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PREFACE

In this book for the first time we introduce the notion of
Smarandache neutrosophic algebraic structures. Smarandache
algebraic structures had been introduced in a series of 10 books.
The study of Smarandache algebraic structures has caused a
shift of paradigm in the study of algebraic structures.

Recently, neutrosophic algebraic structures have been
introduced by the author with Florentin Smarandache [2006].
Smarandache algebraic structures simultaneously analyses two
distinct algebraic structures. For instance, study of S-
semigroups analyses semigroups and groups. Thus a need for
the introduction of classical theorems for groups to S-
neutrosophic loops, groupoids, groups, and semigroups has
become an essentiality. S-neutrosophic groups, S-neutrosophic
bigroups, S-neutrosophic N-groups, S-neutrosophic semigroups,
S-neutrosophic loops and S-neutrosophic mixed N-structures
are introduced in this book.

They are illustrated with examples. This book gives a lot of
scope for the reader to develop the subject.

This book has seven chapters. In Chapter one, an elaborate
recollection of Smarandache structures like S-semigroups, S-
loops and S-groupoids is given. It also gives notions about N-
ary algebraic structures and their Smarandache analogue,
Neutrosophic structures viz. groups, semigroups, groupoids and
loops are given in Chapter one to make the book a self-
contained one. For the first time S-neutrosophic groups and S-
neutrosophic N-groups are introduced in Chapter two and their



properties are given. S-neutrosophic semigroups and S-
neutrosophic N-semigroups are defined and discussed in
Chapter three.

Chapter four defines S-neutrosophic S-loops and S-N-
neutrosophic loops. A brief notion about S-neutrosophic
groupoids and their generalizations are given Chapter five.
Chapter six gives S-neutrosophic mixed N-structures and their
duals. Chapter seven gives 68 problems for any interested
reader.

I deeply acknowledge the help rendered by Kama and Meena
who have formatted this book. I also thank Dr. K.Kandasamy
for proof reading.

W.B.VASANTHA KANDASAMY
2006



Chapter One

INTRODUCTION

In this chapter we introduce certain basic concepts to make this
book a self contained one. This chapter has 5 sections. In
section one the notion of groups and N-groups are introduced.
Section two just mentions about semigroups and N-semigroups.
In section 3 loops and N-loops are recalled. Section 4 gives a
brief description about groupoids and their properties. Section 5
recalls the mixed N algebraic structure.

In this chapter we give most of the important definitions
about neutrosophic structures of groups, semigroups, loops and
groupoids. We are forced to do it for we have only reference
book [51]. So a reader should know at least some thing of it to
understand the theory. Secondly atleast basic definitions about
Smarandache semigroups and Smarandache groupoids are
given.

This chapter has 5 sections. Section 1 gives definitions of
N-groups and their related neutrosophic notions. Section two
gives briefly about S-semigroups and neutrosophic semigroups
and their generalization. Section 3 is devoted to loops i.e., some
notions of S-loops and neutrosophic loops are given. The
notions needed about groupoids viz. S-groupoids are given in
section 4. The final section gives the mixed structures and their
neutrosophic analogue.



1.1 Groups, N-groups and neutrosophic groups and
neutrosophic N-groups

It is a well-known fact that groups are the only algebraic
structures with a single binary operation that is mathematically
so perfect that an introduction of a richer structure within it is
impossible. Now we proceed on to define a group. In this
section we just recall the most important definitions about N-
groups neutrosophic groups, neutrosophic bigroups, and
neutrosophic N-groups, (which we choose to call as their
neutrosophic analogue). The classical theorem on group theory
is also just given to make the book self-contained one.

DEFINITION 1.1.1: A non empty set of elements G is said to
form a group if in G there is defined a binary operation, called
the product and denoted by '»' such that

i a, b € Gimplies that a * b € G (closed).

ii. a, b, c € Gimplies a * (b *c) = (a-*b)*c (associative
law).

iii. There exists an element e € G such thata*e =e*a =
aforall a € G (the existence of identity element in G).

iv. For every a € G there exists an element a”’ € G such

that a a’ = a « a = e (the existence of inverse in G).

DEFINITION 1.1.2: 4 subgroup N of a group G is said to be a
normal subgroup of G if for every g € Gandn e N, gn g’ € N.

Equivalently by gNg"' we mean the set of all gng”, n € N
then N is a normal subgroup of G if and only if gNg"' < N for
every g € G.

THEOREM 1.1.1: N is a normal subgroup of G if and only if
gNg™! =N for every g € G.

DEFINITION 1.1.3: Let G be a group. Z(G) = {x € G | gx = xg
forall g € G}. Then Z(G) is called the center of the group G.



DEFINITION 1.1.4: Let G be a group, A, B be subgroups of G. If
x,y € G definex ~y ify = axb for somea € A and b € B. We
call the set AxB = {axb/a € A, b € B} a double coset of A, B in
G.

DEFINITION 1.1.5: Let G be a group. A and B subgroups of G,

we say A and B are conjugate with each other if for some g €
G, A =gBg".

Clearly if A and B are conjugate subgroups of G then o(A) =
o(B).

THEOREM: (LAGRANGE). If G is a finite group and H is a
subgroup of G then o(H) is a divisor of o(G).

COROLLARY 1.1.1: If G is a finite group and a € G, then o(a) /
o(G).

COROLLARY 1.1.2: If G is a finite group and a € G, then a
=e.

In this section we give the two Cauchy theorems one for abelian
groups and the other for non-abelian groups. The main result on
finite groups is that if the order of the group isn (n <o) ifpisa
prime dividing n by Cauchy's theorem we will always be able to
pick up an element a € G such that a” = e. In fact we can say
Sylow's theorem is a partial extension of Cauchy's theorem for
he says this finite group G has a subgroup of order p*(a> 1, p, a
prime).

THEOREM: (CAUCHY'S THEOREM FOR ABELIAN GROUPS).
Suppose G is a finite abelian group and p / o(G), where p is a
prime number. Then there is an element a #e € G such that a”
=e.

THEOREM: (CAUCHY): If p is a prime number and p | o(G),
then G has an element of order p.



Though one may marvel at the number of groups of varying
types carrying many different properties, except for Cayley's we
would not have seen them to be imbedded in the class of groups
this was done by Cayley's in his famous theorem. Smarandache
semigroups also has a beautiful analog for Cayley's theorem.

THEOREM: (CAYLEY) Every group is isomorphic to a
subgroup of A(S) for some appropriate S.

The Norwegian mathematician Peter Ludvig Mejdell Sylow was
the contributor of Sylow's theorems. Sylow's theorems serve
double purpose. One hand they form partial answers to the
converse of Lagrange's theorem and on the other hand they are
the complete extension of Cauchy's Theorem. Thus Sylow's
work interlinks the works of two great mathematicians
Lagrange and Cauchy. The following theorem is one, which
makes use of Cauchy's theorem. It gives a nice partial converse
to Lagrange's theorem and is easily understood.

THEOREM: (SYLOW'S THEOREM FOR ABELIAN GROUPS) If G
is an abelian group of order o(G), and if p is a prime number,
such that p® | o(G), p*"' +0(G), then G has a subgroup of order
P

COROLLARY 1.1.3: If G is an abelian group of finite order and
p| o(G), p“ +0(G), then there is a unique subgroup of G of
order p°.

DEFINITION 1.1.6: Let G be a finite group. A subgroup G of
order p®, where p®/ o(G) but p“+ o(G), is called a p-Sylow
subgroup of G. Thus we see that for any finite group G if p is
any prime which divides o(G); then G has a p-Sylow subgroup.

THEOREM (FIRST PART OF SYLOW'S THEOREM): If p is a
prime number and p*/ o(G) and p®"' +o(G), G is a finite group,
then G has a subgroup of order p°.
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THEOREM: (SECOND PART OF SYLOW'S THEOREM): If G is a
finite group, p a prime and p" | o(G) but p"*' #0(G), then any
two subgroup of G of order p" are conjugate.

THEOREM: (THIRD PART OF SYLOW'S THEOREM): The
number of p-Sylow subgroups in G, for a given prime, is of the
form 1 + kp.

DEFINITION 1.1.7: Let {G, *,, ..., *\} be a non empty set with N
binary operations. {G, *, ..., *v} is called a N-group if there
exists N proper subsets Gy, ..., Gy of G such that

I G:G] UG2 UGN
ii. (G, *)isagroupfori=1,2, ..., N.

We say proper subset of G if G; ¢ G;jand G; ¢ G;ifi #j for I <
i, j <N. When N = 2 this definition reduces to the definition of
bigroup.

DEFINITION 1.1.8: Let {G, *,, ..., *\} be a N-group. A subset H
(# @) of a N-group (G, *,, ..., *\) is called a sub N-group if H
itself is a N-group under *; *, ..., *y, binary operations
defined on G.

THEOREM 1.1.2: Let (G, *,, ..., *y) be a N-group. The subset H
# ¢ of a N-group G is a sub N-group then (H, *;) in general are
not groups fori =1, 2, ..., N.

DEFINITION 1.1.9: Let (G, *;, ..., *y) be a N-group where G =
G, UG, U... UGy Let (H, *,, ..., *\) be a sub N-group of (G,
*, o) where H=H; VUH, U ... UHywesay (H, *;,..., *y)
is a normal sub N-group of (G, *,, ..., *) if each H; is a normal
subgroup of G fori =1, 2,..., N.

Even if one of the subgroups H; happens to be non normal
subgroup of G; still we do not call H a normal sub-N-group of
the N-group G.
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DEFINITION 1.1.10: Let (G = G; UG, U... UGy, ¥, %5,..., ¥y
and (K = K; UK, U ... UKy, *,..., *y) be any two N- groups.
We say a map ¢ : G — K to be a N-group homomorphism if ¢ |
G; is a group homomorphism from G; to K; fori = 1, 2,..., N.
ie @ ‘G‘_ : G, > K, is a group homomorphism of the group G; to

the group K;; fori =1, 2, ..., N.

DEFINITION 1.1.11: Let G = (G; UG, U ... UGy, ¥, %5, ..., Ty
be a non empty set such that G; are proper subsets of G. G =
(G, UGy, U... UGy, ¥, %y, ..., *y) is called a Smarandache N-
group (S-N-group) if the following conditions are satisfied.

i (G, *;)is agroup (I <i <N).
ii. (G, %) is a S-semigroup for somej #i, I <j <N.

DEFINITION 1.1.12: Let G = (G; v G, U ... UGy, ¥, ..., *y) be
a S-N-group; a proper subset P of G is said to be a
Smarandache sub N-group (S-sub N-group) of Gif P =P, U P,
U ..U Pywhere P, c G, i =1, 2, ..., N, and at least one of the
P; is a S-semigroup under the operations of G, In short a
proper subset P of G is a S-sub N-group if P itself is a
Smarandache-N-group under the operations of G.

DEFINITION 1.1.13: Let (G = G, UG, U ... UGy, ¥, ..., *y) be
a S-N-group. We say G is a Smarandache commutative N-group
(S-commutative N-group) if all G; which are not semigroups are
commutative and when G; are S-semigroups every proper subset
which is a group in G; is commutative.

DEFINITION 1.1.14: Let {G = G; UG, U ... UGy, ¥, ..., *ylbe
a -N-group. We say G is Smarandache weakly commutative N-
group (S-weakly commutative N-group) if in all the S-semigroup
G;, they have a proper subset which is a commutative group and
the rest of G;’s which are groups are commutative.
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THEOREM 1.1.3: Every S-commutative N-group is a S-weakly
commutative N-group. But a S-weakly commutative N-group in
general need not be a S-commutative N-group.

DEFINITION 1.1.15: Let G = (G; U G, U ... UGy, *, %, ..,
*v) be a S- N-group. We say G is a Smarandache cyclic N-
group (S-cyclic N-group) if G; is a group it must be cyclic and if
G; is a S-semigroup it must be a S-cyclic semigroup for 1 <i, j <
N.

DEFINITION 1.1.16: Let G = (G; v G, U ... UGy, *, %, ...,

*n) be a S-N-group. We say G is a Smarandache weakly cycllc
N-group (S-weakly cyclic N-group) if every group in the
collection {G;} is a cyclic group and every S-semigroup in the
collection {G;} is a S-weakly cyclic semigroup.

DEFINITION 1.1.17: Let G = (G; v G, U ... UGy, ¥, %, .,

*v) be a S-N-group; let H= (H, VH, U ... UHy, *, %5, ..., ¥y

) be a S-sub N group of G.

For any g € G we define the Smarandache right coset (S-right

coset) of the N-group G as Ha =H, VH, U ... VUH;a U ... U
K

Hyifa € H; alone; ifa € (\ H,, then Ha = H;'a VH,'a U ..U
i=1

Hy' a; here H; = H'; if H; is a group;, H;' c H; if H; is a S-

semigroup, H'; is a group. Similarly we can define Smarandache

left coset (S-left coset) a H. We say H is a Smarandache coset if

a H=Ha.

DEFINITION 1.1.18: G = (G; U G, U ... UGy, ¥, %5, .., *y)
where each G; is either S (n) or S, ie. each G is either a
symmetric semigroup or a symmetric group, for i =1,2, ..., N.
Then G is defined as the Smarandache symmetric N-group (S-
symmetric N-group).

THEOREM 1.1.4: (SMARANDACHE CAYLEY’S THEOREM FOR
S-N-GROUPS): Let G = G; U ... UGy, *, %, ..., *v) be a S- N-
group. Every S-N-group is embeddable in a S-symmetric N-
group for a suitablen;, i =1, 2, ..., N.
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DEFINITION 1.1.19: Let G = (G; v G, U ... UGy, ¥, %y,
*v) be a S-N group. We say an element x € G has a
Smarandache conjugate (S-conjugate) y in G if.

i xa = ay for some a € G.
ii. ab = bx and ac = cy for some b, c in G.

1t is easy to verify if G is a S-symmetric N-group then G has S-
elements which are S-conjugate.

DEFINITION 1.1.20: Let (G, *) be any group, the neutrosophic
group is generated by I and G under * denoted by N(G) = {(G
ul) ¥

THEOREM 1.1.5: Let (G, *) be a group, N(G) = {({G U 1), *} be
the neutrosophic group.

i N(G) in general is not a group.
ii. N(G) always contains a group.

DEFINITION 1.1.21: Let N(G) = (G U 1) be a neutrosophic
group generated by G and I. A proper subset P(G) is said to be
a neutrosophic subgroup if P(G) is a neutrosophic group i.e.
P(G) must contain a (sub) group.

DEFINITION 1.1.22: Let N(G) be a finite neutrosophic group.
Suppose L is a pseudo neutrosophic subgroup of N(G) and if
o(L) / o(N(G)) then we call L to be a pseudo Lagrange
neutrosophic subgroup. If all pseudo neutrosophic subgroups of
N(G) are pseudo Lagrange neutrosophic subgroups then we call
N(G) to be a pseudo Lagrange neutrosophic group.

If N(G) has atleast one pseudo Lagrange neutrosophic
subgroup then we call N(G) to be a weakly pseudo Lagrange
neutrosophic group. If N(G) has no pseudo Lagrange
neutrosophic subgroup then we call N(G) to be pseudo
Lagrange free neutrosophic group.

14



DEFINITION 1.1.23: Let N(G) be a neutrosophic group. We say
a neutrosophic subgroup H of N(G) is normal if we can find x
and y in N(G) such that H =xHy for all x, y € N (G) (Note x =y
ory =x" can also occur).

DEFINITION 1.1.24: A neutrosophic group N(G) which has no
nontrivial neutrosophic normal subgroup is called a simple
neutrosophic group.

Now we define pseudo simple neutrosophic groups.

DEFINITION 1.1.25: Let N(G) be a neutrosophic group. A
proper pseudo neutrosophic subgroup P of N(G) is said to be
normal if we have P = xPy for all x, y € N(G). A neutrosophic
group is said to be pseudo simple neutrosophic group if N(G)
has no nontrivial pseudo normal subgroups.

We do not know whether there exists any relation between
pseudo simple neutrosophic groups and simple neutrosophic
groups.

Now we proceed on to define the notion of right (left) coset
for both the types of subgroups.

DEFINITION 1.1.26: Let L (G) be a neutrosophic group. H be a
neutrosophic subgroup of N(G) forn € N(G), then Hn = {hn/h
€ H} is called a right coset of H in G.

DEFINITION 1.1.27: Let N(G) be a neutrosophic group. K be a
pseudo neutrosophic subgroup of N(G). Then for a € N(G), Ka
=tka | k € K} is called the pseudo right coset of K in N(G).

DEFINITION 1.1.28: Let N(G) be a finite neutrosophic group. If
for a prime p® / o(N(G)) and p**' X o(N(G)), N(G) has a
neutrosophic subgroup P of order p® then we call P a p-Sylow
neutrosophic subgroup of N(G).

Now if for every prime p such that p“/ o(N(G)) and p
o(N(G)) we have an associated p-Sylow neutrosophic subgroup
then we call N(G) a Sylow neutrosophic group.

at+l X
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If N(G) has atleast one p-Sylow neutrosophic subgroup then we
call N(G) a weakly Sylow neutrosophic group. If N(G) has no p-
Sylow neutrosophic subgroup then we call N(G) a Sylow free
neutrosophic group.

DEFINITION 1.1.29: Let By (G) = {B(G;) U B(G»), *;, ¥} be a
non empty subset with two binary operation on By (G) satisfying
the following conditions:

i By (G) = {B(G,) v B(G»)} where B(G;) and B(G») are
proper subsets of By (G).
ii. (B(G,), *1) is a neutrosophic group.
ifi. (B(G,), *,) is a group.

Then we define (By(G), *;, *3) to be a neutrosophic bigroup. If
both B(G;) and B(G,) are neutrosophic groups we say By(G) is
a strong neutrosophic bigroup. If both the groups are not
neutrosophic group we see By(G) is just a bigroup.

DEFINITION 1.1.30: Let By(G) = {B(G;) U B(G,), *;, *3} be a
neutrosophic bigroup. A proper subset P = {P; UP,, *;, *;}is a
neutrosophic subbigroup of By(G) if the following conditions
are satisfied P = {P; U P, *;, *)} is a neutrosophic bigroup
under the operations *;, *, ie. (P, *) is a neutrosophic
subgroup of (B;, *1) and (P, *;) is a subgroup of (B,, *;). P; =
P »n B, and P, = P N B, are subgroups of B, and B,
respectively. If both of P; and P, are not neutrosophic then we
call P = P; U P; to be just a bigroup.

DEFINITION 1.1.31: Let By (G) = {B(G;) U B(G»), *;, ¥} be a
neutrosophic bigroup. P(G) = {P(G;)) v P(G,), *, *;} be a
neutrosophic bigroup. P(G) = {P(G;) U P(G,), *;, *;} is said to
be a neutrosophic normal subbigroup of By(G) if P(G) is a
neutrosophic subbigroup and both P(G,) and P(G,) are normal
subgroups of B(G,) and B(G») respectively.

DEFINITION 1.1.32: Let By(G) = {B(G;) U B(G,), *;, *;} be a
neutrosophic bigroup. Suppose P = {P(G;) U P(G,), *;, *;} and
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K = {K(G) v K(Gy, *, *} be any two neutrosophic
subbigroups we say P and K are conjugate if each P(G) is
conjugate with K(Gy), i = 1, 2, then we say P and K are
neutrosophic conjugate subbigroups of By (G).

DEFINITION 1.1.33: Let By(G) = {B(G;) UB(G,), *;, *;} be any
neutrosophic bigroup. The neutrosophic bicentre of the bigroup
Bn(G) denoted Cy(G) = C(G;)) v C(G,) where C(G)) is the
centre of B(G;) and C(G,) is the centre of B(G,). If the
neutrosophic bigroup is commutative then Cy (G) = By (G).

DEFINITION 1.1.34: A subset H # ¢ of a strong neutrosophic
bigroup ((G v 1) * o) is called a strong neutrosophic
subbigroup if H itself is a strong neutrosophic bigroup under
“*"and ‘o’ operations defined on (G U1).

THEOREM 1.1.6: Let ((G U 1) +, o) be a strong neutrosophic
bigroup. A subset H # ¢ of a strong neutrosophic bigroup (G v
1) is a neutrosophic subbigroup then (H, +) and (H, o) in
general are not neutrosophic groups.

THEOREM 1.1.7: Let {(G v 1), +, o} be a strong neutrosophic
bigroup. Then the subset H (# @) is a strong neutrosophic
subbigroup of (G U 1) if and only if there exists two proper
subsets (G; V1), (G, 1) of (G U1)such that

i Gul)= @G, vl) v G, vDwith (G, v1) +)isa
neutrosophic group and ((G, U 1), o) a neutrosophic

group.
ii. (H N (G; 1) +) is a neutrosophic subbigroup of (G;
vil)fori=1,2.

DEFINITION 1.1.35: Let ((G v 1) +, 0) and (K V1) o, @) be
any two strong neutrosophic bigroups where (G 1) = (G; 1)
G, vDand K U1)=(K; V1)U K, UI) Wesay a bimap ¢
=¢ U (GUI) > K UI)(Here ¢ (I) =1and ¢ () = 1) is
said to be a strong neutrosophic bigroup bihomomorphism if ¢,
=¢/ (G, vl)and ¢ = ¢/ (G, U I) where ¢, and ¢, are

17



neutrosophic group homomorphism from (G, v 1) to K; U 1)
and (G, ) to (K, Ul)respectively.

DEFINITION 1.1.36: Let G = (G; U 1, * &), be a neutrosophic
bigroup. We say two neutrosophic strong subbigroups H = H,
U H,and K = K; UK, are conjugate neutrosophic subbigroups
of (Gul)= (G, vl) (G, v1) if H; is conjugate to K; and
H, is conjugate to K, as neutrosophic subgroups of (G; U1) and
(G, U 1) respectively.

DEFINITION 1.1.37: Let (G v 1) * 0) = ((G vI) *) U ((G v
1), 0) be a neutrosophic bigroup. The normalizer of a in (G U 1)
istheset N (a) = {x € (G UI)|xa=ax} = N;(a) UN:(a) = {x;
eG U |xja=ax; } Uix, € (G, U | x;a =ax}ifa € (G
vl N (Gy vl ifa e ((Gyvl) anda (G, 1), N> (a) = ¢
like wise if a # (G; 1) and a € ((G, V1)) then Ni(a) = ¢ and
Nx(a) = N(a) is a neutrosophic subbigroup of (G U 1), clearly
N(a) = ¢ forl € N(a).

DEFINITION 1.1.38: Let (G 1), 0, *) = ((G; V1) o) U ((G, U
1), *) be a neutrosophic bigroup. Let H = H; U H; be a strong
neutrosophic subbigroup of (G U I). The right bicoset of H in
(G U 1) for some a in (G U 1) is defined to be Ha = {h;a | h; €
Hyanda e Gy, Gy} Uthya|h, e Hyanda € Gy N Gylifa e
G,and a ¢ G, then Ha = {h;a| h; € H;} VH,and a # G, then
Ha = {hga | hz EHQ} U H, and a GGQ.

DEFINITION 1.1.39: Let (G v I) = (G; v 1) v (G, v 1) be a
neutrosophic bigroup we say N = N; U N, is a neutrosophic
normal subbigroup if and only if N, is a neutrosophic normal
subgroup of (G, U 1) and N, is a neutrosophic normal subgroup

Of(Gz U])
We define the strong neutrosophic quotient bigroup

Gun {(G1 vl (Gl
N N, N,

neutrosophic bigroup.

} which is also a
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DEFINITION 1.1.40: Let ((G « 1) *,,..., *\) be a nonempty set
with N-binary operations defined on it. We say (G U 1) is a
strong neutrosophic N-group if the following conditions are
true.

i G ul)= G, ) uG, v u... UGy VL) where
(G; U 1) are proper subsets of (G 1),
il. ((G; v 1) * ) is a neutrosophic group, i =1, 2,..., N. If
in the above definition we have
a. Gul)=G, vG, ) UG UI)... UGk U
GK+] (G UGN.
b. (G, *) is a group for some i or
iii. ((G; 1) *) is a neutrosophic group for somej.

then we call (G U 1) to be a neutrosophic N-group.

DEFINITION 1.1.41: Let (G v1)= (G, vI) v G, vI) U... v
Gy 1) *,, ..., *y) be a neutrosophic N-group. A proper subset
(P, *;,..., *\) is said to be a neutrosophic sub N-group of (G v
1) if P=(P; U ..U Py and each (P;, *) is a neutrosophic
subgroup (subgroup) of (G;, *), 1 <i <N.

DEFINITION 1.1.42: Let ((G v 1)= (G, vI) v G, vI) ... v
(Gy 1) *, ..., *y) be a strong neutrosophic N-group. If (G v
1) is a Sylow strong neutrosophic N-group and if for every
prime p such that p®/ o((G 1)) and p® X o((G U1)) we have
a strong neutrosophic sub N-group of order p®"' (t > 1) then we
call (G 1) a super Sylow strong neutrosophic N-group.

THEOREM 1.1.8: Suppose ((G v1)= (G, vI) U ... UGy UI),
*, .., *v) be a neutrosophic N-group of order p, p a prime.
Then the following are true.

i (G U 1)is not a Cauchy neutrosophic N-group.

ii. (G U1)is not a semi Cauchy neutrosophic N group.
iii. (G U1)is not a weakly Cauchy neutrosophic N-group.
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All elements of finite order are anti Cauchy elements and anti
Cauchy neutrosophic elements.

DEFINITION 1.1.43: Let {(G v 1)={(G, vI) v (G, vI)U...v
Gy D) *, .., ¥ and{HUD)=H vI)vH, V). U
Hy U L) *, %, *.., *} be any two neutrosophic N-group
such that if ((G; V1), *) is a neutrosophic group then ((H; 1),
*) is also a neutrosophic group. If (G, *) is a group then (H,
*) is a group.

Amap ¢: (G Ul)to (H Ul)satisfying ¢ (I) = I is defined to
be a N homomorphism if ¢ = ¢ | (G; V1) (or ¢ | G) then each ¢
is either a group homomorphism or a neutrosophic group
homomorphism, we denote the N-homomorphism by ¢ = ¢; U ¢,
U.. Uy (Gul)—>HUI)

DEFINITION 1.1.44: Let (G v 1)={(G, vI) v (G, vI) U ... U
Gy 1), *,, ..., ¥} be a neutrosophic N-group. Let H = {H,
H, v .. v Hy} be a neutrosophic sub N-group of
(G 1) Wesay His a (p1, pa, ..., pn) Sylow neutrosophic sub N-
group of (G U 1)if H; is a p; - Sylow neutrosophic subgroup of
G;. If none of the H;’s are neutrosophic subgroups of G; we call
Ha (p;, pa ..., pn) Sylow free sub N-group.

DEFINITION 1.1.45: Let (G v1)= (G, vI) v G, vI) ... v
Gy U1) *, ..., *y) be a strong neutrosophic N-group. Suppose
H = {H] L/Hz (2 UHN: *1,..., *N} and K = {K[ UKZ ..U
Ky, *5, ..., *\} are two neutrosophic sub N-groups of (G U 1),
we say K is a strong conjugate to H or H is conjugate to K if
each H; is conjugate to K; (i = 1, 2,...,N) as subgroups of G

1.2 Semigroups, N-semigroups, S-semigroups, S-N-
semigroups and their neutrosophic analogues

We in this section just briefly introduce the notion of S-
semigroups and S-N-semigroups. Also give notion of
neutrosophic semigroup and neutrosophic N-semigroups. For
more literature please refer [50-1]. In this section we just recall
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the notion of semigroup, bisemigroup and N-semigroups. Also
the notion of symmetric semigroups. For more refer [49-50].

DEFINITION 1.2.1: Let (S, o) be a non empty set S with a closed,
associative binary operation ‘o’ on S. (S, o) is called the
semigroup i.e., fora,b €S, aob €8.

DEFINITION 1.2.2: Let S(n) denote the set of all mappings of (1,
2, ..., n) to itself S(n) under the composition of mappings is a
semigroup. We call S(n) the symmetric semigroup of order n".

DEFINITION 1.2.3: Let (S = S; U S, * 0) be a non empty set
with two binary operations * and o S is a bisemigroup if
i. S =8, U8, S;and S, are proper subsets of S.
ii. (S5, *) is a semigroup.
iii. (S5, 0) is a semigroup.

More about bisemigroups can be had from [48-50]. Now we
proceed onto define N-semigroups.

