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Abstract

This paper proposes a new solution for reducing the number of sources
of evidence to be combined in order to diminish the complexity of the fusion
process required in some applications where the real-time constraint and
strong computing resource limitation are of prime importance. The basic
idea consists in selecting, among the whole set of sources of evidence, only the
biggest subset of sources which are not too contradicting based on a criterion
of Evidence Supporting Measure of Similarity (ESMS) in order to process
solely the coherent information received. The ESMS criterion serves actually
as a generic tool for outlier source identification and rejection. Since the
ESMS between several belief functions can be defined using several distance
measures, we browse the most common ones in this paper and we describe
in detail the principle of our Generalized Fusion Machine (GFM). The last
part of the paper shows the improvement of the performances of this new
approach with respect to the classical one in a real-data based and real-time
experiment for robot perception using sonar sensors.
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1. Introduction

Information fusion (IF) has gained more and more interest in the scien-
tific community since the end of nineties because of the development of so-
phisticated multisensor and hybrid (involving human feedbacks in the loop)
systems in many fields of applications (robotics, defense, security, medicine,
etc.). IF appears through many scientific international conferences and work-
shops [11]. The main theories useful for information fusion are the Proba-
bility theory [16, 25] (and more recently the Imprecise Probability Theory
[38]), the Possibility Theory [8] (based on Fuzzy Sets theory [42]), Neutro-
sophic Set Theory [15] and belief function theories, mainly Dempster-Shafer
theory (DST) [29] and more recently Dezert-Smarandache theory (DSmT)
[31, 32, 33].

In this work, we concentrate our attention on belief functions theories and
specially on DSmT because of its ability to deal efficiently with uncertain,
imprecise and conflicting quantitative and qualitative information. Basically,
in DST, a basic belief assignment (bba) m(.) is a mapping from the power
set 2Θ (see section 2.2 for details) of the frame of discernment Θ into [0, 1]
such that

m(∅) = 0 and
∑

X∈2Θ

m(X) = 1.

In DST, Θ represents the set of exclusive and exhaustive possibilities for the
solution of the problem under consideration. In DSmT, Θ can be a set of
possible non exclusive elements and the definition of bba is extended to the
lattice structures of hyper-power set DΘ, and to super-power set SΘ in UFT
(Unification of Fusion Theories) [30, 32], Chap. 8 - see also section 2.3 for a
brief presentation and [7, 10] and [33] for definitions, details and examples.
In general m(.) is not a measure of probability, except in the case when its
focal elements (i.e. the elements which have a strictly positive mass of be-
lief) are singletons; in such case, m(.) is called a Bayesian bba [29] which
can be considered as a subjective probability measure. In belief function
theories, the main information fusion problem consists in finding an efficient
way for combining several sources of evidence s1, s2, . . . , sn characterized
by their bba’s m1(.), m2(.), . . . , mn(.) assumed for simplicity here defined
on the same fusion space, either 2Θ, DΘ, or SΘ depending on the underlying
model associated with the nature of the frame Θ. The difficulty in infor-
mation fusion arises from the fact that the sources can be conflicting (i.e.
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one source commits some belief in a proposition A whereas another source
commits some belief in a proposition B but A and B are known to be truly
exclusive (A ∩ B = ∅)) and one needs a solution for dealing with conflict-
ing information in the fusion process. In DST, Shafer proposes Dempster’s
rule of combination as the fusion operator for combining sources of evidence
whereas in DSmT the recommended fusion operator is the PCR5 (Propor-
tional Conflict redistribution rule # 5) rule of combination, see [29] and [33]
for discussions and comparisons of these rules. PCR5 is more complex than
Demspter’s rule but it offers a better ability to deal with conflicting infor-
mation.

Both rules however become intractable in some applications having only
low computational capacities (as in some autonomous onboard systems by
example) because their complexity increases drastically with the number n
of sources to combine and/or with the size of the frame Θ, specially in the
worst case (i.e. when a strict positive mass of belief is committed to all ele-
ments of the fusion space). To circumvent this problem, one has to play on
both sides: 1) reducing the number of sources to combine and 2) reducing
the size of the frame Θ. In this paper, we propose a solution only for re-
ducing the number of sources to combine because we are not concerned in
our application of robot perception by the second aspect since in this ap-
plication our frame Θ has only two elements representing the emptiness or
occupancy states of the grid cells of the perceived map of the environment.
To expect good performances of such limited-resource fusion scheme, it seems
natural to search and combine altogether only the sources which are coher-
ent (which are not too conflicting) according to a given measure of similarity.

Such idea has been already investigated by several authors who have
proposed some distance measures between two evidential sources in different
fields of applications. For example, Tessem [35] in 1993 proposed the distance
dij = maxθl∈Θ|BetPi(θl) − BetPj(θl)|) according to the pignistic probability
transform BetP (.). In 1997, Bauer [1] introduced two other measures of error
to take a decision based on pignistic probability distribution after approxi-
mation. In 1998, Zouhal and Denoeux [43] also introduced a distance based
on mean square error between pignistic probability. In 1999, Petit-Renaud
[26] has defined a measure directly on the power set of Θ and proposed an
error criterion between two belief structures based on the generalized Haus-
dorff distance. In 2001, Jousselme et al. [14] proposed in DST framework
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a new distance measure dij = 1 − 1√
2

√

m2
1 + m2

2 − 2〈m1, m2〉 between two

basic belief assignments (bba’s) for measuring their similarity (closeness).
In 2006, Ristic and Smets [27, 28] have defined in the TBM (Transferable
Belief Model) framework a TBM-distance between bba’s to solve the associ-
ation of uncertain combat ID declarations. These authors recall also the
Bhattacharya distance dij =

√

1 − ∑

A∈F〉

∑

B∈F|

√

mi(A)mj(B) between

two bba’s. In 2006 also, Diaz et al. [6] proposed a new measure of simi-
larity between bba’s based on Tversky’s similarity measure [37]. Note that
in belief function theories, the direct use of classical measures used in Proba-
bility theory (say like Kullback Leibler (KL) distance [3]) cannot be applied
directly because bba’s are not probability measures in general.

In this paper, we develop an Evidence Support Measure of Similarity
(ESMS) in a generalized fusion space according to different lattices [7, 10]
for reducing the number of sources of evidence to combine and thus reducing
the complexity of the computational burden. As shown in the next sections,
we propose several possible measures of distance for ESMS and we compare
their performances in our specific application of mobile robot perception.
The purpose of this paper is not to select, nor to justify, the best measure
of distance for ESMS but only to show the practical advantage of using the
ESMS criteria as a generic tool for reducing the complexity of the fusion with
keeping good performances for our application.

