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Abstract 

Background: Single individual haplotype (SIH) problem refers to reconstructing haplotypes of an 

individual based on several input fragments sequenced from a specified chromosome. Solving this 

problem is an important task in computational biology and has many applications in the 

pharmaceutical industry, clinical decision-making and genetic diseases.  

Objective: It is known that solving the problem is NP-hard. Although several methods have been 

proposed to solve the problem, but it is found that most of them have low performances in dealing 

with noisy input fragments. Therefore, proposing a method which be accurate and scalable, is a 

challenging task.  

Methods: In this paper, we introduced a method, named NCMHap, which utilizes the 

Neutrosophic c-means (NCM) clustering algorithm. The NCM algorithm can effectively detect the 

noise and outliers in the input data. In addition, it can reduce their effects in the clustering process. 

Results: The proposed method has been evaluated by several benchmark datasets. Comparing with 

existing methods indicates that NCMHap is significantly superior in the most cases, particularly 

when the amount of noise increases, it outperforms the comparing methods.  

Conclusion: The experimental results recommend the application of the proposed method on the 

datasets which involve the fragments with huge amount of gaps and noise.  

Keywords Bioinformatics, Haplotype assembly, Minimum error correction, Neutrosophic c-

means clustering. 

1- Introduction  

It has been revealed that the human genome shows some degrees of inter-individual and inter-

population variations which make it an appropriate target to rigorous functional genomic analysis 

[1, 2]. Recent cost-effective next generation sequencing (NGS) technologies have provided a huge 

amount of genome sequences of individual human [3]. It has been discovered that more than 99% 

of human genomes are completely identical. Therefore, it turns out that the vast differences among 

people can potentially emerged from the less than 1% variations [4, 5]. Single nucleotide 

polymorphisms (SNPs) refer to the genetic variations which are more frequent. A sequence of 

SNPs which co-occur in a specific chromosome is named as haplotype. In diploid species like 

human, there are two copies of each chromosome. Since each haplotype is derived from a copy of 

specific chromosome, as a result, there are two copies of haplotypes.   

Haplotype provide more attainable information than individual SNPs which can be remarkable 
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for investigating the relation between genetic variations and complex diseases [6], studying of 

human history [7], providing personalized medicine [8] and studying biological mechanisms [9].  

In spite of the fact that obtaining the haplotypes is an important task, but direct experimental 

analysis of haplotypes is labor-intensive, expensive, and it is restricted to obtaining the local 

haplotypes. In practice, the human haplotypes are provided as sequencing reads (fragments). 

Assuming the importance of detecting genetic variations accompanied by limitations over 

molecular approaches, obtaining haplotype information from these numerous fragments may have 

profound effects in different aspects of medicine and molecular biology [10-13]. Availability of 

the fragments make it possible to assemble haplotypes in a process referred to as single individual 

haplotyping (SIH) [14] which is performed by in silico (computer aided) analysis using statistical 

and computational approaches. 

For this purpose, the requested region of the specified chromosome is sequenced several times 

and a number of fragments are provided. Due to the limitations of sequencing methods, the 

fragments involve errors and gaps. It should be noted that the former derived from wrong 

determination of allele’s measure; while, the latter is related to the low-confidence measures of 

allele positions. SIH attempts to assign each fragment to the right chromosome copy. Then, it 

detects and corrects the errors to reconstruct the desired haplotypes. In order to solve this problem, 

several models have been proposed which minimum SNP removal (MSR), minimum fragment 

removal (MFR), and minimum error correction (MEC) are the chief models. Among the existing 

models, MEC is more efficient and has been applied in several approaches [15-18]. The aim of 

this model is finding and correcting the errors by applying the minimum letter changes in the input 

fragments. It has been proved that all of the models are NP-Hard [14]. Most of the current methods 

construct a weighted graph such that each fragment corresponds with a vertex and the weight of 

each edge represents the amount of similarity between the connecting fragments. Based on the 

used model, each method transforms the built graph into a bipartite graph. For example in MEC 

model, this is performed by deleting the least number of conflicting edges. AROHap [18] and 

FCMHap [19] are two recently methods which have been addressed the problem according the 

