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Abstract.

In this presentation, a technique utilizing an entropy measure is developed for automatically

tuning the segmentation of screening mammograms by minimum spanning trees (MST).

The lack of such technique has been a major obstacle in previous work to segment mammograms

for registration and applying mass detection algorithms.

The proposed method is tested on two sets of mammograms: a set of 55 mammograms chosen

from a publicly available Mini-MIAS database, and a set of 37 mammograms selected from a

local database.

The method performance is evaluated in conjunction with three different preprocessing filters:

gaussian, anisotropic and neutrosophic.

Results show that the automatic tuning has the potential to produce state-of-the art

segmentation of mass-like objects in mammograms.

The neutrosophic filtering provided the best performance.



Introduction.

Anomalies in mammograms associated with cancer, especially those associated with early cancer,

often resemble normal tissue patterns.

This complicates the interpretation of mammograms for computer-aided diagnostic (CAD)

schemes as well as human readers.

The static resemblance between normal and diseased tissue may be mitigated through bilateral

comparison or, when available, temporal comparison.

Human observers are often able to perform such comparisons very well, but computer algorithms

for this task are problematic.

Central to CAD comparison of mammograms is image registration.

In order to decide if there are new anomalies, evidence of changes in appearance of anomalies, or

if patterns between the left and right breast are different, algorithms must have the ability to

associate objects between images.



Introduction – cont.

The registration process is increasingly important for the detection of pathologies at early stages

[10].

[10] K. Marias, C. Behrenbruch, S. Parbhoo, A. Seifalian, and M. Brady. A registration framework for the

comparison of mammogram sequences. IEEE Trans. On Medical Imaging, 24(6):782–790, June 2005.

Two general classes of image registration techniques are local matching of pixel intensity values

and the use of landmarks.

Many registration schemes use a combination of both these approaches.

However, neither of these techniques are particularly well suited for registration of

mammograms.

The matching of local pixel intensities is compromised by the fact that the same object in two

views of the same breast may be represented by very different sets of intensity values.

This is due, in turn, to the contortion of breast tissue during image acquisition, differences in

exposure and positioning as well as normal changes of surrounding breast tissue over time.



Introduction – cont.

Landmarks in mammograms may include the border of the pectoral muscle, the nipple, and the

breast boundary [10].

[10] K. Marias, C. Behrenbruch, S. Parbhoo, A. Seifalian, and M. Brady. A registration framework for the

comparison of mammogram sequences. IEEE Trans. On Medical Imaging, 24(6):782–790, June 2005.

The nipple is often difficult to detect and the breast boundary is not entirely invariant between

different images of the same breast due to the inconsistencies of image acquisition mentioned

above.

The pectoral muscle boundary does not change substantially over time, is not subject to distortion

at acquisition and is usually easy to delineate near the top of medio lateral views.

However, the boundary tends to fade below the middle of the image and is absent in cranial

caudal views.

In addition, these landmarks are not generally the objects of interest in screening mammograms;

at best they serve as intermediates toward registration and subsequent detection or

characterization of anomalies associated with disease.



Introduction – cont.

Thus conclusions regarding the disease state of tissue requires first the accurate detection of the

landmarks, then correct registration and finally correct detection of the anomalies of interest.

This paper reports a key step in replacing registration of mammograms based on general

landmarks by registration of the objects of interest themselves.

Specifically, the goal is to segment mass-like regions in the mammogram for the future purpose of

studying the similarity and differences between mass-like objects in different views (say from

different screening visits) of the same breast.

This context is important for formulating the exact objective of the segmentation and for

evaluating the performance.

Numerous algorithms have appeared for automatic detection of masses in screening

mammograms.



Remarks.

Generally, the steps are to find the boundary of the anomaly as accurately as possible, measure

shape, size, contrast, and texture features within the anomaly, around the anomaly or on the

border and classify the objects as a mass or non-mass or as a malignant or benign mass.

For these schemes, the boundary must be such as to maximally capture differences in the

measured features inside and outside (or on the border of) the anomaly.

Normally, an assumption is made that such a boundary coincides with the visually apparent

boundary.

