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Abstract—In this paper, we present a Non-Bayesian condition- to combine conflicting sources of evidentesnd because
ing rule for belief revision. This rule is truly Non-Bayesian in Dempster’s rule often considered as a generalization of Bayes
the sense that it doesn't satisfy the common adopted principle rule is actually not deconditionable (see examples in the

that when a prior belief is Bayesian, after conditioning by X, - , .
Bel(X|X) must be equal to one. Our new conditioning rule for sequel), contrariwise to PCRS, that's why we utilize PCRS.

belief revision is based on the proportional conflict redistribution  This paper is organized as follows. In section II, we briefly
rule of combination developed in DSmT (Dezert-Smarandache recall Dempster’s rule of combination and Shafer's Condition-
Theory) which abandons Bayes’ conditioning principle. Such jng Rule (SCR) proposed in Dempster-Shafer Theory (DST)
Non-Bayesian conditioning allows to take into account judiciously of belief functions [16]. In section Ill, we introduce a new

the level of conflict between the prior belief available and Non-B . ditioni | d sh its diiff ith
the conditional evidence. We also introduce the deconditioning on-bayesian conditioning ruie and show ItS diflerence wi

problem and show that this problem admits a unique solution respect to SCR. In section IV, we introduce the dual problem,
in the case of Bayesian prior; a solution which is not possible called the deconditioning problem. Some examples are given
to obtain when classical Shafer and Bayes conditioning rules are jn section V with concluding remarks in section VI.

used. Several simple examples are also presented to compare

the results between this new Non-Bayesian conditioning and the Il. SHAFER'S CONDITIONING RULE

classical one.
Keywords: Belief functions, conditioning, deconditioning, In DST, a normalized basic belief assignment (bb#))
probability, DST, DSmT, Bayes rule. is defined as a mapping from the power @ of the

finite discrete frame of discernmef into [0, 1] such that
m(0) = 0 and } .o m(X) = 1. Belief and plausibility
functions are in one-to-one correspondence with) and are
, . ._respectively defined byBel(X) = >, 50 zcx m(Z) and
The question of the updating of probabilities and beheﬂg (X) = Zzez@),zquﬁo m(Z). They are usually interpreted

has yielded, and still yields, passionate philosophical and | L
. ower and upper bounds of a unknown measure of subjective
mathematical debates [3], [6], [7], [9], [12], [13], [17], [20], robabiIityP(.)pFi).e.Bel(X) < P(X) < PI(X) for any X. n

[2.2] n the smenh_ﬂc commumty_r_md It arises from th ST, the combination of two independent sources of evidence
different interpretations of probabilities. Such question ha%aracterized byni(.) andms(.) is done using Dempster’s
1 21.

been reinforced by the emergence of the possibility and tﬁﬁe as follow?:

evidence theories in the eighties [4], [16] for dealing with

I. INTRODUCTION

uncertain information. We cannot browse in details here all le,xzege my(X1)ma(X2)
the different authors’ opinions [1], [2], [8], [10], [14], [15] mps(X) = X1NX>=X L
on this important question but we suggest the reader to start 1- Z))?,x;ezz my (X1)ma(Xa2)

1NXo=

with Dubois & Prade survey [5]. In this paper, we propose a

true Non-Bayesian rule of combination which doesn't satisfy Shafer's conifioning rule® (SCR) is obtained as the result
the well-adopted Bayes principle stating thatX|X) = 1 of Dempsters combination of the given prior bba,(.)
(or Bel(X|X) = 1 when working with belief functions). with the conditional evidence, sdy represented by a source
We show that by abandoning such Bayes principle, one caf}(.) only focused ony, that is such thainy(Y) = 1. In
take into account more efficiently in the conditioning procesgher words,m(X|Y) = mps(X) = (m1 @ mso)(X) using

the level of the exi;t_ing conf_lict between the prior evidenc,%(y) = 1 and where® symbol denotes here Dempster’s

and the new conditional evidence. We show also that the

full deconditioning is possible in some specific cases. Ouripye to space limitation, we do not present, nor justify again PCR5 w.r.t.

approach is based on belief functions and the Proportior@gﬂer rules since this has been widely explained in the literature with many

Conflict Redistribution (mainly PCRS5) rule of combinatiorf*@mPples and discussions, see for example [18], Vol. 2. and our web page.
. assuming that the numerator is not zero (the sources are not in total

developed in Dezert-Smarandache Theory (DSmT) framewQgfiict).

