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The study of zero-divisors in group rings had become interesting problem since
1940 with the famous zero-divisor conjecture proposed by G.Higman [2]. Since
then severa researchers [1, 2, 3] have given partial solutions to this conjecture.
Till date the problem remains unsolved. Now we introduce the notions of
Smarandache zero divisors (S-zero divisors) and Smarandache week zero divisors
(S-weak zero divisors) in group rings and study them. Both S-zero divisorsand S
weak zero divisors are zero divisors but all zero divisors are not S-zero divisors or
S-weak zero divisors. Even here we can modify the zero divisor conjecture and
suggest the S-zero divisor conjecture and S-weak zero divisor conjecture for group
rings. Thus the study has its own importance. Unlike in case of group rings of
finite groups over field of characteristic zero where one is always gurranteed the
zero divisors, we can not establish the same in case of S-zero divisors or S-weak
zero divisors.

In this paper we study the conditions on Z,,, the ring of integer modulo nto have S
zero divisors and S-weak zero divisors. We have proved if n is a composite
number of the form n = pyp,ps or (n = p*) where p,, p, and ps are distinct primes or
(p aprime, o > 3), then Z, has S-zero divisors. We further obtain conditions for Z,
to have S-weak zero divisors. We prove all group rings Z, G where G a cyclic
group of non prime order and | G | > 6 have S-zero divisors. The result is extended
to any prime p i.e. we generalize the result for Z,G where p any prime. Conditions
for group rings ZG and KG (Z the ring of integer and K any field of characteristic
zero) to have S-zero divisorsis derived.

This paper is organized into 5 sections. In section 1, we recall the basic definitions
of S-zero divisors and S-weak divisors and some of its properties. In section 2, we
find conditions for the finite ring Z, to have S-zero divisors and S-weak zero
divisors. We give examples to this effect. In section 3, we analize the group rings
Z,G where G is afinite group of order greater than or equal to 6 and G a cyclic
group of non-prime order. In section 4 we find conditions for ZG to have S-zero
divisors. We prove ZS, and ZD,, have S-zero divisors. Further if K isafield of
characteristic zero then KS,, and KD,, have S-zero divisors. When G is any group
of order n and n a composite number, then ZG and KG have S-zero divisors. In
section 5 we give the conclusion based on our study.



1. Some Basic Definitions:
Here we just recall some basic results about S-zero divisors and S-weak zero
divisors.

Definition 1.1 [5]: Let R bearing. An element a € R\ {0} is said to be a S-zero
divisor if ab=0for someb = 0inR and thereexistsx, y € R\ {0, a, b} such that

I ax=0 or x.a=0
ii. b.y=0 or y.b=0
. xy=0 or yx=0

Note that in case of commutative rings we just need
I.ax=0, li. b.y =0and . x.y=0

Theorem 1.1[5]: Let R bearing. Every S-zero divisor isa zero divisor but a zero
divisor in general isnot a S-zero divisor.

Example 1.1: InZ,={0, 1, 2, 3} thering of integers modulo 4, 2 is a zero divisor
but it is not a S-zero divisor.

Definition 1.2 [5]: Let R be aring. An element a € R\ {0} is a Sweak zero
divisor if there exists b € R\ {0, a} such that ab = 0 satisfying the following
conditions:

Thereexistsx,y € R\ {0, a, b} such that

I ax=0 or x.a=0
Ii. b.y=0 or y.b=0
ii. xy=0 or yx=0

Example1.2: Let Z,, ={0, 1, 2,...,11} bethe ring of integer modulo 12.
3.4=0(mod 12), 4.9 =0 (mod12),
and 3.8=0(mod 12) aso 8.9= 0 (mod12)

So 3 and 4 are S-weak zero divisorsin Z;,. We can check that Z,, contains S-zero
divisor aso. For

6.8 =0 (mod 12) and 3.8 = 0 (mod12)

6.2£ 0 (mod12) but 3.2 = 0 (mod (12))
Thus Z4, has both S-zero divisor and S-weak zero divisors.