In contrast, the objective here is to identify objects that could possibly be masses and identify the

general shape, size, contrast, location, etc. only.

The exact boundary is not needed and is not even desirable since the appearance of the object in

another view of the same breast may not be the same.



Remarks – cont.

For this reason, the performance of the segmentation should not be measured by comparing

boundaries of objects with ”true” boundaries drawn by an expert.

The ultimate measure of segmentation performance is the ability of the final scheme to detect

breast cancer, but this is an unrealizable criterion during the development stage.

The approach taken here is to compare segmented regions with general information of anomalies

provided by an expert.

Instead of a carefully drawn boundary, the expert information consists of a center point indicating

the location of the anomaly and a circle or a box that roughly indicates the size.

The segmentation method used is a graph-theory method based on minimum spanning trees

(MST) [2].

[2] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based image segmentation. Int. J. Comput.

Vision, 59(2):167–181, 2004.



Remarks – cont.

MST segmentation is attractive in this setting for a number of reasons.

First, methods based on graphs are able to combine both global and local image information in the

segementation process and, among graph based methods, the MST is fairly fast.

Second, previous work indicates that this method is quite robust to shifts, rotations and warping

of the type expected when comparing sequential screening mammograms [8].

[8] F. Ma, M. Bajger, and M. J. Bottema. Robustness of two methods for segmenting salient features in

screening mammograms. In Proc. of the 9th Conf. on Digital Image Computing Techniques and Applications

(DICTA2007), pages 112–117, Adelaide, 2007.

Third, applying the MST algorithm requires choosing only one parameter.

This is a distinct advantage over methods that rely on a larger collection of parameters that must

be chosen at hoc for each class of images or for each individual image.



Remarks – cont.

The single parameter needed to run MST is denoted by k and controls the granularity of the

resulting segmentation [2], [9].

[2] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based image segmentation. Int. J. Comput.

Vision, 59(2):167–181, 2004.

[9] F. Ma, M. Bajger, J. P. Slavotinek, and M. J. Bottema. Two graph theory based image segmentation

methods for identifying pectoral muscle in mammograms. Pattern Recognition, 40:2592–2602, 2007.

Because k has a predictable effect on the nature of the segmentation, it can be used to tune the

process optimaly.

This approach was used in [15] to detect optimal accurate boundaries of the pectoral muscle line

in mammograms using the image entropy measure introduced in [18].

[15] H. Susukida, F. Ma, and M. Bajger. Automatic tuning of a graph-based image segmentation method for

digital mammography applications. In Proc. of the 5th IEEE Intern. Symp. on Biomedical Imaging (ISBI

2008), pages 89–92, Paris, France, May 14-17 2008.

[18] H. Zhang, J. E. Fritts, and S. A. Goldman. An entropy-based objective evaluation method for image

segmentation. In Proc. of SPIE: Storage and Retrieval Methods and Applications for Multimedia, volume

5307, pages 38–49, 2004.



Remarks – cont.

In this presentation, the granularity parameter, k, is used to optimize the MST algorithm for the

purpose of identifying mass-like regions.

The motivation for this approach comes from the variety of breasts encountered in screening

mammography.

Some breasts appear in mammograms as essentially featureless with little dense tissue and very

few features which could be interpreted as mass-like.

Other images, sometimes called ”busy breasts”, comprise a variety of intensity variation and

many mass-like regions.

In each case, better segmentation results if a good ballance is achieved between the use of overall

variation of image intensity and local variation associated with mass-like regions.

This motivates measuring the criterion for optimal segmentation as a balance between overall

and local image entropy.



Remarks – cont.

Since MST segmentation is very sensitive to noise, a denoising filter has to be used before the

segmentation process is performed.

In what follows this problem is addressed in depth by quantifying the results of segmentation

after preprocessing by a gausian filter (most often used in the literature for MST segmentation),

an anistropic filter ([11]), and a very new, neutrosophic denoising method ([4]).

[4] Y. Guo and H. D. Cheng. New neutrosophic approach to image segmentation. Pattern Recognition,

42:587–595, 2009.

[11] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Pattern Anal.

Machine Intell., 12:629–639, 1990.

