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Abstract—In this paper, we propose in Dezert-Smarandache Il. PIGNISTIC PROBABILITIES

Theory (DSmT) framework, a new probabilistic transformation,
called DSmP,.in order to build a subje.ctive probability measire The basic idea of the pignistic transformation [9], [10]
from any basic belief assignment defined on any model of the ¢4ngists in transferring the positive mass of belief of each

frame of discernment. Several examples are given to show how non specific element onto the sinaletons involved in that
the DSmP transformation works and we compare it to main P 9

existing transformations proposed in the literature so far We €lement split by the cardinality of the proposition when
show the advantages of DSmP over classical transformations working with normalized basic belief assignments (bbas)e

in term of Probabilistic Information Content (PIC). The dir ect (classical) pignistic probability in TBM framework is giwe

extension of this transformation for dealing with qualitative belief byl BetP () = 0 andVX € 20 \ {0} by:

assignments is also presented.

Keywords: DSmT, Subjective probability, Probabilistic IXNY| m(Y)

Information Content, qualitative belief. BetP(X)= ) YT T=m)’
Y €29, Y#D

(1)
I. INTRODUCTION AND MOTIVATION

In the theories of belief functions, Dempster-Shafer Theowhere2® is the power set of the finite and discrete fra@e
(DST) [4], Transferable Belief Model (TBM) [11] or DSmT assuming Shafer's model, i.e. all elementssfire assumed
[6], [7], the mapping from the belief to the probability dotruly exclusive. In Shafer's approachy(f) = 0 and the
main is a controversial issue. The original purpose of suébrmula (1) can be rewritten for any singletépe © as
mappings was to make (hard) decision, but contrariwise to

erroneous widespread idea/claim, this is not the only éster p.,p(g,) — 3 Lm(Y) —m()+ Y Lm(Y) @
for using such mappings nowadays. Actually the probalilist L 1Y Yea® Y]
transformations of belief mass assignments are very useful 0, CY 9;CY

in modern multitarget multisensor tracking systems (or in

any other systems) where one deals with soft decisions (i/'S transformation has been generalized in DSmT for any
regular bbam(.) : G® ~ [0, 1] (i.e. such thatn()) = 0 and

where all possible solutions are kept for state estimatidgh w
their likelihoods). For example, in a Multiple Hypotheseg-xece ™(X) = 1) and for any model of t’he frame (free
Tracker using both kinematical and attribute data, one sieed PSM model, hybrid DSm model and Shaf%rs model as well)
compute all probabilities values for deriving the likeldus of [6]- It is given by BetP(0) = 0 andv.X € G®\ {0} by
data association hypotheses and then mixing them altogethe
to estimate states of targets. Therefore, it is very relet@an BetP(X) = Z —
use a mapping which provides a high probabilistic inforomati Yeage Cm(Y)
content (PIC) for expecting better performances. Thisquthf _ .
justifies the theoretical work proposed in this paper. Asitas WhereG® corresponds to the hyper-power set including all the
cal transformation is the so-callguignistic probability[10], ~integrity constraints of the model (if arfy)C1«(Y) denotes the
denotedBet P, which offers a good compromise between th®Sm cardinal of the setY. The formula (3) reduces to (1)
maximum of credibilityBel and the maximum of plausibility when G reduces to classical power & when one adopts
P1 for decision-support. Unfortunatelget P doesn't provide Shafer’s model.
the highest PIC in general as pointed out by Sudano [12]-[14]
We propose hereafter a new generalized pignistic trangform *We assume thai(.) is of course a non degenerate bba, ie(f)) # 1.
tion, denotedDSm P, which is justified by the maximization -G = 2° if one adopts Shafer's model féy andG® = D (Dedekind's

; ! . . .. lattice) if one adopts the free DSm model for [6].
of the PIC criterion. An extension of this transformation in"sc ' () is the number of parts of in the Venn diagram of the model
the qualitative domain is also presented. M of the frame® under consideration [6] (Chap. 7).

m(Y) ®)



IIl. SUDANO’S PROBABILITIES

CuzzP is however not appealing for the following reasons:

Recently, Sudano has proposed interesting alternatives del) Although (9) does not include explicitly Dempster’s rule

noted PrPl, PrN Pl, PraPl, PrBel and PrHyb to BetP,

all defined in DST framework [15]. Sudano uses different

kinds of mappings either proportional to the plausibility,
the normalized plausibility, to all plausibilities, to theelief
or a hybrid mappingPrPl and PrBel are defineti for all

its geometrical justification [1], [2] is strongly condi-
tioned by the acceptance of Dempster’s rule as the fusion
operator for belief functions. This is a dogmatic point
of view we disagree with since it has been recognized
since many years by different experts of Al community,

