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Foreword 

Symbolic (or Literal) Neutrosophic Theory 

is referring to the use of abstract symbols (i.e. the 

letters T, I, F, representing the neutrosophic 

components truth, indeterminacy, and respectively 

falsehood, or their refined components, represented 

by the indexed letters Tj, Ik, Fl) in neutrosophics. This 

book treats the neutrosophy, neutrosophic logic, 

neutrosophic set, and partially neutrosophic 

probability. 

In the first chapter, we extend the dialec-

tical triad thesis-antithesis-synthesis (dynamics of 

<A> and <antiA>, to get a synthesis) to the 

neutrosophic tetrad thesis-antithesis-neutrothesis-

neutrosynthesis (dynamics of <A>, <antiA>, and 

<neutA>, in order to get a neutrosynthesis). We do 

this for better reflecting our world, since the 

neutralities between opposites play an important 

role. The neutrosophic synthesis (neutrosynthesis) is 

more refined that the dialectical synthesis. It carries 

on the unification and synthesis regarding the 

opposites and their neutrals too. 
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In the second chapter, we introduce for the 

first time the neutrosophic system and neutro-

sophic dynamic system that represent new per-

spectives in science.  A neutrosophic system is a 

quasi- or (𝑡, 𝑖, 𝑓)–classical system, in the sense that 

the neutrosophic system deals with quasi-

terms/concepts/attributes, etc. [or (𝑡, 𝑖, 𝑓) -terms/ 

concepts/attributes], which are approximations of 

the classical terms/concepts/attributes, i.e. they are 

partially true/membership/probable (𝑡% ), partially 

indeterminate (𝑖%), and partially false/nonmember-

ship/improbable (𝑓%), where 𝑡, 𝑖, 𝑓 are subsets of the 

unitary interval [0, 1].  {We recall that ‘quasi’ means 

relative(ly), approximate(ly), almost, near, partial(ly), 

etc. or mathematically ‘quasi’ means (t,i,f) in a 

neutrophic way.} 

Thus we present in a neutrosophic 

(dynamic or not) system the (𝑡, 𝑖, 𝑓) − 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠,

(𝑡, 𝑖, 𝑓) -principles, (t,i,f)-laws, (t,i,f)-behavior, (t,i,f)-

relationships, (t,i,f)-attractor and (t,i,f)-repellor, the 

thermodynamic (t,i,f)-equilibrium, and so on. 

In the third chapter, we introduce for the 

first time the notions of Neutrosophic Axiom, 

Neutrosophic Deducibility, Neutrosophic Axiomatic 

System, Neutrosophic Deducibility and Neutrosophic 

Inference, Neutrosophic Proof, Neutrosophic Tauto-
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logies, Neutrosophic Quantifiers, Neutrosophic 

Propositional Logic, Neutrosophic Axiomatic Space, 

Degree of Contradiction (Dissimilarity) of Two 

Neutrosophic Axioms, and Neutrosophic Model.  

A class of neutrosophic implications is also 

introduced. A comparison between these innovatory 

neutrosophic notions and their corresponding 

classical notions is also made. Then, three concrete 

examples of neutrosophic axiomatic systems, 

describing the same neutrosophic geometrical 

model, are presented at the end of the chapter. 

The fourth chapter is an improvement of 

our paper “(t, i, f)-Neutrosophic Structures” [3: 1], 

where we introduced for the first time a new type of 

structures, called (t, i, f)-Neutrosophic Structures, 

presented from a neutrosophic logic perspective, 

and we showed particular cases of such structures in 

geometry and in algebra.  

In any field of knowledge, each structure is 

composed from two parts: a space, and a set of 

axioms (or laws) acting (governing) on it. If the space, 

or at least one of its axioms (laws), has some 

indeterminacy of the form (t, i, f)  ≠ (1, 0, 0), that 

structure is a (t, i, f)-Neutrosophic Structure. 

The (t, i, f)-Neutrosophic Structures [based 

on the components t = truth, i = numerical indeter-
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minacy, f = falsehood] are different from the Neutro-

sophic Algebraic Structures [based on neutrosophic 

numbers of the form a + bI, where I = literal 

indeterminacy and In = I], that we rename as I-

Neutrosophic Algebraic Structures (meaning 

algebraic structures based on indeterminacy “I” 

only).  But we can combine both and obtain the (t, i, 

f)-I-Neutrosophic Algebraic Structures, i.e. algebraic 

structures based on neutrosophic numbers of the 

form a+bI, but also having indeterminacy of the form 

(t, i, f)  ≠ (1, 0, 0) related to the structure space 

(elements which only partially belong to the space, or 

elements we know nothing if they belong to the space 

or not) or indeterminacy of the form (t, i, f)  ≠ (1, 0, 

0) related to at least one axiom (or law) acting on the 

structure space. Then we extend them to Refined (t, 

i, f)- Refined I-Neutrosophic Algebraic Structures. 

In the fifth chapter, we make a short history 

of: the neutrosophic set, neutrosophic numerical 

components and neutrosophic literal components, 

neutrosophic numbers, neutrosophic intervals, 

neutrosophic dual number, neutrosophic special dual 

number, neutrosophic special quasi dual number, 

neutrosophic quaternion number, neutrosophic 

octonion number, neutrosophic linguistic number, 

neutrosophic linguistic interval-style number, 
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neutrosophic hypercomplex numbers of dimension n, 

and elemen-tary neutrosophic algebraic structures. 

Afterwards, their generalizations to refined 

neutrosophic set, respectively refined neutrosophic 

numerical and literal components, then refined 

neutrosophic numbers and refined neutrosophic 

algebraic structures, and set-style neutrosophic 

numbers.  

The aim of this chapter is to construct 

examples of splitting the literal indeterminacy (I) into 

literal sub-indeterminacies (I1,I2,…,Ir), and to define a 

multiplication law of these literal sub-indeter-

minacies in order to be able to build refined I-

neutrosophic algebraic structures.  Also, we give 

examples of splitting the numerical indeterminacy (i) 

into numerical sub-indeterminacies, and examples of 

splitting neutrosophic numerical components into 

neutrosophic numerical sub-components. 

In the sixth chapter, we define for the first 

time three neutrosophic actions and their properties. 

We then introduce the prevalence order on {𝑇, 𝐼, 𝐹} 

with respect to a given neutrosophic operator “𝑜”, 

which may be subjective - as defined by the 

neutrosophic experts. And the refinement of 

neutrosophic entities <A>, <neutA>, and <antiA>. 
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Then we extend the classical logical 

operators to neutrosophic literal (symbolic) logical 

operators and to refined literal (symbolic) logical 

operators, and we define the refinement neutrosophic 

literal (symbolic) space. 

In the seventh chapter, we introduce for the 

first time the neutrosophic quadruple numbers (of 

the form 𝑎 + 𝑏𝑇 + 𝑐𝐼 + 𝑑𝐹 ) and the refined neutro-

sophic quadruple numbers. 

Then we define an absorbance law, based 

on a prevalence order, both of them in order to 

multiply the neutrosophic components 𝑇, 𝐼, 𝐹 or their 

sub-components 𝑇𝑗 , 𝐼𝑘, 𝐹𝑙  and thus to construct the 

multiplication of neutrosophic quadruple numbers. 
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1 Thesis-Antithesis-Neutrothesis, 
and Neutrosynthesis 

1.1 Abstract. 
In this chapter we extend the dialectical 

triad thesis-antithesis-synthesis (dynamics of <A> 

and <antiA>, to get a synthesis) to the neutrosophic 

tetrad thesis-antithesis-neutrothesis-neutrosyn-

thesis (dynamics of <A>, <antiA>, and <neutA>, in 

order to get a neutrosynthesis). We do this for better 

reflecting our world, since the neutralities between 

opposites play an important role. The neutrosophic 

synthesis (neutrosynthesis) is more refined that the 

dialectical synthesis. It carries on the unification and 

synthesis regarding the opposites and their neutrals 

too. 

1.2 Introduction. 
In neutrosophy, <A>, <antiA>, and 

<neutA> combined two by two, and also all three of 

them together form the NeutroSynthesis. 

Neutrosophy establishes the universal relations 

between <A>, <antiA>, and <neutA>. 
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<A> is the thesis, <antiA> the antithesis, 

and <neutA> the neutrothesis (neither <A> nor 

<antiA>, but the neutrality in between them). 

In the neutrosophic notation, <nonA> (not 

<A>, outside of <A>) is the union of <antiA> and 

<neutA>. 

<neutA> may be from no middle (excluded 

middle), to one middle (included middle), to many 

finite discrete middles (finite multiple included-

middles), and to an infinitude of discrete or 

continuous middles (infinite multiple included-

middles) [for example, as in color for the last one, 

let’s say between black and white there is an infinite 

spectrum of middle/intermediate colors]. 

1.3 Thesis, Antithesis, Synthesis. 
The classical reasoning development about 

evidences, popularly known as thesis-antithesis-

synthesis from dialectics, was attributed to the 

renowned philosopher Georg Wilhelm Friedrich 

Hegel (1770-1831) and later it was used by Karl Marx 

(1818-1883) and Friedrich Engels (1820-1895). About 

thesis and antithesis have also written Immanuel 

Kant (1724-1804), Johann Gottlieb Fichte (1762-

1814), and Thomas Schelling (born 1921).  

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=0CEUQFjAE&url=http%3A%2F%2Fwww.csudh.edu%2Fphenom_studies%2Feurop19%2Flect_2.html&ei=hUH7VJnkIM_4yQTE0oKIDQ&usg=AFQjCNFJLl1BLWgFDoYDhOGBEm9eQ9T_CA&sig2=CtaiPdVNJ9ajnL0JDVWnJw
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=0CEUQFjAE&url=http%3A%2F%2Fwww.csudh.edu%2Fphenom_studies%2Feurop19%2Flect_2.html&ei=hUH7VJnkIM_4yQTE0oKIDQ&usg=AFQjCNFJLl1BLWgFDoYDhOGBEm9eQ9T_CA&sig2=CtaiPdVNJ9ajnL0JDVWnJw


Symbolic Neutrosophic Theory  

 

23 
 

 

In ancient Chinese philosophy the op-

posites yin [feminine, the moon] and yang [mas-

culine, the sun] were considered complementary. 

1.4 Thesis, Antithesis, Neutrothesis, 
Neutrosynthesis. 

Neutrosophy is a generalization of 

dialectics (which is based on contradictions only, 

<A> and <antiA>), because neutrosophy is based on 

contradictions and on the neutralities between them 

(<A>, <antiA>, and <neutA>). Therefore, the 

dialectical triad thesis-antithesis-synthesis is 

extended to the neutrosophic tetrad thesis-

antithesis-neutrothesis-neutrosynthesis. We do this 

not for the sake of generalization, but for better 

reflecting our world. A neutrosophic synthesis 

(neutrosynthesis) is more refined that the dialectical 

synthesis. It carries on the unification and synthesis 

regarding the opposites and their neutrals too. 

1.5 Neutrosophic Dynamicity. 
We have extended in [1] the Principle of 

Dynamic Opposition [opposition between <A> and 

<antiA>] to the Principle of Dynamic Neutrop-

position [which means oppositions among <A>, 

<antiA>, and <neutA>].  
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Etymologically “neutropposition” means 

“neutrosophic opposition”. 

This reasoning style is not a neutrosophic 

scheme, but it is based on reality, because if an idea 

(or notion) <A> arises, then multiple versions of this 

idea are spread out, let’s denote them by <A>1, <A>2, 

…, <A>m. Afterwards, the opposites (in a smaller or 

higher degree) ideas are born, as reactions to <A> 

and its versions <A>i. Let’s denote these versions of 

opposites by <antiA>1, <antiA>2, …, <antiA>n. The 

neutrality <neutA> between these contradictories 

ideas may embrace various forms, let’s denote them 

by <neutA>1, <neutA>2, …, <neutA>p, where m, n, p 

are integers greater than or equal to 1. 

In general, for each <A> there may be 

corresponding many <antiA>’s and many <neutA>’s. 

Also, each <A> may be interpreted in many different 

versions of <A>’s too. 

Neutrosophic Dynamicity means the 

interactions among all these multi-versions of <A>’s  

with their multi-<antiA>’s and their multi-<neutA>’s, 

which will result in a new thesis, let’s call it <A’> at a 

superior level. And a new cycle of <A’>, <antiA’>, and 

<neutA’> restarts its neutrosophic dynamicity. 
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1.6 Practical Example. 
Let’s say <A> is a country that goes to war 

with another country, which can be named <antiA> 

since it is antagonistic to the first country. But many 

neutral countries <neutA> can interfere, either 

supporting or aggressing one of them, in a smaller or 

bigger degree. Other neutral countries <neutA> can 

still remain neutral in this war. Yet, there is a 

continuous dynamicity between the three categories 

(<A>, <antiA>, <neutA.), for countries changing sides 

(moving from a coalition to another coalition), or 

simply retreating from any coalition.  

In our easy example, we only wanted to 

emphasize the fact that <neutA> plays a role in the 

conflict between the opposites <A> and <antiA>, 

role which was ignored by dialectics. 

So, the dialectical synthesis is extended to 

a neutrosophic synthesis, called neutrosynthesis, 

which combines thesis, antithesis, and neutrothesis. 

1.7 Theoretical Example. 
Suppose <A> is a philosophical school, and 

its opposite philosophical school is <antiA>. In the 

dispute between <A> and <antiA>, philosophers 

from the two contradictory groups may bring 

arguments against the other philosophical school 
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from various neutral philosophical schools’ ideas 

(<neutA>, which were neither for <A> nor <antiA>) 

as well.   
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2 Neutrosophic Systems and 

Neutrosophic Dynamic Systems 

2.1 Abstract. 
In this chapter, we introduce for the first 

time the neutrosophic system and neutrosophic 

dynamic system that represent new per-spectives in 

science.  A neutrosophic system is a quasi- or (𝑡, 𝑖, 𝑓)–

classical system, in the sense that the neutrosophic 

system deals with quasi-terms/concepts/attributes, 

etc. [or (𝑡, 𝑖, 𝑓)-terms/ concepts/attributes], which are 

approximations of the classical 

terms/concepts/attributes, i.e. they are partially 

true/membership/probable ( 𝑡% ), partially 

indeterminate (𝑖%), and partially false/nonmember-

ship/improbable (𝑓%), where 𝑡, 𝑖, 𝑓 are subsets of the 

unitary interval [0, 1].  {We recall that ‘quasi’ means 

relative(ly), approximate(ly), almost, near, partial(ly), 

etc. or mathematically ‘quasi’ means (t,i,f) in a 

neutrophic way.} 
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2.1 Introduction. 
A system 𝒮 in general is composed from a 

space ℳ, together with its elements (concepts) {𝑒𝑗}, 

 𝑗 ∈ 𝜃 , and the relationships {ℛ𝑘} , 𝑘 ∈ 𝜓 , between 

them, where 𝜃 and 𝜓 are countable or uncountable 

index sets. 

For a closed system, the space and its 

elements do not interact with the environment. 

For an open set, the space or its elements 

interact with the environment. 

2.2 Definition of the neutrosophic system. 
A system is called neutrosophic system if 

at least one of the following occur: 

1. The space contains some indeter-

minacy. 

2. At least one of its elements x has some 

indeterminacy (it is not well-defined or 

not well-known). 

3. At least one of its elements 𝑥 does not 

100% belong to the space; we say 

𝑥(𝑡, 𝑖, 𝑓) ∈ ℳ, with (𝑡, 𝑖, 𝑓) ≠ (1, 0, 0). 

4. At least one of the relationships ℛ𝑜 

between the elements of ℳ is not 100% 

well-defined (or well-known); we say 

ℛ𝑜(𝑡, 𝑖, 𝑓) ∈ 𝒮, with (𝑡, 𝑖, 𝑓) ≠ (1, 0, 0). 
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5. For an open system, at least one 

[ℛ𝐸(𝑡, 𝑖, 𝑓)] of the system’s interactions 

relationships with the environment has 

some indeterminacy, or it is not well-

defined, or not well-known, with 

(𝑡, 𝑖, 𝑓) ≠ (1, 0, 0). 

2.2.1 Classical system as particular case of neutrosophic 
system. 

By language abuse, a classical system is a 

neutrosophic system with indeterminacy zero (no 

indeterminacy) at all system’s levels. 

2.2.2  World systems are mostly neutrosophic. 

In our opinion, most of our world systems 

are neutrosophic systems, not classical systems, and 

the dynamicity of the systems is neutrosophic, not 

classical. 

Maybe the mechanical and electronical 

systems could have a better chance to be classical 

systems. 

2.3 A simple example of neutrosophic system. 
Let’s consider a university campus Coro-

nado as a whole neutrosophic system 𝒮, whose space 

is a prism having a base the campus land and the 

altitude such that the prism encloses all campus’ 

buildings, towers, observatories, etc. 
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The elements of the space are people 

(administration, faculty, staff, and students) and 

objects (buildings, vehicles, computers, boards, 

tables, chairs, etc.). 

A part of the campus land is unused. The 

campus administration has not decided yet what to 

do with it: either to build a laboratory on it, or to sell 

it. This is an indeterminate part of the space. 

Suppose that a staff (John, from the office 

of Human Resources) has been fired by the campus 

director for misconduct. But, according to his co-

workers, John was not guilty for anything wrong 

doing. So, John sues the campus. At this point, we do 

not know if John belongs to the campus, or not. 

John’s appurtenance to the campus is indeterminate. 

Assume the faculty norm of teaching is 

four courses per semester. But some faculty are part-

timers, therefore they teach less number of courses. 

If an instructor teaches only one class per semester, 

he belongs to the campus only partially (25%), if he 

teaches two classes he belongs to the campus 50%, 

and if he teaches three courses he belongs to the 

campus 75%. We may write: 

Joe (0.25, 0, 0.75) ∈  𝒮 

George (0.50, 0, 0.50) ∈  𝒮 

and   Thom (0.75, 0.10, 0.25) ∈  𝒮. 
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Thom has some indeterminacy (0.10) with 

respect to his work in the campus: it is possible that 

he might do some administrative work for the 

campus (but we don’t know).  

The faculty that are full-time (teaching four 

courses per semester) may also do overload. Suppose 

that Laura teaches five courses per semester, 

therefore Laura (1.25, 0, 0) ∈ 𝒮. 

In neutrosophic logic/set/probability it’s 

possible to have the sum of components (𝑡, 𝑖, 𝑓) 

different from 1: 

𝑡 + 𝑖 + 𝑓 > 1 , for paraconsistent (conflicting) 

information; 

𝑡 + 𝑖 + 𝑓 = 1, for complete information; 

𝑡 + 𝑖 + 𝑓 < 1, for incomplete information. 

Also, there are staff that work only ½ norm 

for the campus, and many students take fewer 

classes or more classes than the required full-time 

norm. Therefore, they belong to the campus 

Coronado in a percentage different from 100%. 

About the objects, suppose that 50 

calculators were brought from IBM for one semester 

only as part of IBM’s promotion of their new 

products. Therefore, these calculators only partially 

and temporarily belong to the campus. 
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Thus, not all elements (people or objects) 

entirely belong to this system, there exist many 

𝑒𝑗(𝑡, 𝑖, 𝑓) ∈ 𝒮, with (𝑡, 𝑖, 𝑓) ≠ (1, 0, 0). 

Now, let’s take into consideration the 

relationships. A professor, Frank, may agree with the 

campus dean with respect to a dean’s decision, may 

disagree with respect to the dean’s other decision, or 

may be ignorant with respect to the dean’s various 

decisions. So, the relationship between Frank and the 

dean may be, for example: 

Frank
agreement (0.5,0.2,0.3)
→                 dean, i. e. not (1, 0, 0) 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡.  

This campus, as an open system, co-

operates with one Research Laboratory from Nevada, 

pending some funds allocated by the government to 

the campus. 

Therefore, the relationship (research co-

operation) between campus Coronado and the 

Nevada Research Laboratory is indeterminate at this 

moment. 

2.4 Neutrosophic patterns. 
In a neutrosophic system, we may study or 

discover, in general, neutrosophic patterns, i.e. 

quasi-patterns, approximated patterns, not totally 

working; we say: (𝑡, 𝑖, 𝑓) -patterns, i.e.  𝑡%  true, 𝑖% 
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indeterminate, and 𝑓%  false, and elucidate (𝑡, 𝑖, 𝑓) -

principles. 

The neutrosophic system, through 

feedback or partial feedback, is (𝑡, 𝑖, 𝑓) − self-

correcting, and (𝑡, 𝑖, 𝑓)-self-organizing. 

2.5 Neutrosophic holism. 
From a holistic point of view, the sum of 

parts of a system may be: 

1. Smaller than the whole (when the 

interactions between parts are 

unsatisfactory); 

2. Equals to the whole (when the 

interactions between parts are 

satisfactory); 

3. Greater than the whole (when the 

interactions between parts are super-

satisfactory). 

The more interactions (interdependance, 

transdependance, hyperdependance) between parts, 

the more complex a system is.   

We have positive, neutral, and negative 

interactions between parts.  

Actually, an interaction between the parts 

has a degree of positiveness, degree of neutrality, 

and degree of negativeness.  
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And these interactions are dynamic, 

meaning that their degrees of positiveness/ 

neutrality/negativity change in time.  

They may be partially absolute and par-

tially relative. 

2.6 Neutrosophic model. 
In order to model such systems, we need a 

neutrosophic (approximate, partial, incomplete, 

imperfect) model that would discover the ap-

proximate system properties.  

 

2.7 Neutrosophic successful system. 
A neutrosophic successful system is a 

system that is successful with respect to some goals, 

and partially successful or failing with respect to 

other goals. 

The adaptivity, self-organization, self-

reproducing, self-learning, reiteration, recursivity, 

relationism, complexity and other attributes of a 

classical system are extended to (𝑡, 𝑖, 𝑓)-attributes in 

the neutrosophic system. 

2.8 (𝑡, 𝑖, 𝑓)-attribute. 
A (𝒕, 𝒊, 𝒇)-attribute means an attribute that 

is 𝑡%  true (or probable), 𝑖%  indeterminate (with 

respect to the true/probable and false/improbable), 
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and 𝑓% false/improbable - where 𝑡, 𝑖, 𝑓 are subsets of 

the unitary interval [0, 1]. 

For example, considering the subsets 

reduced to single numbers, if a neutrosophic system 

is (0.7, 0.2, 0.3)-adaptable, it means that the system 

is 70% adaptable, 20% indeterminate regarding 

adaptability, and 30% inadaptable; we may receive 

the informations for each attribute phase from 

different independent sources, that’s why the sum of 

the neutrosophic components is not necessarily 1. 

2.9 Neutrosophic dynamics.  
While classical dynamics was beset by 

dialectics, which brought together an entity 〈𝐴〉 and 

its opposite 〈𝑎𝑛𝑡𝑖𝐴〉 , the neutrosophic dynamics is 

beset by tri-alectics, which brings together an entity 

〈𝐴〉  with its opposite 〈𝑎𝑛𝑡𝑖𝐴〉  and their neutrality 

〈𝑛𝑒𝑢𝑡𝐴〉. Instead of duality as in dialectics, we have 

tri-alities in our world.  

Dialectics failed to take into consideration 

the neutrality between opposites, since the neutrality 

partially influences both opposites. 

Instead of unifying the opposites, the 

neutrosophic dynamics unifies the triad 

〈𝐴〉, 〈𝑎𝑛𝑡𝑖𝐴〉, 〈𝑛𝑒𝑢𝑡𝐴〉. 
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Instead of coupling with continuity as the 

classical dynamics promise, one has “tripling” with 

continuity and discontinuity altogether. 

All neutrosophic dynamic system’s com-

ponents are interacted in a certain degree, repelling 

in another degree, and neutral (no interaction) in a 

different degree. 

They comprise the systems whose equilib-

rium is the disechilibrium - systems that are 

continuously changing. 

The internal structure of the neutrosophic 

system may increase in complexity and intercon-

nections, or may degrade during the time. 

A neutrosophic system is characterized by 

potential, impotential, and indeterminate develop-

mental outcome, each one of these three in a specific 

degree. 