This paper is organized as follows. In section 2, we briefly recall the
main paradigms for dealing with uncertain information. In section 3, we
give a general mathematical definition of ESMS between two basic belief
assignments and we establish some basic properties of ESMS. In section 4,
we extend and present different possible ESMS functions (distance measures)
fitting with the different mathematical paradigms listed in section 2. A
comparison of the performances of five possible distances is made through
a simple example in section 5. The simulation presented in section 6 shows
in details how ESMS filter is used within GFM scheme. An application
of ESMS filter in GFM for mobile robot perception with real-data (sonar
sensors measurements) and in real-time is presented in section 7 to show the
advantages of the approach proposed here. The conclusion is given in section
8.
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2. The main paradigms for dealing with uncertainties

2.1. Probability Theory and Bayes’ rule.

The (axiomatic) Probability Theory [16] is the most achieved theory for
dealing with randomness. We will not present this theory in details since
there exist dozens of very good classical books devoted to it, see for exam-
ple [25]. We just recall that a random experiment is an experiment (action)
whose result is uncertain before it is performed and a trial is a single per-
formance of the random experiment. An outcome is the result of a trial and
the sample space Θ is the set of all possible outcome of the random experi-
ment. An event is the subset of the sample space Θ to which a probability
measure can be assigned. Two events Ai and Aj are said exclusive (disjoint)
if Ai ∩ Aj = ∅, ∀i 6= j, where the empty set ∅ represents the impossible
event. The sure event is the sample space Θ. The probability theory is based
on Set Theory and the measure theory on sets. The following axioms have
been identified as necessary and sufficient for probability P (.) as a measure:
Axiom 1) (nonnegativity) 0 ≤ P (A) ≤ 1, Axiom 2) (unity) P (Θ) = 1, and
Axiom 3) (finite additivity1), if A1, A2, . . ., An are disjoint events, then
P (A1 ∪ A2 ∪ . . . ∪ An) =

∑n

i=1 P (Ai). Events which are subsets of the sam-
ple space are put in one-to-one correspondence with propositions in belief
fuction theory [29], pages 35-37 and that’s why we use indifferently the ter-
minology set, event or proposition in this paper. The probabilistic inference
is (usually) carried out by Bayes’ rule according to:

∀B, P (B) > 0, P (Ai|B) =
P (Ai ∩ B)

P (B)
=

P (B|Ai)P (Ai)
∑n

j=1 P (B|Aj)P (Aj)
(1)

where the sample space Θ has been partitioned into exhaustive and ex-
clusive events A1, A2, . . . , An, i.e. such that Ai ∩ Aj = ∅, (i 6= j) and
A1 ∪ A2 ∪ . . . ∪ An = Θ; P (.) is an a priori probability measure defined
on Θ satisfying Kolmogorov’s axioms. In Bayes formula, it is assumed that
the denominator is strictly positive. A generalization of this rule has been
proposed by Jeffrey [12, 13] for working in circumstances where the parochial-
ist assumption is not a reasonable assumption, i.e. when P (B|B) = 1 is a
fallacy, see [13, 22] for details and examples.

1Another axiom related to the countable additivity can be also considered as the fourth
axiom of the probability theory.
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Using the classical terminology adopted in belief function theories (DST
and/or DSmT) and considering for example Θ = {A, B}, a discrete proba-
bility measure P (·) can be interpreted as a specific Bayesian belief mass m(.)
such that

m(A) + m(B) = 1 (2)

2.2. Dempster-Shafer Theory (DST)

In DST [29], the frame of discernment Θ of the fusion problem under
consideration consists in a discrete finite set of n exhaustive and exclusive
elementary hypotheses θi, i.e. Θ = {θ1, θ2, . . . , θn}. This is called Shafer’s
model of the problem. Such model assumes that an ultimate refinement of
the problem is possible, exists and is achievable, so that elements θi, i =
1, 2, . . . , n are well precisely defined and identified in such a way that we are
sure that they are truly exclusive and exhaustive (closed-world assumption).
The set of all subsets of Θ is called the power set of Θ and is denoted 2Θ.
Its cardinality is 2|Θ|. Since 2Θ is closed under ∪ and all θi, i = 1, 2, . . . , n
are exclusive, it defines a Boolean algebra. All composite propositions built
from elements of Θ with ∪ operator such that:

1) ∅, θ1, . . . , θn ∈ 2Θ;

2) If A, B ∈ 2Θ, then A ∪ B ∈ 2Θ;

3) No other elements belong to 2Θ, except those obtained by using rules
1) or 2).

Shafer defines a basic belief assignment (bba), also called mass function, as
a mapping m(.) : 2Θ → [0, 1] satisfying m(∅) = 0 and the normalization
condition. Typically, when Θ = {A, B} and Shafer’s model holds, in DST
one works with m(.) such that

m(A) + m(B) + m(A ∪ B) = 1 (3)

m(A ∪ B) allows us to commit some belief on the disjunction A ∪ B which
represents the ignorance in choosing between A and B. From this very sim-
ple example, one sees clearly the ability of DST to offer a better modeling
for a total ignorant/vacuous source of information by setting m(A∪B) = 1,
whereas in Probability Theory one would be forced to adopt the principle of
insufficient reason (as known also as the principle of indifference) to justify
taking m(A) = m(B) = 1/2 as default belief mass for representing a total
ignorant body of evidence.
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In DST framework, the combination of two belief assignments m1(.) and
m2(.) is done using Dempster’s rule of combination which can be seen as
the normalized version of the conjunctive rule in order to remove the total
conflicting mass and to get a proper normalized belief mass after the combi-
nation [29]. Dempster’s rule is mathematically defined by m(∅) = 0 and for
X 6= ∅ by

m(X) =

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

1 −
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)
(4)

Dempster’s formula is defined if and only if the two sources of evidence
are not fully conflicting; that is when

∑

X1,X2∈2Θ

X1∩X2=∅
m1(X1)m2(X2) 6= 1.

