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The study of zero-divisors in group rings had become interesting problem since 
1940 with the famous zero-divisor conjecture proposed by G.Higman [2]. Since 
then several researchers [1, 2, 3] have given partial solutions to this conjecture. 
Till date the problem remains unsolved. Now we introduce the notions of 
Smarandache zero divisors (S-zero divisors) and Smarandache week zero divisors 
(S-weak zero divisors) in group rings and study them. Both S-zero divisors and S-
weak zero divisors are zero divisors but all zero divisors are not S-zero divisors or 
S-weak zero divisors. Even here we can modify the zero divisor conjecture and 
suggest the S-zero divisor conjecture and S-weak zero divisor conjecture for group 
rings. Thus the study has its own importance. Unlike in case of group rings of 
finite groups over field of characteristic zero where one is always gurranteed the 
zero divisors, we can not establish the same in case of S-zero divisors or S-weak 
zero divisors. 
 
In this paper we study the conditions on Zn, the ring of integer modulo n to have S-
zero divisors and S-weak zero divisors. We have proved if n is a composite 
number of the form n = p1p2p3 or (n = pα) where p1, p2 and p3 are distinct primes or 
(p a prime, α ≥ 3), then Zn has S-zero divisors. We further obtain conditions for Zn 
to have S-weak zero divisors. We prove all group rings Z2 G where G a cyclic 
group of non prime order and | G | ≥ 6 have S-zero divisors. The result is extended 
to any prime p i.e. we generalize the result for ZpG where p any prime. Conditions 
for group rings ZG and KG (Z the ring of integer and K any field of characteristic 
zero) to have S-zero divisors is derived. 
 
This paper is organized into 5 sections. In section 1, we recall the basic definitions 
of S-zero divisors and S-weak divisors and some of its properties. In section 2, we 
find conditions for the finite ring Zn to have S-zero divisors and S-weak zero 
divisors. We give examples to this effect. In section 3, we analize  the group rings 
Z2G where G is a finite group of order greater than or equal to 6 and G a cyclic 
group of non-prime order. In section 4 we find conditions for ZG to have S-zero 
divisors. We prove ZSn and  ZD2n have S-zero divisors. Further if K is a field of 
characteristic zero then KSn and KD2n have S-zero divisors. When G is any group 
of order n and n a composite number, then ZG and KG have S-zero divisors. In 
section 5 we give the conclusion based on our study. 



 
 
1. Some Basic Definitions: 
Here we just recall some basic results about S-zero divisors and S-weak zero 
divisors. 
 
Definition 1.1 [5]: Let R be a ring. An element a ∈ R \ {0} is said to be a S-zero 
divisor if a.b = 0 for some b ≠ 0 in R and there exists x, y ∈ R \ {0, a, b} such that  
i. a.x = 0   or  x.a = 0 
ii. b.y = 0  or y.b = 0 
iii. x.y ≠ 0  or y.x ≠ 0 
 
Note that in case of commutative rings we just need 
 i. a.x = 0,  ii. b.y = 0 and  iii. x. y ≠ 0 
 
Theorem 1.1 [5]: Let R be a ring. Every S-zero divisor is a  zero divisor but a zero 
divisor in general is not a S-zero divisor. 
 
Example 1.1: In Z4 = {0, 1, 2, 3} the ring of integers modulo 4, 2 is a zero divisor 
but it is not a S-zero divisor. 
 
Definition 1.2 [5]: Let R be a ring. An element a ∈ R \ {0} is a S-weak zero 
divisor if there exists b ∈ R \ {0, a} such that a.b = 0 satisfying the following 
conditions: 
 
There exists x, y ∈ R \ {0, a, b} such that  
 
i. a.x = 0   or  x.a = 0 
ii. b.y = 0  or y.b = 0 
iii. x.y = 0  or y.x = 0 
 
Example 1.2: Let Z12 = {0, 1, 2,…,11} be the ring of integer modulo 12. 
 3.4 ≡ 0 (mod 12), 4.9 ≡ 0 (mod12), 
and  3.8 ≡ 0 (mod 12) also 8.9 ≡ 0 (mod12) 
 
So 3 and 4 are S-weak zero divisors in Z12. We can check that Z12 contains S-zero 
divisor also. For  
 6.8 ≡ 0 (mod 12) and 3.8 ≡ 0 (mod12) 
 6.2 ≡ 0 (mod12) but 3.2 ≡ 0 (mod (12)) 
Thus Z12 has both S-zero divisor and S-weak zero divisors. 
 
