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Abstract For any positive integer n, let Sdf(n) denotes the Smarandance double factorial
function, then Sdf(n) is defined as least positive integer m such that m!! is
divisible by n. In this paper, we study the mean value properties of the additive
analogue of Sdf(n) and give an interesting mean value formula for it.

Keywords: Smarandance function; Additive Analogue; Mean value formula

§1. Introduction and result
For any positive integer n, let Sdf(n) denotes the Smarandance double fac-

torial function, then Sdf(n) defined the least positive integer n such that m!!
is divisible by n, where

m!! =
{

2 · 4 · · ·m, if 2|m;
1 · 3 · · ·m, if 2†m.

In reference [2], Professor Jozsef Sandor defined the following analogue of
Smarandance double factorial function as:

Sdf1(2x) = min{2m ∈ N : 2x ≤ (2m)!!}, x ∈ (1,∝),

Sdf1(2x + 1) = min{2m + 1 ∈ N : (2x + 1) ≤ (2m + 1)!!}, x ∈ (1,∝),
which is defined on a subset of real numbers. Clearly Sdf1(n) = m if

x ∈ ((m− 2)!!,m!!] for m ≥ 2, therefore this function is defined for x ≥ 1.
About the arithmetical properties of Sdf(n), many people had ever studied

it. But for the mean value properties of Sdf1(n), it seems that no one have
studied before. The main purpose of this paper is to study the mean value
properties of Sdf1(n), and obtain an interesting mean value formula for it.
That is, we shall prove the following:

Theorem. For any real number x ≥ 2, we have the asymptotic formula
∑

n≤x

Sdf1(n) =
2x lnx

ln lnx
+ O

(
x(lnx)(ln ln lnx)

(ln lnx)2

)
.
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§2. Proof of the theorem
In this section, we shall complete the proof of the theorem. First we need

the following one simple Lemma. That is,

Lemma. For any fixed positive integer m and n with (m−2)!! < n ≤ m!!,
we have the asymptotic formula

m =
2 ln n

ln lnn
+ O

(
(lnn)(ln ln lnn)

(ln lnn)2

)
.

Proof. To complete the proof the Lemma, we separate it into two cases:
(I) If m = 2u, we have (2u − 2)!! < n ≤ (2u)!!. Taking the logistic

computation in the two sides of the inequality, we get

(u− 1) ln 2 +
u−1∑

i=1

ln i < lnn ≤ u ln 2 +
u∑

i=1

ln i. (1)

Then using the Euler’s summation formula we have

u∑

i=1

ln i =
∫ u

1
ln tdt +

∫ u

1
(t− [t])(ln t)′dt = u lnu− u + O(lnu) (2)

and
u−1∑

i=1

ln i =
u∑

i=1

ln i + O(lnu) = u lnu− u + O(lnu). (3)

Combining (1), (2) and (3), we can easily deduce that

lnn = u lnu + (ln 2− 1)u + O(lnu). (4)

So

u =
lnn

lnu + (ln 2− 1)
+ O(1). (5)

Similarly, we continue taking the logistic computation in two sides of (5), then
we also have

lnu = ln lnn + O(ln lnu) (6)

and
ln lnu = O(ln ln lnn). (7)

Hence, by (5), (6) and (7) we have

u =
lnn

ln lnn
+ O

(
(lnn)(ln ln lnn)

(ln lnn)2

)
.

This completes the proof of the first case.
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(II) If m = 2u+1, we have (2u−1)!! < n ≤ (2u+1)!!. Taking the logistic
computation in the two sides of the inequality, we get

2u∑

i=1

ln i− (u ln 2 +
u∑

i=1

ln i) < lnn ≤
2u+1∑

i=1

ln i− (u ln 2 +
u∑

i=1

ln i). (8)

Then using the Euler’s summation formula we have

2u∑

i=1

ln i =
∫ 2u

1
ln tdt+

∫ 2u

1
(t−[t])(ln t)′dt = 2u lnu+2(ln 2−1)u+O(lnu)

(9)
and

2u+1∑

i=1

ln i =
2u∑

i=1

ln i+O(ln 2u+1) = 2u lnu+2(ln 2− 1)u+O(lnu). (10)

From (2), (3), (8), (9) and (10) we have

lnn = u lnu + (ln 2− 1)u + O(lnu).

Therefore, we may obtain (5).
Using the similar method on the above, we may have

u =
lnn

ln lnn
+ O

(
(lnn)(ln ln lnn)

(ln lnn)2

)
.

This completes the proof of the second case.
Combining the above two cases, we can easily get

m =
2 ln n

ln lnn
+ O

(
(lnn)(ln ln lnn)

(ln lnn)2

)
.

This completes the proof of Lemma.
Now we use the above Lemma to complete the proof of Theorem. For any

real number x ≥ 2, by the definition of Sdf1(n) and the above Lemma we
have

∑

n≤x

Sdf1(n) =
∑

n≤x

(m−2)!!<n≤m!!

m

=
∑

n≤x

(
2 ln n

ln lnn
+ O

(
(lnn)(ln ln lnn)

(ln lnn)2

))

= 2
∑

n≤x

lnn

ln lnn
+ O

(
x(lnx)(ln ln lnx)

(ln lnx)2

)
. (11)

By the Euler’s summation formula, we deduce that
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∑

n≤x

lnn

ln lnn
=

∫ x

2

ln t

ln ln t
dt +

∫ x

2
(t− [t])(

ln t

ln ln t
)′dt +

lnx

ln lnx
(x− [x])

=
x lnx

ln lnx
+ O

(
x

ln lnx

)
. (12)

Therefore, from (11) and (12) we have

∑

n≤x

Sdf1(n) =
2x lnx

ln lnx
+ O

(
x(lnx)(ln ln lnx)

(ln lnx)2

)
.

This completes the proof of Theorem.
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