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Abstract. Algebraic codes play a signi�cant role in the minimization of data
corruption which caused by defects such as inference, noise channel, crosstalk,
and packet lost. In this paper, we introduced soft codes (soft linear codes)
through the application of soft sets which is an approximated collection of
codes. We also discussed several types of soft codes such as type-1 soft codes,
complete soft codes etc. The innovative idea of soft codes is advantageous,
for it can simultaneously transmit n-distinct messages to n-set of receivers.
Further this new technique makes use of bi-matrices or to be more general
uses the concept of n-matrices. Certainly this notion will save both time and
economy. Moreover, we develop two techniques for the decoding of soft codes.
At the end, we present a soft communication process and develop a model for
this soft communication process. The disticntions and comparison of soft
linear codes and linear codes are also presented.

1. Introduction

The transmission and storage of large amounts of data reliably and without error
is a signi�cant part of the modern communication systems. Algebraic codes are
used for data compression, cryptography, error correction and for network coding.
The theory of codes was �rst focused by Shanon in 1948 and then gradually de-
veloped by time to time by di¤erent researchers. There are many types of codes
which is important to its algebraic structures such as Linear block codes, Ham-
ming codes, BCH codes [46] and so on. The most common type of code is a linear
code over the �eld Fq. Recently a variety of codes over �nite rings have been stud-
ied. The linear codes over �nite rings are initiated by Blake in a series of papers
[13; 14] and Spiegel [49; 50] : Huber de�ned codes over Gaussian integers [26; 27; 28].
Shankar studied BCH codes over rings of residue integers [46]. Satyanarayana con-
sider analyses of codes over Zn by viewing their properties under the Lee metric [44].
Some more literature can be studied in [18; 19; 20; ; 21; 23; 30; 31; 35; 38; 43; 44; 46] :
Zadeh in his seminal paper introduced the innovative concept of fuzzy sets in

1965 [53] . A fuzzy set is characterized by a membership function whose values
are de�ned in the unit interval [0; 1] and thus fuzzy set perhaps is the most suit-
able framework to model uncertain data. Fuzzy sets have a several interesting
applications in the areas such as signal processing, decision making, control theory,
reasoning, pattern recognition, computer version and so on. The theory of fuzzy
set is a signi�cantly used in medical diagnosis, social science, engineering etc. The
algebraic structures in the context of fuzzy sets have been studied such as fuzzy
groups, fuzzy rings, fuzzy semigroups fuzzy codes etc. Alcantud et al. studied
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real applications of hesitant fuzzy sets to improvement of teaching performance
assessments and construction of meta-rankings for ranking universities [4]. Gon-
zalez et al. discussed application of interval type-2 fuzzy systems to edge
detection [25].Some more study on fuzzy set can be found in [52; 54].
The theory of rough sets was �rst introduced by Pawlak in 1982 which is another

signi�cant mathematical tool to handle vague data and information [22; 39; 40] .
The theory of rough sets mainly based upon equivalence classes to approximate
crisp sets. Rough sets has several applications in data mining, machine learning,
medicine, data analysis, expert systems and cognitive analysis etc. Some more
literature can be found on rough sets in [15; 17; 22; 29; 41; 42; 47; 51]. Algebraic
structures can also be studied in the context of rough set such as rough groups
[12], rough semigroups and so on. Chen et al. gave the application of rough
sets to graph theory [16].
The complexities of modelling uncertain data is the main problem in engineer-

