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Foreword 

 

 

Science's function is to understand the natural world and develop our society in 

coordination with its laws. For thousands of years, mankind has never stopped its 

steps for exploring its behaviors of all kinds. Today, the advanced science and 

technology have enabled mankind to handle a few events in the society of mankind by 

the knowledge on natural world. But many questions in different fields on the natural 

world have no an answer, even some look clear questions for the Universe, for 

example, 

what is true color of the Universe, for instance its dimension?  

what is the real face of an event appearing in the natural world, for instance the 

electromagnetism? how many dimensions has it?  

Different people, standing on different views, will differently answers these questions. 

For being short of knowledge, we can not even distinguish which is the right answer. 

Today, we have known two heartening mathematical theories for sciences. One of 

them is the Smarandache multi-space theory that came into being by pure logic. 

Another is the mathematical combinatorics motivated by a combinatorial speculation, 

i.e., every mathematical science can be reconstructed from or made by 

combinatorialization. 

  Why are they important? We all know a famous proverb, that of the six blind men 

and an elephant. These blind men were asked to determine what an elephant looks 

like by having them touch different parts of the elephant's body. The man touched the 

elephant's leg, tail, trunk, ear, belly, or tusk, and each man claimed that the elephant is 

like a pillar, a rope, a tree branch, a hand fan, a wall, or a solid pipe, respectively. 

They entered into an endless argument. Each of them insisted his view was right. All 

of you are right! a wise man explained to them: why are you telling it differently is 



 v

because each one of you touched a different part of the elephant. So, actually the 

elephant has all those features what you all said. That is to say an elephant is nothing 

but a union of those claims of six blind men, i.e., a Smarandache multi-space with 

some combinatorial structures. The situation for determining the behaviors of natural 

world is analogous to the blind men determining what an elephant looks like. L.F. 

Mao said once in an open lecture that Smarandache multi-spaces is the right theory 

for the natural world. 

For a quick glance at the applications of Smarandache's notions to mathematics, 

physics, and other sciences, this book selects 12 papers for showing applied fields of 

Smarandache's notions, such as those of Smarandache multi-spaces, Smarandache 

geometries, Neutrosophy, etc. to mathematics, physics, logic, cosmology. Although 

each application is a quite elementary one, we already experience its great potential. 

Authors are assumed for responsibility on their papers selected in this books and it 

doesn’t mean that the editors completely agree their view point in each paper. 

The Scientific Elements is a serial collection in publication, maybe with different 

title. All papers on applications of Smarandache's notions to scientific fields are 

welcome and can be directly sent to the editors by an email. 

 

 

L.F.Mao, Y.H.Fu, and M.Bencze 

Oct. 2007 in Beijing & Brasov 
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Differential Geometry on Smarandache n-Manifolds

Linfan Mao

(Chinese Academy of Mathematics and System Science, Beijing 100080, P.R.China)

E-mail: maolinfan@163.com

Abstract: A Smarandache geometry is a geometry which has at least one

Smarandachely denied axiom(1969), i.e., an axiom behaves in at least two

different ways within the same space, i.e., validated and invalided, or only

invalided but in multiple distinct ways and a Smarandache n-manifold is a n-

manifold that support a Smarandache geometry. Iseri provided a construction

for Smarandache 2-manifolds by equilateral triangular disks on a plane and a

more general way for Smarandache 2-manifolds on surfaces, called map geome-

tries was presented by the author in [9]− [10] and [12]. However, few observa-

tions for cases of n ≥ 3 are found on the journals. As a kind of Smarandache

geometries, a general way for constructing dimensional n pseudo-manifolds are

presented for any integer n ≥ 2 in this paper. Connection and principal fiber

bundles are also defined on these manifolds. Following these constructions,

nearly all existent geometries, such as those of Euclid geometry, Lobachevshy-

Bolyai geometry, Riemann geometry, Weyl geometry, Kähler geometry and

Finsler geometry, ...,etc., are their sub-geometries.

Key Words: Smarandache geometry, Smarandache manifold, pseudo-

manifold, pseudo-manifold geometry, multi-manifold geometry, connection,

curvature, Finsler geometry, Riemann geometry, Weyl geometry and Kähler

geometry.

AMS(2000): 51M15, 53B15, 53B40, 57N16

§1. Introduction

Various geometries are encountered in update mathematics, such as those of Euclid

geometry, Lobachevshy-Bolyai geometry, Riemann geometry, Weyl geometry, Kähler

geometry and Finsler geometry, ..., etc.. As a branch of geometry, each of them has
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been a kind of spacetimes in physics once and contributes successively to increase

human’s cognitive ability on the natural world. Motivated by a combinatorial notion

for sciences: combining different fields into a unifying field, Smarandache introduced

neutrosophy and neutrosophic logic in references [14]− [15] and Smarandache geome-

tries in [16].

Definition 1.1([8][16]) An axiom is said to be Smarandachely denied if the axiom

behaves in at least two different ways within the same space, i.e., validated and

invalided, or only invalided but in multiple distinct ways.

A Smarandache geometry is a geometry which has at least one Smarandachely

denied axiom(1969).

Definition 1.2 For an integer n, n ≥ 2, a Smarandache n-manifold is a n-manifold

that support a Smarandache geometry.

Smarandache geometries were applied to construct many world from conser-

vation laws as a mathematical tool([2]). For Smarandache n-manifolds, Iseri con-

structed Smarandache manifolds for n = 2 by equilateral triangular disks on a plane

in [6] and [7] (see also [11] in details). For generalizing Iseri’s Smarandache man-

ifolds, map geometries were introduced in [9] − [10] and [12], particularly in [12]

convinced us that these map geometries are really Smarandache 2-manifolds. Ku-

ciuk and Antholy gave a popular and easily understanding example on an Euclid

plane in [8]. Notice that in [13], these multi-metric space were defined, which can be

also seen as Smarandache geometries. However, few observations for cases of n ≥ 3

and their relations with existent manifolds in differential geometry are found on the

journals. The main purpose of this paper is to give general ways for constructing

dimensional n pseudo-manifolds for any integer n ≥ 2. Differential structure, con-

nection and principal fiber bundles are also introduced on these manifolds. Following

these constructions, nearly all existent geometries, such as those of Euclid geometry,

Lobachevshy-Bolyai geometry, Riemann geometry, Weyl geometry, Kähler geometry

and Finsler geometry, ...,etc., are their sub-geometries.

Terminology and notations are standard used in this paper. Other terminology

and notations not defined here can be found in these references [1], [3] − [5].

For any integer n, n ≥ 1, an n-manifold is a Hausdorff space Mn, i.e., a space

that satisfies the T2 separation axiom, such that for ∀p ∈ Mn, there is an open

neighborhood Up, p ∈ Up ⊂ Mn and a homeomorphism ϕp : Up → Rn or Cn,

respectively.
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Considering the differentiability of the homeomorphism ϕ : U → Rn enables us

to get the conception of differential manifolds, introduced in the following.

An differential n-manifold (Mn,A) is an n-manifold Mn,Mn =
⋃
i∈I
Ui, endowed

with a Cr differential structure A = {(Uα, ϕα)|α ∈ I} on Mn for an integer r with

following conditions hold.

(1) {Uα;α ∈ I} is an open covering of Mn;

(2) For ∀α, β ∈ I, atlases (Uα, ϕα) and (Uβ, ϕβ) are equivalent, i.e., Uα
⋂
Uβ = ∅

or Uα
⋂
Uβ 6= ∅ but the overlap maps

ϕαϕ
−1
β : ϕβ(Uα

T
Uβ

) → ϕβ(Uβ) and ϕβϕ
−1
α : ϕβ(Uα

T
Uβ

) → ϕα(Uα)

are Cr;

(3) A is maximal, i.e., if (U, ϕ) is an atlas of Mn equivalent with one atlas in

A, then (U, ϕ) ∈ A.

An n-manifold is smooth if it is endowed with a C∞ differential structure. It

is well-known that a complex manifold Mn
c is equal to a smooth real manifold M2n

r

with a natural base

{ ∂

∂xi
,
∂

∂yi
| 1 ≤ i ≤ n}

for TpM
n
c , where TpM

n
c denotes the tangent vector space ofMn

c at each point p ∈Mn
c .

§2. Pseudo-Manifolds

These Smarandache manifolds are non-homogenous spaces, i.e., there are singular

or inflection points in these spaces and hence can be used to characterize warped

spaces in physics. A generalization of ideas in map geometries can be applied for

constructing dimensional n pseudo-manifolds.

Construction 2.1 Let Mn be an n-manifold with an atlas A = {(Up, ϕp)|p ∈Mn}.
For ∀p ∈ Mn with a local coordinates (x1, x2, · · · , xn), define a spatially directional

mapping ω : p→ Rn action on ϕp by

ω : p→ ϕωp (p) = ω(ϕp(p)) = (ω1, ω2, · · · , ωn),
i.e., if a line L passes through ϕ(p) with direction angles θ1, θ2, · · · , θn with axes

e1, e2, · · · , en in Rn, then its direction becomes
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θ1 −
ϑ1

2
+ σ1, θ2 −

ϑ2

2
+ σ2, · · · , θn −

ϑn
2

+ σn

after passing through ϕp(p), where for any integer 1 ≤ i ≤ n, ωi ≡ ϑi(mod4π),

ϑi ≥ 0 and

σi =





π, if 0 ≤ ωi < 2π,

0, if 2π < ωi < 4π.

A manifold Mn endowed with such a spatially directional mapping ω : Mn → Rn is

called an n-dimensional pseudo-manifold, denoted by (Mn,Aω).

Theorem 2.1 For a point p ∈Mn with local chart (Up, ϕp), ϕ
ω
p = ϕp if and only if

ω(p) = (2πk1, 2πk2, · · · , 2πkn) with ki ≡ 1(mod2) for 1 ≤ i ≤ n.

Proof By definition, for any point p ∈ Mn, if ϕωp (p) = ϕp(p), then ω(ϕp(p)) =

ϕp(p). According to Construction 2.1, this can only happens while ω(p) = (2πk1, 2πk2,

· · · , 2πkn) with ki ≡ 1(mod2) for 1 ≤ i ≤ n. �

Definition 2.1 A spatially directional mapping ω : Mn → Rn is euclidean if for any

point p ∈Mn with a local coordinates (x1, x2, · · · , xn), ω(p) = (2πk1, 2πk2, · · · , 2πkn)
with ki ≡ 1(mod2) for 1 ≤ i ≤ n, otherwise, non-euclidean.

Definition 2.2 Let ω : Mn → Rn be a spatially directional mapping and p ∈
(Mn,Aω), ω(p)(mod4π) = (ω1, ω2, · · · , ωn). Call a point p elliptic, euclidean or

hyperbolic in direction ei, 1 ≤ i ≤ n if o ≤ ωi < 2π, ωi = 2π or 2π < ωi < 4π.

Then we get a consequence by Theorem 2.1.

Corollary 2.1 Let (Mn,Aω) be a pseudo-manifold. Then ϕωp = ϕp if and only if

every point in Mn is euclidean.

Theorem 2.2 Let (Mn,Aω) be an n-dimensional pseudo-manifold and p ∈ Mn.

If there are euclidean and non-euclidean points simultaneously or two elliptic or

hyperbolic points in a same direction in (Up, ϕp), then (Mn,Aω) is a Smarandache

n-manifold.

Proof On the first, we introduce a conception for locally parallel lines in an

n-manifold. Two lines C1, C2 are said locally parallel in a neighborhood (Up, ϕp) of

a point p ∈Mn if ϕp(C1) and ϕp(C2) are parallel straight lines in Rn.
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In (Mn,Aω), the axiom that there are lines pass through a point locally parallel

a given line is Smarandachely denied since it behaves in at least two different ways,

i.e., one parallel, none parallel, or one parallel, infinite parallels, or none parallel,

infinite parallels.

If there are euclidean and non-euclidean points in (Up, ϕp) simultaneously, not

loss of generality, we assume that u is euclidean but v non-euclidean, ω(v)(mod4π) =

(ω1, ω2, · · · , ωn) and ω1 6= 2π. Now let L be a straight line parallel the axis e1 in Rn.

There is only one line Cu locally parallel to ϕ−1
p (L) passing through the point u since

there is only one line ϕp(Cq) parallel to L in Rn by these axioms for Euclid spaces.

However, if 0 < ω1 < 2π, then there are infinite many lines passing through u locally

parallel to ϕ−1
p (L) in (Up, ϕp) since there are infinite many straight lines parallel L

in Rn, such as those shown in Fig.2.1(a) in where each straight line passing through

the point u = ϕp(u) from the shade field is parallel to L.

Fig.2.1

But if 2π < ω1 < 4π, then there are no lines locally parallel to ϕ−1
p (L) in (Up, ϕp)

since there are no straight lines passing through the point v = ϕp(v) parallel to L

in Rn, such as those shown in Fig.2.1(b).

Fig.2.2

If there are two elliptic points u, v along a direction
−→
O , consider the plane P

determined by ω(u), ω(v) with
−→
O in Rn. Let L be a straight line intersecting with
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the line uv in P. Then there are infinite lines passing through u locally parallel to

ϕp(L) but none line passing through v locally parallel to ϕ−1
p (L) in (Up, ϕp) since

there are infinite many lines or none lines passing through u = ω(u) or v = ω(v)

parallel to L in Rn, such as those shown in Fig.2.2.

Similarly, we can also get the conclusion for the case of hyperbolic points.

Since there exists a Smarandachely denied axiom in (Mn,Aω), it is a Smarandache

manifold. This completes the proof. �

For an Euclid space Rn, the homeomorphism ϕp is trivial for ∀p ∈ Rn. In this

case, we abbreviate (Rn,Aω) to (Rn, ω).

Corollary 2.2 For any integer n ≥ 2, if there are euclidean and non-euclidean

points simultaneously or two elliptic or hyperbolic points in a same direction in

(Rn, ω), then (Rn, ω) is an n-dimensional Smarandache geometry.

Particularly, Corollary 2.2 partially answers an open problem in [12] for estab-

lishing Smarandache geometries in R3.

Corollary 2.3 If there are points p, q ∈ R3 such that ω(p)(mod4π) 6= (2π, 2π, 2π)

but ω(q)(mod4π) = (2πk1, 2πk2, 2πk3), where ki ≡ 1(mod2), 1 ≤ i ≤ 3 or p, q are

simultaneously elliptic or hyperbolic in a same direction of R3, then (R3, ω) is a

Smarandache space geometry.

Definition 2.3 For any integer r ≥ 1, a Cr differential Smarandache n-manifold

(Mn,Aω) is a Smarandache n-manifold (Mn,Aω) endowed with a differential struc-

ture A and a Cr spatially directional mapping ω. A C∞ Smarandache n-manifold

(Mn,Aω) is also said to be a smooth Smarandache n-manifold.

According to Theorem 2.2, we get the next result by definitions.

Theorem 2.3 Let (Mn,A) be a manifold and ω : Mn → Rn a spatially directional

mapping action on A. Then (Mn,Aω) is a Cr differential Smarandache n-manifold

for an integer r ≥ 1 if the following conditions hold:

(1) there is a Cr differential structure A = {(Uα, ϕα)|α ∈ I} on Mn;

(2) ω is Cr;

(3) there are euclidean and non-euclidean points simultaneously or two elliptic

or hyperbolic points in a same direction in (Up, ϕp) for a point p ∈Mn.

Proof The condition (1) implies that (Mn,A) is a Cr differential n-manifold

and conditions (2), (3) ensure (Mn,Aω) is a differential Smarandache manifold by
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definitions and Theorem 2.2. �

For a smooth differential Smarandache n-manifold (Mn,Aω), a function f :

Mn → R is said smooth if for ∀p ∈Mn with an chart (Up, ϕp),

f ◦ (ϕωp )
−1 : (ϕωp )(Up) → Rn

is smooth. Denote by ℑp all these C∞ functions at a point p ∈Mn.

Definition 2.4 Let (Mn,Aω) be a smooth differential Smarandache n-manifold and

p ∈ Mn. A tangent vector v at p is a mapping v : ℑp → R with these following

conditions hold.

(1) ∀g, h ∈ ℑp, ∀λ ∈ R, v(h+ λh) = v(g) + λv(h);

(2) ∀g, h ∈ ℑp, v(gh) = v(g)h(p) + g(p)v(h).

Denote all tangent vectors at a point p ∈ (Mn,Aω) by TpM
n and define addi-

tion+and scalar multiplication·for ∀u, v ∈ TpM
n, λ ∈ R and f ∈ ℑp by

(u+ v)(f) = u(f) + v(f), (λu)(f) = λ · u(f).

Then it can be shown immediately that TpM
n is a vector space under these two

operations+and·.
Let p ∈ (Mn,Aω) and γ : (−ε, ε) → Rn be a smooth curve in Rn with γ(0) = p.

In (Mn,Aω), there are four possible cases for tangent lines on γ at the point p, such

as those shown in Fig.2.3, in where these bold lines represent tangent lines.

Fig.2.3

By these positions of tangent lines at a point p on γ, we conclude that there

is one tangent line at a point p on a smooth curve if and only if p is euclidean in

(Mn,Aω). This result enables us to get the dimensional number of a tangent vector

space TpM
n at a point p ∈ (Mn,Aω).

Theorem 2.4 For any point p ∈ (Mn,Aω) with a local chart (Up, ϕp), ϕp(p) =
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(x,1x
0
2, · · · , x0

n), if there are just s euclidean directions along ei1 , ei2 , · · · , eis for a

point , then the dimension of TpM
n is

dimTpM
n = 2n− s

with a basis

{ ∂

∂xij
|p | 1 ≤ j ≤ s}

⋃
{ ∂

−

∂xl
|p,

∂+

∂xl
|p | 1 ≤ l ≤ n and l 6= ij , 1 ≤ j ≤ s}.

Proof We only need to prove that

{ ∂

∂xij
|p | 1 ≤ j ≤ s}

⋃
{ ∂

−

∂xl
,
∂+

∂xl
|p | 1 ≤ l ≤ n and l 6= ij , 1 ≤ j ≤ s} (2.1)

is a basis of TpM
n. For ∀f ∈ ℑp, since f is smooth, we know that

f(x) = f(p) +

n∑

i=1

(xi − x0
i )
∂ǫif

∂xi
(p)

+
n∑

i,j=1

(xi − x0
i )(xj − x0

j )
∂ǫif

∂xi

∂ǫjf

∂xj
+Ri,j,··· ,k

for ∀x = (x1, x2, · · · , xn) ∈ ϕp(Up) by the Taylor formula in Rn, where each term in

Ri,j,··· ,k contains (xi−x0
i )(xj − x0

j) · · · (xk − x0
k), ǫl ∈ {+,−} for 1 ≤ l ≤ n but l 6= ij

for 1 ≤ j ≤ s and ǫl should be deleted for l = ij , 1 ≤ j ≤ s.

Now let v ∈ TpM
n. By Definition 2.4(1), we get that

v(f(x)) = v(f(p)) + v(

n∑

i=1

(xi − x0
i )
∂ǫif

∂xi
(p))

+ v(

n∑

i,j=1

(xi − x0
i )(xj − x0

j )
∂ǫif

∂xi

∂ǫjf

∂xj
) + v(Ri,j,··· ,k).

Application of the condition (2) in Definition 2.4 shows that

v(f(p)) = 0,
n∑

i=1

v(x0
i )
∂ǫif

∂xi
(p) = 0,

v(

n∑

i,j=1

(xi − x0
i )(xj − x0

j )
∂ǫif

∂xi

∂ǫjf

∂xj
) = 0
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and

v(Ri,j,··· ,k) = 0.

Whence, we get that

v(f(x)) =

n∑

i=1

v(xi)
∂ǫif

∂xi
(p) =

n∑

i=1

v(xi)
∂ǫi

∂xi
|p(f). (2.2)

The formula (2.2) shows that any tangent vector v in TpM
n can be spanned by

elements in (2.1).

All elements in (2.1) are linearly independent. Otherwise, if there are numbers

a1, a2, · · · , as, a+
1 , a

−
1 , a

+
2 , a

−
2 , · · · , a+

n−s, a
−
n−s such that

s∑

j=1

aij
∂

∂xij
+

∑

i6=i1,i2,··· ,is,1≤i≤n
aǫii

∂ǫi

∂xi
|p = 0,

where ǫi ∈ {+,−}, then we get that

aij = (

s∑

j=1

aij
∂

∂xij
+

∑

i6=i1,i2,··· ,is,1≤i≤n
aǫii

∂ǫi

∂xi
)(xij ) = 0

for 1 ≤ j ≤ s and

aǫii = (

s∑

j=1

aij
∂

∂xij
+

∑

i6=i1,i2,··· ,is,1≤i≤n
aǫii

∂ǫi

∂xi
)(xi) = 0

for i 6= i1, i2, · · · , is, 1 ≤ i ≤ n. Therefore, (2.1) is a basis of the tangent vector

space TpM
n at the point p ∈ (Mn,Aω). �

Notice that dimTpM
n = n in Theorem 2.4 if and only if all these directions are

euclidean along e1, e2, · · · , en. We get a consequence by Theorem 2.4.

Corollary 2.4([4]-[5]) Let (Mn,A) be a smooth manifold and p ∈Mn. Then

dimTpM
n = n

with a basis

{ ∂

∂xi
|p | 1 ≤ i ≤ n}.

Definition 2.5 For ∀p ∈ (Mn,Aω), the dual space T ∗
pM

n is called a co-tangent

vector space at p.



10 Linfan Mao

Definition 2.6 For f ∈ ℑp, d ∈ T ∗
pM

n and v ∈ TpM
n, the action of d on f , called

a differential operator d : ℑp → R, is defined by

df = v(f).

Then we immediately get the following result.

Theorem 2.5 For any point p ∈ (Mn,Aω) with a local chart (Up, ϕp), ϕp(p) =

(x,1x
0
2, · · · , x0

n), if there are just s euclidean directions along ei1 , ei2 , · · · , eis for a

point , then the dimension of T ∗
pM

n is

dimT ∗
pM

n = 2n− s

with a basis

{dxij |p | 1 ≤ j ≤ s}
⋃

{d−xlp, d+xl|p | 1 ≤ l ≤ n and l 6= ij , 1 ≤ j ≤ s},

where

dxi|p(
∂

∂xj
|p) = δij and d

ǫixi|p(
∂ǫi

∂xj
|p) = δij

for ǫi ∈ {+,−}, 1 ≤ i ≤ n.

§3. Pseudo-Manifold Geometries

Here we introduce Minkowski norms on these pseudo-manifolds (Mn,Aω).

Definition 3.1 A Minkowski norm on a vector space V is a function F : V → R

such that

(1) F is smooth on V \{0} and F (v) ≥ 0 for ∀v ∈ V ;

(2) F is 1-homogenous, i.e., F (λv) = λF (v) for ∀λ > 0;

(3) for all y ∈ V \{0}, the symmetric bilinear form gy : V × V → R with

gy(u, v) =
∑

i,j

∂2F (y)

∂yi∂yj

is positive definite for u, v ∈ V .

Denote by TMn =
⋃

p∈(Mn,Aω)

TpM
n.
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Definition 3.2 A pseudo-manifold geometry is a pseudo-manifold (Mn,Aω) en-

dowed with a Minkowski norm F on TMn.

Then we get the following result.

Theorem 3.1 There are pseudo-manifold geometries.

Proof Consider an eucildean 2n-dimensional space R2n. Then there exists a

Minkowski norm F (x) = |x| at least. According to Theorem 2.4, TpM
n is Rs+2(n−s)

if ω(p) has s euclidean directions along e1, e2, · · · , en. Whence there are Minkowski

norms on each chart of a point in (Mn,Aω).

Since (Mn,A) has finite cover {(Uα, ϕα)|α ∈ I}, where I is a finite index set,

by the decomposition theorem for unit, we know that there are smooth functions

hα, α ∈ I such that

∑

α∈I
hα = 1 with 0 ≤ hα ≤ 1.

Choose a Minkowski norm F α on each chart (Uα, ϕα). Define

Fα =





hαF α, if p ∈ Uα,

0, if p 6∈ Uα

for ∀p ∈ (Mn, ϕω). Now let

F =
∑

α∈I
Fα.

Then F is a Minkowski norm on TMn since it satisfies all of these conditions (1)−(3)

in Definition 3.1. �

Although the dimension of each tangent vector space maybe different, we can

also introduce principal fiber bundles and connections on pseudo-manifolds.

Definition 3.3 A principal fiber bundle (PFB) consists of a pseudo-manifold (P,Aω
1 ),

a projection π : (P,Aω
1 ) → (M,Aπ(ω)

0 ), a base pseudo-manifold (M,Aπ(ω)
0 ) and a Lie

group G, denoted by (P,M, ωπ, G) such that (1), (2) and (3) following hold.

(1) There is a right freely action of G on (P,Aω
1 ), i.e., for ∀g ∈ G, there is a

diffeomorphism Rg : (P,Aω
1 ) → (P,Aω

1 ) with Rg(p
ω) = pωg for ∀p ∈ (P,Aω

1 ) such

that pω(g1g2) = (pωg1)g2 for ∀p ∈ (P,Aω
1 ), ∀g1, g2 ∈ G and pωe = pω for some

p ∈ (P n,Aω
1 ), e ∈ G if and only if e is the identity element of G.
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(2) The map π : (P,Aω
1 ) → (M,Aπ(ω)

0 ) is onto with π−1(π(p)) = {pg|g ∈ G},
πω1 = ω0π, and regular on spatial directions of p, i.e., if the spatial directions of p

are (ω1, ω2, · · · , ωn), then ωi and π(ωi) are both elliptic, or euclidean, or hyperbolic

and |π−1(π(ωi))| is a constant number independent of p for any integer i, 1 ≤ i ≤ n.

(3) For ∀x ∈ (M,Aπ(ω)
0 ) there is an open set U with x ∈ U and a diffeomorphism

T
π(ω)
u : (π)−1(Uπ(ω)) → Uπ(ω) × G of the form Tu(p) = (π(pω), su(p

ω)), where su :

π−1(Uπ(ω)) → G has the property su(p
ωg) = su(p

ω)g for ∀g ∈ G, p ∈ π−1(U).

We know the following result for principal fiber bundles of pseudo-manifolds.

Theorem 3.2 Let (P,M, ωπ, G) be a PFB. Then

(P,M, ωπ, G) = (P,M, π,G)

if and only if all points in pseudo-manifolds (P,Aω
1 ) are euclidean.

Proof For ∀p ∈ (P,Aω
1 ), let (Up, ϕp) be a chart at p. Notice that ωπ = π if and

only if ϕωp = ϕp for ∀p ∈ (P,Aω
1 ). According to Theorem 2.1, by definition this is

equivalent to that all points in (P,Aω
1 ) are euclidean. �

Definition 3.4 Let (P,M, ωπ, G) be a PFB with dimG = r. A subspace family H =

{Hp|p ∈ (P,Aω
1 ), dimHp = dimTπ(p)M} of TP is called a connection if conditions

(1) and (2) following hold.

(1) For ∀p ∈ (P,Aω
1 ), there is a decomposition

TpP = Hp

⊕
Vp

and the restriction π∗|Hp : Hp → Tπ(p)M is a linear isomorphism.

(2) H is invariant under the right action of G, i.e., for p ∈ (P,Aω
1 ), ∀g ∈ G,

(Rg)∗p(Hp) = Hpg.

Similar to Theorem 3.2, the conception of connection introduced in Definition

3.4 is more general than the popular connection on principal fiber bundles.

Theorem 3.3(dimensional formula) Let (P,M, ωπ, G) be a PFB with a connection

H. For ∀p ∈ (P,Aω
1 ), if the number of euclidean directions of p is λP (p), then

dimVp =
(dimP − dimM)(2dimP − λP (p))

dimP
.



Differential Geometry on Smarandache n-Manifolds 13

Proof Assume these euclidean directions of the point p being e1, e2, · · · , eλP (p).

By definition π is regular, we know that π(e1), π(e2), · · · , π(eλP (p)) are also euclidean

in (M,Aπ(ω)
1 ). Now since

π−1(π(e1)) = π−1(π(e2)) = · · · = π−1(π(eλP (p))) = µ = constant,

we get that λP (p) = µλM , where λM denotes the correspondent euclidean directions

in (M,Aπ(ω)
1 ). Similarly, consider all directions of the point p, we also get that

dimP = µdimM . Thereafter

λM =
dimM

dimP
λP (p). (3.1)

Now by Definition 3.4, TpP = Hp

⊕
Vp, i.e.,

dimTpP = dimHp + dimVp. (3.2)

Since π∗|Hp : Hp → Tπ(p)M is a linear isomorphism, we know that dimHp =

dimTπ(p)M . According to Theorem 2.4, we have formulae

dimTpP = 2dimP − λP (p)

and

dimTπ(p)M = 2dimM − λM = 2dimM − dimM

dimP
λP (p).

Now replacing all these formulae into (3.2), we get that

2dimP − λP (p) = 2dimM − dimM

dimP
λP (p) + dimVp.

That is,

dimVp =
(dimP − dimM)(2dimP − λP (p))

dimP
. �

We immediately get the following consequence by Theorem 3.3.

Corollary 3.1 Let (P,M, ωπ, G) be a PFB with a connection H. Then for ∀p ∈
(P,Aω

1 ),

dimVp = dimP − dimM

if and only if the point p is euclidean.
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Now we consider conclusions included in Smarandache geometries, particularly

in pseudo-manifold geometries.

Theorem 3.4 A pseudo-manifold geometry (Mn, ϕω) with a Minkowski norm on

TMn is a Finsler geometry if and only if all points of (Mn, ϕω) are euclidean.

Proof According to Theorem 2.1, ϕωp = ϕp for ∀p ∈ (Mn, ϕω) if and only if p

is eucildean. Whence, by definition (Mn, ϕω) is a Finsler geometry if and only if all

points of (Mn, ϕω) are euclidean. �

Corollary 3.1 There are inclusions among Smarandache geometries, Finsler ge-

ometry, Riemann geometry and Weyl geometry:

{Smarandache geometries} ⊃ {pseudo−manifold geometries}
⊃ {Finsler geometry} ⊃ {Riemann geometry} ⊃ {Weyl geometry}.

Proof The first and second inclusions are implied in Theorems 2.1 and 3.3.

Other inclusions are known in a textbook, such as [4] − [5]. �

Now we consider complex manifolds. Let zi = xi+
√
−1yi. In fact, any complex

manifold Mn
c is equal to a smooth real manifold M2n with a natural base { ∂

∂xi ,
∂
∂yi}

for TpM
n
c at each point p ∈ Mn

c . Define a Hermite manifold Mn
c to be a manifold

Mn
c endowed with a Hermite inner product h(p) on the tangent space (TpM

n
c , J) for

∀p ∈Mn
c , where J is a mapping defined by

J(
∂

∂xi
|p) =

∂

∂yi
|p, J(

∂

∂yi
|p) = − ∂

∂xi
|p

at each point p ∈ Mn
c for any integer i, 1 ≤ i ≤ n. Now let h(p) = g(p) +√

−1κ(p), p ∈ Mm
c . Then a Kähler manifold is defined to be a Hermite mani-

fold (Mn
c , h) with a closed κ satisfying

κ(X, Y ) = g(X, JY ), ∀X, Y ∈ TpM
n
c , ∀p ∈Mn

c .

Similar to Theorem 3.3 for real manifolds, we know the next result.

Theorem 3.5 A pseudo-manifold geometry (Mn
c , ϕ

ω) with a Minkowski norm on

TMn is a Kähler geometry if and only if F is a Hermite inner product on Mn
c with

all points of (Mn, ϕω) being euclidean.
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Proof Notice that a complex manifold Mn
c is equal to a real manifold M2n.

Similar to the proof of Theorem 3.3, we get the claim. �

As a immediately consequence, we get the following inclusions in Smarandache

geometries.

Corollary 3.2 There are inclusions among Smarandache geometries, pseudo-manifold

geometry and Kähler geometry:

{Smarandache geometries} ⊃ {pseudo−manifold geometries}
⊃ {Kähler geometry}.

§4. Further Discussions

Undoubtedly, there are many and many open problems and research trends in

pseudo-manifold geometries. Further research these new trends and solving these

open problems will enrich one’s knowledge in sciences.

Firstly, we need to get these counterpart in pseudo-manifold geometries for

some important results in Finsler geometry or Riemann geometry.

4.1. Storkes Theorem Let (Mn,A) be a smoothly oriented manifold with the T2

axiom hold. Then for ∀̟ ∈ An−1
0 (Mn),

∫

Mn

d̟ =

∫

∂Mn

̟.

This is the well-known Storkes formula in Riemann geometry. If we replace (Mn,A)

by (Mn,Aω), what will happens? Answer this question needs to solve problems

following.

(1) Establish an integral theory on pseudo-manifolds.

(2) Find conditions such that the Storkes formula hold for pseudo-manifolds.

4.2. Gauss-Bonnet Theorem Let S be an orientable compact surface. Then

∫ ∫

S

Kdσ = 2πχ(S),

where K and χ(S) are the Gauss curvature and Euler characteristic of S This for-

mula is the well-known Gauss-Bonnet formula in differential geometry on surfaces.
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Then what is its counterpart in pseudo-manifold geometries? This need us to solve

problems following.

(1) Find a suitable definition for curvatures in pseudo-manifold geometries.

(2) Find generalizations of the Gauss-Bonnect formula for pseudo-manifold

geometries, particularly, for pseudo-surfaces.

For a oriently compact Riemann manifold (M2p, g), let

Ω =
(−1)p

22pπpp!

∑

i1,i2,··· ,i2p

δ
i1,··· ,i2p

1,··· ,2p Ωi1i2 ∧ · · · ∧ Ωi2p−1i2p ,

where Ωij is the curvature form under the natural chart {ei} of M2p and

δ
i1,··· ,i2p

1,··· ,2p =





1, if permutation i1 · · · i2p is even,

−1, if permutation i1 · · · i2p is odd,

0, otherwise.

Chern proved that[4]−[5]

∫

M2p

Ω = χ(M2p).

Certainly, these new kind of global formulae for pseudo-manifold geometries are

valuable to find.

4.3. Gauge Fields Physicists have established a gauge theory on principal fiber

bundles of Riemann manifolds, which can be used to unite gauge fields with gravi-

tation. Similar consideration for pseudo-manifold geometries will induce new gauge

theory, which enables us to asking problems following.

Establish a gauge theory on those of pseudo-manifold geometries with some

additional conditions.

(1) Find these conditions such that we can establish a gauge theory on a pseudo-

manifold geometry.

(2) Find the Yang-Mills equation in a gauge theory on a pseudo-manifold ge-

ometry.

(2) Unify these gauge fields and gravitation.
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Abstract: The applications of Dynamic Smarandache Multi-Space (DSMS)

Theory are discussed in this paper. Assume that different equations are estab-

lished for n different dynamic spaces (where n is a dynamic positive integer

and a function of time), and these n different dynamic spaces combine to

form a DSMS, and they are mutually interacted. Some new coupled equations

need to be established in the DSMS to replace some equations in the origi-

nal dynamic spaces, and some other equations need to be added to account

for the contact, boundary conditions and so on. For a unified treatment of

all equations in the DSMS, this paper proposes a quantization process for all

variables and all equations and a unified variational principle for quantization

using a collocation method based on the method of weighted residuals, and

we may simultaneously solve all equations in the DSMS with the optimization

method. With the unified variational principle of quantization in the DSMS

and the fractal quantization method, we pave a way for a unified treatment

of problems in the theory of relativity and the quantum mechanics, and a

unified treatment of problems related with the four fundamental interactions.

Finally a coupled solution for problems of relativity and quantum mechanics

is discussed.

Key words: Dynamic Smarandache multi-space (DSMS), coupled equation,

collocation method, unified variational principle of quantization, fractal quan-

tization, four foundational interactions, unified processing.

In this paper we first discuss the structure of Dynamic Smarandache Multi-Space

(DSMS), then discuss new coupled equations in the DSMS, unified treatment of all
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equations in the DSMS, the quantization of all variables and equations with the col-

location method based on the method of weighted residuals, variable quantization

method, fractal quantization method, the unified variational principle of quantiza-

tion, the coupled solution of problems of relativity and quantum mechanics.

1. Smarandache multi-spaces and dynamic Smarandache multi-space

The notion of Smarandache multi-spaces was proposed by Smarandache in 1969[1−3].

A Smarandache multi-space is a union

M = M1

⋃
M2

⋃
· · ·

⋃
Mn

of n sets or subspaces M1, M2, · · · , Mn, where n is an integer with n ≥ 1.

If n is a constant, the corespondent Smarandache multi-space is called a static

multi-space.

In many practical problems, with a continuous change of the value of n and the

structure of the sets or subspaces, a dynamic multi-space should be considered.

We define a dynamic Smarandache multi-space (DSMS) as a union

M(t) = M1(t)
⋃

M2(t)
⋃

· · ·
⋃

Mn(t)(t)

or

M =

n(t)⋃

i=1

Mi

of n(t) sets or subspaces M1(t),M2(t), · · · ,Mn(t)(t), where n(t) is an integer-valued

function of time t and n(t) ≥ 1.

2. Unified variational principle in a single space

In reference [4], a unified variational principle of fluid mechanics was proposed for

a single fluid space.

2.1 Optimization method of weighted residuals

Optimization method of weighted residuals (OMWR) has been used for solving

problems in mechanics, physics and astronomy[5], which can be stated as follows.

For an operator equation

F = 0 in domain V (1)

with boundary condition
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B = 0 on boundary S. (2)

The functional Π defined by OMWR will take the minimum value

Π =

∫

V

A+(F )dV +W

∫

S

A+(B)dS = min0, (3)

where

A+(F ) = 0 if F = 0 and A+(F ) > 0 if F 6= 0, (4)

is a non-negative functional on F .

Let min0 denote minimum and its value should be equal to zero. Function

A+(F ) was first introduced in the reference [6]. W is a positive weighted number,

and in many cases W = 1. How to choose W was discussed in the reference [7].

If we set A+(F ) = F 2, Eq.3 gives the Least Squares Method. It has been

discussed these cases of A+(F ) = |F |, F 4,
√

|F |,
∣∣eF − 1

∣∣, |F |max and the others in

the reference [7].

Obviouslythe condition of zero minimum value of functional Π in Eq.(3) is

equivalent to the solution of Eqs.(1) and (2), whose proof was given in reference [4].

It should be noted that, if the domain V consists of n discrete points P1, P2, · · · , Pn,
and the boundary S with m discrete points Q1, O2, · · · , Qm (such as in quantization

problems that we will discuss later in this paper), the integrals in Eq.(3) should be

replaced by a summation

Π =
n∑

1

WiA
+(F (Pi)) +W

m∑

1

WjA
+(B(Qj)) = min0 (3′)

In addition, the establishment of functional Π in OMWR is very easy, and the

minimum value of Π is known in advance (equal to zero).

To find the minimum value of Π, two methods can be used. One is to solve

the equations given by the stationary condition Π′ = 0. Another is to use the opti-

mization methods proposed in references [4-8], such as the steepest descent method,

searching method, etc..

2.2. A unified variational principle of fluid mechanics (UVPFM)

We have known some basic equations in fluid mechanics with boundary conditions:

Continuity equation: F = 0 in a domain V . (5)

Equation of motion: G = 0 in a domain V . (6)

Energy equation: H = 0 in a domain V . (7)
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Constitutive equation: I = 0 in domain V . (8)

Equation of state: J = 0 in domain V . (9)

Boundary condition: B = 0 on boundary S. (10)

From OMWR, the UVPFM can be obtained as in the following form:

Π = W1

∫

V

A+(F )dV +W2

∫

V

A+(G)dV +W3

∫

V

A+(H)dV

+ W4

∫

V

A+(I)dV +W5

∫

V

A+(J)dV +W6

∫

S

A+(B)dS = min0, (11)

where Wi are properly chosen positive weighted numbers, A+(F )A+(G) and the

others are non-negative functionals defined by Eq.(4).

This method can be used to unify various water gravity wave theories[8], and to

obtain solutions of hydrodynamics equation for the solitary domain or for the solitary

point (point solution)[4]. In the solving process, it is not necessary to consider the

compatibility conditions related with other domain or other points.

3. The unified variational principle in the DSMS

In the DSMS , we have to consider the following equations:

The equations that are established in the original n(t) sets or subspaces, and

are still valid in the DSMS

Fi = 0 in domain Vi, i = 1, 2, · · · , n(t). (12)

The boundary conditions that are established in the original n(t) sets or sub-

spaces, and are still valid in the DSMS

Bi = 0 on boundary Si, i = 1, 2, · · · , n(t) (13)

As the n(t) different dynamic sets or subspaces combine to form a DSMS, they

will be mutually interacted, therefore, some new coupled equations are needed in

the DSMS to replace some equations in the original dynamic sets or subspaces, and

other equations should be added to account for the contact, boundary conditions

and so on. Here the contact conditions are those that should be satisfied in the case

that two sets or subspaces have some common elements.

To establish the new coupled equations in the DSMS, the existing coupled equa-

tions in physics can be considered, such as the pressure-velocity coupled equation,

temperature-stress coupled equation, and so on.
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Suppose all the new coupled equations, the contact and boundary conditions

and so on have been established, for the sake of convenience, they will be written in

the unified form as follows (in which Vj may be a domain or boundary),

Cj = 0 for Vj , j = 1, 2, · · ·m(t). (14)

According to OMWR, the unified variational principle in the DSMS can be

established as follows

Π =

n(t)∑

1

W1i

∫

Vi

A+(Fi)dVi +

n(t)∑

1

W2i

∫

Si

A+(Bi)dSi

+

m(t)∑

1

W3j

∫

Vj

A+(Cj)dVj = min0 (15)

It should be noted that, if the domain Vi, boundary Si and domain Vj con-

sist of n′(t) points Pi1, Pi2, · · · , Pin′, m′(t) points Qi1, Qi2, · · · , Qim′ and k(t) points

Pj1, Pj2, · · · , Pjk, respectively, the integral in Eq.(15) should be replaced by a sum-

mation, and the unified variational principle of quantization may be written as

Π =

n(t)∑

1

W1i

n′(t)∑

1

Wi′A
+(Fi(Pii′)) +

n(t)∑

1

W2i

m′(t)∑

1

Wi”A
+(Bi(Qii”))

+

m(t)∑

1

W3j

k(t)∑

1

Wj′A
+(Cj(Pjj′)) = min0 (15′)

4. Variable quantization and equation quantization

Two methods can be used for variable quantization: average value method and

representative value method.

With the average value method, the value of a whole interval is represented by

the average value in this interval.

For example, consider a spaceship navigating along a straight line with a speed

varying continually. We may consider five consecutive segments on the straight line,

and use the average speed on each line segment to represent the speed of the entire

line segment, then the speed of the spacecraft is no longer continuous, we call that

speed quantization (similarly, we may define quantization of other parameters such

as energy and temperature).
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With the representative value method, the value of a whole interval is repre-

sented by the value of a representative point chosen properly in this interval.

For the equation quantization, we can only use the representative value method,

because the solution of the equation is not known in advance.

The finite difference method and the finite element method are typical repre-

sentative value methods for the equation quantization.

Obviously, quantization methods for variable and equation can be used for all

problems described by continuous variables.

5. Fractal quantization

The quantization can also be achieved by fractal method, by taking integers for

certain variables in formulas of fractal distribution.