2.10 Neutrosophic behavior gradient. 
In a neutrosophic system, we talk also 

about neutrosophic structure, which is actually a 

quasi-structure or structure which manifests into a 

certain degree; which influences the neutrosophic 

behavior gradient, that similarly is a behavior quasi-

gradient - partially determined by quasi-stimulative 
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effects; one has: discrete systems, continuous 

systems, hybrid (discrete and continuous) systems. 

2.11 Neutrosophic interactions. 
Neutrosophic interactions in the system 

have the form: 

A            B 
 ■      ■ 

                        (𝑡, 𝑖, 𝑓)                 ⃡                                                          

Neutrosophic self-organization is a quasi-

self-organization.  

The system’s neutrosophic intelligence 

sets into the neutrosophic patterns formed within 

the system’s elements. 

We have a neutrosophic causality between 

event E1, that triggers event E2, and so on. And 

similarly, neutrosophic structure S1 (which is an 

approximate, not clearly know structure) causes the 

system to turn on neutrosophic structure S2, and so 

on. A neutrosophic system has different levels of 

self-organizations. 

2.12 Potentiality/impotentiality/indeterminacy. 
Each neutrosophic system has a 

potentiality/impotentiality/indeterminacy to attain a 

certain state/stage; we mostly mention herein about 

the transition from a quasi-pattern to another quasi-
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pattern. A neutrosophic open system is always 

transacting with the environment; since always the 

change is needed. 

A neutrosophic system is always oscilating 

between stability, instability, and ambiguity 

(indeterminacy). 

Analysis, synthesis, and neutrosynthesis of 

existing data are done by the neutrosophic system. 

They are based on system’s principles, anti-

principles, and nonprinciples. 

2.13 Neutrosophic synergy. 
The Neutrosophic Synergy is referred to 

partially joined work or partially combined forces, 

since the participating forces may cooperate in a 

degree (𝑡), may be antagonist in another degree (𝑓), 

and may have a neutral interest in joint work in a 

different degree (𝑖). 

2.14 Neutrosophic complexity. 
The neutrosophic complex systems 

produce neutrosophic complex patterns. These 

patterns result according to the neutrosophic 

relationships among system’s parts. They are well 

described by the neutrosophic cognitive maps (NCM), 

neutrosophic relational maps (NRM), and neutro-

sophic relational equations (NRE), all introduced by 
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W. B. Vasanttha Kandasamy and F. Smarandache in 

2003-2004. 

The neutrosophic systems represent a new 

perspective in science. They deal with quasi-terms 

[or (𝑡, 𝑖, 𝑓) -terms], quasi-concepts [or (𝑡, 𝑖, 𝑓) -

concepts], and quasi-attributes [or (𝑡, 𝑖, 𝑓)-attributes], 

which are approximations of the terms, concepts, 

attributes, etc., i.e. they are partially true ( 𝑡% ), 

partially indeterminate (𝑖%), and partially false (𝑓%). 

Alike in neutrosophy, where there are 

interactions between 〈𝐴〉, 〈𝑛𝑒𝑢𝑡𝐴〉, and 〈𝑎𝑛𝑡𝑖𝐴〉, where 

〈𝐴〉 is an entity, a system is frequently in one of these 

general states: equilibrium, indeterminacy (neither 

equilibrium, nor disequilibrium), and disequilibrium. 

They form a neutrosophic complexity 

with neutrosophically ordered patterns. A neutro-

sophic order is a quasi or approximate order, which 

is described by a neutrosophic formalism. 

The parts all together are partially 

homogeneous, partially heterogeneous, and they 

may combine in finitely and infinitely ways. 

2.15 Neutrosophic processes. 
The neutrosophic patterns formed are also 

dynamic, changing in time and space. They are 

similar, dissimilar, and indeterminate (unknown, 
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hidden, vague, incomplete) processes among the 

parts. They are called neutrosophic processes. 

2.16 Neutrosophic system behavior. 
The neutrosophic system’s functionality 

and behavior are, therefore, coherent, incoherent, 

and imprevisible (indeterminate). It moves, at a given 

level, from a neutrosophic simplicity to a neutro-

sophic complexity, whch becomes neutrosophic 

simplicity at the next level. And so on. 

Ambiguity (indeterminacy) at a level pro-

pagates at the next level. 

2.17 Classical systems. 
Although the biologist Bertalanffy is 

considered the father of general system theory since 

1940, it has been found out that the conceptual 

portion of the system theory was published by 

Alexander Bogdanov between 1912-1917 in his three 

volumes of Tectology. 

2.18 Classical open systems. 
A classical open system, in general, cannot 

be totally deterministic, if the environment is not 

totally deterministic itself.  

Change in energy or in momentum makes 

a classical system to move from thermodynamic 

equilibrium to nonequilibrium or reciprocally. 
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Open classical systems, by infusion of 

outside energy, may get an unexpected spontaneous 

structure. 

2.19 Deneutrosophication. 
In a neutrosophic system, besides the 

degrees of freedom, one also talk about the degree 

(grade) of indeterminacy. Indeterminacy can be 

described by a variable. 

Surely, the degrees of freedom should be 

condensed, and the indetermination reduced (the 

last action is called “deneutrosophication”). 

The neutrosophic system has a multi-

indeterminate behavior. A neutrosophic operator of 

many variables, including the variable representing 

indeterminacy, can approximate and semi-predict 

the system’s behavior. 

2.10 From classical to neutrosophic systems. 
Of course, in a bigger or more degree, one 

can consider the neutrosophic cybernetic system 

(quasi or approximate control mechanism, quasi 

information processing, and quasi information 

reaction), and similarly the neutrosophic chaos 

theory, neutrosophic catastrophe theory, or 

neutrosophic complexity theory. 
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In general, when passing from a classical 

system 𝒮𝑐  in a given field of knowledge ℱ  to a 

corresponding neutrosophic system 𝒮𝑁 in the same 

field of knowledge ℱ , one relaxes the restrictions 

about the system’s space, elements, and 

relationships, i.e. these components of the system 

(space, elements, relationships) may contain 

indeterminacy, may be partially (or totally) unknown 

(or vague, incomplete, contradictory), may only 

partially belong to the system; they are approximate, 

quasi. 

Scientifically, we write: 

𝒮𝑁 = (𝑡, 𝑖, 𝑓) − 𝒮𝑐,     (1) 

and we read: a neutrosophic system is a (𝑡, 𝑖, 𝑓)–

classical system. As mapping, between the 

neutrosophic algebraic structure systems, we have 

defined neutrosophic isomorphism. 

2.21 Neutrosophic dynamic system. 
The behavior of a neutrosophic dynamic 

system is chaotic from a classical point of view. 

Instead of fixed points, as in classical dynamic 

systems, one deals with fixed regions (i.e. 

neigborhoods of fixed points), as approximate values 

of the neutrosophic variables [we recall that a 
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neutrosophic variable is, in general, represented by a 

thick curve – alike a neutrosophic (thick) function]. 

There may be several fixed regions that are 

attractive regions in the sense that the neutrosophic 

system converges towards these regions if it starts 

out in a nearby neutrosophic state. 

And similarly, instead of periodic points, 

as in classical dynamic systems, one has periodic 

regions, which are neutrosophic states where the 

neutrosophic system repeats from time to time. 

If two or more periodic regions are non-

disjoint (as in a classical dynamic system, where the 

fixed points lie in the system space too close to each 

other, such that their corresponding neighborhoods 

intersect), one gets double periodic region, triple 

periodic region: 

 Fig. 1 

and so on: n-uple periodic region, for 𝑛 ≥ 2. 
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In a simple/double/triple/…/n-uple per-

iodic region the neutrosophic system is fluctuating/ 

oscilating from a point to another point. 

The smaller is a fixed region, the better is 

the accuracy. 

2.22 Neutrosophic cognitive science. 
In the Neutrosophic Cognitive Science, the 

Indeterminacy “I” led to the definition of the 

Neutrosophic Graphs (graphs which have: either at 

least one indeterminate edge, or at least one 

indeterminate vertex, or both some indeterminate 

edge and some indeterminate vertex), and 

Neutrosophic Trees (trees which have: either at least 

one indeterminate edge, or at least one 

indeterminate vertex, or both some indeterminate 

edge and some indeterminate vertex), that have 

many applications in social sciences.  

Another type of neutrosophic graph is 

when at least one edge has a neutrosophic (𝑡, 𝑖, 𝑓) 

truth-value. 

As a consequence, the Neutrosophic Cog-

nitive Maps (Vasantha & Smarandache, 2003) and 

Neutrosophic Relational Maps (Vasantha & Sma-

randache, 2004) are generalizations of fuzzy cog-

nitive maps and respectively fuzzy relational maps, 



Symbolic Neutrosophic Theory  

 

45 
 

 

Neutrosophic Relational Equations (Vasantha & Sma-

randache, 2004), Neutrosophic Relational Data 

(Wang, Smarandache,  Sunderraman, Rogatko - 2008), 

etc. 

A Neutrosophic Cognitive Map is a 

neutrosophic directed graph with concepts like 

policies, events etc. as vertices, and causalities or 

indeterminates as edges. It represents the causal 

relationship between concepts. 

An edge is said indeterminate if we don’t 

know if it is any relationship between the vertices it 

connects, or for a directed graph we don’t know if it 

is a directly or inversely proportional relationship. 

We may write for such edge that (𝑡, 𝑖, 𝑓)  =  (0, 1, 0). 

A vertex is indeterminate if we don’t know 

what kind of vertex it is since we have incomplete 

information. We may write for such vertex that 

(𝑡, 𝑖, 𝑓)  =  (0, 1, 0). 

Example of Neutrosophic Graph (edges 

V1V3, V1V5, V2V3 are indeterminate and they are drawn 

as dotted): 
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 Fig. 2 

and its neutrosophic adjacency matrix is: 























0110I
10100
110II
00I01
I0I10

 

The edges mean: 0 = no connection 

between vertices, 1 = connection between vertices, I 

= indeterminate connection (not known if it is, or if 

it is not). 

Such notions are not used in the fuzzy 

theory. 

Let’s give an example of Neutrosophic 

Cognitive Map (NCM), which is a generalization of the 

Fuzzy Cognitive Maps. 
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 Fig. 3 

We take the following vertices: 

C1 - Child Labor 

C2 - Political Leaders 

C3 - Good Teachers 

C4 - Poverty 

C5 - Industrialists 

C6 - Public practicing/encouraging Child Labor 

C7 - Good Non-Governmental Organizations 

(NGOs) 

The corresponding neutrosophic adja-

cency matrix related to this neutrosophic cognitive 

map is: 
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The edges mean: 0 = no connection 

between vertices, 1 = directly proportional con-

nection, -1 = inversely proportionally connection, 

and I = indeterminate connection (not knowing what 

kind of relationship is between the vertices that the 

edge connects). 

Now, we give another type of neutrosophic 

graphs (and trees): An edge of a graph, let's say from 

A to B (i.e. how A influences B), may have a 

neutrosophic value (t, i, f), where t means the positive 

influence of A on B, i means the indeterminate/ 

neutral influence of A on B, and f means the negative 

influence of A on B.  

Then, if we have, let's say: 𝐴−> 𝐵−> 𝐶 such 

that 𝐴−> 𝐵  has the neutrosophic value (t1, i1, f1) 
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and 𝐵−> 𝐶 has the neutrosophic value (t2, i2, f2), then 

𝐴−> 𝐶 has the neutrosophic value  (t1, i1, f1)/\(t2, i2. f2), 

where /\ is the ANDN neutrosophic operator. 

Also, again a different type of graph: we 

consider a vertex A as: t% belonging/membership to 

the graph, i% indeterminate membership to the 

graph, and f% nonmembership to the graph. 

Finally, one may consider any of the 

previous types of graphs (or trees) put together. 

2.23 (𝑡, 𝑖, 𝑓)-qualitative behavior. 
We normally study in a neutrosophic 

dynamic system its long-term (𝑡, 𝑖, 𝑓) -qualitative 

behavior, i.e. degree of behavior’s good quality (t), 

degree of behavior’s indeterminate (unclear) quality 

(i), and degree of behavior’s bad quality (f). 

The questions arise: will the neutrosophic 

system fluctuate in a fixed region (considered as a 

neutrosophic steady state of the system)? Will the 

fluctuation be smooth or sharp? Will the fixed region 

be large (hence less accuracy) or small (hence bigger 

accuracy)? How many periodic regions does the 

neutrosophic system has? Do any of them intersect 

[i.e. does the neutrosophic system has some n-uple 

periodic regions (for 𝑛 ≥ 2), and for how many]? 
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2.24 Neutrosophic state. 
The more indeterminacy a neutrosophic 

system has, the more chaotic it is from the classical 

point of view. A neutrosophic lineal dynamic system 

still has a degree of chaotic behavior. A collection of 

numerical sets determines a neutrosophic state, while 

a classical state is determined by a collection of 

numbers. 

2.25 Neutrosophic evolution rule. 
The neutrosophic evolution rule decribes 

the set of neutrosophic states where the future state 

(that follows from a given current state) belongs to.  

If the set of neutrosophic states, that the 

next neutrosophic state will be in, is known, we have 

a quasi-deterministic neutrosophic evolution rule, 

otherwise the neutrosophic evolution rule is called 

quasi-stochastic. 

2.26 Neutrosophic chaos. 
As an alternative to the classical Chaos 

Theory, we have the Neutrosophic Chaos Theory, 

which is highly sensitive to indeterminacy; we mean 

that small change in the neutrosophic system’s initial 

indeterminacy produces huge perturbations of the 

neutrosophic system’s behavior. 
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2.27 Time quasi-delays and quasi-feedback thick-
loops. 

Similarly, the difficulties in modelling and 

simulating a Neutrosophic Complex System (also 

called Science of Neutrosophic Complexity) reside in 

its degree of indeterminacy at each system’s level. 

In order to understand the Neutrosophic 

System Dynamics, one studies the system’s time 

quasi-delays and internal quasi-feedback thick-loops 

(that are similar to thick functions ad thick curves 

defined in the neutrosophic precalculus and neutro-

sophic calculus). 

The system may oscillate from linearity to 

nonlinearity, depending on the neutrosophic time 

function. 

2.28 Semi-open semi-closed system. 
Almost all systems are open (exchanging 

energy with the environment).  

But, in theory and in laboratory, one may 

consider closed systems (completely isolated from 

the environment); such systems can oscillate 

between closed and open (when they are cut from the 

environment, or put back in contact with the 

environment respectively). 
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Therefore, between open systems and 

closed systems, there also is a semi-open semi-closed 

system.  

2.29 Neutrosophic system’s development. 
The system’s self-learning, self-adapting, 

self-conscienting, self-developing are parts of the 

system’s dynamicity and the way it moves from a 

state to another state – as a response to the system 

internal or external conditions. They are constituents 

of system’s behavior. 

The more developed is a neutrosophic 

system, the more complex it becomes. System’s 

development depends on the internal and external 

interactions (relationships) as well. 

Alike classical systems, the neutrosophic 

system shifts from a quasi-developmental level to 

another. Inherent fluctuations are characteristic to 

neutrosophic complex systems. Around the quasi-

steady states, the fluctuations in a neutrosophic 

system becomes its sources of new quasi-develop-

ment and quasi-behavior. 

In general, a neutrosophic system shows a 

nonlinear response to its initial conditions. 
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The environment of a neutrosophic system 

may also be neutrosophic (i.e. having some indeter-

minacy). 

2.30 Dynamic dimensions of neutrosophic systems. 
There may be neutrosophic systems whose 

spaces have dynamic dimensions, i.e. their 

dimensions change upon the time variable. 

Neutrosophic Dimension of a space has the 

form (𝑡, 𝑖, 𝑓) , where we are t% sure about the real 

dimension of the space, i% indeterminate about the 

real dimension of the space, and f% unsure about the 

real dimension of the space. 

2.31 Noise in a neutrosophic system. 
A neutrosophic system’s noise is part of 

the system’s indeterminacy. A system’s pattern may 

evolve or dissolve over time, as in a classical system. 

2.32 Quasi-stability. 
A neutrosophic system has a degree of 

stability, degree of indeterminacy referring to its 

stability, and degree of instability.  

Similarly, it has a degree of change, degree 

of indeterminate change, and degree of non-change 

at any point in time. 

Quasi-stability of a neutrosophic system is 

its partial resistance to change.  
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2.33 (𝑡, 𝑖, 𝑓)-attractors. 
Neutrosophic system’s quasi-stability is 

also dependant on the (𝑡, 𝑖, 𝑓) -attractor, which 𝑡% 

attracts, 𝑖%  its attraction is indeterminate, and  𝑓% 

rejects. Or we may say that the neutrosophic system 

(𝑡%, 𝑖%, 𝑓%)-prefers to reside in a such neutrosophic 

attractor. 

Quasi-stability in a neutrosophic system 

responds to quasi-perturbations. 

When (𝑡, 𝑖, 𝑓) → (1, 0, 0) the quasi-attractors 

tend to become stable, but if (𝑡, 𝑖, 𝑓) → (0, 𝑖, 𝑓), they 

tend to become unstable.  

Most neutrosophic system are very chaotic 

and possess many quasi-attractors and anomalous 

quasi-patterns. The degree of freedom in a 

neutrosophic complex system increase and get more 

intricate due to the type of indeterminacies that are 

specific to that system. For example, the classical 

system’s noise is a sort of indeterminacy. 

Various neutrosophic subsystems are as-

sembled into a neutrosophic complex system. 

2.34 (𝑡, 𝑖, 𝑓)-repellors. 
Besides attractors, there are systems that 

have repellors, i.e. states where the system avoids 

residing. The neutrosophic systems have quasi-



Symbolic Neutrosophic Theory  

 

55 
 

 

repellors, or (𝑡, 𝑖, 𝑓) -repellors, i.e. states where the 

neutrosophic system partialy avoid residing. 

2.35 Neutrosophic probability of the system’s 
states. 

In any (classical or neutrosophic) system, 

at a given time 𝜌, for each system state 𝜏 one can 

associate a neutrosophic probability, 

𝒩𝒫(𝜏) = (𝑡, 𝑖, 𝑓),     (2) 

where 𝑡, 𝑖, 𝑓 are subsets of the unit interval [0, 1] such 

that: 

𝑡 = the probability that the system resides in 𝜏; 

𝑖 = the indeterminate probability/improbability      

about the system residing in 𝜏; 

𝑓 = the improbability that the system resides in 

𝜏; 

For a (classical or neutrosophic) dynamic 

system, the neutrosophic probability of a system’s 

state changes in the time, upon the previous states 

the system was in, and upon the internal or external 

conditions. 

2.36 (𝑡, 𝑖, 𝑓)-reiterative. 
In Neutrosophic Reiterative System, each 

state is partially dependent on the previous state. We 

call this process quasi-reiteration or (𝑡, 𝑖, 𝑓) -

reiteration. 
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In a more general case, each state is 

partially dependent on the previous n states, for 𝑛 ≥

1 . This is called n-quasi-reiteration, or n- (t, i, f) -

reiteration. 

Therefore, the previous neutrosophic 

system history partialy influences the future 

neutrosophic system’s states, which may be different 

even if the neutrosophic system started under the 

same initial conditions. 

2.37 Finite and infinite system. 
A system is finite if its space, the number 

of its elements, and the number of its relationships 

are all finite. 

If at least one of these three is infinite, the 

system is considered infinite. An infinite system may 

be countable (if both the number of its elements and 

the number of its relationships are countable), or, 

otherwise, uncountable. 

2.38 Thermodynamic (𝑡, 𝑖, 𝑓)-equilibrium. 
The potential energy (the work done for 

changing the system to its present state from its 

standard configuration) of the classical system is a 

minimum if the equilibrium is stable, zero if the 

equilibrium is neutral, or a maximum if the 

equilibrium is unstable. 
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A classical system may be in stable, 

neutral, or unstable equilibrium. A neutrosophic 

system may be in quasi-stable, quasi-neutral or quasi-

unstable equilibrium, and its potential energy 

respectively quasi-minimum, quasi-null (i.e. close to 

zero), or quasi-maximum. {We recall that ‘quasi’ 

means relative(ly), approximate(ly), almost, near, 

partial(ly), etc. or mathematically ‘quasi’ means (t,i,f) 

in a neutrophic way.} 

In general, we say that a neutrosophic 

system is in (𝑡, 𝑖, 𝑓) −  equilibrium, or t% in stable 

equilibrium, i% in neutral equilibrium, and f% in 

unstable equilibrium (non-equilibrium). 

When 𝑓 ≫ 𝑡 (f is much greater than t), the 

neutroophic system gets into deep non-equilibrium 

and the perturbations overtake the system’s 

organization to a new organization. 

Thus, similarly to the second law of 

thermodynamics, the neutrosophic system runs 

down to a (𝑡, 𝑖, 𝑓)-equilibrium state. A neutrosophic 

system is considered at a thermodynamic (𝑡, 𝑖, 𝑓) -

equilibrium state when there is not (or insignificant) 

flow from a region to another region, and the 

momentum and energy are uninformally at (𝑡, 𝑖, 𝑓)-

level. 
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2.39 The (𝑡1, 𝑖1,  𝑓1)-cause produces a (𝑡2, 𝑖2, 𝑓2)-
effect. 

In a neutrosophic system, a (𝑡1, 𝑖1,  𝑓1)-cause 

produces a (𝑡2, 𝑖2, 𝑓2)-effect. We also have cascading 

(𝑡, 𝑖, 𝑓) -effects from a given cause, and we have 

permanent change into the system. 

(𝑡, 𝑖, 𝑓)-principles and (𝑡, 𝑖, 𝑓)-laws function 

in a neutrosophic dynamic system. It is endowed 

with (𝑡, 𝑖, 𝑓)-invariants and with parameters of (𝑡, 𝑖, 𝑓)-

potential (potentiality, neutrality, impotentiality) 

control. 

2.40 (𝑡, 𝑖, 𝑓)-holism. 
A neutrosophic system is a (𝒕, 𝒊, 𝒇)-holism, 

in the sense that it has a degree of independent 

entity ( 𝑡 ) with respect to its parts, a degree of 

indeterminate (𝑖) independent-dependent entity with 

respect to its parts, and a degree of dependent entity 

(𝑓) with respect to its parts. 

2.41 Neutrosophic soft assembly. 
Only several ways of assembling (comb-

ining and arranging) the neutrosophic system’s parts 

are quasi-stable. The others assemble ways are quasi-

transitional.  

The neutrosophic system development is 

viewed as a neutrosophic soft assembly. It is alike an 
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amoeba that changes its shape. In a neutrosophic 

dynamic system, the space, the elements, the 

relationships are all flexible, changing, restructuring, 

reordering, reconnecting and so on, due to 

heterogeneity, multimodal processes, multi-

causalities, multidimensionality, auto-stabilization, 

auto-hierarchization, auto-embodiement and 

especially due to synergetism (the neutrosophic 

system parts cooperating in a (𝑡, 𝑖, 𝑓)-degree). 

2.42 Neutrosophic collective variable. 
The neutrosophic system is partially 

incoherent (because of the indeterminacy), and 

partially coherent. Its quasi-behavior is given by the 

neutrosophic collective variable that embeds all 

neutrosophic variables acting into the (𝑡, 𝑖, 𝑓)-holism. 

2.43 Conclusion. 
We have introduced for the first time 

notions of neutrosophic system and neutrosophic 

dynamic system. Of course, these proposals and 

studies are not exhaustive. 

Future investigations have to be done 

about the neutrosophic (dynamic or not) system, 

regarding: the neutrosophic descriptive methods and 

neutrosophic experimental methods, developmental 

and study the neutrosophic differential equations 
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and neutrosophic difference equations, 

neutrosophic simulations, the extension of the 

classical A-Not-B Error to the neutrosophic form, the 

neutrosophic putative control parameters, 

neutrosophic loops or neutrosophic cyclic 

alternations within the system, neutrosophic 

degenerating (dynamic or not) systems, possible 

programs within the neutrosophic system, from 

neutrosophic antecedent conditions how to predict 

the outcome, also how to find the boundary of 

neutrosophic conditions, when the neutrosophic 

invariants are innate/genetic, what are the 

relationships between the neutrosophic attractors 

and the neutrosophic repellors, etc. 
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3 Neutrosophic Axiomatic System 

3.1 Abstract. 
In this chapter, we introduce for the first 

time the notions of Neutrosophic Axiom, Neutro-

sophic Deducibility, Neutrosophic Axiomatic System, 

Neutrosophic Deducibility and Neutrosophic In-

ference, Neutrosophic Proof, Neutrosophic Tauto-

logies, Neutrosophic Quantifiers, Neutrosophic 

Propositional Logic, Neutrosophic Axiomatic Space, 

Degree of Contradiction (Dissimilarity) of Two 

Neutrosophic Axioms, and Neutrosophic Model.  

