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     In the context of some recent papers suggesting CT-symmetric QM in order to 
generalize PT-symmetric QM, in this paper we present an idea that there is quite 
compelling reasoning to argue in favour of supersymmetric extension of Klein-
Gordon equation. Its numerical solutions in some simplest conditions are presented. 
Since the potential corresponding to this supersymmetric KGE is neither Coulomb, 
Yukawa, nor Hulthen potential [2a], then one can expect to observe a new type of 
matter, which may be called ‘supersymmetric-meson’. Its presence may be expected 
in particular in the process of breaking of Coulomb barrier in low energy schemes. 
Further observation is of course recommended in order to refute or verify this propo-
sition.   

 

Introduction  

In recent years, there is growing interest on various paths of generaliza-
tion of supersymmetric extension of Quantum Mechanics, for instance using 
PT-symmetry [2][6] and CT-symmetry [1]. Interestingly, it can be shown 
that this CT-symmetry or PT-symmetry yield real eigenvalues, and may also 
correspond to the zeroes of Riemann zeta function [1]. Therefore, it seems 
interesting to see whether implications of this new symmetry to some known 
equations in Quantum Mechanics could yield new observables. 

In this context, one can argue that it is possible too to extend Klein-
Gordon equation using the hypothesis of PT-symmetry. While this idea has 
been discussed generally in [2], to our present knowledge its solution has not 
been presented yet up to this time.  

Therefore in the present paper, numerical solutions of this PT-symmetric 
Klein-Gordon equation in some simplest conditions are presented; in par-
ticular we consider solution of Klein-Gordon equation with complex valued 
time-differential operator. Apart from PT-symmetric considerations, our 
motivation to consider complex valued Klein-Gordon operator comes from 
the fact that modified Klein-Gordon correspond to quadratic Dirac equation 
[5]. Since the potential corresponding to this PT-symmetric KGE is neither 
Coulomb, Yukawa, nor Hulthen potential [2a], then one can expect to ob-
serve a new type of matter, which may be called ‘supersymmetric-meson’.  

First we will find out numerical solution of (known) standard Klein-
Gordon equation, and thereafter we consider its PT-symmetric extension. All 
numerical computation was performed using Mathematica. [8] 

Further observation is of course recommended in order to verify or refute 
the propositions outlined herein. 

Numerical solution of Klein-Gordon equation 

First we write down the standard Klein-Gordon equation [3, p.9]: 
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    Alternatively, one used to assign standard value c=1 and also 1=h , 
therefore equation (1) may be written as: 
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Where the first two terms are often written in the form of square Nabla op-
erator. One simplest version of this equation [3]: 
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yields the known solution: 

                       tconsmtS tan0 +±=                                                       (4) 

The equation (3) yields wave equation which describes a particle at rest with 
positive energy (lower sign) or with negative energy (upper sign). Radial 
solution of equation (3) yields Yukawa potential which predicts meson as 
observables. 
   It is interesting to note here, however, that numerical solution of equation 
(1), (2) and (3) yield slightly different result, as follows. 

• For equation (1) we get. 
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• For equation (2) we get. 
 

         ( -D[#,x,x]+m^2+D[#,t,t])&[y[x,t]]�0 
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• For equation (3) we get. 
 

         ( m^2-D[#,t,t])&[y[x,t]]�0 
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   One may note that this numerical solution is in quadratic form 
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22

+ ) , therefore it is rather different from equation (4).  

  

Numerical solution of Klein-Gordon equation with complex valued 
time-differential operator.  

As it has been discussed in the context of quaternion Quantum Mechanics 
[5], it may be useful to consider complex valued Klein-Gordon operator in 
lieu of standard Nabla operator in equation (2). Therefore, here we rewrite a 
plausible extension of equation (2) and (3) as follows: 
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And for equation [3] we can write: 
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Numerical solutions for these equations were obtained in similar way 

with the previous equations: 
 

• For equation (5) we get. 
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• For equation (6) we get. 
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   At this point one may note that supersymmetric extension of Klein-Gordon 
equation, in particular by introducing complex-valued differential operator 
yields quite different solutions compared to known standard solution of 
Klein-Gordon equation (4), i.e. in the form: 
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     Since the potential corresponding to this PT-symmetric KGE is neither 
Coulomb, Yukawa, nor Hulthen potential [2a], then one can expect to ob-
serve a new type of matter, which may be called ‘supersymmetric-meson’. If 
this new type of particles can be observed in near future, then it can be re-
garded as early support to the new hypothesis of PT-symmetric and CT-
symmetric as considered by some preceding papers [1][2][6].  
    In our opinion, its presence may be expected in particular in the process of 
breaking of Coulomb barrier in low energy schemes. 
    Further observation is also recommended in order to verify and explore 
further this proposition.    

 

Concluding remarks 

In this paper we present an idea that there is quite compelling reasoning to 
argue in favour of supersymmetric extension of Klein-Gordon equation. Its 
numerical solutions in some simplest conditions are presented.  
    Since the potential corresponding to this supersymmetric KGE is neither 
Coulomb, Yukawa, or Hulthen potential, then one can expect to observe a 
new type of matter, which may be called ‘supersymmetric-meson’. Its pres-
ence may be expected in particular in the process of breaking of Coulomb 
barrier in low energy schemes. Further observation is of course recom-
mended in order to refute or verify this proposition.        
     It is recommended to conduct further observation in order to verify and 
also to explore various implications of our propositions as described herein.   
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