SMARANDACHE NUMERICAL FUNCTIONS

ьу

Ion Balacenoiu

Departament of Mathematics

University of Craiova, Romania

F. Smarandache defines [1] a numerical function

S:N* — N .5(n) is the smallest integer m such that

m! is divisible by n. Using certain results on

standardised structures, three kinds of Smarandache

functions are defined and are etablished some

compatibility relations between these functions.

- 1. Standardising functions. Let X be a nonvoid set, r \subset X \times X an equivalence relation, \hat{X} the corresponding quotient set and (I, \leq) a totally ordered set.
- 1.1 Definition. If $g: \hat{X} \longrightarrow I$ is an arbitrarely injective function, then $f: X \longrightarrow I$ defined by $f(x) = g(\hat{x})$ is a standardising function. In this case the set X is said to be $[r,(I,\leq),f]$ standardised. If r_1 and r_2 are two equivalence relations on X, then $r = r_1^{\Lambda} r_2$ is defined as x r y if and only if $x r_1 y$ and $x r_2 y$. Of course r is an equivalence relation.

In the following theorem we consider functions having the same monotonicity. The functions $f_i:X\longrightarrow I$, i=1,s are of the same monotonicity if for every x,y from X it results

 $f_k(x) \le f_k(y)$ if and only if $f_i(x) \le f_i(y)$ for $k, j = \overline{1, s}$

1.2 Theorem. If the standardising functions $f_i:X\longrightarrow I$ corresponding to the equivalence relations r_i , $i=\overline{1,s}$, are of the some monotonicity then $f=m_{\overline{i}}x$ (f_i) is a standardising function corresponding to $r=\bigwedge_i r_i$, having the same monotonicity as f_i .

Proof. We give the proof of theorem in case s=2. Let \hat{x}_1 , \hat{x}_2 , \hat{x}_r be the equivalence clases of x corresponding to r_1 , r_2 and to $r_1 = r_1 \wedge r_2$ respectively and \hat{X}_1 , \hat{X}_2 , \hat{X}_3 the quotient sets on X.

We have f(x) = g(x) and f(x) = g(x), where

 $g_i: \hat{X}_r \longrightarrow I$, i=1,2 are injective functions. The function $g: \hat{X}_r \longrightarrow I$ defined by $g(\hat{x}_r) = \max\{g_1(\hat{x}_r), g_2(\hat{x}_r)\}$ is injective.

Indeed, if $\hat{x}_r^1 \neq \hat{x}_r^2$ and $\max(g_1(\hat{x}_{r_1}^1), g_2(\hat{x}_{r_2}^1)) = \max(g_1(\hat{x}_{r_1}^2), g_2(\hat{x}_{r_2}^2))$, then be cause of the injectivity of g_1 and g_2 we have for example $\max(g_1(\hat{x}_{r_1}^1), g_2(\hat{x}_{r_2}^1)) = g_1(\hat{x}_{r_2}^1) = g_2(\hat{x}_{r_2}^2) = \max(g_1(\hat{x}_{r_2}^2), g_2(\hat{x}_{r_2}^2))$ and we obtain a

contradiction because $f_1(x^2) = g(\hat{x}_{r_1}^2) < g_1(\hat{x}_{r_1}^4) = f_1(x^4)$ $f_2(x^4) = g_2(\hat{x}_{r_1}^4) < g_2(\hat{x}_{r_2}^2) = f_2(x^2) \text{ , that is}$

 $f_{1} \text{ and } f_{2} \text{ are not of the same monotonicity From the injectivity of g it results that } f:X \longrightarrow I defined by <math>f(x) = g(\hat{x}_{1})$ is a standardising function. In addition we have $f(x^{1}) \leq f(x^{2}) \iff g(\hat{x}_{1}^{1}) \leq g(\hat{x}_{2}^{2}) \iff \max(g_{1}(\hat{x}_{1}^{1}), g_{2}(\hat{x}_{1}^{1})) \leq \max(g_{1}(\hat{x}_{1}^{2}), g_{2}(\hat{x}_{1}^{2})) \iff \max(f_{1}(x^{1}), f_{2}(x^{1})) \leq \max(f_{1}(x^{2}), f_{2}(x^{2})) \iff f_{1}(x^{1}) \leq f_{1}(x^{2}) \text{ and } f_{2}(x^{1}) \leq f_{2}(x^{2}) \text{ because } f_{1} \text{ and } f_{2} \text{ are of the same monotonicity.}$

Let us supose now that \top and \bot are two algebraic lows on X and I respectively.