A class of neutrosophic implications is also 

introduced.  

A comparison between these innovatory 

neutrosophic notions and their corresponding 

classical notions is also made. 

Then, three concrete examples of 

neutrosophic axiomatic systems, describing the 

same neutrosophic geometrical model, are presented 

at the end of the chapter. 
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3.2 Neutrosophic Axiom. 
A neutrosophic axiom or neutrosophic 

postulate (α) is a partial premise, which is T% true 

(degree of truth), I% indeterminacy (degree of 

indeterminacy) and F% false (degree of falsehood), 

where <t, i, f> are standard or nonstandard subsets 

included in the non-standard unit interval ]-0, 1+[.  

The non-standard subsets and non-

standard unit interval are mostly used in philosophy 

in cases where one needs to make distinction 

between “absolute truth” (which is a truth in all 

possible worlds) and “relative truth” (which is a truth 

in at least one world, but not in all possible worlds), 

and similarly for distinction between “absolute 

indeterminacy” and “relative indeterminacy”, and 

respectively distinction between “absolute false-

hood” and “relative falsehood”. 

But for other scientific and technical 

applications one uses standard subsets, and the 

standard classical unit interval [0, 1]. 

As a particular case of neutrosophic axiom 

is the classical axiom. In the classical mathematics an 

axiom is supposed 100% true, 0% indeterminate, and 

0% false.  
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But this thing occurs in idealistic systems, 

in perfectly closed systems, not in many of the real 

world situations. 

Unlike the classical axiom which is a total 

premise of reasoning and without any controversy, 

the neutrosophic axiom is a partial premise of 

reasoning with a partial controversy. 

The neutrosophic axioms serve in 

approximate reasoning. 

The partial truth of a neutrosophic axiom 

is similarly taken for granted. 

The neutrosophic axioms, and in general 

the neutrosophic propositions, deal with 

approximate ideas or with probable ideas, and in 

general with ideas we are not able to measure exactly. 

That’s why one cannot get 100% true statements 

(propositions). 

In our life, we deal with approximations. 

An axiom is approximately true, and inference is 

approximately true either. 

A neutrosophic axiom is a self-evident 

assumption in some degrees of truth, indeterminacy, 

and falsehood respectively. 
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3.3 Neutrosophic Deducing and Neutrosophic 
Inference. 

The neutrosophic axioms are employed in 

neutrosophic deducing and neutrosophic inference 

rules, which are sort of neutrosophic implications, 

and similarly they have degrees of truth, 

indeterminacy, and respectively falsehood. 

3.4 Neutrosophic Proof. 
Consequently, a neutrosophic proof has 

also a degree of validity, degree of indeterminacy, 

and degree of invalidity. And this is when we work 

with not-well determinate elements in the space or 

not not-well determinate inference rules.  

The neutrosophic axioms are at the 

foundation of various neutrosophic sciences. 

The approximate, indeterminate, in-

complete, partially unknown, ambiguous, vagueness, 

imprecision, contradictory, etc. knowledge can be 

neutrosophically axiomized.  

3.5 Neutrosophic Axiomatic System. 
A set of neutrosophic axioms Ω, is called 

neutrosophic axiomatic system, where the neutro-

sophic deducing and the neutrosophic inference 

(neutrosophic implication) are used. 
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The neutrosophic axioms are defined on a 

given space S. The space can be classical (space 

without indeterminacy), or neutrosophic space 

(space which has some indeterminacy with respect to 

its elements). 

A neutrosophic space may be, for example, 

a space that has at least one element which only 

partially belongs to the space.  Let us say the element 

x<0.5, 0.2, 0.3> that belongs only 50% to the space, 

while 20% its appurtenance is indeterminate, and 

30% it does not belong to the space. 

Therefore, we have three types of 

neutrosophic axiomatic systems: 

1. Neutrosophic axioms defined on 

classical space; 

2. Classical axioms defined on 

neutrosophic space; 

3. Neutrosophic axioms defined on 

neutrosophic space. 

3.5.1 Remark. 
The neutrosophic axiomatic system is not 

unique, in the sense that several different axiomatic 

systems may describe the same neutrosophic model. 

This happens because one deals with ap-

proximations, and because the neutrosophic axioms 

represent partial (not total) truths. 
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3.6 Classification of the Neutrosophic Axioms. 

1) Neutrosophic Logical Axioms, which are 

neutrosophic statements whose truth-value is 

<t, i, f> within the system of neutrosophic 

logic. For example:  (α or β) neutrosophically 

implies β. 

2) Neutrosophic Non-Logical Axioms, which are 

neutrosophic properties of the elements of the 

space. For example:  the neutrosophic 

associativity a(bc) = (ab)c, which occurs for 

some elements, it is unknown (indeterminate) 

for others, and does not occur for others. 

In general, a neutrosophic non-logical axiom is 

a classical non-logical axiom that works for 

certain space elements, is indeterminate for 

others, and does not work for others. 

3.7 Neutrosophic Tautologies. 
A classical tautology is a statement that is 

universally true [regarded in a larger way, i.e. lato 

sensu], i.e. true in all possible worlds (according to 

Leibniz’s definition of “world”). 

For example “M = M” in all possible worlds. 

A neutrosophic tautology is a statement 

that is true in a narrow way [i.e. regarded in stricto 

sensu], or it is <1, 0, 0> true for a class of certain 
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parameters and conditions, and <t, i, f> true for 

another class of certain parameters and conditions, 

where <t, i, f> ≠ <1, 0, 0>. I.e. a neutrosophic 

tautology is true in some worlds, and partially true 

in other worlds. For example the previous 

assertation: “M = M”.  

If “M” is a number [i.e. the parameter = 

number], then a number is always equal to itself in 

any numeration base. 

But if “M” is a person [i.e. the parameter = 

person], call him Martin, then Martin at time t1 is the 

same as Martin at time t1 [i.e. it has been considered 

another parameter = time], but Martin at time t1 is 

different from Martin at time t2 (meaning for example 

20 years ago: hence Martin younger is different from 

Martin older). Therefore, from the point of view of 

parameters ‘person’ and ‘time’, “M = M” is not a 

classical tautology. 

Similarly, we may have a proposition P 

which is true locally, but it is untrue non-locally. 

A neutrosophic logical system is an 

approximate minimal set of partially true/ 

indeterminate/ false propositions. While the clas-

sical axioms cannot be deduced from other axioms, 

there are neutrosophic axioms that can be partially 

deduced from other neutrosophic axioms. 
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3.8 Notations regarding the Classical Logic and Set, 
Fuzzy Logic and Set, Intuitionistic Fuzzy Logic and 
Set, and Neutrosophic Logic and Set. 

In order to make distinction between 

classical (Boolean) logic/set, fuzzy logic/set, 

intuitionistic fuzzy logic/set, and neutrosophic 

logic/set, we denote their corresponding operators 

(negation/complement, conjunction/intersection, 

disjunction/union, implication, and equivalence), as 

it follows: 

a. For classical (Boolean) logic and set: 

¬      ∧       ∨      →      ↔ 

b. For fuzzy logic and set: 
¬
𝐹      

∧
𝐹
      
∨
𝐹
     
→
𝐹
       
↔
𝐹

 

c. For intuitionistic fuzzy logic and set: 
¬
𝐼𝐹      

∧
𝐼𝐹
      
∨
𝐼𝐹
      
→
𝐼𝐹
      
↔
𝐼𝐹

 

d. For neutrosophic logic and set: 
¬
𝑁      

∧
𝑁
      
∨
𝑁
       
→
𝑁
      
↔
𝑁

 

3.9 The Classical Quantifiers. 
The classical Existential Quantifier is the 

following way:  

, ( )x A P x  .       (3) 

In a neutrosophic way we can write it as: 
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There exist x<1, 0, 0> in A such that P(x)<1, 

0, 0>, or 

1,0,0 , ( ) 1,0,0x A P x     .    (4) 

The classical Universal Quantifier is the 

following way:  

, ( )x A P x  .       (5) 

In a neutrosophic way we can write it as: 

For any x<1, 0, 0> in A one has P(x)<1, 0, 0>, or 

1,0,0 , ( ) 1,0,0x A P x     .    (6) 

3.10 The Neutrosophic Quantifiers. 
The Neutrosophic Existential Quantifier is in 

the following way:  

There exist x<tx, ix, fx> in A such that P(x)<tP, iP, fP>, 

or 

, , , ( ) , ,x x x P P Px t i f A P x t i f     ,   (7) 

which means that: there exists an element x which 

belongs to A in a neutrosophic degree <tx, ix, fx>, such 

that the proposition P has the neutrosophic degree 

of truth <tP, iP, fP>. 

The Neutrosophic Universal Quantifier is the 

following way:  For any x<tx, ix, fx> in A one has P(x)<tP, 

iP, fP>, or 

, , , ( ) , ,x x x P P Px t i f A P x t i f     ,   (8) 
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which means that:  for any element x that belongs to 

A in a neutrosophic degree <tx, ix, fx>, one has the 

proposition P with the neutrosophic degree of truth 

<tP, iP, fP>. 

3.11 Neutrosophic Axiom Schema. 
A neutrosophic axiom schema is a 

neutrosophic rule for generating infinitely many 

neutrosophic axioms. 

Examples of neutrosophic axiom schema: 

1) Neutrosophic Axiom Scheme for Universal 

Instantiation. 

Let Φ(x) be a formula, depending on variable x 

defined on a domain D, in the first-order 

language L, and let’s substitute x for aD. 

Then the new formula: 

( ) ( )Nx x a          (9) 

is , ,
N N N

t i f    -neutrosophically [universally] 

valid. 

This means the following:   

if one knows that a formula Φ(x) holds <tx, ix, fx>-

neutrosophically for every x in the domain D, and for 

x = a the formula Φ(a) holds <ta, ia, fa>-

neutrosophically, then the whole new formula (a) 

holds , ,
N N N

t i f    -neutrosophically, where t
N
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means the truth degree, i
N  the indeterminacy 

degree, and f
N the falsehood degree –- all resulted 

from the neutrosophic implication
N . 

2) Neutrosophic Axiom Scheme for Existential 

Generalization. 

Let Φ(x) be a formula, depending on variable x 

defined on a domain D, in the first-order 

language L, and let’s substitute x for aD. 

Then the new formula: 

( ) ( )Na x x                    (10) 

is , ,
N N N

t i f    -neutrosophically [universally] 

valid. This means the following: if one knows that a 

formula Φ(a) holds <ta, ia, fa>-neutrosophically for a 

given x = a in the domain D, and for every x in the 

domain formula Φ(x) holds <tx, ix, fx>-

neutrosophically, then the whole new formula (b) 

holds , ,
N N N

t i f    -neutrosophically, where t
N

means the truth degree, i
N  the indeterminacy 

degree, and f
N the falsehood degree –- all resulted 

from the neutrosophic implication
N . 

These are neutrosophic metatheorems of 

the mathematical neutrosophic theory where they 

are employed. 
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3.12 Neutrosophic Propositional Logic. 
We have many neutrosophic formulas that 

one takes as neutrosophic axioms. For example, as 

extension from the classical logic, one has the 

following. 

Let P<tP, iP, fP>, Q<tQ, iQ, fQ>, R<tR, iR, fR>, S<tS, 

iS, fS> be neutrosophic propositions, where <tP, iP, fP> 

is the neutrosophic-truth value of P, and similarly for 

Q, R, and S. Then: 

a) Neutrosophic modus ponens (neutrosophic 

implication elimination): 

( )N NP Q P                  (11) 

b) Neutrosophic modus tollens (neutrosophic 

law of contrapositive): 

(( ) )N N N N NP Q Q P                   (1) 

c) Neutrosophic disjunctive syllogism 

(neutrosophic disjunction elimination): 

(( ) )N N N NP Q P Q                  (2) 

d) Neutrosophic hypothetical syllogism 

(neutrosophic chain argument): 

(( ) ( )) ( )N N N N NP Q Q R P R                 (3) 

e) Neutrosophic constructive dilemma 

(neutrosophic disjunctive version of modus 

ponens): 

http://en.wikipedia.org/wiki/Logical_disjunction
http://en.wikipedia.org/wiki/Modus_ponens
http://en.wikipedia.org/wiki/Modus_ponens
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((( ) ( )) ( )) ( )N N N N N N NP Q R S P R Q S         

(4) 

f) Neutrosophic destructive dilemma 

(neutrosophic disjunctive version of modus 

tollens): 

((( ) ( )) ( )) ( )N N N N N N N N N N NP Q R S Q S P R            

(5) 

All these neutrosophic formulae also run 

as neutrosophic rules of inference. 

These neutrosophic formulas or neutro-

sophic derivation rules only partially preserve the 

truth, and depending on the neutrosophic 

implication operator that is employed the 

indeterminacy may increase or decrease. This 

happens for one works with approximations. 

While the above classical formulas in 

classical proportional logic are classical tautologies 

(i.e. from a neutrosophical point of view they are 

100% true, 0% indeterminate, and 0% false), their 

corresponding neutrosophic formulas are neither 

classical tautologies nor neutrosophical tautologies, 

but ordinary neutrosophic propositions whose <

𝑡, 𝑖, 𝑓 > – neutrosophic truth-value is resulted from 

the 
𝑁
→ neutrosophic implication  

𝐴 < 𝑡𝐴, 𝑖𝐴, 𝑓𝐴 >
𝑁
→𝐵 < (𝑡𝐵, 𝑖𝐵, 𝑓𝐵) >.           (6) 

http://en.wikipedia.org/wiki/Logical_disjunction
http://en.wikipedia.org/wiki/Modus_tollens
http://en.wikipedia.org/wiki/Modus_tollens
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3.13 Classes of Neutrosophic Negation Operators. 
There are defined in neutrosophic literature 

classes of neutrosophic negation operators as 

follows: if 𝐴(𝑡𝐴, 𝑖𝐴, 𝑓𝐴), then its negation is: 

 
¬
𝑁𝐴(𝑓𝐴, 𝑖𝐴, 𝑡𝐴), or 
¬
𝑁𝐴
(𝑓𝐴, 1 − 𝑖𝐴, 𝑡𝐴), or 

¬
 𝑁𝐴

(1 − 𝑡𝐴, 1 − 𝑖𝐴, 1 − 𝑓𝐴), or 
¬
𝑁𝐴(1 − 𝑡𝐴, 𝑖𝐴, 1 − 𝑓𝐴) etc.            (18) 

3.14 Classes of Neutrosophic Conjunctive 
Operators.  

Similarly: 

if 𝐴(𝑡𝐴, 𝑖𝐴, 𝑓𝐴) and 𝐵(𝑡𝐵, 𝑖𝐵, 𝑓𝐵), then 

𝐴 𝑁
∧𝐵 = 〈𝑡𝐴 𝐹

∧  𝑡𝐵 , 𝑖𝐴 𝐹
∨  𝑖𝐵, 𝑓𝐴 𝐹

∨  𝑓𝐵〉,          (7) 

or 𝐴 𝑁
∧𝐵 = 〈𝑡𝐴 𝐹

∧  𝑡𝐵, 𝑖𝐴 𝐹
∧  𝑖𝐵, 𝑓𝐴 𝐹

∨  𝑓𝐵〉,          (20) 

or 𝐴 𝑁
∧𝐵 = 〈𝑡𝐴 𝐹

∧  𝑡𝐵, 𝑖𝐴 𝐹
∧  𝑖𝐵, 𝑓𝐴 𝐹

∧  𝑓𝐵〉                (21) 

or 𝐴 𝑁
∧𝐵 = 〈𝑡𝐴 𝐹

∧  𝑡𝐵,
𝑖𝐴+𝑖𝐵

2
, 𝑓𝐴 𝐹

∨  𝑓𝐵〉,                  (22) 

or 𝐴 𝑁
∧𝐵 = 〈𝑡𝐴 𝐹

∧  𝑡𝐵, 1 −
𝑖𝐴+𝑖𝐵

2
, 𝑓𝐴 𝐹

∨  𝑓𝐵〉,          (23) 

or 𝐴 𝑁
∧𝐵 = 〈𝑡𝐴 𝐹

∧  𝑡𝐵, |𝑖𝐴 − 𝑖𝐵|, 𝑓𝐴 𝐹
∨  𝑓𝐵〉, etc.          (24) 

3.15 Classes of Neutrosophic Disjunctive 
Operators. 

And analogously, there were defined: 

𝐴 𝑁
∨𝐵 = 〈𝑡𝐴 𝐹

∨  𝑡𝐵 , 𝑖𝐴 𝐹
∧  𝑖𝐵, 𝑓𝐴 𝐹

∧  𝑓𝐵〉,          (25) 
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or 𝐴 𝑁
∨𝐵 = 〈𝑡𝐴 𝐹

∨  𝑡𝐵, 𝑖𝐴 𝐹
∨  𝑖𝐵, 𝑓𝐴 𝐹

∧  𝑓𝐵〉,          (26) 

or 𝐴 𝑁
∨𝐵 = 〈𝑡𝐴 𝐹

∨  𝑡𝐵, 𝑖𝐴 𝐹
∨  𝑖𝐵, 𝑓𝐴 𝐹

∨  𝑓𝐵〉,          (27) 

or 𝐴 𝑁
∨𝐵 = 〈𝑡𝐴 𝐹

∨  𝑡𝐵,
𝑖𝐴+𝑖𝐵

2
, 𝑓𝐴 𝐹

∧  𝑓𝐵〉,          (28) 

or 𝐴 𝑁
∨𝐵 = 〈𝑡𝐴 𝐹

∨  𝑡𝐵, 1 −
𝑖𝐴+𝑖𝐵

2
 , 𝑓𝐴 𝐹

∧  𝑓𝐵〉,         (29) 

or 𝐴 𝑁
∨𝐵 = 〈𝑡𝐴 𝐹

∨  𝑡𝐵, |𝑖𝐴 − 𝑖𝐵| , 𝑓𝐴 𝐹
∨  𝑓𝐵〉, etc.          (30) 

3.16 Fuzzy Operators. 
Let 𝛼, 𝛽 ∈ [0, 1]. 

1.  The Fuzzy Negation has been defined as 

𝛼 = 1 − 𝛼𝐹
¬ .             (31) 

2.  While the class of Fuzzy Conjunctions (or 

t-norm) may be: 

𝛼𝐹
∧𝛽 = min{𝛼, 𝛽},            (32) 

or 𝛼𝐹
∧𝛽 = 𝛼 ∙ 𝛽,                    (33) 

or 𝛼𝐹
∧𝛽 = max{0, 𝛼 + 𝛽 − 1}, etc.           (34) 

3.  And the class of Fuzzy Disjunctions (or t-

conorm) may be: 

𝛼𝐹
∨𝛽 = max{𝛼, 𝛽},                   (35) 

or 𝛼𝐹
∨𝛽 = 𝛼 + 𝛽 − 𝛼𝛽,            (36) 

or 𝛼𝐹
∨𝛽 = min{1, 𝛼 + 𝛽}, etc.            (37) 

4.  Examples of Fuzzy Implications 𝑥
𝐹
→ 𝑦, for 

𝑥, 𝑦 ∈ [0, 1], defined below: 
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 Fodor (1993):  

𝐼𝐹𝐷(𝑥, 𝑦) = {
1, if 𝑥 ≤ 𝑦

max(1 − 𝑥, 𝑦) , if 𝑥 > 𝑦
           (38) 

 Weber (1983):  

𝐼𝑊𝐵(𝑥, 𝑦) = {
1, if 𝑥 < 𝑦 
𝑦, if 𝑥 = 1 

              (39) 

 Yager (1980):  

𝐼𝑌𝐺(𝑥, 𝑦) = {
1, if 𝑥 = 0 and 𝑦 = 0
𝑦𝑥, if 𝑥 > 0 or 𝑦 > 0

          (40) 

 Goguen (1969):  

𝐼𝐺𝐺(𝑥, 𝑦) = {
1, if 𝑥 ≤ 𝑦
𝑦

𝑥
, if 𝑥 > 𝑦

           (41) 

 Rescher (1969):  

𝐼𝑅𝑆(𝑥, 𝑦) = {
1, if 𝑥 ≤ 𝑦
0, if 𝑥 > 𝑦

            (42) 

 Kleene-Dienes (1938):  

𝐼𝐾𝐷(𝑥, 𝑦) = max(1 − 𝑥, 𝑦)           (43) 

 Reichenbach (1935):  

𝐼𝑅𝐶(𝑥, 𝑦) = 1 − 𝑥 + 𝑥𝑦            (44) 

 Gödel (1932):  

𝐼𝐺𝐷(𝑥, 𝑦) = {
1, if 𝑥 ≤ 𝑦
𝑦, if 𝑥 > 𝑦

            (45) 

 Lukasiewicz (1923):  

𝐼𝐿𝐾(𝑥, 𝑦) = min(1, 1 − 𝑥 + 𝑦),           (46) 

according to the list made by Michal Baczynski and 

Balasubramaniam Jayaram (2008). 
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5. An example of Intuitionistic Fuzzy 

Implication 𝐴(𝑡𝐴, 𝑓𝐴)
𝐼𝐹
→𝐵(𝑡𝐵, 𝑓𝐵) is: 

𝐼𝐼𝐹 = ([(1 − 𝑡𝐴)𝐹

𝑡𝐵] F


[(1 − 𝑓𝐵)𝐹

∨𝑓𝐴], 𝑓𝐵𝐹
∧(1 − 𝑡𝐴)),      (47) 

according to Yunhua Xiao, Tianyu Xue, Zhan’ao Xue, 

and Huiru Cheng (2011). 

3.17 Classes of Neutrosophic Implication 
Operators. 

We now propose for the first time eight 

new classes of neutrosophic implications and extend 

a ninth one defined previously: 

𝐴(𝑡𝐴, 𝑖𝐴, 𝑓𝐴)
𝑁
→𝐵(𝑡𝐵, 𝑖𝐵, 𝑓𝐵), 

in the following ways: 

3.17.1-3.17.2 𝐼𝑁1 (𝑡𝐴
𝐹/𝐼𝐹
→  𝑡𝐵, 𝑖𝐴  𝑖𝐵𝐹

∧ , 𝑓𝐴  𝑓𝐵𝐹
∧ ),        (48) 

where 𝑡𝐴
𝐹/𝐼𝐹
→  𝑡𝐵 is any fuzzy implication (from above 

or others) or any intuitionistic fuzzy implication 

(from above or others), while  is𝐹
∧  any fuzzy 

conjunction (from above or others); 

3.17.3-3.17.4 𝐼𝑁2 (𝑡𝐴
𝐹/𝐼𝐹
→  𝑡𝐵, 𝑖𝐴  𝑖𝐵𝐹

∨ , 𝑓𝐴  𝑓𝐵𝐹
∧ ),        (49) 

where  is𝐹
∨  any fuzzy disjunction (from above or 

others); 

3.17.5-3.17.6 𝐼𝑁3 (𝑡𝐴
𝐹/𝐼𝐹
→  𝑡𝐵,

𝑖𝐴+𝑖𝐵

2
, 𝑓𝐴  𝑓𝐵𝐹

∧ );         (50) 
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3.17.7-3.17.8 𝐼𝑁4 (𝑡𝐴
𝐹/𝐼𝐹
→  𝑡𝐵,

𝑖𝐴+𝑖𝐵

2
,
𝑓𝐴+𝑓𝐵

2
).          (51) 

3.17.9 Now we extend another neutrosophic 

implication that has been defined by S. Broumi & F. 

Smarandache (2014) and it was based on the classical 

logical equivalence: 

(𝐴 → 𝐵) ↔ (¬𝐴 ∨ 𝐵).            (52) 

Whence, since the corresponding neutrosophic logic 

equivalence: 

(𝐴
𝑁
→𝐵)

𝑁
↔ ( 𝐴𝑁

¬   𝐵𝑁
∨ )               (53) 

holds, one obtains another Class of Neutrosophic 

Implication Operators as: 

( 𝐴𝑁
¬   𝐵𝑁

∨ )             (54) 

where one may use any neutrosophic negation N

 

(from above or others), and any neutrosophic 

disjunction N

 (from above or others). 