DEFINITION 1.2.4: Let S = (S; US; U ... USy, *1, %5, ..., *0) be
a non empty set with N binary operations. S is a N-semigroup if
the following conditions are true.
i S=8, uS, ... USyis such that each S; is a proper
subset of S.
ii. (S, *:) is a semigroup for 1, 2, ..., N.

We just give an example.

Example 1.2.1: Let S = {S; U S, U S3 U Sy, *1, %5, *3, *4}
where

S = Zi,, semigroup under multiplication modulo 12,
S, = S(4), symmetric semigroup,
S; = Z semigroup under multiplication and

N
=
I

[

a,b,c,de Zm} under matrix multiplication.
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S is a 4-semigroup.

DEFINITION 1.2.5: The Smarandache semigroup (S-semigroup)
is defined to be a semigroup A such that a proper subset of A is
a group (with respect to the same induced operation).

DEFINITION 1.2.6: Let S be a S-semigroup. If every proper
subset of A in S, which is a group is commutative then we say
the S-semigroup S to be a Smarandache commutative
semigroup.

DEFINITION 1.2.7: Let S be S-semigroup, if S contains at least a
proper subset A that is a commutative subgroup under the
operations of S then we say S is a Smarandache weakly
commutative semigroup.

DEFINITION 1.2.8: Let S be S-semigroup if every proper subset
A of S which is a subgroup is cyclic then we say S is a
Smarandache cyclic semigroup.

DEFINITION 1.2.9: Let S be a S-semigroup if there exists at
least a proper subset A of S, which is a cyclic subgroup under
the operations of S then we say S is a Smarandache weakly
cyclic semigroup.

DEFINITION 1.2.10: Let S be a S-semigroup. If the number of
distinct elements in S is finite, we say S is a finite S-semigroup
otherwise we say S is a infinite S-semigroup.

THEOREM 1.2.1: Let G be a Smarandache commutative
semigroup. G in general need not be a Smarandache cyclic
semigroup.

THEOREM 1.2.2: S(n) is the S-semigroup.

Proof: Clearly S(n) is the semigroup of order n". S, is a S-
semigroup for it contains the symmetric group of degree n, i.e.
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S, is a proper subset which is the group of permutations on (1,
2,3, ...,n). Hence S(n) is a S-semigroup.

Clearly S(n) is a not Smarandache commutative semigroup.
Further we have the following engrossing results about S(n).

DEFINITION 1.2.11: Let S be a S-semigroup. A proper subset A
of S is said to be a Smarandache subsemigroup of S if A itself is
a S-semigroup, that is A is a semigroup of S containing a proper
subset B such that B is the group under the operations of S.
Note we do not accept A to be a group. A must only be a
semigroup.

DEFINITION 1.2.12: Let S be a S-semigroup. If A be a proper
subset of S which is subsemigroup of S and A contains the
largest group of S then we say A to be the Smarandache hyper
subsemigroup of S.

THEOREM 1.2.3: Let S be a S-semigroup. Every Smarandache
hyper subsemigroup is a Smarandache subsemigroup but every
Smarandache subsemigroup is not a Smarandache hyper
subsemigroup.

DEFINITION 1.2.13: Let S be a S-semigroup. We say S is a
Smarandache  simple semigroup if S has no proper
subsemigroup A, which contains the largest subgroup of S or
equivalently S has no Smarandache hyper subsemigroup.

DEFINITION 1.2.14: Let S be a finite S-semigroup. If the order
of every subgroup of S divides the order of the S-semigroup S
then we say S is a Smarandache Lagrange semigroup.

THEOREM 1.2.4: Z, = {0, 1, 2, ..., p-1} where p is a prime is a
S-semigroup under multiplication modulo p. But Z, is a
Smarandache simple semigroup.

DEFINITION 1.2.15: Let S be a finite S-semigroup. If there exists
at least one subgroup A that is a proper subset (A < S) having
the same operations of S whose order divides the order of S then
we say that S is a Smarandache weakly Lagrange semigroup.
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THEOREM 1.2.5: (CAYLEY'S THEOREM FOR S-SEMIGROUP)
Every S-semigroup is isomorphic to a S-semigroup S(N); of
mappings of a set N to itself, for some appropriate set N.

DEFINITION 1.2.16: Let S = (S; U ... USy, ¥, ..., *y) where S
is a non empty set on which is defined, N-binary operations *,,

* e ¥ S is called a N-semigroup if the following condition
are true
i S=8,uUS, U... USy, Si’s are proper subsets of S. 1 <
i <N.

ii. (S;, *i) are semigroups, i =1, 2, ..., N.

DEFINITION 1.2.17: Let S = {S; U S, U ... USw, *1, %5 ..., ¥}
where S is a non empty set and *;, .., *y are N-binary
operations defined on S. S is said to be Smarandache N
semigroup (S-N semigroup) if the following conditions are
satisfied

i S =8 uS, u.. USyis such that S;’s are proper
subsets of S.

ii. Some of (S, *i) are groups and some of (S; *j) are S-
semigroups, 1 <i, j <N. (i #j)

DEFINITION 1.2.18: Let S be a semigroup, the semigroup
generated by S and I i.e. S U I denoted by (S U 1) is defined to
be a neutrosophic semigroup.

DEFINITION 1.2.19: Let N(S) be a neutrosophic semigroup. A
proper subset P of N(S) is said to be a neutrosophic
subsemigroup, if P is a neutrosophic semigroup under the
operations of N (S). A neutrosophic semigroup N(S) is said to
have a subsemigroup if N(S) has a proper subset which is a
semigroup under the operations of N(S).

DEFINITION 1.2.20: A neutrosophic semigroup N(S) which has

an element e in N(S) such thate *s =s *e = s for all s € N(S),
is called as a neutrosophic monoid.
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DEFINITION 1.2.21: Let N(S) be a neutrosophic semigroup
under a binary operation *. P be a proper subset of N(S). P is
said to be a neutrosophic ideal of N(S) if the following
conditions are satisfied.

I P is a neutrosophic semigroup.
ii. forallp € P and for all s € N(S) we have p *s and s *
pareinP.

DEFINITION 1.2.22: Let N(S) be a neutrosophic semigroup. A
neutrosophic ideal P of N(S) is said to be maximal if P cJ
N(S), J a neutrosophic ideal then either J = P or J = N(S). A
neutrosophic ideal M of N(S) is said to be minimal if $ #T c M
CN(S)thenT=MorT= ¢

We cannot always define the notion of neutrosophic cyclic
semigroup but we can always define the notion of neutrosophic
cyclic ideal of a neutrosophic semigroup N(S).

DEFINITION 1.2.23: Let N(S) be a neutrosophic semigroup. P
be a neutrosophic ideal of N (S), P is said to be a neutrosophic
cyclic ideal or neutrosophic principal ideal if P can be
generated by a single element.

We proceed on to define the notion of neutrosophic symmetric
semigroup.

DEFINITION 1.2.24: Let S(N) be the neutrosophic semigroup. If
S(N) contains a subsemigroup isomorphic to S(n) i.e. the
semigroup of all mappings of the set (I, 2, 3, ..., n) to itself
under the composition of mappings, for a suitable n then we call
S (N) the neutrosophic symmetric semigroup.

DEFINITION 1.2.25: Let (BN(S), *, o) be a nonempty set with
two binary operations * and o. (BN(S), * o) is said to be a
neutrosophic bisemigroup if BN(S) = P; U P, where atleast one
of (P;, *) or (P, o) is a neutrosophic semigroup and other is
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Jjust a semigroup. P; and P, are proper subsets of BN(S), i.e. P;
& P

DEFINITION 1.2.26: Let (BN (S) = P; v Py, o, *) be a
neutrosophic bisemigroup. A proper subset (T, o, *) is said to be
a neutrosophic subbisemigroup of BN (S) if

i T=T, T, whereT;,=P;,"Tand T, = P, N T and
ii. At least one of (T, o) or (T,, *) is a neutrosophic
semigroup.

DEFINITION 1.2.27: Let (BN(S) = P; U P, o, * be a
neutrosophic strong bisemigroup. A proper subset T of BN (S) is
called the strong neutrosophic subbisemigroup if T = T; U T,
with T; = Py N Tand Ty = P, N T> and if both (T;, *) and (T>, 0)
are neutrosophic subsemigroups of (P;, * and (P, o)
respectively. We call T = T; v T, to be a neutrosophic strong
subbisemigroup, if atleast one of (T;, *) or (T, o) is a
semigroup then T = T, v T, is only a neutrosophic
subsemigroup.

DEFINITION 1.2.28: Let (BN (S), * o) be a strong neutrosophic
bisemigroup where BN(S) = P; U P, with (P;, *) and (P,, o) be
any two neutrosophic semigroups.

Let J be a proper subset of BN(S) where I = I; U I, with
I, =J N P;yand I, = J N P, are neutrosophic ideals of the
neutrosophic semigroups P; and P, respectively. Then

1 is called or defined as the strong neutrosophic biideal of
B(N(S)).

DEFINITION 1.2.29: Let (BN(S) = P; v P, * o) be any
neutrosophic bisemigroup. Let J be a proper subset of B(NS)
such that J; = J N P;and J, = J N Py are ideals of P; and P,
respectively. Then J is called the neutrosophic biideal of BN(S).

DEFINITION 1.2.30: Let (BN(S) P; U P, * o) be a neutrosophic
strong bisemigroup.
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Suppose 1 is a neutrosophic strong biideal of BN(S) i.e. I; =
P, "1l and I, = P, NI we say I is a neutrosophic strong
maximal biideal of B (N(S)) if 1, is the maximal ideal of P; and
1, is the maximal ideal of P,.

If only one of I, or I, alone is maximal then we call I to be a
neutrosophic strong quasi maximal biideal of BN (S).

DEFINITION 1.2.31: Let {S(N), *,, ..., *\} be a non empty set
with N-binary operations defined on it. We call S(N) a
neutrosophic N-semigroup (N a positive integer) if the following
conditions are satisfied.

i S(N) =8; U ...uSywhere each S; is a proper subset of
S(N)i.e. S; & SjorS; € S;ifi #j.

ii. (S, *) is either a neutrosophic semigroup or a
semigroup fori=1, 2, ..., N.

DEFINITION 1.2.32: Let S(N) = {S; U S; U ... USy, *1, ..., %N}
be a neutrosophic N-semigroup. A proper subset P = {P; U P,
U... UPy, *, %, ..., ¥} of S(N) is said to be a neutrosophic N-
subsemigroup if (1) P. = P n S, i = 1, 2,..., N are
subsemigroups of S; in which atleast some of the subsemigroups
are neutrosophic subsemigroups.

DEFINITION 1.2.33: Let S(N) = {S; U S, U ... USy, ¥, .o, *N)}
be a neutrosophic strong N-semigroup. A proper subset T = {T;
U, U... UTy, %, ..., *} of S(N) is said to be a neutrosophic
strong sub N-semigroup if each (T, *) is a neutrosophic
subsemigroup of (S, *) fori=1, 2,..., Nwhere T; = T N S,

DEFINITION 1.2.34: Let S(N) = {S; U S, U ... USx, *1, ... %}
be a neutrosophic strong N-semigroup. A proper subset J = {I,
vl .. Uy wherel,=J NS, fort =1, 2, ..., Nis said to be
a neutrosophic strong N-ideal of S(N) if the following
conditions are satisfied.
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i Each I, is a neutrosophic subsemigroup of S, t = 1, 2,
., N ie. I is a neutrosophic strong N-subsemigroup of
S(N).

i. Each I, is a two sided ideal of S, fort =1, 2, ..., N.

Similarly one can define neutrosophic strong N-left ideal or
neutrosophic strong right ideal of S(N).

A neutrosophic strong N-ideal is one which is both a
neutrosophic strong N-left ideal and N-right ideal of S(N).

DEFINITION 1.2.35: Let S(N) = {S; U S; U ... USy, *1, ..., %N}
be a neutrosophic N-semigroup. A proper subset P = {P; U P,
U .. UPy, *, .., *vt of S (N) is said to be a neutrosophic N-
subsemigroup, if the following conditions are true

i P is a neutrosophic sub N-semigroup of S(N).
i. Each P,=P NS, i=1 2, .., Nisan ideal of S,

Then P is called or defined as the neutrosophic N ideal of the
neutrosophic N-semigroup S(N).

DEFINITION 1.2.36: Let S(N) = {S; v S, U ... USy, ¥, ..., %)}
be a neutrosophic strong N-semigroup. Let J = {I, v, U ... U
Iy, *;, ..., %} be a proper subset of S(N) which is a neutrosophic
strong N-ideal of S(N). J is said to be a neutrosophic strong
maximal N-ideal of S(N) if each I, < S, (t =1, 2, ..., N) is a
maximal ideal of'S,.

1t may so happen that at times only some of the ideals I, in S,
may be maximal and some may not be in that case we call the
ideal J to be a neutrosophic quasi maximal N-ideal of S(N).
Suppose S(N) = {S; U S v .. U Sy *, .., ¥} is a
neutrosophic strong N-semigroup, J' = {J; UJ, U ... UJy, ¥,

., *n} be a neutrosophic strong N-ideal of S(N).

J' is said to be a neutrosophic strong minimal N-ideal of S
(N) if each J; < S; is a minimal ideal of S; fori =1, 2, ..., N. It
may so happen that some of the ideals J; < S; be minimal and
some may not be minimal in this case we call J' the
neutrosophic strong quasi minimal N-ideal of S(N).
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1.3 S-Loops and S-N-loops

We at this juncture like to express that books solely on loops are
meager or absent as, R.H.Bruck deals with loops on his book "4
Survey of Binary Systems", that too published as early as 1958,
[3]. Other two books are on "Quasigroups and Loops" one by
H.O. Pflugfelder, 1990 which is introductory and the other book
co-edited by Orin Chein, H.O. Pflugfelder and J.D. Smith in
1990 [25].

So we felt it important to recall almost all the properties and
definitions related with loops [3, 47]. We just recall a few of the
properties about loops which will make this book a self
contained one. In this section we introduce briefly the notion of
S-loop, S-N-loops and neutrosophic loops and their
generalization.

DEFINITION 1.3.1: 4 non-empty set L is said to form a loop, if
on L is defined a binary operation called the product denoted by
‘e such that

i Foralla, b € L we have a eb & L (closure property).

ii. There exists an element e € L such thata ee = ¢ ea =
aforall a € L (eis called the identity element of L).
iii. For every ordered pair (a, b) € L x L there exists a

unique pair (x, y) in L such that ax = b and ya = b.

DEFINITION 1.3.2: Let L be a loop. A non-empty subset H of L
is called a subloop of L if H itself is a loop under the operation

of L.

DEFINITION 1.3.3: Let L be a loop. A subloop H of L is said to
be a normal subloop of L, if

i xH = Hx.
ii. (Hx)y = H(xy).
iii. y(xH) = (yx)H

forallx,y € L.
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DEFINITION 1.3.4: A4 loop L is said to be a simple loop if it does
not contain any non-trivial normal subloop.

DEFINITION 1.3.5: The commutator subloop of a loop L
denoted by L' is the subloop generated by all of its
commutators, that is, ({x € L /x = (y, z) for some y, z € L})
where for A c L, (A) denotes the subloop generated by A.

DEFINITION 1.3.6: If x, y and z are elements of a loop L an
associator (x, y, z) is defined by, (xy)z = (x(yz)) (X, y, z).

DEFINITION 1.3.7: The associator subloop of a loop L (denoted
by A(L)) is the subloop generated by all of its associators, that
is ((x e L/x = (a, b, ¢) for somea, b,c €L}).

DEFINITION 1.3.8: The centre Z(L) of a loop L is the
intersection of the nucleus and the Moufang centre, that is Z(L)
= C(L) N N(L).

DEFINITION [35]: A normal subloop of a loop L is any subloop
of L which is the kernel of some homomorphism from L to a
loop.

Further Pflugfelder [25] has proved the central subgroup Z(L) of
aloop L is normal in L.

DEFINITION [35]: Let L be a loop. The centrally derived
subloop (or normal commutator- associator subloop) of L is
defined to be the smallest normal subloop L' c L such that L /L'
is an abelian group.

Similarly nuclearly derived subloop (or normal associator
subloop) of L is defined to be the smallest normal subloop L, c
L such that L / L; is a group. Bruck proves L' and L; are well
defined.

DEFINITION [35]: The Frattini subloop ¢(L) of a loop L is

defined to be the set of all non-generators of L, that is the set of
all x € L such that for any subset S of L, L = (x, S) implies L =
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(S). Bruck has proved as stated by Tim Hsu ¢(L) c L and L /
(L) is isomorphic to a subgroup of the direct product of groups
of prime order.

DEFINITION [22]: Let L be a loop. The commutant of L is the set
(L) ={a € L/ax =xa Vx € L}. The centre of L is the set of all
a € C(L) such thata exy =ax ey =x eay =xa ey and xy ea
=x eya for all x, y € L. The centre is a normal subloop. The
commutant is also known as Moufang Centre in literature.

DEFINITION [23]: A left loop (B, @) is a set B together with a
binary operation 'e' such that (i) for each a € B, the mapping x
— a e x is a bijection and (ii) there exists a two sided identity
1 € B satisfying 1 ex =x e 1 =x for every x € B. A right loop is
defined similarly. A loop is both a right loop and a left loop.

DEFINITION [11] : 4 loop L is said to have the weak Lagrange
property if, for each subloop K of L, |K| divides |L|. It has the
strong Lagrange property if every subloop K of L has the weak
Lagrange property.

DEFINITION 1.3.9: 4 loop L is said to be power-associative in
the sense that every element of L generates an abelian group.

DEFINITION 1.3.10: 4 loop L is diassociative loop if every pair
of elements of L generates a subgroup.

DEFINITION 1.3.11: 4 loop L is said to be a Moufang loop if it
satisfies any one of the following identities:

Lo () (2x) = (x(v2))x
i ((w)z)y =x((zy)
i x(v(xz) = (()x)z
forallx,y, z € L.

DEFINITION 1.3.12: Let L be a loop, L is called a Bruck loop if
x(x)z = x(y(xz)) and (xy)" =x"'y" forallx, y, z € L.
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DEFINITION 1.3.13: 4 loop (L, e) is called a Bol loop if ((xy)z)y
=x((vz)y) forallx, y, z € L.

DEFINITION 1.3.14: A loop L is said to be right alternative if
(xy)y = x(yy) for all x, y € L and L is left alternative if (xx)y =
x(xy) for all x, y € L. L is said to be an alternative loop if it is
both a right and left alternative loop.

DEFINITION 1.3.15: A4 loop (L, ® is called a weak inverse

property loop (WIP-loop) if (xy)z = e imply x(yz) = e for all x, y,
z el

DEFINITION 1.3.16: A loop L is said to be semi alternative if (x,
v, z) =, z x) for all x, y, z € L, where (x, y, z) denotes the
associator of elements x, y, z € L.

THEOREM (MOUFANG'S THEOREM): Every Moufang loop G is
diassociative more generally, if a, b, ¢ are elements in a
Moufang loop G such that (ab)c = a(bc) then a, b, c generate an
associative loop.

The proof is left for the reader; for assistance refer Bruck R.H.

[3].

DEFINITION 1.3.17: Let L be a loop, L is said to be a two
unique product loop (t.u.p) if given any two non-empty finite
subsets A and B of L with |A| + |B| > 2 there exist at least two
distinct elements x and y of L that have unique representation in
the from x = ab and y = cd witha, c € A and b, d € B.

A loop L is called a unique product (u.p) loop if, given A
and B two non-empty finite subsets of L, then there always exists
at least one x € L which has a unique representation in the from
x =ab, witha € Aand b € B.

DEFINITION 1.3.18: Let (L, o) be a loop. The principal isotope
(L, ®) of (L, & with respect to any predetermined a, b € L is
defined by x *y = XY, for all x, y € L, where Xa = x and bY =y
forsome X, Y € L.
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DEFINITION 1.3.19: Let L be a loop, L is said to be a G-loop if
it is isomorphic to all of its principal isotopes.

The main objective of this section is the introduction of a new
class of loops with a natural simple operation. As to introduce
loops several functions or maps are defined satisfying some
desired conditions we felt that it would be nice if we can get a
natural class of loops built using integers.

Here we define the new class of loops of any even order,
they are distinctly different from the loops constructed by other
researchers. Here we enumerate several of the properties
enjoyed by these loops.

DEFINITION [41]: Let L,(m) = {e, 1, 2, ..., n} be a set where n >
3, n is odd and m is a positive integer such that (m, n) = I and
(m—1, n) =1withm <n.

Define on L,(m) a binary operation ' as follows:

i eei=jee=iforalli € L,(m)
ii. P=iei=eforalli €L,(m)
iii. i ®j=twheret=(mj— (m-—1)i) (modn)

foralli,j € L(m); i #j, i #e and j #e, then L,(m) is a loop
under the binary operation 'e’.

Example 1.3.1: Consider the loop Ls(2) = {e, 1, 2, 3,4, 5}. The
composition table for Ls(2) is given below:

On|h|WIND|—|o|e
Dl |lW[(o|—|o o
N|W[Aln|o [—|—
Alo(—=lo W
—(No |l |w|w
Wlo [~
o [—|N[wW|A|un|w

This loop is of order 6 which is both non-associative and non-
commutative.
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Physical interpretation of the operation in the loop L,(m):

We give a physical interpretation of this class of loops as
follows: Let Ly(m)= {e, 1, 2, ... , n} be a loop in this identity
element of the loop are equidistantly placed on a circle with e as
its centre.

We assume the elements to move always in the clockwise
direction.

\4

Leti,j e Lym) (i#],1i#e,j#e). Ifj is the r'™ element from i
counting in the clockwise direction the i e j will be the t"
element from j in the clockwise direction where t = (m —1)r. We
see that in general i @ j need not be equal to j e i. When i =j we
definei*=candiee=cei=1iforallie Ly(m) and e acts as
the identity in L,(m).

Example 1.3.2: Now the loop L;(4) is given by the following
table:

AlIQ(RW N[ N|[O [ —=]—
— BRI W[N]O |||
N N|=0 QW | |[D>

NN N[V~ e
NN~ |W[ND[(—|lO O
N|—=|h[Q|O0 |V |W]|w
A0 [—|A[Q[W|[un]|wnv
VS ECIN ISR RV, D B SN BN Fo ) Ho))
O WIS
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Let 2, 4 € Ly(4). 4 is the 2™ element from 2 in the clockwise
direction. So 2.4 will be (4 — 1)2 that is the 6™ element from 4 in
the clockwise direction which is 3. Hence 2.4 = 3.

Notation: Let L, denote the class of loops. L,(m) for fixed n
and various m's satisfying the conditions m <n, (m, n) = 1 and
(m-1,n)=1, thatis L, = {L,(m) | n>3, n odd, m <n, (m, n) =
1 and (m-1, n) = 1}.

Example 1.3.3: Let n = 5. The class L; contains three loops; viz.
Ls(2), Ls(3) and Ls(4) given by the following tables:
Ls(2)

e e |1 |2 |3 |4 |5
e |e [1 |2 |3 (4 |5
1 |1 (e |3 |5 (2 |4
2 |12 |5 |e |4 |1 |3
3 (3 [4 |1 |Je |5 |2
4 14 |3 |5 |2 |e |1
505 12 |4 |1 [3 |e
Ls(3)
e e |1 |2 |3 [4 |5
e |e [1 |2 |3 (4 |5
1 |1 (e |4 |2 |5 |3
2 12 |4 (e |5 |3 |1
3 (3 [2 |5 e |1 |4
4 14 |5 |3 |1 |e |2
505 (3 |1 |4 [2 |e
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Ls(4)

DNk |WIN|(—|O |e
Nk |WIN|(—|lOo |0
DN |WwW|o [—|[—
W= || |||
N[O [—]|B]w|w
— o [N|n|WIR]&
O W=~ |un]|wn

THEOREM [27]: Let L, be the class of loops for any n > 3, if
n=p"p?..pi (o> 1, fori =1 2, .., k), then |L,| =
k
(p, —2) p/~" where |L,| denotes the number of loops in L,.

i=1
The proof is left for the reader as an exercise.

THEOREM |[27]: L, contains one and only one commutative
loop. This happens when m = (n + 1) / 2. Clearly for this m, we
have (m, n) =1 and (m—1, n) = 1.

It can be easily verified by using simple number theoretic
techniques.

THEOREM [27]: Let L, be the class of loops. If
n=p"p? .. pl*, then L, contains exactly F, loops which are

k
strictly non-commutative where F, = 1 (p,-3) pi".

The proof is left for the reader as an exercise.

Note: If n = p where p is a prime greater than or equal to 5 then
in L, a loop is either commutative or strictly non-commutative.
Further it is interesting to note if n = 3t then the class L, does
not contain any strictly non-commutative loop.

THEOREM |[32]: The class of loops L, contains exactly one left

alternative loop and one right alternative loop but does not
contain any alternative loop.

36



Proof: We see L,(2) is the only right alternative loop that is
when m = 2 (Left for the reader to prove using simple number
theoretic techniques). When m = n —1 that is L,(n —1) is the only
left alternative loop in the class of loops L.

From this it is impossible to find a loop in L,, which is
simultaneously right alternative and left alternative. Further it is
clear from earlier result both the right alternative loop and the
left alternative loop is not commutative.

THEOREM [27]: Let L, be the class of loops:

i. L, does not contain any Moufang loop.
ii. L, does not contain any Bol loop.
iii. L, does not contain any Bruck loop.

The reader is requested to prove these results using number
theoretic techniques.

THEOREM [41]: Let L,(m) € L,. Then L,(m) is a weak inverse
property (WIP) loop if and only if (m* —m + 1) =0(mod n).

Proof: 1t is easily checked that for a loop to be a WIP loop we
have "if (xy)z = e then x(yz) = ¢ where x, y, z € L." Both way
conditions can be derived using the defining operation on the
loop L,(m).

Example 1.3.4: L be the loop L,(3)={e, 1,2,3,4,5,6,7} be in
L, given by the following table:

N NN |WIN|—=|o |e
N[N~ |WIN|—=|O O
WON[QIN]|R|N|O | —]—
A= |W[u|Q|o [~
N[N |—=]|O [n]|J|WwW|w
DN[QA[N|o [N|—= W]~
— W Q| [Nk
RO |=|WODN[Q([D [N
O IR |— W[
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It is easily verified L;(3) is a WIP loop. One way is easy for (m’
—m+1)=0(mod 7) thatis9-3+1=9+4+1=0(mod 7). It
is interesting to note that no loop in the class L, contain any
associative loop.

THEOREM [27]: Let L, be the class of loops. The number of

strictly non-right (left) alternative loops is P, where
k k

B, =(p, =3)p"" and n=T p.

The proofis left for the reader to verify.
Now we proceed on to study the associator and the
commutator of the loops in L.

THEOREM [27]: Let L,(m) € L, The associator A(L,(m)) =
L,(m).

For more literature about the new class of loops refer [41, 47].
DEFINITION 1.3.20: Let (L, *;, ..., *\) be a non empty set with N

binary operations *. L is said to be a N loop if L satisfies the
following conditions:

i L=L;, UL, U..ULywhere each L; is a proper subset
ofLyie,L; g LjorL; £ L;ifi #jfor 1 <i,j<N.
i. (L;, *;) is a loop for some i, 1 <i <N.
iii. (L, *;) is a loop or a group for somej, 1 <j <N.

For a N-loop we demand atleast one (L;, *;) to be a loop.

DEFINITION 1.3.21: Let (L =L; UL, U... ULy, ¥, ..., *y) be a
N-loop. L is said to be a commutative N-loop if each (L;, *;) is
commutative, i = 1, 2, ..., N. We say L is inner commutative if
each of its proper subset which is N-loop under the binary
operations of L are commutative.
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DEFINITION 1.3.22: Let L = {L; UL, U ... ULy, *, %5, ..., %}

be a N-loop. We say L is a Moufang N- loop if all the loops (L,
*,) satisfy the following identities.

Lo (xy)(zx) = (x(vz))x
i ((w)z)y =x((zy)
ii.  x(y(xz)) = ((p)x)z

forallx,y,zel,i=1 2, .., N.
Now we proceed on to define a Bruck N-loop.