ing, environmental science, economics, social sciences, health and medical sciences
etc. Classical theories are not always successful as the uncertainties are of several
types which appearing in these domains. The fuzzy set theory [53], probability
theory, rough set theory [22; 39; 40] etc are well known and useful mathematical
tools which describe uncertainty but each of them has its own limitation pointed
out by Molodstov. Therefore, Molodstov introduced the theory of soft sets to
model vague and uncertain information [36]. A soft set a parameterized collection
of subsets of a universe of discourse. This mathematical tool is free from parame-
terization inadequacy, syndrome of fuzzy set theory, rough set theory, probability
theory and so on. Soft set theory has been applied successfully in several areas
such as, smoothness of functions, game theory, operation research, Riemann in-
tegration, Perron integration, and probability. Maji et al. gave the application of
soft sets in decision making problem [32; 33; 34]. Recently soft set theory attained
much attention of the researchers since its appearance and start studying soft al-
gebraic structures. Aktas and Cagman introduced soft groups which laid down
the foundations to study algebraic structures in the context of soft sets [1]. Some
properties and algebra may be found in [8] : Feng et al. studied soft semigroups
in [24]. Alcantud discussed some formal relationships among soft sets,
fuzzy sets, and their extensions [5]. Alcantud et al. and Muthukumar
presented the application of soft sets in medical diagnosis [3; 37]. A huge
amount of literature can be seen in [6; 7; 8; 9; 10; 16; 37; 45; 48] :
The main purpose of this paper is to introduce algebraic soft coding theory

which extends the notion of a code to soft sets. A soft code is a parameterized
collection of codes. Di¤erent types of error correcting codes have been extend to
construct soft error correcting codes. A variety of soft codes can be found by
applying soft sets to codes. Soft linear codes have been discussed mainly in this
paper. The novel concept of soft dimension have been introduced which in fact a
generalization of the dimension of a code and the concept of soft minimum distance
is introduced here. Soft codes of type 1 have been established in this paper. The
important notions of soft generator matrix as well as soft parity check matrix have
been constructed to study more features of soft linear codes. Further, the notions
of soft complete codes are introduced in this paper and in the end two soft decoding
algorithm has been costructed in this paper.
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The organization of this paper is as follows: In section 2, basic concepts of soft 
sets and codes are presented. In section 3, the important notions of soft codes 
are given with the study of some of their basic properties and features. In sec- 
tion 4, soft generator matrix (generator n-matrix) and soft parity check matrix 
(parity check n-matrix) are presented. Section 5 is about the soft decoding of soft 
codes. We developed two techniques for the decoding of soft codes. Further, in this 
section, two examples are presented for the veri�cation of soft decoding process. In 
section 6, we gave the idea of soft communication process and we also constructed a 
model for this soft communication process. In section 7, we presented the main 
disticntion and comparison of soft linear codes with linear codes. Conclusion is 
given in section 8.

2. Basic concepts

This section has two subsections. First subsection recalls all the basic notions
of linear algebraic codes. The second subsection gives the basic de�nition and
properties of soft sets.

2.1. Codes.

De�nition 1. [30]Let H be an n� k � n matrix with elements in Kq. The set of
all n-dimensional vectors satisfying HxT = (0) over Kq is called a linear code(block
code) C over Kq of block length n. C is also known as linear (n; k) code.

De�nition 2. [43]. Each vector of the subspace C is termed as codeword
of the lenght n. A codeword is used for secrecy or convenience instead
of the usual name for something.

De�nition 3. [43]. Let Kn be a vector space over the �eld K, and x; y 2 Kn where
x = x1x2:::xn,y = y1y2:::yn. The Hamming distance between the vectors x and y is
denoted by d (x; y), and is de�ned as d (x; y) = ji : xi 6= yij.
De�nition 4. [43]. The minimum distance of a code C is the smallest distance
between any two distinct codewords in C which is denoted by d (C) ; that is d (C) =
min fd (x; y) : x; y 2 C, x 6= yg :
De�nition 5. [43]. Let K be a �nite �eld and n be a positive integer. Let C be a
subspace of the vector space V = Kn. Then C is called a linear code over K.

De�nition 6. [43]. The linear code C is called linear [n; k]-code if dim(C) = k.

De�nition 7. [43]. Let C be a linear [n; k]-code. Let G be a k � n matrix whose
rows form basis of C: Then G is called generator matrix of the code C.