The fractal distribution is described by

N =
C

rD
(16)

Now, with this fractal distribution, we carry out the quantization for the value

of N . Namely, let N take values of consecutive integers: N = 1, 2, 3, · · · .
For example, consider the average velocities of the nine planets (unit: km/s) in

their orbital motion in the solar system. Let the characteristic dimension r be the

value of the average velocity of some planet’s orbital motion, and the value ofN serve

as the index to planets according to the values of their orbital motion average velocity

in descending order. For Mercury, r = 47.89, which is the greatest, so we let N = 1

and have the coordinate point (47.89, 1). Similarly we obtain other 8 planet coordi-

nate points as (35.03, 2), (29.79, 3), (24.13, 4), (13.06, 5), (9.64, 6), (6.81, 7), (5.43, 8),

(4.74, 9). The above 9 coordinate points may be plotted on the double logarithmic

coordinates, and we obtain 8 straight-line segments. In applying Smarandache ge-

ometry and neutrosophic methods, we do not fit these 9 points into a curve with

least squares method, instead,, we use the 8 straight lines, to accurately determine

their fractal parameters (constant C and fractal dimension D). For example, ac-

cording to Mercury’s coordinates (47.89, 1) and Venus’s coordinates (35.03, 2), we

may obtain the fractal parameters for the first straight-line segment: C = 5302.684,

D = 2.216639. The fractal distribution for the first straight-line segment is ex-

pressed by N = 5302.684
r2.216639 , which may be used as an extrapolation formula to predict

the average velocity of the next planet (Earth) by substituting N = 3 into this

formula and solving for the value of r. Similarly, we can make other predictions.
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The predictions may be summarized as follows.

By using the 1st straight-line segment, the predicted average velocity of the

next planet (Earth) is V = 29.17, with an error of 2.07%.

By using the 2nd straight-line segment, the predicted average velocity of the

next planet (Mars) is V = 26.55, with an error of 10.0%.

By using the 3rd straight-line segment, the predicted average velocity of the

next planet (Jupiter) is V = 20.49, with an error of 59.9%.

By using the 4th straight-line segment, the predicted average velocity of the

next planet (Saturn) is V = 7.91, with an error of 18.0%.

By using the 5th straight-line segment, the predicted average velocity of the

next planet (Uranus) is V = 7.46, with an error of 9.51%.

By using the 6th straight-line segment, the predicted average velocity of the

next planet (Neptune) is V = 5.04, with an error of 7.19%.

By using the 7th straight-line segment, the predicted average velocity of the

next planet (Pluto) is V = 4.45, with an error of 6.18%.

By using the 8th straight-line segment, the predicted average velocity of the

next planet (tenth planet) is V = 4.20, and the error is unknown, because the tenth

planet has not yet been discovered.

We can also use the concept of variable dimension fractal, introduced in [9],

where the fractal dimension D is a variable instead of a constant, for example

D = a0 + a1r + a2r
2 + ... + anr

n (17)

In some cases, for convenience, the fractal distribution can be written in the

following form

lnN = lnC −D ln r (18)

Substituting Eq.(17) into Eq.(18), we obtain a form, with which it would be

easier for one to handle the fractal quantization

lnN = lnC − (a0 + a1r + a2r
2 + ... + anr

n) ln r (19)

Namely
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F = lnC − (a0 + a1r + a2r
2 + ... + anr

n) ln r − lnN = 0 (20)

6. Application of unified variational principle of quantization and fractal

quantization

Now we discuss a unified treatment of problems of special relativity and quantum

mechanics. Consider the problems of the wavelength of Balmer series in atomic

spectrum of hydrogen and the ultimate speed experiment.

From quantum mechanics, the wavelength of Balmer series in atomic spectrum

of hydrogen may be obtained theoretically as

λ(n) = 9.112
4n2

n2 − 4
n = 3, 4, 5. (21)

Table 1 shows a comparison with experimental data λ0(3), λ0(4), λ0(5), with

small errors.

In order to obtain better results, we choose n = 3, 4, 5 as the representative

points, using the fractal quantization method and assume that

λ1(n) =
C1

nD1
n = 3, 4, 5. (22)

The detailed form will be determined with variational principle of quantization.

Table1. Wavelength of Balmer series in atomic spectrum of hydrogen

value of n 3 4 5

experimental value of λ0 6562 4861 4340

quantum mechanics method 6561 4860 4339

variational principle of quantization (non-coupled solution) 6562 4861 4340

variational principle of quantization (coupled solution) 6562 4861 4340

In special relativity, the ultimate speed can be expressed as

v2(Ek) = c2[1 − (1 +
Ek
m0c2

)−2] (23)

From table 2 below we can see that a comparison with the Bertozzi experimental

value of v2
0 sees also some small errors.
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In order to obtain better results, we use the fractal quantization method as-

suming

v2
1(Ek) =

C2

ED2
k

Ek = 1.1, 1.8, 4.7 (24)

Table 2. Bertozzi ultimate speed experiment

value of energy Ek 1.1 1.8 4.7

experimental value of v2
0 7.5 8.2 8.5

special relativity 8.09 8.55 8.91

variational principle of quantization (non-coupled solution) 7.5 8.2 8.5

variational principle of quantization (coupled solution) 7.5 8.2 8.5

Using variational principle (15’) and Least Squares Method, with the weighted

number being taken as 1, we have

Π = Π1 + Π2 = min0, (25)

where Π1 =
∑

n=3,4,5

[lnλ1(n)− lnλ0(n)]2 and Π2 =
∑

Ek=1.1,1.8,4.7

[ln v2
1(Ek)− ln v2

0(Ek)]
2.

Because the coupled equation of quantum mechanics and special relativity has

not been established, there are not such terms in Eq.(25).

Now we proceed to find the solution of Eq.(25). First we discuss the non-coupled

solution, where the quantum mechanics solution and the special relativity solution

are not interacted.

In Eqs.(22) and (24), we assume that

D1 = a0 + a1n,

D2 = b0 + b1Ek.

Then the solution of Eq.(25) is obtained by

∂Π

∂Ci
=
∂Π

∂ai
=
∂Π

∂bi
= 0 (6)

From these equations, the non-coupled expressions of fractal quantization for

the wavelength and ultimate speed are obtained as follows



A Unified Variational Principle for Quantization in Dynamic Smarandache Multi-Spaces 27

λ1(n) =
47542.69

n2.275455−0.1576265n
n = 3, 4, 5 (27)

v2
1(Ek) =

7.353035

E−0.2424636+0.03165919Ek
k

Ek = 1.1, 1.8, 4.7 (28)

From Eqs.(27) and (28), it follows that C1 = 6466.7C2 and a0 = −9.385b0.

The results of Eqs.(27) and (28) are shown in Table 1 and Table 2, which agree

with the experimental results completely.

Then we discuss the coupled solution. We let all constant terms in the quantum

mechanics solution to be equal to those in the special relativity solution.

Namely, in Eqs.(22) and (24), we set

C1 = C2,

a0 = b0,

D1 = a0 + a1n + a2n
2,

D2 = b0 + b1Ek + b2E
2
k.

Solving Eqs.(26), the coupled expressions of fractal quantization for the wave-

length and ultimate speed are obtained as follows

λ1(n) =
4.365727

n−16.41046+4.489881n−0.4130926n2 n = 3, 4, 5 (29)

v2
1(Ek) =

4.365727

E
−16.41046+11.69979E−

k 1.765917E2
k

k

Ek = 1.1, 1.8, 4.7 (30)

The results of Eqs.(29) and (30) are shown in Table 1 and Table 2, which again

agree with the experimental results completely.

From the above results, we may see that, for problems of two completely dif-

ferent domains, such as quantum mechanics and special relativity, the extremely

similar solutions can be obtained with the method presented in this paper. More-

over, although the coupled equation of quantum mechanics and special relativity

has not been established, the coupled solution for the quantum mechanics and the

theory of relativity can be obtained.
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7. Further discussions

The unified variational principle of quantization in DSMS and the fractal quantiza-

tion method can similarly be used for a unified treatment of problems in different

domains, thus pave the way for a unified treatment of the theory of relativity and the

quantum mechanics, and a unified treatment of the four fundamental interactions.

For example, we may discuss the simplest situation, namely, when the equations

governing the four fundamental interactions are expressed by Fi = 0 (i = 1, 2, 3, 4).

We may consider their action domains as a DSMS, assuming that all the coupled

equations and supplementary contact and boundary conditions are expressed by

Cj = 0. Then the variational principle for the unified treatment of the four founda-

tional interactions may be expressed as

Π =

4∑

i=1

Wi

∫

Vi

F 2
i dVi +

j∑

1

Wj

∫

Vj

C2
j dVj = min0.
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Theory of Relativity on the Finsler Spacetime
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Abstract: Einstein’s theory of special relativity and the principle of causal-

ity imply that the speed of any moving object cannot exceed that of light in

a vacuum (c). Nevertheless, there exist various proposals for observing faster-

than-c propagation of light pulses, using anomalous dispersion near an absorp-

tion line, nonlinear and linear gain lines, or tunnelling barriers. However, in all

previous experimental demonstrations, the light pulses experienced either very

large absorption or severe reshaping, resulting in controversies over the inter-

pretation. Recently, L.J.Wang, A.Kuzmich and A.Dogariu use gain-assisted

linear anomalous dispersion to demonstrate superluminal light propagation in

atomic caesium gas. The group velocity of a laser pulse in this region exceeds

c and can even become negative, while the shape of the pulse is preserved.

The textbooks say nothing can travel faster than light, not even light itself.

New experiments show that this is no longer true, raising questions about the

maximum speed at which we can send information. On the other hand, the

light speed reduction to 17 meters per second in an ultracold atomic gas. This

shows that the light speed could taken on voluntariness numerical value,

This paper shows that if ones think of the possibility of the existence of the

superluminal-speeds (the speeds faster than that of light) and redescribe the

special theory of relativity following Einstein’s way, it could be supposed that

the physical spacetime is a Finsler spacetime, characterized by the metric

ds4 = gijkldxidxjdxkdxl.

1Supported by National Natural Science Foundation of China(Grant No.10371138)
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If so, a new spacetime transformation could be found by invariant ds4 and the

theory of relativity is discussed on this transformation. It is possible that the

Finsler spacetime F (x, y) may be endowed with a catastrophic nature. Based

on the different properties between the ds2and ds4, it is discussed that the flat

spacetime will also have the catastrophe nature on the Finsler metric ds4. The

spacetime transformations and the physical quantities will suddenly change

at the catastrophe set of the spacetime, the light cone. It will be supposed

that only the dual velocities of the superluminal-speeds could be observed.

If so, a particle with the superluminal-speeds v > c could be regarded as its

anti-particle with the dual velocity v1 = c2/v < c. On the other hand, it

could be assumed that the horizon of the field of the general relativity is also

a catastrophic set. If so, a particle with the superluminal-speeds could be

projected near the horizon of these fields, and the particle will move on the

spacelike curves. It is very interesting that, in the Schwarzschild fields, the

theoretical calculation for the spacelike curves should be in agreement with

the data of the superluminal expansion of extragalactic radio sources observed

year after year.(see Cao,1992b)

The catastrophe of spacetime has some deep cosmological means. According

to the some interested subjects in the process of evolution of the universe the

catastrophe nature of the Finsler spacetime and its cosmological implications

are discussed. It is shown that the nature of the universal evolution could be

attributed to the geometric features of the Finsler spacetime.(see Cao,1993)

Key words: Spacetime, catastrophe, Finsler metric, Finsler spacetime,

speed faster than light .

It is known that in his first paper on the special theory of relativity: “On the elec-

trodynamics of moving bodies”, Einstein clearly states (cf. Einstein, 1923) that

‘Velocities greater than that of light have, no possibility of existence.’ But he ne-

glected to point out the applicable range of Lorentz transformation. In fact, his

whole description must be based on velocities smaller than that of light which we call

subluminal-speed. So, the special theory of relativity cannot negate that real motion

at a speed greater than the speed of light in vacuum which we call superluminal-

speed could exist. In this paper, it is shown that if we think of the possibility of

existence of the superluminal-speed and redescribe the special theory of relativity

following Einstein’s way, a new theory would be founded on the Finsler spacetime.

The new theory would retain all meaning of the special theory of relativity when

matters move with subluminal-speed and would give new content when matters move
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with superluminal-speed. If we assume that the superluminal-speed will accord with

the spacelike curves in the general theory of relativity, calculations indicate that the

superluminal expansion of extragalactic radio sources exactly corresponds with the

spacelike curves of the Schwarzschild geometry.

Our discussion is still based on the principle of relativity and on the principle

of constancy of the velocity of light which have been defined by Einstein as follows:

(1)The laws by which the states of physical systems undergo change are not

affected, whether these changes of state be referred to the one or the other of two

systems of coordinates in uniform translatory motion (see Einstein, 1923;p.41).

(2)Any ray of light moves in the ‘stationary’ system of coordinates with the

determined velocity c, whether the ray be emitted by stationary or by a moving

body.

Note that these two postulates do not impose any constraint on the relative

speed v of the two inertial observers.

§1. The general theory of the transformation of spacetime

1-1. Definition of simultaneity and temporal order

In his description about definition of simultaneity, Einstein stated: “Let us take a

system of coordinates in which the equations of Newtonian mechanics hold good”,

· · · , “Let a ray of light start at the ‘A time’ tA from A towards B, let it at the B

time’ tB be reflected at B in the direction of A, and arrive again at A at the ‘A time’

t′A.” In accordance with definition, the two clocks synchronize if (see Einstein, 1923;

p.40)

tB − tA = t′A − tB. (1.1)

“In agreement with experience we further assume the quantity

2AB

tB − tA
= c, (1.2)

to be a universal constant - the velocity of light in empty space.”

“It is essential to have time defined by means of stationary clocks in the station-

ary system, and the time now defined being appropriate to the stationary system

we call it ‘the time of the stationary system’.” In this way, Einstein finished his

definition of simultaneity. But he did not consider the applicable condition of this
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definition, still less the temporal order and as it appears to me these discussions are

essential too. Let us continue these discussions following Einstein’s way.

First and foremost, let us assume if the point B is moving with velocity v relative

to the point A, in agreement with experience we must use the following equations

instead of Equation (2):

2AB

tA − tB
=





c− v,

c+ v,

when B

when B

is leaving

is approaching

A (a)

A (b)
(1.3)

Obviously, Equation (1.3a) is not always applicable, it must require v<c, but

Equation (1.3b) is always applicable-i.e., for v < c and v > c Einstein’s whole

discussion is based on the following formulae:

tB − tA =
rAB
c− v

and t′A − tB =
rAB
c+ v

. (1.4)

It must require v < c, because tB tA must be larger than zero. Particularly, in order

to get the Lorentz transformation, Einstein was based on the following formula (see

Einstein, 1923; p.44)

1

2
[τ(0, 0, 0, t) + τ(0, 0, 0, t+ x′

c−v + x′

c+v
)] = τ(x′, 0, 0, t+ x′

c−v ), (1.5)

where x′

c−v is just tB tA, so must require v < c, i.e., B must be the motion with

the subluminal-speed. Then the Lorentz transformation only could be applied to

the motion with subluminal-speed. It could not presage anything about the motion

with the superluminal-speed, i.e., the special theory of relativity could not negate

that the superluminal-speed would exist.

In order for our discussion to be applied to the motion with the superluminal-

speed, we will only use Equation (1.3b), i.e., let the point B approach A. Now, let

another ray of light (it must be distinguished from the first) start at the ‘A time’

tA1 from A towards B (when B will be at a new place B1) let it at the ‘B time’ tB1

be reflected at B in the direction of A, and arrive again at A at the ‘A time’ tA1.

According to the principle of relativity and the principle of the constancy of

the velocity of light, we obtain the following formulas:

1

2
(t′A − tA) = tB − tA =

AB

c+ v
, (1.6)
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1

2
(t′A1 − tA1) = tA1 − tB1 =

AB1

c+ v
, (1.7)

AB − AB1 = v(tA1 − tA). (1.8)

Let

∆tA = tA1 − tA,∆tB = tB1 − tB and ∆t′A = t′A1 − t′A, (1.9)

where ∆tA,∆tB, and ∆t′A represent the temporal intervals of the emission from

A, the reflection from B, and arrival at A for two rays of light, respectively. The

symbols of the temporal intervals describe the temporal orders. When ∆t >0 it will

be called the forward order and when ∆t <0, the backward order.

From Equations (1.6)-(1.9) we can get

∆tB =
c

c+ v
∆tA, (1.10)

and

∆t′A =
c− v

c+ v
∆tA. (1.11)

Then we assume that, if ∆tA > 0, i.e., two rays of light were emitted from A,

successively we must have ∆tB >0 i.e., for the observer at system A these two rays

of light were reflected by the forward order from B. But

∆t′A ≥ 0, if and only if v ≤ c

and

∆t′A < 0, if and only if v > c.

It means that for the observer at system A these two rays of light arrived at A by

the forward order only when the point B moves with subluminal-speed, and by the

backward order only when with superluminal-speed. In other words, the temporal

order is not always constant. It is constant only when v<c, and it is not constant

when v>c.

Usually, one thinks that this is a backward flow of time. In fact, it is only

a procedure of time in the system B with the superluminal-speed which gives the
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observer in the ‘stationary system’ A an inverse appearance of the procedure of the

time. It is an inevitable outcome when the velocity of the moving body is faster than

the transmission velocity of the signal. This outcome will be called the relativity of

the temporal order. It is a new nature of the time when the moving body attains

the supeluminal-speed. It is known that it is not spacetime that impresses its form

on things, but the things and their physical laws that determine spacetime. So, the

superluminal-speed need not be negated by the character of the spacetime of the

special theory of relativity, but will represent the new nature of the spacetime, the

relativity of the temporal order.

1-2. The temporal order and the chain of causation

In order to explain the disparity between the backward flow of time and the relativity

of the temporal order, we will use spacetime figure (as Fig.1-1)

Fig.1-1. The spacetime figure

and take following definitions.

(1)The chain of the event, tA0,tA1,. . . ,tAi,. . . . The ith ray of light will be started

at tAi and ∆tAi = tA(i+1) tAi >0 It may or may not be chain of causality.
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(2)The chains of the transference of the light tA0, tB0, t
′
A0; tA1, tB1, t

′
A1;. . . .

Every chain tAi, tBi, t
′
Ai must be a chain of causality -i.e.

1

2
(t′Ai − tAi) = tBi − tAi = t′Ai − tBi > 0. (1.12)

If they take a negative sign it will be the backward flow of time and will violate the

principle of causality.

(3)The chains of the motion are the rays of the light, which will be reflected at

B, but it will have different features when B moves with different velocity. Let us

assume that:

(a) v >0 when B is approaching A;

(b) v <0 when B is leaving A;

(c) c >0 when the ray of light from A backwards B;

(d) c <0 when the ray of light from A towards B.

So, if v=0, we must have c <0. Then

tA(i+1) − tAi = tB(i+1) − tBi = t′A(i+1) − t′Ai. (1.13)

If v < c, we must have c <0 and when v >0,

tA(i+1) − tAi > tB(i+1) − tBi > t′A(i+1) − t′Ai > 0. (1.14)

But when v < 0,

0 < tA(i+1) − tAi < tB(i+1) − tBi < t′A(i+1) − t′Ai. (1.15)

Last of all, if v > c, must have v >0; and when c <0,

tA(i+1) − tAi > tB(i+1) − tBi > |t′A(i+1)t
′
Ai| > 0. (1.16)

But

t′A(i+1) − t′Ai < 0. (1.17)

When c >0,

0 < tA(i+1) − tAi < |tB(i+1) − tBi| < |t′A(i+1) − t′Ai| (1.18)

and



36 Shenglin Cao

tB(i+1) − tBi < 0 and t′A(i+1) − tAi < 0. (1.19)

These are rigid relations of causality.

4.The chains of the observation t′A0,t
′
A1,. . . ,t

′
Ai,. . . and tB0,tB1,. . . ,tBi,. . . are

not chains of causality. The relativity of temporal order is just that they could be a

positive when v < c or a negative when v > c and the vector v and c have the same

direction.

In (1.4) when v > c, tB tA <0 it does not mean that velocities greater than

that of light have no possibility of existence but only that the ray of light cannot

catch up with the body with superluminal-speed.

1-3. Theory of the Transformation of Coordinates

From equations (1.10) and (1.11) we can get

∆tB =
c

c+ v
∆tA (1.20)

and

∆tB =
c

c− v
∆t′A. quad (1.21)

It has been pointed out that ∆tA and ∆t′A are measurable by observer of the system

A, but ∆tB is unmeasurable. Accordingly, the observer must conjecture ∆tB from

∆tA or ∆t′A. In form, ∆tB in Equation (1.20) and ∆tB in (1.21) are different. If we

can find a transformation of coordinates it will satisfy following equation:

∆τ 2 = ∆tA · ∆t′A (1.22)

and, according to Equations (1.10) and (1.11), could get

∆τ 2 =





> 0, iff v < c,

= 0, iff v = c,

< 0, iff v > c.

(1.23)

Then, we get

∆t2B =
c2

c2 − v2
∆τ 2

or
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dt2 =
c2

c2 − v2
dτ 2. (1.24)

Let ds2 = c2dτ 2. We get

ds2 = c2dτ 2 = (c2 v2)dt2. (1.25)

So

ds2 =





> 0, v < c timelike,

= 0, v = c lightlike,

< 0, v > c spacelike.

(1.26)

What merits special attention is that ds2 = (c2 − v2)dt2 and ds2 = c2dt2 − dx2 −
dy2−dz2 are not identical. Usually, the special theory of relativity does not recognize

their difference because motion with subluminal-speed does not involve the relative

change of temporal orders, so the symbol of ds2 remains unchanged when the inertial

system changes.

Now let

ds2 = ds2
v + ds2

0, (1.27)

where

ds2
v = (c2 − v2)dt2, (1.28)

ds2
0 = dx2 + dy2 + dz2, (1.29)

then

ds2 =





+ds2
v + ds2

0, v < c,

−ds2
v + ds2

0, v > c.
(1.30)

Between any two inertial systems

ds2
v + ds2

0 =





+ds2
v + ds2

0, v < c,

−ds2
v + ds2

0, v > c.
(1.31)
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According to classical mechanics, we can determine the state of a system with n

degrees of freedom at time t by measuring the 2n position and momentum coor-

dinates qi(t), pi(t), i=1,2,. . . ,n. These quantities are commutative each other, i.e.,

qi(t) pj(t) = pj (t)qi(t). But, in quantum mechanics the situation is entirely differ-

ent. The operators Qop and Pop corresponding to the classical observable position

vector q and momentum vector p. These operators are non-commutative each other,

i.e.,

QP 6= PQ.

So, ones doubt whether the quantum mechanics is not a good theory at first. But,

ones discover that the non-commutability of operators is closely related to the uncer-

tainty principle, it is just an essential distinction between the classical and quantum

mechanics.

So, I doubt that whether the non-positive definite metrics ds2 is just the best

essential nature in the relativity theory? But, it was cast aside in Einstein’s theory.

Now, we could assume that

ds4 = ds4
v + ds4

0. (1.32)

In general, we could let

ds4 = gijkldx
idxjdxkdxl, i, j, k, l = 0, 1, 2, 3. (1.33)

Equations (1.32) and (1.33) which are defined as a Finsler metric are the base of the

spacetime transformations. From the physical point of view this means that a new

symmetry between the timelike and the spacelike could exist.

In his memoir of 1854, Riemann discusses various possibilities by means of which

an n-dimensional manifold may be endowed with a metric, and pays particular at-

tention to a metric defined by the positive square root of positive definite quadratic

differential form. Thus the foundations of Riemannian geometry are laid; neverthe-

less, it is also suggested that the positive fourth root of a fourth-order differential

form might serve as metric function (see Rund, 1959; Introduction X).

In his book of 1977, Wolfgang Rindler stated: “Whenever the squared differen-

tial distance dσ2 is given by a homogeneous quadratic differential form in the surface

coordinates, as in (7.10), we say that dσ2 is a Riemannian metric, and that the cor-

responding surface is Riemannian. It is, of course, not a foregone conclusion that

all metrics must be of this form: one could define, for example, a non-Riemannian
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metric dσ2 =
√
dx4 + dy4 for some two-dimensional space, and investigate the re-

sulting geometry.(Such more general metrics give rise to ‘Finsler’ geometry.)” (see

W. Rindler,1997).

§2. The Special Theory of Relativity on the Finsler Spacetime ds4

2-1 Spacetime Transformation Group on the Finsler Metric ds4

If v = vx, then, between any two inertial systems we have

c4dt4 + dx4 − 2c2dt2dx2 + dy4 + dz4 + 2dy2dz2

= c4dt′4 + dx′4 − 2c2dt′2 + dy′4 + dz′4 + 2dy′2dz′2 (2.1)

From (2.1) we could get transformations

t =
t′ + v

c2
x′

4
√

1 − 2β2 + β4
, x = x′+vt′

4
√

1−2β2+β4
, y = y′, z = z′. (2.2)

These transformations are called spacetime transformations. All spacetime transfor-

mations form into a group, called the spacetime transformation group (The Lorentz

transformations group is only subgroup of the spacetime transformation group). The

inverse transformations are of the form

±t′ =
t− β x

c

4
√

1 − 2β2 + β4
, ±x′ = x−vt

4
√

1−2β2+β4
, y′ = y, z′ = z, (2.3)

where β = v
c
. We could also use dual velocity v1 = c2

v
to represent the spacetime

transformations. In fact, the transformations (2.2) can be rewritten as

t =
β1t

′ + x′

c

4
√

1 − 2β2
1 + β4

1

, x = β1x
′+ct′

4
√

1−2β2
1+β4

1

, y = y′, z = z′. (2.4)

Their inverse transformations are of the form

±t′ =
β1t− x

c

4
√

1 − 2β2
1 + β4

1

, ±x′ = β1x−ct
4
√

1−2β2
1+β4

1

, y′ = y, z′ = z. (2.5)

where β1 = v1
c

= c
v

= 1
β
.

It is very interesting that all spacetime transformations are applicable to both

the subluminal-speed (i.e.,β<1 or β1 >1) and the superluminal-speed (i.e.,β>1 or
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β1 <1). Whether the velocity is superluminal- or subluminal-speed, it is character-

ized by minus or plus sign of their inverse transformations, respectively.

Lastly, all spacetime transformations have the same singularity as the Lorentz

transformation when the β = β1 = 1.

2-2. Kinematics on the ds4 Invariant

We shall now consider the question of the measurement of length and time increment.

In order to find out the length of a moving body, we must simultaneously plot

the coordinates of its ends in a fixed system. From Equation (2.2) and (2.4), an

expression for the length of a moving scale ∆x′ measured by a fixed observer follows

as

±∆x′ = ∆x 4
√

1 − 2β2 + β4, (2.6)

and

±∆x′ = c∆t 4

√
1 − 2β2

1 + β4
1 , (2.7)

Einstein stated: “For v = c all moving objects - viewed from the ‘stationary’ system -

shrivel up into plain figures. For velocities greater than that of light our deliberations

become meaningless.” However, formula (2.6) can applied to the case for velocities

greater than that of light. Fig.2.1 give the relation between the length of a moving

scale L and the velocity.

Fig.2.1. L-β curve

Let ∆t be the time increment when the clock is at rest with respect to the

stationary system, and ∆τ be the time increment when the clock is at rest with
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respect to the moving system. Then

±∆τ = ∆t 4
√

1 − 2β2 + β4 (2.8)

and

±∆τ =
∆x

c
4

√
1 − 2β2

1 + β4
1 , (2.9)

Differentiating (2.3) or (2.5) and dividing dx′ by dt′ we obtain

dx′

dt′
= v′x =

dx/dt− v

1 − v/c2dx/dt
=

vx − v

1 − vvx/c2
, (2.10)

Noting that dy′ = dy, dz′ = dz, we have a transformation of the velocity components

perpendicular to v:

dy′

dt′
= v′y =

vy
4
√

1 − 2β2 + β4

1 − vvx/c2
,
dz′

dt′
= v′z =

vz
4
√

1 − 2β2 + β4

1 − vvx/c2
, (2.11)

where

v2 = v2
x + v2

y + v2
z . (2.12)

From Equation (2.8), we could see that the composition of velocities have four

physical implications: i.e.,

(1)A subluminal-speed and another subluminal-speed will be a subluminal-

speed.

(2)A superluminal-speed and a subluminal-speed will be a superluminal-speed.

(3)The composition of two superluminal-speeds is a subluminal-speed.

(4)The composition of light-speed with any other speed (subluminal-,light-, or

superluminal-speed) still is the light-speed.

There are the essential nature of the spacetime transformation group. The usual

Lorentz transformation is a only subgroup of the spacetime transformation group.

It is necessary to point out that if 1 − vvx/c
2 = 0, i.e.,

vx = v/c2, (2.13)
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then vx → ∞. It implies that if two velocities are dual to each other and in opposite

directions, then their composition velocity is an infinitely great velocity. We guess

that it may well become an effective way to make an appraisal of a particle with the

superluminal-speed.

2-3. Dynamics on the ds4 Invariant

The Lagrangian for a free particle with mass m is

L = −mc2 4
√

1 − 2β2 + β4, (2.14)

The momentum energy, and mass of motion of the particle are of the forms:

p = mv
4
√

1−2β2+β4
, E = mc2

4
√

1−2β2+β4
,M = m

4
√

1−2β2+β4
. (2.15)

Those could also be represented by dual velocity v1:

p(v) = mv
4
√

1−2β2+β4
= mc

4
√

1−2β2
1+β4

1

= 1
c
E(v1), (2.16)

E(v) = mc2

4
√

1−2β2+β4
= mv1c

4
√

1−2β2
1+β4

1

= cp(v1), (2.17)

M(v) = m
4
√

1−2β2+β4
= β1m

4
√

1−2β2
1+β4

1

= β1M(v1). (2.18)

Fig.2.2. E-β diagram Fig. 2.3. p-β diagram

Einstein stated: “Thus, when v = c, E becomes infinite, velocities greater than

that of light have - as in our previous results - no possibility of existence.” But,

formula (2.7) can also applied to the case for velocities greater than that of light.

Fig.2.2 give the relation between the energy of a moving particle and its velocity,
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and Fig.2.3 give the relation between the momentum of a moving particle and its

velocity.

It is very interesting that the momentum (or energy) in the v’s representation

will change into the energy (or momentum) in the v1’s representation. From (2.15)

(or (2.16) and (2.17)), we could get the following relation between the momentum

and energy of a free material particle:

p(v) =
v

c2
E(v) or p(v1) =

v1

c2
E(v1), (2.19)

where the relation (2.19) keeps up the same form as the special theory of relativity.

But a new invariant will be obtained as

E4 + c4p4 − 2c2p2E2 = m4c8. (2.20)

The relation (2.20) is correct for both of the v′s and the v1’s representations. It is a

new relation on the ds4 invariant.

2.4. A Charged Particle in an Electromagnetic Field on the Finsler

Spacetine ds4

Let us now turn to the equations of motion for a charged particle in an electromag-

netic field, A,Φ, Ee andHe. Their Lagrangian is

L = −mc2 4
√

1 − 2β2 + β4 +
e

c
Av − eΦ. (2.21)

The derivative ∂L/∂v is the generalized momentum of the particle. We denote it

by pe

pe = mv 4
√

1 − 2β2 + β4 +
e

c
A = p+

e

c
A. (2.22)

where p denotes momentum in the absence of a field.

From the Lagrangian we could find the Hamiltonian function for a particle in

a field from the general formula

H = mc2 4
√

1 − 2β2 + β4 + eΦ. (2.23)

However, the Hamiltonian must be expressed not in terms of the velocity, but rather

in terms of the generalized momentum of the particle. From equations (2.2) and

(2.3), we can get the relation
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[(
H − eΦ

c
)2 − (p− e

c
A)2]2 = m4c4. (2.24)

Now we write the Hamilton-Jacobi equation for a particle in an electromagnetic

field in the Finsler spacetime. It is obtained by replacing, in the equation for the

Hamiltonian, P by ∂S/∂r, and H by −∂S/∂t. Thus we get from (2.24)

[(∇S − e

c
A)2 − 1

c2
(
∂S

∂t
+ eΦ)2]2 −m4c4 = 0. (2.25)

Now we consider the equation of motion of a charge in an electromagnetic field. It

could be written by Lagrangian (2.21) as

d

dt

mv
4
√

1 − 2β2 + β4
= eEe +

e

c
v ×He. (2.26)

where

Ee = −1

c

∂A

∂t
− gradΦ, He = curlA. (2.27)

It is easy to check the dEe = vdP , i.e.,

v
d

dt

mv
4
√

1 − 2β2 + β4
= mc2

d

dt

1
4
√

1 − 2β2 + β4
. (2.28)

Then from (2.26) we have

dE

dt
= eEev. (2.29)

Integrate (2.29) and get

mc2

4
√

1 − 2β2 + β4
− mc2

4
√

1 − 2β2
0 + β4

0

= eU. (2.30)

where

β0 =
v0

c
, U =

r∫

r0

Eedr. (2.31)

From (2.26) and (2.29), if we write it in terms of components, it is easy to obtain the

spacetime transformation equations for the field components, and we could obtain

the field transformation equation
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



H ′
x = Hx,

H ′
y = Hy+βEz

4
√

1−2β2+β4
,

H ′
z = Hz−βEy

4
√

1−2β2+β4
,

E ′
x = Ex,

E ′
y = Ey−βHz

4
√

1−2β2+β4
,

E ′
z = Ez+βHy

4
√

1−2β2+β4
.

(2.32)

We could also use dual velocity v1 to represent the field transformation equation





H ′
x = Hx,

H ′
y = β1Hy+Ez

4
√

1−2β2
1+β4

1

,

H ′
z = β1Hz−Ey

4
√

1−2β2
1+β4

1

,

E ′
x = Ex,

E ′
y = β1Ey−Hz

4
√

1−2β2
1+β4

1

,

E ′
z = β1Ez+Hy

4
√

1−2β2
1+β4

1

.

(2.33)

An invariant will be obtained as

H4
e + E4

e − 2H2
eE

2
e =constant,

of new nature for the electromagnetic field in Finsler spacetime.

§3. The Catastrophe of the Spacetime and Its Physical Meaning

3.1. Catastrophe of the Spacetime on the Finsler Metric ds4

The functions y = x2 and y = x4 are topologically equivalent in the theory of the

singularities of differentiable maps (see Arnold et al.,1985). But the germ y = x2 is

topologically (and even differentially) stable at zero. the germ y = x4 is differentially

(and even topologically) unstable at zero. So, there is a great difference between the

theories of relativity on the ds2 and the ds4.

On the other hand, a great many of the most interesting macroscopic phenom-

ena in nature involve discontinuities. The Newtonian theory and Einstein’s rela-

tivity theory only consider smooth, continuous processes. The catastrophe theory,

however, provides a universal method for the study of all jump transitions, disconti-

nuities and sudden qualitative changes. The catastrophe theory is a program. The

object of this program is to determine the change in the solutions to families of

equations when the parameters that appear in these equations change.

In general, a small change in parameter values only has a small quantitative

effect on the solutions of these equations. However, under certain conditions a

small change in the value of some parameters has a very large quantitative effect on

the solutions of these equations. Large quantitative changes in solutions describe

qualitative changes in the behaviour of the system modeled.

Catastrophe theory is, therefore, concerned with determining the parameter
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values at which there occur qualitative changes in solutions of families of equations

described by parameters.

The double-cusp is the simplest non-simple in the sense of Arnold (see

Arnold et al.,1985), but the double-cusp is unimodal.

The double-cusp is compact, in the sense that the sets f≤constant are compact.

In Arnold’s notation, the double-cusp belongs to the family X9 and in that family

there are three real types of germ, according as to whether the germ has 0,2, or 4

real roots. For example representatives of the three types are: type 1x4 + y4, type

2x4 y4, type 3x4 + y4 2δx 2y2,respectively, and only the type 1 is compact.

Compact germs play an important role in application (see Zeeman, 1977), be-

cause any perturbation of a compact germ has a minimum; therefore if minima

represent the stable equilibria of some system, then for each point of the unfolding

space there exists a stable state of the system.

3.2. Catastrophe of the spacetime on the Finsler Metric ds4

In accordance with the Finsler metric ds4 of the spacetime, we could

f(T,X, Y, Z) = T 4 +X4 + Y 4 + Z4 − 2T 2X2 + 2Y 2Z2, (3.1)

here T=ct. Equation (3.1) that describes the behaviour of the spacetime is a

smooth function.

As the catastrophe theory, first we must find the critical points of this

function. Let f = 0, and f ′ = 0, here f ′ = ∂f/∂s,s = T,X, Y, Z. i.e.,

f = T 4 +X4 + Y 4 + Z4 − 2T 2X2 + 2Y 2Z2 = 0,

f ′
T = ∂f/∂T = 4T (T 2 −X2) = 0,

f ′
X = ∂f/∂X = 4X(X2 − T 2) = 0,

f ′
Y = ∂f/∂Y = 4Y (Y 2 + Z2) = 0,

f ′
Z = ∂f/∂Z = 4Z(Z2 + Y 2) = 0.

So, the critical point are

X = ±T, T = X = Y = Z = 0.
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Then, we form the stability matrix (∂2f/∂xi∂xj). It is of the form

H(T,X, Y, Z) =




12T 2 − 4x2 −8Tx 0 0

−8Tx 12x2 − 4T 2 0 0

0 0 12y2 + 4z2 8yz

0 0 8yz 12z2 + 4y2



.

Obviously, for the submatrix

H(Y, Z) =


 12y2 + 4z2 8yz

8yz 12z2 + 4y2


 ,

its determinant does not vanish, unless Y=Z=0.

With the Thom theorem (splitting lemma), we could get

fM(Y, Z) = Y 4 + Z4 + 2Y 2Z2, (3.2)

fNM(T,X) = T 4 +X4 − 2T 2X2, (3.3)

where fM Morse function, can be reduced to the Morse canonical form

M2
0 = Y 2 + Z2,

and fNM , non-Morse function, is a degenerate form of the double-cusp catastrophe

(see Zeeman, 1977). For another submatrix of H(T,X, Y, Z)

H(T,X) =

∣∣∣∣∣∣
12T 2 − 4X2 −8TX

−8XT 12X2 − 4T 2

∣∣∣∣∣∣
= −48(T 4 +X4 − 2T 2X2).

So, the spacetime submanifold M(T,X) will be divided into four parts by the dif-

ferent values of the H(T,X):

H(T,X) 6= 0

(material states)

H(T,X) = 0

(singularities)

T 2 −X2 < 0

T 2 −X2 > 0

T = ±X
T = X = 0

spacelike state

timelike state

lightlike state

the origin (indeterminate).

(3.4)
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It means that the light cone is just a catastrophe set on the spacetime manifold, and

both the timelike state and spacelike state are possible states of moving particles.

So, from the point of view of the catastrophe theory, the light cone is just a set of

degenerate critical points on the spacetime manifold. The spacetime is structurally

unstable at the light cone. It means that a lightlike state could change suddenly into

a timelike state and a spacelike state. Also, a timelike state and a spacelike state

could change suddenly into a lightlike state. It very much resembles the fact that

two photons with sufficient energy could change suddenly into a pair of a particle

and an anti-particle and contrarily, a pair of a particle and an antiparticle could

annihilate and change into two photons.

According to the nature of catastrophe of the spacetime, the spacetime trans-

formations (2.2) could be resolved into two parts at the light cone:

t =
t′ + β

c
x′√

1 − β2
, x =

x′ + vt′√
1 − β2

, y = y′, z = z′; β =
v

c
< 1. (3.5)

and

t =
t′ + β

c
x′√

β2 − 1
, x =

x′ + vt′√
β2 − 1

, y = y′, z = z′; β =
v

c
> 1. (3.6)

In the same way, the transformation (2.4) could also be resolved into two parts

at the light cone:

t =
β1t

′ + 1
c
x′√

β2
1 − 1

, x =
β1x

′ + ct′√
β2

1 − 1
, y = y′, z = z′; β1 =

v1

c
> 1. (3.7)

and

t =
β1t

′ + 1
c
x′√

1 − β2
1

, x =
β1x

′ + ct′√
1 − β2

1

, y = y′, z = z′; β1 =
v1

c
< 1. (3.8)

It is very interesting that transformations (3.5) and (3.7) have two major features:

Firstly, they keep the same sign between the ds2 and the ds′2;i.e.,

ds2
v = ds′

2
v. (3.9)
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Secondly, their inverse transformations are of the form

t′ =
t− β

c
x√

1 − β2
, x′ =

x− vt√
1 − β2

, y′ = y, z′ = z; β < 1. (3.10)

and

t′ =
β1t− 1

c
x√

β2
1 − 1

, x′ =
β1x− ct√
β2

1 − 1
, y′ = y, z′ = z; β1 > 1. (3.11)

These transformations keep the same sign between x, t and x′, t′. So, they will be

called the timelike transformations and (3.5) will be called the timelike representa-

tion of the timelike transformation (TRTT),and (3.7) the spacelike representation

of timelike transformation (SRTT).

In the same manner, transformations (3.6) and (3.8) have two common major

features, too. Firstly, they will change the sign between ds2 and ds’ 2,i.e.,

−ds2
v = ds′

2
v. (3.12)

Secondly, their inverse transformations are of the form

−t′ =
t− β

c
x√

β2 = 1
,−x′ =

x− vt√
β2 − 1

, y′ = y, z′ = z; β > 1. (3.13)

and

−t′ =
β1t− 1

c
x√

1 − β2
1

,−x′ =
β1x− ct√

1 − β2
1

, y′ = y, z′ = z; β1 < 1. (3.14)

These transformations will change the sign between x, t andx′, t′. They will be called

the spacelike transformations and (3.6) will be called the spacelike representation of

spacelike transformation (SRST); and (3.8) the timelike representation of spacelike

transformation (TRST).

Now, we have had four types of form of the spacetime transformation under

ds2:

Type I. TRTT, (3.5), it is just the Lorentz transformation;

Type II. SRTT, (3.7), it is the spacelike representation of the Lorentz trans-

formation with the dual velocity v1 = c2/v, it is larger than the velocity of light;
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Type III. SRST, (3.6), it is just the superluminal Lorentz transformation (see

Recami, 1986 and Sen Gupta, 1973);

Type IV. TRST, (3.8), it is the timelike representation of the

superluminal Lorentz transformation with the dual velocity v1 = c2/v, but it is

less than the velocity of light.

3-3. The Catastrophe of Physical Quantities on the Finsler Metric ds4

Firstly, we shall consider the question of the catastrophe of the measurement of

length and time increment. According to the nature of catastrophe of spacetime,

the expression for the length of a moving scale ∆x′ measured by a fixed observer

(2.6)-(2.9) could be resolved into two parts,

∆x′ = ∆x
√

1 − β2, β < 1. (3.15)

−∆x′ = ∆x
√
β2 − 1, β > 1. (3.16)

−∆x′ = c∆t
√

1 − β2
1 , β1 < 1. (3.17)

∆x′ = c∆t
√
β2

1 − 1, β1 > 1. (3.18)

The expression for the time increment ∆τ of the clock at rest with respect to the

moving system could be resolved into two parts at the light cone:

∆τ = ∆t
√

1 − β2, β < 1, (3.19)

−∆τ = ∆t
√
β2 − 1, β > 1. (3.20)

−∆τ =
∆x

c

√
1 − β2

1 , β1 < 1, (3.21)

∆τ =
∆x

c

√
β2

1 − 1, β1 > 1; (3.22)
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It is very interesting that the ∆x′, (or ∆x) will exchange with ∆t (or ∆τ) in

the expressions (3.17)-(3.18) and (3.21)-(3.22).

