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PREFACE

In this book authors study the new notion of the algebraic
structure of the subset semirings using the subsets of rings or
semirings. This study is innovative and interesting for the
authors feel giving algebraic structure to collection of sets is not
a new study, for when set theory was introduced such study was
in vogue. But a systematic development of constructing
algebraic structures using subsets of a set is absent, except for
the set topology and in the construction of Boolean algebras.

The authors have explored the study of constructing subset
algebraic structures like semigroups, groupoids, semirings, non
commutative topological spaces, non associative topological
spaces, semivector spaces and semilinear algebras.

We have constructed semirings using rings of both finite
and infinite order. Thus using finite rings we are in a position to
construct infinite number of finite semirings both commutative
as well as non commutative.

It is important to keep on record we have mainly
distributive lattices of finite order which contribute for finite
semirings. However this new algebraic structure helps to give
several finite semirings. This is the advantage of using this new
algebraic structure.



We call those subset semirings constructed using rings as
subset semirings of type I and when we use semirings in the
place of rings we call those subset semirings as subset semirings
of type 1.

Several interesting properties about substructures and
special elements are studied and discussed in this book. We
have subset zero divisors, subset idempotents and subset
nilpotents.

We further state these structures find their applications in
those places where semirings and lattices find their applications.

We thank Dr. K.Kandasamy for proof reading and being
extremely supportive.

W.B.VASANTHA KANDASAMY
FLORENTIN SMARANDACHE



Chapter One

INTRODUCTION

In this chapter we introduce only the basic concepts used in this
book. In most cases we only give references of them.

We use only distributive lattices for finite semirings. For
more about distributive lattices please refer [1].

The notion of semirings and Smarandache semirings can be
had from [14]. We use the concept of subset semiring. These
concepts are very recently introduced in [25-6].

Study of subsets of any algebraic structure and inducing the
same operation on these subsets can maximum give a semiring
in case of algebraic structures with two binary operations and
semigroup in case of algebraic structures with one binary
operation. We take in this book, only algebraic structures with
operations which are associative.

Here we study only subset semirings, which are the subsets
either from a ring or a semiring. Define these subset semirings
as type I (when a ring is used) and subset semirings as type Il
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when a semiring is used. We give many examples to describe
various properties enjoyed by these new algebraic structures.

Further we also introduce the notion of subset zero divisors,
subset units, subset idempotents and subset nilpotents.

We also describe the Smarandache analogue. In this book
we study the substructure of the subset semirings and the
Smarandache analogue.

Finally we study the subset set semiring ideals of these
subset semirings. On every subset semiring we can define four
topologies on S, T, T, T, and T~. The cardinality of T and T,
are the same as that of S and that of T, and T~ have one element
more in S.

That is o(Ts) = o(Ty ) = o(S) and o(T~) = o(T,) = o(S) + 1.

We also see in case S is finite the notion of tree can be
defined for T, T,, Ty and T~. These trees can find applications
in computer science.

We introduce the notion of special set ideal semiring
topological subset semiring spaces over a subsemiring P;; we

have T, T", T" and T. to be the four new types of
topological spaces.

We see using W; = {Collection of all subsets from the
subsemiring P;} < S, the subset subsemiring of S. T, T",
T and T," are the special strong new set semiring ideal

topological subset semiring spaces defined over the subset
subsemiring W, of S.

In case S is finite we have with these four types of trees
associated with the topological spaces of finite order. Interested
reader can find applications of these trees.



Chapter Two

SUBSET SEMIRINGS OF TYPE |

In this chapter we for the first time introduce the notion of
subset semirings of type I using rings. This study is both
innovative and interesting. We see we cannot get using subsets
of a ring, a subset ring, the maximum structure we can get is
only a subset semiring which we call as type I subset semiring.
We study subset zero divisors, subset idempotents, subset ideals
and subset subsemirings of these subset semirings.

We recall the definition of this concept in the following:

DEFINITION 2.1: Let R be a ring.

S = {Collection of all subsets of a ring}. S under the operations
of R is a semiring known as the subset semiring of type I of the
ring R.

We will give a few examples.
Example 2.1: Let S = {Collection of all subsets of the ring Z,}

be the subset semiring of the ring Z4. The operations on S are
performed as follows:
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ForA={2,3,0} and B={1,0,2} in S.
We see
A+B =1{2,3,0} +{1,0,2}

= 2+1,240,2+2,3+1,3+0,3+2,
0+1,0,0+2}

=1{3,2,0,1} €S.
AxB =1{2,3,0} x {1,0,2}

={2x1,2x0,2%x2,3%x0,3x1,3x2,
0x1,0x0,0x2}

= 1{2,0,3} 8.

Thus (S, +, x) is only subset semiring and not a ring for
every A we do not have —A such that A + (-A) = {0}.

For take A= {0,2, 1} and —A = {0,2,3} € S;
but

A+(A) ={0,2,1} +{0,2,3}

={0+0,2+0,1+0,0+2,2+2,1+2,
0+3,2+3,1+3)

= 10,2, 1,3} = {0}.

Hence S can only be a subset semiring. By this method we
get infinite collection of finite semirings.

Clearly S is not a subst semifield for we have A € S with
A+ A={0}.
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For take A = {2} € S we see

A+A ={2)+{2)
= 2+21=1{0! eS.

AxA ={2} x{2}={2x2}={0} €S.
Thus S has zero divisors.

Hence this S cannot be a subset strict semiring, however S
is a commutative subset semiring.

Example 2.2: Let
S = {Collection of all subsets from the field Z;} be the subset
semiring of Z;. S has no subset zero divisors. S has subset units
but S is only a subset semiring and not a subset semifield.

For take A = {6} € S.

A x A={6} x {6} = {1} is a subset unit of S.

We see for A, B € S\ {0}; A x B = {0}.

However for every A € S we do not have a B such that
A + B = {0} so S is not a subset ring only a subset semiring.

LetA={3,4,0,2} and B={4,3,5} € S
A+B ={3,4,0,2} +{4,3,5}

={3+4,3+3,3+5,4+4,4+3,4+5,0+4,
0+3,0+5,2+4,2+3,2+5}

= {Oa 65 1327 4, 3, 5} (S S
Now

AxB =1{3,4,0,2) x {4,3,5)
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={3x4,3x3,3x5,4x4,4x3,4x5,0x4,
0x3,0x5,2x4,2x%x3,2x5}

=15,2,1,6,0,3} €.
AxA =1{3,4,0,2) x {3,4,0,2)

={3%x3,4%x3,0x3,2%x3,3%x4,4%x4,0x4,
2%x4,3%x0,4x0,0x0,2x0,3%x2,4x2,
0x2,2x2}

=1{2,5,0,6,4,1} €S.

This is the way operations are performed.
Take {5} =A e S.

Wesee A x A= {5} x {5} = {4}.
AxAxA={5} x {4} ={6}.
AxAxAxA={6} x{5}={2}.
AXxAxAxAxA={2}x{5}={3}and
AxAxAxAxAxA={3} x{5}={1} eS.

Thus A® = {1} is a element of order 6.

Example 2.3: Let S = {Collection of all subsets from the
neutrosophic ring R = (Z;, U I)} be the subset semiring. S is a
subset neutrosophic semiring of type .

Example 2.4: Let S = {Collection of all subsets from the
complex modulo integer ring R = C(Zy)} be the subset
semiring.

S is a subset complex modulo integer semiring of the ring R
of type L.

Example 2.5: Let S = {Collection of all subsets from the finite
complex number neutrosophic ring R = C({(Z;s U 1))} be the
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subset semiring of the ring R. S is a finite complex number
neutrosophic subset semiring.

All the five examples are examples of finite subset
semirings of type 1.

Now we give examples of subset semirings of infinite order.

Example 2.6: Let

S = {Collection of all subsets from the ring R = Z} be the subset
semiring. S is an infinite subset semiring which has no subset
zero divisors or subset units.

LetA={3,5,8 -5 1}and B={8,-1,9,-10} € S.
A+B =1{3,58,-51}+{8,-1,9,-10}
={3+8,5+8 8+8,-5+8,1+8, 3—-1,5-1,
8-1,-5-1,1-1,3+9,5+9,8+9,-5+9,
1+9,3-10,5-10,8-10,-5-10, 1 -10}

={11,13,16,3,9,2,4,7,-6,0, 12, 14, 17, 10, -7,
-5,-2,-15,-9} € S.

We see if A= {5} and B = {-5} in S then A + B = {0}.

However for every A € S we do not have a B (= —A) such
that A + B = {0}.

Wesee AxB ={3,5,8 51} x{8,-1,9,-10}

={3x8,3x-1,3x%x9,3x-10, 5x8,5x-1,
5%x9,5x-10,8%x8,8x—-1,8x9,8x-10,
—5x%x8,-5%x-1,-5%x9,-5%x-10,1x 8,
Ix-1,1x9,1x-10}

= {24, -3, 27,30, 40, -5, 45, -1, -50, 64, -8, 72,
-80, 40, 5,45, 50,8,9,-10} € S.
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We see A x B = {0} is not possible for A, B € S\ {0}.

Example 2.7: Let

S = {Collection of all subsets from the ring (Q U I)} be the
subset semiring of infinite order of the ring (Q U I ). This subset
semiring has infinite number of subset zero divisors.

For take A = {5 — 51} and B= {31} € S.

Wesee AxB = {5-5I} x {31}
= {5-51 x 31}
= {151 — 151}
= {0}, is a subset zero divisor of S.

Clearly S has infinite number of subset zero divisors given
by A={3-3[,8-8],91-9} and B= {2} € S.

We see

AxB ={3-318-8L9I-9} x {2I}
= {3-3Ix 21,8~ 8 x 2L, 91— 9x 2I }
= {6161, 161 — 161, 181 — 181}
= {0}.

Take A= {5-51,7—-71,18 - 181} and B= {21, I} € S.
We see
AxB ={5-51,7-7I, 18- 18I} x {21, I}
={5-5Ix2,7—-7Ix21, 18— 18I x 2I,
5-5IxI,7-7Ix1,18— 181 x I}

= {10I — 101, 141 — 141, 361 — 36I, 51 - 5I,
71— 71, 181 — 18I}

= 1{0}.

Thus we can have infinite number of subset zero divisors.
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If in the above subset semiring if we take

A= {tl — tlL t, — tzI, ey t, — tnI} and B = {SlI, SzI, ceey SmI}
(m and n are integers) in S we get A x B = {0}.

Hence our claim as m and n are arbitrary and m,n € Z".
If we replace Q in example 2.7 by R or Z the result is true.

Thus we have infinite subset semiring which has infinite
number of subset zero divisors.

Example 2.8: Let

S = {Collection of all subsets from the complex field C} be the
subset semiring. We see S is of infinite order S and has no
subset zero divisors.

However S has infinite number of subset units of the form if
A ={a},a e C\ {0} we have a unique b € C\ {0} such that if
B = {b} then A x B= {1}.

S is a subset semiring has no subset zero divisors but has
infinite number of subset units.

Example 2.9: Let S = {Collection of all subsets from the ring

(R U I)(g) where g” = 0} be the subset semiring. S has subset
zero divisors.

Let A= {8g, 5g, \/gg , 10g} and
B = {0, 2¢,-10g, J5g, V26g} € S.

We see

AxB = {8g,5¢g, V3g, 10g} x {0,2g,~10g, V/5g,+/26g}
={0} as g" = 0.

Thus S has infinite number of subset zero divisors.



16 | Subset Semirings

Alsoif A={n-nl|neZ U {0}}andB={ml|me Z"}
then A x B = {0}. So S has infinite number of subset zero
divisors.

We also see S has infinite number of subset units. S is an
infinite subset semiring which is commutative but has infinite
number of subset units and subset zero divisors.

Example 2.10: Let

S = {Collection of all subsets from the ring Z;;(g) with
g® = {0} be the subset semiring. S has both subset zero divisors
and subset units. S is of finite order.

Let A={10} € S.
AxA={l}.LetA={4}andB= {3} € S.
A xB=1{4} x {3} = {12} = {1} is a subset unit of S.

Let A= {6} and B= {2} € S.
AxB={6} x {2} ={6 x2} ={1} € S.

Thus S has subset units.

Let A= {3g, 5g} and B = {2g, g, 10g} € S.
We see

A xB={3g, 5g} x {2g, g, 10g} = {0}.

Thus S has subset zero divisors.

It is to be observed Z;; is a field, only Z;,(g) is the finite
dual number. Infact S is also known as the subset semiring of

finite dual numbers.

Example 2.11: Let S = {Collection of all subsets from the
mixed dual ring Z,o(g1, g) where g = 0 and g = g, with
212 = 2,81 = 0} be the subset semiring of finite order.
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S has subset idempotents; for take A = {5g,} € S.

We see

AxA ={5g}x {58} =1{25¢}
= {52} (as g5 = g}

Also A = {g,} € S is such that

AxA ={g}x{g}=1{g}
= {g,} = A is a subset idempotent of S.

Take A = {6g,, 5g,} € S.
We find
AxA ={6g, 52} € {62, 5}

={(6x6) g;,(5x5) g5,(6x5) g,
(5%6) g}

={62, S¢}=A € S.
Thus S has several subset idempotents.

Wetake M = {5g), 2g,, 8g,, 9g1, 6g;} and
N = {2g,, 62>, 4%} € S.

We find
M x N = {5g;, 2g;, 8g1, 9g1, 621} x {2g,, 62, 42>}
= {581 % 22y, 2g1 X 22, 821 X 28, 9g1 X 28y,
6g1x 2g), 5g1 x 62y, 281 x 62y, 8g; x 62y,
9g1 x 6g), 6g1 x 62y, 5g1 x 48>, 2g; x 4g>,
8g1 x 48y, 9g x 4gy, 6g1x 48}

={0}asg xg=0.
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Thus S has several subset zero divisors.

We have subset units also given by A = {3} and
B = {7} € S; such that A x B = {3} x {7} = {21} = {1} is a
subset unit.

A, = {9} € Sissuch that A] = {9} x {9} = {1} is again a
subset unit of S.

Example 2.12: Let S = {Collection of all subsets from the ring

Zi (g1, &, &); g =0and g =g, g =g, gigj = gg = 0 for
i#j, 1 <1,j<3} be the subset semiring of special mixed dual
numbers of finite order.

S has subset units, subset idempotents and subset zero
divisors.

Example 2.13: Let
S = {Collection of all subsets from the ring Z[x]} be the subset

semiring.

S has no subset units or subset idempotents or subset zero
divisors.

Infact S is of infinite order and S is also known as the
subset semiring of polynomials.

Let
A={5x+3,8x*+1,2x’— 1} and
B={x*+3,x"—1,2x’ +4} €8.
We find

A+B = {5x+3,8+1,2¢ -1} + {x*+3,x* -1,
2x° + 4}
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= 5x+3+x*+3,8x*+1+x*+3,,2x — 1+
X*+3,5x+3+x -1, 8x*+1+x°—1,2x — 1
+x 1,5k 342X +4,8x°+1+2x° +4,
2 — 1 +2x° + 4}

= {(X+5x+6,9x"+4,2x +x*+2, X"+ 5x + 2,
9x2, 2%+ X2 — 2,2x°+5x+7,2x° + 8x* + 5,
2x°+2x°+3} e S.
This is the way addition ‘+’ is performed on S.

We find

(5x+ 3,8+ 1,2x" — 1} x {x* +3,x*— 1,
2x° + 4}

AxB

= {5x+3xx*+3,5x+3xx—1,5x+3 x
2xX°+4, 8%+ 1 xx*+3,8x* + I xx*— 1,
8X2+1X2X5+4,2X3—1XX2+3,
2x -1 xx?—1,2x - 1 x2x° + 4}

= 5%’ +3x*+9=15x, 5% + 3x* —5x — 3, 10x°,
6x° +20x + 12, 8x* +25x> + 3, 9x* — 1,
—7x%, 16x +2x° + 32x% + 4, 2x° — x* — 3 + 6%,
2x°+1-x2-2x7,4x* 4+ 8x—2x°} e S.

This is the way operation x on S is performed.

Thus (S, +, x) is only an infinite polynomial subset semiring
which has no subset zero divisors or subset idempotents or
subset units.

We see S is not a strict semiring for we see if

A= {5x* - 2x*+8x — 7} and
B = {-5x’+2x*—8x + 7} are in S, we have
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A+B = {55 —2x>+8x — 7} + {-5x> + 2x* — 8x +7}
= {5x° - 2x* + 8x — 7+ (-5x° + 2x* — 8x + 7)
= {0} eS.

Thus S is not a strict subset semiring for we have
A + B = {0} without A and B being zero in S.

Example 2.14: Let S = {Collection of all subsets from the
neutrosophic polynomial ring (R U I)[x]} be the subset
polynomial neutrosophic semiring.

We see S has subset zero divisors only of the form
AxB=1{0} where A={n—-nl|neR'}and B={ml|m e R}
in S are such that A x B = {0}.

Thus this subset polynomial neutrosophic semiring has
subset zero divisors.

Now we give examples of infinite subset polynomial
semirings using the polynomial ring F[x] where |F| < 0.

Example 2.15: Let
S = {Collection of all subsets from the polynomial ring Z¢[x]}
be the subset polynomial semiring of Z¢[x] of infinite order.

S has subset zero divisors but has atleast six subset
idempotents of the form

A={3},B={4},D={1,3},E={l,4} and F = {1, 3, 4},
C={3,4} € S; such that

AxA ={3}x {3}

= {3
=A.

BxB ={4} x {4} ={4 x4}
= {16} = {4} =B.



Subset Semirings of Type I | 21

CxC ={3,4) x {3,4)
={3x3,3x4,4%x4,4x3}
={3,4} =C.

ExE ={1,4} x{1,4}
={1x4,4x4,4x1,1x1}
={4,1} =E.

DxD ={1,3} x {1, 3}
={1x1,1x3,3x1,3x3}
={1,3} =D and

FxF ={1,3,4} x{1,3,4}
={1x1,3x1,4x1,1x3,3x3,4x3,
1x4,3x4,4x4}
= {1, 4, 3} =F, are subset idempotents of S.

Now consider A = {2x* + 4x + 2, 4x° + 2x + 4} and
B={3x’+3x*+3x+3} eS.

We see

{2x +4x +2,4x> +2x + 4} x {3x> + 3,
3x% 4+ 3x + 2}

= {(2x*+4x+2) x 3x’ +3,4x’ + 2x + 4 x
37 +3,2x" + 4x +2 x 3x° + 3x + 3,
4%° +2x + 4 x 3x° + 3x + 3}

= 10}

AxB

Thus S has subset zero divisors.

So we will have problems while defining subset degree of
these subset polynomials; we have infinite number of subset
zero divisors in S.

Example 2.16: Let S = {Collection of all subsets from the
polynomial ring R = [Z»(g)][x]; g° = 0} be the dual number
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coefficient polynomial subset semiring of infinite order of the
ring R. S has subset zero divisors and subset idempotents.

Example 2.17: Let S = {Collection of all subsets from the
polynomial ring (C((Zys U I) (g1, £, 23))[x]} be the subset
polynomial complex finite neutrosophic modulo integer
semiring neutrosophic special mixed dual numbers.

We see S has subset zero divisors, subset idempotents and
subset units.

Example 2.18: Let S = {Collection of all subsets from the ring
R = Z)(g) x Z;5 (g;) where g* = 0 and g’ =g} be the subset

semiring of the ring R. S has subset units, subset zero divisors
and subset idempotents.

Now having seen several examples of subset semirings; we
proceed onto study and describe their substructures and other
properties by examples.

Example 2.19: Let

S = {Collection of all subsets from the ring Z,,} be the subset
semiring of Z;,. Clearly S has subset subsemirings and subset
semiring ideals.

M; = {Collection of all subsets from the subring
P,=1{0,2,4,6,8,10} = Z,} < S is a subset subsemiring which
is also a subset semiring ideal of S.

Forif A= {2,0,6} €e Myand B= {3, 1,5} € S then

AxB ={2,0,6} x{3,1,5}
={0x3,2x3,6x3,0x1,2x1,6x1,0x5,
2x5,6x%x5}
=1{0,6,2,4} € M.

It is easily verified M, is a subset semiring ideal of the
subset semiring.



Subset Semirings of Type I | 23

Consider M, = {Collection of all subsets from the subring
P, =1{0,3,6,9} < Z;5} < S be the subset subsemiring of S as
well as subset semiring ideal of the subset semiring S.

M; = {Collection of all subsets from the subring P; = {0, 6}
c Z15} < S be the subset subsemiring of S and M; is also a
subset semiring ideal of S.

Now Ny = {{1}, {0}, {2}, {3}, {4}, ..., {10}, {11}} c S.
N; is a subset subsemiring of S but is not a subset semiring ideal
of S.

For {1} e N;,s0if A={2,4,6,3} € S we see

Ax{1}=1{2,4,6,3} x {1}
={2x1,4x1,6x1,3x1}
=1{2,4,6,3} ¢ N|.

Infact if N> = {{0}, {2}, {4}, {6}, {8}, {10}} = S; Ny is
only a subset subsemiring of S but is not a subset semiring ideal
of S.

For if we take A = {1, 2, 3, 4, 7, 10} € S we consider
A x B where B= {2} € N.

AxB =1{1,2,3,4,7,10} x {2}
={1x2,2x2,3x2,4x2,7x2,10x2}
={2,4, 6, 8} ¢ Ny, hence the claim.

Thus we have shown by this example that S has subset
subsemirings which are not subset semiring ideals of S.

Example 2.20: Let
S = {Collection of all subsets from the field Z;} be the subset
semiring.
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Consider P = {{1, 2, 3, 4, 5, 6, 0}, {0}} < S; P is a subset
subsemiring as well as subset semiring ideal of S.
Fortake A={0,2,4} € S.

A xB

{2,0,4} x {0,1,2,3,4,5,6
(where B=1{0, 1,2, 3,4, 5, 6})

= {2x0,2x1,2x2,2%x3,2x4,2%x5,2x6,
0x1,0x2,0x3,0x4,0x5,0x6,4x1,
4%x2,4x3,4x4,4x%x5,4x6}

= {0,2,4,6,1,3,5} € P;
and {0} x A= {0} forall A € S.

Thus P = {{0}, {1, 2, 3, 4, 5, 6, 0}} is a subset semiring
ideal of S.

We have seen subset subsemirings which are subset
semiring ideals and those which are just only subset
subsemirings.

In view of this we have the following theorem.

THEOREM 2.1: Let S be a subset semiring of a ring. Every
subset ideal of a subset semiring is a subset subsemiring of S.
However all subset subsemirings of S need not in general be a
subset semiring ideal of S.

The proof is direct and hence left as an exercise to the
reader.

It is just important to recall every ring is trivially a semiring
but a semiring in general is not a ring. So we can define a
subset semiring to be a super Smarandache subset semiring if it
contains a subset ring.
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We will give examples of them before we proceed to define
more properties.

Example 2.21: Let

S = {Collection of all subsets from the ring Zs} be the subset
semiring. S is a super Smarandache subset semiring as
A = {{0}, {1}, {2}, {3}, {4}, {5}} < S is a subset ring of S,
hence the claim.

Example 2.22: Let

S = {Collection of all subsets from the ring C(Zs)} be the super
Smarandache subset semiring of the ring. Infact S has two
subset rings M; = {{0}, {1}, {2}, {3}, {4}} < S and M, = {{a} |
a € C(Zs5)} < S are subset rings. Hence the claim.

Thus we see subset semiring constructed using subsets of a
ring are defined as super Smarandache subset semiring.

Now we give some more examples of substructures in
subset semirings of type I.

Example 2.23: Let

S ={Collection of all subsets from the ring Z} be the subset
semiring of the ring Z. P, = {Collection of all subsets from the
subring 2Z = {0+ 2, ..., 2n ...}} < S is a subset subsemiring
and also a subset semiring ideal of the semiring S.

Infact S has infinite number of subset subsemirings which
are subset semiring ideals.

For P, = {Collection of all subsets from the subring
nZ=1{0,+tn,%2n, ...} cZ} < Sis a subset subsemiring which
is a subset semiring ideal of S for everyn;n € Z"\ {1}.

Example 2.24: Let

S = {Collection of all subsets from the ring R the field of reals}
be the subset semiring of R. R has infinite number of subset
subsemirings.
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Take P, = {Collection of all subsets from the subring
nZcR,nZcR ne Z+} c S be the subset subsemiring of S.
P, is not a subset semiring ideal of S.

Pq = {Collection of all subsets from the subring Q c R} = S
is the subset subsemiring of S. Pq is a not a subset semiring
ideal only a subset subsemiring of S.

Thus S has infinite number of subset subsemirings which
are not subset semiring ideals.

Take M = {{a} | a € R} {0}}; the collection of subset
singleton sets from R, denote by M.

M= {My, {0}} < S is a subset subsemiring which is also a
subset semiring ideal of S.

Example 2.25: Let
S = {Collection of all subsets from the ring (R U I)} be the
subset neutrosophic semiring.

S has subset subsemirings which are not subset semiring
ideals of S for take P = {All subsets from the ring (Z U I)} < S,
a subset subsemiring which is not a subset semiring ideal of S.

L = {All subsets from the ring Z} < P < S is a subset
subsemiring of S which is not a subset semiring ideal of S.

Let
T = {Collection of all subsets from the ring (Q U I)} < S be the
subset subsemiring which is not a subset semiring ideal of S.

Take
V = {Collection of all subsets from the ring Q c (R U )} = S

be the subset subsemiring of S which is not a subset semiring
ideal of S.
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Example 2.26: Let

S = {Collection of all subsets from the ring (C U I)} be the
subset semiring. S has many subset subsemirings which are not
subset semiring ideals.

Take
L = {Collection of all subsets from the subring Z < (C U I)} be

the subset subsemiring of S which is not a subset semiring ideal
of S.

T = {Collection of all subsets of the subring (Z U I) < (C U I)}
< S is again a subset subsemiring of S which is not a subset
semiring ideal of S.

W = {Collection of all subsets from the subring C < (C U I)} <
S be the subset subsemiring of S which is not a subset semiring
ideal of S.

We can have infinite number of subset subsemirings which
are not subset semiring ideals of S.

Example 2.27: Let

S = {Collection of all subsets from the ring Z;s} be the subset
semiring of the ring Z;5. Take P; = {Collection of all subsets
from the subring M = {0, 5, 10} < Z;s} < S be the subset
subsemiring which is also a subset semiring ideal of S.

P, = {Collection of all subsets from the subring
N=1{0,3,6,9, 12} < Z;s} < S be the subset subsemiring of S.
P, is also subset semiring ideal of S.

Let Ty = {{0}, {1}, {2}, {3}, {4}, {5}, {6}, ..., {14}} =S
is a subset subsemiring of S which is not a subset semiring ideal

of S.

T, = {{0}, {5}, {10}} < S is a subset subsemiring which is
not a subset semiring ideal of S.
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T; = {{0}, {3}, {6}, {9}, {12}} < S is subset subsemiring
of S which is not a subset semiring ideal of S.

Infact S has both subset subsemirings which are not subset
semiring ideals as well as S has subset semiring ideals.

Example 2.28: Let

S = {Collection of all subsets of the ring Z,,} be the subset
semiring. P; = {Collection of all subsets from the subring
M;=1{0,2,4,6,8, ...,22} < Z,,} < S is the subset subsemiring
which is a subset semiring ideal of S.

P, = {Collection of all subsets of the subring M, = {0, 4, 8,
12, 16, 20} < Z,4} < S is again a subset subsemiring which is
also a subset semiring ideal of S.

P; = {Collection of all subsets of the subring M; = {0, 8§,
16} < Zx} < S is again a subset subsemiring which a subset
semiring ideal of S.

P, = {Collection of all subsets of the subring M, = {0, 1, 2}
c Zo4} < S is again subset subsemiring which is also a subset
semiring ideal of S.

Ps = {Collection of all subsets of the subring Ms = {0, 6, 12,
18} < Z,4} < S is again a subset subsemiring which is also a
subset semiring ideal of S.

P = {Collection of all subsets of the subring Mg = {0, 3, 6,
9, 12, 15, 18, 21} < Zy} < S is again a subset subsemiring
which is also a subset semiring ideal of S.

We have 6 subset subsemirings of S which are subset
semiring ideals of S.

Related with these six subset subsemirings Py, P, ..., Ps, we
construct Vi, V,, ..., Vg where V| = {{0}, {2}, {4}, {6}, ...,
{22}} < S is a subset subsemiring of S. This is not a subset
semiring ideal of S.
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Take A=1{3,5,7,1,6} € S. Ax {4} ={12,20,28, 4,24}
¢ V1 so V is not a subset semiring ideal of S.

If we take V, = {{0}, {4}, {8}, {12}, {16}, {20}} = S, we
see V, is only a subset subsemiring and is not a subset semiring
ideal of S.

V; = {{0}, {8}, {16}} < S where V; is only a subset
subsemiring and is not a subset semiring ideal of S.

Thus S has subset semiring ideal and subset subsemirings
which are not subset semiring ideals of S.

We will give one more examples before we enunciate a
result.

Example 2.29: Let
S = {Collection of all subsets from the ring Z,,} be the subset
semiring of Zy.

Consider P; = {Collection of all subsets from the subring
M, =1{0,2,4,6, ..., 18} < Zy} < S; P, is a subset subsemiring
as well as subset semiring ideal of S.

P, = {Collection of all subsets of the subring M, = {0, 4, 8,
12, 16}} < S, P, is a subset subsemiring which is a subset
semiring ideal of S.

P; = {Collection of all subsets from the subring M3 = {0, 5,
10, 15} < Z,5} < S is again a subset subsemiring which is a
subset semiring ideal of S.

P, = {Collection of all subsets form the subring
M, = {0, 10} < Zyy} < S is again a subset subsemiring of S
which is also a subset semiring ideal of S.

Also N; = {{0}, {10}} < S is only subset subsemiring
which is not a subset semiring ideal of S.
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N, = {{0}, {5}, {10}, {15}} < S is again a subset
subsemiring which is not a subset semiring ideal of S.

W = {{0}, {4}, {8}, {12}, {16}} < S is also a subset
subsemiring which is not a subset semiring ideal of S.

Thus in view of all these we have the following theorem.

THEOREM 4.2: Let
S = {Collection of all subsets from the ring R} be the subset
semiring of type 1.

(i) S has atleast as many subset subsemirings (ideals) as
subrings (ideals) of R.

(ii) S has atleast same number of subset subsemirings
which are not subset semiring ideals as mentioned

in (i).

Proof: If R the ring over which the subset semiring S is built
and if R has n ideals then we see S has n number of subset
semiring ideals for if I is an ideal of R take

P = {Collection of all subsets from I} < S is again a subset
subsemiring of S which is also a subset semiring ideal of S.

If we take I = {0, aj, ..., a,} < R is the elements of I then
take V = {{0}, {a}, ..., {am}} < S. It is easily verified V is a
subset subsemiring of S but is not a subset semiring ideal of S
for if we take A = {sy, ..., st | s; € R} then A x {a} # {a;} in
general for any i as A x {a;} has more elements in general. So
V can only be a subset subsemiring of S.

