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Introduction 
 
 
  Over 300 sequences and many unsolved problems and conjectures  
  related to them are presented herein.  
   
  These notions, definitions, unsolved problems, questions, theorems 
  corollaries, formulae, conjectures, examples, mathematical  
  criteria, etc. ( on integer sequences, numbers, quotients, residues,  
  exponents, sieves, pseudo-primes/squares/cubes/factorials, almost primes,  
  mobile periodicals, functions, tables, prime/square/factorial bases,  
  generalized factorials, generalized palindromes, etc. ) 
  have been extracted from the Archives of American Mathematics (University  
  of Texas at Austin) and Arizona State University (Tempe): "The Florentin  
  Smarandache papers" special collections, University of Craiova Library,  
  and Arhivele Statului (Filiala Vâlcea, Romania). 

It is based on the old article “Properties of Numbers” (1975), updated many times. 
 

Special thanks to C. Dumitrescu & V. Seleacu from the University of Craiova (see     
their edited book "Some Notions and Questions in Number Theory", Erhus Univ. 
Press, Glendale, 1994), M. Perez, J. Castillo, M. Bencze, L. Tutescu, E, Burton who 
helped in collecting and editing this material.   
 
 

                                          The Author
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Sequences of Numbers Involved in Unsolved Problems 
 
 

  Here it is a long list of sequences, functions, unsolved problems, conjectures, 
theorems, relationships, operations, etc.  Some of them are inter-connected. 
 
  1) Consecutive Sequence: 
      1,12,123,1234,12345,123456,1234567,12345678,123456789,12345678910,  
      1234567891011,123456789101112,12345678910111213,... 
        How many primes are there among these numbers? 
        In a general form, the Consecutive Sequence is considered 
      in an arbitrary numeration base B. 
 
   References: 

Student Conference, University of Craiova, Department of Mathematics, 
   April 1979, "Some problems in number theory" by Florentin Smarandache. 
Arizona State University, Hayden Library, "The Florentin Smarandache 
   papers" special collection, Tempe, AZ 85287-1006, USA. 

   The Encyclopedia of Integer Sequences", by N. J. A. Sloane and  
        S. Plouffe, Academic Press, San Diego, New York, Boston, London,  
        Sydney, Tokyo, Toronto, 1995; 
        also online, email: superseeker@research.att.com ( SUPERSEEKER by  
        N. J. A. Sloane, S. Plouffe, B. Salvy, ATT Bell Labs, Murray Hill, 
        NJ 07974, USA);  

 N. J. A. Sloane, e-mails to R. Muller, February 13 - March 7, 1995. 
 
 
  2) Circular Sequence: 
         1,12,21,123,231,312, 1234,2341,3412,4123,  12345,23451,34512,45123,51234, 
                                                                      
       1  2      3            4                   5 
     
        123456,234561,345612,456123,561234,612345,  1234567,2345671,3456712,... 
                                                                          
                        6                           7 
 
 
  3) Symmetric Sequence: 
       1,11,121,1221,12321,123321,1234321,12344321,123454321,1234554321, 
       
12345654321,123456654321,1234567654321,12345677654321,123456787654321, 
       1234567887654321,12345678987654321,123456789987654321, 
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12345678910987654321,1234567891010987654321,123456789101110987654321, 
       12345678910111110987654321, ... 
        How many primes are there among these numbers? 
        In a general form, the Symmetric Sequence is considered 
      in an arbitrary numeration base B. 
 
 
     References: 
      Student Conference, University of Craiova, Department of Mathematics, 
        April 1979, "Some problems in number theory" by Florentin Smarandache. 
      Arizona State University, Hayden Library, "The Florentin Smarandache 
        papers" special collection, Tempe, AZ 85287-1006, USA. 
      "The Encyclopedia of Integer Sequences", by N. J. A. Sloane and  
        S. Plouffe, Academic Press, San Diego, New York, Boston, London,  
        Sydney, Tokyo, Toronto, 1995; 
        also online, email:  superseeker@research.att.com ( SUPERSEEKER by  
        N. J. A. Sloane, S. Plouffe, B. Salvy, ATT Bell Labs, Murray Hill, 
        NJ 07974, USA);  
 
 
  4) Deconstructive Sequence:  
 

891,23,456,7 91,23456,78 123,456789 ,1,23456789 123456789, 123456789 ... 1,  

     References: 
      Florentin Smarandache, "Only Problems, not Solutions!", Xiquan  
        Publishing House, Phoenix-Chicago, 1990, 1991, 1993;  
        ISBN: 1-879585-00-6. 
        (reviewed in <Zentralblatt fur Mathematik> by P. Kiss: 11002,  
         pre744, 1992; 
         and <The American Mathematical Monthly>, Aug.-Sept. 1991); 
      Arizona State University, Hayden Library, "The Florentin Smarandache 
        papers" special collection, Tempe, AZ 85287-1006, USA. 
      "The Encyclopedia of Integer Sequences", by N. J. A. Sloane and  
        S. Plouffe, Academic Press, San Diego, New York, Boston, London,  
        Sydney, Tokyo, Toronto, 1995; 
        also online, email: superseeker@research.att.com ( SUPERSEEKER by  
        N. J. A. Sloane, S. Plouffe, B. Salvy, ATT Bell Labs, Murray Hill, 
        NJ 07974, USA);  
 
 
 
  5) Mirror Sequence: 
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1,212,32123,4321234,543212345,65432123456,7654321234567,876543212345678, 
98765432123456789,109876543212345678910,1110987654321234567891011,... 
 
     Question:  How many of them are primes? 
 
 
  6) Permutation Sequence: 
       
12,1342,135642,13578642,13579108642,135791112108642,1357911131412108642, 
       13579111315161412108642,135791113151718161412108642,  
       1357911131517192018161412108642,... 
 
     Question:  Is there any perfect power among these numbers? 
     (Their last digit should be:  
      either 2 for exponents of the form 4k+1,  
      either 8 for exponents of the form 4k+3, where k ≥ 0 .)    
 
     We conjecture: no! 
 
 
  7) Generalized Permutation Sequence: 
      If g(n), as a function, gives the number of digits of a(n), and F is a 
      permutation of g(n) elements, then: 
              

      ( ) ( ) ( )( )ngFFFna )...2(1=  
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  8) Mobile Periodicals (I): 
   ...000000000000000000000000000000010000000000000000000000000000000000... 
   ...000000000000000000000000000000111000000000000000000000000000000000... 
   ...000000000000000000000000000001101100000000000000000000000000000000... 
   ...000000000000000000000000000000111000000000000000000000000000000000... 
   ...000000000000000000000000000000010000000000000000000000000000000000... 
   ...000000000000000000000000000000111000000000000000000000000000000000... 
   ...000000000000000000000000000001101100000000000000000000000000000000... 
   ...000000000000000000000000000011000110000000000000000000000000000000... 
   ...000000000000000000000000000001101100000000000000000000000000000000... 
   ...000000000000000000000000000000111000000000000000000000000000000000... 
   ...000000000000000000000000000000010000000000000000000000000000000000... 
   ...000000000000000000000000000000111000000000000000000000000000000000... 
   ...000000000000000000000000000001101100000000000000000000000000000000... 
   ...000000000000000000000000000011000110000000000000000000000000000000... 
   ...000000000000000000000000000110000011000000000000000000000000000000... 
   ...000000000000000000000000000011000110000000000000000000000000000000... 
   ...000000000000000000000000000001101100000000000000000000000000000000... 
   ...000000000000000000000000000000111000000000000000000000000000000000... 
   ...000000000000000000000000000000010000000000000000000000000000000000... 
   ...000000000000000000000000000000111000000000000000000000000000000000... 
   ...000000000000000000000000000001101100000000000000000000000000000000... 
   ...000000000000000000000000000011000110000000000000000000000000000000... 
   ...000000000000000000000000000110000011000000000000000000000000000000... 
   ...000000000000000000000000001100000001100000000000000000000000000000... 
   ...000000000000000000000000000110000011000000000000000000000000000000... 
   ...000000000000000000000000000011000110000000000000000000000000000000... 
   ...000000000000000000000000000001101100000000000000000000000000000000... 
   ...000000000000000000000000000000111000000000000000000000000000000000... 
   ...000000000000000000000000000000010000000000000000000000000000000000... 
   ...000000000000000000000000000000111000000000000000000000000000000000... 
   ...000000000000000000000000000001101100000000000000000000000000000000... 
   ...000000000000000000000000000011000110000000000000000000000000000000... 
   ...000000000000000000000000000110000011000000000000000000000000000000... 
   ...000000000000000000000000001100000001100000000000000000000000000000... 
   ...000000000000000000000000011000000000110000000000000000000000000000... 
   ...000000000000000000000000001100000001100000000000000000000000000000... 
   ...000000000000000000000000000110000011000000000000000000000000000000... 
   ...000000000000000000000000000011000110000000000000000000000000000000... 
   ...000000000000000000000000000001101100000000000000000000000000000000... 
   ...000000000000000000000000000000111000000000000000000000000000000000... 
   ...000000000000000000000000000000010000000000000000000000000000000000... 
   ...000000000000000000000000000000111000000000000000000000000000000000... 
   ...000000000000000000000000000001101100000000000000000000000000000000... 
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   ...000000000000000000000000000011000110000000000000000000000000000000... 
   ...000000000000000000000000000110000011000000000000000000000000000000... 
   ...000000000000000000000000001100000001100000000000000000000000000000... 
   ...000000000000000000000000011000000000110000000000000000000000000000... 
   ...000000000000000000000000110000000000011000000000000000000000000000... 
   ........................................................................ 
 
 
   This sequence has the form 
  1,111,11011,111,1,111,11011,1100011,11011,111,1, 111,11011,1100011,110000011,... 
                                                                          
       5                7                        9 
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  9) Mobile Periodicals (II): 
   ...000000000000000000000000000000010000000000000000000000000000000000... 
   ...000000000000000000000000000000111000000000000000000000000000000000... 
   ...000000000000000000000000000001121100000000000000000000000000000000... 
   ...000000000000000000000000000000111000000000000000000000000000000000... 
   ...000000000000000000000000000000010000000000000000000000000000000000... 
   ...000000000000000000000000000000111000000000000000000000000000000000... 
   ...000000000000000000000000000001121100000000000000000000000000000000... 
   ...000000000000000000000000000011232110000000000000000000000000000000... 
   ...000000000000000000000000000001121100000000000000000000000000000000... 
   ...000000000000000000000000000000111000000000000000000000000000000000... 
   ...000000000000000000000000000000010000000000000000000000000000000000... 
   ...000000000000000000000000000000111000000000000000000000000000000000... 
   ...000000000000000000000000000001121100000000000000000000000000000000... 
   ...000000000000000000000000000011232110000000000000000000000000000000... 
   ...000000000000000000000000000112343211000000000000000000000000000000... 
   ...000000000000000000000000000011232110000000000000000000000000000000... 
   ...000000000000000000000000000001121100000000000000000000000000000000... 
   ...000000000000000000000000000000111000000000000000000000000000000000... 
   ...000000000000000000000000000000010000000000000000000000000000000000... 
   ...000000000000000000000000000000111000000000000000000000000000000000... 
   ...000000000000000000000000000001121100000000000000000000000000000000... 
   ...000000000000000000000000000011232110000000000000000000000000000000... 
   ...000000000000000000000000000112343211000000000000000000000000000000... 
   ...000000000000000000000000001123454321100000000000000000000000000000... 
   ...000000000000000000000000000112343211000000000000000000000000000000... 
   ...000000000000000000000000000011232110000000000000000000000000000000... 
   ...000000000000000000000000000001121100000000000000000000000000000000... 
   ...000000000000000000000000000000111000000000000000000000000000000000... 
   ...000000000000000000000000000000010000000000000000000000000000000000... 
   ...000000000000000000000000000000111000000000000000000000000000000000... 
   ...000000000000000000000000000001121100000000000000000000000000000000... 
   ...000000000000000000000000000011232110000000000000000000000000000000... 
   ...000000000000000000000000000112343211000000000000000000000000000000... 
   ...000000000000000000000000001123454321100000000000000000000000000000... 
   ...000000000000000000000000011234565432110000000000000000000000000000... 
   ...000000000000000000000000001123454321100000000000000000000000000000... 
   ...000000000000000000000000000112343211000000000000000000000000000000... 
   ...000000000000000000000000000011232110000000000000000000000000000000... 
   ...000000000000000000000000000001121100000000000000000000000000000000... 
   ...000000000000000000000000000000111000000000000000000000000000000000... 
   ...000000000000000000000000000000010000000000000000000000000000000000... 
   ...000000000000000000000000000000111000000000000000000000000000000000... 
   ...000000000000000000000000000001121100000000000000000000000000000000... 
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   ...000000000000000000000000000011232110000000000000000000000000000000... 
   ...000000000000000000000000000112343211000000000000000000000000000000... 
   ...000000000000000000000000001123454321100000000000000000000000000000... 
   ...000000000000000000000000011234565432110000000000000000000000000000... 
   ...000000000000000000000000112345676543211000000000000000000000000000... 
   ........................................................................ 
 
 
   This sequence has the form 
  1,111,11211,111,1,111,11211,1123211,11211,111,1,111,11211,1123211,112343211,... 
                                                                          
        5                   7                        9 
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  10) Infinite Numbers (I): 
   ...111111111111111111111111111111101111111111111111111111111111111111... 
   ...111111111111111111111111111111000111111111111111111111111111111111... 
   ...111111111111111111111111111110010011111111111111111111111111111111... 
   ...111111111111111111111111111111000111111111111111111111111111111111... 
   ...111111111111111111111111111111101111111111111111111111111111111111... 
   ...111111111111111111111111111111000111111111111111111111111111111111... 
   ...111111111111111111111111111110010011111111111111111111111111111111... 
   ...111111111111111111111111111100111001111111111111111111111111111111... 
   ...111111111111111111111111111110010011111111111111111111111111111111... 
   ...111111111111111111111111111111000111111111111111111111111111111111... 
   ...111111111111111111111111111111101111111111111111111111111111111111... 
   ...111111111111111111111111111111000111111111111111111111111111111111... 
   ...111111111111111111111111111110010011111111111111111111111111111111... 
   ...111111111111111111111111111100111001111111111111111111111111111111... 
   ...111111111111111111111111111001111100111111111111111111111111111111... 
   ...111111111111111111111111111100111001111111111111111111111111111111... 
   ...111111111111111111111111111110010011111111111111111111111111111111... 
   ...111111111111111111111111111111000111111111111111111111111111111111... 
   ...111111111111111111111111111111101111111111111111111111111111111111... 
   ...111111111111111111111111111111000111111111111111111111111111111111... 
   ...111111111111111111111111111110010011111111111111111111111111111111... 
   ...111111111111111111111111111100111001111111111111111111111111111111... 
   ...111111111111111111111111111001111100111111111111111111111111111111... 
   ...111111111111111111111111110011111110011111111111111111111111111111... 
   ...111111111111111111111111111001111100111111111111111111111111111111... 
   ...111111111111111111111111111100111001111111111111111111111111111111... 
   ...111111111111111111111111111110010011111111111111111111111111111111... 
   ...111111111111111111111111111111000111111111111111111111111111111111... 
   ...111111111111111111111111111111101111111111111111111111111111111111... 
   ...111111111111111111111111111111000111111111111111111111111111111111... 
   ...111111111111111111111111111110010011111111111111111111111111111111... 
   ...111111111111111111111111111100111001111111111111111111111111111111... 
   ...111111111111111111111111111001111100111111111111111111111111111111... 
   ...111111111111111111111111110011111110011111111111111111111111111111... 
   ...111111111111111111111111100111111111001111111111111111111111111111... 
   ...111111111111111111111111110011111110011111111111111111111111111111... 
   ...111111111111111111111111111001111100111111111111111111111111111111... 
   ...111111111111111111111111111100111001111111111111111111111111111111... 
   ...111111111111111111111111111110010011111111111111111111111111111111... 
   ...111111111111111111111111111111000111111111111111111111111111111111... 
   ...111111111111111111111111111111101111111111111111111111111111111111... 
   ...111111111111111111111111111111000111111111111111111111111111111111... 
   ...111111111111111111111111111110010011111111111111111111111111111111... 
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   ...111111111111111111111111111100111001111111111111111111111111111111... 
   ...111111111111111111111111111001111100111111111111111111111111111111... 
   ...111111111111111111111111110011111110011111111111111111111111111111... 
   ...111111111111111111111111100111111111001111111111111111111111111111... 
   ...111111111111111111111111001111111111100111111111111111111111111111... 
   ........................................................................ 
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  11) Infinite Numbers (II):  
   ...111111111111111111111111111111121111111111111111111111111111111111... 
   ...111111111111111111111111111111222111111111111111111111111111111111... 
   ...111111111111111111111111111112232211111111111111111111111111111111... 
   ...111111111111111111111111111111222111111111111111111111111111111111... 
   ...111111111111111111111111111111121111111111111111111111111111111111... 
   ...111111111111111111111111111111222111111111111111111111111111111111... 
   ...111111111111111111111111111112232211111111111111111111111111111111... 
   ...111111111111111111111111111122343221111111111111111111111111111111... 
   ...111111111111111111111111111112232211111111111111111111111111111111... 
   ...111111111111111111111111111111222111111111111111111111111111111111... 
   ...111111111111111111111111111111121111111111111111111111111111111111... 
   ...111111111111111111111111111111222111111111111111111111111111111111... 
   ...111111111111111111111111111112232211111111111111111111111111111111... 
   ...111111111111111111111111111122343221111111111111111111111111111111... 
   ...111111111111111111111111111223454322111111111111111111111111111111... 
   ...111111111111111111111111111122343221111111111111111111111111111111... 
   ...111111111111111111111111111112232211111111111111111111111111111111... 
   ...111111111111111111111111111111222111111111111111111111111111111111... 
   ...111111111111111111111111111111121111111111111111111111111111111111... 
   ...111111111111111111111111111111222111111111111111111111111111111111... 
   ...111111111111111111111111111112232211111111111111111111111111111111... 
   ...111111111111111111111111111122343221111111111111111111111111111111... 
   ...111111111111111111111111111223454322111111111111111111111111111111... 
   ...111111111111111111111111112234565432211111111111111111111111111111... 
   ...111111111111111111111111111223454322111111111111111111111111111111... 
   ...111111111111111111111111111122343221111111111111111111111111111111... 
   ...111111111111111111111111111112232211111111111111111111111111111111... 
   ...111111111111111111111111111111222111111111111111111111111111111111... 
   ...111111111111111111111111111111121111111111111111111111111111111111... 
   ...111111111111111111111111111111222111111111111111111111111111111111... 
   ...111111111111111111111111111112232211111111111111111111111111111111... 
   ...111111111111111111111111111122343221111111111111111111111111111111... 
   ...111111111111111111111111111223454322111111111111111111111111111111... 
   ...111111111111111111111111112234565432211111111111111111111111111111... 
   ...111111111111111111111111122345676543221111111111111111111111111111... 
   ...111111111111111111111111112234565432211111111111111111111111111111... 
   ...111111111111111111111111111223454322111111111111111111111111111111... 
   ...111111111111111111111111111122343221111111111111111111111111111111... 
   ...111111111111111111111111111112232211111111111111111111111111111111... 
   ...111111111111111111111111111111222111111111111111111111111111111111... 
   ...111111111111111111111111111111121111111111111111111111111111111111... 
   ...111111111111111111111111111111222111111111111111111111111111111111... 
   ...111111111111111111111111111112232211111111111111111111111111111111... 
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   ...111111111111111111111111111122343221111111111111111111111111111111... 
   ...111111111111111111111111111223454322111111111111111111111111111111... 
   ...111111111111111111111111112234565432211111111111111111111111111111... 
   ...111111111111111111111111122345676543221111111111111111111111111111... 
   ...111111111111111111111111223456787654322111111111111111111111111111... 
   ........................................................................ 
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  12) Numerical Car: 
   ...000000000000000000000000000000000000000000000000000000000000000000... 
   ...000000000000000000111111111111111111111111100000000000000000000000... 
   ...000000000000000001111111111111111111111111110000000000000000000000... 
   ...000000000000000011000000000000000000000000011000000000000000000000... 
   ...000000000000000110000000000000000000000000001100000000000000000000... 
   ...000000011111111100000000000000000000000000000111111111111110000000... 
   ...000000111111111000000000000000000000000000000011111111111111000000... 
   ...000000110000000000000000000000000000000000000000000000000011200000... 
   ...000000110000000000000000000000000000000000000000000000000011000000... 
   ...000000110000044400000000000000000000000000000000000044400011000000... 
   ...000000111111444441111111111111111111111111111111111444441111200000... 
   ...000000011114444444111111111111111111111111111111114444444110000000... 
   ...000000000000444440000000000000000000000000000000000444440000000000... 
   ...000000000000044400000000000000000000000000000000000044400000000000... 
   ...000000000000000000000000000000000000000000000000000000000000000000... 
   ........................................................................ 
 
 
  13) Finite Lattice: 
   ...000000000000000000000000000000000000000000000000000000000000000000... 
   ...077700000000000700000007777777700777777770077007777777700777777770... 
   ...077700000000007770000007777777700777777770077007777777700777777770... 
   ...077700000000077077000000007700000000770000077007770000000770000000... 
   ...077700000000770007700000007700000000770000077007770000000777770000... 
   ...077700000007777777700000007700000000770000077007770000000770000000... 
   ...077777700077000000077000007700000000770000077007777777700777777770... 
   ...077777700770000000007700007700000000770000077007777777700777777770... 
   ...000000000000000000000000000000000000000000000000000000000000000000... 
   ........................................................................ 
 
 
  14) Infinite Lattice: 
   ...111111111111111111111111111111111111111111111111111111111111111111... 
   ...177711111111111711111117777777711777777771177117777777711777777771... 
   ...177711111111117771111117777777711777777771177117777777711777777771... 
   ...177711111111177177111111117711111111771111177117771111111771111111... 
   ...177711111111771117711111117711111111771111177117771111111777771111... 
   ...177711111117777777711111117711111111771111177117771111111771111111... 
   ...177777711177111111177111117711111111771111177117777777711777777771... 
   ...177777711771111111117711117711111111771111177117777777711777777771... 
   ...111111111111111111111111111111111111111111111111111111111111111111... 
   ........................................................................ 
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   Remark: Of course, it's interesting to "design" a large variety of  
     numerical <object sequences> in the same way. 
     Their numbers may be finite if the picture's background is zeroed, or  
     infinite if the picture's background is not zeroed -- as for the previous 
     examples. 
      
 
  15) Simple Numbers: 
    2,3,4,5,6,7,8,9,10,11,13,14,15,17,19,21,22,23,25,26,27,29,31,33,34,35,37,38, 
    39,41,43,45,46,47,49,51,53,55,57,58,61,62,65,67,69,71,73,74,77,78,79,82,83, 
    85,86,87,89,91,93,94,95,97,101,103,... 
    (A number n is called <simple number> if the product of its proper divisors 
     is less than or equal to n.) 
    Generally speaking, n has the form:   
        n = p, or p2, or p3, or pq, where p and q are distinct primes. 
 
 
    References: 
      Florentin Smarandache, "Only Problems, not Solutions!", Xiquan  
        Publishing House, Phoenix-Chicago, 1990, 1991, 1993;  
        ISBN: 1-879585-00-6. 
        (reviewed in <Zentralblatt für Mathematik> by P. Kiss: 11002,  
         pre744, 1992; 
         and <The American Mathematical Monthly>, Aug.-Sept. 1991); 
      Student Conference, University of Craiova, Department of Mathematics, 
        April 1979, "Some problems in number theory" by Florentin Smarandache. 
 
 
  16) Digital Sum: 
 

,9,8,7,6,5,4,3,2,1,0 ,10,9,8,7,6,5,4,3,2,1 ,11,10,9,8,7,6,5,4,3,2   

,12,11,10,9,8,7,6,5,4,3 ,13,12,11,10,9,8,7,6,5,4 ,14,13,12,11,10,9,8,7,6,5 ... 

 
     ( ds(n) is the sum of digits.)   
 
 
  17) Digital Products: 
     ,9,8,7,6,5,4,3,2,1,0 ,9,8,7,6,5,4,3,2,1,0 6,18,19,12,14,10,2,4,6,8,  

     ,24,27,15,18,21,0,3,6,9,12 ,,32,366,20,24,280,4,8,12,1 20,25,...0,5,10,15,  
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   ( dp(n) is the product of digits.) 
 
 
  18) Code Puzzle: 
     
151405,202315,2008180505,06152118,06092205,190924,1905220514,0509070820, 
14091405,200514,051205220514,... 
    Using the following letter-to-number code: 

A B C D E F G H I J K L M 
01 05 06 07 08 09 10 11 12 13 14 15 16 

 
 
 
   then cp(n)= the numerical code for the spelling of n in English 
   language;  for example: 1 = ONE = 151405, etc. 
 
 
  19)) Pierced Chain: 
     101,1010101,10101010101,101010101010101,1010101010101010101,  
     10101010101010101010101,101010101010101010101010101,... 
    (c(n) = 101* 1 0001 0001...0001 , for n ≥1.) 
                      …                
                1   2 … n-1 
      How many c(n)/101 are primes ? 
 
     References: 
      Florentin Smarandache, "Only Problems, not Solutions!", Xiquan  
        Publishing House, Phoenix-Chicago, 1990, 1991, 1993;  
        ISBN: 1-879585-00-6. 
        (reviewed in <Zentralblatt fur Mathematik> by P. Kiss: 11002,  
         pre744, 1992; 
         and <The American Mathematical Monthly>, Aug.-Sept. 1991); 
      Arizona State University, Hayden Library, "The Florentin Smarandache 
        papers" special collection, Tempe, AZ 85287-1006, USA. 
      Student Conference, University of Craiova, Department of Mathematics, 
        April 1979, "Some problems in number theory" by Florentin Smarandache. 
 
 
  20) Divisor Products: 
       1,2,3,8,5,36,7,64,27,100,11,1728,13,196,225,1024,17,5832,19,8000,441,484, 

23,331776,125,676,729,21952,29,810000,31,32768,1089,1156,1225,100776
96,37,1444,1521,2560000,41,... 

     ( Pd(n) is the product of all positive divisors of n.) 

N O P Q R S T U V W X Y Z 
14 15 16 17 18 19 20 21 22 23 24 25 26 
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  21) Proper Divisor Products: 
     1,1,1,2,1,6,1,8,3,10,1,144,1,14,15,64,1,324,1,400,21,22,1,13824,5,26,27, 
     784,1,27000,1,1024,33,34,35,279936,1,38,39,64000,1,... 
     ( Pd(n) is the product of all positive divisors of n but n.) 
 
 
  22) Cube Free Sieve: 
     2,3,4,5,6,7,9,10,11,12,13,14,15,17,18,19,20,21,22,23,25,26,28,29,30,31,33, 
     34,35,36,37,38,39,41,42,43,44,45,46,47,49,50,51,52,53,55,57,58,59,60,61,62, 
     63,65,66,67,68,69,70,71,73,... 
    Definition: from the set of natural numbers (except 0 and 1): 
       - take off all multiples of 23 (i.e. 8, 16, 24, 32, 40, ...) 
       - take off all multiples of 33 
       - take off all multiples of 53 
       ... and so on (take off all multiples of all cubic primes). 
    (One obtains all cube free numbers.) 
 
 
  23) m-Power Free Sieve: 
       Definition:  from the set of natural numbers (except 0 and 1) 
         take off all multiples of 2m, afterwards all multiples of 3m, ... 
         and so on (take off all multiples of all m-power primes, m ≥ 2). 
       (One obtains all m-power free numbers.) 
 
 
  24) Irrational Root Sieve: 
     2,3,5,6,7,10,11,12,13,14,15,17,18,19,20,21,22,23,24,26,28,29,30,31,33,34,  
     35,37,38,39,40,41,42,43,44,45,46,47,48,50,51,52,53,54,55,56,57,58,59,60,61, 
     62,63,65,66,67,68,69,70,71,72,73,... 
    Definition: from the set of natural numbers (except 0 and 1): 
       - take off all powers of 2k, k ≥ 2, (i.e. 4, 8, 16, 32, 64, ...) 
       - take off all powers of 3k, k ≥ 2; 
       - take off all powers of 5k, k ≥ 2; 
       - take off all powers of 6k, k ≥ 2; 
       - take off all powers of 7k, k ≥ 2; 
       - take off all powers of 10k, k ≥ 2; 
       ... and so on (take off all k-powers, k ≥ 2, of all square free numbers). 
       We got all square free numbers by the following method (sieve): 
       from the set of natural numbers (except 0 and 1): 
       - take off all multiples of 22 (i.e. 4, 8, 12, 16, 20, ...) 
       - take off all multiples of 33 
       - take off all multiples of 53 
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       ... and so on (take off all multiples of all square primes); 
       one obtains, therefore: 
          2,3,5,6,7,10,11,13,14,15,17,19,21,22,23,26,29,30,31,33,34,35,37,38,39, 
          41,42,43,46,47,51,53,55,57,58,59,61,62,65,66,67,69,70,71,... , 
       which are used for irrational root sieve. 
 
    (One obtains all natural numbers those m-th roots, for any m ≥ 2, are  
     irrational.) 
 
 
     References: 
      Florentin Smarandache, "Only Problems, not Solutions!", Xiquan  
        Publishing House, Phoenix-Chicago, 1990, 1991, 1993;  
        ISBN: 1-879585-00-6. 
        (reviewed in <Zentralblatt fur Mathematik> by P. Kiss: 11002,  
         pre744, 1992; 
         and <The American Mathematical Monthly>, Aug.-Sept. 1991); 
      Arizona State University, Hayden Library, "The Florentin Smarandache 
        papers" special collection, Tempe, AZ 85287-1006, USA. 
        April 1979, "Some problems in number theory" by Florentin Smarandache. 
      "The Encyclopedia of Integer Sequences", by N. J. A. Sloane and  
        S. Plouffe, Academic Press, San Diego, New York, Boston, London,  
        Sydney, Tokyo, Toronto, 1995; 
        also online, email:  superseeker@research.att.com ( SUPERSEEKER by  
        N. J. A. Sloane, S. Plouffe, B. Salvy, ATT Bell Labs, Murray Hill, 
        NJ 07974, USA);  
 
 
  25) Odd Sieve: 
      7,13,19,23,25,31,33,37,43,47,49,53,55,61,63,67,73,75,79,83,85,91,93,  
      97,...  
      (All odd numbers that are not equal to the difference of two primes.) 
       A sieve is used to get this sequence: 
        - subtract 2 from all prime numbers and obtain a temporary sequence; 
        - choose all odd numbers that do not belong to the temporary one. 
 