X #0 €0 by: that other fusion rules can offer better performances,

m(Y) especially for cases where high conflicting sources are
PrPI(X)=PI(X)- > CSIPIY] (4) involved.
Y €29, XCY 2) Some parts of the masses of partial ignorance, 4ay
m(Y) involved in the TNSM, are also transferred to singletons,
PrBel(X) = Bel(X)- Y CS[Bel(Y)] () say §; € © which are not included inA (i.e. such

Ye2®,XCY that {6,} N A = (). Such transfer is not good and
where the compound-to-sum of singletons (CS) operator of does not make sense in our point of view. To be more
any functio®® f(.) is defined by [12]: clear, let's take® = {A, B, C'} andm/(.) defined on its
N power set with all masses strictly positive. In that case,
CSIfY)] = Z F¥s) m(AU B) > 0 does count in TNSM and thus it is a bit
Y;€29,|Y;|=1,U;Y;=Y

redistributed back t@ with the ratio s o
PrNPI, PraPl and PrHyb are given by [12], [15]:

. (A)F+A(B)+A(C)
through TNSM > 0. There is no solid reason for
« a mapping proportional to theormalizedplausibility

committing partiallym(A U B) to C since, onlyA and
1 1 B are involved in that partial ignorance. Similar remark
PrNPl(X) = A Z m(Y) = Z'PZ(X) (6) holds for the partial redistribution ofi(A U C) > 0.
Ye29,YNX#0 3) CuzzP is not defined whem:(.) is a probabilistic mass
whereA is a normalization factor. because one get$/0 indetermination. This remark is
« a mapping proportional tall plausibilities important only from the mathematical point of view.

PraPl(X) = Bel(X) + ¢- Pl(X) (7)

with € £ (1 — Yy cpe Bel(Y)) /(X yeq0 PUY).
« a hybrid transformation

V. A NEW GENERALIZED PIGNISTIC TRANSFORMATION

Our new mapping, denotedSmP is straight, different
from Sudano’s and Cuzzolin’'s mappings which are more

m(Y) refined but less interesting in our opinions than what we
PrHyb(X) = PraPI(X)- ) CSPraPI(Y)] (8) present here. The basic ideaBfmP consists in a new way
ye2® of proportionalizations of the mass of each partial igncean

XCy

such asd; UAs or AjU(AsNAs) or (A1 NAy)U(AsNAy),
IV. CUZZOLIN'SINTERSECTIONPROBABILITY ! > 1U(A2 3) or (A 2) V(A 4

etc. and the mass of the total ignoranéeU A, U ... U A,

In 2007, a new transformation has been proposed in [f] the elements involved in the ignorances. This new transfo
by Cuzzolin in the framework of DST. From a geometrignation takes into account both the values of the masses and
interpretation of Dempster’s rule, dntersection Probability the cardinality of elements in the proportional redisttibo
measure was proposed from the proportional repartitioh@f tprocess. We first present the general formula for this new
Total Non Specific Ma$s(TNSM) by each contribution of the transformation and the numerical examples and comparisons
non-specific masses involved in it. For notation convergenawith respect to other transformations are given in nexisest
we will denote itCuzzP in the sequelCuzzP(.) is defined
on any finite and discrete fran@® = {6y,...,6,}, n > 2, A The DSmP formula
satisfying Shafer's model, by Let's consider a discrete fram@® with a given model

A(6;) (free DSm model, hybrid DSm model or Shafer's model),
CuzzP(0;) = m(0;) + ST A@) TNSM  (9) the DSmP mapping is defined By DSmP.(0) = 0 and
g=1 VX € GO\ {0} by

. > m(Z)+e-C(XNY)
TNSM=1-> m(0;)= >  m(A) (10) ekt
=1 Ae28A]>1 DSmP(X)= ) m(Y)
Yege >, m(Z)+e-CY)
4For notation convenience and simplicity, we use a diffetaritequivalent ZCY
notation than the one in [15]. C(2)=1
5For example,f(.) must be replaced byi(.) in (4) or by Bel(.) in (5). (11)

6j.e. the mass committed to partial and total ignorancestd.disjunctions

of elements of the frame. "The formulation of (11) for the case of singletofsof © is given in [8].



wheree > 0 is a tuning parameter an@® corresponds to then P(A) > m(A) for any probability transformatio®(.).

the hyper-power set including eventually all the integdbn- This legitimate property is not satisfied BN Pl, since for
straints (if any) of the modeM; C(X NY) andC(Y) denote example if we conside® = {A, B,C} andm(A) = 0.2,

the DSm cardinafsof the setsX N Y andY respectivelye m(B) = m(C) = 0 and m(B U C) = 0.8, one obtains
allows to reach the maximum PIC value of the approximatiafr N PI(A) = 0.1112 < m(A4) = 0.2. So it is abnormal

of m(.) into a subjective probability measure. The smallghat singletonA looses mass whem(.) is transformed into a