If we let (see the formula (3.20))

f(E, P ) = E4 + c4P 4 − 2c2E2P 2 (3.23)

as the catastrophe theory, we could find a catastrophe set

E = ±P (3.24)

and we could have four types of the representation for the momentum, the energy,

and the mass of a moving particle with the rest mass m:

Type I. TRTT

pT (v) =
mv√
1 − β2

, ET (v) =
mc2√
1 − β2

,MT (v) =
m√

1 − β2
; β < 1. (3.25)

Type II. SRTT

pS{v1} =
mv1√
β2

1 − 1
, ES(v1) =

mc2√
β2

1 − 1
,MS(v1) =

m√
β2

1 − 1
; β1 > 1. (3.26)

Type III. SRST

pS{v} =
−mv√
β2 − 1

, ES(v) =
−mc2√
β2 − 1

,MS(v) =
−m√
β2 − 1

; β > 1. (3.27)

Type IV. TRST

pS{v1} =
−mv1√
1 − β2

1

, ES(v1) =
−mc2√
1 − β2

1

,MS(v1) =
−m√
1 − β2

1

; β1 < 1. (3.28)

The transformations between type I (or type II) and type III (or type IV) have

the forms
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pT (v) =
mv√
1 − β2

=
mc√
β2

1 − 1
=

1

c
ET (v1), (3.29)

ET (v) =
mc2√
1 − β2

=
mv1c√
β2

1 − 1
= cpT (v1), (3.30)

MT (v) =
m√

1 − β2
=

β1m√
β2

1 − 1
= β1M

T (v1) (3.31)

and

pS(v) =
−mv√
β2 − 1

=
−mc√
1 − β2

1

=
1

c
ES(v1), (3.32)

ES(v) =
−mc2√
β2 − 1

=
−mv1c√
1 − β2

1

= cpS(v1), (3.33)

MS(v) =
−m√
β2 − 1

=
−β1m√
1 − β2

1

= β1M
S(v1). (3.34)

With these forms above, we could get that when β=β1=1,

cP (c) = E(c) = mc2 and M(c) = m. (3.35)

Note that although all through Einstein’s relativistic physics there occur indications

that mass and energy are equivalent according to the formula

E = mc2.

But it is only an Einstein’s hypothesis.

It is very interesting that from type I and type IV we could get

E2 − c2p2 = m2c4, v < c and v1 < c (i.e., v > c) (3.36)

and from type II and type III
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E2 − c2p2 = −m2c4, v > c and v1 > c (i.e., v < c) (3.37)

Here, we have forgotten the indices for the types in Equations (3.35) to (3.37). If

we let the H2(E, P ) = E2 c2P 2, then we could get

f(H,mc) = H4 − (mc2)4. (3.38)

It is a type II of the double-cusp catastrophe, we could also get (3.36) and (3.37)

from it.

3.4. The Catastrophe a Charged Particle in an Electromagnetic Field

on the Finsler Spacetime ds4

The Hamilton-Jacobi equation for a particle in an electromagnetic field in the Finsler

spacetime, formula (2.25) is a type II of the double-cusp catastrophe. We could get

that

c2(∇S − e

c
A)2 − (

∂S

∂t
+ cΦ)2 +m2c4 = 0 (3.39)

for type I and type IV of the spacetime transformation.

c2(∇S − e

c
A)2 − (

∂S

∂t
+ cΦ)2 −m2c4 = 0 (3.40)

for type II and type III of the spacetime transformation.

Now, we consider the catastrophe change of the equation of a charge in an

electromagnetic field. By equation (2.26), we could get

d

dt

mv√
1 − β2

= eEe +
e

c
v ×He, v < c (3.41)

and

− d

dt

mv√
β2 − 1

= eEe +
e

c
v ×He, v > c . (3.42)

If we integrate (3.41) and (3.42), then
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mc2√
1 − β2

− mc2√
1 − β2

0

= eU, v0 < c (3.43)

and

mc2√
β2

0 − 1
− mc2√

β2 − 1
= eU, v0 > c . (3.44)

So, the velocity v has

v = c

√

1 −
(
eU

mc
+ 1/

√
1 − β2

0

)−2

< c, iff v0 < c, (3.45)

and

v = c

√

1 +

(
eU

mc
− 1/

√
β2

0 − 1

)−2

> c, iff v0 > c . (3.46)

The expressions (3.45) and (3.46) mean that if v0 < c, then for the charged particle

always v < c; and if v0 > c, then v > c. The velocity of light will be a bilateral

limit: i.e., it is both of the maximum for the subluminal-speeds and the minimum

for the superluminal-speeds.

If we let

f(He, Ee) = H4
e + E4

e − 2H2
eE

2
e , (3.47)

we will get that the catastrophe set is

He = ±Ee (3.48)

and could obtain the spacetime transformation equations for the electromagnetic

field components(by (2.31) and (2.32)):

Type I. TRTT





H ′
x = Hx,

H ′
y = Hy+βEz√

1−β2
,

H ′
z = Hz−βEy√

1−β2
,

E ′
x = Ex,

E ′
y = Ey−βHz√

1−β2
,

E ′
z = Ez+βHy√

1−β2
.

(3.49)
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Type II. SRTT





H ′
x = Hx,

H ′
y = β1Hy+Ez√

β2
1−1

,

H ′
z = β1Hz−Ey√

β2
1−1

,

E ′
x = Ex,

E ′
y = β1Ey−Hz√

β2
1−1

,

E ′
z = β1Ez+Hy√

β2
1−1

.

(3.50)

Type III. SRST





H ′
x = Hx,

−H ′
y = Hy+βEz√

β2−1
,

−H ′
z = Hz−βEy√

β2−1
,

E ′
x = Ex,

−E ′
y = Ey−βHz√

β2−1
,

−E ′
z = Ez+βHy√

β2−1
.

(3.51)

Type IV. TRST





H ′
x = Hx,

−H ′
y = β1Hy+Ez√

1−β2
1

,

−H ′
z = β1Hz−Ey√

1−β2
1

,

E ′
x = Ex,

−E ′
y = β1Ey−Hz√

1−β2
1

,

−E ′
z = β1Ez+Hy√

1−β2
1

.

(3.52)

3.5. The Interchange of the Forces Between the Attraction and the

Rejection

Usually, because of the equivalence of energy and mass in the relativity theory, ones

believe that an object has due to its motion will add to its mass. In other words,

it will make it harder to increase its speed. This effect is only really significant for

objects moving at speeds close to the speed of light. So, only light, or other waves

that have no intrinsic mass, can move at the speed of light.

The mass is the measure of the gravitational and inertial properties of matter.

Once thought to be conceivably different, gravitational mass and inertial mass have

recently been shown to be the same to one part in 1011.

Inertial mass is defined through Newton’s second law, F=ma, in which m is mass

of body. F is the force action upon it, and a is the acceleration of the body induced

by the force. If two bodies are acted upon by the same force (as in the idealized

case of connection with a massless spring), their instantaneous accelerations will be

in inverse ratio to their masses.
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Now, we need discuss the problem of defining mass m in terms of the force

and acceleration. This, however, implies that force has already been independently

defined, which is by no means the case.

3.5.1. Electromagnetic Mass and Electromagnetic Force

It is well known that the mass of the electron is about 2000 times smaller than

that of the hydrogen atom. Hence the idea occurs that the electron has, perhaps,

no “ordinary” mass at all, but is nothing other than an “atom of electricity”, and

that its mass is entirely electromagnetic in origin. Then, the theory found strong

support in refined observations of cathode rays and of the β-rays of radioactive

substances, which are also ejected electrons. If magnetic action on these rays allows

us to determine the ratio of the charge to the mass, e
mel

, and also their velocity v,

and that at first a definite value for e
mel

was obtained, which was independent of v if

v << c. But, on proceeding to higher velocities, a decrease of e
mel

was found. This

effect was particularly clear and could be measured quantitatively in the case of the

β-rays of radium, which are only slightly slower than light. The assumption that an

electric charge should depend on the velocity is incompatible with the ideas of the

electron theory. But, that the mass should depend on the velocity was certainly to be

expected if the mass was to be electromagnetic in origin. To arrive at a quantitative

theory, it is true, definite assumptions had to be made about the form of the electron

and the distribution of the charge on it. M. Abraham (1903) regarded the electron

as a rigid sphere, with a charge distributed on the one hand, uniformly over the

interior, or, on the other, over the surface, and he showed that both assumptions

lead to the same dependence of the electromagnetic mass on the velocity, namely, to

an increase of mass with increasing velocity. The faster the electron travels, the more

the electromagnetic field resists a further increase of velocity. The increase of mel

explains the observed decrease of e
mel

, and Abraham’s theory agrees quantitatively

very well with the results of measurement of Kaufmann (1901) if it is assumed

that there is no “ordinary” mass present. But, the electromagnetic force F =

e[E+ 1
c
(v×H)] was believed to be a constant and be independent of the velocity v.

Note that if we support that the mass m is independent of the velocity v, but

the electromagnetic force F = e[E + 1
c
(v × H)] is dependent of the velocity v, it

will be incompatible with neither the ideas of the electron theory nor the results

of measurement of Kaufmann. One further matter needs attention: the E andH

occurring in the formula for the force F are supposed to refer to that system in

which the electron is momentarily at rest.
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3.5.2. The Mass and the Force in the Einstein’s Special Relativity

In the Einstein’s special relativity, Lorentz’s formula for the dependency of mass

on velocity has a much more general significance than is the electromagnetic mass

apparent. It must hold for every kind of mass, no matter whether it is of electrody-

namics origin or not.

Experiments by Kaufmann (1901) and others who have deflected cathode rays

by electric and magnetic fields have shown very accurately that the mass of electrons

grows with velocity according to Lorentz’s formula (??). On the other hand, these

measurements can no longer be regarded as a confirmation of the assumption that

all mass is of electromagnetic origin. For Einstein’s theory of relativity shows that

mass as such, regardless of its origin, must depend on velocity in the way described

by Lorentz’s formula.

Up to now, if we support that all kinds of the mass, m, are independent of the

velocity v, but all forces are dependent of the velocity v, it will be incompatible

with neither the ideas of the physical theory nor the results of measurement of

physics. Could make some mew measurements of physics (or some observations of

astrophysics) to support this viewed from another standpoint.

3.5.3.The Interchange of the Forces Between the Attraction and the Rejection

Let us return to the Newton’s second law, F=ma, we can see that the product of

mass and acceleration is a quantity antisymmetric with respect to the two interaction

particles B and C. We shall now make the hypothesis that the value of this quantity

in any given case depends on the relative position of the particles and sometimes on

their relative velocities as well as the time. We express this functional dependence

by introducing a vector function FBC(r, ṙ, t), where r is the position vector of B with

respect to C and ṙ is the relative velocity. We then write

mBaBC = FBC . (3.53)

and define the function FBC as the force acting on the particle B due to the particle

C. It is worth while to stress the significance of the definition of force presented here.

It will be noted that no merely anthropomorphic notion of push of pull is involved.

Eq.(3.53) states that the product of mass and acceleration, usually known as the

kinetic reaction, is equal to the force.

Now, if we explain the experiments by Kaufmann (1901) with here point of

view, then, we could say that the electromagnetic force F = e[E + 1
c
(v × H)] is a

function dependent of the velocity v, F = F (v).
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From the above mentioned, the relativity theory provides for an increase of

apparent inertial mass with increasing velocity according to the formula

m =
m0√
1 − β2

could be understood equivalently as a decrease of the effective force of the fields

with increasing relativistic velocity between the source of the field and the moving

body according to the formula

Feff = F
√

1 − β2.

Further, the negative apparent inertial mass could be understood equivalently as the

effective forces of the fields have occurred the interchange between the attraction

and the rejection according to the formula.

Feff = −F
√
β2 − 1.

3.5.4. The Character Velocity and Effective Forces for a Forces

Up to now, one common essential feature for forces is neglected that the character

velocities for forces. Ones commonly believe that if the resistance on the wagon

with precisely the same force with which the horse pulls forward on the wagon then

the wagon will keep the right line moving with a constant velocity. However, we

could ask that if the resistance on the wagon is zero force then will the wagon be

continue accelerated by the horse? How high velocity could be got by the wagon?

It is very easy understood that the maximum velocity of the wagon, vmax, will be

the fastest running velocity of the horse, vfst. The velocity vfst is just the character

velocity, vc, for the pulling force of the horse. When the velocity of the wagon is

zero velocity, the pulling force of the horse to the wagon has the largest effective

value Feff = F . We assume that a decrease of the effective force with increasing

velocity of the wagon, and Feff = 0 if and only if β = vw

vc
= 1. If β = vw

vc
> 1 then

Feff= −kF. It means that when the velocity of the wagonvw is larger the character

velocity vc, not that the horse pulls the wagon, but that the wagon pushes the horse.

If the interactions of the fields traverse empty space with the velocity of light, c,

then the velocity of light is just the character velocity for all kinds of the interactions

of the fields. We guess that the principle of the constancy of the velocity of light is

just a superficial phenomenon of the character of the interactions of the fields.

3.5.5. One Possible Experiment for Distinguish Between Moving Mass and Effective

Force
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The Newtonian law of universal gravitation assumes that, two bodies attract each

other with a force that is proportional to the mass of each body and is inversely

proportional to the square of their distance apart:

F = G
m1m2

r2
. (3.54)

According as Einstein’s special relativity, if the body1 is moving with constant

speed v with respect to the body2, then the mass of the body1 will become with

respect to the body2 that

M1 =
m1√
1 − v2

c2

. (3.55)

According to the principle of equivalence the body’s gravitational mass equal

to its inertia mass. So, the force of gravitational interaction between the two bodies

will be

FM.M. = G
m1m2

r2

√
1 − v2

c3

. (3.56)

But, according as the theory of the effective force, the force of gravitational inter-

action between the two bodies will be

FE.F. = G
m1m2

r2

√
1 − v2

c2
. (3.57)

We hope that could design some new experiments to discover this deviation.

3.6. Decay of particles

On the Einstein’s special relativity theory, consider the spontaneous decay of a body

of mass M into two parts with masses m1 and m2. The law of conservation of energy

in the decay, applied in the system of reference in which the body is at rest, gives

M = E10 + E20, (3.58)

where E10 and E20 are the energies of the emerging particles. Since E10 > m1 and

E20 > m2, the equality (120) can be satisfied only if M¿m1 + m2, i.e. a body can

disintegrate spontaneously into parts the sum of whose masses is less than the mass

of the body. On the other hand, if M ¡m1 + m2, the body is stable (with respect

to the particular decay) and does not decay spontaneously. To cause the decay in
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this case, we would have to supply to the body from outside an amount of energy

at least equal to its “binding energy” (m1 +m2 −M).

Usually, ones believe that momentum as well as energy must be conserved in

the decay process. Since the initial momentum of the body was zero, the sum of the

momenta of the emerging particles must be zero: p10+p20=0 in the special relativity

theory. Consequently p2
10 = p2

20, or

E2
10 −m2

1 = E2
20 −m2

2. (3.59)

The two equations (3.58) and (3.59) uniquely determine the energies of the emerging

particles

E10 =
M2 +m2

1 −m2
2

2M
, E20 =

M2 −m2
1 +m2

2

2M
. (3.60)

In a certain sense the inverse of this problem is the calculation of the total

energy M of two colliding particles in the system of reference in which their total

momentum is zero. (This is abbreviated as the “system of the center of inertia” or

the “C-system”.) The computation of this quantity gives a criterion for the possible

occurrence of various inelastic collision processes, accompanied by a change in state

of the colliding particles, or the “creation” of new particles. A process of this type

can occur only if the sum of the masses of the “reaction products” does not exceed

M .

Suppose that in the initial reference system (the “laboratory” system) a particle

with mass m1 and energy E1 collides with a particle of mass m2 which is at rest.

The total energy of the two particles is

E = E1 + E2 = E1 +m2,

and their total momentum is p=p1+p2 =p1. Considering the two particles together

as a single composite system, we find the velocity of its motion as a whole from (2.19):

V =
p

E
=

p1

E1 +m2

. (3.61)

This quantity is the velocity of the C-system with respect to the laboratory system

(the L-system).

However, in determining the mass M , there is no need to transform from one

reference frame to the other. Instead we can make direct use of formula (3.36), which
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is applicable to the composite system just as it is to each particle individually. We

thus have

M2 = E2 − p2 = (E1 +m2)
2 − (E2

1 −m2
1),

from which

M2 = m2
1 +m2

2 + 2m2E1. (3.62)

4. Conclusions

From the discussion in this paper, we could get the following conclusions:

(1) The special theory of relativity cannot negate the possibility of the existence

of superluminal-speed.

(2) The essential nature of the superluminal-speed is the relativity of the tem-

poral order. If one does not know how to distinguish the temporal orders, a particle

moving with superluminal-speed could be taken for one moving with a subluminal-

speed of some unusual nature.

(3) The specal theory of relativity could be discussed in the Finsler spacetime.

The spacetime transformation on the Finsler metric ds4 contains a new symmetry

between the timelike and spacelike.

(4) Some new invariants describe the catastrophe nature of the Finsler spacetime

ds4. They obey the double-cusp catastrophe. The timelike state cannot change

smoothly into the spacelike state for a motion particle. But a lightlike state could

change suddenly into a timelike state and spacelike state. Also, a timelike state and

a spacelike state could change suddenly into a lightlike state.

(5) The length x will exchange the position with the time increment t between

v′s representation and v′1s representation. The momentum (or energy) in the timelike

(or spacelike) representation will be transformed into the energy (or momentum) in

the spacelike (or timelike) representation.

(6) The difference between the subluminal- and superluminal-speed would be

described as follows: a particle with the subluminal-speed has positive momentum,

energy, and moving mass, and a particle with the superluminal-speed has negative

ones.

(7) Usually, it is believed that Tachyons have a spacelike energy-momentum

four-vector so that

E2 < c2P 2.
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Hence, the square of the rest mass m defined by

m2c4 = E2 − c2P 2 < 0

requires the ‘rest mass’ to be imaginary’ (see Hawking and Ellis, 1973).

As has been said in this paper, from the expressions (3.25)-(3.28) it is clear that,

no matter whether a particle is moving with a subluminal- or superluminal-speed,

in the timelike representation it will obey Equation (3.36), but, in the spacelike

representation it will obey Equation (3.37). So, for a particle with superluminal-

speed its mass M(v) (energy E(v), and momentum P (v)) is negative rather than

imaginary. As expression (3.28)

ES(v1) = −mc2

when β → 0.

So the particle with superluminal-speed, in the timelike representation, will

remain a negative ‘rest-mass’. We shall write:

E =





+mc2 for sublumin al − speed, i.e., v < c( or v1 > c),

−mc2 for sup erlumin al − speed, i.e., v > c( or v1 < c).

It was just analyzed by Dirac for the anti-particle. So, we guess that a particle with

the superluminal-speedv > c could be regarded as its anti-particle with the dual

velocity v1 = c2/v < c.
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Abstract: According to Smarandache’s neutrosophy, the Gödel’s incom-

pleteness theorem contains the truth, the falsehood, and the indeterminacy

of a statement under consideration. It is shown in this paper that the proof

of Gödel’s incompleteness theorem is faulty, because all possible situations are

not considered (such as the situation where from some axioms wrong results

can be deducted, for example, from the axiom of choice the paradox of the

doubling ball theorem can be deducted; and many kinds of indeterminate sit-

uations, for example, a proposition can be proved in 9999 cases, and only in

1 case it can be neither proved, nor disproved). With all possible situations

being considered with Smarandache’s neutrosophy, the Gödel’s Incomplete-

ness theorem is revised into the incompleteness axiom: Any proposition in

any formal mathematical axiom system will represent, respectively, the truth

(T), the falsehood (F), and the indeterminacy (I) of the statement under con-

sideration, where T, I, F are standard or non-standard real subsets of ]−0, 1+[.

Considering all possible situations, any possible paradox is no longer a para-

dox. Finally several famous paradoxes in history, as well as the so-called

unified theory, ultimate theory, · · · , etc. are discussed.

Key words: Smarandache’s Neutrosophy, Gödel’s Incompleteness theorem,

Incompleteness axiom, paradox, unified theory.

The most celebrated results of Gödel are as follows.

Gödel’s First Incompleteness Theorem: Any adequate axiomatizable theory is

incomplete.

Gödel’s Second Incompleteness Theorem: In any consistent axiomatizable
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theory which can encode sequences of numbers, the consistency of the system is not

provable in the system.

In literature, the Gödel’s incompleteness theorem is usually stated by any formal

mathematical axiom system is incomplete, because it always has one proposition that

can neither be proved, nor disproved.

Gödel’s incompleteness theorem is a significant result in the history of math-

ematical logic, and has greatly influenced to mathematics, physics and philosophy

among others. But, any theory cannot be the ultimate truth. Accompanying with

the science development, new theories will replace the old ones. That is also for the

Gödel’s incompleteness theorem. This paper will revise the Gödel’s Incompleteness

theorem into the incompleteness axiom with the Smarandache’s neutrosophy.

1. An introduction to Smarandache’s neutrosophy

Neutrosophy is proposed by F.Smarandache in 1995. Neutrosophy is a new branch

of philosophy that studies the origin, nature, and scope of neutralities, as well as

their interactions with different ideational spectra.

This theory considers every notion or idea < A > together with its opposite

or negation < Anti − A > and the spectrum of neutralities < Neut − A >, i.e.,

notions or ideas located between the two extremes, supporting neither < A > nor

< Anti− A >). The < Neut − A > and < Anti − A > ideas together are referred

to as < Non− A >.

Neutrosophy is the base of neutrosophic logic, neutrosophic set, neutrosophic

probability and statistics used in engineering applications, especially for software

and information fusion, medicine, military, cybernetics and physics, etc..

Neutrosophic Logic is a general framework for unification of existent logics, such

as the fuzzy logic, especially intuitionistic fuzzy logic, paraconsistent logic, intuition-

istic logic,· · · , etc.. The main idea of Neutrosophic Logic (NL) is to characterize each

logical statement in a 3D Neutrosophic Space, where each dimension of the space

represents respectively the truth (T), the falsehood (F), and the indeterminacy (I)

of the statement under consideration, where T, I, F are standard or non-standard

real subsets of ]−0, 1+[ without necessarily connection between them.

More information on Neutrosophy may be found in references [1-3].

2. Some errors in the proof of Gödel’s incompleteness theorem

It has been pointed out some errors in the proofs of Gödel’s first and second incom-
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pleteness theorems in the reference [4]. This paper will again show that the proof of

Gödel’s incompleteness theorems contain some errors, but from other point of view.

It will be shown that in the proof of Gödel’s incompleteness theorem, all possible

situations are not considered.

First, in the proof, the following situation is not considered: wrong results can

be deduced from some axioms. For example, from the axiom of choice a paradox, the

doubling ball theorem, can be deduced, which says that a ball of volume 1 can be

decomposed into pieces and reassembled into two balls both of volume 1. It follows

that in certain cases, the proof of Gödel’s incompleteness theorem may be faulty.

Second, in the proof of Gödel’s incompleteness theorem, only four situations are

considered, that is, one proposition can be proved to be true, cannot be proved to be

true, can be proved to be false, cannot be proved to be false and their combinations

such as one proposition can neither be proved to be true nor be proved to be false.

But those are not all possible situations. In fact, there may be many kinds of

indeterminate situations, including it can be proved to be true in some cases and

cannot be proved to be true in other cases; it can be proved to be false in some cases

and cannot be proved to be false in other cases; it can be proved to be true in some

cases and can be proved to be false in other cases; it cannot be proved to be true in

some cases and cannot be proved to be false in other cases; it can be proved to be

true in some cases and can neither be proved to be true, nor be proved to be false

in other cases; and so on.

Because so many situations are not considered, we may say that the proof of

Gödel’s incompleteness theorem is faulty, at least, is not one with all sided consid-

erations.

In order to better understand each case, we consider an extreme situation where

one proposition as shown in Gödel’s incompleteness theorem can neither be proved,

nor disproved. It may be assumed that this proposition can be proved in 9999 cases,

only in 1 case it can neither be proved, nor disproved. We will see whether or not

this situation has been considered in the proof of Gödel’s incompleteness theorem.

Some people may argue that, this situation is equivalent to that of a proposition

can neither be proved, nor disproved. But the difference lies in the distinction

between the part and the whole. If one case may represent the whole situation,

many important theories cannot be applied. For example the general theory of

relativity involves singular points; the law of universal gravitation does not allow

the case where the distance r is equal to zero. Accordingly, whether or not one may

say that the general theory of relativity and the law of universal gravitation cannot



A Revision to Gödel’s Incompleteness Theorem by Neutrosophy 67

be applied as a whole? Similarly, the situation also cannot be considered as the one

that can be proved. But, this problem may be easily solved with the neutrosophic

method.

Moreover, if we apply the Gödel’s incompleteness theorem to itself, we may

obtain the following possibility: in one of all formal mathematical axiom systems,

the Gödel’s incompleteness theorem can neither be proved, nor disproved.

If all possible situations can be considered, the Gödel’s incompleteness theorem

can be improved in principle. But, with our boundless universe being ever changing

and being extremely complex, it is impossible considering all possible situations. As

far as considering all possible situations is concerned, the Smarandache’s neutroso-

phy is a quite useful way, and possibly the best. Therefore this paper proposes to

revise the Gödel’s incompleteness theorem into the incomplete axiom with Smaran-

dache’s neutrosophy.

3. The incompleteness axiom

Considering all possible situations with Smarandache’s neutrosophy, one may revise

the Gödel’s Incompleteness theorem into the incompleteness axiom following.

Any proposition in any formal mathematical axiom system will represent the

truth (T), the falsehood (F), and the indeterminacy (I) of the statement under con-

sideration, where T, I, F are standard or non-standard real subsets of ]−0, 1+[, re-

spectively.

4. Several famous paradoxes in history

The proof of Gödel’s incompleteness theorem has a close relation with some para-

doxes. However, after considering all possible situations, any paradox may no longer

be a paradox.

Now we discuss several famous paradoxes in history.

Example 1. The Barber paradox, one of Russell’s paradoxes.

Consider all men in a small town as members of a set. Now imagine that a barber

puts up a sign in his shop that reads I shave all those men, and only those men, who

do not shave themselves. Obviously, we may divide the set of men in this town into

two subsets, those who shave themselves, and those who are shaved by the barber.

To which subset does the barber himself belong? The barber cannot belong to the

first subset, because if he shaves himself, he will not be shaved by the barber, or by



68 Yuhua Fu

himself; he cannot not belong to the second subset as well, because if he is really

shaved by the barber, or by himself, he will not be shaved by the barber.

Now we will see from where comes the contradiction.

The contradiction comes from the fact that the barber’s rule does not take all

possible situations into consideration.

First, we should divide the set of men in this town into three subsets, those who

shave themselves, those who are shaved by the barber, and those who neither shave

themselves, nor are shaved by the barber. This contradiction can be avoided by the

neutrosophy as follows. If the barber belongs to the third subset, no contradiction

will appear. For this purpose, the barber should declare himself that he will be the

third kind of person, and from now on, he will not be shaved by anyone; otherwise,

if the barber’s mother is not a barber, he can be shaved by his mother.

Second, the barber cannot shave all men in this town. For example, the barber

cannot shave those who refuse to be shaved by the barber. Therefore, if the barber

is the one who cannot shave himself and ”who refuse to be shaved by the barber” ,

no contradiction will occur.

There also exist indeterminate situations to avoid the contradiction. The barber

may say: If I meet men from another universe, I will shave myself, otherwise I will

not shave myself.

Example 2. Liar’s paradox, another Russell’s paradox.

Epimenides was a Cretan who said that all Cretans are liars. Is this statement true

or false? If this statement is true, he (a Cretan) is a liar, therefore, this statement

is false; if this statement is false, that means that he is not a liar, this statement

will be true. Therefore, we always come across a contradiction.

Now we will see from where comes the contradiction.

First, here the term ”liar” should be defined. Considering all possible situations,

a ”liar” can be one of the following categories: those whose statements are all lies;

those whose statements are partly lies, and partly truths; those whose statements

are partly lies, partly truths and sometimes it is not possible to judge whether they

are truths or lies. For the sake of convenience, at this movement we do not consider

the situation where it is not possible to judge whether the statements are true or

false.

Next, the first kind of liar is impossible, i.e., a Cretan could not be a liar whose

statements are all lies. This conclusion can not be reached by deduction, instead, it

is obtained through experience and general knowledge. With the situation where a
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liar’s statements are partly truths, and partly lies, Epimenides’ statement all Cretans

are liars, will not cause any contradiction. According to the definitions of liar of

the second category and the fact that Epimenides’ statements could not be all lies,

this particular statement of Epimenides’ can be true and with his other statements

being possibly lies, Epimenides may still be a liar.

This contradiction can be avoided by the neutrosophy as follows.

For this statement of all Cretans are liars, besides true or false, we should

consider the situation where it is not possible to judge whether the statement is

true or false. According to this situation, this Russell’s paradox can be avoided.

Example 3. Dialogue paradox.

Considering the following dialogue between two persons A and B.

A: what B says is true.

B: what A says is false.

If the statement of A is true, it follows that the statement of B is true, that is,

the statement what A says is false is true, which implies that the statement of A

must be false. We come to a contradiction.

On the other hand, if the statement of A is false, it follows that the statement

of B must be false, that is, the statement what A says is false is false, which implies

that the statement of A must be true. We also come to a contradiction.

So the statement of A could neither be true nor false.

Now we will see that how to solve this contradiction.

It should be noted that, this dialogue poses a serious problem. If A speaks

first, before B says anything, how can A know whether or not what B says is true?

Otherwise, if B speaks first, B would not know whether what A says is true or

false. If A and B speak at the same time, they would not know whether the other’s

statement is true or false.

For solving this problem, we must define the meaning of lie. In general situations

a lie may be defined as follows:

with the knowledge of the facts of cases, a statement does not show with the

facts.

But in order to consider all possible situations, especially those in this dialogue,

another definition of lie must be given. For the situation when one does not know

the facts of the case, and one makes a statement irresponsibly, can this statement
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be defined as a lie? There exist two possibilities: it is a lie, and it is not a lie. For

either possibility, the contradiction can be avoided.

Consider the first possibility, i.e., it is a lie.

If A speaks first, before B makes his statement, it follows that A does not know

the facts of the case, and makes the statement irresponsibly, it is a lie. Therefore the

statement of A is false. B certainly also knows this point, therefore B’s statement:

what A says is false is a truth.

Whereas, if B speaks first before A makes his statement, it follows that B does

not know the facts of the case, and makes the statement irresponsibly, it is a lie.

Therefore the statement of B is false. A certainly also knows this point, therefore

A’s statement: what B says is true is false.

If A and B speak at the same time, it follows that A and B do not know the

facts of the case, and make their statements irresponsibly, these statements are all

lies. Therefore, the statements of A and B are all false.

Similarly, consider the second possibility, i.e., it is not a lie, the contradiction

can be also avoided.

If we do not consider all the above situations, what can we do? With a lie

detector! The results of the lie detector can be used to judge whose statement is

true, whose statement is false.

4. On the so-called unified theory, ultimate theory and so on

Since Einstein proposed the theory of relativity, the so-called unified theory, ultimate

theory and so on have made their appearance.

Not long ago, some scholars pointed out that if the physics really has the unified

theory, ultimate theory or theory of everything, the mathematical structure of this

theory also is composed by the finite axioms and their deductions. According to the

Gödel’s incompleteness theorem, there inevitably exists a proposition that cannot

be derived by these finite axioms and their deductions. If there is a mathematical

proposition that cannot be proved, there must be some physical phenomena that

cannot be forecasted. So far all the physical theories are both inconsistent, and

incomplete. Thus, the ultimate theory derived by the finite mathematical principles

is impossible to be created.

The above discussion is based on the Gödel’s incompleteness theorem. With

Smarandache’s neutrosophy and the incompleteness axiom, the above discussion

should be revised.

For example, the proposition this theory is the ultimate theory should represent
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respective the truth (T), the falsehood (F) and the indeterminacy (I) of the state-

ment under consideration, where T, I, F are standard or non-standard real subsets

of ]−0, 1+[.

Now we discuss the proposition Newton’s law of gravity is the ultimate theory

of gravitation (Proposition A).

According to the Gödel’s incompleteness theorem, the ultimate theory is im-

possible, therefore, the above proposition is 0% true, 0% indeterminate, and 100%

false. It may be written as (0, 0, 1).

While according to the incomplete axiom, we may say that the Proposition A is

16.7% true, 33.3% indeterminate, and 50% false. It may be written as (0.167, 0.333,

0.500). The reason for this sentence is on the following.

Consider the containing relation between the ultimate theory of gravitation and

Newton’s law of gravity. According to the incompleteness axiom, the proposition

the ultimate theory of gravitation contains Newton’s law of gravity (Proposition B)

should represent respective the truth (T), the falsehood (F) and the indeterminacy

(I). For the sake of convenience, we may assume that T = I = F = 33.3%.

If the Proposition B is equivalent to the Proposition A , the Proposition A also

is 33.3% true, 33.3% indeterminate, and 33.3% false. But they are not equivalent.

Therefore we have to see how the ultimate theory of gravitation contains Newton’s

law of gravity. As is known, to establish the field equation of the general theory

of relativity, one has to do a series of mathematical reasoning according to the

principle of general covariance and so on, with Newton’s law of gravity as the final

basis. Suppose that the ultimate theory of gravitation is similar to the general

theory of relativity, it depends upon some principle and Newton’s law of gravity.

Again this principle and Newton’s law of gravity are equally important, they all

have the same share of truthfulness, namely 16.7% (one half of 33.3%), but the

16.7% shared by this principle may be added to 33.3% for falsehood. Therefore, the

Proposition A is 16.7% true, 33.3% indeterminate, and 50% false. It may be written

as (0.167, 0.333, 0.500).

This conclusion indicates that Newton’s law of universal gravitation will con-

tinue to occupy a proper position in the future gravitational theory.
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Abstract: The present paper studies the interaction between photons and

moving electrons outside the atomic nucleus and their precise quantitative re-

lations. In addition, the author of this paper has discovered from experimental

determination that the product of the photon number of the wavelength N and

the normalized wavelength of electromagnetic wave (λN = λR •
√

1 − v2

C2 ) is a

constant ξ = 2h
mγC

= 6562.100001nm. An experimental determination is made

of the number of photons in each light quantum (hν) of electromagnetic waves

at different wavelengths, including infrared light, visible light and ultraviolet

light. The method and experimental instruments can be found in the refer-

ence [4]. The results of the experiment reveal that for the hydrogen spectrum

- infrared light wavelength of 1875.11nm, 1281.81nm, 1093.8nm, 1004.98nm,

954.62nm, the respective numbers of the photons in each light quantum (hν)

are 3(4), 5, 6, 6(7) and 7. For the hydrogen spectrum - visible light wavelength

of 656.21nm, 486.074nm, 434.00nm, the respective numbers of the photons

in each light quantum (hν) are 10, 13 and 15. For the hydrogen spectrum -

near ultra violet light wavelength of 386.006nm, 364.581nm, the respective

numbers of the photons in each light quantum (hν) are 17 and 18. For the hy-

drogen spectrum - far ultra violet light wavelength of 121.566nm, 102.583nm,

97.254nm, 94.976nm and 93.782nm, the respective numbers of the photons in

each light quantum (hν) are 54, 64, 67(68), 69, and 70. The photon’s mass is

found to be 6.73640775 × 10−37kg. It is suggested in this paper that a light

quantum is different from a photon and it may consist of more than one pho-

tons. The theory of single photons proposed by the author of the present paper

can satisfactorily reveal the essence of electromagnetic wave and explain many

phenomena frequently found in optical experiments. Further researching on
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these problems, the Smarandache multi-space theory is a very useful tool.

Keywords: Infrared ray, visible light, ultraviolet radiation, light quan-

tum, photon, photonics annotation, photon and electron, Smarandache multi-

spaces.

1. Introduction

1.1 The theory of light as particles and the theory of light as waves

Since the mid-17th century, scientists have conducted systematic studies on light, es-

pecially on the nature of light. Many important contributions have been made by sci-

entists such as R.Descartes,1596-1650, I.Newton,1642-1727, F.M.Gri Grimaldi,1618-

1663, R.Hook,1635-1703, C.Huygens,1692-1695, J. Bradley1728, W.T.Young,1773-

1829, A.J.Fresnel,1788-1827, Malus1808 J.L.Foucault(1850), etc.. But up to now,

the disputes between the two theories of light as particles or as waves are still go-

ing on without any sign of compromising. At the beginning of the 20th century,

the light’s illumination phenomena of non-linear crystals were explained based on

quantum theory, which have advanced our understanding on the nature of light.

1.2. The Concept of Photons

In order to explain the black body radiation, based on Wien’s displacement law,

Planck proposed that energy cells of vibrators of different frequencies are different

in size, which is proportional to frequency γ, with the proportional constant h being

called acting basic quantum or acting quantum, or Planck’s constant. Therefore, the

energy quantum ε, that is, the difference between adjacent energy levels of vibrators

can be expressed as ε hγ.

That is the famous Planck’s formula. On December 14, 1900, at a conference

on physics in Germany, Planck published this result, as a revolution against the

traditional classical concepts. He had abandoned the old ideas that in nature there

are no jumps, and initiated a new era in physics-the Era of Quantum.

In 1905, A. Einstein published a paper in an authoritative magazine in Germany

- Annalen der Physik (Vol. XVII, 1905) with illuminating ideas on the generation

and transformation of light. In this paper he proposed the concept of photons, and

successfully explained a series of problems on the generation and transformation of

light, including a discussion on photoemission. Besides, he extended the application

range of Planck’s concept of quantum and it is implied that light has the nature of

both waves and particles [2].
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1.3. The limitation of light quantum theory

Since the 1990’s, physicists in different countries obtained the same findings that

light quantum in non-linear crystals has the nature of synthesizing and decomposing

light. Experiments show that in non-linear crystals, a portion of ultraviolet light

quantum (with high energy) can be spontaneously disintegrated into two portions of

infrared light quantum (with low energy)(down transformation). On the other hand,

in non-linear crystals, light from an infrared source, namely, from pump powers, can

be transformed into visible light. In other words, this kind of non-linear crystals

can absorb several portions of low-energy light quantum (photon) and release one

portion of high-energy light quantum (photon)(up transformation). Based on this

nature of non-linear crystals, rapid progress have been made in experimental tech-

niques, and some light-synthesizing apparatuses have been developed[3]. However,

the theoretical explanations concerning the mechanism of synthesizing and decom-

posing light remain to be made; traditional light quantum theories are not likely able

to satisfactorily explain it. In order to clearly explain the physical mechanism of the

light’s up-transformation and down-transformation based on the micro-structure of

matter, we have to consider the generation mechanism and generation process of

synthesizing and decomposing light based on the electrons inside the atom as well

as the fundamental nature of light. In this way, we are sure to advance the quantum

theory of light into a new stage.

To prepare for these new developments, some innovative ideas are necessary,

and at the same time, the reasonable contents of the existing theories must be

assimilated. These complicated problems may be solved with Smarandache multi-

spaces.

The notion of Smarandache multi-spaces was proposed by Smarandache in

1969[11,12]. A Smarandache multi-space is a union of n different sets or spaces with

some different structures (where n≥ 2), which can be discrete or continuous spaces,

particularly the geometries and space-time in theoretical physics.

Let S1, S2, · · · , Sk be distinct two by two structures on the distinct (not nec-

essarily disjoint) two by two sets M1, M2, · · · , Mk respectively, where k ≥ 2 (k may

even be infinity). We define a multi-space M to be a union of the previous sets

M = M1

⋃
M2

⋃
· · ·

⋃
Mk.

Whence, we have k different structures on M . For example we can construct a

geometric multi-space formed by a union of three distinct subspaces: an Euclidean
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space, a hyperbolic space and an elliptic space.

2. The concept of single photon: Experimental determination and study

of the number and mass of photons contained in every portion of light

quantum

As early as 1991, the author of the present paper suggested that a photon and a

light quantum are different, and the latter is made up of many photons of the same

shape and nature, and the light quanta of various frequencies come from the various

numbers of photons contained in the light quanta. The mass of a single photon is a

constant, but the mass of a different light quantum may be different. The mass of a

single photon has been precisely determined by experiment as mγ = 6.73640775 ×
10−37kg by the author, that is, the minimum mass of an electron (me) is 1352283±1

times as the mass of a photon (mr). The results from actual determination show

that each portion hν of the electromagnetic wave released from the electrons in an

atom contains a number of photons, which determines its frequency. Besides, the

number of photons in every portion of light quantum (hν), as in the spectrum of

red, orange, yellow, green, black, blue, purple, is arranged in arithmetic progression,

with the gradation of difference being 1. A red light quantum has 10 photons and a

purple light quantum has 16 photons. Notice that the wavelength of a visible light

of a certain color may vary in a range, but the number of photons in each portion

of light quantum (hν)corresponding to the color remains the same. The reason is

that when electrons in an atom are emitting electromagnetic waves with the same

number of photons, the instantaneous velocity of the electrons is different. That is

to say, they may have different relative velocities. The detailed discussions may be

found in [4]. The mass of the electrons varies with the absorbing and releasing of

light quanta of the electrons moving outside the atomic nucleus. The variation of

mass shall be included in the dynamic balance equation for molecules’ spatial force,

otherwise, the precision in determining the molecules’ motion parameters will be

negatively affected, and what is worse, this can lead to a wrong result[5].

Complicated problems will be involved in studying photon, light quantum and

electron, so we must apply the Smarandache multi-spaces, where problems in dif-

ferent domains may be put together in a same perspective. For example, we may

firstly structure the photon space, light quantum space and electron space sepa-

rately, then, study these three spaces by using the Smarandache multi-spaces in a

unified manner. Otherwise, the study can be very complicated.
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3. Interaction mechanism of moving photons and electrons outside

atomic nucleus

3.1. A formula for determination of the number of the photons contained

within a wavelength

N =
2h√

1 − v2

C2 • λR •mγ • C
, (1)

where,

N− the number of the photons in each portion of light quantum

h− Planck Constant6.62616 × 10−34J • S
C− light speed2.99792458 × 108m/s

mγ− mass of a single photon6.73640775 × 10−37kg

λR− measured wavelength of light quantum, nm

v− the instantaneous velocity of electrons outside atomic nucleus when the

electron is releasing the light quantum, m/s, determined with The Techniques &

Apparatus for Determination of the Instantaneous Velocity and the orbit radius of

Electrons’ Movement Inside Atoms( patent ZL00105041.9) by Feng Jingsong, as a

innovative invention granted by State Intellectual Property Office of P. R.China

on March 23rd ,2005. The instantaneous velocity and the orbit radius of electrons

moving inside Hydrogen atoms, Helium Ions and Helium atoms have been obtained

with that techniques and apparatus in actual determination. This invention was

published in J. Atomic and Molecular Physics, Vol. 3(Supplement), April 20, 2006,

P78-86, compiled by the Subcommittee of Atomic and Molecular Physics of Chinese

Society of Physics.

3.2. Formula for determination of the wavelength of light quanta released

by Moving electrons outside an atomic nucleus

λ =
2h√

1 − v2

C2 •N •mγ • C
, (2)

where the meanings of each symbol is as the same as in the preceding part.

This formula gives the functional relation between the light quanta’s wavelength

(electromagnetic wave) λand the number of the photons (N) contained in every por-

tion of light quanta ( hν) and the instantaneous velocity (v) of the moving electrons
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outside the atomic nucleus. In other words, the light quantum’s wavelength is deter-

mined by two factors: the number of the photons (N) contained in every portion of

light quanta (hν) and the instantaneous velocity (v)of the moving electrons outside

the atomic nucleus.

3.3. The product of photon number of measured wavelength N and nor-

malized wavelength of electromagnetic wave λN = λR •
√

1 − v2

C2 obtained

from Actual determination is a constantξ

That is,

ξ = NλN = NλR •
√

1 − v2

C2
=

2h

mγC
= 6562.100001nm, (3)

where the meanings of each symbol is as the same as in the preceding part.

The physical implication of the constantξ can be explained as follows: all the

light quanta are made up of a succession ofNphotons. The greatest distance between

the photons in a light quantum (that is. the total length of a portion of light

quantum) is a constant after normalization. This is determined by the interaction

mechanism of moving photons and moving electrons, and it is a universal law in

nature.

3.4. A formula for determination of instantaneous velocity of electrons’

revolution around the atomic nucleus

v = c •
√

1 −
(
RR

RT

)2

, (4)

where,

V - instantaneous velocity of electrons’ revolution around the atomic nucleus,

m/second;

RR - the value of Rydberg constant obtained from actual determination, cm−1

RT - the theoretical value of Rydberg constant1.09737177 × 105cm−1

c - light speed2.99792458 × 108m/second.