2. S-zero divisorsand S-weak zero divisorsin Z,

In this section we find conditions for Z, to have S-zero divisors and S-weak zero
divisors and prove when nis of the form n = p” (o > 3) or n = pyp,ps where py, po,
ps are distinct primes, then Z,, has S-zero divisor.

Proposition 2.1: Z,={0, 1, 2,..., p-1}, the prime field of characteristic p where p
Isaprime has no S-zero divisors or S-weak zero divisors.

Proof: Let Z,={0, 1, 2,.., p-1}, where p isaprime. Z, has no zero divisors. Hence
Z,, can not have S-zero divisor as every S-zero divisor is azero divisor.

Further Z, cannot have S-weak zero divisor as every S-weak zero divisor is also a
zero divisor.

Hence the claim

Example2.1: Let Zg={0, 1, 2, 3, 4, 5} bethering of integers modulo 6. Here
=0 (mod 6), 3.4 =0 (mod 6)

are the only zero divisors of Zg. S0 Zg has no S-zero divisor and S-weak zero

divisors.

Example2.2: Zg={0, 1, 2, 3,4, 5, 6, 7}, the ring of integers modulo 8. Here
4.4=0(mod) and 2.4= 0 (mod 8), 4.6 = 0 (mod 8)

but 2.6 £ 0 (mod8).

S0 Z has 4 as S-zero divisor, but has no S-weak zero divisors.

Theorem 2.1: Z,, has no S-weak zero divisorswhen n=2p, p aprime.

Proof: To get any zero divisorsa, b € Z,\ {0} such that ab =0 (mod n) oneof a
or b must be p and the other an even number. So we cannot get X, y € Z,\ {p}
such that

ax =0 (mod n), b.y =0 (mod n)
and

x.y = 0 (modn).
Hence the claim.

Theorem 2.2: Z, has S-weak zero divisors when n = pyp, (orp?) where p; and p,
are distinct odd primes with both of them greater than 3 (or p an odd prime greater
than 3).

Proof: Takea=py, b = p,, thenab =0 (mod n).
Againtake x = 3p, and y 2p; then ax =0 (mod n) and b.y = 0 (mod n), alsox.y =0
(mod n).



In case of = p? asimilar proof holds good.
Hence the claim.

Theorem 2.3: Z,, hasno S-zero divisorsif n = pyp, where p,, p, are primes.

Proof: Let n = p;p,. Suppose a.b =0 (mod n), a b € Z,\ {0} then p, isfactor of aand
p. isafactor of b or vice-versa.

Suppose p; is a factor of aand p, is afactor of b. Now to find X,y € Z,\ {0, a b} such
that ax = 0 (mod n) = p; isafactor of x, and b.y = 0 (mod n) = p; isafactor of y.
Thisforcing x.y =0 (mod n).

Thusif n = pipy, Z, has no S-zero divisors.

Corollary 2.1; Z, has no S-zero divisors when n = p.
Theorem 2.4: Z, has S-zero divisorsif n= p}’ wherep;isaprimeand o > 3.

Proof: Take
a=pi* b=p? thenab= 0 (monn).
Againtakex = p; andy = p; p2 where p; is the prime next to p;.
Then clearly
ax =0 (mod n), b.y =0 (mod n) but x.y 2 0 (mod n).
Hence the claim.

Example 2.3: InZy; ={0, 1, 2,..., 26}; ring of integers modulo 27, we have
9.9=0 (mod 27), 9.3=0(mod 27) aso 9.15= 0 (mod 27)
but 3.15 2 0 (mod 27). So 3 = 9 isa S-zero divisor in Zyr.

Theorem 2.5: Z, has S-zero divisor when nis of the form n = p;p.ps, where py, p2, ps are
primes.

