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In this article one builds a class of recursive sets, one establishes
properties of these sets and one proposes applications. This article widens
some results of [1].
1) Definitions, properties.
One calls recursive sets the sets of elements which are built in a recursive manner:
let T be a set of elements and £ for i between 1 and s, of operations #,, such that

fi:T" — T . Let’s build by recurrence the set M included in 7" and such that:
(Def. 1) 1°) certain elements a,,...,a, of T, belongto M .
2°) if (@,...a, ) belong to A, then f(«,,...a, ) belong to A for all

i€ {1,2,...,s}.
3°) each element of M is obtained by applying a number finite of times the rules
1° or 2°.
We will prove several proprieties of these sets M , which will result from the manner in
which they were defined. The set M is the representative of a class of recursive sets
because in the rules 1° and 2° by particularizing the elements a,,...,a, respectively

fi»--».f. one obtains different sets.

n

Remark 1 : To obtain an element of M , it is necessary to apply initially the rule

(Def. 2) The elements of M are called elements M -recursive.
(Def. 3) One calls order of an element a of M the smallest natural p >1which

has the propriety that a is obtained by applying p times the rule 1°or 2°.
One notes M, the set which contains all the elements of order p of M. It is

obvious that M, = {a,,...,a, }.

M,=U U S e, )\ M.

i=1 (e - YeM"
One withdraws M, because it is possible that f;(a;,...,a; )=3a which belongs
nj

to M,, and thus does not belong to A7, .
One proves that for £ >1 one has:
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M., =U U fi(ail,...,a%) \Uwm,
i=1 (@ ey, )EH:] h=1
where each

H:): {“im--’“in Y, €M, j e{l,z,...,n,.}; 1<g,<k and at least an
element a, eM,,1<j,<n, }.

Thesets M,, p e’ form a partition of the set M .
Theorem 1:

M = U* M, , where " = {1,2,3,...}.
PpE®D
Proof:
From the rule 1° it results that M, < M .

One supposes that this propriety is true for values which are less than p . It results
p-1
. : : 0
that M, = M , because M, is obtained by applying the rule 2" to the elements of HMi :
Thus U M, c M . Reciprocally, one has the inclusion in the contrary sense in
peoo*

accordance with the rule 3°.

Theorem 2: The set M is the smallest set, which has the properties 1°and 2°.

Proof:

Let R be the smallest set having properties 1°and 2°. One will prove that this set
IS unique.

Let’s suppose that there exists another set R'having properties 1°and 2°, which is
the smallest. Because R is the smallest set having these proprieties, and because R' has
these properties also, it results that R < R'; of an analogue manner, we have R'C R:
therefore R=R".

It is evident that AM'< R. One supposes that M, c R for 1<i< p. Then (rule

39, and taking in consideration the fact that each element of M, is obtained by applying
rule 2° to certain elements of M,, 1<i<p it results that M c R. Therefore
UM, =R (pe¥"),thus M < R. And because R is unique, M = R.

p

Remark 2. The theorem 2 replaces the rule 3° of the recursive definition of the set
M by:” M is the smallest set that satisfies proprieties 1°and 2°”.

Theorem 3: M is the intersection of all the sets of T which satisfy conditions 1°
and 2°.
Proof:



Let 7, be the family of all sets of T satisfying the conditions 1°and 2°. We note

I=)A.

AcT),
I has the properties 1° and 2° because:
1) Forall i e{l,2,..,n}, a, €I, because a, €4 forall 4 of T,,.

2) If «,...a, €I, it results that «,,...,, belong to 4 that is 4 of T,.

Therefore,

Vie{l,2,...s}, fi(a;,...a; ) €A whichis 4of T, therefore f(c,,...,a, ) el
forall i from {1,2,...,s}.

From theorem 2 it results that M < 7.

Because M satisfies the conditions 1° and 2°, it results that M <7,,, from which
I M. ThereforeM =1

(Def. 4) A set Ac [is called closed for the operation f if and only if for all

«,, 0of A,onehas f (a, @, ) belongto 4.
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(Def. 5) Aset 4 < Tis called closed M -recursive if and only if:

1) {al,...,an }g A.
2) Ais closed in respect to operations f,,..., ..
With these definitions, the precedent theorems become:

Theorem 2°: the set M is the smallest closed A - recursive set.

Theorem 3’: M is the intersection of all closed M - recursive sets.

(Def. 6) The system of elements {(«,...2,), m=1 and « T for
i€ {12m} constitute a description M -recursive for the element « , if «, =« and
that each ¢, (i € {1,2,...,m}) satisfies at least one of the proprieties:

1) e{al,...,an .