3.5. A formula for determination of orbit radius of electrons’ revolution

around the atomic nucleus
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r = 28.24382479× 10−16z •
√√√√

1
[
1 −

(
RR

1.097373177×105

)2
]2 − 1

1 −
(

RR

1.097373177×105

)2 (5)

where

r− the radius of electrons’ trajectory around the atomic nucleus; m;

RR− the value of Rydberg constant obtained from actual determination; cm−1;

z - atomic number, 1, 2, 3, · · ·

3.6. A formula for Rydberg constant from actual determination

3.6.1 A formula for Rydberg constant (R) in hydrogen spectrum from actual deter-

mination

RR =
k2n2

λR (n2 − k2)
, (6)

where,

RR- value of Rydberg constant (R) from actual determination, m−1

λR− the wavelength of light quantum from actual determination, nm

n = k+1, k+2, k+3, · · ·, k = 1, 2, 3, 4, · · ·. Notice that k = 1 for Lyman series;

k = 2 for Balmer series; k = 3 for Paschen series; k = 4 for Brackett series and

k = 5 for Pfund series.

With the help of the formula, we can obtain the value of Rydberg constant (R)

from actual determination of every spectrum lines of hydrogen atomic spectrum.

3.6.2 A formula for Rydberg constant (R) in helium atomic spectrum from actual

determination

According to the actual determination of the wavelength of helium atomic spectrumλ,

from the formula

1

λR
= RR

[
1

4
− 1

(n/2)2

]
, n = 567 · · · ,

we obtain

RR =
4n2

λR (n2 − 16)
. (7)

With the help of the formula, we can obtain Rydberg constant (R) from actual

determination.
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3.6.3 A formula for Rydberg constant (R) of emission spectrum of multi-electrons

and atoms from actual determination

RR =
k2 • n2

λR • (n2 − k2) • Z2
. (8)

With the help of this formula, we can obtain Rydberg constant (R) of every

spectrum line of multi-electron and atomic spectrum from actual determination.

In this expression,

Z- electric charge number of atomic nucleus, that is, the atomic number;

λR− wavelength from actual determinationnm

k = Z, n = k + 1, n = k + 1, k + 2, k + 3, · · ·.

4. The precise quantitative relations between moving photons and elec-

trons outside a hydrogen atomic nucleus

4.1. Experimental determination of numbers of photons in a portion of

light quantum (hν) of infrared light, visible light and ultraviolet light

4.1.1. Determination of hydrogen atomic emission spectrum -number of photons in

every portion of light quantum in Balmer series (wavelength)

Actual determination of hydrogen atomic emission spectrum-the wavelength of Balmer

lines can be found in Table 1, and for further information, please refer to Ni

Guangjiong and Li Hongfang Modern Physics ; Shanghai Science and Technology

Publishing HouseAug.1979, P127, 324 for detailed data. With the help of the pre-

ceding formulas (4)-(1)and(7), we can obtain Rydberg constant from actual deter-

mination corresponding to respective measured wavelength, instantaneous velocity

of electrons’ motion, radius of electrons’ trajectory, the number of photons in every

portion of light quantum (hν) and the corresponding constant ξ.

Table 1 Actual determination of hydrogen atomic emission spectrum - number of

photons in every portion of light quantum in Balmer series (wavelength)

natural Measured Measured Instantaneous Radius Measured Theoretical ξ

number wavelength Rygberg velocity of electron’s number of number of
NR−NT

NT

constant of electron trajectory photons hν photons

n λa(nm) Ra × 107m−1 ν(km/s) r−12m N N ×% nm

3 656.21 1.097209735 5173.9740 9.464 10 10 0 6561.122

4 486.074 1.097226622 4899.4164 10.554 13.5 13 3.8 6318.118

5 434.010 1.097187798 5510.2393 8.344 15.119 15 0.79 6509.050

6 410.120 1.097239832 4673.4087 11.600 16.0004 16 0.0025 6561.122

7 386.059 1.097163515 5860.4100 7.377 17 17 0 6561.748

8 364.581 1.097259605 4313.0330 13.620 17.999 18 0.005 6561.778
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4.1.2 Actual Determination of Hydrogen Atomic Emission Spectrum —- Number of

Photons in Every Portion of Light Quantum in Paschen Series (wavelength)

Actual determination of hydrogen atomic emission spectrum —- Paschen Series’

wavelength can be found in Table 2, and the corresponding data are in Lin Meirong,

Zhang BaozhengAtomic SpectroscopyP20. Science Publishing House, published in

October, 1990. With the help of the preceding formulas4,3,2,1and7,we obtain Ryd-

berg constant from actual determination corresponding to respective measured wave-

length, instantaneous velocity of electrons’ motion, radius of electrons’ trajectory,

the number of photons in every portion of light quantum hνand the corresponding

constantξ.

Table 2 Actual determination of hydrogen atomic emission spectrum - number of

photons in every portion of light quantum in Paschen series (wavelength)

natural Measured Measured Instantaneous Radius Measured Theoretical ξ

number wavelength Rygberg velocity of electron’s number of number of
NR−NT

NT

constant of electron trajectory photons hν photons

n λa(nm) Ra × 107m−1 ν(km/s) r−12m N N ×% nm

4 1875.11 1.097078495 6947.1420 5.2581857 3.5005 3(4) 16.8 7498.425

5 1281.81 1.097081471 6911.9780 5.3118372 5.1207 5 2.4 6407.346

6 1093.80 1.097092704 6777.6058 5.5246056 6.0008 6 0.013 6561.122

7 1004.98 1.097036757 7422.7724 4.6057404 6.5315 6(7) 8.8(7.5) 6028.031

8 954.62 1.097057082 7193.9492 4.9034878 6.8760 7 1.8 7032.703

4.1.3 Actual determination of hydrogen atomic emission spectrum -number of pho-

tons in every portion of light quantum in Lyman series (wavelength)

Actual determination of hydrogen atomic emission spectrum - Lyman series’ wave-

length can be found in Table 3, and the corresponding date are in Lin Meirong,

Zhang BaozhengAtomic Spectroscopy, P20, Science Press, Beijing, 1990. With the

help of the preceding formulas (4) - (1) and (7), we can obtain Rydberg constant

from actual determination corresponding to measured wavelength, instantaneous ve-

locity of electrons’ motion, radius of electrons’ trajectory, the number of photons in

every portion of light quantum (hν) of measured wavelength and the corresponding

constant ξ.

Table 3 Actual determination of hydrogen atomic emission spectrum - number of

photons in every portion of light quantum in Lyman series (wavelength)
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natural Measured Measured Instantaneous Radius Measured Theoretical ξ

number wavelength Rygberg velocity of electron’s number of number of
NR−NT

NT

constant of electron trajectory photons hν photons

n λa(nm) Ra × 107m−1 ν(km/s) r−12m N N ×% nm

2 121.566 1.096797899 9706.0044 2.6931231 54.0080 54 0.015 6561.122

3 102.583 1.096672938 10708.0992 2.2123963 64.0095 64 0.015 6561.122

4 97.254 1.096784365 9819.4823 2.6312047 67.5100 67(68) 0.76 6512.521

5 94.976 1.096768306 9952.4512 2.5613288 69.2303 69 0.19 6549.731

6 93.782 1.096768493 9950.9131 2.5621212 70.0104 70 0.15 6561.122

4.2 The Dynamic Law on the Precise Quantitative Relations between

the Number of Moving Photons and Moving Electrons outside Hydrogen

Nucleus

A detailed study on the mechanism concerning the moving electrons’ (inside hydro-

gen atoms) emitting Balmer Lines spectrum shows that the frequency of moving

electrons’ emitting light quantum can be determined by the inertia force that pre-

vents the moving electrons to deviate from their orbit.

By adopting the data from actual determination of hydrogen atomic emission

spectrum-the Balmer lines, we find that the atomic nucleus, electrons and photons

within the structure of hydrogen molecules follow a dynamic law of interaction as

shown below, see Fig.1. The detailed findings are published in the reference [7].

Fig.1 Sketch map of hydrogen molecules (H2)

4.2.1 In electrons’ movement around the atomic nucleus, one may find a long cycle,

which may be divided into three shorter cycles. During every short cycle, electro-
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magnetic waves are being absorbed and released; during every long cycles, there are

three different courses of absorbing and releasing electromagnetic waves. During

any long period, hydrogen atoms just repeat the above process of absorbing and

releasing electromagnetic waves. During every cycle, electrons will release electro-

magnetic waves six times, which correspond red, green, blue, purple, ultraviolet 1,

and ultraviolet 2 radiations. The numbers of released photons every time are, re-

spectively,10, 13, 15, 16, 17, and 18. During the first short cycle, electrons release

red and green electromagnetic waves, with numbers of photons being 10 and 13,

respectively, a total of 23 photons. During the second short cycle, electrons release

blue and purple electromagnetic waves, with numbers of photons being 15 and 16,

respectively, a total of 31 photons. During the third short cycle, electrons release

ultraviolet 1, and ultraviolet 2 electromagnetic waves, with numbers of photons be-

ing 17 and 18, respectively, a total of 35 photons. During the second short cycle,

8 more photons are released than during the first one, while during the third short

cycle 4 more photons are released than during the second one.

4.2.2 When an electron releases red, green, blue, purple, ultraviolet1 and ultraviolet2

electromagnetic waves, it is located in different positions and at different velocities.

During every short cycle, an electron emits electromagnetic waves twice. Its velocity

changes when it emits electromagnetic waves in different positions. That is to say,

the electron moves sometimes fast and sometimes slow. Sometimes the electron is

in a position near the atomic nucleus, and sometimes, it is in a position far away

from the atomic nucleus. The radius R of electrons’ trajectory around the atomic

nucleus changes periodically, and so does its velocity.

4.2.3 According to the data from actual determination, when electrons emit elec-

tromagnetic waves, their velocity of revolution decreases; while their velocity of

revolution increases when electrons absorb electromagnetic waves. So, it can be

concluded that when electrons decelerate, they emit electromagnetic waves; and

when electrons absorb electromagnetic waves, they accelerate.

4.2.4 Hydrogen molecule is made up of two hydrogen atoms. Taking into consider-

ation all above observations concerning hydrogen atoms and the physical law that

an object will expand when hot and will shrink when cold, it can be concluded that

when objects absorb electromagnetic waves, the distance between the atomic nucle-

uses will increase, the objects expand, the radius of the electrons’ trajectory around

the atomic nucleus diminishes, and electrons accelerate; when objects release elec-

tromagnetic waves, the distance between the atomic nucleuses reduces, and electrons
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decelerate.

4.2.5 The relationship between the sequence number of spectrums’ locations and

the sequence number of electrons’ locations

For a long time, people hold the idea that the sequence number of the spectrums

determines the energy level of the electrons inside the atom structure. However,

recent experiments and theories have shown that this is not the case. The electrons’

energy level can only be determined from their velocity obtained by measuring its

spectrum. So, the sequence number of the spectrums’ location is essentially different

form the sequence number of the electrons’ location. The sequence number of the

electrons’ location indicates the orbit position of the electrons when the electrons are

emitting/releasing electromagnetic waves of a certain frequency. The serial number

indicates the sequence number of the electrons in each shell, which determines the

distance from the atomic nucleus when electrons emitting/ releasing electromagnetic

waves. The smaller the serial number is, the nearer it is to the atomic nucleus. The

sequence number of spectrums shows the sequence of the spectrums created by the

electromagnetic waves (photons) emitted from a certain substance. The smaller the

serial number is, the greater the wavelength is and the smaller the frequency is. The

sequence number of the electromagnetic waves’ spectrums emitted by the electrons

in every shell is not always sequential. This is because there is only one “series” of

spectrum sequence number for a same substance while corresponding to it there may

be several electromagnetic waves emitted by electrons in different shells. Therefore,

the sequence number of the spectrums’ location is not the sequence number of the

electrons’ location. The frequency of the electromagnetic waves emitted by electrons

is not determined by the distance between the electrons and the atomic nucleus, but

by the inertia force that prevents the electrons to deviate from the orbit. The greater

the inertia force is, the farther away the electrons will be from the balance position

and the greater the frequency of electromagnetic waves emitted by electrons will be.

that is. the greater the number of the photons contained in every portion of light

quantum will be. It can be seen from ultraviolet 1(17),ultraviolet 2(18) radiations in

Fig.1. On the other hand, the smaller the inertia force is, the nearer the electrons

will be from the balance position and the frequency of electromagnetic waves emitted

by electrons will be greater. that is, the number of the photons contained in every

portion of light quantum will be smaller. It can be seen from the red (10) and green

(13) radiations in Fig.1. Such experimental results are in accordance with Newton’s

mechanics.
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5. Conclusion

5.1 The present paper reveals the precise quantitative relations between moving

photons and the moving electrons outside the atomic nucleus. In addition, the au-

thor of this paper has discovered the fact that the product of the photon number

of the wavelength N obtained from experimental determination and the normalized

wavelength of electromagnetic wave also obtained from the experimental determina-

tion (λN = λR •
√

1 − v2

C2 ) is a constant ξ = 2h
mγC

= 65621.100001nm. The physical

implication of the constant ξ may be explained as follows: all the light quanta are

made up of a succession of N photons in motion in the space. The greatest distance

between the photons in a light quantum (that is, the total length of a portion of light

quantum) is a constant after normalization. This is determined by the interaction

mechanism of moving photons and moving electrons outside an atomic nucleus, and

this is a universal law of nature. Errors are unavoidable in experimental determina-

tion, and the theoretical value of Rydberg constant was obtained on the assumption

that the mass of a moving electron outside atomic nucleus is a constant, so it is

reasonable to assume that some data in the tables are only approximate.

5.2 Analysis of the results obtained from actual determination concerning the

number of the photons contained in every portion of light quantum hν of infrared,

visible and ultraviolet radiations shows that the margin of error between the theo-

retical value and the measured value of infrared, visible and ultraviolet radiations

ranges mostly from 0.9% to 0.08% with only a few exceptions related with infrared

radiations, which reach as high as 16.8%. This may be due to the limited precision

of the apparatus. Furthermore, the measured data in the above tables were obtained

in the 1980’s with apparatuses of limited precision.

5.3 With the errors of actual determination being removed, we find for the hy-

drogen spectrum - infrared light wavelength of 1875.11nm, 1281.81nm, 1093.8nm,

1004.98nm, 954.62nm, the respective numbers of the photons in each light quantum

(hν) are 3 (4),5 ,6,6 (7) and 7. For the hydrogen spectrum - visible light wavelength

of 656.21nm, 486.074nm, 434.00nm, the respective numbers of the photons in each

light quantum (hν) are 10, 13 and 15. For the hydrogen spectrum -near ultra violet

light wavelength of 386.006nm, 364.581nm, the respective numbers of the photons in

each light quantum (hν ) are 17 and 18. For the hydrogen spectrum - far ultra violet

light wavelength of 121.566nm, 102.583nm, 97.254nm, 94.976nm and 93.782nm, the

respective numbers of the photons in each light quantum (hν) are 54, 64, 67 (68), 6

9 and 70. More data may be found in tables in the present paper.
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5.4 The photon’s mass is 6.73640775× 10−37kg. It is shown that a light quantum

is different from a photon and each light quantum consists of several photons.

Based on the experimental determination and theoretical analysis, we show that

in each light quantum (hν ) of different frequencies, the numbers of the photons in

infrared radiations are, respectively, 1, 2, 3, 4, 5, 6, 7, 8 and 9; the numbers of the

photons in visible light are, respectively, 10, 11, 12, 13, 14, 15 and 16; the numbers of

the photons in ultraviolet radiations are, respectively, 17, 18, 19. . . , 54 . . . , 64, 65,

66, 67, 68, 69, 70, . . . . Each light quantum of X-ray and Gamma ray contains more

photons and the exact numbers of such rays remain unknown and will be determined

in future experimental determination.

5.5 From infrared radiations to Gamma ray, the frequency of different electromag-

netic waves is the number of times or frequencies of the emission of photons by

the moving electrons outside the atomic nucleus when a photon moves across the

distance of 2.99792458 × 108m at the speed of light in a second. In other words, it

is the number of photons emitted in a certain unit of time. Different frequency is

due to the difference in the number of photons emitted in a certain unit of time.

The different wavelength of electromagnetic wave is the distance covered by the

photons moving at the speed of light during the interval of the two emissions of

photons outside the atomic nucleus, namely, the distance between two sequential

moving photons. While the electromagnetic waves of different wavelengths consist

essentially of sequential different light quanta emitted by the moving electrons out-

side the atomic nucleus with different numbers of photons at different velocity and

at different interval of the two emissions. Therefore, the essence of electromagnetic

wave is the light quanta with photons combined in a sequence arranged by different

natural numbers. The essence of microwave and radio wave is also the light quanta

emitted by electrons outside the nucleus composed of micro-photons or single pho-

tons. The difference is that the interval of the two emissions of micro-photons (or

single photons) by the microwave and radio wave is longer than that the infrared

radiations. To make it clearer, after the first emission of photons, there will be an

interval of (∆t) before the second emission. What is more, for microwave and radio

wave of different wavelengths, the length of the interval (∆t) is different. The longer

the wavelength is, the longer the interval of the two emissions (∆t) will be. This

also helps to explain the differences between radio wave and other electromagnetic

waves.

5.6 The author of the present paper has conducted actual determinations and

numerical analysis for the same parameters concerning helium ions, helium atoms,



Experimental Determination of Photons in Light Quanta 87

neon atoms and sodium atoms. The findings prove that the precise quantitative

relations concerning the moving photons and moving electrons outside the hydrogen

atomic nucleus are reliable. Owing to the limited space in the present paper, further

discussions will be in another paper.

In addition, the theory of single photons proposed by the author of the present

paper can satisfactorily explain the essence of electromagnetic wave, and explain a

lot of phenomena frequently found in experiments concerning optics.
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Abstract: One of the reasons for restricted applications so far of Smaran-

dache geometries and neutrosophic methods in the fields of traditional physics

and astrophysics is that these fields involve too many mutually compatible

truths. To solve that problem, the science of conservation of energy regards

the law of conservation of energy as the only truth and relates everything to

energy. This paper also introduces the quantization method (fractal quantiza-

tion and parameter quantization) and associate a movement trajectory with a

governing law, therefore, to define a movement trajectory governed by a given

law as well as the geometric axioms with physical interpretations. In this way,

we have found a new way to construct Smarandache geometries and to extend

the applications of Smarandache geometries, neutrosophic and quantization

methods. Finally, the concept of having only one truth is further discussed to

extend the these applications to a more wide range.

Key words: Smarandache Geometry, Neutrosophy, Law of conservation

of energy, Science of conservation of energy, fractal quantization, parameter

quantization.

Smarandache geometries and neutrosophic methods have already contributed more

successful applications[1-4]. However, they have not been widely applied to some

traditional fields, such as those of traditional physics. This paper proposes a con-

cept of having only one truth in a certain field and to extend the applications of

Smarandache geometries, neutrosophic methods and quantization methods (fractal

quantization and parameter quantization) to a more wide range.

1. Introduction to Smarandache geometries and neutrosophic methods

Smarandache geometries was first proposed by F.Smarandache in 1969. An axiom
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is said smarandachely denied if in the same space the axiom behaves differently, i.e.,

validated and invalided; or only invalidated but in at least two distinct ways.

A Smarandache geometry is a geometry which has at least one smarandachely

denied axiom.

Thus, as a particular case, Euclidean, Lobachevsky-Bolyai-Gauss, and Rieman-

nian geometries may be united altogether, in the same space, by some Smarandache

geometries. These last geometries can be partially Euclidean and partially non-

Euclidean.

L.F.Mao has been shown that Smarandache geometries are connected with the

theory of relativity because they include the Riemannian geometry in a subspace

and with the parallel universes (see his two papers in this collection).

More information about Smarandachely denied axioms and Smarandache ge-

ometries may be found in references [1,3].

Neutrosophy was first proposed by Florentin Smarandache in 1995. Neutros-

ophy is a new branch of philosophy that studies the origin, nature, and scope of

neutralities, as well as their interactions with different ideational spectra. This the-

ory considers every notion or idea < A > together with its opposite or negation

< Anti− A > and the spectrum of neutralities < Neut− A > i.e. notions or ideas

located between the two extremes, supporting neither < A > nor < Anti − A >.

The < Neut−A > and < Anti−A > ideas together are referred to as < Non−A >.

Neutrosophy is the base of neutrosophic logic, neutrosophic set, neutrosophic

probability and statistics used in engineering applicationsespecially for software and

information fusion, medicine, military, cybernetics and physics, etc..

Neutrosophic Logic(NL) is a general framework for unification of many exist-

ing logics, such as fuzzy logic, especially intuitionistic fuzzy logic, paraconsistent

logic, intuitionistic logic, etc.. The main idea of NL is to characterize each logical

statement in a 3D Neutrosophic Space, where each dimension of the space repre-

sents respectively the truth (T), the falsehood (F), and the indeterminacy (I) of

the statement under consideration, where T, I, F are standard or non-standard real

subsets of ]−0, 1+[ with not necessarily any connection between them.

More information about Neutrosophy may be found in references [2-4].

2. Brief introduction to science of energy conservation

The science of conservation of energy was first proposed in the reference [5]. Its

some researches can also be found in the reference [3].

In science of conservation of energy, the law of conservation of energy plays a
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leading role. For all problems related with energy, the law of conservation of energy

is the only truth; other laws will be derived from or verified by the law of conserva-

tion of energy. In this paper four issues are discussed. First, the relationship between

force, mass and velocity is reconsidered according to the law of conservation of en-

ergy. It is shown that in the general expression of the force F = f(m, v, x, y, z, t), the

form of the function can be obtained by applying the law of conservation of energy.

Second, it is shown that other laws, such as the law of gravity and law of Coulomb,

can be derived by applying the law of conservation of energy. Thirdly, it is shown

that other laws should be verified or denied according to the law of conservation of

energy, and as examples, it is shown that the law of conservation of momentum and

the law of conservation of angular momentum are not correct since their results are

in contradiction with the law of conservation of energy. Fourthly, an old discipline

of sciences can be updated into a new one; for example, Newton’s mechanics can be

updated into New Newton’s mechanics, in which the law of conservation of energy

is taken as the source law to obtain the law of gravity and Newton’s second law.

New Newton’s mechanics can be used partly in place of relativity and even can be

used to solve problems which can not be solved by relativity.

The cases where the law of conservation of momentum and the law of conser-

vation of angular momentum are not valid since the results obtained by applying

them are in contradiction with the law of conservation of energy can be summarized

as follows.

Fig.1 One person walks along a vehicle on a level and lubricated rail
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Example 1. A vehicle of length L is put on a level smooth railway rail as shown in

Fig.1, and, a person (or robot) stands on one end of the vehicle. At the beginning,

the person and the vehicle are all in rest. When the person walks from one end of

the vehicle to another, what will be the movement of the person and the vehicle?

It should be noted that the same problem can also be posed in astrophysics.

Then the vehicle may be replaced by a spaceship, two persons, wearing iron shoes,

will walk in symmetrical positions, for example, one person on magnetic floor, an-

other on magnetic ceiling), in order to keep the trajectory of the spaceship in a

straight line.

The problem is usually solved with the law of conservation of momentum. But

with the law of conservation of energy, different results will be obtained.

Suppose that m1 is the person’s mass, m2 is the vehicle’s mass, and other

variables will be similarly indexed (with similar subscripts). The energy responsible

for the movements of the person and the vehicle comes from the person’s power,

which can be expressed as: W = K1t+K2t
2+K3t

3, where Ki, i = 1, 2, 3 are arbitrary

constants. Suppose also that the person and the vehicle move with velocities relative

to the ground expressed as v1 = a1t+ a2t
2; v2 = b1t+ b2t

2. According to the law of

conservation of energy, at any time we have: 1
2
m2

1v
2
1+ 1

2
m2

2v
2
2−

t∫
0

W = 0. Substituting

the related quantities into this equation, comparing coefficients of t2,t3 and t4, we

get three equations following.

1
2
m1a

2
1 + 1

2
m2b

2
1 = K1

2
,

m1a1a2 +m2b1b2 = K2

3
,

1
2
m1a

2
2 + 1

2
m2b

2
2 = K3

4
.

To determine the velocities, i.e., the coefficients a1, a2, b1, b2, another equation should

be supplemented. If we use the law of conservation of momentum, comparing the

coefficients of t and t2, we have the following two equations m1a1 = −m2b1, m1a2 =

−m2b2. From the above mentioned five equations , we may determine the four

coefficients a1, a2, b1, b2. Incompatible results will be obtained. For simplicity, let

m2 = 2m1. It may be shown that, to satisfy the five equations at the same time,

we obtain K2 = 5
4

√
2K1K3. But according to the above-mentioned hypothesis,

Ki are arbitrary constants, therefore, we conclude that, in this example, the law of

conservation of energy is in contradiction with the law of conservation of momentum.

Similarly, it may be proved that, in this example the law of conservation of angular

momentum is in contradiction with the law of conservation of energy.
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To find the solution in conformity with the law of conservation of energy, one

should consider the actual speed as a function of time. For example, we assume that

K1 = 10Nm/s2K2 = 1Nm/s3K3 = 0.1Nm/s4where m1 = 100kg is the person’s

mass and m2 = 2m1 the vehicle’s mass. At t0 = 1s, the person’s speed relative to the

ground is v10 = 0.28m/s. From these conditions, we know that a1 = 0.279854a2 =

0.000145989b1 = −0.1041195b2 = −0.01581105. With this solution, the law of

conservation of energy is contradicts to the law of conservation of momentum.

It should be noted that if the person’s power is not W = K1t + K2t
2 + K3t

3,

but is W = K0t, different results will be obtained. In fact, if v1 = atv2 = bt, the

results simultaneously satisfying the law of conservation of energy and the law of

conservation of momentum are: a =
√

m2K0

m2
1+m1m2

b = −m1a
m2

. From these results, the

total angular momentum is equal to zero before the movement. If the person’s cen-

ter of gravity and the vehicle’s center of gravity are located at the same level, these

results are also in conformity with the law of conservation of angular momentum.

But the person’s center of gravity and the vehicle’s are usually located not at the

same level, thus the total angular momentum is not equal to zero during the move-

ment, therefore for these results the law of conservation of angular momentum is

not satisfied.

3. Applications of Smarandache’s notions to physics and conservation of

energy

Now we associate a movement trajectory with a given law, and through defining

a movement trajectory satisfying a given law as well as the geometric axioms with

proper physical interpretations, construct Smarandache geometries, find more ex-

tensive applications of the Smarandache geometries and neutrosophic methods.

It should be noted that in Smarandache geometries, while defining the smaran-

dachely denied cases, only situations of validated and invalided are considered. But,

between these two situations, there may be a third situation, the indeterminate, as is

considered in neutrosophy, where one could not determine whether or not a proposi-

tion is validated, sometimes it is validated and sometimes it is invalided, sometimes

one could determine, sometimes one could not determine and so on. In author’s

opinion, this third situation should also be considered in Smarandache Geometry,

which is a topic worth further studying.

In the reference [9], one finds an economics model to Smarandache anti-geometry

by making the following correlations: (i) a point is the balance in a particular check-

ing account, expressed in U.S. currency. (ii) A line is a person, who can be a human
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being. (iii) A plane is a U.S. bank affiliated to the FDIC.

Similarly, one may find a physical model to Smarandache geometry by making

the following correlations: (i) A point is the mass point, and the like. (ii) A line is a

movement trajectory, and the like. (iii) A plane is a gravitational field, and the like.

When we associate a movement trajectory with a governing law, the situation

of indeterminacy must be considered.

If a movement trajectory satisfies the law of conservation of energy, we may call

it a trajectory satisfying the law of conservation of energy.

If a movement trajectory does not satisfy the law of conservation of energy, we

may call it a trajectory denied by the law of conservation of energy.

If for a movement trajectory, one could not determine whether or not the law

of conservation of energy is satisfied, or sometimes it is satisfied and sometimes it

is not, or sometimes one could determine and sometimes one could not, or other

indeterminate situations, we may call the trajectory indeterminately satisfying the

law of conservation of energy.

Similarly we may define the trajectory satisfying the law of conservation of

momentum, the trajectory denied by the law of conservation of momentum, the tra-

jectory indeterminately satisfying the law of conservation of momentum, the trajec-

tory satisfying the law of conservation of angular momentum, the trajectory denied

by the law of conservation of angular momentum, the trajectory indeterminately

satisfying the law of conservation of angular momentum, and other trajectories.

Considering that the axiom system of an Euclidean Geometry contains five

axioms, if we associate a movement trajectory with a governing law, we must at

least supplement the following three axioms.

Sixth axiom: All movement trajectories satisfy the law of conservation of energy.

Seventh axiom: All movement trajectories satisfy the law of conservation of mo-

mentum.

Eighth axiom: All movement trajectories satisfy the law of conservation of angular

momentum.

In traditional physics, the law of conservation of energy, the law of conservation

of momentum and the law of conservation of angular momentum all are taken as

the truth, and they are mutually compatible, therefore, above three axioms pose no

question.

But, with the advent of the science of conservation of energy, the law of con-
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servation of energy is taken as the only truth, therefore, in certain situations the

above mentioned seventh axiom and eighth axiom must be replaced by other axioms.

Thus, a Smarandache geometry can be constructed with this new method.

Example 2. A vehicle of length L is put on a level smooth railway rail as shown in

Fig.1, and, a person stands on the one end of the vehicle The person walks from one

end to another, consuming his power W = K1t+K2t
2 +K3t

3, where Ki, i = 1, 2, 3

are arbitrary constants. Define s-lines as the person’s trajectories (level lines). Then

we obtain a Smarandache geometry. Because two axioms are smarandachely denied

with respect to the above mentioned axiom system including eight axioms.

The seventh axiom in the original system reads that all movement trajectories

satisfy the law of conservation of momentum, which is now replaced by all movement

trajectories satisfy the law of conservation of momentum or are denied by the law

of conservation of momentum. It is because for different values of Ki, the law of

conservation of momentum may be satisfied, or not satisfied.

The eighth axiom in the original system reads that all movement trajectories

satisfy the law of conservation of angular momentum, which is now replaced by

all movement trajectories satisfy the law of conservation of angular momentum or

are denied by the law of conservation of angular momentum. It is also because for

different values of Ki, and different positions of person’s center of gravity, the law

of conservation of angular momentum may be satisfied, or not satisfied.

With Smarandache geometries thus constructed, the Smarandache geometries

and neutrosophy as they are now, may be conveniently applied to physics and the

science of conservation of energy. In reference [4], some problems related to the

theory of relativity were discussed.

For problems related to the theory of relativity, the above mentioned three

added axioms with respect to the existing five axioms of the axiom system of Eu-

clidean Geometry, must be replaced by the following axioms.

Sixth axiom: All movement trajectories satisfy the general theory of relativity.

Seventh axiom: All movement trajectories satisfy the special theory of relativity.

Some sub-axioms may be added with respect to the sixth axiom or seventh

axiom. For example, in the special theory of relativity, nothing in universe moves

faster than light. Therefore, we have the following axiom.

Axiom A: In all movement trajectories, the speed is less than or equal to the speed

of light c.
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But Smarandache has pointed out in the reference [6] that, there is no speed

barrier in the universe, which may be expressed as the following axiom.

Axiom A’: In all movement trajectories, the speed is less than or greater than or

equal to the speed of light c.

Now we consider the Neutrosophic methods applied to physics and science of

conservation of energy.

Example 3. When a person walks from one end to another end of the vehicle,

as shown in Figure 1, we will study the law of conservation of momentum, to see

whether it is true, indeterminate and false in that case with the neutrosophic method.

According to the neutrosophic method, the proposition The law of conservation

of momentum is correct does not mean a fixed-valued component structure. The

truth value depends/changes with respect to different conditions.

In traditional physics, the law of conservation of momentum is a truth. There-

fore the proposition the law of conservation of momentum is correct is 100% true,

0% indeterminate, and 0% false. It may be written as (1, 0, 0).

But in science of conservation of energy, the law of conservation of momentum

may be correct or may not. Therefore the different results will be reached for

different situations.

Assume that K1 = 2, K2 = 5, K3 = 4 or K3 6= 4K3 = 5 or K3 = 6. That is, we

will consider cases following.

First case: K1 = 2, K2 = 5, K3 = 4.

Second case: K1 = 2, K2 = 5, K3 = 5.

Third case: K1 = 2, K2 = 5, K3 = 6.

Fourth case: K1 = 2, K2 = 5, sometimes K3 = 4, sometimes K3 = 5, and

sometimes K3 = 6.

For the first case, we see that the following relation is satisfied K2 = 5
4

√
2K1K3.

Therefore, the law of conservation of momentum is correct.

For the second case and the third case, the above relation is not satisfied,

therefore, ,the law of conservation of momentum is not correct.

For the fourth case, the above relation is sometimes satisfied and sometimes

not. In other words, we cannot determine whether or not the law of conservation of

momentum is correct.

Therefore, if we consider the above four cases as a whole, the proposition The
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law of conservation of momentum is correct is 25% true, 25% indeterminate, and

50% false. It may be written as (0.25, 0.25, 0.5).

4. Application of Smarandache’s notions and quantization methods to

astrophysics

Now we consider two examples.

Example 4. Assume that a spaceship navigates along a straight line with a con-

tinuously varying speed originally. We may consider five consecutive segments on

the straight line, and use the average speed on each line segment to represent the

speed of the entire line segment, then the speed of the spacecraft is no longer con-

tinuous, we call that speed quantization. Similarly, we may define quantization of

other parameters such as energy and temperature. Let the average speeds in the five

line segments be, respectively, 0.6c, 0.8c, 0.9c, indeterminate (measuring instrument

does not work and so on), 1.2c, where c is the speed of light. Define s-lines as above

mentioned line segments after quantization, then we obtain a Smarandache Geom-

etry. Because according to Axiom A, in all movement trajectories, the speed is less

than or equal to speed of light c. Two cases are invalidated. In one case, the speed

is greater than the speed of light; and in another case, the speed is indeterminate.

According to the neutrosophic method, and considering the above mentioned

five line segments after quantization, the proposition in all movement trajectories

the speed is less than or equal to the speed of light c is 60% true, 20% indeterminate,

and 20% false. It may be written as (0.6, 0.2, 0.2).

By the same way, as far as the original ellipse orbit and other track of a planet

are concerned, the law of conservation of energy and the law of conservation of

momentum are all tenable. But, if we divide the ellipse orbit and other track into

certain sections, and carry out speed quantization because for each section the speed

is constant, an analysis is needed to see whether or not the results simultaneously

satisfy the law of conservation of energy and the law of conservation of momentum.

We will discuss this problem in another paper.

Example 5. According to the quantization in astrophysics by fractal method for the

data of nine planets in solar system, construct Smarandache geometry, and analyze

the result with neutrosophic method.

The quantization in astrophysics by fractal method can be done by taking

integers for certain variables in the formula of fractal distribution.

Now, in the fractal distribution N = C
rD , we carry out the quantization for N ,
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namely, use N as an index to the planets: N = 1, 2, 3, · · ·.
Consider the orbital motion of the nine planets, take the average velocity (with

unit of km/s) of a planet as the characteristic dimension r and the value of N for

the serial number according to the orbital motion average velocity. First consider

the case of Mercury r = 47.89, we have N = 1 (Mercury’s orbital motion average

velocity is the greatest), therefore, we have a coordinate point (47.89, 1). Similarly,

we have other 8 planet coordinate points as follows:

(35.03, 2), (29.79, 3), (24.13, 4), (13.06, 5), (9.64, 6), (6.81, 7), (5.43, 8), (4.74, 9).

The 9 coordinate points may be plotted on the double logarithmic coordinates, then

we may obtain 8 straight line segments. In order to study Smarandache geome-

tries and neutrosophic methods, here we do not fit these 8 straight line segments

into a curve with the least squares method, but use the coordinate points of the

8 straight lines to determine accurately their fractal parameters (constant C and

fractal dimension D). For example, according to Mercury’s coordinates (47.89, 1)

and Venus’s coordinates (35.03, 2), one may obtain the fractal parameters for the

first straight line segment C = 5302.684, D = 2.216639. The fractal distribution for

the first straight line segment can be expressed as

N =
5302.684

r2.216639
.

This formula may be used as the extrapolation formula to predict the orbital motion

average velocity of the next planet (Earth) by substituting N = 3 into this formula

and solving for r. Similarly, all predicted results for other planets may be obtained.

By using the 1st straight-line segment, the predicted average velocity of the

next planet (Earth) is V = 29.17 with an error of 2.07%.

By using the 2nd straight-line segment, the predicted average velocity of the

next planet (Mars) is V = 26.55 with an error of 10.0%.

By using the 3rd straight-line segment, the predicted average velocity of the

next planet (Jupiter) is V = 20.49 with an error of 59.9%.

By using the 4th straight-line segment, the predicted average velocity of the

next planet (Saturn) is V = 7.91 with an error of 18.0%.

By using the 5th straight-line segment, the predicted average velocity of the

next planet (Uranus) is V=7.46, with an error of 9.51%.

By using the 6th straight-line segment, the predicted average velocity of the

next planet (Neptune) is V = 5.04 with an error of 7.19%.
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By using the 7th straight-line segment, the predicted average velocity of the

next planet (Pluto) is V = 4.45 with an error of 6.18%.

By using the 8th straight-line segment, the predicted average velocity of the

next planet (tenth planet) is V = 4.20 and the error is unknown, because the tenth

planet has not yet been discovered.

Defining s-lines as the fractal straight lines linking two coordinate points of the

neighboring two planets and the error of the prediction for the next planet is less

than or equal to 10%, we obtain a Smarandache Geometry. Because from Axiom

A1: there is a straight line between any two points. Two cases are invalidated. In

one case, the error is greater than 10%, therefore, it is not an s-line; in another case,

the error is indeterminate.

According to the neutrosophic method, and considering the above mentioned

8 line segments, the proposition there is a straight line between any two points is

62.5% true, 12.5% indeterminate, and 25% false. It may be written as (0.625, 0.125,

0.25).

5. Applications to more wide range

5.1. Application of Smarandache’s notion to more wide range

Because the concept of Smarandachely denied is contained in Smarandache geome-

tries and the concept of falsehood is contained in neutrosophic method, if one intends

to apply Smarandache geometries and/or neutrosophic method to a certain field, one

has to find the situations of the denied and/or falsehood in that field

For this purpose, we may adopt the procedure used in science of conservation

of energy, that is, only one law or principle is selected as the principal truth in a

certain field. Other laws or principles will be derived by it, or verified by it, or

denied as wrong by it.

In Chinese ancient philosophy, this procedure may be realized. According to the

Taiji theory, one of the highest achievements of Chinese ancient philosophy, where

Taiji means Primal chaos, Ultimate, Source and so on. The source of universe is

the Taiji and any field also has a Taiji as the source.

All movements are started by the Taiji. It was said in the Book of Changes

that

changes originate in the Taiji (Primal chaos, Ultimate, Source), come with

two spheres, and from the two spheres come with four elements, and from the four

elements come with the eight diagrams (eight combinations of three whole or broken
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lines formerly used in divination) and so on.

Lao Tzu, a famous philosopher in ancient China once said in one of his book

Tao Te Ching that tao generates one, one generates two, two generates three, and

three generates everything.

5.2. Application of quantization method to a more wide range

An improvement of above mentioned fractal quantization and parameter quantiza-

tion may extend their applications in a more wide range.

For example, if parameters after quantization are expressed as V1, V2, V3, · · · ,
we may obtain their accumulated sums as S1 = V1, S2 = V1 + V2, S3 = V1 + V2 + V3,

· · · ; and may further obtain the accumulated sums of the previous accumulated

sums, and so on. After that, a random series with positive terms, which sometimes

is increasing, and sometimes is decreasing, will finally become a monotonously in-

creasing series.

When using fractal distribution, one may have variable dimension fractals (D

is not a constant) in place of constant dimension fractals (D is a constant).

By using the above methods, the typhoon paths were forecasted [7]. The stock

price and index of oil were forecasted [8].

Similarly, one may also use above methods to forecast the paths of a particle

in the Brownian movement. We will discuss that problem in another paper.

References

[1] Kuciuk, L. and Antholy M., An introduction to Smarandache geometries, Math-

ematics Magazine, Aurora, Canada, Vol.12, 2003

[2] F.Smarandache, A Unifying Field in Logics: Neutrosophic Logic- Neutroso-

phy, Neutrosophic Set, Neutrosophic Probability and Statistics(third edition),

Xiquan Publishing House, Phoenix, 2003.

[3] F.Smarandache, V. Christianto, Fu Yuhua, R. Khrapko and J. Hutchison, Un-

folding the Labyrinth: Open Problems in Mathematics, Physics, Astrophysics,

and Other Areas of Science, Hexis, Phoenix, 2006

[4] D. Rabounski, F. Smarandache, L.Borissova, Neutrosophic Methods in General

Relativity, Hexis, Phoenix, 2005.

[5] Yuhua Fu, Science of conservation of energy(in Chinese), Journal of Dezhou

University, 2004(6):20-24.

[6] F.Smarandache, There is no speed barrier in the universe, Bulletin of Pure and



100 Yuhua Fu

Applied Science, Delhi, India, Vol.17D(Physics), No.1.p.61(1998).

[7] Yuhua Fu, Forecasting typhoon tracks with fractal distribution model(in Chi-

nese), China Offshore Oil & Gas (Engineering), 1999(1):36-39

[8] Yuhua Fu and Fu Anjie. To predict the stock price and index of oil by using

fractal method (in Chinese), China Offshore Platform, 2002(6):41-45.

[9] Torretti, R. An economics model for the Smarandache anti-geometryInternatio-

nal Journal of Social Economics, 2002, Vol. 29; Part 11/12, 876-886.



Scientific Element Ser. Vol.1 (2007), 101-112.

The Basis of Relativity Theory &

A Smarandache Geometrical Model of Macro-Physics

Changwei Hu

(Room 54, No.2 Tianshanwucun, Shanghai 200336, P.R. China)

E-mail: huchangwei5@yahoo.com.cn

Abstract: The derivation of Lorentz transformation by fluid mechanics

shows that there is an intrinsic relationship between the absolute and rela-

tivistic space-time theories, and the ether is just the physical vacuum, which

is a super-fluid in vacuum state, where lies the physical basis of the theory of

relativity. On this basis, the Smarandache geometry model of macro-physics

is constructed: the subspace without ether or without the space-time effect

of ether can be considered as the absolute space; the subspace with homoge-

neously distributed ether is the Minkowski space; the subspace with inhomo-

geneously distributed ether is the Riemann space. Among the three subspaces,

the absolute space is the elementary subspace, the other two are created by

the space-time effect of ether: the higher is the ether density, the shorter the

ruler and the slower the clock, and the curvature of Riemann space indicates

the variation rate of standards of time and length. In this way, one may also

see the limitations of the theory of relativity.

Key words: Smarandache geometries, elementary subspace, ether (physical

vacuum), duplicate time-space theory, physical basis of relativity theory.

1. The elementary subspaces in the model of Smarandache geometry

A Smarandache geometry[1] is a geometry that has at least one Smarandachely

denied axiom in this geometry. It follows that it is the geometry with at least

two subspaces. Is there an elementary subspace among these subspaces that other

subspaces may be derived from it? The answer is negative from the point of view
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of pure mathematics, but there may be a positive answer generally in a concrete

Smarandache geometry model.

The Euclidean space is the simplest and most intuitive space, so it may be

regarded as the elementary subspace generally when the model of a Smarandache

geometry is constructed. The following is such an example.

Fig.1

In the above picture, the rectangle ABCD and the points within it are regarded as a

geometry space, where, the points are taken as the points in the conventional sense,

but the line is taken as the line segment linking points on opposite sides; and the

parallel lines are line segments without points of intersection. This is a Smarandache

geometry model, because, it includes three geometric subspaces: for a line BE and

a point N within the rectangle, there are infinite number lines, which pass the point

N and are parallel to the BE. So we have a hyperboloid; for a point M on the AD,

we have only a line AD that passes the point M and is parallel to the BE, so we have

a Euclidean plane; moreover, there has not a line passing the point C and parallel

to the BE, so we have an ellipsoid.

