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ON A THEOREM OF WILSON 
 

§1. In 1770 Wilson found the following result in the Number’s Theory: “If p  is 
prime, then p − 1( )! ≡ −1mod p( )”. 

Did you ever question yourself what happens if the module m  is not anymore 
prime? It’s simple, one answers, “if m  is not prime and m ≠ 4 then  

m − 1( )! ≡ 0 mod m( )”; for the proof see [4]. 
This is fine, I would continue, but if in the product from the left side of this 

congruence we consider only numbers that are prime with m ? 
For this reason we’ll address this case, and provide a generalization of Wilson’s 

theorem to any modulo, this will conduce to a nice result. 
 
§2. Let m  be a whole number. We note { ,  A x= ∈Z x  is of the form 

± pn ,  ± 2 pn ,  ± 2r ,  or 0 , where p  is odd prime,  n ∈N , and r = 0,1,2 } . 
 
Theorem*. Let c1,c2 ,...,cϕ (m )  a reduced system of residues modulo m . Then 

c1c2 . ⋅ ⋅ ⋅ cϕ (m ) ≡ −1(mod m)  if m ∈A , respectively +1 if m ∉A ; where ϕ  is Euler’s 
function. 

To prove this we’ll introduce some lemmas. 
 
Lemma 1. ϕ(m)  is a multiple of 2. 
 
Lemma 2. If c2 ≡ 1(mod m)  then (m − c)2 ≡ 1(mod m)  and c(m − c) ≡ −1(mod m) , 

and m − c /≡ c(mod m) . 
Indeed, if m − c ≡ c(mod m) , we obtain 2c ≡ 0(mod m) , that is (c, m) /≡ 1 . This is 

absurd. 
Therefore we proved that in any reduced system of residue modulo m  it exists an 

even number of elements c  with the property 
 P1 :  c2 ≡ 1(mod m) . 

If ci0
is part of the system, because ( )0

, 1ic m ≅ , it results that also 

c1ci0
,c2ci0

,...,cϕ (m )ci0
 constitutes a reduced system of residues m . Because 

(1,m) ≅ 1 results that for any c from c1,c2 ,...,cϕ (m )  it exist and it is unique c '  from 
c1,c2 ,...,cϕ (m )  such that  
  (1)  cc ' ≡ 1 mod m( ) 
and reciprocally: for any c '  from c1,c2 ,...,cϕ (m )  it exists an unique c such that  
  (2) c 'c ≡ 1 mod m( ). 

 By multiplying these two congruence for all the elements from the system and 
selecting one of them in the case in which c ≠ c '  it results that 
c1,c2 ,...,cϕ (m ) ⋅b ≡ 1 mod m( ), where b represents the product of all elements c  for which 
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c = c ' , because in this case c2 ≡ 1 mod m( ). These elements which verify the property P1  
can be grouped in pairs as follows: c  with m − c , and then c(m − c) ≡ −1 mod m( ).  
Therefore  

c1,c2 ,...,cϕ (m ) ≡ ±1 mod m( ), 
depending of the number of distinct c in the system that have the property P1  is or not a 
multiple of 4. 
 If m ∈A  the equation x2 ≡ 1 mod m( ) has two solutions (see [1], pp. 38-88), 
therefore we conclude that c1,c2 ,...,cϕ (m ) ≡ −1 mod m( ). 
 This first part of the theorem could have been proved also using the following 
reasoning: 

If m ∈A  then it exist primitive roots modulo m  (see [1], pp. 65-68-72); let d  be 
such a root; then we could represent the system reduced to residues modulo m , 
{ }1 2 ( ), ,..., mc c cϕ  as { }1 2 ( ), ,..., md d dϕ  after rearranging, from were 

 c1,c2 ,...,cϕ (m ) ≡ d
ϕ (m )

2
⎛
⎝⎜

⎞
⎠⎟

1+ϕ (m

≡ −1 mod m( ),  

because from dϕ (m ≡ 1 mod m( ) we have that  

d
ϕ (m)

2 − 1
⎛
⎝⎜

⎞
⎠⎟

d
ϕ (m)

2 + 1
⎛
⎝⎜

⎞
⎠⎟

≡ 0 mod m( )  

therefore  

d
ϕ (m )

2 ≡ −1 mod m( );  
contrary would have been implied that  d  is not a primitive root modulo m . 
 For the second part of the proof we shall present some other lemmas. 
 
 Lemma 3. Let’s consider the integer numbers nonzero, non-unitary m1  and m2  
with m1, m2( )≅ 1 . Then  
  (3) x2 ≡ 1(mod m1)  admits the solution x1  
and 
  (4) x2 ≡ 1(mod m2 )  admits the solution x2  
if and only if  
  (5) x2 ≡ 1(mod m1m2 )  admits the solution 
  (5’) x3 ≡ (x2 − x1)m1

' m1 + x1(mod m1m2 ) , 
where m1

'  is the inverse of m1  in rapport with modulo m2 . 
 Proof. 
 From (3) it results  

x = m1h + x1 ,  h ∈Z ,  
and from (4) we find  

x = m2k + x2 ,  k ∈Z .  
Therefore  
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  (6) m1h − m2k = x2 − x1  
this Diophantine equation has integer solutions because  
  (7) m1, m2( )≅ 1  
 From (6) results ( ) '

2 1 1 2(mod )h x x m m≡ − .  
Therefore  

( ) '
2 1 1 2 ,   h x x m m t t≡ − + ∈Z   

and  
( ) '

2 1 1 1 1 1 2x x x m m x m m t≡ − + +   
or  

x ≡ x2 − x1( )m1
' m1 + x1 mod(m1 m2 ) . 

