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Abstract: In this chapter, one studies the famous well-known and challenging

Tweety Penguin Triangle Problem (TPTP or TP2) pointed out by Judea Pearl in

one of his books. We first present the solution of the TP2 based on the fallacious

Bayesian reasoning and prove that reasoning cannot be used to conclude on the abil-

ity of the penguin-bird Tweety to fly or not to fly. Then we present in details the

counter-intuitive solution obtained from the Dempster-Shafer Theory (DST). Fi-

nally, we show how the solution can be obtained with our new theory of plausible and

paradoxical reasoning (DSmT).

12.1 Introduction

J
udea Pearl claimed that DST of evidence fails to provide a reasonable solution for the combination

of evidence even for apparently very simple fusion problem [11, 12]. Most criticisms are answered by

Philippe Smets in [22, 23]. The Tweety Penguin Triangle Problem (TP2) is one of the typical exciting and

challenging problem for all theories managing uncertainty and conflict because it shows the real difficulty

to maintain truth for automatic reasoning systems when the classical property of transitivity (which is

basic to the material-implication) does not hold. In his book, Judea Pearl presents and discusses in

265



266 CHAPTER 12. ON THE TWEETY PENGUIN TRIANGLE PROBLEM

details the semantic clash between Bayes vs. Dempster-Shafer reasoning. We present here our analysis

on this problem and provide a new solution of the Tweety Penguin Triangle Problem based on our new

theory of plausible and paradoxical reasoning, known as DSmT (Dezert-Smarandache Theory). We show

how this problem can be attacked and solved by our new reasoning with help of the (hybrid) DSm rule

of combination (see chapter 4). The purpose of this chapter is not to browse all approaches available in

literature for attacking the TP2 problem but only to provide a comparison of the DSm reasoning with

respect to the Bayesian reasoning and to the plausible reasoning of DST framework. Interesting but

complex analysis on this problem based on default reasoning and ε-belief functions can be also found

by example in [22] and [1]. Other interesting and promising issues for the TP2 problem based on the

fuzzy logic of Zadeh [25] jointly with the theory of possibilities [5, 6] are under investigations. Some

theoretical research works on new conditional event algebras (CEA) have emerged in literature [7] since

last years and could offer a new track for attacking the TP2 problem although unfortunately no clear

didactic, simple and convincing examples are provided to show the real efficiency and usefulness of these

theoretical investigations.

12.2 The Tweety Penguin Triangle Problem

This very important and challenging problem, as known as the Tweety Penguin Triangle Problem (TP2)

in literature, is presented in details by Judea Pearl in [11]. We briefly present here the TP2 and the

solutions based first on fallacious Bayesian reasoning and then on the Dempster-Shafer reasoning. We

will then focus our analysis of this problem from the DSmT framework and the DSm reasoning.

Let’s consider the set R = {r1, r2, r3} of given rules (as known as defaults in [1]):

• r1: ”Penguins normally don’t fly” ⇔ (p→ ¬f)

• r2: ”Birds normally fly” ⇔ (b→ f)

• r3: ”Penguins are birds” ⇔ (p→ b)

To emphasize our strong conviction in these rules we commit them some high confidence weights w1, w2

and w3 in [0, 1] with w1 = 1− ε1, w2 = 1− ε2 and w3 = 1 (where ε1 and ε2 are small positive quantities).

The conviction in these rules is then represented by the set W = {w1, w2, w3} in the sequel.

Another useful and general notation adopted by Judea Pearl in the first pages of his book [11] to

characterize these three weighted rules is the following one (where w1, w2, w3 ∈ [0, 1]):

r1 : p
w1→ (¬f) r2 : b

w2→ f r3 : p
w3→ b
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When w1, w2, w3 ∈ {0, 1} the classical logic is the perfect tool to conclude on the truth or on the falsity

of a proposition built from these rules based on the standard propositional calculus mainly with its three

fundamental rules (Modus Ponens, Modus Tollens and Modus Barbara - i.e. transitivity rule). When

0 < w1, w2, w3 < 1, the classical logic can’t be applied because the Modus Ponens, the Modus Tollens

and the Modus Barbara do not longer hold and some other tools must be chosen. This will discussed in

detail in section 3.2.

Question: Assume we observe an animal called Tweety (T) that is categorically classified as a bird (b)

and a penguin (p), i.e. our observation is O , [T = (b ∩ p)] = [(T = b) ∩ (T = p)]. The notation

T = (b ∩ p) stands here for ”Entity T holds property (b ∩ p)”. What is the belief (or the probability - if

such probability exists) that Tweety can fly given the observation O and all information available in our

knowledge base (i.e. our rule-based system R and W ) ?

The difficulty of this problem for most of artificial reasoning systems (ARS) comes from the fact

that, in this example, the property of transitivity, usually supposed satisfied from material-implication

interpretation [11], (p→ b, b→ f)⇒ (p→ f) does not hold here (see section 12.3.2). In this interesting

example, the classical property of inheritance is thus broken. Nevertheless a powerful artificial reasoning

system must be able to deal with such kind of difficult problem and must provide a reliable conclusion

by a general mechanism of reasoning whatever the values of convictions are (not only restricted to values

close to either 0 or 1). We examine now three ARS based on the Bayesian reasoning [11] which turns to

be fallacious and actually not appropriate for this problem and we explain why, on the Dempster-Shafer

Theory (DST) [16] and on the Dezert-Smarandache Theory (DSmT) (see part I of this book).

12.3 The fallacious Bayesian reasoning

We first present the fallacious Bayesian reasoning solution drawn from the J. Pearl’s book in [11] (pages

447-449) and then we explain why the solution which seems at the first glance correct with intuition is

really fallacious. We then explain why the common rational intuition turns actually to be wrong and

show the weakness of Pearl’s analysis.

12.3.1 The Pearl’s analysis

To preserve mathematical rigor, we introduce explicitly all information available in the derivations. In

other words, one wants to evaluate using the Bayesian reasoning, the conditional probability, if it exists,

P (T = f |O,R,W ) = P (T = f |T = p, T = b, R,W ). The Pearl’s analysis is based on the assumption that

a conviction on a given rule can be interpreted as a conditional probability (see [11] page 4). In other
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words if one has a given rule a
w→ b with w ∈ [0, 1] then one can interpret, at least for the calculus, w as

P (b|a) and thus the probability theory and Bayesian reasoning can help to answer to the question. We

prove in the following section that such model cannot be reasonably adopted. For now, we just assume

that such probabilistic model holds effectively as Judea Pearl does. Based on this assumption, since the

conditional term/information (T = p, T = b, R,W ) is strictly equivalent to (T = p,R,W ) because of the

knowledge of rule r3 with certainty (since w3 = 1), one gets easily the fallacious intuitive expected Pearl’s

result:

P (T = f |O,R,W ) = P (T = f |T = p, T = b, R,W )

P (T = f |O,R,W ) ≡ P (T = f |T = p,R,W )

P (T = f |O,R,W ) = 1− P (T = ¬f |T = p,R,W )

P (T = f |O,R,W ) = 1− w1 = ε1

From this simple analysis, the Tweety’s ”birdness” does not render her a better flyer than an ordinary

penguin as intuitively expected and the probability that Tweety can fly remains very low which looks

normal. We reemphasize here the fact, that in his Bayesian reasoning J. Pearl assumes that the weight

w1 for the conviction in rule r1 can be interpreted in term of a real probability measure P (¬f |p). This

assumption is necessary to provide the rigorous derivation of P (T = f |O,R,W ). It turns out however

that convictions wi on logical rules cannot be interpreted in terms of probabilities as we will prove in the

next section.

