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Abstract: A fundus image is an effective tool for ophthalmologists studying eye diseases.
Retinal vessel detection is a significant task in the identification of retinal disease regions. This study
presents a retinal vessel detection approach using shearlet transform and indeterminacy filtering.
The fundus image’s green channel is mapped in the neutrosophic domain via shearlet transform.
The neutrosophic domain images are then filtered with an indeterminacy filter to reduce the
indeterminacy information. A neural network classifier is employed to identify the pixels whose
inputs are the features in neutrosophic images. The proposed approach is tested on two datasets,
and a receiver operating characteristic curve and the area under the curve are employed to evaluate
experimental results quantitatively. The area under the curve values are 0.9476 and 0.9469 for
each dataset respectively, and 0.9439 for both datasets. The comparison with the other algorithms
also illustrates that the proposed method yields the highest evaluation measurement value and
demonstrates the efficiency and accuracy of the proposed method.

Keywords: retinal vessels detection; shearlet transform; neutrosophic set; indeterminacy filtering;
neural network; fundus image

1. Introduction

A fundus image is an important and effective tool for ophthalmologists who diagnose the eyes for
determination of various diseases such as cardiovascular, hypertension, arteriosclerosis and diabetes.
Recently, diabetic retinopathy (DR) has become a prevalent disease and it is seen as the major cause
of permanent vision loss in adults worldwide [1]. Prevention of such adult blindness necessitates
the early detection of the DR. DR can be detected early by inspection of the changes in blood vessel
structure in fundus images [2,3]. In particular, the detection of the new retinal vessel growth is quite
important. Experienced ophthalmologists can apply various clinical methods for the manual diagnosis
of DR which require time and steadiness. Hence, automated diagnosis systems for retinal screening
are in demand.

Various works have been proposed so far where the authors have claimed to find the retinal
vessels automatically on fundus images. Soares et al. proposed two-dimensional Gabor wavelets
and supervised classification method to segment retinal vessel [4], which classifies pixels as vessel
and non-vessel pixels. Dash et al. presented a morphology-based algorithm to segment retinal
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vessel [5]. Authors used 2-D Gabor wavelets and the CLAHE method for enhancing retinal images.
Segmentation was achieved by geodesic operators. The obtained segmentation result was then refined
with post-processing.

Zhao et al. introduced a methodology where level sets and region growing methods were
used for retinal vessel segmentation [6]. These authors also used CLAHE and 2D Gabor filters for
image enhancement. The enhanced images were further processed by an anisotropic diffusion filter
to smooth the retinal images. Finally, the vessels segmentation was achieved by using level sets
and region growing method. Levet et al. developed a retinal vessel segmentation method using
shearlet transform [7]. The authors introduced a term called ridgeness which was calculated for all
pixels at a given scale. Hysteresis thresholding was then applied for extracting the retinal vessels.
Another multi-resolution approach was proposed by Bankhead et al. [8], where the authors used
wavelets. The authors achieved the vessel segmentation by thresholding the wavelet coefficients.
The authors further introduced an alternative approach for center line detection by use of spline fitting.
Staal et al. extracted the ridges in images [9]. The extracted ridges were then used to form the line
elements which produced a number of image patches. After obtaining the feature vectors, a feature
selection mechanism was applied to reduce the number of features. Finally, a K-nearest-neighbors
classifier was used for classification. Kande et al. introduced a methodology combining vessel
enhancement and the SWFCM method [10]. The vessel enhancement was achieved by matched filtering
and the extraction of the vessels was accomplished by the SWFCM method. Chen et al. introduced a
hybrid model for automatic retinal vessel extraction [11], which combined the signed pressure force
function and the local intensity to construct a robust model for handling the segmentation problem
against the low contrast. Wang et al. proposed a supervised approach which segments the vessels in
the retinal images hierarchically [12]. It opted to extract features with a trained CNN (convolutional
neural network) and used an ensemble random forest to categorize the pixels as a non-vessel or
vessel classes. Liskowski et al. utilized a deep learning method to segment the retinal vessels in
fundus images [13] using two types of CNN models. One was a standard CNN architecture with
nine layers and the other just consisted of convolution layers. Maji et al. introduced an ensemble
based methodology for retinal vessels segmentation [14] which considered 12 deep CNN models for
constructing the classifier structure. The mean operation was used for the outputs of all networks for
the final decision.

In this study, a retinal vessel detection approach is presented using shearlet transform and
indeterminacy filtering. Shearlets are capable to capture the anisotropic information which makes
it strong in the detection of edges, corners, and blobs where there exists a discontinuity [15-17].
Shearlets are employed to describe the vessel’s features and map the image into the neutrosophic
domain. An indeterminacy filter is used to remove the uncertain information on the neutrosophic
set. A line-like filter is also utilized to enhance the vessel regions. Finally, the vessel is identified via a
neural network classifier.

2. Proposed Method

2.1. Shearlet Transform

Shearlet transformation enables image features to be analyzed in more flexible geometric
structures with simpler mathematical approaches and is also able to reveal directional and anisotropic
information at multi-scales [18]. In the 2-D case, the affine systems are defined as the collection:

SHyf(a,s,t) = < f, Past > 1

(Pu,s,t(x) = |detMu,s\_%<P(M,;Slx - t) 2)
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where ¢, is the shearlet coefficient. M,;s = BsA;, = ( ?) \/\/E; ), and A, = ( g \35 ) is
1

parabolic scaling matrix and Bs = 01 | shear matrix (2 >0, s € R, t € R?). In this equation
a scale parameter is a real number greater than zero and s is a real number. In this case M, is the
composition of the A, and Bs.

2.2. Neutrosophic Indeterminacy Filtering

Recently, the neutrosophic theory extended from classical fuzzy theory denotes that neutrosophy
has been successfully used in many applications for reducing the uncertainty and indeterminacy [19].
An element g in the neutrosophic set (NS) is defined as g (T, I, F), where T identifies true degree in the
set, I identify the indeterminate degree in the set, and F identifies false in the set. T,  and F are the
neutrosophic components. The previously reported studies demonstrated that the NS has a vital role
in image processing [20-22].

A pixel P(x,y) at the location of (xy) in an image is described in the NS domain as
Pns(x,y) ={T(x,y),I(x,y),F(x,y)}, where T(x,y), I(x,y) and F(x,y) are the membership values
belonging to the bright pixel set, indeterminate set, and non-white set, respectively.

In this study, the fundus image’s green channel is mapped into NS domain via shearlet feature values:

ST (x,y) — STLmin
STLmux - STLmin

T(x,y) = ®3)

STH(X, y) - STHmin
STHmax - STHmin

I(x,y) = 4)

where T and I are the true and indeterminate membership values. STy (x,y) is the low-frequency
component of the shearlet feature at the current pixel P(x,y). In addition, ST}, and ST, are the
minimum value and maximum value of the low-frequency component of the shearlet feature in the
whole image, respectively. STy (x,y) is the high-frequency component of the shearlet feature at the
current pixel P(x,y). Moreover, STrin, and STy, are the minimum value and maximum value of the
high-frequency component of the shearlet feature in the whole image, respectively. In the proposed
algorithm, we only utilize neutrosophic components T and I for segmentation.

Then an IF (indeterminacy filter) is defined using the indeterminacy membership to reduce the
indeterminacy in images. The IF is defined based on the indeterminacy value I;(x, y) having the kernel
function as:

1 (_2Z22(+;i))
O[(u, U) = me I (5)
or(x,y) = f(I(x,y)) =rl(x,y) +q (6)

where O;(u,v) is the kernel function in the local neighborhood. 1 and v are coordinator values of local
neighborhood in kernel function. ¢y is the standard deviation of the kernel function, which is defined
as a linear function associated to the indeterminate degree. r and g are the coefficients in the linear
function to control the standard deviation value according to the indeterminacy value. Since the o7
becomes large with a high indeterminate degree, the IF can create a smooth current pixel by using its
neighbors, while with a low indeterminate degree, the value of ¢y is small and the IF performs less
smoothing operation.

T/( o B y+m/2  x4m/2
xy)=T(x,y) ©O0r(u,v)= ) Y, T(x—uy—0)01(u,0) @)
v=y—m/2 u=x—m/2

where T’ is the indeterminate filtering result.
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2.3. Line Structure Enhancement

A multiscale filter is employed on the image to enhance the line-like structure [17]. The local
second-order partial derivatives, Hessian matrix, is computed and a line-likeness is defined using
its eigenvalues. This measure can describe the vessels region in the fundus images and is shown
as follows:

0 if/\2>001’/\3>0

. R2 RZ 2

En(s) = (1 — e‘zﬁ) .e_ﬁ. (1 — e_zsc2> otherwise ®
_ 2
5= \/27% ©)
j<b

Az
Rs=R, == 10
Rp=Rp = 4] (11)

V23]

where Ay is the eigenvalue with the k-th smallest magnitude of the Hessian matrix. D is the dimension
of the image. «, 3 and c are thresholds to control the sensitivity of the line filter to the measures
R A RB and S.

2.4. Algorithm of the Proposed Approach

A retinal vessel detection approach is proposed using shearlet transform and indeterminacy
filtering on fundus images. Shearlet transform is employed to describe the vessel’s features and map
the green channel of the fundus image into the NS domain. An indeterminacy filter is used to remove
the indeterminacy information on the neutrosophic set. A multiscale filter is utilized to enhance the
vessel regions. Finally, the vessel is detected via a neural network classifier using the neutrosophic
image and the enhanced image. The proposed method is summarized as:

1. Take the shearlet transform on green channel Ig;

2. Transform the Ig into neutrosophic set domain using the shearlet transform results, and the
neutrosophic components are denoted as T and [;

Process indeterminacy filtering on T using I and the result is denoted as T’;

Perform the line-like structure enhancement filter on T’ and obtain the En;

Obtain the feature vector FV = [T’ I En] for the input of the neural network;

Train the neural network as a classifier to identify the vessel pixels;

N o G

Identify the vessel pixels using the classification results by the neural network.

The whole steps can be summarized using a flowchart in Figure 1.
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Figure 1. Flowchart for retinal vessel detection.

3. Experimental Results

3.1. Retinal Fundus Image Datasets

In the experimental section, we test the proposed method on two publicly available datasets
namely the Digital Retinal Images for Vessel Extraction (DRIVE) and Structured Analysis of the Retina
(STARE) datasets.

The DRIVE database was obtained from a diabetic retinopathy screening program in the
Netherlands. This database was created to enable comparative studies on the segmentation of blood
vessels in retinal images. Researchers are able to test their algorithms and compare their results with
other studies in this database [23]. The DRIVE dataset contains 40 total fundus images and has been
divided into training and test sets [4]. Training and test sets contain an equal number of images (20).
Each image was captured using 8 bits per color plane at 768 by 584 pixels. The field of view (FOV)
on each image is circular with a diameter of approximately 540 pixels and all images were cropped
using FOV.

STARE (STructured Analysis of the REtina) Project was designed and initialized in 1975 by Michael
Goldbaum, M.D. at the University of California, San Diego. Clinical images were obtained by the
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Shiley Eye Center at the University of California, San Diego, and by the Veterans Administration
Medical Center in San Diego [24]. The STARE dataset has 400 raw images. Blood vessel segmentation
annotations have 20 hand-labeled images [2].

In our experiment, we select 20 images with ground truth results in the training set of the DRIVE
dataset as the training samples, and 20 images in the test set from the DRIVE and 20 from the STARE
for validation.

3.2. Experiment on Retinal Vessel Detection

The experimental results on DRIVE and STARE were demonstrated in Figures 2 and 3, respectively.
The first columns of Figures 2 and 3 show the input retinal images, the second ones in Figures 2 and 3
are the ground-truth segmentation of the retinal vessels and the third ones in Figures 2 and 3 show
the obtained results. We used a three-layered neural network classifier. While the input layer of the
neural network classifier contained three nodes, hidden and the output layers contained 20 nodes and
one node, respectively. The classifier was trained with scaled conjugate gradient backpropagation
algorithm. The learning rate was chosen as 0.001, the momentum coefficient was set to 0.01. We used
almost 1000 iterations during the training of the network.

Figure 2. Detection results by our proposed methods on three samples randomly taken from the Digital
Retinal Images for Vessel Extraction (DRIVE) dataset: (a) Original (b) Corresponding ground truth and
(c) Detection results.
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Figure 3. Detection results by our proposed methods on three samples randomly taken in the
Structured Analysis of the Retina (STARE) dataset: (a) Original (b) Corresponding ground truth
and (c) Detection results.

As seen in Figures 2 and 3, the proposed method obtained reasonable results in which the large
vessels were detected perfectly. Only several thin vessel regions were missed. Three ROC curves are
drawn to demonstrate the proposed method’s performance in DRIVE and STARE datasets.

4. Discussion

The evaluation of the results was carried out using the receiver operating characteristic (ROC)
curve, and the area under the ROC curve denoted as AUC. An AUC value tending to 1 demonstrates a
successful classifier, AUC equal 0 indicates an unsuccessful classifier.

Figures 4 and 5 illustrate the ROC curves on the test set from DRIVE and STARE datasets,
respectively. The AUC values also stressed the successful results of the proposed approach on both
datasets. While the calculated the AUC value was 0.9476 for DRIVE data set, and a 0.9469 AUC value
was calculated for STARE dataset.

We further compared the obtained results with some early published results. These comparison
results in DRIVE and STARE were listed in Tables 1 and 2.

In Table 1, Maji et al. [14] have developed a collective learning method using 12 deep CNN
models for vessel segmentation, Fu et al. [25] have proposed an approach combining CNN and CRF
(Conditional Random Field) layers, and Niemeijer et al. [26] presented a vessel segmentation algorithm
based on pixel classification using a simple feature vector. The proposed method achieved the highest
AUC value for the DRIVE dataset. Fu et al. [25] also achieved the second highest AUC value.
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In Table 2, Kande et al. [10] have recommended an unsupervised fuzzy based vessel segmentation
method, Jiang et al. [2] have proposed an adaptive local thresholding method and Hoover et al. [27]
also have combined local and region-based properties to segment blood vessels in retinal images.
The highest AUC value was also obtained for STARE dataset with the proposed method.

In the proposed method, the post-processing procedure is not used to deal with the classification
results from neural network. In future, we will employ some post-processing methods for improving
the quality of the vessel detection.

Table 1. Comparison with the other algorithms on DRIVE dataset.

Method AUC

Maji et al. [14] 0.9283
Fu et al. [25] 0.9470
Niemeijer et al. [26] 0.9294
Proposed method 0.9476

Table 2. Comparison with the other algorithm on STARE dataset.

Method AUC
Jiang et al. [2] 0.9298
Hoover et al. [27] 0.7590
Kande et al. [10] 0.9298
Proposed method 0.9469

5. Conclusions

This study proposes a new method for retinal vessel detection. It initially forwards the input
retinal fundus images into the neutrosophic domain via shearlet transform. The neutrosophic domain
images are then filtered with two neutrosophic filters for noise reduction. Feature extraction and
classification steps come after the filtering steps. The presented approach was tested on DRIVE and
STARE. The results were evaluated quantitatively. The proposed approach outperformed the others
by means of both evaluation methods. The comparison with the existing algorithms also stressed the
high accuracy of the proposed approach. In future, we will employ some post-processing methods for
improving the quality of the vessel detection.
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Abstract: In rock mechanics, the study of shear strength on the structural surface is crucial to
evaluating the stability of engineering rock mass. In order to determine the shear strength, a key
parameter is the joint roughness coefficient (JRC). To express and analyze JRC values, Ye et al. have
proposed JRC neutrosophic numbers (JRC-NNs) and fitting functions of JRC-NNs, which are obtained
by the classical statistics and curve fitting in the current method. Although the JRC-NNs and JRC-NN
functions contain much more information (partial determinate and partial indeterminate information)
than the crisp JRC values and functions in classical methods, the JRC functions and the JRC-NN
functions may also lose some useful information in the fitting process and result in the function
distortion of JRC values. Sometimes, some complex fitting functions may also result in the difficulty
of their expressions and analyses in actual applications. To solve these issues, we can combine the
neutrosophic numbers with neutrosophic statistics to realize the neutrosophic statistical analysis of
JRC-NN:s for easily analyzing the characteristics (scale effect and anisotropy) of JRC values. In this
study, by means of the neutrosophic average values and standard deviations of JRC-NNs, rather than
fitting functions, we directly analyze the scale effect and anisotropy characteristics of JRC values
based on an actual case. The analysis results of the case demonstrate the feasibility and effectiveness
of the proposed neutrosophic statistical analysis of JRC-NNs and can overcome the insufficiencies of
the classical statistics and fitting functions. The main advantages of this study are that the proposed
neutrosophic statistical analysis method not only avoids information loss but also shows its simplicity
and effectiveness in the characteristic analysis of JRC.

Keywords: joint roughness coefficient (JRC); neutrosophic number; neutrosophic statistics; scale
effect; anisotropy

1. Introduction

The engineering experience shows that rock mass may deform and destroy along the weak
structural surfaces. The study of shear strength on the structural surface is crucial to evaluate the
stability of engineering rock mass. In order to determine the shear strength in rock mechanics, a
key parameter is the joint roughness coefficient (JRC). Since Barton [1] firstly defined the concept
of JRC, a lot of methods had been proposed to calculate the JRC value and analyze its anisotropy
and scale effect characteristics. Tse et al. [2] gave the linear regression relationship between the
JRC value and the root mean square (Z;). Then, Zhang et al. [3] improved the root mean square
(Z7) by considering the inclination angle, amplitude of asperities, and their directions, and then
introduced a new roughness index (A) by using the modified root mean square (Z;") to calculate JRC
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values. To quantify the anisotropic roughness of joint surfaces effectively, a variogram function and
a new index were proposed by Chen et al. [4] based on the digital image processing technique, and
then they also studied the scale effect by calculating the JRC values of different sample lengths [5].
However, all of these traditional methods do not consider the uncertainties of JRC values in real rock
engineering practice.

Recently, Ye et al. [6] not only utilized the crisp average value to express JRC by using traditional
statistical methods, but also considered its interval range (indeterminate range) to express the
indeterminate information of JRC by means of the neutrosophic function/interval function. They [6]
firstly applied the neutrosophic function to calculate JRC values and shear strength, and got the
relations between the sampling length and the maximum JRC values and between the sampling
length and the minimum JRC values, and then established the neutrosophic functions (thick/interval
functions) of JRC and shear strength. However, these thick/interval functions cannot express such an
indeterminate function containing the parameters of neutrosophic numbers (NNs) (i.e., indeterminate
parameters), where NN is composed of its determinate part a and its indeterminate part bl with
indeterminacy I and as denoted by z = a + bl for a, b € R (R is all real numbers) [7-9]. Obviously,
NN is a very useful mathematical tool for the expression of the partial determinate and/or partial
indeterminate information in engineering problems. After that, Ye et al. [10] further proposed two NN
functions to express the anisotropic ellipse and logarithmic equations of JRC values corresponding
to an actual case and to analyze the anisotropy and scale effect of JRC values by the derivative of the
two NN functions, and then they further presented a NN function with two-variables so as to express
the indeterminate information of JRC values comprehensively in the sample sizes and measurement
orientations, and then they analyzed both the anisotropy and scale effect of JRC values simultaneously
by the partial derivative of the NN function with two-variables. However, all of these NN functions are
obtained by fitting curves of the measured values, where they may still lose some useful information
between 3% and 16% in the fitting process and lack a higher fitting accuracy although the fitting
degrees of these functions lie in the interval [84%, 97%] in actual applications [10]. Sometimes, some
complex fitting functions may also result in the difficulty of their expressions and analyses in actual
applications [10]. To overcome these insufficiencies, it is necessary to improve the expression and
analysis methods for the JRC values by some new statistical method so that we can retain more
vague, incomplete, imprecise, and indeterminate information in the expression and analysis of JRC
and avoid the information loss and distortion phenomenon of JRC values. Thus, the neutrosophic
interval statistical number (NISN) presented by Ye et al. [11] is composed of both NN and interval
probability, and then it only expresses the JRC value with indeterminate information, but they lack the
characteristic analysis of JRC values in [11].

However, determinate and/or indeterminacy information is often presented in the real world.
Hence, the NNs introduced by Smarandache [7-9] are very suitable for describing determinate and
indeterminate information. Then, the neutrosophic statistics presented in [9] is different from classical
statistics. The former can deal with indeterminate statistical problems, while the latter cannot do
them and can only obtain the crisp values. As mentioned above, since there exist some insufficiencies
in the existing analysis methods of JRC, we need a new method to overcome the insufficiencies.
For this purpose, we originally propose a neutrosophic statistical method of JRC-NNs to indirectly
analyze the scale effect and anisotropy of JRC values by means of the neutrosophic average values and
standard deviations of JRC-NNs (JRC values), respectively, to overcome the insufficiencies of existing
analysis methods. The main advantages of this study are that the proposed neutrosophic statistical
analysis method not only avoid information loss, but also show its simplicity and effectiveness in the
characteristic analysis of JRC values.

The rest of this paper is organized as follows. Section 2 introduces some basic concepts of NNs and
gives the neutrosophic statistical algorithm to calculate the neutrosophic average value and standard
deviation of NNs. Section 3 introduces the source of the JRC data and JRC-NNs in an actual case,
where the JRC-NNs of 24 measurement orientations in each sample length and 10 sample lengths
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in each measurement orientation will be used for neutrosophic statistical analysis of JRC-NNs in
the actual case study. In Section 4, the neutrosophic average values and standard deviations of the
24 JRC-NNs of different measurement orientations in each sample length are given based on the
proposed neutrosophic statistical algorithm and are used for the scale effect analysis of JRC values. In
Section 5, the neutrosophic average values and standard deviations of the 10 JRC-NNs of different
sample lengths in each measurement orientations are given based on the proposed neutrosophic
statistical algorithm and used for the anisotropic analysis of JRC values. Finally, concluding remarks
are given in Section 6.

2. Basic Concepts and Neutrosophic Statistical Algorithm of NNs

NNs and neutrosophic statistics are firstly proposed by Smarandache [7-9]. This section will
introduce some basic concepts of NNs and give the neutrosophic statistical algorithm of NNs to
calculate the neutrosophic average value and the standard deviation of NNs for the neutrosophic
statistical analysis of JRC-NNs in the following study.

ANN z =a + bl consists of a determinate part 7 and an indeterminate part bl, where g and b are real
numbers and I € [I*, IY] is indeterminacy. It is clear that the NN can express the determinate and /or
indeterminate information. Here is a numerical example. A NN isz =5 + 6[ for I € [0, 0.3]. Then, the
NNis z € [5, 6.8] for I € [0, 0.3] and its possible range/interval is z = [5, 6.8], where its determinate
part is 5 and its indeterminate part is 61. For the numerical example, z = 5 + 6] for I € [0, 0.3] can
be also expressed as another form z =5 + 31 for I € [0, 0.6]. Therefore, we can specify some suitable
interval range [I¥, IY] for the indeterminacy I according to the different applied demands to adapt the
actual representation. In fact, NN is a changeable interval number depending on the indeterminacy
1€t 1Y].

As we know, data in classical statistics are determinate values/crisp values. On the contrary, data
in neutrosophic statistics are interval values/indeterminate values/NNs, which contain indeterminacy.
If there is no indeterminacy or crisp value in data, neutrosophic statistics is consistent with classical
statistics. Let us consider an example of neutrosophic statistics in the following.

Assume that four NNsarez; =1+ 2,20 =2+3[,z3 =3 +4l,and z4 =4 + 5] for I € [0, 0.2], then the
average value of these four neutrosophic numbers can be obtained by the following calculational steps:

Firstly, the average value of the four determinate parts is obtained by the following calculation:

= (1+2+43+4)/4=25

Secondly, the average value of the four coefficients in the indeterminate parts is yielded by the
following calculation:
b=(2+3+4+5)/4=35

Finally, the neutrosophic average value of the four NN is given as follows:
z=25+35IforI € [0,0.2]

This neutrosophic average value is also called the average NN [9], which still includes its
determinate and indeterminate information rather than a crisp value.

However, it is difficult to use the Smarandache’s neutrosophic statistics for engineering
applications. Thus, Ye et al. [12] presented some new operations of NNs to make them suitable
for engineering applications.

Let two NNs be z; =a; + byl and zy = ay + byl for I € [I%, IY]. Then, Ye et al. [12] proposed their
basic operations:
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z,+2z, =(a, +a,)+ (b +b)I =[a,+a,+b1"+b,I", a,+a,+b 1" +b,I"];
z,—7, =a,—a, +(b,—b,)] =[a,—a, +bI" —b,1", a,—a, +b 1" —b,1"];
z,Xz, = aa, +(ab, +a,b)I + (b, b)I’
'mm((al +b,1")a,+b,1"), (a, +b1")a, +b21U),] |
(@, +b1"Ya,+b,1"), (@, + b1 )a,+b,1") ) |
max((a, +b1")a,+b,I"),(a, +bI")(a, +b2IU),J ’
(a, +b,1°)a,+b,1"),(a, +b1" ) (a,+b,1")

z, _a+bl [a,+bI",a +b1"]

z, a,th [a, +b,I",a, +b,1"]

min a+bl" a+bI" a+bI1" a +bI"
a,+b,1° " a,+b, 1" a,+b,1" " a,+b, 1" )

o [atbI' a+bI" a+bI’ a+bI’ '
a,+b,1"" a,+b,I" " a,+b,I" " a,+b,I"

40f 14

)

Then, these basic operations are different from the ones introduced in [9], and this makes them

suitable for engineering applications.

Based on Equation (1), we can give the neutrosophic statistical algorithm of the neutrosophic

average value and standard deviation of NNs.

Letzi=a;+bI(i=1,2,...,n)beagroup of NNs forI € [I£, IY], then their neutrosophic average
value and standard deviation can be calculated by the following neutrosophic statistical algorithm:

Step 1: Calculate the neutrosophic average value ofa; (i=1,2, ..., n):
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Step 2: Calculate the average valueof b; (i=1,2,..., n):
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Step 3: Obtain the neutrosophic average value:
z=a+bl, Iellt1Y]
Step 4: Get the differences betweenz; (i=1,2,...,n) and z:
zi—z=a;—a+ (bj—b)I, Ie][I' 1Y
Step 5: Calculate the square of all the differences between z; (i=1,2,...,n)and z:
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Step 6: Calculate the neutrosophic standard deviation:

o=\ 23 (@ -2) )

i=1

In the following sections, we shall apply the proposed neutrosophic statistical algorithm of NNs
to the characteristic analysis of JRC data.

3. JRC Values and JRC-NNs in an Actual Case

As an actual case study in this paper, the original roughness profiles were measured by using
profilograph and a roughness ruler [13] on a natural rock joint surface in Changshan County of
Zhejiang Province, China. In the actual case, based on a classical statistical method we have obtained
the average values Hij and standard deviations oij (i=1,2,...,24;,j=1,2,...,10) of actually measured
data in different sample lengths and different measurement orientations, which are shown in Table 1.

Then, we can use NNs Zjj = aj + bi]'l (i=1,2,...,24,j=1,2,...,10) to express the JRC values
in each orientation 6 and in each sample length L. Various NNs of the JRC values are indicated by
the real numbers of ajj and bij in Zjj (i=1,2,...,24,7=1,2,...,10). For convenient neutrosophic
statistical analysis, the indeterminacy I is specified as the unified form I € [0, 1] in all the JRC-NNs.
Thus, there is z;; = a;; + byl = pj; — 0y + 2031 (i=1,2,...,24;j=1,2,...,10), where a;; = p;; — 03 is
the lower bound of the JRC value and z;; may choose a robust range/confidence interval [p;; — 0y,
pij + 0] for the symmetry about the average value y;; (see the references [10,11] in detail), and then
based on p;; and ¢j; in Table 1 a;; and bj;in z; (i=1,2,...,24;j=1,2,...,10) are shown in Table 2.
For example, when 6 = 0° and L = 10 cm for i =1 and j = 1, we can obtain from Table 2 that the JRC-NN
is z11 = 8.3040 + 4.47711 for I € [0, 1].

According to the measurement orientation 6 and the sample length L in Table 2, the data in the
same column consists of a group of the data in each sample length L, and then there are 10 groups
in the JRC-NNs. On the other hand, the data in each row are composed of a group of the data in
each measurement orientation 6, and then there are 24 groups in the JRC-NNs. In the following, we
shall give the neutrosophic statistical analysis of the JRC-NNs based on the proposed neutrosophic
statistical algorithm to reflect their scale effect and anisotropy in the actual case.
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Table 1. The average values y;; and standard deviations ¢;; of actually measured data in different sample lengths L and different measurement orientations 6.

L 10 cm 20 cm 30 cm 40 cm 50 cm 60 cm 70 cm 80 cm 90 cm 100 cm

0 Hi1 Oi1 Hi2 Ti2 Hi3 i3 Hia (47 His 05 Hie i Hi7 7 His Uig Hi9 Ti9 Hi10 Ti10
0° 10.5425 2.2385 9.6532 1.7162 9.2733 1.5227 89745 1.7092 8.8222 1.6230 8.8016 1.6069 8.6815 1.6066 8.6009 1.5043 8.5681 1.3465 8.4630 1.2806
15° 10.7111 22392 9.9679 1.7379 9.3433 1.5555 9.2708 1.2743 9.2299 1.2850 8.9729 1.3071 8.8332 1.1706 8.5868 0.9413 8.3604 0.7673 8.1404 0.6372
30° 10.5943 2.3528 9.9289 2.0286 9.5715 1.6665 9.1209 1.4207 9.0920 1.4119 8.6006 0.9899 8.7596 1.1489 8.5713 1.0776 8.2927 1.0128 8.1041 0.9664
45° 99244 23120 9.2005 1.7237 9.0081 1.6464 85078 1.1376 8.3336 1.431 8.6237 1.3427 8.3262 1.2184 8.0768 1.2717 7.8458 1.2096 7.5734 1.1294
60° 9.0253 2.4592 8.4047 1.9813 7.8836 1.8199 7.7941 1.8829 7.1873 1.167 82678 1.7830 7.3595 1.5956 7.1381 1.4082 6.8722 1.2178 6.7131 0.9627
75° 79352 21063 7.4604 1.7756 6.7725 1.4153 6.3056 1.0241 6.5446 1.2140 6.4993 1.3108 6.2440 1.1208 6.0933 0.9171 5.9499 0.7311 5.8317 0.5855
90° 7.0467 24054 6.6915 1.8482 6.3378 1.4743 5.9993 1.1700 6.1481 1.1920 6.0893 1.1850 5.9543 1.1021 5.8932 0.9630 5.8259 0.9181 5.8219 0.8355
105°  7.7766 2.4105 7.2221 1.7560 6.6770 1.2608 6.2318 0.985 6.4634 1.2288 6.4609 1.5029 6.1670 1.3236 5.9923 1.1016 5.8903 0.9868 5.8359 0.8479
120°  9.1324 23250 8.5206 1.8963 8.1998 1.5792 7.9671 1.4094 7.3207 1.0418 7.8245 1.1807 7.2472 1.0637 7.0649 0.9507 6.8537 0.8122 6.6909 0.7715
135°  9.2258 19104 8.5670 1.5412 8.0898 1.3452 7.8194 09910 7.3735 09848 7.6660 1.2845 7.3846 1.1608 7.0872 1.1589 6.9154 1.0345 6.7586 0.9157
150°  10.4673 2.4365 9.5650 1.9065 8.9102 1.6863 8.9059 1.4562 8.3930 1.1855 8.8162 1.5870 8.2064 1.3432 8.0153 1.1287 7.6556 1.0101 7.4443 0.9080
165°  10.6035 2.2090 9.9647 1.6606 9.5320 1.5695 8.8760 1.5994 8.6121 1.4899 8.6463 1.5942 8.3931 1.3637 8.1107 1.2203 7.9051 1.0893 7.7175 1.0050
180°  9.8501 2.1439 9.0984 1.8556 8.7574 1.7300 8.6002 1.6753 8.2973 1.5862 8.1266 1.6278 7.9647 1.4864 7.8981 1.3395 7.8338 1.1935 7.8291 1.0616
195° 99383 22254 9.2299 1.8331 8.6781 1.6791 8.7993 1.4556 8.5308 1.5551 8.1016 1.5598 7.9219 1.2559 7.6562 0.9674 7.4610 0.8060 7.3131 0.7402
210° 9.5903 1.9444 8.9414 1.5298 8.6532 1.6227 8.2601 1.5626 8.2065 1.5438 7.3828 1.2507 7.7527 1.2989 7.5050 1.1484 7.2495 1.0876 7.0479 0.9558
225°  8.9167 1.9764 8.2550 1.4256 8.1330 1.4751 7.7012 1.2124 7.6798 1.4502 7.4365 1.1748 7.3183 1.2086 7.1309 1.2749 6.8652 1.2190 6.6742 1.1571
240° 7.8582 1.8456 7.3032 1.4385 6.8241 1.1626 6.7427 1.2022 6.3250 0.8971 6.8181 1.1123 6.3526 1.0430 6.1521 0.9953 5.9138 0.8906 5.7515 0.7329
255°  7.2166 1.9341 6.8638 1.3901 6.3349 1.2705 6.1050 1.0350 6.0333 0.9671 6.0693 1.1394 5.8924 09417 5.7122 0.8153 5.7803 0.8598 5.3946 0.5627
270°  6.8025 2.1165 6.3123 1.6374 6.0061 1.3786 5.8815 1.3700 5.7871 1.1783 59707 1.2858 5.8530 1.2711 5.7376 1.1886 5.8259 0.9181 5.5856 1.0273
285°  7.0061 1.5474 6.4941 1.1183 6.1107 0.9586 5.8455 0.9821 5.7563 0.9033 6.0606 1.3603 5.8403 1.2714 5.6386 1.1359 5.4716 1.0374 5.3629 0.9501
300° 8.4720 1.7448 7.8124 1.3531 7.5303 1.2127 7.2813 1.0247 6.9533 1.1089 7.0673 0.8880 6.8002 0.9202 6.6414 0.8727 6.4460 0.8434 6.3104 0.7904
315°  10.1428 2.4790 9.4554 2.1149 8.9644 1.7308 8.5698 1.4949 8.1224 1.4089 8.6863 1.5162 8.3659 1.5934 7.6582 1.3811 7.4641 1.1563 7.3537 1.0960
330° 9.8295 2.2844 9.0011 1.6139 8.3261 1.6005 8.3290 1.3232 7.8712 1.2376 8.0526 1.2755 7.9134 1.1209 7.6498 1.0157 7.3466 0.9740 7.0927 0.9342
345°  9.6831 2.0192 9.1761 1.6305 8.7732 1.1686 8.4741 1.1887 7.8597 1.1436 7.8485 1.0332 7.7270 1.0174 7.4667 09254 7.1781 0.821 7.0038 0.7346
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Table 2. The values of ajj and bij in JRC neutrosophic numbers (JRC-NNs) Zjj (i=1,2,...,24;j=1,2,...,10) for each orientation # and each sample length L.

L 10 cm 20 cm 30 cm 40 cm 50 cm 60 cm 70 cm 80 cm 90 cm 100 cm

0 a1 bi aj b a;3 b3 aig big a;s b;s aie bis aiz biz ag big a9 big ai10 b

0° 8.3040 4.4771 79370 3.4325 7.7506 3.0454 7.2653 3.4184 7.1992 3.2459 7.1947 3.2138 7.0750 3.2132 7.0966 3.0085 7.2216 2.6930 7.1824 2.5612
15° 8.4719 4.4784 8.2300 3.4759 7.7878 3.1110 7.9964 2.5487 7.9449 25700 7.6657 2.6142 7.6627 23412 7.6456 1.8825 7.5931 1.5347 7.5032 1.2745
30° 8.2415 4.7057 7.9003 4.0572 7.9051 3.3330 7.7002 2.8414 7.6801 2.8239 7.6107 1.9798 7.6107 2.2977 7.4938 21552 7.2799 2.0256 7.1377 1.9328
45° 7.6124 4.6240 7.4768 3.4474 7.3616 3.2929 7.3701 2.2753 6.9018 2.8636 7.2810 2.6853 7.1078 2.4369 6.8051 2.5434 6.6362 24192 6.4440 2.2589
60° 6.5660 49185 6.4234 3.9627 6.0638 3.6397 5.9112 3.7658 6.0203 2.3341 6.4848 3.5660 5.7639 3.1912 5.7299 2.8163 5.6544 2.4355 5.7504 1.9253
75° 5.8289 4.2126 5.6847 3.5513 5.3573 2.8306 5.2815 2.0483 5.3307 2.4279 5.1885 2.6216 5.1232 2.2416 5.1762 1.8342 5.2188 1.4622 5.2462 1.1710
90° 4.6413 4.8108 4.8432 3.6965 4.8635 29486 4.8293 2.3399 49561 23841 49043 23701 4.8522 22043 49302 1.9260 49078 1.8362 4.9865 1.6709
105° 53661 4.821 5.4661 3.5119 5.4162 2.5216 5.2460 1.9717 5.2346 2.4576 4.9580 3.0058 3.0054 2.6472 4.8907 2.2031 4.9034 19737 49881 1.6957
120° 6.8074 4.6500 6.6243 3.7926 6.6206 3.1584 6.5577 2.8188 6.2789 2.0837 6.6438 2.3614 6.1834 2.1274 6.1142 19014 6.0415 1.6243 59194 1.5430
135° 7.3153 3.8208 7.0258 3.0824 6.7446 2.6904 6.8283 1.9821 6.3887 1.9696 6.3815 25690 6.2238 2.3216 5.9283 2.3178 5.8810 2.0689 5.8429 1.8314
150°  8.0308 4.8731 7.6585 3.8130 7.2240 3.3725 7.4497 29125 7.2075 23710 7.2292 7.2291 6.8633 2.6863 6.8866 2.2573 6.6454 2.0203 6.5363 1.8161
165° 8.3945 4.4180 8.3040 3.3213 7.9625 3.1391 7.2766 3.1988 7.1222 29799 7.0521 3.1884 7.0294 2.7274 6.8904 2.4406 6.8158 2.1787 6.7124 2.0101
180° 7.7062 4.2877 7.2427 3.7113 7.0273 3.4601 6.9249 3.3506 6.7111 3.1724 6.4988 3.2556 6.4782 2.9729 6.5586 2.6790 6.6403 2.3871 6.7675 2.1232
195° 7.7130 4.4507 7.3968 3.6661 6.9990 3.3583 7.3437 29113 6.9757 3.1102 6.5419 3.1195 6.6660 2.5119 6.6888 1.9348 6.6550 1.6120 6.5729 1.4803
210° 7.6459 3.8887 7.4116 3.0596 7.0305 3.2453 6.6975 3.1252 6.6628 3.0875 6.1321 2.5014 6.4538 2.5977 6.3566 2.2967 6.1619 2.1752 6.0921 1.9116
225° 6.9402 3.9529 6.8294 2.8512 6.6580 2.9502 6.4888 2.4248 6.2296 29004 6.2617 2.3495 6.1097 24172 5.8560 25498 5.6462 24379 55170 2.3143
240° 6.0125 3.6913 5.8648 2.8769 5.6615 2.3252 55405 2.4044 5.4280 1.7941 5.7058 2.2246 5.3096 2.0861 5.1568 1.9906 5.0231 1.7812 5.0186 1.4658
255° 52825 3.8683 5.4738 2.7801 5.0644 2.5410 5.0700 2.0701 5.0662 1.9343 4.9300 2.2788 4.9507 1.8834 4.8968 1.6307 4.9204 1.7197 4.8319 1.1253
270°  4.6859 4.2330 4.6748 3.2749 4.6275 27571 45115 2.7401 4.6088 2.3565 4.6849 25716 4.5820 2.5422 45490 2.3772 49078 1.8362 4.5584 2.0545
285°  5.4587 3.0948 5.3757 2.2367 5.1521 1.9172 4.8634 1.9642 4.8530 1.8066 4.7003 2.7205 4.5688 2.5429 45027 22719 4.4341 2.0749 4.4128 1.9002
300° 6.7272 3.4897 6.4594 2.7061 6.3176 2.4254 6.2566 2.0494 5.8444 22178 6.1793 1.7760 5.8800 1.8404 5.7687 1.7453 5.6025 1.6869 5.5200 1.5808
315° 7.6638 49579 7.3405 4.2297 7.2336 34616 7.0749 29898 6.7135 2.8178 7.1701 3.0324 6.7725 3.1868 6.2771 2.7622 6.3079 2.3125 6.2577 2.1921
330° 75450 4.5689 7.3872 3.2277 6.7256 3.2009 7.0058 2.6464 6.6335 24751 6.7770 25510 6.7925 2.2418 6.6340 2.0314 6.3726 1.9480 6.1586 1.8684
345° 7.6639 4.0383 7.5456 3.2610 7.6046 2.3372 7.2854 23774 6.7161 2.2872 6.8153 2.0664 6.7096 2.0348 6.5413 1.8508 6.3570 1.6421 6.2692 1.4692
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4. Scale Effect Analysis in Different Sample Lengths Based on the Neutrosophic
Statistical Algorithm

In this section, we give the neutrosophic statistical analysis of JRC-NNs of each column in Table 2
based on the neutrosophic statistical algorithm to reflect the scale effect of JRC-NNs in different
sample lengths.

In the neutrosophic statistical analysis of JRC-NNs, we need to calculate the neutrosophic average
value and the standard deviation of each group of JRC-NNs in each column by using Equations (2)—(7).
To show their calculational procedures in detail, we give the following example.

For example, the neutrosophic average value and standard deviation of the JRC-NNs in
L =10 cm is calculated. Then, we give the following calculational steps based on the neutrosophic
statistical algorithm.

Step 1: By Equation (2), calculate the average value of the determinate partsa;; (i=1,2,...,24)
in the JRC-NNs corresponding to the first column as follows:

24
a, = i Y. a; = (8.304 + 8.4719 + 8.2415 + 7.6124 + 6.566 + 5.8289 + 4.6413 + 5.3661
i=1

~+6.8074 + 7.3153 + 8.0308 + 8.3945 + 7.7062 + 7.713 + 7.6459 + 6.9402+
6.0125 + 5.2825 + 4.6859 + 5.4587 + 6.7272 4 7.6638 + 7.545 4 7.6639) / 24
= 6.9427.

Step 2: By Equation (3), calculate the average value of the indeterminate coefficients
b1 (i=1,2,...,24)in the JRC-NNs:

24
by = &Y by = (44771 + 44784 + 4.7057 + 4.624 + 4.9185 + 4.2126 + 4.8108 + 4.821
i=1

+4.65 + 3.8208 + 4.8731 + 4.418 + 4.2877 + 4.4507 + 3.8887 + 3.9529+
3.6913 + 3.8683 + 4.233 + 3.0948 + 3.4897 + 4.9579 + 4.5689 + 4.0383) /24
= 4.3055.

Step 3: By Equation (4), obtain the neutrosophic average value of the JRC-NNs in the first column:
Zy =@ + bl = 69427 +4.30551, 1€ [0,1].
Step 4: By Equation (5), calculate the differences between z;; (i=1,2,...,24) and z3:

z11 — z1= (ay1 — @) + (b1 — by)I = 1.3613 +0.17161, . . .,
Zo41 — Z1= (aog — 1) + (bpa1 — by)I = 0.7212 — 0.26721, 1 € [0,1].

Step 5: By Equation (6), calculate the square of all the differences:
(zu1—-#z)" = [min((ay —@)> (a1 — @) ((an — @) + 1 x (by — ?1)), ((a11 —a1) + 1 x (b1 — ?1))22),
max((ay1 — )%, (a1 — @) ((a11 — @) +21 X (b1 —b1)), (a1 — @) +1 x (b1 — b1))")]
(a1 — @)% ((an — @) + 1 x (b — By))°] = [1.8530,2.3495), ...,
(2041 —Z1)* = [0.2061,0.5202].

Step 6: By Equation (7), calculate the neutrosophic standard deviation:

G =\ ATz —7) = [\/214(1.8530 ...+ 0.2061), /45 (2.3495 + .. +0.5202
— [1.0866,1.4375).

Thus, the neutrosophic average value and the standard deviation of the JRC-NNs in the
first column are obtained by the above calculational steps. By the similar calculational steps, the
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neutrosophic average values and standard deviations of JRC-NNs in other columns can be also
obtained and all of the results are shown in Table 3. Then, the neutrosophic average values and
standard deviations of JRC-NNs in different sample lengths are depicted in Figures 1 and 2.

Table 3. The neutrosophic average values and standard deviations of JRC-NNs in different
sample lengths.
Average Value
Sample Length L — 8 D St'a rz.dard )
ﬁ]. b]' E]_ (Ic [0’ 1]) eviation ‘Tz;
10 cm 6.9427 4.3055 [6.9427, 11.2482] [1.0866, 1.4375]
20 cm 6.7740 3.3761 [6.7740, 10.1501] [0.9894, 1.3176]
30 cm 6.5483 2.9609 [6.5483, 9.5092] [0.9878, 1.3073]
40 cm 6.4490 2.6322 [6.4490, 9.0812] [0.9607, 1.3257]
50 cm 6.2795 2.5196 [6.2795, 8.7991] [0.8988, 1.2243]
60 cm 6.2913 2.6582 [6.2913, 8.9495] [0.8594, 1.1493]
70 cm 6.1505 2.4706 [6.1505, 8.6211] [0.8711, 1.1260]
80 cm 6.0573 2.2253 [6.0573, 8.2826] [0.8352, 1.0883]
90 cm 5.9928 1.9952 [5.9928, 7.9880] [0.7960, 1.0300]
100 cm 5.9261 1.7990 [5.9261, 7.7251] [0.7644, 1.0553]
12 T T T T T T T T T T
11- -
101~ -
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g o .
(]
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5 [ [ [ [ [ [ [ [ [ [
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Figure 1. The neutrosophic average values of JRC-NNs in different sample lengths L.
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Figure 2. The neutrosophic standard deviations of JRC-NNs in different sample lengths L.
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Figure 1 shows that the neutrosophic average values (ranges) of JRC-NNs decrease with the
sample length increases. It is obvious that they can reflect the scale effect in different lengths. In other
words, the larger the length L is, the smaller the average value (range) of JRC-NNss is. Thus, the scale
effect in different lengths is consistent with that of the literature [10].

In Figure 2, we can see that the neutrosophic standard deviations of JRC-NNs decrease with
the sample length increases. Since the standard deviation is used to indicate the dispersion degree
of data, the neutrosophic standard deviation in some length L means the dispersion degree of the
JRC-NNs. The larger the standard deviation is, the more discrete the JRC-NNs is. Under some sample
lengths, its standard deviation means the dispersion degree of the JRC-NNs in different orientations.
The larger the neutrosophic standard deviation is, the more obvious the anisotropy of the JRC-NNs
under this length is. Hence, the neutrosophic standard deviations of JRC-NNs can also indicate the
scale effect of the anisotropy of JRC-NNs. What’s more, when the sample length is large enough, the
anisotropy of the JRC values may decrease to some stable tendency. This situation is consistent with
the tendency in [10].

Obviously, both neutrosophic average values and neutrosophic standard deviations of JRC-NNs
can reflect the scale effect of JRC-NNs. Then, the neutrosophic average values reflect the scale effect
of JRC values, while the neutrosophic standard deviations reflect the scale effect of the anisotropy of
JRC values.

5. Anisotropic Analysis in Different Measurement Orientations Based on the Neutrosophic
Statistical Algorithm

In this section, we give the neutrosophic statistical analysis of JRC-NNs of each row in Table 2
based on the neutrosophic statistical algorithm to reflect the anisotropy of JRC-NNs in different
measurement orientations.

To indicate the neutrosophic statistical process, we take the orientation of § = 0° for i =1 as an
example to show the detailed calculational steps of the neutrosophic average value and the standard
deviation of the JRC-NNss in the orientation based on the neutrosophic statistical algorithm.

Step 1: By Equation (2), calculate the average value of the determinate partsay; (j=1,2,...,10)
of the JRC-NNs in the first row (i = 1) as follows:

10
@ = 4 ¥ ay; = (8304 +7.9370 + 7.7506 + 7.2653 +7.1992 + 7.1947 + 7.0750 + 7.0966
=
+7.2216 +7.1824) /10 = 7.4226,

Step 2: By Equation (3), calculate the average value of by; (=1, 2, ..., 10) in the indeterminate
parts of the JRC-NNss:

_ 10
by = 11—0 Yy blj = (4.4771 + 3.4325 + 3.0454 + 3.4184 + 3.2459 + 3.2138 + 3.2132 + 3.0085
j=1
+2.6930 + 2.5612) /10 = 3.2309.

Step 3: By Equation (4), get the neutrosophic average value of the JRC-NNs in the first row:
Zy =a + byl = 74226 +3.23091, [€[0,1].
Step 4: By Equation (5), calculate the differences between 217 (j=1,2,...,10)and z;:

z11 — z1= (a11 — a@p) + (byy — by)I = 0.8814 + 1.24621, . . .,
Z110 — 21= (LZHO — El) + (bllO — El)l =0.2402 — 0.66971, I € [0, 1].
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Step 5: By Equation (6), calculate the square of these differences:

(zn—-2)* = [min((an — @)% (a1 — @) (a1 — @) +1 % (b — b)), (a1 — @) +1 % (bay — 1)),
max((a11 — @)?, (a1 — @) ((ann — @) +1 % (b — b)), ((an — @) +1 x (by — b1))°)]
(a1 — @)% (a1 — @) +1 x (byy — b)) = [0.7767,45263],...,

(z110—7)* = [0.0577,0.8279].

Step 6: By Equation (7), calculate the neutrosophic standard deviation:

o = \/ LY (2 —7) = [\/ L(0.7767 + ... +0.0577), \/ (45263 + ... +0.8279
— [0.3844,0.8420].

By the similar calculational steps, the neutrosophic average values and standard deviations of
JRC-NNis in other rows can be also obtained and all the results are shown in Table 4. Then, the
neutrosophic average values and standard deviations of JRC-NNs in different orientations are depicted
in Figures 3 and 4.

Table 4. The average values and standard deviations in each orientation 0.

Orientation 0

Average Value

Standard

a; b; z; L € [0,1]) Deviation o;

0° 7.4226 3.2309 [7.4226, 10.6535] [0.3844, 0.8420]
15° 7.8501 2.5831 [7.8501, 10.4332] [0.2843, 1.1698]
30° 7.6560 2.8152 [7.6560, 10.4712] [0.3013, 1.1842]
45° 7.0997 2.8847 [7.0997, 9.9844] [0.3385, 0.9850]
60° 6.0368 3.2555 [6.0368, 9.2923] [0.3130, 1.1182]
75° 5.3436 2.4401 [5.3436, 7.7837] [0.2130, 1.0704]
90° 4.8714 2.6187 [4.8714,7.4901] [0.0907, 0.8406]
105° 5.1312 2.6809 [5.1312, 7.8121] [0.1902, 1.0122]
120° 6.3791 2.6061 [6.3791, 8.9852] [0.2789, 1.2189]
135° 6.4560 2.4654 [6.4560, 8.9214] [0.4636, 1.0067]
150° 7.1731 2.9296 [7.1731,10.1027] [0.4368, 1.2946]
165° 7.3560 2.9602 [7.3560, 10.3162] [0.5843,1.1961]
180° 6.8556 3.1400 [6.8556, 9.9956] [0.3554, 0.9170]
195° 6.9553 2.8155 [6.9553, 9.7708] [0.3640, 1.2298]
210° 6.6645 2.7889 [6.6645, 9.4534] [0.5157,1.0531]
225° 6.2537 2.7148 [6.2537, 8.9685] [0.4522, 0.8612]
240° 5.4721 2.2640 [5.4721, 7.7361] [0.3255, 0.9058]
255° 5.0487 2.1831 [5.0487, 7.2318] [0.1818, 0.8701]
270° 4.6391 2.6743 [4.6391,7.3134] [0.1003, 0.6426]
285° 4.8322 2.2530 [4.8322, 7.0852] [0.3335, 0.6340]
300° 6.0556 2.1518 [6.0556, 8.2074] [0.3653, 0.9042]
315° 6.8812 3.1943 [6.8812, 10.0755] [0.4565, 1.2396]
330° 6.8032 2.6760 [6.8032, 9.4792] [0.3983, 1.1377]
345° 6.9508 2.3364 [6.9508, 9.2872] [0.5018, 1.1878]
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Figure 3. The neutrosophic average values of JRC-NNs in different orientations 6.
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Figure 4. The neutrosophic standard deviations of JRC-NNs in different orientations 6.

Figure 3 shows that the neutrosophic average values (ranges) of JRC-NNs are very different in
every orientation. Their changing curves look somewhat like trigonometric functions, which show the
anisotropy of JRC-NNs.

In Figure 4, the neutrosophic standard deviations indicate the dispersion degrees of JRC-NNs
under different sample lengths in some orientation. The larger the neutrosophic standard deviation is,
the more discrete the JRC-NNs is. This case indicates that the scale effect of JRC-NNs is more obvious
in the orientation. Although the changing curves in Figure 4 are irregular, it is clear that the dispersion
degree of each orientation is very different. For example, the neutrosophic standard deviation of
§ = 270° is obviously smaller than that of other orientations. Especially, if the JRC-NNs of all rows have
the same neutrosophic standard deviations in such a special case, then the two curve area in Figure 4
will be reduced to the area between two parallel lines without the anisotropy in each sample scale.

From the above analysis, it is obvious that the neutrosophic average values and standard
deviations of JRC-NNs (JRC values) also imply the anisotropy in different orientations. Thus, the
neutrosophic average values reflect the anisotropy of JRC values, while the neutrosophic standard
deviations reflect the anisotropy of the scale effect. Obviously, this neutrosophic statistical analysis
method is more detailed and more effective than existing methods and avoids the difficulty of the
curve fitting and analysis in some complex cases.
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6. Conclusion Remarks

According to the JRC data obtained in an actual case and the expressions and operations of
JRC-NNs, we provided a new neutrosophic statistical analysis method based on the neutrosophic
statistical algorithm of the neutrosophic average values and the standard deviations of JRC-NNs in
different columns (different sample lengths) and different rows (different measurement orientations).
It is obvious that the two characteristic analyses (scale effect and anisotropy) of JRC values were
indicated in this study. For the first characteristic, we analyzed the scale effect of JRC-NNs in different
sample lengths, where the neutrosophic average values reflect the scale effect of JRC-NNs, while
the neutrosophic standard deviations reflect the scale effect of the anisotropy of JRC-NNs. For the
second characteristic, we analyzed the anisotropy of JRC values in different measurement orientations,
where the neutrosophic average values reflect the anisotropy of JRC-NNs, while the neutrosophic
standard deviations reflect the anisotropy of the scale effect. Therefore, the neutrosophic statistical
analysis of the actual case demonstrates that the neutrosophic average values and neutrosophic
standard deviations of JRC-NNs can reflect the scale effect and anisotropic characteristics of JRC values
reasonably and effectively.

However, the obtained analysis results and the performance benefits of the presented neutrosophic
statistical algorithm in this study are summarized as follows:

(1) The neutrosophic statistical analysis method without fitting functions is more feasible and more
reasonable than the existing method [10].

(2) The neutrosophic statistical analysis method based on the neutrosophic average values and
neutrosophic standard deviations of JRC-NNs can retain much more information and reflect the
scale effect and anisotropic characteristics of JRC values in detail.

(3) The presented neutrosophic statistical algorithm can analyze the scale effect and the anisotropy
of JRC-NNs (JRC values) directly and effectively so as to reduce the information distortion.

(4) The presented neutrosophic statistical algorithm based on the neutrosophic statistical averages
and standard deviations of JRC-NNs is more convenient and simpler than the existing curve
fitting and derivative analysis of JRC-NN functions in [10].

(5) The presented neutrosophic statistical algorithm can overcome the insufficiencies of the existing
method in the fitting and analysis process [10].

(6) This study can extend the existing related methods with JRC-NNs [10,11] and show its easy
analysis advantage in complex cases.

From what has been discussed above, the proposed neutrosophic statistical analysis method
of JRC-NNs provides a more convenient and feasible new way for the scale effect and anisotropic
characteristic analysis of JRC values in rock mechanics.
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Abstract: The daily fluctuation trends of a stock market are illustrated by three statuses: up,
equal, and down. These can be represented by a neutrosophic set which consists of three
functions—truth-membership, indeterminacy-membership, and falsity-membership. In this paper,
we propose a novel forecasting model based on neutrosophic set theory and the fuzzy logical
relationships between the status of historical and current values. Firstly, the original time series of
the stock market is converted to a fluctuation time series by comparing each piece of data with that
of the previous day. The fluctuation time series is then fuzzified into a fuzzy-fluctuation time series
in terms of the pre-defined up, equal, and down intervals. Next, the fuzzy logical relationships can
be expressed by two neutrosophic sets according to the probabilities of different statuses for each
current value and a certain range of corresponding histories. Finally, based on the neutrosophic
logical relationships and the status of history, a Jaccard similarity measure is employed to find the
most proper logical rule to forecast its future. The authentic Taiwan Stock Exchange Capitalization
Weighted Stock Index (TAIEX) time series datasets are used as an example to illustrate the forecasting
procedure and performance comparisons. The experimental results show that the proposed method
can successfully forecast the stock market and other similar kinds of time series. We also apply the
proposed method to forecast the Shanghai Stock Exchange Composite Index (SHSECI) to verify its
effectiveness and universality.

Keywords: fuzzy time series; forecasting; fuzzy logical relationship; neutrosophic set; Jaccard similarity

1. Introduction

It is well known that there is a statistical long-range dependency between current values and
historical values at different times in certain time series [1]. Therefore, many researchers have
developed various models to predict the future of such time series based on historical data sets,
for example the regression analysis model [2], the autoregressive moving average (ARIMA) model [3],
the autoregressive conditional heteroscedasticity (ARCH) model [4], the generalized ARCH (GARCH)
model [5], and so on. However, crisp data used in those models are sometimes unavailable as such time
series contain many uncertainties. In fact, models that satisfy the constraints precisely can miss the
true optimal design within the confines of practical and realistic approximations. Therefore, Song and
Chissom proposed the fuzzy time series (FTS) forecasting model [6-8] to predict the future of such
nonlinear and complicated problems. In a financial context, FTS approaches have been widely applied
to stock index forecasting [9-13]. In order to improve the accuracy of forecasts for stock market indices,
some researchers combine fuzzy and non-fuzzy time series with heuristic optimization methods in
their forecasting strategies [14]. Other approaches even introduce neural networks and machine
learning procedures in order to find forecasting rules from historical time series [15-17].
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The major points in FIS models are related to the fuzzifying of original time series,
the establishment of fuzzy logical relationships from historical training datasets, and the forecasting
and defuzzification of the outputs. Various proposals have been considered to determine the basic
steps of the fuzzifying method, such as the effective length of intervals—e.g., determining the optimal
interval length based on averages and distribution methods [18], using statistical theory [18-23],
the unequal interval length method based on ratios of data [24], or the length determination method
based on particle swarm optimization (PSO) techniques [10], etc. To state appropriate fuzzy logical
relationships, Yu [25] proposed a weight assignation model, based on the recurrent fuzzy relationships,
for each individual relationship. Aladag et al. [26] considered artificial neural networks to be a basic
high-order method for the establishment of logical relationships. Fuzzy auto regressive (AR) models
and fuzzy auto regressive and moving average (ARMA) models are also widely used to reflect the
recurrence and weights of different fuzzy logical relationships [9,10,27-35]. These obtained logical
relationships will be used as rules during the forecasting process. However, the proportions of the
lagged variables in AR or ARMA models only represent the general best fitness for certain training
datasets, without taking into account the differences between individual relationships. Although the
weight assignation model considers the differences between individual relationships, it has to deal
with special relationships that appear in the testing dataset but never happen in the training dataset.
These FT'S methods look for point forecasts without taking into account the implicit uncertainty in the
ex post forecasts.

For a financial system, if anything, future fluctuation is more important than the indicated
number itself. Therefore, the crucial ingredients for financial forecasting are the fluctuation orientations
(including up, equal, and down) and to what extent the trends would be realized. Inspired by this,
we first changed the original time series into a fluctuation time series for further rule generation.
Meanwhile, comparing the three statuses with the concept of the neutrosophic set, the trends and
weights of the relationships between historical and current statuses can be represented by the
different dimensions of the neutrosophic sets, respectively. The concept of the neutrosophic set
was originally proposed from a philosophical point of view by Smarandache [36]. A neutrosophic set is
characterized independently by a truth-membership function, an indeterminacy-membership function
and a falsity-membership function. Its similarity measure plays a key role in decision-making in
uncertain environments. Researchers have proposed various similarity measures and mainly applied
them to decision-making—e.g., Jaccard, Dice and Cosine similarity measures [37], distance-based
similarity measures [38], entropy measures [39], etc. Although neutrosophic sets have been successfully
applied to decision-making [37-42], they have rarely been applied to forecasting problems.

In this paper, we introduce neutrosophic sets to stock market forecasting. We propose a novel
forecasting model based on neutrosophic set theory and the fuzzy logical relationships between
current and historical statuses. Firstly, the original time series of the stock market is converted to a
fluctuation time series by comparing each piece of data with that of the previous day. The fluctuation
time series is then fuzzified into a fuzzy-fluctuation time series in terms of the pre-defined up, equal,
and down intervals. Next, the fuzzy logical relationships can be expressed by two neutrosophic
sets according to the probabilities for different statuses of each current value and a certain range of
corresponding histories. Finally, based on the neutrosophic logical relationships and statuses of recent
history, the Jaccard similarity measure is employed to find the most proper logical rule with which to
forecast its future.

The remaining content of this paper is organized as follows: Section 2 introduces some
preliminaries of fuzzy-fluctuation time series and concepts, and the similarity measures of neutrosophic
sets. Section 3 describes a novel approach for forecasting based on fuzzy-fluctuation trends and logical
relationships. In Section 4, the proposed model is used to forecast the stock market using Taiwan Stock
Exchange Capitalization Weighted Stock Index (TAIEX) datasets from 1997 to 2005 and Shanghai Stock
Exchange Composite Index (SHSECI) from 2007 to 2015. Conclusions and potential issues for future
research are summarized in Section 5.
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2. Preliminaries

2.1. Definition of Fuzzy-Fluctuation Time Series (FFTS)

Song and Chissom [6-8] combined fuzzy set theory with time series and defined fuzzy time series.
In this section, we extend fuzzy time series to fuzzy-fluctuation time series (FFTS) and propose the
related concepts.

Definition 1. Let L = {li,I,...,lg} be a fuzzy set in the universe of discourse U; it can be
defined by its membership function, up : U — [0,1], where up (u;) denotes the grade of membership of u;,
U= {uy,up,...u5...,u}.

The fluctuation trends of a stock market can be expressed by a linguistic set L = {I1,15,13} =
{down, equal, up}. The element /; and its subscript i are strictly monotonically increasing [43], so the
function can be defined as follows: f : 1; = f(i).

Definition 2. Let F(t)(t = 1,2, ..., T) be a time series of real numbers, where T is the number of the time series.
G(t) is defined as a fluctuation time series, where G(t) = F(t) — F(t — 1), (t =2,3,...,T). Each element of
G(t) can be represented by a fuzzy set S(t)(t = 2,3, ..., T) as defined in Definition 1. Then we call the time
series G(t), which is to be fuzzified into a fuzzy-fluctuation time series (FFTS), S(t).

Definition 3. Let S(t) (t = n+1,n+2,...,T,n > 1) be a FFTS. If S(t) is determined by
S(t—1),S(t—2),...,5(t —n), then the fuzzy-fluctuation logical relationship is represented by:

S(t—1),S(t—2),...,5(t —n) — S(t) 1)

and it is called the nth-order fuzzy-fluctuation logical relationship (FFLR) of the fuzzy-fluctuation time series,
where S(t —n),...,S(t —2)S(t — 1) is called the left-hand side (LHS) and S(t) is called the right-hand side
(RHS) of the FFLR, and S(k)(k =t,t —1,t —2,...,t —n) € L.

2.2. Basic Concept of Neutrosophic Logical Relationship (NLR)

Smarandache [36] originally presented the neutrosophic set theory. Based on neutrosophic set
theory, we propose the concept of the fuzzy-neutrosophic logical relationship, which employs the three
terms of a neutrosophic set to reflect the fuzzy-fluctuation trends and weights of an nth-order FFLR.