Proof: Takea=pip2, b = pops then ab = 0 (mod n). again take x = pips and y = p1ps
where p4 is the prime next to ps. Then ax = 0 (mod n) and b.y = 0 (mod n). But x.y =0
(mod n). /
Hence the claim

Example2.4: Let Z3,={0, 1, 2,..., 29} bethering of integers modulo 30.
Here
6.15=0(mod 30), 6.10=0(mod30), 15.14 =0 (mod 30)
But 14.10# 0 (mod 30), so 6 and 15 are S-zero divisor in Zz.
We can generalize the Theorem 2.5 as follows:

Theorem 2.6: If n = pyp2ps..pn then Z, has S-zero divisors.



Proof: Take a= pipz...pn-1, b = p2Ps... Pn1. @Nd X = P1Ps...pn Y = P1 Prez WHre prsp iS
the prime next to py.
Then it is easy to see that
ab =0 (mod n), axy=0(modn), by =0 (modn),
But x.y Z£0 (mod n).
So aand b are S-zero divisorsin Zp,.

Finally we can characterize Z,, for having S-zero divisors as follows.

Theorem 2.7: Z, has S-zero divisors if and only if n is the product of atleast three
primes.

3. S-zerodivisorsin thegroup ring Z,G

Here we prove that the group ring Z,G, where G is a finite cyclic group of non
prime order and | G | > 6 has S-zero divisors. We illustrate by certain examples the
non-existence of S-zero divisors before we prove our claim.

Example 3.1; Consider the group ring Z,G of the group G = {g/g” = 1} over Z,.
Clearly (1 + g)> = 0is the only zero divisor, so it can not have S-zero divisors or
S-weak zero divisors.

Example 3.2: Let G={g/ g3 = 1} be the cyclic group of order 3. Consider the
group ring Z, G of the group G over Z,.
Clearly

(1+g+g)(g+g)=0

(1+g+g)(1+g)=0

(1+g+g)(1+g)=0
are the only zero divisors in Z,G. We see none of these are S-zero divisors or
S-weak zero divisors.

Example 3.3: Consider the group ring Z,G. where G = { g/ ¢* = 1} is the cyclic
group of order 4. Then

(1+g)(1+g+g +93)=0
(1+g)(1+g+g +g°)=0
(1+g)(1+g+g +g°)=0
(g+g)(1+g+g +g°)=0

@+d)1+g+g°+g’)=

@+g)(1+g+d*+7°)
are some of the zero divisorsin Z,G. So it has S-zero divisors and no S-weak zero
divisors.

O

Theorem 3.1: Let Z,G be the group ring where G is a cyclic group of prime order
p. Then the group ring Z,G has no S-zero divisors or S-weak zero divisors.



Proof: The only possible zero divisorsin Z,G are
l+g+.+g"H)Y =0

whereY e Z,G and support of T iseven

Butwecannot find A € Z,G\ (1+g+...+g""

Suchthat AY =0, [supp A| < p.

Hence Z,G can not have S-zero divisors or S-weak zero divisors.

Theorem 3.2: Let Z,G be the group ring of a finite cyclic group of composite
order n> 6 (n = p;1p;?2) then Z,G has S-zero divisors.

Proof: Let G be acyclic group of order n where G has atleast one subgroup H. Let
H be generated by ¢, t > 1. Now
L+ (@))(Q+g+g+.+d")=0(g) =1
again
(1+g (Q+g+g™+.+g")=0
also
1+(@)) (@ +d +(@)*...+@)™ =0, (- (@)"=1)
clearly
(L+0) (L+g +(g)+...+ ()" #0.
Thus Z,G has S-zero divisors.

Theorem 3.3: Let Z,S, be the group ring of the symmetric group S, over Z,. then
Z,S, has S-zero divisors.