3.18 Example of Neutrosophic Implication. 
Let’s have two neutrosophic propositions 

𝐴〈0.3, 0.4, 0.2〉  and 𝐵〈0.7, 0.1, 0.4〉 . Then 𝐴
𝑁
→𝐵  has the 

neutrosophic truth value of 𝐴 𝐵𝑁
∨

𝑁
¬ , i.e.: 

〈0.2, 0.4, 0.3〉 〈0.7, 0.1, 0.4〉𝑁
∨ , 

or 〈max{0.2, 0.7},min{0.4, 0.1},min{0.3, 0.4}〉, 

or 〈0.7, 0.1, 0.3〉, 
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where we used the neutrosophic operators defined 

above: 

〈𝑡, 𝑖, 𝑓〉 = 〈𝑓, 𝑖, 𝑡〉𝑁
¬  for neutrosophic negation 

and  

〈𝑡1, 𝑖1, 𝑓1〉 〈𝑡2, 𝑖2, 𝑓2〉𝑁
∨ = 〈max{𝑡1, 𝑡2},min{𝑖1, 𝑖2},min{𝑓1, 𝑓2}〉 

for the neutrosophic disjunction. 

Using different versions of the 

neutrosophic negation operators and/or different 

versions of the neutrosophic disjunction operators, 

one obtains, in general, different results. Similarly as 

in fuzzy logic. 

3.19 Another Example of Neutrosophic 
Implication.  

Let 𝐴  have the neutrosophic truth-value 

(𝑡𝐴, 𝑖𝐴, 𝑓𝐴) , and 𝐵  have the neutrosophic truth-value 

(𝑡𝐵, 𝑖𝐵, 𝑓𝐵), then: 

[𝐴
𝑁
→𝐵]

𝑁
↔ [( 𝐴𝑁

¬ ) 𝐵𝑁
∨ ],                     (8) 

where  is𝑁
¬  any of the above neutrosophic negations, 

while  is𝑁
∨  any of the above neutrosophic 

disjunctions. 

3.20 General Definition of Neutrosophic Operators. 
We consider that the most general 

definition of neutrosophic operators shall be the 

followings: 
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𝐴(𝑡𝐴, 𝑖𝐴, 𝑓𝐴) 𝐵(𝑡𝐵, 𝑖𝐵, 𝑓𝐵) = 𝐴 𝐵𝑁
⊕

𝑁
⊕ 〈𝑢(𝑡𝐴, 𝑖𝐴, 𝑓𝐴, 𝑡𝐵, 𝑖𝐵, 𝑓𝐵),

𝑣(𝑡𝐴, 𝑖𝐴, 𝑓𝐴, 𝑡𝐵, 𝑖𝐵, 𝑓𝐵), 𝑤(𝑡𝐴, 𝑖𝐴, 𝑓𝐴, 𝑡𝐵 , 𝑖𝐵, 𝑓𝐵)〉         (56) 

where  is𝑁
⊕  any binary neutrosophic operator, and 

𝑢(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6), 𝑣(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6), 

𝑤(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6): [0,1]
6 → [0,1].         (57) 

Even more, the neutrosophic component 

functions 𝑢, 𝑣, 𝑤 may depend, on the top of these six 

variables, on hidden parameters as well, such as: 

ℎ1, ℎ2, … , ℎ𝑛. 

For a unary neutrosophic operator (for 

example, the neutrosophic negation), similarly: 

𝐴𝑁
⌝ (𝑡𝐴, 𝑖𝐴, 𝑓𝐴) =

〈𝑢′(𝑡𝐴, 𝑖𝐴, 𝑓𝐴), 𝑣
′(𝑡𝐴, 𝑖𝐴, 𝑓𝐴), 𝑤

′(𝑡𝐴, 𝑖𝐴, 𝑓𝐴)〉         (58) 

where  

𝑢′(𝑡𝐴, 𝑖𝐴, 𝑓𝐴), 𝑣
′(𝑡𝐴, 𝑖𝐴, 𝑓𝐴), 𝑤

′(𝑡𝐴, 𝑖𝐴, 𝑓𝐴): [0, 1]
3 → [0,1], 

and even more 𝑢′, 𝑣′, 𝑤′ may depend, on the top of 

these three variables, of hidden parameters as well, 

such as: ℎ1, ℎ2, … , ℎ𝑛. 

{Similarly there should be for a general 

definition of fuzzy operators and general definition of 

intuitionistic fuzzy operators.} 

As an example, we have defined in F. 

Smarandache, V. Christianto, n-ary Fuzzy Logic and 

Neutrosophic Logic Operators, published in Studies in 
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Logic Grammar and Rhetoric, Belarus, 17(30), pp. 1-

16, 2009: 

𝐴(𝑡𝐴, 𝑖𝐴, 𝑓𝐴) 𝐵(𝑡𝐵, 𝑖𝐵, 𝑓𝐵)𝑁
∧ = 〈𝑡𝐴𝑡𝐵, 𝑖𝐴𝑖𝐵 + 𝑡𝐴𝑖𝐵 +

𝑡𝐵𝑖𝐴, 𝑡𝐴𝑓𝐵 + 𝑡𝐵𝑓𝐴 + 𝑖𝐴𝑓𝐵 + 𝑖𝐵𝑓𝐴〉                (59) 

these result from multiplying 

(𝑡𝐴 + 𝑖𝐴 + 𝑓𝐴) ⋅ (𝑡𝐵 + 𝑖𝐵 + 𝑓𝐵)                   (60) 

and ordering upon the below pessimistic order: 

truth  indeterminacy  falsity, 

meaning that to the truth only the terms of 𝑡’s goes, 

i.e. 𝑡𝐴𝑡𝐵, to indeterminacy only the terms of t’s and i’s 

go, i.e. 𝑖𝐴𝑖𝐵 + 𝑡𝐴𝑖𝐵 + 𝑡𝐵𝑖𝐴, and to falsity the other terms 

left, i.e. 𝑡𝐴𝑓𝐵 + 𝑡𝐵𝑓𝐴 + 𝑖𝐴𝑓𝐵 + 𝑖𝐵𝑓𝐴 + 𝑓𝐴𝑓𝐵. 

3.21 Neutrosophic Deductive System. 
A Neutrosophic Deductive System consists 

of a set ℒ1 of neutrosophic logical axioms, and a set 

ℒ2 of neutrosophic non-logical axioms, and a set ℛ of 

neutrosophic rules of inference – all defined on a 

neutrosophic space 𝒮  that is composed of many 

elements. 

A neutrosophic deductive system is said to 

be neutrosophically complete, if for any 

neutrosophic formula 𝜑  that is a neutrosophic 

logical consequence of ℒ1 , i.e. ℒ1  𝜑𝑁
⊨ , there exists a 

neutrosophic deduction of 𝜑  from ℒ1 , i.e. ℒ1  𝜑𝑁
⊢ , 
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where   denotes 𝑁
⊨ neutrosophic logical consequence, 

and   denotes𝑁
⊢  neutrosophic deduction. 

Actually, everything that is neutro-

sophically (partially) true [i.e. made neutrosophically 

(partially) true by the set ℒ1 of neutrosophic axioms] 

is neutrosophically (partially) provable. 

The neutrosophic completeness of set ℒ2 

of neutrosophic non-logical axioms is not the same 

as the neutrosophic completeness of set ℒ1  of 

neutrosophic logical axioms. 

3.22 Neutrosophic Axiomatic Space. 
The space 𝒮 is called neutrosophic space if 

it has some indeterminacy with respect to one or 

more of the following: 

a. Its elements; 

1. At least one element 𝑥 partially belongs 

to the set 𝒮, or 𝑥(𝑡𝑥, 𝑖𝑥, 𝑓𝑥) ≠ (1, 0, 0); 

2. There is at least an element 𝑦 in 𝒮 whose 

appurtenance to 𝒮 is unknown. 

b. Its logical axioms; 

1. At least a logical axiom 𝒜  is partially 

true, or 𝒜(𝑡𝐴, 𝑖𝐴, 𝑓𝐴) , where similary 

(𝑡𝐴, 𝑖𝐴, 𝑓𝐴) ≠ (1, 0, 0); 

2. There is at least an axiom ℬ whose truth-

value is unknown. 
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c. Its non-logical axioms; 

1. At least a non-logical axiom 𝒞 is true for 

some elements, and indeterminate or 

false or other elements; 

2. There is at least a non-logical axiom 

whose truth-value is unknown for some 

elements in the space. 

d. There exist at least two neutrosophic 

logical axioms that have some degree of 

contradiction (strictly greater than zero). 

e. There exist at least two neutrosophic 

non-logical axioms that have some 

degree of contradiction (strictly greater 

than zero). 

3.23 Degree of Contradiction (Dissimilarity) of 
Two Neutrosophic Axioms. 

Two neutrosophic logical axioms 𝒜1  and 

𝒜2 are contradictory (dissimilar) if their semantics 

(meanings) are contradictory in some degree d1, while 

their neutrosophic truth values <t1, i1, f1> and <t2, i2, 

f2> are contradictory in a different degree d2 [in other 

words d1 ≠ d2]. 

As a particular case, if two neutrosophic 

logical axioms 𝒜1  and 𝒜2  have the same semantic 

(meaning) [in other words d1 = 0], but their 
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neutrosophic truth-values are different [in other 

words d2 > 0], they are contradictory. 

Another particular case, if two neutro-

sophic axioms 𝒜1  and 𝒜2  have different semantics 

(meanings) [in other words d1 > 0], but their 

neutrosophic truth values are the same <t1, i1, f1> =  

<t2, i2, f2> [in other words d2 = 0], they are 

contradictory. 

If two neutrosophic axioms 𝒜1 and 𝒜2  

have the semantic degree of contradiction d1, and the 

neutrosophic truth value degree of contradiction d2, 

then the total degree of contradiction of the two 

neutrosophic axioms is d = |d1 – d2|, where |  | mean 

the absolute value. 

We did not manage to design a formula in 

order to compute the semantic degree of contra-

diction d1 of two neutrosophic axioms. The reader is 

invited to explore such metric. 

But we can compute the neutrosophic truth 

value degree of contradiction d2. If 〈𝑡1, 𝑖1, 𝑓1〉  is the 

neutrosophic truth-value of 𝒜1  and 〈𝑡2, 𝑖2, 𝑓2〉  the 

neutrosophic truth-value of 𝒜2, where 𝑡1, 𝑖1, 𝑓1, 𝑡2, 𝑖2, 𝑓2 

are single values in [0, 1], then the neutrosophic truth 

value degree of contradiction 𝑑2 of the neutrosophic 

axioms 𝒜1 and 𝒜2 is: 
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𝑑2 =
1

3
(|𝑡1 − 𝑡2| + |𝑖1 − 𝑖2| + |𝑓1 − 𝑓2|),             (61) 

whence 𝑑2 ∈ [0, 1]. 

We get 𝑑2 = 0,  

when 𝒜1 is identical with 𝒜2 from the point of view of 

neutrosophical truth values, i.e. when 𝑡1 = 𝑡2, 𝑖1 = 𝑖2, 

𝑓1 = 𝑓2.   

And we get 𝑑2 = 1,  

when 〈𝑡1, 𝑖1, 𝑓1〉 and 〈𝑡2, 𝑖2, 𝑓2〉 are respectively equal to: 

〈1, 0, 0〉, 〈0, 1, 1〉; 

or 〈0, 1, 0〉, 〈1, 0, 1〉; 

or 〈0, 0, 1〉, 〈1, 1, 0〉; 

or 〈0, 0, 0〉, 〈1, 1, 1〉. 

3.24 Neutrosophic Axiomatic System.  
The neutrosophic axioms are used, in 

neutrosophic conjunction, in order to derive 

neutrosophic theorems. 

A neutrosophic mathematical theory may 

consist of a neutrosophic space where a 

neutrosophic axiomatic system acts and produces all 

neutrosophic theorems within the theory. 

Yet, in a neutrosophic formal system, in 

general, the more recurrences are done the more is 

increased the indeterminacy and decreased the 

accuracy. 
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3.25 Properties of the Neutrosophic Axiomatic 
System. 

1. While in classical mathematics an axiomatic 

system is consistent, in a neutrosophic 

axiomatic system it happens to have 

partially inconsistent (contradictory) 

axioms. 

2. Similarly, while in classical mathematics the 

axioms are independent, in a neutrosophic 

axiomatic system they may be dependent in 

certain degree. 

In classical mathematics if an axiom is 

dependent from other axioms, it can be 

removed, without affecting the axiomatic 

system. However, if a neutrosophic axiom is 

partially dependent from other neutro-

sophic axioms, by removing it the neutro-

sophic axiomatic system is affected. 

3. While, again, in classical mathematics an 

axiomatic system has to be complete 

(meaning that each statement or its 

negation is derivable), a neutrosophic 

axiomatic system is partially complete and 

partially incomplete. It is partially 

incomplete because one can add extra 

partially independent neutrosophic axioms. 



Symbolic Neutrosophic Theory  

 

89 
 

 

4. The neutrosophic relative consistency of an 

axiomatic system is referred to the 

neutrosophically (partially) undefined 

terms of a first neutrosophic axiomatic 

system that are assigned neutrosophic 

definitions from another neutrosophic 

axiomatic system in a way that, with respect 

to both neutrosophic axiomatic systems, is 

neutrosophically consistent. 

3.26 Neutrosophic Model. 
A Neutrosophic Model is a model that 

assigns neutrosophic meaning to the neutro-

sophically (un)defined terms of a neutrosophic 

axiomatic system.  

Similarly to the classical model, we have 

the following classification: 

1. Neutrosophic Abstract Model, which is a 

neutrosophic model based on another 

neutrosophic axiomatic system. 

2. Neutrosophic Concrete Model, which is a 

neutrosophic model based on real world, 

i.e. using real objects and real relations 

between the objects. 

In general, a neutrosophic model is a <t, i, 

f>-approximation, i.e. T% of accuracy, I% indeter-
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minacy, and F% inaccuracy, of a neutrosophic 

axiomatic system. 

3.27 Neutrosophically Isomorphic Models. 
Further, two neutrosophic models are 

neutrosophically isomorphic if there is a neutro-

sophic one-to-one correspondence between their 

neutrosophic elements such that their neutrosophic 

relationships hold. 

A neutrosophic axiomatic system is called 

neutrosophically categorial (or categorical) is any two 

of its neutrosophic models are neutrosophically 

isomorphic. 

3.28 Neutrosophic Infinite Regressions. 
There may be situations of neutrosophic 

axiomatic systems generating neutrosophic infinite 

regressions, unlike the classical axiomatic systems. 

3.29 Neutrosophic Axiomatization. 
A Neutrosophic Axiomatization is referred 

to an approximate formulation of a set of 

neutrosophic statements, about a number of 

neutrosophic primitive terms, such that by the 

neutrosophic deduction one obtains various 

neutrosophic propositions (theorems). 
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3.30 Example of Neutrosophic Axiomatic System. 
Let’s consider two neighboring countries M 

and N that have a disputed frontier zone Z: 

 
Fig. 4 A Neutrosophic Model. 

Let’s consider the universe of discourse U 

= M   Z N; this is a neutrosophic space since it has 

an indeterminate part (the disputed frontier).   

The neutrosophic primitive notions in this 

example are: neutrosophic point, neutrosophic line, 

and neutrosophic plane (space). 

And the neutrosophic primitive relations 

are: neutrosophic incidence, and neutrosophic 

parallel. 

The four boundary edges of rectangle Z 

belong to Z (or Z is a closed set). While only three 

boundary edges of M (except the fourth one which is 

common with Z) belong to M, and similarly only three 

boundaries of N (except the fourth one which is 

common with Z) belong to N. Therefore M and N are 

neither closed nor open sets. 
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Taking a classical point P in U, one has 

three possibilities:  

[1] 𝑃 ∈ 𝑀 (membership with respect to 

country M); 

[2] 𝑃 ∈ 𝑍 (indeterminate membership 

with respect to both countries); 

[3] or 𝑃 ∈ 𝑁 (nonmembership with 

respect to country M). 

Such points, that can be indeterminate as 

well, are called neutrosophic points. 

A neutrosophic line is a classical segment 

of line that unites two neutrosophic points lying on 

opposite edges of the universe of discourse U.  We 

may have:  

[1] determinate line (with respect to 

country M), that is completely into 

the determinate part M {for example 

(L1)};  

[2] indeterminate line, that is completely 

into the frontier zone {for example 

(L2)}; 

[3] determinate line (with respect to 

country N), that is completely into the 

determinate part N {for example (L3)};  

[4] or mixed, i.e. either two or three of 

the following: partially determinate 
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with respect to M, partially indeter-

minate with respect to both 

countries, and partially determinate 

with respect to N {for example the red 

line (L4)}. 

Through two neutrosophic points there 

may be passing: 

[1] only one neutrosophic line {for 

example, through G and H passes 

only one neutrosophic line (L4)}; 

[2] no neutrosophic line {for example, 

through A and B passes no neutro-

sophic line, since the classical 

segment of line AB does not unite 

points of opposite edges of the 

universe of discourse U}. 

Two neutrosophic lines are parallel is they 

have no common neutrosophic points. 

Through a neutrosophic point outside of a 

neutrosophic line, one can draw: 

[1] infinitely many neutrosophic 

parallels {for example, through the 

neutrosophic point C one can draw 

infinitely many neutrosophic 

parallels to the neutrosophic line 

(L1)}; 
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[2] only one neutrosophic parallel {for 

example, through the neutrosophic 

point H that belongs to the edge 

(V1V2) one can draw only one 

neutrosophic parallel (i.e. V1V2) to 

the neutrosophic line (L1)}; 

[3] no neutrosophic parallel {for 

example, through the neutrosophic 

point H there is no neutrosophic 

parallel to the neutrosophic line (L3)}. 

For example, the neutrosophic lines (L1), 

(L2) and (L3) are parallel. But the neutrosophic line 

(L4) is not parallel with (L1), nor with (L2) or (L3). 

A neutrosophic polygon is a classical 

polygon which has one or more of the following 

indeterminacies: 

[1] indeterminate vertex; 

[2] partially or totally indeterminate 

edge; 

[3] partially or totally indeterminate 

region in the interior of the polygon. 

We may construct several neutrosophic 

axiomatic systems, for this example, referring to 

incidence and parallel. 

a) First neutrosophic axiomatic system. 
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α1) Through two distinct neutrosophic points 

there is passing a single neutrosophic line.  

{According to several experts, the 

neutrosophic truth-value of this axiom is 

<0.6, 0.1, 0.2>, meaning that having two 

given neutrosophic points, the chance that 

only one line (that do not intersect the 

indeterminate zone Z) passes through them 

is 0.6, the chance that line that passes 

through them intersects the indeterminate 

zone Z) is 0.1, and the chance that no line 

(that does not intersect the indeterminate 

zone Z) passes through them is 0.2.} 

α2) Through a neutrosophic point exterior to 

a neutrosophic line there is passing either one 

neutrosophic parallel or infinitely many 

neutrosophic parallels.  

{According to several experts, the 

neutrosophic truth-value of this axiom is 

<0.7, 0.2, 0.3>, meaning that having a given 

neutrosophic line and a given exterior 

neutrosophic point, the chance that 

infinitely many parallels pass through this 

exterior point is 0.7, the chance that the 

parallels passing through this exterior 

point intersect the indeterminate zone Z is 
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0.2, and the chance that no parallel passes 

through this point is 0.3.} 

Now, let’s apply a first neutrosophic 

deducibility. 

Suppose one has three non-collinear 

neutrosophic (distinct) points P, Q, and R (meaning 

points not on the same line, alike in classical 

geometry). According to the neutrosophic axiom (α1), 

through P, Q passes only one neutrosophic line {let’s 

call it (PQ)}, with a neutrosophic truth value (0.6, 0.1, 

0.2). Now, according to axiom (α2), through the 

neutrosophic point R, which does not lie on (PQ), 

there is passing either only one neutrosophic parallel 

or infinitely many neutrosophic parallels to the 

neutrosophic line (PQ), with a neutrosophic truth 

value (0.7, 0.2, 0.3). 

Therefore, 

(α1) 
∧
𝑁

 (α2) = <0.6, 0.1, 0.2> 
∧
𝑁

 <0.7, 0.2, 0.3> = 

<min{0.6, 0.7}, max{0.1, 0.2}, max{0.2, 0.3}>= <0.6, 

0.2, 0.3>, 

which means the following:  the chance that through 

the two distinct given neutrosophic points P and Q 

passes only one neutrosophic line, and through the 

exterior neutrosophic point R passese either only 

one neutrosophic parallel or  infinitely many 
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parallels to (PQ) is (0.6, 0.2, 0.3), i.e. 60% true, 20% 

indeterminate, and 30% false. 

Herein we have used the simplest 

neutrosophic conjunction operator  
∧
𝑁

 of the form 

<min, max, max>, but other neutrosophic conjunc-

tion operator can be used as well. 

A second neutrosophic deducibility: 

Again, suppose one has three non-collinear 

neutrosophic (distinct) points P, Q, and R (meaning 

points not on the same line, as in classical geometry). 

Now, let’s compute the neutrosophic truth 

value that through P and Q is passing one 

neutrosophic line, but through Q there is no 

neutrosophic parallel to (PQ). 

α1
∧
𝑁
(
¬
𝑁𝛼2) = <0.6, 0.1, 0.2>

∧
𝑁
(
¬
𝑁<0.7, 0.2, 0.3>) = <0.6, 

0.1, 0.2>
∧
𝑁

<0.3, 0.2, 0.7> 

= <0.3, 0.2, 0.7>. 

b) Second neutrosophic axiomatic system: 

β1) Through two distinct neutrosophic points 

there is passing either a single neutrosophic 

line or no neutrosophic line. {With the 

neutrosophic truth-value <0.8, 0.1, 0.0>}. 

β2) Through a neutrosophic point exterior to 

a neutrosophic line there is passing either one 
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neutrosophic parallel, or infinitely many 

neutrosophic parallels, or no neutrosophic 

parallel. {With the neutrosophic truth-value 

<1.0, 0.2, 0.0>}. 

In this neutrosophic axiomatic system the 

above propositions W1 and W2: 

W1: Through two given neutrosophic 

points there is passing only one 

neutrosophic line, and through a 

neutrosophic point exterior to this 

neutrosophic line there is passing either 

one neutrosophic parallel or infinitely 

many neutrosophic parallels to the given 

neutrosophic line; and W2: Through two 

given neutrosophic points there is passing 

only one neutrosophic line, and through a 

neutrosophic point exterior to this 

neutrosophic line there is passing no 

neutrosophic parallel to the line; are not 

deducible. 

c) Third neutrosophic axiomatic system. 

γ1) Through two distinct neutrosophic points 

there is passing a single neutrosophic line. 

{With the neutrosophic truth-value <0.6, 0.1, 

0.2>}. 
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γ2) Through two distinct neutrosophic points 

there is passing no neutrosophic line. 

{With the neutrosophic truth-value <0.2, 0.1, 

0.6>}. 

δ1) Through a neutrosophic point exterior to 

a neutrosophic line there is passing only one 

neutrosophic parallel.  

{With the neutrosophic truth-value <0.1, 0.2, 

0.9>}. 

δ2) Through a neutrosophic point exterior to 

a neutrosophic line there are passing infinitely 

many     neutrosophic parallels.  

{With the neutrosophic truth-value <0.6, 0.2, 

0.4>}. 

δ3) Through a neutrosophic point exterior to 

a neutrosophic line there is passing no 

neutrosophic parallel.  

{With the neutrosophic truth-value <0.3, 0.2, 

0.7>}. 

In this neutrosophic axiomatic system we 

have contradictory axioms:  

- (γ1) is in 100% degree of 

contradiction with (γ2); 

- and similarly (δ3) is in 100% degree of 

contradiction with [(δ1)  together with 

(δ2)]. 
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Totally or partially contradictory axioms 

are allowed in a neutrosophic axiomatic systems, 

since they are part of our imperfect world and since 

they approximately describe models that are - in 

general - partially true. 

