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PREFACE 

In this book authors introduce the notion of subset polynomial 
semirings and subset matrix semirings. The study of algebraic 
structures using subsets were recently carried out by the authors. 
Here we define the notion of subset row matrices, subset 
column matrices and subset m × n matrices. Study of this kind 
is developed in chapter two of this book. 

If we use subsets of a set X; say P(X), the power set of the 
set X; as the entries of the collection of subsets of m × n 
matrices say S; then we see (S, ) is a semigroup (semilattice) 
and (S, ) is a semigroup (semilattice). Thus (S, , ) is a 
semiring (a lattice).  Hence if P(X) is replaced by a group or a 
semigroup we get the subset matrix to be only a subset matrix 
semigroup. If the semiring or a ring is used we can give the 
subset collection only the semiring structure.  

The collection of subsets from the polynomial ring or a 
polynomial semiring can have only a semiring structure. Several 
types of subset polynomial semirings are defined described and 
developed in chapter three of this book.  
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Using the subset polynomials (subset matrices) we built 
subset semivector spaces. Study in this direction is interesting 
and innovative which forms the chapter four of this book. Every 
chapter is followed by a collection of problems. 

 
We thank Dr. K.Kandasamy for proof reading and being 

extremely supportive. 
 
 

W.B.VASANTHA KANDASAMY 
FLORENTIN SMARANDACHE 

 



 
 
 
 
Chapter One 
 
 

 
 
INTRODUCTION 
 
 
 
 

In this book authors for the first time study algebraic 
structures using subsets of a ring or a field or a semiring or a 
semifield. We define describe and develop mainly subset 
polynomial semiring and subset matrix semiring.  It is important 
and interesting at this juncture to keep on record that the 
maximum algebraic structure we can give to these subset 
structures is a semifield (in some cases semiring). 

 
 Further the study of algebraic structures using subsets 
started in the 18th century by Boole who made the collection of 
all subsets of a set into an algebra in a very special way was 
named after him.  However {P(X), , } is a Boolean algebra 
of order 2|X| if |X| <  and P(X) is the power set of X.  
 
 After this study we see there are not many well defined 
algebraic structures using subsets of an algebraic structure. 
 
 However we have the subsets of a set with ‘’ and ‘’ is 
made into a nice topological space.  Thus we have topology 
developed on them.  But we do not have any algebraic structure 
other than Boolean algebra developed using subsets of a set X. 



8 Subset Polynomial Semirings and Subset Matrix Semirings 
 
 
 

Of course we have the concept of semilattices using subsets.  
 

 Here we develop a algebraic structure which is a semiring / 
semifield. In fact by this method we in the first place are in a 
position to generate finite non commutative semirings.  
 
 Further for every subset collection (subsets from algebraic 
structure) we can define two types of semirings.  This is 
described in this book.  Finally we in this book introduce the 
concept of polynomial subset semirings and subset polynomial 
semiring S[x] and P[x] respectively. We show how we can solve 
polynomial subset equations in P[x]. 
 
 We have three cases to our surprise. 
 
(i) Completely solvable subset polynomial equations for a 

subset solution. 
(ii) Partially solvable subset polynomial equations and  
(iii) Not solvable subset polynomial equations in P[x]. 
 

We leave it as an open conjecture.   
If P[x] = {Collection of all subsets from C(Zp)[x], p a 

prime} be the polynomial subset semiring.   
 
Can we say P[x] will be algebraically closed polynomial 

subset semifield?   
 
For we see P[x] = {Collection of all subsets from C[x]} be 

the polynomial subset semifield then P[x] is an algebraically 
closed semifield for every pair A, B  P[x], A = B is completely 
solvable. 



 
 
 
 
 
 
Chapter Two 
 
 

 
 
SUBSET MATRICES 
 
 

In this chapter we proceed onto study for the first time the 
notion of subset matrices; the subsets can be from a set or a 
semigroup or a ring or a field or a group or a semiring or a 
semifield.  We give algebraic structure to these subset matrices. 
 
 Let X = {a1, …, an} be a set, the power set of X denoted by 
P(X) where  
P(X) = {Collection of all subsets of X including X and }. 
 
DEFINITION 2.1:  Let X be a set {a1, a2, …, an} and P(X), the 
power set of X.   
 

Let SR = {(p1, p2, …, pt) where  pi  P(X)}; then we define 
SR to be the subset row matrix (1  i  t). 
 

Let SC = 

1

2

m

p
p

p

 
 
 
 
 
 


 where pj  P(X), 1  j  m; 

 
we define SC as the subset column matrix. 
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SS = 

 
 
 
 
 
 

  

11 12 1n

21 22 2n

n1 n2 nn

p p ... p
p p ... p

p p ... p

 where pij  P(X); (1  i, j  n) 

 
is defined as the subset square matrix. 
 

 SRect = 

 
 
 
 
 
 

  

11 12 1m

21 22 2m

n1 n2 nm

p p ... p
p p ... p

p p ... p

 where pij  P(X); 1  i  n  

 
and 1  j  m is defined as the subset rectangular matrix. 
 
 We will illustrate this situation by some examples.  Further 
even if we do not put SC or SR or SS or SRect, the reader can 
follow by the very context. 
 
Example 2.1:  Let  
P(X) = {Collection of all subsets of the set X = {1, 2, 3, 4}}, 
that is the power set of X.   
 

S = ({}, {1, 2}, {4, 2}, {1, 2, 3}, {X}, {1,2}, , {2,3}) is a 
1  8 subset row matrix of the power set P (X). 

 

A = 

{3}
{2}

{1,2}

X
{ }

{1,2,3}

 
 
 
 
 

 
 
 

 
  

 is a 7  1 subset column matrix with entries  

 
from P(X) where X = {0, 1, 2, 3}. 
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Let Y = 

{ } {1,2,3} {1,2} {3} {4}
{X} {2} {3} {4} { }
{2,1} {3,2} {3,4} {4,2} X
{ } {2,4} {2,3} { } {1,2,3}

 
  
 
 

  

 be a 4  5  

 
subset rectangular matrix with entries from the power set P(X) 
where X = {1, 2, 3, 4}. 
 

Let B = 

{ } X {1,2} {1} {2} {3}
X { } {3} {3} {4} {1,2,3}

{2,3} {1} { } { } {3} {1,2}
{3} {4} {4} {1,2,3} { } X
{4} {3,2} {1} {2} {4}

{4,3} {3,2,4} {1,2,3} X {1,4,3}

 
  
  
 

 
 
 
  

 

 
be a 6  6 subset square matrix from P(X) where X = {1,2,3,4}. 
 
Example 2.2:  Let X = {a1, a2, a3, a4, a5, a6} be a set; P(X) the 
power set of X.  Let 
 

 A = 

6 1

1

2 5

3 1 4

4

5 6 2

{a ,a }
{a }

{a ,a }
{a ,a ,a }

{a }
{a ,a ,a }

X

 
 
 
 
 
 
 
 
 
  

 be the 6  1 subset column matrix  

 
of P(X). 
 
 Take B = (X, , {a1, a2, a3, a4, a5}, {a1}, {a3, a2, a6}, {a6, a1}, 
{a2, a3, a4}, {a5, a1, a6}, ), B is a 1  9 subset row matrix with 
entries from P(X) of X. 
 



12 Subset Polynomial Semirings and Subset Matrix Semirings 
 
 
  

 Let C = 

1 2 3 4

5 6 3 6 5

6 6 1 3

1 2 3 1 3 4 6 5

4 6 5 4 6 6 1

{ } {a ,a ,a } {a } X
{a } {a } {a ,a } {a }
{a } X { } {a ,a ,a }

{a ,a ,a } {a ,a } {a } {a ,a }
{a ,a ,a } {a ,a } {a ,a } X

 
 
 
 
 
 
  

 

 
be a 5  4 subset rectangular matrix of X or with entries from 
P(X). 
  

D = 

1 2 3 4 5 6

6 1 1 2 4

4 6 4 2 3 1 2

1 2 4 6 6 5 2 3

1 2 3 3 4 5 6

{a } {a } {a } {a } {a a }
{a a } {a a } {a } X

X {a a } {a a } {a a a }
{a a } {a a } {a } {a } {a a }

{a a a } X {a } {a a a }

 
  
 
 
 
  

 

 
is a 5  5 subset square matrix of X or with entries from P(X). 
 
Example 2.3:  Let X = Z+  {0},  
 

P = {Collection of all subsets of X together with X and } 
be the power set of X.  P is of infinite order. 
 
 Let A = (p1, p2, …, p14); pi  P, 1  i  14 be the subset row 
matrix of X or with entries from P. 
 
 

 B = 

1

2

19

p
p

p

 
 
 
 
 
 


; pj  P, 1  j  19 be a 19  1 subset column  

 
matrix of X = Z+  {0}. 
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 Consider  
 

C = 

11 12 19

21 22 29

161 162 169

p p ... p
p p ... p

p p ... p

 
 
 
 
 
 

  
; 

 
 C is a 16  9 subset matrix of X or with entries from P, pij  
P; 1  i  16, 1  j  9. 
 

 Let D = 

11 12 151

21 22 152

31 32 153

41 42 154

p p ... p
p p ... p
p p ... p
p p ... p

 
 
 
 
 
 

 be a 4  15 subset rectangular  

 
matrix of X or with entries from P.   
 

Now we have seen examples of subset matrices of a set.   
 

Next we show we can only define two operations on the 
subset of a set viz;  and  of subsets.   

 
Thus when the set under consideration is just a set with no 

operations on it we on this subset matrices define operations ‘’ 
and ‘’. 

 
 Let CR = {Collection of all 1  n subset row matrices with 
entries from a power set  P(X) of X}. 
 
 We can define ‘’ and ‘’ on CR.  {CR, } is a semilattice 
or a commutative semigroup.   
 

{CR, } is a semilattice or a commutative semigroup.   
{CR, , } is a lattice. 
 
 We will illustrate this situation by some examples. 
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Example 2.4:  Let S = {Collection of all 1  5 subset matrices 
with entries from the power set P(X); where X = {1, 2, 3, 4, 5, 
6, 7, 8}} be a semigroup under ‘’ i.e., {S, } is a semilattice.   
 

Let A = ({6,1}, {2,3,8}, {}, X, {5,6,1,7}) and  
  

B = ({1,7}, {2,3,4}, {5,6,7}, {3,8,6}, X) be in S;  
 
A  B = ({6,1}  {1,7}, {2,3,8}  {2,3,4}, {}  {5,6,7},  

  X  {3,8,6}, {5,6,1,7}  X) 
 
      = ({1,6,7}, {2,3,4,8}, {5,6,7}, X, X). 
 
 Clearly A  B  S. 
 
 We see B  A = A  B. 
 
 (S, ) is a commutative subset matrix semigroup. 
 
 
Example 2.5:  Let SC = {Collection of all 7  1 subset column 
matrices with entries from the power set of X, where  
X = {1, 2, …, 12}}.   
 

(SC, ) is a semilattice. 
 
 

 Take A = 

{1,12,5}
{3,10,6}
{8,7,11}

X
{1,2,3,4,5}

{12,6,3,9}

 
 
 
 
 
 
 
 

 
  

  and  B = 

{1,2,7}
{5,10}
{8,2,4}

{7,6,5,4,2,3}
{1,2,5,7,9,10}
{7,8,4,9,11}
{12,10,9,7}

 
 
 
 
 
 
 
 
 
  

 in SC.   
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We find A  B = 

{1,12,5} {1,2,7}
{3,10,6} {5,10}
{8,7,11} {8,2,4}
X {7,6,5,4,2,3}

{1,2,3,4,5} {1,2,5,7,9,10}
{7,8,4,9,11}

{12,6,3,9} {12,10,9,7}

 
  
 
 

 
 
 

 
  

 

 
 

      = 

{1}
{10}
{8}

{7,6,5,4,2,3}
{1,2,5}

{ }
{12,9}

 
 
 
 
 
 
 
 

 
  

 is in SC. 

 
 

It is easily verified (S, ) is a commutative subset matrix 
semigroup (or semilattice) of finite order. 
 
Example 2.6:  Let  
 
 

SR = 
1 2 3 4

5 6 7 8

9 10 11 12

a a a a
a a a a
a a a a

 
 
 
  

 ai  P(X)  

 
where X = {1, 2, …, 19}, 1  i  12} be the collection of subset 
3  4 rectangular matrices with entries from P(X). 
 
 We see {SR, } is a subset matrix semigroup which is 
commutative. 
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 Let A = 

{6,2,1} {18,10} {19,1} {X}
{7,3,8} {3,1,2,13,6} {10,3,4} {9,2,3}

{4,5,6,2,3} {4,1,10,7} X

 
 
 
  

  

and  
 

B = 
X {1,19,12,9} {9,7,18,6,3}

{3,9,11,14} {3,7,9,2} {10,6,4,9}
{6,7,9} {10,8,1} {16,9} X

 
  
  

  

 
be in SR. 

 

  A  B = 
{6,2,1} {18,10} X

{7,3,8} {3,9,11,14} {3,1,2,13,6}
{4,5,6,2,3} {6,7,9} {4,1,10,7} {10,8,1}

 
  
  

 

 
{19,1} {1,19,12,9} {X} {9,7,18,6,3}
{10,3,4} {3,7,9,2} {9,2,3} {10,6,4,9}

X {16,9} X

  
  
  

 

 
{6,2,1} X {1,19,12,9} {X}

{3,9,7,8,11,14} {3,1,2,13,6} {3,4,2,7,9,10} {2,9,4,6,9,10}
{4,5,6,2,3,7,9} {1,4,7,8,10} X X

 
   
  

  

 
is in SR. 
 
 Thus {SR, } is a subset matrix semigroup (or semilattice). 
 

Example 2.7:  Let SR = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 ai  P(X)  

 
where X = {1, 2, 3, …, 18}; 1  i  9} be a 3  3 square subset 
matrix of the set X.   
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{SR, } is a subset matrix semigroup / semilattice. 
 

Take  

A = 
{6,18,5} {2,3,4,5,6}

{7,8,9,10} {11,12,13} X
{14,15,16,17} {18,1,2,5} {3,8,13,18}

 
 
 
  

 and 

 

B = 
{6,1,5,11} {3,2} {4,5,6,8,10,11}

{3,8,5,10,11} X {5,6,7,8}
{16,17,1} {1,5,3,2,11,13}

 
 
 
  

 

 
in SR.  
 
To find  
 

AB = 
{6,18,5} {6,1,5,11} {3,2}

{7,8,9,10} {3,8,5,10,11} {11,12,13} X
{14,15,16,17} {16,17,1} {18,1,2,5} {15,3,2,11,13}

 
  
  

 

 
{2,3,4,5,6} {4,5,6,8,10,11}

X {5,6,7,8}
{3,8,13,18}

 
 
 

 

 

= 
{6,5} {4,6,5}
{8,10} {11,12,13} {5,6,7,8}
{16,17} {1,2,5}

 
 
 
  

  SR. 

 
 It is easily verified SR is a subset matrix commutative 
semigroup and is of finite order. 
 

 A  () = ()   where () = 
   
    
    
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A  (X) = (A) and (X) = 
X X X
X X X
X X X

 
 
 
  

 is in SR. 

 
Example 2.8:  Let SM = {Collection of all subset matrices of the  
 

form 1 2 3 4 5 6

7 8 9 10 11 12

p p p p p p
p p p p p p
 
 
 

 with pi  P(X) where  

 
X = {1, 2, 3, …, 10}, 1  i  12}. {Sm, } and {Sm, } are 
subset matrix semigroups of finite order which is commutative. 
 

 Let A = 
{6,10} {3,5} {4} {7,8,9} {1}
{5,6,7} {8,9,10} {9,4} {8,9}

 
   

 

and  
 

B = 
{9,7,3} {3} {8} {7,6,4} {1,2,3,4}

X {8,6,2} {7,9} {10,7,8,9} X
 

  
 

 
be in SM.  We find 
 

 A  B = 
{6,10} {9,7,3} {3,5} {3} {4} {8}

{5,6,7} X {8,6,2} {8,9,10} {7,9}
  

   
 

 
{7,8,9} {7,6,4} {1} {1,2,3,4}

{9,4} {10,7,8,9} {8,9} X
   

   
 

 

= 
{10,6,9,7,3} {3,5} {8,4}

X {8,6,2} {7,8,9,10}




 

 
{7,8,9,6,4} {1,2,3,4}

{10,7,8,9,4} X
 

 
 ;  

A  B is in SM. 
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 A  B = 
{3} { } { } {7} {1}

{5,6,7} {9} {9} {8,9}
   

   
  (S, ). 

 
 

Example 2.9:  Let ST = 

1 2

3 4

5 6

7 8

9 10

p p
p p
p p
p p
p p

 
 
  
 
 
  

 pi  P(X) where  

 
X = {1, 2, 3, 4, 5, 6}, 1  i  10}, (S, ) be the subset column 
matrix semigroup of finite order. 
 

Let A = 

{1} {3,6}
{2,4} {1,2,3,4}
{5,1}

X {4,5,1}
{2,3,4} {1,6,5}

 
 
 
 
 
 
  

 and B = 

{1,2}
X {1,2}

{3,5} {1,2,3}
{6,3}

X

 
 
 
 
 

 
  

 

 
 
be in ST. 
 

A  B = 

{1}
{2,4} {1,2}
{5}

{6,3}
{16,5}

 
 
 
 
 

 
  

  ST. 

 
This is the way  operation is performed. 
  
 All the operations done on them are natural product n.   
We see for any matrix  A, 
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I = 

X X ... X
X X ... X

X X ... X

 
 
 
 
 
 

  
 acts as the identity under ‘’. 

 

For if A = 
1 2 3

4 5 6

7 8 9

p p p
p p p
p p p

 
 
 
  

 and I = 
X X X
X X X
X X X

 
 
 
  

 are in S. 

 
A  I = A = I  A. 
However A  I = I  A = I for all A, I  S. 

 
Further ()  A = A and ()  A =  where  
 

() = 

...

...

...

   
    
 
 
   

  
 for all A  S. 

 
Example 2.10:  Let  
 

S = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 ai  P(X); the power set of X; 

 
where X = {1, 2, I, 2I, 3, 3I, 4, 4I, 5I, 5, 6, 6I}} that is ai’s are 
subsets from the power set P(X) where set  
{1, 2, I, 2I, 3, 3I, 4, 4I, 5, 5I, 6, 6I} = X. 
 

 That is if A = 
X {6, I,6I}

{I} {2,2I}
{3,3I, I} {6I,5I, I,5,2}

 
  
  

 and  
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 B = 
{3,3I,6,6I,2,2I} {3I}

{X} {4,4I,2} {3I,2}
{6,5I,5,4I} {X}

 
 
 
  

 are in S.   

 
We find A  B and A  B. 
 

 A  B = 
{3,3I,6,6I,2,2I} X {6,6I, I}

X {2,2I,4,4I} {3I,2}
{3,3I, I,5,5I,4I,6} X

 
 
 
  

  S. 

 
 

 A  B = 
{3I}

{I} {2}
{6I,5I, I,5,2}

  
  
   

 is in S. 

 
 This is the way  and  are defined for any arbitrary power 
set P(X) of the set X and the  subset matrices take its entries 
from P(X). 
 
Example 2.11:  Let  
 

S = 1 2

3 4

a a
a a

 
 
 

 ai  P(X) 

 
where X = {iF, 3iF, 8iF, 2iF, 2, 4, 6, 8, 9, 9iF, 0, 1, 5iF}  C(Z10), 

 
1  i  4} 

 
be a subset of square matrices.   
 

{S, } and {S, } are subset matrix subsemigroups.  
 

We just show how the operations are performed on them. 
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Let A = 
F F F

F F F

F F F

{6,8,9,9i ,2i } X {3,2i }
{8,0,1,i ,5i } {3} {9,9i ,1}
{i ,2i ,5i } X

 
 
 
  

 and  

 
 

B = 
F F F

F F

{8,8i ,9,9i } X {2i ,3,0,1}
X {8}

{1,2,4,i ,2i } X {0,1,2,4,6,8,9}

 
  
  

 be in S. 

 
 

A  B = 
F F

F F

F F

{8,9,9i } X {3,2i }
{8,0,1,i ,5i }

{2i ,i } {0,1,2,4,6,8,9}

 
   
  

. 

 
 

 A  B = 
F F F F

F

F F F

{6,8,9,9i ,2i ,8i } X {0,3,1,2i }
X {8,3} {9,1,9i }

{1,2,4,i ,2i ,5i } X X

 
 
 
  

 

 
A  B and A  B  S for A, B  S. 
 
 
Example 2.12:  Let  
 

   S = 

1 2

3 4

5 6

7 8

9 10

11 12

a a
a a
a a
a a
a a
a a

 
 
 
 
 
 
 
 
  

 ai  P(Z5 (g)); g2 = 0, 1  i  2} 

 
 
be the collection of 6  2 subset matrices. 
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 Let A = 

{0,2,2g,3 4g} {1,2,3,g,2 3g,g 1}
{4g 4,2g,3g,1 2g}

{2,3,g} X
X {2,2g}

{1,g,2g} {4,4g,3}
{g,1 2g,3g}

   
    
 
 
 
 
 

   

 and 

 

B = 

X {2g,3g,4,4g}
{3,4,1}

{2,2g,1,g} {g,2g,3g,4g}
{ } X

{1,2,3,4,0} {1 g,2 g,3 g}
{1,g,2,2g,3,3g} {4 g,4g,2g,3g,2}

 
  
 
 

 
   
 

  

 be in S. 

 
We find A  B and A  B. 
 

A  B = 

{0,2,2g,3 4g} { }

{2,g} {2g,3g,4g,g}
{2,2g}

{1}
{g,3g}

  
   
 
 

 
 
 

  

 

 
A  B = 
 

X {1,2,3,g,2 3g,g 1,2g,3g,4,4g}
{3,4,1} {4g 4,2g,3g,1 2g}

{2,3,g,2g,1} X
X X

{1,2,3,4,g,2g} {2,2g,1 g,2 g,3 g}
{g,1 2g,3g,1,2,2g,3} {4 g,4g,2g,3g,2}

  
   
 
 
 
   
 

   

. 
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  Clearly A  B and A  B  S. 
 
 Now we see the subset matrix can be given two operations 
simultaneously say;  and .   
 

If S is any subset matrix with entries from a power set P(X) 
of a set X, certainly {S, , } is a distributive lattice.  If X is of 
finite order so is S. 
 
 We will illustrate this situation by some examples. 
 
Example 2.13:  Let  

S = 

1

2

3

4

5

a
a
a
a
a

 
 
  
 
 
  

 ai  P(X); 

 
where X = {1, 2, 3, 4, 5, 6, 7, 8}; 1  i  5} 

 
be a subset 5  1 matrix; (S, , ) is a subset lattice of P(X). 
 
Example 2.14:  Let  
 

S = 

1 13

2 14

12 24

a a
a a

a a

 
 
    

 
 where ai  P(X), 

 
X = {8, I, 7I, 3+4I, –5, –8I+3, 9I+4, –3I, 5–4I, 9+12I, 20I}, 

 
1  i  24} 

 
be the 12  2 subset column matrix of P(X). (S, , ) is a 
distributive lattice of finite order. 
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Example 2.15:  Let  
 

S = 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a
a a a a
a a a a
a a a a

 
 
    

 ai  P(Z12(g)) 

 

where X = {Z12 (g) = {a+bg} | a, b  Z12, g2 = 0} 
 
be the set of dual modulo integers 1  i  6} be the subset 
square matrices.  
 

{S, , } is a distributive lattice.   
 

Infact A  {} = A where  = 

    
     
    
 
    

 for all A  S. 

 
 A  () = () for all A  S. 
 

 A  (X) = A where X = 

X X X X
X X X X
X X X X
X X X X

 
 
 
 
 
 

 and  

 
 

A  (X) = X for all A  S. 
 
Example 2.16:  Let S = {6  10 subset matrices with entries 
from the power set.  P(X) where X ={1,2,3, …,16}}, {S, , } 
is a lattice. 
 
 Now having seen examples of semigroups, lattices and 
semilattices of subset matrices with entries only from a power 
set P(X) of a set X.  
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 We now proceed onto define substructures of them. 

 
DEFINITION 2.2:  Let S be a semigroup of subset matrices of a 
power set P(X)of a set X under the binary operation ‘’.  Let P 
 S if (P, ) is itself a semigroup of subset matrices under  we 
define (P, ) to be a subset matrix subsemigroup of S.  (This is 
true if  is replaced by the operation ).   
 

We define a subset matrix subsemigroup (P, ) to be a 
subset matrix ideal if for all p  P and s  S, p  s is in P  
 ( p  s  P in case (S, ) is the subset matrix semigroup taken 
for working).   
  

We will first illustrate this situation by some examples. 
 
Example 2.17:  Let S ={Collection of all 3  3 subset matrices 
with entries from the power set P(X) where X = {0, 1, 2, …, 
19}} be a subset 3  3 matrix semigroup under .  Take  
 

P = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 ai  P(Y) 

 

where Y = {0, 1, 2, …, 10}  X; 1  i  9}  S; 
 
(P, ) is a subset 3  3 matrix subsemigroup of X.   

 
Clearly (P, ) is not a subset matrix ideal of S. 

 

For take A = 
{0,1,2} {3,4} {5,6}

{10} {9,6} {3,6}
{1,2,3,4,5} {9,10,1} {7}

 
 
 
 
 

 in P. 

 

Let B = 
{9,12} {7,16} {3,14}
{16} {6,8,15} {19,13,1}

{5,6,16} {7,8} {2}

 
 
 
 
 

  S. 
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 We find A  B  
 

= 
{0,1,2,9,12} {3,4,7,16} {3,5,6,14}

{10,16} {6,8,9,15} {3,6,1,13,19}
{1,2,3,4,5,6,16} {7,8,9,10,1} {2,7}

 
 
 
  

. 

 
 Clearly A  B  P only A  B  S.  So P is not an subset 
matrix ideal of S.  Thus P is only subset matrix subsemigroup of 
S. 
 
Example 2.18:  Let S = {Collection of all 4  3 subset matrices 
with entries from the power set P(X), where X = {1, 2, …, 10}} 
be the subset matrix semigroup under the operation ‘’. 
 
 Take P = {Collection of all 4  3 subset matrices with 
entries from the power set P(Y) where Y = {2, 4, 6, 8, 10}  
X}; {P, } is a subset 4  3 matrix subsemigroup of S.  We see 
{P } is also a subset 4  3 matrix ideal of {S, }. 
 
 Inview of these two examples we give the following 
theorems. 
 
THEOREM 2.1:  Let S be a subset matrix semigroup under ‘’.  
Let {P, } be a subset matrix subsemigroup of S.  {P, } is not 
an ideal of {S, }. 
 
 Proof is left as an exercise to the reader. 
 
THEOREM 2.2:  Let {S, } be a subset matrix semigroup under 
the operation .  Let (P, ) be a subset matrix subsemigroup of 
S (P, ) is a subset matrix ideal of (S, ). 
 
 The proof of both the theorems are direct and hence left as 
an exercise to the reader. 
 
Example 2.19:  Let S = {Collection of all 1  7 row matrices 
with entries from P(X) where X = {g, 1+g, 2g, 5g, 3g, 6g, 4g, 
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 2+3g, 5+6g, 1, 2, 3, 4, 5, 6, 3+2g, 6+6g, 5+5g, 4+4g}} be a 
subset 1  7 row matrix semigroup under . 
 
 Take P = {(a1   a2  a3  a4) | ai  P(X), 1  i  4}  S be 
the subset 1  7 row matrix subsemigroup of S under .  
Clearly (P,  ) is not a subset 1  7 row matrix ideal of S.   
 

For if A = ({3, 2g, 3g}, {5+5g, 4g}, {1+g, 2g, 3g}, {4+4g}, 
{6+6g, 5+5g}, {6g, 4g, 5g, 3g}, {1,2,3,4})  S and B = ({2g, 
5+5g}, , {6+6g, 2+3g}, , {1,2,3,4,5}, , {1+g, 2g, 3g, 4g, 5g, 
6g})  P.   
 

We see  A  B = ({3, 2g, 3g, 5+5g}, {4g, 5+5g}, {1+g, 2g, 
3g, 6+6g, 2+3g}, {4+4g}, {6+6g, 5+5g, 1, 2, 3, 4, 5}, {6g, 4g, 
5g, 3g}, {1, 2, 3, 4, 1+g, 2g, 3g, 4g, 5g 6g})  P. 
 
 Thus {P, } is only a subset 1  7 row matrix 
subsemigroup of S and is not a subset 1  7 row matrix ideal of 
S. 
 
Example 2.20:  Let S = {Collection of all 5  3 matrices with 
entries from P(X) where X = {C(Z10)}} be the subset 5  3 
matrix semigroup under . 
 
 Let P = {Collection of all 5  3 subset matrices of the form  
 

{3g,1} {2 2g,10,6,8}
{5,6,7g}

{8 3g,2g} {1 2g,3g,4g}
{1,2,3,4,5,6,7}

X {g,2g,3g,4g,5g} {1 2g,1 3g,1 4g,1 5g}

  
   
   
 

  
     

 

 
entries of P are form P(X)}  S; (P, ) is a subset 5  3 matrix 
subsemigroup as well as subset 5  3 matrix ideal of (S, ). 
 
 For take A  S and B  P, we see A  B  P, hence the 
claim. 
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 Thus under all conditions if (S, ) is a subset matrix 
semigroup.   All subset matrix subsemigroup are subset matrix 
ideals of (S, ). 
 
Example 2.21:  Let S =  {Collection of all subset 3  5 matrices 
with entries from the powerset P(X)  where X = {C (Z8) (g) = a 
+ bg | a, b  C(Z8), g2 = g}} be the subset 3  5 matrix 
semigroup under . 
 
 Let P = {Collection of all subset 3  5 matrices with entries 
from P(Z8)  P(X)} be the 3  5 matrix semigroup under .   
P is a subset 3  5 matrix ideal of S. 
 
 If the operation ‘’ is replaced by  certainly; P is not a 
subset matrix ideal of S. 
 
Example 2.22:  Let S = {Collection of all 8  8 matrices with 
entries from P(X) where X = Q} be the subset 8  8 matrix 
semigroup under  (or ).  Clearly S is of infinite order.  S has 
subset 8  8 matrix subsemigroups and ideals under . 
(However S has subset 8  8 matrix subsemigroups which are 
not subset 8  8 matrix ideals of S under ). 
 
 Now we proceed onto define in case of subset matrix 
lattices with entries from a power set P(X) the concept of 
sublattice of subset matrices, ideals of subset matrices and 
filters of subset matrices. 
 
 We just give an informal definition of these notions. 
 
 Consider S = {Collection of all m  n matrices with entries 
from a powerset P(X) of the set X}, (S, , ) is a lattice of 
subset m  n matrices.   
 
 Let {P, , }  {S, , }, if P by itself is a lattice of 
subset m  n matrices we define {P, , } to be the sublattice  
of subset of m  n matrices or subset m  n matrix sublattice  
of S. 
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  A subset (P, ) is a subsemilattice of subset matrices (S, ) 
and for all p  P and s  S,  p  s  P then P is defined as the 
subset matrix ideal of the subset matrix lattice S.   
 

If {F, } is a subsemilattice of subset matrices and for all  
s  S and f  F; s  f  F; then we define F to be a subset 
matrix of filter of the subset matrix lattice of S. 
 
 We will illustrate both the situations by some simple 
examples. 
 
Example 2.23:  Let  
 

S = 
a b
c d

 
 
 

a, b, c, d  P(X) where X = {1, 2, 3, 4, 5, 6}} 

 
be a lattice of subset matrices. 
 

Take P = 
a b
c d

 
 
 

a, b, c, d  P(Y); Y = {1, 3, 5}}  S, 

 
{P, } is a subset matrix ideal of S. {P, }  S is a subset 
matrix of sublattice of S. 
 
 Clearly P is not a subset matrix filter of S. 
 

For if s = 
{6,1} {2,3}

{1,2,4} {4,6,5}
 
 
 

 and p = 
{1,3}
{5} {5,1}

 
 
 

  P. 

{P, } is also a semilattice so s  p = 
{1}

{5}
 

  
  P. 

 

s  p = 
{1,3,6} {2,3}

{1,2,4,5} {4,6,5,1}
 
 
 

  P; 

 
so P is not a filter of S.   
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We see P is not a filter but P is a ideal of subset matrix 

lattice. 
 
Example 2.24:  Let  
 

S =  1 2 3 4

5 6 7 8

a a a a
a a a a

 
 
 

ai  P(X); 

 
X = {1, 2, …, 18},  1  i  8} 

 
be the subset matrix of lattice.   
 

P = 1 2 3 4

5 6 7 8

a a a a
a a a a

 
 
 

 ai  P(Y); 

 
Y = {1, 3, 5, 7, 9, 11, 13, 15, 17}; 1  i  8}  S; {P, ,  } 

 
and {P, , } are just subset matrix sublattices of S. 
 
 {P, } is a subset matrix ideal of S; {P, } is not a subset 
matrix filter of S. 
 
 Interested reader can find examples of subset matrix ideals 
and subset matrix filters.  
 
 Now we proceed onto define subset matrix of a semigroup. 
 
DEFINITION 2.3:  Let S = {Collection of all m  n matrices with 
entries from a semigroup P, under product }.  If for A, B  S 
we define in A  B; the product of subsets as product operation 
in the semigroup.  Then (S, ) is again a semigroup called the 
subset matrix semigroup of the semigroup (P, ).   (The  can 
be usual product of matrices or natural product n of matrices). 
 
 We will illustrate this situation by some examples. 
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Example 2.25: Let S = {collection of all 1  5 row subset 
matrices from the subset of the semigroup P = {Z4, }}. 
 
 Take A = ({0, 2}, {1}, {3,1}, {2,3}, {1,0}) 
 
 and B = ({0,1,2}, {0,1}, {1}, {1,2},{3,1}) in S. 
 
 We see A  B = ({0,2}, {0,1}, {3,1}, {2,0,3}, {3,1,0})  S. 
 
 Clearly   S. 
 
 (S, ) is a commutative subset row matrix semigroup of the 
semigroup {Z4, }. 
 
Example 2.26:  Let S = {Collection of all 7  1 subset matrices 
from the subsets of the semigroup {Z6, }}, be the subset matrix 
semigroup of {Z6, }. 
 
 

If A = 

6

{0,3}
{5,2}

{1,2,3}
{5,1,4}
{4,1}

Z

 
 
 
 
 
 
 
 
  

 and B = 

{0,5,2}
{1,2}
{3,4}

{3,4,5}
{1,4,2,5}
{2,3,4,0}

 
 
 
 
 
 
 
 
  

 are in S. 

 
 

A  B = 

6

{0,3}
{5,2,4}
{3,4,2}

{3,2,1,4,5}
{1,4,2,5}

Z

 
 
 
 
 
 
 
 
  

  S. 
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Example 2.27:  Let  
 

S = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 ai belongs to the subsets of  

 
the semigroup {Z8, }; 1  i  9}  

 
be the subset 3  3 square matrix semigroup of the semigroup 
{Z8, }. 
 
 Take  

A = 

8

{0,1,2,3} {5,6,1} {4,2,6,0}
{0,3,7} {2,5} {6,7,1}

{0,1,4,6} Z {3,6,7,1}

 
 
 
  

 and 

 

B = 

8

{0,1,4} {7,2} {5,6}
{6,5,4} {3,7} {3,0}

Z {3,1,2} {0,6,2}

 
 
 
  

 in S, 

 

A  B = 

8 8

{0,1,2,3,4} {7,2,1,4,3} {2,4,0,6}
{0,2,7,5,4,3} {6,2,3,7} {0,2,5,3}

Z Z {0,6,2,4}

 
 
 
  

  S. 

 
Example 2.28:  Let S = {Collection of all 2  7 subset matrices 
with entries from subset of {Z3, }; the semigroup} be the 
subset 2  7 matrix semigroup of the semigroup {Z3, }. 
 
 Let A = ({0}, {1}, {1 2}, {1, 0}, {2, 0}, {1}, {2}) and  
B = ({1}, {0,1}, {2},{0},{1},{2,1}, {2,0}) be in S.   
 

We find A  B = ({0}, {0,1},{2,1},{0},{2,0},{2,1}, {1,0})  
is in S.  Thus S is a subset 2  7 matrix semigroup of the 
semigroup {Z3, }. 
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Example 2.29:  Let S = {Collection of all subset 4  2 matrices 
with subsets from the semigroup {Z10, }} the subset 4  2 
matrix semigroup of the semigroup {Z10, }. 
 

Let A = 

{5} {1,2,3,4}
{3,4,5,6} {2,7}

{1,2,3,4,5} {7,8,6,1,9,4}
{4,2,0} {1}

 
 
 
 
 
 

 and 

 

                                    B = 

{0,2,6,4,8} {1,3,5,7,9}
{2} {3}

{5,1,0} {9,1,2,6}
{7} {1,4,5}

 
 
 
 
 
 

 be in S. 

 

 A  B = 

{0} {13,4,5,7,9,2,6,8}
{6,8,2} {6,1}

{5,1,0,2,3,4} {7,8,6,1,9,4,3,2}
{8,4,0} {1,4,5}

 
 
 
 
 
 

 is in S. 

 
 
Example 2.30: Let S = {Collection of all 5  2 subset matrices 
from the subsets of the semigroup P = {Z15, }} be the subset 
matrix semigroup of the semigroup {Z15, }. 
 

 

Take two subsets A, B  S where A = 

{7,8} {9,10,11}
{12,13} {14,5,0}
{1,2} {3,4,5}
{6,7} {8,9,10}

{11,12} {13,14,0}

 
 
 
 
 
 
  

  

 
and 
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B = 

{1,2,3,4} {2,3}
{5,6,7,8} {6,7}

{9,10,11,12} {10,11}
{13,14,0,1} {14,0}
{2,3,4,5} {3,4}

 
 
 
 
 
 
  

  S. 

 

A  B = 

{7,14,6,13,8,1,9,2} {3,12,5,0,7}
{0,12,9,6,5,3,1,14} {9,0,5,8}

{9,10,11,12,3,5,7,9} {3,10,14,5}
{6,0,3,9,7,18} {0,14,5,6}
{7,3,14,10,9,6} {0,9,12,7,11}

 
 
 
 
 
 
  

  S. 

 
Thus {S, } is a subset 5  2 matrix semigroup of the semigroup 
{Z15, }. 
 
Example 2.31:  Let S = {Collection of all subset 2  5 matrices 
with entries from the subsets of the semigroup {Z12, }} be the 
subset matrix semigroup of the semigroup {Z12, }. 
 
 

 Let A = 
{0,4,6} {4,6,7,8,1} {3} {1,3} {9}
{1,2} {1} {5,0} {7,2} {0}

 
 
 

 

 

 and B = 
{6,1} {8,1,5,9} {5,2} {4} {0}
{8,9} {10,1} {3} {6} {7,9}
 
 
 

 be in S. 

 

 A  B = 
{0,4,6} {8,4,6,9,5,1} {6,15} {4} {9}

{8,9,4,6} {10,1} {0} {6} {0}
 
 
 

  S. 

 
 Now we have seen several subset matrix semigroup of the 
semigroup.   
 

We now study the structure using the group. 
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 Example 2.32:  Let S = {Collection of all subset 3  5 matrices 
from the subset of the group {Z7, +}} be the subset matrix of the 
group {Z7, +}. 
 
 

 Let A = 
{0} {1,2} {3,4} {1} {6}

{2,1} {0} {5} {0} {2}
{1,3,2} {1} {3,5,1} {6,1} {3,2}

 
 
 
  

 and  

 
 

B = 
{1,2} {0} {1,3,5} {6,2,3} {3}
{3} {1,2} {6,1} {5} {1,2,3,4}

{1,2,3} {4,5,6} {1,2} {4,6,0} {1,0,3,5}

 
 
 
  

 be in S. 

 
Now  
 
A + B =  
 

{1,2} {1,2} {4,6,1,5,0,2} {0,3,4} {2}
{5,4} {1,2} {6,4} {5} {3,4,5,6}

{2,3,4,5,6} {5,6,0} {4,6,2,5,0,3} {3,5,6,1,0} {4,3,6,1,2,0,5}

 
 
 
  
                  S. 
 
 (S, +) is a subset matrix semigroup of the group. 
 
Example 2.33:  Let S = {Collection of all subsets 3  3 matrix 
with entries from the subsets of the group {Z12, +}} be the 
subset 3  3 matrix semigroup of the group order +; i.e., {S, +} 
is a semigroup. 
 
 

 Let A = 
{3,7} {0} {6,5}

{1,2,3} {0,6,8} {5,6,7,8,9}
{10,11,0} {1,2,3,4,5} {6,7,8,9}

 
 
 
  

 and 
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B = 
{1,2} {3,4,5,6,7} {8,9,10}
{11} {0,1,2,3,4} {5,6}

{7,8,9} {10,11} {0,1,2}

 
 
 
  

 be in S.   

 
We find A + B =  
 

{4,8,9,5} {3,4,5,6,7} {2,3,4,1}
{0,1,2} {0,1,2,3,4,7,6,8,9,11,10} {11,0,10,1,2,3}

{7,8,9,5,6} {11,0,1,2,3,4} {6,7,8,9,10,11}

 
 
 
  

  S. 

 
(S, +) is a subset 3  3 matrix semigroup of the group G. 
 
Example 2.34:  Let S = {collection of all subset 2  4 matrices 
with subsets from the group G = {1, g, g2, …, g5 where g6 = 1}; 
under } be the subset 2  4 matrix semigroup of the group  
{G, }.  Let us take A and B in S where  
 

A = 
2 3 5

2 4 3

{1} {g,g } {g,g ,1} {1,g,g }
{1,g ,g } {g } {g} {1}
 
 
 

 

 
and  
 

B = 
2 3 5 5 4

2 3 4 2 3

G {1,g} {g ,g ,g ,1,g} {1,g ,g }
{g,g ,g } {g } {1} {1,g,g ,g }
 
 
 

  S. 

  
A  B =  
 

2 3 2 3 5 4 4 5 3

2 3 4 5 2 3

G {g,g ,g } {1,g,g ,g ,g ,g } {1,g ,g ,g }
{g,g ,g ,g ,g ,1} {g} {g} {1,g,g ,g }
 
 
 
 

is in (S, ). 
 
 (S, ) is a subset 2  4 matrix semigroup of the group  
G = {g | g6 = 1}. 
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 Example 2.35:  Let S = {Collection of all subset 8  1 matrices 
from the subsets of the group (Z,+)} be the subset 8  1 matrix 
semigroup of the group Z under ‘+’. 
 