Hence the claim.
Example 2.30: Let

S = {Collection of all subsets from the ring Z¢} be the subset
semiring of type I. P; = {Collection of all subsets from the
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subring / ideal M; = {0, 3} < Z¢} < S is again a subset
subsemiring which is also a subset semiring ideal of S.

P, = {Collection of all subsets from the subring / ideal M, =
{0, 2, 4} < Z¢} < S is again a subset subsemiring as well as
subset semiring ideal of S.

Take N; = {{0}, {3}} < S, N, is only a subset subsemiring
and is not a subset semiring ideal of S forif A= {1,2} € S

Ax {3}={1,2} x {3}
= 13,6}
= {O, 3} & Nl.

Hence the claim.

Take N, = {{0}, {2}, {4}} < S; N, is only a subset
subsemiring and not a subset semiring ideal of S.

Forif A= {1,5} € S.

Ax{4}={1,5} x4
= {4, 20}
={4,2} ¢ N,.

So N, is only a subset subsemiring and not a subset
semiring ideal of S.

N; = {{0}, {1}, {2}, {3}, {4}, {5}} = S. Nsis only a
subset subsemiring of S and not a semiring ideal of S.

Inview of all these we have the following theorem.

THEOREM 2.3: Let
S = {Collection of all subsets of a ring R} be the subset semiring
of the ring R. S has subset subsemirings which are not subset
semiring ideals of S.
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Proof: Follows from the simple fact if M = {{a} | a € R}
(Collection of all singleton sets of R) then M < S is only a
subset subsemiring which is not a subset semiring ideal of S.
Now we proceed onto study more about non commutative
rings and their related subset semirings which are non
commutative.
Example 2.31: Let
S = {Collection of all subsets from the group ring Z,S;} be the
subset semiring.
S is a subset semiring which is non commutative.

However S has subset subsemirings which are commutative.

P, = {Collection of all subsets from the groupring Z,T,

where
1 2 3)(1 2 3\)(1 2 3
T, = , , cS
1 2 312 3 1)\3 1 2

is a subset subsemiring of S which is commutative subset
subsemiring.

P, = {Collection of all subsets from the group ring Z,T,

where
1 2 3)(1 2 3
T, = 5 cS
{[1 2 3] [1 3 2]}}

is again a subset subsemiring of S which is a commutative
subset subsemiring of S.

1 2 3)(1 2 3
Take A = , and
{(2 3 1] [1 3 Zj}
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1 2 3 1 2 3 1 2 3
B={1+ - - eS.
1 3 2 31 2 2 3 1
We find

{[1 2 3} (1 2 3}} (1 2 3)
AxB= , x {1+ +
2 3 101 3 2 1 3 2

I
/_/_\
TN
o =
[SSIN )
— W
N
X
TN
P—
J’_
TN
e
[SSIEN o)
N W
~—
+

VR
[\
w N
—_ W
N—
N—
(——;

12 3) (1 23
= + +
{(231]321]

12 3) (123
+ +
(132}123]
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1 2 3 N 1 2 3
3 21 21 3
We now find

S NN
Ganezy
o Gl N
!
DY)
(2
- D603
(30030033
R R

BxA



Subset Semirings of Type I | 35

Clearly I and II are distinct so A x B # B x A; hence S is a
non commutative subset semiring of finite order.

Example 2.32: Let

S = {Collection of all subsets from the group ring ZS;} be
subset semiring of ZS;, S is a non commutative subset semiring
of infinite order.

S has several infinite order subset subsemirings both
commutative and non commutative.

However S has subset zero divisors for take A = {I1 — g;}
and B= {l + g} € S.

Wesee AxB={1-g} x{l+g}

wh 1 2 3
where g1 =
8711 3 2

={(1-g)d+g)}
={l-gi+tg—g}
—(1-1} = {0}.

Take A={l+g +g+g+gtg}andB={1-g} €S,

. 12 3 1 2 3 1 2 3
whnere g1 = , & = , 23 = 5
2 1328 |32 )8 2 1 3

12 3) 1 2 3 -
= and gs = arce 1 d>s3.
871, 3 EB703 | o) ¥em™

AxB

={l+tgtgmtgtate)x{l-g}
={l+tgtemtgtatgx(l-g)}
=§1+g1+g2+g3+g4+g57g1717g47g57g27g3}
= {0},
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hence again a subset zero divisor of S.

Thus non commutative subset semiring S of ZS; has subset
zero divisors.

However S has no subset idempotents.

Example 2.33: Let

S = {Collection of all subsets from the groupring QS;} be the
subset semiring of the group ring QS; which is non
commutative and of infinite order.

This has both subset zero divisors as well as subset
idempotents.

Fortake A = {1 (1 +g))| 123}8
T 1a =1 = [SEVE
ortake o U TEUIBIT 3,

A xA ={%(1+gl)}x{%(1+g1)}
={l(l+g1)><l(1+g1)}
2 2
1 2
={Z(1+g1)}
1 >
:{Z (1+ gy +2g)}
1
={Z (1+1+2g)}

={% (1+g)}=AeS.

Thus A is a subset idempotent of S.
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AlsoB={% (1+g4+gs)} € Sissuchthat Bx B=BsoB

is also a subset idempotent of S.

1 .
NowC={g (1+g +g +g3+gs+gs)} €8S is such that

C x C=Cso Cis also a subset idempotent of S.
Infact S has also subset zero divisors.

Example 2.34: Let

S = {Collection of all subsets from the groupring RS;} be the
subset semiring of RS;. S is non commutative and has both
subset zero divisors and subset units.

S has subset subsemirings and which are not subset
semiring ideals.

For consider
P = {Collection of all subsets from the subring QS;} = S; Pisa
subset subsemiring which is not a subset semiring ideal of S.

Infact S has infinite number of subset subsemirings which
are not subset semiring ideals of S.

Example 2.35: Let S = {Collection of all subsets from M =
{3 x 3 matrices with entries from Z;,}} be the subset semiring
of the ring M.

Clearly S is a non commutative matrix subset semiring of
finite order. S has both subset zero divisors, subset idempotents
and subset subsemirings.

Example 2.36: Let S = {Collection of all subsets from the
matrix ring M = {(a;, a,, a3, a4) | 8, € Zy5, 1 <1< 4}} be the
subset semiring of Z;s of finite order which is commutative.
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S has subset zero divisors and subset idempotents.

Take A = {(0, 2, 4, 5), (0, 0, 7, 2), (0, 1, 2, 0), (0, 5, 0, 1)}
and B = {(7,0, 0, 0), (8, 0, 0, 0), (5,0, 0, 0) (1, 0, 0, 0)} be in S.

We see

={(0,0,0,0)} €S.
Thus S has several subset zero divisors.
S has subset idempotents. Fortake A;={(0101)} € S.
ArxA={0101)} =A,.
A, ={(10, 1, 10, 0)} € S is such that A, x A, = A, and so

on.

Example 2.37: Let

P= as aiezlz,lﬁiSS}
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be the ring of column matrices under natural product x,. Pisa
commutative finite ring.

Let S = {Collection of all subsets of P} be the subset
semiring of the ring P. S has subset idempotents and subset zero
divisors.

Let A= and B = e S.

O = O W
~N DN D = D
N W= O N
S W NN NN

3115 214
01 015
We find A + B = 1121 +<111,2
2115 3113
4117 7110

3 2113 4115 2115 4
0 0110 5011 0111 5
=+ 1L [+ 202+ 1],|2]+]|2
2 3112 3115 3115 3
141 |7]14] [O]|7] |L7]L7) O]
(5 1[7117][9]
01|5]|1]]|6
=412 10,/3,|31,/4
5115|818
(11 [4](2]]7]
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This is the way the operation of + is performed on S.

Now we find

3115 214
0|1 0[5
AxB=<[1[]2]r xa3|1],]2
2015 3113
14]|7] 1 7110]
(31 [2]1[3] [4][5] [2][5] [4]
0 00 5011 01 5
=L T (2] 2%, [1[,|2]x,]|2
2 3112 3115 3115 3
4] |7]14] [0)|7] [7]17]) (O]
[6][0][10][8]
0[[0]]0O]||5
=41 1,02, 21,|4]|} €8S.
6(16]|3]|3
14]110]] 1[0}

This is the way natural product is defined on S.

We see S is a finite commutative subset semiring. S has
subset zero divisors and subset idempotents.
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0
6
Fortake A=<|0|; € S.
6
_6_
o0
0
Wesee Ax, A=<|0
0
_0_
So A is a subset zero divisor.
o] 6]
4 6
LetA=<|2|r andB={|6|; bein S.
0 3
_O_ _3_
We see A x, B= is again a subset zero divisor in S.

S O o o O
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Take M =

o O b~ O b

eS. WeseeM x, M =

o O b~ O b

€ S;

M is a subset idempotent of S. S has subset nilpotent,
subset zero divisors and subset idempotents.

Infact S has subset subsemirings and subset semiring ideals.

For take P, =

a; € Z1,} be the matrix subring.

Let T, = {Collection of all subsets from the matrix subring
Py of P} < S, T, is a subset subsemiring of S which is also a
subset semiring ideal of S.

LetP2= 0

a; € Z»} be the matrix subring of P.

T, = {Collection of all subsets of the matrix subring P,} < S
is also a subset subsemiring as well as subset semiring ideal of

S.

Let M = {Collection of all subsets of the matrix ring
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P, ai€{2,0,4,6,8, 100 cZp 1<i<5} S

I
o
w

is again a subset subsemiring which is also a subset semiring
ideal of S.

Example 2.38: Let S = {Collection of all subsets from the
matrix ring

M= >0 T Pl a e Zg, 1 <i<16})

be the subset semiring of the ring M.

S has subset zero divisors, subset units and subset
idempotents.

S is of finite order, commutative under natural product x,
and non commutative under usual product x.

We see in both cases it has subset subsemirings and subset
semiring ideals.

Take V; = {Collection of all subsets from the matrix ring

a, 0 0 0
T, = 0000 ai € Zig}}

0O 0 0 O

0 0 0 O
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be the subset subsemiring of the subring T;.

V, is also a subset semiring ideal of S.

Likewise V; = {Collection of all subsets from

aeZigf =M} cS

o o o

oS o o O
S O O O
S O O O

is again both a subset subsemiring as well as subset semiring
ideal of S.

We can have several such subset subsemirings and subset
semiring ideals.

Example 2.39: Let S = {Collection of all subsets from the
matrix ring

CENN

M= ST aez,1<i<30})

a28 a29 a30

be the subset semiring under natural product x, of matrices.

S is of infinite order S has subset zero divisors and subset
idempotents.

Infact S has infinite number of subset subsemirings and
subset semiring ideals.

Example 2.40: Let S = {Collection of all subsets from the
matrix ring
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a’l a16
M= a7, . Ay a; € Z420, 1<i< 48}}
a33 a48

be the subset semiring.

S is of finite order, has subset zero divisors, subset
idempotents, subset units, subset subsemirings and subset
semiring ideals.

Example 2.41: Let
S = {Collection of all subsets from the semigroup ring Z,,S(3)}
be the subset semiring.

S has subset subsemirings. S has subset semiring ideals and
subset subsemirings.

Infact S is of finite order with subset zero divisors, subset
units and subset idempotents. S is non commutative.

Example 2.42: Let S = {Collection of all subsets from the
semigroup ring ZS(7), S(7) the symmetric semigroup} be the
subset semiring.

S is an infinite non commutative subset semiring. S has

subset subsemirings, subset semiring ideals, subset zero divisors
has subset idempotents also.

) 1 23 45 6 7
Forif A = e S.
1 111111

We see
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1 23 4 5 6 7
AxA= X
1 111111
1 23 4 5 6 7
1 111111

1 23 456 7
= = A.
11111 11
Thus S has subset idempotents.

We can say if the semigroup over which the ring, the
semigroup ring is taken is such that the semigroup has non
trivial idempotents then the subset semiring has idempotents.

In view of this we have the following theorem.

THEOREM 2.4: Let S = {Collection of all subsets of the
semigroup ring ZP of the semigroup P over the ring of integers
Z where P is a semigroup with idempotents! be the subset
semiring. Then S has non trivial subset idempotents.

Note if P is a group then S has no subset idempotents only
subset units.

Also if P has no idempotents then S has no subset
idempotents.

Finally if P is a semigroup such that for alla € P. a2’ =a
and a.b=0if a # b for every a, b € P then we see S has several
subset idempotents which are not singletons.

The proof is direct and hence left as an exercise to the
reader.
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Example 2.43: Let S = {Collection of all subsets from the
semigroup ring ZP where P is a semigroup P = {Z,,, x}} be the
subset semiring.

S has subset idempotents and subset zero divisors.

For take A; = {4}, A, = {9} € S we see
Al x A =4} x {4} ={4 x4} = {16} = {4} = A,.
Ay x Ay =1{9} x {9} ={9x9}={81} ={9} =A,.

Also A; = {1, 9} e S is such that
A;xA;={1,9} x {1,9} = {1,9} = A;.

A4=1{0, 1,9} e Sissuch that
AyxAy=1{0,1,9} x {0, 1,9} = A,.

Thus we A, A,, Az and A4 in S are such that Af = A, for

1 £i<4. Hence A, Ay, Az and A, in S are subset idempotents
of S.

Take As=1{0,1,9,4} € S.

L4} x {0, 1,9, 4}
41 =As

is again a subset idempotent of S.

Let A={6} and B={4,2,8} e Swesee AxB={0}isa
subset zero divisor of S.

Example 2.44: Let

S = {Collection of all subsets from the semigroupring RS(10)}
be the subset semiring of infinite order which is non
commutative S has subset idempotents.

S has subset zero divisors. S has subset semiring ideals as
well as subset subsemirings.
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Example 2.45: Let

S = {Collection of all subsets of the ring ZsS(3) x Z,D,;} be the
subset semiring of finite order. S is non commutative and has
subset zero divisors and subset units.

For take
A={(a,0)|aeZsS3)} and B={(0,b)| b € Z,Dy;} € S.

We see
A xB=1{(a,0)x(0,b)|ae Zs(S3)) and b € Z,D,;} = {(0,0)}.

Hence S has subset zero divisors.

S (n

We see A x A = {(1, 1)} is a subset unit of S. So A is a
subset unit of S.

Example 2.46: Let

S = {Collection of all subsets from the ring Zs x Zo x Z;} be
the subset semiring. S has subset zero divisors, subset
idempotents and so on.

Let
A={(@a,0,0)|ae Zs} and B={(0,b,c)|b e Zy,c € Z;} €8S.
We see A x B={(0, 0, 0)} is a subset zero divisor of S.

Let A= {(0,5,0)} € S; Ax A= {0, 5,0)} = A is a subset
idempotent of S.

Also B = {(1, 5, 1)} € S is also a subset idempotent of S.
D= {(0, 5, 1)} € Sis also a subset idempotent of S.

Example 2.47: Let
S = {Collection of all subsets from the ring R = Z x Z;5 x Z;5}
be the subset semiring. S has subset zero divisors, subset
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idempotents and subset units. S has also subset subsemirings
which are subset semiring ideals.

Take P, = {(a, 0,0) | a € Z} < S we see P, is only a subset
subsemiring but P; is not a subset semiring ideal of S.

For if we take
A=1{(528,9),(11,2,0),(4,7,0),(-11,8,0)} in S and
B={(4,0,0)} € P,.

We find

AxB ={(528,9),(11,2,0),(4,70),(-11,8,0)} x
(4,0, 0);

={(20, 0, 0), (4,4, 0, 0), (16, 0, 0), (44,0, 0)} € S but
{(20, 0, 0), (44, 0, 0), (16, 0, 0), (-44, 0, 0)} ¢ P, hence P, is
only a subset subsemiring and not a subset semiring ideal of S.

Let P, = {(0, a, 0) | a € Zjs} < S be the collection of all
subset subsemiring of S. P, is only subset subsemiring but is
not a subset semiring ideal of S.

P;={(0,0,a) |a € Z;5} < S be the subset subsemiring of S.
Clearly P; is not a subset semiring ideal of S. Thus S has subset
subsemirings which are not subset semiring ideals of S.

We now give examples of subsemirings ideals of S.

Take V; = {Collection of all subsets from the subring
T, ={Z x {0} x {0}} = S; V is a subset semiring ideal of S.

We see V, = {Collection of all subsets from the subring
T, ={nZ x {0} x {0}}} (2 <n <o) be subset semiring ideals of
S.

We have an infinite collection of such subset semiring
ideals.
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V; = {Collection of all subsets from the subring;
T; = {0} x Z1s x {0}}} be the subset semiring ideal of S.

V4 = {Collection of all subsets from the subring
Ty =({Z} x {0} x Z1s5) € {Z x Z16 x Z15}} < S; be the subset
semiring ideal of S.

S has subset idempotents for A = {(1, 1, 10)} € S is such
that

AxA ={(1,1,10)} x {(1, 1, 10)}
=1{(1,1,10) x (1, 1, 10)}
={(1, 1, 10)} = A so A is a subset idempotent of S.

B ={(0,1,10)} e Sis also a subset idempotent of S.

Example 2.48: Let

S = {Collection of all subsets from the ring P =R x Z;q x Z} be
the subset semiring. S has several subset subsemirings which
are not subset semiring ideals of S.

M, = {Collection of all subsets from the subring
T, = {3Z x Zjp x Z} < P} be the subset subsemiring of S.

Clearly M; is not a subset semiring ideal.

Take M, = {Collection of all subsets from the subring
T, ={5Z x Zyy x Z} < P} be the subset subsemiring of S.

Clearly M, is not a subset semiring ideal of S.
Let M; = {Collection of all subsets from the subring
T;=(16Z x Z1o x Z) < P} < S is only a subset subsemiring of S

which is not a subset semiring ideal of S.

We have infinite number of subset subsemirings in S which
are not subset semiring ideals of S.

Infact S has also subset semiring ideals for take
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W; = {Collection of all subsets from the subring
L; =R x {0} x {0} < P} < S is the subset subsemiring which
are also subset semiring ideals of S.

Let W, = {Collection of all subsets from the subring
L, =R x Zs x {0} = P} < S be the subset subsemiring which is
also a subset semiring ideal of S.

Let W; = {Collection of all subsets from the subring
L; = {R x {0} x 3Z} < S} be the subset subsemiring which is
also a subset semiring ideal of S.

Infact S has infinite number of subset subsemirings which
are subset semiring ideals of S.

Infact S has infinite number of subset zero divisors but only
a finite number of subset idempotents.

Example 2.49: Let
S = {Collection of all subsets from the ring R =Z;; x Z19 X Zy3}
be the subset semiring of finite order.

S has subset subsemirings which are subset ideals however
S has no subset subsemiring which is not a subset semiring

1deal.

However S has subset zero divisors and also subset
idempotents.

Example 2.50: Let

S = {Collection of all subsets from the ring Z x Z, x Z;} be the
subset semiring. This has only the following subset zero
divisors.

A = {(a, 0, 0)} and B = {(0, a, b)} in S are such that
A xB={(0,0,0)}. However number of subset zero divisors is
infinite in number.
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The subset idempotents are A; = {(1, 0, 0)}, A, = {(0, 1,
0)}, As = {(0, 0, )}, Ay = {(1, 1, 0)}, As = {(1, 0, 1)} and
A= {(0, 1, 1)} are the non trivial subset idempotents of S.

We see {(0, 0, 0)} and {(1, 1, 1)} are trivial subset
idempotents of S.

Thus S has only finite number of subset idempotents. Also
S has only finite number of subset units given by
By = {(1, 1, 2)} and B, = {(1, 1, 4)} € S is such that
By xBy={(1,1,2)} x {(1,1,4)} = {(1, 1, 1)} is a subset unit of
S.

B; = {(1, 1, 3)} and B4, = {(1, 1, 5)} in S is such that
B; x Bs={(1, 1, 3)} x {(1, 1, 5)} = {(1, 1, 1)} is subset unit of
S.

Bs = {(1, 1, 6)} € S is such that Bs x Bs = {(1, 1, 6)} x
{(1, 1, 6)} = {(1, 1, 1)} is a subset unit of S. We have only 3
subset units in S though S is of infinite order.

Example 2.51: Let

S = {Collection of all subsets of the ring R = Q x Z, x Z;} be
the subset semiring. S has infinite number of subset units and
finite number of subset idempotents and subset zero divisors.

However S has only finite number of subset semiring ideals
but S has infinite number of subset subsemirings.

Example 2.52: Let

S = {Collection of all subsets from the ring R = ZS; x Z,S,; x
Z;Ss} be the subset semiring. S is non commutative has subset
zero divisors and has infinite number of subset subsemiring
which are not subset semiring ideals.

Now we give examples of infinite polynomial subset
semirings of rings.
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Example 2.53: Let

S = {Collection of all subsets from the polynomial ring Z[x]} be
the subset semiring. S has no subset zero divisors and subset
idempotents. However S has infinite number of subset
subsemirings and subset semiring ideals.

Example 2.54: Let

S = {Collection of all subsets of the ring Z,[x]} be the subset
semiring. S has subset zero divisors, subset units and subset
idempotents all of which are finite in number. S has also subset
semiring ideals as well as subset subsemirings.

Example 2.55: Let

S = {Collection of all subsets from the polynomial ring Z9[x]}
be the subset semiring. S has no subset idempotents, no subset
zero divisors. But S has infinite number of subset subsemiring
which are not subset semiring ideals.

Example 2.56: Let
S = {Collection of all subset of the ring (Z, x Zs x Z1,)[x]} be
the subset semiring.

S has subset zero divisors. S has subset idempotents and
subset units. S has infinite number of subset subsemiring and
subset semiring ideals of finite number.

Now having seen examples of subsets of rings of all types
we now proceed onto define subset interval semirings of type I
and study them.

DEFINITION 2.2: Let S = {Collection of all subsets from the
interval ring; M = {[a, b] | a, b € R; R a ring}}. S under the
operations of R is a subset interval semiring defined as the
subset semiring of type 1.

We will first illustrate this situation by some examples.
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Example 2.57: Let S = {Collection of all subsets from the
interval ring M = {[a, b] | a, b € Z3}} be the subset interval
semiring of type I. S is of finite order and is commutative.

Example 2.58: Let S = {Collection of all subsets from the
interval ring M = {[a, b] | a, b € Z,}} be the subset semiring. S
is of finite order but S has subset zero divisors and subset
idempotents.

Let A= {[6,0]} € S. A= {[6, 0]} x {[6, 0]} = {[0, O]} so
A is a subset zero divisor of S.

Let B = {[0, 4]} € S we see
B? = {[0, 4]} x {[0, 4]} = {[0, 4]} = B is a subset idempotent of
S.

Take D = {[4, 0]} € S; we see
D x D = {[4, 0]} x {[4, 0]} = {[4, 0]} = D is a subset
idempotent of S.

Take E = {[4, 4]} € S; we see E x E = E so E is a subset
idempotent of S.

Also N; = {[0, 9]}, N, = {[9, 0]}, N5 = {[9, 9]} in S are all
subset idempotents of S. Further N; = {[4, 9]}, N, = {[9, 4]},
N; = {[0, 4], [4, 4], [4, 0], [0, O}, Na = {[0, 0], [9, 9], [9, 0],
[0, 91}, Ns = {[0, 0], [4, 9], [9, 4], [0, 9], [0, 4], [4, 0], [9, O],
[9, 9], [4, 4]} € S are all subset idempotents of S.

Thus interval subset semiring has subset idempotents and
subset zero divisors. Let V| = {Collection of all subsets from
the interval ring

W;={[a,b]|a,be {0,2,4,6,8, 10} < Z,}} < S be the
interval subset semiring. V; is a subset interval subsemiring of
S. 'V, also has subset interval subsemiring, subset interval
idempotents and subset interval zero divisors. V; is also a
subset interval semiring ideal of S.
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Example 2.59: Let S = {Collection of all subsets from the
interval ring M = {[a, b] | a, b € C(Z,5)}} be the subset interval
semiring.

S has subset subsemiring. T = {Collection of all subsets
from the interval subring N = {[a, b] |a, b € {0, 2,4, 6, ..., 24,
26} < C(Zg)} < M} < S, is the subset interval subsemiring and
T is also a subset semiring ideal of S.

Take W; = {Collection of all subsets from the interval
subring L, = {[a, 0] | a € C(Zy3)} < M} < S is again a subset
interval subsemiring as well as subset semiring ideal of S.

W, = {Collection of all subsets from the interval subring
L, = {[0, a] | a € C(Zx3)} < M} < S be the subset interval
subsemiring as well as subset interval semiring ideal of S.

We see W; and W, are isomorphic as subset interval
subsemirings.

Example 2.60: Let S = {Collection of all subsets from the
interval ring M = {[a, b] | a, b € Z(g;, g) where g’ = 0,
g =g, 2% = 2g = 0} be the subset interval semiring of
infinite order.

Clearly S has interval subset zero divisors, interval subset
idempotents, interval subset subsemirings and interval subset
semiring ideals.

Example 2.61: Let S = {collection of all subsets from the
interval ring M = {[a, b] | a, b € Zg(g), where g° = 0}} be the
subset interval semiring.

Take A = {[2, 41, [6, 01, [4, 4], [6, 2]} and
_{[452] [ :0]’[ [ .

AxB = {[2,4],[6,0],[4,4][6,2]} x {[4,2],[4,0],
[6, 2], [4, 4]}
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=1

= {[2,4] x[4, 2], [2, 4] x[4, 0], [2, 4] x [6, 2],
[2, 4] x [4, 4], [6, 0] x [4, 2], [6, O] x [4, 0],
[6,0] x [6, 2], [6,0] x[4,4],[4,4] x[4, 2],
[4, 4] x [4, 0], [4, 4] x [6, 2], [4, 4] < [4, 4],
[6, 2] x [4, 2], [6, 2] x [4, 0], [6, 2] x [6, 2],
[6,2] x [4, 4]}

[\S]

= {[0, 0], [4, 0], ]0, 4], [4, 4]} € S.
Now

A+B

{[2. 4], [6, 0], [4, 4], [6, 2]} + {[4, 2], [4, 0],
[6, 2], [4, 4]}

= {[2,4]+4,2],[2,4]+[4,0],[2,4] +[6, 2],
[2,4]+[4, 4], [6,0]+][4,2],[6,0] +[4,0],
[6,0]+[6,2],[6,0] +[4,4],[4,4]+ [4,2],
[4,4]+[4, 0], [4, 4] + [6, 2], [4, 4] +[4, 4],
[6,2]+ [4,2],]6,2]+[4,0],]6,2]+][6,2],
[6,2]+ [4, 4]}

= {16, 6],[6,4], [0, 6], [6, 01, [2, 2], [2, 0], [4, 2],
[2, 4], [0, 4], [2, 6], [0, 0], [4, 4]} € S.

This is the way operations on S are performed. However S
is of finite order.

Example 2.62: Let S = {Collection of all subsets from the
interval ring M = {[a, b] | a, b € Q}} be the interval subset
semiring of M. S is of infinite order. S has subset interval units
but no subset interval idempotents.

S has trivial subset interval idempotents like A; = {[0,0]},
Ay = {[L1]}, As = {[0,0], [L,1]}, Ay = {[0,1]}, As = {[1,0]},
As = {[0,0], [1,0]}, A7 = {[0,0], [0,1]}, As = {[0,0], [1,0], [0,1]}
and Ay = {[0,0], [1,1], [0,1], [1,0]}.
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S has subset interval zero divisors. S has also subset
interval subsemirings which are subset interval semiring ideals
as well as subset interval subsemirings which are not subset
interval semiring ideals.

Take P = {Collection of all subsets from the subset interval
subring N = {[a, b] | a, b € Z} < M} < S be the subset interval
subsemiring of S. Clearly P is not a subset interval semiring
ideal of S.

Further T = {Collection of all subsets from the interval
subring L = {[a, 0] |a € Q} < M} < S is again a subset interval
subsemiring which is also a subset interval semiring ideal of S.

Take B = {[5, 0], [7/3, 0], [8, 0], [-7, 0]} and A = {[0, 5],
[0, 11] [0, 17/5], [0, 5/3],[0,—10]} in S, we see A x B = {[0, 0]}
infact S has infinite number of interval subset zero divisors.
Likewise let A = {[7, 2]} and B = {[1/7, 1/2]} € S, we see
A x B = {[1, 1]} is the subset interval unit in S.

S has infinite number of subset unit intervals, however the
cardinality of all the sets which contribute to subset interval
units are only singleton sets.

A = {[3/2, 9/17]} and B = {[2/3, 17/9]} e S is such that
A x B={[3/2, 9/17]} x {[2/3, 17/9]} = {[1, 1]}.

Example 2.63: Let S = {Collection of all subsets from the
interval subring M = {[a, b] | a, b € Zs x Z,} = {[(a}, &), (by,
by)] | a1, by € Zs and a,, b, € Zj;}} be the subset interval
semiring of M. S has subset interval zero divisors and subset
interval units. S is of finite order.

The operations of S are performed in this way.

If A ={[G,0), (2, 0)], [(2, 0), (4, 0)], [(0, 0), (1, 0)]} and
B = {[(0,7), (0, 2)], [(0, 9), (0, 0)], [(0, 6), (0, 5)]} € S.
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We find

A+B

{3, 0), (2, 0)], [(2, 0), (4, 0)], [(0, 0), (1, 0)]} +
{0, 7), (0, 2)], [0, 9), (0, 0)], [0, 6), (0, 5)]}

{3, 0), (2, 0)] +[(0, 7), (0, 2)], [(3, 0), (2, 0)]
+1(0,9), (0, 0)], [(3, 0), (2, 0)] + [(0, 6), (0, 5)],
[(2, 0), (4, 0)] + [(0, 7), (0, 2)], [(2, 0), (4, 0)] +
[0, 9), (0, 0)], [(2, 0), (4, 0)] +[(0, 6), (0, 5)],
[0, 0), (1, 0)] +[(0, 7), (0, 2)], [(0, 0), (1, 0)]
+1(0,9), (0, 0)], [(0, 0), (1, 0)] + [(0, 6),(0, 5)]}

{3, 7), (2,2)],[(3,9), (2, 0)] [3, 6), (2, 5)],
[(2,7), (4,2)], [(2,9), (4, 0)], [(2, 6), (4, 5)],
[0, 6), (1, 5)], [(0,9), (1, 0)], [(0, 7), (1, 3)]}

isin S.

This is the way operation + on S is performed.

In case of product in this case we see
A x B ={[(0, 0), (0, 0)]} that is a subset interval zero divisor.

Let A= {[(3,4),(2,5)],[(3,0),(3,7]} €S.

AxA =

This is the

{[3B.4), (2, 5] x[3,4), (2, 9], [3,4), (2,5)]
x[(3,0), 3, 7)1, [(3, 0), (3, D] x [(3, 0), 3, 7],
[(3,0), 3, DI < [B3, D), (2, H]}

{[(4,4), (4, D], [(4,0), (1, 1D)], [(4,0), (4, D]}
e S.

way product is performed on S. S has subset

interval subsemirings subset interval semiring ideals.

Example 2.64:
interval ring M
semiring of M.

