FLORENTIN SMARANDACHE On Another Erdös' Open Problem

In Florentin Smarandache: "Collected Papers", vol. I (second edition). Ann Arbor (USA): InfoLearnQuest, 2007.

ON ANOTHER ERDÖS' OPEN PROBLEM

Paul Erdös has proposed the following problem:

(1) "Is it true that $\lim_{n\to\infty} \max_{m< n} (m+d(m)) - n = \infty$?, where d(m) represents the

number of all positive divisors of *m*." We clearly have :

Lemma 1. $(\forall)n \in \mathbb{N} \setminus \{0,1,2\}, (\exists)!s \in \mathbb{N}^*, (\exists)!\alpha_1,...,\alpha_s \in \mathbb{N}, \alpha_s \neq 0$, such that $n = p_1^{\alpha_1} \cdots p_s^{\alpha_s} + 1$, where $p_1, p_2,...$ constitute the increasing sequence of all positive primes.

Lemma 2. Let $s \in \mathbb{N}^*$. We define the subsequence $n_s(i) = p_1^{\alpha_1} \cdots p_s^{\alpha_s} + 1$, where $\alpha_1, \dots, \alpha_s$ are arbitrary elements of \mathbb{N} , such that $\alpha_s \neq 0$ and $\alpha_1 + \dots + \alpha_s \rightarrow \infty$ and we order it such that $n_s(1) < n_s(2) < \dots$ (increasing sequence).

We find an infinite number of subsequences $\{n_s(i)\}$, when *s* traverses \mathbb{N}^* , with the properties:

a)
$$\lim_{i \to \infty} n_s(i) = \infty$$
 for all $s \in \mathbb{N}^*$.
b) $\{n_{s_1}(i), i \in \mathbb{N}^*\} \cap \{n_{s_2}(j), j \in \mathbb{N}^*\} = \Phi$, for $s_1 \neq s_2$ (distinct subsequences).
c) $\mathbb{N} \setminus \{0, 1, 2\} = \bigcup_{s \in \mathbb{N}^*} \{n_s(i), i \in \mathbb{N}^*\}$

Then:

Lemma 3. If in (1) we calculate the limit for each subsequence $\{n_s(i)\}\$ we obtain:

$$\lim_{n \to \infty} \left(\max_{m < p_1^{\alpha_1} \cdots p_s^{\alpha_s}} (m + d(m)) - p_1^{\alpha_1} \cdots p_s^{\alpha_s} - 1 \right) \ge \lim_{n \to \infty} \left(p_1^{\alpha_1} \cdots p_s^{\alpha_s} + (\alpha_1 + 1) \dots (\alpha_s + 1) - p_1^{\alpha_1} \cdots p_s^{\alpha_s} - 1 \right) =$$
$$= \lim_{n \to \infty} \left((\alpha_1 + 1) \dots (\alpha_s + 1) - 1 \right) > \lim_{n \to \infty} (\alpha_1 + \dots + \alpha_s) = \infty$$
From these lemmas it results the following:

Theorem: We have $\overline{\lim_{n \to \infty} \max_{m < n}} (m + d(m)) - n = \infty$.

REFERENCES

- [1] P. Erdös Some Unconventional Problems in Number Theory -Mathematics Magazine, Vol. 57, No.2, March 1979.
- [2] P. Erdös Letter to the Author 1986: 01: 12.

[Published in "Gamma", XXV, Year VIII, No. 3, June 1986, p. 5]