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In this article, we review some properties 

of the harmonic quadrilateral related to 

triangle simedians and to Apollonius’s 

Circle. 

1st Definition. 

A convex circumscribable quadrilateral 𝐴𝐵𝐶𝐷 

having the property 𝐴𝐵 ∙ 𝐶𝐷 = 𝐵𝐶 ∙ 𝐴𝐷  is called 

harmonic quadrilateral. 

2nd Definition. 

A triangle simedian is the isogonal cevian of a 

triangle median.  

1st Proposition. 

In the triangle 𝐴𝐵𝐶, the cevian 𝐴𝐴1, 𝐴1 ∈ (𝐵𝐶) is 

a simedian if and only if  
𝐵𝐴1

𝐴1𝐶
= (

𝐴𝐵

𝐴𝐶
)
2
. For Proof of this 

property, see infra. 
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Figura 1. 

2nd Proposition.  

In an harmonic quadrilateral, the diagonals are 

simedians of the triangles determined by two 

consecutive sides of a quadrilateral with its diagonal. 

Proof.  

Let 𝐴𝐵𝐶𝐷  be an harmonic quadrilateral and 

{𝐾} = 𝐴𝐶 ∩ 𝐵𝐷  (see Figure 1). We prove that 𝐵𝐾  is 

simedian in the triangle 𝐴𝐵𝐶. 

From the similarity of the triangles 𝐴𝐵𝐾  and 

𝐷𝐶𝐾, we find that: 
𝐴𝐵

𝐷𝐶
=

𝐴𝐾

𝐷𝐾
=

𝐵𝐾

𝐶𝐾
 .     (1) 

From the similarity of the triangles 𝐵𝐶𝐾 şi 𝐴𝐷𝐾, 

we conclude that: 
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𝐵𝐶

𝐴𝐷
=

𝐶𝐾

𝐷𝐾
=

𝐵𝐾

𝐴𝐾
 .     (2) 

From the relations (1) and (2), by division, it 

follows that: 
𝐴𝐵

𝐵𝐶
.
𝐴𝐷

𝐷𝐶
=

𝐴𝐾

𝐶𝐾
 .      (3) 

But 𝐴𝐵𝐶𝐷 is an harmonic quadrilateral;  

consequently, 
𝐴𝐵

𝐵𝐶
=

𝐴𝐷

𝐷𝐶
 ; 

substituting this relation in (3), it follows that: 

(
𝐴𝐵

𝐵𝐶
)
2

=
𝐴𝐾

𝐶𝐾
; 

As shown by Proposition 1, 𝐵𝐾 is a simedian in 

the triangle 𝐴𝐵𝐶. Similarly, it can be shown that 𝐴𝐾 is 

a simedian in the triangle 𝐴𝐵𝐷, that 𝐶𝐾 is a simedian 

in the triangle 𝐵𝐶𝐷, and that 𝐷𝐾 is a simedian in the 

triangle 𝐴𝐷𝐶. 

Remark 1.  

The converse of the 2nd Proposition is proved 

similarly, i.e.: 

3rd Proposition.  

If in a convex circumscribable quadrilateral, a 

diagonal is a simedian in the triangle formed by the 

other diagonal with two consecutive sides of the 

quadrilateral, then the quadrilateral is an harmonic 

quadrilateral. 
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Remark 2.  

From 2nd and 3rd Propositions above, it results a 

simple way to build an harmonic quadrilateral.  

In a circle, let a triangle 𝐴𝐵𝐶 be considered; we 

construct the simedian of A, be it 𝐴𝐾, and we denote 

by D the intersection of the simedian 𝐴𝐾  with the 

circle. The quadrilateral 𝐴𝐵𝐶𝐷  is an harmonic 

quadrilateral.  

Proposition 4.  

In a triangle 𝐴𝐵𝐶, the points of the simedian of A 

are situated at proportional lengths to the sides 𝐴𝐵 

and 𝐴𝐶. 

 
Figura 2. 
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Proof.  

We have the simedian 𝐴𝐴1  in the triangle 𝐴𝐵𝐶 

(see Figure 2). We denote by 𝐷 and 𝐸 the projections 

of 𝐴1 on 𝐴𝐵, and 𝐴𝐶 respectively. 

