Some properties of the Pseudo-Smarandache function

Richard Pinch

2 ELDON Road, Cheltenham, Glos GL52 6TU, U.K. E-mail address: rgep@chalcedon.demon.co.uk

Abstract Charles Ashbacher [1] has posed a number of questions relating to the pseudo-smarandache function Z(n). In this note we show that the ratio of consecutive values Z(n+1)/Z(n) and Z(n-1)/Z(n) are unbounded; that Z(2n)/Z(n) is unbounded; that n/Z(n) takes every integer value infinitely often; and that the $\sum_{n} 1/Z(n)^{\alpha}$ is convergent for any $\alpha > 1$.

§1. Introduction

We defined the m-th triangular number $T(m) = \frac{m(m+1)}{2}$. Kashihara [2] has defined the pseudo-Smarandache function Z(n) by

$$Z(n)=\min\{m:n|T(m)\}.$$

Charles Ashbacher [1] has posed a number of questions relating to pseudo-Smarandache function Z(n). In this note, we show that the ratio of consecutive values Z(n)/Z(n-1) and Z(n)/Z(n+1) are unbounded; that Z(2n)/Z(n) is unbounded; and that n/Z(n) takes every integer value infinitely often. He notes that the series $\sum_n 1/Z(n)^\alpha$ is divergent for $\alpha=1$ and asks whether it is convergent for $\alpha=2$. He further suggests that the least value α for which the series converges "may never be known". We resolve this problem by showing that the series converges for all $\alpha>1$.

§2. Some Properties of t he Pseudo-Smarandache Function

We record some elementary properties of the funtion Z.

Lemma 1.(1) If $n \geq T(m)$, then $Z(n) \geq m$, Z(T(m)) = m.

- (2) For all n we have $\sqrt{n} < Z(n)$.
- $(3)Z(n) \leq 2n-1$, and if n is odd, then $Z(n) \leq n-1$.
- (4)If p is an odd prime dividing n, then $Z(n) \ge p 1$.
- $(5)Z(2^k) = 2^{k+1} 1.$
- (6) If p is an odd prime, then $Z(p^k) = p^k 1$ and $Z(2p^k) = p^k 1$ or p^k according as $p^k \equiv 1$ or $p = 3 \mod 4$.

We shall make use of Dirichlet's Theorem on primes in arithmetic progression in the following form. 168 Richard Pinch No. 2

Lemma 2. Let a, b be coprime integers. Then the arithmetic progression a + bt is prime for infinitely many values of t.

§3. Successive Values of the Pseudo-Smarandache Function

Using the properties (3) and (5), Ashbacher observed that $|Z(2^k) - Z(2^k - 1)| > 2^k$ and so the difference between the consecutive of Z is unbounded. He asks about the ratio of consecutive values.

Theorem 1. For any given L > 0 there are infinitely many values of n such that Z(n + 1)/Z(n) > L, and there are infinitely many values of such that Z(n-1)/Z(n) > L.

Proof. Choose $k \equiv 3 \mod 4$, so that T(k) is even and (k+1)|(m+1). There are satisfied if $m \equiv k \mod k(k+1)$, that is , m=k+k(k+1)t for some t. We have m(m+1)=k(1+(k+1)t)(k+1)(1+kt), so that if n=k(k+1)(k+1)(1+kt)/2, we have n|T(m). Now consider n+1=T(k)+1+kT(k)t. We have k|T(k), so T(k)+1 is coprime to both k and T(k). Thus the arithmetic progression T(k)+1+kT(k)t has initial term coprime to its increment and by Dirichlet's Theorem contains infinitely many primes. We find that there are infinitely many values of t for which n+1 is prime and so $Z(n) \leq m=k+k(k+1)t$ and Z(n+1)=n=T(k)(1+kt). Hence

$$\frac{Z(n+1)}{Z(n)} \ge \frac{n}{m} = \frac{T(k) + kT(k)t}{k + 2T(k)t} > \frac{k}{3}.$$

A similar argument holds if we consider the arithmetic progression T(k) - 1 + kT(k)t. We then find infinitely many values of t for which n - 1 is prime and

$$\frac{Z(n-1)}{Z(n)} \ge \frac{n-2}{m} = \frac{T(k) - 2 + kT(k)t}{k + 2T(k)t} > \frac{k}{4}.$$

The Theorem follows by taking k > 4L.