DEFINITION 1.3.23: Let L = (L; UL, U ... ULy, ¥, ..., *y) be a

N-loop. We call L a Bruck N-loop if all the loops (L; *;) satisfy
the identities

i (x(yz))z = x(y(xz))

ii. () =xy!
forallx,y eL,i=12, .., N.
DEFINITION 1.3.24: Let L = (L; UL, U ... ULy, *;, ..., *y) bea
N-loop. A non empty subset P of L is said to be a sub N-loop, if

P is a N-loop under the operations of L i.e., P = {P; U P, UP;
U... UPy, *, .., Bt with each {P;, %} is a loop or a group.

DEFINITION 1.3.25: Let L = {L; UL, U ... ULy, *;, ..., *\} be
a N-loop. A proper subset P of L is said to be a normal sub N-
loop of L if

i P is a sub N-loop of L.
i. x; P;=P;x;forall x; € L;
iii. yi (xi P) = (vix;) P;forall x; y; € L,.

A N-loop is said to be a simple N-loop if L has no proper
normal sub N-loop.

Now we proceed on to define the notion of Moufang center.
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DEFINITION 1.3.26: Let L = {L; UL, U ... ULy, *;, ..., *y} be
a N-loop. We say Cy(L) is the Moufang N-centre of this N-loop
if Cy(L) = Ci(L)) v Cy(Ly) U ... UCx(Ly) where Ci(L;) = {x; €
L;/x;yi=yxforally, e L)}, i =1, 2, ..., N.

DEFINITION 1.3.27: Let L and P to two N-loops i.e. L = {L; U
L, U.. ULN, *1, vy *N} and P = {P1 Py, U ... UPN, oy ...,
onp. We say amap 0: L — P is a N-loop homomorphism if 0 =
0 v 6 U.. Uy ‘U is just a symbol and 6 is a loop
homomorphism from L; to P; foreachi =1, 2, ..., N.

DEFINITION 1.3.28: Let L = {L; UL, U ... ULy, *;, ..., *y} be
a N-loop. We say L is weak Moufang N-loop if there exists
atleast a loop (L;, *;) such that L; is a Moufang loop.

Note: L; should not be a group it should be only a loop.

DEFINITION 1.3.29: Let L = {L; UL, U ...ULy, *;, ..., ¥yt be a
N-loop. If x and y € L are elements of L; the N-commutator (x,
y) is defined as xy = (yx) (x, y), I <i <N.

DEFINITION 1.3.30: Let L = {L; UL, U...U Ly, *),..., *} be a
N-loop. If x, y, z are elements of the N-loop L, an associator (x,
y, z) is defined only if x, y, z € L; for some i (I <i <N) and is
defined to be (xy) z = (x (v 2)) (x, ¥, z).

DEFINITION 1.3.31: Let L = {L; UL, U ... ULy, *;, %, ..., *\}
be a N-loop of finite order. For «; € L; define R, as a

permutation of the loop L;, R, : x; = x;e. This is true for i = 1,
2,..., N we define the set
{R,UR,U..UR, |, €Lsi=12,..,N|
1 2 N
as the right regular N-representation of the N loop L.
DEFINITION 1.3.32: Let L = {L; UL, U ... ULy, *;, ..., *\} be
a N-loop. For any pre determined pair a, b; € L, i € {1, 2, ...,

N} a principal isotope (L, 0y, ..., oy), of the N loop L is defined
byxi0;y; =X * Yiwhere X; + a;=x;and b; + Y; =y, i=1, 2,..,
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N. L is called G-N-loop if it is isomorphic to all of its principal
isotopes.

DEFINITION 1.3.33: The Smarandache loop (S-loop) is defined
to be a loop L such that a proper subset A of L is a subgroup
(with respect to the same induced operation) that is ¢ #A L.

DEFINITION 1.3.34: Let L be a loop. A proper subset A of L is
said to be a Smarandache subloop (S-subloop) of L if A is a
subloop of L and A is itself a S-loop, that is A contains a proper
subset B contained in A such that B is a group under the
operations of L. We demand A to be a S-subloop which is not a
subgroup.

DEFINITION 1.3.35: Let L be a loop. We say a non-empty subset
A of L is a Smarandache normal subloop (S-normal subloop) of

Lif

i A is itself a normal subloop of L.

ii. A contains a proper subset B where B is a subgroup
under the operations of L. If L has no S-normal
subloop we say the loop L is Smarandache simple (S-
simple).

DEFINITION 1.3.36: Let L and L' be two Smarandache loops
with A and A' its subgroups respectively. A map ¢ from L to L'is
called  Smarandache  loop  homomorphism (S-loop
homomorphism) if ¢ restricted to A is mapped onto a subgroup
A" of L'; that is ¢ : A — A' is a group homomorphism. The
concept of Smarandache loop isomorphism and automorphism
are defined in a similar way. It is important to observe the
following facts:

i The map ¢ from L to L' need not be even be a loop
homomorphism.
ii. Two loops of different order can be isomorphic.
iii. Further two loops which are isomorphic for a map ¢
may not be isomorphic for some other map 1.
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iv. If L and L' have at least subgroups A and A'in L and L'
respectively which are isomorphic then certainly L and
L' are isomorphic.

DEFINITION 1.3.37: Let L be a loop. If A (A proper subset of L)
is a S-subloop of L is such that A is a pseudo commutative loop
then we say L is a Smarandache pseudo commutative loop (S-
pseudo commutative loop) i.e. for every a, b € A we have an x €
B such that a(xb) = b(xa) (or (bx)a), B is a subgroup in A. Thus
we see for a loop to be a S-pseudo commutative we need not
have the loop L to be a pseudo-commutative loop. If L is itself a
pseudo commutative loop then trivially L is a S-pseudo
commutative loop.

DEFINITION 1.3.38: Let L be a loop. We say L is a
Smarandache associative loop (S-associative loop) if L has a S-
subloop A such that A contains a triple x, y, z (all three elements
distinct and different from e, the identity element of A) such that
x o(y ez) = (x ey) ez This triple is called the S-associative
triple.

DEFINITION 1.3.39: Let L be a loop the Smarandache left
nucleus (S-left nucleus) S(N;) = {a € A/ (a, x, y) = e for all x, y
€ A} is a subloop of A, where A is a S-subloop of L. Thus we see
in case of S-left nucleus we can have many subloops; it is not
unique as in case of loops. If L has no S-subloops but L is a S-
loop then S(N;) =S N, =N,.

DEFINITION 1.3.40: Let L be a loop, the Smarandache right
nucleus (S-right nucleus) S(N,) = { a € A/ (x, y, a) = e for all x,
y € A} is a subloop of L where A is a S-subloop of L. If L has no
S-subloops but L is a S-loop then S(N,) = SN,= N,

DEFINITION 1.3.41: Let L be a loop, the Smarandache middle
nucleus (S-middle nucleus). S(N,) = { a € A/ (x, a, y) = e for all
x, y € A} is a subloop of L where A is a S-subloop of L. If L has
no S-subloop but L is a S-loop then S(N,) = SN, = N,
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DEFINITION 1.3.42: The Smarandache nucleus S(N(L)) of a
loop L is a subloop given by S(N(L)) = SN, N SN; N SN, It is
important to note that unlike the nucleus we can have several

Smarandache nucleus depending on the S-subloops. If L has no
S-subloops but L is S-loop then S(N(L)) = N(L).

DEFINITION 1.3.43: Let L be a loop. The Smarandache
Moufang centre (S-Moufang centre) SC(L) is the set of elements
in a S-subloop A of L which commute with every element of A,
that is SC(L) = {x € A/ xy = yx for all y € A}. If L has no S-
subloops but L is a S-loop then we have SC(L) = C(L).If L has
many S-subloops then we have correspondingly many S-
Moufang centres SC(L).

DEFINITION 1.3.44: Let L be a loop, the Smarandache centre
(S-centre) (SZ(L)) of a loop. L is the intersection of SZ(L) =
SC(L) N S(N(L)) for a S-subloop A of L.

DEFINITION 1.3.45: Let L = L; x S, be the direct product of a
loop and a group. We call this the Smarandache mixed direct
product of loops (S-mixed direct product of loops). We insist
that L is a loop and one of L; or S, is group. We do not take all
groups in the S-mixed direct product or all loops in this
product. Further we can extend this to any number of loops and
groups thatis if L = L; xL; x ... xL, where some of the L;'s are
loops and some of them are groups. Then L is called the S-
mixed direct product of n-terms.

DEFINITION 1.3.46: Let L be a S-loop. We define Smarandache
right cosets (S-right cosets) in L as follows:

Let A c L be the subgroup of L and for m € L we have Am
={am/a € A}. Am is called a S-right coset of A in L.

Similarly we can for any subgroup A of L define
Smarandache left coset (S-left coset) for some m € L as mA =
{ma/a € A}. If the loop L is commutative then only we have mA
= Am. Even if L is S-commutative or S-strongly commutative
still we need not have Am = mA for allm € L.
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DEFINITION 1.3.47: Let L = {L; UL, U ... ULy, *;, ..., *y} be
a N-loop. We call L a Smarandache N-loop (S-N-loop) if L has
a proper subset P, (P =P, UP, U ... UPy, *;, ..., *v) where P
is a N-group.

DEFINITION 1.348: Let L = {L; UL, U ... ULy, *;, ..., *\} be
a N-loop. We call a proper subset P of L where P = {P; U P, U
e UPN, ¥, ., ®y) to be a Smarandache sub N-loop (S-sub N-
loop) of L if P itself'is a S-N-loop.

DEFINITION 1.3.49: Let L = {L; UL, U...U Ly, *),..., *} be a
N-loop. L is said to be a Smarandache commutative N-loop (S-
commutative N-loop) if every proper subset P of L which are N-
groups are commutative N-groups of L.

If the N-loop L has atleast one proper subset P which is a
commutative N-group then we call L a Smarandache weakly
commutative N-loop (S-weakly commutative loop).

DEFINITION 1.3.50: Let L = {L; UL, U ... ULy, *;, ..., *y} be
a N-loop. We say the N-loop L is a Smarandache cyclic N-loop
(S-cyclic N-loop) if every proper subset which is a N-group is a
cyclic N-group.

DEFINITION 1.3.51: Let L = {L; UL, U ... ULy, *;, ..., *y} be
a N-loop. A proper S-sub N-loop (P = P; UP, U ... UPy, ¥,

, *n) of L is said to be a Smarandache normal N-loop (S-
normal N-loop) if

I x; P =P;x;
ii. — Pxi(y;) =P:(xyy)
jii. Vi (xiPy) = (vix) P,

forallx, y; e Pifori=1,2, .., N.
If the N-loop L has no proper S-normal sub N-loop then we
call the N-loop to be Smarandache simple N-loop (S-simple N-

loop).

DEFINITION 1.3.52: Let L = {L; UL, U ... ULy, *;, ..., *\} be
a N-loop and P = (P; UP, U ... UPy, *, ..., *y) be a S-sub N-
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loop of L. (P c L) for any N-pair of elements x;, y; € P; (i € {1,
2, ..., N}) the N-commutator (x;, y;) is defined by x; y; = (v: x;)
(xi, yi)-

The Smarandache commutator sub N-loop (S-commutator
sub N-loop) of L denoted by S (L’) is the S-sub N-loop generated
by all its commutators.

DEFINITION 1.3.53: Let L = {L; UL, U ... ULy, *;, ..., *y} be
a N-loop. Let P — L be a S-sub N-loop of L. If x, y, z are
elements of the S-sub N-loop P of L, an associator (x, y, z) is
defined by (xy)z = (x (v z)) (x, y, 2).

The associator S-sub N-loop of the S-sub N-loop P of L

denoted by A(Lfv) is the S-sub N-loop generated by all the

associators, that is ({x € P|x = (a, b, ¢) for some a, b, ¢ € P}).
If A(Lf\,) happens to be a S-sub N-loop then only we call

A (Lfv) the Smarandache associator (S-associator) of L related

to the S-sub N-loop P.

DEFINITION 1.3.54: Let L = {L; UL, U...U Ly, *),..., *y} be a
N-loop. If for a, b € L with ab = ba in L, we have (ax;) b = (bx;)
a(orb (x;a)) forall x; € L; (if a, b € L;), then we say the pair is
pseudo commutative.

If every commutative pair in every L; is pseudo commutative
then we call L a pseudo commutative N-loop. If we have for
every pair of commuting elements a, b in a proper subset P of
the N-loop L (which is a S-sub N-loop). If a, b is a pseudo
commutative pair for every x in P then we call the pair a
Smarandache pseudo commutative pair (S-pseudo commutative

pair).

DEFINITION 1.3.55: Let L = {L; UL, U...U Ly, *),..., *y} be a
N-loop. The pseudo commutator of L denoted by P(L) = ({p € L
/ a(xb) = p ([bx] a)}); we define the Smarandache pseudo
commutator (S-pseudo commutator) of P — L (P a S-sub-N-loop
of L) to be the S-sub N-loop generated by ({p € P |a (xb) =p (
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[bx] a), a, b € P}); denoted by PY (L). If P\ (L) is not a S-sub
N loop then we say P, (L) = ¢.

DEFINITION 1.3.56: Let L = {L; UL, U...U Ly, *,,..., *y} be a
N-loop. An associative triple a, b, c € P L where P is a S-sub
N- loop of L is said to be Smarandache pseudo associative (S-
pseudo associative) if (a b) (x ¢c) = (ax) (bc) forall x € P. If (a
b) (x ¢) = (a x) (b c) for some x € P we say the triple is
Smarandache pseudo associative (S-pseudo associative)
relative to those x in P.

If in particular every associative triple in P is S-pseudo
associative then we say the N-loop is a Smarandache pseudo
associative N-loop (S- pseudo associative N-loop).

Thus for a N-loop to be a S-pseudo associative N-loop it is
sufficient that one of its S-sub N-loops are a S-pseudo
associative N-loop.

The Smarandache pseudo associator of a N-loop (S-pseudo

associator of a N-loop) L denoted by S(ALIZ) ={teP/(ab)(t

¢) = (at) (bc) where a (bc) = (a b) c for a, b, c € P})where P is
a S-sub N-loop of L.

DEFINITION 1.3.57: Let L = {L; UL, U ... ULy, *;, ..., *y} be
a N-loop. L is said to be a Smarandache Moufang N loop (S-
Moufang N-loop) if there exists S-sub N-loop P of L which is a
Moufang N-loop.

A N-loop L is said to be a Smarandache Bruck N-loop (S-
Bruck N-loop) if L has a proper S-sub N-loop P, where P is a
Bruck N-loop.

Similarly a N-loop L is said to be a Smarandache Bol N-
loop (S-Bol N-loop) if L has a proper S-sub N loop) K, where K
is a Bol N-loop.

We call a N-loop L to be a Smarandache Jordan N-loop (S-
Jordan N-loop) if L has a S-sub N-loop T, where T is a Jordan
N-loop.

On similar lines we define Smarandache right (left) alternative
N-loop.
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Now proceed on to define the Smarandache N-loop
homomorphism.

DEFINITION 1.3.58: Let L = {L; UL, U... ULy, *;, ..., *\} and
K={K, UK, U... UKy, 0}, 0, ..., on} be two N-loops. We say
amap ¢= ¢; U ¢ U... Uy from L to K is a Smarandache N-
loop homomorphism (S-N loop homomorphism) if ¢ is a N-
group homomorphism from P to T where P and T are proper
subsets of L and K respectively such that P and T are N-groups
of L and K.

Thus for Smarandache ¢ - homomorphism of N-loops we need
not have ¢ to be defined on the whole of L. It is sufficient if ¢ is
defined on a proper subset P of L which is a N-group.

Now we proceed on to define Smarandache Moufang center
of a N loop.

DEFINITION 1.3.59: Let L = {L; UL, U ... ULy, *), ..., *ytbea
N-loop. Let P be a S-sub N-loop of L. The Smarandache
Moufang Centre (S-Moufang Centre) of L is defined to be the
Moufang centre of the S-sub N-loop;, P = (P; U P, U ... UPy,
*1, veey *N)-

Thus for a given N-loop L we can have several S-Moufang
centres or no Moufang centre if the N-loop L has no S-Sub N-
loop.

Now we proceed on to define the notion of S-center.

DEFINITION 1.3.60: Let L be a N-loop. P be a S-sub N-loop of
L. The Smarandache N-centre (S N center) SZy (L) is the center
of the sub-N-loop P c L.

Thus even in case of S-centre for a N-loop we may have several
S-centers depending on the number of S-sub N-loops.

Now notion of Smarandache middle, left and right nucleus
of a N-loop is defined.

DEFINITION 1.3.61: Let L be a N-loop, P be a S-sub N-loop of
L. To define Smarandache nucleus (S-nucleus) related to P we
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consider the Smarandache left nucleus (S-left nucleus) of L to
be the left nucleus of the S-sub N-loop P denoted by N .

Similarly the Smarandache right nucleus (S-right nucleus)
of the N-loop L to be the right nucleus of the S-sub N-loop P
denoted by N} .

We can define the Smarandache middle nucleus (S-middle
nucleus) of the N-loop L to be the middle nucleus of the S-sub
N-loop P, denoted by N . Thus the Smarandache nucleus (S-

nucleus) is [SN(L)]y = N;* NN N N,¥ .

DEFINITION 1.3.62: A neutrosophic loop is generated by a loop
L and I denoted by (L U 1). A neutrosophic loop in general need
not be a loop for ' = I and I may not have an inverse but every
element in a loop has an inverse.

DEFINITION 1.3.63: Let (L  I) be a neutrosophic loop. A
proper subset (P 1) of (L v 1) is called the neutrosophic
subloop, if (P w 1) is itself a neutrosophic loop under the
operations of (L U1)

DEFINITION 1.3.64: Let (L,(m) U1)={e 1, 2, ..., n, el 11, ..,
nl}, where n >3, n is odd and m is a positive integer such that
(m, n) =1 and (m— 1, n) = 1 with m <n. Define on (L,(m) U1)
a binary operation ‘.’ as follows.

i ei. =ie =iforalli eL,(m).

ii. P =eforalli € L,(m).

iii. il. il =elforalli eL,(m).

iv. i.j=twheret= (mj— (m—1)i) (modn) foralli,j e
L,m), i #j, i #eandj #e.

V. il. jI = tl where t = (mj — (m — 1) i) (mod n) for all i I,
jl € L,(m) v 1) (L,(m) U1)is a neutrosophic loop of
order 2 (n + 1).

DEFINITION 1.3.65: Let ((B v I) *, *)) be a non empty

neutrosophic set with two binary operations *;, *,, (B Ul)is a
neutrosophic biloop if the following conditions are satisfied.
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i (B v I)=P; UP,where P; and P, are proper subsets

of B UI)
ii. (P;, *1) is a neutrosophic loop.
iii. (P>, *5) is a group or a loop.

DEFINITION 1.3.66: Let (B v 1) *;, *;) be a neutrosophic
biloop. A proper subset P of (B U 1) is said to be a neutrosophic
subbiloop of (B W 1)if (P, *;, *,) is itself a neutrosophic biloop
under the operations of (B U1).

DEFINITION 1.3.67: Let (B = B; UB,, *;, *;) be a neutrosophic
biloop. A neutrosophic subbiloop H = (H; U H,, *;, *;) is said
to be a neutrosophic normal subbiloop of B if

i X H] = H] X

ii. (Hix)y =H; (xy)
iii. y(xH)=((x)H forallx,y € B;
iv. H, is a normal subgroup of B..

We call a neutrosophic biloop to be a simple neutrosophic
biloop if it has no nontrivial neutrosophic normal subbiloops.

DEFINITION 1.3.68: Let (B = B; UB,, *;, *;) be a neutrosophic
biloop if only one of the neutrosophic loop or the group is
simple then we call the neutrosophic biloop to be a semi-simple
neutrosophic biloop.

DEFINITION 1.3.69: Let (B = B; U B,, *;, *,) be non empty set
with two binary operations. B is said to be strong neutrosophic
biloop.

i B = B; UB; is a union of proper subsets of B.
i. (B1, *1) is a neutrosophic loop.
iii. (B2, *;) is a neutrosophic group.

DEFINITION 1.3.70: Let B = (B; UB,, *;, *;) be a proper set on
which is defined two binary operations *; and *,. We call B a
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neutrosophic biloop of type Il if the following conditions are
satisfied

i B = B; B, where B; and B, are proper subsets of B.
ii. (B1, *1) is a neutrosophic loop.
iii. (B2, *3) is a loop.

(Clearly we call a neutrosophic biloop of type I is one in which
B; is a neutrosophic loop and B, is a group).

DEFINITION 1.3.71: Let S(B) = {S(B;) U ... US(By), *1,..., *\}
be a non empty neutrosophic set with N binary operations. S(B)
is a neutrosophic N-loop if S(B) = S(B;) U ... US(By), S(B;) are
proper subsets of S(B) for 1 <i < N) and some of S(B;) are
neutrosophic loops and some of the S(B;) are groups.

The order of the neutrosophic N-loop is the number of
elements in S(B). If the number of elements in S(B) is in finite
then we say S(B) is an infinite neutrosophic N-loop of infinite
order. Thus even if one of the S(B; ) is infinite we see the
neutrosophic N-loop S(B) is infinite.

DEFINITION 1.3.72: Let S(B) = {S(B;)) U S8(B2) U ... U S(By),
*1 e, *nf be a neutrosophic N-loop. A proper subset (P, *;, ...,
*n) of S(B) is said to be a neutrosophic sub N loop of S (B) if P
itself is a neutrosophic N-loop under the operations of S (B).

DEFINITION 1.3.73: Let S(L) = {L; UL, U ... ULy, *;, ..., *\}
where

i L =1L, v .. ULyis such that each L; is a proper
subset of L, 1 <i <N.
ii. Some of (L;, *;) are a Neutrosophic loops.
iii. Some of (L, *;) are just loops.
iv. Some of (Lx, *x) are groups and rest of
V. (L, *) are neutrosophic groups.
Then we call L = L; ULy, U ... ULy, *, ..., ¥} to be a

neutrosophic N-loop of level II.

50



DEFINITION 1.3.74: Let L = {L; UL, U ... ULy, *, %, ..., %\}
be a neutrosophic N-loop. A proper subset H of L is said to be a
neutrosophic normal sub N-loop of L if the following conditions
are satisfied.

i H is a neutrosophic sub N-loop of L
ii. xH=Hx

(Hx)y =H (xy)

y(xH) =(yx)H

forallx,y € L.
If the neutrosophic N-loop L has no trivial normal sub-N-
loop, we call L to be a simple neutrosophic N-loop.

DEFINITION 1.3.75: Let {(L w1)=L; UL, U ... ULy %, *,
.o, *n}, be a nonempty set with N-binary operations where

i L ul)=L;, UL, U... ULywhere each L; is a proper
subset of (L 1), I <i<N
ii. (L;, *;) is a neutrosophic loop, at least for some i.
iil. (L;, *) is a neutrosophic group.

Then we call {{L V1), *,, ..., *\} to be a strong neutrosophic N-
loop.

DEFINITION 1.3.76: Let {(L ' 1)=L; UL, U...U Ly, *,, ...,
*v4, be a neutrosophic N-loop. Let P be a proper subset of (L ©
1) such that

P={P, U..UP %, .. * |I<i,...i< N and 1<t<N}.
If P is a neutrosophic t-loop (*, =%, 1 <j <N, I <i, <t and
F, =P Ly then we call P a neutrosophic (N —t) deficit N-

subloop of (L 1)

DEFINITION 1.3.77: Let {(L wI)=L; UL, U... ULy, ¥, ..., *\}
be a neutrosophic N-loop of finite order. A neutrosophic (N —t)
deficit sub N-loop P of (L U I) is said to be Lagrange
neutrosophic (N — t) deficit sub N-loop if o(P) / o((L v 1). If
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every neutrosophic (N — t) deficit sub N-loop of (L U I) is
Lagrange neutrosophic then we call (L. U 1) a Lagrange (N —t)
deficit neutrosophic N-loop. If (L U 1) has atleast one Lagrange
(N — t) deficit neutrosophic sub N-loop then we call (L U 1) a
weak Lagrange (N — t) deficit neutrosophic N-loop.

1.4 S-groupoids, neutrosophic groupoids and their
generalizations

In this section we just recall the notion of groupoids. We also
give some new classes of groupoids constructed using the set of
modulo integers. This book uses in several examples from these
new classes of groupoids. For more about groupoids please refer
[45]. In this section we just give a brief introduction to
groupoids, N-groupoids and their Smarandache analogue,
neutrosophic groupoids and their generalizations.

DEFINITION 1.4.1: Given an arbitrary set P a mapping of P x P
into P is called a binary operation on P. Given such a mapping
o: P xP — P we use it to define a product *in P by declaring
a*b=cifo(a b)=c

DEFINITION 1.4.2: A non empty set of elements G is said to
form a groupoid if in G is defined a binary operation called the
product denoted by *such thata *b € G foralla, b € G.

DEFINITION 1.4.3: A groupoid G is said to be a commutative
groupoid if for every a, b € G we have a *b =b *a.

DEFINITION 1.4.4: A groupoid G is said to have an identity
elementein Gifa *e=e *a=aforalla € G.

DEFINITION 1.4.5: Let (G, *) be a groupoid a proper subset H
c G is a subgroupoid if (H, #) is itself a groupoid.

DEFINITION 1.4.6: A groupoid G is said to be a Moufang

groupoid if it satisfies the Moufang identity (xy) (zx) = (x(yz))x
forallx, y, zin G.
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DEFINITION 1.4.7: 4 groupoid G is said to be a Bol groupoid if
G satisfies the Bol identity ((xy) z) y = x ((yz) y) for all x, y, z in
G.

DEFINITION 1.4.8: A groupoid G is said to be a P-groupoid if
(xy) x =x (yx) forallx, y € G.

DEFINITION 1.4.9: 4 groupoid G is said to be right alternative

if it satisfies the identity (xy) y = x (yy) for all x, y € G.
Similarly we define G to be left alternative if (xx) y = x (xy) for
allx,y € G.

DEFINITION 1.4.10: A4 groupoid G is alternative if it is both
right and left alternative, simultaneously.

DEFINITION 1.4.11: Let (G, #) be a groupoid. A proper subset
H of G is said to be a subgroupoid of G if (H, *) is itself a
groupoid.

DEFINITION 1.4.12: A groupoid G is said to be an idempotent
groupoid if x° = x for all x € G.

DEFINITION 1.4.13: Let G be a groupoid. P a non empty proper
subset of G, P is said to be a left ideal of the groupoid G if 1) P
is a subgroupoid of G and 2) For allx € Gand a € P, xa € P.
One can similarly define right ideal of the groupoid G. P is
called an ideal if P is simultaneously a left and a right ideal of
the groupoid G.

DEFINITION 1.4.14: Let G be a groupoid A subgroupoid V of G
is said to be a normal subgroupoid of G if

i aV="Va
ii. (Vx)y = V(xy)
iil. y(xV) = Ox)V

forallx,y,a V.
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DEFINITION 1.4.15: A groupoid G is said to be simple if it has
no non trivial normal subgroupoids.

DEFINITION 1.4.16: 4 groupoid G is normal if

i. xG = Gx
ii. G(xy) = (Gx)y
iii. y(xG) = (yx)G for all x, y € G.

DEFINITION 1.4.17: Let G be a groupoid H and K be two
proper subgroupoids of G, with H N K = ¢ We say H is
conjugate with K if there exists a x € H such that H = x K or Kx
(‘or' in the mutually exclusive sense).

DEFINITION 1.4.18: Let (G;, 0)), (G,, 6,), ..., (G, 6,) be n
groupoids with 6, binary operations defined on each G, i = 1, 2,
3, ..., n. The direct product of Gy, ..., G,denoted by G = G; x...
xG,={(g, ..., &) | g € G} by component wise multiplication
on G, G becomes a groupoid.

Forifg=1(g, .., g)and h = (h;, ..., h,) then g * h =
{(2:16:h;, 2:6h,, ..., 2,6,h,)}. Clearly, gh € G. Hence G is a
groupoid.

DEFINITION 1.4.19: Let G be a groupoid we say an element e
G is a left identity if ea = a for all a € G. Similarly we can
define right identity of the groupoid G, if e € G happens to be
simultaneously both right and left identity we say the groupoid
G has an identity.

DEFINITION 1.4.20: Let G be a groupoid. We say a in G has
right zero divisor if a *b = 0 for some b =0 in G and a in G has

left zero divisor if b *a = 0. We say G has zero divisors if a * b
=0and b *a =0 fora, b € G\ {0} A zero divisor in G can be
left or right divisor.