Regarding the previous two neutrosophic 

deducibilities one has: 

γ1
∧
𝑁

 (δ1
∨
𝑁

 δ2)= <0.6, 0.1, 0.2>
∧
𝑁
(< 0.1, 0.2, 0.9 >

∨
𝑁
< 0.6, 0.2, 0.4 >) 

= < 0.6, 0.1, 0.2 >
∧
𝑁

<max{0.1, 0.6}, min{0.2, 

0.2}, min{0.9, 0.4}>= < 0.6, 0.1, 0.2 >
∧
𝑁
< 0.6,

0.2, 0.4 >= <0.6, 0.2, 0.4>, 

which is slightly different from the result we got 

using the first neutrosophic axiomatic system <0.6, 

0.2, 0.3>, and respectively: 

γ1
∧
𝑁

 δ3= <0.6, 0.1, 0.2>
∧
𝑁
< 0.3, 0.2, 0.7 >=<0.3, 0.2, 

0.7>, 

which is the same as the result we got using the first 

neutrosophic axiomatic system. 

The third neutrosophic axiomatic system is 

a refinement of the first and second neutrosophic 

axiomatic systems. From a deducibility point of view 
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it is better and easier to work with a refined system 

than with a rough system. 

3.31 Conclusion. 
In many real world situations the spaces 

and laws are not exact, not perfect. They are inter-

dependent. This means that in most cases they are 

not 100% true, i.e. not universal. For example many 

physical laws are valid in ideal and perfectly closed 

systems. But perfectly closed systems do not exist in 

our heterogeneous world where we mostly deal with 

approximations. Also, since in the real world there is 

not a single homogenous space, we have to use the 

multispace for any attempt to unify various theories. 

We do not have perfect spaces and perfect 

systems in reality. Therefore many physical laws 

function approximatively (see [5]). The physical 

constants are not universal too; variations of their 

values depend from a space to another, from a 

system to another. A physical constant is t% true, i% 

indeterminate, and f% false in a given space with a 

certain composition, and it has a different 

neutrosophical truth value <t’, i’, f’> in another space 

with another composition. 

A neutrosophic axiomatic system may be 

dynamic: new axioms can be added and others 
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excluded. The neutrosophic axiomatic systems are 

formed by axioms than can be partially dependent 

(redundant), partially contradictory (inconsistent), 

partially incomplete, and reflecting a partial truth 

(and consequently a partial indeterminacy and a 

partial falsehood) - since they deal with 

approximations of reality. 
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4 (t, i, f)-Neutrosophic Structures 
& I-Neutrosophic Structures 

4.1 Abstract. 
This chapter is an improvement of our 

paper “(t, i, f)-Neutrosophic Structures” [1], where we 

introduced for the first time a new type of structures, 

called (t, i, f)-Neutrosophic Structures, presented from 

a neutrosophic logic perspective, and we showed 

particular cases of such structures in geometry and 

in algebra.  

In any field of knowledge, each structure is 

composed from two parts: a space, and a set of 

axioms (or laws) acting (governing) on it. If the space, 

or at least one of its axioms (laws), has some 

indeterminacy of the form (t, i, f)  ≠ (1, 0, 0), that 

structure is a (t, i, f)-Neutrosophic Structure. 

The (t, i, f)-Neutrosophic Structures [based 

on the components t = truth, i = numerical 

indeterminacy, f = falsehood] are different from the 

Neutrosophic Algebraic Structures [based on 

neutrosophic numbers of the form a + bI, where I = 

literal indeterminacy and In = I], that we rename as I-
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Neutrosophic Algebraic Structures (meaning algeb-

raic structures based on indeterminacy “I” only).  But 

we can combine both and obtain the (t, i, f)-I-

Neutrosophic Algebraic Structures, i.e. algebraic 

structures based on neutrosophic numbers of the 

form a+bI, but also having indeterminacy of the form 

(t, i, f)  ≠ (1, 0, 0) related to the structure space 

(elements which only partially belong to the space, or 

elements we know nothing if they belong to the space 

or not) or indeterminacy of the form (t, i, f)  ≠ (1, 0, 

0) related to at least one axiom (or law) acting on the 

structure space. Then we extend them to Refined (t, 

i, f)- Refined I-Neutrosophic Algebraic Structures. 

4.2 Classification of Indeterminacies. 
1. Numerical Indeterminacy (or Degree of 

Indeterminacy), which has the form (t, i, f)  ≠ (1, 

0, 0), where t, i, f are numbers, intervals, or 

subsets included in the unit interval   [0, 1], and 

it is the base for the (t, i, f)-Neutrosophic 

Structures.   

2. Non-numerical Indeterminacy (or Literal 

Indeterminacy), which is the letter “I” standing 

for unknown (non-determinate), such that I2 = 

I, and used in the composition of the 

neutrosophic number N = a + bI, where a and 
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b are real or complex numbers, and a is the 

determinate part of number N, while bI is the 

indeterminate part of N. The neutrosophic 

numbers are the base for the I-Neutrosophic 

Structures. 

4.3 Neutrosophic Algebraic Structures [or I-
Neutrosophic Algebraic Structures]. 

A previous type of neutrosophic structures 

was introduced in algebra by W. B. Vasantha 

Kandasamy and Florentin Smarandache [2-57], since 

2003, and it was called Neutrosophic Algebraic 

Structures.  Later on, more researchers joined the 

neutrosophic research, such as: Mumtaz Ali, Said 

Broumi, Jun Ye, A. A. Salama, Muhammad Shabir, K. 

Ilanthenral, Meena Kandasamy, H. Wang, Y.-Q. Zhang, 

R. Sunderraman, Andrew Schumann, Salah Osman, D. 

Rabounski, V. Christianto, Jiang Zhengjie, Tudor 

Paroiu, Stefan Vladutescu, Mirela Teodorescu, 

Daniela Gifu, Alina Tenescu, Fu Yuhua, Francisco 

Gallego Lupiañez, etc. 

The neutrosophic algebraic structures are 

algebraic structures based on sets of neutrosophic 

numbers of the form N = a + bI, where a, b are real 

(or complex) numbers, and a is called the 

determinate part on N and bI is called the 
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indeterminate part of N, with mI + nI = (m + n)I, 0∙I 

= 0, In = I for integer n ≥ 1, and I / I = undefined. 

When a, b are real numbers, then a + bI is 

called a neutrosophic real number. While if at least 

one of a, b is a complex number, then a + bI is called 

a neutrosophic complex number. 

We may say "literal indeterminacy" for "I" 

from a+bI, and "numerical indeterminacy" for "i" 

from (t, i, f) in order to distinguish them. 

The neutrosophic algebraic structures 

studied by Vasantha-Smarandache in the period 

2003-2015 are: neutrosophic groupoid, neutrosophic 

semigroup, neutrosophic group, neutrosophic ring, 

neutrosophic field, neutrosophic vector space, 

neutrosophic linear algebras etc., which later 

(between 2006-2011) were generalized by the same 

researchers to neutrosophic bi-algebraic structures, 

and more general to neutrosophic N-algebraic 

structures. 

Afterwards, the neutrosophic structures 

were further extended to neutrosophic soft algebraic 

structures by Florentin Smarandache, Mumtaz Ali, 

Muhammad Shabir, and Munazza Naz in 2013-2014.   

In 2015 Smarandache refined the literal 

indeterminacy I into different types of literal 

indeterminacies (depending on the problem to solve) 
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such as  I1, I2, …, Ip with integer p ≥ 1, and obtained 

the refined neutrosophic numbers of the form Np = 

a+b1I1+b2I2+…+bpIp where a, b1, b2, …, bp are real or 

complex numbers, and a is called the determinate 

part of Np, while for each k𝜖{1, 2, …, p} bkIk is called 

the k-th indeterminate part of Np, and for each k𝜖{1, 

2, …, p}, one similarly has: mIk + nIk = (m + n)Ik, 0∙Ik = 

0, Ik
n = Ik for integer n ≥ 1, and Ik /Ik = undefined. 

The relationships and operations between 

Ij and Ik, for j ≠ k, depend on each particular problem 

we need to solve. 

Then consequently, Smarandache [2015] 

extended the neutrosophic algebraic structures to 

Refined Neutrosophic Algebraic Structures [or 

Refined I-Neutrosophic Algebraic Structures], 

which are algebraic structures based on the sets of 

the refined neutrosophic numbers a+b1I1+b2I2+… 

+bpIp.  

4.4 (t, i, f)-Neutrosophic Structures. 
We now introduce for the first time another 

type of neutrosophic structures. These structures, in 

any field of knowledge, are considered from a 

neutrosophic logic point of view, i.e. from the truth-

indeterminacy-falsehood (t, i, f) values.  
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In neutrosophic logic every proposition has 

a degree of truth (t), a degree of indeterminacy (i), 

and a degree of falsehood (f), where t, i, f are standard 

or non-standard subsets of the non-standard unit 

interval ]-0, 1+[.  In technical applications t, i, and f are 

only standard subsets of the standard unit interval 

[0, 1] with: -0 ≤ sup(T) + sup(I) + sup(F) ≤ 3+, where 

sup(X) means supremum of the subset X. 

In general, each structure is composed 

from: a space, endowed with a set of axioms (or 

laws) acting (governing) on it. If the space, or at least 

one of its axioms, has some numerical indeterminacy 

of the form (t, i, f)  ≠ (1, 0, 0), we consider it as a (t, i, 

f)-Neutrosophic Structure.  

Indeterminacy with respect to the space is 

referred to some elements that partially belong [i.e. 

with a neutrosophic value (t, i, f)  ≠ (1, 0, 0)] to the 

space, or their appurtenance to the space is 

unknown. An axiom (or law) which deals with 

numerical indeterminacy is called neutrosophic 

axiom (or law). We introduce these new structures 

because in the real world we do not always know 

exactly or completely the space we work in; and 

because the axioms (or laws) are not always well 

defined on this space, or may have indeterminacies 

when applying them. 
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4.5 Refined (t, i, f)-Neutrosophic Structures [or (tj, 
ik, fl)-Neutrosophic Structures] 

In 2013 Smarandache [76] refined the 

numerical neutrosophic components (t, i, f) into (t1, 

t2, …, tm;  i1, i2, …, ip;  f1, f2, …, fr), where m, p, r are 

integers ≥ 1. 

Consequently, we now [2015] extend the (t, 

i, f)-Neutrosophic Structures to (t1, t2, …, tm;  i1, i2, …, 

ip;  f1, f2, …, fr)-Neutrosophic Structures, that we called 

Refined (t, i, f)-Neutrosophic Structures [or (tj, ik, fl)-

Neutrosophic Structures]. These are structures whose 

elements have a refined neutrosophic value of the 

form (t1, t2, …, tm;  i1, i2, …, ip;  f1, f2, …, fr) or the space 

has some indeterminacy of this form. 

4.6 (t, i, f)-I-Neutrosophic Algebraic Structures. 
The (t, i, f)-Neutrosophic Structures [based 

on the numerical components t = truth, i = 

indeterminacy, f = falsehood] are different from the 

Neutrosophic Algebraic Structures [based on 

neutrosophic numbers of the form a + bI]. We may 

rename the last ones as I-Neutrosophic Algebraic 

Structures (meaning: algebraic structures based on 

literal indeterminacy “I” only). 

But we can combine both of them and 

obtain a (t, i, f)-I-Neutrosophic Algebraic Structures, 
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i.e. algebraic structures based on neutrosophic 

numbers of the form a + bI, but this structure also 

having indeterminacy of the form (t, i, f)  ≠ (1, 0, 0) 

related to the structure space (elements which only 

partially belong to the space, or elements we know 

nothing if they belong to the space or not) or 

indeterminacy related to at least an axiom (or law) 

acting on the structure space. Even more, we can 

generalize them to Refined (t, i, f)- Refined I-

Neutrosophic Algebraic Structures, or (tj, ik, fl)-Is-

Neutrosophic Algebraic Structures. 

4.7 Example of Refined I-Neutrosophic Algebraic 
Structure. 

Let the indeterminacy I be split into I1 = 

contradiction (i.e. truth and falsehood simul-

taneously), I2 = ignorance (i.e. truth or falsehood), and 

I3 = vagueness, and the corresponding 3-refined 

neutrosophic numbers of the form a+b1I1+b2I2+b3I3. 

Let (G, *) be a groupoid. Then the 3-refined 

I-neutrosophic groupoid is generated by I1, I2, I3 and G 

under * and it is denoted by  

N3(G) = {(G∪I1∪I2∪I3), *} = { a+b1I1+b2I2+b3I3 / a, b1, 

b2, b3 ∈ G }.              (62) 
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4.8 Example of Refined (t, i, f)-Neutrosophic 
Structure. 

Let (t, i, f) be split as (t1, t2; i1, i2; f1, f2, f3). Let 

H = ( {h1, h2, h3}, # ) be a groupoid, where h1, h2, and h3 

are real numbers. Since the elements h1, h2, h3 only 

partially belong to H in a refined way, we define a 

refined (t, i, f)-neutrosophic groupoid { or refined (2; 

2; 3)-neutrosophic groupoid, since t was split into 2 

parts, I into 2 parts, and t into 3 parts } as  

H = {h1(0.1, 0.1;  0.3, 0.0;  0.2, 0.4, 0.1), h2(0.0, 

0.1;  0.2, 0.1;  0.2, 0.0, 0.1),  

h3(0.1, 0.0;  0.3, 0.2;  0.1, 0.4, 0.0)}. 

4.9 Examples of (t, i, f)-I-Neutrosophic Algebraic 
Structures. 

1) Indeterminate Space (due to Unknown 

Element); with Neutrosophic Number 

included. 

Let B = {2+5I, -I, -4, b(0, 0.9, 0)} a 

neutrosophic set, which contains two 

neutrosophic numbers, 2+5I and -I, and we 

know about the element b that its 

appurtenance to the neutrosophic set is 

90% indeterminate. 
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2) Indeterminate Space (due to Partially 

Known Element); with Neutrosophic Number 

included. 

Let C = {-7, 0, 2+I(0.5, 0.4, 0.1), 11(0.9, 0, 0)}, 

which contains a neutrosophic number 2+I, 

and this neutrosophic number is actually 

only partially in C; the element 11 is also 

partially in C. 

3) Indeterminacy Axiom (Law). 

Let D = [0+0I, 1+1I] = {c+dI, where c, d 𝜖 [0, 

1]}. One defines the binary law # in the 

following way:  

# : DD  D, x # y = (x1 + x2I) # (y1 + y2I) = [(x1 

+ x2)/y1] + y2I,             (63) 

but this neutrosophic law is undefined 

(indeterminate) when y1 = 0.  

4) Little Known or Completely Unknown Axiom 

(Law). 

Let us reconsider the same neutrosophic 

set D as above. But, about the binary 

neutrosophic law  that D is endowed with, 

we only know that it associates the 

neutrosophic numbers 1+I and 0.2+0.3I 

with the neutrosophic number 0.5+0.4I, i.e. 

(1+I)(0.2+0.3I) = 0.5+0.4I. 
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There are many cases in our world when we 

barely know some axioms (laws). 

4.10 Examples of Refined (t, i, f)- Refined I-
Neutrosophic Algebraic Structures. 

We combine the ideas from Examples 5 and 

6 and we construct the following example. 

Let’s consider, from Example 5, the 

groupoid (G, *), where G is a subset of positive real 

numbers, and its extension to a 3-refined I-

neutrosophic groupoid, which was generated by I1, I2, 

I3 and G under the law * that was denoted by  

N3(G) = { a+b1I1+b2I2+b3I3 / a, b1, b2, b3 ∈ G }.        (64) 

We then endow each element from N3(G) 

with some (2; 2; 3)-refined degrees of membership/ 

indeterminacy/nonmembership, as in Example 6, of 

the form (T1, T2; I1, I2; F1, F2, F3), and we obtain a   

N3(G)(2;2;3) = { a+b1I1+b2I2+b3I3(T1, T2; I1, I2; F1, F2, F3) / 

a, b1, b2, b3 ∈ G },            (65) 

where                        (66) 

1 2
1 2 3 1 2 3

1 2
1 2

1 2 3 1 2 3

3 1 2 3
1 2

1 2 3 1 2 3 1 2 3

0.5, ;

, ;

0.1 0.2, , 3 .

a aT T
a b b b a b b b

b bI I
a b b b a b b b

b b b bF F F
a b b b a b b b a b b b

 
     

 
     


  

        
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Therefore, N3(G)(2;2;3) is a refined (2; 2; 3)-

neutrosophic groupoid and a 3-refined I-neutrosophic 

groupoid. 

4.11 Neutrosophic Geometric Examples. 
a) Indeterminate Space.  

We might not know if a point P belongs or not 

to a space S [we write P(0, 1, 0),  meaning that 

P’s indeterminacy is 1, or completely un-

known, with respect to S].   

Or we might know that a point Q only partially 

belongs to the space S and partially does not 

belong to the space S [for example  Q(0.3, 0.4, 

0.5), which means that with respect to S, Q’s 

membership is 0.3, Q’s indeterminacy is 0.4, 

and Q’s non-membership is 0.5].  

Such situations occur when the space has 

vague or unknown frontiers, or the space 

contains ambiguous (not well-defined) regions. 

b) Indeterminate Axiom.  

Also, an axiom (α) might not be well defined on 

the space S, i.e. for some elements of the space 

the axiom (α)  may be valid, for other elements 

of the space the axiom (α) may be 

indeterminate (meaning neither valid, nor 
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invalid), while for the remaining elements the 

axiom (α) may be invalid. 

As a concrete example, let’s say that the 

neutrosophic values of the axiom (α) are (0.6, 

0.1, 0.2) = (degree of validity, degree of 

indeterminacy, degree of invalidity). 

4.12 (t, i, f)-Neutrosophic Geometry as a Particular 
Case of (t, i, f)-Neutrosophic Structures. 

As a particular case of (t, i, f)-neutrosophic 

structures in geometry, one considers a (t, i, f)-

Neutrosophic Geometry as a geometry which is 

defined either on a space with some indeterminacy 

(i.e. a portion of the space is not known, or is vague, 

confused, unclear, imprecise), or at least one of its 

axioms has some indeterminacy of the form (t, i, f)  ≠ 

(1, 0, 0) (i.e. one does not know if the axiom is verified 

or not in the given space, or for some elements the 

axiom is verified and for others it is not verified). 

This is a generalization of the Smaran-

dache Geometry (SG) [57-75], where an axiom is 

validated and invalidated in the same space, or only 

invalidated, but in multiple ways. Yet the SG has no 

degree of indeterminacy related to the space or 

related to the axiom.  
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A simple Example of a SG is the following 

– that unites Euclidean, Lobachevsky-Bolyai-Gauss, 

and Riemannian geometries altogether, in the same 

space, considering the Fifth Postulate of Euclid:  in 

one region of the SG space the postulate is validated 

(only one parallel trough a point to a given line), in a 

second region of SG the postulate is invalidated (no 

parallel through a point to a given line – elliptical 

geometry), and in a third region of SG the postulate 

is invalidated but in a different way (many parallels 

through a point to a given line – hyperbolic 

geometry). This simple example shows a hybrid 

geometry which is partially Euclidean, partially Non-

Euclidean Elliptic, and partially Non-Euclidean 

Hyperbolic. Therefore, the fifth postulate (axiom) of 

Euclid is true for some regions, and false for others, 

but it is not indeterminate for any region (i.e. not 

knowing how many parallels can be drawn through a 

point to a given line). 

We can extend this hybrid geometry adding 

a new space region where one does not know if there 

are or there are not parallels through some given 

points to the given lines (i.e. the Indeterminate 

component) and we form a more complex (t, i, f)-

Neutrosophic Geometry. 
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4.13 Neutrosophic Algebraic Examples. 
1)  Indeterminate Space  

(due to Unknown Element). 

Let the set (space) be NH = {4, 6, 7, 9, a}, 

where the set NH has an unknown element "a", 

therefore the whole space has some degree of 

indeterminacy. Neutrosophically, we write a(0, 1, 0), 

which means the element a is 100% unknown. 

2) Indeterminate Space  

(due to Partially Known Element). 

Given the set M = {3, 4, 9(0.7, 0.1, 0.3)}, we 

have two elements 3 and 4 which surely belong to M, 

and one writes them neutrosophically as 3(1, 0, 0) 

and 4(1, 0, 0), while the third element 9 belongs only 

partially (70%) to M, its appurtenance to M is 

indeterminate (10%), and does not belong to M (in a 

percentage of 30%).  

Suppose the above neutrosophic set M is 

endowed with a neutrosophic law * defined in the 

following way: 

x1(t1, i1, f1)* x2(t2, i2, f2) = max{x1, x2}( min{t1, t2}, 

max{i1, i2}, max{f1, f2}),           (67) 

which is a neutrosophic commutative semigroup 

with unit element 3(1, 0  ,0). 

Clearly, if x, y 𝜖 M, then x*y 𝜖 M.  Hence the 

neutrosophic law * is well defined.  
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Since max and min operators are com-

mutative and associative, then * is also commutative 

and associative. 

If x 𝜖 M, then x*x = x.    

Below, examples of applying this 

neutrosophic law *: 

3*9(0.7, 0.1, 0.3) = 3(1, 0, 0)*9(0.7, 0.1, 0.3) = 

max{3, 9}( min{1, 0.7}, max{0, 0.1}, max{0, 0.3} ) 

= 9(0.7, 0.1, 0.3). 

3*4 = 3(1, 0, 0)*4(1, 0, 0) = max{3, 4}( min{1, 1}, 

max{0, 0}, max{0, 0} ) = 4(1, 0, 0). 

2) Indeterminate Law (Operation). 

For example, let the set (space) be NG = ( {0, 

1, 2}, / ), where "/" means division. 

NG is a (t, i, f)-neutrosophic groupoid, 

because the operation "/" (division) is partially 

defined, partially indeterminate (undefined), and 

partially not defined. Undefined is different from not 

defined. Let's see: 

2/1 = 1, which belongs to NG; {defined}. 

1/0 = undefined; {indeterminate}. 

1/2 = 0.5, which does not belongs to NG; {not 

defined}. 

So the law defined on the set NG has the 

properties that: 
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 applying this law to some elements, the results 

are in NG [well defined law]; 

 applying this law to other elements, the results 

are not in NG [not well defined law]; 

 applying this law to again other elements, the 

results are undefined [indeterminate law]. 

We can construct many such algebraic 

structures where at least one axiom has such 

behavior (such indeterminacy in principal). 

4.14 Websites at UNM for Neutrosophic Algebraic 
Structures and respectively Neutrosophic 
Geometries. 
http://fs.gallup.unm.edu/neutrosophy.htm  

and  

http://fs.gallup.unm.edu/geometries.htm 

respectively. 
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5 Refined Literal Indeterminacy 
and the Multiplication Law of 
Subindeterminacies 

5.1 Abstract. 
In this chapter, we make a short history of: 

the neutrosophic set, neutrosophic numerical 

components and neutrosophic literal components, 

neutrosophic numbers, neutrosophic intervals, 

neutrosophic dual number, neutrosophic special dual 

number, neutrosophic special quasi dual number, 

neutrosophic quaternion number, neutrosophic 

octonion number, neutrosophic linguistic number, 

neutrosophic linguistic interval-style number, 

neutrosophic hypercomplex numbers of dimension n, 

and elemen-tary neutrosophic algebraic structures. 

Afterwards, their generalizations to refined 

neutrosophic set, respectively refined neutrosophic 

numerical and literal components, then refined 

neutrosophic numbers and refined neutrosophic 

algebraic structures, and set-style neutrosophic 

numbers.  
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The aim of this chapter is to construct 

examples of splitting the literal indeterminacy (I) into 

literal sub-indeterminacies (I1,I2,…,Ir), and to define a 

multiplication law of these literal sub-indeter-

minacies in order to be able to build refined I-

neutrosophic algebraic structures.  Also, we give 

examples of splitting the numerical indeterminacy (i) 

into numerical sub-indeterminacies, and examples of 

splitting neutrosophic numerical components into 

neutrosophic numerical sub-components. 

5.2 Introduction. 
Neutrosophic Set was introduced in 1995 

by Florentin Smarandache, who coined the words 

„neutrosophy” and its derivative „neutrosophic”. The 

first published work on neutrosophics was in 1998 

{see [1]}. 