Let S = {Collection of all subsets from the
= {[a,b] | a, b € Z;» S4}} be the subset interval
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Let

A={[5g +3g +1,6g;+ 8], [9g + 10, 11gy + 6g1n + 1]} €S
where S;={e=1,g,, 2, ..., 23}. AxA eS.

A+A ={[5g +3g+1,6g;+8],[9g3+10, 11gy +
6gip + 1} + {[Sg1 +3g + 1, 6g3 + 8],
[9g23 + 10, 11gy0 + 6g1, + 1]}

={[5g1 +3g+ 1,68 + 8]+ [5g +3g + 1,
6g; + 8], [Sg1 +3g + 1, 623 + 8] + [9gas + 10,
11ga0 + 6g12 + 1], [9g23 + 10, 11ga0 + 6g;2 + 1] +
[9g23 + 10, 11g20 + 6g12 + 1], [9g23 + 10, llgzo +
6giy + 1]+ [5g1 +3g, + 1, 6g3 + 8]}

= {[10g, + 6g, + 2, 4], [9g2 + 5g; + 32, + 5,
11gy + 6g3 + 6212 + 9], [6g23 + 8, 10g2 + 2]} € S.

This is the way operations are performed on S.
Example 2.65: Let S = {Collection of all subsets from the
interval ring M = {[a, b] | a, b € Z(S(3)), the semigroup ring of
the symmetric group S(3) over the ring Z}} be the subset

interval semiring.

We see for any

1 2 3 123
A={[3+5 +10 4+
2 1 3 32 1

(12 ﬂ [12 ﬂﬂ
B = {[9-2 543 €S
32 1 31 2
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Find
1 2 3 1 2 3
A+B = {[3+5 +10 4+
2 1 3 2

1 23 1
= {[12+5 +8
2 1 3 3
1 2 3 1 2 3 o
6 +3 isin S.
2 31 31 2

This is the way ‘+’ operation is performed on S.

NN
—_ W
N——
—
+

Now

1 23 1 2 3
AxB = {[3+5 +10 ,—4 +
2 13 321

(1 2 3}}} (1 2 3}
6 x {[9-2 5+
2 3 1 32 1
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1 2 3 1 2 3
([3+5 +10 4+
2 1 3 321
1 2 3 1 2 3
6 x [9-2 5+
2 3 1 32 1
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12 3 123

= {[7+84 - 10 +

321 2 31

123 12 3

45 ,—2+30 -

213 2 31
123
12 :
[312}”

This is the way the product operation x is performed on S.

S can have subset interval zero divisors, subset interval
units, subset interval subsemirings and subset interval semiring
ideals.
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o [

which is the interval subset unit of S.

We have only finite number of interval subset units.

1 2 3)(1 2 3
We call {[1, 1]} = {[1 ) J,[l ) 3}} as the

interval subset identity in S with respect to product. Likewise
{[0, 0]} € S is defined as the additive subset interval identity of
S.

We see for every A € S.

{[0,0]} + A=A+ {[0,0]} = A and
Ax {1, 1]} ={[1,1]} x A=Aforall A € S.

Now having seen examples of subset interval semirings of
interval rings commutative or otherwise proceed on to describe
more properties in case by using the basic interval ring as a non
commutative ring.

Example 2.66: Let S = {Collection of all subsets from the
interval group ring M = {[a, b] | a, b € Zy; D,y where
Dyo = {a, b |a’=b’ =1, bab = a}}} be the subset interval
semiring of M. Clearly S is a non commutative subset interval
semiring.

We can have subset interval right ideals in S which are not

subset interval left ideals of S. Also S have subset interval
semiring ideals.

If A= {[a, b]} and B= {[b, a]} € S.
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A xB ={[a,b]} x {[b, a]}
= {{[a, b] x [b, a]}

= {[ab, ba]} I

Consider

BxA ={[b,a]} x {[a, b]}

= {[b, a] x [a, b]}
= {[ba, ab]} II

Clearly I and II are distinctas A x B # B x A.
Thus S is non commutative subset interval semiring.
If A = {[a, b]} and B = {[a, b*]} € S we have
AxB = {[a,b]} x {[a, b}
= {[a, b] x [a, b°]}
={[a5 b} ={[1, 1]} asa’*=1and b’ = 1.
Let A= {[1,b°]} and B = {[1, b*]} € S; now
AxB={[1,b]} x {[1,b']} = {[1,b"]} = {[1, 1]}
(asb’=1)
Thus we have subset interval units in S.

Further if A = {[0, 1 + b*+ ab]} and
B = {[4 +ab +ab’, 0]} € S.

We get AxB = {[0,1+b>+ab]} x {[4+ab+ab, 0]}
= {[0 x 4 + ab + ab®, 1+b’+ab x 0]}
= {[0, 0}

1S a subset interval zero divisor of S.
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Example 2.67: Let S = {Collection of all subsets from the
interval ring M = {[a, b] | a, b € Z, S5} } be the subset interval
semiring. S has subset interval units, subset interval idempotents
and subset interval zero divisors. Further S has subset interval
subsemirings and subset interval semiring ideals.

Now having seen examples of all these we now proceed on
to describe interval matrix rings by some examples.

Example 2.68: Let S = {Collection of all subsets from the
interval ring M = {[a, b] | a, b € (Zs U I)}} be the subset
interval semiring. S has subset interval zero divisors.

S has subset interval units and S has subset interval
subsemirings and S has subset interval idempotents. S has
subset interval subsemirings that are subset interval semiring
ideals.

Now having seen examples of interval subset semirings of
interval rings; we now proceed onto describe subset interval
semirings of interval matrix rings.

Example 2.69: Let S = {Collection of all subsets from the
interval matrix ring M= {([al, bl], [az, bz], [33, b3], [34, b4]) | aj,
by € Z5; 1 £1<4}} be the subset interval matrix semiring of
the interval matrix ring M.

S has subset interval zero divisors, subset interval
idempotents, subset interval units, subset interval subsemirings
and subset interval semiring ideals.

Example 2.70: Let S = {Collection of all subsets from the
interval matrix ring M = {([a;, bi], [a2, b2]) | &, bi € Zg;
1 <1< 2}} be the subset interval matrix semiring.

Let A = {([2, 0], [0, 4]), ([4, 0], [1, 2])} and
B={(4,3],[1,5])} €S.
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Now

A+B ={([2,0]10,4]), (4, 0], [1, 2D} + {([4, 3], [1, 5])}
={([2, 0], [0, 4]) + ([4, 3], [1, 5]), ([4, 01, [1, 2]) +
(14,31, [1, 5]}
={(([0, 3], [1, 3D, (2, 3], [2, 1D} € S.

We find
AxB ={([2,0], [0, 4]), ([4, 01, [1, 2D} =x{([4, 3], [1, 5])}

= {([2, 0], [0, 4]) x ([4, 3], [1, 5]), ([4, 0, [1, 2]) x
(14,31, [1, 3D}

= {([2, 0] x [4, 3], [0, 4] x [1, 5]), ([4, 0] x [4, 3],
[1, 2] x [1, 5])}

={([2, 0], [0, 2]), ([4, 0], [1,4])} isin S.
This is the way operations on S is performed.
We see S has subset interval zero divisors.
Take A = {([3, 0], [0, 4])} and B = {[0, 5], [2, 0])} € S.
We see A x B = {([0, 0], [0, 0])} so A and B are subset
interval zero divisors. ([0, 0], [0, 0]) is defined as the subset

interval zero or subset interval additive identity.

Similarly ([1, 1], [1, 1]) in S is the multiplicative subset
interval identity of S.

For take A = {(([5, 1], [1, 5])} € S.

Further A x A = {([1, 1], [1, 1])}; thus A is a subset interval
unit of S.
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B ={(5, 5], [1, 1])} € S, we find B x B = {([1, 1], [1, 1])}
1s the subset interval unit of S.

Example 2.71: Let S = {Collection of all subsets from the
interval matrix ring

[a,,b,]
M= {|[a,,b,]|| a, bi € Z;, 1 <1<3}}
[a;,b,]

be the subset interval semiring of the interval matrix ring M.

We see S has subset interval zero divisors and subset
interval idempotents and so on.

[3,1] [5,1]
Take X = {|[1,2] |} and Y = {[[1,4]|} € S.
[6,1] [6,1]
[3.,1] [5,1]
Now X xY = {[[1,2] |} x 4|[1,4]
[6,1] [6,1]

13,111 [15.1]
= J/[1,2] |x| [1,4]
[6,11] [[6,1]
[1,1]

=J[L1]|} €8.

| [1,1]

Further X and Y are inverses of each other that is they are
subset interval units of S.
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(1,1]
[1,1] | is the subset interval unit of S.

(1.1]

We now give some subset interval zero divisors of S.

[3,0] [0,5]
Let A= <|[6,0] | and B=<|[0,1] |} € S.
[0,2] [6,0] |
[3,0] [10,5]
AxB =4[[6,0]|r x 4| [0,1]
[0,2] 1[6,0]
[13,01%[0,5]
= <] [6,0]x[0,1]
[0,2]x[6,0]
10,0]
= 1/10,0]
[0,0]
[0,0]
Thus S has subset interval zero divisors and 4| [0,0] | is the
[0,0]

subset interval zero of S.
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[3,4] [4,3]
Consider A= {|[0,5]|; and B=4|[0,2]|; € S.
[6,1] [1,6]
[3,4] [4,3] [0,0]
A+B=1<{[0,5]|r +</[0,2] |+ = <|[0,0]
[6,1] [1,6] [0,0]

Example 2.72: Let S = {Collection of all subsets from the
interval matrix ring

[al,bl] [azabz]
,b 7b 1
M = [a;,bs] [a,,b,] a,beZ, 1<1<8}}
[as,bs] [aéabé]

[a;,b;] [ag,bs]

be the subset interval matrix semiring.

Clearly S is a subset interval matrix zero divisors but S has
no non trivial subset interval matrix units in S.

We give some subset interval zero divisors of S.

[0,1] [6,0]
Take A= (0,01 [7.0] and
[-L1] [-1,0]

[8,0] [-7,0]
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[,0]  [0,8]

[8,-19] [0,25]
[0,0] [0,-28]

[0,-15] [0,25]

[0,0] [0,0]
[0,0] [0,0] .

AxB = e S is such that
[0,0] [0,0]

0]
[0,0] [0,0]

A x B 1is a subset interval zero divisor of S.

Example 2.73: Let S = {Collection of all subsets from the
interval matrix ring

[apbl] [3.2,b2] '
i [a,,b,] [a,,b,] aj, by € Zze, 1 <1<44}}

be the subset interval matrix semiring of M.

S has subset interval zero divisors, S has subset interval
idempotents, S has subset interval units, S has subset interval
subsemiring and subset interval semiring ideals.

Take
’b ’b
_ |:[a1 1] [az 2]:| a, by € 273 = {0, 2,4,6,8, ...,
[ag9b3] [34,b4]
34},1<i<4} cM.

T = {(Collection of all subsets from the interval matrix
subring P} < S is a subset interval subsemiring and T is also a
subset interval semiring ideal of S.
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e 05 020 gy 20 021)
[4,5] [3,0] [1,2] [8,6]
We find both A + B and A x B.

Consider

A+B :{'[0,6] [7,2]}}+ {[2,4] [9,2]}}
[4,5] [3,0] [1,2] [8,6]

~([10,61+[2,4] [7,2]+[9.2]
|L[4.5]+[1,2]  [3,0]+[8,6]

_ J[12.101 [16,4] S
| [5,7]1 [1L,6] )

AXEB :{'[0,6] mq}x {{[2,4] [9,2]}}
[4,5] [3,0] [L,2] [8,6]

_[[10,6]x[2,4] [7,2]x[9,2]
| [4,5]x[L,2] [3,0]x[8,6]

_[[10,24] [27,4] S
“\lat01 2401

This is the way operations are performed on S.

Clearly S is a commutative subset interval semiring of finite
order.

O
[4,9] [12,3]
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6,3] [12,0
and B = 16,31 112.0] eSS
[9,4] [3,12]

o [[10.01 .01,
[0,0] [0,0]]|"
thus A is a subset interval zero divisor of S.

Now consider A = {[35’1] [35’35]}} €S

(1,11  [1,35]

(L1] [L1] . . .
AxA= ; thus A is the subset interval unit
[L1] [L1]

of S.

[0,1] [L1] ) .
A= e S is such that A x A = A is a subset
[0,1] [1,0]

interval idempotent of S.
Thus S has subset interval idempotents.

Example 2.74: Let S = {Collection of all subsets from the
interval matrix ring

M: {|:[al’bl] [azabz] [33,b3] [34,b4]

} ai, bj € Zys,
[as,bs] [ag.bs] [a;,b,] [ag,bg]

1<i<8}}
be the subset interval matrix semiring.
It is easily verified S has subset interval units, subset

interval idempotents, subset interval zero divisors, subset
interval subsemirings and subset interval semiring ideals.
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We can have subset interval matrix semirings both of finite
and infinite order.

We can have subset interval matrix semirings both
commutative and non commutative. We will provide a few
examples of non commutative subset matrix interval semirings.

Example 2.75: Let S = {Collection of all subsets from the
interval matrix ring

[[a,,b,]]
[a,,b,]
M= <|[a,,b;] || a, bi € Z4S;5; 1 <1< 5}}
[a,,b,]
[a,b,]

be the subset interval matrix semiring.

Clearly S is non commutative subset interval matrix
semiring of finite order.

S has subset interval zero divisors.

S in general is non commutative.

[10.g,] ] [0,g,]
[g.8,] (25,81
Take A = 4| [g,,0] | and B=<| [g,,0] |} €S.
[g5.1] [0,g5]
|[2.8:]] | [8,,8,]]
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We find A xB
[ 10,g,] ] [10,g,] |
[g.g,] [8,.8]
= 1| [82,01 | x| [&5,0]
[g;.1] [0,g,]
[g.8:]) [g,,2,1]

[ [0.g,1x[0.g,] ]
[2,2,1%[g,,8;]
=4 [g,,0]x[g;,0]
[g5,11x[0,g,]
_[gpgslx[gz,ng

" 12 3 1 2 3 123
ere g, = » 827 837 ’
STl 3 o) B3 2 1P 21 3

(123 (123
g4231,g5 31 2

[10,g4] ]
[g5.85]
=1 [&s,0]
[0,8;]
| [85.8,]]




Subset Semirings of Type I | 75

Now we find B x A

[ [0,2,] ] [0,g,]

[2,,8;] [g.8,]

=9 [8:,0] | x 3] [8,,0]

[0,g;] [g5,1]
(25,841 [g-8;]]

[ [0,2,1x[0,g,] |
[8,.851%([8.8,]
= [g5,0]x[g,,0]
[0,g,]1x[g;,1]
|[2,,8,1%[8,8;]]

[0,g,]
[g4,84]
= [g,,0] I
[0,g;]

| [84:8:]]

Iand II are distinct.
Thus A xB #B x A.

So S is not a commutative subset matrix semiring.
Now we find

A+B
[[0.g,] ] [ [0.g,] ]
[g.8,] [g,,8;]
=91 [8,,0] |¢ + 4] [g5,0]
[g5,1] [0,g5]
|[21,8;]] | [2,.8,]]
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[0,g, +g,]
(g +2,.8, +8;]
= (g, +¢5,0]
(g5 1+g;]
(8 +8,,8; +84]

This is the way ‘+’ operation is performed on S.

Example 2.76: Let S = {Collection of all subsets from the
matrix interval ring

[a,b,]  [a,,b,]

[a;,b;]  [a,,b,]

M= a;, b e QS;;1<1<24}}

[a23’b23] [a24’b24]

be the subset interval matrix semiring of infinite order which is
non commutative.

This has interval subset units, interval subset zero divisors,
interval subset idempotents, interval subset subsemirings and

interval subset semiring ideals.

Example 2.77: Let S = {Collection of all subsets from the
interval matrix ring

M:{[a“bl] R

[a;,b;] [ag,bg] ... [312,1312]} ‘ a;, b € (QU )Dy 13,

1<i<12))

be the subset interval matrix semiring of M.
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S has interval subset units, interval subset idempotents,
interval subset zero divisors, interval subset subsemirings and
interval subset semiring ideals.

Clearly S is non commutative of infinite order.

Example 2.78: Let S = {Collection of all subsets from the
interval matrix ring

[a,,b] [a,,b,] [as,b;]
M= J|[a,,b,] [as,bs] [ag,be]|| a,bi€ (ZsxZyxZy)
[a;,b,] [agbg] [ag,bo]
(8(5)); 1<1<9}}

be the subset interval semiring.

S has subset interval matrix subsemiring, subset interval
zero divisors, subset interval units and subset interval
idempotents.

Example 2.79: Let S = {Collection of all subsets from the
interval matrix ring

[a,,b,]

[a,,b,]

M= a;, b€ Z(S; x Ay); 1 <1< 10} }

[aIO ’bIO]

be the subset interval semiring which is of infinite order but non
commutative has infinite number of subset interval zero
divisors.

Now having seen examples of finite and infinite
commutative and non commutative subset interval matrix
semirings we now proceed onto study subset interval
polynomial semirings built over interval polynomial rings.
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Example 2.80: Let S = {Collection of all subsets from the
interval polynomial ring

ai, by € Zs[x]}}

= {i[ai,bi]xi

be the subset interval polynomial semiring.
Clearly S is commutative and is of infinite order.

Let A = {[3, 0]x’ +[2, 1]x* + [3, 0]x} and
= {[2,4]x*+[1,0]} €S.

We find
A+B
= {[3, 01> + [2, 1]x* + [3, 0]x} + {[2, 4]x* +[1, 0]}
= {[3, 0]x’ + [2, 1] +[2, 4]x* +[1, 0], [4, 1]x* +
[3, 0]x +[2,4]x*>+[1, 0]}
3,0]x +[1,0]} isin S.
This is the way the operation of “+’ is performed on S.
We find
AxB
= {[3, 0] + [2, 1]x* + [3, 0]x} x {[2, 4]x*+[1, 0]}

= {([3, 01" +[2, 1]) x (12, 4]x* + [1, 0]) ([4,1]x" +
[3, 0]%) (12, 41x” + [1, 0])}
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={([3,0] x [2, 4] X +[2, 1] x [2, 4]x* + [3, 0] x
[1,0]x* +[2, 1] x [1, 0]), [4, 1] x [2, 4] x* +[3, 0]
x [2, 41>+ [4, 1] x [1, 0] x* + [3, 0] [1, 0]x}

4,41 + 3, 01> + [2, 0], [3, 4]x* +

= {[1,0]x + [4,
[1,0]x’ + [4, 0]x* +[3, 0]x} € S.

, O]x™ +
This is the way operation of product is performed on S.
We find subset interval polynomial subsemirings of S.

Take P; = {Collection of all subsets from the interval

polynomial subring

a € Zs[x]}} =S

i=0

M= {f:[ai,O]xi

be the subset interval polynomial subsemiring of S which is also
a subset interval polynomial semiring ideal of S.

Now P, = {Collection of all subsets from the interval

polynomial subring

a € Zs[x]}c M} c S

M, = {i[o,ai]xi

i=0

be the subset interval polynomial subsemiring of S. P, is a
subset interval polynomial semiring ideal of S.

We see Py x P, = {[0, 0]}. Thus they annihilate each other.

In view of this we see we have an infinite collection of

subset interval polynomial zero divisors.

For every A € P}, and B € P, we have A x B = {[0, 0]}.
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Example 2.81: Let S = {Collection of all subsets from the
interval polynomial ring

aj, by € Zo[x]}}

M= {i[ai,bi]xi

i=0

be the subset interval polynomial semiring. S has infinite
number of subset interval polynomial zero divisors.

Infact S has two interval subset polynomial semiring ideals
P, and P, with P; x P, = {[0, 0]} both of them are of infinite
order.

Example 2.82: Let S = {Collection of all subsets from the

interval polynomial ring

a;, by € Z[x]}}

M= {i[ai,bi]xi

be the subset interval polynomial semiring of infinite order.
This S also has infinite number of subset interval polynomial
zero divisors.

This S also has two subset interval polynomial semiring
ideals P; and P, with P; x P, = {[0, 0]} and P, n P, = {[0, 0]}.
This sort of ideals are also prevalent in subset interval matrix
semirings.

Example 2.83: Let S = {Collection of all subsets from the
matrix ring

[a,,b,]

[a,,b,]

M= ai,bieZm;ISi£9}}

[ay,b,]
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be the subset interval matrix semiring.

Take P, = {Collection of all subsets from the interval matrix
subring

[a,,0]

[a,,0]

M, = a,€”Zi1<i<6} M} < S.

[a,,0]

Clearly P, is a subset interval matrix subsemiring which is
also a subset interval matrix semiring ideal of S.

Consider P, = {Collection of all subsets from the interval
matrix subring

[0,b,]

[0,b,]

Mzz ai,bieZm;ISiS6}gM}gS

[0,b,]

be the subset interval matrix subsemiring.

P, is also a subset interval matrix semiring ideal of S. Thus
P, x P, = {[0, 0]} and P, n P, = {[0, 0]}.

Example 2.84: Let S = {Collection of all subsets from the
interval matrix ring M = {([a;, b1], ..., [a1s, big]) | &, bi € Zy3,
1 <1< 18} be the subset interval matrix semiring of the interval
matrix ring M.

P, = {Collection of all subsets from the interval matrix
subring M; = {([a}, 0], ..., [a15, 0]) | i€ Z43, 1 <1< 18} = M}
S be the subset interval matrix subsemiring which is also a
subset interval matrix semiring ideal of S.
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P, x P, = {[0, 0]} and P, N P, = {[0, 0]}.

Example 2.85: Let S = {Collection of all susbets from the
interval matrix ring

[a,b] ... [a,,by]
M= [a“,bll] [azo,bzo] aj, bi€Z144;ISiS3O}}

[a,,by] ... [ay,by]

be the subset interval matrix semiring.

Let P, = {Collection of all subsets from the interval matrix
subring

[a,,0] ... [a},0]
M1: [311,0] [320,0] aj 62144; 1 S1S30}QM} gS

[a,,,0] ... [a,,0]

be the subset interval matrix subsemiring of S which is also a
subset interval matrix semiring ideal of S.

Consider P, = {Collection of all subsets from the interval
matrix subring

[0,a,] .. [0,a,]
M, =<[[0,a,,] ... [0,a,]|| ai € Zas; 1 £1<30} =M} = S

[0,a,,] ... [0,a,]
be the subset interval matrix subsemiring of S.
P, is also a subset interval matrix semiring ideal of S.

Py x P, = {[0,0]} leading to infinite number of subset
interval matrix zero divisors. Further P m P, = {[0,0]}.
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In view of all these we have the following interesting
results.

THEOREM 2.5: Let S = {Collection of all susbets of the interval
matrix ring M = {4 = ([a;, by]) | a;, b; € R; R a ring or a field
and A is a n xm interval matrix 1 <i <n and 1 <j <m}} be the
subset interval matrix semiring of M.

S has atleast two subset interval matrix semiring ideals say
P; and P; such that P; x P; = {([0, 0])x, ; zero matrix} = P; M
P

Proof is direct and hence left as an exercise to the reader.
THEOREM 2.6: Let S = {Collection of all subsets from the

interval polynomial ring

M= {Z[ai,bi]xi a;, b; € R aring}}

i=0

be the subset interval polynomial semiring. S has atleast two
subset interval polynomial semiring ideals. P; and P, such that
Py xP,=1{[0,0]} and P; N P> = {[0,0]}.

The proof is direct and hence left as an exercise to the
reader.

We have given examples to this effect.

We now give examples of subset polynomial interval
semiring of finite order.

Let us define in a polynomial ring in the variable x in which
we take x" = 1; n a finite an integer.

Example 2.86: Let S = {Collection of all subsets from the
interval polynomial ring
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a,bi€Zy;0<i<nandx"'=1;n<ow}}

M= {Zn:[ai,bi X

i=0

be the subset interval polynomial semiring of M. Clearly S is of
finite order.

Even in this S we have two distinct subset interval
polynomial semiring ideals using

a,0 € Zyyf =M

i=0

M, = {Zn:[ai,O]xi

where P; = {Collection of all subsets from the interval
polynomial subsemiring of M;} < S and P, = {Collection of all
subsets from the interval polynomial subsemiring

bi € Zyy =M} cS;

M, = {Zn:[O,bi]xi

i=0

both P, and P, are subset interval polynomial semiring ideals of
S.

o(P;) = o (P,) <o with P; x P, = {[0, 0]} and
P1 M P2 = {[0, 0]}

This is the way we can construct finite subset interval
polynomial semirings.

Example 2.87: Let S = {Collection of all subsets from the
interval polynomial ring

a,bjeZ,0<i<5,x°=1}}

M= {Zsl[ai,bi]xi

i=0

be the subset interval polynomial semiring of finite order. S has
subset interval zero divisors, subset interval idempotents and
subset interval units.
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S has subset interval polynomial subsemirings as well as
subset interval polynomial semiring ideals.

Example 2.88: Let S = {Collection of all subsets from the
interval polynomial

a, b€ ZS;, 0<i<7, x =1}

M= {i[ai,bi]xi

i=0

be the subset interval polynomial semiring of finite order. Sis a
non commutative interval polynomial semiring.

This S also has subset interval units, subset interval
idempotents, subset interval zero divisors, subset interval
polynomial subsemiring and subset interval polynomial
semiring ideals.

(123] [123} (123}}
LetA = {2 .3 + X+
321 1 3 2 2 3 1
(1 23}} (123}
[0, 4 ,[4, 3 +4+
2 31 32 1
23 +75,0
5 3 1] [5, 01}
and

1 23 1 23 1 2 3 5
B ={[3 + ,4+2 X
2 13 3 21 2 1 3
1 23 1 23
+ , e S.
31 2 3 21
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First we find

(123} (123J
A+B = {2 .3 +
31 2 1 3 2
x+1[0,4 ,
2 3 1 2 3 1
[123J {123}}
[4,3 +4+2 X +
31 2 2 3 1
50+3123+5123
[,]}{[213 a_—

1 2 3)|, 1 2 3
4+2 X"+ ,
2 1 3 31 2

1 23 1 2 3
= {[2 ,3 +
31 2 1 3 2
1 23 1 2 3
x+[3 +
2 3 1 21 3
1 2 3 12 3)],
5 ) X
3 2 1 2 1 3
(1 2 3 1 2 3 1 2 3
+ , 4 +
(3 1 2} (2 3 J (3 2 1H
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1 2 3 1 2 3
=[3 +5 , 4+
21 3 3 2 1
1 2 3)|, 1 2 3
2 X +[4,3 +4+
21 3 31 2
1 2 3 1 2 3 1 2 3
2 x+[5+ ,
2 31 31 2 3 21
e S.

This is the way addition is performed in S.

We find

(1 23} [123J (1 23]}
AxB = {2 ,3 + X+
31 2 1 3 2 2 31
(123” (123)
[0, 4 ,[4,3 +4+
2 31 31 2
2123+5o 3123+
231X[,]}x{[213
[123j (123}}2
5 ,4+2 X“+
321 21 3
3) (1 2 3
2)713 21
(1 23) (123} [1 23)}
= {2 ,3 + X X
31 2 1 3 2 2 3 1

1
7\
W -
i\
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1 2 3 I 2 3)|,
,4+2 X
3 2 1 2 1 3
1 2 3 1 2 3
+14,3 +4+2 X
31 2 2 31

(9]

123 12 3)], 123
[0, 4 +2 X+ [2 ,
2 31 13 2 2 31
12 3 1 2 3 123
3 + x+[0, 4 ,
31 2 213 213
123 1 2 3 1 2 3
[2 ,4+2 +2 +
321 2 31 2 1 3
12 3\, (123 1 2 3

4 X*H5 ,0]+[3

13 2)] 31 2 213
123 , 1 2 3) (123
+ ,0]x* +[4 3 +
321 31 2)7(1 3 2
123 123

4 +2 x} e S.

321 213

This is the way product is performed on S.
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It is left as an exercise for the reader to prove that in S.
A xB#B x A, in general for A, B € S.

Example 2.89: Let S = {Collection of all subsets from the
interval polynomial ring

a;, bi (S Z]2 Dzjg, Xm: 1, 0<i< 9}}

M= {i[ai,bi]xi

be the subset interval polynomial semiring of finite order, S is
clearly non commutative.

Example 2.90: Let S = {Collection of all subsets from the
interval polynomial ring

a;, by € C(Z1p VU 1)) S7}

i=0

M= {i[ai,bi]xi

be the infinite non commutative subset interval polynomial
semiring.

Example 2.91: Let S = {Collection of all subsets from the
interval polynomial ring

a, b€ 7S 0<i<12,x° =1}

M= {i[ai,bi X

i=0

be an infinite subset interval polynomial non commutative
semiring.

Clearly S has subset interval zero divisors which are infinite
in number.

S has no nontrivial subset interval idempotents other than
A={[0, 1]} and B= {[1, 0]} in S.
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Example 2.92: Let S = {Collection of all subsets from the
interval polynomial ring

ai, bj € (ZU D) SB)}}

M= {i:[aibi]xi

be the subset interval polynomial semiring. S has infinite
number of zero divisors.

It has infinite number of subset interval polynomial
subsemirings and subset interval polynomial semiring ideals.

Example 2.93: Let S = {Collection of all subsets from the
interval polynomial ring

a;, b e (ZUD)(S;xDyy)}}

i=0

M= {i[aibi]xi

be the subset interval polynomial semiring.

S has subset interval zero divisor, subset interval units,
subset interval idempotents and subset interval polynomial
subsemirings. Further S is a non commutative subset interval
polynomial semiring.

Example 2.94: Let S = {Collection of all subsets from the
interval polynomial ring

X4 = la aj, bi € C(Z3) (gla g2) gl2 = 05 g; = g2,

M= {i[aibi]xi

i=0

g1 =28 =0,<1<3}}

be the subset interval polynomial semiring.

S is of finite order commutative has subset interval zero
divisors and subset interval units.
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However A; = {[0, g1} , Ay = {[g2, g2]} and Az = {[g, 0]}
are some of the interval subset idempotents of S.

B = {[g2, 11}, B2 = {[1, g:]}, Bs = {[0, 1]} and B, = {[1,
0]} are also interval subset idempotents of S.

Example 2.95: Let S = {Collection of all subsets from the
interval polynomial ring

a, b e (ZisUI) S4}}

M= {i[ai,bi]xi

i=0

be the subset interval polynomial semiring of infinite order
which is non commutative.

Now having seen examples of subset interval polynomial
semirings of finite and infinite order and subset interval matrix
semirings we now propose some problems for the reader.

Problems :

1.  Let S = {Collection of all subsets from the ring Z,;} be
the subset semiring of the ring Z,,.

(i)  Find o(S).

(il))  Find subset zero divisors of S.
(iii)) Find subset idempotents of S.
(iv) Find subset units of S.

2. Let S, = {Collection of all subsets from the ring
R =75 x Zy} be the subset semiring of the ring R.

Study questions (i) to (iv) of problem 1 for this S;.