MEC model. The first, through the use of asexual reproduction optimization (ARO) algorithm 

attempts to improve the fitness function which is designed based on MEC model. The second, by 

exploiting Fuzzy c-means (FCM) clustering algorithm tries to improve the initial haplotypes 

iteratively. It is worthwhile noting that the method divides the input fragments into two groups and 

the haplotypes are obtained as center of the clusters. However, some popular methods such as 

MCMC [20] and HapCUT [15] build the graph in a different way. These methods start with a set 

of arbitrary sequences as initial haplotypes and improve it step by step regarding the input 

fragments. They make a similar weighted graph in their distinctive model; but instead of fragments, 

SNPs are the vertices. Each pair of SNPs is connected if they are covered by at least one input 

fragments. The weight of each edge describes the amount of consistency with their corresponding 

positions in the current haplotypes. Albeit, this model efficiently describes the consistency of the 

current haplotype with the input fragments; but the existence of gaps and noise may lead to 

achieving inaccurate weights [21]. 
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In this paper, we propose a fast and accurate method to solve haplotype reconstruction named 

NCMHap which involves two steps. First, a weighted fuzzy conflict graph is made such that each 

node corresponds with an input fragment and the weight of each edge represents the measurement 

of incompatibility between the corresponding input fragments. By removing the least of conflicting 

edges based on the MEC model and bi-partitioning the input fragments, an initial fragment 

clustering is obtained. Next, to decrease the effect of noise and outliers on the obtained clusters, 

Neutrosophic c-means (NCM) clustering method is applied. NCM by assigning a coefficient to 

each input fragment can reduce the noise effects on the clustering process. According to the 

experimental results, NCMHap can provide high throughput reconstructed haplotypes close to the 

optimal.  

In the reminder of this paper, section 2 recalls the problem formulation. Section 3 provides a 

brief review on NCM algorithm. The details of the proposed method are described in section 4. 

Section 5 presents the experimental results. Finally, section 6 concludes this paper. 

2- Problem formulation 

As can be seen in Fig. 1, 𝑋𝑚×𝑛 is a SNP matrix where each row corresponds with an input 

fragment with length n. Since in most cases, there are two alleles at each SNP site, for simplicity, 

the major and minor alleles are represented by 0 and 1 respectively. It should be noted that if a 

SNP value cannot be determined with enough confidence, it is indicated by ‘-‘.  

Let 𝑓𝑖 and 𝑓𝑗 are two arbitrary input fragments. The Hamming distance (HD) can describe their 

similarity as below: 

𝐻𝐷(𝑓𝑖 , 𝑓𝑗) = ∑ 𝐷(𝑓𝑖𝑘, 𝑓𝑗𝑘)𝑛
𝑘=1   (1) 

𝐷(𝑎, 𝑏) = {
1   𝑖𝑓 𝑎, 𝑏 ≠′ −′𝑎𝑛𝑑 𝑎 ≠ 𝑏
0   𝑒𝑙𝑠𝑒                                     

 (2) 

Where 𝑓𝑖 and 𝑓𝑗 are compatible if 𝐻𝐷 = 0, else they are in conflict. In other words, when 

𝐻𝐷(𝑓𝑖 . 𝑓𝑗) equals zero, it can be concluded that these fragments are originated from the same 

chromosome copy, otherwise the fragments belong to different chromosome copy or some of their 

positions are destroyed by noise. To solve the problem, the fragments of the SNP matrix must be 

divided into two clusters such that the elements of each cluster will be compatible by minimum 

number of letter flips i.e. MEC measure is minimized. Then, the center of each cluster equals with 

its corresponding haplotype. Fig. 1, demonstrates the haplotype reconstruction in the diploid 

genome, X is SNP matrix which divided into two parts and 𝐻 = {ℎ1,ℎ2} involves the reconstructed 

haplotypes of each clusters. 

In order to evaluate the quality of the obtained haplotypes, reconstruction rate (RR) and MEC 

score are two useful measurements. Let 𝐻̂ and 𝐻 contain the reconstructed haplotypes and the 

original haplotypes respectively. The RR describes the similarity between 𝐻̂ and 𝐻 that it is 

computed as below. 
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𝑅𝑅(𝐻̂.𝐻) = 1 −
𝑚𝑖𝑛(𝐻𝐷(ℎ̂1,ℎ1)+𝐻𝐷(ℎ̂2,ℎ2).𝐻𝐷(ℎ̂1,ℎ2)+𝐻𝐷(ℎ̂2,ℎ1))

2𝑛
  

(3) 

 
Fig. 1. An example of haplotype reconstruction using the MEC model [22]. 

