
SOME PROBLEMS ON SMARANDACHE FUNCTION 

by 

Charles Ashbacher 

In this paper we shall investigate some aspects involving 

Smarandache function, S:~--~~, S(n) = min {m I n divide m!}. 

1. THE MINIMUM OF S(n)/n 

Which is minimumum of S(n)/n if n > I? 

1.1. THEOREM: 

a) S(n)/n has no minimum for n > 1. 

b) lim S(n)!n as n goes to infinity does not exist. 

Proof: 

a) Since S (n) 

that S(n)/n has 

> 1 for n>l it follows that S(n)/n > O. Assume 

a minimum and let the rational fraction be 

represented by r/s. By the infinitude of the natural numbers, we 

can find a number m such 2/m < r/s. Using the infinitude of the 

primes, we can find a prime number p > m. Therefore, we have the 

sequence 

2/p < 2/m < r/s 
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We have S(P'p) = S(p2) = 2p. It is known that S(p·p)=2p. The 

ratio of S(p;)/(P'p) is then 

2pl (p2) = 2/p 

And this ratio is less than rls, contradicting the assumption 

of the minimum. 

b) Suppose lim S(n)/n exists and has value r. Now choose, e > 0 

and e < l/p where p is a twenty digit prime. Since S(p) = p, 

S (p) Ip = l. 

However, S(p'p) = 2p, so the ratio S(n)/n = 2p/(p'p) = 2/p. Since 

p is a twenty digit prime, 

I S(p) /p - S(P'p) / (P'p) I > e by choice of e . 

so the limit does not exist. 

2. THE DSCDIAL HtJDD DOSS DIGITS ARB TBB VALUJIS OF SD.RAlII)ACIm 

FtJNCTIOB IS IRRATIOHAL. 

Unsolved-problem number (8) in [lJ is as follows: 

Is r = 0,0234537465114 ... , where the sequence of digits is 

S{n), n ~ I, an irrational number? 

The number r is indeed irrational and this claim will be 

proven below. 

The following well-known results will be used. 

DIRICHLET'S TBBORD: 

If d > 1 and a ~ 0 are integers that are relativey prime, then 

the arithmetic progression 
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a, a, + d, a + 2d, a + 3d, ... 

contains infinitely many primes. 

Proof of claim: 

Assume that r as defined above is rational. Then after some m 

digits, there must exist a series of digits t 1 , t 2 , t 3 , ••• , tn' 

such that 

where s is the m-th digit in the decimal expansion. 

Now, construct the repunit number consisting of 10n l's. 

a = 11111 111 

10n times 

and let d - 1000 ... '00 

10n + 1 O's 

Since the only prime factors of dare 2 and 5, it is clear 

that a and d are relatively prime and by Dirichlet's Theorem, the 

sequence 

a, a + d, a + 2d, 

must contain primes. Given the number of l's in a and the fact that 

S(p) = p, it follows that the sequence of repeated digits in r must 

consist entirely of l's. 

Now, construct the repdigit number constructed from 10n 3's 

a = 3333 ... 333 

10n times 
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and using 

d • 10000 ... 00 

10D + 1 O's 

we again have a and d relatyvely prime. Arguments similar to those 

used before forces the conclusion that the sequence of repeted 

digits must consist entirely of 3's. 

This is of course impossibile and therefore the assumption of 

rationality must be false. 

3. ON THB DISTRIBUTION OP THE POINTS OP S (D) ID IN '1'BB 

D1TBJtVAL ( 0 , 1) • 

The following problem is listed as unsolved problem number (7) 

in [1] 

Are the points p(n):: S(n) In uniformly distributed in the 

interval (O,l)? 

The answer is no, the interval ( 0 .5, 1.0) contains only a 

finite number of points p(n) . 

3 . 1. LBllMA: 

For p prime and k>O. 



Proof: 

It is well-known that S(Pk) = j'P where j:!> k . 

Therefore, forming the expressions 

where m must have one of the two values {j, j+l} . 

With the restrictions on the values of m and p, it is clear 
that 

-; 1 
-"'-~-

r..' P 
which implies that 

s(pk) S(pk+l) 
-"'---'- ~ , 

P k pK+l 

which is the desired result. Equality occurs only when p=2, j=l and 

m=2. 

