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In this presentation, a new technique is used to an unsupervised

learning image classification based on integration between

neutrosophic sets and optimization linear programming.



Abstract.

Neutrosophic sets are used to segment the image into three main components namely objects

(O), edges (E), and Background (B).

The neutrosophic image components (O,E,B) are corresponding to the neutrosophic sets

components (T, I ,F).

The components of neutrosophic image valued in [-0,1+] are representing the association

intensities degree of pixel for each image components.

Netrosophic image components are contributed to solving one of the important problems in

image classification known as "overlapping" within cluster.

While, the problem of overlapping between clusters is solved by using optimization linear

programming.



Introduction.

Since several decades, the world is witnessing a remarkable development in the science of

computer vision.

The principle of computer vision is based on deal with the images and methods of treatment.

Hence the interest of researchers in the computer vision with image processing, which is

concerned, in essence, on the methods and many different algorithms.

Among these algorithms are image classification algorithms.

Classification is the field devoted to the study of methods designed to categorize data into

distinct classes.
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This categorization can be divided to distinct labeling of the data (supervised learning [1]),

division of the data into classes (unsupervised learning [2]), selection of the most significant

features of the data (feature selection [3]), or a combination of more than one of these tasks

[4].

[1] Lu, Dengsheng, and Qihao Weng. "A survey of image classification methods and techniques for

improving classification performance.", International journal of Remote sensing 28.5 (2007): 823-

870.

[2] Lee, Te-Won, and Michael S. Lewicki. "Unsupervised image classification, segmentation, and

enhancement using ICA mixture models." Image Processing, IEEE Transactions on 11, no. 3 (2002):

270-279.

[3] Guyon, Isabelle, and André Elisseeff. "An introduction to variable and feature selection." The

Journal of Machine Learning Research 3 (2003): 1157-1182.

[4] Saeys, Yvan, Iñaki Inza, and Pedro Larrañaga. "A review of feature selection techniques in

bioinformatics." bioinformatics 23.19 (2007): 2507-2517.
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Unsupervised image classification (UIC) starts by partitioning the image data into groups (or

clusters).

The classes in UIC are unknown, according to similarity measure, groups of image data can be

compared with reference to data by an analyst [5].

UIC can be categorized into two main groups namely Hierarchical [6] and Partitional [7]

algorithms.

[5] Omran, Mahamed GH, Andries Petrus Engelbrecht, and Ayed Salman."Differential evolution

methods for unsupervised image classification." Evolutionary Computation, 2005. The 2005 IEEE

Congress on. Vol. 2. IEEE, 2005.

[6] Deng, Jia, Alexander C. Berg, Kai Li, and Li Fei-Fei. "What does classifying more than 10,000

image categories tell us?" In Computer Vision–ECCV 2010, pp. 71-84. Springer Berlin Heidelberg,

2010.

[7] Yang, Shulin, Liefeng Bo, Jue Wang, and Linda G. Shapiro. "Unsupervised Template Learning

for Fine-Grained Object Recognition." In NIPS, pp. 3131-3139. 2012.
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In hierarchical clustering algorithms (HCA) a sequence of clustering with each clustering

being a partition of the data set are showing as a tree [8].

[8] Murtagh, Fionn, and Pedro Contreras. "Algorithms for hierarchical clustering: an overview."

Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2.1 (2012): 86-97.

HCA is characterized by two advantages, first the number of classes does not need be specified

a priori and the others they are independent of th initial condition.

However, HCA is suffers from be a static algorithm and its inability to solve the overlapping

clusters problem [9].

[9] Elavarasi, S. Anitha, J. Akilandeswari, and B. Sathiyabhama. "A survey on partition clustering

algorithms." learning 1.1 (2011).
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HCA are divided according to the clusters construction methods or according to the similarity

measure. For methods construct the clusters by recursively partitioning the instances in either a

top-down or bottom-up fashion.

These methods can be subdivided as agglomerative [10] and divisive [11] methods.

[10] Meila, Marina, and David Heckerman. "An experimental comparison of several clustering and

initialization methods." arXiv preprint arXiv:1301.7401 (2013).

[11] Gaidon, Adrien, Zaid Harchaoui, and Cordelia Schmid. "Recognizing activities with cluster-

trees of tracklets." BMVC. 2012.

Whereas, the merging or division of clusters is performed according to some similarity

measure, chosen so as to optimize some criterion (such as a sum of squares).

The hierarchical clustering methods could be further divided according to the manner that the

similarity measure is calculated [12].

[12] Jain, A.K. Murty, M.N. and Flynn, P.J. Data Clustering: A Survey. ACM Computing Surveys,

Vol. 31, No. 3, September 1999.
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On the other hand, partitional clustering algorithms (PCA) are based on image data set

segmentation into a specified number of clusters.

PCA can be treated as an optimization problem as a result of reliance on the square error

function to minimize certain criteria.

Both HCA and PCA algorithms are participate in advantages and drawbacks.