Definition 4. Let Pfq(t) be the probabilities of each element 1;(1; € L) in the LHS of an nth-order FFLR
S(t—1),S(t—2),...,5(t —n) — S(t), and it can be generated by:

n
Wi i
=1 4

, j )
A(t) = T 1= 1,2,3 (2)
where w; ; = 1if S(t — j) =i and 0 otherwise. Let X be a universal set, and the left-hand side of a neutrosophic
logical relationship is defined by:

A = { (% Phy Paos Py ) 1x € X | ©)

Definition 5. For S(t)(t =n+ 1, n+2,..., T)is a FFTS and A(t) is the LHS of a neutrosophic logical
relationship. The FFLRs with the same A(t) can be grouped into a FFLRG by putting all their RHSs together as
on the RHS of the FFLRG. The RHSs of the FFRLG for A(t) can be represented by a neutrosophic set as described
by Definition 4:

Baw = {<x PéA(t),P§A<U,P§A<t)>|x < X} @
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where PéAU) (i = 1,2,3) represent the down, equal or up probability of the RHSs of the FFRLG for A(t).
P};A(t) (i =1,2,3) is called the righ-hand side of a neutrosophic logical relationship.

In this way, the FFLR S(t —1),S(t — 2),...,5(t —n) — S(t) can be represented by a neutrosophic
logical relationship (NLR) A(t) — By -

Definition 6 [37]. Let A(t) and A(ty) be two neutrosophic sets. The Jaccard similarity measure between A(t)
and A(t,) in vector space is defined as follows:

3 . .
L Pae)Pac)

J(A(h), A1) = )

i 22 (pi \2_ o opi pi
L (Pa)” + L (Pay)” = L PagPaw,)

i
3. A Novel Forecasting Model Based on Neutrosophic Logical Relationships

In this paper, we propose a novel forecasting model based on high-order neutrosophic logical
relationships and Jaccard similarity measures. In order to compare the forecasting results with other
researchers” work [9,17,23,25,44-48], the authentic TAIEX (Taiwan Stock Exchange Capitalization
Weighted Stock Index) is employed to illustrate the forecasting process. The data from January 1999 to
October 1999 are used as the training time series and the data from November 1999 to December 1999
are used as the testing dataset. The basic steps of the proposed model are shown in Figure 1.

STOCK INDEX DATABASE
e  Generate fluctuation time series: G(t)=F(t)-F(t-1) (t=2,3,**, T).
e  Calculate the whole mean of the FTS: i\G(t)\
Generating of fuzzy- fen=r
fluctuation time k—— o  Define fuzzy sets: u,=/[-<-len/2),u,=[-len/ 2len/ 2),u; = [len/ 2,+=o]
series(FFTS) e Fuzzfy the FTS to FFTS: 1 Gl)e [-oo,-len/ 2)
St)=42 G(t)e [-len/ 2,len/ 2)
3 G(1)e [len/ 2,+e0)

e  Establish the fuzzy-fluctuation logical relationships(FFLRs):
Sm),Stn-1),...5(1) - Sn+1)
Sm+1),Sm),...8(2) > Sn+2)

Establishing FFLRs for
historical training data

S(t—=1),8(t=2),...S(t—n) = S(t)

e For each LHS in the training FFLRs, calculate the probabilities of down, equal and up trends

respectively.
Converting FFLRs to e Each LHS in the training FFLRs is represented by a neutrosophic set A(t) with the three
NLRs probabilities as three terms.

e  Group the RHS of FFLRs with the same A(t) into RHSs for corresponding A(t). Use a

neutrosophic set B, to represent it.

e  Use a neutrosophic set A(i) to represent current value F(i) and its historical statuses.

e Find the most similar A(t) in training data set based on Jaccard similarity measure. According to
Forecasting of future the corresponding NLR, obtain the probabilities of down, equal and up trends from B, .

e Forecast the fluctuation value of future: G'(i+1)= P;m, X len — Ptlm, X len

e Calculate the future value: F'(i+1)=F(@i)+G'(i+1)

Figure 1. Flowchart of our proposed forecasting model.
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Step 1. Construct FFTS for the historical training data

For each element F(t)(t = 1,2,...,T) in the historical training time series, its fluctuation trend
is determined by G(t) = F(t) — F(t—1),(t = 2,3,...,T). According to the range and orientation
of the fluctuations, G(t)(t = 2,3,...,T) can be fuzzified into a linguistic set {down, equal, up}.
Let len be the whole mean of all elements in the fluctuation time series G(t)(t = 2,3,...,T),
define uy = [—co, —len/2], uy = [—len/2,len/2|, u3 = [len/2,4o0], and then G(t)(t = 2,3,...,T)
can be fuzzified into a fuzzy-fluctuation time series S(t)(t = 2,3,...,T).

Step 2. Establish nth-order FFLRs for the training data set

According to Definition 3, each S(t)(t > 1) in the historical training data set can be represented
by its previous n days’ fuzzy-fluctuation numbers to establish the training FFLRs.

Step 3. Convert the FFLRs to NLRs

According to Definition 4, the LHS of each FFLR can be expressed by a neutrosophic set A(f).
Then, we can generate the RHSs B 54 for different LHSs respectively, as described in Definition 5.
Thus, the FFLRs for the historical training dataset are converted into NLRs.

Step 4. Forecast test time series

For each observed point F(i) in the test time series, we can use a neutrosophic set A(7) to represent
its nth-order fuzzy-fluctuation trends. Then, for each A(f) obtained in step 3, compare A(i) with A(t)
respectively, and find the most similar one based on the Jaccard similarity measure method described
in Definition 6. Next, use the corresponding B ;) as the forecasting rule to predict the fluctuation
value G’ (i + 1) of the next point. Finally, obtain the forecasting value by F/(i4+ 1) = F(i) + G'(i + 1).

4. Empirical Analysis

4.1. Forecasting Taiwan Stock Exchange Capitalization Weighted Stock Index

Many studies use TAIEX1999 as an example to illustrate their proposed forecasting
methods [9,17,25,34,44-48]. In order to compare the accuracy with their models, we also use
TAIEX1999 to illustrate the proposed method.

Step 1: Calculate the fluctuation trend for each element in the historical training dataset of
TAIEX1999. Then, we use the whole mean of the fluctuation numbers of the training dataset to fuzzify
the fluctuation trends into FFTS. For example, the whole mean of the historical dataset of TAIEX1999
from January to October is 85. That is to say, len = 85. For F(1) = 6152.43 and F(2) = 6199.91, G(2) = 47 48,
5(2) = 3. In this way, the historical training dataset can be represented by a fuzzified fluctuation dataset
as shown in Table A1.

Step 2: Based on the FFTS from 5 January to 30 October 1999—shown in Table Al—the nth-order
FFLRs for the forecasting model are established as shown in Table A2. The subscript i is used to
represent element /; in the FFLRs for convenience.

Step 3: In order to convert the FFLRs to NLRs, first of all the LHSs of the FFLRs in Table A2 are
represented by a neutrosophic set, respectively (shown in Table A2). Then, the RHSs of the FFLRs are
grouped with the same LHS neutrosophic set value into the RHSs group. A neutrosophic set is used to
represent the RHSs group. For example, the LHS of FFLR 2,3,1,1,1,2,2,3,3—1 can be represented by
the neutrosophic set (0.33,0.33,0.33). The detailed grouping and converting processes are shown in
Figure 2.
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Represent the Find all FFLRs Represent the
FFLR LHS with a with the same LHS S CAE o8 RHSs with a
. . satisfied FFLRs .
neutrosophic set neutrosophic set neutrosophic set

2,3,1,1,1,2,2,3,3—~1
2,2,1,3,3,1,1,3,2—3
3,2,3,1,1,1,2,3,2—>2
2,3,2,3,1,1,12,3—2
3,3,3,1,2,1,2,2,1—>2
223,1,3,2,1,3,1—1
12,2,3,13,2,1,3—2
32,3,2,3,1,1,1,2—3
2,3,1,1,12,2, ﬂ 1,3,3,2,1,2,3,1,2—~1 —=13222,123.1, .
3,3—1 ] (033,033,0.33) =) 2,1,1,3,3,2,12,3—~>3 =) 3,1,3,1,1,2,1,1,3,3,2 | (0:403,03)
32,1,1,3,3,2,1,2—~1
2,1,3,2,1,1,3,3,2—3
2,3,3,2,1,3,2,1,1—1
12,3,3,2,1,3,2,1—~1
1,1,2,3,3,2,1,3,2—2
2,1,1,2,3,3,2,1,3—1
3,12,1,1,2,3,3,2—~1
3,1,3,1,1,2,2,3,2—3
2,3,3,1,3,1,12,2—3
2,1,1,2,1,3,2,3,3—2

Figure 2. Group and converting processes for FFLR 2,3,1,1,1,2,2,3,3—2.

In this way, the FFLR 2,3,1,1,1,2,2,3,3—1 and other members of the same group are converted into
an NLR (0.33,0.33,0.33)—(0.4,0.3,0.3). Therefore, the FFLRs in Table A2 can be converted into NLRs as
shown in Table 1.

Table 1. Neutrosophic logical relationships (NLRs) for the historical training data of TATEX1999.

NLRs NLRs NLRs
(0.33,0.33,0.33)—(0.4,0.3,0.3) (0.22,0.33,0.44)—(0,0.6,0.4) (0.22,0.78,0)—(0.5,0.5,0)
(0.44,0.33,0.22)—(0.23,0.46,0.31) (0.22,0.44,0.33)—(0.33,0.33,0.33) (0.33,0.67,0)—(0,0,1)
(0.44,0.44,0.11)—(0.4,0.33,0.27) (0.11,0.56,0.33)—(0.17,0.5,0.33) (0.11,0.11,0.78)—(0,1,0)
(0.33,0.44,0.22)—(0.54,0.23,0.23) (0.11,0.67,0.22)—(0.17,0.33,0.5) (0,0.22,0.78)—(0,1,0)
(0.33,0.56,0.11)—(0.25,0.5,0.25) (0.22,0.56,0.22)—(0.25,0.5,0.25) (0,0.33,0.67)—(0,1,0)
(0.56,0.33,0.11)—(0.36,0.27,0.36) (0.11,0.44,0.44)—(0,0.38,0.63) (0.56,0.22,0.22)—+(0.25,0.25,0.5)
(0.67,0.22,0.11)—(0,1,0) (0.11,0.33,0.56)—(0.33,0.17,0.5) (0.44,0.11,0.44)—(0.5,0.5,0)
(0.56,0.44,0)—(0,0,1) (0.11,0.22,0.67)—(0.43,0.43,0.14) (0.56,0.11,0.33)—(1,0,0)
(0.44,0.22,0.33)—(0.29,0.43,0.29) (0,0.56,0.44)—(0.33,0,0.67) (0.67,0,0.33)—(0,1,0)
(0.33,0.22,0.44)—(0.31,0.38,0.31) (0,0.44,0.56)—(0.14,0.43,0.43) (0.67,0.11,0.22)—(0.5,0.25,0.25)
(0.22,0.22,0.56)—(0.25,0.25,0.5) (0.11,0.78,0.11)—(0,0.8,0.2) (0.22,0.67,0.11)—(0,0,1)
(0.33,0.11,0.56)—(0,0.5,0.5) (0,0.89,0.11)—(0.25,0.75,0)
(0.22,0.11,0.67)—(0.29,0.29,0.43) (0.11,0.89,0)—(0.5,0.5,0)

Step 4: Use the NLRs obtained from historical training data to forecast the test dataset
from 1 November to 30 December 1999. For example, the forecasting value of the TAIEX on
1 November 1999 is calculated as follows:

First, the ninth-order historical fuzzy-fluctuation trends 3,2,2,2,2,3,1,2,2 on 1 November 1999 can
be represented by a neutrosophic set (0.11,0.67,0.22). Then, we use the Jaccard similarity measure
method as described by Definition 6 to choose the most optimal NLR from the NLRs listed in Table 1.
The NLR (0.11,0.67,0.22)—(0.17,0.33,0.5) is evidently the best rule for further forecasting. Therefore,
the forecasted fuzzy-fluctuation number is:
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S'(i+1) = (—0.17) + 0.5 = 0.33

7 of 16

The forecasted fluctuation from the current value to the next value can be obtained by defuzzifying
the fluctuation fuzzy number:

G'(i+1)=5(i4+1) x len = 0.33 x 85 = 28.05

Finally, the forecasted value can be obtained by the current value and the fluctuation value:

F/(i+1)=F(i)+ G (i+1) = 7854.85 + 28.05 = 7882.9

The other forecasting results are shown in Table 2 and Figure 3.

8600 -
8400
8200
8000
7800
7600
7400
7200 -
7000 -
6800

Forcast

1

6 11 16 21

26 31 36 41

Figure 3. Forecasting results from 1 November 1999 to 30 December 1999.

Table 2. Forecasting results from 1 November 1999 to 30 December 1999.

MM /gg/eYYYY) Actual  Forecast (Forecast — Actual)? MM /DD]aDt/eYYYY) Actual  Forecast (Forecast — Actual)?
11/1/1999 7814.89 7882.90 4625.36 12/1/1999 7766.20 7720.87 2054.81
11/2/1999 7721.59 7842.94 14,725.82 12/2/1999 7806.26 7766.20 1604.80
11/3/1999 7580.09 7721.59 20,022.25 12/3/1999 7933.17 7797.76 18,335.87
11/4/1999 7469.23 7580.09 12,289.94 12/4/1999 7964.49 7924.67 1585.63
11/5/1999 7488.26 7469.23 362.14 12/6/1999 7894.46 7955.99 3785.94
11/6/1999 7376.56 7488.26 12,476.89 12/7/1999 7827.05 7885.96 3470.39
11/8/1999 7401.49 7365.51 1294.56 12/8/1999 7811.02 7827.05 256.96
11/9/1999 7362.69 7390.44 770.06 12/9/1999 7738.84 7802.52 4055.14

11/10/1999 7401.81 7351.64 2517.03 12/10/1999 7733.77 7745.64 140.90
11/11/1999 7532.22 7486.82 2061.16 12/13/1999 7883.61 7707.42 31,042.92
11/15/1999 7545.03 7521.17 569.30 12/14/1999 7850.14 7857.26 50.69
11/16/1999 7606.20 7545.03 3741.77 12/15/1999 7859.89 7823.79 1303.21
11/17/1999 7645.78 7606.20 1566.58 12/16/1999 7739.76 7859.89 14,431.22
11/18/1999 7718.06 7673.83 1956.29 12/17/1999 7723.22 7728.71 30.14
11/19/1999 7770.81 7731.66 1532.72 12/18/1999 7797.87 7723.22 5572.62
11/20/1999 7900.34 7799.71 10,126.40 12/20/1999 7782.94 7797.87 222.90
11/22/1999 8052.31 7924.99 16,210.38 12/21/1999 7934.26 7782.94 22,897.74
11/23/1999 8046.19 8052.31 37.45 12/22/1999 8002.76 7947.86 3014.01
11/24/1999 7921.85 8046.19 15,460.44 12/23/1999 8083.49 8056.32 738.21
11/25/1999 7904.53 7936.30 1009.33 12/24/1999 8219.45 8137.05 6789.76
11/26/1999 7595.44 7918.98 104,678.13 12/27/1999 8415.07 8233.90 32,822.57
11/29/1999 7823.90 7629.44 37,814.69 12/28/1999 8448.84 8390.42 3412.90
11/30/1999 7720.87 7845.15 15,445.52 Root Mean Square Error(RMSE) 98.76

The forecasting performance can be assessed by comparing the difference between the forecasted
values and the actual values. The widely used indicators in time series model comparisons are the
mean squared error (MSE), the root of the mean squared error (RMSE), the mean absolute error

(MAE), and the mean percentage error (MPE), etc. To compare the performance of different forecasting
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methods, the Diebold-Mariano test statistic (S) is also widely used [49]. These indicators are defined
by Equations (6)—-(10):

i (forecast(t) — actual (t))*

=1
MSE = . 6)

i (forecast(t) — actual (1))

RMSE = | = . ?)

i |(forecast(t) — actual(t))]

=1
MAE = . 8)

i |(forecast(t) — actual(t))|/actual (t)

_ =1
MPE = . ©)
3 1)’ ©)°
7 - ; (error of  forecastl), — ; (error of  forecast2),
S= —— 0, A= = (10)
(Variance(d)) n

where n denotes the number of values forecasted, forecast(t) and actual(t) denote the predicted value
and actual value at time ¢, respectively. S is a test statistic of the Diebold method that is used to
compare the predictive accuracy of two forecasts obtained by different methods. Forecast1 represents
the dataset obtained by method 1, and Forecast2 represents another dataset from method 2. If S > 0
and |S| > Z = 1.64 at the 0.05 significance level, then Forecast2 has better predictive accuracy than
Forecast1. With respect to the proposed method for the ninth order, the MSE, RMSE, MAE, and MPE
are 9753.63, 98.76, 76.32, and 0.01, respectively.

Let the order number # vary from two to 10; the RMSEs for different nth-order forecasting models
are listed in Table 3. The item “Average” refers to the RMSE for the average forecasting results of these
different nth-order (n = 2, 3, ..., 10) models.

Table 3. Comparison of forecasting errors for different nth orders.

n
2 3 4 5 6 7 8 9 10
RMSE 100.22 1009 100.66 99.81 102.83 103.48 100.36 98.76  108.99 99.03

Average

In practical forecasting, the average of the results of different nth-order (n =2, 3, ..., 9) forecasting
models is adopted to avoid the uncertainty. The proposed method is employed to forecast the TAIEX
from 1997 to 2005. The forecasting results and errors are shown in Figure 4 and Table 4.
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Figure 4. Cont.
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Figure 4. The stock market fluctuation for the TAIEX test dataset (1997-2005).

Table 4. RMSEs of forecast errors for TAIEX 1997 to 2005.

Year
1997 1998 1999 2000 2001 2002 2003 2004 2005
RMSE 141.89 119.85 99.03 128.62 125.64 66.29 53.2 56.11 55.83

Table 5 shows a comparison between the RMSEs of different methods for forecasting the
TAIEX1999. From this table, we can see that the performance of the proposed method is acceptable.
The greatest advantage of the proposed method is that it does not need to determine the boundary
of discourse or the intervals for number fuzzifying. Meanwhile, the introduction of neutrosophic
sets into the expression of logical relationships makes it possible to employ a similar comparison
method to locate the most appropriate rules for further forecasting. Therefore, the proposed method,
to some extent, is more rigorous than other methods that just use meaningless values in the case
of missing rules in the training data. Though the RMSEs of some of the other methods outperform
the proposed method, they often need to determine complex discretization partitioning rules or use
adaptive expectation models to justify the final forecasting results. The method proposed in this paper
is simpler and more easily realized by a computer program.

Table 5. A comparison of RMSEs for different methods for forecasting the TAIEX1999.

Methods RMSE S
Yu's Method (2005) [25] 145 1.82 **
Hsieh et al.’s Method (2011) [48] 94 —0.42
Chang et al.”s Method (2011) [45] 100 0.21
Cheng et al.’s Method (2013) [47] 103 0.42
Chen et al.’s Method (2013) [46] 102.11 0.39
Chen and Chen’s Method (2015) [9] 103.9 0.29
Chen and Chen’s Method (2015) [44] 92 —-0.51
Zhao et al.’s Method (2016) [23] 110.85 1.16
Jia et al.’s Method (2017) [17] 99.31 0.11
The Proposed Method 99.03 -

** The proposed method has better predictive accuracy than the method at the 5% significance level.
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4.2. Forecasting Shanghai Stock Exchange Composite Index

The SHSECI is the most famous stock market index in China. In the following, we apply the
proposed method to forecast the SHSECI from 2007 to 2015. For each year, the authentic datasets of the
historical daily SHSECI closing prices between January and October are used as the training data, and
the datasets from November to December are used as the testing data. The RMSEs of forecast errors
are shown in Table 6.

From Table 6, we can see that the proposed method can successfully predict the SHSECI
stock market.

Table 6. RMSEs of forecast errors for SHSECI from 2007 to 2015.

Year
2007 2008 2009 2010 2011 2012 2013 2014 2015
RMSE 113.47 71.6 49.14 45.35 27.74 25.83 19.95 41.42 64.6

5. Conclusions

In this paper, a novel forecasting model is proposed based on neutrosophic logical relationships,
the Jaccard similarity measure, and on fluctuations of the time series. The high-order fuzzy-fluctuation
logical relationships are represented by neutrosophic logical relationships. Therefore, we can use the
Jaccard similarity measure method to find the optimal forecasting rules. The biggest advantage of this
method is that it can deal with the problem of lack of rules. Considering the fact that future fluctuation
is more important than the indicated number itself, this method focuses on the forecasting of fluctuation
orientations in terms of the extent of the fluctuation rather than on the real numbers. Meanwhile,
utilizing NLRs instead of FLRs makes it possible to select the most appropriate rules for further
forecasting. Therefore, the proposed method is more rigorous and interpretable. Experiments show
that the parameters generated by the training dataset can be successfully used for future datasets as
well. In order to compare the performance with that of other methods, we took the TAIEX 1999 as an
example. We also forecasted TAIEX 1997-2005 and SHSECI 2007-2015 to verify its effectiveness and
universality. In the future, we will consider other factors that might affect the fluctuation of the stock
market, such as the trade volume, the beginning value, the end value, etc. We will also consider the
influence of other stock markets, such as the Dow Jones, the National Association of Securities Dealers
Automated Quotations (NASDAQ), the M1b, and so on.
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Appendix A
Table Al. Historical training data and fuzzified fluctuation data of TAIEX 1999.

Date (MM/DD/YYYY) TAIEX Fluctuation Fuzzified Date (MM/DD/YYYY) TAIEX Fluctuation Fuzzified Date (MM/DD/YYYY) TAIEX Fluctuation Fuzzified
1/5/1999 6152.43 - - 4/17/1999 7581.5 114.68 3 7/26/1999 7595.71 —128.81 1
1/6/1999 6199.91 47.48 3 4/19/1999 7623.18 41.68 2 7/27/1999 7367.97 —227.74 1
1/7/1999 6404.31 204.4 3 4/20/1999 7627.74 4.56 2 7/28/1999 7484.5 116.53 3
1/8/1999 6421.75 17.44 2 4/21/1999 7474.16 —153.58 1 7/29/1999 7359.37 —125.13 1

1/11/1999 6406.99 —14.76 2 4/22/1999 7494.6 20.44 2 7/30/1999 7413.11 53.74 3
1/12/1999 6363.89 —43.1 1 4/23/1999 7612.8 118.2 3 7/31/1999 7326.75 —86.36 1
1/13/1999 6319.34 —44.55 1 4/26/1999 7629.09 16.29 2 8/2/1999 7195.94 —130.81 1
1/14/1999 6241.32 —78.02 1 4/27/1999 7550.13 —78.96 1 8/3/1999 7175.19 —20.75 2
1/15/1999 6454.6 213.28 3 4/28/1999 7496.61 —53.52 1 8/4/1999 7110.8 —64.39 1
1/16/1999 6483.3 28.7 2 4/29/1999 7289.62 —206.99 1 8/5/1999 6959.73 —151.07 1
1/18/1999 6377.25 —106.05 1 4/30/1999 7371.17 81.55 3 8/6/1999 6823.52 —136.21 1
1/19/1999 6343.36 —33.89 2 5/3/1999 7383.26 12.09 2 8/7/1999 7049.74 226.22 3
1/20/1999 6310.71 —32.65 2 5/4/1999 7588.04 204.78 3 8/9/1999 7028.01 —21.73 2
1/21/1999 6332.2 21.49 2 5/5/1999 7572.16 —15.88 2 8/10/1999 7269.6 241.59 3
1/22/1999 6228.95 —103.25 1 5/6/1999 7560.05 —12.11 2 8/11/1999 7228.68 —40.92 2
1/25/1999 6033.21 —195.74 1 5/7/1999 7469.33 —90.72 1 8/12/1999 7330.24 101.56 3
1/26/1999 6115.64 82.43 3 5/10/1999 7484.37 15.04 2 8/13/1999 7626.05 295.81 3
1/27/1999 6138.87 23.23 2 5/11/1999 7474.45 -9.92 2 8/16/1999 8018.47 392.42 3
1/28/1999 6063.41 —75.46 1 5/12/1999 7448.41 —26.04 2 8/17/1999 8083.43 64.96 3
1/29/1999 5984 —79.41 1 5/13/1999 7416.2 —32.21 2 8/18/1999 7993.71 —89.72 1
1/30/1999 5998.32 14.32 2 5/14/1999 7592.53 176.33 3 8/19/1999 7964.67 —29.04 2
2/1/1999 5862.79 —135.53 1 5/15/1999 7576.64 —15.89 2 8/20/1999 8117.42 152.75 3
2/2/1999 5749.64 -113.15 1 5/17/1999 7599.76 23.12 2 8/21/1999 8153.57 36.15 2
2/3/1999 5743.86 —5.78 2 5/18/1999 7585.51 —14.25 2 8/23/1999 8119.98 —33.59 2
2/4/1999 5514.89 —228.97 1 5/19/1999 7614.6 29.09 2 8/24/1999 7984.39 —135.59 1
2/5/1999 5474.79 —40.1 2 5/20/1999 7608.88 —5.72 2 8/25/1999 8127.09 142.7 3
2/6/1999 5710.18 235.39 3 5/21/1999 7606.69 -2.19 2 8/26/1999 8097.57 —29.52 2
2/8/1999 5822.98 112.8 3 5/24/1999 7588.23 —18.46 2 8/27/1999 8053.97 —43.6 1
2/9/1999 5723.73 —99.25 1 5/25/1999 7417.03 -171.2 1 8/30/1999 8071.36 17.39 2
2/10/1999 5798 74.27 3 5/26/1999 7426.63 9.6 2 8/31/1999 8157.73 86.37 3
2/20/1999 6072.33 274.33 3 5/27/1999 7469.01 42.38 2 9/1/1999 8273.33 115.6 3
2/22/1999 6313.63 241.3 3 5/28/1999 7387.37 —81.64 1 9/2/1999 8226.15 —47.18 1
2/23/1999 6180.94 —132.69 1 5/29/1999 7419.7 32.33 2 9/3/1999 8073.97 —152.18 1
2/24/1999 6238.87 57.93 3 5/31/1999 7316.57 —103.13 1 9/4/1999 8065.11 —8.86 2
2/25/1999 6275.53 36.66 2 6/1/1999 7397.62 81.05 3 9/6/1999 8130.28 65.17 3
2/26/1999 6318.52 42.99 3 6/2/1999 7488.03 90.41 3 9/7/1999 7945.76 —184.52 1
3/1/1999 6312.25 —6.27 2 6/3/1999 757291 84.88 3 9/8/1999 7973.3 27.54 2
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Date (MM/DD/YYYY) TAIEX Fluctuation Fuzzified Date (MM/DD/YYYY) TAIEX Fluctuation Fuzzified Date (MM/DD/YYYY) TAIEX Fluctuation Fuzzified
3/2/1999 6263.54 —48.71 1 6/4/1999 7590.44 17.53 2 9/9/1999 8025.02 51.72 3
3/3/1999 6403.14 139.6 3 6/5/1999 7639.3 48.86 3 9/10/1999 8161.46 136.44 3
3/4/1999 6393.74 —94 2 6/7/1999 7802.69 163.39 3 9/13/1999 8178.69 17.23 2
3/5/1999 6383.09 —10.65 2 6/8/1999 7892.13 89.44 3 9/14/1999 8092.02 —86.67 1
3/6/1999 6421.73 38.64 2 6/9/1999 7957.71 65.58 3 9/15/1999 7971.04 —120.98 1
3/8/1999 6431.96 10.23 2 6/10/1999 7996.76 39.05 2 9/16/1999 7968.9 —2.14 2
3/9/1999 6493.43 61.47 3 6/11/1999 7979.4 —17.36 2 9/17/1999 7916.92 —51.98 1

3/10/1999 6486.61 —6.82 2 6/14/1999 7973.58 —5.82 2 9/18/1999 8016.93 100.01 3
3/11/1999 6436.8 —49.81 1 6/15/1999 7960 —13.58 2 9/20/1999 7972.14 —44.79 1
3/12/1999 6462.73 25.93 2 6/16/1999 8059.02 99.02 3 9/27/1999 7759.93 —212.21 1
3/15/1999 6598.32 135.59 3 6/17/1999 8274.36 215.34 3 9/28/1999 7577.85 —182.08 1
3/16/1999 6672.23 73.91 3 6/21/1999 8413.48 139.12 3 9/29/1999 7615.45 37.6 2
3/17/1999 6757.07 84.84 3 6/22/1999 8608.91 195.43 3 9/30/1999 7598.79 —16.66 2
3/18/1999 6895.01 137.94 3 6/23/1999 8492.32 —116.59 1 10/1/1999 7694.99 96.2 3
3/19/1999 6997.29 102.28 3 6/24/1999 8589.31 96.99 3 10/2/1999 7659.55 —35.44 2
3/20/1999 6993.38 —3.91 2 6/25/1999 8265.96 —323.35 1 10/4/1999 7685.48 25.93 2
3/22/1999 7043.23 49.85 3 6/28/1999 8281.45 15.49 2 10/5/1999 7557.01 —128.47 1
3/23/1999 6945.48 —97.75 1 6/29/1999 8514.27 232.82 3 10/6/1999 7501.63 —55.38 1
3/24/1999 6889.42 —56.06 1 6/30/1999 8467.37 —46.9 1 10/7/1999 7612 110.37 3
3/25/1999 6941.38 51.96 3 7/2/1999 8572.09 104.72 3 10/8/1999 7552.98 —59.02 1
3/26/1999 7033.25 91.87 3 7/3/1999 8563.55 —8.54 2 10/11/1999 7607.11 54.13 3
3/29/1999 6901.68 —131.57 1 7/5/1999 8593.35 29.8 2 10/12/1999 7835.37 228.26 3
3/30/1999 6898.66 —3.02 2 7/6/1999 8454.49 —138.86 1 10/13/1999 7836.94 1.57 2
3/31/1999 6881.72 —16.94 2 7/7/1999 8470.07 15.58 2 10/14/1999 7879.91 4297 3
4/1/1999 7018.68 136.96 3 7/8/1999 8592.43 122.36 3 10/15/1999 7819.09 —60.82 1
4/2/1999 7232.51 213.83 3 7/9/1999 8550.27 —42.16 2 10/16/1999 7829.39 10.3 2
4/3/1999 7182.2 —50.31 1 7/12/1999 8463.9 —86.37 1 10/18/1999 7745.26 —84.13 1
4/6/1999 7163.99 —18.21 2 7/13/1999 8204.5 —259.4 1 10/19/1999 7692.96 —52.3 1
4/7/1999 7135.89 —28.1 2 7/14/1999 7888.66 —315.84 1 10/20/1999 7666.64 —26.32 2
4/8/1999 7273.41 137.52 3 7/15/1999 7918.04 29.38 2 10/21/1999 7654.9 —11.74 2
4/9/1999 7265.7 —-7.71 2 7/16/1999 7411.58 —506.46 1 10/22/1999 7559.63 —95.27 1
4/12/1999 7242.4 —23.3 2 7/17/1999 7366.23 —45.35 1 10/25/1999 7680.87 121.24 3
4/13/1999 7337.85 95.45 3 7/19/1999 7386.89 20.66 2 10/26/1999 7700.29 19.42 2
4/14/1999 7398.65 60.8 3 7/20/1999 7806.85 419.96 3 10/27/1999 7701.22 0.93 2
4/15/1999 7498.17 99.52 3 7/21/1999 7786.65 —20.2 2 10/28/1999 7681.85 —19.37 2
4/16/1999 7466.82 —31.35 2 7/22/1999 7678.67 —107.98 1 10/29/1999 7706.67 24.82 2
4/17/1999 7581.5 114.68 3 7/23/1999 7724.52 45.85 3 10/30/1999 7854.85 148.18 3
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(MM]DD;;;(YYY) FFLR LHS of NLR MM, n[))g/eywy) FFLR LHS of NLR MM /ggfywy) FFLR LHS of NLR MM /DD]“;YYYY) FFLR LHS of NLR
1/18/1999 23,11,12233-2  (0.33,0.33,033) 4/3/1999 332213311-3 (0.33,0.22,0.44) 6/11/1999 233332333-2  (0,0.22,0.78) 8/21/1999 32,1333323-3 (0.11,0.22,0.67)
1/19/1999 12,31,1,1223-1  (0.44,0.33,0.22) 4/6/1999 1332213311 (0.33,0.22,0.44) 6/14/1999 223333233-2  (0,033,0.67) 8/23/1999 2321333322  (0.11,0.33,0.56)
1/20/1999 2123111222  (0.44,044,0.11) 4/7/1999 2133221332  (0.22,0.33,0.44) 6/15/1999 222333323-2  (0,0.44,0.56) 8/24/1999 2232,13333-2  (0.11,0.33,0.56)
1/21/1999 2212311122 (0.44,0.44,0.11) 4/8/1999 2213322132  (0.22,0.44,0.33) 6/16/1999 2222333322 (0,0.56,0.44) 8/25/1999 1223213331 (0.22,0.33,0.44)
1/22/1999 2221231112  (0.44,044,0.11) 4/9/1999 3221332213  (0.22,0.44,0.33) 6/17/1999 3222233333 (0,0.44,0.56) 8/26/1999 3122321333  (0.22,0.33,0.44)
1/25/1999 12221231,1—1  (0.44,0.44,0.11) 4/12/1999 2322133222  (0.11,0.56,0.33) 6/21/1999 332222333—3  (0,044,0.56) 8/27/1999 2312232132  (0.22,0.44,0.33)
1/26/1999 1122212311  (0.44,0.44,0.11) 4/13/1999 2232213322 (0.11,0.56,0.33) 6/22/1999 33,3222233-3  (0,044,0.56) 8/30/1999 1231223211  (0.33,0.44,0.22)
1/27/1999 31,1,222123-3  (0.33,0.44,022) 4/14/1999 3223221333 (0.11,0.44,0.44) 6/23/1999 3333222233  (0,044,0.56) 8/31/1999 2123122322  (0.22,0.56,0.22)
1/28/1999 2311222122  (0.33,0.56,0.11) 4/15/1999 3322322133 (0.11,0.44,0.44) 6/24/1999 1333322221  (0.11,0.44,0.44) 9/1/1999 3212312233  (0.22,0.44,033)
1/29/1999 1231122211  (0.44,0.44,0.11) 4/16/1999 333223221-3 (0.11,0.44,0.44) 6/25/1999 3133332223  (0.11,0.33,0.56) 9/2/1999 3321231223 (0.22,0.44,033)
1/30/1999 1123112221  (0.44,0.44,0.11) 4/17/1999 2333223222  (0,0.56,0.44) 6/28/1999 13,1333322-1  (0.22,0.22,0.56) 9/3/1999 1332123121  (0.33,033,0.33)
2/1/1999 2112311222  (0.44,0.44,0.11) 4/19/1999 3233322323 (0,0.44,0.56) 6/29/1999 2131333322 (0.22,0.22,0.56) 9/4/1999 1133212311  (0.44,0.22,033)
2/2/1999 121,123112—1  (0.56,0.33,0.11) 4/20/1999 232333223-2  (0,0.44,0.56) 6/30/1999 32,13,13333-3  (0.22,0.11,0.67) 9/6/1999 21,1,332123-2  (0.33,0.33,0.33)
2/3/1999 1121,1231,11  (0.67,0.22,0.11) 4/21/1999 2232333222  (0,0.56,0.44) 7/2/1999 1321313331  (0.33,0.11,0.56) 9/7/1999 3211332123  (0.33,0.33,0.33)
2/4/1999 21,1,21,1,231-2  (0.56,0.33,0.11) 4/22/1999 1223233321 (0.11,0.44,0.44) 7/3/1999 31,3213133-3  (0.33,0.11,0.56) 9/8/1999 1321133211  (0.44,0.22,0.33)
2/5/1999 121,1,21,123—1  (0.56,0.33,0.11) 4/23/1999 2122323332  (0.11,0.44,0.44) 7/5/1999 23,1321313-2  (0.33,0.22,0.44) 9/9/1999 2132113322  (0.33,0.33,0.33)
2/6/1999 2121121122 (0.56,0.44,0) 4/26/1999 3212232333 (0.11,0.44,0.44) 7/6/1999 223132131-2  (0.33,0.33,0.33) 9/10/1999 3213211333 (0.33,0.22,0.44)
2/8/1999 32,121,1211-3 (0.56,0.33,0.11) 4/27/1999 2321223232  (0.11,0.56,0.33) 7/7/1999 122313213-1  (0.33,0.33,0.33) 9/13/1999 3321321133 (0.33,0.22,044)
2/9/1999 33212,1121-3 (0.44,0.33,0.22) 4/28/1999 1232122321  (0.22,0.56,0.22) 7/8/1999 212231321—2  (0.33,0.44,0.22) 9/14/1999 2332,13211-2 (0.33,0.33,0.33)
2/10/1999 1332121121  (0.44,0.33,0.22) 4/29/1999 1123212231 (0.33,0.44,0.22) 7/9/1999 3212231323  (0.22,0.44,0.33) 9/15/1999 123321321-1  (0.33,033,0.33)
2/20/1999 3133212113  (0.44,0.22,0.33) 4/30/1999 11,1,2,32,122—1  (0.44,0.44,0.11) 7/12/1999 2321223132  (0.22,0.44,0.33) 9/16/1999 1123321321 (0.33,033,0.33)
2/22/1999 3313321213 (0.33,0.22,044) 5/3/1999 3,1,1,1,232,123  (0.44,0.33,0.22) 7/13/1999 1232122311  (0.33,0.44,0.22) 9/17/1999 2112332132  (0.33,0.33,0.33)
2/23/1999 3331332123  (0.22,0.22,0.56) 5/4/1999 231,1,12321-2  (0.44,0.33,0.22) 7/14/1999 1123212231  (0.33,0.44,0.22) 9/18/1999 1211233211  (0.44,0.33,0.22)
2/24/1999 133313321-1  (0.33,0.11,0.56) 5/5/1999 3231,1,1232—3  (0.33,0.33,033) 7/15/1999 1112321221 (0.44,0.44,0.11) 9/20/1999 3121123323 (0.33,0.33,0.33)
2/25/1999 3133313323  (0.22,0.11,0.67) 5/6/1999 2323111232  (0.33,0.33,033) 7/16/1999 21,1,1232,12-2  (0.44,0.44,0.11) 9/27/1999 1312112331  (0.44,0.22,0.33)
2/26/1999 23,1333133-2  (0.22,0.11,0.67) 5/7/1999 2232311122  (0.33,0.44,022) 7/17/1999 121,112321-1  (0.56,0.33,0.11) 9/28/1999 1131211231  (0.56,0.22,0.22)
3/1/1999 32313331353  (0.22,0.11,0.67) 5/10/1999 122323111-1  (0.44,033,0.22) 7/19/1999 1121112321 (0.56,0.33,0.11) 9/29/1999 1113121121  (0.67,022,0.11)
3/2/1999 2323133312  (0.22,0.22,0.56) 5/11/1999 2122323112  (0.33,0.44,022) 7/20/1999 2112111232  (0.56,0.33,0.11) 9/30/1999 2,1,1,131211-2  (0.67,0.22,0.11)
3/3/1999 1232313331 (0.22,0.22,0.56) 5/12/1999 2212232312  (0.22,0.56,0.22) 7/21/1999 321,1,2,1,1,1,23  (0.56,0.33,0.11) 10/1/1999 2211131212  (0.56,0.33,0.11)
3/4/1999 3123231333  (0.22,0.22,0.56) 5/13/1999 2221223232  (0.11,0.67,0.22) 7/22/1999 23211211152  (0.56,0.33,0.11) 10/2/1999 3221113123  (0.44,0.33,022)
3/5/1999 2312323132  (0.22,0.33,0.44) 5/14/1999 2222122322  (0.11,0.78,0.11) 7/23/1999 1232112111  (0.56,0.33,0.11) 10/4/1999 2322111312 (0.44,0.33,0.22)
3/6/1999 2231232312  (0.22,0.44,0.33) 5/15/1999 3222212233  (0.11,0.67,0.22) 7/26/1999 3123211213  (0.44,0.33,0.22) 10/5/1999 2232211132  (0.33,0.44,022)
3/8/1999 2223123232  (0.11,0.56,0.33) 5/17/1999 2322221222  (0.11,0.78,0.11) 7/27/1999 13,1,232,112—1  (0.44,0.33,0.22) 10/6/1999 1223221111  (0.44,0.44,0.11)
3/9/1999 2222312322  (0.11,0.67,022) 5/18/1999 2232222122  (0.11,0.78,0.11) 7/28/1999 113,12321,1-1  (0.56,0.22,0.22) 10/7/1999 1,1223221,1—1  (0.44,0.44,0.11)
3/10/1999 3222231233 (0.11,0.56,0.33) 5/19/1999 2223222212  (0.11,0.78,0.11) 7/29/1999 31,1,31,2321-3  (0.44,0.22,033) 10/8/1999 3112232213  (0.33,0.44,0.22)
3/11/1999 2322223122  (0.11,0.67,022) 5/20/1999 2222322222 (0,0.89,0.11) 7/30/1999 13,1,131232-1  (0.44,0.22,0.33) 10/11/1999 1311223221  (0.33,0.44,0.22)
3/12/1999 1232222311  (0.22,0.56,0.22) 5/21/1999 2222232222 (0,0.89,0.11) 7/31/1999 3131131233 (0.44,0.11,0.44) 10/12/1999 3131122323 (0.33,0.33,0.33)
3/15/1999 2123222232  (0.11,0.67,022) 5/24/1999 2222223222  (0,0.89,0.11) 8/2/1999 1313113121  (0.56,0.11,0.33) 10/13/1999 33,131,1,223-3 (0.33,0.22,0.44)
3/16/1999 3212322223  (0.11,0.67,0.22) 5/25/1999 22022222322 (0,0.89,0.11) 8/3/1999 1131311311  (0.67,0,0.33) 10/14/1999 2331311222  (0.33,0.33,033)
3/17/1999 3321232223  (0.11,0.56,0.33) 5/26/1999 1222222231 (0.11,0.78,0.11) 8/4/1999 2,113131,13-2  (0.56,0.11,0.33) 10/15/1999 3233131123  (0.33,0.22,0.44)
3/18/1999 3332123223  (0.11,0.44,0.44) 5/27/1999 2122222222 (0.11,0.89,0) 8/5/1999 1211313111  (0.67,0.11,0.22) 10/16/1999 1323313111  (0.44,0.11,0.44)
3/19/1999 3333212323 (0.11,0.33,0.56) 5/28/1999 2212222222 (0.11,0.89,0) 8/6/1999 11211313151  (0.67,0.11,0.22) 10/18/1999 2132331312  (0.33,0.22,0.44)
3/20/1999 333332123-3  (0.11,0.22,0.67) 5/29/1999 1221222221 (0.22,0.78,0) 8/7/1999 11,121,1,313-1  (0.67,0.11,0.22) 10/19/1999 121323313—1  (0.33,0.22,0.44)
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Table A2. Cont.

14 of 16

(MM]DD;;;(YYY) FFLR LHS of NLR MM, n[))g/eywy) FFLR LHS of NLR MM /ggfywy) FFLR LHS of NLR MM /DD]“;YYYY) FFLR LHS of NLR
3/22/1999 2333332122  (0.11,0.33,0.56) 5/31/1999 2122122222 (0.22,0.78,0) 8/9/1999 31,1,121131-3 (0.67,0.11,0.22) 10/20/1999 112132331-1 (0.44,0.22,0.33)
3/23/1999 3233333213  (0.11,0.22,0.67) 6/1/1999 1212212221 (0.33,0.67,0) 8/10/1999 231,1,121,13-2  (0.56,0.22,0.22) 10/21/1999 2112132332  (0.33,0.33,0.33)
3/24/1999 1323333321 (0.11,0.22,0.67) 6/2/1999 31,2,1,22122-3  (0.33,0.56,0.11) 8/11/1999 32311121153  (0.56,0.22,0.22) 10/22/1999 2211213232  (0.33,0.44,0.22)
3/25/1999 1,13233333—1  (0.22,0.11,0.67) 6/3/1999 3312122123  (0.33,0.44,0.22) 8/12/1999 23231112152  (0.44,0.33,0.22) 10/25/1999 1221121321  (0.44,0.44,0.11)
3/26/1999 31,13,23333-3  (0.22,0.11,0.67) 6/4/1999 333121221-3  (0.33,0.33,033) 8/13/1999 3232311123  (0.33,0.33,033) 10/26/1999 3122112133 (0.44,0.33,022)
3/29/1999 33,1,1,32333-3  (0.22,0.11,0.67) 6/5/1999 2333121222 (0.22,0.44,033) 8/16/1999 3323231,1,1-3  (0.33,0.22,0.44) 10/27/1999 2312211212  (0.44,0.44,0.11)
3/30/1999 133,1,13233—1  (0.33,0.11,0.56) 6/7/1999 3233312123 (0.22,0.33,0.44) 8/17/1999 33,3232311-3  (0.22,0.22,0.56) 10/28/1999 2231221122  (0.33,0.56,0.11)
3/31/1999 2133113232  (0.33,0.22,0.44) 6/8/1999 332333121-3  (0.22,0.22,0.56) 8/18/1999 33,3323231-3  (0.11,0.22,0.67) 10/29/1999 222312211-2  (0.33,0.56,0.11)
4/1/1999 2213311322  (0.33,0.33,033) 6/9/1999 3332333123  (0.11,0.22,0.67) 8/19/1999 133,332323—1  (0.11,0.22,0.67) 10/30/1999 2222312212  (0.22,0.67,0.11)
4/2/1999 32213311353 (0.33,0.22,0.44) 6/10/1999 333323331-3 (0.11,0.11,0.78) 8/20/1999 2133332322 (0.11,0.33,0.56)
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Abstract: Segmentation is considered as an important step in image processing and computer vision
applications, which divides an input image into various non-overlapping homogenous regions and
helps to interpret the image more conveniently. This paper presents an efficient image segmentation
algorithm using neutrosophic graph cut (NGC). An image is presented in neutrosophic set, and an
indeterminacy filter is constructed using the indeterminacy value of the input image, which is defined
by combining the spatial information and intensity information. The indeterminacy filter reduces
the indeterminacy of the spatial and intensity information. A graph is defined on the image and the
weight for each pixel is represented using the value after indeterminacy filtering. The segmentation
results are obtained using a maximum-flow algorithm on the graph. Numerous experiments have
been taken to test its performance, and it is compared with a neutrosophic similarity clustering (NSC)
segmentation algorithm and a graph-cut-based algorithm. The results indicate that the proposed
NGC approach obtains better performances, both quantitatively and qualitatively.

Keywords: image segmentation; neutrosophic set; graph cut; indeterminate filtering

1. Introduction

With a classical definition, image segmentation refers to dividing an input image into several
sub-images according to a pre-defined criterion where the sub-images are disjointed, homogenous
and meaningful. Image segmentation is also known as an important and crucial step in many
computer vision and pattern-recognition applications. Many researchers have been working on image
segmentation, and works have been done [1].

Among the published works, graph-based segmentation algorithms constitute an important
image segmentation category [2]. A graph G can be denoted as G = (V, E) where V and E are a set
of vertices and edges. On an image, vertices can be either pixels or regions, and edges connect the
neighboring vertices [3]. A weight is a non-negative measure of dissimilarity which is associated with
each edge using some property of the pixels.

In this paper, using the advantages of neutrosophic to interpret the indeterminacy on the image,
we combine neutrosophic set into the graph cut for image segmentation. Neutrosophic set (NS) was
an extension of the fuzzy set [4]. In NS theory, a member of a set has degrees to the truth, falsity, and
indeterminacy, respectively [5]. Therefore, it has an ability to deal with the indeterminacy information
and has attracted much attention in almost all engineering communities and subsequently a great
number of works have been studied, such as NS-based color and texture segmentation [6-14], NS-based
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clustering [15-17], NS-based similarity for image thresholding [18], NS-based edge detection [19] and
NS-based level set [20].

Firstly, the image is interpreted using neutrosophic set and indeterminacy degree is calculated
accordingly. Then an indeterminacy filter is constructed using the indeterminacy value on the image
which is defined by combining the spatial and intensity information. The indeterminacy filter reduces
the indeterminacy in the intensity and spatial information respectively. A graph is defined on the
image and the weight for each pixel is represented using the value after indeterminacy filtering,
and the energy function is also redefined using the neutrosophic value. A maximum-flow algorithm
on the graph is employed to obtain the final segmentation results.

The proposed method has the following new contributions: (1) an indeterminate filter is proposed
to reduce the uncertain information in the image; and (2) a new energy function in graph model is
defined in neutrosophic domain and used to segment the image with better performance.

The rest of the paper is structured: Section 2 briefly reviews the previous works. Section 3
describes the proposed method based on neutrosophic graph cut. Section 4 provides the experimental
results. Conclusions are drawn in Section 5.

2. Previous Works

As mentioned in the Introduction Section, graph based image segmentation has gained much
attention from the domain researchers with many published papers. A systematic survey work
on graph-based image segmentation was conducted by Peng et al. [21]. In this survey, authors
categorized the graph-based image segmentation methods into five groups. The first category is
minimal spanning tree (MST)-based method. The MST is a popular concept in graph theory with
numerous works. In [22], a hierarchical image segmentation method was proposed based on MST [22].
This method segmented the input image iteratively. At each iteration, one sub-graph was produced
and, in the final segmentation, there were a given number of sub-graphs. In [23], a region merging
procedure was adopted to produce a MST-based image segmentation algorithm using the differences
between two sub graphs and inside graphs.

Cost-function-based graph cut methods constitute the second category. The most popular
graph-based segmentation methods are in this category. Wu et al. [3] applied the graph theory
to image segmentation and proposed the popular minimal cut method to minimize a cost function.
A graph-based image segmentation approach namely normalized cut (Ncut) was presented [24].
It alleviates shortcomings of the minimal cut method by introducing an eigen system. Wang et al. [25]
presented a graph-based method and a cost function and defined it as the ratio of the sum of different
weights of edges along the cut boundary. Ding et al. [26] presented a cost function to alleviate
the weakness of the minimal cut method, in which the similarity between two subgraphs was
minimized, and the similarity within each subgraph was maximized. Another efficient graph-based
image segmentation method was proposed in [27], and considered both the interior and boundary
information. It minimized the ratio between the exterior boundary and interior region. The Mean-Cut
incorporates the edge weight function [25] to minimize the mean edge weight on the cut boundary.

Methods based on Markov random fields (MRF) are in the third class, and the shortest-path-based
methods are classified in the fourth class. Generally, MRF-based graph cut methods form a graph
structure with a cost function and try to minimize that cost function to solve the segmentation problem.
The shortest path based methods searched the shortest path between two vertices [21], and the
boundaries of segments were achieved by employing the shortest path. The shortest-path-based
segmentation methods need interaction from users.

The other graph-based methods are categorized into the fifth class. The random walker (RW)
method by Grady [28] used a weighted graph to obtain labels of pixels and then these weights were
considered as the likelihood that RW went across the edge. Finally, a pixel label was assigned by
the seed point where the RW reached first.
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3. Proposed Method

3.1. Neutrosophic Image

An element in NS is defined as: let A = {Ay, Az, , ...., Am} as a set of alternatives
in neutrosophic set. The alternative A; is {T(4;), I(A;),F(A;)}/Aj, where T(A;), I(A;) and F(A;) are
the membership values to the true, indeterminate and false set.

An image I,; in NS is called neutrosophic image, denoted as Iys which is interpreted using T5,
Is and Fs. Given a pixel P(x,y) in Iys, it is interpreted as Pys(x,y) = {Ts(x,y), Is(x,y), Fs(x,y)}.
Ts(x,y), Is(x,y) and Fs(x,y) represent the memberships belonging to foreground, indeterminate set
and background, respectively.

Based on the intensity value and local spatial information, the true and indeterminacy
memberships are used to describe the indeterminacy among local neighborhood as:

Ts(x,y) = BU¥)~ Smin 8

max — &min
Gd(x,y) — Gdmin
Is(x,y) = 2
( y) Gdmax — dein ( )
where g(x,y) and Gd(x,y) are the intensity and gradient magnitude at the pixel of (x,y) on the image.

We also compute the neutrosophic membership values based on the global intensity distribution
which considers the indeterminacy on intensity between different groups. The neutrosophic

c-means clustering (NCM) overcomes the disadvantages on handling indeterminate points in other
algorithms [16]. Here, we use NCM to obtain the indeterminacy values between different groups
on intensity to be segmented.

Using NCM, the truth and indeterminacy memberships are defined as:

1 & __2 1 2 1 )
K=|— xXi—cj) "4+ —(x;—7¢; Tm—1 4§ m1 3
(Dl];( i ]) @2( i zmax) 3 3)
K _ 2
Tyj = - (xi—¢) "7 @)
K _ _ 2
In; = gz(xi — Cimax) " (5)

where T, and I, are the true and indeterminacy membership value of point i, and the cluster centers
iS ¢j. Cimax is obtained using to indexes of the largest and second largest value of Tj;. They are updated
k+1 k
(k+1) _ Tr(l,»j)

at each iteration until Tnij < ¢, where ¢ is a termination criterion.

3.2. Indeterminacy Filtering

A filter is newly defined based on the indeterminacy and used to remove the effect
of indeterminacy information for segmentation, in which the kernel function is defined using
a Gaussian function as follows:

1 2 4 2
Gr(u,v) = 271012 exp (_u 20120 ) (6)
or(x,y) = f(I(x,y)) = al(x,y) +b @)

where 07 is the standard deviation value where is defined as a function f(-) associated
to the indeterminacy degree. When the indeterminacy level is high, o7 is large and the filtering
can make the current local neighborhood more smooth. When the indeterminacy level is low, o7 is
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small and the filtering takes a less smooth operation on the local neighborhood. The reason to use
Gaussian function is that it can map the indeterminate degree to a filter weight more smooth.
An indeterminate filtering is taken on Ts(x, y), and it becomes more homogeneous.

y+m/2  x4m/2

Ti(x,y) = Ts(x,y) ® Grs(u,0) = ) Y. Ts(x—u,y—0)G(u,0) (8)
v=y—m/2 u=x—m/2
1 u? 4 02
G[S(u, U) = ?0_125 exp <_20‘12s> (9)
o1s(x,y) = f(Is(x,y)) = als(x,y) + b (10)

where T} is the indeterminate filtering result. a and b are the parameters in the linear function
to transform the indeterminacy level to parameter value.

The filtering is also used on Ty, (x,y) after NCM. The input of NCM is the local spatial
neutrosophic value after indeterminacy filtering.

y+m/2  x4+m/2

Tnf]-(x,y) = Tnjj(x,y) ® Gru(u,0) = ) / ) / Tnij(x — u,y — v) Gy (1, v) (11)
v=y—m/2u=x—m/2
1 u? + 02
Grn(u,v) = —- - 12
in(1,) 2mo?, exp< 202, ) (12)
om(x,y) = f(In(x,y)) = cIn(x,y) +d (13)

where Tnl’-j is the indeterminate filtering result on Ts and m is the size of the filter kernel. Tnfj is
employed to construct a graph, and a maximum-flow algorithm is used to segment the image.

3.3. Neutrosophic Graph Cut

A cut C =(S,T) partitions a graph G = (V,E) into two subsets: S and T. The cut set of a cut C = (5,T)
is the set {(u,v) € E|lu € S, v € T} of edges that have one endpoint in S and the other endpoint in
T. Graph cuts can efficiently solve image segmentation problems by formulating in terms of energy
minimization, which is transformed into the maximum flow problem in a graph or a minimal cut
of the graph.

The energy function often includes two components: data constrict E;,;, and smooth constrict
Esmootn as:

E(f) = Edata (f) + Esmooth (f) (14)

where f is a map which assigns pixels to different groups. E s, measures the disagreement between f
and the assigned region, which can be represented as a t-link, while Eg;;o,s, evaluates the extent of how
f is piecewise smooth and can be represented as an n-link in a graph.

Different models have different forms in the implementation of the energy function. The function
based on Potts model is defined as:

E(f) = Z Dp(fp) +{ Z V{p,q}(fpffq) (15)

peP payEN

where p and g are pixels, and N is the neighborhood of p. D, evaluates how appropriate a segmentation
is for the pixel p.

In the proposed neutrosophic graph cut (NGC) algorithm, the data function D, and smooth
function Vi, ., are defined as:

Djj(p) =|Tnj;(p) — C; (16)
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Vipay (o fg) = ud(fp # fq) 17)
1 iffy, # fy

(18)
0 otherwise

S(fp # fo) = {
where u is a constant number in [0, 1] and used for a penalty of the disagree of labeling of pixel p and 4.
After the energy function is redefined in the neutrosophic set domain, a maximum flow algorithm
in graph cut theory is used to segment the objects from the background.
All steps can be summarized as:

Step 1: Compute the local neutrosophic value Ts and I;.

Step 2: Take indeterminate filtering on T; using I;.

Step 3: Use NCM algorithm on the filtered T; subset to obtain T, and I;;.
Step 4: Filter T, using indeterminate filter based on I,.

Step 5: Define the energy function based on the T;,’ value.

Step 6: Partition the image using the maximum flow algorithm.

The flowchart of the proposed approach is shown in Figure 1 as:

[ Input image ]

\’

Compute Ts and Is using local intensities

Take indeterminacy filtering on Ts subset

v

Compute T and I using NCM on filtered Ts

|

Take indeterminacy filtering on T» subset

4

Define the energy function using filtered T

Segment image using maximum flow algorithm

[ Segmented image ]

Figure 1. The flowchart of the proposed method.

To show the steps of the whole algorithm, some intermediate results are demonstrated using
an example image in Figure 2.
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(a) ' - (b).

Figure 2. Intermediate results for “Lena” image: (a) Original image; (b) Result of Ts; (c) Result of Is;
(d) Filtered result of Ts; (e) Filter result of Tn; (f) Final result.
4. Experimental Results

It is challenging to segment images having uncertain information such as noise. Different
algorithms have been developed to solve this problem. To validate the performance of the NGC
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approach on image segmentation, we test it on many images and compare its performance with
a newly published neutrosophic similarity clustering (NSC) method [12] which performed better than
previous methods [6], and a newly developed graph cut (GC) method [29].

All experiments are taken using the same parameters: a = 10; b = 0.25; ¢ = 10; d = 0.25; and u = 0.5.

4.1. Quantitatively Evaluation

Simulated noisy images are employed to compare the NGC with NSC and GC methods visually,
and then their performances are tested quantitatively by using two metrics. In the NSC method [12],
simulated noisy images were employed to evaluate its performance. To make the comparison fair and
consistent, we use the same images and noise and test three algorithms on them.

A simulated image having intensities of 64, 128, and 192 is added with Gaussian noises and used
to evaluate the performance of NGC, NSC, and GC algorithms. Figure 3a shows the original noisy
images with noise mean values are 0 and variance values: 80, 100, and 120, respectively. Figure 3b-d
lists results by the NSC, GC, and NGC methods, respectively. The results in Figure 3 also show the
NGC performs visually better than NSC and GC methods on the simulated images with low contrast
and noises. Pixels in Figure 3b,c that are segmented into wrong groups are assigned into the right
groups by NGC method in Figure 3d. Boundary pixels, which are challenging to label, are also
segmented into right categories by NGC.

Misclassification error (ME) is used to evaluate the segmentation performances [30-32]. The ME
measures the percentage of background wrongly categorized into foreground, and vice versa.

|Bo N Br|+|Fo N Fr|
|Bo|+|Fol

where F,, By, Fr, and Br are the object and background pixels on the ground truth image and
the resulting image, respectively.

ME =1 — (19)

In addition, FOM [31] is used to evaluate the difference between the segmented results with
the ground truth:
1 N4 1

FOM =
max(Nj, NA)k:Zi 1+ Bd?(k)

(20)

where Nj and Ny are the numbers of the segment object and the true object pixels. d(k) is the distance
from the ky, actual pixel to the nearest segmented result pixel. § is a constant and set as 1/9 in [31].
The quality of the noisy image is measured via a signal to noise ratio (SNR):

H-1W-1

Y X ()
SNR = 10log H_lel c=1 1)
;1 ;1 (I(r,¢) = In(r,c))?

where I,,(r,c)and I(r,c) are the intensities of point (,c) in the noisy and original images, respectively.
The results of ME and FOM are drawn in Figures 4 and 5, where = denotes NSC method, o denotes
GC method, and + is NGC method. NGC method has the lowest ME values. All ME by NGC are
smaller than 0.043, and all values from NSC and GC methods are larger than those from NGC method.
The NGC obtains the best performance with ME = 0.0068 when SNR is 5.89 dB, while NSC has the
lowest value ME = 0.1614 and GC ME = 0.0327. NGC also has bigger FOM than NSC and GC, especially
at the low SNR. The comparison results are listed in Table 1. The mean and standard deviation of the
ME and FOM are 0.247 £ 0.058 and 0.771 £ 0.025 using NSC method, 0.062 = 0.025 and 0.897 £ 0.027
using GC method, 0.015 £ 0.011 and 0.987 =+ 0.012 using NGC method, respectively. The NGC method
achieves better performance with lesser values of ME and FOM than the NSC and GC methods.
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Figure 3. Segmentation comparison on a low contrast synthetic noisy image: (a) Artificial image with
different levels of Gaussian noises; (b) Results of the NSC; (c) Results of the GC; (d) Results of the NGC.
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02

ME

015

01

SNR(dB)

Figure 4. Plot of ME: %, NSC method; o, GC method; +, NGC method.

=
O 085
s

08

0.75 -

SMR(dB)

Figure 5. Plot of FOM: s, NSC method; o, GC method; +, NGC method.

Table 1. Performance comparisons on evaluation metrics.

Metrics NSC GC NGC
ME 0.247 + 0.058 0.062 + 0.025 0.015 + 0.011
FOM 0.771 + 0.025 0.897 + 0.027 0.987 + 0.012

9 of 25
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4.2. Performance on Natural Images

Many images are employed to validate the NGC'’s performance. We also compare the results
with a newly developed image segmentation algorithm based on an improved kernel graph cut (KGC)
algorithm [33]. Here, five images are randomly selected to show the NGC method’s segmentation
performance. The first row in Figures 6—10 shows the original images and segmentation results
of NSC, GC, KGC, and NGC, respectively. The other rows demonstrate the results on the noisy images.
The results by NGC have better quality than those of NSC, GC, and KGC visually. On the original
images, the NGC and GC obtain similarly accurate results, while the KGC obtains under-segmented
results. When the noise is increased, the NSC and GC are deeply affected and have a lot of
over-segmentation, and the KGC results are under-segmentation and lose some details. However,
NGC is not affected by noise and most pixels are categorized into the right groups, and the details
on the boundary are well segmented.

Figure 6 shows the segmentation results on the “Lena” image. The results in the fourth columns
are better than in the second and third columns. Regions of face, nose, mouth, and eyes are segmented
correctly by NGC. The noisy regions as hair region and the area above the hat are also segmented
correctly. However, the NSC and GC methods obtain wrong segmentations, especially in the region
above the hat. The KGC results lose some detail information on face and eyes. In the observation,
the NGC algorithm is better than NSC.

Figure 6. Cont.
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Figure 6. Comparison results on “Lena” image: (a) “Lena” image with different Gaussian noise level:
variance: 0, 10, 20, 30; (b) Segmentation results of NSC; (c) Segmentation results of GC; (d) Segmentation
results of KGC; (e) Segmentation results of NGC.
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We also compared the performances of all methods on the “Peppers” image, as shown in Figure 7.
As mentioned earlier for other comparisons, for zero noise level, GC, NGC, and KGC produced similar
segmentations. GC, KGC and NGC methods produced better segmentation results than NSC in all
noise levels. When the noise level increased, the efficiency of the proposed NGC method became
more obvious. There were some wrong segmentation regions (black regions in gray pepper regions)
in the GC results. Some of the background regions were also wrongly segmented by the GC method.
More proper segmentations were obtained with the proposed NGC method. Especially, for noise levels
20 and 30, the NGC method’s segmentation achievement was visually better than the others, with less
wrongly segmented regions produced. On this image, the KGC achieves similar performance as NGC
on the segmentation results.

The comparison results on the “Woman” image are given in Figure 8. It is obvious that the NSC
method produced worse segmentations when the noise level increased. The GC and KGC methods
produced better results when compared to the NSC method, with more homogeneous regions
produced. It is also worth mentioning that the GC, KGC and NGC methods produced the same
segmentation results for the noiseless case. However, when the noise level increased, the face of the
woman became more complicated. On the other hand, the proposed NGC method produced more
distinctive regions when compared to other methods. On the results of KGC, the boundary of eyes
and nose cannot be recognized. In addition, the edges of the produced regions by NGC were smoother
than for the others.

()

Figure 7. Cont.
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Figure 7. Cont.
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Figure 7. Comparison results on “Peppers” image: (a) “Peppers” image with different Gaussian
noise level: variance: 0, 10, 20, 30; (b) Segmentation results of NSC; (c¢) Segmentation results of GC;
(d) Segmentation results of KGC; (e) Segmentation results of NGC.
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Figure 8. Cont.
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Figure 8. Cont.
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Figure 8. Comparison results on “Woman” image: (a) “Woman” image with different Gaussian
noise level: variance: 0, 10, 20, 30; (b) Segmentation results of NSC; (c) Segmentation results of GC;
(d) Segmentation results of KGC; (e) Segmentation results of NGC.

