to check that ¢ is a bijection. In fact, x o Ker¢ € Kerg if
and only if x € Ker¢. Thus ¢ is an isomorphism from G/Ker¢ to Img. U

Corollary 1.2.1(Fundamental Homomorphism Theorem) If ¢ : G — H is an epimor-
phism, then G/Ker¢ is isomorphic to H.

§1.3 RINGS

1.3.1 Ring. A set R with two binary operations “+” and “o” , denoted by (R; +, o), is
said to be aringif x + y € R, x oy € R for Vx,y € R such that the following conditions
hold.

(1) (R;+) is an Abelian group with unit 0, and in;
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(2) (R;0)1is a semigroup;

(3) ForVx,y,zeR,xo(y+z)=xoy+xozand (x+y)oz=xo0z+yoz

Denote the unit by 0, the inverse of a by —a in the Abelian group (R; +). A ring
(R; +, 0) is fnite if |R| < +o00. Otherwise, inf nite.

Example 1.3.1 Some examples of rings are as follows.

(1) (Z; +, -), where Z is the set of integers.
(2) (pZ; +,-), where p is a prime number and pZ = {pn|n € Z}.
(3) M.,(Z); +, ), where M, (Z) is the set of n X n matrices with each entry being an

integer, n > 2.
Some elementary properties of rings (R; +, o) can be found in the following:

R1. Ooca=ao0=0forVaecR.

In fact, let b € R be an element in R. Byaob =ao(b+0)=aob+ao0and
boa=(b+0)oa=boa+0oa,weare easily know thatao 0 =00a = 0.

Rl. (—a@)ob=ao(-b)=—aoband (—a)o (-b) =aobforVa,beR.

By def nition, we are easily know that (—a)ob+aob =(-a+a)ob=00b=0
in (R;+,0). Thus (—a) o b = —a o b. Similarly, we can get that a o (-b) = —a o b.
Consequently,

(—a)o(-b)=—-ao(-b)=—(—aob)=aob.

R3. For any integer n,m > 1 and a,b € R,

(n + m)a = na + ma,

n(ma) = (nm)a,

n(a + b) = na + nb,

a'od" =a"",

(@)" =a",
wherena=a+a+---+aanda”" =goao---oa.

n n

All these identities can be verif ed by induction on the integer m. We only prove the
last identity. For m = 1, we are easily know that (a")! = (a") = a"', i.e., (a")" = a™ holds

form = 1. If it is held for m = k > 1, then

(an)k+1 — ((an)k) o (an)
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= a”ko(aoao---oa)
—_—
n

— ank+n — an(k+1).

Thus (a")" = @™ is held for m = k + 1. By the induction principle, we know it is true for

any integer n, m > 1.

If R contains an element 1 such that for Vx € R, x o Il = lpox = x, wecall R a
ring with unit. All of these examples of rings in the above are rings with unit. For (1), the
unit is 1, (2) is Z and (3) i 7.

The unit of (R; +) in a ring (R; +, o) is called zero, denoted by 0. For Va, b € R, if

aob = 0,

then a and b are called divisors of zero. In some rings, such as the (Z; +, ) and (pZ ; +, -),
there must be @ or b be 0. We call it only has a trivial divisor of zero. But in the ring

(pqZ; +, -) with p, g both being prime, since
pZ - qZ = 0

and pZ # 0, gZ + 0, we get non-zero divisors of zero, which is called to have non-trivial

divisors of zero. The ring (M, (Z); +, -) also has non-trivial divisors of zero
0
= Opsn-
00 -0 r 1 -1

A division ring is a ring which has no non-trivial divisors of zero. The integer ring (%Z; +, -)
is a divisor ring, but the matrix ring (M, (Z); +, -) is not. Furthermore, if (R \ {0};0) is a
group, then the ring (R; +, o) is called a skew feld. Clearly, a skew feld is a divisor ring
by properties of groups.

1.3.2 Subring. A non-empty subset R’ of aring (R; +, o) is called a subring if (R’; +,0) is

also a ring. The following result for subrings can be obtained immediately by def nition.

Theorem 1.3.1 Let R' C R be a subset of a ring (R; +,0). If (R"; +) is a subgroup of (R; +)
and R’ is closed under the operation “o” , then (R'; +, 0) is a subring of (R, +.0).
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Proof Because R’ C R and (R; +, o) is a ring, we know that (R’; o) is also a semigroup
and the distribute lows xo (y+z) = xoy+xoz, (x+y)oz = xoz+yozhold for Vx,y,z € R".
Thus ()R’; +, o is also a ring. 0
Combining Theorems 1.3.1 with 1.2.1, we know the following criterion for subrings

of a ring.

Theorem 1.3.2 Let R" C R be a subset of a ring (R; +,0). Ifa—b, a-b € R’ forVa,b € R,
then (R'; +, o) is a subring of (R, +.0).

Example 1.3.2 Let (M5(Z); +, ) be the ring determined in Example 1.3.1(3). Then all

matrixes with following forms

a b 0

c d 0|, a,b,c,deZ

0 00
consist of a subring of (M3(Z); +, -).
1.3.3 Commutative Ring. A commutative ring is such a ring (R; +,0)thataob =boa
for Va,b € R. Furthermore, if (R \ {0}; 0) is an Abelian group, then (R; +, o) is called a
feld. For example, the rational number ring (N; +, -) is a feld.

A commutative ring (R; +, o) is called an integral domain is there are no non-trivial

divisors of zero in R. We know the following result for fnite integral domains.

Theorem 1.3.3 Any fnite integral domain is a feld.

Proof Let (R; +0) be a fnite integral domain with R = {a; = 1z,a,---,a,}, b € R
and a sequence

boaj,boay,---,boa,.

Then for any integeri # j, 1 < i, j <m,boa; # boa;. Otherwise, we getbo(a;—a;) =0

with a # 0 and a; — a; # 0. Contradicts to the def nition of integral domain. Therefore,
R = {bOabeaZs“"boan}'

Consequently, there must be an integer k, 1 < k < n such that b o a; = 13. Thus b™! = .
This implies that (R \ {0}; o) is a group, i.e., (R; +o) is a feld. U
Let D be an integral domain. Def ne the quotient feld Q[D] by

O[D] ={(a,b)|a,beD, b+0}
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with the convention that
(a,b) = (d',b) if and only if  ab’ = d’'b.
Def ne operations of sums and products respectively by

(a,b) + (a',b") = (ab’ + a’b, bb")
(a,b)-(a',b") = (ad’, bb").

Theorem 1.3.4 Q[D] is a feld for any integral domain D.

Proof 1t is easily to verify that Q[ D] is also an integral domain with identity elements
(0, 1) for addition and (1, 1) for multiplication. We prove that there exists an inverse for

every element u # 0 in Q[D]. In fact, for (a, b) # (0, 1),
(a,b) - (b,a) = (ab,ab) = (1,1).

Thus (a, b)™! = (b, a). Whence, Q[D] is a feld by def nition. O
For seeing D is actually a subdomain of Q[D], associate each element a € D with
(a, 1) € Q[D]. Then it is easily to verify that

aD)+B,)=(@-1+b-1,1-1)=(a+b,1),
(a,1)-(b,1)=(ab,1-1)=(ab,1),
(a,1)=(b,1) ifand onlyif a =b.

Thus the 1-1 mapping a < (a, 1) is an isomorphism between the domain D and a subdo-

main { (a, 1) | a € D } of Q[D]. We get a result following.

Theorem 1.3.5 Any integral domain D can be embedded isomorphically in a feld Q[ D].
Particularly, let D = 7. Then the integral domain 7. can be embedded in Q|7 = Q.
1.3.4 Ideal. Anideal I of aring (R;+, o) is a non-void subset of R with properties:

(1) (Z; +) is a subgroup of (R; +);
(2) aoxelandxoaelforVael,Vx €R.
Let (R; +, o) be aring. A chain

R>Ry>--->R ={1,}
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satisfying that R;,; is an ideal of R; for any integer i, 1 < i < [, is called an ideal chain
of (R, +,0). A ring whose every ideal chain only has fnite terms is called an Artin ring.
Similar to the case of normal subgroup, consider the set x + I in the group (R; +). Calcu-
lation shows that R/ = {x + I| x € R} is also a ring under these operations “+” and “o”,
called a quotient ring of R to 1.

For two rings rings (R; +,0), (R’; *,e),lett : R — R’ be a mapping from R to R’. If

Ux +y) = u(x) * 1),
Uxoy)=ux)euy)
for Vx,y € R, then ¢ is called a homomorphism from (R; +, o) to (R’; *, ®). Furthermore, if

¢ is an objection, then ring (R; +, o) is said to be isomorphic to ring (R’; *, ) and denoted

by rings (R; +,0) ~ (R’; %, ®). Similar to Theorem 1.2.4, we know the following result.
Theorem 1.3.6 Lett: R — R’ be a homomorphism from (R; +,0) to (R’; *,®). Then

(R; +,0)/Kert =~ Imu.

§1.4 VECTOR SPACES

1.4.1 Vector Space. A vector space or linear space consists of the following:

(1) A feld F of scalars;
(2) A set V' of objects, called vectors;

(3) An operation, called vector addition, which associates with each pair of vectors

a,bin V avector a+ b in V, called the sum of a and b, in such a way that

(a) Addition is commutative,a+b = b + a;

(b) Addition is associative, (a +b)+c¢c=a+ (b + ¢);

(¢) There is a unique vector 0 in V, called the zero vector, such that a + 0 = a for all
ainV;

(d) For each vector a in Vthere is a unique vector —a in J such that a + (—a) = 0;

(4) Anoperation “-”, called scalar multiplication, which associates with each scalar
kin F and a vector a in " a vector k- a in V, called the product of £ with a, in such a way
that
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(a) 1-a=aforeveryainV;
() (kiky) - a = ki(k - a);
(c) k-(a+b)=k-a+k-b;
d) (ky+hk)-a=k -a+k-a.
We say that V' is a vector space over the feld F, denoted by (V ; +, -).

Example 1.4.1 Two vector spaces are listed in the following.

(1) The n-tuple space R" over the real number feld R. Let V' be the set of all -
tuples (x1,x2,- -, x,) withx; e R, 1 <i <n. IfVa=(x;,x2,---,x,),b=01,12,- -, Vn) €
V', then the sum of a and b is def ned by

at+b= (xl +yl’x2 +y23“'axn +yn)
The product of a real number £ with a is def ned by
ka = (kxy, kx,, - -, kx,).

(2) The space Q™" of m X n matrices over the rational number feld Q. Let 0"
be the set of all m X n matrices over the natural number feld Q. The sum of two vectors
A and B in Q"™ is def ned by

(A + B);j = Aij + By,
and the product of a rational number p with a matrix 4 is def ned by
(pA)ij = pAij.

1.4.2 Vector Subspace. Let J be a vector space over a feld . A subspace W of V'is a
subset W of V which is itself a vector space over F' with the operations of vector addition
and scalar multiplication on V. The following result for subspaces of a vector space is

easily obtained.

Theorem 1.4.1 A non-empty subset W of a vector space (V;+,-) over the feld F is a
subspace of (V; +,-) if and only if for each pair of vectors a, b in W and each scalar a in

F the vector « -a+ b is also in W.

Proof Let W be a non-empty subset of /' such that @-a+b belongs to /¥ for Ya, b € V'

and all scalars @ in F'. Notice that W # 0, there are a vector x € W. By assumption, we
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getthat (—1)x+ x =0 € W. Hence, ax + 0 = ax € W for x € W and « € F. Particularly,

(-1)x = —x € W. Finally, ifx, y € W, then x + y € W. Thus W is a subspace of V.
Conversely, if W c Visasubspace of V, a, bin W and « is scalar F', then a-a+b € W

by def nition. 0

This theorem enables one to get the following result.

Theorem 1.4.2 Let V be a vector space over a feld F. Then the intersection of any

collection of subspaces of V is a subspace of V.

Proof Let W = () W;, where W; is a subspace of V' for each i € /. First, we know
that 0 € W, fori e I bl}elldef nition. Whence, 0 € W. Now leta, b € W and a@ € F. Then
a, be W, for W c W; for Vi € I. According Theorem 1.4.1, we know thata-a +b € W,.
Soa-a+be () W;=W. Whence, W is a subspace of } by Theorem 1.4.1. U

Let U be ;16 Iset of some vectors in a vector space ¥ over F. The subspace spanned by

U is def ned by
U) ={a;-ai+ay-ay+---+a;-a|l>1,0;€F,andaj € S,1 <i </}

A subset S of V' is said to be linearly dependent if there exist distinct vectors ay, a,, - - -, a,

in S and scalars ay, s, - - -, @, in F, not all of which are 0, such that
a-art+ay-a+---+a,-a, =0.

A set which is not linearly dependent is usually called linearly independent, i.e., for dis-

tinct vectors ay, a,, - - -, a, in S if there are scalars a, a», - - -, @, in F such that
A t+ay-a+ -+ @, a, :0,

then @; = 0 for integers 1 < i < n.
Let V be a vector space over a feld F. A basis for V' is a linearly independent set of
vectors in ¥ which spans the space V. Such a space V is called f nite-dimensional if it has

a f nite basis.

Theorem 1.4.3 Let V be a vector space spanned by a f nite set of vectors ay,ay, - -, an,.

then each independent set of vectors in V' is f nite, and contains no more than m elements.

Proof Let S be a set of V' containing more than m vectors. We only need to show

that S is linearly dependent. Choose Xy, X3, -+, X, € S with n > m. Since a,a,,---,ay,
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span V, there must exist scalars 4;; € F such that

m
Xj = Z Aija,-.
i=1

Whence, for any #n scalars a4, as, - - -, @,, we get that

n m
a Xy +axp + -+ @)X, = ZajZAijai
=1 =

n m m n
= (Aljozj) a;, = Z(ZAU(YJ] a;.
=1 =1 =1 \j=1
Notice that n > m. There exist scalars a;, a», - - -, @, not all 0 such that
n
ZA,']'Q’]':O, 1 <i<m.
=1
Thus a1x; + ax; + -+ - + @,X, = 0. Whence, S is linearly dependent. ]

Theorem 1.4.3 enables one knowing the following consequences.

Corollary 1.4.1 If V is a fnite-dimensional, then any two bases of V have the same

number of vectors.

Proof Let ay, a,- -, a,, be a basis of V. according to Theorem 1.4.3, every basis of
V' is f nite and contains no more than m vectors. Thus if by, b,, - - -, b, is a basis of V, then
n < m. Similarly, e also know that m < n. Whence, n = m. ]

This consequence allows one to def ne the dimension dim/” of a f nite-dimensional

vector space as the number of elements in a basis of V.

Corollary 1.4.2 Let V be a fnite-dimensional vector space with n = dimV. Then no

subset of V containing fewer than n vectors can span V.

Let dimV = n < +oc0. An ordered basis for V is a fnite sequence {a,, a,,---,a,} of
vectors which is linearly independent and spans V. Whence, for any vector x € V, there

is an n-tuple (x1, x2, - - -, X,,) such that

n
X = Z X;a;.
i=1

The n-tuple is unique, because if there is another n-tuple (zy,z, - - -, z,) such that

n
X = Z z;a;,
i=1
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Then there must be i
Z (x; —z)a; = 0.
=1

We get z; = x; for | < i < n by the linear independence of {a;,a,,---,a,}. Thus each

ordered basis for V' determines a 1-1 correspondence
X< (‘x19x29 e 9xﬂ)

between the set of all vectors in " and the set of all n-tuplesin F" = F X F X --- X F.

The following result shows that the dimensions of subspaces of a f nite-dimensional

vector space is f nite.

Theorem 1.4.4 If W is a subspace of a fnite-dimensional vector space V, then every

linearly independent subset of W is f nite and is part of basis for W.

Proof Let Sy = {a;,a,,---,a,} be a linearly independent subset of . By Theorem
1.4.3, n < dimW. We extend S, to a basis for W. If S spans W, then S is a basis of V.
Otherwise, we can fnd a vector b; € W which can not be spanned by elements in S . Then
So U {b;} is also linearly independent. Otherwise, there exist scalars @y, @;, 1 <i < [S|
with @ # 0 such that

[Sol

aob; + Z a;a; = 0.
=1

Whence
[Sol

1

by =-— > aa;
(o)

a contradiction.
Let S1 = Sy U {b;}. If S spans W, we get a basis of W containing S,. Otherwise,
we can similarly fnd a vector b, such that §, = S, U {by, b,} is linearly independent.

Continue i this way, we can get a set
Sn=8o0U{bi,by, -, by}

in at more than dimW — n < dimV" — n step such that S, is a basis for V. 0J

For two subspaces U, W of a space V, the sum of subspaces U, W is def ned by
U+W={u+wluelU weW}.

Then, we have results in the following result.
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Theorem 1.4.5 If Wy and W, are f nite-dimensional subspaces of a vector space V, then

Wy + W, is f nite-dimensional and
dimW, + dimW; = dim (W, ﬂ 1) + dim (W + W)

Proof According to Theorem 1.4.4, W, N W), has a fnite basis {a;, a5, - - -, a;} which is
partofabasis{aj, a,,---,a by, -, b;} for W, and part of a basis {a|, a,,-- -, a;, ¢, -, Cp}
for W,. Clearly, W, + W, is spanned by vectors aj,ay,---,a;, by,---,b;, ¢,---,¢,. If

there are scalars «;, fjandy,, 1 <i <k, 1 <j </ 1<r < msuch that

@;a; + Zl:,ijj + Zml%cr =0,
=1

k
=1 Jj=1

1

then
m k /

- Z Y€ = Z a;a; + Z:ijj,
p = =1

i=1

which implies that v = )’ y,¢, belongs to W,. Because v also belongs to W, it follows
r=1
that v belongs to W, N W,. So there are scalars 01, 0y, - - -, O, such that

m k
V= Z V€ = Z 0;a;.
r=1 i=1

Notice that {a;,a,,---,a;, ¢, -,¢,} 1s linearly independent. There must be y, = 0 for
1 <r < m. We therefore get that

k !
Z ;a; + Zﬁ]b] =0.
i=1 =1
But {a,, a,,---,a;, by, -+, b} is also linearly independent. We get also that @; = 0, 1 <
i<kandfB; =0, 1< j<I Thus

{al’a29“'9ak9 bla“'9bls cla“'scm}

is a basis for W, + W,. Counting numbers in this basis for W} + W,, we get that

dimW, +dimW, = (k+D)+k+m=k+(k+1+m)
dim (W, ﬂ W2) + dim (W, + W)

This completes the proof. U
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1.4.3 Linear Transformation. Let }J and W be vector spaces over a feld F. A linear

transformation from V to W is a mapping 7 from V to W such that
T(aa +b) = a(T(a)) + T(b)

for all a,b in " and all scalars @ in F. If such a linear transformation is 1-1, the space V'

is called linear isomorphic to W, denoted by V' L.

Theorem 1.4.6 Every f nite-dimensional vector space V over a feld F is isomorphic to

space F", i.e., V 9 F", where n = dimV.

Proof Let{a,,a,,---,a,} be an ordered basis for /. Then for any vector x in V, there

exist scalars x;, x», - - -, x,, such that
X = X121 + xa + -+ Xx,4a,.

Def ne a linear mapping from V to F” by

T:xe (X, x—2,-,x,).
Then such a mapping 7 is linear, 1-1 and mappings V" onto . Thus V L, UJ
Let{a;,a,,---,a,}and {by, by, --,b,} be ordered bases for vectors V" and W, respec-

tively. Then a linear transformation 7" is determined by its action on a;, 1 < j < n. In fact,

each T'(a;) is a linear combination

T(a]) = ZAljbl
i=1

of b;, the scalars 4,;,4;,---,4,; being the coordinates of 7'(a;) in the ordered basis
{b1,bs,---,b,}. Defne an m X n matrix by 4 = [A4,;] with entry 4;; in the position (7, /).
Such a matrix is called a transformation matrix, denoted by 4 = [T']4, ay..--a,-

Now leta = aja; + a»a, + - - - + @,a, be a vector in V. Then

T(a)

I [
/L
K M=
M= &
PN
= [
I M:
M= 2
—_—— ~
M= =
Q N—
S
~
R
N —
=

Whence, if X is the coordinate matrix of a in the ordered basis {b;,b,,---,b,,}, then AX

n
is the coordinate matrix of 7'(a) in the same basis because the scalars }; 4;;a; is the entry
J=1



Sec.1.5 Metric Spaces 25

in the ith row of the column matrix 4X. On the other hand, if 4 is an m X n matrix over a

feld F, then
T(Z (Ijaj] = Z [Z a/jA,-jaj]b,-
j=1

i=1 \j=1
indeed defnes a linear transformation 7 from V into W with a transformation matrix 4.

This enables one getting the following result.

Theorem 1.4.7 Let {ay,a,,---,a,} and {b;,b,,---,b,,} be ordered bases for vectors V
and W over a feld F, respectively. Then for each linear transformation T from V into W,

there is an m X n matrix A with entries in F such that

[T(a)]bl,bz,u-,bm =4 [a]bl,bz,u-,bm

for every ain V. Furthermore, T — A is a 1-1 correspondence between the set of all

linear transformations from V into W and the set of all m X n matrix over F.

Let V' be a vector space over a feld F. A linear operator of V is a linear transforma-

tion from ¥ to V. Calculation can show easily the following result.

Theorem 1.4.8 Let V be a vector space over a feld F with ordered bases {a,,a,,---,a,}
and {a\,a},---,a,} and T a linear operator on V. If A = [Ay,A,---,A,] is then X n

o e
matrix with columns A; = [@']a, a,..a,, then

[T]a’l,aé,---a’ = A_l [T]abaz,"nan A.

*“n

Generally, if T is an invertible operator on V determined by T'(a;) = a’, for j = 1,2,
.-+, n, then
[T ar sy = [T T i [ T v g [T Tar g -

§1.5 METRIC SPACES
1.5.1 Metric Space. A metric space (X;d) is a set X associated with a metric function
d: MxM— R* ={x|x € R, x > 0} with conditions following hold for ¥x, y,z € M.
(1)(def niteness) d(x,y) = 0if and only if x = y;
(2)(symmetry) d(x,y) = d(y, x);
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(3)(triangle inequality) d(x,y) + d(y,z) > d(x, z).
Example 1.5.1 Euclidean Space R”.

Let R" = { (x;,x2,--,x,) | x; € R,1 < i <mn}. ForVx = (x,x3,---,x,) and

y=0Y, ) € R", defne
PO Y) = | D =),
i=1

Clearly, conditions (1) and (2) are true. We only need to verify the condition (3).
Notice that

Then d is a metric on R”.

n

an b2+ ZxZ ab; + X Z b = Zn:(ai +xb;)? > 0.
i=1 1 i=1 i=1

i=

Consequently, the discriminant

Thus

n

Z (a; + b))’

i=1

A

Leta; = x; — yi, b; = y; — z;. Then x; — z; = a; + b; for integers 1 < i < n. Substitute these
numbers in the previous inequality, we get that

2

an (xi—z) < [Jzn:(xi —yi)* + Jzn:()’i - Zi)z) .
i=1 i=1 1

=

Thus d(x,z) < d(x,y) + d(y, z).



Sec.1.5 Metric Spaces 27

Example 1.5.2 If (X; d) is a metric space. Def ne

d(x,y)

dl(x’y) = l+d(x,y)'

Then (X; d,) is also a metric space. In fact, by noting that the function g(x) = 7 _T_ is an
RS

increasing function for x > 0, it is easily to verify that conditions (1) — (3) hold.

1.5.2 Convergent Sequence. Any x,x € X is called a point of (X; d). A sequence {x,}
is said to be convergent to x if for any number € > 0 there is an integer N such thatn > N

implies d(x,, x) < €, denoted by lim x,, = x. We have known the following results.

Theorem 1.5.1 Any sequence {x,} in a metric space has at most one limit point.

Proof Otherwise, if {x,} has two limit points lim x, — x and lim x, — x’, then

0 <d(x,x") <d(x,,x)+d(x,,x")
for an integer n > 1. Let n — oo. then d(x, x’) = 0. Thus x = x’ by the condition (1). [

Theorem 1.5.2 Let (X;d) be a metric space. If x, — xo and y, — Y, then d(x,,y,) —

d(x9,y0) when n — oo, i.e., d(x,y) is continuous.

Proof Applying the condition (3), we get inequalities

d(xn’yn) < d(xm X()) + d(xo,J/o) + d(ynayO)

and
d(x0,0) < d(x0, %) + d(X4, ) + d(Vn> Vo)
Whence,
1d(xns yn) = d(x0, yo)| < d(xn, X0) + d(Yn, y0) = 0
if n — oo. Thus d(x,,v,) — d(xo, o) when n — oo. O

For xy € X and € > 0, an e-disk about x, is def ned by
B(xp,€) ={x|xe X, dx,x) < €}.

If A ¢ X and there is an e-disk B(xg, €) D A, we say A4 is a bounded point set of .X.

Theorem 1.5.3 Any convergent sequence {x,} in a metric space (X; d) is bounded.
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Proof Let x, = xo when n — oo and & = 1. Then there exists an integer N such that
for any integer n > N, d(x,, xo) < 1. Denote ¢ = max{d(xy, xy), d(x2, x¢), - -, d(xn, X0)}.
We get that

dx,x0)<1+¢c, n=12,---k -

Let R =1+ c. Then {x,} C B(x¢, R). 0

1.5.3 Completed Space. Let (X;d) be a metric space and {x,} a sequence in X. If for any
number € > 0, € € R, there is an integer N such that n,m > N implies p(x,, x,,) < &, then
we call {x,} a Cauchy sequence. A metric space (X;d) is completed if its every Cauchy

sequence converges.

Theorem 1.5.3 For a completed metric space (X;d), if an e-disk sequence {B,} satisf es

(1) ByoB,>---D>B, D+
(2) limg, =0,

where g, > 0and B, = { x| x € X, d(x, x,) < &,} for any integer n,n = 1,2,---, then (\ B,
n=1
only has one point.

Proof First, we prove the sequence {x,} consisting of centers of e-disk B, is an
Cauchy sequence. In fact, by the condition (1), if m > n, then x,, € B,, € B,. Thus
d(xyu, x,) < &,. According to the condition (2), for any positive number £ > 0, there
exists an integer N such that g, < € if n > N. Whence, if m, n > N, there must be that
d(x,, x,) < &, 1.e., {x,} is a Cauchy sequence.

By assumption, (X; d) is completed. We know that {x,} convergent to a point x, € X.
Let m — oo in the inequality d(x,,, x,) < &,. We gil: that d(x x,) < g, foralln = 1,2,---.

Whence, x, € B, for all integers n > 1. Thus xy € () B,,.
i=1

If there exists another point y € () B,, there must be d(y, x,) < g, forn = 1,2,---.
i=1
By Theorem 1.5.2, we have that

0 < d(, xo) = lim < lime, = 0.

Thus d(y, x9) = 0, i.e., y = Xxo. 0

For a metric space (X; d) and a mapping 7 : X — X on (X d), if there exists a point
x* € X such that

&

Tx" =x",
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then x* is called a f'xed point of T. If there exists a constant 7, 0 < < 1 such that

o(Tx, Ty) < nd(x,y)

for Vx, y € X, then T is called a contraction.

Theorem 1.5.4 (Banach) Let (X;d) be a completed metric space and let T : X — X be a

contraction. Then T only has one fxed point.

Proof Choose xy € X. Let
X1 = T(X()), Xy = T(X1), o Xprl = T(xn)a .

We prove frst such a sequence {x,} is a Cauchy sequence. In fact, for integers m, n,

m < n, by
d(Xpi1, Xm) = d(T(xp), d(xn-1)) < nd(Xp, Xp-1)
< (X1, Xme) < -+ < "d(x1, xo).
we know that
d(xm’ xn) < d(xm, xm:l) + d(xm+1’ xm+2) +oeet d(xn—l, xn)
< (77'" + 77'”_1 + e+ n”_l)d(xl,xo)
= " X ———d(x1, %))
M —0 (ifm, n— 0).
-1

Because (X; d) is completed, there must exists a point x* € X such that x, — x* when

n — oo, Such a x* is in fact a f xed point of 7' by

0 < d(xx,T(x") <d(x",x,) + d(x,, T(x"))
= d(x*,x,) +d(T(x,-1), T(x"))
< d(x*,x,) +nd(x,-1,x") > 0 (if n > o0).

Whence, T(x*) = x*. Now if there is another point x] € X such that T(x]) = xj, by
l <p<1and
d(x',x}) = d(T(), T() < nd(x*, )

There must be d(x*, x7) = 0, i.e., x* = x]. Thus such a f'xed point x* is unique. U
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§1.6 SMARANDACHE MULTI-SPACES

1.6.1 Smarandache Multi-Space. Let X be a fnite or infnite set. A rule or a law on a

set £ is a mapping X X X - - - X ¥ — X for some integers n. Then a mathematical space is
————

nothing but a pair (X; R), r\l)vhere R consists those of rules on X by logic providing all these

resultants are still in X.

Def nition 1.6.1 Let (Z1;R)) and (Z;;Ry) be two mathematical spaces. If £, # Z, or
X =X, but Ry # R are said to be different, otherwise, identical.

The Smarandache multi-space is a qualitative notion def ned following.

Def nition 1.6.2 Let (Z1;R)), (Z2;R2), -+, (Zn; Ri) be m mathematical spaces different

two by two. A Smarandache multi-space < is a union U X with rules R = U R ony, ie.,
i=1 i=1

the rule R; on X; for integers 1 < i < m, denoted by (Z; R).
1.6.2 Multi-Space Type. By Defnition 1.6.2, a Smarandache multi-space (i ﬁ) is

dependent on spaces X, %,, - -, 2%, and rulers Ry, R, ---,R,,. There are many types of

Smarandache multi-spaces.

Def nition 1.6.3 A Smarandache multi-space (i 7~€) with ¥ = U Z; and R = URiisa
i=1 i=1

[fniteifeach X;, 1 < i < mis fnite, otherwise, inf nite.

Def nition 1.6.4 A4 Smarandache multi-space (i, ﬁ) with 3 = U Z; and R = URiisa
i=1 i=1

metric space if each (X;;R;) is a metric space, otherwise, a non-metric space.

Def nition 1.6.5 A4 Smarandache multi-space (i 7~€) with ¥ = CJ Y and R = 6 R; is
i=1 i=1

countable if each (Z;; R;) is countable, otherwise, uncountable.

1.6.3 Example. As we known, there are many kinds of spaces such as those of topolog-
ical spaces, Euclidean spaces, metric spaces, - - - in classical mathematics and spacetimes
in physics. All of them can be combined into a Smarandache multi-space (E; 7~€). We list

some of these Smarandache multi-spaces following.

Example 1.6.1 Let S1,82,-+,8,, be m fnite or inf nite sets. By Def nition 1.6.2, we get

a multi-space S = U S;. In fact, it is still a f nite or inf nite set.
i=1

Example 1.6.2 Let 74, 75, - - -, T, be m partially order sets. By Def nition 1.6.2, we get a

partially order multi-space T = T, In fact, it is also a partially order set.
i=1
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Example 1.6.3 Let (4;;01),(43;0,),- -, (4,; 0,) be m fnite or inf nite algebraic systems

such as those of groups, rings or felds. By Def nition 1.6.2, we get an algebraic multi-

space (Z, 0) with 4 = UA4;and O = {o;; 1 < i < m}. It maybe with different m closed
i=1

operations.

Example 1.6.4 Let My, M,,---, M,, be m vector spaces. By Defnition 1.6.2, we get a

vector multi-space M= M.t may be a linear space or not.
i=1

Example 1.6.5 Let 7,.%,---, .9, be m metric spaces. By Defnition 1.6.2, we get a

—_— m
metric multi-space .7 = | 7. It maybe with m different metrics.
=1

Example 1.6.6 Let 2, 2,,---,2, be m spacetimes. By Defnition 1.6.2, we get a
multi-spacetime T = 6 7. It maybe used to characterize particles in a parallel universe.
Example 1.6.7 Let ,912:11,,9?2, s K,y be m gravitational electrostatic or electromagnetic
feld. By Defnition 1.6.2, we get a multi-feld R = U ;. 1t contains partially gravita-

=1
tional or electrostatic felds, or partially electromagnetlc felds.

§1.7 REMARKS

1.7.1 The multi-space and neutrosophic set were introduced by Smarandache in [Sma2]
and then discussed himself in [Sma2]-[Sma5]. Indeed, the neutrosophic set is a simple
way for measuring different degrees of spaces in a multi-space. Generally, we can def ne
a function u : U S; — [0, 1] with u(S;) # u(S;) if i # j for distinguishing each space
Si,1<i<n. More conceptions appeared in Smarandache mathematics can be found in
[Dell].

1.7.2 There are many standard textbooks on groups, rings, vector or metric spaces, such
as those of [BiM1] and [NiD1] for modern algebra, [HoK1] for linear algebra, [Wanl],
[Xuml] and [Robl] for groups, [Xonl] for rings and [LiQ1] for metric spaces. The
reference [BiM1] is an excellent textbook on modern algebra with frst edition in 1941.
The reader is inferred to these references [BiM1] and [NiD1] for topics discussed in this
chapter, and then understand conceptions such as those of multi-group, multi-ring, multi-
feld, vector multi-space, metric multi-space, pseudo-Euclidean space and Smarandache

geometry appeared in this book.



CHAPTER 2.

Graph Multi-Spaces

A graph G consisting of vertices and edges is itself a Smarandache multi-
space, i.e., Smarandache multi-set if it is not an isolated vertex graph and
vertices, edges distinct two by two, i.e., they are not equal in status in consid-
eration. Whence, we are easily get two kinds of Smarandache multi-spaces by
graphs. One consists of those of labeled graphs with order> 2 or bouquets B,
withn > 1. Another consists of those of graphs G possessing a graphical prop-
erty & validated and invalided, or only invalided but in multiple distinct ways
on G. For introducing such Smarandache multi-space, graphs and graph fam-
ilies, such as those of regular graphs, planar graphs and hamiltonian graphs
are discussed in the frst sections, including graphical sequences, eccentricity
value sequences of graphs. Operations, i.e., these union, join and Cartesian
product on graphs are introduced in Section 2.3 for fnding multi-space rep-
resentations of graphs. Then in Section 2.4, we show how to decompose
a complete graph or a Cayley graph to typical graphs, i.e., a Smarandache
multi-space consisting of these typical graphs. Section 2.5 concentrates on
labeling symmetric graphs by Smarandache digital, Smarandache symmet-
ric sequences and fnd symmetries both on graph structures and digits, i.e.,

beautiful geometrical f gures with digits.
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§2.1 GRAPHS

2.1.1 Graph. A graph G is an ordered 3-tuple (V, E; I), where V, E are fnite sets, V # ()
and [ : E — V X V, where each element in V or E is a label on G. The sets V and E are
called respectively the vertex set and edge set of G, denoted by V(G) and E(G).

An elements v € V(G) is incident with an element e € E(G) if I(e) = (v, x) or (x, V)
for an x € V(G). Usually, if (1, v) = (v, u), denoted by uv or vu € E(G) for Y(u,v) € E(G),
then G is called to be a graph without orientation and abbreviated to graph for simplicity.
Otherwise, it is called to be a directed graph with an orientation # — v on each edge
(u,v). The cardinal numbers of |V (G)| and |E(G)| are called its order and size of a graph
G, denoted by |G| and &(G), respectively.

Let G be a graph. We can represent a graph G by locating each vertex u in G by a
point p(u), p(u) # p(v) if u # v and an edge (u, v) by a curve connecting points p(u) and
p(v) on a plane R?, where p : G — p(G) is a mapping from the G to R%. For example,
agraph G = (V, E;I) with V = {v;, vy, v3,v4}, E = {ey, e, €3, €4, €5, €6, €7, €3, €9, €19} and
I(e;) = (vi,vi), 1 <@ < 4;1(es) = (vi,v2) = (v, V1), L(eg) = (v3,v4) = (va,v3), I(e6) =
I(e7) = (v2,v3) = (v3, W), l(eg) = I(e9) = (v4,v1) = (v1,v4) can be drawn on a plane as

shown in Fig.2.1.1.

€ €
V] €s V2
e
€9 |€10 esl [6
V4 ey V3
ey €3
Fig. 2.1.1

Inagraph G = (V, E; ), forVe € E, if I(e) = (u,u),u € V, then e is called a loop. For
Ve, e, € E, if I(e;) = I(e;) and they are not loops, then e; and e, are called multiple edges
of G. A graph is simple if it is loopless and without multiple edges, i.e., Ve, e, € E(I),
I(ey) # I(ey) if ey # e; and for Ve € E, if I(e) = (u,v), then u # v. In a simple graph, an
edge (u, v) can be abbreviated to uv.

An edge e € E(G) can be divided into two semi-arcs e,, e, if I(e) = (u, v). Call u the

root vertex of the semi-arc e,. Two semi-arc e,, f, are said to be v-incident or e—incident
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ifu =vore= f. The set of all semi-arcs of a graph G is denoted by X ! (G).

A walk in a graph I is an alternating sequence of vertices and edges uy, ey, u, e,
-, ep, Uy, With e; = (u;, u;41) for 1 < i < n. The number # is the length of the walk. 1f
u, = u,y1, the walk is said to be closed, and open otherwise. For example, the sequence
viejviesvegVzesviervaesv, 1s a walk in Fig.2.1.1. A walk is a trail if all its edges are
distinct and a path if all the vertices are distinct also. A closed path is usually called a
circuit or cycle. For example, viv,v3v4 and viv,v3v,4v; are respective path and circuit in
Fig.2.1.1.

A graph G = (V, E; I) is connected if there is a path connecting any two vertices in
this graph. In a graph, a maximal connected subgraph is called a component. A graph G
is k-connected if removing vertices less than k£ from G remains a connected graph.

A graph G is n-partite for an integer n > 1, if it is possible to partition V(G) into n
subsets Vi, V>, - - -, V,, such that every edge joints a vertex of Vito a vertex of V;, j #1, 1 <
i, j < n. A complete n-partite graph G is such an n-partite graph with edges uv € E(G) for
Yu e Viandv e V; for 1 <i,j < n, denoted by K(p1, p2,- -, pn) if |[Vi| = p; for integers
1 <i < n. Particularly, if |V;] = 1 for integers 1 < i < n, such a complete n-partite graph
is called complete graph and denoted by K,,. In Fig.2.1.2, we can f'nd the bipartite graph
K(4,4) and the complete graph K. Usually, a complete subgraph of a graph is called a

clique, and its a k-regular vertex-spanning subgraph also called a k-factor.

K(4’ 4) K6
Fig.2.1.2

2.1.2 Isomorphic Graph. Let G, = (V,E;; 1)) and G, = (V>, E;; I,) be two graphs.
They are identical, denoted by G; = G, if V; = V,,E; = E, and I} = I,. If there exists
al—1mapping ¢ : E; - E, and ¢ : V| — V, such that ¢/,(e) = Lo(e) for Ve € E;
with the convention that ¢(u, v) = (¢(u), #(v)), then we say that G, is isomorphic to G,
denoted by G| ~ G, and ¢ an isomorphism between G| and G,. For simple graphs H,, H>,
this def nition can be simplifed by (1, v) € I;(E)) if and only if (¢(u), p(v)) € L(E,) for
Yu,v € V.
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For example, let G| = (V1, Ey; ) and G, = (V>, E,; ;) be two graphs with
Vi={vi,v,vs}, E ={er, e, 63, €4},
Li(e1) = (vi,n), i(e2) = (v2,v3), Li(e3) = (v3,v1), [i(es) = (vi,v1)
and
Vy =Aur, up, w3},  Er = {1, 2, 13, fa)s

L(f1) = (u1,u2), L(f2) = (2, u3), L(f3) = (u3, w1), L(f4) = (u2, u2),
i.e., the graphs shown in Fig.2.1.3.

€4 4
€3 el f 2
V3 & %) us f3 [Z5)
G1 G2
Fig. 2.1.3

Defne amapping ¢ : E,J V1 — Ex U V2 by é(er) = fo, dex) = f5, d(e3) = fi, d(es) = fa

and ¢(v;) = u; for 1 < i < 3. It can be verif ed immediately that ¢/,(e) = L¢(e) for Ve €

E,. Therefore, ¢ is an isomorphism between G, and G, i.e., G| and G, are isomorphic.
If G, = G, = G, an isomorphism between G| and G is said to be an automorphism

of G. All automorphisms of a graph G form a group under the composition operation, i.e.,
#0(x) = ¢p(6(x)) for x € E(G) | V(G), denoted by AutG.

2.1.3 Subgraph. A graph H = (V1,E;; 1) is a subgraph of a graph G = (V, E; 1) if
VicV,EyCEand [, : Ey —» V1 X V. Weuse H < G to denote that H is a subgraph of
G. For example, graphs G, G,, G are subgraphs of the graph G in Fig.2.1.4.

U U7 Uy Uy U U7
Uy us Uy Uy U3 Uy
G G G G3

Fig. 2.1.4
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For a nonempty subset U of the vertex set V'(G) of a graph G, the subgraph (U) of G
induced by U is a graph having vertex set U and whose edge set consists of these edges
of G incident with elements of U. A subgraph H of G is called vertex-induced if H ~ (U)
for some subset U of V(G). Similarly, for a nonempty subset F' of E(G), the subgraph (F’)
induced by F in G is a graph having edge set " and whose vertex set consists of vertices
of G incident with at least one edge of . A subgraph H of G is edge-induced if H ~ (F)
for some subset F' of E(G). In Fig.2.1.4, subgraphs G| and G, are both vertex-induced
subgraphs ({uy, us}), ({u2, u3}) and edge-induced subgraphs {({(uy, us)}), ({(uz2,u3)}). For
a subgraph H of G, if |V (H)| = |V(G)|, then H is called a spanning subgraph of G. In
Fig.2.1.4, the subgraph Gj is a spanning subgraph of the graph G.

A spanning subgraph without circuits is called a spanning forest. It is called a span-
ning tree if it is connected. A path is also a tree in which each vertex has valency 2 unless
the two pendent vertices valency 1. We def ne the length of P, to be n — 1. The following

characteristic for spanning trees of a connected graph is well-known.

Theorem 2.1.1 A4 subgraph T of a connected graph G is a spanning tree if and only if T
is connected and E(T) = |V(G)| — 1.

Proof The necessity is obvious. For its sufficiency, since 7 is connected and E(T) =

|V(G)| — 1, there are no circuits in 7. Whence, T is a spanning tree. ]

2.1.4 Graphical Sequence. Let G be a graph. For Yu € V(G), the neighborhood Ng(u)
of vertex u in G is defned by Ng(u) = {v|V(u,v) € E(G)}. The cardinal number |Ng(u)|
is called the valency of vertex u in the graph G and denoted by ps(u). A vertex v with
pc(v) = 0 is called an isolated vertex and ps(v) = 1 a pendent vertex. Now we arrange all
vertices valency of G as a sequence pg(u) > pg(v) > --- > pg(w). Call this sequence the

valency sequence of G. By enumerating edges in £(G), the following result

> pow) = 2IE(G)

ueV(G)
holds. Let py,p,,---,p, be a sequence of non-negative integers. If there exists a graph
whose valency sequence is p; > p, > -+ > p,, we say that py,p,,- -+, p, 1s a graphical

sequence. We know results following for graphical sequences.

Theorem 2.1.2(Havel, 1955 and Hakimi, 1962) 4 sequence p1,p,,- - -, p, of non-negative
integers with py > py > -+ > p,, p > 2,p1 > 1 is graphical if and only if the sequence
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p2=1p3 =1+, 0041 = 1,042, pp is graphical.
Theorem 2.1.3(Erdos and Gallai, 1960) A sequence py,p»,- -+, p, of non-negative inte-
gers with py > p, > -+- > p, is graphical if and only if f} p; is even and for each integer
n,l<n<p-1, !

Zpi <nn-1)+ Zp: min{n, p;}.

i=1 i=n+1

A graph G with vertex set V(G) = {vi,,,---,v,} and edge set E(G) = {e}, ez, -+, e,}

can be also described by that of matrixes. One such a matrix is a p X g adjacency matrix
A(G) = [aij]pxg» Where a;; = [I7'(vi,v;)l. Thus, the adjacency matrix of a graph G is
symmetric and is a 0, I-matrix having 0 entries on its main diagonal if G is simple. For

example, the adjacency matrix A(G) of the graph in Fig.2.1.1 is

A(G) =

N O = =
S N = =
— =N O
—_ = O N

2.1.5 Eccentricity Value Sequence. For a connected graph G, let x,y € V(G). The
distance d(x, y) from x to y in G is def ned by

de(x,y) = min{ |V(P(x,y))| — 1| P(x,y) is a path connecting x and y }
and the eccentricity eg(u) of for u € V(G) is def ned by
ec(u) = max{ dg(u, x) | x € V(G)}.

A vertex u™ is called an ultimate vertex of vertex u if d(u,u*) = eg(u). Not loss of

generality, arrange these eccentricities of vertices in G in order eg(v;), eg(v2), - - -, eg(v,)
with eg(v)) < eg(vy) < -+ < eg(vy), where {vi,v,,---,v,} = V(G). The sequence
{ec(vi)}i<i<s 18 called the eccentricity sequence of G. If {ey, es, - - -, es} = {eg(v1), ec(v2), - - -,

ec(vy)} and e; < e; < -+ < ey, the sequence {e;}1<;< 1s called the eccentricity value se-
quence of G. For convenience, we abbreviate an integer sequence {r — 1 + i}j<<541 tO
[r, 7+ s].

The radius r(G) and diameter D(G) of graph G are respectively defned by (G) =
min{eg(u)lu € V(G)} and D(G) = max{eg(u)lu € V(G)}. Particularly, if n(G) = D(G),



38 Chap.2 Graph Multi-Spaces

such a graph G is called to be a self-centered graph, i.e., its eccentricity value sequence is
nothing but [#(G), 7(G)].
For Vx € V(G), def ne a distance decomposition {Vi(xX)} <izex) 0f G in root x by

G = Vi(x) @ Va(x) @ T @ Vec(x)(x)’

where Vi(x) = { u |d(x,u) = i, u € V(G)} for any integer i, 0 < i < eg(x). Then a

necessary and sufficient condition for the eccentricity value sequence of simple graph is

obtained in the following.

Theorem 2.1.4 A non-decreasing integer sequence {r;}\<i<s; is a graphical eccentricity

value sequence if and only if

(1) r <ry <2r;

(2) A1, 1) = i1 — 1l = 1 for any integeri, 1 <i<s-—1.

Proof If there is a graph G whose eccentricity value sequence is {r;}<i<s, then r; < r;
is trivial. Now we choose three different vertices u;, uy, u3 in G such that eg(u;) = r;
and dg(uz,u3) = r,. By defnition, we know that d(u;,u;) < r; and d(u;,usz) < ry.
According to the triangle inequality on distance, we know that r, = d(uy, u3) < dg(uy, uy)+
de(uy, u3) = dg(uy, ur) + dg(uy, uz) < 2ry. Thus ry < ry < 2ry.

Now if {e;}1<i<s 1S the eccentricity value sequence of a graph G, defne A(7) = e;41 —e;,
1 <i<n-1. We assert that 0 < A(7) < 1. If this assertion is not true, then there must
exists a positive integer /, 1 < I < n — 1 such that A(/) = e;y; — e; > 2. Choose a vertex
x € V(G) such that eg(x) = e; and consider the distance decomposition {V;(x)}o<i<e(x) OF
G in root x.

Clearly, eg(x) — 1 < eg(u;) < eg(x) + 1 for any vertex u; € V1(G). Since A(1) > 2,
there does not exist a vertex with the eccentricity eg(x)+1. Whence, we get e (1) < eg(x)
for Yu; € Vi(x). Now if we have proved that e(u;) < eg(x) for Yu; € Vi(x), 1 < j <
eg(x), we consider these eccentricity values of vertices in V. j(x). Let uj € Vi(x).
According to the defnition of {Vi(x)}o<i<es(x)» there must exists a vertex u; € V;(x) such
that (u;,u;.1) € E(G). Consider the distance decomposition {¥V;(#;)}o<j<es) 0f G in root
u;. Notice that u;,; € V(u;). Thereby we get that

eg(j) < eg(uj) +1 < eg(x) + 1.

Because we have assumed that there are no vertices with the eccentricity eg(x) + 1,

s0 eg(uj+1) < eg(x) for any vertex u;,; € V;,1(x). Continuing this process, we know that
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ec(y) < eg(x) = e; for any vertex y € V(G). But then there are no vertices with the
eccentricity e; + 1, contradicts to the assumption that A(/) > 2. Therefore 0 < A(7) < 1
and A(riyq,7) =1,1<i<s-1.

For any integer sequence {r;},<;<; With conditions () and (if) hold, it can be simply
written as {r,r + 1,---,r + s — 1} = [, + s — 1, where s < . We construct a graph with

the eccentricity value sequence [7, 7 + s — 1] in the following.
Casel. s=1.

In this case, {r;}1<i<s = [r,7]. We can choose any self-centered graph with #(G) = r,

for example, the circuit C,,. Clearly, the eccentricity value sequence of C, is [7, 7].
Case2. s> 2.

Choose a self-centered graph H with »(H) = r, x € V(H) and apath Py = uouy - - - ug_q.
Def ne a new graph G = P, (*) H as follows:

V(G = VP VD \ (o), E(G) = E(P) | i} (] ECHD \ {t10)

such as the graph G shown in Fig.2.1.5.

U 1Ugp --- Uy U

G=P,(OH

Fig 2.1.5

Then we know that eg(x) = r, eg(u,_1) =¥+ s — 1 and r < eg(x) < r+ s — 1 for all other
vertices x € V(G). Therefore, the eccentricity value sequence of G is [r,7 + s — 1]. This
completes the proof. U

For a given eccentricity value /, the multiplicity set Ng(I) is defned by Ng(l) =
{x|x € V(G),e(x) = [}. Jordan proved that the (Ng(#(G))) in a tree is a vertex or two
adjacent vertices in 1869. For a general graph, maybe a tree, we get the following result

which generalizes Jordan’s result on trees.
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Theorem 2.1.5 Let {r;}1<i<s be a graphical eccentricity value sequence. If |Ng(ry)| = 1,

then there must be I = 1, i.e., |Ng(r;)| = 2 for any integer i,2 <i < s.

Proof Let G be a graph with the eccentricity value sequence {r;},<;<; and Ng(7;) =
{xo0}, ec(x¢) = r;. We prove that eg(x) > eg(x) for any vertex x € V(G) \ {xo}. Consider
the distance decomposition {V;(xo)}o<i<es(xy) Of G In 10Ot X). First, we prove that eg(v;) =
ec(xp)+ 1 for any vertex v; € Vi(xp). Since eg(xg) — 1 < eg(v1) < eg(xo)+ 1 for any vertex
vi € Vi(xo), we only need to prove that eg(v;) > eg(x() for any vertex v; € V(xp). In fact,
since for any ultimate vertex x; of xo, we have dg(xo, x;) = eg(xp). So eg(xy) > eq(xo).
Notice that Ng(eg(xo)) = {xo}, x; ¢ Ng(eg(xo)). Consequently, eg(x]) > eq(xo). Choose
Vi € Vi(xo). Assume the shortest path from v; to x§ is P; = viv,---vex; and xo € V(P)).
Otherwise, we already have eg(v;) > eg(xg). Now consider the distance decomposition

{V,-(xg)}ogsec(xg) of G in root x;j. We know that v, € V;(x;). Thus we get that
ec(xy) — 1 < eg(vs) < eg(xg) + 1.

Therefore, e(vy) > ec(x;) — 1 > eg(xp). Because Ng(eg(xo)) = {xo}, s0 vy & Ng(eg(xp)).
This fact enables us f nally getting that eg(vy) > eg(x).
Similarly, choose vy, vs_1,- -+, v, to be root vertices respectively and consider these

distance decompositions of G in roots vy, vs_1, - - -, Vo, we £ nd that

eg(vs) > eg(xo),

ec(vs—1) > eg(xo),

eg(v1) > eg(xp).

Therefore, eg(vy) = eg(xp) + 1 for any vertex v; € Vi(xy). Now consider these vertices
in V5(xg). For Yv, € V,(xp), assume that v, is adjacent to uy,u; € Vi(xp). We know that
eg(v2) = eg(ur)—1 > eg(xy). Since [Ng(eg(xo))| = [Na(r7)l = 1, we geteg(v2) > eg(xo)+1.

Now if we have proved eg(v;) > eg(x) + 1 for any vertex v, € Vi(xo) U Va(xo) U - -+
U Vi(xo) for 1 < k < eg(xp). Let viy1 € Viy1(x9) and assume that vy, is adjacent to u; in
Vi(x0). Then we know that eg(viy1) = ec(ur) — 1 > eg(xg). Since [Ng(eg(xp))l = 1, we get
that eg(vir1) = eg(xg) + 1. Therefore, eg(x) > eg(xg) for any vertex x,x € V(G) \ {xo}.
Thus, if |[Ng(7;)| = 1, then there mustbe / = 1. ]

Theorem 2.1.5 is the best possible in some cases of trees. For example, the eccentric-

ity value sequence of a path P,,,; is [r, 2r] and we have that [Ng(r)| = 1 and |[Ng(k)| = 2
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for r+1 < k < 2r. But for graphs not being trees, we only found some examples satisfying
|NG(r1)| = 1 and |Ng(7;)| > 2. A non-tree graph with the eccentricity value sequence [2, 3]
and [NG(2)| = 1 can be found in Fig.2 in the reference [MaL2].

§2.2 GRAPH EXAMPLES

Some important classes of graphs are introduced in the following.

2.2.1 Bouquet and Dipole. In graphs, two simple cases is these graphs with one or two

vertices, which are just bouquets or dipoles. A graph B, = (Vy, Ep; 1) with V, = { O },

E, = {e1,es,---,e,} and I(e;) = (O, O) for any integer i, | < i < n is called a bouquet
of n edges. Similarly, a graph Dy,;, = (V4, Eg; 1) is called a dipole if V; = {0y, O,},
Ed = {el’ €2, 5 €5y €515 " "5 Cutls Cstl1s " " s es+l+t} and

(01,0y), ifl<i<s,
Li(e) =4 (01,0,), ifs+1<i<s+],
(0,,0,), ifs+Il+1<i<s+I+t.

For example, B3 and D, 3, are shown in Fig.2.2.1.

D o=

Fig. 2.2.1

In the past two decades, the behavior of bouquets on surfaces fascinated many mathemati-
cians on topological graphs. Indeed, its behaviors on surfaces simplify the conception of
surface. For such a contribution, a typical example is the classif cation theorem of sur-
faces. Thus by a combinatorial view, these connected sums of tori, or these connected

sums of projective planes are nothing but a bouquet on surfaces.

2.2.2 Complete Graph. A complete graph K,, = (V., E.; 1) is a simple graph with V. =
Vi, va, -, v, Ec = {e;j, 1 <4, j <m,i # j}and I.(e;) = (v, v;). Since K,, is simple, it can
be also defned by a pair (V, E) with V' = {vi,v,,---,v,}and E = {vv;, 1 <i,j <n,i # j}.
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The one edge graph K, and the triangle graph K3 are both complete graphs.
A complete subgraph in a graph is called a c/iqgue. Obviously, every graph is a union

of'its cliques.

2.2.3 r-Partite Graph. A simple graph G = (V; E; I) is r-partite for an integer » > 1 if it
is possible to partition V' into » subsets V', V5, - -+, V, such that for Ve € E, I(e) = (v;,v))
forv, € Vi,v; € V;andi # j,1 < i,j < r. Notice that by def nition, there are no edges
between vertices of V;, 1 < i < r. A vertex subset of this kind in a graph is called an
independent vertex subset.

For n = 2, a 2-partite graph is also called a bipartite. It can be shown that a graph is
bipartite if and only if there are no odd circuits in this graph. As a consequence, a tree or
a forest is a bipartite graph since they are circuit-free.

Let G = (V, E;I) be an r-partite graph and let Vi, V5, .-+, V, be its r-partite vertex
subsets. If there is an edge e;; € E for Vv; € V;and Vv; € V;, where 1 < i,j < r,i # j
such that /(e) = (v;,v;), then we call G a complete r-partite graph, denoted by G =
K(" 1,17, -+, 1V,]). Whence, a complete graph is just a complete 1-partite graph. For
an integer n, the complete bipartite graph K(n, 1) is called a star. For a graph G, we
have an obvious formula shown in the following, which corresponds to the neighborhood

decomposition in topology.

E@G) = | ] Eq(x.No(x).
xeV(G)
2.2.4 Regular Graph. A graph G is regular of valency k if pg(u) = k for Yu € V(G).
These graphs are also called k-regular. There 3-regular graphs are referred to as cubic
graphs. A k-regular vertex-spanning subgraph of a graph G is also called a k-factor of G.

For a k-regular graph G, by k|V(G)| = 2|E(G)|, thereby one of k£ and |V(G)| must be
an even number, i.e., there are no k-regular graphs of odd order with k£ = 1(mod2). A
complete graph K, is (n — 1)-regular and a complete s-partite graph K(p;, p2,- - -, ps) of
order n with py = p, = --- = p; = p is (n — p)-regular.

In regular graphs, those of simple graphs with high symmetry are particularly im-
portant to mathematics. They are related combinatorics with group theory and crystal
geometry. We brief'y introduce them in the following.

Let G be a simple graph and H a subgroup of AutG. G is said to be H-vertex tran-

sitive, H-edge transitive or H-symmetric if H acts transitively on the vertex set V(G),
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the edge set £(G) or the set of ordered adjacent pairs of vertex of G. If H = AutG, an
H-vertex transitive, an H-edge transitive or an H-symmetric graph is abbreviated to a
vertex-transitive, an edge-transitive or a symmetric graph.

Now let I be a fnite generated group and S C I'such that I ¢ S and S™! = {x7!|x €
S} =S8. A Cayley graph Cay(I" : §) is a simple graph with vertex set V'(G) = I' and edge
set E(G) = {(g, h)lg”'h € S}. By the def nition of Cayley graphs, we know that a Cayley
graph Cay(I : S) is complete if and only if S = T \ {1r} and connected if and only if
I'=(S).

Theorem 2.2.1 A Cayley graph Cay(l : S) is vertex-transitive.

Proof For Vg € T, def ne a permutation ¢, on V(Cay(I" : §)) = I'by {;(h) = gh,h €
I". Then ¢, is an automorphism of Cay(T" : S) for (h,k) € E(Cay(I' : S)) = h''ke S =
(gh)'(gk) € S = (L(h), Lo(k)) € E(Cay(T : S)).

Now we know that - 1(h) = (kh™')h = k for Vh,k € T. Whence, Cay(I" : S) is

vertex-transitive. O

It should be noted that not every vertex-transitive graph is a Cayley graph of a f-
nite group. For example, the Petersen graph is vertex-transitive but not a Cayley graph
(see[CaM1], [GoR1 and [Yapl] for details). However, every vertex-transitive graph can
be constructed almost like a Cayley graph. This result is due to Sabidussi in 1964. The

readers can see [Yap1] for a complete proof of this result.

Theorem 2.2.2 Let G be a vertex-transitive graph whose automorphism group is A. Let
H = A, be the stabilizer of b € V(G). Then G is isomorphic with the group-coset graph
C(A/H,S), where S is the set of all automorphisms x of G such that (b, x(b)) € E(G),
V(C(A/H,S)) = A/H and E(C(4/H, S)) = {(xH,yH)|x"'y € HS H}.

tetrahedron cube

Fig. 2.2.2

2.2.5 Planar Graph. Every graph is drawn on the plane. A graph is planar if it can be
drawn on the plane in such a way that edges are disjoint expect possibly for endpoints.

When we remove vertices and edges of a planar graph G from the plane, each remained



44 Chap.2 Graph Multi-Spaces

connected region is called a face of G. The length of the boundary of a face is called its
valency. Two planar graphs are shown in Fig.2.2.2.
For a planar graph G, its order, size and number of faces are related by a well-known

formula discovered by Euler.
Theorem 2.2.3 let G be a planar graph with ¢(G) faces. Then
Gl - &(G) + ¢(G) = 2.

Proof This result can be proved by induction on &(G). See [GrT1] or [MoT1] for a
complete proof. 0

For an integer s, s > 3, an s-regular planar graph with the same length » for all faces

is often called an (s, r)-polyhedron, which are completely classif ed by the ancient Greeks.

(3.,3) (3.4) 4,3)
tetrahedron hexahedron octahedron
(3.5) (5.3)
dodecahedron 1cosahedron
Fig2.2.3

Theorem 2.2.4 There are exactly fve polyhedrons, two of them are shown in Fig.2.2.3.

Proof Let G be a k-regular planar graph with / faces. By def nition, we know that
Glk = $(G)l = 2(G). Whence, we get that |G| = @ and 4(G) = 28§G
to Theorem 2.2.3, we get that
2&(G)
k

). According

26(G)
=

-&(G) + 2,

ie., 5
&(G) = PR

Z_14+Z
AR
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2 2
Whence, z + 7 1 > 0. Since £, [ are both integers and k > 3, / > 3, if k > 6, we get

+ +

~1 N

-1<

W N
NN

-1=0,

el IS

contradicts to that % + % — 1 > 0. Therefore, £k < 5. Similarly, / < 5. So we have
3 <k<5and3 <[ < 5. Calculation shows that all possibilities for (k, /) are (k,[) =
(3,3),(3,4),(3,5),(4,3) and (5, 3). The (3,3), (3,4), (3,5),(4,3) and (5, 3) polyhedrons
are shown in Fig.2.2.3. 0

An elementary subdivision on a graph G is a graph obtained from G replacing an edge
e = uv by a path uwv, where, w ¢ V(G). A subdivision of G is a graph obtained from G
by a succession of elementary subdivision. A graph H is def ned to be a homeomorphism
of G if either H ~ G or H is isomorphic to a subdivision of G. Kuratowski found the
following characterization for planar graphs in 1930. For its a complete proof, see [BoM1]
or [ChL1] for details.

Theorem 2.2.5 A graph is planar if and only if it contains no subgraph homeomorphic
with K5 or K(3, 3).

2.2.6 Hamiltonian Graph. A graph G is hamiltonian if it has a circuit containing all
vertices of G. Such a circuit is called a hamiltonian circuit. Similarly, if a path containing
all vertices of a graph G, such a path is called a hamiltonian path.

For a given graph G and V3, V, € V(G), def ne an edge cut Eg(V1, V) by

EG(VI, Vg) = { (M,V) (S E(G) | ue Vl,V € Vz}

Then we have the following result for characterizing hamiltonian circuits.

Theorem 2.2.6 A circuit C of a graph G without isolated vertices is a hamiltonian circuit
if and only if for any edge cut C, |[E(C) () E(C)| = 0(mod2) and |E(C) N E(C)| = 2.

Proof For any circuit C and an edge cut C, the times crossing C as we travel along
C must be even. Otherwise, we can not come back to the initial vertex. Whence, if C is a
hamiltonian circuit, then |E(C) (" E(C)| # 0. So [E(C)N E(C)| = 2 and |E(C) (" E(C)| =
0(mod?2) for any edge cut C.

