On the Smarandache function and the Fermat number

Jinrui Wang

Department of Mathematics, Northwest University, Xi'an, Shaanxi, P.R.China

Abstract For any positive integer n, the famous F.Smarandache function S(n) is defined as the smallest positive integer m such that $n \mid m!$. That is, $S(n) = \min\{m : n \mid m!, n \in N\}$. The main purpose of this paper is using the elementary method to study the estimate problem of $S(F_n)$, and give a sharper lower bound estimate for it, where $F_n = 2^{2^n} + 1$ is called the Fermat number.

Keywords F. Smarandache function, the Fermat number, lower bound estimate, elementary method.

§1. Introduction and result

For any positive integer n, the famous F.Smarandache function S(n) is defined as the smallest positive integer m such that $n \mid m!$. That is, $S(n) = \min\{m: n \mid m!, n \in N\}$. For example, the first few values of S(n) are S(1) = 1, S(2) = 2, S(3) = 3, S(4) = 4, S(5) = 5, S(6) = 3, S(7) = 7, S(8) = 4, S(9) = 6, S(10) = 5, S(11) = 11, S(12) = 4, \cdots . About the elementary properties of S(n), many authors had studied it, and obtained some interesting results, see references [1], [2], [3], [4] and [5]. For example, Lu Yaming [2] studied the solutions of an equation involving the F.Smarandache function S(n), and proved that for any positive integer $k \geq 2$, the equation

$$S(m_1 + m_2 + \dots + m_k) = S(m_1) + S(m_2) + \dots + S(m_k)$$

has infinite group positive integer solutions (m_1, m_2, \cdots, m_k) .

Dr. Xu Zhefeng [3] studied the value distribution problem of S(n), and proved the following conclusion:

Let P(n) denotes the largest prime factor of n, then for any real number x > 1, we have the asymptotic formula

$$\sum_{n \le x} (S(n) - P(n))^2 = \frac{2\zeta(\frac{3}{2})x^{\frac{3}{2}}}{3\ln x} + O\left(\frac{x^{\frac{3}{2}}}{\ln^2 x}\right),$$

where $\zeta(s)$ denotes the Riemann zeta-function.

Chen Guohui [4] studied the solvability of the equation

$$S^{2}(x) - 5S(x) + p = x, (1)$$

26 Jinrui Wang No. 2

and proved the following conclusion:

Let p be a fixed prime. If p=2, then the equation (1) has no positive integer solution; If p=3, then the equation (1) has only one positive integer solution x=9; If p=5, then the equation (1) has only two positive integer solutions x=1, 5; If p=7, then the equation (1) has only two positive integer solutions x=21, 483. If $p\geq 11$, then the equation (1) has only one positive integer solution x=p(p-4).

Le Maohua [5] studied the lower bound of $S(2^{p-1}(2^p-1))$, and proved that for any odd prime p, we have the estimate:

$$S(2^{p-1}(2^p-1)) \ge 2p+1.$$

Recently, in a still unpublished paper, Su Juanli improved the above lower bound as 6p + 1. That is, she proved that for any prime $p \ge 7$, we have the estimate

$$S(2^{p-1}(2^p - 1)) \ge 6p + 1.$$

The main purpose of this paper is using the elementary method to study the estimate problem of $S(F_n)$, and give a sharper lower bound estimate for it, where $F_n = 2^{2^n} + 1$ is the Fermat number. That is, we shall prove the following:

Theorem. For any positive integer $n \geq 3$, we have the estimate

$$S\left(F_n\right) \ge 8 \cdot 2^n + 1,$$

where $F_n = 2^{2^n} + 1$ is called the Fermat number.

§2. Proof of the theorem

In this section, we shall complete the proof of our theorem directly. First note that the Fermat number $F_1 = 5$, $F_2 = 17$, $F_3 = 257$, $F_4 = 65537$, they are all prime. So for n = 3 and 4, we have $S(F_3) = 257 \ge 8 \cdot 2^3 + 1$, $S(F_4) = 65537 > 8 \cdot 2^4 + 1$. Now without loss of generality we can assume that $n \ge 5$. If F_n be a prime, then from the properties of S(n) we have $S(F_n) = F_n = 2^{2^n} + 1 \ge 8 \cdot 2^n + 1$. If F_n be a composite number, then let p be any prime divisor of F_n , it is clear that (2, p) = 1. Let m denotes the exponent of 2 modulo p. That is, m denotes the smallest positive integer r such that

$$2^r \equiv 1 \pmod{p}$$
.