3- Neutrosophic c-means (NCM) algorithm 

As stated previously, fragment clustering is an important phase of the haplotype assembly. Also, 

huge amount of noise and gaps in the input fragments have made this phase as a challenging task. 

In order to perform this phase efficiently, we consider the Neutrosophic c-means (NCM) clustering 

algorithm. The algorithm computes the degrees belonging to the determinant and indeterminate 

clusters at the same time for each of the data points [23] [24]. Outlier and noise data are considered 

as Indeterminate clusters. Therefore, the NCM algorithm can detect outliers and noisy data. Also, 

by using some relevant functions, it can decrease the undesirable effects of noise and outliers on 

the clustering process. For this purpose, the NCM algorithm minimizes the objective function 

given in Eq. (4) through an iterative process, whereby the centers of the clusters are determined 

with the least error and the clustering accuracy is improved. 

𝐽(𝑇. 𝐼. 𝐹. 𝐶) = ∑ ∑ (𝑤1𝑇𝑖𝑗)
𝑚𝐶

𝑗=1 ‖𝑥𝑖 − 𝑐𝑗‖
2𝑁

𝑖=1 + ∑ (𝑤2𝐼𝑖)𝑚𝑁
𝑖=1 ‖𝑥𝑖 − 𝑐𝑖̅ 𝑚𝑎𝑥‖2 + ∑ 𝛿2(𝑤3𝐹𝑖)𝑚𝑁

𝑖=1   
(4) 

𝑐𝑖̅ 𝑚𝑎𝑥 =
𝐶𝑝𝑖𝐶𝑞𝑖

2
 

(5) 

𝑝𝑖 = arg max
𝑗=1,2.⋯,𝐶

(𝑇𝑖𝑗) (6) 

𝑞𝑖 = arg max
𝑗≠𝑝𝑖∩𝑗=1,2,⋯,𝐶

(𝑇𝑖𝑗) (7) 

In the above relations, 𝑇ij is defined as the degree to determinant clusters, 𝐼i is the degree to the 

boundary clusters, 𝐹i is the degree belonging to the outlier data set, N number of data, C number 
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of clusters, w weighting factor, m is a constant, xi is data point ,and δ is the number of objects that 

are considered as outliers. 𝐶i̅ max is a constant that is calculated for each data point according Eq. 

(8). This parameter is used to precisely determine the value of function 𝐼i, because the degree of 

indeterminacy of each data depends on the two largest definite clusters close to it, namely Eqs. (6) 

and (7). The cluster centers 𝑐𝑗 and membership𝑇ij, 𝐼i, and 𝐹i and are updated by Eqs. (8) 

respectively. 

(8) 
𝑐𝑗 =

∑ (𝑤1𝑇𝑖𝑗)
𝑚𝑁

𝑖=1 𝑥𝑖

∑ (𝑤1𝑇𝑖𝑗)
𝑚𝑁

𝑖=1

    

(9) 
𝑇𝑖𝑗 =

𝐾

𝑤1
(𝑥𝑖 − 𝑐𝑗)

−(2
𝑚−1⁄ )

      

(10) 
𝐼𝑖 =

𝐾

𝑤2
(𝑥𝑖 − 𝑐𝑖̅ 𝑚𝑎𝑥)−(2

𝑚−1⁄ )   

(11) 
𝐹𝑖 =

𝐾

𝑤3
𝛿−(2

𝑚−1⁄ )   

4- Proposed method 

As can be seen in Fig. 2, the proposed method involves two main steps. First, in order to provide 

an initial clustering of the input fragments, a weighted graph, called fuzzy conflict graph, is 

constructed based on the SNP matrix. In this graph, fragments are considered as vertices, and the 

weight of each edge is the normalized distance between corresponding fragments. This measure is 

given as follows:  

(12) 
𝐷̂(𝑓𝑖, 𝑓𝑗) =

1

𝑆𝑖𝑗
∑ 𝑑̂(𝑓𝑖𝑘, 𝑓𝑗𝑘)𝑛

𝑘=1   

In the above relations, fi and fj are two fragments of X, Sij denotes the number of columns (SNPs) 

that are covered by either fik or fjk in X. In fact, Sij is a normalization factor that allows us to 

normalize the distance between the two fragments such that the resulting distance ranges from 0 

to 1, and n represents the number of SNPs. 