Conversely, if a circuit C satisfes |E(C) () E(C)| > 2 and |E(C) (N E(C)| = 0(mod2)
for any edge cut C, we prove that C is a hamiltonian circuit of G. In fact, if V(G)\ V(C) #



46 Chap.2 Graph Multi-Spaces

@, choose x € V(G) \ V(C). Consider an edge cut Eg({x}, V'(G) \ {x}). Since ps(x) # 0,
we know that |[Eg({x}, V(G) \ {x})| = 1. But since V(C) (V' (G) \ V(C)) = 0, there must
be |[Eq({x}, V(G) \ {x}) N E(C)| = 0, contradicts to the fact that |[E(C) () E(C)| = 2 for any
edge cut C. Therefore V(C) = V(G) and C is a hamiltonian circuit of G. 0

Let G be a simple graph. The closure of G, denoted by C(G) is def ned to be a graph
obtained from G by recursively joining pairs of non-adjacent vertices whose valency sum
is at least |G| until no such pair remains. In 1976, Bondy and Chvatal proved a very useful

theorem for hamiltonian graphs in [BoC1], seeing also [BoM 1] following.

Theorem 2.2.7 A simple graph is hamiltonian if and only if its closure is hamiltonian.
This theorem generalizes Dirac’s and Ore’s theorems simultaneously following:

Dirac (1952): Every connected simple graph G of order n > 3 with the minimum

valency> 5 is hamiltonian.

Ore (1960): If G is a simple graph of order n > 3 such that pg(u) + pc(v) > n for all

distinct non-adjacent vertices u and v, then G is hamiltonian.

In 1984, Fan generalized Dirac’s theorem to a localized form and proved that:

Let G be a 2-connected simple graph of order n. If the condition

max{og(u), pc(v)} =

NS

holds for Yu,v € V(G) provided ds(u,v) = 2, then G is hamiltonian.

After Fan’s paper [Fanl], many researches concentrated on weakening Fan’s condi-
tion and found new localized conditions for hamiltonian graphs. For example, the next

result on hamiltonian graphs obtained by Shi in 1992 is such a result.

Theorem 2.2.8(Shi, 1992) Let G be a 2-connected simple graph of ovder n. Then G

contains a circuit passing through all vertices of valency> 7

Proof Assume the assertion is false. Let C = vyv, - - - v;v; be a circuit containing as
many vertices of valency> g as possible and with an orientation on it. For Vv € V(C),
v* denotes the successor and v~ the predecessor of v on C. Set R = V(G) \ V(C). Since
G is 2-connected, there exists a path length than 2 connecting two vertices of C that is
internally disjoint from C and containing one internal vertex x of valency> g at least.

Assume C and P are chosen in such a way that the length of P as small as possible. Let
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Ni(x) = Ng(x) R, Ne(x) = No(x) (1 C, No(x) = {vv™ € Ne(x)} and Ne(x) = {vp* €
Ne(x)}.

Not loss of generality, we assume v; € V(P) () V(C). Let v, be the other vertex in
V(P)( V(C). By the way C was chosen, there exists a vertex v; with 1 < s < ¢ such that
pc(vg) > g and p(v;) < g forl <i<s.

If s > 3, by the choice of C and P the sets

NE(VS) \ {Vl}’ NC(X)’ NR(VS)’ NR(X)’ {X, Vs—l}

are pairwise disjoint, which implies that

S
\%

INc(ve) \ {vidl + INc(0)l + INg(vo)l + INR(X)] + [{x, V51 }]

pc(vs) +pe(x) +12n+1,
a contradiction. If s = 2, then the sets
NE(VS)’ NC(x)’ NR(VS)’ NR(.X), {x}

are pairwise disjoint, which yields a similar contradiction. U

There are three induced subgraphs shown in Fig.2.2.4, which are usually used for

fnding local conditions for hamiltonian graphs.

K3 Z Z

Fig 2.2.4

For an induced subgraph L of a simple graph G, a condition is called a localized
. o G
condition Dy (1) if d;(x,y) = [ implies that max{pg(x), poc(y)} = |2—| for Vx,y € V(L). Then

we get the following result.

Theorem 2.2.9 Let G be a 2-connected simple graph. If the localized condition D;(2)
holds for induced subgraphs L ~ K, 5 or Z, in G, then G is hamiltonian.



48 Chap.2 Graph Multi-Spaces

Proof By Theorem 2.2.8, we denote by c2(G) the maximum length of circuits pass-
ing through all vertices> g Similar to the proof of Theorem 2.2.7, we know that for

x,y € V(G), if po(x) = ,pc;(y) > and xy & E(G), then cy(G Uty = c4(G).
Otherwise, if c2(G U{xy}) Zcz (G), there exists a circuit of length ¢z (G (J{xy}) and pass-
ing through all vertices> X Let Cy be such a circuit and Cy = xx1xp--- x;yx with

s = ¢2(G U{xy}) — 2. Notice that

W@ V(e (6 ton) =0
and

Noo) () (M@ 7 (€5 (G ) = 0.
If there exists an integer i, | < i < s, xx; € E(G), then x;,_1y ¢ E(G). Otherwise, there is
a circuit C" = xx;X;41 - - - XsVX;1 X;—2 - - - X in G passing through all vertices> 3 with length

c2(G Ufxp}), contradicts to the assumption that ¢z (G U{xy}) > ¢2(G). Whence,
p6(x) +p6(») < V(G \ V(C(C)| + |[(C(Cy)| -1 =n~1,
also contradicts to that pg(x) > g and pg(y) > g Therefore, ¢:(G U{xy}) = ¢2(G) and
generally, c:(C(G)) = c2(G).
Now let C be a maximal circuit passing through all vertices> g in the closure C(G)

of G with an orientation C. According to Theorem 2.2.7, if C(G) is non-hamiltonian,
we can choose H be a component in C(G) \ C. Defne No(H) = ( U Neoy(x) N V(O).
Since C(G) is 2-connected, we get that [No(H)| > 2. This enables one to choose vertices
X1, X2 € Nc(H), x; # x; and x; can arrive at x, along C. Denote by xlﬁxz the path from
X1 to x, on C and x2<C_’x1 the reverse. Let P be a shortest path connecting xi, x, in C(G)

and
€ Noy(x)) [ V) [V V(P), 12 € Newy(a) [\ VE) () V(P).
Then
EC@) [ (txraz. xTa3 | Eew () (7, 27,55, x3) = 0

and <{x1‘,x1,x1+,u1}> # K5 or <{x§,x2,x;,u2}> # K ;. Otherwise, there exists a circuit
longer than C, a contradiction. We need to consider two cases following.
Case 1. <{x1‘,x1,x1+,u1}> # K3 and <{x§,x2,x;,u2}> * K 3.

In this case, x| x| € E(C(G)) and x; x5 € E(C(G)). By the maximality of C in C(G),

we have two claims.
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Claim 1.1 u; = up = u.
Otherwise, let P = xjuyy; - - - yjup. By the choice of P, there must be

g, x1, X7, ur, 1}y = Zy and ({x3, x2, X3, 2, V1Y) = 25

Since C(G) also has the D;(2) property, we get that

NS

, max{pc)(x127), pc)(u2)} =

NS

max{pc) (X)), Py (u1)} =

Whence, pc)(x7) > g, pcG)(xy) = g and x7x; € E(C(G)), a contradiction.

Claim 1.2 x,x; € E(C(G)).
If x1x, ¢ E(C(G)), then ({x,x1,x{,u,x2}) = Z,. Otherwise, x,x7 € E(C(G)) or
x,x7 € E(C(G)). But then there is a circuit

C, = x;r?xl_xzuxlﬁx;x;“ orC, = x;r?xluxsz?xgx;“,
contradicts the maximality of C. Therefore, we know that
{xy, xp, X7, u, X0}y = Z,.
By the property D;(2), we get that peg)(x7) > g
Similarly, consider the induced subgraph <{x§ , X2, X5, U, x2}>, we get that pc)(x5)

> g Whence, x;x; € E(C(G)), also a contradiction. Thereby we know the structure of

G as shown in Fig.2.2.5.

X X

X2

Fig 2.2.5

By the maximality of C in C(G), it is obvious that x;~ # x;. We construct an
induced subgraph sequence {G}i<i<m, m = [V(x] (5x; )|—2 and prove there exists an integer

r,1 <r <msuchthat G, ~ Z,.
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First, we consider the induced subgraph G| = <{x1, u, Xz, Xy, xl“}>. If G, =~ Z,, take

r = 1. Otherwise, there must be
(X7 X2, X7 X2, X7 ", X7 X1} ﬂ E(C(G)) # 0.

If x{x, € E(C(G)), or x; x, € E(C(G)), or x; u € E(C(G)), there is a circuit C3 =
= _ I — L = L
x; Cxyx; Cxjuxyxy, or Cy = x7” Cxgx; Cxjxyxjuxyx;, or Cs = x7~ Cx{ x| xjux; . Each
of these circuits contradicts the maximality of C. Therefore, x;"x; € E(C(G)).
Now let xﬁfx&r = X[ V1V2* " YmX;, Where yo = x,y1 = x;~ and y,, = x3". If we have
def ned an induced subgraph G, for any integer & and have gotten y;x; € E(C(G)) for any

integer i, 1 <7 < kand y;, # x5, then we defne

Gi1 = ({)’k+1a)’k, Xy, X2, u}).

If Giy1 = Z,, then r = k + 1. Otherwise, there must be

{Vkt, Yixo, Vi1 Us Vi1 X2, Vier1 X1 } ﬂ E(C(G)) # 0.

If you € E(C(G)), or yexy € E(C(G)), or yrau € E(C(G)), or yrixz € E(C(G)),
there is a circuit Cy = ykﬁxzrxf(fyk_lxluyk, or C; = y,fC_’x;r x5 <C_’x1rxl‘<5 Vi1 X1UX2V), OF
Cg = yk+1<(7xl+xl‘<(7ykx1uyk+1, or Cy = yk+1<(7x§x5 gx?xl‘gykxlu X2Vk+1- Each of these
circuits contradicts the maximality of C. Thereby, y;,1x1 € E(C(G)).

Continue this process. If there are no subgraphs in {G;},<i<, 1somorphic to Z,, we
fnally get x,x;* € E(C(G)). But then there is a circuit Cyo = xl‘(C_’x;”rxluxzxér fxi’xl‘ in
C(G). Also contradicts the maximality of C in C(G). Therefore, there must be an integer
r,1 <r <msuchthat G, ~ Z,.

Similarly, let xg(fxf = X;212y - ZX|, Where t = |V(x5(5xf)| -2,z0 = x3,z{" =
X2,z = x| . We can also construct an induced subgraph sequence {G'}<i<: and know that
there exists an integer 4, 1 < & < ¢ such that G" ~ Z, and x,z; € E(C(G)) for0 <i < h—1.

Since the localized condition D;(2) holds for an induced subgraph Z, in C(G),
we get that max{pcG)(w), pc)(vr-1)} = g and max{pc(G)(u), pc)(Zn-1)} = g Whence

pccyr-1) 2 g, pcG)(2n-1) = g and y,_1z,_1 € E(C(G)). But then there is a circuit

D _ oy
Cii =y sz Xy CZh—zxzuxly;~—2?X1 x1?2h—1)7r—1

in C(G), where it h = 1, orr = 1, x;t_’zh_z = (), or yr_ztle‘ = (). Also contradicts the
maximality of C in C(G).



Sec.2.2 Graph Examples 51

Case 2. <{x1‘,x1,xf,u1}> # K3, <{x;,x2,x;,u2}> ~ K3 or <{x1‘,x1,xf,u1}> ~ K, 3, but
<{x;,xz,x;, u2}> # K3

Not loss of generality, we assume that
(e, xnxp, ) # Kis, (g, x0, x5, 0}) = Ky 3.

Since each induced subgraph K3 in C(G) possesses D;(2), we get that max{pcq)(u),
n n n n
pce) (X))} = 7 and max{pcG)(1), pc)(X3)} = 7 Whence pc)(x;) = 7 Pce) (%) = 7

and x; x; € E(C(G)). Therefore, the discussion of Case 1 also holds in this case and yields

similar contradictions.

Combining Case 1 with Case 2, the proof is complete. U

Let G, Fy, F,,---,F; be k + 1 graphs. If there are no induced subgraphs of G iso-
morphic to F;,1 < i < k, then G is called {Fy, F»,-- -, F}-free. We immediately get a

consequence by Theorem 2.2.9.

Corollary 2.2.1 Every 2-connected {K, 3, Z,}-free graph is hamiltonian.

For a graph G, u € V(G) with pg(u) = [, let H be a graph with / pendent vertices

Vi, V2, - -, V.. Defne a splitting operator ¥ : G — G"™ on u by
V(G") = (VG \ ) | D\ vz v,
E(G") = (E(G) \ {ux; € EG), 1 <i < 1))
JEan\ vy e B 1 < i<y | o1 i<,
Such number / is called the degree of the splitting operator 9 and N(3(u)) = H \ {x;y;, 1 <

i < [} the nucleus of ¥ . A splitting operator is shown in Fig.2.2.6.

X1 X1

X1 X2
Xi X2 0 »

E— Yi Y2

X3 ’ X3

Fig 2.2.6

Erd6s and Rényi raised a question in 1961: in what model of random graphs is it true

that almost every graph is hamiltonian? Pbdsa and Korshuuov proved independently that
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for some constant ¢ almost every labeled graph with n vertices and at least n logn edges
is hamiltonian in 1974. Contrasting this probabilistic result, there is another property for
hamiltonian graphs, i.e., there is a splitting operator © such that G?® is non-hamiltonian
for Yu € V(G) of a graph G.

Theorem 2.2.10 Let G be a graph. For Yu € V(G), pg(u) = d, there exists a splitting

operator ¥ of degree d on u such that G*™ is non-hamiltonian.

Proof For any positive integer i, def ne a simple graph ®; by V(®,) = {x;, v, zi, u;}
and E(©;) = {xy;, X;z;, yizi, yilli, ziu;}. For integers 7, j > 1, the point product ®; © ®; of ©;
and ©; is def ned by

V(©00) =r®)| | re)\ ),
E©,00)) = E©)|_JE®©)|_Jtx xiz) \ lxwj.xj2)).

Now let H; be a simple graph with

VIH) = V(000,00 --0Q4) U{Vl, Vo, e, Val,
EH;) =E©,00,0:--0g1) U{Wul, Vo, + -+, Vallg}.

Then ¥ : G — G”™ is a splitting operator of degree d as shown in Fig.2.2.7.

Vi V2 Vg

Xd+1

Fig 2.2.7

For any graph G and w € V(G), pc(w) = d, we prove that G'™ is non-hamiltonian.
In fact, If G”™ is a hamiltonian graph, then there must be a hamiltonian path P(u;, u;)
connecting two vertices u;, u; for some integers 7, j,1 < i,j < d in the graph H; \
{Vi,v2,---,vq}. However, there are no hamiltonian path connecting vertices u;, u; in the
graph H; \ {vi,v,,---,v,} for any integer i, j,1 < i,j < d. Therefore, G"™ is non-

hamiltonian. O
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§2.3 GRAPH OPERATIONS WITH SEMI-ARC AUTOMORPHISMS

For two given graphs G| = (V1.E; 1) and G, = (V3, Ey; 1), there are a number of ways

to produce new graphs from G, and G,. Some of them are introduced in the following.

2.3.1 Union. A union Gy |J G, of graphs G| with G, is def ned by

VG| G = n, BGi| )G = Ei| B 1B ) E2) = h(ED | ] B(E).

A graph consists of k disjoint copies of a graph H, k > 1 is denoted by G = kH. As an

5
K = U St
i=1

for graphs shown in Fig.2.3.1 following

2 3
3 . 4 4

I 62‘ 6 3 6 4 6
S1.5 S1.4

S1.3 S1.2

example, we f'nd that

6
5
S

Fig. 2.3.1

n—1

and generally, K, = |J §;. Notice that kG is a multigraph with edge multiple k£ for any
i=1

integer k, k > 2 and a simple graph G.

C3 C4 C3 + C4

Fig 2.3.2

2.3.2 Complement and Join. A complement G of a graph G is a graph with vertex set
V(G) such that vertices are adjacent in G if and only if these are not adjacent in G. A join
G + G, of G| with G, is def ned by

V(G] + Gg) = V(G]) U V(Gg),
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E(Gy + Gy) = E(G1) U E(G2) Ul(u, v)lu € V(Gy), v € V(Ga)}

(G + Ga) = (G U L(G2) U (u,v) = (u, v)lu € V(G1), v € V(G2)}
Applying the join operation, we know that K(m, n) ~ K,, + K,,. The join graph of circuits
C; and Cy is given in Fig.2.3.2.

2.3.3 Cartesian Product. A Cartesian product G| X G, of graphs G| with G, is defned
by V(G X Gy) = V(Gy) X V(G,) and two vertices (u1,u,) and (vi,v,) of Gy X G, are
adjacent if and only if either #; = v, and (u, v,) € E(G;) or uy = v, and (uy, vy) € E(Gy).

For example, K, X Pg is shown in Fig.2.3.3 following.

u
. 1 2 3 4 5 6
2
\'% P6
uj [25] Us Uy Us Ug
141 Vo V3 V4 Vs Ve
K> X Pg
Fig.2.3.3

2.3.4 Semi-Arc Automorphism. For a simple graph G with n vertices, it is easy to

verify that AutG < §,, the symmetry group action on these n vertices of G.

G AutG order
P, 7z, 2
C, D, 2n
K, S, n!
Kyn(m # n) Sn,XxS, m!n!
Ky, SH[S,] 2n!?
Table 2.3.1

But in general, the situation is more complex. In Table 2.3.1, we present automorphism
groups of some graphs. For generalizing the conception of automorphism, the semi-arc

automorphism of a graph is introduced in the following.
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Def nition 2.3.1 A one-to-one mapping & on X 1 (G) is called a semi-arc automorphism of
a graph G if é(e,) and &(f,) are v—incident or e—incident if e, and f, are v—incident or
e—incident for Ve, f, € X 1 (G).

All semi-arc automorphisms of a graph also form a group, denoted by Aut 1 G.The

Table 2.3.2 following lists semi-arc automorphism groups of a few well-known graphs.

G Aut; G order
K, S, n!
Ko S2[S4] 2n!?
B, SalS-] 2"n!
Do o S, xS, 2n!
Dyiik #1) | S2[Sk] X S, xS[S)] | 2% nlk!l!
Dy ik Sy XS, X (Sa[Si])? | 2%+ nlk!?

Table 2.3.2

In this table, Dy, is a dipole graph with 2 vertices, n multiple edges and D, ;; is a
generalized dipole graph with 2 vertices, » multiple edges, and one vertex with £ bouquets
and another, / bouquets. This table also enables us to fnd some useful information for
semi-arc automorphism groups. For example, Aut ! K, = Autk,, = §,, Aut %Bn = S.,[S2]
but AutB, = S,, i.c., Aut ! B, # AutB, for any integer n > 1.

For Vg € AutG, there is an induced action glé X 1 (G)—- X 1 (G) defned by

Ye, € X% (G), g(en) = g(€)qw)-

All such induced actions on X ] (G) by elements in AutG are denoted by AutGl2.
The graph B, shows that Aut 1 G may be not the same as AutG|?. However, we geta

result in the following.

Theorem 2.3.1 For a graph G without loops,
Aut,G = AutG]*.

Proof By the def nition, we only need to prove that for V¢ 1€ Aut ! G, éE=¢€ ! lc €
AutG and £, = 7. In fact, Let ¢}, /7 € X,(G) with o, e € {+, -}, where e = uv € E(G),
f =xy e E(G). Now if

§i(e) = /5,
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by def nition, we know that f% (ey) = /7. Whence, f% (e) = f. That is, f% lc € AutG.
By assumption, there are no loops in G. Whence, we know that & 1 lc = 1auc 1f and
only iff% = lau, G- SO f% is induced by f% | on X% (G). Thus,
2

Aut; G = AutGl?. O

We have know that Aut 1 B, # AutB, for any integer n > 1. Combining this fact with

Theorem 2.1.3, we know the following.

Theorem 2.3.2 Aut%G = AutG|? if and only if G is a loopless graph.

§2.4 DECOMPOSITIONS

2.4.1 Decomposition. A graph G can be really represented as a graph multi-space
by decomposing it into subgraphs. for example, the complete graph K¢ with vertex set
{1,2,3,4,5,6} has two families of subgraphs {Cs, C3, C3, P, P5, P3} and {S 5,514,513,
S12,5 1.1}, such as those shown in Fig.2.4.1 and Fig.2.4.2.
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Cs P P2 P C! C?
Fig 2.4.1
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Fig 2.4.2
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Whence, we know that

E(Ks) = E(Co)|_JECH| JECH JE@PH| JEP)|  EP),
E(Ke) = ES15)|_JES 10| JES 19| JES 12 JES10).
These formulae imply the conception of decomposition of graphs.
Generally, let G be a graph. A decomposition of G is a collection {H,},<;<, of sub-

graphs of G such that for any integer i, 1 < i < s, H; = (E;) for some subsets E; of £(G)
and {E;},<i<, 1s a partition of E(G), denoted by

G:Hl@Hz@---@Hs.

By def nition, we easily get decompositions for some well-known graphs such as

n k m n
B, = JBi(0), Dy = JBrCOND (K [ Bi1(O2)),
i=1 i=1 i=1 i=1

where V(B1)(0y) = {O1}, V(B1)(0) = {05} and V(K,) = {Oy, O,}. The following result

is obvious.

Theorem 2.4.1 Any graph G can be decomposed to bouquets and dipoles, in where K, is

seen as a dipole Dy .

Theorem 2.4.2 For every positive integer n, the complete graph K5, can be decomposed

to n hamiltonian circuits.

Proof For n = 1, K3 is just a hamiltonian circuit. Now let n > 2 and V(Kj,41) =
{vo, Vi, V2, -+, va,}. Arrange these vertices vy, vy, - - -, v, on vertices of a regular 2n-gon
and place vy in a convenient position not in the 2n-gon. Fori = 1,2, ---,n, we def ne the
edge set of H; to be consisted of vov;, vov,+; and edges parallel to v;v;;; or edges parallel

to v;_1viy1, Where the subscripts are expressed modulo 2n. Then we get that
Ky =Hi P H,
with each H;, 1 <i < n being a hamiltonian circuit
VoViVit1 Vi1 Vis1Vi=2 * * " Vuti=1Vn+i+1 Va+iV0- O
Theorem 2.4.2 implies that K5,,,; = Lnjl H; with
i-

H; = VoViVis 1 Vic1 Vis1 Vica * * * Viric1 Vatin 1 VasiV0-
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2.4.2 Factorization of Cayley Graph. Generally, every Cayley graph of a fnite group

I' can be decomposed into 1-factors or 2-factors in a natural way shown in the following.

Theorem 2.4.3 Let G be a vertex-transitive graph and let H be a regular subgroup of

AutG. Then for any chosen vertex x,x € V(QG), there is a factorization

G:L -~ (x,y)H]eBL P (x,y>H),

ENG(X),|H(xp)|=1 ENG(X),|H(x)|=2
Jor G such that (x,y)" is a 2-factor if |H x| = 1 and a 1-factor if |H )| = 2.

Proof We prove the following claims.
Claim 1. Vx € V(G), x" = V(G) and H, = 1.
Claim 2. For Y(x,y), (u,w) € E(G), (x,»)" N(u,w)? = 0 or (x,y) = (u, w)".

Claims 1 and 2 are holden by def nition.

Claim 3. ForV(x,y) € E(G),|Hyl=1 or 2.

Assume that |H,,)| # 1. Since we know that (x,»)" = (x,), i.e., (x",)") = (x,y) for
any element 4 € H, ). Thereby we get that x" = x and ) = y or x" = y and )" = x. For
the frst case we know 4 = 1y by Claim 1. For the second, we get that ¥ = x. Therefore,
W =1y.

Now if there exists an element g € H,)\{ly,h}, then we get x* = y = x" and

»¢ = x = y". Thereby we get g = /1 by Claim 1, a contradiction. So we get that |H,, )| = 2.

Claim 4. For any (x,y) € E(G), if |H(x)| = 1, then (x,y)" is a 2-factor.

Because x” = V(G) c V(<(x, i >) c V(G), so V(<(x, ! >) = V(G). Therefore,
(x,y)" is a spanning subgraph of G.

Since H acting on V(G) is transitive, there exists an element # € H such that x" = y. It
is obvious that o(%) is fnite and o(h) # 2. Otherwise, we have |H,,)| > 2, a contradiction.
Now (x, )" = xxhixh® ... xt"""

decomposition of A on (k). Suppose H = |J<(h)a;, (hya;(\{hya; = 0, if i # j, and
i=1

x is a circuit in the graph G. Consider the right coset
S

ap = lH.

Now let X = {aj,ay, ...,a;}. We know that for any a,b € X, ((h)ya) (h)b) = 0
if a # b. Since (x,») = ((x,y)™)* and (x,y)"" = ((x,y)™)" are also circuits, if
V(<(x, y)<h>“>) N V(<(x, y)<h>b>) # 0 for some a,b € X,a # b, then there must be two
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elements £, g € (h) such that x/* = x¥* . According to Claim 1, we get that fa = gb, that
isab™! € (h). So (h)ya = (h) b and a = b, contradicts to the assumption that a # b.

Thereafter we know that (x,y)? = |J(x,»)* is a disjoint union of circuits. So
aeX

(x,y)" is a 2-factor of the graph G.

Claim 5. For any (x,y) € E(G), (x,»)" is an 1-factor if |H )| = 2.

Similar to the proof of Claim 4, we know that V(((x, »H >) = V(G) and (x,y)" is a
spanning subgraph of the graph G.

Let Hi,, = {lu, h}, where x* = y and y» = x. Notice that (x,»)* = (x,y) for
Ya € H,,). Consider the coset decomposition of /7 on H,,,, we know that / = Ltj H.)bi
, where Hoby () Houpby = 0if i # /.1 < i, j < 1. Now let L = (Hyyby | < i < 1), We

get a decomposition

)" = ey’

beL

for (x,y)". Notice that if b = H b € L, (x, )’ is an edge of G. Now if there exist two
elementsc,d € L,c = H, fandd = H(, g, f # g such that V'({(x,»)*)) N V(<(x, )¢ >) #
0, there must be x/ = x2 or x/ = 8. If ¥/ = x¢, we get f = g by Claim 1, contradicts to the
assumption that f/ # g. If x/ = ¢ = x"8, where h € H(, ), we get f/ = hgand fg™' € H,,,),
so H.,) f = H(x,g. According to the def nition of L, we get f = g, also contradicts to the
assumption that /" # g. Therefore, (x,) is an 1-factor of the graph G.

Now we can prove the assertion in this theorem. According to Claim 1- Claim 4, we

get that

(g +ol.g )

ENG(x)s|H(x,y)|:1 GNG(X),lH(xy)|:2

for any chosen vertex x, x € V(G). By Claims 5 and 6, we know that (x, y)” is a 2-factor
if [H.,)| = 1 and is a 1-factor if [H(,,)| = 2. Whence, the desired factorization for G is
obtained. 0

For a Cayley graph Cay(I" : §'), by Theorem 2.2.2 we can always choose the vertex
x = 1r and H the right regular transformation group on I'. After then, Theorem 2.4.3 can

be restated as follows.

Theorem 2.4.4 Let ' be a fnite group with a subset S,S™' = S, 1r ¢ S and H is the

right transformation group on I'. Then there is a factorization
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G=( P PP s

s€S,s2#11 seS,s2=1r
for the Cayley graph Cay(T : S) such that (1v, s) is a 2-factor if s*> # 1t and 1-factor if

S2 = lr.

Proof For any h € H ), if h # I, then we get that 1v4 = s and sh = 1, that
is s> = Ir. According to Theorem 2.4.3, we get the factorization for the Cayley graph
Cay(I": S). 0

§2.5 SMARANDACHE SEQUENCES ON SYMMETRIC GRAPHS

2.5.1 Smarandache Sequence with Symmetry. Let Z* be the set of non-negative
integers and I" a group. We consider sequences {i(n)ln € Z*} and {g, € I'ln € Z*} in
this paper. There are many interesting sequences appeared in literature. For example, the
sequences presented by Prof.Smarandache in references [Dell] and [Sma6] following:

(1) Consecutive sequence

1,12,123,1234, 12345, 123456, 1234567, 12345678, - -

(2) Digital sequence

L1, 1, e, e, e, teerei, e, .-

(3) Circular sequence

1, 12,21, 123,231,312, 1234,2341,3412,4123, - +;

(4) Symmetric sequence

1,11,121,1221, 12321, 123321, 1234321, 12344321, 123454321, 1234554321, - -

(5) Divisor product sequence

1,2,3,8,5,36,7,64,27,100, 11,1728, 13, 196, 225,1024, 17,5832, 19, - -

(6) Cube-free sieve

2,3,4,5,6,7,9,10,11,12,13,14,15,17, 18,19, 20,21, 22, 23, 25, 26, 28, 29, 30, - - -

Smarandache found the following nice symmetries for these integer sequences.
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Ixl=1

11x11 =121

111 x 111 =12321

1111 x 1111 = 1234321

IT11T x 11111 = 12345431

ITTI11T X 111111 = 12345654321

IT11111 x 1111111 = 1234567654321
IT11111T x 11111111 = 13456787654321
ITITTT11T X 111111111 = 12345678987654321

2.5.2 Smarandache Sequence on Symmetric Graph. Let lé V(G) - {1,11,111,
TT11, 1111, 11, 1111111, 11111111, 111111111} be a vertex labeling of a graph G
with edge labeling lf;(u, v) induced by lf;(u)lf;(v) for (u,v) € E(G) such that lf;(E (G)) =
{1,121,12321, 1234321, 123454321, 12345654321, 1234567654321, 123456787654321,
12345678987654321},1.e., Ié(V(G)UE (G)) contains all numbers appeared in the Smaran-
dache’s symmetry. Denote all graphs with /5. labeling by . Then itis easily f nd a graph
with a labeling lf; in Fig.2.5.1 following.

1— L
121

111 12321 111
1111 1234321 1111
11111 123454321 11111
111111 12345654321 111111
1111111 1234567654321 1111111
11111111 123456787654321 11111111
111111111 12345678987654321 11111111

Fig.2.5.1

We know the following result.

Theorem 2.5.1 Let G € 5. Then G = \J H; for an integer n > 9, where each H; is
i=1
a connected graph. Furthermore, if G is vertex-transitive graph, then G = nH for an

integer n > 9, where H is a vertex-transitive graph.

Proof Let C(i) be the connected component with a label i for a vertex u, where
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pe {1,111, I, 11, 11, 11111, 11111111, 111111111}, Then all vertices
v in C(i) must be with label 5(v) = i. Otherwise, if there is a vertex v with /.(v) =
Je{L L, 11, I, T, T L, T, T i, 111111 11\ {a}, let P(u, v) be
a path connecting vertices u and v. Then there must be an edge (x, y) on P(u, v) such that
IE(x) = i, I5(y) = j. By defnition, i X j ¢ I.(E(G)), a contradiction. So there are at least
9 components in G.

Now if G is vertex-transitive, we are easily know that each connected component

C(7) must be vertex-transitive and all components are isomorphic. 0

The smallest graph in . is the graph 9K, shown in Fig.2.5.1. It should be noted
that each graph in .#5 is not connected. For f nding a connected one, we construct a graph

Qk following on the digital sequence

L1 1, i g, - 1141 1
—_——
k

V() = (1,11, 11 1 JI, 10, 10 1),

k k

E(ék) ={(1,11---1),(x,x"), (x,¥)|x,y € V(Q) differ in precisely one 1}.
k

Now label x € V(Q) by l5(x) = Ig(x’) = x and (u, v) € E(O) by l5(u)lG(v). Then we have
the following result for the graph Qk.

Theorem 2.5.2 For any integer m > 3, the graph @m is a connected vertex-transitive

graph of order 2m with edge labels
I(E(Q)) = {1,11,121,1221, 12321, 123321, 1234321, 12344321, 12345431, - - -},

i.e., the Smarandache symmetric sequence.

Proof Clearly, Q,, is connected. We prove it is a vertex-transitive graph. For sim-
plicity, denote 11 -1, 11 1’ by iand i, respectively. Then V(Q,,) ={1,2,---,m}. We

def'ne an operation + on V(ék) by

v —_

k+1=11---1 and kK +1 =k+1, k =k
———
k+I(modk)

for integers 1 < k,! < m. Then an element 7 naturally induces a mapping

ok

i": x—>x+1i, for xe V(Qm).
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It should be noted that i* is an automorphism of Qm because tuples X and y differ in
precisely one 1 if and only if x + i and y + i differ in precisely one 1 by def nition. On the

other hand, the mapping 7 : X — X’ for Vx € is clearly an automorphism of ém Whence,
G =(1,i"|1<i<m)=<AutQ,,

which acts transitively on V(é) because (y — x)*(x) =y for X,y € V(Qm) and7:Xx > X.

Calculation shows easily that
I6(E(O,)) = {1,11,121,1221, 12321, 123321, 1234321, 12344321, 12345431, - - 4,

1.e., the Smarandache symmetric sequence. This completes the proof. 0

By the def nition of graph @m, w consequently get the following result by Theorem
2.5.2.

Corollary 2.5.1 For any integer m > 3, Qm ~Cy X Ps.

The smallest graph containing the third symmetry is Qg shown in Fig.2.5.2 follow-

ing,

1o
[ /121 ¢
¢ 12321 65\1

1
c3 1234321 ég} .
Cy 123454321 ml
12345654321 cs

1111 1234567654321
111111 123456787654321
111111111 12345678987654321

Fig.2.5.2

where ¢; = 11, ¢ = 1221, ¢z = 123321, ¢4 = 12344321, ¢s = 12344321, ¢5s =
1234554321, ¢ = 123456654321, ¢; = 12345677654321, c3 = 1234567887654321,
co = 123456789987654321.

2.5.3 Group on Symmetric Graph. In fact, the Smarandache digital or symmetric se-
quences are subsequences of Z, a special inf nite Abelian group. We consider generalized

labelings on vertex-transitive graphs following.
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Problem 2.5.1 Let (I'; o) be an Abelian group generated by xy,- - -, x,. Thus I' = (x1, x,,

-, X\ W1, - - ). Find connected vertex-transitive graphs G with a labeling I : V(G) —
{1r, x1, X2, - -, x,,} and induced edge labeling l;(u,v) = lg(u) o l5(v) for (u,v) € E(G) such
that

2 2 2
I6(E(G)) = {11, X1, X] © X2, X5, X2 O X3, ", X1 O Xy, X, }.

Similar to that of Theorem 2.5.2, we know the following result.

Theorem 2.5.3 Let (I'; o) be an Abelian group generated by xi, x,,- -+, X, for an inte-
ger n > 1. Then there are vertex-transitive graphs G with a labeling Iz : V(G) —
{1r, x1, X2, - -, X,,} such that the induced edge labeling by l5(u,v) = lg(u) o lg(v) with

2 2 2
lg(E(G)) = {lr, X], X1 0 X2,X5,X2 0 X3, -+, X,_1 O Xp, X}

Proof For any integer m > 1, defne a graph /Q\m,n,k by

m=1 m—1 m—1
V(Onns) = [U U<">[x]] g (U W“’m] U [U U<"’[z]]
i=0 i=0 i=0
where [(UD[x],vO[y], - - -, WO[z]}| = k and

UOx] = (0, 6, X9, - X0y,

VO = {00 A ),
WOz = (20", 2.2, 20)

’1,2’ ' “n

for integers 0 < i <m — 1, and

E(@M,ﬂ) =E, U E, U Ej,

where £y = { (7)), @05 [0 < l<n—1,0<i<m—1}, E = { ("5,
(yﬁ’),yﬁfl (Z(l) 521) |0 <l<n-1,0<i<m-1, where [+ 1 = (modn)} and

E; = (xﬁ’),xl”l)) (yy),yg”l)) (z El), YH))IO <l<n-1,0<i<m-1, wherei+1 =
(modm)}. Then is clear that Qm,n,k is connected. We prove this graph is vertex-transitive.

In fact, by def ning three mappings

)] (@) (1) (1) (@) (@)
O:%" =X V) 2V 2 =4,
(@) (1) (7) (@)

Txl —)yl,' Zl —)Xl,
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o x;i) - x;m)’ y;i) —>y§i+1), o ’Zgi) N Z§i+1),
where | </<n, 1 <i<m,i+1(modm), [+ I(modn). Then it is easily to check that 6, T

and o are automorphisms of the graph ’Qm,n,k and the subgroup (6, 7, o) acts transitively

on V(Qp)-
Now we def ne a labeling /5 on vertices of /Q\m,n,k by

(%)) = Ig0g) = -+ = Igz) = Ir,
L) =100 = =l5(") =x, 1<i<m 1<I<n.
Then we know that [(E(G)) = {1, x1, X2, -+, Xx,,} and

lc(E(G)) = {lr,X%,)ﬁ o Xz,xg,xz O X3, ,Xp-10 me,%}. O
Particularly, let I" be a subgroup of (Z111111111, X) generated by
{1,11,111, 1111, 11111, 11202021, 12020202101, 112021111, 111111111}

and m = 1. We get the symmetric sequence on a symmetric graph shown in Fig.2.5.2
again. Let m = 5,n = 3 and k = 2, i.e., the graph /Q\5,3,2 with a labeling /; : V(/Q\5’3’2) —

{1r, x1, X2, X3, x4} 1s shown in Fig.2.5.3 following.

I ISy
T 1
b al
1 t x|
g
VT
1 5 X
pmmpad
X2 X3
X4 . X4
3 v3
X4
4
X4 X4
Fig.4.1

Denote by Ng[x] all vertices in a graph G labeled by an element x € I. Then we
immediately get results following by the proof of Theorem 2.5.3.

Corollary 2.5.2 For integers m,n > 1, Opni =~ Cy X C, X Cy.

Corollary 2.5.3 |N§mk [x]| = mk for Vx € {1r, x1,- - -, x,,} and integers m,n, k > 1.
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§2.6 RESEARCH PROBLEMS

2.6.1 For catering to the need of computer science, graphs were out of games and turned
into a theory for dealing with objects with relations in last century. There are many
excellent monographs for its theoretical results with applications, such as these references
[BoM1], [ChL1], [GoR1] and [Whil] for graphs with structures and [GrT1], [MoT1] and
[Liul]-[Liu3] for graphs on surfaces.

2.6.2 A graph property P is Smarandachely if it behaves in at least two different ways on
a graph, i.e., validated and invalided, or only invalided but in multiple distinct ways. Such
a graph with at least one Smarandachely graph property is called a Smarandachely graph.
Whence, one can generalizes conceptions in graphs by this Smarandache notion. We list

such conceptions with open problems following.

Smarandachely k-Constrained Labeling. A Smarandachely k-constrained label-
ing of a graph G(V, E) is a bijective mapping f : VU E — {1,2,..,|V] + |E|} with the
additional conditions that |f(u) — f(v)| > k whenever uv € E, |f(u) — f(uv)| > k and
| f(uv) — f(vw)| > k whenever u # w, for an integer k > 2. A graph G which admits a such
labeling is called a Smarandachely k-constrained total graph, abbreviated as k— CTG. An

example for kK = 5 on P; is shown in Fig.2.6.1.

6 N I12 N\ 2 A 8 14 4 10
W=

Fig.2.6.1

The minimum positive integer # such that the graph G U K,, is a k — CTG is called
k-constrained number of the graph G and denoted by #(G).

Problem 2.6.1 Determine t;(G) for a graph G.

Smarandachely Super m-Mean Labeling. Let G be a graph and f : V(G) —
{1,2,3,---,|V] + |[E(G)|} be an injection. For each edge e = uv and an integer m > 2, the
induced Smarandachely edge m-labeling f¢ is def ned by

6 = {f(u) + f(V)} |

m

Then f is called a Smarandachely super m-mean labeling if f(V(G)) U {f*(e) : e €
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EG)} ={1,2,3,---,|V] + |[E(G)|}. A graph that admits a Smarandachely super mean m-
labeling is called Smarandachely super m-mean graph. Particularly, if m = 2, we know
that

S+ /()

> if f(u) + f(v) is even;
J@O=1 fw o) +1
2

if f(u) + f(v) is odd.

A Smarandache super 2-mean labeling on P; is shown in Fig.2.6.2.
4 6 12

1 2 3 5 7 8 9 11 13 14 15

Fig.2.6.2

Problem 2.6.2 Determine which graph G possesses a Smarandachely super m-mean

labeling.

Smarandachely A-Coloring. Let A be a subgraph of a graph G. A Smarandachely
A-coloring of a graph G by colors in € is a mapping ¢ : ¢ — V(G) U E(G) such that
o(u) # ¢(v) if u and v are elements of a subgraph isomorphic to A in G. Similarly, a
Smarandachely A-coloring ¢aly@) : € — V(G) or ¢alg) : € — E(G) is called a vertex

Smarandachely A-coloring or an edge Smarandachely A-coloring.

Problem 2.6.3 For a graph G and A < G, determine the numbers x(G) and ' (G).

Smarandachely (7, &%,)-Decomposition. Let &7, and &7, be graphical prop-
erties. A Smarandachely (£, &?,)-decomposition of a graph G is a decomposition of G
into subgraphs G, G,,---,G; € & suchthat G; € &, or G; ¢ &, forintegers 1 <i <[ If
P or &, = {all graphs}, a Smarandachely (&, &?,)-decomposition of a graph G is said
to be a Smarandachely &?-decomposition. The minimum cardinality of Smarandachely

(P, P,)-decomposition are denoted by I15, »,(G).

Problem 2.6.4 For a graph G and properties &2, &', determine 11 »(G) and Il » 5 (G).
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2.6.3 Smarandache also found the following two symmetries on digits:

Ix8+1=9 Ix9+2=11
12x8+2=098 12x9+3 =111

123 x 8 +3 =987 123 x9+4 =1111

1234 x 8 +4 = 9876 1234 x9+5=11111

12345 x 8 + 5 = 98765 12345x9+6 =111111
123456 X 8 + 6 = 987654 123456 x9 +7 = 1111111
1234567 x 8 + 7 = 9876543 1234567 x9+8 = 11111111
12345678 x 8 + 8 = 98765432 12345678 x 9 +9 = 111111111

123456789 x 8 + 9 = 987654321 123456789 x 9+ 10 = 1111111111

Thus we can also label vertices /) : V(G) — € of a graph by consecutive sequence ¢’
with an induced edge labeling /g (uv) = cly)(u) + lgw) for Yuv € E(G), where c is a
chosen digit. For example, let Iy = {1,2,3,4,5,6,7,8,9,12,123,1234, 12345, 123456,
1234567, 12345678, 123456789}, ¢ = 8 or Iy = {1,2,3,4,5,6,7,8,9,10, 12,123, 1234,
12345, 123456, 1234567, 12345678, 123456789}, ¢ = 9, we can extend these previous
digital symmetries on symmetric graphs with digits. Generally, there is an open problem

following.

Problem 2.6.5 Let (<7 +, ) be an algebraic system with operations +, -. Find graphs G
with vertex labeling ly, : V(G) — & and edge labeling lp)(uv) = ci - ly)(u) + ¢ -
ly)(v) (or g (uv) = (c1 + lye)(w)) - (c2 + lye(V)) for ci, ¢ € o, Yuv € E(G) such that
they are both symmetric in graph and element.

Particularly, let  be a set of symmetric elements in </. For example, = { a -
b,b-alab e o). Find symmetric graphs with vertex labeling ly, : V(G) —» T
and edge labeling lgq)(uv) = Ly (1) + lye)(V) (or gy (uv) = lye)(u) - lyy(v)) such that
Ly () + Ly (V) (or lgy(uv) = ly)(u) - lye)(v)) is itself a symmetric element in <f for
Yuv € E(G), for example, the labeled graph shown in Fig.2.5.2.



CHAPTER 3.

Algebraic Multi-Spaces

Accompanied with humanity into the 21st century, a highlight trend for de-
veloping a science is its overlap and hybrid, and harmoniously with other sci-
ences. Algebraic systems, such as those of operation systems, groups, rings,
felds, vector spaces and modules characterize algebraic structures on sets,
which are discrete representations for phenomena in the natural world. The
notion of multi-space enables one to construct algebraic multi-structures and
discusses multi-systems, multi-groups, multi-rings, multi-f elds, vector multi-
spaces and multi-modules in this chapter, maybe completed or not in cases.
These algebraic multi-spaces also show us that a theorem in mathematics is
truth under conditions, i.e., a lateral feature on mathematical systems. Cer-
tainly, more consideration should be done on these algebraic multi-spaces,
especially, by an analogous thinking as those in classical algebra. For this
objective, a few open problems on algebraic multi-spaces ca be found in fnal

section of this chapter.
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§3.1 ALGEBRAIC MULTI-STRUCTURES

3.1.1 Algebraic Multi-Structure. Algebraic systems, such as those of group, ring,
feld, linear algebra, etc. enable one to construct algebraic multi-structures and raise the

following def nition by Smarandache’s notion.

Def nition 3.1.1 An algebraic multi-system is a pair (Z, 5) with a set A = | A; and an
i=1

operation set
O={o|1<i<n)
on A such that each pair (A;; 0;) is an algebraic system.

A multi-system (Z; 5) 1s associative if for Ya, b, c € Z, Yo, 0, € 5, there is
(aoyb)oyc=ao;(bo;c).

Such a system is called an associative multi-system.
Let (Z, 5) be a multi-system and BcC A, é cO. If (E, Q) is itself a multi-system,
we call (E, Q) a multi-subsystem of (Z ; 5), denoted by (E, Q) < (Z, 5)
Assume (E;a) < (Z;@). For Ya € A and 0; € 5, where 1 < i < [, defne a coset
ao; Bby
ao;B={ao;b|forVb e B},

and let
= |J aoB
a€R,0cePCO
Then the set
Q:{aogmeR,ocha]

is called a quotient set of B in A with a representation pair (R, P), denoted by A/B |(R,;5) .
Two multi-systems (Z 1 51) and (Zg; 52) are called homomorphic if there is a map-
ping w : ;fl — Zz with w : 51 - 52 such that for a;, b, € Zl and o € 51, there exists an

operation o, = w(o;) € O, enables that
w(ay o1 by) = w(ar) o2 w(by).

Similarly, if w is a bijection, (Z 1 51) and (Zg; 52) are called isomorphic, and if A 1 = Zz =

A, w is called an automorphism on A.
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« ”»

For a binary operation “o” , if there exists an element 1’ (or 17) such that
lloa=aoraol . =a

for Ya € A;,1 < i < n, then 1/ (17) is called a left (right) unit. 1f 1. and 1" exist

simultaneously, then there must be

L=1ol"=1"=1..

o

Call 1, a unit of 4;.

Remark 3.1.1 In Defnition 3.1.1, the following three cases are permitted:
(1) Ay =A, =--- = A4,, 1.e., n operations on one set.

(2) oy =0y =+--=0,,1.e., n set with one law.
3.1.2 Example. Some examples for multi-system are present in the following.

Example 3.1.1 Take » disjoint two by two cyclic groups Cy, Cy, -+, C,, n > 2 with

Ci=(a);+1), G = (b); +2), -+, Gy = ({€) 5 +n)s

—_— n
where “+,+,,---,+,” are n binary operations. Then their union C = |J C; is a multi-
i=1
space. In this multi-space, for Vx,y € C, if x,y € C; for some integer k, then we know
x+ry € Cp. Butifx € Cy, y € C, and s # t, then we do not know which binary operation

between them and what is the resulting element corresponding to them.

Example 3.1.2 Let (G; o) be a group with a binary operation “o” . Choose n different
elements Ay, hy, - - -, h,, n > 2 and make the extension of the group (G; o) by Ay, hy, -+, h,

respectively as follows:

(G U{h1}; x1), where the binary operation X; = o for elements in G, otherwise, new
operation;

(G U{h,}; %,), where the binary operation X, = o for elements in G, otherwise, new
operation;

(G U{h,}; %), where the binary operation X,, = o for elements in G, otherwise, new

operation.
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Defne

i=1

Then G is a multi-space with binary operations “Xi, X,, -+, X,” . In this multi-space, for
Vx,y € G, we know the binary operation between x, y and the resulting element unless
the exception cases x = h;,y = h; with i # j.

For n = 3, such a multi-space is shown in Fig.3.1.1, in where the central circle
represents the group G and each angle feld the extension of G. Whence, this kind of

multi-space is called a fan multi-space.

Fig.3.1.1

Similarly, we can also use a ring R to get fan multi-spaces. For example, let (R; +, o)
be a ring and let r, 75, - - -, 7, be two by two different elements. Make these extensions of

(R; +,0) by ry, 1, - -, rs respectively as follows:

(R U{r}; +1, X1), where binary operations +; = +, X; = o for elements in R, other-
wise, new operation;
(R U{r}; +2,%2), where binary operations +, = +, X, = o for elements in R,

otherwise, new operation;

(R U{rs}; +5, Xs), where binary operations +; = +, X, = o for elements in R, other-

wise, new operation.

Defne

N

R= (R U{r,}; +, x‘,).

e
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Then R is a fan multi-space with ring-like structure. Also we can def ne a fan multi-space

with feld-like, vector-like, semigroup-like,- - -, etc. multi-structures.

These multi-spaces constructed in Examples 3.1.1 and 3.1.2 are not completed, i.e.,
there exist some elements in this space have not binary operation between them. In alge-
bra, we wish to construct a completed multi-space, i.e., there is a binary operation between
any two elements at least and their resulting is still in this space. The following examples

constructed by applying Latin squares are such multi-spaces.

Example 3.1.3 Let S be a fnite set with [S| = n > 2. Construct an n X n Latin square

by elements in S, i.e., every element just appears one time on its each row and column.
n

Choose k Latin squares My, M, - -+, My, k < [] s!.

s=1
n
By a result in reference [Rys1], there are at least [] s! distinct #n X n Latin squares.
s=1

Whence, we can always choose My, M,, - - -, M, distinct two by two. For a Latin square

M;, 1 <i <k, defne an operation “X;” by
X (5./) €S XS = (M.

For example, if n = 3, then S = {1, 2, 3} and there are 2 Latin squares L;, L, with

L1: L2:

w N =
—_— W N
N — W
N W =
—_— N W

2
1
3

Therefore, we get operations “X;” and “X,” in Table 3.1.1 by Latin squares L;, L,

following.
x| 1 2 3 X1 2 3
1|1 2 3 1|1 2 3
212 3 1 213 1 2
31 2 2 3 1

Table 1.3.1

Generally, for Vx,y,z € S and two operations “X;” and “X;”,1 <1, j < k defne

xXinjZ: (x><,-y) XjZ.
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For example, if n = 3, then
1X12X23:(1X2)X23:2X23:2

and
2X13X22:(2X1 3))(22: 1x,3=3.
Thus S is a completed multi-space with & operations.

Notice that AutZ, =~ Z, where Z; is the group of reduced residue class modn under
the multiply operation. It is known that |AutZ,| = ¢(n), where ¢(n) is the Euler function.

Thus the automorphism group of the multi-space Cin Example 3.1.1 is
AutC = S,[Z].

Whence, |AutC| = ¢(n)"n!. For determining the automorphism groups of multi-spaces in
Example 3.1.3 is an interesting problem for combinatorial design. The following example

also constructs completed multi-spaces by algebraic systems.

Example 3.1.4 For constructing a completed multi-space, let (S ;o) be an algebraic

system, i.e.,ao b € S for Ya,b € §. Whence, we can take C, C C § being a cyclic group.

S:QGk

with m > 2 such that G;( G; = C for Vi, j, 1 < i, j < m.

Now consider a partition of S

For an integer k,1 < k < m, assume G, = {gx1, 8k, ,&r}. Defne an operation

“X;” on Gy as follows, which enables (Gy; X;) to be a cyclic group.
8kt Xk &kt = 8k2»

82 Xk 8kl = 813>

8k-1) Xk 8k1 = 8ki»
and
i) Xk 8k1 = 8k1-

Then S = | Gy is a completed multi-space with m + 1 operations. The approach enables
k=1

—~ n
one to construct complete multi-spaces 4 = | J with k operations for k > n + 1.
i=1
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3.1.3 Elementary Property. First, we introduce the following def nition.
Def nition 3.1.2 A4 mapping f on a set X is called faithful if f(x) = x for Vx € X, then
f = 1y, the unit mapping on X fxing each element in X.

Notice that if f is faithful and f(x) = f(x) for Vx € X, then f;'f = 1y, i.e., fi = f.

For each operation “x” and a chosen element g in a subspace 4;, 4; C A = U A;,
i=1

there is a lefi-mapping f; : A; — A; defned by
féf:a—>g><a, ac€ A;.
Similarly, we can def ne the right-mapping f;.

Convention 3.1.1 Each operation “X” in a subset A;, A; C A with A = | 4; is faithful,
=1
ie,forNge A, ¢:g— fo( ort:g— f7)isfaithful

Def ne the kernel Kerg of a mapping ¢ by

Kerg = {glg € 4; and ¢(g) = 1,,}.
Then Convention 3.1.1 is equivalent to the following.

Convention 3.1.2 Foreachg : g — féf (ors:g— fg)induced by an operation “X” has
kernel
Kerg = {11}

if 1!, exists. Otherwise, Kerg = 0.

We get results following on multi-spaces A.

Theorem 3.1.1 For a multi-space (Z, 5) with A = \J A; and an operation “X” , the left
i=1
unit 1', and right unit 17, are unique if they exist.

Proof If there are two left units 17,1’ in a subset 4, of a multi-space A, then for

Vx € A;, their induced left-mappings fll and /', satisfy

II
f‘lli(x):1i<xx:x’ f}li(x):[ixx:x_

Therefore, we get that f’, = 1’ Since the mappings ¢ : 1/, — 11 and ¢, : Il — [’1 are

faithful, we know that 11 = I' . Similarly, we can also prove that the right unit 17, is also

unique. U
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For two elements a, b in multi-space Z, if ax b = 1., then b is called a left-inverse
of a. If a X b = 1, then a is called a right-inverse of b. Certainly, if a X b = 1,, then a is

called an inverse of b and b an inverse of a.

Theorem 3.1.2 For a multi-space (Z, 5) with A = Lnj A;, a € F, the lefi-inverse and
i=1

right-inverse of a are unique if they exist.

Proof Notice that k, : x — ax is faithful, i.e., Kerk = {1} for 1/, existing now.
If there exist two left-inverses by, b, in 7 such that a x b; = 1}, and a x b, = 1.,
then we know that b; = b, = 1.. Similarly, we can also prove that the right-inverse of a

is also unique. O

Corollary 3.1.1 If “X”is an operation of a multi-space ¢ with unit 1, then the equation

a X x = b has at most one solution for the indeterminate x.

Proof According to Theorem 3.1.2, there is at most one left-inverse a; of a such that

a; X a = 1y. Whence, we know that x = a; X a X x = a; X b. O

We also get a consequence for solutions of an equation in a multi-space by this result.

Corollary 3.1.2 Let (Z, 5) be a multi-space. Then the equationa o x = b has at most |5|

solutions, where o € O.

§3.2 MULTI-GROUPS

3.2.1 Multi-Group. Let G be a set with binary operations 0. By def nition (C~}, 5) is an

algebraic multi-system if for Va, b € Gandoe O,a0beG provided a o b existing.

Def nition 3.2.1 For an integer n > 1, an algebraic multi-system (5, 5) is an n-multi-

group for an integer n > 1 if there are G|, Gy, -+, G, C G, O = {o,, 1 <i< n}with
)G =Gy
2) (G :)1 is a group for 1 <i < n.
For Vo € O, denoted by G, the group (G; o) and G the maximal group (G; o), i.e.,
(G™>; o) is a group but (G™™* U {x}; o) is not for ¥x € G \ G™* in (5’, 5)

A distributed multi-group is such a multi-group with distributive laws hold for some
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operations, formally def ned in the following.

Def nition 3.2.2 Let G = U G; be a complete multi-space with an operation set O (6’) =
i=1

{x;, 1 <i<n} If(Gy;Xx;)is a group for any integer i,1 < i < n and for Vx,y,z € G and

Vx,0 € O(G), X # o, there is one operation, for example the operation “X” satisfying the

“ 2

distribution law to the operation “o” provided all of these operating results exist , i.e.,

xX(yoz)=(xXy)o(xXz),
(yoz)Xx=(Xx)o(zXx),

then G is called a distributed multi-group.

Remark 3.2.1 The following special cases for n = 2 convince us that distributed multi-
groups are a generalization of groups, skew felds, felds, - - -, etc..

(1) IfG, =G, = G are groups, then G is a skew feld.

(2) If (Gy; X1) and (G; X,) are commutative groups, then Gisafeld.

Def nition 3.2.3 Let (%, 01) and (%, 02) be multi-groups. Then (%, 01) is isomorphic

to (%, 02) denoted by (9,1) : (%, 01) (%, 02) if there are bijections ¥ : % — %

and 1 : O, = O, such that fora,b e %, and o € O, Haob) = Ha)(o)Hb) provided ao b

existing in (%; 01). Such isomorphic multi-groups are denoted by (%; 01) ~ (%; 02)
Clearly, if (521 ; 51) is an n-multi-group with (¢, ¢) an isomorphism, the image of (4, ¢)

is also an n-multi-group. Now let (¢,¢) : (é%, 51) — (f%, 52) with f% = CJ%,-, f% =

i=1
CJ%,-, 51 ={oy;, 1 <i<n}and 52 = {0y, 1 <i < n}, thenforo € 5, @M {s isomorphic

i=1
to %(&)5) by defnition. The following result shows that its converse is also true.

Theorem 3.2.1 Let (f%, 51) and (sz, 52) be n-multi-groups with

5?1 = O%i, g~2 = ngi,
i=1 i=1

O ={on, 1 <i<n}, Oy={opn, 1 <i<n) If¢;: %; — % is an isomorphism for each
integer i, 1 <1 < nwith $ily,ng, = Pilgng, for integers 1 < k,1 < n, then (g?;, 51) is
isomorphic to (f% ; 52)

Proof Def ne mappings 9 : 521 — %; and¢: 0 — O, by
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HNa) = ¢i(a)ifae ¥, C < and t(o1;) = oy, for each integer 1 < i < n.

Notice that ¢lyg,ne, = @il,ne, for integers 1 < k,/ < n. We know that ¢4, ¢ both are

bijections. Let a, b € ¥ for an integer s, 1 < s < n. Then

Ha o5 b) = ¢s(a 015 D) = ¢s(a) 025 ¢s(b) = Ha)(015)9(D).
Whence, (9,¢) : (é?l, 51) — (é?l, 51). O

3.2.2 Multi-Subgroup. Let (fg, 5) be a multi-group, A cGandOc 0. If (JZ O) is
multi-group itself, then (77; O) is called a multi-subgroup, denoted by (JZ O) < (f?, 5)

Then the following criterion is clear for multi-subgroups.

Theorem 3.2.2 An multi-subsystem (%7/, O) of a multi-group (fg, 5) is a multi-subgroup
if and only ifjﬂizﬂ 9, <G forVo € O.

Proof By def nition, if (jzz; 0) is a multi-group, then for Vo € O, A NG, isa group.
Whence, H NG, < gmax,

Conversely, if H NG, < ¢gm* for Yo € O, then A NG, isa group. Therefore,
(j,?’ O) is a multi-group by def nition. UJ

Applying Theorem 3.2.2, we get conclusions following.

Corollary 3.2.1 An multi-subsystem (,%” 0) of a multi-group (% 5) is a multi-subgroup
ifand only ifao b™! € AN GmX for Yo € O and a,b € %”provzded a o b existing in
(+#:0).

Particularly, if O = {o}, we get a conclusion following.

Corollary 3.2.2 Let o € O. Then (J;0) is multi-subgroup of a multi-group (g, 5)f0r

I C gifandonly if (;0)is a group, i.e., aob™' € H fora,be .

Corollary 3.2.3 For a distributed multi-group G = U G; with an operation set O (é) =
i=1

(/1 < i < n), asubset G, C G is a distributed multi-subgroup ofg if and only if
(G~1 N Gy; xk) is a subgroup of (Gy; X;) or G M G = 0 for any integer k,1 < k < n.

Proof Clearly, G isa multi-subgroup of G by Theorem 3.2.2. Furthermore, the
distribute laws are true for a because (71 c Gand O (51) cO (G) O

For f nite multi-subgroups, we get a criterion following.

Theorem 3.2.3 Let G be a f nite multi-group with an operation set O (6’) = {X;|1 <i < n}
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A subset G, of Gisa multi-subgroup under an operation subset O (a ) c O (G) if and
only if (G1; ) is closed for each operation “X” in O (a )

Proof Notice that for a multi-group G, its each multi-subgroup G, is complete. Now
if G~1 is a complete set under each operation “Xx;” in O (5{ ), we know that (a N Gy xi)
is a group or an empty set. Whence, we get that

& -J@Ne).
i=1
Therefore, G, is a multi-subgroup of G under the operation set O(a ). U
For a multi-subgroup H of multi-group G, g€ G, def ne
gH = {gx hlh € H,x € O(H)).
Then for Vx,y € 5,
xﬁﬂyﬁ:@ or xﬁ:yﬁ.

In fact, if xH N yﬁ # 0, letz € xH N yﬁ, then there exist elements 4,4, € H and

operations “X;” and “X;” such that
z=XxX; :ij]’lz.

Since H is a multi-subgroup, (ﬁ (N G:; %X;) is a subgroup. Whence, there exists an inverse
element /7" in (H () Gj; x;). We get that

X X; hy X; hl_l =y X, hy X; hl_l

1.e.,
X=yX; hz X; hl_l
Whence,
xH C yﬁ .
Similarly, we can also get that
xH 2 yﬁ

Therefore,
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Denote the union of two set 4 and B by 4 P B if 4 () B = 0. The following result is

implied in the previous discussion.

Theorem 3.2.4 For any multi-subgroup H of a multi-group G, there is a representation

setT, T C (~? such that
G-

xeT

For the case of fnite group, since there is only one binary operation “x” and IxH| =
[yﬁ | forany x,y € G, We get a consequence following, which is just the Lagrange theorem

for f nite groups.

Corollary 3.2.4(Lagrange theorem) For any f nite group G, if H is a subgroup of G, then
|H| is a divisor of |G|.

A multi-group (fZ; O) is said to be a symmetric n-multi-group if there are

%,%,"',%1C<(;’,

O ={o;, 1 <i < n}with
Y =U %
i=1
(2) (7}; 0;) is a symmetric group Sq, for 1 < i < n. We call the n-tuple (€], 9],
-+, |Q,||) the degree of the symmetric n-multi-group (g; 5).