 

      Let A = 

{0,1, 1}
{2, 3,6}

{ 8, 11, 5}
{1}

{ 1}
{0}

{ 7,8,9}
{ 10,12}

 
  
   
 
 
 
 
 
  

  

 and B = 

{1,2}
{3,4}
{5,6}
{7,8}
{9,10}
{11,12}
{13,14}
{15,16}

 
 
 
 
 
 
 
 
 
 
 
  

 be in S. 

 
 

Now we find A + B = 

{0,2,3,1}
{5,6,0,1,9,10}

{ 3, 2, 6, 5,0, 1}
{8,9}
{8,9}

{11,12}
{6,7,21,22,23}

{5,6,27,28}

 
 
 
     
 
 
 
 
 
 
 
  

  S. 

 
Thus (S, +) is a subset 8  1 matrix semigroup of the group.  

Clearly this semigroup subset matrix is of infinite order. 
 
Now we proceed onto give illustration of substructures of 

subset matrix semigroups. 
 

Example 2.36:  Let S = {Collection of all subset 2  2 matrices 
with subsets from the group, {Q+ \ {0}, } be the subset 2  2 
matrix semigroup of the group {Q+, }. 
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Let A = 
{1,2,3,4,5,7} { 7, 3}

{5,8,11/ 2,7} {3 7,5 3,10,11}

 
 
  

 and 

 

B = {4,3} {7 7,3 3,5}
{7,8,1} {1,2}
 
 
 

 be in S. 

 
 

A  B =

{4,8,12,16,20,28, {49,9,7 21,3 21,
3,6,9,15,21} 5 7,5 3}

{35,40,5,56,7,64,8,77 / 2, {3 7,5 3,10,11,22,
4,11/ 2,49} 20,6 7,10 3}

 
 
 
 
 
 
 

 S. 

 
Example 2.37:  Let S = {Collectiin of all subset 3  2 matrices 
with entries as subsets from the semigroup {Z16, }} be the 
subset 3  2 matrix semigroup of the semigroup {Z16, }. 
 
 Take P = {Collection of all subset 3  2 matrixces with 
subsets from the subsemigroup {0, 2, 4, 6, 8, 10, 12, 14}  Z16} 
 S} be the subset 3  2  matrix subsemigroup of S. 
 

Let B = 
{8,4} {0,2}

{2,4,6} {10,12}
{14,0} {0}

 
 
 
  

 and 

 

A = 
{6,2} {4,6,8}
{0,4} {0,4,6,10,12}

{0,6,2} {8,2,0}

 
 
 
  

  P. 

 

A  B = 
{0,8} {0,8,12}
{0,8} {0,8,12,4}

{0,4,12} {0}

 
 
 
  

  P. 

 



40 Subset Polynomial Semirings and Subset Matrix Semirings 
 
 
  
 
 Infact it can be easily observed; P is an ideal of S.  For take 
the same A  P  and  
 
 

M = 
{3,5,2} {0,11,7,5}

{2,4,11,3} {0,13,15}
{1,2,3,5} {7,11,9,13}

 
 
 
  

 be in S.   

 
We find 
 
 

M  A = 
{6,10,4,2,14,12} {0,12,4,8,2,10,14}

{0,8,12} {0,4,12,14,10,2,6}
{0,2,4,6,10,12,14} {0,14,6,2,10,8}

 
 
 
  

  P. 

 
Hence P is a subset matrix ideal of the semigroup we can 

have subsemigroup which are not ideals in this case also. 
 

Example 2.38:  Let S = {Collection of all subset 6  1 matrices 
with entries from the subset of the semigroup {Z20, }} be the 
subset matrix semigroup of the semigroup {Z20, }. 
 
 Take M = {Collection of all subset 6  1 matrices from the 
subsets of the set {0, 5, 10, 15}  Z20} be the subset matrix 
subsemigroup of S. 
 
 

For take A = 

{0}
{5}
{10}

{5,10}
{5,10,15}

{0,5}

 
 
 
 
 
 
 
 
  

 and B = 

{5,10}
{10,5}

{5,10,15}
{0}

{10,5}
{5,10,15}

 
 
 
 
 
 
 
 
  

  S. 
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A  B = 

{0}
{10,5}
{10,0}

{0}
{5,10,0}

{0,5,10,15}

 
 
 
 
 
 
 
 
  

  M. 

 
 We see M is also a subset matrix ideal of the subset matrix 
semigroup of the semigroup S. 
 
Example 2.39:  Let S = {Collection of all subset 1  5 matrices 
from the subsets of the group; G = {Z12, +}} be the subset 
matrix semigroup of the group G. 
 
 Take M = {Collection of all subset 1  5 matrices from the 
subsets of the set {0, 2, 4, 6, 8, 10}  G} be the subset matrix 
subset of S under ‘+’. 
 
 M is only a subset matrix subsemigroup and is not an ideal. 
 
 For if  
X = ({3, 4, 7}, {1, 5, 11}, {9}, {10, 11, 3}, {5, 3, 2, 1, 11})  S 
and A = ({2, 4, 6}, {8, 10, 0}, {2, 4}, {6, 2}, {8, 10})  M.  
 

We see  
X + A = ({5, 7, 9, 6, 8, 10, 11, 1}, {9, 11, 1, 3, 5, 11, 7}, 

{11, 1}, {4, 0, 5, 1, 9, 5}, {1, 11, 10, 9, 7, 3, 0})  M.   
 

So M is not a matrix subset ideal of the semigroup only a 
subsemigroup. 
 
Example 2.40:  Let S = {Collection of all 3  1 subset matrices 
of the subset of the group, (Z, +)} be the subset 1  3 matrix 
semigroup under ‘+’.  Take M = {Collection of all 3  1 subset 
matrices of the set {2Z, +}  (Z, +)}  S.  M is only a subset 
matrix subsemigroup of S.  Clearly M is not a subset matrix 
ideal of S.   
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X = 
{0, 3,9}
{5, 7,11}
{13,15,49}

 
  
  

  S and A = 
{0,2,4,8}

{10,16,64}
{120, 144,80}

 
 
 
  

  M. 

 

X + A = 
{0, 1,1,5,9,11,13,17}

{15,21,69,3,9,57,21,27,75}
{133, 131,93,135, 129,95,169, 95,31}

 
 
 
    

  M;  

 
so M is not a subset matrix ideal of the subset matrix  
semigroup S. 
 
Example 2.41:  Let S = {Collection of all 6  1 subset matrices 
with entries from the subsets of the group S3} be the subset  
6  1 matrix semigroup of the group.  Clearly S is a non 
commutative subset matrix semigroup of finite order. 
 
 Let P = {(a1, a2, a3, a4, {e}, {e}) | ai  {subsets of the set e, 
p1} 1  i  4}  S be the subset matrix subsemigroup of the 
group S3.   
 

Take A and B in P where A = ({e, p1}, {p1}, {p1, e}, {e}, 
{e}, {e}) and B = {{p1}, {p1}, {e}, {e}, {e}, {e}) be in S.  We 
see A  B = ({e, p1}, {e}, {p1, e}, {e}, {e}, {e})  S. 
 
 Thus P is a subset matrix subsemigroup of the group S3.  
Clearly P is a commutative subset matrix subsemigroup of the 
non commutative subset matrix subsemigroup.  Further P is not 
a subset matrix ideal of the subset matrix semigroup S of the 
group S3.  For take  
M = {{e, p4}, {p5}, {p4}, {e, p4, p5}, {p4, p5},  {p3})  S and  
A = ({p1}, {1, p1}, {p1}, {p1}, {e}, {e})  P.  AM = ({p1 p3}, 
{p5 p2}, {p3}, {p1, p2, p3}, {p4, p5}, {p3})  P.  
 
    MA = ({p1 p2}, {p5 p3}, {p2}, {p1, p2, p3}, {p4, p5}, {p3})  P. 
 

We see MA  AM and P is not a subset matrix ideal of the 
subset matrix semigroup S of the group S3. 
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 Take M = {Collection of all subset 6  1 matrices with 
entries from the subsets of {e, p4, p5}} be the subset matrix 
subsemigroup of S.   
 
Example 2.42:  Let S = {Collection of all subset 1  5 matrices 
with entries from the subsets of the semigroup S(5)} be the 
subset matrix semigroup of the symmetric semigroup S(5). 
 
 We see S is also non commutative subset matrix semigroup 
of the symmetric semigroup. 
 
Example 2.43:  Let S = {Collection of all subset 3  3 matrices 
with subsets taken from the group D2,7} be the subset 3  3 
matrix semigroup of the group D2,7. Clearly S is a non 
commutative subset matrix semigroup of the group D2,7. 
 
Example 2.44:  Let S = {Collection of all subset 7  1 matrices 
with entries from the subsets of  the group S20} be the subset  
7  1 matrix semigroup of the group S20 which is clearly non 
commutative. 
 
Example 2.45:  Let S = {Collection of all subset 3  7 matrices 
from the subsets of the group G = S8  D2,7} be the subset 3  7 
matrix semigroup of the group G.  Clearly S is non 
commutative. 
  
 Thus we can say in general a subset m  n matrix semigroup 
can have zero divisors if and only if the semigroup over which it 
is built has zero and the semigroup is also assumed to be under 
product.   
 
 We will first illustrate this by some examples. 
 
Example 2.46:  Let S = {Collection of all subset 5  1 matrices 
with subsets from the semigroup {Z12, }} be the subset 5  1 
matrix  semigroup of the semigroup {Z12, }.  This subset 
matrix semigroup has zero divisors and idempotents. 
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 Take A = 

{0}
{2,4,9}

{4}
{6}

{4,8}

 
 
 
 
 
 
  

 and B = 

{1,2,3,4,5,6}
{0}

{6,3}
{4,8,2}
{6,3,9}

 
 
 
 
 
 
  

 in S  

 

we see A  B = 

{0}
{0}
{0}
{0}
{0}

 
 
 
 
 
 
  

  S is a zero divisor in S. 

 

Consider A = 

{4}
{1}
{9}
{0}
{4}

 
 
 
 
 
 
  

  S. 

 

We see A2 = 

{4}
{1}
{9}
{0}
{4}

 
 
 
 
 
 
  

 = A is an idempotent in S. 

  

Thus S has idempotents and zero divisors.   
 

Also take X = 

{6}
{0,6}
{0}
{6}

{0,6}

 
 
 
 
 
 
  

  S we see X2 = 

{0}
{0}
{0}
{0}
{0}

 
 
 
 
 
 
  

. 



Subset Matrices 45 
 

 Thus we have seen S has idempotents, nilpotents and zero 
divisors.   
 

However now we are going to show S has elements which 
can contribute to dual like special dual like number and special 
quasi dual numbers. 
 

Take X = 

{6}
{0,6}
{6}

{0,6}
{6}

 
 
 
 
 
 
  

  S.  Clearly X2 = 

{0}
{0}
{0}
{0}
{0}

 
 
 
 
 
 
  

 so, 

 

this X can act for the generation of dual number a + bX as  
X2 = ({0}). 

Now take Y = 

{9}
{4}
{4}
{9}
{9}

 
 
 
 
 
 
  

  S we see Y2 = 

{9}
{4}
{4}
{9}
{9}

 
 
 
 
 
 
  

 = Y. 

 
Now this Y can be used to get the special dual like numbers 

of the form a + bY with Y2 = Y. 
 

Finally consider Z = 

{8}
{3}
{8}
{3}
{8}

 
 
 
 
 
 
  

  S.  We see Z2 = 

{4}
{9}
{4}
{9}
{9}

 
 
 
 
 
 
  

 = –Z, 

 
hence Z can be used to get special quasi dual numbers.   
 

So using subset matrix semigroup S we can have dual 
numbers, special dual like numbers and special quasi dual 
numbers. 
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 Example 2.47:  Let S = {Collection of all subset 1  6 matrices 
with entries from the subsets of the semigroup {Z36, }} be the 
subset 1  6 matrix semigroup of the semigroup {Z36, }. 
 
 Take  
AA = ({0, 6}, {0,12,6}, {0,12},{0,18}, {0,6,18}, {0,6,18})  S.  
We see A2 = ({0}, {0}, {0},{0},{0},{0}) that is a + b A is the 
dual number collection for varying a and b reals. 
 
 Infact S has zero divisors for 
 
 X = ({6}, {0}, {6, 12}, {12}, {18}, {0}) and 
 
 Y = ({12, 18}, {3, 5, 7}, {18}, {6}, {6, 12}, {1, 2, 3, 4, 5, 6, 
7}) are in S it is easily verified  
 

X  Y = ({0}, {0}, {0}, {0}, {0}, {0}), so S has zero 
divisors. 
 
 S has idempotents also, for take   
 
 X = ({9, 0}, {0}, {0}, {9}, {9, 0}, {9})  S is such that  
 

X2 = ({0,9}, {0}, {0}, {9}, {0,9}, {9}) = X so this X can 
serve as the special dual like number of S. 
 
 Take P = ({8}, {27}, {8}, {27}, {8}, {27})  S is such that 
P2 = ({28}, {9}, {28}, {9}, {28}, {9}) 
 
 = ({–8}, {–27}, {–8}, {–27}, {–8}, {–27})  S; so P can 
serve as the special quasi dual element. 
 
 It is left as an exercise to find such elements in subset 
matrix semigroup of a semigroup.   
 
Example 2.48:  Let S = {Collection of all 7  1 subset matrices 
with entries from the subsets of the semigroup {Z15, }} be the 
subset 7  1 matrix semigroup of the semigroup {Z15, }. 
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 Take A = 

{6,12}
{0,3}

{9,6,12}
{3,12,6}

{12}
{6,0}

{0,9,12}

 
 
 
 
 
 
 
 
 
  

  S; we have  B = 

{5,10}
{5,10,0}

{5}
{10}

{5,10}
{0,10}

{0,10,5}

 
 
 
 
 
 
 
 
 
  

 in S 

 
 
such that  
 
 

A  B = 

{0}
{0}
{0}
{0}
{0}
{0}
{0}

 
 
 
 
 
 
 
 
 
  

. 

 
 Thus S has zero divisors. 
 
 

M = 

{0,6}
{10}
{0,6}
{10}
{6}
{0}

{0,6}

 
 
 
 
 
 
 
 
 
  

  S we see M2 =  

{0,6}
{10}
{0,6}
{10}
{6}
{0}

{0,6}

 
 
 
 
 
 
 
 
 
  

 = M  S. 

 
 
So S has nontrivial idempotent. 
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 Example 2.49:  Let S = {Collection of all subset 3  3 matrices 
with entries from the subsets of the symmetric semigroup S(8)} 
be the subset 3  3 matrix semigroup of the symmetric 
semigroup S(8). 
 
 Clearly S has no zero divisors. 
 
Example 2.50:  Let S = {Collection of all subset 5  3 matrices 
with entries from the subsets of the group S9} be the subset 5  
3 matrix semigroup of the group S9.   
 

Clearly S has no zero divisors or idempotents.  
 
 Now having seen examples of zero divisors subset matrix 
structure we now proceed onto give examples of subset n  m 
matrix semirings over a semifield or a semiring. 
 
Example 2.51:  Let S = {Collection of all subset 3  1 matrices 
with entries from the subsets of the semifield Z+  {0}} be the 
subset 8  1 matrix semiring of the semifield. 
 
 Let A = ({0}, {2, 4, 8, 9, 1}, {8, 5}) and  
B = ({4, 9, 8, 21, 28, 103, 148, 1}, {0}, {0}) be in S we see  
A  B = ({0}, {0}, {0}) but A  (0) and B  (0). 
 
 So A, B is a zero divisor of S that is why we can say S is 
only a semiring of subset matrices.   
 

Clearly S is not a semifield.  Further S is of infinite order.  
Infact S is a commutative semiring.  
 

Now we give examples of subset matrices from semirings 
or semifields which are algebraic structures with two binary 
operations. 

 
Example 2.52:  Let S = {Collection of all 2  5 subset matrices 
with entries from the semifield  
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be the subset  matrix semiring of the semifield.  
 

Let A = 1 3 2 5 7

7 3 2 1 4 5 2 7

{0,1,a } {a } {a ,a } {1} {a }
{a } {a ,a } {a ,a } {a } {1,a ,a }

 
 
 

 and 

 

B = 3 4 4 2 4 7 6 1 7

4 5 2 2 3 1 7 5

{0,a ,a } {a } {a ,a ,a } {a ,0,a } {a ,0,1}
{a ,a ,a } {a ,a } {a ,0,1} {a ,0,a } {1}
 
 
 

 

 
be in S. ‘+’ is the lattice union and  is the lattice intersection. 
 

A + B = 3 4 1 4 2 4 5 7 7

7 2 3 1 4 7 5

{0,1,a ,a ,a } {a } {a ,a ,a ,a } {1} {a ,1}
{a } {a ,a } {1,a ,a } {a ,a } {1}

 
 
 

 

 
and 

AB = 3 4 1 3 2 4 5 6 1 7

4 2 5 2 3 1 4 5 2 7

{0,a ,a ,a } {a } {a ,a ,a } {0,a ,a } {0,a }
.

{a ,a ,a } {a ,a } {0,a ,a } {0,a } {1,a ,a }
 
 
 

 

 
 Clearly A + B and A  B are in S. 
 
Example 2.53:  Let S = {Collection of all 5  11 subset 
matrices with entries from the subsets of the semiring  


 a3 
 a4 

a6 

0 

a1 

a2 

 a5 

a7 

1 
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be the subset 5  1 matrix semiring of the semiring. 
 

Let A = 

{0,a}
{0,b,1}
{a,b,d}
{c,d,0}
{d,a,e}

 
 
 
 
 
 
  

 and B = 

{a,b,c}
{1,0,d}
{f ,0,1}
{b,e,1}
{0,1}

 
 
 
 
 
 
  

 be in S. 

 
 

A  B = 

{a,1}
{1,c,b,d}
{1,a,b,d}
{1,e,b,c}
{1,d,a,e}

 
 
 
 
 
 
  

  S. 

 
 

A  B = 

{0,a,f ,e}
{0,b,c,d,1}

{a,b,d,1,0,f}
{0,c,d}

{d,a,e,0}

 
 
 
 
 
 
  

  S. 

 
 Thus S is only a semiring. 







 d 

0 

b 




 c a 

1 

e f 
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For if X = 

{f}
{0}
{d}
{b}
{e}

 
 
 
 
 
 
  

 and Y = 

{e}
{a}
{e}
{0}
{0}

 
 
 
 
 
 
  

  S. 

 

We see X  Y = 

{0}
{0}
{0}
{0}
{0}

 
 
 
 
 
 
  

; 

 
thus S has zero divisors which proves S cannot be a semifield. 
 
Example 2.54:  Let S = {Collection of all 1  4 subset row 
matrices with entries from the subsets of the semiring  
 
 
 
 
 
 
 
be the subset 1  4 row matrix semiring of the semiring. 
 

Let X = 

{0}
{b}
{a}
{1}

 
 
 
 
 
 

 and Y = 

{a}
{a}
{b}
{0}

 
 
 
 
 
 

  S, 

 

we see X  Y = 

{0}
{0}
{0}
{0}

 
 
 
 
 
 

 is a zero divisor so is not a semifield. 









ba 

0

1 
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 Example 2.55:  Let S = {Collection of all subsets of 1  7 
matrices where the subsets are from the  semiring  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be the subset 1  7 matrix semiring.  For S has zero divisors.  
Take A = ({0}, {a1}, {b1}, {0}, {a6}, {a5}, {0}) and  
B = ({a6}, {0}, {0}, {a1}, {0}, {0}, {1})  S is such that  
A  B = ({0},{0},{0},{0}, {0},{0},{0}).  So S is only a 
semiring.  It is important to record at this juncture that even if 
the entries of the subset matrix are from the subset of a semfield 
still  the resultant need not in general be a semifield in most 
cases it is a semiring.  
 
Example 2.56:  Let S = {Collection of all subset 5  1 matrices 
with subsets from the semifield  
 
 
 
 
 
 
 
 
 
 
 
 

a5

 a6









a3a4 

a2



0

 a1

 1 


 a3 
 a4 

a6 

0 

a1 

a2 

 a5 

 1 
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be the subset matrix semiring. Clearly S has zero divisors S is 
only a semiring and not a semifield though the subsets are from 
the semifield. 
 
 Next we proceed onto give examples of subset m  n 
matrices with subsets from a ring or a field. 
 
Example 2.57:  Let S = {Collection of all subset 3  2 matrices 
with subsets from the ring Z12} be the subset 3  2 matrix 
semiring of the ring.   
 

We see S in general is not a ring.  S can only be a semiring.  
For subsets under any inherited operations never form a group 
only a semiring.  But by this method we get many semirings. 

 
 We find for A, B  S. 
 

Let A = 
{3,4} {6,2}

{4,0,10} {8,9,1}
{11,1} {3,2,5,4}

 
 
 
  

 and 

 

B = 
{5,2,7} {8,0,5,3}
{1,2,3} {4,5,6,7}

{8,9,10} {11,0,3}

 
 
 
  

  S. 

 

A + B = 
{8,5,10,9,6,11} {2,6,11,9,10,2,7,5}
{5,6,7,1,2,3,11} {5,6,7,8,0,1,2,3,4}

{7,8,9,10,11} {3,2,5,4,1,6,8,7}

 
 
 
  

 

 

A  B = 
{6,3,9,8,4} {0,6,4,10}
{4,8,0,10,6} {8,4,0,9,5,7,6,3}

{8,9,10,4,3,2} {9,0,6,10,3,7,8}

 
 
 
  

 S. 

 
S is only a semiring for S has zero divisors. 
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Let  
 

X = 
{3} {6}

{3,6} {0,9}
{9,6} {4,8}

 
 
 
  

 and Y = 
{4,8,0} {2,4,6}

{4} {4,8,0}
{8,4,0} {3,6,9,0}

 
 
 
  

 be in S. 

 
 

X  Y = 
{0} {0}
{0} {0}
{0} {0}

 
 
 
  

. 

 
Thus S is only a semiring and not a semifield.   

 
Now we give some more examples of subset m  n matrix 

semirings using fields. 
 
Example 2.58:  Let S = {Collection of all subset 2  7 matrices 
with subsets from the ring Z10} be the subset 2  7 matrix 
semiring of the ring Z10. 
 
 S is only a semiring.  S has zero divisors and idempotents; S 
is not a ring or a field or a semifield. 
 
Example 2.59:  Let S = {Collection of all subset 4  2 matrices 
with entries from the subsets of the ring Z} be the subset 4  2 
matrix semiring of the ring Z.   
 

Clearly S is of infinite order.  
 
Let  
 

A = 

{3} {5,2}
{1,7} {9,4}
{0,5} { 1,3}

{ 3,2} { 5,1}

 
 
 
 
 
  

 and B = 

{5, 7} {3, 2}
{ 1,2} { 7,8}

{1,0, 1} {8,2}
{0, 1, 2} {0,1,2,3}

  
   
 
 

  

 be in S. 
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A + B = 

{8, 4} {8,0,3,5}
{0,6,3,9} {2, 3,12,17}

{1,0, 1,6,5,4} {7,1,5,11}
{ 3,2, 4, 5,1,0} { 5,1, 4,2, 3,3, 2,4}

 
  
 
 
       

 is in S. 

 
 

A  B = 

{15, 21} {15, 10,6, 4}
{ 1,2, 7,14} { 63,72, 28,32}

{0,5, 5} { 8, 2,6,24}
{0,3, 2,6, 4} { 5,1, 4,2, 3,3, 2,4}

   
     
   
 

      

 is in S. 

 
 

Let A = 

{0} {7,8,3}
{5,2} {0}
{0} {3, 9}

{7,8} {0}

 
 
 
 
 
 

 and 

 

                              B = 

{6,3, 2} {0}
{0} {7,3,4, 5}

{7,3, 5} {0}
{0} {8,0, 40, 59}

 
  
 
 

  

 be in S. 

 

          A  B = 

{0} {0}
{0} {0}
{0} {0}
{0} {0}

 
 
 
 
 
 

. 

 
Thus S is only a semiring and  not a semifield as S has zero 

divisors. 
 
Example 2.60:  Let S = {Collection of all 5  2 subset matrices 
with entries from the subsets of the field Z5} be the subset 5  2 
matrix semiring of the field Z5. 
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 Let A = 

{0,3} {0,1,4}
{2,3} {4,0,1}
{4,1} {2,1}
{0} {3,1,4}

{1,2} {3,4}

 
 
 
 
 
 
  

 and B = 

{2,1} {4,1,2}
{3} {4,3}
{2} {4}

{0,3} {2,0}
{1} {2}

 
 
 
 
 
 
  

 be in S. 

 

A + B  = 

{2,1,0,4} {4,1,2,3,0}
{0,1} {4,3,2,0}
{3,1} {0,1}
{0,3} {0,3,1,4}
{2,3} {0,1}

 
 
 
 
 
 
  

  S. 

 

A  B = 

{0,1,3} {0,4,1,2,3}
{1,4} {0,4,1,3,2}
{3,2} {3,4}
{0} {0,2,3,1}

{1,2} {1,3}

 
 
 
 
 
 
  

  S. 

 
 Thus S is a semiring for S has zero divisors. 
 

A = 

{0} {1}
{2} {0}
{0} {1,2,3}
{0} {4,3}

{1,2} {0}

 
 
 
 
 
 
  

 and B = 

{1,2,3} {0}
{0} {3,4}

{4,2} {0}
{1,2,3} {0}

{0} {1,4,2}

 
 
 
 
 
 
  

 be in S. 

 

It is easily verified A  B = 

{0} {0}
{0} {0}
{0} {0}
{0} {0}
{0} {0}

 
 
 
 
 
 
  

. 
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Example 2.61:  Let S = {Collection of all subset 4  3 matrices 
with entries as subsets from the field Q} be the subset 4  3 
matrix semiring over the field Q.  S is of infinite order S has 
zero divisors so S is not a semifield. 
 
Example 2.62:  Let S = {collection of all subset 5  5 matrix 
with entries from the subsets of the ring Z42} be the subset 5  5 
matrix semiring of the ring Z42.  S is a semiring with zero 
divisors and idempotents. 
 
Example 2.63:  Let S = {Collection of all subset 2  6 matrices 
with entries from the subsets of the ring C(Z12)} be the subset  
2  6 matrix semiring of the complex modulo integer ring 
C(Z12).  S has zero divisors and idempotents.   
 

Infact using S we can get dual number g  S with g2 = 0 
and special dual like numbers g1  S with 2

1g  = g1 and special 
quasi dual numbers g2 with 2

2g  = –g2.   
 
Thus S is a rich structure in getting dual numbers, special 

dual like numbers and special quasi dual numbers. 
 
Example 2.64:  Let S = {Collection of all subsets 3  2 matrices 
with entries from the subsets of the ring C(Z7) (g) with g2 = 0} 
be the subset 3  2 matrix semiring of the ring C(Z7) (g). 
 

Let A = 
{g,2g,4g} {0}

{5,2} {g,3,2}
{4,3,2g} {2,3g}

 
 
 
  

 and 

 

   B = 
{g,6g} {2 2g,4 4g}

{2 3g,2g} {3 2g,5 g}
{4g,g} {2 g,5g 1}

  
    
   

 be in S. 

 
 
 To find A + B; 
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 A + B =  
 

{2g,0,3g,g5g} {2 2g,4 4g}
{3g,2 2g,5 2g,4 3g} {3 3g,5 2g,6 2g,g 1,5 2g,g}

{4 4g,3 4g,6g,4 g,3 g,3g} {4 g,2 4g,5g 3,g 1}

  
         
         

 

 
is in S. 
 
A  B =  
 

{0} {0}
{3 g,3g,4 6g,4g} {3g,5g,2 6g,1 3g,6g 4g,3 2g}

{2g,5g,4g,3g} {4 2g,3g 2,6g,3g}

 
       
   

S. 

 
 This is the way operation are performed on S. 
 
 It is easily verified S is not a ring or a field or a semifield 
only a semiring.   
 

Infact the notion of subset matrices have paved way to 
construction of infinite number of finite semirings.  

 
Except for this we would not be having finite semirings 

barring distributive lattices.  We also get non commutative 
semirings of finite order. 
 
Example 2.65:  Let S = {Collection of all subset 2  7 matrices 
with entries from the complex modulo integer dual ring C(Z30) 
(g, g1) where 2

1g  = g2 = g1g = gg1 = 0} be the subset matrix 
semiring of the ring C(Z30) (g, g1). 
 
 S has zero divisors units, idempotents, dual elements, 
special dual like numbers and special quasi dual numbers. 
 
 Now having seen examples of semirings of subset matrices 
we now proceed onto define / recall some properties enjoyed by 
these rings. 
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 Some of these subset matrix semiring contain subsets which 
are semifields or rings.  Such structure study is interesting and 
innovative. 
 
Example 2.66:  Let S = {Collection of subset 3  1 matrix with 
entries from the semifield Q+  {0}} be the subset matrix 
semiring of the semifield Q+  {0}. 
 
 S has zero divisors and no idempotents.  S has substructures 
like subsemirings and ideals.  We can think of idempotents in 
subset matrix semirings only when it is defined over Zn, C(Zn), 
Z or Zn (g1, g2, g3) or C(Zn) (g1, g2, g3) or Boolean algebra or 
chain lattices or other distributive lattices.  We have elaborately 
discussed about these.   
 

Now we can not give the set theoretic ‘’ or ‘’ when S is 
built over semirings or rings or fields as the collection will not 
contain the empty set.   However by adjoing the empty set we 
can give the set theoretic operations on them so that S becomes 
a semiring. 
 
 To this end we will illustrate by some examples. 
 
Example 2.67:  Let S = {Collection of all subset 1  5 matrices 
with entries from the subset ring Z6(g) with g2 = g} be the 
subset 1  8 matrix semiring of the ring Z6(g).   
 

Take S1 = S  , now on S1 give the two set theoretic 
operation  and  then {S1, , } is semiring. 
 
 Let A = ({2 + 2g, 3g, 0}, {4g}, {3g+5, 2+2g, g}, {g+5, 
3g+1}, {g+1, 2g+2, 3g+3}) and B = ({g, g+3}, {3g + 2, 2+4g}, 
{3+2g, 4+4g, g}, {5g, 3g + 4}, {g, 4g+2, 2g + 3})  S1. 
 
 A  B = ({2 + 2g, 3g, 0, g, g+3}, {4g, 3g + 2, 2 + 4g}, {3g 
+ 5, 2+2g, g, 3+2g, 4+4g, g}, {5g, 3g+4, g+5, 3g+1}, {g, 4g+2, 
2g+3, g+1, 2+2g, 3g + 3})  S1. 
 
 We can find A  B = ({},{}, {g}, {}, {})  S1. 
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Thus (S1, , ) is a semiring. 
 
Example 2.68:  Let S = {collection of all subset 2  5 matrices 
with entries from the subsets of the ring Z15(g) where g2 = 0} be 
the subset 2  5 matrix semiring of the ring Z15 (g), S1 = S  
. 
 
 Clearly this semiring has dual numbers, special dual like 
numbers and special quasi dual numbers.  S1 has zero divisors, 
idempotents and also S1 is not a semifield. 
 
 

A = 
{10,g,3g} {0,7g,1} {2g 4,5g} {3g,1}

{2g} {4 g} {3,5g} {1}
  

   
 and 

  
 

B = 
{3} {2 g,4} {3g 2} {5g 1,3g} {1,2g}

{4g} {2 3g} {g} {g,1} {3 4g}
   

   
 S1 

 
 
we find A  B 
 

= 
{3} {10,g,3g,2 g,4} {3g 2,1,7g,0}

{2g,4g} {2 3g4 g} {3,g,5g}
 

  
 

 
{2g 4,5g,5g 1,3g} {1,2g,3g}

{1,g} {3 4g}
  

 
 

 
 

A  B = 
{1}

{1}
    
     

  S1. 
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A + B =  
 

{14,4 g,4 3g,12 g,
{3} {0,3g 3,10g 2}

2 2g,2 4g}
{6g} {6 4g} {g 3,6g}

  
   

  

 

 
{7g 5,10g 1, {2,3g 1,
5g 4,8g} 1 2g,5g}

{1 g,2} {3 4g}

   
  
  

 

 
 We see A + B  A  B. 
 
 Now we find 
 
 A  B =  
 

{ } {5 10g,2g,6g,10,4g,12g {3g 2} {14g,0} {3g,1,2g}
{0} {8 14g} {3g} {g} { }
   

   
 

 
 
and A  B = A  B. 
 
 
Example 2.69:  Let S = {Collection of all subset 3  1 matrices 
with entries from the subsets of the ring C(Z4) (g)} be the subset 
matrix semiring of the ring C(Z4) (g). 
 
 We see S1 = S  ; we get entirely a very different subset 
matrix semiring using S1. 
 
 Now having seen such examples of these new structures we 
describe how a topology can be build using them. 
 
 We will take S = {Collection of all subset m  n matrices 
with subsets from the semigroup or group or semiring or ring or 
a field}. 
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 S has a semigroup structure if S we take a group or a 
semigroup.  S has a semiring structure if we take a semiring or a 
ring or a semifield or a field. 
 
 Suppose S is a subset matrix semigroup of a semigroup.  
Let P  S (P a proper subset of S).    
 

Let M  S be a subset matrix subsemigroup of S.  If for all 
p  P and m  M, mp and pm  P then we define P to be a set 
subset matrix ideal of S.  The same is true if the subset matrix 
semigroup is built using the group. 
 
 We will first illustrate this situation by some examples. 
 
Example 2.70:  Let S = {Collection of all subset 1  4 matrices 
with subsets from the semigroup (Z12, )} be the subset 1  4 
matrix semigroup of the semigroup (Z12, ). 
 
 Take P = (({0,1,2}, {1,1}, {2,2}, {0,4,5}), ({0}, {0}, {0}, 
{0}), ({9, 2}, {5, 4, 2}, {3, 0, 1}, {1, 2, 3, 4, 5}), ({7, 6, 8, 9, 
10}, {11, 0, 1, 3, 5}, {7, 9, 11, 0} {2, 4, 6, 8})}  S. 
  

Consider the subset matrix subsemigroup  
M = {({0}, {0}, {0}, {0}), ({1}, {1}, {1}, {1})}  S. 

 
 Clearly P is a set subset 1  4 matrix ideal of the subset  
1  4 matrix semigroup over the subset 1  4 matrix 
subsemigroup M of S. 
 
Example 2.71:  Let S = {Collection of all subset 2  3 matrices 
with subset entries from the semigroup C(Z4)} be the subset 7  
3 matrix semigroup of the semigroup C(Z4). 
 

Let M = 
{0} {0,2} {2}
{2} {0} {0}

 
 
 

, 
{0} {0} {0}
{} {0} {0}

 
 
 

, 
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{2} {0} {0,2}
{2} {2} {2}
 
 
 

, 
{2} {2} {0,2}

{0,2} {0,2} {2}
 
 
 

  S 

 
be a subset 2  3 matrix subset of S.   
 
Take  

P = 
{0} {0} {0}
{0} {0} {0}

 
 
 

, 
{1} {1} {1}
{1} {1} {1}

 
 
 

,  

 
{2} {2} {2}
{2} {2} {2}

 
 
 

, 
{0} {0,2} {2}
{2} {0} {0}
 
 
 

, 
{2} {0} {0,2}
{2} {2} {2}
 
 
 

,  

 
{2} {2} {0,2}

{0,2} {0,2} {2}
 
 
 

  S; 

 
be a subset 2  3 matrix subset of S.  Clearly P is a subset 2  3 
matrix set ideal of S over the subset 2  3 matrix subsemiring M 
of S. 
 
Example 2.72:  Let S = {Collection of all subset 2  4 matrices 
with entries from the subsets of the semigroup Z6 (g) with g2 = 0 
under product} be the subset 2  4 matrix semigroup of the 
semigroup Z6 (g).  Take S1 = Z6 a subsemigroup of Z6 (g). 
 
 T = {Collection of all subset 2  4 matrix set ideals of S 
over the subsemigroup Z6 of Z6 (g)} is the subset matrix set 
ideal topological space of S over Z6.   
 

Suppose S2 = {0, g, 2g, 3g, 4g, 5g}  Z6(g) be the 
subsemigroup.  T2 = {Collection of all subset matrix set ideals 
of the semigroup S} be the set ideal topological subset 
semigroup of S. 
 
 We see both of them are distinct and are of finite order. 
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 We can as in case of usual semigroup define in case of 
subset matrix semigroups also construct S-prime set ideal,  
S-strong quasi set ideal and S-set ideal topological subset matrix 
semigroup spaces [17-8]. 
 
 We will illustrate all these situations by some examples. 
 
Example 2.73:  Let S = {Collection of all subset 8  1 matrices 
with subsets from the semigroup Z24 (g) where g2 = 0} be the 
subset 8  1 matrix semigroup of the semigroup {Z24 (g), }. 
 
 Let M = {Collection of all subset 8  1 matrices with 
subsets from P = {0, g, 2g, …., 23g} Z24 (g)} be the set ideal 
subset matrix subsemigroup of the semigroup S over the 
semigroup S1 = Z24.   
 

Clearly every set ideal in M is Smarandache quasi set ideal 
subset matrix of S relative to S1 as N = {collection of all subset 
8  1 matrices with subsets from S2 = {0, 3g, 6g, …, 21g}  P} 
is a subset 8  1 matrix subsemigroup of M.  Thus M is a  
S-quasi set subset 8  1 matrix topological space of S relative to 
the subsemigroup S1 of S. 
 
 
Example 2.74:  Let S = {Collection of all subset 3  3 matrices 
with subsets from the semigroup Z(g), } be the subset 3  3 
matrix semigroup of the semigroup {Z(g), }. 
 
 Take P = {all subset 3  3 matrices with subsets from 
{3Z(g), }  {Z(g), }}, P is a Smarandache quasi set ideal of 
S relative to the subsemigroup S1 {Z, }  {Z(g), }} for  
P1 = {all subset 3  3 matrices with subsets from {3Z, }} is a 
subsemigroup of P.  
 
 Next we proceed onto give examples of Smarandache 
perfect quasi set ideal of a subset matrix semigroup. 
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Example 2.75:  Let S = {Collection of all subset 2  3 matrices 
with subsets from Z30 (g)} be the subset 2  3 matrix semigroup 
over the semigroup Z30 (g). 
 
 Take P1 = {0, 1, 2, …, 29}, P2 = {0, g, 2g, …, 29g}; P3 = 
{0, 15}, P4 = {0, 15g}, P5 = {0, 10, 20} and P6 = {0, 10g, 20g} 
subsemigroups of Z30 (g). 
 
 Take M = {Collection of all subset 2  3  matrices with 
subsets from {a + bg | a, b  2Z30}  Z30(g)} be the subset 2  3 
subsemigroup of S over P1, P2, …, P6. 
 
 M is the Smarandache perfect quasi set ideal subset 2  3 
matrix of S over each Pi, 1  i  6. 
 
Example 2.76:  Let S = {Collection of all subset 3  6 matrices 
with subsets from {Z(g), }, g2 = 0} be the subset 3  6 matrix 
semigroup of the semigroup {Z(g), }. 
 
 P = {Collection of all subset 3  6 matrices with subsets 
from {3Z(g), }} be the set ideal of S with respect to the group 
G = {1, –1}  Z(g). 
 
 P is the strong set subset 3  6 matrix ideal of the semigroup 
S over the group G of S. 
 
 Clearly this subset matrix semigroup has only one group  
G = {1, –1}  Z(g) so if TG = {Collection of all strong set ideal 
subset matrix semigroup of S over G} is the strong set ideal 
subset matrix semigroup topological space of S over G. 
 
 Interested reader can construct several such examples of 
strong set ideal topological spaces of a subset matrix semigroup 
S. 
 
 Now we just discuss the advantage of defining subset m  n 
matrix set ideals of semigroups (semirings) over subsemigroups 
(or subsemirings or fields or groups or semifields).   
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In the first case given a semigroup of subset m  n matrix 
set ideals of a semigroup we can have only one topology 
defined on it that is the usual topology with ‘’ and ‘’,  
however the other one with the new topology N and N  
cannot be defined using subset semigroup.   

 
Both the type of topologies can be defined on semirings; we 

have several of them depending on the number of substructures 
and with the appropriate algebraic structure on them.   

 
Further for every one of such collection we can have two 

topologies usual topology and the new topology only in case of 
semirings.   

 
Thus this is one of the advantages of using set ideal subset 

matrix topological semirings. 
 
 We will illustrate these situations by some examples. 
 
Example 2.77:  Let S = {Collection of subset 1  5 matrices 
with subsets from the semigroup Z6} be the subset 1  5 matrix 
semigroup of the semigroup Z6. 
 
 Consider P = {Collection of all subset 1  5 matrices from 
the subsets {0, 3}  Z6} be the subset 1  5 matrix 
subsemigroup of S. 
 
 Let  
 

M = {Collection of all subset matrix set ideals of S over P};  
{M, , } is a set ideal subset 1  5 matrix topological 
subsemigroup of S over P. 
 
 We can give on M a new topology so that {M, N, N} is 
the set ideal subset 1  5 matrix new topological space of S over 
P. 
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 Suppose we have 
 
   X = ({0,2}, {0, 2, 4}, {0}, {0}, {0, 4}) 
  and Y = ({2}, {4}, {2, 4}, {0}, {4}) 
 

then X  Y = ({0}, {4}, {}, {0}, {4}) and 
 

X  Y = ({0,2}, {0, 2, 4}, {0,4,2}, {0}, {0, 4}). 
 

X N Y = ({0}, {0, 2}, {0}, {0}, {0}) and  
X N Y; has no meaning, because our underlying structure is 
only a semigroup so has only one operation can be defined on it. 
 
 Thus for subset m  n matrix semigroups we cannot define 
the concept of the new topology TN. 
 
 We have only one topology using ideals of a subset matrix 
semigroups and several topologies using set ideals of subset 
matrix semigroups over subsemigroups.  
 

We now show by an example or two the new topology on 
the subset matrix semirings. 
 
Example 2.78:  Let S = {Collection of all subset 3  1 matrices 
with entries from the subsets of the ring Z12} be the subset 3  1 
matrix semiring of the ring. 
 
 Let T = {Collection of all subset matrix semiideals of S 
including , the emply set}; {T, , } is the subset matrix ideal 
topological space semiring of S. 
 
 {T, N, N} is the subset matrix ideal new topological 
space semiring of S. 
 