[18]. Why we use PCR5 here? Because PCRS is very efficientalso called Dempster's conditioning by Glenn Shafer in [16].
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fusion rule (1). It can be shown [16] that the conditional belighll fractions in (4) having zero denominators are discarded.
and theplausibility are given b¥: The extension and a variant of (4) (called PCR6) for
Beli (X UY) — Bely(Y) combinings > 2 sources and for working in other fusion

spaces is presented in details in [18]. Basically, in PCR5 the

Bel(X|Y) = Y mps(Z|Y) =

Ze2° L= Beli(Y) partial conflicting masses are redistributed proportionally to
ZCX . . . .
2) the masses of the elements which are involved in the partial
PL(XNY) conflict only, so that the specificity of the information is
PUXTY) = Z mps(Z|Y) = Pl (Y) ®) entirely preserved through this fusion process. It has been
Z?&?;@ clearly shown in [18], Vol. 3, chap. 1 that Smets’ rUlis

not so useful, nor cogent because it doesn’t respond to new
information in a global or in a sequential fusion process.

- > i'ndeed, very quickly Smets fusion result commits the full
inition (Bayes formula), that i(X|Y) = P(XNY)/P(Y), of mass of belief to the empty set!!! In applications, some
with P(.) = m4(.). Note that whenY” = X and as soon

) ad-hoc numerical techniques must be used to circumvent this
as Bel(X) < 1, one always gets from (2)3el(X|X) = 1 gerious drawback. Such problem doesn't occur with PCRS
becauseBel, (X UY) = Beli(X U X) = Beli(©) = 1. e By construction, other well-known rules like Dubois &

For Bayesian belief, this implie®(X|X) = 1 for any X prage “or Yager's rule, and contrariwise to PCR5, increase
such thatP (X) > 0, which we callBayes principle Other o non-specificity of the result.

alternatives have been proposed in the literature [8], [15],
[21], but almost all of them satisfy Bayes principle and thei&‘roperties of PCR5
are all somehow extensions/generalization of Bayes rule. A
true Non-Bayesian conditioning (called weak conditioning)
was however introduced by Planchet in 1989 in [14] but
it didn't bring sufficient interest because Bayes principle °
is generally considered as the best solution for probability
updating based on different arguments for supporting such
idea. Such considerations didn’t dissuade us to abandon Bayes
principle and to explore new Non-Bayesian ways for belief
updating, as Planchet did in nineties. We will show in next
section why Non-Bayesian conditioning can be interesting.

When tre belief is Bayesiah i.e. Bel(.|Y) = PI(.|Y) =
P(.]Y"), SCR reduces to classical conditional probability de

e (PO): PCR5 rule is not associative, but it is quasi-
associative (see [18], Vol. 2).

(P1): PCRS5 Fusion of two non Bayesian bba’s is a non
Bayesian bba.

Example: Conside® = {A, B, C} with Shafer's model
and with the two non Bayesian bba’s;(.) and ma(.)
given in Table I. The PCRS5 fusion result (rounded at the
fourth decimal) is given in the right column of the Table
I. One sees thatipcrs(.) in @ non Bayesian bba since

some of its focal elements are not singletons.
[1I. A N ONBAYESIAN CONDITIONING RULE

Before presenting our Non Bayesian Conditioning Rule, PCR5FUSION OFTI?SI%NBAYES,AN BBA’S.
it is important to recall briefly the Proportional Conflict Focal Blem._ | () [ 200 [ " pamsC)
Redistribution Rule no. 5 (PCR5) which has been proposed 5 0z | o 0.1596

- . y - C 0.1 0.2 0.1990
as a serious alternative of Dempster’s rule [16] in Dezert- AUB 03 0 0.0360
Smarandache Theory (DSmT) [18] for dealing with conflicting AbBuc | o3 © o

belief functions. In this paper, we assume working in the same

fusion space as Glenn Shafer, i.e. on the power2§ef  , (p2): PCR5 Fusion of a Bayesian bba with a non Bayesian
the finite frame of discernmer®® made of exhaustive and bba is a on Bayesian bba in genefal

exclusive elements. Example: Conside® = {A, B, C} with Shafer's model

A. PCRS5 rule of combination and Bayesian and a non Bayesian bba’y.) andma(.)

to combine as given in Table Il. The PCR5 fusion result
is given in the right column of the Table Il. One sees that
mpcrs(.) IS a non Bayesian bba since some of its focal

elements are not singletons.