Now let multi-group (g; O) be a n-multi-group with 4, %, - - -, ¥, C g, O={o, 1<

i < n}. Forany integer i, 1 <i < n,let¥, ={an = lg,,an, -, ap,}. For Yay € 4,
defne
ail ain Qin a
Oay = = )
djg ©djx Ap O djx """ Qip, © dik ao air
_ ai ain in,, _ a
Taik - -1 -1 -1 - -1
Ay ©din Ay ©dp - dy ©din, dy ©4d
— — r /
Denote by Ry, = {04,,Tay, >0, } and Ly, = {74, Tay, +, Ta,, } and X} or X; the

induced multiplication in Ry, or Ly. Then we get two sets of permutations

n n

R?i = U{O-ail’ Oaps* s O-ainoi} and Lg = U{Tail’ Taps ™" "> Tainoi }

i=1 i=1
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We say R, L the right or left regular representation of 9, respectively. Similar to the

Cayley theorem, we get the following representation result for multi-groups.

Theorem 3.2.5 Every multi-group is isomorphic to a multi-subgroup of symmetric multi-
group.

Proof Let multi=group (%ﬁj 5) be a n-multi=group with ¥4,,%,,---,¥, C 4,0 =
{o;, 1 <i < n}. For any integer i, 1 <i < n. Then Ry, and Ly, both are subgroups of the
symmetric group Sy, for any integer 1 < i < n. Whence, (Rz; O") and (L; O") both are
multi-subgroup of symmetric multi-group by def nition, where 0" = {X[|1 < i < n} and
O ={xl1 <i<n)

We only need to prove that (E?, 5) is isomorphic to (R; O"). For this objective,
defne a mapping (f,¢) : (¢;0) — (Rz; O") by

Sflai) = 04y and 1(o;) = X
for integers 1 < i < n. Such a mapping is one-to-one by def nition. It is easily to see that
Sflaij oi ai) = Tuyoay = Tay X; Tay = flai)u(o;) f(au)
for integers 1 < i,k,/ < n. Whence, (f,¢) is an isomorphism from (g; 5) to (Rz; O").
Similarly, we can also prove that (g, 5) ~ (Lz; O"). 0

3.2.3 Normal Multi-Subgroup. A multi-subgroup (%” O) of (% 5) is normal, denoted
by(,%” 0) (g 5) if for Vg € ¢ and Yo € 0, go,%” ,%”og,wheregoj‘f {gohlh e
Vi provided g o & existing} and Ao g is similarly def ned. We get a criterion for normal

multi-subgroups of a multi-group following.
Theorem 3.2.6 Let (%7, 0) < (Q, 5) Then (,%7, 0) < (Q, 5) if and only if
T g q g
forYo € O.
Proof 1f N Gmx 4 gm for Yo € O, then g o H = A o g for Vg € 4™ by
def nition, i.e., all such g € 4 and h € A with gohand hogdefned. So (JZ O)Q(g; 5)
Now if (JZ O) < (fg, 5), it is clear that J# N @Gmax g4 @gmax for Yo € O.
Corollary 3.2.5 Let G = U G; be a multi-group with an operation set O (G) {x;|l <

i=1

i < n}. Then a multi-subgroup H ofG is normal if and only lf(Hﬁ G;; ><,-) is a normal
subgroup of (G;; X;) or HNG, = 0 for any integeri,1 <i < n.
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For a normal multi-subgroup (JZ O) of (f?, 5), we know that
(aojz;)ﬂ(bu%” =0 or a0 =b-H.
In fact, if c € (a ) j?) N (b . %7), then there exists 4, i, € A such that
aohy=c=b-h.
So a”! and b7! exist in 4™ and ¥™* respectively. Thus,
bl aoh =b"-b-hy=h.

Whence,
bl a=hyoh' € A.

We fnd that
a0 =b-(hyoh)ot =b-H.

This fact enables one to f nd a partition of g following
7=\ g0
g€¥.0€0

Choose an element 4 from each g o A and denoted by H all such elements, called

the representation of a partition of 4, i.c.,
=] host
heH,0eO
Def ne the quotient set of 7 by A 1o be
G|A =(ho A\h € H,o € O).
Notice that . is normal. We fnd that
(a0 ) (be )= H oa-be s =(a-b)os e« H =(ab)oH

in4, / A for o, e, -€ 5, 1.€., ({Z / JZ 0) is an algebraic system. It is easily to check that

({Z / %7, 0) is a multi-group by def nition, called the quotient multi-group of g by Y
Now let (521 ; 51) and (%;, 52) be multi-groups. A mapping pair (¢, t) with ¢ : 521 —

% and ¢ : O; — O, is a homomorphism if ¢(a o b) = ¢(a)(c)p(b) for Ya,b € & and
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o€ O provided a o b existing in (f% ; 51). Def ne the image Im(¢, 1) and kernel Ker(¢, ¢)
respectively by

Im(g,0) = { d(2) g€ % |,
Ker(,0) = {g16(9) = 10.. g€ %1 .0 € Ouf.

Then we get the following isomorphism theorem for multi-groups.

Theorem 3.2.7 Let (¢,¢) : (g?;, 51) — (gz, 52) be a homomorphism. Then
&, [Ker($, 1) ~ Im(g, 0).

Proof Notice that Ker(¢, ¢) is a normal multi-subgroup of (5% ; 51) We prove that the
induced mapping (o, w) determined by (o, w) : x o Ker(¢p,t) — ¢(x) is an isomorphism
from le /Ker(¢, ¢) to Im(¢, ¢).

Now if (o, w)(x1) = (0, w)(x2), then we get that (o7, w)(xj0x;") = 1g, provided xjox;
existing in (g?;; 51), i.e., x; o x7! € Ker(¢,1). Thus x; o Ker(¢,1) = x, o Ker(¢, 1), i.e., the
mapping (o, w) is one-to-one. Whence it is a bijection from é% /Ker(¢, t) to Im(g, ¢).

For Va o Ker(¢, ¢), b o Ker(¢, 1) € ffl /Ker(¢,t) and - € 0,, we get that

1

(0, w)[a o Ker(¢, ) - b e Ker(¢,1)]
= (o, w)l(a - b) o Ker(,1)] = ¢(a - b) = ¢(a)(-)p(b)
= (0, w)[a o Ker(¢, )]u(-)(o, w)[b @ Ker(, 1)].

Whence, (0, w) is an isomorphism from 4, /Ker(¢, ¢) to Im(g, ¢). U

Particularly, let @ ; 52 be a group in Theorem 3.2.7, we get a generalization of the
y group

fundamental homomorphism theorem following.
Corollary 3.2.6 Let (g, 5) be a multi-group and (w,t) : (E?, 5) — (&;0) an epimor-
phism from (f?, 5) to a group (<7 0). Then

G [Ker(w, 1) =~ (<;0).

3.2.4 Multi-Subgroup Series. For a multi-group G with an operation set 0((}) =

sequence, denoted by6 (G’) For example, ifO(C:’) = {X1, X2X3}, then X; > X, > X3 18

{x;/ 1 < i < n}, an order of operations in O(@) is said to be an oriented operation

an oriented operation sequence and X; > X; > Xj is also an oriented operation sequence.
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For a given oriented operation sequenceﬁ (G), we construct a series of normal multi-

subgroups

5>51>52>"'>Gm:{1><,,}

by the following programming.

STEP 1: Construct a series G » 511 > 512 B 51,1 under the operation “x;” .

STEP 2: Ifaseries 5(k_1),1 >5k1>§k2>- . ->§ka has be constructed under the operation
“X” and Ek/k # {1y, }, then construct a series 5k11 > §(k+1)1 > 5(k+1)2 B b g(kﬂ),kﬂ under

the operation “Xj41” .

This programming is terminated until the series 5(;1—1)11 > gnl > 5n2 oGy o= {1y}

has be constructed under the operation “X,” .

The number m is called the length of the series of normal multi-subgroups. Call a
series of normal multi-subgroups G» 51 > 52 B b 5;1 = {1} maximal if there exists
a normal multi-subgroup H for any integer k, 5,1 < k < n,1 < s < [; such that Gy »
He» 5k(s+1), then H = gks or H = (~?k(s+1). For a maximal series of fnite normal multi-
subgroup, we get a result in the following.

Theorem 3.2.8 For a f nite multi-group G = \U G; and an oriented operation sequence
i=1

0 (G) the length of the maximal series of normal multi-subgroup in G is a constant, only
dependent on G itself.

Proof The proof is by the induction principle on the integer n. For n = 1, the
maximal series of normal multi-subgroups of G is just a composition series of a f nite
group. By Jordan-Holder theorem (see [NiD1] for details), we know the length of a
composition series is a constant, only dependent on G. Whence, the assertion is true in
the case of n = 1.

Assume that the assertion is true for all cases of n < k. We prove it is also true in the
case of » = k + 1. Not loss of generality, assume the order of those binary operations in

6((7) being X; > X, > -+ > X, and the composition series of the group (G, X;) being
Gi>Gyv > Gy = {1}

By Jordan-Hélder theorem, we know the length of this composition series is a constant,

dependent only on (G; X1). According to Corollary 3.2.5, we know a maximal series of
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normal multi-subgroups of G gotten by STEP 1 under the operation “X;” is
G>G\(GI\G)>G\(Gi\Gy)» -G\ (G \ {1, ).

Notice that G \ (G \ {14,}) 1s still a multi-group with less or equal to k operations. By
the induction assumption, we know the length of the maximal series of normal multi-
subgroups in G \(G1\{14,}) is a constant only dependent on G \(G1\{1x,}). Therefore, the
length of a maximal series of normal multi-subgroups is also a constant, only dependent
on G.

Applying the induction principle, we know that the length of a maximal series of
normal multi-subgroups of G is a constant under an oriented operations 6((7), only de-
pendent on G itself. 0

As a special case of Theorem 3.2.8, we get a consequence following.

Corollary 3.2.7(Jordan-Holder theorem) For a fnite group G, the length of its composi-

tion series is a constant, only dependent on G.

§3.3 MULTI-RINGS

3.3.1 Multi-Ring. It should be noted that these multi-spaces constructed groups, i.e.,
distributed multi-groups (5, O(G)) generalize rings. Similarly, we can also construct

multi-spaces by rings or f elds.

Def nition 3.3.1 Let R = |JR; be a complete multi-space with a double operation set
i=1

O(R) = 01Oy, where Oy ={ -;,1 < i <m}, Oy = {+;,,1 <i < m)}. If for any integers

i,1 <i<m, (Rj;+;,-)is a ring, then R is called a multi-ring, denoted by (1~3, 0, — Oz)

and (+;,;) a double operation for any integer i. If (R;+;,-;) is a skew feld or a feld for

integers 1 <i < m, then (E, 0, — 02) is called a skew multi-f eld or a multi-feld.

For a multi-ring (E, 0, — Oz) with R = CJlRi, let S ¢ R and O, (:ST) c O, (E),
0, (§) cO, (k), ifS isa multi-ring with a doublle; operation set O (§) =0, (§) U O, (§),
such a §' is called a multi-subring of R.
Theorem 3.3.1 For a multi-ring (ﬁ;Ol — Oz) with R = i@l R, a subset S C R with
O(:ST) C O(E) is a multi-subring ofﬁ if and only if(:STﬂRk; +1, -k) is a subring of
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(Ri; +4, 1) or S N R = 0 for any integer k,1 < k < m.

Proof For any integer k, 1 < k < m, if (§ O R+, -k) is a subring of (Ry; +, x) or
S Ry = 0, then S = U (§ N Ri) is a multi-subring by def nition.

i=1
Now if § = LSJ S, is a multi-subring of (ﬁ, 0, — Oz) with a double operation set
j=1

0, (:S;) ={,l <j<s}and O, (5) = {+;,1 < j < s}, then (§,; +;, ;) is a subring of
(Ri;; +i;, ;). Therefore, S; = R;, ﬂ§ for any integer j,1 < j < s. But §ﬁ51 = () for
otherinteger /€ {i; 1 <i<m}\{i;;1 < j<sh ]

Applying the criterions for subrings of a ring, we get a result for multi-subrings by

Theorem 3.3.1 following.

Theorem 3.3.2 For a multi-ring (E; 0, — Oz) with R = 161 R;, a subset S C R with
O(g) C O(i?) is a multi-subring of R if and only lf(§ NR}; +j) < (Rj;+)) and (§’ ,) is
complete for any double operation (+,,-;) € O (§ )

Proof According to Theorem 3.3.1, we know that S is a multi-subring if and only
if (gﬂRi; +, -i) is a subring of (R;; +;, ;) or gﬂRi = ( for any integer i,1 < i < m.
By a well known criterion for subrings of a ring (see [NiD1] for details), we know that
(§ N R;; +i, -i) is a subring of (R;; +;, -;) if and only if (§ NR;; +j) < (Rj;+;) and (g, -j) is
a complete set for any double operation (+;,-;) € O (f) O

A multi-ring (R; O < Oy) with Oy = { |1 <i <1}, 0 = {+|1 <i <[} is integral if
for Va,b € 7 and an integeri, 1 <i<l,a;b=b-a,1,+#0,;anda-; b= 0,, implies
thata = 0,, or b = 0,,. If / = 1, an integral /-ring is the integral ring by def nition. For the
case of multi-rings with f nite elements, an integral multi-ring is nothing but a multi-f eld,

such as those shown in the next result.

Theorem 3.3.3 A fnitely integral multi-ring is a multi-feld.

Proof Let (E, 0, — Oz) be a fnitely integral multi-ring with R = {ai,ar---,a,},
where O; = { 4|1 <i <1}, 0, = {+]1 <i < [}. For any integer i, 1 < i < [, choose an

elementa € Rand a # 0,,. Then
a-ay, d-dy,: -, d-dy

are n elements. Ifa-; a;, = a-; a,i.e., a-;(as +; a;l) = 0,,. By defnition, we know that

a, +; a,‘1 = 0+;, namely, a, = a,. Thatis, these a -; a1, a-; a,-- -, a-; a, are different two
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by two. Whence,

R={aa,aay--,aa,}

1

Now assume a -; a;, = 1., then a= = a, i.e., each element of R has an inverse in

(E; -;), which implies it is a commutative group. Therefore, (E, +i, -,-) is a feld for any

integeri, 1 <i <. O
Corollary 3.3.1 Any fnitely integral domain is a feld.

3.3.2 Multi-Ideal. A multi-ideal I of multi-ring (R;O; < 0,) is such a multi-subring
of (E, 0, — Oz) satisfying conditions following:

(1) Tisa multi-subgroup with an operation set {+|+ €0, (7)},

(2) Foranyr € RacTand X € O, (7), rxaclandaxre Tprovided all of these

operating results exist.

Theorem 3.3.4 A subset I with O, (7) c O, (73) 0, (1~) C OZ(R) of a multi-ring (ﬁ; 0, — Oz)

with R = CJR,-, 0, (E) ={x)| 1 <i< m}and O, (E) ={+,| 1 < i < m}is a multi-ideal
i=1

if and only lf(]~ﬂ R, +i, ><l~) is an ideal of ring (R;, +;, X;) or INR; = O for any integer

L1<i<m.

Proof By the def nition of multi-ideal, the necessity of these conditions is obvious.

For the sufficiency, denote by §(+, X) the set of elements in R with binary operations
“+” and “x” . If there exists an integer i such that Tﬂ R; # 0 and (Tﬂ R;, +;, ><,~) 1S an
ideal of (R;, +;, X;), then for Ya € I N\ R;, Vr; € R;, we know that

X a eTﬂRi; ax;r; ETﬂRi.
Notice that 1?(+,~, X;) = R;. Therefore, we get that
rx;a eTﬂRi and a X;r eTﬂRi,
for Vr € R provided all of these operating results exist. Whence, I is a multi-ideal of R. [J

3.3.3 Multi-Ideal Chain. A multi-ideal 7 of a multi-ring (E, 0, — 02) is said to be
maximal if for any multi-ideal /’, R 2 I’ 2 I implies that I’ = R or I’ = 1. For an order
of the double operations in O(ﬁ) of a multi-ring (ﬁ, 0, — ()2), not loss of generality,
let it to be (+1, %) > (+2,%2) > -+ > (+m, Xp), We can defne a multi-ideal chain of

(ﬁ; 0, — Oz) by the following programming.
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(1) Construct a multi-ideal chain R O 1~311 D 1~312 DD §151 under the double
operation (+1, X;), where ﬁn is a maximal multi-ideal of R and in general, E(M) isa

maximal multi-ideal of R,; for any integer i, 1 <i<m—1.

(2) If a multi-ideal chain R > Ry; D R D - D Ry, D -+~ D Ry D -+~ D Ry,
has been constructed for (+,X%;) > (+2,%2) > -+ > (+,%;), 1 < i < m — 1, then
construct a multi-ideal chain of Es,- by Es,- D ﬁ(iﬂ)l D 73(141)2 D+ D ﬁ(iﬂ)m under

the double operation (+;,1, X;41), Where E(M)I 1S a maximal multi-ideal of Esi and in
general, E(i+1)(i+l) 1S a maximal multi-ideal of E(iﬂ) ; for any integer j,1 < j < s5; — 1.
Defne a multi-ideal chain of R under (+1,X%1) > (+2,%2) > -+ > (441, Xi41) to be
ROR;; D 31~3131 S -DRy D DES{ 3E,~+1)1 D 3§(i+1)s,-+1'

We get a result on multi-ideal chains of multi-rings following.

Theorem 3.3.5 For a multi-ring (R 0, — 02) with R = U R;, its multi-ideal chain has

[ nite terms if and only if the ideal chain of ring (R;; +;, X;) hasfmte terms, i.e., each ring
(R;; +i, X;) is an Artin ring for any integer i, 1 < i < m.

Proof Let
(+1,X1) > (F2,%2) > =+ > (F1, Xpn)

be the order of these double operations in 0 (E) and let
R1 >R11 > "'>R1t1

be a maximal ideal chain in ring (R;; +1, X1). Calculation shows that

R =R\{R/\ R} =Ry U(U R)),
iz

Ry =Ry \{Ri1\ Rz} =Ry U(U R)),
i

731:1 = 731:1 \{Rig-1 \ Ry} = Ry, U(U R;).
i=2
According to Theorem 3.3.4, we know that
EDE“ DFR’D D) “‘Dﬁltl

is a maximal multi-ideal chain of R under the double operation (+1, X;). In general, for

any integer i, 1 <i < m — 1, we assume that

R; > R; >“'>Rit,-
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is a maximal ideal chain in ring (R(;i_1y,_,; +;, X;). Calculation shows that
Ry = Ry U( U R ﬂ R)).
J=i+l
Then we know that
E(i—l)z,-,l SRiDRpD -+ D Eti

is a maximal multi-ideal chain of ﬁ(i_l)ti—l under the double operation (+;, X;) by Theorem
3.3.4. Whence, if the ideal chain of ring (R;; +;, X;) has fnite terms for any integer i, 1 <
i < m, then the multi-ideal chain of multi-ring R only has fnite terms. Now if there exists
an integer iy such that the ideal chain of ring (R;,, +;,, X;,) has inf nite terms, then there

must also be inf nite terms in a multi-ideal chain of multi-ring (1~3, 0, — 02). ]
A multi-ring is called an Artin multi-ring if its each multi-ideal chain only has f nite
terms. We get a consequence following by Theorem 3.3.5.
Corollary 3.3.2 A multi-ring (1~3, 0, — 02) with R = \U R; and a double operation set
i=1
O(E) = {(+5, %) 1 < i < m}is an Artin multi-ring if and only if each ring (R;; +;, X;) is
an Artin ring for integers i,1 <i < m.
For a multi-ring (E, 0, — Oz) with R = |JR; and double operation set O(E) =
i=1

{(+i»X,)| 1 <i < m}, an element e is an idempotent element if e2 = e X e = e for a double

binary operation (+, X) € O (E) Def ne the directed sum I of two multi-ideals 1;, > by
(W T=1UL;
(2) 71 N Z ={0.}, or Z N 72 = (), where 0, denotes the unit under the operation +.

Such a directed sum of 71, E is usually denote by

-1 D
Now if 7 = 71 @Z for any Z,Z implies that 71 =7Jor E = Z then 7 is called
non-reducible. We get the following result for Artin multi-rings.
Theorem 3.3.6 Every Artin multi-ring (E, 0 — 02) with R = 6 R; and a double opera-
i=1

tion set O (7@) = {(+;, X)| | <i < m}is adirected sum of f nite non-reducible multi-ideals,

and if (R;; +;, X;) has unit 1, for any integer i,1 <i < m, then

R= é(é;(& X; i) U(ez'j Xi Ri)),

=1 j=1
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where e;;, 1 < j < s; are orthogonal idempotent elements of ring (R;; +;, X;).

Proof Denote by M the set of multi-ideals which can not be represented by a directed
sum of f nite multi-ideals in R. According to Theorem 3..3.5, there is a minimal multi-
1deal 70 in M. It is obvious that 70 is reducible.

Assume that % = 71 + 72 Then Z ¢ M and 72 ¢ M. Therefore, 71 and E can be
represented by a directed sum of fnite multi-ideals. Thereby 7, can be also represented

by a directed sum of f nite multi-ideals, contradicts to that I e M.

Now let )
R- .
i=1

where each I;, 1 < i < s is non-reducible. Notice that for a double operation (+, X), each

non-reducible multi-ideal of R has the form

(e X R(X)) U(R(x) X e), e € R(X).

Whence, there isaset T C R such that

R= @ (exre)| JReoxe).

eeT, XO(R)

Now let 1, be the unit for an operation X € O(ﬁ). Assume that
Iy=e1®e,®---De, e,€T, 1 <i<s.

Then
eiXly=(esxe)®(e;Xe)® - -®(e; Xe).

Therefore, we get that
e,-:eiXe,-:ef and e,-XeJZO,- for li]

That is, e;, 1 < i < [ are orthogonal idempotent elements of E(x). Notice that E(x) =R,
for some integer 4. We know that e;, 1 < i <[ are orthogonal idempotent elements of the

ring (Ry, +5, X;,). Denote by ey; for ¢;, 1 <i < /. Consider all units in R, we get that

R = é(é;(R’ X; €;}) U(eij X; R;))-

=1 j=1

This completes the proof. 0
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Corollary 3.3.3 Every Artin ring (R;+,X) is a directed sum of fnite ideals, and if

R = EE Rie;,

where e;, 1 <i < s are orthogonal idempotent elements of ring (R; +, X).

(R ; +, X) has unit 1, then

§3.4 VECTOR MULTI-SPACES

Kk
3.4.1 Vector Multi-Space. Let /' = [J V; be a complete multi-space with an operation
i=1

— -k
set O(V) ={(+,) |1 <i<m}andlet F = Ul F'; be a multi-f led with a double operation

set O(F) ={(+;,X%;)| 1 <i<k}. If for any integers i, 1 <i <k, (V;; F;) is a vector space
on F; with vector additive “+;” and scalar multiplication “-;”, then V is called a vector
multi-space on the multi-f led F, denoted by (?, F)

For subsets ¥, ¢ V and F, C F, if (?I;F 1) is also a vector multi-space, then we
call (171; F 1) a vector multi-subspace of (17; F) Similar to the linear spaces, we get the

following criterion for vector multi-subspaces.

Theorem 3.4.1 For a vector multi-space (17, F) 171 cVandF, 1 C F (171; F, 1) is a vector
multi-subspace of (17; F ) if and only if for any vector additive “+” , scalar multiplication
“”in (?1;F1) andVa,b € ?, Ya € f

a-a-i—bEAVI

provided these operating results exist.
ko
U (V1 N Vi). By def nition,
= = i=1
we know that (?525 1) is a vector multi-subspace of (?, F) if and only if for any integer
i1 <i <k, (AVl N Vi; +i, -,-) is a vector subspace of (V;, +;, ;) and 171 is a multi-fled
subspace of F or 171 NV:=0.

By Theorem 1.4.1, we know that (171 N Vi +i, -,-) is a vector subspace of (V;, +;, -;) for

any integer i, 1 <i < kif and only if for Va,b € ViN Vi, €F;,

— kK _
Proof Denote by V = | V;, F = |J F;. Notice that V7 =
i=1 i=1

a-atbe? ﬂ V.

That is, for any vector additive “+” , scalar multiplication “-” in (171;F 1) and Ya,b € v,

Va € F,if a - a+b exists, then a - a+b € V. O
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Corollary 3.4.1 Let (17 ; F 1) , (V~V, 172) be two vector multi-subspaces of a vector multi-
space (17, 13) Then (l~] N V~V; 171 N Fz) is a vector multi-space.

3.4.2 Basis. For a vector multi-space (?;F), vectors aj,a,,---,a, € I~/, if there are

scalars aq, a», - - -, @, € F such that
) atiag o aty @, a, =0,

where 0 € V is the unit under an operation “+” in Vand 4, €0 (17), then these vectors
a;,a,,---,a, are said to be linearly dependent. Otherwise, vectors a;, a,, - - -, a, are said
to be linearly independent.

Notice that there are two cases for linearly independent vectors a;,a,,---,a, in a

vector multi-space:

(1) For scalars ay,a», -+, @, € F, if
) atiag o aty @, a, =0,

where 0 is the unit of " under an operation “+”in O (17), thena; =0,,,a0 =0,,, -+, @, =
0.,, where 0., is the unit under the operation “+;” in F for integeri, | <i<n.

(2) The operating result of @y -ja,+a22a,+; - - - +,_1@,, a, does not exist in (17, 13)

Now for a subset S € 7, def ne its linearly spanning set <§> by
<§> :{aIa =ay 1 314‘10’2 ) az-i'z"' G?,aieg,aiEF,iZ 1}

For a vector multi-space (17; I?“), if there exists a subset §,§ C V such that V = <§>,
then we say Sisa linearly spanning set of the vector multi-space V. 1f these vectors in a

linearly spanning set S of vector multi-space V are linearly independent, then S is said to
be a basis of (17; F)

— Kk Kk
Theorem 3.4.2 A vector multi-space (V; F) withV = V;, F =\ F; has a basis if each
i=1 i=1

vector space (V;; F;) has a basis for integers 1 < i < n.

Proof Let A; = {a;,a,,---,a;,} be a basis of vector space (V;; F;) for 1 < i < k.

Defne .
A= | A

i=1

Then A is a linearly spanning set for % by def nition.
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If these vectors in A are linearly independent, then A is a basis of V. Otherwise,
choose a vector b, € A and def ne Zl - A \ {b;}.

If we have obtained a set /A\S, s > 1 and it is not a basis, choose a vector by, € ’A\S
and defne Ay,y = A, \ {by,y).

If these vectors in /A\SJr 1 are linearly independent, then ’A\m is a basis of V. Otherwise,
we can defne a set ’A\Hz again. Continue this process. Notice that all vectors in A; are

linearly independent for any integer 7, 1 < i < k. Thus we fnally get a basis of V. U

A multi-vector space V is f nite-dimensional if it has a f nite basis. By Theorem 3.4.2,

if the vector space (V;; F;) is fnite-dimensional for any integer i, 1 < i < k, then (?7, 13)

is f nite-dimensional. On the other hand, if there is an integer iy, 1 < iy < k such that the

vector space (V;,; F;,) is inf nite-dimensional, then (17, F) must be inf nite-dimensional.

This fact enables one to get a consequence following.

—~ — ko k

Corollary 3.4.2 Let (V;IE) be a vector multi-space with V.= \JV;,F = \JF;. Then
i=1 i=1

(17; F) is fnite-dimensional if and only if (V;; +;, ;) is f nite-dimensional for any integer

i,1<i<k

Furthermore, we know the following result on f nite-dimensional multi-spaces.

Theorem 3.4.3 For a fnite-dimensional multi-vector space (17, F) any two bases have

the same number of vectors.

— & -k
Proof Let V = J V;and F = |J F;. The proof is by the induction on k. For k = 1,
i=1 i=1
the assertion is true by Corollary 1.4.1.

If £k = 2, let Wy, W, be two subspaces of a fnite-dimensional vector space. By
Theorem 1.4.5 if the basis of W, (" W, is {a|, a,, - - -, a,}, then the basis of W, | J W, is

{al’ ay,- -+, a, bt+19 bt+2’ ) bdile’ Cri15Cry25 00 cdimW2}9

where {a;,ay, -+, a, b1, b2, buimw, } 18 a basis of Wy and {a;,ay,- -, a,, €111, 2,
-+, Caim,) @ basis of Wy.
Whence, ifV = Wi W, and F = F1 U F,, then the basis of Vis

{ala ay,- -+, a, bt+19 bt+2’ ) bdile’ Cri15Cry25 00 cdisz}'

Now assume the assertion is true for k = [, > 2. We consider the case of k = [+ 1.



94 Chap.3 Algebraic Multi-Spaces

Notice that [ 1
V= (U V,-)U Vi, F = [UE)UFM.
i=1 i=1
By the induction assumption, we know that any two bases of the multi-vector space

/ i !
(U Vi U Fi) have the same number p of vectors. If the basis of(U V,~) () Vi 1s {eq, e,

=1 =1 i=1
.-+, e,}, then the basis of V' is

{el’ €, -, €y, fn+1’ fn+2’ Tty fp’ gn+l’ gn+2’ Y gdimVHl }3

/ /
Where {el? €, 0,6, fn+1? fn+2’ T, fp} 1S a b3.51s Of (U I/la U Fl) and {el? €, 0,6, gn+1’
i=1 i=1

842, > Caimy,,,} 1S a basis of V. Whence, the number of vectors in a basis of Vs
p+dimV;, —nforthecasen =1+ 1.

Therefore, the assertion is true for any integer k£ by the induction principle. UJ

3.4.3 Dimension. By Theorem 3.4.3, the cardinal number in a basis of a fnite dimen-

sional vector multi-space V is def ned to be its dimension and denoted by dim/V.
— -k
Theorem 3.4.4(dimensional formula) For a vector multi-space (V; F) withV = V; and
i=1

— k — —
F = \J Fj, the dimension dimV of(V; F) is
i=1

dimV = Zk:(—l)f—l > dim(Va () Ve ) ) Vi)
i=1 k}

{i1,i2,---,ii}c{1,2,-,

Proof The proof is by induction on k. If k = 1, the formula is turn to a trivial case
dimV = dimV;. If k = 2, the formula is

dim?’ = dim¥; + dim?; — dim (¥, | dim3),

which is true by Theorem 1.4.5.
Now assume that the formula is true for £ = n. Consider the case of £k = n + 1.

According to Theorem 3.4.3, we know that

dim[U 14) + dimV,,, — dim ([ 14) ﬂ V,Hl)

i=1

dim[U V,-) +dimV,,, — dim(

i=1

dimV

n
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dimV,,, + zn:(—l)i_l Z dim(Vil ﬂ Vio ﬂ e ﬂ Vii)
i=1 nj

{i1,i2,-,ii}c{1,2,--,

£ T dim(Va (Ve ) () Vil ) V)
i=1 {i1,i2,--1}C{1,2,0+-,m)
= )0 dim (Vi () V2 ()] V)
i=1 {i1,12,,if) C{1,2,,k)
By the induction principle, the formula is true for any integer £. U

As a consequence, we get the following formula.

Corollary 3.4.3(additive formula) For any two vector multi-spaces Vi, Va,

dim(7, U V) = dim?) + dim?; — dim (7, ﬂ 7).

§3.5 MULTI-MODULES

3.5.1 Multi-Module. The multi-modules are generalization of vector multi-spaces. Let
O={+1<i<m}O ={l <i<m}and O, = {+]1 < i < m} be operation sets,
(. ; O) a commutative m-group with units 0,, and (#; O, — O,) a multi-ring with a unit
1. for V- € Oy. For any integer i, 1 < i < m, defne a binary operation X; : Z X # — M
by a X; x fora € Z, x € ./ such that for Ya,b € #, Vx,y € .#, conditions following
hold:

(1) ax;(x+;y)=axX;x+;aX%;y;

(2) (a+ib) X;x =ax;x+; bX; x;

(3) (a - b) X; x = aX; (bX;x)

4 1. x;x = x.
Then (.#'; O) is said an algebraic multi-module over (%;0; — O,) abbreviated to an m-
module and denoted by Mod(.Z (O) : Z(0O, — 0,)). In the case of m = 1, It is obvious
that Mod(.Z (O) : Z(0, — 0,)) is a module, particularly, if (#Z;0, — O,) is a feld,
then Mod(.Z (O) : Z(0, — O,)) is a linear space in classical algebra.

For any integer k, a; € # and x; € .#, where 1 < i, k < s, equalities following are

hold by induction on the def nition of m-modules.
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axk(x1 +i X2 +k---+kxs):a><kx1 +ra Xg Xo +pccc Hpag Xi X,
(al-i-kaz-i-k----i-kas) XX =ay Xp X+ ay Xp X +p -0+ ag X X,
(@y k ay -k ag) X X = ay Xg (@ Xp o+ X (a5 X x) -+ )

and

1.,.1 X (1.,.2 Xiy oo X (1, X %)) = x
for integers iy, iy, - -+, i, € {1,2,-- -, m}.
Notice that for Va,x € 4,1 <i < m,
axXix=aX;(x+;0y)=ax;x+;ax%;0,4,
we fnd that a x; 0,, = 0,,. Similarly, 0;, X; a = 0,,. Applying this fact, we know that
aX;X+;a; X;x = (a-i—iajﬁ_) x; x =05, %; x =0,

and

aX;x+iaX;x; =aX;(x+;x;)=ax;0,, =0,4.

i

We know that
(aX;x),, = ai X;x=aX;x,.

Notice that a x; x = 0,, does not always mean a = 0;, or x = 0, in an m-module
Mod(.#(0) : Z(01 — 0,)) unless a; is existing in (#; +;, ;) if x # 0.,

Now choose Mod(.#/(0)) : #,(0; — O))) an m-module with operation sets O; =
{+/11<i<m}, O = {1 <i<m}, O ={+]|1 <i<m}and Mod(/(0;) : %»(0* —
0?)) an n-module with operation sets O, = { +/ | 1 < i < n}, O = {1 < i < n},
0; = {+2|1 < i < n). They are said homomorphic if there is a mapping ¢ : 4%, — M,

such that for any integer i, 1 <i < m,
(1) ux+y)=ux)+" () for Vx,y € 4\, where (+)) = +" € Oy;
(2) uax; x)=ax;ux)forVx € .

If ¢ is a bijection, these modules Mod(.#,(0)) : %,(0} — 0))) and Mod(.#,(0,) :
H>(01 — 03)) are said to be isomorphic, denoted by

MOd(%l(Ol) : %1(01 — O;)) = MOd(%g(Og) . %2(0% — Og))

Let Mod(.7Z (0O) : Z(0O; — O;)) be an m-module. For a multi-subgroup (.4"; O) of
(A ;0), if for any integer i, 1 < i < m,ax; x € N forVYa € # and x € ./, then by
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def nition it is itself an m-module, called a multi-submodule of Mod(.Z (0O) : Z(0; —

0,)).
Now if Mod(./ (O) : Z(0O, — 0,)) is amulti-submodule of Mod(.Z (O) : Z(0, —
0,)), by Theorem 2.3.2, we can get a quotient multi-group %l(&ﬁ) with a representation

pair (R, P) under operations
(a+; )+ b+, N)=(a+b)+ N

for Ya, b € R, + € O. For convenience, we denote elements x +; ./ in %kze,ﬁ) by x@. For

an integer i, 1 <i <m and Ya € #Z, defne
ax; x® = (a x; x)0.
Then it can be shown immediately that

(1) ax; (W +,-)ﬁ) =ax;x) +;a xi)ﬁ;

(2) (a+:b) x: x0 = a x; XD +; b x; xD;

(3) (@i b) X XD = a x; (b x; x);

(4) 1. % x0 = x0,
i.e.,(% lzp) © %) is also an m-module, called a quotient module of Mod(.7 (O) : Z(0; —
0,)) to Mod(_4 (O) : Z(0; — O,)). Denoted by Mod(.Z /| ./V").

The result on homomorphisms of m-modules following is an immediately conse-

quence of Theorem 3.2.7.

Theorem 3.5.1 Let Mod(.#/(0,) : %,(0] — O))), Mod(.#,(0>) : %,(0F — 05)) be
multi-modules with O, = {+/ |1 <i<m}, O, ={+/|1<i<n} O} = {'}Il <i<mj
Ol ={+/ll <i<m) O ={21 <i<n)OF=1{+I|1 <i<n}and.: Mod(A(0)) :
Z1(0; — 0)) = Mod(#4(0,) : %,(07 — 03)) be a onto homomorphism with
(Z(0,); 0>) a multi-group, where 1(03) denotes all units in the commutative multi-group

(A; O,). Then there exist representation pairs (R, Fl), (R», ﬁz) such that
Mod(A | N)\g, 5y = Mod(A5(02)/1(02))|z, 7y

where N = Keru is the kernel of v. Particularly, if (1(0,);0,) is trivial, i.e., |I(0,)| = 1,
then
Mod(4 | N, 7y = MOA(AMAOL) : o0} > O 7.



98 Chap.3 Algebraic Multi-Spaces

Proof Notice that (7(0,); O,) is a commutative multi-group. We can certainly con-
struct a quotient module Mod(.#,(0,)/Z(0,)). Applying Theorem 3.2.7, we fnd that

Mod(A | N g, 5,y = Mod(A2(02)/I(0)) g, 5,

Notice that Mod(.#5(0,)/1(0,)) = Mod(.#>(0,) : %,(07 — 05)) in the case of
|7(0,)| = 1. We get the isomorphism as desired. 0

Corollary 3.5.1 Let Mod(.Z(0) : Z(0, — 0»)) be an m-module with O = { +; | 1 <
i<m), O =1 <i<m} O ={+]|l <i < m}, Mamodule on a ring (R;+,-) and
¢ : Mod(#,(0y) : #,(0] — 0))) = M a onto homomorphism with Ker. = A", Then

there exists a representation pair (R’, ﬁ) such that
Mod(A | N w5 = M,
particularly, if Mod(.# (O) : Z(0, — 0,)) is a module .#, then

MIN = M.

3.5.2 Finite Dimensional Multi-Module. For constructing multi-submodules of an m-
module Mod(.Z (0) : Z(O, — Oy)) withO = {+;|1 <i <m},O0; = {-}]l <i < m},
0, = {+|1 <i < m}, a general way is described in the following.

Let S € .# with [S| = n. Defne its linearly spanning set <§|9?> in Mod(.Z (O) :
%(01 — 02)) to be

(S1%) = {@ @a,j ;x| @iy € B, x;; €S }

=1 j=1

where
m o
@ @ ajj Xij Xi = dpp Xy Xy 100+ g Xp Xy
=1 j=1
+Way Xo a1 42+ +2 @2 X2 X2
4+ +®
At Xow X1 Fm = Fm A Xon Xoun
with +0, +@ +® ¢ O and particularly, if +; = +, = --- = +,, it is denoted by f X;

i=1

as usual. It can be checked easily that <§|9?> is a multi-submodule of Mod(.Z (O) :
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RO, — O)), call it generated by S in Mod(# (0) : Z(O; — 0,)). If S is fnite, we
also say that <§|,%’> is fnitely generated. Particularly, if S = {x}, then <§|,%’> is called a
cyclic multi-submodule of Mod(.# (0) : Z(0; — 0,)), denoted by Zx. Notice that

m
Hx :{@aixixlaieﬁ}
i=1
by def nition. For any f nite set S, if for any integer s, 1 < s < m,
m Si
DD ayxix; =0,
=1 j=1

implies that a;; = 05 for 1 <7 <m,1 < j < n, then we say that {x;;|]1 <i<m,1 < j<n}
is independent and S a basis of the multi-module Mod(.7 (O) : #(0, — 0,)), denoted
by (S122) = Mod(.#(0) : Z(01 = O2)).

For a multi-ring (#Z; O, — O,) with aunit 1. for V- € O, where Oy = {-]|]1 < i < m}

and O, = {+|1 <i < m}, let
%(ﬂ) = {(xl’x2’ o "xn)| X; € ‘%’ 1<i< n}
Def ne operations

(X1, 202, -+, %)+ V1,02, o vn) = (a1, Xod 0, L X F00),

aX; (X1, X2, %) = (@ X1, X2, ++, A+ X)

for Va € % and integers 1 < i < m. Then it can be immediately known that 2 is a multi-
module Mod(Z"™ : (0, — O,)). We construct a basis of this special multi-module in
the following.

For any integer k£, 1 < k < n, let

€ = (l-k’ 04’/{’ ) O+k);

e = (04, 1,,---,04);

Notice that

(X1, X2, -+, Xp) = X Xg € 44 Xo Xy € +p - -+ Xy Xg €.
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We fnd that each element in %™ is generated by e, e,, - - -, €,. Now since

(xl’ X257 xn) = (O-i-k’ 04—k, T, O-i-k)
implies that x; = 04, for any integer i,1 < i < n. Whence, {e;,e,,---,e,} is a basis of

MOd(:@(”) . %(01 — 02))

Theorem 3.5.2 Let Mod(.# (0) : Z(0, — O,)) = <§|9?> be a fnitely generated multi-

module with S = {ur, us, -+, u,}. Then
MOd(%(O) . L@(Ol — 02)) ~ MOd(%(n) . %(01 — 02))
Proof Defne a mapping ¢ : .#(0) — Z™ by ¥(u;) = e;, Ha X; u;) = a X; e; and

W(u; +r u;) = e; + e; for any integers i, j, k, where 1 <1, j, k < n. Then we know that
m n m n
Py a0 =B B e
=1 j=1 =1 j=1

Whence, 9 is a homomorphism. Notice that it is also 1 — 1 and onto. We know that ¥ is
an isomorphism between Mod (.7 (0) : Z(0; — 0,)) and Mod(Z"™ : Z(0, — O0,)).[]

§3.6 RESEARCH PROBLEMS

3.6.1 The conceptions of bi-group and bi-subgroup were frst appeared in [Magl] and
[MaK1]. Certainly, they are special cases of multi-group and multi-subgroup. More

results on bi-groups can be found in [Kan1]. We list some open problems in the following.

Problem 3.6.1 Establish a decomposition theory for multi-groups.
In group theory, we know the following decomposition result for groups.

Theorem 3.6.1([Robl]) Let G be a f nite Q-group. Then G can be uniquely decomposed

as a direct product of f nite non-decomposition Q-subgroups.

Theorem 3.6.2([Wanl]) Each fnite Abelian group is a direct product of its Sylow p-

subgroups.

Then Problem 3.6.1 can be restated as follows.

Problem 3.6.2 Whether can we establish a decomposition theory for multi-groups similar

to the above two results in group theory, especially, for f nite multi-groups?
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Problem 3.6.2 Def'ne the conception of simple multi-groups. For f nite multi-groups,

whether can we fnd all simple multi-groups?
We have known that there are four simple group classes following ([ XHLL1]):
Class 1: The cyclic groups of prime order;
Class 2: The alternating groups 4,,,n > 5;
Class 3: The 16 groups of Lie types;
Class 4: The 26 sporadic simple groups.

Problem 3.6.3 Determine the structure properties of multi-groups generated by fnite

elements.

For a subset 4 of a multi-group G, defne its spanning set by
(4) ={aobla,b e Aand o € OG)}.

If there exists a subset 4 C G such that G = (A4), then call G is generated by 4. Call G
[ nitely generated if there exist a fnite set 4 such that G = (A4). Then Problem 3.6.3 can

be restated as follows:

Problem 3.6.4 Can we establish a f nite generated multi-group theory similar to that of
[ nite generated groups?

Problem 3.6.5 Determine the structure of a Noether multi-ring.

3.6.2 A ring R is called to be a Noether ring if its every ideal chain only has fnite terms.
Similarly, for a multi-ring R, if its every multi-ideal chain only has fnite terms, it is called

to be a Noether multi-ring.

Problem 3.6.6 Can we f'nd the structures of Noether multi-rings likewise that of Corol-
lary 3.3.3 and Theorem 3.3.6?

Problem 3.6.7 Defne a Jacobson or Brown-McCoy radical for multi-rings similar to

that in rings, and determine their contribution to multi-rings.

3.6.3 Notice that Theorems 3.4.2 and 3.4.3 imply that we can establish a linear theory for
multi-vector spaces, but the situation is complex than that of classical linear spaces. The

following problems are interesting.
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Problem 3.6.8 Similar to that of linear spaces, def ne linear transformations on vector

multi-spaces. Can we establish a matrix theory for those linear transformations?
Problem 3.6.9 Whether a vector multi-space must be a linear space?
Conjecture 3.6.1 There exists non-linear vector multi-spaces in vector multi-spaces.

If Conjecture 3.6.1 is true, there is a fundamental problem on vector multi-spaces
should be considered following.

Problem 3.6.10 Can we apply vector multi-spaces to those non-linear spaces?

3.6.4 For a complete multi-space (Z ; O (Z)), we can get a multi-operation system A. For

example, if 4 is a multi-feld F = |J F; with a double operation set O (F) ={(+,X)| 1<
i=1

i < n}, then (]7; +1, 42,000, +,,), (]7; X1, X2, e, x,,) and (]7; (41, %X1), (+2,%2), + -, (4, x,,))
are multi-operation systems. By this view, the classical operation system (R ; +) and
(R ;Xx) are systems with one operation. For a multi-operation system A, we can de-
fne these conceptions of equality and inequality, - - -, etc.. For example, in the multi-
operation system (f T S FEEE +,,), we def ne the equalities =, =,, - - -, =, such as those
in sole operation systems (F;+1),(F; +2),---, (f, +,1), for example, 2 =; 2,14 =,
1.4,---, V3 =, V3 which is the same as the usual meaning and similarly, for the con-
ceptions >y, >, -+, >, and <1, <5, -+, <.

In the classical operation system (R; +), the equation system

x+24+4+6 = 15
x+1+3+6 = 12
x+1+4+7 = 13

can not has a solution. But in (17 D1, o, +,,), the equation system

)C+12+14+16 =1 15
X+, 1+,3+,6 = 12

x+31+34+37 =3 13
has a solution x if

15+ (=) +1 (=4) +1 (=16) 12 +5 (=1) +2 (=3) +2 (=6)

13 +5(=1) +3 (=4) +3 (7).
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in (F;+,+,,---,+,). Whence, an element maybe have different disguises in a multi-

operation system.

Problem 3.6.11 Find necessary and sufficient conditions for a multi-operation system
with more than 3 operations to be the rational number feld Q, the real number feld R or

the complex number feld C.

For a multi-operation system (N ; (+1, X1), (+2, X2), - - -, (+4, X)) and integers a, b, ¢ €
N, if a = b X; ¢ for an integer i, 1 < i < n, then b and c are called factors of a. An integer
p is called a prime if there exist integers ny, n; and i, 1 < i < n such that p = n; X; n,, then
p = ny or p = n,. Two problems for primes of a multi-operation system (N ; (+1, X;),

(42, %2), - -, (+4, X,)) are presented in the following.

Problem 3.6.12 For a positive real number x, denote by n,,(x) the number of primes < x

in (N ;(+1,%1), (+2,X2), * - -, (+4, X,,)). Determine or estimate m,,(x).

Notice that for the positive integer system, by a well-known theorem, i.e., Gauss
prime theorem, we have known that
n(x) ~ i.
logx
Problem 3.6.13 Find the additive number properties for (N ; (+1, X1), (+2, X2), - =, (+1, X»)),

for example, we have weakly forms for Goldbach’s conjecture and Fermat’s problem as
follows.

Conjecture 3.6.2 For any even integer n,n > 4, there exist odd primes pi, p, and an

integer i, 1 <i < nsuch thatn = py +; p,.

Conjecture 3.6.3 For any positive integer q, the Diophantine equation x? + y7 = z? has

non-trivial integer solutions (x,y, z) at least for an operation “+;” with 1 <i < n.

3.6.5 A Smarandache n-structure on a set S means a weak structure {w(0)} on S such
that there exists a chain of proper subsets P(n — 1) ¢ P(n —2) c --- c P(1) C S whose
corresponding structures verify the inverse chain {w(n — 1)} > {w(n—-2)} > --- > {w(1)} D

{w(0)}, i.e., structures satisfying more axioms.

Problem 3.6.14 For Smarandache multi-structures, solves Problems 3.6.1 — 3.6.10.



CHAPTER 4.

Multi-Voltage Graphs

There is a convenient way for constructing regular covering spaces of a graph
G in topological graph theory, i.e., by a voltage assignment @ : G — I' on
G, frst introduced by Gustin in 1963 and then generalized by Gross in 1974,
where (I'; o) is a f nite group. Youngs extensively used voltage graphs in prov-
ing Heawood map coloring theorem. Today, this approach has been also ap-
plied for f nding regular maps on surface. However, there are few attentions
on irregular coverings of graphs. We generalize such graphs G by a voltage
assignmenta : G > T'toa : G — T, ie., multi-voltage graphs, where
(f; 0) is a fnite multi-group. By applying results in last chapter, two kind of
multi-voltage graphs are introduced for f nding irregular coverings of graphs.
Elementary properties and results on these multi-voltage graphs are obtained
in Sections 4.2-4.3. Furthermore, we also construct graph models for alge-
braic multi-systems, including Cayley graphs on multi-groups in Section 4.4
and get results on structural properties of algebraic systems by such graph

models.



Sec.4.1 Voltage Graphs 105

§4.1 VOLTAGE GRAPHS

4.1.1 Voltage Graph. Let G be a connected graph and (I'; o) a group. For each edge
e € E(G),e = uv, an orientation on e is such an orientation on e from u to v, denoted
by e = (u,v), called the plus orientation and its minus orientation, from v to u, denoted

U'= (v,u). For a given graph G with plus and minus orientation on edges, a voltage

by e~
assignment on G is a mapping o from the plus-edges of G into a group I' satisfying
o(e™") = 07 (e), e € E(G). These elements o(e), e € E(G) are called voltages, and (G, o)
a voltage graph with a voltage assignmento : G — I

For a voltage graph (G, o) with a voltage assignment o : G — T, its lifting G =

(V(G), E(G7); I(G”)) is def ned by

V(G7) = V(G)xT, and Y(u,a) € V(G) x T is abbreviated to u,,
E(G) = {(ug, vaop)le" = (u,v) € E(G),o(e") = b}
and
H(G7) = {(tas Vaor)I(€) = (Uas Vaos) if € = (Ua, Vaos) € E(G7)}.
For example, let G = K3 and I' = Z,. Then the voltage graph (K3,0) with o : K5 — 7,

and its lifting are shown in Fig.4.1.1.

Ug

(G,0) G°

Fig.6.1.1

Let (G;0) be a voltage graph with a voltage assignment o : G — I'. Then for
Yv € V(G) and e € E(G), the sets

D ={v.lael}, [e]' ={e,lacl}

are def ned the fbers over v or e, respectively and p : G — G determined by p : v, —
v and e, — eforv e V(G), e € E(G) and a € I the natural projection of (G; o). Clearly,

p is a |G|-sheet covering for any point x € G.
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4.1.2 Lifted Walk. For a walk W = ¢e]', €77, ---, €," with o; € {+, -}, defne its net
voltage by

o(W) =o(e))o(ey)---o(ey,).

For example, the net voltage on the walk uv*, vw*, wv™ in Fig4.1.1is1+0+0 =1. A
lifting of such a walk W is determined by W = ey, e, -+, e such that p(e;) € [e;]"
for integers 1 < i < n. For instance, the liftings of the walk uv*, vw*, wv™ in Fig.4.1.1 are
uovy, viwy, wivy and uy vy, vowy, wov, . Particularly, let e* = (u,v) € E(G) with o(e*) = b,

o(b) = n, we get an n-circuit starting at u,, i.e.,

+ + + +
Uy €5 Ugobs €ops Uaob?s €425 * * s Ugobr=15 €, pn-15 Ugobr = Uyq
in the lifting G7.

Theorem 4.1.1 If W is a walk in a voltage graph (G; o) with a voltage assignment
o : G — T such that the initial vertex of W is u, then for each vertex u, in the f ber [u]

there is a unique lifting of W that starts at u,.

Proof Assume W = u,e',vi,e5°,v5,---. If oy = +, then, since there is only one
plus-directed edge, i.e., the edge e} in the fber [¢;]" starts at vertex u,, the edge must be
the frst edge in the lifting of W starting at u,. If o = —, similarly, since there is only one

minus-directed edge, i.e., (e;) , in the fber [e;]' starts at u,, it follows the edge must

(;00'(6‘_
be the frst edge in the lifting of W starting at u,. Similarly, there is only one possible
choice of the second edge ¢7* in the lifting of W because its initial vertex must be the
terminal vertex of the frst edge and its lifting must in the fber [e,]'. Continuing this

process, the uniqueness of lifting walk W starting at u, holds. O

Theorem 4.1.2 If W is a walk from u to v in a voltage graph (G; o) with a voltage
assignment o : G — I and (W) = b, then the lifting W, starting at u, terminates at the

vertex V,op.

Proof Let by, by, - - -, b; be the successive voltage encountered on a traversal of walk
W. Then it is clear that these subscripts of the successive vertices on the lifting W of W,
area,sobj,aobyob,y,---,ao0bobyo---0b; =aob. Thus the terminal vertex of W<

starts at u, 1S V,op. O

Corollary 4.1.1 Let P(u,v) be a path from u to v in a voltage graph (G; o) with a voltage
assignment o : G — I and o (P(u, v)) = b. then the lifting of P(u,v) is a path P(u,, Vo).



Sec.4.1 Voltage Graphs 107

Furthermore, if W is a circuit in (G; o), we get the following result.

Theorem 4.1.3 Let C be a circuit of length m in a voltage graph (G; o) with a voltage
assignment o : G — I and o(c(C)) = n. Then each connected component of p~'(C) is a

Il

circuit of length mn, and there are — such components.
n

Proof Let C be the walk W = u,e]',v,eJ*,---,¢e,",u, 0; € {+,—}, o(W) = b and
u, € [u]'. Applying Theorem 4.1.2, we know that the component of p~!(C) containing u,
is formed by edges in walks

Wa, Waoba Y Waob”_19

which form a circuit of length mn by edges in these walk attached end-by-end. Notice
r
that there are % left cosets of the cyclic group (b) in (I'; o) and each of them uniquely
Il

determine a component of p~!'. Thus there are — lifted circuits of length C. 0
n

4.1.3 Group Action. Let G be a graph and (I'; o) a group. If for each element g € T,

there is an automorphism ¢, of G such that the following two conditions hold:

(1) ¢, is the identity automorphism of G;
(2) ¢g : ¢h = ¢g0h for g’h € Fa
then the group (T'; o) is said to act on the graph G. For Vv € V(G), e € E(G), the sets

V={1¥|geTl} and e ={ef|gel}

are called the vertex orbit or edge orbit under the action of (I'; o). The sets of vertex orbits
and edge orbits are respectively denoted by V/I" and E/I". Moreover, if the additional

condition

(3) For each element 11 # g € I, there are no vertex v € V(G) such that ¢4(v) = v
and no edge e € E(G) such that ¢,(e) = e

holds, then (T'; o) is said to act freely on G.
The regular quotient G/T is such a graph with vertex set V/I" and edge set E£/I" such

I is an end-vertex

that a vertex orbit V' is an end-vertex of the orbit €' if any vertex v in v
of an edge in e'. There are easily to verify that such a graph G/T" is well-def ned, i.e., e is
an edge with an end-vertex v if and only if ¢! with an end-vertex V'

Now let (G; o) be a voltage graph with a voltage assignment o : G — I'. There is a

natural action of (I', o) on G” by rules ¢¢(v,) = w,,,, on vertices and ¢4(e,) = €40, On edges
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for g € I'. Such an action ¢, is an automorphism of G" by verifying that ¢, - ¢ = Pgop.

Then the following result is clear by def nition.

Theorem 4.1.4 Let (G;0) be a voltage graph with a voltage assignment o : G — T and
Ve € V(GY), e, € E(G?). Then V!, = p~'(v) and €, = p~'(e).

Proof For v, € V(G7), by def nition we know that
Ve = {65(ve) = Veea |g €T} = {wy | H €T} = p~'(¥).

Similarly, we get ¢! = p~l(e). O

4.1.4 Lifted Graph. For a voltage graph (G; o) with a voltage assignmento : G — T,
we know that (I'; o) is act-free on G” because if ¢,(v,) = v, or ¢,(e,) = e,, then g = 1.
This fact enables Gross and Tucker found a necessary and sufficient condition for a graph

being that lifting of a voltage graph following.

Theorem 4.1.5(Gross and Tucker, 1974) Let (I'; o) be a group acting freely on a graph G
and G = G/T. Then there is a voltage assignment o : G — I and a labeling of vertices
on G by elements of V(G) X I such that G = G and the action is the natural action of
(I;0) on G°.

Proof First, we choose positive directions for edges in the graph G and G so that
the quotient map gr : G — Gis direction-preserving and that the action of (I'; o) on G
preserves directions. Second, for Vv € V(G), label one vertex of the orbit p~!(v) in G as
v, and for every element g € I', g # 1r, label the vertex ¢,(v}) as v,. Now if the edge e of
G runs from u to w, we assigns the label ¢, to the edge of the orbit p~!(e) that originates
at the vertex v,. Since (I'; o) acts freely on G, there are just |T'| edges in the orbit p~!(e),
one originating at each of the vertices in the vertex orbit p~!(v). Thus, the choice of an
edge to be labelled e, is unique. Finally, if the terminal vertex of the edge e, is w;, one
assigns a voltage b to the edge e in graph G. Thus o(e*) = b. To show that this labelling
of edges in p~!(e) and the choice of voltages b for the edge e really yields an isomorphism
9 : G — G, one needs to show that for Ya € T that the edge e, terminates at the vertex
waop. However, since e, = ¢,(ey.), the terminal vertex of the edge e, must be the terminal

vertex of the edge ¢a(€1ri), 1e.,

Ga(Wp) = da - Pp(W1) = P o D)W1) = Weop.
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Under this labelling process, the isomorphism 9 : G — G identifes orbits in G with
fbers of G”. Moreover, it is def ned precisely so that the action of (I'; o) on G is consistent

with the natural action on the lifted graph G“. This completes the proof. 0

§4.2 MULTI-VOLTAGE GRAPHS-TYPE I

4.2.1 Multi-Voltage Graph of Type I. The frst type of multi-voltage graph is labeling
edges in a graph by elements in a f nite multi-group (f, 0). Formally, it is def ned in the

following.

Def nition 4.2.1 Let (f; 0) be a f nite multi-group with r= LnJ I, O(I.:) = {o)]1 <7 < n}
i=1

and G a graph. If there is a mapping  : X 1 (G) » T such that (e ™) = (Y(eh))™! for
Vet e X 1 (G), then the 2-tuple (G, ) is called a multi-voltage graph of type L.

Geometrically, a multi-voltage graph is nothing but a weighted graph with weights
in a multi-group. Similar to voltage graphs, the importance of a multi-voltage graph is in

its lifting def ned in the def nition following.

Def nition 4.2.2 For a multi-voltage graph (G, ) of type 1, its lifting graph G¥ = (V(GY),
E(GY); I(GY)) is def ned by

V(G") = V(G) X T,
E(G”) = {(tta> Vaoh)le™ = (u,v) € X1(G), (") = b,aob €T}

and
](G'ﬁ) = {(ua’ vaob)ll(e) = (uaa Vaob) lf e = (uaa Vaob) € E(GW)}

For abbreviation, a vertex (x,g) in G¥ is also denoted by x,. Now for Vv € V(G),
vxT = {Volg € f} is called a f'ber over v, denoted by F,. Similarly, for Ye* = (u,v) €
X ] (G) with y(e*) = b, all edges {(ug, Voop)lg, g 0 b € T} is called the fber over e, denoted
by F,.

For a multi-voltage graph (G, ) and its lifting G, there is also a natural projection
p : GY = G defned by p(F,) = v for Yv € V(G). It can be verif ed easily that p(F,) = e
for Ve € E(G).

Foe example, choose I = I'; T, with I} = {1,a,a?},T> = {1,b,b*} and a # b. A
multi-voltage graph and its lifting are shown in Fig.4.2.1.
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Uy Vg2
ua Va
G a 1 b
u v Ui V1
Vb
up 3
Up2 V2

Fig 4.2.1

Let (F 0) be a fnite multi-group with T = U I, O ={o; 1 <i < n}). We know
the liftings of walks in multi-voltage graphs of type I similar to that of voltage graphs

following.

Theorem 4.2.1 Let W = e'é*--- et be a walk in a multi-voltage graph (G, y) with initial
vertex u. Then there exists a lifting WY start at u, in G” if and only if there are integers

i1, 05, -, I Such that
ao; lﬁ(er) O " Qi lﬁ(e;) € Iﬂij+1 and lﬁ(e;ﬂ) € Fij+1

for any integer j,1 < j <k

Proof  Consider the frst semi-arc in the walk W, i.e., e]. Each lifting of e; must be
(Ua, Ugop(er))- Whence, there is a lifting of e in G" if and only if there exists an integer i
such that o = o; and a,a o; Y(e]) € I,.

Now if we have proved there is a lifting of a sub-walk W, = eje;, - - - ¢; in G¥ if and
only if there are integers iy, i, -+, i, | </ < k such that

ao; y(e}) oy, -0, w(e}r) eli,,, w(e;;l) el

for any integer j, 1 < j < I, we consider the semi-arc ¢}, ,. By defnition, there is a lifting
of e/, in GY with initial vertex Uaoy y(e})or, o, ble}) if and only if there exists an integer i,
such that

a o lﬁ(ef) Ojp =+ Oi‘,;l lﬁ(@f) € I‘l+1 and lﬁ(e;;_l) € Iﬂl+1-

Whence, by the induction principle, there exists a lifting WY start at u, in G¥ if and only

if there are integers iy, iy, - - -, i such that

ao; lﬁ(ef) Op " " Qi lﬁ(@j) € Iﬂij+1’ and lp(e}—ﬂ) € Iﬂij+1
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for any integer j, 1 < j < k. O

_ k
For two elements g, & € T, if there exist integers iy, i, - - -, iy such that g, h € I, but
j=1

k+1
for Vi € {1,2,- -,y \{ir, i, -+ -, ik}, g, h & (\ Iy, we call k = Il[g, h] the joint number
j=1

of g and h. Denote by O(g,h) = {o;;1 < j < k} and defne ﬁ[g, hl = X Tlg,goh]
0e0(T)

where I1[g, goh] = I1[goh, h] = 0 if goh does not exist in T. According to Theorem 4.2.1,
we get an upper bound for the number of liftings in G¥ for a walk W in (G, ) following.

Corollary 4.2.1 If those conditions in Theorem 4.2.1 hold, the number of liftings of W

with initial vertex u, in G¥ is not excess
I [a, y(ey)] x

k
[T > - > I [a o) y(e]) o -+ o;0(e)), ey,

i=1 o1€0@y(e})) o€ (e 1S <i-1)
where O(a; 0;,y(e;), 1 < j<i—1)=O(aoyley) oy -+ oy Ylel) Yle))).

The natural projection of a multi-voltage graph is not regular in general. For f nding
a regular covering of a graph, a typical class of multi-voltage graphs is the case of I'; =T
for any integer i, 1 < i < n in these multi-groups I= U T In this case, we can fnd the

i=1
exact number of liftings in G¥ for a walk in (G, ¥) following.