 
  26) Binary Sieve: 
     1,3,5,9,11,13,17,21,25,27,29,33,35,37,43,49,51,53,57,59,65,67,69,73,75,77, 
     81,85,89,91,97,101,107,109,113,115,117,121,123,129,131,133,137,139,145, 
     149,... 
     (Starting to count on the natural numbers set at any step from 1: 
        - delete every 2-nd numbers 
        - delete, from the remaining ones, every 4-th numbers 
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        ... and so on:  delete, from the remaining ones, every (2k) –th numbers, 
        k = 1, 2, 3, ... .) 
     
     Conjectures:   
       - there are an infinity of primes that belong to this sequence; 
       - there are an infinity of numbers of this sequence which are not prime. 
 
 
  27) Trinary Sieve: 
     1,2,4,5,7,8,10,11,14,16,17,19,20,22,23,25,28,29,31,32,34,35,37,38,41,43,46, 
     47,49,50,52,55,56,58,59,61,62,64,65,68,70,71,73,74,76,77,79,82,83,85,86,88, 

91,92,95,97,98,100,101,103,104,106,109,110,112,113,115,116,118,119,122,  
124,125,127,128,130,131,133,137,139,142,143,145,146,149,... 

     (Starting to count on the natural numbers set at any step from 1: 
        - delete every 3-rd numbers 
        - delete, from the remaining ones, every 9-th numbers 
        ... and so on: delete, from the remaining ones, every (3k) -th numbers,  

k = 1, 2, 3, ... .) 
     
     Conjectures:   
       - there are an infinity of primes that belong to this sequence; 
       - there are an infinity of numbers of this sequence which are not prime. 
 
 
  28) n-ary Power Sieve (generalization, n ≥ 2): 
     (Starting to count on the natural numbers set at any step from 1: 
        - delete every n- th numbers 
        - delete, from the remaining ones, every (n2) –th numbers 
        ... and so on: delete, from the remaining ones, every (nk) –th numbers,  

k = 1, 2, 3, ... .) 
 
     Conjectures:   
       - there are an infinity of primes that belong to this sequence; 
       - there are an infinity of numbers of this sequence which are not prime. 
 
  29) k-ary Consecutive Sieve (second version): 

   1, 2, 4, 7, 9, 14, 20, 25, 31, 34, 44, ... . 
       Keep the first k numbers, skip the k+1 numbers, for k = 2, 3, 4, ... . 
 
 Question: How many terms are prime? 
 
References: 
   Le M., On the Smarandache n-ary sieve, <Smarandache Notions Journal> (SNJ), 
       Vol. 10, No. 1-2-3, 1999, 146-147. 
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   Sloane, N. J. A., On-Line Encyclopedia of Integers, Sequences 
       A048859, A007952. 
 
  30) Consecutive Sieve: 
     1,3,5,9,11,17,21,29,33,41,47,57,59,77,81,101,107,117,131,149,153,173,191, 
     209,213,239,257,273,281,321,329,359,371,401,417,441,435,491,... 
     (From the natural numbers set: 
        - keep the first number, 
          delete one number out of 2 from all remaining numbers; 
        - keep the first remaining number, 
          delete one number out of 3 from the next remaining numbers; 
        - keep the first remaining number, 
          delete one number out of 4 from the next remaining numbers; 
        ... and so on, for step k (k ≥ 2): 
        - keep the first remaining number, 
          delete one number out of k from the next remaining numbers; 
        ... .) 
 
     This sequence is much less dense than the prime number sequence, 
     and their ratio tends to pn: n as n tends to infinity.  
 
     For this sequence we chose to keep the first remaining number  
     at all steps, 
     but in a more general case:  
     the kept number may be any among the remaining k-plet (even at random). 
 
 
  31) General-Sequence Sieve: 
     Let ui > 1, for i = 1, 2, 3, ..., a strictly increasing positive integer             
     sequence.  Then: 
     From the natural numbers set: 
       - keep one number among 1, 2, 3, ..., u1-1, 
         and delete every (u1)–th numbers; 
       - keep one number among the next u2-1 remaining numbers, 
         and delete every (u2)–th numbers; 
       ... and so on, for step k (k ≥ 1): 
       - keep one number among the next uk-1 remaining numbers, 
         and delete every uk -th numbers; 
       ... 
 
     Problem: study the relationship between sequence ui, i = 1, 2, 3, ..., 
     and the remaining sequence resulted from the general  
     sieve. 
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     ui, previously defined, is called sieve generator. 
 
 
  32) More General-Sequence Sieve: 
     For i = 1, 2, 3, ..., let ui > 1, be a strictly increasing positive integer 
     sequence, and vi < ui another positive integer sequence.  Then: 
     From the natural numbers set: 
       - keep the (v1 )–th number among 1, 2, 3, ..., u - 1, 
         and delete every (u1 )–th numbers; 
       - keep the(v2 )–th number among the next u2 -1 remaining numbers, 
         and delete every u2-th numbers; 
       ... and so on, for step k (k ≥ 1): 
       - keep the (vk )–th number among the next uk-1 remaining numbers, 
         and delete every (uk )–th numbers; 
       ... . 
 
     Problem:  study the relationship between sequences ui, vi, i = 1, 2, 3,  
     ..., and the remaining sequence resulted from the more general  
     sieve. 
 
     ui and vi previously defined, are called sieve generators. 
 
 
  33) Digital Sequences: 
      (This a particular case of sequences of sequences.) 
      General definition: 
      in any numeration base B, for any given infinite integer or rational  
      sequence S1 , S2, S3, ...,  and any digit D from 0 to B-1,  
      it's built up a new integer sequence witch 
        associates to S1 the number of digits D of S1 in base B,  
        to S2 the number of digits D of S2 in base B,  and so on... 
 
      For example, considering the prime number sequence in base 10,  
      then the number of digits 1 (for example) of each prime number  
      following their order is: 0,0,0,0,2,1,1,1,0,0,1,0,... 
      (Digit-1 Prime Sequence). 
 
      Second example if we consider the factorial sequence n! in base 10, 
      then the number of digits 0 of each factorial number  
      following their order is: 0,0,0,0,0,1,1,2,2,1,3,... 
      Digit-0 Factorial Sequence).  
 
      Third example if we consider the sequence nn in base 10, n=1,2,..., 
      then the number of digits 5 of each term 11, 22, 33, ..., 
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      following their order is: 0,0,0,1,1,1,1,0,0,0,... 
      (Digit-5 nn-Sequence). 
                                                 
      References:  
      E. Grosswald, University of Pennsylvania, Philadelphia, Letter to F. 
        Smarandache, August 3, 1985; 
      R. K. Guy, University of Calgary, Alberta, Canada, Letter to F.  
        Smarandache, November 15, 1985; 
      Florentin Smarandache, "Only Problems, not Solutions!", Xiquan  
        Publishing House, Phoenix-Chicago, 1990, 1991, 1993;  
        ISBN: 1-879585-00-6. 
        (reviewed in <Zentralblatt für Mathematik> by P. Kiss: 11002,  
         pre744, 1992; 
         and <The American Mathematical Monthly>, Aug.-Sept. 1991); 
      Arizona State University, Hayden Library, "The Florentin Smarandache 
        papers" special collection, Tempe, AZ 85287-1006, USA. 
 
 
  34) Construction Sequences: 
      (This a particular case of sequences of sequences.) 
      General definition: 
      in any numeration base B, for any given infinite integer or rational  
      sequence S1 , S2, S3, ...,  and any digits D1 , D2, ..., DK (k < B), 
      it's built up a new integer sequence such that 
        each of its terms Q1< Q2 < Q3< ... is formed by these digits  
        D1 , D2, ..., DK only (all these digits are used), and matches a  
        term Si  of the previous sequence. 
 
      For example, considering in base 10 the prime number sequence, 
      and the digits 1 and 7 (for example), 
      we construct a written-only-with-these-digits (all these digits are used) 
      prime number new sequence:  17,71,... 
      (Digit-1-7-only Prime Sequence). 
 
      Second example, considering in base 10 the multiple of 3 sequence, 
      and the digits 0 and 1, 
      we construct a written-only-with-these-digits (all these digits are 
      used) multiple of 3 new sequence:  1011,1101,1110,10011,10101,10110, 
      11001,11010,11100,... 
      (Digit-0-1-only Multiple-of-3 Sequence). 
 
 
     References:  
      E. Grosswald, University of Pennsylvania, Philadelphia, Letter to F. 
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        Smarandache, August 3, 1985; 
      R. K. Guy, University of Calgary, Alberta, Canada, Letter to F.  
        Smarandache, November 15, 1985; 
      Florentin Smarandache, "Only Problems, not Solutions!", Xiquan  
        Publishing House, Phoenix-Chicago, 1990, 1991, 1993;  
        ISBN: 1-879585-00-6. 
        (reviewed in <Zentralblatt für Mathematik> by P. Kiss: 11002,  
         pre744, 1992; 
         and <The American Mathematical Monthly>, Aug.-Sept. 1991); 
      Arizona State University, Hayden Library, "The Florentin Smarandache 
        papers" special collection, Tempe, AZ 85287-1006, USA. 
 
 
  35) General Residual Sequence: 
      (x + C1)...(x + CF (m) ), m = 2, 3, 4, ..., 
        where Ci , 1 ≤ i ≤ F(m), forms a reduced set of residues mod m, 
        x is an integer, and F is Euler's totient. 
      The General Residual Sequence is induced from the  
        The Residual Function (see <Libertas Mathematica>): 
        Let L : Z×Z    Z be a function defined by 
            L(x, m)=(x + C1)...(x + CF (m) ), 
        where Ci, 1 ≤ i ≤ F(m), forms a reduced set of residues mod m, 
        m ≥ 2, x is an integer, and F is Euler's totient. 
      The Residual Function is important because it generalizes 
      the classical theorems by Wilson, Fermat, Euler, Wilson, Gauss, Lagrange, 
      Leibnitz, Moser, and Sierpinski all together. 
      For x=0 it's obtained the following sequence: 
        L(m) = C1 ... CF (m)  , where m = 2, 3, 4, ... 
      (the product of all residues of a reduced set mod m): 
      
1,2,3,24,5,720,105,2240,189,3628800,385,479001600,19305,896896,2027025, 
      
20922789888000,85085,6402373705728000,8729721,47297536000,1249937325,... 
      which is found in "The Encyclopedia of Integer Sequences", by N. J. A. 
      Sloane, Academic Press, San Diego, New York, Boston, London,  
      Sydney, Tokyo, Toronto, 1995.  
      The Residual Function extends it. 
 
 
     References: 
      Fl. Smarandache, "A numerical function in the congruence theory", in 
        <Libertah Mathematica>, Texas State University, Arlington, 12, 
        pp. 181-185, 1992; 
        see <Mathematical Reviews>, 93i:11005 (11A07), p.4727, 
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        and <Zentralblatt für Mathematik>, Band 773(1993/23), 11004 (11A); 
      Fl. Smarandache, "Collected Papers" (Vol. 1), Ed. Tempus, Bucharest,  
        1995;       
      Arizona State University, Hayden Library, "The Florentin Smarandache 
        papers" special collection, Tempe, AZ 85287-1006, USA, phone:  

(602)965-6515 (Carol Moore librarian); 
      Student Conference, University of  Craiova, Department of Mathematics, 
        April 1979, "Some problems in number theory" by Florentin Smarandache. 
 
36) Inferior f-Part of x. 
      Let f: Z μ Z be a strictly increasing function and x 0 R.  Then: 

ISf(x) is the largest value of the function f(.) which is smaller than or equal to x, i.e. if 
f(k) ≤ x ≤ f(k+1) for k0Z then IfP(x) = f(k). 

 
37) Superior f-Part of x.  
     Let f: Z μ Z be a strictly increasing function and x 0 R.  Then: 

SSf(x) is the smallest value of the function f(.) which is greater than or equal to x, i.e. 
if f(k)≤x≤f(k+1) for k0Z then SfP(x) = f(k+1). 

 
References: 
   Castillo, Jose, "Other Smarandache Type Functions",  
       http://www.gallup.unm.edu/~smarandache/funct2.txt. 
   Dumitrescu, C., Seleacu, V., "Some Notions and Questions in 
       Number THeory", Xiquan Publ. Hse., Phoenix-Chicago, 1994. 
   Popescu, Marcela, Nicolescu, Mariana, "About the Smarandache  
       Complementary Cubic Function", <Smarandache Notions Journal>,  
       Vol. 7, no. 1-2-3, 54-62, 1996. 
   Popescu, Marcela, Seleacu, Vasile, "About the Smarandache  
       Complementary Prime Function", <Smarandache Notions Journal>,  
       Vol. 7, no. 1-2-3, 12-22, 1996. 
   Sloane, N.J.A.S, Plouffe, S., "The Encyclopedia of Integer  
       Sequences", online, email:  superseeker@research.att.com  
       (SUPERSEEKER by N. J. A. Sloane, S. Plouffe, B. Salvy,  ATT  
       Bell Labs, Murray Hill, NJ 07974, USA). 
   Smarandache, Florentin, "Only Problems, not Solutions!", Xiquan  
       Publishing House, Phoenix-Chicago, 1990, 1991, 1993;  
       ISBN: 1-879585-00-6. 
       (reviewed in <Zentralblatt fur Mathematik> by P. Kiss: 11002,  
        744, 1992; 
        and in <The American Mathematical Monthly>, Aug.-Sept. 1991); 
   "The Florentin Smarandache papers" Special Collection, Arizona State  
       University, Hayden Library, Tempe, Box 871006, AZ 85287-1006, USA;  
       (Carol Moore & Marilyn Wurzburger: librarians).  
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  38) (Inferior) Prime Part: 
      2,3,3,5,5,7,7,7,7,11,11,13,13,13,13,17,17,19,19,19,19,23,23,23,23,23,23, 
      29,29,31,31,31,31,31,31,37,37,37,37,41,41,43,43,43,43,47,47,47,47,47,47, 
      53,53,53,53,53,53,59, ... 
      (For any positive real number n one defines pp(n) as the largest prime  
       number less than or equal to n.) 
 
 
  39) (Superior) Prime Part: 
      2,2,2,3,5,5,7,7,11,11,11,11,13,13,17,17,17,17,19,19,23,23,23,23,29,29,29, 
      29,29,29,31,31,37,37,37,37,37,37,41,41,41,41,43,43,47,47,47,47,53,53,53,  
      53,53,53,59,59,59,59,59,59,61,... 
      (For any positive real number n one defines pp(n) as the smallest prime  
       number greater than or equal to n.) 
 
 
    References: 
      Florentin Smarandache, "Only Problems, not Solutions!", Xiquan  
        Publishing House, Phoenix-Chicago, 1990, 1991, 1993;  
        ISBN: 1-879585-00-6. 
        (reviewed in <Zentralblatt für Mathematik> by P. Kiss: 11002,  
         pre744, 1992; 
         and <The American Mathematical Monthly>, Aug.-Sept. 1991); 
      "The Florentin Smarandache papers" special collection, Arizona State  
         University, Hayden Library, Tempe, Box 871006, AZ 85287-1006, USA;  
         phone: (602) 965-6515 (Carol Moore & Marilyn Wurzburger: librarians). 
      "The Encyclopedia of Integer Sequences", by N. J. A. Sloane and  
        S. Plouffe, Academic Press, San Diego, New York, Boston, London,  
        Sydney, Tokyo, Toronto, 1995; 
        also online, email:  superseeker@research.att.com ( SUPERSEEKER by  
        N. J. A. Sloane, S. Plouffe, B. Salvy,  ATT Bell Labs, Murray Hill, 
        NJ 07974, USA);  
 
 
  40) (Inferior) Square Part: 
     0,1,1,1,4,4,4,4,4,9,9,9,9,9,9,9,16,16,16,16,16,16,16,16,16,25,25,25,25,25, 
     25,25,25,25,25,25,36,36,36,36,36,36,36,36,36,36,36,36,36,49,49,49,49,49, 
     49,49,49,49,49,49,49,49,49,49,64,64,... 
     (The largest square less than or equal to n.) 
 
 
  41) (Superior) Square Part: 
     0,1,4,4,4,9,9,9,9,9,16,16,16,16,16,16,16,25,25,25,25,25,25,25,25,25,36,36, 
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     36,36,36,36,36,36,36,36,36,49,49,49,49,49,49,49,49,49,49,49,49,49,64,64,64, 
     64,64,64,64,64,64,64,64,64,64,64,64,81,81,... 
     (The smallest square greater than or equal to n.) 
 
 
  42) (Inferior) Cube Part: 
     0,1,1,1,1,1,1,1,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,27,27,27,27,27,27, 
     27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27, 
     27,27,27,27,27,27,27,64,64,64,... 
     (The largest cube less than or equal to n.) 
 
 
  43) (Superior) Cube Part: 
     0,1,8,8,8,8,8,8,8,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27, 
     27,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64, 
     64,64,64,64,64,64,64,64,64,64,64,64,64,64,125,125,125,.. 
     (The smallest cube greater than or equal to n.) 
 
 
  44) (Inferior) Factorial Part: 
     1,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24,24,24,24,24,24,24, 
     24,24,24,24,24,24,24,24,24,... 
     ( Fp(n) is the largest factorial less than or equal to n.) 
 
 
  45) (Superior) Factorial Part: 
     1,2,6,6,6,6,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,120,120, 
     120,120,120,120,120,120,120,120,120,... 
     ( fp(n) is the smallest factorial greater than or equal to n.) 
 
 
  46) Inferior Fractional f-Part of x.  
      Let f: Z μ Z be a strictly increasing function and x 0 R.  Then: 
      IFSf(x) = x - ISf(x),  
      where ISf(x) is the Inferior f-Part of x defined above. 
      For example:  Inferior Fractional Cubic Part of 12.501  
                   = 12.501 - 8 = 4.501. 
 
 
  47) Superior Fractional f-Part of x.  
      Let f: Z μ Z be a strictly increasing function and x 0 R.  Then: 
      SFSf(x) = SSf(x)-x,  
      where SSf(x) is the Superior f-Part of x defined above. 
      For example:  Superior Fractional Cubic Part of 12.501  
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                   = 27 - 12.501 = 14.499. 
 

The Fractional f-Parts are generalizations of the inferior and respectively   
superior fractional part of a number. 

    
 
   Particular cases: 
   48) Fractional Prime Part: 
      FSp(x) = x - ISp(x), 
      where ISp(x) is the Inferior Prime Part defined above. 
      Example:  FSp(12.501) = 12.501 - 11 = 1.501. 
 
   49) Fractional Square Part: 
      FSs(x) = x - ISs(x), 
      where ISs(x) is the Inferior Square Part defined above. 
      Example:  FSs(12.501) = 12.501 - 9 = 3.501. 
    
   50) Fractional Cubic Part: 
      FSc(x) = x - ISc(x), 
      where ISc(x) is the Inferior Cubic Part defined above. 
      Example:  FSc(12.501) = 12.501 - 8 = 4.501. 
    
   51) Fractional Factorial Part: 
      FSf(x) = x - ISf(x), 
      where ISf(x) is the Inferior Factorial Part defined above. 
      Example:  FSf(12.501) = 12.501 - 6 = 6.501. 
 
    
 
52) Smarandacheian Complements. 
   Let g: A μ be a strictly increasing function, and let "~" be a  
   given internal law on A.   
   Then f: A μ A is a smarandacheian complement with respect to the  
   function g and the internal law "~" if: 
   f(x) is the smallest k such that there exists a z in A so that  
   x~k = g(z). 
 
    
53) Square Complements: 
      1,2,3,1,5,6,7,2,1,10,11,3,14,15,1,17,2,19,5,21,22,23,6,1,26,3,7,29,30,31, 
      2,33,34,35,1,37,38,39,10,41,42,43,11,5,46,47,3,1,2,51,13,53,6,55,14,57,58, 
      59,15,61,62,7,1,65,66,67,17,69,70,71,2,... 
     Definition:   
       for each integer n to find the smallest integer k such that  
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       n⋅k is a perfect square..  
     (All these numbers are square free.) 
       
 
  54) Cubic Complements: 
    1,4,9,2,25,36,49,1,3,100,121,18,169,196,225,4,289,12,361,50,441,484,529, 
    9,5,676,1,841,900,961,2,1089,1156,1225,6,1369,1444,1521,25,1681,1764,1849, 
    242,75,2116,2209,36,7,20,...  
     Definition:   
       for each integer n to find the smallest integer k such that  
       n⋅k is a perfect cub.  
     (All these numbers are cube free.) 
       
 
  55) m-Power Complements: 
     Definition:   
       for each integer n to find the smallest integer k such that  
       n⋅k is a perfect m-power (m ≥ 2).  
     (All these numbers are m-power free.) 
      
    References: 
      Florentin Smarandache, "Only Problems, not Solutions!", Xiquan  
        Publishing House, Phoenix-Chicago, 1990, 1991, 1993;  
        ISBN: 1-879585-00-6. 
        (reviewed in <Zentralblatt fur Mathematik> by P. Kiss: 11002,  
        pre744, 1992; 
        and <The American Mathematical Monthly>, Aug.-Sept. 1991); 
      "The Florentin Smarandache papers" special collection, Arizona State  
         University, Hayden Library, Tempe, Box 871006, AZ 85287-1006, USA;  
         phone: (602) 965-6515 (Carol Moore & Marilyn Wurzburger: librarians). 
      "The Encyclopedia of Integer Sequences", by N. J. A. Sloane and  
        S. Plouffe, Academic Press, San Diego, New York, Boston, London,  
        Sydney, Tokyo, Toronto, 1995; 
        also online, email:  superseeker@research.att.com ( SUPERSEEKER by  
        N. J. A. Sloane, S. Plouffe, B. Salvy,  ATT Bell Labs, Murray Hill, 
        NJ 07974, USA);  
 
 
  56) Double Factorial Complements: 
1,1,1,2,3,8,15,1,105,192,945,4,10395,46080,1,3,2027025,2560,34459425,192, 
      
5,3715891200,13749310575,2,81081,1961990553600,35,23040,213458046676875, 
 
128,6190283353629375,12,... 
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      (For each n to find the smallest k such that n⋅k is a double factorial, 
       i.e. n⋅k = either 1⋅3⋅5⋅7⋅9⋅...⋅n if n is odd,  
                 either 2⋅4⋅6⋅8⋅...⋅n if n is even.) 
 
 
  57) Prime Additive Complements: 
      1,0,0,1,0,1,0,3,2,1,0,1,0,3,2,1,0,1,0,3,2,1,0,5,4,3,2,1,0,1,0,5,4,3,2,1,0, 
      3,2,1,0,1,0,3,2,1,0,5,4,3,2,1,0,... 
      (For each n to find the smallest k such that n+k is prime.) 
       Remark:  Is it possible to get as large as we want 
       but finite decreasing k, k-1, k-2, ..., 2, 1, 0 (odd k) sequence 
       included in the previous sequence, i.e. for any even integer are  
       there two primes those difference is equal to it?  We conjecture the  
       answer is negative. 
 
 
      References: 
      Florentin Smarandache, "Only Problems, not Solutions!", Xiquan  
        Publishing House, Phoenix-Chicago, 1990, 1991, 1993;  
        ISBN: 1-879585-00-6. 
        (reviewed in <Zentralblatt für Mathematik> by P. Kiss: 11002,  
         pre744, 1992; 
         and <The American Mathematical Monthly>, Aug.-Sept. 1991); 
      "The Florentin Smarandache papers" special collection, Arizona State  
         University, Hayden Library, Tempe, Box 871006, AZ 85287-1006, USA;  
         phone: (602) 965-6515 (Carol Moore & Marilyn Wurzburger: librarians). 
 
 
  58) Prime Base: 
      
0,1,10,100,101,1000,1001,10000,10001,10010,10100,100000,100001,1000000,  
      
1000001,1000010,1000100,10000000,10000001,100000000,100000001,100000010, 
      
100000100,1000000000,1000000001,1000000010,1000000100,1000000101,... 
     (Each number n written in the prime base.) 
 
     (We defined over the set of natural numbers the following infinite 
     base:  p0 = 1, and for k ≥ 1  pk is the k-th prime number.) 
     We proved that every positive integer A may be uniquely written in 
     the prime base as: 

paaaa i

n

i
i

def

SPnA ∑
=

==
1

)(01 )...( , with all ai = 0 or 1, (of course an = 1), 
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    in the following way: 
      - if  pn ≤ A < pn+1 then A = pn + r1 ; 
      - if  pm ≤ r1< pm+1 then r1= pm + r2, m < n; 
      and so on until one obtains a rest rj = 0. 
    Therefore, any number may be written as a sum of prime numbers + e, 
    where e = 0 or 1. 
 
    If we note by p(A) the superior part of A (i.e. the largest 
    prime less than or equal to A), then 
    A is written in the prime base as: 
 
        A = p(A) + p(A-p(A)) + p(A-p(A)-p(A-p(A))) + ... . 
 
    This base is important for partitions with primes.  
 
 
  59) Square Base: 
0,1,2,3,10,11,12,13,20,100,101,102,103,110,111,112,1000,1001,1002,1003, 
     
1010,1011,1012,1013,1020,10000,10001,10002,10003,10010,10011,10012,10013, 
     
10020,10100,10101,100000,100001,100002,100003,100010,100011,100012,100013, 
     
100020,100100,100101,100102,100103,100110,100111,100112,101000,101001, 
     
101002,101003,101010,101011,101012,101013,101020,101100,101101,101102, 
 
1000000,... 
   (Each number n written in the square base.) 
 
   (We defined over the set of natural numbers the following infinite 
    base:  for k ≥ 0  sk= k2.) 
 
    We proved that every positive integer A may be uniquely written in 
    the square base as: 

saaaa i

n

i
i

def

SnA ∑
=

==
0

)2(01 )...( , with ai = 0 or 1 for i ≥ 2,  

     0 ≤ a0 ≤ 3,  0 ≤ a1 ≤ 2, and of course an = 1, 
 
    in the following way: 
      - if  sn ≤ A < sn+1 then A = sn + r1; 
      - if sm ≤ r1 < pm+1  then r1 = sm + r2, m < n; 
      and so on until one obtains a rest rj = 0. 
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    Therefore, any number may be written as a sum of squares (1 not counted 
    as a square -- being obvious) + e, where e = 0, 1, or 3. 
 
    If we note by s(A) the superior square part of A (i.e. the  
    largest square less than or equal to A), then A is written in the  
    square base as: 
 
        A = s(A) + s(A-s(A)) + s(A-s(A)-s(A-s(A))) + ... . 
 
    This base is important for partitions with squares.  
 
  
  60) m-Power Base (generalization): 
      (Each number n written in the m-power base,  
       where m is an integer ≥ 2.) 
 
     (We defined over the set of natural numbers the following infinite 
      m-power base:  for k ≥ 0  tk= km ) 
 
      We proved that every positive integer A may be uniquely written in 
      the m-power base as:  

taaaa i

n

i
i

def

SMnA ∑
=

==
0

)(01 )...( , with ai = 0 or 1 for i ≥ m,  

 

     0 ≤ a i ≤
( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡

+
−+

m

m

i
i

1
12  (integer part) 

 
     for i = 0, 1, ..., m-1, ai = 0 or 1 for i >= m, and of course an = 1, 
    in the following way: 
      - if  tn ≤ A < tn+1 then A = tn + r1; 
      - if  tm ≤ r1< tm+1 then r1= tm + r2,  m< n; 
      and so on until one obtains a rest rj = 0. 
 
    Therefore, any number may be written as a sum of m-powers (1 not counted 
    as an m-power -- being obvious) + e, where e = 0, 1, 2, ..., or 2m-1. 
 
    If we note by t(A) the superior m-power part of A (i.e. the  
    largest m-power less than or equal to A), then A is written in the  
    m-power base as: 
 
        A = t(A) + t(A-t(A)) + t(A-t(A)-t(A-t(A))) + ... 
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    This base is important for partitions with m-powers.  
                                
  
  61) Factorial Base: 
    0,1,10,11,20,21,100,101,110,111,120,121,200,201,210,211,220,221,300,301,310, 
    311,320,321,1000,1001,1010,1011,1020,1021,1100,1101,1110,1111,1120,1121, 
    1200,... 
   (Each number n written in the factorial base.) 
 
   (We defined over the set of natural numbers the following infinite 
    base:  for k ≥ 1  fk = k!)  
 
    We proved that every positive integer A may be uniquely written in 

the square base as: 
 

   faaaa i

n

i
i

def

FnA ∑
=

==
1

)(12 )...( , with all ai = 0, 1, …, i for i ≥ 1,  

     
    in the following way: 
      - if  fn ≤ A < fn+1 then A = fn + r1; 
      - if  fm ≤ r1< fm+1 then r1= fm + r2,  m< n 
 
      and so on until one obtains a rest rj = 0. 
 
    What's very interesting:  a1 = 0 or 1; a2 = 0, 1, or 2; a3 = 0, 1, 2, or 3, 
    and so on... 
 
    If we note by f(A) the superior factorial part of A (i.e. the  
    largest factorial less than or equal to A), then A is written in the  
    factorial base as: 
 
        A = f(A) + f(A-f(A)) + f(A-f(A)-f(A-f(A))) + ... . 
 
    Rules of addition and subtraction in factorial base: 
    For each digit ai we add and subtract in base i+1, for i ≥1. 
    For example, an addition: 
                               base  5 4 3 2  
                                         2 1 0 + 
                                         2 2 1 
                                        1 1 0 1 
    because: 0+1= 1   (in base 2); 
           1+2=10   (in base 3), therefore we write 0 and keep 1; 
           2+2+1=11 (in base 4). 
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    Now a subtraction: 
                               base  5 4 3 2 
                                        1 0 0 1 –  

  3 2 0  
                                        = = 1 1 
    because: 1-0=1 (in base 2); 
             0-2=? it's not possible (in base 3),  
                   go to the next left unit, which is 0 again (in base 4), 
                   go again to the next left unit, which is 1 (in base 5), 
                therefore 1001    0401    0331 
                   and then 0331-320=11. 
 
    Find some rules for multiplication and division. 
 
    In a general case: 
      if we want to design a base such that any number 
 

baaaa i

n

i
i

def

BnA ∑
=

==
1

)(12 )...( , with all ai = 0,1, …, ti for i ≥ 1, where all ti ≥ 1, 

then: 
     this base should be 
     b1 = 1,  bi+1 = (ti +1) * bi for i ≥1. 
 
  
62) Double Factorial Base: 
  1,10,100,101,110,200,201,1000,1001,1010,1100,1101,1110,1200, 
  10000,10001,10010,10100,10101,10110,10200,10201,11000,11001, 
  11010,11100,11101,11110,11200,11201,12000,... 
 
       ( Numbers written in the double factorial base, 
    defined as follows:  df(n) = n!! ) 
 
 
63) Triangular Base: 
  1,2,10,11,12,100,101,102,110,1000,1001,1002,1010,1011,10000, 
  10001,10002,10010,10011,10012,100000,100001,100002,100010, 
  100011,100012,100100,1000000,1000001,1000002,1000010,1000011, 
  1000012,1000100,... 
 