 



2. S-zero divisors and S-weak zero divisors in Zn 
 
In this section we find conditions for Zn to have S-zero divisors and S-weak zero 
divisors and prove when n is of the form n = pα (α ≥ 3) or n = p1p2p3 where p1, p2, 
p3 are distinct primes, then Zn has S-zero divisor. 
 
Proposition 2.1: Zp = {0, 1, 2,…, p-1}, the prime field of characteristic p where  p 
is a prime has no S-zero divisors or S-weak zero divisors. 
 
Proof: Let Zp = {0, 1, 2,.., p-1}, where p is a prime. Zp has no zero divisors. Hence 
Zp can not have S-zero divisor as every S-zero divisor is a zero divisor. 
Further Zp cannot have S-weak zero divisor as every S-weak zero divisor is also a 
zero divisor. 
Hence the claim  
 
Example 2.1: Let  Z6 = {0, 1, 2, 3, 4, 5} be the ring of integers modulo 6. Here  
 ≡ 0 (mod 6), 3.4 ≡ 0 (mod 6) 
are the only zero divisors of Z6. So Z6 has no S-zero divisor and S-weak zero 
divisors. 
 
Example 2.2: Z8 = {0, 1, 2, 3, 4, 5, 6, 7}, the ring of integers modulo 8. Here  
 4.4 ≡ 0 (mod ) and 2.4 ≡ 0 (mod 8), 4.6 ≡ 0 (mod 8) 
but 2.6 ≡ 0 (mod8). 
So Z has 4 as S-zero divisor, but has no S-weak zero divisors. 
 
Theorem  2.1: Zn has no S-weak zero divisors when n = 2p, p a prime. 
 
Proof: To get any zero divisors a, b ∈ Zn \ {0} such that a.b ≡ 0 (mod n) one of  a 
or b must be p and the other an even number. So we cannot get x, y ∈ Zn \ {p} 
such that  
  a.x ≡ 0 (mod n), b.y ≡ 0 (mod n) 
and  
  x.y ≡ 0 (modn). 
Hence the claim. 
 
Theorem 2.2: Zn has S-weak zero divisors when n = p1p2 (orp2) where p1 and p2 
are distinct odd primes with both of them greater than 3 (or p an odd prime greater 
than 3). 
 
Proof: Take a = p1, b = p2, then a.b ≡ 0 (mod n). 
Again take x = 3p2 and y 2p1 then a.x ≡ 0 (mod n) and b.y ≡ 0 (mod n), also x.y ≡ 0 
(mod n). 



In case of = p2 a similar proof holds good. 
Hence the claim. 
 
Theorem 2.3: Zn has no S-zero divisors if n = p1p2 where p1, p2 are primes. 
 
Proof: Let n = p1p2. Suppose a.b ≡ 0 (mod n), a, b ∈ Zn \ {0} then p1 is factor of a and 
p2 is a factor of b or vice-versa. 
Suppose p1 is a factor of a and p2 is a factor of b. Now to find x, y ∈ Zn \ {0, a, b} such 
that a.x ≡ 0 (mod n) ⇒ p2 is a factor of x, and b.y ≡ 0 (mod n) ⇒ p1 is a factor of y. 
This forcing x.y ≡ 0  (mod n). 
Thus if n = p1p2, Zn has no S-zero divisors. 
 
Corollary 2.1: Zn has no S-zero divisors when n = p2. 
 
Theorem 2.4: Zn has S-zero divisors if n = α

1p  where p1 is a prime and α ≥ 3. 
 
Proof: Take  
  a = 1

1
1

1 pb,p −α−α =  then a.b ≡ 0 (mon n). 
Again take x = p1  and y = p1 p2 where p2 is the prime next to p1. 
Then clearly  
 a.x ≡ 0 (mod n), b.y ≡ 0 (mod n) but x.y  ≡  0 (mod n). 
Hence the claim. 
 
Example 2.3: In Z27 = {0, 1, 2,…, 26}; ring of integers modulo 27, we have  
 9.9 ≡ 0 (mod 27),  9.3 ≡ 0 (mod 27) also  9.15 ≡ 0 (mod 27) 
but 3.15 ≡ 0 (mod 27). So 32 = 9 is a S-zero divisor in Z27. 
 
Theorem 2.5: Zn has S-zero divisor when n is of the form n = p1p2p3, where p1, p2, p3 are 
primes. 
 