Theorem 4.2.2 Let (f; 0) be a fnite multi-group with T = UTand O = {o;;1 <i < n}
i=1

and let W = e'e* - - - & be a walk in a multi-voltage graph (G, ), ¥ : X1(G) — T of type I

with initial vertex u. Then there are n* liftings of W in GY with initial vertex u, for Va € T.

Proof The existence of lifting of W in G¥ is obvious by Theorem 4.2.1. Consider
the semi-arc e}. Since I'; = I for | < i < n, we know that there are n liftings of e; in G¥
with initial vertex u, for any a € f, each with a form (u,, uaol,,(e?)), o€ O (f)

Now if we have gotten n*, 1 < s < k—1 liftings in G¥ for a sub-walk W, = e'e” - - - €°.
Consider the semi-arc e}, ,. By defnition we know that there are also » liftings of ey, in
GY with initial vertex Uao; (et yos, ~ogiet)» Where o; € O(f) ,1 < i < s. Whence, there are
n**! liftings in G¥ for a sub-walk W = e'eé? - -- e in (G; y).

By the induction principle, we know the assertion is true. U

Particularly, if (F, 0) is nothing but a group, i.e., o; = o for integers 1 < i < n, we

get Theorem 4.1.1 again.
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Corollary 4.2.2 Let W be a walk in a voltage graph (G, y), ¢ : X% (G) — T with initial

vertex u. Then there is an unique lifting of W in GY with initial vertex u, for Va € T..

If a lifting W of a multi-voltage graph (G, ¢) is the same as the lifting of a voltage
graph (G, a),a : X 1 (G) — T, then this lifting is a homogeneous lifting of T';. For lifting a
circuit in a multi-voltage graph, we get the following result.

Theorem 4.2.3 Let (i:; 0) be a f nite multi-group with r= Ul and O = {o;;1 <i < nj,

i=1

C = ujuy - - - u,uy a circuit in a multi-voltage graph (G,y¥) and ¥ X% (G) — T. Then

there are homogenous liftings of length o(y/(C, o;))m in G¥ of C for any integer

r
o(Y(C, 0y))
i,1 < i < n, where y(C,0;) = Y(uy,up) o; Y(uz, u3) 0; -+« 07 YUy, Up) o; YUy, uy) and

there are

z": I
o(Y(C, 0)))

i=1
homogenous liftings of C in G¥ altogether.

Proof According to Theorem 4.2.2, there are liftings with initial vertex (), of C in
G" for Ya € T. Whence, for any integer i, 1 < i < n, walks
Wa = (u1)a(U2)aomuru) ** * (Um)aoup(uy )op-omp(un-1,um) U1 aop(C,op)»
Waow(Co) = (U1) a0 .00 (U2)aou(C.omows(ur uz)
“ o (U aonp(Coop)os(ur aiz)osos(uim—1.im) U1 a0y (Crop)
W aouotwiCon-1(Crony = (U1 aoyo@tCon=1(C,o,)(U2)ao,yo@(Con-1(C o0y )
“ ‘(um)aoilpo(l//(c"’i))’I(C,oi)oﬂ//(ul,uz)oi---oilp(um,l,um)(ul)a

are attached end-to-end to form a circuit of length o(¥(C, o;))m. Notice that there are
Il

o(Y(C, 0)))

each of them is correspondent with a homogenous lifting of C in G¥. Therefore, we get

left cosets of the cyclic group generated by ¢(C, o;) in the group (T, o;) and

an I
o(Y(C, 0)))

i=1

homogenous liftings of C in G¥. O

Corollary 4.2.3 Let C be a k-circuit in a voltage graph (G, ) such that the order of
W(C, o) is m in the voltage group (T'; o). Then each component of the preimage p~'(C) is

a km-circuit, and there are — such components.
m
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The lifting G¢ of a multi-voltage graph (G, £) of type I has a natural decomposition

described in the following.

Theorem 4.2.4 Let (G,{),< : X% (G) —» T = U T, be a multi-voltage graph of type 1.
i=1

Then )
¢ =P H,
i=1

where H; is an induced subgraph {E;) of G* for an integer i, 1 < i < n with
E; = {(ug, Vaop)la, b € I'; and (u,v) € E(G), {(u,v) = b}.

4.2.2 Subaction of Multi-Group. For a fnite multi-group (F; 0) with T = Url;, O =
i=1

n

{o;,1 < i < n} and a graph G, if there exists a decomposition G = €P H; and we can
j=1

associate each element g; € I'; a homeomorphism ¢,, on the vertex set V(H;) for any

integer i, | <i < n such that

(1) @giom; = Pg, X p, for all g;, h; € I';, where “X ” is an operation between homeo-
morphisms;

(2) g, 1s the identity homeomorphism if and only if g; is the identity element of the
group (I';; o)),
then we say this association to be a subaction of multi-group T on graph G. If there exists
a subaction of T on G such that ¢g,(u) = u only if g; = 1r, for any integer i,1 < i < n,

gi€l;and u € V;, we call it to be a fxed-free subaction.
A left subaction 1A of T on G¥ is def ned by

For any integer i,1 < i < n, let V; = {ualu e V(G),a EF} and g; € T';. Defne
[A(gi)(uy) = Ugo,q if a € V. Otherwise, gi(u,) = u,.
Then the following result holds.

Theorem 4.2.5 Let (G,y) be a multi-voltage graph with  : X 1 (G) — T = Lnj I'; and
i=1

G = P H; with H; = (E}), 1 < i < n, where E; = {(ug, Vaop)la,b € T; and (u,v) €
j=1
E(G),{(u,v) = b}. Then for any integeri,1 <i < n,
(1) For Vg; € T, the left subaction IA(g;) is a fxed-free subaction of an automor-

phism of H;;
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(2) T is an automorphism group of H;.

Proof Notice that /4(g;) is a one-to-one mapping on V(H;) for any integer i, 1 <i <
n,Vg; € I';. By the def nition of a lifting, an edge in H; has the form (u,, v,.,5) if a,b € T;.
Whence,

(1A(gi)(ua), LA(&1)(Vao,)) = (Ugioias Vgiowaos) € E(H;).
As aresult, /4(g;) is an automorphism of the graph H;.

Notice that /4 : T; — AutH, is an injection from I'; to AutGY. Since [4(g;) # [A(h;)
for Vg, h; € Ts,gi # h;, 1 < i < n. Otherwise, if [A(g;) = [A(h;) for Ya € T}, then
gio;a = h;o;a. Whence, g; = h;, a contradiction. Therefore, I'; is an automorphism group
of H;. Now for any integer i, 1 <i < n, g; € [;, it is implied by def nition that /4(g;) is a

f xed-free subaction on G¥. This completes the proof. O

Corollary 4.2.4 Let (G, @) be a voltage graph with « : X% (G) > I ThenT is an
automorphism group of G°.
For a fnite multi-group (f, O) with T = U T action on a graph G, the vertex orbit
i=1

orb(v) of a vertex v € V(G) and the edge orbit orb(e) of an edge e € E (G) are respectively
defned by
orb(v) = {g(v)lg € F} and orb(e) = {g(e)lg € f}.

Then the quotient graph G /T of G under the action of T is def ned by

V(G/T) ={orb() ve ¥ (G)},
E(G/T) ={orb(e) | e € E(G)},
I(orb(e)) = (orb(u), orb(v)) if there exists (u,v) € £ (G).

For example, a quotient graph is shown in Fig.4.2.2, where, T = Zs.

Fig 4.2.2
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Then we get a necessary and sufficient condition for the lifting of a multi-voltage

graph following.
Theorem 4.2.6 If the subaction A of a f nite multi-group (f, O) withT = UT,; onagraph
i=1

G = é H; is fxed-free, then there is a multi-voltage graph (g/f, {), X (g/f) >T
of typlezllsuch that
G ~ (G/T).

Proof First, we choose positive directions for edges of G/T and G so that the quotient
map ¢gg : G - G/T is direction-preserving and that the action A of T'onG preserves
directions. Next, for any integer i,1 < i < n and Vv € V(G/f), label one vertex of the
orbit q%l(v) in G as Vir, and for every group element g; € I';,g; # 1r,, label the vertex
A(g)(viy,) as vy, Now if the edge e of G/I runs from u to w, we assigns the label e,
to the edge of the orbit q;il (e) that originates at the vertex u,,. Since I'; acts freely on H;,
there are just |[;| edges in the orbit q;l_l (e) for each integer i, 1 < i < n, one originating at
each of the vertices in the vertex orbit q;l_l (v). Thus the choice of an edge to be labeled
e, 1s unique for any integer i, I < i < n. Finally, if the terminal vertex of the edge ey, is
wy,, One assigns a voltage 4; to the edge e in the quotient G/T, which enables us to geta
multi-voltage graph (5 /T, 4 ) To show that this labeling of edges in q;l_l (e) and the choice
of voltages 4;, | <i < n for the edge e really yields an isomorphism ¥ : G — (5/-1:)4*’ one
needs to show that for Vg; € I';, 1 < i < n that the edge e, terminates at the vertex wy, .
However, since e, = A(g;)(e1,,), the terminal vertex of the edge e, must be the terminal

vertex of the edge A(g;)(ei,. ), which is

Ag)(wi,) = A(g)A(h)(w1y,) = A(gi 01 hi)(Wir,) = Weion,-

Under this labeling process, the isomorphism @ : G- (G/I-‘){ identif es orbits in G with
fbers of G¢. Moreover, it is def ned precisely so that the action of T on G is consistent
with the left subaction /4 on the lifting graph G¥¢. U

Particularly, if (f; 0) is a f'nite group, we get Theorem 4.1.5 as a corollary.

Corollary 4.2.5 Let (T'; o) be a group acting freely on a graph G and let G be the resulting
quotient graph. Then there is a voltage assignment « : G — I and a labeling of the
vertices G by the elements of V(G) X I such that G = G” and the given action of (I'; o) on

G is the natural action of (I'; o) on G“.
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§4.3 MULTI-VOLTAGE GRAPHS-TYPE II

4.3.1 Multi-Voltage Graph of Type II. The multi-voltage graphs of type I are globally

labeling edges by elements in f nite multi-groups. Certainly, we can locally label edges in

a graph by elements in groups. Thus the multi-voltage graphs of type II, formally def ned

in the following.

Def nition 4.3.1 Let (f, 0) be a f nite multi-group with r= UT;, O=A{o;; 1 <i<n}and
i=1

let G be a graph with vertices partition V(G) = \J V;. For any integers i, j,1 < i,j < n,
i=1

if there is a mapping T : X% (<EG(V1~, Vj)>) — ;NI and ¢ : V; - T; such that 7(e”") =
(t(e"))! for Vet € X 1 (G) and the vertex subset V; is associated with the group (I';, o;) for
any integer i,1 < i < n, then (G, 7, ) is called a multi-voltage graph of type I1.

The lifting of a multi-voltage graph (G, 7, ¢) of type Il is def ned in the following.

Def nition 4.3.2 For a multi-voltage graph (G, 7, ) of type 11, the lifting graph G™) =
(V(G(T’g)) , E (G(“)) ; I(G(T’g))) of (G, 1,¢) is def ned by

n

v (G)=|_JixT,

i=1

E(G9) = {(as vaar)le® = (u,v) € X,(G).¢e") = b,ao b €T,
1(G™) = {(tar VaonI(€) = (tta, Vaes) if € = (e Vo) € E(G™)}.

Vo
Up
0
L = )
1
Uu v
(a) Yo
Ug
0
!
u %
1
U
V2

(b)

Fig 4.3.1
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Two multi-voltage graphs of type II with their lifting are shown in (a) and (b) of
Fig4.3.1, where T = Z,\JZs, ¥y = {u}, Vo = (Vyand g : V) = Zo, 61 Vo — Zs.

Theorem 4.3.1 Let (G, 1, §) be a multi-voltage graph of type Il and let W, = uyu, - - - uy, be
a walk in G. Then there exists a lifting of W) with an initial vertex (u))q,a € ¢~'(uy) in
G ifand only if a € ¢ (uy) (N s~ (u2) and for any integer 5,1 < s < k, a o;, T(ujus) o;,

T(upu3) Oj3 =+ 94y T(Us2Us—1) € G'_I(Us—l) ﬂg‘l(us), where

group ¢~ '(u;11) for any integer j,1 < j < s.

o;,” is an operation in the

Proof By the def nition of the lifting of a multi-voltage graph of type II, there exists
a lifting of the edge uju, in G if and only if a o; T(ujuz) € ¢7'(uz), where “o; ” is
an operation in the group ¢~ '(uy). Since T(ujuy) € ¢ '(uy) (N ¢ (1), we get that a €
¢~ '(u1) N s (up). Similarly, there exists a lifting of the subwalk W, = ujurus in G& if
and only if @ € ¢™'(u1) N 67! () and @ o;, T(u1u2) € 7' () N 67" (u3).

Now assume there exists a lifting of the subwalk W; = ujusus - - - u; in G&) if and
only if a o;, T(ujuy) o;, -+ -0, , T(Us—2u;—1) € ¢ '(u—) N s~ ' (uy) for any integer ¢, 1 < ¢ </,
where “o; 7 is an operation in the group ¢ (u;y1) for any integer j, 1 < j < /. We consider
the lifting of the subwalk W, = ujuous - - - ;1. Notice that if there exists a lifting of the
subwalk W, in G, then the terminal vertex of W, in G™ is (t41)acs, urur)on, i, w(ur-1ua):
We only need to fnd a necessary and sufficient condition for existing a lifting of wuu,

with an initial vertex (ul)aoil‘r(“luz)oiz“' — 7(u;-1u;). By defnition, there exists such a lifting

%1
of the edge uuy, if and only if (a o, T(ujuz) oy, - - - 05, )T(Ui11y)) o T(wgurr) € 67 (upsr).
Since T(uuy) € ¢ '(uy) by the def nition of multi-voltage graphs of type II, we know
that a o;, T(uyuy) oy, -+ 0, T(ui_1uy) € s ().

Continuing this process, we get the assertion by the induction principle. U

Corollary 4.3.1 Let G a graph with vertices partition V(G) = U V: and let (I'; 0) be a
[fnite group, I'; < T for any integer i,1 <i < n. If (G,7,¢)is a multl voltage graph with
T: X%(G) — Tand g : V; = T for any integer i,1 < i < n, then for a walk W in G with
an initial vertex u, there exists a lifting W) in G™ with the initial vertex u,,a € ¢~ (u)
if and only if a € Nyeygry s~ (V).

Similarly, if I'; = I" and V; = V(G) for any integer i, 1 < i < n, the number of liftings

of a walk in a multi-voltage graph of type II can be determined.

Theorem 4.3.2 Let (F O) be a f'nite multi-group with T = I, 0= {o;1<i<n}and
i=1
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let W = e'é®---ék be a walk with an initial vertex u in a multi-voltage graph (G, 1,),
T X (G) » NTandg : V(G) — T, of type IL. Then there are n* liftings of W in G
i=1

with an initial vertex u, for Va € T.

Proof The proof is similar to that of Theorem 4.2.3. UJ
Theorem 4.3.3 Let (f; O) be a f nite multi-group withT = LnJ IO ={o;1 <i<n}andlet
i=1
C = ujuy - - - uyuy be a circuit in a multi-voltage graph (G, 1,¢), where T : X% G- NTr
i=1

r
and g : V(G) — T. Then there are _ liftings of length o(tau(C, o;))m in G of
o(1(C, 0)))

C for any integer i, 1 < i < n, where 7(C, 0;) = T(uy, u) 0; T(up, u3) ©; - - 0; T(Up—1, Uy,) ©;

i I
o(7(C, 0,))

i=1

(U, uy), and there are

liftings of C in G™ altogether:

Proof The proof is similar to that of Theorem 4.2.3. 0

4.3.2 Subgraph Isomorphism. Let G|, G, be graph and H a subgraph of G; and G..

We introduce the conception of H-isomorphism of graph following.

Def nition 4.3.3 Let G, G, be two graphs and H a subgraph of G| and G,. A one-to-
one mapping ¢ between G| and G, is called an H-isomorphism if for any subgraph J
isomorphic to H in Gy, £(J) is also a subgraph isomorphic to H in G,.

If G\ = G, = G, then an H-isomorphism between G, and G, is called an H-
automorphism of G. Certainly, all H-automorphisms form a group under the composition
operation, denoted by AutyG and AutyG = AutG if we take H = K.

For example, let H = (E(x, Ng(x))) for Vx € V(G). Then the H-automorphism group
of a complete bipartite graph K(n, m) is AutyK(n,m) = S,[S,] = AutK(n, m). There H-

automorphisms are called star-automorphisms.

Theorem 4.3.4 Let G be a graph. If there is a decomposition G = @5 H; with H; ~ H for

i=1
l1<i<nand H= & J; withJ; =~ J for 1 < j < m, then
j=1
(1) {,t; : H — H;, an isomorphism, 1 <i<n) =S8, < AutyG, and particularly,

S, < AutyKy,.1 if H = C, a hamiltonian circuit in Ks,,,1.
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(2) Aut;G < AutyG, and particularly, AutG < AutyG for a simple graph G.

Proof (1) For any integer i, 1 < i < n, we prove there is a such H-automorphism
ton G that ¢; : Hy — H;. In fact, since H; ~ H, 1 < i < n, there is an isomorphism
6 : H — H;. We defne (; as follows:

o) { fe), ifee V(H)UEH,),
’ e,  ifee(V(G)\ V(H)UEG)\ E(H)).

Then ¢; is a one-to-one mapping on the graph G and is also an H-isomorphism by def ni-

tion. Whence,
(t»t; : Hy — H;, an isomorphism, 1 <i < n) < AutyG.

Since (1;, | <i<n)=~{(1,i),1 <i<n)y=1_5,, thereby we get that §,, < AutyG.

For a complete graph K5, ;, we know its a decomposition K,,; = @ C; with
i=1

Ci = VoViVise1Vie1Vie2 * ** Vari=1 Vatie 1 VisiVO
for any integer i, | <i < n by Theorem 2.4.2. Whence, we get that
Sy 2 AutyKo,

if we choose a hamiltonian circuit 4 in K>, .

(2) Choose o € Aut;G. By defnition, for any subgraph 4 of G, if 4 =~ J, then

o(4) = J. Notice that H = €P J; with J; ~ J for 1 < j < m. Therefore, for any subgraph

J=1
m

B,B =~ H of G, 0(B) ~ (P o(J;) ~ H. This fact implies that o € AutyG.
j=1
&(G)
Notice that for a simple graph G, we have a decomposition G = € K, and Autg,G =
i=1
AutG. Whence, AutG < AutyG. O

The equality in Theorem 4.3.4(2) does not always hold. For example, a one-to-one
mapping o on the lifting graph of Fig.4.3.2(a): o(ug) = uy, o(uy) = ug, o(vo) = vy,
o(v1) = v, and o(v2) = v is not an automorphism, but it is an H-automorphism with H
being a star S ,.

For automorphisms of the lifting G of a multi-voltage graph (G, 7, ¢) of type II,

we get a result following.
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Theorem 4.3.5 Let (G, ,¢) be a multi-voltage graph of type Il with T : X (G) - NI
i=1
and ¢ : V; = I';. Then for any integers i, j,1 <1i,j < n,

(1) forVg; €Ty, the left action 1A(g;) on (V)™ is a fxed-free action of an automor-
phism of (V;)™9;
(2) forVg;; € I't T}, the left action [A(g;;) on <EG(V1~, V,)>(T’g) is a star-automorphism
(T.5)
of (Ec(Vi. V) .

Proof The proof of (1) is similar to that of Theorem 4.2.4. We prove the asser-
tion (2). A star with a central vertex u,, u € V,a € I';(\I; is the graph S, =
({(ttar Vo p) if (u.v) € Eg(V, V), 7(u,v) = b}). By defnition, the left action /4(g;) is a

>(Ta§)

one-to-one mapping on <EG(V,~, V;)) . Now for any element g;;, g;; € I'; (T}, the left

action [A(g;;) of g;; on a star Sy, s
LA(Zi)(S siar) = ({000 Vigyoraro p) i (1, v) € Ec(Vi, V), 7w, v) = b}) = S .
Whence, /A4(g;;) is a star-automorphism of <EG(V,-, Vj)>(m). O
LetGbea graph and let (f, O) be a f nite multi-group withT = iL:Jl [andO ={o;; 1 <
i < n}. If there is a partition for the vertex set V(é) = iL:Jl V; such that the action of T on

G consists of T; action on (V;) and T; T on <EG(V1~, vj)> for 1 <i,j < n, we call such
an action to be a partially-action. A partially-action is called fxed-free if I'; is f xed-free
on (V;) and the action of each element in I'; () I'; is a star-automorphism and f xed-free on
<EG(V,-, Vj)> for any integers 7, j, 1 < i, j < n. These orbits of a partially-action are def ned
to be

orbi(v) = {gv)lg eI, v € Vi)

for any integer i, 1 <i < nand
orb(e) = {g(e)|e € E(C~z’),g € f}

A partially-quotient graph G/ pf‘ is def ned by
v (G/,0) =|_Jtorbiv) 1ve Vi), E(G/,T) = {orb(e)le € E(G))
i=1

and 1(G/,I') = {I(e) = (orbi(u), orb,(v)) if u € V;,v € V;and (u,v) € E(G),1 < i, j < n).
For example, a partially-quotient graph is shown in Fig.4.3.2, where V| = {ug, uy, us, us},
Vo ={vo,vi,vayand Iy = Z4, T, = Zs.
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Fig 4.3.2

We get a necessary and sufficient condition for the lifting of a multi-voltage graph of

type 1I following.
Theorem 4.3.6 If the partially-action P, of a f nite multi-group (F, 0) with T = Lnj I
i=1

and O = {o;;1 < i < n} on a graph G with V(G) = |J V; is fxed-free, then there is a
i=1
multi-voltage graph (5/ pf, T, g), 7T:X 1 (é/f) ST, ¢: Vo, of type Il such that

Proof Similar to the proof of Theorem 4.2.6, we also choose positive directions on
these edges of G/ pf and G so that the partially-quotient map Dy G— G/ pf is direction-
preserving and the partially-action of TonG preserves directions.

For any integer i, 1 < i < nand Yv' € ¥}, we can label v' as v| and for every group
element g; € I';, g; # 1r,, label the vertex #,(g)((v)1y,) as v;i. Now lif the edge e of G/ pf
runs from u to w, we assign the label e,, to the edge of the orbit p~!(e) that originates at
the vertex u}, and terminates at w;lj

Since I'; acts freely on (V;), there are just |I';| edges in the orbit p;il (e) for each integer
i, 1 <i < n, one originating at each of the vertices in the vertex orbit p;l_l (v). Thus for any
integer 7, 1 < i < n, the choice of an edge in p~'(e) to be labeled e,, is unique. Finally, if
the terminal vertex of the edge e, is w;;j, one assigns voltage g7' o, &, to the edge e in the
partially-quotient graph G/, I'if g;,h; e I; I'; for 1 < i, j < n.

Under this labeling process, the isomorphism ¥ : G — (5/ pf)(m) identif es orbits in
G with fbers of G™). O

The multi-voltage graphs defned in Sections 4.2 and 4.3 enables us to enlarge the
application feld of voltage graphs. For example, a complete bipartite graph K(n, m) is a

lifting of a multi-voltage graph, but it is not a lifting of a voltage graph in general if n # m.
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§4.4 MULTI-SPACES ON GRAPHS

4.4.1 Graph Model. A graph is called a directed graph if there is an orientation on its
every edge. A directed graph G is called an Euler graph if we can travel all edges of G
alone orientations on its edges with no repeat starting at any vertex u € V(@) and come
back to u. For a directed graph @, we use the convention that the orientation on the edge
eisu — vfor Ve = (u,v) € E(g) and say that e is incident from u and incident to v. For

ue V(a), the outdegree p% (u) of u is the number of edges in G incident from u and the

indegree p_, (u) of u is the number of edges in'G incident to . Whence, we know that

G
p% (u) + pé(u) = pa).

It is well-known that a graphg is Eulerian if and only if p% (u) = p‘@ (u) for Yu € V(@),
seeing examples in [11] for details. For a multiple 2-edge (a, b), if two orientations on
edges are both to a or both to b, then we say it to be a parallel multiple 2-edge. 1f one

orientation is to a and another is to b, then we say it to be an opposite multiple 2-edge.

« ”»

Now let (4; o) be an algebraic system with operation “o” . We associate a weighted
graph G[A] for (4; o) def ned as in the next def nition.

Def nition 4.4.1 Let (A4; o) be an algebraic system. Def ne a weighted graph G[A] asso-
ciated with (A; o) by

V(G[A]) = 4

and
E(G[A]) = {(a, c) with weight ob|if aob=c forVa,b,c € A}
as shown in Fig.4.4.1.

ob

Fig.4.4.1

For example, the associated graph G[Z4] for commutative group Z, is shown in
Fig.4.4.2.
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4.4.2 Graph Model Property. The advantage of Def nition 4.4.1 is that for any edge
with end-vertices a, ¢ in G[A4], if its weight is ob, then ach = ¢ and vice versa. Further-
more, if aob = ¢, then there is one and only one edge in G[A] with vertices a, ¢ and weight
ob. This property enables us to fnd some structure properties of G[A4] for an algebraic

system (A4; o).

P1. G[A] is connected if and only if there are no partition A = A, | A, such that for

VYa, € Ay, Ya, € A,, there are no def nition for a; o a, in (4; o).

If G[A4] is disconnected, we choose one component C and let A; = V(C). Defne
A, = V(G[A]) \ V(C). Then we get a partition 4 = 4, |J A, and for Ya, € 4, Va, € A4,,

there are no def nition for a; o a, in (4; o), a contradiction and vice versa.

P2. Ifthere is a unit 1, in (A; o), then there exists a vertex 1, in G[A] such that the

weight on the edge (1,4, x) is ox if 14 o x is def ned in (4; o) and vice versa.

P3. ForVa € A, if a! exists, then there is an opposite multiple 2-edge (14, a) in

1

G[A] with weights oa and oa™", respectively and vice versa.

P4. ForVa,b € Aifaob = b o a, then there are edges (a, x) and (b,x), x € A in

(A4; o) with weights w(a, x) = ob and w(b, x) = oa, respectively and vice versa.

PS. If the cancellation law holds in (4; o), i.e., for Va,b,c € A, ifaob = a o c then

b = ¢, then there are no parallel multiple 2-edges in G[A] and vice versa.
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The properties P2,P3,P4 and PS5 are gotten by def nition immediately. Each of these
cases is shown in Fig.4.4.3(1), (2), (3) and (4), respectively.

a b a
od ohp
oa og™! ob oa ob oc
14
Ly a b

(1) (2) (3) 4)
Fig.4.4.3

Def nition 4.4.2 An algebraic system (A4; o) is called to be a one-way system if there exists
amapping @ : A — A such thatifaob € A, then there exists a unique ¢ € A, cow(b) € A.

@ is called a one-way function on (4; o).

We have the following results for an algebraic system (A4; o) with its associated
weighted graph G[4].

Theorem 4.4.1 Let (4; o) be an algebraic system with a associated weighted graph G[A].
Then

(1) If'there is a one-way function @ on (4; o), then G[A] is an Euler graph, and vice
versa, if G[A] is an Euler graph, then there exist a one-way function @ on (4; o).

(2) If (4;0) is a complete algebraic system, then the outdegree of every vertex in
G[A] is |A|; in addition, if the cancellation law holds in (A4; o), then G[A] is a complete
multiple 2-graph with a loop attaching at each of its vertices such that each edge between

two vertices in G[A] is an opposite multiple 2-edge, and vice versa.

Proof Let (4; o) be an algebraic system with a associated weighted graph G[A4].

(1) Assume @ is a one-way function @ on (4; o). By def nition there exists ¢ € 4,
cow(b) € AforVa € A,aob € A. Thereby there is a one-to-one correspondence between
edges from a with edges to a. That is, pg[ A](a) = PGy A](a) for Ya € V(G[A]). Therefore,
G[A] is an Euler graph.

Now if G[A4] is an Euler graph, then there is a one-to-one correspondence between
edgesin £~ = {e;; 1 <i < k} from a vertex a with edges E* = {e; 1 <i < k} to the vertex
a. For any integer i, 1 <i < k, defne @ : w(e;) — w(e;"). Therefore, w is a well-def ned

one-way function on (4; o).
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(2) If (4;0) is complete, then for Ya € 4 and Vb € 4, a o b € A. Therefore,
p%(a) = |4| for any vertex a € V(G[A])).

If the cancellation law holds in (4; o), by P5 there are no parallel multiple 2-edges

in G[A4]. Whence, each edge between two vertices is an opposite 2-edge and weights on

loops are ol 4.

By def nition, if G[4] is a complete multiple 2-graph with a loop attaching at each
of its vertices such that each edge between two vertices in G[A4] is an opposite multiple
2-edge, we know that (4;0) is a complete algebraic system with the cancellation law
holding by the def nition of G[4]. 0

Corollary 4.4.1 Let T be a semigroup. Then G[I'] is a complete multiple 2-graph with a
loop attaching at each of its vertices such that each edge between two vertices in G[A] is

an opposite multiple 2-edge.

Notice that in a group I', Vg € T, if g # 1, then g7' # g. Whence, all elements
of order> 2 in I can be classif ed into pairs. This fact enables us to know the following

result.

Corollary 4.4.2 Let T be a group of even order. Then there are opposite multiple 2-edges
in G[I'] such that weights on its 2 directed edges are the same.

4.4.3 Multi-Space on Graph. Let (f, O) be an algebraic multi-space. Its associated
weighted graph is def ned in the following.

+ ob
o2 a ¢
+ a
+1 ‘a .
+0{ 0 +l+1 +2o oa b b € e
+2 oa a
" - @ €
ol
Fig.4.4.4

Def nition 4.4.3 LetT = U T be an algebraic multi-space with (I';; o;) being an algebraic
i=1
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system for any integer i,1 < i < n. Def ne a weighted graph G (f) associated with T by

= O G[I],
i=1

where G[I';] is the associated weighted graph of (I';; 0;) for 1 <i < n.

For example, the weighted graph shown in Fig.4.4.4 is correspondent with a multi-
spacef =TI UL, U3, where (I'y; +) = (Z3,+), I, = {e,a,b}, I'5 = {1,2,a, b} and these

operations “-” onI; and “o” on I'; are shown in tables 4.4.1 and 4.4.2.
e a
el e
e
b| b e a
table 4.4.1
ol 1 2 a b
1 a
21D a
a * * *
b k& & 2 *
table 4.4.2

Notice that the correspondence between the multi-space I' and the weighted graph

G [F] is one-to-one. We immediately get the following result.

Theorem 4.4.2 The mappings r : Ir-G [F] andn™' : G [F — T are all one-to-one.

According to Theorems 4.4.1 and 4.4.2, we get some consequences in the following.

Corollary 4.4.3 Let T = U I'; be a multi-space with an algebraic system (I';; o;) for any
integeri,1 <i<n If for any integer i,1 < i < n, G[I';] is a complete multiple 2-graph
with a loop attaching at each of its vertices such that each edge between two vertices in

G[I';] is an opposite multiple 2-edge, then Tisa complete multi-space.

Corollary 4.4.4 LetT = Lnj I'; be a multi-group with an operation set O (f‘) fol1<i<

i=1

n}. Then there is a partition G [f] = | G; such that each G; being a complete multiple
i=1
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2-graph attaching with a loop at each of its vertices such that each edge between two

vertices in V(G;) is an opposite multiple 2-edge for any integer i, 1 <i < n.

Corollary 4.4.5 Let F be a body. Then G[F] is a union of two graphs K*(F) and K*(F*),
where K*(F) or K*(F*) is a complete multiple 2-graph with vertex set F or F* = F \ {0}
and with a loop attaching at each of its vertices such that each edge between two different

vertices is an opposite multiple 2-edge.

4.4.4 Cayley Graph of Multi-Group. Similar to that of Cayley graphs of a fnite

generated group, we can also defne Cayley graphs of a fnite generated multi-group,

where a multi-group T = UT; is said to be fnite generated if the group I'; is fnite
i=1

generated for any integer i,1 < i < n, i.e, I} = (x;, )5, --,2;). We denote by I' =

(Xt Vis -+ vz 1 <1< m) if T is fnite generated by {x;,yi,---,z,; 1 <i<n).

Def nition 4.4.4 LetT = (X1, Vi, -+ 253 1 <0 < m) be a fnite generated multi-group, S =
US,, where 1, ¢ S;, §7' = {a‘lla € E} =S and (S;) = T for any integeri,1 <i<n. A
i=1

(_fayley graph Cay (T : ) is def ned by
V(Cay(T:S))=T
and
E(Cay(T : S)) = {(g. h) if there exists an integer i,g™ o;h € S;,1 <i < n).

By Def'nition 4.4.4, we immediately get the following result for Cayley graphs of a

fnite generated multi-group.

Theorem 4.4.3 For a Cayley graph Cay (f : :ST) with T = LnJ [;and S = LnJ S

i=1 i=1
Cay(T:5)= U Cay(T; : S)).
i=1

It is well-known that every Cayley graph of order> 3 is 2-connected. But in general,
a Cayley graph of a multi-group is not connected. For the connectedness of Cayley graphs

of multi-groups, we get the following result.

Theorem 4.4.4 A Cayley graph Cay (F : 5) with T = UT; and S = U S is connected if
i=1 i=1

and only if for any integer i, 1 < i < n, there exists an integer j,1 < j < nand j # i such

thatT; T, # 0.
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Proof According to Theorem 4.4.3, if there is an integer i,1 < i < n such that

I\ I'; = 0 for any integer j,1 < j < n, j # i, then there are no edges with the form
(gi,h),giel,he [\ T;. Thus Cay (f : :ST) is not connected.

Notice that Cay (iz : §) = leCay(F,- : S). Not loss of generality, we assume that
geland h € T'), where 1 < k,ll < n for any two elements g, & € T. If k = [, then there
must exists a path connecting g and 4 in Cay (f .S )

Now if k # / and for any integer i, | <i < n, there is an integer j,1 < j<mnand j # i

such thatI'; " I'; # 0, then we can fnd integers iy, i, - - -, iy, | <iy,i, -+, iy < nsuch that

e )0 #0,
Ly ()0 #0,

I, ()0 #0.
Therefore, we can fnd a path connecting g and % in Cay (f .S ) passing through these
vertices in Cay(T;, : S;), Cay(T;, : S;,), -+, Cay(T;, : S;). Thus the Cayley graph
Cay (F : 5) is connected. 0
The following theorem is gotten by the defnition of Cayley graph and Theorem
444,

Theorem 4.4.5 Ifiz = Lnj [" with [T'| > 3, then the Cayley graph Cay (’1: : §)
i=1
(1)isan 1S |-regular graph,
(2) its edge connectivity k (Cay (f : E)) > 2n.

Proof The assertion (1) is gotten by the def nition of Cay (f‘ .S ) For (2) since every
Cayley graph of order> 3 is 2-connected, for any two vertices g, 4 in Cay (f‘ .S ), there
are at least 2n edge disjoint paths connecting g and 4. Whence, the edge connectivity
K(Cay (F §)) > 2n. O

Applying multi-voltage graphs, we get a structure result for Cayley graphs of a f nite
multi-group similar to that of Cayley graphs of a f nite group.

Theorem 4.4.6 For a Cayley graph Cay (f : :ST) of a f nite multi-group T = LnJ I'; with
i=1

S = Lnj S, there is a multi-voltage bouquet ¢ : Bgy — S such that Cay (F : §) ~ (Blgl)g.
i=1
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Proof Let S = {s,-; 1<i< |§|} and E(Bﬁl) = {Li; 1<i< |§|} Defne a multi-
voltage graph on a bouquet Bz, by

g‘:L,-—>Sl~, ISZS|§|

Then we know that there is an isomorphism 7 between (Blgl)g and Cay (F : §) by def ning
7(0g) = g for Vg € T, where V(Bgs) =1{0}. U

Corollary 4.4.6 For a Cayley graph Cay(I" : S) of a f nite group T, there exists a voltage
bouquet « : Big; — S such that Cay(I' : S) = (Bs))".

§4.5 RESEARCH PROBLEMS

4.5.1 As an efficient way for fnding regular covering spaces of a graph, voltage graphs
have been gotten more attentions in the past half-century by mathematicians. Unless
elementary results on voltage graphs discussed in this chapter, further works for regular
covering spaces of graphs can be found in [GrT1], particularly, for f nding genus of graphs
with more symmetries on surfaces. However, few works can be found in publication for
irregular covering spaces of graphs. These multi-voltage graph of type I or type II with
multi-groups defned in Sections 4.2-4.3 are candidate for further research on irregular

covering spaces of graphs.

Problem 4.5.1 Applying multi-voltage graphs to get the genus of a graph with less sym-

metries.

Problem 4.5.2 Find new actions of a multi-group on graph, such as the left subaction
and its contribution to topological graph theory. What can we say for automorphisms of

the lifting of a multi-voltage graph?

There is a famous conjecture for Cayley graphs of a fnite group in algebraic graph
theory, i.e., every connected Cayley graph of order> 3 is hamiltonian. Similarly, we can
also present a conjecture for Cayley graphs of a multi-group.

Conjecture 4.5.1 Every Cayley graph of a f nite multi—gmupf = JT'; with order> 3 and
i=1

N T = 2 is hamiltonian.

i=1
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4.5.2 As pointed out in [Maol0], for applying combinatorics to other sciences, a good
idea is pullback measures on combinatorial objects, initially ignored by the classical
combinatorics and reconstructed or make a combinatorial generalization for the classi-

cal mathematics. Thus is the CC conjecture following.

Conjecture 4.5.1(CC Conjecture) The mathematical science can be reconstructed from

or made by combinatorialization.
Remark 4.5.1 We need some further clarif cations for this conjecture.

(1) This conjecture assumes that one can select fnite combinatorial rulers and ax-
ioms to reconstruct or make generalization for classical mathematics.

(2) The classical mathematics is a particular case in the combinatorialization of
mathematics, i.e., the later is a combinatorial generalization of the former.

(3) We can make one combinatorialization of different branches in mathematics and

f nd new theorems after then.

More discussions on CC conjecture can be found in references [Maol19] [Mao37]-
[Mao38].

4.5.3 The central idea in Section 4.4 is that a graph is equivalent to multi-spaces. Ap-
plying inf nite graph theory (see [Thol] for details), we can also def ne inf nite graphs for

inf nite multi-spaces similar to that Def nition 4.4.3.

Problem 4.5.3 Find the structural properties of inf nite graphs of inf nite multi-spaces.



CHAPTER 5.

Multi-Embeddings of Graphs

A geometrical graph G is in fact the graph phase of G. Besides to f nd combi-
natorial properties of graphs, a more important thing is to fnd the behaviors
of graphs in spaces, i.e., embedding a graph in space to get its geometrical
graph. In last century, many mathematicians concentrated their attention to
embedding graphs on surfaces. They have gotten many characteristics of sur-
faces by combinatorics. Such a way can be also applied to a general space for
fnding combinatorial behaviors of spaces. Whence, we consider graphs in
spaces in this chapter. For this objective, we introduce topological spaces in
Section 5.1, multi-surface embeddings, particularly, multi-sphere embedding
of graphs with empty overlapping and including multi-embedding on sphere
are characterized in Section 5.2 and 2-cell embeddings of graphs on surface in
Section 5.3. A general discussion on multi-surface embeddings of graphs and
a classif cation on manifold graphs with enumeration can be found in Sec-
tion 5.4. Section 5.5 concentrates on the behavior of geometrical graphs, i.e.,
graph phases in spaces with transformations. All of these materials show how

to generalize a classical problem in mathematics by multi-spaces.
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§5.1 SURFACES

5.1.1 Topological Space. Let .7 be a set. A topology on a set .7 is a collection € of

subsets of .7, called open sets satisfying properties following:

(T1)0 e € and 7 € E,
(T2) if U,U, e Cg, then U nU,e Cg;

(T3) the union of any collection of open sets is open.

For example, let . = {a, b,c}and ¢ = {0, {b}, {a, b}, {b, c}, 7}. Then € is a topology
on .7 . Usually, such a topology on a discrete set is called a discrete topology, otherwise,
a continuous topology. A pair (7, %) consisting of a set .7 and a topology % on .7 is
called a topological space and each element in .7 is called a point of 7. Usually, we also
use .7 to indicate a topological space if its topology is clear in the context. For example,
the Euclidean space R” for an integer n > 1 is a topological space.

For a point u in a topological space .7, its an open neighborhood is an open set U
such that u € U in 7 and a neighborhood in .7 is a set containing some of its open
neighborhoods. Similarly, for a subset 4 of .7, a set U is an open neighborhood or
neighborhood of A if U is open itself or a set containing some open neighborhoods of
that set in .7. A basis in .7 is a collection £ of subsets of .7 such that .7 = U 4B and
By, B, € #,x € B; N By implies that B3 € & with x € B; C B; N B, hold.

Let .7 be a topological space and / = [0,1] € R. An arc a in .7 is defned to be a
continuous mapping a : I — 7. We call a(0), a(1) the initial point and end point of a,
respectively. A topological space .7 is connected if there are no open subspaces A and B
such that § = 4 U B with 4, B # 0 and called arcwise-connected if every two points u, v
in 7 can be joined by an arc ¢ in .7, i.e., a(0) = uand a(l1) = v. Anarca : [ — 7 is
a loop based at p if a(0) = a(1) = p € . A —it degenerated loope, : I —» x € S, i.e.,
mapping each element in / to a point x, usually called a point loop.

A topological space .7 is called Hausdorff if each two distinct points have disjoint
neighborhoods and f7st countable if for each p € 7 there is a sequence {U,} of neigh-
borhoods of p such that for any neighborhood U of p, there is an n such that U, ¢ U. The
topology is called second countable if it has a countable basis.

Let {x,} be a point sequence in a topological space 7. If there is a point x € .7 such
that for every neighborhood U of u, there is an integer N such that n > N implies x,, € U,

then {u,} is said converges to u or u is a limit point of {u,} in the topological space .7.
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5.1.2 Continuous Mapping. For two topological spaces .7] and .% and a point u € .7,
a mapping ¢ : 7] — 2 is called continuous at u if for every neighborhood V of ¢(u),
there is a neighborhood U of u such that ¢(U) c V. Furthermore, if ¢ is continuous at
each point u in .77, then ¢ is called a continuous mapping on 7.

For examples, the polynomial function /' : R — R determined by f(x) = a,x" +
a,.1xX" ' + -+ + a;x + ay and the linear mapping L : R” — R” for an integer n > 1 are

continuous mapping. The following result presents properties of continuous mapping.

Theorem 5.1.1 Let Z, .¥ and 7 be topological spaces. Then

(1) 4 constant mapping ¢ : Z — . is continuous,

(2) The identity mapping Id : # — % is continuous,

Q) If f : Z — 7 is continuous, then so is the restriction f|y of f to an open subset
Uof %,

DIff X —> S andg: .S — T are continuous at x € % and f(x) € .7, then so
is their composition mapping gf : # — 7 at x.

Proof The results of (1)-(3) is clear by defnition. For (4), notice that f and g are
respective continuous at x € R and f(x) € .. For any open neighborhood W of point
g(f(x)) € 7, g (W) is opened neighborhood of f(x) in .. Whence, f~'(g"!(W)) is an
opened neighborhood of x in Z by def nition. Therefore, g(f) is continuous at x. 0

A refnement of Theorem 5.1.1(3) enables us to know the following criterion for

continuity of a mapping.

Theorem 5.1.2 Let # and . be topological spaces. Then a mapping f : # — .7 is

continuous if and only if each point of % has a neighborhood on which f is continuous.

Proof By Theorem 5.1.1(3), we only need to prove the sufficiency of condition. Let
f % — . be continuous in a neighborhood of each point of % and U c .. We show
that /~1(U) is open. In fact, any point x € f~!(U) has a neighborhood ¥ (x) on which f
is continuous by assumption. The continuity of ]y implies that (f1y))~'(U) is open in

V(x). Whence it is also open in %. By def nition, we are easily fnd that

Areo) (V) = x € ZIf(x) € U} = £1(O) [ ) V),

in /~1(U) and contains x. Notice that /~!(U) is a union of all such open sets as x ranges
over f~'(U). Thus f~'(U) is open followed by this fact. O
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For constructing continuous mapping on a union of topological spaces 2, the fol-

lowing result is a very useful tool, called the Gluing Lemma.

Theorem 5.1.3 Assume that a topological space X is a f nite union of closed subsets:
n

Z = X. If for some topological space %, there are continuous maps f; : X; — % that
i=1

agree on overlaps, i.e., filx.nx, = filx.,nx, for alli, j, then there exists a unique continuous

[ X - X with fly. = fiforalli.

Proof Obviously, the mapping f def ned by
J(x) = filx), xekX;

is the unique well def ned mapping from 2" to % with restrictions f|x. = f; hold for all i.
So we only need to establish the continuity of f on 2. In fact, if U is an open set in %/,
then

(%

X' = (Ox,-)ﬂfl(v)
i=1

Jx o) =JEs5w)= Qﬁl(U)-

i=1 i=1

By assumption, each f; is continuous. We know that f;"!(U) is open in X;. Whence,
Y (U) is open in 2. Thus f is continuous on 2. O

Let 2 be a topological space. A collection C ¢ Z(Z") is called to be a cover of 2~

Jc=2.

CeC
If each set in C is open, then C is called an opened cover and if |C] is fnite, it is called

if

a f'nite cover of 2. A topological space is compact if there exists a fnite cover in its
any opened cover and locally compact if it is Hausdorff with a compact neighborhood for
its each point. As a consequence of Theorem 5.1.3, we can apply the gluing lemma to

ascertain continuous mappings shown in the next.

Corollary 5.1.1 Let Let 2 and % be topological spaces and {4, A>,---,A,} be a f-
nite opened cover of a topological space Z". If a mapping  : X — % is continuous

constrained on each A;, 1 <i < n, then f is a continuous mapping.

5.1.3 Homeomorphic Space. Let . and .7 be two topological spaces. They are

homeomorphic if there is a 1 — 1 continuous mapping ¢ : . — .7 such that the inverse
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maping ¢! : .7 — .7 is also continuous. Such a mapping ¢ is called a homeomorphic
or topological mapping. A few examples of homeomorphic spaces can be found in the

following.

Example 5.1.1 Each of the following topological space pairs are homeomorphic.

(1) A Euclidean space R” and an opened unit n-ball B" = { (x1,x2, -+, x,) | X3 + X3 +
et x2< 1)

(2) A Euclidean plane R"*! and a unit sphere S” = { (x1, X2, - -+, Xp1) | X] + X5+ +
x»,, = 1} with one point p = (0,0, --,0, 1) on it removed.

In fact, def ne a mapping f from B” to R” for (1) by

(xl?xz’ o ',xn)

1- \/xf+x§+---+xﬁ

f(xl?xz" * "xﬂ) =

for V(xi, x2,- -+, x,) € B". Then its inverse is

(xl’x2,' . ',xn)

fl(xl?xz" * "xﬂ) =

1+ \/x§+x§+~-+xﬁ

for V(x, x5, -+, x,) € R". Clearly, both fand /! are continuous. So B" is homeomorphic
to R". For (2), def ne a mapping f from §” — p to R"™*! by

f(xls X2, axn+l) =
Its inverse /! : R™! — S§" — p is determined by

S X, Xat) = (00X, -+, 10X, 1 = 1(x)),

where
2

2 2 2
L+xp+x3+--+x,,,

(x) =
Notice that both f and /! are continuous. Thus S” — p is homeomorphic to R"*!.

5.1.4 Surface. For an integer n > 1, an n-dimensional topological manifold is a second
countable Hausdorff space such that each point has an open neighborhood homeomorphic
to an open n-dimensional ball B" = {(x1, xp, - - -, X,)|x] +x5+- - -+x; < 1} in R". We assume
all manifolds is connected considered in this book. A 2-manifold is usually called surface

in literature. Several examples of surfaces are shown in the following.
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Example 5.1.1 These 2-manifolds shown in the Fig.5.1.1 are surfaces with boundary.

plane torus rectangle cylinder

Fig.5.1.1

Example 5.1.2 These 2-manifolds shown in the Fig.5.1.2 are surfaces without boundary.

o &

sphere torus

Fig.5.1.2

By def nition, we can always distinguish the right-side and left-side when one object
moves along an arc on a surface S. Now let N be a unit normal vector of the surface S.
Consider the result of a normal vector moves along a loop L on surfaces in Fig.5.1.1 and
Fig.5.1.2. We f'nd the direction of N is unchanged as it come back at the original point .

For example, it moves on the sphere and torus shown in the Fig.5.1.3 following.

& @

sphere torus

Fig.5.1.3
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Such loops L in Fig.5.1.3 are called orientation-preserving. However, there are also loops
L in surfaces which are not orientation-preserving. In such case, we get the opposite
direction of N as it come back at the original point v. Such a loop is called orientation-
reversing. For example, the process (1)-(3) for getting the famous Mobius strip shown in

Fig.5.1.4, in where the loop L is an orientation-reversing loop.

A B’ A A’
N
X ,
- B’ B E
B A’ B B’
1 2
(1) A (2)
L
B
(3)
Fig.4.1.4

A surface S is defned to be orientable if every loop on S is orientation-preserving.
Otherwise, non-orientable if there at least one orientation-reversing loop on S. Whence,
the surfaces in Examples 5.1.1-5.1.2 are orientable and the Mdbius strip are non-orientable.
It should be noted that the boundary of a Mobius strip is a closed arc formed by 48" and
A’B. Gluing the boundary of a Mébius strip by a 2-dimensional ball B?, we get a non-

orientable surface without boundary, which is usually called crosscap in literature.

§5.2 GRAPHS IN SPACES

5.2.1 Graph Embedding. Let &, and &, be two topological spaces. An embedding of &,
in &, is a one-to-one continuous mapping f : & — &,. Certainly, the same problem can
be also considered for &, being a metric space. By topological view, a graph is nothing
but a 1-complex, we consider the embedding problem for graphs in spaces. The same
problem had been considered by Griimbaum in [Grul]-[Gru3] for graphs in spaces, and
references [GrT1], [Liul]-[Liu4], [MoT1] and [Whil] for graphs on surfaces.
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5.2.2 Graph in Manifold. Let G be a connected graph. For Vv € V(G), a space permu-
tation P(v) of v is a permutation on Ng(v) = {uy, uz, - - -, U} and all space permutation
of a vertex v is denoted by P, (v). A space permutation P,(G) of a graph G is def ned to
be

Py(G) = {P()I¥v € V(G), P(v) € Ps(v)}

and a permutation system P 4(G) of G to be all space permutation of G. Then we know the

following characteristic for an embedded graph in an #n-manifold M" with n > 3.

Theorem 5.2.1 For an integer n > 3, every space permutation Py(G) of a graph G def nes
a unique embedding of G — M". Conversely, every embedding of a graph G — M"

def'nes a space permutation of G.

Proof Assume G is embedded in an n-manifold M”. For Vv € V(G), defne an
(n — 1)-ball B"!(v) to be x] + x5 + --- + x;; = r* with center at v and radius r as small
as needed. Notice that all auto-homeomorphisms AutB"~!(v) of B""!(v) is a group under
the composition operation and two points 4 = (xy, X2, -+, x,) and B = (y1, )2, +,V,) In
B""!(v) are said to be combinatorially equivalent if there exists an auto-homeomorphism
¢ € AutB"!(v) such that ¢(4) = B. Consider intersection points of edges in Eg(v, Ng(V))
with B"!1(v). We get a permutation P(v) on these points, or equivalently on Ng(v) by
(4,B,---,C, D) being a cycle of P(v) if and only if there exists ¢ € AutB"!(v) such that
§'(4) = B, -+, ¢/(C) = D and ¢'(D) = A, where i,- - -, j,[ are integers. Thereby we get a
space permutation Py(G) of G.

Conversely, for a space permutation P,(G), we can embed G in M” by embedding
each vertex v € V(G) to a point X of M” and arranging vertices in one cycle of P,(G) of
Ng(v) as the same orbit of (o) action on points of Ng(v) for o € AutB"~!(X). Whence we
get an embedding of G in the manifold M”". UJ

Theorem 5.2.1 establishes a relation for an embedded graph in an n-dimensional
manifold with a permutation, which enables one combinatorially def ning graphs embed-

ded in n-dimensional manifolds.

Corollary 5.2.1 For a graph G, the number of embeddings of G in M",n > 3 is

[ ] Pt
veV(G)

For applying graphs in spaces to theoretical physics, we consider an embedding of
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graph in an manifold with additional conditions, which enables us to f nd good behavior
of a graph in spaces. On the frst, we consider the rectilinear embeddings of graphs in a

Euclid space.

Def nition 5.2.1 For a given graph G and a Euclid space E, a rectilinear embedding of
G in E is a one-to-one continuous mapping n : G — E such that

(1) ForVe € E(G), n(e) is a segment of a straight line in E;

(2) For any two edges ey = (u,v), e = (x,y) in E(G), (m(er) \ {7 (u), 7(v)}) (N (7w(e2) \
{n(x), 7(»)}) = 0.

In R?, a rectilinear embedding of K, and a cube Qs are shown in Fig.5.2.1 following.

(0,0, 1) (0,0, 1) 0,1,1)
, (1,0,1)7 (1,1,
(0,0,0)
/- PR 71,0)
(1,0,0) (0,1,0) (1,0,0) (1,1,0)

Fig 5.2.1

In general, we know the following result for rectilinear embedding of graphs G in

Euclid space R",n > 3.

Theorem 5.2.2 For any simple graph G of order n, there is a rectilinear embedding of G

in R" with n > 3.

Proof Notice that this assertion is true for any integer n > 3 if it is hold for n = 3.
In R?, choose n points (11, 3, 5}), (t2, 63, 85), - - -, (tu, 13, 1), Where 1, 1o, - - - , t,, are n different
real numbers. For integers i, j, k, [, 1 < i, j, k,[ < n, if a straight line passing through ver-
tices (¢;, 7, ¢)) and (¢;, tf, tj) intersects with a straight line passing through vertices (¢, #;, ¢;)

and (1, 7, 1), then there must be

h—t4 -t 44—
2 2 2 2 2 2 | —
L= tj_ti il =0,

3_3 3_3 B3_4:3
L—4 -6 -4
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which implies that there exist integers s, f € {k, [, i, j}, s # f such that ¢, = ¢, a contra-
diction.

Now let V(G) = {v}, V2, -, v,}. We embed the graph G in R® by a mapping 7 : G —
R’ with n(v;) = (t;,¢2,£)) for 1 <i < nand if v,v; € E(G), def ne n(v;v;) being the segment
between points (¢, £,) and (¢, £, £}) of a straight line passing through points (4, £, #,)
and (t;, 3, £7). Then r is a rectilinear embedding of the graph G in R°. O
5.2.3 Multi-Surface Embedding. For a graph G and a surface S, an immersion ¢ of
G on § is a one-to-one continuous mapping ¢ : G — S such that for Ve € E(G), if
e = (u,v), then «(e) is a curve connecting ¢(#) and ¢«(v) on S. The following two def nitions

are generalization of embedding of graph on surface.

Def nition 5.2.2 Let G be a graph and S a surface in a metric space E. A pseudo-
embedding of G on S is a one-to-one continuous mapping © : G — & such that there
exists vertices V, C V(G), rtly,y is an immersion on S with each component of S \ n({V1))

isomorphic to an open 2-disk.

Def nition 5.2.3 Let G be a graph with a vertex set partition V(G) = LkJ Vi Vi(lV, =0
forl <i,j<kandletS,S,,---,Sy besurfaces in a metric space & wi;ilz k> 1. A multi-
embedding of G on §1,S,,--,S} is a one-to-one continuous mapping © : G — & such
that for any integer i, 1 < i < k, |y, is an immersion with each component of S; \ n({V}))

isomorphic to an open 2-disk.

Notice that if 7(G)N(S1US2---USk) = n(V(G)), thenevery r : G — R’ isa
multi-embedding of G. We say it to be a trivial multi-embedding of G on §1,S8,,---,S.
If k = 1, then every trivial multi-embedding is a trivial pseudo-embedding of G on §;. The
main object of this section is to fnd nontrivial multi-embedding of G on §,S,,---, Sk
with k£ > 1. The existence pseudo-embedding of a graph G is obvious by def nition. We
concentrate our attention on characteristics of multi-embeddings of a graph.

For a graph G, let G, G,,-- -, G be all vertex-induced subgraphs of G. For any
integers 7, j,1 < i,j < k, if V(G;))(V(G;) = 0, such a set consisting of subgraphs
Gy, Gy, -+, Gy are called a block decomposition of G and denoted by G = L@ G;. The
planar block number n,(G) of G is def ned by -

k
n,(G) = min {k|G = U G;, for any integer i, 1 <i <k, G; is planar}.
i=1
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Then we get a result for the planar black number of a graph G in the following.

Theorem 5.2.3 A graph G has a nontrivial multi-embedding on s spheres Py, P,,- - -, Py
with empty overlapping if and only if n,(G) < s < |G|

Proof Assume G has a nontrivial multi-embedding on spheres Py, P,, - - -, P;. Since
[V(G) P;| = 1 for any integer i, 1 < i < s, we know that

Gl = Z 'V(G) ﬂP,.' > 5.

i=1

By defnition, if 7 : G — R? is a nontrivial multi-embedding of G on P, P,, - -, Py,

then for any integer i, 1 <i < s, 77!(P;) is a planar induced graph. Therefore,

G =+ 7' (P)),
i=1
and we get that s > n,(G).

Now if n,(G) < s < |Gl, there is a block decomposition G = Esrj G, of G such that G;
is a planar graph for any integer i, 1 <i < 5. Whence we can take ;:épheres Py, Py, -+, Py
and defne an embedding 7; : G; — P; of G; on sphere P; for any integer i, 1 < i < s.
Defne an immersion 7 : G — R? of G on R? by

N

n(G) = (U ﬂ(Gi)) U {(Vz', vlvi € V(Gy),v; € V(G)),(vi,v)) € E(G),1 <1i,j < S}.

i=1
Then 7 : G — R? is a multi-embedding of G on spheres Py, P, - - -, P;. ]

For example, a multi-embedding of K on two spheres is shown in Fig.5.2.2, where,

{{x,y, z}) is on one sphere S and ({u, v, w}) on another S .

sphere S sphere S,

Fig 5.2.2
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For a complete or a complete bipartite graph, the number 7,(G) is determined in the

following result.

Theorem 5.2.4 For any integers n, m > 1, the numbers n,(K,) and n,(K(m,n)) are
respectively

n(K,) = m and n(K(m,n)) = 2,

ifm > 3,n >3, otherwise 1, respectively.
Proof Notice that every vertex-induced subgraph of a complete graph K, is also a
complete graph. By Theorem 2.1.16, we know that K5 is non-planar. Thereby we get that

i<

by def nition of n,(K,). Now for a complete bipartite graph K(m,n), any vertex-induced
subgraph by choosing s and / vertices from its two partite vertex sets is still a complete
bipartite graph. According to Theorem 2.2.5, K(3, 3) is non-planar and K(2, k) is planar.
If m <2orn <2, we getthatn,(K(m,n)) = 1. Otherwise, K(m, n) is non-planar. Thereby
we know that n,(K(m, n)) > 2.

Let V(K(m,n)) = V1 V>, where V1, V, are its partite vertex sets. If m > 3 and
n > 3, we choose vertices u,v € V; and x,y € V,. Then the vertex-induced sub-
graphs ({u, vi U V2 \ {x, y}) and {{x, v} U V> \ {u, v}) in K(m, n) are planar graphs. Whence,
n,(K(m,n)) = 2 by def nition. O

The position of surfaces S, S5, --,S in a topological space & also infuences the
existence of multi-embeddings of a graph. Among these cases, an interesting case is there
exists an arrangement S, S, -+, S, for §1, 85, -+, Sy such thatin &, §;; is a subspace of
Sijn

multi-embedding of G on surfaces S1,S,,- -+, 5.

for any integer j, 1 < j < k. In this case, the multi-embedding is called an including

Theorem 5.2.5 A4 graph G has a nontrivial including multi-embedding on spheres P; D
P, > --- D> P ifand only if there is a block decomposition G = \+) G; of G such that for
i=1

any integeri,1 <i < s,

(1) G, is planar, '
2) forv e V(Gy), Ne(x) © ( 0] V(Gj)).
1

J=i=
Proof Notice that in the case of spheres, if the radius of a sphere is tending to

inf nite, an embedding of a graph on this sphere is tending to a planar embedding. From
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this observation, we get the necessity of these conditions.

Now if there is a block decomposition G = t) G; of G such that G; is planar for any

i=1
i+1
integer i, 1 < i < s and Ng(x) C ( U "G j)) for Vv € V(G,), we can so place s spheres
Jj=i-1

P\,P,,---,P;in R® that P, > P, D --- D P,. For any integer i, 1 < i < s, we defne an
embedding 7; : G; — P; of G; on sphere P;.

i+1
Since Ng(x) C (.U VG j)) for Vv € V(G;), defne an immersion 7 : G — R3 of G

J=i—1
on R® by

7(G) = (U zr(G,-)) U (vl =i=1ii+1 for 1 <i<sand (v,v)) € E@G)}.

i=1

Then 7 : G — R? is a multi-embedding of G on spheres Py, P, - - -, P;. ]

Corollary 5.2.2 If a graph G has a nontrivial including multi-embedding on spheres
Py D> Py, > --- D Py, then the diameter D(G) > s — 1.

§5.3 GRAPHS ON SURFACES

5.3.1 2-Cell Embedding. For a graph G = (V(G), E(G), I(G)) and a surface S, an
embedding of G on § is the case of k = 1 in Def nition 5.2.3, which is also an embedding
of graph in a 2-manifold. It can be shown immediately that if there exists an embedding
of G on §, then G is connected. Otherwise, we can get a component in S \ 7(G) not
isomorphic to an open 2-disk. Thus all graphs considered in this subsection are connected.

Let G be a graph. For v € V(G), denote all of edges incident with the vertex v by
Ni(v) = {er e, -+, e} A permutation C(v) on ey, es, -+, ey, 1s said to be a pure
rotation of v. All such pure rotations incident with a vertex v is denoted by o(v). A pure

rotation system of G is def ned by
p(G) ={CM)IC(v) € o(v) for ¥v € V(G)}

and all pure rotation systems of G is denoted by o(G).

Notice that in the case of embedded graphs on surfaces, a 1-dimensional ball is just
a circle. By Theorem 5.2.1, we get a useful characteristic for embedding of graphs on
orientable surfaces, frst found by Heffter in 1891 and then formulated by Edmonds in
1962. It can be restated as follows.
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Theorem 5.3.1 Every pure rotation system for a graph G induces a unique embedding of
G into an orientable surface. Conversely, every embedding of a graph G into an orientable

surface induces a unique pure rotation system of G.

According to this theorem, we know that the number of all embeddings of a graph G
on orientable surfaces is [[,cyG)(0c(v) — D!