When rule r3 is not asserted with absolute certainty (i.e. w3 = 1) but is subject to exceptions, i.e.

w3 = 1 − ε3 < 1, the fallacious Bayesian reasoning yields (where notations T = f , T = b and T = p are

replaced by f , b and p due to space limitations):

P (f |O,R,W ) = P (f |p, b, R,W )

P (f |O,R,W ) =
P (f, p, b|R,W )

P (p, b|R,W )

P (f |O,R,W ) =
P (f, b|p,R,W )P (p|R,W )

P (b|p,R,W )P (p|R,W )

By assuming P (p|R,W ) > 0, one gets after simplification by P (p|R,W )

P (f |O,R,W ) =
P (f, b|p,R,W )

P (b|p,R,W )

P (f |O,R,W ) =
P (b|f, p,R,W )P (f |p,R,W )

P (b|p,R,W )

If one assumes P (b|p,R,W ) = w3 = 1 − ε3 and P (f |p,R,W ) = 1 − P (¬f |p,R,W ) = 1 − w1 = ε1, one

gets

P (f |O,R,W ) = P (b|f, p,R,W )× ε1
1− ε3
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Because 0 ≤ P (b|f, p,R,W ) ≤ 1, one finally gets the Pearl’s result [11] (p.448)

P (f |O,R,W ) ≤ ε1
1− ε3

(12.1)

which states that the observed animal Tweety (a penguin-bird) has a very small probability of flying

as long as ε3 remains small, regardless of how many birds cannot fly (ε2), and has consequently a high

probability of not flying because P (f |O,R,W )+P (f̄ |O,R,W ) = 1 since the events f and f̄ are mutually

exclusive and exhaustive (assuming that the Pearl’s probabilistic model holds ... ).

12.3.2 The weakness of the Pearl’s analysis

We prove now that the previous Bayesian reasoning is really fallacious and the problem is truly unde-

cidable to conclude about the ability of Tweety to fly or not to fly if a deep analysis is done. Actually,

the Bayes’ inference is not a classical inference (see chapter 8 for justification). Indeed, before applying

blindly the Bayesian reasoning as in the previous section, one first has to check that the probabilistic

model is well-founded to characterize the convictions of the rules of the rule-based system under anal-

ysis. We prove here that such probabilistic model doesn’t hold for a suitable and useful representation

of the problem and consequently for any problems based on the weighting of logical rules (with positive

weighting factors/convictions below than 1).

12.3.2.1 Preliminaries

We just remind here only few important principles of the propositional calculus of the classical Mathe-

matical Logic which will be used in our demonstration. A simple notation, which may appear as unusual

for logicians, is adopted here just for convenience. A detailed presentation of the propositional calculus

and Mathematical Logic can be easily found in many standard mathematical textbooks like [15, 10, 9].

Here are these important principles:

• Third middle excluded principle : A logical variable is either true or false, i.e.

a ∨ ¬a (12.2)

• Non-contradiction law : A logical variable can’t be both true and false, i.e.

¬(a ∧ ¬a) (12.3)

• Modus Ponens : This rule of the propositional calculus states that if a logical variable a is true

and a→ b is true, then b is true (syllogism principle), i.e.

(a ∧ (a→ b))→ b (12.4)
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• Modus Tollens : This rule of the propositional calculus states that if a logical variable ¬b is true

and a→ b is true, then ¬a is true, i.e.

(¬b ∧ (a→ b))→ ¬a (12.5)

• Modus Barbara : This rule of the propositional calculus states that if a→ b is true and b→ c is

true then a→ c is true (transitivity property), i.e.

((a→ b) ∧ (b→ c))→ (a→ c) (12.6)

From these principles, one can prove easily, based on the truth table method, the following property

(more general deducibility theorems in Mathematical Logic can be found in [18, 19]) :

((a→ b) ∧ (c→ d))→ ((a ∧ c)→ (b ∧ d)) (12.7)

12.3.2.2 Analysis of the problem when ε1 = ε2 = ε3 = 0

We first examine the TP2 when one has no doubt in the rules of our given rule-based systems, i.e.







r1 : p
w1=1−ε1=1→ (¬f)

r2 : b
w2=1−ε2=1→ f

r3 : p
w3=1−ε3=1→ b

From rules r1 and r2 and because of property (12.7), one concludes that

p ∧ b→ (f ∧ ¬f)

and using the non-contradiction law (12.3) with the Modus Tollens (12.5), one finally gets

¬(f ∧ ¬f)→ ¬(p ∧ b)

which proves that p ∧ b is always false whatever the rule r3 is. Interpreted in terms of the probability

theory, the event T = p ∩ b corresponds actually and truly to the impossible event ∅ since T = f and

T = f̄ are exclusive and exhaustive events. Under such conditions, the analysis proves the non-existence

of the penguin-bird Tweety.

If one adopts the notations1 of the probability theory, trying to derive P (T = f |T = p ∩ b) and

P (T = f̄ |T = p∩ b) with the Bayesian reasoning is just impossible because from one of the axioms of the

probability theory, one must have P (∅) = 0 and from the conditioning rule, one would get expressly for

this problem the indeterminate expressions:

1Because probabilities are related to sets, we use here the common set-complement notation f̄ instead of the logical

negation notation ¬f , ∩ for ∧ and ∪ for ∨ if necessary.
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P (T = f |T = p ∩ b) = P (T = f |T = ∅)

P (T = f |T = p ∩ b) =
P (T = f ∩ ∅)
P (T = ∅)

P (T = f |T = p ∩ b) =
P (T = ∅)
P (T = ∅)

P (T = f |T = p ∩ b) =
0

0
(indeterminate)

and similarly

P (T = f̄ |T = p ∩ b) = P (T = f̄ |T = ∅)

P (T = f̄ |T = p ∩ b) =
P (T = f̄ ∩ ∅)
P (T = ∅)

P (T = f̄ |T = p ∩ b) =
P (T = ∅)
P (T = ∅)

P (T = f̄ |T = p ∩ b) =
0

0
(indeterminate)

12.3.2.3 Analysis of the problem when 0 < ε1, ε2, ε3 < 1

Let’s examine now the general case when one allows some little doubt on the rules characterized by taking

ε1 & 0 , ε2 & 0 and ε3 & 0 and examine the consequences on the probabilistic model on these rules.