2) «, is obtained starting with the elements which precede it in the system by

applying the functions f;, 1< <s defined by property 2° of (Def. 1).

(Def. 7) The number m of this system is called the length of the A -recursive
description for the element « .

Remark 3: If the element « admits a M -recursive description, then it admits an
infinity of such descriptions.

Indeed, if {«,..,a,) is a M -recursive description of « then

a,...,a,,...0, ) is also a M -recursive description for «, & being able to take all

%/_J
h times

values fromoo .



Theorem 4: The set M is identical with the set of all elements of 7 which admit
a M -recursive description.
Proof: let D be the set of all elements, which admit a A -recursive description.

We will prove by recurrence that M, < D forall p of o,

For p=1 we have: M, ={a,..q,} and the a,, 1<;<n having as M -
recursive description: <a; >. Thus M, < D. Let’s suppose that the property is true for
the values smaller than p. M, is obtained by applying the rule 2° to the elements of

p-1
UM;; aeM, implies that aefi(a, ... ) and a eM, for h<p and
i=1

1<j<n,.
But a , 1<j<n, admits M -recursive descriptions according to the hypothesis of

recurrence, let's have (B, By ). TNen (BB B Buy s By By @)
constitute a M -recursive description for the element « . Therefore if o belongs to D,
then M, c D whichis M= UM, D.

peo
Reciprocally, let x belong toD. It admits a M -recursive description (bl,...,bt) with
b, =x. It results by recurrence by the length of the A/ -recursive description of the
element x, that x eM . For r=1 we have (b ), b, =x and b, €{a,,....a, }= M. One
supposes that all elements y of D which admit a M -recursive description of a length
inferior to 7 belong to M . Let x e D be described by a system of length ¢: {b,,...,b,},
b =x. Then x e{a,,...,a, }= M, where x is obtained by applying the rule 2° to the
elements which precede it in the system: b,,...,5, ,. But these elements admit the A7 -
recursive descriptions of length which is smaller that 7: {b,),{b,,b,),....{By,....H,_,} .
According to the hypothesis of the recurrence, b,,...,b, , belong to M . Therefore b,

belongs alsoto M . It results that M = D.
Theorem 5: Let b,,...,b, be elements of T, which are obtained from the elements

a,,...,a, by applying a finite number of times the operations f, f,,..., or f.. Then M

can be defined recursively in the following mode:
1) Certainelements a,,...,a,,b,,....b, of T belongto M .
2) M is closed for the applications £, with i € {1,2,...,s}.
3) Each element of M is obtained by applying a finite number of times the rules (1) or
(2) which precede.

Proof: evident. Because b,,...,b, belong to 7', and are obtained starting with the
elements a,,...,a, of M by applying a finite number of times the operations f, it results
that b,,...,b, belongto M .



Theorem 6: Let’s have g,, 1<j<r, of the operations n,, where g, T > T

such that M to be closed in rapport to these operations. Then M can be recursively
defined in the following manner:

1) Certain elements q,,...,a, de 7" belongto A .

2) M is closed for the operations f, i €{1,2,...,s} and g,, j €{l,2,...r}.

3) Each element of M is obtained by applying a finite number of times the precedent
rules.

Proof is simple: Because M is closed for the operations g, (with j €{1,2,...,r}), one

has, that forany «,,,....;, from M, g(c,,...a,, )eM forall j e {l,2,...r}.

D) j"/‘
From the theorems 5 and 6 it results:
Theorem 7: The set M can be recursively defined in the following manner:

1) Certain elements a,,...,a,,b,,...,b, of T belongto M .
2) M is closed for the operations f (ie{l,2,..,s}) and for the operations g
(j €{1,2,....r}) previously defined.
3) Each element of M is defined by applying a finite number of times the previous 2
?IJDIeefs.. 8) The operation f; conserves the property P iff for any elements «,,....«,,
having the property P, f(«,,....,,) has the property P.

Theorem 8: If a,,...a, have the property P, and if the functions f£,..., 7

preserve this property, then all elements of M have the property P .
Poof:

M= |J M, . The elements of A, have the property P .

pew*
Let’s suppose that the elements of M, for i < p have the property P. Then the
elements of M, also have this property because A, is obtained by applying the

operations f, f;,..., f. to the elements of: |JM, , elements which have the property P.
i=1

Therefore, for any p of <o, the elements of M, have the property P.

Thus all elements of M have it.
Corollary 1: Let’s have the property P: ”x can be represented in the form
F(x)”.
If a,...,a, can be represented in the form F(a,),..., respectively F(a,), and if
f,,..., f, maintains the property P, then all elements « of M can be represented in the
form F(x).
Remark. One can find more other equivalent def. of M .