3.2. LEMMA: 

The interval (0.5,1.0) contains only a finite number of points 

p (n), where 

Proof: 

If n=p 

p(n) = S(n) and n is a power of a prime. 
n 

S(p) = 1 , outside the interval. 
p 

Start with the smallest prime p=2 and move up the powers of 2 

S ( 2 '2) =.! = 1 
(2'2) 4 

4 
8 
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S ( 2 '2 '2 '2) _ 6 .. 
...:;...,.:.....--~~--<O.:> . 

( 2 '2 '2 '2 ) 16 

And applying the previous lemma, all additional powers of 2 

~ill yield a value less than 0.5. 

Taking the next smallest prime p=3 and moving up the powers 

of 3 

S(3'3 ) 
(3'3 ) 

6 
9 

S(3'3'3) 9 
-7:--::--:--:-- = - < 0 . 5 

(3'3'3) 27 

and by the previous lemma, all additional powers of 3 also yield a 

value less than 0.5. 

Now, if p>3 and p is prime 

S(P'p) = ~ < 0.5 
(P'p) P 

so all other powers of primes yield values less than 0.5 and we are 

done .. 

3.3. TlIEOR.DI: 

The interval (0.5,1.0) contains only a finite number of points 

pen) where 

Proof: 

p (n) = Sen} 
n 

It is well-known that if 

S(n} =ma~ds(p:') } 

then 

Applying the well-known result with the formula for pen) 

which is clearly less than 
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Theorefore, applying Lemma 2, we get the desired results. 

3.4. COROLLARY: 

The points p (n) =S (n) In are not evenly distributed in the 

interval (0,1). 

4 . THE SHARANDACHE FUNCTION DOES NOT SATYSFY A LIPSCHITZ 

CONDITION 

Unsolved problem number 31 in [1] is as follows. 

Does the Smarandache function veryfya Lipschitz condition? In 

other words, is there a real number L such that 

I S (m) - S (n) I ~ Lim - n ! for all m, n in {a, 1,2,3, ... } . 

4 . 1. THEOREM 

The Smarandache function does not verify a Lipschitz 

condition. 

Proof: 

Suppose that Smarandache function does indeed satisfy a 

Lipschitz condition and let L be the Lipschitz constant. 

Since the numbers of primes is infinite, is possible to fiind 

a prime p such that 

27 



p - (p + 1) /2 > L 

Now, examine the numbers (p-l) and (p+l). Clearly, at least 

one mUst not be a power of two, so we choose that one call it m. 

Factoring m into the product of all primes equal to 2 and 

everything else, we have 

m "" 2 lc·n 

Then S (m) "" max (S (2k) , S (n) } and because S (2lc) ~ 2lc • 

we have 

S(m) 

And so, 

m s -
2 

I S(p) - S(m) I > Ip - .E! I > L 
2 

Since Ip - ml =: by choice of m, we have a violation of the 
Lipschitz condition, rendering our original assumption false. 

Therefore, the Smarandache funotion does not satisfy a 

Lipschitz condition. 

s. ON TBB SOLVAB%L%TY OF TBB EXPRESSION S(m) aDI 

One of the unsolved problems in [1] involves a relationship 

between the Smarandache and factorial functions. 

Solve the Diophantine Equation 
S(m) = n! 

where m and n are positive integers. 

This equation is always solvable and the number of solutions 

is a function of the number of primes less than or equal to n. 

5.1. LBMKA: Let be a prime. Then the range of the sequence 
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S(p) ,S(p·p) ,S(p·p·p) , ... 

will contain all positive integral multiples of p. 

Proof: It has already been proven [2] that for all integers 

k > 0, there exists another integer m > 0, such that 

5 (p k) k = mp where m 5: k 

and in particular 

S(p) = p 

So the only remaining element of the proof is to show that m 

takes on all possible integral values greater than O. 

Let p be an arbitrary prime number and define the set 

M = { all positive integers n such that there is no positive 

integer k such that S (pk) = mp } 

and assume that M is not empty. 