There are two categories from PCA namely Iterative [13] and non-iterative [14] algorithms.

[13] Dong, Weisheng, et al. "Sparsity-based image denoising via dictionary learning and structural

clustering." Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE,

2011.

[14] Hanauer, Matthias, and Andreas Koehn. "Perturbative treatment of triple excitations in

internally contracted multireference coupled cluster theory." The Journal of chemical physics 136.20

(2012): 204107.
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K-means algorithm [15] is the most widely used in iterative partitional algorithms.

[15] Zhao, Z. L., Bo Liu, and Wei Li. "Image clustering based on extreme K-means algorithm." IEIT

Journal of Adaptive & Dynamic Computing 2012.1 (2012): 12-16.

The basic idea for k-means algorithm is to find a clustering structure that minimizes a certain

error criterion which easures the distance of each instance to its representative value.

The most well-known criterion is the Sum of Squared Error (SSE) [16], may be globally

optimized by exhaustively enumerating all partitions, which is very time-consuming, or by

giving an approximate solution using heuristics.

[16] Celebi, M. Emre, Hassan A. Kingravi, and Patricio A. Vela. "A comparative study of efficient

initialization methods for the k-means clustering algorithm." Expert Systems with Applications 40.1

(2013): 200-210.
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Another partitioning algorithm, which attempts to minimize the SSE is the K-medoids [17] or

partition around medoids (PAM) [18].

[18] Kaufman, L. and Rousseeuw, P.J., 1987, Clustering by Means of Medoids, InY. Dodge, editor,

Statistical Data Analysis, based on the L1 Norm, pp. 405-416, Elsevier/North Holland, Amsterdam.

Lillesand and Kiefer [19] presented a non-iterative approach to unsupervised clustering with a

strong dependence on the image texture.

[19] Mirik, Mustafa, and R. James Ansley. "Comparison of groundmeasured and image-classified

mesquite (Prosopis glandulosa) canopy cover." Rangeland Ecology & Manag. 65.1 (2012): 85-95.

Researches [20-21] have shown that the iterative algorithms are more efficient than its counterpart non-iterative,

where it does not rely too much on data points order.

[20] Bringmann, Björn, Siegfried Nijssen, and Albrecht Zimmermann. "Pattern-based classification:

a unifying perspective." arXiv preprint arXiv:1111.6191 (2011).

[21] Voisin, Aurélie, et al. "Classification of very high resolution SAR images of urban areas."

(2011).
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There are other unsupervised classifications methods are used recently represented in Density-

based Methods [22] which assume that the points that belong to each cluster are drawn from a

specific probability distribution.

[22] Kriegel, Hans‐Peter, et al. "Density‐ based clustering." Wiley Interdisciplinary Reviews: Data

Mining and Knowledge Discovery 1.3 (2011): 231-240.

Model-based Clustering Methods [23], these methods attempt to optimize the fit between the

given data and some mathematical models.

[23] Bouveyron, Charles, and Camille Brunet. "Simultaneous model-based clustering and

visualization in the Fisher discriminative subspace." Statistics and Computing 22.1 (2012): 301-324.

Unlike conventional clustering, which identifies groups of objects; model-based clustering

methods also find characteristic descriptions for each group, where each group represents a

concept or class.
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The most frequently used induction methods are decision trees [24] and neural networks [25].

[24] Barros, Rodrigo Coelho, et al. "A survey of evolutionary algorithms for decision-tree

induction." Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions

on 42.3 (2012): 291-312.

[25] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "ImageNet Classification with Deep

Convolutional Neural Networks." NIPS. Vol. 1. No. 2. 2012.

Grid-based Methods [26], these methods partition the space into a finite number of cells that

form a grid structure on which all of the operations for clustering are performed.

[26] Willems, Thomas F., et al. "Algorithms and tools for high-through put geometry-based analysis

of crystalline porous materials.“ Microporous and Mesoporous Materials 149.1 (2012): 134-141.

The main advantage of the approach is its fast processing time [27].

[27] Han, J. and Kamber, M. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers,

2001.
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Soft-computing Methods, In addition to neural networks, there are some methods that belong

to soft computing methods such as Fuzzy Clustering [28], Evolutionary Approaches for

Clustering [29] and Simulated Annealing for Clustering [30].

[28] Izakian, Hesam, and Ajith Abraham. "Fuzzy C-means and fuzzy swarm for fuzzy clustering

problem." Expert Systems with Applications 38.3 (2011): 1835-1838.

[29] Zhou, Aimin, et al. "Multiobjective evolutionary algorithms: A survey of the state of the art."

Swarm and Evolutionary Computation 1.1 (2011): 32-49.

[30] Dowsland, Kathryn A., and Jonathan M. Thompson. "Simulated annealing." Handbook of

Natural Computing. Springer Berlin Heidelberg, 2012. 1623-1655.

In this paper, a new an unsupervised image classification technique is used based on

neutrosophic sets [31] and optimization linear programming [32].