Let x = 
{0,2,4}
{0,4}
{2}

 
 
 
  

 and y = 
{0,2}
{6}

{4,6}

 
 
 
  
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x N y = 
{0,4,8}

{0}
{8,0}

 
 
 
  

 and  x N y = 
{0,4,6,2}

{6,10}
{6,8}

 
 
 
  

. 

 
 This is the way operation is performed. 
 
 

x N x = 
{0,4,8}
{0,4}
{4}

 
 
 
  

  x.      x N x = 
{0,2,4,6,8}

{0,4,8}
{4}

 
 
 
  

  x. 

 
 This new topology on subset 3  1 matrices of the semiring 
is different from the usual topology for x N x  x and  
x N x  x in general. 
 
 Now we proceed onto illustrate by an example that this sort 
of new topology can be defined as set ideal subset matrix new 
topological space of semirings. 
 
Example 2.79:  Let S = {Collection of all subset 2  2 matrices 
with subsets from the ring Z10} be the subset 2  2 matrix 
semiring of the ring Z10.   
 

T = {Collection of all set ideals of the subset 2  2 matrix 
semiring over the subsemiring 
 

P = 
a b
c d

 
 
 

 a, b, c, d  {0, 2, 4, 6, 8}  Z10}}. 

 
 {T, N, N} is the new topological space of subset 2  2 
matrix semiring over the subsemiring P. 
 

Let X = 
{0,2,6} {4,2}

{0,4,8,6} {0,6}
 
 
 

 and  
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Y = 
{0,4,8} {0,2,6,8}
{0,6} {0,8}

 
 
 

  T. 

 

X N Y = 
{0,8,6,4} {0,4,2,6,8}
{0,4,8,6} {0,8}
 
 
 

  T. 

 

X N Y = 
{0,2,6,4,8} {0,2,6,4,8}
{0,4,6,8,2} {0,6,8,4}
 
 
 

  T. 

 
 (T, N, N) = TN is a new topological subset matrix ideal 
topological semiring space.  
 
 Take S1 = {0, 5}  Z10 to be a subring of S. 
 
 P1 = {Collection of all subset 2  2 matrices with entries 
from the subsemiring S1 = {0, 5}}. 
 
 P1 is a subset 2  2 matrix subsemiring of S. 
 
 Take T = {Collection of all set ideals of subset 2  2 matrix 
of S over the subset matrix subsemiring S1}  
 

= 
{0} {0} {2} {2}

,
{0} {0} {2} {2}

     
    
     

, 
{0} {0} {2} {0}

,
{0} {0} {0} {0}

     
    
     

, 

 
{0} {0} {0} {2}

,
{0} {0} {0} {0}

     
    
     

, 
{0} {0} {0} {0}

,
{0} {0} {2} {0}

     
    
     

,  

 
{0} {0} {0} {0}

,
{0} {0} {0} {2}

     
    
     

 and so on}. 

 
We see {T, N, N} is a set ideal subset 2  2 matrix new 

topological semiring  space of S over the subset 2  2 matrix 
subsemiring S1.   
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We can have several such to new topological spaces by 
varying the subset matrix subsemirings over which these are 
defined. 

 
 Now it is left for the reader to define different types of new 
topological set ideals using strong set ideal of subset semiring 
collection, special strong set ideal new topological subset matrix 
semiring space and other types of set ideal new topological 
subset matrix semirings.  It can be done as a matter of routine 
with some appropriate changes. 
 
 Now we proceed onto suggest some problems for the 
reader. 
 
Problems 
 
1. Let X = {1, 2, 3, 4, 5}, and P(X) the power set of X. 
 

 Let S = 1 2 6

7 8 12

a a ... a
a a ... a

 
 
 

 ai  P(X); 1  i  12} be the 

subset 2  6 matrix. 
 
 (i)   Find the number of elements in S. 
 (ii)  Show (S, ) is a commutative semigroup. 

(iii) Show (S, ) is a commutative semigroup. 
 

2. Let M = 
1 2 11

12 13 22

23 24 33

a a ... a
a a ... a
a a ... a

 
 
 
  

 ai  P (C(Z12)), 1  i  33,  

 
X = {C(Z12) = a + biF | a, b  Z12, 2

Fi = 11}} be a collection 
of all 3  11 subset matrices. 
 

 (i)   Find o(M). 
 (ii)  Show (M, ) is a commutative semigroup. 
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 (iii)  Show (M, ) is a commutative semigroup. 
 
3. Obtain some interesting properties associated with subset 

matrices of a power set. 
 
4. What can be benefits of studying such algebraic structure? 
 
5. Find some nice applications of these new structures. 
 
6. Let S = {Collection of all subset 3  2 matrices with 

subsets from the semigroup {Z40, }} be the subset 3  2 
matrix semigroup of the semigroup {Z40, }. 

 
 (i)  Find the order of S. 
 (ii)  Can S have subset matrix subsemigroups which are  
  not subset matrix ideals? 
 (iii)  Find atleast two subset matrix ideals of S. 
 (iv)  Can S have zero divisors? 
 (v)  Can S have S-idempotents? 
 (vi)  Can S have S-units or units? 
 (vii) Find any other interesting property associated with S. 
 
7. Let S = {Collection of all subset 3  6 matrices with entries 

from the subsets of the semigroup {C(Z5), }} be the 
semigroup. 

 
(i)  Find order of S. 

 (ii)  Find subset 3  6 matrix subsemigroups of S which  
  are not subset matrix ideals. 
 (iii)  Find subset 3  6 matrix ideals of S. 
 (iv)  Can S have zero divisors? 
 (v)  Find idempotents and zero divisors of S. 
 (vi)  Can S have S-zero divisors and S-units? 
 (vii) Is S a S-semigroup? 
 
8. Let S = {collection of all subset 7  2 matrices with entries 

from the subsets of the semigroup {C(Z20), }} be the 
subset 7  2 matrix semigroup with entries from the 
semigroup {C(Z20), }. 
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 (i)  Find o(S). 
 (ii)  Can S have zero divisors? 
 (iii)  Show S has idempotents. 
 (iv) Give an example of a subset matrix subsemigroup  
  which is not a subset matrix ideal. 
 (v)  Can S have S-units? 
 
9. Find some special features enjoyed by subset 1  9 matrix 

semigroup built using C(Zn). 
 
10. Find the order of S = {Collection of all m  n subset 

matrices with entries from the subsets of the semigroup 
Zp}, the subset m  n matrix semigroup (p prime). 

 
 (i)  If p a replaced by t, t a composite number find o(S). 
 (ii)  Find the order of S if Zp is replaced by C(Zp). 

(iii) Find the order of S if Zp is replaced by Zp(g) where  
 g2 = 0. 
(iv) Find the order of S if Zp is replaced by C(Zp) (g) such  
 that g2 = 0. 
 

11. Let S = {Collection of all subset 3  5 matrices with entries 
from the semigroup {Z, }} be the subset 3  5 matrix 
semigroup of the semigroup {Z, }. 

 
 (i)  Prove S is of infinite order. 
 (ii)  Prove S has zero divisors. 
 (iii)  Can S have idempotents? 
 (iv)  Can S have S-zero divisors? 
 
12. Let S = {Collection of all subset 5  1 matrices with entries 

from the subsets of the semigroup {Q+{0}, }} be the 
subset 5  1 matrix semigroup with entries from subsets of 
the semigroup {Q+  {0}, }. 

 
 (i)  Study questions (i) to (iv) of problem 11. 
 (ii)  Can S have units? 
 (iii)  Can S have S-units? 
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13. Let S = {Collection of all 2  2 subset matrices with entries 
from the subsets of the semigroup {(Q+{0}) (g)}} be the 
subset 2  2 matrix semigroup of the semigroup  

 {(Q+{0}) (g), }. 
 

 (i)  Prove S has zero divisors. 
 (ii)  Prove S has a zero square subsemigroups. 
 (iii)  Can S have S-units? 
 (iv)  Is it possible to have subset matrix ideals of S? 

(v) Can S have subset matrix subsemigroups which are  
 not subset matrix ideals? 

 
14. Obtain some special features enjoyed by subset matrix 

semigroups of the semigroup {Q, } or {R, } or {C, } or 
{Q(g), } or {R(g), }, {C(g), } where g2 = 0. 

 
15. Specify some special features enjoyed by infinite subset 

matrix semigroup of {Z[x], } (or {Q[x], } or {R[x], } 
or {C[x], } or {Z+ [x]  {0}} or {Q+ [x]  {0}}). 

 
16. Let S = {Collection of all 7  3 matrices whose entries are 

subsets from the semigroup of {Zn [x], } 
 
 (i)  Will the subset matrix semigroups of the semigroup  
  {Zn [x], } be finite?  Justify. 
 (ii)   Can S have zero divisors? 
 (iii)  Can S have units? 
 (iv)  Can S have S-idempotents? 
 (v)  Can S have subset matrix subsemigroups which are  
  not subset matrix ideals? 
 
17. Let S = {Collection of all subset 3  3 matrix semigroup 

with subsets from the  symmetric semigroup S(5)} be the 
subset semigroup matrix of symmetric semigroup  S(5). 

 

 (i)  Find order of S. 
 (ii)  Prove S is a non commutative semigroup. 
 (iii)  Can S have subset matrix ideals? 
 (iv)  Is it possible for S to contain zero divisors? 
 (v)  Can S have S-units? 
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 18. Let S = {Collection of all 3  3 subset matrices with 

subsets from S(n), the symmetric semigroup} be the subset 
matrix semigroup of the semigroup S(n). 

 
 (i)  Find o(S). 
 (ii)  Prove S has no zero divisors. 
 (iii)  Prove S is non commutative. 
 (iv)  Can S have idempotents? 
 (v)  Is S a S-subset matrix semigroup? 
 
19. If in the problem 18 the 3  3 matrix is replaced by 5  3 

matrix study questions (i) to (iv). 
 
20. Let S = {Collection of all subset 2  5 matrices with entries 

from the symmetric semigroup S(7)} be the subset matrix 
semigroup of the symmetric semigroup S(7). 

 
 (i)   Find o(S). 
 (ii)  Prove S is non commutative. 

(iii) Can S have zero divisors? 
 (iv)  Prove S can have units where  
 

  I = 
{e} {e} {e} {e} {e}
{e} {e} {e} {e} {e}
 
 
 

 is the unit in S.   

 
  {e} identity element of S(7).  Clearly A  I = I  A = 

A for all A  S. 
 (v)   Can S have idempotents? 
 (vi)  Can S have S-units? 
 (vii) Can S have subset matrix subsemigroup which is  
  commutative? 
 (viii) Is S a S-semigroup? 
 
21. Let S = {Collection of all subset 7  2 matrices with 

subsets from the group {Z, +}} be the subset 7  2 matrix 
semigroup of the group G. 

 
 (i)  Find ideals of S. 
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 (ii)  Is S a S-semigroup? 
 (iii)  Can S have zero divisors? 
 (iv)  Can S have S-units? 
 (v)  Can S have S-idempotents? 
 (vi) Does S contain subset matrix subsemigroups which  
  are not subset matrix ideals? 
 
22. Let S = {Collection of all 3  7 subset matrices with entries 

from the subsets of the group G = {Z10, +}} be the subset 
matrix semigroup of the group G. 

 
 (i)  Find o(S). 
 (ii)  Is S commutative? 
 (iii)  Can S have subset matrix ideals? 
 (iv)  If G is replaced by the semigroup P = {Z10, },  
  enumerate all the special features enjoyed by S. 

(iv) Differentiate both structure like units, S units, zero  
 divisors, S-zero divisors, idempotents and  
 S-idempotents when G is replaced by P = {Z10, }. 

 
23. Let S = {Collection of all subset 3  7 matrices with entries 

from the subsets of the group G = {Z17, +}} be the subset 
matrix semigroup of the group G. 

 
 (i)  Study questions (i) to (iii) (given in problem 22).  
 (ii)  If G is replaced by P = {Z17, } study question (iv).  
 
24. Obtain some special features enjoyed by subset matrix 

semigroups over a group. 
 
25. Let S = {Collection of all subset 4  3 matrices with 

subsets from the semigroup P = Z11  Z6  C(Z7)  Z4(g)}  
be the subset matrix semigroup of the semigroup P. 

 
 (i)  Find o(S). 
 (ii)   Find atleast three subset matrix subsemigroups of S. 
 (iii)  Find atleast three subset matrix ideals of S. 
 (iv)  Can S have S-zero divisors?  
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 26. Let S = {Collection of all subset 5  2 matrices whose 

subsets are from the group G = D2.7} be the subset matrix 
semigroup over the group G. 

 
 (i)  Find o(S). 
 (ii)  Can S have subset matrix subsemigroups which are    
     not a subset ideals? 
 (iii)  Can S have S-zero divisors? 
 (iv)  Can S have idempotents? 
 (v)   Give some special properties about S. 
 (vi)  Prove S is non commutative. 
 (vii) Can S be a S-semigroup? 
 
27. Let S = {Collection of all subset 2  4 matrices with 

subsets from the group G = S7  D2.7  (Z11 \ {0}, )}} be 
the subset 2  4 matrix semigroup over the group G. 

 
 (i)  Find order of S. 
 (ii)  Can S have zero divisors? 
 (iii)  Is S a S-semigroup? 
 (iv)  Can S have S-subsemigroups? 
 (v)  Is it possible for S to have S-ideals? 
 (vi)  Study (i) to (v) using H = S7 alone. 
 
28. Let S = {Collection of all subset 3  3 matrices with 

subsets from Q+  {0}} be the subset 3  3 matrix 
semiring. 

 
 (i)  Is S a commutative semiring? 
 (ii)  Is S a S-semiring? 
 (iii)  Can S have zero divisors? 
 (iv)  Can S have idempotents? 
 

 (v)  Is A = 
{1} {0} {0,1}
{1} {0,1} {0}
{0} {1} {1}

 
 
 
 
 

  S an idempotent of S? 
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29. Let S = {Collection of all 2  4 subset matrices with 
subsets from the semiring 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 be the subset 2  4 matrix semiring over the semiring P. 
 
 (i)   Find o(S). 
 (ii)  Is S a S-semiring? 
 (iii)  Can S have zero divisors? 

 (iv)  If P is replaced by the semifield  
 

 
 
 
 
 
 
 
 
 
 
 
 
 


 a4 
 a6 

a9 

0 

a1 

a3 

 a7 

a11 

1 









a10a11 

1 





a8a7 

a6

a9





a5a4 





a2a1 

0

a3
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     and S is defined over P study the above questions (i)  
  to (iii) 
 (v)  Can S have S-units? 
 (vi)  Can S have S-idempotents? 
 (vii) Can S have idempotents which are not S-idempotents? 
 
30. Let S = {Collection of all subset 7  1 matrices with 

subsets from the Boolean algebra B of order 32} be the 
subset 7  1 matrix semiring over B. 

 
 (i)  Find o(S). 
 (ii)  Can S have S-zero divisors? 
 (iii)  Can S have S-idempotents? 
 (iv)  Can S have S-ideals? 
 (v)  Is S a S-semiring? 
 (vi)  Can S have S-units? 
 
31. Let in problem 30 the Boolean algebra B be replaced by a 

chain lattice C8 =  
 
 
 
 
 
 
 
 
 
 
 
 Study question (i) to (vi) of problem 30 for this S over C8. 
 
32. Let S = {Collection of all subset 2  2 matrices with 

subsets from the ring Z40} be the special subset 2  2 
matrix semiring over the ring. 

 
 (i)  Find order of S. 
 (ii)  Is S a commutative structure? 
 (iii)  Can S have zero divisors? 

  
a6 
1 

0 
 a1 

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 (iv)  Can S be a S-ring? 
 (v)  Can S have S-ideals? 
 
33. Let S = {Collection of all subset 8  1 matrices where 

subsets are taken from the field Z7} be the subset 8  1 
matrix semiring of the field. 

 
 (i)  Find o(S). 
 (ii)  Find S-subsemirings. 
 (iii)  Can S have S-idempotents? 
 (iv)  Prove S has zero divisors. 
 
34. Let S = {Collection of all subset 1  9 matrix subsets from 

the field Q} be the subset 1  9 matrix semiring of the field 
Q. 

 
 (i)  Can S have zero divisors? 
 (ii)  Can S have S-units? 

(iii) Can S have S-ideals? 
 

 (iv) Can S have subset matrix subsemirings which are not  
  ideals? 

(v) Is S a S-semiring? 
 

35. Let S = {Collection of all subset 2  4 matrix, subsets from 
the ring Q[x]} be the subset matrix semiring over of the  
S-ring Q[x]. 

 
 (i) Prove S is of infinite order. 
 (ii)  Can S have S-subset matrix subsemiring which is not  
  a subset matrix ideal? 
 (iii)  Can S have S-ideals? 
 (iv)  Can S have zero divisors? 
 (v)  Can S have S-idempotents? 
 (vi)  Can S have S-units? 
 (vii) Obtain some stricking features about S. 
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 36. Let S = {Collection of all subsets of 3  5 matrices with 

subsets from Z3[x]} be the subset 3  5 matrix semiring of 
the ring. 

 
 (i)  Prove S is of infinite order. 
 (ii)  Can S have zero divisors? 
 (iii)  Is it possible for idempotents to be in S? 
 (iv)  Can S have units? 
 (v)  Give two examples of subset matrix S-ideals in S. 
 (vi) Give two examples subset matrix S-subsemirings  
  which are not subset matrix ideals. 
 (vii) Give an example of a subset matrix ideal which is  
  not a subset matrix S-ideal? 
 
37. Let S = {Collection of all subsets of 2  6 matrices with 

subsets from the quasi dual like ring Zn(g) with g2 = –g} be 
the subset 2  6 matrix semiring of the ring Zn(g). 

 
 (i)  Find the order of S. 
 (ii)  Can S have zero divisors? 
 (iii)  Can S have S-idempotents? 
 (iv)  Find a subset matrix S-subsemiring of S. 
 (v)  Find subset matrix S-ideals of S. 
 (vi) Find a subset matrix subsemiring which is not a subset  
  matrix S-ideal. 
 
38. Let S = {Collection of all subset of 3  1 matrices with 

subsets from the semiring 
 
 
 
 
 
 
 
 
 
 
 be the subset 3  1 matrix semiring. 







 f 

0 

b 




 c a 

1 

e d 
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 (i)   Find o(S). 
 (ii)  Find zero divisors in S. 
 (iii) Find units of S. 
 (iv)  Find idempotents of S. 
 (v)  Find subset matrix S-ideals of S. 
 (vi)  Find subset matrix S-subsemiring of S. 
 
39. Let S = {Collection of all subset 2  5 matrices with 

subsets from the ring Z20 (g1, g2) = 2
1g  = 2

2g  = 0 = g1g2 = 
g2g1} be the subset matrix semiring of the ring Z20 (g1,g2). 

 
 (i)   Find zero divisors of S. 
 (ii)  Find o(S). 
 (iii)  Can S have S-units? 
 (iv) Can S have subset matrix ideals which are not subset  
  matrix S-ideals? 
 (v) Can S have subset matrix S-subsemiring which are not  
  subset matrix ideals? 
 
40. Let S = {Collection of all subsets of 1  8 matrices with 

subsets from the ring C(Z9)} be the subset 1  8 matrix 
semiring of the ring C(Z9). 

 
 (i)  Can S have zero divisors? 
 (ii)  Find o(S). 
 (iii)  Is S a subset matrix S-semiring? 
 (iv)  Can S have subset matrix S-ideals? 
 (v)  Can S have S-units? 
 (vi)  Can S have units which are not S-units? 
 (vii) Can S have zero divisors which are not S-zero  
  divisors? 
 
41. Let S = {Collection of all subset 5  5 matrices with 

subsets from the field Z19} be the subset 5  5 matrix 
semiring of the field Z19. 

 
 (i)  Find order of S. 
 (ii)  Prove S has zero divisors. 
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  (iii)  Prove S has units. 
 (iv)  Can S have S-units and S-zero divisors? 
 (v)  Can S have subset matrix S-ideals? 
 
42. Let S = {Collection of all subset 3  2 matrices with entries 

from subsets from the semigroup Z15} be the subset 3  2 
matrix semigroup of the semigroup Z15. 

 
 (i) Find all the set ideals of the subset 3  2 matrix  
  semigroup S. 
 (ii)  If P = {0,1} be the subsemigroup of Z15.  Find  
  collection of set subset matrix ideals T of S over P. 
 (iii) If P1 = {0, 14, 1} be the subsemigroup of the  
  semigroup Z15, find collection of all subset matrix set  
  ideals T1 of S over P1. 
 (iv)  Compare T with T1  
 (v)  If P2 = {0, 3, 9, 12, 6}  Z15 be a subsemigroup of the  
  semigroup Z15 find the collection of all subset matrix  
  set ideals T2 of S over P2. 
 (vi) If P3 = {0, 5, 10}  Z15 be the subsemigroup of Z15  
  find the collection of all subset matrix set ideals T3 of  
  S over P3. 
 (vii)  Compare T3, T1 and T2. 
 (viii) Using the ‘’  and ‘’ of subsets of these subset  
    matrix set ideals define topologies on them. 
 
43. Let S = {Collection of all subset 3  7 matrices with 

subsets from the semigroup Z12(g)} be the subset 3  7 
matrix semigroup of the semigroup Z12 (g). 

 
 (i) Take P1 = {0, 6, 6g}  Z12 (g) a subsemigroup of the 

semigroup Z12 (g). T1 = {Collection of all set ideals of S 
over P1} be the subset matrix set ideal topological space 
of S over P1. 

 
  (a)  Find a basic set of T1. 
  (b) Find o(T1). 
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 Study question (i) of a and b for P2 = {6, 0}, P3 = {0, 6g}, 
P4 = {1, 0}, P5 = {0, 11, 1}, P6 = {g, 0}, P7 = {g, 11g, 0}, 
P8 = {0, 2, 4, 6, 8, 10}, P9 = {0, 3, 6, 9}, P11 = {0, 4g, 8g} 
and P12 = {0, 3g, 6g, 9g}. 

 
44. Let S = {Collection of all subset 5  2 matrices with 

subsets from the semigroup S = {C(Z6) (g); } g2 = 0}} be 
the subset 5  2 matrix semigroup of the semigroup S. 

 
 (a) Find the total number of set ideal subset 5  2 matrix 

topological spaces of S over the appropriate 
subsemigroup of S. 

 
45. Let S = {Collection of all subset 1  7 matrices with 

subsets from the semigroup S1 = {Z4  Z6, }} be the 
subset 1  7 matrix semigroup of S1.   

 
Study  question (a) in problem 44 for this S. 

 
46. Let S = {Collection of all subset 2  5 matrices, entries of 

the matrices are taken from subsets of S(5)} be the subset  
2  5 matrix semigroup of the semigroup S(5). 

 
 (i)  Find all set ideal subset matrix topological spaces of S  
  over subsemigroup of S. 
 (ii)  How many are identical for the distinct  
  subsemigroups? 
 (iii) Find subset matrix set ideals of S over the group S5  
  and find the related subset matrix set ideal topological  
  space. 
 (iv) Can S have a Smarandache quasi set ideal subset  
  matrix relative to a subsemigroup S1 of S? 
 
47. Obtain some special features enjoyed by Smarandache 

perfect quasi set ideal subset m  n matrix semigroup S; a 
subset m  n matrix subset semigroup with subsets from 
the semigroup P. 
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 48. Study Smarandache perfect quasi set ideal m  n matrix 

topological semigroup from subset matrix semigroup of a 
semigroup.  

 
49. Distinguish this (48 problem) from the set ideal topological 

space of a semigroup. 
 
50. Let S = {Collection of all subset 2  7 matrices with 

subsets from the ring Z18} be the subset 2  7 matrix 
semiring of the ring Z18. 

 
 (i)  How many subset 2  7 matrix subsemirings exist? 
 (ii)  How many set ideal subset 2  7 matrix over  
  subsemirings of S exist? 
 (iii)  Construct the related topology on them. 
 (iv)  Distinguish between set ideals of all subset matrix  
  subsemigroup topological space over S and that of the  
  ideals of the subset matrix subsemigroup topological  
  space over S. 
 
51. Let S be the collection of all subset 3  2 matrix semiring 

with entries from the subsets from the field Z19.  Study 
questions (i) to (iv) of the problem 50. 

 
52. Let S = {Collection of all subset 3  7 matrices with 

subsets from the semifield Z+  {0}} be the subset 3  7 
matrix semiring of the semifield. 

 
 (i) Find the ideal subset topological 3  7 matrix semiring  
  of the semiring S. 
 (ii) Find all set ideal subset topological 3  7 matrix of S  
  over subsets of S. 
 (iii)  Prove S has zero divisors. 

(iv) Can S have S-zero divisors? 
 

53. Let S = {Collection of all subset 3  1 matrices with 
subsets from the ring Z42 (g)} be the subset 3  1 matrix 
semiring of the ring. 
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 (i)  Find o(S). 
 (ii)  Can S have zero divisors which are not S-zero  
  divisors? 
 (iii) Find the subset matrix ideal topological space of the  
  subset matrix ideals of S. 
 (iv)  Find all the set ideal topological subset 3  1 matrix  
  ideals space of S over proper subsemirings of S. 
 
54. Let S = {Collection of all subset 5  2 matrices with 

subsets from the symmetric semigroup S(3)} be the subset 
5  2 matrix semigroup of the symmetric semigroup S(3). 

 
 (i)  Find o(S). 
 (ii)  Prove S is non commutative under the natural product  
  n of matrices. 
 (iii)  Prove S cannot have zero divisors. 
 (iv)  Prove S is not a semifield. 
 (v) Find a strong subset matrix set ideal of the subset  
  matrix semigroup S. 
 (vi) Find a special strong subset matrix set ideal of the  
  subset matrix semigroup S. 
 (vii) Find the strong subset matrix set ideal topological  
  space of the subset matrix semigroup space T of S. 
 (viii) Find the special strong set ideal topological subset  
  matrix semigroup space T1 of S. 
 (ix)  Compare the T and T1. 
 (x)   Can S have minimal set ideal topological subset  
  matrix semigroup space? 
 (xi)  Can S have maximal set ideal topological subset  
  matrix space semigroup T4?  (Justify). 
 (xii) Find the ideal topological subset matrix semigroup  
  space T2 of S. 
 (xiii) Compare T, T1 and T2. 
 (xiv) Find the prime set ideal topological subset matrix  
  semigroup space T3 of S. 
 (xv)  Compare T4 with T3; can they be identical? 
 (xvi) Find the Smarandache set ideal topological subset  
   matrix subsemigroup space T5 of S. 
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  (xvii) Find a Smaradache quasi set ideal topological subset  
     matrix subsemigroup space T6 of S. 
 (xviii) Find the Smarandache strongly quasi set ideal  
     topological subset matrix subsemigroup space of S. 
 
55. Let S1 = {Collection of all subset 3  1 matrices with 

entries from the subsets of the semigroup Z60} be the subset 
3  1 matrix semigroup of the semigroup Z60. 

 
 Study questions (i) to (xviii) of problem (54).  (For 

Question (iii) prove S1 has zero divisors). 
 
56. Let S2 = {Collection of all subset 1  3 matrices with 

entries from the subsets of the group G = D2,7} be the 
subset matrix semiring of the group G = D2,7. 

 
 Study question (i) to (xviii) in problem 54 for this S2. 
 
57. Let S = {Collection of all subset 3  2 matrices with 

subsets from the semiring 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 be the subset 3  2 matrix semiring of the semiring L. 
 







 d 

b 




 c a 

1 

e f 

g 









i j 

0

h 
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 (i) Study questions (i) to (xviii) of problem 54 for this S. 
 (ii)  Construct T, T1, T2, …, T5 in problem 54 the  
  topological space of subset matrix semirings. 
 (iii) Build on T, T1, …, T5 the new topologies with N  and  
  N and distinguish the two topological subset matrix  
  spaces of the subset matrix semiring. 
 
58. Let S = {Collection of all subset 2  5 matrices with subset 

from the chain lattice C20 = 
 
 
 
 
  
 
 
 
   
 be the subset 2  5 matrix semiring of the chain lattice C20. 
 
 (i)  Study all the questions mentioned in problem (54) by  
  replacing L by C20. 
 (ii) Prove S has zero divisors. 
 
59. Let S1 = {Collection of all subset 2  4 matrices with 

subsets from the ring Z20} be the subset 2  4 matrix 
semiring of the ring Z20.   Study all the questions 
mentioned in problem (54) for this S1. 

 Does S1 enjoy any stricking properties as ring is used?  
Justify. 

 
60. Study problem (54) if Z20 is replaced by Z. 
 
61. Let S = {Collection of all subset 7  1 matrices with 

subsets from the field Z43} be the subset 7  1 matrix 
semiring of the field Z43. 

 Study questions mentioned in problems (i) to (xviii) 
mentioned in problem 54. 

 

 a2 
a1 
1 

0 
 a18 

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 62. Let B = {Collection of all subset 3  3 matrices with 

entries from the subsets of the ring Z24 (g); g2 = –g} be the 
subset 3  3 matrix semiring of the ring Z24 (g). 

 Study all the questions (i) to (xviii) of problem 54 for this 
B. 

 
63. Let M = {Collection of all subset 6  3 matrices with 

subset entries from the mixed dual number ring Z10 (g, g1) 
where 2

1g  = g1, g2 = 0 g1 g2 = g2g1 = 0} be the subset 6  3 
matrix semiring of the ring. 

 Study all questions (i) to (xviii) of problem 54 for this M. 
 
64. Let N = {Collection of all subset 9  1 matrices with subset 

entries from the ring C(Z9) (g), g2 = 0} be the subset 9  1 
matrix semiring of the ring C(Z9) (g). 

 (i) Study questions (i) to (xviii) in problem 54 for this N. 
 (ii) Does N enjoy any other special properties? 
 
65. For problems 60, 61, 62 and 63 find all the possible new 

topologies that can be built on these subset matrix 
semirings mentioned in those problems. 



 
 
 
 
 
Chapter Three 
 
 

 
 
POLYNOMIAL SUBSETS  
 
 
 
 In this chapter for the first time the authors introduce the 
concept of polynomials with subset coefficients which will be 
known as subset polynomials or polynomials subsets.  Here we 
define, describe and develop these new concepts. 
 
DEFINITION 3.1:  Let X be a set with say n-elements {a1, a2, …, 
an}. S= P(X) = {All subsets of X including X and }. Take S[x] 

= 







 i

i
i 0

a x  ai  P(X) = S}.  S[x] is defined as the subset 

polynomial or polynomial in the variable x with coefficients 
from S or polynomial subsets.  
 

 As polynomials play a major role in almost all the fields of 
science and more so in mathematics, we are forced to develop 
the concept of subset polynomials as we have already developed 
algebraic structures using subsets of a set or a semigroup or a 
group or a ring or a field or a semiring or a semifield.  
 
 We will first describe the subset polynomials in the variable 
x with coefficients from the subsets of a power set P(X) of the 
set X. 
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Example 3.1:  Let X = {1, 2, 3, 4} be the set.   
 

S = P(X) = {power set of X}.  S[x] = i
i

i 0
s x








 si  S}  is 

the subset polynomial in the variable x. 
 
 We show how the operations ‘’ and ‘’ are performed on 
S[x].  Let p(x) = {1,2}x5 + {3, 1, 2} x3 + {1, 4} x + {4} and  
q (x) = {1, 2, 3} x2 + {4, 2} x + {3} be two subset polynomials 
in S[x]. 
 
 p(x)  q(x) = {1, 2} x5 + {3, 1, 2} x3 + {1, 2, 3} x2 + ({1,4} 
 {4, 2}) x + {4}  {3} 
 
 = {1,2} x5 + {3, 1, 2} x3 + {1, 2, 3} x2 + {1, 4, 2} x + {4, 3} 
 S[x]. 
 
 Thus {S, } is a commutative semigroup. 
 
 Now p(x)  q(x) = ({1, 2}  {1,2,3}) x5  x2 + ({1,2,3}  
{1,2,3}) x3  x2 + {1,4}  {1,2,3} x  x2 + {4}  {1, 2, 3} x2 + 
{1,2}  {4, 2}x5  x + {1,2,3}  {4,2} x3  x + {1,4}  {4,2} 
x  x + {4}  {4, 2} x + {1,2}  {3} x5 + {3,1,2}  {3} x3 + 
{1,4}  {3} x + {4}  {3} 
 
 = {1,2} x7 + {1,2,3} x5 + {1} x3 +  x2 + {2} x6 + {2} x4 + 
{4}x2 + {4}x + {}x5 + {3}x3 + {)x +  
 
 = {1,2}x7 + {2}x6 + {1,2,3}x5 + {2}x4 + ({1}  {3}) x3 + 
{4}x2 + {4} x. 
 
 = {1,2}x7 + {2}x6 + {1,2,3}x5 + {2}x4 + {1,3}x3 + {4}x2 + 
{4}x as   {2} = {2} and  xn = empty set . 
 
 Clearly p(x)  q(x)  S[x].  Thus (S[x] ) is a commutative 
semigroup. 
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 Further {S[x], , } is a distributive lattice of subset 
polynomials of infinite order. 
 
 We see many differences 
 

(i) Clearly S[x] can never become a ring. 
(ii) S[x] can never be a group 
(iii) Maximum S[x] can be a semigroup under a 

single binary operation,  or . 
(iv) S[x] with two binary operations can be a 

semiring or a semifield. 
(v) Unless restrictions are made on degree of the 

polynomials always S[x] is of infinite order. 
 
Example 3.2:  Let X = {1, 2, 3, 4, 5, 6} be a set; S = P(X) the 
power set of X.   
 

S[x] = i
i

i 0
a x








 ai  S} be the subset polynomials. 

 
 {S[x], , } is a semiring / lattice of infinite order. 
 
 Let p(x) = {1} x3 + {3,1}x + {3}  
and q(x) = {2} x + {2}  S[x] 
 
 p(x)  q(x) = {1}  {2} (x3  x) + ({3,1}  {2}) (x  x) + 
({3}  {2}) (x) + ({1}  {2})x3 + {3,1}  {2}x + {3}  {2} = 
. 
 
 Thus we see in case of subset polynomials we can have 
intersection of two non empty polynomials to be empty. 
 
 (We say two subset polynomials are subset zero divisors are 
product empty if p(x)  q(x) = ).   
 

This never occurs in usual polynomials unless the elements 
are from Zn[x]; i.e., rings with zero divisors.  Here even if the 
rings have no zero divisors we still arrive at this conclusion. 
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 Instead of saying zero polynomial when we use subsets 
from powerset of a set X we say empty polynomial. 
  

In an analogous way we have an empty polynomial of 
degree n which is as follows: 
 

  = xn + xn–1 + … + x + . 
 
 We see p(x)   = p(x) and p(x)   =  
 
 Also p(x) q(x) =  can occur without p(x) =  or q(x) = ; 
this we call as subset zero divisors. 
 
 All these concepts happen to be true only in case of subset 
polynomials whose coefficients are from the powerset P(X) of a 
set X. 
 
Example 3.3:  Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} be the set;  
S = P(X) the power set of X.  S[x] the subset polynomial 
semiring under  and . 
 
 [S[x], , ] has non empty divisors and is of infinite order. 
 
Example 3.4:  Let S = {Collection of all subsets of the lattice 
C20 given by C20 =  
 
 
 
 
 
 
 
 
 
 
 
 
and the empty set }.   


 a2 
 a1 
1 



0 
a18 

a3 
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S[x] be the subset polynomial S[x] = i
i

i 0
a x








  ai  S}; 

{S[x], , } is a subset polynomial semiring. 
 
 For take p(x) = {0,1,a3} x3 + {1,a4, a10, a6} x2 + {a1, a2, a3, 
a7}  and  q(x) = {1, a6, a7, a9}x2 + {a3, a2, a10, a11, a17}. 
 
 We find p(x)  q(x) and p(x)  q(x). 
 
 p(x)  q(x) = {0,1,a3} x3 + ({1,a4,a10,a6}  {1,a6, a7, a9})x2 
+ ({a1, a2, a3, a7}  {a3, a2, a10, a11, a17}) 
 
 = {0, 1, a3} x3 + {1, a4, a6, a7, a9, a10} x2 + {a1, a2, a3, a7, a10, 
a11, a17}  S[x]. 
 
 p(x)  q(x) = ({1, a3, 0}  {1, a6, a7, a9}) (x5) + ({1, a4, a10, 
a6}  {1, a6, a7, a9}) (x4) + ({a1, a2, a3, a7}  {1, a6, a7, a9}) x2 + 
{1, a3, 0}  {a2, a3, a10, a11, a17} x3 + ({1, a4, a6, a10}  {a2, a3, 
a10, a11, a17}) x2 + ({a1, a2, a3, a7}  {a3, a2, a10, a11, a17}) 
 
 = {1}x5 + {1, a6} x4 + {}x2 + {a3} x3 + {a10} x2 + {a2, a3} 
 = {1} x5 + {1, a6} x4 + {a3} x3 + {a10} x2 + {a2, a3}  S[x]. 
 
 It is pertinent to keep on record that we used only set 
theoretic union and not the intersection and union of the lattice.  
Suppose we use the union and intersection of the lattice C20 we 
get the corresponding 
 
 p(x) L q(x) = {1, a6, a7, a9, a3, 0}x5 + {1, a6, a7, a9,a10, a4}x4 
+ {a1, a2, a3, a7, a6, a9} x2 + {a2, a3, a10, a11, a17, 0} x3 + {1, a2, a3, 
a10, a11, a17, a4, a6} x2 + {a3, a2, a10, a11, a17, a7}  
 
 = {1, a6, a7, a9, a3, 0} x5 + {1, a6, a7, a4, a9, a10} x4 + {a1, a2, 
a3, a6, a7, a9} x2 + {a2, 0, a3, a10, a11, a17} x3 + {a2, a3, a7, a10, a11, 
a17}  S[x]  
 
 We see p(x) L q(x)  p(x)  q(x).  Thus we can have two 
polynomial subset semirings. 



94 Subset Polynomial Semirings and Subset Matrix Semirings 
 
 
 
 
 Now consider p(x) L q(x) = {0, 1, a3} x3 + {1, a4, a9, a6, 
a7} x2 + {a1, a2, a3, a7}  S[x]. 
 
 Clearly p(x) L q(x)  p(x)  q(x).   
 

We see if we use other than powersets as coefficients for the 
same set S[x] we get two different semirings of infinite order. 
 
 However the other sets must be any algebraic structure with 
two binary operations. 
 
Example 3.5:  Let S = {Collection of all subsets of the Boolean 
algebra B = 
 
  
 
 
 
 
 
 
 
 
together with }.   
 

S[x] = i
i

i 0
a x








  ai  S} be the subset polynomial semiring 

[S[x], , ] is a subset polynomial semiring with usual set 
theoretic union and intersection. 
 
 {S[x], L, L} is a subset polynomial ring with operations 
of the Boolean algebra B. 
 
 Take p(x) = {f}x3 + {d}x2 + {0,d} and  
 q(x) = {e, 0}x2 + {e}  S[x].  
 
 p(x)  q(x) = {f} x3 + {d}  {e, 0} x2 + {0, d}  {e} 
 = {f} x3 + {0, d, e} x2 + {0, d, e}. 







 d 

b 




 c a 

1 

e f 

0 
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 p(x)  q(x) = {f}  {e, 0} x3  x2 + {d}  {e, 0} x2  x2 + 
{0, d}  {e} + {f}  {e} x3 + {d}  {e} x2 + {0, d}  {e}  
 
 = {} x5 + {} x4 + {0} x2 +  x4 + {} x2 +    = {0} x2. 
  
 Now we find 
 p(x) L q(x) = {f} x3 + ({d} L {e, 0})x2 + {0, d} L {e} 
 = {f} x3 + {d c} x2 + {e, c}. 
 
We see p(x) L q (x)  p(x)  q(x). 
 
 Consider p(x) L q(x) = {f} L {e, 0} x5 + {d} L {e, 0} x4 
+ {d, 0}  {e, 0} x2 + {f} L {e} x3 + {d} L {e} x2 + {0, d} 
L {e} 
 
 = {0}x5 + {0} x4 + {0}x2 + {0}x3 + {0}x2 + {0}. 
 
 This is the zero subset polynomial.  Thus a zero subset 
polynomial will be of the form 
 
 p(x) = {0}xn + {0}xn–1 + … + {0} x + {0}. 
 
 We call if p(x) L q(x) = zero subset polynomial that is {0}, 
then p(x) is a zero divisor in S[x].  However the concept of 
empty polynomial has no meaning in {S[x], L, L}.  Likewise 
the concept of empty subset polynomial is present in {S[x], , 
} and this {S[x], , } has no relevance to the zero subset 
polynomial.  For if p(x) is a zero subset polynomial and q(x) 
subset polynomial in S[x]. 
 
 p(x)  q(x) need not be a zero subset polynomial it can be a 
subset polynomial with coefficient {} and {0} or only {} or 
only {0}.  
 
 We for any subset polynomial S[x] (S = P(X) or S a 
semiring) we define degree of the polynomial p(x)  S[x] to be 
the highest degree of x with non zero (non empty) subset 
coefficient. 
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 Let p(X) = a0 + a1x + … + atxt 
 ai  S; 0  i  t with at  {} (or at = {0}) then the degree of 
the subset polynomial p(x) is ‘t’. 
 

 We will give some examples. 
 
 Let p(x) = {6, 1, 2} x7 + {}x6 + {5, 7, 6, 1} x5 + {2, 3, 1} 
here {6,1,2}, , {5, 7, 6, 1} and {2, 3, 1}  P(X) = S; where  
X = {1, 2, …, 10} be a subset polynomial in S(X). 
 
 The degree of the subset polynomial p(x) is x7 as the subset 
coefficient is  {6, 1, 2}. 
 
 Let p(x) = {0, a1} x8 + {0} x6 + {0, a1, a2, a3} x3 + {a, a8}  
S[x] where S = {Collection of all subsets of the lattice C10 = 
 
 
 
 
 
 
 
 
 
 

under L and L operation. 
 
 However if p1 (x) = {0}x5 + {a1, a2, 0} x4 + {a1, a2, a3}  
{S[x], , } the degree of p(x) is 5 and degree of p1(x) in 
{S[x], L, L} is four. 
 
 However p1(x)  {S[x], L, L} and degree of p1(x) is four.  
The concept of degree of the subset polynomial can be easily 
got depending on the context.  Thus this task is simple.  We do 
not accept zero {0} as the coefficient in case of {S[x], L, L}.   
 

Now we proceed onto give examples of subset polynomial 
semirings. 

