FLORENTIN SMARANDACHE

On Another Erdös' Open

Problem

In Florentin Smarandache: "Collected Papers", vol. I (second edition). Ann Arbor (USA): InfoLearnQuest, 2007.

ON ANOTHER ERDÖS' OPEN PROBLEM

Paul Erdös has proposed the following problem:
(1) "Is it true that $\lim _{n \rightarrow \infty} \max _{m<n}(m+d(m))-n=\infty$?, where $d(m)$ represents the number of all positive divisors of m."
We clearly have :
Lemma 1. $(\forall) n \in \mathbb{N} \backslash\{0,1,2\},(\exists)!s \in \mathbb{N}^{*},(\exists)!\alpha_{1}, \ldots, \alpha_{s} \in \mathbb{N}, \alpha_{s} \neq 0$, such that $n=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}+1$, where p_{1}, p_{2}, \ldots constitute the increasing sequence of all positive primes.

Lemma 2. Let $s \in \mathbb{N}^{*}$. We define the subsequence $n_{s}(i)=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}+1$, where $\alpha_{1}, \ldots, \alpha_{s}$ are arbitrary elements of \mathbb{N}, such that $\alpha_{s} \neq 0$ and $\alpha_{1}+\ldots+\alpha_{s} \rightarrow \infty$ and we order it such that $n_{s}(1)<n_{s}(2)<\ldots$ (increasing sequence).

We find an infinite number of subsequences $\left\{n_{s}(i)\right\}$, when s traverses \mathbb{N}^{*}, with the properties:
a) $\lim _{i \rightarrow \infty} n_{s}(i)=\infty$ for all $s \in \mathbb{N}^{*}$.
b) $\left\{n_{s_{1}}(i), i \in \mathbb{N}^{*}\right\} \cap\left\{n_{s_{2}}(j), j \in \mathbb{N}^{*}\right\}=\Phi$, for $s_{1} \neq s_{2}$ (distinct subsequences).
c) $\mathbb{N} \backslash\{0,1,2\}=\bigcup_{s \in \mathbb{N}^{*}}\left\{n_{s}(i), i \in \mathbb{N}^{*}\right\}$

Then:
Lemma 3. If in (1) we calculate the limit for each subsequence $\left\{n_{s}(i)\right\}$ we obtain:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(\max _{m<p_{1}^{\alpha_{1}} p_{s}^{\alpha_{s}}}(m+d(m))-p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}-1\right) \geq \lim _{n \rightarrow \infty}\left(p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}+\left(\alpha_{1}+1\right) \ldots\left(\alpha_{s}+1\right)-p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}-1\right)= \\
& =\lim _{n \rightarrow \infty}\left(\left(\alpha_{1}+1\right) \ldots\left(\alpha_{s}+1\right)-1\right)>\lim _{n \rightarrow \infty}\left(\alpha_{1}+\ldots+\alpha_{s}\right)=\infty
\end{aligned}
$$

From these lemmas it results the following:
Theorem: We have $\varlimsup_{n \rightarrow \infty} \max _{m<n}(m+d(m))-n=\infty$.

REFERENCES

[1] P. Erdös - Some Unconventional Problems in Number Theory Mathematics Magazine, Vol. 57, No.2, March 1979.
[2] P. Erdös - Letter to the Author - 1986: 01: 12.
[Published in "Gamma", XXV, Year VIII, No. 3, June 1986, p. 5]