1.3. Definition. The standardising function $f:X\longrightarrow I$ is said to be Σ -compatibile with T and T if for every X,Y in X the triplet $(f(X),f(Y),f(X_TY))$ satisfies the condition Σ . In this case it is said that the function f Σ -standardise the structure (X,T) in the structure (X,T).

For example, if f is the Smarandache function $S: \mathbb{N}^* \longrightarrow \mathbb{N}$, (S(n)) is the smallest integer such that (S(n))! is divisible by n) then we get the following Σ -stadardisations:

- a) S Σ_1 -standardise (N*,.) in (N*, \leq ,+) because we have $\Sigma_1: S(a,b) \leq S(a) + S(b)$
- b) but S verifie also the relation

2. Smarandache functions of first kind. The Smarandache function S is defined by means of the following $S : \mathbb{N}^* \longrightarrow \mathbb{N}^* \text{ having}$

the property that $(S_p(n))!$ is divisible by p^n and is the smallest positive integer with this property. Using the notion of standardising functions in this section we give some generalisation of S_p .

2.1. Definition. For every $n \in \mathbb{N}^{n}$ the relation $r \in \mathbb{N}^{n} \times \mathbb{N}^{n}$ is defined as follows: i) if $n = u^{1}(u = 1 \text{ or } u = p \text{ number prime, iell}^{n})$ and $a,b \in \mathbb{N}^{n}$ then a r p if and only if it exists $k \in \mathbb{N}^{n}$ such that $k! = M u^{1a}$, $k! = M u^{1b}$ and k is the smallest positive integer with this property.

- 2.2. Definition. For each $n \in \mathbb{N}^+$ the Smarandache function of first kind is the numerical function $S_n: \mathbb{N}^+ \to \mathbb{N}^+$ defined as follows
- i) if $n = u^t(u=1)$ or u=p number prime) then $S_n(a) = k$, k being the smallest positive integer with the property that $k! = M u^{ia}$
 - ii) if $n = p_1^{\frac{1}{2}} \cdot p_2^{\frac{1}{2}} \cdot \dots p_5^{\frac{1}{3}}$, then $S(a) = \max_{1 \le j \le s} S(a)$. Let us observe that:
- a) the functions S_n are standardising functions corresponding to the equivalence relations r_n and for n=1 we get $\frac{1}{x}=1$
- for every $x \in \mathbb{N}^{*}$ and $S_{1}(n) = 1$ for every n. b) if n = p then S_{n} is the function S_{p} defined by Smarandache.
- c) the functions S_n are increasing and so, are of the same monotonicity in the sense given in the above section.
- 2.3. Theorem. The functions S_n , for $n \in \mathbb{N}^n$, Σ_1 -standardise $(\mathbb{N}^n,+)$ in $(\mathbb{N}^n,\leq,+)$ by $\Sigma_1: \max(S_n(a),S_n(b))\leq S_n(a+b)\leq S_n(a)+S_n(b)$ for every $a,b\in\mathbb{N}^n$ and Σ_2 -standardise $(\mathbb{N}^n,+)$ in $(\mathbb{N}^n,\leq,\cdot)$ by $\Sigma_2: \max(S_n(a),S_n(b))\leq S_n(a+b)\leq S_n(a),S_n(b)$, for every $a,b\in\mathbb{N}^n$ Proof. Let, for instance, p be a prime number p, p and p an

(Definition 2.2.) the numbers a^*, b^*, k are the smallest positive integers such that $a^*! = Mp^{ia}$, $b^*_i = Mp^{ib}$ and $k! = Mp^{i(a+b)}$.

Because $k! = Mp^{ia} = Mp^{ib}$ we get $a^* \le k$ and $b^* \le k$, so $max(a^*, b^*) \le k$

That is the first inequalities in Σ_1 and Σ_2 holds.

Now, $(a^{+}b^{+})! = a^{+}(a^{+}+1)...(a^{+}b^{+}) = Ma^{+}! b^{+}! = Mp^{i(a+b)}$ and

so $k \le a^* + b^*$ which implies that Σ_i is valide. If $n = p_i^{-1} \cdot p_2^{-2} \cdot \cdot \cdot \cdot p_a^{-n}$, from the first case we have $\Sigma_i : \max\{S_i(a), S_i(b)\} \le S_i(a+b) \le S_i(a) + S_i(b), j = \overline{1, s}$ $p_i = p_i^{-1} \cdot p_i^{-1}$ $p_i = p_i^{-1} \cdot p_i^{-1}$