We also compared these methods on the “Lake” image, as shown in Figure 9. In the comparisons,
it is seen that GC, KGC and NGC methods produced better results than for the NSC method. The results
are especially better at high noise levels. It should be specified that GC and KGC methods produced
more homogeneous regions, but, in that case, the boundary information was lost. This is an important
disadvantage of the GC method. On the other hand, the proposed NGC method also produced comparable
homogeneous regions, while preserving the edge information. The proposed method especially yielded
better results at high noise levels.

In Figure 10, a more convenient image was used for comparison purposes. While the blood cells
can be considered as objects, the rest of the image can be considered as background. In the “Blood”
image, the NSC and NGC methods produced similar segmentation results. The KGC has some wrong
segmentation on the background region. The NGC has better results on the noisy blood images where
the blood cells are extracted accurately and completely. The superiority of the NGC algorithm can also
be observed in this image.
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(b)

Figure 9. Cont.
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Figure 9. Cont.
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Figure 9. Comparison results on “Lake” image: (a) “Lake” image with different Gaussian noise level:
variance: 0, 10, 20, 30; (b) Segmentation results of NSC; (c) Segmentation results of GC; (d) Segmentation
results of KGC; (e) Segmentation results of NGC.

Figure 10. Cont.
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Figure 10. Comparison results on “Blood” image: (a) “Blood” image with different Gaussian noise
level: variance: 0, 10, 20, 30, 40; (b) Segmentation results of NSC; (¢) Segmentation results of GC;
(d) Segmentation results of KGC; (e) Segmentation results of NGC.
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5. Conclusions

This study aims to develop an efficient method to segment images having uncertain information
such as noise. To overcome this challenge, a novel image segmentation method is proposed based
on neutrosophic graph cut in this paper. An image is mapped into the neutrosophic set domain and
filtered using a newly defined indeterminacy filter. Then, a new energy function is designed according
to the neutrosophic values after indeterminacy filtering. The indeterminacy filtering operation removes
the indeterminacy in the global intensity and local spatial information. The segmentation results are
obtained by maximum flow algorithm. Comparison results demonstrate the better performance
of the proposed method than existing methods, in both quantitative and qualitative terms. It also
shows that the presented method can segment the images properly and effectively, on both clean
images and noisy images, because the indeterminacy information in the image has been handled well
in the proposed approach.
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Abstract: k-nearest neighbors (k-NN), which is known to be a simple and efficient approach,
is a non-parametric supervised classifier. It aims to determine the class label of an unknown sample
by its k-nearest neighbors that are stored in a training set. The k-nearest neighbors are determined
based on some distance functions. Although k-NN produces successful results, there have been some
extensions for improving its precision. The neutrosophic set (NS) defines three memberships namely
T,Iand F. T, I, and F shows the truth membership degree, the false membership degree, and the
indeterminacy membership degree, respectively. In this paper, the NS memberships are adopted to
improve the classification performance of the k-NN classifier. A new straightforward k-NN approach
is proposed based on NS theory. It calculates the NS memberships based on a supervised neutrosophic
c-means (NCM) algorithm. A final belonging membership U is calculated from the NS triples as
U =T+ I — F. A similar final voting scheme as given in fuzzy k-NN is considered for class label
determination. Extensive experiments are conducted to evaluate the proposed method’s performance.
To this end, several toy and real-world datasets are used. We further compare the proposed method
with k-NN, fuzzy k-NN, and two weighted k-NN schemes. The results are encouraging and the
improvement is obvious.

Keywords: k-NN; Fuzzy k-NN; neutrosophic sets; data classification

1. Introduction

The k-nearest neighbors (k-NN), which is known to be the oldest and simplest approach,
is a non-parametric supervised classifier [1,2]. It aims to determine the class label of an unknown
sample by its k-nearest neighbors that are stored in a training set. The k-nearest neighbors are
determined based on some distance functions. As it is simplest and oldest approach, there have
been so many data mining and pattern recognition applications, such as ventricular arrhythmia
detection [3], bankruptcy prediction [4], diagnosis of diabetes diseases [5], human action recognition [6],
text categorization [7], and many other successful ones.

Although k-NN produces successful results, there have been some extensions for improving its
precision. Fuzzy theory-based k-NN (Fuzzy k-NN) has been among the most successful ones. As k-NN
produces crisp memberships for training data samples, fuzzy k-NN replaces the crisp memberships
with a continuous range of memberships which enhances the class label determination. Keller et al. [8]
was the one who incorporated the fuzzy theory in the k-NN approach. Authors proposed three
different methods for assigning fuzzy memberships to the labeled samples. After determination
of the fuzzy memberships, some distance function was used to weight the fuzzy memberships for
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final class label determination of the test sample. The membership assignment by the conventional
fuzzy k-NN algorithm has a disadvantage in that it depends on the choice of some distance function.
To alleviate this drawback, Pham et al. [9] proposed an optimally-weighted fuzzy k-NN approach.
Author introduced a computational scheme for determining optimal weights which were used to
improve the efficiency of the fuzzy k-NN approach. Denceux et al. [10] proposed a k-NN method
where Dempster-Shafer theory was used to calculate the memberships of the training data samples.
Author assumed that each neighbor of a sample to be classified was considered as an item of
evidence and the degree of support was defined as a function of the distance. The final class label
assignment was handled by Dempster’s rule of combination. Another evidential theory-based k-NN
approach, denoted by Ek-NN, has been proposed by Zouhal et al. [11]. In addition to the belonging
degree, the authors introduced the ignorant class to model the uncertainty. Then, Zouhal et al. [12]
proposed the generalized Ek-NN approach, denoted by FEK-NN. Authors adopted fuzzy theory for
improving the Ek-NN classification performance. The motivation for the FEk-NN was arisen from
the fact that each training sample was considered having some degree of membership to each class.
In addition, Liu et al. [13] proposed an evidential reasoning based fuzzy-belief k-nearest neighbor
(FBK-NN) classifier. In FBK-NN, each labeled sample was assigned with a fuzzy membership to
each class according to its neighborhood and the test sample’s class label was determined by the
K basic belief assignments which were determined from the distances between the object and its K
nearest neighbors. A belief theory based k-NN, denoted by the BK-NN classifier was introduced
by Liu et al. [14]. The author aimed to deal with uncertain data using the meta-class. Although,
the proposed method produced successful results, the computation complexity and the sensitivity to k
makes the approach inconvenient for many classification application. Derrac et al. [15] proposed an
evolutionary fuzzy k-NN approach where interval-valued fuzzy sets were used. The authors not only
defined a new membership function, but also a new voting scheme was proposed. Dudani et al. [16]
proposed a weighted voting method for k-NN which was called the distance-weighted k-NN (WKNN).
Authors presumed that the closer neighbors were weighted more heavily than the farther ones,
using the distance-weighted function. Gou et al. [17] proposed a distance-weighted k-NN (DWKNN)
method where a dual distance-weighted function was introduced. The proposed method has improved
the traditional k-NN’s performance by using a new method for selection of the k value.

In [18-21], Smarandache proposed neutrosophic theories. Neutrosophy was introduced as
a new branch of philosophy which deals with the origin, nature, and scope of neutralities, and their
interactions with different ideational spectra [19]. Neutrosophy is the base for the neutrosophic set
(NS), neutrosophic logic, neutrosophic probability, neutrosophic statistics, and so on. In NS theory,
every event has not only a certain degree of truth, but also a falsity degree and an indeterminacy
degree that have to be considered independently from each other [20]. Thus, an event, or entity, {A} is
considered with its opposite {Anti-A} and the neutrality {Neut-A}. NS provides a powerful tool to deal
with the indeterminacy. In this paper, a new straightforward k-NN approach was developed which is
based on NS theory. We adopted the NS memberships to improve the classification performance of the
k-NN classifier. To do so, the neutrosophic c-means (NCM) algorithm was considered in a supervised
manner, where labeled training data was used to obtain the centers of clusters. A final belonging
membership degree U was calculated from the NS triples as U = T + I — F. A similar final voting
scheme as given in fuzzy k-NN was employed for class label determination.

The paper is organized as follows: In the next section, we briefly reviewed the theories of --NN
and fuzzy k-NN. In Section 3, the proposed method was introduced and the algorithm of the proposed
method was tabulated in Table 1. The experimental results and related comparisons were given
in Section 4. The paper was concluded in Section 5.
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2. Related works

2.1. k-Nearest Neighbor (k-NN) Classifier

As it was mentioned earlier, k-NN is the simplest, popular, supervised, and non-parametric
classification method which was proposed in 1951 [1]. It is a distance based classifier which needs to
measure the similarity of the test data to the data samples stored in the training set. Then, the test data
is labelled by a majority vote of its k-nearest neighbors in the training set.

Let X = {x9,x2,...,xN} denote the training set where x; € R" is a training data point in the
n-dimensional feature space and let Y = {y,¥2,...,yn} denotes the corresponding class labels.
Given a test data point X whose class label is unknown, it can be determined as follows:

e  Calculate the similarity measures between test sample and training samples by using a distance
function (e.g., Euclidean distance)

e  Find the test sample’s k nearest neighbors in training data samples according to the similarity
measure and determine the class label by the majority voting of its nearest neighbors.

2.2. Fuzzy k-Nearest Neighbor (k-NN) Classifier

In k-NN, a training data sample x is assumed to belong to one of the given classes so the
membership U of that training sample to each class of C is given by an array of values in {0, 1}.
If training data sample x belongs to class ¢ then U, (x) = 1 and U, (x) = 0 where C = {c1, c2}.

However, in fuzzy k-NN, instead of using crisp memberships, continuous range of memberships
is used due to the nature of fuzzy theory [8]. So, the membership of training data sample can be
calculated as: L

e (x) = { 0.51+049%L if c = ¢; @

- ke .
0.49 ¢ otherwise

where k., shows the number of instances belonging to class c¢; found among the k neighbors of X and k
is an integer value between [3,9].

After fuzzy membership calculation, a test sample’s class label can be determined as following.
Determine the k nearest neighbors of the test sample via Euclidean distance and produce a final vote
for each class and neighbor using the Euclidean norm and the memberships:

Ue (k;)

V(K c) = B @

i=1 _2
(1% —ki[) m=1

where k; is the jth nearest neighbor and m = 2 is a parameter. The votes of each neighbor are then
added to obtain the final classification.

3. Proposed Neutrosophic-k-NN Classifier

As traditional k-NN suffers from assigning equal weights to class labels in the training dataset,
neutrosophic memberships are adopted in this work to overcome this limitation. Neutrosophic
memberships reflect the data point’s significance in its class and these memberships can be used as
a new procedure for k-NN approach.

Neutrosophic set can determine a sample’s memberships belonging to truth, false,
and indeterminacy. An unsupervised neutrosophic clustering algorithm (NCM) is used in a supervised
manner [22,23]. Crisp clustering methods assumed that every data points should belong to a cluster
according to their nearness to the center of clusters. Fuzzy clustering methods assigned fuzzy
memberships to each data point according to their nearness to the center of cluster. Neutrosophic
clustering assigned memberships (T, I, and F) to each data point not only according to its nearness to a
cluster center, but also according to the nearness to the center mean of the two clusters. Readers may
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refer to [22] for detailed information about the NCM clustering. As the labels of a training dataset
samples are known in a supervised learning, the centers of the clusters can be calculated accordingly.
Then, the related memberships of true (T), false (F), and indeterminacy (I) can be calculated as follows:

2
(xl- — Cj)i(m—l)
b = )
] Z]'Czl (xi - C]')i(mil) + (xi - E1'max)7(%) + 57(%)
7(1712— )
F = (9) ! W
C 7(i) - (=2 ) 7( 2 )
Z]_l (xz C]) m=1/ 1 (xl Clmux) m=1/) 4 5 \m—1
= v GED
pe Cc m
I = ( i lmax) . i &)

(-2 _ (-2
Z]C:](xiicj) (m71)+(xi*6imax) (m—l)+§ (m 1)

where m is a constant, ¢ is a regularization parameter and c; shows the center of cluster j. For each
point i, the Cj;,;, is the mean of two cluster centers where the true membership values are greater than
the others. Tj; shows the true membership value of point i for class j. F; shows the falsity membership
of point i and I; determines the indeterminacy membership value for point i. Larger T;; means that the
point i is near a cluster and less likely to be a noise. Larger I; means that the point 7 is between any
two clusters and larger F; indicates that point 7 is likely to be a noise. A final membership value for
point i can be calculated by adding indeterminacy membership value to true membership value and
subtracting the falsity membership value as shown in Equation (6).

After determining the neutrosophic membership triples, the membership for an unknown sample
xy to class label j, can be calculated as [9]:

Yy di(Ty + I = Fy)
2?21 di
S ?)

2
[l — x| 71

Hju = (6)

where d; is the distance function to measure the distance between x; and x,,, k shows the number of
k-nearest neighbors and g is an integer. After the assignment of the neutrosophic membership grades
of an unknown sample x, to all class labels, the neutrosophic k-NN assigns x, to the class whose
neutrosophic membership is maximum. The following steps are used for construction of the proposed
NS-k-NN method:

Step1: Initialize the cluster centers according to the labelled dataset and employ Equations (3)—(5)
to calculate the T, I, and F values for each data training data point.

Step2: Compute membership grades of test data samples according to the Equations (6) and (7).

Step 3: Assign class labels of the unknown test data points to the class whose neutrosophic
membership is maximum.

4. Experimental Works

The efficiency of the proposed method was evaluated with several toy and real datasets. Two toy
datasets were used to test the proposed method and investigate the effect of the parameters change on
classification accuracy. On the other hand, several real datasets were used to compare the proposed
method with traditional k-NN and fuzzy k-NN methods. We further compare the proposed method
with several weighted k-NN methods such as weighted k-NN (WKNN) and distance-weighted
k-nearest neighbor (DWKNN).

The toy dataset that were used in the experiments were shown in Figure 1a,b respectively. Both toy
datasets contain two dimensional data with four classes. Randomly selected half of the toy datasets were
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used for training and the other half were used for testing. The k value was chosen to be 5, 10, and 15 and
the 6 parameter was chosen to be 0.01, 0.1, and 1, respectively. The obtained results were shown in Figure 2,
respectively. As seen in the first row of Figure 2, the proposed method obtained 100% classification
accuracy with k = 10 and 6 = 0.01 values for both toy datasets. However, 100% correct classification did not
obtained for the other parameters as shown in the second and the third rows of Figure 2. This situation
shows that the proposed method needs a parameter tuning mechanism in the k vs. J space. So, k was set to
an integer value between [2, 15] and  parameter was also searched on {2_10, 28 .., 28210 }
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Figure 1. Toy datasets. (a) Corner data; (b) line data.

We conducted further experiments on 39 real-world datasets which were downloaded from
KEEL dataset repository [24]. Each dataset was already partitioned according to the cross validation
procedure (five-folds or 10-folds). Table 1 shows several characteristics of the each dataset such as
number of samples, number of features, and number of classes. All feature values were normalized to
[—1, 1] and a five-folds cross validation procedure was adopted in all experiments. The accuracies were
calculated as the ratio of the number of correctly classified samples to the total number of samples.

Table 1. Data sets and their properties.

Instance  Attribute Class Instance  Attribute Class
Data Sets @ ) @ Data Sets @ ) @
Appendicitis 106 7 2 Penbased 10,992 16 10
Balance 625 4 3 Phoneme 5404 5 2
Banana 5300 2 2 Pima 768 8 2
Bands 365 19 2 Ring 7400 20 2
Bupa 345 6 2 Satimage 6435 36 7
Cleveland 297 13 5 Segment 2310 19 7
Dermatology 358 34 6 Sonar 208 60 2
Ecoli 336 7 8 Spectfheart 267 44 2
Glass 214 9 7 Tae 151 5 3
Haberman 306 3 2 Texture 5500 40 11
Hayes-roth 160 4 3 Thyroid 7200 21 3
Heart 270 13 2 Twonorm 7400 20 2
Hepeatitis 80 19 2 Vehicle 846 18 4
Ionosphere 351 33 2 Vowel 990 13 11
Iris 150 4 3 Wdbc 569 30 2
Mammographic 830 5 2 Wine 178 13 3
Monk-2 432 6 2 Winequality-red 1599 11 11
Movement 360 90 15 Winequality-white 4898 11 11
New thyroid 215 5 3 Yeast 1484 8 10
Page-blocks 5472 10 5 - - - -




Symmetry 2017, 9, 179 6 of 10

15 09
o
08
10 o
— )
o oo o7}
= s ° N
0o © g
Il &3% ®o @ 06F +W A
w 8 of K
e o PR 05
+
% SF h -
Lo + 0.4
Il 1ol
e + oy 03
15 02 . . .
18 -0 5 0 5 10 1 01 02 03 04 05 06 07 08 09
X1 X1
(a) (b)
25 09 T T
2 o
o 08 [+
— 151 omg
y o o7
o 1
o
Il o a0 # +
w 05 5o ° © 06 ¥ *f"%#%;ﬁ
o} g o o
[ 05
0.5 i + o+ 4
4] Y + + @%& 0 0F
= 1 * 04 ©
— o y
I 15 b
e + 03
2 +
o5 . . . . . 02 . . . . .
25 2 45 4 05 0 05 1 15 2 o1 02 03 04 05 06 07 08 09
x1 X1
(c) (d)
25 : : ! : : : ! . 0.9 -
2 0 08 b -
15 % .
o
— 1 [} 0.7
Il
o
w 0.5 0o Cgoo oo
2 R o
(4] 05 o b+t
1) M
— At
Il
R 15 H
4
2F ¥ o4
25 . . . 02 . . . . . . .
2 45 4 05 0 05 1 15 2 25 01 02 03 04 05 06 07 08 09
X1 X1
(e) (f)

Figure 2. Some classification results for various k and § parameters. (a) classification result 1 of
corner data with various parameters; (b) classification result 1 of line data with various parameters
(c) classification result 2 of corner data with various parameters (d) classification result 2 of line
data with various parameters (e) classification result 3 of corner data with various parameters;
(f) classification result 3 of line data with various parameters.

In addition to our results, we also compared our results with k-NN and fuzzy k-NN results on the
same datasets. The obtained results were tabulated in Table 2 where the best results were indicated
with bold-face. As seen in Table 2, the proposed method performed better than the other methods
in 27 of 39 datasets. In addition, k-NN and fuzzy k-NN performed better on six and seven datasets
out of 39 datasets, respectively. Our proposal obtained 100% accuracy for two datasets (new thyroid
and wine). Moreover, for 13 datasets, the proposed method obtained accuracy values higher than
90%. On the other hand, the worse result was recorded for “Wine quality-white” dataset where the
accuracy was 33.33%. Moreover, there were a total of three datasets where the accuracy was lower than
50%. We further conducted experiments on several datasets from UCI-data repository [25]. Totally,
11 datasets were considered in these experiments and compared results with two weighted k-NN
approaches, namely WKNN and DWKNN. The characteristics of the each dataset from UCI-data
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repository were shown in Table 3, and the obtained all results were tabulated in Table 4. The boldface
in Table 4 shows the higher accuracy values for each dataset.

Table 2. Experimental results of k-NN and fuzzy k-NN vs. the proposed method.

Fuzz Proposed Fuzz Proposed

Data Sets k-NN k-Nl\)I’ Me?tho d Data Sets k-NN k-Nl\}I’ Meliho d
Appendicitis 87.91 97.91 90.00 Penbased 99.32 99.34 86.90
Balance 89.44 88.96 93.55 Phoneme 88.49 89.64 79.44
Banana 89.89 89.42 60.57 Pima 73.19 73.45 81.58
Bands 71.46 70.99 75.00 Ring 71.82 63.07 72.03
Bupa 62.53 66.06 70.59 Satimage 90.94 90.61 92.53
Cleveland 56.92 56.95 72.41 Segment 95.41 96.36 97.40
Dermatology 96.90 96.62 97.14 Sonar 83.10 83.55 85.00
Ecoli 82.45 83.34 84.85 Spectfheart 77.58 78.69 80.77
Glass 70.11 72.83 76.19 Tae 45.79 67.67 86.67
Haberman 71.55 68.97 80.00 Texture 98.75 98.75 80.73
Hayes-roth 30.00 65.63 68.75 Thyroid 94.00 93.92 74.86
Heart 80.74 80.74 88.89 Twonorm 97.11 97.14 98.11
Hepatitis 89.19 85.08 87.50 Vehicle 72.34 71.40 54.76
Ionosphere 96.00 96.00 97.14 Vowel 97.78 98.38 49.49
Iris 85.18 84.61 93.33 Wdbc 97.18 97.01 98.21
Mammographic 81.71 80.37 86.75 Wine 96.63 97.19 100.00
Monk-2 96.29 89.69 97.67 Winequality-red 55.60 68.10 46.84
Movement 78.61 36.11 50.00 Winequality-white ~ 51.04 68.27 33.33
New thyroid 95.37 96.32 100.00 Yeast 57.62 59.98 60.81

Page-blocks 95.91 95.96 96.34 - - - -
Table 3. Several datasets and their properties from UCI dataset.

Data set Features Samples Classes Training Samples Testing Samples
Glass 10 214 7 140 74
Wine 13 178 3 100 78
Sonar 60 208 2 120 88

Parkinson 22 195 2 120 75
Tono 34 351 2 200 151
Musk 166 476 2 276 200

Vehicle 18 846 4 500 346

Image 19 2310 7 1310 1000
Cardio 21 2126 10 1126 1000

Landsat 36 6435 7 3435 3000

Letter 16 20,000 26 10,000 10,000

Table 4. The accuracy values for DWKNN vs. NSKNN.

Data set WKNN (%) DWKNN (%) Proposed Method (%)
Glass 69.86 70.14 60.81
Wine 71.47 71.99 79.49
Sonar 81.59 82.05 85.23
Parkinson 83.53 83.93 90.67
Tono 84.27 84.44 85.14
Musk 84.77 85.10 86.50
Vehicle 63.96 64.34 71.43
Image 95.19 95.21 95.60
Cardio 70.12 70.30 66.90
Landsat 90.63 90.65 91.67
Letter 94.89 94.93 63.50

As seen in Table 4, the proposed method performed better than the other methods in eight
of 11 datasets and DWKNN performed better in the rest datasets. For three datasets (Parkinson,
Image and Landsat), the proposed method yielded accuracy value higher than 90% and the worse
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result was found for the ‘Glass’ dataset where the accuracy was 60.81%. DWKNN and the WKNN
produced almost same accuracy values and performed significantly better than the proposed method
on ‘Letter and Glass’ datasets. We further compared the running times of each method on each
KEEL dataset and the obtained running times were tabulated in Table 5. We used MATLAB 2014b
(The MathWorks Inc., Natick, MA, USA) on a computer having an Intel Core i7-4810 CPU and 32 GB
memory. As seen in Table 5, for some datasets, the k-NN and fuzzy k-NN methods achieved lower
running times than our proposal’s achievement. However, when the average running times took into
consideration, the proposed method achieved the lowest running time with 0.69 s. The k-NN method
also obtained the second lowest running time with 1.41 s. The fuzzy k-NN approach obtained the
average slowest running time when compared with the other methods. The fuzzy k-NN method’s
achievement was 3.17 s.

Table 5. Comparison of running times for each method.

Fuzz Proposed Fuzz Proposed

Data Sets k-NN k-Nl\}II MeI;ho d Data Sets k-NN k-Nl\}II MeF:ho d
Appendicitis 0.11 0.16 0.15 Penbased 10.21 18.20 3.58
Balance 0.15 0.19 0.18 Phoneme 0.95 1.88 0.71
Banana 1.03 1.42 0.57 Pima 0.45 0.58 0.20
Bands 0.42 0.47 0.19 Ring 6.18 10.30 2.55
Bupa 0.14 0.28 0.16 Satimage 8.29 15.25 1.96
Cleveland 0.14 0.18 0.19 Segment 1.09 1.76 0.63
Dermatology 0.33 0.31 0.22 Sonar 0.15 0.21 0.23
Ecoli 0.12 0.26 0.17 Spectfheart 0.14 0.25 0.22
Glass 0.10 0.18 0.18 Tae 0.13 0.12 0.16
Haberman 0.13 0.24 0.16 Texture 6.72 12.78 4.30
Hayes-roth 0.07 0.11 0.16 Thyroid 5.86 9.71 2.14
Heart 0.22 0.33 0.17 Twonorm 5.89 10.27 2.69
Hepatitis 0.06 0.06 0.16 Vehicle 0.17 0.31 0.27
Ionosphere 0.13 030 0.25 Vowel 0.47 0.62 0.31
Iris 0.23 0.13 0.16 Wdbc 0.39 0.46 0.26
Mammographic 0.21 0.22 0.20 Wine 0.08 0.14 0.17
Monk-2 0.27 0.33 0.17 Winequality-red 0.28 0.46 0.34
Movement 0.16 0.34 0.35 Winequality-white 1.38 1.95 0.91
New thyroid 0.14 0.18 0.17 Yeast 0.44 0.78 0.30
Page-blocks 1.75 2.20 0.93 Average 141 3.17 0.69

Generally speaking, the proposed NS-k-NN method can be announced successful when the
accuracy values which were tabulated in Tables 3-5, were considered. The NS-k-NN method obtained
these high accuracies because it incorporated the NS theory with the distance learning for constructing
an efficient supervised classifier. The running time evaluation was also proved that the NS-k-NN was
quite an efficient classifier than the compared other related classifiers.

5. Conclusions

In this paper, we propose a novel supervised classification method based on NS theory called
neutrosophic k-NN. The proposed method assigns the memberships to training samples based on
the supervised NCM clustering algorithm, and classifies the samples based on their neutrosophic
memberships. This approach can be seen as an extension of the previously-proposed fuzzy k-NN
method by incorporating the falsity and indeterminacy sets. The efficiency of the proposed method
was demonstrated with extensive experimental results. The results were also compared with other
improved k-NN methods. According to the obtained results, the proposed method can be used in
various classification applications. In the future works, we plan to apply the proposed NS-k-NN
on imbalanced dataset problems. We would like to analyze the experimental results with some
non-parametric statistical methods, such as the Freidman test and Wilcoxon signed-ranks test.
In addition, some other evaluation metrics such as AUC will be used for comparison purposes.
We will also explore the k-NN method where Dezert-Smarandache theory will be used to calculate the
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data samples’ memberships, replacing Dempster’s rule by Proportional Conflict Redistribution Rule
#5 (PCR5), which is more performative in order to handle the assignments of the final class.
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Abstract: A refined single-valued/interval neutrosophic set is very suitable for the expression
and application of decision-making problems with both attributes and sub-attributes since it is
described by its refined truth, indeterminacy, and falsity degrees. However, existing refined
single-valued/interval neutrosophic similarity measures and their decision-making methods are
scarcely studied in existing literature and cannot deal with this decision-making problem with the
weights of both attributes and sub-attributes in a refined interval and/or single-valued neutrosophic
setting. To solve the issue, this paper firstly introduces a refined simplified neutrosophic set (RSNS),
which contains the refined single-valued neutrosophic set (RSVNS) and refined interval neutrosophic
set (RINS), and then proposes vector similarity measures of RSNSs based on the Jaccard, Dice, and
cosine measures of simplified neutrosophic sets in vector space, and the weighted Jaccard, Dice,
and cosine measures of RSNSs by considering weights of both basic elements and sub-elements in
RSNS. Further, a decision-making method with the weights of both attributes and sub-attributes is
developed based on the weighted Jaccard, Dice, and cosine measures of RSNSs under RSNS (RINS
and/or RSVNS) environments. The ranking order of all the alternatives and the best one can be
determined by one of weighted vector similarity measures between each alternative and the ideal
solution (ideal alternative). Finally, an actual example on the selecting problem of construction
projects illustrates the application and effectiveness of the proposed method.

Keywords: refined simplified neutrosophic set; refined single-valued neutrosophic set; refined
interval neutrosophic set; vector similarity measure; decision-making

1. Introduction

Since fuzzy set theory was introduced by Zadeh [1] in 1965, it has been successfully applied
to decision-making areas, and fuzzy decision-making has become a research focal point since then.
With the increasing complexity of decision-making problems in actual applications, the fuzzy set
is not suitable for fuzzy expression, which involves the membership degree and non-membership
degree. Hence, an intuitionistic fuzzy set (IFS) [2] and an interval-valued IFS [3] were introduced as
the generalization of fuzzy set and applied to decision-making problems. However, the incomplete,
indeterminate, and inconsistent problems in real life cannot be explained by means of the IFS and
interval-valued IFS. Therefore, Smarandache [4] proposed the concept of a neutrosophic set from
a philosophical point of view, which consists of the truth, indeterminacy, and falsity memership
functions, denoted by T, I, F, to represent incomplete, indeterminate, and inconsistent information
in the real world. Since the truth, indeterminacy, and falsity membership degrees of T, I, F
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in the neutrosophic set lie in the real standard/nonstandard interval ]~0, 1*[, Smarandache [4],
Wang et al. [5,6], and Ye [7,8] constrained the three membership degrees in the neutrosophic set
to the single-valued membership degrees and the interval membership degrees. These become
a single-valued neutrosophic set (SVNS), an interval neutrosophic set (INS), and a simplified
neutrosophic set (SNS) (including SVNS and INS), respectively. Obviously, they are subclasses
of the neutrosophic set for convenient applications in science and engineering fields, such as
decision-making [7-13] and fault diagnosis [14]. However, because there are both arguments and
sub-arguments/refined arguments in the truth, indeterminacy, and falsity membership degrees of
T, 1, F in the neutrosophic set to express complex problems of the real world in detail, one needs to
refine truth, indeterminacy, and falsity information. Hence, Smarandache [15] further extended
the neutrosophic logic to n-valued refined neutrosophic logic, where he refined/split the truth,
indeterminacy, and falsity functions T, I, F into Ty, T, ..., Ty, I1, I, ..., Is, and Fy, F», ..., Fy, respectively,
and constructed them as a n-valued refined neutrosophic set. Moreover, some researchers extended the
neutrosophic set to multi-valued neutrosophic set/neutrosophic multiset/neutrosophic refined sets
and applied them to medical diagnoses [16-18] and decision-making [19-21]. In fact, the multi-valued
neutrosophic sets/neutrosophic refined sets are neutrosophic multisets in their expressed forms [22,23].
Hence, these multi-valued neutrosophic sets/neutrosophic refined sets, that is, neutrosophic multisets,
and their decision-making methods cannot express and deal with decision-making problems with
both attributes and sub-attributes. To solve the issue, Ye and Smarandache [22] proposed a refined
single-valued neutrosophic set (RSVNS), where the neutrosophic set {T, I, F} was refined into the
RSVNS ((T1, Ty, ..., Tr), (11, Lo, ..., It), (F1, Fa, ..., F})}, and proposed the similarity measures based on
union and intersection operations of RSVNSs to solve decision-making problems with both attributes
and sub-attributes. Then, Fan and Ye [23] further presented the cosine measures of RSVNSs and refined
interval neutrosophic sets (RINSs) based the distance and cosine function and applied them to the
decision-making problems with both attributes and sub-attributes under refined single-value/interval
neutrosophic environments. However, these cosine measures cannot handle such a decision-making
problem with the weights of both attributes and sub-attributes.

In fact, RINSs and /or RSVNSs are scarcely studied and applied in science and engineering fields.
Therefore, it is necessary to develop new similarity measures and their decision-making method in
refined interval and/or single-value neutrosophic environments. However, in existing literature [22,23],
the similarity measures of RSVNSs and RINSs and their decision-making methods only took into
account the basic element (single-valued/interval neutrosophic number in RSVNS/RINS)/attribute
weights rather than sub-element/sub-attribute weights (weights of refined elements/refined attributes)
in the measures of RSVNSs and RINSs and their decision-making methods. To overcome these
drawbacks, this paper firstly introduces a refined simplified neutrosophic set (RSNS), which includes
the concepts of RSVNS and RINS, and proposes the vector similarity measures of RSNSs based on
the Jaccard, Dice, and cosine measures between SNSs in vector space [8]. Further, a decision-making
method is established based on the Jaccard/Dice/cosine measures between RSNSs to solve multiple
attribute decision-making problems with both attribute weights and sub-attribute weights under
refined simplified (interval and/or single-value) neutrosophic environments. The main advantages
of the proposed approach are that it can solve decision-making problems with the weights of both
attributes and sub-attributes and extend existing similarity measures and decision-making methods
in [22,23], because the existing similarity measures and decision-making methods cannot deal with
such a decision-making problem with the weights of both attributes and sub-attributes under RSNS
(RINS and/or RSVNS) environments.

The rest of the paper is structured as follows. Section 2 reviews basic concepts of SNSs and
vector similarity measures of SNSs. In Section 3, we introduces a RSNS concept, including RSVNS
and RINS. Section 4 proposes the Jaccard, Dice, and cosine similarity measures (three vector similarity
measures) between RSNSs by considering weights of elements and sub-elements/refined elements in
RSNSs. Section 5 develops a multiple attribute decision-making method with both attribute weights and
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sub-attribute weights based on one of three vector similarity measures under refined simplified (interval
and/or single-value) neutrosophic environments. In Section 6, an actual example on the selection
problem of construction projects is provided as the multiple attribute decision-making problem with
both attribute weights and sub-attribute weights to illustrate the application and effectiveness of the
proposed method. Finally, conclusions and future research are contained in Section 7.

2. Basic Concepts of SNSs and Vector Similarity Measures of SNSs

In 1995, Smarandache [4] proposed a concept of neutrosophic sets from a philosophical point
of view, which is a part of neutrosophy and extends the concepts of fuzzy sets, interval valued
fuzzy sets, IFSs, and interval valued IFSs. A neutrosophic set is characterized independently by the
truth, indeterminacy and falsity membership functions, which lie in a real standard interval [0, 1]
or a nonstandard interval |0, 1*[. For convenient science and engineering applications, we need to
constrain them in the real standard interval [0, 1] from a science and engineering point of view. Thus,
Ye [7,8] introduced the concept of SNS as a simplified form/subclass of the neutrosophic set.

A SNS A in a universe of discourse X is characterized by its truth, indeterminacy, and falsity
membership functions T4(x), I4(x), and F4(x), which is denoted as A = {(x, T4(x), [4(x), Fa(x))|x € X},
where T4 (x), [4(x) and F(x) are singleton subintervals/subsets in the real standard [0, 1], such that T4 (x):
X — [0, 1], Is(x): X — [0, 1], and Fs(x): X — [0, 1]. Then, the SNS A contains SVNS for T4 (x), L4(x), Fa(x)
€ [0, 1] and INS for T 4(x), I4(x), Fa(x) C [0, 1].

For convenient expression, a basic element (x, T4 (x), [4(x), Fa(x)) in A is simply denoted as a
simplified neutrosophic number (SNN) a = <T,, I, F,>, where a contains a single-value neutrosophic
number (SVNN) for T, I, F; € [0, 1] and an interval neutrosophic number (INN) for T, I, F, € [0, 1].

Assume that two SNSs are A ={a1,ay, ... ,a,} and B ={by, by, ..., b,;}, where a; = <Tpj, Loj, Foj> and
bj = <Tyj, Iyj, Fyj> forj=1,2,...,nare two collections of SNNs. Based on the Jaccard, Dice, and cosine
measures between two vectors, Ye [8] presented the their similarity measures between SNSs (SVNSs
and INSs) A and B in vector space, respectively, as follows:

(1) Three vector similarity measures between A and B for SVNSs:

M] (A, B) _ li Ta]‘Tb]' + Ia]'Ib]' + Fa]'Pb]' (1)
n?e 2 2 2 2 2 2 T . T, . .E, .
]ﬂK%+%+%%«%+%+%%«%%+%%+%%ﬂ

4%%+%%+%%)

1 n
Mb(4,B) = EZ’ 2 L2 .2 2 L1242 @
ST ) + (T B+ 1)
14 T,i Ty + 1Ly + EuiFpi
MC(A’B):HZ 2 . 2] Z] ] 2 . 2] 2 ®)
jﬂ¢%+%+%¢%+%+%
(2) Three vector similarity measures between A and B for INSs:
M (A B) _ 1 i <il‘1fTa]'il‘lfTbj + supTa]-suprj + inflajinflb/» + supla]-suplbj + iana]‘iIlbe]‘ + supFajsuprj> (4)
T nj=1 (infTﬂj)2 + (ianaj)2 + (inflfuj)2 + (supTuj)2 + (supluj)2 + (supFﬂj)2
—i—(infTb].)2 + (inflbj)2 + (ianb]-)2 + (supThj)2 + (suplb].)2 + (suprj)2
7(infTﬂjinfTb]‘ + inf[ajinflbj + ianujianhj)
—(supTyjsupTy; + suplyjsuply; + supFysupFy;)
Mp(A,B) = 1 i Z(infTujinfTbj + inflyjintly; + infFyjintFy; + supTysupTy; + suplysuply +supFa]'supr]-> 5)
p(A,B) = —

nj= (infTa]»)2 + (inflgj)2 + (ianﬂj)2 + (supTaj)2 + (suplﬂj)2 + (supl—"a].)2
—0—(infTbj)2 + (inf[bj)2 + (infl—"bj)2 + (suprj)2 + (suprj)2 + (suprj)2
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Mc(A B) 1 )E (infTa]-infTbj + inflyjinfly; + infF,infFy; + supTysupTy; + suplysuply; + supFa]-suprj)

c\4, = -

nj=1 \/(infTaj)z + (infl,)? + (infF,)* + (supT,)* + (supl,;)’ + (supF, )’
\/(infThj)2 + (inflb]-)2 + (infl-"b].)2 + (supr]-)2 + (supIh].)2 + (supl-"b/.)2

(6)

Clearly, Equations (1)—(3) are special cases of Equations (4)-(6) when the upper and lower limits
of the interval numbers for T; = [inf T,, sup T,;] I; = [inf I;, sup I;], Fj = [inf Fyj, sup Fyl, Ty = [inf
Tbj/ sup Tbj]/ Ib] = [H‘lf Ihjr sup Ihj]r and Fb] = [ll’lf Fbj/ sup Fb]] are equal.

Then, the Jaccard, Dice, and cosine measures My(A, B) (k = J, D, C) contains the following
properties [8]:

(P1) 0 < Mi(A, B) < 1;
(P2) Mi(A, B) = Mi(B, A);
(P3) Mk(A, B) =1ifA= B, i.e., Ta]', = Tbjr Ia]' = ij/ and Faj = Fb] fOI'j = 1, 2, R (X

3. Refined Simplified Neutrosophic Sets

As the concept of SNS [7,8], a SNS A in a universe of discourse X is denoted as
A= {(x,Ty(x),14(x),Fa(x))|x € X}, where the values of its truth, indeterminacy, and falsity
membership functions T(x), I4(x) and Fa(x) for x€ X are single-value and/or interval values in
[0, 1]. Then, SNS contain INS and/or SVNS.

If the components T4 (x), [4(x), F4(x) in SNS are refined (split) into Ta(x1), Ta(x2), ..., Ta(xr), La(x1),
Ia(x2), ..., Ia(xr), and F4(x1), FA(x2), ..., Fa(x;), respectively, for xe X, x = {x1, xp, ..., x;}, and a positive
integer 7, then they can be constructed as RSNS by the refinement of SNS, which is defined below.

Definition 1. Let X be a universe of discourse, then a RSNS A in X can be defined as
A= {(x,(Ta(x1), Ta(x2), ..., Ta(xy)), (Ia(x1), Ia(x2), ..., 1a(xr)), (Fa(x1), Fa(x2), ..., Fa(xr)))|x € X, xj € x},

where Ta(x1), Ta(x2), ..., Ta(xy), Ia(x1), 1a(x2), ..., 1a(xr), Fa(x1), FaA(x2), ..., Fa(x,) for x€ X, x; € x = {x1,
X2, .., Xed (j=1,2,..., 1), and a positive integer r are subintervals/subsets in the real standard interval [0, 1],
such that Ta(x1), Ta(xz), ..., Ta(xy): X — [0, 1], 14(x71), 1a(x2), ..., [o(xy): X — [0, 1], and Fa(x71), Fa(x2), ...,
Fa(x.): X —[0,1].

Then, the RSNS A contains the following two concepts:

(1) I Ta(x1), Ta(x2), ..., Talx) € [0, 1], 1a(x1), La(x2), ..., La(xr) € [0, 1], and Fa(x1), Fa(x2), ..., Fa(xy)
€[0,1]in A for x€ Xand x; € x (j =1, 2, ... , r) are considered as single/exact values in [0, 1],
then A reduces to RSVNS [22], which satisfies the condition 0 < T4 (xj) + I4(x;) + Fa(x;) <3
forj=1,2,... ,1;

(2) I Ta(x1), Ta(x2), ..., Talxy) € [0, 1], La(x1), La(x2), ..., La(xr) € [0, 1], and Fa(x1), Fa(x2), .., Fa(xr) C
[0,1]in A for x€ X and Xj € x (j=1,2,...,r) are considered as interval values in [0, 1], then A
reduces to RINS [23], which satisfies the condition 0 < supT4(x;) + supla(x;j) + supFa(xj) <3
forj=1,2,...,r

Particularly when the lower and upper limits of T4(x;) = [inf Ta(x;), sup Ta(x})], La(x}) = [inf La(x;),
sup Ia(xj)] and Fa(x;) = [inf Fa(x;), sup Fa(xj)] in Aforx € Xand x; € x(j=1,2,...,r) are equal, the
RINS A reduces to the RSVNS A. Clearly, RSVNS is a special case of RINS. If some lower and upper
limits of Ta(x;) = [inf Ta(x;), sup Ta(xj)]/1a(x;) = [inf L4 (x;), sup La(xj)]/Fa(x;) = [inf Fa(x;), sup Fa(x;)]
in RINS are equal, then it can be denoted as a special interval (equal interval of the lower and upper
limits) T4 (x;) = [Ta(x;), Ta(x;)1/1a(xj) = [La(x}), La(x})]1/Fa(x}) = [Fa(x;), Fa(x;)]. Hence, RINS can contain
RINS and/or SVNS information (hybrid information of both).
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For convenient expression, a basic element <x, (T 4(x1), Ta(x2), ..., Ta(xr)), Ta(x1), La(x2), ..., La(xy)),
(Fa(x1), Fa(x2), ..., Fa(xy))> in A is simply denoted as a = <(Tya1, Taz, ... , Tar), (La1, Loz, - -, Lar), (a1, Fa2,
..., Far)>, which is called a refined simplified neutrosophic number (RSNN).

Lettwo RSNNsbea = <(T41, Tan, ..., Tar), a1, Lao, - .. , Iay), (Fa1, Fan, ..., Far)> and b = <(Tyq, Tyo,
ey Tb,), (Iblr IbZ/ ey Ibr)r (Fhlr sz, ceey Fbr)> for Taj/ Tb]', Iajr ij, Fujr th € [O, 1] (] =1,2,..., I’). Then,
there are the following relations between a4 and b:

(1) Containment: a C b, if and only if Taj < Tyj, Laj > Iy, Foj > Fyyj forj=1,2,...,1;
(2) Equality:a=b,ifandonlyifa Cbandb Ca,ie., Tyj = Tyj, Loj = Ipj, Foj = Fyj forj=1,2,...,%
(3)  Union:

aUb = <(Ta1 \ TberzIZ \ Tb2/~ o Ty Vv Tbr)/ (Iul A IblrIHZ A Ib2/-~ R P Ibr)/ (Ful /\FbllFaZ /\FbZI-- ~/Far/\Fbr)>/'
(4) Intersection:

anNb = <(Ta1 AN Tbl/ T,;z A sz,. v, Tar N Tbr)r(lal V IblrIEZ V Ib2/~- gV Ih‘/)/ (Fal \/Fhl,sz \/sz,.. R \/Fbr)>~

Let two RSNNs be a = ((Ty1, Ta, -+, Tar), (Lot Loz, - Lar), (Fa1, Fa, - .., Far)) and b =
<(Tb1/ Tb2/ sy Tbr)/ (Ibll IhZ/ ceey Ibr)/ (Fbll FbZ/ s /Fbr)> for Tﬂjl Tbj/ Iaj/ Ib]'/ Fuj/ Fb] - [O/ 1] (] =12,..., 7’).
Then, there are the following relations of a and b:

(1) Containment: a C b, if and only if inf T, < inf Ty, sup Ty < sup Ty;, inf Lj > inf Iyj, sup I; > sup
Ly, inf Fpi > inf Fyj, and sup Faj > sup Fy; forj=1,2,...,7;

(2) Equality: a=b,ifand onlyifa Cband b C g, i.e., inf Ty = inf Ty, sup Tyj = sup Ty, inf Lj= inf Ly,
sup I;; = sup ly;, inf F; = inf Fyj, and sup Fyj =sup Fyjforj=1,2,...,1;

(3) Union:
([infTy V infTyy, supTy V supTyy), [infTyo V infTyy, supTy V supTyy), . . ., [infTy V infTy,, supTar V supTy,]),
aUb= < ([infI;1 Ainflyy, suply Asuply], [inflp Ainflyy, suplp Asuply,), ..., [inflyy Ainfly,, suply Asuply,]), >
([infF;1 A infFyy, supFy A supFy], [infFp A infFyy, supFap A supFyy), .. ., [infF A infFy,, supFyy A supF,])

(4) Intersection:

([infly1 Vinfly, suply V suply ], [inflp V inflyy, suply V suplyy), . . ., [infly V infly,, supls, V suply,]),

([infTy A infTyy, supTyy A supTy), [infTp A infTyy, supTon AsupTyy), ..., [infTa A infTy,, supTa A supTy,]),
anb= < >
([infF;1 V infFyy, supFy V supFy], [infFap V infFyy, supFap V supFy,), . . ., [infF,, V infFy,, supFy, V supFy,])

4. Vector Similarity Measures of RSNSs

Based on the Jaccard, Dice, and cosine measures between SNSs in vector space [8], this section
proposes the three vector similarity measures between RSNSs.

Definition 2. Let two RSNSs be A ={a;, ay, ..., ay} and B ={b;, by, ., by},
Where aj = <(Tu]1/ Tﬂ]‘Z/' "/Tujrj)/(lujlflaer- "/Iﬂji’]’)/ (Fﬂjl/FﬂjZI‘ /Fa]rj)> and b] =
<(Tbj1, Tbjz, .. .,Tbj,],), (ijl,lbjz, ey Ihjrj), (Fbjl,Fbjz, . ,Fbj,j)> forj=1,2,..., nare two collections of
RSNNS for Ta e, Lajkes Faer Toer Toer Fok € [0, 11 07 Tage, Lages Faer Togges Iy Fpx € 10,11 G =1, 2, ..., ik =1,
2,..., rj). Then, the Jaccard, Dice, and cosine measures between A and B are defined, respectively, as follows:

(1)  Three vector similarity measures between A and B for RSVNSs:

n 7']' T, ,ka,kJrI 'klb'k+F »ka~k
1 1 a a a
I( ’ ) =T 2 g2 2 ; ]2 ]2] —
=1 Tk=1 [(Tﬂjk+lﬂjk+Fﬂjk>+<Tbjk+1bjk+Fbjk> (TﬂjkTbjk+1ajk1b],k+Fﬂ],kajk)}

@)
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-
Rp(A,B) = lf, 1¢ Z(Tajkajk + Loy + Fa]-kajk) @
’ n&=r 2 2 2 2 2 2
r
Re(A,B) — li li Tax Tk + Lo ok + FajrFp i )
! n&=r; 2 2 2 2 2
=1 k=1 \/T Lt Fajk\/Tbjk L+ By
(2)  Three vector similarity measures between A and B for RINSs:
infTa].kiIIfTb].k + supTujksuprjk + ian,z/.kinflb].k
Ri(A,B) = f i N rj +suplajksup1bjk + iana kianh k=t supFa ksupF;, K (10)
A "iZ1"k=1 [ (infT, k) + (infI, k)z + (ianajk) (sup k) + (suplu k) + (supF, ) ’
(meb]_k) + (mflbl_k)2 + (ianb,-k) (suprjk) (suplbik) + (suprr_k)
— (infTajkinfTbjk + inflajkinflbjk + ianajkianbjk)
—(supT,ksupTyk + suplyxsuply x + supF, ksupFy i)
) ( infTa,.kil’lfTb/k + il’lf[a].kil’lflb].k + ianajkianb/-k )
Rp(A,B) = 1 i 1 g +supTa].ksuprjk + supIajksuprjk + supF,;jksupr/k (11)
"j=1 k51 (infT, ) + (infl, ) + (infF, )* + (supT, )* + (supl, ) + (supF, ) )’
(meb/_k) (mflbl_k)2 + (ianbl_k)2 + (suprjk)2 + (suplb,_k)2 + (suprl_k)2
( infT, inf Ty + infl kinfly + infF, infF )
Re(A,B) = 1 i 1 rz’ +SUPTu kSUPTb K+ SUPIa kSUPIb k + SUPFa kSupFy (12)
c(AB)=uL7

=1 Tk=1 ( \/(mea]k)z (mfI ) (mfF ) + (supT, ) (suplajk) (supFﬂjk)2 )
\/(nfT, )

(meb]k ‘4 (infT, k) + (infF, k) + (supTh k) (suprjk)2 + (suprjk)2

Clearly, Equations (7)-(9) are special cases of Equations (10)—(12) when the upper and lower limits
of the interval numbers for T,Z],k, Iu],k, Fu/k/Tbjk/ Ib/-kr Fbjk cl011(G=12...,mk=12,...,7;) are equal.
Especially when k = 1, Equations (7)—(12) are reduced to Equations (1)—(6).

Based on the properties of the Jaccard, Dice, and cosine measures of SNSs [8], it is obvious that
the Jaccard, Dice, and cosine measures of RSNSs for Rs(A, B) (s =], D, C) also contain the following
properties (P1)—(P3):

(P10 <RsA B <1;
(P2) Rs(A, B) = Rs(B, A);
(P3) RS(A, B) =1ifA= B, i.e., Ta]-k = Tbjkr Iajk = ijkr Fa]-k = Fbjk fOI'j = 1, 2, oo, n and k = 1, 2, ceey 7’]

When we consider the weights of different elements and sub-elements in RSNS, the weight
of elements a and b' G =1, 2 ..., n) in the RSNSs A and B is given as w; € [0, 1]
with 2 qwp =1 and the weight of the refined components (sub-elements) Ta ks Ia K Fu  and

Tb ks Ib ks Fbk(k 1,2,. )ln ﬂ] <(Ta]'1/ Ta]-Zr"'/Tﬂ]'Tj)/ (Iﬂjlr IujZ/---rIa]-r]-)r (Fal'll Fu]vZ/u-rFa]-rj)> and
b = <(Tbj1, Ty - .,Tbjr],), (o1 Ty D), (o, P F,,j,],)> (i=1,2, ..., n)is considered as wy

€ [0, 1] with Z;j:l wy = 1, the weighted Jaccard, Dice, and cosine measures between A and B are
presented, respectively, as follows:

(1) Three weighted vector similarity measures between A and B for RSVNSs:

T xTy.c+ 1,01y k+F, .1 Fp.
ajk bjk+ ajk b]kJF koK

EREN(C

T2 +J? F2 (T2 412, +F2, )= (T, 4 Tp.k+L 1 Ip.k+Eq i Fp.
P k+ b]-k+ bjk+ bk ( ajk Dot ajilp it Fak b,k)
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2<T W Tox + Lglps + F _ka.k)
Rwp (A, B) = ZwJZw S e e

T (T2+ B+ B2 )+ (T + B+ ) (14)

no i Ty + Lol + Fo i F
kbk ajkbjk a;kbk
Rwe(A/B) =} ]E
2 2 2
prt \/T + 17y ajk\/Tbijbijerjk

(2) Three weighted vector similarity measures between A and B for RINSs:

(15)

( infTuikinfTb]k + sup T,Z/.ksup Tb]k + il‘lfla].kjnflbjk )

-I-supIu ksuplh k=t ianu kianb x+ supFﬂjksuprjk (16)

n Tj
Rwj(A,B) = ¥ w; ¥ wi——r 5
=1 ) (meajk)2 + (mfIajk) (infF, k) + (supT, ) + (suplajk)2 + (sul:)FH/k)2

. 2, g 2 2 2
+(1nfTbjk) + (mﬂbjk) (mbejk) (suprjk) + (suplhjk) + (suthjk)
— (infTﬂjkinfTb],k + inHajkithjk + ianujkianbjk)

—(supT, ksupTyk + suplyrsuply  + supFy supFy.x)

2( infT, kinf Ty k +infl, kinfly . + infFy kinfF ¢ )

R +sup Ty ksupTy i 4 suplyksuply + supFy gsupFy

i ( (infTa/k)2 + (influjk)2 + (infl-"a]_k)2 + (supTa]k)2 + (suplajk)2 + (supl—"a]k)2 ) ’
—Q—(infTbjk)2 + (inflbjk)2 + (infl—"bl_k)2 + (supThjk)2 + (suplbjk)2 + (suplfbjk)2

(17)

+SuPTa kSUPTh Kt SuPIa ksuPIb k + SuPFa kSupFp

\/(me " 24 (mf[a/_ ¥+ (mfFﬂj )’ + (supT ok ) (sulez k)
\/(meb ‘

( infT, inf Ty + infl, infly i + infF, kinfF )
-
) (supF, ¢)
)+ (me]k)z + (inflfb/_k)2 + (suprjk)2 + (supr k) (supr k)

Clearly, Equations (13)—(15) are special cases of Equations (16)-(18) when the upper and lower
limits of the interval numbers for Tajk/ Iajk/ Fajk/Tbjkr ijk/ thk c01G=12...,mk=12,...,1)are
equal. Especially wheneachw; =1/nand wy =1/7;(j=1,2,... ,m;k=1,2,...,rj), Equations (13)-(18)
are reduced to Equations (7)—(12).

Obviously, the weighted Jaccard, Dice, and cosine measures of RSNSs for Ryys(A, B) (s =], D, C)
also satisfies the following properties (P1)—(P3):

(P1)0 < Rws(A, B) < 1;
(P2) Rws(A, B) = Rws(B, A);
(P3) RWS(A, B) =1ifA= B,ie., Tu]-k = Tb]-k/ Iﬂ].k = Ib]-k/ Fa]-k = Fb]-k fOI‘j =1,2,...,nand k=1,2, .., 7’]

5. Decision-Making Method Using the Vector Similarity Measures

In a decision-making problem with multiple attributes and sub-attributes, assume that A = {A;,
Ay, ..., Ay} is a set of m alternatives, which needs to satisfies a set of n attributes B = {b, by, ..., by},
where bj (G=1,2,...,n) may be refined/split into a set of rj sub-attributes bj = {bjl,bjz, .. .,bj,]}
G =12, ..., n). If the decision-maker provides the suitability evaluation values of attributes
bj = {bﬂ,bjz,. . .,bj,].} (j =1, 2, ..., n) on the alternative A; (i =1, 2, ..., m) by using RSNS: A; =

{<bj, (Ta, (0), T, B2, Tay(bi ), (L, (03, La,(6) -, 1, (03.), (B, (50), Ea (B, ., Fa, (b]-r].))> (bj €Bby e b]}.
For convenient expression, each basic element in the RSNS 4; is represented by RSNN: 4;; =
<(Tal,j1, T s Tagr ) Uyt a2 Jagr) (ot B - .,Fai].r].)> fori=1,2,...,mandj=1,2,...,n
Hence, we can construct the refined simplified neutrosophic decision matrix M(aij)m «1, as shown
in Table 1.
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Table 1. Refined simplified neutrosophic decision matrix M(ui]-)m “n-

b1 by b,

{b11,b12,...,b1,}  {b21, b2, ..., b2} {bu1,bu2, ..., bur, }
Aq an arp . a1y
Ay a1 az ay
Am am1 am2 Amn

When the weights of each attribute b]- (G=1,2,...,n) and its sub-attributes are considered as
having different importance, the weight vector of the attributes is given by W = (wq, w», ... , wy) with

wj € [0, 1] and 2;1:1 w; = 1 and the weight vector for each sub-attribute set {bjl, b, ..., b]-r].} is given

as wj = {wjl,wjz, . ..,wjrj} G=1,2,...,n) with Wik € [0, 1] and Zgzl Wik = 1. Thus, the decision
steps are described as follows:

Step 1: We determine the ideal solution (ideal RSNN) from the refined simplified neutrosophic decision
matrix M(a;;)m xn as follows:

(max(Tj ), max(Tj), ..., max(T;.)), (min(I; ), min(I;
]

2),
. . . . for RSVNN 19
.. .,miln(ljr],)), (mim(Fj ),rnlm(F]«z),. : .,mim(Fjr],)) > (19)

([ml_ax(infTﬂ ),miax(supTﬂ)}, [ml_ax(inijz),miax(suijz)],. . [miax(inij,/),rniax(supT/,/.)]),
orai = ([Qin(inf1j1),ﬂin(5upljl)], [Inl_in(inﬂjz),m’,in(suPIjz)] ----- [m’in(iﬂfljr,),m,,in(supljr,)})/ > for RINN, (20)
([min(infF;y), min(supF; )] [min(infFy), min(supF)], ..., (min(intF;, ), min(supF;, )]

which is constructed as the ideal alternative A* = { aj, az,...,a, }

Step 2: The similarity measure between each alternative A; (i=1, 2, ... , m) and the ideal alternative
A" can be calculated by using one of Equations (13)—(15) or Equations (16)—(18), and obtained
as the values of Ryys(A;, A') fori=1,2,... ,mand s =] or Dor C.

Step 3: According to the values of Rys(4;, ANfori=1,2,...,mands =] or D or C, the alternatives
are ranked in a descending order. The greater value of Ryys(A;, A") means the best alternative.

Step4: End.

6. Illustrative Example on the Selection of Construction Projects

In this section, we apply the proposed decision-making method to the selection of construction
projects adapted from [23].

Some construction company wants to select one of potential construction projects. The company
provides four potential construction projects as their set A = {A1, A, A3, As}. To select the best one of
them, experts or decision-makers need to make a decision of these construction projects corresponding
to three attributes and their seven sub-attributes, which are described as follows:

(1) Financial state (b1) contains two sub-attributes: budget control (b17) and risk/return ratio (b17);

(2) Environmental protection (bp) contains three sub-attributes: public relation (by1), geographical
location (by7), and health and safety (by3);

(3) Technology (b3) contains tow sub-attributes: technical know-how (b31), technological
capability (bsp).

Then, the weight vector of the three attributes is given by W = (0.4, 0.3, 0.3) and the weight
vectors of the three sub-attribute sets {b11, b12}, {021, 22, b3}, and {b31, b3y} are given, respectively, by
w1 =(0.6,0.4), w, =(0.25, 0.4, 0.35), and w3 = (0.45, 0.55).
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In the following, we use the proposed decision-making method for solving the decision-making
problem of construction projects under RSVNN and/or RINN environments to show the applications
and effectiveness of the proposed decision-making method.

Under RSVNN environment, experts or decision-makers are required to evaluate
the four possible alternatives under the above three attributes including seven
sub-attributes by suitability judgments, which are described by RSVNN ajj =
<(Tl,,.].1, Tuzre-os Tagr)s gt T2 ag, ), (Fagt, Fay - Fﬂijr],)> for Tyt Tozr- . Toyr, € 10, 1],
Lo Tag2, - Loy € 10, 1], and Fy 1, Foyo, - Fayry € 10,11 (1=1,2,3,4;j=1,2,3; 11 = 2,1, = 3,13 = 2).
Thus, we can construct the following refined simplified neutrosophic decision matrix M(4;;)1 x3, which
is shown in Table 2.

Table 2. Defined simplified neutrosophic decision matrix M(a;j)sx3 under refined single-valued
neutrosophic set (RSVNS) environment.

b1 bZ b3
{b11, b12} {b21, b2y, baz} {b31, b3z}
A <(0.6,07), (02,0.1),(0.2,03)>  <(0.9,0.7,0.8), (0.1,03,0.2), (0.2,0.2,0.1)>  <(0.6,0.8), (0.3,0.2), (0.3, 0.4)>
Ay <(0.8,07), (0.1,0.2), (0.3,02)>  <(0.7,0.8,0.7), (0.2,04,0.3), (0.1,02,0.1)>  <(0.8,0.8), (0.1,0.2), (0.1, 0.2)>
As <(0.6,0.8), (0.1,0.3), (0.3,04)>  <(0.8,0.6,0.7), (0.3,0.1,0.1), (0.2,0.1,02)>  <(0.8,0.7), (0.4,03), (0.2, 0.1)>
Ay <(0.7,0.6), (0.1,0.2), (0.2,03)>  <(0.7,0.8,0.7), (0.2,02,0.1), (0.1,02,02)>  <(0.7,0.7),(0.2,03), (0.2, 0.3)>

Under RSVNS environment, the proposed decision-making method is applied to the selection
problem of the construction projects. The decision steps are described as follows:

Step 1: By Equation (19), the ideal solution (ideal RSVNS) can be determined as the following ideal
alternative: A" = {<(0.8, 0.8), (0.1, 0.1), (0.2, 0.2)>, <(0.9, 0.8, 0.8), (0.1, 0.1, 0.1), (0.1, 0.1, 0.1)>,
<(0.8,0.8), (0.1, 0.2), (0.1, 0.1)>}.

Step 2: According to one of Equations (13)—(15), the weighted similarity measure values between each
alternative A; (i = 1, 2, 3, 4) and the ideal alternative A" can be obtained and all the results are
shown in Table 3.

Step 3: In Table 3, since all the measure values are Ryys(Ap, A") > Ryys(Ag, A) > Ryys(Az, A”) > Ryys(A1,
A fors=],D,C,all the ranking orders of the four alternatives are A, >A4>A3>A1. Hence,
the alternative Aj; is the best choice among all the construction projects.

Table 3. All the measure values between A; (i =1, 2, 3,4) and A" for RSVNSs and ranking orders of the
four alternatives.

Measure Method Measure Value Ranking Order The Best Choice
W(A1, A") =0.9848, W(Ay, A”) = 0.9938,

WA, 4) 123] W(A3, A") = 0.9858, W(A4, A”) = 0.9879 Ag-Ag-As-Ay 4
. Ryyj(A1, A) = 0.9187, Ryj(Az, A”) = 0.9610,
Ry(A;, A . . Ap-Ag-Ay-A A
Wi 4) Ryj(As, A”) = 0.9249, Ryyj(Ag, A”) = 0.9320 2 famdiam i 2
A Rwp(A1, A") =0.9568, Rwp(Az, A7) =0.9797,
Rwp(A;, 4) Ryp(As, AY) = 09607, Rwp(As, A”) = 0.9646 Aa-Au- A=Ay 42
Ruvcy A%) Rigc(dr, A7) = 09646, Rc(dy, A) = 09832, 0\ "

Rwe(Asz, A" = 0.9731, Ryyc(Ayg, A") = 0.9780

Under RINS environment, on the other hand, experts or decision-makers are required
to evaluate the four possible alternatives under the above three attributes including
seven sub-attributes by suitability judgments, which are described by RINN a; =
<(Ta,'jl/ T{ZUZI .. Tﬂ,]r]) (1111]11 I{ll]2/ . I{ZUT’]) (Faijl/ Fa,-]-ZI vy Fa,-]-rj)> fOI' Taljl/ T{Zl]ZI ey Tlll']'i’]' g [0/ 1]/
Iu,'jl/ Iai]-Zr* . Ial]r]_ [0 1]/ and Fu l/ a,]21 . /Pa,'j'fjg [01 1] (l =123 4 ] =123 r = 2, rp = 3,
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r3 = 2). Thus, we can construct the following refined simplified neutrosophic decision matrix M(a;j)4x3,
which is shown in Table 4.