After constructing the graph, the edges with weight of 0.5 are removed because they do not 

provide sufficient information about the clustering of the connected fragments. 

In the second phase, the initial clustering is given to the NCM algorithm. The centers of each 

cluster are considered as the primary centers in the NCM algorithm. Initial clustering can improve 

the convergence speed of the NCM algorithm. This algorithm determines the impact of fragments 

on clustering based on the three membership functions introduced and is able to reduce the impact 

of noise or outliers on the clustering process and consequently, the accuracy of clustering will be 

increased. Therefore, clustering is achieved by repeating the optimal objective function and the 

membership degree of the determinant and indeterminate clusters and the centers of the clusters in 

each iteration will be updated by Eqs. (8-11). The iteration is repeated until the difference between 

cluster centers at two successive iterations is greater than 𝜀. Finally, the center of obtained clusters 
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construct the set of reconstructed haplotypes. 

 
Fig. 2- Flowchart of the proposed method 

5- Results 

5.1- Setting the parameters  

The proposed method was implemented in MATLAB and all experiments were completed on a 

Core i5 Intel with 2.7 GHz and 8G RAM. 𝜀, 𝛿, 𝑤1, 𝑤2, and 𝑤3 are the main parameters which are 

set as 10−5, 25, 0.7, 0.2, and 0.1, respectively. Similar to the pervious works [15, 18, 21, 25-28], 

RR measure is used to evaluate the quality of the obtained haplotypes. 

5.2- Competitor methods 

In this experiment, NCMhap is compared with a set of state-of-the-art and well-known methods. 

Some important notes about these competitors are described as follows: 

 H-PoP [27] clusters the DNA reads into k groups such that the elements of each cluster have 

minimum distance with each other while are far from the reads of the other clusters. Moreover, 

it exploits the genotype information to improve the reconstructed haplotypes. 

 SCGD [29] is a heuristic based method which models SIH as the low-rank matrix factorization 

problem and represents a modified of the gradient descent algorithm to solve the problem.  

 Fast [26] is an iterative based method which models the similarities between the input 
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fragments with a weighed fuzzy conflict graph.  

 FCM [19] uses Fuzzy C-means clustering method to divide the input fragments into two 

segments with minimum MEC measure. 

 HG [21] exploits hypergraph model to describe the similarities between the input fragments 

more precisely.   

 ARO [18] is a nature inspired method which utilizes Asexual Reproduction optimization 

method to cluster the input fragments with the best MEC score. 

 ALT [28] is an iterative algorithm which formulates the haplotype assembly problem as a 

sparse tensor decomposition. 

 HRCH [30] utilizes a chaotic viewpoint to reconstruct haplotypes. For this aim, the obtained 

haplotypes are mapped to some coordinate series by applying chaos game representation. 

Then, the positions with low confidences are improved by using a local projection.  

5.3- Simulation results 

In order to evaluate the performance of the proposed method, first, the experiments have been 

carried out on a widely used dataset named as Geraci’s  dataset [31] . It was provided by 

international Hapmap project which is based on 22 chromosomes of 269 different individuals. 

The individuals have been nominated from Japan (JPT), China (HCB), Nigeria (YR) and Utah 

(CEU). Haplotype length (l), coverage (c), and error rate (e) are the main parameters which 𝑙 =

{100,350, 700}, 𝑐 = {3,5,8,10} and 𝑒 = {0.1,0.2,0.3}. It should be noted that for each 

combination of these parameters there are 100 instances. 