De�nition 8. [43]. Let C be an [n; k]-code over K. Then the dual code of C is
de�ned to be

C? = fy 2 Kn : x � y = 0 for all x 2 Cg
De�nition 9. [43]. Let C be an [n; k]-code and let H be the generator matrix of
the dual code C?. Then H is called a parity-check matrix of the code C:

De�nition 10. [43]. A code C is called self-orthogonal code if C � C?.
De�nition 11. [43]. Let C be a code over the �eld K and for every x 2 Kn; the
coset of C is de�ned to be

Cc = fx+ c : c 2 Cg
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De�nition 12. [43]. Let C be a linear code over K: The coset leader of a given
coset C is de�ned to be the vector with least weight in that coset.

De�nition 13. [43]. If a codeword x is transmitted and the vector y is received,
then e = y � x is called error vector. Therefore a coset leader is the error vector
for each vector y lying in that coset.

2.2. Soft set. Throughout this subsection U refers to an initial universe, N is a
set of parameters, P (U) is the power set of U , and A � N . Molodtsov [31]. de�ned
the soft set in the following manner:

De�nition 14. [31]. A pair (F;A) is called a soft set over U where F is a mapping
given by F : A �! P (U).

In other words, a soft set over U is a parameterized family of subsets of the
universe U . For a 2 A, F (a) may be considered as the set of a-elements of the soft
set (F;A), or as the set of a-approximate elements of the soft set.

De�nition 15. [28]. For two soft sets (F;A) and (H;B) over U , (F;A) is called
a soft subset of (H;B) if

(1) A � B and
(2) F (e) � G(e), for all e 2 A.

This relationship is denoted by (F;A)
�
� (H;B). Similarly (F;A) is called a

soft superset of (H;B) if (H;B) is a soft subset of (F;A) which is denoted by

(F;A)
�
� (H;B).

De�nition 16. [28]. Two soft sets (F;A) and (H;B) over U are called soft equal
if (F;A) is a soft subset of (H;B) and (H;B) is a soft subset of (F;A).

3. Soft Linear Code

In this section for the �rst time the notion of soft code and soft code of type 1
are introduced. Examples of these codes are provided.

De�nition 17. Let K be a �nite �eld and V = Kn be a vector space over K where
n is a positive integer. Let P (V ) be the power set of V and (F;A) be a soft set over
V: Then (F;A) is called soft linear code over V if and only if each F (a) is a linear
code (subspace) of V for all a 2 A. In the rest of the paper, from a soft code, we
mean a soft linear code (F;A) :

Example 1. Let K = K2 and V = K3
2 is a vector space over K2 and let (F;A)

be a soft set over V = K3
2 . Then clearly (F;A) is a soft linear code over V = K

3
2 ,

where

F (a1) = f000; 111g ;
F (a2) = f000; 110; 101; 011g :

De�nition 18. Let (F;A) be a soft code over the �eld K: Then the soft
element F (a) is called soft codeword of (F;A) for all a 2 A:Here we
denote the soft codeword by Ys. In other words a soft codeword is a
parameterized set of codewords of C.
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De�nition 19. Let (F;A) be a soft code over V = Kn. Then Ds is called soft
dimension of (F;A) if

Ds = fdim (F (a)) ; for all a 2 Ag :

The soft dimension Ds of the soft code is simply an n-tuple; where n is the
number of parameters in the parameter set A:

Example 2. Let (F;A) be a soft code de�ned in above example. Then the soft
dimension is as follows,

Ds = fdim (F (a1)) = 1;dim (F (a2)) = 2g ;
= f1; 2g :

De�nition 20. A soft linear code (F;A) over V of soft dimension Ds is called soft
linear [n;Ds]-code.

De�nition 21. Let (F;A) be a soft code over V . Then the soft minimum distance
of (F;A) is denoted by Sd (F;A) and is de�ned to be

Sd (F;A)= fd (F (a)) : for all a 2 Ag ; where d (F (a)) is the minimum distance of the code F (a) :

Example 3. Let (F;A) be a soft code d�ned in Example 1. Then the min-
imum distance of the code F (a1) = 3 and F (a2) = 2. Thus the soft minimum
distance of the soft code (F;A) is given as

Sd (F;A) = fd (F (a1)) = 3; d (F (a2)) = 2g ;
= f3; 2g :

De�nition 22. A soft code (F;A) in V over the �eld K is called soft code of type
1, if the dimension of F (a) is same, for all a 2 A.