This property is in opposition with Dempster's rule

Definition: Let's m4(.) andma(.) be two independefibba’s,
then the PCR5 rule of combination is defined as follows
(see [18], Vol. 2 for details, justification and examples) when
working in power seR®: mpcprs(0) = 0 andvX € 29\ {0}

mpers(X) = Z ma (X1)ma(Xs)+ property (see Theorem 3.7p. 67 in [16]) which states that
Xy Xae29 if Bel; is Bayesian and iBel; andBel, are combinable,
X1NX2=X then Dempster’s rule provides always a Bayesian belief
Z [ m1(X)?ma(Xs) ma(X)?my(Xs) @ function. The result of Dempster’s rule noteths(.) for
X X X X
X,e2° m1( )+ m2( 2) m2( ) * ml( 2) 7i.e. the non normalized Dempster’s rule.
XoNX=0 8ln some cases, it happens that Bayesigdon-Bayesian= Bayesian. For
. ) example, with® = {A, B, C}, Shafer's modelmi(A) = 0.3, m1(B) =
Y denoes the complement df in the frame®. 0.7 andmz(A) = 0.1, mo(B) = 0.2, m2(C) = 0.4 andmz(AUB) = 0.3,
Sthe focal elements ofn1 (.|Y) are singletons only. one getsnpcprs(A) = 0.2162, mpcgrs(B) = 0.6134 andmpcprs (C) =

5i.e. each source provides its bba independently of the other sources. 0.1704 which is a Bayesian bba.
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Table Il
PCR5FUSIONOF BAYESIAN AND NON BAYESIAN BBA’S.
Focal Elem. | _my () | mg () mps () | mpors ) mQ(XQ)
A 01 0 0.0833 0.0642 SPCR5(X Y) 2m (X)2 (7)
2 ) 1
c 07 | o2 Oater 05703 Z(, my(X) + ma(Xs)
Auc 0 05 0 00714 X2€2
XNXo=0
. o . . my (X2)
this example is given in Table Il for convenience. Thisis 57X, Y) £ma(X)> > ma(X) + 11 () (8)
the major dfference between PCR5 and Dempster’s rule, X2€2°
not to mention the management of conflicting information .XﬂXF@
in the fusion process of course. wherems(Y') = 1 for a givenY # 0.
In summary, and using> symbol to denote the generic
fusion process, one has Since Y is the single focal element ofng(.), the term
— With Dempster's rule : ST(X,Y) in (5) is given by} y c,e mi(Xy), the term
XlﬁY X
Bayesiant Non-Bayesian= Bayesian SER(X,Y) equalsé(X NY = 0) - X)°and the tem

SE(X,Y) can be expressed deptla;gw% )on the valueXof
with respect to the conditioning terii:

o If X £ Y thenma(X # Y) = 0 (by definition), and
« (P3): PCR5 Fusion of two Bayesian bba’s is a Bayesian thusS5*(X,Y) =

— With PCRS5 rule:
Bayesian® Non-Bayesian= Non-Bayesian (in general)

bba (see [18], Vol. 2, pp. 43—45 for proof). o If X =Y thenmy(X =Y) = l(x(t;y definition), and
. thus S5°(X,Y) = 37 y, 00 %
Example:© = {4, B, C} with Shafer’s model and let's _ X2nY=0

consider Bayesian bba’s given in the next Table. THan@lly, S5™*(X,Y) can be written as