 

Example 3.6:  Let S = {Collection of all subsets of the lattice   
L = 


 a2 
 a1 
1 



0 
a8 

a3 
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             ; 
            
 
 
 
 
 
 
 
 
and S[x] the subset polynomial semiring.  {S[x], , } where 
S[x] means ‘’ set is included in S and {S[x], L, L} be 
another subset polynomial semiring.  The reader can easily find 
degrees of any subset polynomial in S[x] or S[x]. 
 
Example 3.7:  Let S = {Collection of all subset of the lattice L = 
L1  L2 where 
 
 L1  =    and L2 = 
 
 
 
 
 

                ; 
 
 
 
 
 
 
 









e1 





 k1

l1

h1 

f1

j1

g1

 0









a1 

d1 

c1b1

 1







 f 

h 




 g i 

1 

e d 

c 

 ba 

 0 









e 





 j 

i 

h

f 

k

g

 0









1 

 d

c 

ba 
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{S[x], L, L} and {S[x], , } be the subset polynomial 
semirings. 
 
 Now we can define subset polynomial subsemirings of a 
subset polynomial semiring. We can also define subset 
polynomial ideal of S[x]. 
 
DEFINITION 3.2:  Let S[x] be a subset polynomial semiring.  Let 
P  S[x]; if P is also a subset polynomial semiring under the 
operations of S[x] we define P to be the subset polynomial 
subsemiring of S[x].  If P in S[x] is such that for  all a(x)  S[x] 
and p(x)  P.  p(x) a(x) and a(x) p(x) are in P then we define P 
to be the subset polynomial ideal of S[x]. 
 
 We will first illustrate both the situations by some 
examples. 
 
Example 3.8:  Let S = {Collection of all power sets from the set 
X = {1, 2, 3}}.  S[x] the subset polynomial semiring  
 

P = i
i

i 0
a x








  ai  {power set of {1, 2}}  S[x] and P is a 

polynomial subset subsemiring.  Clearly P is also a polynomial 
subset ideal of S[x]. 
 
Example 3.9:  Let S = {Collection of all subsets of X = {1, 2, 
…, 10} together with X and } = P(X).   
 

S[x] the polynomial subset semiring.   
 

Consider P = i
i

i 0
a x








  ai  {Collection of all subsets of Y 

where Y = {2, 4, 6, 5, 8{  X} = P(Y)}  S[x].  P is a subset 
polynomial subsemiring of S[x].  Infact P is a subset polynomial 
ideal of S[x]. 
 
 Inview of this we have the following theorem. 
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THEOREM 3.1:  Let  
 
S = {P(X); X = {1, 2, …, n}} = {Powerset of X}.  S[x] the subset 

polynomial semiring.  P = i
i

i 0
a x








  ai  P(Y) = {powerset of 

Y; Y is subset of X}}  S[x] is a subset polynomial ideal of S[x]. 
 
 Proof is direct hence left as an exercise to the reader. 
 
Example 3.10:  Let S[x] be the subset polynomial semiring with 
coefficients from S = P(X) where X = {1, 2, …, 18}.  Take P = 
{All polynomials of degree less than or equal to 19 in S[x]}  
S[x]. 
 
 P is a subset polynomial subsemiring of S[x].  However P is 
not a subset polynomial ideal of S[x]. 
 
 For if p(x) = {9, 2, 8, 1} x19 + {3, 10, 17} x + {4, 5}  P.   
 Let a(x) = {5, 2} x10 + {7, 8, 4}  S[x]. 
 
 We see a(x)  p(x) 
 
 = ({9, 2, 8, 1}  {5, 2}) x29  + {3, 10, 17}  {5, 2} x11 + 
{4, 5}  {5, 2} x10 + {9, 2, 8, 1}  {7, 8, 4} x19 + {3, 10, 19}  
{7, 8, 4} x + {4, 5}  {7, 8, 4}  
 
 = {2} x29 + {5} x10 + {8} x19 + {4}  P.  So P is not a 
subset polynomial ideal of S[x].   
 

Inview of this we have the following theorem. 
 
THEOREM 3.2:  Let S[x] be a subset polynomial semiring with 
coefficients from S = P(X) where X = {1, 2, …, n}.  A subset 
polynomial subsemiring in general is not a subset polynomial 
ideal of S[x].   
 
 Proof follows from the fact that if P[x] = {Collection of all 
subset polynomials of degree less than or equal to n, n a fixed 
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positive integer}  S[x] it is easily verified that P[x] is only a 
subset polynomial subsemiring and not a subset polynomial 
ideal of S[x]. 
 
 Inview of this we see we have a class of subset polynomial 
subsemirings which are not subset polynomial ideals of S[x]. 
 
 Now having seen the concept of subset polynomial 
subsemirings and ideals in powerset coefficient polynomials we 
proceed onto study this concept in case of powersets replaced 
by semirings. 
 

Example 3.11:  Let S [x] = i
i

i 0
a x








  ai  S = {Collection of all 

subsets of the semiring L = 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
be the subset polynomial semiring. 
 

 Take P[x] = i
i

i 0
a x








 ai  {to the collection of all subsets of 

the subsemiring {j, h, I, 0}  L}  S[x]; it is easily verified P[x] 
is a subset polynomial subsemiring as well as subset polynomial 
ideal of S[x]. 







 d 

b 




 c a 

1 

e f 

h 

 i j 

 0

 g 
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 Take P1[x] = i
i

i 0
a x








  ai  {1, a, b, c, d, e, f, g}  L} be 

the subset polynomial subsemiring of S[x].   
 

Clearly P1[x] is not a subset polynomial ideal of S[x] for 
take s(x) = {0, h, j} x3 + {i, j} in S[x] and  
p(x) = {g, 1, a} x + {b, c, d} in P1[x], we see s(x) L p(x) 
 
 = {0, h, j} L {g, 1, a} x4.x + {i, j}L {g, 1, a} x + {0, h, j} 
L {b, c, d} x3 + {I, j} L {b, c, d} 
 
 = {0, h, j} x5 + {i, j} x + {0, h, j} x3 + {I, j}  P1[x]. 
 
 Hence the claim. 
 
 However if we take  and  of subsets we see p(x) s (x)  
P1[x] as the product p(x) s(x) is the empty subset polynomial of 
P1[x]. 
 
 So we see in {S1 [x], , }, P[x] is a subset polynomial 
ideal of S1[x]; however in {S[x], L, L}; P[x] is not a subset 
polynomial ideal of S[x] only a subset polynomial subsemiring.   
 

We see by using the operation L and L the subset 
polynomial subsemiring cannot be made into a subset 
polynomial ideal and however using the operation {S[x], , } 
we get P[x] is also a subset polynomial ideal of S[x].  This is 
one of the marked difference between these two subset 
polynomial semirings. 
 
 Let us now study subset polynomial semirings over the 
semifields of characteristic zero. 
 

Example 3.12:  Let S[x] = i
i

i 0
a x








  ai  S = {Collection of all 

subsets of the semifield Z+  {0}} be the subset polynomial 
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semiring with coefficients from the subsets of semifield  
Z+  {0}. 
 

 Let P[x] = i
i

i 0
a x








  ai  P = {Collection of all subsets of 

the semiring 5Z+  {0}}}  S[x]. 
 
 P[x] is a subset polynomial subsemiring as well as a subset 
polynomial ideal.  
 

Infact S[x] has infinite number of subset polynomial 
subsemirings which are ideals.  Also S[x] has infinite number of 
subset polynomial subsemirings which are not ideals. 
 

 For take Pn[x] = i
i

i 0
a x








  ai  P = {collection of all subsets 

of the semiring nZ+  {0}; n a positive integer}  S}  S[x] is 
a subset polynomial subsemiring which is a subset polynomial 
ideal. 
 

 Take Pn[x] = 
n

i
i

i 0
a x






  ai  S or any collection of subsets 

from any subsemiring mZ+  {0} (m an integer)}. n <  and 
Pn[x] contains only subset polynomials of degree less than or 
equal to n.  Clearly Pn[x] is a subset polynomial subsemiring of 
S[x] which is not a subset polynomial ideal of S[x]. 
 
Example 3.13:  Let S[x] = {Collection of all subsets coefficient 
polynomials in the variable x from the subsets of the semifield 
Q+  {0}} be the subset polynomial semiring. S[x] has infinite 
number of subset polynomial subsemirings which are not subset 
polynomial ideals. 
 

 For take P[x] = i
ia x




  ai  {Collection of all subsets of 

the semifield nZ+  {0}}}  S[x].  P[x] is only a subset 
polynomial subsemiring and not an ideal; n a positive integer.   
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We can vary n in Z+ and we get infinite collection of subset 
polynomial subsemirings which are not subset polynomial 
ideals. 

 
 However it is pertinent to keep on record that if we replace 
{S[x], L, L} by {S[x], , } then under  and  they are 
ideals.  Having seen these properties we extend to give some 
more examples. 
 
Example 3.14:  Let  
S = {Collection of all subsets of the semiring R+  {0}}.   
S[x] be the subset polynomial ring. 
 

 Take P[x] = i
i

i 0
a x








  ai  {Collection of all subsets of  

Q+  {0}}  S}}  S[x]; {P[x], L, L} is only a subset 
polynomial subsemiring of S[x], however P[x] is not a subset 
polynomial ideal of S[x].  Suppose  is taken in S and {S[x], , 
} (i.e.,   S) be the subset polynomial semiring. 
 
 {P[x], , } be the subset polynomial subsemiring of 
S[x]; then clearly P[x] is the subset polynomial ideal of S[x]. 
 
 We have infinitely many subset polynomial subsemirings in 
{S[x], L, L} which are not subset polynomial ideals of  
{S[x], L, L}.  Also {S[x], , } has subset polynomial 
ideals. 
 
 Interested reader can study these structures. 
 
 Now having seen examples of both infinite subset 
polynomial semirings using powerset of a set X or a semiring 
we now proceed onto develop techniques of solving subset 
polynomials. 
 
 We call a1 + a2x as linear subset polynomials where a1, a2  
P(X) as we cannot have the concept of inverse or unit in case of 
powersets; for X  A = A for all A  P(X) and A   =  for 
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all A  P(X). A   = A, X  A = X; we cannot have inverse 
of a subset in P(X). Suppose  
 
 p(x) = {1, 2, 3} x + {2, 5, 1} and q{x} = {2, 4, 6} x + {6, 7, 
8} where {1,2, 3}, {2, 5, 1}, {2, 4, 6}, {8, 6, 7}  P(X) where X 
= {1, 2, 3, …, 10}.   
 
 p(x)  q(x) = ({1, 2, 3} x + {2, 5, 1})  ({2, 4, 6} x + {6, 7, 
8}) 
 
 = {2} x2 + {2} x + {}. 
 
 To solve the equation we can have several ways of reducing 
this as two linear subset polynomials.   
 

We give few of the solutions. 
 
   ({2}x + {4, 8, 6})  ({2}x + {2, 7}) 
   = {2}x2 + {2}x + . 
 
   So {2}x + {4, 8, 6} = p1 (x) and 
   {2}x + {2, 7} = q1 (x). 
 
   ({2,4,8} x + {8}) ({2, 6, 9} x + {2, 6}) 
   = {2} x2 + x + {2}x + . 
 
   So that p2 (x) = {2, 4, 8} x + {8} 
   and q2 (x) = {2, 6, 9} x + {2, 6}. 
 
   Take ({2, 4}x + {5}) ({2} x + {6, 2}) 
   = {2}x2 + {2}x +  
   thus p3 (x) = {2, 4} x + {5}  
   and q3 (x) =  {2}x + {6, 2} 
 
and so on. 
 
 We have many ways of reducing a given second degree 
subset polynomial with subset coefficients from a power set 
P(X) of the set X. 
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 This is the marked difference between usual polynomials 
and the subset polynomials.  Thus the breaking of a nth degree 
subset polynomial linearly is not unique we have several ways 
of doing it.  So we can think of any analogous concept like for 
fundamental theorem of algebra which says every nth degree 
polynomials has n and only n roots which can be equivalently 
termed as every nth degree polynomial can be written uniquely 
except for the order as the product of n linear polynomials of 
course repetition is accepted. 
 
 Let us consider two polynomials 
 ({3}x + {6})   ({3}x + {6}) 
 {3}x2 + {6} 
 = ({3, 2}x + {6})  ({2, 5}x + {6, 9}) 
 = {2}x2 + {6} 
 = ({8, 2, 1}x + {6, 4, 5})  ({9, 3, 2} x + {6, 7}) 
 = {2} x2 + {6} and so on. 
 
 So we see even a second degree subset polynomial equation 
of this simple form has several ways of decomposition.  Infact 
the larger the X we take the powerset P(X) give more and more 
decompositions the smaller the set, the lesser number of linear 
decomposition as the product of linear subset polynomials. 
 
 Consider p(x) = ({1, 2, 3}x + {4, 5})  ({1, 2, 5}x + {9, 10}) 
({1, 2, 7}x + {8, 7}) where {1, 2, 3}, {4, 5}, {1, 2, 5}, {9, 10}, 
{1, 2, 7} and {8, 7} are in S = P(X), where X = {1, 2, 3, …, 
15}. 
 
 p(x) = ({1, 2, 3}x + {4, 5}) ({1, 2}x2 + x + x + ) 
 = {1,2}x3 + x2 + x +  
 = {1,2} x3. 
 
 Thus we see polynomials of the form p(x) = Axn; with A  
P(X) can be factored into subset linear polynomials. 
 
 Let p(x) = {1, 4, 6, 8} x5 then p(x) = ({1, 4, 6, 8}x + {2}) 
({1, 4, 6, 8, 7}x + {3}) ({1, 4, 6, 8, 5}x + {10}) ({1, 4, 6, 8, 5, 
12}x + {11}) ({1, 4, 6, 8, 13}x + {13}); where {10}, {11}, {3}, 
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{2}, {13}, {1, 4, 6, 8}, {1, 4, 6, 8, 5}, {1, 4, 6, 8, 7}, {1, 4, 6, 8, 
5, 12}, {1, 4, 6, 8, 13}  P(X). 
 
 Thus this is the marked difference between usual 
polynomials and subset polynomials.  For p(x) = xn, we write it 
clearly as p(x) = x.x.x. …, x = xn, but if p(x) = {A}xn where  
A  P(X) we can break it linearly into n terms and n of them 
distinct.   
 

A natural question would be can we have linear 
decomposition for p(x) = Axn for any n or does it depend on X 
of P(X).  The answer is the decomposition of p(x) = Axn is 
highly dependent on the cardinality of X and the n. 

 
 For if we take X = {1, 2, 3} and p(x) = {2, 1} x4 then we 
cannot break it as 4 distinct linear subset polynomials.   
 
 For p(x) = {2,1} x4  
 
 = ({1,2}x + ) ({1, 2, 3} x + {3}) ({1, 2}x + {)} ({1,2, 3} 
x + ). 
 
 We see only two of them are distinct that also in a very 
different way so p(x) = Axn may not be decomposable as 
distinct linear factors. 
 
 It is left as open problems.  
 
Problem 3.1:  If X = {a1, a2, …, an} and Axm = p(x); m > n,  
A  P(X) then can we decompose p(x) into linear subset 
polynomials which are distinct? 
 

If m < n, is it always possible to decompose p(x) into 
distinct m linear subset polynomials? 

 
 Now we proceed onto state the problem. 
 
Problem 3.2: Let P(X) be a power set of X where |X| = n. 
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 Let p(x) = Axm + B, A, B  P(X) m < n. Can p(x) be 
decomposed into distinct linear subset polynomials in S[x] 
where S = P(X)? 
 
 We leave these two open problems for any researcher. 
 

Example 3.15:  Let S[x] = i
i

i 0
a x








 ai  {Collection of all 

subsets of the semiring C25 = L = 
 
 
 
 
 
 
 
 
 
  
 
 
be the subset polynomial semiring. 
 
 Take p(x) = {a6}x2   S[x]; if possible.  
 
 p(x) = ({a6}x + {a1}) ({a6, a2} x + {a3}) 
 = {a6}x2 + {a6, a2}x + {a6}x +{a3} so we cannot present in 
this way. 
 
 We are at a problem of finding a possible linear distinct 
decomposition of subset polynomials. 
 
 This is also left as an open problem. 
 

Problem 3.3:  Let S[x] = i
ia x




 ai  {Collection of all  

subsets of a chain lattice Cn = L =  


 a2 
 a1 
1 



0 
a23 



a3 



108 Subset Polynomial Semirings and Subset Matrix Semirings 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be a subset polynomial semiring. 
 
 (i) Can p(X) = Axn + B where  
A, B  S = {Collection of all subsets of the chain lattice Cn=L} 
be linearly decomposed into distinct subset polynomials with 
coefficient from S? 
 
 (ii) For what values of n and A  S we can solve p(x) = Axn 
into distinct linear subset polynomials in S[x]? 
 
 Suppose in problem 3.3,  L is replaced by Z+  {0} can we 
solve p(x) =Axn and p1(x) = Axn + B where A, B  S as distinct 
linear decomposition of subset polynomials? 
 

Example 3.16:  Let S[x] = i
ia x




  ai  {Collection of all 

subsets from the semiring Z+  {0}}} be the subset polynomial 
semiring.  Let p(x) = {2, 4, 3} x4 + {8, 9, 10, 11}  S[x].   
p(x) = ({2, 4, 3}x + {8, 9, 10, 11}) ({2, 4, 3, 19} x + {8, 9, 10, 
11, 18}) ({2, 4, 3, 25}x + {8, 9, 10, 11, 27}) ({2, 4,3,4,0)x + 
{8,9,10,11,90}); that is p(x) is linearly decomposable into four 
distinct linear subset polynomials. 
 
 Inview of this we see p(x) = Axn + B; A, B  S can be 
decomposed linearly into n linear subset polynomials.  This is 
possible as the cardinality of the semiring is infinite, that is  
Z+  {0}. 


 a2 
 a1 
1 



0 
an-2



a3 
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Example 3.17:  Let S[x] = i
i

i 0
a x








  ai  {Collection of all 

subsets of the semiring Q+  {0}}} be the subset polynomial 
semiring. 
 
 All subset polynomials of the form Axn + B = p(x) and  
q(x) = Axm are linearly decomposable as distinct linear subset 
polynomials. 
 
 However if Z+  {0} or Q+  {0} is replaced by P(X), 
power set of a finite set X or by a chain lattice L of finite order 
or by a any distributive lattice of finite order both the subset 
polynomials p(x) = Axn + b and q(x) = Axm are not linearly 
decomposable for all m and n. 
 
Problem 3.4: It is left as an open problem to find the highest 
values of m and n in the subset polynomials p(x) = Axn + b and 
q(x) = Axm A, B  S = {Collection of all subsets of a semiring 
of order t} so that the subset polynomials are not linearly 
decomposible for all m and n when  
 
 (i) t > m and t > n 
 (ii) t < m and t < n 
 (iii) t = m= n 
 (iv) t > m and t < n  and 
 (v) t < m and t > n. 
 
 Now one of the interesting features about these subset 
polynomials is for a given nth degree subset polynomial we 
have two possibilities. 
 

(i) The nth degree subset polynomial can be linearly 
decomposable into n distinct subset polynomials in 
many ways. 

(ii) Sometimes of nth degree polynomial may not be 
linearly decomposable into distinct subset polynomials 
only as repeated linear subset polynomials. 
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Thus we see subset polynomials behave in a very different 

way from the usual polynomials.  Further we cannot write a 
value for x, however we can only say with some subset 
coefficient we have a related subset associated with it.   

 
At this stage the usual way of solving polynomials is not 

possible. 
 
We proceed onto construct examples of subset polynomial 

rings over fields and rings. 
 
In the definition of a subset polynomial semiring if the 

semiring or the powerset is replaced by a ring still we get only a 
subset polynomial semiring (The same is true if the semiring is 
replaced by a field). 
 
Example 3.18:  Let  

S = {Collection of all subsets of the ring Z12}.   
 

S[x] = i
i

i 0
a x








 ai  S} be the subset polynomial semiring 

and N and N i.e., the operations on sets inbibe the operations 
from Z12. 
 
 Consider p(x) = {2}x + {6} we see  

p({3}) = {2} {3} + {6} = {6} + {6} = {12} = {0}. 
 
 Thus {3} is the subset root of the polynomial p{x}. 
 Take x = {3, 9}  S we see p({3, 9}) = {2} {3, 9} + {6} 
 = {6, 6} + 6 
 = {6} + {6} = {0}. 
 
 Thus {3, 9}  S is also a root of p(x). 
 
 Now consider the subset polynomial  

p(x) = {4}x + {8}  S[x]. 
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 Put x = {4}  
 p ({4}) = {4} {4} + {8} 
 = {4} + {8} = {0}.  
 
 So {4} is a subset root of p(x). 
 
 Take x = {7}, p(x) = p ({7}) = {4} {7} + {8}  

= {4} + {8} = {0} 
 So {7} is also a subset root of p(x). 
 Let x = {10}, p({10}) = {4}  {10} + {8}  
 = {4} + {8} = {0}. 
 
 {10} is also a root of p(x).  Thus the linear subset 
polynomial has three distinct subset roots. 
 
 Suppose p(x) = {4} x3  S[x] to find roots of p(x). 
 p(x) = {4} x3 take x = {3}  
 p({3}) = {4} ({3})3 = {4} ({3}  {3}  {3}) 
 = {4} ({9}  {3}) 
 = {4} {3} = {0}. 
 
 So {3} is a root. 
 {0} is a trivial root.  {6} is a root, {9} is also a root for 
p({9}) = {4} ({9})3 = {0}. 
 
 {3,6} is also a subset root of p(x) for  
 

p({3, 6}) = {4} {(3, 6)}3 = {0}. 
 
 {3, 6, 0} is also a subset root p({3, 6, 0}) = {0}. 
 {0, a} is also a root of p(x), 
 {3, 9} is also a root of p(x), 
 {0, 3, 9} is also a root of p(x), 

{0, 3, 9, 6} is also a root of p(x) and 
{3, 9, 6} is also a root of p(x).   
 
Thus we see the subset polynomial p(x) = {4}x3 has several 

subset roots. 
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This is a marked difference and an interesting feature of the 
subset polynomials. 

 
The main advantage of such subset polynomial equations 

are if we are given a usual polynomial which is linear we have 
one and only one root; so if someone wants to apply it in some 
situation and has no choice but forced to take the solution 
whether feacible or not but incase of subset polynomial 
equations we have several such roots and we can choose the 
feacible one. 

 
But however by using the subset linear polynomial we can 

have several solutions for this linear subset polynomial 
equation.  So depending on the nature of the problem one can 
make an appropriate or a feacible solutions from the set of 
subset solutions.  Thus without any doubt this method has an 
advantage over the other methods.  
 
Example 3.19:  Let  
 

S = {Collection of all subsets from the ring Z24}.  S[x] be 
the subset polynomial semiring in the variable x. 
 
 Let p(x) = {2, 4, 6}x2 + {7, 8, 9}  and 
 q(x) = {6, 8, 12} x3 + {3, 2, 0}x2 + {1, 2} be in S(x). 
 
 We show how we perform the operation of ‘+’ and  on 
S[x].  
 

p(x) + q(x) = {6, 8, 12} x3 + ({2, 4, 6} + {3, 2, 0}) x2 + ({7, 
8, 9} + {1, 2}) 

 
 = {6, 8, 12} x3 + {5, 4, 2, 4, 7, 9, 8, 6} x2 + {8, 9, 10, 11}  
S[x]. 

 
This is the way ‘+’  operation in S[x] is performed. 
 
Consider p(x)  q(x) =  
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{2, 4, 6}  {6, 8, 12}x5 + {7, 8, 9} {6, 8, 12}x3 + {2, 4, 6}  
{3, 2, 0} x4 + {7, 8, 9} {3, 2, 0} x2 + {2, 4, 6}  {1, 2} x2 + {7, 
8, 9}  {1, 2} 

 
= {12, 0, 16, 8} x5 + {18, 8, 12, 16, 0, 6}x3 + {0, 6, 4, 12, 8, 

18} x4 + {21, 14, 0, 16, 3, 18} x2 + {2, 4, 6, 8, 12} x2 + {7, 8, 9, 
14, 16, 18}  

 
= {0, 8, 12, 16} x5 + {0, 4, 6, 8, 12, 18} x4 + {0, 6, 8, 12, 

16, 18} x3 + {2, 4, 6, 8, 12, 23, 16, 18, 5, 20, 1, 7, 22, 3, 9, 0, 11, 
9, 15} x2 + {7, 8, 9, 14, 16, 18}. 

 
This is the way product in S[x] is performed. 
 
We can also speak of the degree of the polynomials in S[x] 

after performing addition and multiplication. 
 
If the coefficients which are subsets are from the chain 

lattice or fields then deg (p(x)  q(x)) = deg (p(x) + deg (q(x)). 
 
If the subsets are from a Boolean algebra of order greater 

than two or from rings with zero divisors 
deg (p(x)  q(x))  deg p(x) + deg q(x). 

 
We will illustrate this situation by some examples. 

 
 Let us take a polynomial q(x), p(x) from S[x] where  
S = {Collection of all subsets from Z}.  Let p(x) = mt xt + mt–1 
xt–1 + … + m0 and q0 = ns xs +  ns–1 xs–1 + … + n0 where mt  0 
and ns  0; mi and nj  S; 0  i  t and 0  j  s. 
 
 Clearly deg (p(x)  q(x)) = deg p(x) + deg q(x). 
 
 deg (p(x) + q(x)) = deg p(x) (or deg q(x)) according as  
deg (p(x)) > deg q(x) or deg q(x) > deg p(x). 
 
 Let p(x) = {0, 3, 2, 7} x7 + {13, 5} x2 + {–7, –4, 9, 91}x + 
{120, 14, –20, 11} and q(x) = {8, 1, 9}x12 + {–3, –2, –1}x8 + 
{6, 7} x7 + {8} x3 + {20, –14} x + {3, 1, 2}  S[x].   
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Clearly deg p(x) = 7 and deg q(x) = 12. 
 
 Now deg (p(x)  + deg q(x)) = deg ({8, 1, 9}x12 + {–3, –2,  
–1}x8 + {0, 3, 2, 7, 6} x7 + {8} x3 +{13, 5} x2 + {–7, –4, 9, 91, 
20, –14} x + {3, 1, 2, 120, 14, –20, 11}) 
 

= 12   (= deg q(x)). 
 
 Now p(x)  q(x) = {8, 1, 9} {0, 3, 7, 2}  x12  x7 + {–3, –2, 
–1}  {0, 3, 2, 7} x8  x7 {6, 7} {0, 3, 2, 7} x7  x7 + {120, 14, –
20, 11}  {3, 1, 2}. 
 
 Thus deg (p(x)  q(x)) = 
 deg {0, 24, 3, 27, 7, 56, 63, 16, 2, 18} x19 + {0, –9, –6, –21, 
–6, –4, –14, –7, –3, –2} x15 + … + {360, 42, –60, 33, 120, 14, –
20, +11, 240, 28, –40, 22}) = 19. 
 
 Clearly in S = {Collection of all subsets of the ring Z}. 
So if A, B  S.  Clearly A  B  {0}. 
 
 Now A + B = {0} can occur for take A = {7} and B = {–7} 
then A + B = {0}.  So when we take two subset polynomials 
p(x) and q(x) of same degree say n, then see  
 
deg (p(x) + q(x))  deg (p(x)) (or deg q(x)). 
 
 Let p(x) = {–10}x8 + {8, 9, 4, 3}x5 + {2, 3} x2 + {7, 8, 10, 
 –150, 4}  
 

and q(x) = {10} x8 + {3, 4, 5} x4 + {–40, 80, 129, –59} x3 + 
{8} x2 + {7, 4, –10} in S[x]. 

 
 We see p(x) + q(x) = ({–10} +{10}) x8 + {8, 9, 4, 3} x5 + 
{3, 4, 5} x4 + {–40, 80, 129, –59} x3 + ({2, 3} + {8}) x2 + ({7, 
8, 10, –150, 4} + {7, 4, –10}) 
 
 = {0}x8 + {8, 9, 4, 3}x5 + {3, 4, 5} x4 + {–40, 80, 129, –59} 
x3 + {10, 11} x2 + {14, 15, 17, –143, 11, 12, 14, –146, 8, –3, –2, 
0, –160, –6}. 
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 So deg (p(x) + q(x)) = 5 as coefficient of x8 is {0}. 
 So deg (p(x) + q(x)) < deg (p(x) and deg q(x). 
 
 Let us take S = {Collection of all subsets from the ring Z12}.   
 

S[x] = i
i

i 0
a x








  ai  s} be the subset polynomial semiring.  

Take p(x) = {0, 4}x5 + {1, 2, 3} x3 + {6, 7} x + {8, 9, 10} and  
q (x) = {0, 3, 6, 9} x8 + {3, 5, 7} x2 + {1, 2, 0}  S[x]. 
 
 We find p(x)  q(x) = {0, 4}  {0, 3, 6, 9}  x5  x8 + {1, 2, 
3}  {0, 3, 6, 9} x3  x8 +{6, 7}  {0, 3, 6, 9} x  x8 + {8, 9, 10} 
 {0, 3, 6, 9} x8 + {0, 4}  {3, 5, 7} x5  x2 + {1, 2, 3}  {3, 5, 
7} x3  x2 + {6, 7}  {3, 5,7} x  x2 + {8, 9, 10}  {3, 5, 7} x2 + 
{0, 4} {1, 2, 0} x5 + {1, 2, 3}  {1, 2, 0}  x3 + {6, 7}  {1, 2, 
0} x + {8, 9, 10}  {1, 2, 0} 
 
 = {0} x13 + {0, 3, 6, 9} x11 + {0, 6, 9, 3} x9 + {0, 3, 6, 9} x8 
+ {0, 8, 4} x7 + {3, 5, 7, 6, 10, 2, 9} x5 + {6, 9, 11, 1} x3 + {0, 4, 
8, 3, 9, 6, 2, 10} x2 + {0, 4, 8} x5 + {1, 2, 3, 4, 6} x3 + {6, 0, 7, 
2} x + {8, 4, 9, 6, 10}. 
 
 Clearly deg (p(x)  q(x)) = 11 < deg p(x) + deg q(x) and 
 deg (p(x) + q(x)) = deg q(x) = 8. 
  
 Take p(x) = {7} x8 + {2,1, 3, 4} x6 + {0, 5, 6} x2 + {1, 2, 0, 
9, 11} and  
 

q(x) = {5}x8 + {1, 2} x7 + {4, 8} x6 + {7} x2 + {3}  S [x]. 
 

 We see p(x) + q(x) = ({7} + {5}) x8 + {1, 2} x7 + {1,2,3,4} 
x6 + {4, 8} x6 + ({0, 5, 6} + {7}) x2 + {1,2,0,9,11} +{3} = {0} 
x8 + {1,2}x7 + {1, 4, 2, 3, 8} x6 + {0, 5, 6, 7} x2 + {1, 2, 3, 9, 
11, 0}. 
 
 deg q(x) = 8 but  

degree of (p(x) + q(x)) = 7 < deg p(x) and  (deg q(x)). 
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 Now having seen how the degree of subset polynomial 
work out and also having seen how product and sum work out 
we now proceed onto work with subset polynomials degree in 
S[x] of a group and a semigroup under the ‘’ and ‘’ 
operations.   
 

When coefficient of any power of x is empty we do not take 
that element to exist. 

 
 Let  
S = {Collection of all subsets of the group G = Z7 \ {1}}, S[x] 
be the subset polynomial semiring with coefficients from S in 
the variable x. 
 
 Let p(x) = {3, 2} x6 + {1,2}x3 + {1,5,6} and q(x) ={4,6,1}x8 
+ {3,4} x4 + {1,2} be in S[x].   
 

We find p(x)  q(x) = ({3,2}  {4,6,1}) (x6  x8) + ({1,2} 
 {4,6,1}) (x3  x8) + ({1,5,6}  {4,6,1}) (x8) + ({3,2}  {3, 
4}) (x6  x4) + ({1,2}  {3,4}) (x3  x4) + ({1,5,6}  {3,4})  
(x3  x4) + ({1,5,6}  {3,4}) (x4) + ({3,2}  {1,2}) (x6) + 
({1,2}  {1,2}) x3 + ({1,5,6}  {1,2}) =  x14 + {1} x9 +  
{1,6}x8 + {3}x10 + {}x7 + {}x4 + {2}x6 + {1,2}x3+{1} S[x]. 
 
 Clearly deg (p(x)  q(x)) is 9 for the coefficient of x14 is . 
 
 Now one can find p(x)  q(x) = {4, 6, 1}x8 + {3, 2}x6 +  
{3, 4}x4 + {1,2}x3 + {1, 2, 5, 6}  S[x] and deg of (p(x) + q(x)) 
is 8. 
 
 We have seen that in case of subset polynomial semirings 
over semigroup or group we may have the non commutative 
nature of the semigroup.   
 

We will illustrate this situation by some example. 
 

 Let S = {Collection of all subsets from symmetric 
semigroup S(3)}.   
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S[x] = i
i

i 0
a x








  ai  S} be the subset polynomial 

semigroup of the symmetric semigroup S(3). 
 
 Let p(x) = {p1}x3 + {p2, p1}x + {p4} and q(x) = {p2}x2 + 
{p1}x + {p3}  S[x].   
 
 Now p(x)  q(x) = {p1}  {p3}x3 + {p2, p1}  {p2}x  x2 + 
{p2, p1}  {p1}x  x + {p4} {p1}x + {p1}  {p3}x3 + {p2, p1}  
{p3}x + {p4} {p3} 
 
 = {p5}x5 + {e}x4 + {p4}x3 + {e, p5}x3 + {p4, e}x2 + {p2}x + 
{p4}x3 + {p4, p5}x + {p1}. 
 
 = {p5}x5 + {e}x4 + {e, p4, p5}x3 + {p4, e}x2 + {p2, p4, p5}x + 
{p1}. 
 
 We find now q(x)  p(x) = ({p2}x2 + {p1}x + p3) ({p1}x3 + 
{p2, p1}x + {p4}) 
 
 = {p2 p1}x2  x5 + { 2

1p }x4 + {p3 p1}x3 + { 2
2p , p2 p1}x3 + {p1 

p2, 2
1p }x2 + {p1 p4}x + {p3, p1}x3 + {p3, p2, p3, p1}x + {p3 p4}  

 
 = {p4}x5 + {e}x4 + {p5}x3 + {e, p4}x3 + {p5, e}x2 + {p3}x + 
{p5}x3 + {p5, p4}x + {p2} 
 
 = {p4}x5 + {e}x4 + {p5, e, p4}x3 + {p5, e}x2 + {p3, p4, p5}x + 
{p2}. 
 
 Clearly p(x)  q(x)  q(x)  p(x). 
 
 So we see this subset polynomial semigroup is non 
commutative but of infinite order. 
 
 Now we consider the subset polynomial semigroup over the 
group A4.   
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Let  
 
S = {Collection of all subsets from the alternating group A4}; 

S[x] = i
i

i 0
a x








  ai  S} be the subset polynomial semigroup 

over A4.  Clearly S[x] is a non commutative semigroup of 
infinite order. 
 
 

Let p(x) = 
1 2 3 4
1 3 4 2

   
  
   

x + 
1 2 3 4
2 3 1 4

   
  
   

 and 

 

q(x) = 
1 2 3 4
3 2 4 1

   
  
   

 x + 
1 2 3 4
2 4 3 1

   
  
   

 be in S[x]. 

 

p(x)  q(x) = 
1 2 3 4 1 2 3 4

,
1 3 4 2 3 2 4 1

     
    
     

  x2 

 

+
1 2 3 4 1 2 3 4

,
2 3 1 4 3 2 4 1

     
    
     

 x + 

 
1 2 3 4 1 2 3 4

,
1 3 4 2 2 4 3 1

     
    
     

x + 
1 2 3 4 1 2 3 4

,
2 3 1 4 2 4 3 1

     
    
     

 

 
 

=  
1 2 3 4
1 3 4 2

   
  
   

x2 + 
1 2 3 4
2 4 3 1

   
  
   

x +  

 
1 2 3 4
2 3 1 4

   
  
   

x + 
1 2 3 4
4 3 2 1

   
  
   
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= 
1 2 3 4
3 4 1 2

   
  
   

x2 + 
1 2 3 4 1 2 3 4

,
2 4 3 1 2 3 1 4

     
    
     

x + 

 
1 2 3 4
4 3 2 1

   
  
   

  S[x]. 

 
 q(x)  p(x) =  
 

1 2 3 4 1 2 3 4 1 2 3 4
x ,

3 2 4 1 2 4 3 1 2 3 1 4
                                  

 

 
1 2 3 4 1 2 3 4

x
1 3 4 2 2 3 1 4

                            
 

 

= 
1 2 3 4 1 2 3 4

,
3 2 4 1 1 3 4 2

     
    
     

x2 + 

 
1 2 3 4 1 2 3 4

x
2 4 3 1 1 3 4 2

         
     

+ 

 
1 2 3 4 1 2 3 4

x
3 2 4 1 2 3 1 4

         
     

+ 
1 2 3 4 1 2 3 4
2 4 3 1 2 3 1 4

    
   
    

 

 
 

= 21 2 3 4
x

4 3 2 1
   
  
   

 + 
1 2 3 4
3 2 4 1

   
  
   

x + 

 
1 2 3 4
1 3 4 2

   
  
   

x + 
1 2 3 4
3 4 1 2

   
  
   

. 

 
 p(x)  q(x)  q(x)  p(x). 
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 We see if we are to get subset polynomial semigroups 
which are non commutative that is to get non commutative 
subset polynomial semigroups we should use non commutative 
semigroup or non commutative group over ring or field or 
semifields or semirings. 
 
 To get non commutative subset semiring using non 
commutative rings. 
 

 Let S[x] = i
i

i 0
a x








  ai  {Collection of all subsets from the 

group ring Z2S3} be the subset polynomial semiring which is 
clearly non commutative.   
 
 For take p(x) = {p1, p2}x2 + {p3} and q(x) = {p4}x + {p1} in 
S[x]; 
 
 p(x)  q(x) = ({p1, p2}x2 + {p3})  ({p4}x + {p1}) = {p1 p4, 
p2 p4}x3 + {p3 p4}x + { 2

1p , p2 p1}x2 + {p3 p1}  
 
 = {p3, p1}x3 + {e, p4}x2 + {p2}x + {p5}  S[x]. 
 
q(x)  p(x) ={({p4}x + {p1})  ({p1, p2}x2 . {p3}) 
 ={p4}  {p1, p2}x3 + { 2

1p , p1 p2}  x2 + {p4 p3}x + {p1 p3}  
 = {p2, p3}x3 + {e, p5}x2 + {p5}x + {p4}. 
  
 Clearly p(x)  q(x)  q(x) p(x) 
 
 Thus S[x] is a non commutative subset polynomial 
semiring. 
  

 Let S[x] = i
i

i 0
a x








  ai  S = {Collection of all subsets of 

the semigroup ring ZS(7) where S(7) is the symmetric 
semigroup} be the subset polynomial semiring which is non 
commutative. 
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 Let p(x) = {1 + p1, p4}x + {p2 + p3, 1} and q(x) = {p2 + 1 + 
p3}x + {p4 + p1, p3} be in S[x]. 
 
 p(x)  q(x) = ({1 + p1, p4} + {p2 + p3, 1})x2 +{1, p2 + p3}  
{p2 + p3 + 1})x + {1+p1, p4} {p4 +p1, p3}x + {p2 + p3, 1}  {p1 + 
p4, p3}  
 
 = {p2 + p3 + 1, p2 + p3 + p4 + p5}x + {p4 + p3 + p1, p2 + p4 + 
p5 + p2}x2 + {p3 + p4, p5 + p2, e, e + p1 + p4 + p3}x + {e + p5, p3, 
p1 + p4, p1 + p2} 
 
 = {p4 + p5, p1 + p3 + p4}x2 + {p2 + p3 + 1, p2 + p3 + p4 + p5, 
p3 + p4, p2 + p5, e, e + p1 + p4 + p3}x + {e + p5, p3, p1 + p4, p1 + 
p2}. 
 
 Find q(x)  p(x) and test the commutativity of the product. 
 
 Now we have seen several examples of non commutative 
subset polynomial semirings.  We can find subset polynomial 
subsemirings and subset polynomial ideals of these subset 
polynomial semiring.   
 

Infact if we are using non commutative subset polynomial 
semirings to find right subset polynomial ideals and left subset 
polynomial ideal for subset polynomial semirings. 

   
 We will show this by some examples. 
 

 Let S[x] = i
ia x




  ai S = {Collection of all subsets of 

the group ring Z5 S3} be the subset polynomial semiring.   
 

Take the right ideal generated by the subset polynomial  
p(x) = {p1 + 1}x2 + {p2}x + {p3}, say I. 
 
 Clearly the left ideal generated by the subset polynomial 
p(x) be J.   We see I  J. 



122 Subset Polynomial Semirings and Subset Matrix Semirings 
 
 
 
 
 

 Consider S[x] = i
i

i 0
a x








  ai  S = {Collection of all subset 

of the semigroup ring Z7 S(5)} be the subset polynomial 
semiring S[x] has both left and right ideals. 
 
 For take the right ideal generated by the subset polynomial  
 

 

p(x) = 
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

, ,
1 1 1 1 1 1 1 1 3 3 2 1 4 4 1

       
      
       

x2 + 

 
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

, ,
4 4 4 4 1 1 2 4 5 3 2 3 4 5 1

       
      
       

x +  

 
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

, ,
1 3 3 1 3 1 2 5 5 5 5 1 5 1 2

       
      
       

 

 
generates both right subset polynomial ideal say J as well as left 
subset polynomial ideal say I; we see I  J. 
 

 Let S[x] = i
i

i 0
a x








  ai  S = {Collection of all subsets of 

the group ring ZD2,9} be the subset polynomial semiring of the 
ring ZD2,9. 
 
 This has both right ideals as well as left ideals.   
 

Let D2,9 = {a, b | a2 = 1 = b9, bab = a} be the non 
commutative group.  S[x] is a subset polynomial semiring of the 
group ring. 
 
 Let p(x) = {8 + 9b + 7b2, 1, 1 + ab2 + ba2}x2 + {–9b3 + ab2 + 
9a, 1 + b3a}  S[x].  Let I be the right ideal generated by p(x) 
and J be the left ideal generated by p(x).  Clearly J  I. 
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 Let S[x] = i
i

i 0
a x








  ai  S = {Collection of all subsets of 

the group semiring LS4 where L is the distributive lattice given 
by  L =  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Take p(x) = {as1 + ds2 + es3 + fs4}x3 + {as5, ds7, es3 + s4, s12 

+ bs15}  S[x],  si  S4; 1  i  24.  
 