Since M is non-empty subset of the natural numbers, it must 

have a least element. Call that least element m. It is clear that 

m > 1. 

Now, let j be the largest integer such that 

5 (p J) = (m - 1) .p 

and consider the exponent j + 1. 

By the choise of j, it follows that either 

1) S(pj+l) = m·p 

or 

2) S(pj+l) = n·p where n > m 

in the first case, we have a contradiction of our choise of m, 
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so we proceed to case (2)_ 

However, it is a direct consequence of the definition of prime 

numbers that if (m - 1) -p) ~ contains j instances of the prime P, 

then mop is the smallest number such that (m-p)! contains more than 

j instances of p _ Then, using the definition of Smarandache 

function where we choose the smallest number having the required 

number of instances we have a contradiction of case (2)_ 

Therefore, it follows that there can be no least element of 

the set M, so M must be empty_ 

S.2.TBBORBK: Let n be any integer and p a prime less than or 

equal to n. 7hen, there is some integer k such that 

S(p X) = n! 

Therefore, each equation of the form S(m} = n! has at least 'p 

solutions, where .p is the number of primes less than or equal 

to n. 

Proof: 

Since n! is an integral multiple of p for p any prime less 

than or equal to n, this is a direct consequence of the lemma. 

Now that the question is known to have multiple solutions, the 

next logical question is to determine how many solutions there are. 

5.3. DBPrNITION: Let NSF(n) be the number of integers m, such 

that S (m) = n! _ 

From the fact hat S (n) = max {S(p;!)} ,we have the following 

obvious result. 
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Corollary: 

Let n be a positive integer, q a prime less than or equal to 

nand k another positive integer such that S(qk) = n! . Then, all 

where S(qk) > S(p;i) will also be solutions the equation S(m) = n! 

To proceed further, we need the following two obvious lemmas. 

5.4. LEMMA: If p is a prime and m and n nonnegative integers m > 

5.5. LEMA: If p and q are primes such that p < q and k > 0, then 

The following theorem gives an initial indication regarding 

how fast NSF(n) grows as n does. 

5.6. THEOREM: Let q be a prime numt~r and k an exponent such that 

S(cf) = n! Let P!,pz, ... ,Pr be the lis': of primes less than q. Then 

the number of solutions to the equation S(m) = n! where m contains 

exactly k instances of the prime q is at least (k +l)r. 

Proof: Applyng the two lemmas, the numbers m - a 1 a l a] 4 r k - Pl P2 P3 .. 'P r q 

where all of exponents on the primes Pi are at most solutions to the 

equation. Since each prime pi can have (k + 1), {O,l,2, ... ,k} 

different values for the exponent, simple counting gives the 

result. 

Since this procedure can be repeated for each prime less than 

or equal to n, we have an initial number of solutions given by the 

formula 
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5 

E 
.:.-2 

(k·+l)i-l + 1 
1 

where s is the number of primes less then or equal to n, k is the 

integer such that 

s(pfJ) = n! 

And even this is a very poor lower bound on the number of 

solutions for n having any size. 

5.7. COROLARY: Let q be a prime such that for some k S{cf) = n!. 

Then ~f P is any prime such that there is some integer j such that 

S (pi) < S (ct), then the product of any solution and p any power less 

than or equal to j will also be a solution. 

Proof: Clear. 

If q is the largest prime less than or equal to n, it is easy 

to show for "large" n that there are primes p > n > q that satisfy 

the above conditions. If p. is any prime, then by Bertrand's 

Postulate, another prime r can be found in the interval p > r > 2p. 

Since q < n < 2n < n! for n > 2 and S(p) = p, we have one such 

prime. Expanding this reasoning, it folows that the number of such 

primes is at least j, where j is the largest exponent of 2 such 

that q"2 5 nl, or put another way, the largest power of 2 that is 

less than or equal to n!/q. 

Since there are so many solutions to the equation S(m) = n!, 

it is logical to consider the order of growth of the number of 

solutions rather than the actual number. 