We get: 

𝐵𝐴1

𝐶𝐴1
=

𝐴𝑟𝑒𝑎∆(𝐴𝐵𝐴1)

𝐴𝑟𝑒𝑎∆(𝐴𝐶𝐴1)
=

𝐴𝐵 ∙ 𝐴1𝐷

𝐴𝐶 ∙ 𝐴1𝐸
 . 

Moreover, from 1st Proposition, we know that 

𝐵𝐴1

𝐴1𝐶
= (

𝐴𝐵

𝐴𝐶
)
2

. 

Substituting in the previous relation, we obtain 

that: 
𝐴1𝐷

𝐴1𝐸
=

𝐴𝐵

𝐴𝐶
 . 

On the other hand, 𝐷𝐴1 = 𝐴𝐴1. From 𝐵𝐴𝐴1  and 

𝐴1𝐸 = 𝐴𝐴1 ∙ 𝑠𝑖𝑛𝐶𝐴𝐴1̂, hence: 
𝐴1𝐷

𝐴1𝐸
=

𝑠𝑖𝑛𝐵𝐴𝐴1̂

𝑠𝑖𝑛𝐶𝐴𝐴1̂
=

𝐴𝐵

𝐴𝐶
 .     (4) 

If M is a point on the simedian and 𝑀𝑀1 and 𝑀𝑀2 

are its projections on 𝐴𝐵 , and 𝐴𝐶  respectively, we 

have: 

𝑀𝑀1 = 𝐴𝑀 ∙ 𝑠𝑖𝑛𝐵𝐴𝐴1̂, 𝑀𝑀2 = 𝐴𝑀 ∙ 𝑠𝑖𝑛𝐶𝐴𝐴1̂, 

hence: 

𝑀𝑀1

𝑀𝑀2
=

𝑠𝑖𝑛𝐵𝐴𝐴1̂

𝑠𝑖𝑛𝐶𝐴𝐴1̂

 . 

Taking (4) into account, we obtain that: 
𝑀𝑀1

𝑀𝑀2
=

𝐴𝐵

𝐴𝐶
 . 
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3rd Remark.  

The converse of the property in the statement 

above is valid, meaning that, if  𝑀 is a point inside a 

triangle, its distances to two sides are proportional to 

the lengths of these sides. The point belongs to the 

simedian of the triangle having the vertex joint to the 

two sides.  

5th Proposition.  

In an harmonic quadrilateral, the point of 

intersection of the diagonals is located towards the 

sides of the quadrilateral to proportional distances to 

the length of these sides. The Proof of this Proposition 

relies on 2nd and 4th Propositions. 

6th Proposition. 
(R. Tucker) 

The point of intersection of the diagonals of an 

harmonic quadrilateral minimizes the sum of squares 

of distances from a point inside the quadrilateral to 

the quadrilateral sides. 

Proof.  

Let 𝐴𝐵𝐶𝐷  be an harmonic quadrilateral and 𝑀 

any point within.  
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We denote by 𝑥, 𝑦, 𝑧, 𝑢 the distances of 𝑀 to the 

𝐴𝐵 , 𝐵𝐶 , 𝐶𝐷 , 𝐷𝐴  sides of lenghts 𝑎, 𝑏, 𝑐, and 𝑑  (see 

Figure 3). 

 
Figure 3. 

Let 𝑆 be the 𝐴𝐵𝐶𝐷 quadrilateral area. 

We have: 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑𝑢 = 2𝑆. 

This is true for 𝑥, 𝑦, 𝑧, 𝑢 and 𝑎, 𝑏, 𝑐, 𝑑 real numbers. 

Following Cauchy-Buniakowski-Schwarz Ine-

quality, we get: 

(𝑎2 + 𝑏2 + 𝑐2 + 𝑑2)(𝑥2 + 𝑦2 + 𝑧2 + 𝑢2)

≥ (𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑𝑢)2 , 

and it is obvious that: 

𝑥2 + 𝑦2 + 𝑧2 + 𝑢2 ≥
4𝑆2

𝑎2 + 𝑏2 + 𝑐2 + 𝑑2
 . 

We note that the minimum sum of squared 

distances is: 
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4𝑆2

𝑎2 + 𝑏2 + 𝑐2 + 𝑑2
= 𝑐𝑜𝑛𝑠𝑡. 