Since $p \mid F_n$, so we have $F_n = 2^{2^n} + 1 \equiv 0 \pmod{p}$ or $2^{2^n} \equiv -1 \pmod{p}$, and $2^{2^{n+1}} \equiv 1 \pmod{p}$. From this and the properties of exponent (see Theorem 10.1 of reference [6]) we have $m \mid 2^{n+1}$, so m is a divisor of 2^{n+1} . Let $m = 2^d$, where $1 \leq d \leq n+1$. It is clear that $p \dagger 2^d - 1$, if $d \leq n$. So $m = 2^{n+1}$ and $m \mid \phi(p) = p - 1$. Therefore, $2^{n+1} \mid p - 1$ or

$$p = h \cdot 2^{n+1} + 1. (2)$$

Now we discuss the problem in following three cases:

- (A) If F_n has more than or equal to three distinct prime divisors, then note that $2^{n+1} + 1$ and $2 \cdot 2^{n+1} + 1$ can not be both primes, since one of them can be divided by 3. So from (2) we know that in all prime divisors of F_n , there exists at least one prime divisor p_i such that $p_i = h_i \cdot 2^{n+1} + 1 \ge 4 \cdot 2^{n+1} + 1 = 8 \cdot 2^n + 1$.
 - (B) If F_n has just two distinct prime divisors, without loss of generality we can assume

$$F_n = (2^{n+1} + 1)^{\alpha} \cdot (3 \cdot 2^{n+1} + 1)^{\beta}$$
 or $F_n = (2 \cdot 2^{n+1} + 1)^{\alpha} \cdot (3 \cdot 2^{n+1} + 1)^{\beta}$.

If $F_n = \left(2^{n+1} + 1\right)^{\alpha} \cdot \left(3 \cdot 2^{n+1} + 1\right)^{\beta}$, and $\alpha \ge 4$ or $\beta \ge 2$, then from the properties of S(n) we have the estimate

$$S(F_n) \geq \max \left\{ S\left(\left(2^{n+1} + 1 \right)^{\alpha} \right), \ S\left(\left(3 \cdot 2^{n+1} + 1 \right)^{\beta} \right) \right\}$$

= $\max \left\{ \alpha \cdot \left(2^{n+1} + 1 \right), \ \beta \cdot \left(3 \cdot 2^{n+1} + 1 \right) \right\}$
> $8 \cdot 2^n + 1.$

If $F_n = 2^{2^n} + 1 = (2^{n+1} + 1) \cdot (3 \cdot 2^{n+1} + 1) = 3 \cdot 2^{2n+2} + 2^{n+3} + 1$, then note that $n \ge 5$, we have the congruence

$$0 \equiv 2^{2^n} + 1 - 1 = 3 \cdot 2^{2n+2} + 2^{n+3} \equiv 2^{n+3} \pmod{2^{n+4}}.$$

This is impossible.

If $F_n = 2^{2^n} + 1 = (2^{n+1} + 1)^2 \cdot (3 \cdot 2^{n+1} + 1) = 3 \cdot 2^{3n+3} + 3 \cdot 2^{2n+3} + 3 \cdot 2^{n+1} + 2^{2n+2} + 2^{n+2} + 1$, then we also have

$$0 \equiv 2^{2^n} + 1 - 1 = 3 \cdot 2^{3n+3} + 3 \cdot 2^{2n+3} + 3 \cdot 2^{n+1} + 2^{2n+2} + 2^{n+2} \equiv 3 \cdot 2^{n+1} \pmod{2^{n+2}}.$$

This is still impossible.