Table 4. Defined simplified neutrosophic decision matrix M(a;;)4 «3 under refined interval neutrosophic

set (RINS) environment.

by

b,

bs

{b11, b1z}

{b21, b2a, b23}

{b31, b3z}

<([0.6,0.7],[ 0.7,0.8]),([0.2,0.3],

<([0.8,0.91,[0.7,0.81,[0.8,0.9]),

<([0.6,0.71,[0.8,0.9]),([0.3,0.4],

A ([0.1,0.2],[0.3,0.41,[0.2,0.3]),
1 [0.102)([02031[0304D> 10000505101 00pe  [0203DA103,041[0.405])>
<([0.7,0.8],[0.8,0.91,[0.7,0.81),
o (0a0an0s0a 0205y (02031040510304n,  TEOSR RSN
DDA A A TS ([0.1,0.2],[0.2,0.31,[0.1,0.2])> RS AR LA SL RS
<([0.8,0.91,[0.6,0.71,[0.7,0.81),
A (3o 0s0aloosy (0304010210102, SRS eTIIR BTk
P2 DAS B SR ([0.2,0.3],00.1,0.21,[0.2,0.3])> A EAR S SL LA
<([0.7,0.8],[0.8,0.91,[0.7,0.81),
AL <(0.7,08110.607),10.102], 0 i0 50t 0oy, <U0.7.08110.7,08D,(10.2,03],

[0.2,0.3]),([0.2,0.3],[0.3,0.4])>

[0.3,0.4]),([0.2,0.3],[0.3,0.4])>

([0.1,0.2],[0.2,0.3],[0.2,0.3])>

Under RINS environment, the proposed decision-making method is applied to the selection
problem of the construction projects. The decision steps are described as follows:

Step 1: By Equation (20), the ideal solution (ideal RINS) can be determined as the following
ideal alternative:

A" = {<([0.8, 0.9], [0.8, 0.9]), ([0.1, 0.2], [0.1, 0.2]), ([0.2, 0.3], [0.2, 0.3])>, <([0.8, 0.9], [0.8, 0.9],
[0.8,0.9]), ([0.1,0.2], [0.1,0.2], [0.1, 0.2]), ([0.1, 0.2], [0.1, 0.2], [0.1, 0.2])>, <([0.8, 0.9], [0.8, 0.9]),
(10.1,0.2], [0.2, 0.3]), ([0.1, 0.2], [0.1, 0.2])>}.

Step 2: By using one of Equations (16)—(18), the weighted similarity measure values between each
alternative A; (i = 1, 2, 3, 4) and the ideal alternative A* can be calculated, and then all the
results are shown in Table 5.

Step 3: In Table 5, since all the measure values are Ryy(Ay, A*) > Ryys(As, A*) > Ryys(Asz, A*) > Ryys(A1,
A" fors=],D,C,all the ranking orders of the four alternatives are Ay >~A4>A3>A;. Hence,
the alternative A; is the best choice among all the construction projects.

Table 5. All the measure values between A; (i=1, 2, 3, 4) and A" for RINSs and ranking orders of the
four alternatives.

Measure Method Measure Value Ranking Order The Best Choice
o W(A;, A") = 0.9848, W(A,, A") = 0.9932,
WA, A) [23] W(As, A%) = 0.9868, W(Ay, A") = 0.9886 Ax-Ag-As-Ay A2
. Ryyj(A1, A') = 0.9314, Ryyj(A,, A7) = 0.9693,
i . K Ap-Ag-Az-A A
R4z A) Ruj(As, A') = 09369, Ryyj(Ag, A”) = 0.9430 2mamfsm i 2
e Rwp(Aq, A" =0.9639, Rwp(A,, A*) = 0.9841,
Rwp (A, A) Ruwp(As, A') =0.9672, Ryp(Aq, A') = 09705 Ax-Ag-As-A A2
Ruc(A;, A% Rwc(A1, A') =0.9697, Rwc(Az, A') = 0.9860, ApAgsAgAg Ay

Ryc(Az, A = 0.9775, Ryyc(Ag, A") = 0.9805

For convenient comparison with existing related method [23], the decision results based on the
cosine function without considering sub-attribute weights in the literature [23] are also indicated
in Tables 3 and 5. Obviously, all the ranking orders are identical, which indicate the feasibility and
effectiveness of the developed decision-making method based on the proposed measures Ry for
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s =], D, C. However, the existing related decision-making methods with RSVNSs and RINSs [22,23]
cannot deal with such a decision-making problem with both attribute weights and sub-attribute
weights in this paper. Although the same computational complexity in decision-making algorithms is
shown by comparison of the method of this study with the related methods introduced in [22,23], the
developed method in this study extends the methods in [22,23] and is more feasible and more general
than the existing related decision-making methods [22,23]. It is obvious that the new developed
decision-making method in a RSNS (RINS and/or SVNS) setting is superior to the existing related
methods in a RINS or SVNS setting [22,23].

Compared with traditional decision-making approaches without sub-attributes [7-13,19-21], the
decision-making approach proposed in this study can deal with decision-making problems with both
attributes and sub-attributes; while traditional decision-making approaches [7-13,19-21] cannot deal
with such a decision-making problem with both attributes and sub-attributes. Hence, the proposed
decision-making approach is superior to traditional ones [7-13,19-21].

However, the study in this paper provides new three vector measures and their decision-making
method as the main contributions due to no study of existing literature on the vector similarity
measures and decision-making methods with RSNSs (RSVNSs and/or RINSs). Clearly, the main
advantages of this study are that it can solve decision-making problems with the weights of both
attributes and sub-attributes, which all existing methods cannot deal with, and extend existing
similarity measures and decision-making methods.

To analyze the sensitivities of the proposed approach, let us change the RINS of the alternative A4
into the RSNS Ay = {<([0.7,0.7], [0.6,0.6]), ([0.2,0.2], [0.2,0.2]), ([0.3,0.3], [0.3,0.3])>, <([0.7,0.8], [0.8,0.9],
[0.7,0.8]), ([0.2,0.3], [0.2,0.3], [0.1,0.2]), ([0.1,0.2], [0.2,0.3], [0.2,0.3])>, <([0.7,0.8], [0.7,0.8]), ([0.2,0.3],
[0.3,0.4]), ([0.2,0.3], [0.3,0.4])> with hybrid information of both RSVNNs and RINNSs. Then, by above
similar computation steps, we can obtain all the measure values, which are shown in Table 6.

Table 6. All the measure values between A; (i =1, 2, 3,4’) and A" for RSNSs and ranking orders of the
four alternatives.

Measure Method Measure Value Ranking Order The Best Choice
‘ Ryyj(A1, A+) = 0.9314, Ryyj(A,, A+) = 0.9693,
Rwy (A, A+) Rygj(As, As) = 0.9369, Ryyj(Ay, As) = 0.9356 Ax-As-Ag- 4
A Rip(Ar, As) = 0.9639, Rwp(Aa, A«) = 0.9841,
Rwp(4, 4+) Rwp(As, As) = 0.9672, Ryyp(Ag, A+) = 0.9665 Ag-As-Ag- 4
Ruc(Ay, A<) Rwc (A1, A+) =0.9697, Ry (A, A+) = 0.9860, Ap Ay Az Ay Ay

Rwc(As, As) = 0.9775, Ry (Aa, As) = 0.9780

The results of Table 6 demonstrate the ranking orders based on Ryyj(A4;, A" and Ryp(4;, A"
are the same, but their decision-making method can change the previous ranking orders and show
some difference between two alternatives A3z and A4; while the best one is still A,. Clearly, the
decision-making approach based on the Jaccard and Dice measures shows some sensitivity in this case.
However, the ranking order based on Ryyc(A;, A") still keeps the previous ranking order, and then
the decision-making approach based on the cosine measure shows some robustness/insensitivity in
this case.

In actual decision-making problems, decision-makers can select one of three vector measures
of RSNSs to apply it to multiple attribute decision-making problems with weights of attributes and
sub-attributes according to their preference and actual requirements.

7. Conclusions

This paper introduced RSNSs, including the concepts of RSVNSs and RINSs, and proposed
the vector similarity measures of RSNSs, including the Jaccard, Dice, and cosine measures between
RSNSs (RSVNSs and RINSs) in vector space. It then presented the weighted Jaccard, Dice, and cosine
measures between RSNSs (RSVNSs and RINSs) by considering the weights of basic elements in
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RSNSs and the weights of sub-elements (the refined weights) in each RSNN. Further, we established a
decision-making method based on the weighted Jaccard /Dice/cosine measures of RSNSs (RSVNSs
and RINSs) to deal with multiple attribute decision-making problems with both attribute weights
and sub-attribute weights under RSNS (RINS and /or RSVNS) environments. In the decision-making
process, through the Jaccard /Dice/cosine measures between each alternative and the ideal alternative,
the ranking order of all alternatives and the best one can be determined based on the measure values.
Finally, an actual example on the decision-making problem of construction projects with RSNS (RSVNS
and/or RINS) information is provided to demonstrate the application and effectiveness of the proposed
method. The proposed approach is very suitable for actual applications in decision-making problems
with weights of both attributes and sub-attributes under RSNS (RINS and/or RSVNS) environments,
and provides a new decision-making method. In the future, we shall further extend the proposed
method to group decision-making, clustering analysis, medical diagnosis, fault diagnosis, and so forth.
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Abstract: The investment in and development of mineral resources play an important role in the
national economy. A good mining project investment can improve economic efficiency and increase
social wealth. Faced with the complexity and uncertainty of a mine’s circumstances, there is great
significance in evaluating investment risk scientifically. In order to solve practical engineering
problems, this paper presents an extended TOPSIS method combined with linguistic neutrosophic
numbers (LNNs). Firstly, considering that there are several qualitative risk factors of mining
investment projects, the paper describes evaluation information by means of LNNs. The advantage
of LNNSs is that major original information is reserved with linguistic truth, indeterminacy, and false
membership degrees. After that, a number of distance measures are defined. Furthermore, a common
status is that the decision makers can’t determine the importance degrees of every risk factor directly
for a few reasons. With respect to this situation, the paper offers a weight model based on maximizing
deviation to obtain the criteria weight vector objectively. Subsequently, a decision-making approach
through improving classical TOPSIS with LNNs comes into being. Next, a case study of the proposed
method applied in metallic mining projects investment is given. Some comparison analysis is also
submitted. At last, the discussions and conclusions are finished.

Keywords: metallic mine project; investment risks evaluation; linguistic neutrosophic numbers;
maximum deviation; extended TOPSIS

1. Introduction

The assessment of investment risk has always attracted the attention of many researchers
in different fields [1]. For example, Wu et al. [2] proposed an improved Analytical Hierarchy
Process (AHP) approach to select an optimal financial investment strategy. An extended TOPSIS
method was provided by Hatami-Marbini and Kangi [3], and applied in the Tehran stock exchange.
Yazdani-Chamzini et al. [4] constructed a model on the basis of AHP, decision-making trial and
evaluation, and TOPSIS to evaluate investment risk in the private sector of Iran. A VIKOR-DANP
method was presented by Shen et al. [5] and a case study of Taiwan’s semiconductor industry was
also given to demonstrate the effectiveness of the approach. Dincer and Hacioglu [6] discussed the
relationships of financial stress and conflict risk in emerging capital markets with a fuzzy AHP-TOPSIS
and VIKOR method. In high-tech fields, such as nanotechnology, Hashemkhani, Zolfani, and
Bahrami [7] provided a SWARA-COPRAS decision-making method. Unlike other general industries,
investment in the mining industry usually has a long cycle and large uncertainty [8]. There are a
lot of risk factors in the process of mining investment. Consequently, identifying and assessing the
investment venture of a mine accurately and properly is vital for any project.
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The widely-used risk evaluation methods of mining investment can be divided into two main
categories [9]. Traditional methods include fault tree analysis, Monte Carlo Simulation, breakeven
analysis, the decision tree method, and so on. Another kind contains Analytic Hierarchy process
(AHP), fuzzy comprehensive evaluation, and so on. Many researchers have paid particular attention
to the latter method, which is based on fuzzy mathematics. Chen et al. [10] sorted and summarized
the risk elements of metallic mines, and then presented a method based on a fuzzy set and a neural
network. Wang et al. [11] constructed the fuzzy comprehensive appraisal model through creating a risk
estimation indicator system. San et al. [12] focused on Tongxin mine, and established an investment
risk assessment model with a fuzzy analytic hierarchy process. These methods take the ambiguity of
the assessment process into consideration.

However, the fuzzy numbers, such as interval numbers [13], triangular fuzzy numbers [14,15],
and trapezoidal fuzzy numbers [16], used in most approaches have some limitations. On the one hand,
they only described limited consistent information, while the hesitant and inconsistent values are
not indicated. Furthermore, qualitative information is also not expressed. Smarandache [17] firstly
put forward the concept of neutrosophic sets (NSs) to deal with consistent, hesitant, and inconsistent
information simultaneously. After that, many extensions based on NSs have been presented [18-20].
Related decision-making methods include TOPSIS [21], VIKOR [22], TODIM [23], COPRAS [24,25],
WASPAS [26], MULTIMOORA [27], ELECTRE [28,29], QUALIFLEX [30], and other approaches [31,32].
Among them, TOPSIS is widely used. The basic idea of this method is that the distance of the optimal
alternative with the positive ideal solution is nearest, and the negative-position ideal solution is
farthest [21]. It is easy to understand and operate for decision makers.

In order to qualitatively evaluate risk, like social environment risk and management risk
in a mining project, linguistic variables may be a good description [33,34]. Much literature has
focused on risk assessment with linguistic information. A venture analysis method on the basis of
Dempster-Shafer theory under linguistic environment was presented in the literature [35]. Liu et al. [36]
established a risk linguistic decision matrix and discussed the situation when weight informationis
unknown. An unbalanced linguistic weighted geometric average operator was proposed to deal with
fuzzy risk evaluation problems in [37]. Peiris et al. [38] built three linguistic models to assess alien
plants” invasion risks.

For the sake of keeping as much linguistic evaluation information as possible, multiple extensions
about language were suggested. For example, the notion of 2-dimensional uncertain linguistic
variables occurred some researchers [39—-41]. The idea of single-valued neutrosophic linguistic numbers
occurred to Ye [42]. Other extensive forms are intuitionistic linguistic sets [43], hesitant fuzzy linguistic
term sets [44,45], probabilistic linguistic term sets [46,47], and so on [48,49]. It is worth noting that
Chen et al. [50] proposed a group decision-making method in the light of linguistic intuitionistic
fuzzy numbers (LIFNs). They connected linguistic values with intuitionistic fuzzy numbers [51].
Then, the linguistic intuitionistic Frank Heronian average operator [52] and some improved linguistic
intuitionistic fuzzy operators [53] were proposed.

However, there are only linguistic membership degrees and linguistic non-membership
degrees reflected in LIFNs. To overcome this shortcoming, Fang and Ye [54] came up with
the concept of linguistic neutrosophic numbers (LNNs). They are based on linguistic terms
and simplified neutrosophic numbers [55]. The truth-membership, indeterminacy-membership,
and false-membership in a linguistic neutrosophic number (LNN) are found using linguistic
information. The difference of LNNs with neutrosophic linguistic numbers (NLNSs) [56] is that
there is only a linguistic value in NLNs, and the truth-membership, indeterminacy-membership, and
false-membership are crisp numbers. For instance, (s1,s,,53) is a LNN, while (s1,<0.1,0.2,0.3 >) is
a neutrosophic linguistic number (NLN). Of course, they are independent of each other as well.
In addition, Fang and Ye [54] defined the operations and comparison rules of LNNs, and then
decision-making methods based on of several weighted mean operators were raised.
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From this we can see, considering the complicacy of mine environment and the ambiguity of
the human mind, assessing the ventures of mining projects on the basis of LNNs may be feasible
and advisable. As a result, this paper considers metallic mine investment risk under a linguistic
neutrosophic situation with incomplete weight information. A new and reasonable way to evaluate
risk degrees by means of LNNs is proposed. In summary, the fundamental innovations of this article
are conveyed as follows:

(1) Present a number of distance measures between two LNNs, such as the Hamming distance, the
Euclidean distance, and the Hausdorff distance. Equally important, prove relevant properties of
these formulas;

(2)  Use the thought of maximum deviation for our reference, build a model with respect to linguistic
neutrosophic environment to obtain the values of mine risk evaluation criteria weight;

(3) Come up with the extended TOPSIS model with LNNs. Importantly, utilize this method to cope
with investment decision-making matter of metallic mine projects;

(4) Compare with other methods, in order to demonstrate the significance and superiority.

We methodize the rest of this article as follows. In Section 2, basic background and knowledge
related to risk factors, linguistic information, and LNNs are presented. The extended TOPSIS method
with LNNs is depicted after defining the distance measures of LNNs and constructing the weight
model in Section 3. Section 4 studies a case of metallic mining investment, and the proposed approach is
applied in it. In Section 5, we make comparison with several current literatures. And then, conclusions
are made in the last section.

2. Background

In this section, some preliminaries about mining investment risk factors, linguistic term sets,
linguistic scale functions, and LNNs are presented.

2.1. Risk Factors of Mining Project Investment

The economic factors of mines and the risk influence factors of metallic mines are introduced in
this subsection.

According to the situation of mining investment in China and the research results of the World
Bank’s investment preference, Pan [57] divided the economic venture of mining investment into five
types. They are financial risk, production risk, market risk, personnel risk, and environmental risk,
respectively. More details can be seen in Table 1.

Table 1. The economic risk factors of mines.

Risk Factors Explanations

Caused by the unexpected changes in the mine’s balance of payments. It largely

Financial risk . . . .
consists of financial balance, exchange rate, interest rate, and other factors.

Caused by accident, which makes it impossible to produce the production plan
Production risk according to the predetermined cost. Mainly including production cost, technical
conditions, selection scheme, and so on.

Caused by the unexpected changes in the market, which makes the mine unable to
Market risk sell its products according to the original plan. It chiefly contains demand forecasting,
substitution products, peer competition, and other factors.

Caused by accident or change of the important personnel in the mine, which causes a
Personnel risk significant impact on the production and operation of the mine. The main factors
include accidental casualties, confidential leaks, and personnel changes.

Caused by the changes of the external environment of the mining industry, which
Environmental risk ~ primarily comprises the national policies, geological conditions, and
pollution control.
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In 2011, Chen et al. [10] summarized and classified the influence factors of the metallic mining
investment process based on strategic angle of investment implementation. The presented risk system
(see Table 2.) includes two levels of indicators, which are five primary indicators and sixty secondary
indicators. The secondary index corresponds to the attributes of the primary one.

Table 2. Investment risk evaluation system of metallic mining.

Assessment Indicators

Primary indicators Secondary indicators
Production risk Mining type, production equipment level, and mining technology
Geological risk Geological grade, mine reserves, hydrogeology, and surrounding rock conditions
Social environment Marco economy, national industrial policy, and international environment
Market risk Marketing ability, product market price, and potential competition

Rationality of enterprise organization, scientific decision, and

Management risk
management personnel

2.2. Linguistic Term Sets and Linguistic Scale Function

Xu [58] first put forward the concept of linguistic term sets. For a certain linguistic term set,
there are a group of linguistic values s; (i = 0,1, ...,2¢). Consequently, the linguistic term set can be
denoted as S = {s;/i = 0,1,...,2¢}.

While the linguistic values in the above-mentioned linguistic term set are discrete, they may
not work on aggregated linguistic information. Accordingly, Xu [58] redefined the linguistic term
setwith S = {s;|i € [0,2u]} (u > g), where the elements are continuous. Moreover, we can compare
arbitrary linguistic terms in accordance with their subscripts. Namely, when i > j, s; > s; is established.
The operational rules of any two linguistic values s;,s; € S are indicated: (1) the addition operator
$i @sj = siyj; (2) the scalar multiplication s; = s¢;, 0 < 7 < 1; (3) the negation operator ne(s;) = s_j.

Definition 1. [59] The linguistic scale function is regarded as a mapping from linguistic values s;
(i =0,1,---,2g) toa corresponding crisp number cn; € [0,1]. Furthermore, it should meet the requirement
of monotonically increasing, that is to say, 0 < cng < cny < -+ < cngg < 1.

As the continuous linguistic term sets are defined, we use f(s;) = cn; = 5. (i € [0,2u]) as the linguistic
scale function in this essay. The inverse function can be described as f~1(cn;) = 2u - cn; (i € [0,2u]).

2.3. Linguistic Neutrosophic Numbers

Definition 2. [54] Given the linguistic term set S = {s;|i € [0,2u]}, if st,s1,5p € S, then 5 = (s1,51,SF)
can be regarded as a LNN, where s, sy, and s are independent, and describe the linguistic truth-membership
degree, the linguistic indeterminacy-membership degree, and the linguistic falsity-membership degree in turn.

Definition 3. [54] Assume 171 = (s1,,51,,5F,) and 11 = (sT,,S1,,SF,) are two LNNs, then the operations of
them are represented as follows:

(1) m @ M2 = (STllsfllspl) 52 (ST2ISIZISF2) = (ST1+T2 TlTZ,SI%LILZISF%fP)

(2) m®n = (st,514,55) D (5T,,5L,5F,) = (STsz, he o325k 1, Fle)
O = 0(5m58,57) = (19SSt 1 0

@) mT=(st,51,58)" = (s, N 9,8 q), 4> 0.

(%) 2u—2u(1- },) 2u—2u(1— )
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Definition 4. [54] Suppose § = (s, sy, sp) is an optional LLN, the following are the score function and the
accuracy function, respectively:
SC(n) = (4u+T—1—F)/(6u), (1)

AC() = (T = F)/ (2u). @

Definition 5. [54] If 111 = (st,,51,,5F,) and 2 = (ST,,51,,SF,) are two LNNs, then the comparison rule is:

(1) M > 12 if SC(ﬁl) > SC(ﬂz);
) 1 > if SC(n1) = SC(12) and AC(111) > AC(1);
(B) m =mif SC(111) = SC(12) and AC(11) = AC(12).

Definition 6. [54] Assume there are a group of LNNs n; = (st,,51,55) (i = 1,2,...,n), the linguistic
neutrosophic weight arithmetic mean (LNWAM) operator is:

’ n . n v ), 3
2u 21111(1—%)7’ SZuH(Zu) F i) )

i=1 i=1 i=1

n
LNWAM(1, 172, - n) = Y Yilli =

n
where «y; is the corresponding weight value of ;,0 < ; <land Y v; =1.
i=1

Definition 7. [54] Assume 1; = (sT,,51,,55,) (i = 1,2,...,n) are a set of LNNS, the linguistic neutrosophic
weight geometric mean (LNWGM) operator is:

n
LNWGM(n1,12,..., = = noT v n i n i), 4
(771 2 7771) 1;1 1 (SZMH (%)71 sZu—ZuH (1_2%)7, SZu—ZuH (1_%)71) ( )

i=1 i=1 i=1

n
where y; is the related weight value of 17;,0 < v; < land Y v; = 1.
i=1

3. Extended TOPSIS Method with Incomplete Weight Information

In this section, we present the idea of an extended TOPSIS method with LNNs, and discuss the
situation in which weight information is completely unknown.

3.1. Descriptions

With respect to the multi-criteria decision-making problems under linguistic neutrosophic
situations, k decision makers evaluate a set of options X = {x1,x,...,x,} under some attributes
A ={ay,ay,...,am}. wjis the corresponding weight of a;, which is completely unknown, but satisfies

m
wj € [0,1] and ) w; = 1. There are k decision makers {b, by, ..., bx} with the related weight
i=1

{7, b 0< v <1( =12,...,k) and Z 71 = 1. S = {s;|i € [0,2u]} is the predefined

linguistic term set. In order to rank the objects or plck out the optimal one(s), each decision-maker
(b;(1 =1,2,...,k)) makes evaluations and then constructs the corresponding decision-making matrix,
that is:

0 0 (0,50 0y (a) 0 <l>)

17]1 T '8 1 m m
,7<> ,7<l LB R N () A
N — <;71(]))n><m _ 21 2'm _ Toy’ 7."21 T21 sz T:Zm STom ,(1=1,2,...,k).
1 'l 1 l 1 1 l (1
17’51) T ;77(”21 (5%1)1/ S( 11)1/ S( n)l ) T (Sgwn)m’ Sgﬂn)m/ Tn)m)
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The basic elements of the matrix N are by means of LNNs, where

;71,(].1) = (s(Tli]),,s(lv),,s%ﬁ)(s(l),s%,s%? € S) means the assessment information of b; about x; related to

T’J .
criteria aj.

3.2. Distance Measures of LNNs

In this subsection, we intend to introduce several distance formulas of LNNs, so that the discussion
behind these can be smoothly advanced.

Definition 8. Let 171 = (st,,51,,5r,) and 12 = (st,,51,,SF,) be two haphazard LNNs. S = {s;|i € [0,2u]} is

the linguistic term set, and f(s;) = i is the linguistic scale function. Then, the distance between 111 and 1 are
denoted as follows:

(1, 12) = (3(If (s7,) = (1) 1" + [ f(s2u-1,) = f(s2u—1,)1* + | f (52—, _f(SZu—Fz)VL))%r A>0. (5

Remarkably:

(1) when A =1, the Hamming distance

dpm (11, 112) = %(If(sn) — flsm) [+ 1f(s2u-1,) = f(s2u-p)| + |f (S2u-F,) = fs20-R)]); ~ (6)

(2) when A = 2, the Euclidean distance

dea(m,1m2) = \/;(V(Sn) — f(smy)*+ |f(s2-1,) — fsar-p) >+ |f(s2t-F,) — f(s2i-5)1?); (7
(3) the Hausdorff distance

dpa(n1,1m2) = rnax{|f(sT1) — fGsm)l |f(52t7[1) — f(s2e-1,) 1, |f(52t71:1) _f(52t7Pz)|}‘ 8

Property 1. Given three arbitrary LNNs 111 = (st,,51,,5F,), 12 = (51,,51,,5F,) and 3 = (st,,515,5F,). The
linguistic term set is S = {s;|i € [0,2u]}, and the universal set of LNNs is Q). For any 1,172,173 € Q, the
following properties are met:

1) 0<d(m,m) <YL

@) d(n,m) =d(n2,m);

() d(n1,1m2) =0ifn = 1;

@) d(n,m3) <d(p,m2) +d(n2,13).

Proof.

(1) Because f(s;) = 5; € [0,1] = |f(s1y) — f(s1,)| € [0, 1], [f(S2u—1,) — f(S2u—1,)| and [f(S2u—F,) —
f(s2u—r,)],as A >0, then 0 < d(11,12) < 1.
(2) This proof is obvious.
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(3) Since ;= 1, then SC(ny) = SC(12) and AC(y1) = AC(1p2)
= (4M + Ty -6 — Fl)/(61/l) = (4M + T, — I — Fz)/(61/l) and (T1 Fl)/(Zu) = (T2 — FZ)/(ZM)
=>=Th-L1-F=Th-Lh—-FKhandTy-FF=T,—-F = [ =hLand T} — =T, - F.

Thus, d(i1,12) (If(s) = flsm) It + |f(52u 1) = f(s2u—p)* + [ (52-r) —f(Szu—Fz)V))

1
T,—T; I I F— X
| 1211 2 |A | Lh-5 |A | B-h |)\))A

==

|T1 F1+F1 T, |)L ‘lz L |)L ‘FZ*TerTz*H ‘A))
2u 2u

e

|F1 Fz|A+|I1 12|A+|T2 T1|A))

(
(
(l - F2+F1 T, |/\ ‘ 12*11 |/\ ‘F1*T12+T2*F1 ‘/\))
(
(

==

[f(s1y) = flsm)I* + | f (s2u—1,) = fls2u—1)I* + |f (s2u-p) = f(s20-R)IY))
12,71)
4B As [ f(sp)=S(sp)] = |f ()= fCsp)+ f(s)—f(s)]
S Csp) = f )+ f ()= f(sg) 1,
| f Sy )= S S D= S (S0 )= S (S0 )+ S (850 ) = [ (851 |
S S )= S S VA S, )= S (851,
and | f(8y,_5) = S o) =S o) = S (S0 ) ¥ S (S2py)) = S (S20p) |
o) = S G S o) = f (S0 |
hence, d(1,,17,) <d(n,,1,)+d(,.1;) .

=
(3
(3
(3
(3
(3
d(

Example 1. If u = 4, two LNNs 177 = (s1,52,54) and o = (Ss,53,5¢), the Hamming distance is
dgm(1,1m2) ~ 0292, the Euclidean distance is dgy(n1,12) ~ 0.331, and the Hausdorff distance is
da(n1,12) = 0.500.

3.3. Weight Model Based on Maximum Deviation

Because the weight information is completely unknown, we use the maximum deviation approach
to determine the weight vector of criteria in this subsection.
The basic idea of the maximum deviation method is that [60]:

(1) If there is a tiny difference of evaluation values 7;; among all objects under criteria
aj(j = 1,2,...,m), it indicates that the criteria a; has little effect on the sorting results.
Accordingly, it is appropriate to allocate a small value of the related weight w;.

(2) Conversely, if there is a significant variance of assessment information 7;; among all alternatives
under criteria a; (j=1,2,...,m), then the criteria aj may be very important to the ranking orders.
In this case, giving a large weight value w; is reasonable.

(3) Notably, if 77;; are the same values among all options under criteria a; ((j = 1,2,...,m)), it means
that the criteria a; doesn’t affect the ranking results. Therefore, we can make the Corresponding
weight w; = 0.

For the sake of obtaining the difference values, we define the deviation degree of a certain object
xi(i=1,2,...,n) to all objects for a certain criteria aj(j =1,2,...,m) as follows:
n
Dij(wj) =Y, d(1ij, nej)wj, )

e=1

where d(7;;, 1) is the distance measure between 7;; and 7,;.
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Subsequently, the deviation degrees of all options under the criteria a;(j = 1,2,...,m) can be

denoted as: .
=) _Diw Z Z d(1ij, 1ej) w (10)
i=1 i=le=

Thus, the total deviation of all alternatives with all criteria is proposed in the following:

m m n m

D(“’):ZDJ'(“’]')ZZZDU wj) = 2

j=1 j=1i=1 j=1

Ip-

n
X: (Wijs He)w (11)

As a result, we can build the weight model based on maximum deviation as follows:

max D(w) d(’?ij, 776]')“‘]1

(If (sm)) = flsm )+ If (s2u-1;) — f(S2u-1,)1* + | f (s20-F;) *f(SZH—Fe,-)M))%“’j

m
Y w?=1
s.t =1 /

M= 1=

—
W=

Tp= T=

~
Il
_

T Trs

(12)

—

i (%(‘f(STif) 7f(STq-)|A + |f(52u71,v,-)* f(52uf1f/)\)‘+
. 1 m (13)
|f(s2u-r;) _f(SZMfFej”A))Xw]‘ +5(C w]Z -1)

j=1

-
Il
_

Taking the partial deviation of this function, we have:

Wed = § 5 8 (GF(sr,) = Flor) 1+ |f(s2umty) = Flsuty) P+ Fls2umry) = Flsaumr )N + peoy = 0

=1
o _ %2 1
]

m n o on 12
=p= ¢ L (L L GIf(sm) = flom) M+ fs2uty) = fls2u-1y)1! + [(20-5,) = flszur,)|')7) and (14)
; -

1

3Uf(sTy)—f (STUj)‘A+‘f(521I—I )=f(s2u-1, )+ (s2u- Fy)— flsaur, )IMN™

i)

wjf >
sz (3 1ftor,)~F o1, P+ (o 1,)~F 1) P+ o2 )~ Floaur D)

wi = ,j=12,...,m. (15)

3.4. The Extended TOPSIS Method with LNNs

In this subsection, an extended TOPSIS approach under a linguistic neutrosophic environment
is proposed.

The detailed steps are described as follows:

. . . TSN . . o) _ o(1) _ o(]) o(l) o(1)
Step 1: Obtain the normalized decision-making matrix N (1;; i )nxm (s ST, /51, /SE, )nxm.
If the criteria belong to cost type, let s;i(]_l) = SéQ—Ti/’ s;l_](,l) = sgz_ I and s;i(]_l) = sgg_ By If the criteria
. . . . o)y () o) (D o)y (D)
belong to benefit type, then the matrix remains, that is to say St = ST..5, 0 =S| and s F; = Sk

Step 2: Get the comprehensive decision-making matrix N® = (U;j)nxm = (S'T_j, s;,]_, s;_j) using
1 1 1 nxXm
the LNWAM operator or LNWGM operator on the basis of Formula (3) or Formula (4).
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Step 3: Use the weight model to calculate the weight values w; (j = 1,2,...,m) based on
Formula (9), and then normalize the weight information in line with Formula (10) denoted as w]-'
(Gj=12,...,m).

Step 4: Establish the weight standardized decision-making matrix N* = (ﬂfj)nxm =
(s*%]_j, s’I‘i]_, sl*fl_]_ )nxm through multiplying the normalized matrix with weight vector, where s’i_]_ = w]-s}l_j,
s}‘ﬁ = sz;i]_ and sj;l_j = sz;]_]_.

Step 5: Distinguish the positive ideal solution 4 and the negative ideal solution 7, respectively,
then:

= s o) = max(g), (j=1,2,...,m) (16)
And
nm =00y ), 1y = min(yg), (G=1,2,...,m) (17)

Step 6: Based on Formula (5), calculate the distance measures of the positive ideal solution to all
options, and the distance measures of the negative ideal solution to all options in proper sequence.
The computation formulas are:

dt = (df,df,....d}), df Z;d 7o), (i=1,2,...,m) (18)
And

d= = (dy,dy,....d; Zd ), (i=1,2,...,m). (19)
Step 7: For each option x; (i = 1,2,...,n), compute the values of correlation coefficient D; with

the following equation:
d.
D= —1 20
Yodf+d; 20
Step 8: Achieve the ranking orders according to the values of D; (i = 1,2,...,n). The bigger the
value of D;, the better the alternative x; is.

4. Case Study

In this section, we study a case of evaluating investment risks of a gold mine using the
proposed approach.

Recently, a construction investment company in Hunan province, called JK MINING Co., Ltd.,
had a plan for investing in a domestic metal mine. After an initial investigation and screening, four
famous metal mines, described as {x1, X2, x3, x4}, have been under consideration. The enterprise
establishes a team of three experts to conduct field explorations and surveys in depth, so that the
optimal mine can be selected. The specialists need to evaluate the investment risk in line with their
findings, professional knowledge, and experience. Assume the importance of each professional is
equal, thatistosay 7y = 72 = y3 = % After heated discussions, five attributions are recognized as the
evaluation criteria. They are geological risk (a1), production risk (a;), market risk (23), management
risk (a4), and social environment risk (as), separately. Then, the experts defined the linguistic term set,
S = {s;|li € [0,8]}, where s = {so = exceedingly low, s; = pretty low, s, = low, s3 = slightly low,
sy = medium, ss = slightly high, sy = high, s3 = pretty high, s, = exceedingly high}. Afterwards,
they can give scores (or score ranges) or linguistic information directly of options under each attribute.
The corresponding relationships between grade and linguistic term can been seen in Table 3.
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Table 3. Reference of investment risk evaluation.

Grade 0~19 20~29 30~39 40~49 50~59 60~69 70~79 80~89 90~100
. exceedingly pretty slightly . slightly . pretty exceedingly
Evaluation low low low low medium high high high high
Linguistic
term S0 51 S S3 Sa S5 Se S7 S8

In order to describe the ambiguity and uncertainty of risks, their evaluation information is
represented by LNNs. Subsequently, these assessment matrices are formed as Tables 4-6:

Table 4. Decision-making matrix N 1),

N(l) ay az as aa as

x1 (s1,52,51) (s2,53,52) (54,54,83) (s1,85,51) (s3,53,82)
X2 (S 156,85 2) (S 158,85 2) (52154151) (53151152) (51152151)
x3 (s2,53,51) (s3,52,53) (51,54,51) (s3,55,51) (s5,52,54)
X4 (s3,51,52) (s1,57,51) (54,56,53) (s2,85,51) (54,56,54)

Table 5. Decision-making matrix N (2),

N(z) ay az as aa as
X1 (s1,56,51) (s4,53,54) (s2,56,52) (s3,85,52) (s5,52,54)
X2 (S 754, Sl) (S 52151) (52/ 53, 54) (54/ 50, 55) (S 156,85 4)
X3 (S /55,8 2) (S 154,58 3) (511561 55) (53/ S5, 53) (S 156/ Sl)
Xy (s2,87,52) (54,56,51) (s3,57,52) (54,54,52) (s3,58,54)

Table 6. Decision-making matrix N ®),

NG a a as ag as

x1 (52,54,51) (s3,55,52) (s5,51,54) (52,56,51) (s3,53,52)
X2 (s1,52,51) (52,54,52) (s1,55,53) (54,52,50) (50,55, 56)
X3 (s2,53,53) (s1,85,52) (52,54,55) (50,54, 56) (53,52,54)
X4 (52153152) (34152151) (51154/53) (53/54155) (50/54155)

Next, the extended TOPSIS approach presented in Section 3.4 is employed to identify the optimal
metal mine. A concrete calculation process is delivered as follows:
Step 1: Obtain the normalized decision matrix. As all the criteria are risk element, regarded as

() 50 () (0

a part of cost, then normalizing evaluation values with function s u—T ;. = 8y,_p. and
i ij
s P( ) = sgg Fye The followings (Tables 7-9) are the normalized dec151on—mak1ng matrix of each expert.
Table 7. Normalized decision-making matrix N (1),
N*(D) ay ap as ag as
x1 (s7,56,57) (56,55,56) (54,54,55) (s7,53,57) (s5,55,56)
X2 (S ,52,8 6) (S 150,8 6) (56/ 54, S7) (S 157, 56) (571 Se6, 57)
X3 (S /55,8 7) (S 156,8 5) (57/ 54, S7) (S ,53,8 7) (53/ S6, 54)
X4 (s5,57,56) (s7,51,87) (s4,52,85) (s6,53,57) (s4,52,54)




Symmetry 2017, 9, 149 11 of 18

Table 8. Normalized decision-making matrix N «(@),

N.(z) ay arz as as as

X1 (s7,52,57) (54,55,54) (56,52, 56) (s5,53,56) (53,56,54)
X2 (s7,54,57) (s5,56,57) (S6,55,54) (s4,58,53) (56,52,54)
X3 (s5,53,56) (56,54,55) (s7,52,53) (s5,53,55) (86,52,57)
X4 (56,51,56) (54,53,57) (s5,51,56) (54,54,56) (s5,50,54)

Table 9. Normalized decision-making matrix N *(3).

N°(3) a a az ag as

x1 (56,54,57) (s5,53,56) (s3,57,54) (56,52,57) (s5,55,56)
X2 (57156157) (S 154,85 6) (S ,53,8 5) (S 156,85 8) (S ;53,8 2)
X3 (86,55,55) (57,53,56) (56,54,53) (58,54,52) (s5,56,54)
X4 (86,55, 56) (54,56,57) (57,54,55) (s5,54,53) (58,54,53)

Step 2: Using the LNWAM operator in line with Formula (3) to get the comprehensive decision
matrix as Table 10:

Table 10. Comprehensive decision-making matrix N°.

N°* a1 ap as ag as

x1 (56.74,53.63,57)  (55.12,5422,5524) (54.58,53.83,5493) (56.18,52.62,56.65)  (S4.44,5531,5524)
X (56.74/53.63:56.65)  (55.38/50,56.32)  (56.18,53.91,55.19)  (54.83,56.95,55.04) (58,533,53.83)
X3 (55.71,5422,5594) (S6.18,54.16,5531)  (56.74,53.17,53.98) (s8,533,5412) (54.89, $416,54.82)
X4 (s571,8327,56)  (5548/5262/57)  (S571,52,5531)  (85.11,53.63,55.01) (58,50,53.63)

Step 3: Calculate the values of the criteria weight w; (suppose A = 1) on the basis of Formula
(9) as follows: wy =~ 0.17, wy ~ 0.42, w3 =~ 0.31, wy =~ 0.55 and w; = 0.63. Normalize them based on
Formula (10): w} = m ~ 0.08, wy ~ 0.20, w3 ~ 0.15, wy ~ 0.27 and w3 ~ 0.30.

Step 4: Establish the weight standardized decision-making matrix as Table 11.

Table 11. Weight standardized decision-making matrix N%.

Nw a1 ap as ag as

x1 (51.1,57.51,5791)  (51.48,57.04,57.35) (50.96,57.16,57.44) (52.64,5592,5761)  (51.73,57.07,57.05)
x (51.1,5751,57.88)  (51.6,50,57.63)  (51.59,5719,575)  (51.77,57.7,57.14) (58,56.13,56.41)
X3 (50.76,57.6:57.81)  (52.05,57.02,5737) (51.94,5696,572)  (58,56.3,56.69) (51.97,56.57,56.87)
X4 (5076, 57.45,57.82)  (51.65,56.4,57.79)  (5137,565,57.53)  (51.92,56.46,57.05) (58,50,56.31)

Step 5: Identify the positive ideal solution and the negative ideal solution, respectively. See
Table 12.

Table 12. Positive ideal solution and negative ideal solution.

' s 3 i s
(s1.1,57.51,57.88) (s1.6,50,57.63) (51.94,56.96,57.2) (S8,56.3,56.69) (s8,50,5631)

" o 3 Ny s
(50.76,57.6,57.81) (51.48,57.04/57.35) (50.96,57.16,57.44) (81.77,57.7,57.14) (81.73,57.07,57.05)

Step 6: In line with Formula (5), the distances are measured as follows (assume A = 1): dl+ ~ 9.88,
dy ~5.06,df =7.13,df =5.01,d] ~122,d, ~550,d; ~3.68andd; ~ 6.04.
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Step 7: Compute the values of correlation coefficient: D; ~ 0.11, D, ~ 0.52, D3 ~ 0.34 and
Dy =~ 0.55.

Step 8: Since Dy > D, > D3 > Dy, then the ranking order is x4 > xp > x3 > x1, and the best
metal mine is x4.

5. Comparison Analysis

In this section, several related studies are compared through solving the same problem of gold
mine venture assessment.

The comparison results can be seen in Table 13, and the particularized discussions and analysis
are depicted in the following:

Table 13. Ranking orders using different approaches.

. Optimal Worst

Approaches Ranking Orders Alte}:natives Alternatives
Approach with the LNWAM operator [54] X4 > Xp > X3 > X X4 X1
Approach with the LNWGM operator [54] X4 > X3 > X3 > X1 Xy X1
Approach with ujj = %sTi]. [50] X4 > X3 > Xp > X1 X4 X1
Approach with ujj = %ST[./. + %SL.]. [50] X1 > X3 > X > Xy X1 X4
Approach with u;; = %STI./. + %SFI,/. [50] Xp > X1 > X3 > X4 X Xy
Approach with SVNLN-TOPSIS [42] X4 > Xp > X3 > X X4 X1
The presented approach X4 > Xp > X3 > X1 Xy X1

(1) The information in Reference [54] is LNNs. The multi-criteria group decision-making methods
based on the LNWM operator or LNGM operator are presented. If we use the LNWAM operator to
deal with the same problem in this paper, we have the comprehensive evaluations of each alternative as
follows: ¢1 = (s5.4,53.87,55.67), C2 = (58,50,55.04) €3 = (58,5376, 54.65) C4 = (58,50, 54.98). Since the score
function SC(c1) ~ 0.494, SC(c2) = 0.790, SC(c3) =~ 0.650, SC(c4) ~ 0.793, then SC(cq) > SC(cp) >
SC(c3) > SC(cy)=x4 > x3 > x3 > x7. If the LNWGM operator is used, then cf = (55.19,54.15,55.87),
Cg = (56.12/ S4.6,S5,32), Cg = (56.22/ S3_81,S4'75), CZ = (56.08r S2.24, S5_43). As SC(C#) =~ 0.465, SC(C;) =~ 0.508,
SC(c%) ~ 0.569, SC(c%) ~ 0.600, we have SC(c}) > SC(c%) > SC(ch) > SC(cf)= x4 > x3 > x2 > x7.

(2) The information in Reference [50] is linguistic intuitionistic fuzzy numbers (LIFNs). In the
first place, it is necessary to translate LNNs into LIFNs. However, there is no existing universal
conversion method. In this case, we have three ideas. The first idea is that all the linguistic
indeterminacy-membership degrees in LNNs are allocated to linguistic non-membership degrees
in LIFNs. In other words, u;; = %STI.]. and v;; = %SL./. + %SF,-]-' For example, a LNN (s3, s, 5¢) can
be changed into a linguistic intuitionistic fuzzy number (LIEN) (s1,s4). The second opinion is that
linguistic indeterminacy-membership degrees in LNNs are assigned to linguistic membership degrees
and linguistic non-membership degrees in LIFNs on average. That is to say, u;; = %STZ.]. + %s 1; and
vij = %sll.j + %51:1.].. For instance, the LIFN (sp,s3) may take the place of a LNN (s3,56,56). On the
contrary, the last attitude is that all the linguistic indeterminacy-membership degrees in LNNs are
allotted to linguistic membership degrees in LIFNs. So to speak, u;; = %STU + %s F; and vj; = %s E;- As
an example, a LNN (s3, s¢, S¢) may be replaced by a LIEN (s3,52).

Owing to the limited space, we take the first idea as an example in the following. The converted
decision-making matrices of each expert are shown as Tables 14-16:



Symmetry 2017, 9, 149 13 of 18

Table 14. Converted decision-making matrix N°(1),

Nco(l) ay az az ay as
X1 (57/3,513/3) (s2,511/3) (54/3,53) (s7/3,510/3) (s5/3,511/3)
X2 (s2,58/3) (s5/3,52) (s2,511/3) (s2,813/3) (s7/3,513/3)
x3 (s2,54) (s5/3,511/3) (s7/3,511/3) (s5/3,510/3) (s1,510/3)
x4 (s5/3,513/3) (s7/3,58/3) (84/3,57/3) (s2,510/3) (54/3,52)

Table 15. Converted decision-making matrix N°(2),

NC"(Z) ay az az ay as
Xq (s7/3,83) (54/3,83) (s2,58/3) (s5/3,53) (s1,510/3)
X2 (57/3,511/3) (S5/3,513/3) (s2,83) (s4/3,511/3) (s2,52)
X3 (s5/3,83) (s2,53) (87/3,85/3) (s5/3,58/3) (s2,53)
x4 (s2,57/3) (84/3,510/3) (s5/3,57/3) (s4/3,510/3) (85/3,54/3)

Table 16. Converted decision-making matrix N%(3).

NC°(3) ay az az ay as
X1 (s2,511/3) (s5/3,53) (s1,511/3) (s2,83) (85/3,511/3)
X2 (57/3,513/3) (s2,810/3) (87/3,58/3) (54/3,514/3) (s8/3,55/3)
X3 (s2,510/3) (s7/3,53) (s2,87/3) (s8/3,52) (s5/3,510/3)
X4 (s2,511/3) (s4/3,513/3) (s7/3,53) (s5/3,57/3) (s8/3,57/3)

Then, using the method in Reference [50], the collective evaluations of each option are
X1 = (S83/48,5173/52), X2 = (5108/52,568/21), X3 = (S133/73,5257/84) and xa = (5173796, 529/11) (let
the position weight w = (0.2,0.3, 0.5)7). Then the score functions are L(x1) ~ —1.60, L(xy) ~ —1.26,
L(x3) ~ —1.24 and L(x4) ~ —0.83. Because L(x4) > L(x3) > L(x2) > L(x7), the ranking result is
X4 > X3 > Xp > Xq.

Likewise, we use the approach in Reference [50] with the second and third thought to deal
with the same problem, successively. Afterwards, we get the corresponding ranking orders are
X1 > x3 > x2 > xgand xp > x1 > x3 > x4, respectively (suppose the position weight is constant and
thatw = (0.2,0.3,0.5)7).

(3) The information in Reference [42] consists of single valued neutrosophic linguistic numbers
(SVNLNS). The first step is to change the LNNs into SVNLNs. For a certain LNN 1 = (st, sy, sg), if
g = max(T, I, F), we can make the linguistic value in a single valued neutrosophic linguistic number
(SVNLN) equal to s, then the truth-membership, indeterminacy-membership, and false-membership
degrees ina SVNLN are described as T/ g, I /g and F/ g in proper order. So to say,a LNN # = (s, s, SF)
may be converted intoa SVNLN (sy, < T/g,1/g,F/g >). For example, a LNN (s3, 53,5¢) and a SVNLN
(s6, < 0.5,0.5,1 >) are equivalent in manner.

The transformed decision-making matrices of each specialist are listed as Tables 17-19:

Table 17. Transformed decision-making matrix N tr(1),

Ntr(1) a ap as ag as
X1 (s7,<1,6/7,1>) (s6,<1,5/6,1>) (s5,<4/5,4/5,1>) (s7,<1,3/7,1>) (s6, < 5/6,5/6,1>)
X2 (s6,<1,1/3,1>) (s6,<5/6,0,1>) (s7,<6/7,4/7,1>) (s7,<6/7,1,6/7 >) (s7,<1,6/7,1>)

X3 (s7,<6/7,5/7,1>)  (s6,<5/6,1,5/6 >) (s7,<1,4/7,1>) (s7,<5/7,3/7,1>) (s6,<1/2,1,2/3>)
X4 (s7,<5/7,1,6/7 >) (s7,<1,1/7,1>) (s5,<4/5,2/5,1>) (s7,<6/7,3/7,1>) (s4,<1,1/2,1>)
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Table 18. Transformed decision-making matrix N*"(2).

14 0f 18

N2

@ az as ag as
el (s7,<1,2/7,1>) (s5,<4/5,1,4/5 >) (s6,<1,1/3,1>) (s6,<5/6,1/2,1>) (s6,<1/2,1,2/3>)
X2 (s7,<1,4/7,1>) (s7,<5/7,6/7,1>) (s6,<1,5/6,2/3>) (s,<1/2,1,3/8>) (s¢,<1,1/3,2/3>)
X3 (s6,<5/6,1/2,1>)  (s6,<1,2/3,5/6>) (s7,<1,2/7,3/7 >) (s5,<1,3/5,1>) (s7,<6/7,2/7,1>)
X4 (s6,<1,1/6,1>) (s7,<4/7,3/7,1>) (s6,<5/6,1/6,1>) (s, <2/3,2/3,1>) (s5,<1,0,4/5 >)

Table 19. Transformed decision-making matrix N*'(3).

Nir(3) a a as ag as
x (s7,<6/7,4/7,1>)  (56,<5/6,1/2,1>)  (s7,<3/7,1,4/7>) (s7,<6/7,2/7,1>)  (s6,<5/6,5/6,1>)
X2 (s7,<1,6/7,1>) (s6,<1,2/3,1>) (s7,<1,3/7,5/7>)  (s3,<1/2,3/4,1>) (s,<1,3/8,1/4>)
X3 (s6,<1,5/6,5/6 > (s7,<1,3/7,6/7>) (s6,<1,2/3,1/2>) (ss,<1,1/2,1/4>) (s6,<5/6,1,2/3 >)
X4 (ss,<1,5/6,1>) (s7,<4/7,6/7,1>) (s7,<1,4/7,5/7>) (s5,<1,4/5,3/5>) (ss,<1,1/2,3/8>)

After that, the extended SVNLN-TOPSIS approach in literature [42] is employed to assess the
metal mine’s investment venture. The relative closeness coefficients of each mine are calculated as
follows: rc; = 21/25,rcop = 54/67,rc3 = 5/6 and rcy = 29/36. Because rcy < rcp < rez < rep, we have
X4 > Xp > X3 > Xq.

From Table 13, we can see that there are diverse ranking results with distinct methods. In order to
attain the ideal ranking order, we can assign grades for alternatives in these seven rankings successively.
The better the option is, the higher the score is. That is to say, the optimal alternative in a ranking
may be distributed with 4, the second is 3, the third is 2, and the worst is 1. As an illustration,
according to the ranking x4 > xp > x3 > xj in literature [54] with the LNWAM operator, we have
G1(x4) =4, Gi(x2) =3, G1(x3) =2 and Gy (x;1) = 1. Similarly, grades in other ranking methods can
be determined. In the end, the overall grades of all alternatives can be earned through summation as
follows: G(x1) = 12, G(x2) =19, G(x3) = 17 and G(x4) = 22. Because G(x4) > G(x2) > G(x3) >
G(xq), the ideal ranking result may be regarded as x4 > xp > x3 > x7. It is obvious that the result is
the same with the proposed method in this paper. The feasibility and availability of the presented
approach are indicated.

Besides, the best and worst objects are identical in the literature [42,54] and our approach. The
reasons for the differences between literature [54] with our method may be the decision-making
thought. Our measure is based on distance, while the literature [54] is based on aggregation operators.
Some initial information may be missing in the process of aggregating. Moreover, diverse conclusions
may occur with different aggregation operators, which has been demonstrated in the second and
third line in Table 13. Both the method in Reference [42] and ours are in line with TOPSIS, and the
same orders are received. However, there may be some limitations in [42]. Because the attribute
weight vector is given directly, the positive and negative ideal solutions are absolute. In addition, the
rankings in literature [50] are all different from the presented method. The reason for the distinction
may be that the indeterminacy-membership information in LNNs is unavoidably distorted in LIFNSs to
some extent.

From the analysis above, the advantages of the proposed method can be summarized as follows:

(1) Evaluating the risk degree of mining projects under qualitative criteria by means of LNNs is a
good choice. As all the consistent, hesitant, and inconsistent linguistic information are taken
into account.

(2) The flexibility has increased because various distance measures, aggregation operators, and
linguistic scale functions can be chosen according to the savants” experience or reality.

(3) A common situation, in which the criteria weight information is unknown, is under consideration.
There are many complex risk factors in the process of metallic mining investment. Thus, it
is difficult or unrealistic for decision makers to give the weight vector directly. The weight
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model based on the thought of maximum deviation may be a simple and suitable way to resolve
this problem.

(4) Instead of using absolute ideal points, the extended TOPSIS method defined the relative ideal
solutions. The strength of it is that different ideal solutions are calculated corresponding with the
different original information of different mining projects. This may be more in line with reality.

6. Discussion and Conclusions

To evaluate risk is the beginning of a metallic mining project investment. Proper risk assessments
have great significance on the success of investments. Owing to the uncertainty and complexity in mine
surroundings, this paper advised an extended TOPSIS method with LNNs to rise to this challenge.
LNNs were suggested to manifest the indeterminate and inconsistent linguistic values, so that the
evaluation information can be retained as much as possible. Then, generalized distance formulas
were presented to calculate the difference degrees of two LNNs. As it is not easy for the mining
investment decision makers to directly determine criteria weight values, a weight model based on
maximum deviation was recommended. Afterwards, the method of ranking mines was shown by a
case study. Furthermore, the effectiveness and highlights of the presented approach can be reflected in
the comparison analysis.

Even though the extended TOPSIS with LNNs method is a good solution, there are still some
limitations. For example, the determination of the criteria weight values does not take the subjective
elements into consideration. Hence, a more reasonable weight determination method should be
further proposed. Besides, the sub-attribute risk factors may be considered in the future. The
presented method with LNNs for evaluating the investment risks may be extended to interval linguistic
neutrosophic numbers.
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Abstract: Extreme learning machine (ELM) is known as a kind of single-hidden layer feedforward
network (SLEN), and has obtained considerable attention within the machine learning community and
achieved various real-world applications. It has advantages such as good generalization performance,
fast learning speed, and low computational cost. However, the ELM might have problems in the
classification of imbalanced data sets. In this paper, we present a novel weighted ELM scheme based
on neutrosophic set theory, denoted as neutrosophic weighted extreme learning machine (NWELM),
in which neutrosophic c-means (NCM) clustering algorithm is used for the approximation of the
output weights of the ELM. We also investigate and compare NWELM with several weighted
algorithms. The proposed method demonstrates advantages to compare with the previous studies
on benchmarks.

Keywords: extreme learning machine (ELM); weight; neutrosophic c-means (NCM); imbalanced data
set

1. Introduction

Extreme learning machine (ELM) was put forward in 2006 by Huang et al. [1] as a single-hidden
layer feedforward network (SLEN). The hidden layer parameters of ELM are arbitrarily initialized and
output weights are determined by utilizing the least squares algorithm. Due to this characteristic, ELM
has fast learning speed, better performance and efficient computation cost [1-4], and has, as a result,
been applied in different areas.

However, ELM suffers from the presence of irrelevant variables in the large and high dimensional
real data set [2,5]. The unbalanced data set problem occurs in real applications such as text
categorization, fault detection, fraud detection, oil-spills detection in satellite images, toxicology,
cultural modeling, and medical diagnosis [6]. Many challenging real problems are characterized by
imbalanced training data in which at least one class is under-represented relative to others.

The problem of imbalanced data is often associated with asymmetric costs of misclassifying
elements of different classes. In addition, the distribution of the test data set might differ from that of
the training samples. Class imbalance happens when the number of samples in one class is much more
than that of the other [7]. The methods aiming to tackle the problem of imbalance can be classified
into four groups such as algorithmic based methods, data based methods, cost-sensitive methods
and ensembles of classifiers based methods [§]. In algorithmic based approaches, the minority class
classification accuracy is improved by adjusting the weights for each class [9]. Re-sampling methods
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can be viewed in the data based approaches where these methods did not improve the classifiers [10].
The cost-sensitive approaches assign various cost values to training samples of the majority class
and the minority class, respectively [11]. Recently, ensembles based methods have been widely used
in classification of imbalanced data sets [12]. Bagging and boosting methods are the two popular
ensemble methods.

The problem of class imbalance has received much attention in the literature [13]. Synthetic
minority over-sampling technique (SMOTE) [9] is known as the most popular re-sampling method
that uses pre-processing for obtaining minority class instances artificially. For each minority class
sample, SMOTE creates a new sample on the line joining it to the nearest minority class neighbor.
Borderline SMOTE [14], SMOTE-Boost [15], and modified SMOTE [14] are some of the improved
variants of the SMOTE algorithm. In addition, an oversampling method was proposed that identifies
some minority class samples that are hard to classify [16]. Another oversampling method was presented
that uses bagging with oversampling [17]. In [18], authors opted to use double ensemble classifier
by combining bagging and boosting. In [19], authors combined sampling and ensemble techniques
to improve the classification performance for skewed data. Another method, namely random under
sampling (RUS), was proposed that removes the majority class samples randomly until the training
set becomes balanced [19]. In [20], authors proposed an ensemble of an support vector machine
(SVM) structure with boosting (Boosting-SVM), where the minority class classification accuracy was
increased compared to pure SVM. In [21], a cost sensitive approach was proposed where k-nearest
neighbors (k-NN) classifier was adopted. In addition, in [22], an SVM based cost sensitive approach
was proposed for class imbalanced data classification. Decision trees [23] and logistic regression [24]
based methods were also proposed in order to handle with the imbalanced data classification.

An ELM classifier trained with an imbalanced data set can be biased towards the majority class
and obtain a high accuracy on the majority class by compromising minority class accuracy. Weighted
ELM (WELM) was employed to alleviate the ELM’s classification deficiency on imbalanced data sets,
and which can be seen as one of the cost-proportionate weighted sampling methods [25]. ELM assigns
the same misclassification cost value to all data points such as positive and negative samples in
a two-class problem. When the number of negative samples is much larger than that of the number of
positive samples or vice versa, assigning the same misclassification cost value to all samples can be
seen one of the drawbacks of traditional ELM. A straightforward solution is to obtain misclassification
cost values adaptively according to the class distribution, in the form of a weight scheme inversely
proportional to the number of samples in the class.

In [7], the authors proposed a weighted online sequential extreme learning machine (WOS-ELM)
algorithm for alleviating the imbalance problem in chunk-by-chunk and one-by-one learning. A weight
setting was selected in a computationally efficient way. Weighted Tanimoto extreme learning machine
(T-WELM) was used to predict chemical compound biological activity and other data with discrete,
binary representation [26]. In [27], the authors presented a weight learning machine for a SLFN to
recognize handwritten digits. Input and output weights were globally optimized with the batch
learning type of least squares. Features were assigned into the prescribed positions. Another weighted
ELM algorithm, namely ESOS-ELM, was proposed by Mirza et al. [28], which was inspired from
WOS-ELM. ESOS-ELM aims to handle class imbalance learning (CIL) from a concept-drifting data
stream. Another ensemble-based weighted ELM method was proposed by Zhang et al. [29], where the
weight of each base learner in the ensemble is optimized by differential evolution algorithm. In [30],
the authors further improved the re-sampling strategy inside Over-sampling based online bagging
(OOB) and Under-sampling based online bagging (UOB) in order to learn class imbalance.

Although much awareness of the imbalance has been raised, many of the key issues remain
unresolved and encountered more frequently in massive data sets. How to determine the weight values
is key to designing WELM. Different situations such as noises and outlier data should be considered.

The noises and outlier data in a data set can be treated as a kind of indeterminacy. Neutrosophic
set (NS) has been successfully applied for indeterminate information processing, and demonstrates
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advantages to deal with the indeterminacy information of data and is still a technique promoted
for data analysis and classification application. NS provides an efficient and accurate way to define
imbalance information according to the attributes of the data.

In this study, we present a new weighted ELM scheme using neutrosophic c-means (NCM)
clustering to overcome the ELM’s drawbacks in highly imbalanced data sets. A novel clustering
algorithm NCM was proposed for data clustering [31,32]. NCM is employed to determine a sample’s
belonging, noise, and indeterminacy memberships, and is then used to compute a weight value for that
sample [31-33]. A weighted ELM is designed using the weights from NCM and utilized for imbalanced
data set classification.

The rest of the paper is structured as follows. In Section 2, a brief history of the theory of ELM
and weighted ELM is introduced. In addition, Section 2 introduces the proposed method. Section 3
discusses the experiments and comparisons, and conclusions are drawn in Section 4.

2. Proposed Method

2.1. Extreme Learning Machine

Backpropagation, which is known as gradient-based learning method, suffers from slow
convergence speed. In addition, stuck in the local minimum can be seen as another disadvantage of a
gradient-based learning algorithm. ELM was proposed by Huang et al. [1] as an alternative method
that overcomes the shortcomings of gradient-based learning methods. The ELM was designed as
an SLFN, where the input weights and hidden biases are selected randomly. These weights do not
need to be adjusted during the training process. The output weights are determined analytically with
Moore-Penrose generalized inverse of the hidden-layer output matrix.

Mathematically speaking, the output of the ELM with L hidden nodes and activation function g(-)
can be written as:

L
01:Zﬁ]g(a]/b]/x])/ Z:1/2//1\]/ (1)
j=1

where x; is the jth input data, a; = [aj, a5, . . . ,a]-n}T is the weight vector, 8; = [Bj1, Bj2, - - -, ,Bjn]T is the
output weight vector, b is the bias of the jth hidden node and o; is the ith output node and N shows
the number of samples. If ELM learns these N samples with 0 error, then Equation (1) can be updated
as follows:

t; =

M-

I
—

ﬁ]‘g(a]',b]‘,x]‘), iZl,Z,...,N, (2)
J

where t; shows the actual output vector. Equation (2) can be written compactly as shown in

Equation (3):

HB=T, (©))

where H = {h;;} = g(aj, b, x;) is the hidden-layer output matrix. Thus, the output weight vector can
be calculated analytically with Moore—-Penrose generalized inverse of the hidden-layer output matrix
as shown in Equation (4):

p=H'T, 4)

where H™ is the Moore-Penrose generalized inverse of matrix H.

2.2. Weighted Extreme Learning Machine

Let us consider a training data set [x;,¢;],i = 1,..., N belonging to two classes, where x; € R"and
t; are the class labels. In binary classification, ¢; is either —1 or +1. Then, a N x N diagonal matrix Wj;
is considered, where each of them is associated with a training sample x;. The weighting procedure
generally assigns larger W; to x;, which comes from the minority class.
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An optimization problem is employed to maximize the marginal distance and to minimize the
weighted cumulative error as:

Minimize:  ||HB —T||* and ||B||. (5)
Furthermore:
L 1, 1Y )
Minimize:  Lpiy = EH‘BH + CWE Z I1&:11%, (6)
i=1
Subjected to: h(x;))p=tf —¢l, i=1,2,...,N, 7)

where T = [#1, ..., tN], &; is the error vector and h(x;) is the feature mapping vector in the hidden layer
with respect to x;, and B. By using the Lagrage multiplier and Karush-Kuhn-Tucker theorem, the dual
optimization problem can be solved. Thus, hidden layer’s output weight vector B becomes can be
derived from Equation (7) regarding left pseudo-inverse or right pseudo-inverse. When presented
data with small size, right pseudo-inverse is recommended because it involves the inverse of an N x N
matrix. Otherwise, left pseudo-inverse is more suitable since it is much easier to compute matrix
inversion of size L x L when L is much smaller than N:

When N is small : B = HT(é +WHHT)"'wWT, (8)
When N is large : B = HT(é +H'WT) THTWT. )

In the weighted ELM, the authors adopted two different weighting schemes. In the first one,
the weights for the minority and majority classes are calculated as:

Wininority = % and Winajority = Wi_)/ (10)
and, for the second one, the related weights are calculated as:
0.618 1
Wminority = Wj) and Wmajority = W:) (11)

The readers may refer to [25] for detail information about determination of the weights.

2.3. Neutrosophic Weighted Extreme Learning Machine

Weighted ELM assigns the same weight value to all samples in the minority class and another
same weight value to all samples in the majority class. Although this procedure works quite well in
some imbalanced data sets, assigning the same weight value to all samples in a class may not be a
good choice for data sets that have noise and outlier samples. In other words, to deal with noise and
outlier data samples in an imbalanced data set, different weight values are needed for each sample in
each class that reflects the data point’s significance in its class. Therefore, we present a novel method
to determine the significance of each sample in its class. NCM clustering can determine a sample’s
belonging, noise and indeterminacy memberships, which can then be used in order to compute a
weight value for that sample.