First note that, because of the third middle excluded principle and the assumption of the existence

of a probabilistic model for a weighted rule, then one should be able to consider simultaneously both

”probabilistic/Bayesian” rules






a
P (b|a)=w→ b

a
P (b̄|a)=1−w→ ¬b

(12.8)

In terms of classical (objective) probability theory, these weighted rules just indicate that in 100 × w
percent of cases the logical variable b is true if a is true, or equivalently, that in 100×w percent of cases

the random event b occurs when the random event a occurs. When we don’t refer to classical probability

theory, the weighting factors w and 1− w indicate just the level of conviction committed to the validity

of the rules. Although very appealing at the first glance, this probabilistic model hides actually a strong

drawback/weakness especially when dealing with several rules as shown right below.

Let’s prove first that from a ”probabilized” rule a
P (b|a)=w→ b one cannot assess rigorously the convic-

tions onto its Modus Tollens. In other words, from (12.8) what can we conclude on







¬b P (ā|b̄)=?→ ¬a

b
P (ā|b)=?→ ¬a

(12.9)
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From the Bayes’ rule of conditioning (which must hold if the probabilitic model holds), one can express

P (ā|b̄) and P (ā|b) as follows







P (ā|b̄) = 1− P (a|b̄) = 1− P (a∩b̄)
1−P (b) = 1− P (b̄|a)P (a)

1−P (b)

P (ā|b) = 1− P (a|b) = 1− P (a∩b)
P (b) = 1− P (b|a)P (a)

P (b)

or equivalently by replacing P (b|a) and P (b̄|a) by their values w and 1− w, one gets







P (ā|b̄) = 1− (1− w) P (a)
1−P (b)

P (ā|b) = 1− wP (a)
P (b)

(12.10)

These relationships show that one cannot fully derive in theory P (ā|b̄) and P (ā|b) because the prior

probabilities P (a) and P (b) are unknown.

A simplistic solution, based on the principle of indifference, is then just to assume without solid jus-

tification that P (a) = P (ā) = 1/2 and P (b) = P (b̄) = 1/2. With such assumption, then one gets the

following estimates P̂ (ā|b̄) = w and P̂ (ā|b) = 1 − w for P (ā|b̄) and P (ā|b) respectively and we can go

further in the derivations.

Now let’s go back to our Tweety Penguin Triangle Problem. Based on the probabilistic model (assumed

to hold), one starts now with both







r1 : p
P (f̄ |p)=1−ε1→ ¬f

r2 : b
P (f |b)=1−ε2→ f

r3 : p
P (b|p)=1−ε3→ b







p
P (f |p)=ε1→ f

b
P (f̄ |b)=ε2→ ¬f

p
P (b̄|p)=ε3→ ¬b

(12.11)

Note that taking into account our preliminary analysis and accepting the principle of indifference, one

has also the two sets of weighted rules either







f
P̂ (p̄|f)=1−ε1→ ¬p

¬f P̂ (b̄|f̄)=1−ε2→ ¬b

¬b P̂ (p̄|b̄)=1−ε3→ ¬p







¬f P̂ (p̄|f̄)=ε1→ ¬p

f
P̂ (b̄|f)=ε2→ ¬b

b
P̂ (p̄|b)=ε3→ ¬p

(12.12)

One wants to assess the convictions (assumed to correspond to some conditional probabilities) into the

following rules

p ∧ b P (f |p∩b)=?→ f (12.13)

p ∧ b P (f̄ |p∩b)=?→ ¬f (12.14)
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The question is to derive rigorously P (f |p∩ b) and P (f̄ |p∩ b) from all previous available information. It

turns out that the derivation is impossible without unjustified extra assumption on conditional indepen-

dence. Indeed, P (f |p ∩ b) and P (f̄ |p ∩ b) are given by







P (f |p ∩ b) = P (f,p,b)
P (p,b) = P (p,b|f)P (f)

P (b|p)P (p)

P (f̄ |p ∩ b) = P (f̄ ,p,b)
P (p,b) = P (p,b|f̄)P (f̄)

P (b|p)P (p)

(12.15)

If one assumes as J. Pearl does, that the conditional independence condition also holds, i.e. P (p, b|f) =

P (p|f)P (b|f) and P (p, b|f̄) = P (p|f̄)P (b|f̄), then one gets







P (f |p ∩ b) = P (p|f)P (b|f)P (f)
P (b|p)P (p)

P (f̄ |p ∩ b) = P (p|f̄)P (b|f̄)P (f̄)
P (b|p)P (p)

By accepting again the principle of indifference, P (f) = P (f̄) = 1/2 and P (p) = P (p̄) = 1/2, one gets

the following expressions






P̂ (f |p ∩ b) = P (p|f)P (b|f)
P (b|p)

P̂ (f̄ |p ∩ b) = P (p|f̄)P (b|f̄)
P (b|p)

(12.16)

Replacing probabilities P (p|f), P (b|f), P (b|p), P (p|f̄) and P (b|f̄) by their values in the formula (12.16),

one finally gets






P̂ (f |p ∩ b) = ε1(1−ε2)
1−ε3

P̂ (f̄ |p ∩ b) = (1−ε1)ε2
1−ε3

(12.17)

Therefore we see that, even if one accepts the principle of indifference together with the conditional

independence assumption, the approximated ”probabilities” remain both small and do not correspond to

a real measure of probability since the conditional probabilities of exclusive elements f and f̄ do not add

up to one. When ε1, ε2 and ε3 tends towards 0, one has

P̂ (f |p ∩ b) + P̂ (f̄ |p ∩ b) ≈ 0

Actually our analysis based on the principle of indifference, the conditional independence assumption

and the model proposed by Judea Pearl, proves clearly the impossibility of the Bayesian reasoning to

be applied rigorously on such kind of weighted rule-based system, because no probabilistic model exists

for describing correctly the problem. This conclusion is actually not surprising taking into account the

Lewis’ theorem [13] explained in details in [7] (chapter 11).
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Let’s now explain the reason of the error in the fallacious reasoning which was looking coherent with

the common intuition. The problem arises directly from the fact that penguin class and bird class are

defined in this problem only with respect to the ”flying” and ”not-flying” properties. If one considers

only these properties, then none Tweety animal can be categorically classified as a penguin-bird, because

penguin-birdness doesn’t not hold in reality based on these exclusive and exhaustive properties (if we

consider only the information given within the rules r1, r2 and r3). Actually everybody knows that

penguins are effectively classified as bird because ”birdness” property is not defined with respect to

the ”flying” or ”not-flying” abilities of the animal but by other zoological characteristics C (birds are

vertebral oviparous animals with hot blood, a beak, feather and anterior members are wings) and such

information must be properly taken into account in the rule-based systems to avoid to fall in the trap of

such fallacious reasoning. The intuition (which seems to justify the fallacious reasoning conclusion) for

TP2 is actually biased because one already knows that penguins (which are truly classified as birds by

some other criterions) do not fly in real world and thus we commit a low conviction (which is definitely

not a probability measure, but rather a belief) to the fact that a penguin-bird can fly. Thus the Pear’ls

analysis proposed in [11] appears to the authors to be unfortunately incomplete and somehow fallacious.

12.4 The Dempster-Shafer reasoning

As pointed out by Judea Pearl in [11], the Dempster-Shafer reasoning yields, for this problem, a very

counter-intuitive result: birdness seems to endow Tweety with extra flying power ! We present here our

analysis of this problem based on the Dempster-Shafer reasoning.