By topological view, an embedded vertex or face can be viewed as a disk, and an
embedded edge can be viewed as a 1-band which is defned as a topological space B
together with a homeomorphism # : I X I — B, where I = [0, 1], the unit interval.
Whence, an edge in an embedded graph has two sides. One side is 4((0, x)), x € 1. Another
is h((1,x)),x € I.

For an embedded graph G on a surface, the two sides of an edge e € £(G) may lie in
two different faces f; and f>, or in one face f without a twist ,or in one face f with a twist

such as those cases (a), or (b), or (c) shown in Fig.5.3.1.
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Fig 5.3.1

Now we def ne a rotation system p*(G) to be a pair (J, 1), where J is a pure rotation
system of G, and A : E(G) — Z,. The edge with A(e) = 0 or A(e) = 1 is called type 0 or
type 1 edge, respectively. The rotation system o*(G) of a graph G are defned by

0"(G) = {(J, VT € 0(G), A : E(G) > Z,}.

By Theorem 5.2.1 we know the following characteristic for embedding graphs on locally

orientable surfaces.
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Theorem 5.3.2 Every rotation system on a graph G def nes a unique locally orientable
embedding of G — S. Conversely, every embedding of a graph G — S def nes a rotation
system for G.

Notice that in any embedding of a graph G, there exists a spanning tree 7" such that
every edge on this tree is type 0 (See also [GrT1] for details). Whence, the number of all

embeddings of a graph G on locally orientable surfaces is
2O [ ] s = 1t
veV(G)
and the number of all embedding of G on non-orientable surfaces is
@O -1 [ e - 1.
veV(G)
The following result is the famous Euler-Poincaré formula for embedding a graph

on a surface.

Theorem 5.3.3 If'a graph G can be embedded into a surface S, then

V(G) = &(G) + ¢(G) = x(S),

where v(G), &(G) and ¢(G) are the order, size and the number of faces of G on S, and
x(S) is the Euler characteristic of S, i.e.,

2 -2p, if S isorientable,

2—gq, if S isnon— orientable.

X(S):{

For a given graph G and a surface S, whether G embeddable on S is uncertain. We
use the notation G — § denoting that G can be embeddable on S. Def ne the orientable

genus range GR(G) and the non-orientable genus range GR"(G) of a graph G by

2 —x(S)
2

GRY(G) = { |G — S, S is an orientable surface} ,

GR(G) = {2 = x(S)IG = S, S is a non — orientable surface},
respectively and the orientable or non-orientable genus y(G), y(G) by
¥(G) = min{plp € GRY(G)}. yu(G) = max{plp € GRO(G)}.

¥(G) = min{qlg € GRY(G)}. 7u(G) = max{qlg € GR(G)}.
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Theorem 5.3.4 Let G be a connected graph. Then
GRY(G) = (@), yu(@))-

Proof Notice that if we delete an edge e and its adjacent faces from an embedded
graph G on surface S, we get two holes at most, see Fig.25 also. This implies that |$(G) —
d(G—-e) < 1.

Now assume G has been embedded on a surface of genus y(G) and V(G) = {u, v, - -, w}.
Consider those of edges adjacent with u. Not loss of generality, we assume the ro-
tation of G at vertex v is (ej, ez, -+, €,,w). Construct an embedded graph sequence
G1,Gy, -+, Gy by

o(G) = 0(G);
0(G2) = (2(G) \ o)) Ul(ez, er, 3, - -+, o5 )}
Q(Gp(;(u)—l) = (0(G) \ {o(u)}) Ul(ez, e3,- - -, €p6(u)» e}
0(Gpo) = (@(G) \ fo()}) Ul(es, €2, -+, epgwy» €1)};
(Gpgy) = (0(G) \ fo(m)}) Ul(epsys - > €2, €15)}-
For any integer i, 1 <i < pg(u)!, since |¢p(G)—¢(G —e)| < 1 for Ve € E(G), we know
that [¢(Gi+1) — ¢(G)l < 1. Whence, [x(Gis1) —x(G)) < 1.
Continuing the above process for every vertex in G we fnally get an embedding of
G with the maximum genus y,,(G). Since in this sequence of embeddings of G, the genus

of two successive surfaces differs by at most one, thus GRO(G) = [v(G), yu(G)]. 0

The genus problem, i.e., fo determine the minimum orientable or non-orientable
genus of a graph is NP-complete (See [GrT1] for details). Ringel and Youngs got the

genus of K, completely by current graphs (a dual form of voltage graphs) as follows.

Theorem 5.3.5 For a complete graph K, and a complete bipartite graph K(m,n) with
integers m,n > 3,

(n-3)(n-4)

Y(K,) = { B

w and y(K(m, n)) = {ww

4
Outline proofs for y(K,) in Theorem 2.3.10 can be found in [GrT1], [Liul] and

[MoT1], and a complete proof is contained in [Rinl]. A proof for y(K(m,n)) in Theorem
5.3.5 can be also found in [GrT1], [Liul] and [MoT1].
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For the maximum genus y,,(G) of a graph, the time needed for computation is
bounded by a polynomial function on the number of v(G) ([GrT1]). In 1979, Xuong

got the following result.

Theorem 5.3.6 Let G be a connected graph with n vertices and q edges. Then
1 1 .
ymu(G) = E(q —-n+1)- 5 mTlnCodd(G \ E(T)),

where the minimum is taken over all spanning trees T of G and c,q4(G \ E(T)) denotes the

number of components of G \ E(T) with an odd number of edges.

In 1981, Nebesky derived another important formula for the maximum genus of a
graph. For a connected graph G and 4 C E(G), let ¢(4) be the number of connected
component of G \ 4 and let b(A4) be the number of connected components X of G \ 4 such
that |[E(X)| = |V(X)|(mod2). With these notations, his formula can be restated as in the

next theorem.

Theorem 5.3.7 Let G be a connected graph with n vertices and q edges. Then
1
V(@) = 5(q = n+2) = max [c(4) + b) = |4},

Corollary 5.3.1 The maximum genus of K,, and K(m, n) are given by

(n—1)(n-2) (m—1(n—-1)
S =

YM(Kn) = and ')/M(K(m’ I’l)) =

2

respectively.

Now we turn to non-orientable embedding of a graph G. For Ve € E(G), we def ne
an edge-twisting surgery ®(e) to be given the band of e an extra twist such as that shown
in Fig.5.3.2.

Fig 5.3.2
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Notice that for an embedded graph G on a surface S, e € E(G), if two sides of e are
in two different faces, then ®(e) will make these faces into one and if two sides of e are
in one face, ®(e) will divide the one face into two. This property of ®(e) enables us to get

the following result for the crosscap range of a graph.

Theorem 5.3.8 Let G be a connected graph. Then

GRY(G) = [¥(G), BG)],

where B(G) = &(G) — v(G) + 1 is called the Betti number of G.

Proof 1t can be checked immediately that y(G) = y3,(G) = 0 for a tree G. If G is not
a tree, we have known there exists a spanning tree 7" such that every edge on this tree is
type 0 for any embedding of G.

Let E(G) \ E(T) = {ej, ez, -+, epc)). Adding the edge e; to 7', we get a two faces
embedding of 7 + e;. Now make edge-twisting surgery on e;. Then we get a one face
embedding of 7" + e; on a surface. If we have get a one face embedding of 7 + (e; + e, +
-+ +¢), 1 <i<p(G), adding the edge e¢;;; to T + (e; + e; + - - - + ¢;) and make ®(e;;) on
the edge e;,;. We also get a one face embedding of 7 + (e; + e, + - - - + ;1) on a surface
again.

Continuing this process until all edges in E£(G) \ E(T) have a twist, we fnally get a
one face embedding of 7 + (E(G) \ E(T)) = G on a surface. Since the number of twists
in each circuit of this embedding of G is 1(mod2), this embedding is non-orientable with

only one face. By the Euler-Poincaré formula, we know its genus g(G)

8(G) =2-(M(G) - &(G) + 1) = B(G).

For a minimum non-orientable embedding &; of G, i.e., Y(E;) = Y(G), one can
selects an edge e that lies in two faces of the embedding &; and makes ®(e). Thus in at
most y,/(G)—y(G) steps, one has obtained all of embeddings of G on every non-orientable
surface Ny with s € [¥(G), ¥(G)]. Therefore,

GRY(G) = [M(G).B(G)] O
Corollary 5.3.2 Let G be a connected graph with p vertices and q edges. Then

Yu(G)=q-p+1.
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Theorem 5.3.9 For a complete graph K, and a complete bipartite graph K(m, n), m,n > 3,

i = | =)
with an exception value y(K;) = 3 and
— -2)(n-2
P . m) = {(m;#} .

A complete proof of this theorem is contained in [Rin1], Outline proofs of Theorem
5.3.9 can be found in [Liul].

5.3.2 Combinatorial Map. Geometrically, an embedded graph of G on a surface is
called a combinatorial map M and say G underlying M. Tutte [Tut2] found an alge-
braic representation for an embedded graph on a locally orientable surface in 1973, which
transfers a geometrical partition of a surface to a permutation in algebra.

A combinatorial map M = (X, g, P) is def ned to be a permutation # acting on X, g
of a disjoint union of quadricells Kx of x € X, where X is a fnite set and K = {1, «, 8, a3}

is Klein 4-group with conditions following hold:

(1) Vx € X,, there does not exist an integer & such that Px = ax;

() aP =P la;

(3) The group ¥, = (e, B, P) is transitive on X, .

The vertices of a combinatorial map are def ned to be pairs of conjugate orbits of P
action on X, g, edges to be orbits of K on X, 3 and faces to be pairs of conjugate orbits of
Pap action on X, 4. For determining a map (X, 4, ) is orientable or not, the following

condition is needed.
(4) Ifthe group ¥ = (af, P) is transitive on X, g, then M is non-orientable. Other-
wise, orientable.

For example, the graph D, 4 (a dipole with 4 multiple edges ) on Klein bottle shown
in Fig.5.3.3 can be algebraic represented by a combinatorial map M = (X, , ) with

Xop = U {e, ae, Be, afe},

ec{x,y,z,w}

P = (x,y,z, w)(afx, afy, Bz, fw)(ax, aw, az, ay)(Bx, afw, afz, BY).

This map has 2 vertices v; = {(x,y,z, w), (ax, aw, az, ay)}, v» = {(afx, afy, Bz, Bw), (Bx,
aﬁw’ aﬁz’ﬁy)}a 4 edges e = {x’ a{x’ﬁx’ a'/ﬁx}a € = {.y’ ay’ﬁy’ a'/ﬁy}ﬂ €3 = {Z’ a,Z’ﬁZ’ a’ﬁZ}’
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ey = {w,aw, Bw, afw} and 2 faces f, = {(x, aBy, z, By, ax, afw), (Bx, aw, affx, y, Bz, ay)},
1> ={(Bw, az), (w, afBz)}. Its Euler characteristic is

X(M)=2-4+2=0

and ¥; = (af, P) is transitive on X, g. Thereby it is a map of D4 on a Klein bottle with

2 faces accordant with its geometry.

Fig.5.3.3

The following result was gotten by Tutte in [Tut2], which establishes a relation for

embedded graphs with that of combinatorial maps.

Theorem 5.3.10 For an embedded graph G on a locally orientable surface S, there exists
one combinatorial map M = (X, g, P) with an underlying graph G and for a combinato-
rial map M = (X, g, P), there is an embedded graph G underlying M on S.

Similar to the defnition of a multi-voltage graph, we can defne a multi-voltage
map and its lifting by applying a multi-group T = UT; with I'; = T'; for any integers
i=1
L, ,1<i,j<n.

Def nition 5.3.1 Let (f; O) be a f nite multi-group withT = UT, wherel ={g1,22," . Qn}
i=1
and an operation set O(I') = {o,|1 <i < n} and let M = (X, p,P) be a combinatorial map.

If there is a mapping Y : Xop — T such that
(1) forVx € Xop, Vo € K = {1, a,8, af), Y(ax) = y(x), $(Bx) = y(afx) = y(x)~';
(2) fOl" anyface f = (x9y’ T ’Z)(BZ9 T ’ﬁy9ﬁx): w(f; l) = w(x) O; w()’) Oj 0 90(2),
where o; € O(f), 1 <i<nand Y(f,i)f € F(v)) = G for Vv € V(G), where F(v) denotes

all faces incident with v,

then the 2-tuple (M, V) is called a multi-voltage map.

The lifting of a multi-voltage map is def ned by the next def nition.
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Def nition 5.3.2 For a multi-voltage map (M, ), the lifting map MV = (XZWWSD‘/’) is

def'ned by
XZwﬁw = {xglx € Xa,ﬂ,g eI},
Pw - 1—[ 1—[ (xg’)’g’ T aZg)(OlZg, s, @), axg),
gel (xy.2)(ez,.ay.ax)eV (M)
where

o= []| (pax), p'= ﬁ [ ] G B

xeXUﬁ,gEF i=l xeXop

with a convention that (5X)g,e.ux) = Ve, for some quadricells y € X, .

Notice that the lifting M is connected and ¥} = (a”8’,P") is transitive on X ﬁ f

i
Wﬁl//
and only if ¥'; = (o, P) is transitive on X, 3. We get a result in the following.

Theorem 5.3.11 The Euler characteristic y(M") of the lifting map MY of a multi-voltage
map (M, f) is
. 1 1
x(MY) =T (X(M) + (— - —))
where F(M) and o(Y(f, 0,)) denote the set of faces in M and the order of Y(f, o;) in (I'; 0;),

respectively.

Proof By def nition the lifting map M? has [T|v(M) vertices, |Ile(M) edges. Notice
that each lifting of the boundary walk of a face is a homogenous lifting by def nition of

BY. Similar to the proof of Theorem 2.2.3, we know that M” has Y 3 ot l//l(;lo)) faces.
i=1 feF(M) o

By the Eular-Poincaré formula we get that

x(MY) = v(M") - e(M”) + ¢(M")

" Il
ILv(M) — [Tle(M) + —
20 24, G

Il (X(M) — (M) + Z 2 m]

i=1 feF(M)

- 1 1
w3 3 (e )

i=1 feF(M)

G

Recently, more and more papers concentrated on fnding regular maps on surface,

which are related with discrete groups, discrete geometry and crystal physics. For this
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objective, an important way is by the voltage assignment technique on maps. See refer-
ences [Mall], [MNS1] and [NeS1]-[NeS1] for details. It is also an interesting problem
to apply multi-voltage maps for fnding non-regular or other maps with some constraint

conditions.

Motivated by the Four Color Conjecture, Tait conjectured that every simple 3-polytope
is hamiltonian in 1880. By Steinitz’s a famous result (See [Grul] for details), this con-
jecture is equivalent to that every 3-connected cubic planar graph is hamiltonian. Tutte
disproved this conjecture by giving a 3-connected non-hamiltonian cubic planar graph
with 46 vertices in 1946 and proved that every 4-connected planar graph is hamiltonian
[Tutl] in 1956. In [Gru3], Griinbaum conjectured that each 4-connected graph embed-
dable in the torus or in the projective plane is hamiltonian. This conjecture had been
solved for the projective plane case by Thomas and Yu [ThY1] in 1994. Notice that
the splitting operator ¥} constructed in the proof of Theorem 2.2.10 is a planar operator.
Applying Theorem 2.2.10 on surfaces we know that for every map M on a surface, M”
is non-hamiltonian. In fact, we can further get an interesting result related with Tait’s

conjecture.

Theorem 5.3.12 There exist inf nite 3—connected non-hamiltonian cubic maps on each

locally orientable surface.

Proof Notice that there exist 3-connected triangulations on every locally orientable
surface S. Each dual of them is a 3-connected cubic map on S'. Now we def ne a splitting

operator o as shown in Fig.5.3.4.

X1

X2 X3

Fig.5.3.4

For a 3-connected cubic map M, we prove that M“™ is non-hamiltonian for Yv €
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V(M). According to Theorem 2.1.7, we only need to prove that there are no y; — y,, or
Y1 — 3, Or ¥, — y3 hamiltonian path in the nucleus N(o(v)) of operator o.

Let H(z;) be a component of N(o-(v))\{zoz;, Vi-1Ui+1, Vi+1Vi—1} Which contains the ver-
tex z;, 1 < i < 3(all these indices mod 3). If there exists a y; — y, hamiltonian path P in
N(o(v)), we prove that there must be a u; — v; hamiltonian path in the subgraph H(z;) for
an integer i, 1 <i < 3.

Since P is a hamiltonian path in N(o(v)), there must be that viysu; or uyysv; is a
subpath of P. Now let £y = {y,u3, zoz3, y2v3}, we know that |E(P) () E| = 2. Since Pis a
¥y1 — ¥, hamiltonian path in the graph N(o(v)), we must have y,u3 ¢ E(P) or y,v; ¢ E(P).
Otherwise, by |E(P) (S| = 2 we get that zyz; ¢ E(P). But in this case, P can not be a
1 — y» hamiltonian path in N(o(v)), a contradiction.

Assume y,v; ¢ E(P). Then y,u; € E(P). Let E; = {u1y,, 2120, viys}. We also know
that |E(P) () E,| = 2 by the assumption that P is a hamiltonian path in N(c(v)). Hence
zoz1 ¢ E(P) and the v; — u; subpath in P is a v; — u; hamiltonian path in the subgraph
H(zy).

Similarly, if y,u; ¢ E(P), then y;v, € E(P). Let E3 = {y|v,, 2022, y3u2}. We can also
get that |[E(P) () E3| = 2 and a v, — u, hamiltonian path in the subgraph H(z,).

Now if there is a v; —u; hamiltonian path in the subgraph H(z, ), then the graph H(z;)+
uyv; must be hamiltonian. According to the Grinberg’s criterion for planar hamiltonian

graphs, we know that

¢5 = @73 + 2(8, = ¢74) + 3(¢5 = ¢75) + 6(¢ — ¢75) = 0, -0

where ¢ or ¢”; is the number of i-gons in the interior or exterior of a chosen hamiltonian

circuit C passing through u,v; in the graph H(z,) + u,v,. Since it is obvious that
p3=¢"s =1, ¢"3=¢5=0,
we get that
2(py = ¢74) + 3(¢5 — ¢7s) = 5, (5-2)

by (5-1). Because ¢, +¢”4 = 2,50 ¢, —¢”4 = 0,2 or —2. Now the valency of z in H(z;) is
2, so the 4-gon containing the vertex z; must be in the interior of C, that is ¢}, — ¢”4 # —2.
If ¢, —¢”s = 0or ¢, —¢”s = 2, we get 3(¢; — ¢”s) = 5 or 3(¢; —¢”’s) = 1, a contradiction.

Notice that H(z,) ~ H(z,) ~ H(z3). If there exists a v, —u, hamiltonian path in H(z,),

a contradiction can be also gotten. So there does not exist a y; —y, hamiltonian path in the
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graph N(o(v)). Similarly , there are no y; — y; or y, — y3 hamiltonian paths in the graph
N(o(v)). Whence, M°™ is non-hamiltonian.

Now let n be an integer, n > 1. We get that

M, = (M), ueV(M),
M, = (MI)N(O-(V))(V), Ve V( Ml);

M‘l = (Ml—l)N(O—(V))(W)’ we V(Mn—l);

All of these maps are 3-connected non-hamiltonian cubic maps on the surface S. This

completes the proof. 0

Corollary 5.3.3 There is not a locally orientable surface on which every 3-connected

cubic map is hamiltonian.

§5.4 MULTI-EMBEDDINGS OF GRAPHS

5.4.1 Multi-Surface Genus Range. Let S,S5,,:--,S be k locally orientable surfaces

and G a connected graph. Def ne numbers

k k
v(G;S1,82,--,8%) :min{Zy(Gl) G = UGi,Gi -85, 1 Siﬁk},
P =1

k
V(G 1,82, 8p) = max{Z ()

i=1

k
G:UGi,GieSi,lsisk}

i=1

and the multi-genus range GR(G; S ,S,,---,S)) by

k k
GR(G;SI’SZ’“"S/C) = {Zg(Gl) G: UGi’Gi _)Sl',l SlSk},
i=1 i=1

where G; is embeddable on a surface of genus g(G;). Then we get the following result.

Theorem 5.4.1 Let G be a connected graph and let S 1, S, -, S be locally orientable
surfaces with empty overlapping. Then

GR(G;S13S23"'aSk) = [Y(G;SI’S2’"',Sk)ayM(G;Sl’S2’“'3Sk)]-
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Proof Let G = U G,G; — S;,1 < i < k. We prove that there are no gap in
the multi-genus range from v(Gy) + Y(Gy) + -+ + Y(Gy) to yu(Gy) + yu(Gr) + -
vu(Gy). According to Theorems 2.3.8 and 2.3.12, we know that the genus range GRO(G,-)
or GRY(G) is [Y(G)), yu(G))] or [¥(G:),7u(G)] for any integer i,1 < i < k. Whence,
there exists a multi-embedding of G on k locally orientable surfaces Py, P,, - - -, P; with
g(Py) = y(Gy), g(Py) = v(Ga), -+, g(Py) = y(Gy). Consider the graph Gy, then G,, and
then Gjs, - - - to get multi-embedding of G on k& locally orientable surfaces step by step.
We get a multi-embedding of G on & surfaces with genus sum at least being an unbroken
interval [y(G1) + ¥(G2) + - - - + ¥(Gi), ym(G1) + yu(G2) + - - - + yu(Gy)] of integers.

By def nitions of y(G; S 1, S, - - -, Sk) and y(G;S1,82,---,Sk), we assume that G =
U G.,G —» §,1 <i<kandG = U G’,G! — §;,1 < i < k attain the extremal
Values v(G;81,S,,--+,8) and yu(G; S 1,82, -+, 8%), respectively. Then we know that
the multi- embedding of G on k surfaces with genus sum is at least an unbroken intervals
[Z Y(G)), Z yM(G’)] and [gk:l Y(GY), é )/M(G;’)] of integers.

Slnce

k k k
Dlasne| Y @, > m(G;)] M
i=1 i=1 i=1

we get that

k k
DIHGH. Y yulGY)
i=1 i=1

GR(G;S81,82,---,81) = [V(G3.81,82, -+, 86), ym(G3 51,82, - -+, S ).

This completes the proof. [

Furthermore, we get the following result for multi-surface embeddings of complete

graphs.

Theorem 5.4.2 Let Py, P,,---, Py and Qy, Os, - - -, Oy be respective k orientable and non-
orientable surfaces of genus> 1. A complete graph K, is multi-surface embeddable in

Py, Py, - -, P, with empty overlapping if and only if
k

Z; 3+ J16g(P) + 1 <, Zk;

2
and is multi-surface embeddable in Oy, Q,, - - -, O with empty overlapping if and only if

7+ J242(0) + 1

2

T+ R TT

i=1 i=1
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Proof According to Theorems 5.3.4-5.3.9, we know that the genus g(P) of an ori-

entable surface P on which a complete graph K, is embeddable satisf es

~3)(n-4 - )(n-2

{—(” i ﬂ <g(P) < {—(” 2 >|,
e (1=3)n=4) _p  (1=Dn=2)
o 8 ETT

If g(P) > 1, we get that

3+ /16g(P) + 1

2

7 + +/48g(P) + 1

2

<n<

Similarly, if K, is embeddable on a non-orientable surface 0, then

(n—3)(n - 4) (n— 1)
[ )

wéﬂ@é{

1e.,

[1+ V20| <n< T '242g(Q)+1 :

Now if K, is multi-surface embeddable in Py, P,, - - -, P, with empty overlapping,

then there must exists a partition n = ny +ny +--- + n;, n; > 1,1 < i < k. Since each
vertex-induced subgraph of a complete graph is still a complete graph, we know that for
any integer i, 1 <i <k,

3+ T6gP)+ 1| _
n.

2 -

7+ +/48g(P;) + 1

2

Whence, we know that

Z": 3+ /16g(P) + 1 _nsz":
i=1 i=1

2
On the other hand, if the inequality (5-3) holds, we can fnd positive integers ny, n,,

7+ A82(P)) + 1

> (5-3)

~-e.npwithn =ny +ny,+---+n,and

3+ /16g(P;) +1 <<

2 -

7+ \J482(P) + 1

2

k
for any integer i, 1 < i < k. This enables us to establish a partition K, = |4 K,,, for K,
i=1
and embed each K,, on P; for 1 < i < k. Therefore, we get a multi-embedding of K, in

Py, Py, - -, P, with empty overlapping.
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Similarly, if K, is multi-surface embeddable in Qy, O,, - - - O with empty overlap-

ping, there must exists a partition n = my +my + -+ -+ my, m; > 1,1 <i < k and

7T+ /24g(0) + 1

2

[1+ V25(0)] < m; <

for any integer i, 1 <i < k. Whence, we get that

k
7+ /24g(0) + 1
S [1+ \22(0) <”<Z v245(0) (5-4)
i=1 2
Now if the inequality (5-4) holds, we can also fnd positive integers my, mj, - - -, my,

withn = my + my + --- + my and

1+ V25(0)] < mi <

7+ 242(0) + 1

2

for any integer i, 1 < i < k. Similar to those of orientable cases, we get a multi-surfaces

embedding of K, in Oy, O,, - - -, O with empty overlapping. U

Corollary 5.4.1 A complete graph K, is multi-surface embeddable in k,k > 1 orientable
surfaces of genus p, p > 1 with empty overlapping if and only if

3+ 4/16p+1

2

and is multi-surface embeddable in I, ] > 1 non-orientable surfaces of genus q,q > 1 with

empty overlapping if and only if

[1+@]S%S 7+— ,24(]"'1

2

Corollary 5.4.2 A complete graph K, is multi-surface embeddable in s,s > 1 tori with
empty overlapping if and only if

ds <n<Ts

and is multi-surface embeddable in t,t > 1 projective planes with empty overlapping if
and only if
3t<n<ot.

Similarly, the following result holds for complete bipartite graphs K(n,n), n > 1.
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Theorem 5.4.3 Let Py, P,,---, P, and Oy, Qs, -+, QO be respective k orientable and k
non-orientable surfaces of genus> 1. A complete bipartite graph K(n,n) is multi-surface

embeddable in Py, P,, - - -, P, with empty overlapping if and only if

Zk:1+ V2g(P)] < n Zk:2+2 2(P)]

i=1

and is multi-surface embeddable in Q, O, - - -, Oy with empty overlapping if and only if

k k
D+ Ve@)] <n< |2+ v2e(0))]
i=1

i=1

Proof Similar to the proof of Theorem 5.4.2, we get the result. U

5.4.2 Classif cation of Manifold Graph. By Theorem 5.2.1, we can give a combina-
torial def nition for a graph embedded in an n-manifold, i.e., a manifold graph similar to

that the Tutte’s def nition for combinatorial maps.

Def nition 5.4.1 For any integer n,n > 2, an n-dimensional manifold graph "G is a pair
"G = (&r, L) in where a permutation L acting on Er of a disjoint union I'x = {ox|o € '}
forNx € E, where E is a fnite set and T = {u, olu* = 0" = 1, uo = ou} is a commutative

group of order 2n with the following conditions hold:

(1) Vx € &, there does not exist an integer k such that L*x = o'x for Vi,1 < i <
n—1;

2) pL=L"w

(3) The group ¥, = {u, 0, L) is transitive on &Er.

According to conditions (1) and (2), a vertex v of an n-dimensional manifold graph

is def ned to be an n-tuple

{(0'x1,0'x2, -+, 0" X5 )(O'V1,0'y2, -+, 0V, ) -+ - (0'21,0'22, - - -, Olzsav)(v)); I <i<n}

of permutations of £ action on &r, edges to be these orbits of I' action on &r. The
number s1(v) + 53(v) + -+ + 5)(v) is called the valency of v, denoted by p; "> ().
The condition (ii7) is used to ensure that an n-dimensional manifold graph is connected.
Comparing def nitions of a map with that of n-dimensional manifold graph, the following

result holds.
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Theorem 5.4.4 For any integer n,n > 2, every n-dimensional manifold graph "G =
(&r, L) is correspondent to a unique map M = (E,5,P) in which each vertex v in "G is
converted to I(v) vertices vi, Vv, -,V of M. Conversely, a map M = (E,p,P) is also
correspondent to an n-dimensional manifold graph "G = (Er, L) in which l(v) vertices

Uy, Uy, -+, Uy of M are converted to one vertex u of " G.

Two n-dimensional manifold graphs "G = (&}, £1) and "G, = (&f,, £,) are said to
be isomorphic if there exists a one-to-one mapping « : 8}1 — 8%2 such that ku = uk, ko =
okand kL, = Lok If 8}1 = 8%2 = &rand £, = L, = L, an isomorphism between "G, and
"G, is called an automorphism of ’G = (&, £). It is immediately that all automorphisms
of "G form a group under the composition operation. We denote this group by Aut’G.

It is clear that for two isomorphic n-dimensional manifold graphs "G, and "G,, their
underlying graphs G; and G, are isomorphic. For an embedding "G = (&r, £) in an
n-dimensional manifold and V¢ € Aut ! G, an induced action of ¢ on &r is defned by
{(gx) = g{(x) for Vx € &r and Vg € I'. Then the following result holds.

Theorem 5.4.5 Aut"G < Aut%G X ).

Proof First we prove that two n-dimensional manifold graphs "G, = (811,,[:1)
and"G, = (S%Z,LZ) are isomorphic if and only if there is an element { € Aut% I" such
that L5 = £, or £;'.

If there is an element ¢ € Aut ! I" such that Lf = L,, then the n-dimensional manifold
graph "G, is isomorphic to "G, by defnition. If Lf = L', then Lf" = L,. The n-
dimensional manifold graph "G is also isomorphic to "G,.

By the def nition of isomorphism & between n-dimensional manifold graphs "G, and
"G,, we know that

HEX) = Eu(x), 0&(x) = £o(x) and L5(x) = Lo(x)
for Vx € &Er. By def nition these conditions
0&(x) = €o(x) and L5 (x) = Lo(x)

are just the condition of an automorphism & or @é on X 1 (T'). Whence, the assertion is true.
Now let & = & = Erand L, = L, = L. We know that

Aut"G < Aut%G X () . O
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Similarly, the action of an automorphism of manifold graph on &r is f xed-free shown

in the following.

Theorem 5.4.6 Let "G = (Er, L) be an n-dimensional manifold graph. Then (Aut"G), is

trivial for Vx € &r.

Proof For Vg € (Aut"G),, we prove that g(y) = y for Vy € &r. In fact, since the
group ¥, = (u, 0, L) is transitive on &r, there exists an element 7 € W, such that y = 7(x).
By def nition we know that every element in ¥, is commutative with automorphisms of

"G. Whence, we get that

gy) = g(r(x)) = 7(g(x)) = 7(x) =y,
i.e., (Aut"@), is trivial. O

Corollary 5.4.3 Let M = (X4, P) be a map. Then for Vx € X,z (AutM), is trivial.

For an n-dimensional manifold graph "G = (&, £), an x € &y is said a root of 'G.
If we have chosen a root » on an n-dimensional manifold graph "G, then "G is called a
rooted n-dimensional manifold graph, denoted by "G". Two rooted n-dimensional mani-
fold graphs "G and "G’ are said to be isomorphic if there is an isomorphism ¢ between
them such that ¢(r) = r,. Applying Theorem 5.4.6 and Corollary 5.2.1, we get an enu-

meration result for n-dimensional manifold graphs underlying a graph G following.

Theorem 5.4.7 For any integer n,n > 3, the number rS(G) of rooted n-dimensional
manifold graphs underlying a graph G is
ne(G) [1 pe()!

Vel (G)

72(6) = | ut, G]

Proof Denote the set of all non-isomorphic n-dimensional manifold graphs under-
lying a graph G by G°(G). For an n-dimensional graph "G = (&r, £) € G°(G), denote
the number of non-isomorphic rooted n-dimensional manifold graphs underlying "G by

r("G). By a result in permutation groups theory, for Vx € & we know that
Aut’Gl = [(Aut"G),|lx 9.

According to Theorem 2.3.23, |(Aut’G),| = 1. Whence, [x*""9| = |Aut"G|. However there

are |&Er| = 2ne(G) roots in "G by defnition. Therefore, the number of non-isomorphic
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rooted n-dimensional manifold graphs underlying an n-dimensional graph "G is

. |Er| 2ne(G
g = o 2neO),
[Aut"G|  |Aut"G]
Whence, the number of non-isomorphic rooted n-dimensional manifold graphs underly-
ing a graph G is
2ne(G
nG- Y
"GeGS(G) "

According to Theorem 5.4.5, Aut"G < Aut I G x {(u). Whence 7 € Aut"G for "G € G°(G)

if and only if 7 € (Aut 1 G X {u))ng. Therefore, we know that Aut"G = (Aut 1 G X {())g.

Because of [Aut, G x (1) | = [(Auty G x ()rgll'G""+ ™|, we get that

2 = —
|Aut"G|
Therefore,
2ne(G)
s
ne = ), 40—
"GeGS (G) Aurg]
2ne(G) Z |Aut; G X (u) |
AULGx W], & AWG]
2ne(G AUt GX(u)
- |Aut1G(><)(,u>| 2, e
2 "GeGS (G)
ne(G) 1 pcO)!
3 veV(G)
B Aut, G|
by applying Corollary 5.2.1. 0

Notice the fact that an embedded graph in 2-dimensional manifold is just a map
and Defnition 5.4.1 turn to Tutte’s def nition for combinatorial map. We can also get

an enumeration result for rooted maps on surfaces underlying a graph G by applying
Theorems 5.3.2 and 5.4.6 following.

Theorem 5.4.8([MaL4]) The number r*(I') of rooted maps on locally orientable surfaces
underlying a connected graph G is
2Me(@) ] (p(v) = 1)!

vel(G)

L
G) = ,
r(G) [Aut, Gl
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where B(G) = (G) — v(G) + 1 is the Betti number of G.

! — /
Similarly, for a graph G = € G; and a multi-manifold M = (J M", choose / com-
i=1 i=1

mutative groups I'1, 15, -+, I, where I'; = </li, ol = ol = 1> for any integeri, 1 <i <.
Consider permutations acting on U &r,, where for any integer i, 1 <i </, &, 1s a disjoint
union I';x = {o;x|o; € T’} for Vx e E(G) Similar to Def nition 5.4.1, we can also get a

multi-embedding of G in M = U M,

i=1

§5.5 GRAPH PHASE SPACES

5.5.1 Graph Phase. For convenience, we frst introduce some notations used in this

section in the following.

M — A multi-manifold M = Ln) M" where each M" is an n;-manifold, n; > 2.
i=1

uce 1\~/I—Apointﬁof1\~/l.

G — A graph G embedded in M.

C (1\7[) — The set of differentiable mappings w : M — M at each point % in M.

Now we def ne the phase of graph in a multi-space following.

Def nition 5.5.1 Let G be a graph embedded in a multi-manifold M. 4 phase of G in
M is a triple (G; w, A) with an operation o on C(AZI), where w : V(G) — C(lVI) and
A EG) — C(M) such that AGL.¥) = 22290 o v@s) € E@G), where || 7 |

_ lu—=vli
denotes the norm of u.

For examples, the complete graph K; embedded in R* has a phase as shown in
Fig.5.5.1, where g € C(R?) and h € C(R?).

u

Fig.5.5.1
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Similar to the adjacent matrix of graph, we can also def ne matrixes on graph phases.

Def nition 5.5.2 Let (G; w, A) be a phase and A[G] = [a;;],xp the adjacent matrix of
a graph G with V(G) = {vi,va,---

[Aij]pxp by

,Vp}. Defne matrixes V[G] = [Vijlyxp and A[G] =

V=20 ira, % 0; otherwise, Vi = 0
|| Vi—V; ”
and — =

ij if a; # 0; otherwise, A;; = 0,

Vi =v; P
where “o” is an operation on C(ZVI).

For example, for the phase of K, in Fig.5.5.1, if choice g(u) = (x1, x2,x3), g(v) =

1,2, ¥3), gWw) = (21,22, 23), g(0) = (1, 12, t3) and o = X, the multiplication of vectors in
R3, then we get that

0 g(u) g(w) g(u)
py)  pluw)  pu,0)
gv) 0 gv) g

— | pu) pvw)  p(vi)
GO =y sn "y e |0
pwau) — p(w,v) p(w,0)

go) g(o) g0) 0
plou) — ploy)  p(o,w)

where,
pu,v) = p(v,u) = \/(xl —11)? + (2 = m)? + (x5 —13)%,
pu, w) = p(w,u) = \/(xl —21)2 + (X2 — 22)* + (x5 — 23)%,
p(u,0) = p(o,u) = \/(xl — 1)+ (2 — 1)+ (x5 — 5)%,
p(v,w) = p(w,v) = \/(Vl — 21+ (2 — ) + (13 — 13)%,
p(v,0) = p(o,v) = \/(Vl 1)+ (0 - )P+ 05— 1)
p(w,0) = p(o,w) = \/(Zl 1)+ (2 -0+ (-6
and
0 guxg(v)  gu)xgw)  gu)xg(o)
02 (u,v) P2 (u,w) p*(u,0)
g(v)Xg(u) 0 gxg(w)  g(vxg(o)
AG) = pPH(vu) PEv.w) P*(v,0)
gwmxg(u)  g(w)xg(v) 0 gw)xglo) |’
P2(w,u) P2 (w,v) p(w,0)

glo)xgw)  glo)xg(v)  g(o)xg(w) 0
p%(0,u) p%(0.v) p%(0.w)
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where,

8(u) X g(v) = (x2y3 — X3)2, X391 — X153, X1)2 — X2)1),
8(u) X g(w) = (x2z3 — X322, X321 — X123, X122 — X221),
g(u) X g(0) = (xat3 — X3t2, X311 — X183, X1y — Xol1),
8(v) X g(u) = (n2x3 — y3X2, ¥3X1 — Y1 X3, Y1X2 — Y2X1),
8(v) X gw) = (nz3 — ¥322, 1321 — V123, Y122 — Y2Z1)s
g(v) X g(0) = Otz — ysta, y3t1 — yits, yita — yat1),
g(w) X g(u) = (z2x3 — 23X, 23X1 — 21X3,Z1X2 — 22X1),
8w) X g(v) = (zoy3 — z3V2, Z3y1 — 213, Z1V2 — Z2)1)s
gw) X g(0) = (2283 — 231, 2311 — 2183, 211y — 2211),
g(0) X g(u) = (trx3 — 1302, ;3X1 — 11X3, 11X — 1 X1),
8(0) X g(v) = (tay3 — t3y2, t3y1 — hiys, hya — 1),
8(0) X g(w) = (hzs — ta22, 1321 — 123, 1122 — hz1).
For two given matrixes 4 = [a;;],x, and B = [b;;],x,, the star product “+” on an

operation “o”is defned by 4 * B = [a;; 0 b;;],x,. We get the following result for matrixes

V{g] and A[G].

Theorem 5.5.1 V[G] = V'[G] = A[G].

Proof Calculation shows that each (i, j) entry in V[G] * V'[G] is

w(v;) wlv;)  wh)owlv,)
- — . °T= =" = =2 Aij,
I Vi—V; Il Vi— Vi I ||Vi—Vj |
where 1 < i, j < p. Therefore, we get that
Vigl = V'[G] = AlG]. [

An operation on graph phases called addition is def ned in the following.

Def nition 5.5.3 For two phase spaces (G1; w1, A1), (G2; w2, A2) of graphs Gy, G, in M
and two operations “e®” and “o” on C(M), their addition is def ned by

(Gr; w1, A1) @(Qz;wz,l\z) = (G @Qz;wl e wy,Aj e Ay),

where w; e w, : V(G | G,) — C(M) satisfying
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wi () e wr(u), ifuelV(G)NVG),
wi @ wy(u) =13 wi(u), ifueVG)\VgG),
w> (1), ifueVg)\VG).

and
w; @ wy(u) o wy @ Wy(V)

A1 ® Az(ﬁ, 17) =

Jor (u,v) € E(G1) U E(G2).

The following result is immediately gotten by Def nition 5.5.3.

lu-vI?

Theorem 5.5.2 For two given operations “e” and “o” on C(M}, all graph phases in M
form a linear space on the f eld Z, with a phase €P for any graph phases (G1; wy, A1) and
(G2 w2, Ay) in M.

5.5.2 Graph Phase Transformation. The transformation of graph phase is defned in

the following.

Def nition 5.5.4 Let (G1; w1, \1) and (G,; wa, Ay) be graph phases of graphs G, and
G, in a multi-space M with operations “oy,0,” , respectively. If there exists a smooth

mapping T € C(Z\?) such that
7: (G w1, A1) = (G w2, A),

Le., forVu € V(G), Y(u,v) € E(G1), T(G1) = G2, T(w1(W)) = wy(1(w)) and 7(Ay(,V)) =

Ay (1(u, V), then we say (G1; w1, A1) and (G,; w1, A\y) are transformable and T a transform
mapping.

For examples, a projection p transforming an embedding of K, in R? on the plane
R? is shown in Fig.5.5.2

Fig.5.5.2
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Theorem 5.5.3 Let (Gi; w1, A1) and (G»; wa, Ay) be transformable graph phases with

transform mapping t. If T is one-to-one on G| and G,, then G, is isomorphic to G,.

Proof By defnitions, if 7 is one-to-one on G; and G,, then 7 is an isomorphism

between G, and G,. ]

A useful case in transformable graph phases is that one can f' nd parameters ¢, t,, - - -, #,,
g > 1 such that each vertex of a graph phase is a smooth mapping of ,, 1, - - -, #,, 1.e., for
Yu € ]\7, we consider it as u(;, t, - - -, ;). In this case, we introduce two conceptions on
graph phases.

Def nition 5.5.5 For a graph phase (G; w, ), def ne its capacity Ca(G; w, A) and entropy
En(G; w, A) by
Ca(Giw.N) = ), (@)

uel(@)
and

En(G; w, A) = log( [T 1ewa ||].
uel(G)

Then we know the following result.

Theorem 5.5.4 For a graph phase (G; w, ), its capacity Ca(G; w, A) and entropy En(G; w, )
satisfy the following differential equations

ICa(Giw, A) 4
0

i

is

IEnG; w, A) 4
0

i

dCa(G; w, A) = u; and dEn(G;w, \) =

where we use the Einstein summation convention, i.e., a sum is over i if it is appearing
both in upper and lower indices.

Proof Not loss of generality, we assume u = (u;, us, - - -, u,) for Yu € M. According

to the invariance of differential form, we know that

ow
d = —d i
w o u
By the def nition of the capacity Ca(G; w, A) and entropy En(G; w, A) of a graph phase,
we get that
_ ow(u)
dCa(Giw.A) = ) dw@)= ), ——du

_ _ aui

uel(G) uev(G)

o 2 w(u)

_ eV (G) du, = 0Ca(G; w, N) i

au,- (91/11' '
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Similarly, we also obtain that

_ dlog|w(u)|
dEnGw.A) = Y dlogllwmly= Y, Ty,
el (G) el (G) ’
0 log || w(u
i (ﬁ}(g) g llw( )Il)du _dEnGiwN)
B (91/11' e (91/11' a
This completes the proof. U

For the 3-dimensional Euclid space, we get some formulae for graph phases (G; w, A)

by choice % = (x1, X2, x3) and ¥ = (1, V2, y3),

w(u) = (x1, x2, x3) for Yu € V(G),

X2)3 — X3Y2, X3Y1 — X1)3, X1V2 — X2)1

A@v) = (x1 =y1)? + (2 = 32)* + (x5 — y3)?

for V(u,v) € E(G),

Ca@Gw, M) =| D, xi@, D, %G, Y x@

uel(G) uel(G) uel(G)
and

En(Giw,A) = )" log(x}(@) + B(@) + ().
uel(@)

§5.6 RESEARCH PROBLEMS

5.6.1 Besides to embed a graph into £ different surfaces S, S5, - - -, S, for an integer k >
1, such as those of discussed in this chapter, we can also consider a graph G embedded in
a multi-surface. A multi-surface S is introduced for characterizing hierarchical structures
of topological space. Besides this structure, its base line Ly is common and the same as
that of standard surface O, or N,. Since all genus of surface in a multi-surface S is the
same, we def ne the genus g(g) of S to be the genus of its surface. Def ne its orientable

or non-orientable genus 72(G), 7¥(G) on multi-surface S consisting of m surfaces S by
Y9(G) = min{ g(§) | G is 2 — cell embeddable on orinetable multisurface S } ,

YNG) = min{ g(§) | G is 2 — cell embeddable on orinetable multisurface §} .

Then we are easily knowing that y9(G) = ¥(G) and ¥)(G) = (G) by defnition. The

problems for embedded graphs following are particularly interesting for researchers.
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Problem 5.6.1 Let n,m > 1 be integers. Determine yO(G) and y(G) for a connected
graph G, particularly, the complete graph K, and the complete bipartite graph K,, .

Problem 5.6.2 Let G be a connected graph. Characterize the embedding behavior of G
on multi-surface S, particularly, those embeddings whose every facial walk is a circuit,

i.e, a strong embedding of G on S.

The enumeration of non-isomorphic objects is an important problem in combina-
torics, particular for maps on surface. See [Liu2] and [Liu4] for details. Similar problems

for multi-surface are as follows.

Problem 5.6.3 Let S be a multi-surface. Enumerate embeddings or maps on S by pa-

rameters, such as those of order, size, valency of rooted vertex or rooted face, - - -.
Problem 5.6.4 Enumerate embeddings on multi-surfaces for a connected graph G.

For a connected graph G, its orientable, non-orientable genus polynomial g, [G](x),
2,,[G](x) is defned to be

gn[G1(x) = D" g(G)x and Z,[G1(x) = ) gh(G)Y,
i>0 i>0
where g,%(G), £ (G) are the numbers of G on orientable or non-orientable multi-surface

S consisting of m surfaces of genus i.

Problem 5.6.5 Let m > 1 be an integer. Determine g,,[G|(x) and g,,[ G](x) for a connected
graph G, particularly, for the complete or complete bipartite graph, the cube, the ladder,
the bouquet, - - -.

5.6.2 A graphical property P(G) is called to be subgraph hereditary if for any subgraph
H C G, Hposses P(G) whenever G posses the property P(G). For example, the properties:
G is complete and the vertex coloring number y(G) < k both are subgraph hereditary. The
hereditary property of a graph can be generalized by the following way.

Finding the behavior of a graph in space is an interesting, also important objective
for application. There are many open problems on this objective connecting with classical
mathematics. Let G and H be two graphs in a space M. If there is a smooth mapping ¢ in
C(A7I) such that ¢(G) = H, then we say G and H are equivalent in M. Many conceptions
in graph theory can be included in this def nition, such as graph homomorphism, graph

equivalent, - - -, etc.
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Problem 5.6.6 Applying different smooth mappings in a space such as smooth mappings

in R? or R to classify graphs and to fnd their invariants.

Problem 5.6.7 Find which parameters already known in graph theory for a graph is

invariant or to f nd the smooth mapping in a space on which this parameter is invariant.

Problem 5.6.8 Find which parameters for a graph can be used to a graph in a space.

Determine combinatorial properties of a graph in a space.

Consider a graph in a Euclid space of dimension 3. All of its edges are seen as a
structural member, such as steel bars or rods and its vertices are hinged points. Then we

raise the following problem.

Problem 5.6.9 Applying structural mechanics to classify what kind of graph structures
are stable or unstable. Whether can we discover structural mechanics of dimension> 4

by this idea?

We have known the orbit of a point under an action of a group, for example, a torus
is an orbit of Z X Z action on a point in R?. Similarly, we can also defne an orbit of a
graph in a space under an action on this space.
Let G be a graph in a multi-space M and Tl a family of actions on M. Def ne an orbit
Or(G) by
0r(G) = {(n(@)| Y € 11}.

Problem 5.6.10 Given an action n, continuous or discontinuous on a space M, for ex-
ample R? and a graph G in M, fnd the orbit of G under the action of . When can we get

a closed geometrical object by this action?

Problem 5.6.11 Given a family A of actions, continuous or discontinuous on a space
M and a graph G in M, fnd the orbit of G under these actions in A. Find the orbit of a

vertex or an edge of G under the action of G, and when are they closed?

5.6.3 There is an alternative way for def ning transformable graph phases, i.e., by homo-

topy groups in a topological space stated as follows:

Let (G1; w1, Ay) and (G>; wa, A;) be two graph phases. If there is a continuous map-
ping H : C(M)x I — C(M)x 1, I = [0,1] such that H(C(M).0) = (G w1, A1)
and H(C (]\7) , 1) = (G2; w2, A\2), then (G1; wi, A1) and (Ga; wy, Ay) are said two trans-
formable graph phases.
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Similar to topology, we can also introduce product on homotopy equivalence classes
and prove that all homotopy equivalence classes form a group. This group is called a
fundamental group and denote it by m(G; w, A). In topology there is a famous theorem,
called the Seifert and Van Kampen theorem for characterizing fundamental groups 7, (A)

of topological spaces A restated as follows (See [Stil] for details).

Suppose & is a space which can be expressed as the union of path-connected open
sets A, B such that A (B is path-connected and nti(A) and nt,(B) have respective pre-
sentations

<als“'3am;rl9"'ar}’l>3 <b1,"',bm;S1,“‘,Sn>,

while (A (N B) is fnitely generated. Then n\(E) has a presentation
<al,"',am,bl,"',bm;rl,'",l"n,Sl,”’,Sn,ul :Vl,"',U[:V[>,

where u;, v;,i = 1,---,t are expressions for the generators of n\(A (\ B) in terms of the

generators of mi(A) and m,(B) respectively.

Similarly, there is a problem for the fundamental group n(G; w, A) of a graph phase
(G; w, A) following.

Problem 5.6.12 Find results similar to that of Seifert and Van Kampen theorem for the

fundamental group of a graph phase and characterize it.
5.6.4 In Euclid space R”, an n-ball of radius r is determined by
B'(r) = {(x1, %2, -+, Xp)lX] + 25 + -+ xp < 7).
Now we choose m n-balls B{(r), B5(r2), - - -, B, (), where for any integers i, j, 1 < i, j <
m, B!(r;) N B;f(rj) = or not and 7; = r; or not. An n-multi-ball is a union
B= O BI(rp).
k=1

Then an n-multi-manifold is a Hausdorff space with each point in this space has a neigh-

borhood homeomorphic to an n-multi-ball.

Problem 5.6.13 For an integer n,n > 2, classif es n-multi-manifolds. Especially, classi-

fes 2-multi-manifolds.



CHAPTER 6.

Map Geometry

A Smarandache geometry is nothing but a Smarandcahe multi-space consist-
ing of just two geometrical spaces 4; and A4,, associated with an axiom L such
that L holds in 4, but not holds in 4,, or only hold not in both 4, and 4, but in
distinct ways, a miniature of multi-space introduced by Smarandache in 1969.
The points in such a geometry can be classif ed into three classes, i.e., elliptic,
Euclidean and hyperbolic types. For the case only with f nite points of elliptic
and hyperbolic types, such a geometry can be characterized by combinatorial
map. Thus is the geometry on Smarandache manifolds of dimension 2, i.e.,
map geometry. We introduce Smarandache geometry including paradoxist ge-
ometry, non-geometry, counter-projective geometry, anti-geometry and Iseri’s
s-manifolds in Section 6.1. These map geometry with or without boundary are
discussed and paradoxist geometry, non-geometry, counter-projective geom-
etry and anti-geometry are constructed on such map geometry in Sections 6.2
and 6.3. The curvature of an s-line is def ned in Section 6.4, where a condition
for a map on map geometry (M, i) being Smarandachely is found. Section 6.5
presents the enumeration result for non-equivalent map geometries underly-
ing a simple graph I'. All of these decision consist the fundamental of the

following chapters.
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§6.1 SMARANDACHE GEOMETRY

6.1.1 Geometrical Introspection. As we known, mathematics is a powerful tool of
sciences for its unity and neatness, without any shade of mankind. On the other hand,
it is also a kind of aesthetics deep down in one’s mind. There is a famous proverb says
that only the beautiful things can be handed down to today, which is also true for the
mathematics.

Here, the terms unity and neatness are relative and local, maybe also have various
conditions. For obtaining a good result, many unimportant matters are abandoned in
the research process. Whether are those matters still unimportant in another time? It is
not true. That is why we need to think a queer question: what are lost in the classical
mathematics?

For example, a compact surface is topological equivalent to a polygon with even
number of edges by identifying each pairs of edges along its a given direction ([Mas1] or
[Stil]). If label each pair of edges by a letter e,e € &, a surface S is also identifed to
a cyclic permutation such that each edge e,e € & just appears two times in S, one is e
and another is e”! (orientable) or e (non-orientable). Let a, b, ¢, - - - denote letters in & and
A, B, C, - - - the sections of successive letters in a linear order on a surface S (or a string of

letters on ). Then, an orientable surface can be represented by
S = (...?A7a7B7a_1?C7”’)’

where, a € & and 4, B, C denote strings of letter. Three elementary transformations are
def ned as follows:
(01) (4,a,a”',B) & (4, B);
(0 () AabBb'a')e (4B,
(i) (A,a,b,B,a,b) & (4,c,B,c);
(0) (i) (4,a,B,C,a',D) © (B,a,4,D,a”!,C);
(ii) (4,a,B,C,a,D)  (B,a,A,C',a,D™).
If a surface S can be obtained by these elementary transformations O,-O; from a surface

S, it is said that § is elementary equivalent with S, denoted by S ~z; Sy.

We have known the following formulae from [Liul]:

(1)(4,a,B,b,C,a”!,D,b"",E) ~5; (4, D,C, B, E,a,b,a”!, b™");
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(2)(4,¢,B,¢) ~g (4,B71,C, c,c);
3)A,c,c,a,b,at, by~ (4,¢,¢c,a,a, b, b).

Then we can get the classif cation theorem of compact surfaces as follows [Mas1]:
Any compact surface is homeomorphic to one of the following standard surfaces:

(Py) The sphere: aa™';

(P,) The connected sum of n,n > 1, tori:

~17-1 “1p-1 —1p-1,
a\bya; by axbya, by ---a,bua, b, ;

(0,) The connected sum of n,n > 1, projective planes:

a)a aay - - - aydy.

As we have discussed in Chapter 2, a combinatorial map is just a kind of decompo-
sition of a surface. Notice that all the standard surfaces are one face map underlying an
one vertex graph, i.e., a bouquet B, with n > 1. By a combinatorial view, a combinatorial
map is nothing but a surface. This assertion is needed clarifying. For example, let us see

the left graph I, in Fig.3.1.1, which is a tetrahedron.

2 3
4 v
2 3

Fig.6.1.1

Whether can we say Il4 is a sphere? Certainly NOT. Since any point # on a sphere
has a neighborhood N(x) homeomorphic to an open disc, thereby all angles incident
with the point 1 must be 120° degree on a sphere. But in Il4, those are only 60° de-
gree. For making them same in a topological sense, i.e., homeomorphism, we must
blow up the I1; and make it become a sphere. This physical processing is shown in the
Fig.3.1. Whence, for getting the classif cation theorem of compact surfaces, we lose the

angle,area, volume,distance,curvature,- - -, etc. which are also lost in combinatorial maps.
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By geometrical view, the Klein Erlanger Program says that any geometry is nothing
but f'nd invariants under a transformation group of this geometry. This is essentially the
group action idea and widely used in mathematics today. Surveying topics appearing in
publications for combinatorial maps, we know the following problems are applications of

Klein Erlanger Program:

(1) to determine isomorphism maps or rooted maps,
(2) to determine equivalent embeddings of a graph,
(3) to determine an embedding whether exists or not,
(4) to enumerate maps or rooted maps on a surface;
(5) to enumerate embeddings of a graph on a surface;
(6) ---,etc.

All the problems are extensively investigated by researches in the last century and

papers related those problems are still frequently appearing in journals today. Then,
what are their importance to classical mathematics?

and
what are their contributions to sciences?

Today, we have found that combinatorial maps can contribute an underlying frame
for applying mathematics to sciences, i.e., through by map geometries or by graphs in

spaces.

6.1.2 Smarandache Geometry. The Smarandache geometry was proposed by Smaran-
dache [Smal] in 1969, which is a generalization of classical geometries, i.e., these Euclid,
Lobachevshy-Bolyai-Gauss and Riemann geometries may be united altogether in a same
space, by some Smarandache geometries. Such geometry can be either partially Euclidean
and partially Non-Euclidean, or Non-Euclidean. Smarandache geometries are also con-
nected with the Relativity Theory because they include Riemann geometry in a subspace
and with the Parallel Universes because they combine separate spaces into one space too.
For a detail illustration, we need to consider classical geometry frst.

As we known, the axiom system of Euclid geometry consists of 5 axioms following:

(A1) There is a straight line between any two points.
(A2) A fnite straight line can produce a inf nite straight line continuously.

(A3) Any point and a distance can describe a circle.
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(A4) All right angles are equal to one another.
(AS5) If a straight line falling on two straight lines make the interior angles on the
same side less than two right angles, then the two straight lines, if produced indef nitely,

meet on that side on which are the angles less than the two right angles.

The axiom (AS5) can be also replaced by:

(AS5’) given a line and a point exterior this line, there is one line parallel to this line.

The Lobachevshy-Bolyai-Gauss geometry, also called hyperbolic geometry, is a ge-
ometry with axioms (41) — (44) and the following axiom (L5):

(LS5) there are inf nitely many lines parallel to a given line passing through an exte-
rior point.
and the Riemann geometry, also called elliptic geometry, is a geometry with axioms (41)—
(A4) and the following axiom (R5):

there is no parallel to a given line passing through an exterior point.

By a thought of anti-mathematics: not in a nihilistic way, but in a positive one, i.e.,
banish the old concepts by some new ones: their opposites, Smarandache [Smal] in-
troduced the paradoxist geometry, non-geometry, counter-projective geometry and anti-

geometry by contradicts respectively to axioms (41) — (45) in Euclid geometry following.

Paradoxist Geometry. In this geometry, its axioms consist of (41) — (44) and one

of the following as the axiom (P5):

(1) There are at least a straight line and a point exterior to it in this space for which
any line that passes through the point intersect the initial line.

(2) There are at least a straight line and a point exterior to it in this space for which
only one line passes through the point and does not intersect the initial line.

(3) There are at least a straight line and a point exterior to it in this space for which
only a f'nite number of lines I\, I, - - -, Iy, k > 2 pass through the point and do not intersect
the initial line.

(4) There are at least a straight line and a point exterior to it in this space for which
an inf nite number of lines pass through the point (but not all of them) and do not intersect
the initial line.

(5) There are at least a straight line and a point exterior to it in this space for which

any line that passes through the point and does not intersect the initial line.
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Non-Geometry. The non-geometry is a geometry by denial some axioms of (41) —
(A5), such as:

(A17) It is not always possible to draw a line from an arbitrary point to another
arbitrary point.

(A27) It is not always possible to extend by continuity a f nite line to an inf nite line.

(437) It is not always possible to draw a circle from an arbitrary point and of an
arbitrary interval.

(A47) Not all the right angles are congruent.

(A57) If a line, cutting two other lines, forms the interior angles of the same side of
it strictly less than two right angle, then not always the two lines extended towards inf nite

cut each other in the side where the angles are strictly less than two right angle.

Counter-Projective Geometry. Denoted by P the point set, L the line set and R
a relation included in P X L. A counter-projective geometry is a geometry with these

counter-axioms (C;) — (C3):

(C1) there exist: either at least two lines, or no line, that contains two given distinct
points.

(C2) let p1, pa, p3 be three non-collinear points, and q, q, two distinct points. Sup-
pose that {pi.q1, p3} and {p>, q2, p3} are collinear triples. Then the line containing p, p,
and the line containing q1, q> do not intersect.

(C3) every line contains at most two distinct points.

Anti-Geometry. A geometry by denial some axioms of the Hilbert’s 21 axioms of

Euclidean geometry. As shown in [KuA1], there are at least 22! — 1 such anti-geometries.

In general, a Smarandache geometry is def ned as follows.

Def nition 6.1.1 An axiom is said to be Smarandachely denied if the axiom behaves in
at least two different ways within the same space, i.e., validated and invalided, or only
invalided but in multiple distinct ways.

A Smarandache geometry is a geometry which has at least one Smarandachely de-
nied axiom (1969).

In the Smarandache geometry, points, lines, planes, spaces, triangles, - - -, etc are
called s-points, s-lines, s-planes, s-spaces, s-triangles, - - -, respectively in order to distin-

guish them from classical geometries.
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An example of Smarandache geometry in the classical geometrical sense is shown

in the following.

Example 6.1.1 Let us consider a Euclidean plane R? and three non-collinear points 4, B
and C. Defne s-points as all usual Euclidean points on R? and s-lines any Euclidean line
that passes through one and only one of points 4, B and C. Then such a geometry is a

Smarandache geometry by the following observations.

Observation 1. The axiom (E1) that through any two distinct points there exist
one line passing through them is now replaced by: one s-line and no s-line. Notice that
through any two distinct s-points D, E collinear with one of 4, B and C, there is one
s-line passing through them and through any two distinct s-points F, G lying on AB or
non-collinear with one of 4, B and C, there is no s-line passing through them such as

those shown in Fig.9.1.1(a).

Observation 2. The axiom (ES5) that through a point exterior to a given line there is
only one parallel passing through it is now replaced by two statements: one parallel and
no parallel. Let L be an s-line passes through C and is parallel in the Euclidean sense to
AB. Notice that through any s-point not lying on 4B there is one s-line parallel to L and
through any other s-point lying on 4B there is no s-lines parallel to L such as those shown
in Fig.9.1.1(b).

(@) (b)
Fig.6.1.1

6.1.3 Smarandache Manifold. A Smarandache manifold is an n-dimensional mani-
fold that support a Smarandache geometry. For n = 2, a nice model for Smarandache

geometries called s-manifolds was found by Iseri in [Isel]-[Ise2] def ned as follows:

An s-manifold is any collection C(T, n) of these equilateral triangular disks T;, 1 <

i < n satisfying the following conditions:
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(i) each edge e is the identif cation of at most two edges e;, e; in two distinct trian-
gular disks T;, T;,1 <i,j <nandi# j;

(if) each vertex v is the identif cation of one vertex in each of f ve, six or seven distinct
triangular disks.

The vertices are classif ed by the number of the disks around them. A vertex around
fve, six or seven triangular disks is called an elliptic vertex, a Euclidean vertex or a
hyperbolic vertex, respectively.

In the plane, an elliptic vertex O, a Euclidean vertex P and a hyperbolic vertex Q and
an s-line L, L, or L3 passes through points O, P or Q are shown in Fig.6.1.2(a), (b), (¢),

respectively.

A A —

VAVANIRVAV-SEAe
ST XN

L, 2

(a) (b) (©
Fig.6.1.2

Smarandache paradoxist geometries and non-geometries can be realized by s-manifolds,
but other Smarandache geometries can be only partly realized by this kind of manifolds.
Readers are inferred to Iseri’s book [Isel] for those geometries.

An s-manifold is called closed if each edge is shared exactly by two triangular disks.
An elementary classif cation for closed s-manifolds by planar triangulation were intro-
duced in [Mao10]. They are classif ed into 7 classes. Each of those classes is defned in

the following.