The MST segmentation method was proposed in [2] and was adapted for mammography in [9].

[2] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based image segmentation. Int. J. Comput.

Vision, 59(2):167–181, 2004.

[9] F. Ma, M. Bajger, J. P. Slavotinek, and M. J. Bottema. Two graph theory based image segmentation

methods for identifying pectoral muscle in mammograms. Pattern Recognition, 40:2592–2602, 2007.

The key structures needed for this application are presented in the next slides.



MST segmentation.

The MST segmentation method was proposed in [2] and was adapted for mammography in [9].

[2] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based image segmentation. Int. J. Comput.

Vision, 59(2):167–181, 2004.

[9] F. Ma, M. Bajger, J. P. Slavotinek, and M. J. Bottema. Two graph theory based image segmentation

methods for identifying pectoral muscle in mammograms. Pattern Recognition, 40:2592–2602, 2007.

The key structures needed for the present application are as follows.

Let G = (V,E) be an undirected graph where, V, the set of vertices, is taken to be the set of pixels

that form the image and E is a set of edges that connect neighboring pixels. Elements of E are

denoted by (vi,vj) where vi and vj are elements of V.

Every pair of vertices is assigned a weight, 𝜔, by

where I(vi) is the image intensity at vi. A component of G is a graph C = (V’, E’), where V’ ⊂ V and

E’ ⊂ E and with the property that for every pair of vertices in V’ there exists a sequence of edges

in E’ such that the catenation of the sequence connects the two vertices.



MST segmentation - cont.

A tree that spans a component C and has a minimum total weight is called a minimum spanning

tree of C (MST(C)).

A segmentation of G is a collection of components Ck = (Vk, Ek) such that ∪ Vk = V and Vi ∩ Vj = ∅
for i ≠ j.

For a component C ∈ G and minimum spanning tree MST(C), the internal difference, Int(C), is

defined as the largest weight in MST(C).

For two components C1 and C2, their difference Diff(C1, C2) is defined as the minimum weight

connecting C1 and C2.

The MST algorithm builds a new graph H =(V, F).

Initially, F = F0 is the empty set, meaning that each vertex (pixel) is a component unto itself.

In subsequent iterations, components C1 and C2 are merged, meaning that C1 and C2 form a

single component, if – see eq. next slide



MST segmentation - cont.

where the threshold function τ is given by

|C| denotes the number of elements in C, and k is a constant.

The process terminates when no new mergers are allowed.

The constant k controls the granularity and hence the quality of the segmentation.

Even very close values of k may produce very different segmentations, as the Figure 1 next slide

shows.

In most applications of the MST algorithm, k is fixed empirically for a class of images with the

result that the granularity is far from optimal for some members of the class.

In this presentation, k is adjusted automatically for each image by optimizing the measure of

entropy described in the next section.



MST segmentation - cont.

Figure 1. Granularity of a segmentation.

(a) The original mammogram (mdb091 from Mini-MIAS database) 

showing the location of the mass. 

(b) The contour zoomed. 

(c) The segmented mass for k = 28. 

(d) The segmented mass for k = 29.



Entropy of  a segmentation.

The following function of an image I, was proposed in [18] as a measure of effectiveness of an

image segmentation:

[18] H. Zhang, J. E. Fritts, and S. A. Goldman. An entropy-based objective evaluation method for image

segmentation. In Proc. of SPIE: Storage and Retrieval Methods and Applications for Multimedia, volume

5307, pages 38–49, 2004.

The first term – the layout entropy – measures the global image disorder (generally it increases

with the number of components), and is defined by the formula

where |I| is the area of the whole image and |Cj| is the area of the j-th component.



Entropy of  a segmentation - cont.

The second term - the region entropy - measures the uniformity within components (it decreases

when the number of regions increases), and is given by the formula

where Hμ(Cj) is the entropy of attribute μ for component Cj.

In [18], luminance was used as the attribute μ.

[18] H. Zhang, J. E. Fritts, and S. A. Goldman. An entropy-based objective evaluation method for image

segmentation. In Proc. of SPIE: Storage and Retrieval Methods and Applications for Multimedia, volume

5307, pages 38–49, 2004.