In the Smarandache geometry of the rectangle ABCD, there are three subspaces.

Obviously, the Euclidean space is the most elementary space, the other two spaces

are derivatives, can be obtained through the condition of boundary and modifications

of the definition of line and parallel line on the basis of Euclidean space.

There are three spaces in macro-physics, i.e., the absolute space in Newtonian

physics, the Minkowski space in the special theory of relativity and the Riemann

space in the general theory of relativity. The Minkowski space is a four dimensional

Euclidean space, and different from the absolute space. The former considers the

space and time as closely interconnected and varying with the velocity. But the
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latter considers the space and time as not interconnected and not varying with

the velocity. If the proposition that the space and time are not interconnected and

can not vary with the velocity is taken as an axiom in the absolute space, it would

be possible to construct a Smarandache geometry model of macro-physics. Then

wether is there an elementary subspace among the absolute space, Minkowski space

and Riemann space in this model? The question should be analyzed in physics.

2. The derivation of Lorentz transformation by fluid mechanics

Physics is different from mathematics in the fact that its logic has two aspects,

namely the physical basis of things with respect to their qualitative nature and charac-

teristics and the formal logic with respect to their quantitative (including geometric)

relations, by which one may define how they relate with each other and transform

from each other. The theory of relativity has defined a series of quantitative re-

lations, but it does not offer an explanation with respect to the physical basis for

these quantitative relations, for example, it does not explain why the light speed is

invariable. Then how can we reveal the physical basis of the theory of relativity?

The derivation of Lorentz transformation by fluid mechanics is instructive.

The Lorentz transformation is the core of relativistic space-time theory. Ein-

stein derived it from the principle of invariance of the light speed. We will derive it

by a method of fluid mechanics, through which one may see the theory of relativity

from a different angle.

In fluid mechanics, the velocity potentialφ of incompressible fluid satisfies the

equation

∆φ (x.y.z) = 0. (1)

In other hand, if the velocity is not affected when the fluid penetrates into itself,

the velocity potentialφof compressible fluid satisfies the equation

(
1 − v2

c2

)
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0, (2)

where cv are the sound and flow speeds in the fluid, respectively. We substitute the

following into (2):





x
′

= βx,

y
′

= y,

z
′

= z.


β =

1√
1 − v2

c2


 (3)
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Then the equation is identified with (1): ∆φ
(
x

′

, y
′

, z
′
)

= 0. So (3) is the transfor-

mation of fluid from compressible to incompressible state.

For two special super-fluids, satisfying equation (2), let them make a relative

movement with speed v, in the absolute time-space theory, we will have Galileo

transformation between them





x2 = x1 − vt1

y2 = y1

z2 = z1

(4)

and





x1 = x2 + vt2

y1 = y2

z1 = z2

(5)

(Note: here time t is written as t1 and t2 separately)

Substitute (3) into (4) and (5), wherex1 in (4) and x2 in (5) do not change due

to the fact that they are in relative rest, we obtain





x
′

2 = β
(
x

′

1 − vt1
)

y
′

2 = y
′

1

z
′

2 = z
′

1

(6)

and





x
′

1 = β(x
′

2 + vt2)

y
′

1 = y
′

2

z
′

1 = z
′

2

(7)

Substitute the first equation in (6) into that in (7), we obtain

t2 =
1

vβ

(
x

′

1 − β2x
′

1 + β2vt1

)
= β

(
t1 −

x
′

1 (β2 − 1)

vβ2

)
.

Substitute β2 = c2

c2−v2 into it, we obtain

t2 = β

(
t1 −

vx
′

1

c2

)
(8)
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If the sound speed of the special super-fluid is replaced by the light speed, then

the combination of (6) and (8) is just the Lorentz transformation

Above derivation is not strict, but it is most important to understand the

following relation among the physical vacuum, object and gravitational field.

Lorentz transformation may be obtained by various methods of derivation. Both

the Lorentz’s hypothesis and Einstein’s derivation did not show their physical nature,

while the above derivation demonstrates that if a special fluid can be transformed

from compressible to incompressible state, then Lorentz transformation may be de-

rived from Galileo transformation. Here one may see the physical background, not

only the material nature of the physical vacuum, but also the dual nature of the

time-space theory.

3. The physical vacuum is a special medium

The derivation of Lorentz transformation by fluid mechanics shows the existence of

a special super-fluid, where velocity will not be affected when the fluid penetrates

into itself, and its sound speed corresponds to the light speed. What is this special

super-fluid? It can not be a conventional fluid, and it can only be the physical

vacuum.

The vacuum is not void. Microscopically, the physical vacuum is the basic

state of quantum field. Macroscopically, the physical vacuum is the four dimensional

space-time continuum in the relativistic time-space; at the same time, the derivation

of Lorentz transformation by fluid mechanics shows that the physical vacuum can

be seen as a compressible super-fluid in the absolute time-space theory. Due to

materialistic nature of the physical vacuum instead of being a void space, and also

due to its being the medium of light propagation, so it would be better that the

physical vacuum is called ether.

The ether theory is generally believed to be refuted by the theory of relativity,

which is not case actually. Einstein’s idea about ether[3] was quite self-contradictory.

In Einstein’s mind, the ether exists, but he did not understand its nature. In 1920,

he had made a speech about ether and the theory of relativity, he said: According to

the general theory of relativity, space without ether is unthinkable. For in such space

there not only would be no propagation of light, but also no possibility of existence

for standards of space and time (measuring-rods and clocks), nor therefore any

space-time intervals in the physical sense. But this ether may not be thought of as

endowed with the quality characteristic of ponderable inertia, as consisting of parts

which may be tracked through time. The idea of motion may not be applied to it.
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Here, according to Einstein, ether is the medium for light propagation, the standards

of space and time depend on the existence of ether (which is very important, but

he did not quite understand it), different from the conventional matter (medium

with inertia) and can not be described by the space-time theory of relativity. These

statements are quite right. But he described the ether (physical vacuum) as a four

dimensional space-time continuum, while it is impossible for the space-time theory

of relativity to describe the four dimensional space-time continuum, just like one can

not raise oneself by pulling his own hair. So Einstein can only be very evasive about

ether. Afterwards, he proposed to take the field as the representative of reality. But

so-called field by him is the curvature field of space-timethus the matter had been

geometrized.

The development of quantum theory shows clearly that there are the effects of

vacuum fluctuation, vacuum polarization etc. in the physical vacuum, with compli-

cated physical characteristics. Therefore, the physical vacuum is considered as the

basic state of quantum field. However, the concept of quantum field means quite a

lot of different things. Without a unified meaning, it may be related to the photon,

lepton, quark, gluon, meson, baryon etc., which can all be the quantum of field.

Actually, a field is a state with a continuously distributed physical quantity. For

example, the field of atmospheric density is a state with a continuously distributed

atmospheric density in space; the field of temperature is a state with a continuously

distributed temperature in medium. So the field is not a basic form of matter.

The material basis of the atmospheric density field is the atmosphere, the material

basis of the temperature field is the medium with a temperature distribution, etc.

Then what is the material basis of the gravitational field and the electric field? It

is the physical vacuum, a medium in vacuum state, as the only basic existing form

of matter different from real objects. The physical vacuum has no mass, while the

real object is matter with mass. The quantum characteristics of a field is only a

manifestation of interaction or interconnection between the physical vacuum and

objects. In fact, the theory of quantum field shows[4] that vacuum tunneling effect,

vacuum phase transformation, vacuum condensation, vacuum domain structure are

involved in the physical vacuum, which resembles a medium, as being called ether

in this paper.

Ether is a super-fluid. There are two different sounds in a general super-fluid:

the sound of density wave, which is the conventional sound; and the sound of temper-

ature wave, which propagates with heat. In the vacuum, the thermal propagation is

carried out through thermal radiation, namely, similar to the electromagnetic wave,
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so the electromagnetic wave, including the light, is the second sound in ether.

The connotation of the ether concept varies in its historical development: the

ether in Descarte’s mind is different from that in Aristotle’s mind; the ether of

the 19th century is different from Descartes ether; in our ether, the mechanical

characteristics of the ether in the 19th century will be discarded and the concepts

of modern physics including the theory of relativity will be incorporated.

4. Duplicate time-space theory and the correspondence relation

The derivation of Lorentz transformation by fluid dynamics further shows the physi-

cal meaning of Lorentz transformation, as the result of a transformation of the ether

fluid from a compressible state in absolute time-space into an incompressible state

in four dimensional space-time in the theory of relativity. So we have a duplicate

time-space theory: the absolute time-space theory and relativistic space-time theory.

In the former theory, one space-time standard is used to measure whole world in a

unified manner; while in the latter theory, the standard of space-time can change

with moving velocity or gravitational field. The two theories are independent of each

other, and have a relationship with the state of ether. They are different in nature,

thus one can not be replaced by the other. Besides, the absolute space-time theory

and corresponding compressibility of ether are the primary nature; the relativistic

space-time theory and corresponding incompressibility of ether (the homogeneity

of ether and invariance of light speed) are realized through transformation (3), so

they are the secondary nature. These show that a description based on the absolute

space-time theory reflects the truth of the materialistic world and may be called the

qualitative description; a description based on the relativistic space-time theory not

necessarily reflects the truth of the materialistic world, but can show the behavior

and interactions of actual rulers and clocks, and may be called the quantitative de-

scription. There is a great disparity between these two descriptions and there is also

certain relationship between them.

In a macroscopic system, ether should satisfy the equation of continuity ∂ρ

∂t
+

divρ−→u = 0. Applying Lorentz covariance, we obtain





ρ
′

= βρ
(
1 − vux

c2

)

ρ
′

u
′

x = β (ρux − vρ)

ρ
′

u
′

y = ρuy

ρ
′

u
′

z = ρuz

(9)



108 Changwei Hu

In (9), if the density ρ is replaced by mass m, we will obtain the same relations as the

transformation of mass and momentum in the theory of relativity. Therefore, we can

say that the density of ether is related with mass. Because mass is not related with

spatial dimensions and considering the relations between mass and gravitational

field, we may see the intrinsic relation among the ether, gravitational field and

real objects with mass: the distribution of ether density is closely related with real

objects with mass in the unified ether ocean of the cosmos, the real object with mass

is the core of ether density wave-packet, its mass center is the position where the

ether density takes the maximum value; the gravitational potential corresponds to

ether density; the intensity of gravitational field corresponds to the gradient of ether

density; the mass corresponds to the variation of ether density (closely related with

the maximum value of ether density). In acoustics, we have the equation P = ρc2

(where ρ is the variation of density; P is the variation of the pressure; c is the

sound speed). According to the relation between mass m and energy E = mc2,

the energy corresponds to the variation of ether pressure (closely related with the

maximum value of ether pressure). When the object is moving, an ether wave will

propagate in its surrounding gravitational field. Therefore, when two objects are

making a relative motion, and if no collision occurs between them, the penetrations

accompanying their ether wave-packet would have no influence on their velocity, so

equation (2) will be hold.

The mass corresponds with the variation of ether density of the object. There-

fore, the object is matter with mass, while ether is matter without mass. The

distribution of ether around the object will change when the object is moving, so

ether is not an absolute frame of reference.

Owing to the difference of time-space theories, qualitative and quantitative

descriptions will give different results for a same thing. To consider qualitatively, the

gravitational field is the field of ether density, the ether is a compressible super-fluid

and the deflection of light in the gravitational field will bend toward the direction

where the ether density is higher, which is identical with the way of the conventional

sound propagation. To consider quantitatively, the gravitational field is the field of

time-space curvature, the ether is a homogeneous continuum in four dimensional

space-time and the light propagates along the geodesic in the curved space-time.

There is a disparity between the qualitative and quantitative descriptions, which

explains a puzzle of the old ether theory: based on the direct mechanical model of

ether proposed by Fresnel et al (qualitative description) , a quantitatively satis-

factory relation can not obtained; while the ether model proposed by Lorentz can
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lead to a quantitatively satisfactory relation, but fails to give a direct mechanical

picture. Various theories of vacuum, proposed by scholars, will encounter similar

circumstances. Here we should use the theory of duplicated time-space, where the

qualitative and quantitative descriptions can be complementary.

5. The physical basis of the theory of relativity and its limitations

The relativistic phenomena include kinematical effects of the special theory of rel-

ativity and gravitational effects of the general theory of relativity. Now we can

combine these two kinds of effects into an effect of ether density. In the positions

where the ether density is high, the ruler will become shorter and the clock goes

slower. The kinematical effects are due to ether’s compressibility. When the object

moves in a compressible ether, the density of ether’s wave-packet is raised, so the

ruler becomes shorter and the clock goes slower. The gravitational effect is due to

the correspondence between the ether density and the gravitational potential. In the

place where the gravitational potential has a larger value, the ruler becomes shorter

and the clock goes slower. Microscopically, the ether is the basic state of quantum

field, which is the assembly of the virtual bosons (as are called by us ether particles,

and where virtual means the lowest energy state with no independent wave-packet

of ether density formed), which are composed of pairs of positive and negative par-

ticles, as the most elementary and universal Bose-Einstein condensation. Then we

can say, the relativistic phenomena are the demonstration of the space-time effect

created by ether, with its essential feature being the dependence of the actual stan-

dards of length and time on ether, i.e., the unit length is proportional to the interval

of the ether particles and the unit time is proportional to the time interval by which

the light propagates through the interval of ether particles. Using such standards to

measure ether, ether becomes a homogeneous and isotropic four dimensional space-

time continuum, where the light speed is constant, of course. Einstein regards this

result of invariance of light speed as a hypothesis, thus the true nature of the theory

of relativity was obscured. Besides, both of the standards of length and time are

related to the interval of ether particles, thus the space and time are interconnected.

Because the kinematical effects are due to ether’s compressibility, we must take

the ether field where the object is located as the reference frame. On the earth

surface, the gravitational field of the earth assumes an absolute dominance. So we

must take the gravitational ether field of the earth as the reference frame. The

experiment of an atomic clock flying around the earth carried out by Hafele and

Keating in 1971[5] has proved this point. The experiment shows that on the average,
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the flying clock is slower by 59×10−9second than the clock on the ground after flying

towards the east; and the flying clock is faster by 273 × 10−9second than the clock

on the ground after flying towards the west. It demonstrates that the proposition

“a moving clock is slower than a clock in rest” of the theory of relativity does not

hold true. Here we must take the earth’s mass center as the origin of the coordinates

system, only in this way can we make calculations with the formulae of the theory

of relativity, and obtain results roughly in agreement with experiment. Actually

this coordinates system with the earth’s mass center as the origin is the same as the

coordinates system with the gravitational ether field of the earth as the reference

frame.

The ether distribution is closely related with the object distribution. To take

the ether field where the moving object is located as the reference frame is the same

as to take a coordinates system with the common mass center of a material system

in a certain range as the origin. The motion relative to this reference frame is the

substantial motion, otherwise, it is regarded as the formal motion. For example, the

motion of an airplane relative to the mass center of earth is a substantial motion,

while the relative motion between two airplanes is a formal motion; the motion

of the earth relative to the mass center of the sun is a substantial motion, while

the relative motion between the earth and other planets is a formal motion. The

formulae of the special theory of relativity are valid for substantial motions, but

not for formal motions (the errors are too small to be discovered as compared with

the light speed). For instance, the movement of high energy particles in accelerator

relative to the earth is a substantial motion, so these particles will really increase

their mass during the movement. According to the principle of relativity, the earth

is also in a relative motion with respect to these particles, but it is only a formal

motion, therefore, the earth does not increase its mass. The movement of a star

relative to the earth due to the rotation of the earth is a formal motion, so the

formulae of the special theory of relativity are not valid, otherwise, the velocity of

the star will be much greater than the light speed, when the star is more than one

light-year far away from the earth.

In the absolute space-time theory, the time and space, which are not related

to matter, are invariable. But the actual standards of length and time, which are

always related to the object, may vary with the ether density. The special theory of

relativity regards the variation of the standards of length and time as the variation of

space-time itself and describes them with the Minkowski space, which is equivalent

to regarding ether as a homogeneous four dimensional space-time continuum. So
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the space-time of the theory of relativity is taken as “matter”, which is not the real

space-time. The general theory of relativity regards further the variation rates of

standards of time and length as the curvatures of space-time, and describe them

with the Riemann space. Therefore, the Minkowski space and the Riemann space

are all mathematical models of quantitative description and not real spaces. They

are just like the isotopic spin space, which is only a mathematical model. The

objective space-time is just a three dimensional space and one dimensional time in

the absolute space-time.

6. A Smarandache geometrical model of macro-physics

With the time being taken as the fourth dimension of a space, a Smarandache

geometry model of macro-physics can be established with the same physical basis

as that of the theory of relativity.

The space of macro-physics is a kind of Smarandache geometry spaces since the

subspace without ether or where the space-time effect of ether can be omitted is the

absolute space, the subspace with homogeneously distributed ether, where the space-

time effect of ether should be considered is a Minkowski space and the subspace with

inhomogeneously distributed ether, where the space-time effect of ether should be

considered is a Riemann space. Here the absolute space is the elementary and real

space, the other two spaces are created by the space-time effect of ether, and are

derived from the absolute space.

In our macroscopic system, the space without ether does not exist, but generally,

the gravitational field is weak, the velocity of object is much smaller than the light

speed, so the space-time effects of ether can be neglected, then the space can be

regarded as the absolute space.

To describe high-speed objects such as high energy particles, the kinematical

effect of ether can not be neglected, thus the space is turned into a Minkowski

space. But the movement is not always a relative movement, one should take the

ether where the moving object is located as the frame of reference, in order to

describe it with the formulae of the special theory of relativity. On the other hand,

the formulae of the special theory of relativity are only approximate, because when

the speed of object is comparable with the light speed, whether the ether can be

taken as a super-fluid remains a question, and equation (2) may not necessarily be

valid. Actually, Einstein has said: “for a field of very large intensity or matter of

very large density, the field equations and related variables in the field will not have

actual significance, because these equations can not be extended into such regions.”
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So the formulae of the theory of relativity are not applicable when the velocity of

object approaches or reaches the light speed, because in that case, the density of

ether becomes very large. In the ether theory, the super-light speed is acceptable

as the ultrasound speed. The atmospheric density will reach a maximum in the

ultrasound movement, so, the mass (the variation of ether density) of a super-light

object will also not be infinite.

In considering the gravitational effect of the space-time, the space is turned

into a Riemann space. Here the space is bent, but the bend only means that the

distribution of ether is not even. On the other hand, the gravitational field is only

the field of the ether density, which means that the gravitation is a property of ether

continuity, which will disappear when the ether density is small enough, that is to

say, the range of gravitational interaction is finite. The modern cosmology regards

the equations of gravitational field of the general theory of relativity as the cosmic

equations, thus takes the Riemann space as the real space and the range of gravita-

tional interaction as being infinite, where come all the cosmological knotty problems.

There are the three elements in modern cosmology: inflation, dark matter and dark

energy. Perhaps they do not really exist just like the epicycle and deferent in the

Ptolemaic geocentric theory. They are just being fabricated to explain something

that people can not explain otherwise.

In a word, the theory of relativity is only a theory of macrophysics, has certain

limitations and can not used to describe the whole cosmos.
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Quantum External Force and Unified Universe
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Abstract: The universe is made of matter and it is the existence of matter

that determines the existence and evolution of the universe, which accounts

for all kind of phenomena in the universe. Due to the invariability of the total

quantity of matter, we have the invariability of the speed of light. The field of

matter leads to the force field. The unification of the universe is based on the

unification of the matter field. The quantum external force (inertia external

force) is the First Cause of the universe. The detailed description is given

for the mechanical characteristics of quantum external force (inertia external

force), the explanation of the universe phenomena is made with the quantum

theory, and the material nature of the universe is discussed. Since the dark

matter and the dark energy have an objective existence, they must belong to

the category of matter, and have the attributes of matter. According to the

generalized materialistic view and the classification of matter by the degree

of vision, we may call the ordinary matter in universe and the dark matter

composed of unknown particles as the visible matter; the dark energy (non-

particle state of matter) in universe as the invisible matter. The quantum

external force (inertia external force) and the quantum repulsion (inertia re-

pulsion) are the manifestation of “force” attribute of invisible matter. The

invisible matter is the carrier of the absolute time, with no beginning, nor end

point; and on the other hand, the visible matter is the carrier of the relative

time. Using the quantum external force principle based on the attributes of

force of invisible matter, and with the help of Smarandache Multi-Space The-

ory, we can explain some new astronomical observation discoveries and other

riddles that have not yet been solvedthe perihelion precessions of the nine

planets in solar system also can be handled simultaneously.

Key words: Inertia external force, quantum external force, unified universe,

first cause of universe, dark matter, dark energy, Smarandache multi-spaces.
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This paper summarizes the unified universe, the principle of inertia external force,

the quantum external force, the First Cause of universe, the invisible matter, the

dark energy and so on.

1. Unified universe and the principle of inertia external force

From the ancient time to present, the people have never stopped the exploration

on the mysterious universe. After entering the 20th century, the people started to

observe the universe with the help of the high technology. According to the ob-

served results, several representative universe evolution models have been proposed

one after another, such as those of steady-state universe model, hierarchic universe

model, matter and antimatter universe model, static universe model, dynamic uni-

verse model, strangeness collapse universe model, expanding universe model, smooth

universe model and big bang universe model, · · · , etc.. The goal of a theoretical

model is to make a perfect explanation of various mysterious phenomena of universe

and to answer related scientific questions. Because the above-mentioned theoretical

models all based on the universal gravitation, naturally, they may not be able to

explain the mystery of the whole universe.

In reference [1], the author carries out systematic studies on the mechanical

structure of universal celestial body, some special structures and astronomical phe-

nomena in universe from a new point. It is believed that the microscopic world

and the macroscopic world are a dialectical unity; any matter is composed of visi-

ble matter and invisible matter (halo). The scope of materialistic existence or the

scope where matter takes effect must be much greater than the scope where people

observe. The astro-space is filled with matter of various shapes, as a richly colorful

universe world. All hidden halos are superimposed infinitely, and mutually affected

to form an isotropic entire circumferential inertia external force (the greater force).

From the matter of various shapes with its interactions among itself, a repulsive

force of different levels (the less force) forms with its own core as the center. Its

manifestations are the apple falls to the ground due to the inertia external force, the

sunlight is emitted due to the sun’s repulsive force. The exchanges of matters are

through the halos. The halo interaction principle is the roller principle, the mat-

ter transfers and transforms in a manner of entering through latitude and exiting

through pole.[1]

The application of the principle of inertia external force requires the help of

some effective mathematical tool, and the Smarandache multi-space theory is just

such an effective mathematical tool.
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The notion of Smarandache multi-space was proposed by Smarandache in 1969[4].

A Smarandache multi-space is a union of n different sets or spaces equipped with

some different structures for an integer n≥ 2, which can be both used for discrete or

connected spaces, particularly for geometries and space-times in theoretical physics.

Let S1, S2, · · · , Sk be distinct two by two structures respective on the distinct

(not necessarily disjoint) two by two sets M1, M2, · · · , Mk, where k ≥ 2 (k may

even be infinite). We define a multi-space M to be a union of the previous sets

M = M1

⋃
M2

⋃
· · ·

⋃
Mk.

Hence, we have k different structures on M . For example we can construct a geo-

metric multi-space formed by the union of three distinct subspaces: an Euclidean,

a hyperbolic and an Elliptic one.

By combining the principle of inertia external force with Smarandache multi-

spaces, we can explain some new astronomical observation discoveries and the riddles

that have not yet been solved.

It is hoped that the principle of inertia external force and the unified universe

may serve as an introduction for more scholars to propose scientific questions, to

solve difficult problems, and to break through the tradition, experience and visions.

It is also hoped that the general public of insight can take part in the exploration

of the mystery of the vast and infinite universe, and in the development of science

and technology.

Now we discuss how to use these Smarandache multi-spaces to handle the per-

ihelion precessions of the nine planets in solar system simultaneously.

In reference [6], Suppose the space of universe is filled the invisible matter

(quantum outside force field), and the quantum external force field travels at the

speed of light; as two stars run the relative motion at the speed of v, the equation

of quantum external force field can be written as:

U (x, y, z, t) = K

∫∫∫
ρ (x′, y′, z′, t′) dτ ′

r′
= K

∫∫∫
ρ (x′, y′, z′, t− r′/ ur) dτ

′

r′

(1)

where, ur = c+ vr; r
′ is the distance from the spherical surface to the central point

and ur is the speed that the spherical surface sweeps the star.

Because the star size is far smaller than the distance between two stars, there-

fore, Eq.(1) can be written as:

U (x, y, z, t) =
K

r′

∫∫∫
ρ (x′, y′, z′, t− r′/ ur) dτ

′ (2)
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By using Eqs.(1) and (2), the precession angle of one hundred years ∆ θ100 is

∆ θ100 = 6π
KM

c2a(1 − e2)
N = 42.9 ”

The observation value of the perihelion precession of Mercury equals 43.11” ±
0.45”, we can see that the calculated result of the perihelion precession of Mercury

given by the theory of quantum external force agrees with the observation value of

the perihelion precession of Mercury.

As handling the perihelion precessions of the nine planets in solar system simul-

taneously, the actions between the planets also can be considered simultaneously.

Therefore, we define a Smarandache multi-space M to be a union of 45 sets M01,

M02, · · · , M09, M12, · · · , M19,M23, · · · , M29,· · · , M78,M79, M89):

M = M01

⋃
M02

⋃
· · ·

⋃
M89,

where M01 denotes Sun-Mercury system, M02 denotes Sun-Venus system, · · · , M09

denotes Sun-Pluto system, M12 denotes Mercury-Venus system, · · · , M19 denotes

Mercury-Pluto system, M23 denotes Venus-Earth system· · · , M29 denotes Venus-

Pluto system, · · · , M78 denotes Uranus-Neptune system, M79 denotes Uranus-Pluto

system, M89 denotes Neptune-Pluto system.

Thus, by applying the Smarandache multi-spaces, the perihelion precessions of

the nine planets can be handled more accurately.

2. The quantum external force and the first cause of universe

The reference[1]entitled withUnified Universe - The Principle of Inertia External

force was published in 2001. Since then, the author have received massive letters

from readers of all circles as an encouragement.

In the correspondence discussions, it was generally understood that reference [1]

has established a new and consistent universe model and concept of the world. But

it is a difficult book, because of many new concepts in the book and because some

traditional terminology has been given new connotations, where more explanations

are in order. It is true that the theory has predicted that there is water on Mars,

which has been confirmed by observations, but it is expected that the new theory

can explain more universal riddles which have not been solved. As the foundation

of the new theory is matter, it is hoped that the author can further elaborate and

explain the materialistic characteristics of inertia external force.
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The central ideas in this book were: (1)the universe is made of matter and it is

the existence of matter that determines the existence and evolution of the universe

which accounts for all kind of phenomena in the universe; (2)due to the invariability

of the total quantity of matter, we have the invariability of the speed of light; and

(3)the field of matter leads to the force field, and the unification of the universe is

based on the unification of the matter field. If there is an ultimate unified field, this

ultimate unification field must be the field of inertia external force, and the inertia

external force is the first cause. Based on that, this section discusses the materialis-

tic nature of the universe from the viewpoint of quantum theory. From a study on

the history of the universe research, especially, the profound understanding of the

cosmism in Chinese ancient times, a conclusion is made that the cradle of the quan-

tum theory for universe matter should be in China, and the vitality theory should be

the primitive and classical existence field theory. Another key point of this section is

to give a philosophical explanation of the vacuum, which is only the space filled with

various kind of micro-particles that people cannot detect by the existing technol-

ogy. In the reference [1], the celestial bodies are classified into several representative

levels according to the clustering scale of matter, with the quark level of celestial

bodies corresponding to the smallest clustering scale of matter, which is the smallest

visible celestial body formed through the transfer of energy to mass under the arbi-

trary shrinking action of quantum external force field. In other words, the smallest

visible celestial bodies are being produced ceaselessly on an arbitrary point in the

astrospace. The clustering of matter of the smallest visible celestial bodies is the

origin of a celestial body, also is the material source of the existing celestial body.

Therefore, the singular point is not the origin of universe. But it may explicitly

point out that the quark is not the smallest form of universe matter. Just like what

an ancient Chinese philosopher Gongsunlong once said: For a rod of one foot long,

taking one half of it away a day, we will not exhaust the rod for however long time.

In the universe, matter exists in two forms, i.e., visible matter (mass) and invisible

matter (energy). The hidden halos (epicycle) and infinitely clustering of the hidden

halos (epicycle) will produce the mass-energy radiation, mass-energy exchange and

mass-energy superimposition with disturbance and intensity from strong to weak,

that constitutes the universe background radiation. In other words, the universe is

filled not only with visible matter (mass), but also with invisible matter (energy).

This section is a more detailed elaboration of topics in the reference [1], with sim-

pler language, of the mechanical characteristics of inertia external force (quantum

external force), gives explanations to the universe phenomena with the quantum
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theory, and helps the interested readers to share more fully the author’s thought

and viewpoint.

Things in universe are very complicated and are ever changing. But with the

Smarandache multi-spaces, problems in different domains can be studied in a single

background. For example, we may put visible matter (mass) and invisible matter

(energy) in a single space, and study them in a way, that it will be difficult to do so

with other theories.

Just like a Britain scholar H. Pulais once said: Because all the physicists and

philosophers have not realized, the field of vision for us to regard the world usu-

ally, actually is the production of our asymmetrical viewpoint, the most far-seeing

understanding of quantum mechanics has been nearly neglected. I quite agree with

the proposal presented by a scholar Mr. Zeng Jinyan[2]: All theories must be judged

in the front of the judge of practice for its truthfulness. We maintain that we must

not deny the knowledge handed down by our ancestors rashly, nor accept it blindly.

3. The invisible matter, dark energy and quantum external force

Since researchers of modern science on universe proposed the guess that in the uni-

verse there may exist dark matter and dark energy, the task of finding the existence

evidence of dark matter and dark energy has become a hot topic for the astronomy

research. There are now different characteristic understanding for dark matter and

dark energy. Some scientists hold that dark matter and dark energy are not mat-

ter, but energy in some form. Others hold that dark matter and dark energy are

some unknown particles. In other words, there exist different viewpoints about dark

matter and dark energy. We are left with many unsolved riddles concerning dark

matter and dark energy.

After the studies of dozens of years, in the year 2003 a famous magazine Science

in USA listed the existence of dark matter and dark energy in universe as the first

of the ten big scientific and technical breakthroughs of the year, which indicates

that the scientific circles have publicly acknowledged and affirmed for the first time

that there truly exist dark matter and dark energy in universe. The new scientific

evidence shows that the major part of the universe are composed of dark matter and

dark energy, and dark matter is mangled by the unknown force called dark energy. It

is calculated that in universe the ordinary matter only constitutes 4% of the content,

the dark matter 23% (Note: astrophysicists believed that dark matter is composed

of still unknown particles), and another 73% is the dark energy. Some scientists

believed that, though one cannot see dark matter, it has gravitation; and, on the
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other hand, one can not see dark energy, and nor it has gravitation, therefore, it

cannot be called matter. At present the astronomers believe that dark energy plays

a role of repulsion force in universe, but strictly, one can not say it is a repulsion

force, it can only be called energy. Then

is the energy a kind of matter?

Philosophically speaking, since dark matter and dark energy exist objectively, they

are matter and have the attribute of matter. According to the generalized view on

matter and the classification by the degree of vision, we have the ordinary matter

(which constitutes 4% of the content) in the universe (which may be understood as

the macroscopic celestial bodies, such as the star, planet and the like), dark matter

(which constitutes 23% of the content) composed of unknown particles (it may be

regard as the microscopic celestial bodies which spread in universe space), which may

be jointly called visible matter and we have also dark energy (which constitutes 73%

of the content, is matter in non-particle state), which may be called invisible matter.

Since dark energy is invisible matter, it is different from visible matter (macroscopic

celestial bodies, microparticle and so on). The unique invisible nature of invisible

matter requests us to have a brand-new materialistic view with respect to cognition.

If we still follow the traditional materialistic view on dark energy, thinking that

dark energy is also composed of some elementary particles and attempt to reveal

the nature of dark energy through finding its composing elementary particles, there

would be no results just like the search of graviton.

The author considers some questions, beginning from the most popular topic in

current astronomy circle on the dark energy, discussing the materialistic attributes

of dark energy and the force attribute, through explanations of some universe phe-

nomena, and elaborating the author’s viewpoints.

The author’s purpose is to establish a new materialistic view and to study the

material world around us with the new angle of view. In this paper, we start from a

discussion on matter in universe, further expound the importance to divide matter

into visible matter and invisible matter in a macroscopic context, propose a gener-

alized materialistic view, explicitly point out that the visible matter is what people

can see, with shape, structure, mass and movement track; and the invisible matter

is what people cannot see without material shape, structure, mass and movement

track, which cannot be detected and observed by using instrument and fills the uni-

verse space in the form of energy. The quantum external force (inertia external force)

and the quantum repulsion force (inertia repulsion force) are the manifestation of
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force attribute of invisible matter. The superimposition of quantum repulsion force

establishes the full state of quantum external force, which carries out the task of

imprisoning, surrounding, contracting and driving visible matter (celestial bodies),

and which focuses in its geometry center, to form a focus confrontation, to make

radiations of visible matter by quantum repulsion, and to form the quantum repul-

sion field (halo, epicycle) with visible matter (celestial body) as the center. The

correlation between the quantum external force and the quantum repulsion force, is

not a simple circulation of force, but is an inevitable result.

Here, various forces and fields are involved, jointly. It seems that the situa-

tion is extremely complicated. As a matter of fact, it can be very simple handled

by applying Smarandache multi-spaces. We may understand and simultaneously

solve problems related to quantum external force, quantum repulsion force, quan-

tum repulsion field (halo, epicycle), as well as imprisoning, surrounding, contracting,

driving and so on.

For some questions, from beginning to end, the author always puts the emphasis

on the mutual relationship between the movement of visible matter (celestial body)

and the action of invisible matter (dark energy), in order to indicate the integrity,

the materialistic nature and the general nature of the mutual relationship in uni-

verse. At the same time, the author links the concept of invisible matter and visible

matter with time, namely, the absolute time and the relative time; it is pointed out

that invisible matter is the carrier of the absolute time, with no beginning and end

point; while visible matter is the carrier of the relative time, which has broadened

our understanding of the time concept, enriched its connotation from a mere mea-

surement parameter to record the ”course” of thing or matter, or the length of life

and so on. The universe used to be described to be composed of matter, space and

time. But now it may be composed of visible matter and invisible matter. The space

is materialistic, is composed of invisible matter and filled with dark energy. This is

the generalized materialistic view of the universe.

Now, we elaborate the mutual transformations and movement of visible matter

(celestial body) and invisible matter (dark energy), namely, the two kinds of remark-

able trends of transformation: (1)entering through latitude and exiting through pole

and (2)entering by the quantum external force three-dimensionally and exiting by

the quantum repulsion force three-dimensionally (entering by the greater force and

exiting by the less force). Through the mutual action and counter-action between

the quantum external force and the quantum repulsion force, and the mutual action

and counter-action among the quantum repulsion forces, we may explain all kinds
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of phenomena related to celestial bodies in the process of transformations of matter,

such as the black hole, the supernova eruption, all kinds of beam eruption and so

on, to show that the phenomena, such as the 3K microwave background radiation,

chemical element abundance, galaxy spectrum red shift and the like, are the nat-

ural results of the transformation between mass and energy, hereby to show that

the above mentioned phenomena are not caused by big bang; From this, it may be

concluded that the essence of universe expansion and contraction is the movement,

i.e., the transformation of mass and energy. Finally, it shown that there are universe

expansion and contraction at the same time, a realistic universe is in a dynamical

equilibrium, with no beginning and end point in perpetual motion and the process

of transformation between mass and energy at all the time.

For some questions, we start from the generalized materialistic view, elaborate

the materialistic attribute of quantum external force, point out that the quantum

external force is invisible matter (dark energy), with its source being the repulsion

of visible matter, and the superimposition of repulsion forces. The existence of

Newton’s universal gravitation depends on the existence of the celestial bodies, in

other words, we first have the celestial bodies, and then we have the universal

gravitation, or we will not have the universal gravitation without the celestial bodies.

Einstein’s gravitational field equations, with a basis on the classical mechanics, say

that celestial body is related to gravitation, on one hand, and also say that the

celestial body itself does not mean the gravitation, which is the space-time curvature

caused by the mass of body, which can explain many phenomena (ideas) of the

gravitation (field). Both of them are gravitational theories, but they are not totally

alike, which is noticed by serious scientists. The key lies in the materialistic attribute

of Newton and Einstein’s gravitation. To compare the universal gravitation and the

quantum external force, it can be seen that the quantum external force has the

obvious materialistic attribute, i.e., invisible matter, but the universal gravitation

does not have that materialistic attribute. With the universal gravitation, we can

not see things very clearly, like looking flower in fog, which is the basic reason why for

nearly 300 years people can not explain the universal gravitation clearly. Generally

speaking, the quantum external force and the universal gravitation both are the

force existing anywhere in universe, one is called the external force, another is called

the gravitation, the different wording leads to entirely different results. Comparing

the external force with gravitation, it can be seen that the concept of external force

is much more general than the concept of gravitation, and it not only can explain

all phenomena that gravitation can explain, but also can explain many phenomena
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that gravitation cannot explain.

Now, based on the contraction of the quantum repulsion and the expansion of

the quantum external force, the author explains how the quantum external force

affects the celestial bodies, leads to the mutual resistance of the celestial bodies and

forms the ellipse repulsion field, as well as the basic shape of the ellipse repulsion

field and how the planet moves in the ellipse repulsion field. After the German

astronomer Kepler discovered in 1609 that the planet movement track is an ellipse,

with their respective gravitation theories, Newton and Einstein explained how the

planet moves around a fixed star on the elliptical orbit, but they did not directly give

the reason of the elliptical orbit, and the reason for the directions of the elliptical

orbit’s major axis and minor axis (for the concepts of major axis and minor axis,

see the mystery of galaxy red shift in the fourth section of the third chapter). Based

on the relationship between the mutual action and mutual counter-action of the

quantum external force and the quantum repulsion force of the celestial bodies,

this book not only explains the formation of the celestial body’s elliptical orbit and

the directions of the elliptical orbit’s major axis and minor axis, but also explains

how the planet makes the spirally gradually precessive transversal motion around

a fixed star. In this chapter we can understand the rules of the movement of the

universal celestial bodies, believe that the quantum external force is the First Cause

of universe.

Here, the precession of the earth axis is explained. It is shown that the Earth

makes a spiral gradual precession around the sun under the action of the quantum

external force, and following the sun moves around a galaxy (the concept of a galaxy

is explained in the first section of the sixth chapter), that leads to the earth’s radial

and transversal (latitude) precessions to form a resultant moment, responsible for

the Earth annual solar terms (towards the west). And because the galaxy determines

the earth axis direction, and the earth axis rotates clockwisely, we have the earth

axis precession.

Now, the formation mechanism of the celestial body’s ellipse repulsion field is

analyzed, with a discussion on the universal multistage four seasons, namely, the suc-

cession of the earth’s four seasons as the result of the earth’s movement in the solar

ellipse repulsion field (the succession of the earth’s four seasons follows the move-

ment of the sun in the galaxy’s ellipse repulsion field; the succession of the earth’s

four seasons follows the movement of the sun in the asterism’s ellipse repulsion field;

the succession of the earth’s four seasons is explained in a range greater than the

galaxy group). From that observation, the earth’s palaeo-climatology formation and
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the earth future climate changing tendency can be analyzed.

It would be an interesting task using the principle of the quantum external

force established by the force attribute of invisible matter to explain some new

astronomical observation discoveries and the riddles that have not yet been solved,

although only a limited number of examples are discussed in the book, like the tip of

the iceberg. To apply the theory into the practice not only is the goal of theoretical

research, but also can make the theory clearer. In the ninth chapter, the correlation

between some astronomical phenomena in the solar system and the sun is discussed,

to show that when a planet occupies a different position in the solar ellipse repulsion

field, due to the difference of the magnitude of the mutual repulsion resistance, we

will see different planet astronomical phenomena. The sun can influence the planet,

similarly, the planet can also influence the sun.

The universe is composed of matter, the universe is unified by matter (visible

matter and invisible matter). The dark energy is invisible matter, the quantum

external force and the quantum repulsion force are the manifestation of force at-

tribute of invisible matter (energy). The mutual action and counter-action of the

quantum external force and the quantum repulsion force, and mutual action and

counter-action among the quantum repulsion forces, constitute the universal me-

chanical framework and the basis of movement in the universe, and. explain the

movement track of celestial bodies, and also all kinds of celestial phenomena in

universe, such as the transformation of the universal matter, universal expansion

and contraction, universal black hole, supernova eruption, earth axis precession, the

succession of the four seasons and so on. These are the prevalent relations and the

logical consequences.
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Abstract: This paper points out that the reasoning process of the relativity

of simultaneity in On the electrodynamics of moving bodies[1] by Einstein in

1905 contains some errors and applies the proof method used by Einstein

himself to design a thought experiment for its disproval. It is shown that the

simultaneity is absolute instead of relative as was asserted by Einstein. With

the idea in the Neutrosophy, this paper’s result is explained and discussed.

Key Words: Simultaneity, theory of relativity, relativity, neutrosophy.

1. Introduction

It is now over one hundred years since the theory of relativity came into being,

but it still attracts attentions of many scholars, especially owing to its disputable

propositions. A series of contradictive results (so-called paradoxes) are deduced from

its two basic hypotheses, i.e., principle of relativity and principle of invariance of

light speed, which have been widely studied since they were proposed. The theory

of relativity is considered to be not perfect even wrong by some scholars.. Some

famous paradoxes include clock paradox, fall paradox and submarine paradox. A

good question may help people to reconsider various aspects of a theory and even

lead to a new breakthrough. The author applies the thought experiment used by A.

Einstein himself to design a thought experiment for its disproval, which shows that

the simultaneity is absolute instead of relative. Therefore, the theory of relativity

encounters difficulties when it is used to explain this thought experiment, and more

studies on the theory of relativity are necessary.

In order to carry out such thought experiment, the method of Neutrosophy is

used. As we known, the Neutrosophy is proposed by F.Smarandache in 1995. It is a
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new branch of philosophy that studies the origin, nature, and scope of neutralities,

as well as their interactions with different ideational spectra.

This theory considers every notion or idea < A > together with its opposite

or negation < Anti − A > and the spectrum of neutralities < Neut − A > (i.e.

notions or ideas located between the two extremes, supporting neither < A > nor

< Anti− A >). The < Neut − A > and < Anti − A > ideas together are referred

to as < Non− A >.

Neutrosophy is the base of neutrosophic logic, neutrosophic set, neutrosophic

probability and statistics used in engineering applications (especially for software

and information fusion), medicine, military, cybernetics, physics.

Neutrosophic Logic(NL) is a general framework for unification of many exist-

ing logics, such as fuzzy logic (especially intuitionistic fuzzy logic), paraconsistent

logic, intuitionistic logic, etc. The main idea of NL is to characterize each logical

statement in a 3D neutrosophic space, where each dimension of the space represents

respectively the truth (T), the falsehood (F), and the indeterminacy (I) of the state-

ment under consideration, where T, I, F are standard or non-standard real subsets

of ]−0, 1+[ with not necessarily any connection between them.

For details about the Neutrosophy, readers are refered to references [7-9].

2. Analysis of A. Einstein’s proof

The author will point out some mistakes in the proof of the proposition of relativity

of simultaneity in the paper On the electrodynamics of moving bodies of A. Einstein

in 1905.

In the reference [3] page 36, it is stated that the observer moving with the moving

rod will discover that the two clocks are not synchronous. To follow the theory of

relativity, we should join the observer moving with the moving rod to judge the

whole event. When light propagates from A to B at time tA, and is reflected from B

at time tB, and returns to A at time t′A. In the author’s opinion, since the observer

is moving with the moving rod, the moving rod is in rest, as far as the observer

is concerned. The distance from A to B is equal to the distance from B to A.