DEFINITION 1.4.21: Let G be a groupoid. The center of the
groupoid C (G) = {x €G | ax = xa for all a € G}.
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DEFINITION 1.4.22: Let G be a groupoid. We say a, b € G is a
conjugate pair if a = bx (or xa for some x € G) and b = ay (or
ya for some y € G).

DEFINITION 1.4.23: Let G be a groupoid of order n. An element
a in G is said to be right conjugate with b in G if we can find x,
yeGsuchthata*x=bandbey=a((x *a=bandy *b =
a). Similarly, we define left conjugate.

DEFINITION 1.4.24: Let Z' be the set of integers. Define an
operation *on Z by x *y = mx + ny wherem,n € Z', m < oc
and n < oc (m, n) = 1 and m # n. Clearly {Z', * (m, n)} is a
groupoid denoted by Z* (m, n). We have for varying m and n get
infinite number of groupoids of infinite order denoted by Z".

Here we define a new class of groupoids denoted by Z(n) using
Z, and study their various properties.

DEFINITION 1.4.25: Let Z, = {0, 1, 2, ..., n— 1} n >3. Fora, b
€ Z, \ {0} define a binary operation *on Z, as follows. a *b =
ta + ub (mod n) where t, u are 2 distinct elements in Z, \ {0} and
(t, u) =1 here ' + ' is the usual addition of 2 integers and 'ta '
means the product of the two integers t and a. We denote this
groupoid by {Z,, (t, u), *} or in short by Z, (t, u).

It is interesting to note that for varying t, u € Z, \ {0} with (t, u)
=1 we get a collection of groupoids for a fixed integer n. This
collection of groupoids is denoted by Z(n) that is Z(n) = {Z,, (t,
u), * | for integers t, u € Z, \ {0} such that (t, u) = 1}. Clearly
every groupoid in this class is of order n.

Example 1.4.1: Using Z; = {0, 1, 2}. The groupoid {Z;, (1, 2),
*} =(Z3 (1, 2)) is given by the following table:

N— OO

N = O *
el k=R
SN [— N
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Clearly this groupoid is non associative and non commutative
and its order is 3.

THEOREM 1.4.1: Let Z, = {0, 1, 2, ..., n}. A groupoidin Z (n) is
a semigroup if and only if £ =t (mod n) and u’ =u (mod n) for t,
ueZ,\{0}and (t, u) = 1.

THEOREM 1.4.2: The groupoid Z, (t, u) is an idempotent
groupoid if and only if t + u =1 (mod n).

THEOREM 1.4.3: No groupoid in Z (n) has {0} as an ideal.

THEOREM 1.4.4: P is a left ideal of Z, (¢, u) if and only if P is a
right ideal of Z, (u, t).

THEOREM 1.4.5: Let Z, (t, u) be a groupoid. If n =t + u where
both t and u are primes then Z, (t, u) is simple.

DEFINITION 1.4.26: Let Z, = {0, 1, 2, ... ,n -1} n 23, n < o
Define * a closed binary operation on Z, as follows. For any a,
b € Z, define a *b = at + bu (mod n) where (t, u) need not
always be relatively prime but t #u and t, u € Z, \ {0}.

THEOREM 1.4.6: The number of groupoids in Z'(n) is (n — 1) (n
-2).

THEOREM 1.4.7: The number of groupoids in the class Z (n) is
bounded by (n—1) (n—2).

THEOREM 1.4.8: Let Z, (t, u) be a groupoid in Z"(n) such that
(tu=tn=2mt/2mandt+ u=2m Then Z, (t, u) has
subgroupoids of order 2m /torn/t.

Proof: Givennisevenandt+u=nsothatu=n-—t.
Thus Z, (t, u) = Z, (t, n — t). Now using the fact

t-Z, = {0, t, 2t, 3t, ... ,(%—ljt}that ist.Z, has only n/t
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elements and these n / t elements from a subgroupoid. Hence Z,
(t, n —t) where (t, n —t) = t has only subgroupoids of order n / t.

DEFINITION 1.4.27: Let Z, = {0, 1, 2, ..., n— 1} n 23, n <
Define *on Z, as a *b = ta + ub (mod n) where t and u € Z, \
{0} and t can also equal u. For a fixed n and for varying t and u
we get a class of groupoids of order n which we denote by
Z"(n).

DEFINITION 1.4.28: Let Z, = {0, 1, 2, ... ,n—1}n >3, n < o
Define *on Z, as follows. a #b = ta + ub (mod n) where t, u €
Z,. Here t or u can also be zero.

DEFINITION 1.4.29: Let G = (G; UG, U ... UGy, ¥, ..., *\) be
a non empty set with N-binary operations. G is called the N-
groupoid if some of the G;’s are groupoids and some of the G;’s
are semigroups, i #j and G = G; U G, U ... UGy is the union
of proper subsets of G.

DEFINITION 1.4.30: Let G = (G; v G, U ... UGy ¥, 5, ..,
*v) be a N-groupoid. The order of the N-groupoid G is the
number of distinct elements in G. If the number of elements in G
is finite we call G a finite N-groupoid. If the number of distinct
elements in G is infinite we call G an infinite N-groupoid.

DEFINITION 1.4.31: Let G = {G; UG, U ... UGy, ¥, %5, ...,
*nt be a N-groupoid. We say a proper subset H ={H; U H, U
« UHy, ¥, %, ., ®y of Gis said to be a sub N-groupoid of G
if H itself is a N-groupoid of G.

DEFINITION 1.4.32: Let G = (G, UG, U ... UGy, ¥, %5, ..., ¥y)
be a finite N-groupoid. If the order of every sub N-groupoid H
divides the order of the N-groupoid, then we say G is a
Lagrange N-groupoid.

It is very important to mention here that in general every N-
groupoid need not be a Lagrange N-groupoid.

Now we define still a weaker notion of a Lagrange N-
groupoid.
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DEFINITION 1.4.33: Let G = (G; UGy U ... UGy, ¥, ..., *\) be
a finite N-groupoid. If G has atleast one nontrivial sub N-
groupoid H such that o(H) / o(G) then we call G a weakly
Lagrange N-groupoid.

DEFINITION 1.4.34: Let G = (G; UG, U ... UGy, ¥, %5, ..., Ty
be a N groupoid. A sub N groupoid V=V, UV, U ... UVyof
G is said to be a normal sub N-groupoid of G, if

i aVi=Via, i=1 2, ..., Nwhenevera €V;
ii. Vixy) =(Vix)y,i=1,2, ..., Nforx,y €V;
1il. yxV)=&y Vi, i=12, ... Nforx,y €V,

Now we say a N-groupoid G is simple if G has no nontrivial
normal sub N-groupoids.

Now we proceed on to define the notion of N-conjugate
groupoids.

DEFINITION 1.4.35: Let G = (G; UGy U ... UGy, ¥, ..., *\) be
a N-groupoid. Let H={H, U ... UHy; *,, ..., ¥y} and K = {K;
UK, UL, UKy, Fy, L, ¥ be sub N-groupoids of G = G; UG
U ... U Gy, where H, K; are subgroupoids of G; (i = 1, 2, ...,
N).

Let K " H = ¢ We say H is N-conjugate with K if there
exists x; € H; such that x; K; = H; (or K; x; = H) fori =1, 2, ...,
N ‘or’ in the mutually exclusive sense.

DEFINITION 1.4.36: Let G = (G; UG, U ... UGy, ¥, %, ..., Ty
be a N-groupoid. An element x in G is said to be a zero divisor
if their exists a y in G such that x *; y =y * x = 0 for some i in
{1, 2, .., NL

We define N-centre of a N-groupoid G.

DEFINITION 1.4.37: Let G = (G; UG, U ... UGy, ¥, %5, ..., *y)
be a N-groupoid. The N-centre of (G; U G, U ... U Gy,
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*1 v, ) denoted by NC (G) = {x; € G; | x; a; = a; x; for all
a, € G Ufxy e Gy | xaa, =ax x; for all a, € Gy} U ... U
xy € Gy | xy av = ay xy for all ay € Gy} =
N
U{xieG|xiai=al.xf Sor all afeGi} = NC (G).
i=1

DEFINITION 1.4.38: 4 Smarandache groupoid G is a groupoid
which has a proper subset S, S < G such that S under the
operations of G is a semigroup.

DEFINITION 1.4.39: Let G be a Smarandache groupoid (SG) if
the number of elements in G is finite we say G is a finite SG,
otherwise G is said to be an infinite SG.

DEFINITION 1.4.40: Let G be a Smarandache groupoid. G is
said to be a Smarandache commutative groupoid if there is a
proper subset, which is a semigroup, is a commutative
semigroup.

DEFINITION 1.4.41: Let (G, #) be a Smarandache groupoid
(SG). A non-empty subset H of G is said to be a Smarandache
subgroupoid if H contains a proper subset K — H such that K is
a semigroup under the operation *.

DEFINITION 1.4.42: A Smarandache left ideal A of the
Smarandache groupoid G satisfies the following conditions:

i A is a Smarandache subgroupoid
ii. x €eGanda € Athenxa € A.

Similarly, we can define Smarandache right ideal. If A is both a
Smarandache right ideal and Smarandache left ideal
simultaneously then we say A is a Smarandache ideal.

DEFINITION 1.4.43: Let G be a SG. V be a Smarandache
subgroupoid of G. We say V is a Smarandache seminormal
groupoid if
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i aV=Xforalla e G
ii. Va=Yforalla € G

where either X or Y is a Smarandache subgroupoid of G but X
and Y are both subgroupoids.

DEFINITION 1.4.44: Let G be a SG and V be a Smarandache
subgroupoid of G. V is said to be a Smarandache normal
groupoid if aV = X and Va = Y for all a € G where both X and
Y are Smarandache subgroupoids of G.

DEFINITION 1.4.45: Let G be a SG. H and P be any two
subgroupoids of G. We say H and P are Smarandache
semiconjugate subgroupoids of G if

i H and P are Smarandache subgroupoids of G
ii. H =xP or Px or
iii. P =xH or Hx for some x € G.

DEFINITION 1.4.46: Let G be a Smarandache groupoid. H and
P be subgroupoids of G. We say H and P are Smarandache
conjugate subgroupoids of G if

i.  Hand P are Smarandache subgroupoids of G
ii. H=xPorPxand
iii. P =xHor Hx.

DEFINITION 1.4.47: Let G = {G, UG, U ... UGy, *, ..., *\} be
a non empty set with N-binary operations and G; are proper
subsets of G. We call G a Smarandache N-groupoid (S-N-
groupoid) if some of the G; are S-groupoids and the rest of them
are S-semigroups, i.e. each G; is either a S-semigroup or a S-
groupoid.

DEFINITION 1.4.48: Let G = {G; UG, U...UGy, ¥, ..., *\} be
a N-groupoid. A non empty proper subset K = (K; UK, U ... U
Ky, *;, ..., *\) is said to be a Smarandache sub-N-groupoid (S-
sub N-groupoid) if K itself'is a S-N-groupoid.
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DEFINITION 1.4.49: Let G = {G, UG, U ... UGy, ¥, ..., ¥y} be
a N-groupoid. We say G is a Smarandache commutative N-
groupoid (S-commutative N-groupoid) if every S-sub N-
groupoid of G is commutative. If at least one S-sub-N-groupoid
which is commutative then we call G a Smarandache weakly
commutative N-groupoid (S-weakly commutative N-groupoid).

DEFINITION 1.4.50: Let G = {G; UG, U ... UGy, *, %, ..

*w be a N-groupoid. We call G an idempotent N-groupoid lf
every element of G is an idempotent. We call the S-N-groupoid
to be a Smarandache idempotent N-groupoid (S-idempotent N-
groupoid) if every element in every S- sub N-groupoid in G is a
S-idempotent.

DEFINITION 1.4.51: Let G = {G; UG, U ..U Gy, *,% ..., ¥}
be a N-groupoid. A non empty proper subset P = (P; UP, U ...
U Py, ¥, %, L, *N) of G s said to be a Smarandache left N-
ideal (S-left N ideal) of the N-groupoid G if

i Pis a S-sub N-groupoid.
ii. Each (P, *) is a left ideal of G;, 1 <i <N.

On similar lines we can define S-right N-ideal. If P is both a S-
right ideal and S-left ideal then we say P is a Smarandache N-
ideal (S-N-ideal) of G.

DEFINITION 1.4.52: Let G = {G; UG, U ... UGy, ¥, %, ...,
*nf be a N-groupoid. A S-sub N-groupoid K = (K; UK, U ... U
Ky, *, ..., *\) is said to be a Smarandache normal sub N-
groupoid (S-normal sub N-groupoid) of G if

i a,~P,»=P,»a,-,a,»EP,-.
il. Pi(xiyi)=(P,~x,~)y,-.x,-,y,-EPi.
111, Xi (yipj) = (x,-yi)P,- .

forall a, x;y; € G.

We call the Smarandache simple N-groupoid (S-simple N-
groupoid) if it has no non trivial S- normal sub- N-groupoids.
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DEFINITION 1. 4.53: Let G = {G; v G, U ... UGy, *, %5, ...,
*N} be a finite S- N-groupoid.

We say G to be a Smarandache normal N-groupoid (S-
normal N-groupoid) if the largest S-sub N-groupoid of G is a
normal N-groupoid. We call a S-sub N-groupoid to be the
largest if the number of elements in it is the maximum.

For more please refer [35-40]

DEFINITION 1.4.54: Let G = {G; U G, U ... UGy, *, %, ...,
*N be a N-groupoid. Let H = {H; UH, U ... UHy, *, %, ...,
*and K ={K;, UK, U ... UKy, %, %, ..., *\} be any two §S-
sub N-groupoids of G. We say H is Smarandache N-conjugate
(S-N-conjugate) with K if there exists x; € H; and x; € H; with x;
K; = H; (or K; x;) and x; K; = H; (or K; x;) ‘or’ in the mutually
exclusive sense.

DEFINITION 1.4.55: Let (G, *) be a groupoid. A neutrosophic
groupoid is defined as a groupoid generated by {(G U 1)} under
the operation *.

DEFINITION 1.4.56: Let {(G v 1) *! be a neutrosophic
groupoid. The number of distinct elements in {(G U 1) *! is
called the order of the neutrosophic groupoid. If {(G U 1) *}
has infinite number of elements then we say the neutrosophic
groupoid is infinite. If {(G U 1), *} has only a finite number of
elements then we say {(G U 1) *} is a finite neutrosophic
groupoid.

DEFINITION 1.4.57: Let {(G v I) *} be a neutrosophic
groupoid. A proper subset H of (G U 1) is said to be a
neutrosophic subgroupoid of (G v 1) if (H, *) itself is a
neutrosophic groupoid.

A non empty subset P of the neutrosophic groupoid (G U 1)
is said to be a left neutrosophic ideal of the neutrosophic
groupoid (G U 1)if

i. P is aneutrosophic subgroupoid.
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ii. Forallx e (G ul)anda e P,x *a €P.

One can similarly define right neutrosophic ideal of a
neutrosophic groupoid (G U 1) We say P is a neutrosophic
ideal of the neutrosophic groupoid (G v I) if P is
simultaneously a left and a right neutrosophic ideal of (G U 1)

DEFINITION 1.4.58: Let (G U 1) be a neutrosophic groupoid. A
neutrosophic subgroupoid V of (G U I) is said to be a
neutrosophic normal subgroupoid of (G U 1) if

i aV'="Va
ii. (Vx)y =V (xy)
iii. y(xV)=0x)V

forallx,y,a € (G UI).
A neutrosophic groupoid is said to be neutrosophic simple if
it has no nontrivial neutrosophic normal subgroupoids.

DEFINITION 1.4.59: Let (G U I) be a neutrosophic groupoid.
Let H and K be two proper neutrosophic subgroupoids of G
with H N K = ¢ we say H is neutrosophic conjugate with K if
there exists a x € H such that H = xK (or Kx) (or in the
mutually exclusive sense).

DEFINITION 1.4.60: Let {(G U 1) *)}, {(G vI) %)}, .., {({G U
1), *,} be n neutrosophic groupoids *; binary operations defined
on each (G; 1) i =1, 2,.., n. The direct product of (G, U 1),
G, ..., (G, )denoted by (G UI)= (G, ) x (G, U])x
x (G, o) = {(g, g,..., g) | g € (Giul)] <i <np}
component wise multiplication of G; makes (G U I) a
neutrosophic groupoid.
Forifg={(g, ..., g) and h = (hy, hy, ..., h,) in (G U1)then
g*¥h=\(g; * h;, @& %hy ..., g ¥:h,). Clearly g *h € {(G U 1)
*) Thus {(G V1) *!is a neutrosophic groupoid.

DEFINITION 1.4.61: Let {(G v I) *} be a neutrosophic
groupoid, we say an element e € (G U1)is a left identity if e * a
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=aforall a € (G V1) similarly right identity of a neutrosophic
groupoid can be defined. If e happens to be simultaneously both
right and left identity we say the neutrosophic groupoid has an
identity.

Similarly we can say an element 0 za € (G U 1) has a right
zero divisor if a * b = 0 for some b #0in (G 1) and a; in (G
U 1) has left zero divisor if b; * a; = 0 (both a; and b; are
different from zero). We say (G 1) has zero divisor ifa *b = 0
andb *a=0fora, b € (G UI)\ {0}

DEFINITION 1.4.62: Let {(G v I) *} be a neutrosophic

groupoid, the neutrosophic centre of the groupoid (G U 1) is
C(Gul)=faeGui)}la*x=x*aforallx e (G UI).

DEFINITION 1.4.63: Let {(G v I) *} be a neutrosophic
groupoid of order n. (n < ). We say a, b € (G U 1) is a
conjugate pair if a = b * x (or x * b for some x € (G 1)) and b
=a *y (ory *afor somey € (G UI)). An element a in (G V1)
is said to be right conjugate with b in (G U 1) if we can find x, y
e (G Ul)such thata *x=bandb *y=a(x*a=bandy *b
=a).

DEFINITION 1.4.64: Let (BN(G), * o) be a non empty set with
two binary operations * and o. (BN(G), * o) is said to be a
neutrosophic bigroupoid if

BN(G) = G; U G, where at least one of (G, *) or (G, 0) is
a neutrosophic groupoid and other is just a groupoid. G; and
G, are proper subsets of BN(G); i.e., G, & G..

DEFINITION 1.4.65: Let N(G) = {G; v G, U ... UGy, ¥, ...,
*} be a non-empty set with N-binary operations, N(G) is called
a neutrosophic N-groupoid if some of the G;’s are neutrosophic
groupoids and some of them are neutrosophic semigroups and
N(G) = G; UG, U... UGy is the union of the proper subsets of
N(G).

1t is important to note that a G; is either a neutrosophic
groupoid or a neutrosophic semigroup. We call a neutrosophic
N-groupoid to be a weak neutrosophic N-groupoid if in the
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union N(G) = G; U Gy U ... U Gy some of the G;’s are
neutrosophic groupoids, some of the G;’s are neutrosophic
semigroups and some of the G;’s are groupoids or semigroups
‘or’ not used in the mutually exclusive sense.

The order of the neutrosophic N-groupoids are defined as
that of N-groupoids. Further we call a neutrosophic N-groupoid
to be commutative if each (G;, *;) is commutative fori =1, 2, ...,
N.

1.5 Mixed N-algebraic Structures and neutrosophic
mixed N-algebraic structure

In this section we just recall some of the definition of mixed
algebraic structure, S- mixed algebraic structure, and
neutrosophic S- algebraic structure

In this section we proceed onto define the notion of N-
group-semigroup algebraic structure and other mixed
substructures and enumerate some of its properties.

DEFINITION 1.5.1: Let G = {G; U G, U ... UGy, ¥, ..., ¥}
where some of the Gi's are groups and the rest of them are
semigroups. G;’s are such that G; & Gjor G; & Gifi #], i.e.
G;’s are proper subsets of G. *,, ..., *y are N binary operations
which are obviously are associative then we call G a N-group
semigroup.

We can also redefine this concept as follows:

DEFINITION 1.5.2: Let G be a non empty set with N-binary
operations *;, ..., *y. We call G a N-group semigroup if G
satisfies the following conditions:

i G =G; UGy U... UGy such that each G; is a proper
subset of G (By proper subset G; of G we mean G; & G;

or G; & G if'i #j. This does not necessarily imply G; N
Gj = ¢)

il. (G, *) is either a group or a semigroup, i = 1, 2,..., N.
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iii. At least one of the (G;, *;) is a group.
iv. At least one of the (G, *;) is semigroup i #j.

Then we call G = {G; U G, U ... UGy, ¥, ..., ¥y} to be a N-
group semigroup (1 <i, j < N).

DEFINITION 1.5.3: Let G = {G; UG, U ... UGy, ¥, ..., *\} be
a N-group-semigroup. We say G is a commutative N-group
semigroup if each (G, *;) is a commutative structure, i = 1, 2,
ey V.

DEFINITION 1.5.4: Let G = {G; UG, U ... UGy, ¥, ..., *\} be
a N-group. A proper subset P of G where (P; UP, U ... U Py,
*1 e, ¥y) Is said to be a N-subgroup of the N-group semigroup
G ifeach (P, *;) is a subgroup of (G, *;);i=1, 2, ..., N.

DEFINITION 1.5.5: Let G = {G; UG, U ... UGy, *4, ..., *y}! be
a N-group semigroup where some of the (G;, *;) are groups and
rest are (G;, *;) are semigroups, 1 <i, j <N. A proper subset P
of G is said to be a N-subsemigroup if P = {P; UP, U ... UPy,
*, .., Nt where each (P, *;) is only a semigroup under the
operation *;

Now we proceed on to define the notion of N-subgroup
semigroup of a N-group semigroup.

DEFINITION 1.5.6: Let G = {G; UG, U ... UGy, ¥4, ..., ¥y} be

a N-group semigroup. Let P be a proper subset of G. We say P

is a N-subgroup semigroup of G if P = {P; UP, U ... UPy, ¥,
., *v} and each (P, *;) is a group or a semigroup.

DEFINITION 1.5.7: Let G = {G; UG, U ... UGy, ¥, ..., *\} be
a N-group semigroup. We call a proper subset P of G where P
={P;, UP, U.. UPy *, ..., ¥} to be a normal N-subgroup
semigroup of G if (G, *;) is a group then (P, *;) is a normal
subgroup of G; and if (G, *;) is a semigroup then (P;, *;) is an
ideal of the semigroup G;. If G has no normal N-subgroup
semigroup then we say N-group semigroup is simple.
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DEFINITION 1.5.8: Let L = {L; UL, U ... ULy, *,..., *\} be a
non empty set with N-binary operations defined on it. We call L
a N-loop groupoid if the following conditions are satisfied:

i L=L, UL, ... ULywhere each L; is a proper subset
of Lie. Ly & LiorL; & L;ifi#j, for I <i,j<N.
ii. (L;, *:) is either a loop or a groupoid.
iii. There are some loops and some groupoids in the

collection {L,, ..., Ly}.
Clearly L is a non associative mixed N-structure.

DEFINITION 1.5.9: Let L = {L;, UL, U ... ULy, *;, ..., ¥y} be a
N-loop groupoid. L is said to be a commutative N-loop
groupoid if each of {L;, *;} is commutative.

Now we give an example of a commutative N-loop groupoid.

DEFINITION 1.5.10: Let L = {L; UL, U ... ULy, *;, ..., *y} be
a N-loop groupoid. A proper subset P of L is said to be a sub N-
loop groupoid if P = {P; UP, U ... UPy, *,, ..., *\} be a N-
loop groupoid. A proper subset P = {P; UP, U ... UPy, *, ...,
*} is such that if P itself is a N-loop groupoid then we call P
the sub N-loop groupoid of L.

DEFINITION 1.5.11: Let L = {L; UL, U ... ULy, *;, ..., *y} be
a N-loop groupoid. A proper subset G = {G; U G, U ... UGy,
*1 v, ¥npis called a sub N-group if each (G, *;) is a group.

DEFINITION 1.5.12: Let L = {L; UL, U ... ULy, *;, ..., *y} be
a N-loop groupoid. A proper subset T ={T; 0T, U ... UTy, *,,

., *n} is said to be a sub N-groupoid of the N-loop groupoid if
each (T, *;) is a groupoid.

DEFINITION 1.5.13: Let L = {L; UL, U ... ULy, *;, ..., ¥y} be

a N-loop groupoid. A non empty subset S = {§; U S, C...U Sy,
*1 v, ¥n}is said to be a sub N-loop if each {S;, *} is a loop.
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DEFINITION 1.5.14: Let L = {L; UL, U ... ULy, *;, ..., *y} be
a N-loop groupoid. A non empty subset W = {W, UW, U ... U
Wy, *1, ..., ! of L said to be a sub N-semigroup if each {W;, *;}
is a semigroup.

DEFINITION 1.5.15: Let L = {L; UL, U ... ULy, *;, ..., *y} be
a N-loop groupoid. Let R = {R; UR, U ... URy, *), ..., *y}be a
proper subset of L. We call R a sub N-group groupoid of the N-
loop groupoid L if each {R;, *;} is either a group or a groupoid.

DEFINITION 1.5.16: Let L = {L; UL, U ... ULy, *;, ..., *\} be
a N-loop groupoid of finite order. K = {K; UK, UK;, %, ...,
*N} be a sub N-loop groupoid of L. If every sub N-loop groupoid
divides the order of the N-loop groupoid L then we call L a
Lagrange N-loop groupoid. If no sub N-loop groupoid of L
divides the order of L then we say L is a Lagrange free N-loop
groupoid.

DEFINITION 1.5.17: Let L = {L; UL, U ... ULy, *;, ..., *y} be
a N-loop groupoid. We call L a Moufang N-loop groupoid if
each (L;, *;) satisfies the following identities:

i. (xy) (zx) = (x (yz))x.
i.  ((xy)z)y =x((2y).
iii. x (xz)) = (xy)x)zforx, y,z e L, 1 <i<N.

Thus for a N-loop groupoid to be Moufang both the loops and
the groupoids must satisfy the Moufang identity.

DEFINITION 1.5.18: Let L = {L; UL, U...U Ly, %, ..., *\} be a
N-loop groupoid. A proper subset P (P = P; U P, U ... UPy,
*, ., ) of L is a normal sub N-loop groupoid of L if

i If P is a sub N-loop groupoid of L.
ii. x; P; = P; x; (Where P, =P N L;).
iii. yi(x,-Pi)=()/ixi)P,-f0rallx,-,y,-6L,~.

This is true for each P;, i.e., fori =1, 2, ..., N.
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DEFINITION 1.5.19: Let L = {L; UL, U ... ULy, *;, ..., *\} and
K={K, UK, U.. UKy *, ..., *y} be two N-loop groupoids
such that if (L;, *;) is a groupoid then {K; *;} is also a groupoid.
Likewise if (L, *;) is a loop then (K, *;) is also a loop true for 1
<iL,jSN.Amap 6=6, 06, U.. UbyfromLtoKisaN-loop
groupoid homomorphism if each 6. : L, — K; is a groupoid
homomorphism and 6;: L; = K is a loop homomorphism I < i,
j< N

DEFINITION 1.5.20: Let L = {L; UL, U ... ULy, *,, ..., *\} be a
N-loop groupoid and K = {K; UK, U ... UKy, *;, ..., ¥} be a
M-loop groupoid.

Amap ¢ = ¢ U ¢ U ... U @y from L to K is called a
pseudo  N-M-loop  groupoid  homomorphism if each
¢: L, — K is either a loop homomorphism or a groupoid
homomorphism, 1 <t < N and 1 <s <M, according as L, and
K; are loops or groupoids respectively (we demand N < M for if
M > N we have to map two or more L; onto a single K; which
can not be achieved easily).

DEFINITION 1.5.21: Let L = {L, UL, U ... ULy, *, ..., *y}be a
N-loop groupoid. We call L a Smarandache loop N-loop
groupoid (S-loop N-loop groupoid) if L has a proper subset P =
{P; UP, U... UPy, %, ..., *\} such that each P; is a loop i.e. P
is a N-loop.

Now we proceed on to define the mixed N-algebraic structures,
which include both associative and non associative structures.
Here we define them and give their substructures and a few of
their properties.

DEFINITION 1.5.22: Let A be a non empty set on which is
defined N-binary closed operations *,, ..., *v. A is called as the
N-group-loop-semigroup-groupoid (N-glsg) if the following
conditions, hold good.
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i A=A4; VA, U...U Ay where each A; is a proper subset
of A (i.e. A; & A; & or A; & A if (i #j).

ii. (4, * ) is a group or a loop or a groupoid or a
semigroup (or used not in the mutually exclusive sense)
I<i <N. Ais a N - glsg only if the collection {4, ...,
Ap} contains groups, loops, semigroups and groupoids.