2.3. Dezert-Smarandache Theory (DSmT)

In DSmT framework [31, 32, 33], the frame Θ = {θ1, θ2, . . . , θn} is a finite
set of n exhaustive elements which are not necessary exclusive. The prin-
ciple of the third excluded middle and Shafer’s model are refuted in DSmT
(but can be introduced if needed depending on the model of the frame one
wants to deal with), since for a wide class of fusion problems, the nature of
hypotheses can be only vague and imprecise or crude approximation of the
reality and none ultimate refinement is achievable. As a simple example, if
we consider two suspects Peter (P ) and Mary (M) in some criminal investi-
gations, it may be possible that Peter has committed the crime alone, as well
as Mary, or maybe Peter and Mary have committed the crime together. In
that case, one has to consider the possibility for P ∩ M 6= ∅ but there is no
way to refine the original frame Θ = {P, M} into a finer one with exclusive
finer elements say as Θ′ = {P \ (P ∩M), P ∩M, M \ (P ∩M)} because there
is no physical meaning and no possible occurrence of the atomic granules
P \ (P ∩ M) and M \ (P ∩ M). In other words, the finer exclusive elements
of the refined frame satisfying Shafer’s model cannot always be well identi-
fied and precisely separated and they may have no sense at all. This is the
main reason why DSmT allows as foundation the possibility to deal with non
exclusive, partially overlapped or vague elements and refute Shafer’s model
and third excluded middle assumptions. DSmT proposes to work on a fusion
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space defined by Dedekind’s lattice also called hyper-power set DΘ in DSmT.

The hyper-power set is defined as the set of all composite propositions
built from elements of Θ with ∩ and ∪ operators such that [5]:

1) ∅, θ1, . . . , θn ∈ DΘ;

2) If A, B ∈ DΘ, then A ∪ B ∈ DΘ and A ∩ B ∈ DΘ;

3) No other elements belong to DΘ, except those obtained by using rules
1) or 2).

Following Shafer’s idea, Dezert and Smarandache define a (generalized) basic
belief assignment (or mass) as a mapping m(.) : DΘ → [0, 1] such that:

m(∅) = 0 and
∑

X∈DΘ

m(X) = 1.

Typically, when Θ = {A, B} and Shafer’s model doesn’t hold, in DSmT
one works with m(.) such that

m(A) + m(B) + m(A ∪ B) + m(A ∩ B) = 1 (5)

which appears actually as a direct and natural mathematical extension of (2)
and (3).

Actually DSmT offers also the advantage to work with Shafer’s model
or with any hybrid model if some integrity constraints between elements of
the frame are known to be true and must be taken into account in the fu-
sion process. DSmT allows to solve static and/or dynamic2 fusion problems
in the same general mathematical framework. For notation convenience, one
denotes by GΘ the generalized fusion space or generalized power set including
integrity constraints (i.e. exclusivity as well as possible non-existence restric-
tions between some elements of Θ), so that GΘ = DΘ when no constraint
enters in the model, or GΘ = 2Θ when one wants to work with Shafer’s
model (see [31] for details and examples), or GΘ = Θ when working with
probability model. If one wants to work with the space closed under union
∪, intersection ∩, and complementarity C operators, then GΘ = SΘ, i.e. the
super-power set (see next section). A more general introduction of DSmT

2i.e. when the frame and/or its model change with time.
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can be found in Chapter 1 of [33].

In DSmT, the fusion of two sources of evidences characterized by m1(.)
and m2(.) is defined by mPCR5(∅) = 0 and ∀X ∈ GΘ \ {∅}

mPCR5(X) = m12(X) +
∑

Y ∈GΘ

X∩Y =∅

[
m1(X)2m2(Y )

m1(X) + m2(Y )
+

m2(X)2m1(Y )

m2(X) + m1(Y )
] (6)

where all sets involved in formulas are in canonical form; m12(X) ≡ m∩(X) =
∑

X1,X2∈GΘ

X1∩X2=X

m1(X1)m2(X2) corresponds to the conjunctive consensus on X

between the n = 2 sources and where all denominators are different from
zero. If a denominator is zero, that fraction is discarded. A general formula
of PCR5 for the fusion of n > 2 sources has been proposed in [32].

2.4. Unification of Fusion Theory (UFT)

Recently Smarandache has proposed in [30, 32] an extension of DSmT by
considering a super-power set SΘ as the Boolean algebra on Θ, i.e. SΘ =
(Θ,∩,∪, c(.)). In other words, SΘ is assumed to be closed under union ∪,
intersection ∩, and complement c(.) of sets respectively. With respect to the
partial ordering relation, the inclusion ⊆, the minimum element is the empty
set ∅, and the maximal element is the total ignorance I =

⋃n
i=1 θi. Since it

extends the power set space through the closed operation of ∩, ∪ and c(.)
operators, that is, UFT not only considers the non-exclusive situation among
the elements, but also consider the exclusive, exhaustive, non-exhaustive
situations, and even open and closed world. Typically, when Θ = {A, B} ,
in UFT one works with m(.) such that

m(A) + m(B) + m(A ∩ B) + m(A ∪ B)

+ m(c(A)) + m(c(B)) + m(c(A) ∪ c(B)) = 1 (7)

3. Evidence Support Measure of Similarity (ESMS)

Definition 3.1. Let’s consider a discrete and finite frame Θ and the fusion
space GΘ including integrity constraints of the model associated with Θ. The
infinite set of basic belief assignments defined on GΘ is denoted by mGΘ . An
Evidence Support Measure of Similarity (ESMS) of two (generalized) basic
belief assignments m1(.) and m2(.) in mGΘ is the functionSim(., .) : mGΘ ×
mGΘ → [0, 1] satisfying the following conditions:
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1) Symmetry: ∀m1(.), m2(.) ∈ mGΘ , Sim(m1, m2) = Sim(m2, m1);

2) Consistency: ∀m(.) ∈ mGΘ , Sim(m, m) = 1;

3) Non-negativity: ∀m1(.), m2(.) ∈ mGΘ , Sim(m1, m2) ≥ 0

We will say that m2(.) is more similar to m1(.) than m3(.) if and only if
Sim(m1, m2) ≥ Sim(m1, m3). The maximum degree of similarity is naturally
obtained when both bba’s m1(.) and m2(.) coincide, which is expressed by
consistency condition 2). The equality Sim(m1, m2) = 0 must be obtained
when bba’s have no focal elements in common, in particular whenever m1(.) is
focused on X ∈ GΘ, which is denoted mX

1 (.) and corresponds to m1(X) = 1,
and m2(.) is focused on Y ∈ GΘ, i.e. m2(.) = mY

2 (.) such that m2(Y ) = 1,
with X ∩ Y = ∅.