In Cauchy-Buniakowski-Schwarz Inequality, the 

equality occurs if: 
𝑥

𝑎
=

𝑦

𝑏
=

𝑧

𝑐
=

𝑢

𝑑
 . 

Since {𝐾} = 𝐴𝐶 ∩ 𝐵𝐷 is the only point with this 

property, it ensues that 𝑀 =  𝐾, so 𝐾 has the property 

of the minimum in the statement. 

3rd Definition.  

We call external simedian of 𝐴𝐵𝐶  triangle a 

cevian 𝐴𝐴1’ corresponding to the vertex 𝐴, where 𝐴1’ 

is the harmonic conjugate of the point 𝐴1 – simedian’s 

foot from 𝐴 relative to points 𝐵 and 𝐶.  

4th Remark.  

In Figure 4, the cevian 𝐴𝐴1  is an internal 

simedian, and 𝐴𝐴1’ is an external simedian. 

We have: 

𝐴1𝐵

𝐴1𝐶
=

𝐴1′𝐵

𝐴1′𝐶
 . 

In view of 1st Proposition, we get that: 

𝐴1′𝐵

𝐴1′𝐶
= (

𝐴𝐵

𝐴𝐶
)
2

. 
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7th Proposition.  

The tangents taken to the extremes of a diagonal 

of a circle circumscribed to the harmonic quadrilateral 

intersect on the other diagonal. 

Proof.  

Let 𝑃 be the intersection of a tangent taken in 𝐷 

to the circle circumscribed to the harmonic 

quadrilateral 𝐴𝐵𝐶𝐷 with 𝐴𝐶 (see Figure 4).  

 
Figure 4. 

Since triangles PDC and PAD are alike, we 

conclude that: 
𝑃𝐷

𝑃𝐴
=

𝑃𝐶

𝑃𝐷
=

𝐷𝐶

𝐴𝐷
  .      (5) 

From relations (5), we find that: 

𝑃𝐴

𝑃𝐶
= (

𝐴𝐷

𝐷𝐶
)
2
.      (6) 
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This relationship indicates that P is the harmonic 

conjugate of K with respect to A and C, so 𝐷𝑃 is an 

external simedian from D of the triangle 𝐴𝐷𝐶. 

Similarly, if we denote by 𝑃’ the intersection of 

the tangent taken in B to the circle circumscribed with 

𝐴𝐶, we get: 

𝑃′𝐴

𝑃′𝐶
= (

𝐵𝐴

𝐵𝐶
)
2
.       (7) 

From (6) and (7), as well as from the properties 

of the harmonic quadrilateral, we know that: 
𝐴𝐵

𝐵𝐶
=

𝐴𝐷

𝐷𝐶
 , 

which means that: 

𝑃𝐴

𝑃𝐶
=

𝑃′𝐴

𝑃′𝐶
 , 

hence 𝑃 = 𝑃’.  

Similarly, it is shown that the tangents taken to 

A and C intersect at point Q located on the diagonal 𝐵𝐷. 

5th Remark.  

a. The points P and Q are the diagonal poles of 

𝐵𝐷  and 𝐴𝐶  in relation to the circle 

circumscribed to the quadrilateral. 

b. From the previous Proposition, it follows that 

in a triangle the internal simedian of an angle 

is consecutive to the external simedians of 

the other two angles. 
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Figure 5. 

8th Proposition.  

Let 𝐴𝐵𝐶𝐷 be an harmonic quadrilateral inscribed 

in the circle of center O and let P and Q be the 

intersections of the tangents taken in B and D, 

respectively in A and C to the circle circumscribed to 

the quadrilateral.  

If {𝐾} = 𝐴𝐶 ∩ 𝐵𝐷,  then the orthocenter of 

triangle 𝑃𝐾𝑄 is O. 

Proof.  

From the properties of tangents taken from a 

point to a circle, we conclude that 𝑃𝑂 ⊥ 𝐵𝐷 and 𝑄𝑂 ⊥

𝐴𝐶. These relations show that in the triangle 𝑃𝐾𝑄, 𝑃𝑂 

and 𝑄𝑂  are heights, so 𝑂  is the orthocenter of this 

triangle. 



Ion Patrascu, Florentin Smarandache 

146 

 

4th Definition.  

