A proof of the non-existence of ”Samma”.

by Pal Grenas

Introduction: If [T%, p7 is the prime factorization of the natural number n > 2. then
1t Is easy to verify that

S(n) Hpg ) = max{ S(p{*) }.;-

t=1

From this formula we see that it is essensial to determine S(p”), where p is a prime and

T i1s a natural number.
Legendres formula states that
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The definition of the Smarandache function tells us that S(p”) is the least natural num-
ber such that p” | (S(p"))!. Combining this definition with (1), it is obvious that S(p") must
satisfy the following two inequalities:
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This formula (2) gives us a lower and an upper bound for S(p"), namely

(3) (p—1r+1< S(p") < pr.

It also implies that p divides S(p"), which means that

r—l].

S(p") = p(r — i) for a particular 0 < 7 < [ >

“Samma”: Let T(n) = 1 - log(S(n)) + ¥, % for n > 2. I intend to prove that

lima_ T(n) = o0, i.e. "Samma” does not exists.
First of all we define the sequence pr=2,p, =3, p3 =35 and p, = the nth prime.
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Next we consider the natural number p?. Now (3) gives us that

S(f) < pik Yie{l,...,m} and Yke{l,....n}
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since S(k) >0 forall £ >2, p’ <p* whenever a <m and 6<n and pl =p? if and

only if a=c¢ and b=4d.
Futhermore 5(p},) < pn, n, which implies that —log S(p?) > —log(pm n) because log z
is a strictly increasing function in the intervall [2,00). By adding this last inequality and

(4), we get
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= 1+ 2y + lim (—2+ii>- lim (Z%) (v = Euler’s constant)

M —00

since both $f_; + and $"i_, i diverges as ¢ — oc. In other words, lim, .., T(n) = co0. O
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