Example 4. Let (F;A) be a soft code in V over the �eld K2
2 , where

F (a1) = f00; 01g ; F (a2) = f00; 10g :

The soft dimension Ds of (F;A) is as follows,

Ds = f1; 1g :
Thus clearly (F;A) is a type 1 soft code.

Theorem 1. Every soft code of type 1 is trivially a soft code but the converse is
not true.

For converse, we take the following example.

Example 5. Let (F;A) be a soft code d�ned in Example 1. Then clearly
(F;A) is not a type 1 soft code.

4. Soft Generator Matrix and Soft Parity Check Matrix

In this section the soft generator n-matrix and the parity check n-matrix of the
soft linear code is introduced and examples are given. When n = 2; it reduces to
the bimatrix. In this paper, we used the convnetion of replacing [ by j :

De�nition 23. Let (F;A) be a soft linear [n;Ds]-code. Let Gs be the n-matrix
whose elements are the generator matrices of the soft code (F;A), corresponding to
each a 2 A where n is the number of parameters in A. Then Gs is termed as the
soft generator matrix of the soft linear code (F;A).
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Example 6. Let (F;A) be a soft code de�ned in Example 1. Clearly we
have,

F (a1) has generator matrix GF (a1) =
�
1 1 1

�
and F (a2) has generator

matrix GF (a2) =
�
1 1 0
0 1 1

�
.

Then the soft generator matrix of the soft code (F;A) is a bimatrix given as
follows.

Gs =

��
1 1 1

� ����� 1 1 0
0 1 1

��
:

De�nition 24. Let (F;A) be a soft [n;Ds]-code over the �eld K and the vector
space V: Then the soft dual code of (F;A) is de�ned to be

(F;A)dual = fF (a)dual : for all a 2 Ag ;

wher F (a)dual is the dual code of F (a).

Example 7. Let (F;A) be a soft code de�ned in Example 1. Then the soft
dual code of (F;A) is (F;A)dual, where

F (a1)dual = f000; 110; 101; 011g ;
F (a2)dual = f000; 111g :

De�nition 25. A soft linear code (F;A) in V = Kn over the �eld K is called
complete-soft code if for all a 2 A, the dual of F (a) also exist in (F;A).

Example 8. Let (F;A) be a soft code de�ned in Example 1. Then clearly
(F;A) is a complete-soft code because the dual of F (a1) is F (a2) and also the dual
of F (a2) is F (a1).

Theorem 2. All complete-soft codes are trivially soft codes but the converse is not
true in general.

Theorem 3. A complete-soft code (F;A) over the �eld K and the vector space V
is the parametrized collection of the codes C with its dual code C?:

De�nition 26. Let (F;A) be a soft code over the �eld K and the vector space V
and (F;A)dual be the soft dual code of (F;A) :Then the soft dimension of the soft
dual code (F;A)dual is denoted by (Ds)dual and is de�ned as

(Ds)dual = fdim (F (a)dual) : for all a 2 Ag ; where dim (F (a)dual) is the dimenesion of the dual code F (a) :

Example 9. In previous example the soft dimension of the dual code (F;A)dual
is following

(Ds)dual = fdim (F (a1)dual) = 2;dim (F (a1)dual) = 1g
= f2; 1g :

De�nition 27. Let (F;A) be a soft over the �eld K and the vector space V and let
Hs be the soft generator matrix of the soft dual code (F;A)dual : Then Hs is called
the soft parity check matrix of the soft code (F;A) :

Example 10. In above example the soft dual code of (F;A) is (F;A)dual, where

F (a1)dual = f000; 110; 101; 011g ;
F (a2)dual = f000; 111g :
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The soft generator bimatrix of (F;A)dual is S (H), where

Hs =

��
1 1 0
0 1 1

� ��� 1 1 1
��
;

where HF (a1) =
�
1 1 0
0 1 1

�
is a parity check matrix of GF (a1) and HF (a2) =�

1 1 1
�
is a parity check matrix of GF (a2).