We note that this Theorem, combined with Lemma 1(2), given another proof of the result that the differences of consecutive values is unbounded.

§4. Divisibility of the Pseudo-Smarandache Function

Theorem 2. For any integer $k \geq 2$, the equation n/Z(n) = k has infinitely many solutions n.

Proof. Fix an integer $k \geq 2$. Let p be a prime $\equiv -1 \mod 2k$ and put p+1=2kt. Put n=T(p)/t=p(p+1)/2t=pk. Then n|T(p) so that $Z(n)\leq p$. We have p|n, so $Z(n)\geq p-1$; That is, Z(n) must be either p or p-1. Suppose, if possible, that it is the latter. In this case we have 2n|p(p+1) and 2n|(p-1)p, so 2n divides p(p+1)-(p-1)=2p; but this is impossible since k>1 and so n>p. We conclude that Z(n)=p and n/Z(n)=k as required. Further, for any given value of k there are infinitely many prime values of p satisfying the congruence condition and infinitely many values of n=Y(p) such that Z/Z(n)=k.

§5. Another Divisibility Question

Theorem 3. The ratio Z(2n)/Z(n) is not bounded above.

Proof. Fix an integer k, let $p \equiv -1 \mod 2^k$ be prime and put n = T(p). Then Z(n) = p. Consider Z(2n) = m. We have $2^k p | p(p+1) = 2n$ and this divides m(m+1)/2. We have $m = \epsilon \mod p$ and $m \equiv \delta \mod 2^{k+1}$ where each of ϵ, δ can be either 0 or -1.

Let $m = pt + \epsilon$. Then $m \equiv \epsilon - t \equiv \delta \mod 2^k$. This implies that either t = 1 or $t \geq 2^k - 1$. Now if t = 1 then $m \leq p$ and $T(m) \leq T(p) = n$, which is impossible since $2n \leq T(m)$. Hence $t \geq 2^k - 1$. Since Z(2n)/Z(n) = m/p > t/2, we see that the ratio Z(2n)/Z(n) can be made as large as desired.

§6. Convergence of A Series

Ashbacher observes that the series $\sum_n 1/Z(n)^{\alpha}$ diverges for $\alpha=1$ and asks whether it converges for $\alpha=2$.

Lemma 3.

$$\log n \le \sum_{m=1}^{n} 1/Z(n)^{\alpha} \le 1 + \log n;$$

$$\frac{1}{2}(\log n)^{2} - 0.257 \le \sum_{n=1}^{n} \frac{\log m}{m} \le \frac{1}{2}(\log n)^{2} + 0.110,$$

for $n \geq 4$.

Proof. For the first part, we have $\frac{1}{m} \leq \frac{1}{t} \leq \frac{1}{m-1}$ for $t \in [m-1, m]$. Integrating,

$$\frac{1}{m} \le \int_{m-1}^{m} \frac{1}{t} dt \le \frac{1}{m-1}$$

Summing,

$$\sum_{n=1}^{\infty} \frac{1}{m} \le \int_{1}^{n} \frac{1}{t} dt \le \sum_{n=1}^{\infty} \frac{1}{m-1}$$

That is,

$$\sum_{1}^{n} \frac{1}{m} \le 1 + \log n$$

and

$$\log n \le \sum_{1}^{n-1} \frac{1}{m}$$

The result follows.

For the second part, we similarly have $\log m/m \le \log t/t \le \log(m-1)/(m-1)$, for $t \in [m-1,m]$ when $m \ge 4$, since $\log x/x$ is monotonic decreasing for $x \ge e$.