[31] Maji, Pabitra Kumar. "Neutrosophic soft set." Annals of Fuzzy Mathematics and Informatics

5.1 (2013): 2287-623.

[32] Hromkovic, Juraj. Algorithmics for hard problems: introduction to combinatorial optimization,

randomization, approximation, and heuristics. Springer-Verlag, 2010.
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Neutrosophic set is considered a part from neutrosophy theory which is interested in the

studies of origin, nature and scope of neutralities, as well as their interactions with different

ideational spectra.

The idea of neutrosophy theory depends on event or entity, where between an idea <A> and its

opposite <Anti-A>, there is a continuum power spectrum of neutralities <Neut-A>.

Truth value (T), indeterminacy value (I) and falsehood value (F) are representing neutrosophic

components referring to neutrosophy, neutrosophic logic, neutrosophic set, neutrosophic

probability, neutrosophic statistics [33].

[33] Smarandache, Florentin. Introduction to Neutrosophic Measure, Neutrosophic Integral, and

Neutrosophic Probability. 2013.

In neutrosophic set, the indeterminacy is quantified explicitly and the truth-membership,

indeterminacy-membership and falsity-membership are independent.

The neutrosophic set is a generalization of an intuitionistic set, classical set, fuzzy set,

paraconsistent set, dialetheist set, paradoxist set, and tautological set.
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Linear programming is constrained optimization, where the constraints and the objective

function are all linear.

It is called "programming" because the goal of the calculations help you choose a "program" of

action [41].

[41] Kumar, Amit, Jagdeep Kaur, and Pushpinder Singh. "A new method for solving fully fuzzy

linear programming problems." Applied Mathematical Modelling 35.2 (2011): 817-823.

The linear programming model, for neutrosophic image classification problem, involves on

two main parts called constraints and objective function.

Constraints are describing the query images as lower and upper weights for neutrosophic query

image components.

On neutrosophic image clustering classification to be maximized a linear objective function

means that categorization of similar images in clusters with out overlapping within or between

clusters.



General Framework.

This paper presents a novel system to image clustering namely Optimization neutrosophic

image classification system (ONsICS).

As shown in Figure 1 next slide, ONsICS consists of two techniques are neutrosophic image

processing and optimization image clustering.

Neutrosophic image processing is used to convert gray image to enhanced binary image (EBI)

based on object, edge and background of image components.

Each image can be represented as neutrosophic components (T, I, F) and stored the extracted

image components feature as a vector in database.

All similar image features are gathered together in a one category by using neutrosophic image

clustering (NsIC) technique.

Image clusters are optimized by using linear programming to solve image overlapping problem

as shown in Figure 1 next slide.
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Figure 1: Optimization image 

clustering flowchart. 
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Neutrosophic Image Feature Extraction.

Image feature extraction is the first step to image retrieval system.

Neutrosophic image (NSIm) is divided into three matrices are represented as images called

object, edge and background.

Each image is consisting of matrix representing the probability white pixel values for object

component and probability of non white pixel values for background component while the

intermediate matrix expresses the probability of the boundary between the white and non-

white pixels.

The combinations of pixel brightness value in (NSIm) components are calculated by using a

widely method namely Gray Level Co-occurrence Matrix (GLCM) [].

The spatially related in various directions with reference to distance and angular relationships

for co-occurring pairs of pixels is one of the most important advantages for GLCM

calculations.



Neutrosophic Image Feature Extraction - cont.

The feature extraction for (NSIm) components by GLCM is based on pixel and its next

neighbor pixel.

The Contrast, Energy, Homogeneity and Correlation are the parameters of GLCM which

calculated by:



Neutrosophic Image Clustering.
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B. Optimization neutrosophic image clustering.
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B. Optimization neutrosophic image clustering.
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B. Optimization neutrosophic image clustering.
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B. Optimization neutrosophic image clustering.
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B. Optimization neutrosophic image clustering.
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B. Optimization neutrosophic image clustering.



Conclusion.

This paper presents a new technique to unsupervised classification for images based on 

neutrosophis sets and optimization linear programming. 

Neutrosophic theory was used to transform the gray image to neutrosophic image components 

(O, E, B). Indeterminacy set (E) was worked on determine the objects boundaries with high 

precision.

Determining the boundaries of objects accurately blunted the effect of the overlapping problem 

within the cluster.

Neutrosophic image clustering method based on fuzzy c-means is used. Neutrosophic image

clustering has been enhanced by using the λ-mean operation which helped on solve the

overlapping problem between clusters.

Optimization neutrosophic image clustering is achieved by using the weight coefficient between

image clusters and images category as an object function in linear programming problem.



Conclusion - cont.

Whereas, the constraints of linear programming problem are the weight limits for query images.

Practical results conducted on neutrosophic image clustering technique has proved its efficiency

where it was to obtain the high performance rate in the accuracy of the resulting clusters as well

as high values of recall and precision measures.
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