(The rationale would have been analog if we would have determined k  by finding 
x ≡ x1 − x2( )m2

' m2 + x2 mod(m1 m2 ) ,  
but this solution is congruent modulo m1 m2  with the one found anterior; m2

'  being the  
reciprocal of m2  modulo m1 .) 
 
 Reciprocal. Immediately, results that  

x3 ≡ x1(mod m1)  and x3 ≡ x2 (mod m2 ) . 
 

 Lemma 4. Let x1,  x2 ,  x3 be the solutions for congruencies (3), (4) respective (5) 
such that  

x3 ≡ x2 − x1( )m1
' m1 + x1(mod m1 m2 )  

 Analogue for x1
' ,  x2

' ,  x3
' . 

(O) Will consider from now on every time the classes of residue modulo m that 
have represents in the system { }0,1, 2,..., 1m − . 

Then if x1,  x2( )≠ x1
' ,  x2

'( ) it results that x3 /≡ x3
' (mod m) . 

Proof. By absurd.  
Let x1 ≠ x1

'  (analogue it can be shown for x2 ≠ x2
' ).  

From x3 ≡ x3
' (mod m1m2 )  it would result that x3 ≡ x3

' (mod m1) ,  
that is 

  x2 − x1( )m1
' m1 + x1 ≡ (x2

' − x1
' )m1

' m1 + x1
' (mod m1) ,  

Thus 
  x1 ≡ x1

' (mod m1) .   
Since x1  and x1

'  are from { }0,1, 2,..., 1m −  it results that x1 = x1
' , which is absurd. 

 
Lemma 5. The congruence x2 ≡ 1 mod m( ) has an even number of distinct 

solutions. 
This results from  lemma 2. 
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Lemma 6. In the conditions of lemma 3 we have that the number of distinct 
solutions for congruence (5) is equal to the product between the number of congruencies’ 
solutions (3) and (4). And, all solutions for congruence (5) are obtained from the 
solutions of congruencies (3) and (4) by applying formula (5’). 

Indeed, from lemmas 3, 4 we obtain the assertion. 
 
Lemma 7. The congruence  
 (8) x2 /≡ 1 mod 2m( ), has only four distinct solutions: 

    ± 1,  ± (2n−1 − 1) modulo 2n . 
By direct verification it can be shown that these satisfy (8). 
Using induction we will show that there don’t exist others . 
For n = 3  it verifies, by tries, analog for n = 4 . 
We consider the affirmation true for values ≤ n − 1 . Let’s prove it for n . 
We retain observation (O) and the following remark: 
 (9) if x0  is solution for congruence (8) it will be solution also for 

congruence ( )2 1 mod 2ix ≡ , 3 ≤ i ≤ n − 1.  

By absurdum let a /≡ ±1,  ± (2n−1 − 1) be a solution for (8). We will show that 
(∃)i ∈ 3, 4,...,n − 1{ } such that a2 /≡ 1(mod 2i ) . 

We can consider 2
n

2 < a < 2n − 1 ; because a  is solution for (8) if and only if −a  
is solution for (8). 

We consider the case n = 2k,  k ≥ 2 , integer. (It will analogously be shown when 
n is odd). Let a = 2k + r , 1 ≤ r ≤ 22k − 2k − 2  

 (10) a2 = 22k + r ⋅ 2k +1 + r2 ≡ 1(mod 2n ) , 
from here r ≠ 1 ; it results that  

2 1(mod 2 ),  3 1ir i k≡ ≤ ≤ +  
 From the induction’s hypothesis, for k + 1  we find r ≡ 2k − 1(mod 2k +1)  and 
substituting in (10) we obtain:  

−2k +2 ≡ 0(mod 22k ) ,  
or k ≤ 2  thus n = 4 , which is a contradiction.  

Therefore, it results the lemma’s validity.  
 
Lemma 8. The congruence x2 ≡ 1 mod m( ) has  

 

2s−1,   if    α1 = 0,1;

2s ,     if    α1 = 2;

2s+1,   if    α1 ≥ 3

⎧

⎨
⎪

⎩
⎪

 

distinct solutions modulo m = ε2α1 p2
α2 ⋅ ⋅ ⋅ ps

α s , where ε = ±1 ,  α j ∈N*,  j = 2,3,..., s , and  
pj  are odd prime, different numbers two by two. 

 Indeed, the congruence x2 ≡ 1 mod 2α1( ) has   
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1,   if    α1 = 0,1;

2,   if    α1 = 2;

4,   if    α1 ≥ 3

⎧

⎨
⎪

⎩
⎪

 

 
distinct solutions, and congruence ( )2 1 mod ,  2j

jx p j sα≡ ≤ ≤  have each two distinct 

solutions (see [1], pp. 85-88). From lemma 6 and 7 it results this lemma too. 
* 

 With these lemmas, it results that the congruence c2 ≡ 1 mod m( ) with m ∈A  
admits a number of distinct solutions which is a multiple of 4. From where 
c1c2 . ⋅ ⋅ ⋅ cϕ (m ) ≡ 1(mod m) , that completely resolves the generalization of Wilson’s 
theorem. 
 The reader could generalize lemmas 2, 3, 4, 5, 6, 8 and utilize lemma 7 for the 
case in which we have the congruence x2 ≡ a mod m( ), with a, m( )≅ 1 . 
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