       ( Numbers written in the triangular base, defined 

    as follows:  t(n) = ( )
2

1+nn , for n ≥ 1. ) 
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64) Generalized Base: 
     (Each number n written in the generalized base.)  
 
     (We defined over the set of natural numbers the following infinite 
      generalized base:  1 = g0 < g1 < ... < gk < ... .) 
                                 
      We proved that every positive integer A may be uniquely written in 
      the generalized base as: 
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(integer part) for i = 0, 1, ..., n,  and of course an ≥ 1, 
 
    in the following way: 
      - if  gn ≤ A < gn+1 then A = gn + r1; 
      - if  gm ≤ r1< gm+1 then r1= gm + r2,  m< n 
      and so on until one obtains a rest rj = 0. 
 
    If we note by g(A) the superior generalized part of A (i.e. the  
    largest gi less than or equal to A), then A is written in the  
    m-power base as: 
 
        A = g(A) + g(A-g(A)) + g(A-g(A)-g(A-g(A))) + ... 
 
    This base is important for partitions: the generalized base may be any 
    infinite integer set (primes, squares, cubes, any m-powers, Fibonacci/Lucas  
    numbers, Bernoully numbers, Smarandache numbers, etc.) those partitions are 
    studied. 
      A particular case is when the base verifies: 2gi ≥ gi+1 any i,  
    and g0 = 1, because all coefficients of a written number in this base  
    will be 0 or 1. 
                                                             
       Remark:  another particular case: if one takes gi = pi-1 , i = 1, 2, 3, 
      ..., p an integer ≥ 2, one gets the representation of a number in the  
      numerical base p {p may be 10 (decimal), 2 (binary), 16 (hexadecimal),  
      etc.}. 
 
 
  65) Smarandache numbers: 
      1,2,3,4,5,3,7,4,6,5,11,4,13,7,5,6,17,6,19,5,7,11,23,4,10,13,9,7,29, 
      5,31,8,11,17,7,6,37,19,13,5,41,7,43,11,5,23,47,6,14,10,17,13,53,9,11, 
      7,19,29,59,5,61,31,7,8,13,...       
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      (S(n) is the smallest integer such that S(n)! is divisible by n.) 
       Remark:  S(n) are the values of Smarandache function. 
 
 
  66) Smarandache quotients: 
      1,1,2,6,24,1,720,3,80,12,3628800,2,479001600,360,8,45,20922789888000, 
      40,6402373705728000,6,240,1814400,1124000727777607680000,1,145152, 
      239500800,13440,180,304888344611713860501504000000,... 
      (For each n to find the smallest k such that n⋅k is a factorial number.) 
 
      References: 
      "The Florentin Smarandache papers" special collection, Arizona State  
         University, Hayden Library, Tempe, Box 871006, AZ 85287-1006, USA;  
         phone: (602) 965-6515 (Carol Moore & Marilyn Wurzburger: librarians). 
      "The Encyclopedia of Integer Sequences", by N. J. A. Sloane and  
        S. Plouffe, Academic Press, San Diego, New York, Boston, London,  
        Sydney, Tokyo, Toronto, 1995; 
        also online, email:  superseeker@research.att.com ( SUPERSEEKER by  
        N. J. A. Sloane, S. Plouffe, B. Salvy, ATT Bell Labs, Murray Hill, 
        NJ 07974, USA);  
 
 
  67) Double Factorial Numbers: 
      1,2,3,4,5,6,7,4,9,10,11,6,13,14,5,6,17,12,19,10,7,22,23,6,15,26,9,14,29,  
      10,31,8,11,34,7,12,37,38,13,10,41,14,43,22,9,46,47,6,21,10,... 
      (df (n) is the smallest integer such that df (n)!! is a multiple of n.) 
     where m!! is the double factorial of m, i.e. 
     m!! = 2⋅4⋅6⋅...⋅m if m is even, 
  and m!! = 1⋅3⋅5⋅...⋅m if m is odd. 
 
 
      References: 
      Florentin Smarandache, "Only Problems, not Solutions!", Xiquan  
        Publishing House, Phoenix-Chicago, 1990, 1991, 1993;  
        ISBN: 1-879585-00-6. 
        (reviewed in <Zentralblatt für Mathematik> by P. Kiss: 11002,  
         pre744, 1992; 
         and <The American Mathematical Monthly>, Aug.-Sept. 1991); 
      "The Florentin Smarandache papers" special collection, Arizona State  
         University, Hayden Library, Tempe, Box 871006, AZ 85287-1006, USA;  
         phone: (602) 965-6515 (Carol Moore & Marilyn Wurzburger: librarians). 
 
 
  68) Primitive Numbers (of power 2): 
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     2,4,4,6,8,8,8,10,12,12,14,16,16,16,16,18,20,20,22,24,24,24,26,28,28,30,32,  
     32,32,32,32,34,36,36,38,40,40,40,42,44,44,46,48,48,48,48,50,52,52,54,56,56, 
     56,58,60,60,62,64,64,64,64,64,64,66,... 
     ( S2(n) is the smallest integer such that S2(n)! is divisible by 2n.) 
 
     Curious property:  This is the sequence of even numbers, each number being 
     repeated as many times as its exponent (of power 2) is. 
 
     This is one of irreducible functions, noted S 2 (k), which helps  
     to calculate the Smarandache function (called also Smarandache numbers  
     in "The Encyclopedia of Integer Sequences", by N. J. A. Sloane and S.  
     Plouffe, Academic Press, San Diego, New York, Boston, London, Sydney,  
     Tokyo, Toronto, 1995). 
 
 
  69) Primitive Numbers (of power 3): 
     3,6,9,9,12,15,18,18,21,24,27,27,27,30,33,36,36,39,42,45,45,48,51,54,54,54,  
     57,60,63,63,66,69,72,72,75,78,81,81,81,81,84,87,90,90,93,96,99,99,102,105, 
     108,108,108,111,... 
     ( S3(n) is the smallest integer such that S3(n)! is divisible by 3n.) 
          
     Curious property:  this is the sequence of multiples of 3, each  
     number being repeated as many times as its exponent (of power 3) is. 
 
     This is one of irreducible functions, noted S3(k), which helps 
     to calculate the Smarandache function (called also Smarandache numbers 
     in "The Encyclopedia of Integer Sequences", by N. J. A. Sloane and S. 
     Plouffe, Academic Press, San Diego, New York, Boston, London, Sydney,  
     Tokyo, Toronto, 1995). 
 
 
  70) Primitive Numbers (of power p, p prime) {generalization}: 
      ( Sp(n) is the smallest integer such that Sp(n)! is divisible by pn.) 
 
      Curious property:  this is the sequence of multiples of p, each 
      number being repeated as many times as its exponent (of power p) is. 
 
      These are the irreducible functions, noted Sp(k), for any  
      prime number p, which helps to calculate the Smarandache function (called  

  also Smarandache numbers in "The Encyclopedia of Integer Sequences", by N. 
      J. A. Sloane and S. Plouffe, Academic Press, San Diego, New York, Boston, 
      London, Sydney, Tokyo, Toronto, 1995). 
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71) Smarandache Functions of the First Kind: 
    Sn : N* μ N*  
    i)  If n = ur (with u = 1, or u = p prime number), then 
       Sn (a) = k, where k is the smallest positive integer such that 
       k! is a multiple of ur·a ; 
    ii) If n = p1r1 · p2r2 · … · ptrt , then  
      Sn(a) = max { Spj^rj(a) }. 
            1≤j≤t  
 
 
72) Smarandache Functions of the Second Kind: 
      Sk : N* μ N *,   Sk(n) = Sn(k) for k 0 N*, 
      where Sn are the Smarandache functions of the first kind. 
 
 
73) Smarandache Function of the Third Kind: 
      Sa

b(n) = San(bn), where San is the Smarandache function of the 
      first kind, and the sequences (an) and (bn) are different from 
      the following situations: 
      i) an = 1 and bn = n, for n 0 N*; 
      ii) an = n and bn = 1, for n 0 N*. 
 
Reference: 
Balacenoiu, Ion, "Smarandache Numerical Functions", <Bulletin of Pure 
     and Applied Sciences>, Vol. 14E, No. 2, 1995, pp. 95-100. 
 
    
74) Pseudo-Smarandache Numbers Z(n): 
     Z(n) is the smallest integer such that 1 + 2 + ... + Z(n) is divisible 
     by n. 
 
     For example: 
      n    1   2   3   4   5    6    7 
     Z(n)  1   3   2   3   4    3    6 
   
Reference: 
K.Kashihara, "Comments and Topics on Smarandache Notions and 
     Problems", Erhus Univ. Press, Vail, USA, 1996. 
 
 
75) Square Residues: 
    1,2,3,2,5,6,7,2,3,10,11,6,13,14,15,2,17,6,19,10,21,22,23,6,5,26,3,14,29,30, 
    31,2,33,34,35,6,37,38,39,10,41,42,43,22,15,46,47,6,7,10,51,26,53,6,14,57,58, 
    59,30,61,62,21,... 
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    ( Sr(n) is the largest square free number which divides n.) 
     Or, Sr(n) is the number n released of its squares: 

     if n = ( P a
1

1
) * ... * ( Pr

ar
), with all p i primes and all ai ≥1, 

     then Sr(n)= p1 * ... * pr . 
 
     Remark:  at least the (22)*k-th numbers (k = 1, 2, 3, ...) are released 
     of their squares; 
     and more general:  all (p2)*k-th numbers (for all p prime, and k = 1, 2,  
     3, ...) are released of their squares. 
 
 
  76) Cubical Residues: 
    1,2,3,4,5,6,7,4,9,10,11,12,13,14,15,4,17,18,19,20,21,22,23,12,25,26,9,28,  
    29,30,31,4,33,34,35,36,37,38,39,20,41,42,43,44,45,46,47,12,49,50,51,52,53,  
    18,55,28,... 
    ( cr(n) is the largest cube free number which divides n.) 
 
     Or, cr(n) is the number n released of its cubicals: 

     if n = ( Pr
a1

) * ... * ( Pr
ar

), with all pi primes and all ai ≥ 1, 

     then cr(n) = ( Pr
b1

) * ... * ( Pr
br

), with all bi = min {2, ai }.   

     Remark:  at least the (23)*k-th numbers (k = 1, 2, 3, ...) are released 
     of their cubicals; 
     and more general:  all (p3)*k-th numbers (for all p prime, and k = 1, 2,  
     3, ...) are released of their cubicals. 
 
 
  77) m-Power Residues (generalization): 
      ( mr(n) is the largest m-power free number which divides n.) 
 
     Or, mr(n) is the number n released of its m-powers: 

     if n = ( Pr
a1

) * ... * ( Pr
ar

), with all pi primes and all ai ≥ 1, 

     then mr(n)= ( Pr
b1

) * ... * ( Pr
br

), with all bi = min { m-1, ai }.   

 
     Remark:  at least the (2m)*k-th numbers (k = 1, 2, 3, ...) are released 
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     of their m-powers; 
     and more general:  all (pm)*k-th numbers (for all p prime, and k = 1, 2, 
     3, ...) are released of their m-powers. 

78) Exponents (of power 2):
     0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,2,0,1,0,2,0,1,0,5,0,1,0,2,0,  
     1,0,3,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,6,0,1,... 
     ( e2(n) is the largest exponent (of power 2) which divides n.) 

     Or, e2(n) = k  if 2k divides n but 2k+1 does not.     

79) Exponents (of power 3):
    0,0,1,0,0,1,0,0,2,0,0,1,0,0,1,0,0,2,0,0,1,0,0,1,0,0,3,0,0,1,0,0,1,0,0,2,0, 
    0,1,0,0,1,0,0,2,0,0,1,0,0,1,0,0,2,0,0,1,0,0,1,0,0,2,0,0,1,0,...     
    ( e3(n) is the largest exponent (of power 3) which divides n.) 

    Or, e3(n)= k  if 3k divides n but 3k+1 does not.     

80) Exponents (of power p) {generalization}:
      ( ep(n) is the largest exponent (of power p) which divides n, 
       where p is an integer ≥ 2.) 

       Or, ep(n)= k  if pk divides n but pk+1 does not.     

      References: 
      Florentin Smarandache, "Only Problems, not Solutions!", Xiquan 

Publishing House, Phoenix-Chicago, 1990, 1991, 1993;  
ISBN: 1-879585-00-6. 
(reviewed in <Zentralblatt fur Mathematik> by P. Kiss: 11002,  
pre744, 1992; 
and <The American Mathematical Monthly>, Aug.-Sept. 1991); 
Arizona State University, Hayden Library, "The Florentin Smarandache 
papers" special collection, Tempe, AZ 85287-1006, USA. 

81) Pseudo-Primes of First Kind:
     2,3,5,7,11,13,14,16,17,19,20,23,29,30,31,32,34,35,37,38,41,43,47,50,53,59, 
     61,67,70,71,73,74,76,79,83,89,91,92,95,97,98,101,103,104,106,107,109,110, 
     112,113,115,118,119,121,124,125,127,128,130,131,133,134,136,137,139,140, 
     142,143,145,146, ... 
     (A number is a pseudo-prime of first kind if some permutation 
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      of the digits is a prime number, including the identity permutation.)     

(Of course, all primes are pseudo-primes of first kind, 
      but not the reverse!) 

82) Pseudo-Primes of Second Kind:
      14,16,20,30,32,34,35,38,50,70,74,76,91,92,95,98,104,106,110,112,115,118, 
      119,121,124,125,128,130,133,134,136,140,142,143,145,146, ... 

(A composite number is a pseudo-prime of second kind if some  
       permutation of the digits is a prime number.)     

83) Pseudo-Primes of Third Kind:
     11,13,14,16,17,20,30,31,32,34,35,37,38,50,70,71,73,74,76,79,91,92,95,97,98, 
     101,103,104,106,107,109,110,112,113,115,118,119,121,124,125,127,128,130, 
     131,133,134,136,137,139,140,142,143,145,146, ... 
     (A number is a pseudo-prime of third kind if some nontrivial 

permutation (i.e. different from the identity permutation) of the digits is a 
prime number.)     

     Question:  How many pseudo-primes of third kind are prime  
       numbers?  (We conjecture: an infinity). 

(There are primes which are not pseudo-primes of third kind, 
      and the reverse: 

there are pseudo-primes of third kind which are not primes.) 

84) Almost Primes of First Kind:
Let a1 ≥ 2, and for n ≥ 1  an+1 is the smallest number that is not divisible
by any of the previous terms (of the sequence) a1, a2  , ..., an.

     Example for a1 = 10: 
       10,11,12,13,14,15,16,17,18,19,21,23,25,27,29,31,35,37,41,43,47,49,53,57, 
       61,67,71,73,... 

       If one starts by a1 = 2, it obtains the complete prime sequence and only 
     it. 
       If one starts by a1 > 2, it obtains after a rank r, where ar = p(a1) 2 

with p(x) the strictly superior prime part of x, i.e. the largest prime  
strictly less than x, the prime sequence: 

     - between a1  and ar , the sequence contains all prime numbers of this 
       interval and some composite numbers; 
     - from ar+1  and up, the sequence contains all prime numbers greater than 
       ar  and no composite numbers. 
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  85) Almost Primes of Second Kind: 
     a1≥ 2, and for n ≥ 1  an+1 is the smallest number that is coprime  
     with all of the previous terms (of the sequence) , a1, a2 ,..., an . 
 
     This second kind sequence merges faster to the prime numbers than 
     the first kind sequence. 
 
     Example for a1= 10: 
       10,11,13,17,19,21,23,29,31,37,41,43,47,53,57,61,67,71,73,... 
 
       If one starts by a1= 2, it obtains the complete prime sequence and only  
     it. 
       If one starts by a1> 2, it obtains after a rank r, where a1= pipj 
     with pi and pj prime numbers strictly less than and not dividing a1 , 
     the prime sequence: 
     - between a1 and ar , the sequence contains all prime numbers of this  
       interval and some composite numbers; 
     - from ar+1 and up, the sequence contains all prime numbers greater than  
       ar and no composite numbers. 
 
 
  86) Pseudo-Squares of First Kind: 
    1,4,9,10,16,18,25,36,40,46,49,52,61,63,64,81,90,94,100,106,108,112,121,136, 
    144,148,160,163,169,180,184,196,205,211,225,234,243,250,252,256,259,265, 
    279,289,295,297,298,306,316,324,342,360,361,400,406,409,414,418,423,432, 
    441,448,460,478,481,484,487,490,502,520,522,526,529,562,567,576,592,601, 
    603,604,610,613,619,625,630,631,640,652,657,667,675,676,691,729,748,756, 
    765,766,784,792,801,810,814,829,841,844,847,874,892,900,904,916,925,927, 
    928,940,952,961,972,982,1000, ... 
    (A number is a pseudo-square of first kind if some permutation 
     of the digits is a perfect square, including the identity permutation.) 
 
    (Of course, all perfect squares are pseudo-squares of first  
     kind, but not the reverse!) 
 
     One listed all pseudo-squares of first kind up to 1000. 
 
 
  87) Pseudo-Squares of Second Kind: 
    10,18,40,46,52,61,63,90,94,106,108,112,136,148,160,163,180,184,205,211,234, 
    243,250,252,259,265,279,295,297,298,306,316,342,360,406,409,414,418,423, 
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    432,448,460,478,481,487,490,502,520,522,526,562,567,592,601,603,604,610, 
    613,619,630,631,640,652,657,667,675,691,748,756,765,766,792,801,810,814, 
    829,844,847,874,892,904,916,925,927,928,940,952,972,982,1000, ... 
    (A non-square number is a pseudo-square of second kind if some  
     permutation of the digits is a square.)     
 
     One listed all pseudo-squares of second kind up to 1000. 
 
 
  88) Pseudo-Squares of Third Kind: 
    10,18,40,46,52,61,63,90,94,100,106,108,112,121,136,144,148,160,163,169,180, 
    184,196,205,211,225,234,243,250,252,256,259,265,279,295,297,298,306,316, 

342,360,400,406,409,414,418,423,432,441,448,460,478,481,484,487,490,502,     
520,522,526,562,567,592,601,603,604,610,613,619,625,630,631,640,652,657,  
667,675,676,691,748,756,765,766,792,801,810,814,829,844,847,874,892,900,     
904,916,925,927,928,940,952,961,972,982,1000,... 

    (A number is a pseudo-square of third kind if some nontrivial 
     permutation of the digits is a square.)     
 
    Question:  How many pseudo-squares of third kind are square 
      numbers?  (We conjecture: an infinity). 
    (There are squares which are not pseudo-squares of third kind,  
     and the reverse: 
     there are pseudo-squares of third kind which are not squares.) 
 
     One listed all pseudo-squares of third kind up to 1000. 
 
 
  89) Pseudo-Cubes of First Kind: 
    1,8,10,27,46,64,72,80,100,125,126,152,162,207,215,216,251,261,270,279,297, 
    334,343,406,433,460,512,521,604,612,621,640,702,720,729,792,800,927,972, 
    1000,... 
    (A number is a pseudo-cube of first kind if some permutation 
     of the digits is a cube, including the identity permutation.) 
 
    (Of course, all perfect cubes are pseudo-cubes of first 
     kind, but not the reverse!) 
 
     One listed all pseudo-cubes of first kind up to 1000. 
 
 
  90) Pseudo-Cubes of Second Kind: 
    10,46,72,80,100,126,152,162,207,215,251,261,270,279,297,334,406,433,460, 
    521,604,612,621,640,702,720,792,800,927,972,... 
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    (A non-cube number is a pseudo-cube of second kind if some  
     permutation of the digits is a cube.)     
 
     One listed all pseudo-cubes of second kind up to 1000. 
 
 
  91) Pseudo-Cubes of Third Kind: 
    10,46,72,80,100,125,126,152,162,207,215,251,261,270,279,297,334,343, 
    406,433,460,512,521,604,612,621,640,702,720,792,800,927,972,1000,... 
    (A number is a pseudo-cube of third kind if some nontrivial 
     permutation of the digits is a cube.)     
 
    Question:  How many pseudo-cubes of third kind are cubes? 
      (We conjecture: an infinity). 
    (There are cubes which are not pseudo-cubes of third kind,  
     and the reverse: 
     there are pseudo-cubes of third kind which are not cubes.) 
 
     One listed all pseudo-cubes of third kind up to 1000. 
 
 
  92) Pseudo-m-Powers of First Kind: 
    (A number is a pseudo-m-power of first kind if some permutation 
     of the digits is an m-power, including the identity permutation; m ≥ 2.) 
 
 
 93) Pseudo-m-powers of second kind: 
    (A non m-power number is a pseudo-m-power of second kind if  
     some permutation of the digits is an m-power; m ≥ 2.) 
 
 
 94) Pseudo-m-Powers of Third Kind: 
    (A number is a pseudo-m-power of third kind if some nontrivial 
     permutation of the digits is an m-power; m ≥ 2.)     
 
    Question:  How many pseudo-m-powers of third kind are m-power 
      numbers?  (We conjecture: an infinity). 
    (There are m-powers which are not pseudo-m-powers of third  
     kind, and the reverse: 
     there are pseudo-m-powers of third kind which are not  
     m-powers.) 
 
      References: 
      Florentin Smarandache, "Only Problems, not Solutions!", Xiquan  
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        Publishing House, Phoenix-Chicago, 1990, 1991, 1993;  
        ISBN: 1-879585-00-6. 
        (reviewed in <Zentralblatt für Mathematik> by P. Kiss: 11002,  
         pre744, 1992; 
         and <The American Mathematical Monthly>, Aug.-Sept. 1991); 
         Arizona State University, Hayden Library, "The Florentin Smarandache 
         papers" special collection, Tempe, AZ 85287-1006, USA. 
      "The Encyclopedia of Integer Sequences", by N. J. A. Sloane and  
        S. Plouffe, Academic Press, San Diego, New York, Boston, London,  
        Sydney, Tokyo, Toronto, 1995; 
        also online, email:  superseeker@research.att.com ( SUPERSEEKER by  
        N. J. A. Sloane, S. Plouffe, B. Salvy,  ATT Bell Labs, Murray Hill, 
        NJ 07974, USA);  
 
 
  95) Pseudo-Factorials of First Kind: 
1,2,6,10,20,24,42,60,100,102,120,200,201,204,207,210,240,270,402,420,600, 
     
702,720,1000,1002,1020,1200,2000,2001,2004,2007,2010,2040,2070,2100,2400, 
     
2700,4002,4005,4020,4050,4200,4500,5004,5040,5400,6000,7002,7020,7200,... 
    (A number is a pseudo-factorial of first kind if 
     some permutation of the digits is a factorial number, including the  
     identity permutation.)     
 
    (Of course, all factorials are pseudo-factorials of first kind,  
     but not the reverse!) 
 
     One listed all pseudo-factorials of first kind up to 10000. 
      
     Procedure to obtain this sequence: 
       - calculate all factorials with one digit only (1!=1, 2!=2, and 3!=6), 
         this is line_1 (of one digit pseudo-factorials): 
         1,2,6; 
       - add 0 (zero) at the end of each element of line_1, 
         calculate all factorials with two digits (4!=24 only) 
         and all permutations of their digits: 
         this is line_2 (of two digits pseudo-factorials): 
         10,20,60; 24, 42; 
       - add 0 (zero) at the end of each element of line_2 as well as anywhere 
         in between their digits, 
         calculate all factorials with three digits (5!=120, and 6!=720) 
         and all permutations of their digits: 
         this is line_3 (of three digits pseudo-factorials): 
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         100,200,600,240,420,204,402; 120,720, 102,210,201,702,270,720; 
       and so on ... 
       to get from line_k to line_(k+1) do: 
       - add 0 (zero) at the end of each element of line_k as well as anywhere 
         in between their digits, 
         calculate all factorials with (k+1) digits 
         and all permutations of their digits; 
       The set will be formed by all line_1 to the last line elements 
       in an increasing order. 
       
       The pseudo-factorials of second kind and third kind can 
       be deduced from the first kind ones.. 
 
 
  96) Pseudo-Factorials of Second Kind: 
     10,20,42,60,100,102,200,201,204,207,210,240,270,402,420,600, 
     702,1000,1002,1020,1200,2000,2001,2004,2007,2010,2040,2070,2100,2400, 
     2700,4002,4005,4020,4050,4200,4500,5004,5400,6000,7002,7020,7200,... 
    (A non-factorial number is a pseudo-factorial of second kind if  
     some permutation of the digits is a factorial number.)     
 
 
  97) Pseudo-Factorials of Third Kind: 
     10,20,42,60,100,102,200,201,204,207,210,240,270,402,420,600, 
     702,1000,1002,1020,1200,2000,2001,2004,2007,2010,2040,2070,2100,2400, 
     2700,4002,4005,4020,4050,4200,4500,5004,5400,6000,7002,7020,7200,... 
    (A number is a pseudo-factorial of third kind if some nontrivial 
     permutation of the digits is a factorial number.)     
 
    Question:  How many pseudo-factorials of third kind are  
      factorial numbers?  (We conjectured: none! ... that means the  
      pseudo-factorials of second kind set and pseudo-factorials of  
      third kind set coincide!). 
 
    (Unfortunately, the second and third kinds of pseudo-factorials 
     coincide.) 
 
 
  98) Pseudo-Divisors of First Kind: 
    1,10,100,1,2,10,20,100,200,1,3,10,30,100,300,1,2,4,10,20,40,100,200,400, 
    1,5,10,50,100,500,1,2,3,6,10,20,30,60,100,200,300,600,1,7,10,70,100,700, 
    1,2,4,8,10,20,40,80,100,200,400,800,1,3,9,10,30,90,100,300,900,1,2,5,10, 
    20,50,100,200,500,1000,... 
    (The pseudo-divisors of first kind of n.) 
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    (A number is a pseudo-divisor of first kind of n if 
     some permutation of the digits is a divisor of n, including the  
     identity permutation.)     
 
    (Of course, all divisors are pseudo-divisors of first kind,  
     but not the reverse!) 
 

A strange property:  any integer has an infinity of pseudo-divisors of first 
kind !! 

     because 10...0 becomes 0...01 = 1, by a circular permutation of its digits, 
     and 1 divides any integer ! 
      
     One listed all pseudo-divisors of first kind up to 1000 
     for the numbers 1, 2, 3, ..., 10. 
 
     Procedure to obtain this sequence: 
       - calculate all divisors with one digit only, 
         this is line_1 (of one digit pseudo-divisors); 
       - add 0 (zero) at the end of each element of line_1, 
         calculate all divisors with two digits 
         and all permutations of their digits: 
         this is line_2 (of two digits pseudo-divisors); 
       - add 0 (zero) at the end of each element of line_2 as well as anywhere 
         in between their digits, 
         calculate all divisors with three digits 
         and all permutations of their digits: 
         this is line_3 (of three digits pseudo-divisors); 
       and so on ... 
       to get from line_k to line_(k+1) do: 
       - add 0 (zero) at the end of each element of line_k as well as anywhere 
         in between their digits, 
         calculate all divisors with (k+1) digits 
         and all permutations of their digits; 
       The set will be formed by all line_1 to the last line elements 
       in an increasing order. 
       
       The pseudo-divisors of second kind and third kind can 
       be deduced from the first kind ones. 
 
 
  99) Pseudo-Divisors of Second Kind: 
    10,100,10,20,100,200,10,30,100,300,10,20,40,100,200,400,10,50,100,500,10, 
    20,30,60,100,200,300,600,10,70,100,700,10,20,40,80,100,200,400,800,10,30, 
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    90,100,300,900,20,50,100,200,500,1000,... 
    (The pseudo-divisors of second kind of n.) 
 
    (A non-divisor of n is a pseudo-divisor of second kind of n  
     if some permutation of the digits is a divisor of n.)     
 
 
  100) Pseudo-Divisors of Third Kind: 
    10,100,10,20,100,200,10,30,100,300,10,20,40,100,200,400,10,50,100,500,10, 
    20,30,60,100,200,300,600,10,70,100,700,10,20,40,80,100,200,400,800,10,30, 
    90,100,300,900,10,20,50,100,200,500,1000,... 
    (The pseudo-divisors of third kind of n.) 
 
    (A number is a pseudo-divisor of third kind of n if some  
     nontrivial permutation of the digits is a divisor of n.)     
 

A strange property:  any integer has an infinity of pseudo-divisors of third 
kind !! 

     because 10...0 becomes 0...01 = 1, by a circular permutation of its digits, 
     and 1 divides any integer ! 
      
     There are divisors of n which are not pseudo-divisors of  
     third kind of n, 
     and the reverse: 
     there are pseudo-divisors of third kind of n which are not 
     divisors of n. 
 
 
  101) Pseudo-Odd Numbers of First Kind: 
    1,3,5,7,9,10,11,12,13,14,15,16,17,18,19,21,23,25,27,29,30,31,32,33,34,35, 
    36,37,38,39,41,43,45,47,49,50,51,52,53,54,55,56,57,58,59,61,63,65,67,69,70, 
    71,72,73,74,75,76,... 
    (Some permutation of digits is an odd number.) 
 
 
  102) Pseudo-odd Numbers of Second Kind: 
    10,12,14,16,18,30,32,34,36,38,50,52,54,56,58,70,72,74,76,78,90,92,94,96,98, 
    100,102,104,106,108,110,112,114,116,118,... 
    (Even numbers such that some permutation of digits is an odd number.) 
 
 
  103) Pseudo-Odd Numbers of Third Kind: 
    10,11,12,13,14,15,16,17,18,19,30,31,32,33,34,35,36,37,38,39,50,51,52,53,54, 
    55,56,57,58,59,70,71,72,73,74,75,76,... 
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    (Nontrivial permutation of digits is an odd number.) 
 
 
  104) Pseudo-Triangular Numbers: 
    1,3,6,10,12,15,19,21,28,30,36,45,54,55,60,61,63,66,78,82,87,91,... 
    (Some permutation of digits is a triangular number.) 
     

    A triangular number has the general form: 
2

)1( +nn . 

 
 
  105) Pseudo-Even Numbers of First Kind: 
    0,2,4,6,8,10,12,14,16,18,20,21,22,23,24,25,26,27,28,29,30,32,34,36,38,40, 
    41,42,43,44,45,46,47,48,49,50,52,54,56,58,60,61,62,63,64,65,66,67,68,69,70, 
    72,74,76,78,80,81,82,83,84,85,86,87,88,89,90,92,94,96,98,100,... 
    (The pseudo-even numbers of first kind.) 
 
    (A number is a pseudo-even number of first kind if 
     some permutation of the digits is a even number, including the  
     identity permutation.)     
 
    (Of course, all even numbers are pseudo-even numbers of first  
     kind, but not the reverse!) 
 
     A strange property:  an odd number can be a pseudo-even  
     number! 
      