3. Let S, = {Collection of all subsets from the ring R = Zs(g)
with g = 0 } be the subset semiring.

Study questions (i) to (iv) of problem 1 for this S,.



Subset Semirings of Type I | 93

Let S; = {Collection of all subsets from the neutrosophic
ring (Z¢ U I)} be the subset neutrosophic semiring of the
neutrosophic ring (Zs U I).

Study questions (i) to (iv) of problem 1 for this S;.

Let S4 = {Collection of all subsets from the neutrosophic
finite complex modulo integer ring R = C ((Zy4 U 1))} be
the subset finite neutrosophic complex modulo integer
ring.

Study questions (i) to (iv) of problem 1 for this S,.

Let S5 = {Collection of all subsets from the ring
R =C(Zis5) (g1, g2) where g/ =0, g3= &, g1 = 2:¢1 = 0}
be the subset finite mixed dual complex semiring of R.

Study questions (i) to (iv) of problem 1 for this Ss.

Let S = {Collection of all subsets from the ring
R =C(Zy U]) (g), g° = 0} be the subset semiring.

Study questions (i) to (iv) of problem 1 for this S.

Let S = {Collection of all subsets from the ring Z,s} be
the subset semiring of Zys.

(i) Find o(S).

(i1) Find all subset subsemirings of S.

(ii1) Find all subset semiring ideals of S.

(iv) Find all subset subsemirings which are not subset
semiring ideals of S.

Let S; = {Collection of all subsets from the ring Z;; x Z}
be the subset semiring.

Study questions (i) to (iv) of problem (8) for this S;.
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10.

11.

12.

13.

14.

15.

Let S, = {Collection of all subsets from the ring Z,S; } be
the subset semiring of S.

Study questions (i) to (iv) of problem (8) for this S.

Let S = {Collection of all subsets from the ring Z¢S;} be
the subset semiring.

Study questions (i) to (iv) of problem (8) for this S.

Let S = {Collection of all subsets from the ring
C({Z1, v 1)} be the subset semiring.

Study questions (i) to (iv) of problem (8) for this S.

Let S = {Collection of all subsets from the ring C(Z,) (g,
£); gf: 0, gﬁz 2, 212 = g = 0} be the subset
semiring.

Study questions (i) to (iv) of problem (8) for this S.

Let S = {Collection of all subsets from the ring Z4 (g1, g,
g); 8 =0, 2= &, g = g with gigy = gigi = 0 if i = j,
1 <1, j <3} be the subset semiring.

Study question (i) to (iv) of problem (8) for this S.

(i) Can S have subset units?

(i) Can S have Smarandache subset units?
(iii) Can S have subset idempotents?

(iv) Can S have subset S-idempotents?

Find all subsets semiring ideals of and Smarandache
subset semiring ideals of

S = {Collection of all subsets from the ring Z.s}, the
subset semiring of the ring Zss of type L.
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17.

18.

19.

20.
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Find all subset subsemirings of

S = {Collection of all subsets from the ring Z;s} the
subset semiring of Zss which are not subset semiring
ideals of S.

Find all the subset subsemirings of

S = {Collection of subsets of the ring Zsy x Zys}; the
subset subsemiring which are not subset semiring ideals
of S.

Let S = {Collection of all subsets from the ring
Ze x L1 X Zo} be the subset semiring.

(1)  Find o(S).

(i1)  Find all subset zero divisors of S.

(iii) Find all subset units of S.

(iv) Find all subset idempotents of S.

(v)  Find all subset semiring ideals of S.

(vi) Find all subset subsemirings of S.

(vii) Find all subset subsemirings which are not subset
semiring ideals.

Let
S = {Collection of all subsets from the group ring Z,S.}
be the subset semiring.

(i)  Study questions (i) to (vii) of problem (18)
for this S.

(i1)  Prove S is non commutative.

(iii) Can S have subset semiring right ideals which are
not subset semiring left ideals?

Let
S = {Collection of all subsets from the group ring ZsA4}
be the subset semiring of Z;A4.

(i) Prove S is a non commutative subset semiring.
(i) Study questions (i) to (vii) of problem (18) for this S.
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21.

22.

23.

24.

25.

26.

27.

28.

Let
S = {Collection of all subsets from the group ring ZD,;}
be the subset semiring of the group ring ZD, ;.

(i) Study questions (i) to (vii) of problem (18) for this S.
(i1) Can S have subset idempotents?

(ii1) Prove S has subset units.

(iv) If Z is replaced by Q show S has subset idempotents.
(v) Any other interesting feature enjoyed S.

Give an example of a subset semiring of a ring which has
no subset zero divisors.

Does there exist a subset semiring of a ring which has no
subset units?

Give an example of a subset semiring which has no subset
idempotents.

Is it possible to have a finite order subset semiring which
has no subset units.

Does there exist a finite subset semiring which has no
subset zero divisors?

Let S = {Collection of all subsets from the ring Z,D,s} be
the subset semiring.

(i) Study questions (i) to (vii) of problem (18) for this S.
(i1) Enlist all subset semiring left ideals which are not
subset semiring right ideals.

Let S = {Collection of all subsets from the ring QD,;} be
the subset semiring of the ring QD ;.

(1) Can S have right subset semiring ideals which are not
left subset semiring ideals?
(i1) Find all subset semiring ideals of S.
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30.

31.

32.

33.

34.

35.

36.

Subset Semirings of Type I | 97

(ii1) Can S have subset zero divisors?

(iv) Can S have subset units?

(v) Can S have subset idempotents?

(vi) Can S have subset subsemirings which are not subset
semiring ideals?

Let
S = {Collection of subsets from the ring (ZoxZ,xZs)S3}
be the subset semiring.

Study questions (i) to (vii) of problem (18) for this S.

Is it ever possible to have a finite subset semiring of a ring
to be free from subset zero divisors?

Let S = {Collection of subsets from the ring RS(3)} be the
subset semiring of the ring RS(3).

Mention or derive all properties associated with is S.

If R is replaced by Q in problem 31 study that S.

If R is replaced by Z in problem 31 study that S.

Let S = {Collection of subsets from the ring Z;(S; x Ay)}
be the subset semiring.

Study questions (i) to (vii) of problem (18) for this S.

Let
S = {Collection of subsets from the ring Z,(S; x A4 x S5)}
be the subset semiring.

Study questions (i) to (vii) of problem (18) for this S.

Let S = {Collection of subsets from the ring Z,,S(8)} be
the subset semiring.

Study questions (i) to (vii) of problem (18) for this S.
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37.

38.

39.

40.

41.

42.

43.

Let S= {Collection of subsets from the ring
(Z7 xZy x S15 x Z3) (S5 x Ay)} be the subset semiring.

Study questions (i) to (vii) of problem (18) for this S.

Let S = {Collection of subsets from the ring C({(Zy U I})}
be the subset semiring.

Study questions (i) to (vii) of problem (18) for this S.

Let S = {Collection of subsets from the ring C(Z;5)(g)
where g” = g} be the subset semiring.

Study questions (i) to (vii) of problem (18) for this S.

Let S = {Collection of subsets from the ring
C(Zg) x C({Z19 W I))} be the subset semiring.

Study questions (i) to (vii) of problem (18) for this S.

Let S = {Collection of subsets from the ring Z;, (g, g2,
g3) where g/ =0, g3= g, and g; = —g; with gig; = gigi =
0ifi=j, 1 <1i,j <3} be the subset semiring.

Study questions (i) to (vii) of problem (18) for this S.

Let S = {Collection of subsets from the ring C(Z¢) S;} be
the subset semiring.

Study questions (i) to (vii) of problem (18) for this S.

Let S= {Collection of subsets from the ring
(Z1o U D)(21,22) Ss with g/ =0, g=-g,, 212 = gag1 = 0}
be the subset semiring of the ring ((Z;o U 1)) (g1, g2) Ss.

Study questions (i) to (vii) of problem (18) for this S.
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45.

46.

47.

48.

49.

Subset Semirings of Type I | 99

Let
S = {Collection of subsets from the ring C({Z,5I) (S(4))}
be the subset semiring.

Study questions (i) to (vii) of problem (18) for this S.

Prove if instead of using rings interval rings are used to
from subset semiring show they always contain subset
zero divisors.

Let S = {Collection of subsets from the ring M = {[a, b]
|a,b eZ}} be the subset semiring of the ring of M.

(1) Show S has subset interval zero divisors.
(i1) Is S a Smarandache subset semiring?
(iii) Can S have subset idempotents?

(iv) Find subset semiring ideals of S.

Let S = {Collection of subsets from the ring M = {[a, b]
la,b €Z12}} be the subset interval semiring.

(i) Find o(S).

(i1) Find all subset interval zero divisors.

(ii1) Find all subsets interval idempotents.

(iv) Find all subset interval units.

(v) Find all subset interval subsemirings which are not
subset semiring interval ideals.

(vi) Find all subset interval semiring ideals of S.

Let S = {Collection of subsets from the ring M = {[a, b] |
a,b e{Z, 1)} be the subset interval semiring.

Study questions (i) to (vi) of problem (47) for this S.
Let S = {Collection of subsets from the interval ring M =
{[a, b] | a, b €C(Z4) (g) with g = 0}} be the subset

interval semiring.

Study questions (i) to (vi) of problem (47) for this S.
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50.

51.

52.

53.

54.

55.

Let S = {Collection of subsets from the interval ring M =
{[a,b] | a, b eC({Zss W ]1))} be the subset semiring.

Study questions (i) to (vi) of problem (47) for this S.

Let S = {Collection of subsets from the interval ring M =
{[a, b] | a, b € C({Z7 U I)(g)) with g’ = 0} be the subset
semiring.

Study questions (i) to (vi) of problem (47) for this S.

Let S = {Collection of subsets from the interval ring M =
{[a,b] |a,b € ({Zss W 1)) S4} be the subset semiring.

Study questions (i) to (vi) of problem (47) for this S.

Let S; = {Collection of subsets from the interval ring M
= {[a,b]|a, b € Z,4Ss}} be the subset interval semiring.

Study questions (i) to (vi) of problem (47) for this S;.

Find some special features enjoyed by subset interval
semirings.

Let S = {Collection of subsets from the interval matrix
ring

[a.b]  [a,.b,]

[a;,b,]  [a,,b,]

M= ai,bieZ(,;lﬁiSZO}}

[a5,b19] [ay,by]

be the subset semiring of the interval matrix ring M.

(i) Find o(S).
(i) Find subset interval idempotents of S.
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57.

58.
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(ii1) Find subset interval units of S.

(iv) Find all S-subset interval idempotents of S.

(v) Find all subset interval matrix semiring ideals of S.

(vi) Find all subsets interval matrix semirings of S which
matrix semirings ideals of S.

Let S = {Collection of all susbets form interval matrix
ring

[alﬂbl] [32,b2] [al25b12]
M= [313,b13] [314>b14] [324,]324] ai, bi € ZZS 5
[a25’b25] [a26’b26] [a3é’b36]
1<i<36}}
be the subset interval matrix semiring.

Study questions (i) to (vi) of problem (55) for this S.

Let S = {Collection of all susbets form interval matrix
ring

[a,,b,] [a,,b,] .. [agbgl

[a,,b;]  [ag,bg] ... [a,,by,]

M= a;, b € Zy4 ;

[a3l’b3l] [a32’b32] b [a367b36]
1<i<36))

be the subset interval matrix semiring.

Study questions (i) to (vi) of problem (55) for this S.

Let S = {Collection of all subsets form interval matrix
ring M = {([a,, bi], [az, b2], ..., [a17, bi7]) | &i, bi € C(Z);

1 £1<17}} be the subset interval matrix semiring.

Study questions (i) to (vi) of problem (55) for this S.
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59.

60.

61.

Let S = {Collection of subsets from the ring

[al’bl] [aZ’bZ]

[a;,b;]  [a,,b,]

M= a,bieC((Zyyoly); 1 <i<24}}

[a,,,b,] [ay,,by]

be the subset interval matrix semiring.
Study questions (i) to (vi) of problem (55) for this S.

Let S = {Collection of all susbets form interval matrix
ring

M_{|:[a1ab1] [a,,b,] ... [a19ab19]:|‘ai,bie
[a,,b;] [ag,bg] ... [ay,bx]

Zis(g1, g &), & =0, g;=grand g; =-g;, 1 <i<38}}
be the subset interval matrix semiring.
Study questions (i) to (vi) of problem (55) for this S.

Let S = {Collection of all subsets form interval matrix
ring

[a;,b,] [a,,b,] [a3,b3]
M= <|[a,,b,] [as,bs] [as,bs]]|]| ai, bi € C({Zs W)

[a;,b;] [ag,bg] [ag,b]

(g1, 8); &=0, ;= g, i =g =0,1<i<9}
be the subset interval matrix semiring of M.

Study questions (i) to (vi) of problem (55) for this S.
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Is S a Smarandache subset matrix interval semiring?

Find some special features enjoyed by subset interval
matrix semiring of infinite order.

Let S = {Collection of all susbets form interval matrix
ring

[a,b]  [a;,b,]  [as,bs]

[a,,b,]  [as,bs]  [ag,b]

M= ai, bj € Z1pAy;

[a55,055] [a59,b59] [a30,D5]

1 <i<30}
be the subset interval matrix semiring.

(1) Study questions (i) to (vi) of problem (55) for this S .
(i) Prove S is non commutative.
(iii) Is S a Smarandache subset interval matrix semiring.

[al’bl] [a2’b2]

[a,.b,]  [as,bs]

LetS = aj, bi € 21287; 1<i< 20}

[al‘)’bl‘)] [aZO’bZO]

be the subset interval matrix semiring.

(1) Find o(S).

(i1) Find all subset interval zero divisors.

(ii1) Find all subset interval idempotents.

(iv) Find all subset interval units.

(v) Find all subset interval matrix semiring ideals.

(vi) Find all subset interval matrix subsemirings which are
not ideals.
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64.

65.

66.

Let S = {Collection of all susbets form interval matrix
ring

M:{[[al’bl] [a,,b,] ... [alo’bm]Hai,bie
[a;,b;] [ag,bg] ..o [ay,by]

C{{Z12 v 1) (83)), 1 <1205}
be the subset interval matrix semiring.
Study questions (i) to (vi) of problem (55) for this S.

Let S = {Collection of all subsets form interval matrix
ring

[a;,b,] [a,,b,] [a;,b;]
M= [3-4’b4] [355b5] [asabs] a, by e C((Zs U )

[a7’b7] [aS’bS] [a‘)’bQ]
(S(4)), 1 <i<8}

be the subset interval matrix semiring of finite order.

Study questions (i) to (vi) of problem (55) for this S.

Let S = {Collection of subsets from the interval ring

[a,,b,]

M = [az’.bz]

aj, bi S [Z40 X C(Zz4)] S7; 1<i< 10}}
[aIO’blO]

be the subset interval matrix semiring.
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Study questions (i) to (vi) of problem (55) for this S.

Let S = {Collection of subsets from the ring

[a,,b,] ... [ag,by]
M= <[a,,,b,,] ... [a;5.b5] || @i, bi € [Zag x Z1g x

[a0,b0] o [ay;,b,]
C(Z5)] As}}

be the subset interval matrix semiring of M.
Study questions (i) to (vi) of problem (55) for this S.

Let S = {Collection of subsets from the interval
polynomial ring

a, b e (Zp )}

M= {Z[ai’bi ]Xi
i=0
be the subset interval matrix semiring of M.

Study questions (i) to (vi) of problem (55) for this S .

Let S = {Collection of subsets from the interval
polynomial ring

a,bie (ZgUI),0<i<10,x" =1}

10
M= {Z[ai,bi]xi
i=0

be the subset interval matrix semiring.
Study questions (i) to (vi) of problem (55) for this S.

Let S = {Collection of subsets from the interval
polynomial ring
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71.

a, b e C(Z7);0<i<6,x =1}

M= {Z6l[ai,bi]xi

i=0

be the subset interval matrix semiring.
Study questions (i) to (vi) of problem (55) for this S .
Let S = {Collection of subsets from the interval

polynomial ring

ai,bieZ36,x8=1,OSiS7}}

M= {i[ai,bi]xi

i=0

be the subset interval matrix semiring.

Study questions (i) to (vi) of problem (55) for this S.



Chapter Three

SUBSET SEMIRINGS OF TYPE Il

In this chapter for the first time authors introduce the notion
of subset semirings of type two where we use subsets from the
semiring. Here we describe and develop these concepts. We
give both commutative and non commutative, finite and infinite
subset semirings of type II.

These semirings also contain subset units, subset zero
divisors and subset idempotents.

DEFINITION 3.1: Let

S = {Collection of all subsets from a semiring R}. S under the
operations of the semiring R is a semiring defined as the subset
semiring of type I1.

Here we describe this situation by some examples.

Example 3.1: Let
S = {Collection of all subsets from the semiring Z" U {0}} be
the subset semiring of type II.

For take A= {3,4,8,12} and B={0, 1,5, 7} € S.

A+B =1{3,4,8,12} +{0,1,5,7}
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={3,4,8,12,5,9,15,21,13,17,10, 11} € S.
AxB
={3,4,8,12} x {0, 1,5, 7}

={3x0,4x0,8%x0,12x0,3x1,4x1,8x1,
12%x1,3x5,4%x5,8x5,12%x5,12%x7,4x%x7,
3x7,8x7}

={0, 3,4, 8, 12, 15, 20, 40, 60, 84, 28, 21, 56}.

This is the way operations on S are performed. S is of
infinite order. S is a commutative subset semiring of type II.

Example 3.2: Let
S = {Collection of all subsets from the semiring (Z" U {0} U I)}
be the subset semiring of type II.

Take A= {41,31+ 2,4+ 51, 71+ 1} and
B = {1, 2+5I, 7+6I} € S.

A+B
= {41, 31+2, 4+51, 71+1} + {1, 2+51, 7+61}
= {51, 41+2, 6I+4m 8I+1, 2+91, 4+81, 6+101,
3 + 121, 7+10L, 91+9, 111+11, 8+131} € S.
Now
AxB

= {41, 31+ 2,4+ 51, 71 + 1} x [1, 2+51, 7+61}

= {41 x [, 342 x L4+ 5T x I, 71+ 1 x I, 41 x 2 + 51,
3[+2x2+5L4+5Ix2+3L 71+ 1x3[+2,
AT x 7+ 6L, 31+2x7+6l,4+5Ix7+6l,
71+ 1% 7+ 61}

= {41, 51, 91, 8I, 281, 4 + 311, 8 + 371, 2 + 38, 521,
14 + 511,28 + 891, 7+ 971} € S.
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This is the way operations are performed on S.

S will also be known as the subset neutrosophic semiring of
type II.

Example 3.3: Let S = {Collection of all subsets from the
semiring (Z" U {0}) (g) = {a+bg|a,be Z" U {0}, g°=0}} be

the subset semiring of infinite order which is commutative. S
has subset zero divisors.

Forif A= {5g,3g,2g, 28g, 40g, 55g} and
B = {19g, 28¢g, 56g, g} € S.

We see A x B = {5g, 3g, 2g, 28¢g, 40g, 55g} x {19g, 28g,
S6g, g; = {0},

This S has infinite number of subset zero divisors.
Example 3.4: Let

S = {Collection of all subsets from group semiring
(Z" U {0})S3} be the subset semiring of type II. S has subset

units.
1 2 3
For take A = e S.
1 3 2

Wesee Ax A= ={1};
1 2 3

thus S has subset units. S is a non commutative subset semiring
of type 1.

S is of infinite order.

ran i3 Jpman-{y e
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w1232 Y)
{3361

W

Consider

wn {02512 2)

_ {G : ;)} L

Clearly I and II are distinct so A x B# B x A; thus Sis a
non commutative subset semiring of infinite order.

Example 3.5: Let

S = {Collection of all subsets from group semiring
(Q" U {0})S,} be the subset semiring of infinite order. S is non
commutative of infinite order. S has subset units and subset
idempotents.

A= {%} and B= {2} € Sisasubsetunitas A x B= {1}.
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{1 (1 2 3 4}}}
Take A= <— (1+ eS
2 213 4
1 [1 2 3 4)
AxA= {—(l-i- ) %
2 21 3 4
1 (1 2 3 4]}}
—(I+
2 213 4
{ 1 [1 2 3 4}]2}
= (r+
2x2 21 3 4
{1 [1 2 3 4]}}
- (1+1+2
4 21 3 4
e 129)
=q—(1+ =A e S.
2 21 3 4

Thus S has subset idempotents.

Example 3.6: Let S = {Collection of all subsets from the
semiring (Z" U {0})S;} be the subset semiring of type II. Infact
S is of infinite order non commutative has only subset units.

Example 3.7: Let

S = {Collection of all subsets from the semiring L =
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be the subset semiring of type II.

S has subset idempotents and subset zero divisors. S is
commutative and is of finite order.

Take A = {a} and B = {b} € S with

A xB={a} x {b} = {0}.
A is a subset zero divisor of S.
Let A={a,b,0} €S.

AxA ={ab,0}x{0,a, b}
={a,b,0} =A e S.

A is a subset idempotent of S. B = {a} € S is also a subset
idempotent.

Every singleton element in L is a subset idempotent of S;
that is if x € L then X = {x} € Sis such that X x X = {x} x {x}
= {x} =X € 8§, is a subset idempotent of S.
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Example 3.8: Let S = {Collection of all subsets from the lattice

L= ol \

p |
p Ao
¢ A3
¢ a, >
® as
p do
¢ A7
b 0 j

be the subset semiring of L. S is of finite order.

S has no subset zero divisors. S has subset idempotents and
all these subset idempotent sets are of maximum cardinality
nine.

IfA=1{0,1a} € S; a4 € L; 1 <1< 7 is such that
AxA={0,1,a} x {0, 1,a} =1{0,1,a}=A €S is a subset
idempotent of S.

B = {1, a;} and C = {0, a;} € S are also subset idempotents
of S.

Take D; = {a;} € S is such that D; x D; = {a;} x {a;} = {a;};
a; € L, 1 <1< 7 are also subset idempotents of S.

However S has no subset units.
Take A = {a;, a3, 0} and B= {as, a¢, 1} € S.
AUB
= {alua5,a1ua6,a1u 1,33U35,33U36,a3u 1,

Ouas,0Ua,0uUl}
= {ab 1, as, dg, as} (S S
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ANB
={ay, a3, 0} M {1, ae, as}

={alm1,a3ml,Oml,alma6,a3ma6,Oma(),
0Mnas,0Mag, 0N 1}

= {al, as, as, 0, 3.6} e S.
This is the way operations on S are performed.

Clearly
ANnB=BnNnAandAuB=BuUAforall A,B € S.

S has only subset idempotents and no subset zero divisors.

Example 3.9: Let S = {Collection of all subsets from the
semiring

which is a Boolean algebra of order 8} be the subset semiring of
type II. S has subset idempotents and subset zero divisors.

In view of all these we have the following theorem.

THEOREM 3.1: Let S = {Collection of all subsets from the
semiring which is a chain lattice;
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I 3n—2 j

be the subset semiring of type Il. S has no subset zero divisors
or subset units only subset idempotents.

Proof is direct and hence left as an exercise to the reader.

Example 3.10: Let S = {Collection of all subsets from the
semiring L =

be the subset semiring of finite order.
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S has subset zero divisors and subset units. Infact L is not a
chain lattice only a distributive lattice.

THEOREM 3.2: Let S = {Collection of all subsets from the
Boolean algebra with 2 elements} be the subset semiring.
S has subset idempotents and subset zero divisors and

o(S) = 2°".
Proof is direct and hence left as an exercise to the reader.

Now we proceed onto give more examples of subset
semirings using lattices of type II.

Example 3.11: Let
S = {Collection of all subsets from the semiring (Q Ul U {0})}
be the subset semiring of type II. This is of infinite order.

S has subset zero divisors, subset units and subset
idempotents. A = {n} where n € Q°, there exist a unique
m € Q" with B= {m} e S such that A x B = {n} x {m} = {1}
is a subset unit of S.

Infact only singletons can be subset units and we have
infinite number of subset units.

The subset idempotents are {0}, {1, 0}, {1}, {I}, {L, 0}, {1,
I}, {0, 1, I} are the subset idempotents.

However S has no subset zero divisors.
Example 3.12: Let S = {Collection of all subsets from the dual
number semiring (Q" U {0})(g) where g = 0} be the subset
semiring.

S has infinite number of subset zero divisors.

A ={3g, 5g,2g, 10g, 11/3g,45/17g} and

B = {12g, 3/11g, 10/7g, 40/19g} < S.
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A x B = {3g, 5g, 2g, 10g, 11/g, 45g/17} x {12g, 3/11g,
10/7g, 40/19g} = {0}.

We see S does not contain infinite number of subset
idempotents only a very few subset idempotents.

Example 3.13: Let S = {Collection of all subsets from the
special dual like number semiring (Z" U {0} U {g}) = {a + bg |
a,b e Z" U {0}} with g’ = g} be the subset semiring of type II.
S has few subset idempotents no subset zero divisors and subset
units.

Example 3.14: Let S = {Collection of all subsets from the
special dual like number rational semiring (Q" U {0} U {g}) =
{fa+bg|abeQ U0} g’=gl} be the subset semiring of
infinite order. S has no subset zero divisors only a few subset
idempotents and infinite number of subset units.

All these examples of subset semirings are commutative.

Now we proceed onto describe with examples, subset
semirings of type II which are non commutative.

Example 3.15: Let S = {Collection of all subsets from the
group semiring (Z" U {0})D,,} be the subset semiring. S has
subset units. S is non commutative and is of infinite order.

S has finite number of subset units and no subset
idempotents other than {0}, {1} and {0, 1}.

Example 3.16: Let
S = {Collection of all subsets from group semiring
(Q" U {0})S;} be the subset semiring. S has infinite number of

units. S is a non commutative infinite subset semiring.

S has only finite number of subset idempotents S has finite
number of subset zero divisors.
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Example 3.17: Let S = {Collection of all subsets from the
semigroup semiring LS(3) where L =

1

1:

0

and S(3) is the symmetric semigroup} be the subset semiring of
finite order.

N
AN

S is non commutative subset semiring of type II.

We see S has subset idempotents, subset units and subset
zero divisors.

Example 3.18: Let S = {Collection of all subsets from the
group semiring LS; where L is a lattice given by

S
a b
d e >
f
g h
0 J
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be the subset semiring of finite order which is non commutative;
we see S has subset idempotents, and subset zero divisors.

Let A= {ap; + bp, + ¢, gp; + hp, + d} and
B={cps+eps+1} €8S.

We find

A+B =AUB
= {ap: +bpy + ¢, gps +hps +d} U {cp; +eps + 1}
= {ap; + bp, + ¢, gp; + hps +d} + {cps + cp5s + 1}
= {ap; +bpy+c+cps+teps+ 1, gps +hps+d+

cps +cps + 1}
=ap; + bp, +cps +eps+ 1, cp; + hpy + cps + 1}
e S.
We find
ANB =AxB

= {ap; + bp, + ¢, gps + hps +d} x {cps +eps + 1}

= {(ap; + bp, +¢) N (cps +eps + 1),
(gps +hps+d) N (cps + fps + 1)}

={@nc)pips +(bNc)pps +(c M c)ps+(ane)pips
+(ne)ppst(cne)pst(@nl)p +(bn1)p, +

(cnl),(gnc)psxpst(hnc)pps+(dnc)ps+
(g N Dps ps + (h Hpsps + (d N Hps + 3 + hpy + d}

= {cps +cps + cps + ep2 + ep; + eps +ap; + bpy +c,
gps + hpy +d + fps +dp; + g+ hp, + gp; +h}

= {cps+cps+cps tbp, +ap; +c,d+ fp; +dp; +
hps + fps} € S.

This is the way operation N (i.e., x) and U (i.e., +) are
performed in S.
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It is easily verified S is a non commutative subset semiring.

A ={a}, B={b}, C= {c}, D= {d}, E = {e} and so on are
subset idempotents of S.

Example 3.19: Let S = {Collection of all subsets from the
group semiring LD, 4 where D,4 = {a,b | a> =b* =1, bab =a}}
be the subset semiring of finite order which is non commutative
and the lattice L is given by the L =

S has subset idempotents.
Take A= {l1+a} € S.
AxA

={0+a)j x{(1+a)
={l+a+a+a’}
={l+a+1}
={l+ta}=A.

Let A= {1+b} €S.

We see A x A; = A; so A is also a subset idempotent of S.
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We see S has no subset zero divisors.

Example 3.20: Let S = {Collection of all subsets from the
group semiring (Z" U {0}) (S; x Ay)} be the subset semiring.
S is non commutative and of infinite order.

S has subset units. Only A = {0}, B= {1} and C = {0, 1}
are the trivial subset idempotents of S.

Example 3.21: Let S = {Collection of all subsets from the
semigroup semiring (Q" U {0}) (S(3) x (Z1, x))} be the subset
semiring. S is of infinite order and has infinite number of
subset units.

Example 3.22: Let S = {Collection of all subsets from group
semiring (L; x L,) Dy2y;

where L, = o 1 and L, = 1 3\
» a5

Da4 a

XX,

b Ay f d
¢ d]
o 0

be the subset semiring.

S is of finite order but S is non commutative has subset
idempotents given by

Al = {(19 1)}5 A2 = {(1’ a)} IRRRE) At = {(15 d)}’
A1 = {(a;, 1)}, Az = {(a;, a)} and so on.

S has subset zero divisors.
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Example 3.23: Let S = {Collection of all subsets from the
semiring L; x L, x L3 where

L= p | L,=
b as
.3.4 a } < C
p a3 £ I d
» A
| X5 g
h
! J
0
1
and L; = )

C

be the subset semiring of finite order.

S has subset idempotents and subset zero divisors.
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Example 3.24: Let S = {Collection of all subsets from the
group semiring (L; x L,) (S; x S;) where L, =

1

and L,, a Boolean algebra of order 16} be the subset semiring of
finite order which is non commutative and has subset
subsemirings, subset idempotents and subset zero divisors.

Example 3.25: Let

S = {Collection of all subsets from the semiring Z" U {0}} be
the subset semiring of infinite order. This has infinite number
of subset subsemiring given by P, = {Collection of all subsets
from the subsemiring nZ" U {0}} n=2, 3, ..., . Clearly these
subset semirings are also subset ideals of S. S has no nontrivial
subset units.

Example 3.26: Let

S = {Collection of all subsets from the semiring Q" U {0}} be
the subset semiring of infinite order. S has infinite number of
subset subsemiring but has no subset semiideals.

S has infinite number of subset units and has only {0}, {1}
and {0,1} to be subset idempotents.

Example 3.27: Let S = {Collection of all subsets from the
semiring L =



124 | Subset Semirings

a
A
a3
as
as

e

0

be the subset semiring. S has subset idempotents. S has subset
subsemirings. S has subset ideals.

Example 3.28: Let S = {Collection of all subsets from the
semiring L = a Boolean algebra of order thirty two} be the

subset semiring. S has subset zero divisors. S has subset
idempotents.

Example 3.29: Let S = {Collection of all subsets from the
semiring L =
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be the subset semiring. S has subset subsemirings, subset
ideals, subset idempotents and subset zero divisors.