It is well known that the number of primes less than or equal 

to n is asymptotic to the ratio n/ln{n). Now, let p be the largest 

prime less than n. As n gets larger, it is clear that the factor m 
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such that mp = n! grows on the order of a factorial. Since m s k, 

where k is the exponent on the power p, it follows that the number 

grows on the order of the product of factorials. Since the number 

of items in the product depends on the number of primes q such that 

q < mp = n!, it follows that this number also grows on the order of 

a factorial. 

Putting it all together, we have the following behavior of 

NSF(n) . 

NSF(n) grows on the order of product of items all on the order 

of the factorial of n, where the number of elements in the product 

also grows on the order of a factorial of n. 

Cleary, this function grows at an astronomical rate. 

6.THE NUMBER OF PRIMES BETWEEN S{n) and S(n+l) 

I read the letter by I.M.Radu that appeared in (3] stating 

that there is always a prime between S (n) and S (n+l) for all 

numbers O<n<4801, where Sen) is the Smarandache function. 

Since 1 have a computer program that computes the values of 

S(n), I decided to investigate the problem further. The serch was 

conducted up through n<1,033,197 and for instances where there is 

no prime p, where Sen) ~p~S(n+1) . They are as follows: 

n=224=2'2'2'2'2'7 S(n) =8 n=225 =3'3'5'5 Sen) =10 

n=2057 =11'11'17 S(n) =22 n=2058=2'3'7'7'7 Sen) =21 
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n=265225=5'S':03'103 S(n) '"'206 n=265226=2'13'lOl'101 Sen) =202 

n=843637 =37·lSl·~.51 Sen} =302 

n=843638 =2'19'149'149 Sen) =298 

As can be seen, the first two values contradict the assertion 

made by I.M.Radu in his letter. Notice that the last two cases 

involve pairs of twin primes. This may provide a clue in the search 

for additional solutions. 

7. ADDITIONAL VALOBS WBBRB THE SKARAHDAClIB PUNCTION SATISFIBS THE 

FIBONACCI RELATIONSHIP S(n)+S(n+l).S(n+2) 

In [4] T.Yau poses the following problem: 

For what triplets n, n+1 and n+2 does the Smarandache function 

satisfy the Fibonacci relationship 

S(n)+S{n+1) = S(n+2) ? 

Two sciutions 

S(9) +S{10) = S(ll) 6+5 = 11 

S(119)+S(120) =S(121) 17+5=22 

were found, but no general solution was given. 

To further investigate this problem, a computer program was 

written that tested all values for n up to 1,000,000. Additional 

solutions were found and all known solutions with their prime 

factorizations appear in the table below. 

S(9} +S(10) =: S(ll} 9 = 3'3 10 = 2'5 11:: 11 

S(119) + S(120) =: S(121) 119 = 7·17 120 = 2·2·2·3·5 121 = 11·11 
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8(4900) + 8(4901) = 8(4902) i 8(26243) + 8(26244) = 8(26245) 

8(3211b) + 8(32111) = 8(32112} i 8(64008) + 8(64009) = 8(64010) i 

8 (368138) + 8 (368139) = 8 (368139) i 8 (415662) + 8 (415663) = 
8 (415664) i 

I am unable to discern a pattern in these numbers that would 

lead to a proof that there is an infinite family of solutions. 

Perhaps another reader will be able to do so. 

8. WILL SOME PROBLEMS INVOLING THE SMARANDACHE FUNCTION ALWAYS 

REMAIN UNSOL7ED? 

The most unsolved problems of the same subject are related to 

the Smarandache function in the Analytic Number Theory: 

s:z---N , 8(n) is defined as the smallest integer such 

that 8(n)! is divisible by n. 

The number of these unsolved problems concerning the function 

is equal to... an infinity!! Therefore, they will never be all 

solved! 

One must be very careful in using such arguments when dealing 

with infinity. As is the case with number theoretic functions, a 

result in one area can have many aplications to other problems. The 

most celebrated recent instance is the "prof" of "Fermat's Last 

Theorem". In this case a result in elliptical functions has the 

proof as a consequence. 

8ince 8(n} is still largely unexplored, it is quite possible 
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~hat the resolution of one problem leads to the resolution of many, 

perhaps infinitely many, others. If that is indeed the case, then 

all problems may eventually be resolved. 
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