     One listed all pseudo-even numbers of first kind up to 100. 
 
 
  106) Pseudo-Even Numbers of Second Kind: 
    21,23,25,27,29,41,43,45,47,49,61,63,65,67,69,81,83,85,87,89,101,103,105, 
    107,109,121,123,125,127,129,141,143,145,147,149,161,163,165,167,169,181, 
    183,185,187,189,201,... 
    (The pseudo-even numbers of second kind.) 
 
    (A non-even number is a pseudo-even number of second kind  
     if some permutation of the digits is a even number.)     
 
 
  107) Pseudo-Even Numbers of Third Kind: 
    20,21,22,23,24,25,26,27,28,29,40,41,42,43,44,45,46,47,48,49,60,61,62,63,64, 
    65,66,67,68,69,80,81,82,83,84,85,86,87,88,89,100,101,102,103.104,105,106, 
    107,108,109,110,120,121,122,123,124,125,126,127,128,129,130,... 
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    (The pseudo-even numbers of third kind.) 
 
    (A number is a pseudo-even number of third kind if some  
     nontrivial permutation of the digits is a even number.)     
 
 
  108) Pseudo-Multiples of First Kind (of 5): 
    0,5,10,15,20,25,30,35,40,45,50,51,52,53,54,55,56,57,58,59,60,65,70,75,80, 
    85,90,95,100,101,102,103,104,105,106,107,108,109,110,115,120,125,130,135, 
    140,145,150,151,152,153,154,155,156,157,158,159,160,165,... 
    (The pseudo-multiples of first kind of 5.) 
 
    (A number is a pseudo-multiple of first kind of 5 if 
     some permutation of the digits is a multiple of 5, including the  
     identity permutation.)     
 
    (Of course, all multiples of 5 are pseudo-multiples of first  
     kind, but not the reverse!) 
 
 
  109) Pseudo-Multiples of Second Kind (of 5): 
    51,52,53,54,56,57,58,59,101,102,103,104,106,107,108,109,151,152,153,154, 
    156,157,158,159,201,202,203,204,206,207,208,209,251,252,253,254,256,257, 
    258,259,301,302,303,304,306,307,308,309,351,352... 
    (The pseudo-multiples of second kind of 5.) 
 
    (A non-multiple of 5 is a pseudo-multiple of second kind of 5  
     if some permutation of the digits is a multiple of 5.)     
 
 
  110) Pseudo-Multiples of Third kind (of 5): 
    50,51,52,53,54,55,56,57,58,59,100,101,102,103,104,105,106,107,108,109,110, 
    115,120,125,130,135,140,145,150,151,152,153,154,155,156,157,158,159,160, 
    165,170,175,180,185,190,195,200,... 
    (The pseudo-multiples of third kind of 5.) 
 
    (A number is a pseudo-multiple of third kind of 5 if some  
     nontrivial permutation of the digits is a multiple of 5.)     
 
 
  111) Pseudo-Multiples of first kind of p (p is an integer ≥2) 
      {Generalizations}: 
       (The pseudo-multiples of first kind of p.) 
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    (A number is a pseudo-multiple of first kind of p if 
     some permutation of the digits is a multiple of p, including the  
     identity permutation.)     
 
    (Of course, all multiples of p are pseudo-multiples of first  
     kind, but not the reverse!) 
 
     Procedure to obtain this sequence: 
       - calculate all multiples of p with one digit only (if any), 
         this is line_1 (of one digit pseudo-multiples of p); 
       - add 0 (zero) at the end of each element of line_1, 
         calculate all multiples of p with two digits (if any) 
         and all permutations of their digits: 
         this is line_2 (of two digits pseudo-multiples of p); 
       - add 0 (zero) at the end of each element of line_2 as well as anywhere 
         in between their digits, 
         calculate all multiples with three digits (if any) 
         and all permutations of their digits: 
         this is line_3 (of three digits pseudo-multiples of p); 
       and so on ... 
       to get from line_k to line_(k+1) do: 
       - add 0 (zero) at the end of each element of line_k as well as anywhere 
         in between their digits, 
         calculate all multiples with (k+1) digits (if any) 
         and all permutations of their digits; 
       The set will be formed by all line_1 to the last line elements 
       in an increasing order. 
       
       The pseudo-multiples of second kind and third kind of p can 
       be deduced from the first kind ones. 
 
 
  112) Pseudo-Multiples of Second Kind of p (p is an integer ≥ 2): 
    (The pseudo-multiples of second kind of p.) 
 
    (A non-multiple of p is a pseudo-multiple of second kind of p  
     if some permutation of the digits is a multiple of p.)     
 
 
  113) Pseudo-multiples of third kind of p (p is an integer ≥ 2): 
    (The pseudo-multiples of third kind of p.) 
 
    (A number is a pseudo-multiple of third kind of p if some  
     nontrivial permutation of the digits is a multiple of p.)     
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      References: 
      Florentin Smarandache, "Only Problems, not Solutions!", Xiquan  
        Publishing House, Phoenix-Chicago, 1990, 1991, 1993;  
        ISBN: 1-879585-00-6. 
        (reviewed in <Zentralblatt für Mathematik> by P. Kiss: 11002,  
         pre744, 1992; 
         and <The American Mathematical Monthly>, Aug.-Sept. 1991); 
      Arizona State University, Hayden Library, "The Florentin Smarandache 
        papers" special collection, Tempe, AZ 85287-1006, USA. 
 
 
  114) Constructive Set (of digits 1,2): 
    1,2,11,12,21,22,111,112,121,122,211,212,221,222,1111,1112,1121,1122,1211, 
    1212,1221,1222,21112112,2121,2122,2211,2212,2221,2222,... 
    (Numbers formed by digits 1 and 2 only.) 
 
    Definition: 
      a1) 1, 2 belong to S; 

      a2) if a, b belong to S, then ab  belongs to S too;  

      a3) only elements obtained by rules a1) and a2) applied a finite number 
         of times belong to S. 
 
    Remark: 
      - there are 2k numbers of k digits in the sequence, for k = 1, 2,  
          3, ... ; 
      - to obtain from the k-digits number group the (k+1)-digits number  
          group, just put first the digit 1 and second the digit 2 in the 
          front of all k-digits numbers. 
 
 
  115) Constructive Set (of digits 1,2,3): 
    1,2,3,11,12,13,21,22,23,31,32,33,111,112,113,121,122,123,131,132,133,211, 
    212,213,221,222,223,231,232,233,311,312,313,321,322,323,331,332,333,... 
    (Numbers formed by digits 1, 2, and 3 only.) 
 
    Definition: 
      a1) 1, 2, 3 belong to S;                                   

      a2) if a, b belong to S, then ab  belongs to S too;  

      a3) only elements obtained by rules a1) and a2) applied a finite number 
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            of times belong to S. 
 
    Remark: 
      - there are 3k numbers of k digits in the sequence, for k = 1, 2,  
          3, ... ; 
      - to obtain from the k-digits number group the (k+1)-digits number  
          group, just put first the digit 1, second the digit 2, and third 
          the digit 3 in the front of all k-digits numbers. 
 
 
  116) Generalized constructive set: 
    (Numbers formed by digits d1 , d2, ..., dm only,  
     all di being different each other, 1 ≤ m ≤ 9.) 
 
    Definition: 
      a1) d1 , d2, ..., dm belong to S; 

      a2) if a, b belong to S, then ab  belongs to S too;  

      a3) only elements obtained by rules a1) and a2) applied a finite number 
         of times belong to S. 
 
    Remark: 
      - there are mk numbers of k digits in the sequence, for k = 1, 2,  
          3, ... ; 
      - to obtain from the k-digits number group the (k+1)-digits number  
          group, just put first the digit d1 , second the digit d2, ..., and  
          the m-th time digit dm in the front of all k-digits numbers. 
 
    More general:  all digits di can be replaced by numbers as large as we want 
    (therefore of many digits each), and also m can be as large as we want. 
 
 
 
  117) Square Roots: 
    0,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5, 
    6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8, 
    8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10, 
    10,10,10,10,10,10,10,10,10,10,10,10,10,10,... 
    ( sq(n) is the superior integer part of square root of n.) 
 
    Remark:  this sequence is the natural sequence, where each number is  
      repeated 2n+1 times, 
      because between n2 (included) and (n+1)2 (excluded) there are 
      (n+1)2 - n2 different numbers. 
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  118) Cubical Roots: 
    0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3, 
    3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4, 
    4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4, 
    4,4,4,4,4,4,4,4,4,4,4,4,4,4,... 
    ( cq(n) is the superior integer part of cubical root of n.) 
 
    Remark:  this sequence is the natural sequence, where each number is  
      repeated 3n2 + 3n + 1 times, 
      because between n3 (included) and (n+1)3 (excluded) there are 
      (n+1)3 - n3 different numbers. 
 
 
119) m-Power Roots: 
    ( mq(n) is the superior integer part of m-power root of n.) 
 
    Remark:  this sequence is the natural sequence, where each number is  
      repeated (n+1)m - nm times. 
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  120) Numerical Carpet: 
      has the general form 
 
 
 
                                    . 
                                    . 
                                    . 
                                    1 
                                   1a1 
                                  1aba1 
                                 1abcba1 
                                1abcdcba1 
                               1abcdedcba1 
                              1abcdefedcba1 
                            ...1abcdefgfedcba1... 
                              1abcdefedcba1 
                               1abcdedcba1 
                                1abcdcba1 
                                 1abcba1 
                                  1aba1 
                                   1a1 
                                    1 
                                    . 
                                    . 
                                    . 
 
      On the border of level 0, the elements are equal to "1";   
        they form a rhomb. 
      Next, on the border of level 1, the elements are equal to "a", 
        where "a" is the sum of all elements of the previous border; 
        the "a"s form a rhombus too inside the previous one.   
      Next again, on the border of level 2, the elements are equal to "b", 
        where "b" is the sum of all elements of the previous border; 
        the "b"s form a rhombus too inside the previous one.   
      And so on... 
      The carpet is symmetric and esthetic, in its middle g is the  
      sum of all carpet numbers (the core). 
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      Look at a few terms of the Numerical Carpet: 
                                    1 
 
                                    1 
                                   141 
                                    1 
 
                                    1 
                                 1  8  1 
                              1  8  40  8  1 
                                 1  8  1 
                                    1 
 
                                    1 
                                1  12   1 
                            1  12  108  12  1 
                        1  12 108  540  108  12  1        
                            1  12  108  12  1 
                                1  12   1 
                                    1 
 
                                    1 
                               1   16    1 
                          1   16  208   16   1 
                      1  16  208  1872  208  16  1 
                    1 16 208 1872  9360  1872  208 16 1 
                       1 16  208  1872  208  16  1 
                          1   16  208   16   1 
                               1   16    1 
                                    1 
 
                                    1 
                             1     20     1 
                       1    20    340    20    1 
                  1   20   340   4420   340   20   1 
              1  20  340  4420  39780  4420  340  20  1 
           1 20  340 4420 39780  198900  39780 4420 340  20 1 
              1  20  340  4420  39780  4420  340  20  1 
                  1   20   340   4420   340   20   1 
                       1    20    340    20    1 
                             1     20     1 
                                    1     
                                    . 
                                    . 
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      Or, under other form: 
       1 
        1  4 
        1  8  40 
        1 12  108   504 
        1 16  208  1872   9360 
        1 20  340  4420   39780   198900  
        1 24  504  8568  111384  1002456  5012280 
        1 28  700 14700  249900  3248700  29238300  146191500 
        1 32  928 23200  487200  8282400  107671200  969040800  4845204000 
        .................................................................. 
        . 
        . 
        . 
 
 
      General Formula:  

       C(n,k) = 4n∏
=

+
K

i 1

1)4i-(4n , for 1 ≤ k ≤ n,  

       and C(n,0) = 1. 
 
      References: 
      Arizona State University, Hayden Library, "The Florentin Smarandache 
        papers" special collection, Tempe, AZ 85287-1006, USA. 
      Student Conference, University of Craiova, Department of Mathematics, 
        April 1979, "Some problems in number theory" by Florentin Smarandache. 
      Fl. Smarandache, "Collected Papers" (Vol. 1), Ed. Tempus, Bucharest,  
        1995;       
 
 
  121) Goldbach-Smarandache table: 
       6,10,14,18,26,30,38,42,42,54,62,74,74,90,... 
       ( t(n) is the largest even number such that any other even number not  
        exceeding it is the sum of two of the first n odd primes.) 
      
     It helps to better understand Goldbach's conjecture: 
       - if t(n) is unlimited, then the conjecture is true; 
       - if t(n) is constant after a certain rank, then the conjecture is false. 
 
     Also, the table gives how many times an even number is written as a sum of 
     two odd primes, and in what combinations -- which can be found in the 
     "Encyclopedia of Integer Sequences" by N. J. A. Sloane and S. Plouffe, 



 57

     Academic Press, San Diego, New York, Boston, London, Sydney, Tokyo,  
     Toronto, 1995. 
 
     Of course, t(n) ≤ 2pn , where pn is the n-th odd prime, n = 1, 2, 3, ... . 
 
     Here is the table: 
 
      +  3  5  7  11  13  17  19  23  29  31  37  41  43  47  
       3 6  8  10  14  16  20  22  26  32  34  40  44  46  50 . 
       5  10  12  16  18  22  24  28  34  36  42  46  48  52 . 
       7      14  18  20  24  26  30  36  38  44  48  50  54 . 
      11          22  24  28  30  34  40  42  48  52  54  58 . 
      13              26  30  32  36  42  44  50  54  56  60 . 
      17                  34  36  40  46  48  54  58  60  64 . 
      19                      38  42  48  50  56  60  62  66 . 
      23                          46  52  54  60  64  66  70 . 
      29                              58  60  66  70  72  76 . 
      31                                  62  68  72  74  78 . 
      37                                      74  78  80  84 . 
      41                                          82  84  88 . 
      43                                              86  90 . 
      47                                                  94 . 
                .                                            . 
                .                                            . 
                .                                            . 
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  122) Smarandache-Vinogradov table: 
     9,15,21,29,39,47,57,65,71,93,99,115,129,137,... 
     (v(n) is the largest odd number such that any odd number ≥ 9 not  
      exceeding it is the sum of three of the first n odd primes.) 
 
     It helps to better understand Goldbach's conjecture for three primes: 
       - if v(n) is unlimited, then the conjecture is true; 
       - if v(n) is constant after a certain rank, then the conjecture is false. 

      (Vinogradov proved in 1937 that any odd number greater than 3315

 

      satisfies this conjecture.   

      But what about values less than 3315

?) 

 
     Also, the table gives you in how many different combinations an odd number 
     is written as a sum of three odd primes, and in what combinations. 
 
     Of course, v(n) ≤ 3pn, where pn is the n-th odd prime, n = 1, 2, 3, ... . 
     It is also generalized for the sum of m primes, 
     and how many times a number is written as a sum of m primes (m > 2). 
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     This is a 3-dimensional 14x14x14 table, that we can expose only as 14  
     planar 14x14 tables (using Goldbach-Smarandache table): 
 
    3    
      +   
          3  5    7  11  13  17  19  23  29  31  37  41  43  47 . 
       3  9  11  13  17  19  23  25  29  35  37  43  47  49  53 . 
       5     13  15  19  21  25  27  31  37  39  45  49  51  55 . 
       7         17  21  23  27  29  33  39  41  47  51  53  57 . 
      11             25  27  31  33  37  43  45  51  55  57  61 . 
      13                 29  33  35  39  45  47  53  57  59  63 . 
      17                     37  39  43  49  51  57  61  63  67 . 
      19                         41  45  51  53  59  63  65  69 . 
      23                             49  55  57  63  67  69  73 . 
      29                                 61  63  69  73  75  79 . 
      31                                     65  71  75  77  81 . 
      37                                         77  81  83  87 . 
      41                                             85  87  91 . 
      43                                                 89  93 . 
      47                                                     97 . 
                                                                . 
                                                                . 
                                                                . 
    5    
      +   
           3   5   7  11  13  17  19  23  29  31  37  41  43  47 . 
       3  11  13  15  19  21  25  27  31  37  39  45  49  51  55 . 
       5      15  17  21  23  27  29  33  39  41  47  51  53  57 . 
       7          19  23  25  29  31  35  41  43  49  53  55  59 . 
      11              27  29  33  35  39  45  47  53  57  59  63 . 
      13                  31  35  37  41  47  49  55  59  61  65 . 
      17                      39  41  45  51  53  59  63  65  69 . 
      19                          43  47  53  55  61  65  67  71 . 
      23                              51  57  59  65  69  71  75 . 
      29                                  63  65  71  75  77  81 . 
      31                                      67  73  77  79  83 . 
      37                                          79  83  85  89 . 
      41                                              87  89  93 . 
      43                                                  91  95 . 
      47                                                      99 . 
                                                                . 
                                                                . 
                                                                . 



 60

 
    7    
      +   
           3  5   7  11  13  17  19  23  29  31  37  41  43  47 . 
       3 13  15  17  21  23  27  29  33  39  41  47  51  53  57 . 
       5     17  19  23  25  29  31  35  41  43  49  53  55  59 . 
       7         21  25  27  31  33  37  43  45  51  55  57  61 . 
      11             29  31  35  37  41  47  49  55  59  61  65 . 
      13                 33  37  39  43  49  51  57  61  63  67 . 
      17                     41  43  47  53  55  61  65  67  71 . 
      19                         45  49  55  57  63  67  69  73 . 
      23                             53  59  61  67  71  73  77 . 
      29                                 65  67  73  77  79  83 . 
      31                                     69  75  79  81  85 . 
      37                                         81  85  87  91 . 
      41                                             89  91  95 . 
      43                                                 93  97 . 
      47                                                    101 . 
                                                                . 
                                                                . 
                                                                . 
    11    
      +   
           3   5   7  11  13  17  19  23  29  31  37  41  43  47 . 
       3  17  19  21  25  27  31  33  37  43  45  51  55  57  61 . 
       5      21  23  27  29  33  35  39  45  47  53  57  59  63 . 
       7          25  29  31  35  37  41  47  49  55  59  61  65 . 
      11              33  35  39  41  45  51  53  59  63  65  69 . 
      13                  37  41  43  47  53  55  61  65  67  71 . 
      17                      45  47  51  57  59  65  69  71  75 . 
      19                          49  53  59  61  67  71  73  77 . 
      23                              57  63  65  71  75  77  81 . 
      29                                  69  71  77  81  83  87 . 
      31                                      73  79  83  85  89 . 
      37                                          85  89  91  95 . 
      41                                              93  95  99 . 
      43                                                  97  101. 
      47                                                      105. 
                                                                . 
                                                                . 
                                                                . 
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    13    
      +   
           3  5   7  11  13  17  19  23  29  31  37  41  43  47 . 
       3 19  21  23  27  29  33  35  39  45  47  53  57  59  63. 
       5     23  25  29  31  35  37  41  47  49  55  59  61  65 . 
       7         27  31  33  37  39  43  49  51  57  61  63  67 . 
      11             35  37  41  43  47  53  55  61  65  67  71 . 
      13                 39  43  45  49  55  57  63  67  69  73 . 
      17                     47  49  53  59  61  67  71  73  77 . 
      19                         51  55  61  63  69  73  75  79 . 
      23                             59  65  67  73  77  79  83 . 
      29                                 71  73  79  83  85  89 . 
      31                                     75  81  85  87  91 . 
      37                                         87  91  93  97 . 
      41                                             95  97  101 . 
      43                                                 99  103. 
      47                                                     107 . 
                                                                . 
                                                                . 
                                                                . 
    17    
      +   
           3   5   7  11  13  17  19  23  29  31  37  41  43  47 . 
       3  23  25  27  31  33  37  39  43  49  51  57  61  63  67 . 
       5      27  29  33  35  39  41  45  51  53  59  63  65  69 . 
       7          31  35  37  41  43  47  53  55  61  65  67  71 . 
      11              39  41  45  47  51  57  59  65  69  71  75 . 
      13                  43  47  49  53  59  61  67  71  73  77 . 
      17                      51  53  57  63  65  71  75  77  81 . 
      19                          55  59  65  67  73  77  79  83 . 
      23                              63  69  71  77  81  83  87 . 
      29                                  75  77  83  87  89  93 . 
      31                                      79  85  89  91  95 . 
      37                                          91  95  97  101. 
      41                                              99  101 105 . 
      43                                                  103 107 . 
      47                                                      111. 
                                                                . 
                                                                . 
                                                                . 
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    19    
      +   
           3  5   7  11  13  17  19  23  29  31  37  41  43  47 . 
       3 25  27  29  33  35  39  41  45  51  53  59  63  65  69 . 
       5     29  31  35  37  41  43  47  53  55  61  65  67  71 . 
       7         33  37  39  43  45  49  55  57  63  67  69  73 . 
      11             41  43  47  49  53  59  61  67  71  73  77 . 
      13                 45  49  51  55  61  63  69  73  75  79 . 
      17                     53  55  59  65  67  73  77  79  83 . 
      19                         57  61  67  69  75  79  81  85 . 
      23                             65  71  73  79  83  85  89 . 
      29                                 77  79  85  89  91  95 . 
      31                                     81  87  91  93  97 . 
      37                                         93  97  99  103. 
      41                                            101  103 107. 
      43                                                 105 109. 
      47                                                     113. 
                                                                . 
                                                                . 
                                                                . 
    23    
      +   
           3   5   7  11  13  17  19  23  29  31  37  41  43  47 . 
       3  29  31  33  37  39  43  45  49  55  57  63  67  69  73 . 
       5      33  35  39  41  45  47  51  57  59  65  69  71  75 . 
       7          37  41  43  47  49  53  59  61  67  71  73  77 . 
      11              45  47  51  53  57  63  65  71  75  77  81 . 
      13                  49  53  55  59  65  67  73  77  79  83 . 
      17                      57  59  63  69  71  77  81  83  87 . 
      19                          61  65  71  73  79  83  85  89 . 
      23                              69  75  77  83  87  89  93 . 
      29                                  81  83  89  93  95  99 . 
      31                                      85  91  95  97  101. 
      37                                          97  101 103  107. 
      41                                              105 107  111. 
      43                                                  109  113. 
      47                                                       117. 
                                                                . 
                                                                . 
                                                                . 
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    29    
      +   
           3  5   7  11  13  17  19  23  29  31  37  41  43  47 . 
       3 35  37  39  43  45  49  51  55  61  63  69  73  75  79 . 
       5     39  41  45  47  51  53  57  63  65  71  75  77  81 . 
       7         43  47  49  53  55  59  65  67  73  77  79  83 . 
      11             51  53  57  59  63  69  71  77  81  83  87 . 
      13                 55  59  61  65  71  73  79  83  85  89 . 
      17                     63  65  69  75  77  83  87  89  93 . 
      19                         67  71  77  79  85  89  91  95 . 
      23                             75  81  83  89  93  95  99 . 
      29                                 87  89  95  99  101 105 . 
      31                                     91  97  101 103 107. 
      37                                        103  107 109 113 . 
      41                                             111 113 117 . 
      43                                                 115 119 . 
      47                                                    123 . 
                                                                . 
                                                                . 
                                                                . 
    31    
      +   
           3   5   7  11  13  17  19  23  29  31  37  41  43  47 . 
       3  37  39  41  45  47  51  53  57  63  65  71  75  77  81 . 
       5      41  43  47  49  53  55  59  65  67  73  77  79  83 . 
       7          45  49  51  55  57  61  67  69  75  79  81  85 . 
      11              53  55  59  61  65  71  73  79  83  85  89 . 
      13                  57  61  63  67  73  75  81  85  87  91 . 
      17                      65  67  71  77  79  85  89  91  95 . 
      19                          69  73  79  81  87  91  93  97 . 
      23                              77  83  85  91  95  97  101. 
      29                                  89  91  97  101 103  107. 
      31                                      93  99  103 105  109. 
      37                                         105  109 111  115. 
      41                                              113 115  119. 
      43                                                 117  121. 
      47                                                      125. 
                                                                . 
                                                                . 
                                                                . 
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    37    
      +   
           3  5   7  11  13  17  19  23  29  31  37  41  43  47 . 
       3 43  45  47  51  53  57  59  63  69  71  77  81  83  87 . 
       5     47  49  53  55  59  61  65  71  73  79  83  85  89 . 
       7         51  55  57  61  63  67  73  75  81  85  87  91 . 
      11             59  61  65  67  71  77  79  85  89  91  95 . 
      13                 63  67  69  73  79  81  87  91  93  97 . 
      17                     71  73  77  83  85  91  95  97  101. 
      19                         75  79  85  87  93  97  99  103. 
      23                             83  89  91  97  101 103  107. 
      29                                 95  97  103 107 109  113. 
      31                                     99  105 109 111  115. 
      37                                         111 115 117  121. 
      41                                             119 121  125. 
      43                                                123  127. 
      47                                                     131. 
                                                                . 
                                                                . 
                                                                . 
    41    
      +   
           3   5   7  11  13  17  19  23  29  31  37  41  43  47 . 
       3  47  49  51  55  57  61  63  67  73  75  81  85  87  91 . 
       5      51  53  57  59  63  65  69  75  77  83  87  89  93 . 
       7          55  59  61  65  67  71  77  79  85  89  91  95 . 
      11              63  65  69  71  75  81  83  89  93  95  99 . 
      13                  67  71  73  77  83  85  91  95  97  101. 
      17                      75  77  81  87  89  95  99  101  105. 
      19                          79  83  89  91  97  101 103  107. 
      23                              87  93  95  101 105  107  111. 
      29                                  99 101  107 111  113  117. 
      31                                     103  109 113  115  119. 
      37                                          115 119  121  125. 
      41                                             123  125  129. 
      43                                                  127  131. 
      47                                                       135. 
                                                                . 
                                                                . 
                                                                . 
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    43    
      +   
           3  5   7  11  13  17  19  23  29  31  37  41  43  47 . 
       3  49  51  53  57  59  63  65  69  75  77  83  87  89  93 . 
       5      53  55  59  61  65  67  71  77  79  85  89  91  95 . 
       7          57  61  63  67  69  73  79  81  87  91  93  97 . 
      11              65  67  71  73  77  83  85  91  95  97  101. 
      13                  69  73  75  79  85  87  93  97  99  103. 
      17                      77  79  83  89  91  97  101 103  107. 
      19                          81  85  91  93  99  103 105  109. 
      23                              89  95  97 103  107 109   113. 
      29                                 101 103  109  113 115  119. 
      31                                    105   111  115 117  121. 
      37                                          117  121 123  127. 
      41                                               125 127  131. 
      43                                                  129  133. 
      47                                                       137. 
                                                                . 
                                                                . 
                                                                . 
    47    
      +   
           3   5   7  11  13  17  19  23  29  31  37  41  43  47 . 
       3  53  55  57  61  63  67  69  73  79  81  87  91  93  97 . 
       5      57  59  63  65  69  71  75  81  83  89  93  95  99 . 
       7          61  65  67  71  73  77  83  85  91  95  97  101. 
      11              69  71  75  77  81  87  89  95  99  101  105. 
      13                  73  77  79  83  89  91  97  101 103  107. 
      17                      81  83  87  93  95  101 105 107  111. 
      19                          85  89  95  97  103 107 109  113. 
      23                              93  99  101 107  111 113  117. 
      29                                 105  107 113  117 119  123. 
      31                                      109 115  119 121  125. 
      37                                         121  125 127  131. 
      41                                              129 131  135. 
      43                                                  133  137. 
      47                                                       141. 
                                                                . 
                                                                . 
                                                                . 
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  123) Smarandache-Vinogradov sequence: 
     0,0,0,0,1,2,4,4,6,7,9,10,11,15,17,16,19,19,23,25,26,26,28,33,32,35,43,39, 
     40,43,43,... 
     (a(2k+1) represents the number of different combinations such that 2k+1 
      is written as a sum of three odd primes.) 
 
     This sequence is deduced from the Smarandache-Vinogradov table. 
 
      References: 
      Florentin Smarandache, "Only Problems, not Solutions!", Xiquan  
        Publishing House, Phoenix-Chicago, 1990, 1991, 1993;  
        ISBN: 1-879585-00-6. 
        (reviewed in <Zentralblatt für Mathematik> by P. Kiss: 11002,  
         pre744, 1992; 
         and <The American Mathematical Monthly>, Aug.-Sept. 1991); 
      Florentin Smarandache, "Problems with and without ... problems!", Ed. 
        Somipress, Fes, Morocco, 1983; 
      Arizona State University, Hayden Library, "The Florentin Smarandache 
        papers" special collection, Tempe, AZ 85287-1006, USA. 
      N. J. A. Sloane, e-mail to R. Muller, February 26, 1994. 
 
 
  124) Smarandache Paradoxist Numbers: 
     There exist a few "Smarandache" number sequences. 
     A number n is called a "Smarandache paradoxist number" if and only if   
     n doesn't belong to any of the Smarandache defined numbers. 
     Question:  find the Smarandache paradoxist number sequence. 
 
   Solution: 
     If a number k is a Smarandache paradoxist number, then k doesn't belong to  
   any of the Smarandache defined numbers,  
   therefore k doesn't belong to the Smarandache paradoxist numbers too! 
     If a number k doesn't belong to any of the Smarandache defined numbers, 
   then k is a Smarandache paradoxist number, 
   therefore k belongs to a Smarandache defined numbers (because Smarandache  
   paradoxist numbers is also in the same category) - contradiction. 
 
   Dilemma:  Is the Smarandache paradoxist number sequence empty ? 
 
 
  125) Non-Smarandache numbers: 
       A number n is called a "non-Smarandache number" if and only if 
     n is neither a Smarandache paradoxist number nor any of the 
     Smarandache-defined numbers.  
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       Question:  find the non-Smarandache number sequence. 
 
       Dilemma 1:  is the non-Smarandache number sequence empty, too? 
       Dilemma 2:  is a non-Smarandache number equivalent to a Smarandache  
     paradoxist number?? (this would be another paradox !! ... because 
     a non-Smarandache number is not a Smarandache paradoxist number). 
 
 
  126) The paradox of Smarandache numbers: 
      Any number is a Smarandache number, the non-Smarandache number too. 
      (This is deduced from the following paradox (see the reference): 
         "All is possible, the impossible too!") 
 
     Reference: 
     Charles T. Le, "The Smarandache Class of Paradoxes", in <Bulletin of Pure 
       and Applied Sciences>, Bombay, India, 1995; 
       and in <Abracadabra>, Salinas, CA, 1993, and in <Tempus>, Bucharest, No.  
       2, 1994. 
 