Since the proposed method involves two steps, it can be desired to evaluate the influence of 

each step independently. For this purpose, the initial clustering, NCM algorithm, and NCMHap 

are separately executed on the Geraci’s dataset. The obtained results for haplotypes with length 

100, 350, and 700 are listed in Tables 1-3 respectively. It should be noted that the first two columns 

in these tables are the error rate e and the coverage c, respectively. In each table, The NCM column 

represents the results when it starts with a random initial guess for each cluster center. 

It can be seen in the last column of Tables 1-3, the synergistic of these steps achieved the 

promising results which completely outperforms the other cases.  

Table 1. The average reconstruction rate over 100 instances with length 100 

e c Initial NCM NCMhap 

0.1 

3 0.657 0.817 0.916 

5 0.677 0.846 0.971 

8 0.676 0.946 0.983 

10 0.675 0.885 0.989 

0.2 

3 0.611 0.693 0.822 

5 0.620 0.730 0.907 

8 0.616 0.793 0.931 

10 0.633 0.826 0.936 

0.3 
3 0.554 0.581 0.684 

5 0.568 0.677 0.759 
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8 0.565 0.653 0.816 

10 0.564 0.692 0.843 

Table 2. The average reconstruction rate over 100 instances with length 350 

e c Initial NCM NCMhap 

0.1 

3 0.639 0.688 0.953 

5 0.655 0.718 0.982 

8 0.664 0.805 0.989 

10 0.665 0.812 0.993 

0.2 

3 0.586 0.632 0.856 

5 0.600 0.678 0.921 

8 0.610 0.720 0.939 

10 0.619 0.703 0.948 

0.3 

3 0.527 0.580 0.712 

5 0.539 0.583 0.803 

8 0.540 0.590 0.850 

10 0.547 0.611 0.870 

Table 3. The average reconstruction rate over 100 instances with length 700 

e c Initial NCM NCMhap 

0.1 

3 0.635 0.704 0.958 

5 0.656 0.761 0.984 

8 0.647 0.745 0.990 

10 0.657 0.746 0.994 

0.2 

3 0.584 0.634 0.865 

5 0.607 0.624 0.925 

8 0.598 0.714 0.938 

10 0.599 0.708 0.946 

0.3 

3 0.520 0.545 0.720 

5 0.538 0.569 0.808 

8 0.535 0.590 0.849 

10 0.545 0.618 0.958 

Table 4-6 demonstrate the RRs obtained from the run of the NCMHap as well as the benchmarking 

algorithms on Geraci’s dataset for haplotypes with length 100, 350, and 700 respectively. In each 

table, the first two columns are error rate and coverage measure respectively. It should be noted 

that each element of these tables represents the average over 100 data samples. Also, the bold and 

gray values in the last column of each table represents the first and second best reconstruction 

rates, respectively.  

By investigating the results of Table 4, it reveals that the proposed method can provide high 

quality results and completely comparable against the other approaches. Comparing the results 

demonstrates that the proposed method completely outperforms SCGD, FastHap, FCMHap ,and 

AROHap algorithms in all parameters.  

As can be seen in Table 5, by increasing the length of fragments, the quality of the obtained 

haplotypes is efficiently improved. Particularly, when the amount of noise is increased, it can 

preserve the quality of reconstructed haplotypes against the other approaches and in most cases 

outperforms the benchmarking methods.  

 



NCMHap: A novel method for haplotype reconstruction based on Neutrosophic c-means clustering 

Table 4- Performance comparison of NCMHap and other methods on the Geraci's dataset [31] with 

haplotype block length l = 100. 

e C SCGD H-pop   Fast FCM HG ARO ALT HRCH NCMHap 

0.1 

3 0.918 0.921 0.823 0.882 0.941 0.844 0.944 0.957 0.916 

5 0.944 0.919 0.917 0.948 0.989 0.922 0.953 0.987 0.971 

8 0.948 0.900 0.955 0.971 0.994 0.945 0.945 0.991 0.983 

10 0.959 0.892 0.926 0.972 0.997 0.92 0.943 0.995 0.989 

0.2 

3 0.806 0.836 0.806 0.739 0.752 0.711 0.831 0.851 0.822 

5 0.825 0.865 0.834 0.772 0.899 0.736 0.865 0.926 0.907 

8 0.861 0.873 0.849 0.793 0.966 0.760 0.873 0.941 0.931 

10 0.886 0.878 0.899 0.835 0.981 0.788 0.878 0.956 0.936 

0.3 

3 0.671 0.717 0.578 0.629 0.621 0.627 0.694 0.695 0.684 

5 0.676 0.784 0.711 0.648 0.698 0.638 0.780 0.798 0.759 

8 0.740 0.835 0.700 0.664 0.79 0.649 0.841 0.861 0.816 

10 0.798 0.855 0.732 0.675 0.856 0.653 0.857 0.881 0.843 

Table 5- Performance comparison of NCMHap and other methods on the Geraci's dataset [31] with 

haplotype block length l = 350. 