We find the right and left ideal generated by p(x). 

 
 We can also speak of maximal subset polynomial ideals and 
minimal subset polynomial ideals.  This task is left as an 
exercise to the reader.   
 

However one can also develop the notion of prime and 
principal subset polynomial ideals this task is a matter of routine 
so left as an exercise to the reader.  Several problems in this 
direction are suggested at the end of this chapter. 
 

We can define in a similar way the notion of Smarandache 
subset polynomial semiring, Smarandache subset polynomial 
subsemiring and Smarandache subset polynomial ideals of all 
types. 







 f 

h 




 g i 

1 

e d 

c 

 ba 

 0
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 Example 3.20:  Let S[x] = i

i
i 0

a x







  ai  S = {Collection of all 

subsets of the semiring L; where L =  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be the subset polynomial semiring of the semiring L.  S[x] is a 
Smarandache subset polynomial semiring. 
 

 For take P = i
i

i 0
a x








  ai  {Collection of all subsets of the 

chain sublattice T of L is as follows: 
 
 
 
 
 

 
   T : 
 
 
 
 









d 





 j 

h

g

e 

i 

f 

 0









1 

c 

ba 


 c 
 a 
1 

h 
f 

d 


 i 
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to be the subset polynomial subsemiring of the subset 
polynomial semiring S[x].   
 

Now M = {{1}, {a}, {c}, {d}, {f}, {g}, {h}, {i}, {0}}  P 
is a semifield hence P is a S-subset polynomial subsemiring of S 
as M is a subset semifield. 
 
Example 3.21:  Let  
 

S [x] = i
i

i 0
a x








  ai  S = {Collection of all subsets of the 

ring Z}} be the subset polynomial semiring of the ring Z. 
 

 P = i
ib x




  bi  {Collection of all subsets of semiring Z+ 

 {0}} be the subset polynomial subsemiring  S[x].  Clearly P 
is a Smarandache subset polynomial subsemiring of S[x]; for  
T = {{n} | n  {Z+  {0}}  S is a subset semifield.   
 

Clearly S[x] is also S-subset polynomial semiring as  
T  S[x] is a subset semifield. Hence S[x] is a S-subset 
polynomial semiring. 
 
Example 3.22:  Let S[x] = { ai xi | ai  S = {Collection of all 
subsets from the ring C(Z12) (g) with g2 = 0}} be the subset 
polynomial semiring.  S[x] is also a S-subset polynomial 
semiring.  
 
 Now having seen examples of Smarandache subset 
polynomial semirings we now proceed onto define topologies 
on subset polynomial semirings. 
 
 Let S[x] be the subset polynomial semiring.   
 

Let T = {Collection of all subset ideals of S[x]}. Give 
operation   and  on T.  For A, B  T, A  B in general need 
not be an ideal so we generate the ideal so A  B is an ideal of 
T.  However A  B is always an ideal and is in T.   
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Thus {T, , } is a topological space defined as the subset 

polynomial ideal topological space semiring of S[x]. 
 
 We see in general the semiring topological subset 
polynomial ideal space is of infinite cardinality. 
 

Example 3.23:  Let S[x] = i
i

i 0
a x








  ai  S = {Collection of all 

subsets from the field Z5}} be subset polynomial semiring of the 
field Z5}.   
 
 We see if T = {Collection of all subset polynomial ideals of 
the semiring S[x]}; then {T, , } is a subset polynomial ideal 
topological space of the semiring S[x]. 
 

Example 3.24:  Let S[x] = i
i

i 0
a x








  ai  {Collection of all 

subsets of the Boolean algebra  
 
 
 
 
 
 
 
 
 
 
 
 
be the subset polynomial semiring.   
 

T = {Collection of subset polynomial ideals of S[x]}.   
 
{T, , } is a subset polynomial semiring ideal topological 

space of S[x]. 







 d 
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e f 
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Example 3.25:  Let  
 

S[x] = i
i

i 0
a x








  ai  S = {Collection of all subset of the 

field C}} be the subset polynomial semiring.  T = {Collection of 
all subset polynomial ideals of the subset polynomial semiring 
S[x]}; T is a subset polynomial ideal topological space of S[x]. 
 
 Now we can define for a subset polynomial semiring the 
notion of subset polynomial ideal new topological space of the 
semiring only in case when the coefficients of the polynomials 
are subsets from a ring or a field or a semiring or a semifield. 
 
 We consider the same T = {Collection of all subset 
polynomial ideals of the semiring S[x]; where S = {collection of 
all subsets from the field or ring or semiring or a semifield}}. 
 
 We define for any subset A, B  S, A N B = C where N 
is the product in the field or ring or semiring or a semifield. 
 
 Similarly A N B where N is the sum (addition) defined in 
the field or ring or semiring or a semifield. 
 
 We will first illustrate this situation by an example or two. 
 
Example 3.26:  Let  
 

S = {Collection of all subsets from the ring Z6}. S[x] be the 
subset polynomial semiring.  
 
 Let T = {Collection of all ideals of S[x]}, {T, N, N} is a 
semigroup.   
 
 If p(x) = {3, 2, 1}x3 + {1, 4}x + {5, 2} and q(x) = {4}x3 + 
{2, 3, 0} are in S[x].   
 

p(x) N q(x) = {0, 2, 4}x6 + {4}x4 + {2}x3 + {0, 4, 2, 3}x3 
+ {2, 3, 0}x + {4, 0, 3} 
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 = {0,2,4}x6 + {4}x4 + {0, 4, 2, 3}x3 + {0, 2, 3}x + {0, 3, 4} 
 S[x]. 
 
 We now find p(x) N q(x);  p(x) N q(x) = {5, 0, 1}x3 + {1, 
4}x + {1,5,2,4}  S[x]. 
 
 This is the way operations N and N are performed {T, 
N, N} is defined as the subset polynomial ideal new 
topological semiring space. 
 
Example 3.27:  Let  
S = {Collection of all subsets of the ring Z4(g)}. S[x] be the 
subset polynomial semiring.   
 

T = {Collection of all subset polynomial ideals of S[x]}  
{T, N, N} is a subset polynomial new topological ideal space 
of the semiring S[x]. 
 
 By taking   T, that is T = {T  } we get (T, , ) the 
subset polynomial topological ideal space of the semiring S[x]. 
 

Example 3.28:  Let S [x] = i
i

i 0
a x








  ai  S = {Collection of all 

subsets of the semiring  
 
 
 
 
 
 
 
 
 
 
 
 
be the subset polynomial semiring.   
 







 c 

e 




 d f 

1 

b a 

0 
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T = {Collection of all ideals of the subset polynomial 
semiring}; (T, , ) and (T, N, N) is a subset polynomial 
ideal topological space semiring and subset polynomial new 
ideal topological space semiring respectively. 
 
 Thus we can have two topological spaces on subset 
polynomial semiring topological spaces and new topological 
subset polynomial semiring. 
 
 The authors have given several problems at the end of this 
chapter to solve.   
 

Now we proceed onto define  the notion of set subset 
polynomial ideal of a semiring or set ideal of the subset 
polynomial semiring. 
 
DEFINITION 3.3:  Let S [x] = {{ ai xi | ai  S = {Collection of 
all subsets of the semiring (Q+  {0} S3}} be the subset 
polynomial semiring.  Let P  S[x] be a subset of S[x].   
T  S[x] be a subset polynomial subsemiring.  If for p  P and  
t  T; pt and tp  P, then we call P to be a set ideal subset 
polynomial semiring over the subset polynomial subsemiring T 
of S[x].   
 
 We will first illustrate this by some examples. 
 
Example 3.29:  Let S [x] = {ai xi |  ai  S = {Collection of all 
subsets from the ring Z4}} be the subset polynomial semiring.  
Take the subset polynomial subsemiring P = {{0}, {0,2}, {2}} 
 S[x]. 
 
 T = {Collection of all set ideals of S[x] over P} 
 = {{{0}, {0,2}x, {2}x}, {{0}, {0,2,3}x3 + {0,1,2}x + {0,3}, 
{0,2}x3 + {0,2}x + {0,2}}, {{0}, {0,3} x8 + {0,2,3}, {0,2}x8 + 
{0,2}} and so on}. 
 
 We see finite subsets in S[x] can be set subset polynomial 
ideals of the semiring.  This is impossible in case of usual 
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ideals.  Thus the main and interesting feature of set ideals is we  
have finite subsets of S[x] to be set ideals of S[x]. 
 
 However if the subset polynomial subsemigroup P has even 
one x term certainly P will be of infinite cardinality, 
consequently all set ideal subset polynomial semirings will be 
of infinite order. 
 
 We will illustrate this situation by an example of two. 
 
Example 3.30:  Let S[x] = {Collection of all polynomials 

i
i

i 0
a x




  where ai  S = {Collection of all subsets from the ring 

Z6(g) with g2 = 0}} be the subset polynomial semiring.  
 
 P = {{0}, {0,3}, {3g,0}, {3+3g, 0}, {3, 3g, 3+3g, 0}} be the 
subset semiring of S[x].  We can have set ideals of finite subsets 
in S[x].  This is the advantage of using this P.  
 
 However if P has even a single x term P will be of infinite 
order if P is to be a subset polynomial subsemiring of S[x].  
 
Example 3.31:  Let S[x] = {ai xi |  ai  S = {Collection of all 
subsets of the semiring Z+  {0}}} be the subset polynomial 
semiring.  We see every subset subsemiring of S[x] is of infinite 
order.  So every set ideal of the subset polynomial semiring is of 
infinite cardinality.  We cannot think of finite set ideals of S[x]. 
 
 Even if we replace Z+  {0} by (Z+  {0}) (g) or R+  {0} 
or Q+  {0} all set ideals of the subset polynomial semiring will 
continue to be of infinite order. 
 
Example 3.32:  Let  
S = {Collection of all subsets of the field Z43}.  

 

S[x] = i
i

i 0
a x








 ai  S} be the subset polynomial semiring.  

Take two subsets P = {0, 1} and A = {{0}, {0, 40}x7 + {0, 2, 5, 
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4, 3, 11}x6 + {1, 5, 6, 7, 40, 41, 39}x4 + {2, 3, 4, 5, 28, 27}}  
S[x].  A is a quasi set ideal of the subset polynomial semiring 
over the set P = {0, 1}.  Infact S[x] has several such quasi set 
ideals. 
 

Example 3.33:  Let S[x] = i
i

i 0
a x








  ai  S = {collection of all 

subsets of the ring Z14 (g) with g2 = 0}} be the subset 
polynomial semiring.  Take P = {0, 1, g}  S[x] as a subset. We 
have several quasi set ideals of the subset polynomial semiring 
over the set P. 
 
 Let T = {Collection of all quasi set ideals of the subset 
polynomial semiring S[x] over the set P}; T is a quasi set ideal 
topological space of subset polynomial semiring.   
 

By varying the subsets in S[x] we can get several quasi set 
ideal topological spaces of the subset polynomial semiring S[x], 
which is the main advantage of defining the notion of quasi set 
ideals of a subset polynomial semiring. 
 

Example 3.34:  Let S[x] = i
i

i 0
a x








  ai  S = {Collection of all 

subsets of the semiring 
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be the subset polynomial semiring.   Take P = {0, h, g}  S[x], 
we can have several quasi set ideals of the subset polynomial 
semiring S[x] over P.   
 

Infact if T = {Collection of all quasi set ideals of the subset 
polynomial semiring over P}; then T is a quasi set ideal 
topological space of the subset polynomial semiring. 
 

Example 3.35:  Let S[x] = i
i

i 0
a x








  ai  S = {Collection of all 

subsets from the semiring ring Z6S(4)}} be the subset 
polynomial semiring.   
 
 Let P = {{0}, {e}, {e, p4, p5}}  S[x] be a subset in S[x].   
T = {Collection of all quasi set ideals of the subset polynomial 
semiring over the set P} be the quasi set ideal topological space 
of the subset polynomial semiring over P. 
 
 Let P1 = {{0}, {1}, {0,1}, {3}, {0, 3}, {0, 1, 3}, {3, 1}}  
S[x] be a subset of S[x].  T1 = {Collection of all quasi set ideals 
of the subset polynomial semiring over the set P1} is the quasi 
set ideal topological space of the subset polynomial semiring of 
S[x].   
 

We see S[x] has several such quasi set ideal topological 
space of the subset polynomial semiring. 
 

Example 3.36:  Let S[x] = i
i

i 0
a x








  ai  S = {Collection of all 

subsets from the group ring Z8 S7}} be the subset polynomial 
semiring.   
 

We see for given any set P in S[x] we can define right quasi 
set ideal subset polynomial semiring and left quasi set ideal 
subset polynomial semiring.  Now based on this we can have 
both left and right quasi set ideals of the subset polynomial 
semiring over sets in S[x].   
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Thus we can have several quasi set ideal topological spaces 
of subset polynomial semirings and also these have two 
operations (, ) and (N, N).  

 
 We will proceed to give more examples and different types 
of Smarandache set ideal and quasi set ideal topological spaces 
of a subset polynomial semiring.  
 

Example 3.37:  Let S[x] = i
i

i 0
a x








  ai  S = {Collection of all 

subsets of the group ring ZS10}} be the subset polynomial 
semiring.   
 

Take P = {{0,–1}, {–1,0,1}, {1}, {–1}, {0,1}, {0}}  S[x], 
a subset in S[x].   
 

We can have several set ideal topological spaces of the 
subset semiring and these spaces can opt for usual  and  or 
N and N; the inherited operations from the ring. 
 
 Interested reader can solve different types of problems 
related with the subset polynomial semiring topological spaces 
over sets and subsemirings leading to S-topological spaces. 
 
 Now we proceed onto define the new notion of polynomial 
subsets and algebraic structures on them. 
 
DEFINITION 3.4:  Let R[x] be a polynomial ring or a 
polynomial semiring where R is a ring or a field or a semiring 
or a semifield and x an indeterminate. 
 
 P[x] = {Collection of all subsets of the polynomial ring or a 
polynomial semiring with empty set }.  {P[x], , } is a 
semiring defined as the polynomial subset semiring.  If {P[x] \ 
} is given the inherited operations N and N of the ring 
(semiring) R[x] then {{P[x] \ , N, N} is the new polynomial 
subset semiring. 
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 We will illustrate this situation by some examples. 
 
Example 3.38:  Let Z5[x] be a polynomial ring  
P[x] = {Collection of all subsets of Z5[x]}.  P[x] is of infinite 
order and {P[x], , } is a polynomial subset semiring. 
 
 For take A = {3x2 + 2x + 1, 5x + 1, 2x3 + 4x + 2, x3 + 4} 
and B = {x3 + 4, 3x + 1, 4x2 + 3, x8 + 8, x3 + 2}  P[x].  
 
 A  B = {x3 + 4, 3x + 1} and A  B = {3x2 + 2x + 1, 3x + 
1, 2x3 + 4x + 2, x3 + 4, 4x2 + 3, x8 + 1, x3 + 2}  P[x]. 
 
 A N B = {3x2 + 2x + 1 + x3 + 4, 3x2 + 2x + 1 + 3x + 1, 3x2 
+ 2x + 1 + 4x2 + 3, 3x2 + 2x + 1 + x8 + 1, 3x2 + 2x + 1 + x3 + 2, 
3x + 1 + x3 + 4, 3x + 1 + 3x + 1, 3x + 1 + 4x2 + 3, 3x + 1 + x8 + 
1, 3x + 1 + x3 + 2, 2x3 + 4x + 2 + x3 + 4, 2x3 + 4x + 2 + 3x + 1, 
2x3 + 4x + 2 + 4x2 + 3, 2x3 + 4x + 2 + x8 + 1, 2x3 + 4x + 2 + x3 
+ 2, x3 + 4 + x3 + 4, x3 + 4 + 3x + 1, x3 + 4 + 4x2 + 3, x3 + 4 + x8 
+ 1, x3 + 4 + x3 + 2}  
 
 = {x3 + 3x2 + 2x, 3x2 + 2, 2x2 + 2x + 4, 3x2 + 2x + x8 + 2, 
3x2 + x3 + 2x + 3, x3 + 3x,  x + x, 4x2 + 3x + 4, x8 + 3x + 2, x3 + 
3x + 3, 3x3 + 4x + 1, 2x3 + 2x + 3, 2x3 + 4x2 + 4x, 2x3 + 2x + 3, 
2x3 + 4x2 + 4x, 2x3 + x8 + 3 + 4x, 3x3 + 4x + 4, 2x3 + 3, x3 + 3x, 
x3 + 4x2 + 2, x8 + x3, 2x3 + 1}  P[x]. 
 
 Clearly A  B  A N B. 
 
 Consider A N B = {(3x2 + 2x + 1) (x3 + 4), (3x2 + 2x + 1) 
(3x + 1), (3x2 + 2x + 1) (4x2 + 3) (3x2 + 2x + 1) (x8 + 1), (3x2 + 
2x + 1) (x3 + 2), (3x + 1) (x3 + 4), (3x + 1)2 (3x = 1) (4x2 + 3), 
(3x + 1) (x8+1) (3x+1) (x3+2), (2x3 + 4x + 2) (x3 + 4) (2x3 + 4x 
+ 2) (3x + 1) (2x3 + 4x + 2) (4x2 + 3) (2x3 + 4x + 2) (x8 + 2), 
(2x3 + 4x + 2) (x3 + 2) (x3 + 4)2, (x3 + 4) (3x+1), (x3+4) (4x2 + 
3), (x3+4) (x8+1), (x3+4) (x3+2)}  P(X). 
 
 However A  B  A N B.  Thus we see (P[x], , ) is 
clearly a different polynomial new subset semiring from the 
polynomial subset semiring {P[x], N, N}. 
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 Several important and interesting questions arise in the case 
of polynomial subset semiring P[x]. 
 
Example 3.39:  Let Z[x] be a polynomial ring  
P[x] = {Collection of all subsets of the ring Z[x]} {P[x], , } 
and {P[x], N, N} are polynomial subset semiring of the ring 
Z[x]. 
 
 Let A = {x3 + 4, x2 – 8} and B = {x3 + 4, x + 1}  P[x]. 
 
 Now A  B = {x3 + 4} and A  B = {x3 + 4, x + 1, x2 – 8} 
are in P[x].   

 
Consider A N B = {(x3 + 4)2 (x + 1) (x3 + 4), (x2 – 8), 

(x+1) (x2 – 8) (x3 + 4)} and  
A N B = {2x3 + 8, x3 + x2 – 4, x3 + 5 + x, x2 + x – 7}. 

 
 Both A N B  and A N B are in P[x]. 
 
 However A N B  A  B and A N B  A  B. 
 
 We see A  A = A = {x3 + 4, x2 – 8} and A  A = A = {x3 
+ 4, x2 – 8} 
 
 A N A = {(x3 + 4)2, (x2–8)2, (x3+4) (x2–8)}  A. 
 A N A = {2x3 + 8, 2x2 – 16, x3 + x2 – 4}  A. 
 
 Thus N and N are not idempotent operations.  
 
Example 3.40:  Let Z12 [x] be a ring of polynomials.   
P[x] = {Collection of all subsets of the ring Z12 [x]} is the 
polynomial subset semiring.  Clearly the two semirings {P[x], 
, } and {P[x], N, N} are distinct.   
  

Let A = {3x2 + 6x + 9} and B = {4x + 8} be in P[x]. 
 

 We see A  B = , A  B = {3x2 + 6x + 9, 4x + 8} are in 
P[x].  Now A N B = {0} and A N B = {3x2 + 10x + 5}. 
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 We see A N B = {0} but A  {0} and B  {0} so we see in 
case of polynomial subset semirings we can have zero divisors. 
 
 We further see if X = {3x2 + 6x + 3, 9x2 + 3, 6x3 + 3, 6x7 + 
6} and Y = {4x7 + 8, 4x3, 4x9 + 8, 4x8 + 4, 8x9 + 8} are in P[x]; 
X N Y = {0}.  So in P[x], X and Y are zero divisors. 
 
 Can we have idempotents in P[x] under N and N. 
 
 Clearly only constant subsets can contribute to idempotents 
provided the basic coefficient ring R of R[x] has idempotents 
otherwise we cannot have idempotents under N. 
 
 However under  and  every set A  P[x] is an 
idempotent as A  A = A and A  A = A. 
 
Example 3.41: Let R[x] be the polynomial ring where R is the 
field of reals.  P[x] = {Collection of all subsets of the ring R[x]} 
be the polynomial subset semiring of the ring R[x].   
 

{P[x], , } and {P[x], N, N} are subset polynomial 
semirings.  Clearly [P[x], N, N] has no zero divisors or units.   

 
Infact {P[x], N, N} is a semifield.  Further P[x] is of 

infinite cardinality.   
 

In this case we see one is interested in studying other related 
properties of these polynomial subset semirings. 

 
 One of the natural interest would be to find degree of the 
polynomial subset of a polynomial subset semiring. 
 
 We see if A  P[x] the polynomial subset degree of A in 
P[x] is the degree of the highest polynomial which has no zero 
coefficient.   
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For example if A = 

8 3

2

2 3

x 13x 8x 7
3x 1

7x 4x 3

   
  
   

  P[x].   

 
The degree of the polynomial subset is eight that is deg 

p(A) is eight.  B = {9x19 + 3, 2x – 1. 8x2 + 5x + 9}, deg p (B) = 
19.  Thus we can have as in case of polynomials in case of 
polynomial subset the degree of the polynomial subset.  
 
Example 3.42:   

P[x] = {Collection of all subsets of the polynomial ring} be 
the polynomial subset semiring.  
 
 Let A = {8x3 + 5x + 3, 9x12 + 4x + 8, 10x8 + 4} and B = {9x 
+ 3, 8x19 + 3x + 8, 2x3 + 10x + 15}  P[x]; deg p(A) = 12 and 
deg p(B) = 19. 
 
 Now we have the following properties about degree of 
polynomial subsets in semirings. 
 
 deg (p(A + B)) = 19 and  

deg p(AB) = 27 < deg (P(A)) + deg (P(B)) = 12+19=31. 
 
 This is the way the sum and product of the degree of 
polynomial subsets semiring are defined. 
 
 Let A = {6x9 + 3x + 1, 8x2 + 3, 10x7 + 3x4 + 8}  P[x].  We 
see deg (p(A)) = 9.  A N A = {(6x9 + 3x + 1)2, (8x2 + 3)2, (10x7 
+ 3x4 + 8)2, (6x9 + 3x + 1) (8x2 + 3), (6x9 + 3x + 1)  (10x7 + 
3x4 + 8), (8x2 + 3), (10x7 + 3x4 + 8)}. deg p(A NA) = 16.  
However deg p(A NA) = 19.  Let A = {x25 + 1, 3x38 + 5x25 + 1, 
2x6 + 3x3 + 15}  P[x] and deg p(A N A) = 38. 
 
 Let B = {9x28 + 1, 3x2 + 7x + 13, 13x6 + 3}  P[x].  
 

deg p(B N B) = 66.  Thus we see the deg p(A) for any A 
behaves in different way under (N, N) and under (, ). 
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Example 3.43:  Let Z[x] be the polynomial ring.   
 

Let P[x] = {Collection of all subsets of the ring Z[x]} be the 
polynomial subset semiring of the ring Z[x]. 
 
 If deg p(A) = n and deg p(B) = m then  
deg p (A N B) = m+n. 
 
 deg p(A N B) = m (if m > n and will be n if m < n). 
 
 This so happens because Z is an integral domain. 
 
Example 3.44:  Let Zp[x] (p a prime) be the polynomial ring.  
P[x] = {Collection of all subsets of the polynomial ring Zp[x]} 
is the polynomial subset semiring. 
 
 Let A, B  P[x], deg p(A) = m and if deg p(B) = n then  
deg p(A N B) = m (or n) according as m > n or m < n,  
deg p (A N B) = m + n. 
 
 Inview of this we have the following theorem. 
 
THEOREM 3.3:  Let R[x] be the polynomial ring (R is a field or 
an integral domain).   
 

P[x] = {Collection of all subsets of the polynomial ring 
R[x]} is the polynomial subset semiring. If deg p(A) = n and  
deg p(B) = m; A, B  P[x] then deg (p (A N B)) = m + n and 
deg (p (A N B)) = m (if m > n and will be n if m < n. 
 

The proof is obvious from the very construction as R is a 
field or the integral domain. 
 
Example 3.45:  Let R[x] be a polynomial ring and R has zero 
divisors.   
 

P[x] = {Collection of all subsets of the polynomial ring 
R[x]} be the polynomial subset semiring.  Clearly if A, B  
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P[x] with deg p(A) = m and deg p(B) = n then deg p(A N B) < 
deg p(A) + deg p(B). 
 
 deg p(A N B) < deg p (A) or deg p(B) and so on. 
 
THEOREM 3.4:  Let R[x] be the polynomial ring (R is a ring 
with zero divisors).   
 

P[x] = {Collection of all subsets of the polynomial ring 
R[x]} .   If deg p(A) = m, deg p(B) = n then deg p(A N B) <  
m + n and  deg p (A N B) < m (or n); A, B  P[x]. 
 
 The proof is left as an exercise to the reader. 
 
Example 3.46:  Let Z12[x] be the polynomial ring  
P[x] = {Collection  of all subsets of the polynomial ring Z12 [x]} 
be the polynomial subset semiring. 
 
 We see if A = {4x9 + 8, 8x4 + 4x2 + 8, 4x7 + 4x2 + 8} and  
B = {3x12 + 3, 6x10 + 3x + 6}  P[x] then (A N B) = {0} so 
deg p(A N B) = {0}. 
 
 (A N B) = 6x10 + 3x + 6 + 4x9 + 8, 3x12 + 3 + 4x9 + 8, …, 
8x4 + 4x2 + 8 + 3x12 + 3, …, 6x10 + 4x7 + 4x2 + 3x + 2}.  
deg p(A N B) = 12. 
 
Example 3.47:  Let Z10 [x] be the polynomial ring.   
 

P[x] = {collection of all subsets of the polynomial ring  
Z10 [x]} be the polynomial subset semiring. 
 
 Let A = {5x3 + 4x + 1, 5x3 + 4x + 1, 5x3 + 1}  P[x]. 
 
 Now we find A N A = {8x + 2, 2, 8x+2 and so on}. 
 
 We see deg p (A N (A) < deg p (A) = 3.   
 

Infact deg p(A N A) = 1 and  deg p (A NA) = 6. 
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Example 3.48:  Let C[x] be the complex polynomial ring  
P[x] = {Collection of all subsets of the complex polynomial 
ring} be the polynomial subset semiring. 
 
 A = {(3 + 4i)x7 + 2x + (7 + 9i), 4ix6 + 20x2 + (40–3i)x + 9 + 
5i} and B = {(10+30i)x3 + (7–3i), (5i+3)x5 + 4x + 3+2i}  P[x]. 
 
 Clearly A  B = , A N B = {[(3 + 4i)x7 + 2x + 7 + 9i] 
[(10 + 30i)x3 + (7–3i)], [(3+4i)x7 + 2x + (7+9i)]  [(5i+3)x5 + 
4x + 3 + 2i], …}  P[x]. 
 
 A  B  A N B. 
 
 Now we are finally interested in solving or finding roots of 
polynomial subset. 
 
 In the first place we want to make it clear that we can solve 
only when on P[x] we take the operations N and N under the 
usual union  and  we do not have any meaning of solving the 
equations. 
 
 Thus while we are going to discuss about solving for roots 
of polynomial subset we use only the new operation N and N 
inherited from the basic set from which the subsets are taken.  
We solve polynomial subsets only in this way. 
 
 If A = B, A, B  P[x] where  

P[x] = {Collection of all subsets of the polynomial ring 
R[x]} be the polynomial subset semiring. 
 
 Let A = {3x2 + 2x + 1, 5x – 3} and B = {x2 + 8x – 7, 2x + 
4}  P[x].  For if A = B we in the first place can equate every 
element in A to every other element in B in the following way. 
 
   3x2 + 2x + 1 = x2 + 8x – 7  (i) 
   3x2 + 2x + 1 = 2x + 4   (ii) 
   5x – 3 = x2 + 8x – 7    (iii) 
   5x – 3 = 2x + 4     (iv) 
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  Now we can solve these equations. 
   2x2 – 6 + 8 = 0 
 

   x = 6 36 4 8 2
2 2

    


 =  imaginary 

 
 so no solution for the (i) equation 
   3x2 + 2x + 1 = 2x + 4 
   3x2 = 3  x2 = 1 
   so x =   1 is solvable. 
 
   5x – 3 = x2 + 8x – 7 
   x2 + 3x – 4 = 0 
 

   x = 3 9 4 4 1
2

      

 

   = 3 25
2

   = 3 5
2

   = –4, 1. 

 
 Finally from equation (iv)  
    5x – 3  = 2x + 4 
    3x  = 1     x = 1/3. 
 
 Thus we see of the four equations, three had solution and 
one has no solutions so we cannot find all solutions.  So we 
cannot say the polynomial subset A = B is completely solvable 
we can only say they are partially solvable.  
 
 In the first place we have to keep on record that the way of 
equating these polynomial subsets is justified as these involve 
the indeterminate x.  If both the sets are constants only constant 
subsets; we can never say they are equal unless both A and B 
are singleton sets and A and B are identical. 
 
    A = {3} then B = {3}. 
    If A = {3, 5} and B = {3, 5} 
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 A  B for our equating means 3 = 3, 3 = 5 this is impossible 
so equality in polynomial subsets is possible if and only if both 
A and B are identical and are singletons. 
 
 If A and B are two polynomial subsets and A = B that is if 
A = {a1, …, at} and B = {b1, …, bs} then a1 = bi; 1  i  s. 
 a2 = bi; 1  i  s 
and so on.  at = bi; 1  i  s (however equating constants if any 
present in A and in B can n ever be equated).  
 
 Thus we have ts number of polynomials equated to zero.  If 
every polynomial has a solution in the ts polynomials we say  
A = B is completely solvable over R; R[x] is the subsets of P[x] 
if only few has solution; we say A = B is partially solvable, if  
A = B has no solution we ay A = B is not solvable.  This is way 
the usual solving of polynomials varies from the solving of 
polynomial subsets.  
 
 We will describe them by some more examples. 
 
Example 3.49:  Let Z[x] be the polynomial ring.   

P[x] = {Collection of all subset of Z[x]} be the polynomial 
subset semiring. 
 
 
 Let A = {x + 7, 2x + 4} and  B = {8, 4x – 4, 8x + 7}  P[x]. 
 A = B implies x + 7 = 8, 
   x + 7 = 4x – 4, 
   x + 7 = 8x + 7, 
   2x + 4 = 8, 
   2x + 4 = 4x – 4 and 
   2x + 4 = 8x + 7. 
 {x = 1, 3x = 11, x = 0, 2x = 4, 2x = 8, 6x + 3 = 0} 
 = {1, 11/3, 0, x = 2, –1/2}. 
 We see 11/3 and –1/2  Z. 
 
 Thus A = B has the solution subset which is not complete 
only partial given by {1, 0, 2, 4}. 
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 Let A = {x2, 10x – 5} and B = {25, 5}  P[x].  Solution 
subset for the polynomial subset equation A = B is x2 = 25  
  

so x =  5 
   10x – 5 = 25  x = 3 
   x2 = 5    x =  5 . 
 
 Thus we have only partial solution to this equation A = B or 
it is partially solvable.  The solution set is T = {5, –5, 3, 1}. 
 
 Consider A = {0} where A is a polynomial subset we call 
this type of equation as Reduced polynomial subset equation for 
if A = B then we get {A – B} = {0} with t  s equations if A has 
t elements and B has s elements. 
 
 So all polynomial subset equations can be got as the 
reduced polynomial subset equation.  If A = B where B has only 
constants that is no polynomials we call this equation has 
constant reduced polynomial subset equation.  
 
 We will first give examples of them. 
 
Example 3.50:  Let Q[x] be the polynomial ring.   
 

P[x] = {Collection of all subsets of Q[x]} be the polynomial 
subset semiring.  

 

Let A = 

2

2

2

x 4x 4 5x 7
7x 3 4x 4
x 9

   
   
  

 and 

 
B = {0} be the polynomial subsets in P[x]. 
 

A = B gives 

2

2

2

x 4x 4 0 5x 7 0
7x 3 0 4x 4 0
x 9 0

     
     
   

. 
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 The polynomial subset root subset is  
R = {3/7, 2, 2, –7/5, 1, 1, 3, –3}. 
 
 Clearly R  P[x] and A = B is completely solvable. 
 

Consider B1 = 
2,5, 10,8,11

0,6
 

 
 

 and 

 

   A1 = 
5x 7,8x 3,18x 1

14 3x,4 x,2x
   

   
 be in P[x]. 

 
Let A1 = B1 we get for the polynomial subset the solution 

set which is as follows. 
 
 5x – 7 = 2   5x – 7 = –10 
 5x – 7 = 5   5x – 7 = 8 
 
 5x – 7 = 11, 5x – 7 = 0, 5x – 7 = 6, 8x – 3 = 2, 8x – 3 = 5, 
8x – 3 = –10, 8x – 3 = 8, 8x – 3 = 11, 8x – 3 = 0, 8x – 3 = 6,  
18x – 1 = 2, 18x – 1 = 5, 18x – 1 = –10, 18 x –1 = 8,  
18x – 1 = 11, 18x – 1 = 0, 18x – 1 = 6, 
 
 14 + 3x = 2, 14 + 3x = 5, 14 = 3x = –10 
 14 + 3x = 8, 14 + 3x = 11, 14 + 3x = 0, 14 + 3x = 6,  
4 + x = 2, 4+x = 5, 4 + x = –10, 4 + x = 8, 4 + x = 11, 4 + x = 0, 
4 + x = 6, 2x = 2, 2x = 5, 2x = –10, 2x = 8, 2x = 11, 2x = 0,  
2x = 6. 
 
 The solution set is 
 C1 = {9/5, 12/5, –3/5, 3, 18/5, 7/5, 13/5, 5/8, x = 1, x = –7/8, 
11/8, 14/8, 3/8, 9/8, 3/18, 6/18, –9/18, 9/18, 12/18, 1/18, 7/18,  
–12/3, –9/3, –24/3, –6/3, –3/3, –14/3, –8/3, –2, –14, 1, 4, 7,  
–4, 2, 1, 5/2, –10/2, 4, 11/2, 0, 3}. 
 
 We see 42 equations occur by equating the polynomial 
subsets and C1 is the solution set.  This equation gives a 
complete solution of the polynomial subsets.   
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Consider the polynomial subset  

 

 A = 
2 2

2 2

x 3x 2,x 9
x 4x 5,x 8

   
 

   
 and B = 

3,4,0
8

 
 
 

  P[x]. 

 
 Let A = B be the polynomial subset equation. 
 

Now 

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2

2

x 3x 2 3 x 4x 5 3
x 3x 2 0 x 4x 5 4
x 3x 2 4 x 4x 5 8
x 3x 2 8 x 8 0

x 9 3 x 8 8
x 9 4 x 8 3
x 9 0 x 8 4
x 9 8

x 4x 5 0

      
       
      
 

     
 

    
     
    
   
    

. 

 
Let C2 denote the polynomial subset root;  
 
C2 = {(two roots are not in Q), –2, –1 (two roots are not in 

Q), (two roots are not in Q), (two roots of x2 = 12 is not in Q), 
(two roots of x2 = 13 are not in Q),  3, (x2 = 17 roots are not in 
Q), (x2 + 4x – 5 = 0 roots are imaginary not in Q), (x2 + 4x – 8 = 
0 roots are not in Q), (x2 + 4x – 9 = 0 roots are not in Q).  (x2 + 
4x – 13 = 0 roots are not in Q),  (x2 – 8 = 0 roots not in Q),  4, 
(roots of x2 = 11 are not in Q), (roots of x2 = 12 are not in Q)}. 

 
Thus the polynomial subset equation has only partial 

solution for many does not contain the root in Q. 
 

Example 3.51:  Let R[x] be the polynomial ring.   
 

P[x] = {Collection of all polynomial subsets of the 
polynomial ring R[x]} be the polynomial subset semiring. 
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  Let A = 

2 2

4 2

x 4,x 7
x 4x 4

  
 

  
 and B = {0}  P[x].   

 
Now the polynomial subset equation A = B gives x2 – 4 = 0,  

x2 – 7 = 0, x4 + 4x2 + 4 = 0.  Thus the solution subset of the 
polynomial subset equation is {2,  7 . i 2 ,  i 2 }. 

 
 We see A = B in P[x] has only a partial polynomial subset 
solution and not a complete polynomial subset solution. 
 

 Consider A = 
3 3

2 2

x 8, x 27
x 4 x 10

  
 

  
 and B = {0} in the 

polynomial subset semiring P[x]. 
 
 Clearly x3 – 8 = 0, x3 – 27 = 0, x2 – 4 = 0 and x2 – 10 = 0. 
 
 The root polynomial subset of the polynomial subset 
equation is C = {2 root of x3 – 8 are imaginary, x3 – 27 has two 
imaginary roots, 3,  10 }.  Thus this polynomial subset 
equation A = B has only partial subset solution has only partial 
subset  solution given by C. 
 
 However if Q[x] is replaced by C[x] then in the polynomial 
subset semiring P[x] every equation of polynomial subset is 
solvable. We call  
 

CP[x] = {all subsets of the complex polynomial ring C[x]} 
polynomial subset semiring as the polynomial subset 
algebraically closed semifield. 
 
 Infact all other semifield of polynomial subsets are 
subsemifields of polynomials subsets of characteristic zero.  
Thus we have so far only seen examples of P[x] in which we 
have taken the ring Z[x] or Q[x] or R[x] or C[x].   
 

Now we study the same question in case of R+ [x]  {0},  
Q+ [x]  {0}, and Z+ [x]  {0}. 
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 We will now study using examples the subset roots of the 
polynomial subset equation over Zn[x] (n prime or otherwise). 
 
Example 3.52:  Let Z6 [x] be the polynomial ring.   
 

P[x] = {Collection of all subsets of Z6[x]} be the 
polynomial subset semiring. 

 

 Let A = 
2

2

3x 2 4x 3
2x 1 x 3

  
 

  
 and B = {0} be in P[x]. 

   
   A = B gives 3x – 2 = 0 

4x + 3 = 0 
2x2 + 1 = 0 and  x + 3 = 0. 

 
 We see 3x = 4   3x = 4 is the solution only we can find 
values of x by this equation 4x + 3 = 0  4x = 3. 
 
 This also has no value for x but 4x = 3, 2x2 = 5, 2x2 = 5 is 
the only value x = 3.  Thus in case of P[x] the polynomial subset 
semiring many a times we will not be in a position to find the 
value of x if the coefficient of the power of x is an idempotent 
or a zero divisor which is evident from the above examples as 4 
and 2 are zero divisors in Z6 and 32 = 3 so 3 is an idempotent in 
Z6. 
 
Example 3.53:  Let Z12 [x] be the polynomial ring.   
P[x] = {Collection of all subsets of the polynomial ring Z12 [x]} 
be the polynomial subset semiring.   
 

Let A = {5x2 + 2, x + 7, 3x + 8, 4x + 1, 8x + 1} and  
B = {0}  P[x]; 

 
   5x2 + 2 = 0    x2 + 10 = 0 
   x+7 = 0    x2 = 2 
   3x + 8 = 0   x = 5 
   4x + 1 = 0   4x = 11 
   8x + 9 = 0   8x = 3 
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 We see some has solution, many have no solution if the 
coefficients are zero divisors or idempotents. 
 
Example 3.54:  Let Z5 [x] be polynomial ring.   
P[x] = {Collection of all subsets of the polynomial ring Z5 [x]} 
be the polynomial subset semiring.   
 
 Let A = {3x2 + 4, 2x = 1, 3x + 2, 4x2 + x + 3} and  
B = {0}  P[x].  Suppose A = B to find the subset solution of 
the polynomial subset equation.  
 
   3x2 + 4 = 0   x2 + 8x2 + 3 = 0, 
   2x + 1 = 0   x + 3 = 0, 
   3x + 2 = 0   x + 4 = 0 and 
   4x2 + x + 3 = 0,   4x2 + x + 3.  
 
    {2, 1, x2 = 2 and so on}. 
 
Example 3.55:  Let C(Z3) [x] be the polynomial complex finite 
modulo integer ring  
P[x] = {Collection of all subsets of the ring C(Z3) [x]} be the 
polynomial subset semiring. 
 

Let A = 
2

F

F F

x 1 2x 1 2i x 1
x i x 2i
    
 

   
 and 

 
B = {0}  P[x].  Let A = B be the polynomial subset equation. 
 
 x + 1 = 0  x+iF = 0   2iFx = 2 
 2x2 + 1 = 0  x + 2iF = 0  iFx = 1  2x = iF, x = 2iF 
 2iF x + 1 = 0 2x2 = 2   x2 = 1, x = 1, 2 
 x = 2   x = 2iF   x = iF 
 
 C = {2, 2iF, iF, 1} are the such that C is the solution set of  
A = B. 
 
 Now consider A1 = {2iF x3 + 1    x4 + iF, iFx2 + 2iFx + 1} and 
B1 = {0}  P[x]. 
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 We have A1 = B1 that is  
 
   2iF x3 + 1 = 0   x4 + iF = 0 
   iFx2 + 2iFx + 1 = 0   
   2 2

Fi x3 + iF = 0   x3 + iF = 0 
   x3 = 2iF = 2    x = iF is a root. 
 
 Thus we have got at this juncture a open conjecture. 
 
Conjecture 3.1:  Can C(Zp) the finite complex modulo integer 
field be the algebraically closed? (for suitable p)  [12].   
 

What happens when p is a composite number or when C(Zp) 
is not a field? 
 
 We can solve polynomial subset equations and the result 
will be a subset of constant polynomials. 
 
Example 3.56:  Let C(Z10)[x] be a complex polynomial finite 
modulo integer ring.  P[x] = {Collection of all subsets of the 
polynomial ring C(Z10) [x]} be the polynomial subset semiring.  
 
 Let A = {4x3 + 3, 5x + 4, 3x2 + 7, 2x + 5} and  
B = {x + 4, 3x + 8, 4x2 + 3, 6x, 0} be in P[x]. 
 
 To solve the polynomial subset equation A = B. 
 