Proof: LetA=1+p,+tp+ps+ps+psandB =p,s+ ps

(12345 . n (12345 . n
PZl13 245 nj’ 27132145 .. n
(12345 . n (12345 n
Bl 1345 .0 PTl2as14a5s n
(12345 - n
=131 245 .. n
And 1 istheidentity permutation.
Clearly

AB=0
Take

X=1+p;, and Y=1+p,+ps
Then



AX =0 and BY =0
But
XY #0.
Hence Z,S,, has S-zero divisor.

Example 3.4: The group ring Z,S, where S is the symmetric group of order 4 has
s-zero divisors.

1 2 3 4 1 2 3 4 1 2 3 4
Leta= : b= , C= €S,.
2 3 41 341 2 4 3 2 1

Put
A=(1+a+ b+c)

Letg:(l 2 3 4]’theng4:1:(1 2 3 4)_

2 3 41 12 3 4)
Now.LetB=1+g+g*+d’,
Clearly
(1+09) _2843:0, (1+9).B=0
Sje

aso

A Xs=0,

sS4

AB==0.

Hence (1+g)and X ., S areS-zerodivisorsinZ,; S,.

Theorem 3.4: Let Z, D,, be the group ring of the Dihedral group D,,, over Z,
where n is a composite number, then Z, D,, has S-zero divisors.

Proof: Since n is a composite number, by the theorem 3.2, we see Z, D,, has S
zero divisors.

Example 3.5: Let Z, Dg be the group ring, where Dg is the Dihedral group of order
8. then Z, Dg has s-zero divisors.

Here
Dg={a b/a®=b"*=1 bab=a}.
Let
x=1+b+b?+b%y= Yg=(1+a+ab+ab®+ab’+b+b*+b’
gi<Dg
then
xy=0
Suppose A = (1 +b? and B = (1 + ab).
Then clearly

Ax=0dsoBy=0
But



A.B=0.
Hence x and y are S-zero divisorsin Z, D.

Example 3.6: Z,G where G = {g / ¢° = 1} be the group ring. Z,G has S-zero
divisors.
Let
X=(1+g+g®+g’+g'+g’) andy=(1+g +¢"
Then
x.y =0.
Let a=1+g’andb=1+¢?
Clearly
ax=0 and by=0
buta b= 0.
Hence Z, G gas S-zero divisors.

4, S-zerodivisorsof group ringsover ringsof characteristic zero.

In this section we prove ZG, the group ring of afinite group G over Z,. the ring of
integers, has non-trivial S-zero divisors. Further we prove ZS, and ZD,, has non-
trivial S-zero divisors. Since Z — K for any field K of characteristic zero, we can
say KG has non-trivial S-zero divisors.

Example 4.1: ZG the group ring of the group G over Z; where G = {g/ ¢® = 1},
we havefor (1-g%), (1 +g+ ¢ +...+g") € ZG
(1-g. (1 +g+ g +..4g) =0
dso (1-g).(1 +g+g°+..+g") =0
(1-g%). (1 +g°+g*+g) =0
but (1-g). (1 +g*+g*+g% = 0.
Hence the clam

Theorem 4.1: Let G be a finite group where |G| = n, n is a composite number ;
then the group ring ZG has S-zero divisors.

Proof: Let a e G such that @" =1, m < n. Now for (1-a), (1 + gy +...+ gn1) € ZG
We have
(1-a) (L+gi+Qt...+0n1) =0, GG
(1-a)(1+a+a+..+d"™=0,ac Gandd" =1
(1-h)(1+ g1+ Qo +...+gn) =0,he Gandh=4d,1=1,2,....,m
but (1-h) (1+a+a&+...+a™) =0, m<n.
The complete the proof.



Theorem 4.2: The group ring ZS,, has S-zero divisors, where S, is the symmetric
group of degree n.

Proof: For (1-py), (L+ p1+ P2+ P3+ pa + Ps) € ZS,
We have
(I1-p)(L+pi+p+ps+patps)=0
where p; are asin theorem 3.3
again (1-py) (1+py)=0
(1+p) (A+pr+potpstpatps)=0
but (1+p,) (1 + p,) = 0.
Hence the claim

Theorem 4.3: The group ring ZD,, has S-zero divisors, where D, is the Dihedral
group of order 2n, n is a composite number.

