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In this article one builds a class of recursive sets, one establishes properties of

these sets and one proposes applications. This article widens some results of [1].

1) Definitions, properties.

One calls recursive sets the sets of elements which are built in a recursive manner:
let T be a set of elements and f, for i between 1 and s, of operations n,, such that
fi:T" — T . Let’s build by recurrence the set M included in 7 and such that:

(Def. 1) 1°) certain elements a,...,a, of T, belongto M .
2°) if (a;,...a, ) belong to M, then f(q,,...,a; ) belong to M for all

ie{l,2,..s}.
3°) each element of M is obtained by applying a number finite of times the rules
1° or2°.

We will prove several proprieties of these sets M , which will result from the manner in
which they were defined. The set M is the representative of a class of recursive sets
because in the rules 1° and 2° by particularizing the elements a,,...,a, respectively

fi»--- f, one obtains different sets.

n

Remark 1 : To obtain an element of M , it is necessary to apply initially the rule

(Def. 2) The elements of M are called elements M -recursive.
(Def. 3) One calls order of an element @ of M the smallest natural p > 1 which

has the propriety that a is obtained by applying p times the rule 1° or 2°.
One notes M, the set which contains all the elements of orderp of M. It is

obvious that M, = {al,...,an .

M,=U{ U  f(@...a,){\M,.

i=l | (e — YeM"
One withdraws M, because it is possible that f,(a; ,...,a, )= a, which belongs

to M,, and thus does not belong to M, .
One proves that for k£ > 1 one has:

N

k
M. =U U f@.a)\UM,
i=1 (a; s Gl )EH:) h=1

where each

[1.'= fern, e, €M, 5 {2,m}: 10, <k and at least an

element a, eM ,1<j <n, }
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The sets M ,, p eN’, form a partition of the set M .

Theorem 1:

M=UM,, where N' = {1,2,3,..}.
peN”
Proof:
From the rule 1° it results that M, c M .
One supposes that this propriety is true for values which are less than p . It results
p-1
that M, M, because M, is obtained by applying the rule 2° to the elements of Uwm..
i=1
Thus U M, <= M . Reciprocally, one has the inclusion in the contrary sense in
peN
accordance with the rule 3°.

Theorem 2: The set M is the smallest set, which has the properties 1°and 2°.

Proof:

Let R be the smallest set having properties 1° and 2°. One will prove that this set
is unique.

Let’s suppose that there exists another set R'having properties 1°and 2°, which is
the smallest. Because R is the smallest set having these proprieties, and because R' has
these properties also, it results that R < R'; of an analogue manner, we have R'C R:
therefore R=R'.

It is evident that M'c R. One supposes that M, = R for 1<i< p. Then (rule

3%), and taking in consideration the fact that each element of M, is obtained by applying
rule 2° to certain elements of M,, 1<i<p, it results that M ,SR. Therefore

UMP —R (peN"), thus M c R. And because R is unique, M = R.
p

Remark 2. The theorem 2 replaces the rule 3° of the recursive definition of the set
M by:” M is the smallest set that satisfies proprieties 1°and 2°”.

Theorem 3: M is the intersection of all the sets of T which satisfy conditions 1°
and 2°.

Proof:

Let 7, be the family of all sets of 7 satisfying the conditions 1°and 2°. We note
I=()4.

AeT,
I has the properties 1° and 2° because:
1) Forall i €{l,2,...n}, a, €I, because a, €A forall A of T,,.

2) If «,....a, €I, it results that «,,...a, belong to A that is A of T,.

Therefore,
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Vi e{l,2,...,s}, fi(a,,....a, ) €A which is Aof T),, therefore fi(«,,....a;, ) el

for all i from {1,2,...,s}.
From theorem 2 it results that M < I .
Because M satisfies the conditions 1° and 2°, it results that M eT,,, from which

I c M . Therefore M =1
(Def. 4) A set Ac1is called closed for the operation f, if and only if for all

I

Ao A of A, one has f, (15 @, ) belongto A.
(Def. 5) A set Ac T is called M -recursively closed if and only if:
1) {al,...,an }g A.
2) Ais closed in respect to operations f;,..., f, .

With these definitions, the precedent theorems become:
Theorem 2’: The set M is the smallest M - recursively closed set.

Theorem 3’: M is the intersection of all M - recursively closed sets.
(Def. 6) The system of elements (a,,...2,), m=21 and « €T for

i e {1, 2,...,m}, constitute a M -recursive description for the element «, if ¢, = and
that each ¢, (i € {1,2,...,m}) satisfies at least one of the proprieties:

1) o, {al,...,an }

2) «, is obtained starting with the elements which precede it in the system by
applying the functions f;, 1< j<s defined by property 2° of (Def. 1).