 A = B gives 
 

 

3

3

3 2 2

3

3

4x 3 x 4 5x 4 x 4
4x 3 3x 8 5x 4 3x 8
4x 3 4x 3 5x 4 4x 8
4x 3 6x 5x 4 6x
4x 3 0 5x 4 0

      
      

     
    
    

 

 



150 Subset Polynomial Semirings and Subset Matrix Semirings 
 
 
 
 

2

2

2 2

2 2

2

3x 7 x 4 2x 5 x 4
3x 7 3x 8 2x 5 3x 8
3x 7 0 2x 5 4x 3
3x 7 4x 3 2x 5 6x
3x 7 6x 2x 5 0

     
      

     
     
    

 

 
 = C is the subset solution sought set. 
 

 C = 

3 3

3

3

3 2

4x 9x 9 0 4x 4x 3 0
x 0 4x 3 0
4x 7x 5 0 5x 6
4x 6x 0 x 4

      
   


   
   

 

 

      

2

2 2

2 2

2

4x 5x 4 0 2x 4
3x 9x 3 0 3x 7x 9 0
3x 7 0 x 6 0
3x 4x 7 0 x 9
6x 5,2x 5 x 7

   
      

    
    
   

. 

 
 The solvability of these equations are left as an exercise to 
the reader.   
 

Now if we have polynomial semirings say Z+  {0} [x] and 
so on our working is very different.   

 
 We will indicate this in a line or two. 
 
Example 3.57:  Let (Z+  {0}) [x] be a polynomial semiring.  
P[x] = {Collection of all subsets of the polynomial ring;  
(Z+  {0}) [x]} be the polynomial subset semiring. 
 
 How to solve polynomial subset equations in them.  
 
 Let A = {5x + 3, 10x2 + 4} and B = {0}  P[x]. 
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 We see 5x + 3 = {0} and 10x2 + 4 = {0}.  Clearly we do not 
have any x in Z+{0} such that the equations are satisfied.  
Thus as far as solving polynomial subset equations in  
(Z+{0})[x] or for that matter over the semirings of 
characteristic zero which are not rings is not possible.  
 
 Thus we see we have limitations in solving polynomial 
subset equations when the polynomial subsets are from  
(Z+  {0})[x]. 
 
 Only if A = {5x, 4x, 10x2, 11, x} and B = {4, 5, 7, 0, 8, 1, 
5}  P[x] then A = B has a complete or partial solution subset 
for 5x = 4 not solvable in Z+[x]  {0} but solvable in  
Q+[x]  {0} and so on. 
 
 Thus one cannot make a sweeping statement it is impossible 
to solve polynomial subset equations in many a cases we may 
have a partial subset solutions.  However we do not say always 
for A = B a polynomial subset equation has a subset solution.  
Thus we see we have limitations in solving polynomials even in 
usual semirings.  
 

We proceed on to propose some problems for this chapter. 
 
 
Problems: 
 
1. Enumerate some interesting features enjoyed by the subset 

polynomial semiring S[x] with coefficients from the power 
set P(X) = S. 

 
2. Find for the subset polynomial semiring S[x] where  

S = P(X) with X = {a1, a2, …, a12} two different sets of 
subsets polynomials so that their ‘’  (product) is the 
subset empty polynomial in S[x]. 
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 3. Let S[x] = i

i
i 0

a x







  ai  {Collection of all subsets of the 

subsets of X = {a1, a2, …, a14} including X and } = P(X) = 
S} be the subset polynomial semiring. 

 
 (i)  Find two subset polynomial ideals of S[x]. 
 (ii)  Find two subset polynomial subsemirings which are  
  not subset polynomial ideals of S. 
 (iii) Can S[x] have infinite number of subset polynomial  
  subsemirings? 
 (iv)  Is it possible for S[x] to have infinite number of subset  
  polynomial ideals? 
 
4. Obtain some special and interesting features enjoyed by 

S[x] where S is a power set of a finite set X. 
 
5. Can S[x] in problem (4) have more than one set of 

algebraic structures so that S[x] is a subset polynomial 
semiring where S = P(X); X is a finite set. 

 
6. Does there exist a S[x], the subset polynomial semiring 

which has no subset polynomial ideals? 
 
7. Does there exist a S[x] in which every subset polynomial 

subsemiring is an ideal of S[x]? 
 
8. Does there exist a S[x] which has no subset polynomial 

subsemirings? 
 
9. Let S[x] be the subset polynomial semiring with 

coefficients from the powerset P(X) where  
X = {1, 2, 3, 4, 5}. 

 
 (i) Does S[x] contain a subset polynomial of degree  
  greater than or equal to two which cannot be linearly  
  written as product of linear subset polynomials. 
 (ii) In how many ways can p(x) = {1, 2, 3} x2 + {2, 5}  
  written as product of subset linear polynomials. 
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10. Show in general a second degree subset polynomial in S[x] 

where S = P(X); X = {1, 2, 3, 4} can be decomposed in 
more than one way. 

 

11. Let S[x] = i
i

i 0
a x








  ai  S = {Collection of all subsets 

from the power set P(X) where X = {1, 2, …, 18}} be the 
subset polynomial semiring. 

 
(i) Is {1, 2, 5, 7, 8}x3 + {2, 8, 1, 5, 10, 11}x2  + {3, 8, 14}  
 x + {2, 14, 16} = p(x) reducible as linear factors? 
 
(ii) If p(x) is decomposable as linear factors; in how many  
 ways can p(x) be decomposed? 
 

12. Let S[x] = {Collection of all polynomials i
i

i 0
a x




  with  

ai  S = {Collection of subset of power set of X; P(X) = 
S}} be the subset polynomial semiring (X = {a1, a2, …, 
a24}). 

 
(i) Can p(x) = {a5, a6, a3, a1} x4 + {a5, a6, a3, a1} the subset  
 polynomial in S[x] be linearly decomposable as subset  
 polynomials. 
 
(ii) How many ways can p(x) be decomposed into linear  
 subset polynomials? 

 
13. Find for S[x] in problem (12); three subset polynomial 

subsemirings which are not subset polynomial set ideals 
and three subset polynomial ideals. 

 
14. Obtain some striking application of subset polynomial 

semirings with coefficients from a power set P(X) of a set 
X = {a1, a2, …, an}. 
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 15. Let S[x] = i

i
i 0

a x







  ai  {Collection of all subsets of the 

semiring L =  
 
 
 
 
 
 
 
 
 
 
  
 
 be the subset polynomial semiring. 
 

(i) Find subset polynomial ideals of {S[x], L, L}. 
 

 (ii) Find subset polynomial subsemirings in {S[x], L,  
  L} which are not subset polynomial ideals of S[x]. 
  
 (iii) Study (i) and (ii) in {S[x], , }. 
  
 (iv) Compare the two subset polynomial semirings. 
  
 (v) Prove subset polynomial ideal in {S[x], , } need  
  not be a subset polynomial ideal in {S[x], L, L}. 
 
 (vi) Can S[x] have zero divisors? 
 
 (vii) Is it possible for S[x] to have idempotents? 
 
16. Obtain some interesting features enjoyed by S[x] where the 

subset polynomial semirings P takes its coefficients of 
subset polynomials from the semiring P. 

 





 c b 

d

a 

 1 









e f 

0



Polynomial Subsets  155 
 
 
17. Study {S[x], , } and {S[x], P, P}; compare and 

contrast them. 
 
18. Find the difference between S[x] when  
 S={P(X); X = (a1, …, an)} and when  
 S1 = {Collection of all subsets from the semiring L =  
 
 
 
 
 
 
          . 
 
 
 
 
 
 
 
 S[x] the subset polynomial semiring. 
 
 (i) Which subset polynomial semiring can have zero  
  divisors? 
  
 (ii) Find subset polynomial ideals and subsemirings of  
  S[x] and S1[x]. 
 

19. Let S[x] = i
i

i 0
a x








  ai  S = {Collection of all subsets of 

the semiring Z+  {0}} be the subset polynomial semiring. 
 

(i) Find subset polynomial ideals of S[x]. 
 

 (ii) Does S[x] contain subset polynomial subsemirings  
  which are not ideals? 
  
 (iii) Can S[x] have zero divisors? 
 





 ba 

c 

1 









e d 

f 





gh 

0
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20. Let S = {Collection of all subsets of the semiring L = C15 = 
 
 
 
 
 
 
 
 
 
 
 
 
 S[x] be the subset polynomial semiring. 
 
 (i) Find subset polynomial ideals in S[x]. 
 
 (ii) Can S[x] have zero divisors? 
 
 (iii) Can S[x] have idempotents? 
 
 (iv) Find subset polynomial subsemirings which are not  
  subset polynomial ideals. 
 

21. Let S[x] = i
i

i 0
a x








  ai  S = {Collection of all subsets of 

the ring C(Z12)}} be the subset polynomial semiring.  
Study questions (i) to (iv) of problem (20). 

 

22. Let S[x] = i
i

i 0
a x








  ai  S = {Collection of all subsets of 

the ring C(Z7) (g1, g2) where 2
1g  = 2

2g  = g2 g1 = g1g2 = 0}} 
be the subset polynomial semiring. 

 
(i) Find S-zero divisors in S[x]. 

 
 (ii) Can S[x] have S-idempotents? 


 a2 
 a1 
1 



0 
a13 


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 (iii) Find S-subset polynomial subsubrings in S[x]. 
 
 (iv) Find S-subset polynomial ideals of S[x]. 
 
 (v) Let T = {Collection of all subset polynomial ideals of  
  S}.  Prove (T, , } is a subset polynomial  
  topological semiring space. 
 

23. Let S[x] = i
i

i 0
a x








  ai  S = {Collection of all subsets of 

the ring C(Z24) (g) | g2 = (0)}} be the subset polynomial 
semiring.  Study questions (i) to (v) for this S[x] given in 
problem (22). 

 

24. Let S[x] = i
i

i 0
a x








  ai  S = {Collection of all subsets of 

the semiring 
 
 
 
 
 
 
 
 
 
 
 
 
 be the subset polynomial semiring, study questions (i) to 

(v) given in problem 23. 
 

25. Let S = i
i

i 0
a x








  ai  S = {Collection of all subsets from 

the semiring  







 d 

b 




 c a 

1 

e f 

0 
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 be the subset polynomial semiring. 
  (i) Study question (i) to (v) given in problem 22. 
 
 
 

26. Let S[x] = i
i

i 0
a x








  ai  S = {Collection of all subsets of 

the ring z(g1, g2) | 2
1g  = 2

2g  = g1g2 = g2g1 = 0}} be the 
subset polynomial semiring.   

 Study questions (i) to (v) given in problem 22. 
 

27. Let S[x] = i
i

i 0
a x








  ai  S = {all subsets of the semiring 

(Z+  {0}) S3}} be the subset polynomial semiring. 
 

(i) Prove S[x] has both left and right subset polynomial  
 ideals. 
(ii) Give two left subset polynomial ideals which are not  
 right subset polynomial ideals. 
(iii) Give an example of two S - right subset polynomial  
 ideals which are not S-left subset polynomial ideals. 

 (iv) Can S[x] have subset polynomial subsemirings which  
  are not S-subset polynomial susbemirings? 







 a4 

a2 




 a3 a1

1 

a5 a6 

a6





 a8a9 

0

a7


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 (v) Give 2 subset polynomial subsemirings which are not  
  S-subset polynomial ideals. 
 (vi) Can S[x] have zero divisors or idempotents? 
 

28. Let S[x] = i
i

i 0
a x








  ai  S = {Collection of all subsets of 

the semigroup ring Z12 S(5)}} be the subset polynomial 
semiring.  

 Study questions (i) to (vi) of problem 27 for this S[x]. 
 
29. Find for the S[x] given in (28) the two topological spaces 

of subset polynomial semiring ideals. 
 

30. Let S[x] = i
i

i 0
a x








  ai  S = {Collection of all subsets of 

the semigroup semiring (Z+  {0})P where P is a 
semigroup Z12}} be the subset polynomial semiring. 

 
(i) Prove S[x] has zero divisors. 
(ii) Can S[x] have S-zero divisors? 
(iii) Find S-ideals if any of the subset polynomial semiring. 
(iv) Can S[x] have subset polynomial subsemiring which  
 is not a subset polynomial ideal of the semiring? 
(v) Let T = {Collection of all subset ideals of the  

 polynomial semiring S[x]}}; Prove (T, , ) and  
  {T,  N, N} are subset polynomial semiring    
   topological  spaces of the subset  polynomial semiring  
 S[x].  (T = T  {}). 

(vi) Compare the two topological spaces {T, N, N} and  
 {T, , } for any subset polynomial semiring. 

 

31. Let S[x] = i
i

i 0
a x








  ai  S = {Collection of all subsets of 

the semiring  
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 be the subset polynomial semiring.   
 
 Study questions (i) to (vi) of problem 30 for this S[x]. 
 
32. Find some interesting properties enjoyed by {T, N, N}. 
 
33. Distinguish between the two ideal topological spaces  
 {T, N, N} and {T = T  , , }. 
 
34. Does quasi set ideal topological spaces of {T, N, N} and 

{T = T  , , } enjoy any special properties? 
 
35. What is the situation if the problem in (34); the topological 

spaces are Smarandache. 
 
36. What are the special features enjoyed by subset polynomial 

semirings? 
 
37. Let  

 S[x] = { ai xi | ai  S = {Collection of all subsets of Z10}}   
 be a subset polynomial semiring. 
 
(i) Find zero divisors in S[x]. 

 (ii) Can S[x] have S-zero divisors? 
 (iii) Can S[x] have idempotents? 
 (iv) Can S[x] be a semifield? 
 (v) Is S[x] a S-semiring? 
 
 









ba 

0

1 
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38. Let S[x] = i
i

i 0
a x








 ai  S = {Collection of all subsets 

from the polynomial ring Z7} be the subset polynomial 
semiring. 

 
(i) Find ideals of the subset polynomial semiring. 

 (ii) Is S[x] a S-subset polynomial semiring? 
 (iii) Can S[x] have zero divisors? 
 (iv) Can S[x] have S-idempotents? 
 (v) Give a subset polynomial subsemiring which is not a  
  S-ideal. 
 (vi) Can S[x] have ideals which are not S-ideals? 
 

39. Let S[x] = i
i

i 0
a x








  ai  S = {Collection of all subsets of 

the polynomial semiring Z+{0}} be the subset 
polynomial semiring. 

 Study questions (i) to (vi) mentioned in problem (38) in 
case of this S[x]. 

 

40. Let S[x] = i
i

i 0
a x








  ai  S = {Collection of all subsets 

from the polynomial ring Z}} be the subset polynomial 
semiring. 

 
 Study questions (i) to (vi) given in problem (38) for this 

S[x].  Compare S[x] in problem (39) and this S[x]. 
 
41. Draw any interesting feature enjoyed by S[x], the subset 

polynomial semiring when semiring is used instead of ring. 
 

42. Let S[x] = i
i

i 0
a x








  ai  S = {Collection of all subsets 

from the lattice 
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 be the subset polynomial semiring. 
 (i) Study questions (i) to (vi) given in problem 38. 
 

43. Let S[x] = i
i

i 0
a x








 ai  S = {Collection of all subsets 

from the lattice L = 
 
 
 
 
 
 
 
 
 
 
 
 be the subset polynomial semiring. 
 Study questions (i) to (vi) given in problem 38. 
 
44. Compare S[x] given in problems (38) and (39). 
 
45. Let S[x] = { ai xi | ai  S = {Collection of all subsets from 

the ring Z20  Z8}} be the subset polynomial semiring. 
 Study questions (i) to (vi) given in problem 38 for this 

S[x]. 









ba 

d

1 









f e 

0

c 


  
 a20 
1 



0 
a1 


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46. Let S[x] = i
i

i 0
a x








  ai  S = {Collection of all subsets of 

the semiring  
 
 
 
 
 
 
 
 
 
 be the subset polynomial semiring. 
 Study questions (i) to (vi) given in problem (38) for this 

S[x]. 
 
47. Obtain some special features enjoyed by polynomial subset 

semirings. 
 
48. Compare the polynomial subset semiring with subset 

polynomial semiring when same ring is used. 
 
49. Let S[x] = { ai xi | ai  S = {Collection of all subsets of 

the ring Z12} be the subset polynomial semiring.  P[x] = 
{Collection of all subsets from the polynomial ring Z12 [x]} 
be the polynomial subset semiring.  Compare S[x] and 
P[x]. 

 
50. Let P[x] = {Collection of all subsets of the ring Z6 [x]} be 

the polynomial subset semiring. 
 

(i) Can P[x] have zero divisors? 
 (ii) Can P[x] have S-zero divisors? 
 (iii) Can P[x] have idempotents? 
 (iv) Find polynomial subset subsemirings. 
 (v) Is P[x] a S-polynomial subset semiring? 
 (vi) Can P[x] have polynomial subset ideals which are not  
  S-ideals? 







 d 

b 




 c a 

1 

e f 

0 
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 (vii) Can in P[x], A = B have a complete subset solution? 
 (viii) Find in P[x], A = B which has only partial solution. 
 
51. Let P[x] = {Collection of all subsets of the polynomial 

semiring (Z+  {0}) [x]} be the polynomial subset 
semiring.  Study questions (i) to (viii) given in problem 
(50) in case of this P[x]. 

 
52. Let P[x] = {Collection of all subsets of the polynomial 

semiring L [x] where L = 
 
 
 
 
 
 
 
 
 
 
 be the polynomial subset semiring.   
 
 Study questions (i) to (viii) given in problem (50) for this 

P[x]. 
 
53. If L = 
 
 
 
 
 

  
 
 
 
  







 d 

b 




 c a 

1 

e f 

0 







 d 

b 




 c a 

1 

e f 

0 
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 is replaced by the chain lattice 
 
 
 
 
 
 
 
 
 
 
 
 
 in problem (52) study for P[x] questions (i) to (viii)  given 

in problem 50. 
 
 
54. Let P[x] = {Collection of all subsets of the polynomial ring 

Z18 [x]} be the polynomial subset semiring.  Study 
questions  (i) to (viii) in problem 50 for this P[x]. 

 
55. Let P[x]  = {Collection of all subsets of the polynomial 

ring C(Z18) [x]} be the polynomial subset semiring. 
 

(i) Study questions (i) to (viii) in problem 50 for this  
 P[x]. 

 (ii) Compare P[x] in problems 54 and 55. 
 (iii) Can one say all polynomial subset equations A = B is  
  solvable in P[x] given in this problem (55) in  
  comparison with P[x] given in problem 54?  
  (A, B  P[x]) 
 (iv) Is A = B for all A, B  P[x] in problem 55 completely  

subset solvable? 
 (v) Solve A = B where A = {3iF x2 + 3 + 2iF, 9iFx4 + 2iF,  
  8 3

Fi x3 + 16iFx2 + 16iFx + 8} and B = {iF, 8, 0, 4 + 3iF},  
  A, B  P[x]. 
 


 a2 
 a1 
1 

a5 
a4 

a3 

0 
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56. Let P[x] = {Collection of all subset polynomials from the 

polynomial ring Z[x]} be the polynomial subset semiring. 
 

(i) Prove P[x] has polynomial subset equations A = B  
 which are not completely solvable. 
(ii) Study questions (i) to (viii) given in problem 50  
 completely. 
 

57. Let P[x] = {Collection of all subsets of the polynomial ring 
C(Z11) [x]} be the polynomial subset semiring. 

 
(i) Study questions (i) to (viii) in problem 50 for this  
 P[x]. 

 (ii) Is every polynomial subset equation A = B completely  
  solvable?  (A, B  P [x]). 
 
58. Let P[x] = {Collection of all subset of the polynomial ring 

Z19[x]} be the polynomial subset semiring.  
 

(i) Study question (i) to (viii) of problem 50 for this P[x]. 
 (ii) Prove every polynomial subset equation A = B need  
  not in general be completely solvable. (A, B  P[x]). 
 (iii) Let A = {3x9 + 2x3 + 5, 3x + 4x2 + 6x + 1, 8x3 + 5x +  
  2} and B = {8x + 3, 0, 9x + 40 + 18x2 + 3x + 1, 4x5 +  
  2, 3} be in P[x].  Solve A = B. 
 
59. Let P[x] = {Collection of all subsets of the polynomial ring 

C(Z9) [x]; p a prime} be the polynomial subset semiring. 
 Is every polynomial subset equation A = B, A, B  P[x] 

completely solvable? 
 
60. Can we say P[x] = {Collection of all subset of the 

polynomial ring C[x]}, the polynomial subset semiring is 
an algebraically closed semifield?  Is every A = B 
polynomial subset equation in P[x] completely solvable for 
A, B  P[x]? 



 
 
 
 
 
 
Chapter Four 
 
 

 
 
SUBSET POLYNOMIAL SEMIVECTOR 
SPACES AND SUBSET MATRIX 
SEMIVECTOR SPACES 
 
 
 
In this chapter we for the first time using the subset polynomial 
semirings (polynomial subset semirings) and subset matrix 
semirings construct semivector spaces.  We describe, define and 
develop these concepts.  This technique gives us lots of scope in 
building differently semivector spaces.   
 

We have already described building semivector spaces 
using subsets [19].  Here we mainly concentrate on building 
semivector spaces using subset matrices and subset 
polynomials. 
 
DEFINITION 4.1:  Let M = {Collection of all m  n matrices 
whose entries are subsets from a semifield S} be the semigroup  
subset of m  n matrices under +. We see M is a subset matrix 
semivector space over the semifield S. (m  n; or m = n, m = 1 
or n = 1 can also occur). 
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 We give examples of this. 
 
Example 4.1:  Let M = {2  3 matrices with entries from 
subsets of the semifield S = Z+  {0}}.   
 

M is a subset matrix semivector space over S = Z+  {0}. 
 

Let A = 
{0,2} {5,7,8} {10,11,0}
{1,2} {4,5} {6,7,8}
 
 
 

 and 

 

B = 
{0} {3,4} {2}

{0,5} {0} {4,7,0}
 
 
 

  M. 

 
 We get  
 
A + B =  
 

{0,2} {8,9,10,11,12} {2,12,13}
{1,2,6,7} {4,5} {6,7,8,10,11,12,13,14,15}
 
 
 

  M. 

 
 Take 10  Z+  {0}. 
 
 

 10A = 
{0,20} {50,70,80} {100,110,0}
{10,20} {40,50} {60,70,80}
 
 
 

 is in M.   

 
Thus M is a subset semivector space over the semifield  

Z+  {0}. 
 

Example 4.2:  Let T = 
1

2

3

a
a
a

 
 
 
  

 ai  S = {Collection of all 

 
subsets of the semifield Q+{0}} be a subset matrix semivector 
space over Q+{0}. 
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Let A = 
{0,3/ 2,7 / 9}
{8/ 5,4,20}

{9 /11,10,14 / 3}

 
 
 
  

 and B = 
{0,3/ 2,8}
{0,4 / 5,1}

{9 /11,0,12}

 
 
 
  

  T 

 
we see  
 

A + B = 

{0,3/ 2,8,7 / 9,41/18,
19 / 2,79 / 9}

{8/ 5,4,20,12 / 5,24 / 5,5,
104 / 5,21,13/ 5}

{9 /11,10,14 / 3,18/11,119 /11,
181/ 33,22,141/11,50 / 3}

 
 
 
 
 
 
 
 
  

 is in T. 

 
Take 5/7  Q+  {0}; we find  
 

5/7 A = 
{0,15/14,5 / 9}

{8/ 7,20 / 7,100 / 7}
{45/ 77,50 / 7,10 / 3}

 
 
 
  

  T. 

 
This is the way operations are performed on T.  Thus T is a 

subset matrix semivector space. 
 

Example 4.3:  Let N = {(a1, a2, a3, a4, a5, a6) | ai  {Collection of 
all subsets from the chain lattice L = 
 
 
 
 
 
 
 
 
 
 
be the subset row matrix semivector space over the semifield L. 

 a11 
a12 
1 

0 
 a1 

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 Let A = ({0, a1, a3}, {1, a2, a5}, {a3, a6}, {a7}, {a10}, {a1, a2, 
a11, a7}) and  
 
 B = ({1, a2}, {a3, a4, a6}, {a8}, {a7, a6, a10, a11, a1}, {a10, a1, 
a2, a3} {a11}) be in N. 
 
 We find A + B = A  B 
 
 = ({1, a2, a3}, {1, a3, a4, a6, a5}, {a8}, {a7, a10, a11}, {a10}, 
{a11})  N. 
 
 Take a3  L we find a3  A = a3  A = ({0, a1, a3}, {a3}, 
{a3}, {a3}, {a3}, {a1, a2, a3})  N.   
 

Thus N is a subset matrix semivector space over L. 
 

Example 4.4:  Let M = 1 2

3 4

a a
a a

 
 
 

 ai  {Collection of all 

subsets from the lattice 
 
 
 
 
 
 
 
 
 
 
 
be a subset matrix semivector space over the semifield  
 
  
     S = 
 
 
 
 


 e 
 a 
1 

0 







 g 

0 

b 




 c a 

1 

f e 



Subset Polynomial Semivector Spaces … 171 
 
 

Consider A = 
{0,a,b} {0,e}
{1,a,e} {e,f ,g}
 
 
 

 and 

 

B = 
{0,e,f} {1,g,e}
{c,1} {0,b}

 
 
 

  M. 

  
 We find A + B = A  B  
 

= 
{0,e,f ,a,b,1} {g,e,1,b}

{1} {e,f ,g,b,1}
 
 
 

  M. 

 

 Take e  S.  We find eA = e  A = 
{0,e} {0,e}
{0,e} {0,e}
 
 
 

  M. 

 
 Thus M is a subset matrix semivector space over S. 
 

Example 4.5:  Let T = 

1 2 3

4 5 6

7 8 9

10 11 12

a a a
a a a
a a a
a a a

 
 
    

 ai  {Collection of all 

subsets of the semifield R+  {0}} 1  i  12} be a subset 
matrix semiring. 
 

Let A = 

{0} {1,2} {3,4}
{5} {6} {0,8}

{9,10} {1,11,0} {1,0}
{2,5,6} {3,1,2} {4,6,7}

 
 
 
 
 
 

 and 

 

    B = 

{9} {0,13,6} {6}
{0,14} {8} {7}
{1,2,3} {4,6} {8,9}
{10,1,4} {11} {6,8}

 
 
 
 
 
 

  T. 



172 Subset Polynomial Semirings and Subset Matrix Semirings 
 
 
 
 
 A + B =  
 
 

{9} {1,2,14,15,7,8} {9,10}
{5,19} {14} {7,15}

{10,11,12,13} {5,7,4,6,15,17} {10,9,8}
{3,6,7,12,15,16,10,9} {14,12,13} {10,12,13,14,15}

 
 
 
 
 
 

is in T. 

 
 
 Let 5  R+  {0},  
 

5  A = 

{0} {5,10} {15,20}
{25} {30} {0,40}

{45,50} {0,5,55} {0,5}
{10,25,30} {5,10,15} {20,30,35}

 
 
 
 
 
 

  T. 

 
Example 4.6:  Let  
 

M = 

1 2

3 4

5 6

7 8

9 10

a a
a a
a a
a a
a a

 
 
  
 
 
  

 ai  {Collection of all  subsets of the  

 
semiring Z+  {0}, 1  i  10} 

 
be the subset matrix semiring over the semifield Z+  {0}. 
 

Let A = 

{0,1} {3,4,5,6}
{10,15} {9}

{0} {1}
{4,8,7} {9,12,19}
{4,0} {1,0,15}

 
 
 
 
 
 
  

 and B = 

{6,9,8} {1,2}
{0} {0,4,8}

{9,1,8} {4,10,6}
{14,0} {0}

{1} {5,4}

 
 
 
 
 
 
  

 M; 
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we find A + B = 

{6,9,8,9,10,7} {4,5,6,7,8}
{10,15} {9,13,17}
{9,1,8} {5,11,7}

{4,8,7,18,22,21} {9,12,19}
{5,1} {5,6,20,4,19}

 
 
 
 
 
 
  

. 

 
Take 3  R+  {0},  
 

3  A = 3A = 

{0,3} {9,12,15,18}
{30,45} {27}

{0} {3}
{12,24,21} {27,36,57}

{12,0} {3,0,45}

 
 
 
 
 
 
  

  M. 

 
We can as in case of semivector spaces define the notion of 

subset matrix semivector subspaces. 
 

We will only illustrate this situation by some simple 
examples. 
 
Example 4.7:  Let  
 

T = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 where ai  S = {Collection of all  

subsets of the semifield Z+  {0}, 1  i  9}} 
 
be the subset matrix semivector space over the semifield  
F = Z+  {0}. 
 

Take P = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 ai  S1 = {Collection of all  

subsets of the set 2Z+  {0}, 1  i  9}  T; 
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P is clearly a subset matrix semivector subspace over the 
semifield F = Z+  {0}. 
 
 Infact T has infinitely many subset matrix semivector 
subspaces over the semifield Z+  {0}. 
 
Example 4.8:  Let M = {(a1, a2, …,  a9) | ai  {Collection of all 
subsets of the semifield F = 
 
 
 
 
 
 
 
 

 
 

1  i  9 = S} be the subset matrix semivector space over F. 
 
 Take P = {(a1, a2, 0, 0, …, 0) | a1, a2  S}  M.  Clearly P is 
a subset matrix semivector subspace of M over F. 
 
 Infact number of elements in M is finite, so M has only 
finite number of subset matrix semivector subspaces over F. 
 
Example 4.9:  Let N = {Collection of all subsets from the 
semiring  
 
 
 
 
 
 
 
 
  









b a 

1 





e d 

f 

c 





hg 

0 

 a2 
a15 
1 

0 
 a1 

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P = {all 2  5 matrices with subset entries from N} be the subset 
matrix semivector space over the semifield L =  
 
 
 
 
 
 
 
 
 
 
 

A = 
{1,a} {b} {c,d} {f} {0}
{0} {1} {g,h} {0} {a,b,c}

 
 
 

 and 

 

B = 
{1} {a} {b} {c} {d}
{0} {f} {d,c} {1,a} {0,g}
 
 
 

  P. 

 
 We see A + B =  
 

A  B = 
{1} {1} {b} {c} {d}
{0} {1} {d,c} {1,a} {a,b,c}
 
 
 

  P. 

 

 Take L = 1 2 1

1 1

{0} {0} {0} {a ,a } {a }
{0} {0} {0} {a } {a }

 
 
 

  

 
 

a1, a2            P;  
 
 
 
 
L is a subset matrix subsemivector subspace of P over the 
semifield L. 


g 
 f 

c 

0 

d 

a 

1 

f 









hg 

0
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 Now before we proceed onto define other types of 
semivector spaces using subset matrices we just give examples 
of subset matrix semilinear algebra over semifields.  
 
Example 4.10:  Let M = {(a1, a2, a3) | ai  {Collection of all 
subsets of the semifield Q+  {0}}; 1  i  3} be the subset row 
matrix semivector space over the semifield Z+  {0}.   
 

M is a subset row matrix semilinear algebra over the 
semifield Z+  {0}. 
 

 Take A = 
0,18,9
4,8,6

  
    

, {0, 1, 2, 4}, {5, 7, 9, 6, 0}) and  

 

B = 
0,1,2
3,4

  
    

, {0, 2}, {5, 0, 1})  M.  

 
 A + B =({0, 18, 9, 4, 8, 6, 1, 19, 10, 5, 7, 20, 2, 11, 3, 21, 
12, 22, 13}, {0, 1, 2, 4, 3, 6}, {0, 5, 6, 7, 9, 1, 8, 10, 12, 11, 14}) 
 M. 
 
 We can also find A  B = ({0, 18, 9, 4, 8, 6}  {0, 1, 2, 3, 
4},{0, 1, 2, 4}{0, 2},{0, 5, 6, 7, 9}  {0, 1, 5}) 
 
 = ({0, 18, 9, 4, 8, 6, 36, 12, 24, 27, 54, 16, 32, 72}, {0, 2, 4, 
8},{0, 5, 6, 7, 9, 25, 30, 35, 45})  M. 
 
 Thus M is a subset matrix semilinear algebra over the 
semifield Z+  {0}. 
 

Example 4.11:  Let  
 

M = 

1

2

3

4

a
a
a
a

 
 
    

 ai  {Collection of all subsets 

of the semiring Z+  {0}, 1  i  4}} 
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be a subset matrix semigroup under ‘+’.  M is the subset 
semivector space over the semifield Z+  {0}. 
 
 M is not a subset matrix semilinear algebra. 
 
Note:  If on M we can define the natural product n of subset 
matrices then M will be a subset matrix semilinear algebra. 
 

 Let A = 

{3,4,7}
{0}

{8,9,2}
{1,0,4}

 
 
 
 
 
 

 and B = 

{2,1,3,4}
{4,8,9,25}

{1,2,4}
{5,7,8}

 
 
 
 
 
 

  M;  

 

    we find A + B = 

{5,6,9,4,8,7,10,11}
{4,8,9,25}

{9,10,3,11,4,12,13,6}
{5,7,8,6,9,11,12}

 
 
 
 
 
 

  M. 

 
 

We can find  
 

A n B =  

{3,4,7,6,8,14,9,12,21,16,28}
{0}

{8,9,2,16,18,4,32,36}
{5,20,0,7,28,8,32}

 
 
 
 
 
 

. 

 
We see under natural product n; M is a subset matrix 

semilinear algebra, otherwise M is only a subset matrix 
semivector space as we cannot define usual product of column 
matrices, more so in subset column matrices. 
 

Example 4.12:  Let N =  1 2 3

4 5 6

a a a
a a a

 
 
 

 ai  {Collection of all 

subsets of the semifield F =  
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1  i  6} be the subset matrix semivector space over the 
semifield F.   
 

We cannot define usual product on subset matrices as there 
are 2  3 matrices so for us to make N into a subset matrix 
semilinear algebra we can define the natural product n on N. 
{N, n} will be a subset matrix semilinear algebra over the 
semifield F. 

 
 Inview of this we have the following result the proof of 
which is left as an exercise to the reader.  
 
THEOREM 4.1:  Let  
M = {All m  n matrices with entries from subsets of the 
semifield F} be the subset matrix semilinear algebra over the 
semifield F; then M in a subset matrix semivector space.  If M is 
a subset matrix semivector space then M is general is not a 
matrix subset matrix semilinear algebra.   
 

Now we proceed onto define subset matrix semivector 
space of type I. 
 
DEFINITION 4.2:  Let  
M = {Collection of all m  n matrices whose entries are from 
the semiring S} we see if sA  M for all s  S and A  M, then 
we define M to be a subset matrix semivector space over the 
semiring of type I. 
 
 We will illustrate this situation by some examples. 
 

 a15 
a16 
1 

0 
 a1 

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Example 4.13:  Let M = 

1 5

2 6

3 7

4 8

a a
a a
a a
a a

 
 
    

 ai  {Collection of all 

subsets of the semiring S, 
 
 
 
 
 
 
 
 
  
 
1  i  8} be the subset matrix semivector space over the 
semiring S of type I. 
 

Example 4.14:  Let N = 

1 2 3

4 5 6

7 8 9

10 11 12

a a a
a a a
a a a
a a a

 
 
    

 ai  {Collection of 

all subsets of the semiring S = 
 
 
 
 
 
 
1  i  12} be the subset matrix semivector space of type I over 
the semiring S. 
 

Example 4.15:  Let T = 1 2 8

9 10 16

a a ... a
a a ... a

 
 
 

 ai  {Collection of 

all subsets of the semiring S = Z+  {0}  Z+{0}}, 1  i  16} 









b a 

1 





e d 

0

c 

1









ba 

0
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be the subset matrix semivector space of type I over the 
semiring S. 
 

Example 4.16:  Let M = 

1 13

2 14

12 24

a a
a a

a a

 
 
    

 
 ai  {Collection of all 

subsets from the semiring S = Q+  {0}  R+  {0}  R+  
{0}}; 1  i  24} be the subset matrix semivector space of type I 
over the semiring S. 
 

Example 4.17:  Let T = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 ai  {Collection of all 

subsets from the semiring S = 
 
 
 
 
 
 
 
 
 
 
 
 
1  i  9} be the subset matrix semivector space of type I over 
the semiring S. 
 
 Now having seen examples of subset matrix semivector 
space of type I over the semiring S, we can now define 
substructures in them which is a matter of routine so it is left as 
an exercise to the reader.  However we will give some 
examples. 
 









1 





 e 

d

c 

b

f 

a 

 0
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Example 4.18:  Let P = {Collection of all subsets from the 
semiring S = 
 
 
 
 
                . 
 
 
 
 
 

T = 

1 2 10

11 12 20

21 22 30

31 32 40

a a ... a
a a ... a
a a ... a
a a ... a

 
 
    

 ai  P, 1  i  40} is the subset matrix 

semivector space of type I over the semiring S. 
 

 Take N = 

1 2 10

11 12 20

a a ... a
0 0 ... 0
0 0 ... 0

a a ... a

 
 
    

 ai  P; 1  i  20},  

 
the subset matrix semivector subspace of T of type I over S.  
We can have several such subset matrix semivector subspaces 
of T.  However we keep on record, as o(T) <  we can have 
only finite number of subset matrix semivector subspaces of T 
over S. 
 
 

Example 4.19:  Let S = 

1

2

10

a
a

a

 
 
    


 ai  {Collection of all subsets 







 d 

0 

b 




 c a 

1 

e f 
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of the semiring P = Z+  {0}  R+  {0}, 1  i  10} be the 
subset matrix semivector space over the semiring P of type I. 
 

 Let T = 

1

2

10

a
a

a

 
 
    


 ai  {Collection of all subsets of the 

semiring P = Z+  {0}  {0}}, 1  i  10}  S; T is a subset 
matrix semivector subspace of P over the semiring P of type I. 
 
 In this case S has infinite number of subset matrix 
semivector subspaces of type I over the semiring P. 
 

Example 4.20:  Let V = 1 2

3 4

a a
a a

 
 
 

 ai  {Collection of all 

subsets of the semiring  
 
 
 
L = P1  P2 where P1 =        and  
 
 
 
 
 
 
 
 
 
 
 

P2 =           , 1  i  4}  
 
 
 
 







 d 

0 

b 




 c a 

1 

e f 









1 





 e1

d1

c1

b1

f1

a1

 0
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be a subset matrix semilinear algebra over the semiring L of 
type I.   
 

Clearly if the usual product is defined on V, we see V is a 
non commutative subset matrix semilinear algebra of type I. 
 
 However if natural product n is taken the subset matrix 
semilinear algebra of type I is commutative.   
 

We see o(V) <  so we have only finite number of subset 
matrix subsemilinear algebra of type I. 
 

Let A = 1 1

1

{(a,d ),(0,0)} {(a,f )}
{(1,a ),(0,1)} {(f ,0)}
 
 
 

  and 

 

     B = 
1

{(0,1),(1,0)} {(b,0)}
{(1,1)} {(1,a )}

 
 
 

  V. 

 

We find A n B = 1

1

{(0,d ),(0,0),(a,0)} {(f ,0)}
{(1,a ),(0,1)} {(f ,0)}

 
 
 

. 

 
Consider  

A  B = 1 1 1

1

{(a,f ), (a,d )} {(a,f )}
{(f ,1),(1,0),(f ,0),(f ,a )} {(f ,0),(b,0)}
 
 
 

 

 
 A  B  A n B. 
 
 
Consider  
 

B  A = 1 1 1

1 1 1 1

{(0,0),(0,d ),(a,0),(b,d ),(1,0)} {(f ,f ), (a,0)}
{(0,a ),(a,a ),(1,a )} {(a,f )}

 
 
 

. 

 
 We see A  B  B  A, thus V is not a subset matrix non 
commutative semilinear algebra. 
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Example 4.21:  Let M = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

a a a
a a a
a a a
a a a
a a a

 
 
  
 
 
  

 ai  {Collection of 

all subsets from the semiring S = Z+  {0}  S1; where 
 
 
 
 

S1 =        ; 1  i  15}  
 
 
 
 
 
 
be a subset matrix semilinear algebra under natural product n 
of matrices of type I over S.  
 
 Clearly o(M) =  but M has subset matrix semilinear 
algebras of finite order. 
 

 For take P = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

a a a
a a a
a a a
a a a
a a a

 
 
  
 
 
  

 ai  {Collection of all  

 
subsets from the semiring {0}  S1}, 1  i  15}  M; P is a 
subset matrix subsemilinear algebra of finite order.   
 
 Thus we can have for a subset matrix semilinear algebra / 
semivector space of infinite order a subset matrix subsemilinear 







 f 

0 

b 




 c a 

1 

e d 
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algebra / subsemivector space of finite order (order is used in a 
sense as the number of elements).   
 

Now having seen examples of subset matrix semilinear 
algebra / semivector spaces and their substructure we now 
proceed onto describe other types of subset matrix semilinear 
algebras / semivector spaces. 

 
 Suppose we have M = {Collection of all subset matrices 
with subsets from a ring R} then M is defined as the special 
subset matrix semivector space of type II over the ring R; that is 
for B, A  M we have A + B  M and for all A  M and r  R, 
rA and Ar are in M. 
 
 We will illustrate this by some examples. 
 
Example 4.22:  Let M = {Collection of all subset 1  7 matrices  
 

1

2

3

7

a
a
a

a

 
 
 
 
 
 
  


 where  

 
ai  {Collection of all subsets of the ring Z, 1  i  7}} be the 
subset 1  7 matrix special semivector space of type II over the 
ring Z. 
 
 Clearly o(M) = . 
 

Example 4.23:  Let N = 

1 2 3

4 5 6

7 8 9

10 11 12

a a a
a a a
a a a
a a a

 
 
    

 ai  {Collection of  
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all subsets from the ring Z12}; 1  i  12} be the subset matrix 
special semivector space of type II over the ring Z12.   

 
Clearly o(N) < . 

 
 Thus we can have both finite and infinite special subset 
semivector spaces of type II over the ring Z12. 
 
Example 4.24:  Let P = {(a1, a2, a3, a4) | ai  {Collection of all 
subsets of the group ring Z2S3}; 1  i  4} be the special subset 
semivector space of type II over the ring Z2S3. 
 
 Let A = ({0, p1}, {p2, p3}, {p4}, {p3}) and B = ({p2}, {p1}, 
{p3}, {p2})  P. 
 
 We see  
A + B = ({0, p1+p2}, {p1+p2, p1+p3}, {p4 + p3}, {p3 + p2})  P. 
 
 Now A  B = ({0, p5}, {p4, p5}, {p1}, {p4})  and  
       B  A = ({0, p4}, {p5, p4}, {p2}, {p5}). 
 
 We see A  B  B  A so P is a non commutative subset 
matrix semilinear algebra. 
 