Let’s examine in detail the available prior information summarized by the rule r1: ”Penguins normally

don’t fly” ⇔ (p→ ¬f) with the conviction w1 = 1− ε1 where ε1 is a small positive number close to zero.

This information, in the DST framework, has to be correctly represented in term of a conditional belief

Bel1(f̄ |p) = 1− ε1 rather than directly the mass m1(f̄ ∩ p) = 1− ε1.

Choosing Bel1(f̄ |p) = 1− ε1 means that there is a high degree of belief that a penguin-animal is also

a nonflying-animal (whatever kind of animal we are observing). This representation reflects perfectly

our prior knowledge while the erroneous coarse modeling based on the commitment m1(f̄ ∩ p) = 1 − ε1
is unable to distinguish between rule r1 and another (possibly erroneous) rule like r′1 : (¬f → p) hav-

ing same conviction value w1. This correct model allows us to distinguish between r1 and r′1 (even if

they have the same numerical level of conviction) by considering the two different conditional beliefs

Bel1(f̄ |p) = 1 − ε1 and Bel1′(p|f̄) = 1 − ε1. The coarse/inadequate basic belief assignment modeling (if

adopted) in contrary would make no distinction between those two rules r1 and r′1 since one would have
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to take m1(f̄ ∩ p) = m1′(p ∩ f̄) and therefore cannot serve as the starting model for the analysis

Similarly, the prior information relative to rules r2 : (b → f) and r3 : (p → b) with convictions

w2 = 1 − ε2 and w3 = 1 − ε3 has to be modeled by the conditional beliefs Bel2(f |b) = 1 − ε2 and

Bel3(b|p) = 1− ε3 respectively.

The first problem we have to face now is the combination of these three prior information character-

ized by Bel1(f̄ |p) = 1− ε1, Bel2(f |b) = 1− ε2 and Bel3(b|p) = 1− ε3. All the available prior information

can be viewed actually as three independent bodies of evidence B1, B2 and B3 providing separately the

partial knowledges summarized through the values of Bel1(f̄ |p), Bel2(f |b) and Bel3(b|p). To achieve the

combination, one needs to define complete basic belief assignments m1(.), m2(.) and m3(.) compatible

with the partial conditional beliefs Bel1(f̄ |p) = 1− ε1, Bel2(f |b) = 1− ε2 and Bel3(b|p) = 1− ε3 without

introducing extra knowledge. We don’t want to introduce in the derivations some extra-information we

don’t have in reality. We present in details the justification for the choice of assignment m1(.). The choice

for m2(.) and m3(.) will follow similarly.

The body of evidence B1 provides some information only about f̄ and p through the value of Bel1(f̄ |p)
and without reference to b. Therefore the frame of discernment Θ1 induced by B1 and satisfying Shafer’s

model (i.e. a finite set of exhaustive and exclusive elements) corresponds to

Θ1 = {θ1 , f̄ ∩ p̄, θ2 , f ∩ p̄, θ3 , f̄ ∩ p, θ4 , f ∩ p}

schematically represented by

f = θ2 ∪ θ4
{

p=θ3∪θ4
︷ ︸︸ ︷

θ4 , f ∩ p θ3 , f̄ ∩ p
θ2 , f ∩ p̄ θ1 , f̄ ∩ p̄
︸ ︷︷ ︸

p̄=θ1∪θ2

}

f̄ = θ1 ∪ θ3

The complete basic assignment m1(.) we are searching for and defined over the power set 2Θ1 which must

be compatible with Bel1(f̄ |p) is actually the result of the Dempster’s combination of an unknown (for

now) basic belief assignment m′
1(.) with the particular assignment m′′

1(.) defined by m′′
1 (p , θ3 ∪ θ4) = 1;

in other worlds, one has

m1(.) = [m′
1 ⊕m′′

1 ](.)

From now on, we introduce explicitly the conditioning term in our notation to avoid confusion and thus we

use m1(.|p) = m1(.|θ3 ∪ θ4) instead m1(.). From m′′
1(p , θ3 ∪ θ4) = 1 and from any generic unknow basic

assignment m′
1(.) defined by its components m′

1(∅) , 0, m′
1(θ1), m′

1(θ2), m′
1(θ3), m′

1(θ4), m′
1(θ1 ∪ θ2),

m′
1(θ1 ∪ θ3), m′

1(θ1 ∪ θ4), m′
1(θ2 ∪ θ3), m′

1(θ2 ∪ θ4), m′
1(θ3 ∪ θ4), m′

1(θ1 ∪ θ2 ∪ θ3), m′
1(θ1 ∪ θ2 ∪ θ4),
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m′
1(θ1 ∪ θ3 ∪ θ4), m′

1(θ2 ∪ θ3 ∪ θ4), m′
1(θ1 ∪ θ2 ∪ θ3 ∪ θ4) and applying Dempter’s rule, one gets easily the

following expressions for m1(.|θ3 ∪ θ4). All m1(.|θ3 ∪ θ4) masses are zero except theoretically

m1(θ3|θ3 ∪ θ4) =

1
︷ ︸︸ ︷

m′′
1(θ3 ∪ θ4)[m′

1(θ3) +m′
1(θ1 ∪ θ3) +m′

1(θ2 ∪ θ3) +m′
1(θ1 ∪ θ2 ∪ θ3)]/K1

m1(θ4|θ3 ∪ θ4) =

1
︷ ︸︸ ︷

m′′
1(θ3 ∪ θ4)[m′

1(θ4) +m′
1(θ1 ∪ θ4) +m′

1(θ2 ∪ θ4) +m′
1(θ1 ∪ θ2 ∪ θ4)]/K1

m1(θ3 ∪ θ4|θ3 ∪ θ4) =

1
︷ ︸︸ ︷

m′′
1(θ3 ∪ θ4)[m′

1(θ3 ∪ θ4) +m′
1(θ1 ∪ θ3 ∪ θ4) +m′

1(θ2 ∪ θ3 ∪ θ4) +m′
1(θ1 ∪ θ2 ∪ θ3 ∪ θ4)]/K1

with

K1 , 1−
1

︷ ︸︸ ︷

m′′
1 (θ3 ∪ θ4)[m′

1(θ1) +m′
1(θ2) +m′

1(θ1 ∪ θ2)]

To complete the derivation of m1(.|θ3∪θ4), one needs to use the fact that one knows that Bel1(f̄ |p) =

1− ε1 which, by definition [16], is expressed by

Bel1(f̄ |p) = Bel1(θ1 ∪ θ3|θ3 ∪ θ4) = m1(θ1|θ3 ∪ θ4) +m1(θ3|θ3 ∪ θ4) +m1(θ1 ∪ θ3|θ3 ∪ θ4) = 1− ε1