Theorem 4. Let (F;A) be a soft code over the �eld K and the vector space V . Let
Gs and Hs be the soft generator matrix and soft parity check matrix of the soft
code (F;A) : Then

GsH
T
s = 0:

De�nition 28. A soft linear code (F;A) in V over the �eld K is called soft self
dual code if (F;A)dual = (F;A) :

De�nition 29. Let (F;A) be a soft code over the �eld K and the vector space V .
Let Gs be the soft generator matrix of (F;A) : Then the soft canonical generator
matrix of (F;A) is denoted by G�s and is de�ned as

G�S =
h
G�F (a)

i
;

where G�F (a) is the canonical generator matrix of F (a), for all a 2 A: In fact a
soft canonical generator matrix is a n-canonical generator matrix.

Example 11. Let (F;A) be a soft code over V = K5
2 , where

F (a1) = f00000; 10010; 01001; 00110; 11011; 10100; 01111; 11101g ; F (a2) = f00000; 11111; 10110; 01001g :

The soft canonical generator bimatrix of (F;A) is as under,

G�s =

24� 1 0 1 1 0
0 1 0 0 1

� ������
24 1 0 0 1 0
0 1 0 0 1
0 0 1 1 0

3535 ;
where G�F (a1) =

�
1 0 1 1 0
0 1 0 0 1

�
; G�F (a2) =

24 1 0 0 1 0
0 1 0 0 1
0 0 1 1 0

35 are respec-
tively the canonical generator matrices of F (a1) and F (a2) :

Theorem 5. Let (F;A) be a soft code. If (F;A) has a soft canonical generator
n-matrix

G�s =
h
G�F (a) =

h
Ik
... A

i
, for all a 2 A

i
:

Then

H�
s =

�
H�
F (a) =

�
�AT

... Im�k

�
, for all a 2 A

�
is the soft canonical parity check n-matrix of (F;A). Conversely, if

H�
s =

h
H�
F (a) =

h
B
... Im�k

i
, for all a 2 A

i
is the soft canonical parity check matrix of (F;A), then

G�s =
h
G�F (a) =

h
Ik
... �BT

i
, for all a 2 A

i
:
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5. Soft Decoding Algorithms

In this section we provide a soft decoding algorithm for soft linear codes which
forms subsection one of this section. This concept is illustrated with examples. In
subsection two soft syndrome decoding is introduced. This helps in error correction
of soft codes.

5.1. Soft Standard Array Decoding.

De�nition 30. Let (F;A) be a soft linear code or soft subspace of V = Kn over
the �eld K. Then for every x 2 Kn, the soft coset of (F;A) is de�ned as
following.

(F;A)C = fx+ F (a) , for all a 2 Ag :

The soft coset of (F;A) is denoted by (F;A)C .

De�nition 31. Let (F;A) be a soft linear code in V = Kn over the �eld K: The
soft coset leader of a given soft coset (F;A)C is denoted by Ei and is de�ned to be

Ei = fu : for all a 2 Ag ;where u is the coset leader of F (a) :

Example 12. Let (F;A) be a soft code de�ned in Example 1. Then the soft
cosets of the soft code (F;A) are as follows:

(F;A)C1 = f000 + F (a1) ; 000 + F (a2)g = (F;A) ;

(F;A)C2 = f100 + F (a1) ; 100 + F (a2)g = ff100; 011g ; f100; 010; 001; 111gg ;

(F;A)C3 = f010 + F (a1) ; 010 + F (a2)g = ff010; 101g ; f100; 010; 001; 111gg ;

(F;A)C4 = f001 + F (a1) ; 001 + F (a2)g = ff001; 110g ; f100; 010; 001; 111gg :
Following are the soft coset leaders of the soft coset (F;A),

E
1
= f000; 000g ; E

2
= f100; 100g ;

E
3
= f010; 010g ; E

4
= f001; 001g ; and so on.