result of PCR5 fusion rule is given in the right column_,.. B m1(X2)
of Table Ill. One sees thatipcrs(.) is Bayesian since S3 (X,Y) _\5(X 7Y)- O,+5(X =Y) XZ&@ 1+ mq(Xy)
. . . e €
its focal elements are singletons of the fusion sp2fée 0 Xohy =0
Table Il _ vy _mi(Xs)
PCRS5FUSION OF TWOBAYESIAN BBA’S. =X =Y) Z 1+mi(Xo)
Focal Elem. | m1 () [ w200 [ mps | mpors() X,e2°
A 0.1 0.4 0.0870 0.2037 X2NY =0
B 0.2 0 0 0.0567
c 07 06 09130 073% Finally, m(X || Y) for X # () andY # () are given by
. I my (X)?
B. A true Non Bayesian conditioning rule mX | Y)= > mi(X1)+6(XNY =0). HTl(X)
Here we follow the footprints of Glenn Shafer in the sense x)frlneffx
that we consider the conditioning as the result of the fusion mi(Xs)
of any prior massn;(.) defined on2® with the bbams(.) +oX=Y) > T (Xa) ©)
focused on the conditional evedit # 0, i.e. ma(Y) = 1. X,e2° a2

We however replace Dempster’s rule by the more effidfent X2NY=0

Proportional Conflict Redistribution rule # 5 (PCR5) given byn(0 || Y # 0) = 0 by déinition, since PCRS5 fusion doesn't
(4) proposed in DSmT [18]. This new conditioning rule i€ommit mass on the empty set.(X || 0) is kept undefinett

not Bayesian and we use the symbjo(parallel) instead of since it doesn’t make sense to revise a bba by an impossible
classical symbo] to avoid confusion in notations. Let's giveevent. Based on the classical definitions/&fl(.) and Pi(.)

the expression ofn (X || Y) resulting of the PCR5 fusion of functions [16], one has:

any prior bbam, (.) with m2(.) focused onY. Applying (4): Bel(X | V) = Z m(Z | Y) (10)
m(X | Y) = ST"(X,Y) + S55(X,Y) + S5°(X,Y) (5) %ecz)?
ith .
" PIX V)= Y m(Z]|Y) (1)
SIT(X,Y) = Z mi (X1)ma(X2) (6) Z%%?Z@
f&@ggfji The "true” unknown (non Bayesian) conditional subjective

probability, denoted?(X||Y"), must satisfy
9More sophisticated conditioning rules have been proposed in [18], Vol. 2.
101t deals better with partial conflicts than other rules unlike Dempster’s BGZ(X H Y) < P(XHY) < Pl(XHY) (12)
rule, it does not increase the non-specificity of the result unlike Dubois &
Prade or Yager's rule, and it does respond to new information unlike Smets!One could also definen(( || ) = 1 andm(X # @ || #) = 0 which
rule. however would not be a normal bba.

13



Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

P(X||Y) can be seen as an imprecise probability and used
within IPT (Imprecise Probability Theory) [23] if necessary,
or can be approximated from(.||Y") using some probabilistic
transforms, typically the pignistic transform [19] or the DSmP
transform [18] (Vol.3, Chap. 3). The search for direct close-
form expressions ofBel(X | Y) and PI(X | Y) from
Bely(.) and Pl;(.) appears to be an open difficult problem.

IV. DECONDITIONING

In the previous section we have proposed a new non
Bayesian conditioning rule based on PCR5. This rule follows
Shafer’s idea except that we use PCR5 instead of Dempster’s
rule because we have shown the better efficiency of PCR5
to deal with conflicting information w.r.t. other rules. In this
section, we also show the great benefit of such PCR5 rule for
the deconditioning problem. The belief conditioning problem
consists in finding a way to update any prior belief function
(Bel(.), Pl() orm(.)) with a new information related with the
(belief of) occurrence in a given conditional proposition of the
fusion space, say, in order to get a new belief function called
conditional belief function. The deconditioning problem is the
inverse (dual) problem of conditioning. It consists to retrieve
the prior belief function from a given posterior/conditional
belief function. Deconditioning has not been investigated in
deep so far in the literature (to the knowledge of the authors)
since is is usually considered as impossible to achfeve
it may present great interest for applications in advanced,
information systems when only a posterior belief is available
(say provided by an human or an Al-expert system), but for
some reason we need to compute a new conditioning belief
based on a different conditional hypothesis. This motivates
our research for developing deconditioning techniques. Since
Bel(.), PI() are in one-to-one correspondence with the basic
belief assignment (bba) mass(.), we focus our analysis on
the deconditioning of the conditional bba. More simply stated,
we want to see if for any given conditional bba(.||Y) we
can computen; (.) such thatn(.||Y") = PCR5(m1(.), ma(.))
with m2(Y) = 1 and wherePCR5(m4(.), m2(.)) denotes
the PCRS5 fusion ofn;(.) with mz(.). Let's examine the two
distinct cases for the deconditiong problem depending on the
(Bayesian or non-Bayesian) nature of the priof(.).