But from the generic expression of m1(.|θ3 ∪ θ4), one knows also that m1(θ1|θ3 ∪ θ4) = 0 and m1(θ1 ∪
θ3|θ3 ∪ θ4) = 0. Thus the knowledge of Bel1(f̄ |p) = 1− ε1 implies to have

m1(θ3|θ3 ∪ θ4) = [m′
1(θ3) +m′

1(θ1 ∪ θ3) +m′
1(θ2 ∪ θ3) +m′

1(θ1 ∪ θ2 ∪ θ3)]/K1 = 1− ε1

This is however not sufficient to fully define the values of all components of m1(.|θ3∪θ4) or equivalently

of all components of m′
1(.). To complete the derivation without extra unjustified specific information, one

needs to apply the minimal commitment principle (MCP) which states that one should never give more

support to the truth of a proposition than justified [8]. According to this principle, we commit a non

null value only to the less specific proposition involved into m1(θ3|θ3 ∪ θ4) expression. In other words,

the MCP allows us to choose legitimately

m′
1(θ1) = m′

1(θ2) = m′
1(θ3) = 0

m′
1(θ1 ∪ θ2) = m′

1(θ1 ∪ θ3) = m′
1(θ2 ∪ θ3) = 0

m′
1(θ1 ∪ θ2 ∪ θ3) 6= 0

Thus K1 = 1 and m1(θ3|θ3 ∪ θ4) reduces to

m1(θ3|θ3 ∪ θ4) = m′
1(θ1 ∪ θ2 ∪ θ3) = 1− ε1

Since the sum of basic belief assignments must be one, one must also have for the remaining (uncom-

mitted for now) masses of m′
1(.) the constraint

m′
1(θ4) +m′

1(θ1 ∪ θ4) +m′
1(θ2 ∪ θ4) +m′

1(θ1 ∪ θ2 ∪ θ4)

+m′
1(θ3 ∪ θ4) +m′

1(θ1 ∪ θ3 ∪ θ4) +m′
1(θ2 ∪ θ3 ∪ θ4)

+m′
1(θ1 ∪ θ2 ∪ θ3 ∪ θ4) = ε1
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By applying a second time the MCP, one chooses m′
1(θ1 ∪ θ2 ∪ θ3 ∪ θ4) = ε1.

Finally, the complete and less specific belief assignment m1(.|p) compatible with the available prior

information Bel1(f̄ |p) = 1− ε1 provided by the source B1 reduces to

m1(θ3|θ3 ∪ θ4) = m′
1(θ1 ∪ θ2 ∪ θ3) = 1− ε1 (12.18)

m1(θ3 ∪ θ4|θ3 ∪ θ4) = m′
1(θ1 ∪ θ2 ∪ θ3 ∪ θ4) = ε1 (12.19)

or equivalently

m1(f̄ ∩ p|p) = m′
1(p̄ ∪ f̄) = 1− ε1 (12.20)

m1(p|p) = m′
1(p̄ ∪ f̄ ∪ p ∪ f) = ε1 (12.21)

It is easy to check, from the mass m1(.|p), that one gets effectively Bel1(f̄ |p) = 1− ε1. Indeed:

Bel1(f̄ |p) = Bel1(θ1 ∪ θ3|p)

Bel1(f̄ |p) = Bel1((f̄ ∩ p̄) ∪ (f̄ ∩ p)|p)

Bel1(f̄ |p) = m1(f̄ ∩ p̄|p)
︸ ︷︷ ︸

0

+m1(f̄ ∩ p|p)

+m1((f̄ ∩ p̄) ∪ (f̄ ∩ p)|p)
︸ ︷︷ ︸

0

Bel1(f̄ |p) = m1(f̄ ∩ p|p)

Bel1(f̄ |p) = 1− ε1

In a similar way, for the source B2 with Θ2 defined as

Θ2 = {θ1 , f ∩ b̄, θ2 , b̄ ∩ f̄ , θ3 , f ∩ b, θ4 , f̄ ∩ b}

schematically represented by

f̄ = θ2 ∪ θ4
{

b=θ3∪θ4
︷ ︸︸ ︷

θ4 , f̄ ∩ b θ3 , f ∩ b
θ2 , f̄ ∩ b̄ θ1 , f ∩ b̄
︸ ︷︷ ︸

b̄=θ1∪θ2

}

f = θ1 ∪ θ3

one looks for m2(.|b) = [m′
2 ⊕ m′′

2 ](.) with m′′
2 (b) = m′′

2(θ3 ∪ θ4) = 1. From the MCP, the condition

Bel2(f |b) = 1− ε2 and with simple algebraic manipulations, one finally gets

m2(θ3|θ3 ∪ θ4) = m′
2(θ1 ∪ θ2 ∪ θ3) = 1− ε2 (12.22)

m2(θ3 ∪ θ4|θ3 ∪ θ4) = m′
2(θ1 ∪ θ2 ∪ θ3 ∪ θ4) = ε2 (12.23)
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or equivalently

m2(f ∩ b|b) = m′
2(b̄ ∪ f) = 1− ε2 (12.24)

m2(b|b) = m′
2(b̄ ∪ f̄ ∪ b ∪ f) = ε2 (12.25)

In a similar way, for the source B3 with Θ3 defined as

Θ3 = {θ1 , b ∩ p̄, θ2 , b̄ ∩ p̄, θ3 , p ∩ b, θ4 , b̄ ∩ p}

schematically represented by

b̄ = θ2 ∪ θ4
{

p=θ3∪θ4
︷ ︸︸ ︷

θ4 , b̄ ∩ p θ3 , b ∩ p
θ2 , b̄ ∩ p̄ θ1 , b ∩ p̄
︸ ︷︷ ︸

p̄=θ1∪θ2

}

b = θ1 ∪ θ3

one looks for m3(.|p) = [m′
3 ⊕ m′′

3 ](.) with m′′
3(p) = m′′

3(θ3 ∪ θ4) = 1. From the MCP, the condition

Bel3(b|p) = 1− ε3 and with simple algebraic manipulations, one finally gets

m3(θ3|θ3 ∪ θ4) = m′
3(θ1 ∪ θ2 ∪ θ3) = 1− ε3 (12.26)

m3(θ3 ∪ θ4|θ3 ∪ θ4) = m′
3(θ1 ∪ θ2 ∪ θ3 ∪ θ4) = ε3 (12.27)

or equivalently

m3(b ∩ p|p) = m′
3(p̄ ∪ b) = 1− ε3 (12.28)

m3(p|p) = m′
3(b̄ ∪ p̄ ∪ b ∪ p) = ε3 (12.29)

Since all the complete prior basic belief assignments are available, one can combine them with the

Dempster’s rule to summarize all our prior knowledge drawn from our simple rule-based expert system

characterized by rules R = {r1, r2, r3} and convictions/confidences W = {w1, w2, w3} in these rules.

The fusion operation requires to primilarily choose the following frame of discernment Θ (satisfying

Shafer’s model) given by

Θ = {θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8}

where

θ1 , f ∩ b ∩ p θ5 , f̄ ∩ b ∩ p

θ2 , f ∩ b ∩ p̄ θ6 , f̄ ∩ b ∩ p̄

θ3 , f ∩ b̄ ∩ p θ7 , f̄ ∩ b̄ ∩ p

θ4 , f ∩ b̄ ∩ p̄ θ8 , f̄ ∩ b̄ ∩ p̄
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The fusion of masses m1(.) given by eqs. (12.20)-(12.21) with m2(.) given by eqs. (12.24)-(12.25)

using the Demspter’s rule of combination [16] yields m12(.) = [m1 ⊕m2](.) with the following non null

components

m12(f ∩ b ∩ p) = ε1(1− ε2)/K12

m12(f̄ ∩ b ∩ p) = ε2(1− ε1)/K12

m12(b ∩ p) = ε1ε2/K12

with K12 , 1− (1− ε1)(1− ε2) = ε1 + ε2 − ε1ε2.