Guo and Sengur [31] proposed the NCM clustering algorithms based on the neutrosophic set
theorem [34-37]. In NCM, a new cost function was developed to overcome the weakness of the Fuzzy
c-Means (FCM) method on noise and outlier data points. In the NCM algorithm, two new types of
rejection were developed for both noise and outlier rejections. The objective function in NCM is given
as follows:
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N C N N
Inem(T,LEF,C) = Y Y (@1T;))"||xi — ¢jlI* + Y (@) |x; — Cimax|* + 6>}, (@sF)",  (12)
i=1j=1 i=1 i=1

where m is a constant. For each point i, the Cjjy is the mean of two centers. Tj;, I; and F; are the
membership values belonging to the determinate clusters, boundary regions and noisy data set.
0 < Tij/Ii/Fi < 1:

C
Z Tij+Li+F=1 (13)
j=1
Thus, the related membership functions are calculated as follows:

W3 (X; —C‘)f(%)
Tij = 2 ] ; — (14)
T (6 — ) ") 4 (2 — Cigpg) ") 457G

o (.2
Ii — wlw?)(xl - Cimux) (mil) (15)

L (xi— Cj)i(%) + (% = Cimax) 1) + 07

_ @, y(6) (71
- 2 2 2 7/
Y5 (xi— )" 4 (2 — Cignay) 1) 457 (1)
N (= m
i1 (w1 T) " x;
Cj _ 217\]1( i 1]) z/ (17)
Yiq (1 Ty)™
where Cj shows the center of cluster j, Wy, W,, and w3 are the weight factors and J is a regularization
factor which is data dependent [31]. Under the above definitions, every input sample in each minority
and majority class is associated with a triple Tjj, I;, F;. While the larger T;; means that the sample belongs
to the labeled class with a higher probability, the larger I; means that the sample is indeterminate with
a higher probability. Finally, the larger F; means that the sample is highly probable to be a noise or
outlier data.
After clustering procedure is applied in NCM, the weights for each sample of minority and
majority classes are obtained as follows:

E (16)

— C it 1
W@morlty — r and W'r'najorz v _ , 18
" TLij+1i— F " Tij+1i - F (1%
#(t;)
Cr=—=, 19

where C; is the ratio of the number of samples in the majority class to the number of the samples in the
minority class.

The algorithm of the neutrosophic weighted extreme learning machine (NWELM) is composed of
four steps. The first step necessitates applying the NCM algorithm based on the pre-calculated cluster
centers, according to the class labels of the input samples. Thus, the T, I and F membership values
are determined for the next step. The related weights are calculated from the determined T, I and F
membership values in the second step of the algorithm.

In Step 3, the ELM parameters are tuned and samples and weights are fed into the ELM in order
to calculate the H matrix. The hidden layer weight vector f is calculated according to the H, W and
class labels. Finally, the determination of the labels of the test data set is accomplished in the final step
of the algorithm (Step 4).

The neutrosophic weighted extreme learning machine (NWELM) algorithm is given as following:

Input: Labelled training data set.
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Output: Predicted class labels.

Step 1: Initialize the cluster centers according to the labelled data set and run NCM algorithm in
order to obtain the T, I and F value for each data point.

Step2: Compute W;fmomy and WZWJ ority according to Equations (18) and (19).

Step 3: Adapt the ELM parameters and run NWELM. Compute H matrix and obtain f according to
Equation (8) or Equation (9).

Step4: Calculate the labels of test data set based on S.

3. Experimental Results

The geometric mean (Gjeqn) is used to evaluate the performance of the proposed NWELM method.

/ TN
Gmean = (| R TN + EP’ (20)

TP
" TP+FN’

where R denotes the recall rate and TN, FP denotes true-negative and false-positive detections,
respectively. Gyeqn values are in the range of [0-1] and it represents the square root of positive class
accuracy and negative class accuracy. The performance evaluation of NWELM classifier is tested on
both toy data sets and real data sets, respectively. The five-fold cross-validation method is adopted
in the experiments. In the hidden node of the NWELM, the radial basis function (RBF) kernel is
considered. A grid search of the trade-off constant C on {2718,2716 .. 248 250} and the number of
hidden nodes L on {10, 20, ..., 990, 2000} was conducted in seeking the optimal result using five-fold
cross-validation. For real data sets, a normalization of the input attributes into [—1, 1] is considered.
In addition, for NCM, the following parameters are chosen such as ¢ = 1079, w1 = 0.75, wp, = 0.125,
w3 = 0.125 respectively, which were obtained by means of trial and error. The  parameter of NCM
method is also searched on {210,278, .. 28 210}

The Gjean is computed as follows:

R (21)

3.1. Experiments on Artificial Data Sets

Four two-class artificial imbalance data sets were used to evaluate the classification performance of
the proposed NWELM scheme. The illustration of the data sets is shown in Figure 1 [38]. The decision
boundary between classes is complicated. In Figure 1a, we illustrate the first artificial data set that
follows a uniform distribution. As can be seen, the red circles of Figure 1a belong to the minority class,
with the rest of the data samples shown by blue crosses as the majority class. The second imbalance
data set, namely Gaussian-1, is obtained using two Gaussian distributions with a 1:9 ratio of samples
as shown in Figure 1b. While the red circles illustrate the minority class, the blue cross samples show
the majority class.

Another Gaussian distribution-based imbalance data set, namely Gaussian-2, is given in Figure 1c.
This data set consists of nine Gaussian distributions with the same number of samples arranged in
a 3 x 3 grid. The red circle samples located in the middle belong to the minority class while the blue cross
samples belong to the majority class. Finally, Figure 1d shows the last artificial imbalance data set. It is
known as a complex data set because it has a 1:9 ratio of samples for the minority and majority classes.

Table 1 shows the Gean achieved by the two methods on these four data sets in ten independent
runs. For Gaussian-1, Gaussian-2 and the Uniform artificial data sets, the proposed NWELM method
yields better results when compared to the weighted ELM scheme; however, for the Complex artificial
data sets, the weighted ELM method achieves better results. The better resulting cases are shown in
bold text. It is worth mentioning that, for the Gaussian-2 data set, NWELM achieves a higher Gean
across all trials.
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Figure 1. Four 2-dimensional artificial imbalance data sets (X;, X): (a) uniform; (b) gaussian-1;

(c) gaussian-2; and (d) complex.

Table 1. Comparison of weighted extreme learning machine (ELM) vs. NWELM on artificial data sets.

Weighted ELM  NWELM

Weighted ELM NWELM

Data Sets Data Sets

Gmeun Gmean Gmeun Gmeun
Gaussian-1-1 0.9811 0.9822 Gaussian-2-1 0.9629 0.9734
Gaussian-1-2 0.9843 0.9855 Gaussian-2-2 0.9551 0.9734
Gaussian-1-3 0.9944 0.9955 Gaussian-2-3 0.9670 0.9747
Gaussian-1-4 0.9866 0.9967 Gaussian-2-4 0.9494 0.9649
Gaussian-1-5 0.9866 0.9833 Gaussian-2-5 0.9467 0.9724
Gaussian-1-6 0.9899 0.9685 Gaussian-2-6 0.9563 0.9720
Gaussian-1-7 0.9833 0.9685 Gaussian-2-7 0.9512 0.9629
Gaussian-1-8 0.9967 0.9978 Gaussian-2-8 0.9644 0.9785
Gaussian-1-9 0.9944 0.9798 Gaussian-2-9 0.9441 0.9559
Gaussian-1-10 0.9846 0.9898 Gaussian-2-10 0.9402 0.9623
Uniform-1 0.9836 0.9874 Complex-1 0.9587 0.9481
Uniform-2 0.9798 0.9750 Complex-2 0.9529 0.9466
Uniform-3 0.9760 0.9823 Complex-3 0.9587 0.9608
Uniform-4 0.9811 0.9836 Complex-4 0.9482 0.9061
Uniform-5 0.9811 0.9823 Complex-5 0.9587 0.9297
Uniform-6 0.9772 0.9772 Complex-6 0.9409 0.9599
Uniform-7 0.9734 0.9403 Complex-7 0.9644 0.9563
Uniform-8 0.9785 0.9812 Complex-8 0.9575 0.9553
Uniform-9 0.9836 0.9762 Complex-9 0.9551 0.9446
Uniform-10 0.9695 0.9734 Complex-10 0.9351 0.9470
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3.2. Experiments on Real Data Set

In this section, we test the achievement of the proposed NWELM method on real data sets [39].
A total of 21 data sets with different numbers of features, training and test samples, and imbalance
ratios are shown in Table 2. The selected data sets can be categorized into two classes according to their
imbalance ratios. The first class has the imbalance ratio range of 0 to 0.2 and contains yeast-1-2-8-9_vs_7,
abalone9_18, glass-0-1-6_vs_2, vowel0, yeast-0-5-6-7-9_vs_4, page-blocks0, yeast3, ecoli2, new-thyroid1l
and the new-thyroid2 data sets.

Table 2. Real data sets and their attributes.

Data Sets Features (#) Training Data (#) Test Data (#) Imbalance Ratio
yeast-1-2-8-9_vs_7 8 757 188 0.0327
abalone9_18 8 584 147 0.0600
glass-0-1-6_vs_2 9 153 39 0.0929
vowel0 13 790 198 0.1002
yeast-0-5-6-7-9_vs_4 8 422 106 0.1047
page-blocks0 10 4377 1095 0.1137
yeast3 8 1187 297 0.1230
ecoli2 7 268 68 0.1806
new-thyroid1l 5 172 43 0.1944
new-thyroid2 5 172 43 0.1944
ecolil 7 268 68 0.2947
glass-0-1-2-3_vs_4-5-6 9 171 43 0.3053
vehicle0 18 676 170 0.3075
vehiclel 18 676 170 0.3439
haberman 3 244 62 0.3556
yeastl 8 1187 297 0.4064
glass0 9 173 43 0.4786
iris0 4 120 30 0.5000
pima 8 614 154 0.5350
wisconsin 9 546 137 0.5380
glassl 9 173 43 0.5405

On the other hand, second class contains the data sets, such as ecolil, glass-0-1-2-3_vs_4-5-6,
vehicle0, vehiclel, haberman, yeast, glass0, iris0, pima, wisconsin and glass1, that have imbalance ratio
rates between 0.2 and 1.

The comparison results of the proposed NWELM with the weighted ELM, unweighted ELM and
SVM are given in Table 3. As the weighted ELM method used a different weighting scheme (W;, W»),
in our comparisons, we used the higher G,.q, value. As can be seen in Table 3, the NWELM method
yields higher Gyeqn values for 17 of the imbalanced data sets. For three of the data sets, both methods
yield the same Geqn. Just for the page-blocks(0 data set, the weighted ELM method yielded better
results. It is worth mentioning that the NWELM method achieves 100% Gyeqn values for four data sets
(vowel0, new-thyroid1, new-thyroid2, iris0). In addition, NWELM produced higher G;¢q, values than
SVM for all data sets.

The obtained results were further evaluated by area under curve (AUC) values [40]. In addition,
we compared the proposed method with unweighted ELM, weighted ELM and SVM based on the
achieved AUC values as tabulated in Table 4. As seen in Table 4, for all examined data sets, our
proposal’s AUC values were higher than the compared other methods. For further comparisons of the
proposed method with unweighted ELM, weighted ELM and SVM methods appropriately, statistical
tests on AUC results were considered. The paired t-test was chosen [41]. The paired t-test results
between each compared method and the proposed method for AUC was tabulated in Table 5 in terms
of p-value. In Table 5, the results showing a significant advantage to the proposed method were shown
in bold-face where p-values are equal or smaller than 0.05. Therefore, the proposed method performed
better than the other methods in 39 tests out of 63 tests when each data set and pairs of methods are
considered separately.
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Table 3. Experimental results of binary data sets in terms of the Geqn. The best results on each data set
are emphasized in bold-face.

Data (Imbalance Ratio)

Gaussian Kernel

Radial Base Kernel

Gean Unweighted Weighted ELM Neutrosophic

ELM max (W7,W,) SVM Weighted ELM
C Gmean(%) C Gmean (%) Gmeun (%) C Gmeun (%)

yeast-1-2-8-9_vs_7 (0.0327) 248 60.97 24 71.41 47.88 277 77.57
& abalone9_18 (0.0600) 218 72.71 228 89.76 51.50 223 94.53
S glass-0-1-6_vs_2 (0.0929) 250 63.20 232 83.59 51.26 27 91.86
8 vowel0 (0.1002) 218 100.00 218 100.00 99.44 27 100.00
T yeast-0-5-6-7-9_vs_4(0.1047) 276 68.68 24 82.21 62.32 2-10 85.29
¥  page-blocks0 (0.1137) 24 89.62 216 93.61 87.72 220 93.25
-_5 yeast3 (0.1230) b 84.13 248 93.11 84.71 23 93.20
S ecoli2 (0.1806) 218 94.31 28 94.43 92.27 210 95.16
£ new-thyroid1 (0.1944) 20 99.16 214 99.72 96.75 27 100.00
new-thyroid2 (0.1944) 22 99.44 212 99.72 98.24 27 100.00
ecolil (0.2947) 20 88.75 210 91.04 87.73 220 92.10
~  glass-0-1-2-3_vs_4-5-6 (0.3053) 210 93.26 218 95.41 91.84 27 95.68
g.‘ vehicle0 (0.3075) 28 99.36 220 99.36 96.03 210 99.36
5 vehiclel (0.3439) 218 80.60 224 86.74 66.04 210 88.06
£ haberman (0.3556) 242 57.23 214 66.26 37.35 27 67.34
o  yeastl (0.4064) 20 65.45 210 73.17 61.05 210 73.19
§ glass0 (0.4786) 20 85.35 20 85.65 79.10 213 85.92
E iris0 (0.5000) 2-18 100.00 2-18 100.00 98.97 210 100.00
€ pima (0.5350) 20 71.16 28 75.58 70.17 210 76.35
™ wisconsin (0.5380) 272 97.18 28 97.70 95.67 27 98.22
glass1 (0.5405) 2-18 77.48 22 80.35 69.64 217 81.77

Table 4. Experimental result of binary data sets in terms of the average area under curve (AUC).

The best results on each data set are emphasized in bold-face.

Data (Imbalance Ratio)

Gaussian Kernel

Radial Base Kernel

AUC Unweighted Weighted ELM Neutrosophic
ELM max (W7,W,) SVM Weighted ELM
C AUC (%) C AUC (%) AUC (%) C AUC (%)
yeast-1-2-8-9_vs_7 (0.0327) 248 61.48 24 65.53 56.67 277 74.48
2 abalone9_18 (0.0600) 218 73.05 228 89.28 56.60 223 95.25
S glass-0-1-6_vs_2 (0.0929) 250 67.50 232 61.14 53.05 27 93.43
& vowel0 (0.1002) 218 93.43 218 99.22 99.44 27 99.94
T yeast-0-5-6-7-9_vs_4(0.1047) 276 66.35 24 80.09 69.88 2-10 82.11
¥  page-blocks0 (0.1137) 24 67.42 216 71.55 88.38 220 91.49
& yeast3 (0.1230) 244 69.28 248 90.92 83.92 23 93.15
S ecoli2 (0.1806) 218 71.15 28 94.34 92.49 210 94.98
E  new-thyroid1 (0.1944) 20 90.87 214 98.02 96.87 27 100.00
new-thyroid2 (0.1944) 22 84.29 212 96.63 98.29 27 100.00
ecolil (0.2947) 20 66.65 210 90.28 88.16 220 92.18
~  glass-0-1-2-3_vs_4-5-6 (0.3053) 210 88.36 2-18 93.94 92.02 27 95.86
g‘ vehicle0 (0.3075) 28 71.44 220 62.41 96.11 210 98.69
5 vehiclel (0.3439) 218 58.43 224 51.80 69.10 210 88.63
€ haberman (0.3556) 242 68.11 o4 55.44 54.05 27 72.19
o yeastl (0.4064) 20 56.06 210 70.03 66.01 210 73.66
§ glass0 (0.4786) 20 74.22 20 75.99 79.81 213 81.41
E iris0 (0.5000) 2-18 100.00 2718 100.00 99.00 210 100.00
£ pima (0.5350) 20 59.65 28 50.01 71.81 210 75.21
™ wisconsin (0.5380) 272 83.87 28 80.94 95.68 27 98.01
glass1 (0.5405) 218 75.25 22 80.46 72.32 217 81.09
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Table 5. Paired t-test results between each method and the proposed method for AUC results.

Data Sets Unweighted ELM  Weighted ELM  SVM

yeast-1-2-8-9_vs_7 (0.0327) 0.0254 0.0561 0.0018
S abalone9_18 (0.0600) 0.0225 0.0832 0.0014
o glass-0-1-6_vs_2 (0.0929) 0.0119 0.0103 0.0006
8 vowel0 (0.1002) 0.0010 0.2450 0.4318
‘®  yeast-0-5-6-7-9_vs_4 (0.1047) 0.0218 0.5834 0.0568
8  page-blocks0 (0.1137) 0.0000 0.0000 0.0195
£ yeast3 (0.1230) 0.0008 0.0333 0.0001
E ecoli2 (0.1806) 0.0006 0.0839 0.0806
E§ new-thyroidl (0.1944) 0.0326 0.2089 0.1312

new-thyroid2 (0.1944) 0.0029 0.0962 0.2855

ecolil (0.2947) 0.0021 0.1962 0.0744
~ glass-0-1-2-3_vs_4-5-6 (0.3053) 0.0702 0.4319 0.0424
o vehicle0 (0.3075) 0.0000 0.0001 0.0875
.Oo. vehiclel (0.3439) 0.0000 0.0000 0.0001
= haberman (0.3556) 0.1567 0.0165 0.0007
o yeastl (0.4064) 0.0001 0.0621 0.0003
e glass0(0.4786) 0.0127 0.1688 0.7072
= iris0 (0.5000) NaN NaN 0.3739
"g pima (0.5350) 0.0058 0.0000 0.0320
= wisconsin (0.5380) 0.0000 0.0002 0.0071

glass1 (0.5405) 0.0485 0.8608 0.0293

Another statistical test, namely the Friedman aligned ranks test, has been applied to compare the
obtained results based on AUC values [42]. This test is a non-parametric test and the Holm method
was chosen as the post hoc control method. The significance level was assigned 0.05. The statistics
were obtained with the STAC tool [43] and recorded in Table 6. According to these results, the highest
rank value was obtained by the proposed NWELM method and SVM and WELM rank values were
greater than the ELM. In addition, the comparison’s statistics, adjusted p-values and hypothesis results
were given in Table 6.

Table 6. Friedman Aligned Ranks test (significance level of 0.05).

Statistic p-Value Result
29.6052 0.0000 HO is rejected
Ranking
Algorithm Rank
ELM 21.7619
WELM 38.9047
SVM 41.5238
NWELM 67.8095
Comparison Statistic ~Adjusted p-Value Result
NWELM vs. ELM 6.1171 0.0000 HO is rejected
NWELM vs. WELM  3.8398 0.0003 HO is rejected
NWELM vs. SVM 3.4919 0.0005 HO is rejected

We further compared the proposed NWELM method with two ensemble-based weighted ELM
methods on 12 data sets [29]. The obtained results and the average classification Gjeqn values are
recorded in Table 7. The best classification result for each data set is shown in bold text. A global view
on the average classification performance shows that the NWELM yielded the highest average Gyean
value against both the ensemble-based weighted ELM methods. In addition, the proposed NWELM
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method evidently outperforms the other two compared algorithms in terms of Gean in 10 out of 12
data sets, with the only exceptions being the yeast3 and glass2 data sets.

As can be seen through careful observation, the NWELM method has not significantly improved
the performance in terms of the glassl, haberman, yeastl_7 and abalone9_18 data sets, but slightly
outperforms both ensemble-based weighted ELM methods.

Table 7. Comparison of the proposed method with two ensemble-based weighted ELM methods.

Vote-Based Ensemble DE-Based Ensemble NWELM

C Guean (%) C Guean (%) C Guean (%)
glassl 2%0 74.32 218 77.72 217 81.77
haberman 212 63.10 2% 62.68 27 67.34
ecolil 240 89.72 20 91.39 220 92.10
new-thyroid2 210 99.47 232 99.24 27 100.00
yeast3 24 94.25 22 94.57 23 93.20
ecoli3 210 88.68 218 89.50 217 92.16
glass2 28 86.45 216 87.51 27 85.58
yeastl_7 220 78.95 2% 78.94 276 84.66
ecoli4 28 96.33 214 96.77 210 98.85
abalone9_18 24 89.24 216 90.13 2% 94.53
glass5 218 94.55 212 94.55 27 95.02
yeast5 212 94.51 2% 94.59 217 98.13
Average 87.46 88.13 90.53

A box plots illustration of the compared methods is shown in Figure 2. The box generated by the
NWELM is shorter than the boxes generated by the compared vote-based ensemble and differential
evolution (DE)- based ensemble methods. The dispersion degree of NWELM method is relatively low.
It is worth noting that the box plots of all methods consider the Gy;eqn of the haberman data set as an
exception. Finally, the box plot determines the proposed NWELM method to be more robust when
compared to the ensemble-based weighted ELM methods.

100 —_— _—
| |
| | |
95 | |
90
85 1
| | 1
80 [ I I
| 1
|
mnr S -
70
+
65
+ +
Vote-based DE-based NWELM
ensemble ensemble

Figure 2. Box plots illustration of the compared methods.

4. Conclusions

In this paper, we propose a new weighted ELM model based on neutrosophic clustering. This new
weighting scheme introduces true, indeterminacy and falsity memberships of each data point into
ELM. Thus, we can remove the effect of noises and outliers in the classification stage and yield
better classification results. Moreover, the proposed NWELM scheme can handle the problem of
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class imbalance more effectively. In the evaluation experiments, we compare the performance of the
NWELM method with weighted ELM, unweighted ELM, and two ensemble-based weighted ELM
methods. The experimental results demonstrate the NEWLM to be more effective than the compared
methods for both artificial and real binary imbalance data sets. In the future, we are planning to extend
our study to multiclass imbalance learning.

Author Contributions: Abdulkadir Sengur provided the idea of the proposed method. Yanhui Guo and Florentin
Smarandache proved the theorems. Yaman Akbulut analyzed the model’s application. Abdulkadir Sengur,
Yanhui Guo, Yaman Akbulut, and Florentin Smarandache wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: In an earlier paper, we proved that Smarandache’s definition of neutrosophic paraconsistent
topology is neither a generalization of Coker’s intuitionistic fuzzy topology nor a generalization of
Smarandache’s neutrosophic topology. Recently, Salama and Alblowi proposed a new definition of
neutrosophic topology, that generalizes Coker’s intuitionistic fuzzy topology. Here, we study this
new definition and its relation to Smarandache’s paraconsistent neutrosophic sets.

Keywords: logic; set-theory; topology; Atanassov’s intuitionistic fuzzy sets

1. Introduction

In various papers, Smarandache [1,2] has generalized Atanassov’s intuitionistic fuzzy sets [3] to
neutrosophic sets.

Coker [4] defined and studied intuitionistic fuzzy topological spaces.

On the other hand, various authors including Priest et al. [5] worked on paraconsistent logic, that
is, logic where some contradiction is admissible. We refer the reader to studies of References [6-8] as
well as the work on paraconsistent fuzzy logic conducted in Reference [9].

Smarandache [2] also defined neutrosophic paraconsistent sets, and proposed a natural definition
of neutrosophic paraconsistent topology.

In an earlier paper [10], we proved that this Smarandache’s definition of neutrosophic
paraconsistent topology is neither a generalization of Coker’s intuitionistic fuzzy topology nor of
Smarandache’s general neutrosophic topology.

Recently, Salama and Alblowi [11] proposed a new definition of neutrosophic topology that
generalizes Coker’s intuitionistic fuzzy topology.

In this paper, we study this new definition and its relation to Smarandache’s paraconsistent
neutrosophic sets.

The interest of neutrosophic paraconsistent topology was previously shown by us [12] (Section 4).

2. Materials and Methods

First, we present some basic definitions:

Robinson [13] developed the non-standard analysis, a formalization of analysis and a branch
of mathematical logic, which rigorously defines infinitesimals. Formally, a number x is said to be
infinitesimal if for all positive integers n, one has | x | < 1/n. Let ¢ > 0 be such an infinitesimal
number. The hyper-real number set is an extension of the real number set, which includes classes of
infinite numbers and classes of infinitesimal numbers. Let us consider the non-standard finite numbers
(1+) =1 + ¢, where “1” is its standard part and its non-standard part, and (-0) =0 — ¢, where “0” is
its standard part and “¢” its non-standard part. Then, we denote ]—0, 1+[ to indicate a non-standard
unit interval. Obviously, 0 and 1, and analogously non-standard numbers infinitely smaller but less
than 0 or infinitely smaller but greater than 1, belong to the non-standard unit interval. It can be proven
that S is a standard finite set if and only if every element of S is standard (See Reference [14]).

"
£
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Definition 1. In Reference [2], let T,I,F be real standard or non-standard subsets of the non-standard unit
interval ]—0,1+[, with
sup T =toup inf T = tiyp,
sup I =isyp, inf I = iup
sup F =fsyp , inf F = ﬁnf and
Nsup = tsup + isup +fsu;7 s Ninf = tinf + iinf +finf-
T, I, F are called neutrosophic components. Let U be a universe of discourse, and M a set included in U.
An element x from U is noted with respect to the set M as x(T,I,F) and belongs to M in the following way: it is

t% true in the set, i% indeterminate (unknown if it is) in the set, and % false, where t varies in T, i varies in I,
foaries in F. The set M is called a neutrosophic set (NS).

Definition 2. In Reference [2], a neutrosophic set x (T,1F) is called paraconsistent, if inf (T) + inf (I) + inf (F) > 1.

Definition 3. In Reference [11], the NSs On and 1y are defined as follows:
On may be defined as:

(0;) Oy=x(0,0,1)
(02) On=x(0,1,1)
(03) ONZX(O, 1, 0)
(04) On=x(0,0,0)

1n may be defined as:

(11) 1N=x(1,0,0)
(1) 1In=x(1,0,1)
(13) 1N=X(1,1,0)
(1) 1Iny=x(1,1,1)

Definition 4. In Reference [11], let X be a non-empty set and A = x (T, 14, Fa), B =x (T, I, Fp) be
NSs. Then:
ANB may be defined as:

(11) AﬂB:x(TATB, IA’IB,PA‘PB)
(I,) ANB=x(TsATg, IaNIg, FAVFg)
(I3) ANB=x(TpATg, I4VIg, FAVFg)

AUB may be defined as:
(U7) AUB=x (TgVTg, 14VIg, FANFg)
(UZ) AUB =x (TA\/TB, IA/\IB, FA/\FB)
Definition 5. In Reference [11], let {A;|j € ]} be an arbitrary family of NSs in X, then:

(1) NA;j may be defined as:

i) NA=x(ANAV)
(i) NAj=x(A,V,V)
(2)  UA;j may be defined as:

(i) UAj=x(V,V,\)
(i) UAj=x(V, A N)
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Definition 6. In Reference [11], a neutrosophic topology on a non-empty set X is a family T of NSs in X
satisfying the following properties:

(1) Onandlye Ty

(2) GiNGy e, forany G, Gy € T;

(3)  UG; € torany subfamily {Gj}; ¢ j of T.

In this case, the pair (X,7) is called a neutrosophic topological space.

3. Results

Proposition 1. The set of paraconsistent NSs with the definitions above is not a bounded lattice.

Proof.

(1) It is necessary to omit a definition of N, because we will need N of paraconsistent NSs to be
paraconsistent. Indeed, let A =x(1/2,1/2,1/2) and B=x(1/2,1/3,1/3) (both are paraconsistent
NSs), but1/4 +1/6 +1/6 is not > 1. Then, the case with product ((I;), in Definition 4) must be
deleted for paraconsistent NSs.

(2) The definitions of Oy and 1y also have problems for paraconsistent NSs:

(a) Only (02) and (1), (13), (14) are paraconsistent;
(b) If we want all NSs: OnyUOy, ONU1yN, INU1N, ONNON, and OnN1y to be paraconsistent NSs,
it is necessary to delete 1, in Definition 3, because with this definition,

OnN1y is equal either to x (0, 0, 1) which is not paraconsistent, or to x (0,1,1) = Oy.
The other cases have no problems: ONUON = x (0,1, 1) =0y,
OnU1N is equal either to x (1,0,1), or to x (1,1,0), or x (1,1,1), i.e equal to 1y,
1NUly is equal either to x (1,0,1), or to x (1,1,0), or x (1,1,1), i.e equal to 1y,
OnNON =x (0,1,1) =0y,
1InN1y is equal either to x (1,0,1), or to x (1,1,0), or x (1,1,1), i.e equal to 1.
Then, after these changes in Definitions 3 and 4, Definition 6 is suitable for Smarandache’s
paraconsistent NSs, and one can work on paraconsistent neutrosophic topological spaces. [

Definition 7. Let X be a non-empty set. A family T of neutrosophic paraconsistent sets in X will be called
a paraconsistent neutrosophic topology if:

(1) On=x(01,1),and 1y =x(1,1,0) or x (1,1,1), are in T;
(2) GiNGy € T for any Gy, Gy € T (where N is defined by (1) or (I3));
(3)  UG;j € T for any subfamily {Gj; c | of T (where U is defined by Definition 5).

In this case, the pair (X,7) is called a paraconsistent neutrosophic topological space.

Remark. The above notion of paraconsistent neutrosophic topology generalizes Coker’s intuitionistic fuzzy
topology when all sets are paraconsistent.

4. Discussion
Definition 7 is suitable for the work on paraconsistent neutrosophic topological spaces. In fact:

Proposition 2. The set of paraconsistent NSs with the following definitions,

(a) On=x(01,1),and 1 =x(1,1,0) or x(1,1,1)
(b) N defined by (I) or (I3)
(c) U defined by Definition 5 is a bounded lattice.

Proof. Obvious from proof of Proposition 1. [
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Abstract: As a significant business activity, merger and acquisition (M&A) generally means
transactions in which the ownership of companies, other business organizations or their operating
units are transferred or combined. In a typical M&A procedure, M&A target selection is an important
issue that tends to exert an increasingly significant impact on different business areas. Although some
research works based on fuzzy methods have been explored on this issue, they can only deal
with incomplete and uncertain information, but not inconsistent and indeterminate information
that exists universally in the decision making process. Additionally, it is advantageous to solve
M&A problems under the group decision making context. In order to handle these difficulties in
M&A target selection background, we introduce a novel rough set model by combining interval
neutrosophic sets (INSs) with multigranulation rough sets over two universes, called an interval
neutrosophic (IN) multigranulation rough set over two universes. Then, we discuss the definition
and some fundamental properties of the proposed model. Finally, we establish decision making rules
and computing approaches for the proposed model in M&A target selection background, and the
effectiveness of the decision making approach is demonstrated by an illustrative case analysis.

Keywords: merger and acquisition (M&A) target selection; group decision making; interval
neutrosophic sets; multigranulation rough sets over two universes

1. Introduction

In the era of business intelligence, the development of computational intelligence approaches
has far-reaching effects on business organizations” daily activities, including project management,
human resource allocation optimization, merger and acquisition (Mé&A), and so on. As a key business
activity in many organizations, M&A requires business administrators to make effective decisions
by analyzing massive business data. Additionally, in M&A, one of the most important elements that
determines the success ratio of business organizations is M&A target selection [1]. To deal with this
issue, some efforts have been made through combining fuzzy approaches with the classical M&A
research [2-5]. On the basis of the fuzzy set (FS) theory [6], fuzzy approaches have been widely used
in realistic decision making problems. However, there is much uncertain information induced from
various vague sources, and this often leads to some limitations when analyzing information systems
through using FSs. Consequently, many new concepts of high-order FSs were established over the
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past decades. Among them, as a typical representative of generalized FSs, intuitionistic fuzzy sets
(IFSs) [7] are characterized by a membership degree and a non-membership degree that describe
whether one element belongs to a certain set or not, which provide a flexible framework to handle
imprecise data, both complete and incomplete in nature. However, IFSs cannot cope with all kinds of
uncertainties perfectly, such as problems including inconsistent and indeterminate information. Hence,
it is necessary to develop some new theories.

Smarandache [8,9] presented the concept of neutrosophic logic and neutrosophic sets (NSs) from
philosophical standpoints. Additionally, an NS is characterized by each element of the universe
owning a degree of truth, indeterminacy and falsity, respectively. However, NSs can only be applied
in philosophical problems. In order to utilize NSs easily in real-world situations, Wang et al. [10]
constructed the definition and some operational laws of interval neutrosophic sets (INSs). Ever since
the establishment of INSs, many scholars have studied INSs from different viewpoints and obtained an
increasing number of academic achievements [11-21]. In light of the above, M&A target selection using
IN information could handle uncertain situations and indeterminate information well and provide
corporate acquirers with more exemplary and flexible access to convey their understandings about the
Mé&A knowledge base.

As a typical model in the granular computing paradigm [22], the multigranulation rough set
model [23,24] aims to analyze complicated problems from multiple views and levels, and it is seen as an
efficient way to integrate and analyze information in group decision making procedures. Specifically,
the advantages of utilizing multigranulation rough sets to solve group decision making problems can
be summed up as follows:

1. In group decision making procedures, according to actual requirements of realistic problems,
multigranulation rough set model-based computations consider multiple binary relations at the
same time, which could increase the efficiency of the whole knowledge discovery process for
multi-source information systems.

2. Inlight of different risk attitudes, the multigranulation rough set model can be divided into two
parts, i.e., optimistic multigranulation rough sets [23] based on the “seeking common ground
while reserving differences” strategy and pessimistic multigranulation rough sets [24] based on
the “seeking common ground while eliminating differences” strategy. Thus, the multigranulation
rough set model is suitable for solving risk-based group decision making problems.

Additionally, the classical rough set [25] is usually expressed and computed based on a single
universe; this may lead to a limitation when describing group decision making information that is
made up of multiple aspects. Through extending a single universe to two universes, it is beneficial to
express a complicated group decision making knowledge base. Hence, Pei and Xu [26] studied the
concept of rough sets over two universes systematically. Since then, several scholars have researched
rough sets over two universes widely according to numerous practical requirements [27-33]. Recently,
in order to expand the application scopes of rough sets over two universes from the ideas of granular
computing, Sun and Ma [34] introduced multigranulation rough sets over two universes, which could
not only describe real-life decision making information effectively and reasonably through different
universes of discourse, but also integrate each expert’s opinion to form an ultimate conclusion by
aggregating multiple binary relations. Therefore, multigranulation rough sets over two universes
constitute another approach to aid group decision making [35—40].

In this article, in order to handle the problems of IN data analysis and group decision making,
it is necessary to introduce IN multigranulation rough sets over two universes through fusing
multigranulation rough sets over two universes with INSs; both the general definition and some main
properties of the proposed model are discussed. Then, we construct a new decision making method
for M&A target selection problems by utilizing the proposed rough set model. Moreover, we give an
illustrative case to interpret fundamental steps and a practical application to M&A target selection.

The rest of the article is structured as follows. In Section 2, we briefly introduce some concepts
such as NSs, INSs and IN rough sets over two universes. Section 3 introduces IN multigranulation
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rough sets over two universes and some related properties. In Section 4, we establish decision making
rules and an algorithm for M&A target selection problems. In Section 5, we give the steps of the
proposed decision making approach by a case study, and conclusions and future research directions
are illustrated in Section 6.

2. Preliminaries

In this section, we first review some fundamental concepts such as NSs, INSs and their properties.
Next, we develop the definition of IN rough sets over two universes.

2.1. Neutrosophic Sets

NSs were defined by Smarandache [8] from philosophical standpoints. According to [8],
NSs derive their origin from neutrosophy. In what follows, we review the concept of NSs.

Definition 1. Let U be the universe of discourse, then an NS A can be expressed as the form A =
{{x,pa (x),va (x),wa (x))|x € U}, where the functions puy (x), va (x) and wy (x) denote the degree
of membership, the degree of indeterminacy and the degree of non-membership of the element x € U to the set A.
Additionally, the functions ps (x), va (x) and w4 (x) are real standard or nonstandard subsets of 07,17,
thatis pa (x) : U — 107,17 [ va (x) : U — 10,1 [and wa (x) : U — |0~, 1F[. There is no restriction on
the sum of pa (x), va (x) and wy (x). Thus, 0~ < suppy (x) +supvy (x) +supwy (x) < 31 [8].

2.2. Interval Neutrosophic Sets

Since it is hard to utilize NSs in various practical situations, Wang et al. [10] developed the concept
of INSs, which can be regarded as a subclass of NSs and a powerful structure in reflecting an expert’s
inconsistent and indeterminate preferences in real-life decision making procedures. In what follows,
we present the concept of INSs.

Definition 2. [10] Let U be the universe of discourse; an INS A is characterized by a truth-membership
function y4 (x), an indeterminacy-membership function v4 (x) and a falsity-membership function w4 (x).
Then, an INS A can be denoted as the following mathematical symbol:

A={(x |1s ) 0] [vh ) 4 0] [wh (0,0 @] ) Ixeu ],

where [pk (x), 1Y (x)], [vh (x) v§ ()], [wh (x), @Y (x)] € [0,1] for all x € U to the set A. Thus,
the sum of u% (x), v¥ (x) and wY (x) satisfies the condition: 0 < uY¥ (x) +v¥ (x) + wY (x) < 3.

Suppose that U is the universe of discourse, then the set of all INSs on U is represented by IN (U).
Moreover, VA € IN (U). Based on the above definition, Wang et al. [10] defined the following
operational laws on INSs.

Definition 3. Let U be the universe of discourse, VA, B € IN (U), then [10]:

1. the complement of A is denoted by A such that Vx € U,
AT = {{x [wj (x), i ()], [1=vy (), 1=v ()], [ws (), w3 (W)]) [x e U J;

2. theintersection of A and B is denoted by A N B such that Vx € U,
ANB = {{x, [min (g (x),pk (x)),min (44 (x),4Y (x))], [max (v§ (x), vk (x)), max (v¥ (x), v (x))],
[max (wh (x),wk (x)),max (Y (x),wl (x))])|x € U};

3. the union of A and B is denoted by A U B such that Vx € U,
AUB = {{x, [max (pf (x),pk (x)),max (14 (x),4Y (x))], [min (v§ (x), vk (x)), min (v¥ (x),v§ (x))],
[min (w} (x),wk (x)),min (oY (x), @Y (x))]) |x € U};

4. inclusion: A C Bifand only if u% (x) < pk (x), u¥ (x) < u¥ (x), v (x) > vk (x), vY (x) > 0¥ (x),
wh (x) > wh (x) and Y (x) > WY (x) for any x in U;
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5. equality: A = Bifand onlyif A C Band B C A.

Next, we introduce some fundamental properties of the above operations, which state some
important algebraic properties of the operations defined on INSs.

Theorem 1. Let U be the universe of discourse; suppose that A, B and C are three INSs. Then, the followings
are true [10]:

Double negation law: (A°) = A

De Morgan’s laws: (AU B) = AN B¢, (AN B)" = A°U BS;

Commutativity: AUB=BUA, ANB=BNA;

Associativity: AU(BUC) = (AUB)UC,AN(BNC)=(ANB)NC;
Distributivity: AU(BNC) = (AUB)N(AUC),AN(BUC)=(ANB)U(ANCQC).

SUNOISENE

To compare the magnitude of different interval neutrosophic numbers (INNs),
Zhang et al. [15] introduced the following comparison laws.

Definition 4. Let x = ([p} (x), 1Y (x)], [v§ (x),v5 (x)], [wh (x),wY (x)]) be an INN; the score
function of x is defined as follows [15]:

$(x) = [ (0 +1 v () +1 =} (), 1l () +1 = v (1) + 1 -y ()]

It is noted that the score value is a significant index in ranking INNs. For an INN x,
the bigger truth-membership 14 (x) is, the less indeterminacy-membership v4 (x) is, and the less
falsity-membership w4 (x) is, the greater INN x is.

2.3. Interval Neutrosophic Rough Sets over Two Universes

In this subsection, we introduce IN relations over two universes firstly.

Definition 5. Let U, V be two non-empty and finite universes of discourse; an IN relation R from U to V can
be denoted as the following form:

R={{(xy), [pk ) i )], [vk cy) K )], ok k), of )] )y euxv ],
where [pk (x), 1Y (x)], [vh (x), VY (x)], [w] (x), @Y (x)] C [0,1], denoting the truth-membership, the
indeterminacy-membership and the falsity-membership for all (x,y) € U x V, respectively. Furthermore, the
family of all IN relations on U x V is represented by INR (U x V).

According to IN relations over two universes, we present the definition of IN rough sets over two
universes below.

Definition 6. Let U, V be two non-empty and finite universes of discourse, and R € INR (U x V), the pair
(U, V,R) is called an IN approximation space over two universes. For any A € IN (V), the IN rough lower
and upper approximations of A with respect to (U, V, R), denoted by R (A) and R (A), are defined as follows:

R(A) = {{x [ikay ),y ()] [vkea) (0, vBin ()] [k (0) 0liay 0] Yl e u },

R(A) = {(x [ika) 0wy ] i) ) vy (0] [y )y 0] ) e e U}
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where
4y (0 = Nyev {wk (x,v) V i (1)} iR ea) (%) = Ayev {wR (4 y) Vg ()},
(x)—\/yev{(l—v}{(xy)) vi () },v E a) () =Vyev {(1=vi (x,y)) Avy ()},
wé(A) (x) = Vyev {Hg (x y) ANl ()}, @ E x) = Vyev {ug (xy) A0l (1)},
M) (9 = Vyev {uk (oy) Mg ()} ( )_vyev{yR xy) Al ()},
Vr(a) () = Ayev {vi (0y) Vv W}f”% x) = Ayev (VR (xy) Vi 1)}
“’%(A) (x) = Ayev {wg (x,y) Vwj (1)}, wy ( x) = Nyev {wf (x,y) Vi ()}

The pair (R (A),R (A)) is called an IN rough set over two universes of A.

3. Interval Neutrosophic Multigranulation Rough Sets over Two Universes

In this section, we present IN relations over two universes from a single granulation to multiple
granulations, both the definition and properties of IN multigranulation rough sets over two universes

will be elaborated on.

3.1. Optimistic in Multigranulation Rough Sets over Two Universes

Definition 7. Let U, V be two mnon-empty and finite universes of discourse and R; €
INR(UxV)(i=1,2,...,m) be m IN relations over U x V; the pair (U,V,R;) is called an IN
multigranulation approximation space over two universes. For any A € IN(V), the optimistic IN

multigranulation rough lower and upper approximations of A with respect to (U, V, R;), denoted by % R; (A)
i=1

O
m

and Y R; (A), are defined as follows:
=1
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where:

m m
o ()= Avyer {nk, ) Ak}l o (0= A vyer (il () Awl ()},

m
) Akl o ()= A Vier (i en) A )]
LR (A) B

i=1
m m
o @=Y ey {vh G vk o @)=V aer (] ey Vi )}
L R; (A) -

Wt o (@)=Y nev{ok G vekmhet o 0= Y ner {0l Gy Vel o)}
LR (A) B
i=1

m O T
The pair | Y R; (A), X R; (A)) is called an optimistic IN multigranulation rough set over two
i=1 i=1

universes of A.

Theorem 2. Let U, V be two non-empty and finite universes of discourse and R; €
INR(U x V) (i=1,2,...,m) be m IN relations over U x V. Then, for any A, A’ € IN (V), the following
properties hold:

m O m O
2. ACA = YR (A)C LR (4),
i=1 i=1
m 0 m 0
ACA =Y R (AC LR (A)
=1 =1
m o l m é ©
3. LR (ANA)=Y R (ANYL R (A),
i=1 i=1 =1
m 0 m © m ©
21 R; (AUA') = '21 R; (A)U 21 R; (A");
i= 1= =
m (@] m O m o
4. YR (AUA)D L R; (A)UY R; (A,
i=1 i=1 i=1
m 0 m 0 m ©
YR (ANA)C LR (A)NYLR; (A)
i=1 i=1 i=1
Proof.

1. Forall x € U, we have:
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0
R; (A%) =

It

X, [g heev {uok, G Ve 0} 8 v {l] () v itk @},
vaer { (1= vl ) nvke )}, K veew { (1= vk (o) n ot 0}
vev (i, (x) nwle )} R Ve {3 o nelh 00 )] ) 1 e )
| 9 nev (~ (i, o Ak ) 9 ey (~ (] (o A
v (~ {ok vk @}) A ver (~ (i e v )},
J

v (~ ek vk 0}), A ver (~ ol e v w})| ) ixew

>z

iy

=
<

— o~
T

>3 >3
< P

=

<

=
Il
—
<
<

m O w0\ TR mo 0 \©

Thus, weobtain ) R; (A°)=| X R; (A) ] .Then, Y R; (A°)=| L R; (A)] isobtained
i=1 i i i

in an identical fashion.

2. Since A C A’, we have pl; (y) <
w

wh (y) > Wl (y) and WY (y) >
So it follows that:

—
>
<

<
m
<
— =
/N
—_
|
<
=
—
&
<
~—
SN—
>
<
hN ol
—~
<
~—
——
L>=
<
<
m
<
—
/N
—_
|
<
bl
—~
&
<
—
SN—
>
<
NS
—~
<
—
——
[ S —

>3 I>=

—_

x, [§ Avev {wk, (o) vk )}, ¥ Ay {wff (y) v il y)}] :
{(1=vf @) Avk )} A vyer { (1= vk () Aol <y>}] ,

vk om0}, A ey (] o nelh )} ) e

>3 "~

—_

<
<
m
<

I_|/_/HI_|

T>3
<
<
m
—

m (0]
Therefore, we have A C A’ = Y R; (A) C
i=1 i

0 O
R; (A/) Then, A C A = Y R; (A) -
i=1

It

O
R; (A’) is obtained in a similar manner.

LbIs

1
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3. Inlight of the previous results, it is easy to obtain:
LR (ANnA") = L Ri (A)n LR (A%,
1= 1= 1=
m 0 ’ m 0 m 0 ’
LR (AUA) =L R; (A)U,Zle‘ (A").
1= 1= 1=
4. Inlight of the previous results, it is easy to obtain:
m @) m (0] 0]
YR (AUA)YD Y R; (A )U):R (A7),
i=1 i=1 i=1

0 n
R; (A N A/) C Y R (A) N Y R; (A/)

L=

O
Theorem 3. Let U, V be two non-empty and finite universes of discourse and R; R, €

INR(Ux V) (i=1,2,...,m) be two IN relations over U x V. If R; € R, for any A € IN (V), the
following properties hold:

1. LR (A)C ‘éRi (A), forall A € IN (V);

2. YR (A)D LR (A) forall A€ IN(V).
=1

i=1 i
Proof. Since R; C Rj, we have yy (x,y) < pg (x,y), py (x,y) < pg (%), vg, (xy) = vy (%),

W () 2 vl (), @k, (6) > wh () and Y () > @l (x,y).
Therefore, it follows that:
{{e Y nser {u e vis 0}, ¥ e ol e vitt )]
Avaer { (1= @) vk 0} A veer { (1 vk ) ni )},
Vaer {i o) nwk 0}, R Ve (i o nf )} Ve ) =

m m
o | Y ey {wly o vik 0}, 8 avev (@ o vid )},

[ey

>3 7~ Il >3

_u " _ u
Rovger {(1- v @) vk 0}, K veew { (1= vl o) i 0},
m m
Roviey (i o) n @k 0}, R Ve {1 o Ao )] ) x e
i=1 = i
m O m O w0 O
Thus, we obtain Y- R} (A) € Y R; (A). Then, Y R/ (A) O Y R; (A) is obtained in an
i=1 i=1 i=1 i=1

identical fashion. [

3.2. Pessimistic in Multigranulation Rough Sets over Two Universes

Definition 8. Let U, V be two mnon-empty and finite universes of discourse and R; €
INR(UxV)(i=1,2,...,m) be m IN relations over U x V; the pair (U,V,R;) is called an IN
multigranulation approximation space over two universes. For any A € IN (V), the pessimistic IN
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P
multigranulation rough lower and upper approximations of A with respect to (U, V, R;), denoted by an‘, R; (A)
i=1

P
m

and Y R; (A), are defined as follows:
i=1

m P
Y Ri (A)= <x/ wheow ()pb s ]|V e ()G s ()],
i=1 glRi (4) ElRi (A) ElRi (A) Ele (A)
wh o (x),0% » (1) >|xeu ’
LR (A) ¥R (A)

=1 LR (4) LR (4) LR (A LR (4)
w-__p (x), 0w, (x) > [xel ;,
LR (4) LRi (4)

vU (x) = vV vill—vg (x,y)) Av; ()
a7 el k)14
i=1
Wb o (@) =V Vyey {k Gy Ak W)} o o (@)= Y e (i oy A0 ()}
Y Ri (4) = ¥R (A) i=1
i=1 i=1
i @)=V vier {uk G ars )l )= Y viey il v a0}
R; (A) = L R (4) =
i=1 i=1
m
i ()= A Aev {vk ey vk @)= A Aver (W (ep) Vil ),
L Ri (A) = LR (4) :
i=1 i=1
m m
Wby ()= A Nev{wk Gy vehm}el ()= A Aer {wll oy vl )]
L Ri (4) B L Ri (4) -

P

p i
Y R; (A)) is called a pessimistic IN multigranulation rough set over two
=1

The pair (% R; (A),
i=1

i

universes of A.

Theorem 4. Let U, V be two non-empty and finite universes of discourse and R; €
INR(U x V) (i=1,2,...,m) be m IN relations over U x V. Then, for any A, A’ € IN (V), the following
properties hold:
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m P T ‘
LLR (49 = (;l R; (A)) ,
" P
R (4 = (,;1 R, <A>) ,-
m P m P
2. ACA= YR (ACYLR (A),
1:”1 . 1:”1 .
ACA = YR (A)C LR (A)
m P = m 1521 m P
3 Y R; (AﬁA/) =Y K (A) N Y R; (A/)r
i=1 i=1 i=1
T m P T
Z R; (A uA’ ) = )Y R; (A) U Z R; (A/);
l:ll » l;l » lr:nl v
4 YR (AUA)D LR (A)ULR; (A,
i=1 i=1 i=1
L m P T
YR (ANA)C LR, (A)NYL R (A
i=1 i=1 i=1

Theorem 5. Let U, V be two non-empty and finite universes of discourse and R; R, €
INR(Ux V) (i=1,2,...,m) be two IN relations over U x V. If R; € R, for any A € IN (V), the

following properties hold:

1. YR (A)C YR (A) forall AeIN(V);
i =1

2. YR (A)D LR (A)forall AcIN(V).
=1 =1

3.3. Relationships between Optimistic and Pessimistic in Multigranulation Rough Sets over Two Universes

Theorem 6. Let U, V be two non-empty and finite universes of discourse and R; €
INR(UxV)(i=1,2,...,m) be m IN relations over U x V. Then, for any A € IN (V), the following
properties hold:

Proof. For any x € U, we have
ig Rlo (A) = {<x [\/ Ayev {le. (x,y) V ik (y } V Ayev {w gy vy (y)}}
Aveer{ (1= ) Ak b A veer {(1- W) W},
kﬁl veer (i, (o) Ak 0} R View (i e nef 0} 1x e wy
> { (x| R ey {ek, (e vis 00} R ey {wR v},
Li Vyer { (1=K o)) Avk )}, ¥ vyer { (1= vk, (o)) Al (v }}
| vew (i, o Ak 0} ¥ vy il G ]>| cup=§ RP<A>
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O
R; (A) is obtained in an

Therefore, we have " R; (A) € Y R; (A). Then, Y R; (A) D
i=1 i=1 i=1 i

It

identical fashion. [

4. The Model and Approach of Merger and Acquisition Target Selection

In this section, in order to explore M&A target selection, we develop a new method by utilizing
IN multigranulation rough sets over two universes. Specifically, some main points of the established
decision making method can be summarized in the following subsections.

4.1. The Application Model

Suppose that U = {x1,xy,...,%;} is a set of optional M&A targets and V = {y1,y2, ..., yx} is a set
of evaluation factors. Let R; € INR(U x V) (i =1,2,...,m) be m IN relations, which reflect the related
degree between some optional M&A targets and evaluation factors provided by m decision makers.
In what follows, suppose that A € IN (V) is a standard set, representing some requirements of
corporate acquirers. Thus, we construct an IN information system that is denoted as (U, V, R;, A). On
the basis of the above descriptions, we calculate the optimistic and pessimistic IN multigranulation
rough lower and upper approximations of A according to Definitions 7 and Definition 8, respectively.
Then, with reference to operational laws developed in [15]: VA,B € IN (U), we have A®B =

{ (o, [y () + pg () — g () g (), i () + g (%) — () g ()], [V (0) v (x), v (%) vg ()],
[wh (x) wh (%), @l () lf )]y lx e U}, ra = {{x [1- (1-ph ()" 1-(1 u%(@)}
(05 @) @ ()] [(@h )" (@8 ()] ) e u.

m m
By virtue of the above operational laws, we further calculate the sets }_ R; (A) @ Y R; (A)
i=1 i=1

P P
and Z R (A)@ Z R; (A). Since optimistic multigranulation rough sets are based on the “seeking
i=1 i=1
common ground while reserving differences” strategy, which implies that one reserves both common
. . . m o m
decisions and inconsistent decisions at the same time, thus, theset }_ R; (A)® Y R; (A) canbe
i=1 i=1
seen as a risk-seeking decision strategy. Similarly, pessimistic multigranulation rough sets are based on
the “seeking common ground while eliminating differences” strategy, which implies that one reserves
P P
common decisions while deleting inconsistent decisions. Hence, the set E Ri (A)® L R; (A)can
i=1 =

be seen as a risk-averse decision strategy.

In realistic M&A target selection procedures, the enterprise’s person in charge can choose the
optimal M&A target through referring to the above mentioned risk-seeking and risk-averse decision
strategies. In what follows, in order to make better use of those decision strategies, we present
a compromise decision strategy with a risk coefficient of decision makers, and the risk coefficient

is denoted as A (A € [0,1]). Based on this, the compromise decision strategy can be described as
P

0 0 P
A <rzn: Ri (A)@® TZH‘, R; (A)) ®(1-A) (f R; (A)e f R; (A)) Additionally, it is noted that the
i=1 i=1 i=1 i=1

compromise decision strategy reduces to the risk-seeking decision strategy and the risk-averse decision
strategy when A = 1 and A = 0, respectively. Moreover, the larger A is, business administrators are
more prone to seek the maximum of risk, while the smaller A is, business administrators are more prone

to seek the minimum of risk. Finally, by virtue of the risk coefficient, the optimal decision result can be
m O T

obtained by selecting the M&A target with the largest score value in A ( YR (A)® LR (A)) @

i=1

i=1

m p m p
u—w<§&<m@zRimO.
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4.2. Algorithm for Merger and Acquisition Target Selection Used IN Multigranulation Rough Sets over
Two Universes

In what follows, we present an algorithm for M&A target selection based on IN multigranulation
rough sets over two universes.

Algorithm 1 M&A target selection based on IN multigranulation rough sets over two universes

Require: The relations between the universes U and V provided by multiple experts (U, V,R;) and a
standard set A.

Ensure: The determined M&A target.

0] P P

an:Ri (A), ¥ R; (A) and an:Ri (A),
=1 i=1 i=1

m O
Step 1. Calculate the following sets: Y. R; (A),
i=1

respectively;

o o P p
Step 2. Calculate the following sets: g Ri (A& f R; (A), % Ri (A& anj R; (A) and
i=1 i i=1 i=1
m O O m P P
MR Ae LR (A)]aa-A)[ LR (A)@ LR (A) ], respectively;
i=1 i=1 i=1 i=1

Step 3. Determine the score values for optional M&A targets in compromise decision strategy
—0

m o m m P m P
A 'Zle' (A>@‘21Ri (A4) e -2 ,ZlRi (A)@,ZlRi (4) |
1= 1= 1= 1=
Step 4. The optimal solution is the M&A target with the largest score value in

m O TR m P L
A <):1 Ri (A)® L R; (A)> ®(1-2) (,21 Ri (A)& L R; (A)>-

i=1 i=1

5. Numerical Example

In this section, by utilizing an illustrative case analysis that was previously modeled
in [2], we show fundamental steps of the proposed decision making method in M&A target
selection background.

5.1. Case Description

Suppose there is a steel corporate acquirer who aims to evaluate which target organization
is suitable for the acquiring firm. In order to reflect the fairness of the procedure, the acquiring
firm invites three specialists to establish M&A target selection information systems, denoted as
(U,V,R;, A). Suppose that U = {x1,xp,x3,%4, X5} is a set of optional M&A targets and another
universe V = {y1,Y2, 3,4, Y5} is a set of evaluation factors, where the evaluation factor represents
mineral output, mining difficulty, proved reserves, reserve-production ratio, science and technology
contribution rate, respectively. Based on the above, the M&A knowledge base can be composed of two
kinds of objections related to M&A target selection, i.e., the optional M&A targets set and the evaluation
factors set. In order to solve this group decision making problem, each decision maker provides his or
her own thought about the M&A knowledge base that is shown as the following Tables 1-3.

Moreover, assume that decision makers provide a standard set that is represented by the
following INS:

A= {(y1,([0.7,0.8],[04,0.6],[0.2,0.3])), (y2, ([0.5,0.6] , [0.3,0.4] ,[0.6,0.7])),
(y3,([0.7,0.8],[0.2,0.3],[0.4,0.5])), (y4, ([0.2,0.3] ,[0.5,0.7] ,[0.6,0.7])),
(ys, ([0.4,0.5],[0.2,0.3],[0.8,0.9])) }.
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5.2. Decision Making Process

According to Algorithm 1, we aim to seek the determined M&A target by utilizing the proposed
model. At first, by virtue of Definitions 7 and 8, we calculate the optimistic and pessimistic IN
multigranulation rough lower and upper approximations of A:

5 Rio (A) = {(x1,(]0.4,05],]0.5,0.6],[0.6,0.7])), (x2, {[0.4,0.5],[0.5,0.7] , [0.7,0.8])) ,
i=1

(x3,([0.5,0.6],[0.4,0.6],[0.6,0.7])) , (x4, {[0.4,0.5] ,[0.5,0.6] , [0.6,0.7])),
(x5,([0.2,0.3],[0.5,0.6],[0.7,0.8])) };

O
SR (A) = {(x1, ([0.7,08],[0.3,0.4] , [04,0.5))) , (xa, ([05,06], [0.3,0.5] ,[0.6,0.7])),
i=1
(x3,([0.7,0.8],0.2,0.3], [0.5,0.6])) , (x4, ([0.7,0.8],[0.2,0.3] , [0.5,0.6])),
(xs5,([0.7,0.8],[0.3,0.4],[0.2,0.3])) };
P
S R (A) = {(x1,([04,05],(05,07],(06,07])), (s, ([0.4,05],[0.5,07],[0.8,09])),
i=1
(x3,(]0.5,0.6],[0.4,0.6],[0.6,0.7])), (x4, ([0.3,0.4] ,[0.5,0.7], [0.7,0.8])) ,
(x5,([0.2,0.3],[0.5,0.7],[0.8,0.9])) };
P
S R (A) = {(x1,((07,0.8],(02,0.3],[04,0.5))), (s, ([0.5,07],[0.3,04],[0.5,0.6])),
i=1
(x3,([0.7,0.8],[0.2,0.3], [0.4,0.5])) , (x4, ([0.7,0.8],[0.2,0.3] , [0.4,0.5])) ,
(xs,([0.7,0.8],[0.3,0.4] , [0.2,0.3])) }.
m O T
By virtue of the above results, we further calculated the sets Y} R; (A)® Y R; (A) and
i=1 i=1
m P T
Ero e fr (4

(x2,([0.70,0.80], [0.15,0.35] , [0.42,0.56]) ), (x3, ([0.85,0.92] , [0.08,0.18], [0.30,0.42])),
(x4, ([0.82,0.90], [0.10,0.18], [0.30,0.42])), (x5, {[0.76,0.86] , [0.15,0.24], [0.14,0.24]))},
P

Rip (A) @ R, (A) = {(x1,([0.82,0.90],[0.10,0.21],, [0.24,0.35])),
i=1

It

1

(x2,([0.70,0.85] , [0.15,0.28] , [0.40, 0.54])), (x3, ([0.85,0.92] , [0.08,0.18], [0.24,0.35])),
(x4,([0.79,0.88] ,[0.10,0.21], [0.28,0.40])), (x5, ([0.76,0.86] , [0.15,0.28] , [0.16,0.27])) }.

m o m
Next, suppose business managers take A = 0.6, then A | _ R; (A)® L R; (A)| @
i=1 i=1
m P w_ T
(1-A)| R (A)@ L R; (A) ] canbe obtained as follows:
i=1 i=1

i=1

3 O 5 ¢ 3 P 5 7
0.6 (‘z R (A)& Y R; (A)) & (1-0.6) ('lel- (A) @ ¥ R; (A)) =

(x1, ([0.82,0.90], [0.13,0.23], [0.24,0.35])), (x, {[0.70,0.82], [0.15,0.32], [0.41,0.55]) ),
x3, ([0.85,0.92] ,[0.08,0.18] , [0.28,0.39])) , (x4, ([0.81,0.89] , [0.10,0.19] , [0.29,0.41])),
xs, ([0.76,0.86] , [0.15,0.25] , [0.15,0.25])) }.

o~ e~
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Table 1. The knowledge of merger and acquisition (M&A) target selection given by Expert 1.

14 of 20

Y

Y3

Yu

([0.3,0.4],[0.3,0.4], [0.8,0.9])
([0.3,0.4],[0.4,0.5],[0.7,0.8])
([0.7,0.9],[0.3,0.4], [0.4,0.5])
([0.5,0.6],[0.3,0.4], [0.6,0.7])
([0.4,0.5],[0.1,0.2], [0.8,0.9])

([0.6,0.7],[0.5,0.6], [0.3,0.4])
([0.5,0.6],[0.4,0.5],[0.6,0.7])
([0.3,0.4],[0.5,0.6],[0.6,0.7])
([0.4,0.5],[0.2,0.3],[0.7,0.8])
([0.6,0.7],0.5,0.6],[0.2,0.3])

[0.6,0.7
[0.6,0.7

0.6,0.7
(0.7,0.8

( 1,[04,05],
( 1,[03,04],
([0.2,0.3],[0.6,07],
( 1,[04,05],
((0.7,0.8], [0.4,0.5],

Table 2. The knowledge of M&A target selection given by Expert 2.

Y2

Y3

Yy

([0.3,0.4],[0.2,0.3],[0.7,0.8])
([0.3,0.5],[0.4,0.5], [0.6,0.7])
([0.8,0.9],[0.3,0.4], [0.3,0.4])
([0.5,0.7],[0.2,0.3], [0.5,0.6])
([0.4,0.6],[0.1,0.2],[0.7,0.8])

([0.6,0.8],[0.4,0.6], [0.3,0.4])
([0.5,0.6],[0.3,0.4],[0.5,0.6])
([0.3,0.5],[0.4,0.5], [0.5,0.6])
([0.4,0.5],[0.3,0.4],[0.7,0.8])
([0.6,0.7],[0.4,0.6], [0.3,0.4])

0.6,0.7
0.5,0.6

0.5,0.7
(0.7,0.8

( 1,[03,04],
([0.5,0.6],[02,03],
([02,04],[0.5,0.6],
( 1,[02,04],
( 1,[03,04],

Table 3. The knowledge of M&A target selection given by Expert 3.

Y2

Y3

Ya

Ry

X1 <[O 8, 0.9]
X ([O 4, 0.5] ,
X3 <[07, 08] ’
Xq <[O 8, 0.9]
X5 ([O 8, 0.9]
R;

X1 <[O 7, 0.8]
X2 ([0 4, 0.6] ,
X3 <[07, 08] ’
X4 <[O 7, 0.9]
X5 ([O 7, 0.9]
R;3

X1 <[0 7, 0.8]
X2 <[O 5, 0.6] p
X3 <[0.7, 0.8] ,
X4 <[0 7, 0.8]
X5 <[O 7, 0.8]

([0.3,0.5],[0.2,0.4],[0.7,0.8])
([0.4,0.5],[0.4,0.6], [0.6,0.7])
([0.8,0.9],[0.4,0.5],[0.3,0.5])
([0.6,0.7],[0.2,0.4], [0.5,0.6])
([0.5,0.6],[0.2,0.3],[0.7,0.8])

([0.7,0.8],[0.4,0.5], [0.4,0.5])
([0.5,0.7],]0.3,0.5],[0.5,0.7])
([0.4,0.5],[0.4,0.5],[0.5,0.7])
([0.4,0.5],[0.2,0.4],[0.7,0.9])
([0.6,0.7],[0.4,0.5],[0.3,0.4])

0.7,0.8
05,07

0.5,0.6
(0.7,0.8

( 1,[03,05],
( 1,[02,04],
{[03,04],[0.5,0.7],
( 1,[03,04],
( 1,[03,05],
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At last, we determine the score values for five optional target organizations in

0] P
3 O 3 3 P 3
06 LR (A)® R, (A)|®(1-0.6) (Z R; (A)@ ¥ R; (A) |;itis not difficult to obtain
i=1 i=1 i=1 i=1

the ordering result for M&A targets in the compromise decision strategy: x3 > x5 > x1 > x4 > x2.

