SOLVING PROBLEMS BY USING A FUNCTION IN THE NUMBER THEORY

Let $n \ge 1$, $h \ge 1$, and $a \ge 2$ be integers. For which values of a and n is (n + h)! a multiple of a^n ?

(A generalization of the problem $n^0 = 1270$, Mathematics Magazine, Vol. 60, No. 3, June 1987, p. 179, proposed by Roger B. Eggleton, The University of Newcastle, Australia.)

Solution

(For h = 1 the problem $n^0 = 1270$ is obtained.)

§1. <u>Introduction</u>

We have constructed a function η (see [1]) having the following properties:

- (a) For each non-null integer n, $\eta(n)$! is a multiple of n;
- (b) η (n) is the smallest natural number with the property (a).

It is easy to prove:

Lemma 1. (\forall) k, p ϵ N*, p. * 1, k is uniquely written in the form:

$$k = t_1 a_{n_1}^{(p)} + ... + t_t a_{n_t}^{(p)}$$

where
$$a_{n_i}^{(p)} = (p^{n_i} - 1) / (p - 1), i = 1, 2, ..., \ell,$$

$$n_1 > n_2 > ... > n_\ell > 0 \text{ and } 1 \le t_j \le p - 1, j = 1,$$

$$2, ..., \ell - 1, 1 \le t_\ell \le p, n_i, t_i \in N, i = 1, 2,$$

$$..., \ell, \ell \in N^*.$$

We have constructed the function $\eta_{\rm p},$ p prime > 0, $\eta_{\rm p}$: N* - N*, thus:

$$(\forall) \ n \in N^*, \ \eta_p(a_n^{(p)}) = p^n, \ and$$

$$\eta_p(t_1 a_{n_1}^{(p)} + \dots + t_\ell a_{n_\ell}^{(p)}) =$$

$$= t_1 \eta_p(a_{n_1}^{(p)}) + \dots + t_\ell \eta_p(a_{n_\ell}^{(p)}) .$$

Of course:

Lemma 2.

- (a) (\forall) k ϵ N*, η_p (k) ! = Mp^k .
- (b) $\eta_{\rm p}$ (k) is the smallest number with the property . (a). Now, we construct another function:
 - η : $Z\setminus\{0\}$ N defined as follows:

$$\begin{cases} \eta (\pm 1) = 0, \\ (\forall) \ n = \epsilon \ p_1 & \dots p_s \ \text{with } \epsilon = \pm 1, \ p_i \ \text{prime and} \\ p_i \neq p_j \ \text{for } i \neq j, \ \text{all } \alpha_i \in \mathbb{N}^*, \ \eta(n) = \\ = \max_{1 \leq i \leq s} \{\eta_p \ (\alpha_i)\}. \end{cases}$$

It is not difficult to prove η has the demanded properties of §1.

§2. Now, let $a=p_1$... p_s , with all $\alpha_i \in \mathbb{N}^*$ and all p_i distinct primes. By the previous theory we have:

$$\eta(a) = \max_{1 \le i \le s} \{n_{p_i}(\alpha_i)\} = \eta_p(\alpha) \text{ (by notation)}.$$

Hence
$$\eta(a) = \eta(p^{\alpha}), \eta(p^{\alpha}) ! = Mp^{\alpha}.$$

We know:

We put:

$$t_1 p^{n_1} + ... + t_\ell p^{n_\ell} = n + h$$

and
$$t_1 = \frac{p - 1}{p - 1} + \dots + t_\ell = \frac{p - 1}{p - 1} = \alpha n$$
.

Whence

$$\frac{1}{\alpha} \left[\begin{array}{c} \frac{p}{p-1} + \dots + t_{\ell} \frac{p}{p-1} \end{array} \right] \ge t_{1} p + \dots + t_{\ell} p - h$$

or

(1)
$$\alpha (p-1) h \ge (\alpha p - \alpha - 1) [t_1 p^{n_1} + ... + t_\ell p^{n_\ell}] + ... + (t_1 + ... + t_\ell).$$

On this condition we take $n_0=t_1$ p $n_1+\ldots+t_\ell$ p $n_\ell-h$ (see Lemma 1), hence $n=\begin{cases} n_0,\ n_0>0;\\ 1,\ n_0\leq 0 \end{cases}$.

Consider giving a \neq 2, we have a finite number of n. There are an infinite number of n if and only if α p - α - l = 0, i.e., α = 1 and p = 2, i.e., a = 2.