Now we study more about subset semirings using matrix
semirings.

Suppose we have M = {Collection of all m x n matrices
with entries from a semiring R} be a matrix semiring.

Let S = {Collection of all subsets from the matrix semiring
M}; we define S to be a subset matrix semiring.

Example 3.30: Let S = {Collection of all subsets from the row
matrix semiring M = {(a, ..., a,) |a; € Z"U {0}, 1 <i<n}} be
the subset row matrix semiring.

Clearly this subset row matrix semiring has subset zero
divisors and subset idempotents.

However we do not have subset row matrix units. For if
A={(111... 1)} is the subset row matrix unit.
B={(100...111)} €S isarow matrix subset idempotent.

Example 3.31: Let S = {Collection of all subsets from the row
matrix semiring M = {(a; a; a3 a4 as) | a; € Q" U {0}, 1 <i<5}}
be the subset row matrix semiring. S has row matrix subset
idempotents.

Fortake A={(00111),(00000),(11000)} €5;
we see A X A

={00111),(00000),(11000)} x
{(00111),(00000),(11000)}

={00111)x(00111),(11000)x(11000),
(00111)x(11000),(11000)x(000111),
(11000)x(00000),(00111)x(00000),
(00000)x(00000)}!
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={(11000),(00111),(00000)}
=A.
Thus A is a subset row matrix idempotent of S. S has
several subset row matrix idempotents.
Let A= {(1/3,5/7,2,9, 1/17)} and
B={(3,7/5,1/2,1/9,17)} € S.
We see A x B

={(1/3,5/7,2,9, 1/17)} x {3, 7/5, 1/2, 1/9, 17)}
={(1 111 1)} is the subset unit of S.

Take A= {(a; 00 00)} < S.

All subsets from T = {Collection of all subsets from the
collection of matrices M = {(0,b,b,,bs,bs) where b; Q' u {0},
1 <i<4} < Sis such that for every B € T and

A={(a0000),(a0000),...,(a0000)} €S
Wehave AxB={(00000)}.
Thus S has infinite number of subset zero divisors.

S has also subset matrix subsemirings which are not subset
matrix ideals.

Consider T = {Collection of all subset from the matrix
subsemiring N = {(aj, a,, a3, a4, as) where a; € Z" U {0}, 1 <i<
5}} < S, T is only a subset matrix subsemiring which is not a
subset matrix semiring ideal of S.

Inview of all these we have several results which will be
enumerated later.

Example 3.32: Let S = {Collection of all subsets from the row
matrix semiring M = {(a; a, a; a; as ag) | a; € L =
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1 <1< 6}} be the subset row matrix semiring.

S has subset zero divisors and has no subset units. S has
subset idempotents. S has subset row matrix subsemirings as
well as subset row matrix semiring ideals.

Forif A={(001alb)}and
B={(abc101),(01fed0)} eS.

AxB
=ANB
= {(00lalb)}x{(abcl01),(01fed0)}
= {(00lalb)x(abc101),(001alb)x
(01fed0)}
= {(00ca0Ob)(00fed0)} eS.
AUB
=A+B

={00lalb}uiabcl01),(01fed0)}

={00lalb)u(abcl01),(00lalb)u
(01fed0)

={@bl1111),(011alb)}esS.

This is the way M and U operations are done on S.
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Example 3.33: Let S = {Collection of all subsets from the row
matrix group semiring M = {(a; a, a3) | a; € (Z" U {0})D,5; 1 <i
< 3}} be the subset row matrix semiring of M.

S is a non commutative subset semiring.

Let A= {(4 +2a+b’,3a+5b’, 10b’ + 5a + 7)} and
B={(2a+1,b,b", (7b2+1, 2b+3, a)} € S.

We find

AxB
= {(4+2a+b’ 3a+5b% 10b> + 5a+7) x
(2a+1,b,b%, (4 +2a+b’,3a+ 5b% 10b> + 5a +
7) x (76> + 1, 2b + 3, a)}

= {(4+2a+b’x2a+1,3a+5b"xb, 10b° +5a +
7xb%), (4+2a+b’x7b*+1,3a+5b> x 2b + 3,
10b® + 52 + 7 x a)}

= {(8a+4a’+2b’a+4+2ab+b’, 3ab + 5b°,
10b” + 5ab* + 7b%), (28b* + 14ab”> + 7b° + 4 + 2a +
b’, 6ab + 10b° + 9a + 15b%, 10b’a + 5a° + 7a)}
= {(8a+ 8 +2b’a + 2ab + b’, 3ab + 5b’, 10b* +
5ab* + 7b%), (28b% + 14ab® + 7,4 + 2a + b°,
6ab + 10b> + 16a + 15b> + 10b’a + 5)} € S.
We now find

A+B

{(4+2a+b’ 3a+5b% 10b° +5a+7)} +
{(2a+1,b,b", (76> + 1, 2b + 3, a)}

{(5+4a+b’ 3a+5b>+b, 10b’+b*+ 5a+7),
(2Qa+7b*+2,3b+3,a+b")} eS.

This is the way operations are performed on S.



Subset Semirings of Type II | 129

Further we see S has subset units and subset zero divisors.
For take A = {(a, b*, a)} and B= {(a, b’, a)} € S.

We find A x B

= {(a, b, a)} x {(a, b, a)}
={(1, 1, 1)} e S is the subset unit.

Let
A = {(0, a, b), (0, 3a + 5b> + 8b, 9a + b*), (0, 5b" + 13a + 9, 0)}
and

B={®a+b’+1,0,0), (10a+ 15ab + b, 0, 0), (12a + 3b’
+25ab% 0, 0)} € S.

We see A x B = {(0, 0, 0)} thus S has subset zero divisors.
S has subset subsemirings as well as subset semiring ideals.

We just give them for this S. Let P = {Collection of all
subsets from the subset row matrix semiring M; = {(a, 0, 0) |
ae (Z"u {0}, D,s} < M} < S, P is a subset row matrix
subsemiring as well as subset semiring ideal of S.

Infact S has infinite number of subset row matrix
subsemirings as well as subset row matrix semiring ideals. For
take L = {Collection of all subsets from the row matrix
subsemiring V = {(x,y, 2) | X, y, z € (Z" U {0})[G] where G =
{b| b= 1} < Dysis a subgroup of D, st} < S, L is a subset row
matrix subsemiring of S.

Clearly S is not a subset row matrix semiring ideal of S.
Thus we see S has infinite number of subset subsemirings which
are not subset semiring ideals of S.

Example 3.34: Let S = {Collection of all subsets from the
interval column matrix semiring;
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[a,,b,]
[a,,b,] s :

M= a, bi € {Z' W {0}}, 1 <i<4j}
[a;,b;]

[a,,b,]

be the subset interval column matrix semiring of infinite order.

We see M has infinite number of subset zero divisors. M
has also subset idempotents which are finite in number and has
infinite number subset interval matrix subsemirings as well as
infinite number of subset interval semiring ideals.

Example 3.35: Let S = {Collection of all subsets from the
interval column matrices

[a,,b,]

[a,,b,]

M= a, b e (Q"UTU {01), 1<i<9}

[ay,b,]

be the subset interval column matrix semiring of infinite order.
S has subset interval column matrix zero divisors, subset
interval column matrix idempotents, subset interval column
matrix subsemirings and subset interval column matrix semiring
ideals.

Example 3.36: Let S = {Collection of all subsets from the
interval column matrix semiring

[a,,b,]

[a,,b,] "
M= 2: ’ ai, by e (R"U {0}) (21, 22), g7 =0 g} =g,

[a12’b12]
og =gz =0,1<i<12}}
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be the subset interval column matrix semiring of infinite order.

Let A= {ag; |a e 3Z U {0}} and B = {bg, |b e 52" U
{0}}

[a,,b,]
|| [a,,b,] .
Suppose S = : a,bje A, 1<1<12}} and
[a),,b),]
[a,,b,]
_ || [a,,b,] .
Sg= : a;, b; € B,1 <i<12}} be subsets of S.
[a5,,b),]

Clearly S, is a subset column interval matrix subsemiring
and Sp is also a subset column interval matrix subsemiring.

Both S, and Sy are not subset interval matrix semiring
ideals of S.

[0,0]

[0,0]

Further for every A; € Sa; A; x A = and for

[0,0]
[0,0]
[0,0]

every B, € Sg we have B; x B; =

[0,0]

Also for every A; € S, and B; € Sg we have
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[0,0]
Ay x B, = |0
@m
[0,0]]
Thus we have Sy x Sy = [0’:0] :
@%
[0,0] [10,0]
Sp x Sp = [O’:O] and S, x Sp = [0’:0]
@m _@m

Thus S has infinite number of interval matrix subset zero
divisors.

Take M = {Collection of all subsets from the interval
column matrix subsemiring

[a,,b,]

[a,,b,]

P= a, b e Qg U {0},1<i<12}} =S

[a1,,b),]

be a subset interval column matrix subsemiring.

P is also a subset interval column matrix semiring ideal
of S.

Consider N = {Collection of all subsets from the interval
column matrix subsemiring
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[a,,b,]

[a,,b,]

T= a,be Qgpu {0}, 1<i<12}cS

[a1,,b),]

be the subset interval column matrix subsemiring.

N is also a subset interval column matrix semiring ideal of
S.

Example 3.37: Let S = {Collection of all subsets from the
interval column matrix semiring

[a;,b,]

[a,,b,]

M = ai, b e (Z"UTU {0})) (g1, &), g =0,

[ay,by]
2=, 218 =g =0,1<i<9}}

be the subset interval column matrix semiring of infinite order.

S has infinite number of subset interval column matrix
subsemirings, also S has infinite number of subset interval
column matrix zero divisors but has only finite number of
subset idempotents.

All these subset column interval matrix semirings are
commutative and of course the product is the natural product x,.

We now proceed onto give examples of both finite subset
interval column matrix semirings and infinite subset interval
column matrix semirings which are non commutative.

Example 3.38: Let S = {collection of all subsets from the
interval column matrix semiring
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1
[a,,b,]

M= [az,:bz] a,bjelL= }"
[a,,b,] f d

g

h
i j

0

1 <1< 9}} be the subset interval column matrix semiring of
finite order. S has subset idempotents and subset zero divisors.

Example 3.39: Let S = {Collection of all subsets from the

interval semiring

1
[a,,b,]
,b
M= [32,2] ai,bieL= i
: g
[a12’b12]
e d
C
a b
0

1 <1< 12}} be the subset interval column matrix semiring of

finite order.



Subset Semirings of Type II | 135

Example 3.40: Let S = {Collection of all subsets from the
interval column matrix semiring

[a;,b,]

[a,,b, ]

M= a,bie (Z" U {0})S;1<i<10}}

[a15,b)0]

be the subset interval matrix semiring of infinite order which is
non commutative under natural product x,.

Example 3.41: Let S = {Collection of all subsets from the
interval matrix column semiring

[a,,b,]
[a,,b,] N .

M= a, bi S (Q ) {O})D27, 1 S1S4}}
[a;,b;]

[a,,b,]

be the subset interval column matrix semiring; which is non
commutative of infinite order under natural product x,,.

[3a+2,5b]
[6b+38,0]
Let A= 5 and
[a+2b,5b7]

[3a+2ab’,ab]

[0,3a +2b]
[5b,6a + 5b + 3ab]
B= 5 e S.
[2ab +b°,3a + 5b + 3ab]

[0,ab + 3ab*]
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We find
[3a+2,5b] [0,3a +2Db]
[6b+38,0] [5b,6a + 5b + 3ab]
A + B = 2 + 2
[a+2b,5b7] [2ab+b”,3a + 5b + 3ab]
[3a +2ab*,ab] [0,ab + 3ab’]

[3a+2,7b+3a]
[11b +8,6a + 5b + 3ab]
[a+2b+2ab+b?,5b” +3a + 5b + 3ab]
[3a +2ab*,2ab + 3ab’ ]

Now we find the product

[3a+2,5b] [0,3a + 2b]
Ax [6b+38,0] y [5b,6a + 5b + 3ab]
[a +2b,5b%] [2ab+b*,3a + 5b+3ab]
[3a +2ab*,ab] [0,ab + 3ab’]

[3a +2,5b]x[0,3a + 2b]
[6b +8,0]x[5b,6a + 5b + 3ab]
[a +2b,5b”]x[2ab +b*,3a + 5b+ 3ab]
[3a+2ab’,ab]x[0,ab + 3ab’]
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[0,15ba +10b°]
[30b” + 40b,0]
[2b+4a +ab” +2b’,15b%a + 25b° +15ba]
[0,1+b]

This is the way operation + and x are performed on S.

Example 3.42: Let S = {Collection of all subsets from the
interval column matrix semiring

[a;,b,]

[a,,b,]

M= aj, bi € (I{Jr |\ {0})54,1 <i< 8}}

[ag,by]

be the subset interval column matrix semiring.

S 1s a non commutative infinite subset interval column
matrix semiring.

S has infinite number of subset zero divisors. S has subset
idempotents.

10,011
[1,0]
(0,1]
Leta={[ P o
(0,0]
(1,0]
(L,1]
L[0,01]

A x A = A is a subset idempotent of S.
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L
[0,0]
[0,0]
[0,0]

LetB = e S.

[0,0]

[0,0]

[0,0]

L1

B x B = B is again a subset idempotent in S. S has only a
finite number of subset idempotents.

Example 3.43: Let S = {Collection of all subsets from the

[a,,b,]

[a,,b,]

interval column matrix semiring M = a, b; € LA,

[a5,bs]

where L = p A1
p A2
p A3
¢ ay
[ ] as
p do

¢ A7
p dAg

» 0

1 <1< 5} be the subset interval column matrix semiring which
1s non commutative but of finite order.
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Clearly S has no subset nilpotents of order two but S has
subset zero divisors.

Example 3.44: Let S = {Collection of all subsets from the

[a,,b,]

. . .. a,,b
interval column matrix semiring M = [ 2 2] a;, b; € LDg;

[ag,b, ]

1 <1 < 9} be the subset interval column matrix semiring of
finite order which is non commutative.

We can have several such subset interval column matrix
semirings which are commutative and non commutative.

Now we just proceed onto describe subset interval m x n
matrix semiring.

Example 3.45: Let S = {Collection of all subsets from the
interval 3 x 5 matrix semiring

[a,,b,] ... [ag,bs]
S= 14| [ac,be] - [a,0,b,0]]]aibi e QU {0}, 1 <i<15}}
[a,,b,] ... [a5,bs]
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be the subset interval 3 x 5 matrix semiring of infinite order
under natural product x, of matrices.

Clearly S is commutative.

Example 3.46: Let S = {Collection of all subsets from the
interval 5 x 2 matrix semiring

[a;,b,]  [a;,b,]

[a;,b;] [a,.b,]

M= a,b e Z'U {0}, 1<i<10}}

[a,,by] [a)9,b0]

be the subset interval 5 x 2 matrix semiring of infinite order
which is commutative and has infinite number of subset zero
divisors but has only finite number of subset idempotents.

Example 3.47: Let S = {Collection of all subsets from the
interval 5 x 5 matrix semiring

[a,,b;] .. [as,bs]

[as,bs] ... [a,.by]

M= a, b; € <Z+UI> o {0},

[a5,b5] o [85,D5]
1 <i<25}}
be the subset interval square matrix semiring of infinite order.
S has infinite number subset interval matrix zero divisors
but has only finite number of subset interval matrix

idempotents.

S has also subset interval matrix subsemirings and subset
interval matrix semiring ideals.
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Example 3.48: Let S = {Collection of all subsets from the
3 x 10 interval matrix semiring

[al,bl] [azabz] [alo,blo]
M= <|[a,,b,] [a5,b,] - [ay,by]|] @,biec L=

[aZI’bZI] [a22’b22] [aSO’b30]

S

1 £1<30}} be the subset interval matrix semiring.
Clearly S is of finite order and S is commutative.

Example 3.49: Let S = {Collection of all subsets from the

[a;,b,] [a,,b,]
interval matrix semiring M = : : a;, b;

[all’bll] [aIZ’bIZ]
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1
L= a b
c
d
e
f
g
1 h
0

1 <1< 12}} be subset interval matrix semiring of finite order. S
has several subset idempotents only a few subset zero divisors.

Example 3.50: Let S = {Collection of all subsets from the
interval matrix semiring

[a,,b,] [a,,b,] .. [a,,b,]
M= [313,b13] [314,b14] [324,b24] ai,biEL:leLz

[a25’b25] [a26’b26] [336’b36]

where
L 1= 1 and L2 = 1
a c b
XX c
f d
d e
0 f
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1 <1< 36}} be the subset interval matrix semiring of finite
order.

S 1s commutative has subset zero divisors and subset
idempotents.

Example 3.51: Let S = {Collection of all subsets from the
subset interval matrix semiring

b1 .. b +
M= |: |:a1 1] [313 13]:| a,bjeLxZ U {O} where
[a,4,D,] o [ay,D5]

XA

1 £1 <26} be a subset interval matrix semiring of infinite order.

Now we proceed onto describe a few non commutative
subset interval matrix semiring.

Example 3.52: Let S = {Collection of all subsets from the
interval matrix semiring

[a;,b,] [a,,b,]
M= 1|[a;,b;] [a,,b,]|] a,bie (Z U {0})S;,1<i<6}}
[a5,b5] [a5,b]

be the subset interval matrix semiring of infinite order under the
natural product x,. S has subset zero divisors and subset units.



144 | Subset Semirings

[0,0] [0,0]
Clearly §|[0,0] [0,0]|; is the subset interval zero matrix.
[0,0] [0,0]

(L1] [L1]
[1,1] [1,1]|; is the subset interval unit matrix of S.

[1,1] [1,1]

(P11 L]
Let A= <] [p,,11 [p,»p,]1|t € S is such that

[ps>ps]  [Lps]

[p.11 [Lp] [p.11  [Lp,]
AxA (p,.1]  [pispol|p x 9| [P21] [PysPs,]
|[Ps,p5]  [Lps] [ps>ps]  [1,ps]

[ [puUx[pn1l [LpIx[Lp,] ]}

= [p,-11x[p,»1]1  [p>P21%[Ps5P,]
L[Ps5,ps1x[ps,p;]1  [Lps]x[Lp;]

1,11 [L1]
=J[L1] [L1]
[1,1] [L1]

i ) _ 2 _ ) _ _ 1 2 3
since p, =1, p; =1, p; =1 where p, ,

13 2
123 123y

= and p; = )

P27y TP,
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Thus A is a subset interval matrix unit of S.

[0,1] [0,3p, +p, +ps]
A= [p4 + p570] [5p4 + 8p5a0]

[0,0] [8ps +9p,,0]
and
[8p, +9p; +p,,0] [21p, +81p,,0]
B= [0,10p, +27p;] [0,40p, +59p, +ps]|r €S

[98p, +100p, +43p,,28p,] [0,40p, +38p, +p;]

issuchthat Ax B=B x A

[0,0] [0,0]
= 4/[0,0] [0,0]|; is the subset zero divisor of S.
[0,0] [0,0]

. 123 1238)
ere P4 = and ps = .
il 3 Ps=l3 | o)™

Clearly S is non commutative and of infinite order.
Take

[p,»1]  [p,,0] [p,,1]  [ps»1]
A=14[0,p;] [LI] and B=4/[0,p,] [0,p,] | €S.
[0,p,]1 [p,>p;] (Lp,] [pssp,]

We now find
[p,»1]  [p,,0] [p,,11  [ps1]
AxB =4[[0,p;] [L1] x 1| [0,p,] [0,p,]

[0,p,] [P,>ps] [(L,p,] [p.>p;]
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[P, 11%[p,s11  [p,,01x[ps.1]

=1/ [0,p;1x[0,p,]  [L,1]x[0,p,]

| [0,p,1x[L,p,]  [PssP51%[pPssD:]
[[ps.11  [ps.0]

= [Oapz] [O,I)z] |
| [Lps] [pssps]

Consider
P11 [ps.1] [p,.11  [p,.0]
BxA =4/[0,p,] [0,p,] |p x4[[0,p;] [L1]
| [Lp,] [psspi] [(0,p,] [p,>ps]

[ [p,. 10x[p. 11 [ps.11x[p,.0]

=1 [0,p,1x[0,ps]  [0,p,]x[L]1]

| [Lp,1x[0,p, ] [ps>p 1% [P,,D;5]

[[pas1] [ps0]

= [O9p1] [Oapz] oI
[Lp,] [Ps.p.]

Clearly I and 1II are distinct so A x B # B x A in general for
A,BeS.

Thus S is non commutative subset interval matrix semiring
under the natural product x, of interval matrices.

Example 3.53: Let S = {Collection of all subsets from the
interval matrix semiring
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[a,,b,] [a,,b,]
,b ,b
[a3: ;] [a4: s a;, b; € (L x L,)S;; where

M:
[ag,b()] [aIO’bm]
1
1
L= a b and L, = F
®a
Y ® a
d |a5
(& ’a4
f
a3
1 g ap %)
0

1 <1< 10}} be the subset interval matrix semiring of finite
order which is non commutative.

S has subset zero divisors and subset idempotents.

S has also subset interval matrix subsemirings and subset

interval matrix semiring ideals.

Example 3.54: Let S = {Collection of all subsets from the
interval matrix semiring
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[a;,b,]
,b
M= 12202 b @0 10}). (5 A x Da),
[a;,b,]
[a,,b,]

1<i<4}}

be the subset interval matrix non commutative semiring of
infinite order.

S has subset units, subset zero divisors and subset
idempotents.

Infact S has infinite number of subset interval matrix
subsemirings and subset interval matrix semiring ideals.

Example 3.55: Let S = {Collection of all subsets from the
interval matrix semiring

[[a,,b,] [a,,b,]]
[a;,b;] [a,,b,]
M= {1[a5,bs]  [ag,b] || @, bie (LixLyxLsxLy) Ay
[a;,b;] [ag,bs]
[29,b5] [a,,by]]

where L, is a Boolean algebra of order 16,



{ 1
L,= ® a;
» a,
J a3
N
as
a7
ae ’ < ag
a a9
0
and L, is a chain lattice.
L=
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L3 =
1
a; a
a3
dyq as
de
a7 ag
0
a
Leh)
as

ag

1 <1 < 10}} be the subset interval matrix non commutative
semiring of finite order.

This has lots of subset zero divisors, subset units and subset

idempotents.

Example 3.56: Let S = {Collection of all subsets from the
interval matrix semiring
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[a,,b,] [a,,b,]
[a,,b,] [a,,b,]|| &, bi € LS, where

[a5,bs] [aq,b]

M

1 <1 <6} be the subset interval matrix semiring of finite order.
S is non commutative and has subset idempotents and subset
zero divisors. S has also subset semiring ideals.

Example 3.57: Let S = {Collection of all subsets from the
interval matrix semiring
[a,,b,] [a,,b,]

a,,b a,,b
M= [ 3: S 4: 4] a;, by € (Ly x Ly) (S5 x Dy7);

[a9,b0] [ay,by]
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where

L= and L, = L,

f d p d

W

ds

d dy

0 J

be the subset interval matrix semiring of finite order which is
non commutative.

Next we proceed onto describe subset polynomial semirings
of type II by examples.

Example 3.58: Let S = {Collection of all subsets from the
polynomial semiring

aeZ U0}

M= {i aixi
i=0

be the subset polynomial semiring of type II.
Such study is made in [26].

We see this is an infinite commutative semiring which has
subset semiring ideals and subset subsemirings.

However we see this subset semiring has no subset zero
divisors and is a strict semiring which is a subset semifield.
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It is also important to observe if S = {Collection of all
subsets from the semiring Z" U {0} or Q" U {0} or R" U {0}}
then S is a subset semifield.

Forif A,B € Swesee A+B = {0} if A= {0} and B # {0}
further A x B # {0} if A # {0} and B # {0}.

Thus we can have subset semifields. Infact we have a class
of such subset semifields.

Example 3.59: Let

S = {Collection of all subsets from (Q" U {0}) [x]} be the
subset polynomial semiring of type II. S has no subset zero
divisors. Further S is a subset semifield.

Suppose
A={3x>+2,10x° +4x + 1} and B= {x +3x + 1, 3x* + 4} € S.

Wenow show A+B=B+Aand AxB=B x A.

A+B
= {3x*+2,10x" +4x + 1} + {x' +3x +1,3x* + 4}

=37 +2+x +3x+ 1,10 +4x+ 1 +x"+3x +
1,105 +4x + 1 +3x%+ 4,3 + 2+ 3x* + 4}

= X +3x°+3x+3,x" +10x° + 7x + 2, 3x* +
10x° +4x + 5, 3x* + 3x* + 6} € S.

Easily verified A + B = B + A, under addition infact for all
A, BeS.

Consider
A xB

= 3x7+2,10x’ +4x + 1} x {x' +3x+1,3x° + 4}

= 3x°+2xx +3x+1,3x° +2 x 3x* +4, 10x* +
Ax+1xx +3x+1,10x> + 4x + 1 x 3x® + 4}
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= 21x" + 9%’ + 3x> + 2x" + 6x + 2, 9x " + 6x° +
12x> + 8, 10x'% + 4x3 + x7 + 30x* + 12x*> + 3x +
10x> + 4x + 1, 30x"" + 12x° + 3x® + 40x> + 16x +
4}

= 21x°+2x"+9x> + 3x* + 6x + 2, 9x'* + 6x° +
12x% + 8, 10x'% + 4x® + x” + 3x* + 10x° + 12x°* +
7x + 1, 30x" + 12x° + 3x* + 40x> + 16x + 4} € S.

It is easily verified A x B =B x A for all A, B € S as
basically polynomial multiplication is commutative.

By using the notion of subset polynomial semiring of type
IT we get subset semifields of infinite order.

Example 3.60: Let S = {Collection of all subsets from the
polynomial semiring L[x] where L =

ol

X
» A2
¢ A3
$a >
® a;
p do

¢ A7

» 0 )

be the subset polynomial semiring.
S is again a subset semifield.

We have the following theorem.
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THEOREM 3.3: Let S = {Collection of all subsets from the

polynomial ring (R* U {0})[x] (or (O U {0Y[x], (Z* < {0})[x]
or C,fx]; n < oo C, a chain lattice of length n)} be the subset
polynomial semiring of type I1.

S is a subset polynomial semifield.

The proof is direct and hence left as an exercise to the
reader.

It is pertinent to keep on record that we do not have subset
field of polynomials further we do not have subset semifields if
we build subset polynomials from the distributive lattices which
are not are chain lattices and also over semirings
(Z" U {0}) () [x] where g° = 0 and so on.

We will just illustrate this situation by an example or two.

Example 3.61: Let S = {Collection of all subsets from the
polynomial semiring (Z~ U {0})(g1,g)[x]; where g = 0,
g>=g, and g1, = g,g; = 0} } be the subset polynomial semiring.

Clearly S is not a subset semifield, for if A = {8g;} and

B = {18g;x" + 10x’g, + 12g,} € S, we see A x B = {0} s0 S is
not a subset semifield only a subset semiring.

Example 3.62: Let S = {Collection of all subsets from the
polynomial semiring

a; € L[x]

M= {iaixi
i=0

where L is a distributive lattice given in the following:
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be the subset polynomial semiring. Clearly S is not a subset
semifield.

Take A = {kx' + jx’ + k, jx"* + kx> + j} and B = {Ix* +
1x", 17} € S. Wesee A x B = {0}.

Thus S is only a subset semiring and is not a subset
semifield.

Example 3.63: Let S = {Collection of all subsets from the
polynomial semiring

a; € L[x] where L =

M= {iaixi

i=0
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be the subset polynomial semiring. S is not a subset polynomial
semifield as S has subset zero divisors. We see if L has zero
divisors then S also has subset zero divisors.

Example 3.64: Let S = {Collection of all subsets from the
polynomials semiring (L, x L,) [x]; where L; =
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and L = Boolean algebra of order 2°}} be the subset polynomial
semiring. S is not a subset semifield.

Example 3.65: Let S = {Collection of all subsets from the
polynomial semiring

ai e (Q U {0}) (g, & ), g =0, g; =,

M= {Zaixi
i=0
g; =0,gg=gg=0,1<i,j<3}}

be the subset polynomial semiring which is not a subset
semifield.

Example 3.66: Let S = {Collection of all subsets from the
polynomial semiring

a; € L; x L, x L; where

M= {Z ax'
i=0
L, = a Boolean algebra of order 2* L, = C¢ a chain lattice and

L:=
3 | \

a b
c
d
e
f
g 1
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be the subset polynomial semiring which is not a subset
polynomial semifield.

Now we proceed onto describe subset interval polynomial
semirings.

Example 3.67: Let S = {Collection of all subsets from the
interval polynomial semiring

a;, bi (S R+U {O}}}

M= {i[ai,bi]xi

be the subset interval polynomial semiring which is not a
semifield.

Example 3.68: Let S = {Collection of all subsets from the
interval polynomial semiring

a;, bi (S Q+U {0}}}

M= {i[ai,bi]xi

be the subset interval polynomial semiring of M. S is not a
semifield.

Example 3.69: Let S = {Collection of all subsets from the
interval polynomial semiring

a, b;eL= a6

M= {i[ai,bi X

i=0
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be the subset interval polynomial semiring.

L is a chain lattice and has no zero divisors but S has subset
zero divisors.

Take A = {[0, a;]x* + [0, as]x’ + [0, a,]x’ + [0, a;],

[0, as]x + [0, a,]}
and
B = {[a;, 0]x’ + [a3, 0], [a3, 0]x” + [a;, 0]x* + [as, 0]} € S.

We see A x B = {[0, 0]}.

Thus S has subset zero divisors so S is not a subset interval
polynomial semifield only a subset interval polynomial
semiring.

Example 3.70: Let S = {Collection of all subsets from the

polynomial semiring

a;, bi (S Q+U {0}}}

M= {i[ai,bi]xi

be the subset interval polynomial semiring. S is not a subset
interval polynomial semifield. Consider A; = {Collection of all
subsets from the interval polynomial subsemiring

aeQ uU{0}}cM}csS

Pl :{i[o, ai]Xi

is a subset interval polynomial subsemiring of S.

A, = {Collection of all subsets from the interval polynomial
subsemiring

P, = { 3 [a,0]x'|a; € Q" U {0}} =M} S

1

is a subset interval polynomial subsemiring of S.
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We see A; and A, are subset interval polynomial semiring
ideals of S. Clearly A; x A, = {[0, 0]}.

That is every element in A; annihilates every element in A,
and vice versa.

If in the example 3.70; Q" U {0} is replaced by any
semiring or any semifield or by a chain lattice or any other
distributive lattice still the results hold good.

Example 3.71: Let S = {Collection of all subsets from the
interval polynomial semiring

M= {i[ai,bi]xi a,bje L= ; 1)
a c
R
g
i h
)/
0

be the subset interval polynomial semiring. Clearly S is not a
subset semifield.

Inview of this we have the following theorem.
THEOREM 3.4: Let S = {Collection of all subsets from the

interval polynomial semiring

M= {i[apbi]xi a;, bi EZ+ u{o} (07" Q+ U{O} 0rR+ U{O}

or (O U {0)(g) (&° = 0), L a distributive lattice and so on)}}
be the subset interval polynomial semiring.
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(i) S has infinite number of subset interval polynomial
zero divisors.