» Case of Bayesian priorm;(.): Let® = {61,02,...,60,},

with n > 2, Shafer's model, where afl; are singletons.
Letm; : © — [0, 1] be a Bayesian bba/mass. In that case,
the deconditioning problem admits a unique solution
and we can always compute;(.) from m(.||Y") but

two distinct cases must be analyzed depending on the
cardinality of the conditional terny’.

Case 1 WhenY is a singleton, i.e]Y| = 1. Suppose
me(Y) = 1, with Y = 6, for jo € {1,2,...,n},
where j, is fixed. Since the bba's:;(.) andms(.) are

that m(.||Y) = PCR5(m1(.),mz(.)) ? Let's denote
m1(6;) = x;, where allz; € [0,1] and Y | x; = 1.
We need to find all these,;. We now combinem(.)
with ms(.) using PCRS5 fusion rule. We transfeg, for
Vi # jo, to 6; and §;, proportionally with respect to

their corresponding masses, and 1 respectively?';—@?

i — =i whencewy, = Y- andwy, — -
1 = m4l bi = T+ 0jo — Tyl
i — . n T - n z;
while o, = x30+zizzﬁ) T Oray, = 1—25% T
Since we eed to find all unknowns;, i = 1,...,n,

2
Ty

we need to solvemi+1 a;, for ¢ # 4o for x;;
since Qj, = Tj, + 22?1 # = aj,, We getz;, =
17Jo

aj, = Y=l g =1- 31 @

i#jo . i#jo .
Case 2 WhenY is not a singleton, i.elY| > 1 (Y can
be a partial or total ignorance). Suppose(Y) = 1,
with Y = 6‘]'1 U 9j2 Uu...u ij, where alljl, 32y «es
Jjp are different and they belong t01,2,...,n}, 2 <
p < n. We keep the same notations fer(.||Y) and
Bayesianm;(.). The set{ji,j2,...,Jp} is denotedJ
for notation convenience. Similarly, using PCRS5 rule we
transferz;, Vi ¢ J, to z; and to the ignoranc& =
0, U...U 0, proportionally with respect ta;; and 1
respectively (as done in case 1). Sofor i ¢ J is found
from solving the equatiop™+ = a;, which gives= z; =
(a;++/a? + 4a;)/2; andz;, = a;, forr € {1,2,...,p}.
Case of Non-Bayesian priorm(.):
Unfortunately, whenn(.) is Non-Bayesian, the (PCR5-
based) deconditioning problem doesn’t admit one unique
solution in general (see the example 2.1 in the next
section). But the method used to decondition PCR5 when
m1(.) is Bayesian can be generalized for;(.) non-
Bayesian in the following way: 1) We need to know the
focal elements ofn;(.), then we denote the masses of
these elements by say, s, ...,z,; 2)Then we combine
using the conjunctive ruleu; (.) with mo(Y') = 1, where
Y can be a singleton or an ignorance; 3) Afterwards, we
use PCR5 rule and we get some results ligézr, ..., x,,)
for each element, wheré = 1,2,.... Since we know
the results of PCR5 as(.||Y) = a; for each focal
element, then we form a system of non-linear equations:
fi(z1,29,...,x,) = a; and we need to solve it. Such
systems of equations however can admit several solutions.
We can select a solution satisfying an additional criterion
like by example the minimum (or the maximum) of
specificity depending of the kind of Non-Bayesian prior
we need to use.