 
  127) Romanian Multiplication: 
     Another algorithm to multiply two integer numbers, A and B: 
       - let k be an integer ≥ 2; 
       - write A and B on two different vertical columns: c(A), respectively  
           c(B); 
       - multiply A by k, and write the product A1 on the column c(A); 
       - divide B by k, and write the integer part of the quotient B1 
           on the column c(B); 
       ... and so on with the new numbers A1 and B1 ,  
       until we get a Bi< k on the column c(B); 
       Then: 
       - write another column c(r), on the right side of c(B), such that: 
           for each number of column c(B), which may be a multiple of k plus  
           the rest r (where r = 0, 1, 2, ..., k-1), 
           the corresponding number on c(r) will be r; 
       - multiply each number of column A by its corresponding r of c(r), 
           and put the new products on another column c(P) on the right side  
           of c(r); 
       - finally add all numbers of column c(P). 
       A×B = the sum of all numbers of c(P). 
 
      Remark that any multiplication of integer numbers can be done  
        only by multiplication with 2, 3, ..., k, divisions by k, and additions. 
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This is a generalization of Russian multiplication (when k = 2); we call it    
Romanian Multiplication. 

 
   This special multiplication is useful when k is very small, the best values 
   being for k = 2 (Russian multiplication - known since Egyptian time), or k = 3.  
   If k is greater than or equal to min {10, B}, this multiplication is trivial 
   (the obvious multiplication). 
 
   Example 1 (if we choose k=3): 
      73×97= ?  

x3 /3
c(A) c(B) c(r) c(P)

73 97 1 73
219 32 2 438
657 10 1 657

1971 3 0 0
5913 1 1 5913

                                         7081 total 
 
      therefore: 73x97=7081. 
      Remark that any multiplication of integer numbers can be done 
        only by multiplication with 2, 3, divisions by 3, and additions. 
 
   Example 2 (if we choose k = 4): 
      73x97= ?  

X4 /4
c(A) c(B) c(r) c(P)

73 97 1 73
292 24 0 0

1168 6 2 2336
4672 1 1 4672

                                         7081 total 
 
 
      therefore: 73x97=7081. 
      Remark that any multiplication of integer numbers can be done 
        only by multiplication with 2, 3, 4, divisions by 4, and additions. 
 
 
 
   Example 3 (if we choose k = 5): 
      73x97= ?  

X5 /5
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c(A) c(B) c(r) c(P)
73 97 2 146

365 19 4 1460
1825 3 3 5475

                                         7081 total 
 
      therefore: 73x97=7081. 
      Remark that any multiplication of integer numbers can be done 
        only by multiplication with 2, 3, 4, 5, divisions by 5, and additions. 
  
    This special multiplication becomes less useful when k increases. 
    Look at another example (4), what happens when k = 10: 
      73x97= ?  

x10 /10
c(A) c(B) c(r) c(P)

73 97 7 511(=73x7)
730 9 9 6570 (=730x9)

                                    7081 total 
 
      therefore: 73x97=7081. 
      Remark that any multiplication of integer numbers can be done 
        only by multiplication with 2, 3, ..., 9, 10, divisions by 10, and  
        additions -- 
        hence we obtain just the obvious multiplication! 
 
 
  128) Division by kn: 
     Another algorithm to divide an integer number A by kn, where k, n are  
     integers ≥ 2: 
       - write A and kn on two different vertical columns: c(A), respectively  
           c(kn); 
       - divide A by k, and write the integer quotient A1 on the column c(A); 
       - divide kn by k, and write the quotient q1 = kn-1 
           on the column c(kn); 
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... and so on with the new numbers A1 and q1,  

       until we get qn= 1 (= k0) on the column c(kn); 
       Then: 
       - write another column c(r), on the left side of c(A), such that: 
           for each number of column c(A), which may be a multiple of k plus  
           the rest r (where r = 0, 1, 2, ..., k-1), 
           the corresponding number on c(r) will be r; 
       - write another column c(P), on the left side of c(r), in the following 
           way: the element on line i (except the last line which is 0) will  
           be kn-1; 
       - multiply each number of column c(P) by its corresponding r of c(r), 
           and put the new products on another column c(R) on the left side  
           of c(P); 
       - finally add all numbers of column c(R) to get the final rest Rn, 

                                                                             
while the final quotient will be stated in front of c(kn)'s 1. 

       Therefore: 

          Ak nn

A
=  and rest Rn. 

      Remark that any division of an integer number by kn can be done  
        only by divisions to k, calculations of powers of k,  
        multiplications with 1, 2, ..., k-1, additions. 
 
 
   This special division is useful when k is small, the best values being when 
   k is an one-digit number, and n large.  
   If k is very big and n very small, this division becomes useless. 
 
   Example 1 : 
     1357/(27) = ? 

 /2 /2
c(R) c(P) c(r) c(A) c(27)

1 20 1 1357 27 line_1
0 21 0 678 26 line_2
4 22 1 339 25 line_3
8 23 1 169 24 line_4
0 24 0 84 23 line_5
0 25 0 42 22 line_6

64 26 1 21 21 line_7
 10 20 Last_line

77 
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       Therefore:  1357/(27) = 10 and rest 77.  
            
      Remark that the division of an integer number by any power of 2 can be  
        done only by divisions to 2, calculations of powers of 2,  
        multiplications and additions. 
 
   Example 2 : 
     19495/(38) = ? 

 

 
 
       Therefore:  19495/(38) = 2 and rest 6373.  
            
      Remark that the division of an integer number by any power of 3 can be  
        done only by divisions to 3, calculations of powers of 3,  
        multiplications and additions. 
 
     References: 
     Alain Bouvier et Michel George, sous la direction de François Le Lionnais, 
       "Dictionnaire des Mathématiques", Presses Universitaires de France,  
        Paris, 1979, p. 659; 
     Colecţia "Florentin Smarandache", Arhivele Statului, Filiala Vâlcea, 
        Rm. Vâlcea, Romania, curator: Ion Soare; 
     "The Florentin Smarandache papers" special collection, Arizona State  
        University, Tempe, AZ 85287, USA; 
     "The Florentin Smarandache" collection, Texas State University, Center for 
        American History, Archives of American Mathematics, Austin,  
        TX 78713, USA. 
 
 
  129) Let M be a number in a base b.  All distinct digits of M are named 
     generalized period of M. 
    (For example, if M = 104001144, its generalized period is g(M) = {0, 1, 4}.) 

 /3 /3  
c(R) c(P) c(r) c(A) c(38)  

1 30 1 19495 38 line_1 
0 31 0 6498 37 line_2 
0 32 0 2166 36 line_3 

54 33 2 722 35 line_4 
0 34 0 240 34 line_5 

486 35 2 80 33 line_6 
1458 36 2 26 32 line_7 
4374 37 2 8 31 line_8 

 2 30 Last_line 
6373  
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    Of course, g(M) is included in {0, 1, 2, ..., b-1}. 
 
 
  130) The number of generalized periods of M is equal to the number 
    of the groups of M such that each group contains all distinct digits of M. 
    (For example, ng(M) = 2 because M= 104 001144.) 
                                                     
                                      1    2 
 
  131) Length of generalized period is equal to the number of its distinct digits. 
    (For example, lg(M) = 3.) 
 
    Questions: 

      a) Find ng, lg for pn , n!, nn, n n .    

      b) For a given k ≥ 1, is there an infinite number of primes pn, or n!, or 

         nn , or n n which have a generalized period of length k ? 

         Same question such that the number of generalized periods   
         be equal to k. 
      c) Let a1, a2 , ..., ah be distinct digits.  Is there an infinite number of 

         primes pn , or n!, or nn , or n n which have as a  

         generalized period the set { a1, a2 , ..., ah } ? 
 
     Reference: 
     Florentin Smarandache, "Only problems, not solutions!", Xiquan Publishing  
       House, Phoenix, Chicago, 1990, Problem 22, p. 18. 
 
 
  132) Let { xn } n≥1   be a sequence of integers, and 0 ≤ k ≤ 9 a digit. 
     The sequence of position is defined as follows: 
                        max {i}, if k is the 10i -th digit of xn; 
     Un

( k) = U( k)(xn) =                                     
                        -1, otherwise.       
                      
     (For example:  if x1 = 5, x2= 17, x3 = 775, and k = 7, then 
      U1

(7) = U(7)(x1) = -1,  U2
(7) = 0,  U3

(7) = max {1, 2} = 2.) 
                  
      a) Study {U(k)(pn)}n , where {pn}n  is the sequence of primes.  Convergence, 
         monotony. 
      b) Same question for the sequences:  xn = n! and xn = nn . 
 
      More generally:  when {xn}n : is a sequence of rational numbers, and k  
      belongs to N. 
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  133) Criterion for coprimes: 
     If a, b are strictly positive coprime integers, then: 
      
                  aF(b)+1 + bF(a)+1 – a + b ( mod a⋅b ), 
 
     where F is Euler's totient. 
 
 
  134) Congruence function: 
           
     L : Z2     Z, L(x, m) = (x + c 1) ... (x + cF(m) ), 
     where F is Euler's totient, and all ci , 1 ≤ i ≤ F(m), are modulo m 
     primitive rest classes. 
 
     Reference: 
     Florentin Smarandache, "A numerical function in the congruence theory", in 
       <Libertas Mathematica>, Texas State University, Arlington, Vol. XII,  
       1992, pp. 181-5. 
 
 
  135) Generalization of Euler’s Theorem: 
     If a, m are integers, m = 0, then 
                                     

                      
( )( ) aa ssF ms ≡+

(mod m), 

 
     where F is Euler's totient, and ms and s are obtained by the following 
     algorithm: 
 
            a = a0d0 ;   (a0 , m0) = 1 
       (0)               
            m = m0d0 ;  d = 1 
 

            d0 = d 1

0  d1 ;  (d1
0 , m1) = 1 

       (1)   
            m0 = m1d1 ;  d1 = 1 
    ................................................ 

            ds-2 = d s

1

2− ds-1 ;  (d1
s-2 , ms-1) = 1 
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     (s-1)    
ms-2 = ms-1ds-1 ;  ds-1 = 1 

 

            ds-1 = d s

1

1− ds ;  (d1
s-1 , ms) = 1 

       (s)    
            ms-1 = msds ; ds = 1. 
 
 
     [This is a generalization of Euler's theorem on congruences.] 
 
     References: 
     Florentin Smarandache, "A generalization of Euler's theorem concerning 
       congruences", in <Bulet. Univ. Brasov>, series C, Vol. XXIII, 1982,  
       pp. 37-9; 
     Idem, "Une généralisation du théorème d'Euler", in <Généralisations et 
       Généralités>, Ed. Nouvelle, Fès, Morocco, 1984, pp. 9-13. 
 
 
  136) Smarandache simple functions: 
     For any positive prime number p one defines 
        Sp(k) is the smallest integer such that Sp(k)! is divisible by pk . 
 
     Reference: 
     Editors of Problem Section, in <Mathematics Magazine>, USA, Vol. 61, No. 3, 
       June 1988, p. 202. 
 
 
  137) Smarandache function: 
     S(n) is defined as the smallest integer such that S(n)! is divisible by n 
     (for n = 0). 
 
     If the canonical factorization of n is 
 

           n = P k
1

1
... Ps

ks
 

 

     then S(n) = max { ( )ks ipi
}, where s pi

are Smarandache simple 

functions. 
 
     References: 
     M. Andrei, I. Balacenoiu, V. Boju, E. Burton, C. Dumitrescu, Jim Duncan,  
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       Pal Gronas, Henry Ibstedt, John McCarthy,  Mike Mudge, Marcela Popescu,  
       Paul Popescu, E. Radescu, N. Radescu, V. Seleacu, J. R. Sutton,  
       L. Tutescu, Nina Varlan, St. Zanfir, and others, 
       in <Smarandache Function Journal>, Department of Mathematics, University 
       of Craiova, 1993-4. 
 
 
  138) Prime Equation Conjecture: 
Let k > 0 be an integer. There is only a finite number of solutions in integers p, q, x, y, 
each greater than 1, to the equation 
 
      xp - yq = k. 
 
For k = 1 this was conjectured by Cassels (1953) and proved by Tijdeman (1976). 
 
References: 
   Ibstedt, H., Surphing on the Ocean of Numbers - A Few Smarandache Notions and 
Similar Topics, Erhus Univ. Press, Vail, 1997, pp. 59-69. 
   Smarandache, F., Only Problems, not Solutions!, Xiquan Publ. Hse., Phoenix, 
1994, unsolved problem #20. 
 
 
139) Generalized Prime Equation Conjecture: 
Let k >= 2 be a positive integer. The Diophantine equation 
 
      y = 2x1 x2 ... xk +1 
 
has infinitely many solutions in distinct primes y, x1 , x2 , ..., xk. 
 
(For example:  when k = 3, 647 = 2x17x19+1; 
             when k = 4, 571 = 2x3x5x19+1, etc.) 
 
 
References: 
  Ibstedt, H., Surphing on the Ocean of Numbers - A Few Smarandache Notions and  
Similar Topics, Erhus University Press, Vail, 1997, pp. 59-69. 
  Smarandache, F., Only Problems, not Solutions!, Xiquan Publ. Hse., Phoenix, 
fourth edition,  
 
 
  140) Progressions: 
     How many primes do the following progressions contain: 

a) { a·pn + b }, n = 1, 2, 3, ..., where (a, b) = 1 and pn is the n-th 
          prime? 
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       b) { a n + b }, n = 1, 2, 3, ..., where (a, b) = 1, and a is different   
          from -1, 0, +1 ? 
       c) { n n + 1 } and { n n - 1 }, n = 1, 2, 3, ... ? 
 
     Reference: 
     Florentin Smarandache, "Only problems, not solutions!", Xiquan Publishing 
       House, Phoenix, Chicago, 1990, Problem 17. 
 
 
  141) Inequality: 

!!
1

0

1∏
−

=

+−
⎟
⎠
⎞

⎜
⎝
⎛ −

>
k

i

kn

k
inn k  

     for any non-null positive integers n and k. 
  
     If k =2 (for example), one obtains: 

      !
2

!
2

! 2 1
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ −

> − ninn n
 

 
     and if k = 3 (another example), one obtains: 

       !
3

!
3

1!
3

2! 3 2
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

> − nnnn n
  

 
     Reference:    
     Florentin Smarandache, "Problèmes avec et sans ... problèmes!", Somipress, 
       Fès, Morocco, 1983, Problèmes 7.88 & 7.89, pp. 110-1. 
 
 
  142) Divisibility Theorem: 
     If a and m are integers, and m > 0, then  
 
              ( am - a ) ( m - 1 )! 
 
     is divisible by m. 
 
     Reference: 
     Florentin Smarandache, "Problèmes avec et sans ... problèmes!", Somipress, 
       Fes, Morocco, 1983, Problème 7.140, pp. 173-4. 
 
 
  143) Dilemmas: 
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       Is it true that for any question there exists at least an answer? 
     Reciprocally: 
       Is any assertion the result of at least a question? 
 
     Reference: 
     Florentin Smarandache, "Only problems, not solutions!", Xiquan Publishing 
       House, Phoenix, Chicago, 1990, Problem 5, p. 8. 
 
 
  144) Surface points: 
     a) Let n be an integer ≥ 5.  Find a minimum number M(n) such that anyhow 
        are chosen M(n) points in space, four by four non-coplanar, there exist  
        n points among these which belong to the surface of a sphere. 
     b) Same question for an arbitrary space body (for example: cone, cube,  
        etc.). 
     c) Same question in plane (for n ≥ 4, and the points are chosen three  
        by three non-colinear). 
 
     Reference: 
     Florentin Smarandache, "Only problems, not solutions!", Xiquan Publishing 
       House, Phoenix, Chicago, 1990, Problem 9, p. 10. 
 
 
  145) Inclusion Problems: 
     a) Find a method to get the maximum number of circles of radius 1 included 
        in a given planar figure, at most tangential two by two or tangential 
        to the border of the planar figure. 
        Study the general problem when "circle" are replaced by an arbitrary 
        planar figure. 
     b) Same question for spheres of radius 1 included in a given space body. 
        Study the general problem when "sphere" are replaced by an arbitrary 
        space body. 
 
 
     Reference: 
     Florentin Smarandache, "Only problems, not solutions!", Xiquan Publishing 
       House, Phoenix, Chicago, 1990, Problem 8, p. 10. 
 
 
  146) Convex Polyhedrons: 
     a) Given n points in space, four by four non-coplanar, find the maximum  
        number M(n) of points which constitute the vertexes of a convex  
        polyhedron. 
          Of course, M(n) ≥ 4. 
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     b) Given n points in space, four by four non-coplanar, find the minimum 
        number N(n) ≥ 5 such that: any N(n) points among these do not  
        constitute the vertexes of a convex polyhedron. 
          Of course, N(n) may not exist. 
 
     References: 
     Florentin Smarandache, "Only problems, not solutions!", Xiquan Publishing 
       House, Phoenix, Chicago, 1990, Problem 7, p. 9; 
     Ioan Tomescu, "Problems of combinatorics and graph theory" (Romanian),  
       Bucharest, Editura Didactica si Pedagogica, 1983. 
 
 
  147) Integral Points: 
     How many non-coplanar points in space can be drawn at integral distances  
     each from other? 
     Is it possible to find an infinite number of such points? 
 
 
  148) Counter: 
     C(a, b) = how many digits of "a" the number b contains. 
     Study, for example, C(1, pn), where pn is the n-th prime. 
     Same for: C(1, n!), C(1, nn). 
 
     Reference: 
     Florentin Smarandache, "Only problems, not solutions!", Xiquan Publishing 
       House, Phoenix, Chicago, 1990, Problem 3, p. 7. 
 
 
  149) Maximum points: 
     Let d > 0.  Question: 
     What is the maximum number of points included in a given planar figure 
     (generally: in a space body) such that the distance between any two  
     points is greater or equal than d ? 
 
 
  150) Minimum Points: 
     Let d > 0.  Question: 
     What is the minimum number of points {A1, A2, ... }  included in a given  
     planar figure (generally: in a space body) such that if another point A  
     is included in that figure then there exists at least an Ai with the  
     distance |AAi | < d ? 
 
     Reference: 
     Florentin Smarandache, "Only problems, not solutions!", Xiquan Publishing 
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       House, Phoenix, Chicago, 1990, Problem 2, p. 6. 
 
 
  151 Increasing Repeated Compositions: 
     Let g be a function, g : N ---> N, such that g(n) > n for all natural n. 
     An increasing repeated composition related to g and a given positive 
     number m is defined as below: 
 
        Fg : N    N, Fg(n) = k, where k is the smallest integer such that 
        g(...g(n)...) ≥ m (g is composed k times). 
 
     Study, for example, Fs, where s is the function that associates to each 
     non-null positive integer n the sum of its positive divisors. 
 
 
  152) Decreasing Repeated Compositions: 
     Let g be a non-constant function, g : N ---> N, such that g(n) <= n for  
     all natural n. 
     An decreasing repeated composition related to g is defined as below: 
 
        fs : N    N, fs(n) = k, where k is the smallest integer such that 
        g(...g(n)...) = constant (g is composed k times). 
 
     Study, for example, fd, where d is the function that associates to each 
     non-null positive integer n the number of its positive divisors. 
     In this particular case, the constant is 2. 

     Same for ( )∏ n = the number of primes not exceeding n, 

     and for p(n) = the largest prime factor of n, 
     and for o(n) = the number of distinct prime factors of n. 
 
     Reference: 
     Florentin Smarandache, "Only problems, not solutions!", Xiquan Publishing 
       House, Phoenix, Chicago, 1990, Problems 18, 19 & 29, pp. 15-6, 23. 
 
 
  153) Coloration Conjecture: 
     Anyhow all points of an m-dimensional Euclidian space are colored with a 
     finite number of colors, there exists a color which fulfills all distances. 
 
     Reference: 
     Florentin Smarandache, "Only problems, not solutions!", Xiquan Publishing 
       House, Phoenix, Chicago, 1990, Problem 13, p. 12. 
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  154) Primes: 
     Let a 1 , ..., a n , be distinct digits, 1 ≤ n ≤9. 
     How many primes can we construct from all these digits only (eventually 
     repeated) ? 
      
     (More generally: when a 1 , ..., a n, and n are positive integers.) 
     Conjecture: Infinitely many! 
 
     Reference: 
     Florentin Smarandache, "Only problems, not solutions!", Xiquan Publishing 
       House, Phoenix, Chicago, 1990, Problem 3, p. 7. 
 
 
  155) Prime Number Theorem: 
     There exist an infinite number of primes which contain given digits, 
     a1 , a2 , ..., am , in the positions i1 , i2 , ..., im, 
     with i1 , i2 , ..., im ≥ 0 (the "i-th position" is the 10i -th digit). 
     (Of course, if im = 0, then am must be odd and different from 5.) 
 
     References: 
     Florentin Smarandache, Query 762 (and Answer 762), in <Mathematics 
       Magazine>, April, 1990. 
     Florentin Smarandache, "Only problems, not solutions!", Xiquan Publishing 
       House, Phoenix, Chicago, 1990, Problem 10, p. 11. 
 
 
  156) Cardinality Theorem: 
     For any positive integers n ≥1 and m ≥ 3, find the maximum number  
     S(n ,m) such that: 
     the set {1, 2, 3, ..., n} has a subset A of cardinality S(n ,m) with 
     the property that A contains no m-term arithmetic progression. 
       S(n ,m) is called the cardinality number. 
     
     Study it. 
 
     References: 
     Florentin Smarandache, "Arithmetic progressions: Problem 88-5", in 
       <The Mathematical Intelligencer>, Vol. 11, No. 1, 1989; 
     E. Kurt Tekolste (Wayne, PA), "Solution to Problem 88-5", in 
       <The Mathematical Intelligencer>, Vol. 11, No. 1, 1989. 
 
 
  157) Concatenated Natural Sequence: 
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 1,22,333,4444,55555,666666,7777777,88888888,999999999, 
 10101010101010101010,1111111111111111111111, 
 121212121212121212121212,13131313131313131313131313, 
 1414141414141414141414141414,151515151515151515151515151515,... 
 
 
  158) Concatenated Prime Sequence (called Smarandache-Wellin numbers): 
       2, 23, 235, 2357, 235711, 23571113, 2357111317, 235711131719,  
       23571113171923, ... 
  159) Back Concatenated Prime Sequence: 
       2, 32, 532, 7532, 117532, 13117532, 1713117532, 191713117532, 
       23191713117532, ... 
 
       Conjecture:  There are infinitely many primes among the first  
       sequence numbers! 
 
 
  160) Concatenated Odd Sequence: 
       1, 13, 135, 1357, 13579, 1357911, 135791113, 13579111315,  
       1357911131517, ... 
  161) Back Concatenated Odd Sequence: 
       1, 31, 531, 7531, 97531, 1197531, 131197531, 15131197531, 
       1715131197531, ... 
 
      Conjecture:  There are infinitely many primes among these numbers! 
 
 
  162) Concatenated Even Sequence:   
       2, 24, 246, 2468, 246810, 24681012, 2468101214, 246810121416, ... 
  163) Back Concatenated Even sequence: 
       2, 42, 642, 8642, 108642, 12108642, 1412108642, 161412108642, ... 
      Conjecture:  None of them is a perfect power! 
 
 
  164) Concatenated S-Sequence {generalization}: 
       Let s1, s2, s3, s4, ..., sn, ... be an infinite integer sequence 
       (noted by S). 
      Then:  

  s1, 21ss , 321 sss , 4321 ssss , snssss ...4321 , ... 

      is called the Concatenated S-sequence, 

  s1, 12ss , 123 sss , 1234 ssss , 1234... sssssn , ... 

      is called the Back Concatenated S-sequence. 
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      Questions: a) How many terms of the Concatenated S-sequence belong  
      to the initial S-sequence? 
   b) Or, how many terms of the Concatenated S-sequence 
      verify the relation of other given sequences? 
 
      The first three cases are particular. 
 
      Look now at some other examples, when S is the sequence of squares, 
      cubes, Fibonacci respectively (and one can go so on): 
 
 
   165) Concatenated Square Sequence: 
      1, 14, 149, 14916, 1491625, 149162536, 14916253649, 1491625364964, ... 
   166) Back Concatenated Square Sequence: 
      1, 41, 941, 16941, 2516941, 362516941, 49362516941, 6449362516941, ... 
 
      How many of them are perfect squares? 
 
 
  167) Concatenated Cubic Sequence: 
      1, 18, 1827, 182764, 182764125, 182764125216, 182764125216343, ... 
  168) Back Concatenated Cubic Sequence: 
      1, 81, 2781, 642781, 125642781, 216125642781, 343216125642781, ... 
 
      How many of them are perfect cubes? 
 
 
  169) Concatenated Fibonacci Sequence: 
      1, 11, 112, 1123, 11235, 112358, 11235813, 1123581321, 112358132134, ... 
  170) Back Concatenated Fibonacci Sequence: 
      1, 11, 211, 3211, 53211, 853211, 13853211, 2113853211, 342113853211, ... 
 
      Does any of these numbers is a Fibonacci number? 
 
References: 
  H. Marimutha, Bulletin of Pure and Applied Sciences, Vol. 16 E (No.2),  
1997; p. 225-226.  
  F. Smarandache, F., "Collected Papers", Vol. II, University of Kishinev, 1997. 
  F. Smarandache, F., "Properties of the Numbers", University of Craiova, 1975. [See 
also Arizona State University Special Collections, Tempe, Arizona, USA]. 
 
 
   171)  Power Function:   
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 SP(n) is the smallest number m such that mm is  
 divisible by n. 
 
  The following sequence SP(n) is generated: 
  1, 2, 3, 2, 5, 6, 7, 4, 3, 10, 11, 6, 13, 14, 15, 4, 17, 6, 19, 10, 
  21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 4, 33, 34, 35, 6, 37,38, 
  39, 20, 41, 42, ... 
 
  Remarks: 
    If p is prime, then SP(p) = p. 
    If r is square free, then SP(r) = r. 
 

    If n = ( P s
1

1
)×...× ( Pk

sk
) and all si ≤ pi , then SP(n) =n. 

 
    If n = ps, where p is prime, then: 
 
       p, if 1 ≤ s ≤ p; 
  SP(n) = 
       p2, if p+1 ≤ s ≤ 2p2; 
 
       p3, if 2p2+1 ≤ s ≤ 3p3; 
 
      .................................. 
 
      pt, if (t-1)pt-1 ≤ s ≤ tpt . 
 
    Reference: 
    F. Smarandache, "Collected Papers", Vol. III, Tempus Publ. Hse., 
   Bucharest, 1998. 
 
 
  172) Reverse Sequence: 
    1,21,321,4321,54321,654321,7654321,87654321,987654321,10987654321, 
     1110987654321,121110987654321,... 
 
 
  173) Multiplicative Sequence: 
     2,3,6,12,18,24,36,48,54,... 
     General definition: if m1 , m2 , are the first two terms of the sequence, 
     then mk , for k ≥ 3, is the smallest number equal to the product of two  
     previous distinct terms. 
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     All terms of rank ≥ 3 are divisible by m1, and m2 . 
     
     In our case the first two terms are 2, respectively 3. 
 
 
  174) Wrong Numbers: 
 

     (A number n = aaa k...
21

, of at least two digits, with the 

      property: 
      the sequence a1, a2, ..., ak , bk+1, bk+2, ... (where bk+i is the product 
      of the previous k terms, for any i ≥1) contains n as its term.) 
      The author conjectured that there is no wrong number (!) 
      Therefore, this sequence is empty. 
 
 
  175) Impotent Numbers: 
      2,3,4,5,7,9,11,13,17,19,23,25,29,31,37,41,43,47,49,53,59,61,... 
 
     (A number n those proper divisors product is less than n.) 
      Remark: this sequence is { p, p2 ;  where p is a positive prime }.  
 
 
 
  176) Random Sieve: 
     1,5,6,7,11,13,17,19,23,25,29,31,35,37,41,43,47,53,59,... 
 
     General definition: 
     - choose a positive number u1 at random; 
     - delete all multiples of all its divisors, except this number; 
     - choose another number u2 greater than u1 among those remaining; 
     - delete all multiples of all its divisors, except this second number; 
     ... and so on. 
      
     The remaining numbers are all coprime two by two. 
 
     The sequence obtained uk , k ≥1,  is less dense than the prime number  
     sequence, but it tends to the prime number sequence as k tends to infinite. 
     That's why this sequence may be important. 
 
     In our case, u1 = 6, u2 = 19, u3 = 35, ... . 
 
 
  177) Non-Multiplicative Sequence: 



 85

     General definition: let m1 , m2 , ..., mk be the first k given terms 
     of the sequence, where k ≥ 2;  
     then mi , for i ≥ k+1, is the smallest number not equal to the product of  
     k previous distinct terms. 
 
 
  178) Non-Arithmetic Progression: 
     1,2,4,5,10,11,13,14,28,29,31,32,37,38,40,41,64,... 
 
     General definition: if m1 , m2, are the first two terms of the sequence, 
     then mk , for k ≥ 3, is the smallest number such that no3-term  
     arithmetic progression is in the sequence. 
     In our case the first two terms are 1, respectively 2. 
 
     Generalization: same initial conditions, but no i-term arithmetic   
     progression in the sequence ( for a given i ≥ 3 ). 
 
      
  179) Prime Product Sequence: 
    
2,7,31,211,2311,30031,510511,9699691,223092871,6469693231,200560490131, 
7420738134811,304250263527211,... 
 
     Pn = 1 + p1p2 ...pn , where pk is the k-th prime. 
 
     Question:  How many of them are prime? 
 
 
  180) Square Product Sequence: 
    
2,5,37,577,14401,518401,25401601,1625702401,131681894401,1316818940001, 
1593350922240001,... 
 
     Sn = 1 + s1s2 ...sn , where sk is the k-th square number. 
 
     Question:  How many of them are prime? 
 
 
  181) Cubic Product Sequence: 
    2,9,217,13825,1728001,373248001,128024064001,65548320768001,... 
 
     Cn = 1 + c1c2 ...cn , where ck is the k-th cubic number. 
 
     Question:  How many of them are prime? 
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  182) Factorial Product Sequence: 
     2,3,13,289,34561,24883201,125411328001,5056584744960001,... 
 
     Fn = 1 + f1f2 ...fn , where fk is the k-th factorial number. 
 
     Question:  How many of them are prime? 
 
 
  183) U-Product Sequence {generalization}: 
     Let un , n ≥ 1, be a positive integer sequence.  Then we define 
     a sequence as follows: 
 
     Un = 1 + u1u2 ...un . 
 
     Reference: 
     F. Smarandache, "Properties of the Numbers", University of Craiova 
    Archives, 1975; 
    [see also Arizona State University Special Collection, Tempe, 
    Arizona, USA]. 
 