DEFINITION 1.5.23: Let A = {A; U ... UAp, ¥, ..., *\} where A;
are groups, loops, semigroups and groupoids. We call a non
empty subset P = {P; UP, U ... UPy, ¥, ..., *\} of A, where P;
= P N A, is a group or loop or semigroup or groupoid
according as A; is a group or loop or semigroup or groupoid.
Then we call P to be a sub N-glsg.

DEFINITION 1.5.24: Let A = {A; UA, U ... UAy, ¥, ..., *\}! be
a N-gisg. A proper subset T = {Tl1 U.LUT LK ...,*ik} of A is
called the sub K-group of N-glsg if each T, is a group from A,
where A, can be a group or a loop or a semigroup of a groupoid
but has a proper subset which is a group.

DEFINITION 1.5.25: Let A = {A; UA, U ..U Ay %), ..., *y} be
a N-glsg.
A proper subset T = {771 ... u]}r} is said to be sub r-loop

of A if each T, is aloop and T, is a proper subset of some A,,.

l/' 1
As in case of sub K-group r need not be the maximum number of
loops in the collection A, ..., Ay.

DEFINITION 1.5.26: Let A = {A; VA, U ..U Ay ¥, ..., *y} be
a N-glsg. Let P = {P; U P, U ... UPy} be a proper subset of A
where each P; is a semigroup then we call P the sub u-
semigroup of the N-glsg.

DEFINITION 1.5.27: Let A = {A; UA, U ..U Ay *), ..., *y} be

a N-glsg. A proper subset C = {C; U C, U ... UC} of A is said
to be a sub-t-groupoid of A if each C; is a groupoid.
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DEFINITION 1.5.28: Let A = {A; UA; U ... UAy, ¥, ..., *\}! be
a N-glsg. Suppose A contains a subset P = F, U ..UF, of 4

such that P is a sub K-group of A. If every P-sub K-group of A
is commutative we call A to be a sub-K-group commutative N-
glsg.

If atleast one of the sub-K-group P is commutative we call
A to be a weakly sub K-group-commutative N-glsg. If no sub K-
group of A is commutative we call A to be a non commutative
sub-K-group of N-glsg.

For more about these notions please refer [50].

DEFINITION 1.5.29: Let (G = G; UG, U ... UGy, ¥, ..., *\) be
a non empty set on which is defined N-binary operations. (G,*),
v, ¥\) is defined as a Smarandache N-group semigroup (S-N-

group semigroup) if

i G =G; UGy, U ... UGy where each G; is a proper
subset of G (G; 5 G, G; = G, i #)).
ii. Some of the (G, *;) are groups.

iii. Some of the (G, *;) are S-semigroups.
iv. Some of the (G, *) are just semigroups (1 <i, j, k <
N).

DEFINITION 1.5.30: Let G = {G;, UG, U ... UGy, *, ..., *\} be
a N-group semigroup. G be a S-N-group semigroup. We call G
a Smarandache commutative N-group semigroup  (S-
commutative N-group semigroup) if G; are commutative groups,
every proper subgroup of the S-semigroup is commutative and
every semigroup which are not S-semigroups in G is also
commutative.

DEFINITION 1.5.31: Let G = {G;, UG, U ... UGy, *, ..., *\} be
a N-group semigroup. We call G a Smarandache
subcommutative N-group semigroup (S-subcommutative N-

group semigroup) if the following conditions are satisfied.

i G has non trivial sub N-groups.
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ii. Every sub N-group of G is commutative.

DEFINITION 1.5.32: Let G = {G; UG, U ... UGy, *5, ..., ¥/} be
a N-group semigroup. We say G is Smarandache cyclic N-group
(S-cyclic N-group) if {G,, *;} are cyclic groups and {G;, %} is a
S-cyclic semigroup. We say G to be a Smarandache weakly
cyclic N-group (S-weakly cyclic N-group) if every subgroup of
(G, *;) are cyclic and (G, *;) is a S-weakly cyclic semigroup.

DEFINITION 1.5.33: Suppose G = {G; v G, U ... UGy, *, ...,
*w be a S-N-group. The Smarandache hyper N-group
semigroup (S- hyper N-group semigroup) P is defined as
follows.

i If (G;, *;) are groups then they have no subgroups.
ii. If (G, %) is a S-semigroup then (4;, *;) is the largest
subgroup of (G;, *;).
iii. If (G, *:.) are semigroups then (T,, *;) are the largest
ideals of (G, * ), where
P: U (Gia*[) U (A * ) U (T;c’*k)'

J?
over over over
relevant relevant relevant

¢ J

Thus P :P] UPZ (G2 UPNW]’IBVBP[ = (G,‘, *[) OVP/' = (Aj, */)
O}"Pk:(Tk, *k)]_<l,],k_<N

We call a S-N group semigroup G to be Smarandache
simple N-group semigroup (S-simple N-group semigroup) if G
has no S-hyper N-group semigroup.

DEFINITION 1.5.34: Let G = {G, UG, U ... UGy, ¥, ..., ¥y} be
a S-N-group semigroup. Let P = {P; UP, U... UPy, ¥, ..., *\}
be a subset of G. If P itself is a S-N-group semigroup then we
call P a Smarandache sub N-group semigroup (S- sub N-group
semigroup) of G. Now it may happen in case of finite N-group

semigroup G, o(P) / o(G) or o(P) X o(G).
DEFINITION 1.5.35: Let G = {G; UG, U ... UGy, ¥, ..., *\} be

a S-N-group semigroup. A proper subset P = {P;, U P, U P;
U...U Py, ¥, *y} is called the Smarandache P-hyper sub-N-
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group semigroup (S-P-hyper sub-N-group semigroup) if each P;
c G; is a maximal subgroup of G; and P; is a maximal subgroup
of G, if G, is a group; or if P; — G; is the largest group if G; is a
S-semigroup.

DEFINITION 1.5.36: Let G = {G; U G, U G; U ... UGy, ¥,
.o, ¥} be a S-N-group semigroup. Let H={H; VH, U ... UH),
* e Tnp be a S-sub N group semigroup of G, we define
Smarandache right coset (S-right coset) Ha = {H;a U H; U ...
v I—AII. U.. UHy|ifa € G;and I—AII. denotes H; is not present in
the union; this is true for any i, i.e. whenever a € G;}.
Suppose a is in some r number of G;’s (say) G;, G, ..., G, Gk
then we have Ha = {H;, U ... Va UH;a U ... VUH;a UHga U
. U Hy} if we assume H; are subgroups. If H;’s are just S-
semigroups then we take H'; to be the subgroup of the S-
semigroup H..

DEFINITIONS 1.5.37: Let G = {G; UG, U ... UGy, ¥, ..., *\}
be a S-N- group semigroup. Suppose A and B be sub N groups
of G. Then we define the double coset of x in G with respect to
A, BlfAXB = {A]X]B] ... L/ANXNBN|X =X; Ux, U... U
XN}.

DEFINITION 1.5.38: Let G = {G, UG, U ... UGy, ¥, ..., ¥} be
a S-group semigroup. We call a S-sub N-group H of S-N-group
semigroup G where A = {A; UA; U ... UAy, ¥, ..., ¥y} to be a
Smarandache normal sub N-group semigroup (S-normal sub N-
group semigroup) of G, if x e Gand x = (x; UXx; U ... UXxy) €
Gthenx A= (x;A; U... UxyAy) €A and Ax = Ax; U ... UAy
xyCAforallx € G.

DEFINITION 1.5.39: Let L = {L; UL, U ... ULy, *,, ..., *\} be a
N-loop groupoid. We call L a Smarandache group N-loop
groupoid (S-group N-loop groupoid) if L has a proper subset P
where P = {P; U Py U ... UPy, %, ..., ¥} is a N-group i.e.,
each P; is a group and P, cL;; P, =P N L,
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DEFINITION 1.5.40: Let L = {L; UL, U ... ULy, *, ..., *\} be a
N-loop groupoid. We call L a Smarandache N-loop groupoid
(S-N-loop groupoid) if each L; is either a S-loop or a S-
groupoid. i.e. L has a proper subset set P = {P; UP, U ... UP),
*1 e, *nf such that each Pi=P NL; (i=1, 2, ..., N) is either a
group or a semigroup.

DEFINITION 1.541: Let L = {L; UL, U... ULy, *, ..., ¥} be a
N-loop groupoid. Let P = {P; UP, U ... UPy, %, ..., ¥} bea
proper subset of L and P be a sub N-loop groupoid, if P has a
proper subset T={T, VT, ... UTy, *;, ..., ¥} such that each
T: is a group or a semigroup then P is called a Smarandache
sub N-loop groupoid (S-sub N-loop groupoid) i.e. if P is a sub
N-loop groupoid then P must be S-N loop groupoid for P to be a
S-sub N-loop groupoid.

DEFINITION 1.5.42: Let L = {L; UL, U ... ULy, *, ..., *\} be a
N-loop groupoid. We call L a Smarandache groupoid N-loop
groupoid (S-groupoid N-loop groupoid) if L contains a proper
subset Y ={Y; Y, U.. UYy /¥, ..., ¥} such that each Y is
a S-N groupoid.

DEFINITION 1.5.43: Let L = {L, UL, U ... ULy, *;, ..., *\} and
K={K, UK, U ... UKy, ¥, ..., *N} be S-N-loop groupoids. A
map ¢ ={¢; U ... U@y} from L to K is called the Smarandache
homomorphism of N-loop groupoids (S- homomorphism of N-
loop groupoids) if each ¢ is a group homomorphism of a
semigroup homomorphism according as L; is a S-loop or a S-
groupoid respectively.

DEFINITION 1.5.44: Let L = {L; UL, U ... ULy, %, ..., ¥y} bea
N-loop groupoid suppose L, ..., L, be K groupoid in the set

{L;, Ly ..., Ly}. We call L a Smarandache groupoid N-loop
groupoid (S-groupoid N-loop groupoid) only if each groupoid
{L, |1<t<K}isaS-groupoid.

DEFINITION 1.545: Let L = {L;, UL, U ... ULy, *, ..., *} be
a S-groupoid N-loop groupoid. A proper subset of the collection
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of all groupoids G = {L,.1 U... U LiK} of {L; U ... Ly} is said

to be Smarandache subgroupoid N-loop groupoid (S-
subgroupoid N-loop groupoid) if G has a proper subset T =

{771 VT, V..U T;K} such that T is itself a Smarandache sub K-

I

groupoid.

DEFINITION 1.5.46: Let L = {L; UL, U ... ULy, *;, ..., *\} be
a S-groupoid N-loop groupoid. Let G = {Ll.l U... UL,.K} be the
collection of groupoids in L. A non empty proper subset P =
{Bl U... UBK} of the K-groupoid G is said to be a K-left ideal
of the K-groupoid G if

i P is a sub K-groupoid.
il. Forall x; L,.[ and a; € B,: X;a; EP]}, t=12 .., K

One can similarly define K-right ideal of the K-groupoid. We
say P is an K-ideal of the K-groupoid G if P is simultaneously a
K-left and a K-right ideal of G.

DEFINITION 1.547: Let L = {L; UL, U ... ULy, *;, ..., *\} be
a N-loop groupoid. Let G = G, V...V G, be the K-groupoid,;

ie. G ,.., G  be the collection of all groupoids in the set {L,,
vy Ly} A sub K-groupoid V = {V ur, v U } of G is said

i i

to be normal K subgroupoid of G if

a; I/it zl/it a;

V., x)y, =V, (x)
yi(x Vit):(yi X[)V[l

Jor all a;, x; yi € G,. The S-groupoid N-loop groupoid is K-

simple if it has no nontrivial normal K-subgroupoids.
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DEFINITION 1.5.48: Let L = {L; UL, U ... ULy, *;, ..., *\} be
a S-groupoid N-loop groupoid. Let G = G, U...U G,  be the K-
groupoid (i.e. G,....,G, be the collection of all groupoids from
the set L, ..., Ly). We call L a Smarandache normal groupoid
N-loop groupoid (S-normal groupoid N-loop groupoid)

if

i. xG = Gxwhere
X=x U..ux, and
G=G, VG, V..Ul e
xG = (x, G U.U x,.KG,.K) =(G,.1x[1 .Y G[Kx,.K)

qon

= Gx.
ii. Gy)=(Gx)y, x,y € Gwhere
x=x, U..Ux, and

Y=y, Ve vy,

G(xy) = (G,.1 U...UG, )(xl.1 U..Ux, )(y,.1 u...uyl.K)
= (Gfl (x,y,)...UG, (xiKy,»K))
- {(Gilxil )yi1 U"'U(GiniK )yiK}
= (Gx) y.

iii. y(xG) = (yx) G where
y=y, Y.y, and

x=x U..Ux
1 U

y(xG) = (yi1 V..U, )[(xil V.. Ux, )(Gf1 V.. UG, )]
=, (xl.l G, ) vy, (x,.2 G, ) v..uy, (x, G)

il

= (yl.]xi] )Gl.] U (yl.zxiz)Gl.2 U..Y (X )G,
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= ()G
forallx,y € G.

DEFINITION 1.5.49: Let L = {L; UL, U... ULy, *;,..., ¥} be a
S-groupoid N-loop groupoid. Suppose H and P be two S-K-
subgroupoids of

G={L, VL V..UL }

where {Ll.l 5 eees LI.K} is the collection of all groupoids from the

set {L;, L,, ..., Ly} we say H and P are Smarandache conjugate
if there exists

x=(xiu...ux. )EH
1 U

such that H = xP or Px where

H={H, v..UH, | and
P= {Blu...uP,.K} and
H =xP

so H = {H,.1 u...qu.K} = (x,.1 U---le-K)(P,-] u...uEK).

= {xl.P. U...UP x, }:{P.x. U..UP x, }
174 Kk K non g K

Clearly HNP = ¢

DEFINITION 1.5.50: Let A = {A; VA, U ... UAy, *), ..., *\} be
a N-gisg. A is said to be a Smarandache N-glsg (S-N-glsg) if
some A; are S-loops, some of A; are S-semigroups and some of
Ax are S-groupoids.

DEFINITION 1.5.51: Let A = {4; UA, U ... UAy, *1, %5, ..., *\}
be a N-glsg. A proper subset P = {P; UP, U ... UPy *;, ...,
*N} of A is said to be a Smarandache sub N-glsg if P itself is a
S-N-glsg under the operations of A.
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DEFINITION 1.5.52: Let {M 1) =M; UM, U ... UMy, ¥, ...,
*Nh (N 25) we call (M 1) a mixed neutrosophic N-structure if

i Mul)=M UM, U... UMy, each M; is a proper

subset of M 1),

ii. Some of (M,, *;) are neutrosophic groups.

iii. Some of (M, *;) are neutrosophic loops.

iv. Some of (M, *) are neutrosophic groupoids.

V. Some of (M,, *,) are neutrosophic semigroups.

Vi. Rest of (M, *,) can be loops or groups or semigroups
or groupoids. (‘or’ not used in the mutually exclusive
sense

(From this the assumption N > 5 is clear).

DEFINITION 1.5.53: {(D v 1)=D; UD, U ... UDy, *, %, ...,

*, N 25 be a non empty set on which is defined N-binary
operations.

We say (D 1) is a mixed dual neutrosophic N-structure if
the following conditions are satisfied.

i D vl)=D;, uD, U .. U Dywhere each D; is a
proper subset of (D 1)

ii. For some i, (D,, *) are groups

1il. For some j, (D;, *,) are loops

iv. For some k, (Dy, *) are semigroups

V. For some t, (D, *) are groupoids.

Vi. The rest of (D,, *,) are neutrosophic groupoids or

neutrosophic groups or neutrosophic loops or
neutrosophic semigroup ‘or’ not used in the mutually
exclusive sense.

DEFINITION 1.5.54: Let W 1) ={W; UW, U... U Wy, *, %,
e, ¥y} be a non empty set with N-binary operations *,,..., *y.
(W 1) is said to be a weak mixed neutrosophic structure, if the
following conditions are true.
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i Wuoul)=W, oUW, v ... U Wyis such that each W is

a proper subset of (W U 1)

ii. Some of (W, *) are neutrosophic groups or
neutrosophic loops.

iii. Some of (W, *) are neutrosophic groupoids or
neutrosophic semigroups

iv. Rest of (W, *i) are groups or loops or groupoids or

semigroups. i.e. In the collection {W, *} all the 4
algebraic neutrosophic structures may not be present.

At most 3 algebraic neutrosophic structures are present and
atleast 2 algebraic neutrosophic structures are present. Rest
being non neutrosophic algebraic structures.

DEFINITION 1.5.55: Let {(V v D)=V, UV, U... UVy *, ...,
*v} be a non empty set with N-binary operations. We say (V U
1) is a weak mixed dual neutrosophic N-structure if the
following conditions are true.

i VvV ul)=V, UV, ..U Vyis such that each V; is a
proper subset of (V 1)
ii. Some of (V;, *,) are loops or groups
iii. Some of (V;, *) are groupoids or semigroups
iv. Rest of the (Vi, *) are neutrosophic loops or

neutrosophic groups or neutrosophic groupoids or
neutrosophic semigroups.

DEFINITION 1.5.56: Let {(M w1)=M; UM, U ... UMy, *, ...,
* where (M U 1) is a mixed neutrosophic N-algebraic
structure. We say a proper subset {(P w1)=P; UP, U ... U
Py, *1, ..., *\} is a mixed neutrosophic sub N-structure if (P U1)

under the operations of (M U 1) is a mixed neutrosophic N-
algebraic structure.

DEFINITION 1.5.57: Let W 1) ={W; UW, U... U Wy, *, %,
v, *n} be a mixed neutrosophic N-structure.

We call a finite non empty subset P of (WU 1), to be a weak
mixed deficit neutrosophic sub N-structure if P = {P; UP; U ...
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UP, ¥, LRI <t <NwithPi=P Nl 1 <i<tand I <k<
N and some P;’s are neutrosophic groups or neutrosophic loops
some of the P;’s are neutrosophic groupoids or neutrosophic
semigroups and rest of the Py’s are groups or loops or
groupoids or semigroups.

For more about the concepts defined please refer [41-51].
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Chapter two

SMARANDACHE
NEUTROSOPHIC GROUPS
AND THEIR PROPERTIES

This chapter has three sections. Study of Smarandache
neutrosophic groups is interesting and innovative. So in section
one the notion of S-neutrosophic groups are introduced. Also
the notion of pseudo S- neutrosophic group is defined. Section
two introduces the notion of Smarandache neutrosophic
bigroups and the exceptional properties enjoyed by them are
brought out.

Examples are given for the better understanding of the
problems. The Smarandache neutrosophic N-groups are
introduced for the first time and they happen to help in getting a
generalized situation, for in these S-neutrosophic N-structure S-
semigroups and S-neutrosophic semigroups are also taken.
There by make the notion of S-neutrosophic N-groups a most
generalized structure [51].

2.1 Smarandache neutrosophic groups and their
properties

In this section for the first time the new notion of Smarandache
neutrosophic group is defined. It is important to mention here
that we do not have the concept of Smarandache groups.
Substructures like Smarandache neutrosophic subgroup and
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Smarandache right cosets are defined. However in general the
S-right (left) coset do not partition the S-neutrosophic group.

Now we proceed on to define the notion of Smarandache
Neutrosophic groups.

DEFINITION 2.1.1: Let N(G) be a neutrosophic group. We say N
(G) is a Smarandache neutrosophic group (S-neutrosophic
group) if N(G) has a proper subset P where P is a pseudo
neutrosophic subgroup of N(G).

All neutrosophic groups need not be S-neutrosophic groups. For
they may not contain a pseudo neutrosophic group in them.

Now a S-neutrosophic group is said to be of finite order if the
number of distinct elements in them is finite and it is of infinite
order if it has infinite number of elements in them.

DEFINITION 2.1.2:Let (N(G), *) be a neutrosophic group a
proper subset P of N(G) is said to be a Smarandache
neutrosophic subgroup (S-neutrosophic subgroup) if (P, *) is a
neutrosophic subgroup and has a proper subset T such that T is

a pseudo neutrosophic group under the same binary operation
*

Note: It is a matter of routine to show if a neutrosophic group
N(G) has a S-neutrosophic subgroup P then N(G) is itself a S-
neutrosophic group.

Now we proceed on to define strong Smarandache
neutrosophic group.

DEFINITION 2.1.3: Let N(G) be a neutrosophic group. Suppose
N(G) has a proper subset P such that P is a neutrosophic
subgroup of N(G) then we call N(G) to be a strong
Smarandache neutrosophic group (strong S-neutrosophic

group) .

Also we define the notion of pseudo Smarandache neutrosophic
group.
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DEFINITION 2.1.4: Let N(G) be a neutrosophic group. Let P be
a proper subset of N (G) and if P is a Smarandache
neutrosophic semigroup then we call N (G) to be a pseudo
Smarandache neutrosophic group (pseudo S-neutrosophic

group).

The interested reader can analyze and find out whether there
exists any form of relation among these 3 types of Smarandache
neutrosophic groups.

For the notion of S-neutrosophic semigroup refer chapter 3.

Now we proceed on to briefly define some more concepts in
finite S-neutrosophic groups before we go for the definition of
neutrosophic bigroups.

DEFINITION 2.1.5: Let N(G) be a finite neutrosophic group. A
proper subset P of N(G) which is a S-neutrosophic subgroup of
N(G) is said to be Lagrange Smarandache neutrosophic
subgroup (Lagrange S-neutrosophic subgroup) if, o(P) /
o(N(G)).

If all S-neutrosophic subgroups are Lagrange S-
neutrosophic subgroups then we call N(G) a Lagrange
Smarandache neutrosophic group (Lagrange S-neutrosophic
group).

If N(G) has at least one Lagrange neutrosophic subgroup
then we call N(G) a weakly Lagrange Smarandache
neutrosophic group (weakly Lagrange S-neutrosophic group). If
N(G) has no Lagrange S-neutrosophic subgroup then we call
N(G) to be a Lagrange free Smarandache neutrosophic group
(Lagrange free S-neutrosophic group).

We illustrate these by the following example.

Example 2.1.1: Consider N(G) = {0, 1, 2, 3,4, 5, 6, 1, 21, 31, 41
51, 61}, a neutrosophic group under multiplication modulo 7.
Clearly N(G) is not a S-neutrosophic group. But N(G) is a
strong S-neutrosophic group for P = {1, I, 6, 6I} is a
neutrosophic subgroup but N(G) has no proper subset which is a
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pseudo neutrosophic subgroup. Clearly o(P) X o(N(G)), since
the order of N(G) is a prime we can declare N(G) to be
Lagrange free strong S-group.

Now we proceed on to give yet another example.

Example 2.1.2: Let N(G) be a finite S-neutrosophic group
where N(G) = {1,2,3,4, 2L 3L 4, 1+ L2+ 1,3+ 4+1,1
+ 21, 2 421, 3421, 4 + 21, 1431, 2431, 3431 4 + 31, 1 +41, 2 + 41,
3 + 41, 4+ 41}. N(G) is a S-neutrosophic group of order 24.

P = {1, 1, 41} is a pseudo neutrosophic subgroup of N(G),
o(P) / o(N(Q)).

L = {1, 1,4, 41} is a neutrosophic subgroup of N(G), o(L) /
o(N(G)).

Also T = {1, 1 + 31} is a pseudo neutrosophic subgroup of N(G)
and o(T) / o(N(G)). Thus this S-neutrosophic group has both S-
neutrosophic subgroups and pseudo S-neutrosophic subgroups.

Now we proceed on to define the notion of Cauchy elements in
a Smarandache neutrosophic element.

DEFINITION 2.1.6: Let N(G) be a S-neutrosophic group of finite
order if every torsion element x of N(G) and every neutrosophic
element n of N(G) are such that if X' = 1 and n" = I and if t /
o(N(G)) and m/o(N(G)) then we call N(G) to be a Cauchy
Smarandache neutrosophic group (Cauchy S-neutrosophic
group).

The element x is called as the Cauchy Smarandache element
(Cauchy S-element) of N(G) and the element n is called the
Cauchy Smarandache neutrosophic element (Cauchy S-
neutrosophic element) of N(G).

We can have elements in N(G) which are torsion elements y
in N(G) which are such that Yy = 1, r X o(N(G)); also
neutrosophic elements p in N(G) with p* = I still, s X o(N(G)).

These elements will not be termed as Cauchy elements. If
every element of N(G) is either a Cauchy S-element or Cauchy
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S-neutrosophic element then we call N(G) to be a Cauchy S-
neutrosophic group.

If N(G) has atleast one Cauchy S-element and Cauchy S-
neutrosophic element then we call N(G) to be a weakly Cauchy
Smarandache neutrosophic group (weakly Cauchy S-
neutrosophic group). If N(G) has no Cauchy elements N(G) is
called as Cauchy free Smarandache neutrosophic group
(Cauchy free S-neutrosophic group).

We can have several examples of these, we proceed onto define
p-Sylow Smarandache neutrosophic group and strong p-Sylow
Smarandache neutrosophic group.

DEFINITION 2.1.7: Let N(G) be a finite S-neutrosophic group. If
for a prime p such that p* / o(N(G)) and p®™" X o(N(G)), N(G)
has a S-neutrosophic subgroup P of order p® then, P is called
the p-Sylow Smarandache neutrosophic subgroup (p-Sylow S-
neutrosophic subgroup) of N(G). If for every prime p such that
p® / o(N(G) and p®” X o(N(G)), we have p-Sylow S-
neutrosophic subgroup then we call N(G) a Sylow strong
Smarandache neutrosophic group (Sylow strong S-neutrosophic
group).

If for p a prime p®/ o(N(G)) and p®™" X o(N(G)). N(G) has
a pseudo neutrosophic subgroup L of order p” then L is called
the p-pseudo Sylow Smarandache neutrosophic subgroup (p-
pseudo Sylow S-neutrosophic subgroup) of N(G). If for every
prime p, such that p® / o(N(G)) and p*' X o(N(G)) we have p-
pseudo Sylow neutrosophic subgroup then we call N(G) a
pseudo Sylow Smarandache neutrosophic group (pseudo Sylow
S-neutrosophic group).

If on the other hand N(G) has at least one p-pseudo Sylow
neutrosophic subgroup then we call N(G) to be a weak Sylow
Smarandache neutrosophic group (weak Sylow S-neutrosophic

group).

On similar lines we can define weak Sylow strong Smarandache
neutrosophic group.
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As in case of neutrosophic groups [51] we can also in the
case of S-neutrosophic groups define the notion of Smarandache
coset and pseudo Smarandache coset.

DEFINITION 2.1.8: Let N(G) be a S-neutrosophic group. Let P
be a pseudo neutrosophic subgroup of N(G).

The pseudo Smarandache right coset (pseudo S-right coset)
of P is defined as Pa = {pa | p € P and a € N(G)}). If L is a S-
neutrosophic subgroup of N(G) we for a € N(G) define the
Smarandache right coset (S-right coset) of L as La = {la /| € L
and a € N(G)}.

Now we illustrate these situations by the following example.

Example 2.1.3: Let N(G) ={0,1,2,3,4 21,34 1+ 1,2+
L3+L4+L1+2L1+31,1+4L,2+21,2+31,2+4[,3+2I,
3 + 31, 3 + 41, 4+21, 4+ 31, 4+41} be a S-neutrosophic group and
o0 (N(G)) =25. Let P = {1, I, 41} which is a pseudo neutrosophic
subgroup of N(G), we will find the pseudo right cosets; P = {I,
1, 41}, now

P.P = {1, 1, 41}
P.0 = {0}
P.1 = {1, 1, 41}
P.I = {1, 41}
P.41 = {41}
P.2 = {2, 21, 31}
P3 = {3, 31, 21}
P.4 = {4, 41}
P.21 = {21, 31}
P. 31 = {31, 21}

= P.21
P(+1) = {1+1, 21, 31}
PQ2+I) = {2+1, 3L 21}
PB+1) = {3+1,413I}
P@+1 = {4+1, 0}
PQRI+1) = {21+ 1, 31, 2I}
PQI+2) = {21+2,4L 1}
P (21 +3) = {21+3,0}
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P (21 +4)
P@BI+1)
P (31 +2)
P (31+3)
P (31+4)
P41+ 1)
P (41 +2)
P (41+3)
P (41+3)
P (41 +4)

21+ 4, 41}
(BI+1,4L 1}
(31+2, 0}
(3143, 1, 41}
(31 +4, 21, 31}
(41+1,0}
(41+2,1, 31}
{41+ 3,21, 31}
{41+ 3, 21, 31}
{41 + 4, 31, 21}.