De�nition 32. A set of standard arrays of the corresponding parametrized codes
is called soft standard array for the soft linear code (F;A).

Example 13. Let (F;A) be a soft code de�ned in Example 1. Then the soft
cosets of (F;A) are as follows.

(F;A)C1 = f000 + F (a1) ; 000 + F (a2)g = (F;A) ;

(F;A)C2 = f100 + F (a1) ; 100 + F (a2)g = ff100; 011g ; f100; 010; 001; 111gg ;

(F;A)C3 = f010 + F (a1) ; 010 + F (a2)g = ff010; 101g ; f100; 010; 001; 111gg ;
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(F;A)C4 = f001 + F (a1) ; 001 + F (a2)g = ff001; 110g ; f100; 010; 001; 111gg :
The following are the coset leaders of the soft linear code (F;A),

E
1
= f000; 000g ; E

2
= f100; 100g ;

E
3
= f010; 010g ; E

4
= f001; 001g :

The soft standard array for the soft linear code (F;A) is following,8>><>>:
000 111
100 011
010 101
001 110

;

000 110 101 011
100 010 001 111
010 100 111 001
001 111 100 010

9>>=>>; :
5.2. Soft Syndrome Decoding.

De�nition 33. Let (F;A) be a soft code over K with soft parity check matrix HS.
For any vector Ys � Kn, the soft syndrome of Ys is de�ned as S (Ys) = Ys (Hs)

T .

Theorem 6. Let (F;A) be a soft code over the �eld K: For Ys � Kn, the soft
codeword nearest to Ys is given by Xs = Ys �Es, where Es is the soft coset leader.

Let (F;A) be a soft code over the �eld K with soft parity check matrix HS : For
soft syndrome decoding, we �rst �nd all the soft coset of the soft code (F;A) and
then �nd the soft coset leaders ES which are in fact the collection of coset leaders
corresponding to each parameterized code. Then, we compute the soft syndrome
for all the soft coset leaders and then make a table of soft coset leaders with their
soft syndroms. To decode a soft codeword say YS , we simply �nd the soft syndrome
of that soft codeword and then compare their soft syndrome with soft coset leader
syndrome. After comparing their soft syndromes, we then subtract the soft coset
leader from the soft decoded word. Hence YS is soft decoded as XS = YS � Es.

Example 14. Let (F;A) be a soft code de�ned in Example 1. The soft parity
check matrix of (F;A) is Hs, where

Hs =

��
1 1 0
0 1 1

� ��� 1 1 1
��
:

The transpose of Hs is following,

(Hs)
T
=

2424 1 0
1 1
0 1

35 ������
24 1
1
1

3535 :
Then the soft cosets of (F;A) are as follows.

(F;A)C1 = f000 + F (a1) ; 000 + F (a2)g = (F;A) ;

(F;A)C2 = f100 + F (a1) ; 100 + F (a2)g = ff100; 011g ; f100; 010; 001; 111gg ;

(F;A)C3 = f010 + F (a1) ; 010 + F (a2)g = ff010; 101g ; f100; 010; 001; 111gg ;
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(F;A)C4 = f001 + F (a1) ; 001 + F (a2)g = ff001; 110g ; f100; 010; 001; 111gg :

The following are the soft coset leaders Ei of the soft code (F;A),

E
1
= f000; 000g ; E

2
= f100; 100g ;

E3 = f010; 010g ; E4 = f001; 001g :
Soft syndrome table of soft coset leader is given as follows.

soft coset leader soft syndrome
f000; 000g f00; 0g
f100; 100g f10; 1g
f010; 010g f11; 1g
f001; 001g f01; 1g

We want to decode a soft codeword Ys = f110; 101g. First we �nd the soft
syndrom of the soft codeword.