According to the principle of invariance of light speed, the light speed is also c in

the reference system moving with the moving rod, so

tB − tA =
rAB
c
, t′A − tB =

rAB
c

namely, t′A − tB = tB − tA.

Therefore, the demonstration by A. Einstein is incorrect.
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Secondly, in order to adjust the clock, in the reference [3] page 35, A.Einstein

said that a clock is set on both sides of the rod, and they are synchronous with the

clocks in static system, namely, at any instant the clock’s indicators are pointing

to the static system time at its respective location at it happens, so the two clocks

are also synchronous in the static system. In the author’s opinion, this statement is

also wrong, because when the synchronous clocks in static system are moved to the

moving rod, there must be an accelerated and decelerated process, and according

to the theory of relativity, the clock’s speed in a moving system is different from

that in a static system. So the statement of A. Einstein that the two clocks are

synchronous with the clocks in a static system is wrong, as a famous scientist said

that A.Einstein proves his theory of relativity by classical theory.

According to the Neutrosophy, when all the possible situations are considered,

Einstein’s famous proposition of relativity of simultaneity should be represented,

respectively, as the truth, the falsehood, and the indeterminacy of the statement

under consideration.

We already show that Einstein’s proof of the proposition of relativity of simul-

taneity in his paper of 1905 is incorrect in many aspects. Therefore, for the case

considered by Einstein, the proposition of relativity of simultaneity is 0% true, 0%

indeterminate, and 100% false. It may be written as (0, 0, 1). But in other cases,

this proposition may be correct or wrong. Therefore we may make a guess that the

proposition of relativity of simultaneity may be 33.3% true, 33.3% indeterminate,

and 33.3% false. It may be written as (0.333, 0.333, 0.333). For a more accurate

estimation, a further study is necessary.

3. Thought experiment for disproval

3.1. The proof method used by A. Einstein himself[2] is adopted, see Fig.1

Fig.1

Judging from the train reference system, the train is in rest, while the embankment

is moving. When AA′, BB′and MM′coincide, AA′BB′will flash at the same time

and reach M′at the same time. It should be noted that all above events are defined

according to the observer in the train reference system. We consider the two events
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that two light rays reach M′at the same time, as judged by the observer in the train

reference system. According to the observer in the embankment reference system,

the embankment is in rest, while the train is moving, and in order to consider the

effect of the theory of relativity, it is assumed that the running speed of train is

v =
√

3
2
c. When it is decided that AA′coincide in the train reference system, the

observer in the embankment reference system will make a judgment as those shown

in Fig.2

Fig.2

When the observer in the embankment reference system observes that AA′coincide

and flash, B′ is still far away from B, so AA′will flash before BB′. But calculation

shows that when the light from AA′reaches M′, the light from BB′reaches M′ at

the same time (it should be noted that all above calculation is made according to

the observer in the embankment reference system). Thus similar to the two events

that two light rays reach M′ at the same time defined according to the train ref-

erence system, one can also judge that the two light rays reach M′ at the same

time according to the embankment reference system, therefore, it is concluded that

simultaneity is absolute.

3.2 In the above mentioned considerations and the reasoning by A. Einstein, one

may ask a question, namely, both will not acknowledge the two light rays are emitted

at the same time. In order to avoid this question, the author carries out another

thought experiment, see Fig.3

Fig.3

Choose two points C and D that are in axial symmetry with respect to the em-

bankment, the middle point is 0; two points C′and D′located at two sides of train

are in axial symmetry about A′. When the point A′on train coincides with 0, C′
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with C, D′ with D, C′(C), D′D will flash together at the same time and the two

flashes are in simultaneity both according to the embankment reference system and

according to the train reference system. Will the two flashes both reach M′ at the

same time and both reach M at the same time? It is very easy to prove that they

are in simultaneity according to the train reference system and they are also in si-

multaneity according to the embankment reference system, hereby, it is proven that

the simultaneity is absolute.

4. Discussion

There are many scholars in China challenging the theory of relativity and many

papers on relativity of simultaneity, and few of them are very reasonable, but some

of them have raised various questions. Is the simultaneity relative or absolute? Just

as P.G Bergman said that our definition about the simultaneity is arbitrary to a

great extent. The simultaneity is relative sometimes while it is absolute in other

times, because it does not play a key role in deciding the validity of the whole

system of the theory of relativity. To validate or invalidate the theory of relativity,

one has to carry out the following experiments: (1)Whether or not the speed of

unilateral light is a constant; (2)Whether or not the principle of relativity is correct;

(3)Whether or not the moving clock will be slower; (4)Whether or not the length of

moving body will shrink; (5)Whether or not the mass of moving body will increase.

In the author’s opinion, during the time of more than 100 years since the publication

of the theory of relativity, one sees a great progress of science and technology, and

now it would be possible to prove experimentally whether or not the moving clock

will be slower and the mass of moving body will increase. The author pointed out

in reference [6] that, the proposition about mass increase with speed increase in

the theory of relativity proposed by A. Einstein is problematic. Therefore, in the

author’s opinion, the theory of relativity is not a perfect theory.
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Abstract: This paper uses neutrosophy to analyze and remould the special

theory of relativity. It puts forward lever and elevator antinomies, cites the

breakthrough of GZK limit for ultrahigh energy cosmic radiation rays and

proposes some questions on the principle of relativity. It proposes a new

theory of five-dimensional space-time and dynamics which does not need and

recognize the principle of relativity, and using this theory, it simply explains

some phenomena such as the increase of mass and the slow down of time when

a matter particle is acted upon a external force to move, and deduces the mass-

energy formula: E = mc2. It gives a new explanation to these phenomena and

thinks that mass is the object’s intrinsic attribute just as electric charge, which

has nothing to do with the relative speed of the observer’s. This theory has

put an end to all paradoxes in the special theory of relativity and explains the

breakthrough of GZK limit for ultrahigh energy cosmic radiation rays. This

paper proposes a new question to prove that there must be an absolute rest

reference frame, and infers that the cosmic microwave background radiation

field is just the absolute rest reference frame.

Key words: Lever antinomy, elevator lift antinomy, GZK limit, mass,

the principle of relativity, five-dimensional space-time, absolute rest reference

frame, cosmic microwave background radiation field.

1. Introduction

The Neutrosophy is a new branch of philosophy, introduced by a Romanian-American

mathematician F.Smarandache in 1995, which studies neutral thought. The word

neuter was derived from French and Latin, meaning neutral and sophia comes from
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Greek, meaning skill and wisdom. Whence, Neutrosophy studies the origin, na-

ture and scope of neutralities, as well as their interactions with different ideational

spectra. Standing on the position of joint Eastern and Western cultures, in the per-

spective of the unity of opposites, it bases its exploration of every macro and micro

structure from science and technology to literature and art to construct a unifying

field, which surpassed all the sciences and the boundaries between natural science

and social science, to solve the indeterminacy problem that universally appears in

current cognitive science, information science, system science, economics, quantum

dynamics and so on. Its fundamental is based on that any idea is T% true, I%

indeterminate, and F% false.

2. Using neutrosophy to analyze the theory of special relativity

Special relativity was born more than 100 years ago. As a successful theory, it has

been written into physics textbooks in all the countries. In the eyes of ordinary

people, the theory of special relativity has been proven by lots of experiments, and

its accuracy is beyond doubt.

Is this really true?

While using neutrosophy to analyze the theory of special relativity, it is affirmatively

T% true and can reflect the basic law of motion in a certain extent. Otherwise, it

would not be accepted by the physical community, and written into physics text-

books.

However, does the theory of special relativity also follow the fundamental thesis

of neutrosophy, i.e., any idea is I% indeterminate and F% false?

The author believes that the theory of special relativity is affirmatively I%

indeterminate and F% false!

The authenticity of the theory of special relativity is first reflected in its mass

energy formula . The atomic bombs and nuclear power stations are the actual

applications of the mass energy formula. Therefore, the theory of special relativity

is T% true.

One of the indeterminacies in the theory of special relativity is the mass-velocity

relation . Despite high-energy physics experiments can prove this relation in a

certain extent, but the observers of these experiments are in the ground reference

system. If the observers are in the state of motion comparing to the ground, is the

mass-velocity relation still valid? No experiments have proved that point, so the

theory of special relativity is I% indeterminate.



Applying Neutrosophy to Analyze and Remould the Special Theory of Relativity 133

The falsity of the theory of special relativity is reflected in its contradictory,

such as Twin Paradox, Rockets-and-string Paradox, Right Angle Lever Paradox,

Ehrenfest Paradox, Godel Paradox etc. These paradoxes reflect that the theory of

special relativity is wrong in a certain extent. It can be said that the theory of

special relativity is F% false.

3. Questions on Special Relativity

Here, the author proposes several self-reflective questions for us to look at the crux

of the problems for Special Relativity.

(1) A, B particles are relatively at rest in the beginning, and then A moves after

an external work (such as photon impact or electric-field force) acts upon it. A’s

mass will increase as seen from B, which is easy to explain, because A has got the

energy from outside, and in accordance with the mass-energy equation E = mc2, A

also has got the mass from outside at the same time. Then, as seen from A, will

B’s mass also increase? According to Special Relativity, B’s mass will also increase.

However, B has not been acted upon by an external work, so B has never got the

energy and mass from outside. A and B have experienced two absolutely different

physical processes. What reasons are there to believe that A and B could see the

same result that their mass will both increase?

(2) An object and an observer are relatively at rest in the beginning, and then the

observer begins to move. According to Special Relativity, the observer will find that

the object will move relatively, and its mass will also increase. Then, where does

the increased mass come from?

Now the observer stops moving and returns to the starting state. According to

Special Relativity, the observer will find that the object will change from “motion”

to “at rest”, and its mass will reduce. According to Special Relativity, there must

be a release of energy with a change of mass. Well, where has the energy released

by the object gone?

(3) Lever antinomy As shown in Fig.1, there is a long horizontal lever on the

ground, and on its intermediate point there are two objects A and B with the same

rest mass (m0) and the same speed v move towards the left and right ends of the

lever respectively at the same time.

The observer at rest on the ground will find that both A and B objects’ mass

will increase to M . The distance from them to the intermediate point of the lever

are equal at any one time, so the lever always maintains a balance.
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However, as seen from another observer in an inertial system moving from left

to right in a uniform rectilinear motion with the velocity v, B is at rest and A is in

motion, so A’s mass is heavier than B’s.

Then, has this observer found that the distance from both A and B to the

intermediate point of the lever are equal at any one time? According to Special

Relativity, the observer on the ground will find that the distance from both A

and B to the intermediate point of the lever are equal at any one time. After a

transformation into an inertial system in motion by a Lorentz transformation, the

distance from both A and B to the intermediate point of the lever are still equal.

In the light of this analysis, as seen from the inertial system in motion, the force

moment of the lever’s two sides are not the same, so the lever will have no reason

to maintain a balance.

It may be said that such an analysis is not consistent with reason. Due to the

relativity of simultaneity, as seen from the inertial system in motion, the distance

from A and B to the intermediate point of the lever are indeed not equal. A’s mass

is heavier, but the distance between A and the intermediate point of the lever is

shorter, so the lever will still have reason to maintain a balance.

Given that this analysis is correct: as seen from the inertial system in motion,

the distance from A and B to the intermediate point of the lever are indeed not

equal; A’s mass is heavier, but the distance between A and the intermediate point

of the lever is shorter. Then, let us have a further analysis. When B reaches at the

end of the lever’s right side, A has not yet arrived at the end of the lever’s left side.

After B falls down from the right end of the lever, A still stays on the lever’s left

arm, so the lever will still lose the balance.

It may be said that this analysis does not conform to reason either. The so-

called relativity of simultaneity is only a visual effect. In fact, A and B are arriving

at the two ends of the lever at the same time. Well, if A and B are arriving at the

two ends of the lever at the same time, but A’s mass and B’s mass are not equal

as seen from the inertial system in motion, what reasons does the lever have to

maintain a balance?

Fig.1
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(4) Elevator antinomy As shown in Fig.2, a fixed pulley stays in place. Two

identical elevators are fastened to two ends of the steel rope respectively, and there

are two identical observers in the two elevators respectively. One elevator can be

lifted by pulling down the other elevator.

Now, the left elevator uniformly rises and the right elevator uniformly falls.

According to Special Relativity, an observer at rest on the ground will find that the

mass of the two elevators will increase to the same value. The two elevators have

the same weight, so they can maintain a uniform rise or fall.

However, as seen from the observer in the left elevator, he and the elevator that

he stays in are at rest, the right elevator and the observer in it are in motion, so the

mass of the right elevator is heavier.

As seen from the observer in the left elevator, the mass on the left side and

right side are not equal. Why can the two elevators still remain a uniform rise or

fall?

Fig.2

Some say that the lever and elevator antinomies are related to the gravitational

field and are beyond the scope of the application of Special Relativity, so they only

can be discussed and analyzed with General Relativity. Well, in the light of the

equivalence principle of General Relativity, the gravitational field can be equivalent

to a rocket in uniform accelerated motion. We can put the lever and elevator into the

rocket, then in the perspective of observers outside the rocket in uniform horizontal

or vertical motion, see whether the lever can maintain a balance, and the elevators

can maintain a uniform rise or fall.

For the lever problem, as seen from an observer outside the rocket in an inertial

system moving from left to right in a uniform rectilinear motion with the velocity
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v, B’s horizontal speed is 0 and A’s horizontal speed is larger than v, so A’s mass is

heavier than B’s. A, B move up with the same acceleration a, so the outside forces

acted upon them are not equal, and the reaction forces that they act upon the lever

are not equal either. Then, what reasons does the lever have to maintain a balance?

For the elevator problem, as seen from an observer outside the rocket in an

inertial system moving from down to up in a uniform rectilinear motion, the left

elevator’s velocity is less than the right elevator’s velocity, so the left elevator’s mass

is less than the right elevator’s mass. The left and right elevators move up with the

same acceleration a, so the outside forces acted upon them are not equal, and the

reaction forces that then act upon the steel rope are not equal either. Then, why

can the two elevators still maintain a relative uniform rise or fall?

4. The astronomical phenomena contradicting Special Relativity

Although there is no direct experimental evidence proving that observers are in

motion with respect to matter particles, and whether the mass-velocity relation

M = mc
/√

c2 − v2 is still valid, the energy of ultrahigh energy cosmic rays can often

break GZK limit, which makes more and more people in the physical community

come to recognize that the interpretation of the mass-velocity relation by Special

Relativity may be wrong.

In the composition of cosmic rays, 90% are protons. And the cosmic microwave

background radiation field is full of microwave photons. When the ultrahigh energy

cosmic ray protons pass through the cosmic microwave background radiation field,

according to Special Relativity, as seen from the protons, the wavelengths of the

low-energy microwave photons in the cosmic microwave background radiation field

will shorten, and they will become γ-rays. This effect has been described as a

relativistic blue shift of photons. The process of proton’s collisions with gamma

rays in this situation has no difference with the experiments using gamma rays to

impact protons in the laboratory. The results of this collision in the laboratory are

the jet of many elementary particles including neutrinos and pions. The collisions

between ultra-high energy cosmic rays and microwave photons should also have the

same jet of neutrinos and pions, and the collisions would make the protons in ultra-

high energy cosmic rays lose about 20% of the original energy. Six or seven times of

the collisions would strip away most of their energy.

In 1966, Greisen, Zat sepin and Kuzmin put forward the famous GZK cutoff,

that is, the proton over 150 million light years away with the energy more than

5 × 1019eV can not reach to the earth by the loss of energy caused by its collision
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with the cosmic microwave background photons to produce pions. However, the first

particle with the energy more than 1020eV was found in the 1960s, and there have

been also many new reports of these particles in the subsequent 40 years. There

are hundreds of events finding the particles with the energy of 4 ×1019eV - 1020eV ,

and more than 20 events finding the particles with the energy over 1020eV . Most

experimental stations reported these particles are isotropic.

Not only in the Galaxy, but also within a distance of 150 million light years,

the scientists have not found the emission sources of ultra-high energy cosmic rays.

So most physicists believe that ultra-high energy cosmic rays come from outside the

Galaxy. However, how do they maintain the ultra-high energy while passing trough

the huge cosmic microwave background radiation field?

5. Where does the problem of Special Relativity lie?

Why does the Special Relativity bring so many paradoxes? Where does the problem

lie?

Special Relativity is established on the two fundamental postulates: constant

speed of light and the principle of relativity. It is stated that the principle of rela-

tivity affirms that the laws of physics are the same in all inertial systems, including

the constant speed of light. So in fact Special Relativity has only one postulate -

the principle of relativity.

For the principle of relativity, it has been already written into the junior school

physics textbook as a basic principle of physics. The textbook tells of an experiment

made by Galileo over 400 years ago. He used a large vessel to make this experiment,

and found that the observers in the sealed cabin couldn’t be aware of whether the

vessel was in motion with respect to the bank. The experimental results in the

sealed cabin and on the bank were the same, so Galileo concluded that the laws of

physics are the same in all inertial systems.

The same observation results and laws of physics in different inertial systems

are required in Special Relativity. This is the requirement of its postulate – the

principle of relativity. However, we found that in accordance with the principle of

relativity, the analysis of the same physical phenomena in different inertial systems

can lead to conflicting results. To resolve these conflicts, physicists have come up

with various kinds of ideas. But often when they just solve one problem, another

problem appears. The old conflicts are hidden, but the new contradictions are

exposed.
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However, where does the problem lie?

Few doubts whether the principle of relativity is correct, especially in the high-speed

motion. Galileo’s experiment can only tell you that in the slow motion the principle

of relativity is approximately correct.

Can anyone conduct such an experiment, for example, an object is at rest with

earth and an observer is in accelerated motion, then he finds that the object’s mass

increases? An electric charge is at rest with earth and an observer is in accelerated

motion, then he finds that the electric charge produces the magnetic field? I have

read some books like Special Relativity and its Experimental Foundations and find

that no one has made such experiments.

If no one has done such experiments, then the principle of relativity is only a

theory taken for granted! The theories based on this principle, such as many theories

about the relativistic electric dynamics, are not confirmed by experiments, so their

accuracies are doubtable.

6. Using neutrosophy to remould the special theory of relativity

In order to solve the various problems existing in the special theory of relativity, the

author proposes a new theory of five-dimensional space-time and motion dynam-

ics. This theory does not need and recognize the principle of relativity, so various

paradoxes brought by the special theory of relativity will no longer exist. However,

it can also explain the phenomena such as the increase of mass and slow down of

time for objects in motion, and E = mc2, which the special theory of relativity can

explain. Moreover, its derivation is much simpler.

In 1905, Albert Einstein published the special theory of relativity, which first

linked time and space together. In 1907, Minkowski further proposed his four-

dimensional space theory, which considered time is also one of the four dimensions.

With human’s in-depth understanding and research to the nature, the deep-rooted

ties between time and space must also be further recognized by the world.

Here, I would like to express some of my views on time and space.

We have seen time as one dimension of the four: time is like a long river that

constantly flows around us. Or it can be said that we are in constant motion with

respect to the long river of time. One’s life journey can be compared to one section

of the long river of time, and starts from the beginning of this section and ends to

the end of this section. If someone can slow down the speed of the motion from

the beginning to the end, then his life will be a little longer. How do we measure
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and compare the velocities of the motions in this dimension of time? So we need

to establish an independent absolute time to measure and compare the velocities of

the motions in the four-dimensional space. This independent absolute time beyond

the four-dimensional space is uniform and flowing constantly. Adding the absolute

time into the four-dimensional space-time leads to a five-dimensional space-time.

We have already known that light is a particle with wave nature. But does a

matter particle also have wave nature? De Broglie boldly proposed his hypothesis

that considered a matter particle should also have wave nature. Later, the experi-

ments proved this hypothesis. We also know that the photon has a constant speed

c in the three-dimensional space. Then, can we also assume that a matter particle

and a photon have no difference in nature, and they both have a constant speed c

in the four-dimensional space? That is,

√
v2
x + v2

y + v2
z + v2

t = c. (1)

Among them, vx, vy, vz are the velocities in the three dimensions respectively and

vt is the velocity in the dimension of time, or

√
v2 + v2

t = c (2)

where v is the velocity in the three dimensions, v =
√
v2
x + v2

y + v2
z . For a photon,

its velocity in the three dimensions is v = c, so its velocity in the dimension of time

is vt = 0.

For a matter particle at rest in the three dimensions, its velocity in the three

dimensions is v = 0, so its velocity in the dimension of time is vt = c.

For a matter particle moving in the three dimensions, its velocity in the three

dimensions is v,so its velocity in the dimension of time is vt =
√
c2 − v2.

Fig.3
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Fig.3 shows that a photon and a matter particle move in the four-dimensional space.

Given that a matter particle has also a momentum when it moves in the dimension

of time, and the law of conservation of momentum can also be applied in the four-

dimensional space, then we can simply deduce the phenomena that when the matter

particle is acted upon a external force to move, its mass will increase and time will

slow down.

Someone might say that the three-dimensional space-time and the four-dimensional

space-time are enough, the five-dimensional space-time is purely superfluous. If we

propose a hypothesis difficult to be confirmed only for explaining a phenomenon,

the five-dimensional space-time is indeed superfluous. However, the five-dimensional

space-time is not created out of thin air, it is deduced on the analogy of the matter

particles and photons.

(1) The interpretation on the phenomenon of the increase of mass

We first analyze a problem: as shown in figure 4a, a matter particle at rest in

the three-dimensional space with a rest mass mstarts to move after a horizontal

rightward force F is acted upon it, as shown in figure 4a, then it reaches a hor-

izontal rightward velocity v and its mass becomes M . We have already known

M = mc
/√

c2 − v2, but why is there such a relation?

Fig.4

Then, we analyze another problem: as shown in figure 5a, a photon in the

vertical upward motion with a motion mass mis acted upon a horizontal rightward

force F , then it reaches a horizontal rightward velocity v, as shown in figure 5b.

What is its mass Mnow? Because the speed of light is constant, equal to c, so the

velocity of the photon in the vertical upward direction is
√
c2 − v2. Since the photon

has not been acted upon a force in the vertical direction, there is a momentum

conservation in the vertical direction. Then we can conclude mc = M
√
c2 − v2, so

M = mc
/√

c2 − v2.
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Fig.5

Comparing with the two problems, we can find that when a matter particle

with a rest mass mand a photon with a motion mass mare acted upon the same

horizontal rightward force F , they reach to the same horizontal rightward velocity v,

and their increase of mass are exactly the same. This would enable us to speculate:

can a matter particle at rest with a rest mass mmove with a velocity cin a dimension

outside the xyz three-dimensional space – the fourth dimension, and its velocity in

the four-dimensional space composed by xyz dimensions and the fourth dimension

is constant, equal to c?

If this is the case, we can easily explain why when a matter particle at rest with

a rest mass min the three-dimensional space starts to move after a forceF is acted

upon it, its mass will increase to M = mc
/√

c2 − v2.

If the fourth dimension is existed, then what is it? Thinking of that time keeps

passing around us and we are moving constantly in the long river of time. We must

have a guess: the fourth dimension is time!

(2) The interpretation on the phenomenon of slow down of time

We first analyze a problem: as shown in figure 6a, the distance between the light

source and the blackbody is L, and the photons produced by the light source will

be absorbed by the blackbody when they reach to it. The lifetime of a photon is

t=L/c.

Now we make the light source rotate a certain angle, as shown in figure 6b. The

velocity of the photon in horizontal direction isv, and the velocity of the photon in

vertical upward direction will decrease from cto
√
c2 − v2. The photons produced

by the light source will be absorbed by the blackbody when they reach to it, and

now the photons’ lifetimes are T=L/
√
c2 − v2.
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Fig.6

Comparing with them, we find that the latter photon’s lifetime is extended,

T = tc/
√
c2 − v2.

Then, we analyze the decay of a matter particle. The lifetime of the matter

particle at rest in the three-dimensional space is tfrom its birth to its decay. If using

the four-dimensional space to analyze it, its velocity is c in the fourth dimension –

time.

Now a matter particle has a velocity vonce it is born, then its velocity in the

fourth dimension – time will be reduced to
√
c2 − v2. Here, the lifetime of the matter

particle is T .

Comparing with them, we find that the latter matter particle has a smaller

velocity in the fourth dimension – time, so it should have a slower decay, longer

decay period and extended lifetime, T = tc/
√
c2 − v2.

(3) Explanation of length contraction

Lorentz contraction has not been proved by experiments. Whether it is a real

presence or a visual effect has long been a subject of dispute, and has brought a

variety of paradoxes, which haunt in the world of physics for decades.

In my opinion, Lorentz contraction is not a real presence, but a misunder-

standing caused by the slow down of time for observers moving with respect to the

three-dimensional space. Observers at rest in the three-dimensional space cannot

observe this contraction. My analysis and reasons are as follows:

A 1-meter long ruler is in a horizontal motion from left to right with respect
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to the three-dimensional space. When its right end arrives at an observer at rest in

the three-dimensional space, the observer starts to record time. When its left end

arrives at the observer at rest, the observer stops to record time. When the velocity

of the ruler multiplies this time interval, the result is the length of the ruler. In this

time interval, N matter particles have been decayed in the rest reference frame.

There is another observer in the same motion with the ruler with respect to

the three-dimensional space. In his view, the length of the ruler equals to the result

when the time interval observed by him multiplies his velocity with respect to the

rest reference frame. His velocity equals to the ruler’s velocity observed in the rest

reference frame.

Due to the slower time in the rest reference frame with respect to the motion

reference frame, if N matter particles are decayed in the time interval observed in

the rest reference frame, only N×
√
c2 − v2/c matter particles are decayed in the

time interval observed in the motion reference frame.

The decay process of each matter particle is a clock. The observer in the

motion reference frame will find that the number of the decaying particles that he

has observed is less than those observed by the observer in the rest reference frame,

so he will misunderstand that the length of the ruler that he observes has been

contracted.

(4) Explanation of the mass-energy formula

Let us have a look at how the well-known mass-energy formula is derived. For

a matter particle with a rest mass m, if it is completely transformed into energy

E (for example, the annihilation of a positron and an electron into two photons),

that is, transformed into a photon with a motion mass m, then how much energy

is contained inE? Or what is the biggest work W that the photon acts upon the

outside? We have affirmed the constant speed of light. If the photon constantly

does work upon the environment when an external force is acted upon it, its motion

mass will decrease until eventually it is 0. In this time interval t, the distance of

its motion iss. Then, we can concludeE = W = Fs = Fct, and according to the

law of momentum, the momentum of the photon is mc = Ft, finally we conclude

E = W = Fct = mcc = mc2.

This shows that E = mc2 is just the photon’s motion energy.

(5) As for the Lorentz transformation of velocity, because we have affirmed the

constant speed of light, the methods, steps and results for its derivation are fully
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consistent with the special theory of relativity.

7. Theoretical explanation

The conclusions derived according to the above assumptions and the special theory

of relativity are not exactly the same. In the special theory of relativity, the increase

of mass and the slow down of time are both relative, observers in different inertial

systems will find some different results, which are related with the velocity of the

observers. However, the increase of mass and the slow down of time derived accord-

ing to the above assumptions are absolute with respect to the three-dimensional

space, and they don’t vary when the observers are in different inertial systems. Or

we can say that the special theory of relativity is wrong, and there is an absolutely

rest reference frame. Based on these assumptions and derivations, all the paradoxes

brought by the special theory of relativity will no longer exist.

However, where is the absolutely rest reference frame? The author believes that

it is not Aether, but the center where the explosion of the universe occurs.

Before the current universe came into being, all the substances in the universe

were concentrated together and at rest in the three-dimensional space, and mean-

while moved with a velocity c in the fourth dimension – time.

After the big bang of the universe, substances moved in all directions in the

three-dimensional space, which constitute today’s universe.

Earth also constantly moves in the universe, but its velocity in the three-

dimensional space is negligible with respect to the high-speed objects that near

to the velocity of light. So for the observers in Earth, the increase of mass and the

slow down of time are approximately true. Perhaps one day, experimental physicists

can precisely measure the small errors between the actual values and the values cal-

culated by the formulas of the increase of mass and the slow down of time, then the

absolute velocity of Earth with respect to the absolutely rest reference frame in the

universe can be measured.

For the phenomena about the increase of mass, according to the above theory,

an object’s mass increases only when an external work has done upon it or it absorbs

energy from the environment, and doesn’t vary with the change of the observer’s

relative velocity. The change of energy decides whether or not the mass increases,

and it has nothing to do with the observer’s relative velocity. The real reason for

the increase of the moving object’s mass is that the object has absorbed energy

from other objects outside. Like the charge, mass is the inherent attribute of an

object, so it has nothing to do with the observer’s relative velocity. If the object has
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not obtained energy from other objects outside and only the observer moves with

respect to the object, the observe should have no reason to see that the object’s mass

increases. This kind of understanding is consistent with Newtonian mechanics.

For the phenomenon that a positron and an electron absorb each other, and

accelerate to collide, resulting in the annihilation into two photons, if we use the

special theory of relativity to analyze, the positron and electron’s masses will become

bigger and bigger and finally annihilate into two photons, whose motion masses will

bigger than the rest masses of the positron and electron. However, this is not true.

For another phenomenon that electrons and protons absorb each other, and

accelerate to collide, resulting in the forming of an atom and the release of photons,

if we use the special theory of relativity to analyze, the electrons and protons in an

atom rotate around its center of mass, so all their masses should increase. However,

where do the increasing masses come from?

If using my theory to explain, it is very easy. When a positron and an electron

absorb each other and accelerate to collide, they do work on each other and absorb

each other’s energy. One side’s absorbed energy from the other side equals to the

energy absorbed by the other side from it, so their masses remain unchanged, and

each photon’s motion mass still equals to the rest mass of a positron or an electron

after the annihilation into two photons.

For the forming process of an atom from protons and electrons, an electron’s

mass is far less than a proton’s mass, so the work done by the electron on the proton

is far less than the work done by the proton on the electron when they are acted

upon the same absorption force. Therefore, the energy that the electron absorbs

from the proton is far more than the energy that the electron gives to the proton,

so the electron’s mass increases and the proton’s mass decreases. But according to

the special theory of relativity, the proton starts to move from the state of at-rest,

so its mass also increases.

For the phenomena that the ultrahigh energy cosmic rays can often break GZK

limit, it is easy to explain. Because mass has nothing to do with the observer’s

relative velocity, from the prospective of the ultrahigh energy cosmic ray protons, the

proton’s mass will not reduce to the rest mass, and the low-motion mass microwave

photons in the cosmic microwave background radiation field will not translate into

high-motion mass gamma rays. Therefore, there is almost no loss of energy when

a proton collide with a microwave proton, so it can maintain an ultrahigh energy

after passing through the huge cosmic microwave background radiation field.
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8. The necessity of the existence of an absolute rest reference frame

Here, the author would like to put forward a new question:

A, B objects are relatively at rest in the beginning, and then A moves after an

external work (such as photon impact or electric-field force) acts upon it, and its

velocity increases from 0 to v. In the view of B, A’s mass will increase. It is easy to

explain, because A has obtained the energy from the outside.

Now A has a second interaction with the outside, and its velocity decreases

from vto 0, returning to the resting state. Then, does A’s mass increase or decrease

at this time?

Some believe that when the second external work is done upon A, as seen from

the motion reference frame with a velocity v, A’s velocity increases from 0 to v. A

obtains a second work done upon it by the outside, that is, obtains a second energy

from the outside, so A’s mass should increase again. This result is consistent with

those as seen from B.

For this, the author has a question: If A is an electron or a proton, A has

experienced a deceleration motion and an acceleration motion, and finally returns

to the resting state. If A’s mass does not return to the rest mass of an electron or

a proton, but increases, then won’t A become a new particle? Why do we have not

yet found such a new particle? Moreover, as seen from B, A’s second interaction

with the outside is a process doing work upon the outside, so it should release

energy and mass, which is not consistent with the those as seen from the motion

reference frame with a velocity v. For an object’s interaction with the outside, we

still cannot confirm whether the outside does work on it and it absorbs energy from

the outside or it does work on the outside and it releases energy and mass to the

outside. Therefore, the paradoxes caused by the increase of mass for objects in

motion still cannot be solved.

Therefore, the author believes that there must be an absolute rest reference

frame. For an object’s interaction with the outside, if it’s velocity increases with

respect to the absolute rest reference frame, the outside does work on it, and it

absorbs energy and mass from the outside, resulting in the increase of its mass.

Rather the contrary.

In his paper Einstein and Relativity Theory, Guo Hanying said: In relativity

theory, the relationships among some basic principles are not fully coordinated.

Professor Tan Shusheng said in his paper Where to find Aether, Where no

Aether – The New Study of Special Relativity that In recent years, the study con-
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firmed that only in one inertial system the background radiation is strictly isotropic.

In any other motion inertial reference frame, the radiation temperature is changed

with the change of the directions. It can be said that the cosmic background radia-

tion is the best matter reflection of the cosmic standard coordinate. By measuring

the small temperature deviations of the cosmic background radiation reaching Earth

from all directions, we can gain the absolute velocity of Earth while passing through

the cosmic background, which is about 400 km / s.

Microwave background radiation is considered to be the remnants of the big

bang of the universe. In my view, perhaps the cosmic microwave background radi-

ation field is just the absolute rest reference frame. The velocity v in the formulas

about the increase of an object’s mass and the slow down of time should be the

object’s velocity v with respect to the cosmic microwave background radiation field.

9. Conclusions

Five-dimensional space-time and mechanics theory is the inheritance, development

and perfection based on the special theory of relativity, and the integration of

Minkowski space theory and Newton’s absolute space-time. It is summed up by

the author for many years, and is a bit of attempt at the development and improve-

ment of the special theory of relativity. I don’t believe that I have discovered the

truth, but a bit of attempt to further explore the truth. Truth needs more people

with knowledge and lofty ideals to explore and study. I just throw out a brick to

attract a jade, and sincerely hope the men of insight can express their own views,

and give me a correction.
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1 Introduction

It is well-known that the Dirac Equation may have solutions with negative energy.

Some scholars used to suggest that the negative energy solutions should be discarded.

But later on, two basic reasons were discovered against the abandonment of the

negative energy state. The first reason is based on the theoretical physics. Dirac

Equation shows that a system in positive energy state may turn into negative energy

state under the inductive transition. So, we may come up with contradictions should

we discard the negative energy state. The second reason is based on mathematics,

i.e. the abandonment of the negative energy state will result in an imperfect set of

wave functions, and therefore, an arbitrary function will not be able to be expanded

into an imperfect set of functions[1].

2. A geometrical model on cosmos

As mentioned abovea super-dimensional time-space model can be establishedwhich

we call it G cosmological model, as those shown in Fig.1. The virtual space is
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composed of the AB-O-DC region (the double-cone or the double bell in the sphere),

of a Lobachevsky geometry, which is a high-energy region with the energy and

curvature of space of negative value. The real space is composed of the AB-FE-

DC region, of a Riemann Geometry, which is a low-energy region with the energy

and curvature of space of positive value. There are no universal relations among

things in the virtual space, and the law of causality does not hold true there. In the

mathematical language, we may say that through a point outside a line, there are

innumerable lines which will not intersect with that line in the Lobachevsky space.

On the other hand, through a point outside a line, all lines will intersect with the

line in the Riemann space. AB and DC form the vision interface ring.

Fig.1

Now, consider an electron moving up in rotation along the outer surface of the

sphere, when it reaches AB through EF from CD, the electron enters the virtual

space from the real space, and both the time and the parity are reversed. When

the electron moves down in rotation in backward direction of time along the double-

bell region on the inner surface and reaches CD through o, it enters the real space

with positive energy from the virtual space again, and the time and the parity are

reversed once again. According to R.P. Feynman, an electron moving in backward

direction of time along the inner side of the double-bell region with negative energy

is equivalent to a positive electron moving in forward direction of time with the

positive energy along the inner side of the double-bell region. Therefore, the above

process can be viewed as a pair of electron-positron is being produced in DC and

disappears after moving forward along time to AB. In other words, when a particle

moves from CD to AB through EF, it has negative charge; when the particle moves

from AB to CD through O in backward direction of time, it will have positive charge.
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Viewed from outside, DC ring represents the white hole, and AB the black hole.

The black hole and white hole are interconnected through the O section.

The Smarandache multi-spaces is a useful tool for dealing with matter in pos-

itive and negative states at a same time. The conception of Smarandache multi-

spaces were brought forward by Smarandache in 1969. n aggregates or subspaces

M1, M2, · · · , Mn to form a Smarandache multi-space

M = M1

⋃
M2

⋃
· · ·

⋃
Mn)

with n, n ≥ 1 being an integer.

3. Applications of the G cosmological model

(1)The origin of cosmos

The cosmos has quantum in its initial period, which is carried by the so-called Taiji

pattern in ancient China as the smallest unit carrying quantum. The total number

of Taiji pattern is invariant in the G cosmological model. According to the Book of

Changing in ancient China, Taiji generates two pattern, called Liang Yis, i.e., the

positive matter and negative matter. The positive matter (real) and negative matter

(virtual) are not essentially different except in different forms of quantum carried

by different Taiji pattern. Liang Yis generate Four Patterns, called Si Xiang. Then

everything is generated by these Si Xiang. Time and space then come into being.

(2)The cosmos has its limit but with no boundaries

It is known that matter enters the virtual cosmos if its velocity of movement exceeds

the speed of light and then matter will change its sign and become antimatter. The

anti-cosmos is composed of antimatter. The interface between the real cosmos and

the virtual cosmos is determined by the speed of light. Therefore, we can say that the

basic difference between the real cosmos and the virtual cosmos is in their different

states of movement.

The matter that moves at the speed of light on the interface ring makes up

the interface between the visual cosmos and the real cosmos. The matter moves

in the virtual space at an ultra-light speed. The observers inside the interface will

think that their cosmos is infinite. Based on the formula of relativity, the ruler

measuring cosmos by the observer will gradually be shortened when the observer is

gradually near cosmos’s interface because the velocity of ruler’s movement gradually

is increased towards the speed of light. Therefore, in the observer’s measurement
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with his own ruler, the distance to the interface is infinite, and he will never reach

the interface of the cosmos.

From Haber’s law, it is known that the matter in the deep cosmos far from us

moves in a velocity near the speed of light. The interaction between the positive

matter and the negative matter is violent near the boundary of the cosmos. The

interaction produces a lot of high-energy gamma-photons, which evenly spread in

the entire space. That is the origin of the matter pulsation in the deep cosmos and

the diffusion of the gamma-ray.

(3) The pulsating cosmos

According to the theory of complex number time-space, we derivative formula fol-

lowing.

v̂ = vx + ivt = |c| (− sin θ + i cos θ),

â = ax + at = − c2

|rc|
(cos θ + i sin θ),

· · · · · · · · · · · · · · · · · · ,

dnr

dtn
= ωn |r| [in cos(ωt+ θ0) + in+1 sin(ωt+ θ0)],

where θ is a time-space angle of materialistic movement and c the speed of light.

We can obtain an angle-speed formula also.

sin θ = −vx
c
, cos θ =

√
1 − sin2 θ =

√
1 − v2

x

c2

and a force-speed formula

F = Fx + iFt = mâ = m(ax + iat) = −mc
2

|rc|
(cos θ + i sin θ)

Fx = −m c2

|rc|
cos θ = −mc

2

|rc|

√
1 − v2

x

c2
.

Where, if v = 0then Fx = −mc2

|rc| and if v = c, Fx = 0.

Now if we cut the G model along the central line, viewing the cross section

from one side ( Fig.2 ), the process that a particle moves along O-D-F-B is similar

to a circular motion in the space-time. If the trajectory is projected on the axis of

space (such as in Fig.2), the movement turns out to be a simple periodic pulsation.
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If we define the direction from the outer sphere surface to the inside of G model as

positive, from the projection of the particle’s trajectory on the axis of space, it is

seen that the force will be positive and mainly attractive at the stage of D-F-B. The

force will be negative and mainly repulsive at the stage of B-O-D. The projection

of the particle’s velocity of motion on the axis of space reaches maximum at points

B and D, with opposite directions and zero acceleration. The matter moving on

the vision ring has no intersection in space. As to the projection of the velocity

of motion on the axis of the space at the points O and F, the accelerations take

maximum absolute values with opposite signs, and with zero velocity.

Fig.2

If the G model trajectory is projected to a plane in space (such as those shown

in Fig.3), we can see that cosmos is expanding with speed exceeding the speed of

light and accelerates in initial stageswhen the repulsive force is important, and the

curvature of space is negative, and the cosmos has negative energy. After the cosmos

has expanded to vision ring, it starts to expand with speed lower than the speed of

light and decelerates, at that time the gravitation is important, and the curvature of

space is positive, and the cosmos has positive energy. Due to the gravitation, when

the cosmos expands to a certain extent, it starts to shrink with speed lower than

the speed of light and accelerates, at that time, the curvature of space is positive,

and the gravitation is important. When the cosmos shrinks to vision ring, it starts

to shrink with speed exceeding the speed of light and decelerates, at that time the

repulsive force is important, and the curvature of space is negative, and the cosmos

has negative energy. The Cosmos just goes from one such cycle to another infinitely.
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Fig.3

From the above discussion, it can be seen that when a particle moves at a

constant velocity in the time-space, it will no longer move at the constant velocity

if its trajectory is projected on the axis of space. Therefore, one may say that the

force is the effect of projection of the moving trajectory in the time-space on the

axis of space. The form of action of time has effect on space.

In fact, one may describe the differences of the positive matter and the negative

matter in the G Model, from the point of view of time, in the following way: one is

moving in the forward time, and the other is moving in the backward time; from the

point of view of space, one is moving with larger-than-zero inherence acceleration,

and the other is moving with less-than-zero inherence acceleration.

(4)The non-Euclidean cosmos

Since the matter that moves at the speed of light on the dividing ring makes up

the plane of the interface between the virtual cosmos and the real cosmos, if we

consider a circle with its center in the cosmos and a huge radius (extend the circle

to points near the boundary of the cosmos), the circumference measured with very

much shortened ruler divided by the radius measured with a ruler changing its length

all the way along the radius will not equal to 2π. Thus it may be concluded that the

cosmos with interface related with a velocity of the speed of light is not Euclidean

and we call it non-Euclidean cosmos.

(5) The multi-layers cosmos

From the uncertainty principle, we obtain the force-distance formula (9)

Fx = −mc2

|rc|

√
1 − k (∆rc)2

(∆r)2
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and a force-time formula :

Fx = −mc2

|rc|

√
1 − k∆tc

∆t
,

where r is the radius of the universet the universe time ,rcthe radius of vision ring

andtcthe period of time of vision ring.

If ∆r < ∆rc or ∆t < ∆tc, or if r0 = 0 and t0 = 0, and r < rc or t < tc, namely,

when the space of materialistic motion is small enough or time of materialistic

existence is short enough, or when the cosmos radius is less than radius of cosmos

vision ring or the cosmos existing time is less than period of cosmos vision ring time,

then the universal gravitation will change into universal repulsion, and at that time,

the cosmos will become the anti-cosmos and time will flow backwards and matter

will become anti-matter. That is the fundamental reason why we can not see the

anti-matter in the macroscopic world. But we may say that there are anti-matter

all the time and in all the space.

We will encounter a lot of complicated problems when we study positive and

negative states of matter, and great universe and microcosmic universe, and black

hole and white hole, and different levels of black hole age, etc. We can deal with

different problems of different domain together with Smarandache multi-spaces. For

example, we can separately construct positive and negative states of matter first,

then we unify the two spaces with Smarandache multi-spaces. This way will make

many problems very simple, and many problems that we can not solve in the past

may be solved in some near days.
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§1. Introduction

As a model of spacetimes in physics, various geometries such as those of Euclid,

Riemannian and Finsler geometries are established by mathematicians. Today, more

and more evidences have shown that our spacetime is not homogenous. Thereby

models established on classical geometries are only unilateral. Then are there some

kinds of overall geometries for spacetimes in physics? The answer is YES. Those

are just Smarandache geometries established in last century but attract more one’s

attention now. According to the summary in [4], they are formally defined following.
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Definition 1.1([4], [17]) A Smarandache geometry is a geometry which has at least

one Smarandachely denied axiom(1969), i.e., an axiom behaves in at least two dif-

ferent ways within the same space, i.e., validated and invalided, or only invalided

but in multiple distinct ways.