V. EXAMPLES

A. Example 1: Conditioning of a Bayesian prior belief
Let's consider® = {A, B,C}, Shafer's model, and the

both Bayesian in this casey(.|[Y) is also a Bayesian prior bba’s m(.) and m/(.) given in Table IV and the
bba (property P3), therefore(6;||Y") = a;, where all conditional evidenc&” = A U B.

a; € [0,1] with Y  a; = 1. How to find m4(.) such

13The solutionz; =
negative and cannot be considered as a mass of belief.

12This truly happens when classical Bayes conditioning is used.
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property. If one approximaté&the conditional probability by
Table IV : . A
BAYESIAN PRIORS(INPUTS). the mld—yalug of their lower and upper bouhtisone gets
values given in Table VII.

Focal Elem. my mq (.)
A 0.49 0.01
B 049 | ool Table VI
- - CONDITIONAL APPROXIMATE SUBJECTIVE PROBABILITIES
o _ ) ) ) 29 P =P (YY) [ PCIIY) | POV
The significance of having two cases in the Bayesian prior o o5 0.4098 02575
case is strghforward. We just want to show that two different ‘ & oooos | oameo
priors can yield to the same posterior bba with Bayes/SCR rule Yine® os 02008 07426
and thus we cannot retrieve these two distinct priors cases from a5Se Y o0z o420

the posterior bba. We show that the total deconditioning is

possible however when using our non-Bayesian conditioning L ) )
rule. SCR and PCR5-based conditioningrof(.) andm/(.) When the - conditioning hypothe3|s supports the. prior
are give® in Table V. One sees that SCR of the two distinéLe“ef (as form(.) and my(.) which are in low conflict)
bba's m,(.) and m/,(.) yield the same posterior/conditional"® PCR5-based conditioning reacts as SCR (as Bayes

bbam(.|Y) which means that in this very simple Bayesiaﬁule when dealing with Bayesian _pnors) an‘d(X.HY)_ 1S
prior case, the deconditioning of.(.|Y) is impossible to V€Y close tOP('_|Y)' Wher_1 Fhe Pr'or_a”‘f' the conditional
obtain since at least two solutidfisfor the prior beliefs are evidences are h'ghl_y c_onﬂlctlng_ (i.e. liken () and maf(.),
admissible. The results provided by PCR5-based conditionif R5-Pased condltlopmg ru_le is_much more prudent than
makes more sense in authors’ point of view since it better takglafers rule and that's why it aIIO\{vs _the possibility to have
into account the degree of conflicting information in the corﬁ(_Y”Y) <L Such proper_ty doesn't V!‘_’"'?‘te the fundamental
ditioning process. One sees that two distinct Bayesian pri(ﬂ'é!oms _(nonnegatlwty, unlty_c_';\_nd add|t|V|ty) of Kolmogo_r(_)v
yield two distinct posterior bba’s with PCR5-based conditiorfXiomatic theory of probabilities and this can be verified

ing. If one examines the belief and plausibility functions, on‘éaSily inour exam.ple. In applicz_;ttions, it is much .better
gets, using notation\(.|Y') = [Bel(.|[Y), PI(.|Y)], A/(.]Y) = to preserve all available information and to work directly
[Bel'(.|Y), PU(Y)], A(L]]Y) = [Belj(.||Y) PI(J|Y)] and with conditional bba’'s whenever possible rather than with

. approximate subjective conditional probabilities.
A([[Y) = [Bel' ([[Y), PUC|IY)]: PP ) P
Table V The deconditioning of the posterior bbals(. | Y) given
CONDITIONAL BBA'S. in the Table V is done using the principle described in
Focal Elem. | m (1Y) | m’ (1Y) [ m(IY) [ m/ (1Y) section IV (whenm(.) is assumed Bayesian and for case
A 0.5 0.5 0.4900 0.0100
B 05 05 04900 00100 2). We denote the unknownsi;(A) = z1, mi(B) = w2
C 0 0 0.00039215 0.48505051 .
AUB 0 0 0.01960785 | 0.49494949 andm,(C) = z3. SinceY = AU B andJ = {1,2}, we

solve the following system of equations (with the constraint
z; € [0,1]): 1 = a1 = 049, z2 = ay = 0.49 and