in consequence

$$\max\{\max_{j} \{\max_{j} \{a\}, \max_{j} \{b\}\}\} \le \max_{j} \{S_{i} \{a+b\}\} \le \max_{j} \{S_{i} \{a\}\} + \max_{j} \{\max_{j} \{a\}, \max_{j} \{a\}\}\}$$

$$\max_{j} \{ S_{ij}(b) \}$$
, $j = \overline{1,s}$. That is

$$\max\{S_n(a),S_n(b)\} \leq S_n(a+b) \leq S_n(a) + S_n(b)$$

For the proof of the second part in Σ_z let us notice that $(a+b)! \leq (ab)! \iff a+b \leq ab \iff a > 1$ and b > 1 and that ours inequality is satisfied for n=1 because $S_1(a+b)=S_1(a)=S_1(b)=1$.

Let now n>1.It results that for $a = S_n(a)$ we have a > 1. Indeed, if $n = p_1^{-1} p_2^{-2} \dots p_s^{-3}$ then a = 1 if and only if $S_n(a) = \max_j \{S_{p_j}(a)\} = 1$ which implies that $p_1 = p_2 = \dots = p_s = 1$,

so n=1. It results that for every n>1 we have $S_n(a)=a^*>1$ and $S_n(b)=b^*>1$. Then $(a^*+b^*)!\le (a^*.b^*)!$ we obtain $S_n(a+b)\le S_n(a)+S_n(b)\le S_n(a).S_n(b)$ from n>1.

3. Smarandache functions of the second kind. For every $n \in \mathbb{N}^*$, let S_n by the Smarandache function of the first kind defined above. 3.1. Definition. The Smarandache functions of the second kind are the functions $S^k: \mathbb{N}^* \longrightarrow \mathbb{N}^*$ defined by $S^k(n) = S_n(k)$, for $k \in \mathbb{N}^*$. We observe that for k=1 the function S^k is the Smarandache function S defined in [1], with the modify S(1) = 1. Indeed for. $S^k(n) = S_n(1) = S_n(1) = \max_{j \in \mathbb{N}} \{S_{p_{j_i}}(1)\} = \max_{j \in \mathbb{N}} \{S_{p_{j_i}}(1)\} = S(n)$.

3.2. Theorem. The Smarandache functions of the second kind Σ_3 -standardise (\mathbb{N}^*,\cdot) in $(\mathbb{N}^*,\leq,+)$ by

 Σ_3 : $\max\{8^k(a), s^k(b)\} \le s^k(a.b) \le s^k(a) + s^k(b)$, for every $a, b \in \mathbb{N}^*$ and Σ_4 -standardise (\mathbb{N}^*, \cdot) in $(\mathbb{N}^*, \le, \cdot)$ by

 Σ_4 : $\max\{S^k(a), S^k(b)\} \leq S^k(a.b) \leq S^k(a).S^k(b)$, for every a, bell Proof. The equivalence relation corresponding to S^k is r^k , defined by a r^k b if and only if there exists a $\in \mathbb{N}^*$ such that a $!=Ma^k$, a $!=Mb^k$ and a is the smallest integer with this property. That is, the functions S^k are standardising functions attached to the equivalence relations r^k .

This functions are not of the some monotonicity because, for example, $S^2(a) \le S^2(b) \iff S(a^2) \le S(b^2)$ and from these inequalities $S^1(a) \le S^1(b)$ does not result.

Now for every $a,b \in \mathbb{N}^*$ let $s^k(a) = a^*$, $s^k(b) = b^*$, $s^k(a.b) = s$.

Then a^* , b^* , s are respectively these smallest positive integers such that $a^*! = Ma^k$, $b^*! = Mb^*$, $s! = M(a^kb^k)$ and so $s! = Ma^k = Mb^k$, that is, $a^* \le s$ and $b^* \le s$, which implies that $max\{a^*,b^*\} \le s$

or
$$\max \{ S^k(a), S^k(b) \} \leq S^k(a.b)$$
 (3.1)

Because of the fact that $(a^* + b^*)! = M(a^*! b^*!) = M(a^k b^k)$, it results that $s \le a^* + b^*$, so

$$s^{k}(a.b) \leq s^{k}(a) + s^{k}(b)$$
 (3.2)

From (3.1) and (3.2) it results that

$$\max\{s^{k}(a), s^{k}(b)\} \leq s^{k}(a) + s^{k}(b)$$
 (3.3)

Which is the relation Σ_3 .