 Take for A  P an element in Z2S3 say p2 in Z2S3. 
 p2A = ({0,p5}, {1, p4}, {p1}, {p4}) and 
    Ap2 = ({0, p4}, {1, p5}, {p3}, {p5}). 
 
 We see p2 A  Ap2 for p2  Z2S3 and A  P. 
 
 Thus the special subset semivector space of type II is 
doubly non commutative. 
 
 

Example 4.25:  Let T = 1 2

3 4

a a
a a

 
 
 

 ai  {Collection of all  
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subsets of the group ring ZD29}; 1  i  4} be the special subset 
matrix semivector space type II.   
 

Clearly o(T) =  and T is also a doubly non commutative 
special subset matrix semivector space of type II. 
 
Example 4.26:  Let  
 

M = 1 2 7

8 9 14

a a ... a
a a ... a

 
 
 

 ai  {Collection of all 

 
subsets of the group semiring (Z+{0})S7}, 1  i  14} 

 
be the subset matrix semivector space of type I over the 
semiring (Z+{0})S7.  Clearly M is doubly non commutative.  
Further if (Z+{0})S7 is replaced by Z+{0}, M is only a non 
commutative subset matrix semilinear algebra and xA = Ax for 
all x  Z+{0} and A  M; however A n B  Bn A even 
under natural product. 
 
Example 4.27:  Let  
 

P = 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

a a a a
a a a a
a a a a
a a a a
a a a a

 
 
  
 
 
  

 ai  {Collection of all subsets 

 
from the semigroup semiring (Z+  {0})S(10)}, 1  i  a20} 

 
be the subset matrix semivector space of type I over the 
semiring (Z+{0})(S(10)).  Clearly P is a doubly non 
commutative subset matrix semilinear algebra under natural 
product n of type I over the semiring (Z+{0})S(10).   
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If we replace (Z+{0})S(10) by Z+{0} we see P is only a 
non commutative subset matrix semilinear algebra over the 
semifield Z+{0}.  However P is not doubly non commutative 
only non commutative. 

Example 4.28:  Let W = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

a a a
a a a
a a a
a a a
a a a
a a a
a a a

 
 
 
 
 
 
 
 
 
 
 

 ai  {Collection of 

all subsets from the  
 
 
group lattice  LS6 where L =  
 
 
 
 
 
 
 
1  i  21} be the subset matrix semivector space over the 
semiring L of type I. 
 
 W is only non commutative as a subset matrix semilinear 
algebra of type I under the natural product n over L. 
 
 However if L is replaced by LS3 certainly W is a doubly 
non commutative subset matrix semilinear algebra of type I over 
the semiring LS3. 
 
       If L is replaced by       
 
 
 
 







 c 

0 

e 




 d f 

1 

b a 


 a 
 f 
1 

0 
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(say L1) a chain lattice (semifield); we see W is a subset matrix 
semivector space over L1.  However W is a subset matrix non 
commutative semilinear algebra over the semifield L1 under 
natural product n, but is not doubly commutative as xA = Ax 
for all x L1 and A  W but A n B  B n A for A, B  W.  
Hence the claim. 
 

Example 4.29:  Let M = 
1 2 10

11 12 20

21 22 30

a a ... a
a a ... a
a a ... a

 
 
 
 
 

 ai  {Collection  

 
of all subsets of the semigroup semiring LS(9) where L is a 
lattice  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1  i  3} be the subset matrix semivector space of type I over 
the semiring LS(9).  Clearly M is a doubly non commutative 
subset matrix semilinear algebra of type I over the semiring 
LS(9) even under natural product n of matrices.   
 

If LS(9) is replaced by the lattice L of course M will not be 
doubly commutative for xA = Ax for all x  L and A  M but 
A n B  B n A for A, B  M. 
 









1 





 f 

d

c 

b

e 

a 



 0

i h

 g
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If L is replaced L1 where L1 =  
     

 
 
 
 
 
 
 
 
 
 
 
 
then M is just a subset matrix non commutative semilinear 
algebra over the semifield L1 under natural product n. 
 
 Thus from this example we see a doubly non commutative 
subset matrix semilinear algebra of type I which is doubly non 
commutative can contain subset matrix semilinear algebra of 
type I which are not doubly commutative but changing the 
semiring over which it is defined to be commutative but of type 
I.  Finally if we change the base semiring to be a semifield we 
get subset matrix semivector space over the semifield which is a 
subset of the semiring. 
 

Example 4.30:  Let M = 1 2 3

4 5 6

a a a
a a a

 
 
 

 ai  {Collection of all 

subsets from the semigroup semiring S = (Q+  {0}) (S(12)},  
1  i  6} be the subset matrix semivector space of type one 
over the semiring S. 
 
 M is doubly non commutative. 
 

 Take N = 1 2 3a a a
0 0 0

 
 
 

 ai  {Collection of all subsets  

 


g 
 e 

c 

0 

h 

d 

a 

1 
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from the semigroup semiring S}, 1  i  3}  M; N is a subset 
matrix semivector subspace of M over S of type I. 
 

Example 4.31:  Let T = 

1 2

3 4

12 24

a a
a a

a a

 
 
    

 
 ai  {Collection of all  

 
subsets of the group semiring S = (Z+  {0}) A4}, 1  i  24} be 
the subset matrix semivector space of type I over the semiring 
S.  T has infinitely many subset matrix semivector subspaces.  
Infact T is a Smarandache subset matrix semivector space over 
the subset Z+  {0}  (Z+  {0})A4, where Z+  {0} is a 
semifield. 
 

Example 4.32:  Let W = 
1 2

3 4

5 6

a a
a a
a a

 
 
 
  

 ai  {Collection of all  

 
subsets from the semiring R+  {0}}, 1  i  6} be the subset 
matrix semivector space of type I over 5Z+  {0}.  W has 
infinitely many subset matrix semivector subspaces.   
 
 Now we proceed onto give examples of subset matrix 
semivector spaces of type III over a field F. 
 

Example 4.33:  Let M = 
1 3

3 4

5 6

a a
a a
a a

 
 
 
  

 ai  {Collection of all  

 
subsets of a field Z7}; 1  i  6} be the special strong subset 
matrix semivector space over the field Z7 of type III.  Clearly 
o(M) < . 
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Example 4.34:  Let M = 

1 2

3 4

12 24

a a
a a

a a

 
 
    

 
ai  {Collection of all 

subsets from the field R}; 1  i  24} be the special strong 
subset matrix semivector space of type III over the field R.  
Infact o(M) = .   
 

Suppose R is replaced by R+  {0}.  M will only be a 
subset matrix semivector space over the semifield R+  {0}.  If 
R is replaced by Z, M will be a subset matrix semivector space 
of type II over the ring Z. 
 
 Now we see M has special subset matrix semivector spaces 
of type II also apart from the subset matrix semivector spaces. 
 
Example 4.35:  Let  
 

M = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 ai  {Collection of all 

 
subsets form the ring QS5}, 1  i  9} 

 
be the special strong subset matrix semivector space of type III 
over the field Q.  M is also a special strong subset matrix 
semilinear algebra of type III over the field Q.   
 

Infact o(M) =  and M is a non commutative special strong 
subset matrix semilinear algebra of type III over the field Q.  
We can consider M as a double non commutative special subset 
matrix semilinear algebra of type II over the ring QS5.   

 
Infact M is also a Smarandache doubly non commutative 

special matrix semilinear algebra of type II over the ring QS5. 
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Example 4.36:  Let W = 
1 2 11

12 13 22

22 23 33

a a ... a
a a ... a
a a ... a

 
 
 
 
 

 ai  {Collection  

 
of all subsets from the semigroup ring RS(3)}, 1  i  3} be the 
strong special subset matrix semivector space of type III over 
the field R. 
 
 Infact W is a special subset matrix semilinear algebra of 
type II over the ring RS(3) which is doubly non commutative 
and is of infinite order. 
 
Example 4.37:  Let M = {Collection of all 6  6 matrices with 
entries from the subsets of the groupring Z19D2,17} be the special 
strong subset matrix semivector space over the field Z19 of type 
III.   
 

If Z19 is replaced by the ring Z19D2,17 we have M to be a 
special subset matrix semivector space over the ring  
Z19D2,17 of type II. 
 
    Clearly o(W) < . 
 

Example 4.38:  Let W = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

a a a
a a a
a a a
a a a
a a a

 
 
  
 
 
  

 ai  {Collection of  

 
all subsets from the field Z5}, 1  i  15} be the special strong 
subset matrix semilinear algebra of type III over the field Z5. 
 
   Clearly o(W) < . 
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Example 4.39:  Let M = 

1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 ai  {Collection of all  

 
subsets of the group ring Z11S3}, 1  i  9} be the strong special 
subset matrix semivector space of type III over the field Z11.  
Clearly as a semilinear algebra of type III, M is non 
commutative.  If Z11 is replaced by Z11S3 we see M is a special 
subset matrix semivector space of type II. 
 
 Infact M is a doubly non commutative subset matrix linear 
algebra of type II over the ring Z11S3. 
  
Example 4.40:  Let  
 
W = {Collection of all subset of the groupring Z13S7}.   

 

P = 

1 11 21

2 12 22

10 20 30

a a a
a a a

a a a

 
 
    

  
ai  W, 1  i  30} be a strong  

 
special subset matrix semivector space over the semifield Z13 of 
type III; o(P) < .  If Z13 is replaced by Z13S7 we get special 
subset matrix semivector space of type II over the ring Z13S7. 

 
We see the type will affect the basis of the structure.  To 

this end we define the following properties about these subset 
matrix semivector spaces of all types. 

 
Let M be a subset matrix semivector space.  We say A and 

B in M are linearly subset dependent if A = cB; c  ring or field 
or semiring or semifield over which M is defined. 

 
If for no c we can write A = cB then we say A and B 

linearly subset independent in M. 
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Let A = 
{0,5,8,3} {1,2}

{0} {0}
 
 
 

 and B = 
{0} {0}

{1,2,3,4} {0}
 
 
 

 M  

 
= {all 2  2 matrices with the subsets from the semifield Z+  
{0}} and M is a subset matrix semivector space over the 
semifield Z+  {0}.  Clearly A  cB for any c  Z+  {0} so  
A and B are subset linearly independent in M over Z+  {0}. 

 

Let A = 
{0,3,6} {0}

{0} {3}
 
 
 

 and B = 
{0,1,2} {0}

{0} {1}
 
 
 

  M.   

 
We see A = 3B so A and B are subset linearly subset 

dependent matrices. 
 
Given any pair of matrices in M we may have them to be 

linearly subset independent.  A collection of linearly subset 
independent matrices which is capable of generating the subset 
matrix semivector space is defined to be the subset matrix basis 
of M over the appropriate algebraic structure. 

 
We will illustrate this situation by an example or two. 

 

Example 4.41:  Let M = 1

2

a
a

 
 
 

 a1, a2  {Collection of subsets 

of the field Z3}} be the special strong subset matrix semivector 
space over the field Z3. 
  

The subset matrices A = 
{1}
{0}
 
 
 

 and B = 
{2}
{0}
 
 
 

 in M are 

linearly dependent as 2A = B; that is B = 2A.  However if A = 
{0}

{1,2}
 
 
 

  and B = 
{0,2}
{0}

 
 
 

 are subset linearly independent 

matrices, can A, B in M generate M.   
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If S is the generated by A, B.   
 

If A = 
{0}

{1,2}
 
 
 

  S then 
{0}
{0}
 
 
 

  S. 

 

      A + A = 
{0}

{2,0,1}
 
 
 

  S. 

 

Now B  S so B + B = 
{0,1,2}

{0}
 
 
 

  S. 

 

2B = 
{0,1,2}

{0}
 
 
 

  S. 

 
However S  M; that is A, B cannot generate M as subset 

matrix linearly independent set for 
{1}
{1}
 
 
 

, 
{2}
{2}
 
 
 

  S. 

 

 Now consider the sets 
{0} {1}

,
{1} {0}

   
   
   

, 
{0,1} {0}

,
{0} {0,1}

   
   
   
 M.  

We see this can be a basis of M and are linearly subset 
independent over the field Z3. 
 
Example 4.42: Let M = {(a1, a2, a3) | ai  {Collection of all 
subsets from the ring Z4}, 1  i  3} be the special subset matrix 
semivector space over the ring Z4.   
 

Consider P = 

t t t{1} {0} {0}
{0} , {1} , {0}
{0} {0} {1}

      
      
      
            

,  

 
P is a linearly subset independent collection.  However P 

cannot form a basis of M. 
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 T = {({1, 0}, {0}, {0}), ({0}, {0,1}, {0}), ({0}, {1}, {0}), 
({0}, {0}, {1})}  M is a subset linearly independent matrix.  
Infact T is a subset matrix basis of M over Z4.   
 

We can have another set of subset linearly independent 
subsets which forms a basis of M over Z4. 
 

Example 4.43:  Let W = 1 2

3 4

a a
a a

 
 
 

 ai  {Collection of all 

subsets of the ring Z6}, 1  i  4} be a special subset matrix 
semivector space over the ring Z6. 
 

Take P = 
{0} {0}
{1} {0}

 
 
 

, 
{1} {0}
{0} {0}
 
 
 

, 
{0} {1}
{0} {0}
 
 
 

, 

 
{0} {0}
{0} {1}
 
 
 

, 
{0,1} {0}
{0} {0}

 
 
 

, 
{0} {0,1}
{0} {0}
 
 
 

, 

 
{0} {0}

{0,1} {0}
 
 
 

, 
{0} {0}
{0} {0,1}

 
 
 

  W 

 
is a collection of subset matrix independent set which is a basis 
of W over Z6. 
 
 Clearly subset dimension of W over Z6 is eight. 
 

Example 4.44:  Let W = 1 2 3

4 5 6

a a a
a a a

 
 
 

 ai  {Collection of all 

subsets from the ring Z12}, 1  i  6} be the special subset 
matrix semivector space over the ring Z12.   
 

Take P = 
{1} {0} {0}
{0} {0} {0}

 
 
 

,  
{0} {1} {0}
{0} {0} {0}
 
 
 

, 
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{0} {0} {1}
{0} {0} {0}
 
 
 

, 
{0} {0} {0}
{1} {0} {0}
 
 
 

, 
{0} {0} {0}
{0} {1} {0}
 
 
 

, 

 
{0} {0} {0}
{0} {0} {1}
 
 
 

, 
{0,1} {0} {0}
{0} {0} {0}

 
 
 

, 
{0} {0,1} {0}
{0} {0} {0}
 
 
 

, 

 
{0} {0} {0,1}
{0} {0} {0}
 
 
 

, 
{0} {0} {0}

{0,1} {0} {0}
 
 
 

,
{0} {0} {0}
{0} {0,1} {0}
 
 
 

 , 

 
{0} {0} {0}
{0} {0} {0,1}

 
 
 
 W 

 
is a subset matrix basis of W over Z6.  The subset dimension of 
W over Z12 is 12. 
 
 It is left as an exercise for the reader to find subset basis of 
subset matrix semivector spaces. 
 

Example 4.45:  Let W =   

1 2

3 4

5 6

7 8

a a
a a
a a
a a

 
 
    

 ai  {Collection of all  

 
subsets of the field Z7}, 1  i  8} be the strong special subset 
matrix semivector space over the field Z7. 
 
 

Let P =  

{1} {0}
{0} {0}
{0} {0}
{0} {0}

 
 
    

, 

{0} {1}
{0} {0}
{0} {0}
{0} {0}

 
 
 
 
 
 

, 

{0} {0}
{1} {0}
{0} {0}
{0} {0}

 
 
 
 
 
 

, 

{0} {0}
{0} {1}
{0} {0}
{0} {0}

 
 
 
 
 
 

, 
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 {0} {0}

{0} {0}
{1} {0}
{0} {0}

 
 
 
 
 
 

, 

{0} {0}
{0} {0}
{0} {1}
{0} {0}

 
 
 
 
 
 

,  

{0} {0}
{0} {0}
{0} {0}
{1} {0}

 
 
 
 
 
 

, 

{0} {0}
{0} {0}
{0} {0}
{0} {1}

 
 
 
 
 
 

, 

 

{0,1} {0}
{0} {0}
{0} {0}
{0} {0}

 
 
 
 
 
 

, 

{0} {0,1}
{0} {0}
{0} {0}
{0} {0}

 
 
 
 
 
 

, 

{0} {0}
{0,1} {0}
{0} {0}
{0} {0}

 
 
 
 
 
 

, 

{0} {0}
{0} {0,1}
{0} {0}
{0} {0}

 
 
 
 
 
 

, 

 

{0} {0}
{0} {0}

{0,1} {0}
{0} {0}

 
 
 
 
 
 

, 

{0} {0}
{0} {0}
{0} {0,1}
{0} {0}

 
 
 
 
 
 

, 

{0} {0}
{0} {0}
{0} {0}

{0,1} {0}

 
 
 
 
 
 

, 

{0} {0}
{0} {0}
{0} {0}
{0} {0,1}

 
 
    

  W 

 
 is a special strong subset matrix semivector basis of W over the 
field Z7 and the special strong subset dimension is 16. 
 

Example 4.46:  Let M = 
1 2

3 4

5 6

a a
a a
a a

 
 
 
  

ai  {Collection of all  

 
subsets from the semifield Z+ {0}}; 1  i  6} be the subset 
matrix semivector space over the semifield Z+ {0}. 
 

P =
{1} {0}
{0} {0}
{0} {0}

 
 
 
  

, 
{0} {1}
{0} {0}
{0} {0}

 
 
 
  

, 
{0} {0}
{1} {0}
{0} {0}

 
 
 
  

, 

 
{0} {0}
{0} {1}
{0} {0}

 
 
 
  

, 
{0} {0}
{0} {0}
{1} {0}

 
 
 
  

, 
{0} {0}
{0} {0}
{0} {1}

 
 
 
  

,   
{0,1} {0}
{0} {0}
{0} {0}

 
 
 
  

, 
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{0} {0,1}
{0} {0}
{0} {0}

 
 
 
  

, 
{0} {0}

{0,1} {0}
{0} {0}

 
 
 
  

, 
{0} {0}
{0} {0,1}
{0} {0}

 
 
 
  

, 
{0} {0}
{0} {0}

{0,1} {0}

 
 
 
  

, 

 
{0} {0}
{0} {0}
{0} {0,1}

 
 
 
  

  M 

 
is a subset matrix basis of the semivector of M over the 
semifield Z+ {0}.  Clearly the subset matrix semivector space 
is dimension is 12. 
 
Example 4.47:  Let M = {Collection of all 5  5 matrices with 
subset entries from the semiring 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be the subset matrix semivector space over the semiring L of 
type I. 
 
 Find a basis subset matrix of M over L 
 
 Now we proceed onto define yet a new type of subset 
matrix semivector space over semirings or semifields of subsets. 









1 





 e 

g

h

l 

f 

j 







 0

b 

c 

a 

 d
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 DEFINITION 4.3:  Let S = {Collection of all subsets of a field or 
a ring or a semiring or a semifield}. 
 
 M = {m  n matrices with elements from S}.  M is defined as 
the super subset matrix semivector space over the subset 
semiring / semifield S. 
 
 We will first illustrate this situation by some examples. 
 

Example 4.48:  Let M = 1 2

3 4

a a
a a

 
 
 

 ai  S = {Collection of all 

subsets from the ring Z9}; 1  i  4} be the super subset matrix 
semivector space over the semiring / semifield S. 
 

 Let P = 
{0,3} {0,4,2}

{0,6,8} {1}
 
 
 

  M and x = {0, 2, 7}  S. 

 

xP = 
{0,2,7} {0,3} {0,2,7} {0,4,2}

{0,2,7} {0,6,8} {0,2,7} {1}
  

   
 

 

=  
{0,6,3} {0,4,5,8,1}

{0,3,7,6,2} {0,2,7}
 
 
 

  M. 

 
 This is the way we make super subset matrix semivector 
space. 
 
Example 4.49:  Let  
S = {Collection of all subsets from the semifield Z+ {0}} be 
the subset semifield.  Let W = {3  2 matrices with entries from 
S}, be the semivector space over the subset semifield S. 
 

Let A=
{0,1,2,4,8,9} {0,9,2}

{4,8,9,11} {0}
{14,2,0} {7,19,1}

 
 
 
  

W and x={0,9,12,3,4,1}S. 
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xA = 

{0,1,2,4,8,9,18,3,6
{0,9,2,6,27,8,36,

12,24,27,16,32,36,
18,81,24,108}

72,81,48,96,108}

{4,8,9,11,12,24,
27,33,16,32,36,44,0, {0}
81,72,99,
48,96,108,132}

{1,7,19,0,3,21,57,
{0,2,14,6,42,8,56,

4,28,
18,126,24,168}

76,9,63,171,12,
84,228}

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 is in W. 

 

Example 4.50:  Let M = 1 2

3 4

a a
a a

 
 
 

 ai  {Collection of all  

 
subsets from the semifield Q+ {0} = S; 1  i  4} be the super 
subset matrix semivector space over the subset semifield S. 
 
 M is infact a non commutative super subset matrix 
semilinear algebra over the subset semifield S. 
 
Example 4.51:  Let B = {(a1, a2, a3, a4, a5, a6, …, a10) | ai   
S = {Collection of all subsets of the ring Z14}; 1  i  10} be the 
super subset matrix semivector space over the semiring S. 
 
 Clearly o(B) <  and also the dimension of the super subset 
matrix semivector space is finite. 
 

Example 4.52: Let M = 

1

2

8

a
a

a

 
 
    


 ai  S = {Collection of all 

subsets of the group ring Z3S3}, 1  i  8} be the super subset 
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 matrix semivector space over the subset semiring S.  Clearly M 
is doubly non commutative as a super subset matrix semilinear 
algebra over the subset semiring S. 
 
 Infact for A  S and P  M; AS  SA in general. 
 
Example 4.53:  Let  
S = {Collection of all subsets from the semigroup ring Z4S(3)},  
M = (a1, a2, a3, a4, a5) | ai  S; 1  i  5} be the super subset 
matrix semivector space over the subset semiring S.  Clearly M 
as a super subset matrix semilinear algebra which is doubly non 
commutative.  For if X  S and A  M, AX  XA in general 
and AB  BA in general for A, B  S. 
 
Example 4.54:  Let  
S = {Collection of all subsets of the semiring (Z+  {0})S(7)}.  
 

M = 1 2 3 4

5 6 7 8

a a a a
a a a a

 
 
 

 ai  S; 1  i  8}  

 
be the super subset matrix semivector space over the subset 
semiring S. 
 
 Clearly for X  S and A  M XA  AX.  This is a special 
type of non commutative semivector space. 
 
 One is very well aware of a fact in general if V is a vector 
space (or a semivector space) and F a field (or a semifield) then 
for v  V and a  F av = va but this is not in general true in 
case of subset matrix semivector spaces more so in super subset 
matrix semivector spaces. 
 
 This is the main difference between usual vector spaces 
(semivector spaces) and the subset matrix semivector spaces 
and super subset matrix semivector spaces.   
 

We will illustrate this situation also by an example or two. 
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 Example 4.55:  Let M = 

1

2

3

4

a
a
a
a

 
 
    

ai  S = {Collection of subsets 

of the group ring Z4 S3}, 1  i  4} be the super subset matrix 
semivector space over the subset semiring S. 
 
 

 Take X = {p1, p2, 0, 3p3}  S and A = 

1 2

3

4

2 1

{p ,p }
{p }

{2p }
{p p }

 
 
 
 
 

 

  M.    

 
 

We find XA = 

1 2 3 1 2

1 2 3 3

1 2 3 4

1 2 3 2 1

{p ,p ,0,3p }{p ,p }
{p ,p ,0,3p }{p }

{p ,p ,0,3p }{2p }
{p ,p ,0,3p }{p p }

 
 
 
 
 

 

 

 
 

= 

5 5 4 4

4 5

3 1 2

5 4 4 5

{1,0,p ,3p ,p ,3p }
{3,0,p ,p }

{0,2p ,2p ,2p }
{0,1 p ,1 p ,3p 3p }

 
 
 
 
 

   

  M. 

 
 

 Consider AX = 

1 2 1 2 3

3 1 2 3

4 1 2 3

2 1 1 2 3

{p ,p }{p ,p ,0,3p }
{p }{p ,p ,0,3p }

{2p }{p ,p ,0,3p }
{p p }{p ,p ,0,3p }

 
 
 
 
 

 

 = XA,  
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 so only we use the term in general AX  XA. 
 

 Now consider X = {p1, 0}  S and A = 

2

3

4

5

{p }
{p }

{p ,1}
{p ,0}

 
 
 
 
 
 

  M,  

 
 

we find XA = 

1 2

1 3

1 4

1 5

{0,p }{p }
{0,p }{p }

{0,p }{p ,1}
{0,p }{0,p }

 
 
 
 
 
 

 = 

5

4

1 3

2

{0,p }
{0,p }

{0,p ,p }
{0,p }

 
 
 
 
 
 

 M. 

 
 

 Consider AX = 

2 1

3 1

4 1

5 1

{p }{0,p }
{p }{0,p }

{p ,1}{0,p }
{0,p }{0,p }

 
 
 
 
 
 

= 

4

5

1 2

3

{0,p }
{0,p }

{0,p ,p }
{0,p }

 
 
 
 
 
 

  M.   

 
Clearly XA  AX. 
 
 

Example 4.56:  Let M = 

1 2

3 4

11 12

a a
a a

a a

 
 
    

 
 ai  S = {Collection of  

 
all subsets from the semiring Z+  {0} (S7)}, 1  i  12} be a 
super subset matrix semivector space defined over the subset 
semiring S of type I. 
 
 We see o(M) is infinite, however the reader is left with the 
task of finding dimension of M over S. 
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Example 4.57:  Let W = 

1 2 10

11 12 20

21 22 30

a a ... a
a a ... a
a a ... a

 
 
 
  

 ai  S = 

{Collection of all subsets of the group ring Z11 S6}, 1  i  30} 
be a super subset matrix semivector space over the subset 
semiring S. 
 
 We see o(W) <  and W is finite dimensional over S. 
 

Example 4.58:  Let M = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

a a a
a a a
a a a
a a a
a a a

 
 
  
 
 
  

 ai  S = {Collection  

 
of all subsets of the group lattice LS3 where L is the following 
lattice, L =  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1  i  15} be a super subset matrix semivector space over the 
subset semiring S. 









1 





 e 

h

c 

b

d

a 







 0

k 

i 

j 

 f 

 g
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 Clearly o(M) <  and M is a commutative super subset 
matrix semilinear algebra over S. 
 
Example 4.59:  Let  
 
S = {Collection of all subsets of the group ring Z45 S8}.   
 

M = 

1 2 3

4 5 6

28 29 30

a a a
a a a

a a a

 
 
    

  
 ai  S, 1  i  30} 

 
be the super subset matrix semiring over the subset semiring S. 
 
 Clearly o(S) <  but S is doubly non commutative as super 
subset matrix semilinear algebra over S.   
 

Further S is also non commutative as a super matrix 
semivector space as xA  Ax in general for all x  S and  
A  M. 
 
Example 4.60:  Let  
 
S = {Collection of all subsets of the field Z43}.   
 

M = 
1 2 8

9 10 16

17 18 24

a a ... a
a a ... a
a a ... a

 
 
 
  

 ai  S; 1  i  24} 

 
be the super subset matrix semivector space over the subset 
semiring S.  o(S) < .   
 

M is infact commutative as a super subset matrix 
semivector space as well as super subset matrix semilinear 
algebra over S. 
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Example 4.61:  Let  
S = {Collection of all subsets of the group ring Z43 D2,7}.   

 

W = 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a
a a a a
a a a a
a a a a

 
 
    

 ai  S, 1  i  16} 

 
be a super subset semivector space over the subset semiring  
Z43D2,7. 
 
 o(W) < .  But W is non commutative as a super subset 
matrix semivector space and doubly non commutative as a super 
subset matrix semilinear algebra over a subset semiring.   
 

We see the concept of linear independence and subset basis 
of a super subset matrix semivector space over a subset 
semiring. 
 
Example 4.62:  Let  
S = {Collection of all subsets of the field Z11}.   
W = {(a1, a2, a3, a4) | ai  S; 1  i  4} be the super subset 
matrix semivector space over the subset semifield S. 
 
 Take A = ({1}, {0}, {0}, {0}) and  

B = ({0}, {0,5}, {0}, {0})  W. 
 
 We see A and B are subset linearly independent. 
 
 Consider A = ({4, 6, 2}, {2}, {0}, {4}) and B = ({1, 3, 2}, 
{1}, {0}, {2}) in W.  We see 2B = A thus A and B are subset 
linearly dependent.   
 
Now consider 
 B = {({1}, {0}, {0}, {0}), ({0}, {1}, {0}, {0}), ({0}, {0}, 
{1}, {0}), ({0}, {0}, {0}, {1}), ({0,1}, {0}, {0}, {0}), ({0}, 
{0,1}, {0}, {0}), ({0}, {0}, {0,1}, {0}), ({0}, {0}, {0}, {0,1})}.  
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 B is a not a subset basis of W for ({1}, {0}, {0}, {0}) and 
({0,1}, {0}, {0}, {0}) are subset linearly dependent.  
 

B would have been the subset basis of the W as not 
considered as a super subset matrix semivector space. 
 
 However for the super subset matrix semivector space W 
the super subset basis is B = {({1}, {0}, {0}, {0}), ({0}, {1}, 
{0}, {0}), ({0}, {0}, {1}, {0}), ({0}, {0}, {0}, {1})}. 
 
 Thus dimension of W over S is four. 
 
Example 4.63:  Let  

S = {Collection of all subsets of the semiring R+  {0}}. 
 

M = 
1 2 12

13 14 24

25 26 36

a a ... a
a a ... a
a a ... a

 
 
 
  

 ai  S, 1  i  36} 

 
be the super subset matrix semivector space over the subset 
semiring S.  o(S) =  but super subset dimension of M over S is 
just 36. 
 
Example 4.64:  Let  
S = {Collection of all subsets of the semifield R+  {0}}.   
M = {Collection of all 7  7 matrices with entries from the 
subset semiring R+  {0}} is the super subset matrix semivector 
space of dimension 49 over S. 
 
 Inview of this we have a nice theorem. 
 
THEOREM 4.2:  Let S = {Collection of all subsets from a field 
or a ring or a semifield or a semiring or a group ring or 
semigroup ring or a group semiring or a semigroup semiring}.  
M = {Collection of all m  n matrices with entries from S}. M is 
a super subset matrix semivector space of super subset 
dimension m  n over S.   
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Proof is direct and hence left as an exercise to the reader.  

Whatever be the order of M we see super subset dimension of 
M is the same.  

 
 It is simple and is a matter of routine to get super subset 
matrix semivector subspaces of a super subset matrix 
semivector space over a subset semiring. 
 
 Now we proceed onto define describe and develop the 
notion of subset polynomial semivector spaces and the notion of 
super subset polynomial semivector spaces. 
 
 
DEFINITION 4.4:  Let S = {Collection of all subsets of a 
semiring or a semifield or ring or a field}.  
 

 M = i
i

i 0
a x








  ai  S}.  M is defined as the subset 

polynomial semivector space of a stipulated type depending on 
the structure over it is defined. 
 
 We will first illustrate this situation by some examples. 
 
 
Example 4.65:  Let  
 
S = {Collection of all subsets of the semifield Z+  {0}}.   
 

M = i
i

i 0
a x








  ai  S}; M is a subset polynomial semivector 

space over the semifield, Z+  {0}. 
 
 
Example 4.66:  Let S = {Collection all subsets of the lattice L = 
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M = i
i

i 0
d x








  di  S} be the subset polynomial semivector 

space over the semifield 
 
 
 

   F =   

 

  

 
 If M is a subset polynomial semivector space over the 
semiring L then we call M to be a subset polynomial semivector 
space of type I over L. 
 
 Infact by varying the semifields or chain lattices in L we 
can get several different subset polynomial semivector spaces 
over Fi, 1  i  4. 









1 

 a7

a8

a9

a6

a10







 0

a2 

a3

a1 

 a5

 a4

0 

a1 
 a3 
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 For take F1 =     or F2 = 

 

 

 

 

 

 

 

 

 or F3 =            or F4 = 

 

 

 

 

 

 

 

 

and so on.  We see Fi’s are just chain lattices so they are nothing 
but semifields.   
 

Also we can get type I subset polynomial semivector spaces 
over other sublattices which are not chain lattices. 
 
Example 4.67:  Let S = {Collection of all subsets of the 
semiring  
 
 

 
 a4 
 a5 

 a8 

a3 

 a6 

 a10 

 1 

 a1 

 0 

0 

a6 
 a1 

a10 

1 

 
 a4 

 a7 

a3 

 a5 

 a9 

 1 

 a2 

 0 

0 

a3 
 a1 

a4 
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    B =  
 
 
 
 
 
 

M = i
i

i 0
a x








  ai  S}; 

 
M is a subset polynomial semivector space / subset polynomial 
semilinear algebra of type I over the semiring B. 
 
 
Example 4.68:  Let S = {Collection of all subsets of the 
semiring R = (Z+  {0})S7  (group semiring)}.   
 

M = i
i

i 0
a x








  ai  S} is a subset polynomial semivector 

space of type I over the semiring R.   
 

The speciality of this space is that if a  R and p(x)  M 
then ap(x)  p(x)a in general.   

 
That is why these subset polynomial semivector spaces are 

non commutative of type I.  Further as a subset polynomial 
semilinear algebras over R of type I they are doubly non 
commutative over R. 

 
 We will give some more examples of them. 
 
Example 4.69:  Let S = {Collection of all subsets of the 
semigroup semiring T = (R+  {0}) (S(4))}. 







 c 

0 

e 




 d f 

1 

b a 
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 M = i
i

i 0
a x








  ai  S} is a subset polynomial semivector 

space over R+  {0} and a subset polynomial semivector space 
of type I over T.   
 

We see as a subset polynomial semivector space of type I 
over T,  M is non commutative and doubly non commutative as 
a subset polynomial semilinear algebra of type I over T. 
 
 

 For take a = 
1 2 3 4 1 2 3 4

,
1 1 2 2 3 3 1 1

     
    
     

 in S and  

 
 

p(x) = 
1 2 3 4 1 2 3 4

,
2 1 3 4 1 1 2 3

     
    
     

x2 + 

 
1 2 3 4 1 2 3 4

,
2 3 4 1 4 4 4 1

     
    
     

  M. 

 
 

ap(x) = 
1 2 3 4 1 2 3 4

.
1 1 2 2 2 1 3 4

   
   
   

,  

 
1 2 3 4 1 2 3 4

.
1 1 2 2 1 1 2 3
   
   
   

, 
1 2 3 4 1 2 3 4

.
3 3 1 1 2 1 3 4
   
   
   

,  

 
1 2 3 4 1 2 3 4

.
3 3 1 1 1 1 2 3

   
   
   

x2  +  

 
1 2 3 4 1 2 3 4

.
1 1 2 2 2 3 4 1

   
   
   

, 
1 2 3 4 1 2 3 4

.
1 1 2 2 4 4 4 1
   
   
   

,  
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 1 2 3 4 1 2 3 4

.
3 3 1 1 2 3 4 1
   
   
   

,
1 2 3 4 1 2 3 4

.
3 3 1 1 4 4 4 1

   
   
   

. 

 

= 
1 2 3 4 1 2 3 4

,
2 2 1 1 1 1 1 1

   
   
   

, 

 
1 2 3 4 1 2 3 4

,
3 3 2 2 2 2 1 1

   
   
   

 x2+  

 
1 2 3 4 1 2 3 4

,
2 2 3 3 4 4 4 4

   
   
   

, 

 
1 2 3 4 1 2 3 4

,
4 4 2 2 4 4 4 4

   
   
   

  M. 

 
 

Now consider p(x) a = 
1 2 3 4 1 2 3 4

.
2 1 3 4 1 1 2 2

   
   
   

,  

 
1 2 3 4 1 2 3 4

.
1 1 2 3 1 1 2 2
   
   
   

, 
1 2 3 4 1 2 3 4

.
2 1 3 4 1 1 2 2
   
   
   

,  

 
1 2 3 4 1 2 3 4

.
1 1 2 3 3 3 1 1

   
   
   

x2 +  

 
1 2 3 4 1 2 3 4

.
2 3 4 1 1 1 2 2

   
   
   

, 
1 2 3 4 1 2 3 4

.
2 3 4 1 3 3 1 1
   
   
   

, 

 
1 2 3 4 1 2 3 4

.
4 4 4 1 1 1 2 2
   
   
   

, 
1 2 3 4 1 2 3 4

.
4 4 4 1 1 1 2 2

   
   
   
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=
1 2 3 4 1 2 3 4

,
1 1 2 2 1 1 1 2

   
   
   

, 

 
1 2 3 4 1 2 3 4

,
1 1 2 2 3 3 3 1

   
   
   

 x2 +  

 
1 2 3 4 1 2 3 4

,
1 2 2 1 3 1 1 3

   
   
   

, 

 
1 2 3 4 1 2 3 4

,
2 2 2 1 2 2 2 1

   
   
   

  M. 

 
Clearly ap(x)  p(x)a. 

 
That is why we say M is a non commutative subset 

polynomial semivector space of type I over the semiring T. 
 

Example 4.70:  Let  
S = {Collection of all subsets of the semigroup ring Z12S(3)}.  

M = i
i

i 0
a x








  ai  S} be the special subset polynomial 

semivector space of type II over the ring Z12S(3). 
 
 Clearly M is a non commutative special subset polynomial 
semivector space of type II.  M is a doubly non commutative 
special subset polynomial semilinear algebra of type II over  
Z12S(3). 
 
Example 4.71:  Let  
S = {Collection of all subsets of the groupring Z7S8}. 

M = i
i

i 0
a x








  ai  S} be the special subset polynomial 

semivector space of type II over Z7S8 or M can also be realized 
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 as a special strong subset polynomial semivector space of type 
III over Z7. 
 
 In the first case it is non commutative as special subset 
polynomial semivector space of type II and doubly non 
commutative as a special subset polynomial semilinear algebra 
of type II over Z7S8. 
 
 However it is a special strong polynomial semivector space 
over of type III over Z7 but is a non commutative special strong 
polynomial semilinear algebra of type III as  
p(x) q(x)  q(x) p(x) in general for p(x), q(x)  M. 
 
Example 4.72:  Let S = {Collection of all subsets of the field 

R}.  M = i
i

i 0
a x








  ai  S} is a special strong subset polynomial 

semivector space of type III over the field R. 
 
 Infact M is also a special strong subset polynomial 
semilinear algebra of type III over the field R. 
 
 M can be realized as a subset polynomial semivector space 
over the field R+  {0}.  M can be realized as a special 
polynomial semivector space over the ring Z  R of type I. 
 
 We see just by varying subsets of the field R we can get 
different types of subset polynomial semivector spaces. 
 
Example 4.73:  Let  
S = {Collection of all subsets of the group ring R = Z5D27}.   

M = i
i

i 0
a x








  ai  S} is the special subset polynomial 

semivector space over the ring R of type II. 
 
 If M is considered over the field Z5 we see M is a special 
strong subset polynomial semivector space of type III over the 
field Z5. 
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Example 4.74:  Let  
S = {Collection of all subsets of the semifield Z+  {0}}.   

M = 
9

i
i

i 0
a x






  ai  S; 0  i  9} is the subset polynomial 

semivector space over the semifield Z+  {0}.   
 

Clearly M is not a subset polynomial semilinear algebra 
over the semifield Z+  {0} as for p(x), q(x)  M in general 
p(x)  q(x)  M. 
 
Example 4.75:  Let  
S = {Collection of all subsets of the semiring T = (Z+  {0}) 

S3}. W = 
7

i
i

i 0
a x






  ai  S; 0  I  7} is a subset polynomial 

semivector space over the type I.   
 

Clearly W is not a subset polynomial semilinear algebra 
over T for if p(x), q(x)  W then p(x)  q(x)  W in general. 
 
Example 4.76:  Let S = {Collection of all subsets of the 
semiring B =  
 
 
 
 
 
 
 
 
 
 
 

M = 
4

i
i

i 0
a x






 ai  S; 0  i  4} be the subset polynomial 

semivector space over the semiring B of type I. 
 







 d 

0 

b 




 c a 

1 

e f 
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  Clearly M is not a subset polynomial semilinear algebra 
over B of type I. 
 
Example 4.77:  Let  
S = {Collection of all subsets of the ring Z40}.   

M = 
10

i
i

i 0
a x






  ai  S, 0  i  10} be the special subset 

polynomial semivector space of type II over the ring Z40.  M is 
not a special subset polynomial semilinear algebra of type II 
over Z40. 
 
 
Example 4.78:  Let S = {Collection of all subsets of the group 
lattice LS4 where 
 
 L =  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

M = 
15

i
i

i 0
a x






  ai  S, 0  i  15} be a subset polynomial 

semivector space of type I over the semiring LS4. 
 
 Clearly M is non commutative as a subset polynomial 
semivector space of type I over L.  Further M is not a subset 
polynomial semilinear algebra of type I over L. 







 d 

g 

b 




 c a 

1 

e f 







 k 

0 

i 
 j h 

l m 
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 Now we have seen all subset polynomial semivector spaces 
in general are not subset polynomial semilinear algebras what 
ever be the type; however all subset polynomial semilinear 
algebras are always subset polynomial semivector spaces. 
 
 In view of this we have the following theorem the proof of 
which is left as an exercise to the reader. 
 
THEOREM 4.3:  Let S = {Collection of all subsets of a semifield 

or a semiring or a field or a ring}.  M = 
n

i
i

i 0
a x






  ai  S; 0  i  

n, n < } be a subset polynomial semivector space over a ring 
(or semifield or semiring or a field).  Then M is never a subset 
polynomial semilinear algebra over the ring (or semifield or 
semiring or a field) of any type.  
 
 Inview of this we have another theorem. 
 

THEOREM 4.4:  Let M = 
n

i
i

i 0
a x






  ai  S = {Collection of all 

subsets of a ring or a semiring or a semifield or a field}} be a 
subset polynomial semivector space over ring or field or 
semiring or a semifield.  M in general need not be a subset 
polynomial semilinear algebra of any type. 
 
 The result is obvious if n <  certainly M is never a subset 
polynomial semilinear algbra of any type.  
 
 We can as in case of usual subset semivector spaces define 
the notion of subset semivector subspaces, subset linearly 
independent elements and subset basis. 
 
 We only illustrate this situation by some examples. 
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 Example 4.79:  Let  

M = i
i

i 0
a x








  ai  S = {Collection of all subsets of the ring 

Z10}} be the special subset polynomial semivector space of type 
II over the ring Z10. 
 