Proof: Take a = p1p2,  b = p2p3   then a.b ≡ 0 (mod n). again take x = p1p3 and y = p1p4 
where p4 is the prime next to p3. Then a.x ≡ 0 (mod n) and b.y ≡ 0 (mod n). But x.y ≡ 0 
(mod n). 
Hence the claim 
 
Example 2.4: Let Z30 = {0, 1, 2,…, 29} be the ring of integers modulo 30.  
Here  
 6.15 ≡ 0 (mod 30),  6.10 ≡ 0 (mod 30),  15.14 ≡ 0 (mod 30) 
But 14.10 ≡ 0 (mod 30), so 6 and 15 are S-zero divisor in Z30. 
We can generalize the Theorem 2.5 as follows: 
 
Theorem 2.6: If n = p1p2p3..pn then Zn has S-zero divisors. 
 



Proof: Take a = p1p2…pn-1,   b = p2p3… pn-1. and x = p1p3…pn   y = p1 pn+1 whre pn+1 is 
the prime next to pn. 
Then it is easy to see that  
 a.b  ≡ 0 (mod n),  a.x y ≡ 0 (mod n), b.y  ≡ 0 (mod n), 
   But x.y  ≡ 0 (mod n). 
So a and b are S-zero divisors in Zn. 
 
Finally we can characterize Zn for having S-zero divisors as follows. 
 
Theorem 2.7: Zn has S-zero divisors if and only if n is the product of atleast three 
primes. 
 
3. S-zero divisors in the group ring Z2G 
 
Here we prove that the group ring Z2G, where G is a finite cyclic group of non 
prime order and | G | ≥ 6 has S-zero divisors. We illustrate by certain examples the 
non-existence of S-zero divisors before we prove our claim. 
 
Example 3.1: Consider the group ring Z2G of the group G = {g/g2 = 1} over Z2. 
Clearly (1 + g)2

  = 0 is the only zero divisor, so it can not have S-zero divisors or 
S-weak zero divisors. 
 
Example 3.2: Let G = {g / g3 = 1} be the cyclic group of order 3. Consider the 
group ring Z2 G of the group G over Z2. 
Clearly 
  (1 + g + g2) (g + g2) = 0 
  (1 + g + g2) (1 + g) = 0 
  (1 + g + g2) (1 + g2) = 0 
are the only zero divisors in Z2G. We see none of these are S-zero divisors or  
S-weak zero divisors. 
 
Example 3.3: Consider the group ring Z2G. where G = { g / g4 = 1} is the cyclic 
group of order 4. Then  
  (1 + g) (1 + g + g2 + g3 ) = 0 
  (1 + g2) (1 + g + g2 + g3 ) = 0 
  (1 + g3) (1 + g + g2 + g3 ) = 0 
  (g + g2) (1 + g + g2 + g3 ) = 0 
  (g + g3)(1 + g + g2 + g3 ) = 0 

 (g2 + g3) (1 + g + g2 + g3 ) = 0 
are some of the zero divisors in Z2G. So it has S-zero divisors and no S-weak zero 
divisors. 
 
Theorem 3.1: Let Z2G be the group ring where G is a cyclic group of prime order 
p. Then the group ring Z2G has no S-zero divisors or S-weak zero divisors. 



 
Proof: The only possible zero divisors in Z2G are  
  (1 + g +…+gp-1) Y = 0 
where Y ∈ Z2G and support of T is even  
But we can not find A ∈ Z2G \ (1 + g +…+ gp-1) 
Such that AY = 0, |supp A| < p. 
Hence Z2G can not have S-zero divisors or S-weak zero divisors. 
 
Theorem 3.2: Let Z2G be the group ring of a finite cyclic group of composite 
order n ≥ 6 (n = 21

11 pp αα ) then Z2G has S-zero divisors. 
 
Proof: Let G be a cyclic group of order n where G has atleast one subgroup H. Let 
H be generated by gt, t > 1. Now  
 (1 + (gt)r) (1 + g + g2+…+ gn-1) = 0; (gt)r ≠ 1 
again 
 (1 + g) (1 + g + g2+…+ gn-1) = 0 
also 

(1 + (gt)r) (1 + gt + (gt)2+…+(gt)s+1) = 0,  (∵ (gt)s+1 = 1) 
clearly 
 (1 + g) (1 + gt + (gt)2+…+ (gt)s+1) ≠ 0. 
Thus Z2G has S-zero divisors. 
 
Theorem 3.3: Let Z2Sn be the group ring of the symmetric group Sn over Z2. then 
Z2Sn has S-zero divisors. 
 
Proof: Let A = 1 + p1 + p2 + p3 + p4 + p5 and B = p4 + p5 
 

p1 = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n54231
n54321

"
"

, p2 = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n54123
n54321

"
"

 

 

p3 = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n54312
n54321

"
"

, p4 = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n54132
n54321

"
"

  

 

p5 = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n54213
n54321

"
"

 

And 1 is the identity permutation. 
Clearly  
     AB = 0 
Take  

X = 1 + p1,  and  Y = 1 + p4 + p5 
Then 



AX = 0  and  BY = 0 
But  

XY ≠ 0. 
Hence Z2Sn has S-zero divisor. 
 
