The Dual of a Theorem relative to the Orthocenter of a Triangle

Professor Ion Patrascu, National College "Buzești Brothers" Craiova - Romania Professor Florentin Smarandache, University of New Mexico, Gallup, USA

In [1] we introduced the notion of Bobillier transversal relative to a point O in the plane of a triangle ABC; we use this notion in what follows.

We transform by duality with respect to a circle \mathbb{C} o,r the following theorem relative to the orthocenter of a triangle.

Theorem 1. If ABC is a nonisosceles triangle, H its orthocenter, and AA_1 , BB_1 , CC_1 are cevians of a triangle concurrent at point Q different from H, and M, N, P are the intersections of the perpendiculars taken from H on given cevians respectively, with BC, CA, AB, then the points M, N, P are collinear.

Proof. We note with $\alpha = m \triangleleft BAA_1$; $\beta = m \triangleleft CBB_1$, $\gamma = m \triangleleft ACC_1$, see *Figure 1*. According to Ceva's theorem, trigonometric form, we have the relation:

$$\frac{\sin \alpha}{\sin A - \alpha} \cdot \frac{\sin \beta}{\sin B - \beta} \cdot \frac{\sin \gamma}{\sin C - \gamma} = 1. \quad (1)$$

We notice that:

$$\frac{MB}{MC} = \frac{\text{Arie } MHB}{\text{Arie}(MHC)} = \frac{MH \cdot HB \cdot \sin \sin MHB}{MH \cdot HC \cdot \sin MHC}.$$

Because: $\angle MHB \equiv \angle A_1AC$ as angles of perpendicular sides, it follows that $m \angle MHB = m A - \alpha$.

Therewith $m \not \triangleleft MHC = m MHB + m BHC = 180^{\circ}\alpha$.

We thus get that:

$$\frac{MB}{MC} = \frac{\sin A - \alpha}{\sin \alpha} \cdot \frac{HB}{HC}.$$

Analogously, we find that:

$$\frac{NC}{NA} = \frac{\sin B - \beta}{\sin \beta} \cdot \frac{HC}{HA};$$

$$\frac{PA}{PB} = \frac{\sin C - \gamma}{\sin \gamma} \cdot \frac{HA}{HB}.$$

Applying the reciprocal of Menelaus' theorem, we find, in view of (1), that:

$$\frac{MB}{MC} \cdot \frac{HC}{HA} \cdot \frac{PA}{PB} = 1.$$

This shows that M, N, P are collinear.

Note. Theorem 1 is true even if *ABC* is an obtuse, nonisosceles triangle. The proof is adapted analogously.

Theorem 2 (The Dual of the Theorem 1). If ABC is a triangle, O a certain point in his plan, and A_1, B_1, C_1 Bobillier transversals relative to O of ABC triangle, as well as $A_2 - B_2 - C_2$ a certain transversal in ABC, and the perpendiculars in O, and on OA_2, OB_2, OC_2 respectively, intersect the Bobillier

transversals in the points A_3 , B_3 , C_3 , then the ceviens AA_3 , BB_3 , CC_3 are concurrent.

Proof. We convert by duality with respect to a circle \mathbb{C} o,r the figure indicated by the statement of this theorem, i.e. *Figure 2*. Let a,b,c be the polars of the points A,B,C with respect to the circle \mathbb{C} o,r. To the lines BC,CA,AB will correspond their poles A'4=bnc; B'4=cna; C'4=anb.

To the points A_1, B_1, C_1 will respectively correspond their polars a_1, b_1, c_1 concurrent in transversal's pole $A_1 - B_1 - C_1$.

Since $OA_1 \perp OA$, it means that the polars a and a_1 are perpendicular, so $a_1 \perp B'C'$, but a_1 pass through A', which means that Q' contains the height from A' of A'B'C' triangle and similarly b_1 contains the height from B' and c_1 contains the

height from C' of A'B'C' triangle. Consequently, the pole of $A_1-B_1-C_1$ transversal is the orthocenter H' of A'B'C' triangle. In the same way, to the points A_2,B_2,C_2 will correspond the polars to a_2,b_2,c_2 which pass respectively through A',B',C' and are concurrent in a point Q', the pole of the line $A_2-B_2-C_2$ with respect to the circle $\mathbb C$ o,r. Given $OA_2\perp OA_3$, it means that the polara a_2 and a_3 are perpendicular, a_2 correspond to the cevian A'Q', also a_3 passes through the the pole of the transversal $A_1-B_1-C_1$, so through

H', in other words Q_3 is perpendicular taken from H' on A'Q'; similarly, $b_2 \perp b_3, c_2 \perp c_3$, so b_3 is perpendicular taken from H' on C'Q'. To the cevian AA_3 will correspond by duality considered to its pole, which is the intersection of the polars of A and A_3 , i.e. the intersection of lines a and a_3 , namely the intersection of B'C' with the perpendicular taken from H' on A'Q'; we denote this point by M'. Analogously, we get the points N' and P'. Thereby, we got the configuration from **Theorem 1** and *Figure 1*, written for triangle A'B'C' of orthocenter H'. Since from **Theorem 1** we know that M', N', P' are collinear, we get the the cevians AA_3, BB_3, CC_3 are concurrent in the pole of transversal M' - N' - P' with respect to the circle $\mathbb C$ o, r, and **Theorem 2** is proved.

References

- [1] Ion Patrascu, Florentin Smarandache: "The Dual Theorem concerning Aubert Line".
- [2] Florentin Smarandache, Ion Patrascu: "The Geometry of Homological Triangles". The Education Publisher Inc., Columbus, Ohio, USA 2012.