S (Ys) = y (Hs)
T
= [110; 100]

2424 1 0
1 1
0 1

35 ������
24 1
1
1

3535 = [01; 1] :
Since S (f110; 100g) = f01; 1g = S (f001; 001g) :
The decoded soft codeword is

S (Ys)� S (E4) = Xs

S (f110; 100g)� S (f001; 001g) = f110� 001; 100� 001g
= f111; 101g :

Hence the soft codeword Ys = f110; 100g is decoded as Xs = f111; 101g : By
similar fashion, we can �nd all the soft decoded codewords.

6. Soft Communication Transmission

In this section, we present a soft communication transmission with the help of
a model. This model consists of a soft encoder which is the collection of encoders.
Therefore, corresponding to each parameter a in A, we have an encoder in the
soft encoder. Furthermore, we have also a soft decoder which is the collection of
decoders and thus to each parameter a in A, we have a decoder in the soft decoder.
There are n parameters in the parameter set A, therefore, we have n encoders in
the soft encoder as well as n decoders in the soft decoder. Consequently, we have
a collection of n messages and n receivers to recieve their desired message.
The signals from the source cannot be transmitted directly by the channel.

Therefore the n encoders perform the important work of data reduction and suit-
ably transforms the n-messages into usable form. Thus there is a di¤erence between
source encoding and channel encoding. The former reduces the messages to recog-
nizable parts and the latter adds redundant information to enable deduction and
correction of possible errors in transmission. Similarly on receiving we have to
distinguish between channel decoding and source decoding, which invert the corre-
sponding channel and source encoding besides deleting and correcting errors. If we
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have n = 1, the soft communication transmission reduces to classical communica- 
tion transmission. The model of soft communication transmission is given in the 
following Figure 1.

Figure1 : Soft communication transmission model

7. Comparison of Soft Linear Codes with linear Codes

In this section, we have presented some of the main di¤erences of soft linear
codes with linear codes by comparison. The following are the main distinguishing
features of our proposed soft linear codes.

(1) The main distinction between linear code and soft linear code is that for
the soft linear code each soft codeword has some �avors, i.e. each soft
codeword is characterized by some attributes, while the non-soft codewords
are characterized by no attributes. Then one can manipulate the attributes
of a soft codewords, for example an attribute "a1" can some some attribute
that �trick�the code hackers, or may be chances that the soft codeword has
a smaller chance to belong to the message (i.e. included just to deceive
the hackers). and so on. Hence soft linear codes are more secure than the
classical codes due to parameterization.

(2) The soft linear code di¤er in structure as a linear code C is just a one
subspace, but a soft linear code is a collection of subspaces. At least a
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soft linear code has two subspaces, each subspace depending on the set of
parameters used. Therefore, soft linear codes are more generalized than the
linear codes.

(3) Soft linear codes can simultaneously transmit n distinct messages to n set of
receivers whereas linear codes can transmit only one message to a receiver.

(4) This new technique makes use of bi-matrices or to be more general uses
the concept of n-matrices. Certainly this notion will save both time and
economy.

(5) In soft decoding process, one can decode a set of code words (soft code
word) at a time while it is not possible in linear decoding process.

(6) Soft linear codes can provide us several types of new codes such as type-1
codes, complete codes etc., which is not possible in linear codes.

8. Conclusion

Algebraic codes play a signi�cant role in the minimization of data corruption
which caused by defects such as inference, noise channel, crosstalk, and packet
lost. In this paper for the �rst time we have introduced the new notions of soft
linear codes using soft sets. The advantages of this new class of codes are that it
can send simultaneously n-messages to n-persons. Hence this new codes can save
both time and economy. Soft generator matrix (generator n-matrix) and soft parity
check matrix (parity check n-matrix) are presented. Two techniques are developed
for the decoding of soft linear codes. The channel transmission is also illustrated.
Finally, the main disticntion and comparison of soft linear codes with linear codes
are presented.
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described in this paper has neither published nor under consideration for publishing.
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