e C SCGD H-pop Fast FCM HG ARO ALT HRCH NCMHap 

0.1 

3 0.941 0.921 0.872 0.873 0.939 0.844 0.943 0.939 0.953 

5 0.945 0.912 0.927 0.919 0.979 0.892 0.951 0.981 0.982 

8 0.950 0.896 0.977 0.934 0.988 0.908 0.930 0.991 0.989 

10 0.952 0.889 0.947 0.935 0.995 0.910 0.941 0.994 0.993 

0.2 

3 0.813 0.813 0.763 0.671 0.712 0.659 0.849 0.813 0.856 

5 0.817 0.860 0.811 0.719 0.905 0.691 0.896 0.897 0.921 

8 0.832 0.871 0.912 0.728 0.899 0.709 0.908 0.922 0.939 

10 0.838 0.873 0.923 0.733 0.907 0.719 0.913 0.937 0.948 

0.3 

3 0.637 0.629 0.575 0.597 0.602 0.595 0.664 0.640 0.712 

5 0.661 0.744 0.720 0.614 0.632 0.609 0.777 0.737 0.803 

8 0.690 0.830 0.790 0.626 0.675 0.628 0.838 0.788 0.850 

10 0.700 0.850 0.833 0.631 0.742 0.635 0.856 0.821 0.870 

Table 6- Performance comparison of NCMHap and other methods on the Geraci's dataset [31] with 

haplotype block length l = 700 

e C SCGD H-pop Fast FCM HG ARO ALT HRCH NCMHap 

0.1 

3 0.934 0.919 0.917 0.834 0.934 0.801 0.941 0.928 0.958 

5 0.951 0.923 0.872 0.881 0.990 0.862 0.951 0.972 0.984 

8 0.956 0.945 0.945 0.883 0.987 0.899 0.943 0.983 0.990 

10 0.973 0.951 0.983 0.996 0.997 0.912 0.942 0.992 0.994 

0.2 

3 0.796 0.811 0.703 0.652 0.677 0.644 0.852 0.797 0.865 

5 0.829 0.854 0.681 0.672 0.910 0.662 0.896 0.869 0.925 

8 0.832 0.868 0.916 0.686 0.884 0.695 0.905 0.885 0.938 

10 0.860 0.869 0.896 0.746 0.894 0.698 0.909 0.900 0.946 

0.3 

3 0.652 0.600 0.627 0.592 0.592 0.588 0.674 0.602 0.720 

5 0.659 0.733 0.682 0.599 0.621 0.598 0.735 0.699 0.808 

8 0.662 0.804 0.741 0.606 0.646 0.613 0.793 0.729 0.849 

10 0.714 0.844 0.805 0.606 0.696 0.618 0.829 0.759 0.870 

 

Finally, as reported in Table  6, for input fragments with length 700, except one situation, NCMHap 

has achieved better reconstruction rates than any other algorithms. 

Since the Neutrosophic c-means clustering is a developed form of Fuzzy c-means method and 
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moreover NCMHap like FastHap method uses weighted fuzzy conflict graph to model the 

similarity between the input fragments, its performance is compared against FCMhap and FastHap 

approaches when it deals with long block haplotypes and a huge amount of noise. Fig. 3 

demonstrates the quality of obtained results for haplotypes with length 700 and error rate 𝑒 ≥ 0.2. 

 
Fig. 3 Comparison the reconstruction rate of the proposed 

method against FastHap and FCMHap methods while 𝑒 ≥
0.2 

 

It is apparent the results of the proposed method are valuable against comparing methods in 

dealing with input fragments with high error rate. 