Theorem 3.1. For any bba m1(.) ∈ mGΘ (which is a |GΘ|-dimensional
vector) and any small positive real number ε, there exists at least one bba
m2(.) ∈ mGΘ for a given distance measure3 d(., .) such that d(m1, m2) ≤ ε.

Proof: Let’s take m2(.) = m1(.), then d(m1, m2) = d(m1, m1) = d(m2, m2) =
0 < ε which completes the proof.

Definition 3.2. (Agreement of evidence) : If there exist two basic belief
assignments m1(.) and m2(.) in mGΘ such that for some distance measure
d(., .), one has d(m1, m2) ≤ ε with ε > 0, then ε is called the agreement
of evidence supporting measure between m1(.) and m2(.) with respect to the
chosen distance d(., .). m1(.) and m2(.) are said ε-consistent with respect to
the distance d(., .).

Theorem 3.2. The smaller ε > 0 is, the closer the distance d(m1, m2) be-
tween m1(.) and m2(.) is, that is, the more similar or consistent m1(.) and
m2(.) are.

Proof: According to the Definition 3.2, if the evidence measure between
m1(.) and m2(.) is ε-consistent, then d(m1, m2) ≤ ε. Let’s take ε = 1 −
Sim(m1, m2); when ε becomes smaller and smaller, Sim(m1, m2) becomes
greater and greater, according to the definition of ESMS and thus more simi-
lar or consistent m1(.) and m2(.) become. Finally, if ε = 1−Sim(m1, m2) = 0,

3Here we don’t specify the distance measure and keep it only as a generic distance. Ac-
tually d(., .) can be any distance measure. In practice, the Euclidean distance is frequently
used.
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then m1(.) and m2(.) are totally consistent.

From the previous definitions and theorems, the ESMS appears as an in-
teresting measure for evaluating the degree of similarity between two sources.
We propose to use ESMS in a pre-processing/thresholding technique in order
to reduce the complexity of the combination of sources of evidence by keeping
in the fusion process only the sources which are ε-consistent. ε is actually
a threshold parameter which has to be tuned by the system designer and
which depends on the application and computational resources.

4. Several possible ESMS

In this section we propose several possibilities for choosing an ESMS
function Sim(., .) satisfying theorem 3.1.

4.1. Euclidean ESMS function SimE(m1, m2)

Definition 4.1. Let Θ = {θ1, . . . , θn} (n > 1), m1(.) and m2(.) in mGΘ ,
Xi the i-th (generic) element of GΘ and |GΘ| the cardinality of GΘ. The
following simple Euclidean ESMS function can be extended from [14]:

SimE(m1, m2) = 1 − 1√
2

√
√
√
√

|GΘ|
∑

i=1

(m1(Xi) − m2(Xi))
2 (8)

The following theorem establishes that SimE(m1, m2) is an ESMS func-
tion.

Theorem 4.1. SimE(m1, m2) defined in (8) is an ESMS function.

Proof:

1) Let’s prove that SimE(m1, m2) ∈ [0, 1]. If SimE(m1, m2) > 1, from

(8) one would get 1√
2

√
∑|GΘ|

i=1 (m1(Xi) − m2(Xi))
2 < 0 which is impos-

sible, so that SimE(m1, m2) ≤ 1. Let’s prove SimE(m1, m2) ≥ 0 or

equivalently from (8),
∑|GΘ|

i=1 (m1(Xi) − m2(Xi))
2 ≤ 2. This inequality

is equivalent to
∑|GΘ|

i=1 m1(Xi)
2 +

∑|GΘ|
i=1 m2(Xi)

2 ≤ 2 + 2
∑|GΘ|

i=1 m1(Xi)
m2(Xi). We denote it (i) for short. (i) always holds because one has

(
∑|GΘ|

i=1 m1(Xi)
2+

∑|GΘ|
i=1 m2(Xi)

2) ≤ ([
∑|GΘ|

i=1 m1(Xi)]
2+[

∑|GΘ|
i=1 m2(Xi)]

2)
and thus
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(
∑|GΘ|

i=1 m1(Xi)
2 +

∑|GΘ|
i=1 m2(Xi)

2) ≤ 2 because [
∑|GΘ|

i=1 ms(Xi)]
2 = 1 for

s = 1, 2 (ms(.) being normalized bba). Therefore inequality (i) holds
and thus SimE(m1, m2) ≥ 0.

2) It is easy to check that SimE(m1, m2) satisfies the first condition of
Definition 3.1.

3) If m1(.) = m2(.), then SimE(m1, m2) = 1 because

|GΘ|
∑

i=1

(m1(Xi) − m2(Xi))
2 = 0.

Thus the second condition of Definition 3.1 is also satisfied.

4) Non-negativity has been proven above in the first part. Herein we use
a particular case to show that Sim(m1, m2)=0, i.e. there exist mX

1 and
mY

2 for some X, Y ∈ GΘ \ {∅} such that X 6= Y , then according to (8),

one gets
∑|GΘ|

i=1 (m1(Xi) − m2(Xi))
2 = [mX

1 (X)]
2

+ [mY
2 (Y )]

2
= 2 and

thus one has SimE(mX
1 , mY

2 ) = 1 − (
√

2/
√

2) = 0, so that SimE(., .)
verifies the third condition of Definition 3.1.

4.2. Jousselme ESMS function SimJ(m1, m2)

Definition 4.2. Let m1(.) and m2(.) be two basic belief assignments in mGΘ

provided by the sources of evidence S1 and S2. Given a |GΘ|×|GΘ| assumed4

positive definite matrix D = [Dij ], where Dij = |Xi ∩ Xj|/|Xi ∪ Xj|, with
Xi, Xj ∈ GΘ. Then, Jousselme ESMS function can be redefined from the
Jousselme et al. measure [14]:

SimJ (m1, m2) = 1 − 1√
2

√

(m1 − m2)TD(m1 − m2) (9)

or equivalently

SimJ (m1, m2) = 1 − 1√
2

√

m2
1 + m2

2 − 2〈m1, m2〉

4Actually, Jousselme et al. in [14] did not prove that D = [Dij = |Xi ∩ Xj |/|Xi ∪ Xj |]
is truly a positive definite matrix. D is until now assumed to be positive definite. This is
only a conjecture and proving it is not a trivial problem.
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where 〈m1, m2〉 is the scalar product defined as

〈m1, m2〉 =

|GΘ|
∑

i=1

|GΘ|
∑

j=1

Dijm1(Xi)m2(Xj)

Xi, Xj ∈ GΘ, i, j = 1, . . . , s, |GΘ|; ‖m‖2 represents the squared norm of the
vector (bba) m, i.e. ‖m‖2 = 〈m, m〉.