§3. Particular Case

If h = 1 and $a \neq 2$, because

$$t_1 p + ... + t_2 p \ge p > 1$$

and $t_1 + \ldots + t_r \ge 1$, it follows from (1) that:

$$(1')$$
 $(\alpha p - \alpha) > (\alpha p - \alpha - 1) \cdot 1 + 1 = \alpha p - \alpha$,

which is impossible. If h=1 and a=2 then $\alpha=1$, p=2, or

$$(1")$$
 $1 \ge t, + \ldots + t, ,$

hence $\ell=1,\ t_1=1$ whence $n=t_1$ p $+\ldots+t_\ell$ p -h=

= 2^{n_1} - 1, $n_1 \in \mathbb{N}^*$ (the solution to problem 1270).

Example 1. Let h = 16 and $a = 3^4 \cdot 5^2$. Find all n such that

$$(n + 16) ! = M 2025^{n}.$$

Solution

 η (2025) = max { η_3 (4), η_5 (2)} = max {9, 10} = 10 = η_5 (2) = η (5²). Whence α = 2, p = 5. From (1) we have:

$$128 \ge 7[t_1 5^{n_1} + \dots + t_{\ell} 5^{n_{\ell}}] + t_1 + \dots + t_{\ell}.$$

Because $5^4 > 128$ and 7 [t, 5 $+ \dots + t_{\ell}$ 5] < 128 we find $\ell = 1$,

$$128 \ge 7 t_1 5^{n_1} + t_1$$

whence $n_1 \le 1$, i.e., $n_1 = 1$, and $t_1 = 1$, 2, 3. Then $n_0 = t_1$ 5 - 16 < 0, hence we take n = 1.

Example 2

$$(n + 7)! = M 3^n$$
 when $n = 1, 2, 3, 4, 5$.

$$(n + 7)! = M 5^n \text{ when } n = 1.$$

$$(n + 7)! = M 7^n$$
 when $n = 1$.

But
$$(n + 7)! * M p^n$$
, for p prime > 7, (\forall) n \in N*.

$$(n + 7)! = M 2^n$$
 when

$$n_0 = t_1 2 + ... + t_{\ell} 2 - 7,$$

$$t_1, \ldots, t_{\ell-1} = 1,$$

$$1 \le t, \le 2, t, + \ldots + t, \le 7$$

and
$$n = \begin{cases} n_0, n_0 > 0; \\ 1, n_0 \le 0. \end{cases}$$

etc.

Exercise for Readers

If n ϵ N*, a ϵ N*\{1}, find all values of a and n such that:

(n + 7)! be a multiple of a^n .

Some Unsolved Problems (see [2])

Solve the diophantine equations:

- (1) η (x) η (y) = η (x + y).
- (2) η (x) = y! (A solution: x = 9, y = 3).
- (3) Conjecture: the equation η (x) = η (x + 1) has no solution.

References

- [1] Florentin Smarandache, "A Function in the Number Theory,"
 Analele Univ. Timisoara, Fasc. 1, Vol. XVIII, pp. 79-88,
 1980, MR: 83c: 10008.
- [2] Idem, Un Infinity of Unsolved Problems Concerning a

 Function in Number Theory, International Congress of

 Mathematicians, Univ. of Berkeley, CA, August 3-11, 1986.

Florentin Smarandache

[A comment about this generalization was published in "Mathematics Magazine", Vol. 61, No. 3, June 1988, p. 202: "Smarandache considered the general problem of finding positive integers n, a, and k, so that (n + k)! should be a multiple of a^n . Also, for positive integers p and k, with p prime, he found a formula for determining the smallest integer f(k) with the property that (f(k))! is a multiple of p^k ."

SOME LINEAR EQUATIONS INVOLVING A FUNCTION IN THE NUMBER THEORY

We have constructed a function η which associates to eac non-null integer m the smallest positive n such that n! is a multiple of m.

- (a) Solve the equation η (x) = n, where n ϵ N.
- *(b) Solve the equation η (mx) = x, where m ϵ Z. Discussion.
- (c) Let $\eta^{(i)}$ note η o η o ... o η of i times. Prove that there is a k for which

$$\eta^{(k)}$$
 (m) = $\eta^{(k+1)}$ (m) = n_m , for all m \in Z*\{1}.

**Find n_{m} and the smallest k with this property.

Solution

(a) The cases n = 0, 1 are trivial.

We note the increasing sequence of primes less or equal than n by $P_1,\ P_2,\ \dots,\ P_k,$ and

$$\beta_t = \sum_{h \ge 1} [n/p_t^h]$$
, t = 1, 2, ..., k;

where [y] is the greatest integer less or equal than y.

Let $n=p_{i_1}^{\alpha_{i_1}}\dots p_{i_s}^{\alpha_{i_s}}$, where all p_{i_j} are distinct primes and all α_{i_1} are from N.