 
  184-190) Sequences of Sub-Sequences: 
 
 For each of the following 7 sequences: 
 
a) Crescendo Sub-Sequences: 
 
  1,  1, 2,  1, 2, 3,   1, 2, 3, 4,   1, 2, 3, 4, 5,   1, 2, 3,4, 5, 6, 
  1, 2, 3, 4, 5, 6, 7,   1, 2, 3, 4, 5, 6, 7, 8,    .  .  . 
 
b) Decrescendo Sub-sequences: 
 
 1,   2, 1,   3, 2, 1,   4, 3, 2, 1,   5, 4, 3, 2, 1,   6, 5, 4,3, 2, 1, 
 7, 6, 5, 4, 3, 2, 1,   8, 7, 6, 5, 4, 3, 2, 1,   .  .  . 
 
c) Crescendo Pyramidal Sub-sequences: 
 
 1,   1, 2, 1,   1, 2, 3, 2, 1,   1, 2, 3, 4, 3, 2, 1, 
 1, 2, 3, 4, 5, 4, 3, 2, 1,   1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1,  .  .  . 
 
d) Decrescendo Pyramidal Sub-sequences: 
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 5, 4, 3, 2, 1, 2, 3, 4, 5,   6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6,  .  .  . 
 
e) Crescendo Symmetric Sub-sequences: 
 
 1, 1,   1, 2, 2, 1,   1, 2, 3, 3, 2, 1,   1, 2, 3, 4, 4, 3, 2,1, 
 1, 2, 3, 4, 5, 5, 4, 3, 2, 1,   1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2,1, . . . 
 
f) Decrescendo Symmetric Sub-sequences: 
 
 1, 1,   2, 1, 1, 2,   3, 2, 1, 1, 2, 3,   4, 3, 2, 1, 1, 2, 3,4, 
 5, 4, 3, 2, 1, 1, 2, 3, 4, 5,   6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5,6,  . . . 
 
g) Permutation Sub-sequences: 
 
 1, 2,   1, 3, 4, 2,   1, 3, 5, 6, 4, 2,   1, 3, 5, 7, 8, 6, 4,2, 
 1, 3, 5, 7, 9, 10, 8, 6, 4, 2,   1, 3, 5, 7, 9, 10, 8, 6, 4, 2,. . . 
 
Find a formula for the general term of each sequence. 
 
Solutions: 
 
 For purposes of notation in all problems, let 
 
    a(n) 
 
denote the n-th term in the complete sequence and 
 
    b(n) 
 
the n-th subsequence.  Therefore, a(n) will be a number and b(n) a 
sub-sequence. 
 
a) Clearly, b(n) contains n terms. Using a well-known summation formula, 
at the end of b(n) there would be a total of 
 

2
)1( +nn  terms. 

 
 Therefore, since the last number of b(n) is n, 
 

   ( ) nnna =⎟
⎠
⎞

⎜
⎝
⎛ +

2
1 . 
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Finally, since this would be the terminal number in the sub-sequence 
 
     b(n) = 1, 2, 3, . . . , n 
 
the general formula is 
 

    ( ) ininna −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛ +

2
1   

 
for n ≥ 1 and 0 ≤i ≤ n - i. 
 
b) With modifications for decreasing rather than increasing, the proof 
is essentially the same. The final formula is 
 

      ( ) iinna +=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛ + 1

2
1   

 
for n ≥ 1 and 0 ≤ i7 ≤n - 1. 
        
c) Clearly, b(n) has 2n - 1 terms. Using the well-known formula of 
summation 
 
    1 + 3 + 5 + . . . + (2n - 1) = n2. 
 
the last term of b(n) is in position n2 and a(n2) = 1. The largest 
number in b(n) is n, so counting back n - 1 positions, they increase in value 
by one each step until n is reached. 
       
   a(n2 - i) = 1 + i,   for 0 ≤ i ≤ n-1. 
 
After the maximum value at n-1 positions back from n2, the values decrease 
by one. So at the nth position back, the value is n-1, at the (n-1)-th 
position back the value is n-2 and so forth. 
 
       a(n2 - n - i) = n - i - 1 
 
for 0 ≤ i ≤ n - 2. 
 
d) Using similar reasoning 
 
   a(n2) = n  for n ≥ 1 
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and 
 
       a(n2 - i) = n - i,  for 0 ≤ i ≤ n-1 
 
       a(n2 - n - i) = 2 + i, for 0 ≤ i ≤ n-2. 
 
e) Clearly, b(n) contains 2n terms. Applying another well-known summation 
formula 
 
  2 + 4 + 6 + . . . + 2n = n(n+1), for n ≥ 1. 
 
Therefore, a(n(n+1)) = 1. Counting backwards n-1 positions, each term 
decreases by 1 up to a maximum of n. 
 
     a((n(n+1))-i) = 1 + i, for 0 ≤ i ≤ n-1. 
 
The value n positions down is also n and then the terms decrease by one 
back down to one. 
 
     a((n(n+1))-n-i) = n - i, for 0 ≤ i ≤ n-1. 
 
f) The number of terms in b(n) is the same as that for (e). The only 
difference is that now the direction of increase/decrease is reversed. 
 
     a((n(n+1))-i) = n - i, for 0 ≤ i ≤ n-1. 
 
     a((n(n+1))-n-i) = 1 + i, for 0 ≤ i ≤ n-1. 
 
g) Given the following circular permutation on the first 
n integers. 
 

246...7531
12...4321 nnn

n

−−
=Ψ  

 
Once again, b(n) has 2n terms. Therefore, 
 
   a(n(n+1)) = 2. 
 
Counting backwards n-1 positions, each term is two larger than the successor 
 
       a((n(n+1))-i) = 2 + 2i,  for 0 ≤ i ≤ n-1. 
 
The next position down is one less than the previous and after that, each 
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term is again two less the successor. 
 
       a((n(n+1))-n-i) = 2n - 1 - 2i, for 0 ≤ i ≤ n-1. 
 
As a single formula using the permutation 
 
      a((n(n+1)-i) = Ψn(2n-i), for 0 ≤ i ≤ 2n-1. 
    
 
 References: 
 F. Smarandache, "Collected Papers", Vol. II, Tempus Publ. Hse., Bucharest, 
   1996. 
 F. Smarandache, "Numerical Sequences", University of Craiova, 1975; 
   [ See Arizona State University, Special Collection, Tempe, AZ, USA ]. 
 
 
191) S2 function (numbers): 
   1, 2, 3, 2, 5, 6, 7, 4. 3, 10, 11, 6, 13, 14, 15, 4, 17, 6,19, 10, 
   21, 22, 23, 12, 5, 26, 9, 14, 29, 30, 31, 8, 33, ... 
 
   ( S2(n) is the smallest integer m such that m2 is divisible by n) 
 
 
192) S3 function (numbers): 
   1, 2, 3, 2, 5, 6, 7, 8, 3, 10, 11, 6, 13, 14, 15, 4, 17, 6,19, 10,  
   21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 4, 33, ... 
 
   ( S3(n) is the smallest integer m such that m3 is divisible by n) 
 
 
193) Anti-Symmetric Sequence: 
    11,1212,123123,12341234,1234512345,123456123456,12345671234567, 
     1234567812345678,123456789123456789,1234567891012345678910, 
    12345678910111234567891011,123456789101112123456789101112,... 
 
 
194-202) Recurrence Type Sequences: 
      
A.   1,2,5,26,29,677,680,701,842,845,866,1517,458330,458333, 
     458354,... 
   ( ss2(n) is the smallest number, strictly greater than the  
     previous one, which is the squares sum of two previous  
     distinct terms of the sequence;  
     in our particular case the first two terms are 1 and 2. ) 
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     Recurrence definition:   
       1) The number a belongs to SS2; 
       2) If b, c belong to SS2, then b2 + c2 belongs to SS2too; 
       3) Only numbers, obtained by rules 1) and/or 2) applied a  
     finite number of times, belong to SS2. 
       The sequence (set) SS2 is increasingly ordered.        
       [ Rule 1) may be changed by:  the given numbers a1, a2,...,  
    ak , where k ≥ 2, belong to SS2. ] 
 
        
B.  1,1,2,4,5,6,16,17,18,20,21,22,25,26,27,29,30,31,36,37,38,40,41, 
     42,43,45,46,...         
   ( ss1(n) is the smallest number, strictly greater than 
     the previous one (for n ≥ 3), which is the squares sum of one  
     or more previous distinct terms of the sequence;  
     in our particular case the first term is 1. ) 
 
     Recurrence definition:   
       1) The number a belongs to SS1; 
       2) If b1, b2, ..., bk belong to SS1, where k ≥ 1, then  
     b1

2 + b2
2 + ... + bk

2 belongs to SS1 too; 
       3) Only numbers, obtained by rules 1) and/or 2) applied a  
     finite number of times, belong to SS1. 
       The sequence (set) SS1 is increasingly ordered.        
       [ Rule 1) may be changed by:  the given numbers a1, a2,...,  
    ak , where k ≥ 1, belong to SS1. ] 
 
 
C.   1,2,3,4,6,7,8,9,11,12,14,15,16,18,19,21,... 
   ( nss2(n) is the smallest number, strictly greater than the  
     previous one, which is NOT the squares sum of two previous  
     distinct terms of the sequence;  
     in our particular case the first two terms are 1 and 2. ) 
 
     Recurrence definition:   
       1) The numbers a ≤ b belong to NSS2; 
       2) If b, c belong to NSS2, then b2 + c2 DOES NOT belong to  
     NSS2;  any other numbers belong to NSS2; 
       3) Only numbers, obtained by rules 1) and/or 2) applied a  
     finite number of times, belong to NSS2. 
       The sequence (set) NSS2 is increasingly ordered.        
       [ Rule 1) may be changed by:  the given numbers a1, a2,...,  
    ak , where k ≥ 2, belong to NSS2. ] 
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D.   1,2,3,6,7,8,11,12,15,16,17,18,19,20,21,22,23,24,25,26,27,28, 
     29,30,31,32,33,34,35,38,39,42,43,44,47,... 
   ( nss1(n) is the smallest number, strictly greater than the  
     previous distinct terms of the sequence;  
     in our particular case the first term is 1. ) 
 
     Recurrence definition:   
       1) The number a belongs to NSS1; 
       2) If b1, b2, ..., bk belong to NSS1, where k ≥ 1, then  
     b1

2 + b2
2 + ... + bk

2 DO NOT belong to NSS1; 
     any other numbers belong to NSS1; 
       3) Only numbers, obtained by rules 1) and/or 2) applied a finite  
     number of times, belong to NSS1. 
       The sequence (set) NSS1 is increasingly ordered.        
       [ Rule 1) may be changed by:  the given numbers a1, a2,...,  
    ak , where k ≥ 1, belong to NSS1. ] 
 
 
E.   1,2, 9, 730,737, 389017001,389017008,389017729,... 
   ( cs2(n) is the smallest number, strictly greater than the  
     previous one, which is the cubes sum of two previous  
     distinct terms of the sequence;  
     in our particular case the first two terms are 1 and 2. ) 
 
     Recurrence definition:   
       1) The numbers a ≤ b belong to CS2; 
       2) If c, d belong to CS2, then c3 + d3 belongs to CS2too; 
       3) Only numbers, obtained by rules 1) and/or 2) applied a  
     finite number of times, belong to CS2. 
       The sequence (set) CS2 is increasingly ordered.        
       [ Rule 1) may be changed by:  the given numbers a1, a2,...,  
    ak , where k ≥2, belong to CS2. ] 
 
 
F.   1,1, 2, 8,9,10, 512,513,514,520,521,522,729,730,731,737,738, 
     739,1241,...         
   ( cs1(n) is the smallest number, strictly greater than  
     the previous one (for n ≥ 3), which is the cubes sum of one 
     or more previous distinct terms of the sequence;  
     in our particular case the first term is 1. ) 
 
     Recurrence definition:   
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       1) The number a belongs to CS1. 
       2) If b1, b2, ..., bk belong to CS1, where k ≥1, then  
     b1

3 + b2
3 + ... + bk

3 belongs to CS2 too. 
       3) Only numbers, obtained by rules 1) and/or 2) applied a  
     finite number of times, belong to CS1. 
       The sequence (set) CS1 is increasingly ordered.        
       [ Rule 1) may be changed by:  the given numbers a1, a2,..., . 
 
G.   1,2,3,4,5,6,7,8,10,11,12,13,14,15,16,17,18,19,20,21,22,23, 
     24,25,26,27,29,30,31,32,33,34,36,37,38,... 
   ( ncs2(n) is the smallest number, strictly greater than the  
     previous one, which is NOT the cubes sum of two previous  
     distinct terms of the sequence;  
     in our particular case the first two terms are 1 and 2. ) 
 
     Recurrence definition:   
       1) The numbers a ≤ b belong to NCS2; 
       2) If c, d belong to NCS2, then c3 + d3 DOES NOT belong to  
     NCS2;  any other numbers do belong to NCS2; 
       3) Only numbers, obtained by rules 1) and/or 2) applied a  
     finite number of times, belong to NCS2. 
       The sequence (set) NCS2 is increasingly ordered.        
       [ Rule 1) may be changed by:  the given numbers a1, a2,...,  
    ak , where k ≥ 2, belong to NCS2. ] 
 
 
H.   1,2,3,4,5,6,7,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24, 
     25,26,29,30,31,32,33,34,37,38,39,... 
   ( ncs1(n) is the smallest number, strictly greater than  
     the previous one, which is NOT the cubes sum  
     of one or more previous distinct terms of the sequence;  
     in our particular case the first term is 1. ) 
 
     Recurrence definition:   
       1) The number a belongs to NCS1. 
       2) If b1, b2, ..., bk belong to NCS1, where k ≥1, then  
     b1

2 + b2
2 + ... + bk

2 DO NOT belong to NCS1. 
       3) Only numbers, obtained by rules 1) and/or 2) applied a finite  
     number of times, belong to NCS1. 
       The sequence (set) NCS1 is increasingly ordered.        
       [ Rule 1) may be changed by:  the given numbers a1, a2,...,  
    ak , where k ≥ 1, belong to NCS1. ] 
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I. General-Recurrence (Positive) Type Sequence: 
     General (positive) recurrence definition:   
       Let k ≥ j be natural numbers, and a1, a2, ..., ak given  
       elements, and R a j-relationship (relation among j elements).   
  Then: 
       1) The elements a1, a2, ..., ak belong to SGPR. 
       2) If m1, m2, ..., mj belong to SGPR, then  
     R ( m1, m2, ..., mj ) belongs to SGPR too. 
       3) Only elements, obtained by rules 1) and/or 2) applied a finite  
     number of times, belong to SGPR. 
       The sequence (set) SGPR is increasingly ordered.        
 
      Method of construction of the (positive) general recurrence  
      sequence: 
 - level 1:  the given elements a1, a2, ..., ak belong to SGPR;  
 - level 2:  apply the relationship R for all combinations of 
     j elements among a1, a2, ..., ak;   
     the results belong to SGPR too; 
     order all elements of levels 1 and 2 together; 
       ............................................................ 
 - level i+1:   
     if b1, b2, ..., bm are all elements of levels 1, 2,..., i-1,  
     and c1, c2, ..., cn are all elements of level i, 
     then apply the relationship R for all combinations of j  
     elements among b1, b2, ..., bm, c1, c2, ..., cn such that at 
     least a element is from the level i; 
     the results belong to SRPG too; 
     order all elements of levels i and i+1 together; 
 and so on ... 
 
J. General-Recurrence (Negative) Type Sequence: 
     General (negative) recurrence definition:   
       Let k ≥ j be natural numbers, and a1, a2, ..., ak given  
       elements, and R a j-relationship (relation among j elements).   
  Then: 
       1) The elements a1, a2, ..., ak belong to SGNR. 
       2) If m1, m2, ..., mj belong to SGNR, then  
     R ( m1, m2, ..., mj ) does NOT belong to SGNR; 
     any other elements do belong to SGNR. 
       3) Only elements, obtained by rules 1) and/or 2) applied a finite  
     number of times, belong to SGNR. 
       The sequence (set) SGNR is increasingly ordered.        
 
      Method of construction of the (negative) general recurrence  
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      sequence: 
 - level 1:  the given elements a1, a2, ..., ak belong to SGNR;  
 - level 2:  apply the relationship R for all combinations of 
     j elements among a1, a2, ..., ak;   
     none of the results belong to SGNR; 
     the smallest element, strictly greater than all a1, a2, ..., ak,  
     and different from the previous results, belongs to SGNR; 
     order all elements of levels 1 and 2 together; 
       ............................................................ 
 - level i+1:   
     if b1, b2, ..., bm are all elements of levels 1, 2,..., i-1,  
     and c1, c2, ..., cn are all elements of level i, 
     then apply the relationship R for all combinations of j  
     elements among b1, b2, ..., bm, c1, c2, ..., cn such that at 
     least a element is from the level i; 
     none of the results belong to SRNG; 
     the smallest element, strictly greater than all previous elements, 
     and different from the previous results, belongs to SGNR; 
     order all elements of levels i and i+1 together; 
 and so on ... 
 
Reference: 

M. Bencze, Smarandache Recurrence Type Sequences, Bulletin of Pure and 
Applied Sciences,    Vol. 16 E (No. 2), pp. 231-236, 1997. 

 
 
203- 215) Partition Type Sequences: 
 
A.     1,1,1,2,2,2,2,3,4,4,... 
     ( How many times is n written as a sum of non-null squares,  
       disregarding the terms order; 
       for example: 
       9 = 12 + 12 + 12 + 12 + 12 + 12 + 12 + 12 + 12 
  = 12 + 12 + 12 + 12 + 12 + 22 
  = 12 + 22 + 22 
  = 32,  
       therefore ns(9) = 4. ) 
 
 
B.     1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,5,5, 
       5,5,5,6,6,... 
     ( How many times is n written as a sum of non-null cubes,  
       disregarding the terms order; 
       for example: 
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       9 = 13 + 13 + 13 + 13 + 13 + 13 + 13 + 13 + 13 
  = 13 + 23, 
       therefore nc(9) = 2. ) 
 
 
C.  General Partition Type Sequence: 
   Let f be an arithmetic function, and R a k-relation among numbers. 
   How many times can n be expressed under the form of; 
   n = R ( f1 (n ), f2 (n ), ..., fk (n )), 
   for some k and n1 , n2 , ..., nk  such that n1 + n2 + ... + nk = n ?   
       
      [ Particular cases when  f(x) = x2, or x3, or x!, or xx, etc. 
      and the relation R is the trivial addition of numbers, or 
      multiplication, etc. ] 
 
  Reference: 
  F. Smarandache, "Properties of the Numbers", University of Craiova 
    Archives, 1975; ( see also Arizona State University, Special 
    Collection, Tempe, AZ, USA ). 
 
 
  216) Reverse Sequence: 
1,21,321,4321,54321,654321,7654321,87654321,987654321,10987654321, 
1110987654321,121110987654321,13121110987654321,1413121110987654321, 
151413121110987654321,16151413121110987654321,... 
 
 
  217) Non-Geometric Progression: 
    1,2,3,5,6,7,8,10,11,13,14,15,16,17,19,21,22,23,24,26,27,29,30,31,33,34,35, 
     37,38,39,40,41,42,43,45,46,47,48,50,51,53,... 
 
     General definition: if m1 , m2 , are the first two terms of the sequence, 
     then mk , for k ≥ 3, is the smallest number such that no 3-term  
     geometric progression is in the sequence. 
 
     In our case the first two terms are 1, respectively 2. 
 
     Generalization:  if m1 , m2, ..., mi-1 are the first i-1 terms of the 
     sequence, i ≥ 3, then mk , for k ≥ i, is the smallest number such   
     that no i-term geometric progression is in the sequence. 
 
   
 
  218) Unary Sequence: 
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11,111,11111,1111111,11111111111,1111111111111,11111111111111111, 
1111111111111111111,11111111111111111111111,11111111111111111111111111111, 
1111111111111111111111111111111,... 

     u(n) = ,1,...1,1 , pn digits of "1", where pn is the n-th prime. 

     The old question:  are there an infinite number of primes belonging to  
     the sequence?  
 
 
  219) No-prime-digit Sequence: 
    1,4,6,8,9,10,11,1,1,14,1,16,1,18,19,0,1,4,6,8,9,0,1,4,6,8,9,40,41,42,4,44, 
     4,46,4,48,49,0,... 
     (Take out all prime digits of n.) 
 
  Is it any number that occurs infinitely many times in this sequence ? 
  (for example 1, or 4, or 6, or 11, etc.). 
 
  Solution by Dr. Igor Shparlinski,  
  It seems that: if, say n has already occurred, then for example 
  n3, n33, n333, etc. gives infinitely many repetitions of this 
  number. 
 
 
  220) No-square-digits Sequence: 
    2,3,5,6,7,8,2,3,5,6,7,8,2,2,22,23,2,25,26,27,28,2,3,3,32,33,3,35,36,37,38, 
     3,2,3,5,6,7,8,5,5,52,52,5,55,56,57,58,5,6,6,62,... 
 
     (Take out all square digits of n.) 
 
 
  221-222) Polygons and Polyhedrons.    
      A) Polygons: 
    Definition: 
    Let V1 , V2, ..., Vn be an n-sided polygon, n ≥ 3, and S a given set of m  
    elements, m ≥ n.  In each vertex Vi ,1 ≤ i ≤ n, of the polygon one put  
    at most an element of S, and on each side si ,1 ≤i ≤ n, of the polygon 
    one put ei ≥ 0 elements from A.  Let R be a given relationship of two 
    or more elements on S.   
    All elements of S should be put on the polygon's sides and vertexes such  
    that the relationship R on each side give the same result. 
 
    What connections should be among the number of sides of the polygon,  
    the set S (what elements and how many), and the relation R 
    in order for this problem to have solution(s) ? 
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      B) Polyhedrons: 
 
     I) Polyhedrons (With Edge Points): 
  Similar definition generalized in a 3-dimensional space: 
  the points are set on the vertexes, and edges only of the polyhedron 
  (not on inside faces). 
 
    II) Polyhedrons (With Face Points): 
  Similar definition generalized in a 3-dimensional space: 
  the points are set on the vertexes and inside faces of the  
  polyhedron (not on the edges). 
 
   III) Polyhedrons (With Edge/Face Points): 
  Similar definition generalized in a 3-dimensional space: 
  the points are set on the vertexes, on edges, and on inside faces of  
  the polyhedron. 
 
    IV) Polyhedrons (With Edge Points): 
  Similar definition generalized in a 3-dimensional space: 
  the points are set on the edges, and inside faces only of the  
  polyhedron (not in vertexes). 
 
    What connections should be among the number of vertexes/faces/edges of  
    the polyhedron, the set S (what elements and how many), and the relation  
    R in order for this problem to have solution(s) ? 
  [v + f = e + 2, Euler's Result, where v = number of vertexes of the 
  polyhedron, f = number of faces, e = number of edges.] 
 
    Examples:  I) 
 
    a)  For an equilateral triangle, the set N6 = {1,2,3,4,5,6}, the addition, 
       and on each side to have three elements exactly, and in each vertex 
       an element, one gets: 
     
        1 
        6    5    the sum on each of the three sides is 9; 
      2    4    3    
      
     [the minimum elements 1,2,3 are put in the vertexes] 
        6 
        1    2    the sum on each of the three sides is 12; 
      5    3    4    
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       [the maximum elements 6,5,4 are put in the vertexes] 
 
       There are no other possible combinations to keep (the sum constant). 
 
       Therefore:  
       The Triangular Index SGI(3) = (9, 12; 2),  
       which means: the minimum value, the maximum value, the total number of 
       combinations respectively.  
 
    b)  For a square, the set N12 = {1,2,3,4,5,6, ..., 12}, the addition, 
 and on each side to have four elements exactly, and in each vertex 
 an element. 
 
 What is the Square Index SGI(4) ? 
 
    c)  For a regular pentagon, the set N20 = {1,2,3,4,5,6, ..., 20},  
 the addition, and on each side to have five elements exactly, 
 and in each vertex an element. 
 
 What is the Pentagonal Index SGI(5) ? 
 
    d)  For a regular hexagon, the set N30 = {1,2,3,4,5,6, ..., 30},  
 the addition, and on each side to have six elements exactly. 
 
 What is the Hexagonal Index SGI(6) ? 
 
    e)  And generally speaking: 
 For an n-sided regular polygon,  
 the set N(n2-n) = {1,2,3,4,5,6, ..., n2-n},  
 the addition, and on each side to have n elements exactly. 
 
 What is the n-Sided Regular Polygon Index SGI(n) ? 
 
   Examples:  II) 
      
    a) For a regular tetrahedron (4 vertexes, 4 triangular faces, 6 edges),  
       the set N10 = {1,2,3,...,10}, the addition, and on each edge to have 3  
       elements exactly (in each vertex one element) -- to get the same sum. 
      
    b) For a regular hexahedron (8 vertexes, 6 square faces, 12 edges),  
       the set N32 = {1,2,3,...,32}, the addition, and on each edge to have 4  
       elements exactly (in each vertex one element) -- to get the same sum. 
      
    c) For a regular octahedron (6 vertexes, 8 triangular faces, 12 edges),  
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       the set N18 = {1,2,3,...,18}, the addition, and on each edge to have 3  
       elements exactly (in each vertex one element) -- to get the same sum. 
      
    d) For a regular dodecahedron (14 vertexes, 12 square faces, 24 edges),  
       the set N62 = {1,2,3,...,62}, the addition, and on each edge to have 4  
       elements exactly (in each vertex one element) -- to get the same sum. 
        
   Compute the Polyhedron Index SHI(v,e,f) = (m, M; nc)  
   in each case,   
   where v = number of vertexes of the polyhedron, e = number of edges,  
   f = number of faces, 
   and m = minimum sum value, M = maximum sum value, nc = the total number  
   of combinations.  
 
    e) Or other versions for the previous particular polyhedrons:  
       - putting elements on inside faces and vertexes only (not on edges); 
       - or putting elements on inside faces and edges and vertexes too; 
       - or putting elements on inside faces and edges only (not on vertexes). 
        
 
223) Lucky Numbers: 
  A number is called a Lucky Number if by a wrong operation 
one gets to the true result! 
  The wrong operation should somehow be similar to a correct operation, 
see our students' common math mistakes: 

baba −=−  

of course avoiding the trivial cases (if b = 0 or a = b, in the  
previous case, for example). 
 
Question:  Are There Finitely or Infinitely Lucky Numbers? 
 
 
 
224) The Lucky Method/Algorithm/Operation/etc.  
Is said to be any incorrect method or algorithm or operation etc. which leads to 
a correct result.  The wrong calculation should be fun, somehow similarly 
to the students' common mistakes, or to produce confusions or paradoxes. 
  Can someone give an example of a Lucky Derivation, or  
Integration, or Solution to a Differential Equation? 
 
References: 
  Ashbacher, Charles, "Smarandache Lucky Math", in <Smarandache Notions 
Journal>,  Vol. 9, p. 155, Summer 1998. 
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  Smarandache, Florentin, "Collected Papers", Vol. II, University of Kishinev Press, 
Kishinev, p. 200, 1997.    
 
 
 
   225) The Sequence of 3's and 1's containing many primes: 
 31, 331, 3331, 33331, 333331, 3333331, 33333331, 333333331, ... 
 
 
   226) The Sequence of 3's and 1's containing many primes: 
 31, 31331, 313313331, 31331333133331, 31331333133331333331,  
 313313331333313333313333331,  
 31331333133331333331333333133333331, ... 
 
 
   227) Generalization:  
 Let f, g, h, ... be n integer functions.  By concatenation of all of  
 them one gets a composed sequence of the form: 

    ( ) ( )...,1)1(1 hgf … ( ) ( )...,)( nhngnf  

 
 where some function value(s) f(i) or g(i) or h(i), for i ≥ 1, 
 may be empty. 
 
 
   228) Recurrence of Smarandache type Functions: 
 A function  
      f: N    N  
 such that if (a, b) = 1, then f(a⋅b) = max {f(a), f(b)}.  
   (Definition introduced by Sabin Tabirca, England.) 
 
       For example:  
       a) f(n) = 1 
       b) g(n) = max {p, where p is prime and p divides n}, 
 
   References: 
   Arizona State University, Hayden Library, "The Florentin Smarandache 
       papers" special collection, Tempe, AZ 85287-1006, USA, phone:  
       (602) 965-6515 (Carol Moore librarian) .  
   Charles T. Le, "The Smarandache Class of Paradoxes", in <Bulletin of  
       Pure and Applied Sciences>, Bombay, India, 1995; 
       and in <Abracadabra>, Salinas, CA, 1993, and in <Tempus>, Bucharest,  
       No. 2, 1994. 
   N. J. A. Sloane and S. Plouffe, "The Encyclopedia of Integer  
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       Sequences", Academic Press, 1995; 
       also online, email:  superseeker@research.att.com (SUPERSEEKER by  
       N. J. A. Sloane, S. Plouffe, B. Salvy,  ATT Bell Labs, Murray Hill, 
       NJ 07974, USA). 
   Henry Ibstedt, "Surfing On the Ocean of Numbers - A Few Smarandache 
       Notions and Similar Topics", Erhus Univ. Press, Vail, USA, 1997. 
   Fanel Iacobescu, "Smarandache Partition Type and Other Sequences", 
       <Bulletin of Pure and Applied Sciences>, Bombay, India, Vol. 16E, 
       No. 2, 1997, pp. 237-40. 
   Anthony Begay, "Smarandache Ceil Functions", 
       <Bulletin of Pure and Applied Sciences>, Bombay, India, Vol. 16E, 
       No. 2, 1997, pp. 227-9. 
   Helen Marimutha, "Smarandache Concatenate Type Sequences", 
       <Bulletin of Pure and Applied Sciences>, Bombay, India, Vol. 16E, 
       No. 2, 1997, pp. 225-6. 
   Mihaly Bencze, "Smarandache Recurrence Type Sequences", 
       <Bulletin of Pure and Applied Sciences>, Bombay, India, Vol. 16E, 
       No. 2, 1997, pp. 231-36. 
   Mihaly Bencze, "Smarandache Relationships and Sub-Sequences", 
       <Bulletin of Pure and Applied Sciences>, Bombay, India, Vol. 17E, 
       No. 1, June 1998, pp. 89-95. 
   Henry Ibstedt, "Computer Analysis of Sequences", American Research 
       Press, Lupton, 1998. 
     
 
 
229-231) G Add-On Sequence (I)                    
 
"Personal Computer World" Numbers Count of February 1997 
 presented some of the Smarandache Sequences and related open 
 problems.   
    Let G = {g1, g2, ..., gk, ...} be an ordered set of positive  
    integers with a given property G. 
    Then the corresponding G Add-On Sequence is defined  
    through 

      SG = {ai : a1 = g1 , gaa kkk
gk ++= ⎟

⎠
⎞⎜

⎝
⎛

−10 log1 10
1 , k ≥1}. 