Theorem 4.2. SimJ(m1, m2) defined in formula (9) is an ESMS function.

Proof:

1) Since the matrix D is conjectured to be a positive definite matrix,
SimJ(m1, m2) satisfies the condition of symmetry.

2) If m1 is equal to m2, according to (9), one gets SimJ(m1, m2) = 1. In
other hand, if SimJ(m1, m2) = 1, then the condition m1 = m2 holds.
That is, the condition of consistency is satisfied.

3) According to (9), it can be drawn that SimJ (m1, m2) ≤ SimE(m1, m2),
and since the minimum value of SimJ(m1, m2) is zero, then SimJ(m1, m2)
is non-negative.

4) According to the definition of SimJ(m1, m2), we can easily verify that
SimJ(m1, m2) is a true distance measure between m1 and m2.

Actually SimE(m1, m2) is nothing but a special case of SimJ (m1, m2)
when taking D as the |GΘ| × |GΘ| identity matrix.

4.3. Ordered ESMS function SimO(m1, m2)

The definition of this (partial) ordered-based ESMS function is similar
to SimJ (m1, m2) but instead of using Jousselme’s matrix D = [Dij ], where
Dij = |Xi ∩ Xj|/|Xi ∪ Xj |, with Xi, Xj ∈ GΘ, we choose the DSm matrix
S = [Sij ] where Sij = s(Xi ∩ Xj)/s(Xi ∪ Xj). Therefore, one has

SimO(m1, m2) = 1 − 1√
2

√

(m1 − m2)TS(m1 − m2) (10)

The function s(X) corresponds to the intrinsic informational content of
the proposition X defined in details in [31] (Chap. 3) which is used for
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partially ordering the elements of GΘ. More precisely, s(X) is the sum of the
inverse of the length of the components of Smarandache’s code5 of X.

As a simple example, let’s take Θ = {θ1, θ2} with free DSm model (i.e
i.e. when all elements are non-exclusive two by two), then the partially6

ordered hyper-power set GΘ is given by GΘ = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪ θ2}
because s(∅) = 0, s(θ1 ∩ θ2) = 1/2, s(θ1) = 1 + 1/2, s(θ2) = 1 + 1/2 and
s(θ1 ∪ θ2) = 1 + 1 + 1/2 since Smarandache’s codes of ∅, θ1, θ2, θ1 ∩ θ2 and
θ1 ∪ θ2 are respectively given by {< . >} (empty code), {< 1 >, < 12 >},
{< 2 >, < 12 >}, {< 12 >} and {< 1 >, < 12 >, < 2 >}. The matrix S is
defined by7

S =









s(θ1∩θ2)
s(θ1∩θ2)

s(θ1∩θ2)
s(θ1)

s(θ1∩θ2)
s(θ2)

s(θ1∩θ2)
s(θ1∪θ2)

s(θ1∩θ2)
s(θ1)

s(θ1)
s(θ1)

s(θ1∩θ2)
s(θ1∪θ2)

s(θ1)
s(θ1∪θ2)

s(θ1∩θ2)
s(θ2)

s(θ1∩θ2)
s(θ1∪θ2)

s(θ2)
s(θ2)

s(θ2)
s(θ1∪θ2)

s(θ1∩θ2)
s(θ1∪θ2)

s(θ1)
s(θ1∪θ2)

s(θ2)
s(θ1∪θ2)

s(θ1∪X2)
s(θ1∪θ2)









=







1 1/3 1/3 1/5
1/3 1 1/5 3/5
1/3 1/5 1 3/5
1/5 3/5 3/5 1







It is easy to verify the positiveness of the matrix S by checking the positivity
of all its eigenvalues which are λ1 = 0.800 > 0, λ2 ≈ 0.835 > 0, λ3 ≈ 0.205 >
0 and λ4 ≈ 2.160 > 0. We have verified the positiveness of matrix S for
Card(Θ) = n ≤ 5. Since a general proof of the positiveness of D and S
seems difficult to obtain, we can only make a conjecture on the positiveness
of S presently.

4.4. ESMS function SimB(m1, m2)

Another ESMS function based on Bhattacharya’s distance is defined as
follows:

Definition 4.3. Let m1(.), m2(.) be two basic belief assignments in mGΘ, the
ESMS function SimB(m1, m2) is defined by:

5Smarandache code is a representation of disjoint parts of the Venn diagram of the
frame Θ under consideration. This code depends of the model for Θ. For example, let’s
take Θ = {θ1, θ2}. If θ1 ∩ θ2 = ∅ (Shafer’s model) is assumed, then the code of θ1 is
< 1 >, whereas if θ1 ∩ θ2 6= ∅ (free DSm model) is assumed, then the code of θ1 will be
{< 1 >, < 12 >}. The length of a component of a code is the number of characters between
< and > in Smarandache’s notation. For example, the length of component < 12 > is 2.
See [31], pp. 42–43 for details.

6This is a partial order since s(θ1) = s(θ2).
7Actually, one works with GΘ \{∅}, and thus the column and row corresponding to the

empty set do not enter in the definition of S.
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SimB(m1, m2) = 1 −
√

1 −
∑

Xi∈F

√

m1(Xi)m2(Xi) (11)

where F is the core of sources S1 and S2 , i.e. the set of elements of GΘ

having a positive belief mass: F = {X ∈ GΘ|m1(X) > 0 or m2(X) > 0}.

Theorem 4.3. SimB(m1, m2) defined in formula (11) is an ESMS function.

Proof:

1) Since
∑

Xi∈F

√

m1(Xi)m2(Xi) =
∑

Xi∈F

√

m2(Xi)m1(Xi) then SimB(m1, m2)

satisfies the condition of symmetry.

2) if m1(.) = m2(.), according to (11),

∑

Xi∈F

√

m1(Xi)m2(Xi) =
∑

Xi∈F
m1(Xi) = 1

and therefore SimB(m1, m1) = 1. In other hand, if SimB(m1, m2) = 1,
then the condition m1(.) = m2(.) holds. That is, the condition of
consistency is satisfied.

3) From the definition of bba,
∑

Xi∈F
m1(Xi) = 1. Therefore,

∑

Xi∈F

√

m1(Xi)m2(Xi) ∈ [0, 1].

According to (11), it can be drawn that SimB(m1, m2) ∈ [0, 1]; that is,
the minimum value of SimB(m1, m2) is zero. Therefore, SimB(m1, m2)
is a non-negative measure.

