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Abstract Charles Ashbacher [1] has posed a number of questions relating to the pseudo-smarandache
function Z(n). In this note we show that the ratio of consecutive values Z(n+1)/Z(n) and Z(n—1)/Z(n)
are unbounded; that Z(2n)/Z(n) is unbounded; that n/Z(n) takes every integer value infinitely often;
and that the > 1/Z(n)® is convergent for any o > 1.

§1. Introduction

We defined the m-th triangular number T'(m) = W Kashihara [2] has defined the

pseudo-Smarandache function Z(n) by
Z(n) = min{m : n|T(m)}.

Charles Ashbacher [1] has posed a number of questions relating to pseudo-Smarandache function
Z(n). In this note, we show that the ratio of consecutive values Z(n)/Z(n—1) and Z(n)/Z(n+1)
are unbounded; that Z(2n)/Z(n) is unbounded; and that n/Z(n) takes every integer value
infinitely often. He notes that the series)_, 1/Z(n)® is divergent for @ = 1 and asks whether it
is convergent for a = 2. He further suggests that the least value « for which the series converges
“ may never be known ” . We resolve this problem by showing that the series converges for all
a> 1.

§2. Some Properties of t he Pseudo-Smarandache Function

We record some elementary properties of the funtion Z.
Lemma 1.(1) If n > T'(m), then Z(n) > m, Z(T(m)) = m.
2)For all n we have \/n < Z(n).
3)Z(n) < 2n —1, and if n is odd, then Z(n) <n — 1.
4)If p is an odd prime dividing n, then Z(n) > p — 1.
5)Z(2%) = 2++1 — 1.
(6)If p is an odd prime, then Z(p*) = p* — 1 and Z(2p*) = p* — 1 or p* according as p* =
or 3 mod 4.

We shall make use of Dirichlet’s Theorem on primes in arithmetic progression in the fol-
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lowing form.
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Lemma 2. Let a,b be coprime integers. Then the arithmetic progression a + bt is prime

for infinitely many values of t.

§3. Successive Values of the Pseudo-Smarandache Function

Using the properties (3) and (5), Ashbacher observed that |Z(2F) — Z(2% —1)| > 2* and so
the difference between the consecutive of Z is unbounded. He asks about the ratio of consecutive
values.

Theorem 1. For any given L > 0 there are infinitely many values of n such that Z(n +
1)/Z(n) > L, and there are infinitely many values of such that Z(n —1)/Z(n) > L .

Proof. Choose k = 3 mod 4, so that T'(k) is even and (k + 1)|(m + 1). There are satisfied
it m = k mod k(k + 1), that is , m = k + k(k + 1)t for some ¢t. We have m(m + 1) =
E(1+ (k+ Dt)(k + 1)(1 + kt), so that if n = k(k + 1)(k + 1)(1 + kt)/2, we have n|T(m).
Now consider n +1 = T(k) + 1 + kT(k)t. We have k|T(k), so T(k) + 1 is coprime to both k
and T'(k). Thus the arithmetic progression T'(k) + 1 + kT'(k)t has initial term coprime to its
increment and by Dirichlet’s Theorem contains infinitely many primes. We find that there are
infinitely many values of ¢ for which n + 1 is prime and so Z(n) < m = k + k(k + 1)t and
Z(n+1)=n="T(k)(1+ kt). Hence

Z(n+1)

- T(k) + kT(k)t _ k
Z(n) = 3

n
_—— >

m k+2T(k)t

A similar argument holds if we consider the arithmetic progression T'(k) — 1+ kT'(k)t. We then

find infinitely many values of ¢ for which n — 1 is prime and

Zn) = m kil

Zn—1) _n—2 T(k)=2+kT(k)t _k
4

The Theorem follows by taking k > 4L.
We note that this Theorem, combined with Lemma 1(2) , given another proof of the result
that the differences of consecutive values is unbounded.

84. Divisibility of the Pseudo-Smarandache Function

Theorem 2. For any integer k > 2, the equation n/Z(n) = k has infinitely many solutions

Proof. Fix an integer k£ > 2. Let p be a prime = —1 mod2k and put p + 1 = 2kt. Put
n="T(p)/t = p(p+1)/2t = pk. Then n|T(p) so that Z(n) < p . We have p|n, so Z(n) > p—1;
That is, Z(n) must be either p or p — 1. Suppose, if possible, that it is the latter. In this case
we have 2n|p(p+1) and 2n|(p — 1)p, so 2n divides p(p+1) — (p — 1) = 2p; but this is impossible
since k£ > 1 and so n > p. We conclude that Z(n) = p and n/Z(n) = k as required. Further,
for any given value of k there are infinitely many prime values of p satisfying the congruence

condition and infinitely many values of n = Y (p) such that Z/Z(n) = k.



Vol. 1 Some properties of the pseudo-Smarandache function 169

85. Another Divisibility Question

Theorem 3. The ratio Z(2n)/Z(n) is not bounded above.

Proof. Fix an integer k, let p = —1mod 2* be prime and put n = T(p). Then Z(n) = p.
Consider Z(2n) = m. We have 2*p|p(p + 1) = 2n and this divides m(m +1)/2. We have m = ¢
mod p and m = ¢ mod 2**! where each of €, can be either 0 or —1.

Let m = pt + €. Then m =€ —t = 6 mod 2*. This implies that either t = 1 or t > 2% — 1.
Now if t = 1 then m < p and T(m) < T(p) = n, which is impossible since 2n < T'(m). Hence
t > 2% — 1. Since Z(2n)/Z(n) = m/p > t/2, we see that the ratio Z(2n)/Z(n) can be made as

large as desired.