¢, the better/bigger PIC value. In some particular degeaeraubjective probability.

cases however, th®SmP._, values cannot be derived, but In summary, DSmP does an 'improvement’ of all Su-
the DSmP,-, values can however always be derived bgano, Cuzzolin, and BetP formulas, in the sense ih8in P
choosinge as a very small positive number, say= 1/1000 mathematically makes a more accurate redistribution of the
for example in order to be as close as we want to the maximugmorance masses to the singletons involved in ignorances.
of the PIC (see next sections for details and examples). WhBwm P and BetP work in both theories: DST (= Shafer's

e = 1 and when the masses of all elemefitiavingC(Z) =1 model) and DSmT (= free or hybrid models) as well. In order
are zero, (11) reduces to (3), i.©.SmP._; = BetP. The to use Sudano’s and Cuzzolin’s in DSmT models, we have to
passage from a free DSm model to a Shafer’'s model involvesine the frame (see Example 5).

the passage from a structure to another one, and the cardin@ll

change as well in the formula (11). THE PROBABILISTIC INFORMATION CONTENT (PIC)

Following Sudano’s approach [12], [13], [15], we adopt the
B. Advantages of DSmP Probabilistic Information Content (PIC) criterion as a et

DSm.P works for all models (free, hybrid and Shafer's). Indepicting the strength of a critical decision by a specific

order to apply classicaBet P, CuzzP or Sudano's mappings probability distribution. It is an essential measure in any

we need at first to refine the frame (on the cases when itt eshold-driven aL_Jtomated decision system. The PIC is the
possible!) in order to work with Shafer's model, and the ual of the normalized Shannon entropy. A PIC value of one

apply their formulas. In the case where refinement mak%du:ates the total knowledge to make a correct decisioe (on

sense, then one can apply the other subjective probailit pothesis has a probgbi!ity value of one and the rest ofjzero
on the refined frameDSmP works on the refined frameA PIC value of zero indicates that the knowledge to make

as well and gives the same result as it does on the ndahporrect decision does not exist (all the hypotheses have an
refined frame. Thu® SmP with € > 0 works on any models equa_l probab?lity value), i.e: one has the maximal entrgag
and so is very general and appealing. It is a combination §*C 'S use_d in our analysis to sort the performance_s of the
PrBel and BetP. PrBel performs a redistribution of an ifferent pignistic transformations through several ntioed

ignorance mass to the singletons involved in that ignoran%amples' we Zr;t] r_ec;alLtwhlatt_ Sharl]nnon entropy and PIC
proportionally with respect to the singleton masses. Whi[@€asure are and their ight refationship.
BetP also does a redistribution of an ignorance mass to tl%e Shannon entropy

singletons involyed in that ignorance but proportionallgrw  spannon entropy, usually expressed in bits (binary digits)
respect to the singleton cardinal3r Bel does not work when o 4 probability measuré{.} over a discrete finite se =

the masses of all singletons involved in an ignorance ark n 391, ....,0,} is defined by [5]:

since it gives the indetermination 0/0; and in the case witen a N

least one singleton mass involved in an ignorance is zeab, th H(P)2 — Z P{0:} log, (P{6:}) (12)
singleton does not receive any mass from the distributi@mev =

if it was involved in an ignorance, which is not fair/good.,So : . . e
DSmP solves thePr Bel problem by doing a redistribution of H(z_D) is maximal for the unn‘orm probability distribution over
the ignorance mass with respect to both the singleton mas?es"e' ?r}?nﬁ{%}; 1/n_for [ 1’12’1' " ’7}' In_tr11at case,
and the singletons’ cardinals in the same time. Now, if ajne 9€tSH ( ) = Hinax = =35 7 1085(;,) = logy(n).
masses of singletons involved in all ignorances are differe (P) is minimal for a totallydetermln|st|9probabll|ty, I-€.
from zero, then we can take = 0, and DSmP coincides forda;y;f{.}_sgcfh th’atP{‘HiL:Pl for somei etr;{l,2, 'd"n}
with PrBel and both of them give the best result, i.e. th@"%. ét;} - dpr J t7é b b(b.)l.measures € randomness
best PIC value.PrN Pl is not satisfactory since it yields Carried by any discrete probability{.}.

to an abnormal behavior. Indeed, in any model, when a bBa The PIC metric

m(.) is transformed into a probability, normally (we mean it The probabilistic Information Content (PIC) of a probaiili

is logically that) the masses of ignorances are transfeliedmeasureP{.} associated with a probabilistic source over a
the masses of elements of cardinal 1 (in Shafer's model thggg.rete finite se® — {61,...,0,} is defined by [13]:

elements are singletons). Thus, the resulting probaluofitsgn N
element whose cardinal is 1 should be greater than or equal PIC(P) =1+ 1 -ZP{H-}logz(P{e-}) (13)
=1

to the mass of that element. I. e.4f in G® andC(A) = 1, max

8We have omitted the index of the modaH for notation convenience. Swith common conventiom log, 0 = 0.