Integrating,

$$\frac{\log m}{m} \le \int_{m-1}^m \frac{\log t}{t} dt \le \frac{m-1}{m}.$$

170 Richard Pinch No. 2

Summing.

$$\sum_{4}^{n} \frac{\log m}{m} \leq \int_{3}^{n} \frac{\log t}{t} dt \leq \sum_{4}^{n} \frac{m-1}{m}.$$

That is,

$$\sum_{1}^{n} \frac{\log m}{m} - \frac{\log 2}{2} - \frac{\log 3}{3}$$

$$\leq \frac{1}{2} (\log n)^{2} - \frac{1}{2} (\log 3)^{2}$$

$$\leq \sum_{1}^{n} \frac{\log m}{m} - \frac{\log n}{n} - \frac{\log 2}{2}.$$

We approximate the numerical values

$$\frac{\log 2}{2} + \frac{\log 3}{3} - \frac{1}{2}(\log 3)^2 < 0.110$$

and

$$\frac{\log 2}{2} - \frac{1}{2}(\log 3)^2 > -0.257$$

to obtain the result.

Lemma 4. Let d(m) be the function which counts the divisors of m. For $n \geq 2$ we have

$$\sum_{m=1}^{n} d(m)/m < 7(\log n)^{2}.$$

Proof. We verify the assertion numerically for $n \leq 6$. Now assume that $n \geq 8 > e^2$, we have

$$\sum_{m=1}^{n} \frac{d(m)}{m} = \sum_{m=1}^{n} \sum_{de=m} \frac{1}{m} = \sum_{d \le n} \sum_{de \le n} \frac{1}{de}$$

$$= \sum_{d \le n} \frac{1}{d} \sum_{e < n/d} \frac{1}{e} \le \sum_{d \le n} \frac{1}{d} (1 + \log(n/d))$$

$$\le (1 + \log n)^2 - \frac{1}{2} (\log n)^2 + 0.257$$

$$= 1.257 + 2\log n + \frac{1}{2} (\log n)^2$$

$$< \frac{4}{3} (\frac{\log n}{2})^2 + 2\log n (\frac{\log n}{2}) + \frac{1}{2} (\log n)^2$$

$$< 2(\log n)^2$$

Lemma 5. Fix an integer $t \ge 5$. Let $e^t > Y > e^{(t-1)/2}$. The number of integers n with $e^{t-1} > n > e^t$ such that $Z(n) \le Y$ is at most $196Yt^2$.

Proof. Consider such an n with $m = Z(n) \le Y$. Now n|m(m+1), say $k_1n_1 = m$ and $k_2n_2 = m+1$, with $n = n_1n_2$. Thus $k = k_1k_2 = m(m+1)/n$ and $k_1n_1 \le Y$. The value

of k is bounded below by 2 and above by $m(m+1)/n \leq 2Y^2/e^{t-1} = K$, say. Given a pair (k_1,k_2) , the possible values of n_1 are bounded above by Y/k_1 and must satisfy the congruence condition $k_1n_1 + 1 \equiv 0$ modulo k_2 : there are therefore at most $Y/k_1k_2 + 1$ such values. Since $Y/k \geq Y/K = e^{t-1}/2Y > 1/2e$, we have Y/k + 1 < (2e+1)Y/k < 7Y/k. Given values for k_1, k_2 and n_1 , the value of n_2 is fixed as $n_2 = (k_1n_1 + 1)/k_2$. There are thus at most $\sum d(k)$ possible pairs (k_1, k_2) and hence at most $\sum 7Yd(k)/k$ possible quadruples (k_1, k_2, n_1, n_2) . We have K > 2, so that the previous Lemma applies and we can deduce that the number of values of n satisfying the given conditions is most $49Y(logK)^2$. Now $K = 2Y^2/e^{t-1} < 2e^{t+1}$ so log K < t+1 + log 2 < 2t. This establishes the claimed upper bound of $196Yt^2$.

Theorem 4. Fix $\frac{1}{2} < \beta < 1$ and integer $t \ge 5$. The number of integers n with $e^{t-1} < n < e^t$, such that $Z(n) < n^{\beta}$ is at most $196t^2e^{\beta t}$.

Proof. We apply the previous result with $Y = e^{\beta t}$. The conditions of β ensure that the previous Lemma is applicable and the upper bound on the number of such n is $196t^2e^{\beta t}$ as claimed.

Theorem 5. The series

$$\sum_{n=1}^{\infty} \frac{1}{Z(n)^{\alpha}}$$

is convergent for any $\alpha > \sqrt{2}$.