Example 3.4: The group ring Z2S4 where S4 is the symmetric group of order 4 has 
s-zero divisors. 

Let a = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1432
4321

,  b = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2143
4321

, c = 4S
1234
4321

∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ . 

Put  
A = (1 + a +  b + c) 

Let g = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1432
4321

, then g4 = 1 = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
4321
4321

: 

Now. Let B = 1 + g + g2 + g3, 
Clearly  

(1 + g) ∑ =
∈ 4i Ss

i ,0s  (1 + g). B = 0 

also  
A  ∑ =

∈ 4i Ss
i ,0s  

A.B ≠ = 0. 
Hence (1 + g) and 4i Ss ∈∑  si are S-zero divisors in Z2 S4. 
 
Theorem 3.4: Let  Z2 D2n be the group ring of the Dihedral group D2n, over Z2 
where n is a composite number, then Z2 D2n has S-zero divisors. 
 
Proof: Since n is a composite number, by the theorem 3.2, we see Z2 D2n has S-
zero divisors. 
 
Example 3.5: Let Z2 D8 be the group ring, where D8 is the Dihedral group of order 
8. then Z2 D8 has s-zero divisors. 
Here 

D8 = {a, b / a2 = b4 = 1, bab = a}. 
Let  

x = 1 + b + b2 + b3, y = ∑
∈ 8i Dg

ig = (1 + a + ab + ab2 + ab3 + b + b2 + b3) 

then 
x.y = 0 

Suppose A = (1 + b2) and  B = (1 + ab). 
Then clearly  
  A.x = 0 also B.y = 0 
But  



A.B ≠ 0. 
Hence x and y are S-zero divisors in Z2 D. 
 
Example 3.6: Z2G where G = {g / g6 = 1} be the group ring. Z2G has S-zero 
divisors. 
Let  

X = (1 + g + g2 + g3 + g4 + g5), and y = (1 + g2 + g4) 
Then  

x.y = 0. 
Let  a = 1 + g3 and b = 1 + g2 
Clearly  

a.x = 0  and  b.y = 0 
but a. b ≠ 0. 

Hence Z2 G gas S-zero divisors. 
 
4. S-zero divisors of group rings over rings of characteristic zero. 
 
In this section we prove ZG, the group ring of a finite group G over Z,. the ring of 
integers, has non-trivial S-zero divisors. Further we prove ZSn and ZD2n has non-
trivial S-zero divisors. Since Z ⊂ K for any field K of characteristic zero, we can 
say KG has non-trivial S-zero divisors. 
 
Example 4.1: ZG the group ring of the group G over Z; where G = {g / g8 = 1}, 
we have for (1-g4), (1  + g + g2 +…+g7) ∈ ZG 
 (1-g4). (1  + g + g2 +…+g7) = 0 
also  (1-g). (1  + g + g2 +…+g7) = 0 
 (1-g4). (1  + g2 + g4 +g6) = 0 
but  (1-g). (1  + g2 + g4 +g6) ≠ 0. 
Hence the claim 
 
Theorem 4.1: Let G be a finite group where |G| = n, n is a composite number ; 
then the group ring ZG has S-zero divisors. 
 
Proof: Let a ∈ G such that am =1, m < n. Now for (1-a), (1 + g1 +…+ gn-1) ∈ ZG 
We have  

(1-a) (1 + g1 + g2+…+ gn-1) = 0,   gi ∈ G 
(1 – a) (1 + a + a2+…+ am-1) = 0, a ∈ G and am = 1 

(1-h) (1 + g1 + g2 +….+ gn-1) = 0, h ∈ G and h ≠ ai, I = 1, 2,…, m 
but (1-h)  (1 + a + a2+…+ am-1) ≠ 0, m < n. 

The complete the proof. 
 



Theorem 4.2: The group ring ZSn  has S-zero divisors, where Sn is the symmetric 
group of degree n. 
 
Proof: For (1-p1), (1 + p1 + p2 + p3 + p4 + p5) ∈ ZSn 
We have  

(1 – p1) (1 + p1 + p2 + p3 + p4 + p5) = 0 
where pi are as in theorem 3.3 

again  (1-p1) (1 + p1) = 0 
(1 + p2) (1 + p1 + p2 + p3 + p4 + p5) = 0 

but (1+p1) (1 + p2) ≠ 0. 
Hence the claim 
 
Theorem 4.3: The group ring ZD2n has S-zero divisors, where D2n is the Dihedral 
group of order 2n, n is a composite number. 
 