(ii) S has two subset interval polynomial semiring ideals
A; and A; such that A; x A, = {[0, 0] }.

The proof is direct and hence left as an exercise to the
reader.

We have already given examples of these.

Now we proceed onto give examples of finite subset
interval polynomial semirings of type II.

Example 3.72: Let S = {Collection of all subsets from the
interval polynomial semiring

a,bjel,0<i<8andx’=1}

M= {Zgl[ai,bi]xi

i=0

and L is the lattice which is as follows:
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be the subset interval polynomial semiring of finite order. S is
commutative but has subset zero divisors.

Example 3.73: Let S = {Collection of all subsets from the
interval polynomial semiring

M= {Z:[ai,bi Ix'| a;, b; € L as follows:

i=0

I ao
0

be the subset interval polynomial semiring of finite order which
is commutative.

S has subset interval polynomial semiring ideals as well as
subset zero divisors and subset idempotents.

Example 3.74: Let S = {Collection of all subsets from the
interval polynomial semiring

a,beLSux'=1;0<i<3}

M= {i[ai,bi]xi

i=0

and L is as follows:
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1 AR

b e pr
el

JJ

be the subset interval polynomial semiring of type II of finite
order.

The main feature about this S is that S is a non commutative
subset polynomial interval semiring of finite order.

Example 3.75: Let S = {Collection of all subsets from the
interval polynomial semiring

a;, b; € (L x Ly) Ay where L is a

M= {Z7l[zli,bi])<i

i=0

Boolean algebra of order 2* and L, is chain lattice Cyo; 0 < i <
7} and x® = 1}} be the finite interval subset polynomial
semiring of finite order which is non commutative.

If L, x L, is replaced by Z" U {0} or (Z" U I) U [0] or
Q" U {0} and so on we get non commutative infinite subset
interval polynomial semirings of type II.

We suggest the following problems for this chapter.
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Problems

1.

What are the special features enjoyed by subset semirings
of type 11?

Distinguish between the subset semirings of type I and
subset semirings of type II.

Give some examples of subset semiring of finite order
which is non commutative.

Let S = {Collection of all subsets from the semiring
S=2Z"U {0}} be the subset semiring of type II.

(1) Does S contain subset zero divisors?

(i) Can S have subset idempotents?

(iii) Can S have subset subsemirings which are not subset
semiring ideals?

(iv) Is S a S-subset semiring?

(v) Can S have S-subset semiring ideals?

Let S; = {Collection of all subsets from the semiring
(Z" U T)u {0}} be the neutrosophic subset semiring.

Study questions (i) to (v) of problem 4 for this S;.

Let S = {Collection of all subsets from the semiring
(Z" U {0})(g) where g* = 0} be the subset semiring of
type IL.

Study questions (i) to (v) of problem 4 for this S.

Let S; = {Collection of all subsets from the semiring
(Z"U {0}) (g) where g* = g} be the subset semiring.

Study questions (i) to (v) of problem 4 for this S;.

Is Sy in problem 5 isomorphic with this S;.
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11.
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Let S = {Collection of all subsets from the subset
semiring (Z" U {0}) (g1, g2) where g/ =0, g; =g, gig2 =
2,21 = 0} be the subset semiring of type II.

Study questions (i) to (v) of problem 4 for this S.

Let S = {Collection of all subsets of the semiring R* U
{0}} be the subset semiring of type II.

Study questions (i) to (v) of problem 4 for this S.

Let S = {Collection of all subsets from the semiring L = a
Boolean algebra of order 2°} be the subset semiring of
type II of finite order.

Study questions (i) to (v) of problem (4) for this S.

Let S = {Collection of all subsets from the semiring L =

F 1 \
b a;

®a

la3

 a, >

as

g a7

be the subset semiring of type II of finite order.

Study questions (i) to (v) of problem (4) for this S.
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12.  Let S = {Collection of all subsets from the semiring M =

1 \

a a

as day

<
Ko

a an

. J

be the subsetsemiring of type II.

a7

(i)  Find o(S).

(i1))  Find the number of subset zero divisors in S.

(i) Find the number of subset idempotents of S.

(iv) Find the number of subset subsemirings of S.

(v)  Find the number of subset semiring ideals in S.

(vi) Find the number of subset subsemirings which are
not subset semiring ideals.

(vii) Is S a Smarandache subset semiring?

(viii) Can S have subset semiring S-ideals?

(ix) Can S have S-subset subsemirings?

(x) Can S have S-subset zero divisors?

13. Study the special features enjoyed by non commutative
finite subset semirings.

14. Let S = {Collection of all subsets from the semiring B, a
Boolean algebra of order 32} be the subset semiring.

Study questions (i) to (x) of problem (12) for this S.
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15. Let S = {Collection of all subsets from the semiring
L, x L, where

and L, =

be the subsemiring of finite order.
Study questions (i) to (x) of problem (12) for this S.
16. Let S = {Collection of all subsets from the semiring

L(g)={a+bg|a,b e L where

L= and g*=0}}
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be the subset semiring of type II.
Study questions (i) to (x) of problem (12) for this S.

17. Let S = {Collection of all subsets from the semiring
L(g,g)={a+bg +cglabcel, g =0, g =g,
g =g =0tand L =

1
\
a
a
a3
as >
as
e az
0 J

be the subset semiring of type II.
Study questions (i) to (x) of problem (12) for this S.

18. Let S = {Collection of all subsets from the semiring LA,

where L = 1 A

a7
a6
as

< p

%) as

a




19.

20.

21.
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be the subset semiring of type II.
Study questions (i) to (x) of problem (12) for this S.
Let S = {Collection of all subsets from the semiring

LS; where L =

be the subset semiring of type II.

Study questions (i) to (x) of problem (12) for this S.

Let S = {Collection of all subsets from the semiring LA;
where L is a Boolean algebra of order 64} be the subset
semiring.

Study questions (i) to (x) of problem (12) for this S.

Let S = {Collection of all subsets from the semiring
(LxLy)Sy L=
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22.

23.

and L, =

be the subset semiring of type 1.
Study questions (i) to (x) of problem (12) for this S.

Let S = {Collection of all subsets of the semiring
(Z" U T)S(3)} be the subset semiring of type 1.

Study questions (i) to (v) of problem (4) for this S.

(i)  Prove S is non commutative.

(i1)) Can S have subset semiring right ideals which are
not subset semiring left ideals?

(iii) Can S have right subset zero divisors which are not
left subset zero divisors?

Let S = {Collection of all subsets from the semiring
(Z" U T U {0})A4 x Dy;)} be the subset semiring of type
IL.



24.

25.

26.
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Study questions (i) to (v) of problem (4) for this S.
Study questions (i) and (iii) of problem 22 for this S.

Let S = {Collection of all subsets from the semiring
(Q" (g1, g2, g3) U {0})} where g/ =0, g5 =g, g5 =0,

gigi = gig =0, 1 <1, j <3} be the subset semiring of type
I1.

Study questions (i) to (v) of problem (4) for this S.

Study questions (i) to (iii) of problem (22) for this S.

Let S = {Collection of all subsets from the semiring
L(S4 x Dyy) where L = {Boolean algebra of order 16}} be
the subset semiring of type II.

Study questions (i) to (v) of problem (4) for this S.

Study questions (i) to (iii) of problem (22) for this S.

Let S = {Collection of all subsets from the semiring

(Ly x Ly) (A4 x Dyyy) where L is a Boolean algebra of
order 32 and L, =
! )

ai teh)
a3

ay

-
O

A9 arg

e
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27.

28.

29.

30.

be the semiring of type II.
Study questions (i) to (v) of problem (4) for this S.
Study questions (i) to (iii) of problem (22) for this S.

Let S = {Collection of all subsets of the semiring
(Z" U {0}) D5} be the subset semiring of type II.

Study questions (i) to (v) of problem (4) for this S.
Study questions (i) to (iii) of problem (22) for this S.

Let S = {Collection of all subsets from the semiring
(Q"UTuU {0})D,;3} be the subset semiring of type II.

Study questions (i) to (v) of problem (4) for this S.

Study questions (i) to (iii) of problem (22) for this S.

Let S = {Collection of all subsets from the matrix
semiring M = {(a;, ay, a3, a4, as) | a; € (Z" U 1 U {0}),
1 <1< 5}} be the subset semiring of type I1.

Study questions (i) to (v) of problem (4) for this S.

Study questions (i) to (iii) of problem (22) for this S.

Let S = {Collection of all subsets from the semiring

M= {(al, day, ...,8.10) | a; € L=
1

)

ae ay
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32.
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1 <1< 10} be the subset semiring of type II.

(i)  Find o(S).

(i1))  Find all subset zero divisors of S.

(ii1) Find all subset units of S.

(iv) Find all subset idempotents of S.

(v)  Find all subset matrix subsemiring of S.

(vi) Find all subset semiring ideals of S.

(vii) Find all subset matrix subsemirings of S which are
not subset matrix semiring ideals of S.

(viii) Is S a Smarandache subset matrix semiring?

Let S = {Collection of all subsets from the matrix
semiring M =(d, dy, ..., dyg) |di e L=

1
a ap
a3
as
as
e
a ag
0

1 <1< 10}} be the subset semiring.
Study questions (i) to (viii) of problem 30 for this S.

Let S = {Collection of all subsets from the matrix

a, a, .. a,
semiringM = </ a;, a a,, ||a = (%, yi) € where

dy Ay, ... Ay
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x;€ Liandy, € Lyand L =L, x L, with

L] = 1
a ap
a3
s
as
g < ag
a dg
0

and L, = 1<i1<30}

dy

dy

be the subset semiring.

Study questions (i) to (viii) of problem 30 for this S.
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34.
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Let S = {Collection of all subsets from the matrix

semiring M = a; € B where B is a Boolean

algebra of order 2°; 1 <i <20} be the subset semiring.
Study questions (i) to (viii) of problem 30 for this S.
If in problem if 33 B is replaced by a chain lattice Cy,.

Study questions (i) to (viii) of problem 30 for this subset
matrix semiring.

Let S = Collection of all subsets from the matrix semiring

a, a,

a, e LS;1<i<4;andL =

1
\
a b
c
d € >
f
g h
0 J

be the subset matrix semiring.
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Study questions (i) to (viii) of problem (30) for this S.

36. Let S = {Collection of all subsets from the matrix

semiring M = a € (Li x LyDay;

a13 a14 alS

1 <1< 15 where L, is a Boolean algebra of order 2° and

L,=Co= o1
p A1
X5
p A3

¢ a, >
® as
p Ao
¢ 47

s 0 j

be the subset matrix semiring.

Study questions (i) to (viii) of problem (30) for this S.

37. Let S = {Collection of all subsets from the matrix
semiring M =

a; € L(Dy7 x S3);

1 £1 <16} be the subset matrix semiring.
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39.

40.

41.
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Study questions (i) to (viii) of problem 30 for this S.

Let S = {Collection of all subsets from the matrix

a, a, .. a,
semiringM = {|a, a, .. a,|lae(Z UDS;,
al‘) a20 a27

1 £1<27} be the subset matrix semiring of infinite order.

(i)  Prove S is non commutative.

(i1)  Can S have subset right zero divisors which are not
subset left zero divisors?

(iii)) Can S have subset idempotents?

(iv) Does S contain subset left semiring ideals which are
not subset right semiring ideals and vice versa.

(v) Is S a Smarandache subset semiring?

(vi) Does S contain S-subset semiring ideals?

Give some special properties enjoyed by subset interval
matrix semirings.

Let S = {Collection of all subsets from the interval matrix
Semiring M= {([ala bl]’ [aZ’ bZ]) | aj, bi € Z+ o {0}: 1<i<
2}} be the subset interval matrix semiring.

(i)  Characterize those subset zero divisors.

(i1)  Find all subsets matrix interval semiring ideals of S.

(iii) Find all subset matrix interval subsemirings of S
which are not subset semiring ideals of S.

(iv) Is S a Smarandache subset interval matrix
semiring?

(v)  Find all subset matrix subset interval zero divisors
of S.

Let S = {Collection of all subsets from the interval row
matrix Semiring M= {([ala bl] [a25 b2] 5 sy [aﬁa b6]) | aj, bi
are in
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42.

43.

1 <1< 6} be the subset interval row matrix semiring.

(i)  Find o(S).
(il))  Study questions (i) to (v) of problem 40 for this S.

Let S = {Collection of all subsets from the interval row
matrix semiring M = {([a;, b{] [a, bs] , ..., [a9, bo]) | i, b;
€ LS; where L is the chain lattice Ci,, 1 <1 < 9} be the
subset interval row matrix semiring.

(i)  Find o(S).
(i1)  Prove S is non commutative.
(ii1)  Study questions (i) to (v) of problem 40 for this S.

Let S = {Collection of all subsets from the interval row
matrix semiring M = {([a;, b{] [a,, bs] , ..., [as, bs]) | &, b;
€ (Z"w {0}) (g1, g) with g =0, g = &, 81 = 281 =
0, 1 <1< 5}} be the subset interval row matrix semiring.

(i) Show S is non commutative.
(i) Study questions (i) to (v) of problem 40 for this S.
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45.

46.
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Let S = {Collection of all subsets from the interval row

_[al,bl]_
[a,,b,]
matrix semiring M = 4| [a,,b,] || a, b; € R" L {0},
[a,,b,]
[as,b;]

1 <1< 5}} be the subset interval matrix semiring.

Study questions (i) to (v) of problem 40 for this S.

Let S = {Collection of all subsets from the column
interval matrix semiring M = {9 x 1 interval column
matrices with entries from (Q" U {0}) D1} } be the subset
interval column matrix semiring.

(i)  Prove S is non commutative.

(il))  Study questions (i) to (v) of problem 40 for this S.

Let S = {Collection of all subsets from the interval

[a,,b,]

[a,,b,]

column matrix semiring M = a;, b; €

[aIS ’bIS]
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47.

1
L=
i h
g
f
d e
c
a b
0

1 <1 < 15}} be the subset interval column matrix
semiring.

(i)  Find o(S).
(il))  Study questions (i) to (v) of problem 40 for this S.

Let S = {Collection of all subsets from the interval

[a;,b,]

[a,,b, ]

column matrix semiring M = a;, b; € LS,

[a10,b)0]

where L is a Boolean algebra of order 2°; 1 <i< 10}} be
the subset interval column matrix semiring.

(i)  Find oS).
(i1)  Study questions (i) to (v) of problem 40 for this S.
(iii) Prove S is non commutative.
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48. Let S = {Collection of all subsets from the interval

[a,b,]  [a;,b,]

a,,b a,,b
column matrix semiring M = [ ¥ I s a

[all’bll] [a12’b12]

a, bj € R" U {0}, 1 <i< 12}} be the subset interval
matrix semiring.

Study questions (i) to (v) of problem 40 for this S.

49. Let S = {Collection of all subsets from the interval
column matrix semiring

[a,,b,] [a,,b,] ... [ay,b,]
M= {|[a,.b,] [a,,b;] ... [a,.bg]|| a,bieL;

[a19’b19] [a20’b20] [a30’b30]

L a Boolean algebra of order 64, 1 < i < 30}} be the
subset interval matrix semiring.

(i) Find o(S).
(i1) Study questions (i) to (v) of problem 40 for this S.

50. Let S = {Collection of all subsets from the interval
column matrix semiring

[al’bl] [aZ’b2] [a3’b3] [a4’b4] [aS’bS]

M= [aG’.bG] [a7"b7] [a8’.b8] [a9’.b9] [aIO’.bIO]

[a2l’b21] [322’b22] [a23’b23] [324’b24] [aZSDbZS]
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1 <i1<25}} be the subset interval matrix semiring.

(i)  Find o(S).
(i1))  Study questions (i) to (v) of problem 40 for this S.

51.  Let S = {Collection of all subsets from the interval

[a,,b] ... [agbgl

. .. [a7sb7] [amblz]
column matrix semiring M = . .

[a31’b31] [a36’b36]

a;, b; € L(Dy x Ay) where L is a Boolean algebra of order
128, 1 <1<36}} be the subset interval matrix semiring.

(i)  Find o(S).
(il))  Study questions (i) to (v) of problem 40 for this S.
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53.

54.

55.

56.
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Let S = {Collection of all subsets from the interval

[a,,b,] ... [a,,b,]

. .. [allﬁbll] A [aZO’b20]
column matrix semiring M = ; i

[a61’b61] [a709b70]

a, by € (Q" U {0})S4, 1 <i<70}} be the subset interval
matrix semiring.

Study questions (i) to (v) of problem 40 for this S.

Give some special and interesting features enjoyed by
subset interval polynomial semirings of type II.

Distinguish type I and type II subset interval polynomial
semirings.

Give an example of a subset interval polynomial semiring
of finite order of type II.

Let S = {Collection of all subsets from the interval

polynomial semiring M = {Z“[ai,bi]xi a,by e Z" U {0}}

i=0

be the subset interval polynomial semiring of type II.

(i)  Find subset interval zero divisors of S.

(i1))  Find subset interval idempotents if any in S.

(ii1)) Find all subset interval polynomial subsemirings
which are not subset interval polynomial semiring
ideals of S.

(iv) Is S a Smarandache subset interval polynomial
semiring?

(v)  Find the collection of all subset interval annihilator
ideals of S.
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57. Let S = {Collection of all subsets from the interval

polynomial semiring M = {Z“[ai,bi]xi a, b e (Q U
i=0

{0}) S4} be the subset interval polynomial semiring.

(i)  Study questions (i) to (v) of problem 56 for this S.
(i1)) Prove S is a non commutative interval polynomial
semiring.

58. Let S = {Collection of all subsets from the interval
polynomial semiring

a;, b; € L where L is as follows:

M= {i[ai,bi]xi

i=0

0 J

the subset interval polynomial semiring.

(i)  Study questions (i) to (v) of problem 56 for this S.



59.

60.

61.

62.
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Let S = {Collection of all subsets from the interval
polynomial semiring

M= {f:[ai,bi]xi

a;, b; € LD, 7 where L is a Boolean

algebra of order 128}} be the subset interval polynomial
semiring.

(i)  Prove S is a non commutative.
(i)  Study questions (i) to (v) of problem 56 for this S.

Let S = {Collection of all subsets from the interval
polynomial semiring

a,bje (Z'U {0}),S7,0<i<9and

M= {i[ai,bi]xi

i=0

10
x =1}}
be the subset interval polynomial semiring.

Study questions (i) to (v) of problem 56 for this S.

Let S = {Collection of all subsets from the interval
polynomial semiring

a,bjel,0<i<8 x =1

M= {Zgl[ai,bi]xi

where L is a chain lattice Cys}} be the subset interval
polynomial semiring.

(i)  Find o(S).
(i1))  Study questions (i) to (v) of problem 56 for this S.

Let S = {Collection of all subsets from the interval
polynomial semiring
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63.

64.

J

be the subset interval polynomial semiring.

(1)  Find o(S).
(i1)) Prove S is non commutative.
(iii) Study questions (i) to (v) of problem 56 for this S.

Enumerate some special features enjoyed by non
commutative subset interval polynomial semirings of
finite order.

Give an example of a non commutative subset interval
polynomial semiring which has left subset zero divisors
which are not right subset zero divisors.
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66.

67.

68.

69.

70.

71.

72.

73.

74.

75.
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Characterize those subset interval polynomial semirings
which has Smarandache subset zero divisors?

Can a subset interval polynomial semiring have S-subset
interval units?

Can a subset interval polynomial semiring have
Smarandache subset idempotents?

Describe any other stricking features enjoyed by subset
interval polynomial semirings.

Characterize those subset interval polynomial semirings
in which every subset interval polynomial semiring ideal
is Smarandache.

Characterize those subset interval polynomial semiring in
which no subset interval polynomial semiring ideal is
Smarandache.

Characterize those subset interval polynomial semiring in
which every subset interval polynomial subsemiring is
Smarandache.

Characterize those subset interval polynomial semiring S
in which no subset interval polynomial subsemiring is
Smarandache but S is a Smarandache subset interval
polynomial semiring.

Does there exist a subset interval polynomial semiring
which is not Smarandache?

Can there be a subset interval polynomial semiring which
is a subset interval semifield?

Does there exists an infinite subset interval polynomial
semiring which has no subset interval polynomial
semiring ideals?
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76.

77.

78.

79.

80.

Obtain some special features enjoyed by S = {Collection
of all subsets from the interval polynomial semiring

a, by e (Z7U {0} U}

M= {i[ai,bi]xi

i=0

If in problem 76; (Z" U {0} U I) is replaced by (R" U {0}
w I) study the special features and distinguish it from S in
problem 76.

If in problem 76, (Z" U {0} U I) is replaced by L; x L, x

L; where L = Cy a chain lattice, L, a Boolean algebra of
order 32 and L; =

0
Study this and compare it with problems 76 and 77.

If in problem 77, (Z"~ U {0} U I) is replaced by
<Z+ U {0} U I> (S3 X Dle)-

Study the problem and compare it with problems 77 and
78.

Find some innovative and interesting applications of
subset semiring interval polynomials of finite order.



Chapter Four

NEW SUBSET SPECIAL TYPE OF
TOPOLOGICAL SPACES

In this chapter we just study and briefly introduce different
types of subset topological special type of semiring spaces
associated with them. We give atleast four types of topological
spaces associated with type I or type II subset semirings.

DEFINITION 4.1: Let S be a subset semiring of type I
T,={S, u mn §"=8 U{d}} is the ordinary subset topological
semiring space of type I of S.

To={§8"=8S U@}, U x}is anew type of subset special
topological semiring space of type I of S.

T,= {8"=8S u{dl, +, N} is a new type of subset special
topological semiring type I space of 'S.

T, = {S, +, X! is defined as the new type of special
topological semiring type I with inherited operations of the ring
or semiring space of S.
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We see for a given subset semiring S of type I we can
associate four different types of topological semiring type I
spaces of S.

We will illustrate this by some examples.
Example 4.1: Let
S = {Collection of all subsets from the ring Z;,} be the type I

subset semiring.

We will give all the four types of topological spaces for this
type I subset semiring. Let T,, T, T~ and T be the four types
of special subset topological type I semiring spaces.

LetA={2,11,8 B={5,7,0,2} € S'=SU {¢} € T..

We find
AUB
={2,11,8} U {5,7,0,2}
{0,2,5,7,8,11} N |

and

={2,11,8; 0 {5,7,0,2}
= {2} are in T,.

Let A, Be T ,wesee AuUBisl

AxB

2, 11,8} x {5,7,0,2}
0,4, 10,2, 5,7, 8}.

We see T and T, are different as topological spaces.
Consider A, B € T

A+B

12, 11,83 +10, 2,5, 7}
{2,11,8,4,1,10,7,9,6,3}.
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ANB
={2,11,8} n{5,7,0,2}
={2}.

A+Band A nBarein T-.
So T, T, are also different from T, as topological spaces.
We now study for A, B in T,.

A+B

{2, 11,8} + {0, 2,5, 7}
{2,11,8,4,1,10,7,9,6,3} and

AxB

{2, 11,8} x {0,2,5,7}
(0,4, 10,7,2, 5,8 are in T,.

T, is different from the topological spaces T,, T and T.

Thus all the four types of special new topological semiring
spaces of type I are described.

Example 4.2: Let
S = {Collection of all subsets from the ring of integers Z} be the

subset semiring of type I.

LetA={-8,6,0,9,12,-3}
andB=1{6,5,1,-1,4,-7} € S

Let T, be the ordinary topological space of type I.
Consider
AUB ={38,6,0,9,12,-3} +{6,5,1,-1,4,-7}

=10,1,-1,4,-7,6,5,9,8, 12, -3} and
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ANnB =1{18,6,9,0,12,-3} n {6,5,1,-1,4,-7}
= {6}.
Clearly AuBand A nBarein T,.

Consider T, the special new type of topological semiring
space of type I.

AuB =1{18,6,0,9,12,-3} U {6,5,1,-1,4,-7}
={0,1,-1,4,-7,6,5,9,-8, 12, -3} and
AxB =1{0,-8,6,9,12,-3} x {6,5,1,-1,4,-7}
= {0, 48, 36, 54, 72, -18, 40, 30, 45, 60, —15, -8,
6,9,12,-3,8,-6,-9,-12, 3, -32, 24, 48, 56,
-42,-63,-72, 21},
both A U B and A x B are in T,.

We see Ty and T, are distinctly different as topological
spaces.

Consider A, B € T;
A+B ={0,-8,6,9,12,-3} +{6,5,1,-1,4,-7}
={6,5,1,-1,4,-7,-2,-3,-7,-9,-4,-15, 12, 11,
7,5,10,-1, 15,14, 10,8, 13,2, 18, 17,13, 11,
16,5,3,2,-2,-4,1,-10}

={6,51,-1,4,-7,-2,-9,-4,-15,12, 11, 7, 10,
15, 14, 10, 8, 13, 2, 18, 17, 16, 3, -10}

and
ANnB ={-8,6,9,0,12,-3} n{6,5,1,-1,4,-7} = {6}.

A+Band A nBarein T-.
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We see T, T~ and T, are different as topological spaces.
LetA,B e T,
A+B =1{0,-8,6,9,12,-3} +{6,5,1,-1,4,-7}

=16,5,1,-1,4,-7,-2,12,15,18,3, 11, 14, 17, 2,
~7,7,10,13,-2,-9, 5,8, 11, -4, 10, 13, 16, 1,
-15,-1,2,5,-10} and

={6,5,1,-1,4,-7,-2,12,15,18,3,-3, 11, -10,
14,17,2,7,10,13,-9,5, 8,4, 16,—-15} and

AxB =10,-8,6,9, 12,-3} x {6,5,1,-1,4,-7}

= {0, 48, 36, 54, 72,18, 40, 30, 45, 60, —15, -8,
6,9,12,-3,3,-12,-9, -6, 8,32, 24, 36, 48,
—-12,56,-42,-63, -84, 21}

= {0, 48, 36, 54, 72, 18, —40, 30, 45, 60, —15, -8,
6,9,12,-3,3,-12,-9,-6, 8, -32, 24, 48, 56,
—42,-63,-84, 21} are in T,

T, is different from T,, T_ and T~ as topological spaces.

Example 4.3: Let

S = {Collection of all subsets from the ring C(Zs)} be the subset
semiring of type I. Let T, T_, T~ and T; be the four new types
of special subset topological semiring spaces of type 1.

A = {ir, 2 + 3i, 0, 4+5ir} and
B= {2 + 3i1:, O, 4, 3iF, 5+ 2i1:, 2+ 211:} eSS

Let us take A, B € T, the ordinary special topological
semiring space of type I of S.

AUB = {i]:, 2+ 3iF, O, 4+ 51]:} |\ {2 + 3iF, 0, 4, 3i1:,
5+ 2ip, 242}
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= {iF, 2+3i1:, 0, 4+5iF, 4, 3iF, 5+2iF, 2+21F} and
A N B = {ig, 2+3iF, 0, 4+5is} M {0, 4, 3ig, 2431,
5+2ip, 242k}
= 10, 2+3ig).
ANnB,AuBeT,.
Now let A,B € T,
To find A U B and A x B.

We see

A UB = {ip, 2+3ig, 0, 4+5ip} U {0, 4, 2+3if,
3ip, 5+2ip, 2+2ir}

= {iF, 2+3i1:, 4+5iF, 0, 4, 3i1:, 2+2iF, 5+21F} and

AxB = {ip, 243ip, 0, 4+5ir} x {0, 4, 2+3ip, 3ir,
5+2ip, 242}

= {0, 4ig, 2, 4+2i, 2igt3, 1, 5+4iE, 3, Sigt4,
A+ip, 4+3i, 2ip+4, 4+4ig, 2} are in T,

T, is a special new topological semiring type I space
different from T,.

LetA,B € T-.

ANB = {i]:, 2+3i]:, 0, 4+51F} M {2+3ip, 0, 4, 3i]:,
5+2ip, 2+2ip)

= {0, 2 + 3i} and

A+B = {ip, 2+3iF, 0, 4+5ir} + {2 + 3iF, 0, 4, 3ip,
5+2iF, 2+2ip}
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= (2+4ig, 4+ip, 2+3ip, 2iF, 0, if, 4+5ik, 3ir, 4, 2+5ir,
4ip, 2, 44+2ir, 5+3ir, 1+5i5, 5+2if, 3+ir, 2+3iF,
243ig, 242ir} € T

We see T, is different from T, and T, as topological
spaces.

Now we see if A, B € T,.

A+B = {i]:, 31]: + 2, 0, 4+51F} + {0, 4, 3i]:, 2+3iF, 5+2i]:,
242ip)

= {O, 2+4iF, 4+i]:, 2+3i]:, 2iF, i]:, 4+5i1:, 3i]:, 4, 2+5i]:,
4ig, 2, 4+2ig, 5+3ig, 1451, 2+2if, 5+2iF, 3+,
2+3ig} and

A xB = {ip, 0, 2+3ip, 4+5ir} x {0, 4, 2+3i, 3if, 5+2i,
2+2ig}

= {0, 4ip, 2, 4+2ig, 1, 2ipt+3, 3, S+4ig, Sipt4, 4+iF,
44315, 2ipt4, 4+4ip, 2} € T..

We see T; is also different from all the three special type of
subset topological semiring type I spaces.

Example 4.4: Let
S = {Collection of all subsets from the ring C({(Z;; U I))} be the
subset semiring of type I.

Associated with S we have four distinct special topological
subset semiring spaces of type L.

Example 4.5: Let
S = {Collection of all subsets from the ring (C U I)} be the
subset semiring of type I.

This also has four subset special topological semiring
spaces of type I associated with it.
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We have both infinite and finite subset special topological
semiring spaces of type I.

We can as in case of usual spaces define set ideal (ideal)
subset topological semiring spaces of type 1.

Let R be a ring and I be a ideal of R.

S = {Collection of all subsets of the ring R} be the subset
semiring of type .

M = {Collection of all set ideals of R over P, P a subring of
the ring R}.

S; = {Collection of all subsets from M} < S.

S; is defined as the subset set ideal of S over the subring P
of R.

We see S; can be given a topology and S; with a topology
will be defined as the subset set ideal topological semiring of
type I space over the subring P of R.

We will illustrate this situation by an example or two.

Example 4.6: Let
S = {Collection of all subsets from the ring Z;,} be the subset
semiring of type I. Let P = {0, 4, 8} < Z;, be the subring of S.

Now M = {Collection all subset semiring set ideals of S
over the subring P of Z;;}. M can be given all the four

topologies and it will be denoted by T, , T', T. and T, where

T. is the ordinary set subset ideal semiring topological space
related to M of P; P the subring of Z,.

T" is the new type subset set ideal special topological space

where TUP = {M, U, x} related to the subring P < Zi,.
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T’ = {M' =M U {¢}, +, N} related to the subring P = Z,, is
the new type subset set ideal special topological space.

T, = {M, +, x} is the special set ideal subset topological

space of the semiring S with the inherited operations of the ring
related to the subring P of Z,5,.