In this presentation, μ is the image intensity value of the pixel.

Denoting by Mj the set of values associated with feature μ in component Cj and by Lj(m) the

number of pixels in component Cj with value m for feature μ, the entropy of component Cj is

expressed as



Neutrosophic image denoising.

The concept of neutrosophic image denoising was introduced in [3] and successfully applied to

segmentation of natural and synthetic images in [4].

[3] Y. Guo, H. Cheng, Y. Zhang, and W. Zhao. A new neutrosophic approach to image denoising. In

Proceedings of the 11th Joint Conference on Information Science, pages 1–6. Atlantis Press, 2008.

[4] Y. Guo and H. D. Cheng. New neutrosophic approach to image segmentation. Pattern Recognition,

42:587–595, 2009.

In [3] the neutrosophic filter (NS filter) was proposed for image denoising and a comparison with

the median and mean filter was reported.

[3] Y. Guo, H. Cheng, Y. Zhang, and W. Zhao. A new neutrosophic approach to image denoising. In

Proceedings of the 11th Joint Conference on Information Science, pages 1–6. Atlantis Press, 2008.

The NS filter outperformed the other filters when applied to images with different kinds and

levels of noise.

For convenience we briefly describe NS filtering.



Neutrosophic image denoising - cont.

An image P is converted into its neutrosophic form by transforming each pixel P(i,j) into its

neutrosophic equivalent PNS(i,j)={T(i,j),I(i,j),F(i,j)}, where the coordinates indicate probabilities of

the pixel membership in a region; T% true, I% indeterminate and F% false.

The membership values are defined as

where g(i,j) is the intensity value of P(i,j), ҧ𝑔(i,j) is the local mean value of g(i,j).

The local max/min values for g and δ are calculated for symmetric neighbourhoods of (i,j) with

radius 𝜔.



Neutrosophic image denoising - cont.



Neutrosophic image denoising - cont.

The α-filtering is performed on the image until the relative entropy of the indeterminate set I is

smaller than a specified threshold.

In this study authors used

α = 0 .85 for all images,

𝜔 = 4, for Mini-MIAS images, and
𝜔 = 6 for our local database.

The entropy thresholds were set to 10−3 and 5×10−6 for Mini-MIAS and the local set, respectively.

These values were determined empirically.



Databases.

Two mammographic databases were used to test the method: the publicly available and widely

used Mini-MIAS mammographic database [14], and a local database of mammograms.

[14] J. Suckling, J. Parker, D. Dance, S. Astley, I. Hutt, C. Boggis, I. Ricketts, E. Stamatakis, N. Cerneaz, S.

Kok, P. Taylor, D. Betal, and J. Savage. The mammographic images analysis society digital mammogram

database. Exerpta Medica, 1069:375–378, 1994.

The spatial resolution of Mini-MIAS images is 200 μm per pixel and the depth resolution is 8 bit.

All images in the database are of 1024x1024 pixels in size.

To reduce the computation time the images were subsampled by a factor of four to 256x256

pixels.

Thus the final pixel size for the images used in experiments was 800 μm.



Databases - cont.

Mammograms from the local database were digitized at 50 μm per pixel and 12 bit depth

resolution.

The images were subsampled by the factor of 8, so that the final pixels size was 400 μm.

A set of 55 mammograms was selected from the Mini-MIAS database and another set of 37

mammograms was taken from the local database.

The only criterion for selection was that at least one mass-like object was present and annotated

by a radiologist with expertise in mammography.



Method. Mass coverage ratio

The ultimate goal of this study is to provide a rigorous method of selecting automatically k value

which results in a usable segmentation of all mass regions.

Depending on the application ’usable’ may be as little as 40% of the mass area segmented

properly, if only detection is concerned, or 70% or more if also classification is involved.

However, it is critical that no mass-like object is missed, so the emphasis is more on being able to

obtain a minimum coverage of masses than being able to segment accurately most mass-like

objects but totally missing some of them.

To meet this goal an appropriate measure of the segmentation quality is necessary.

Authors adopt measure ℛ called the mass coverage ratio [7]. ℛ was computed for each mass-like
region and each segmentation.