5.4- Experimental results 

For more investigation, we tested the performance of our method on a real dataset which 

involves data provided by 1000 genome project. This data belongs to an individual NA12878 

which frequently is used to investigate the performance of the existing SIH methods. Moreover, 

the trio-phased variant calls from the GATK resource bundle[32] was used as the true haplotypes. 

The reconstruction rate of the proposed method is compared to those of H-PoP 

[27],SCGD[29],Fast[26],HG[21],ARO[18], ALT[28] ,and HRCH[30] in Table7. The obtained 

results demonstrate that our method achieves the highest and second highest RRs for most of the 

chromosomes. 

Chr H-pop SCGD FastHap HGHap AROHap FCMHap ALTHap HRCH NCMHap 

1 0.957 0.925 0.919 0.937 0.935 0.913 0.974 0.954 0.972 

2 0.956 0.926 0.922 0.929 0.943 0.908 0.953 0.943 0.959 

3 0.912 0.919 0.923 0.928 0.94 0.913 0.933 0.944 0.969 

4 0.970 0.927 0.933 0.923 0.949 0.923 0.969 0.96 0.961 

5 0.966 0.939 0.914 0.932 0.942 0.912 0.972 0.952 0.957 

6 0.952 0.930 0.938 0.935 0.948 0.929 0.949 0.958 0.977 

7 0.924 0.935 0.921 0.925 0.951 0.904 0.970 0.954 0.971 

8 0.947 0.907 0.906 0.906 0.934 0.903 0.962 0.949 0.950 

9 0.910 0.971 0.940 0.901 0.966 0.937 0.971 0.921 0.956 
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10 0.945 0.926 0.923 0.940 0.945 0.913 0.968 0.954 0.956 

11 0.915 0.932 0.931 0.939 0.942 0.923 0.933 0.963 0.964 

12 0.903 0.923 0.923 0.945 0.935 0.908 0.921 0.954 0.963 

13 0.941 0.970 0.941 0.930 0.935 0.925 0.970 0.946 0.965 

14 0.971 0.911 0.934 0.917 0.934 0.932 0.903 0.949 0.970 

15 0.974 0.991 0.917 0.920 0.937 0.905 0.972 0.951 0.959 

16 0.935 0.930 0.932 0.932 0.946 0.924 0.967 0.962 0.973 

17 0.911 0.967 0.944 0.931 0.951 0.920 0.975 0.963 0.973 

18 0.976 0.903 0.926 0.924 0.949 0.919 0.910 0.954 0.973 

19 0.978 0.972 0.930 0.949 0.942 0.923 0.976 0.960 0.968 

20 0.950 0.968 0.931 0.945 0.946 0.922 0.973 0.957 0.971 

21 0.970 0.943 0.919 0.933 0.941 0.915 0.974 0.960 0.960 

22 0.983 0.941 0.926 0.951 0.941 0.914 0.973 0.964 0.976 

 

Evaluating the obtained results on the both simulation and experimental datasets demonstrates 

that the proposed method can provide promising reconstructed haplotypes in dealing with low 

quality sequencing data. Moreover, in the worst case, NCMHap can solve the problem in the less 

than 3 minutes which this runtime is favorable against the existing approaches. 

6- Conclusion 

In this paper, we presented a method based on the Neutrosophic c-means (NCM) clustering 

algorithm for haplotype assembly problem. Time complexity and the handling high error rate 

datasets are the main challenges of the existing methods. Due to improve the NCM’s convergence 

speed, the proposed method consists of two phases. First, the input fragments are divided into two 

partitions based on their similarities. Second, information of bi-partitioning is employed as initial 

centers by NCM clustering method. Applying the information in NCM can improve the speed of 

convergence and decrease number of iterations. Experimental results display that the proposed 

method provides high efficiency to reconstruct haplotypes with a high-error-rate. 

As demonstrated in a series of recent publications (see, e.g., [21, 33-36]) in developing new 

prediction methods, user friendly and publicly accessible web-servers will significantly enhance 

their impacts [37], we shall make efforts in our future work to provide a web-server for the 

prediction method presented in this paper. Also, the source code of NCMHap is freely available at 

https://github.com/FatemehZamani/NCMHap.git. 
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