A Smarandache n-manifold is a n-manifold that support a Smarandache geom-

etry.

For verifying the existence of Smarandache geometries, Kuciuk and Antholy

gave a popular and easily understanding example on an Euclid plane in [4]. In

[3], Iseri firstly presented a systematic construction for Smarandache geometries

by equilateral triangular disks on Euclid planes, which are really Smarandache 2-

dimensional geometries (see also [5]). In references [6], [7] and [13], particularly in [7],

a general constructing way for Smarandache 2-dimensional geometries on maps on

surfaces, called map geometries was introduced, which generalized the construction

of Iseri. For the case of dimensional number≥ 3, these pseudo-manifold geometries

are proposed, which are approved to be Smarandache geometries and containing

these Finsler and Kähler geometries as sub-geometries in [12].

In fact, by the Definition 1.1 a general but more natural way for constructing

Smarandache geometries should be seeking for them on a union set of spaces with an

axiom validated in one space but invalided in another, or invalided in a space in one

way and another space in a different way. These unions are so called Smarandache

multi-spaces. This is the motivation for this paper. Notice that in [8], these multi-

metric spaces have been introduced, which enables us to constructing Smarandache

geometries on multi-metric spaces, particularly, on multi-metric spaces with a same

metric.

Definition 1.2 A multi-metric space Ã is a union of spaces A1, A2, · · · , Am for an

integer k ≥ 2 such that each Ai is a space with metric ρi for ∀i, 1 ≤ i ≤ m.

Now for any integer n, these n-manifolds Mn are the main objects in modern

geometry and mechanics, which are locally euclidean spaces Rn satisfying the T2

separation axiom in fact, i.e., for ∀p, q ∈ Mn, there are local charts (Up, ϕp) and

(Uq, ϕq) such that Up
⋂
Uq = ∅ and ϕp : Up → Bn, ϕq : Uq → Bn, where

Bn = {(x1, x2, · · · , xn)|x2
1 + x2

2 + · · · + x2
n < 1}.

is an open ball.

These manifolds are locally euclidean spaces. In fact, they are also homogenous



Combinatorially Differential Geometry 157

spaces. But the world is not homogenous. Whence, a more important thing is

considering these combinations of different dimensions, i.e., combinatorial manifolds

defined following and finding their good behaviors for mathematical sciences besides

just to research these manifolds. Two examples for these combinations of manifolds

with different dimensions in R3 are shown in Fig.1.1, in where, (a) represents a

combination of a 3-manifold, a torus and 1-manifold, and (b) a torus with 4 bouquets

of 1-manifolds.

Fig.1.1

For an integer s ≥ 1, let n1, n2, · · · , ns be an integer sequence with 0 < n1 <

n2 < · · · < ns. Choose s open unit balls Bn1
1 , Bn2

2 , · · · , Bns
s , where

s⋂
i=1

Bni
i 6= ∅ in

Rn1+2+···ns. Then a unit open combinatorial ball of degree s is a union

B̃(n1, n2, · · · , ns) =

s⋃

i=1

Bni
i .

Definition 1.3 For a given integer sequence n1, n2, · · · , nm, m ≥ 1 with 0 < n1 <

n2 < · · · < ns, a combinatorial manifold M̃ is a Hausdorff space such that for

any point p ∈ M̃ , there is a local chart (Up, ϕp) of p, i.e., an open neighborhood

Up of p in M̃ and a homoeomorphism ϕp : Up → B̃(n1(p), n2(p), · · · , ns(p)(p)) with

{n1(p), n2(p), · · · , ns(p)(p)} ⊆ {n1, n2, · · · , nm} and
⋃
p∈fM{n1(p), n2(p), · · · , ns(p)(p)} =

{n1, n2, · · · , nm}, denoted by M̃(n1, n2, · · · , nm) or M̃ on the context and

Ã = {(Up, ϕp)|p ∈ M̃(n1, n2, · · · , nm))}

an atlas on M̃(n1, n2, · · · , nm). The maximum value of s(p) and the dimension ŝ(p)

of
s(p)⋂
i=1

Bni
i are called the dimension and the intersectional dimensional of M̃(n1, n2,

· · · , nm) at the point p, respectively.

A combinatorial manifold M̃ is called finite if it is just combined by finite man-

ifolds without one manifold contained in the union of others.
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Notice that
s⋂
i=1

Bni
i 6= ∅ by the definition of unit combinatorial balls of degree

s. Thereby, for ∀p ∈ M̃(n1, n2, · · · , ns), either it has a neighborhood Up with ϕp :

Up → Rς , ς ∈ {n1, n2, · · · , ns} or a combinatorial ball B̃(τ1, τ2, · · · , τl) with ϕp :

Up → B̃(τ1, τ2, · · · , τl), l ≤ s and {τ1, τ2, · · · , τl} ⊆ {n1, n2, · · · , ns} hold.

The main purpose of this paper is to characterize these finitely combinatorial

manifolds, such as those of topological behaviors and differential structures on them

by a combinatorial method. For these objectives, topological and differential struc-

tures such as those of d-pathwise connected, homotopy classes, fundamental d-groups

in topology and tangent vector fields, tensor fields, connections, Minkowski norms in

differential geometry on these combinatorial manifolds are introduced. Some results

in classical differential geometry are generalized to finitely combinatorial manifolds.

As an important invariant, Euler-Poincare characteristic is discussed and geomet-

rical inclusions in Smarandache geometries for various existent geometries are also

presented by the geometrical theory on finitely combinatorial manifolds in this pa-

per.

For terminologies and notations not mentioned in this section, we follow [1]− [2]

for differential geometry, [5], [7] for graphs and [14], [18] for topology.

§2. Topological structures on combinatorial manifolds

By a topological view, we introduce topological structures and characterize these

finitely combinatorial manifolds in this section.

2.1. Pathwise connectedness

On the first, we define d-dimensional pathwise connectedness in a finitely combina-

torial manifold for an integer d, d ≥ 1, which is a natural generalization of pathwise

connectedness in a topological space.

Definition 2.1 For two points p, q in a finitely combinatorial manifold M̃(n1, n2,

· · · , nm), if there is a sequence B1, B2, · · · , Bs of d-dimensional open balls with two

conditions following hold.

(1) Bi ⊂ M̃(n1, n2, · · · , nm) for any integer i, 1 ≤ i ≤ s and p ∈ B1, q ∈ Bs;

(2) The dimensional number dim(Bi

⋂
Bi+1) ≥ d for ∀i, 1 ≤ i ≤ s− 1.

Then points p, q are called d-dimensional connected in M̃(n1, n2, · · · , nm) and the se-

quence B1, B2, · · · , Be a d-dimensional path connecting p and q, denoted by P d(p, q).

If each pair p, q of points in the finitely combinatorial manifold M̃(n1, n2, · · · , nm)
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is d-dimensional connected, then M̃(n1, n2, · · · , nm) is called d-pathwise connected

and say its connectivity≥ d.

Not loss of generality, we consider only finitely combinatorial manifolds with

a connectivity≥ 1 in this paper. Let M̃(n1, n2, · · · , nm) be a finitely combinatorial

manifold and d, d ≥ 1 an integer. We construct a labelled graphGd[M̃(n1, n2, · · · , nm)]

by

V (Gd[M̃(n1, n2, · · · , nm)]) = V1

⋃
V2,

where V1 = {ni − manifolds Mni in M̃(n1, n2, · · · , nm)|1 ≤ i ≤ m} and V2 =

{isolated intersection points OMni ,M
nj ofMni ,Mnj in M̃(n1, n2, · · · , nm) for 1 ≤

i, j ≤ m}. Label ni for each ni-manifold in V1 and 0 for each vertex in V2 and

E(Gd[M̃(n1, n2, · · · , nm)]) = E1

⋃
E2,

where E1 = {(Mni ,Mnj )|dim(Mni
⋂
Mnj ) ≥ d, 1 ≤ i, j ≤ m} and E2 =

{(OMni ,M
nj ,Mni), (OMni ,M

nj ,Mnj )|Mni tangent Mnj at the point OMni ,M
nj for 1 ≤

i, j ≤ m}.

Fig.2.1

For example, these correspondent labelled graphs gotten from finitely combina-

torial manifolds in Fig.1.1 are shown in Fig.2.1, in where d = 1 for (a) and (b), d = 2

for (c) and (d). By this construction, properties following can be easily gotten.

Theorem 2.1 Let Gd[M̃(n1, n2, · · · , nm)] be a labelled graph of a finitely combina-

torial manifold M̃(n1, n2, · · · , nm). Then

(1) Gd[M̃(n1, n2, · · · , nm)] is connected only if d ≤ n1.
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(2) there exists an integer d, d ≤ n1 such that Gd[M̃(n1, n2, · · · , nm)] is con-

nected.

Proof By definition, there is an edge (Mni ,Mnj ) in Gd[M̃(n1, n2, · · · , nm)] for

1 ≤ i, j ≤ m if and only if there is a d-dimensional path P d(p, q) connecting two

points p ∈Mni and q ∈Mnj . Notice that

(P d(p, q) \Mni) ⊆Mnj and (P d(p, q) \Mnj ) ⊆ Mni .

Whence,

d ≤ min{ni, nj}. (2.1)

Now if Gd[M̃(n1, n2, · · · , nm)] is connected, then there is a d-path P (Mni,Mnj )

connecting vertices Mni and Mnj for ∀Mni ,Mnj ∈ V (Gd[M̃(n1, n2, · · · , nm)]). Not

loss of generality, assume

P (Mni ,Mnj ) = MniMs1Ms2 · · ·Mst−1Mnj .

Then we get that

d ≤ min{ni, s1, s2, · · · , st−1, nj} (2.2)

by (2.1). However, according to Definition 1.4 we know that

⋃

p∈fM{n1(p), n2(p), · · · , ns(p)(p)} = {n1, n2, · · · , nm}. (2.3)

Therefore, we get that

d ≤ min(
⋃

p∈fM{n1(p), n2(p), · · · , ns(p)(p)}) = min{n1, n2, · · · , nm} = n1

by combining (2.3) with (2.3). Notice that points labelled with 0 and 1 are always

connected by a path. We get the conclusion (1).

For the conclusion (2), notice that any finitely combinatorial manifold is al-

ways pathwise 1-connected by definition. Accordingly, G1[M̃(n1, n2, · · · , nm)] is con-

nected. Thereby, there at least one integer, for instance d = 1 enabling Gd[M̃(n1, n2,

· · · , nm)] to be connected. This completes the proof. �

According to Theorem 2.1, we get immediately two corollaries following.
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Corollary 2.1 For a given finitely combinatorial manifold M̃ , all connected graphs

Gd[M̃ ] are isomorphic if d ≤ n1, denoted by G[M̃ ].

Corollary 2.2 If there are k 1-manifolds intersect at one point p in a finitely

combinatorial manifold M̃ , then there is an induced subgraph Kk+1 in G[M̃ ].

Now we define an edge set Ed(M̃) in G[M̃ ] by

Ed(M̃) = E(Gd[M̃ ]) \ E(Gd+1[M̃ ]).

Then we get a graphical recursion equation for graphs of a finitely combinatorial

manifold M̃ as a by-product.

Theorem 2.2 Let M̃ be a finitely combinatorial manifold. Then for any integer

d, d ≥ 1, there is a recursion equation

Gd+1[M̃ ] = Gd[M̃ ] − Ed(M̃)

for graphs of M̃ .

Proof It can be obtained immediately by definition. �

For a given integer sequence 1 ≤ n1 < n2 < · · · < nm, m ≥ 1, denote by

Hd(n1, n2, · · · , nm) all these finitely combinatorial manifolds M̃(n1, n2, · · · , nm) with

connectivity≥ d, where d ≤ n1 and G(n1, n2, · · · , nm) all these connected graphs

G[n1, n2, · · · , nm] with vertex labels 0, n1, n2, · · · , nm and conditions following hold.

(1) The induced subgraph by vertices labelled with 1 in G is a union of complete

graphs;

(2) All vertices labelled with 0 can only be adjacent to vertices labelled with

1.

Then we know a relation between sets Hd(n1, n2, · · · , nm) and G(n1, n2, · · · , nm).

Theorem 2.3 Let 1 ≤ n1 < n2 < · · · < nm, m ≥ 1 be a given integer sequence. Then

every finitely combinatorial manifold M̃ ∈ Hd(n1, n2, · · · , nm) defines a labelled con-

nected graph G[n1, n2, · · · , nm] ∈ G(n1, n2, · · · , nm). Conversely, every labelled con-

nected graph G[n1, n2, · · · , nm] ∈ G(n1, n2, · · · , nm) defines a finitely combinatorial

manifold M̃ ∈ Hd(n1, n2, · · · , nm) for any integer 1 ≤ d ≤ n1.

Proof For ∀M̃ ∈ Hd(n1, n2, · · · , nm), there is a labelled graphG[n1, n2, · · · , nm] ∈
G(n1, n2, · · · , nm) correspondent to M̃ is already verified by Theorem 2.1. For
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completing the proof, we only need to construct a finitely combinatorial manifold

M̃ ∈ Hd(n1, n2, · · · , nm) for ∀G[n1, n2, · · · , nm] ∈ G(n1, n2, · · · , nm). Denoted by

l(u) = s if the label of a vertex u ∈ V (G[n1, n2, · · · , nm]) is s. The construction is

carried out by the following programming.

STEP 1. Choose |G[n1, n2, · · · , nm]|−|V0| manifolds correspondent to each vertex u

with a dimensional ni if l(u) = ni, where V0 = {u|u ∈ V (G[n1, n2, · · · , nm]) and l(u) =

0}. Denoted by V≥1 all these vertices in G[n1, n2, · · · , nm] with label≥ 1.

STEP 2. For ∀u1 ∈ V≥1 with l(u1) = ni1 , if its neighborhood set NG[n1,n2,··· ,nm](u1)
⋂

V≥1 = {v1
1, v

2
1, · · · , vs(u1)

1 } with l(v1
1) = n11, l(v

2
1) = n12, · · · , l(vs(u1)

1 ) = n1s(u1), then

let the manifold correspondent to the vertex u1 with an intersection dimension≥ d

with manifolds correspondent to vertices v1
1, v

2
1, · · · , vs(u1)

1 and define a vertex set

∆1 = {u1}.

STEP 3. If the vertex set ∆l = {u1, u2, · · · , ul} ⊆ V≥1 has been defined and V≥1 \
∆l 6= ∅, let ul+1 ∈ V≥1 \ ∆l with a label nil+1

. Assume

(NG[n1,n2,··· ,nm](ul+1)
⋂

V≥1) \ ∆l = {v1
l+1, v

2
l+1, · · · , v

s(ul+1)
l+1 }

with l(v1
l+1) = nl+1,1, l(v

2
l+1) = nl+1,2, · · · ,l(vs(ul+1)

l+1 ) = nl+1,s(ul+1). Then let the

manifold correspondent to the vertex ul+1 with an intersection dimension≥ d with

manifolds correspondent to these vertices v1
l+1, v

2
l+1, · · · , v

s(ul+1)
l+1 and define a vertex

set ∆l+1 = ∆l

⋃{ul+1}.

STEP 4. Repeat steps 2 and 3 until a vertex set ∆t = V≥1 has been constructed.

This construction is ended if there are no vertices w ∈ V (G) with l(w) = 0, i.e.,

V≥1 = V (G). Otherwise, go to the next step.

STEP 5. For ∀w ∈ V (G[n1, n2, · · · , nm]) \ V≥1, assume NG[n1,n2,··· ,nm](w) = {w1, w2,

· · · , we}. Let all these manifolds correspondent to vertices w1, w2, · · · , we intersects

at one point simultaneously and define a vertex set ∆∗
t+1 = ∆t

⋃{w}.

STEP 6. Repeat STEP 5 for vertices in V (G[n1, n2, · · · , nm]) \ V≥1. This con-

struction is finally ended until a vertex set ∆∗
t+h = V (G[n1, n2, · · · , nm]) has been

constructed.

As soon as the vertex set ∆∗
t+h has been constructed, we get a finitely combi-

natorial manifold M̃ . It can be easily verified that M̃ ∈ Hd(n1, n2, · · · , nm) by our

construction way. �
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2.2 Combinatorial equivalence

For a finitely combinatorial manifold M̃ in Hd(n1, n2, · · · , nm), denoted by G[M̃(n1,

n2, · · · , nm)] and G[M̃ ] the correspondent labelled graph in G(n1, n2, · · · , nm) and

the graph deleted labels on G[M̃(n1, n2, · · · , nm)], C(ni) all these vertices with a

label ni for 1 ≤ i ≤ m, respectively.

Definition 2.2 Two finitely combinatorial manifolds M̃1(n1, n2, · · · , nm), M̃2(k1, k2,

· · · , kl) are called equivalent if these correspondent labelled graphs

G[M̃1(n1, n2, · · · , nm)] ∼= G[M̃2(k1, k2, · · · , kl)].

Notice that if M̃1(n1, n2, · · · , nm), M̃2(k1, k2, · · · , kl) are equivalent, then we can

get that {n1, n2, · · · , nm} = {k1, k2, · · · , kl} andG[M̃1] ∼= G[M̃2]. Reversing this idea

enables us classifying finitely combinatorial manifolds in Hd(n1, n2, · · · , nm) by the

action of automorphism groups of these correspondent graphs without labels.

Definition 2.3 A labelled connected graph G[M̃(n1, n2, · · · , nm)] is combinatorial

unique if all these correspondent finitely combinatorial manifolds M̃(n1, n2, · · · , nm)

are equivalent.

A labelled graph G[n1, n2, · · · , nm] is called class-transitive if the automorphism

group AutG is transitive on {C(ni), 1 ≤ i ≤ m}. We find a characteristic for

combinatorially unique graphs.

Theorem 2.4 A labelled connected graph G[n1, n2, · · · , nm] is combinatorially unique

if and only if it is class-transitive.

Proof For two integers i, j, 1 ≤ i, j ≤ m, re-label vertices in C(ni) by nj

and vertices in C(nj) by ni in G[n1, n2, · · · , nm]. Then we get a new labelled

graph G′[n1, n2, · · · , nm] in G[n1, n2, · · · , nm]. According to Theorem 2.3, we can

get two finitely combinatorial manifolds M̃1(n1, n2, · · · , nm) and M̃2(k1, k2, · · · , kl)
correspondent to G[n1, n2, · · · , nm] and G′[n1, n2, · · · , nm].

Now if G[n1, n2, · · · , nm] is combinatorially unique, we know M̃1(n1, n2, · · · , nm)

is equivalent to M̃2(k1, k2, · · · , kl), i.e., there is an automorphism θ ∈ AutG such

that Cθ(ni) = C(nj) for ∀i, j, 1 ≤ i, j ≤ m.

On the other hand, if G[n1, n2, · · · , nm] is class-transitive, then for integers

i, j, 1 ≤ i, j ≤ m, there is an automorphism τ ∈ AutG such that Cτ (ni) = C(nj).

Whence, for any re-labelled graph G′[n1, n2, · · · , nm], we find that



164 Linfan Mao

G[n1, n2, · · · , nm] ∼= G′[n1, n2, · · · , nm],

which implies that these finitely combinatorial manifolds correspondent to G[n1, n2,

· · · , nm] andG′[n1, n2, · · · , nm] are combinatorially equivalent, i.e., G[n1, n2, · · · , nm]

is combinatorially unique. �

Now assume that for parameters ti1, ti2, · · · , tisi
, we have known an enufunction

CMni [xi1, xi2, · · · ] =
∑

ti1,ti2,··· ,tis

ni(ti1, ti2, · · · , tis)xti1i1 xti2i2 · · ·xtisis

for ni-manifolds, where ni(ti1, ti2, · · · , tis) denotes the number of non-homeomorphic

ni-manifolds with parameters ti1, ti2, · · · , tis. For instance the enufunction for com-

pact 2-manifolds with parameter genera is

CfM [x](2) = 1 +
∑

p≥1

2xp.

Consider the action of AutG[n1, n2, · · · , nm] on G[n1, n2, · · · , nm]. If the number of

orbits of the automorphism group AutG[n1, n2, · · · , nm] action on {C(ni), 1 ≤ i ≤
m} is π0, then we can only get π0! non-equivalent combinatorial manifolds corre-

spondent to the labelled graph G[n1, n2, · · · , nm] similar to Theorem 2.4. Calcula-

tion shows that there are l! orbits action by its automorphism group for a complete

(s1 + s2 + · · · + sl)-partite graph K(ks11 , k
s2
2 , · · · , ksl

l ), where ksi
i denotes that there

are si partite sets of order ki in this graph for any integer i, 1 ≤ i ≤ l, particularly,

for K(n1, n2, · · · , nm) with ni 6= nj for i, j, 1 ≤ i, j ≤ m, the number of orbits action

by its automorphism group is m!. Summarizing all these discussions, we get an enu-

function for these finitely combinatorial manifolds M̃(n1, n2, · · · , nm) correspondent

to a labelled graph G[n1, n2, · · · , nm] in G(n1, n2, · · · , nm) with each label≥ 1.

Theorem 2.5 Let G[n1, n2, · · · , nm] be a labelled graph in G(n1, n2, · · · , nm) with

each label≥ 1. For an integer i, 1 ≤ i ≤ m, let the enufunction of non-homeomorphic

ni-manifolds with given parameters t1, t2, · · · , be CMni [xi1, xi2, · · · ] and π0 the num-

ber of orbits of the automorphism group AutG[n1, n2, · · · , nm] action on {C(ni), 1 ≤
i ≤ m}, then the enufunction of combinatorial manifolds M̃(n1, n2, · · · , nm) corre-

spondent to a labelled graph G[n1, n2, · · · , nm] is

CfM(x) = π0!

m∏

i=1

CMni [xi1, xi2, · · · ],
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particularly, if G[n1, n2, · · · , nm] = K(ks11 , k
s2
2 , · · · , ksm

m ) such that the number of

partite sets labelled with ni is si for any integer i, 1 ≤ i ≤ m, then the enufunction

correspondent to K(ks11 , k
s2
2 , · · · , ksm

m ) is

CfM(x) = m!

m∏

i=1

CMni [xi1, xi2, · · · ]

and the enufunction correspondent to a complete graph Km is

CfM(x) =
m∏

i=1

CMni [xi1, xi2, · · · ].

Proof Notice that the number of non-equivalent finitely combinatorial manifolds

correspondent to G[n1, n2, · · · , nm] is

π0

m∏

i=1

ni(ti1, ti2, · · · , tis)

for parameters ti1, ti2, · · · , tis, 1 ≤ i ≤ m by the product principle of enumeration.

Whence, the enufunction of combinatorial manifolds M̃(n1, n2, · · · , nm) correspon-

dent to a labelled graph G[n1, n2, · · · , nm] is

CfM(x) =
∑

ti1,ti2,··· ,tis
(π0

m∏

i=1

ni(ti1, ti2, · · · , tis))
m∏

i=1

xti1i1 x
ti2
i2 · · ·xtisis

= π0!
m∏

i=1

CMni [xi1, xi2, · · · ]. �

2.3 Homotopy classes

Denote by f ≃ g two homotopic mappings f and g. Following the same pattern of

homotopic spaces, we define homotopically combinatorial manifolds in the next.

Definition 2.4 Two finitely combinatorial manifolds M̃(k1, k2, · · · , kl) and M̃(n1, n2,

· · · , nm) are said to be homotopic if there exist continuous maps

f : M̃(k1, k2, · · · , kl) → M̃(n1, n2, · · · , nm),

g : M̃(n1, n2, · · · , nm) → M̃(k1, k2, · · · , kl)
such that gf ≃identity: M̃(k1, k2, · · · , kl) → M̃(k1, k2, · · · , kl) and fg ≃identity:

M̃(n1, n2, · · · , nm) → M̃(n1, n2, · · · , nm).
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For equivalent homotopically combinatorial manifolds, we know the following

result under these correspondent manifolds being homotopic. For this objective, we

need an important lemma in algebraic topology.

Lemma 2.1(Gluing Lemma, [16]) Assume that a space X is a finite union of closed

subsets: X =
n⋃
i=1

Xi. If for some space Y , there are continuous maps fi : Xi → Y

that agree on overlaps, i.e., fi|Xi
T
Xj

= fj |Xi
T
Xj

for all i, j, then there exists a

unique continuous f : X → Y with f |Xi
= fi for all i.

Theorem 2.6 Let M̃(n1, n2, · · · , nm) and M̃(k1, k2, · · · , kl) be finitely combinatorial

manifolds with an equivalence ̟ : G[M̃(n1, n2, · · · , nm)] → G[M̃(k1, k2, · · · , kl)]. If

for ∀M1,M2 ∈ V (G[M̃(n1, n2, · · · , nm)]), Mi is homotopic to ̟(Mi) with homo-

topic mappings fMi
: Mi → ̟(Mi), gMi

: ̟(Mi) → Mi such that fMi
|Mi

T
Mj

=

fMj
|Mi

T
Mj

, gMi
|Mi

T
Mj

= gMj
|Mi

T
Mj

providing (Mi,Mj) ∈ E(G[M̃(n1, n2, · · · , nm)])

for 1 ≤ i, j ≤ m, then M̃(n1, n2, · · · , nm) is homotopic to M̃(k1, k2, · · · , kl).

Proof By the Gluing Lemma, there are continuous mappings

f : M̃(n1, n2, · · · , nm) → M̃(k1, k2, · · · , kl)
and

g : M̃(k1, k2, · · · , kl) → M̃(n1, n2, · · · , nm)

such that

f |M = fM and g|̟(M) = g̟(M)

for ∀M ∈ V (G[M̃(n1, n2, · · · , nm)]). Thereby, we also get that

gf ≃ identity : M̃(k1, k2, · · · , kl) → M̃(k1, k2, · · · , kl)
and

fg ≃ identity : M̃(n1, n2, · · · , nm) → M̃(n1, n2, · · · , nm)

as a result of gMfM ≃ identity : M →M , fMgM ≃ identity : ̟(M) → ̟(M). �

We have known that a finitely combinatorial manifold M̃(n1, n2, · · · , nm) is d-

pathwise connected for some integers 1 ≤ d ≤ n1. This consequence enables us

considering fundamental d-groups of finitely combinatorial manifolds.

Definition 2.5 Let M̃(n1, n2, · · · , nm) be a finitely combinatorial manifold. For

an integer d, 1 ≤ d ≤ n1 and ∀x ∈ M̃(n1, n2, · · · , nm), a fundamental d-group at the

point x, denoted by πd(M̃(n1, n2, · · · , nm), x) is defined to be a group generated by

all homotopic classes of closed d-pathes based at x.

If d = 1 and M̃(n1, n2, · · · , nm) is just a manifold M , we get that
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πd(M̃(n1, n2, · · · , nm), x) = π(M,x).

Whence, fundamental d-groups are a generalization of fundamental groups in topol-

ogy. We obtain the following characteristics for fundamental d-groups of finitely

combinatorial manifolds.

Theorem 2.7 Let M̃(n1, n2, · · · , nm) be a d-connected finitely combinatorial man-

ifold with 1 ≤ d ≤ n1. Then

(1) for ∀x ∈ M̃(n1, n2, · · · , nm),

πd(M̃(n1, n2, · · · , nm), x) ∼= (
⊕

M∈V (Gd)

πd(M))
⊕

π(Gd),

where Gd = Gd[M̃(n1, n2, · · · , nm)], πd(M), π(Gd) denote the fundamental d-groups

of a manifold M and the graph Gd, respectively and

(2) for ∀x, y ∈ M̃(n1, n2, · · · , nm),

πd(M̃(n1, n2, · · · , nm), x) ∼= πd(M̃(n1, n2, · · · , nm), y).

Proof For proving the conclusion (1), we only need to prove that for any

cycle C̃ in M̃(n1, n2, · · · , nm), there are elements CM
1 , CM

2 , · · · , CM
l(M) ∈ πd(M),

α1, α2, · · · , αβ(Gd) ∈ π(Gd) and integers aMi , bj for ∀M ∈ V (Gd) and 1 ≤ i ≤ l(M),

1 ≤ j ≤ c(Gd) ≤ β(Gd) such that

C̃ ≡
∑

M∈V (Gd)

l(M)∑

i=1

aMi C
M
i +

c(Gd)∑

j=1

bjαj(mod2)

and it is unique. Let CM
1 , CM

2 , · · · , CM
b(M) be a base of πd(M) for ∀M ∈ V (Gd). Since

C̃ is a closed trail, there must exist integers kMi , lj, 1 ≤ i ≤ b(M), 1 ≤ j ≤ β(Gd)

and hP for an open d-path on C̃ such that

C̃ =
∑

M∈V (Gd)

b(M)∑

i=1

kMi C
M
i +

β(Gd)∑

j=1

ljαj +
∑

P∈∆

hPP,

where hP ≡ 0(mod2) and ∆ denotes all of these open d-paths on C̃. Now let

{aMi |1 ≤ i ≤ l(M)} = {kMi |kMi 6= 0 and 1 ≤ i ≤ b(M)},
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{bj |1 ≤ j ≤ c(Gd)} = {lj|lj 6= 0, 1 ≤ j ≤ β(Gd)}.

Then we get that

C̃ ≡
∑

M∈V (Gd)

l(M)∑

i=1

aMi C
M
i +

c(Gd)∑

j=1

bjαj(mod2). (2.4)

If there is another decomposition

C̃ ≡
∑

M∈V (Gd)

l′(M)∑

i=1

a
′M
i CM

i +

c′(Gd)∑

j=1

b′jαj(mod2),

not loss of generality, assume l′(M) ≤ l(M) and c′(M) ≤ c(M), then we know that

∑

M∈V (Gd)

l(M)∑

i=1

(aMi − a
′M
i )CM

i +

c(Gd)∑

j=1

(bj − b′j)αj′ = 0,

where a′Mi = 0 if i > l′(M), b′j = 0 if j′ > c′(M). Since CM
i , 1 ≤ i ≤ b(M) and

αj , 1 ≤ j ≤ β(Gd) are bases of the fundamental group π(M) and π(Gd) respectively,

we must have

aMi = a
′M
i , 1 ≤ i ≤ l(M) and bj = b′j , 1 ≤ j ≤ c(Gd).

Whence, the decomposition (2.4) is unique.

For proving the conclusion (2), notice that M̃(n1, n2, · · · , nm) is pathwise d-

connected. Let P d(x, y) be a d-path connecting points x and y in M̃(n1, n2, · · · , nm).

Define

ω∗(C) = P d(x, y)C(P d)−1(x, y)

for ∀C ∈ M̃(n1, n2, · · · , nm). Then it can be checked immediately that

ω∗ : πd(M̃(n1, n2, · · · , nm), x) → πd(M̃(n1, n2, · · · , nm), y)

is an isomorphism. �

A d-connected finitely combinatorial manifold M̃(n1, n2, · · · , nm) is said to be

simply d-connected if πd(M̃(n1, n2, · · · , nm), x) is trivial. As a consequence, we get

the following result by Theorem 2.7.



Combinatorially Differential Geometry 169

Corollary 2.3 A d-connected finitely combinatorial manifold M̃(n1, n2, · · · , nm) is

simply d-connected if and only if

(1) for ∀M ∈ V (Gd[M̃(n1, n2, · · · , nm)]), M is simply d-connected and

(2) Gd[M̃(n1, n2, · · · , nm)] is a tree.

Proof According to the decomposition for πd(M̃(n1, n2, · · · , nm), x) in The-

orem 2.7, it is trivial if and only if π(M) and π(Gd) both are trivial for ∀M ∈
V (Gd[M̃(n1, n2, · · · , nm)]), i.e M is simply d-connected and Gd is a tree. �

For equivalent homotopically combinatorial manifolds, we also get a criterion

under a homotopically equivalent mapping in the next.

Theorem 2.8 If f : M̃(n1, n2, · · · , nm) → M̃(k1, k2, · · · , kl) is a homotopic equiva-

lence, then for any integer d, 1 ≤ d ≤ n1 and x ∈ M̃(n1, n2, · · · , nm),

πd(M̃(n1, n2, · · · , nm), x) ∼= πd(M̃(k1, k2, · · · , kl), f(x)).

Proof Notice that f can natural induce a homomorphism

fπ : πd(M̃(n1, n2, · · · , nm), x) → πd(M̃(k1, k2, · · · , kl), f(x))

defined by fπ 〈g〉 = 〈f(g)〉 for ∀g ∈ πd(M̃(n1, n2, · · · , nm), x) since it can be easily

checked that fπ(gh) = fπ(g)fπ(h) for ∀g, h ∈ πd(M̃(n1, n2, · · · , nm), x). We only

need to prove that fπ is an isomorphism.

By definition, there is also a homotopic equivalence g : M̃(k1, k2, · · · , kl) →
M̃(n1, n2, · · · , nm) such that gf ≃ identity : M̃(n1, n2, · · · , nm) → M̃(n1, n2, · · · , nm).

Thereby, gπfπ = (gf)π = µ(identity)π :

πd(M̃(n1, n2, · · · , nm), x) → πs(M̃(n1, n2, · · · , nm), x),

where µ is an isomorphism induced by a certain d-path from x to gf(x) in M̃(n1, n2,

· · · , nm). Therefore, gπfπ is an isomorphism. Whence, fπ is a monomorphism and

gπ is an epimorphism.

Similarly, apply the same argument to the homotopy

fg ≃ identity : M̃(k1, k2, · · · , kl) → M̃(k1, k2, · · · , kl),

we get that fπgπ = (fg)π = ν(identity)pi :

πd(M̃(k1, k2, · · · , kl), x) → πs(M̃(k1, k2, · · · , kl), x),
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where ν is an isomorphism induced by a d-path from fg(x) to x in M̃(k1, k2, · · · , kl).
So gπ is a monomorphism and fπ is an epimorphism. Combining these facts enables

us to conclude that fπ : πd(M̃(n1, n2, · · · , nm), x) → πd(M̃(k1, k2, · · · , kl), f(x)) is

an isomorphism . �

Corollary 2.4 If f : M̃(n1, n2, · · · , nm) → M̃(k1, k2, · · · , kl) is a homeomorphism,

then for any integer d, 1 ≤ d ≤ n1 and x ∈ M̃(n1, n2, · · · , nm),

πd(M̃(n1, n2, · · · , nm), x) ∼= πd(M̃(k1, k2, · · · , kl), f(x)).

2.4 Euler-Poincare characteristic

It is well-known that the integer

χ(M) =
∞∑

i=0

(−1)iαi

with αi the number of i-dimensional cells in a CW -complex M is defined to be the

Euler-Poincare characteristic of this complex. In this subsection, we get the Euler-

Poincare characteristic for finitely combinatorial manifolds. For this objective, define

a clique sequence {Cl(i)}i≥1 in the graph G[M̃ ] by the following programming.

STEP 1. Let Cl(G[M̃ ]) = l0. Construct

Cl(l0) = {K l0
1 , K

l0
2 , · · · , Ki0

p |K l0
i ≻ G[M̃ ] and K l0

i ∩K l0
j = ∅,

or a vertex ∈ V(G[M̃]) for i 6= j, 1 ≤ i, j ≤ p}.

STEP 2. Let G1 =
⋃

Kl0∈Cl(l0)

K l0 and Cl(G[M̃ ] \G1) = l1. Construct

Cl(l1) = {K l1
1 , K

l1
2 , · · · , Ki1

q |K l1
i ≻ G[M̃ ] and K l1

i ∩K l1
j = ∅

or a vertex ∈ V(G[M̃]) for i 6= j, 1 ≤ i, j ≤ q}.

STEP 3. Assume we have constructed Cl(lk−1) for an integer k ≥ 1. Let Gk =⋃
K

lk−1∈Cl(lk−1)

K lk−1 and Cl(G[M̃ ] \ (G1 ∪ · · · ∪Gk)) = lk. We construct

Cl(lk) = {K lk
1 , K

lk
2 , · · · , K lk

r |K lk
i ≻ G[M̃ ] and K lk

i ∩K lk
j = ∅,

or a vertex ∈ V(G[M̃]) for i 6= j, 1 ≤ i, j ≤ r}.
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STEP 4. Continue STEP 3 until we find an integer t such that there are no edges

in G[M̃ ] \
t⋃
i=1

Gi.

By this clique sequence {Cl(i)}i≥1, we can calculate the Eucler-Poincare char-

acteristic of finitely combinatorial manifolds.

Theorem 2.9 Let M̃ be a finitely combinatorial manifold. Then

χ(M̃) =
∑

Kk∈Cl(k),k≥2

∑

Mij
∈V (Kk),1≤j≤s≤k

(−1)s+1χ(Mi1

⋂
· · ·

⋂
Mis)

Proof Denoted the numbers of all these i-dimensional cells in a combinatorial

manifold M̃ or in a manifold M by α̃i and αi(M). If G[M̃ ] is nothing but a complete

graph Kk with V (G[M̃ ]) = {M1,M2, · · · ,Mk}, k ≥ 2, by applying the inclusion-

exclusion principe and the definition of Euler-Poincare characteristic we get that

χ(M̃) =

∞∑

i=0

(−1)iα̃i

=
∞∑

i=0

(−1)i
∑

Mij
∈V (Kk),1≤j≤s≤k

(−1)s+1αi(Mi1

⋂
· · ·

⋂
Mis)

=
∑

Mij
∈V (Kk),1≤j≤s≤k

(−1)s+1
∞∑

i=0

(−1)iαi(Mi1

⋂
· · ·

⋂
Mis)

=
∑

Mij
∈V (Kk),1≤j≤s≤k

(−1)s+1χ(Mi1

⋂
· · ·

⋂
Mis)

for instance, χ(M̃) = χ(M1) + χ(M2)− χ(M1 ∩M2) if G[M̃ ] = K2 and V (G[M̃ ]) =

{M1,M2}. By the definition of clique sequence of G[M̃ ], we finally obtain that

χ(M̃) =
∑

Kk∈Cl(k),k≥2

∑

Mij
∈V (Kk),1≤j≤s≤k

(−1)i+1χ(Mi1

⋂
· · ·

⋂
Mis). �

If G[M̃ ] is just one of some special graphs, we can get interesting consequences

by Theorem 2.9.

Corollary 2.5 Let M̃ be a finitely combinatorial manifold. If G[M̃ ] is K3-free, then
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χ(M̃) =
∑

M∈V (G[fM ])

χ2(M) −
∑

(M1,M2)∈E(G[fM ])

χ(M1

⋂
M2).

Particularly, if dim(M1

⋂
M2) is a constant for any (M1,M2) ∈ E(G[M̃ ]), then

χ(M̃) =
∑

M∈V (G[fM ])

χ2(M) − χ(M1

⋂
M2)|E(G[M̃ ])|.

Proof Notice that G[M̃ ] is K3-free, we get that

χ(M̃) =
∑

(M1,M2)∈E(G[fM ])

(χ(M1) + χ(M2) − χ(M1

⋂
M2))

=
∑

(M1,M2)∈E(G[fM ])

(χ(M1) + χ(M2)) +
∑

(M1,M2)∈E(G[fM ])

χ(M1

⋂
M2)

=
∑

M∈V (G[fM ])

χ2(M) −
∑

(M1,M2)∈E(G[fM ])

χ(M1

⋂
M2). �

Since the Euler-Poincare characteristic of a manifoldM is 0 if dimM ≡ 1(mod2),

we get the following consequence.

Corollary 2.6 Let M̃ be a finitely combinatorial manifold with odd dimension

number for any intersection of k manifolds with k ≥ 2. Then

χ(M̃) =
∑

M∈V (G[fM ])

χ(M).

§3. Differential structures on combinatorial manifolds

We introduce differential structures on finitely combinatorial manifolds and charac-

terize them in this section.

3.1 Tangent vector fields

Definition 3.1 For a given integer sequence 1 ≤ n1 < n2 < · · · < nm, a combi-

natorially Ch differential manifold (M̃(n1, n2, · · · , nm); Ã) is a finitely combinato-

rial manifold M̃(n1, n2, · · · , nm), M̃(n1, n2, · · · , nm) =
⋃
i∈I
Ui, endowed with a atlas
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Ã = {(Uα;ϕα)|α ∈ I} on M̃(n1, n2, · · · , nm) for an integer h, h ≥ 1 with conditions

following hold.

(1) {Uα;α ∈ I} is an open covering of M̃(n1, n2, · · · , nm);

(2) For ∀α, β ∈ I, local charts (Uα;ϕα) and (Uβ;ϕβ) are equivalent, i.e.,

Uα
⋂
Uβ = ∅ or Uα

⋂
Uβ 6= ∅ but the overlap maps

ϕαϕ
−1
β : ϕβ(Uα

⋂
Uβ) → ϕβ(Uβ) and ϕβϕ

−1
α : ϕβ(Uα

⋂
Uβ) → ϕα(Uα)

are Ch mappings;

(3) Ã is maximal, i.e., if (U ;ϕ) is a local chart of M̃(n1, n2, · · · , nm) equivalent

with one of local charts in Ã, then (U ;ϕ) ∈ Ã.

Denote by (M̃(n1, n2, · · · , nm); Ã) a combinatorially differential manifold. A

finitely combinatorial manifold M̃(n1, n2, · · · , nm) is said to be smooth if it is en-

dowed with a C∞ differential structure.

Let Ã be an atlas on M̃(n1, n2, · · · , nm). Choose a local chart (U ;̟) in Ã.

For ∀p ∈ (U ;ϕ), if ̟p : Up →
s(p)⋃
i=1

Bni(p) and ŝ(p) = dim(
s(p)⋂
i=1

Bni(p)), the following

s(p) × ns(p) matrix [̟(p)]

[̟(p)] =




x11

s(p)
· · · x1bs(p)

s(p)
x1(bs(p)+1) · · · x1n1 · · · 0

x21

s(p)
· · · x2bs(p)

s(p)
x2(bs(p)+1) · · · x2n2 · · · 0

· · · · · · · · · · · · · · · · · ·
xs(p)1

s(p)
· · · xs(p)bs(p)

s(p)
xs(p)(bs(p)+1) · · · · · · xs(p)ns(p)−1 xs(p)ns(p)




with xis = xjs for 1 ≤ i, j ≤ s(p), 1 ≤ s ≤ ŝ(p) is called the coordinate matrix of

p. For emphasize ̟ is a matrix, we often denote local charts in a combinatorially

differential manifold by (U ; [̟]). Using the coordinate matrix system of a combi-

natorially differential manifold (M̃(n1, n2, · · · , nm); Ã), we introduce the conception

of Ch mappings and functions in the next.

Definition 3.2 Let M̃1(n1, n2, · · · , nm), M̃2(k1, k2, · · · , kl) be smoothly combinato-

rial manifolds and

f : M̃1(n1, n2, · · · , nm) → M̃2(k1, k2, · · · , kl)
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be a mapping, p ∈ M̃1(n1, n2, · · · , nm). If there are local charts (Up; [̟p]) of p

on M̃1(n1, n2, · · · , nm) and (Vf(p); [ωf(p)]) of f(p) with f(Up) ⊂ Vf(p) such that the

composition mapping

f̃ = [ωf(p)] ◦ f ◦ [̟p]
−1 : [̟p](Up) → [ωf(p)](Vf(p))

is a Ch mapping, then f is called a Ch mapping at the point p. If f is Ch at

any point p of M̃1(n1, n2, · · · , nm), then f is called a Ch mapping. Particularly,

if M̃2(k1, k2, · · · , kl) = R, f ia called a Ch function on M̃1(n1, n2, · · · , nm). In

the extreme h = ∞, these terminologies are called smooth mappings and functions,

respectively. Denote by Xp all these C∞ functions at a point p ∈ M̃(n1, n2, · · · , nm).