[7] M. Kupinski and M. L. Giger. Automated seeded lession segmentation on digital mammograms. IEEE

Transactions on Medical Imaging, 17(4):510–517, 1998.



Method. Mass coverage ratio – cont.

Since an exact representation of the mass-like region is not necessary and not even possible due

to undefined boundaries for masses, the subsequent processing includes the merging of

components if, in aggregate, they are more mass-like.

Accordingly, a suitable criterion for measuring the quality of the segmentation of mass-like

regions is to compute how well the union of all reasonable components which overlap the

annotated region fits the annotation.

By a reasonable component is meant a component with at least half of its area residing within the

annotated region.

Thus a component C is said to overlap the annotated region T if

The mass coverage ratio is then defined by

where A = ∪ Ci and the union is taken over components that overlap T.



Method. Mass coverage ratio – cont.

Since the MST segmentation parameter k roughly determines the area of the smallest component

in terms of numbers of pixels that can be retained, and circular objects having 3-5mm diameter

are most important mass candidates the appropriate range of k values can be estimated based on

the spatial resolution of images.

For Mini-MIAS mammograms, those objects have estimated area 27-34 pixels, while for images

from our local database the area ranges from 110-134 pixels.

Hence, the reasonable ranges for k were estimated as 27-34, for Mini-MIAS mammograms and

110-134, for mammograms from the local database.



Method. Noise reduction

Three methods for noise reduction were tested for use prior to MST segmentation:

 an anisotropic filter

 the symmetric Gaussian filter of size 6 (4 for Mini-MIAS images) with standard

deviation σ = 0.8, and

 the neutrosophic filter described above.

Figure 2 next slides shows the range of mass coverage ratio for each mass in each database,

obtained by varying k, after anistropic, gaussian and neutrosophic filtering. Regardless of the

kind of filter applied, one cannot generally expect that there is a single value of k producing high

ℛ values for each image.

The local set of mammograms used in this study is an example of a collection where no such

value exists. Gaussian and neutrosophic smoothing prior to segmentation reduced the range of ℛ
values substantially while anistropic filtering reduced the range less.

The graphs also show that for each image there exist values of k resulting in mass coverage ratio

value of 40% or higher. This observation motivated the search for an automatic method for

choosing an optimal value of k (in that it avoids disastrous mass coverage ratios) for each image.



Method. Optimizing MST

To determine optimal values of the parameter k the following algorithm was followed.

Every mammogram was segmented for the specified range of values of k as determined above.

For each value of k, the entropy of the segmentation was computed using the formula in [1].

[1] J. Cousty, M. Couprie, N. L., and G. Bertrand. Weighted fusion graphs: Merging properties and

watersheds. Discrete Applied Mathematics, 156:3011–3027, 2008.

The value of k resulting in the smallest entropy segmentation was selected as an optimal one.

In order to be able to quantify the results, approximate mass contours were drawn (within the

radiologist annotated areas) for each image.

A single contour was used for each Mini-MIAS image (drawn by one of the authors), while for the

more challenging local set of images two contours were drawn independently by the authors, and

both union and intersection of those contours were tested.

This compensates for subjective estimation of boundaries of difficult to draw contours.



Method. Optimizing MST – cont.

ImageJ software package ([12]) was

used to annotate the images by the

radiologist and to draw contours.

[12] W. S. Rasband. ImageJ.

U.S. National Institutes of

Health, Bethesda, Maryland,

USA, http://rsb.info.nih.gov./ij/,

1997-2008.

Figure 2. For each image index, the

vertical line segment indicates the

range of ℛ values obtained by various

choices of k. (a), (c), (e) relate to Mini-

MIAS images filtered with anistropic,

gaussian and neutrosophic filters,

respectively. (b), (d), (f) relate to local

images filtered with anistropic,

gaussian and neutrosophic filters,

respectively.



Results.

Table 1 next slide shows that all Mini-MIAS images were segmented successfully, that is, with ℛ
at least 40%, when neutrosophic filtering was applied.

Moreover, 69% of images were segmented with a very high ratio (at least 70%).

For gaussian filtering the numbers are comparable while for the anistropic filtering they are

significantly worse.