Proof. We note that if $\alpha > 2$ then $frac1Z(n)^{\alpha} < \frac{1}{n^{\alpha}}$ and the series is convergent. So we may assume $\sqrt{2} < \alpha < 2$. Fix β with $\frac{1}{\alpha} < \beta < \frac{\alpha}{2}$. We have $\frac{1}{2} < \beta < \sqrt{\frac{1}{2}} < \frac{\alpha}{2}$.

We split the positive integers $n>e^4$ into two classes A and B. We let class A be the union of the A_t where, for postive integer $t\geq 5$ we put into class A_t those integers n such that $e^{t-1}< n< e^t$ for integer t and $Z(n)\leq n^\beta$. All values of n with $Z(n)>n^\beta$ we put into class B. We consider the sum of $\frac{1}{Z(n)^\alpha}$ over each of the two classes. Since all terms are positive, it is sufficient to prove that each series separately is convergent.

Firstly we observe that for $n \in B$, we have $\frac{1}{Z(n)^{\alpha}} < \frac{1}{n^{\alpha\beta}}$ and since $\alpha\beta > 1$ the series summed over the class B is convergent.

Consider the elements n of A_t : so for such n we have $e^{t-1} < n < e^t$ and $Z(n) < n^\beta$. By the previous result, the number of values of n satisfying these conditions is at most $196t^2e^{\beta t}$. For $n \in A_t$, we have $Z(n) > \sqrt{n}$, so $1/Z(n)^\alpha \le 1/n^{\alpha/2} < 1/e^{\alpha(t-1)/2}$. Hence the sum of the subseries $\sum n \in A_t \frac{1}{Z(n)^\alpha}$ is at most $196t^2e^{\alpha/2}e^{(\beta-\alpha/2)t}$. Since $\beta < \alpha/2$ for $\alpha > \sqrt{2}$, the sum over all t of these terms is finite.

We conclude that $\sum \frac{1}{Z(n)^{\alpha}}$ is convergent for any $\alpha > \sqrt{2}$.

Theorem 6. The series

$$\sum_{n=1}^{\infty} \frac{1}{Z(n)^{\alpha}}$$

is convergent for any $\alpha > 1$.

proof. We fix $\beta_0 = 1 > \beta_1 > \cdots > \beta_r = \frac{1}{2}$ with $\beta_j < \alpha \beta_{j+1}$ for $0 \le j \le r-1$. We defined a partition of the integers $e^{t-1} < n < e^t$ into classes B_t and $C_t(j)$, $1 \le j \le r-1$. Into B_t place those n with $Z(n) > n^{\beta_1}$. Into $C_t(j)$ place those n with $n^{\beta_{j+1}} < Z(n) < n^{\beta_j}$. Since $n = \frac{1}{2}$ we see that every n with $n = \frac{1}{2}$ we see that every $n = \frac{1}{2}$ we see that $n = \frac{1}{2}$ we see t

172 Richard Pinch No. 2

The number of elements in $C_t(j)$ is at most $196t^2e^{\beta_j t}$ and so

$$\sum_{n \in C_t(j)} \frac{1}{Z(n)^{\alpha}} < 196t^2 e^{\beta_j t} e^{-\beta_j \alpha(t-1)} = 196t^2 e^{\beta_{j+1} \alpha} e^{(\beta_j - \alpha \beta_{j+1})t}.$$

For each j we have $\beta_j < \alpha \beta_{j+1}$ so each sum over t converges.

The sum over the union of the B_t is bounded above by

$$\sum_{n} \frac{1}{n^{\alpha \beta_1}},$$

which is convergent since $\alpha \beta_1 > \beta_0 = 1$.

We conclude that $\sum_{n=1}^{\infty} \frac{1}{Z(n)^{\alpha}}$ is convergent.

References

[1] Charles Ashbacher, Pluckings from the tree of Smarandache sequences and functions, American Research Press, 1998.

http://www.gallup.unm.edu/smarandache/ashbacher-pluckings.pdf.

[2] K.Kashihare, Comments and topics on Smarandache notions and problems, Erhus University Press, Vall, AZ, USA, 1996.