There exist two types of neutrosophic 

components: numerical and literal. 

5.3 Neutrosophic Numerical Components. 
Of course, the neutrosophic numerical 

components (𝑡, 𝑖, 𝑓) are crisp numbers, intervals, or in 

general subsets of the unitary standard or 

nonstandard unit interval. 

Let 𝒰 be a universe of discourse, and 𝑀 a 

set included in 𝒰 . A generic element 𝑥  from 𝒰 
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belongs to the set 𝑀 in the following way: 𝑥(𝑡, 𝑖, 𝑓) ∈

𝑀 , meaning that 𝑥 ’s degree of membership/truth 

with respect to the set 𝑀  is 𝑡 , 𝑥 ’s degree of 

indeterminacy with respect to the set 𝑀 is 𝑖, and 𝑥’s 

degree of non-membership/falsehood with respect 

to the set 𝑀  is 𝑓 , where 𝑡, 𝑖, 𝑓  are independent 

standard subsets of the interval [0, 1] , or non-

standard subsets of the non-standard interval ] 0, 1+−
− [ 

in the case when one needs to make distinctions 

between absolute and relative truth, indeterminacy, 

or falsehood. 

Many papers and books have been 

published for the cases when 𝑡, 𝑖, 𝑓 were single values 

(crisp numbers), or 𝑡, 𝑖, 𝑓 were intervals. 

5.4 Neutrosophic Literal Components. 
In 2003, W. B. Vasantha Kandasamy and 

Florentin Smarandache [4] introduced the literal 

indeterminacy “𝐼”, such that 𝐼2 = 𝐼 (whence 𝐼𝑛 = 𝐼 for 

𝑛 ≥ 1, 𝑛 integer).  

They extended this to neutrosophic 

numbers of the form: 𝑎 + 𝑏𝐼 , where 𝑎, 𝑏 are real or 

complex numbers, and  

(𝑎1 + 𝑏1𝐼) + (𝑎2 + 𝑏2𝐼) = (𝑎1 + 𝑎2) + (𝑏1 + 𝑏2)𝐼        (68) 

1 1 2 2 1 2 1 2 2 1 1 2( )( ) ( ) ( )a b I a b I a a a b a b b b I       

(69) 
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and developed many 𝐼 -neutrosophic algebraic 

structures based on sets formed of neutrosophic 

numbers. 

Working with imprecisions, Kandasamy & 

Smarandache have proposed (approximated) I2 by I;  

yet different approaches may be investigated by the 

interested researchers where I2 ≠ I (in accordance 

with their believe and with the practice), and thus a 

new field would arise in the neutrosophic theory. 

The neutrosophic number 𝑁 = 𝑎 + 𝑏𝐼  can 

be interpreted as: “𝑎”  represents the determinate 

part of number 𝑁, while “𝑏𝐼” the indeterminate part 

of number 𝑁, where indeterminacy I may belong to a 

known (or unknown) set (not necessarily interval). 

For example, 7 2.6457... that is irrational 

has infinitely many decimals. We cannot work with 

this exact number in our real life, we need to 

approximate it. Hence, we may write it as 2 + I with I 

∈ (0.6, 0.7), or as 2.6 + 3I with I ∈ (0.01, 0.02), or 2.64 

+ 2I with I ∈ (0.002, 0.004), etc. depending on the 

problem to be solved and on the needed accuracy. 

Jun Ye [9] applied the neutrosophic 

numbers to decision making in 2014. 

The neutrosophic number a+bI can be 

extended to a Set-Style Neutrosophic Number A+BI, 
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where A and B are sets, while I is indeterminacy. As 

an interesting particular case one has when A and B 

are intervals, which is called Interval-Style Neutro-

sophic Number. 

For example, {2, 3, 5} + {0, 4, 8, 12}I, with I 

∈ (0.5, 0.9), is a set-style neutrosophic number.  

While [30, 40] + [-10, -20]I, with I ∈ [7, 14], 

is an interval-style neutrosophic number. 

5.5 Generalized Neutrosophic Complex Numbers 
For a generalized neutrosophic complex 

number, which has the form N = (a+bI1) + (c+dI2)i, 

where i = √−1, one has I1 = the indeterminacy of the 

real part of N, while I2 = indeterminacy of the 

complex part of N. In particular cases we may have I1 

= I2. 

5.6 Neutrosophic Dual Numbers 
A dual number [13] is a number  

D = a + bg,                                                                      (70) 

where a and b are real numbers, while g is an element 

such that g2 = 0. 

Then, a neutrosophic dual number  

ND = (a0+a1I1) + (b1+b2I2)g                                          (71) 

where a0, a1, b1, b2 are real numbers, I1 and I2 are 

subindeterminacies, and g is an element such that g2 

= 0. 
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A dual number of dimension n has the form 

Dn = a0 + b1g1+b2g2+…+bn-1gn-1                                  (72) 

where a0, b1, b2, …, bn-1 are real numbers, while all gj 

are elements such that gj
2 = 0 and gj gk = gk gj = 0 for 

all j ≠ k. 

One can generalize this to a dual complex 

number of dimension n, considering the same 

definition as (5), but taking  a0, b1, b2, …, bn-1 as 

complex numbers. 

     Now, a neutrosophic dual number of 

dimension n has the form: 

NDn = (a00+a01I0) + (b11+b12I1)g1 +  (b21+b22I2)g2 + … +   

(bn-1,1+bn-1,2In-1)gn-1                                                                                            (73) 

where a00, a01, and all bjk are real or complex numbers, 

while I0, I1, …, In-1 are subindeterminacies. 

    Similarly for special dual numbers, 

introduced by W. B. Vasantha & F. Smarandache [14], 

i.e. numbers of the form:  

SD = a + bg,                                                                   (74)                                                               

where a and b are real numbers, while g is an element 

such that g2 = g [for dimension n one has gjgk = gkgj = 

0 for j ≠ k]; to observe that g ≠ I = indeterminacy, and 

in general the product of subindeterminacies  

IjIk ≠ 0 for j ≠ k],                                                             (75) 

and special quasi dual number, introduced by 

Vasantha-Smarandache [15], having the definition:  
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SQD = a + bg,                                                                 (76) 

where a and b are real numbers, while g is an element 

such that g2 = -g [for dimension n one also has  

gjgk = gkgj = 0 for j ≠ k],             (77) 

and their corresponding forms for dimension n. 

They all can be extended to neutrosophic 

special dual number and respectively neutrosophic 

special quasi dual number (of dimension 2, and 

similarly for dimension n) in a same way. 

5.6.1 Neutrosophic Quaternion Number. 
A quaternion number is the number of the 

form:  

H = a·1 + b·i + c·j  + d·k,            (78) 

where  

i2 = j2 = k2 = i·j·k = -1,            (79) 

and a, b, c, d are real numbers. 

A neutrosophic quaternion number is a 

number of the form: 

NH = (a1+a2I)·1 + (b1+b2)·i + (c1+c2I)·j  + (d1+d2I)·k,  

(80) 

where a1, a2, b1, b2, c1, c2, d1, d2 are real or complex 

numbers, and I = indeterminacy. 

See: Weisstein, Eric W. "Quaternion." From MathWorld --A 
Wolfram Web Resource. 

http://mathworld.wolfram.com/Quaternion.html  

http://mathworld.wolfram.com/about/author.html
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/Quaternion.html
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5.6.2 Neutrosophic Octonion Number. 
An octonion number has the form: 

O = a + b0i0 + b1i1 + b2i2 + b3i3 + b4i4 + b5i5 + b6i6, 

(81)  

where a, b0, b1, b2, b3, b4, b5, b6 are real numbers, 

and each of the triplets (i0, i1, i3), (i1, i2, i4), (i2, i3, 

i5), (i3, i4, i6), (i4, i5, i0), (i5, i6, i1), (i6, i0, i2) bears like 

the quaternions (i, j, k). 

A neutrosophic octonion number has 

the form:  

NO = (a1+a2I) + (b01 +b02I)i0 + (b11 +b12I)i1 +(b21 

+b22I)i2 +(b31 +b32I)i3 +(b41 +b42I)i4 +(b51 +b52I)i5 +(b61 

+b62I)i6              (82) 

where all a1, a2, b01, b02, b11, b12, b21, b22, b31, b32, b41, b42, 

b51, b52, b61, b62 are real or complex numbers, I = 

indeterminacy, and each of the triplets (i0, i1, i3), (i1, i2, 

i4), (i2, i3, i5), (i3, i4, i6), (i4, i5, i0), (i5, i6, i1), (i6, i0, i2) bears 

like the quaternions (i, j, k).  
See: Weisstein, Eric W. "Octonion." From MathWorld --A 

Wolfram Web Resource. 

http://mathworld.wolfram.com/Octonion.html  

5.7 Neutrosophic Linguistic Numbers 
A neutrosophic linguistic number has the 

shape:  

N = Lj+aI,                                                                    (83) 

 

http://mathworld.wolfram.com/about/author.html
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/Octonion.html
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where “L” means label or instance of a linguistic 

variable  

V = {L0, L1, L2, …, Lp}, with p ≥ 1,                            (84) 

j is a positive integer between 0 and p-1, a 

is a real number, and I is indeterminacy that belongs 

to some real set, such that 

0 ≤ min{j+aI} ≤ max{j+aI} ≤ p.                              (85) 

Neutrosophic linguistic interval-style 

number has the form: 

N = [Lj+aI, Lk+bI]                                                        (86) 

with similar restrictions (5) for Lk+bI. 

5.8 Neutrosophic Intervals 
We now for the first time extend the 

neutrosophic number to (open, closed, or half-open 

half-closed) neutrosophic interval.  

A neutrosophic interval A is an (open, 

closed, or half-open half-closed) interval that has 

some indeterminacy in one of its extremes, i.e. it has 

the form A = [a, b] {cI}, or A ={cI} [a, b], where [a, 

b] is the determinate part of the neutrosophic 

interval A, and I is the indeterminate part of it (while 

a, b, c are real numbers, andmeans union). (Herein 

I is an interval.) 

We may even have neutrosophic intervals 

with double indeterminacy (or refined indeter-
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minacy): one to the left (I1), and one to the right (I2): 

A = {c1I1} [a, b] {c2I2}.                                          (87) 

A classical real interval that has a 

neutrosophic number as one of its extremes 

becomes a neutrosophic interval. For example: [0, 

7 ] can be represented as [0, 2] I with I = (2.0, 2.7), 

or [0, 2] {10I} with I = (0.20, 0.27), or [0, 2.6] {10I} 

with I = (0.26, 0.27), or [0, 2.64] {10I} with I = (0.264, 

0.265), etc. in the same way depending on the 

problem to be solved and on the needed accuracy. 

We gave examples of closed neutrosophic 

intervals, but the open and half-open half-closed 

neutrosophic intervals are similar. 

5.9 Notations 
In order to make distinctions between the 

numerical and literal neutrosophic components, we 

start denoting the numerical indeterminacy by lower 

case letter “𝑖”  (whence consequently similar 

notations for numerical truth “𝑡”, and for numerical 

falsehood “𝑓” ), and literal indeterminacy by upper 

case letter “𝐼”  (whence consequently similar nota-

tions for literal truth “𝑇”, and for literal falsehood “𝐹”). 

5.10 Refined Neutrosophic Components 
In 2013, F. Smarandache [3] introduced the 

refined neutrosophic components in the following 
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way: the neutrosophic numerical components 𝑡, 𝑖, 𝑓 

can be refined (split) into respectively the following 

refined neutrosophic numerical sub-components: 

〈𝑡1, 𝑡2, … 𝑡𝑝;  𝑖1, 𝑖2, … 𝑖𝑟;  𝑓1, 𝑓2, … 𝑓𝑠; 〉,                 (88) 

where 𝑝, 𝑟, 𝑠  are integers ≥ 1  and max{𝑝, 𝑟, 𝑠} ≥ 2 , 

meaning that at least one of 𝑝, 𝑟, 𝑠  is ≥ 2 ; and 𝑡𝑗 

represents types of numeral truths, 𝑖𝑘  represents 

types of numeral indeterminacies, and 𝑓𝑙 represents 

types of numeral falsehoods, for 𝑗 = 1, 2, … , 𝑝 ; 𝑘 =

1, 2, … , 𝑟; 𝑙 = 1, 2, … , 𝑠. 

𝑡𝑗 , 𝑖𝑘, 𝑓𝑙  are called numerical subcom-

ponents, or respectively numerical sub-truths, 

numerical sub-indeterminacies, and numerical sub-

falsehoods. 

Similarly, the neutrosophic literal 

components 𝑇, 𝐼, 𝐹  can be refined (split) into 

respectively the following neutrosophic literal 

subcomponents: 

〈𝑇1, 𝑇2, … 𝑇𝑝;  𝐼1, 𝐼2, … 𝐼𝑟;  𝐹1, 𝐹2, … 𝐹𝑠; 〉,                  (89) 

where 𝑝, 𝑟, 𝑠 are integers ≥ 1 too, and max{𝑝, 𝑟, 𝑠} ≥ 2, 

meaning that at least one of 𝑝, 𝑟, 𝑠  is ≥ 2 ; and 

similarly 𝑇𝑗  represent types of literal truths, 𝐼𝑘 

represent types of literal indeterminacies, and 𝐹𝑙 

represent types of literal falsehoods, for 𝑗 = 1, 2, … , 𝑝; 

𝑘 = 1, 2, … , 𝑟; 𝑙 = 1, 2, … , 𝑠. 



Florentin Smarandache  

  

144 
 
 

𝑇𝑗 , 𝐼𝑘, 𝐹𝑙 are called literal subcomponents, or 

respectively literal sub-truths, literal sub-

indeterminacies, and literal sub-falsehoods. 

Let consider a simple example of refined 

numerical components. 

Suppose that a country 𝐶 is composed of 

two districts 𝐷1  and 𝐷2 , and a candidate John Doe 

competes for the position of president of this 

country 𝐶 . Per whole country, 𝑁𝐿 (Joe Doe) =

(0.6, 0.1, 0.3), meaning that 60% of people voted for 

him, 10% of people were indeterminate or neutral – 

i.e. didn’t vote, or gave a black vote, or a blank vote 

–, and 30% of people voted against him, where 𝑁𝐿 

means the neutrosophic logic values. 

But a political analyst does some research 

to find out what happened to each district separately. 

So, he does a refinement and he gets: 

          (90) 

which means that 40% of people that voted for Joe 

Doe were from district 𝐷1, and 20% of people that 

voted for Joe Doe were from district 𝐷2; similarly, 8% 

from 𝐷1 and 2% from 𝐷2 were indeterminate (neutral), 

and 5% from 𝐷1  and 25% from 𝐷2  were against Joe 

Doe. 
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It is possible, in the same example, to 

refine (split) it in a different way, considering 

another criterion, namely: what percentage of people 

did not vote (𝑖1), what percentage of people gave a 

blank vote – cutting all candidates on the ballot – (𝑖2), 

and what percentage of people gave a blank vote – 

not selecting any candidate on the ballot (𝑖3). Thus, 

the numerical indeterminacy (𝑖) is refined into 𝑖1, 𝑖2, 

and 𝑖3: 

            (91) 

5.11 Refined Neutrosophic Numbers 
In 2015, F. Smarandache [6] introduced the 

refined literal indeterminacy (𝐼), which was split 

(refined) as 𝐼1, 𝐼2, … , 𝐼𝑟 , with 𝑟 ≥ 2 , where 𝐼𝑘 , for 𝑘 =

1, 2, … , 𝑟  represent types of literal sub-indeter-

minacies. A refined neutrosophic number has the 

general form: 

𝑁𝑟 = 𝑎 + 𝑏1𝐼1 + 𝑏2𝐼2 +⋯+ 𝑏𝑟𝐼𝑟,                    (92) 

where 𝑎, 𝑏1, 𝑏2, … , 𝑏𝑟 are real numbers, and in this case 

𝑁𝑟 is called a refined neutrosophic real number; and 

if at least one of 𝑎, 𝑏1, 𝑏2, … , 𝑏𝑟 is a complex number 

(i.e. of the form 𝛼 + 𝛽√−1,  with 𝛽 ≠

0, and α, β real numbers ), then 𝑁𝑟  is called a refined 

neutrosophic complex number. 
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      An example of refined neutrosophic 

number, with three types of indeterminacies resulted 

from the cubic root (I1), from Euler’s constant e (I2), 

and from number π (I3): 
3

3 6 59 2 11N e                                             (93) 

Roughly,  

N3 = -6  + (3 + I1) – 2(2 + I2) + 11(3 + I3)  

 = (-6 + 3 - 4 + 33) + I1 – 2I2 + 11I3 = 26 + I1 – 2I2 + 11I3 

where I1 ∈ (0.8, 0.9), I2 ∈ (0.7, 0.8), and I3 ∈ (0.1, 0.2), 

since 3 59 = 3.8929…, e = 2.7182…, π = 3.1415… . 

Of course, other 3-valued refined neutro-

sophic number representations of N3 could be done 

depending on accuracy. 

Then F. Smarandache [6] defined the 

refined 𝐼-neutrosophic algebraic structures in 2015 as 

algebraic structures based on sets of refined 

neutrosophic numbers. 

Soon after this definition, Dr. Adesina 

Agboola wrote a paper on refined I-neutrosophic 

algebraic structures [7]. 

They were called “𝐼-neutrosophic” because 

the refinement is done with respect to the literal 

indeterminacy (𝐼), in order to distinguish them from 

the refined (𝑡, 𝑖, 𝑓)-neutrosophic algebraic structures, 

where “ (𝑡, 𝑖, 𝑓) -neutrosophic” is referred to as 
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refinement of the neutrosophic numerical com-

ponents 𝑡, 𝑖, 𝑓. 

Said Broumi and F. Smarandache published 

a paper [8] on refined neutrosophic numerical 

components in 2014. 

5.12 Neutrosophic Hypercomplex Numbers of 
Dimension n 

The Hypercomplex Number of Dimension n 

(or n-Complex Number) was defined by S. Olariu [10] 

as a number of the form: 

u = xo +h1x1 + h2x2 + … + hn-1xn-1                                 (94) 

where n ≥ 2,  and the variables x0, x1, x2, …, 

xn-1 are real numbers, while h1, h2, …, hn-1 are the 

complex units, ho = 1,  and they are multiplied as 

follows: 

hjhk = hj+k if 0 ≤ j+k≤ n-1, and hjhk = hj+k-n if n ≤ 

j+k≤ 2n-2.                         (95) 

We think that the above (11) complex unit 

multiplication formulas can be written in a simpler 

way as: 

hjhk = hj+k (mod n)                                                               (96) 

where mod n means modulo n. For example, if n =5, 

then h3h4 = h3+4(mod 5) = h7(mod5) = h2. 

Even more, formula above allows us to 

multiply many complex units at once, as follows: 



Florentin Smarandache  

  

148 
 
 

hj1hj2…hjp = hj1+j2+…+jp (mod n), for p ≥ 1.                         (97)                                      

We now define for the first time the 

Neutrosophic Hypercomplex Number of Dimension n 

(or Neutrosophic n-Complex Number), which is a 

number of the form: 

u+vI,                                                                              (98) 

where u and v are n-complex numbers and I = 

indeterminacy. 

We also introduce now the Refined 

Neutrosophic Hypercomplex Number of Dimension n 

(or Refined Neutrosophic n-Complex Number) as a 

number of the form: 

u+v1I1+v2I2+…+vrIr                                                      (99) 

where u, v1, v2, …, vr are n-complex numbers, and I1, 

I2, …, Ir are sub-indeterminacies, for r ≥ 2. 

Combining these, we may define a Hybrid 

Neutrosophic Hypercomplex Number (or Hybrid 

Neutrosophic n-Complex Number), which is a number 

of the form u+vI, where either u or v is a n-complex 

number while the other one is different (may be an 

m-complex number, with m ≠ n, or a real number, or 

another type of number). 

And a Hybrid Refined Neutrosophic Hyper-

complex Number (or Hybrid Refined Neutrosophic n-

Complex Number), which is a number of the form 

u+v1I1+v2I2+…+vrIr, where at least one of u, v1, v2, …, vr 
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is a n-complex number, while the others are different 

(may be m-complex numbers, with m ≠ n, and/or a 

real numbers, and/or other types of numbers). 

5.13 Neutrosophic Graphs 
We now introduce for the first time the 

general definition of a neutrosophic graph [12], 

which is a (directed or undirected) graph that has 

some indeterminacy with respect to its edges, or with 

respect to its vertexes (nodes), or with respect to 

both (edges and vertexes simultaneously). We have 

four main categories of neutrosophic graphs: 

1) The (𝑡, 𝑖, 𝑓)-Edge Neutrosophic Graph.

In such a graph, the connection between 

two vertexes 𝐴 and 𝐵, represented by edge 𝐴𝐵: 

A                                 B 

has the neutroosphic value of (𝑡, 𝑖, 𝑓). 

2) 𝐼-Edge Neutrosophic Graph.

This one was introduced in 2003 in the 

book “Fuzzy Cognitive Maps and Neutrosophic 

Cognitive Maps”, by Dr. Vasantha Kandasamy and F. 

Smarandache, that used a different approach for the 

edge: 

A   B 
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which can be just 𝐼 = literal indeterminacy of the 

edge, with 𝐼2 =  𝐼  (as in 𝐼 -Neutrosophic algebraic 

structures). Therefore, simply we say that the 

connection between vertex 𝐴  and vertex 𝐵  is 

indeterminate. 

3) Orientation-Edge Neutrosophic Graph.

At least one edge, let’s say AB, has an 

unknown orientation (i.e. we do not know if it is from 

A to B, or from B to A). 

4) 𝐼-Vertex Neutrosophic Graph.

Or at least one literal indeterminate vertex, 

meaning we do not know what this vertex represents. 

5) (𝑡, 𝑖, 𝑓)-Vertex Neutrosophic Graph.

We can also have at least one neutrosophic 

vertex, for example vertex 𝐴 only partially belongs to 

the graph (𝑡) , indeterminate appurtenance to the 

graph (𝑖), does not partially belong to the graph (𝑓), 

we can say 𝐴(𝑡, 𝑖, 𝑓). 

And combinations of any two, three, four, 

or five of the above five possibilities of neutrosophic 

graphs.  

If (𝑡, 𝑖, 𝑓) or the literal 𝐼 are refined, we can 

get corresponding refined neutrosophic graphs. 



Symbolic Neutrosophic Theory 

151 

5.14 Example of Refined Indeterminacy 
and Multiplication Law of 
Subindeterminacies 

Discussing the development of Refined 𝐼-

Neutrosophic Structures with Dr. W.B. Vasantha 

Kandasamy, Dr. A.A.A. Agboola, Mumtaz Ali, and 

Said Broumi, a question has arisen: if 𝐼 is refined into 

𝐼1, 𝐼2, … , 𝐼𝑟, with 𝑟 ≥ 2, how to define (or compute) 𝐼𝑗 ∗

𝐼𝑘, for 𝑗 ≠ 𝑘? 

We need to design a Sub-Indeterminacy ∗ 

Law Table. 

Of course, this depends on the way one 

defines the algebraic binary multiplication law ∗ on 

the set: 

{𝑁𝑟 = 𝑎 + 𝑏1𝐼1 + 𝑏2𝐼2 +⋯+ 𝑏𝑟𝐼𝑟|𝑎, 𝑏1, 𝑏2, … , 𝑏𝑟 ∈ 𝑀}, 

     (100) 

where 𝑀 can be ℝ (the set of real numbers), or ℂ (the 

set of complex numbers). 

We present the below example. 

But, first, let’s present several (possible) 

interconnections between logic, set, and algebra. 
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Logic Set Algebra 

Disjunction 

(or) ∨ 

Union 

∪ 

Addition 

+ 

Conjunction 

(and) ∧ 

Intersection 

∩ 

Multiplication 

∙ 

Negation 

¬ 

Complement 

∁ 

Subtraction 

− 

Implication 

→ 

Inclusion 

⊆ 

Subtraction, 

Addition 

−, + 

Equivalence 

↔ 

Identity 

≡ 

Equality 

= 

 Table 1: Interconnections between logic, set, and algebra. 

In general, if a Venn Diagram has 𝑛 sets, 

with 𝑛 ≥ 1, the number of disjoint parts formed is 2𝑛. 