For images from our local database the ratios were obtained for both union and intersection of

two independently drawn contours by the authors, according to the radiologist annotations.

These are shown separately in Table 1. In all cases the superiority of neutrosophic filtering is

visible.

It allowed for about 50% reduction of number of potential failures (those less than 40%

segmented).

The results for the gaussian filtering were comparable, while the anistropic filtering produced

significantly worse outcomes.



Results – cont.

Table 1. Mass coverage ratio by range for the Mini-MIAS set for each of the three filters. 

The first number gives the number of images falling into that range for some values of k. The 

corresponding number for k value selected with our method (the optimal value) is shown in 

brackets. Local database images were tested for the union and intersection of two contours drawn

by the authors according to the radiologist annotations.



Results – cont.

Figures 3, 4 and 5 next slides show plots of the proportion of correctly segmented masses as

functions of the overlap threshold used to define successful segmentation for various versions of

segmentation methods discussed.

The graphs indicate that the performances of MST segmentation for gaussian and neutrosophic

filters are comparable and outperform the segmentation for images with anisotropic filtering.

Comparing Figures 3, 4 and 5 to the one obtained in [7] (indicative only since different databases

were used) we see that MST segmentation is capable of producing radiologist-like outlines.

[7] M. Kupinski and M. L. Giger. Automated seeded lession segmentation on digital mammograms. IEEE

Transactions on Medical Imaging, 17(4):510–517, 1998.

Looking at the details of ratio values on image-by image base, Figures 6, 7, we also conclude that

the anistropic filtering is not appropriate for MST segmentation and the neutrosophic one

outperforms both the gaussian and anistropic filtering in terms of minimizing the number of

failures (images with less than 40% segmentation ratios).



Results – cont.

Figure 3. The performance of MST segmentation for the three filters on the Mini-MIAS set.



Results – cont.

Figure 4. The performance of MST segmentation for the three filters on the local data set 

for union of contours.



Results – cont.

Figure 5. The performance of MST segmentation for the three filters on the local data set 

for intersection of contours.



Results – cont.

Figure 6. Comparison of ℛ values for the local 

set. (a), (c), (e) For union of contours for the 

anisotropic, gaussian and the neutrosophic

filter, respectively. (b), (d), (f) For intersection 

of contours for the anisotropic, gaussian and 

the neutrosophic filter, respectively. For each 

image index, the vertical line segment connects 

the worst and the optimal ratio values.



Results – cont.

Figure 7. Comparison of ℛ values for the Mini-MIAS set. (a) For the anisotropic filter, 

(b) for the gaussian filter, (c) for the neutrosophic filter.



Discussion.

There were two images (out of 37), in our local database set, where (regardless of the filter used)

the method did not work.

That is, in those cases the optimal mass coverage ratio was smaller than 40% both for the union

and intersection of contours.

Figure 8 shows the images annotated by a radiologist together with their optimal segmentation.

It is evident from the images that the mass is hardly visible in the first case, and is literally

invisible in the second.

In both cases the boundaries are extremely hard to detect.

Very low saliency of the objects resulted in over segmentations for most values of k.

Since the entropy method favors the segmentation in which a few segments dominate (similarly

to human perception) it assigned the best score to an over segmented image partition, shown in

Figure 8 (c), (d).



Discussion – cont.

Figure 8. Two difficult cases from the local database. 

(a), (b) Zoomed annotation areas. 

(c), (d) Optimal segmentations found.



Conclusion and further work.

The presentation shows that automatic tuning of MST segmentation by using a measure of

entropy to select one of several possible segmentations has a potential to deliver useful

delineation of mass-like objects in mammograms for the purpose of CAD systems.

It is capable of producing very high mass coverage ratio for majority of mammograms and, more

importantly, producing very few failures.

This is a critical issue, since the outcome of the segmentation will become an input into CAD and

mammogram registration methods.

A disadvantage of the proposed method is that every image must be segmented several times

before the best segmentation can be selected.

It is expected that for some applications the obtained approximate contours will be subject of

further processing using one of the numerous region-merging algorithms available in literature

to further improve their accuracy before being used for detection algorithms.
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