(Def. 7) The number m of this system is called the length of the M -recursive
description for the element « .

Remark 3: If the element « admits a M -recursive description, then it admits an
infinity of such descriptions.
Indeed, if (al,...,am> is a M -recursive description of « then

a,...,a,,a,,...,a, ) is also a M -recursive description for «, h being able to take all
(R

m

h times

values from N .

Theorem 4: The set M is identical with the set of all elements of 7 which admit
a M -recursive description.
Proof: Let D be the set of all elements, which admit a M -recursive description.

We will prove by recurrence that M, < D forall p of N
For p=1 we have: M, = {al,...,an }, and the a,, 1< j<n, having as M -
recursive description: <a; >. Thus M, c D . Let’s suppose that the property is true for

the values smaller than p. M, is obtained by applying the rule 2° to the elements of
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p-1

UM,-; aeM, implies that aeff(al.l,...,aim) and a, €M, for h;<p and
i=1

I<j<nm,.

But @, , 1<j<mn,, admits M -recursive descriptions according to the hypothesis of

recurrence, let’s have <ﬂj],...,ﬂjs > Then <,BH,...,/5’1S1,ﬂzl,...,ﬂ2S2,...,,Bnil,...,ﬂn’xn_,a>
constitute a M -recursive description for the element « . Therefore if o belongs to D,
then M, c D whichis M = U M,cD.

peN’
Reciprocally, let x belong toD. It admits a M -recursive description (b,,...,b,) with
b, = x. It results by recurrence by the length of the M -recursive description of the
element x, that x €M . For r=1 we have (b ), b, =x and b, e{al,...,an}g M . One
supposes that all elements y of D which admit a M -recursive description of a length
inferior to ¢ belong to M . Let x € D be described by a system of length 7 : (bl,...,b[>,
b,=x. Then x € {al,...,an }g M , where x is obtained by applying the rule 2° to the
elements which precede it in the system: b,,...,b,_,. But these elements admit the M -
recursive descriptions of length which is smaller that 7: <b1>,<bl,b2>,...,(bl,...,bFl).
According to the hypothesis of the recurrence, b,,...,b, , belong to M . Therefore b,

belongs also to M . It results that M = D.
Theorem 5: Let by,....h, be elements of T, which are obtained from the elements

AN

a,,...,a, by applying a finite number of times the operations . Then M

can be defined recursively in the following mode:
1) Certain elements al,...,an,bl,...,bq of T belongto M .
2) M is closed for the applications f;, with i € {1,2,...,s}.

3) Each element of M is obtained by applying a finite number of times the rules (1) or
(2) which precede.
Proof: evident. Because b,,...,b, belong to T', and are obtained starting with the

elements a,,...,a, of M by applying a finite number of times the operations f;, it results
that by,....b, belongto M .

Theorem 6: Let’s have g;, 1< j<r, of the operations n;, where g, :T" ->T

such that M to be closed in rapport to these operations. Then M can be recursively
defined in the following manner:

1) Certain elements a,,...,a, de T belongto M .

2) M is closed for the operations f;, i e{l,2,...,s} and gi> J e{l,Z,...,r}.

3) Each element of M is obtained by applying a finite number of times the precedent
rules.

Proof is simple: Because M is closed for the operations g, (with j e {1,2,...,r}), one

; from M, g (a;,....a,, )eM forall j e{l,Z,...,r}.

From the theorems 5 and 6 it results:

has, that for any Ajpyens &

jn
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Theorem 7: The set M can be recursively defined in the following manner:
1) Certain elements a,,...,a,.b,,...,b, of T belongto M .

2) M is closed for the operations f, (i e{l,2,...,s}) and for the operations g

(j €{l,2,...,r}) previously defined.

3) Each element of M is defined by applying a finite number of times the previous 2
rules.
(Def. 8) The operation f, conserves the property P iff for any elements «,,...,a

in;

having the property P, f(e,,....,;, ) has the property P .

Theorem 8: If a,..,a, have the property P, and if the functions f,...,f,
preserve this property, then all elements of M have the property P .
Poof:
M=UM , - The elements of M, have the property P .
peN’
Let’s suppose that the elements of M, for i < p have the property P . Then the
elements of M, also have this property because M, is obtained by applying the

operations f,, f,,..., f, to the elements of: |JM, , elements which have the property P.
i=1

Therefore, for any p of N, the elements of M, have the property P .

