On the number of Smarandache Zero-Divisors and

Smarandache Weak Zero-Divisors in Loop Rings
of the Loops L,(m):

W.B.Vasantha and Moon K. Chetry
Department of Mathematics
I.I.T. Madras, Chennai

Abstract

In this paper we find the number of smarandache zero divisors (S-zero di-
visors) and smarandache weak zero divisors (S-weak zero divisors) for the loop
rings Zo Ly, (m) of the loops Ly (m) over Zs. We obtain the exact number of S-zero
divisors and S-weak zero divisors when n = p? or p® or pg where p, ¢ are odd
primes. We also prove ZL,(m) has infinitely many S-zero divisors and S-weak
zero divisors, where Z is the ring of integers. For any loop L we give conditions
on L so that the loop ring Z,L has S-zero divisors and S-weak zero diviosrs.

§ Introduction:

This paper has four sections. In the first section, we just recall the definitions
of S-zero divisors and S-weak divisors and some of the properties of the new class
of loops L,(m). In section two, we obtain the number of S-zero divisors of the
loop rings ZyL,(m) and show when n = p% p an odd prime, Z,L,(m) has p(1 +
S 2 enen PH1(C.) S-zero divisors. Also when n = p?, p an odd prime, Z,L,(m) has
(1+ZT o even” O+ (1P 2 even”T1Cr) S-zero divisors. Again when n = pq,
p,q are odd primes, Z,L,(m) has p + q + p( 3;;, ewen TT1C) + g f;;ﬂ. oven P T1Cr)
S-zero divisors. Further we prove ZL,(m) has infinitely many S-zero divisors.
In section three, we find the number of S-weak zero divisors for the loop ring
ZyL,(m) and prove that when n = p?, p an odd prime, Z,L,(m) has 2p(1+2 PHCL)

S-weak zero divisors. Also when n = p?, p an odd prime, Z,L,(m) has 2p(3F ! PHC)+

r=2,r even

r 2 ,7 even

2p? (ZT —or even PHLC) S weak zero divisors. Again when n = pq, p,q are odd primes,
ZyL,(m) has 2[p(> %) Zor even TTCH) + a(>-) o even P TTCr)] S-weak zero divisors. We
prove ZL,(m) has infinitely many S-weak zero divisors. The final section gives some
unsolved problems and some conclusions based on our study.



§1: Basic Results
Here we just recollect some basic results to make this paper a self contained one.

Definition 1.1 [4]: Let R be a ring. An element a € R\ {0} is said to be a S-zero
divisor if a.b = 0 for some b # 0 in R and there exists z,y € R\ {0, a, b}such that

t. ax=0 or z.a=0
. by=0 or yb=0
wi. vy #0  or y.x #N0.

Definition 1.2 [4]: Let R be a ring. An element a € R\ {0} is a S-weak zero
divisor if there exists b € R\ {0, a} such that a.b = 0 satisfying the following conditions:
There exists z,y € R\ {0, a, b} such that

t. ax=0 or z.a=0
1. by=0 or yb=0
. zy=0 or yax=0.

Definition 1.3 [3]: Let L,(m) = {e,1,2,3...,n} be a set where n > 3,n is
odd and m is a positive integer such that (m,n) =1 and (m —1,n) = 1 with
m < n. Define on L,(m), a binary operation '’ as follows:

i. ei=1e=1i forall i€ L,(m)\{e}
ii. i2.=e for all i€ L,(m)
iti. 1.j =t, where t = (mj—(m—1)i)(modn) foralli,j € L,(m),
i #eand j #e.
Then L,(m) is a loop. This loop is always of even order; further for
varying m, we get a class of loops of order n + 1 which we denote by L,.

Example 1.1 [3]: Consider L;(2) = {e, 1,2,3,4,5}. The composition table
for L5(2) is given below:

e 1 2 3 4 5
ele 1 2 3 4 5
1({1 e 3 5 2 4
212 5 e 4 1 3
313 4 1 e 5 2
414 3 5 2 e 1
515 2 4 1 3 e




This loop is non-commutative and non-associative and of order 6.

Theorem 1.1 [3]: Let L,(m) € L,. For every t|n there exists ¢t subloops of
order k£ + 1, where £ = n/t.

Theorem 1.2 [3]: Let L,(m) € L,. If H is a subloop of L,(m) of order ¢+ 1
then t|n.

Remark 1.2 [3]: Lagrange’s theorem is not satisfied by all subloops of
the loop L,(m), i.e there always exists a subloop H of L,(m) which does not
satisfie the Lagrange’s theorem, i.e o(H) { o(L,(m)).