Clearly we see the S-right coset of a pseudo neutrosophic
subgroup in general does not partition N(G).

Consider M = {1, 1, 41, 4}, M is a S-neutrosophic subgroup
of N (G). Now we find their S-right coset values.

M. 0O
M. 1
M.I
M.r
M41

M (1 +1)
M (2 +]1)
M@3+1)
M (4 +1)
M (1 +2I)
M (2 +2I)
M (3 +2I)
M (4 + 2I)
M (1 + 31)
M (2 + 31)
M (3 + 31)
M (4 + 31)
M (1 + 41)
M (2 + 41)
M (3 + 41)
M (4 + 41)

{0}

{1, 1, 4,41}

{1, 41}

{4, 41}

{41, 1}

MI

{1+ 1, 21, 4 + 41, 31}
{2+1,31,3+4L 21}
{3+L4L2+411}
{4+1,0,1+4l}
{1+2L,3,4+3121}
{2+21,41,3 + 3L I}
{3+21,0,2+31,31}
{4+2L 1, + 31, 41}
{1+3,41,4+2I, 1}
{2+31,0,3 +2[}
{3+31,1,2+21, 41}
{4+31, 21, 1 +2I, 31}
{1+41,0,4+1}
{2+41,1,3 +1, 41}
{3+4L 21,2+ 31}
{4+41, 31, 1+1,21I}.
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Thus we see the S-right cosets in general do not partition the S-
neutrosophic group.

Interested reader can develop more results in this direction.
Now we proceed on to define the notion of Smarandache
neutrosophic conjugate subgroups of a S-neutrosophic group
N(G).

DEFINITION 2.1.9: Let N(G) be a S-neutrosophic group. Let P
and K be any two S-neutrosophic subgroups of N(G), we say P
and K are Smarandache conjugate if we can find x, y € N(G)
such that Px = Ky (yK).

On similar lines if P' and K' are pseudo neutrosophic
subgroups of N(G) we say they are pseudo Smarandache
conjugate (pseudo S-conjugate) if P' x' = K' y' (or y' K') for
some x', y' € N(G).

The main interesting thing to note about these conjugate relation
in S-neutrosophic groups is that if P and K are S-conjugate we
need not have o(P) = o(K).

2.2 Smarandache neutrosophic Bigroups

In this section we introduce the notion of Smarandache
neutrosophic bigroups. As in case of neutrosophic bigroups all
substructures like S-Lagrange neutrosophic bigroup, S-Sylow
neutrosophic bigroups and other results can be derived as a
matter of routine exercise. Interested readers will certainly try
their hand in this!

Now we proceed on to define Smarandache neutrosophic
bigroup.

DEFINITION 2.2.1: Let By(G) = {B(G;) U B(G,), *;, %3}, be a
neutrosophic bigroup. By(G) is defined to be a Smarandache
neutrosophic  bigroup  (S-neutrosophic  bigroup) if the
neutrosophic group B;(G) is S-neutrosophic group (for S-group
is not defined) and B»(G) is a group.
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Now we proceed on to define the notion of more generalized
structures viz., Smarandache neutrosophic bigroup I and II.

DEFINITION 2.2.2: Let By (G) = {B(G;) U B(G,), *;, ¥} be a
proper subset with two binary operations if B(G,) is a S-
neutrosophic group and B(Gj) a S-semigroup then we call
Bn(G) a Smarandache neutrosophic bigroup I (S-neutrosophic
bigroup ).

If in By(G); B(Gy) is a neutrosophic group and B(G,) a S-
neutrosophic semigroup then we call By(G) a Smarandache
neutrosophic bigroup Il (S-neutrosophic bigroup II) .

We see Smarandache neutrosophic bigroup I and II are not
related in general.

Example 2.2.1: Let By(G) = {B(Gy) U B(Gy), *, *,} where

B(Gy)) = {1,2,3,4,1, 21, 3I, 41}, a S-neutrosophic group and
B(Gy;) = {Zj,, S-semigroup under multiplication modulo
12}.

Bn(G) is a S-neutrosophic bigroup 1.

Now we give an example of a S-neutrosophic bigroup II.
Example 2.2.2: Let By(G) = {B(G)) U B(Gp), *, *,}, where
B(G,) = {0,I+1, 1}, is a neutrosophic group.

B(Gy) {1, 2, 3, 4, 5, 1, 21 31, 41, 51}, S-neutrosophic
semigroup under multiplication modulo 6.

Bn(G) is a S-neutrosophic bigroup II.

Now we proceed on to define the substructures on S-
neutrosophic bigroups.

DEFINITION 2.2.3: Let By(G) = {B(G;) U B(G), *;, *)} be a

neutrosophic bigroup. A proper subset Py(G) = {P(G,) v
P(G,), *, *)} is said to be Smarandache neutrosophic
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subbigroup (S-neutrosophic subbigroup) of Bn(G) if (Pn(G), *,
*,) is itself a S-neutrosophic bigroup. From this we have to
make the following observations.

We see if By (G) is a neutrosophic bigroup and has a S-
neutrosophic subbigroup then we see By (G) is itself a S-
neutrosophic bigroup.

Now we illustrate these by the following examples.

Example 2.2.3: Let B(G))=1{0,1,2,3,4, L2, 34,1+ 1,2+
I,, .. 3+ 41, 4 + 41} be a neutrosophic group under
multiplication modulo 5 and B(G;) = A4; Bn(G) = B(Gy) v
B(Gy,) is a S-neutrosophic bigroup.

P(Gy) = {1,1, 4, 4}  B(Gy) and
P(Gy) =

1 2 3 4Y(1 2 3 4\ (1 2 3 4)Y (1 2 3 4
1 2 3 4021 4 3341 24 3 21

Pn(G) = P(Gy) U P(Gy) is a S-neutrosophic subbigroup of
Bn(G).

We see in general the order of the S-neutrosophic subbigroup
need not divide the order of the S-neutrosophic bigroup.

Example 2.2.4: Let By(G) = {B(G,) U B(Gy), *}, *,} where

B(G) = {0,1,2, 1 +L 2+ 1+2L2+2L1 21} a
neutrosophic group under multiplication modulo 3.
B(G,) = {g]|g =e},acyclic group of order 7.

o(Bn(G)) = 16.

Consider Py(G) = P(Gy) U P(Gy) = {1, 2, 1, 21} U {e};
o(Pn(G))=5.(5,16)=1.

Take Tn(G) = T(G)) v T(Gy), T(Gy) = {1, 2, I, 21} and
T(G) = {g| g’ = 1}. o(TN(G)) = 11, (11, 16) = 1.

Clearly they are neutrosophic subbigroups and their order
does not divide the order of the neutrosophic bigroup.
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Now we give yet another example of a S-neutrosophic group.

Example 2.2.5: Let By (G) = {B(G)) U B(Gy), *, *,} be a S-
neutrosophic bigroup where

B(Gy) = {0, 1,1, 141} is a S-neutrosophic group and
B(G») {Ss},

o(Bx(G)) = 10. Let Px(G) = P(G;) U P(G,) where

P(Gy) ={1, 1, 1+I b2 b2 =P(G
(l)_{’a }U 123,213 _(2)'

o(Px (G)) =5, 5/ 0 (B (G).

Now we proceed on to define the notion of Lagrange
Smarandache neutrosophic bigroup.

DEFINITION 2.2.4: Let By(G) = {B(G)) U B(G,), *;, *3} be a S-
neutrosophic bigroup. Let Py(G) = {P(G;) U P(G,), *;, *} be a
S-neutrosophic subbigroup if o(Pn(G)) / o(Bn(G)) then Py(G) is
called a Lagrange Smarandache neutrosophic subbigroup
(Lagrange S-neutrosophic subbigroup) .

If every S-neutrosophic subbigroup is Lagrange then we
call By(G) to be a Lagrange Smarandache neutrosophic
bigroup (Lagrange S-neutrosophic bigroup). If By(G) has
atleast one Lagrange Smarandache neutrosophic subbigroup
(S-Lagrange Smarandache neutrosophic subbigroup) then we
call By(G) a weakly Lagrange Smarandache neutrosophic
bigroup (weakly Lagrange S-neutrosophic bigroup) . If By(G)
has no Lagrange S-neutrosophic subbigroup we call By(G) a
Lagrange free Smarandache neutrosophic bigroup (Lagrange
free S-neutrosophic bigroup) .

Interested reader can derive several inter related properties

about these structures. Next we proceed on to recall the notion
of Smarandache neutrosophic bigroup II. From now onwards
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we define notions and properties for S-neutrosophic bigroup II
denoted by (G U I).

DEFINITION 2.2.5: Let ((G 1) = (G, v1) v (G, UI) * o) be
a neutrosophic bigroup ((G v 1) * o) is defined as a
Smarandache neutrosophic bigroup Il (S-neutrosophic bigroup

1 if

i ((G; U1) *) is a neutrosophic group.
ii. ((G, U1) o) is a S-neutrosophic semigroup.

Example 2.2.6: Let ((G U I), *, 0) be a neutrosophic bigroup
where ((Z U 1, +) is a neutrosophic group and {0, 1, 2, 3,4, 5, 1,
21, 31, 41, 51} is a S-neutrosophic semigroup under
multiplication modulo 6. So ((G U 1), *, 0) is a S-neutrosophic
bigroup IIL.

We define the notion of Smarandache neutrosophic subbigroup.

DEFINITION 2.2.6: Let ((G w1)= (G, 1) U (G, UI) * o) be
a neutrosophic bigroup, H = (H, U H, * o) is called a
Smarandache neutrosophic subbigroup Il (S-neutrosophic
subbigroup Il) if ((H, U 1) *) is a neutrosophic subgroup of
((G; vI) *) and ((Hy V1) o) is a S-neutrosophic subsemigroup
of (G, U1) o).

The following theorem is interesting and the reader to expected
to prove it.

THEOREM 2.2.1: Let (G v 1) = (G, 1) v (G, UI) * o) bea
neutrosophic bigroup having a S-neutrosophic subbigroup, then
(G U1)is a S-neutrosophic bigroup.

The other result can also be stated as a theorem.
THEOREM 2.2.2: Let (G v 1) = ((G, v 1) v (G, 1) * o) be

any S-neutrosophic bigroup. Every neutrosophic subbigroup of
(G U 1) need not in general be a S-neutrosophic subbigroup.
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As in case of neutrosophic bigroup we can even in the case of S-
neutrosophic bigroup define the order of the S-neutrosophic
bigroup, the order is finite if the number of elements in (G U I)
1s finite; otherwise infinite.

We denote the order of the S-neutrosophic bigroup by (G U
I) o((Gu)).

Now we see in general if a S-neutrosophic bigroup is finite
still the order of the S-neutrosophic subbigroup need not in
general divide the order of the S-neutrosophic bigroup. So to
characterize such S-neutrosophic subbigroups which divides the
order of the S-neutrosophic bigroup we make the following
definition.

DEFINITION 2.2.7: Let (G v1)= (G, V1) U (G, V1) * o) be
a S-neutrosophic bigroup of finite order. Let P = ((P; U 1) U
P, 1) * o) be a S-neutrosophic subbigroup of (G « I). If
o(P) / o((G U 1)) then we call P a Lagrange S-neutrosophic
subbigroup 11, if every S-neutrosophic subbigroup of (G U 1) is
Lagrange, then we call the S-neutrosophic bigroup (G U 1) to
be a Lagrange Smarandache neutrosophic bigroup II
(Lagrange S-neutrosophic bigroup I1).

If (G v I) has atleast one Lagrange S-neutrosophic
subbigroup P then we call (G U 1) to be a weakly Lagrange
Smarandache neutrosophic bigroup Il (weakly Lagrange S-
neutrosophic bigroup II).

If (G 1) has no Lagrange S-neutrosophic subbigroup then
we call (G U 1) to be a Lagrange free S-neutrosophic bigroup
1I.

Now if (G 1) has a neutrosophic subbigroup T which is
not a S-neutrosophic subbigroup Il and if o(T) / o((G U 1)) then
we call T to be a pseudo Lagrange neutrosophic subbigroup II.
If every neutrosophic subbigroup T which is not a S-
neutrosophic sub bigroup Il is a pseudo Lagrange neutrosophic
subbigroup then we call (G U I) to be pseudo Lagrange S-
neutrosophic bigroup I1.

If (G U 1)is both a Lagrange S-neutrosophic bigroup II and
a pseudo Lagrange S-neutrosophic bigroup then we call (G U 1)
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a strong Lagrange S-neutrosophic bigroup. If the S-
neutrosophic bigroup has atleast one pseudo Lagrange
neutrosophic subbigroup then we call (G U I) to be a weakly
pseudo Lagrange S-neutrosophic bigroup II. If (G U 1) has no
pseudo Lagrange neutrosophic subbigroup Il then we call (G
1) a pseudo Lagrange free S-neutrosophic bigroup I1.

Several interesting results in this direction can be obtained by an
innovative reader. Now we proceed in to get some analogue for
Sylow S-neutrosophic bigroups.

DEFINITION 2.2.8: Let ((G 1) = (G, v 1) v (G, UI) * o) be
a S-neutrosophic bigroup of finite order. Suppose p is a prime
such that p*/ o((G U 1)) and p“' X o((G U 1)) and if (G U 1)
has a S-neutrosophic subbigroup V of order p°, then we call V a
p-Sylow S-neutrosophic subbigroup II. If for every prime p such
that p“/ o((G U 1)) and p“" X o((G 1)) we have a p-Sylow S-
neutrosophic subbigroup II then we call (G U I) to be a Sylow
S-neutrosophic bigroup II. If (G U 1) has atleast one p-Sylow S-
neutrosophic subbigroup Il then we call (G U 1)a weakly Sylow
S-neutrosophic bigroup II. If (G < I) has no p-Sylow S-
neutrosophic subbigroup Il then we call (G U 1) a Sylow free S-
neutrosophic bigroup. Now for the finite S-neutrosophic
bigroup (G U 1) if for p a prime with p®/ o((G 1)) and p“*" X
o ((G U I) we have neutrosophic subbigroup W of order p*
which is not a S-neutrosophic subbigroup then we call W the
pseudo p-Sylow neutrosophic subbigroup Il of (G U 1).

If for every prime p with p“/ o((G U 1)) and p™" X o((G U
1)) we have a pseudo p-Sylow neutrosophic subbigroup II then
we call (G U 1) a pseudo p-Sylow S-neutrosophic bigroup II. If
(G U 1) is both a pseudo Sylow S-neutrosophic bigroup Il and
Sylow S-neutrosophic bigroup Il then we call (G U 1) a strong
Sylow S-neutrosophic bigroup II.

If (G U 1) has atleast one pseudo p-Sylow neutrosophic
subbigroup then we call (G U 1) a weakly pseudo Sylow S-
neutrosophic bigroup. If (G 1) is only a Sylow S-neutrosophic
bigroup II or only a pseudo Sylow S-neutrosophic bigroup II
then we call (G U 1) a semi Sylow S-neutrosophic bigroup I1.
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Here also we leave it as an exercise for the reader to find the
interrelations and illustrative examples. However we give a few
examples so that it will help the reader to easily understand the
problems.

Example 2.2.7: Let (GU ) =(G, U ) U (G, U ), * 0), be a
S-neutrosophic bigroup where

Giul) = {1, 2,3,4,]1 21, 31, 41}, a neutrosophic group
under multiplication modulo 5 and
(Gyul) = {0, 1, 2, 3, I, 2I, 31}, is a S-neutrosophic

semigroup under multiplication modulo 4.

o((G U I))=15,3/15 3% X 15, 5/15 and 5% X 15.

Take H = {1, I} U {0, 2, 2I} is a S-neutrosophic subbigroup
o(H) / oG U I)). Consider T = {1, I, 4, 41} v {1, 1, 2, 21, 0},
o(T)=9and 9 X 15.

But (G U I) has no S-neutrosophic subbigroup of order 3.
Take V = {1, 2, 3,4} U {0, 1, 2, 3}, V is a subbigroup of (G U
I), o(V) X 0o (GUI)).

Suppose B = {4, 41} U {0, 2, 2I}, B is a S-neutrosophic
subbigroup of order 5. W = {1, 4, I, 41} U {0, 2}. W is a
neutrosophic subbigroup and o(W) =6 and 6 X 15. Thus we can
get many subgroups and interesting results. We however define
another new notion.

DEFINITION 2.2.9: Let ((G 1) = ((G; v 1) v (G, V1), * o) be
a S-neutrosophic bigroup of finite order. Suppose (G U 1) is a
Sylow S-neutrosophic bigroup II and if in addition we have for
every prime p, p®/ o((G L) and p™ X o ((G U1)) their exists
a S-neutrosophic subbigroup of order p®" ('t > 1) then we call
(G 1) a super Sylow S-neutrosophic bigroup I1.

It is interesting to see that all super Sylow S-neutrosophic
bigroups are Sylow S-neutrosophic bigroups but a Sylow S-
neutrosophic bigroup need not in general be a super Sylow S-
neutrosophic bigroup.
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Now we proceed on to define the notion of Cauchy S-
neutrosophic group weakly Cauchy S-neutrosophic S-bigroup
and so on.

DEFINITION 2.2.10: Let ((G v 1) = ((G;, 1) v (G, V1) * o)
be a finite S-neutrosophic bigroup. Let x € (G U 1) be such that
xX"=1landifm/o ((G UI)) we call x a Cauchy element. If for
ye@Gul)y =Iandt/o((G UI)) then we call y a Cauchy
neutrosophic element of (G U 1) If every element x such that x"
= 1 and y such that y' = I, are Cauchy element or Cauchy
neutrosophic element then we call (G U 1) to be a Cauchy S-
neutrosophic bigroup. If (G U 1) has at least one Cauchy
element and one Cauchy neutrosophic element then we call (G
v 1) a weakly Cauchy S-neutrosophic bigroup II. If (G U 1) has
no Cauchy element or Cauchy neutrosophic element then we
call (G v1)a Cauchy free S-neutrosophic bigroup I1.

The following result is interesting.

THEOREM 2.2.3: All S-neutrosophic bigroups of order p, p a
prime are Cauchy free S-neutrosophic bigroups.

Proof: Given o({G U I)) = p, p a prime so every element which
are such that x™ = 1 or y' = I will have m < p and t < p so (m, p)
=1and (t, p) = 1. Thus (G U I) is a Cauchy free S-neutrosophic
bigroup.

Now we proceed on to give some of its properties about their
structure.

DEFINITION 2.2.11: Let {(G v 1)= (G, v1) U (G, UI) * o}
be a S-neutrosophic bigroup. (G U 1) is said to be a
Smarandache commutative bigroup (S-commutative bigroup) if
(G; v 1) which is the neutrosophic group is commutative and
every proper subset of the S-neutrosophic semigroup (G, U 1)
which is a neutrosophic group is a commutative group. If both
(G, v 1)and (G, U I) happen to be commutative (G U 1) is
trivially a S-commutative bigroup.
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Now we proceed on to define the notion of Smarandache
weakly commutative neutrosophic bigroup.

DEFINITION 2.2.12: Let (G 1) = (G; v1) U (G, V1) o, *) be
S-neutrosophic bigroup. If every neutrosophic subgroup of
(G, 1) and atleast a proper subset which is a subgroup of the
S-neutrosophic semigroup happen to be commutative we call
(G U 1) to be a Smarandache weakly neutrosophic bigroup (S-
weakly neutrosophic bigroup).

The following theorem is left as an exercise for the reader to
prove.

THEOREM 2.2.4: Let (G w1)= (G, vI) v (G, UI) o, *), be a
S-commutative neutrosophic bigroup. (G v I) is a S-weakly
commutative neutrosophic bigroup and not conversely.

We now proceed on to define Smarandache hyper neutrosophic
bigroups for this we basically need the notion of largest group
in a bigroup.

DEFINITION 2.2.13: Let (G 1) = (G, v1) U (G, V1) o, *) be
a S-neutrosophic bigroup P = (P, 1) U (P, U1) o, *) is said
to be a Smarandache largest neutrosophic bigroup (S- largest
neutrosophic bigroup) if (P, U 1) is the largest neutrosophic
subgroup of (G, v 1) (If (G, v I) has no proper neutrosophic
subgroup take (G1 U 1) itself to be trivially largest subgroup)
and (P, U 1) is largest proper subset of (G, U 1) which is the
largest neutrosophic group of the S-neutrosophic semigroup (G,
v 1) We call this largest Smarandache neutrosophic
subbigroup to be the Smarandache hyper neutrosophic bigroup
(S-hyper neutrosophic bigroup).

DEFINITION 2.2.14: If (G v 1)= (G, 1) v (G, V1) * o) is a
S-neutrosophic bigroup having no S-hyper neutrosophic
bigroup then we call (G U I) to be a Smarandache simple
neutrosophic bigroup (S-simple neutrosophic bigroup).
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Many interesting properties about S-neutrosophic bigroups can
be derived as in case of other S-bigroups, bigroups and
neutrosophic bigroups. This can be taken up as simple exercises
by any interesting reader.

2.3 Smarandache Neutrosophic N-groups

In this section for the time the definition of Smarandache
neutrosophic N-groups are defined. They are more generalized
structures for they involve S-neutrosophic semigroups and S-
semigroups. These structures enjoy more properties than other
structures for this class inducts the generalized structures in the
very definition. Several properties are derived. Illustrative
examples are provided for the reader.

Now we proceed on to define the notion of Smarandache
neutrosophic N-groups. For more about neutrosophic N-groups,
refer [51].

DEFINITION 2.3.1: Let ((G v 1)= (G, vI) U ..o Gy UI) *,
*y v ) be a nonempty set with N-binary operations. We say
(G v 1) is a Smarandache neutrosophic N-group (S-
neutrosophic N-group) if

i Some of (G;, *)) is a S-semigroup.

ii. Some of (G, *;) are neutrosophic groups or groups.
iii. Rest of (G, *) are S-neutrosophic semigroups, 1 <1i, j,
k <N.

Example 2.3.1: Let (GU D =(G U D UG uUDU{G;UI),
*1, %3, *3) where (G; U I) = {1, 2, 3, 4, 1, 21, 31, 41}, a
neutrosophic group under multiplication modulo 5. (G, U I) =
{0, 1, 2, 3, 4, 5, 1, 21, 31, 41, 51}, S-neutrosophic semigroup
under multiplication modulo 6 and G; = Ay4. Clearly (GuU I) is a
S-neutrosophic 3-group.

Now we define order and substructures in them.
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DEFINITION 2.3.2: Let (G v 1)= (G, o) v G, v U... v
Gy U 1), *, %, ..., *\) be a neutrosophic N-group. A proper
subset P of (G U 1) is said to be a Smarandache neutrosophic
sub N-group (S-neutrosophic sub N-group) if P = (P; U P, U
UPN, ¥, %, L, *N) is a S-neutrosophic N-group, where P;
Giand P;=PnNG,i=12, .., N

It is interesting to note that we have taken in the definition of
the S-neutrosophic sub N-group the neutrosophic N-group and
not a S-neutrosophic N-group because of the following theorem.

THEOREM 2.3.1: Let (G v 1)= (G, vI) v (G, vI)U..v
(Gy U 1) *,%, ..., *\y) be a neutrosophic N-group. If (G U 1)
has a S-neutrosophic sub N-group then (G U 1) is itself a S-
neutrosophic N-group.

Proof: Given (G U I) is a neutrosophic N-group having a S-
neutrosophic sub N-group. Let P = {P, U P, U ... U Py, *, ...,
*\} be a S-neutrosophic sub N-group of (G U I) so

(1) Py’s are subgroups or neutrosophic subgroups.
(2) Py’s are S-semigroups.
(3) Py’s are S-neutrosophic subsemigroups.

1<1,j,k<N. As P < (G U I) and each P; c G; we see by the
very definition (G U I) is a S-neutrosophic N-group.

The number of distinct elements in a S-neutrosophic N-
group (G U I) gives the order of ((G U 1)) denoted by o((G U
I)). If (G U I) has finite number of elements we call the S-
neutrosophic N-group to be finite otherwise infinite.

Example 2.3.2: Let {(GuU )= {{ZU D} US;0L(0,1,2,3, 1,
21, 3I), *y, *,, *5} be a S-neutrosophic 3 group where (Z U I) is
a neutrosophic group under addition. S; is the symmetric group
of degree 3 and (0, 1, 2, ..., 3I) is a neutrosophic semigroup
under multiplication modulo 4. Clearly (G U I) is an infinite S-
neutrosophic N-group.
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Now we see even if one of the (Gj, *)) is infinite then (G U
I) is infinite. Only if all the (G;, *;), are finite we get (G U I) to
be finite.

It is an interesting thing to note that in general the order of the
S-neutrosophic sub N-group need not divide the order of the S-
neutrosophic group. To get some conditions we define the
following.

DEFINITION 2.3.3: Let (G v1)= (G, vI) v G, vI) U... U
(Gy 1) *, %, ..., *y) be a finite S-neutrosophic N-group. A S-

neutrosophic sub N-group P = {P; U P, U...U Py, *;, ..., ¥} is
said to be a Lagrange S-neutrosophic sub N-group if o(P) /
o((G U1).

If every S-neutrosophic sub N-group of (G U 1) is a
Lagrange S-neutrosophic sub N-group then we call (G U 1) to
be a Lagrange S-neutrosophic N-group. If (G U I) has atleast
one Lagrange S-neutrosophic sub N-group then we call (G U 1)
to be a weakly Lagrange S-neutrosophic N-group. If (G U 1) has
no Lagrange S-neutrosophic sub N-group then we call (G U1)a
Lagrange free S-neutrosophic N-group.

Now we will illustrate this by an example before we proceed on
to define other types of Lagrange neutrosophic sub N-groups.

Example 2.3.3: Let (G U ) =(G, U ) U G, U Gs, *|, *,, *3)
be a S-neutrosophic 3-group where

Guly = {0, 1, 2, 3, 4, 5 1, 21, 31, 41, 51}, a S-
neutrosophic semigroup under multiplication
modulo 6.

G2 = S3 and

Gs = {0, 1, 2, ..., 12, 13, 14}, S-semigroup under

multiplication modulo 15.
o((Gu 1)) =32.

P= {P1 v Pb,u P3, >k1, *2, *3} where P, = {0, 2, 4, 21, 41}, a S-
neutrosophic subsemigroup of (G; U 1),
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1 2 3)(1 2 3
P, = ) cS;
1 2 3)(2 1 3

and P; = {0, 3, 6, 9, 12} < Gj. P is a S-neutrosophic sub 3-
group of (G U I). o(P) =12, 12 X 32. So P is not a Lagrange S-
neutrosophic sub 3-group of (G U I). K = (K; U K, U Kj, *{, *,,
*3) where, K| = {1, 5, I, 5I} a S-neutrosophic subsemigroup;

1 2 3)(1 2 3
P, = , c S;and
1 2 3)\1 3 2

P; = {1, 14} < G;. Clearly o(P) = 8 and 8/32, so K is a Lagrange
S-neutrosophic sub N-group of (G w I), hence (G U I) is a
weakly Lagrange S-neutrosophic N-group. Thus we see when
we say (G U I) has no Lagrange S-neutrosophic sub N-group we
mean that even we can have many S-neutrosophic sub N-groups
but the order of them will not divide the order of (G U I).

Now we proceed on to define two types of Cauchy elements.

DEFINITION 2.3.4: Let (G v 1)= (G, vI) v G, v U... v
Gy 1), *, %5, ..., ¥y be a finite S-neutrosophic N-group. An
element x is Cauchy neutrosophic if X" = I and n / o((G U1)). y
is Cauchy if y" = 1 and m / o((G v I). x is S-Cauchy
neutrosophic if X" = I and n / o(H U I) where x € (H U 1) and
(H U 1)is a neutrosophic sub N-group of (G 1)y e (HUl)is
S-Cauchy if y" =1, m/oH UI)

It is important and interesting to note that a S-Cauchy
neutrosophic element may not in general be a Cauchy
neutrosophic element of (G U I). Similarly a S-Cauchy element
also may not in general be a Cauchy element of (G U I).