Thus all elements of M have it.

Corollary 1: Let’s have the property P: ”x can be represented in the form
F(x)”.

If a,,...,a, can be represented in the form F(a,),..., respectively F(a,), and if
f»---» f, maintains the property P, then all elements a of M can be represented in the
form F(a).

Remark. One can find more other equivalent def. of M .

2) APPLICATIONS, EXAMPLES.

In applications, certain general notions like: M - recursive element, M -recursive
description, M - recursive closed set will be replaced by the attributes which characterize
the set M . For example in the theory of recursive functions, one finds notions like:
recursive primitive functions, primitive recursive description, primitively recursive closed
sets. In this case ” M ” has been replaced by the attribute primitive” which characterizes
this class of functions, but it can be replaced by the attributes ’general”, “’partial”.

By particularizing the rules 1° and 2° of the def. 1, one obtains several interesting
sets:

Example 1: (see [2], pp. 120-122, problem 7.97).

Example 2: The set of terms of a sequence defined by a recurring relation
constitutes a recursive set.
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Let’s consider the sequence: a,,, = f(a,,a,.,,....a,.,,) for all n of N, with

a.=a’, 1<i<k. One will recursively construct the set A= {am} . and one will

meN
define in the same time the position of an element in the set A :
1°) a],...,a; belongto A, and each a; (1<i< k) occupies the position i in the
set A ;
2°) if a,,a a belong to A, and each a, for n< j<n+k—1 occupies

n+12°" Y n+k-1

the position j in the set A, then f(a,,a ,a,., ;) belongs to A and occupies the

ESERRD
position n+ k in the set A .

3°) each element of B is obtained by applying a finite number of times the rules
1° or2°.

Example 3: Let G = {e,a',az,...,a” } be a cyclic group generated by the element

a . Then (G, -) can be recursively defined in the following manner:

1°) a belongsto G .

2°)if b and ¢ belong to G then bsc belongs to G .

3°) each element of G is obtained by applying a finite number of times the rules
1 or2.

Example 4: Each finite set ML = {xl,xz,...,xn} can be recursively defined (with
MLCT):

1°) The elements x,,x,,...,x, of T belongto ML.

2°) If a belongs to ML, then f(a) belongs to ML, where f:T — T such that
f(x)=x;

3°) Each element of ML is obtained by applying a finite number of times the

rules 1° or 2°.
Example 5: Let L be a vectorial space on the commutative corps K and

{xl,...,xm } be a base of L. Then L, can be recursively defined in the following manner:
1°) x,,...,x, belongto L;
2°) if x,y belong to L and if a belongs to K, then x L y y belong to L and

a*x belongsto L;

3°) each element of L is recursively obtained by applying a finite number of
times the rules 1° or 2°.

(The operators L and * are respectively the internal and external operators of
the vectorial space L).

Example 6: Let X be an A -module, and M c X (M # ), with M = {xi }

iel *

The sub-module generated by M is:
<M>:{xeX/x:a1xl+...+a x, a,€A, x,eM, ie{l,...,n}}

can be recursively defined in the following way:
1°) forall i of {1,2,...n}, {1,2,...,n}ex, e(M);
2°)if x and y belong to (M) and a belongs to A, then x+y belongs to (M),

and ax also;
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3°) each element of (M) is obtained by applying a finite number of times the
rules 1° or 2°.

In accordance to the paragraph 1 of this article, (M) is the smallest sub-set of X
that verifies the conditions 1° and 2°, that is (M) is the smallest sub-module of X that
includes M. (M) is also the intersection of all the subsets of X that verify the
conditions 1° and 2°, that is <M > 1s the intersection of all sub-modules of X that contain

M . One also directly refines some classic results from algebra.
One can also talk about sub-groups or ideal generated by a set: one also
obtains some important applications in algebra.
Example 7: One also obtains like an application the theory of formal languages,
because, like it was mentioned, each regular language (linear at right) is a regular set and
reciprocally. But a regular set on an alphabet ¥ = {al,...,an} can be recursively defined

in the following way:
1°) @, {¢}, {al },..., {an} belong to R.
2°) if P and Q belong to R, then PUQ, PQ, and P* belong to R, with

PuQ={x/xePorxeQ}; PQ={xy/xePandyeQ}, and P =UP" with
n=0
P"=P-P---P and, by convention, P’ = {¢}.
times

3°) Nothing else belongs to R other that those which are obtained by using 1° or
2°,

From which many properties of this class of languages with applications to the
programming languages will result.
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