§ 2 : Determination of the number of S-zero divisors in 7Z,L,(m) and
ZLy(m).

In this section, we give the number of S-zero divisors in Z,L,(m). We
prove ZL,(m) (where n = p*> or pg, p and ¢ are odd primes), has infinitely
many S-zero divisors. Further we show any loop L of odd (or even) order if
it has a proper subloop of even (or odd) order then the loop ring Z,L,(m)
over the field Z; has S-zero divisors. We first show if L is a loop of odd
order and L has a proper subloop of even order, then 7,L,(m) has S-zero
divisors.

Theorem 2.1: Let L be a finite loop of odd order. Z, = {0, 1}, the prime
field of characteristic 2. Suppose H is a subloop of L of even order, then
ZoL has S-zero divisors.

Proof: Let |L| = n; n odd. Z,;L be the loop ring of L over Z,. H be the
subloop of L of order m, where m is even. Let X =) "  giand Y =" h;,
then

XY =0.
Now
(1+g)X =0, ¢ €L\H
also
(I4+hi+h;j+hy)Y =0, hjhj,hp € H
so that

(1+gt)(1+hi+hj+hk) 75 0.
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Hence the claim.

Corollary 2.1: If L is a finite loop of even order n and H is a subloop of
odd order m, then the loop ring 7, has S-zero divisors.

It is important here to mention that 7, may have other types of S-zero
divisors. This theorem only gives one of the basic conditions for Z;L to have
S-zero divisors.

Example 2.1 Let Z;Ls5(m) be the loop ring of the loop Los(m) over Z,,
where (m,25) =1 and (m—1,25) = 1. As 5|25, so Lys(m) has 5 proper subloops
each of order 6. Let H be one of the proper subloops of Lgs(m).

Now take

26 6
X=Y g, Y=Y hi g€Lys(m)h€H,
i=1 i=1

then
(1+9¢)X =0, g€ Los(m)\H

(1+h)Y =0, heH

but
(1+g:)(1+ hy) #0.

So X and Y are S-zero divisors in Z;Ly;(m).

Theorem 2.2: Let L, (m) be a loop of order n+1 (n an odd number, n > 3)
with n = p?, p an odd prime. Z, be the prime field of characeristic 2. The
loop ring 7Z,L,(m) has exactly

p—1

pl+ Y ¢y

r=2,r even

S-zero divisors.

Proof: Given L,(m) is a loop of order n+ 1, where n = p? (p an odd prime).
Let Z,L,(m) be the loop ring of the loop L,(m) over Z,. Now clearly the loop
L,(m) has exactly p subloops of order p + 1. The number of S-zero divisors
in Z,L,(m) for n = p? can be enumerated in the following way:

Let
n+1 p+1

X:Zgi and Y=th‘
i=1 i=1



where g; € L,(m) and h; € H,

for this
XY =0

choose

a=(1+g), g€ L,(m\H,

bZ(hi-i-hj), hi,hj EHj
then

a.X=0and bY =0

but

a.b # 0.

So X and Y are S-zero divisors. There are p such S-zero divisors , as we
have p subloops H, (j =1,2,...,p) of L,(m).

Next consider, S-zero divisors of the form

n+1
(hl + hz) Zgi =0, where hy, hy € Hj, g; € Ln(m)

i=1

put
n+1

X:(h1+h2), Y:Zgl
=1

we have Pt'C, such S-zero divisors. This is true for each of the subloops.
Hence there exists P™'Cy x p such S-zero divisors. Taking four elements
hi, ha, h3, hy from H; at a time, we get

n+1
(h1+h2+h3+h4)Zgi =0

=1

so we get P*1Cy x p such S-zero divisors.
Continuing in this way, we get

n+1
(hl + h2 + ...+ h,pfl) ZQZ = (0 where hl, hg, ceey hp,1 € HJ

1=1

So we get P*'C,_; x p such S-zero divisors. Adding all these S-zero divisors

we get
p—1

pl+ Y. PGy

r=2,r even



number of S-zero divisors in the loop ring Z,L,(m).
Hence the claim.

Example 2.2: Let Z5L49(m) be the loop ring of the loop Ls(m) over Z,,
where (m,49) = 1 and (m — 1,49 = 1). Here p = 7, so from Theorem 2.2,

Z2L4g (m) has
6

7(1 + Z 7+10r)

r=2, r even

S-zero divisors i.e 7(1+ 30, ... *C;) =889 S-zero divisors.

Theorem 2.3: Let L,(m) be a loop of order n+1 (n an odd number, n > 3)
with n = p?, p an odd prime. Z, be the prime field of characeristic 2. The
loop ring 7Z,L,(m) has exactly

p2—1 p—1
p(+ > "PC)+p 1+ Y PTG
r=2,r even r=2,r even

S-zero divisors.