For the existence of combinatorially differential manifolds, we know the follow-

ing result.

Theorem 3.1 Let M̃(n1, n2, · · · , nm) be a finitely combinatorial manifold and d, 1 ≤
d ≤ n1 an integer. If ∀M ∈ V (Gd[M̃(n1, n2, · · · , nm)]) is Ch differential and

∀(M1,M2) ∈ E(Gd[M̃(n1, n2, · · · , nm)]) there exist atlas

A1 = {(Vx;ϕx)|∀x ∈M1} A2 = {(Wy;ψy)|∀y ∈M2}
such that ϕx|Vx

T
Wy = ψy|Vx

T
Wy for ∀x ∈ M1, y ∈ M2, then there is a differential

structures

Ã = {(Up; [̟p])|∀p ∈ M̃(n1, n2, · · · , nm)}
such that (M̃(n1, n2, · · · , nm); Ã) is a combinatorially Ch differential manifold.

Proof By definition, We only need to show that we can always choose a neigh-

borhood Up and a homoeomorphism [̟p] for each p ∈ M̃(n1, n2, · · · , nm) satisfying

these conditions (1) − (3) in definition 3.1.

By assumption, each manifold ∀M ∈ V (Gd[M̃(n1, n2, · · · , nm)]) is Ch differen-

tial, accordingly there is an index set IM such that {Uα;α ∈ IM} is an open covering

of M , local charts (Uα;ϕα) and (Uβ ;ϕβ) of M are equivalent and A = {(U ;ϕ)} is

maximal. Since for ∀p ∈ M̃(n1, n2, · · · , nm), there is a local chart (Up; [̟p]) of

p such that [̟p] : Up →
s(p)⋃
i=1

Bni(p), i.e., p is an intersection point of manifolds

Mni(p), 1 ≤ i ≤ s(p). By assumption each manifold Mni(p) is Ch differential, there

exists a local chart (V i
p ;ϕ

i
p) while the point p ∈ Mni(p) such that ϕip → Bni(p). Now

we define
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Up =

s(p)⋃

i=1

V i
p .

Then applying the Gluing Lemma again, we know that there is a homoeomorphism

[̟p] on Up such that

[̟p]|Mni(p) = ϕip

for any integer i,≤ i ≤ s(p). Thereafter,

Ã = {(Up; [̟p])|∀p ∈ M̃(n1, n2, · · · , nm)}
is a Ch differential structure on M̃(n1, n2, · · · , nm) satisfying conditions (1) − (3).

Thereby (M̃(n1, n2, · · · , nm); Ã) is a combinatorially Ch differential manifold. �

Definition 3.3 Let (M̃(n1, n2, · · · , nm), Ã) be a smoothly combinatorial manifold

and p ∈ M̃(n1, n2, · · · , nm). A tangent vector v at p is a mapping v : Xp → R with

conditions following hold.

(1) ∀g, h ∈ Xp, ∀λ ∈ R, v(h+ λh) = v(g) + λv(h);

(2) ∀g, h ∈ Xp, v(gh) = v(g)h(p) + g(p)v(h).

Denoted all tangent vectors at p ∈ M̃(n1, n2, · · · , nm) by TpM̃(n1, n2, · · · , nm)

and define addition+and scalar multiplication·for ∀u, v ∈ TpM̃(n1, n2, · · · , nm), λ ∈
R and f ∈ Xp by

(u+ v)(f) = u(f) + v(f), (λu)(f) = λ · u(f).

Then it can be shown immediately that TpM̃(n1, n2, · · · , nm) is a vector space under

these two operations+and·.

Theorem 3.2 For any point p ∈ M̃(n1, n2, · · · , nm) with a local chart (Up; [ϕp]),

the dimension of TpM̃(n1, n2, · · · , nm) is

dimTpM̃(n1, n2, · · · , nm) = ŝ(p) +

s(p)∑

i=1

(ni − ŝ(p))

with a basis matrix

[
∂

∂x
]s(p)×ns(p)

=
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


1
s(p)

∂
∂x11 · · · 1

s(p)
∂

∂x1bs(p)
∂

∂x1(bs(p)+1) · · · ∂
∂x1n1

· · · 0

1
s(p)

∂
∂x21 · · · 1

s(p)
∂

∂x2bs(p)
∂

∂x2(bs(p)+1) · · · ∂
∂x2n2

· · · 0

· · · · · · · · · · · · · · · · · ·
1
s(p)

∂
∂xs(p)1 · · · 1

s(p)
∂

∂xs(p)bs(p)
∂

∂xs(p)(bs(p)+1) · · · · · · ∂

∂x
s(p)(ns(p)−1)

∂

∂x
s(p)ns(p)




where xil = xjl for 1 ≤ i, j ≤ s(p), 1 ≤ l ≤ ŝ(p), namely there is a smoothly

functional matrix [vij ]s(p)×ns(p)
such that for any tangent vector v at a point p of

M̃(n1, n2, · · · , nm),

v = [vij ]s(p)×ns(p)
⊙ [

∂

∂x
]s(p)×ns(p)

,

where [aij ]k×l ⊙ [bts]k×l =
k∑
i=1

l∑
j=1

aijbij.

Proof For ∀f ∈ Xp, let f̃ = f · [ϕp]−1 ∈ X[ϕp](p). We only need to prove that f

can be spanned by elements in

{ ∂

∂xhj
|p|1 ≤ j ≤ ŝ(p)}

⋃
(

s(p)⋃

i=1

ni⋃

j=bs(p)+1

{ ∂

∂xij
|p | 1 ≤ j ≤ s}), (3.1)

for a given integer h, 1 ≤ h ≤ s(p), namely (3.1) is a basis of TpM̃(n1, n2, · · · , nm).

In fact, for ∀x ∈ [ϕp](Up), since f̃ is smooth, we know that

f̃(x) − f̃(x0) =

1∫

0

d

dt
f̃(x0 + t(x− x0))dt

=

s(p)∑

i=1

ni∑

j=1

ηjbs(p)(xij − xij0 )

1∫

0

∂f̃

∂xij
(x0 + t(x− x0))dt

in a spherical neighborhood of the point p in [ϕp](Up) ⊂ Rbs(p)−s(p)bs(p)+n1+n2+···+ns(p)

with [ϕp](p) = x0, where

ηjbs(p) =





1bs(p) , if 1 ≤ j ≤ ŝ(p),

1, otherwise.

Define
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g̃ij(x) =

1∫

0

∂f̃

∂xij
(x0 + t(x− x0))dt

and gij = g̃ij · [ϕp]. Then we find that

gij(p) = g̃ij(x0) =
∂f̃

∂xij
(x0)

=
∂(f · [ϕp]−1)

∂xij
([ϕp](p)) =

∂f

∂xij
(p).

Therefore, for ∀q ∈ Up, there are gij, 1 ≤ i ≤ s(p), 1 ≤ j ≤ ni such that

f(q) = f(p) +

s(p)∑

i=1

ni∑

j=1

ηjbs(p)(xij − xij0 )gij(p).

Now let v ∈ TpM̃(n1, n2, · · · , nm). Application of the condition (2) in Definition

3.1 shows that

v(f(p)) = 0, and v(ηjbs(p)xij0 ) = 0.

Accordingly, we obtain that

v(f) = v(f(p) +

s(p)∑

i=1

ni∑

j=1

ηjbs(p)(xij − xij0 )gij(p))

= v(f(p)) +

s(p)∑

i=1

ni∑

j=1

v(ηjbs(p)(xij − xij0 )gij(p)))

=

s(p)∑

i=1

ni∑

j=1

(ηjbs(p)gij(p)v(xij − xij0 ) + (xij(p) − xij0 )v(ηjbs(p)gij(p)))
=

s(p)∑

i=1

ni∑

j=1

ηjbs(p) ∂f∂xij (p)v(xij)
=

s(p)∑

i=1

ni∑

j=1

v(xij)ηjbs(p) ∂

∂xij
|p(f) = [vij ]s(p)×ns(p)

⊙ [
∂

∂x
]s(p)×ns(p)

|p(f).

Therefore, we get that

v = [vij ]s(p)×ns(p)
⊙ [

∂

∂x
]s(p)×ns(p)

. (3.2)
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The formula (3.2) shows that any tangent vector v in TpM̃(n1, n2, · · · , nm) can

be spanned by elements in (3.1).

Notice that all elements in (3.1) are also linearly independent. Otherwise, if

there are numbers aij , 1 ≤ i ≤ s(p), 1 ≤ j ≤ ni such that

(

bs(p)∑

j=1

ahj
∂

∂xhj
+

s(p)∑

i=1

ni∑

j=bs(p)+1

aij
∂

∂xij
)|p = 0,

then we get that

aij = (

bs(p)∑

j=1

ahj
∂

∂xhj
+

s(p)∑

i=1

ni∑

j=bs(p)+1

aij
∂

∂xij
)(xij) = 0

for 1 ≤ i ≤ s(p), 1 ≤ j ≤ ni. Therefore, (3.1) is a basis of the tangent vector space

TpM̃(n1, n2, · · · , nm) at the point p ∈ (M̃(n1, n2, · · · , nm); Ã). �

By Theorem 3.2, if s(p) = 1 for any point p ∈ (M̃(n1, n2, · · · , nm); Ã), then

dimTpM̃(n1, n2, · · · , nm) = n1. This can only happens while M̃(n1, n2, · · · , nm) is

combined by one manifold. As a consequence, we get a well-known result in classical

differential geometry again.

Corollary 3.1([2]) Let (Mn;A) be a smooth manifold and p ∈Mn. Then

dimTpM
n = n

with a basis

{ ∂

∂xi
|p | 1 ≤ i ≤ n}.

Definition 3.4 For ∀p ∈ (M̃(n1, n2, · · · , nm); Ã), the dual space T ∗
p M̃(n1, n2, · · · , nm)

is called a co-tangent vector space at p.

Definition 3.5 For f ∈ Xp, d ∈ T ∗
p M̃(n1, n2, · · · , nm) and v ∈ TpM̃(n1, n2, · · · , nm),

the action of d on f , called a differential operator d : Xp → R, is defined by

df = v(f).

Then we immediately obtain the result following.
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Theorem 3.3 For ∀p ∈ (M̃(n1, n2, · · · , nm); Ã) with a local chart (Up; [ϕp]), the

dimension of T ∗
p M̃(n1, n2, · · · , nm) is

dimT ∗
p M̃(n1, n2, · · · , nm) = ŝ(p) +

s(p)∑

i=1

(ni − ŝ(p))

with a basis matrix

[dx]s(p)×ns(p)
=




dx11

s(p)
· · · dx1bs(p)

s(p)
dx1(bs(p)+1) · · · dx1n1 · · · 0

dx21

s(p)
· · · dx2bs(p)

s(p)
dx2(bs(p)+1) · · · dx2n2 · · · 0

· · · · · · · · · · · · · · · · · ·
dxs(p)1

s(p)
· · · dxs(p)bs(p)

s(p)
dxs(p)(bs(p)+1) · · · · · · dxs(p)ns(p)−1 dxs(p)ns(p)




where xil = xjl for 1 ≤ i, j ≤ s(p), 1 ≤ l ≤ ŝ(p), namely for any co-tangent vector d

at a point p of M̃(n1, n2, · · · , nm), there is a smoothly functional matrix [uij]s(p)×s(p)

such that,

d = [uij]s(p)×ns(p)
⊙ [dx]s(p)×ns(p)

.

3.2 Tensor fields

Definition 3.6 Let M̃(n1, n2, · · · , nm) be a smoothly combinatorial manifold and

p ∈ M̃(n1, n2, · · · , nm). A tensor of type (r, s) at the point p on M̃(n1, n2, · · · , nm)

is an (r + s)-multilinear function τ ,

τ : T ∗
p M̃ × · · · × T ∗

p M̃︸ ︷︷ ︸
r

×TpM̃ × · · · × TpM̃︸ ︷︷ ︸
s

→ R,

where TpM̃ = TpM̃(n1, n2, · · · , nm) and T ∗
p M̃ = T ∗

p M̃(n1, n2, · · · , nm).

Denoted by T rs (p, M̃) all tensors of type (r, s) at a point p of M̃(n1, n2, · · · , nm).

Then we know its structure by Theorems 3.2 and 3.3.

Theorem 3.4 Let M̃(n1, n2, · · · , nm) be a smoothly combinatorial manifold and

p ∈ M̃(n1, n2, · · · , nm). Then



180 Linfan Mao

T rs (p, M̃) = TpM̃ ⊗ · · · ⊗ TpM̃︸ ︷︷ ︸
r

⊗T ∗
p M̃ ⊗ · · · ⊗ T ∗

p M̃︸ ︷︷ ︸
s

,

where TpM̃ = TpM̃(n1, n2, · · · , nm) and T ∗
p M̃ = T ∗

p M̃(n1, n2, · · · , nm), particularly,

dimT rs (p, M̃) = (ŝ(p) +

s(p)∑

i=1

(ni − ŝ(p)))r+s.

Proof By definition and multilinear algebra, any tensor t of type (r, s) at the

point p can be uniquely written as

t =
∑

ti1···irj1···js
∂

∂xi1j1
|p ⊗ · · · ⊗ ∂

∂xirjr
|p ⊗ dxk1l1 ⊗ · · · ⊗ dxksls

for components ti1···irj1···js ∈ R according to Theorems 3.2 and 3.3, where 1 ≤ ih, kh ≤
s(p) and 1 ≤ jh ≤ ih, 1 ≤ lh ≤ kh for 1 ≤ h ≤ r. As a consequence, we obtain that

T rs (p, M̃) = TpM̃ ⊗ · · · ⊗ TpM̃︸ ︷︷ ︸
r

⊗T ∗
p M̃ ⊗ · · · ⊗ T ∗

p M̃︸ ︷︷ ︸
s

.

Since dimTpM̃ = dimT ∗
p M̃ = ŝ(p) +

s(p)∑
i=1

(ni− ŝ(p)) by Theorems 3.2 and 3.3, we

also know that

dimT rs (p, M̃) = (ŝ(p) +

s(p)∑

i=1

(ni − ŝ(p)))r+s. �

Definition 3.7 Let T rs (M̃) =
⋃
p∈fM T rs (p, M̃) for a smoothly combinatorial manifold

M̃ = M̃(n1, n2, · · · , nm). A tensor filed of type (r, s) on M̃(n1, n2, · · · , nm) is a

mapping τ : M̃(n1, n2, · · · , nm) → T rs (M̃) such that τ(p) ∈ T rs (p, M̃) for ∀p ∈
M̃(n1, n2, · · · , nm).

A k-form on M̃(n1, n2, · · · , nm) is a tensor field ω ∈ T r0 (M̃). Denoted all k-form

of M̃(n1, n2, · · · , nm) by Λk(M̃) and Λ(M̃) =
bs(p)−s(p)bs(p)+Ps(p)

i=1 ni⊕
k=0

Λk(M̃), X (M̃) =
⋃
p∈fM Xp.

Similar to the classical differential geometry, we can also define operations ϕ∧ψ
for ∀ϕ, ψ ∈ T rs (M̃), [X, Y ] for ∀X, Y ∈ X (M̃) and obtain a Lie algebra under the
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commutator. For the exterior differentiations on combinatorial manifolds, we find

results following.

Theorem 3.5 Let M̃ be a smoothly combinatorial manifold. Then there is a unique

exterior differentiation d̃ : Λ(M̃) → Λ(M̃) such that for any integer k ≥ 1, d̃(Λk) ⊂
Λk+1(M̃) with conditions following hold.

(1) d̃ is linear, i.e., for ∀ϕ, ψ ∈ Λ(M̃), λ ∈ R,

d̃(ϕ+ λψ) = d̃ϕ ∧ ψ + λd̃ψ

and for ϕ ∈ Λk(M̃), ψ ∈ Λ(M̃),

d̃(ϕ ∧ ψ) = d̃ϕ+ (−1)kϕ ∧ d̃ψ.

(2) For f ∈ Λ0(M̃), d̃f is the differentiation of f .

(3) d̃2 = d̃ · d̃ = 0.

(4) d̃ is a local operator, i.e., if U ⊂ V ⊂ M̃ are open sets and α ∈ Λk(V ), then

d̃(α|U) = (d̃α)|U .

Proof Let (U ; [ϕ]), where [ϕ] : p →
s(p)⋃
i=1

[ϕ](p) = [ϕ(p)] be a local chart for

a point p ∈ M̃ and α = α(µ1ν1)···(µkψk)dx
µ1ν1 ∧ · · · ∧ dxµkνk with 1 ≤ νj ≤ nµi

for

1 ≤ µi ≤ s(p), 1 ≤ i ≤ k. We first establish the uniqueness. If k = 0, the

local formula d̃α = ∂α
∂xµν dx

µν applied to the coordinates xµν with 1 ≤ νj ≤ nµi
for

1 ≤ µi ≤ s(p), 1 ≤ i ≤ k shows that the differential of xµν is 1-form dxµν . From (3),

d̃(xµν) = 0, which combining with (1) shows that d̃(dxµ1ν1 ∧ · · · ∧ dxµkνk ) = 0. This,

again by (1),

d̃α =
∂α(µ1ν1)···(µkψk)

∂xµν
dxµν ∧ dxµ1ν1 ∧ · · · ∧ dxµkνk . (3.3)

and d̃ is uniquely determined on U by properties (1) − (3) and by (4) on any open

subset of M̃ .

For existence, define on every local chart (U ; [ϕ]) the operator d̃ by (3.3). Then

(2) is trivially verified as is R-linearity. If β = β(σ1ς1)···(σlςl)dx
σ1ς1∧· · ·∧dxσlςl ∈ Λl(U),

then
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d̃(α ∧ β) = d̃(α(µ1ν1)···(µkψk)β(σ1ς1)···(σlςl)dx
µ1ν1 ∧ · · · ∧ dxµkνk ∧ dxσ1ς1 ∧ · · · ∧ dxσlςl)

= (
∂α(µ1ν1)···(µkψk)

∂xµν
β(σ1ς1)···(σlςl) + α(µ1ν1)···(µkψk)

× ∂β(σ1ς1)···(σlςl)

∂xµν
)dxµ1ν1 ∧ · · · ∧ dxµkνk ∧ dxσ1ς1 ∧ · · · ∧ dxσlςl

=
∂α(µ1ν1)···(µkψk)

∂xµν
dxµ1ν1 ∧ · · · ∧ dxµkνk ∧ β(σ1ς1)···(σlςl)dx

σ1ς1 ∧ · · · ∧ dxσlςl

+ (−1)kα(µ1ν1)···(µkψk)dx
µ1ν1 · · · ∧ dxµkνk ∧ ∂β(σ1ς1)···(σlςl)

∂xµν
)dxσ1ς1 · · · ∧ dxσlςl

= d̃α ∧ β + (−1)kα ∧ d̃β

and (1) is verified. For (3), symmetry of the second partial derivatives shows that

d̃(d̃α) =
∂2α(µ1ν1)···(µkψk)

∂xµν∂xσς
dxµ1ν1 ∧ · · · ∧ dxµkνk ∧ dxσ1ς1 ∧ · · · ∧ dxσlςl) = 0.

Thus, in every local chart (U ; [ϕ]), (3.3) defines an operator d̃ satisfying (1)-(3). It

remains to be shown that d̃ really defines an operator d̃ on any open set and (4)

holds. To do so, it suffices to show that this definition is chart independent. Let d̃′

be the operator given by (3.3) on a local chart (U ′; [ϕ′]), where U
⋂
U ′ 6= ∅. Since d̃′

also satisfies (1) − (3) and the local uniqueness has already been proved, d̃′α = d̃α

on U
⋂
U ′. Whence, (4) thus follows. �

Corollary 3.2 Let M̃ = M̃(n1, n2, · · · , nm) be a smoothly combinatorial manifold

and dM : Λk(M) → Λk+1(M) the unique exterior differentiation on M with condi-

tions following hold for M ∈ V (Gl[M̃(n1, n2, · · · , nm)]) where, 1 ≤ l ≤ min{n1, n2,

· · · , nm}.
(1) dM is linear, i.e., for ∀ϕ, ψ ∈ Λ(M), λ ∈ R,

dM(ϕ+ λψ) = dMϕ + λdMψ.

(2) For ϕ ∈ Λr(M), ψ ∈ Λ(M),

dM(ϕ ∧ ψ) = dMϕ+ (−1)rϕ ∧ dMψ.

(3) For f ∈ Λ0(M), dMf is the differentiation of f .

(4) d2
M = dM · dM = 0.

Then
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d̃|M = dM .

Proof By Theorem 2.4.5 in [1], dM exists uniquely for any smoothly manifold

M . Now since d̃ is a local operator on M̃ , i.e., for any open subset Uµ ⊂ M̃ ,

d̃(α|Uµ) = (d̃α)|Uµ and there is an index set J such that M =
⋃
µ∈J

Uµ, we finally get

that

d̃|M = dM

by the uniqueness of d̃ and dM . �

Theorem 3.6 Let ω ∈ Λ1(M̃). Then for ∀X, Y ∈ X (M̃),

d̃ω(X, Y ) = X(ω(Y )) − Y (ω(X)) − ω([X, Y ]).

Proof Denote by α(X, Y ) the right hand side of the formula. We know that

α : M̃ × M̃ → C∞(M̃). It can be checked immediately that α is bilinear and for

∀X, Y ∈ X (M̃), f ∈ C∞(M̃),

α(fX, Y ) = fX(ω(Y )) − Y (ω(fX)) − ω([fX, Y ])

= fX(ω(Y )) − Y (fω(X)) − ω(f [X, Y ] − Y (f)X)

= fα(X, Y )

and

α(X, fY ) = −α(fY,X) = −fα(Y,X) = fα(X, Y )

by definition. Accordingly, α is a differential 2-form. We only need to prove that

for a local chart (U, [ϕ]),

α|U = d̃ω|U .
In fact, assume ω|U = ωµνdx

µν . Then

(d̃ω)|U = d̃(ω|U) =
∂ωµν
∂xσς

dxσς ∧ dxµν

=
1

2
(
∂ωµν
∂xσς

− ∂ωςτ
∂xµν

)dxσς ∧ dxµν .



184 Linfan Mao

On the other hand, α|U = 1
2
α( ∂

∂xµν ,
∂

∂xσς )dx
σς ∧ dxµν , where

α(
∂

∂xµν
,
∂

∂xσς
) =

∂

∂xσς
(ω(

∂

∂xµν
)) − ∂

∂xµν
(ω(

∂

∂xσς
))

−ω([
∂

∂xµν
− ∂

∂xσς
])

=
∂ωµν
∂xσς

− ∂ωσς
∂xµν

.

Therefore, d̃ω|U = α|U . �

3.3 Connections on tensors

We introduce connections on tensors of smoothly combinatorial manifolds by the

next definition.

Definition 3.8 Let M̃ be a smoothly combinatorial manifold. A connection on

tensors of M̃ is a mapping D̃ : X (M̃) × T rs M̃ → T rs M̃ with D̃Xτ = D̃(X, τ) such

that for ∀X, Y ∈ X M̃ , τ, π ∈ T rs (M̃),λ ∈ R and f ∈ C∞(M̃),

(1) D̃X+fY τ = D̃Xτ + fD̃Y τ ; and D̃X(τ + λπ) = D̃Xτ + λD̃Xπ;

(2) D̃X(τ ⊗ π) = D̃Xτ ⊗ π + σ ⊗ D̃Xπ;

(3) for any contraction C on T rs (M̃),

D̃X(C(τ)) = C(D̃Xτ).

We get results following for these connections on tensors of smoothly combina-

torial manifolds.

Theorem 3.7 Let M̃ be a smoothly combinatorial manifold. Then there exists a

connection D̃ locally on M̃ with a form

(D̃Xτ)|U = Xσςτ
(µ1ν1)(µ2ν2)···(µrνr)
(κ1λ1)(κ2λ2)···(κsλs),(µν)

∂

∂xµ1ν1
⊗ · · · ⊗ ∂

∂xµrνr
⊗ dxκ1λ1 ⊗ · · · ⊗ dxκsλs

for ∀Y ∈ X (M̃) and τ ∈ T rs (M̃), where
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τ
(µ1ν1)(µ2ν2)···(µrνr)
(κ1λ1)(κ2λ2)···(κsλs),(µν) =

∂τ
(µ1ν1)(µ2ν2)···(µrνr)
(κ1λ1)(κ2λ2)···(κsλs)

∂xµν

+
r∑

a=1

τ
(µ1ν1)···(µa−1νa−1)(σς)(µa+1νa+1)···(µrνr)
(κ1λ1)(κ2λ2)···(κsλs)

Γµaνa

(σς)(µν)

−
s∑

b=1

τ
(µ1ν1)(µ2ν2)···(µrνr)
(κ1λ1)···(κb−1λb−1)(µν)(σb+1ςb+1)···(κsλs)Γ

σς
(σbςb)(µν)

and Γκλ(σς)(µν) is a function determined by

D̃ ∂
∂xµν

∂

∂xσς
= Γκλ(σς)(µν)

∂

∂xσς

on (Up; [ϕp]) = (Up; x
µν) of a point p ∈ M̃ , also called the coefficient on a connection.

Proof We first prove that any connection D̃ on smoothly combinatorial man-

ifolds M̃ is local by definition, namely for X1, X2 ∈ X (M̃) and τ1, τ2 ∈ T rs (M̃), if

X1|U = X2|U and τ1|U = τ2|U , then (D̃X1τ1)U = (D̃X2τ2)U . For this objective, we

need to prove that (D̃X1τ1)U = (D̃X1τ2)U and (D̃X1τ1)U = (D̃X2τ1)U . Since their

proofs are similar, we check the first only.

In fact, if τ = 0, then τ = τ − τ . By the definition of connection,

D̃Xτ = D̃X(τ − τ) = D̃Xτ − D̃Xτ = 0.

Now let p ∈ U . Then there is a neighborhood Vp of p such that V is compact and

V ⊂ U . By a result in topology, i.e., for two open sets Vp, U of Rbs(p)−s(p)bs(p)+n1+···+ns(p)

with compact Vp and Vp ⊂ U , there exists a function f ∈ C∞(Rbs(p)−s(p)bs(p)+n1+···+ns(p))

such that 0 ≤ f ≤ 1 and f |Vp ≡ 1, f |
R
bs(p)−s(p)bs(p)+n1+···+ns(p)\U ≡ 0, we find that

f · (τ2 − τ1) = 0. Whence, we know that

0 = D̃X1((f · (τ2 − τ1))) = X1(f)(τ2 − τ1) + f(D̃X1τ2 − D̃X1τ1).

As a consequence, we get that (D̃X1τ1)V = (D̃X1τ2)V , particularly, (D̃X1τ1)p =

(D̃X1τ2)p. For the arbitrary choice of p, we get that (D̃X1τ1)U = (D̃X1τ2)U finally.

The local property of D̃ enables us to find an induced connection D̃U : X (U)×
T rs (U) → T rs (U) such that D̃U

X|U (τ |U) = (D̃Xτ)|U for ∀X ∈ X (M̃) and τ ∈ T rs M̃ .

Now for ∀X1, X2 ∈ X (M̃), ∀τ1, τ2 ∈ T rs (M̃) with X1|Vp = X2|Vp and τ1|Vp = τ2|Vp,

define a mapping D̃U : X (U) × T rs (U) → T rs (U) by
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(D̃X1τ1)|Vp = (D̃X1τ2)|Vp

for any point p ∈ U . Then since D̃ is a connection on M̃ , it can be checked easily

that D̃U satisfies all conditions in Definition 3.8. Whence, D̃U is indeed a connection

on U .

Now we calculate the local form on a chart (Up, [ϕp]) of p. Since

D̃ ∂
∂xµν

= Γκλ(σς)(µν)

∂

∂xσς
,

it can find immediately that

D̃ ∂
∂xµν

dxκλ = −Γκλ(σς)(µν)dx
σς

by Definition 3.8. Therefore, we find that

(D̃Xτ)|U = Xσςτ
(µ1ν1)(µ2ν2)···(µrνr)
(κ1λ1)(κ2λ2)···(κsλs),(µν)

∂

∂xµ1ν1
⊗ · · · ⊗ ∂

∂xµrνr
⊗ dxκ1λ1 ⊗ · · · ⊗ dxκsλs

with

τ
(µ1ν1)(µ2ν2)···(µrνr)
(κ1λ1)(κ2λ2)···(κsλs),(µν)

=
∂τ

(µ1ν1)(µ2ν2)···(µrνr)
(κ1λ1)(κ2λ2)···(κsλs)

∂xµν

+
r∑

a=1

τ
(µ1ν1)···(µa−1νa−1)(σς)(µa+1νa+1)···(µrνr)
(κ1λ1)(κ2λ2)···(κsλs)

Γµaνa

(σς)(µν)

−
s∑

b=1

τ
(µ1ν1)(µ2ν2)···(µrνr)
(κ1λ1)···(κb−1λb−1)(µν)(σb+1ςb+1)···(κsλs)

Γσς(σbςb)(µν)
.

This completes the proof. �

Theorem 3, 8 Let M̃ be a smoothly combinatorial manifold with a connection D̃.

Then for ∀X, Y ∈ X (M̃),

T̃ (X, Y ) = D̃XY − D̃YX − [X, Y ]

is a tensor of type (1, 2) on M̃ .

Proof By definition, it is clear that T̃ : X (M̃)×X (M̃) → X (M̃) is antisym-

metrical and bilinear. We only need to check it is also linear on each element in

C∞(M̃) for variables X or Y . In fact, for ∀f ∈ C∞(M̃),
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T̃ (fX, Y ) = D̃fXY − D̃Y (fX) − [fX, Y ]

= fD̃XY − (Y (f)X + fD̃YX)

− (f [X, Y ] − Y (f)X) = fT̃ (X, Y ).

and

T̃ (X, fY ) = −T̃ (fY,X) = −fT̃ (Y,X) = fT̃ (X, Y ). �

Notice that

T (
∂

∂xµν
,
∂

∂xσς
) = D̃ ∂

∂xµν

∂

∂xσς
− D̃ ∂

∂xσς

∂

∂xµν

= (Γκλ(µν)(σς) − Γκλ(σς)(µν))
∂

∂xκλ

under a local chart (Up; [ϕp]) of a point p ∈ M̃ . If T ( ∂
∂xµν ,

∂
∂xσς ) ≡ 0, we call T

torsion-free. This enables us getting the next useful result.

Theorem 3.9 A connection D̃ on tensors of a smoothly combinatorial manifold M̃

is torsion-free if and only if Γκλ(µν)(σς) = Γκλ(σς)(µν).

Now we turn our attention to the case of s = r = 1. Similarly, a combinatorially

Riemannian geometry is defined in the next definition.

Definition 3.9 Let M̃ be a smoothly combinatorial manifold and g ∈ A2(M̃) =⋃
p∈fM T 0

2 (p, M̃). If g is symmetrical and positive, then M̃ is called a combinatorially

Riemannian manifold, denoted by (M̃, g). In this case, if there is a connection D̃

on (M̃, g) with equality following hold

Z(g(X, Y )) = g(D̃Z , Y ) + g(X, D̃ZY ) (3.4)

then M̃ is called a combinatorially Riemannian geometry, denoted by (M̃, g, D̃).

We get a result for connections on smoothly combinatorial manifolds similar to

that of Riemannian geometry.

Theorem 3.10 Let (M̃, g) be a combinatorially Riemannian manifold. Then there

exists a unique connection D̃ on (M̃, g) such that (M̃, g, D̃) is a combinatorially

Riemannian geometry.
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Proof By definition, we know that

D̃Zg(X, Y ) = Z(g(X, Y )) − g(D̃ZX, Y ) − g(X, D̃ZY )

for a connection D̃ on tensors of M̃ and ∀Z ∈ X (M̃). Thereby, the equality (3.4)

is equivalent to that of D̃Zg = 0 for ∀Z ∈ X (M̃), namely D̃ is torsion-free.

Not loss of generality, assume g = g(µν)(σς)dx
µνdxσς in a local chart (Up; [ϕp]) of

a point p, where g(µν)(σς) = g( ∂
∂xµν ,

∂
∂xσς ). Then we find that

D̃g = (
∂g(µν)(σς)

∂xκλ
− g(ζη)(σς)Γ

ζη

(µν)(σς) − g(µν)(ζη)Γ
ζη

(σς)(κλ))dx
µν ⊗ dxσς ⊗ dxκλ.

Therefore, we get that

∂g(µν)(σς)

∂xκλ
= g(ζη)(σς)Γ

ζη

(µν)(σς) + g(µν)(ζη)Γ
ζη

(σς)(κλ) (3.5)

if D̃Zg = 0 for ∀Z ∈ X (M̃). The formula (3.5) enables us to get that

Γκλ(µν)(σς) =
1

2
g(κλ)(ζη)(

∂g(µν)(ζη)

∂xσς
+
∂g(ζη)(σς)

∂xµν
− ∂g(µν)(σς)

∂xζη
),

where g(κλ)(ζη) is an element in the matrix inverse of [g(µν)(σς)].

Now if there exists another torsion-free connection D̃∗ on (M̃, g) with

D̃∗
∂

∂xµν
= Γ∗κλ

(σς)(µν)

∂

∂xκλ
,

then we must get that

Γ∗κλ
(µν)(σς) =

1

2
g(κλ)(ζη)(

∂g(µν)(ζη)

∂xσς
+
∂g(ζη)(σς)

∂xµν
− ∂g(µν)(σς)

∂xζη
).

Accordingly, D̃ = D̃∗. Whence, there are at most one torsion-free connection D̃ on

a combinatorially Riemannian manifold (M̃, g).

For the existence of torsion-free connection D̃ on (M̃, g), let Γκλ(µν)(σς) = Γκλ(σς)(µν)

and define a connection D̃ on (M̃, g) such that

D̃ ∂
∂xµν

= Γκλ(σς)(µν)

∂

∂xκλ
,

then D̃ is torsion-free by Theorem 3.9. This completes the proof. �

Corollary 3.3([2]) For a Riemannian manifold (M, g), there exists only one torsion-

free connection D, i.e.,
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DZg(X, Y ) = Z(g(X, Y )) − g(DZX, Y ) − g(X,DZY ) ≡ 0

for ∀X, Y, Z ∈ X (M).

3.4 Minkowski Norms

These Minkowski norms are the fundamental in Finsler geometry. Certainly, they

can be also generalized on smoothly combinatorial manifolds.

Definition 3.10 A Minkowski norm on a vector space V is a function F : V → R

such that

(1) F is smooth on V \{0} and F (v) ≥ 0 for ∀v ∈ V ;

(2) F is 1-homogenous, i.e., F (λv) = λF (v) for ∀λ > 0;

(3) for all y ∈ V \{0}, the symmetric bilinear form gy : V × V → R with

gy(u, v) =
∑

i,j

∂2F (y)

∂yi∂yj

is positive definite for u, v ∈ V .

Denoted by TM̃ =
⋃
p∈fM TpM̃ . Similar to Finsler geometry, we introduce combi-

natorially Finsler geometries on a Minkowski norm defined on TM̃ .

Definition 3.11 A combinatorially Finsler geometry is a smoothly combinatorial

manifold M̃ endowed with a Minkowski norm F̃ on TM̃ , denoted by (M̃ ; F̃ ).

Then we get the following result.

Theorem 3.11 There are combinatorially Finsler geometries.

Proof Let M̃(n1, n2, · · · , nm) be a smoothly combinatorial manifold. Con-

struct Minkowski norms on TM̃(n1, n2, · · · , nm). Let Rn1+n2+···+nm be an eucildean

space. Then there exists a Minkowski norm F (x) = |x| in Rn1+n2+···+nm at least, in

here |x| denotes the euclidean norm on Rn1+n2+···+nm . According to Theorem 3.2,

TpM̃(n1, n2, · · · , nm) is homeomorphic to R
bs(p)−s(p)bs(p)+ni1

+···+nis(p) . Whence there

are Minkowski norms on TpM̃(n1, n2, · · · , nm) for p ∈ Up, where (Up; [ϕp]) is a local

chart.

Notice that the number of manifolds are finite in a smoothly combinatorial

manifold M̃(n1, n2, · · · , nm) and each manifold has a finite cover {(Uα;ϕα)|α ∈ I},
where I is a finite index set. We know that there is a finite cover
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⋃

M∈V (G[fM(n1,n2,··· ,nm)])

{(UMα;ϕMα)|α ∈ IM}.

By the decomposition theorem for unit, we know that there are smooth functions

hMα, α ∈ IM such that

∑

M∈V (G[fM(n1,n2,··· ,nm)])

∑

α∈IM

hMα = 1 with 0 ≤ hMα ≤ 1.

Now we choose a Minkowski norm F̃Mα on TpMα for ∀p ∈ UMα. Define

F̃Mα =





hMαF̃Mα, if p ∈ UMα,

0, if p 6∈ UMα

for ∀p ∈ M̃ . Now let

F̃ =
∑

M∈V (G[fM(n1,n2,··· ,nm)])

∑

α∈I
F̃Mα.

Then F̃ is a Minkowski norm on TM̃(n1, n2, · · · , nm) since it can be checked imme-

diately that all conditions (1) − (3) in Definition 3.10 hold. �

For the relation of combinatorially Finsler geometries with these Smarandache

geometries, we obtain the next consequence.

Theorem 3.12 A combinatorially Finsler geometry (M̃(n1, n2, · · · , nm); F̃ ) is a

Smarandache geometry if m ≥ 2.

Proof Notice that if m ≥ 2, then M̃(n1, n2, · · · , nm) is combined by at least

two manifolds Mn1 and Mn2 with n1 6= n2. By definition, we know that

Mn1 \Mn2 6= ∅ and Mn2 \Mn1 6= ∅.

Now the axiom there is an integer n such that there exists a neighborhood homeo-

morphic to a open ball Bn for any point in this space is Smarandachely denied, since

for points in Mn1 \Mn2 , each has a neighborhood homeomorphic to Bn1 , but each

point in Mn2 \Mn1 has a neighborhood homeomorphic to Bn2 . �

Theorems 3.11 and 3.12 imply inclusions in Smarandache geometries for classi-

cal geometries in the following.
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Corollary 3.5 There are inclusions among Smarandache geometries, Finsler ge-

ometry, Riemannian geometry and Weyl geometry:

{Smarandache geometries} ⊃ {combinatorially F insler geometries}
⊃ {Finsler geometry} and {combinatorially Riemannian geometries}
⊃ {Riemannian geometry} ⊃ {Weyl geometry}.

Proof Letm = 1. Then a combinatorially Finsler geometry (M̃(n1, n2, · · · , nm); F̃ )

is nothing but just a Finsler geometry. Applying Theorems 3.11 and 3.12 to this

special case, we get these inclusions as expected. �

Corollary 3.6 There are inclusions among Smarandache geometries, combinatori-

ally Riemannian geometries and Kähler geometry:

{Smarandache geometries} ⊃ {combinatorially Riemannian geometries}
⊃ {Riemannian geometry}
⊃ {Kähler geometry}.

Proof Let m = 1 in a combinatorial manifold M̃(n1, n2, · · · , nm) and applies

Theorems 3.10 and 3.12, we get inclusions

{Smarandache geometries} ⊃ {combinatorially Riemannian geometries}
⊃ {Riemannian geometry}.

For the Kähler geometry, notice that any complex manifold Mn
c is equal to a

smoothly real manifold M2n with a natural base { ∂
∂xi ,

∂
∂yi} for TpM

n
c at each point

p ∈Mn
c . Whence, we get

{Riemannian geometry} ⊃ {Kähler geometry}. �

§4. Further Discussions

4.1 Embedding problems Whitney had shown that any smooth manifold Md can

be embedded as a closed submanifold of R2d+1 in 1936 ([1]). The same embedding
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problem for finitely combinatorial manifold in an euclidean space is also interesting.

Since M̃ is finite, by applying Whitney theorem, we know that there is an integer

n(M̃), n(M̃) < +∞ such that M̃ can be embedded as a closed submanifold in

Rn(fM). Then what is the minimum dimension of euclidean spaces embeddable a

given finitely combinatorial manifold M̃? Wether can we determine it for some

combinatorial manifolds with a given graph structure, such as those of complete

graphs Kn, circuits P n or cubic graphs Qn?

Conjecture 4.1 The minimum dimension of euclidean spaces embeddable a finitely

combinatorial manifold M̃ is

2 min
p∈fM{ŝ(p) − s(p)ŝ(p) + ni1 + ni2 + · · ·+ nis(p)

} + 1.

4.2 D-dimensional holes For these closed 2-manifolds S, it is well-known that

χ(S) =





2 − 2p(S), if S is orientable,

2 − q(S). if Sis non − orientable.

with p(S) or q(S) the orientable genus or non-orientable genus of S, namely 2-

dimensional holes adjacent to S. For general case of n-manifolds M , we know that

χ(M) =
∞∑

k=0

(−1)kdimHk(M),

where dimHk(M) is the rank of these k-dimensional homolopy groups Hk(M) in

M , namely the number of k-dimensional holes adjacent to the manifold M . By

the definition of combinatorial manifolds, some k-dimensional holes adjacent to a

combinatorial manifold are increased. Then what is the relation between the Euler-

Poincare characteristic of a combinatorial manifold M̃ and the i-dimensional holes

adjacent to M̃? Wether can we find a formula likewise the Euler-Poincare formula?

Calculation shows that even for the case of n = 2, the situation is complex. For

example, choose n different orientable 2-manifolds S1, S2, · · · , Sn and let them inter-

sects one after another at n different points in R3. We get a combinatorial manifold

M̃ . Calculation shows that

χ(M̃) = (χ(S1) + χ(S2) + · · ·+ χ(Sn)) − n

by Theorem 2.9. But it only increases one 2-holes. What is the relation of 2-

dimensional holes adjacent to M̃?
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4.3 Local properties Although a finitely combinatorial manifold M̃ is not ho-

mogenous in general, namely the dimension of local charts of two points in M̃

maybe different, we have still constructed global operators such as those of exterior

differentiation d̃ and connection D̃ on T rs M̃ . A operator Õ is said to be local on a

subset W ⊂ T rs M̃ if for any local chart (Up, [ϕp]) of a point p ∈W ,

Õ|Up(W ) = Õ(W )Up.

Of course, nearly all existent operators with local properties on T rs M̃ in Finsler

or Riemannian geometries can be reconstructed in these combinatorially Finsler

or Riemannian geometries and find the local forms similar to those in Finsler or

Riemannian geometries.

4.4 Global properties To find global properties on manifolds is a central task

in classical differential geometry. The same is true for combinatorial manifolds.

In classical geometry on manifolds, some global results, such as those of de Rham

theorem and Atiyah-Singer index theorem,..., etc. are well-known. Remember that

the pth de Rham cohomology group on a manifold M and the index IndD of a

Fredholm operator D : Hk(M,E) → L2(M,F ) are defined to be a quotient space

Hp(M) =
Ker(d : Λp(M) → Λp+1(M))

Im(d : Λp−1(M) → Λp(M))
.

and an integer

IndD = dimKer(D) − dim(
L2(M,F )

ImD )

respectively. The de Rham theorem and the Atiyah-Singer index theorem respec-

tively conclude that

for any manifold M , a mapping ϕ : Λp(M) → Hom(Πp(M),R) induces a

natural isomorphism ϕ∗ : Hp(M) → Hn(M ;R) of cohomology groups, where Πp(M)

is the free Abelian group generated by the set of all p-simplexes in M

and

IndD = IndT (σ(D)),

where σ(D)) : T ∗M → Hom(E,F ) and IndT (σ(D)) is the topological index of

σ(D). Now the questions for these finitely combinatorial manifolds are given in the

following.
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(1) Is the de Rham theorem and Atiyah-Singer index theorem still true for

finitely combinatorial manifolds? If not, what is its modified forms?

(2) Check other global results for manifolds whether true or get their new mod-

ified forms for finitely combinatorial manifolds.
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