From $(a^*b^*)! = M(a^*!.b^*!)$ it results that $S^k(a.b) \le S^k(a).S^k(b)$ and thus the relation Σ_A .

- 4. The Smarandache functions of the third kind.
- We considere two arbitrary sequences (a) $1=a_1,a_2,\ldots,a_n,\ldots$

(b)
$$1=b_1, b_2, \dots, b_n, \dots$$

with the properties that $a_{kn} = a_k \cdot a_n$, $b_{kn} = b_k \cdot b_n$. Obviously, there are infinitely many such sequences; because chosing an arbitrary value for a_z , the next terms in the net can be easily determined by the imposed condition.

Let now the function $f_a: \mathbb{N}^* \longrightarrow \mathbb{N}^*$ defined by $f_a(n) = s_a(b_n)$, s_a is the Smarandache function of the first kind. Then it is easily to see that :

- (i) for $a_n = 1$ and $b_n = n, n \in \mathbb{N}^*$ it results that $f_a^b = s_i$
- (ii) for $a_n = n$ and $b_n = 1, n \in \mathbb{N}^{+}$ it results that $f_a^b = s^a$
- 4.1. Definition. The Smarandache functions of the third kind are the functions $\mathbf{S}_a^b = \mathbf{f}_a^b$ in the case that the sequences (a) and (b) are different from those concerned in the situation (i) and (ii) from above.

4.2. Theorem. The functions $f_a^b = \Sigma_s$ -standardise (N^*, \cdot) in $(N^*, \le, +, \cdot)$ by

$$\Sigma_{a}$$
: $\max \{f_{a}^{b}(k), f_{a}^{b}(n)\} \leq f_{a}^{b}(k,n) \leq b_{n}, f_{a}^{b}(k) + b_{k}f_{a}^{b}(n)$

Proof.Let
$$f_{a}^{b}(k) = s_{ak}(b_{k}) = k^{*}, f_{a}^{b}(n) = s_{ak}(b_{n}) = n^{*}$$
 and $f_{a}^{b}(kn) = n^{*}$

=S_{akn}(b_{kn})= t Then k,n and t are the smallest positive integers such that $k! = M a_k^k$, $n! = M a_n^n$ and $t! = M a_{kn}^k = M a_{kn}^n$

$$\max\{k^*, n^*\} \le t$$
 (4.1)

Now, because $(b_k \cdot n^*)! = M(n^*!)^{b_k}$, $(b_n \cdot k^*)! = M(k^*!)^{b_n}$ and $(b_k n^* + b_n k^*)! = M[(b_k n^*)! \cdot (b_n k^*)!] = M[(n^*!)^{b_k} \cdot (k^*!)^{b_n}] =$

$$= M[(a_n^b)^b, (a_k^b)^b] = M[(a_k, a_n^b)^b, b_n^b]$$
 it results that
$$t \le b_n k^* + b_k n^*$$
 (4.2)

From (4.1) and (4.2) we obtain

$$\max\{k^*, n^*\} \le t \le b_n k^* + b_k n^*$$
 (4.3)

From (4.3) we get $\Sigma_{\rm s}$,so the Smarandache functions of the third kind satisfy

 Σ_{a} : $\max\{S_{a}^{b}(k), S_{a}^{b}(n)\} \leq S_{a}^{b}(kn) \leq b_{n}S_{a}^{b}(k) + b_{k}S_{a}^{b}(n), \text{ for evry } k, n \in \mathbb{N}^{*}$

4.3. Example. Let the sequences (a) and (b) defined by $a_n = b_n = n$.

The corresponding Smarandache function of the third kind is $S_{\alpha}^{a}: \mathbb{N} \xrightarrow{*} \mathbb{N}^{*} , \quad S_{\alpha}^{a}(n) = S_{n}(n) \quad \text{and} \quad \Sigma_{\sigma} \text{ becomes}$ $\max\{S_{k}(k), S_{n}(n)\} \leq S_{kn}(kn) \leq nS_{k}(k) + kS_{n}(n) \text{ , for every } k, n \in \mathbb{N}^{*}$

This relation is equivalent with the following relation written by meens with the Smarandache function:

$$\max \{s(k^k), s(n^n)\} \le s[(kn)^{kn}] \le n.s(k^k) + k.s(n^n)$$
.

References

- [1] F.Smarandache, A Function in the Number Theory, An. Univ.

 Timisoara, seria st. mat Vol. XVIII, fasc. 1, pp. 79-88.1980.
- [2] Smarandache Function-Journal-Vol.1 No.1, December 1990.