The PIC is nothing but the dual of the normalized Shannda modify m(.) (the input mass) to obtain a new subjective
entropy and thus is actually unit leS3/C(P) takes its values probability measure since3el(.) associated withm(.) is
n [0,1]. PIC(P) is maximum, i.e.PICn., = 1 with any already a probability measure. So if we consider for example
deterministicprobability and it is minimum, i.ePIC,;, = 0, the uniform Bayesian mass defined by, (A4) = m,(B) =
with the uniform probability over the fram®. The simple 1/2, it is very easy to verify in this case, that almost all
relationships betweed/ (P) and PIC(P) are PIC(P) = transformations coincide with the (probabilistic) inpuass as
1— (H(P)/Hmax) and H(P) = Huyax - (1 — PIC(P)). expected, so that the idempotency property is satisfiedy Onl
Cuzzolin’s transformation fails to satisfy this propergcause
in CuzzP(.) formula (9) one get§/0 indeterminacy since all
Due to the space limitation constraint, all details of dariv A(.) = 0 in (9). This remark is valid whatever the dimension
tions are voluntarily omitted here but they will appear if. [8 of the frame® is, and for any Bayesian mass (not only for
In this section, we work with the 2D fram@ = { A, B}. uniform belief mass).

VIl. EXAMPLES AND COMPARISONS ON A2D FRAME

A. Example 1 (Shafer's model and a general source)

Since one assumes Shafer's modél® = 2°©

{0, A, B, AU B}. The non-Bayesian quantitative belief mass | et's assume Shafer's model and the non-Bayesian mass
is given in Table I. Table Il presents the results of thmore precisely the simple support mass) given in Table IIl.
different mappings and their PIC sorted by increasing ordge summarize in Table IV, the results obtained with all
One sees thabSmP._, provides same result @rBel and transformations. One sees tHafC'(DSmP._) is maximum
PIC(DSmP,. ) is greater than the PIC values obtained witAmong all PIC valuesPr Bel(.) does not work correctly since

D. Example 4 (Shafer's model and non-Bayesian mass)

PrNPL, BetP, CuzzP, PrPl and PraPl. it can not have a division by zero. We use NaN acronym
S — here standing foNot a Numbel!); even overcoming 12,
() T03 01 06 PrBel does not do a fair redistribution of the ignorance
Table | m(A U B) = 0.6 becauseB does not receive anything from
anle .. . .
QUANTITATIVE INPUTS FOR EXAMPLE 1 the mass 0.6, although is involved in the ignorancel U B.
All m(AU B) = 0.6 was unfairly redistributed tol only.
A B PIC(.)
PrNPI() 0.5625 | 0.4375 || 0.0113 A | B]| AUB
BetP(.) 0.6000 | 0.4000 || 0.0291 m() | 0.4 O 0.6
CuzzP(.) 0.6000 | 0.4000 || 0.0291 Table II
PrPI(.) 0.6375 | 0.3625 || 0.0553 avle
PraPl(.) 06375 | 03625 0.0553 QUANTITATIVE INPUTS FOR EXAMPLE 4
PrHyb(.) 0.6825 | 0.3175|| 0.0984
DSmP.—o.001(.) | 0.7492 | 0.2508 || 0.1875
PrBel(.) 0.7500 | 0.2500 || 0.1887 A B PIC(.)
DSmPe_o(.) 0.7500 | 0.2500 || 0.1887 PrBel(.) 1 NaN NaN
Table I PrNPI(.) 0.6250 | 0.3750 || 0.0455
R aple 1 BetP(.) 0.7000 | 0.3000 || 0.1187
ESULTS FOR EXAMPLEL. CuzzP() 0.7000 | 0.3000 || 0.1187
PrPI(.) 0.7750 | 0.2250 || 0.2308
. PraPI(. 0.7750 | 0.2250 || 0.2308
B. Example 2 (Shafer's model and the totally ignorant source PrHyb((_)) 0.8650 | 0.1350 || 04291
Let's assume Shafer's model and the vacuous bba charac- ggzgzofgl(') 0'91985 0'00015 0'91838
.. . . e=0\-
terizing the totally ignorant source, i.ea(AU B) = 1. It o
Table IV

can be verified that all mappings coincide with the uniform

probability measure over singletons@®f exceptPr Bel which

is mathematically not defined in that case. This result can beThe best result is aadequate probabilitynot the biggest

easily proved for any size of the frant® with |©| > 2. PIC in this case. This is becaude(B) deserves to receive

o some mass fromm(A U B), so the most correct result is

C. Example 3 (Shafer's model and a probabilistic source) ggone byDSmP._q 001 in Table IV (of course we can choose
Let's assume Shafer's model and let's see what happemy other very small positive value ferif we want). Always

when applying all the transformations on a probabilistizhen a singleton whose mass is zero, but it is involved in an

sourcé® which commits a belief mass only to singletonggnorance whose mass is not zero, thgm DSmP formula

of 29, i.e. a Bayesian mass [4]. It is intuitively expectedq11)) should be different from zero.