Of course we have $n \le x \le n!$

Thus $x = p_1^{\sigma_1} \dots p_k^{\sigma_k}$ where $0 \le \sigma_t \le \beta_t$ for all $t = 1, 2, \dots, k$ and there exists at least a $j \in \{1, 2, \dots, s\}$ for which

$$\sigma_{i_j} \in \{\beta_{i_j} \mid \beta_{i_j}^{-1}, \ldots, \beta_{i_j} - \alpha_{i_j} + 1\}$$

Clearly n! is a multiple of x, and is the smallest one.

(b) See [1] too. We consider m ϵ N*.

Lemma 1. η (m) \leq m, and η (m) = m if and only if m = 4 or m is a prime.

Of course m! is a multiple of m.

If m #4 and m is not a prime, the Lemma is equivalent to there are m_1 , m_2 such that $m=m_1$ · m_2 with $1 < m_1 \le m_2$ and $(2 m_2 < m \text{ or } 2 m_1 < m)$. Whence η $(m) \le 2 m_2 < m$, respectively η $(m) \le \max \{m_2, 2m\} < m$.

Lemma 2. Let p be a prime ≥ 5 . Then η (p x) = x if and only if x is a prime > p, or x = 2p.

Proof: η (p) = p. Hence x > p.

Analogously: x is not a prime and x = 2p = x = x_1 x_2 , 1 < $x_1 \le x_2$ and (2 x_2 < x_1 , x_2 = p_1 , and 2 x_1 < x_2 = n (p x) \le

 \leq max {p, 2 x₂} < x respectively η (p x) \leq max {p, 2 x₁, x₂} < x.

Observations

 η (2 x) = x - x = 4 or x is an odd prime.

 η (3 x) = x - x = 4, 6, 9 or x is a prime > 3.

Lemma 3. If (m, x) = 1 then x is a prime $> \eta$ (m).

Of course, η (mx) = max { η (m), η (x)} = η (x) = x. And x * η (m), because if x = η (m) then m • η (m) divides η (m)! that is m divides (η (m) - 1)! whence η (m) $\leq \eta$ (m) - 1.

Lemma 4. If x is not a prime then $\eta(m) < x \le 2 \eta$ (m) and $x = 2 \eta$ (m) if and only if η (m) is a prime.

Proof: If x > 2 η (m) there are x_1 , x_2 with $1 < x_1 \le x_2$, $x = x_1$, x_2 . For $x_1 < \eta$ (m) we have (x - 1)! is a multiple of m x. Same proof for other cases.

Let $x = 2 \eta$ (m); if η (m) is not a prime, then x = 2 a b, $1 < a \le b$, but the product $(\eta$ (m) + 1) $(\eta$ (m) + 2) ... $(2\eta$ (m) - 1) is divided by x.

If η (m) is a prime, η (m) divides m, whence m \cdot 2 η (m) is divided by η (m)², it results in η (m \cdot 2 η (m)) \geq 2 \cdot \cdot η (m), but (η (m) + 1) (η (m) + 2) ... (2 η (m)) is a multiple of 2 η (m), that is η (m \cdot 2 η (m)) = 2 η (m).

Conclusion

All x, prime number > η (m), are solutions.

If η (m) is prime, then $x = 2 \eta$ (m) is a solution.

*If x is not a prime, η (m) < x < 2 η (m), and x does not divide (x - 1)!/m then x is a solution (semi-open question). If m = 3 it adds x = 9 too. (No other solution exists yet.)

(C)

Lemma 5. η (a b) $\leq \eta$ (a) + η (b).

Of course, η (a) = a' and η (b) = b' involves (a' + + b')! = b'! (b' + 1) ... (b' + a'). Let a' \leq b'. Then η (ab) \leq a' + b', because the product of a' consecutive positive integers is a multiple of a'!

Clearly, if m is a prime then k = 1 and $n_m = m$.

If m is not a prime then η (m) < m, whence there is a k for which $\eta^{(k)}$ (m) = $\eta^{(k+1)}$ (m).

If $m \neq 1$ then $2 \leq n_m \leq m$.

Lemma 6. $n_m = 4$ or n_m is a prime.

 $\mbox{If } n_{\rm m} = n_1 \ n_2, \ 1 < n_1 \leq n_2, \mbox{then } \eta \ (n_{\rm m}) < n_{\rm m}. \ \mbox{Absurd.}$ $n_{\rm m} \neq 4.$

(**) This question remains, open.

Reference

[1] F. Smarandache, A Function in the Number Theory, An.
Univ. Timisoara, seria st. mat., Vol. XVIII, fasc. 1,
pp. 79-88, 1980; Mathematical Reviews: 83c: 10008.

Florentin Smarandache

[Published on "Gamma" Journal, "Steagul Rosu" College, Brasov, 1987.]