The Apollonius’s circle related to the vertex A of 

the triangle 𝐴𝐵𝐶 is the circle built on the segment [𝐷𝐸] 

in diameter, where D and E are the feet of the internal, 

respectively external, bisectors taken from A to the 

triangle 𝐴𝐵𝐶.  

6th Remark.  

If the triangle 𝐴𝐵𝐶  is isosceles with 𝐴𝐵 =  𝐴𝐶 , 

the Apollonius’s circle corresponding to vertex A is not 

defined.  

9th Proposition.  

The Apollonius’s circle relative to the vertex A of 

the triangle 𝐴𝐵𝐶 has as center the feet of the external 

simedian taken from A.  

Proof.  

Let Oa be the intersection of the external 

simedian of the triangle 𝐴𝐵𝐶 with 𝐵𝐶 (see Figure 6). 

Assuming that 𝑚(𝐵̂) > 𝑚(𝐶̂), we find that: 

𝑚(𝐸𝐴𝐵̂) =
1

2
[𝑚(𝐵̂) + 𝑚(𝐶̂)].  

Oa being a tangent, we find that 𝑚(𝑂𝑎𝐴𝐵̂) = 𝑚(𝐶̂). 

Withal,  

𝑚(𝐸𝐴𝑂𝑎) =
1

2
[𝑚(𝐵̂) − 𝑚(𝐶̂)]  
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and  

 𝑚(𝐴𝐸𝑂𝑎) =
1

2
[𝑚(𝐵̂) − 𝑚(𝐶̂)]. 

It results that 𝑂𝑎𝐸 = 𝑂𝑎𝐴; onward, 𝐸𝐴𝐷 being a 

right angled triangle, we obtain: 𝑂𝑎𝐴 = 𝑂𝑎𝐷; hence Oa 

is the center of Apollonius’s circle corresponding to 

the vertex 𝐴. 

 
Figura 6. 

10th Proposition.  

Apollonius’s circle relative to the vertex A of 

triangle 𝐴𝐵𝐶  cuts the circle circumscribed to the 

triangle following the internal simedian taken from A.  

Proof.  

Let S be the second point of intersection of 

Apollonius’s Circle relative to vertex A and the circle 

circumscribing the triangle 𝐴𝐵𝐶.  
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Because 𝑂𝑎𝐴  is tangent to the circle circum-

scribed in A, it results, for reasons of symmetry, that 

𝑂𝑎𝑆 will be tangent in S to the circumscribed circle. 

For triangle 𝐴𝐶𝑆 , 𝑂𝑎𝐴 and 𝑂𝑎𝑆  are external 

simedians; it results that 𝐶𝑂𝑎 is internal simedian in 

the triangle 𝐴𝐶𝑆 , furthermore, it results that the 

quadrilateral 𝐴𝐵𝑆𝐶 is an harmonic quadrilateral.  

Consequently, 𝐴𝑆 is the internal simedian of the 

triangle 𝐴𝐵𝐶 and the property is proven. 

7th Remark.  

From this, in view of Figure 5, it results that the 

circle of center Q passing through A and C is an 

Apollonius’s circle relative to the vertex A for the 

triangle 𝐴𝐵𝐷. This circle (of center Q and radius QC) 

is also an Apollonius’s circle relative to the vertex C of 

the triangle 𝐵𝐶𝐷.  

Similarly, the Apollonius’s circle corresponding 

to vertexes B and D and to the triangles ABC, and ADC 

respectively, coincide. 

We can now formulate the following: 

11th Proposition.  

In an harmonic quadrilateral, the Apollonius’s 

circle  - associated with the vertexes of a diagonal and 

to the triangles determined by those vertexes to the 

other diagonal - coincide. 
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Radical axis of the Apollonius’s circle is the right 

determined by the center of the circle circumscribed 

to the harmonic quadrilateral and by the intersection 

of its diagonals. 

Proof.  

Referring to Fig. 5, we observe that the power of 

O towards the Apollonius’s Circle relative to vertexes 

B and C of triangles 𝐴𝐵𝐶 and 𝐵𝐶𝑈 is: 

𝑂𝐵2 = 𝑂𝐶2. 

So O belongs to the radical axis of the circles. 

We also have 𝐾𝐴 ∙ 𝐾𝐶 = 𝐾𝐵 ∙ 𝐾𝐷 , relatives 

indicating that the point K has equal powers towards 

the highlighted Apollonius’s circle. 
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