4) According to the definition of SimB(m1, m2), we can easily verify that
SimB(m1, m2) is a true distance measure between m1 and m2.

5. Comparison of ESMS functions

In this section we analyze the performances of the five ESMS functions
aforementioned through a very simple example, where Θ = {θ1, θ2, θ3}. We
assume the free DSm model for Θ. In such case, GΘ = DΘ has eighteen
non-empty elements ai, i = 1, 2, . . . , s, . . . , 18. GΘ is closed under ∩ and ∪
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operators according to Dedekind’s lattice. Of course, we also may choose
other theoretical frameworks in a similar way according to the appropriate
model of GΘ.

Let’s assume that θ2 is the true identity of the object under considera-
tion. Its optimal belief assignment is denoted m2(.) , {m2(θ2) = 1, m2(X) =
0 for X ∈ GΘ \ {θ2}}. We perform a comparison of the four ESMS functions
in order to show the evolution of the measure of similarity between m1(.) and
m2(.) when m1(.) is varying from an uniform distributed bba to m2(.). More
precisely, we start our simulation by choosing m1(.) with all elements in DΘ

uniformly distributed, i.e. m1(ai) = 1/18, for i = 1, 2, . . . , s, . . . , 18. Then,
step by step we increase the mass of belief of θ2 by a constant increment
∆ = 0.01 until reaching m1(θ2) = 1. In the meantime the mass m1(X) of
belief of all elements X 6= θ2 of GΘ take value [1 − m1(θ2)]/17 in order to
work with a normalized bba m1(). The basic belief mass committed to empty
set is always zero, i.e. m1(∅) = m2(∅) = 0.

The degree of similarity of the four ESMS functions are plotted in Figure
1. The speed of convergence8 of a similarity measure is characterized by the
angle α of the slope of the curve at origin, or by its tangent. Based on this
speed of convergence criterion, the analysis of the figure 1 yields the following
remarks:

1) According to Figure 1., tan(αB) ≈ 0.86, tan(αE) ≈ 0.68, tan(αO) ≈ 0.6
and tan(αJ) ≈ 0.57. SimJ (m1, m2) has the slowest convergence speed,
then SimO(m1, m2) takes second place.

2) SimE(m1, m2) has a faster speed of convergence than SimO(m1, m2)
and SimJ (m1, m2) because it doesn’t consider the intrinsic complexity
of the elements in GΘ.

3) The speed of convergence of SimB(m1, m2) is the fastest. When m1(.)
and m2(.) become very similar, SimB(m1, m2) becomes very quickly
close to 1. But if a small dissimilarity between m1() and m2() occurs,
then SimB(m1, m2) becomes very small which actually makes it very
sensitive to small dissimilarity perturbations.

8Here the convergence speed refers to how much the global agreement degree (similar-
ity) is between m1(.) and m2(.) with the continuous decrease of m1(θ2).
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Figure 1: Comparison of performance among ESMS functions.

4) In summary, one sees that no definitive conclusion about the best choice
among these four ESMS functions can be drawn in general, but if one
considers as important the speed of convergence criterion of the dis-
similarity/ difference between two evidential sources, SimB(m1, m2) is
the best choice, because it is very sensitive to such difference, whereas
SimJ(m1, m2) is the worst choice with respect to such criterion.

6. Simulation results

We present a simulation result to show how the ESMS filter performs
in generalized fusion machine (GFM), and its advantage. Let’s take a 2D
frame of discernment Θ = {θ1, θ2} and consider twenty equireliable sources
of evidence according to the Table 1. We consider the free DSm model
and the fusion space is the hyper-power set DΘ = {θ1, θ2, θ1 ∩ θ2, θ1 ∪ θ2}.
Sc1 denotes the barycentre of the front 10 belief masses, while Sc2 denotes
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the barycentre9 of all belief masses . The measure of similarity based on
Euclidean ESMS function defined in equation (8) has been used here, but
any other measures of similarity could be used instead. In this example if
we take 0.75 for the threshold value we see from the Table 1 and for the 10
front sources of evidences, that the measures of similarity of S5 and S10 with
respect to Sc1 are lower than 0.75. Therefore, the sources S5 and S10 will be
discarded/filtered of the fusion process. If the threshold value is set to 0.8,
then the sources S5, S10, S4 and S8 will be discarded. That is, the higher the
given threshold is, the less the number of information sources through the
filter is.

9Let’s denote k = |GΘ| the cardinality of GΘ and consider S independent sources of
evidence. If all sources are equireliable, the barycentre of belief masses of the S sources is
given by: ∀j = 1, . . . , k, m̄(Xj) = 1

S

∑S

s=1
ms(Xj), see [18] for details.

S m(θ1) m(θ2) m(θ1 ∩ θ2) m(θ1 ∪ θ2) SimE

S1 0.3 0.4 0.2 0.1 0.8735

0.3 0.2 0.4 0.1 0.800

0.4 0.1 0.2 0.3 0.8268

0.7 0.1 0.1 0.1 0.7592

0.1 0.8 0.1 0.0 0.5550

0.5 0.2 0.2 0.1 0.9106

0.4 0.3 0.1 0.2 0.9368

0.3 0.1 0.2 0.4 0.7592

0.4 0.5 0.1 0.0 0.8103

0.8 0.1 0.0 0.1 0.6806

0.42 0.28 0.16 0.14 1.0000

0.5 0.0 0.2 0.3 0.7569

0.2 0.6 0.1 0.1 0.7205

0.4 0.3 0.2 0.1 0.9360

0.9 0.1 0.0 0.0 0.6230

0.5 0.2 0.1 0.2 0.9100

0.5 0.3 0.0 0.2 0.8900

0.5 0.0 0.1 0.4 0.7205

0.7 0.2 0.1 0.0 0.7807

0.1 0.7 0.1 0.1 0.6217

0.3 0.6 0.1 0.0 0.7390

S2

S3

S4

S5

S6

S7

S8

S9

S10

Sc1

S11

S12

S13

S14

S15

S16

S17

S18

S19

S20

Sc2 0.44 0.29 0.13 0.14 1.0000

Table 1: A list of given sources of evidences.
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Figure 2: The procedure flow chart of DSmT-based generalized fusion machine.
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In order to embed ESMS function to GFM [19], we give its working
principle summarized in Figure 2, whose main steps of the algorithm for
implementing the GFM are enumerated as follows:

1) Initialization of the parameters: the number of sources of evidence is
set to zero, (i.e. one has initially no source, s = 0), so that the number
of sources in the filter window is n = 0.