The interested reader can find conditions under which a S-
Cauchy neutrosophic element is a Cauchy neutrosophic element
of (G U I).
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Now we illustrate these by the following example.

Example 2.3.4: Let (GU D) ={(G U UG Ul uU(GsuUl),
*1, %), *3) where (G, U 1)) = {1, 2, 3, 4, 1, 21, 31, 41}, S-
neutrosophic group under multiplication modulo 5. G, = Z;, S-
semigroup under multiplication modulo 10, G; = {0, 1, 2, 3, I,
21, 31}, S-neutrosophic group under multiplication modulo 4.
oG u I))=25.

Let4l € (GU T 41 =T1but 2 X o(G U I) so 4l is not a
Cauchy neutrosophic element of G U 1. Take 3 € (G U I), 3* =
1 (mod 10) so 3 is not a Cauchy element.

Take P = {P, U P, U P3, *,*,, *3}, a S-neutrosophic sub 3-
group of (GU ). Py ={1,4,1,41} c (G, VU ])),P,={l,9} c
G, =Zy, G3 = {1, 3} < G3, o(P) = 8. Every element is either a
S-Cauchy element or a S-Cauchy neutrosophic element of (G U
I); but none of them is a Cauchy element or a Cauchy
neutrosophic element of (G U I).

Now we proceed on to define two types S-Sylow structures on
Smarandache neutrosophic N-groups.

DEFINITION 2.3.5: Let ((G v 1) = (G, vI) v ..u Gy Ul)
* e, *n) be a S-neutrosophic N-group of finite order. Let p be
a prime such that p®/ o((G 1)) and p“" X o(G 1) If (G U1)
has a S-neutrosophic sub N-group P of order p® then we call P
a p-Sylow S-neutrosophic sub N-group.

If for every prime p such that p® / o((G v 1)) and p
o((G U 1)) we have a p-Sylow S-neutrosophic sub-N-group then
we call (G U 1)a Sylow S-neutrosophic N-group.

atl X

Note: We will have for S-neutrosophic N-groups of finite order
p-Sylow neutrosophic N-group and also the notion of Sylow
neutrosophic N-group. Our main concern and interest is can a S-
neutrosophic N-group be both Sylow-S-neutrosophic N-group
and Sylow neutrosophic N-group. We just give some examples.

Example 2.3.5: Let (G U ) =(G,u ) U (G, U ) U G, *, *,,
*3) where
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(G, Ul

{1,2,3,4,1, 21, 31, 41}, S-neutrosophic group.

Gyul)y = {0,1,2,3, L2311 +L2+ 3+, 1+2,2+
21,3 +21,3+1,3 +2I,3+3I}, and
G; = {Zy, S-semigroup under multiplication modulo

12},

0((G U I)) = 36. Now 2/36, 2* / 36 and 2° X 36. Also 3/36, 3%/36
and 3° X 36. Take P= {1, I} U {1, 3,0} U {0, 3,6,9}. Pisa S-
neutrosophic sub 3-group and infact P is a 3-Sylow S-
neutrosophic sub 3-group. Clearly (G U I) has no 2-Sylow S-
neutrosophic sub 3-group.

Take T = {1 + 31, 1} U {0} U {4}; T is a neutrosophic sub
3-group. o(T) / o({G W I)). So T is a 2-Sylow neutrosophic sub
3-group. However (G U I) has no 2 Sylow S-neutrosophic sub
3-group.

Take V = {Vl Y V2 ) V3, *1, *2, *3} where Vl = {1, I, 4,
41}, V, = {0, 2, 1} and V; = {1, 11}. V is a 3-Sylow
neutrosophic sub 3-group as o(V) = 9. This (G U I) is only a
Sylow neutrosophic 3-group and not a Sylow S-neutrosophic 3-
group.

However it is important to note (G U I) has several
neutrosophic sub N-groups which are not Lagrange. It is to be
noted that a S-neutrosophic N-group need not in general be a
neutrosophic N-group. So while defining (p;, ..., pn)-Sylow
subgroup of (GU D) =(G, U D U ... UGy U, *, ..., *y) we
have to be very careful. Infact we can more so define only (p,
..., pn)-Sylow group for the proper subset of (G U I) which is a
neutrosophic N-group.

So we proceed on to define keeping in mind these
observations.

DEFINITION 2.3.6: Let (G v 1) = (G, vI) v ..u Gy UI)
*1, .., *n) be a S-neutrosophic N-group of finite order. Suppose
P ={P, UP;, U..UPy, *,..., %} is a proper subset of (G U 1)
which is a neutrosophic N-group. We define (p, ...,pn) S-Sylow
neutrosophic sub N-group to be a p;-Sylow subgroup of P; c G;,
i=12 .., N
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Interested reader can develop results in this direction, however
we illustrate this by the following example.

Example 2.3.6: Let <G v I> = {G] U G2 o G3, *1, *2, *3} be a S-
neutrosophic group where G; =S4, (G, U ) = {1, 2, 3,4, 1, 21,
31,41} and G; = {(a, b)|a, b € {0, 1,2, L 2, 1 + 1, 2 + 21, 2+,
21 + 2} under component wise multiplication modulo 3.

Take T= A, U {1,4, 1,41} U {(1, 1), (2, 2), (1, 2), (2, 1)},
T has a (3, 2, 2) Sylow S-neutrosophic 3-group and (2, 2, 2) —
Sylow S-neutrosophic group.

Several examples can be constructed.
Now we proceed on to define the concept of Smarandache
neutrosophic homomorphism of N-groups.

DEFINITION 2.3.7: Let (G v 1)= (G, o) v G, v U... v
Gy U1 *, %, ..., *\) be a S-neutrosophic N-group and (H
)= (H vl)u.. uEHyUl) *,.., *) be another §S-
neutrosophic N-group. We say a map ¢ from (G <) to (H V1)
is a S-neutrosophic homomorphism if ¢ (I) = I and ¢ is a
neutrosophic N-group homomorphism from neutrosophic sub N-
group (T=T;, U ... UTy, ¥, ..., W in ( GuUDtoV=V, UV,
uVsu.. UV ¥, L, By in (H UI).

It is important to note that in general ¢ need not be even defined
on the whole of (G U I).

Now ¢ | G; : T; = V; is either a group homomorphism or a
neutrosophic group homomorphism for i = 1, 2, ..., N. We
denote ¢ / G; need be defined on T; and need not be defined on
the whole of G;, which we denote by ¢;,i=1,2, ..., Nie. ¢ =,
U ... U(I)N;(I)iZTi—)Vi, 1<i<N.

Next we define the notion of weak Smarandache
neutrosophic N-groups.

DEFINITION 2.3.8: 4 proper subset ((G v 1)= (G, V1) U ... U

Gy U 1) *,.., *) is said to be a weak Smarandache
neutrosophic N-group (weak S-neutrosophic N-group) , if the
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following conditions are satisfied. (G v1)= (G, V1) U ... UG;

U ... Gy vl)in which (G; U1)is a neutrosophic group or G;
is S-semigroup. (Here also (G; 1) and G; are proper subsets of
G Ul)).

All S-neutrosophic N-groups are weak S-neutrosophic N-group
and not conversely. We first illustrate this by the following
example.

Example 2.3.7: Let (G U I) = {{(G; U I) U G, U G;3} where G,
vl = {1, 2, 3, 41, 21, 31, 41}, neutrosophic group under
multiplication modulo 5. G, = {Zj;, S-semigroup under
multiplication modulo 12} and G; = S (3) the symmetric group
of all mappings of the set (1 2 3) to itself.

Clearly Z;; and S (3) are S-semigroups as T = {4, 8} is
group under multiplication modulo 12 and S; < S(3), is the
symmetric group of all one to one mappings of (1 2 3) to itself.
Thus (G U I) is a weak S-neutrosophic group.

The subsets {(G; U I) U T U S;} which are neutrosophic N-
groups will be known as neutrosophic sub N-groups of the S-
neutrosophic N-group (G U I).

As in case of all other algebraic structures we in case of
weak S-neutrosophic N-groups (G U I), define the order of
(G U I) to be the number of distinct elements in (G U I). If the
number of elements in (G U I) is finite we call (G U I) a finite
S-neutrosophic N-group otherwise we call them as infinite S-
neutrosophic N-group and we denote the order of ((G U I) ) by
o({G v I)). Even if one of the neutrosophic groups ({(G; U I), *))
or S-semigroups (G;j, *;) is infinite then (G U I) will be infinite.
If the order of every (G;j, *;) is finite, then (G U I) is finite.

Now we proceed on to define the notion of substructures.

DEFINITION 2.3.9: Let (G v1)= ((G; vI) U ... v (Gy V) *,
v, ¥y) be a weak S-neutrosophic N-group. A proper subset P of
(G U 1) is said to be a weak Smarandache neutrosophic sub N-
group (weak S-neutrosophic sub N-group) if P satisfies the
following conditions
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i P =P, .. UPyis such that each P = P N G; and P;
are neutrosophic subgroups or S-subsemigroups, 1 <i
<N

ii. (P =P, U.. UPy *, .., *is itself a weak S-
neutrosophic N-group.

(Weak S-neutrosophic N-groups in general are not neutrosophic
N-groups).

Now as in case of all other algebraic structures by the order of
the weak S-neutrosophic N-group we mean the number of
distinct elements in them. It is finite if the number of distinct
elements in (G U I) is finite i.e. all {(G; U I) are finite. The weak
S-neutrosophic N-group is infinite if its order is infinite i.e. it
has atleast one of (G;, *;) to be infinite.

Now we just give an example, which will lead us to define
several types of algebraic properties.

Example 2.3.8: Let {(GU D =(G, V) UG, U Gz U Gy} be a
weak S-neutrosophic 4-group, where

(Gyul) = {1, 2, 3, 4, 1, 21, 31, 41} neutrosophic group
under multiplication modulo 5.

G, = S(3),

G; = {Z,, semigroup under multiplication modulo
12} and

Gy = {(a,b)lae Z,and b € Z,};

o((G U Ty) = 55.

Take P = {Pl UP,UP;U P4} where P, = {1, 4, I, 41},

(30500

Py= {1, ¢, g% g'y and P, = {(1, 1), (1, 3)}.
o(P)=13, (13, 55)=1.
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Now take T = T1 |\ T2 U T3 |\ T4 where T1 = Pl, Tz = Pz, T3
= {1, g®} and T4, =P4. o(T) = 11 and o(T) / o({G U I)). Thus we
see the order of weak S-neutrosophic sub N-group need not in
general divide the order of (G U I).

To this end we have many definitions.

DEFINITION 2.3.10: Let ((G v 1)= (G, v 1) v (G, V) U ... U
(Gy V1) *, %, ..., *y) be a weakly S-neutrosophic N-group of
finite order. Let P = {P; U P, UP; U ... U*, ..., ¥} be a
weakly S-neutrosophic sub N-group of (G 1) We say P is a
Lagrange weakly S-neutrosophic sub N-group if o(P) /
o((G U 1)) otherwise P is called non Lagrange weakly S-
neutrosophic sub N-group.

If every weakly S-neutrosophic sub N-group is Lagrange
then we call (G v I) a Lagrange weakly S-neutrosophic N-
group. If (G U 1) has atleast one Lagrange weakly S-
neutrosophic sub N-group we call (G U 1) a weakly Lagrange
weakly S-neutrosophic N-group.

Clearly all Lagrange weakly S-neutrosophic N-groups are
weakly Lagrange weakly S-neutrosophic N-group, however the
converse is not true. If (G U I) has no Lagrange S-neutrosophic
sub N-group then we call (G U I), a Lagrange free weakly S-
neutrosophic N-group.

We can study these structures. It is interesting to note all
weakly S-neutrosophic N-groups of order p, p a prime are
Lagrange free weakly S-neutrosophic N-groups. However we
have weakly S- neutrosophic N-groups of finite order say a
composite number can also be a Lagrange free weakly S-
neutrosophic N-groups.

Now we can define Cauchy element and Cauchy
neutrosophic element in an analogous way as in case of S-
neutrosophic N-group. All the notions of p-Sylow weakly S-
neutrosophic sub N-groups, Sylow weakly S-neutrosophic N-
groups Sylow free weakly S-neutrosophic N-groups can also be
defined in an analogous way. Now we define semi Smarandache
neutrosophic N-groups.
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DEFINITION 2.3.11: A4 non empty set {({G U 1) *;, *,.., *\}
with N-binary operations is said to be a semi Smarandache
neutrosophic N-group (semi S-neutrosophic N-group) if the
following conditions are satisfied.

i G ul)=G, vG, v G; vl) U ..U Gyis such that
each G; or (G; U1)is a proper subset of (G U 1)
ii. Some of (G;, *;) are groups
iii. Rest of ((G; 1), % ) are S-neutrosophic semigroups (1
<i,j <N).

Example 2.3.9: Consider (GU I) = {{ G; U G, U G; U (G4 U
I), *i, ..., *4} where G, = S3, G, = (g | g =€), G3 = D, and
(Gsu)=1{0,1,2,3,4,5, 1, 21, 31, 41, 51} is a S-neutrosophic
semigroup. Clearly (G U I) is a semi S-neutrosophic 4-group.

As in case of other algebraic structures we can define order
and semi S-neutrosophic sub N-group, the Lagrange analogue,
the Sylow analogue, the Cauchy analogue and homomorphism
and so on.
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Chapter three

SMARANDACHE
NEUTROSOPHIC SEMIGROUPS AND
THEIR GENERALIZATIONS

This chapter has three sections. Section one introduces for the
first time the notion of Smarandache neutrosophic semigroups,
bisemigroups and N-semigroups. We also give examples of
them. In section 1 S-neutrosophic semigroups are introduced.
Their substructures like S-neutrosophic subsemigroups, S-
neutrosophic ideals, S-neutrosophic Lagrange subsemigroups,
p-Sylow S-neutrosophic subsemigroups etc. are introduced and
examples are provided. Section two deals with Smarandache
neutrosophic bisemigroups. Special properties about S-
neutrosophic bisemigroups are studied. The notion of
Smarandache neutrosophic N-semigroups are introduced in
section three. Definition of S-Lagrange neutrosophic sub N
semigroup, S-maximal neutrosophic N-ideals, S-minimal
neutrosophic N ideals, S-quasi minimal neutrosophic N-ideals
and other interesting substructures are introduced and illustrated
with examples.

3.1 Smarandache Neutrosophic semigroup

Now we proceed on to define the notion of Smarandache
neutrosophic semigroup and define several interesting
substructures. The notion of S-conjugate neutrosophic
subsemigroups is introduced and explained by examples. Strong
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S-neutrosophic ideals happen to be nice algebraic substructure
of S-neutrosophic N-semigroups.

DEFINITION 3.1.1: Let (S, o) be a neutrosophic semigroup. S is
said to be a Smarandache neutrosophic semigroup (S-
neutrosophic semigroup) if S contains a proper subset P such
that (P, o) is a group. If (P, o) is a neutrosophic group we call
(S, 0) a Smarandache strong neutrosophic semigroup.

It is important to note that in general all neutrosophic
semigroups need not be S-neutrosophic semigroups. We
illustrate our observations by an example.

Example 3.1.1: Let (Z" U I) be a neutrosophic semigroup under
multiplication. Clearly ((Z" U I, x) has no proper subset P such
that (P, x) is a group. So ((Z" U Iy, *) is not a S-neutrosophic
semigroup.

Note: The identity element alone is never taken as a proper
subgroup. That is why in the above example 3.1.1 {1} is not a
proper group under X.

Example 3.1.2: Let (Z U I) be a neutrosophic semigroup under
multiplication x, P = {1, —1; x} is a S-neutrosophic semigroup
as P is a group under multiplication.

Example 3.1.3: Let (Zs U 1)={0,1,2,3,4,5,1, 21, 31, 41, 51}
be a neutrosophic semigroup under multiplication modulo 6.
Take P = {1, 5} < {{(Zs U I)}. P is a group under multiplication
modulo 6. So {(Zs U I)} is a S-neutrosophic semigroup.

Now we proceed on to define neutrosophic subsemigroup.
DEFINITION 3.1.2: Let (S, o) be a neutrosophic semigroup. A
proper subset P of (S, o) is said to be a neutrosophic
subsemigroup if (P, o) is a neutrosophic semigroup.

Example 3.1.4: Let (Z" U I) be a neutrosophic semigroup under

multiplication. Let P = {(2Z" U I)} be a proper subset of (Z" U
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I). Clearly P is a neutrosophic subsemigroup under
multiplication. It may also happen a neutrosophic semigroup
can have proper subsets which are just subsemigroups.

To this end we have the following example.

Example 3.1.5: Let (Z" U I) be a neutrosophic semigroup under
multiplication. Clearly P = 2Z" is a subsemigroup under
multiplication.

Thus a neutrosophic semigroup can have two substructures
one is a neutrosophic substructure other is just a substructure.

Now we proceed on to define the notion of Smarandache
neutrosophic subsemigroup.

DEFINITION 3.1.3: Let (S, o) be a neutrosophic semigroup. A
proper subset P of S is said to be Smarandache neutrosophic
subsemigroup (S-neutrosophic subsemigroup) if P has a proper
subset U such that (U, o) is group then we call (P, o) to be a S-
neutrosophic subsemigroup.

Thus we can define (P, o) to be a S-neutrosophic
subsemigroup, if P is itself a S- neutrosophic semigroup under
the operation of S.

THEOREM 3.1.1: Let (S, o) be a neutrosophic semigroup. If S
has a proper subset P such that (P, o) is a S-neutrosophic
subsemigroup then we call (S, o) to be a S-neutrosophic
semigroup.

Proof: Given (S, o) is a neutrosophic semigroup which has a
proper subset P such that (P, o) is a S-neutrosophic
subsemigroup i.e. P contains a proper subset X such that (X, o)
is a group as (X, o) < (S, o) so (S, o) is a S-neutrosophic
semigroup.

It is interesting and important to note that in general all
neutrosophic semigroups need not in general have a proper S-
neutrosophic subsemigroup.

We prove this by the following example.
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Example 3.1.6: Let (Z" U I) be a neutrosophic semigroup under
multiplication. Clearly (Z" w I) has no S-neutrosophic
subsemigroup.

Now we proceed on to define the notion of S-neutrosophic
ideals of a neutrosophic semigroup. It is important to note that
these ideals are in the first place neutrosophic.

DEFINITION 3.1.4: Let (S, o) be a neutrosophic semigroup. A
proper subset I of S is said to be Smarandache neutrosophic
ideal (S-neutrosophic ideal) of (S, o) if the following conditions
are satisfied.

(1) (1, o) is a S-neutrosophic subsemigroup.
(2) Foreverys e Sandi €1, si and is are in L.

Example 3.1.7: Let (Z U I) be a neutrosophic semigroup under
multiplication, I = {(3Z U I)} is a neutrosophic ideal of (Z U I).
It can be easily verified; (Z U I) has no S-neutrosophic ideals.

Now we give yet another example.

Example 3.1.8: Let (S, x)={0, 1,2, 3,4, 5,1, 21, 31, 41, 51} be
a neutrosophic semigroup under multiplication modulo 6. Take
J =10, 2, 4, 21, 41} < S; Clearly J is a S- neutrosophic ideal of
S.

It is still interesting to note that in general the order of a S-
neutrosophic subsemigroup need not divide the order of the
neutrosophic semigroup.

Example 3.1.9: Consider the S-neutrosophic semigroup (S, o)
given in the above example 3.1.8 i.e. S={0, 1,2, 3,4, 5, I, 2I,
31, 41, 5I} a neutrosophic semigroup under multiplication
modulo 6. P = {0, 2, 4, 21, 41} is a S-neutrosophic subsemigroup
of Sand o(P) X (o (S))aso(P)=5ando(S)=11and5 X 11.

Thus as in case of other algebraic structures we define the
order of the S-neutrosophic semigroup.
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DEFINITION 3.1.5: Let (S, o) be a S-neutrosophic semigroup,
the number of distinct elements in S is called the order of the S-
neutrosophic semigroup and is denoted by o(S) or |S|. If the
number of elements in S is finite we call (S, o) to be a finite S-
neutrosophic semigroup. It the number of elements in (S, o) is
infinite then we call (S, o) be an infinite S-neutrosophic
semigroup i.e. o(S) = oo,

It is very surprising to see that when S is a neutrosophic
semigroup of finite order in general the order of the S-
neutrosophic subsemigroup does not divide the order of S. To
this end we define S-Lagrange neutrosophic semigroup.

DEFINITION 3.1.6: Let (S, o) be a finite neutrosophic
semigroup. If the order of every S-neutrosophic subsemigroup
divides the order of S then we call S to be a Smarandache
Lagrange neutrosophic semigroup (S-Lagrange neutrosophic
semigroup).

If on the other hand the order of atleast one S-neutrosophic
subsemigroup divides order of S we call S a Smarandache
weakly Lagrange neutrosophic semigroup (S-weakly Lagrange
neutrosophic semigroup) (A S-neutrosophic subsemigroup P is
Lagrange if o(P) / 0(S)).

If the order of no S-neutrosophic subsemigroup divides the
order of the neutrosophic semigroup S then we call S to be a
Smarandache Lagrange free neutrosophic semigroup (S-
Lagrange free neutrosophic semigroup).

We now illustrate this with example before we prove a theorem.

Example 3.1.10: Let (S, x)={Zy=1{0,1,2,3,4,5,6,7,8,1, 2,
31, 41, 51, 61, 71, 81}, be a neutrosophic semigroup of finite order
under multiplication modulo 9. o(S) = 17, a prime number.
Clearly T= {0, 1, 1, 8, 81} is a S-neutrosophic subsemigroup for
X = {1, 8} is a group under multiplication modulo 9. But o(T)
cannot divide the prime 17. So S is a S-Lagrange free
neutrosophic semigroup.
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THEOREM 3.1.2: Let (S, o) be a finite neutrosophic semigroup
of prime order. Then (S, o) is S-Lagrange free neutrosophic
semigroup.

Proof: 1f (S, o) has no S-neutrosophic subsemigroups we have
nothing to prove. So first we assume o(S) = p, p a prime has a
S-neutrosophic subsemigroup P with o(P) = n since n < p and p
a prime (n, p) = 1 i.e. n X p. Hence S is a S-Lagrange free
neutrosophic semigroup.

Now we proceed on to define Smarandache Cauchy
elements and Smarandache Sylow neutrosophic semigroup.
Throughout we assume S is always a finite neutrosophic
semigroup, unless we make a special mention of it.

DEFINITION 3.1.7: Let (S, o) be a finite neutrosophic
semigroup. (say o(S) = n). Suppose for every proper subset T of
S such that (T, o) is a group, we have for every element x in T,
X" = e (since S is finite) and if m / n then we call S to be
Smarandache Cauchy neutrosophic semigroup (S-Cauchy
neutrosophic semigroup).

If the condition is true atleast for a proper subset which is a
group in S then we call S to be a Smarandache weakly Cauchy
neutrosophic  semigroup (S-weakly Cauchy neutrosophic
semigroup). If for no proper set which is a group under ‘o’ we
have x™ = e and m X n then we call S to be Smarandache
Cauchy free neutrosophic semigroup (S-Cauchy free
neutrosophic semigroup).

We see the class of S-Cauchy free neutrosophic semigroup is
non empty. This is evident by the following theorem.

THEOREM 3.1.3: Let (S, o) be a S-neutrosophic semigroup of
finite order say p, p a prime. Then (S, o) is a S-Cauchy
neutrosophic free semigroup.

Proof: Given o(S) = p, a prime. Let G — S be a group under ‘o0’.

Clearly o(G) < p. so for any x € G we have x" = ¢, m < 0(G) <
p, but (m, p)=1som X p. Hence the claim.
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Thus we have the powerful corollary.

COROLLARY: All S-neutrosophic semigroups of prime order
are S-neutrosophic Cauchy free semigroup.

Now we illustrate this by the following example.

Example 3.1.11: Let (S,0) = {{Zs W 1)=(0,1,2,3,4,5,1, 2,
31, 41, 5I) under multiplication modulo 5}. o(S) = 11, a prime. G
= {1, 5} isa group and G = S now 5° =1 (mod 6) but 2 X 11.
Hence the claim.

DEFINITION 3.1.8: Let (S, 0) be a S-neutrosophic semigroup of
finite order. If for every prime p such that p® | o(S) and p**' X

o(S) we have a S-neutrosophic subsemigroup of order p® then
we call S to be a Smarandache Sylow neutrosophic semigroup
(S-Sylow neutrosophic semigroup).

If S has atleast for a prime p with p* | o(S) and p™ X o(S)
a S-neutrosophic subsemigroup of order p” then we call S a
Smarandache weak Sylow neutrosophic semigroup (S-weak
Sylow neutrosophic semigroup).

If for every prime p such that p“ | o(S) and p™™" X o(S) we
don’t have a S-neutrosophic subsemigroup then we call S a
Smarandache  neutrosophic Sylow free semigroup (S-
neutrosophic Sylow free semigroup).We call the S-neutrosophic

subsemigroup P of order p® with o(P) / o(S) and p™" X o(S) to
be a p-Sylow S-neutrosophic subsemigroup.

Example 3.1.12: Let (S,0)=1{0,1,2,3,4,5,6,7,1, 21, 31, 41,
51, 61, 71} be a neutrosophic semigroup under multiplication
modulo 8. Clearly (S, o) is a S-neutrosophic semigroup. o(S) =

15wehave 3/15and 3* X 15,5/15and 5° X 15.

We have to find out whether (S, o) has S-neutrosophic
subsemigroups of order 3 and 5. Take P= {0, 1,7, 1, 71} < S. P
is a S-neutrosophic subsemigroup of order 5. But S has no S-
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neutrosophic subsemigroup of order 3. Thus S is only a S-weak
Sylow neutrosophic semigroup.

Let us define two new notions called Smarandache neutrosophic
super Sylow semigroup and Smarandache neutrosophic semi
Sylow semigroup.

DEFINITION 3.1.9: Let (S, o) be a S-neutrosophic semigroup of
finite order. Suppose S is a S-Sylow neutrosophic semigroup
and if in addition to this for every prime p such that p® | o(S)
and p™' X o(S) we have in S a S-neutrosophic subsemigroup of
order p‘m, t > 1 then we call S to be a Smarandache
neutrosophic super Sylow semigroup (S-neutrosophic super
Sylow semigroup).

DEFINITION 3.1.10: Let (S, o) be a finite S-neutrosophic
semigroup. If for every prime p such that p® | o(S) and p**' X
o(S) we have a S-neutrosophic subsemigroup of order t, t < «

then we call S to be a Smarandache neutrosophic semi Sylow
semigroup (S-neutrosophic semi Sylow semigroup).

Interested reader is requested to construct examples for these. It
is also easy to verify that every S-neutrosophic super Sylow
semigroup is a S-neutrosophic semigroup and not conversely.

Now we proceed on to define the notion of Smarandache
conjugate neutrosophic semigroups.

DEFINITION 3.1.11: Let (S, o) be a finite S-neutrosophic
semigroup. Let T and R be any two S-neutrosophic
subsemigroups of S. We say T and R are Smarandache
neutrosophic  conjugate  subsemigroups  (S-neutrosophic
conjugate subsemigroups) if we have non empty subsets T;in T
and R; in R, T; #R; but T; and R; are subgroups under ‘o’ and
T; and R; as groups are conjugate i.e. there exists y, x in S with
xT;=Rixor (xR;=Tix)andyR; =T,y (Riy=y T, fory €85).
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Remark: Clearly | R, | =| T;| but | R | need not be equal to order
of T. We may not have any other order relation between them.

Example 3.1.13: Consider (S, 0) a S-neutrosophic semigroup of
finite order given by S = {0, 1, 2, ..., 14, I, 21, 31, ..., 141} a
semigroup under multiplication modulo 15.

Take P = {0, 1, 4, 1, 41} and T = {1, 14, 1, 141} two proper
subsets of S which are S-neutrosophic subsemigroups. P; = {1,
4} and T; = {1, 14} we have 3 € S with 3 (1, 4) = (3, 12) and
(1, 14) 3 =(3, 42 (mod 15)) = (3, 12). So 3T, =P, 3.6 (1, 4) =
(6,9)and (1, 14) 6 =(6,9). Thus 6 P, =T, 6.

It is interesting to note that we may have more than one x in
S which satisfies the condition. We say P and T are S-conjugate
neutrosophic semigroups. Further 9 (1, 4) = (9, 6) and (1, 14) 9
=(9, 6). Thus 9 T, =P, 9. It is easily verified 12 T, =P, 12.