Then, if one combines the 2𝑛 parts either by none, or 

by one, or by 2,…, or by 2𝑛, one gets: 

𝐶2𝑛
0 + 𝐶2𝑛

′ + 𝐶2𝑛
2 +⋯+ 𝐶2𝑛

2𝑛 = (1 + 1)2
𝑛
= 22

𝑛
.     

(101) 

Hence, for 𝑛 = 2, the Venn Diagram, with 

literal truth (𝑇), and literal falsehood (𝐹), will make 

22 = 4  disjoint parts, where the whole rectangle 

represents the whole universe of discourse (𝒰).  
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Fig. 5 Venn Diagram for n =2. 

Then, combining the four disjoint parts by 

none, by one, by two, by three, and by four, one gets 

𝐶4
0 + 𝐶4

1 + 𝐶4
2 + 𝐶4

3 + 𝐶4
4 = (1 + 1)4 = 24 = 16 = 22

2
. 

(102) 

 

Fig. 6 Venn Diagram for n = 3.                 

For 𝑛 = 3, one has 23 = 8 disjoint parts, and 

combining them by none, by one, by two, and so on, 

by eight, one gets 28 = 256, or 22
3
= 256. 

For the case when 𝑛 = 2 = {𝑇, 𝐹}  one can 

make up to 16 sub-indeterminacies, such as: 
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   𝐼1 = 𝐶 = 𝐜𝐨𝐧𝐭𝐫𝐚𝐝𝐢𝐜𝐭𝐢𝐨𝐧 = True and False = 𝑇 ∧ 𝐹 

 
Fig. 7 

𝐼2 = 𝑌 = 𝐮𝐧𝐜𝐞𝐫𝐭𝐚𝐢𝐧𝐭𝐲 = True or False = 𝑇 ∨ 𝐹 

 
Fig. 8 

     𝐼3 = 𝑆 = 𝐮𝐧𝐬𝐮𝐫𝐞𝐧𝐞𝐬𝐬 = either True or False = 𝑇 ∨ 𝐹 

 
Fig. 9 

 

 



Symbolic Neutrosophic Theory  

 

155 
 

 

𝐼4 = 𝐻 = 𝐧𝐢𝐡𝐢𝐥𝐧𝐞𝐬𝐬 = neither True nor False = ¬𝑇 ∧ ¬𝐹 

 
Fig. 10 

𝐼5 = 𝑉 = 𝐯𝐚𝐠𝐮𝐞𝐧𝐞𝐬𝐬 = not True or not False = ¬𝑇 ∨ ¬𝐹 

 
Fig. 11 

      𝐼6 = 𝐸 = 𝐞𝐦𝐩𝐭𝐢𝐧𝐞𝐬𝐬 = neither True nor not True

= ¬𝑇 ∧ ¬(¬𝑇) = ¬𝑇 ∧ 𝑇 

 
Fig. 12 
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Let’s consider the literal indeterminacy (𝐼) 

refined into only six literal sub-indeterminacies as 

above. 

The binary multiplication law  

∗:  {𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6}
2 → {𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6}     (103) 

defined as:  

𝐼𝑗 ∗ 𝐼𝑘 = intersections of their Venn diagram 

representations; or 𝐼𝑗 ∗ 𝐼𝑘 = application of ∧ operator, 

i.e. 𝐼𝑗 ∧ 𝐼𝑘. 

We make the following:  

 
Table 2: Sub-Indeterminacies Multiplication Law 

5.15 Remark on the Variety of Sub-Indeterminacies 
Diagrams 

One can construct in various ways the 

diagrams that represent the sub-indeterminacies and 

similarly one can define in many ways the ∗ algebraic 



Symbolic Neutrosophic Theory  

 

157 
 

 

multiplication law, 𝐼𝑗 ∗ 𝐼𝑘, depending on the problem 

or application to solve. 

What we constructed above is just an 

example, not a general procedure.  

Let’s present below several calculations, so 

the reader gets familiar: 

𝐼1 ∗ 𝐼2 = (shaded area of 𝐼1) ∩

(shaded area of 𝐼2) = shaded area of 𝐼1, 

or 𝐼1 ∗ 𝐼2 = (𝑇 ∧ 𝐹) ∧ (𝑇 ∨ 𝐹) = 𝑇 ∧ 𝐹 = 𝐼1. 

𝐼3 ∗ 𝐼4 = (shaded area of 𝐼3) ∩

(shaded area of 𝐼4) = empty set = 𝐼6, 

or 𝐼3 ∗ 𝐼4 = (𝑇 ∨ 𝐹) ∧ (¬𝑇 ∧ ¬𝐹) = [𝑇 ∧ (¬𝑇 ∧

¬𝐹)] ∨ [𝐹 ∧ (¬𝑇 ∧ ¬𝐹)] = (𝑇 ∧ ¬𝑇 ∧ ¬𝐹) ∨ (𝐹 ∧ ¬𝑇 ∧

¬𝐹) = (impossible) ∨ (impossible)  

because of 𝑇 ∧ ¬𝑇 in the first pair of parentheses 

and because of 𝐹 ∧ ¬𝐹  in the second pair of 

parentheses 

= (impossible) = 𝐼6.  

𝐼5 ∗ 𝐼5 = (shaded area of 𝐼5) ∩

(shaded area of 𝐼5) = (shaded area of 𝐼5) = 𝐼5, 

or 𝐼5 ∗ 𝐼5 = (¬𝑇 ∨ ¬𝐹) ∧ (¬𝑇 ∨ ¬𝐹) = ¬𝑇 ∨ ¬𝐹 = 𝐼5. 

Now we are able to build refined 𝐼 -

neutrosophic algebraic structures on the set 

𝑆6 = {𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2 +⋯+ 𝑎6𝐼6, for 𝑎0, 𝑎1, 𝑎2, … 𝑎6 ∈ ℝ },                                                                                 

(104) 
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by defining the addition of refined I-neutrosophic 

numbers: 

(𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2 +⋯+ 𝑎6𝐼6) + (𝑏0 + 𝑏1𝐼1 + 𝑏2𝐼2 +

⋯+ 𝑏6𝐼6) = (𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝐼1 + (𝑎2 + 𝑏2)𝐼2 +

⋯+ (𝑎6 + 𝑏6)𝐼6 ∈ 𝑆6.                                              (105) 

And the multiplication of refined neutro-

sophic numbers: 

(𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2 +⋯+ 𝑎6𝐼6) ∙ (𝑏0 + 𝑏1𝐼1 + 𝑏2𝐼2 +

⋯+ 𝑏6𝐼6) = 𝑎0𝑏0 + (𝑎0𝑏1 + 𝑎1𝑏0)𝐼1 + (𝑎0𝑏2 +

𝑎2𝑏0)𝐼2 +⋯+ (𝑎0𝑏6 + 𝑎6𝑏0)𝐼6 +  

+∑ 𝑎𝑗𝑏𝑘
6
𝑗,𝑘=1 (𝐼𝑗 ∗ 𝐼𝑘) = 𝑎0𝑏0 + ∑ (𝑎0𝑏𝑘 +

6
𝑘=1

𝑎𝑘𝑏0)𝐼𝑘 + ∑ 𝑎𝑗𝑏𝑘(𝐼𝑗 ∗ 𝐼𝑘)
6
𝑗,𝑘=1 ∈ 𝑆6,                   (106) 

where the coefficients (scalars) 𝑎𝑚 ∙ 𝑏𝑛 , for 𝑚 =

0, 1, 2, … ,6  and 𝑛 = 0, 1, 2, … , 6 , are multiplied as any 

real numbers, while 𝐼𝑗 ∗ 𝐼𝑘 are calculated according to 

the previous Sub-Indeterminacies Multiplication Law 

(Table 2). 

Clearly, both operators (addition and 

multiplication of refined neutrosophic numbers) are 

well-defined on the set 𝑆6. 
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6 Neutrosophic Actions, Prevalence 
Order, Refinement of Neutrosophic 
Entities, and Neutrosophic Literal 
Logical Operators 

6.1 Abstract. 
In this chapter, we define for the first time 

three neutrosophic actions and their properties. We 

then introduce the prevalence order on {𝑇, 𝐼, 𝐹} with 

respect to a given neutrosophic operator “𝑜”, which 

may be subjective - as defined by the neutrosophic 

experts. And the refinement of neutrosophic entities 

<A>, <neutA>, and <antiA>. 

Then we extend the classical logical 

operators to neutrosophic literal logical operators 

and to refined literal logical operators, and we define 

the refinement neutrosophic literal space. 

6.2 Introduction. 
In Boolean Logic, a proposition 𝒫 is either 

true (T), or false (F). 

In Neutrosophic Logic, a proposition 𝒫 is 

either true (T), false (F), or indeterminate (I). 
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For example, in Boolean Logic the 

proposition 𝒫1: 

"1 + 1 = 2 (in base 10)"is true,  

while the proposition 𝒫2: 

"1 + 1 = 3 (in base 10)" is false. 

In neutrosophic logic, besides propositions 

𝒫1 (which is true) and 𝒫2 (which is false), we may also 

have proposition 𝒫3: 

"1 + 1 = ? (in base 10)", 

which is an incomplete/indeterminate proposition 

(neither true, nor false). 

6.2.1 Remark. 
All conjectures in science are indeter-

minate at the beginning (researchers not knowing if 

they are true or false), and later they are proved as 

being either true, or false, or indeterminate in the 

case they were unclearly formulated. 

6.3 Notations. 
In order to avoid confusions regarding the 

operators, we note them as: 

Boolean (classical) logic: 

¬, ∧, ∨, ∨, →, ↔ 

Fuzzy logic: 
¬
𝐹 ,

∧
𝐹
 ,

∨
𝐹
 ,

∨

𝐹
 ,

→
𝐹
 ,

↔
𝐹
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Neutrosophic logic: 
¬
𝑁 ,

∧
𝑁
 ,

∨
𝑁
 ,

∨

𝑁
 ,

→
𝑁
 ,

↔
𝑁

 

6.4 Three Neutrosophic Actions. 
In the frame of neutrosophy, we have 

considered [1995] for each entity 〈𝐴〉 , its opposite 

〈anti𝐴〉, and their neutrality 〈neut𝐴〉 {i.e. neither 〈𝐴〉, 

nor 〈anti𝐴〉}.  Also, by 〈non𝐴〉 we mean what is not 〈𝐴〉, 

i.e. its opposite 〈anti𝐴〉, together with its neutral(ity) 

〈neut𝐴〉; therefore: 

〈non𝐴〉 = 〈neut𝐴〉 ∨ 〈anti𝐴〉. 

Based on these, we may straightforwardly 

introduce for the first time the following 

neutrosophic actions with respect to an entity <A>: 

1. To neutralize (or to neuter, or simply to 

neut-ize) the entity <A>.  [As a noun: 

neutralization, or neuter-ization, or simply 

neut-ization.]  We denote it by <neutA> or 

neut(A). 

2. To antithetic-ize (or to anti-ize) the entity 

<A>.  [As a noun: antithetic-ization, or anti-

ization.]  We denote it by <antiA> ot anti(A).  

This action is 100% opposition to entity <A> 

(strong opposition, or strong negation). 
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3. To non-ize the entity <A>.  [As a noun: non-

ization].  We denote it by <nonA> or non(A). 

It is an opposition in a percentage between 

(0, 100]% to entity <A> (weak opposition). 

Of course, not all entities <A> can be 

neutralized, or antithetic-ized, or non-ized. 

6.4.1 Example. 
Let 〈𝐴〉 = "Phoenix Cardinals beats Texas Cowboys". 

Then,  

〈neut𝐴〉

= "Phoenix Cardinals has a tie game with Texas Cowboys"; 

〈anti𝐴〉

= "Phoenix Cardinals is beaten by Texas Cowboys"; 

〈non𝐴〉

= "Phoenix Cardinals has a tie game with Texas Cowboys,  

or Phoenix Cardinals is beaten by Texas Cowboys".  

6.4.2 Properties of the Three Neutrosophic Actions. 
neut(〈anti𝐴〉) = neut(〈neutA〉) = neut(𝐴); 

anti(〈anti𝐴〉) = 𝐴;  anti(〈neut𝐴〉) = 〈𝐴〉 or 〈anti𝐴〉;  

non(〈anti𝐴〉) = 〈𝐴〉 or 〈neut𝐴〉;  non(〈neut𝐴〉)

= 〈𝐴〉 or 〈anti𝐴〉. 
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6.5 Neutrosophic Actions’ Truth-Value Tables. 
Let’s have a logical proposition P, which 

may be true (T), Indeterminate (I), or false (F) as in 

previous example. One applies the neutrosophic 

actions below. 

6.5.1 Neutralization (or Indetermination) of P: 
 

 

 

Table 3 

6.5.2 Antitheticization (Neutrosophic Strong Opposition to 
P): 
 

 

 

Table 4 

6.5.3 Non-ization (Neutrosophic Weak Opposition to P): 
 

 

 

Table 5 

 

neut(P) T I F 

 I I I 

anti(P) T I F 

 F 𝑇 ∨ 𝐹 T 

non(P) T I F 

 𝐼 ∨ 𝐹 𝑇 ∨ 𝐹 𝑇 ∨ 𝐼 
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6.6 Refinement of Entities in Neutrosophy. 
In neutrosophy, an entity 〈𝐴〉  has an 

opposite 〈anti𝐴〉 and a neutral 〈neut𝐴〉.  

But these three categories can be refined in 

sub-entities 〈𝐴〉1, 〈𝐴〉2, … , 〈𝐴〉𝑚,  and respectively 

〈neut𝐴〉1, 〈neut𝐴〉2, … , 〈neut𝐴〉𝑛,  and also 

〈anti𝐴〉1, 〈anti𝐴〉2, … , 〈anti𝐴〉𝑝, where m, n, p are integers 

≥ 1, but 𝑚 + 𝑛 + 𝑝 ≥ 4 (meaning that at least one of 

〈𝐴〉, 〈anti𝐴〉 or 〈neut𝐴〉 is refined in two or more sub-

entities). 

For example, if 〈𝐴〉 = white color, then  

〈anti𝐴〉 = black color, 

while 〈neut𝐴〉 = colors different from white and black. 

If we refine them, we get various nuances 

of white color: 〈𝐴〉1, 〈𝐴〉2, …, and various nuances of 

black color: 〈anti𝐴〉1, 〈anti𝐴〉2, …,  and the colors in 

between them (red, green, yellow, blue, etc.): 

〈neut𝐴〉1, 〈neut𝐴〉2, … . 

Similarly as above, we want to point out 

that not all entities <A> and/or their corresponding 

(if any) <neutA> and <antiA> can be refined. 

6.7 The Prevalence Order. 
Let’s consider the classical literal 

(symbolic) truth (T) and falsehood (F). 
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In a similar way, for neutrosophic 

operators we may consider the literal (symbolic) 

truth (T), the literal (symbolic) indeterminacy (I), and 

the literal (symbolic) falsehood (F). 

We also introduce the prevalence order on 

{𝑇, 𝐼, 𝐹}  with respect to a given binary and 

commutative neutrosophic operator “𝑜”. 

The neutrosophic operators are: 

neutrosophic negation, neutrosophic conjunction, 

neutrosophic disjunction, neutrosophic exclusive 

disjunction, neutrosophic Sheffer’s stroke, 

neutrosophic implication, neutrosophic equivalence, 

etc. 

The prevalence order is partially objective 

(following the classical logic for the relationship 

between T and F), and partially subjective (when the 

indeterminacy I interferes with itself or with T or F). 

For its subjective part, the prevalence order 

is determined by the neutrosophic logic expert in 

terms of the application/problem to solve, and also 

depending on the specific conditions of the 

application/problem. 

For 𝑋 ≠ 𝑌, we write 𝑋℗𝑌, or 𝑋 ≻𝑜 𝑌, and we 

read “X” prevails to Y with respect to the 

neutrosophic binary commutative operator “o”, 

which means that 𝑋𝑜𝑌 = 𝑋. 
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Let’s see the below examples. We mean by 

“o”: conjunction, disjunction, exclusive disjunction, 

Sheffer’s stroke, and equivalence. 

6.8 Neutrosophic Literal Operators & Neutrosophic 
Numerical Operators. 

1. If we mean by neutrosophic literal 

proposition, a proposition whose truth-value 

is a letter: either T or I or F. The operators 

that deal with such logical propositions are 

called neutrosophic literal operators. 

2. And by neutrosophic numerical 

proposition, a proposition whose truth value 

is a triple of numbers (or in general of 

numerical subsets of the interval [0, 1]), for 

examples A(0.6, 0.1, 0.4) or B([0, 0.2], {0.3, 

0.4, 0.6}, (0.7, 0.8)). The operators that deal 

with such logical propositions are called 

neutrosophic numerical operators. 

6.9 Truth-Value Tables of Neutrosophic Literal 
Operators. 

In Boolean Logic, one has the following 

truth-value table for negation: 
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6.9.1 Classical Negation. 
 

 

 
Table 6 

In Neutrosophic Logic, one has the 

following neutrosophic truth-value table for the 

neutrosophic negation: 

6.9.2 Neutrosophic Negation. 
 

 

 

 

 

Table 7 

So, we have to consider that the negation 

of I is I, while the negations of T and F are similar as 

in classical logic. 

 

In classical logic, one has: 

¬ T F 

 F T 

¬
N T I F 

  
I 

 

F T 
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6.9.3 Classical Conjunction. 
 

 

 

 

Table 8 

In neutrosophic logic, one has: 

6.9.4 Neutrosophic Conjunction (𝑨𝑵𝑫𝑵), version 1 
 

 

 

 

 

 

 

 

Table 9 

 

∧ T F 

T T F 

F F F 

∧N T I F 

T  
I 

 

I   I I    I 

F  
I 

 

T F 

F F 
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The objective part (circled literal 

components in the above table) remains as in 

classical logic, but when indeterminacy I interferes, 

the neutrosophic expert may choose the most fit 

prevalence order.  

There are also cases when the expert may 

choose, for various reasons, to entangle the classical 

logic in the objective part. In this case, the prevalence 

order will be totally subjective. 

The prevalence order works for classical 

logic too. As an example, for classical conjunction, 

one has 𝐹 ≻𝑐 𝑇, which means that 𝐹 ∧ 𝑇 = 𝐹.  

While the prevalence order for the 

neutrosophic conjunction in the above tables was: 

𝐼 ≻𝑐 𝐹 ≻𝑐 𝑇,           (107) 

which means that 𝐼 ∧𝑁 𝐹 = 𝐼, and 𝐼 ∧𝑁 𝑇 = 𝐼. 

Other prevalence orders can be used 

herein, such as:  

𝐹 ≻𝑐 𝐼 ≻𝑐 𝑇,                  (108) 

and its corresponding table would be: 
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6.9.5 Neutrosophic Conjunction (𝑨𝑵𝑫𝑵), version 2 
 

 

 

 

 

 

which means that 𝐹∧𝑁𝐼 = 𝐹  and 𝐼∧𝑁𝐼 = 𝐼 ; or another 

prevalence order:  

𝐹 ≻𝑐 𝑇 ≻𝑐 𝐼,                     (109) 

and its corresponging table would be: 

6.9.6 Neutrosophic Conjunction (𝑨𝑵𝑫𝑵), version 3 
 

 

 

 

 

 

∧N T I F 

T 

 

I 

 

I   I I    F 

F 

 

F 

 

∧N T I F 

T  
T 

 

I  T I    F 

F  
F 

 

T F 

F F 

T F 

F F 

Table 10 

 

Table 11 
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which means that 𝐹∧𝑁𝐼 = 𝐹 and 𝑇∧𝑁𝐼 = 𝑇. 

If one compares the three versions of the 

neutrosophic literal conjunction, one observes that 

the objective part remains the same, but the 

subjective part changes. 

The subjective of the prevalence order can 

be established in an optimistic way, or pessimistic 

way, or according to the weights assigned to the 

neutrosophic literal components T, I, F by the 

experts. 

In a similar way, we do for disjunction. 

In classical logic, one has: 

6.9.7 Classical Disjunction. 
 

 

 

 

 

Table 12 

In neutrosophic logic, one has: 

∨ T F 

T T T 

F T F 
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6.9.8 Neutrosophic Disjunction (𝑶𝑹𝑵) 
 

 

 

 

 

 

 

Table 13 

where we used the following prevalence order: 

𝑇 ≻𝑑 𝐹 ≻𝑑 𝐼,                     (110) 

but the reader is invited (as an exercise) to use 

another prevalence order, such as: 

𝑇 ≻𝑑 𝐼 ≻𝑑 𝐹,                  (111) 

or 

 𝐼 ≻𝑑 𝑇 ≻𝑑 𝐹, etc.,           (112) 

for all neutrosophic logical operators presented 

above and below in this paper. 

In classical logic, one has: 

∨N T I F 

T  
T 

 

I   T I    F 

F  
F 

 

T T 

T F 



Symbolic Neutrosophic Theory  

 

175 
 

 

6.9.9 Classical Exclusive Disjunction 
 

 

 

 

Table 14 

In neutrosophic logic, one has: 

6.9.10 Neutrosophic Exclusive Disjunction 
 

 

 

 

 

 

 

Table 15 

using the prevalence order 

𝑇 ≻𝑑 𝐹 ≻𝑑 𝐼.           (113) 

∨ T F 

T F T 

F T F 

∨N T I F 

T  
T 

 

I   T I    F 

F  
F 

 

F T 

T F 
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In classical logic, one has: 

6.9.11 Classical Sheffer’s Stroke 
 

 

 

 

Table 16 

In neutrosophic logic, one has: 

6.9.12 Neutrosophic Sheffer’s Stroke 
 

 

 

 

 

 

Table 17 

using the prevalence order 

𝑇 ≻𝑑 𝐼 ≻𝑑 𝐹.                     (114) 

 

| T F 

T F T 

F T T 

|N T I F 

T  
T 

 

I   T I    I 

F  
I 

 

F T 

T T 
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In classical logic, one has: 

6.9.13 Classical Implication 
 

 

 

 

Table 18 

In neutrosophic logic, one has: 

6.9.14 Neutrosophic Implication 
 

 

 

 

 

 

Table 19 

 

→ T F 

T T F 

F T T 

→N T I F 

T  
I 

 

I   T T    F 

F  
T 

 

T F 

T T 
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using the subjective preference that 𝐼 →N 𝑇  is true 

(because in the classical implication 𝑇 is implied by 

anything), and 𝐼 →N 𝐹  is false, while 𝐼 →N 𝐼  is true 

because is similar to the classical implications 𝑇 → 𝑇 

and 𝐹 → 𝐹, which are true. 

The reader is free to check different 

subjective preferences. 

 

In classical logic, one has: 

6.9.15 Classical Equivalence 
 

 

Table 20 

In neutrosophic logic, one has: 

 

 

↔ T F 

T T F 

F F T 
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6.9.16 Neutrosophic Equivalence 
 

 

 

 

 

 

 

Table 21 

using the subjective preference that 𝐼 ↔N 𝐼 is true, 

because it is similar to the classical equivalences that 

𝑇 → 𝑇  and 𝐹 → 𝐹  are true, and also using the 

prevalence: 

𝐼 ≻𝑒 𝐹 ≻𝑒 𝑇.           (115) 

6.10 Refined Neutrosophic Literal Logic. 
Each particular case has to be treated 

individually. 

In this paper, we present a simple example. 

Let’s consider the following neutrosophic 

logical propositions: 

↔N T I F 

T  
I 

 

I   I T    I 

F  
I 

 

T F 

F T 
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T = Tomorrow it will rain or snow. 

T is split into  

 Tomorrow it will rain. 

 Tomorrow it will snow. 

F = Tomorrow it will neither rain nor snow. 

F is split into  

 Tomorrow it will not rain. 

 Tomorrow it will not snow. 

I = Do not know if tomorrow it will be raining, 

nor if it will be snowing. 

I is split into  

 Do not know if tomorrow it will 

be raining or not. 

 Do not know if tomorrow it will 

be snowing or not. 