2) Include10 a source of evidence Ŝs and then test if the number of sources
s is less than 2. If s ≥ 2, then go to next step, otherwise include/take
into account another source of evidence Ŝ2.

3) Based on the barycentre of gbba of the front n ≤ 10 evidence sources,
the degrees of similarity are computed according to the formula (8),
and compared with a prior tuned threshold. If it is larger than the
threshold, then let n = n + 1. Otherwise, introduce a new source of
evidence Ŝs+1.

4) If n = 1, the current source, say S, is not involved in the fusion process.
If n = 2, then the fusion step must apply between S and Ŝ2 with
classical DSm rule [31], i.e. the conjunctive consensus. We then use
PCR5 rule [32] to redistribute the remaining partial conflicts only to
the sets involved in the corresponding partial conflicts. We get a new
combined source affected with same index S. If 2 < n ≤ 10, after the
current evidence source Ŝs is combined with the final source of evidence
produced last time, a new source of evidence is obtained and assigned
to S again. Whenever n ≤ 10, go back to step 2), otherwise, the current
source of evidence Ŝs under test has been accepted by the ESMS filter,
Ŝi is assigned to Ŝi−1, i ∈ [2, s, 10], and Ŝs is assigned to Ŝ10. Then, Ŝ10

is combined with the last source S, the combined result is reassigned11

to S, and then, go back to step 2).

5) Test whether to stop or not12: if no, then introduce a new source of
evidence Ŝs+1, otherwise stop and exit.

We show two simulation results in Figures 3 and 4 following the working
principle of GFM, when we use the sources of evidences listed in Table 1.

10We assume the free DSm model and consider that the general basic belief assignments
are given.

11In this work, we use also an ESMS filter window in a sliding mode.
12In our experiment, judge whether the mobile robot stops receiving sonar’s data.
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The comparison of Figures 3 and 4 yields the following remarks:

1) On the Figure 3, we don’t see the real advantage of ESMS filter since
the convergence to θ1 without ESMS filter (green curve) is better than
with ESMS filter in terms of improving fusion precision. This is because
some useful information sources are filtered and thrown away with the
increase of the threshold, the number of information sources to enter
into the final fusion will become fewer and fewer. Generally speaking,
this yields a slower speed of convergence to θ1. For example, for one
source S3 in the Table 1, if S3 is combined with itself once accord-
ing to (6), the combinational result is S = [mN (θ1), mN(θ2), mN(θ1 ∩
θ2), mN(θ1 ∪ θ2)]

13 = [0.5707, 0.0993, 0.1680, 0.1620] . If twice, the re-
sult is S = [0.6765, 0.0852, 0.1429, 0.0954]. If thrice, then the result is
S = [0.7453, 0.00693, 0.1216, 0.0638]. More the combinational times is,
nearer by 1 mN(θ1) is and nearer by 0 mN (θ2) is .Therefore, ESMS
filter might also result in losing some useful information, while it filter
some bad information.

2) On the Figure 4, one sees the role played by the ESMS filter. When
there are highly conflicting sources, the result of the fusion process will
not converge if the ESMS filter is not used. With the fine tuning of the
ESMS threshold, the convergence becomes better and better because
ESMS filter processes the fused information, and withdraws the sources
which might cause the results to be incorrect or imprecise, so that it
improves the fusion precision and correctness.

3) The reduction of computing burden is obtained. Even if we have intro-
duced an ESMS preprocessing step, it turns out that finally a drastic
reduction of computing burden is obtained because we can significantly
reduce the number of sources to combine with ESMS criterion.

4) We increase the applicability of the classical rules of combination. Since
we reduce the number of conflicting sources of evidence thanks to the
ESMS preprocessing, the degree of conflict between sources to combine
is kept low. Therefore, classical rules, like Dempster’s rule, which do
not perform well in high conflicting situations can be used also in appli-
cations like the one studied here. Without ESMS preprocessing step,
the classical fusion rules cannot work very well [23, 29]. Therefore, we
extend their domain of applicability when using ESMS filtering step.

13mN (·) refers to the new generalized basic belief assignment
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Figure 3: Fusion result of the front 10 sources using different thresholds (0 ∼ 0.9).
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Figure 4: Fusion result of the total 20 sources using different thresholds (0 ∼ 0.9).
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7. An application in mobile robot perception

The information acquired in building grid map using sonar sensors on
a mobile robot is usually uncertain, imprecise and even highly conflicting.
Such application in autonomous robot perception and navigation provides
a good platform to verify experimentally the capability of the ESMS filter
in GFM. Although there exist many methods of building map based either
on Probability theory [36], FST (Fuzzy System Theory) [24], DST [34], GST
(Grey System Theory) [39, 40, 41], or DSmT [20], we just compare the perfor-
mances of the map building using a classical fusion machine without ESMS
filter (i.e. CFMW) with respect to the classical fusion machine with ESMS
filter (called GFM) in the DSmT framework only. A detailed comparison
between our current ESMS-based approach with other methods is given in
a companion paper in [21] where we show that ESMS-based approach out-
performs other approaches using almost the same experimental conditions
and inputs. In order to further reduce the measurement noises, we improve
our past belief assignment model of sonar sensors in DSmT framework14 as
follows:

m(θ1) =







(1 − ρ/(R − 2ε)) × (1 − λ/2) if

{

Rmin ≤ ρ ≤ R − ε

0 ≤ ϕ ≤ ω/2

0 otherwise

(12)

m(θ2) =







exp(−3(ρ − R)2) × λ if

{

Rmin ≤ ρ ≤ R + ε

0 ≤ ϕ ≤ ω/2

0 otherwise

(13)

14We assume that there are only two focal elements θ1 and θ2 in the frame of discernment.
Elements of hyper-power set are θ1,θ2, θ1∩θ2 and θ1∪θ2. θ1 represents the emptiness of a
given grid cell, θ2 represents the occupancy for a given grid cell, θ1∩θ2 means that there is
some conflict between two sonar measurements for the same grid cell and θ1∪θ2 represents
the ignorance for a grid cell because of the possible lack of measurement acquisition.
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m(θ1∩θ2) =







1 − (2(ρ − (R − ε)/R)2) if

{

Rmin ≤ ρ ≤ R + ε

0 ≤ ϕ ≤ ω/2

0 otherwise

(14)

m(θ1 ∪ θ2) =

{

tan(2(ρ − R)) × (1 − λ) if R ≤ ρ ≤ R + ε

0 otherwise
(15)