Proof: We enumerate all the S-zero divisors of Z;L,(m) in the following
way:

Case I: As p[p®, L,(m) has p proper subloops H; each of order p? + 1. In
this case I, we have p? — 1 types of S-zero diviosrs. We just index them by
type I, type Iy,...type I,_;

Type I;: Here
n+1 p2+1
> 9> hi=0, gi€La(m), hi€H; (j=12..p).
i=1 =1

So we will get p S-zero divisors of this type.

Type I, :

n+1

(h1+h2) ) gi=0, hi,hy€ Hj (j=1,2,..,p).

i=1

As in Theorem 2.2, we will get PO, X p S-zero divisors of this type.



Type I5:

n+1
(h1+ha+hs+ha)d gi=0 hyhy hg by € Hy (j=1,2,...,p).

i=1

We will get »’*1C, x p S-zero divisors of this type.
Continuing this way,

Type I_;:

n+1
(h1+h2+---+hp271)29i =0, h; € Hj.
i=1
We will get ”’+1C,»_; x p S-zero divisors of this type.
Hence adding all this types of S-zero divisors we will get

p’-1

p1+ Y PGy

r=2,r even

S-zero divisors for case I.

Case [1: Again p*|p’, so there are p? subloops H; each of order p + 1.
Now we can enumerate all the S-zero divisors in this case exactly as in case

I above. So there are )
—

P14+ Z P

r=2,r even

S-zero divisors. Hence the total number of S-zero divisors in Z,L,(m) is

p2-1 p—1
p(l+ > PO +p+ Y PO,
r=2,r even r=2,r even

Hence the claim.

Example 2.3: Let Z;L,;(m) be the loop ring of the loop Ly;(m) over Z,,
where (m,27) = 1 and (m — 1,27) = 1. Here p = 3, so from Theorem 2.3,

ZQL27 (m) has
8 2

31+ Y FHoy+32a+ > o)

r=2, r even r=2, v even

S-zero divisors i.e 3(1+3Y.° Ve +9(1+>

r=2,r even

‘C,) = 1533 S-zero

r=2, r even

divisors.



Theorem 2.4: Let L,(m) be a loop of order n+1 (n an odd number, n > 3)
with n = pq, p,q are odd primes. Z; be the prime field of characeristic 2.
The loop ring Z,L,(m) has exactly

q—1 p—1

pra+pd+ D C)+q1+ D PTG

r=2,r even r=2,r even

S-zero divisors.
Proof: We will enumerate all the S-zero divisors in the following way:

Case [ : as p|pg, L,(m) has p subloops H; each of order ¢+1. Proceeding ex-
actly in the same way as in Theorem 2.3, we will get p+p(1+3%_} *1C)

r=2,r even
S-zero divisors for case I.

Case 1] : Again ¢|pq, so L,(m) has ¢ subloops H; each of order p+1. Now

p—1
r=2,r even

Hence adding all the S-zero divisors in case I and case /I, we get

as above we will get ¢ + ¢(1 + > PHI(C,) S-zero divisors for case I1.

qg—1 p—1
pra+p(l+ D, MC)+q1+ D PG
r=2,r even r=2,r even

S-zero divisors in Z,L,(m).
Hence the claim.

Now we prove for the loop ring ZL,(m) where n = p? or p* or pq
where p, ¢ are odd primes, ZL,(m) has infinitely many S-zero divisors.

Theorem 2.5: Let ZL,(m) be the loop ring of the loop L,(m) over Z,
where n = p? or p® or pg, (p,q are odd primes), then ZL,(m) has infinitely
many S-zero divisors.

Proof: Let L,(m) be a loop such that n = p?>. L,(m) has p subloops (say
Hj) each of order p + 1.

Now the loop ring ZL,(m) has the following types of S-zero divisors:

n+1
X =a—bhy+bhy —ahyand Y = ¥ _ g,

=1



where a,b € Z and h; € H;, g; € L,(m) such that

n+1

(a — bhy + bhy — ahg) > g; =0.

i=1

Again
(1-g)Y =0, g€ Ly(m)\H;
also
(a — bhy + bhy — ah3) ¥ hi =0, h; € H;
clearly

(L= gr)( Z hi) # 0.
h;€H;
So X,Y are S-zero divisors in ZL,(m). Now we see there are infinitely many
S-zero divisors of this type for ¢ and b can take infinite number of values in
Z. For n = p? or p* or pg we can prove the results in a similar way.
Hence the claim.