     
H. Ibstedt studied some particular cases of this sequence, that he has  
presented at the First International Conference on Smarandache type Notions in 
Number Theory, University of Craiova, Romania, August 21-24, 1997.   
 
a)  Examples of G Add-On Sequences (II)                    
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The following particular cases are studied:  
   a1) Odd Sequence is generated by choosing  
        G = {1, 3, 5, 7, 9, 11, ...}, and it is: 
        1, 13, 135, 1357, 13579, 1357911, 13571113, ... . 
      Using the elliptic curve prime factorization program we find 
      the first five prime numbers among the first 200 terms of this 
      sequence, i.e. the ranks 2, 15, 27, 63, 93. 
      But are they infinitely or finitely many? 
   a2) Even Sequence is generated by choosing 
        G = {2, 4, 6, 8, 10, 12, ...}, and it is: 
        2, 24, 246, 2468, 246810, 24681012, ... . 
      Searching the first 200 terms of the sequence we didn't find 
      any n-th perfect power among them, no perfect square, nor even 
      of the form 2p, where p is a prime or pseudo-prime. 
      Conjecture:  There is no n-th perfect power term! 
   a3) Prime Sequence is generated by choosing 
        G = {2, 3, 5, 7, 11, 13, 17, ...}, and it is: 
        2, 23, 235, 2357, 235711, 23571113, 2357111317, ... . 
      Terms #2 and #4 are primes; terms #128 (of 355 digits) and #174 
      (of 499 digits) might be, but H. Ibstedt couldn't check -- among the first 
      200 terms of the sequence. 
      Question:  Are there infinitely or finitely many such primes? 
      (H. Ibstedt) 
 
 
232)  Non-Arithmetic Progression (I) 
 
"Personal Computer World" Numbers Count of February 1997 
 presented some of the Smarandache Sequences and related open 
 problems.   
 One of them defines the t-Term Non-Arithmetic Progression 
 as the set: 
 { ai : ai is the smallest integer such that ai > ai-1   , 
  and there are at most t-1 terms in an arithmetic progression}. 
 A QBASIC program is designed to implement a strategy for 
 building a such progression, and a table for the 65 first terms of 
 the non-arithmetic progressions for t=3 to 15 is given. 
 (H. Ibstedt) 
 
 
233)  Concatenation Type Sequences 
    Let s1 , s2 , s3 , ..., sn , ... be an infinite integer sequence  
    (noted by S).  Then the Concatenation is defined as: 
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        s1, ss 21
, sss 321

, ... . 

I search, in some particular cases, how many terms of this  
 concatenated S-sequence belong to the initial S-sequence. 
 (H. Ibstedt) 
 
 
 
234)  Construction of Elements of the Square-Partial-Digital 
     Subsequence 
 
The Square-Partial-Digital Subsequence (SSPDS) is the 
sequence of square integers which admit a partition for which each segment is 
a square integer.  An example is 5062 = 256036, which has partition 256/0/36. 
C. Ashbacher showed that SSPDS is infinite by exhibiting two infinite families  
of elements.  We will extend his results by showing how to construct infinite 
families of elements of SSPDS containing desired patterns of digits. 
  Unsolved Question 1:   
441 belongs to SSPDS, and his square 4412 = 194481 also belongs to SSPDS. 
Can an example be found of integers m, m2, m4 all belonging to SSPDS? 
  Unsolved Question 2: 
It is relatively easy to find two consecutive squares in SSDPS, i.e. 
122 = 144 and 132 = 169. 
Does SSDPS also contain three or more consecutive squares? 
What is the maximum length? 
 
 
235)  Prime-Digital Sub-Sequence                     
 
"Personal Computer World" Numbers Count of February 1997 
 presented some of the Smarandache Sequences and related open 
 problems.   
 One of them defines the Prime-Digital Sub-Sequence 
 as the ordered set of primes whose digits are all primes: 
 2, 3, 5, 7, 23, 37, 53, 73, 223, 227, 233, 257, 277, ... . 
 We used a computer program in Ubasic to calculate the first 100 
 terms of the sequence.  The 100-th term is 33223. 
 Sylvester Smith [1] conjectured that the sequence is infinite.  In 
 this paper we will prove that this sequence is in fact infinite. 
 (H. Ibstedt) 
 
   Reference: 
   Smith, Sylvester, "A Set of Conjectures on Smarandache 
       Sequences", in <Bulletin of Pure and Applied Sciences>,   
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       India, Vol. 15E, No. 1, 1996, pp. 101-107. 
 
 
236-237) Special Expressions.   
 
a) Perfect Powers in Special Expressions (I) 
 
How many primes are there in the Expression: 
              xy + yx, 
where gcd(x, y) = 1 ? [J. Castillo & P. Castini] 
K. Kashihara announced that there are only finitely many numbers of the 
above form which are products of factorials. 
In this note we propose the following conjecture: 
  Let a, b, and c three integers with ab nonzero.  Then the equation: 
  axy + byx = czn, with x, y, n ≥ 2, and gcd(x, y) = 1, 
  has finitely many solutions (x, y, z, n). 
And we prove some particular cases of it.  
(F. Luca)  
 
b)  Products of Factorials in Special Expressions (II) 
 
J. Castillo ["Mathematical Spectrum", Vol. 29, 1997/8, 21] asked  
how many primes are there in the n-Expression: 
             x1x2 + x2 x3 + ... + xn x1, 
where n > 1, x1, x2, ..., xn > 1, and gcd (x1, x2, ..., xn) = 1 ? 
[This is a generalization of the 2-Expression:  xy + yx.] 
  In this note we announce a lower bound for the size of the largest prime 
  divisor of an expression of type axy + b yx, where ab is nonzero,  
  x, y ≥ 2, and gcd (x, y) = 1. 
(F. Luca) 
 
  References:                               
  Castillo, J., "Primes of the form xy  +  yx ", <Mathematical Spectrum>, 
      Vol. 29, No. 1, 1996/7, p. 21. 
  Castini, Peter, Letter to the Editor, <Mathematical Spectrum>, Vol. 28,  
      No. 3, 1995/6, p. 68. 
  Luca, Florian, "Products of Factorials in Smarandache Type Expressions", 
      <Smarandache Notions Journal>, Vol. 8, No. 1-2-3, 1997, pp. 29-41. 
  Luca, Florian, "Perfect Powers in Smarandache Type Expressions", 
      <Smarandache Notions Journal>, Vol. 8, No. 1-2-3, 1997, pp. 72-89. 
 
 
238)  The General Periodic Sequence 
Let S be a finite set, and f : S     S be a function defined  
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for all elements of S. 
There will always be a periodic sequence whenever we repeat the composition  
of the function f with itself more times than card(S), accordingly to the 
box principle of Dirichlet.   
[The invariant sequence is considered a periodic sequence whose period length 
has one term.] 
 
Thus the General Periodic Sequence is defined as: 
  a1 = f(s), where s is an element of S; 
  a2 = f(a1) = f(f(s)); 
  a3 = f(a2) = f(f(a1)) = f(f(f(s))); 
  and so on. 
 
We particularize S and f to study interesting cases of this type of 
sequences. 
(M. R. Popov) 
 
 
239-244) Periodic Sequences. 
 
a) The Two-Digit Periodic Sequence (I) 
 
Let N1 be an integer of at most two digits and let N1' be its  
 digital reverse.  One defines the absolute value N2 = abs (N1 - N1'). 
 And so on: N3 = abs (N2 - N2'), etc.  If a number N has one digit only, 
 one considers its reverse as Nx10 (for example: 5, which is 05, reversed will 
 be 50).  This sequence is periodic. 
 Except the case when the two digits are equal, and the sequence becomes: 
   N1, 0, 0, 0, ... 
 the iteration always produces a loop of length 5, which starts on the second 
 or the third term of the sequence, and the period is 9, 81, 63, 27, 45 
 or a cyclic permutation thereof. 
 
 Reference: 
 Popov, M.R., "Smarandache's Periodic Sequences", in <Mathematical 
   Spectrum>, University of Sheffield, U.K., Vol. 29, No. 1, 1996/7, p. 15. 
 
(The next periodic sequences are extracted from this paper too). 
 
 
b)  The n-Digit Periodic Sequence (II) 
 
Let N1 be an integer of at most n digits and let N1' be its  
 digital reverse.  One defines the absolute value N2 = abs (N1 - N1'). 
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 And so on: N3 = abs (N2 - N2'), etc.  If a number N has less than n digits, 
 one considers its reverse as N'x(10k), where N' is the reverse of N and  
 k is the number of missing digits, (for example: the number 24 doesn't have  
 five digits, but can be written as 00024, and reversed will be 42000).   
 This sequence is periodic according to Dirichlet's box principle. 
   The 3-Digit Periodic Sequence (domain 100 ≤ N1≤ 999): 
 - there are 90 symmetric integers, 101, 111, 121, ..., for which N2 = 0; 
 - all other initial integers iterate into various entry points of the same 
 periodic subsequence (or a cyclic permutation thereof) of five terms:  
                       99, 891, 693, 297, 495. 
   The 4-Digit Periodic Sequence (domain 1000≤ N1≤ 9999):  
 - the largest number of iterations carried out in order to reach the first 
 member of the loop is 18, and it happens for N1 = 1019; 
 - iterations of 8818 integers result in one of the following loops (or a 
 cyclic permutation thereof): 2178, 6534;  or 90, 810, 630, 270, 450;  or 
 909, 8181, 6363, 2727, 4545;  or 999, 8991, 6993, 2997, 4995; 
 - the other iterations ended up in the invariant 0. 
 (H. Ibstedt) 
 
 
c)  The 5-Digit and 6-Digit Periodic Sequences (III) 
 
Let N1 be an integer of at most n digits and let N1' be its  
 digital reverse.  One defines the absolute value N2 = abs (N1 - N1'). 
 And so on: N3 = abs (N2 - N2'), etc.  If a number N has less than n digits, 
 one considers its reverse as N'x(10^k), where N' is the reverse of N and  
 k is the number of missing digits, (for example: the number 24 doesn't have  
 five digits, but can be written as 00024, and reversed will be 42000).   
 This sequence is periodic according to Dirichlet's box principle, leading to  
 invariant or a loop. 
   The 5-Digit Periodic Sequence (domain 10000 ≤ N1 ≤ 99999): 
 - there are 920 integers iterating into the invariant 0 due to symmetries; 
 - the other ones iterate into one of the following loops (or a cyclic 
 permutation of these): 21978, 65934;  or 990, 8910, 6930, 2970, 4950;  or 
 9009, 81081, 63063, 27027, 45045;  or 9999, 89991, 69993, 29997, 49995. 
   The 6-Digit Periodic Sequence (domain 100000 ≤ N1 ≤ 999999): 
 - there are 13667 integers iterating into the invariant 0 due to symmetries; 
 - the longest sequence of iterations before arriving at the first loop  
 member is 53 for N1 = 100720; 
 - the loops have 2, 5, 9, or 18 terms. 
 
 
d)  The Subtraction Periodic Sequences (IV) 
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Let c be a positive integer.  Start with a positive integer N, and 
let N' be its digital reverse.  Put N1 = abs(N1' - c), and let N1' be its 
digital reverse.  Put N2 = abs (N1' - c), and let N2' be its digital reverse. 
And so on.  We shall eventually obtain a repetition.   
For example, with c = 1 and N = 52 we obtain the sequence:  52, 24, 41, 13,  
30, 02, 19, 90, 08, 79, 96, 68, 85, 57, 74, 46, 63, 35, 52, ... .  Here a  
repetition occurs after 18 steps, and the length of the repeating cycle is 18. 
  First example:  c = 1, 10≤ N ≤999. 
Every other member of this interval is an entry point into one of five cyclic 
periodic sequences (four of these are of length 18, and one of length 9). 
When N is of the form 11k or 11k-1, then the iteration process results in 0. 
  Second example:  1 ≤ c ≤ 9, 100 ≤ N ≤ 999.  
For c = 1, 2, or 5 all iterations result in the invariant 0 after, sometimes,   
a large number of iterations.   
For the other values of c there are only eight different possible values for  
the length of the loops, namely 11, 22, 33, 50, 100, 167, 189, 200. 
For c = 7 and N = 109 we have an example of the longest loop obtained:  it  
has 200 elements, and the loop is closed after 286 iterations. 
(H. Ibstedt) 
 
 
e)  The Multiplication Periodic Sequences (V) 
 
Let c > 1 be a positive integer.  Start with a positive integer N,  
multiply each digit x of N by c and replace that digit by the last digit of  
cx to give N1.  And so on.  We shall eventually obtain a repetition. 
For example, with c = 7 and N = 68 we obtain the sequence:  
    68, 26, 42, 84, 68, ... . 
Integers whose digits are all equal to 5 are invariant under the given  
operation after one iteration. 
 
One studies the One-Digit Multiplication Periodic Sequences only. 
(For c of two or more digits the problem becomes more complicated.) 
  If c = 2, there are four term loops, starting on the first or second term. 
  If c = 3, there are four term loops, starting with the first term. 
  If c = 4, there are two term loops, starting on the first or second term 
(could be called Switch or Pendulum). 
  If c = 5 or 6, the sequence is invariant after one iteration. 
  If c = 7, there are four term loops, starting with the first term. 
  If c = 8, there are four term loops, starting with the second term. 
  If c = 9, there are two term loops, starting with the first term (pendulum). 
(H. Ibstedt) 
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f)  The Mixed Composition Periodic Sequences (VI) 
 
Let N be a two-digit number.  Add the digits, and add them again if 
the sum is greater than 10.  Also take the absolute value of their difference. 
These are the first and second digits of N1.  Now repeat this. 
For example, with N = 75 we obtain the sequence:  75, 32, 51, 64, 12, 31, 42,  
62, 84, 34, 71, 86, 52, 73, 14, 53, 82, 16, 75, ... . 
There are no invariants in this case.  Four numbers: 36, 90, 93, and 99 
produce two-element loops.  The longest loops have 18 elements.  There also 
are loops of 4, 6, and 12 elements. 
(H. Ibstedt) 
 
  There will always be a periodic (invariant) sequence whenever we have a  
function f : S    S, where S is a finite set,  
and we repeat the function f more times than card(S).   
Thus the General Periodic Sequence is defined as: 
  a1 = f(s), where s is an element of S; 
  a2 = f(a1) = f(f(s)); 
  a3 = f(a2) = f(f(a1)) = f(f(f(s))); 
  and so on. 
 
 
245)  New Sequences: The Family of Metallic Means 
           
The family of Metallic Means (whom most prominent 
 members are the Golden Mean, Silver Mean, Bronze Mean, Nickel Mean, Copper 
 Mean, etc.) comprises every quadratic irrational number that is the   
 positive solution of one of the algebraic equations 
    x2 - nx - 1 = 0  or  x2 - x - n = 0, 
 where n is a natural number. 
 All of them are closely related to quasi-periodic dynamics, being therefore 
 important basis of musical and architectural proportions.  Through the 
 analysis of their common mathematical properties, it becomes evident that 
 they interconnect different human fields of knowledge, in the sense defined 
 in "Paradoxist Mathematics".   
 Being irrational numbers, in applications to different scientific  
 disciplines, they have to be approximated by ratios of integers -- which is 
 the goal of this paper. 
 (Vera W. de Spinadel) 
 
 
246-251) Some New Functions in the Number Theory. 
 Let S(n) be the Smarandache Function.   
 One defines: 
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 S1 : N-{0,1}    N, S1(n) = 1/S(n); 
 and S2 : N*    N, S2(n) = S(n)/n 
 which verify the Lipschitz condition 
 Other functions:: 
 S3 : N-{0,1}    N, S3(n) = n/S(n),  
 and Fs : N-{0,1}    N,  

                 Fs(x) = ∑
=

)(

1

x

i

π

( S( px

i
), 

                 where pi are the prime numbers not greater than x and 
                         
                 π(x) is the number of primes less than or equal to x; 
Θ : N*     N,                       

                    Θ(x) = 3S( px

i
), where pi are prime numbers 

_                   which divide x; 
Θ : N*    N,         _ 

Θ(x) = 3S( px

i
), where pi are prime numbers not greater  

than x which do not divide x; 
(V. Seleacu, S. Zanfir) 
 
 
252) Erdös-Smarandache Numbers: 
    2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 26, 28, 29, 
    30, 31, 33, 34, 35, ... . 
    Solutions to the Diophantine equation P(n)=S(n), where P(n) is the 
    largest prime factor which divides n, and S(n) is the classical 
    Smarandache function. [S. Tabarca] 
 
   References: 
   Erdös, P., Ashbacher C., Thoughts of Pal Erdos on Some Smarandache 
       Notions, <Smarandache Notions Journal>, Vol. 8, No. 1-2-3, 1997, 
       220-224. 
   Sloane, N. J. A., On-Line Encyclopedia of Integers, Sequence A048839.  



 111

  253) Analogues of the Smarandache function: 
  a(n) is the smallest number m such that n ≤ m! 
  1,1,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5, … . 
 
References: 
   Yi Yuan, Zhang Wenpeng, On the Mean Value of the Analogue of Smarandache  
Function, Scientia Magna, Northwest University, Xi’an, China, 145-147, Vol. 1, No. 1, 
2005. 
   N. J. A. Sloane, Encyclopedia of Integer Sequences, Sequence # A092118. 
 
 
 
 254) A Generalized Smarandache Palindrome (GSP) is a number of the concatenated  
 form:  a1a2...anan...a2a1 with n ≥ 1,  or  a1a2...an-1anan-1...a2a1 with n ≥ 2, 
 where all a1, a2, ..., an are positive integers of various number of digits.  
   
 Examples:  
     a)  1235656312 is a GSP because we can group it as (12)(3)(56)(56)(3)(12),  
           i.e. ABCCBA.  
     b) 23523 is also a GSP since we can group it as (23)(5)(23), i.e. ABA. 
     It has been proven that 1234567891010987654321, which is a GSP, is a prime  
(see http://www.kottke.org/notes/0103.html, and the Prime Curios site).  
Conjecture: There are infinitely many primes which are GSP. 
 
References: 
   Charles Ashbacher, Lori Neirynck, The Density of Generalized Smarandache  
Palindromes, www.gallup.unm.edu/~smarandache/GeneralizedPalindromes.htm  
   G. Gregory, Generalized Smarandache Palindromes,  
http://www.gallup.unm.edu/~smarandache/GSP.htm . 
   M. Khoshnevisan, "Generalized Smarandache Palindrome", Mathematics 
Magazine, Aurora, Canada, 10/2003. 
   M. Khoshnevisan, Proposed Problem #1062 (on Generalized Smarandache 
Palindrome), The JME Epsilon, USA, Vol. 11, No. 9, p. 501, Fall 2003. 
   Mark Evans, Mike Pinter, Carl Libis, Solutions to Problem #1062 (on Generalized 
Smarandache Palindrome), The JME Epsilon, Vol. 12, No. 1, 54-55, Fall 2004. 
   N. Sloane, Encyclopedia of Integers, Sequence A082461,  
http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A0
82461.  
   F. Smarandache, Sequences of Numbers, Xiquan, 1990. 
 
 
 
255-260) Special Relationships (edited by M. Bencze). 
Let { an }, n ≥ 1 be a sequence of numbers, and p, q integers ≥ 1. Then we say that the 
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terms 
 
ak+1,ak+2 , . . . , ak+p,ak+p+1,ak+p+2 ,. . ., ak+p+q 

 

verify a special p-q relationship if 
 
ak+1 <> ak+2 <> . . . <> ak+p = ak+p+1 <> ak+p+2 <> . . . <> ak+p+q 

 

where "<>" may be any arithmetic, algebraic, or analytic operation (generally a binary 
law on { a1 , a2 , a3 ,  . . .  .}). 
 
If this relationship is verified for any k ≥ 1 (i.e. by all terms of the sequence), then 
 
{ an }, n >= 1 is called a Special p-q-<> sequence 
 
where "<>" is replaced by "additive" if <>  is +, "multiplicative" if <>  is *, etc. 
[according to the operation (<>) used]. 
 
As a particular case, we can easily see that Fibonacci/Lucas sequence (an + an+1 = 
an+2 ), for n ≥ 1, is a Special 2-1 additive sequence.  
 
A Tribonacci sequence ( an + an+1 + an+2 = an+3 ), n ≥ 1 is a Special 3-1 additive 
sequence. Etc. 
 
M. Bencze considered the sequence of Smarandache numbers, 
 
1, 2, 3, 4, 5, 3, 7, 4, 6, 5, 11, 4, 13, 7, 5, 6, 17,  . . . , 
 
i.e. for each n the smallest number S(n) such that S(n)! is divisible by n (the values of 
the Smarandache Function), and raised the questions: 
 
(a) How many quadruplets verify a Special 2-2 additive relationship i.e. 
 
     S(n+1) + S(n+2) = S(n+3) + S(n+4)? 
 
He found that: S(6) + S(7) = S(8) + S(9), 3 + 7 = 4 + 6; 
 
            S(7) + S(8) = S(9) + S(10), 7 + 4 = 6 + 5; 
 
            S(28) + S(29) = S(30) + S(31), 7 + 29 = 5 + 31. 
 
M. Bencze asked if there exist a finite or infinite number ? 
 
(b) He also asked how many quadruplets verify a Special 2-2-subtractive relationship, 
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i.e. 
 
     S(n+1) - S(n+2) = S(n+3) - S(n+4)? 
 
He found: S(1) - S(2) = S(3) - S(4), 1 - 2 = 3 - 4; 
 
            S(2) - S(3) = S(4) - S(5), 2 - 3 = 4 - 5; 
 
            S(49) - S(50) = S(51) - S(52), 14 - 10 = 17 - 13. 
 
(c) M. Bencze also asked how many sextuplets verify a Special 3-3 additive 
relationship, i.e. 
 
     S(n+1) + S(n+2) + S(n+3) = S(n+4) + S(n+5) + S(n+6) ? 
 
He found: S(5) + S(6) + S(7) = S(8) + S(9) + S(10), 5 + 3 + 7 = 4 + 6 + 5. 
 
Charles Ashbacher designed a computer program that calculates the Smarandache 
Function's values, therefore he may be able to add more solutions to mine. 
 
 
 
261-264) More General Special Relationship (edited by M. Bencze): 
 
If fp is a p-ary relation and gq is a q-ary relation, both of them defined on  
{ a1 ,a2 ,a3 , . . . }, then 
 
      ai1 ,ai2 , . . . , aip , aj1 ,aj2 , . . . ,ajq 

 

verify a Special fp - gq - relationship if 
 
fp (ai1 ,ai2 , . . . ,aip ) = gq (aj1 ,aj2 , . . . ,ajq ). 
 
If this relationship is verified by all terms of the sequence, then {an }, n ≥ 1 is called a 
Special fp -gq -sequence. 
 
M. Bencze asked about the properties of Special fp -gq - relationships for well-known 
sequences (perfect numbers, Ulam numbers, abundant numbers, Catalan numbers, 
Cullen numbers, etc.). 
 
For example: a Special 2-2-additive, subtractive, or multiplicative relationship, etc. 
 
If fp is a p-ary relation on { a1 ,a2 ,a3 , . . . } and 
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fp (ai1 ,ai2 , . . . ,aip ) = fp (aj1 , aj2 , . . . ,ajp ) 
 
for all aik ,ajk , where k = 1, 2, . . . ,p, and for all p ≥ 1, then {an }, n ≥ 1, is called a 
Special perfect f- sequence. 
 
If not all p-plets (ai1 , ai2 , . . . ,aip ) and (aj1 ,aj2 , . . . , ajp ) verify the fp relation, or not 
for all p ≥ 1, the relation fp is verified, then {an }, n ≥ 1 is called a Special partial 
perfect f-sequence. 
 
An example: a Special partial perfect additive sequence:  
 
1, 1, 0, 2, -1, 1, 1, 3, -2, 0, 0, 2, 1, 1, 3, 5, -4, -2, -1, 1, -1, 1, 1, 3, 0, 2, . . .  
 
This sequence has the property that  
 
    a1 + a2 + . . . + ap =     ap+1 + ap+2 + . . . + a2p for all p ≥ 1. 
 
It is constructed in the following way: 
 
    a1 = a2 = 1 
 
    a2p+1 = ap+1 - 1 
 
    a2p+2 = ap+1 + 1 
 
for all p ≥ 1. 
 
(a) M. Bencze asked for a general expression of an (as function of n)? 
 
It is periodical, or convergent, or bounded? 
 
(b) He demanded for the design of other Special perfect (or partial perfect) sequences. 
 
 
 
See a multiplicative sequence of this type. 
265-268) P-digital Subsequences. 
Let {an }, n ≥ 1, be a sequence defined by a property (or a relationship involving its 
terms) P.  
One screens this sequence, selecting only its terms whose digits hold the property (or 
relationship involving the digits) P. 
 
For example: 
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(a) Special square-digital subsequence: 
 
0, 1, 4, 9, 49, 100, 144, 400, 441, . . . 
 
i.e. from 0, 1, 4, 9, 16, 25, 36, ..., n2, ...  one chooses only the terms whose digits are 
all perfect squares (therefore only 0, 1, 4, and 9). 
 
Disregarding the square numbers of the concatenated form: 
   
   ___________ 
   N0   .   .   .   0,
    {  2k zeros } 
 
where N is also a perfect square, M. Bencze asked how many other numbers belong to 
this sequence? 
 
(b) Special cube-digital subsequence: 
 
0, 1, 8, 1000, 8000, . . .  
 
i.e. from 0, 1, 8, 27, 64, 125, 216, . . . , n3, . . . one chooses only the terms whose digits 
are all perfect cubes (therefore only 0, 1 and 8). 
 
Similar question, disregarding the cube numbers of the form  
   ___________ 
   M0   .   .   .   0,
     {  3k zeros } 
 
where M is a perfect cube. 
 
(c) Special prime digital subsequence: 
 
2, 3, 5, 7, 23, 37, 53, 73, . . .  
 
i.e. the prime numbers whose digits are all primes (they are called 
Smarandache-Wellin primes).   
 
Conjecture: this sequence is infinite. 
 
In the same general conditions of a given sequence, one screens it selecting only its 
terms whose groups of digits hold the property (or relationship involving the groups 
of digits) P.  
[ A group of digits may contain one or more digits, but not the whole term.] 
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The new sequence obtained is called: 
269-275) Special P-partial digital subsequence. 
 
Similar examples: 
 
(a) Special square-partial-digital subsequence: 
 
49, 100, 144, 169, 361, 400, 441, . . . 
 
i.e. the square members that is to be partitioned into groups of digits which are also 
perfect squares. 
 
(169 can be partitioned as 16 = 42 and 9 = 32, etc.) Disregarding the square numbers 
of the form 
    ___________ 
   N0   .   .   .   0,
     {  2k zeros } 
 
where N is also a perfect square, how many other numbers belong to this sequence? 
 
(b) Special cube-partial digital subsequence: 
 
1000, 8000, 10648, 27000, . . . 
 
i.e. the cube numbers that can be partitioned into groups of digits which are also 
perfect cubes. 
(10648 can be partitioned as 1 = 13, 0 = 03, 64 = 43, and 8 = 23). 
 
Same question: disregarding the cube numbers of the form: 
    ___________ 
   M0   .   .   .   0,
     {  3k zeros } 
 
where M is also a perfect cube, how many other numbers belong to this sequence? 
 
(c) Special prime-partial digital subsequence: 
 
23, 37, 53, 73, 113, 137, 173, 193, 197, . . .  
 
i.e. prime numbers, that can be partitioned into groups of digits which are also prime, 



 117

 
(113 can be partitioned as 11 and 3, both primes). 
 
Conjecture: this sequence is infinite.  
 
(d) Special Lucas-partial digital subsequence 
 
123, . . .  
 
i.e. the sum of the two first groups of digits is equal to the last group of digits, and the 
whole number belongs to Lucas numbers: 
 
2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, . . .  
 
(beginning at 2 and L(n+2) = L(n+1) + L(n), n > 1) ( 123 is partitioned as 1, 2 and 3, 
then 3 = 2 + 1). 
 
Is 123 the only Lucas number that verifies a Special type partition? 
 
Study some Special P-(partial)-digital subsequences associated to: 
- Fibonacci numbers (M. Bencze didn’t find any Fibonacci number verifying a 
Special type partition; is there any?   
- Smith numbers, Eulerian numbers, Bernoulli numbers, Mock theta numbers, 
Smarandache type sequences, etc. 
M. Bencze remarked that some sequences may not be smarandachely partitioned (i.e. 
their associated Smarandache type subsequences might be empty). 
 
If a sequence {an }, n ≥ 1, is defined by an = f(n) (a function of n), then Special 
f-digital subsequence is obtained by screening the sequence and selecting only its 
terms that can be partitioned in two groups of digits g1 and g2 such that 
 
g2 = f(g1 ). 
 
For example: 
 
(a) If an = 2n, n ≥ 1, then 
 
Special even-digital subsequence is: 
 
12, 24, 36, 48, 510, 612, 714, 816, 918, 1020, 1122, 1224, . . . 
 
(i.e. 714 can be partitioned as g1 = 7, g2 = 14, such that 14 = 2·7, etc. ) 
 
(b) Special lucky-digital subsequence 
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37, 49, . . .  
 
(i.e. 37 can be partitioned as 3 and 7, and L3 = 7; the lucky numbers are 
 
1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, . . . 
 
 
 
276-284) Other Special Definitions and Conjectures (edited by M. Bencze). 
 
For n ≥ 2, let A be a set of n2 elements, and l an n-ary law defined on A. 
As a generalization of the XVIth - XVIIth centuries magic squares, one presents the 
Special magic square of order n which is a square array of rows of elements of A 
arranged so that the law l applied to each horizontal and vertical row and diagonal 
gives the same result. 
 
If A is an arithmetic progression and l the addition of n numbers, then many magic 
squares have been found. Look at Durer's 15/4 engraving "Melancholia's" one: 
     
   16        3        2        13 
 
      5       10      11         8 
 
      9        6        7         12 
 
      4       15      14         1 
 
(1) Can you find such a magic square of order at least 3 or 5, when A is a set of prime 
numbers and l the addition? 
 
(2) Same question when A is a set of square numbers, or cube numbers, or special 
numbers [for example: Fibonacci or Lucas numbers, triangular numbers, 
Smarandache quotients (i.e. q(m) is the smallest k such that mk is a factorial), etc.]. 
 
A similar definition for the Special magic cube of order n, where the elements of A are 
arranged in the form of a cube of length n: 
 
(a) either each element inside of a unitary cube (that the initial cube is divided in). 
 
(b) either each element on a surface of a unitary cube. 
 
(c) either each element on a vertex of a unitary cube. 
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(d) Study similar questions for this case, which is more complex. 
 
An interesting law may be 
 
l(a1 ,a2 , . . . ,an) = a1 + a2 - a3 + a4 - a5 + . . .  
 
Special prime conjecture: 
 
Any odd number can be expressed as the sum of two primes minus a third prime (not 
including the trivial solution 
p = p + q - q when the odd number is the prime itself). 
 