Where, λ is given by (see [9] for justification)

λ =

{

1 − (2ϕ/ω)2 if 0 ≤ |ϕ| ≤ ω/2

0 otherwise
(16)

The parameters R, ρ, ε, Rmin, ω, and ϕ in formulas (12)-(16) were defined and
used in [19, 20, 21]. R is the range measurement. ρ is the distance between
the grid cell and sonar’s emitting point. ε is the range measurement error.
Rmin is the minimal range distance of sonar sensors. ω is the scattering angle
of sonar. ϕ is the angle between the line (from the grid cell to sonar emitting
point) and the sonar’s emitting direction. The following functions C1 and C2

play an important role in reducing noises in the process of map building. C1

function, proposed by Wang in [39, 40, 41], is a constrict function15 for sonar
measurements defined by:

C1 =







0 if ρ > ρl2
ρl2

−ρ

ρl2
−ρl1

if ρl1 ≤ ρ ≤ ρl2

1 if ρ < ρl2

(17)

Where, ρl1 and ρl2 represents the upper and lower limits of valid measure-
ments. C2 is the constraint function16 for sonar’s uncertainty defined as
follows:

C2 =







(ρ−R+0.5ε

0.5ε
)2 if ρ − R > −0.5ε

(ρ−R−0.5ε

0.5ε
)2 if ρ − R < 0.5ε

0 if | ρ − R |> 0.5ε

(18)

15The main idea is that the sonar readings must be discounted according to sonar
characteristics.

16The main idea consists in committing high belief assignments to sonar readings close
to the sonar sensor.
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Where, the product of C1 and C2 is multiplied by the belief assignment
function, i.e. m(θ2), m(θ1 ∩ θ2), m(θ1 ∪ θ2) respectively.

The experiment is performed by running Pioneer II mobile robot with 16
sonar detectors in the indoor laboratory environment as shown in Figure 5.
The environment’s size is 4550mm × 3750mm. The environment is divided
into 91×75 rectangular cells having the same size according to the grid map
method. The robot starts to move from the location (1 m, 0.6 m), which faces
towards 0 degree. We take the corner of left bottom as the global coordinate
origin of the map. Objects/obstacles in rectangular grid map are sketched
in Figure 6. The processing steps of our intelligent perception and fusion
system have been implemented with our software Toolbox developed under
C++ 6.0 and with OpenGL server as a client end. When the robot moves in
the environment, the server end collects much information (i.e. the location
of robot, sensors measurements, velocity, etc.) from the mobile robot and its
sensors onboard. Through the protocol of TCP/IP, the client end can get
any information from the server end and fuse them.

Since our environment is small,the robot moves less time or a short dis-
tance. Then one only considers the self-localization method based on δ-
NFAM17 method [17, 19] with the search from θ − δθ to θ + δθ. In order to
reduce the computation burden, the restricted spreading arithmetic has been
used. The flow chart of this procedure for this experiment is given in Figure
7. Its main steps are the following ones:

1) Initialize the parameters of the robot (location, velocity, etc.).

2) Acquire 16 sonar measurements, and robot’s location from odometer,
when the robot is running in the environment. We can calibrate the
robot’s pose with our δ-NFAM method [17, 19]. Here we set the first
timer, of which interval is 100 ms.

3) Compute gbba of the fan-form area detected by each sonar sensor ac-
cording to the formulas in [20].

4) Apply the DSmT-based GFM, that is, adopt Euclidean information
filter to choose basic consistent sources of evidence according to the
formula (8). Then combine the consistent sources with the DSm con-
junctive rule [4, 5, 31] and compute gbbas after combination. Then,

17One has taken δθ = 5o in our experiment.
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redistribute partial conflicting masses to the gbbas of sets involved in
the partial conflict only with the PCR5 rule [32].

5) Compute the belief of occupancy Bel(θ2) of some grid cells according
to [31]. Save them into the map matrix and then go to step 6).

6) Update the map of the environment (here we set the second timer,
of whose interval is 100 ms). Generally speaking, more the times of
scanning map are, more accurate the final map reconstructed is. At
the same time, also test whether the robot stops receiving the detecting
data: if yes, then stop fusion and exit, otherwise, go back to step 2).

Figure 5: The real experimental environment.
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Figure 6: Global coordinate system for the experiment.

In this experiment, we obtain the maps built by the GFM before and after
improving the sonar model as shown in Figure 8 and 9 respectively. In order
to show the advantage of the ESMS filter in the GFM, we also compare our
approach with the classical fusion machine which doesn’t use the ESMS filter
(called CFMW). The maps built by the CFMW before and after improving
the sonar model are shown in Figures 10 and 11 respectively. Whenever the
map is built before or after improving the sonar model, one sees that the
GFM always outperforms the CFMW because one obtains clearer boundary
outlines and less noises in the map reconstruction. In addition, the ESMS
information filter coupled with PCR5 fusion rule, allows to reduce drastically
the computational burden because ESMS filter can filter the outlier-sources.
With the GFM approach, only the most consistent sources of evidence are
combined and this allows to reduce the uncertainty in the fusion result and
to improve the robot perception of the surrounded environment.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

79



Figure 7: Flow chart of the map building with the GFM.
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Figure 8: Map building based on the GFM before improving the sonar model.

Figure 9: Map building based on the GFM after improving the sonar model.
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Figure 10: Map building based on the CFMW before improving the sonar model.

Figure 11: Map building based on the CFMW after improving the sonar model.
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8. Conclusions

In this paper, a general Evidence Supporting Measure of Similarity (ESMS)
between two basic belief assignments has been proposed. ESMS can be used
on different fusion spaces (lattice structures) and with different distance mea-
sures. This approach allows to select the most coherent subset of sources
of evidence available and to reject outlier-sources which are too conflicting
with other sources. Hence, a drastic reduction of computational burden is
possible with keeping good performances which is very attractive for real-
time applications having limited computing resources. The hybrid of ESMS
with the sophisticated and efficient PCR5 fusion rule of DSmT, called GFM
(Generalized Fusion Machine), is specially useful and interesting in robotic
applications involving real-time perception and navigation systems. The real
application of GFM for mobile robot perception from sonar sensors presented
in this work shows clearly a substantial improvement of the fusion result in
map building/estimation of the surrounded environment. This work shows
also the crucial role played by the most advanced fusion techniques for ap-
plications in robotics.
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