Thus, we can see that the optimal selection is the third target enterprise.

5.3. Comparative Analysis

The above subsection shows basic steps and procedures of the proposed algorithm based
on IN multigranulation rough sets over two universes in the M&A target selection background.
In order to illustrate the effectiveness of the proposed decision making approach, we compare the
newly-proposed decision making rules with the decision making method based on IN aggregation
operators in this subsection. In the literature [15], Zhang et al. developed several common
IN aggregation operators and applied them to a multiple criteria decision making problem.
In what follows, a comparison analysis is conducted by utilizing the proposed M&A target
selection approach with the interval neutrosophic number weighted averaging (INNWA) operator
and the interval neutrosophic number weighted geometric INNWG) operator presented in [15].
Prior to the specific comparison analysis, we review the above-mentioned IN aggregation operators.
Let A; = <[Tﬁj,Tiﬂ , {Iﬁj,l};fj} , {Fﬁj,l—"{%b(j =1,2,...,n) be a collection of INNs and w =

(1/n,1/n,...,1/ n)T be the weight of A; with equal weight, then the INNWA operator and the
INNWG operator are presented below.

1.  The interval neutrosophic number weighted averaging INNWA) operator:

n
INNWAy (A1, Az, ..., An) =) <1Aj> =

2. The interval neutrosophic number weighted geometric INNWG) operator:

n
INNWGw (AerZI-"/AVl) = H (A])l/n =

< 1 ()" fr (1)),

On the basis of the INNWA and INNWG operators introduced above, the knowledge of M&A
target selection given by Expert 1, Expert 2 and Expert 3 could be aggregated by using INNWA and
INNWG operators, i.e., we aggregate IN relations over two universes Ry, Ry and R3 to a single IN
relation over two universes, represented by Riynwa and Riynwe, which is shown as the following
Tables 4 and 5.



Symmetry 2017, 9, 126 16 of 20

Next, by virtue of IN rough sets over two universes presented in Definition 6, we calculate
the IN rough lower and upper approximations of A with respect to (U,V,Rjyywa) and
(U, V,RiNNwe), respectively.

Rinnwa (A) = {(x1, ([0.40,0.50] , [0.50,0.67] , [0.60,0.70])) , (x2, {[0.40,0.50] , [0.50,0.70] , [0.74,0.85])) ,
(x3, ([0.50,0.60], [0.40,0.60] , [0.60,0.70])), (x4, ([0.33,0.46] , [0.50,0.70], [0.63,0.74])) ,

(x5, ([0.20,0.30], [0.50, 0.67], [0.74,0.88])

Rinnwa (A) = {{x1,([0.70,0.80] , [0.23,0.37] , [0.33,0.46

(x3, ([0.70,0.80], [0.20,0.30] , [0.43,0.52])

(x5, ([0.70,0.80], [0.30,0.40], [0.20,0.30])

Rinawe (A) = {(x1, ([0.40,0.50] , [0.50,0.67] , [0.60,0.70

(x3, ([0.50,0.60], [0.40,0.60] , [0.60, 0.70])

(x5, ([0.20,0.30] , [0.50,0.67] , [0.72, 0.88])

0

)

)

i
)}, (xa, ([0.52,0.65], [0.33,0.47] , [0.60,0.70])) ,
, (x4, ([0.70,0.80] , [0.20,0.30] , [0.43,0.56])),
%
)}, (xa, ([0.40,0.50], [0.50,0.70] , [0.72,0.84])) ,
(x4, ([0.33,0.48],[0.50,0.70] , [0.62,0.72])),

i
), (x2, ([0.50,0.62],[0.33,0.48] , [0.54,0.67])),
, (x4, ([0.70,0.80] , [0.20,0.30], [0.44,0.57])),

}-

Then, in a single granulation context, we further calculate the sets A (R INNWA (A)) S5)
(1 - )L) (RINNWA (A)) and A (RINNWG (A)) D (1 - )L) (RINNWG (A)) when A = 0.6:

RINNWG (A) = {(xl, <[070,080] P [023,037] P [040, 0.5
(x3,([0.70,0.80] , [0.20,0.30] , [0.44, 0.54]

]
)
)
]
)
)
]
)
)
]
)
(x5, ([0.70,0.80], [0.30,0.40] , [0.20,0.30]))

0.6 (Rinnwa (A)) @ (1—0.6) (Rinnwa (A)) = {(x1, ([0.54,0.65],[0.37,0.53], [0.51,0.62])),
(x2, (]0. 44 0.56],0.42,0.59], [0.64,0.76])), (x3, ([0.59,0.69] , [0.31,0.46], [0.53,0.62])),
(x4, ([0.51,0.63],[0.35,0.50], [0.54,0.66])), (x5, ([0.46,0.57] , [0.41,0.55] , [0.44,0.58]))},
0.6 (Riynwe (A)) @ (1—0.6) (Rinnwa (A)) = {(x1, ([0.54,0.65],[0.37,0.53], [0.51,0.62])) ,
(x2, ([0. 44 0.55], [0.42,0.61], [0.64,0.77))), (x3, ([0.59,0.69], [0.31,0.46], [0.53,0.63])),
(x4, ([0.51,0.64] ,[0.35,0.50] , [0.54,0.66])) , (x5, ([0.46,0.57] , [0.41,0.55] , [0.43,0.58])) }.
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Table 4. The aggregated knowledge of M&A target selection by using the interval neutrosophic number weighted averaging (INNWA) operator.

17 of 20

Rinnwa Yy Y, Y3 Yy Ys
x1 ([0.74,0.85],[0.23,0.33], [0.43,0.56])  ([0.30,0.44],[0.23,0.37],[0.72,0.84])  ([0.63,0.77],[0.43,0.56] ,[0.33,0.43])  ([0.63,0.74],[0.33,0.46] ,[0.40,0.50])  ([0.23,0.37],[0.23,0.37],[0.72,0.88])
x2 ([0.44,0.57],[0.23,0.33],[0.72,0.84])  ([0.33,0.48],[0.40,0.52] ,[0.62,0.72])  ([0.50,0.63],[0.33,0.46],[0.52,0.65])  ([0.54,0.67],[0.23,0.37],[0.50,0.60])  ([0.74,0.85],[0.33,0.46] , [0.30, 0.40])
x3 ([0.70,0.80], [0.33,0.46] , [0.43,0.52])  ([0.77,0.90],[0.33,0.43],[0.33,0.46])  ([0.33,0.48],[0.43,0.52],[0.52,0.65])  ([0.23,0.37],[0.52,0.65],[0.52,0.65])  ([0.44,0.57],{0.20,0.30],[0.72,0.84])
X ([0.74,0.88] , [0.20,0.33] , [0.43,0.56])  ([0.54,0.67],[0.23,0.37],[0.52,0.62])  ([0.40,0.50],[0.23,0.37],[0.70,0.84])  ([0.53,0.67],[0.29,0.43],[0.33,0.46])  ([0.63,0.74],[0.20,0.30], [0.62,0.76])
xs ([0.74,0.88] , [0.18,0.29], [0.12,0.26]}  ([0.44,0.57],[0.12,0.23],[0.72,0.84])  ([0.60,0.70] , [0.43,0.56] , [0.26,0.37])  ([0.70,0.80], [0.33,0.46],[0.10,0.20])  ([0.74,0.88], [0.35,0.56] , [0.10,0.20])

Table 5. The aggregated knowledge of M&A target selection by using the interval neutrosophic number weighted geometric (INNWG) operator.

Rinnwe Y1 Y2 Y3 Yy Ys
X ([0.72,0.84],,[0.23,0.33], [0.44,0.57])  {[0.30,0.43],[0.23,0.37],[0.74,0.85])  ([0.62,0.76],[0.44,0.57],[0.33,0.44])  ([0.62,0.72],[0.33,0.48] ,[0.40,0.50])  ([0.23,0.37],[0.23,0.37],[0.74,0.88])
X {[0.43,0.56] , [0.23,0.33], [0.74,0.85])  ([0.33,0.46],[0.40,0.54] , [0.63,0.74])  ([0.50,0.62],[0.33,0.48],[0.54,0.67])  ([0.52,0.65],[0.23,0.37],[0.50,0.60])  ([0.72,0.84],[0.33,0.48] , [0.30,0.40])
X3 {[0.70,0.80] , [0.33,0.48] , [0.44,0.54])  ([0.76,0.90], [0.33,0.44] , [0.33,048])  ([0.33,0.46], [0.44,0.54] , [0.54,0.67])  ([0.23,0.37],[0.54,0.67],[0.54,0.67])  ([0.43,0.56],[0.20,0.30] , [0.74,0.85])
X {[0.72,0.88] ,[0.20,0.33], [0.44,0.57])  {[0.52,0.65],[0.23,0.37],[0.54,0.63])  ([0.40,0.50],[0.23,0.37],[0.70,0.85])  ([0.53,0.65],[0.30,0.44],[0.33,0.48]}  ([0.62,0.72],[0.20,0.30], [0.63,0.77])
X5 ([0.72,0.88],,[0.20,0.30] , [0.12,0.26])  {[0.43,0.56],[0.12,0.23],[0.74,0.85])  ([0.60,0.70],[0.44,0.57],[0.26,0.37])  ([0.70,0.80], [0.33,0.48] ,[0.10,0.20])  ([0.72,0.88],[0.37,0.57],[0.10,0.20])
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Finally, we compute the score values for five optional target organizations in 0.6 (Riyywa (A)) ®
(1—0.6) (Rinnwa (A)) and 0.6 (Rinnwe (A)) ® (1 —0.6) (Rinnwe (A)) and further determine the
M&A target with the largest score value. Then, the ranking results by utilizing INNWA and INNWG
operators show that the best alternative is x3, namely the third target enterprise, which is consistent
with the decision result determined by Algorithm 1.

5.4. Result Analysis and Discussion

From the above ranking results, we can see that the proposed model takes full advantage of INSs
and multigranulation rough sets over two universes in M&A target selection procedures, and the
superiorities of utilizing INSs and multigranulation rough sets over two universes to deal with group
decision making problems can be summarized as follows:

1.  In the process of describing decision making information, INSs provide experts with more
exemplary and flexible access to convey their understandings about the M&A knowledge base.
Specifically, it is worth noting that a variety of decision making information systems based on INSs
outperform some common extended forms of classical FSs, such as IFSs, interval-valued fuzzy
sets (IVFESs), interval-valued intuitionistic fuzzy sets (IVIFSs) and single-valued neutrosophic
sets (SVNSs). In the concept of INSs, by introducing the degree of indeterminacy and the degree
of non-membership of an element to a set, decision makers could express their incomplete,
indeterminate and inconsistent preferences more precisely, as well as avoid the loss of decision
making information through considering the truth, indeterminacy and falsity membership
functions in various decision making processes. Additionally, the expression of the degree
of membership, the degree of indeterminacy and the degree of non-membership using an
interval number enables decision makers to better model insufficiency in available information.
Thus, INSs could effectively deal with the more uncertain information in M&A target selection.

2. In group decision making procedures, multigranulation rough sets over two universes can be
seen as an efficient information fusion approach that could integrate each expert’s preference to
form an ultimate conclusion by considering optimistic and pessimistic decision making strategies.
Moreover, compared with classical IN group decision making approaches based on INNWA and
INNWG operators, it is noted that INNWA and INNWG operators could only offer a one-fold
information fusion strategy, i.e., the information fusion strategy based on averaging operators
or geometric operators without considering the risk appetite of experts, which may cause the
loss of risk-based information and further preclude the solution of risk-based group decision
making problems. However, the proposed decision making approach based on multigranulation
rough sets over two universes could not only provide risk-seeking and risk-averse decision
strategies simultaneously, but also provide a compromise decision strategy that considers the
risk preference of decision makers. Hence, multigranulation rough sets over two universes can
be regarded as a multiple information fusion strategy that is suitable for solving risk-based group
decision making problems.

As discussed previously, the advantages of the proposed model could provide a reasonable way
to express some complicated decision making information, utilize risk-seeking and risk-averse decision
strategies through considering the risk preference of decision makers and also increase the efficiency
of M&A target selection.

6. Conclusions

In this article, in order to conduct group decision making from the granular computing paradigm,
by combining multigranulation rough sets over two universes with INSs, a novel rough set model
named IN multigranulation rough sets over two universes is developed. The definition and some
properties of optimistic and pessimistic IN multigranulation rough sets over two universes are studied
systematically. Then, by virtue of IN multigranulation rough sets over two universes, we further
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construct decision making rules and computing approaches for M&A target selection problems. At last,
we illustrate the newly-proposed decision making approach on the basis of a practical M&A case
study. It is desirable to study attribute reduction algorithms and uncertainty measures based on IN
multigranulation rough sets over two universes in the future. Another future research direction is to
apply the proposed decision making approach to other business intelligence issues.
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Abstract: The neutrosophic cubic set can contain much more information to express its interval
neutrosophic numbers and single-valued neutrosophic numbers simultaneously in indeterminate
environments. Hence, it is a usual tool for expressing much more information in complex
decision-making problems. Unfortunately, there has been no research on similarity measures of
neutrosophic cubic sets so far. Since the similarity measure is an important mathematical tool in
decision-making problems, this paper proposes three cosine measures between neutrosophic cubic
sets based on the included angle cosine of two vectors, distance, and cosine functions, and
investigates their properties. Then, we develop a cosine measures-based multiple attribute
decision-making method under a neutrosophic cubic environment in which, from the cosine
measure between each alternative (each evaluated neutrosophic cubic set) and the ideal alternative
(the ideal neutrosophic cubic set), the ranking order of alternatives and the best option can be
obtained, corresponding to the cosine measure values in the decision-making process. Finally, an
illustrative example about the selection problem of investment alternatives is provided to illustrate
the application and feasibility of the developed decision-making method.

Keywords: neutrosophic cubic set; decision-making; similarity measure; cosine measure; interval
neutrosophic set; single-valued neutrosophic set

1. Introduction

The classic fuzzy set, as presented by Zadeh [1], is only described by the membership degree in
the unit interval [0, 1]. In the real world, it is often difficult to express the value of a membership
function by an exact value in a fuzzy set. In such cases, it may be easier to describe vagueness and
uncertainty in the real world using both an interval value and an exact value, rather than unique
interval/exact values. Thus, the hybrid form of an interval value and an exact value may be a very
useful expression for a person to describe certainty and uncertainty due to his/her hesitant judgment
in complex decision-making problems. For this purpose, Jun et al. [2] introduced the concept of
(fuzzy) cubic sets, including internal cubic sets and external cubic sets, by the combination of both an
interval-valued fuzzy number (IVFN) and a fuzzy value, and defined some logic operations of cubic
sets, such as the P-union, P-intersection, R-union, and R-intersection of cubic sets. Also, Jun and Lee
[3] and Jun et al. [4-6] applied the concept of cubic sets to BCK/BCl-algebras and introduced the
concepts of cubic subalgebras/ideals, cubic o-subalgebras and closed cubic ideals in
BCK/BCl-algebras.

However, the cubic set is described by two parts simultaneously, where one represents the
membership degree range by the interval value and the other represents the membership degree by
a fuzzy value. Hence, a cubic set is the hybrid set combined by both an IVFN and a fuzzy value.
Obviously, the advantage of the cubic set is that it can contain much more information to express the
IVFN and fuzzy value simultaneously.

Symmetry 2017, 9, 121; doi:10.3390/sym9070121 www.mdpi.com/journal/symmetry
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As the generalization of fuzzy sets [1], interval-valued fuzzy sets (IVFSs) [7], intuitionistic fuzzy
sets (IFSs) [8], and interval-valued intuitionistic fuzzy sets (IVIFSs) [9], Smarandache [10] initially
introduced a concept of neutrosophic sets to express incomplete, indeterminate, and inconsistent
information. As simplified forms of neutrosophic sets, Smarandache [10], Wang et al. [11,12] and Ye
[13] introduced single-valued neutrosophic sets (SVNSs) and interval neutrosophic sets (INSs), and
simplified neutrosophic sets (SNSs) as subclasses of neutrosophic sets for easy engineering
applications. Since then, SVNSs, INSs, and SNSs have been widely applied to various areas, such as
image processing [14-16], decision-making [17-32], clustering analyses [33,34], medical diagnoses
[35,36], and fault diagnoses [37]. Recently, Ali et al. [38] and Jun et al. [39] have extended cubic sets to
the neutrosophic sets and proposed the concepts of neutrosophic cubic sets (NCSs), including
internal NCSs and external NCSs, subsequently introducing some logic operations of NCSs, such as
the P-union, P-intersection, R-union, and R-intersection of NCSs. Furthermore, Ali et al. [38]
introduced a distance measure between NCSs and applied it to pattern recognition. Subsequently,
Banerjee et al. [40] further presented a multiple attribute decision-making (MADM) method with
NCSs based on grey relational analysis, in which they introduced the Hamming distances of NCSs
for weighted grey relational coefficients and standard (ideal) grey relational coefficients, and then
gave the relative closeness coefficients in order to rank the alternatives.

From the above review, we can see that the existing literature mainly focus on the theoretical
studies of cubic sets and NCSs, rather than the studies on their similarity measures and their
applications. On the other hand, the NCS contains much more information than the general
neutrosophic set (INS/SVNS) because the NCS is expressed by the combined information of both
INS and SVNS. Hence, NCSs used for attribute evaluation in decision making may show its
rationality and affectivity since general neutrosophic decision-making methods with INSs/SVNSs
may lose some useful evaluation information (either INSs or SVNSs) of attributes, which may affect
decision results, resulting in the distortion phenomenon. Moreover, the similarity measure is an
important mathematical tool in decision-making problems. Currently, since there is no study on
similarity measures of cubic sets and NCSs under a neutrosophic cubic environment, we need to
develop new similarity measures for NCSs for MADM problems with neutrosophic cubic
information, since the cubic set is a special case of the NCS. For these reasons, this paper aims to
propose three cosine measures between NCSs based on the included angle cosine of two vectors,
distance, and cosine function, and their MADM method in a neutrosophic cubic environment.

The remainder of the article is organized as follows. Section 2 briefly describes some concepts of
cubic sets and NCSs. Section 3 presents three cosine measures of NCSs and discusses their properties.
In Section 4, we develop an MADM approach based on the cosine measures of NCSs under a
neutrosophic cubic environment. In Section 5, an illustrative example about the selection problem of
investment alternatives is provided to illustrate the application and feasibility of the developed
method. Section 6 contains conclusions and future research.

2. Some Basic Concepts of Cubic Sets and NCSs

By the combination of a fuzzy value and an IVEN, Jun et al. [2] defined a (fuzzy) cubic set.
A cubic set S in a universe of discourse X is constructed as follows [2]:

S={xT(), u(X) | x € X},

where T(X) =[T (X),T"(X)] is an IVEN for x € X and y is a fuzzy value for x € X. Then, we call

() S={xT(X),u(x)|xe X} aninternal cubicsetif T (X)<u(X)<T (X) forx e X;
(i) S={xT(X),u(X)|xe X} anexternal cubicsetif #(X)¢ (Tf(X),T+(X)) forx e X.

Then, Ali et al. [38] and Jun et al. [39] proposed a NCS based on the combination of an interval
neutrosophic number (INN) and a single-valued neutrosophic number (SVNN) as the extension of
the (fuzzy) cubic set.

A NCS S in X is constructed as the following form [38,39]:
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P ={x,<T(x),U(x), F(X) > <t(x),u(x), f(x) > xe X},

where <T(x), U(x), F(x)>is an INN, and T(X) =[T (x),T"(x)] < [0, 1], U(x)=[U (x),U"(x)] < [0,
1], and F(x)=[F (x),F"(X)] < [0, 1] for x € X are the truth-interval, indeterminacy-interval, and
falsity-interval, respectively; then <t(x), u(x), f(x)>is a SVNN, and #(x), u(x), f(x) € [0, 1] for x € X are
the truth, indeterminacy, and falsity degrees, respectively.
AnNCS P ={x,<T(x),U(x), F(x) >,<t(x),u(x), f (x) > x e X} is said to be [38,39]:
(i) An internal NCS P ={x,<T(x),U(x), F(X) > <t(x),u(x), f(x) > xe X} if
T X)<t)<T"X), U XN)<u(xX)sU"(X),and F (X)< f(X)<F"(x) forx e X;
(i) An external NCS P ={x,<T(x),U(x), F(X) > <t(x),u(x), f(x) > xe X} if
t(x) (T (). T (X)), u®) (U (x),U*(x)),and f(x)&(F (x),F"(x)) forxeX.

For convenience, a basic element (x,<T (Xx),U (X), F(X) >, <t(x),u(x), f (x) >) in an NCS P
is simply denoted by p = (<T, U, F>, <t, u, f>), which is called a neutrosophic cubic number (NCN), where
T,U Fc[0,1]and t, u, f € [0, 1], satisfying O<T " (X) +U " (X)+F"(X) <3 and 0<t+u+f<3.

Let p1=(<T1, Uy, F1>, <t1, u3, fi>) and p2 = (<T2, Uz, F2>, <t2, u2, f>) be two NCNs. Then, there are the

following relations [38,39]:
_ (<[F1’, Fj] ,[1—U1* ,1—U1’],[T ]> fl-u,t, ) (complement of p1);

(2) p1 € p2if and only if T, <T, UoU,, FEoF,,t<t, uz>u, and f,>f, (P-order);
(B) pr=pzif and only if p2 € p1and p1 € p2, i.e., <T1, Uy, F1>=<T3, Uz, F2> and <t, u1, fi>=<t2, uz, fo>.
3. Cosine Measures of NCSs

In this section, we propose three cosine measures between NCSs.
Definition 1. Let X ={x1, x2, ..., xn} be a finite set and two NCSs be P ={p1, pz, ..., pn} and Q ={qy, q2, ..., gn},
where pj = (<Tpj, Uy, Fo>, <ty, upj, fri>) and qj = (<Tyj, Usj, Fop>, <tqj, uq, fo>) for j=1, 2, ..., n are two collections

of NCNs. Then, three cosine measures of P and Q are proposed based on the included angle cosine of two vectors,
distance, and cosine function, respectively, as follows:

(1)  Cosine measure based on the included angle cosine of two vectors

5,(P.Q)

1] T T, +T, T +U U +U U +F F +FF’ " tt, ruu, +fof 1)

) P g pa P a

2n |3 [J, )+ @) U, ) (R + (R {\/t e
xJT) 4 () +(U,) +U) + () +(F))°

(2) Cosine measure based on distance

cos['ij ol T = Ta U5 —Ya | +Us Vsl +|F = Fy | +|Fs - Fy
12

1 n
$,(P.Q) =Y @
2 2n= +cos[|tpj_tqj|+|upj —6qu|+|fpj— qu ”}

(3) Cosine measure based on cosine function
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S;(P.Q)
{«/fcos[T”’ Ty ;Tq} Ty n]—l} {«Ecos(t”" ;t‘“ nJ—l:l
1 1 1 U +U* -U;-U" 1 n u.—u. (3)
_4 > T i it I > T
o 3(\/5—1),221“ J{\/_cos[ 5 nJ } +3(\/§—1),Z:1: J{\/_cos( Z n] }
+|:.\/Ecos[wﬂ—]_li| +|:\/§C05(fpj_quﬂ'j—l:|
8 4

Obviously, the three cosine measures Sk(P, Q) (k =1, 2, 3) satisfy the following properties (51)—(S3):

(S1) 0 <SKP, Q) <1;
(S2) SK(P, Q)=SKQ, P);
(53) Sk(p/ Q) = 1 l_fp = Qr i'e'/ <ij/ UPj/ ij>/ = <T"lj/ U"]j/ F’?j> and <tl”jl Upj, ﬁ’]> = <t‘7j/ Uaqj, _ﬁ?]>

Proof.
Firstly, we prove the properties (S1)—(53) of S1(P, Q).

(S1) The inequality Si1(P, Q) = 0 is obvious. Then, we only prove Si(P, Q) < 1.
Based on the Cauchy-Schwarz inequality:

(X Yy %Y, +o %Y, ) (O +3E 40X )x (Y + Y5 +--y2),

where (x1, x2, ..., xn) € R*and (y1, y2, ..., y») € R, we can give the following inequality:

2,2 2 2,2 2
(% Y; + %Y, +---+xnyn)£\/(x1 + X +"'Xn)><\/(yl +Y5 +---yn) .
According to the above inequality, we have the following inequality:

+T + + + <
TpJTqJ +TpJTqj +U U +U U +FpJFqJ+FpJFql =

TG +(T5)7 U )" + U 5)7 +(Fy)” +(F)? < [(T) +(T)* + Ug)” + Ug)” + (Fy)* +(Fy)? 7

Tty +UUg +fpijj \ft +u +f2 \/t2+u +f2

Hence, there is the following result:

_i Ty +TTy +U U +U U+ F R+ F RS <1

T T + (i) + U ) +(U ) +(Fp)* + (Fyp)?
x (T )2+ (T3 )2+ Ug)” + (U ) +(Fy)* + (Fy)?

1 n tty +upjqu+fpj fOU

11{\/’t +us + f2x \/t +qu+fql?}

Based on Equation (1), we have S1(P, Q) < 1. Hence, 0 < 51(P, Q) <1 holds.

<1

(S2) Itis straightforward.
(Ss) If P =Q, there are <Tyj, Uy, Fp>=<Ty;, Uy, Fo> and <tyj, upj, foi> = <tqj, ugj, f>. Thus Ty = Tyj, Upj = Uy,
Fyj = Fyj, tpj = toj, upj = uqgj, and fpj = foj for j=1, 2, ..., n. Hence S1(P, Q) =1 holds.

Secondly, we prove the properties (51)—(Ss) of S2(P, Q).
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() Let  x = ([T, =Ty |+[T; — Ty

+U g —Ug|+Uy —Ug

il +|Fy —Fa )/6 and

X, :(|th. —tqj|+|upj —qu|+| fpj — qu|)/3. It is obvious that there exist 0 <x1<land 0 <x2 < 1.

Thus, there are 0 < cos(x171/2) £ 1 and 0 < cos(x27t /2) < 1. Hence, 0 < S2(P, Q) <1 holds.

(S2) Itis straightforward.

(S3) If P=Q, there are <Tyj, Uyj, Fp> = <Tyj, Uyj, Fo> and <tyj, upj, fpi> = <tyj, uqj, fy>. Thus Tpj = Toj;, Upj = Uy,
Fyj=Fyj, tyj = tyj, upj=uqj, and fyj = fyyforj=1, 2, ..., n. Hence, S2(P, Q) =1 holds.

Thirdly, we prove the properties (51)—(Ss) of S3(P, Q).

() Let 4=, T, =T -T2, y, Uy +Us Uy -Ua)/2 . va=(Fy+Fy—Fs —F)/2
Y, =t —t;, Ys=U,;—U,, and Y, = fpj - qu . Obviously, there exists =1 < yx < +1 for k =1,

2, ..., 6. Thus, 2/2 <cos(ysrt/4) <1, and then there exists 0 < S3(P, Q) < 1.

(S2) Itis straightforward.
(S3) If P=Q, there are <Ty;, Upj, Fpp> = <Tyj, Uy, Fo> and <tyj, upj, foi> = <tq, ugj, fo>. Thus Tpj= Ty, Upi = Uy,
Fp] Fq], tpj = tqj, Upj = Ugj, andfp] _ﬁ]] fOI'] 1,2, ..., n. Hence, S3(P, Q) 1 holds. o

When the weight of the elements pjand gj (j=1, 2, ..., n) is taken into account, w = {w1, w, ..., wx}
is given as the weight vector of the elements pjand g; (j=1, 2, ..., n) with w; € [0, 1] and zr;,le =1.
Then, we have the following three weighted cosine measures between P and Q, respectively:

n TPJTQJ +TP]TCIJ + U PJUCU +U PJUQJ + FPJ FQJ + FPJ Fﬂl

Jcrm) (T (U, + UL +(Fy) +(F))
swl(P.Q)=5 x\ () 4 (Ty) +(Ug) +(U)" +(Fy) +(Fy)° )

N tpthJ +uPJuEU + fPJ fCIJ

+> W
; j{\/thru +f x\/tql+qu+qu}

CO{TM—TMT&—TJ Uy a5 Vs [P~ Fal+|Fa -Fd ”]
2( Q)_*Z

©)
= +Cos[tpj—tqj+upj—qu+fpj—qu”]
6

{ﬁCOS(Wﬁ]—l} {ﬁcos[t”;t‘“ﬂ]—l}
_1 N U,+U;-U;-Ug Uy —Uy |
Sws(F’,Q)— 3(J_ p 2" {ﬁcos[ 5 nJ 1} {«/Ecos[ Z J 1} 6)
+l:\/§COS[Fp_j M ﬁ]—1i| {«/Ecos[ Ty~ Tq 71]—1:|
8

It is obvious that the three cosine measures S«(P, Q) (k=1, 2, 3) also satisfy the following
properties (S1)-(Ss):

(S1) 0<Sw(P, Q)< 1;

(S2) Su(P, Q) = Suk(Q, P);
(S3) Swk(P, Q)=1if P=Q, i.e., <Tpj, Upj, Fpp> = <Tq;, Ug, Fg> and <tpj, upj, fp> = <tgj, ugj fo>.

+

By similar proof ways, we can prove the properties (51)—(Ss) for Suw(P, Q) (k =1, 2, 3). Their
proofs are omitted here.
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4. Decision-Making Method Using Cosine Measures

In this section, we propose an MADM method by using one of three cosine measures to solve
decision-making problems with neutrosophic cubic information.

In an MADM problem, let P = {Py, P, ..., Pu} be a set of m alternatives and R = {Ry, Ro, ..., R«} be a
set of n attributes. The evaluation value of an attribute R; (=1, 2, ..., n) with respect to an alternative
Pi(i=1,2, ..., m)is expressed by a NCN pi = (<Ty, Uy, Fi>, <ti, uj, fi>) j=1,2, ..., m;i=1,2, ..., m),

where Tij,Uij, Fij c[0,1] and tij,Uij, fij €[0,1]. Therefore, all the evaluation values expressed by
NCNs can be constructed as the neutrosophic cubic decision matrix P = (pij)mw«. Then, the weight
vector of the attributes Rj (j =1, 2, ..., n) is considered as w = (w1, w, ..., w), satisfying wj € [0, 1] and

W = 1. In this case, the proposed decision steps are described as follows:

Step 1: Establish an ideal solution (ideal alternative) = ={p1* ) p;,..., p:} by the ideal NCN
P =(<[miax(Tij),miax(Tij*)},[miin(Uij),miin(Uij*)Mmiin(Ej), miin(Ej*)}>,<m?x(tij), min(, ), min(, )>)
corresponding to the benefit type of attributes and
(o) st o st |

corresponding to the cost type of attributes.

Step 2: Calculate the weighted cosine measure values between an alternative Pi (i=1, 2, ..., m) and
the ideal solution P* by using Equation (4) or Equation (5) or Equation (6) and get the values
of Swi(Pi, P*) or Swa(P;, P*) or Sws(P;, P7) (i=1, 2, ..., m).

Step 3: Rank the alternatives in descending order corresponding to the weighted cosine measure
values and select the best one(s) according to the bigger value of Swi(Pi, P?) or Sw2(Pi, P*) or
Sw3(Pi, P7).

Step 4: End.

5. Illustrative Example and Comparison Analysis

In this section, an illustrative example of the selection problem of investment alternatives is
provided in order to demonstrate the application of the proposed MADM method with
neutrosophic cubic information.

5.1. lllustrative Example

An investment company wants to invest a sum of money for one of four potential alternatives:
(a) P11is a textile company; (b) P2 is an automobile company; (c) Ps is a computer company; (d) Psis a
software company. The evaluation requirements of the four alternatives are on the basis of three
attributes: (a) Ri is the risk; (b) Rz is the growth; (c) Rs is the environmental impact; where the
attributes R1 and R: are benefit types, and the attribute Rs is a cost type. The weight vector of the
three attributes is w = (0.32, 0.38, 0.3). When the expert or decision maker is requested to evaluate the
four potential alternatives on the basis of the above three attributes using the form of NCNs. Thus,
we can construct the following neutrosophic cubic decision matrix:

({[05,0.6],[0.1,0.3],[0.2,0.4]),(0.6,0.2,0.3)) ({[0.5,0.6],[0.1,0.3],[0.2,0.4]),(0.6,0.2,0.3)) ({[0.6,0.8],[0.2,0.3],[0.1,0.2]),(0.7,0.2,0.0)) |
o_ ({[0.6,0.81,[0.1,0.21,[0.2,0.3]),(0.7,0.1,0.2)) ({[0.6,0.71,[0.1,0.2],[0.2,0.3]),(0.6,0.1,0.2)) (([0.6,0.7],[0.3,0.4],[0.1,0.2]),(0.7,0.4,0.1))
({10.4,06],[0.2,0.3],[0.1,0.3]),(0.6,0.2,0.2)) ({[0.5,0.6],[0.2,0.3],[0.3,0.4]),(0.6,0.3,0.4)) ({[0.5,0.7],[0.2,0.3],[0.3,0.4]),(0.6,0.2,0.3))
({[0.7,0.81,[0.1,0.2],[0.1,0.2]),(0.8,0.1,0.2)) ({[0.6,0.7],[0.1,0.2],[0.1,0.3]),(0.7,0.1,0.2)) ({[0.6,0.7],[0.3,0.4],[0.2,0.3]),(0.7,0.3,0.2))

Hence, the proposed MADM method can be applied to this decision-making problem with
NCSs by the following steps:

Firstly, corresponding to the benefit attributes Ri, Rz, and the cost attribute Rs, we establish an
ideal solution (ideal alternative):
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({[0.7,0.8],[0.1,0.2],[0.1,0.2]),(0.8,0.1,0.2)),
P"={p;, Py~ Po}=1(([0.6,0.71,[0.1,0.2],[0.1,0.3]),(0.7,0.1,0.2)),
({[0.5,0.7],[0.3,0.4],[0.3,0.4]),(0.6,0.4,0.3))

Then, we calculate the weighted cosine measure values between an alternative Pi (i =1, 2, 3, 4)
and the ideal solution P* by using Equation (4) or Equation (5) or Equation (6), get the values of
Swi(Pi, P) or Sw2(Pi, P*) or Sws(Pi, P*) (i=1, 2, 3, 4), and rank the four alternatives, which are shown in
Table 1.

Table 1. All the cosine measure values between P: and P* and ranking orders of the four alternatives.

Swi(Pi, P) Cosine Measure Value Ranking Order The Best Alternative
Swi(Pi, P7) 0.9564, 0.9855, 0.9596, 0.9945 Ps>P2>Ps>P1 P4
Suw2(Pi, P) 0.9769, 0.9944, 0.9795, 0.9972 Ps>P2>P3>P1 Py
Sus(Pi, P) 0.9892, 0.9959, 0.9897, 0.9989 Py>Pr>P3> P1 Py

From the results of Table 1, we can see that all the ranking orders of the four alternatives and
best choice return the same results corresponding to the three cosine measures in the
decision-making problem with neutrosophic cubic information. It is obvious that Ps is the best one.

5.2. Related Comparison

For relative comparison, we compare our decision-making method with the only existing
related decision-making method based on the grey relational analysis under neutrosophic cubic
environment [40]. Because the decision-making problem/method with CNS weights in [40] is
different from ours, which has exact/crisp weights, we cannot compare them under different
decision-making conditions. However, we only gave the comparison of decision-making complexity
to show our simple method.

The proposed decision-making method based on the cosine measures of NCSs directly uses the
cosine measures between an alternative Pi (i =1, 2, ..., m) and the ideal alternative (ideal solution) P*
to rank all the alternatives; while the existing decision-making method with NCSs introduced in [40]
firstly determines the Hamming distances of NCSs for weighted grey relational coefficients and
standard (ideal) grey relational coefficients, and then derives the relative closeness coefficients in
order to rank the alternatives. It is obvious that our decision-making method is simpler and easier
than the existing decision-making method with NCSs introduced in [40]. But, our decision-making
method can only deal with decision-making problems with exact/crisp weights, rather than NCS
weights [40].

Compared with existing related decision-making methods with general neutrosophic sets (INSs
or SVNSs) [17-39], the proposed decision-making method with NCSs contains much more
evaluation information of attributes, which consists of both INSs and SVNSs; while the existing
decision-making methods [17-39] contain either INS or SVNS information, which may lose some
useful evaluation information of attributes in the decision-making process and affect the decision
results, resulting in the distortion phenomenon. Furthermore, the existing decision-making methods
[17-39] cannot deal with the decision-making problem with NCSs.

5.3. Sensitive Analysis

To show the sensitivities of these cosine measures on the decision results, we can only change
the internal NCS of the alternative Pi into the external NCS and reconstruct the following
neutrosophic cubic decision matrix:
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({[05,0.61,[0.1,0.3],[0.2,04]),(0.6,0.2,0.3)) (([0.5,0.6],[0.1,03],[0.2,0.4]),(0.6,0.2,0.3)) ({[0.6,0.8],[0.2,0.3],[0.1,0.2]),(0.7,0.2,0.1))
(([06 0.81,[0.1,0.2],[0.2,03]),{0.7,0.1,0.2)) (([0.6,0.7],[0.1,0.2],[0.2,0.3]),(0.6,0.1,0.2)) ({[0.6,0.71,[0.3,0.41,[0.1,0.2]),(0.7,0.4,0.1))
(<[o406] [0.2,0.31,[0.1,0.3]),(0.6,0.2,0.2)) ({[05,0.6],[0.2,0.3],[0.3,04]),(0.6,03,04)) ({[0.5,0.7],0.2,0.3],[0.3,0.4]),(0.6,0.2,0.3))
({0.7,0.81,[0.1,0.2],[0.1,0.2]),(0.9,0.3,0.3)) (([0.6,0.7],[0.1,0.2],[0.1,0.3]),(0.8,0.3,04)) ({[0.6,0.7],[0.3,0.4],[0.2,0.3]),(0.8,05,0.4))

Then, the corresponding ideal solution (ideal alternative) is changed into the following form:

({[0.7,0.8],[0.1,0.2],[0.1,0.2]),(0.9,0.1,0.2) ),
={p;, P, - P, 3=1(([0.6,0.7],[0.1,0.2],[0.1,0.3]),(0.8,0.1,0.2)),
({[0.5,0.71,[0.3,0.4],[0.3,0.4]),(0.6,0.5,0.4))

According to the results of Table 2, both the cosine measure based on the included angle cosine
of two vectors Sw1 and the cosine measure based on cosine function Sws still hold the same ranking
orders; while the cosine measure based on distance Sw2 shows another ranking form. In this case, Sw2
is sensitive to the change of the evaluation values, since its ranking order changes with the change of
the evaluation values for the alternative Pa.

Table 2. All the cosine measure values between Pi' and P”and ranking orders of the four
alternatives.

Swk(P#, P") Cosine Measure Value Ranking Order The Best Alternative

Swi(P#, P”)  0.9451, 0.9794, 0.9524, 0.9846  Ps>P2> P3> P1 Py
Sw2(P#, P”)  0.9700, 0.9906, 0.9732, 0.9877  P2>P4+>P3>P1 P>
Sws(P?, P”)  0.9867,0.9942, 0.9877,0.9968 Ps>P2>P3> D1 Py

Nevertheless, this study provides a new and effective method for decision makers, due to the
limited study on similarity measures and decision-making methods with NCSs in the existing
literature. In this study, decision makers can select one of three cosine measures of NCSs to apply to
MADM problems, according to their preferences and actual requirements.

6. Conclusions

This paper proposed three cosine measures of NCSs based on the included angle cosine of two
vectors, distance, and cosine function, and discussed their properties. Then, we developed an
MADM method with neutrosophic cubic information by using one of three cosine measures of NCSs.
An illustrative example about the selection problem of investment alternatives was provided to
demonstrate the applications of the proposed MADM method with neutrosophic cubic information.

The cosine measures-based MADM method developed in this paper is simpler and easier than
the existing decision-making method with neutrosophic cubic information based on the grey related
analysis, and shows the main advantage of its simple and easy decision-making process. However,
this study can only deal with decision-making problems with exact/crisp weights, rather than NCS
weights [40], which is its chief limitation. Therefore, the three cosine measures of NCSs that were
developed, and their decision-making method are the main contributions of this paper. The
developed MADM method provides a new and effective method for decision makers under
neutrosophic cubic environments. In future work, we will further propose some new similarity
measures of NCSs and their applications in other fields, such as image processing, medical
diagnosis, and fault diagnosis.
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Abstract: In this paper, we extend the rough set model on two different universes in intuitionistic
fuzzy approximation spaces to a single-valued neutrosophic environment. Firstly, based on
the (a, B, y)-cut relation R {(a,,7)}, We propose a rough set model in generalized single-valued
neutrosophic approximation spaces. Then, some properties of the new rough set model are discussed.
Furthermore, we obtain two extended models of the new rough set model—the degree rough set
model and the variable precision rough set model—and study some of their properties. Finally,
we explore an example to illustrate the validity of the new rough set model.

Keywords: neutrosophic sets; single-valued neutrosophic sets; generalized single-valued
neutrosophic approximation spaces; rough sets; single-valued neutrosophic relations

1. Introduction

Smarandache [1,2] introduced the concept of the neutrosophic set (NS), which consists of
three membership functions (truth membership function, indeterminacy membership function and
falsity membership function), where each function value is a real standard or nonstandard subset
of the nonstandard unit interval [07,17]. The neutrosophic set generalizes the concepts of the
classical set, fuzzy set [3], interval-valued fuzzy set [4], intuitionistic fuzzy set [5] and interval-valued
intuitionistic fuzzy set [6]. The neutrosophic set model is an important tool for dealing with real
scientific and engineering applications because it can handle not only incomplete information, but also
the inconsistent information and indeterminate information that exist commonly in real situations.

For easily applying NSs in the real world, Smarandache [1] and Wang et al. [7] proposed
single-valued neutrosophic sets (SVNSs) by simplifying NSs. SVNSs can also be seen as an extension
of intuitionistic fuzzy sets [5], in which three membership functions are unrelated and their function
values belong to the unit closed interval. SVNSs has been a hot research issue. Ye [8,9] proposed
decision making based on correlation coefficients and weighted correlation coefficients of SVNSs
and illustrated the application of the proposed methods. Bausys et al. [10] applied SVNSs to
multi-criteria decision making and proposed a new extension of the crisp complex proportional
assessment (COPRAS) method named COPRAS-SVNS. Zavadskas et al. [11] applied SVNSs to the
weighted aggregated sum product assessment (WASPAS) method, named WASPAS-SVNS, and used
the new method to solve sustainable assessment of alternative sites for the construction of a waste
incineration plant. Zavadskas et al. [12] also applied WASPAS-SVNS to the selection of a lead-zinc
flotation circuit design. Zavadskas et al. [13] proposed a single-valued neutrosophic multi-attribute
market value assessment method and applied this method to the sustainable market valuation of
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Croydon University Hospital. Li et al. [14] applied the Heronian mean to the neutrosophic set,
proposed some Heronian mean operators and illustrated their application in multiple attribute
group decision making. Bausys and Juodagalviené [15] demonstrated garage location selection for a
residential house. In [16], Ye proposed similarity measures between interval neutrosophic sets and
applied them to multi-criteria decision making problems under the interval neutrosophic environment.
Ye [17] proposed three vector similarity measures of simplified neutrosophic sets and applied them
to a multi-criteria decision making problem with simplified neutrosophic information. Majumdar
and Samanta [18] studied the distance, similarity and entropy of SVNSs from a theoretical aspect.
Peng et al. [19] developed a new outranking approach for multi-criteria decision making problems
in the context of a simplified neutrosophic environment. Liu and Wang [20] introduced an interval
neutrosophic prioritized ordered weighted aggregation operator w.r.t. interval neutrosophic numbers
and discussed its application in multiple attribute decision making. To deal with difficulties in steam
turbine fault diagnosis, Zhang et al. [21] investigated a single-valued neutrosophic multi-granulation
rough set over two universes. Sahin [22] proposed two kinds of interval neutrosophic cross-entropies
based on the extension of fuzzy cross-entropy and single-valued neutrosophic cross-entropy and
developed two multi-criteria decision making methods using the interval neutrosophic cross-entropy.
Ye [23] proposed similarity measures between SVNSs based on the tangent function and a multi-period
medical diagnosis method based on the similarity measure and the weighted aggregation of
multi-period information to solve multi-period medical diagnosis problems with single-valued
neutrosophic information. Yang et al. [24] proposed SVNRs and studied some kinds of kernels
and closures of SVNRs. Ye [25] presented a simplified neutrosophic harmonic averaging projection
measure and its multiple attribute decision making method with simplified neutrosophic information.
Stanujkic et al. [26] proposed a new extension of the multi-objective optimization (MULTIMOORA)
method adapted for usage with a neutrosophic set.

Rough set theory, initiated by Pawlak [27,28], is a mathematical tool for the study of intelligent
systems characterized by insufficient and incomplete information. The theory has been successfully
applied to many fields, such as machine learning, knowledge acquisition, decision analysis, etc.
To extend the application domain of rough set theory, more and more researchers have made some
efforts toward the study of rough set models based on two different universes [29-39].

In recent years, many researchers have paid attention to combining neutrosophic sets
with rough sets. Salama and Broumi [40] investigated the roughness of neutrosophic sets.
Broumi and Smarandache put forward rough neutrosophic sets [41,42], as well as interval neutrosophic
rough sets [43]. Yang et al. [44] proposed single-valued neutrosophic rough sets, which comprise a
hybrid model of single-valued neutrosophic sets and rough sets. Along this line, this paper attempts to
do some work regarding the fusion of single-valued neutrosophic sets and rough sets again. Concretely,
we will extend the rough set model in [29] to a single-valued neutrosophic environment. Furthermore,
we will apply the new model to a multi-attribute decision making problem.

The rest of this paper is organized as follows. In Section 2, we recall some basic notions related
to Pawlak rough sets, SVNSs and single-valued neutrosophic rough sets. In Section 3, we propose
a rough set model in generalized single-valued neutrosophic approximation spaces. Section 4 gives
two extended models and studies some related properties. Section 5 explores an example to illustrate
the new rough set model’s application in multi-attribute decision making. The last section summarizes
the conclusions.

2. Preliminaries

In this section, we recall some basic notions of Pawlak rough sets, SVNSs and single-valued
neutrosophic rough sets.
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2.1. Pawlak Rough Sets

Definition 1. ([27,28]) Let U be a nonempty finite universe and R be an equivalence relation in U. (U, R) is
called a Pawlak approximation space. VX C U, the lower and upper approximations of X, denoted by R(X)
and R(X), are defined as follows, respectively:

R(X) = {x € U] [x]z C X},

R(X) ={xe U] [x]rNX # 2},

where [x]g = {y € U | (x,y) € R}. R and R are called the lower and upper approximation operators,

respectively. The pair (R(X), R(X)) is called a Pawlak rough set.

Furthermore, the positive region, boundary region and negative region of the subset X are
defined by

pos(X) = R(X), neg(X)=U—R(X), bn(X)=R(X)—R(X).

2.2. Single-Valued Neutrosophic Sets and Single-Valued Neutrosophic Rough Sets

Definition 2. ([7]) Let U be a space of points (objects), with a generic element in U denoted by x. A SVNS
A in U is characterized by three membership functions, a truth membership function Tz, an indeterminacy
membership function Iz and a falsity membership function F;, where Vx € U, T;(x),1;(x), Fz(x) € [0,1].

The SVNS A can be denoted by A= {(x, T;(x),I;(x),F;(x)) | x € U} or A= (T, I3 F;).
Vxel, A(x) = (Tz(x),I5(x),Fz(x)), and (T;(x),I;(x),F5(x)) is called a single-valued
neutrosophic number.

Definition 3. ([44]) An SVNS R in U x U is called a single-valued neutrosophic relation (SVNR) in U,
denoted by R= {((x,y), T (%), Ix(x,y), Fx(x,y)) | (x,y) € Ux U}, where Ty : U x U — [0,1],
Iz:UxU~-—[0,1] and Fz : Ux U — [0,1] denote the truth membership function,
indeterminacy membership function and falsity membership function of R, respectively.

Definition 4. ([45]) Let R, S be two SVNRs in U. Ifvx,y e U, Ty (x y) < Ts(x,y), Izg(x,y) = Is(x,y)
and Fy(x,y) > Fs (x y), then we say R is contained in S, denoted by RC S. In other words, we say S contains
R, denoted by SDR

Definition 5. ([24]) Let R be an SVNR in U. If vx € U, Tx(x,x) = 1 and
I(x,x) = Fz(x,x) =0, then R is called a reflexive SVNR. If vv,y € U, Tx(x,y) = Tx(y, x),
In(x,y) = Ix(y,x) and Fy(x,y) = Fz(y,x), then R is called a symmetric SVNR.

Ifvxel, VyeuTg(xy) = 1 and Ajeylz(x,y) = Ajeu Fg(x,y) =0, then R is called a serial
SVNR. If Vx,y,z € U, Vyeu(Tg(x,y) A Tﬁ(%,z)) < Tx(x,2), Nyeullg(x,y) V Ix(y,2)) > Ix(x,z) and
Nyeu(Fz(x,¥) V Fz(y,2)) > Fi(x,z), then R is called a transitive SVNR, where “ V" and “ N\ denote
maximum and minimum, respectively.

Definition 6. ([24]) Let R be an SVNR in U; the tuple (U,R) is called a single-valued neutrosophic
approximation space. VA € SVNS(U), the lower and upper approximations of A w.r.t. (U, R), denoted by

R(A) and R(A), are two SVNSs whose membership functions are defined as: Vx € U,
Troa () = /\yGU(Fﬁ(xr]/) VTx(y)),

Iz x) (%) = Vyeu((1 — Ix(x, )) I;(v)),
Freay (%) = Vyeu(Tg(x,y) AFz(y));
Tz ) = Vyeu(Tr(x,y) A T;(y)),

7

R ) = NyeulTg () V Ix(y))
Fr (%) = Ayeu(Fr (%, y) V E5 ().
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The pair (E(ﬁ),ﬁ(ﬁ)) is called the single-valued neutrosophic rough set of A w.rt. (U,R).
R and R are referred to as the single-valued neutrosophic lower and upper approximation
operators, respectively.

3. Rough Set Model in Generalized Single-Valued Neutrosophic Approximation Spaces

Guo et al. [29] studied the rough set model on two different universes in intuitionistic fuzzy
approximation space. In this section, we will extend the rough set model in [29] to a single-valued
neutrosophic environment.

Yang et al. [24] proposed the notions of single-valued neutrosophic relations from U to V
and generalized single-valued neutrosophic approximation spaces as follows.

Definition 7. ([24]) Let U and V be two mnonempty finite universes. The relation
R in U x V is calld a single-valued neutrosophic relation from U to V, denoted by
R = {((x,y),Tﬁ(x,y),Iﬁ(x,y),Fﬁ(x,y)H(x,y) euUxVy, where Tg:UXV — [0,1],

Iz:UxV —[0,1] and F : U xV — [0,1] denote the truth membership function, indeterminacy
membership function and falsity membership function of R, respectively.

The triple (U, V, R) is called a generalized single-valued neutrosophic approximation space on
two different universes.

Remark 1. If U = V, then we call R a single-valued neutrosophic relation in U.

Definition 8. Let R be an SVNR from U to V. IfVx € U,y €V, Tx(x,y) = Tz (v, x), Ig(x,y) = Iz(y, x)
and Fg(x,y) = Fi(y,x), then R is called a symmetric SVNR. If Vx € U, V,ey Tg(x,y) = 1 and
Nyev Ig(x,y) = Nyev Fz(x,y) = 0, then R is called a serial SVNR.

The union, intersection and containmentof two SVNRs from U to V are defined as follows,
respectively.

Definition 9. Let R, S be two SVNRs from U to V.

(1) The union RUS of R and S is defined by RUS = {((x,y), max{Tr(x,y), Ts(x,y)},
min{In (), Is(x, )}, min{ g (x,), Fs () | (x,y) € U x V1.

(2)  The intersection RNS of R and S is defined by RNS = {((x,y), min{Tr(x,y), Ts(x,y)},
max{ T (x,y), s ()}, max{Ex (x,y), Fs (v, ) D|(x,y) € U x V).

(3)  IfV(x,y) e UxV, Tr(x,y) < Ts(x,y), Ir(x,y) > Is(x,y) and Fr(x,y) > Fs(x,y), then we say R
is contained in S, denoted by RCS.

Next, we give the notion of («, 8, )-cut relation R {(a,p7)} Of a single-valued neutrosophic relation
Rfrom Uto V.

Definition 10. Let U, V be two nonempty finite universes and R be a single-valued neutrosophic relation from
Uto V. Forany a, B,y € (0,1], we define the («, B, y)-cut relation K{(lx,ﬁm} of R as follows:
Riwpyy = {(x,y) € Ux V|Tx(x,y) >, Ix(x,y) < B, Fz(x,y) < 7}

According to Definition 10, if (x,y) € R {(a,py)}- it indicates that the truth membership degree
of the relationships of x and y w.r.t. SVNR R is not less than «, and the indeterminacy membership
degree and falsity membership degree of the relationships of x and y w.r.t. SVNR R are not more than
B and 1, respectively.



Symmetry 2017, 9, 119 50f 19

Definition 11. Let (U, V, R) be a generalized single-valued neutrosophic approximation space. R {(ap)} 19
the («, B, v)-cut relation defined in Definition 8. For any x € U,y € V, we define

—~

R{(aﬁ'y)}<x) ={y € V|Tz(x,y) > a,Iz(x,y) < B, Fz(x,y) <7},

Ry @) = {x € UITx(x,y) = &, Iz(x,y) < B, Fz(x,y) < 7}

—~

The following Definition 12 gives a rough set model on two universes based on the («, B, 7)-cut
relation R {(a,,y)} iInduced by a single-valued neutrosophic relation R from U to V.

Definition 12. Let (U,V,R) be a generalized single-valued neutrosophic approximation space.
Suppose Ry(a,p,)) 15 the (a, B, v)-cut relation given in Definition 10 from U to V. For any set Y C V,
the lower approximation and upper approximation of Y on two universes w.r.t. (U,V,R) and (a, B, ) are

defined by
Riupr (V) = {x € UIR((up)) (%) S Y and Ry ), (x) # O},
ﬁ{(""ﬁfr)}(y) ={xe U|R{ (a,B,7) }(x) NY # Qor ﬁ{(a,‘g,«r)}(X) = Q}.

The pair (K{(alﬁm}(Y),Iz{(“,}gﬁ)}(Y)) is called the rough set of Y wrt. (U, V,R) and (a,
If ﬁ{(aﬁy)}(Y) :ﬁ{(“ﬁﬂ}(Y), then Y is called the definable set wrt. (U,V,R) and («,
If R{(aﬁﬂy (Y) # R{ wpy)} (Y), then Y is called the undefinable set w.r.t. (U, V,R) and (a,B,7).

B, )
B, Y)-

Next, we define the positive region posz (Y), negative region negy (Y) and boundary

{(a7)} {(a.87)}

region bng (Y) of Y, respectively:

{(@p)}
pos R{fxﬂ (Y) mﬁv)}(y)
negg, oo (V) = U= Ripa (Y),

brR . W(Y) = Riwpn (¥) = Rypa (¥):
Remark 2. If R is a series single-valued neutrosophic relation from U to V, i.e., Vx € U, Vyeu Tg(x,y) =1
and Nyeu Ig(x,y) = NjeuFg(x,y) = O, then there exists y € V such that Tg(x,y) = 1 and
Ij(x,y) =0,Fz(x,y) =0 for all x € U since V is finite. Therefore, for any «,p,v € (0,1], we have
Ry(a,p7)} (x) # . Therefore, we have

Ri(apy)) (V) = {x € UIR{(gp)y (x) C Y and Ry(y )1 (x) # 2},
- {x € U|R{ tx,ﬁ,y)}(x) - Y}/

Ri(wpn)y(Y) = {x € U[R{(a,p,4)} () NY # D 0r Ry p,4)3(x) = D}
= {x S U|R{(lx,ﬁ,7)}(x) ny 75 @}

In the following, we discuss some properties of the lower approximation and the upper
approximation given in Definition 12.

Theorem 1. Let (U, V, R) be a generalized single-valued neutrosophic approximation space. Suppose R {(@B)}
is the («, B, y)-cut relation given in Definition 10 from U to V. For any Y,Y1,Y, C V, the following
properties hold:

(M) Ry (V) S Rygup (V)

@ Riap) (@) = @ Reup (V) = Ui
(3) M(Yl nY;) = M(Yl) QM(YZ)/
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Ri(apy (Y1 UY2) = Ry} (Y1) UR (0,97 (Y2);
@ Riapnt(Y1UY2) 2 Ry(ap)1 (Y1) UR{(a,8)} (Y2),

Ry (Y1 0Y2) € Ry (1) O R pyy (Y2):
) ¥ €Yy, then Ryapy)) (Y1) € Ryga 1)) (Y2) a1 Ry (a7} (V1) © Ryupyy (Y2);

©) Ry (Y) =~ Riwpmi(~ Y), Rupy (V) =~ Riappy (~ Y).

Proof. We only prove (3) and (6).
(3) Rypq(Y1NY2)
= {x € UIR{(ap7)} (x) S V1N Yz and Ry(y,p,))(¥) # O}
= {x € UIR{(g)) (*) € Y1 and Ry(y 5.7)) (%) © Y and R(e )} (%) # @)
= {x € U|R{(a,p1)1(x) € Y1and Ry(yp)3(x) # D} N {x € U|R{ B} (¥) C Yo and
Ry(apy)(x) # O}
= Ri(ap1)) (Y1) N Ry(ap,11 (Y2);
Ri(wpr(11UY2) ~
= {x € U|R~{(,X,5ﬁ)}(x) N (Yl U YZZ# @ or R{(“,‘B/,Y)}(x) = @}
= {x € UI(Ry(a,p7)} () N V1) U (R (a,,7)} (¥) N Y2) # D 0r Ry(ap)) (x) = @}
= {x S U|R{ txﬁ’y)}( ) NY; #@or R{(lxlﬁﬁ)}(x) = @} U {x S U|R{ a,ﬁ,’y)}( ) NY, #@
or Ry(4,p7)} () = @}
= Ri(apy (Y1) U R{(a/ﬂrv)}(YZ)‘
(6) ~ Ry(ap1))(~Y)
=~ {x € U|R(47) (%)
= {x € UIR{(u 5, (x) N
= {x € UIR(ap(x) €Y
= Ry(ap} (Y);
~Ry(a,8,7)}(~Y)
=~{x e U|R{ (wpy)}(x) S (~Y)and ﬁ{(uc,ﬁ,’yl}(x) # O}
=~ {x € LﬂR{ a,ﬁ,’y)}( x)NY = @aEd X e U\R{(“,ﬂﬁ)}(x) + D}
={x € U|R{(ap1)1(x) NY # Dor Ry(y 5 (x) =D}
= Ri(upy(Y). O

N(~Y)# QOHE{(%M)}( =
(~ ) @ and R{(ucﬁ'y)}(x) # @}
and Ry} (x) # @}

Remark 3. In general,

W Ripn)(@) # D Ryqwpp (V) # W
@ Ry (M UY2) # Rigup) (Y1) URapy) (Y2) and Riapy)y (1 0 ¥2) # Rygup (Y) 1
Riapm (Y2),

as shown in the following example.

Example 1. Let U = {x1,x2,x3}, V = {y1,y2,y3,ya}. Y1 = {y1} and Yo = {y3}. The single-valued
neutrosophic relation R from U to V is given in Table 1.
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Table 1. The single-valued neutrosophic relation R from U to V.

R Y1 Y2 Y3 Ya
X (070102 (080302 (07,0201 (1,00
v (1,03,01) 001 (07,0302 (0,01

x3  (02,0.1,08) (0.1,02,07) (0.8020.1) (0,031)

(1) Take « = 0.9, B = 0.3 and v = 0.2; we have
ﬁ{(0.9,0.3,0.2)}(x1) = {vya}, ﬁ{(0.9,0.3,().2)}(9f2) ={m} ﬁ{(0.9,0.3,0.2)}(x’o‘) = {ys}.

By Definition 12, we have ﬁ{(%ﬁ”)}(@) ={x3} # Dand ﬁ{(%ﬁ”)}(V) ={x,x} #U.
(2) Take « = 0.5, = 0.3 and v = 0.2; we have

ﬁ{(0.5,0.3,0.2)}(x1) = {v1,v2,y3,y1}, ﬁ{(o.5,0.3,0.2)}(x2) ={v1y3}, ﬁ{(o.5,o.3,o.2)}(x3) =0.

By Definition 12, we have

IR((a,p7)) (Y1) = D, Ry(ap) (Y2) = {23}, Ry(ap.0) (Y1 U Y2) = {22, 33}
Ri(wpy (Y1) = {x1, 22}, Ry(a 571 (Y2) = {31,202, %3}, Ry(ap.0) (Y1 N V2) = D

Obviously, ﬁ{(zx,ﬁ,'y)}(yl U Y) # ﬁ{(a,ﬁ,'y)}(yl) U E{(a,ﬁ,'y)}(YZ) and
R pry (1 N0Y2) # Rygup)3 (1) 0 Ry} (Y2)-

Theorem 2. Let (U, V,R) be a generalized single-valued neutrosophic approximation space. R {(a1,611)}
and ﬁ{( y are two relations defined in Definition 10. If R is a series, a1 < ap, B1 > Poand y1 > 72,
then

1) Ry prm} (V) € Riag o)) (V);

(2) R{(‘Xlrﬁlf'h)}(y) R{(“zlﬁzﬁz)}(y)'

a2,B2,72)

N

N

Proof. (1) Since &1 < ap, f1 > Bz and 71 > 79, for any x € U, we have

R{ (a1,81,71)} ( ) ={y € VITzg(x,y) > a1, Iz(x,y) < B1, Fz(x,y) < 1}
2{y € VITz(x,y) 2 a2, Iz(x,y) < P2, Fr(x,y) < 72}
)

_R{ (a2,B2,72) 1\ X )+

By Definition 12, for any x € E{(M,ﬁlm)}(y)' we have ﬁ{(a1,ﬁ1,71)}<x) c Y.
Thus E{(vcz,ﬁz,vz)}(x) gﬁ{(alrﬁwl)}(x) CY, which implies that x € ﬁ{(azfﬁzﬁz)}(lf). Hence,

Riaypun} (V) € Ritaa ) (V): )

. (2) By (1), for any x S U, we have ﬁ{(al,ﬁlm)}(x) 2 R{(D‘z,ﬁz/h)}(x)‘
(6]

Rier prm)y () NY 2 Riay py)} (x) NY forany x € U,
By Definition 12, for any x € E{(az,ﬁz,’yz)}(y)’ we have ﬁ{(az,ﬁzxyz)}(x) nY # Q.
Thus, ﬁ{(ﬂqum)}(x) NY # @, which implies that x € ﬁ{(vq,ﬁp%)}(y)' Hence,

Rituy )y (Y) € Ri(ay oy (Y). O

Theorem 3. Let R, S be two series single-valued neutrosophic relations from U to V. If RCS, then ¥Y C V,
we have:

@ Sqapnt(Y) S Riapyy (Y)
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Ts(x,y) > Tﬁ(x,g),lg(x,y) < Iz(x,y) and Fz(x,y) < Fg(x,y) forany (x,y) €e UX V.