 Let p(x) = {0,5,8}x + {2,1} and q(x) = {9,3}x + {8,0}  M 
 
 We see p(x) and q(x) are subset linearly independent 
polynomials in M. 
 
 Consider p(x) = {0,2,4}x + {6, 8} and q(x) = {0,1,2}x + {3, 
4} in M.  We see p(x) and q(x) are subset linearly dependent 
polynomials in M for p(x) = 2q(x). 
 
 Now as in case of usual vector spaces we see in case of 
subset polynomial semivector spaces also the basis B will form 
a linearly independent set, that is the basis B will be a subset 
linearly independent set. 
 
 Take B = {{1}, {1}x, …, {1}xn, …, {0, 1}, {0,1}x, {0,1}x2, 
…, {0,1}xn, …} forms a subset basis of the special subset 
polynomial semivector space of type II over the ring Z10. 
 

Example 4.80:  Let M = i
i

i 0
a x








  ai  S = {Collection of all 

subsets of the semifield Z+  {0}}} be the subset polynomial 
semivector space over the semifield Z+  {0}.   
 

We can vizulize M to be a subset polynomial semilinear 
algebra over the semifield Z+  {0}, then p(x)  q(x) is defined 
and is in M.   

 
Now a subset polynomial basis of M over Z+  {0} is given 

by B = {{1}, {0, 1}, {0,1}x, {1}x, …, {1}xn, {0, 1}xn, …} over 
the semifield Z+  {0}. 
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Example 4.81:  Let S = {Collection of all subsets of the 
semiring L = 
 
 
 
 

M = i
i

i 0
a x








 ai  S} is a subset polynomial semilinear algebra 

of type I over  the semiring L = 
 
 
 
 
Consider B = {{0, 1}, {1}, {1}x, {0,1}x {1}x2, {0, 1}x2, …}  
 M is a subset basis of M  over the semiring  
 
 

L =      of type I. 
 
 
 
 
Example 4.82:  Let  

M = i
i

i 0
a x








  ai  S = {Collection of all subsets of the field 

Z7}} be the special strong subset polynomial semilinear algebra 
over the semifield Z7 of type III.   
 

B = {{1}, {0,1}, {0,1}x, {1}x …} is a subset polynomial 
basis of M over the field Z7 of type III. 
 

Example 4.83:  Let M = i
i

i 0
a x








  ai  S = {Collection of all 

subsets of semiring (Z+{0})S3} be the subset polynomial 
semivector space of type I over the semiring (Z+  {0})S3. 
 

1





 



ba 

0

1









ba 

0

1









ba 

0
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  Let W = i

i
i 0

a x







  ai  P = {Collection of all subsets of the 

semiring (2Z+  {0}) S3}  M be the subset polynomial 
semivector subspace of type I over (Z+  {0}) S3. 

Example 4.84:  Let M = {Collection of all polynomial i
i

i 0
a x




  

ai  S = {Collection of all subsets of the ring Z11 A4}} be 
special subset polynomial semivector space of type I over the 
ring Z11A4.   
 

Take N = 
20

i
i

i 0
a x






  ai  S}  M 

 
is a special subset polynomial semivector space of type I over 
the ring Z11A4. 
 
 Now we proceed onto define super subset polynomial 
semivector spaces of all the three types. 
 
DEFINITION 4.5:  Let S = {Collection of all subsets of the 
semiring or semifield or field or ring}.  
 

 M = i
i

i 0
a x








 ai  S} be the subset polynomial semivector 

space of the appropriate type over S.  We define M to be the 
super subset polynomial semivector space over S.   
 

We will illustrate this situation by some examples. 
 
Example 4.85:  Let S = {Collection of all subsets of the 
semifield Q+  {0}}.   
 

M = i
i

i 0
a x








  ai  S} be the super subset polynomial 

semivector space over the subset semiring S. 
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Example 4.86:  Let S = {Collection of all subsets of the 
semifield L = 
 
 
 
 
 
 
 
 
 
 

and   M  = i
i

i 0
a x








  ai  S} be the super subset polynomial 

semivector space over the semiring S. 
 
Example 4.87:  Let S = {Collection of all subsets of the 
semiring  
 
 
 
 
            . 
 
 
 
 
 

M = i
i

i 0
a x








  ai  S} be the super subset polynomial 

semivector space over S of type I. 
 
Example 4.88:  Let S = {Collection of all subsets of the 

semiring (Z+  {0}) A5}.  M = i
i

i 0
a x








  ai  S} be the super 

subset polynomial semivector space of type I over S.  Clearly 

 a3 
a2 
 a1 

0 
 a14 


1 







 d 

0 

b 




 c a 

1 

e f 
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 even as a super subset polynomial semivector space, M is non 
commutative. 
 
Example 4.89:  Let S = {Collection of all subsets of the 
semiring LS7 where L is a lattice 
 
 
 
 
 
 
 
             . 
 
 
 
 
 
 
 

M = i
i

i 0
a x








  ai  S} is a super subset polynomial semivector 

space of type I over S.   
 

However M is a non commutative as a super subset 
polynomial semivector space and doubly non commutative as a 
super subset polynomial semilinear algebra.  For we see if s  S 
and p(x)  M, sp(x)  p(x)s in general and for p(x), q(x)  M, 
p(x) q(x)  q(x) p(x). 
 

Example 4.90:  Let M = i
i

i 0
a x








  ai  S = {Collection of all 

subsets of the ring Z42}} be the special super subset polynomial 
semilinear algebra over S of type II. 
 
 We can have several such special super subset polynomial 
semilinear algebras over S of type II. 







 h 

0 

f 




 g e 

d 

i h 

1









ba 

c 
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Example 4.91:  Let M = i
i

i 0
a x








  ai  S = {Collection of all 

subsets of the ring Z12 S3}} be the special super subset 
polynomial semilinear algebra over S of type II. 
 
 Clearly M is non commutative special super subset 
polynomial semilinear algebra over S.  Infact M is doubly 
commutative. 
 
Example 4.92:  Let  
S = {collection of all subsets from the field Z43}.   
 

Let M = i
i

i 0
a x








  ai  S} be the special strong super subset 

polynomial semivector space over the semiring S of type III.   
Clearly M is commutative as a special strong super subset 
polynomial semilinear algebra over S.  
 

B1 = {{1}, {1}x, {1}x2, …, {1}xn, …} is a subset basis of 
M as a special strong super subset polynomial semivector space 
over S. 
 
Example 4.93:  Let S = {Collection of all subsets of the group 
semiring (Q+  {0})}.  
 

M = i
i

i 0
a x








 ai  S} be the super subset polynomial 

semivector space over S of type I.  Infact for p(x)  M and  
s  S we have in  general sp(x)  p(x)s.   

 
Further M is a super subset polynomial semilinear algebra 

of type I over S which doubly non commutative. 
 
 B1 = {{1}, {1}x, {1}x2, {1}x3, …, {1}x3, …} be the subset 
basis of M as a semivector space over S. 
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 Example 4.94:  Let  
S = {Collection of all subsets of the semigroup ring Z5S(8)} and  

M = i
i

i 0
a x








  ai  S} be the special super subset polynomial 

semivector space of type I over S. 
 
 Clearly M is non commutative even as a special super 
subset polynomial semivector space of type I over S for sp(x)  
p(x)s in general for s  S and p(x)  M.  Further if M is realized 
as a special super subset polynomial semilinear algebra then 
also then M is doubly non commutative as for p(x), q(x)  M, 
p(x) q(x)  q(x) p(x) in general.  Finding basis is a matter of 
routine.   
 
Example 4.95:  Let  
 
S = {Collection of all subsets of the group ring Z70S3}.   
 

M = i
i

i 0
a x








  ai  S and n < } be the special super subset 

polynomial semivector space of type I.  Clearly M is non 
commutative, however M is not a special super subset 
polynomial semilinear algebra as for p(x), q(x)  M, we see 
p(x) q(x)  M in general. 
 
Example 4.96:  Let S = {Collection of all subsets of the lattice 
ring LS3 where L is    
 
 
 
 
 
 

and S3 is a permulation group}. M = 
7

i
i

i 0
a x






  ai  S; 0  i  7} 

be a super subset polynomial semivector space over S. 

1









ba 

0
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 Clearly M is non commutative as sp(x)  p(x)s for s  S 
and p(x)  M. 
 
 Further M is not a semilinear algebra. 
 

Example 4.97:  Let M = 
5

i
i

i 0
a x






  ai  S = {Collection of all 

subset of the group ring Z12S4}; 0  i  5} be the super subset 
polynomial semivector space over the subset semiring S.   
o(M) < .   
 

We see M is non commutative but M is not a super subset 
polynomial semilinear algebra over S; for if p(x), q(x)  M then 
p(x) q(x)  M. 
 

Example 4.98:  Let M = 
9

i
i

i 0
a x






  ai  S = {Collection of all 

subsets of the group semiring (Z+  {0}) A5}, 0  i  9} be the 
super subset polynomial semivector space over S which is non 
commutative, but o(M) = . 
 

Example 4.99:  Let M = 
3

i
i

i 0
a x






  ai  S = {Collection of all 

subsets of the ring ZD27}; 0  i  3} be the super subset 
polynomial semivector space over S which is non commutative   
and o(M) = . 
 

Example 4.100:  Let W = 
8

i
i

i 0
a x






  ai  S = {Collection of all 

subsets of the ring Z18D29} 0  i  8} be the super special subset 
polynomial semivector space over the subset semiring S.   
 

Clearly W is not a super special subset polynomial 
semilinear algebra over the subset semiring S. 
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 Example 4.101:  Let S = {Collection of all subsets of the ring 
C(Z12) (g1, g2) where 2

1g  = 0 and 2
2g  = g2, g1g2 = 0 = g2g1} be 

the subset semiring. 
 

M =  
18

i
i

i 0
a x






  ai  S; 0  i  10} be a super subset 

polynomial semivector space of M over S of type I. 
 

Basis B of M over S is B = {{1}, {1}x, {1}x2, …, {1}x18}.  
Clearly M is a finite dimensional super subset semivector space 
over S. 

 
Example 4.102:  Let S = {Collection of subsets of Q} and   

M = 
27

i
i

i 0
a x






  ai  S, 0  i  27} be the super subset 

polynomial semivector space over S.  Clearly M is finite 
dimensional, but is not a super subset polynomial semilinear 
algebra over S.  
 
Example 4.103:  Let S = {Collection of all subsets of R} and   

M = 
27

i
i

i 0
a x






 ai  S, 0  i  27} be the super subset polynomial 

semivector space over the subset semiring.  
 

P = {Collection of all subsets of Q}  S. 
 
 Clearly dimension of M over P is infinite. 
 
 Further M is not a super subset polynomial semilinear 
algebra over P.  Finally we have super subset polynomial 
semivector spaces which are not super subset polynomial 
semilinear algebras. 
 
 Inview of this we have the following theorem. 
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THEOREM 4.5:  Let S = {Collection of all subsets over a 
semifield Q or R or ring or semiring or field}.  M be a super 
special subset polynomial semivector space over S.  Clearly M 
is not a super special subset polynomial semilinear algebra 
over S.  
 

Proof is direct and is left as an exercise to the reader.  
 
Example 4.104:  Let  
S = {Collection of all subsets of the group ring Z43S8}.   

M = i
i

i 0
a x








  ai  S} be the super subset polynomial 

semivector space over the subset semiring.  
 

P = {Collection of all subsets of the field Z43}  S.   
 

M is commutative as a super subset polynomial semivector 
space over P but M is a non commutative super subset 
polynomial semivector space over S.  M is a doubly non 
commutative super subset polynomial semilinear algebra over 
S. 
 
Example 4.105:  Let  
 

S = {Collection of all subsets of the field C}.   
 

M = i
i

i 0
a x








  ai  S} is a super subset polynomial 

semivector space (as well as semilinear algebra) over  
T = {Collection of all subsets of Q or R}  S. 

 
 M can also be a special super subset polynomial semilinear 
algebra over S. 
 
Example 4.106:  Let  
S = {Collection of all subsets of the ring C(Z24)}.   
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 M = 

9
i

i
i 0

a x





  ai  S; 0  i  9} be the super subset polynomial 

semivector space over the subset semiring S. 
 
Example 4.107:  Let S = {Collection of all subsets of the 
semiring (Z+  {0}) (g1, g2, g3) where 2

1g  = 0, 2
2g = g2 and 2

3g  = 
–g3,  gigj = 0, if i  j, 1  i, j  3} be the subset semiring. 
 

 M = 
21

i
i

i 0
a x






  ai  S; 0  i  21} is a super subset 

polynomial semivector space over S.  Clearly M is of finite 
dimension over S.  However M is commutative.   
 
Example 4.108:  Let  
S = {Collection of all subsets of the semiring (Q+  {0}) S(5)}.  

M = 
8

i
i

i 0
a x






  ai  S; 0  i  8} be the super subset polynomial 

semivector space over S which is non commutative.   
 

Infact M is not a super subset polynomial semilinear algebra 
over S. 
 
Example 4.109:  Let S = {Collection of all subsets of the 
semiring LS(12) where L =  
 
 
 
 
 
 
 
 
 
 
 







 d 

0 

b 
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

 c a 

1 

e f 
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be the subset semiring.  W = 
19

i
i

i 0
a x






  ai  LS(12); 0  i  19} 

be the super subset polynomial semivector space over the subset 
semiring S.   
 

Clearly W is non commutative over S. W is not a super 
subset polynomial semivector space and is not a super subset 
polynomial semilinear algebra over S. 
 
Example 4.110:  Let  
S = {Collection of all subsets of the semiring (Q+  {0})S9} be 

the subset semiring.  M = i
i

i 0
a x








  ai  S} is a doubly non 

commutative super subset polynomial semilinear algebra over 
the subset semiring S. 
 
Example 4.111:  Let  
S = {Collection of all subsets of the ring Z8S(8)}.   

M = i
i

i 0
a x








  ai  S} be the super subset polynomial 

semilinear algebra over the subset semiring S.  
 
 M is doubly non commutative.  Finding semilinear 
transformation and semilinear operators are a matter of routine.  
Let S = {collection of all subsets of the semifield Z+  {0}}.   
 

M = 
8

i
i

i 0
a x






  ai  S, 0  i  8} and 

N = 
16

i
i

i 0
a x






  ai  S; 0  i  16} be subset polynomial 

semivector spaces over the semifield Z+  {0}. 
 
 We can define T : M  N where T is a semilinear 
transformation of M to N. 
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  Thus if we need to define semilinear transformation of 
subset polynomial semivector spaces M and N we must have M 
and N to be defined over the semiring or semifield or field or 
ring and in case of super subset polynomial semivector spaces 
over the same subset semiring S. 
 
 The definition and working is similar to usual semivector 
spaces.  
 

Example 4.112:  Let M = i
i

i 0
a x








  ai  S = {Collection of all 

subsets of the semiring L = 
 
 
 
 
 
 
 
 
 
 
 
be the subset polynomial semivector space over the semiring L 
of type I. 
 
 We can define T : M   M, semilinear operators on M. 
 
 We can also define semilinear functional T : M  L by 
 

 T(p(x)) = i
i

g  where p(x) = i
i

i 0
a x




 , gi  ai  S and gi is 

the sum of all the elements in the set ai.  
 
 We find the sum of the sums which is clearly in L. 
 







 d 

0 

b 




 c a 

1 

e f 
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Example 4.113:  Let W = i
i

i 0
a x








  ai  S = {Collection of all 

subsets of the semiring Z+  {0}}} be the subset polynomial 
semivector space over the semifield Z+  {0}. 
 
 Let p(x) = {8, 3, 4, 0, 11, 3, 5, 10, 9}x3 + {1, 2, 3, 6}x2 + 
{1, 2, 3, 4, 5, 6} = a1x3 + a2x2 + a3   W. 
 
   Let f : W  Z+  {0}. 
 
 f(p(x)) =  (8+3+4+0+11+3+5+10+9) + (1+2+3+6) + 
(1+2+3+4+5+6) 
 
   =  (53 + 12 + 21) 
   = 86  Z+  {0}. 
 
 Thus f is a subset semilinear functional of W. 
 
Example 4.114:  Let  
 

M = i
i

i 0
a x








  ai  S = {Collection of all subsets of the ring 

Z8}} be the super subset semivector space over the subset 
semiring S.  We define f : M  S as follows:  
 
 If p(x) = {0, 1, 2} x3 + {3, 4, 5} x + {3, 6} 
 
then f(p(x)) = ({0, 1, 2} + {3, 4, 5} + {3, 6}) 
   = {3, 4, 5, 6, 7} + {3, 6} 
   = {6, 7, 0, 1, 2, 3, 4, 5} 
   = Z8  S. 
 
This is the way super semilinear functionals are defined. 
 
 We suggest some problems for the reader. 
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 Problems 
 
1. Obtain some important and interesting features enjoyed by 

subset matrix semivector spaces.   
 
2. Distinguish the subset matrix semivector spaces from 

subset semivector spaces. 
 
3. Let M = {(a1, a2, a3, …, a6) | ai  {Collection of all subsets 

from the semiring  
 
 
 
 
 
 
 
 
 
 
 

1  i  6} be a subset matrix semivector space over the 
semifield L =  

 
 
 
             . 
 
 
 

(i) Find the number of elements in M. 
 (ii) Find a semibasis for M. 

(iii) Can M have subset matrix subsemivector subspaces? 
 (iv) Can M be a Smarandache subset matrix semivector  
  space over the semifield L? 
 (v) How many semibasis can M have over L? 
 







 d 

0 

b 




 c a 

1 

e f 


 f 
 a 
1 
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
 f 
 a 
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 4. Let M = 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a
a a a a
a a a a
a a a a

 
 
    

 ai  {Collection of all  

 
subsets of the semifield Z+  {0}} 1  i  4} be the subset 
matrix semivector space over the semifield Z+  {0}. 

 
(i) Study question (ii) to (v) for this M. 

 (ii) Prove M is non commutative under usual product   
  and commutative under the natural product n. 
 (iii) Can M have many sets of basis? 
 
5. Let S = {Collection of all subsets of the semiring L = 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 be a subset semiring T = 

1 2 3

4 5 6

7 8 9

10 11 12

a a a
a a a
a a a
a a a

 
 
    

 ai  S; 1i12} 

 

 be the subset matrix semivector space over the semiring L 
of type I. 

 









b a 

1 





e d 

f 

c 





hg 

0 
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 (i) Prove o(T) < . 

(ii) Find a subset semibasis of S. 
(iii) Is T a S-subset matrix semivector space? 
(iv) Find subset matrix semivector subspaces of T. 
(v) How many basis can T have over L? 
 
(vi) Can T be made into a subset matrix semilinear algebra  
  over L? 
 
(vii) If T is a subset matrix semilinear algebra over L will  
  the subset dimension of T over L vary when T is just a  
  subset matrix semivector space over L. 

 

6. Let M = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 ai  S = {Collection of all subsets  

 
of the group semiring P = (Z+  {0})(S3)}, 1  i  9} be the 
subset matrix semivector space of type I over the group 
semiring (Z+  {0})S3. 

 
(i) Show o(M) = . 
(ii) Find a subset basis of M over the semiring P. 
(iii) Is it finite dimensional? 

 (iv) Can M have several basis over P? 
 (v) Obtain some interesting features enjoyed by M. 
 (vi) Can M be doubly non commutative? 
 
 

7. Let M = 1 2 10

11 12 20

a a ... a
a a ... a

 
 
 

 ai  S = {Collection of all  

 
 subsets from the group ring Z5S3}, 1  i  20} be a special 

subset matrix semivector space over the group ring Z5S3 of 
type II. 

 
(i) Find o(M). 
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 (ii) Can M have several basis over Z5S3? 
 (iii) Find a basis of M over Z5S3. 
 (iv) Find some subset matrix semivector subspaces of M  
  over Z5S3. 
 (v) Can M be made into a subset matrix semilinear  
  algebra over Z5S3? 
 (vi) Prove M is a non commutative subset matrix  
  semivector space of type II over the ring Z5S3. 
 
 

8. Let M = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 ai  S = {Collection of all subsets  

 
 from the semigroup ring R = Z7S(3)}, 1  i  9} be a subset    
 matrix semivector space over the ring R of type II. 

 
(i) Study questions (i) to (vi) given in problem 7. 

 
9. Let M = {(a1, a2, …, a10) | ai  {subsets of the semiring  

(Z+  {0}) (g)} g2 = 0, 1  i  10} be the subset matrix 
semivector space over the semifield Z+  {0}. 

 
(i) Find a semibasis of M. 
(ii) Can M have more than one basis? 
(iii) Can M be a subset matrix semilinear algebra over  
  Z+  {0}? 

 (iv) If the semifield Z+  {0} is replaced by (Z+  {0}) (g)  
  will M be a subset matrix semivector space of type I  
  over (Z+  {0}) (g). 
 
 
10. Let M be a subset matrix semivector space of type I 

defined over a semiring.  Find some special features 
enjoyed by M. 
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11. Let M be a special subset matrix semivector space of type 

II over a ring R.  What are the special features associated 
with M? 

 
 

12. Let M = 

1 2 5 6

3 4 7 8

9 10 11 12

13 14 15 16

a a a a
a a a a
a a a a
a a a a

 
 
    

 ai  S = {collection of all  

 
 subsets of the ring Z15}, 1  i  16} be the special subset 
 matrix semivector space over the ring Z15 of type II. 

 
 (i) Can M be commutative? 
  
 (ii) Prove M as a special subset matrix semilinear algebra  
  is doubly non commutative? 
 
 (iii) Find a basis B of M as a special subset matrix  
  semivector space of type I. 
 

(iv) Find a basis B of M as a subset matrix semilinear  
  algebra of type II. 
 

 (v) Compare the basis B1 and B2. 
  
 (vi) Is o(B1) > o(B) or o(B) > o(B1)? 
 
 (vii) Does M have only one basis or several basis? 
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 13. Let M = 

1 2

3 4

23 24

a a
a a

a a

 
 
    

 
 ai  S = {Collection of all subsets of  

 
 the groupring Z7S4}, 1  i  24} be a special subset matrix 

semivector space of type II over the ring Z7S4. 
 
(i) Prove M is non commutative. 

  
 (ii) Study questions (i) to (vii) of problem 12. 
 
14. Let S = {Collection of all subsets of the ring C(Z12)}.   

 

M = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 ai  S; 1  i  9} is the special subset  

 
matrix semivector space of type II. 

 
 Study questions (i) to (vii) of problem 13. 
 

15. Let M =  1 2 10

11 12 20

a a ... a
a a ... a

 
 
 

  ai  S = {Collection of all  

 
 subsets of the field Q}} be the special strong subset matrix 

semivector space of type III. 
 
 Study questions (i) to (vii) of problem 12 for this M. 
 
16. Derive some interesting features enjoyed by strong special 

subset matrix semivector spaces of type III. 
 
17. Distinguish between  type II and type III subset semivector 

spaces? 
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18. Compare all the four subset semivector spaces. 
 

19. Let M = 
1 2 3 4

5 6 7 8

9 10 11 12

a a a a
a a a a
a a a a

 
 
 
 
 

 ai  S = {Collection of all  

 
 subsets from Z11S3}; 1  i  12} be the special subset 

matrix semivector space over the ring Z11S3. 
 
 Study questions (i) to (viii) of problem 12. 
 

20. Let M = 

1 2 3 20

21 22 23 40

41 42 43 60

61 62 63 80

a a a ... a
a a a ... a
a a a ... a
a a a ... a

 
 
    

 ai  S = {Collection of  

 
 all subsets of the field Z11}, 1  i  80} be the special 

strong matrix semivector space over the field of type III 
over Z11. 

 
(i) Find o(M). 

 
 (ii) Find a basis of M over Z11. 
 
 (iii) Can M have more than one basis? 
 
 (iv) Study questions (i) to (viii) of problem 12. 
 
21. Let M = {Collection of all 5  3 matrices with entries from 

subsets of the semifield Z+  {0}} be the subset matrix 
semivector space over the semifield Z+  {0}. 

 
(i) Find a basis of M over Z+  {0}. 

  
 (ii) Can M have more number of basis? 
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 (iii) Is M finite or infinite dimension? 
 

22. Let M = 

1 16 31

2 17 32

15 30 45

a a a
a a a

a a a

 
 
    

  
 ai  S = {Collection of all  

 
 subsets over the semiring P =     
 
 
 
 
 
 
 
 
 
 1  i  45} be the subset matrix semivector space of type I 

over the semiring P. 
 
 (i) Find o(M). 
 
 (ii) Is o(M) < ? 
 
 (iii) Find a basis of M over P. 
 
 (iv) Can M have more than one basis? 
 
 (v)  Is M a commutative subset matrix semilinear algebra  
  of type I over P? 

 
(vi)  Study M as a subset matrix semivector space of type I  
  over  

        . 
    







 d 

0 

b 




 c a 

1 

e f 

 0 

 f 
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23. Let M = 

1

2

40

a
a

a

 
 
    


 ai  S = {Collection of all subsets of  

 
 
 
 the semiring T =  
 
 
 
 
 
 
 
 
 
 
 
 1  i  40} be a subset matrix semivector space over the 

semifield L =  
 
 
 
 
 
 
 
 
 
 
 
 (i) Find o(M). 
 
 (ii) Find a basis of M over L. 
 
 (iii) If in M  L is replaced by T is M1 is a subset matrix  
  semivector space of type I compare M and M1. 









b a 

1 





e d 

f 

c 





hg 

0 


g 
 e 

c 

0 

d 

a 

1 
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24. Let B = 

1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 ai  S = {Collection of all subsets  

 
 of the semiring L1  L2  
 
 
 where L1 =     and L2 =  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1  i  9} be a subset matrix semivector space of type I 

over L. 
 
 (i) Find o(B). 
 
 (ii) Find a basis of B over L. 
 
 (iii) Prove B is commutative. 
 
 (iv)  How many basis can B have? 
 
 (v)   Under usual operations of B can B be non  
   commutative as a subset matrix semilinear algebra? 
 







 d 

h 

b 




 c a 

1 

e f 







 l 

0 

j 
 k i 

m b 

 g 









b1 a1 

1 





e1f1 

0

d1

 c1
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25. Let T = 1 2

3 4

a a
a a

 
 
 

 ai  S = {Collection of all subsets of  

 
 the semiring C(Z10)} 1  i  4} be the subset matrix 

semilinear algebra over the semiring C(Z10). 
 

(i) Find a basis of T over C(Z10). 
 
 (ii) How many basis can T have over C(Z10)? 
 
 (iii) Find o(T). 
 
 (iv) Show T is non commutative under usual product as a  
  semilinear algebra. 
 
 (v) Prove T under natural product n is a subset matrix  
  semilinear algebra over C(Z10). 
 
 

26. Let N = 1 2 8

9 10 16

a a ... a
a a ... a

 
 
 

 ai  S = {Collection of all  

 
 subsets of the semiring LS5 where L =  
 
 
 
 
 
 
 
 
 
 
 
 







 d 

0 

b 




 c a 

1 

e f 
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 1  i  16} be a super subset matrix semivector space over 
the semiring S. 

 
 (i) Find o(N). 
  
 (ii) Find a basis of N over S. 
  
 (iii) How many basis of N over S exist? 
  
 (iv) If N is not a super subset matrix semivector space over  
  the semiring L.  Compare both spaces. 
 
27. Let M be a super subset semivector space of type I over a 

semiring.   
 Find some special properties enjoyed by the super subset 

semivector space of type I. 
 

28. Let T = 1 2 8

9 10 16

a a ... a
a a ... a

 
 
 

 ai  S = {Collection of all  

 
 subsets of the ring Z14 (g), g2 = 0}, 1  i  16} be the 

special super subset matrix semivector space of type II over 
the semiring S. 

 
(i) Find a basis of T over S. 

 
 (ii) Find o(T). 
 
 (iii) How many basis can T have over S? 
 
 (iv) Prove T is commutative. 
 

 (v) Is W = 1 2 8a a ... a
0 0 ... 0

 
 
 

 ai  S = {Collection of all  

 
  subsets of the ring Z14 (g); g2 = 0}, 1  i  8}  T a  
  special super subset semivector subspace of T over S? 
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29. Let W = 

1 2

3 4

5 6

7 8

a a
a a
a a
a a

 
 
    

 ai  S = {Collection of all subsets of  

 
 the ring Z5S7}; 1  i  8} be a special super subset 

semilinear algebra of type II over the semiring S. 
 

(i) Prove W is doubly non commutative. 
 
 (ii) Find o(W). 
 
 (iii) Find a basis of W over S. 
 
 (iv) How many basis of W over S exist? 
 
 

30. Let P = 1 2 9

10 11 18

a a ... a
a a ... a

 
 
 

 ai  S = {Collection of all  

 
 subsets of the field Z19}; 1  i  18} be the special strong 

super subset matrix semivector of type III over the 
semiring S. 

 
(i) Find o(P). 

  
 (ii) Find a basis of P over S. 
  
 (iii) How many basis P has over S? 
  
 (iv) Is P commutative as a special strong super subset  
  matrix semilinear algebra? 
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31. Let V = 
1 2 6

7 8 12

13 14 18

a a ... a
a a ... a
a a ... a

 
 
 
  

 ai  S = {Collection of all  

 
 subsets of the semiring  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1  i  18} be the super subset matrix semivector space 

over S. 
 
 (i) Find o(V). 
 
 (ii) Find a basis of S over V. 
 
 (iii) Can S have more number of basis? 
 

32. Let M = i
i

i 0
a x








  ai  S = {Collection of all subsets of  

 
 semifield L =  







 d 

g 

b 




 c a 

1 

e f 

h









i j 

i 
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  be a subset matrix semivector space over L. 
 
 (i) Find a basis of M over L as a semivector space. 
 
 (ii) Find a basis of M over L as a semilinear algebra over L. 
 

33. Let M = i
i

i 0
a x








  ai  S = {Collection of all subsets of the  

 
 semifield Z+  {0}}; 0  i  9} be the subset matrix 

semivector space over the semifield Z+  {0}. 
 

(i) Find a basis of M. 
 
 (ii) Prove M is not a subset matrix semilinear algebra over  
  M. 
 
 (iii) Can M have more than one basis? 
 
 (iv) Find subspaces of M. 
 
34. Study any special / interesting feature of a subset 

polynomial semivector space over a semifield. 
 

35. Let V = 
8

i
i

i 0
a x






 ai  S = {Collection of all subsets of the  

 
 ring Z11S8}, 0  i  8} be the special subset semivector 

space over the ring Z11S8 of type II. 

0 

a2 
 a1 

a3 

1 
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(i) Is o(V) < ? 
  
 (ii) Find a basis of V over Z11S8. 
  
 (iii) How many basis of V over S11S8 exist? 
  
 (iv) Can V be a commutative special subset semivector  
    space over Z11S8 of type II? 
 

36. Let M = 
8

i
i

i 0
a x






  ai  S = {Collection of all subsets of the  

 
 semiring P =  
 
 
 
 
 
 
 
 
 
 
 
 0  i  8} be the subset polynomial semivector space over 

the semiring of type I over P. 
 
 (i)  Find a basis of M over P. 
 
 (ii)  Prove M is not a subset polynomial semilinear algebra  
  over P. 
 
 (iii)  Can M have more than a basis? 
 

37. Let W = 1 2 3

4 5 6

a a a
a a a

 
 
 

 ai  S = {Collection of all subsets  

 







 d 

0 

b 




 c a 

1 

e f 
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  of the ring Z12}; 1  i  6} be the special subset matrix  

 semivector space over Z12 of type I.  M = 

1 2 3

4 5 6

7 8 9

10 11 12

a a a
a a a
a a a
a a a

 
 
    

  

  
 ai  S = {Collection of all subset of the ring Z12} be the 

special subset matrix semivector space over Z12 of type I. 
 

(i) Define semi linear transformation of W to M. 
  
 (ii) Define semilinear operators 1 : W  W and  
  2 : M  M. 
 
 (iii) Find semilinear functional of M and W; f1 : M  Z12  
  and f2 : W  Z12. 
 
 (iv) If R = {Collection of all semilinear transformation of  
  W to M}, what is the algebraic structure enjoyed by  
  R? 
 
 (v) If B = {Collection of all semilinear transformations  
  from M to W};  what is the algebraic structure enjoyed  
  by B? 
 
 (vi) Let T1 = {Collection of all semilinear operators of M  
  to M}; find the algebraic structure enjoyed by T1. 
 
 (vii) Let T2 = {Collection of all semilinear operators from  
  W to W}; find the algebraic structure enjoyed by T2. 
 
 (viii)Let F1 = {Collection of all semilinear functional from  
  M  Z12} find the algebraic structure enjoyed by F1. 
 
 (ix) Let F2 = {Collection of all semilinear functionals  
  from W to Z12} find the algebraic structure enjoyed by  
  F2. 
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38. Let S = {Collection of all subsets of the lattice L = 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 M = 1 2 10

11 12 20

a a ... a
a a ... a

 
 
 

 ai S; 1  i  20} and  

 

 W = 

1 2 3 4 5

6 10

11 15

16 20

a a a a a
a ... ... ... a
a ... ... ... a
a ... ... ... a

 
 
    

 ai  S; 1  i  20} be two  

 
 subset matrix semilinear algebras over the semiring L of 

type I.   
 Study questions (i) to (ix) of problem 37. 
 
39. Let  
 S = {Collection of all subsets of the semifield Q+  {0}}, 

M = {Collection of all 5  5 matrices with entries from S} 
and W = {Collection of all 7  7 matrices with entries from 
S} be two subset matrix semivector space over the 
semifield Q+  {0}.   

  
 Study questions (i) to (ix) of problem 37 for this M and W. 







 h 

0 

f 




 g e 

d 

i h 

1









ba 

c 
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40. Let S = {Collection of all subsets of the ring Z45 S(10)}  

M = {Collection of all 3  7 matrices with entries from S} 
and W = {Collection of all 8  3 matrices with entries from 
S} be two special subset matrix semivector space of type II 
over the ring Z45 S(10). 

 
 Study questions (i) to (ix) of problem (37) for this M and 

W. 
 Prove both M and W are non commutative. 
 
41. Let S = {Collection of all subsets from the field C}.  M = 

{Collection of all 7  2 matrices with entries from S} and 
W = {Collection of all 3  4 matrices with entries from S} 
be two strong special subset matrix semivector spaces of 
type III over the complex field C. 

 
 Study questions (i) to (ix) of problem 37 in case of this M 

and N. 
 
42. Let S = {Collection of all subsets from the semigroup ring 

C(S(12))}.   
 
 M = {Collection of all 3  8 matrices with entries from S} 

and  
 W = {Collection of all 6  4 matrices with entries from S} 

be special subset matrix semivector spaces over the ring 
C(S(12)) of type II.  

 
 Study questions (i) to (ix) of problem 37 for this M and W. 
 
 (i)  Prove M and W are non commutative as special subset  

  matrix semivector spaces of type II and are doubly non 
commutative as special subset matrix semilinear algebra 
of type II. 
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43. Let  
 S = {Collection of all subsets of the semifield R+  {0}}. 
 

   M = i
i

i 0
a x








  ai  S} be the subset polynomial  

 
 semivector space over the semifield R+  {0}. 
 

(i) Find a basis of M over R+  {0}. 
 
 (ii) If R+  {0} is replaced by Q+  {0} find a basis of M  
  over Q+  {0}. 
 
 (iii) If R+  {0} is replaced by Z+  {0} find a basis of M  
  over Z+  {0}. 
 
 (iv) Is the basis unique or can M have many distinct basis? 
 
 (v) Can M be made into a subset polynomial semilinear  
  algebra over R+  {0} (or Q+  {0} or Z+  {0})? 
 
 (vi) Find subset polynomial subsemivector spaces of M. 
 
 (vii) Find T :  {Collection of all M  M}; what is the  
  algebraic structure enjoyed by T? 
 

44. Let M = i
i

i 0
a x








  ai  S = {Collection of all subsets of the  

 
 semigroup semiring P = (Z+  {0}) (S(5))}} be the subset 

polynomial semivector space of type I over P. 
 
 Study questions (i) to (vii) from problem (43) for this M. 
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 45. Let M1 = i

i
i 0

a x







  ai  S = {Collection of all subsets of  

 
 the ring R = Z42 D29} be the special subset polynomial 

semivector space over the ring R of type II.  Study 
questions (i) to (vii) from problem (43) for this  M1. 

 

46. Let M2 = i
i

i 0
a x








  ai  S = Collection of all subsets of the 

 
 field C}} be special strong subset polynomial semivector 

space over the field C of type III.  Study questions (i) to 
(vii) from problem 43 for M2.  

 

47. Let M3 = i
i

i 0
a x








  ai  S = {Collection of all subsets of 

the semifield R+  {0}}} be the subset polynomial 
semivector space over the semifield R+  {0}.  

 
 Study questions (i) to (vii) from problem 43 for M3. 
 

48. Let M4 = i
i

i 0
a x








  ai  S = {Collection of all subsets of  

 
 the semifield L =  
 
 
 
 
 
 
 
 
 
 be  the subset polynomial semivector space over the 

semifield L. 

  
a9 
1 

0 
 a1 

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 (i) Study questions (i) to (vii) of problem 43. 
 
 (ii) Find the set ideal subset polynomial topological vector  
  subspace of M over any set.  
 

49. Let M5 = i
i

i 0
a x








  ai  S = {Collection of all subsets of 

the semiring LS7 where L =  
 
 
 
 
 
 
 
 
 
 
 be the subset polynomial subset semivector space over the 

semiring LS7 of type I.   
 
 Study questions (i) to (vii) of problem (43) study question 

(ii) problem 48 for this M5.  
 

50. Let M6 = i
i

i 0
a x








  ai  S = {Collection of all subsets of 

the ring Z12 S7}} be the special subset polynomial 
semivector space of type II over the ring R.  

 
 Study questions (iv) to (vii) in problem 43 for M6. 
 

51. Let M = i
i

i 0
a x








  ai  S = {Collection of all subsets of the 

field Z43}} be the strong special subset polynomial 
semivector space of type III over the field Z43.   

 
 Study questions (i) to (vii) in problem 43 for this M. 







 d 

0 

b 




 c a 

1 

e f 
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52. Let  
 S = {Collection of all subsets from the semifield Z+  {0}} 

be the subset semiring M = i
i

i 0
a x








  ai  S} be the super 

subset polynomial semivector space over the subset 
semiring over S. 

 
(i) Find a basis of M over S. 

  
 (ii) How many basis can M have over S? 
  
 (iii) Is M a super subset polynomial semilinear algebra  
  over S? 
  
 (iv) Let T = {Collection of all super semilinear operators  
  on M}.  Study the algebraic structure enjoyed by T. 
  
 (v) Find super subset polynomial semivector subspaces of  
  M over S. 
 

53. Let M = i
i

i 0
a x








  ai  S = {Collection of all subsets of the 

semiring  
 
 
 
 
 
 
 
 
 
 
 
 
 
 







 h 

0 

f 




 g e 

d 

i h 

1









ba 

c 
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 be the super subset polynomial semivector space over the 
subset semiring S of type I.   

 
 Study questions (i) to (v) of problem 52 for this M. 
 

54. Let M = i
i

i 0
a x








  ai  S = {Collection of all subsets of the 

ring R = Z45 S7}} be the special super subset polynomial 
semivector space over the subset semiring S. 

 
(i) Study questions (i) to (v) of problem 52 for this M. 

 
 (ii) If F = {collection of all super semilinear functional of  
  M to S} find the algebraic structure enjoyed by F. 
 

55. Let M = i
i

i 0
a x








 ai  S = {Collection of all subsets of the 

field C} be the strong special super subset polynomial 
semivector space over the subset semiring S of type III. 

 
(i) Study question (i) to (v) of problem 52 for this M. 

 
 (ii) Let F = {Collection of all super semilinear functions  
  of M to S}; study the algebraic structure enjoyed by F.  
 

56. Let M = 
7

i
i

i 0
a x






  ai  S = {Collection of all subsets of the 

semifield  R+  {0}}} be the super subset semivector space 
over the subset semiring S. 

 
(i) Find a basis of M over S. 

 
 (ii) If T = {Collection of all super subset semilinear  
  operators on M}, find the algebraic structure enjoyed  
  by T. 
 
 



Subset Polynomial Semivector Spaces … 259 
 
 
  (iii) Let F = {Collection of all maps from M  S} find the  
  algebraic structure enjoyed by F. 
 
 (iv) Prove M is not a super subset polynomial semilinear  
  algebra over S. 
 
 (v) Can M have more than one basis over S? 
 

57. Let M = 
6

i
i

i 0
a x






  ai  S = {Collection of all subsets of the 

semiring 
 
 
 
 
 
 
 
 
 
 
 
 
 be the super subset polynomial semivector space over the 

subset semiring S of type I.   
 
 Study questions (i) to (v) of problem 56 for this M. 
 

58. Let M = 
4

i
i

i 0
a x






  ai  S = {Collection of all subsets of the  

 
 ring Z12 S8} be the super special subset polynomial 

semivector space over the subset semiring of type II. 
 

(i) Prove o(M) < . 
 

 (ii) Study questions (i) to (iv) of problem 56 for this M. 
 







 d 

g 

b 




 c a 

1 

e f 

h









i j 

0
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59. Let M = 
9

i
i

i 0
a x






  ai  S = {Collection of all subsets of the 

field Z23}, 0  i  9} be the special strong super subset 
semivector space over the subset semiring S of type III.  

 
(i) Study questions (i) to (iv) of problem 56 for this M. 

 
 (ii) Prove o(M) < . 
 
60. Find some interesting features enjoyed by super subset 

semivector spaces over a subset semiring. 
 
61. Find for any subset polynomial semivector space M the 

subset topological polynomial semivector subspace T of M 
over a semifield F.  T = {Collection of all subset 
polynomial semivector subspaces of M over a semifield} 
be the subset topological polynomial semivector subspace. 
Study T for all types of subset of subset polynomial 
semivector subspaces.  

 
62. Let W = {Collection of m  n matrices with entries from 

the subsets of the semifield  R+  {0}} be the subset 
semivector space over the semifield R+  {0}.  Find the 
subset matrix topological semivector subspace of W over 
R+  {0}. 

 
63. Study problem 62 in case of all the three types of subset 

matrix semivector spaces. 
 
64. Study problem (62) if W is a super subset semivector 

subspace over S. 
 
65. Define and describe set subset matrix (polynomial) 

topological semivector subspace of M over a set. 
 
66. Study question 62 in case of super subset matrix 

(polynomial) semivector space over a subset semiring. 
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