These definitions are a matter of routine for they are subset
set ideal new type of topological spaces of the semiring S.

We will first illustrate this situation by an example or two.

Example 4.7: Let

S = {Collection of all subsets from the ring Zs} be the subset
semiring of type I of the ring Zs. Let Py = {0, 3} < Z¢ be a
subring of Z.

Now we want to find the collection of all subset set ideal of
S over the subring P; of Z.

M = {{0}, {0, 1, 3}, {0, 2}, {3}, {0, 4}, {0, 2, 4}, {0, 2, 1,
3}, {0, 4, 1,3}, {0,2, 4,1, 3}, {0, 3}, {0, 2, 3}, {0, 4, 3}, {0, 2,
4,3}, {5, 3}, {0, 5, 3}, {0, 5, 3, 2}, {0, 5, 3, 4}, {1, 3}, {0, 5, 3,
2,4}, {0,5,3,2,4,1}, {0, 5,3, 1}, {0, 1, 5, 3,2}, {0, 1, 5, 3,
41, {1, 3, 5}} < S is a collection of all subset set ideals of
semiring related to the subring Py of Z.

We have T.'= {M’, U, N} to be a subset set ideal

topological semiring space of type I related to the subring P, of
Zs.

Let A= {2,0,4} and B={0,5,3,4}e T..
AuB=1{2,0,4} U {0,5,3,4} = {5,0,2,3,4} and
ANB=1{0,2,4n{0,53,4}=1{0,4} € T".

Consider T" = {M, U, x}, the special subset set ideal
topological semiring space of type I related to P; < Z.
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For A={0,2,4} and B= {0, 5,3,4} € T" we see

,41 0 {0,5,3, 4}

AuB ={0,
{0,2,4,5,3} and

[\SIN\S)

AxB =1{0,4,2}x{0,5, 3,4}
={0,4,2} e T".

We see T" is different from T.' as topological spaces.

Consider T:‘ = {M', +, N} be the special new set ideal
subset topological space related to the subring P;.

Let A=1{0,4,2} and B= {0, 5, 3, 4};
A+B =1{0,4,2}+1{0,5,3,4,=1{0,4,2,3,51} and
ANB=1{0,2,4} n{0,5,3,4} ={0,4} e T".

We see T" is different from T" and T,' as topological
spaces.

Now finally take Ty' = {M, +, x} be the subset set ideal
new topological inherited semiring space related to P;.

A+B =1{0,4,2} +{0,5,3,4)
{0, 1

,2,3,4,5}

and AxB =1{0,4,2} x{0,5,3,4}
={0,2,4} € Ty'.

We see Ty is distinctly different from T.', T" and T as
topological spaces.

Thus we see for a given subset subsemiring of the ring we
have four related subset set ideal new topological special type of
semiring spaces of the semiring.
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Example 4.8: Let
S = {Collection of all subsets from the ring Z(g)} be the subset
semiring of type [. Let M = 2Z(g) be a subring of Z(g).

Let P = {Collection of all subsets of semiring set ideals of S
over the subring M = 2Z(g)} < S is such that the four new
special subset set ideal topological spaces can be defined on P

viz. T, T.", T and T".
All of them will be of infinite order.

Example 4.9: Let
S = {Collection of all subsets from the ring Zs(g); g" = 0} be the
subset semiring of type I. Take P = Z; the subring of S.

M = {Collection of all subset set ideals of S over the
subring Z; of Zs(g)} be the new subset set ideal semiring

topological spaces T, Ty, T' andT' related to the subring
P= Z3.

We just take A = {0, g, 2g} and
B={0,1,2, 1+g, 2+2g} € M.

A+B =10,g,2¢g} + {0, 1,2, 1+g, 2+2g}
=10, g+1, 2g+1, 2+g, g, 2g, 2+2g, 1+g, 1, 2, 2+g}
e M and

AxB =1{0,g 2g} x {0, 1,2, 1+g, 2+2¢g}
={0, g, 2g} € TSP .

AUB =

0,g2g}u{0,1,2, 1+g, 2+2¢g}
0,1,2,g 2g, l+g, 2+2g} and

ANB=1{0,g2g N {0,1,2, 1+g,2+2g} = {0} e T .

T and T, are distinctly different as topological spaces.
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Consider

A+B ={0,g 2¢g} + {0, 1,2, g+l, 2+2¢g}
= {0, g+1, 2g+1, 2+g, g, 2g, 2+2g, 1+g, 1, 2, 2+g}
and
AnB ={0,2,2g} n {0, 1,2, 1+g, 2+2g}
={0e T".

Thus T® is different from T. and T, as topological
spaces.

Let
AuUB ={0,g 2¢g} U {0,1,2, 1+g, 2+2g}
=10, g,2¢g, 1,2, 1+g, 2+2g}

and A xB = {0, g 2g} x {0, 1,2,242g, I+g}
=1{0,g.2g} € T.

T is different from T', T, and T; new special type of
set ideal semiring topological spaces of M < S.

We see M; = {Collection of all subset set semiring ideals of
the subring P, = {0, g, 2g} < Zs(g)} is such that T, T", T"
and T are four distinct new special subset set semiring ideal
topological spaces related to the subring P;.

This is the way new type of subset set semiring ideal finite
topological spaces are constructed relative to subrings of the
ring.

Example 4.10: Let

S = {Collection of all subsets from the ring Z,(g) where g*= g}
be the subset semiring of type [. Take P =7, = {0, 1} < Zx(g)
to be a subring of Zx(g).

M = {Collection of all set ideals of the subset semiring S
related to the subring Z,}
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= {{0}, {0, 1}, {0, g}, {0, 1+g}, {0, 1, g}, {0, 1, I+gj, {0,
g, 1+g}, {0, 1, 1+g, g}} is the subset semiring set ideals of S
over the subset semiring. Infact each subset in M is a set ideal
of S over Z, = {0, 1}.

Now we see T, ,T" , T® and T} are special new subset set

o2 U 2

semiring ideal topological space of S related to P = {0, 1} = Z,.

We see

{0,1,1+g,g}

{0,1,1+g}

{0

{0} (o} {0} {0} {0} {0}
This is the tree associated with M.

However if we wish to get the graph of M it would be
entirely different.

10,1,g, 1+g}

{0,1,g} 10,1+g,g}

W<

{0,1+g}

%

{0,1}

{0}
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which is also a lattice, which is a Boolean algebra of order 8.

Suppose we take P, = {0, g} to be the subring of Z»(g). To
find the collection of all subset set semiring ideals related to P;.

M, = {{0}, {0, 1, g}, {0, g}, {0, g, 1+g}, {0, 1, g, 1+g}} is
the new special type of subset set semiring ideal topological

spaces of all the four types T, T", T and Ty'.

The tree associated with M; is

10,g,1+g,0}

{0}

Let P, = {0, 1+g} be the subring of Z,(g).

Let M, = {Collection of all subset set semiring ideal of S
associated with P,}.

M, can be given the four different new special set ideal
semiring topologies.

The tree associated with M, = {{0}, {0, 1+g}, {0, 1, 1+g},
{0, g}, {0, g, 1+g}, {0, g, 1, 1+g}}
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{0,1g,1+g}

10} 105 {0}

Example 4.11: Let
S = {Collection of all subsets from the ring Z4(g), g* = 0} be the
subset semiring of type I of the ring Z4(g).

P, = {0, 2}, P, = {0, 2g}, P; = {0, 2 + 2g}, P, = {0, 2, 2g,
2+2g},

P5 = {0, g> 2g, 3g}5 P6 = {Oa 19 2, 3} and P7 = {0> 1+g> 2+2g,
3+3g} are some of the subrings of Z4(g).

Related with each of the subring we can build on the
collection of all subset set semiring ideals special new types of
topological spaces;

M, T%, T" and Ty for 1<i<7.

M, = {{0}, {0, 2}, {0, 1, 2}, {0, 3, 2}, {0, 1, 3, 2}, {0, 2g},
{0, 2g, 2}, {0, 1, 2g, 2}, {0, 3, 2, 2g}, {0, 1, 3, 2, 2g}, {0, g,
2g}, {0, 3g, 2¢g} {0, 1, 3, 3g, 2g}...} related to the subring
P] = {0, 2}

M2 = {{0}5 {O> 2}5 {03 1: Zg}’ {03 2) Zg}’ {O:Zg}a }
related to the subring P, = {0, 2g}.
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Let Ps = {0, g, 2g, 3g} be the subring of Z4(g); to find the
collection of all subset set ideals of S relative to Ps.

Let M; = {Collection of all subset set ideals of S relative to
the subring Ps} = {{0}, {0, 1, g, 2g, 3g}, {0, 2, 2g}, {0, 2g}, {0,
3, 3g, 2g}, {0, 3g, 2g}, {0, g}, {0, 3g}, {0, I+g, g, 2g, 3g}, {0,
2+2,2g}, {0, 3+3g, 3g, 2g}, {0, 1+2¢, g, 2g, 3¢}, {0, 2+g, 2g},
{0, 3+g, 3g, 2g}, {0, 3g+1, g, 2g, 3g}, ...} is the collection.

Interested reader can find the trees associated with each of
the M;’s; 1 <1< 7.

Next we can proceed onto describe type Il subset semirings
of a semiring.

Example 4.12: Let S = {Collection of all subsets from the
semiring Z" U {0}} be the subset semiring of type II over the
semiring Z" U {0}.

Let T,, T, T~ and T, be the special new type subset
topological semiring spaces of type II of S.

We will show for some A, B € S; the four topological
spaces T,, Ty, T~ and T are distinct.

LetA={53,2,0,7} andB={10,8,9,7, 1,4} € T,

AUB = YU {10,8,9,7, 1, 4}

7 g,
s 4: 57 75 8, 9, 10} S To and

AnB ={5,2,3,0,7} n {10,8,9,7, 1, 4}
={7} e T..

Now take the same A, B € T,.

3,0,7y u {10,8,9,7,1, 4}
,2,3,4,5,7,8,9,10} € T,.
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But
AxB =1{5,2,3,0,7} x {10,8,9,7, 1, 4}
= {50, 0, 20, 30, 70, 40, 16, 24, 56, 45, 18, 27,
63,35, 14,21,49,5,0,2,3,7,8,12,28} € T..
We see T, and T, are different as topological spaces.
Let for the same A, B € T~ we find A + B and A N B.
A+B ={5,2,3,0,7} +{10,8,9,7, 1, 4}
={10,8,9,7,1,4,12,11, 3,6, 13, 15, 14, 17, 16}
e Tn.
ANnB =1{5,2,3,0,7} n {10,8,9,7,1,4} = {0} € T-.

Thus T~ is different from T, and T, because of the

operations defined on them.

Consider A, B € T, we find

A+B ={0, ,2,5,7}+{1 4,8,7,9, 10}
4,8,7,9,10, 11, 12,13, 6, 14, 15, 16, 17}

, 7y x{1,4,8,7,9, 10}
12, 8, 20, 70, 45, 28, 24, 16, 40, 56,

b
b 7)
50, 14, 35, 49, 27, 18}.

T, is distinctly different from T~, T, and T,.
P,=3Z"U {0} ¢ Z" U {0} be the subring Z" L {0}.

If M; is the collection of all subset set semiring ideals of S

over P;. We see relative to M; we have the new special type of
subset set ideal semiring topological spaces relative to P; say

, T, T" and TY.

We can show all the four are different.
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Further each A € My, is of infinite order.

Example 4.13: Let S = {Collection of all subsets from the
semiring

be the subset semiring of type Il over the semiring B.

We see all the four special types of subset topological
semiring spaces are of finite order and are different.

LetA={a,b,c,0} and B={d, e, 0,1} € T,

AUB ={ab,c,0} U{de, 0,1}
={0,1,a,d,e,b,c} and

ANnB ={ab,c,0} n{d,e 0,1}
= {0} are in T,.

T, is the special new type ordinary subset semiring
topological space of S.

Let A, B € T we see

AUB ={ab,c,0} U{de,0,1}
=1{0,a,b,c,e,d, 1}

and AxB ={ab,c,0}x{de,0,1}
={0,a,b,c,e,d} € Ty,

Clearly T_ and T, are different as topological spaces.
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Let A, B € T~ we see

and ANnB ={ab,c,0} n{d,e 0,1}
={0} € T~.

We see T is distinct from T, and T, as subset topological
spaces.

Consider A, B € T, we see

A+B ={ab,c,0} +1{de0,1}
= {07 a’ b, e’ d, 09 17 C}

and AxB ={ab,c,0} x{d, e 0,1} €T,
= {0, a, b> (A d} (S TS.

T; is clearly different from all the three spaces T,, T, and
T, as subset topological spaces.

Let us consider P, = {0, a, d, 1} < B, P, is a subsemiring of
B.

M, = {Collection of all subsets set ideals of S related to the
subsemiring Py}

= {{0}, {0, d}, {0, a,d}, {0, ¢}, {0, ¢, a} ...}
Using each subsemiring of B we can get related four special

new type subset set ideal topological semiring spaces of type II.

Example 4.14: Let S = {Collection of all subsets from the
semiring Co =
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a

A

a3 >
[ )

be the subset semiring of type Il over the semiring Cj,.

S= {{0}’ {al}’ (EED) {ag}, {1}9 {0’ al}v ceey {07 ag}, {19 al} {19
ag}, ceey {al, 32}, {al, 33} ceey {37, ag}, ceey {0, 1, Al .eey ag}} = TU
(T~ or T, or Ty).

A = {07 17 ay, d4, a3, 36} and B= {357 ag, dp, 0} € TO

We find

AUB = {0, 1, Ay, a4, A3, 8.6} o {8.5, ag, ai, O}
= {07 17 a1, dp, a3, A4, as, Ap, aS} and

ANB ={0,1, a, a4, a3, ag} M {as, ag, a;, 0}
— {0} e T,

For A,B e T..

AUB ={0, 1, a, as, a3, ag} U {as, ag, a;, 0}
{05 15 a1, a2, a3z, 44, as, de, aS} and

AxB

{05 1, Ay, Ay, a3, a6} o {aS, ag, 4, O}
{0, a;, as, ag, ay, a3, a4, ag} € To.

We see T, and T, are two different topological new type of
subset semiring spaces of type I1.
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LetA,B e T,

A+B = {0, 1, dp, a4, a3, 8.6} + {as, ag, aj, 0}
= {07 17 ai, as, ag, a2, 43, A4, aé} and

ANB = {0,1, a, a4, a3, ag} M {as, ag, a;, 0}
= {0} e T~.

Clearly T is different from T, and T, as subset topological
spaces of type II.

Take A, B € T;

A+B =/
=1

Oa 17 ay, a4, a3, aé} + {3'57 ag, ai, 0}
05 15 a1, a2, a3, 44, as, Ae, aS} and

AxB = {0,1, a,, ay, a3, ag} x {as, ag, a;, 0}
= {05 15 a1, ds, ag, A, d¢, A3, 34} € Ts-

We see T; is different from T,, T, and T, as topological
spaces.

We can by taking subsemiring P; of C;( we can build

M; = {Collection of all set ideal semiring related to the
subsemiring P, of Cy¢}.

We can find T, T, T¥ and T;" and all the four set
ideal subset topological semiring spaces of special new type.

We see all the four are different as topological spaces.

Example 4.15: Let S = {Collection of all subsets from the
semiring L =
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be the subset semiring of type .

S ={{0}, {a}, {b}, {c}, {d}, ..., {0,a,b,c,d, e, f, g} }
=Ty, (T~ or T, or Ty).

Take A={0,1,c,e,g} andB={a,b,0,d, f, g} € T..
We see

AuUB ={0,1,c,e,g} U {ab,0,d,f1 g}
{0,1,e,c,g,a,b,d, f} and

{0,1,¢c,e,g} x {a,b,0,d,f, g}
={0,a,b,d, f, g, e,c} € T_.

Consider A, B € T-.

A+B ={0,1,c,e,g} +{a,b,0,d, 1 g}
={0,1,e,¢c,g,a,b,d,f, g} and

ANnB ={0,1,c,e,g} n{a,b,0,d,f g}
= {0, g} are in T-.

Clearly T, is different from T, as topological of type II.
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Consider A, B € T,.

AnB ={0,1,c,e,gt U{a,b,0,4df g}
= {0, g} and

AuB ={0,1,c,e,g} U {ab,0,df g}
={0,e,c,1,g,a,b, f}.

are in T,

Further T, is different from T_, and T as topological of type
I1.

Now consider A, B € T,.

We see

A+B ={0,1,c,e, g} +{a,b,0,d,f1, g}
={0,e,¢c,1,g,a,b, f} and

AxB ={0,1,c,e,g} x{a,b,0,d, 1, g}
={0,a,b,f, g e,c, g}

are in T and Tj is different from T,, T, and T as topological of
type II.

Hence we have four different special new type of subset
semiring topological spaces of S.

Now if we take P, = {0, f, e, g} a subsemiring of the
semiring and if M; = {Collection of all subsets set semiring
ideal of S over the semiring P}; then T.', T, T" and Ty are
special new type of a set semiring ideal topological spaces of
Ml.

We can have as many as subset set ideal semiring
topological spaces as the number of subsemirings in L of the
semiring.
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Example 4.16: Let S = {Collection of all subsets of the
semiring LS; where L =

be the subset semiring; clearly S is a non commutative semiring
of LS3

We see T, Tu, T~ and T are the subset special new type of
topological spaces of S.

Weseeif A,B € T,

say A = {ag, + g, +dgs, 1 +egy, h +igs} and
B = {bg, + g +ig;, dg;, h+igs} € T,

We see

AUB ={ag +g+dg;+1+egy, h+igs} U {bg+tg+
ig;, dgs, h +igs}

= {ag; + g +dg;, | +egq, h+igs, bg, + g +igy,

dgs}
and
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ANB ={ag +g +dg;, 1 +egy, h+igs} N {bg, +g+ig,
dgs, h +igs}

={h+igs} € T,.

We see T, is a commutative new special subset ordinary
topological semiring space of S. It is easily verified T, is
always a commutative topological space for AN B=B N A
and AUB=BUA.

Now consider A, B € T..

AUB ={ag) +g +dg; | +egs, h+igs} U {bg, +g+ig,
dgs, h +igs}
= {ag) + g tdgs, 1 +egy, h+igs, bgotg +igy, dgs}
and

AxB ={ag +g +dgs;, | +egs,h+igs} x {bg, +g+ig,

dgs, h +1gs}

= {(ag: + g +dgs) (bg, + g +ig)), (ag) + g + dgs)
dgs, (agi + g +ig) (h+igs), (1 +egq) (bgy + g+
ig1), (1 +egq) dgs, (1 +egy) (h +1gs), (h +1igs)
(bgy + g +igl), (h +igs) dgs, (h +igs) (h +igs)}

= {(ag: + g +dgs) (bg, + g +ig)), (dgs + dgs + d),
(ag: + g +igy) (h +igs), (1 +egy) (bgx + g +igy),
(dgs + gg1), (1 +egq) (h +1gs), (h +igs) (bgx + g
+igy) (hgs +igy), (h+igs) (h+igs)} o

are in T,.
But consider

B x A ={bg +g+ig,dg;, h+igs} x {ag, + g +dg;,
1 +egs, h+igs}

= {(bga + g +igi) x (ag) + g2 +dgs), dgs (ag1 + & +
dgs), (h +igs) (ag; + g +dgs), (bg, + g +1ig))
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(1 +egy) dgs (1+ egq), (h +1igs) (1 +ega),
(bgy + g +1igy) (h +igs), dgs (h + igs),
(h +1gs) (h +1gs)}

= {(bg, + g +ig)) (ag: + g + dgs), (d + dgq + dgs),
(h +1igs), (ag) + g2 + dgs), (bgx + g +ig)) (1 +
eg4), (h +1igs) (1 +egq) (h +igs) (h +1gs), (dgs +
gg), (bgy + g +ig) x (h+1igs), (hgy +igy)} ... I

Clearly I and II are distinct. Thus A x B# B x A.

So T, is not a commutative special new type subset
topological space semiring space and T, is different from T, as
a topological of type II due to the operations on them.

New consider T~; let A, B € T we have

A+B ={ag +g +dgs;, | +eg, h+igs} + {bg, +g+ig,
dgs, h +igs}

={ag i+ g tdgs+bg +gt+ig, 1 +egs+bg+g
+igy, h+igs +bgy + g +igy, ag) + g +dg; +dgs,
1 +egq+dgs, h+igs+dgs, ag; + g +dg; +h+
ig5, 1+ eg4+h+ig5,h+ig5+h+ig5}

= {g+dg; +g, +tag, | +eg+bg +ig,, h+igs,
1 +egy+igs, agy + g +dgs +h+igs, h+igs +
dgs, 1 +egy +dgs, ag) + g, +dgs, igs +bg, + g+
ig;}

and

ANB ={ag +g +dgs; 1 +teg,h+igsy ni{bg+g+
ig;, dgs, h +igs}

= {h+igs} € Tn.
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Thus T is different from T, and T, as subset topological
space.

Now for A, B € T, we find

A+B ={ag +g +dgs, 1 +egy, h+igs} + {bg, +g+ig,
dg37h+ig5}

={g+dg;+g +ag, | +egs+bg +ig, h+igs,
1 +egy+igs,ag; + g +dgs+h+igs, h+igs +
dgs, 1 +egs+dgs, ag) + g +dgs, igs tbg, + g+
g}

and

AxB ={ag +g +dgs, | +eg,h+igs} x {bgy +g+ig,
dgs, h +1gs}

= {(ag: + g +dg;) x (bga + g +1g1), (ag: + g + dgs)
x dgs, (ag + g +dgz) x (h +1gs), (1 +egy) x
(bgy + g +ig1), (1 +egq) x dgs, (h +1igs) x dgs,
(agi + g2 +dgs) x (h +igs), (1 + egs) x (h +1gs),
(h+igs) x (h+igs)} € T..

We see T, is different from T, T~ and T, as subset
topological spaces.

Further A x BB x A in T,. We have T, and T_ to be two
non commutative topological spaces and T~ and T, are both
commutative topological spaces.

We have seen using this non commutative semirings we

have two non commutative topological spaces Ts and T..

Example 4.17: Let S = {Collection of all subsets from the
semiring R = (L, x L,) D, where
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L, = and L, =

g

£ i “

e u w

: >
m

C
t

a b

S

0 r N

0

be the subset semiring of type II.

We have all the four topological spaces T, T~, T, and T;
and all of the four spaces are distinct but T, and T are non
commutative where as T~ and T, are commutative spaces. All
the four spaces are of finite order.

Example 4.18: Let S = {Collection of all subsets from the
semiring (Z" U {0} U I)S4} be the subset semiring. T, T, T~
and T, are the four topological spaces of S.

T, and T, are commutative where as T, and T, are non
commutative.

Now having seen examples of topological spaces we now
define new special subset set ideal topological semiring spaces
over the subsemiring of all the four types.

Example 4.19: Let S = {Collection of all subsets from the
semiring R = (Q" U I) U {0}} be the subset semiring. All the
four topological spaces T,, T, T~ and T are of infinite order
and all of them are commutative.
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We see (Z" U {0}) =P, is a subsemiring of (Q" U I) U {0}.

M, = {Collection of all set ideals of semiring relative to the
subsemiring (Z" U {0})) = P,}.

Wesee T.', T, T" and T,' are special new type of subset

set semiring ideal topological spaces relative to P;. All of them
are of infinite order.

If we take P, = 2Z" U {0}) < (Q" U I) U {0} we get
another collection of topological spaces.

Infact we have infinite number of such topological spaces
all of which are of infinite order.

Example 4.20: Let S = {Collection of all subsets from the
semiring LS(5) where L = Boolean algebra of order 16} be the
subset semiring. T,, T, T~ and T, are all the four distinct
special subset new topological semiring spaces of type II of S.

All of them are of finite order but only T, and T are non
commutative.

Now having seen examples of these spaces we just describe
the notion of strong special new subset topological semiring
spaces over subset semiring.

Example 4.21: Let
S = {Collection of all subsets from the ring Zs} be the subset
semiring of type I of the ring Z.

Take P, = {All subsets from the semiring {0, 2, 4} < Z¢} =
{10}, {2}, {4}, {0, 2}, [0, 4}, {2, 4}, {0,2,4}} c S.

Clearly P, is again a subset semiring.

Now let M; = {Collection of all subset set ideals of S over
the subset semiring P; of S}
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= 110}, {1,2,4,05, {2, 4,05, {0, 2, 4, 3}, {3, 0},
{0,3,1,2,4}, {0,5,4,2}, {1,5,2,4,0},
{0,5,1,2,3,4},{0,5,2,4,3}}.

On M; we can have the four distinct strong special new
subset semiring set ideal topological spaces Ty, T.', T" and
T".

Let A={0,5,2,4} and B={0,2,3,4} € T".

b 57 27 4} U {07 2’ 3’ 4}
,2,4,3,5} and

AuB ={0
{0

ANB = {0,5,2,4} n{0,2,3,4}
=1{0,2,4} € TD.

We see T.' is a strong special subset set ideal semiring
topological spaces associated with the subset semiring P;.

Take A,B e T";

AUB 0,5,2,4} U{0,2,3,4}
0

5,2
,2,4,3,5} and

AxB ={0,5,2,4} x {0, 2,3, 4}
=1{0,4,2,3} arein T".

Clearly T" is different from T.' as subset set ideal
semiring topological space.

Now consider A, B € Tﬁ‘ ;
A+B =1{0,5,2,4} + {0, 2,3, 4}

=1{0,1,4,3,2,5} and
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ANB ={0,5,2,4} N {0,2,3,4}
=1{0,2,4} € TV,

We see T is different from T,' and T as subset set ideal
semiring topological spaces.

Consider A, B € T{';

A+B =1{0,5,2,4} +{0,2,3,4}
{0,1,2,3,4,5} and

AxB =1{0,5,2,4} x {0,2,3, 4}
={0, 2, 4,3} arein TSP‘.

Clearly T{' is also different from T.', T" and T" as subset

set ideal semiring topological spaces.

All the strong set ideal subset special new semiring
topological spaces over P, are distinct and of finite order.

With P, = {0, 3} < Z¢ we can built M, = {Collection of all
subsets from the subring P, = {0, 3} < Z¢} = {{0}, {3}, {0, 3}}.
Associated with M, we have four strong subset set ideal
semiring topological spaces of P, given by T.*, T , T and

PZ
.

Example 4.22: Let

S = {Collection of all subsets from the ring Z-(g) where g* = 0}
be the subset semiring of the ring Z,(g). We see Py =77 < Z+(g)
is a subring of Z;(g). Let M; = {Collection of all set subsets
ideal semirings of S over the subring Z;}

= {{0},{0,1,2,3,...,6}, {0, g, 2g, ..., 6g},
{1+g, 2+2g, ..., 6+6g, 0}, ...}.
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Using M; we can have subset set ideal special strong
semiring topological spaces T.', T" , T"and T'.

Let A = {0, 1+2g, 2+4g, 6+g, 5+2g, 3+4g, 4+g, 5+3g, 6+5g,
3+6g, 4+3g, 2+5g, 1+6g} and B= {0, 1,2,3,4,5,6} € T'.

AUB =10, 1+2g,2+4g, 6 +g,5+2¢,3 +4g,4+ g,
5+3g,6+5g,3+6g,2+5g,4+3g,1+6g} v
{0,1,2,3,4,5,6}

=10,1,2,3,4,5,6,1+2g,2 +4g,6 +g,5 + 2g,
3+4g,4+g,5+3g,6+5g 3+6g,2+5g,
4+ 3g, 1 +6g} and

ANB ={0,1+2g,2+4g, 6 +g,5+2g,3+4g,4+g,
5+3g,6+5g,3+6g,2+5g,4+3g,1+6g}nN
10,1,2,3,4,5, 6}

={0} e T.
Consider A, B e T".

AUB = {0, 1+2g,2+4g, 6 + g, 5+ 2g,3 +4g, 4+ g,
5+3g,6+5g,3+6g,2+5g,4+3g, 1+6g}u
{0,1,2,3,4,5,6}

=0,1,2,3,4,5,6,142g, 2 +4g, 6 +g,5+2g,
3+4g,4+¢g,5+3g,6+5g,3+6g,2+5g,
4+3g,1+6g} and

AxB ={0,1+2g,2+4g, 6 + g, 5+2g 3 +4g,4+g,
5+3g,6+5g,3+6¢g,2+5g,4+3g,1+6g} x
{0,1,2,3,4,5,6}

={0,1+2g,2+4g,6+¢g,5+2g 3+4g, 4+g,
3g+5,6+5g,3+6g,2+5g,4+3g,1+6g}
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=Ae T".
T" is different from T.' as topological spaces.
Let A,B e Tf ;

A+B =1{0,1+2g,2+4g,6+g,5+2g,3+4g,4+g,
5+3g,6+5g,3+6g,2+5g,4+3g,1+6g}+
{0,1,2,3,4,5,6}

={0,1,2,3,4,5,6, g, 2g, 3g, 4g, 5¢g, 6g, 1+2g,
2+4g,6+g,5+2g,3+4g,4+¢g,5+3g, 6+ 5g,
3+6g,4+3g,2+5g,1+6gh, 2+4g 2+2g 3
+2g,4+2g,6+2g 4+4g,3+3g,5+5g,6+ 6g}
..} and

ANnB ={0,1+2g,2+4g, 6 +g,5+2¢,3+4g,4+¢g, 5+
3g,6+5g,3+6g,2+5g,4+3g,1+6g} N
{0,1,2,3,4,5,6}

={0} e T".

T" and T are different as topological spaces from T" .

Consider A, B € T{ we can show all the four spaces are
distinct.

Example 4.23: Let S = {Collection of all subsets from the Z;,}
be the subset semiring of type .

P, ={0, 3, 6, 9} < Z;, be the subring. W, = {{0}, {3}, {6},
{9}, {0, 3} {0, 6}, {0, 9}, {3, 6§, {3, 9}, {6, 9}, {0, 3, 6}, {0,
3,9}, {0,6,9}, {3, 6,9}, {0, 3, 6,9} } be the subset semiring.

Let M; = Collection of all subset set semiring ideals of the
subset semiring over the subset subsemiring W.



222 | Subset Semirings

We can find the four strong special new type subset set
semiring ideals of S relative to the subset subsemiring W;.

We see T", T, TV , and T," are 4 different strong

special subset set semiring ideal topological spaces of S relative
to Wl.

Example 4.24: Let
S = {Collection of all subsets from the ring ZsS;} be the subset
semiring of type L.

P, = {Collection of all subsets from the subring {0, 3}S;}
be the subset subsemiring of type 1.

P, = {Collection of all subsets from the subring
{0, 2, 4}S;} be the subset subsemiring of type 1.

P; = {Collection of all subsets from the subring ZsA;} be
the subset subsemiring of type 1.

P4 = {Collection of all subsets from the subring {0,3} A3} be
the subset subsemiring of type I.

Ps = {Collection of all subsets from the subring {0,2,4}A;}
be the subset subsemiring of type .