that all transformations are idempotent when dealing with

probabilistic sources, since actually there is no reas®un 1iye could also use the standard "N/A” standing for "does niyip

since thedirect derivation of PrBel(B) cannot be done from the
10This has obviously no practical interest since the souneady provides formula (5) because of the undefined foyi0, we could however force
a probability measure, nevertheless this is very intargst see the theoretical it to PrBel(B) = 0 since PrBel(B) =1 — PrBel(A)=1-1=0, and
behavior of the transformations in such case. consequently we indirectly takIC(PrBel) = 1.

RESULTS FOR EXAMPLE4.



E. Example 5 (Free DSm model) A L ¢ PIC()

PrNPI() 0.4722 | 0.3889 | 0.1389 || 0.0936

Let's assume the free DSm model (i4N B # ) and the CuzzP(.) 0.5029 | 0.3937 | 0.1034 || 0.1377
lized mass given in Table V. In the case of free-DSm (or BetP() 0.5050 | 0.3950 | 0.1000 ) 0.1424
genera g : PraPl(.) 0.5294 | 0.3978 | 0.0728 || 0.1861

NP

hybrid DSm) models, the pignistic probability and the DSmP PrPI(. 0.5421 | 0.4005 | 0.0574 || 0.2149

can be derived directly fromn(.) without the refinement of the PrHyb(.) 0.5575 | 0.4019 | 0.0406 | 0.2517

frame®© whereas Sudano’s and Cuzzolin's probabilities cannot | LomFeo.001(-) | 05665104037 | 0.0298 || 0.2783
- ! : p PrBel(.) 0.5668 | 0.4038 | 0.0294 || 0.2793

be derived directly from their formulas (4)-(9) for such netsl DSmP.—o(.) 0.5668 | 0.4038 | 0.0294 || 0.2793

However, they can be obtained indirectly after a refinemént o Table VI

the frame® into ©'" which satisfies Shafer's model. More RESULTS FOR EXAMPLES.

precisely, instead of working directly on the 2D frarfe=
{A, B} with m(.) given in Table V, we need to work on the
3D frame©™ = {A’ £ A\ {ANB},B' 2 B\{AnB},C’' 2 )
AN B} satisfying Shafer's model with the equivalent bb4 ) B. Example 7 (Shafer's model and a non-Bayesian mass)
defined as in Table VI. The results are then given in Table Let's assume Shafer's model and change a bit the non-
VII. One sees thaPIC(DSmP,._) is the maximum value. Bayesian input mass by taking(A4) = 0.10, m(B) = 0,
PrBel does not work correctly because it cannot be directip(C) = 0.20, m(A U B) = 0.30, m(4 U C) = 0.10,
evaluated forA and B since the underlying®rBel(A’) and m(BUC) =0 andm(AU BUC) = 0.30. The results of the
PrBel(B') are mathematically undefined in such case. If omeappings are given in Table IX. One sees tha$mP._
works on therefined frame©™’ and one applies th&®SmP provides the best PIC value than all other mappings since
mapping of the bban(.) defined in Table VI, one obtains PrBel is mathematically undefined. If one takes artificially
naturally the same results fd&»SmP as those given in table PrBel(B) = 0, one gets the same result as wittbm P, _,g.

VII. Of course the results oBetP in Table VII are the same
using directly the formula (3) as those using (1) ®%'. The

R A B C PIC(.)
verification is left to the reader. PrBel() 05333 T NaN | 04667 NaN
PrNPI() 0.4000 | 0.3000 | 0.3000 || 0.0088
AnNB | A | B | AUB CuzzP(.) 0.3880 | 0.2470 | 0.3650 || 0.0163
m()| 04 [02]01] 03 BetP(.) 0.4000 | 0.2500 | 0.3500 || 0.0164
Table V PraPl(.) 0.3800 | 0.2100 | 0.4100 || 0.0342
PrPI(.) 0.4486 | 0.2186 | 0.3328 || 0.0368
UANTITATIVE INPUTS FOR EXAMPLE 5
Q PrHyb(.) 0.4553 | 0.1698 | 0.3749 || 0.0650
DSmP.—0.001(.) | 0.5305| 0.0039 | 0.4656 || 0.3500
C" T AuC | BuC” | AuB’UC’
Table IX
m() 0.4 0.2 0.1 0.3 RESULTS FOR EXAMPLEY.
Table VI