Then: 

¬N T1 T2 I1 I2 F1 F2 

 𝐹1 𝐹2 𝑇1 ∨ 𝐹1 𝑇2 ∨ 𝐹2 𝑇1 𝑇2 

Table 22 

It is clear that the negation of 𝑇1 

(Tomorrow it will raining) is 𝐹1 (Tomorrow it will not 

be raining). Similarly for the negation of  𝑇2, which is 

𝐹2. 
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But, the negation of  𝐼1  (Do not know if 

tomorrow it will be raining or not) is “Do know if 

tomorrow it will be raining or not”, which is 

equivalent to “We know that tomorrow it will be 

raining” (𝑇1), or “We know that tomorrow it will not 

be raining” (𝐹1). Whence, the negation of 𝐼1 is 𝑇1 ∨ 𝐹1, 

and similarly, the negation of 𝐼2 is 𝑇2 ∨ 𝐹2. 

6.10.1 Refined Neutrosophic Literal Conjunction Operator 
 

∧N T1 T2 I1 I2 F1 F2 

T1 𝑇1 𝑇1 2 𝐼1 𝐼2 𝐹1 𝐹2 

T2 𝑇1 2 𝑇2 𝐼1 𝐼2 𝐹1 𝐹2 

I1 𝐼1 𝐼1 𝐼1 I 𝐹1 𝐹2 

I2 𝐼2 𝐼2 I 𝐼2 𝐹1 𝐹2 

F1 𝐹1 𝐹1 𝐹1 𝐹1 𝐹1 F 

F2 𝐹2 𝐹2 𝐹2 𝐹2 F 𝐹2 

Table 23 

where 𝑇1 2 = 𝑇1 ∧ 𝑇2 =  “Tomorrow it will rain and it 

will snow”.  
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Of course, other prevalence orders can be 

studied for this particular example. 

With respect to the neutrosophic 

conjunction, 𝐹𝑙 prevail in front of 𝐼𝑘, which prevail in 

front of 𝑇𝑗, or 

𝐹𝑙 ≻ 𝐼𝑘 ≻ 𝑇𝑗,                 (116) 

for all 𝑙, 𝑘, 𝑗 ∈ {1, 2}. 

6.10.2 Refined Neutrosophic Literal Disjunction Operator 
 

∨N T1 T2 I1 I2 F1 F2 

T1 𝑇1 T 𝑇1 𝑇1 𝑇1 𝑇1 

T2 T 𝑇2 𝑇2 𝑇2 𝑇2 𝑇2 

I1 𝑇1 𝑇2 𝐼1 I 𝐹1 𝐹2 

I2 𝑇1 𝑇2 I 𝐼2 𝐹1 𝐹2 

F1 𝑇1 𝑇2 𝐹1 𝐹1 𝐹1 𝐹1 ∨ 𝐹2 

F2 𝑇1 𝑇2 𝐹2 𝐹2 𝐹1 ∨ 𝐹2 𝐹2 

Table 24 

with respect to the neutrosophic disjunction,  𝑇𝑗 

prevail in front of 𝐹𝑙, which prevail in front of  𝐼𝑘, or 
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𝑇𝑗 ≻ 𝐹𝑙 ≻ 𝐼𝑘,                     (117) 

for all 𝑗, 𝑙, 𝑘 ∈ {1, 2}. 

For example, 𝑇1 ∨ 𝑇2 = 𝑇 , but 𝐹1 ∨ 𝐹2 ∉

{𝑇, 𝐼 𝐹} ∪ {𝑇1, T2, 𝐼1, I2, 𝐹1, F2}. 

6.10.3 Refinement Neutrosophic Literal Space. 
The Refinement Neutrosophic Literal 

Space {𝑇1, 𝑇2, 𝐼1, 𝐼2, 𝐹1, 𝐹2} is not closed under neutro-

sophic negation, neutrosophic conjunction, and 

neutrosophic disjunction. 

The reader can check the closeness under 

other neutrosophic literal operations. 

A neutrosophic refined literal space  

𝑆𝑁 = {𝑇1, 𝑇2, … , 𝑇𝑝;  𝐼1, 𝐼2, … , 𝐼𝑟;  𝐹1, 𝐹2, … , 𝐹𝑠},      (118) 

where 𝑝, 𝑟, 𝑠  are integers ≥ 1 , is said to be closed 

under a given neutrosophic operator "𝜃𝑁", if for any 

elements 𝑋, 𝑌 ∈ 𝑆𝑁 one has 𝑋𝜃𝑁𝑌 ∈ 𝑆𝑁. 

Let’s denote the extension of 𝑆𝑁  with respect to a 

single 𝜃𝑁 by: 

𝑆𝑁1
𝐶 = (𝑆𝑁, 𝜃𝑁).                     (119) 

If 𝑆𝑁 is not closed with respect to the given 

neutrosophic operator 𝜃𝑁 , then 𝑆𝑁1
𝐶 ≠ 𝑆𝑁  , and we 

extend 𝑆𝑁  by adding in the new elements resulted 

from the operation 𝑋𝜃𝑁𝑌 , let’s denote them by 

𝐴1, 𝐴2, … 𝐴𝑚. 
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Therefore, 

𝑆𝑁1
𝐶 ≠ 𝑆𝑁 ∪ {𝐴1, 𝐴2, … 𝐴𝑚}.          (120) 

𝑆𝑁1
𝐶  encloses 𝑆𝑁. 

Similarly, we can define the closeness of 

the neutrosophic refined literal space 𝑆𝑁  with 

respect to the two or more neutrosophic operators 

𝜃1𝑁 , 𝜃2𝑁 , … , 𝜃𝑤𝑁, for 𝑤 ≥ 2. 

𝑆𝑁 is closed under 𝜃1𝑁 , 𝜃2𝑁 , … , 𝜃𝑤𝑁 if for any 

𝑋, 𝑌 ∈ 𝑆𝑁 and for any 𝑖 ∈ {1, 2, … ,𝑤} one has 𝑋𝜃𝑖𝑁
𝑌 ∈ 𝑆𝑁. 

If 𝑆𝑁  is not closed under these 

neutrosophic operators, one can extend it as 

previously. 

Let’s consider: 𝑆𝑁𝑤
𝐶 = (𝑆𝑁 , 𝜃1𝑁 , 𝜃2𝑁 , … , 𝜃𝑤𝑁) , 

which is 𝑆𝑁 closed with respect to all neutrosophic 

operators 𝜃1𝑁 , 𝜃2𝑁 , … , 𝜃𝑤𝑁, then 𝑆𝑁𝑤
𝐶  encloses 𝑆𝑁. 

6.11 Conclusion. 

We have defined for the first time three 

neutrosophic actions and their properties. We have 

introduced the prevalence order on {𝑇, 𝐼, 𝐹}  with 

respect to a given neutrosophic operator “𝑜” , the 

refinement of neutrosophic entities <A>, <neutA>, 

and <antiA>, and the neutrosophic literal logical 

operators and the refined literal logical operators, 

and the refinement neutrosophic literal space. 
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7 Neutrosophic Quadruple 
Numbers, Refined Neutrosophic 
Quadruple Numbers, Absorbance 
Law, and the Multiplication of 
Neutrosophic Quadruple Numbers 

7.1 Abstract. 

In this chapter we introduce for the first 

time the neutrosophic quadruple numbers (of the 

form 𝑎 + 𝑏𝑇 + 𝑐𝐼 + 𝑑𝐹 ) and the refined neutrosophic 

quadruple numbers. 

Then we define an absorbance law, based 

on a prevalence order, both of them in order to 

multiply the neutrosophic components 𝑇, 𝐼, 𝐹 or their 

sub-components 𝑇𝑗 , 𝐼𝑘, 𝐹𝑙  and thus to construct the 

multiplication of neutrosophic quadruple numbers. 

7.2 Neutrosophic Quadruple Numbers. 
Let’s consider an entity (i.e. a number, an 

idea, an object, etc.) which is represented by a known 

part (a) and an unknown part (𝑏𝑇 + 𝑐𝐼 + 𝑑𝐹). 

Numbers of the form: 
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𝑁𝑄 = 𝑎 + 𝑏𝑇 + 𝑐𝐼 + 𝑑𝐹,          (121) 

where a, b, c, d are real (or complex) numbers (or 

intervals or in general subsets), and  

T = truth / membership / probability, 

I = indeterminacy, 

F = false / membership / improbability, 

are called Neutrosophic Quadruple (Real respectively 

Complex) Numbers (or Intervals, or in general 

Subsets). 

“a” is called the known part of NQ, while 

“𝑏𝑇 + 𝑐𝐼 + 𝑑𝐹” is called the unknown part of NQ. 

7.3 Operations. 
Let  𝑁𝑄1 = 𝑎1 + 𝑏1𝑇 + 𝑐1𝐼 + 𝑑1𝐹,       (122) 

  𝑁𝑄2 = 𝑎2 + 𝑏2𝑇 + 𝑐2𝐼 + 𝑑2𝐹,      (123) 

and 𝛼 ∈ ℝ (or 𝛼 ∈ ℂ) a real (or complex) scalar.  

Then: 

7.3.1 Addition. 
𝑁𝑄1 + 𝑁𝑄2 = (𝑎1 + 𝑎2) + (𝑏1 + 𝑏2)𝑇 + (𝑐1 + 𝑐2)𝐼 +

(𝑑1 + 𝑑2)𝐹.                 (124) 

7.3.2 Substraction. 
𝑁𝑄1 − 𝑁𝑄2 = (𝑎1 − 𝑎2) + (𝑏1 − 𝑏2)𝑇 + (𝑐1 − 𝑐2)𝐼 +

(𝑑1 − 𝑑2)𝐹.                     (125) 

7.3.3 Scalar Multiplication. 
𝛼 ∙ 𝑁𝑄 = 𝑁𝑄 ∙ 𝛼 = 𝛼𝑎 + 𝛼𝑏𝑇 + 𝛼𝑐𝐼 + 𝛼𝑑𝐹.        (126) 

 



Florentin Smarandache  

  

188 
 
 

One has: 

0 ∙ 𝑇 = 0 ∙ 𝐼 = 0 ∙ 𝐹 = 0,           (127) 

and  𝑚𝑇 + 𝑛𝑇 = (𝑚 + 𝑛)𝑇,         (128) 

𝑚𝐼 + 𝑛𝐼 = (𝑚 + 𝑛)𝐼,           (129) 

𝑚𝐹 + 𝑛𝐹 = (𝑚 + 𝑛)𝐹.          (130) 

7.4 Refined Neutrosophic Quadruple Numbers. 
Let us consider that Refined Neutrosophic 

Quadruple Numbers are numbers of the form: 

𝑅𝑁𝑄 = 𝑎 +∑𝑏𝑖 𝑇𝑖 +

𝑝

𝑖=1

∑𝑐𝑗  𝐼𝑗 +

𝑟

𝑗=1

∑𝑑𝑘 𝐹𝑘

𝑠

𝑘=1

, 

          (131) 

where a, all 𝑏𝑖, all 𝑐𝑗, and all 𝑑𝑘 are real (or complex) 

numbers, intervals, or, in general, subsets,  

while 𝑇1, 𝑇2, … , 𝑇𝑝 are refinements of 𝑇; 

𝐼1, 𝐼2, … , 𝐼𝑟 are refinements of 𝐼; 

and  𝐹1, 𝐹2, … , 𝐹𝑠 are refinements of 𝐹. 

There are cases when the known part (a) 

can be refined as well as a1, a2, … . 

The operations are defined similarly. 

Let 

𝑅𝑁𝑄(𝑢) = 𝑎(𝑢) +∑𝑏𝑖
(𝑢)
𝑇𝑖

𝑝

𝑖=1

+∑𝑐𝑗
(𝑢)
𝐼𝑗

𝑟

𝑗=1

+∑𝑑𝑘
(𝑢)
𝐹𝑘

𝑠

𝑘=1

 

          (132) 

for 𝑢 = 1 or 2. Then: 
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7.4.1 Addition. 

𝑅𝑁𝑄(1) + 𝑅𝑁𝑄(2) = [𝑎(1) + 𝑎(2)] + ∑ [𝑏𝑖
(1) + 𝑏𝑖

(2)]
𝑝
𝑖=1 𝑇𝑖 +

∑ [𝑐𝑗
(1) + 𝑐𝑗

(2)]𝑟
𝑗=1 𝐼𝑗 + ∑ [𝑑𝑘

(1) + 𝑑𝑘
(2)]𝑠

𝑘=1 𝐹𝑘 .        (133) 

7.4.1 Substraction. 

𝑅𝑁𝑄(1) − 𝑅𝑁𝑄(2) = [𝑎(1) − 𝑎(2)] + ∑ [𝑏𝑖
(1) − 𝑏𝑖

(2)]
𝑝
𝑖=1 𝑇𝑖 +

∑ [𝑐𝑗
(1) − 𝑐𝑗

(2)]𝑟
𝑗=1 𝐼𝑗 + ∑ [𝑑𝑘

(1) − 𝑑𝑘
(2)]𝑠

𝑘=1 𝐹𝑘 .        (134) 

7.3.1 Scalar Multiplication. 
For 𝛼 ∈ ℝ (or 𝛼 ∈ ℂ) one has: 

𝛼 ∙ 𝑅𝑁𝑄(1) = 𝛼 ∙ 𝑎(1) + 𝛼 ∙ ∑ 𝑏𝑖
(1)𝑇𝑖

𝑝
𝑖=1 + 𝛼 ∙

∑ 𝑐𝑗
(1)𝐼𝑗

𝑟
𝑗=1 + 𝛼 ∙ ∑ 𝑑𝑘

(1)𝐹𝑘
𝑠
𝑘=1 .                (135) 

7.5 Absorbance Law.  
Let 𝑆 be a set, endowed with a total order 

𝑥 ≺ 𝑦, named “x prevailed by y” or “x less stronger 

than y” or “x less preferred than y”. We consider 𝑥 ≼

𝑦 as “x prevailed by or equal to y” “x less stronger 

than or equal to y”, or “x less preferred than or equal 

to y”. 

For any elements 𝑥, 𝑦 ∈ 𝑆 , with 𝑥 ≼ 𝑦 , one 

has the absorbance law: 

𝑥 ∙ 𝑦 = 𝑦 ∙ 𝑥 = absorb (𝑥, 𝑦) = max{𝑥, 𝑦} = 𝑦,    (136) 

which means that the bigger element absorbs the 

smaller element (the big fish eats the small fish!). 

Clearly, 

𝑥 ∙ 𝑥 = 𝑥2 = absorb (𝑥, 𝑥) = max{𝑥, 𝑥} = 𝑥,       (137) 
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and 

𝑥1 ∙ 𝑥2 ∙ … ∙ 𝑥𝑛 = absorb(…absorb(absorb(𝑥1, 𝑥2), 𝑥3)… , 𝑥𝑛)

= max{…max{max{𝑥1, 𝑥2}, 𝑥3}… , 𝑥𝑛}

= max{𝑥1, 𝑥2, … , 𝑥𝑛}.                                    (138) 

Analougously, we say that “𝑥 ≻ 𝑦” and we 

read: “x prevails to y” or “x is stronger than y” or “x 

is preferred to y”. Also, 𝑥 ≽ 𝑦 , and we read: “x 

prevails or is equal to y” “x is stronger than or equal 

to y”, or “x is preferred or equal to y”. 

7.6 Multiplication of Neutrosophic Quadruple 
Numbers. 

It depends on the prevalence order defined 

on {𝑇, 𝐼, 𝐹}. 

Suppose in an optimistic way the 

neutrosophic expert considers the prevalence order 

𝑇 ≻ 𝐼 ≻ 𝐹. Then: 

𝑁𝑄1 ∙ 𝑁𝑄2 = (𝑎1 + 𝑏1𝑇 + 𝑐1𝐼 + 𝑑1𝐹)

∙ (𝑎2 + 𝑏2𝑇 + 𝑐2𝐼 + 𝑑2𝐹)

= 𝑎1𝑎2
+ (𝑎1𝑏2 + 𝑎2𝑏1 + 𝑏1𝑏2 + 𝑏1𝑐2 + 𝑐1𝑏2 + 𝑏1𝑑2
+ 𝑑1𝑏2)𝑇 + (𝑎1𝑐2 + 𝑎2𝑐1 + 𝑐1𝑑2 + 𝑐2𝑑1)𝐼

+ (𝑎1𝑑2 + 𝑎2𝑑1 + 𝑑1𝑑2)𝐹, 

(139) 

since 𝑇𝐼 = 𝐼𝑇 = 𝑇, 𝑇𝐹 = 𝐹𝑇 = 𝑇, 𝐼𝐹 = 𝐹𝐼 = 𝐼, 

while 𝑇2 = 𝑇, 𝐼2 = 𝐼, 𝐹2 = 𝐹.  
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Suppose in an pessimistic way the 

neutrosophic expert considers the prevalence order 

𝐹 ≻ 𝐼 ≻ 𝑇. Then: 

𝑁𝑄1 ∙ 𝑁𝑄2 = (𝑎1 + 𝑏1𝑇 + 𝑐1𝐼 + 𝑑1𝐹)

∙ (𝑎2 + 𝑏2𝑇 + 𝑐2𝐼 + 𝑑2𝐹)

= 𝑎1𝑎2 + (𝑎1𝑏2 + 𝑎2𝑏1 + 𝑏1𝑏2)𝑇

+ (𝑎1𝑐2 + 𝑎2𝑐1 + 𝑏1𝑐2 + 𝑏2𝑐1 + 𝑐1𝑐2)𝐼

+ (𝑎1𝑑2 + 𝑎2𝑑1 + 𝑏1𝑑2 + 𝑏2𝑑1 + 𝑐1𝑑2 + 𝑐2𝑑1
+ 𝑑1𝑑2)𝐹, 

(140) 

since  

𝐹 ∙ 𝐼 = 𝐼 ∙ 𝐹 = 𝐹, 𝐹 ∙ 𝑇 = 𝑇 ∙ 𝐹 = 𝐹, 𝐼 ∙ 𝑇 = 𝑇 ∙ 𝐼 = 𝐼 

while similarly 

𝐹2 = 𝐹, 𝐼2 = 𝐼, 𝑇2 = 𝑇. 

7.6.1 Remark. 
Other prevalence orders on {𝑇, 𝐼, 𝐹} can be 

proposed, depending on the application/problem to 

solve, and on other conditions. 
 

7.7 Multiplication of Refined Neutrosophic 
Quadruple Numbers 

Besides a neutrosophic prevalence order 

defined on {𝑇, 𝐼, 𝐹} , we also need a sub-prevalence 

order on {𝑇1, 𝑇2, … , 𝑇𝑝} , a sub-prevalence order on 
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{𝐼1, 𝐼2, … , 𝐼𝑟} , and another sub-prevalence order on 

{𝐹1, 𝐹2, … , 𝐹𝑠}. 

We assume that, for example, if 𝑇 ≻ 𝐼 ≻ 𝐹, 

then 𝑇𝑗 ≻ 𝐼𝑘 ≻ 𝐹𝑙  for any 𝑗 ∈ {1, 2, … , 𝑝} , 𝑘 ∈ {1, 2, … , 𝑟} , 

and 𝑙 ∈ {1, 2, … , 𝑠}. Therefore, any prevalence order on 

{𝑇, 𝐼, 𝐹}  imposes a prevalence suborder on their 

corresponding refined components.  

Without loss of generality, we may assume 

that 

𝑇1 ≻ 𝑇2 ≻ ⋯ ≻ 𝑇𝑝            (141) 

(if this was not the case, we re-number the 

subcomponents in a decreasing order). 

Similarly, we assume without loss of 

generality that: 

𝐼1 ≻ 𝐼2 ≻ ⋯ ≻ 𝐼𝑟 , and          (142) 

𝐹1 ≻ 𝐹2 ≻ ⋯ ≻ 𝐹𝑠.          (143) 

7.7.1 Exercise for the Reader. 
Let’s have the neutrosophic refined space 

𝑁𝑆 = {𝑇1, 𝑇2, 𝑇3, 𝐼, 𝐹1, 𝐹2}, 

with the prevalence order 𝑇1 ≻ 𝑇2 ≻ 𝑇3 ≻ 𝐼 ≻ 𝐹1 ≻ 𝐹2. 

Let’s consider the refined neutrosophic 

quadruples 

𝑁𝐴 = 2 − 3𝑇1 + 2𝑇2 + 𝑇3 − 𝐼 + 5𝐹1 − 3𝐹2, and  

𝑁𝐵 = 0 + 𝑇1 − 𝑇2 + 0 ∙ 𝑇3 + 5𝐼 − 8𝐹1 + 5𝐹2. 



Symbolic Neutrosophic Theory  

 

193 
 

 

By multiplication of sub-components, the 

bigger absorbs the smaller. For example:  

𝑇2 ∙ 𝑇3 = 𝑇2, 

𝑇1 ∙ 𝐹1 = 𝑇1, 

𝐼 ∙ 𝐹2 = 𝐼, 

𝑇2 ∙ 𝐹1 = 𝑇2, etc. 

Multiply NA with NB. 
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Symbolic (or Literal) Neutrosophic Theory is referring to the use of abstract symbols 

(i.e. the letters T, I, F, or their refined indexed letters Tj, Ik, Fl) in neutrosophics.  

In the first chapter we extend the dialectical triad thesis-antithesis-synthesis 

(dynamics of <A> and <antiA>, to get a synthesis) to the neutrosophic tetrad thesis-

antithesis-neutrothesis-neutrosynthesis (dynamics of <A>, <antiA>, and <neutA>, in 

order to get a neutrosynthesis).  

In the second chapter we introduce the neutrosophic system and neutrosophic 

dynamic system.  A neutrosophic system is a quasi- or (𝑡, 𝑖, 𝑓)–classical system, in the 

sense that the neutrosophic system deals with quasi-terms/concepts/attributes, etc. [or 

(𝑡, 𝑖, 𝑓) -terms/concepts/attributes], which are approximations of the classical 

terms/concepts/attributes, i.e. they are partially true/membership/probable ( 𝑡% ), 

partially indeterminate ( 𝑖% ), and partially false/nonmembership/improbable (𝑓% ), 

where 𝑡, 𝑖, 𝑓 are subsets of the unitary interval [0, 1].   

In the third chapter we introduce for the first time the notions of Neutrosophic 

Axiom, Neutrosophic Deducibility, Neutrosophic Axiomatic System, Degree of 

Contradiction (Dissimilarity) of Two Neutrosophic Axioms, etc. 

The fourth chapter we introduced for the first time a new type of structures, called 

(t, i, f)-Neutrosophic Structures, presented from a neutrosophic logic perspective, and 

we showed particular cases of such structures in geometry and in algebra. In any field 

of knowledge, each structure is composed from two parts: a space, and a set of axioms 

(or laws) acting (governing) on it. If the space, or at least one of its axioms (laws), has 

some indeterminacy of the form (t, i, f)  ≠ (1, 0, 0), that structure is a (t, i, f)-Neutrosophic 

Structure.  

In the fifth chapter we make a short history of: the neutrosophic set, neutrosophic 

numerical components and neutrosophic literal components, neutrosophic numbers, etc. 

The aim of this chapter is to construct examples of splitting the literal indeterminacy 

(I) into literal sub-indeterminacies (I1,I2,…,Ir), and to define a multiplication law of these 

literal sub-indeterminacies in order to be able to build refined I-neutrosophic algebraic 

structures. 

In the sixth chapter we define for the first time three neutrosophic actions and their 

properties. We then introduce the prevalence order on {𝑇, 𝐼, 𝐹} with respect to a given 

neutrosophic operator “𝑜”, which may be subjective - as defined by the neutrosophic 

experts. And the refinement of neutrosophic entities <A>, <neutA>, and <antiA>. Then 

we extend the classical logical operators to neutrosophic literal (symbolic) logical 

operators and to refined literal (symbolic) logical operators, and we define the 

refinement neutrosophic literal (symbolic) space. 

In the seventh chapter we introduce for the first time the neutrosophic quadruple 

numbers (of the form 𝑎 + 𝑏𝑇 + 𝑐𝐼 + 𝑑𝐹) and the refined neutrosophic quadruple numbers. 

Then we define an absorbance law, based on a prevalence order, both of them in order 

to multiply the neutrosophic components 𝑇, 𝐼, 𝐹  or their sub-components 𝑇𝑗 , 𝐼𝑘 , 𝐹𝑙  and 

thus to construct the multiplication of neutrosophic quadruple numbers.  

 