Thus we see {3, 6, 9, 12, 31, 61, 91, 121} are the elements in
S which make P and T S-conjugate. 0O trivially makes P and T S-
conjugate so {0, 3, 6, 9, 12, 31, 6I, 91, 121} serves as a S-
neutrosophic semigroup.

Several interesting problems can be raised at this juncture and
we would be defining a new notion Smarandache conjugating
subset of S.

DEFINITION 3.1.12: Let (S, o) be a S-neutrosophic semigroup.
Suppose P and T be any two S-comjugate neutrosophic
subsemigroups of S. i.e. P; c P and T; c T are such that xP; =
Tix (or Pix = xT}).

xB=Tx or
Px=xT,
and it is defined as the Smarandache conjugating subset (S-
conjugating subset) of S for (P, T).

Now V = {xeS

} is a proper subset of S

We saw in the example 3.1.13 the Smarandache conjugating
subset happens to be S-neutrosophic subsemigroup of S.
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DEFINITION 3.1.13: Let (S, 0) be a S-neutrosophic semigroup
we say a pair of elements x, y € S is said to be Smarandache
conjugate pair (S-conjugate pair) if we can find a pair of
elements a, b € S that ax = yb (or by) (or xa = by or yb).

Example 3.1.14: Let (S, o) be a S-neutrosophic semigroup
where S = {0, 1, 2, 3, 4, 5, 1, 21, 31, 41, 51} the operation ‘0’ just
multiplication modulo 6.

Take the pair (3, 5) € S we see (1, 3) € S is such that 3.5 =
1.3 (mod 6). So the given pair is a S-conjugate pair of the S-
neutrosophic semigroup.

One can develop several other interesting properties about
them, as we are more interested in introducing Smarandache
neutrosophic N-semigroups we now proceed on to define the
notion of Smarandache neutrosophic bisemigroups. All
properties can be derived in case of S-strong neutrosophic
semigroups without any difficulty.

3.2 Smarandache neutrosophic bisemigroup

In this section the notion of Smarandache neutrosophic
bisemigroups are introduced. Several of the analogous
definitions about S-neutrosophic bisemigroups can be derived
as in case of neutrosophic bisemigroups as a simple exercise.

DEFINITION 3.2.1: Let {Bs = B; U B,, x, 0o} be a nonempty set
with two binary operations. Bg is said to be a Smarandache
neutrosophic bisemigroup (S-neutrosophic bisemigroup) if

i (B1, x) is a S-neutrosophic semigroup
ii. (B2, 0) is a S-neutrosophic semigroup or neutrosophic
semigroup or S-semigroup or a semigroup.

If both B, and B, are S-neutrosophic semigroups. We call Bs a
Smarandache neutrosophic strong bisemigroup (S-neutrosophic
strong bisemigroup). If (B;, x) is a S-neutrosophic semigroup
and (B,, o) neutrosophic semigroup then Bs is a Smarandache
neutrosophic bisemigroup (S- neutrosophic bisemigroup).
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If (B;, x) as a S-neutrosophic semigroup and (B,, o) a S-
semigroup then we call B a strong S-neutrosophic bisemigroup.

Interested reader can find the relations between them. Now we
proceed onto define the substructures of Bs.

DEFINITION 3.2.2: Let Bs = {B; UB,, x, 0} be a S-neutrosophic
bisemigroup. A proper subset Vs of Bs is said to be
Smarandache neutrosophic subbisemigroup (S-neutrosophic
subbisemigroup) if Vs =V, UV, withV;=Vs N Byand V, = Vs
N Byand (Vs, o, *) is a S-neutrosophic bisemigroup.

Example 3.2.1: Let B = (B, U B, * 0) be a strong S-
neutrosophic bisemigroup where B, = (Z U I) S-neutrosophic
semigroup under multiplication and B, = {0 123 4 5, 1, 21, 31,
41, 51}; S-neutrosophic semigroup multiplication modulo 6, so
B is a S-neutrosophic bisemigroup.

Example 3.2.2: Let B = (B; U B,, X, 0) be a S-neutrosophic
bisemigroup where B; = {(Z u I)}, a semigroup under
multiplication and B, = {0, 1, 2, 3, 4, 5} semigroup under
multiplication modulo 6. B is a S-neutrosophic bisemigroup.

Now T =T, U T, be a proper subset of B where T, = {(3Z U I)}
and T, = {0, 2, 4} a semigroup under multiplication modulo 6.
T is a S-neutrosophic subbisemigroup. One can construct any
number of such examples.

DEFINITION 3.2.3: Let Bs = (B; v B, * o) be any S-
neutrosophic bisemigroup. A proper subset J = I; U I, of By is
said to be a Smarandache neutrosophic biideal (S-neutrosophic
biideal) of Bs if

i J =1, Ul is a S-neutrosophic subsemigroup, where I,

=B, ﬂJand]; =B, NJ.
ii. Each of I; and I, are S-ideals of B; and B, respectively.
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Now we say the neutrosophic biideal J of Bs is Smarandache
maximal neutrosophic biideal (S-maximal neutrosophic biideal)
if' 1; is a maximal S-ideal in B; and I, is a maximal S-ideal in B,.

Similarly we say J of Bs is Smarandache neutrosophic
minimal biideal (S-neutrosophic minimal biideal) of Bs if I} is a
minimal S-ideal of B; and 1, is a minimal S-ideal of B;. Now if
one of I; is maximal S-ideal and I, is not maximal S-ideal, we
call the S-neutrosophic biideal to be a Smarandache
neutrosophic quasi maximal biideal (S-neutrosophic quasi
maximal biideal). In similar manner Smarandache neutrosophic
quasi minimal biideal (S-neutrosophic quasi minimal biideal) is
defined.

Several other properties related to ideals can be extended in case
of S-neutrosophic biideals with proper and appropriate
modifications.

Now we will proceed onto define neutrosophic N-
semigroups (N a positive integer greater than or equal to two)
and S-neutrosophic N-semigroups.

3.3 Smarandache Neutrosophic N-semigroup

In this section we introduce the new notion of Smarandache
neutrosophic N-semigroups their substructures.

DEFINITION 3.3.1: Let {S; (N), *;, *,, ..., *x} be a nonempty set
with N-binary operations. Sy(N) is said to be a Smarandache
neutrosophic N-semigroup (S-neutrosophic N-semigroup) if the
following conditions are satisfied.
i Ss (N) =8, U... USywhere each S; is a proper subset
of Ss (N).
ii. Each of the set (S, *) is either a S-semigroup or a S-
neutrosophic semigroup.

We first illustrate these by the following examples.

Example 3.3.1: Let S(N) = (S; U S, U Ss, *{, *,,*;) where S| =
{{ Z U 1)}, neutrosophic semigroup under multiplication, S, =
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{0, 1, 2, 3, 4, 5} semigroup under multiplication modulo 6 and
S; = {0, 1, 2, 3, I, 2I, 3I} neutrosophic semigroup under
multiplication modulo 4. S¢(N) is a S-neutrosophic 3-semigroup.

Now we see if each of the semigroups (S;, *;) are S-
neutrosophic semigroups i.e. for i = 1, 2, ..., N then we call
S{(N) to be strong Smarandache neutrosophic N-semigroup
(Strong S-neutrosophic N-semigroup).

It is clear that all strong S-neutrosophic N-semigroup is
always a S-neutrosophic N-semigroup but a S-neutrosophic N-
semigroup in general is not a strong S-neutrosophic N-
semigroup evident by the very definition and example 3.3.1.

DEFINITION 3.3.2: Let Sy(N) = (S; S, U ... USy, ¥, ., )
be a S-neutrosophic N semigroup. If the number of distinct
elements in Sy(S) is finite we call Sy(S) a finite S-neutrosophic N
semigroup if the number of elements in Sy(S) is infinite we say
Sy(S) is an infinite S-neutrosophic N-semigroup and denote the
order by o(Sy (S)).

We are more interested in working mainly with finite S-
neutrosophic N-semigroups.

Example 3.3.2: Let Sy (S) = (S; U S, US5, *, *5, *3) be a S-
neutrosophic 3 semigroup where S; = {0, 1, 2, ..., 9},
semigroup under multiplication modulo 10, S, = {0, 1, 2, 3, I,
21, 31} neutrosophic semigroup under multiplication modulo 4
and S; = {Z; x Z, = {(0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (2, 1)}.
Sx (S) is a S-neutrosophic 3-semigroup and o(Sy (S)) = 22.

Now we can give yet another definition S-neutrosophic N-
semigroup.

DEFINITION 3.3.3: Let Sy (S) = (S; S, U ... USy, *1, ..., )
be a neutrosophic N-semigroup. Sy (S) is said to be a
Smarandache neutrosophic N-semigroup (S-neutrosophic N-
semigroup) if Sy (S) has a proper subset P where P is a
neutrosophic N-group.

Now we proceed on to define substructures in them.
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DEFINITION 3.3.4: Let Sy (S) = (S; S, U ... USy, *1, ..., ®v)
be a neutrosophic N-semigroup. A proper subset P = {P; U P,
U ... UPy, ¥, L, B of Sw (S) is said to be a Smarandache
neutrosophic sub  N-semigroup (S-neutrosophic sub N-
semigroup) of Sy (S) if and only if P with the binary operations
*1 ., ¥y is a S-neutrosophic N-semigroup.

THEOREM 3.3.1: If Sy (S) = (S; U S, U ... USy, *4, ..., Ty isa
neutrosophic N-semigroup having a S-neutrosophic sub N-
semigroup then Sy (S) is a S-neutrosophic N-semigroup.

Pl"OOf." Given SN(S) = (S] U S, U ... U Sy >k], ceey *N) is a
neutrosophic N-semigroup having P = {P, U P, U ... U Py, *|,
..., *x} to be S-neutrosophic sub N-semigroup of Sx(S). Since P
is a S-neutrosophic sub N-semigroup, P has a proper subset T =
(Ty T, ... U Ty, *1, *, ..., *n) Which is a neutrosophic N-
group. Now T < P < Sn(S), so T < Sn(S), thus Sy (S) is a S-
neutrosophic N-semigroup.

Now we illustrate this by an example.

Example 3.3.3: Let Sy (S) = (S; U Sy USs, *, *,, *3) be a
neutrosophic 3-semigroup where

Si = {Zy,, semigroup under multiplication modulo 12},
N {0, 1, 2, 3, 4, 5, 1, 21, 31, 41, 5I}, neutrosophic
semigroup under multiplication modulo 6 and

a b
{( d]a,b,c,de{o, 1L 1+1}.

S;
c

Take P = (P1 |\ Pz |\ P3, *1, *2,*3) in SN(S) where Pl = {0, 2, 4,
6,8 10} — S, Py = {0, 21, 1,1, 4,2, 41} — S, and Py =

a b 0 0 , .
lad — be| # 0} U . P is a S-neutrosophic sub
c d 0 0

3-semigroup of Sy (S).
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Now we proceed on to define the notion of Smarandache
neutrosophic N-ideal of Sy(S).

DEFINITION 3.3.5: Let Sy (S) = (S; S, U ... USy, *1, ..., ¥y
be a S-neutrosophic N-semigroup. A proper subset I = (I; U I,
U o Uy, ¥, o, *y) of Sy (S) is called the Smarandache
neutrosophic N-ideal (S- neutrosophic N-ideal) of Sy (S) if the
following conditions are satisfied.

i 1 is a S-neutrosophic sub N-semigroup.
ii. Each (I, *) is a S-ideal of (S;, *;) i.e. for I <i <N.

We illustrate this by the following example.

Example 3.3.4: Let SN(S) = (Sl Y Sz US3, *1, *2,*3) be a S-
neutrosophic 3-semigroup; where

Si = (Zul), neutrosophic semigroup under multiplication.
S, = {Zy, semigroup under multiplication modulo 12} and
S; = {0, 1, 2, 3, 4, 5, 1, 21, 31, 41, 5I}, neutrosophic

semigroup under multiplication modulo 6.

Take I = (I, U L, U L3, ¥, *,,*;3) where [, = {(3Z U )} < (Z
ul), ,=1{0,2,4,6,8,10} cZ;, < S, and I; = {0, 2, 4, 2I, 41}
c Ss, Iis a S-neutrosophic N-ideal of Sy(S).

Note: We can as in case of N-semigroup define maximal
Smarandache neutrosophic N-ideal, minimal Smarandache
neutrosophic N-ideal, quasi maximal Smarandache neutrosophic
N-ideal and quasi minimal Smarandache neutrosophic N-ideal.
The concept of Lagrange Smarandache neutrosophic N-
semigroup and their extensions viz. Sylow Smarandache
neutrosophic ~ N-semigroup and Cauchy Smarandache
neutrosophic N-semigroup which is different from the usual
definitions is given in case of Smarandache neutrosophic N-
semigroup.

DEFINITION 3.3.6: Let Sy (S) = (S; S, U ... USy, ¥, .o, ¥y
be a S-neutrosophic N-semigroup of finite order. A proper
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subset P = {P; UP, U ... UPy *, ..., ¥} of Sy (S) which is a
S-neutrosophic sub N-semigroup is said to be a Lagrange
Smarandache neutrosophic sub N-semigroup (Lagrange S-
neutrosophic sub N-semigroup) if the o(P) / o(Sx(S)).

If the order of every S-neutrosophic sub N-semigroup
divides the order of Sny(S) then we call Sy(S) a Lagrange
Smarandache  neutrosophic  N-semigroup (Lagrange S-
neutrosophic N-semigroup) i.e. if every S-neutrosophic sub N-
semigroup of Sn(S) is a Lagrange S-neutrosophic sub N-
semigroup.

If Sn(S) has atleast one Lagrange S-neutrosophic sub N-
semigroup then we call Sx(S) a weakly Lagrange Smarandache
neutrosophic N-semigroup (Weakly Lagrange S-neutrosophic
N-semigroup). If Sn(S) has no Lagrange S-neutrosophic sub N-
semigroup then we call Sy(S) to be a Lagrange free
Smarandache neutrosophic N-semigroup (Lagrange free S-
neutrosophic N-semigroup).

We illustrate this by the following example.

Example 3.3.5: Let SN(S) = (S] |\ Sz |\ S3, *1, *2,*3) be a S-
neutrosophic N-semigroup of finite order, where

S, = {Z),, a semigroup under multiplication modulo 12},

S, = {0, 1, 2, 3, 4, 5, 1, 21, 31, 41, 51}, neutrosophic
semigroup under multiplication modulo 6 and

S; = {(xy)]|xye€{0,1,2, 1, 2I}}, neutrosophic semigroup
under component-wise multiplication modulo 3.

o(S)=12+ 11 + 25 =48, a composite number.

LetP = (P1 uPbP,u P3, *1, *2, *3) where P, = Sl, P, = {0, 2,
4,21, 41, I} and P; = {(0, 1) (1, 0) (2, 0) (0, 0), (I, 0) (2 1, 0)}.
Clearly P is a S-neutrosophic sub N-semigroup, o(P) =12 + 6 +
6 =24 and o(P) / o(Sx (S)) , i.e. 24 / 48.

Consider T = {T; U T, U Ts, *, *,, *;} where T, = (0, 2, 4,
6,8,10) cZp, T, =10, 3,31} =S, and T5 = {(I, 0) (2 1, 0) (O,
2) (1, 0) (2, 0) (0, 0)} = S3. Now o(T) = 15, 15 X 48. Thus we
can say Sy (S) in this example is only a weakly Lagrange S-
neutrosophic N-semigroup.

124



Now we give an example of a Lagrange free S-neutrosophic N-
semigroup.

Example 3.3.6: Let SN (S) = (Sl v Sz Y S3, *1, *2, *3) where

Si = {Zy, semigroup under multiplication modulo 10},

S, = {0, 1, 2, 3, 4, 5, 1, 21, 31, 41, 5I}, neutrosophic
semigroup under multiplication modulo 6 and

S; = {ZyxZs|{(a,b)} sucha € Z, and b € Zs}, a semigroup
under component wise multiplication.

o(Sx (S)) = 31, a prime number.

Take T = {T, U T, U T3, *, *,, *3}, a proper subset of
SN(S) where T, = {O, 1, 9} C S], T, = {0, 2, 21, 4, 41} C Sz and
T;={(1, 1) (1, 4) (1, 3) (1, 2) (0, 0)} < S;. Clearly T is a S-
neutrosophic 3-semigroup for T, > {1, 9} a group under
multiplication modulo 10. T, > (2, 4) a group under
multiplication modulo 6 and Tz © {(1 1), (1, 4)} a group.

Now o(T) = 6, (6, 31) = 1. Thus Sn(S) has non trivial S-
neutrosophic sub N-semigroups but since the order of Sy(S) is a
prime 31, the order of no S-neutrosophic sub N-semigroup will
divide the order of Sn(S).

Hence Sx(S) in this example is a Lagrange free S-
neutrosophic N-semigroup.

In view of the above example we have the following theorem.

THEOREM 3.3.2: All S-neutrosophic N -semigroups, Sy (S) =
(S; U8, U... USy, ¥, ..., *), of prime order p are Lagrange
free S- neutrosophic N-semigroups.

Proof: If Sx(S) has no proper S-neutrosophic sub N-semigroup
nothing to prove. Given o(Sx(S)) = a prime, p, so even if Sy(S)
has non trivial proper S-neutrosophic sub N-semigroup we see
their order cannot divide a prime. Hence the claim.

Now we proceed on to define the notion of strong Lagrange
Smarandache neutrosophic N-semigroup.
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DEFINITION 3.3.7: Let Sy (S) = (S; v S, U ... USy, *1, ..., )
be a S-neutrosophic N-semigroup of finite order. If every proper
subset {P; U Py, U ... Py, ¥, ..., ¥} of Sy (S) which are N-
groups are such that o(P) / o(Sx(S)) then we define Sy (S) to be
a strong Lagrange Smarandache neutrosophic N-semigroup
(strong Lagrange S-neutrosophic N-semigroup).

We do not see any relation between Lagrange S-neutrosophic
N-semigroup or strong Lagrange S-neutrosophic N-semigroup.
The only common feature between these two definitions is that
when the S-neutrosophic N-semigroup is of prime order they are
Lagrange free.

Strongly free Lagrange Smarandache neutrosophic N-
semigroup (defined analogous to free Lagrange Smarandache
neutrosophic N-semigroups by replacing sub N-semigroups by
N-groups). All prime order S-neutrosophic N-semigroups are
also strongly free Lagrange S-neutrosophic N-semigroups.

Now we proceed on to define the notion of Sylow
Smarandache neutrosophic N-semigroups.

DEFINITION 3.3.8: Let Sy(S) be a finite S-neutrosophic N-
semigroup. If for each prime p such that that p® / o(Sy(S)) and

pe! X o(Sn(S)), we have a proper S-neutrosophic sub N-
semigroup, P = {P; UP, U ... UPy, *;, ..., *y} with o(P) = p*
then we call Sy(S) a Sylow Smarandache neutrosophic N-
semigroup (Sylow S-neutrosophic N-semigroup).

We call each P as the p-Sylow Smarandache neutrosophic
sub N-semigroup (p-Sylow S-neutrosophic sub N-semigroup). If
Sn(S) has atleast one p-Sylow S-neutrosophic sub N-semigroup
P then we call Sy(S) to be a weakly Sylow Smarandache
neutrosophic N-semigroup (weakly Sylow S-neutrosophic N-
semigroup). If Sx(S) has no p-Sylow S-neutrosophic sub N-
semigroup then we call S\(S) to be a Sylow free Smarandache
neutrosophic  N-semigroup(Sylow free S-neutrosophic N-
semigroup) .

Example 3.3.7: Let SN(S) = (S; U S, U Ss, *, *5, *3) be a S-
neutrosophic N-semigroup where
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Si = {Z, a semigroup under multiplication modulo 9},

S, = {0, 1, 2,3, 1 2L, 31}, a neutrosophic semigroup under
multiplication modulo 4 and

S; = {ZyxZy =X y)|Xx € Zyand y € Z,}, a semigroup
under component wise multiplication.

o(Sx (S))=24,2° /24 and 2* X 24,3 /24,3 X 24.

We see Sy (S) cannot have a S-neutrosophic sub N-
semigroup of order 3. Further it cannot have a S-neutrosophic
sub N-semigroup of order 8, Thus (Sy (S) is Sylow free. In view
of this we make a little modified definition.

DEFINITION 3.3.9: Let Sy (S) = (S; S, U ... USy, ¥, ..., )
be a finite S-neutrosophic N-semigroup. If P =P; U ... UPyis
any proper subset of Sy (S) which is a N-group such that if for
every prime p / o(Sy (S)) we have N-group of order p' (t > 1)
then we call Sy(S) to be a strong Sylow Smarandache
neutrosophic N-semigroup (strong Sylow S-neutrosophic N-
semigroup).

Interested reader can construct examples.

Now we define the notion of Cauchy Smarandache neutrosophic
N-semigroup and special Cauchy Smarandache neutrosophic N-
semigroup.

DEFINITION 3.3.10: Let Sy (S) = (S; v S; v ... USy, *1, ..., ®y)
be a S-neutrosophic N-semigroup of finite order say n. If for all

X; € Sy (S) such that x" = e; we have m; / n then we call Sy (S)

to be a Cauchy Smarandache neutrosophic N-semigroup
(Cauchy S-neutrosophic N-semigroup).

We call x; the Cauchy Smarandache elements (Cauchy S-
elements) of the S-neutrosophic N-semigroup. If only the
elements of the N-groups are alone Cauchy S-elements of Sy (S)
then we call Sy (S) to be a special Cauchy Smarandache
neutrosophic N-semigroup (special Cauchy S-neutrosophic N-
semigroup).
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It is clear from the definition that Cauchy S-neutrosophic N-
semigroup by the very definition is a special Cauchy S-
neutrosophic N-semigroup and not conversely. Now we give a
simple example to illustrate our definitions.

Example 3.3.8: Let SN(S) = (S U S, U Ss, *, %5, *3) be a S-
neutrosophic 3-semigroup. Let

Si = {Zs, semigroup under multiplication modulo 8},

S, = {0, 1,2, 3, 1, 2I, 31}, semigroup under multiplication
modulo 4 and

S; = {Z; x Z3}, semigroup under component wise
multiplication.

o(Sn(S)) = 24. Now Sn(S) is a Cauchy S-neutrosophic N-
semigroup for 3> =1 (mod 8), 5> = 1 (mod 8). (2, 1)*=(1, 1); (2,
2)*=(11), thus 2 / 24.

Now we proceed on to define the notion of Smarandache
conjugate neutrosophic sub N-semigroups.

DEFINITION 3.3.11: Let Sy (S) = (S; S, US; U ... USy, ¥,

, *n) be a S-neutrosophic N-semigroup. Let P = {P; U P, U
... UPy, *], veey *N} and M = {M] UM, U ... UMN, *1, veey *N}
be any two S-neutrosophic sub N-semigroups of Sy (S).

Let T = (T] uT, .. UTN, *1, *2,..., *N) and L = (L] v L,
U ... ULy *, %, ..., *\) be the proper subset of P and M
respectively which are N-groups.

If T and L are Smarandache conjugate as N-groups (S-
conjugate as N-groups) i.e. each T; and L; are S-conjugate as S-
semigroups then we say P and M are Smarandache conjugate
neutrosophic sub N-semigroups (S-conjugate neutrosophic sub
N semigroups) of Sy (S).

Remark: For P and M to be S-conjugate neutrosophic sub N

semigroups we do not demand o(P) = o(M). Neither do we
demand any such traits among the N-groups.
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Chapter Four

SMARANDACHE
NEUTROSOPHIC LOOPS
AND THEIR GENERALIZATION

This chapter introduces the notion of Smarandache neutrosophic
loops (S- neutrosophic loops) and their generalizations like
Smarandache neutrosophic biloops, Smarandache neutrosophic
N-loops and the new class of neutrosophic N-loops. The new
class of neutrosophic loops introduced in [51] are all S-
neutrosophic loops of order 4t or 2(n + 1), n odd n > 3. This
chapter has three sections. In section 1 S-neutrosophic loops are
introduced and several interesting properties are derived. In
section 2 Smarandache neutrosophic biloops are introduced and
some of its interesting properties derived. Section three just
introduces the notion of S- neutrosophic N-loops and suggests
the reader to develop all properties.

4.1 S-Neutrosophic Loops and their Properties

In this section we newly define the notion of S-neutrosophic
loops and show a class of loops of order 4n are S-neutrosophic
loop. For more about neutrosophic loops please refer [S1]. We
infact prove the existence of S-neutrosophic loop which are
right or left alternative, Moufang, Bol, Bruck and WIP.

Now we proceed on to define the notion of Smarandache
neutrosophic loops.
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DEFINITION 4.1.1: Let (I U 1) be a neutrosophic loop (L. U1)is
said to be a Smarandache neutrosophic loop (S- neutrosophic
loop) if (L w I) has a proper subset T which is a neutrosophic

group.

Example 4.1.1: Let{LU )= {Ls3)u D ={e, 1,2,3,4,5,¢l,
21, 31, 41, 51} be a neutrosophic loop. {e, 2, I, 21} < (Ls(3) v I)
is a neutrosophic group under the operations of (Ls(3) U I). So
(Ls(3) w I) is a S-neutrosophic loop.

We have a very important result to state [S1].

THEOREM 4.1.1: Every neutrosophic loop in the new class of
neutrosophic loops (L, U1)is a S-neutrosophic loop.

Proof: We see every neutrosophic loop (L,(m) U I) in (L, U I)
is a S-neutrosophic loop. This is evident from the fact that
(Ly(m) U I) contains a subset {tI, e, el, t} which is given by the
following table under the operations in (L,(m) U I)

* e t | el | tI
e e t el | tI
e tl | el
el [ el | tI | el | tI
th | tI | el | tI | el

This is a neutrosophic loop and {{e, t) U I} is neutrosophic
group as (e, t) is a group. Hence the claim.

Find examples of neutrosophic loops which are not S-
neutrosophic loops. Now we proceed on to define Smarandache
neutrosophic subloop.

DEFINITION 4.1.2: Let (L U I) be a neutrosophic loop. A
proper subset P of (L U I) is said to be a Smarandache
neutrosophic subloop (S-neutrosophic subloop) if P satisfies the
following conditions.
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(1) Pis a neutrosophic subloop of (L U1).

(2) P contains a proper subset H such that H is a
neutrosophic group or equivalently we can define a
Smarandache neutrosophic subloop P, to be a
Smarandache neutrosophic loop under the operations

of (L UI)
The following result is very interesting.

THEOREM 4.1.2: If (L v 1) is a neutrosophic loop having a
proper subset P which is a S-neutrosophic subloop then (L U 1)
is itself a S-neutrosophic loop.

Proof: Given (L U I) is a neutrosophic loopand Pc (L U I)is a
S-neutrosophic subloop of (L U I) i.e. P has a proper subset T,
such that T is a neutrosophic group and is contained in P.

ButTc({(Lul)asTc P c (L ul), Thus({L U I) has a
proper subset T, where T is a neutrosophic group, so (L U I) is
a S-neutrosophic loop. Hence the claim.

Now it may happen that the S-neutrosophic loop (L U I)
may contain finite number of elements then we say (L U I) is a
finite S-neutrosophic loop.

If the number of elements in a S-neutrosophic loop is
infinite then we call (L U I) to be an infinite S-neutrosophic
loop.

Now in general the order of a S-neutrosophic subloop need
not divide the order of the finite S-neutrosophic loop. To tackle
this problem we define the notion of Lagrange S-neutrosophic
subloop and their other Lagrange concepts.

DEFINITION 4.1.3: Let (L v 1) be a S-neutrosophic loop of
finite order. P be a proper subset of (L U 1) we say P is a S-
Lagrange neutrosophic subloop if P is a S-neutrosophic
subloop and o(P) / o((L v I)). If every S-neutrosophic subloop
of (L v 1) happens to be S-Lagrange neutrosophic subloop then
we call (L U 1) to be a Smarandache Lagrange neutrosophic
loop (S-Lagrange neutrosophic loop). If (L U 1) has atleast one
S-Lagrange neutrosophic subloop then we call (L U 1) a weak
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Smarandache Lagrange neutrosophic loop (Weak S-Lagrange
neutrosophic loop). If (L 1) has no S-Lagrange neutrosophic
subloop then we call (L U I) to be a free S-Lagrange
neutrosophic loop.

It is clear every L