P = {Collection of all subsets from the subring Z¢W, where

W L2 3123 .
= . C D3 1S a Ssubgroup o
! 12 301 3 2 ’ Eroup o1 53

be the subset subsemiring of type 1.

P, = {Collection of all subsets from the subring Z¢W, where

woo [t 2 32 3
221 2 3fl3 2 1=
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be the subset subsemiring of type 1.

Pg = {Collection of all subsets from the subring Z¢W; where

we (2302 )

be the subset subsemiring of type 1.

Py = {Collection of all subsets from the subring {0, 3} W}
be the subset subsemiring of type 1.

Py = {Collection of all subsets from the subring {0, 3} W,}
be the subset subsemiring of type 1.

P,; = {Collection of all subsets from the subring {0, 3} W5}
be the subset subsemiring of type 1.

Similarly Py,, P;3, and P4 are subset subsemirings of the
subring {0, 2,4}W;1=1, 2, 3.

Thus we have nearly 14 such subset subsemirings of S.

Related with each of them we have a special subset set ideal
semiring topological subspaces of S of the four types as well as
the strong special new subset set ideal semiring topological
subspaces over P; of the four types.

Associated with each of these topological spaces we have a
tree.

Study in this direction is not only innovative and interesting
but has lots of bearing in applications.

Example 4.25: Let
S = {Collection of all subsets from the ring R(S(3) x D, 7 x Ay)}
be the subset semiring of type I.
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We have several special new subset set semiring ideal
topological spaces of S over the subrings of S as well as strong
special new subset set semiring ideal topological spaces of S
over the subset subsemirings of S.

We can have infinite number of trees of infinite cardinality
associated with these spaces.

Now we proceed onto define and describe the notion of
subset semiring topological spaces of type I semirings.

Example 4.26: Let
S = {Collection of all subsets from the semiring Z" U {0}} be
the subset semiring of type II.

We have infinite number of subset subsemiring of S and
associated with each one of them we have an infinite number of
subset special set ideal semiring new topological semiring
spaces of S. We can associate infinite trees with these spaces
and their subspaces.

Example 4.27: Let S = {Collection of all subsets from the
semiring (Q" U I U {0})} be the subset semiring of type II. S
has infinite number of subset subsemirings.

We also have T,, T_, T~ and T the four special subset
topological semiring spaces of S.

Let T, = {S'=Su {0}, U, N},

To={S, U, x},

T~={S', N, +} and

T, = {S, +, x} be the four special subset topological
semiring spaces of S.

Take A = {3 +1, 81, 0, 4+2[, 71+1} and B = {I, I, 9+I} e
T

AUB = {341, 81,0,4+2L, 7I+1} U {I, 1,9+ 1}
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={3+2L9L,1,4+3,81+1,4+1,1+8I,1,5+2I,
2+ 7L 12+21,9+91,9+1, 13+ 3L, 81+ 10}
and

ANB = {341, 8,0, 4421 71+1} N {I, 1,9 + I}
= {¢} € To.

This is the way operations are performed on T,

Consider A, B € Ty = {S, U, x}.

Now

A+B ={3+L8L0,4+2, 71+ 1} +{I,1,9+1}

={3+2L9L1,4+3,81+1,4+1,1+8L1,
S+2L2+ 7L 12+21,9+91,9+1, 13 + 31,
81+ 10}
and

AxB ={3+L8L0,4+2L 71+ 1} x{[,1+9+1}

={3+1,81,0,4+2I,71+1,4I 81, 6l, 27 + 131,
801, 36 + 241, 9 + 711} are in T.

Clearly T, and T, are two distinct special subset topological
spaces of the semiring.

LetA,B e T~={S', +,N}.
Now
A+B ={3+L8L0,4+2L 71+ 1} +{L 1,9+1I}

={3+2L 9L 1,443 81+ 1,4+1,1+8I,1,5+2I,
2+71, 12 + 21, 9+91, 9+1, 13+31, 81+ 10} and

ANB ={3+18L,0,4+2L 71+ 1} N {I,1,9+1}
= {¢} are in TA.



226 | Subset Semirings

LetA,B e Tu={S, U, x}.

AUB ={3+1,81,0,4+2L,71+1} U{l,1,9+1}
= {3+, 8L, 0,4+ 21.71 + 1, I, 1, 9+I} and

AxB ={3+L8L0,4+2I,71+1} x{L,1,9+1}

= {41, 81, 0, 6L, 81,3 + 1, 81, 0,4 + 21, 27 + 131,
731,36 + 241, 9+ 771} € To.

We see all the four topological spaces T,, T, T~ and T are
distinct.

Example 4.28: Let S = {Collection of all subsets from the
semiring (Z" U {0}) (g, &, g;) where g =0, g; =g and g =

g3, with gigj = gigi =0 if i # j, 1 <1, j < 3} be the subset semiring
of type 1L

Let T,, T, T~ and T be the four new special subset
semiring topological spaces of S.

Let A={0,2+ g + gy, 4g; + 5g3} and B = {g,, 4g3, 5gi,
3+2g1 + g3} S TO.

{S"=S v {6}, U, n}. We now find

AUB ={0,2+g+g,4g +5g} U {g, 4gs, 5S¢,
3+2g; + g3}

=1{0,2+ g + g, 4g + 5g3, 2> 4g3, 581, 3 +
2g; + g3} and

ANB=10,2+g +g,4g + 52} N {2, 4¢3, 51,
3+2g + g3}

=¢ e T,.
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Let A,B € Tu={S, U, x} we find

AUB =1{0,2+g+g,4g +5g} U {2, 4gs, 5gi,
3+2g; + g3}

=10,2 + g, + g, 4gl + 5g;, &, 4g3, 521, 3+2g:1}
and

AxB ={0,2+ g, + g 4g +5g} U {g, 4g3, 581,
3+2g; + g3}

=10, 32y, 8g3, 20g3, 10g1, 6 +2¢g; +2g3} € To.

We see T, and T, are different types of topological spaces
of the subset semiring S.

Let A,Be T~={S'=SuU {¢},+, N} we find
A+B=1{0,2+g +g,4g +5g} + {2, 4g;, 5g1, 3+2g + g3}

={g, 423, 5g1,3+2g + 23,2+ g +22,2+g +g +4g;,
6g1 +2+g,5+3g +g+gs34g + g+ 5g3, 9g; +4g,
9g; + 5g;,3 + 6g; + 6g3} and

ANB ={0,2+g +g,4g +5g} N {2, 4g, 5gi,
3+2g1 + g3}

=¢arein TA.

We see T is distinct from T, and T as subset topological
spaces.

Now let A, B € T, = {S, +, x}
A+B

=1{0,2+ g, + g1, 4g + 5g3} + {2, 4g3, 5g1, 328 + g3}
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= {2,483, 52,3 +2g +g3,2+g +2g,2+g +g+4g;,
6g) +2+g,5+3g +g +gs4g + g+ 5g;, 9g; +4g,
9g; +5g3, 3+ 5g; + 623}

and

AxB

=10,2+ g+ g1, 48 + 5gs} x {2, 423, 521, 3281 + g3}

= {O, 3g2, 9g3, 20g3, 10g1, 6+ 7g1 + 3g2 + 2g3, 12g1 + 20g3}
are in T.

We see T is distinctly different from T, T~ and T, as
topological subset spaces.

Thus Ty, T,, T, and T are four distinct special new subset
semiring topological spaces of S.

Further we have subspaces of these four topological spaces.

We also have the special set ideal semiring subset new type
topological semiring spaces related to subset subsemirings.

For we have infinite number of subset subsemiring;
T = {S" U {¢}; U, N} where S" = {all subsets of the

subsemiring nZ" U {0}} as n varies in Z" \ {1}.

Thus we have infinite number of special new subset set
semiring ideal topological semiring spaces over the subset

subsemirings S" of the four types T, T", T and Tg .

Apart from this also we have infinite collection of spaces
associated with the subset subsemirings

S"(g;) = {Collection of all subsets from the subsemiring
(nZ" U {0}) (g n e Z\ {1}},

S"(g2)= {Collection of all subsets from the subsemiring

(nZ" U {0}) (g2))},
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S"(g3) = {Collection of all subsets from the subsemiring
(nZ" U {0}) (g3);n € Z"\ {1}} be subset
subsemirings of S.

Likewise S"(g1, g2), S"(g1, g3), S(g2, g3) and S"(gi, g2, g3)
give way to infinite collection of all subset subsemirings.

Associated with these subset subsemirings we have an
infinite collection of the four types of new type of special subset
set ideal topological semiring spaces of T, T~, T, and Ti.

Now related with these subset set semiring ideal topological
semiring subspaces of the topological spaces we have trees
associated with them.

Example 4.29: Let S = {Collection of all subsets from the
semiring L where
; )

be the subset semiring.

We have T,, T, T~ and T to be the four topological spaces.
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We have also subspaces but only finite in number. Further

all the spaces T,, To, T~ and T; have finite trees associated with
them.

Take S; = {Collection of all subsets from the sublattice P, =

I \
K
0 J

c S is a subset subsemiring. T", T", T!' and T, are all special

new type subset set semiring ideal topological subspaces of the
space Ty, T~, T, and T, respectively.

Consider S, = {Collection of all subsets from the sublattice
(subsemiring) P, =

(@)

o o~ 0@

be the subset subsemiring of S.
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T.>,T"”, T and T;" are the subset special new set semiring

ideal topological semiring subspaces of the subset subsemiring
space S; of T, To, T~ and T, respectively.

However we have only a finite number of such spaces as S
has only a finite number of elements in it.

Take A= {a, b, f, h, 0} and
B={1,d, kg, j} € T,={S,u,n}.

We find

AUB =1{ab,f h 0} U{l,dKk,g,j}
={a,b,f,h,0,1,d,k, g, j} and

AmB = {a: ba fa ha 0} U{la d: k> g5J}
=¢ e T,.

Now let A, B € T, = {S, U, x}.

AUB ={a,b,fh,0} Uil dkgjl
= {ay by fa h) 09 1: dﬂ k’ g’-]} and

A xB

h, 0} x {1, d, k, g, j}
h,0,d,k, g,j} isin T_.

O“O“
=

{a,
{a,
We see T, and T, are two different topological spaces.

Now consider A, B € T..

A+B ={ab,f,h0}+{l,dk,gj}
={l,a,b,d, k,e,g,j,f} and

AxB =AUB={ab,fh 0} x{,dkgijl
= {a,b,f,h,0,d kg j} e T.

We see T, is different from T, and T_.
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LetA,B e T ={S'=SU {0}, + N}

A+B = {a,b,f,h,0}+ {lzd’kag5j}
={l,a,b,d,i,k, e g j,f}and

ANnB=AuUB={a,b fh 0} n{l,dk,gj}
= ¢ arein Tn.

We see T, is different from Ty, T, and Ty as topological
spaces.

We see in all the four spaces A x B =B x A, hence all the
spaces are commutative.

Example 4.30: Let
S = {Collection of all subsets from the semiring LS; where L is
lattice which is as follows:

_
9
-

be the subset semiring of finite order.

Clearly S is non commutative.

. 1 2 3 1 2 3 1 23
Forif A= +a +d ,
2 3 1 2 1 3 1 3 2
1 23 1 23
e ,C and
2 31 3 21
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3
1

={£1§§H; Hi )
)} are in'S we find
A+B={(;§3H R
I R R (e
(2002
SRR L
T A E R |
(2 iw Ni;i}[;ii%
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1 2 3 1 23 1 2 3 1 23
c ,C +f ,
(2 3 1] [3 2 IJ (2 3 1] (2 3 1)
1 2 3 1 2 3 1 2 3
+a +d +c R
[2 1 3} (1 3 2J [3 2 J
1 2 3 1 2 3
€ +cC .
(2 3 lj (3 2 1]}

and

(¢
7N\
N =
W N
—_ W
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12 3) (123
f f :
[231}[132}}

Consider
1 2 3 1 2 3 1 23
BxA = +d ,f ,
{(1 2 3 (2 1 3) (2 3 1]
1 2 3 1 3 1 23
C X +a +
(3 2 J} {(2 1} £2 1 3}
1 2 3 1 1 23
d , € ,C
(1 3 2) (2 lj [3 2 1]}
1 2 3 1 3 1 2 3
= +a +d ,
{2 3 J (2 3} (1 3 2}
2 3 1 3 1 2 3
€ ’ C B d >
LZ 3 J [3 J £3 1 2}
1 2 3 1 3
f , T andsoon ; € S.
31 2 2 3

AxB#BxAinS.

—

3
1

2
3
2
3
2
1
2
2
2
1

Thus S is a subset semiring which is non commutative so
the spaces T and T are non commutative.

We can get only finite number of subset subsemirings and
their associated subset special new set semiring ideal
topological semiring spaces of the subset subsemirings.
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Example 4.31: Let S = {Collection of all subsets form the
semiring (L; x L,)D,; where L, is a Boolean algebra of order 16
and L, is a chain lattice C;,} be the subset semiring of finite
order which is non commutative. S has subset special new
topological subspaces of 4 types of which T, and T, are non
commutative.

Example 4.32: Let S = {Collection of all subsets from the

semiring LS(3) where L =
1 )
a ay
a3
as >
XX
aio ag

0 J

be the subset semiring of finite order.

We have only finite number of subset special new type of
topological subset semirings of which T, and T_ are non
commutative spaces of S.

THEOREM 4.1: Let S be a collection of all subsets of ring
(semiring R;). S be the subset semiring of type I (or type II). S
is non commutative if and only if the ring R (or semiring R;) is
non commutative.

Proof is direct and hence left as an exercise to the reader.
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Corollary 4.1: The new special subset semiring topological
spaces Ty and T; is non commutative if and only if S is non
commutative.

The proof of this corollary is also direct and hence left for
the reader to prove.

Example 4.33: Let S = {Collection of all subsets of the
semiring V = (L; x Ly) (Dys x Ag)} be the subset semiring
which is of finite order and non commutative.

Take P1 = (Ll X {0}) ({1} X A6) [ V= (Ll X L2) (Dz’g X A6)
to be a subsemiring of V.

W, = {Collection of all subsets from subsemiring P,} < S is
a subset subsemiring. T, T, T" and T are the special

new strong subset set semiring ideal topological spaces over the
subset subsemiring W.

T™ and T are non commutative but of finite order.

W, is also associated with special new subset set ideal
semiring topological spaces over the subsemiring P; of finite
order.

They are Ty, T', T" and T". Compare and study T"

with T and so on.

Example 4.34: Let S = {Collection of all subsets from the
semiring W = (Z" U {0}) (S4 x D)} be the subset semiring of
type IL

Take P, = {(tZ" U {0}) (S4 x Dys)} = S;t € Z"\ {1} be the
collection of all subsemirings of W.

Let V; = {Collection of all subsets of the subsemiring P};
t € Z"\ {1} be the subset subsemiring of S.



238 | Subset Semirings

P P, P, P, 1
T, T,*, T and T are the special subset new type of set

ideal semiring topological spaces of S over the subsemiring Py;
teZ \{1}.

T, T, TV and T are strong special subset new type
set ideal semiring topological space of S over the subset
subsemiring W, of S.

We see we have an infinite collection of topological spaces
all of infinite order.

Example 4.35: Let
S = {Collection of all subsets from the semiring L} be the

subset semiring of type II where L =

1

0

S = {105}, {1}, {a}, {bj, {0, 1}, {0, a}, {0, b}, {a, b}, {0, 1, aj,
{0, 1, b}, {0, a, b}, {1, a,b}, {1,a,b,0}}.

T, T, Ty and T are the four different topological spaces of

S.
Let A={0,1,b} and B= {a} € T,.
A+B ={0,1,b} + {a}
= {a, 1} and

AxB =1{0,1,b}+ {a}
={a, 0} e T,.

For A,B e T, = {S, U, x}
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AuUB ={0,1,b} U {a}
={0,1,a,b} and
AxB={0,1,b} x {a} = {0, a} € T..
T, and Ty are different as topological spaces.

For A,B e T-={S'=Su {¢}, N, +} we see

A+B=1{0,1,b} + {a} = {1,a} and
ANB ={0,1,bl +{a} =¢ € T~

T is different from T and T, as topological spaces.
LetA,B e T,

AuB={0,1,b} U {a} ={0,1,a,b} and
AnNB={0,1,b} n {a} = {0} € T,.

T, is different from T, T~ and T as topological spaces.

Now

{091’b7a}

0} (e g1y (0

We can draw the trees of T, T~, T, and T, in more than one
way.

Also using the subsemiring P = {a, 1}, find the special types
of set ideal semiring topological subset semiring spaces over P.

T, T', T" and T{ are subspaces of T,, T, T_ and T..

We suggest the following problems.
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Problems

1.

Study the four different T,, T, T~ and T; special subset
topological semiring spaces of type I and compare them.

Let S = {Collection of all subsets from the ring Z,} be the
subset semiring of type I.

(1) Find the o(T,), o(T.), o(T~) and o(T5).
(i1) Compare them and show all the four spaces
and different.

Let S = {Collection of all subsets from the ring C(Z,)} be
the subset semiring of type I.

(i) Study question (i) and (ii) of problem two for this S.
(i1)) Compare S; and S.

(i) Is S < S,?

(i) IsTsc T ?

Let S = {Collection of all subsets from the ring (Z U 1)} be
the subset semiring of (Z U I).

(i) Find T,, Ty, T~ and T and prove all the four subset
topological semiring type I spaces are different.

(i1) Find subset topological semiring type I subspaces of S.

Let S; = {Collection of all subsets from the ring (R U I) (g)
where g” = 0} be the subset semiring of type I.

Study questions (i) to (ii) of problem 4 for this S;.
Compare S of problem 4 and S; of problem 5.

Let S = {Collection of all subsets from the ring
R = C(Z1y) x Zs (21, g2, &) where g/ =0, g5 = g, and

g5 =—g;} be the subset semiring of type I of the ring R.
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(i) Find T,, Ty, T~ and TSz .

(i1) Find all new subset special topological type I semiring
subspaces of T,,, T, T~ and TSZ

Let S; = {Collection of all subsets from the ring
(Zs U T) x C(Zg) x C{Zs U T))} be the subset semiring of
type L.

Study questions (i) to (ii) of problem 6 for this S;.

Let S = {Collection of all subsets from the ring QS;} be the
subset semiring.

(1) Find T,, To, T~ and T of S.
(i) Find all the subset topological subspaces of T,, Ty, T~
and T of S.

Let S = {Collection of all subsets from the ring Z; x Zs} be
the subset semiring of type I.

(i) Find T,, Ty, T~ and Ts.

(i1) Find o(T.).

(ii1) Find all subrings of Z; x Zs.

(iv) If P; are subrings of Z3 x Z; (say i=1, 2, ..., n) find T",
T, TV and T, for 1 <i<n, the set ideal subset
semiring topological spaces of S.

(v) Find o(T").

(vi) Will o(T_) = o( T") for some i?

(vii) Find all subspaces of T,, T, T~ and T.

(viii) Which of the topological spaces T, (or T_ or T~ or Ty)
has maximum number of subspaces?

Let S = {Collection of all subsets from the ring R = Z3 x Z;
x Z7} be the subset semiring of type I of the ring R.

Study questions (i) to (viii) of problem 9 for this S.
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11.

12.

13.

14.

15.

16.

17.

Let S; = {Collection of all subsets from the ring
R =(Z;; Ul (g) g® =0} be the subset semiring of type I of
the ring R.

(1) Study questions (i) to (viii) of problem 9 for this S.

(i) If in (Z;, U I) (g) is replaced by Z,;
study questions (i) to (viii) of problem 9 for this S.

Let S = {Collection of all subsets from the ring Z;S;} be the
subset semiring of type I of the ring Z5S;.

Study questions (i) to (viii) of problem 9 for this S.

Let S = {Collection of all subsets from the ring C(Z;,)} be
the subset semiring of type I of the ring C(Z1).

Study questions (i) to (viii) of problem 9 for this S.

Let S = {Collection of all subsets from the ring
R = C(Z1y) x {Z7 v I)} be the subset semiring of type I for
the ring R.

Study questions (i) to (viii) of problem 9 for this S.

Let S = {Collection of all subsets from the ring
R =C(Z;5)Se} be the subset semiring of type I of the ring R.

Study questions (i) to (viii) of problem 9 for this S.

Let S = {Collection of all subsets from the ring
R=C({(Zis U 1)) (S; x Dyo)} be the subset semiring of type I
of R.

Study questions (i) to (viii) of problem 9 for this S.

Let S = {Collection of all subsets of the ring Z,,} be the
subset semiring of type I of the ring Zy.
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19.

20.

21.

22.
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(1) Find the subset set ideals of S related to the subring M,
of P, = {0, 5, 10, 15}

(i1) Find the tree associated with P;.

(i) Let P, = {0, 2, 4, ..., 18} < Z, be the subring of Zy.
Let M, = {Collection of all subset set ideals of S related
to P,}. Find T.*, T, T and T;* of M,.

(iv) Find the tree associated with M,.

(v) If P, is replaced by P; = {0, 10} < Z,, study T.*,T",
Ty* and T . Find the tree of T{".

(vi) Compare the trees of each Py’s.

Let S = {Collection of all subsets of the ring Z,,S;} be the
subset semiring of type I.

Study questions (i) to (vi) of problem 17 for this S.

Let S = {Collection of all subsets of the ring
R =(Z4 x Zs) (D29)} be the subset semiring of type I .

Study questions (i) to (vi) of problem 17 for this S.

Let S = {Collection of all subsets of the ring
R =7, (S4 x D,7)} be the subset semiring of type 1.

Study questions (i) to (vi) of problem 17 for this S.

Let S = {Collection of all subsets from the ring Z(g;, g)
with g2=0, g7 = g, 212, = &g = 0} be the subset semiring
of type L.

(1) Show S has infinite collection of subset set semiring
ideals and related to each of them; we have four strong
subset strong set semiring ideal topological spaces.

(i1) Find F_, F~, F, and F; for this S.

Obtain some special features enjoyed by the four spaces T,
T, T, and T of any subset semiring S of type I of a ring.
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23.

24.

25.

26.

Let S = {Collection of all subsets from the ring Z5} be the
subset semiring of type I.

(i) Find all subrings of Z;s.

(i1) Find all subset subsemirings of S.

(iii) Find all special new subset set ideals semiring
topologies of S related to the subring of Z,.

(iv) Find all strong special new subset set ideal semiring
topologies of the subset semirings of S.

(v) Find for the subset subsemiring M; = {Collection of all

subsets of the subring P, = {0, 4, 8}} find T", T"",

o

TY and T". Find subspaces of these four spaces.

Let S = {Collection of all subsets of the ring C(Z;5)} be the
subset semiring of C(Z;3).

(i) Study problems (i) to (iv) of problem 23 for this S.

(i1) Let P, = Z;35 be the subring of C(Z,5). M = {Collection
of all subsets of the subring P,} be the subset
subsemiring of S.

Find T, T"", T* and Ty" and compare them.

Let S = {Collection of all subsets from the ring of
C({Zs U 1))} be the subset semiring of type L.

(1) Study problems (i) to (iv) of problem 23 for this S.

(i1) Find all subset semirings of S. Using each of these
subset subsemirings build the related special strong
subset set semiring ideal topological semiring spaces of
the subset subsemiring.

Let S = {Collection of all subsets from the ring
Zi, x (Z; v 1)} be the subset semiring of type I over
VAV <Z7 |\ I>

(1) Study questions (i) to (iv) of problem 24 for this S.
(i1) Find all subset subsemirings of S.
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Relative to each of these subset subsemiring we associate a
strong new special subset set semiring ideal topological
semiring space relative to each subset subsemiring of S.

27. Let S = {Collection of all subsets of the ring
Z¢ x {C (Zg) U I)S3} be the subset semiring of type 1.

(i) Show S is non commutative.
(i1) Study questions (i) to (ii) of problem 24 for this S.
(iii) Find all subset subsemirings of S.

Find all strong special new set semiring ideal subset
topological spaces relative to each of the subset
subsemirings.

28. Let S = {Collection of all subsets from the ring
C(Zys W D)) (S5 x Dyg)} be the subset semiring of type I.

(i) Study questions (i) to (iv) of problem 23 for this S.

(i1) Prove S is non commutative.

(ii1) Find all subset subsemiring of S. Relative with each of
these subset semirings find the subset special strong set
ideal semiring topological spaces over the subset
subsemirings.

29. Let S = {Collection of all subsets from the ring
C({(Z4o v 1)) Ag} be the subset semiring of type L.

(i) Study questions (i) to (iv) of problem 23 for this S.

(i1) Prove S is non commutative.

(iiil) How many subset subsemiring of S exist?

(iv) With each of the subset subsemirings find the strong
new subset set semiring ideal topological spaces over
the subset subsemiring.

(v) How many subrings of C((Z4 U 1)) exist?

(vi) Find all the subset special new set semiring ideal
topological spaces associated with each of the subrings.
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30.

31.

32.

33.

34.

35.

36.

Let S = {Collection of all subsets from the ring Z(g;, 2);
g =0, g =g; @12 = g =0} be the subset semiring.

Study questions (i) to (vi) of problem 29 for this S.

Let S = {Collection of all subsets from the ring

C(Z1> W D)(g1,g:) where g/ =0, g; = g and g2, = &g = 0}
be the subset semiring of type I.

Study questions (i) to (vi) of problem 29 for this S.

Let S = {Collection of all subsets of the ring C({(Zy U I))S4}
be the subset semiring of type I.

Study questions (i) to (vi) of problem 29 for this S.

Let S = {Collection of all subsets of the ring
C(Z14) Ay x D, 7} be the subset semiring of type .

Study questions (i) to (vi) of problem 29 for this S.

Let S = {Collection of all subsets from the ring
(Z4 x C(Zy6)) (D26 x S4)} be the subset semiring of type I.

Study questions (i) to (vi) of problem 29 for this S.

Let S = {Collection of all subsets from the ring
C({Zs v 1)) S;} be the subset semiring of type 1.

Study questions (i) to (vi) of problem 29 for this S.

Let S = {Collection of all subsets from the ring C(Z,)} be
the subset semiring of type L.

(i) Find all special new subset semiring topological spaces
and the subspaces.



37.

38.

39.

40.

41.

42.

43.
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Let S = {Collection of all subsets from the ring
C((Zy; v 1))} be the subset semiring of type I.

Study question (i) of problem 36 for this S.

Let S = {Collection of all subsets from the semiring

Z" U {0}} be the subset semiring of type II.

(i) Find all subset subsemirings of S.

(i1) Is S a S-subset semiring?

(ii1) Can S contain subset semiring ideals?

(iv) Can S have subset S-semiring ideals?

(v) Study the four types of topological spaces associated
with S; T, T, T~ and Ti.

Let S = {Collection of all subsets of the semiring
(Q"UTuU {0})} be the subset semiring.

Study questions (i) to (v) of problem 38 for this S.

Let S = {Collection of all subsets from the semiring
(Z" U {0}) (g1, 2) where g =0, g = g,} be the subset
semiring.

Study questions (i) to (v) of problem 38 for this S.

Let S = {Collection of all subsets from the semiring
(Z" U {0}) S4} be the subset semiring.

Study questions (i) to (v) of problem 38 for this S.

Collection of all subsets from the semiring
((Q" U Tu {0}) S(4) be the subset semiring.

Study questions (i) to (v) of problem 38 for this S.

Let S = {Collection of all subsets from the semiring L =
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45.

be the subset semiring.

(1) Find o(S).

(i1) Is S a Smarandache subset semiring?

(ii1) Find all subset subsemirings of S.

(iv) Can S have special new subset set semiring ideal of

finite order?

Let S = {Collection of all subsets from the semiring LA;
where L is the lattice
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a;

XX |

a7

ag

dg ajo

0 J

be the subset semiring.

Study questions (i) to (iv) of problem 44 for this S.

46. Let S = {Collection of all subsets from the semiring
L(D,7 x A4) where L is a lattice given by

; \

XX

a

ae a4
ar >
ag
dg

a0 an
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47.

48.

49.

50.

be the subset semiring.
Study questions (i) to (iv) of problem 44 for this S.

Let S = {Collection of all subsets from the semiring
(L; x Ly) (Dag x Ag)} be the subset semiring of type I1.

Study questions (i) to (iv) of problem 44 for this S.

Let S = {Collection of all subsets from the semiring

L(g, @) =f{a tag taxg |4 e L; 1 i <35 gf =gy,
g =0, g2 = &g = 0}; where L is a Boolean algebra of
order 16} be the subset semiring.

Study questions (i) to (iv) of problem 44 for this S.

Let S = {Collection of all subsets from the semiring
(R"UT) U {0}} be the subset semiring.

(i) Show S has infinite number of subset subsemirings.

(i1) Show S has infinite number of special new subset
topological subspaces of the four types of spaces
T,, Ty, T~ and T,.

(iii) Show S has infinite number of special new subset
set semiring ideal topological subspaces relative to
the subset subsemirings of S.

(iv) Find subspaces of the above said spaces in (ii)

(v) Show S has infinite number of strong special new
subset set ideal semiring topological spaces over the
subset subsemirings.

(vi) Find strong topological subspaces of the spaces
mentioned in (V).

Let S = {Collection of all subsets from the semiring
(Z" U {0})S;} be the subset semiring of type I1.

(i) Study questions (i) to (vi) of problem 49 for this S.
(i1) Show S is non commutative.
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51. Let S = {Collection of all subsets from the semiring
((R"UT) U {0}) (S7 x Dyg)} be the subset semiring of
type 11

(i) Study questions (i) to (vi) of problem 49 for this S.
(i1) Prove S is non commutative.
(ii1) Find all the non commutative subspaces of S.

52. Let S = {Collection of all subsets from the semiring
(Z" U {0}) (S7 x D14)} be the subset semiring.

(i) Prove S is non commutative.
(i1) Study questions (i) to (vi) of problem 49 for this S.

53. Let S = {Collection of all subsets from the semiring
(L x Ly) (S5 x S(4))} where

be the subset semiring.
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54.

55.

56.

57.

(i) Prove S is a non commutative subset semiring.
(i) Find all subset subsemirings of S.

(iii) Find all types of subset special new topological
semiring spaces of S.

(iv) Find all four types of special strong new topological
set semiring ideal spaces of S related to every
subset subsemirings.

(v) Find all special strong new topological set semiring
ideal subspaces of S related to every subset
subsemiring of S.

(vi) Find the total number of subset topological subspaces
of T,, Tu, T~ and Ts.

Find some interesting and distinct features associated with
the four types of topological spaces T,, Ty, T~ and Ts.

What can one say about the non commutative new special
set ideal semiring topological subset semiring spaces?

Compare the topological spaces associated with type I
subset semirings with the type Il subset semirings.

Let S = {Collection of all subsets from the semiring
L(S(3) x A4 x Dy7)} be the subset semiring of type Il where
L is a lattice given in the following:
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Study questions (i) to (vi) of problem 53 for this S.

58. Let S = {Collection of all subsets from the semiring
(Ly x Ly x L3) (As x D, 7)} be the subset semiring of type I
where L; is a chain lattice C,, L, is a Boolean algebra of
order 32 and L; =
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Study questions (i) to (vi) of problem 53 for this S.
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