§ 3 : Determination of the number of S-weak zero divisors in Z;L,,(m) and
ZL,(m) :

In this section, we give the number of S-weak zero divisors in the loop
ring Z,L,(m) when n is of the form p? p® or pg where p and ¢ are odd primes.
Before that we prove the existance of S-weak zero divisors in the loop ring
Z>L. whenever L has a proper subloop.

Theorem 3.1: Let be a finite loop of odd order. Suppose H is a subloop
of of L of even order, then 7, has S-weak zero divisors.

Proof: Let |L| = n; n odd. Z>L be the loop ring. H be the subloop of L of
order m, where m is even. Let X =" g andY =1+hy, g, € L and h, € H,
then

X.Y =0.

Now

also



so that

i=1

Hence the claim.

Example 3.1 Let Z;Ly;(m) be the loop ring of the loop Lys(m) over Z,,
where (m,25) =1 and (m—1,25) = 1. As 5|25, so Los(m) has 5 proper subloops
each of order 6.

Take
26
X:Zgi, Y:1+ht, giEng,(m), htEH
i=1
then
XY =0
again
X(1+g)=0, @Fmh)eH
6
YY hi=0, heH
i=1
also

6

(1+g)) hi=0.

=1

So X and Y are S-weak zero divisors in ZsLss(m).

Example 3.2 Let Z5L,(m) be the loop ring of the loop Ly(m) over Z,,
where (m,21) =1 and (m—1,21) = 1. As 3|21, so Ly;(m) has 3 proper subloops
each of order 8.

Take 0
X=) hi, Y=1+h, h, heH
i=1
then
XY =0
again
X(14+g)=0, @FhecH
22
YD) =0, g€ Ly(m)
i=1
also

22
i=1

10



So X and Y are S-weak zero divisors in Z5L,(m).

Theorem 3.2: Let L,(m) be a loop of order n+1 (n an odd number, n > 3)
with n = p?, p an odd prime. Z, be the prime field of characeristic 2. The
loop ring Z,L,(m) has exactly

p—1

2p( Z P

r=2,r even

S-weak zero divisors.

Proof: Clearly the loop L,(m) has p subloops H; each of order p+ 1. As
in case of Theorem 2.3, we index the p — 1 types of S-weak zero divisors by
I, I,,...I, ;. Now the number of S-weak zero divisors in Z,L,(m) for n = p?

can be enumerated in the following way:

Type I,. Let
n+1

X=hi+hy, Y=Y g

=1

where hy, hy € H; and g; € L,(m) then

XY =0

take

p+1

a= Zhi’ and b= h3+ hy where h; € H;, (j=1,2,...,p)

i=1

then
aX =0, bY=0

also

ab = 0.

So for each proper subloop we will get P"'C, S-weak zero divisors and as
there are p proper subloops we will get ?*1C, x p such S-weak zero divisors.

Type ;. Again let

p+1

X=h+hy, Y= h, h€H,
i=1

then
XY =0

11



take
n+1

a=> g, 6 €La(m), b=hi+hy, hi,hy€ H,
=1

then
aX =0, bY =0

also
ab = 0.

Here also we will get ?*1C, x p S-weak zero divisors of this type.

Type I;.

n+1
(h1 +h2 +h3 -+ h4) Zgz = 0, hz € Hj and g; € Ln(m)

=1

As above we can say there are ?*'C, x p such S-weak zero divisors.

Type 1. .
p

(hl —+ h2 + h3 +h4)ZhZ = 0, hz € Hj.
i=1
There are P"'1C, x p such S-weak zero divisors.
Continuing this way,

Type I, 5.

n+1
(b1 +ha+ ot hpo1) Y gi=0, hi € Hj, g € Ly(m).

=1

There are ?"'C,_; x p such S-weak zero divisors.

Type Ip_;.
(h1+h2++hp_1)th :0, h,j € I‘IZ
i=1
Again there are P"'C, | x p S-weak zero divisors of this type.
Adding all these S-weak zero divisors we will get the total number of S-weak
zero divisors in Z,L,(m) as

p—1

2p( Y PTG,

r=2,r even

12



Hence the claim.

Theorem 3.3: Let L,,(m) be a loop of order n+1 (n an odd number,n > 3)
with n = p?, p an odd prime. Z, be the prime field of characeristic 2. The
loop ring Z,L,(m) has exactly

p2—1 p—1
2p( Z P2+IC,«) + 2p2( Z p-l—lcr)
r=2,r even =2, even

S-weak zero divisors.