If
$$F_n = 2^{2^n} + 1 = (2^{n+1} + 1)^3 \cdot (3 \cdot 2^{n+1} + 1)$$
, then we have
$$2^{2^n} + 1 \equiv (3 \cdot 2^{n+1} + 1)^2 \equiv 3 \cdot 2^{n+2} + 1 \pmod{2^{n+4}}$$

or

$$0 \equiv 2^{2^n} \equiv (3 \cdot 2^{n+1} + 1)^2 - 1 \equiv 3 \cdot 2^{n+2} \pmod{2^{n+4}}.$$

Contradiction with $2^{n+4} \dagger 3 \cdot 2^{n+2}$.

If $F_n = (2 \cdot 2^{n+1} + 1)^{\alpha} \cdot (3 \cdot 2^{n+1} + 1)^{\beta}$, and $\alpha \ge 2$ or $\beta \ge 2$, then from the properties of S(n) we have the estimate

$$S(F_n) \geq \max \left\{ S\left((2 \cdot 2^{n+1} + 1)^{\alpha} \right), \ S\left((3 \cdot 2^{n+1} + 1)^{\beta} \right) \right\}$$

= $\max \left\{ \alpha \cdot (2 \cdot 2^{n+1} + 1), \ \beta \cdot (3 \cdot 2^{n+1} + 1) \right\}$
\geq $8 \cdot 2^n + 1.$

If
$$F_n = 2^{2^n} + 1 = (2 \cdot 2^{n+1} + 1) \cdot (3 \cdot 2^{n+1} + 1)$$
, then we have
$$F_n = 2^{2^n} + 1 = 3 \cdot 2^{2n+3} + 5 \cdot 2^{n+1} + 1.$$

From this we may immediately deduce the congruence

$$0 \equiv 2^{2^n} = 3 \cdot 2^{2n+3} + 5 \cdot 2^{n+1} \equiv 5 \cdot 2^{n+1} \pmod{2^{2n+3}}.$$

This is not possible.

(C) If F_n has just one prime divisor, we can assume that

28 Jinrui Wang No. 2

$$F_n = (2^{n+1} + 1)^{\alpha}$$
 or $F_n = (2 \cdot 2^{n+1} + 1)^{\alpha}$ or $F_n = (3 \cdot 2^{n+1} + 1)^{\alpha}$.

If $F_n = (2^{n+1} + 1)^{\alpha}$, then it is clear that our theorem holds if $\alpha \ge 4$. If $\alpha = 1, 2$ or 3, then from the properties of the congruence we can deduce that $F_n = (2^{n+1} + 1)^{\alpha}$ is not possible.

If $F_n = (2 \cdot 2^{n+1} + 1)^{\alpha}$ or $(3 \cdot 2^{n+1} + 1)^{\alpha}$, then our theorem holds if $\alpha \ge 2$. If $\alpha = 1$, then F_n be a prime, so our theorem also holds.

This completes the proof of Theorem.

References

- [1] F. Smarandache, Only Problems, Not Solutions, Chicago, Xiquan Publishing House, 1993.
- [2] Lu Yaming, On the solutions of an equation involving the Smarandache function. Scientia Magna, **2**(2006), No.1, 76-79.
- [3] Xu Zhefeng, The value distribution property of the Smarandache function, Acta Mathematica Sinica, Chinese Series, **49**(2006), No.5, 1009-1012.
- [4] Chen Guohui and Liu Baoli, An equation involving the F.Smarandache function and its positive integer solutions, Scientia Magna, 4 (2008), No.1, 76-78.
- [5] Le Mohua, A lower bound for $S\left(2^{p-1}(2^p-1)\right)$, Smarandache Notions Journal, $\mathbf{12}(2001)$, No.1-2-3, 217-218.
- [6] T. M. Apostol, Introduction to Analytic Number Theory, New York, Springer-Verlag, 1976.
- [7] Zhang Wenpeng, The elementary number theory (in Chinese), Shaanxi Normal University Press, Xi'an, 2007.
- [8] I. Balacenoiu and V. Seleacu, History of the Smarandache function, Smarandache Notions Journal, ${\bf 10}(1999)$, No.1-2-3,192-201.