The fusion of all prior knowledge by the Dempster’s rule m123(.) = [m1⊕m2⊕m3](.) = [m12⊕m3](.)

yields the final result :

m123(f ∩ b ∩ p) = m123(θ1) = ε1(1 − ε2)/K123

m123(f̄ ∩ b ∩ p) = m123(θ5) = ε2(1 − ε1)/K123

m123(b ∩ p) = m123(θ1 ∪ θ5) = ε1ε2/K123

with K123 = K12 , 1− (1 − ε1)(1 − ε2) = ε1 + ε2 − ε1ε2.

which defines actually and precisely the conditional belief assignment m123(.|p∩ b). It turns out that the

fusion with the last basic belief assignment m3(.) brings no change with respect to previous fusion result

m12(.) in this particular problem.

Since we are actually interested to assess the belief that our observed particular penguin-animal named

Tweety (denoted as T = (p∩ b)) can fly, we need to combine all our prior knowledge m123(.) drawn from

our rule-based system with the belief assignment mo(T = (p ∩ b)) = 1 characterizing the observation

about Tweety. Applying again the Demspter’s rule, one finally gets the resulting conditional basic belief

function mo123 = [mo ⊕m123](.) defined by

mo123(T = (f ∩ b ∩ p)|T = (p ∩ b)) = ε1(1− ε2)/K12

mo123(T = (f̄ ∩ b ∩ p)|T = (p ∩ b)) = ε2(1− ε1)/K12

mo123(T = (b ∩ p)|T = (p ∩ b)) = ε1ε2/K12

From the Dempster-Shafer reasoning, the belief and plausibity that Tweety can fly are given by [16]

Bel(T = f |T = (p ∩ b)) =
∑

x∈2Θ,x⊆f

mo123(T = x|T = (p ∩ b))

Pl(T = f |T = (p ∩ b)) =
∑

x∈2Θ,x∩f 6=∅

mo123(T = x|T = (p ∩ b))
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Because f = [(f ∩ b ∩ p) ∪ (f ∩ b ∩ p̄) ∪ (f ∩ b̄ ∩ p) ∪ (f ∩ b̄ ∩ p̄)] and the specific values of the masses

defining mo123(.), one has

Bel(T = f |T = (p ∩ b)) = mo123(T = (f ∩ b ∩ p)|T = (p ∩ b))

Pl(T = f |T = (p ∩ b)) = mo123(T = (f ∩ b ∩ p)|T = (p ∩ b)) +mo123(T = (b ∩ p)|T = (p ∩ b))

and finally

Bel(T = f |T = (p ∩ b)) =
ε1(1 − ε2)

K12
(12.30)

Pl(T = f |T = (p ∩ b)) =
ε1(1 − ε2)

K12
+
ε1ε2
K12

=
ε1
K12

(12.31)

In a similar way, one will get for the belief and the plausibility that Tweety cannot fly

Bel(T = f̄ |T = (p ∩ b)) =
ε2(1 − ε1)

K12
(12.32)

Pl(T = f̄ |T = (p ∩ b)) =
ε2(1 − ε1)

K12
+
ε1ε2
K12

=
ε2
K12

(12.33)

Using the first order approximation when ε1 and ε2 are very small positive numbers, one gets finally

Bel(T = f |T = (p ∩ b)) = Pl(T = f |T = (p ∩ b)) ≈ ε1
ε1 + ε2

In a similar way, one will get for the belief that Tweety cannot fly

Bel(T = f̄ |T = (p ∩ b)) = Pl(T = f̄ |T = (p ∩ b)) ≈ ε2
ε1 + ε2

This result coincides with the Judea Pearl’s result but a different analysis and detailed presentation

has been done here. It turns out that this simple and complete analysis corresponds actually to the

ballooning extension and the generalized Bayesian theorem proposed by Smets in [21, 24] and discussed

by Shafer in [17] although it was carried out independently of Smets’ works. As pointed out by Judea

Pearl, this result based on DST and the Dempster’s rule of combination looks very paradoxical/counter-

intuitive since it means that if nonflying birds are very rare, i.e. ε2 ≈ 0, then penguin-birds like our

observed penguin-bird Tweety, have a very big chance of flying. As stated by Judea Pearl in [11] pages

448-449: ”The clash with intuition revolves not around the exact numerical value of Bel(f) but rather

around the unacceptable phenomenon that rule r3, stating that penguins are a subclass of birds, plays no

role in the analysis. Knowing that Tweety is both a penguin and a bird renders Bel(T = f |T = (p ∩ b))
solely a function of m1(.) and m2(.), regardless of how penguins and birds are related. This stands

contrary to common discourse, where people expect class properties to be overridden by properties of more

specific subclasses. While in classical logic the three rules in our example would yield an unforgivable

contradiction, the uncertainties attached to these rules, together with Dempster’s normalization, now
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render them manageable. However, they are managed in the wrong way whenever we interpret if-then

rules as randomized logical formulas of the material-implication type, instead of statements of conditional

probabilities”. Keep in mind that this Pearl’s statement is however given to show the semantic clash

between the Dempster-Shafer reasoning vs. the fallacious Bayesian reasoning to support the Bayesian

reasoning approach.

12.5 The Dezert-Smarandache reasoning

We analyze here the Tweety penguin triangle problem with the DSmT (see Part I of this book for a

presentation of DSmT). The prior knowledge characterized by the rules R = {r1, r2, r3} and convictions

W = {w1, w2, w3} is modeled as three independent sources of evidence defined on separate minimal and

potentially paradoxical (i.e internal conflicting) frames Θ1 , {p, f̄}, Θ2 , {b, f} and Θ3 , {p, b} since

the rule r1 doesn’t refer to the existence of b, the rule r2 doesn’t refer to the existence of p and the rule

r3 doesn’t refer to the existence of f or f̄ . Let’s note that the DSmT doesn’t require the refinement of

frames as with DST (see previous section). We follow the same analysis as in previous section but now

based on our DSm reasoning and the DSm rule of combination.

The first source B1 relative to r1 with confidence w1 = 1 − ε1 provides us the conditional belief

Bel1(f̄ |p) which is now defined from a paradoxical basic belief assignment m1(.) resulting of the DSm

combination of m′′
1(p) = 1 with m′′

1(.) defined on the hyper-power set DΘ1 = {∅, p, f̄ , p ∩ f̄ , p ∪ f̄}. The

choice for m′
1(.) results directly from the derivation of the DSm rule and the application of the MCP.