Proof: Asnisacomposite number, result will follow from the theorem 4.1

Theorem 4.4. Let KG be the group ring of G over K, where K is a field of
characteristic zero and G any group of composite order, then KG has S-zero
divisors.

Proof: AsZ c K, s0 ZG <« KG and as ZG has S-zero divisors so KG has non-
trivial S-zero divisors.

Example 4.2: Let Z5G be the group ring of G over Z; where G = {g/ g6 =}. For

(1+g+g+g’+g'+9), (1+g+g") € Z;G, wehave
(1+g+g?+g’+g'+g) (1+g*+g*)=0

@*+2)(1+g’ +g*)=0

dso(l+g+g®)(1+g+g®+g’+g'+g) =0

but (°+2) (1+g+g°)=0.

Hence Z; G has s-zero divisors.

Theorem 4.5: The group ring Z, G, where G = {g/ ¢" = 1} and p/n, has S-zero
divisors.

Proof: Here
A+g+g®+..+4g"™) L+g°+g®+...+g™) =0whererp=n
again (1+g+g’ +...+g™) ((p-1) +g)) = 0, (where (s, p) = 1)
(PD)+g”) L+ +g®+..+gP) =0, t<r
but ((0-1) + ¢°) ((p-1) +g®) = 0.
Hencetheclam



Example 4.3: The group ring Z3S; has S-zero divisors.
Let (1+pa+ps), (L+Ppr+pa+tpstpatps) € ZsSs

Now
(L+ps+ps), (L+pr+p2+ps+patps)=0
(2+p) A+pr+potpstpPsatps)=0
also (2+ps) (L+ps+ps) =0
but (2+ps) (2+p) =0.

Theorem 4.6: The group ring Z, S, when p |n! (i.e p < n) has S-zero divisors.

Proof: As p|n! S, has a cyclic subgroup H of order p. We have for (1 + h + h?
+...+ h"Y, Zsi sy S € ZpSh,

(1+h+h+..+h") s =0, heH
gjebDg
and((p-1)+s) Ys =0,s¢H,se S,
gjeDg
and ((p-1) +h) (L+h+h*+.. +hPH)=0,r<p-1
but ((p-1) + ) ((p-1) + h") = 0.
So Z, S, has S-zero divisors.

Theorem 4.7: Let Z, Dy, be the group ring of the Dihedral group D,, over Z,, p a
prime such that p/n then Z, D, has S-zero divisors.

Proof: Given Z, Dy, is the group ring of Dy, over Z, such that p is a prime and p/n.
Now p/n = Dy, has a cyclic subgroup of order p, say H =<1t >.

For (1+t+t+..+t"Y), X g eZD,,
gieD2n

We have
tp = 1, te D2n
A+t+t2+. .+t ¥g =0
gi<D2n
(p-D)-t)Y@+t+t2+. . +tPH)=0 r<p-1
(p-)-g) Xg =0gr=tforr=1,23,...,p-1.

gi€D2n

But ((p-1)-t') ((p-1)-g") = 0.
Hence the claim.

Conclusion
In the first place we proved that Z, S, has S-zero divisors provided pn!, p is a

prime such that p < n. Further we proved ZS, and ZD,, has S-zero divisors only
when n is a composite number.



Z, Dy, has S-zero divisors for pjn. We are not in a position to obtain any nice
algebraic structure for the collection of S-zero divisors or S-weak zero divisorsin
group rings. Also another interesting problem would be to find the number of S-
zero divisors and s-weak zero divisors in case of Z, S, (p|n!, p < n) and Z, Dy,
(p|n). The solution even in case of Z, G where G is a cyclic group of order n such
that p/n, p aprime is not complete.
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