Proof: As n is a composite number, result will follow from the theorem 4.1 
 
Theorem 4.4: Let KG be the group ring of G over K, where K is a field of 
characteristic zero and G any group of composite order, then KG has S-zero 
divisors. 
 
Proof: As Z ⊂ K, so ZG ⊂ KG and as ZG has S-zero divisors so KG has non-
trivial S-zero divisors. 
 
Example 4.2: Let Z3G be the group ring of G over Z3 where G = {g / g6 = }. For  
(1 + g + g2 + g3 + g4

 + g5), (1 + g + g4 )  ∈ Z3G , we have 
(1 + g + g2 + g3 + g4

 + g5) (1 + g2 + g4 ) = 0 
(g2 + 2 ) (1 + g2 + g4 ) = 0 
also (1 + g + g3 ) (1 + g + g2 + g3 + g4

 + g5) = 0 
but (g2 + 2)  (1 + g + g3 ) ≠ 0. 
Hence Z3 G has s-zero divisors. 
 
Theorem 4.5: The group ring Zp G, where G = {g / gn = 1} and p/n, has S-zero 
divisors. 
 
Proof: Here 

(1 + g + g2 +…+gn-1)  (1 + gp + g2p +…+grn-1) = 0 where rp = n 
again (1 + g + g2 +…+gn-1) ((p-1) + g)) = 0, (where (s, p) = 1) 

((p-1) + gtp) (1 + gp + g2p +…+grp-1) = 0, t < r 
but ((p-1) + g8) ((p-1) + gtp) ≠ 0. 

Hence the claim 
 



Example 4.3: The group ring Z3S3 has S-zero divisors. 
Let (1 + p4 + p5), (1 + p1 + p2 + p3 + p4 + p5) ∈ Z3S3 
Now  

(1 + p4 + p5), (1 + p1 + p2 + p3 + p4 + p5) = 0 
(2 + p1) (1 + p1 + p2 + p3 + p4 + p5) = 0 

also                ( 2 + p5) (1 + p4 + p5)  = 0 
but                                            ( 2 + p5) (2 + p1)  ≠ 0. 
 
Theorem 4.6: The group ring Zp Sn when p |n! (i.e p < n) has S-zero divisors. 
 
Proof: As p|n! Sn has a cyclic subgroup H of order p. We have for (1 + h + h2 
+…+ hp-1), npiSs SZsni

∈∑ ∈ , 

(1 + h + h2 +…+ hp-1) ∑
∈ 8i Dg

is  = 0,  h ∈ H 

and ((p-1) + s) ∑
∈ 8i Dg

is  = 0, s ∉ H, s ∈ Sn 

and ((p-1) + hr) (1 + h + h2 +…+hp-1) = 0, r < p – 1 
but ((p-1) + s) ((p-1) + hr) ≠ 0. 

So Zp Sn has S-zero divisors. 
 
Theorem 4.7: Let Zp D2n be the group ring of the Dihedral group D2n over Zp, p a 
prime such that p/n then Zp D2n has S-zero divisors. 
 
Proof: Given Zp D2n is the group ring of D2n over Zp such that p is a prime and p/n. 
Now p/n ⇒ D2n has a cyclic subgroup of order p, say H = < t >. 
For (1 + t + t2 +…+ tp-1), n2pi

Dg
DZg

n2i
∈∑

∈
 

We have  
tp = 1, t ∈ D2n 

(1 + t + t2 +…+ tp-1). 0g
n2i Dg
i =∑

∈
 

((p-1) – tr) (1 + t + t2 +…+ tp-1) = 0       r  < p  - 1  
((p-1) – gr ) 0g

n2i Dg
i =∑

∈
 gr ≠ tr for r = 1, 2, 3,…, p –1. 

But ((p-1)-tr )  ((p-1)-gr ) ≠ 0. 
Hence the claim. 
 
Conclusion 
 
In the first place we proved that Zp Sn has S-zero divisors provided p|n!, p is a 
prime such that p < n. Further we proved ZSn and ZD2n has S-zero divisors  only 
when n is a composite number. 



Zp D2n has S-zero divisors for p|n. We are not in a position to obtain any nice 
algebraic structure for the collection of S-zero divisors or S-weak zero divisors in 
group rings. Also another interesting problem would be to find the number of S-
zero divisors and s-weak zero divisors in case of Zp Sn (p|n!, p < n) and Zp D2n 
(p|n). The solution even in case of Zp G where G is a cyclic group of order n such 
that p/n, p a prime is not complete. 
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