QUANTITATIVE INPUTS ON THE REFINED FRAMEOREF )
C. Example 8 (Hybrid DSm model)

A B | AnB || PIC() We consider the hybrid DSm model in which all inter-
PrNPl((.)) 0.7895| 0.7368 | 0.5263 || 0.0741 sections of elements o® are empty, butd N B. In this
CuzzP(. 0.8400 | 0.8000 | 0.6400 || 0.1801 e
BetP() 0.8500 | 0.8000 | 0.6500 || 0.1931 case, G° reduces to 9 eIement$0),_A N B,ABC AU
PraPi(.) 0.8736 | 0.8421| 0.7157 || 0.2789 B,AuC,BUC,AUBUC}. The input masses of focal
P?"Pl(l;)() 8-3083 8-2524 ggggg 8.3570 elements are given byn(A N B) = 0.20, m(4) = 0.10,
PrHyb(. 9471 0.9165 | 0. .5544 _ _ _
DSmPe_g.001(.) | 0.9990| 0.9988 | 0.9978 || 0.9842 m(C) = 020, m(AU B) = 0.30, m(AU C) = 0.10,,and
PrBel(.) NaN NaN 1 1 m(AU B UC) = 0.10. In order to apply Sudano’s and
DSmPe—o(.) 1 1 1 1 Cuzzolin’s mappings, we need to work on the refined frame
Table VII o' with Shafer's model as depicted on Figure 1 and masses
RESULTS FOR EXAMPLES. given in the Table X.
VIII. EXAMPLES ON A 3D FRAME
D’ ATUD C7
We work hereafter on the 3D fram@ = {A, B,C}. m(.) 0.2 0.1 0.2
. ATUB'UD" [ A/uC’uD” [ AUuB UC"UD’
A. Example 6 (Shafer's model and a non-Bayesian mass) m() 0.3 0.1 0.1
This example is drawn from [15]. Let's assume Shafer’s Table X
mOdel and the non-BayeSian behef mass givennb@&él) _ QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLES

0.35, m(B) = 0.25, m(C) = 0.02, m(AU B) = 0.20, One sees from the Table XI th@SmP._, provides the
m(AUC) = 0.07, m(BUC) = 0.05 andm(AUBUC) = 0.06. best results in term of PIC metric. The refined frame has been
The results of the mappings are given in Table VIII. One sedgfined asO™ = {A’ 2 A\ (ANB), B’ 2 B\ (ANB),C’' £

that DSmP._ provides the same result &rBel which C,D’ = AN B} according to Figure 1.

corresponds here to the best result in term of PIC metric.



A7 B’ C7 D’ PIC(.) Transformations | PIC(.)
PrBel(.) NaN NaN 0.3000 | 0.7000 NaN PrBel(.) NaN
PrNPI(.) 0.2728 | 0.1818 | 0.1818 | 0.3636 0.0318 PrNPI(.) 0.0414
CuzzP(.) 0.2000 | 0.1333 | 0.2667 | 0.4000 || 0.0553 CuzzP(.) 0.0621
BetP(.) 0.2084 | 0.1250 | 0.2583 | 0.4083 0.0607 PraPl(.) 0.0693
PraPl(.) 0.1636 | 0.1091 | 0.3091 | 0.4182 0.0872 BetP(.) 0.1176
PrPI(.) 0.2035 | 0.0848 | 0.2404 | 0.4713 0.1124 PrPI(.) 0.1940
PrHyb(.) 0.1339 | 0.0583 | 0.2656 | 0.5422 0.1928 PrHyb(.) 0.2375
DSmP.—g.001(.) | 0.0025| 0.0017 | 0.2996 | 0.6962 0.5390 DSmPc—0.001(.) 0.8986
Table XI Table XIII
RESULTS FOR EXAMPLES. RESULTS FOR EXAMPLE9.
A B

G® into a set of linguistic labeld, = {Lo,i,LnH} where
L= {L1,---, Ly} is afinite set of linguistic labels and where
n > 2 is an integer. For exampld,; can take the linguistic
value “poor”, L, the linguistic value “good”, etcL is endowed
with a total order relationshig, sothatl; < Ly < -+ < L,,.
To work on a true closed linguistic sdt under linguistic
operators,i is extended with two extreme valuég = L
andL, 1 = Lunax, WhereLg corresponds to the minimal qual-
itative value and_,, 1 corresponds to the maximal qualitative
value, insuchaway thdty < L1 < Lo <--+ < Ly < Lypy1,