Indeed, the non null components of m1(.) are given by (we introduce explicitly the conditioning term in

notation for convenience):

m1(p|p) =

1
︷ ︸︸ ︷

m′′
1 (p)m′

1(p) +

1
︷ ︸︸ ︷

m′′
1(p)m′

1(p ∪ f̄)

m1(p ∩ f̄ |p) =

1
︷ ︸︸ ︷

m′′
1 (p)m′

1(f̄) +

1
︷ ︸︸ ︷

m′′
1(p)m′

1(p ∩ f̄)

The information Bel1(f̄ |p) = 1− ε1 implies

Bel1(f̄ |p) = m1(f̄ |p) +m1(p ∩ f̄ |p) = 1− ε1
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Since m1(p|p) + m1(p ∩ f̄ |p) = 1, one has necessarily m1(f̄ |p) = 0 and thus from previous equation

m1(f̄ ∩ p|p) = 1− ε1, which implies both

m1(p|p) = ε1

m1(p ∩ f̄ |p) =

1
︷ ︸︸ ︷

m′′
1(p)m′

1(f̄) +

1
︷ ︸︸ ︷

m′′
1(p)m′

1(p ∩ f̄) = m′
1(f̄) +m′

1(p ∩ f̄) = 1− ε1

Applying the MCP, it results that one must choose

m′
1(f̄) = 1− ε1 and m′

1(p ∩ f̄) = 0

The sum of remaining masses of m′
1(.) must be then equal to ε1, i.e.

m′
1(p) +m′

1(p ∪ f̄) = ε1

Applying again the MCP on this last constraint, one gets naturally

m′
1(p) = 0 and m′

1(p ∪ f̄) = ε1

Finally the belief assignment m1(.|p) relative to the source B1 and compatible with the constraint

Bel1(f̄ |p) = 1− ε1, holds the same numerical values as within the DST analysis (see eqs. (12.20)-(12.21))

and is given by

m1(p ∩ f̄ |p) = 1− ε1

m1(p|p) = ε1

but results here from the DSm combination of the two following assignments (i.e. m1(.) = [m′
1⊕m′′

1 ](.) =

[m′′
1 ⊕m′

1](.))






m′
1(f̄) = 1− ε1 and m′

1(p ∪ f̄) = ε1

m′′
1(p) = 1

(12.34)

In a similarly manner and working on Θ2 = {b, f} for source B2 with the condition Bel2(f |b) = 1− ε2,

the mass m2(.|b) results from the internal DSm combination of the two following assignments







m′
2(f) = 1− ε2 and m′

2(b ∪ f) = ε2

m′′
2(b) = 1

(12.35)

Similarly and working on Θ3 = {p, b} for source B3 with the condition Bel3(b|p) = 1 − ε3, the mass

m3(.|p) results from the internal DSm combination of the two following assignments







m′
3(b) = 1− ε3 and m′

3(b ∪ p) = ε3

m′′
3(p) = 1

(12.36)
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It can be easily verified that these (less specific) basic belief assignments generates the conditions

Bel1(f̄ |p) = 1− ε1, Bel2(f |b) = 1− ε2 and Bel3(b|p) = 1− ε3.

Now let’s examine the result of the fusion of all these masses based on DSmT, i.e by applying the

DSm rule of combination of the following basic belief assignments

m1(p ∩ f̄ |p) = 1− ε1 and m1(p|p) = ε1

m2(b ∩ f |b) = 1− ε2 and m2(b|b) = ε2

m3(p ∩ b|p) = 1− ε3 and m3(p|p) = ε3

Note that these basic belief assignments turn to be identical to those drawn from DST framework

analysis done in previous section for this specific problem because of integrity constraint f ∩ f̄ = ∅ and

the MCP, but result actually from a slightly different and simpler analysis here drawn from DSmT. So

we attack the TP2 with the same information as with the analysis based on DST, but we will show that

a coherent conclusion can be drawn with DSm reasoning.

Let’s emphasize now that one has to deal here with the hypotheses/elements p, b, f and f̄ and thus our

global frame is given by Θ = {b, p, f, f̄}. Note that Θ doesn’t satisfy Shafer’s model since the elements of

Θ are not all exclusive. This is a major difference between the foundations of DSmT with respect to the

foundations of DST. But because only f and f̄ are truly exclusive, i.e. f̄ ∩ f = ∅, we are face to a quite

simple hybrid DSm model M and thus the hybrid DSm fusion must apply rather than the classic DSm

rule. We recall briefly here (a complete derivation, justification and examples can be found in chapter

4) the hybrid DSm rule of combination associated to a given hybrid DSm model for k ≥ 2 independent

sources of information is defined for all A ∈ DΘ as:

mM(Θ)(A) , φ(A)
[

S1(A) + S2(A) + S3(A)
]

(12.37)

where φ(A) is the characteristic non emptiness function of the set A, i.e. φ(A) = 1 if A /∈ ∅ (∅ , {∅,∅M}
being the set of all relatively and absolutely empty elements) and φ(A) = 0 otherwise, and

S1(A) ,
∑

X1,X2,...,Xk∈D
Θ

(X1∩X2∩...∩Xk)=A

k∏

i=1

mi(Xi) (12.38)

S2(A) ,
∑

X1,X2,...,Xk∈∅

[U=A]∨[(U∈∅)∧(A=It)]

k∏

i=1

mi(Xi) (12.39)

S3(A) ,
∑

X1,X2,...,Xk∈D
Θ

(X1∪X2∪...∪Xk)=A
(X1∩X2∩...∩Xk)∈∅

k∏

i=1

mi(Xi) (12.40)
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with U , u(X1) ∪ u(X2) ∪ . . . ∪ u(Xk) where u(X) is the union of all singletons θi that compose X and

It , θ1 ∪ θ2 ∪ . . . ∪ θn is the total ignorance defined on the frame Θ = {θ1, . . . , θn}. For example, if X is

a singleton then u(X) = X ; if X = θ1 ∩ θ2 or X = θ1 ∪ θ2 then u(X) = θ1 ∪ θ2; if X = (θ1 ∩ θ2)∪ θ3 then

u(X) = θ1 ∪ θ2 ∪ θ3; by convention u(∅) , ∅.

The first sum S1(A) entering in the previous formula corresponds to mass mMf (Θ)(A) obtained by

the classic DSm rule of combination based on the free DSm modelMf (i.e. on the free lattice DΘ). The

second sum S2(A) entering in the formula of the hybrid DSm rule of combination (12.37) represents the

mass of all relatively and absolutely empty sets which is transferred to the total or relative ignorances.

The third sum S3(A) entering in the formula of the hybrid DSm rule of combination (12.37) transfers

the sum of relatively empty sets to the non-empty sets in the same way as it was calculated following the

DSm classic rule.