Table VI 23/(z3 + 1) = az = 0.00039215. Therefore, one gets
CONDITIONAL L OWER AND UPPER BOUNDS OF CONDITIONAL after deconditioningmi(A) = 0.49, mi(B) = 0.49 and
PROBABILITIES m1(C) = 0.02. Similarly, the deconditioning ofn’(. || Y)
B acm =o' JI aciy) | ATy given in the Table V yieldsn(A) = 0.01, m}(B) = 0.01
, ; : ;e
B BE e ,
v=Gus [o[é:éls] [[S‘Zggf%g;’f(fg] gf;sg*g;ggg‘g}] Note thqt, contrarywiseto Bayesor to Jeffr.e)_/ srules [8],
u .5,0. . , 0. . , 0.
ave besa Rl I prerpend [11], [21], it is possibleto updatethe prior opinion aboutan
AVBUO L4 ) .y eventA evenif P (A) = 0 usingthis Non-Bayesiarrule. For

example,let's consider® = {A, B, C}, Shafersmodel and

The interval A(.|Y’) correspond to lower and upper boundsth€ Prior Bayesiarmassn, (4) = 0, m(B) = 0.3 andm,(C)

of conditional subjective probabilitie®(.|Y) and A([|y) = 0.7 i€ Beli(4) = Pi(A) = PI(A) = 0. Assumethatthe
corresponds to lower and upper boundsRf||Y") (similarly conditional ewdencels_Y = AUB, then onc_e_gefcswnh SCR

for A’([Y") and A’(||Y)). From the Table VI, one sees thaf”(5l4 U B) = 1 andwith PCR5-basedonditioningm (5 || A

the property P2 is verified and we get an imprecise conditiortalB) = 0.30, m(A U B AU B) = 0.41176 andm/(C' || A
probability. One sees that contrariwise to SCR (equivaleit3) = 0-28824, which means thak (A|A U

to Bayes rule in this case), one geBel(Y||]Y) < 1 and B) = 0 with SCR/Bayes rule (i.e. no update of), whereas
also PI(Y]]Y) < 1. A(]|Y) and A’(.||Y) are very different [Bel(A || AU B), PI(A || AU B)] = [0,0.41176], [Bel(B |
because priors were also very different. This is an appea“ngGWhen the lower bound is equal to the upper bound, one gets the exact

probability value.
14Due to space limitation constraints, the verification is left to the reader. 17More sophisticated transformations could be used instead as explained in
L5Actually an infinite number of solutions exists. [18], Vol. 3.
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AUB),Pl(B || AU B)] = [0.30,0.71176] and [Bel(C' || VI. CONCLUSIONS
AU B), PI(C || AU B)] = [0.28823,0.28823], that iSP(A || |n this paper, we have proposed a new Non-Bayesian con-
AU B) € [0,0.41176]. Typically, if one approximate$*(. | ditioning rule (denoted ) based on the Proportional Conflict

AU B) by the mid-value of its lower and upper bounds, onRedistribution (PCR) rule of combination developed in DSmT
will obtain P(A || AU B) = 0.20588 (i.e. a true update of framework. This new conditioning rule offers the advantage to
the prior probability of4), P(B || AU B) = 0.50588 and  take fully into account the level of conflict between the prior
P(C || AU B) = 0.28824. and the conditional evidences for updating belief functions. It

B. Example 2: Conditioning of a Non-Bayesian prior beliefis truly Non-Bayesian since it doesn't satisfy Bayes principle

| ) id A hafer because it allows(X || X) or Bel(X || X) to be less than
Example 2.1 Let§_co_nS| er nowd = {4, B,C}, Shafer's one. We have also shown that this approach allows to solve
model, the conditioning hypothesis = A U B and the

. . . the deconditioning (dual) problem for the class of Bayesian
following Non-Bayesian priors:

Table VIl priors. More investigations on the deconditioning problem of
NON-BAYESIAN PRIORS(INPUTS). Non-Bayesian priors need to be done and comparisons of
this new rule with respect to the main alternatives of Bayes

Focal Bem. [ w1 [ ] () rule proposed in the literature (typically Jeffrey’s rule and its

a ozo 1 9% extensions, Planchet’s rule, etc) will be presented in details in

A0 povil I a forthcoming publication.
AUBUC 0.15 0.25
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