§6. Convergence of A Series

Ashbacher observes that the series ) 1/Z(n)* diverges for o = 1 and asks whether it

converges for a = 2 .

Lemma 3. .
logn < Z 1/Z(n)* <1+ logn;
m=1
L logn)? — 0.257 < i: logm _ L 100012 4 0.110
—(logn)* — 0. —(logn .
5 (log =25, =gl :
for n > 4.
Proof. For the first part, we have % < % < %1 for t € [m — 1, m]. Integrating,
i< 1dt< L
m= Jpo1t T m-—1
Summing,
n n
1 "1 1
O T S
2z 1 2 M
That is
"1
Z* <1+logn
m
1
and

The result follows.
For the second part, we similarly have logm/m < logt/t < log(m — 1)/(m — 1), for
t € [m — 1,m] when m > 4, since log z/x is monotonic decreasing for z > e.

Integrating,




170 Richard Pinch No.

Summing,

" logm loﬁ -

That is,

2": logm B log 2 B log 3
m

T 2 3

(1ogn)? ~ 1 (105 3)”

M\H

" logm logn log2
S; m  on 2

We approximate the numerical values

log2 log3 1 9
— —=(1 11
5 3 2(ogS) < 0.110

and

\V]

log

m\»—t

to obtain the result.

Lemma 4. Let d(m) be the function which counts the divisors of m. For n > 2 we have

Zd )/m < 7(logn)?>.

m=1

Proof. We verify the assertion numerically for n < 6. Now assume that n > 8 > €2, we
have

(logn)? +0.257

=1.257+2logn + - (logn)

4.1 1

< 5B 4 210gn(<ER) + S(ogn)?
< 2(logn)?

Lemma 5. Fix an integer t > 5. Let ¢! > Y > e(!"1/2, The number of integers n with
e!=1 > n > e’ such that Z(n) <Y is at most 196Y¢2.

Proof. Consider such an n with m = Z(n) <Y. Now n|m(m + 1), say k1n; = m and

kang = m + 1, with n = nyng. Thus k = k1ks = m(m + 1)/n and kiny < Y. The value
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of k is bounded below by 2 and above by m(m + 1)/n < 2Y?%/e!=! = K, say. Given a pair
(k1, k2), the possible values of n; are bounded above by Y/k; and must satisfy the congruence
condition kyny + 1 = 0 modulo ko: there are therefore at most Y/k1ka 4+ 1 such values. Since
Y/k > Y/K = et71/2Y > 1/2e, we have Y/k +1 < (2¢ + 1)Y/k < 7Y/k. Given values for
k1, ko and nq, the value of ny is fixed as ny = (k1ny + 1)/ks. There are thus at most »_ d(k)
possible pairs (k1, k2) and hence at most > 7Yd(k)/k possible quadruples (k1, k2, n1,n2). We
have K > 2, so that the previous Lemma applies and we can deduce that the number of values
of n satisfying the given conditions is most 49Y (logK)?. Now K = 2Y?/el™1 < 2¢!*! so
log K < t+1+1log?2 < 2t. This establishes the claimed upper bound of 196Y¢2.

Theorem 4. Fix % < B < 1 and integer t > 5. The number of integers n with e!~! < n <
et, such that Z(n) < n? is at most 196t2e/t.

Proof. We apply the previous result with Y = e%. The conditions of 3 ensure that the
previous Lemma, is applicable and the upper bound on the number of such n is 196t%e%! as
claimed.

Theorem 5. The series

is convergent for any o > /2.

Proof. We note that if & > 2 then fraclZ(n)® < n% and the series is convergent . So we
may assumev/2 < o < 2 . Fixﬁwithi<ﬁ<%. Wehave%<ﬁ<\/g< 3

We split the positive integers n > e* into two classes A and B. We let class A be the
union of the A; where, for postive integer ¢ > 5 we put into class A; those integers n such that
e!~l < n < e for integer t and Z(n) < nP. All values of n with Z(n) > n® we put into class
B. We consider the sum of ﬁ over each of the two classes. Since all terms are positive, it is
sufficient to prove that each series separately is convergent.

Firstly we observe that for n € B, we have ﬁ < n%ﬁ and since a3 > 1 the series
summed over the class B is convergent.

Consider the elements n of A; : so for such n we have e!~! < n < e! and Z(n) < n”. By
the previous result, the number of values of n satisfying these conditions is at most 19625,
For n € A;, we have Z(n) > \/n, so 1/Z(n)® < 1/n%/? < 1/e*(*=1)/2_ Hence the sum of the
subseries Y n € Atﬁ is at most 196t2e®/2e(B=2/2)t Since B < a/2 for a > /2 , the sum
over all ¢ of these terms is finite.

We conclude that} ﬁ is convergent for any a > /2.

Theorem 6. The series

=1
2 Zluye

is convergent for any o > 1.

proof. We fix By =1> 3 > -+ > 3, = $ with 3; < afj11 for 0 < j <r —1. We defined
a partition of the integers e!~! < n < e’ into classes B; and C;(j), 1 < j <r —1. Into B, place
those n with Z(n) > n'. Into C,(j) place those n with ni+1 < Z(n) < n”. Since 3, = § we
see that every n with e!~! < n < e’ is placed into one of the classes.
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The number of elements in Cy(j) is at most 196t2e%* and so

Z Lt < 196t2ePiteFiot=1) — 19642efit1e(Bi—abjt)t,
L Z(n)~
neC(j)

For each j we have 3; < af;41 so each sum over ¢ converges.
The sum over the union of the B; is bounded above by
1
Z naﬁl ?
n

which is convergent since a1 > [y = 1.

We conclude that Y07 | ﬁ is convergent.
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