Then, S{(a,p)y(x) ={y € V|Ts(x,y) > o, I5 (x y) < B Fs(x,y) <}
2 {y € V[Tx(x,y) > &, Ix(x,y) < B, Fz(x,y) <7}
= Ri(a,p7)}(%)-

By Definition 12, for any x € {(“ﬁy)}(Y), we have §{(“,5/7)}(x) c Y.
Thus, ﬁ{(a,ﬁﬁ)}(x)Qg{(a,ﬁﬁ)}(x)QY, which implies that x € ﬁ{(k,ﬂﬁ)}(Y). Hence,

Sty (V) € Ripmy (V- ) )
(2) By (1), for any x € U, we have Syug,(x) 2 Ryggq) () Thus,

ﬁ{(a,ﬁg)}(x) ny C S~{(,,c,/3,,y)}(x) N 11 for any x € U. By Definition 12, for any x~€ ﬁ{(a,ﬁ,,y)}()(), we
have Ry, 8,1 (X) NY # @. Thus, S¢(4 5)(x) NY # @, which implies that x € S, 5.3 (Y)-
Hence, R(x 51} (Y) € S{apy)(¥)- O

Lemma 1. Let R, S be two single-valued neutrosophic relations from U to V. Forany x € Uand «, B, € (0,1],
we have:

W (ROS) ()} (%) 2 Ry p)) (¥) U S(ap (*);
) (RAS) ((a,p)} (¥) = Ry(wp)y () NS {(ap (x).

Proof. (1)  For any x € U, we have:
(RUS) (a7 (¥) = {y € V| max(Tx(x,y), Ts(x,y)) > a, min(Ix(x,y), I5(x,y)) < B,
min(Fg(x, y), Fs(x,y)) <7}
2 {y € VITx(vy) 2 &, Ix(x,y) < B, Fr(x,y) <7}
Uy € VITg(xy) > w Ig(x,y) < B, Fs(x,y) < 7}

= R} (¥) US{(ap} ()
(2) Forany x € U, we have:

(RMS) (a7} (¥) = {y € V| min(Tx(x,y), Ts(x,y)) > &, max(Ix(x,y), I5(x,y)) < B,
max(Fg(x,y), F5(x,y)) < 7}
={y e VITz(x,y) 2 a, Iz (x,y) < B, Fg(x,y) < 7}
Ny € V|Ts(x,y) 2 a, Is(x,y) < B, Fs(x,y) <7}

- Ry(a,p)y () NS0y (%)

Theorem 4. Let R, S be two series single-valued neutrosophic relations from U to V. Forany Y C V
and a, B,y € (0,1], we have:

(M) (ROS) (a1} (Y) € Rytap) (Y) NS¢y (Y) S Rywpmy (Y US(apmy (Y
) (ROS)((a,p)} () 2 Rywp)y (V) US (e (Y).

Proof. (1) By Lemma 1 (1), we have
(RUS) {(a,7)} (Y) = {x € U|(RUS) (,,1)3 (x) € Y}
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C {x € UIR{(0p)) () US{apmy (¥) € Y}
= {x S U|I§{(“,ﬂr7)}(x) - Y} n {x S U|S~{(“,ﬁﬁ)}(x) - Y}
= R p) (V) N S{apmy (Y).

So

(ROS) (82} () € Rt} (V) N St} (V) € Ry (V) U S a1 (¥)-
(2) By Lemmal (1), we have

(RUS) {(a,7)} (Y) = {x € U|(RUS) (5,11} (x) NY # O}
2 {x € U|(Ry(a 5,7} (%) US{(apmy (1)) NY # O}
={x¢€ U|I§{(,X/ﬁ,7)}(x) NY#AQ}U{xe U|§{(a,/5/7)}(x) Ny # @}

= Rt} (Y) US{apm)(Y)-

O

Theorem 5. Let R, S be two series single-valued neutrosophic relations from U to V. For any Y C V
and a, B,y € (0,1], we have:

M (RAS) ((a,p)} () 2 Riwp)y (V) US{1apmi(¥) 2 Ry (¥) N S(apy (V)

(2) (RQS){((X’/;’,Y)}(Y)

V)

Riapn3(Y) NS¢ (V)

N

Proof. (1) By Lemma 1 (2), we have
(RAS) {0, p7)3 (Y) = {x € U|(RMS) ((a5,)3 (x) C Y}
= {x € UI(R{apy)y () N Sy (x) € Y}
2 {x € U|[(Ry(ap1)3(x) S YIU{x € U|(S{(apq(x) Y}
= Riapm} (V) U Syapmn (V-

Therefore,

(RA8) (a1} () 2 Ry p)y (V) US (a1 (Y) 2 Ritap) (¥) N S(apyy (V-
(2) By Lemma1 (2), we have

(RAS) {(a,7)} (Y) = {x € U|(RAS) (5,113 (x) NY # D}
= {x € UIR{wpm) N Siiwpmy) (¥)NY # 0}
Cixe U|ﬁ{(alﬁ,7)}(x) NY#}n{xe U|§{(a,/5/7)}(x) Ny #£ @}

. = Rt} (Y) NS (apm (Y)-

Next, we define the inverse lower approximation and upper approximation on two universes
wrt. (U, V,R) and (a, B, 7y) as follows:

Definition 13. Let (U, V,R) be a generalized single-valued neutrosophic approximation space. For any

a,B,v € (0,1], X C U, the inverse lower approximation and upper approximation of X on two universes w.r.t.
(U, V,R) and («, B,y) are defined as:

Rip)y X) = € VIR g, () € Xand RiG o)\ (y) # O},

=y _ - )
R{(‘X'ﬁ/'Y)}(X) - {y € V|R{(a,/5/y)}(y) nx 7& @ or R{(ﬂt,ﬁ,’y)}(y) = @}
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The pair (R} (X), R{&ﬁy)}(X)) is called the inverse rough set of X wurt

- {(wB7)}
(U,V,R) and (&, B, 7).

Theorem 6. Let (U, V,R) be a generalized single-valued neutrosophic approximation space. R ()} 18
the (w, B,y)-cut relation given in Definition 10 from U to V, where a, B,y € (0,1]. Forany X, X1, X, C U,
we have:

5—1 n—1 .
@ Riwpmy(X) S Riapy (XD

{(a,By
51 =1 .
@) Rip) (@) =D, Ry g, () =V
n—1 _ n—1
(3) Riupy (XN Xa) = Ry g () VR, (X2),
p—1 _ pn-1 .
Rip X1V Xa) = Ry g (X)) URYG g, (X0);
S1 51
4 Ry (X1UXa) 2 R oy (X)) UR(G 50, (X2),
-1 — .
Rp (X101 X2) € Ry g (X0) NRYG gy (X0);
(5)  If Xy C Xp, then R{( Riupn )}(X 1) C R{—(}Xm)}(xz) and R{_(l M}(Xl) C R{(l Vs )}(Xz);

1 _ R N —1 _ . p-l
6) R (X) =~ R0y (> X) R gy (X) =~ Ry (~ X).

Proof. The proof is similar to that of Theorem 1. [

Definition 14. Let (U, V, R) be a generalized single-valued neutrosophic approximation space. R (B} 1S

a (a, B, v)-cut relation defined in Definition 10. For any Y C V, the approximate precision PR(wpm) (Y)of Y
&P,y

w.rt. Ry(a,p,)} is defined as follows:

where |Y| represents the cardinality of the set Y.

Let Ry (Y)=1- PR (Y), and R g (Y) is called the rough degree of with regard to

_ (a,B)} (aB7)}
R{(a,ﬁ,,y)}. It is obviously that 0 < pg ! (Y)<landO0 < ”ﬁw M)}(Y) <1.

{(ap)}

The following Theorem 7 discusses the properties of approximation precision and rough degree.

Theorem 7. Let (U, V,R) be a generalized single-valued neutrosophic approximation space. R {(ap)} I
a (w, B, y)-cut relation defined in Definition 10. For any Y1,Y> C V(Y1 # @,Y, # @), then the rough degree
and the approximate precision of the set Y1, Y2, Y1 U Yo, and Y1 N Yy satisfy the following properties:

(1) R gy (V1 U Vo) IR {(wp1)} (Y1) U Ryepn (Y2l < HR g, (Yl)|ﬁ{(a,ﬁ,ﬂy)}(yl)| +
PR (wpm) ( 2DIRy(wp)y (Y2)] = PR, }(Ylmy2)|§{(rx,ﬁ/y)}(y)mR{(uc,S'y)}( 2);
(2) PR g (1 Y 2R (V1) U Ryoppy(V2)l - > PRiapy (DI R (e (V)] +

pﬁ{(“rﬁﬁ)} (Y2>|ﬁ{(zx,‘3,7)}<y2)| - pﬁ{(a, (A N Y2)|R{ zxﬁy)}(yl) N R{ (w,B,7)} (YZ)‘

Proof. According to the definition of the rough degree, we have
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IR (Y1UY2)]
(rUYy) =1
{(apm)} IR{(ap) (Y1UY2)]
_ IR ((a,8,)} (Y1UY2)]
IR (w53 (1) UR (a7 (2]
IR{(a,8.1)} (Y1)UR{(a,8,4)} (Y1)

IR ()} (VD)UR (3 ) (Y2)|

MR

Then, we have

FR oy (119 Y2) IR (G087} (1) U Ry 5,09y (V2)]

< IR () (Y1) U R((ap.0)y (Y2)| = IR (0.0} (Y1) U Ra .10} (Y2)-

Similarly, we have

IR{(a,p,7)) Y1NY2)|
YiNnYs) =1— Aepy 20
{(ap)} |R{ (a,8,7) }(YlﬂYZ)‘
\R{ (@)t (YD) R (a1 (Y2)
Ry (MNY2))|
IR 1NR (a0 (1))

IR ()} (VDUR (0 )1 (Y2)|

MR

Hence, _ _
MR gy (1 O V2R @py (1) O Rypay (21 < IRy (1) N Rygepy ()] =

IR (w2} (1) O Ro(a ) (Y2
Furthermore, we know |A U B| = |A| + |B| — |A N B| holds for any sets A and B. Then,

HR gy (1Y Y2 R (G010} (1) U R ) (Y2)]
< IR {(ap7)y (Y1) U R (08903 (Y2)] = [R{(a,89)3 (Y1) U R (2, 57)} (Y2)]
= |ﬁ{(a,ﬁ,y)}(yl)| + |ﬁ{(uc,‘8'y (YZ)‘ - |R{ ﬂ'y)}(Yl) N ﬁ{(1)4[37 (Y2)| - |R{(¢x,‘B,’y)}(Yl)‘

~IR{(apm) 2+ IRi(ap.0) (Y1) N Ry(a )y (Y2)]
= [Ry(a g (YD1 + IR {871 (Y2) — |R{ (@p)t (YD = IR0 (X2 = (IR{(ap7); (Y1)
MR (a7 (Y2)] = Ry (ap9)1 (Y1) ﬁR{ wp)y (Y2)])
< IR (a8 (YD + [Ry(ap3 (Y2)| = |R{ @B} (D] = Ry (Y2) = R gy (1M Y2)

IRt (Y1) DR (a0 (Y2)].

Furthermore, by

R Y, Ry, Y,
- (V) =1-— R wpn D1 " (V) =1 IR{(ap7)) (Y2)]
{(apm)} ‘R{(a,ﬁ,y)}(yl)‘ {(wp)} |R{ (a,87)} (Yz)l
IR{(apmy YD = IR {(a )y (Y1)] = MR (g (Y1)|R{ wpy)(Y1)| and

IR (st (Y2 = [R{(ap)3 (Y2)| = MR, (Y2)|ﬁ{(1x,ﬁ,7)}(y2)|'

,we have

(a.87)}
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Therefore,
HRapan (11 YY) R} (1) N Ry (Y2)]
< |R{(“r,317)}(Y1)| + |R{M2)| - |R{Lﬂy1)| — |M(Y2)‘
_‘uﬁ{(vé,ﬁ,v)} (Yl n Yz) |ﬁ{(“zﬁ,7)} (Y1> N ﬁ{(a,ﬁ,y)} (Yl) |
= By D Re@py D g (2D R0} (Y2)
MR gy (1 Y2)IR (07)) (Y1) O Ry (Y2) -
O

4. Two Extended Models

In this section, we give two extended rough set models of the model in Section 3, i.e., the degree
rough set model and the variable precision rough set model.

4.1. The Degree Rough Set Model on Two Different Universes

Definition 15. Let (U, V, R) be a generalized single-valued neutrosophic approximation space and R ()}
be a (a, B, v)-cut relation defined in Definition 10. For any Y C V, we define the degree lower and upper
approximations of Y w.r.t. the degree k, (U, V,R) and («, B, y) as follows:

~ k ~ ~
Ripayy (V) = {x € Ul[Ry(apq) (x) = Y| < kand Rygup)y(x) # O}
= {x € UlIR{(apmy ()] = [Ry(ap)y (¥) VY] < kand Ry, (x) # O}

=k ~ ~
Ri@pmy (V) = {x € Ul[R (0,57} (x) NY] >k or Ry(u,p)(x) = O}
where k is a finite nonnegative integer and |Y| denotes the cardinality of the set Y.

~ =k
The pair (R{(a,ﬂm}k(Y),R{(mﬁm} (Y)) is called the degree rough set of Y w.r.t. the degree k,
(U,V,R) and (&, B, 7).

We also define the positive region Posge (Y), negative region negRE L (Y) and boundary
region bnﬁ;&ulm)} % of Y as follows:

Posi .., (1) = Ry ()

neggs (V) =U~- Ritwpmy (V)

bgs ., (V) =R Y)-R Y).
nRIE(“qBr’Y)} ( ) {(IX,‘B,’)/)} ( ) M ( )

Remark 4. In Definition 15, if k = 0, then
~ 0 ~ ~
Ri@pay (V) = {x € U[[Ry(qp)y (x) = Y| < 0and Ry(a,p,0)) (x) # O}
= {x € Ul[R{(ap1)} (¥) = Y| = 0and Ry(sp)) (x) # O}
= {x € UIR{(apmy (x) C Y and Ry 5,7y (x) # O}
= Ri(wpry (V)

=0 ~ ~

Riwpmy (V) = {x € UlIR(ap,4)1 (x) N Y[ > 007 Rygp,9)y (x) = O}
= {x S U|R{(a,ﬁ’7)}(x) NY # QDor R{(a,ﬁﬁ)}(x) = @}
= Ritwpmi(Y),

which implies that the lower and upper approximation operators in Definition 12 are special cases of the degree
lower and upper approximation operators in Definition 15, respectively.
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In following Theorem 8, we discuss some properties of the degree lower and upper
approximation operators.

Theorem 8. Let (U, V, R) be a generalized single-valued neutrosophic approximation space, and R {(p)) IS
the (a, B, y)-cut relation defined in Definition 10. For any Y, Y1, Y, C V, we have:

~ 0 ~ 0 ~ 0
M Ri@pyy MN0Y2) =Riwpqy V1) NR{wpq)y (Y2),

——0 — 0 — 0
Riwpry MUY2) = Rwpyy V1UR@pq); (Y2
~ k ~ k ~ k
2 Rywpyy M10Y2) S Ryapryy (Y1) N Riapry (Y2),

——k — k — k
R{(Mﬁ'y)} (Y1UY2) 2 Ry(upqy (Y1) UR{wpq)y (Y2)
~ 0 ~ k
(3) R{(aﬁ’y} “(riUAy) 2 Riaprr (1) UR{wpy (Y2),

Riwpmy (iNY2) C R{( ot () N Ry (Ya);
@ Riup () =~ Riiupy (~ ),

=k - k
Ri@pny (V) =~ Rywpny (~Y);

= k ~ k = k = k
) ¥ €Yo then Rywpayy (M) € Rwpyyy (Y2) and Ry ppy () € Ryapy (Y2);

=~ 1 =~ k =%k = . ..
(6) Ifk Z l, then R{(a,ﬁ,’y)} (Y) Q R{(a,ﬁ,’y)} (Y) and R{(Dé,ﬁ,’)’)} (Y) Q R{(zx,ﬁ,’y)} (Y), where k is aﬁmte
positive integer.

Proof. We only prove (4) and (6).
(4) NoticethatY; =Y, =Y; N (~Yz)and ~ (~Y) =Y forany set Y € V; we have
=k ~ ~
~ Ritwpmy (~Y) =~ {x € Ul[Ry(ap)y (x) N (~ Y[ > kor Rya .11 (x) = O}
=~ {x S U,UR{(“’ﬂﬁ)}(x) — Y| > kor R{(“ﬁ?)}( ) = @}
= {x € U||R{(a,p,y1 (x) N (~ Y)| < kand Ry(y 5} (x) # D}
=~ k
= Ri@wpmy (V)
~ k ~ ~
~ Ri@pmy () =~ {x € UlIRy(apq (x) — (~ V)| < kand Ry ), (x) # O}
=" {x € UHR{ txﬂy)}(x) n (Y)| <k aild R{(lx,ﬁ,’y)}(x) # @}
={x¢€ UHR{ (,B,7)} ( )N (Y)| > kor R{(“,ﬁ,w}(x) =}
=k

= R@pny (Y)-
(6) Sincek > I, forany x € Uand Y C V, we have

~ 1 ~ ~
Ripmy (V) = {x € UlIR (a7} (x) = Y] < Fand Ry(q,p5,0)) (%) # O}
C {x € U||R{(vc,ﬁ,7)}(x) - Y| < kand R{ (w,B,7)} ( ) 7é ®}
~ k
= Ri@pyy (V)
~ 1 ~ ~
For any x € Ryp,) (Y), we have |Ryupq(x) = Y[ < I and Ryupq(x) # O,

then we have |ﬁ{(a,/§,,y)}(x) - Y| S k and ﬁ{(a,ﬁﬁ)}(x) 7é @, SO X € ﬁ{(a,ﬁﬁ)}k(Y). Hence,

~ 1 ~ k
Ri@pmy (V) € Rypnyy (V) O

Remark 5. In general, ﬁ{(mﬁm}k(lfl NYz) 2 ﬁ{(%ﬁm}k(lﬁ) N ﬁ{(a,ﬁm}k(Yz) does not hold, where k is
a finite positive integer. The reason is that if k > 0, then |ﬁ{(a,5,7)} - Yi| < kand |1§{(a,ﬁm} Y| <

~ . ~7k ~7k ~ k
k 75 |R{(1X,/3,’y)} -0 ﬁY2| < k. Besides, R{(rx,ﬁ,’y)} (Y1 UYz) - R{(rx,ﬁ,’y)} (Yl) UR{(&,,B,'y)} (Yz)
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also does not hold in general, where k is a finite positive integer. The reason is that if k > 0, then
\R{(a,ﬁﬂ)}(x) NMMUYy)| >k~ |R{(tx,/3,’y)} NYy| > kor |R{(tx,/5,"/)} NYz| > k.

4.2. The Variable Precision Rough Set Model on Two Different Universes

Definition 16. Let (U, V, R) be a generalized single valued neutrosophic approximation space. For any
Y CV,a,B,v € (0,1], we define the variable precision lower and upper approximation of Y w.r.t. the control
parameter v, (U, V,R) and («, B, 7y) as follows, respectively:

R y) = IR{(apn ()N

VR{wpy (V) = {x € U o 2 1= v Rgupa () # O,

- PN Riwpm (0¥l

VR{(apq)y (Y) ={xeU] |§?{Z;7}( T > ViR () # @} U {x € UR (g5, (x) = O},

where v € [0,0.5), |Y| denotes the cardinality of the set Y.

The pair (VR (« a,ﬁl,y)}v, VR {(mﬁ,y)}u) is called the variable precision single-valued neutrosophic
rough set of A with regard to the control parameter v, (U, V, R) and (s, B, ).

We also define the positive region pOSVﬁ?m,ﬁ,y)} (Y), negative region negvﬁ,{,(a,ﬁm} (Y) and boundary
region anﬁ?(am)} (Y) of Y about R? (@)} (Y) as follows:

POSVRY ) (Y) = Vﬁ{(mﬁﬁ)} (),

neyRy, (Y)=U- Vﬁ{(%ﬁﬁ)}v(Y),

brygy o ()= VR (g (V)= VR{(apy" (V)

The following Theorems 9 and 10 can be easily obtained by Definition 16.

Theorem 9. Let (U, V, R) be a generalized single-valued neutrosophic approximation space. Forany Y C V,
a,B,v€10,1],v=1[0,05), then:

@ Riwp (™) € VRywpn (V)
(2) Vﬁ{((x,ﬁxy)} (Y) € ﬁ{(mﬁﬂ)}(y)'

Proof. The proof is straightforward from Definition 16. [
Remark 6. In Theorem 9, if v = 0, then:

= 0
M VR{wpny V) = Ry@py (V)

— 0
2) VR{@pyy (V) = Rypny(Y)-

Theorem 10. Let (U, V, R) be a generalized single-valued neutrosophic approximation space. For any Y C V,
a, B,y € [0,1]. Then:

~ 05 5 v
@ VR{@pyy () =Urepoos) VR{wpry (¥)7

——05 o5 Y
2 VRwpay (V) =Nuepos) VRiwpy (V)

Proof. The proof is straightforward from Definition 16. [

5. An Application in Multi-Attribute Decision Making

In this section, we illustrate the application of the rough set model in generalized single-valued
neutrosophic spaces proposed in Section 3.
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We present the medical decision procedure based on the proposed rough set model in a
single-valued neutrosophic environment as follows.

Assume that the universe U = {x1,x,x3, -+, X, } denotes a set of patients and the universe
V ={x1,x2,x3,- -, x4} denotes a set of symptoms. Let R be an SVNR from U to V. For any
(xi,yj) € UV, Tg(x;,y;), Ig(xi,y;), Fg(xi, y;) represent the truth membership degree, indeterminacy
membership degree and falsity membership degree of patient x; with symptoms y;, respectively. Given
a patient x;, the doctor can present the relationship degree decreased by a single-valued neutrosophic
number, i.e., R(x;, yj) between the patient x; and the symptom y;. The (&, B,7) is given in advance
by another doctor and represents the doctors’ lowest requirements on the membership degree. For
any Y C V, Y denotes a certain disease and has the basic symptoms y; € Y. For a patient x;, if
Xi € Ry(ap9)) (Y), then we can be sure that the patient x; is suffering from the disease Y and must

receive treatment immediately; if x; € R (g (Y) — R {(ap)} (Y), we cannot be sure whether the
patient x; is suffering from the disease Y or not. Therefore, the doctor needs to carry out a second
choice to decide whether the patient x; is suffering from the disease Y or not; if x; € U — Ry(4,5,4)} (Y),
then we can be sure that the patient x; is not suffering from the disease Y and does not need to receive

treatment.

Next, we give an example to illustrate the method above.

Example 2. Let U = {x1, xp, X3, X4, x5} be five patients, V.= {y1, Y2, Y3, Y4, Y5, Ye, Y7 } be seven symptoms,
where Y; (j=1,2,3,4,5,6,7) stand for “tired”, “a stuffed-up nose”, “headache”, “chill”,"stomach pain”, “dry
cough” and “chest-pain”. R is the medical knowledge statistic data of the relationship of the patient x; (x; € U)
and the symptom y; (y; € V), and Ris an SVNR from U to V (given in Table 2). For any (xi,yj)) eU XV,
Tr(xi,yj), Ix(xi,y;), Fg (xi, yj) represent the truth membership degree, indeterminacy membership degree and
falsity membership degree of patient x; with symptoms y;, respectively. For example, R(x1,y1) = (0.2,0.1,0.8)
indicates that the truth membership, indeterminacy membership and falsity membership of patient x1 with
symptoms yy is 0.2,0.1, 0.8, respectively.

Table 2. The single-valued neutrosophic relation R of the symptoms and patients.

R n Y2 Y3 Ya Ys Ye Y7

x; (060,1,04) (1,000 (0.602,02) (0.80.3,0.2) (0,0,1) (0.9,0.1,0.2)  (0.1,0.1,0.9)
v (1,02,0) 0,0,1) (0.80.1,0.1) (0.1,0.1,1.7) 0,0,1) (0.8,0.2,0.1)  (0.2,0.1,0.6)
x3  (080.1,05) (0031) (02,0208 (020108 (070102 (0.1,0.2,0.8) (1,0,0)
xs  (1,0301) (001  (0.3,0.1,0.7) (0,0,1) (0,0,1) (0.7,0.3,0.2) (0,0,1)
x5 (01,0207  (001) (00209  (0.2,0.1,0.7) (1,0,0) 0,0,1) (0.7,0.3,0.2)

Let Y = {y1,Y2,¥3, Y6} C V denote a certain disease showing four basic symptoms in the clinic.
Case 1. Take (a, B, v) = (0.5,0.5,0.5); by Definition 10, we can get the cut relation Ry(o505,.5)) (given
in Tnble 3).

Table 3. The cut relation R {(05,05,05)}-

ﬁ{(0.5,0.5,0.5)} Vi Y2 Y3 Ya Ys Ye Y7

X 1 1 1 1 0 1 o0
x 1 0 1 0 1 0
X3 1 0 0 0 1 0 1
X 1 0 0 0 0 1 0
X5 o 0 0 0 1 0 1

According to Definition 11, we can get
R{(o.5,0.5,0.5)}(x1) = {Y1, Y2, Y3, Y4, Y6},



Symmetry 2017, 9, 119 16 of 19

13{(0.5,0.5,0.5)} (x2) = {y1,¥3,¥6},
R(050505)1(x3) = {y1,95,¥7},
Ry(05,05,05)} (xa) = {y1,¥6},

ﬁ{(o.5,0.5,0.5)}(x5) = {ys y7}-
Then, by Definition 12, we can calculate the lower approximation, the upper approximation, the boundary

region and the negative region of Y as follows, respectively.
Ri50505) (Y) = {x2 24},

Ry(050505)} (Y) = {x1,%2, %3, %4},

(Y) = {xlr X3},

nﬁ{ (05,05,0.5)}

gR{ (0.50.5,05)} (Y) = {x5}-
By Definition 14, we also can calculate the approximate precision of the set Y (Y C V) as follows:
pR( () }(Y> - %

Thus, we can obtain the following conclusions:

(1) Patients x, and x4 are suffering from the disease Y and must receive treatment immediately.
(2)  We cannot determine whether patients x1 and x3 are suffering from the disease Y or not.
(3)  The patient x5 is not suffering from the disease Y and does not need to receive treatment.

Case 2. Take («, B,7y) = (0.7,0.4,0.3). We can obtain the cut relation ﬁ{(0.7,0_4,0_3)} (given in Table 4).

Table 4. The cut relation R {(0.7,0403)}-

R{(070403} Y1 Y2 Y3 Ya Ys Yo Y7

X o 1 1 0 0 1 0
P 1 o0 1 0 0 1 o0
X3 o 0o 0 0 1 0 1
x4 1 0 0 0 0 1 o0
X5 0o 0 0 0 1 0 1

According to Definition 11, we can get
Ri070403 (x1) = {v2,¥3, ¥4, v6},

R{(o.7,0.4,0.3)}(x2) ={y1 3,6},

R{(o 7,0.4,0.3)}(x3) ={ys,y7},
Ry(070403)}(xa) = {y1, Y6},

Ry{(07,0403) (x5) = {ys,y7}-
Then, by Definition 12, we can calculate the lower approximation, the upper approximation, the boundary

region and the negative region of Y as follows, respectively.
ﬁ{(0.7,0.4,0.3)} (Y) = {x2, x4},
ﬁ{(0.7,0.4,0.3)}(1/) = {x1,x2, x4},
,(Y) = {xu},
"8 R (070403} (Y) = {x3, x5}
By Definition 14, we also can calculate the approximate precision of the set Y (Y C V) as follows:

N~
R(07,0403)}

2
ORy(opy Y) = 5
Thus, we can obtain the following conclusions:

(1) Patients x, and x4 are suffering from the disease Y and must receive treatment immediately.
(2)  We cannot determine whether patient x1 is suffering from the disease Y or not.
(3)  Patients x3 and xs are not suffering from the disease Y and do not need to receive treatment.
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Based on the above analysis, the proposed model and method could help decision makers make a scientific
and precise decision as they face the similar cases in practice. Besides, the model presented in this paper also
permits controlling the risk of misdiagnosis in practice.

To explore the effectiveness of the method proposed in this paper, we compare it with the method
proposed in [29]. The method given in [29] only deals with the decision making problems with
intuitionistic fuzzy information, but not the decision making problems with the single-valued
neutrosophic information; while the model proposed in the present paper can handle the decision
making problems not only with intuitionistic fuzzy information (since intuitionistic fuzzy sets can be
regarded as a special case of SVNSs), but also with single-valued neutrosophic information. Thus, the
proposed method is more general, and its application domain is wider than that of the method in [29].

The proposed model is based on the level cut relation of single-valued neutrosophic relations.
There are two advantages. One advantage is that the level parameter in the model can control the
risk of the misdiagnosis. Another advantage is that the model can approximate the crisp concept by
converting a single-valued neutrosophic fuzzy relation into a crisp binary relation.

The rough set method does not depend on any other extra knowledge besides the given dataset.
Rough set theory can be applied as a component of hybrid solutions in machine learning and data
mining. They have been found to be particularly useful for rule induction and feature selection.
Decision makers can control the size of the loss of information by changing the level parameter.

6. Conclusions

In the present paper, based on the («, B, y)-cut relation R {(wp)) (@B, € (0,1]), we propose
a new rough set model in generalized single-valued neutrosophic approximation spaces and obtain
two extended models of the model. Some properties are studied. Finally, we use an example to
illustrate the proposed rough set model’s application in a multi-attribute decision making problem.
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Abstract: Existing intuitionistic linguistic variables can describe the linguistic information of both
the truth/membership and falsity /non-membership degrees, but it cannot represent the indeterminate
and inconsistent linguistic information. To deal with the issue, this paper originally proposes
the concept of a linguistic neutrosophic number (LNN), which is characterized independently by
the truth, indeterminacy, and falsity linguistic variables. Then, we define the basic operational laws
of LNNs and the score and accuracy functions of LNN for comparing LNNs. Next, we develop
an LNN-weighted arithmetic averaging (LNNWAA) operator and an LNN-weighted geometric
averaging (LNNWGA) operator to aggregate LNN information and investigate their properties.
Further, a multiple attribute group decision-making method based on the proposed LNNWAA
or LNNWGA operator is established under LNN environment. Finally, an illustrative example
about selecting problems of investment alternatives is presented to demonstrate the application and
effectiveness of the developed approach.

Keywords: linguistic neutrosophic number; score function; accuracy function; linguistic neutrosophic
number weighted arithmetic averaging (LNNWAA) operator; linguistic neutrosophic number
weighted geometric averaging (LNNWGA) operator; multiple attribute group decision-making

1. Introduction

In complex decision-making problems, human judgments, including preference information, may
be difficultly stated in numerical values due to the ambiguity of human thinking about the complex
objective things in the real world, and then may be easily expressed in linguistic terms, especially
for some qualitative attributes. Thus, decision-making problems under linguistic environments
are interesting research topics, which have received more and more attentions from researchers
in past decades. Zadeh [1] firstly introduced the concept of linguistic variables and the application
in fuzzy reasoning. Later, Herrera et al. [2] and Herrera and Herrera-Viedma [3] presented
linguistic decision analyses to deal with decision-making problems with linguistic information. Next,
Xu [4] put forward a linguistic hybrid arithmetic averaging operator for multiple attribute group
decision-making (MAGDM) problems with linguistic information. Further, Xu [5] developed goal
programming models for multiple attribute decision-making (MADM) problems with linguistic
information. Some scholars [6-8] also proposed two-dimension uncertain linguistic operations
and aggregation operators and applied them to decision-making. By combining intuitionistic
fuzzy numbers (IFNs) (basic elements in intuitionistic fuzzy sets) introduced in [9] and linguistic
variables introduced in [1], Chen et al. [10] proposed the linguistic intuitionistic fuzzy number
(LIFN) denoted by the form of s = (I, I;), where I, and I; stand for the linguistic variables of
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the truth/membership and falsity /non-membership degrees, respectively, and developed a MAGDM
method with LIENs. Then, Liu and Wang [11] presented some improved LIFN aggregation operators
for MADM. 1t is obvious that the LIFN consists of two linguistic variables I, and /; and describes
the linguistic information of both the truth/membership and falsity /non-membership degrees,
which are expressed by linguistic values rather than exact values like IFNs. However, LIFNs cannot
describe indeterminate and inconsistent linguistic information. Then, a single-valued neutrosophic
number (SVNN), which is a basic element in a single-valued neutrosophic set (SVNS) [12,13], can only
express the truth, indeterminacy, and falsity degrees independently, and describe the incomplete,
indeterminate, and inconsistent information in SVNN rather than linguistic information; then,
it cannot express linguistic information in linguistic decision-making problems, while linguistic
variables can represent the qualitative information for attributes in complex MADM problems. Hence,
Ye [13] proposed the single-valued neutrosophic linguistic number (SVNLN), which is composed of
a linguistic variable and an SVNN, where the linguistic variable is represented as the decision-maker’s
judgment to an evaluated object and the SVNN is expressed as the reliability of the given linguistic
variable, and developed an extended TOPSIS method for MAGDM problems with SVNLNs. However,
SVNLN cannot also describe the truth, indeterminacy, and falsity linguistic information according to
a linguistic term set. Tian et al. [14] put forward a simplified neutrosophic linguistic MAGDM approach
for green product development. Liu and Tang [15] presented an interval neutrosophic uncertain
linguistic Choquet integral method for MAGDM. Liu and Shi [16] introduced some neutrosophic
uncertain linguistic number Heronian mean operators for MAGDM. However, all existing linguistic
decision-making methods cannot express and deal with decision-making problems with indeterminate
and inconsistent linguistic information.

To overcome the aforementioned insufficiency for SVNNs, LIFNs, and SVNLNS, a feasible solution
is to represent the truth, indeterminacy, and falsity degrees independently by three linguistic variables
to an evaluated object. On the other hand, human judgments under a linguistic decision-making
environment should also contain the linguistic information of truth/determinacy, indeterminacy;,
and falsity degrees since SVNN contains the information of the truth/determinacy, indeterminacy,
and falsity degrees. Based on this idea, it is necessary to propose the concept of a linguistic neutrosophic
number (LNN) by combining SVNN and linguistic variables, where its truth, indeterminacy,
and falsity degrees can be described by three linguistic variables rather than three exact values,
like an SVNN, or both a linguistic value and an SVNN, like an SVNLN. For example, a company
wants to select a supplier. Suppose that a decision-maker evaluates it based on a linguistic term set
L = {ly = extremely low, [; = very low, I, = low, I3 = slightly low, l4 = medium, I5 = slightly high,
Ig = high, I; = very high, Ig = extremely high}. If the evaluation of a supplier with respect to its service
performance is given as I for the truth/membership degree, I, for the indeterminacy degree, and I3 for
the falsity /non-membership degree, respectively, by the decision-maker corresponding to the linguistic
term set L then, for the concept of an LNN, it can be expressed as the form of an LNN e = <lg, I, I3>.
Obviously, LIFN and SVNLN cannot express such kinds of linguistic evaluation values; while LNN
can easily describe them in a linguistic setting by the extension of SVNN and LIFN to LNN. Therefore,
it is necessary to introduce LNN for expressing indeterminate and inconsistent linguistic information
corresponding to human fuzzy thinking about complex problems, especially for some qualitative
evaluations for attributes, and solving linguistic decision-making problems with indeterminate and
inconsistent linguistic information. However, LNNs are very suitable for describing more complex
linguistic information of human judgments under linguistic decision-making environment since LNNs
contain the advantages of both SVNNs and linguistic variables, which imply the truth, falsity, and
indeterminate linguistic information. To aggregate LNN information in MAGDM problems, we have
to develop some weighted aggregation operators, including an LNN-weighted arithmetic averaging
(LNNWAA) operator and an LNN-weighted geometric averaging (LNNWGA) operator, which are
usually used for MADM/MAGDM problems, score, and accuracy functions for the comparison of
LNNs, and their decision-making method. Thus, the purposes of this paper are (1) to propose LNNs
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and their basic operational laws; (2) to introduce the score and accuracy functions of the LNN for
comparing LNNSs; (3) to present the LNNWAA and LNNWGA operators, their properties, and special
cases; (4) to develop a MAGDM method based on the LNNWAA or LNNWGA operator under an LNN
environment; and (5) to explain the advantages of the proposed method.

The rest of this paper is organized as follows: Section 2 briefly reviews the basic concept of LIFNSs,
the basic operational laws of LIFNs, and the score and accuracy functions of LIFN for the comparison
of LIFNSs. In Section 3, LNNs and their basic operational laws are presented as the extension of LIFNs,
and then the score and accuracy functions for an LNN are defined to compare LNNs. Section 4
develops the LNNWAA and LNNWGA operators for aggregating LNNs and discusses their properties
and some special cases. In Section 5, a MAGDM method is developed by using the LNNWAA or
LNNWGA operator under LNN environment. In Section 6, an illustrative example about selecting
problem of investment alternatives demonstrates the application of the presented method. Section 7
gives conclusions and future research directions.

2. Linguistic Intuitionistic Fuzzy Numbers

Under a linguistic intuitionistic fuzzy environment, Chen et al. [10] introduced the concept of
LIFNs and gave the following definition:

Definition 1. [10] Assume that L ={lp, l1, ... , I} is a linguistic term set with odd cardinality t + 1, where l]- (G
=0,1,...,t)is a possible value for a linguistic variable. If there is s = (l,, Iy) for Iy, I; € Land p, q € [0, t],
then s is called LIFN.

Definition 2. [10] Let s = (1), 51 = (Ip,, Iy, ), and sy = (1p,,1g,) be three LIFNs in L and p > 0, then there
are the following operational laws of the LIFNs:

5152 = (Ipy, lgy) @ (Ipys gy (zp +pz_plpz,zw); )
51 Qs = (lplfl‘h) pzr qz (l 1+q ,M> )
0s = p(lp, 1) (zt el p); 3)

= (Ip/ 1) (hé“ t—t(1-1)° ) )

Then, Chen et al. [10] defined the score and accuracy functions for the comparison of LIFNs.
Definition 3. [10] Let s = (Iy, ;) be a LIFN in L, then the score and accuracy functions are defined as follows:
S5E) =p—aq ®)

H(s)=p+q. (6)

Definition 4. [10] Let s; = (Iy,,15,) and sy = (lp,,1g,) be two LIFNs in L, then there are the following
comparative relations:

(1) IfS(s1) < S(sp), then s1 < s;
(2)  IfS(s1) > S(sy), then s1 > s5;
(3)  IfS(s1) = S(s) and H(s1) < H(sy), then s; < sy;
(4) If S(s1) = S(sp) and H(sq) > H(sy), then s1 > sy,
(5) If S(s1) = S(sp) and H(s1) = H(sy), then s1 = s;.
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3. Linguistic Neutrosophic Numbers

An SVNS is described independently by the truth, indeterminacy, and falsity membership
functions, which is a subclass of a neutrosophic set [12]. Then, an SVNN (a basic element in an SVNS)
consists of the truth T, indeterminacy I, and falsity F, which is denoted by N = <T, I, F> for T, I,
Fe [0,1]and 0 < T + I + F < 3. Then in some complex decision situations (especially for some
qualitative arguments), it is difficult for decision-makers to give the truth, indeterminacy, and falsity
degrees with crisp numbers. A feasible solution is to express them by linguistic arguments. Based on
this idea, we can introduce a linguistic neutrosophic concept to express incomplete, indeterminate,
inconsistent linguistic information. In this section, we propose an LNN, which consists of the truth,
indeterminacy, and falsity linguistic variables. Intuitively, LNNs can more easily deal with fuzzy
linguistic information because the three linguistic variables in an LNN can be expressed independently
by three linguistic values rather than exact values, like a SVNN.

Definition 5. Assume that L ={ly, 11, ..., It} is a linguistic term set with odd cardinality t + 1. Ife = <lp, I, l;>
is defined for ,, Iy, I, € L and p, q, v € [0, t], where 1, 1y, and 1, express independently the truth degree,
indeterminacy degree, and falsity degree by linguistic terms, respectively, then e is called an LNN.

Definition 6. Let e = (I, 1,,1;), e1 = (Ip,, 1o, Iy, ), and e; = (lp,,1g,,,1r,) be three LNNs in L and p > 0,
then there are the following operational laws of the LNNs:

er ®ey = (L, I, 1) @ (L Ly, 1ny) = (lmprplitpz,l@,l#); @)
e1@ex = (lpy, gy, b)) @ (U lgar ) = (g by o o Ly 4 2 )i (®)
pe = pprlarle) = (o pp g ) ©)

e = by 1) = (o gy hesa g ) 10)

It is obvious that the above operational results are still LNNs.

Example 1. Assume that ey = <lg, I, I3> and ey = <5, I1, ;> be two LNNs in L and p = 0.5, then there
are the following operational results:

epber = <lP1/llIl/lfl> ® <ZP2/lﬂ2rlrz> = <lp1+p27@'l”1q2'lm>

t t

1
@ = (lo45-6x5/8 lax1/8/ 13x2/8) = (l7.25,10.25,10.75),

eg®e = <lp1/l%rlf1> ® <IP2/lq2/lV2> = <l%’lq1+qu‘“:’2’lh+r27¥>
@) = (lgs,1 I = {l3.75, 1275,
= (los, by 2a,ly 50 ) = (3751275 l42s5),

per = P<lplrlq1,lrl> = <lt—t(1—n71)p’lt(qu)p’lt('T])p> = <1878(17§)05’18(§)0’5’18(3)0'5>

(3)
= (lg, 14, l4899),
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A P _ -
e = <lp1,lq1,lr1> = <Zt(’”—1)p’lt—t(lf”%)P’lt—t(lf%)p> = <18(g)0'5'ZS—S(l—%)O'S’18—8(1—%)0'5>

(4) !
= (l6.9282, 11.0718, 11.6754) -

Then, we can define the score function and accuracy function for the comparison of LNNs.

Definition 7. Let e = <Iy, 1, I,> be an LNN in L. Then the score and accuracy functions of e are defined
as follows:

Qe)=Q2t+p—q—r)/(3t) for Qe) € [0, 1]; (11)
T(e)=(p —r)/tfor T(e) € [-1, 1]. (12)

Definition 8. Let ey = (I, lg,, 1y, ) and e = (lp,,1y,,, 1y, ) be two LNNs in L, then their comparative relations
are as follows:

(1)  IfQ(e1) < Qley), then e < ey;
(2)  IfQle1) > Qley), then eg = ey;
(3)  IfQ(e1) = Q(ey) and T(e1) < T(ey), then eg < ey;
(4)  If Q(e1) = Qley) and T(e7) > T(ey), then eq > ey,
(5)  IfQe1) = Qez) and T(eg) = T(ey), then e = ey.

Example 2. Assume that e; = <lg, I3, 14>, eo = <I5, 11, 13>, and e3 = <lg, 1y, 13> be three LNNs in L,
then the values of their score and accuracy functions are as follows:

Qle1)=(2x8+6—3—4)24=0.625,Q(e;) =(2 x 8+5—1—3)/24=0.7083, and Q(e3) = (2 x 8 +
6 —4 —3)/24=0.625;

T(e1) = (6 — 4)/8=0.25 and T(e3) = (6 — 3)/8= 0.375.

According to Definition 8, their ranking order is e; = e3 >~ ej.

4. Weighted Aggregation Operators of LNNs

4.1. LNNWAA Operator

Definition 9. Let ej = <lp],, lqj, lrj> (j=1,2,...,n)bea collection of LNNs in L, then we can define LNNWAA
operator as follows:

n
LNNWAA(ey,e,...,en) = ijej, (13)

where w; € [0, 1] is the weight ofej (i=1,2,...,6n), satisfying Z]r.‘zl wj=1.
According to Definitions 6 and 9, we can present the following theorem:

Theorem 1. Let ¢; = <lp],, lg;s er> (j=1,2,...,n)bea collection of LNNs in L, then the aggregation result
obtained by Equation (13) is still an LNN, and has the following aggregation formula:

n
LNNWAA(ey, e2,mren) = Y wiei = (1w oyl n gwsl o v ), 14
(o1 earrtn) ];w]e] <f—f =2 () tnmf> "

j=1 j=1 j=1

where w; € [0, 11 is the weight of e; (=1, 2, ... , n), satisfying Z7=1 wj =1
Theorem 1 can be proved by mathematical induction.
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Proof.

(1) When n =2, by Equation (9), we obtain:

e = <lt_t<1—"%>“’1’lt(q%)“’“lt(%)"“ >

Woey = <lt7t(l*p72)w2’lt(qu)wz’lt(rTz)wz>'

By Equation (7), there is the following result:

LNNWAA(ey,e3) = wier @ wpep = (1 -
(1= B (1 B2)2

(-2 -0 ) () ) >
t

(s s ) im0 a0ty e o)

= (heraemmansmen=r ey ) = g oo i o <’f>“’f>'

T

=1 j=1 j=1
(15)
(2) When n =k, by applying Equation (14), we obtain:
»
LNNWAA(@],EZ,...,@k) = wie; = (1 k ; w-/l k : wv/l k v ow; Jr (16)
S\ ema- e )Y (Y
j=1 j=1 j=1
(3) Whenn =k +1, by applying Equations (15) and (16), which yields:
k+1
LNNWAA(ey, €, -, €k11) = L Wiej
=1
= <l k pi wj Prat k1 rl kg wi w) /l ko ri wi oy w, >
i pw (=TT (=) )= FEED) T T I ()7 ()™ I () () !
ttT1 (=) T e—pa- ey 2L . = 1
j=1

= k i @ ») Wi k pi ;i P Wi k pi ;i » Weyq ,l q; w; Wy k rowi o Weiq
<ttnl<1,'> =t (1= T (= T (=) == B T T (1= (=) T T () () eI () T (™
J= J= J= = J=

I . I I =(1 , w1 ol .
pi P W bkog q w, bk Wi k+1 pi wirb kil g wirt k41 w; [
<ttn1<1/> T BT () J( )T zn1<%>f<—*t1>k” t—tnluf%)’ rn1<%>f tnl<%>'
J= = J= ]= J= =

Corresponding to the above results, we have Equation (14) for any n. This finishes the proof. [
It is obvious that the LNNWAA operator satisfies the following properties:

(1) Idempotency: Let g (j=1,2,...,n)bea collection of LNNs in L. If i (G=1,2,...,n)isequal,ie.,
ej=eforj=1,2,...,n, then LNNWAA(ey, e, ,en) =e.

(2) Boundedness: Let ¢; (j =1, 2, ..., n) be a collection of LNNs in L and let e~
<mjn(lpj),max(lqj),max(lrj)> and et = <max(lp].),mjn(lqj),mjn(l,j)>. Then ¢~ <

] ] J J J ]

LNNWAA(ey, e, -+ ,en) <e™.

(3) Monotonicity: Let g (j=1,2,...,n)beacollection of LNNs in L. If g < e]’.‘ forj=1,2,...,n,then
LNNWAA(ey, ep,- - ,en) < LNNWAA(ef, €5, -+ ,ef).
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Proof.

(1) Since ej=eie,pi=p;qi=qtj=r forj=1,2,...,n, wehave:

(2) Since the minimum LNN is e~ and the maximum LNN is e*, e- < e < et. Thus,
n n n n
‘21 wie~ < 421 wie; < '21 wje". According to the above property (1), e~ < 421 wie; < et ie,
= = = =
e” < LNNWAA(ey, e, - ,en) <et.

n n
(3) Since ¢; < e]’-‘ forj=1,2 ..., n '21 wie; < '21 wje]’f, ie., LNNWAA(ej, e, ,en) <
= =
LNNWAA ej,e3,- - ,€).
Thus, the proofs of these properties are completed. [

Especially when w; = 1/n forj=1, 2, ..., n, the LNNWAA operator is reduced to the LNN
arithmetic averaging operator.

4.2. LNNWGA Operator

Definition 10. Let e = <lpj,lq].,lr].> (Gj=1,2,...,n) bea collection of LNNs in L, then we can define
LNNWGA operator as follows:

LNNWGA(e1, ez, - ,en) = He;Uj, (17)

where wiE [0, 1] is the weight ofe]- (i=1,2,...,n), satisfying Z;’Zl wj = 1.
According to Definitions 6 and 10, we can present the following theorem:

Theorem 2. Let ¢; = <lpj, lg;s l,].> (j=1,2,...,n)bea collection of LNNs in L, then the agqregation result
obtained by Equation (17) is still an LNN, and has the following aggregation formula:

n
LNNWGA e =TTel ={1 . p w,] R 1
GAler ez wren) ]1161 <tH (O e =07 e -1 ’> (1%

j=1 j=1 j=1

where w; € [0, 11'is the weight of ¢; (j =1, 2, ... , n), satisfying 2;1:1 w;j = 1. Especially when w; = 1/n for j=1,
2,...,n, the LNNWGA operator is reduced to the LNN geometric averaging operator.

Since the proof manner of Theorem 2 is similar to that of Theorem 1, it is not repeated here.
It is obvious that the LNNWGA operator implies the following properties:

(1) Idempotency: Let ¢ (j=1,2,...,n)bea collection of LNNSs in L. If e (G=1,2,...,n)is equal,
ie,ej=e forj=1,2,...,n,then LNNWGA(e1,ep,--- ,en) =e.
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(2) Boundedness: Let ¢ (j = 1, 2, ..., n) be a collection of LNNs in L and let

- = <mjn(lpj),max(lqj),max(lrj)> and et = <max(lp].),min(lqj),mjn(l,j)>. Then e~ <
] ] ] ] ] ]
LNNWGA(ey, e, ,eq) <e™.
(3) Monotonicity: Let ¢ (j=1,2,...,n)bea collection of LNNs in L. If ¢ < e]’-‘ forj=1,2,...,n

then LNNWGA(ey, 5, -+ ,eq) < LNNWGA (e}, 3, -+ ,¢€},).

Due to the similar proof manner of the properties of the LNNWAA operator we can prove these
properties, which are omitted here.

5. MAGDM Method Based on the LNNWAA or LNNWGA Operator

In this section, the LNNWAA and LNNWGA operators and the score and accuracy functions
are applied to MAGDM problems with LNN information.

In a MAGDM problem, let Y = {Y1, Y5, ..., Yy} be a set of alternatives and Z = {Zy, Z,, ... , Z,}
be a set of attributes. The weigh vector of the attributes Z]- (G=12,... ,n)isW=(wy,wy,...., wy)T. Then,
a group of decision-makers D = {D1, Dy, ..., D;} can be assigned with a corresponding weight vector w
= (w1, Wy, ... ,wy)" to evaluate the alternatives Y; (i=1,2, ..., m) on the attributes Zi(j=12,... ,n)by
LNNSs from the linguistic term set L = {ly = extremely low, /1 = very low, I, =low, I3 = slightly low,
l4 = medium, I5 = slightly high, Is = high, I; = very high, Ig = extremely high}. In the evaluation process,
the decision-makers can assign the three linguistic values of the truth, falsity, and indeterminacy
degrees, composed of an LNN, to each attribute Z; on an alternative Y; according to the linguistic
terms. Thus, the LNN evaluation information of the attributes Z]- (G=1,2,...,n)on the alternatives
Y;(i=1,2,...,m)provided by each decision maker Dy (k=1, 2, ..., d) can be established as an LNN

decision matrix M* = (el])mxn, where e] <lpk,l k,lrk k=1,2,...,d;i=12,... m;j=1,2,...,n)
ij ij ij
is an LNN.
Then, we apply the LNNWAA or LNNWGA operator and the score function (accuracy function

if necessary) to the MAGDM problem with LNN information to rank the alternatives and to select
the best one. The decision-making steps are introduced as follows:

Step 1: Obtain the integrated matrix R = (el])m «n, Where e = <lpl, gir > (i= omj=1,2,...,n)
is an integrated LNN, by using the following LNNWAA operator:
d
eij = LNNWAA(ej; €7, . Z kel] . openl el @) (19)
k=1 f—flj (=) I () f}g(%)

Step 2: Obtain the collective overall LNN ¢; for Y; (i=1, 2, ..., m) by using the following LNNWAA
operator or LNNWGA operator:

n
e = LNNWAA(eﬂ,e,»z,...,em) = Zw]e,] = <lt n (M)wj,ltﬁ (yij)w]'>, (20)
]:1 t Pl t

or

n w:
i — LNNWGA 11,612, -+, € - "] = l n o w',l n o w',l n ri Wi ). 21
€; (ezl e ezl’l) Hel] < tl_‘[l(p#) i t—tr[ (1_17#) j t—tl—[ (1_¥) ]> ( )

Step 3: Calculate the score function Q(e;) (accuracy function T(e;) if necessary) (i =1, 2, ..., m) of
the collective overall LNNe; (i=1,2, ..., m) by Equation (11) (Equation (12) if necessary).

Step 4: Rank the alternatives corresponding to the score (accuracy if necessary) values, and then select
the best one.
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Step 5: End.

6. An Illustrative Example

This section considers the selection problem of investment alternatives in an investment company
as an illustrative example, which is adapted from [13], in order to demonstrate the application of
the proposed method.

Some investment company needs to invest a sum of money to an industry. A panel provides
a set of four possible investment alternatives Y = {Y1, Y5, Y3, Y4}, where Y7 is a car company;
Y, is a food company; Y3 is a computer company; Yy is an arms company. The evaluation of the four
alternatives must satisfy the requirements of three attributes: (1) Z; is the risk; (2) Z, is the growth;
(3) Z3 is the environmental impact. The importance of the three attributes is provided by the weigh
vector W = (0.35, 0.25, 0.4)T. Then, three decision-makers are invited and denoted as a set of
the decision-makers D = {Dy, D, D3} and the importance of the three decision-makers is given
as a weight vector w = (0.37, 0.33, 0.3)T. The three decision-makers are required to give the suitability
evaluation of the four possible alternatives Y; (i = 1, 2, 3, 4) with respect to the three attributes
Z; (j =1, 2, 3) by the expression of the linguistic values of LNNs from the linguistic term set
L = {ly = extremely low, [; = very low, I, = low, I3 = slightly low, l4 = medium, I5 = slightly high,
lg = high, I; = very high, I = extremely high} with the odd cardinality t + 1 = 9. Thus, the linguistic
evaluation information given by each decision-maker Dy (k =1, 2, 3) can be established as the following
the LNN decision matrix M*:

<l6' ll’ 12> <l7' 12’ ll> <l6' 12’ 12>
ait | (bl Ui {1y, 1)
<16’12’12> <l7’ll’ll> <l6’12’12> '
L <l7’11’12> <l7’l2’l3> <l7’l2’ll> i
(b)) (lohil) (lylyls)
M2 = (b b))yl ls)
<l5’ll’12> <l5’ll’12> <15’l4’12> '
L <l6’llfll> <15’llfll> <15’12'l3> i
<l7’ l3’ l4> <l7’ l3’ 13> <15’ lZ’ 15>
M3 — <l6' l3’ l4> <15' ll’ 12> <l6' 12’ 13>
(bl {lghila) Ul ly)
L <l7’ ZZ’ l3> <15’ ZZ’ ll> <16’ ll’ ll>

Hence, the proposed method can be applied to this decision-making problem and
the computational procedures are given as follows:

Step 1: Get the following integrated matrix R = (¢;;)m x» by using Equation (19):

I5.1608, 12.0000, 13.0097
l6.0547, 12.0000, 11.9980
ls1429, 125140, 124623
le2309, 11.6245, 11.4370

le7430, 11.7969, 11.3904
le 2503, 11.5015, 11.5011
l6.2309, 11.0000, 115476
l6.0020, 11.5911, 115015

(l63755, 11.3004, l2.4623
R_ (le7689, 117477, 121781
(l6.1429, 15911, 124623
(l67430, 11.2311, 11.7969

~ I~ ~—
o~ o~~~
T e~ ——
o~ o~~~
L - —

Step 2: By using Equation (20), the collective overall LNNs of ¢; for Y; (i =1, 2, 3, 4) can be obtained
as follows:

e1 = (le.oost, 117145, 123129), €2 = (l6.3863, 117759, 11.9453), €3 = (l6.1653, 11.7011, 12.1924) ,and ey = (l6.3818, 114666, 11.5711)-
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Step 3: Calculate the score values of Q(¢;) (i = 1, 2, 3, 4) of the collective overall LNNs of ¢; (i =1, 2, 3, 4)
by Equation (11):

Qle1) = 0.7528, Q(ez) = 0.7777, Q(es) = 0.7613, and Q(es) = 0.8060.

Step 4: Ranking order of the four alternatives is Y4 > Y5 > Y3 > Y7 corresponding to the score values.
Thus, the alternative Y} is the best choice among the four alternatives.

Or by using Equation (21), the computational procedures are given as follows:

Step 1: The same as Step 1.
Step 2": By using Equation (21), the collective overall LNNs of ¢; for Y; (i = 1, 2, 3, 4) are obtained
as follows:

e1 = (I5.0413, l1.7414, 12.4479), €2 = (l6.3a64, 11.7902, 11.9634), €3 = (l6.1648, 11.8433, 122465), and es = (l6.3450, 11 4810, L1.5811) -

Step 3’: By using Equation (11), we calculate the score values of Q(e;) (i =1, 2, 3, 4) of the collective
overall LNNs of ¢; (i =1, 2, 3, 4) as follows:

Qle1) = 0.7397, Q(ez) = 0.7747, Q(es) = 0.7531, and Q(es) = 0.8035.

Step 4’: The ranking order of the four alternatives is Y4 > Y5 > Y3 > Y7. Thus, the alternative Y} is still
the best choice among the four alternatives.

Clearly, the above two ranking orders and the best alternative based on the LNNWAA and
LNNWGA operators are the same, which are in agreement with Ye’s results [13].

Compared with the relevant papers [10,11] which proposed the decision-making approaches
with LIFNs, the decision information used in [10,11] is LIFNs, whereas the decision information
in this paper are LNNs. As mentioned above, the LNN is a further generalization of the LIFN and
contains more information than the LIEN. Thus, the decision-making method proposed in this paper is
more typical and more general in application since the decision-making method proposed in [10,11]
cannot handle indeterminate and inconsistent linguistic information and the MAGDM problem
with LNN information in this paper. Furthermore, compared with the relevant papers [6-8,13-16],
the decision-making approach proposed in this study can be used to solve decision-making problems
with LNN information, while the MADM/MAGDM methods with various linguistic information
presented in [6-8,13-16] are not suitable for handling the decision-making problems with LNN
information in this paper since existing various linguistic numbers in [6-8,13-16] cannot express
indeterminate and inconsistent linguistic information.

In fact, all decision-making methods based on various linguistic variables in existing literature
not only cannot express indeterminate and inconsistent linguistic information, but also lose the useful
information in linguistic evaluation process, and then they cannot also deal with decision-making
problems with indeterminate and inconsistent linguistic information; while the linguistic method
proposed in the study is a generalization of existing linguistic methods and can represent and handle
linguistic decision-making problems with LNN information. Obviously, the main contribution in this
study is that our new method can express indeterminate and inconsistent linguistic information
corresponding to human fuzzy thinking about complex problems, especially for some qualitative
evaluations of attributes, and solve linguistic decision-making problems with indeterminate and
inconsistent linguistic information.

From above comparative analyses with relevant papers, one can see that main advantages of
the developed new method are summarized as follows:

(1) The developed new method is more suitable for expressing and handling indeterminate
and inconsistent linguistic information in linguistic decision-making problems to overcome
the insufficiency of various linguistic decision-making methods in the existing literature.
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(2) The developed new method contains much more information (the three linguistic variables of
truth, indeterminate, and falsity degrees contained in an LNN) than the existing method in [10,11]
(the two linguistic variables of truth and falsity degrees contained in a LIFN) and can better
describe people’s linguistic expression to objective things evaluated in detail.

(3) The developed new method enriches the neutrosophic theory and decision-making method
under a linguistic environment and provides a new way for solving linguistic MAGDM problems
with indeterminate and inconsistent linguistic information.

7. Conclusions

This paper originally presented LNNSs, the operational laws of LNNs, and the score and accuracy
functions of LNNs. Then, we proposed the LNNWAA and LNNWGA operators to aggregate LNNs
and investigated their properties and special cases. Further, we developed a MAGDM method based on
the LNNWAA or LNNWGA operator and the score and accuracy functions to solve MAGDM problems
with LNN information. Finally, an illustrative example was provided to demonstrate the application
of the developed MAGDM method under LNN environment. The developed MAGDM method with
LNNSs enriches fuzzy decision-making theory and provides a new way for decision-makers under LNN
environment. In the future research directions, we shall further develop new aggregation operators of
LNNSs and apply them to decision-making, pattern recognition, medical diagnosis, and so on.

Acknowledgments: This paper was supported by the National Natural Science Foundation of China
(71471172, 51272159) and the Natural Science Foundation of Zhejiang province (LY15A040001).

Author Contributions: Jun Ye originally proposed LNNs and the LNNWAA and LNNWGA operators and
investigated their properties, and Zebo Fang provided the calculation and comparative analysis of examples.
We wrote the paper together.

Conflicts of Interest: The authors declare that we have no conflicts of interest regarding the publication of
this paper.

References

1.  Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning Part I. Inf. Sci.
1975, 8, 199-249. [CrossRef]

2. Herrera, F; Herrera-Viedma, E.; Verdegay, L. A model of consensus in group decision making under linguistic
assessments. Fuzzy Sets Syst. 1996, 79, 73-87. [CrossRef]

3.  Herrera, F.; Herrera-Viedma, E. Linguistic decision analysis: Steps for solving decision problems under
linguistic information. Fuzzy Sets Syst. 2000, 115, 67-82. [CrossRef]

4. Xu, Z.S. A note on linguistic hybrid arithmetic averaging operator in multiple attribute group decision
making with linguistic information. Group Decis. Negot. 2006, 15, 593-604. [CrossRef]

5. Xu, ZS. Goal programming models for multiple attribute decision making under linguistic setting. ]. Manag.
Sci. China 2006, 9, 9-17.

6. Liu, P; Yu, X. 2-dimension uncertain linguistic power generalized weighted aggregation operator and its
application for multiple attribute group decision making. Knowl.-Based Syst. 2014, 57, 69-80. [CrossRef]

7.  Liu, P; Teng, F. An extended TODIM method for multiple attribute group decision-making based on
2-dimension uncertain linguistic variable. Complexity 2016, 21, 20-30. [CrossRef]

8.  Liu, P; He, L.; Yu, X. Generalized hybrid aggregation operators based on the 2-dimension uncertain linguistic
information for multiple attribute group decision making. Group Decis. Negot. 2016, 25, 103-126. [CrossRef]

9.  Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87-96. [CrossRef]

10. Chen, Z.C,; Liu, PH.; Pei, Z. An approach to multiple attribute group decision making based on linguistic
intuitionistic fuzzy numbers. Int. . Comput. Intell. Syst. 2015, 8, 747-760. [CrossRef]

11. Liu, P; Wang, P. Some improved linguistic intuitionistic fuzzy aggregation operators and their applications
to multiple-attribute decision making. Int. J. Inf. Technol. Decis. Mak. 2017, 16, 817-850. [CrossRef]

12.  Smarandache, F. Neutrosophy: Neutrosophic Probability, Set, and Logic; American Research Press:
Rehoboth, DE, USA, 1998.


http://dx.doi.org/10.1016/0020-0255(75)90036-5
http://dx.doi.org/10.1016/0165-0114(95)00107-7
http://dx.doi.org/10.1016/S0165-0114(99)00024-X
http://dx.doi.org/10.1007/s10726-005-9008-4
http://dx.doi.org/10.1016/j.knosys.2013.12.009
http://dx.doi.org/10.1002/cplx.21625
http://dx.doi.org/10.1007/s10726-015-9434-x
http://dx.doi.org/10.1016/S0165-0114(86)80034-3
http://dx.doi.org/10.1080/18756891.2015.1061394
http://dx.doi.org/10.1142/S0219622017500110

Symmetry 2017, 9, 111 12 of 12

13.  Ye,]. An extended TOPSIS method for multiple attribute group decision making based on single valued
neutrosophic linguistic numbers. J. Intell. Fuzzy Syst. 2015, 28, 247-255.