To apply the hybrid DSm fusion rule formula (12.37), it is important to note that (p∩ f̄ )∩(b∩f)∩p ≡
p∩b∩f ∩ f̄ = ∅ because f ∩ f̄ = ∅, thus the mass (1−ε1)(1−ε2)ε3 is transferred to the hybrid proposition

H1 , (p ∩ f̄) ∪ (b ∩ f) ∪ p ≡ (b ∩ f) ∪ p; similarly (p ∩ f̄) ∩ (b ∩ f) ∩ (p ∩ b) ≡ p ∩ b ∩ f ∩ f̄ = ∅
because f ∩ f̄ = ∅ and therefore its associated mass (1 − ε1)(1 − ε2)(1 − ε3) is transferred to the hybrid

proposition H2 , (p∩ f̄)∪ (b ∩ f) ∪ (p∩ b). No other mass transfer is necessary for this Tweety Penguin

Triangle Problem and thus we finally get from hybrid DSm fusion formula (12.37) the following result

for m123(.|p∩ b) = [m1⊕m2⊕m3](.) (where ⊕ symbol corresponds here to the DSm fusion operator and

we omit the conditioning term p ∩ b here due to space limitation):

m123((b ∩ f) ∪ p|p ∩ b) = (1− ε1)(1− ε2)ε3

m123((p ∩ f̄) ∪ (b ∩ f) ∪ (p ∩ b)|p ∩ b) = (1− ε1)(1− ε2)(1 − ε3)

m123(p ∩ b ∩ f̄ |p ∩ b) = (1− ε1)ε2ε3 + (1 − ε1)ε2(1− ε3) = (1− ε1)ε2

m123(p ∩ b ∩ f |p ∩ b) = ε1(1− ε2)ε3 + ε1(1 − ε2)(1− ε3) = ε1(1− ε2)

m123(p ∩ b|p ∩ b) = ε1ε2ε3 + ε1ε2(1− ε3) = ε1ε2

We can check all these masses add up to 1 and that this result is fully coherent with the rational

intuition especially when ε3 = 0, because non null components of m123(.|p ∩ b) reduces to

m123((p ∩ f̄) ∪ (b ∩ f) ∪ (p ∩ b)|p ∩ b) = (1− ε1)(1 − ε2)

m123(p ∩ b ∩ f̄ |p ∩ b) = (1− ε1)ε2

m123(p ∩ b ∩ f |p ∩ b) = ε1(1− ε2)

m123(p ∩ b|p ∩ b) = ε1ε2
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which means that from our DSm reasoning there is a strong uncertainty (due to the conflicting rules

of our rule-based system), when ε1 and ε2 remain small positive numbers, that a penguin-bird animal

is either a penguin-nonflying animal or a bird-flying animal. The small value ε1ε2 for m123(p ∩ b|p ∩ b)
expresses adequately the fact that we cannot commit a strong basic belief assignment only to p∩ b know-

ing p ∩ b just because one works on Θ = {p, b, f, f̄} and we cannot consider the property p ∩ b solely

because the”birdness” or ”penguinness” property endow necessary either the flying or non-flying property.

Therefore the belief that the particular observed penguin-bird animal Tweety ( corresponding to

the particular mass mo(T = (p ∩ b)) = 1) can be easily derived from the DSm fusion of all our prior

summarized by m123(.|p ∩ b) and the available observation summarized by mo(.) and we get

mo123(T = (p ∩ b ∩ f̄)|T = (p ∩ b)) = (1 − ε1)ε2

mo123(T = (p ∩ b ∩ f)|T = (p ∩ b)) = ε1(1− ε2)

mo123(T = (p ∩ b)|T = (p ∩ b)) = ε1ε2

mo123(T = (b ∩ f) ∪ p|T = (p ∩ b)) = (1 − ε1)(1 − ε2)ε3

mo123(T = (p ∩ f̄) ∪ (b ∩ f) ∪ (p ∩ b)|T = (p ∩ b)) = (1 − ε1)(1 − ε2)(1 − ε3)

From the DSm reasoning, the belief that Tweety can fly is then given by

Bel(T = f |T = (p ∩ b)) =
∑

x∈DΘ,x⊆f

mo123(T = x|T = (p ∩ b))

Using all the components of mo123(.|T = (p ∩ b)), one directly gets

Bel(T = f |T = (p ∩ b)) = mo123(T = (f ∩ b ∩ p)|T = (p ∩ b))

and finally

Bel(T = f |T = (p ∩ b)) = ε1(1 − ε2) (12.41)

In a similar way, one will get for the belief that Tweety cannot fly

Bel(T = f̄ |T = (p ∩ b)) = ε2(1 − ε1) (12.42)

So now for both cases the beliefs remain very low which is normal and coherent with analysis done

in section 12.3.2. Now let’s examine the plausibilities of the ability for Tweety to fly or not to fly. These

are given by

Pl(T = f |T = (p ∩ b)) ,
∑

x∈DΘ,x∩f 6=∅

mo123(T = x|T = (p ∩ b))

Pl(T = f̄ |T = (p ∩ b)) ,
∑

x∈DΘ,x∩f̄ 6=∅

mo123(T = x|T = (p ∩ b))
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which turn to be after elementary algebraic manipulations

Pl(T = f |T = (p ∩ b)) = (1 − ε2) (12.43)

Pl(T = f̄ |T = (p ∩ b)) = (1 − ε1) (12.44)

So we conclude, as reasonably/rationally expected, that we can’t decide on the ability for Tweety of

flying or of not flying, since one has

[Bel(f |p ∩ b),Pl(f |p ∩ b)] = [ε1(1− ε2), (1 − ε2)] ≈ [0, 1]

[Bel(f̄ |p ∩ b),Pl(f̄ |p ∩ b)] = [ε2(1− ε1), (1 − ε1)] ≈ [0, 1]

Note that when setting ε1 = 0 and ε2 = 1 (or ε1 = 1 and ε2 = 0), i.e. one forces the full consistency

of the initial rules-based system, one gets coherent result on the certainty of the ability of Tweety to not

fly (or to fly respectively).

This coherent result (radically different from the one based on Dempster-Shafer reasoning but starting

with exactly the same available information) comes from the hybrid DSm fusion rule which transfers some

parts of the mass of empty set m(∅) = (1− ε1)(1− ε2)ε3 + (1− ε1)(1− ε2)(1− ε3) ≈ 1 onto propositions

(b ∩ f) ∪ p and (p ∩ f̄) ∪ (b ∩ f) ∪ (p ∩ b).

It is clear however that the high value of m(∅) in this TP2 indicates a high conflicting fusion problem

which proves that the TP2 is a true almost impossible problem and the fusion result based on DSmT

reasoning allows us to conclude on the true undecidability on the ability for Tweety of flying or of not

flying. In other words, the fusion based on DSmT can be applied adequately on this almost impossible

problem and concludes correctly on its indecibility. Another simplistic solution would consist to say

naturally that the problem has to be considered as an impossible one just because m(∅) ≥ 0.5 .

12.6 Conclusion

In this chapter we have proposed a deep analysis of the challenging Tweety Penguin Triangle Problem.

The analysis proves that the Bayesian reasoning cannot be mathematically justified to characterize the

problem because the probabilistic model doesn’t hold, even with the help of acceptance of the principle

of indifference and the conditional independence assumption. Any conclusions drawn from such repre-

sentation of the problem based on a hypothetical probabilistic model are based actually on a fallacious

Bayesian reasoning. This is a fundamental result. Then one has shown how the Dempster-Shafer reason-

ing manages in what we feel is a wrong way the uncertainty and the conflict in this problem. We then
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proved that the DSmT can deal properly with this problem and provides a well-founded and reasonable

conclusion about the undecidability of its solution.
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