D. Example 9 (free DSm model) where< means inferior to, or less (in quality) than, or smaller
tEan, etc.

C

Figure 1. Refined 3D frame for example 8

We consider the free DSm model depicted on Figure
with the input masses given in Table XII. To apply SudanoB. Operator on qualitative labels

arr‘g CUZZO/“”’S/ mappings, o/ne/works on the refined frame g the extension of the isomorphism between the set of
@ref = {4, B¢, D E' F',G'} where the elements of jiqyistic equidistant labels and a set of numbers in therirat

©'" are exclusive (assuming such refinement has a physically]] one can built exact operators on linguistic labels which
sense) according to Figure 2. This refinement step is ngbyes possible the extension all the quantitative fusidesru
necessary when usingSmP since it works directly on gnqg probabilistic transformations into their qualitativeun-

DSm free model. The PIC values obtained with the differeglarts [3]. We briefly remind the main qualitative operato
mappings are given in Table XIIl. One sees thabmP.—o (o 4-operators for short) on linguistic labels:
provides here again the best results in term of PIC.

« g-addition:
A B o
L ; if < 1,
Li+L; = B . Z+] n (14)
' Lpy1=Lpax fi4+j7>n+1.
@@ﬁ The ¢-addition is an extension of the addition operator
on equidistant labels which is given iy + L; = 55 +
V& 5 R S
n+1 n+1 i+
c « g-subtraction:
Figure 2. Free DSm model for a 3D frame for example 9. Li— Lj _ Li,j if z > j:, (15)
’ _Ljfi if i< 7.
ANBNC ANB A where —L = {-Li,—Lo,...,—L,,—Lp+1}. The ¢-
m(.) 0.1 0.2 0.3 subtraction is justified since when> j, one has with
AUB AUBUC idi [ — it _d _ iz]
e " o equ|d|§t§nt I.abeIsLZ Li=ig - 75 =%
« ¢-multiplication®:
Table Xl
QUANTITATIVE INPUTS FOR EXAMPLE 9 Li - Lj = Litij)/(ni1)]- (16)
IX. EXTENSION OFDSMP FOR QUALITATIVE BELIEF where[z] means the closest integertqwith [n+0.5] =

A. Qualitative belief assignmentn(.) n + 1, VYn € N). This operator is justified by the

In order to compute directly with words (Iinguistic |abe|5) 13The g-multiplication of two linguistic labels defined here canédeended

. . . directly to the multiplication ofn > 2 linguistic labels. For example
Smarandache and Dezert have defined in [7(]1Lml|tat|ve the product of three linguistic label will be defined ds - L; - L, =

basic belief assignmentm(.) as a mapping function from L;.;.x)/(n+1)(ns1). €tc.



approximation of the product of equidistant labels given 3) & 4) Powers and roots of labels:
by L;- L; = i . -4 = ()/nt])

-'nr.kl .n+1 .n+1. -' (Lz)k — L " (22)
« Scalar multiplication of a linguistic label: Let be a (Ggyr=1]
real number. The multiplication of a linguistic label by a . i
scalar is defined by: for k € R because(L,)* = ()8 = &t
L[ i
. f . ArR—T
a L= 2" ~ Liaq  if [a- Z]_ 20, (17) it % e Q, which is the set of fractions (rational numbers),
n+1 L_(4.q otherwise we get the radical operation of labels. Therefore,
« Division of linguistic labels: /L = L[Wl (23)

a) g-division as an internal operator: Lgt# 0, then because we replade— 1/p in the formula (22).
Li/L; = Lii/j)-msv) [(#/7) - (n+1)] <n+1, D. Quasi-normalization ofm/.)

S otherwise There is no way to define a normalizegn(.), but a

' L i o (18) qualitative quasi-normalization [7] is nevertheless fiss

The first equality in (18) is well justified be-\yhen considering equidistant linguistic labels becausiith

E?(lii?) Wi”gi/?)qgﬂils)ta”t labels, one gefs/L; = case,¢gm(X;) = L; is equivalent to a quantitative mass

3/ (n+1D) =1 ~ L) (n+1)- m(X;) =i/(n+ 1) which is normalized if:
b) Division as an external operatar:. Let j # 0. We '
define: domX)=) ir/(n+1)=1,
LioL;=i/j. (19) Xeae F
but this one is equivalent to:
since for equidistant labeld; © L; = (i/(n + B B
0)/G/(n+ 1) = i/, 2 () =2 Lu = Luwr
Xe@

Remark When working with labels, no matter how many , e .
operations we have, the best (most accurate) result israigtai N this case, we have qualitative normalizationsimilar to

if we do only one approximation, and that one should be julte (classical) numerical normalization. But, if the labgl,
at the very end. Ly, Lo, ..., L,, L,y are not equidistant, so the interjél 1]

cannot be split into equal parts according to the distrdyuti
of the labels, then it makes sense to considequalitative
guasi-normalizationi.e. an approximation of the (classical)