14. Tian, Z.P; Wang, J.; Wang, J.Q. Simplified neutrosophic linguistic multi-criteria group decision-making
approach to green product development. Group Decis. Negot. 2017, 26, 597-627. [CrossRef]

15. Liu, PD,; Tang, G.L. Multi-criteria group decision-making based on interval neutrosophic uncertain linguistic
variables and Choquet integral. Cogn. Comput. 2016, 8, 1036-1056. [CrossRef]

16. Liu, P.D.; Shi, L.L. Some neutrosophic uncertain linguistic number Heronian mean operators and their
application to multi-attribute group decision making. Neural Comput. Appl. 2017, 28, 1079-1093. [CrossRef]

@ © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).



http://dx.doi.org/10.1007/s10726-016-9479-5
http://dx.doi.org/10.1007/s12559-016-9428-2
http://dx.doi.org/10.1007/s00521-015-2122-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

E symmetry MBPY

Article

Solving Solar-Wind Power Station Location Problem
Using an Extended Weighted Aggregated Sum
Product Assessment (WASPAS) Technique with

Interval Neutrosophic Sets

Ru-xin Nie, Jian-qiang Wang * and Hong-yu Zhang

School of Business, Central South University, Changsha 410083, China; nrx1690452484@csu.edu.cn (R.N.);
Hyzhang@csu.edu.cn (H.Z.)
* Correspondence: jqwang@csu.edu.cn

Academic Editor: Florentin Smarandache
Received: 28 May 2017; Accepted: 28 June 2017; Published: 4 July 2017

Abstract: As one of the promising renewable energy resources, solar-wind energy has increasingly
become a regional engine in leading the economy and raising competitiveness. Selecting
a solar-wind power station location can contribute to efficient utilization of resource and instruct
long-term development of socio-economy. Since the selection procedure consists of several location
alternatives and many influential criteria factors, the selection can be recognized as a multiple
criteria decision-making (MCDM) problem. To better express multiple uncertainty information
during the selection procedure, fuzzy set theory is introduced to manage that issue. Interval
neutrosophic sets (INSs), which are characterized by truth-membership, indeterminacy-membership
and falsity-membership functions in the interval numbers (INs) form, are feasible in modeling more
uncertainty of reality. In this paper, a newly extended weighted aggregated sum product assessment
(WASPAS) technique, which involves novel three procedures, is utilized to handle MCDM issues
under INSs environment. Some modifications are conducted in the extended method comparing with
the classical WASPAS method. The most obvious improvement of the extended method relies on that
it can generate more realistic criteria weight information by an objective and subjective integrated
criteria weight determination method. A case study concerning solar-wind power station location
selection is implemented to demonstrate the applicability and rationality of the proposed method in
practice. Its validity and feasibility are further verified by a sensitivity analysis and a comparative
analysis. These analyses effectively reveal that the extended WASPAS technique can well match the
reality and appropriately handle the solar-wind power station location selection problem.

Keywords: multiple criteria decision-making (MCDM); interval neutrosophic sets (INSs); weighted
aggregated sum product assessment (WASPAS); integrated criteria weight information; solar-wind
power station location selection

1. Introduction

Remarkable growth of urbanization and industrialization make it imperative to increase
widespread useable electricity for facilitating regional economy development [1]. Due to the increasing
awareness of the global climate degradation, conventional energy resources cannot simultaneously
meet the environmental challenge and energy demand [2]. The solar-wind energy system has gradually
substituted the status of traditional energy for the friendly environment concern [3]. Solar-wind power
station devotes to convert renewable resources such as solar and wind energy into power for supporting
socio-economic requirement [4]. For better contributing to regional competition and determining future
energy generation, it is significant to seek a good solar-wind power station location [5]. Considerable
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researches have increasingly emerged concerning selecting the renewable energy location [6]. It is well
known that the usage starting point of multiple criteria decision analysis (MCDA) is a definition of
the set of decision variants [7]. The aim of MCDA is to select a good solution according to decision
makers’ (DMs’) preferences [8,9]. As numerous influential factors need to be considered in the selecting
procedure, the location selection problem can be treated as a complex multiple criteria decision-making
(MCDM) problem [6]. In addition, MCDM methods have been adopted as effective instruments in
this field. Incorporating analytic hierarchy process (AHP) to GIS environment, the most desirable
nuclear power plant location was determined by MCDM analysis technique [10]. The framework of
MCDM analysis based on GIS was also identified as an effective decision tool for wind-farm location
planning area [11]. Furthermore, grey cumulative prospect theory and cloud decision framework
were gradually employed into power location selection [12,13]. To manage inevitable fuzziness and
uncertainty in realistic application, ELECTRE-III as one of the most commonly used MCDM technique
was extended into intuitionistic fuzzy circumstances for determining a good offshore wind power
station location [14]. The selection of the solar-wind power station location can be regarded as another
complex MCDM problem involving many influential factors such as economic factors, traffic factors,
natural resources, environmental factors and social factors [15]. Though MCDM methods such as
ELECTRE-II has been widely employed into this field [15], existing researches concerning solar-wind
power station location selection neglect the impact of uncertainty and only evaluate the alternatives
in the real number context [16]. Effective information expression form should be introduced into the
selection problem for representing more abundant and realistic information.

Along with the development of fuzzy set theory, fuzzy set (FSs) [17] as well as interval valued fuzzy
sets (IVESs) [18], intuitionistic fuzzy sets [19] and interval-valued intuitionistic fuzzy sets (IVIFSs) [20]
were extensively applied into dealing with uncertain situation. Owing to multiple uncertainty and
information existing in practice, above traditional types of FSs are unable to adequately express
indeterminate information and inconsistent information [21]. Neutrosophic sets (NSs) [22] were initially
presented by Smarandache to feasibly manage these uncertain information via considering the truth
membership, indeterminacy membership and falsity membership functions simultaneously [23,24].
However, NS was lacking of specific description to adequately express actual issues. As a particular
case of NSs, single-valued neutrosophic sets (SVINSs) were introduced for the first time by Smarandache
in 1998 in his book [22], reviewed in [25], which is also mentioned by Denis Howe, from England,
in The Free Online Dictionary of Computing, 1999. Since more information can be described by
interval numbers (INs), interval neutrosophic set (INS) [26] as a further extension of NS was utilized
in various fields such as trustworthy cloud service selection [27], lean supplier selection [28] and
medical diagnosis [29]. Relative basic theories of INS which briefly focus on its aggregation operators
and MCDM methods have already developed maturity [30]. Particularly, MCDM methods including
outranking approach [31], cross-entropy measure [32], and correlation coefficient measure [33] can
effectively deal with problems under INS environment. This paper aims to develop a novel MCDM
technique with flexibility and applicability under INSs circumstances for matching the solar-wind
power station location selection case.

The weighted aggregated sum product assessment (WASPAS) method was originally presented
in 2012 regarded as an effective extension of Weighted Product Model (WPM) and Weighted Sum
Model (WSM) [34]. Its accuracy in dealing with MCDM problems has been proven by comparing
with the simple utilization one of WPM or WSM [34]. This method has been extensively employed
into MCDM situation and various applications [35], especially in the site selection field. The complex
circuit design of lead-zinc froth flotation selection regarded as a MCDM procedure was adequately
settled by WASPAS method for fully processing costs and reinforcing the utilization [36]. Selection of
the best wind farm location was feasibly handled and assessed by utilizing the WASPAS method [37].
The selection of the construction site for a waste incineration plant plays a critical role in public
health and city development. It can be effectively solved by means of the WASPAS method [38].
Within the MCDM framework, relevant mathematical model and AHP approach were incorporated



Symmetry 2017, 9, 106 3 0f 20

into the WASPAS method, by which the location selection problem of the garage was explicitly
formulated [39]. Its robustness was verified by comparing with other MCDM methods when finding
a good solution [40]. Referring to specific application setting, WASPAS method has been generalized
into a variety of assessment fields such as energy supply system [41], solar projects [42], third-party
logistics providers [43] and indoor environment [35]. The combination of the WASPAS method with
fuzzy set theory has been introduced into dealing with uncertainty under grey values [44], interval
type-2 fuzzy sets [43] or SVNSs environment [45]. Incorporating IVIFSs into WASPAS method, it can
effectively deal with the MCDM problems [46]. Relative research concerning the WASPAS technique
with INSs needs to be further investigated to enrich theory basics and represent more uncertain
information. Consequently, this paper generalizes the WASPAS technique into INSs circumstances for
matching the solar-wind power station location selection problem.

Previous researches have revealed that incomplete or unknown weight information commonly
exists when applying the MCDM methods into assessment [47]. From the perspective of the
objective weight determination methods, maximizing derivation method [48], the most widely utilized
method, can generate the criteria weights under weights partly known or completely unknown
circumstances. Corresponding mathematical programming models are constructed according to
different circumstances such as hesitant fuzzy sets [49,50], IFSs [51] and multiple types of linguistic
circumstances [52,53]. As one of the representative subjective weight determination methods, order
relation analysis method (G1) determines the weight information by virtue of DMs’ experience
judgement [54]. G1 not only reflects the subjective judgment of DMs, but also possesses convenience
and feasibility comparing to AHP method. These advantages are due to its simple acquisition process,
and the fact that there is no need to construct judgement matrix [54]. To adequately reflect more realistic
information from both the subjective and objective aspects, this paper investigates an integrated criteria
weight utilizing the combination strengths of above determination methods, and further employs it to
the WASPAS technique under INSs environment.

The reminder of the paper is structured as follows. In Section 2, some basic concepts concerning
INs and INSs are roughly reviewed. In Section 3, the framework of the extended WASPAS technique is
constructed based on the objective weight and subjective weight integrated criteria weight information.
Subsequently, to verify its applicability within INSs environment, the extended WASPAS technique is
employed into practical solar-wind power station location case in Section 4. In Section 5, a sensitivity
analysis and a comparative analysis are conducted to further demonstrate the rationality of the
extended WASPAS technique. Finally, conclusions are summarized in Section 6.

2. Background

This section briefly reviews some basics concerning INSs for the latter discussion.

2.1. INs

Some definitions and concepts of INs are recalled.

Definition 1. [55] Let a = [al,a"] = {x|al < x <aY}, then a is said to be an IN. Particularly,
a = [at, a"] will be deduced to a real number if at = aY.
Assume that there are two nonnegative INs a; = [af, a%l | and a, = [u%, ab! |. Then, their operations are

defined as follows [56]:

1. ay+ap = [ab +ak, el +al],
2. Aap = [Aak, Adld], A > 0.
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Definition 2. [30] Let ay = [a},al!] and a, = [a},a%] be two INs, L(ay) = a¥ — ak and L(ay) = a¥ — a5,
then the possibility degree of ay > ap is denoted as:

ai — gk
a1 > ap) =max{ 1 —max{ —=———,0,,0 3, 1
p( 1= 2) L(ﬂ1)+L(ﬂ2) ()
Consider there exist m INs a; = [aiL,aiu] (i=1,2,...,m). The possibility degree of Equation (1) can be
denoted as
atl — ot
a; > a;) =max{ 1 —max< ——,0,,0 ,, 2
Pl = 4) { {L<al->+L<a]-> } } @
when comparing each IN a; to all INs a; = [ajL, aﬂ (j=1,2,...,n). Then, a complementary possibility degree
matrix can be established as
Pu P12 --- Pin
p21 p2 .- Pon
P(a; > a]') = : , 3)
Pn1 Pn2 -+ Pnn | ,,

whose elements satisfy the conditions p;; > 0, pjj + pj; = 1 and p;; = 0.5. Its ranking vector can be derived
from the equation as follows:

,(i=1,2,...,m), 4)

2.2. INSs

Due to the fact that indeterminacy and inconsistency information commonly exist in the daily
life, numerous researches tackled the NSs as the instrument to manage that issue [57,58]. However,
to fully and adequately indicate uncertainty and fuzziness in the reality, IN is utilized as the form to
depict the truth-membership, indeterminacy-membership and falsity-membership information of NSs
rather than crisp values [59]. In this section, we briefly review some basics of INSs, which involves
operational laws, aggregation operators and score functions. For the convenience of expressing the
reality, INS is defined motivated by the definition of SVNS as follows:

Definition 3. [60] Let X be an arbitrary universe of discourse whose generic element can be denoted by x. Then,
an INS Ain X is
A={(x,Ta(x),1a(x),Fa(x))|x € X}, ®)

which is characterized by a truth-membership function T4 (x), an indeterminacy-membership function 14 (x)
and a falsity-membership function Fa(x). For each point of x in X, there exists the conditions that T4 (x) =
[T (x), TY(x)], La(x) = [15(x), 14(x)], Fa(x) = [Fk(x), PY(x)] and Ta(x), 14(x), Fa(x) C [0,1] and
0 < TH (x) + I (x) + Ff{ (x) <3.

For notation simplification, we adopt a = { [TL, Tu] , [IL, Iu] , [FL, PU} ) as the representation of an INS
in this paper.

Definition 4. [61] Let a; = ([TE, TH], [IF, IH], [FE, EH)) and ap = ([TL, T, [1F, 11, [EX, EH]) be two
arbitrary INSs, then, its operational laws can be defined as

(1) The complement of ay is @y = ([FL,FH], [1— 14,1 —IF], [TE, TH]),
@) a+a=([Tf+T; - T{T;, ' + T - '], [T 1, ', [FREy FUED),
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([T, TUTY0, (1 + 1f — ahif 0+ = 1),
P+ — R R RE))

@ g =([1- -1 1= -] [0 0] [ ED]) >0,
© ar=([()" (1)), [1- =1 = =) [ - Y- (=B g > 0

(3) a1 xay=

Definition 5. [61] Let a; = <[7"]L, Tju}, {I]L,IJU}, [IZJL, F]u}> (j =1,2,...,n) be a permutation of the INSs.
Then, the interval neutrosophic power generalized weighted aggregation operator is defined as

1/7y
" w;i(1+T(a;))aj!

=5 @1+ T(a)
j=1

INPGWA(aq,ay,- - ,a,) =

n
in which w; = (w1, wy, - -+ ,wy) is the associated weight vector of a]-(j =1,2,...,n), w; € [0,1], © wi=1
=1
n
T(aj) = Y Sup(aja;), Sup(aj,a;) is the support degree for a; from a;; 1] is a parameter belonging to
i—1,
i#]

(0, 400).

Theorem 1. [61] Let aj = <{T]L, T]-u}, {I]L, I]U}, {F]L,Fju}> (j=1,2,...,n) bea permutation of the INSs, the
aggregated result utilizing the interval neutrosophic power generalized weighted agqregation operator derived
from Definition 4 is shown as

n w: /7 " @ 1/n
st (|(1-fi0-0)7) (- o= 00|

in which w; = M Particularly, wheny — O, the interval neutrosophic power generalized weighted
L wj(1+7(a)))
i=
aggregation operator reduces to an interval neutrosophic power geometric weighted aggregation (INPGWA)
operator, which is shown as

j j=1

INPGWA(ay,az, - ,ay) = [ i (T].L)wf, 11 (T}U)wf} ) {1 11 (1 - 1],L>wf,1 1 (1 _ Iju)w;],
i=1 i j=1
-1 -r) -1 (1- ij)w’} >;

j=1 j=1
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When n — 1, the interval neutrosophic power generalized weighted aggregation operator reduces to
an interval neutrosophic power weighted aggregation (INPWA) operator, which is shown as

e o= (1= fa-m)"a- o)) o
0" 0] [ )

Definition 6. [62] Let ay = ([TL, TH], [1F, 1], [FE, FY)) and ap = ([TE, T3, (15, 1], [EE, EX) be two
arbitrary INSs. Then, the normalized Hamming distance between a1 and ap can be defined as

1
d(ay,a2) = = (|TF = 1| + |1 = 1| + [t} — | + |1t — | + |BE = FE| + |H - H']). 0)

Definition 7. [63] Let a = <[TL, Tu], [IL,IU}, [FL,PU]> be an INS, then, its score function as well as
accuracy function and certainty function are defined as

M S@)=[Tt+1-1Y41-F4,TU+1-1+1-FL],
@ H(a)= [min{Tt - FL,TY — FU} max{TEL — FE, TY — FU}],
(3) B(a)= [Tt TY].

Its comparison rules are specifically introduced in [63].

3. The Framework of an Extended WASPAS Technique

In this section, an extended WASPAS technique is newly investigated to match solar-wind power
station location selection issue with completely unknown criteria weight information.

3.1. Maximizing Deviation Method for Objective Weight Estimating

The maximizing deviation method was initially presented by Wang [64] for managing MCDM
problems in numerical context. Its main ideal relies on the performance value of each alternative
differs under certain criteria. Thus, it can be inferred that if certain criteria makes the performance
values concerning all the alternatives apparently different, the criteria plays a critical role in seeking
a good alternative under the MCDM context. Therefore, by virtue of this ideal, criteria with similar
performance value with respect to all the alternatives should be allocated small weight; otherwise, the
criteria makes huge differences over alternatives should be allocated bigger weight. By above analysis,
the maximizing deviation method can be applied into specific MCDM application as an effective tool
in deriving completely unknown criteria weight information. Specially, the model, which reveals the
differences of the performance value for each alternative, can be established in the following within
the INS context.

With respect to certain criteria C; € C, the performance derivation values of alternative x; to all
the other alternatives can be established as follows:

m
Djj(w') = kzld(ai]-,akj)w]’.,i: 1,2,--,m, j=1,2,-,n (11)

in which 4;; and g;; represent the performance value of alternative i and alternative k
under criteria j, and characterized by aj = <[T.L. TU},{I.L Ig},[F»L F-UD and ag =

ijr 7ij ij7 % ijr 7 ij
L Ul [L ju L ru :
< [Tk]., Tk].} , [Ik]., ij} , [Fk]., ij} >, respectively.
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Furthermore, let
m m m
Dj(w') = L. Dy(w') = 12 Yo (s (12)

i =1k=1

Dj(w) represents the derivation performance value of all the alternatives to the others under criteria
C] eC.

From above analysis, the determination of weight vector w’ can maximize the collective derivation
performance value for all the criteria. A linear programming model can be established to derive the
optimal weight vector solution w’ = (w{, w}, - - - ,w},) which is utilized as the criteria weight vector,
shown as follows:

, n m n m m ,
maxD(w') = & ¥ Dy(w) = & & & (aij,akj)w,-
]11 1 j=li=1k=1 (13)
stw' €Q), Zw—l (u>0 ji=12,---,n,
j=1

in which specific distance equation d (ai]-, akj> refers to Definition 6. Above model is designed to solve
the decision-making problem with partial known criteria weight information in (). However, due to
the complexity in practice, criteria weight information tends to be completely unknown, and cannot
be predefined in MCDM problems in most cases. Another programming model is established in the
following to derive the criteria weight vector within the completely unknown weight information.

maxD(w’
m
= Di(w’)
i=1
n m m
_1 L L u u L u L L u u 14
=L & ¥ (|75 - 7h| + |7l a1 |l - | (B R [ R ) (9
j=1li=1k=1
n 2
st.):(w;) =1, @20, j=12---,n
j=1

A Lagrange function can be established to solve this model, and shown as
' 1 & & L L u u L L
Lwim=sL X ¥ (‘Tij 7Tkj‘+’Tij - Tkj‘ + )Ii]' — Iy
(15)
n 2
a1 ()" 1),

in which 7 is the Lagrange multiplier. Differentiating Equation (15) concerning w; (j=12,...,n)and
7, respectively. Let these partial derivations equal to 0 value, these equations can be derived as follows:

u u
14— 1]

f=rry (| = 1| |5~ I

J j=li=1k=1
n 2
oL __ / —
% 7]-;1 (@) =1=0.

L u
~Th| + |T¥ -

u L
Tk].‘+1

Fij)+ FU

_ru /
FJ) + e

Then, to determine the criteria weight vector, a simple equation is generated as follows:

glél( MTU Tt g R W*W*Fﬁ)) (16)
+|TH = TH |+ [t 1] + 1 14 FY— FU|)>2
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Consequently, the normalized weight vector of criteria can be derived as

Wi =51-(=12...,n). (17)

Based on aforementioned discussion, we can obtain criteria weight vector via these models and
equations with incompletely or completely unknown weight information under INS context.

3.2. G1 for Subjective Weight Estimating

G1 [54] is one of the subjective weight estimation methods, in which all the weight information
index derived from subjective evaluation of DM according to their experience. Owing to its practical
applicability, G1 was adopted to dispose the weight information in the assessment of electric vehicle
sharing programs [65]. Specific acquisition process within the location selection case is outlined
as follows:

Step1 Determine the criteria ranking order relation.

Let DMs provide the order relation of the set C = {Cl, e, C]-,~ .- ,Cn} according to the
importance of the criteria judging from their experience.
Step2 Assign the relative importance degree index of adjacent criteria.

Determine the relative importance degree index r; = “’;‘Ll / w]'f of the adjacent criteria C; 1
and C; according to Table 1.

Step 3 Calculate the subjective weights of criteria by Equations (18) and (19).
non -1
wp=(1+Y 17| - (18)
i=2 j=i
n
W = Ty . (19)

k=j+1

Table 1. The relative importance degree index among adjacent criteria.

7 Description

1.0 Cj_1 is equally important as C;

1.2 Cj_1 is slightly more important than C;
14 Cj_1 is obviously more important than C;
1.6 Cj-1 is strongly more important than C;
1.8 Cj_1 is extremely more important than C;

3.3. An Extended WASPAS Technique with Integrated Criteria Weight Information

The WASPAS method [34] is a well-known decision-making technique which can effectively
increase the ranking accuracy by integrating WSM and WPM. It has better accuracy than only using
one of WSM or WPM, which has been proved in [34]. Total importance of an alternative is determined
by the aggregated WASPAS measure, which is in essence a joint criterion derived from the use of
weighted arithmetic and geometric averaging operators simultaneously [66]. The feasible ranking
order can be ensured by altering the parameter between the sum total relative importance and the
product total relative importance of alternative computed by theses operators within the completely
unknown criteria information.

In most practical cases, the criteria weight information tends to be completely unknown, and there
commonly exists relationship among alternatives. To this end, this paper combines the objective weight
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and subjective weight acquisition methods defined above to reflect more realistic weight information in
the integrated weight information estimation procedure of the newly extended WASPAS technique. It is
well known that a PA operator can effectively reveal the relationship among alternatives by calculating
support degrees from others [67]. The PA operator is generalized into the WASPAS method to optimize
the aggregated WASPAS measure determination procedure in this paper. Consider the human beings’
expression preference and the uncertainty they faced with, this paper proposes an extended WASPAS
technique in which three procedures are feasibly implemented under INSs context. The framework of
the extended technique is displayed in Figure 1.

Construct the decision matrix

¥

Derive the normalized decision matrix

; Integrated weight information
; estimation procedure

v v

Calculate the objective criteria Estimate the subjective criteria
weight weight

Compute the integrated criteria

weight

Calculate sum total relative Calculate product total relative : v
importance of alternative importance of alternative Aggregated WASPAS
measure determination
procedure

Determine the aggregated WASPAS
measure for each alternative

Generate the score, accuracy and certainty function
values for each alternative

: Jp—

Alternative ranking and
Construct the likelihood matrix ; seeking procedure

v

Rank the alternatives and seek the optimal one

Figure 1. The framework of the extended WASPAS technique.

Assume that a MCDM problem in which a permutation of m alternatives {Ay,--- , A;,- -+, A}
are evaluated under a permutation of n criteria {Cl, cee, Cj, -, Cy } The performance evaluation
of the i th alternative on the j th criteria is assessed by the INSs denoted by a; =

< [Ti?, Tiﬂ , [IZ%, Ilﬂ , [Fi?' Fiﬂ > The main procedures are outlined as follows:

Step 1. Construct the decision matrix.
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Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Let a DM provide performance estimation of every alternative with respect to all the criteria,
which is shown as

ann 412 ... A1n

azy dyp ... dyn
A= (A) e =

a1l An2  --- Oun

mxn
Derive the normalized decision matrix.

Utilize Equation (1) in Definition 4 to convert the evaluation under cost criteria to benefit
criteria. For convenience, the normalized evaluations for the ith alternative with respect to the

jth cost criteria are also denoted by a;; = < {TZ%, Tiﬂ , {IZ%, Iﬂ , [Fi?, Fiﬂ >

Calculate the objective criteria weight.

Use Equations (16) and (17) to calculate the objective weight w;* for each criteria by the
maximizing deviation method.

Estimate the subjective criteria weight.

Conduct the procedures proposed in Section 3.2, and estimate the subjective criteria weight
w}/ for each criteria.

Compute the integrated criteria weight.

Combine the objective and subjective weights generated from Step 3 and Step 4, the integrated
criteria weight w; is shown as

wj = Awi" +(1— A)w}', (20)

in which A is the aggregation parameter altering in [0, 1].
Calculate sum total relative importance of alternative.

Incorporate the INPWA operator defined in Equation (9), the sum total relative importance of
alternative i is calculated by Equation (21).

Q) = INPWA(ay, a2, ,an). -

Calculate product total relative importance of alternative.

Refer to the INPGWA operator in Equation (8), the product total relative importance for
alternative i is defined as
Q! = INPGWA(ay,a,- -+ ,an). (22)

Determine the aggregated WASPAS measure for each alternative.

Aggregate Q; and Q”, the final WASPAS measure can be determined by the equation as
follows:

Qj=0Qi+(1-0)Q;, (23)
in which 6 is the parameter to adjust the proportion of WSM and WPM in the WASPAS
technique altering in [0, 1]. When 6 = 1, the WASPAS technique is degenerated to WSM. When
6 = 0, the WASPAS technique is degenerated to WPM.

Generate the score, accuracy and certainty function values for each alternative.

Obtain the score, accuracy and certainty function values S(a;), H(a;) and B(a;) for each
alternative utilizing Equation (1) in Definition 7.

Step 10. Construct the likelihood matrix.
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Construct the possibility matrix of the score function value S(a;) according to Equation (2),
which is shown as follows:

F’il Piz Pin
P P 0 P2

PS (S(ay) > S(ay)) = N
Pi1 sz Pgn nxn

whose elements pisj represents the possibility degree of S(a;) > S(aj). If Py = 0.5, then
calculate the possibility degree of H(a;) > H (a]-) characterized by pf}] CIf p{f = 0.5, then
calculate the possibility degree of B(a;) > B (aj) characterized by pg-. Obtain the ranking
vector p; according to Equation (4).

Step 11. Rank the alternatives and select the good location.

Rank all the alternatives and select the good location according to the descending order of
pi(i=12,---,m).

4. Case Study

4.1. Problem Description

With the increasing concern of the regional competition and circumstance protection, solar-wind
power station contributes to converting solar or wind resources into power, and further generating
electric energy. When assuming that government planners want to build a solar-wind power
station for better serving regional socio-economy, a good station construction location should be
selected. A group of experts are invited to consist a working team for evaluating four locations
Aj(i=1,2,---,4) with respect to various influential factors utilizing numerical rating in the range
from 0 to 1. According to relative literature research, this paper concludes its influential factors into
five criteria in Table 2. In practical assessment procedure, the evaluation rating not only contains
the numerical rating but also the emotional tendency of DMs. For a candidate location i under
certain criteria j, the positive maximum evaluation among all the DMs is treated as the TI%I in the
INS ajj = < {Tlg, Tiﬂ , {Il%, Iiﬂ , {Fi?, Fiﬂ >, and the negative minimum evaluation of the entire working
team is treated as F in the INS. For instance, when rating for location A; with respect to economic
factors Cp, the maximum and minimum evaluation from all the experts, who deem it is appropriate
to construct the station here, are 0.5, 0.3, respectively; the maximum and minimum of inappropriate
evaluation are 0.8, 0.2; the maximum and minimum of the other experts are 0.3, 0.2; then, the INS
can be expressed as a1, = ([0.3,0.5],[0.2,0.8],[0.2,0.3]). Based on this principle, final decision matrix
A= (Aij) nxn iInvolving the synthetic evaluation information from all the DMs in the working group
is derived as follows:

[0.7,0.8],[0.5,0.7],[0.1,0.2])
[0.6,0.8], [0.4,0.5],[0.3,0.3])
[0.8,0.8], [0.4,0.6],[0.1,0.2])
0.7,09],[0.3,0.4],[0.2,0.2])

([0.4,0.5],[0.5,0.6], [0.4,0.4])
[0.5,0.6],[0.3,0.4],[0.4,0.5))
0.6,0.7],[0.7,0.8],[0.2,0.3])
0.8,0.9],0.3,0.4],[0.1,0.2])

([0.3,0.5],[0.2,0.8],[0.2,0.3])
([0.5,0.7],[0.3,0.5],[0.1,0.3])
([0.6,0.6],[0.2,0.3],[0.4,0.5])
([0.6,0.8],[0.4,0.4],[0.2,0.4])

A= (Aif)4x5 =

o~ o~~~

([0.4,0.6
([0.6,0.7
([0.7,0.8
([0.5,0.6

,[0.2,0.2],[0.2,0.4])
,[0.4,0.6],[0.3,0.4])

0.6,0.7],[0.1,0.2])
,[0.5,0.6],[0.2,0.3])

([0.6,0.7],[0.4,0.5], [0.4,0.5])
0.8,0.9],0.3,0.4],[0.1,0.2])
0.7,0.8],[0.5,0.6],[0.1,0.2])
[0.5,0.7],[0.5,0.6],[0.2,0.3])

7 7

(
(
(

4x5
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Table 2. Criteria information and relative description.

Criteria ; Description

Natural resources include various indicators related to wind and solar

Natural resources C; . .
resources in the location.

Economic factors briefly measure the cost during the engineering

Economic factors Cp . . .
construction, operation and maintenance procedures.

Traffic conditions reflect the traffic convenience to the location during

Traffic conditions C . ) . . .
3 the engineering construction, operation and maintenance procedures.

Environmental factors reflect the environment destruction during the

Environmental factors Cy . . . .
engineering construction and operation procedures.

Social factors Cs Social factors reflect the attitude of the local residents to the engineering.

4.2. The Selection of Solar-Wind Power Station Location

The specific procedures of seeking a good solar-wind power station location with the extended
WASPAS technique are implemented as follows:

Step 1. Construct the decision matrix.

The decision matrix is constructed by the illustration in Section 4.1, which is shown as

A = (Aif)4x5 above.

Step 2. Derive the normalized decision matrix.

Referring to the criteria description in Table 2, C; and Cy are cost criteria. Utilize Equation (1)
in Definition 4, the normalized decision matrix can be obtained as

([0.7,0.8],10.5,0.7],[0.1,0.2])

| ([0.6,0.8],[0.4,0.5],[0.3,0.3])
4x5 | (]0.8,0.8],[0.4,0.6],[0.1,0.2])
([0.7,0.9],10.3,0.4],[0.2,0.2])

0.2,0.3],[0.2,0.8],[0.3,0.5])
B 0.1,0.3],[0.5,0.7], [0.5,0.7])
4= (4y) 0.4,0.5],[0.7,0.8], [0.6,0.6])
[0.2,0.4],[0.6,0.6], [0.6,0.8])
([0.6,0.7],[0.4,0.5], [0.4,0.5]
([0.8,0.9],[0.3,0.4],[0.1,0.2]
([0.7,0.8],[0.5,0.6],[0.1,0.2]
([0.5,0.7],[0.5,0.6],[0.2,0.3]

o~ o~~~

([0.4,0.6],0.2,0.2],[0.2,0.4]) ([0.4,0.4],[0.4,0.5],[0.4,0.5])
([0.6,0.7),[0.4,0.6],[0.3,0.4])  ([0.4,0.5],[0.6,0.7],[0.5,0.6])
([0.7,0.8],[0.6,0.7],0.1,0.2])  ([0.2,0.3],[0.2,0.3],[0.6,0.7])
([0.5,0.6],[0.5,0.6],[0.2,0.3])  ([0.1,0.2],[0.6,0.7],[0.8,0.9])

’

o<

4x5

Step 3. Calculate the objective criteria weight.

Use Equations (16) and (17), then the objective weight w]’,* for each criteria can be calculated as
wi® =0.1259, w5 = 0.2122, w5 = 0.2086, wj" = 0.2698, ws" = 0.1835.

Step 4. Estimate the subjective criteria weight.

Assume that the aggregation parameter A = 0.5, and the order relation of all the criteria is
Cq = Gy = Cq = Cs5 = C3judging from DMs’ subjective experience. Referring to the relative
importance degree index among adjacent criteria in Table 1, the subjective criteria weight
for each criteria is estimated as w] = 0.3533, w, = 0.2945, w, = 0.1840, w; = 0.1022 and
wg = 0.0639.

Step 5. Compute the integrated criteria weight.

Combine the objective and subjective weights generated from Step 3 and Step 4, the integrated
weight of criteria is shown as w; = 0.2396, w, = 0.2534, w3 = 0.1963, ws = 0.1860 and
ws = 0.1237.

Step 6. Calculate sum total relative importance of alternative.
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Incorporate the INPWA operator defined in Equation (9), the sum total relative importance of
all alternatives are

Q) = ([0.4986,0.6171], [0.3084, 0.6468)], [0.1866, 0.3342]),

Qb = ([0.4236,0.6255], [0.4479,0.5977], [0.3746,0.4618]),
Qs
Q) = ([0.4867,0.7214], [0.4433,0.5128], [0.3468, 0.4122])

([0.6136,0.6642], [0.5212,0.6680], [0.2643, 0.3665] )

Step 7. Calculate product total relative importance of alternative.

Refer to the INPGWA operator in Equation (8), the product total relative importance for
alternatives are

Qi = ([0.3816,0.4983], [0.3562,0.7138], [0.2219, 0.3815]),

Q; = ([0.2638,0.4970], [0.4566, 0.6189], [0.4046, 0.5409]),
Qs = ([0.5184,0.6005], [0.5784, 0.7099], [0.4203, 0.4605])
Q, = ([0.3533,0.5616], [0.4852, 0.5355], [0.4509, 0.6134])
Step 8. Determine the aggregated WASPAS measure for each alternative.
Let 6 = 0.5, then the final WASPAS measure can be derived as

Q1 = ([0.4401,0.5577], [0.3323,0.6803], [0.2043,0.3579]),

Q> = ([0.3437,0.5613], [0.4523,0.6083], [0.3896, 0.5014]),
Q3 = ([0.5660, 0.6324], [0.5498, 0.6889], [0.3423, 0.4135])
Qa4 = ([0.4200, 0.6415], [0.4643,0.5241], [0.3989,0.5129])
Step 9. Generate the score, accuracy and certainty function values for each alternative.

For each alternative, the score, accuracy and certainty function values S(a;), H(a;) and B(a;)
are shown in Table 3.

Table 3. Relative function values of alternatives.

A; S(a;) H(a;) B(a;)

A; [14020,2.0212]  [0.1998,0.2359]  [0.4401,0.5577]

Ay [1.2341,17194]  [-0.0459,0.0599] [0.3437,0.5613]

As  [1.4636,17402]  [0.2189,0.2237]  [0.5660,0.6324]
[ ]

Ay 1.3831,1.7783] [0.0212,0.1286] [0.4200,0.6415

Step 10. Construct the likelihood matrix.

Construct the possibility matrix of the score function value S(a;) according to Equation (2),
which is shown as follows:

0.5 07126 0.6224 0.6290
07126 0.5 0.3358 0.3820
0.6224 03358 0.5  0.5315
0.6290 0.3820 0.5315 0.5

P (S(a;) > S(aj)) =

4x4
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And the ranking vector can be obtained as p; = 2.5981, p, = 2.1977, p3 = 2.2423 and
pa = 2.2819.

Step 11. Rank the alternatives and select the good location.

The ranking order of all the alternatives is A1 > Ay > A3 > Aj and the good location is A;.

5. Sensitivity Analysis and Comparison Analysis

In this section, comparison analysis and sensitivity analysis are conducted to further testify
the effectiveness and reliability of the extended WASPAS technique with existing methods on the
same example.

5.1. Sensitivity Analysis and Discussion

To demonstrate the impact of different aggregation parameter A and the proportion adjustment
parameter 6 on the final location selection results, we conduct the sensitivity analysis on the same
example with five A(0,0.2,0.5,0.8,1) values and five 6(0,0.2,0.5,0.8, 1) values simultaneously. The
ranking results for different A and 0 are displayed in Table 4.

Table 4. Ranking results for different A and 6.

A 6=0 60=0.2 0 =0.5 0=0.38 0=1

0 Ay = Ag - Az >=Ay A=Ay >=Az3>=Ay A=Ay >=Az>=Ay A1 >-Ag>-Asz>=-Ay A= Ap>= Az Ay
0.2 Ay = A1 = A3 >=Ay Ag>=A1>A3>=Ay A=Ay >=As3>=Ay A=Ay >=As>=Ay A=Ay >= Az Ay
0.5 Ay - A1 = A3 >=Ay Ag>-A1-A3>=Ay Ag>-A1>A3>=Ay Ag>-A1>-A3>=Ay Ag>- A1 >~ A3z > Ay
0.8 Ay = A1 = Az - Ay Ay - A1 > Az = Ay Ay = Ay - Az = Ay Al - Ay - Az = Ay Ay = Ay - Az = Ay

Ay - A1 > Az = A

Ay - Ay > Az = Ay

Ag - A1 > Az >~ Ay

Ay - A1 > Az = Ay

Ay = AL = Az = Ay

The variation of A represents the influence of criteria weight integrated by objective and subjective
weights to final selection results. In addition, altering the 8 values means that the change from sum
total relative importance to product total relative importance. Synthetizing what is shown in Table 4,
it can be inferred that different A and 6 values indeed affect final selection results. When A = 0 and
A =1, the integrated criteria weight is complete subjective or objective weight, and the ranking order
has different selection results A; and A4 under these opposite context. Furthermore, no matter how
the variation of 6 values, the ranking order remains all the same in these circumstances. When A = 0.2
and A = 0.8, the proportion adjustment parameter 6 values make huge differences to the ranking order.
The ranking result yields A4 >~ A1 > Az > Ay when 0 < 6 < 0.5, while it yields A1 > Ag >~ A3 > A
when 0.5 < 0 < 1. In view of the identical changeable tendency of ranking order, it is apparent that
the gradual increase of the adjustment proportion 6 clearly affects the order when different importance
of the objective and subjective weights in the integrated weight. However, when the importance of
the objective and subjective weights in the integrated weight are totally equivalent, the ranking order
keeps Ay > A1 > Az > Aj all the time.

Obviously, these ranking order and selection results reveal that different A and 6 values have
an effect on the decision-making procedure. It further indicates that the combination of objective and
subjective weights, and the integration of sum total relative importance and product total relative
importance emphasize the influence to the selection procedure. Integrated the specific meaning of
A and 6 with their role playing in the decision-making procedures, the location selection becomes
a dynamic procedure by setting different parameter values derived from practical context.

5.2. Comparison Analysis and Discussion

This subsection further validates the effectiveness and reliability of the newly proposed method
by comparing it with different existing methods on the identical illustrative example. The ranking
results are shown in Table 5. As there exists no relative criteria weight obtainment method in [34,62,68]
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chosen for comparison, we use the integrated criteria weight obtained in this paper as the criteria
weight information for the comparison convenience.

Table 5. Ranking results with different existing methods.

Methods Ranking Results
Similarity measure in [62] Ag = Ay = Az = A
An extended TOPSIS method in [69] Az = Ay = Ay = A
Method used weighted arithmetic aggregation operator in [68] Ag - A1 > Az = Ay
Method used weighted geometric aggregation operator in [68] Ay = AL = Az - Ay
Classical WASPAS method in [34] Ay = A1 - Az >~ Ay
The proposed method A= Ay = Az > Ay

(1) The method in [62] generates the selection result by implementing two steps. Firstly, confirm
the ideal alternatives for different type of criteria. Subsequently, derive the result by similarity
measures. According to the first similarity measure in that literature, the similarity measures
are obtained as Sj(A*,A;) = 08178, Sj(A*,Ay) = 0.8705, Sj(A*,A3) = 0.8692 and
S (A%, Ay) = 0.9057.

(2) In the method of [69], maximizing deviation method is utilized to derive objective weights. Then,
based on the ideal of TOPSIS method, alternatives are ranked by the relative closeness coefficient.
Conduct these procedures, relative closeness coefficient can be calculated as RCC; = 0.5226,
RCC; = 0.5186, RCC3 = 0.5190 and RCC4 = 0.5189.

(3) The procedure of the method in [68] can be briefly classified into aggregation process and ranking
process. The ranking procedure in [68] is identical with our proposed method. Based on weighted
arithmetic aggregation operator or weighted geometric aggregation operator, the total score are
obtained as ps = [2.2997,2.0098,2.0589,2.5926| or ps = [2.5804,2.2751,2.3728,2.9288] with the
same ranking order Ay >~ A; >~ Az > Aj.

(4) Classical WASPAS method in [34] generates the final WASPAS measure by aggregating weighted
arithmetic aggregation operator and weighted geometric aggregation operator. To better compare
the classical WASPAS method with our method, the alternatives are ranked by the ranking
procedure in our paper. Then, ranking vector can be obtained as p; = 2.4449, p, = 2.1483,
p3 = 2.2189 and py = 2.7681.

It can be easily inferred from Table 5 that different methods generate totally distinct selection
results. Especially, the order sequence derived from the methods in [62,69] is entirely opposite to ours.
The good location selection for [62,69] and our paper are A4, A3z and Aj, respectively. The primary
reason for that phenomenon relies on that these methods were proposed based on completely different
ideal. It results in the inconsistent sequence between each pair of alternatives in these methods. Both
the similarity measures and TOPSIS method rank the alternatives on the ideal of distance. For a better
comparison analysis, we adopt Hamming distance during the calculation procedure. Moreover, the
method in [62] neglects the relation of criteria to each other, while the method in [69] only considers the
objective criteria weight without focusing on the subjective preference of DMs. The proposed method
emphasizes the support relation from other criteria in the course of WASPAS measure determination.
It adequately considers the objective criteria weights and subjective experience judgement from
DMs by integrated criteria weight. The selection A4 and Az cannot reflect realistic situation without
considering the subjective criteria during the MCDM procedure. In addition, these characteristics
ensure the effectiveness and reliability of the location selection A derived from our method. Although
both the method in [68] and our method utilize an identical ranking method, the aggregation operators
cause huge differences to the final location selection. When using one of the weighted arithmetic
aggregation operator or weighted geometric aggregation operator in [68], it yields identical selection
result A4. However, the proposed method not only contains the advantage of PA operator, but also
effectively utilizes the combination of INPGWA and INPWA rather than applying them respectively.
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Besides, the extended WASPAS technique reveals its superiority by implementing three procedures to
assure the selection result A; rational and convincing.

Utilizing identical aggregation operator, methods in [34,68] provide the totally same ranking
order Ay = A1 > A3 > Ap with identical location selection A4. It indicates that the superiority of the
classical WASPAS method cannot be inferred because there exists no ranking or selection discrepancy
when using completely different methods. It is obvious that the ranking and selection results of the
classical WASPAS method and the proposed method exists discrepancy. The order of A; and Ay is
opposite in those methods. That is, though both the classical and extended WASPAS methods have the
same procedure in which the WASPAS measure are aggregated by two kinds of operators, the extended
WASPAS method reflects a more rational selection result by newly incorporating the advantage of PA
operators in that. Furthermore, the integrated weight information estimation procedure further ensures
the selection of the extended WASPAS method scientific. The identical order between alternatives Aj
and Aj in these methods can verify the effectiveness of the extended one.

From above discussion, primary highlights of the newly extended WASPAS technique can be
simply summarized into the following points.

(1) It can effectively manage the solar-wind power station location problem via embedding three
procedures into the newly extended WASPAS technique. During the WASPAS technique
implement process, a rational location selection result will be generated by incorporating the
advantages of relevant methods in these procedures.

(2) With the maximizing derivation method, objective criteria weights can be simply determined no
matter under the criteria weights completely unknown or incomplete circumstances. Apart from
the objective criteria weights, subjective weights, which fully reflect the subjective preference
under practice, can be obtained with G1. The integrated criteria weight is the combination of the
objective and subjective weights, and can adequately represent more realistic situation.

(3) Different aggregation parameter A and the proportion adjustment parameter 6 facilitate the
whole procedures a dynamic selection. The parameter setting is based on the requirement of real
application and subjective preference of DMs, which makes the extended WASPAS technique
feasible in dealing with the reality.

6. Conclusions

A good location of the solar-wind power station can affect regional competitiveness and direct
future development to a great extent. Faced with multiple uncertainties in reality, the location selection
case is considered within the INSs circumstances for tackling such challenges. Recognized as a complex
MCDM procedure, the selection in this paper is settled by an extended WASPAS technique containing
three procedures to reinforce its applicability to real situation. For modelling more realistic information,
some modifications are made in the classical WASPAS method especially utilizing the objective and
subjective criteria weight integrated weight information. Its strengths have been adequately discussed
via comparison analysis and sensitivity analysis.

Highlights of the extended technique can be briefly summarized in three aspects. Firstly, it ensures
a relatively rational and scientific result by incorporating three procedures into the framework of the
technique. Secondly, the integrated weight information reflects more realistic weight information
with the combination of the objective and subjective criteria weight information. Thirdly, more
practical contexts can be reflected by altering the aggregation parameter and the proportion adjustment
parameter during performing relevant procedures. Although the location selection case can be well
measured by the criteria dimensions in this paper, potential work should also be focused on specific
sub-criteria information for reaching a more promising solution.



Symmetry 2017, 9, 106 17 of 20

Acknowledgments: This work was supported by the National Natural Science Foundation of China
(No. 71571193), and supported by the Fundamental Research Funds for the Central Universities of Central
South University (No. 2017zzts284).

Author Contributions: Jian-giang Wang and Ru-xin Nie conceived and worked together to achieve this work,
Ru-xin Nie wrote the paper, Hong-yu Zhang made contribution to the case study.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Khare, V.; Nema, S.; Baredar, P. Status of solar wind renewable energy in India. Renew. Sustain. Energy Rev.
2013, 27, 1-10. [CrossRef]

2. Khare, V,; Nema, S.; Baredar, P. Solar-wind hybrid renewable energy system: A review. Renew. Sustain.
Energy Rev. 2016, 58, 23-33. [CrossRef]

3. Kazem, H.A.; Al-Badi, H.A.S.; Al Busaidi, A.S.; Chaichan, M.T. Optimum design and evaluation of hybrid
solar/wind/diesel power system for Masirah Island. Environ. Dev. Sustain. 2016, 1-18. [CrossRef]

4. Petrakopoulou, F; Robinson, A.; Loizidou, M. Simulation and evaluation of a hybrid concentrating-solar
and wind power plant for energy autonomy on islands. Renew. Energy 2016, 96, 863—-871. [CrossRef]

5. Jahangiri, M.; Ghaderi, R.; Haghani, A.; Nematollahi, O. Finding the best locations for establishment of
solar-wind power stations in Middle-East using GIS: A review. Renew. Sustain. Energy Rev. 2016, 66, 38-52.
[CrossRef]

6. Lee, AHI,;Kang, HY, Liou, Y.J. A hybrid multiple-criteria decision-making approach for photovoltaic solar
plant location selection. Sustainability 2017, 9, 184. [CrossRef]

7. Roy, B. Multicriteria Methodology for Decision Aiding; Springer Science & Business Media: Dordrecht,
The Netherlands, 2013.

8. Roy, B. Paradigms and challenges. In Multiple Criteria Decision Analysis: STATE of the Art Surveys; Figueira, J.,
Greco, S., Ehrgott, M., Eds.; Springer: New York, NY, USA, 2005; Volume 78, pp. 3-24.

9.  Roy, B.; Stowiniski, R. Questions guiding the choice of a multicriteria decision aiding method. EURO ].
Decis. Process. 2013, 1, 69-97. [CrossRef]

10. Abudeif, A.M.; Abdel Moneim, A.A_; Farrag, A.F. Multicriteria decision analysis based on analytic hierarchy
process in GIS environment for siting nuclear power plant in Egypt. Ann. Nucl. Energy 2015, 75, 682-692.
[CrossRef]

11. Latinopoulos, D.; Kechagia, K. A GIS-based multi-criteria evaluation for wind farm site selection. A regional
scale application in Greece. Renew. Energy 2015, 78, 550-560. [CrossRef]

12.  Liu,J,; Xu, E; Lin, S. Site selection of photovoltaic power plants in a value chain based on grey cumulative
prospect theory for sustainability: A case study in Northwest China. J. Clean. Prod. 2017, 148, 386-397.
[CrossRef]

13.  Wu, Y; Chen, K;; Zeng, B.; Yang, M,; Li, L.; Zhang, H. A cloud decision framework in pure 2-tuple linguistic
setting and its application for low-speed wind farm site selection. ]J. Clean. Prod. 2017, 142, 2154-2165.
[CrossRef]

14. Wu, Y,; Zhang, J.; Yuan, J.; Geng, S.; Zhang, H. Study of decision framework of offshore wind power
station site selection based on ELECTRE-III under intuitionistic fuzzy environment: A case of China.
Energy Convers. Manag. 2016, 113, 66-81. [CrossRef]

15.  Jun, D,; Tian-tian, E; Yi-sheng, Y.; Yu, M. Macro-site selection of wind/solar hybrid power station based on
ELECTRE-IIL. Renew. Sustain. Energy Rev. 2014, 35, 194-204. [CrossRef]

16. Yunna, W.; Geng, S. Multi-criteria decision making on selection of solar-wind hybrid power station location:
A case of China. Energy Convers. Manag. 2014, 81, 527-533. [CrossRef]

17. Zhang, H.Y.; Peng, H.G.; Wang, ]J.; Wang, ].Q. An extended outranking approach for multi-criteria
decision-making problems with linguistic intuitionistic fuzzy numbers. Appl. Soft Comput. 2017, 59, 462-474.
[CrossRef]

18. Turksen, L.B. Interval valued fuzzy sets based on normal forms. Fuzzy Sets Syst. 1986, 20, 191-210. [CrossRef]

19. Nie, R;; Wang, J.; Li, L. 2-tuple linguistic intuitionistic preference relation and its application in sustainable

location planning voting system. J. Intell. Fuzzy Syst. 2017. [CrossRef]


http://dx.doi.org/10.1016/j.rser.2013.06.018
http://dx.doi.org/10.1016/j.rser.2015.12.223
http://dx.doi.org/10.1007/s10668-016-9828-1
http://dx.doi.org/10.1016/j.renene.2016.05.030
http://dx.doi.org/10.1016/j.rser.2016.07.069
http://dx.doi.org/10.3390/su9020184
http://dx.doi.org/10.1007/s40070-013-0004-7
http://dx.doi.org/10.1016/j.anucene.2014.09.024
http://dx.doi.org/10.1016/j.renene.2015.01.041
http://dx.doi.org/10.1016/j.jclepro.2017.02.012
http://dx.doi.org/10.1016/j.jclepro.2016.11.067
http://dx.doi.org/10.1016/j.enconman.2016.01.020
http://dx.doi.org/10.1016/j.rser.2014.04.005
http://dx.doi.org/10.1016/j.enconman.2014.02.056
http://dx.doi.org/10.1016/j.asoc.2017.06.013
http://dx.doi.org/10.1016/0165-0114(86)90077-1
http://dx.doi.org/10.3233/JIFS-162139

Symmetry 2017, 9, 106 18 of 20

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Cao, Y.X.; Zhou, H.; Wang, ].Q. An approach to interval-valued intuitionistic stochastic multi-criteria
decision-making using set pair analysis. Int. ]. Mach. Learn. Cybern. 2016, 1-12. [CrossRef]

Tian, Z.P.; Wang, J.; Wang, ].Q.; Zhang, H.Y. An improved MULTIMOORA approach for multi-criteria
decision-making based on interdependent inputs of simplified neutrosophic linguistic information.
Neural Comput. Appl. 2016. [CrossRef]

Smarandache, F. Neutrosophy: Neutrosophic Probability, Set, and Logic; American Research Press: Rehoboth,
DE, USA, 1998; pp. 1-105.

Peng, H.; Zhang, H.; Wang, ]. Probability multi-valued neutrosophic sets and its application in multi-criteria
group decision-making problems. Neural Comput. Appl. 2016, 1-21. [CrossRef]

Tian, Z.P; Wang, J.; Wang, J.Q.; Zhang, H.Y. Simplified neutrosophic linguistic multi-criteria group
decision-making approach to green product development. Group Decis. Negot. 2017, 26, 597-627. [CrossRef]
Smarandache, F. A Unifying Field in Logics: Neutrosophic Logic. Mult. Log. 1999, 8, 489-503.

Liu, C. Interval neutrosophic fuzzy stochastic multi-criteria decision-making methods based on MYCIN
certainty factor and prospect theory. Rev. Tec. Fac. Ing. Univ. Del Zulia 2017, 39, 52-58.

Ma, H.; Hu, Z.G,; Li, K.Q.; Zhang, H.Y. Toward trustworthy cloud service selection: A time-aware approach
using interval neutrosophic set. Parallel Distrib. Comput. 2016, 96, 75-94. [CrossRef]

Reddy, R.; Reddy, D.; Krishnaiah, G. Lean supplier selection based on hybrid MCGDM approach using
interval valued neutrosophic sets: A case study. Int. J. Innov. Res. Dev. 2016, 5, 291-296.

Ma, Y.X;; Wang, ].Q.; Wang, J.; Wu, X.H. An interval neutrosophic linguistic multi-criteria group
decision-making method and its application in selecting medical treatment options. Neural Comput. Appl.
2016, 1-21. [CrossRef]

Tian, Z.P.; Zhang, H.Y.; Wang, J.; Wang, ].Q.; Chen, X.H. Multi-criteria decision-making method based on
a cross-entropy with interval neutrosophic sets. Int. J. Syst. Sci. 2016, 47, 3598-3608. [CrossRef]

Peng, J.J.; Wang, J.Q.; Yang, L.]J.; Qian, J. A novel multi-criteria group decision-making approach using
simplified neutrosophic information. Int. J. Uncertain. Quantif. 2017. [CrossRef]

Wu, X.H.; Wang, J.Q. Cross-entropy measures of multi-valued neutrosophic sets and its application in
selecting middle-level manager. Int. J. Uncertain. Quantif. 2017, 2, 155-172. [CrossRef]

Tian, Z.P; Wang, J.; Zhang, H.Y.; Wang, ].Q. Multi-criteria decision-making based on generalized prioritized
aggregation operators under simplified neutrosophic uncertain linguistic environment. Int. J. Mach.
Learn. Cybern. 2016, 1-17. [CrossRef]

Zavadskas, E.K,; Turskis, Z.; Antucheviciene, J.; Zakarevicius, A. Optimization of weighted aggregated sum
product assessment. Electron. Electr. Eng. 2012, 122, 1-3. [CrossRef]

Zavadskas, E.K,; Kalibatas, D.; Kalibatiene, D. A multi-attribute assessment using WASPAS for choosing
an optimal indoor environment. Arch. Civ. Mech. Eng. 2016, 16, 76-85. [CrossRef]

Zavadskas, E.K,; Bausys, R.; Stanujkic, D.; Magdalinovic-Kalinovic, M. Selection of lead-zinc flotation circuit
design by applying WASPAS method with single-valued neutrosophic set. Acta Montan. Slovaca 2017, 21,
85-92.

Bagotius, V.; Zavadskas, E.K.; Turskis, Z. Multi-person selection of the best wind turbine based on the
multi-criteria integrated additive-multiplicative utility function. . Civ. Eng. Manag. 2014, 20, 590-599.
[CrossRef]

Zavadskas, E.K.; Bausys, R.; Lazauskas, M. Sustainable assessment of alternative sites for the construction of
a waste incineration plant by applying WASPAS method with single-valued neutrosophic set. Sustainability
2015, 7, 15923-15936. [CrossRef]

Bausys, R.; Juodagalviené, B. Garage location selection for residential house by WASPAS-SVNS method.
J. Civ. Eng. Manag. 2017, 23, 421-429. [CrossRef]

Zavadskas, EK.; Antucheviciene, J.; Saparauskas, J.; Turskis, Z. MCDM methods WASPAS and
MULTIMOORA: Verification of robustness of methods when assessing alternative solutions. Econ. Comput.
Econ. Cybern. Stud. Res. 2013, 47, 5-20.

Dziugaitétuménieneé, R.; Lapinskiené, V. The multicriteria assessment model for an energy supply system of
a low energy house. Eng. Struct. Technol. 2014, 6, 33-41. [CrossRef]

Vafaeipour, M.; Zolfani, S.H.; Derakhti, A.; Eshkalag, M.K. Assessment of regions priority for implementation
of solar projects in Iran: New application of a hybrid multi-criteria decision making approach.
Energy Convers. Manag. 2014, 86, 653-663. [CrossRef]


http://dx.doi.org/10.1007/s13042-016-0589-9
http://dx.doi.org/10.1007/s00521-016-2378-5
http://dx.doi.org/10.1007/s00521-016-2702-0
http://dx.doi.org/10.1007/s10726-016-9479-5
http://dx.doi.org/10.1016/j.jpdc.2016.05.008
http://dx.doi.org/10.1007/s00521-016-2203-1
http://dx.doi.org/10.1080/00207721.2015.1102359
http://dx.doi.org/10.1615/Int.J.UncertaintyQuantification.2017020126
http://dx.doi.org/10.1615/Int.J.UncertaintyQuantification.2017019440
http://dx.doi.org/10.1007/s13042-016-0552-9
http://dx.doi.org/10.5755/j01.eee.122.6.1810
http://dx.doi.org/10.1016/j.acme.2015.10.002
http://dx.doi.org/10.3846/13923730.2014.932836
http://dx.doi.org/10.3390/su71215792
http://dx.doi.org/10.3846/13923730.2016.1268645
http://dx.doi.org/10.3846/2029882X.2014.957903
http://dx.doi.org/10.1016/j.enconman.2014.05.083

Symmetry 2017, 9, 106 19 of 20

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.
57.

58.

59.
60.

61.

62.

63.

64.

65.

66.

Ghorabaee, M.K.; Amiri, M.; Zavadskas, E.K.; Antuchevitiené, J. Assessment of third-party logistics
providers using a CRITIC-WASPAS approach with interval type-2 fuzzy sets. Transport 2017, 32, 66-78.
[CrossRef]

Zavadskas, EK.; Turskis, Z.; Antucheviciene, J. Selecting a contractor by using a novel method for
multiple attribute analysis: Weighted aggregated sum product assessment with grey values (WASPASG).
Stud. Inform. Control. 2015, 24, 141-150. [CrossRef]

Mardani, A.; Nilashi, M.; Zakuan, N.; Loganathan, N.; Soheilirad, S.; Saman, M.ZM.; Ibrahim, O.
A systematic review and meta-Analysis of SWARA and WASPAS methods: Theory and applications with
recent fuzzy developments. Appl. Soft Comput. 2017, 57, 265-292. [CrossRef]

Zavadskas, E.K.; Antucheviciene, J.; Razavi Hajiagha, S.H.; Hashemi, S.S. Extension of weighted aggregated
sum product assessment with interval-valued intuitionistic fuzzy numbers (WASPAS-IVIF). Appl. Soft Comput.
2014, 24, 1013-1021. [CrossRef]

Wei, G.W. Maximizing deviation method for multiple attribute decision making in intuitionistic fuzzy setting.
Knowl. Based Syst. 2008, 21, 833-836. [CrossRef]

Sahin, R.; Liu, P. Maximizing deviation method for neutrosophic multiple attribute decision making with
incomplete weight information. Neural Comput. Appl. 2016, 27, 2017-2029. [CrossRef]

Gitinavard, H.; Mousavi, S.M.; Vahdani, B. A new multi-criteria weighting and ranking model for
group decision-making analysis based on interval-valued hesitant fuzzy sets to selection problems.
Neural Comput. Appl. 2016, 27, 1593-1605. [CrossRef]

Xu, Z.; Zhang, X. Hesitant fuzzy multi-attribute decision making based on TOPSIS with incomplete weight
information. Knowl. Based Syst. 2013, 52, 53-64. [CrossRef]

Chen, Z.; Yang, W. A new multiple attribute group decision making method in intuitionistic fuzzy setting.
Appl. Math. Model. 2011, 35, 4424—4437. [CrossRef]

Nguyen, H.T.; Md, D.S.; Nukman, Y.; Aoyama, H.; Case, K. An integrated approach of fuzzy linguistic
preference based AHP and fuzzy COPRAS for machine tool evaluation. PLoS ONE 2015, 10, e133599.
[CrossRef] [PubMed]

Zhang, W.; Xu, Y.; Wang, H. A consensus reaching model for 2-tuple linguistic multiple attribute group
decision making with incomplete weight information. Int. J. Syst. Sci. 2016, 47, 389-405. [CrossRef]

Ruan, C,; Yang, ]J. Software quality evaluation model based on weighted mutation rate correction
incompletion G1 combination weights. Math. Probl. Eng. 2014, 2014, 1-9. [CrossRef]

Wang, J.; Li, Y.; Zhou, Y. Interval number optimization for household load scheduling with uncertainty.
Energy Build. 2016, 130, 613-624. [CrossRef]

Xu, Z. Dependent uncertain ordered weighted aggregation operators. Inf. Fusion 2008, 9, 310-316. [CrossRef]
Wang, J.; Yang, Y.; Li, L. Multi-criteria decision-making method based on single-valued neutrosophic
linguistic Maclaurin symmetric mean operators. Neural Comput. Appl. 2016, 1-19. [CrossRef]

Liang, R.X.; Wang, ].Q.; Li, L. Multi-criteria group decision-making method based on interdependent inputs
of single-valued trapezoidal neutrosophic information. Neural Comput. Appl. 2016, 1-20. [CrossRef]
Broumi, S.; Smarandache, F. New operations on interval neutrosophic sets. J. New Theory 2015, 2, 62-71.
Liu, P.; Wang, Y. Interval neutrosophic prioritized OWA operator and its application to multiple attribute
decision making. J. Syst. Sci. Complex. 2015, 3, 681-697. [CrossRef]

Liu, P; Tang, G. Some power generalized aggregation operators based on the interval neutrosophic sets and
their application to decision making. |. Intell. Fuzzy Syst. 2016, 30, 2517-2528. [CrossRef]

Ye, J. Similarity measures between interval neutrosophic sets and their applications in multicriteria
decision-making. J. Intell. Fuzzy Syst. 2014, 26, 165-172.

Peng, ].].; Wang, ].Q.; Wang, J.; Zhang, H.Y.; Chen, X.H. Simplified neutrosophic sets and their applications
in multi-criteria group decision-making problems. Int. J. Syst. Sci. 2016, 47, 2342-2358. [CrossRef]
Yingming, W. Using the method of maximizing deviation to make decision for multiindices. ]. Syst.
Eng. Electron. 1997, 8, 21-26.

Xu, E; Liu, J.; Lin, S.; Yuan, J. A VIKOR-based approach for assessing the service performance of electric
vehicle sharing programs: A case study in Beijing. J. Clean. Prod. 2017, 148, 254-267. [CrossRef]
Chakraborty, S.; Zavadskas, E.K. Applications of WASPAS method in manufacturing decision making.
Informatica 2014, 25, 1-20. [CrossRef]


http://dx.doi.org/10.3846/16484142.2017.1282381
http://dx.doi.org/10.24846/v24i2y201502
http://dx.doi.org/10.1016/j.asoc.2017.03.045
http://dx.doi.org/10.1016/j.asoc.2014.08.031
http://dx.doi.org/10.1016/j.knosys.2008.03.038
http://dx.doi.org/10.1007/s00521-015-1995-8
http://dx.doi.org/10.1007/s00521-015-1958-0
http://dx.doi.org/10.1016/j.knosys.2013.05.011
http://dx.doi.org/10.1016/j.apm.2011.03.015
http://dx.doi.org/10.1371/journal.pone.0133599
http://www.ncbi.nlm.nih.gov/pubmed/26368541
http://dx.doi.org/10.1080/00207721.2015.1074761
http://dx.doi.org/10.1155/2014/541292
http://dx.doi.org/10.1016/j.enbuild.2016.08.082
http://dx.doi.org/10.1016/j.inffus.2006.10.008
http://dx.doi.org/10.1007/s00521-016-2747-0
http://dx.doi.org/10.1007/s00521-016-2672-2
http://dx.doi.org/10.1007/s11424-015-4010-7
http://dx.doi.org/10.3233/IFS-151782
http://dx.doi.org/10.1080/00207721.2014.994050
http://dx.doi.org/10.1016/j.jclepro.2017.01.162
http://dx.doi.org/10.15388/Informatica.2014.01

Symmetry 2017, 9, 106 20 of 20

67. Wang, L.; Shen, Q.; Zhu, L. Dual hesitant fuzzy power aggregation operators based on Archimedean
t-conorm and t-norm and their application to multiple attribute group decision making. Appl. Soft Comput.
2016, 38, 23-50. [CrossRef]

68. Zhao, A; Du, J.; Guan, H. Interval valued neutrosophic sets and multi-attribute decision-making based on
generalized weighted aggregation operator. J. Intell. Fuzzy Syst. 2015, 6, 2697-2706.

69. Chi, P; Liu, P. An extended TOPSIS method for the multiple attribute decision making problems based on
interval neutrosophic set. Neutrosophic Sets Syst. 2013, 1, 63-70.

@ © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).



http://dx.doi.org/10.1016/j.asoc.2015.09.012
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

symmetry

Special Issue Volume 9, Issue 10, 2017

Neutrosophic Theories Applied in Engineering

7z
bry
F
www.mdpi.com

ISSN (electronic) 2073-8994



	1symmetry-09-00275-v2
	2symmetry-09-00235
	3symmetry-09-00208-v2
	4symmetry-09-00191-v2
	5symmetry-09-00185-v2
	6symmetry-09-00179
	7symmetry-09-00153
	8symmetry-09-00149-v2
	9symmetry-09-00142
	10symmetry-09-00140
	11symmetry-09-00126-v2
	12symmetry-09-00121-v2
	13symmetry-09-00119-v2
	14symmetry-09-00111
	15symmetry-09-00106-v2
	Blank Page
	Blank Page