Classical Type:

(1) Ay = {5 — regular planar triangular maps} (elliptic);
(2) A, = {6 — regular planar triangular maps}(euclidean);
(3) A; = {7 — regular planar triangular maps}(hyperbolic).
Smarandache Type:

(4) A4 = {planar triangular maps with vertex valency 5 and 6} (euclid-elliptic);
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(5) As = {planar triangular maps with vertex valency 5 and 7} (elliptic-hyperbolic);
(6) A¢ = {planar triangular maps with vertex valency 6 and 7} (euclid-hyperbolic);

(7) A7 = {planar triangular maps with vertex valency 5, 6 and 7} (mixed).

It is proved in [Maol0] that |A;| = 2, |As| > 2 and |A;,i = 2,3,4,6,7 are inf nite
(See also [Mao37] for details). Iseri proposed a question in [Isel]: Do the other closed
2-manifolds correspond to s-manifolds with only hyperbolic vertices? Since there are

inf nite Hurwitz maps, i.e., |A;| is inf nite, the answer is affirmative.

§6.2 MAP GEOMETRY WITHOUT BOUNDARY

6.2.1 Map Geometry Without Boundary. A combinatorial map M can be also used
for a model of constructing Smarandache geometry. By a geometrical view, this model
is a generalizations of Isier’s model for Smarandache geometry. For a given map on a
locally orientable surface, map geometries without boundary are def ned in the following

def nition.

Def nition 6.2.1 For a combinatorial4map M with each vertex valency> 3, associates

a real number u(u),0 < u(u) < % to each vertex u,u € V(M). Call (M,u) a
PuU

map geometry without boundary, u(u) an angle factor of the vertex u and orientablle or

non-orientable if M is orientable or not.

A vertex u € V(M) with p(u)u(u) < 2, = 2 or > 27 can be realized in a Euclidean

space R?, such as those shown in Fig.6.2.1, respectively.

pu(uu(u) < 2r pu(wp(u) = 2n pu(u)u(u) > 2m

Fig.6.2.1

As we have pointed out in Section 6.1, this kind of realization is not a surface, but
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it is homeomorphic to a locally orientable surface by a view of topological equivalence.
Similar to s-manifolds, we also classify points in a map geometry (M, u) without boundary

into elliptic points, Euclidean points and hyperbolic points, def ned in the next def nition.

Def nition 6.2.2 A point u in a map geometry (M, u) is said to be elliptic, Euclidean or
hyperbolic if py(u)u(u) < 27, pa(u)u(u) = 21 or pp(u)u(u) > 2.

Then we get the following results.

Theorem 6.2.1 Let M be a map with py(v) > 3 for Vv € V(M). Then for Yu € V(M),
there is a map geometry (M, u) without boundary such that u is elliptic, Euclidean or

hyperbolic.

Proof Since py(u) > 3, we can choose an angle factor p(u) such that p(u)p(u) < 2m,
u(u)pr(u) = 2m or p(u)py(u) > 2. Notice that

- 2 - A
pu(u) PM(”)'

4r
pu(w)
Theorem 6.2.2 Let M be a map of order> 3 and py(v) > 3 for Vv € V(M), Then

there exists a map geometry (M, u) without boundary in which elliptic, Euclidean and

O

Thereby we can always choose u(u) satisfying that 0 < u(u) <

hyperbolic points appear simultaneously.

Proof According to Theorem 6.2.1, we can always choose an angle factor u such
that a vertex u, u € V(M) to be elliptic, or Euclidean, or hyperbolic. Since |V (M)| > 3, we
can even choose the angle factor u such that any two different vertices v, w € V(M)\{u} to
be elliptic, or Euclidean, or hyperbolic as we wish. Then the map geometry (M, i) makes
the assertion hold. U

A geodesic in a manifold is a curve as straight as possible. Applying conceptions
such as angles and straight lines in a Euclid geometry, we def ne s-lines and s-points in a

map geometry in the next def nition.

Def nition 6.2.3 Let (M, u) be a map geometry without boundary and let S(M) be the
locally orientable surface represented by a plane polygon on which M is embedded. A
point P on S(M) is called an s-point. A line L on S(M) is called an s-line if it is straight

pu(Mu(v)

in each face of M and each angle on L has measure when it passes through a

vertex v on M.
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Two examples for s-lines on the torus are shown in the Fig.6.2.2(a) and (b), where
M = M(By), u(u) = g for the vertex u in (a) and

135 — arctan(2)
360

for the vertex u in (b), i.e., u is Euclidean in (a) but elliptic in (b). Notice that in (), the

p(u) =

s-line L, is self-intersected.

Fig.6.2.2

If an s-line passes through an elliptic point or a hyperbolic point u, it must has an

angle HGPu() with the entering line, not 180° which are explained in Fig.6.2.3.

(04
L] L2 @
u u

(a) (b)
Fig.6.2.3

6.2.2 Paradoxist Map Geometry. In the Euclid geometry, a right angle is an angle with
measure z, half of a straight angle and parallel lines are straight lines never intersecting.
They are very important research objects. Many theorems characterize properties of them
in classical Euclid geometry. Similarly, in a map geometry, we can also def ne a straight

angle, a right angle and parallel s-lines by Def nition 6.2.2. Now a straight angle is an
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angle with measure « for points not being vertices of M and ,%),u(u) for Yu € V(M).
A right angle is an angle with a half measure of a straight angle. Two s-lines are said
parallel if they are never intersecting. The following result asserts that there exists map

paradoxist geometry without boundary.

Theorem 6.2.3 Let M be a map on a locally orientable surface with |M| > 3 and p,(u) >

3 for Yu € V(M). Then there exists an angle factor u : V(M) — [0, 4r) such that (M, p)
is a Smarandache geometry by denial the axiom (ES5) with axioms (E5),(L5) and (RS).

Proof By the assumption p,,(1) > 3, we can always choose an angle factor u such
that u(u)pr(u) < 2, u(v)pp(u) = 2 or u(w)py(u) > 2x for three vertices u, v, w € V(M),
i.e., there elliptic, or Euclidean, or hyperbolic points exist in (M, i) simultaneously. The

proof is divided into three cases.

Case 1. M is a planar map.

Choose L being a line under the map M, not intersection with it, u € (M, ). Then if u
is Euclidean, there is one and only one line passing through u not intersecting with L, and
if u is elliptic, there are inf nite many lines passing through u not intersecting with L, but
if u is hyperbolic, then each line passing through u will intersect with L. See for example,
Fig.6.2.4 in where the planar graph is a complete graph K4 on a sphere and points 1, 2 are
elliptic, 3 is Euclidean but the point 4 is hyperbolic. Then all lines in the feld 4 do not
intersect with L, but each line passing through the point 4 will intersect with the line L.
Therefore, (M, ) is a Smarandache geometry by denial the axiom (ES5) with these axioms
(ES), (L5) and (RS).
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Case 2. M is an orientable map.

According to the classifying theorem of surfaces, We only need to prove this asser-
tion on a torus. In this case, lines on a torus has the following property (see [NiS1] for
details):

if the slope ¢ of a line L is a rational number, then L is a closed line on the torus.
Otherwise, L is inf nite, and moreover L passes arbitrarily close to every point on the

torus.

Whence, if L, is a line on a torus with an irrational slope not passing through an elliptic
or a hyperbolic point, then for any point u exterior to L, if # is a Euclidean point, then
there is only one line passing through u not intersecting with L;, and if u is elliptic or
hyperbolic, any s-line passing through « will intersect with L.

Now let L, be a line on the torus with a rational slope not passing through an elliptic
or a hyperbolic point, such as the the line L, shown in Fig.6.2.5, in where v is a Euclidean
point. If u is a Euclidean point, then each line L passing through u with rational slope in
the area 4 will not intersect with L,, but each line passing through u with irrational slope

in the area 4 will intersect with L,.

Fig.6.2.5

Therefore, (M, 1) is a Smarandache geometry by denial the axiom (E5) with axioms
(ES), (L5) and (RY) in the orientable case.

Case 3. M is a non-orientable map.

Similar to Case 2, we only need to prove this result for the projective plane. A line
in a projective plane is shown in Fig.6.2.6(a), (b) or (c), in where case (a) is a line passing

through a Euclidean point, (b) passing through an elliptic point and (c) passing through a
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hyperbolic point.
2 1 2
» 1 2
(b) (©)

Fig.6.2.6

Let L be a line passing through the center of the circle. Then if u is a Euclidean point,
there is only one line passing through u such as the case (@) in Fig.6.2.7. If v is an elliptic
point then there is an s-line passing through it and intersecting with L such as the case (b)
in Fig.6.2.7. We assume the point 1 is a point such that there exists a line passing through

1 and 0, then any line in the shade of Fig.6.2.7(b) passing through v will intersect with L.

2 ) 1
2
u ? g 2
0 L 0 0 L 0
L v L
1 2 2 %
(a) (b) (©)
Fig.6.2.7

If w is a Euclidean point and there is a line passing through it not intersecting with L
such as the case (¢) in Fig.6.2.7, then any line in the shade of Fig.6.2.7(c) passing through
w will not intersect with L. Since the position of the vertices of a map M on a projective
plane can be choose as our wish, we know (M, i) is a Smarandache geometry by denial
the axiom (E5) with axioms (E5),(L5) and (RS).

Combining discussions of Cases 1,2 and 3, the proof is complete. O

6.2.3 Map Non-Geometry. Similar to those of Iseri’s s-manifolds, there are non-
geometry, anti-geometry and counter-projective geometry, - - - in map geometry without

boundary.

Theorem 6.2.4 There exists a non-geometry in map geometries without boundary.
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Proof We prove there are map geometries without boundary satisfying axioms (4;)—

(45). Let (M, ) be such a map geometry with elliptic or hyperbolic points.

(1) Assume u is a Euclidean point and v is an elliptic or hyperbolic point on (M, u).
Let L be an s-line passing through points # and v in a Euclid plane. Choose a point w in L
after but nearly enough to v when we travel on L from u to v. Then there does not exist a
line from u to w in the map geometry (M, u) since v is an elliptic or hyperbolic point. So
the axiom (47) is true in (M, ).

(2) In a map geometry (M, u), an s-line maybe closed such as we have illustrated
in the proof of Theorem 6.2.3. Choose any two points A4, B on a closed s-line L in a map
geometry. Then the s-line between 4 and B can not continuously extend to indef nite in
(M, r). Whence the axiom (45) is true in (M, p).

(3) An m-circle in a map geometry is defned to be a set of continuous points in
which all points have a given distance to a given point. Let C be a m-circle in a Euclid
plane. Choose an elliptic or a hyperbolic point 4 on C which enables us to get a map
geometry (M, ). Then C has a gap in 4 by def nition of an elliptic or hyperbolic point.
So the axiom (47) is true in a map geometry without boundary.

(4) By the defnition of a right angle, we know that a right angle on an elliptic point
can not equal to a right angle on a hyperbolic point. So the axiom (4;) is held in a map
geometry with elliptic or hyperbolic points.

(5) The axiom (45) is true by Theorem 6.2.3.

Combining these discussions of (i)-(v), we know that there are non-geometries in

map geometries. This completes the proof. 0

6.2.4 Map Anti-Geometry. The Hilbert’s axiom system for a Euclid plane geometry
consists fve group axioms stated in the following, where we denote each group by a

capital Roman numeral.

I. Incidence

I — 1. For every two points A and B, there exists a line L that contains each of the
points A and B.

1 —2. For every two points A and B, there exists no more than one line that contains
each of the points A and B.

I — 3. There are at least two points on a line. There are at least three points not on

a line.
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II. Betweenness

Il — 1. If a point B lies between points A and C, then the points A, B and C are
distinct points of a line, and B also lies between C and A.

1l — 2. For two points A and C, there always exists at least one point B on the line
AC such that C lies between A and B.

11 - 3. Of any three points on a line, there exists no more than one that lies between
the other two.

1l — 4. Let A, B and C be three points that do not lie on a line, and let L be a line
which does not meet any of the points A, B and C. If the line L passes through a point of
the segment AB, it also passes through a point of the segment AC, or through a point of
the segment BC.

ITI. Congruence

1II — 1. If A\ and B, are two points on a line Ly, and A, is a point on a line L, then
it is always possible to f'nd a point B, on a given side of the line L, through A, such that
the segment A1 B, is congruent to the segment A, B,.

111 - 2. If a segment A\ B, and a segment A, B, are congruent to the segment AB,
then the segment A, B, is also congruent to the segment A, B.

I1II — 3. On the line L, let AB and BC be two segments which except for B have no
point in common. Furthermore, on the same or on another line L, let A1B, and B,C, be
two segments, which except for By also have no point in common. In that case, if AB is
congruent to A\ By and BC is congruent to B1C,, then AC is congruent to A,C}.

I1II — 4. Every angle can be copied on a given side of a given ray in a uniquely
determined way.

1l — 5 If for two triangles ABC and A,B,C,, AB is congruent to A\B;, AC is
congruent to A\Cy and Z/BAC is congruent to /B1A,C,, then ZABC is congruent to
ZA\B,C,.

IV. Parallels

1V — 1. There is at most one line passes through a point P exterior a line L that is

parallel to L.
V. Continuity
V' — 1(Archimedes) Let AB and CD be two line segments with |AB| > |CD|. Then
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there is an integer m such that

m|CD| < |4B| < (m + 1)|CD).

V' —2(Cantor) Let 4By, A2B,,---,A4,B,, - be a segment sequence on a line L. If

A\Bi2A4,B,2---24,B,2 -,

then there exists a common point X on each line segment A, B,, for any integer n,n > 1.

Smarandache def ned an anti-geometry by denial some axioms in Hilbert axiom sys-
tem for Euclid geometry. Similar to the discussion in the reference [Isel], We obtain the

following result for anti-geometry in map geometry without boundary.

Theorem 6.2.5 Unless axioms -3, [ -3, [I] -2, V-1 and V -2, an anti-geometry can
be gotten from map geometry without boundary by denial other axioms in Hilbert axiom

system.

Proof The axiom / — 1 has been denied in the proof of Theorem 6.2.4. Since there
maybe exists more than one line passing through two points 4 and B in a map geometry
with elliptic or hyperbolic points u such as those shown in Fig.6.2.8. So the axiom /7 — 2

can be Smarandachely denied.

Fig.6.2.8

Notice that an s-line maybe has self-intersection points in a map geometry without
boundary. So the axiom /7 — 1 can be denied. By the proof of Theorem 6.2.4, we know
that for two points 4 and B, an s-line passing through 4 and B may not exist. Whence,
the axiom /7 — 2 can be denied. For the axiom /7 — 4, see Fig.6.2.9, in where v is a

non-Euclidean point such that p,,(v)u(v) > 2(7r + ZACB) in a map geometry.
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Fig.6.2.9

So II — 4 can be also denied. Notice that an s-line maybe has self-intersection points.
There are maybe more than one s-lines passing through two given points A4, B. Therefore,
the axioms /// — 1 and /1] — 3 are deniable. For denial the axiom /1] — 4, since an elliptic
w < m, i.e., there is a limitation

pu(w)u(u)

point u can be measured at most by a number

for an elliptic point u. Whence, an angle with measure bigger than can not be

copied on an elliptic point on a given ray.

Because there are maybe more than one s-lines passing through two given points A
and B in a map geometry without boundary, the axiom /// — 5 can be Smarandachely

denied in general such as those shown in Fig.6.2.10(a) and (b) where u is an elliptic point.

B B
R c AT
(a) (b)
Fig.6.2.10

For the parallel axiom /7 — 1, it has been denied by the proofs of Theorems 6.2.3
and 6.2.4.

Notice that axioms / — 3, /] —3 [I] —2, V — 1 and V' — 2 can not be denied in a map
geometry without boundary. This completes the proof. 0J

6.2.5 Counter-Projective Map Geometry. For counter-projective geometry, we know

a result following.
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Theorem 6.2.6 Unless the axiom (C3), a counter-projective geometry can be gotten from

map geometry without boundary by denial axioms (C1) and (C2).

Proof Notice that axioms (C1) and (C2) have been denied in the proof of Theorem
6.2.5. Since a map is embedded on a locally orientable surface, every s-line in a map
geometry without boundary may contains inf nite points. Therefore the axiom (C3) can

not be Smarandachely denied. U

§6.3 MAP GEOMETRY WITH BOUNDARY

6.3.1 Map Geometry With Boundary. A Poincaré’s model for a hyperbolic geometry
is an upper half-plane in which lines are upper half-circles with center on the x-axis or

upper straight lines perpendicular to the x-axis such as those shown in Fig.6.3.1.

L L,

L;

Fig.6.3.2

If we think that all inf nite points are the same, then a Poincaré’s model for a hyperbolic
geometry is turned to a Klein model for a hyperbolic geometry which uses a boundary

circle and lines are straight line segment in this circle, such as those shown in Fig.6.3.2.
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By a combinatorial map view, a Klein’s model is nothing but a one face map geometry.
This fact hints one to introduce map geometries with boundary def ned in the following

def nition.

Def nition 6.3.1 For a map geometry (M, u) without boundary and faces f, f2,- -, fi

€ FIM),1 <1< ¢(M)—1,if S(M)\ {fi, fr. -+, fi} is connected, then call (M,u)™" =
SMN\ALLf, fose s 1} 1) a map geometry with boundary fi, f>,- - -, fi and orientable or

not if (M, p) is orientable or not, where S (M) denotes the locally orientable surface on

which M is embedded.

3 1

Fig.6.3.4

Fig.6.3.5

These s-points and s-lines in a map geometry (M, i)~ are defned as same as Def-
inition 3.2.3 by adding an s-line terminated at the boundary of this map geometry. Two
m~-lines on the torus and projective plane are shown in these Fig.6.3.4 and Fig.6.3.5,

where the shade f eld denotes the boundary.

6.3.2 Smarandachely Map Geometry With Boundary. Indeed, there exists Smaran-

dache geometry in map geometry with boundary convinced by results following.

Theorem 6.3.1 For a map M on a locally orientable surface with order> 3, vertex
valency> 3 and a face f € F(M), there is an angle factor p such that (M,u)™" is a
Smarandache geometry by denial the axiom (A5) with these axioms (A5),(L5) and (R5).

Proof Similar to the proof of Theorem 6.2.3, we consider a map M being a planar
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map, an orientable map on a torus or a non-orientable map on a projective plane, respec-
tively. We can get the assertion. In fact, by applying the property that s-lines in a map
geometry with boundary are terminated at the boundary, we can get an more simpler proof

for this theorem. 0

/
AN

(a) (b)

(d) (e)

Fig.6.3.6

Notice that a one face map geometry (M, u)~! with boundary is just a Klein’s model
for hyperbolic geometry if we choose all points being Euclidean. Similar to that of map
geometry without boundary, we can also get non-geometry, anti-geometry and counter-

projective geometry from that of map geometry with boundary following.

Theorem 6.3.2 There are non-geometries in map geometries with boundary.

Proof The proofis similar to the proof of Theorem 6.2.4 for map geometries without
boundary. Each of axioms (47) — (45) is hold, for example, cases (a) — (e) in Fig.6.3.6, in
where there are no an s-line from points 4 to B in (@), the line AB can not be continuously
extended to indef nite in (b), the circle has gap in (c), a right angle at a Euclidean point
v is not equal to a right angle at an elliptic point u in (d) and there are inf nite s-lines

passing through a point P not intersecting with the s-line L in (e¢). Whence, there are
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non-geometries in map geometries with boundary. UJ

Theorem 6.3.3 Unless axioms [ =3, [[ -3 [I1]1 -2, V-1 and V —2 in the Hilbert’s axiom
system for a Euclid geometry, an anti-geometry can be gotten from map geometries with

boundary by denial other axioms in this axiom system.

Theorem 6.3.4 Unless the axiom (C3), a counter-projective geometry can be gotten from

map geometries with boundary by denial axioms (C1) and (C2).

Proof The proofs of Theorems 6.3.3 and 6.3.4 are similar to the proofs of Theorems
6.2.5 and 6.2.6. The reader can easily completes the proof. 0

§6.4 CURVATURE EQUATIONS ON MAP GEOMETRY

6.4.1 Curvature on s-Line. Let (M, u) be a map geometry with or without boundary.
All points of elliptic or hyperbolic types in (M, u) are called non-Euclidean points. Now
let L be an s-line on (M, u) with non-Euclisedn points Ay, 4,, - - -, A, for an integer n > 0.
Its curvature R(L) is def ned by

R(L) = ) (m~ p(4).
i=1

An s-line L is called Euclidean or non-Euclidean if R(L) = £2r or # £2nx. Then following

result characterizes s-lines on (M, u).

Theorem 6.4.1 An s-line without self-intersections is closed if and only if'it is Euclidean.

Proof Let L be a closed s-line without self-intersections on (M, i) with vertices
Ay, Ay, -+, A4,. From the Euclid geometry on plane, we know that the angle sum of an
n-polygon is (n — 2)m. Whence, the curvature R(L) of s-line L is +2x by def nition, i.e., L
is Euclidean.

Now if an s-line L is Euclidean, then R(L) = +2xr by defnition. Thus there exist

non-Euclidean points By, B, - - -, B, such that
27— u(B)) = £2m.
i=1

Whence, L is nothing but an n-polygon with vertices By, B,, - - -, B, on R, Therefore, L

1s closed without self-intersection. O
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Furthermore, we fnd conditions for an s-line to be that of regular polygon on R?

following.

Corollary 6.4.1 An s-line without self-intersection passing through non-Euclidean points

Ay, Az, -+, Ay is a regular polygon if and only if all points Ay, A,, - - -, A, are elliptic with
2
u(4;) = (1 - —)ﬂ
n

orall Ay, A,,-- -, A, are hyperbolic with

2
u(A;) = (1 + —)ﬂ
n
for integers 1 <i < n.

Proof If an s-line L without self-intersection passing through non-Euclidean points
Ay, Ay, - -+, A, 1s a regular polygon, then all points 4, 4,, - - -, 4, must be elliptic (hyper-

bolic) and calculation easily shows that

u(4;) = (1 - %)7( or u(4;) = (1 + z)n
n n

for integers 1 < i < n by Theorem 9.3.5. On the other hand, if L is an s-line passing

through elliptic (hyperbolic) points 41, 4,, - - -, 4, with
2 2
u(4;) = (1 - —)7‘( or u(4;) = (1 + —)n
n n

for integers 1 < i < n, then it is closed by Theorem 9.3.5. Clearly, L is a regular polygon
with vertices A, 4>, -+, A,. U

6.4.2 Curvature Equation on Map Geometry. A map M = (Z,5, &) is called
Smarandachely if all of its vertices are elliptic (hyperbolic). Notice that these pendent ver-
tices is not important because it can be always Euclidean or non-Euclidean. We concen-
trate our attention to non-separated maps. Such maps always exist circuit-decompositions.

The following result characterizes Smarandachely maps.

Theorem 6.4.2 A non-separated planar map M is Smarandachely if and only if there

exist a directed circuit-decomposition

E\(M) = @E(E)
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of M such that one of the linear systems of equations

Z (m—x,)=2n, 1<i<s
VEV(?,')

or
Z (m—x,)=-2m, 1<i<s
veV(?,-)

is solvable, where E 1 (M) denotes the set of semi-arcs of M.

Proof 1f M is Smarandachely, then each vertex v € V(M) is non-Euclidean, i.e.,

u(v) # m. Whence, there exists a directed circuit-decomposition

E\(M) = @E(a)

of semi-arcs in M such that each of them is an s-line in (R?, ). Applying Theorem 9.3.5,
we know that

D, @-pN=2mor ) (-u(v)=-2n

for each circuit C;, 1 <i < s. Thus one of the linear systems of equations

Z(n—xv):27r, 1<i<s or Z(ﬂ—xv):—br, 1<i<s
veV@i) veV@i)

1s solvable.

Conversely, if one of the linear systems of equations

Z (m—x,)=2m, 1<i<s or Z (m—x,)=-2m, 1<i<s
VEV@,‘) VEV(?I')
is solvable, def ne a mapping u : R* — [0, 47) by

() = x, ifx=veV(M),
R I S 0.7))

Then M is a Smarandachely map on (Rz, ,u). This completes the proof. 0

In Fig.6.4.1, we present an example of a Smarandachely planar maps with u def ned

by numbers on vertices.
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T
2 2 2

n T

2 T 2

2
u i l
2 2 2
Fig.6.4.1

Let wy € (0, ). An s-line L is called non-Euclidean of type wy if R(L) = £21 + wy.

Similar to Theorem 6.4.1, we can get the following result.

Theorem 6.4.2 A non-separated map M is Smarandachely if and only if there exist a
directed circuit-decomposition E 1 (M) = PE (? i) of M into s-lines of type wy, wy €
i=1

(0, ) for integers 1 < i < s such that the linear systems of equations

Z (m—x,) =2n—wy, 1<i<s;

[C)

or Z (m—x,)=-2n—wy, 1<i<s;
veV@i)

or Z (m—x,)=2n4+wy, 1 <i<s;
veV@i)

or Z (m—x,)="2m+wy, 1<i<s

[C)

is solvable.

§6.5 THE ENUMERATION OF MAP GEOMETRIES

6.5.1 Isomorphic Map Geometry. For classifying map geometries, the following def -

nition on isomorphic map geometries is needed.
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Def nition 6.5.1 Two map geometries (M, 1) and (M, 1) or (M, 1)~ and (M, )™
are said to be equivalent each other if there is a bijection 0 : My — M, such that for
Yu € V(M), 6(u) is euclidean, elliptic or hyperbolic if and only if u is euclidean, elliptic
or hyperbolic.

6.5.2 Enumerating Map Geometries. A relation for the numbers of non-equivalent

map geometries with that of unrooted maps is established in the following.

Theorem 6.5.1 Let M be a set of non-isomorphic maps of order n and with m faces.
Then the number of map geometries without boundary is 3"| M| and the number of map

geometries with one face being its boundary is 3"m|M|.

Proof By the def nition of equivalent map geometries, for a given map M € M, there
are 3” map geometries without boundary and 3”m map geometries with one face being its
boundary by Theorem 6.3.1. Whence, we get 3”| M| map geometries without boundary

and 3"m| M| map geometries with one face being its boundary from M. OJ

We get an enumeration result for non-equivalent map geometries without boundary

following.

Theorem 6.5.2 The numbers n°(T, g) and n™ (T, g) of non-equivalent orientable and non-
orientable map geometries without boundary underlying a simple graph U by denial the
axiom (A5) by (45), (L5) or (R5) are

3 TT (p(v) = D!
and
"0 = D3 TT (p(v) = 1!
n'(T,g) = 2|/;Vt(rr|) ’

where B(I') = &(I') — v(I') + 1 is the Betti number of the graphT.

Proof Denote the set of non-isomorphic maps underlying the graph I" on locally
orientable surfaces by M(I') and the set of embeddings of the graph I" on locally orientable

|M]
surfaces by &(I'). For a map M, M € M(I), there are
|AutM|

without boundary by choice the angle factor 4 on a vertex u such that u is Euclidean,

different map geometries

elliptic or hyperbolic. From permutation groups, we know that

|[Autl’ X ()| = |(Autr)M||MAutF><<a>| — |AutM||MAmFX<“>|,
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Therefore, we get that
3IM]
v |Aut M|
3ir |Autl’ X (@) |
|[Autl” X (@) | |AutM|

3|F| Autl'x{@)
utl X<
= ), MM

|[Autl” X () |

n°(T, g)

MeM(T)

MeM()
_ &0
B |Autr><<a>|| Dl

3 TT (p(v) = D!

veV()
2|Autl’|

Similarly, we can also get that

0y
[Autl' x (@) |
@0 =13 TT (p(v) = D!

vel/(T)
2|Autl|

This completes the proof. [

n"(T, g) EX(I)|

By classifying map geometries with boundary, we get a result in the following.

Theorem 6.5.3 The numbers n°([T, —g), (T, —g) of non-equivalent orientable, non-

orientable map geometries with one face being its boundary underlying a simple graph T’
by denial the axiom (A5) by (45), (L5) or (R5) are respectively

0 _ 3 2d(g[I'](x))
n(l,~g) = 5 | B0 + 1)!?[@@@) L
and
(20 -1)3" 2d(g[T)(x)
N _ 11—
i —g) = e | B + l)vl;lm (o(v) = Dl = ===

where g[I'](x) is the genus polynomial of the graph T, i.e., g[['](x) = ymz(:r) [ C]x* with

k=y(T')

2’| being the number of embeddings of T on the orientable surface of genus k.
Proof Notice that v(M) — (M) + ¢(M) = 2 — 2g(M) for an orientable map M by the

Euler-Poincare formula. Similar to the proof of Theorem 3.4.2 with the same meaning for
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M(T), we know that

P(M)3M
n’(C,-g) = —
MEZM(D |Aut M|
3 Z (2 + &) — () — 2g(M))3 ™
B Wt |AutM|

_ Z (2 + &) — w(I))3M B Z 2g(M)3M

MeM(T) [AutM]| MeM(T) |AutM|

2+ &) —w(I))3M Z |Autl X (@) |
B Autl x(a)| | L4 |AutM]

23 5 g(M)|Autl x (@) |
IAutl X (a) | |AutM]|

@)+ 1)3M Autlx(e)
AUt x (@) %(FNM |

[T

|AutT]

MeM(T)

Z (M) MAutFx(a)l

MeM(T)

(B() + 1)31M 3n 7%

e A _1 l_
2/Autl]| v!:[(r)(p(v) ) = A

oy
k=y(T')
3 _ 2d(g[T(x)

= Saum (B(r)+1>vl:[m(p(v>—1)! e |

by Theorem 6.5.1.

Notice that n*(I', —g) = n°(T, —g) + n™(I', —g) and the number of re-embeddings an
orientable map M on surfaces is 2™ (See also [Mao10] or [Mao34] for details). We
know that

Z 28M) 5 3IMIg( M)
MR |AutM|

= 20T, —g).

nL(F’ -8 )

Whence, we get that

WNT—g) = @ - 0T, —g)
(2200 1) 3" 2d(g[T')(x))
= " gawr [FOFD [ [ o0 -nt- ==,

ve V()

This completes the proof. 0
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§6.6 RESEARCH PROBLEMS

6.6.1 A complete Hilbert axiom system for a Euclid geometry contains axioms / —i, 1 <
i< IH-j1<j<4 1l -k1<k<51IV-1landV -1 1 <1< 2,which can be also
applied to the geometry of space. Unless / —i,4 < i < 8, other axioms are presented in

Section 6.2. Each of axioms / —i,4 < i < 8 is described in the following.

I — 4 For three non-collinear points A, B and C, there is one and only one plane

passing through them.

I —5 Each plane has at least one point.

I — 6 Iftwo points A and B of a line L are in a plane ), then every point of L is in
the plane }.

I —7 If two planes },, and },, have a common point A, then they have another
common point B.

1 — 8 There are at least four points not in one plane.

By the Hilbert’s axiom system, the following result for parallel planes can be ob-

tained.

(T) Passing through a given point A exterior to a given plane ), there is one and

only one plane parallel to ).

This result seems like the Euclid’s f fth axiom. Similar to the Smarandache’s notion,

we present problems by denial this result for geometry of space following.

Problem 6.6.1 Construct a geometry of space by denial the parallel theorem of planes
with

(T}) there are at least a plane }, and a point A exterior to the plane }, such that no
parallel plane to ), passing through the point A.

(Ty) there are at least a plane Y, and a point A exterior to the plane Y, such that
there are fnite parallel planes to ), passing through the point A.

(T3) there are at least a plane ), and a point A exterior to the plane ), such that
there are inf nite parallel planes to ) passing through the point A.

Problem 6.6.2 Similar to that of Iseri’s idea, def ne points of elliptic, Euclidean, or hyper-
bolic type in R® and apply these Plato polyhedrons to construct Smarandache geometry
of space R>.
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Problem 6.6.3 Similar to that of map geometry and apply graphs in R® to construct

Smarandache geometry of space R>.

Problem 6.6.4 For an integer n,n > 4, def ne Smarandache geometry in R" by denial

some axioms for an Euclid geometry in R" and construct them.

6.6.2 The terminology of map geometry was f rst appeared in [Mao9], which enables one
to fnd non-homogenous spaces from already known homogenous spaces and is also a
typical example for application combinatorial maps to metric geometries. Among them
there are many problems not solved yet until today. Here we would like to describe some
of them.

Problem 6.6.5 For a given graph G, determine non-equivalent map geometries underly-
ing a graph G, particularly, underlying graphs K, or K(m,n), m,n > 4 and enumerate

them.

Problem 6.6.6 For a given locally orientable surface S, determine non-equivalent map

geometries on S, such as a sphere, a torus or a projective plane, - - - and enumerate them.

Problem 6.6.7 Find characteristics for equivalent map geometries or establish new ways

for classifying map geometries.

Problem 6.6.8 Whether can we rebuilt an intrinsic geometry on surfaces, such as a

sphere, a torus or a projective plane, - - -, etc. by map geometry?



CHAPTER 7.

Planar Map Geometry

As we seen, a map geometry (M, u) is nothing but a map M associate vertices
with an angle factor u. This means that there are f nite non-Euclidean points
in map geometry (M, ). However, a map is a graph on surface, i.e., a geomet-
rical graph. We can also generalize the angle factor to edges, i.e., associate
points in edges of map with an angle function and then fnd the behavior of
points, straight lines, polygons and circles, - - -, i.e., fundamental elements in
Euclid geometry on plane. In this case, the situation is more complex since
a point maybe an elliptic, Euclidean or hyperbolic and a polygon maybe an
s-line, - - -, etc.. We introduce such map geometry on plane, discuss points
with a classif cation of edges in Section 7.1, lines with curvature in Section
7.2. The polygons, including the number of sides, internal angle sum, area
and circles on planar map geometry are discussed in Sections 7.3 and 7.4. For
fnding the behavior of s-lines, we introduce line bundles, motivated by the
Euclid’ s f fth postulate and determine their behavior on planar map geometry
in Section 7.5. All of these materials will be used for establishing relations of
an integral curve with a differential equation system in a pseudo-plane geom-
etry and continuous phenomena with that of discrete phenomena in following

chapters.
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§7.1 POINTS IN PLANAR MAP GEOMETRY

7.1.1 Angle Function on Edge. The points in a map geometry are classif ed into three
classes: elliptic, Euclidean and hyperbolic. There are only fnite non-Euclidean points
considered in Chapter 6 because we had only def ned an elliptic, Euclidean or a hyperbolic
point on vertices of map M. In planar map geometry, we can present an even more deli-
cate consideration for Euclidean or non-Euclidean points and f nd inf nite non-Euclidean
points in a plane.

Let (M, i) be a planar map geometry on plane ). Choose vertices u,v € V(M).
A mapping is called an angle function between u and v if there is a smooth monotone

mapping f : Y, — Y such that f(u) = M and f(v) = M Not loss of
generality, we can assume that there is an angle function on each edge in a planar map

geometry. Then we know a result following.

Theorem 7.1.1 A planar map geometry (M, ) has inf nite non-Euclidean points if and
only if there is an edge e = (u,v) € E(M) such that py(u)u(u) # pp(V)u(v), or ppy(u)u(u)
is a constant but # 2n for Yu € V(M), or a loop (u,u) € E(M) attaching a non-Euclidean

point u.

Proof 1f there is an edge e = (u, v) € E(M) such that p,,(u)u(u) # pr(v)u(v), then at
least one of vertices u and v in (M, u) is non-Euclidean. Not loss of generality, we assume
the vertex u is non-Euclidean.

If u and v are elliptic or u is elliptic but v is Euclidean, then by the def nition of angle
functions, the edge (u, v) is correspondent with an angle function f/ : . — }] such that

Su) = M and f(v) = M

is elliptic but v is hyperbolic, i.e., py(u)u(u) < 2w and py,(v)u(v) > 2x, since f is smooth

, each points is non-Euclidean in (u,v) \ {v}. If u

and monotone on (u, v), there is one and only one point x* in (u, v) such that f(x*) = x.
Thereby there are inf nite non-Euclidean points on (u, v).

Similar discussion can be gotten for the cases that u and v are both hyperbolic, or u
is hyperbolic but v is Euclidean, or u is hyperbolic but v is elliptic.

If pp(u)u(u) is a constant but # 27 for Yu € V(M), then each point on an edges is a
non-Euclidean point. Consequently, there are inf nite non-Euclidean points in (M, ).

Now if there is a loop (u, u) € E(M) and u is non-Euclidean, then by def nition, each
point v on the loop (u, u) satisfying that f(v) > or < & according to p(u)u(u) > m or < m.

Therefore there are also inf nite non-Euclidean points on the loop (u, u).
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On the other hand, if there are no an edge e = (u,v) € E(M) such that p,(u)u(u) #
ou(Mu), i.e., py(w)u(u) = py(v)u(v) for ¥(u,v) € E(M), or there are no vertices u €
V(M) such that p(u)u(u) is a constant but # 2z for V, or there are no loops (u,u) €
E(M) with a non-Euclidean point u, then all angle functions on these edges of M are an
constant 1. Therefore there are no non-Euclidean points in the map geometry (M, p). This

completes the proof. U

Characterizing Euclidean points in planar map geometry (M, u), we get the following

result.

Theorem 7.1.2 Let (M, u) be a planar map geometry on plane ). Then

(1) Every point in ), \E(M) is a Euclidean point,
(2) There are inf nite Euclidean points on M if and only if there exists an edge
(u,v) € E(M) (u = v oru # v) such that u and v are both Euclidean.

Proof By the def nition of angle functions, we know that every point is Euclidean if
it is not on M. So the assertion (1) is true.

According to the proof of Theorem 7.1.1, there are only f nite Euclidean points unless
there is an edge (u,v) € E(M) with py(u)u(u) = pp(v)u(v) = 2x. In this case, there are
inf nite Euclidean points on the edge (u, v). Thereby the assertion (2) is also holds. 0

7.1.2 Edge Classif cation. According to Theorems 7.1.1 and 7.1.2, we classify edges in

a planar map geometry (M, u) into six classes.

C. (Euclidean-elliptic edges): edges (u,v) € E(M) with py(u)u(u) = 2r but
pu(u(v) < 2m.
C% (Euclidean-Euclidean edges): edges (u,v) € E(M) with py(u)u(u) = 21 and

pu(u(v) = 2.

C3. (Euclidean-hyperbolic edges): edges (u,v) € E(M) with py(u)u(u) = 27 but
pu(v)u(v) > 2.

C4E (elliptic-elliptic edges): edges (u,v) € E(M) with py(w)u(u) < 2m and py(v)u(v) <
2.

C% (elliptic-hyperbolic edges): edges (u,v) € E(M) with py(u)u(u) < 2r but
pu(V)u(v) > 2.

C% (hyperbolic-hyperbolic edges): edges (u,v) € E(M) with py(w)u(u) > 27 and
pu(V)u(v) > 2.
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In Fig.7.1.1(a)—(f), these s-lines passing through an edge in one of classes of C},-C%,
are shown, where u is elliptic and v is Euclidean in (@), u and v are both Euclidean in (),
u is Euclidean but v is hyperbolic in (c¢), u and v are both elliptic in (d), u is elliptic but v

is hyperbolic in (e) and u and v are both hyperbolic in (f), respectively.

u u u

L —— L ———— L ———
L, ——— Ly ———— Ly ——__
3 v 3 v ’ y
(@) (b) (©)
u u u
L +/ L — Ly T~
L, ——— L, — Ly ———
Ly — Ly — Ly —
3 v 3 ‘;\‘ 3 ‘;\‘
(d) (e) (H)
Fig.7.1.1

Denote by V/(M), V.,(M) and V(M) the respective sets of elliptic, Euclidean and
hyperbolic points in V(M) in a planar map geometry (M, u). Then we get a result as in
the following.

Theorem 7.1.3 Let (M, u) be a planar map geometry. Then

6
DL+ Y e+ D pulw) =2 ) ICH
i=1

ue Ve (M) VeV eu M) we V(M)

and

6
VM| + Ve M| + Vi (M) + $(M) = > 1Cl +2.
i=1

where ¢(M) denotes the number of faces of a map M.
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Proof Notice that

6
V(M) = [Val(M)| + |Veu(M)| + Vi (M)] and [E(M)] = " |C
i=1
for a planar map geometry (M, ). By two well-known results

D7 puv) = 20E(M)| and [V(M)] - [E(M)| + $(M) = 2

VeV (M)

for a planar map M, we know that

6
Z ou(u) + Z ou(v) + Z PM(W):22|C55|
P

u€Ve (M) VeV ey (M) we Vhy(M)

and

6
VM) + Vel M) + Vi (M) + $(M) = ) C| +2. O
i=1

§7.2 LINES IN PLANAR MAP GEOMETRY

The situation of s-lines in a planar map geometry (M, u) is more complex. Here an s-line
maybe open or closed, with or without self-intersections in a plane. We discuss all of

these s-lines and their behaviors in this section, .

7.2.1 Lines in Planar Map Geometry. As we have seen in Chapter 6, s-lines in a planar

map geometry (M, u) can be classif ed into three classes.

C] (opened lines without self-intersections): s-lines in (M, yt) have an inf nite num-
ber of continuous s-points without self-intersections and endpoints and may be extended
indef nitely in both directions.

C? (opened lines with self-intersections): s-lines in (M, ) have an inf nite number
of continuous s-points and self-intersections but without endpoints and may be extended
indef nitely in both directions.

Cz(closed lines): s-lines in (M, i) have an inf nite number of continuous s-points
and will come back to the initial point as we travel along any one of these s-lines starting

at an initial point.
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By this classif cation, a straight line in a Euclid plane is nothing but an opened s-line
without non-Euclidean points. Certainly, s-lines in a planar map geometry (M, i) maybe
contain non-Euclidean points. In Fig.7.2.1, these s-lines shown in (a),(b) and (c) are
opened s-line without self-intersections, opened s-line with a self-intersection and closed

s-line with 4, B, C, D and E non-Euclidean points, respectively.

A
E
A C E B
A\ /
& A D D C
(a) (b) (c)
Fig.7.2.1

Notice that a closed s-line in a planar map geometry maybe also has self-intersections.
A closed s-line is said to be simply closed if it has no self-intersections, such as the s-line

in Fig.7.2.1(c). For simply closed s-lines, we know the following result.

Theorem 7.2.1 Let (M, u) be a planar map geometry. An s-line L in (M, i) passing

through n non-Euclidean points xy, x,, - - - , x,, is simply closed if and only if
DS = -2,
i=1

where f(x;) denotes the angle function value at an s-point x;,1 <i < n.

Proof By results in Euclid geometry of plane, we know that the angle sum of an
n-polygon is (n — 2)x. In a planar map geometry (M, i), a simply closed s-line L passing
through n non-Euclidean points xi, x;, - - -, X,, is nothing but an n-polygon with vertices

X1, X2, +, X,. Whence, we get that
Sy = (-2
i=1
Now if a simply s-line L passing through n non-Euclidean points xy, x,, - - -, X, with

D )= (=2
i=1
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held, then L is nothing but an n-polygon with vertices xi, x5, - - -, x,,. Therefore, L is simply
closed. U

By applying Theorem 7.2.1, we can also f nd conditions for an opened s-line with or

without self-intersections.

Theorem 7.2.2 Let (M, u) be a planar map geometry. An s-line L in (M, u) passing
through n non-Euclidean points xi, x,, - -, X, is opened without self-intersections if and

only if s-line segments x;x;11,1 <i < n— 1 are not intersect two by two and
n
2, /) (=
i=1

Proof By the Euclid’s f fth postulate for a plane geometry, two straight lines will
meet on the side on which the angles less than two right angles if we extend them to
indef nitely. Now for an s-line L in a planar map geometry (M, u), if it is opened without
self-intersections, then for any integer i,1 < i < n — 1, s-line segments x;x;,; will not

intersect two by two and the s-line L will also not intersect before it enters x; or leaves x,,.

X2 X3

Xn—1 Xn-2

Fig.7.2.2

Now look at Fig.7.2.2, in where line segment x;x, is an added auxiliary s-line seg-

ment. We know that
1+ 22 = f(x))and Z3 + Z4 = f(x,).

According to Theorem 7.2.1 and the Euclid’s f fth postulate, we know that

n—1
L2+ 24+ ) f(x)=(n=-2)r
=2
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and
1+23>nm

Therefore, we get that
DSy ==+ L1+ 32 (n- D O
=1

For opened s-lines with self-intersections, we know a result in the following.

Theorem 7.2.3 Let (M,u) be a planar map geometry. An s-line L in (M, u) passing
through n non-Euclidean points xi, x, - - -, x,, is opened only with / self-intersections if
and only if there exist integers i; and s;,, 1 < j < /with 1 <ij,s;; <nandi; # i ift # j
such that

(s;; =2 < Zf(xij+h) < (s;, — Dr.
h=1

Proof 1f an s-line L passing through s-points x,.1, X2, - - -, X.45, Only has one self-

intersection point, let us look at Fig.7.2.3 in where x,.,x.,, 1s an added auxiliary s-line

segment.
Xi+1 Xt+2
P
L X \
xt+st xt+st—1
Fig.7.2.3
We know that

L1+ /2 = f(xp) and 23 + 24 = f(xpsy,).

Similar to the proof of Theorem 7.2.2, by Theorem 7.2.1 and the Euclid’s f fth pos-

tulate, we know that
si—1
/2+ /4 + Z ) = (s = 2)m
J=2

and
1+ /3 < n.
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Whence, we get that

(s, =2 < Zf(xHj) < (s, — Dm.

=

Therefore, if L is opened only with / self-intersection points, we can fnd integers i;
and s;,,1 < j < /with1 <i;,s;; <nandi; # i if ¢ # j such that L passing through
Xi+1> Xij+2, "+ *» Xij+s, ONly has one self-intersection point. By the previous discussion, we

know that

(s, =2)m < Zf(xi,-+h) < (s, — D
h=1

This completes the proof. 0

7.2.2 Curve Curvature. Notice that all s-lines considered in this section are consisted
of line segments or rays in Euclid plane geometry. If the length of each line segment tends
to zero, then we get a curve at the limitation in the usually sense. Whence, an s-line in a

planar map geometry can be also seen as a discretion of plane curve.

Generally, the curvature at a point of a curve C is a measure of how quickly the
tangent vector changes direction with respect to the length of arc, such as those of the
Gauss curvature, the Riemann curvature, - - -, etc.. In Fig.7.2.4 we present a smooth curve

and the changing of tangent vectors.

V2 Ve

Vs

V3 \¢5/ 2

Vi

V4

Fig.7.2.4

To measure the changing of vector v; to v,, a simpler way is by the changing of
the angle between vectors v; and v,. If a curve C = f(s) is smooth, then the chaléging
rate of the angle between two tangent vector with respect to the length of arc, i.e., 7 is
continuous. For example, as we known in the differential geometry, the Gauss curvature

at every point of a circle x> + y* = r? of radius r is —. Whence, the changing of the angle
r
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from vectors v; to v, is
B

1 l—~ 1
f—ds = —|AB| = -r0 = 6.
r r r
A
By results in Euclid plane geometry, we know that 6 is also the angle between vectors

v and v,. As we illustrated in Subsection 7.2.1, an s-line in a planar map geometry is
consisted by line segments or rays. Therefore, the changing rate of the angle between
two tangent vector with respect to the length of arc is not continuous. Similar to the
def nition of the set curvature in the reference [AlZ1], we present a discrete def nition for

the curvature of s-lines in this case following.

Def nition 7.2.1 Let L be an s-line in a planar map geometry (M, u) with the set W of
non-Euclidean points. The curvature w(L) of L is def ned by

(L) = f (n — (D).

w
where w(p) = f(p) if p is on an edge (u,v) in map M embedded on plane Y, with an angle
function f: ), — ).

In differential geometry, the Gauss mapping and the Gauss curvature on surfaces are

def ned as follows:

Let S C R® be a surface with an orientation N. The mapping N : S — S? takes its

value in the unit sphere
S?={(x,y,z) e R +y* + 22 = 1}

along the orientation N. The map N : S — S?, thus defned, is called a Gauss mapping

and the determinant of K(p) = dN, a Gauss curvature.

We know that for a point p € S such that the Gaussian curvature K(p) # 0 and a
connected neighborhood ¥ of p with K does not change sign,
.. N
() = i =2
where 4 is the area of a region B C V" and N(A) is the area of the image of B by the Gauss
mapping N : S — S2.

The well-known Gauss-Bonnet theorem for a compact surface says that

f fs Kdo = 27x(S),
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for any orientable compact surface S'.
For a simply closed s-line, we also have a result similar to the Gauss-Bonnet theorem,

which can be also seen as a discrete Gauss-Bonnet theorem on a plane.

Theorem 7.2.4 Let L be a simply closed s-line passing through n non-Euclidean points
X1, X2, , X, in a planar map geometry (M, p). Then w(L) = 2.

Proof According to Theorem 7.2.1, we know that
D) =2,
i=1

where f(x;) denotes the angle function value at an s-point x;,1 < i < n. Whence, by

Def nition 7.2.1 we know that

o) = [ s = Y- )
i=1

{x;i;1<i<n}

ﬂn—Zn:f(xi):Jrn—(n—Z)n:br. 0
i=1

Similarly, we also get the sum of curvatures on the planar map M in (M, u) following.

Theorem 7.2.5 Let (M, u) be a planar map geometry. Then the sum w(M) of curvatures
on edges in a map M is w(M) = 2ns(M), where s(M) denotes the sum of length of edges
in M.

Proof Notice that the sum w(u, v) of curvatures on an edge (u, v) of M is

w(u,v) = f (x = f(s))ds = i, V)| - f F(s)ds.

Since M is a planar map, each of its edges appears just two times with an opposite

direction. Whence, we get that

wM) = Z w(u,v) + Z w(v, u)
(w.v)EE(M) (vu)eE(M)
- x Y (|@|+m)_[ [ res+ [ f(s)ds]=27rs(M) s
(u,v)€E(M) v u

Notice that ifs(M) = 1, Theorem 7.2.5 turns to the Gauss-Bonnet theorem for sphere.
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§7.3 POLYGONS IN PLANAR MAP GEOMETRY

7.3.1 Polygon in Planar Map Geometry. In the Euclid plane geometry, we have en-
countered triangles, quadrilaterals, - - -, and generally, n-polygons, i.e., these graphs on a
plane with 7 straight line segments not on the same line connected with one after another.
There are no 1 and 2-polygons in a Euclid plane geometry since every point is Euclidean.
The def nition of n-polygons in planar map geometry (M, u) is similar to that of Euclid

plane geometry.

Def nition 7.3.1 An n-polygon in a planar map geometry (M, u) is def ned to be a graph
in (M, p) with n s-line segments two by two without self-intersections and connected with

one after another.

Although their defnition is similar, the situation is more complex in a planar map
geometry (M, ). We have found a necessary and sufficient condition for 1-polygon in
Theorem 7.2.1, i.e., 1-polygons maybe exist in a planar map geometry. In general, we can
fnd n-polygons in a planar map geometry for any integer n,n > 1.

Examples of polygon in a planar map geometry (M, u) are shown in Fig.7.3.1, in
where (@) is a 1-polygon with u, v, w and ¢ being non-Euclidean points, (b) is a 2-polygon
with vertices 4, B and non-Euclidean points u, v, (¢) is a triangle with vertices 4, B, C and

a non-Euclidean point # and (d) is a quadrilateral with vertices 4, B, C and D.

u v u A A B
A B
% t V C . B C D
(a) (b) (©) (d)
Fig.7.3.1

Theorem 7.3.1 There exists a 1-polygon in a planar map geometry (M, u) if and only if

there are non-Euclidean points uy, u,, - - -, u; with | > 3 such that

!
D fw) = (-2,
i=1

where f(u;) denotes the angle function value at the point u;, 1 <i <.
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Proof According to Theorem 7.2.1, an s-line passing through / non-Euclidean points

uy, Uy, - - -, u; 1s simply closed if and only if

/
D fw) = (-2,

i=1
1.e., 1-polygon exists in (M, u) if and only if there are non-Euclidean points uy, uy, - - -, 4,
with the above formula hold.

Whence, we only need to prove / > 3. Since there are no 1-polygons or 2-polygons
in a Euclid plane geometry, we must have / > 3 by the Hilbert’s axiom / — 2. In fact, for
[ = 3 we can really fnd a planar map geometry (M, u) with a 1-polygon passing through

three non-Euclidean points u, v and w. Look at Fig.7.3.2,

u

Fig.7.3.2

in where the angle function values are f(u) = f(v) = f(w) = %n at u,vand w. U

Similarly, for 2-polygons we know the following result.

Theorem 7.3.2 There are 2-polygons in a planar map geometry (M, u) only if there are

at least one non-Euclidean point in (M, ).

Proof In fact, if there is a non-Euclidean point u in (M, u), then each straight line
S@) [
2 9
on that u is elliptic or hyperbolic. Therefore, we can get a 2-polygon in (M, i) by choice

enter u will turn an angle 8 = 7 — — r from the initial straight line dependent

a straight line 4B passing through Euclidean points in (3, u), such as the graph shown in
Fig.7.3.3.
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This completes the proof. O
For the existence of n-polygons with n > 3, we have a general result as in the fol-

lowing.

Theorem 7.3.3 For any integer n,n > 3, there are n-polygons in a planar map geometry

(M, ).

Proof Since in Euclid plane geometry, there are n-polygons for any integer n,n > 3.
Therefore, there are also n-polygons in a planar map geometry (M, u) for any integer

n,n>3. O

7.3.2 Internal Angle Sum. For the sum of the internal angles in an n-polygon, we have

the following result.

Theorem 7.3.4 Let [| be an n-polygon in a map geometry with its edges passing through

non-Euclidean points x, x,, - - -, x;. Then the sum of internal angles in [] is

/
(n+1=2)m =" f(x),
i=1

where f(x;) denotes the value of the angle function f at the point x;,1 <i < [.

Proof Denote by U, V the sets of elliptic points and hyperbolic points in x;, x;, - - -, x;
and |U| = p, |V] = g, respectively. If an s-line segment passes through an elliptic point u,

add an auxiliary line segment 4B in the plane as shown in Fig.7.3.4(1).

Fig.7.3.4

Then we get that
La=/1+ 22 =n— f(u).

If an s-line passes through a hyperbolic point v, also add an auxiliary line segment
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AB in the plane as that shown in Fig.7.3.4(2). Then we get that
angle b = angle3 + angle4 = f(v) — 7.

Since the sum of internal angles of an n-polygon in a plane is (n — 2)r whenever it is a

convex or concave polygon, we know that the sum of the internal angles in [] is

(n=2m+ Y (x = f()) - > (fO») - )

xeU yev

/
=(n+p+qg-Dr- ) f(x)
i=1

I
=(n+1-2m- ) f(x).
i=1

This completes the proof. U
A triangle is called Euclidean, elliptic or hyperbolic if its edges only pass through

one kind of Euclidean, elliptic or hyperbolic points. As a consequence of Theorem 7.3.4,
we get the sum of the internal angles of a triangle in a map geometry which is consistent

with these already known results.

Corollary 7.3.1 Let A be a triangle in a planar map geometry (M, u). Then

(1) the sum of its internal angles is equal to rt if A is Euclidean,
(2) the sum of its internal angles is less than m if A is elliptic;

(3) the sum of its internal angles is more than « if A is hyperbolic.

Proof Notice that the sum of internal angles of a triangle is

!
T+ Y (x= f(x)
i=1

if it passes through non-Euclidean points xy, x,, - - -, x;. By defnition, if these x;, 1 <i </
are one kind of Euclidean, elliptic, or hyperbolic, then we have that f(x;) = &, or f(x;) <,
or f(x;) > m for any integer i, 1 <i < /. Whence, the sum of internal angles of a Euclidean,

elliptic or hyperbolic triangle is equal to, or lees than, or more than 7. 0

7.3.3 Polygon Area. As it is well-known, calculation for the area 4(A) of a triangle A
with two sides a, b and the value of their include angle 6 or three sides a,b and ¢ in a

Euclid plane is simple. Formulae for its area are

A(r) = %ab sinf or A(») = \/s(s —a)(s - b)(s — o),
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1 . . .
where s = E(a +b+c). But in a planar map geometry, calculation for the area of a triangle
is complex since each of its edge maybe contains non-Euclidean points. Where, we only

present a programming for calculation the area of a triangle in a planar map geometry.

STEP 1. Divide a triangle into triangles in a Euclid plane such that no edges
contain non-Euclidean points unless their endpoints;,

STEP 2. Calculate the area of each triangle;

STEP 3. Sum up all of areas of these triangles to get the area of the given triangle

in a planar map geometry.

The simplest cases for triangle is the cases with only one non-Euclidean point such
as those shown in Fig.7.3.5(1) and (2) with an elliptic point u or with a hyperbolic point

V.

C
&)

Fig.7.3.5

Add an auxiliary line segment AB in Fig.7.3.5. Then by formulae in the plane trigonom-
etry, we know that

A(AABC) = +Js1(s1 — a)(s; — b)(s1 — 1) + \/s2(s2 — ¢)(s2 — d)(s2 — 1)

for case (1) and

A(AABC) = Js1(s1 — a)(s1 — b)(s1 — 1) = v/sa(s2 — €)(s2 — d)(s2 — 1)

for case (2) in Fig.7.3.5, where

t= \/02+d2—2cdcos]%

with x = u or v and

1 1
S1:§(61+b+f), S225(0+d+t).
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Generally, let AABC be a triangle with its edge AB passing through p elliptic or p

hyperbolic points x;, x,, - - -, x,, simultaneously, as those shown in Fig.7.3.6(1) and (2).

(1)

Fig.7.3.6

Where |AC| = a, |BC| = b and |Ax|| = ¢y, [x1X2| = ¢z, -+, [xp1X,| = ¢, and |x,B| = cpi1.
Adding auxiliary line segments Ax,, Ax3,- -+, Ax,, AB in Fig.7.3.6, then we can fnd its
area by the programming STEP 1 to STEP 3. By formulae in the plane trigonometry, we
get that

|[Ax,| = \/c% +¢; — 2ci¢; cos f(;l),

22 2
¢y —c5— |Ax|
1179

/Ax>x; = cos”!

20)|Axy|
LAXyx3 = J(x2) — LAxyx, or 2w — f(;2) — LAxyx1,
|Ax3| = \/|Ax2|2 + C% — 2|Ax3|c3 COS(f(;(:Z) - 414)62)63),
|4x,* = 5 — |Ax;
ZAx3x; = cos™! : :
X3X2 COS 2C3|A}C3|
LAXyx3 = f(f) — LAx3xy or 21 — f(f) — LAx3x,,

and generally, we get that

4Bl = \JlAx,P + 2, — 2lAxylcyu cos ZAx, B.

Then the area of the triangle A4ABC is

A(AABC) = \/sp(sp — a)(s, — b)(s, — |4B))

P
+ Z \/Si(Si — |Axi)(s; = civ1)(8i = 14x1411)
i=1
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for case (1) and

A(AABC) \/sp(sp — a)(s, — b)(s, — |4B))

p
= D siCsi = Ml (si = )i = M)
i=1

for case (2) in Fig.7.3.6, where

1
Si = §(|Axi| + civ1 + |AXi11])

for any integeri, ] <i<p—1and

1
Sp= E(a + b + |AB)).

Certainly, this programming can be also applied to calculate the area of an n-polygon in

planar map geometry in general.

§7.4 CIRCLES IN PLANAR MAP GEOMETRY

The length of an s-line segment in planar map geometry is def ned in the following.

Def nition 7.4.1 The length |AB| of an s-line segment AB consisted by k straight line
segments ACy, C1C,, C,Cs, - - -,Cy_1 B in planar map geometry (M, ) is def ned by

|AB| = |AC| + |C, Co| +|CC5] + - + [Cry B

As that shown in Chapter 6, there are not always exist a circle with any center and
a given radius in planar map geometry in the usual sense of Euclid’s def nition. Since
we have introduced angle function on planar map geometry, we can likewise the Euclid’s

def nition to def ne an s-circle in planar map geometry.

Def nition 7.4.2 A closed curve C without self-intersection in planar map geometry
(M, p) is called an s-circle if there exists an s-point O in (M, ) and a real number r

such that |OP| = r for each s-point P on C.

Two Examples for s-circles in a planar map geometry (M, u) are shown in Fig.7.4.1(1)
and (2). The s-circle in Fig.7.4.1(1) is a circle in the Euclid’s sense, but (2) is not. Notice
that in Fig.7.4.1(2), s-points u and v are elliptic and the length |OQ| = |Ou| + [uQ| = r for
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an s-point Q on the s-circle C, which seems likely an ellipse but it is not. The s-circle
C in Fig.7.4.1(2) also implied that s-circles are more complex than those in Euclid plane

geometry.

Q

P ‘4g>’ P
%
(1) (2)

Fig.7.4.1

We know a necessary and sufficient condition for the existence of an s-circle in planar

map geometry following.

Theorem 7.4.1 Let (M, u) be a planar map geometry on a plane ), and O an s-point on
(M, p). For a real number r, there is an s-circle of radius r with center O if and only if O
is in the non-outer face or in the outer face of M but for any €,r > € > 0, the initial and
fnal intersection points of a circle of radius € with M in a Euclid plane ), are Euclidean

points.

Proof If there is a solitary non-Euclidean point 4 with |OA| < r, then by those

materials in Chapter 3, there are no s-circles in (M, i) of radius » with center O.

Fig.7.4.2

If O is in the outer face of M but there exists a number €, 7 > € > 0 such that one of

the initial and f nal intersection points of a circle of radius € with M on )’ is non-Euclidean
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point, then points with distance » to O in (M, u) at least has a gap in a circle with a Euclid
sense. See Fig.7.4.2 for details, in where u is a non-Euclidean point and the shade feld
denotes the map M. Therefore there are no s-circles in (M, u) of radius » with center O.
Now if O in the outer face of M but for any €, > € > 0, the initial and fnal
intersection points of a circle of radius € with M on }| are Euclidean points or O is in a
non-outer face of M, then by the defnition of angle functions, we know that all points

with distance » to O is a closed smooth curve on )}, for example, see Fig.7.4.3(1) and (2).

u
r r
s r
M NG
C C
v
(D 2
Fig.7.4.3
Whence it is an s-circle. O

We construct a polar axis OX with center O in planar map geometry as that in Euclid
geometry. Then each s-point 4 has a coordinate (p, 8), where p is the length of the s-line
segment OA and 6 is the angle between OX and the straight line segment of OA4 containing
the point 4. We get an equation for an s-circle of radius » which has the same form as that

in the analytic geometry of plane.

Theorem 7.4.2 In a planar geometry (M, i) with a polar axis OX of center O, the equa-

tion of each s-circle of radius r with center O is
p=r.

Proof By the def nition of s-circle C of radius r, every s-point on C has a distance »
to its center O. Whence, its equation is p = r in a planar map geometry with a polar axis
OX of center O. U
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§7.5 LINE BUNDLES IN PLANAR MAP GEOMETRY

7.5.1 Line Bundle. Among those s-line bundles the most important is parallel bundles

def ned in the next def nition, motivated by the Euclid’s f fth postulate.