On the intervall0, 1] we consider the label&;, 0 < ¢ < numerical normalization for the qualitative masses in tiae
n+ 1, n > 0 such thatL; = i/(n + 1). But we extend this way:

C. More operations with labels

closed interval to the right and to the left in order to be able Z qm(X) = L.
to do all needed label operations in any fusion calculation. Xege

— n42 — n43 i . . .
Therefore Ly, A Lnys = {37, -..and respectively |, ganeral, if we don't know if the labels are equidistant or
L_i = —Li = 73, s0 we getL_i, L, .... In general ot we say that a qualitative mass is quasi-normalized when

L, = Z/(TL + 1) forany: € Z = { ..,—2,—-1,0,1,2,.. } the above summation holds.
whereZ is the set of all integers. Now we define four more

operators involving labels. E. Qualitative extension of DSmP
1) Addition of labels with real scalarsif » € R (the set  The qualitative extension of (11), denotedSmP(.) is
of real numbers) and € Z, then: given by ¢gDSmP.(0) = 0 andvX € G® \ {0} by
Li+r=r+1L;= L[i+r(n+1)] (20) Z qm(Z) +e€- C(X N Y)
ZCXNY
where [z] means the closest integer to This operator is ¢DSmP.(X) = Z c@=1 qm(Y)
justified becausé; +r = L5 +7r = % ~ Liitr(nt1)] vea® Z gm(Z) +¢-C(Y)
and it is needed in the qualitative extension of DSmP formula ZCY
) c(Z)=1
2) Subtraction between labels and real scalars: (24)

where all operations in (24) are referred to labels, thaj-is

Li =7 = Lii—r(nt1) (21) operators on linguistic labels defined in IX-B and not cleaki
_ - operators on numbers. In the same manner, due to our con-
becausel; — r = — —p = =rdb o and : ot
Al i = ntl = Tl 7 FHlierte) struction of labels and qualitative operators, we can toans
similarly r — L; = L{;(n+1)—) because’ — L; = r — =5 = any quantitative fusion rule (or arithmetic expressiortpia

Zt D & Lir(net)—i)- qualitative fusion rule (or qualitative expression).



F. Derivation of PIC from gDSmP where in order to compute the qualitative logarithms, one

We propose here the derivation of PIC from qualitativetilized the isomorphisnL; = .
DSmP. Let's consider a finite space of discrete exclusivatsve
O ={61,02,...,0)} and a subjective qualitative alike prob-
ability measuregP(.) : © — L = {Lo,L1,..., Ly, Lyy1}-
Then one defines the entropy and PIC metrics fidg.) as

XI. CONCLUSIONS

Motivated by the necessity to use a better (more informa-
tional) probabilistic approximation of belief assignment.)
for applications involving soft decisions, we have develdp

M new probabilistic transformation, calledSm P, for approx-
H(gP) 2 = " qP{0;}1og,(qP{6:}) (25) imating m(.) into a subjective probability measur&.Sm P
i=1 provides the maximum of the Probabilistic Information Con-

y tent (PIC) of the source because it is based on proportienal r
) Z gP{0;}log,(¢P{6,}))  (26) dlstrlbu_non of p_art|al and total un_certalnty masses toredats

p of cardinal 1 with respect to their corresponding masses and
cardinalities.DSm P works directly for any model (Shafer’s,
hybrid, or free DSm model) of the frame of the problem
and the result can be obtained at any level of precision by

PIC(qP) =1+

Hmax

where Hp.x = log,(M) and in order to compute the loga-
rithms, one utilized the isomorphisi;, = i/(n + 1).

X. EXAMPLE FOR QUALITATIVE DSMP a tuning positive parameter> 0. DSmP._, coincides with
Let's consider the fram@® = {A, B,C} with Shafers Sudano’sPrBel transformation for the cases when all masses
model and the following set of linguistic labels& = of singletons involved in ignorances are nonzerd:Bel

{Lo,L1, Ly, L3, Ly, L5}, with Ly = Ly, and Ly = Ly, formulais restricted to work on Shafer's model only while
Let's consider the following qualitative belief assignrhenDSmP.~o is always defined and for any model. We have
gqm(A) = Ly, gm(BU C) = Ly and gm(X) = Lo for clearly proved through simple examples that the classical
all X € 29\ {A,BUC}. ¢gm(.) is quasi-normalized since BetP and Cuzzolin’s transformations do not perform well in
> xeze qm(X) = Ly = Lyax. In this examplegm(BUC) = term of PIC criterion. It has been shown also hdnsmP

Ly is redistributed by;DSmP.(.) to B andC only, sinceB can be extended to the qualitative domain to approximate
and C' were involved in the ignorance, proportionally withqualitative belief assignments provided by human sources i
respect to their cardinals (since their masses faje= 0). hatural language.
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