2) APPLICATIONS, EXAMPLES.

In applications, certain general notions like: M - recursive element, M -recursive
description, M - recursive closed set will be replaced by the attributes which characterize
the set M. For example in the theory of recursive functions, one finds notions like:
recursive primitive functions, primitive recursive description, primitively recursive closed
sets. In this case ” M ” has been replaced by the attribute ”primitive” which characterizes
this class of functions, but it can be replaced by the attributes ”general”, partial”.

By particularizing the rules 1°and 2° of the def. 1, one obtains several interesting
sets:

Example 1: (see [2], pp. 120-122, problem 7.97).

Example 2: The set of terms of a sequence defined by a recurring relation
constitutes a recursive set.

Let’s consider the sequence: a,,, = f(a,,a,,,,--a,,, ) for all n of «, with
a,=a’, 1<i<k. One will recursively construct the set 4={a,} . and one will

m ew

define in the same time the position of an element in the set A4 :

1°) a/,...,a] belongto A, and each a (1<i<k) occupies the position i in the
set 4;

2°)if a,,a,,,...a,,  belongto 4, and each a, for n<j<n+k—1 occupies
the position j in the set 4, then f(a,,a,.,,....a,., ,) belongs to 4 and occupies the
position n+ k inthe set 4.

3°) each element of B is obtained by applying a finite number of times the rules
1° or 2°.

Example 3: Let G= {e,al,az,...,a"} be a cyclic group generated by the element

a . Then G, [ can be recursively defined in the following manner:

1°) a belongsto G .

2°)if b and ¢ belong to G then bitbelongsto G.

3°) each element of G is obtained by applying a finite number of times the rules
lor?2.

Example 4: Each finite set ML = {x,,x,....,x, } can be recursively defined (with
MLCT):

1°) The elements x,,x,,...,x, of T belongto ML .

2°) If a belongs to ML, then f(a) belongs to ML, where f:T — T such that
f(x)=x;

3°) Each element of ML is obtained by applying a finite number of times the

rules 1° or 2°.
Example 5: Let L be a vectorial space on the commutative corps K and

{xl,...,xm} be a base of L. Then L, can be recursively defined in the following manner:
1°) x,,...,x,, belongto L;
2°) if x,y belong to L and if a belongs to K, then x L y y belong to L and
a*x belongsto L;



3°) each element of L is recursively obtained by applying a finite number of
times the rules 1° or 2°.

(The operators L and = are respectively the internal and external operators of
the vectorial space L).

Example 6: Let X be an 4-module, and M c X (M =), with M = {x,} .
The sub-module generated by A is:

(M)= xeX/x=ax+..+aX, aeA XeM, ie l..,n

can recursively defined in the following way:

1°)forall i of {1,2,...n}, 1,2,...n[xe(M);

2°) if x and y belong to (M) anda belongs to 4, then x+y belongs to (M),
and ax also;

3°) each element of (M) is obtained by applying a finite number of times the
rules 1° or 2°.

In accordance to the paragraph 1 of this article, {M) is the smallest sub-set of X
that verifies the conditions 1° and 2°, that is (M) is the smallest sub-module of X that
includes M. (M) is also the intersection of all the subsets of X that verify the
conditions 1° and 2°, that is {M) is the intersection of all sub-modules of X that contain
M . One also directly refines some classic results from algebra.

One can also talk about sub-groups or ideal generated by a set: one also
obtains some important applications in algebra.

Example 7: One also obtains like an application the theory of formal languages,
because, like it was mentioned, each regular language (linear at right) is a regular set and
reciprocally. But a regular set on an alphabet X = {al,...,an} can be recursively defined
in the following way:

1°) @,{e}.{a }.-... {a, } belong to R.

2°) if P and Q belong to R, then PUQ, PO, and P* belong to R, with

PuQ= x/xePorxeQ ; PQ= xy/xePandyeQ , and P =P" with
n=0
P"=P-P---P and, by convention, P’ = {¢}.
R

n times

3°) Nothing else belongs to R other that those which are obtained by using 1° or
2°.

From which many properties of this class of languages with applications to the
programming languages will result.

REFERENCES:
[1] C. P. Popovici, L. Livovschi, H. Georgescu. N. Tandareanu = ”Curs de

bazele informaticii (functii booleene si circuite combinationale)”
Tipografia Universitatii din Bucharest, 1976



[2] F. Smarandache - “Problems avec et sens...problemes!” — Somipress, Fés
(Maroc), 1983.