Def nition 7.5.1 A family L of infnite s-lines not intersecting each other in planar ge-

ometry (M, ) is called a parallel bundle.

In Fig.7.5.1, we present all cases of parallel bundles passing through an edge in
planar geometries, where, (a) is the case with the same type points u, v and py(u)u(u) =
ou(Mu(v) = 2x, (b) and (c) are the same type cases with py(u)u(u) > pp(v)u(v) or
ov(u(u) = py(V)u(v) > 2r or < 2 and (d) is the case with an elliptic point u but a

hyperbolic point v.
u u u u
1
Ly — L L — L
L, L, L, — L —
L3 L3 L3 L3
v v v v
(a) (b) (c) (d)
Fig.7.5.1

Here, we assume the angle at the intersection point is in clockwise, that is, a line passing
through an elliptic point will bend up and passing through a hyperbolic point will bend
down, such as those cases (b),(c) in the Fig.7.5.1. Generally, we defne a sign function

sign(f) of an angle function f as follows.

Def nition 7.5.2 For a vector O on the Euclid plane called an orientation, a sign function

sign(f) of an angle function f at an s-point u is def ned by

I, if u is elliptic,
sign(f)(u) =14 0, if u is euclidean,
—1, if u is hyperbolic.

We classify parallel bundles in planar map geometry along an orientation O in this

section.
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7.5.2 Necessary and Sufficient Condition for Parallel Bundle. We investigate the
behaviors of parallel bundles in planar map geometry (M, i). Denote by f(x) the angle
function value at an intersection s-point of an s-line L with an edge (u,v) of M and a

distance x to u on (u, v) as shown in Fig.7.5.1(a). Then

Theorem 7.5.1 A family L of parallel s-lines passing through an edge (u,v) is a parallel
bundle if and only if if
ol > 0.

Proof If L is a parallel bundle, then any two s-lines L;, L, will not intersect after
them passing through the edge uv. Therefore, if 6,0, are the angles of L, L, at the
intersection s-points of L, L, with (u,v) and L, is far from u than L, then we know
6, > 6,. Thereby we know that f(x + Ax) — f(x) > 0 for any point with distance x from u
and Ax > 0. Therefore, we get that

af

af f(x+Ax)—f(x)>O
dx -

+ Ax—+0 Ax

As that ShOWIClZil’l the Fig.7.5.1.
Now if d_f > 0, then f(y) > f(x) if y > x. Since L is a family of parallel s-lines
X1+

before meeting uv, any two s-lines in £ will not intersect each other after them passing

through (u, v). Therefore, £ is a parallel bundle. 0

A general condition for a family of parallel s-lines passing through a cut of a planar

map being a parallel bundle is the following.

Theorem 7.5.2 Let (M, i) be a planar map geometry, C = {(uy, vr), (ua,v2), - -, (uy, v;)}
a cut of the map M with order (uy,vy), (uz,v2), - -+, (us, v;) from the left to the right, [ > 1
and the angle functions on them are f1, f5, - -, f; (also seeing Fig.7.5.2), respectively.

23] Uy uk/

[
L— -
L // -
Lh—

\Z) %) Vk

Fig.7.5.2
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Then a family L of parallel s-lines passing through C is a parallel bundle if and only if

for any x,x > 0,

sign(f(X)f1,(x) 2 0,
sign(f1)(X) 1, (x) + sign(f2)(x) f;,(x) = 0,
sign(f1)(0)f1.(x) + sign(f2)(x) [, (x) + sign(f3)(x) f3,(x) =2 0,

sign(f1)(0)f1, (x) + sign(£2)(x) [, (x) + - - - + sign(f)(x) [} (x) = 0.

Proof According to Theorem 7.5.1, we know that s-lines will not intersect after them

passing through (u;, v;) and (u,, v,) if and only if for VAx > 0 and x > 0,

sign(/2)(x) 2(x + Ax) + sign(f1)(X) [, ()Ax = sign(f2)(x) f2(x),

seeing Fig.7.5.3 for an explanation.

U [2%)

L1\< (x) fZ(x)f/

LZ& 1(x + 6x) S+

Vi V2

Fig.7.5.3
That is,
sign(f1)(X) /], (x) + sign(/2)(x) f3,(x) = 0.

Similarly, s-lines will not intersect after them passing through (uy, v), (42, v;) and

(u3,v3) if and only if for YAx > 0 and x > 0,

sign(f)(X)f(x+Ax) +  sign(H)x) 3, (DA
+sign(f)(0f7, (DAx > sign(f3)(x) ().

Namely,
sign(f)(X)f](x) + sign(f2)(x) f3,(x) + sign(f3)(x) f3,(x) = 0.



224 Chap.7 Planar Map Geometry

Generally, the s-lines will not intersect after them passing through (uy, vy), (42, v2), -+,

(u;-1,vi—1) and (u;, v;) if and only if for YAx > 0 and x > 0,

sign(f)(x)fi(x + Ax)  +  sign(fi-1)(x) [, ()Ax +
o+ sign(f)(X) £, ()AX > sign(f)(x) fi(x).

Whence, we get that

sign(f(X)f],(x) + sign(f2)(x0)f5,(x) + - - - + sign(f)(x)f,(x) = 0.

Therefore, a family £ of parallel s-lines passing through C is a parallel bundle if and only

if for any x, x > 0, we have that

sign(f1)(x)f1,(x) 2 0,

sign(f1)(x)f1,(x) + sign(£2)(x) f.(x) = 0,

sign(f1)(0)f1.(x) + sign(2)(x) /3, (x) + sign(f1)(x) f3,(x) 2 0,
sign(f1)(X) [, (x) + sign(f2)(X) [, (x) + - - - + sign(f1)(x) fi(x) 2 0.

This completes the proof. O

Corollary 7.5.1 Let (M, u) be a planar map geometry, C = {(uy, vy), (2, v2), - -, (u;, v;)}
a cut of the map M with order (uy, 1), (uz,v2), - -+, (us, v;) from the left to the right, | > 1
and the angle functions on them are f1, f5, - - -, f, respectively. Then a family L of parallel
lines passing through C is still parallel lines after them leaving C if and only if for any

x, x>0,

sign(f1)(x) 1, (x) 2 0,
sign(f1)(x)f1,(x) + sign(£2)(x) f.(x) = 0,
sign(f1)(X) [, (x) + sign(/2)(x) /3, (x) + sign(f1)(x)f3,(x) = 0,

sign(f()/1,(x) + sign(/2)(0) f3,(x) + - - + sign(f1)(0) f_1,(x) 2 0.

and

sign(f)0)f1,(x) + sign(f2)(x) f3,(x) + - - - + sign(f1)(x)f] (x) = 0.
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Proof According to Theorem 7.5.2, we know the condition is a necessary and suffi-
cient condition for £ being a parallel bundle. Now since lines in £ are parallel lines after

them leaving C if and only if for any x > 0 and Ax > 0, there must be that

sign(f) fi(x + Ax) + sign(fi-) fi_ 1, (0)Ax + - - - + sign(/)) f{,(X)Ax = sign(f;) fi(x).

Therefore, we get that

sign(f1)(0)f1, () +sign(2)(x) [, (X)+- - - +sign(f1)(x) /1, (x) = 0. O

There is a natural question on parallel bundles in planar map geometry. That is when
do some parallel s-lines parallel the initial parallel lines after them passing through a cut

C in a planar map geometry? The answer is the next result.

Theorem 7.5.3 Let (M, u) be a planar map geometry, C = {(uy,vy), (42, v2),- -+, (us, v;)}
a cut of the map M with order (uy,vy), (U2, v2), - - -, (;, v;) from the left to the right, | > 1
and the angle functions on them are fi, f>,- - -, fi, respectively. Then the parallel s-lines

parallel the initial parallel lines after them passing through C if and only if for Vx > 0,

sign(f)(0)f1,(x) 2 0,
sign(f1)(X)f1(x) + sign(f2)(x) f3,(x) = 0,
sign(fi)(0)f1,(x) + sign(f2)(x) /3, (x) + sign(f1)(x)f3,(x) = 0,

sign(f)(X) 7, (x) + sign(f2)(0) f5,(x) + - - - + sign(f1)(x) /1, (x) 2 0.

and

sign(f1)f1(x) + sign(£2) fo(x) + - - - + sign(f1)(x) fi(x) = .

Proof According to Theorem 7.5.2 and Corollary 7.5.1, we know that these parallel
s-lines satisfying conditions of this theorem is a parallel bundle.

We calculate the angle a(i, x) of an s-line L passing through an edge u;v;, 1 <i </
with the line before it meeting C at the intersection of L with the edge (u;, v;), where x is
the distance of the intersection point to u; on (uy, v;), see also Fig.4.18. By def nition, we
know the angle a(1, x) = sign(f)f(x) and a(2, x) = sign(f2) fo(x) — (7 — sign(f1)f1(x)) =
sign(f)1(x) + sign(f2) fo(x) = 7.
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Now if a(i, x) = sign(f)fi1(x) + sign(f>) fo(x) + - - - + sign(f}) fi(x) — (i — 1)z, then
we know that a(i + 1, x) = sign(fii1)fir1(x) — (m — a(i, x)) = sign(fiz1)fi1(x) + a(i,x) — 7
similar to the case i = 2. Thereby we get that

a(i + 1, x) = sign(fi) fi(x) + sign() 2(x) + - - + sign(fix1) fir1 (%) = im.

Notice that an s-line L parallel the initial parallel line after it passing through C if and

only if a(/, x) = «, i.e.,
sign(f1) f1(x) + sign(f) fo(x) + - - - + sign(f;) fi(x) = [n.
This completes the proof. 0

7.5.3 Linear Conditions for Parallel Bundle. For the simplicity, we can assume even
that the function f(x) is linear and denoted it by f;(x). We calculate f;(x) in the frst.

Theorem 7.5.4 The angle function f(x) of an s-line L passing through an edge (u,v) at

a point with distance x to u is

o, x \plu(v) x  p(Vu(v)
f’(x)‘(l d(u,v)) 2 Tdww 2

where, d(u, v) is the length of the edge (u, v).

Proof Since f/(x) is linear, we know that f;(x) satisf es the following equation.

-2
PO p@p) — d(u,v)’
2 2

Calculation shows that

fi(x) = (1 - 0

X )p(u),u(V) L X p(Mp(v)
d(u,v) 2 dw,v) 2

Corollary 7.5.2 Under the linear assumption, a family L of parallel s-lines passing
through an edge (u,v) is a parallel bundle if and only if
p(v) — u(u)
Proof According to Theorem 7.5.1, a family of parallel s-lines passing through an
edge (u, v) is a parallel bundle if and only if f”(x) > 0 for Vx,x > 0, i.e.,

PWLE) _ plu)
2d(u,v)  2du,v)
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Therefore, a family £ of parallel s-lines passing through an edge (u, v) is a parallel bundle

if and only if
pWu(v) = p(u)u(u).
Whence,
PG < @ O
p(vV) — u(u)

For a family of parallel s-lines passing through a cut, we get the following result.

Theorem 7.5.5 Let (M, u) be a planar map geometry, C = {(uy, vy), (42, v2),- - -, (us, v;)}
a cut of the map M with order (uy,vy), (2, v2), - - -, (uy, v;) from the left to the right, [ > 1.
Then under the linear assumption, a family L of parallel s-lines passing through C is a
parallel bundle if and only if the angle factor u satisf es the following linear inequality

system
p(vu(v1) = p(ur)u(ur),

p(v)u(vr) n p(v2)u(v2) > pur)u(u) n pu)u(ur)
d(uy, vr) d(uz,v2) — d(ui,vr) d(uz, v2)

p(v)u(v1) N p(v2)u(v2) e +P(V1)N(V1)

d(uy, vy) d(uz, ) d(uy, vy)
pur)u(u) N pu)u(ur) - puppuup)
d(uy, vy) d(uz,v) d(up,vy)

Proof Under the linear assumption, for any integer 7,7 > 1 we know that

pvu(v;) — p(u)u(u;)
2d(u;, vy)

Jin(x) =

by Theorem 7.5.4. Thereby, according to Theorem 7.5.2, we get that a family L of parallel
s-lines passing through C is a parallel bundle if and only if the angle factor u satisf es the

following linear inequality system

p(vDu(v1) = p(ur)u(ur),

p(vu(v1) n p()u(v2) > p(u)u(ur) n p(u)p(u)
d(ul,vl) d(l/lz,VZ) - d(ul,vl) d(uz,Vz) ’
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pOp(v) - pu(vy) - p()p()

d(ul’ Vl) d(uz’ V2) d(ub Vl)
plupu@y)  plup(ur) - pluu)
d(uy, vr) d(uz, v2) d(up, v)
This completes the proof. O

For planar maps underlying a regular graph, we have an interesting consequence for

parallel bundles in the following.

Corollary 7.5.3 Let (M, u) be a planar map geometry with M underlying a regular graph,
C = {(uy, ), (U2, v2), - - -, (uy, v)} a cut of the map M with order (uy,v1), (U2, v2), - - -, (ty, vy)
from the left to the right, | > 1. Then under the linear assumption, a family L of parallel
lines passing through C is a parallel bundle if and only if the angle factor u satisf es the

following linear inequality system.

p(vi) = p(uy),

p(vi) N pOn) ) N p(uz)
d(uy,vi)  d(uz,v2) — d(ur,vi)  d(up,vy)’
H(vr) N p(v2) - u(vr) S pluy) N p(ua) - puy)
d(uy,vi)  d(uz,v2) d(up,vy) — d(u,vi)  d(ua, ) d(uy, vi)
and particularly, if assume that all the lengths of edges in C are the same, then

u(v) = p(uy)

\%

u(vr) + p(v2) p(ur) + p(uz)

\%

(1) + p(v2) + -+ p(v) pur) + p(ua) + - -+ + p(uy).

Certainly, by choice different angle factors we can also get combinatorial conditions

for the existence of parallel bundles under the linear assumption.
Theorem 7.5.6 Let (M, u) be a planar map geometry, C = {(uy, v1), (42, v2), -+, (U, v;)} a
cut of the map M with order (uy, vy), (uz, v2),- - -, (us, v;) from the left to the right, | > 1. If

p(u;) < u(vi)
p(vi) — u(u;)

for any integer i,i > 1, then a family L of parallel s-lines passing through C is a parallel

bundle under the linear assumption.
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Proof Under the linear assumption we know that

Pu(v) — p(u;)p(u;)

2d(u;, vi)
for any integer i,i > 1 by Theorem 7.5.4. Thereby f (x) > 0 fori = 1,2,---,/. We get
that

fin(x) =

fi(x) =0
S+ f,(x) =0
S0 + f1,(0) + f3,(x) =0

A+ £, + -+ f(x) 2 0.

By Theorem 7.5.2 we know that a family L of parallel s-lines passing through C is still a
parallel bundle. 0

§7.6 EXAMPLES OF PLANAR MAP GEOMETRY

By choice different planar maps and angle factors on their vertices, we can get various
planar map geometries. In this section, we present some concrete examples for planar

map geometry.

Example 7.6.1 A complete planar map K.

We take a complete map K, embedded on the plane | with vertices u, v, w and ¢t and

angle factors
m 2r
u(u) = > p(v) = u(w) = mand p(?) = ER
such as shown in Fig.7.6.1 where each number on the side of a vertex denotes p,,(x)u(x)
for x = u,v,w and ¢. Assume the linear assumption is holds in this planar map geometry

(M, ). Then we get a classif cations for s-points in (M, u) as follows.

Ve = {points in (WA \ {AD) |_JwB\ (BY) | Jue\ 1)),

where A4 and B are Euclidean points on (u, w) and (u, v), respectively.

Vew = (4, B0} |_J(P\ E(K4)
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and

Viy = (points in (A \ (A |_Jovt\ () ) wv v\ ) B\ (B)).

u 1.5z

Fig.7.6.1

We assume that the linear assumption holds in this planar map geometry (M, u). Then we

get a classif cations for s-points in (M, ) as follows.
Va = {points in (uA \ {A)) | JwB \ (B)_Jut\ (),
where 4 and B are Euclidean points on (i, w) and (u, v), respectively.
Veu = 14, B, 8} _J(P\ E(K4)
Vi = {points in (wA \ {AD [ Jwt\ {th | Jwv [ Jev\ e[ B\ (BY).

Edges in K, are classifed into (u,¢) € CL, (¢, w), (t,v) € C3, (u,w), (u,v) € C; and

(w,u) € CS. Various s-lines in this planar map geometry are shown in Fig.7.6.2 following.

y Lsp—
L
L,
L, %fﬂ_ Ly
w 3rxr + + vV 3m
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There are no 1-polygons in this planar map geometry. One 2-polygon and various

triangles are shown in Fig.7.6.3.

C D K
MAN
E
A B
F P
| 4//;77
%
0 Q

Fig.7.6.3

Example 7.6.2 4 wheel planar map W 4.

We take a wheel W 4 embedded on a plane ), with vertices O and u, v, w, t and angle

factors A
H(O0) = 5. and p(u) = u(v) = p(w) = (1) = 5

such as shown in Fig.7.6.4.

u %
4 4r S A
2(%\
y
Cf 4r \vg A
Fig.7.6.4

There are no elliptic points in this planar map geometries. Euclidean and hyperbolic

points V,, V', are as follows.

Ve = P|_JNE1.0\{O))



232 Chap.7 Planar Map Geometry

and

Vip = E(W1.4) \ {O}.

Edges are classif ed into (O, u), (O, v), (O, w), (O, 1) € C}. and (u, v), (v, w), (w, 1), (¢, u) €
CS.. Various s-lines and one 1-polygon are shown in Fig.7.6.5 where each s-line will turn
to its opposite direction after it meeting W, 4 such as those s-lines L, L, and L4, Ls in
Fig.7.6.5.

u 4r vV 4rx
L4 — N L3
Ly ————— = L
927r
Cf A W Ar
Fig.7.6.5

Example 7.6.3 A4 parallel bundle in a planar map geometry.

We choose a planar ladder and def ne its angle factor as shown in Fig.7.6.6 where
each number on the side of a vertex u denotes the number p,,(u)u(u). Then we fnd a

parallel bundle {L;; 1 < i < 6} as those shown in Fig.7.6.6.
47 45

L //
/
L, T
2 2
Ls
Ly
2 2
Ls —
Lg \\
4 4'7r\

Fig.7.6.6
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§7.7 RESEARCH PROBLEMS

7.7.1. As a generalization of Euclid geometry of plane by Smarandache’s notion, the pla-
nar map geometry was introduced in [Mao8] and discussed in [Mao8]-[Maol1], [Mao1l7].
Similarly, a generalization can be also done for Euclid geometry of space R®. Some open

problems on this generalization are listed following.

Problem 7.7.1 Establish Smarandache geometry by embedded graphs in space R* and

classify their fundamental elements, such as those of points, lines, polyhedrons, - - -, etc..

Problem 7.7.2 Determine various surfaces and convex polyhedrons in Smarandache
geometry of space R, such as those of sphere, surface of cylinder; circular cone, torus,
double torus, projective plane, Klein bottle and tetrahedron, pentahedron, hexahedron,

.-, etc..

Problem 7.7.3 Defne the conception of volume in Smarandache geometry on space
R? and fnd formulae for volumes of convex polyhedrons, such as those of tetrahedron,

pentahedron or hexahedron, - - -, etc..

Problem 7.7.4 Apply s-lines in Smarandache geometry of space R to knots and f nd new

characteristics.

7.7.2 As pointed out in last chapter, we can also establish map geometry on locally
orientable surfaces and fnd its fundamental elements of points, lines, polyhedrons, - - -,
etc., particularly, on sphere, torus, double torus, projective plane, Klein bottle, - -, i.e.,
to establish an intrinsic geometry on surface. For this objective, open problems for such

surfaces with small genus should be considered f rst.

Problem 7.7.5 Establish an intrinsic geometry by map geometry on sphere or torus and

fnd its fundamental elements.

Problem 7.7.6 Establish an intrinsic geometry on projective or Klein bottle and f nd its

fundamental elements.

Problem 7.7.7 Def ne various measures of map geometry on a locally orientable surface

S and apply them to characterize the surface S.

Problem 7.7.8 Defne the conception of curvature for map geometry (M, u) on locally

orientable surfaces and calculate the sum w(M) of curvatures on all edges in M.
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We have a conjecture following, which generalizes the Gauss-Bonnet theorem.

Conjecture 7.7.1 w(M) = 2ny(M)s(M), where s(M) denotes the sum of length of edges
in M.

7.7.3 1t should be noted that nearly all branches of physics apply Euclid space R? to a
spacetime for its concise and homogeneity unless Einstein’s relativity theory. This has
their own reason, also due to one’s observation because the moving of particle is more
likely that in Euclid space R®. However, as shown in relativity theory, this realization is
incorrect in general for the real world is hybridization and not homogenous. That is why

a physical theory on R? can only fnd unilateral behavior of particles.

Problem 7.7.9 Establish a suitable spacetime by space R® in Smarandache geometry
with time axis t and f'nd the global behaviors of particles.

Problem 7.7.10 Establish a unif ed theory of mechanics, thermodynamics, optics, elec-
tricity, - - -, etc. by that of Smarandachely spacetime such that each of these theory is its a

case.



CHAPTER 8.

Pseudo-Euclidean Geometry

The essential idea in planar map geometry is associating each point in a planar
map with an angle factor, which turns f atness of a plane to tortuous. When
the order of a planar map tends to inf nite and its diameter of each face tends
to zero (such planar maps naturally exist, for example, planar triangulations),
we get a tortuous plane at the limiting point, i.e., a plane equipped with a vec-
tor and straight lines maybe not exist. Such a consideration can be applied to
Euclidean spaces and manifolds. We discuss them in this chapter. Sections
8.1-8.3 concentrate on pseudo-planes with curve equations, integral curves
and stability of differential equations. The pseudo-Euclidean geometry on R”
for n > 3 is introduced in Section 8.4, in where conditions for a curve existed
in such a pseudo-Euclidean space and the representation for angle function
by rotation matrix are found. Particularly, the fnitely pseudo-Euclidean ge-
ometry is characterized by graphs embedded in R”. The Section 8.5 can be
viewed as an elementary introduction to smooth pseudo-manifold, i.e., differ-
ential pseudo-manifolds. Further consideration on this topics will establish
the application of pseudo-manifolds to physics (see [Mao33] or [Mao38] for
details).
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§8.1 PSEUDO-PLANES

8.1.1 Pseudo-Plane. In the classical analytic geometry on plane, each point is correspon-
dent with a Descartes coordinate (x, y), where x and y are real numbers which ensures the
fatness of a plane. Motivated by the ideas in Chapters 6-7, we fnd a new kind of plane,

called pseudo-plane, which distort the f atness of a plane and can be applied to sciences.

Def nition 8.1.1 Let ), be a Euclid plane. For Yu € ), if there is a continuous mapping
w : u — w(u) where w(u) € R" for an integer n,n > 1 such that for any chosen number
€ > 0, there exists a number 6 > 0 and a pointv € Y, |lu—v|| < 6 such that ||w(u)—w@)|| <
€, then ) is called a pseudo-plane, denoted by (3., w), where |lu — v|| denotes the norm

between points u and v in ).

An explanation for Def nition 8.1.1 is shown in Fig.8.1.1, in where n = 1 and w(u)

is an angle function Yu € ).

Fig.8.1.1

We can also explain w(u), u € Y to be the coordinate z in u = (x, y,z) € R® by taking
also n = 1. Thereby a pseudo-plane can be viewed as a projection of a Euclid space R"*?
on a Euclid plane. This fact implies that some characteristic of the geometry on space
may ref ected by a pseudo-plane.

We only discuss the case of n = 1 and explain w(u), u € ] being a periodic function
in this chapter, i.e., for any integer &, 4kr + w(u) = w(u)(mod 4r). Not loss of generality,
we assume that 0 < w(u) < 4x for Yu € . Similar to map geometry, points in a pseudo-
plane are classifed into three classes, i.e., elliptic points V,;, Euclidean points V,, and

hyperbolic points V,, def ned respectively by

Va={ue ) lww <2z},
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Vi = {v € Z lw(v) = 27r}
and
Vi = {w € Z lw(w) > 27r}.
Then we get the following result.

Theorem 8.1.1 There is a straight line segment AB in a pseudo-plane (3, w) if and only
if forVu € AB, w(u) = 2m, i.e., every point on AB is Euclidean.

Proof Since w(u) 1s an angle function for VYu € ), we know that 4B is a straight line

segment if and only if for Yu € AB, a)Tu = . Thus w(u) = 27 and u is Euclidean. 0
Theorem 8.1.1 implies that there maybe no straight line segments in a pseudo-plane.
Corollary 8.1.1 If there are only fnite Euclidean points in a pseudo-plane (3., w), then

there are no straight line segments in (3, w).

Corollary 8.1.2 There are not always exist a straight line between two given points u and

v in a pseudo-plane (3, w).

By the intermediate value theorem in calculus, we get the following result for points

in pseudo-planes.

Theorem 8.1.2 In a pseudo-plane (3., w), if Vo # 0 and Vy, # 0, then V,, # 0.

Proof By these assumptions, we can choose points u € V,; and v € V},. Consider
points on line segment uv in a Euclid plane }]. Since w(u) < 27 and w(v) > 2x, there
exists at least a point w,w € uv such that w(w) = 2nx, i.e., w € V,, by the intermediate

value theorem in calculus. Whence, V., # 0. O

Corollary 8.1.3 In a pseudo-plane (3., w), if V., = 0, then every point of (3., w) is elliptic
or every point of Y. is hyperbolic.

According to Corollary 8.1.3, we classify pseudo-planes into four classes following.

CL(Euclidean): pseudo-planes whose each point is Euclidean.
CZ(elliptic): pseudo-planes whose each point is elliptic.
C3,(hyperbolic): pseudo-planes whose each point is hyperbolic.

Cp(Smarandachely): pseudo-planes in which there are Euclidean, elliptic and hy-

perbolic points simultaneously.
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8.1.2 Curve Equation. We def ne the sign function sign(v) on point in a pseudo-plane
(2, w) by
I, ifviselliptic,
sign(v) =< 0, if vis euclidean,
-1, if vis hyperbolic.
Then we get a criteria following for the existence of an algebraic curve C in pseudo-plane

(2, w).

Theorem 8.1.3 There is an algebraic curve F(x,y) = 0 passing through (x,,),) in
a domain D of pseudo-plane (3, w) with Descartes coordinate system if and only if
F(x0,y0) = 0 and for ¥(x,y) € D,

2
(71 - w();,y))(l - (%) ) = sign(x, ).

Proof By the def nition of pseudo-planes in the case of that w being an angle func-

tion and the geometrical meaning of differential value, such as those shown in Fig.8.1.2

following,

Fig.8.1.2

where 0 = 71— /2 + /1, limo 0 = w(x,y) and (x, ) is an elliptic point, we know that an
AX—

algebraic curve F(x,y) = 0 exists in a domain D of (3], w) if and only if

d(arctan(%)

dx

(ﬂ_w@&)
2

|-t

forVY(x,y) € D, i.e.,

o~ 450) st
x)
Py
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Therefore,

2
(71 - %’y))(l + (%) ) = sign(x, y). U

A plane curve C is called elliptic or hyperbolic if sign(x,y) = 1 or —1 for each point
(x,y) on C. We get a conclusion for the existence of elliptic or hyperbolic curves in a

pseudo-plane by Theorem 8.1.3 following.

Corollary 8.1.4 An elliptic curve F(x,y) = 0 exists in pseudo-plane (3, w) with the
Descartes coordinate system passing through (xo,vo) if and only if there is a domain
D c ), such that F(xy,y0) = 0 and for ¥(x,y) € D,

2

Similarly, there exists a hyperbolic curve H(x,y) = 0 in a pseudo-plane (3, w) with
the Descartes coordinate system passing through (xo, vo) if and only if there is a domain
U c Y, such that for H(xg,v0) = 0 and ¥(x,y) € U,

22 )

Construct a polar axis (p, 6) in pseudo-plane (3, w). We get a result following.

Theorem 8.1.4 There is an algebraic curve f(p,0) = 0 passing through (pg,6y) in a
domain F of pseudo-plane (3, w) with polar coordinate system if and only if f(py, 6p) = 0
and for ¥(p, 0) € F,

- > D _ signto. H)Z_ﬁ'

Proof Similar to that proof of Theorem 8.1.3, we know that limOH = w(x,y) and
AX—
0=n-22+/1if (p,0)is elliptic, or 8 = 1 — L1 + L2 if (p, ) is hyperbolic in Fig.8.1.2.
Consequently, we get that

,0 ) do
a)(,; ) = sign(p, 0)%. U
Corollary 8.1.5 An elliptic curve F(p,0) = 0 exists in pseudo-plane (3, w) with polar
coordinate system passing through (pg, 6y) if and only if there is a domain F C ), such
that F(py, 6y) = 0 and for ¥(p, 0) € F,
w(p,0) db

2 dp’
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and there exists a hyperbolic curve h(x,y) = 0 in pseudo-plane (3, w) with polar coor-
dinate system passing through (0o, 6y) if and only if there is a domain U C Y, such that
h(po, 6y) = 0 and for ¥(p, 0) € U,

) __do
2 dp

8.1.3 Planar Presented R®>. We discuss a presentation for points in R? by the Euclid

plane R? with characteristics.

Def nition 8.1.2 For a point P = (x,y,z) € R® with center O, let 9 be the angle of
vector OP with the plane XOY. Defne an angle function w : (x,y) = 2(m — &), i.e., the
presentation of point (x,y,z) in R® is a point (x,y) with w(x,y) = 2(n — 4(@, XOY)) in
pseudo-plane (3., w).

An explanation for Def nition 8.1.1 is shown in Fig.8.1.3, where 6 is an angle be-
tween the vector OP and plane XOY.

Z
Y
P(x,y,2) 9
| ©_ )
6
e Y
0] o
\.(x,y,o) O X
X
Fig.8.1.3

Theorem 8.1.5 Let (3, w) be a pseudo-plane and P = (x,y,z) a point in R®. Then the
point (x,y) is elliptic, Euclidean or hyperbolic if and only if z> 0,z =0 orz < 0.

Proof By Defnition 8.1.2, we know that w(x,y) > 2x, = 2 or < 2x if and only if

6> 0,=0or<0by -7 <6< 7, which are equivalent to thatz > 0, = 0 or < 0. O

The following result brings light for the shape of points in R? to that of points with

a constant angle function value in pseudo-plane (3, w).

Theorem 8.1.6 For a constant n,0 < n < 4n, all points (x,y,z) with w(x,y) = n in R?
consist an inf nite circular cone with vertex O and an angle m — g between its generatrix
and the plane XOY.
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Proof Notice that w(x;,y;) = w(x,,,) for two points 4, B in R with 4 = (x,y1,z)
and B = (x,),,2;) if and only if

/(O4,X0Y) = /(OB, XOY) = 1 — g
thus points 4 and B are on a circular cone with vertex O and an angle 7 — 7 between 04

or OB and the plane XOY. Since z — +o0, we get an inf nite circular cone in R® with

vertex O and an angle m — g between its generatrix and the plane XOY. U

§8.2 INTEGRAL CURVES

8.2.1 Integral Curve. An integral curve in Euclid plane is defned by the def nition

following.

Def nition 8.2.1 If the solution of a differential equation

dy
== ftey)

with an initial condition y(x) = yy exists, then all points (x, y) consisted by their solutions

of this initial problem on Euclid plane 3 is called an integral curve.

In the theory of ordinary differential equation, a well-known result for the unique

solution of an ordinary differential equation is stated in the following.

Theorem 8.2.1 Ifthe following conditions hold:

(1) f(x,y) is continuous in a feld F':
F:xg—a<x<xo+a, yo—b<y<y,+b.
(2) There exist a constant § such that for ¥(x,y), (x,y) € F,
1/ (x,y) = [, DI < sly =,
then there is an unique solution y = ¢(x), ¢(xo) = yo for the differential equation

dy
E - f(x,)’)

with an initial condition y(xy) = y, in the interval [xo—hg, X0+ ho), where hy = min (a, M)

with M = max [f(x, ).
(x.y)€R
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A complete proof of Theorem 8.2.1 can be found in textbook on ordinary differen-
tial equations, such as the reference [Arnl]. It should be noted that conditions in Theo-
rem 6.2.1 are complex and can not be applied conveniently. As we have shown in Sec-
tion 8.1.1, a pseudo-plane (3}, w) is related with differential equations in Euclid plane
>.. Whence, by a geometrical view, to fnd an integral curve in pseudo-plane (3, w) is
equivalent to solve an initial problem for an ordinary differential equation. Thereby we
concentrate on to fnd integral curves in pseudo-plane in this section.

According to Theorem 8.1.3, we get the following result.

Theorem 8.2.2 A curve C,

C= {(x,y(X))I% = f(x, ), ¥(x0) = yo}

exists in pseudo-plane (3., w) if and only if there is an interval I = [xy — h, xo + h] and an
angle function w : ), — R such that
sign(x, y(x))
w(x, y(x)) =2 (7‘( -
L+ /2(x.y)
forYx € I with

w(x0,y(x0)) = 2 (n sign(x, y(x)) )

T+ (%0, 7(x0))

Proof According to Theorem 8.1.3, a curve passing through the point (xo, y(x¢)) in
pseudo-plane (3, w) if and only if y(xy) = yo and for Vx € [,

2
(n - w(x,Ty(x)))(l + (%) ) = sign(x, y(x)).

Solving w(x, y(x)) from this equation, we get that

_sign(ry() | _ (ﬂ _ sign(x, y(x)))
L+ (%) L+ /209) )

Now we consider curves with an constant angle function at each of its point follow-

O

w(x,y(x)) = 2 [JT

ing.
Theorem 8.2.3 Let (3, w) be a pseudo-plane and 0 a constant with 0 < 6 < 4.
(1) A curve C passing through a point (xq, o) with w(x,y) = n for V(x,y) € C is

closed without self-intersections on (3, w) if and only if there exists a real number s such

that
sn = 2(s — 2)n.
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(2) A curve C passing through a point (xo,yo) with w(x,y) = 0 for ¥V(x,y) € Cis a

circle on (3, w) if and only if 5
n=2r--,
r

where r = [x; + 3, e, C is a projection of a section circle passing through a point
(x0,V0) on the plane XOY.

Proof Similar to Theorem 7.3.1, we know that a curve C passing through a point

(x0, o) in pseudo-plane (3, w) is closed if and only if

f(ﬂ— @)ds:br.
0

Now by assumption w(x, y) = n is constant for Y(x, y) € C, we get that
f(ﬂ— %s))ds = S(Tl'— g)
0

s(m— g) =2n, i.e., snp=2(s—2)n.

Whence,

Now if C is a circle passing through point (x¢, o) with w(x,y) = 6 for ¥(x,y) € C,
then by the Euclid plane geometry we know that s = 277, where r = /xj + 3. Therefore,
there must be that

2

n=2m—--.
r

This completes the proof. 0

8.2.2 Spiral Curve. Two spiral curves without self-intersections are shown in Fig.8.2.1,

in where (a) is an input but (b) an output curve.

(a) (b)

Fig.8.2.1
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The curve in Fig.8.2.1(a) is called an elliptic in-spiral and that in Fig.8.2.1(b) an elliptic
out-spiral, correspondent to the right hand rule. In a polar coordinate system (p, 6), a
spiral curve has equation

o= ce”,

where c, ¢ are real numbers and ¢ > 0. If # < 0, then the curve is an in-spiral as the curve
in Fig.8.2.1(a). If ¢ > 0, then the curve is an out-spiral as shown in Fig.8.2.1(b).

For the case ¢ = 0, we get a circle p = ¢ (or x> + »* = ¢? in the Descartes coordinate
system).

Now in a pseudo-plane, we can easily fnd conditions for in-spiral or out-spiral

curves. That is the following theorem.

Theorem 8.2.4 Let (3, w) be a pseudo-plane and let n,{ be constants. Then an elliptic
in-spiral curve C with w(x,y) = n for ¥(x,y) € C exists in (., w) if and only if there exist

numbers sy > s, > -+-> 5> -+, 5> 0 fori > 1 such that
sm < 2(s; — 20w

for any integer i,i > 1 and an elliptic out-spiral curve C with w(x,y) = { for V(x,y) € C
exists in (3, w) if and only if there exist numbers s| > sy > --- > 5, > -+, 5, >0 fori > 1
such that

§;¢ > 2(s; — 20
for any integer i,i > 1.

Proof Let L be an s-line like an elliptic in-spiral shown in Fig.8.2.2, in where x,,

Xa2,- -+, X, are non-Euclidean points and x; x4 is an auxiliary line segment.

X4 X3

X5 2%)

X6

Fig.8.2.2
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Then we know that

6
D= fx) <2,
i=1

12
Z(n — f(x1)) < 4n,
=1

Similarly, from any initial point O to a point P far s to O on C, the sum of lost angles

at P is

N

e 2)os=e-2)
0
Whence, the curve C is an elliptic in-spiral if and only if there exist numbers s; > s, >

<o >8> -, 85> 0 for > 1 such that

(JT— g)sl < 2,

(JT— g)sz < 4,

(n— g)s3 < 6bm,

Therefore,

sm < 2(s; — 2w

for any integer 7,7 > 1.
Similarly, consider an s-line like an elliptic out-spiral with x1, x,,- - -, x, non-Euclidean
points. We can also fnd that C is an elliptic out-spiral if and only if there exist numbers

S1 >8> --->585>---,5 >0 fori> 1 such that

- g)sl > 2,
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3
- = 2.
(n S ) > 2In
Consequently,
sm < 2(s; — 2i)m.
for any integer i,i > 1. 0

Similar to elliptic in or out-spirals, we can also def ne a hyperbolic in-spiral or hy-
perbolic out-spiral correspondent to the left hand rule, which are mirrors of curves in

Fig.8.2.1. We get the following result for a hyperbolic in or out-spiral in pseudo-plane.

Theorem 8.2.5 Let (., w) be a pseudo-plane and let n, { be constants. Then a hyperbolic
in-spiral curve C with w(x,y) = n for ¥(x,y) € C exists in (3, w) if and only if there exist

numbers sy > sy > -+ >, > -+, 5, > 0 fori > 1 such that
sim > 2(s; — 2w

for any integer i,i > 1 and a hyperbolic out-spiral curve C with w(x,y) = { for V(x,y) € C
exists in (3, w) if and only if there exist numbers s; > sy > -+ > s, > -+, 5, > 0 fori > 1
such that

§i¢ < 2(s; — 20

for any integer i,i > 1.

Proof The proof is similar to that of the proof of Theorem 8.2.4. 0

§8.3 STABILITY OF DIFFERENTIAL EQUATIONS

8.3.1 Singular Point. For an ordinary differential equation system

dx

E = P(X,J’),

dy B B
E = 0(x,y), @-1)

where 7 is a time parameter, the Euclid plane XOY with the Descartes coordinate system
is called its a phase plane and the orbit (x(¢), y(¢)) of its a solution x = x(¢),y = y(¢) is

called an orbit curve. If there exists a point (x, yp) on XOY such that

P(x0,y0) = O(x0,10) = 0,
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then there is an obit curve which is only a point (xy, o) on XOY. The point (xg, o) is
called a singular point of (4*). Singular points of an ordinary differential equation are
classif ed into four classes: knot, saddle, focal and central points. Each of these classes

are introduced in the following.
Class 1: Knot. A knot O of a differential equation is shown in Fig.8.3.1 where (@)

denotes that O is stable but () is unstable.
y

UMY
R

Fig.8.3.1

A critical knot O of a differential equation is shown in Fig.8.3.2 where (a) denotes
that O is stable but () is unstable.

y ¥
X X
0 0
(a) (b)
Fig.8.3.2

A degenerate knot O of a differential equation is shown in Fig.8.3.3, where (a) de-
notes that O is stable but (b) is unstable.
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y y
\ 0 N \ 0 N
(a) (b)
Fig.8.3.3

Class 2: Saddle Point. A saddle point O of a differential equation is shown in

PN
B/a

Fig.8.3.4

Class 3: Focal Point. A focal point O of a differential equation is shown in
Fig.8.3.5, where (a) denotes that O is stable but (b) is unstable.

y y

&
N

)
2N
)

(a) (b)

Fig.8.3.5
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Class 4: Central Point. A central point O of a differential equation is shown in

Fig.8.3.6, which is just the center of a circle.

Y

N
N

Fig.8.3.6

8.3.2 Singular Points in Pseudo-Plane. In a pseudo-plane (3, w), not all kinds of
singular points exist. We get a result for singular points in a pseudo-plane as in the

following.

Theorem 8.3.1 There are no saddle points and stable knots in a pseudo-plane plane
(2, w).

Proof On a saddle point or a stable knot O, there are two rays to O, seeing Fig.8.3.1(a)
and Fig.8.3.5 for details. Notice that if this kind of orbit curves in Fig.8.3.1(a) or Fig.8.3.5

appears, then there must be that

w(0) = 4n.

Now by Theorem 8.1.1, every point # on those two rays should be Euclidean, i.e., w(u) =
2n, unless the point O. But then w is not continuous at the point O, which contradicts
Def nition 8.1.1. U

If an ordinary differential equation system (8 — 1) has a closed orbit curve C but all
other orbit curves are not closed in a neighborhood of C nearly enough to C and those
orbits curve tend to C when ¢ — +oco or t — —oo, then C is called a limiting ring of (§ — 1)

and stable or unstable if t — +oo0 or t — —oo.

Theorem 8.3.2 For two constants py, 6y, po > 0 and 6y # 0, there is a pseudo-plane
(3, w) with
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or

such that

is a limiting ring in (3, ).
Proof Notice that for two given constants py, 6y, po > 0 and 6, # 0, the equation
p(0) = poe™”
has a stable or unstable limiting ring

P =pPo

if () - 0 when t — +o00 or t —» —co. Whence, we know that

1 Lo
0(t) = —In—.
=" o)
Therefore,
ﬁ _ _Po
dp  Gop(t)

According to Theorem 8.1.4, we get that

w(p,0) =2 (7‘( — sign(p, Q)ﬁ) ,
dp
for any point (p,6) € ., i.e.,

w(p,@):2(7r—p—0) or w(p,@):Z(n+&). 0
Bop Bop

§8.4 PSEUDO-EUCLIDEAN GEOMETRY

8.4.1 Pseudo-Euclidean Geometry. Let R” = {(x,x,---,x,)} be a Euclidean space
of dimensional » with a normal basis €, = (1,0,---,0), & = (0,1,---,0), ---, €, =
(0,0,---,1),x € R" and T}y, fT/) two vectors with end or initial point at X, respectively. A
pseudo-Euclidean space (R", i) is such a Euclidean space R” associated with a mapping

u: T/); — ;T/) for x € R”, such as those shown in Fig.8.4.1,
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%

L&

%
g

=1
=1

(a) (b)

Fig.8.4.1

where T/); and YT/) are in the same orientation in case (@), but not in case (b). Such points in
case (a) are called Euclidean and in case (b) non-Euclidean. A pseudo-Euclidean (R”, u)
is fnite if it only has f nite non-Euclidean points, otherwise, inf nite.
A straight line L passing through a point (x9,x,---,x)) with an orientation 0 =

(X1, Xz, -+, X,) is defned to be a point set (xy, x;,---,x,) determined by an equation
system

xp = + X

X =X+ 1X,

X, = X0+ tX,
for V¢ € R in analytic geometry on R”, or equivalently, by the equation system

—_ 0 — 0 _ 0
X1 )Cl _ X2 )C2 Xn )Cn

X Xa X

Therefore, we can also determine its equation system for a straight line L in a pseudo-

Euclidean space (R”, ). By def nition, a straight line L passing through a Euclidean point
X = (0, x%, -+, x9) € R” with an orientation O = (X;, Xa, - -, X,) in (R”, i) is a point set
(x1, X2, -+, x,) determined by an equation system

xp =X+ 1 + i (3))

X = x5+ (X, + 12(x"))

Xn = XS + t()(n + ,un(fo))

for V¢ € R, or equivalently,

xp — X0 ~ Xy — X9 X=X
X+ m@) X+ i) X, + (@)

where ,u}a(fo) = (1 (), 1o 3°), - - -, 1u(x°)). Notice that this equation system dependent

on ,u}a, it maybe not a linear equation system.
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Similarly, let 0 be an orientation. A point u € R” is said to be Euclidean on orien-
tation O if,u}a(ﬁ) = 0. Otherwise, let /1}6(5) = (w1 (1), uo(u), - - -, uu(u)). The point u is
elliptic or hyperbolic determined by the following inductive programming.

STEP 1. If u;(u) < 0, then u is elliptic; otherwise, hyperbolic if u;(u) > 0;

STEP 2. If yy(u) = up(u) = - -+ = pi(u = 0, but p;,1(u < 0 then u is elliptic; otherwise,
hyperbolic if ;1 (u) > 0 for an integer i,0 < i <n— 1.

Denote these elliptic, Euclidean and hyperbolic point sets by
Vew = { u € R" | u an Euclidean point },
V= {veR"|V an elliptic point }.
T/)hy = {v € R" | w a hyperbolic point }.
Then we get a partition
R' =T UV uUT
on points in R” with T/)eu OT/)Q, =0, T/)eu OT/)hy =(and T/)e, OT/)hy = (. Points in T/)e, OT/)hy

are called non-Euclidean points.

Now we introduce a linear order < on & by the dictionary arrangement in the fol-

lowing.
For (x1,x2,+++,x,) and (x|, x5,--+,x,) € O, if x; = X|,x, = x},---,x = x} and
X1 < X, for any integer [,0 < I < n — 1, then defne (xi, X2, -, Xx,) < (X}, x5, -, X},).

By this def nition, we know that
M@(ﬁ) < M@(V) < M@(W)

for Yu € T/)e,, Ve 7% w e 7hy and a given orientation 0. This fact enables us to fnd an

interesting result following.

Theorem 8.4.1 For any orientation Oelina pseudo-Euclidean space (R”, ,u}a) if
T/)e; #+ 0 and T/)hy + 0, then T/)eu 0.
Proof By assumption, _V:l # 0 and T/)hy # (0, we can choose points u € T/)e, and w €

T/)hy. Notice that ,u}a : R” — 0’ is a continuous and (7, <) a linear ordered set. Applying

the generalized intermediate value theorem on continuous mappings in topology, i.e.,
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Let f : X — Y be a continuous mapping with X a connected space and Y a linear
ordered set in the order topology. If a,b € X and y € Y lies between f(a) and f(b), then
there exists x € X such that f(x) = y.

we know that there is a point v € R” such that
5 ) = 0,
i.e., v is a Euclidean point by def nition. O

Corollary 8.4.1 For any orientation Oelina pseudo-Euclidean space (R”, ,u}a) if
T/)eu = (), then either points in (R”, /1}6) is elliptic or hyperbolic.

A pseudo-Euclidean space (R”, ,u}a) is a Smarandache geometry sometimes.

Theorem 8.4.2 A pseudo-Euclidean space (R”, Mﬁ) is a Smarandache geometry if 7%
T/)el # 0, orT/)eu,T/)hy # 0, orT/)e;,T/)hy # (O for an orientation O in (R”,,u}a).

Proof Notice that M@(E) = 0 is an axiom in R”, but a Smarandachely denied axiom
if T/)eu,T/)e; # 0, or T/)eu,T/)hy # 0, or T/)e,,T/)hy # () for an orientation O in (R",,u}a) for
,u}a(ﬁ) = 0 or # 0 in the former two cases and ,u}a(ﬁ) < 0 or > 0 both hold in the last
one. Whence, we know that (R”, ,u}B) is a Smarandache geometry by def nition. 0

Notice that there infnite points are on a straight line segment in R”. Whence, a
necessary for the existence of a straight line is there exist infnite Euclidean points in

(R”, ,u}a) Furthermore, we get conditions for a curve C existing in (R”, ,u}a) following.

Theorem 8.4.2 A curve C = (f1(?), /2(?),- - -, fu(t)) exists in a pseudo-Euclidean space
(R”,,u}a)for an orientation O if and only if

dfi@®)

_ 1 2 _
i - \m@ "
apo| -
it = \me "
dno| [ 1,
a -\
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forYu € C, where ,u}a = (U1, 125+ M)

Proof Let the angle between ,u}ﬁ and € be b, 1 <0, <n.

€
................... X
H3 05
0
10 0, Ha €
VAR L €
/ A
€1
Flg‘8'4 2

Then we know that

cost;=pu;, 1<i<n.

By geometrical implication of differential at a point u € R”, seeing also Fig.8.4.2,
we know that
dfi(t 1
D] 1= \f(—=p -1
dt Iz pi(u)
no for 1 < i < n. Therefore, if a curve C = (f1(?), f2(?), - - -, fn(¢)) exists in a pseudo-

Euclidean space (R”, ,u}a) for an orientation 6, then

0 N |
= —)> -1, 1<i<n
dt |z (Mz(”))
for Yu € C. On the other hand, if
@ = (;)2 — 1, 1<i<n
dt Iy w2 (v)

hold for points v for V¢ € R, then all points v, # € R consist of a curve C in (R”, ,u}ﬁ) for
O

the orientation 6

Corollary 8.4.2 A straight line L exists in (R”,,u}a) if and only if,u}a(ﬂ) =0forVuelL
and VO € 0.
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8.4.2 Rotation Matrix. Notice that a vector ¥ can be uniquely determined by the ba-
sis of R”. For x € R”, there are infnite orthogonal frames at point x. Denoted by Ox
the set of all normal bases at point Xx. Then a pseudo-Euclidean space (R, u) is noth-
ing but a Euclidean space R” associated with a linear mapping u : {€;,€, --,€,} —
{€,,€,--,€} € Os such that u(€)) = €, u(€) = &, ---, u(€,) = €, at point X € R".
Thus ifT/)g = Cl1€] + €y + -+ + C,€,, then u (;T/)) = cu(€y) + cou(é) + - - - + cuu(€,) =
ClE€] + Cr€y + -+ + C, €.

Without loss of generality, assume that

H(€r) = X11€1 + X126 + - -+ + X1,€p,

H(€2) = X21€1 + X0 €) + + -+ + X2,€p,

p(En) = xnla + xanz + -+ xnnEn.

Then we f nd that

u(=7)

(c1, €257, Cp)(u(€r), u(€r), - - - ,ﬂ(zn))t

X1t X2 o X
= (c1,¢2,7 77, Cn) ot ot (€1, €., €)'
Xnl  Xm2 ttt X
Denoted by
X1 X Xip (u(€r), €) (u(€), &) - (u(€), €
] = X Xpoco X || (&) &) (&) &) - (&) E) ’
Xnl  Xp2 ttc Xpn W€y €1) (u(€n). €) -+ (u(€n), €

called the rotation matrix of x in (R”, u). Then u : V- — <V is determined by u(x) = [x]
for X € R". Furthermore, such an rotation matrix x| is orthogonal for points X € R” by
defnition, i.e., [X] [¥]' = L,x,. Particularly, if X is Euclidean, then such an orientation ma-
trix is nothing but u(x) = I,x,. Summing up all these discussions, we know the following

result.

Theorem 8.4.3 [f (R",u) is a pseudo-Euclidean space, then u(x) = [X| is an n X n

orthogonal matrix for ¥ x € R”.
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8.4.3 Finitely Pseudo-Euclidean Geometry. Letn > 2 be an integer. We can character-
ize fnitely pseudo-Euclidean geometry by that of embedded graph in R”. As we known,
an embedded graph G on R” is a 1 — 1 mapping 7 : G — R” such that for Ve, ¢’ € E(G),
7(e) has no self-intersection and 7(e), 7(e’) maybe only intersect at their end points. Such
an embedded graph G in R” is denoted by Gg».

Likewise that the case of (R?, u), the curvature R(L) of an s-line L passing through

non-Euclidean points X, x5, -, X, € R” for m > 0 in (R”, i) to be a matrix determined
by
R(L) = | | u)
i=1
and Euclidean if R(L) = I,x,, otherwise, non-Euclidean. obviously, a point in a Euclidean

space R” is indeed Euclidean by this defnition. Furthermore, we immediately get the

following result for Euclidean s-lines in (R”, u).

Theorem 8.4.4 Let (R”, u) be a pseudo-Euclidean space and L an s-line in (R", i) passing
through non-Euclidean points X,%,, -+, X, € R". Then L is closed if and only if L is

Euclidean.
Proof 1f L is a closed s-line, then L is consisted of vectors x;X;, X>X3, - - -, X,X1. By
def nition,
X Xi  XiaXp
p—y R — u(x;)
xi+1xi‘ 'XHXI"

for integers 1 < i < m, where i + 1 = (modm). Consequently,

m
— ==

XX = XX u(x;).
i=1

Thus | | () = Ly i.e., L is Euclidean.
i=1

Conversely, let L be Euclidean, i.e.,

1

u(x;) = Lx,. By def nition, we know that

m
=1

—

f,q_lfi Yi_lfi _ . _— Xiv1Xi -
p— e P— u(x;), 1.e., XX = [E—pE R u(x;)
xi+1xi‘ ‘xi—lxi' 'xi—lxi‘

for integers 1 < i < m, where i + 1 = (modm). Whence, if l—[ w(x;) = L, then there
i=1
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must be
m
= = —
X1 X2 = X1X2 l_l u(x;).
i=1
Thus L consisted of vectors XX, X»X3, - - -, X,X; 1S a closed s-line in (R”, u). O

Similarly, an embedded graph Ggs is called Smarandachely if there exists a pseudo-
Euclidean space (R”, ) with a mapping 1 : X € R" — [x] such that all of its vertices
are non-Euclidean points in (R”,u). It should be noted that these vertices of valency
1 is not important for Smarandachely embedded graphs. We get a result on embedded

2-connected graphs similar to that of Theorem 6.4.2 following.

Theorem 8.4.5 An embedded 2-connected graph Gg» is Smarandachely if and only if

there is a mapping u : X € R" — [x] and a directed circuit-decomposition

Ef@E(a)

such that these matrix equations

l—[ Xo=1,, 1<i<s

Ye V(ﬁ,-)
are solvable.

Proof By defnition, if Gr» is Smarandachely, then there exists a mapping y : X €
R” — [x] on R” such that all vertices of Ggr» are non-Euclidean in (R”, ). Notice there are
only two orientations on an edge in E(Gg»). Traveling on Ggr» beginning from any edge
with one orientation, we get a closed s-line 6, 1.e., a directed circuit. After we traveled

all edges in Ggr» with the possible orientations, we get a directed circuit-decomposition

£ =)
with an s-line Ez,- for integers 1 < i < s. Applying Theorem 9.4.6, we get
[] 4@ =lw 1<is<s
}EV(?,’)
Thus these equations

l—[ Xo=1I,, l<i<s

Ye V(ﬁ,-)
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have solutions X5 = u(x) for x € V(? ,-).

Conversely, if these is a directed circuit-decomposition

- @E(ﬁ)

E

Nl—

such that these matrix equations

1_[ Xz=Iyy 1<i<s
e(C

are solvable, let Xz = A5 be such a solution for x € V(ﬁi) , 1 <i < s. Defne a mapping

u:x€R"— [x] on R" by

_ Ax if x € V(Ggn),
p(x) = e
[n><n if x ¢ V(GRn)

Thus we get a Smarandachely embedded graph Gg. in the pseudo-Euclidean space (R”, )
by Theorem 8.4.4. 0

8.4.4 Metric Pseudo-Geometry. We can further generalize Def nition 8.1.1 and get

Smarandache geometry on metric spaces following.

Def nition 8.4.1 Let U and W be two metric spaces with metric p, W € U. ForVu € U, if
there is a continuous mapping w : u — w(u), where w(u) € R” for an integer n,n > 1 such
that for any number € > 0, there exists a number 6 > 0 and a pointv € W, p(u —v) < d
such that p(w(u) — w(v)) < €, then U is called a metric pseudo-space if U = W or a
bounded metric pseudo-space if there is a number N > 0 such that Yw € W, p(w) < N,
denoted by (U, w) or (U™, w), respectively.

By choice different metric spaces U and W in this def nition, we can get various
metric pseudo-spaces. Particularly, for » = 1, we can also explain w(u) being an angle

function with 0 < w(u) < 4n, i.e.,

W w(u)(modan), ifueW,
u) =
2m, ifueU\W.

The following result convinces us that there are Smarandache geometries in metric

pseudo-spaces.
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Theorem 8.4.5 For any integer n > 1, there are inf nite Smarandache geometries in metric

pseudo-spaces or bounded metric pseudo-spaces M.

Proof Let A and A be subset of R” or C” with A A = (0, W a bounded subspace of
M and let Wy, W, c W with W, (\ W, = 0. Since M is a metric space and W, (W, = 0,

A A =0, we can always def ne a continuous mapping w : u — w(u) on W such that
w(wy) € A forwy € Wy; w(w,) € A for w, € W,.

Therefore, the statement w(u) € A for any point u € M is Smarandachely denied by the
defnition of w, i.e., w(w;) € A for wy € W, w(w,) € A for w, € W, and w(w) for
we M\ (W, |JW>)or w(u) foru € (M\ W) can be def ned as we wish since W, (W, =0
and W\ (W, UW,) # 0, M\ W # (. By defnition, we get a Smarandache geometry
(M, w) with or without boundary. 0

§8.5 SMOOTH PSEUDO-MANIFOLDS

8.5.1 Differential Manifold. A differential n-manifold (M", A) is an n-manifold M",
where M" = | J U; endowed with a C"-differential structure A = {(U,, ¢,)la € I} on M"

iel
for an integer » with following conditions hold.
(1) {U,; @ € I} is an open covering of M";
(2) For Va,p € I, atlases (U,, ¢,) and (Up, ) are equivalent, i.e., U, () Uz = 0 or
U, (N U # 0 but the overlap maps

gpagpgl . Qoﬂ(Uaﬂ U/;) - Soﬂ(Uﬁ) and %390;1 . Qpﬁ(UaﬂU/;) - Qpa(Ua) are Cr;

(3) Aismaximal, i.e., if (U, ¢) is an atlas of M" equivalent with one atlas in A, then
(U, p)e A

An n-manifold is called to be smooth if it is endowed with a C*-differential structure.
It has been known that the base of a tangent space 7, M" of differential n-manifold (M", A)

. 0
consisting of Fl l<i<nforVpe M, A).
xl

8.5.2 Pseudo-Manifold. An n-dimensional pseudo-manifold (M", A") is a Hausdorft
space such that each points p has an open neighborhood U, homomorphic to a pseudo-
Euclidean space (R”, /1}6), where A = {(U,, ¢,)lp € M"} is its atlas with a homomor-

phism ¢, : U, — (R”,,u}a) and a chart (U, ¢,).
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Theorem 8.5.1 For a point p € (M", A*) with a local chart (U,, ¢,), ¢, = ¢, if and only

if 3 (p) = 0.
Proof ForVp € (M", A"), if ¢,(p) = ¢,(p), then u(¢,(p)) = ¢,(p). By the def nition
of pseudo-Euclidean space (R”, ,u}ﬁ), this can only happens while u(p) = 0. 0

A point p € (M", A*) is elliptic, Euclidean or hyperbolic if u(p,(p)) € (R”,,u}@) is
elliptic, Euclidean or hyperbolic, respectively. These elliptic and hyperbolic points also

called non-Euclidean points. We get a consequence by Theorem 8.5.1.

Corollary 8.5.1 Let (M", A") be a pseudo-manifold. Then ¢, = ¢, if and only if every
point in M" is Euclidean.

Theorem 8.5.2 Let (M", A*) be an n-dimensional pseudo-manifold, p € M". If there are
Euclidean and non-Euclidean points simultaneously or two elliptic or hyperbolic points

on an orientation O in (Up, ¢p), then (M", A) is a paradoxist n-manifold.

Proof Notice that two lines L, L, are said locally parallel in a neighborhood (U,,, ¢,)
of a point p € (M", A) if ¢,(L,) and ¢,(L,) are parallel in (R”, /1}6) If these conditions
hold for (M", A*), the axiom that there is exactly one line passing through a point locally
parallel a given line is Smarandachely denied since it behaves in at least two different
ways, 1.e., one parallel, none parallel, or one parallel, inf nite parallels, or none parallel,
inf nite parallels, which are verif ed in the following.

If there are Euclidean and non-Euclidean points in (U,, ¢,) simultaneously, not loss

of generality, let u be Euclidean but v non-Euclidean, ¢/, (v) = (u1, 2, - - -, pt) With gty < 0.

" M Ly -
u _\
L — L
(a) (b)

Fig.8.5.1

Let L be a line parallel the axis €; in (R”, lli@) Then there is only one line L, locally
parallel to (¢},)' (L) passing through the point u since there is only one line ¢/,(L,) parallel
to L in (R”, ,ula) However, if u; > 0, then there are inf nite many lines passing through

u locally parallel to go;,l(L) in (U, ¢,) because there are inf nite many lines parallel L in
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(R”, ,u}a), such as those shown in Fig.8.5.1(a), in where each line passing through the
point u = ¢, (u) from the shade feld is parallel to L. But if u; > 0, then there are no lines
locally parallel to (¢,)'(L) in (U,, ¢,) since there are no lines passing through the point
v = ¢,(v) parallel to L in (R”,m@), such as those shown in Fig.8.5.1(b).

If there are two elliptic points u, v along a direction 6, consider the plane }; de-
termined by ¢ (u), ¢}(v) with 0 in (R”,w}@). Let L be a line intersecting with the
line ¢ (u)g,(v) in 2. Then there are infnite lines passing through u locally parallel
to (go?)‘l(L) but none line passing through v locally parallel to go;,l(L) in (U,, ¢,) because

there are inf nite many lines or none lines passing through u = @) (u) or v = ¢;(v) parallel

to L in (R”, w}a), such as those shown in Fig.8.5.2.

Ly
N
N|

<l

Fig.8.5.2

For the case of hyperbolic points, we can similarly get the conclusion. Since there
exists a Smarandachely denied axiom to the f fth Euclid’s axiom in (M", A“), it is indeed

a paradoxist manifold. U
If M = R", we get consequences for pseudo-Euclidean spaces (R”, w}a) following.

Corollary 8.5.2 For an integer n > 2, if there are Euclidean and non-Euclidean points

simultaneously or two elliptic or hyperbolic points in an orientation O in (R”, a)}ﬁ) then

(R”, a)}a) is a paradoxist n-manifold.

Corollary 8.5.3 [f there are points p,q € (R3, w}a) such that wla(]_)) # (0,0,0) but

a)% (@) = (0,0,0) or p, q are simultaneously elliptic or hyperbolic in an orientation O in

(R3, wiﬁ) then (R3, wiﬁ) is a paradoxist n-manifold.

8.5.3 Differential Pseudo-Manifold. For an integer » > 1, a C"-differential pseudo-

manifold (M", A“) is a pseudo-manifold (M", A*) endowed with a C"-differentiable struc-
ture A and w}a for an orientation 0. A C™-differential pseudo-manifold (M", A®) is also
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said to be a smooth pseudo-manifold. For such pseudo-manifolds, we know their differ-

entiable conditions following.