For example: 
 
1 = 3 + 5 - 7 = 5 + 7 - 11 = 7 + 11 - 17 = 11 + 13 - 24 = . . .  
 
3 = 5 + 11 - 13 = 7 + 19 - 23 = 17 + 23 - 37 = . . . 
 
5 = 3 + 13 - 11 = . . . 
 
7 = 11 + 13 - 17 = . . .  
 
9 = 5 + 7 - 3 = . . .  
 
11 = 7 + 17 - 13 = . . .  
 
(a) Is this conjecture equivalent to Goldbach's conjecture (any odd number > = 9 can 
be expressed as a sum of three primes - finally solved 15 by Vinogradov in 1937 for 
any odd number greater than 3315 )? 
 
(b) The number of times each odd number can be expressed as a sum of two primes 
minus a third prime are called Smarandache prime conjecture numbers. None of them 
are known! 
 
(c) Write a computer program to check this conjecture for as many positive odd 
numbers as possible. 
 
(e) There are infinitely many numbers that cannot be expressed as the difference 
between a cube and a square (in absolute value). 
 
They are called bad numbers (!) 
 
For example: 5, 6, 7, 10, 13, 14,  . . . are probably such bad numbers (F. 
Smarandache has conjectured that), while  
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1, 2, 3, 4, 8, 9, 11, 12, 15, . . . are not, because 
 
1 = | 23 - 32 | 
 
2 = | 33 - 52 | 
 
3 = | 13 - 22 | 
 
4 = | 53 - 112 | 
 
8 = | 13 - 32 | 
 
9 = | 63 - 152 | 
 
11 = | 33 - 42 | 
 
12 = | 133 - 472 | 
 
15 = | 43 - 72 |, etc. 
 
(a) Write a computer program to get as many non Smarandache bad numbers (it's 
easier this way!) as possible, 
 
i.e. find an ordered array of a's such that 
 
a = | x3 - y2 |, for x and y integers ≥ 1. 
 
References: 
   M. Bencze, Bulletin of Pure and Applied Sciences, Vol. 17E (No.1) 1998; p. 
55-62. 
   Sloane, N. J. A. and Simon, Plouffe, (1995). The Encyclopedia of Integer 
Sequences, Academic Press, San Diego, New York, Boston, London, Sydney, Tokyo, 
(M0453). 
   Smarandache, F. (1975). "Properties of Numbers", University of Craiova Archives, 
(see also Arizona State University Special Collections, Tempe, AZ, USA). 
 
 
 
 
285) Anti-Prime Function is defined as follows: 
 
         P : N μ {0, 1}, with 
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      P(n) = 8 .,1
;,0

otherwise
primenif

 

    For example P(2) = P(3) = P(5) = P(7) = P(11) = … = 0,  
    whereas P(0) = P(1) = P(4) = P(6) = ... = 1. 
 
   More general: 
   Pk : Nk μ {0, 1}, where k is an integer ≥ 2, and 
 

   Pk(n1, n2, …, nk) = {  0, if all n1, n2, …, nk are prime numbers; 

                   {  1, otherwise. 

 
 
286) Anti-Coprime Function is similarly defined: 
   Ck : Nk μ {0, 1}, where k is an integer ≥ 2, and 
 

  Ck(n1, n2, …, nk) = {  0, if all n1, n2, …, nk are coprime numbers; 

                  {  1, otherwise. 

 
 
Reference: 
F. Smarandache, "Collected Papers", Vol. II, 200 p., <Funcţii 
      Prime and Coprime>, p. 137, Kishinev University Press, 
      Kishinev, 1997. 
 
 
 
 
287) Special Functional Iteration of First Kind: 
 
   Let f: A μ A be a function, such that f(x) ≤ x for all x,  
   and  
        
       min {f(x), x 0 A} ≥ m0 … - 4. 
    
   Let f have p ≥ 1 fix points:  m0 ≤ x1 < x2 < ... < xp. 
   [The point x is called fix if f(x) = x.] 
   Then 
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   SI1f (x) = the smallest number of iterations k such that 
       f(f(...f(x)...)) = constant 
      {f iterated k times}. 
 
Example: 
   Let n > 1 be an integer, and d(n) be the number of positive divisors of n, 
   d: N μ N. 
   Then SI1d(n) is the smallest number of iterations k 
   such that d(d(...d(n)...)) = 2, 
          {d iterated k times } 
   because d(n) < n for n > 2, and the fix points of the function d are 1 
   and 2. 
   Thus SI1d(6) = 3, because d(d(d(6))) = d(d(4)) = d(3) = 2 = constant. 
   SI1d(5) = 1, because d(5) = 2. 
 
 
 
288) Special Functional Iteration of Second Kind: 
 
   Let g: A μ A be a function, such that g(x) > x for all x,  
   and let b > x.  Then: 
   SI2g(x, b) = the smallest number of iterations k such that 
        g(g(...g(x)...)) ≥ b 
      { g iterated k times }. 
 
Example: 
   Let n > 1 be an integer, and σ(n) be the sum of positive divisors 
   of n (1 and n included),  σ : N μ N. 
   Then SI2σ(n, b) is the smallest number of iterations k such that  
     σ(σ(...σ(n)...)) ≥ b 
    { σ iterated k times } 
   because σ(n) > n for n > 1. 
   Thus SI2σ(4, 11) = 3, because σ(σ(σ(4))) = σ(σ(7)) = σ(8) = 15 ≥ 11. 
 
 
289) Special Functional Iteration of Third Kind: 
    Let h: A μ A be a function, such that h(x) < x for all x,  
   and let b < x.  Then:  
   SI3h(x, b) = the smallest number of iterations k such that 
     h(h(...h(x)...)) ≤ b 
   { h iterated k times }. 
 
Example: 
  Let n be an integer and gd(n) be the greatest divisor of n, less than n, 
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  gd: N* μ N*.  Then  gd(n) < n for n > 1. 
  SI3gd(60, 3) = 4, because gd(gd(gd(gd(60)))) = gd(gd(gd(30))) =  
  gd(gd(15)) = gd(5) = 1 ≤ 3. 
   
References: 
Ibstedt, H., "Smarandache Iterations of First and Second Kinds", 
      <Abstracts of Papers Presented to the American Mathematical Society>, 
      Vol. 17, No. 4, Issue 106, 1996, p. 680. 
Ibstedt, H., "Surfing on the Ocean of Numbers - A Few Smarandache 
      Notions and Similar Topics", Erhus University Press, Vail, 1997; 
      pp. 52-58. 
Smarandache, F., "Unsolved Problem: 52", <Only Problems, Not  
      Solutions!>, Xiquan Publishing House, Phoenix, 1993. 
   
 
 
290) Smarandacheials 
Let n > k ≥ 1 be two integers.  Then the Smarandacheial is defined as: 
 
!n!k =  ∏(n-k·i) 
      0<|n-k·i|≤n 
      i0N 
 
By example: 
In the case k=3: 
!n!3 =  ∏(n-3i) = n(n-3)(n-6)… . 
      0<|n-3i|≤n 
      i=0, 1, 2, … . 
Thus for n=7 one has !7!3 = 7(7-3)(7-6)(7-9)(7-12) = 7(4)(1)(-2)(-5) = 280. 
 
More general: 
Let n > k ≥ 1 be two integers and m ≥ 1 another integer.  Then the generalized  
Smarandacheial is defined as: 
!n!mk =  ∏(n-k·i) 
        0<|n-k·i|≤m 
        i 0N 
 
For example: 
!7!92 = 7(7-2)(7-4)(7-6)(7-8)(7-10)(7-12)(7-14)(7-16) = 7(5)(3)(1)(-1)(-3)(-5)(-7)(-9)  
         = -99225. 
 
References: 
   J. Dezert, editor, “Smarandacheials”, Mathematics Magazine, Aurora, Canada, No. 
4/2004; http://www.mathematicsmagazine.com/corresp/J_Dezert/JDezert.htm, and  
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www.gallup.unm.edu/~smarandache/Smarandacheials.htm. 
   F. Smarandache, “Back and Forth k-Factorials”, Arizona State Univ., Special 
Collections, 1972. 
 
 
291) Smarandache-Kurepa Function: 
     For p prime, SK(p) is the smallest integer such that !SK(p) is 
     divisible by p, where !SK(p) = 0! + 1! + 2! + ... + (p-1)! 
 
    For example: 
      p     2  3  7  11  17  19  23  31  37  41  61  71  73  89 
     SK(p)  2  4  6   6   5   7   7  12  22  16  55  54  42  24 
 
 Reference: 
 C. Ashbacher, "Some Properties of the Smarandache-Kurepa and 
     Smarandache-Wagstaff Functions", in <Mathematics and Informatics 
     Quarterly>, Vol. 7, No. 3, pp. 114-116, September 1997. 
 
 
 
292) Smarandache-Wagstaff Function: 
     For p prime, SW(p) is the smallest integer such that W(SW(p)) is 
     divisible by p, where W(p) = 1! + 2! + ... + (p)! 
 
    For example: 
      p     3  11  17  23  29  37  41  43  53  67  73  79  97 
     SW(p)  2   4   5  12  19  24  32  19  20  20   7  57   6 
 
Reference: 
C. Ashbacher, "Some Properties of the Smarandache-Kurepa and 
     Smarandache-Wagstaff Functions", in <Mathematics and Informatics 
     Quarterly>, Vol. 7, No. 3, pp. 114-116, September 1997. 
 
 
293) Smarandache Ceil Function of Second Order: 
(S2 (n) = m, where m is the smallest positive integer for which n divides m2.) 
2, 4, 3, 6, 4, 6, 10, 12, 5, 9, 14, 8, 6, 20, 22, 15, 12, 7, 10, 26, 18, 28, 30, 21, 8, 34, 12, 
15, 38, 20, 9, 42, 44, 30, 46, 24, 14, 33, 10, 52, 18, 28, 58, 39, 60, 11, 62, 25, 42, 16, 
66, 45, 68, 70, 12, 21, 74, 30, 76, 51, 78, 40, 18, 82, 84, 13, 57, 86, ... 
 
Reference: 
   H. Ibstedt, Surfing on the Ocean of Numbers -- a few Smarandache Notions and 
Similar Topics, Erhus Univ. Press, Vail, USA, 1997; p. 27-30. 
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294) Smarandache Ceil Function of Third Order: 
(S3 (n) = m, where m is the smallest positive integer for which n divides m3.) 
2, 2, 3, 6, 4, 6, 10, 6, 5, 3, 14, 4, 6, 10, 22, 15, 12, 7, 10, 26, 6, 14, 30, 21, 4, 34, 6, 15, 
38, 20, 9, 42, 22, 30, 46, 12, 14, 33, 10, 26, 6, 28, 58, 39, 30, 11, 62, 5, 42, 8, 66, 15, 
34, 70, 12, 21, 74, 30, 38, 51, 78, 20, 18, 82, 42, 13, 57, 86, ... 
 
Reference:  
   H. Ibstedt, Surfing on the Ocean of Numbers - a few Smarandache Notions and 
Similar Topics, Erhus Univ. Press, Vail, USA, 1997; p. 27-30. 
 
 
295) Smarandache Ceil Function of Fourth Order: 
(S4 (n) = m, where m is the smallest positive integer for which n divides m4.) 
2, 2, 3, 6, 2, 6, 10, 6, 5, 3, 14, 4, 6, 10, 22, 15, 6, 7, 10, 26, 6, 14, 30, 21, 4, 34, 6, 15, 
38, 10, 3, 42, 22, 30, 46, 12, 14, 33, 10, 26, 6, 14, 58, 39, 30, 11, 62, 5, 42, 4, 66, 15, 
34, 70, 6, 21, 74, 30, 38, 51, 78, 20, 6, 82, 42, 13, 57, 86, ... 
 
Reference: 
   H. Ibstedt, Surfing on the Ocean of Numbers - a few Smarandache Notions and 
Similar Topics, Erhus Univ. Press, Vail, USA, 1997; p. 27-30. 
 
 
296) Smarandache Ceil Function of Fifth Order: 
(S5 (n) =m, where m is the smallest positive integer for which n divides m5.) 
2, 2, 3, 6, 2, 6, 10, 6, 5, 3, 14, 2, 6, 10, 22, 15, 6, 7, 10, 26, 6, 14, 30, 21, 4, 34, 6, 15, 
38, 10, 3, 42, 22, 30, 46, 6, 14, 33, 10, 26, 6, 14, 58, 39, 30, 11, 62, 5, 42, 4, 66, 15, 34, 
70, 6, 21, 74, 30, 38, 51, 78, 10, 6, 82, 42, 13, 57, 86, ... 
 
Reference: 
   H. Ibstedt, Surfing on the Ocean of Numbers - a few Smarandache Notions and 
Similar Topics, Erhus Univ. Press, Vail, USA, 1997; p. 27-30. 
 
 
297) Smarandache Ceil Function of Sixth Order: 
(S6 (n) = m, where m is the smallest positive integer for which n divides m6.) 
2, 2, 3, 6, 2, 6, 10, 6, 5, 3, 14, 2, 6, 10, 22, 15, 6, 7, 10, 26, 6, 14, 30, 21, 2, 34, 6, 15, 
38, 10, 3, 42, 22, 30, 46, 6, 14, 33, 10, 26, 6, 14, 58, 39, 30, 11, 62, 5, 42, 4, 66, 15, 34, 
70, 6, 21, 74, 30, 38, 51, 78, 10, 6, 82, 42, 13, 57, 86, ... 
 
Reference:  
   H. Ibstedt, Surfing on the Ocean of Numbers - a few Smarandache Notions and 
Similar Topics, Erhus Univ. Press, Vail, USA, 1997; p. 27-30. 
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298)  Smarandache Ceil Functions of k-th Order: 
      Sk(n) is the smallest integer for which n divides Sk(n)^k. 
 
References: 
H. Ibstedt, "Surfing on the Ocean of Numbers -- A Few Smarandache 
     Notions and Similar Topics", Erhus Univ. Press, Vail, USA, 1997; 
     pp. 27-30. 
A. Begay, "Smarandache Ceil Functions", in <Bulletin of Pure and 
     Applied Sciences>, India, Vol. 16E, No. 2, 1997, pp. 227-229. 
 
 
299) Pseudo-Smarandache Function: 
     Z(n) is the smallest integer such that 1 + 2 + ... + Z(n) is divisible 
     by n. 
 
     For example: 
      n    1   2   3   4   5    6    7 
     Z(n)  1   3   2   3   4    3    6 
   
Reference: 
K.Kashihara, "Comments and Topics on Smarandache Notions and 
     Problems", Erhus Univ. Press, Vail, USA, 1996. 
 
 
 
300) Smarandache Near-To-Primordial Function: 
   SNTP(n) is the smallest prime such that either p* - 1, p*  , or p* + 1 
   is divisible by n, 
   where p* , of a prime number p, is the product of all primes less than 
   or equal to p. 
 
   For example: 
         n    1  2  3  4  5  6  7  8  9  10  11  ...  59 ... 
   SNTP(n)    2  2  2  5  3  3  3  5  ?   5  11  ...  13  ... 
 
References: 
Mudge, Mike, "The Smarandache Near-To-Primordial (S.N.T.P.) Function", 
     <Smarandache Notions Journal>, Vol. 7, No. 1-2-3, August 1996, p. 45. 
Ashbacher, Charles, "A Note on the Smarandache Near-To-Primordial 
     Function", <Smarandache Notions Journal>, Vol. 7, No. 1-2-3, August 1996,  
     pp. 46-49. 
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301) Smarandache - Fibonacci triplets: 
(An integer n such that S(n) = S(n-1) + S(n-2) where S(k) is the Smarandache 
function: the smallest number k such that S(k)! is divisible by k.) 
11, 121, 4902, 26245, 32112, 64010, 368140, 415664, 2091206, 2519648, 4573053, 
7783364, 79269727, 136193976, 321022289, 445810543, 559199345, 670994143, 
836250239, 893950202, 937203749, 1041478032, 1148788154, ... 
 
Remarks:  
It is not known if this sequence has infinitely or finitely many terms. 
H. Ibstedt and C. Ashbacher independently conjectured that there are infinitely many. 
H. I. found the biggest known number: 19 448 047 080 036. 
 
References: 
   H. Ibstedt, Surfing on the Ocean of Numbers - a few Smarandache Notions and 
Similar Topics, Erhus Univ. Press, Vail, USA, 1997; pp. 19-23.  
   C. Ashbacher and M. Mudge, Personal Computer World, London, October 1995; p. 
302.  
 
 
302) Smarandache-Radu duplets 
(An integer n such that between S(n) and S(n+1) there is no prime [S(n) and S(n + 1) 
included], where S(k) is the Smarandache function: the smallest number k such that 
S(k)! is divisible by k.) 
224, 2057, 265225, 843637, 6530355, 24652435, 35558770, 40201975, 45388758, 
46297822, 67697937, 138852445, 157906534, 171531580, 299441785, 551787925, 
1223918824, 1276553470, 1655870629, 1853717287, 1994004499, 2256222280, ... 
 
Remarks:  
It is not known if this sequence has infinitely or finitely many terms. 
H. Ibstedt conjectured that there are infinitely many. 
H. I. found the biggest known number: 
270 329 975 921 205 253 634 707 051 822 848 570 391 313 ! 
 
References: 
   H. Ibstedt, Surfing on the Ocean of Numbers - a few Smarandache Notions and 
Similar Topics, Erhus Univ. Press, Vail, USA, 1997; pp. 19-23. 
   I. M. Radu, Mathematical Spectrum, Sheffield University, UK, Vol. 27, (No. 2), 
1994/5; p. 43. 
   A. Begay, Smarandache Ceil Functions, Bulletin of Pure and Applied Sciences, 
Vol. 16E (No. 2), 1997; p. 227-229.  
 
 
303) Concatenated Fibonacci Sequence: 
1, 11, 112, 1123, 11235, 112358,  . . .  . 
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How many primes does it contain?  
 
 
304) Uniform Sequences: 
Let n be an integer not equal to zero and d1 , d2 , . . . , dr digits in a base B (of course r 
< B).  Then: multiples of n, written with digits d1 , d2 , . . . , dr only (but all r of them), 
in base B, increasingly ordered, are called uniform sequences. 
 
Let’s see some examples in base 10 for one digit. 
(a) Multiples of 7 written with digit 1 only: 
111111, 111111,111111, 111111,111111,111111, 111111,111111,111111,111111, ... 
 
(b) Multiples of 7 written with digit 2 only: 
222222, 222222222222, 222222222222222222, 222222222222222222222222, ... 
 
(c) Multiples of 79365 written with digit 5 only: 
555555, 555555555555, 555555555555555555, 555555555555555555555555, ... 
 
There are cases where the uniform sequence may be empty (impossible): 
(d) Multiples of 79365 written with digit 6 only (because any multiple of 79365 will 
end in 0 or 5. 
 
As a consequence, if there exists at least a multiple m of n, written with digits 
d1 ,d2 , . . ., dr only, in base B, then there exists an infinite number of multiples of n 
(they have the form:  
  ___  ____  _____ 
m,  mm,  mmm,  mmmm,   .  .  .
  
Reference: 
   S. Smith, A Set of Conjectures on Smarandache Sequences, Bulletin of Pure and 
Applied Sciences, Vol. 15 E(No. 1) 1996; p. 101-107. 
 
 
 
305-311) Special Operation Sequences (edited by S. Smith): 
Let E be an ordered set of elements, E = { e1 , e2 ,  . . . } and O a set of binary 
operations well-defined for these elements.  
Then: a1 is an element of { e1 ,e2 , . . . }. 
an+1 = min { e1 O1 e2 O2 . . . On en+1 } > an , for n > 1. 
where all Oi are operations belonging to O, is called the Special operation sequence.  
 
Some examples: 
(a) When E is the natural number set, and O is formed by the four arithmetic 
operations: +, -, *, /.  
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Then: a1 = 1 
an+1 = min { 1 O1 2 O2 . . . On (n+1) } > an , for n > 1, 
(therefore, all Oi may be chosen among addition, subtraction, multiplication or 
division in a convenient way). 
 
Questions: Find this arithmetic operation infinite sequence. Is it possible to get a 
general expression formula for this sequence (which starts with 1, 2, 3, 5, 4,? 
 
(b) A finite sequence 
a1 = 1 
an+1 = min { 1 O1 2 O2 ... O98 99 } > an  
for n > 1, where all Oi are elements of { +, -, *, / }. 
Same questions for this arithmetic operation finite sequence. 
 
(c) Similarly for algebraic operation infinite sequence 
a1 = 1 
an+1 = min { 1 O1 2 O2 . . . On (n+1) } > an for n > 1, 
where all Oi are elements of { +, -, *, /, **, ythrtx } 
( X**Y means XY, and “ythrtx” means the y-th root of x). 
 
The same questions become harder but more exciting. 
 
(d) Similarly for algebraic operation finite sequence: 
 a1 = 1 
 an+1 = min { 1 O1 2 O2 . . . O98 99} > an , for n > 1, 
where all Oi are elements of { +, -, *, /, **, ythrtx } 
( X**Y means XY and “ythrtx” means the y-th root of x). 
 
Same questions. 
More generally: one replaces "binary operations" by "Ki -ary operations" 
where all Ki are integers ≥ 2).  
Therefore, ai is an element of { e1 , e2 , . . . }, 
an+1 = min{ 1 O1
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)(n+1)} > an, for n > 1,    

where  O1
(K

1
) is K1 – ary, O2

(K
2

) is K2 – ary,  
and of course K1 + (K2 - 1) + . . . + (Kr - 1) = n+1. 
 
Remark: The questions are much easier when O = { +, -}; study the operation type 
sequences in this case. 
 
(9) Operation sequences at random: 
Same definitions and questions as for the previous sequences, except that 
an+1 = { e1 O1 e2 O2 . . . On en+1 } > an , for n > 1, 
(i.e. it's no "min" any more, therefore an+1 will be chosen at random, but greater than 
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an , for any n > 1). Study these sequences with a computer program for random 
variables (under weak conditions). 
 
References: 
   F. Smarandache, "Properties of the Numbers", University of Craiova Archives, 
[see also Arizona State University, Special Collections, Tempe, Arizona, USA]. 
   S. Smith, A Set of Conjectures on Smarandache Sequences, Bulletin of Pure and 
Applied Sciences, Vol. 15 E (No. 1), 1996; pp. 101-107.  
 
 
 
312) A function f: N* μ N* is called S-multiplicative 
     if (a, b) = 1 implies that f(a · b) = max{ f(a), f(b) }.   
    (S. Tabarca) 
 
References 
   P. Erdös, Problems and Result in Combinatorial Number Theory, Bordeaux, 1974. 
   G. H. Hardy. E. M. Wright, An Introduction to Number Theory, Clarendon Press, 
Oxford, 1979. 
   S. Tabarca, About Smarandache Multiplicative Function,  
   F. Smarandache, A Function in Number Theory, Analele Univ. Timişoara, XVIII, 
1980. 
 
 
 
313) General Theorem of Characterization of N Primes Simultaneously 
    Let pij, 1 ≤ i ≤ n, 1 ≤ j ≤ mi, be coprime integers two by two, 
    and let ai, ri be integers such that ai and ri are coprime for all i. 
    The following conditions are considered for all i: 
        (i)  pi1, ..., pi  are simultaneously prime iff ci – 0 (mod ri ). 
    Then the following statements are equivalent: 
 
    a) The numbers pij , 1 ≤ i ≤ n, 1 ≤ j ≤ mi, are simultaneously prime.    

    b) (R/D) ∑
=

n

i 1
(aici/ri) – 0 (mod R/D), where R =∏

=

n

i 1
ri and D is a divisor of R.  

    c) (P/D) ∑
=

n

i 1
(aici/∏

=

mi

j 1

pij) – 0 (mod P/D), where P =∏
=

min

ji

,

1,

ri and D is a divisor of P.  

    d) ∑
=

n

i 1
(aici(P/∏

=

mi

j 1

pij) – 0 (mod P), where P =∏
=

min

ji

,

1,

ri.  

    e) ∑
=

n

i 1
(aici/∏

=

mi

j 1

pij) is an integer.  
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References: 
   Smarandache, Florentin, "Collected Papers", Vol. I, Tempus Publ. Hse., Bucharest,   
1996, pp. 13-18, www.gallup.unm.edu/~smarandache/CP1.pdf. 
   Smarandache, Florentin, "Characterization of n Prime Numbers 
Simultaneously", <Libertas Mathematica>, University of Texas 
at Arlington, Vol. XI, 1991, pp. 151-155. 
   Smarandache, F., Proposed Problem # 328 ("Prime Pairs and Wilson's Theorem"), 
<College Mathematics Journal>, USA, March 1988, pp. 191-192. 
 
 
314) Infinite Product. 
 It is defined as: 
 

             1/a(n) 
          n>=1 
 
where a(n) is any of the above sequences, subsequences, or functions, or any other 
infinite product involving such sequences, subsequences, or functions. Some of them 
will lead to nice constants. 
 
 
 
315) Jung’s Theorem Generalized to Space: 
Let's have n points in the 3D-space such that the maximum distance between any two 
of them is d. Then: there exists a sphere of radius 

           

which contains in interior or on surface all these points. 
 
References: 
   Smarandache, F., "A Generalization in Space of Jumg's Theorem", Gazeta 
Matematica,  Bucharest, Nr. 9-10-11-12, 1992, p. 352. 
   Smarandache, F., Collected Papers, Vol. I, Tempus Publ. Hse., article: "A    
Generalization in Space of Jung's Theorem", pp. 223-224. 
 
 
 
316-325) Back and Forth Summants  
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Let n>k≥1 be two integers.  Then a Back and Forth Summant is defined as: 
  
S(n, k) =  ∑ (n-k·i)    [for signed numbers] 
              0<|n-k·i|≤n 
              i=0, 1, 2, … . 
  
S|n, k| =  ∑ |n-k·i|    [for absolute value numbers] 
              0<|n-k·i|≤n 
              i=0, 1, 2, … . 
  
which are duals and semi-duals respectively of Smarandacheials. 
  
S(n, 1) and S(n, 2) with corresponding S|n, 1| and S|n, 2| are trivial. 
  
a)      In the case k=3: 
  
S(n, 3) =  ∑ (n-3i) = n+(n-3)+(n-6)+… ; [for signed numbers]. 
              0<|n-3i|≤n 
              i=0, 1, 2, … . 
  
S|n, 3| =  ∑ |n-3i| = n+|n-3|+|n-6|+… ; [for absolute value numbers]. 
              0<|n-3i|≤n 
              i=0, 1, 2, … . 
  
Thus S(7, 3) = 7+(7-3)+(7-6)+(7-9)+(7-12) = 7+(4)+(1)+(-2)+(-5) = 5; [for signed 
numbers]. 
Thus S|7, 3| = 7+|7-3|+|7-6|+|7-9|+|7-12| = 7+4+1+2+5 = 19; [for absolute value 
numbers]. 
  
The sequence is S(n, 3): 3, 2, 0, 5, 3, 0, 7, 4, 0, 9, 5, 0, … ; [for signed numbers]. 
The sequence is S|n, 3|: 7, 12, 18, 19, 27, 36, 37, 48, … ; [for absolute value numbers]. 
  
b) In the case k=4: 
  
S(n, 4) =  ∑ (n-4i) = n+(n-4)+(n-8)… ; [for signed numbers]. 
              0<|n-4i|≤n 
              i=0, 1, 2, … . 
  
S|n, 4| =  ∑ |n-4i| = n+|n-4|+|n-8|… ; [for absolute value numbers]. 
              0<|n-4i|≤n 
              i=0, 1, 2, … . 
  
Thus S(9, 4) = 9+(9-4)+(9-8)+(9-12)+(9-16) = 9+(5)+(1)+(-3)+(-7) = 5; for signed 
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numbers. 
Thus S|9, 4| = 9+|9-4|+|9-8|+|9-12|+|9-16| = 9+5+1+3+7 = 25; [for absolute value 
numbers]. 
  
The sequence is S(n, 4) =  3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 0, 11, … .   
The sequence is S|n, 4| = 9, 16, 16, 24, 25, 36, 36, 48, 49, 64, 64, 80, 81, 100, 100, … . 
  
c) In the case k=5: 
  
S(n, 5) =  ∑ (n-5i) = n+(n-5)+(n-10)… . 
              0<|n-5i|≤n 
              i=0, 1, 2, … . 
  
S|n, 5| = ∑ |n-5i| = n+|n-5|+|n-10|… . 
             0<|n-5i|≤n 
             i=0, 1, 2, … . 
  
Thus S(11, 5) = 11+(11-5)+(11-10)+(11-15)+(11-20) = 11+6+1+(-4)+(-9) = 5. 
Thus S|11, 5| = 11+|11-5|+|11-10|+|11-15|+|11-20| = 11+6+1+4+9 = 31. 
  
The sequence is S(n, 5): 3, 6, 2, 6, 0, 5, 10, 3, 9, 0, 7, 14, 4, 12, 0, … .     
The sequence is S|n, 5|: 11, 12, 20, 20, 30, 31, 32, 33, 45, 60, 61, 62, 80, 80, 100, … . 
   
More general: 
Let n>k≥1 be two integers and m≥0 another integer.   
Then the Generalized Back and Forth Summant is defined as: 
  
S(n, m, k) =  ∑ (n-k·i)    [for signed numbers]. 
                         i=0, 1, 2, …, floor[(n+m)/k]. 
  
S|n, m, k| =  ∑ |n-k·i|    [for absolute value numbers]. 
                       i=0, 1, 2, …, floor[(n+m)/k]. 
  
For examples: 
S(7, 9, 2) = 7+(7-2)+(7-4)+(7-6)+(7-8)+(7-10)+(7-12)+(7-14)+(7-16)  
               = 7+(5)+(3)+(1)+(-1)+(-3)+(-5)+(-7)+(-9) = -2. 
S|7, 3, 2| = 7+|7-2|+|7-4|+|7-6|+|7-8|+|7-10| = 7+5+3+1+1+3 = 20. 
   
References: 
  J. Dezert, editor, “Smarandacheials”, Mathematics Magazine, Aurora, Canada, No. 
4/2004; www.gallup.unm.edu/~smarandache/Smarandacheials.htm. 
  F. Smarandache, “Back and Forth k-Factorials”, Arizona State Univ., Special 
Collections, 1972. 
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  Over 300 sequences and many unsolved problems and conjectures  
  related to them are presented herein.  
   
  The book contains definitions, unsolved problems, questions, theorems 
  corollaries, formulae, conjectures, examples, mathematical  
  criteria, etc. ( on integer sequences, numbers, quotients, residues,  
  exponents, sieves, pseudo-primes/squares/cubes/factorials, almost primes,  
  mobile periodicals, functions, tables, prime/square/factorial bases,  
  generalized factorials, generalized palindromes, etc. ). 
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