Proof: We enumerate all the S-zero divisors of Z;L,(m) in the following
way:

Case I: As p|p?, L, (m) has p proper subloops H; each of order p*+1. Now
as in Theorem 3.2

Type I : B
n

(h1+h2) Y g:=0, g€ Ln(m), h; € Hj.
i=1
So we will get P40, x p S-weak zero divisors of type I;.

Type I : ;
pP+1

(h1+h2)2hz:0, hz EHj.
=1

So we will get P+, x p S-weak zero divisors of type I,.
Continuing in this way

Type Iy 5 :
n+1

(hl + h2 + ...+ hpzfl) Zgz = 0.
i=1
So we will get p2+10p2,1 x p S-weak zero divisors of this type .
Type I, :
p>+1
(b1 +ha+ .+ hyp 1) > hi=0.
i=1
So we will get p2+10p2_1 x p S-weak zero divisors of type I,:_;.
Adding all this S-weak zero divisors, we will get the total number of S-weak
zero divisors (in case I) in Z,L,(m) as 2p(>7 ! PO,

r=2,1 even

13



Case II: Again p?|p?, so there are p® proper subloops H; each of order
p+1. Now we can enumerate all the S-weak zero divisors in this case exactly
as in case [ above. So there are

p—1

2p2( Z pHCr)

r=2,r even

S-weak zero divisors in case [].

Hence the total number of S-weak zero divisors in Z,L,(m) is

p2—1 p—1
w( Y e+ Y TiC),
r=2,r even T=2,1 even

Hence the claim.

Theorem 3.4: Let L,(m) be a loop of order n+1 (n an odd number, n > 3)
with n = pq, p,q are odd primes. 7, be the prime field of characeristic 2.
The loop ring Z,L,(m) has exactly

qg—1 p—1
2[p( Z C) + g Z anen]
r=2,r even r=2,r even

S-weak zero divisors.

Proof: We will enumerate all the S-weak zero divisors in the following
way:

Case I: As p|pg, L,(m) has p subloops H; each of order ¢ + 1. Proceeding
exactly same way as in Theorem 3.3, we will get 2p( 3;; wwen 1THCy) S weak

zero divisors in case [.

Case [I: Again as ¢|pg, L,(m) has ¢ proper subloops H; each of order

p—1

p+1 _ o s .
r—or even' | Cr) S-weak zero divisors in

p+ 1. So as above we will get 2¢(>°
case [1.

Hence adding all the S-zero divisors in case I and case /I, we get

qg—1 p—1

2p( > ) +q( Y PTG

r=2,r even r=2,r even

S-weak zero divisors in Z,L,(m).
Hence the claim.

14



Now we prove for the loop ring ZL,(m) where n = p? or p? or pq, (p,q are
odd primes), ZL,(m) has infinitely many S-weak zero divisors.

Theorem 3.5: Let ZL,(m) be the loop ring of the loop L,(m) over Z,
where n = p? or p® or pq (p,q are odd primes). Then ZL,(m) has infinitely
many S-weak zero divisors.

Proof: Let L,(m) be a loop such that n = p?>. L,(m) has p subloops (say
H;) each of order p+ 1. Now the loop ring ZL,(m) has the following types
of S-weak zero divisors:

n+1
X =a—bhy +bhy —ahs, and Y =) g
i=1
where a,b € Z,g; € L,(m) and hy, he, hs € H; are such that

XY =0.
Again
p+1
XY hi=0, hi€H,

i=1

also
(1—9)Y =0, g+ hy) € Hj

clearly

p+1

(1- gt)(Z hi) = 0.

So X,Y are S-weak zero divisors in ZL,,(m). Now we see there are infinitely
many S-weak zero divisors of this type for ¢ and b can take infinite number
of values in ~7.

For n = p? or p® or pg, we can prove the results in a similar way.

Hence the claim.

§ 4 Conclusions:

In this paper we find the exact number of S-zero divisors and S-weak
zero divisors for the loop rings Z,L,(m) in case of the special type of loops
L,(m) € L, over Z,, when n = p* or p? or pq (p,q are odd primes). We also
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prove for the loop ring ZL,(m) has infinite number of S-zero divisors and
S-weak zero divisors. We obtain conditions for any loop L to have S-zero
divisors and S-weak zero divisors. We suggest it would be possible to enu-
merate in the similar way the number of S-zero divisors and S-weak zero
divisors for the loop ring Z,L,(m) when n = p*, s > 3;p a prime or when
n = pips...p; where pi,po,...p; are odd primes. However we find it difficult
when we take 7, instead of Z;, where p can be an odd prime or a com-
posite number such that (p,n+1) =1 or (p,n+ 1) = p and n is of the form
n=pip..pt t;>1,nis odd and p;,py, ..., p, are odd primes.
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