Theorem 8.5.3 A4 pseudo-Manifold (M", A®) is a C"-differential pseudo-manifold with

an orientation O for an integer r > 1 if conditions following hold.

(1) There is a C"-differential structure A = {(Uy, @)l € I} on M";
2) a)}a is C";
(3) There are Euclidean and non-Euclidean points simultaneously or two elliptic or

hyperbolic points on the orientation O in (Uy, ¢p) for a point p € M".

Proof The condition (1) implies that (M", A) is a C"-differential n-manifold and
conditions (2) and (3) ensure (M", A®) is a differential pseudo-manifold by def nitions
and Theorem 8.5.2. O

§8.6 RESEARCH PROBLEMS

Def nition 8.4.1 is a general way for introducing pseudo-geometry on metric spaces. How-
ever, even for Euclidean plane )], there are many problems not solved yet. We list some

of them on Euclidean spaces R” and m-manifolds for m > 2 following.

8.6.1 Let C be a closed curve in Euclid plane }; without self-intersection. Then the curve
C divides }, into two domains. One of them is fnite, denoted by D;,. We call C the
boundary of Dy;,. Now let U = ) and W = Dy, in Defnition 8.4.1 with n = 1. For

example, choose C be a 6-polygon such as those shown in Fig.8.6.1.

Fig.8.6.1
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Then we get a geometry (3, w) partially Euclidean, and partially non-Euclidean. Then

there are open problems following.

Problem 8.6.1 Find conditions for parallel bundles on (3", w).

Problem 8.6.2 Find conditions for existing an algebraic curve F(x,y) = 0on (3", w).
Problem 8.6.3 Find conditions for existing an integer curve C on ()., w).

8.6.2 For any integer m,m > 3 and a point u € R”. Choose U = W = R” in Def nition

8.4.1 for n = 1 and w(u) an angle function. Then we get a pseudo-space geometry (R”, w).
Problem 8.6.4 Find conditions for existing an algebraic surface F(x,xp, -+, Xy,) = 0 in
(R™, w), particularly, for an algebraic surface F(x,, x,, x3) = 0 existing in (R®, w).
Problem 8.6.5 Find conditions for existing an integer surface in (R™, w).

If we take U = R” and W a bounded convex point set of R” in Def nition 8.4.1. Then
we get a bounded pseudo-space (R”~, w), which is also partially Euclidean, and partially

non-Euclidean. A natural problem on (R”~, w) is the following.
Problem 8.6.6 For a bounded pseudo-space (R"~, w), solve Problems 8.6.4 and 8.6.5.

8.6.3 For a locally orientable surface S and Yu € S, choose U = W = § in Def nition

8.4.1 for n = 1 and w(u) an angle function. Then we get a pseudo-surface geometry
(S, w).

Problem 8.6.7 Characterize curves on a surface S by choice angle function w. Whether

can we classify automorphisms on S by applying pseudo-surface geometry (S, w)?

Notice that Thurston [Thul] had classif ed automorphisms of surface S, x(S) < 0
into three classes: reducible, periodic or pseudo-Anosov. 1f we take U = S and W a
bounded simply connected domain on § in Def nition 8.4.1, we get a bounded pseudo-

surface (S, w).
Problem 8.6.8 For a bounded pseudo-surface (S, w), solve Problem 8.6.7.

8.6.4 A Minkowski norm on manifold M" is a function F : M™ — [0, +c0) such that

(1) F is smooth on M™ \ {0};
(2) F is 1-homogeneous, i.e., F(Au) = AF(u) foru € M™ and A > 0;
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(3) for Vy € M™\ {0}, the symmetric bilinear form g, : M" x M™ — R with

1 ?F?(y + su + 1v)
2 0sot

g, v) =

t=s=0
is positive def nite and a Finsler manifold is such a manifold M™ associated with a func-
tion F : TM™ — [0, +00) that

(1) Fissmooth on TM™ \ {0} = {T=M" \ {0} : x € M™};

(2) Flrepm — [0, +00) is a Minkowski norm for Vx € M™.

As a special case of pseudo-manifold geometry, equip a pseudo-manifold (M", w)
with a Minkowski norm and choose w(x) = F(x) for x € M™, then (M™, w) is a Finsler
manifold, particularly, if w(x) = gs(v,y) = F?(x,y), then (M™, w) is a Riemann manifold.
Thereby, we conclude that the Smarandache manifolds, particularly, pseudo-manifolds
include Finsler manifolds as a subset. Open problems on pseudo-manifold geometry are

listed in the following.

Problem 8.6.9 Characterize the pseudo-manifold geometry (M", w) without boundary

and apply it to classical mathematics and mechanics.

Similarly, if we take U = M™ and W a bounded submanifold of M™ in Def nition
8.4.1, we get a bounded pseudo-manifold (M™~, w).

Problem 8.6.10 Characterize the pseudo-manifold geometry (M™~, w) with boundary
and apply it to classical mathematics and mechanics, particularly, to hamiltonian me-

chanics.



CHAPTER 9.

Spacial Combinatorics

Are all things in the WORLD out of order or in order? Different notion an-
swers this question differently. There is well-known Chinese ancient book,
namely 7AO TEH KING written by LAO ZI claims that the Tao gives birth to
One; One gives birth to Two, Two gives birth to Three; Three gives birth to
all things and all things that we can acknowledge is determined by our eyes,
or ears, or nose, or tongue, or body or passions, i.e., these six organs, which
implies that all things in the WORLD is in order with patterns. Thus human
beings can understand the WORLD by fnding such patterns. This notion
enables us to consider multi-spaces underlying combinatorial structures, i.e.,
spacial combinatorics and fnd their behaviors to imitate the WORLD. For
this objective, we introduce the inherited combinatorial structures of Smaran-
dache multi-spaces, such as those of multi-sets, multi-groups, multi-rings
and vector multi-spaces in Section 9.1 and discuss combinatorial Euclidean
spaces and combinatorial manifolds with characteristics in Sections 9.2 and
9.3. Section 9.4 concentrates on the combination of topological with those of
algebraic structures, i.e., topological groups, a kind of multi-spaces known in
classical mathematics and topological multi-groups. For multi-metric spaces
underlying graphs, we get interesting results, particularly, a generalization of
Banach’s f xed point theorem in Section 9.5. All of these are an application of
the combinatorial principle to Smarandace multi-spaces, i.e., Conjecture 4.5.1
(CC Conjecture) for advancing the 21st mathematical sciences presented by
the author in 2005.
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§9.1 COMBINATORIAL SPACES

9.1.1 Inherited Graph in Multi-Space. Let (E; 7~€) be a Smarandache multi-space con-
sisting of m spaces (X1;Ry), (Z2;Ra), - -+, (X5 Ry for an integer n > 2, different two by

Y= OZi, and R = OR.
i=1 i=1

Its underlying graph is an edge-labeled graph def ned following.

two with

Def nition 9.1.1 Let (i ﬁ) be a Smarandache multi-space with s = U Z, and R = UR.
i=1 i=1

Its underlying graph G [E, E] is def'ned by
V(G[ZR]) = (£1,%, -, Z,),
E(G|Z.R|) ={EnZ)I1ZNE, #0.1<i,j < m)

with an edge labeling
I (3.3) € E(G[S.R]) - Fz.3) =@ (%[ )Z)).

where @ is a characteristic on X; (\X; such that X;(\ X; is isomorphic to (X, if and
only ifw(Z; X)) = w (X (L) forintegers 1 < i, j k,[ < m.

For understanding this inherited graph G [f, ﬁ] of multi-space (i ﬁ), we consider a
simple case, i.e., all spaces (Z;; R;) is nothing but a fnite set S; for integers 1 < i < m.
Such a multi-space S is called a multi-set. Choose the characteristic @ on S; (S j to

be the set §;(S ;. Then we get an edge-labeled graph G [§ ] For example, let S| =
— 4
{a,b,c}, S, ={c,d,e}, S3 ={a,c,e} and S4 = {d, e, f}. Then the multi-set S = J§; =

i=1

{a,b,c,d, e, f} with its edge-labeled graph G [§] shown in Fig.9.1.1.

{c}

Sy S
{a,c} {c,e {d,e)
S tel S
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Theorem 9.1.1 Let S be a multi-set with S = USiandi; € {1,2,---,mj} for integers
i=1
1 <s <m. Then,
S| =1 Jsyl+m=-s-1.

j=1
Particularly, |§| > |S;| +m— 1 for any integer i, 1 <i < m.

Proof Notice that sets §;, 1 < i < m are different two by two. thus [S; —S;| > 1 for

integers 1 <17, j < m. Whence,

|§|2 +m-s—1.

J=1

Particularly, let s = 1. We get that |§| > 1S +m — 1 for any integer i, 1 <i < m. ]

o~ m . . n -
Let § = |US; be an n-set. It is easily to know that there are [ ]2" " sets
i=1 m

S1,82,--+,8,, different two by two such that their union is the multi-set S. Whence,

there are
n
Z ( ] 2n—m
2<m<n m
msuchsets §1,5,,---,S,, consisting the multi-set S. By Def nition 9.1.1, we can classify

Smarandache multi-spaces combinatorially by introducing the following conception.

Def nition 9.1.2 Two Smarandache multi-spaces (FEVI;?E) and (Eg; 7~€2) are combinatori-
ally equivalent if there is a bijection ¢ : G [El; 7~€1] -G [Ez; 7~€2] such that

(1) ¢ is an isomorphism of graph;

2) Ifp:Z € V(G [51;97%]) -2 eG [EZ;STQZ], then ¢ is a bijection on Xy, %, with
P(R1) = Ry and o(IF(Z;, %)) = IE(p(Z:, ) for ¥(21, %) € E (G[Zi: Ri]).

Similarly, we convince this def nition by multi-sets. For such multi-spaces, there is

a simple result on combinatorially equivalence following.

Theorem 9.1.2 Let S, S, be multi-sets with S| = CJ S! and S, = CJ S?. Then S, is
i=1 i=1

combinatorially equivalent to S, if and only if there is a bijection o : S| — S, such that

(8} e V(G [Sy]) and o(S} N S3) = o(S1) N (SL), where (S }) = { o(e) | e € S} | for

any integer i, 1 <i < m.
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Proof 1f the multi-set S, is combinatorially equivalent to that of S», then there
are must be a bijection o : S| — S, such that o<(S}) € V(G [§2]) and o(S; N S)) =
a(S}) N o(S)) by Def nition 9.1.2.

Conversely, if o(S}) € V(G [S,|) and (S} N S1) = o(S1) N (1), we are easily
knowing that o : V(G [gl]) - V(G [§2]) is a bijection and (S}, S]l.) €eE (G [51]) if and
only if (o(S}). o(S1)) € E(G|[S,|) because o(S} N S1) = o(S}) N o(S}). Thus o is an
isomorphism from graphs G [§ 1] to G [§ 2] by def nition. Now if o : S € V(G [51]) —
S f 4 (G [52]), it is clear that o is a bijectionon S}, S f because o is a bijection from S|
to S,. Applying o(S| (1 S3) = o(S}) N o (S,), we are easily fnding that c(/*(S}, S })) =
IE(o(S).5D) by I£(S,81) = SIS} for V(S 1. 81) € E(G|S]). So the multi-set S is
combinatorially equivalent to that of S 5. 0

IfS, =S, = S, such a combinatorial equivalence is nothing but a permutation on S.
This fact enables one to get the following conclusion.

Corollary 9.1.1 Let S = CJ S be a multi-set with |§| =mn, |Si|=n, 1<i<m Then

i=1
m

there are n! — 1—[ n; multi-sets combinatorially equivalent to S with elements in S.
i=1

Proof Applying Theorem 9.1.2, all multi-sets combinatorially equivalent S should
be S@, where @ is a permutation on elements in S. The number of such permutations is

n!. 1t should be noted that S® = S if @ = @@, - - - @, where each @; is a permutation
m

on S;, 1 <i < m. Thus there are n! — 1_[ n; multi-sets combinatorially equivalent to S. 0
i=1

A multi-set S = CJ S;is exactif §; = (n) (S;MS;). For example, let S| = {a,d, e},

i=1 j=1j#i
S, ={a,b,e},S3=1{b,c, ftand S4 = {c,d, f}. Then the multi-set S = S1USUS3US,

is exact with an inherited graph shown in Fig.9.1.2.

{a}

Sy S
{e}
(d) (b)
{f}
Sy (@ S

Fig.9.1.2
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Then the following result is clear by the def nition of exact multi-set.

Theorem 9.1.3 An exact multi-set S uniquely determine an edge-labeled graph G [§ ]

and conversely, an edge-labeled graph G'* also determines an exact multi-set S uniquely.

Proof By Def nition 9.1.1, a multi-space S determines an edge-labeled graph G’
uniquely. Similarly, let G2 be an edge-labeled graph. Then we are easily get an exact

multi-set

S = U S, with S, = U @ (e). O

VeV (G'E) eeN 1 (V)
9.1.2 Algebraic Exact Multi-System. Let (Z, 5) be an algebraic multi-system with
A= CJA" and O = {o;, 1 <i < n}, i.e., each (A4'; o) is an algebraic system for integers
1< il_sl n. By Defnition 9.1.1, we get an edge-labeled graph G [Z ; 5] with edge labeling
[r determined by

I(Aepp Ao)) = (Ao [ ) Ao 3 {05 010)
for any (4,,4,,) € E (G [5; 5]), such as those shown in Fig.9.1.3, where 4., = (4'; o))
for integers 1 </ < n.

(Aol- onj; {Oi’ O]})
A, o . A,

i J

Fig.9.1.3

For determining combinatorially equivalent algebraic multi-systems, the following
result is useful.
Theorem 9.1.4 Let (Zl; 51), (Zz; 52) be algebraic multi-systems with Zl = A}, 51 =

i=1
{ol, 1 <i<n}and Ay = U 42, 0, = {02, 1 <i < n}). Then (54“1;51) is combinatorially
i=1

equivalent to (ZZ; 52) if and only if there is a bijection o : A, — A, such that o(4)) €
V(G[A42]) and o(4; N 4) = o(4) N o(4,), where o(4}) = { o(h) | h € A} } for any
integeri, 1 <i<m.

Proof The proof is similar to that of Theorem 9.1.2. U

Now let (4; o) be an algebraic system. If there are subsystems (4;; 0) < (4; o) for

integers 1 < i < /such that
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(1) for Vg € 4, there are uniquely a; € 4; suchthatg =a;oa,0---0q;
(2) aob=boaforae d;andb € A;, where 1 <i,j<s,i# j,

I
then we say that (4; o) is a direct product of (4;; o), denoted by 4 = @ A;.
i=1

Let (A 5) be an algebraic multi-system with 4 = U Aiand O = {o;, 1 <i < n).
Such an algebraic multi-system is said to be favorable 1f for any integer i, 1 < i < n,
(A" A7; 0,) is itself an algebraic system or empty set @ for integers 1 < j < n. Similarly,

such an algebraic multi-system is exact if for VA4, € V(G [Z ; 5]),

4= () (4()4.)
A'ENG[Z;a](AO)
An algebraic multi-system (Z, 5) with 4 = Lnj A'and O = {o;, 1 < i < n}is said to be
i=1

in-associative if
(@ao;b)ojc=ao;(bo;c) and (ac;b)o;c=ao;(bojc)

hold for elements a, b, c € A’ () A/ for integers 1 < i, j < n providing they exist.

9.1.3 Multi-Group Underlying Graph. For favorable multi-groups, we know the fol-

lowing result.

Theorem 9.1.5 A favorable multi-group is an in-associative system.

Proof Let (G 5) be a multi-group with G = U G'and O = {o;, 1 <i<n). Clearly,

i=1
G'NG/ c G'and G' G/ c G’ for integers 1 < i,j < n. Whence, the associative

laws hold for elements in (G’ () G’; 0,) and (G’ () G’;0,). Thus (G' () G/;{o;,0;}) is an

in-associative system for integers 1 < i, j < n by def nition. 0
Particularly, if o; = o, i.e., (G'; o) is a subgroup of a group for integers 1 <i < nin
Theorem 9.1.5, we get the following conclusion.
Corollary 9.1.2 Let (G'; 0) be subgroups of a group (¢, o) for integers 1 <i < n. Then a
multi-group (G; {o)) with G = U G' is favorable if and only if (G' (" G; {o}) is a subgroup
of group (¢, o) for any integers 1 <ij<nie,G [G,{ }] ~ K.
Proof Applying Corollary 1.2.1 with G' (N G’ 2 {1z} for any integers 1 < i, j < n,

we know this conclusion. O
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Applying Theorem 9.1.4, we have the following conclusion on combinatorially equiv-

alent multi-groups.
Theorem 9.1.6 Let ((71;51), (52; 52) be multi-groups with G, = |J G}, 0, = {o], 1<
i=1
i <n}and C~}2 = Gf, 52 = {Of, 1 <i<n} Then (51; 51) is combinatorially equivalent
i=1

to (52; 52) if and only if there is a bijection ¢ : 51 — 52 such that ¢(Gl.1) € V(G [52; 52])
is an isomorphism and $(G} N G,) = $(G}) N ¢(G)) for any integer i, 1 < i < n.

By Theorem 9.1.3, we have known that an edge-labeled graph G uniquely deter-
mines an exact multi-set S. The following result shows when such a multi-system is a

multi-group.

Theorem 9.1.7 Let (5; 5) be a favorable exact multi-system determined by an edge-
labeled graph G'* with G = U G,, where G, = @ (u,v) and O={o;, 1<i<

ueV(G'E) VEN 1, (u)
n}. Then it is a multi-group if and only if for Yu € V(G'), there is an operation o, in

le(u,v) for all v € Ngi;(u) such that for Va € lg(u,v,), b € lg(u,v,), thereis a o, b™' €

lg(u, v3), where vy, vy, v3 € Ngiz ().

Proof Clearly, if (G;0)isa multi-group, then for Yu € V(G't), there is an operation
o, € G, for all v € Ngi;(u) such that for Ya € Iz(u,vy), b € Ig(u,v,), thereis a o, b™! €
lg(u, v3), where v, vy, v3 € Ngig (u).

Conversely, let u € V(G'*). We prove that the pair (G,; o,) with G,, = @ E(u, v)

VENG[E (u)
is a group. In fact,

(1) Thereexistsanh € G,and 1g, =hoh™' € G,;
(2) Ifa,be G,,thena™! =15,0,a! € G,. Thusao, (b™)' =ao, b€ G,;
(3) Notice that

goyh= ]—[ gv oy hy,

vENG/E (u)

where g = l—[ g € G, h= l_l h, € G, because of G, = @ lE(u, v). We

veN e (u) veN e (u) veN e (u)
know that the associative law a o, (bo, ¢) = (ao, b)o,c for a, b, c € G, holds by Theorem

9.1.4. Thus (G,; 0,) is a group for Yu € V(G').
Consequently, (5; 5) is a multi-group, 0

Let O = {o} in Theorem 9.1.7. We get the following conclusions.
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Corollary 9.1.3 Let ((~?, {0}) be an exact multi-system determined by an edge-labeled
graph G' with subgroups IE(u,v) of group (4; o) for (u,v) € E(G'®) such that ¥ (u,v,)
IE(u, vy) = {14} for Y(u,v1), (u, v») € E(G*). Then (5, {o}) is a multi-group.

Particularly, let (¢;0) be Abelian. Then we get an interesting result following by
applying the fundamental theorem of f nite Abelian group.

Corollary 9.1.4 Let (5’, {o}) be an exact multi-system determined by an edge-labeled
graph G’ with cyclic p-groups IE(u,v) of a fnite Abelian group (¢; o) for (u,v) € E(G')
such that [E(u, vi) ) IE(u, ;) = {14} for Y(u,v1), (u,v,) € E(G®). Then (5, {0}) is a f nite
Abelian multi-group, i.e., each (G,, o) is a f nite Abelian group for u € V(G').

9.1.4 Multi-Ring Underlying Graph. A multi-system (4; 0, {J 0,) with 4 = 04,
i=1

O, ={;51<i<n}and O, = {+;; 1 <i < n}isin-distributed if for any integeri, 1 <i < n,

a-(b+;c)=a-;b+;a-;chold for Va, b, c € A" (" A/ providing they exist, usually denoted

by (Z ;0 — 02). For favorable multi-rings, we know the following result.

Theorem 9.1.8 A favorable multi-ring is an in-associative and in-distributed multi-
System.

Proof Let (E, 0, = 02) be a favorable multi-ring with R = iLle R, O ={;1<
i <nyand O, = {+;1 <7 < n}. Notice that R;(\R; C R;, R;(\R; C R; and (R;; -;, +)),
(Rj; -, +;) are rings for integers 1 < 7, j < n. Whence, if R; (| R; # 0 for integers 1 <
i,j<mn,leta,b,c € R;(R;. Then we get that

(a-,-b)-ic:a-i(b-,-c), (a‘jb)'jC:a'j(b‘jC)

(a+,-b)+,~c:a+,-(b+,~c), (a+jb)+jc:a+j(b+jc)

and
a-,-(b+,~c):a-,~b+,~a-,~c, a-j(b+jc):a-jb+ja-jc.
Thus (ﬁ, 0 — 02) is in-associative and in-distributed. ]
Particularly, if -; = - and +; = + for integers 1 < i < n in Theorem 9.1.8, we get a

conclusion following for characterizing favorable multi-rings.

Corollary 9.1.5 Let (R';-, +) be subrings of ring a (R; -, +) for integers 1 < i < n. Then
a multi-ring (R;{} < {+}) with R = \J R’ is favorable if and only if (R \R’;-, +) is a
=1

subring of ring (R; -, +) for any integers 1 <1i,j<n, i.e, G [E, {}— {+}] ~ K.
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Proof Applying Theorems 1.3.2 and 9.1.8 with R' (" R/ 2 {0,} for any integers 1 <
i, ] < n, we are easily knowing that (ﬁ, {1} = {+}) is favorable if and only if (R' N R/; -, +)
is a subring of ring (R; -, +) for any integers 1 <i,j <nand G [E, {} — {+}] ~ K,. U

Similarly, we know the following result for combinatorially equivalent multi-rings
by Theorem 9.1.6.

Theorem 9.1.9 Let (R'; 0! < 0)), (R* O = O3) be multi-rings with R' = UR},
0, = {(LL1<i<n) and R* = LnJ G?, 0, = {2, 1 <i<n). Then (EI;O} < O;) is combi-
i=1

natorially equivalent to (1~32; 07 — O%) if and only if there is a bijection ¢ : R — R* such
that p(R}) € V(G [RZ; 0} — Og]) is an isomorphism and ¢(R} N\ R}) = ¢(R}) N ¢(R}) for

any integeri, 1 <i<n.

Let (Ry, -, +),(R2, -, +),-, (R}, -, +) be [ rings. Then we get a direct sum

R:Rl@Rz@---@Rl

by the def nition of direct product of additive groups (R;; +), | <i < /. Defne
(al’aZ,“'3al) '(bl’b23“'abl) = (al 'blsa2 'b2""’al' bl)

for (ai,az, -+, a)),(b1,by,---,b)) € R. Then it is easily to verify that (R;-,+) is also a
ring. Such a ring is called the direct sum of rings (Ry, -, +), (R, -, +), -, (R, -, +), denoted
i

by R=EPR.

i=1

IA

A multi-ring (E, 0, = 02) with R = UR;, Oy ={;51<i<n}and O, = {+;;1
i=1

i < n} is said to be exact if it is favorable and R; = EP(R; N R)) for any integer i | < i <
j=1
n. Thus R; = ., @(R;, R)) in its inherited graph G [ﬁ, 0, — 02]. The
(Ri.R))EE(G[R;:01—-02))
following result is an immediately consequence of Theorem 9.1.7.

Theorem 9.1.10 Let (E, 0, — 02) be a favorable exact multi-system determined by an
edge-labeled graph G'* with R = U R,, where R, = @ Eu,v), O = {4, 1 <

ueV(G'E) VEN i (1)
i < n}and Oy = {+;, 1 <i < n}. Then it is a multi-ring if and only if for Yu € V(G’),

there are two operations +,, -, in lg(u,v) for all v € Ngi;(u) such that for Va € lg(u,vy),

b € lg(u,v,), thereisa—, b € lg(u,vs) and a -, b € Ig(u, vy), where vi,v,,v3,v4 € Ngip (u).
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Particularly, if -; = - and +; = + for integers 1 < i < n in Theorem 9.1.10, we get the

following consequence.

Corollary 9.1.6 Let (1~3, {-} —> {+}) be an exact multi-system determined by an edge-
labeled graph G with subrings I*(u,v) of a ring (R;-,+) for (u,v) € E(G') such that
I, v1) () 2, v2) = 104} for V(uv), (u,v2) € E(G™). Then (R:{+} < {+)) is a multi-

ring.

Let p;, 1 < i < s be different prime numbers. Then each (p;Z;-, +) is a subring
of the integer ring (Z; -, +) such that (p;Z) (\(p;Z) = {0}. Thus such subrings satisfy the
conditions of Corollary 9.1.6, which enables one to get an edge-labeled graph with its
correspondent exact multi-ring. For example, such an edge-labeled graph is shown in

Fig.9.1.4 forn = 6.

P

Ry) : (R

s
pal )2Y/

274

R,) (R

4 o7 3

Fig.9.1.4

9.1.5 Vector Multi-Space Underlying Graph. According to Theorem 1.4.6, two vector
spaces V, and V, over a feld F' are isomorphic if and only if dimV; = dim/}),. This
fact enables one to characterize a vector space by its basis. Let (AV, F) be vector multi-
space. Choose the edge labeling Iz : (V,, V,) =» BV, N V,) forV(V,,V,) € E (G [17])
in Def nition 9.1.1, where A(V, ( V) denotes the basis of vector space V() V,, such as
those shown in Fig.9.1.5.

BV.NOW)
Vi Vy

Fig.9.1.5

Let A € B. An inclusion mapping¢ : A — Bis such a 1 — 1 mapping that «(a) = a for

Va € Bif a € A. The next result combinatorially characterizes vector multi-subspaces.
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Theorem 9.1.11 Let (TG;F 1) and (IZ;F 2) be vector multi-spaces with 171 = Vl.1 and
i=1
= UF], and Vy = V2 and F,=U F?. Then (Fﬁl;ﬁl) is a vector multi-subspace
i=1 i=1 i=1
of (172;172) if and only if there is an inclusion t : 171 — 172 such that L(G [171;171]) <
G [?2; Fz]

Proof 1If (171 ; F 1) is a vector multi-subspace of (172; F. 2), by def nition there are must
be V! c V12/ and F! Fiz,- for integers 1 < i < n, where i; € {1,2,---,n}. Then there is an
inclusion mapping ¢ : ¥, — ¥, determined by «(V}) = V! ¢ Vi such that L(G [AVl;F 1]) <
G [?2; Fz] .

Conversely, if there is an inclusion ¢ : ¥, — V, such that ¢ (G [171;17 1]) <G [IZ;F 2],
then there must be «(V}) € 7} and «(F}) c F; for some integers j; € {1,2,--,n}. Thus

=U” =UH c U =VadF = JF = UuF) c UF? = Fy e,
i=1 i=1 j=1 " i=1 i=1 =1 "
(171 ; F 1) is a vector multi-subspace of (172; F. 2). O

Let V" be a vector space and let V7, V, C V be two vector subspaces. For Va € V, if
there are vectors b € V; and ¢ € V, such that @ = b + ¢ is uniquely, then ¥ is said a direct
sum of V| and V5, denoted by V' =V @ V,. It is easily to show that if V1 (" V, = 6, then
V=V, ..

A vector multi-space (V;F) with V = U V;and F = U F; is said to be exact if

i=1
vi= i

J#EI

holds for integers 1 < i < n. We get a necessary and sufficient condition for exact vector

multi-spaces following.

Theorem 9.1.12 Let (V F) be a vector multi-space with V= U Viand F = U F.. Then
i=1 i=1

it is exact if and only if

BV = U VﬂV' and%VﬂV’ﬂ@ ﬂV":@

(V,VeE(G[V;F))
Jor V', V" € N (V).
Proof 1f (17, F) is exact, i.e., V; = @(V: N V), then it is clear that

J#

BV = U VﬂV' and%VﬂV’ﬂ% ﬂV"—@

(n)eE(G[V:F])
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by the fact that (¥, ) € E (G |V; F|) if and only if 7' V" # 0 for YV, V" € Ngz(V)
by def nition.

Conversely, if
2= ) 20 ) ad 2(r( V)2V )V)=0
(V.V)eE(GIV;F))

for 1", V" € Ngg.zy(V), notice also that (¥, 1) € E (G|V: F|) if and only if V' V" # 0,

we know that
n=D ()

J#L

for integers 1 < i < n by Theorem 1.4.4. This completes the proof. O

§9.2 COMBINATORIAL EUCLIDEAN SPACES

9.2.1 Euclidean Space. A Euclidean space on a real vector space E over a feld F is a
mapping
-,y :EXE — R with (ej,e;) = (ej,e;) forVej,e; € E

such that fore,e;,e; e E,a € F

(ED) (e, e1 +ey) = (e, e1) + (e, e2);

(E2) (e, ae;) = a e, e);

(E3) (e1, &) = (ea, e1);

(E4) (e,e) > 0 and (e, ) = 0 if and only if e = 0.

In a Euclidean space E, the number +/(e, €) is called its norm, and denoted by |[e||. Tt

can be shown that

(1) (0,2) = (€,0) = 0 for ¥ € E;

(2) <Z x,-E}, D y,-E§> = 2 XXy <E},E§>, fore; € E, where 1 < i < max{m,n} and

i=1 j=1 i=1i=1

s=1or2.

In fact, let ¢, = e = 0 in (E1). Then <E, 6) = 0. Applying (E3), we get that
<6, E> = 0. This is the formula in (1). For the equality (2), applying conditions (E1)-(E2),
we know that

<Zn: xie;, zm:)/z‘5§> = Zm: <Zn: x,-E},y,-E§> = Zm:yi <Zn: x[E},E§>
i=1 j=1 ' J=1 1

J=1 Vi=1 j= j=
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m n nom
=2 =1 =2 =1
< Sl Syt =3 St

=1 j=1
Theorem 9.2.1 Let E be a Euclidean space. Then for Ve, e, € E,

(1) [€er, e | < lleilllle2l;

() ller + el < lleill + [lel-

Proof Notice that the inequality (1) is hold if &; or e, = 0. Assume e; # 0. Let

_ (e, &) Si
= ———. Since
(e1,er)
(@ — xej, e — xe)) = (&,8) —2(ej, &) x + (€1, ¢) x* > 0.
: €,e) .
Replacing x by R in it, then

(e1,e) (s, &) — (€1, )" > 0.

Whence, we get that

|(e1,e2) | < llexlllle-]l.

For the inequality (2), applying inequality (1), we know that

—_— —_— 2 —_— —_— —_ —_—
Il {e1, e |l (e +ey,e +e)

(ej,e1) +2(e,e) + (e, e)

(e1,e1) +2|(er,ex) | + ez, e2)

IA

(er,er) + 2| (er, en)lll (ez, €1) || + (e2, €2)

- = N2
(llerll + llexll)".

Thus
lley + el < el + [leall. O

Let E be a Euclidean space, a,beE,a+0,b#0. The angle between a and bis
def ned by

cosf = <E’ b_> .
llalllill
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Notice that by Theorem 9.2.1(1), the inequality

1< <a,5_> <-1
|[alll| 5|

always holds. Thus the angle between @ and b is well-def ned. Let X, 7 € E. Call Xand y to

be orthogonal if (x,y) = 0. For a basis e;, e, -, e, of E ife,e,,---,e, are orthogonal
two by two, such a basis is called an orthogonal basis. Furthermore, if |[e;]| = 1 for
integers 1 < i < m, an orthogonal basis e, e,, - - -, e, is called a normal basis.

Theorem 9.2.2 Any n-dimensional Euclidean space E has an orthogonal basis.

Proof Letay,ay, - - -, a, beabasis of E. We construct an orthogonal basis bi,by, -+, b,
of this space. Notice that <51,51> # 0. Choose b, = a, and let

ALy
(b1.51)

bz =dy; —
Then b, is a linear combination of @; and @, and
<52,E1> = <52,E1> -

1e., b, is orthogonal with by.

S|

—

)
(br.1)

a,

(El,El) =0,

S~

If we have constructed 51 , 52, cee Ek for an integer 1 < k < n—1, and each of them is a
linear combination of @y, ay, -+, a;, 1 <i < k. Notice <El,51> , <52,52> IR <5k_1,5k_1> *

@) (@b) (o)
RN R A L WS A
Then by is a linear combination of @, @, - - -, @; and
CURRUS U v O
~ (@b~ g";) (5.5)=0
fori=1,2, -,k — 1. Apply the induction principle, this proof is completes. O

Corollary 9.2.1 Any n-dimensional Euclidean space E has a normal basis.
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Proof  According to Theorem 9.2.2, any n-dimensional Euclidean space E has an

. _ _ a, _ a _ a
orthogonal basis @y, d, - - -, dp. Now let &) = ——, & = ——, -+, &» = —. Then we
llail llaal| Il
fnd that
(@) _ & [l
(e2j) = == = 0 and [lef = ll==ll = = =
llalllla;l] || Il
for integers 1 < i, j < m by defnition. Thus e;, e, - - -, e, is a normal basis. O

9.2.2 Combinatorial Euclidean Space. Let R” be a Euclidean space with normal
basis Z(R") = {€,¢€,---,€,}, where €, = (1,0,---,0), & = (0,1,0---,0), ---, €, =
(0,---,0, 1), namely, it has n orthogonal orientations. Generally, we think any Euclidean
space R” is a subspace of Euclidean space R"~ with a fnite but sufficiently large dimen-
sion 7., then two Euclidean spaces R™ and R™ have a non-empty intersection if and only
if they have common orientations.

A combinatorial Euclidean space is a geometrical multi-space (ﬁ; R) with R =
CJI R" underlying an edge-labeled graph G'* with edge labeling

Ir: (R".R") > 2 (R"(|R")

for V(R",R") € E(G'?), where R consists of Euclidean axioms, usually abbreviated to R.
For example, a combinatorial Euclidean space (f{; R) is shown by edge-labeled graph G’
in Fig.9.2.1,

R’ {€2} R’
{1} {1}
R’ {€2} R’

Fig.9.2.1

determine the dimension of a combinatorial Euclidean space by its underlying structure

G'* following.
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Theorem 9.2.3 Let R be a combinatorial Euclidean space consisting of R, R™, ... R

with an underlying structure G'®. Then

dll’l’lii — Z (_1)s+1dim (R”VI ﬂ R™ ﬂ .. ﬂ R”w) ,
(vieV(G'E)|1<i<s)eCL(G'E)

where n,, denotes the dimensional number of the Euclidean space in v; € V(G') and

CLy(G'r) consists of all complete subgraphs of order s in G'.

Proof By defnition, R™ N R™ # @ only if there is an edge (R™, R™) in G'#, which
can be generalized to a more general situation, i.e., R™ N R™ N ---NR™ # @ only if
Vi, V2, Vi = Kj. In fact, if R™ N R™ N --- N R™ # (), then R™ N R™ # @, which
implies that (R, R™/) € E(G') for any integers i, j, 1 < i, j < I. Thus (vi,va, -+, V))gir
is a complete subgraph of order / in graph G'*.

Notice that the number of different orthogonal elements is dimR = dim [ U R™
veV(GlE)

Applying the inclusion-exclusion principle, we get that

dimR = dim( U R™

VeV (G'E)

= D (=1 dim (R™ (\R™ ()| R™)

V1, vs)CV(G'E)

= > D dim (R (R () (R™). O

(vieV(G'E)|1<i<s )eCLy(G'E)

Notice that dim (R™ N R™2) # 0 only if (R™1,R™) € E(G'*). We get an applicable
formula for dimR on K;-free graphs G, i.e., there are no subgraphs of G isomorphic to
K3 by Theorem 9.2.3 following.

Corollary 9.2.2 Let R be a combinatorial Euclidean space underlying a K;-free edge-
labeled graph G'®. Then

dimR= >’ n,- > dim(R"[|R").
VeV (GIE) (u,)eE(G'E)
Particularly, if G = vyv, - - - vy, a circuit for an integer m > 4, then

dimR = " n,, - i dim (R™ () R™1),

m
i=1 i=1
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where each index is modulo m.

9.2.3 Decomposition Space into Combinatorial One. A combinatorial fan-space
l~1(n1, -+, m,) is a combinatorial Euclidean space R consists of R™, R™, --., R"™ such
that for any integers i, j, 1 <i# j<m,

m

R (R = [ R™,

k=1

The dimensional number of f{(nl, e M) 1S
dimR (ny,-,n,) = 71+ ) (= 7).
i=1

determined immediately by def nition, where m = dim ( F) R .

For visualizing the WORLD, weather is there a conlzczlinatorial Euclidean space, par-
ticularly, a combinatorial fan-space R consisting of Euclidean spaces R™, R™, - R™
for a Euclidean space R" such that dimR" UR™ U - --UR"™ = n? We know the following

decomposition result of Euclidean spaces.

Theorem 9.2.4 Let R" be a Euclidean space, ny, n,, - - -, n,, integers with m < n; < n for

1 <i < m and the equation

m
A+ (=) =n
i=1

holds for an integer m,1 < m < n. Then there is a combinatorial fan-space f{(nl, n,
-+, ny,) such that
R" ~ ﬁ(nl, Moy M)

Proof Not loss of generality, we assume the normal basis of R" is €; = (1,0,---,0),
EZ = (O, 1,0"',0)5 “'92}1 = (O"“’O’ 1) Since

m

n-m= > (n-m),

i=1
choose
Rl = <€1’€2’ S Ems €l "EI11>;
R2 = <61’62" * s €y €ny 41 €np 425 "6n2>;

R3 = <61’62" * s €ty €+l €Enp 425 ° "6n3>;
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Rm = <E19E2’ e ’Eﬁ’ Enm_1+1’gnm_1+2’ e 9Enm> .
m —_—
Calculation shows that dimR; = n; and dim(() R;) = m. Whence R(n,n,,---,n,) is a

i=1
combinatorial fan-space. Thus

R" ~ ﬁ(nl,nz,---,nm). O

Corollary 9.2.3 For a Euclidean space R", there is a combinatorial Euclidean fan-space

f{(nl, ny,- -, ny) underlying a complete graph K, with m < n; < n for integers 1 < i < m,

m+ Z (n; — m) = n such that R" ~ l~1(n1,n2, Ce ).
P

§9.3 COMBINATORIAL MANIFOLDS

9.3.1 Combinatorial Manifold. For a given integer sequence ny,n,, - -, n,, m > 1 with
0 <n <ny<---<ny,, acombinatorial manifold M is a Hausdorff space such that for
any point p € M, there is a local chart (U ,¢p) of p, i.e., an open neighborhood U, of
pin M and a homoeomorphism ¢, : U, — f{(nl(p), ny(p), - -+, nyp)(p)), a combinatorial

fan-space with

{ni(p), n2(p), -+, ngp(P)} € {n1,ma, -+, My}
and

@), ma@). - ny@)h = (1,2, ma),

peil

denoted by M (ny,ny,--+,n,) or M on the context, and
ﬁ = {(U ) ¢p)|p € M(nl’ N, -, nm))}
an atlas on ]\7(111,112, -++,n,). The maximum value of s(p) and the dimension s(p) =

i=1
at the point p, respectively.

s(p) —
dim ( (M R"") | are called the dimension and the intersectional dimension of M(ny, - -, n,,)

A combinatorial manifold M is [ nite if it is just combined by f nite manifolds with
an underlying combinatorial structure G without one manifold contained in the union of

others. Certainly, a fnitely combinatorial manifold is indeed a combinatorial manifold.
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Two examples of such combinatorial manifolds with different dimensions in R? are
shown in Fig.9.3.1, in where, (a) represents a combination of a 3-manifold with two tori,

-
&y oL

(a) (b)

Fig.9.3.1

By def nition, combinatorial manifolds are nothing but a generalization of mani-
folds by combinatorial speculation. However, a locally compact n-manifold M” without
boundary is itself a combinatorial Euclidean space ﬁ(n) of Euclidean spaces R” with an

underlying structure G’ shown in the next result.

Theorem 9.3.1 A locally compact n-manifold M" is a combinatorial manifold MG(n)
homeomorphic to a Euclidean space ﬁ(n, A € A) with countable graphs G' inherent in
M", denoted by G| M"].

Proof Let M" be a locally compact n-manifold with an atlas
M) ={(Ur;p) | 1€ A},

where A is a countable set. Then each U,, 1 € A is itself an n-manifold by def nition.

Def ne an underlying combinatorial structure G2 by
V(G"™) = (Ui € A},
EGH)={(Up,U)i, 1 i<y + 11U NU # 0,4, € A}

where k), is the number of non-homotopic loops formed between U, and U,. Then we get
a combinatorial manifold M" underlying a countable graph G'=.

Def ne a combinatorial Euclidean space f{(n, A € A) of Euclidean spaces R” by
V(G") = {pa(UnIA € A},

E(GIE) = { (prl(U/l)’ QDL(UL))Z" 1<i< Kiu + 1| SD/I(U/I) ﬂ QDL(UL) # 0’ /1’L € A},
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where «/, is the number of non-homotopic loops in formed between ¢,(U,) and ¢,(U,).
Notice that ¢,(U;) N (U,) # 0 if and only if U; N U, # 0 and k,, = «/, for 4,1 € A.
Now we prove that M" is homeomorphic to ﬁ(n, A € A). By assumption, M" is
locally compact. Whence, there exists a partition of unity ¢, : U, — R”, 1 € A on the
atlas .o/ M"]. Let A, = supp(g,). Defne functions 4, : M" — R" and H : M" — &5/(n)
by
{quwxm ifx e Uy,
ha(x) = .
0=(0,---,0) ifxeU,—-A4,.

and

H= cha, and J= Zcfgo}l.

AeA AeA
Then 4,, H and J all are continuous by the continuity of ¢, and ¢, for VA € A on M".

Notice that ¢;'¢;'¢ ¢, =the unity function on M". We get that J = H™', i.e,, His a
homeomorphism from M” to &z (n, A € A). 0

9.3.2 Combinatorial d-Connected Manifold. For two points p, g in a f nitely combi-
natorial manifold M (ny,ny, - - -, ny), if there is a sequence By, By, - - -, B of d-dimensional
open balls with two conditions following hold:

(1) B; c M(nl,nz, -+, m,) for any integeri, ] <i < sand p € By, q € By;

(2) The dimensional number dim(B; (| Bz1) = dforVi,1 <i<s-—1,
then points p, g are called d-dimensional connected in Z\~4(n1, ny, - -+, n,) and the sequence
Bi, By, -+, B, a d-dimensional path connecting p and ¢, denoted by P?(p, q). If each pair
p,q of points in ]\7(111, ny, -+, Ny,) is d-dimensional connected, then ]\7(111, Ny, -+, Npy) 18
called d-pathwise connected and say its connectivity> d.

Not loss of generality, we consider only fnitely combinatorial manifolds with a
connectivity> 1 in this book. Let ]\71(111, ny,---,n,) be a fnitely combinatorial manifold

and d > 1 an integer. We construct a vertex-edge labeled graph G M (ny,ny,---,n,)] by
V(G M1, m, - m)]) = Vi | 7,
where,
V, = {n; — manifolds M" in Z\~1(n1,n2, <o )|l <1< m}and

V> = {isolated intersection points O, 5 of M™, M™ in M (ny,ny,---,n,) forl <

i, j < m}. Label n; for each n;-manifold in V; and 0 for each vertex in V, and

E(G[M(n1,na, -, n)]) = Ey ) Eo,
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where E; = {(M", M") labeled with dim(M" (\ M) | dim(M™ \ M") > d, 1 < i, j < m}
and E; = {(Oypmippis M™), (Oppi pri» M™) labeled with O | M™ tangent M'™ at the point
Oppi g for 1 <, j < m}.

For example, these correspondent labeled graphs gotten from f nitely combinatorial
manifolds in Fig.9.3.1 are shown in Fig.9.3.2, in where d = 2 for (a) and (b). Notice if
dim(M" N M") < d — 1, then there are no such edges (M", M") in Gd[ﬂ(nl, Mo,y fpy)].

O>—2—0G—2—0 O>—2—0—=2—0

(a) (b)

Fig.9.3.2

Theorem 9.3.2 Let Gd[[\?(nl, ny, -+, ny,)] be a labeled graph of a f nitely combinatorial
manifold Z\~4(n1, Ny, -+, Ny). Then

(1) Gd[]\71(n1,n2, -+, n,)] is connected only if d < n.

(2) there exists an integer d,d < ny such that Gd[ﬂ(nl, ny, -+, Nny,)] is connected.

Proof By defnition, there is an edge (M", M) in Gd[]\71(n1, Ny, -+, ny,)] for 1 <
i, j < mif and only if there is a d-dimensional path P¥(p, ¢) connecting two points p € M"
and g € M". Notice that

(P'(p,q) \ M") € M" and (P*(p,q) \ M"™) € M".
Whence,
d < min{n;, n;}. 9-3-1)

Now if G[M(ny, ns, - -+, ny)] is connected, then there is a d-path P(M", M"7) con-
necting vertices M" and M" for VM", M" € V(G* [Z\~4(n1, ny,---,n,)]). Not loss of gen-
erality, assume

PM", M"Yy = MM M - - - M M™ .

Then we get that
d < min{n;, 51,82, , -1, 1} 9-3-2)

by (9 — 3 — 1). However, by def nition we know that

Jim@), ma@), -+ nip®)) = (m1,m2, ). (9-3-3)

peil



286 Chap.9 Spacial Combinatorics

Therefore, we get that

d < min LU{”l(P), ny(p), -+ ()| = min{ny, ny, - -+, ny) = ny
eM
by combining (9 — 3 — 2) with (9 — 3 — 3). Notice that points labeled with 0 and 1 are
always connected by a path. We get the conclusion (1).
For the conclusion (2), notice that any fnitely combinatorial manifold is always
pathwise 1-connected by defnition. Accordingly, GI[M(nl,nz, -+, ny,)] 1s connected.
Thereby, there at least one integer, for instance d = 1 enabling G [A7I(n1,n2, e ,nm)]

to be connected. This completes the proof. OJ

According to Theorem 9.3.2, we get immediately two conclusions following.

Corollary 9.3.1 For a given fnitely combinatorial manifold M, all connected graphs

G? [2\7] are isomorphic if d < ny, denoted by G* [M]

Corollary 9.3.2 [fthere are k 1-manifolds intersect at one point p in a f nitely combina-
torial manifold M, then there is an induced subgraph K**' in G* []\7]

Now we defne an edge set E¢ (]\71) in Gt [2\7] by
B ()~ £(0* 1) £(6* [ 7).

Then we get a graphical recursion equation for graphs of a f nitely combinatorial manifold

Masa by-product.

Theorem 9.3.3 Let M be a f nitely combinatorial manifold. Then for any integer d,d > 1,
there is a recursion equation G*! []\7] =G []\7] - E4 (]\7) for labeled graphs of M.

Proof It can be obtained immediately by def nition. 0

Now let H(ny,---,n,) denotes all fnitely combinatorial manifolds ]\7(111, cee Ny)
and G[0, n,,] all vertex-edge labeled graphs G* with 6, : V(G*) U E(GY) — {0, 1, - -, n,,}

with conditions following hold.

(1)Each induced subgraph by vertices labeled with 1 in G is a union of complete
graphs and vertices labeled with 0 can only be adjacent to vertices labeled with 1.

(2)For each edge e = (u,v) € E(G), T2(e) < min{r(u), 71(v)}.

Then we know a relation between sets H(n, ny, - - -, n,) and G([0, n,], [0, n,,]) fol-

lowing.
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Theorem 9.3.4 Let1 < n; <n, <--- < ny,m > 1 be a given integer sequence. Then
every f nitely combinatorial manifold MeH (ny,---,n,) defnes a vertex-edge labeled
graph G([0,n,]) € G[0,n,]. Conversely, every vertex-edge labeled graph G([0,n,]) €
G0, n,,] def nes a f nitely combinatorial manifold[\? € H(ny,- -, ny,) witha 1-1 mapping
0:G(0,n,]) — M such that O(u) is a O(u)-manifold in M, 71(u) = dimO(u) and (v, w) =
dim(8(v) () 6(w)) for Yu € V(G([0, n,])) and ¥(v,w) € E(G([0, n,])).

Proof By def nition, for VM e H (ny,---,ny,) there is a vertex-edge labeled graph
G([0,n,]) € G([0,n,]) and a 1 — 1 mapping 6 : M - G([0,n,,]) such that O(u) is a
6(u)-manifold in M. For completing the proof, we need to construct a fnitely combi-
natorial manifold M € H(ny,---,n,) for YG([0,n,]) € G[O0,n,] with () = dimé(u)
and 7,(v, w) = dim(6(v) () 6(w)) for Yu € V(G([0,n,,])) and Y(v,w) € E(G([0,n,])). The
construction is carried out by programming following.

STEP 1. Choose |G([0, n,])| — |Vo| manifolds correspondent to each vertex u with a di-
mensional n; if 71(u) = n;, where V, = {ulu € V(G([0, n,])) and 7;(u) = 0}. Denoted by
V5 all these vertices in G([0, n,,,]) with label> 1.

STEP 2. For Yu; € Vs with 71(u;) = n;,, if its neighborhood set Ng (o, (1) (Va1 =
{v%,vf,---,vi(”l)} with 7;(v})) = ny, T1(V) = ni, -+, Tl(vi(”l)) = Nisu)> then let the
manifold correspondent to the vertex u; with an intersection dimension Tz(ulvi) with

manifold correspondent to the vertex v for 1 <7 < s(u;) and def ne a vertex set A} = {u}.

STEP 3. If the vertex set A; = {uy, uy, -+, u;} € V51 has been defned and V5, \ A; # 0, let

ui1 € Vs \ Ay with a label n;, . Assume

(Neqo,n,7)(U121) ﬂ Va) \ Ar = (Vs Vi o D)

; 1 — 2y — sir)y
with TI(VHI) = Ni1,1, TI(V1+1) = Ni41,2, "',T](V[+l+ ) = Nl s(u) - Then let the man-

ifold correspondent to the vertex u;; with an intersection dimension 7,(uz v}, ;) with
the manifold correspondent to the vertex vj,,,1 < i < s(ux,) and defne a vertex set
At = AU s -

STEP 4. Repeat steps 2 and 3 until a vertex set A, = V>, has been constructed. This
construction is ended if there are no vertices w € V(G) with 7;(w) = 0, i.e., V5, = V(G).

Otherwise, go to the next step.

STEP 5. For Yw € V(G([0,n,])) \ Vs1, assume Ngqo,n,7)(W) = {wi, Wy, -+, w,}. Let all

these manifolds correspondent to vertices wy, ws, - - -, W, intersects at one point simulta-
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neously and defne a vertex set A7, | = A, U{w}.

STEP 6. Repeat STEP 5 for vertices in V(G([0,n,])) \ Vs;. This construction is fnally

ended until a vertex set A7,, = V(G[ny,ny, - - -, n,]) has been constructed.

*

A fnitely combinatorial manifold M correspondent to G([0, n,,]) is gotten when A7, ,

has been constructed. By this construction, it is easily verif ed that MeH (ny, - ny)
with 7;(1) = dimé(«) and 7, (v, w) = dim(6(v) () 8(w)) for Yu € V(G([0, n,,])) and ¥ (v, w) €
E(G([0, n,,])). This completes the proof. O

9.3.3 Euler-Poincaré Characteristic. the Euler-Poincaré characteristic of a C/W-complex
<M is def ned to be the integer

X = (< 1a;
i=0

with «; the number of i-dimensional cells in 97T. We calculate the Euler-Poincaré charac-
teristic of fnitely combinatorial manifolds in this subsection. For this objective, defne a

clique sequence {CI(i)};»; in the graph G* []\7] by the following programming.
STEP 1. Let CI(G* | M|) = ly. Construct
Clly) = {KP KD, KDIKP > G*[M]and K N K" = 0,
or a vertex GV(GL [IVI]) fori# j,1<i,j Sp}.

STEP2. LetG, = |J K'and CI(GL []VI] \ Gl) = [;. Construct
K'eCl()

Ccl(ly) = {Kil’Kél’...’KéllKill > GL[M] andKfl ij} =0
oraverteer(GL[M]) fori# j,1< i,qu}.

STEP 3. Assume we have constructed CI(/,_;) foranintegerk > 1. Let G, = |J K/
Klk-1€CI(l)

and CI (GL []\7] \(GiU---U Gk)) = /.. We construct

Cllly = {KFKY,--- KMK!' > GHM]and K N K" =0,
or a vertex € V(GL [M]) fori# j,1<i,j< r}.
STEP 4. Continue STEP 3 until we fnd an integer ¢ such that there are no edges in
—_ t
Gt |M|\ UG
i=1
By this clique sequence {CI(i)};»1, we can calculate the Euler-Poincaré characteristic

of f nitely combinatorial manifolds.
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Theorem 9.3.5 Let M be a f nitely combinatorial manifold. Then

x(M)= 3, ) O T(Ma[ ][ ]1)

K*eCl(k) k=2 My, eV (Kh), 1< j<s<k

Proof Denoted the numbers of all these i-dimensional cells in a combinatorial mani-
fold M or in a manifold M by @; and o ;(M). If G* []\7] is nothing but a complete graph K*
with V(GL []\7]) ={My, M, -, M}, k > 2, by applying the inclusion-exclusion principe

and the def nition of Euler-Poincaré characteristic we get that
x(M) = (1@
i=0
= >0 D Ena(M ()| My)
i=0

A/I,-/.eV(K’f),lstssk

(o8]

_ Z (-1)*! Z(—l)ia’i(Ml ﬂﬂMY)

A/I,-/.eV(K’f),lstssk i=0

_ Z (—1)”1)((1\/fnﬂ"'ﬂ]\/[is)

A/I,-/.eV(K’f),lstssk

for instance, y (M) = x(M) + x(Ma) = x(M; 0 My) if G* M| = K* and ¥ (G* | M]) =
{M,, M,}. By the defnition of clique sequence of G* []\7], we fnally obtain that

(@)= 3 Y et () M),

KkeCl(k),k>2 M,-jeV(Kk),lg j<s<k

U

Particularly, if G* [2\7] is one of some special graphs, we can get interesting conse-

quences by Theorem 9.3.5.

Corollary 9.3.3 Let M be a [ nitely combinatorial manifold. If G- [[\7] is K3-free, then

v(M)= ), yon- 3, x(a[]m).

MeV(GH[M]) (M, M2)eE(GL[M])

Particularly, if dim (M, ( M>) is a constant for any (M, M,) € E (GL [1\7]) then

V()= 3, van-x(m (o) |z(e ()]

MeV(GL[M])
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Proof Notice that GE[M] is K3-free, we get that

x () Do )+ x() —x (b ) 02))

(M, M>)eE(GL[M])

Dy rxn) -y (M) M)

(M1, M>)eE(GE[M]) (M1, M>)eE(GE[M])
2
= > Xmn- > x(M[m).
MeV(GL[M)) (M1, M>)eE(GE[M])

O

Since the Euler-Poincaré characteristic of a manifold M is 0 if dimM = 1(mod2), we

get the following consequence.

Corollary 9.3.4 Let M be a [ nitely combinatorial manifold with odd dimension number
for any intersection of k manifolds with k > 2. Then

x(M)=" > xm.

MeV(GLIM])

§9.4 TOPOLOGICAL SPACES COMBINING WITH MULTI-GROUPS

9.4.1 Topological Group. A topological group is a combination of topological space

with that of group formally def ned following.

Def nition 9.4.1 A topological group (G; o) is a Hausdorff topological space G together

with a group structure on (G; o) satisfying conditions following:

(1) The group multiplication o : (a,b) — ao b of G X G — G is continuous;

(2) The group inversion g — g~ of G — G is continuous.

Notice that these conditions (1) and (2) can be restated following by the def nition of

continuous mapping.

(1) Let a,b € G. Then for any neighborhood W of a o b, there are neighborhoods
U, V of a and b such that UV Cc W, where UV ={xoylx e U, y e V};

(2") For a € G and any neighborhood V of a™', there is a neighborhood U of a such
thatU C V.
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It is easily verifed that conditions (1) and (2) can be replaced by a condition (3)

following:

(3") Leta,b € G. Then for any neighborhood W of a o b™', there are neighborhoods
U, V of a and b such that UV~ c W.

A few examples of topological group are listed in the following.

(1) (R";+) and (C"; +), the additive groups of n-tuple of real or complex numbers

are topological group.

(2) The multiplicative group (S; -) of the complex numbers with S = { z | |z| = 1} is
a topological group with structure S'.

(3) Let (C*;-) be the multiplicative group of non-zero complex numbers. The topo-
logical structure of (C*;-) is R? — {(0,0)}, an open submanifold of complex plane R.
Whence, it is a topological group.

(4) Let Gl(n, R) be the set of n X n non-singular matrices M,,, which is a Euclidean

space of R” — (0,0, - - -, 0). Notice that the determinant function det : M, — R is contin-
—

uous because it is nothing but a polynomial in the coefficients of M,. Thus (G/(n, R); det)

is a topological group.
Some elementary properties of a topological group (G; o) are listed following.

(P1) Leta; € G forintegers 1 < i < mand aj oaf o---o0ay = b, where ¢ is
an integer. By condition (1’), for a V(b) neighborhood of b, there exist neighborhoods
U, Us,---,U,ofay,ay,---,a, such that U o US' o ---0 Uy, C V(b).

(P2) Leta € G be a chosen element and f(x) = xoa, f(x) = ao x and ¢(x) = x7!
for Vx € G. It is clear that f, f” and ¢ are bijection on G. They are also continuous. In
fact, let b’ = x’ - a for X’ € G and V a neighborhood of ’. By condition (1”), there are
neighborhoods U, W of x” and a such that UW c V. Notice thata € W. Thus Ua C V. By
def nition, we know that f'is continuous. Similarly, we know that /" and ¢ are continuous.
Whence, f, f” and ¢ are homeomorphism on G.

(P3) Let E,F C be open and closed subsets, respectively. Then for Ya € G, by
property (P2), Ea,aE, E~" are open, and Fa, aF, F~' are closed also.

(P4) A topological space S is homogenous if there is a homeomorphism 7 : § — S
for Vp,q € S such that T(p) = q. Leta = p~! o g in (P2). We know immediately that the

topological group (G; o) is homogenous.
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9.4.2 Topological Subgroup. Let (G;o) be a topological group and H ¢ G with condi-

tions following hold:

(1) (H, o) is a subgroup of (G; o);
(2) H isclosed.

Such a subgroup (H; o) is called a topological subgroup of (G; o).

Theorem 9.4.1 Let (G; o) be a topological group and let (H; o) be an algebraic subgroup
of (G; o). Then (H; o) is a topological subgroup of (G; o) with an induced topology, i.e.,
S is open if and only if S = H(\ T, where T is open in G. Furthermore, (H; irc) is a
topological subgroup of (G; o) and if H<\G, then (H; o) is a topological normal subgroup
of (G; o).

Proof We only need to prove that o : H X H — H is continuous. Let a,b € H with
aob™! = cand W aneighborhood of ¢ in H. Then there is an open neighborhood W’ of ¢
in G such that W = H (" W’. Since (G; o) is a topological group, there are neighborhoods
U’, V' of a and b respectively such that U’(V")"' < W’. Notice that U = H( U’ and
V = H (V' are neighborhoods of @ and b in H by def nition. We know that UV~! ¢ W.
Thus (H; o) is a topological subgroup.

Now let a,b € H. Then a o b~ € H. In fact, by a,b € H, there exist elements
x,y € H such that x o y~! € H (" W, which implies that @ o 5~' € H. Whence (H; irc) is a
topological subgroup.

ForVece Ganda € H,if H<1 G, thencoaoc™! € H. Let V be a neighborhood of
coaoc'. Then there is a neighborhood of U such that cUc™' c V. Since a € H, there
exist x € H(\ U suchthat coxoc™' € HV Thus co x o ¢! € H. Whence, (H; o) is a
topological normal subgroup of (G; o). O

Similarly, there are two topological normal subgroups in any topological group (G; o),
i.e., {15} and (G; o) itself. A topological group only has topological normal subgroups {15}
and (G; o) is called a simple topological group.

9.4.3 Quotient Topological Group. Let (G; o) be a topological group and let H <G be a
normal subgroup of (G; o). Consider the quotient G/H with the quotient topology, namely
the f nest topology on G/H that makes the canonical projection g : G — G/H continuous.
Such a quotient topology consists of all sets g(U), where U runs over the family of all open
sets of (G; o). Whence, if U C G is open, then ¢~'q(U) = UH = {Uhlh € H} is the union
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of open sets, and so it is also open.

Choose 4,B € G/H, a € A. Notice that B = bH is closed and a ¢ B. There exists a
neighborhood U(a) of a with U(a) () B = 0. Thus the set U’ consisting of all xH, x € U
is a neighborhood of 4 with U’ (| B = 0. Thus (G/H; o) is Hausdorft space.

By defnition, g(a) = aH. Let U’ be a neighborhood of a, i.e., consisting of xH
with x € U and U a neighborhood of (G; o). Notice that UH is open and a € UH.
Whence, there is a neighborhood V of a such that V' ¢ UH. Clearly, g(V) c U’. Thus ¢
is continuous.

It should be noted that o : G/HXG/H — G/H is continuous. In fact, let A, B € G/H,
C = AB™! and W’ a neighborhood of C. Thus W’ consists of elements zI¥, where W is a
neighborhood in (G; o) and z € W. Because C € W’, there exists an element ¢ € W such
that C = cH. Let b € Band a = co b. Then a € A. By def nition, there are neighborhoods
U, V of a and b respectively such that UV~! ¢ W in (G; o). Defne

U={xH|xeU} and V' ={yH|yeV}
There are neighborhoods of 4 and B in (G/H; o), respectively. By H <1 G, we get that
(xHyH) ' =xHH 'y = xHy' = (xoy hYH e W'.

Thus U'(V')™' ¢ W, ie., o : G/Hx G/H — G/H is continuous. Combining these

discussions, we get the following result.

Theorem 9.4.2 For any normal subgroup H of a topological group (G; o), the quotient
(G/H; o) is a topological group.

Such a topological group (G/H; o) is called a quotient topological group.

9.4.4 Isomorphism Theorem. Let (G; o), (G’; ) be topological groups and f : (G;0) —
(G’; ®) be a mapping. If f is an algebraic homomorphism, also continuous, then 1 is
called a homomorphism from topological group (G; o) to (G’; ®). Such a homomorphism
is opened if it is an opened topological homeomorphism. Particularly, if /" is an algebraic
isomorphism and a homeomorphism, f is called an isomorphism from topological group
(G;0)to (G'; ).

Theorem 9.4.3 Let (G;o0), (G';e) be topological groups and g : (G;0) — (G';e) be
an opened onto homomorphism, Kerg = N. Then N is 